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Abstract

The growth of plasma instabilities called Edge Localized Modes (ELMs) in tokamaks

results in the quasiperiodic relaxation of the edge pressure pro�le. As the large transient

heat �uxes due to ELMs are foreseen to strongly reduce the divertor lifetime in ITER,

ELM control is mandatory in ITER. One of the promising control methods planned

in ITER is the application of external resonant magnetic perturbations (RMPs) which

already proved to be e�cient for ELM mitigation/suppression in current tokamak exper-

iments. However a signi�cant progress in understanding the interaction between plasma

�ows, RMPs and ELMs is needed to explain the experimental results and make reliable

predictions for ITER.

In this perspective, non-linear modeling of ELMs and RMPs is done with the reduced

MHD code JOREK, in toroidal geometry including the X-point and the Scrape-O� Layer.

The initial model has been further developped to describe self-consistent plasma �ows �

with the addition of the bi-�uid diamagnetic drifts, the neoclassical friction and a source

of parallel rotation � and to simulate the RMP penetration consistently with the plasma

response.

As a �rst step, the plasma response to RMPs (without ELMs) is studied for JET,

MAST and ITER realistic plasma parameters and geometry. For JET parameters, three

regimes of plasma response are found depending on the plasma resistivity and the dia-

magnetic rotation: at high resistivity and slow rotation, the magnetic islands generated

by the RMPs on the edge resonant surfaces rotate in the electron diamagnetic direction

and their size oscillates. At faster rotation, the generated islands are static and their

size is reduced by the plasma screening. An intermediate regime with slightly oscillating

quasi-static islands is found at lower resistivity.

The general behaviour of the plasma/RMP interaction, common to the three studied

cases, is the following: RMPs are generally screened by the formation of response currents,

induced by the plasma rotation on the resonant surfaces. RMPs however penetrate at

the very edge (ψnorm > 0.95) where an ergodic zone is formed. The ampli�cation of the

non-resonant spectrum of the magnetic perturbations is also observed in the core. The

edge ergodization induces an enhanced transport at the edge, which slightly degrades the

pedestal pro�les. RMPs also generate the 3D-deformation of the plasma boundary with

a maximum deformation near the X-point where lobe structures are formed.

Then the full dynamics of a multi-ELM cycle (without RMPs) is modeled for the

�rst time in realistic geometry. An ELM is characterized by the growth of precursors,

rotating in the electron diamagnetic direction at half the diamagnetic frequency, followed

by the non-linear expulsion of plasma �laments through the edge transport barrier. This

behaviour found in modeling accurately matches several experimental observations. Af-

ter an ELM crash, the diamagnetic rotation is found to be instrumental to stabilize the

plasma and to model the cyclic reconstruction and collapse of the plasma pressure pro-

�le. ELM relaxations are cyclically initiated each time the pedestal gradient crosses a
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triggering threshold. After a few transient ELMs, a quasiperiodic ELMy regime is ob-

tained, characterized by a similar coupling between modes, similar maximum pressure

gradient reached when the crash occurs and similar power deposition on the divertor

plates, cyclically recovered for all the ELMs. Diamagnetic drifts are also found to yield a

near-symmetric ELM power deposition on the inner and outer divertor target plates, in

closer agreement with experimental measurements as compared to previous simulations

where the diamagnetic rotation was neglected.

Last the ELM mitigation and suppression by RMPs is observed for the �rst time in

modeling. The non-linear coupling of the RMPs with unstable modes is found to modify

the edge magnetic topology and to induce a continuous MHD activity in place of a large

ELM crash, resulting in the mitigation of the ELMs. The ELM footprints follow the

RMP footprint, although modulated by other modes. At larger diamagnetic rotation,

a bifurcation from unmitigated ELMs (at low RMP current) towards fully suppressed

ELMs (at large RMP current) is obtained: the large permanent transport induced by

the RMP-driven MHD activity stabilizes the plasma under the stability threshold thus

ELMs are fully suppressed.



Résumé

Le développement d'instabilités nommées ELMs (pour �Edge Localized Modes�) dans

les plasmas de tokamaks génère la relaxation quasi-périodique du pro�l de pression au

bord. Les calculs prédictifs pour le futur tokamak ITER montrent que la forte charge

thermique imposée sur le divertor lors des relaxations d'ELMs pourrait réduire dras-

tiquement la durée de vie du divertor : dès lors, il apparait indispensable de mitiger ou

supprimer les ELMs dans ITER. Une des méthodes de contrôle des ELMs prévue pour

ITER est l'application de Perturbations Magnetiques Résonantes (RMPs en anglais),

cette méthode s'étant avérée e�cace pour mitiger ou supprimer les ELMs dans les ex-

périences réalisées sur les tokamaks actuels. Néanmoins, une meilleure compréhension de

l'interaction entre les ELMs, les RMPs et les écoulements du plasma est nécessaire pour

interpréter de façon congrue les résultats expérimentaux et faire des prédictions �ables

pour ITER.

Dans ce contexte, la simulation non-linéaire des ELMs et des RMPs est réalisée avec

le code de MHD réduite JOREK, en géométrie toroidale incluant le point-X et la �Scrape-

O� Layer�. Le modèle initial de JOREK a été ra�né a�n de décrire de façon cohérente

les écoulements du plasma � les e�ets bi-�uides diamagnétiques, la friction poloidale néo-

classique et une source de rotation parallèle ont été ajoutés � et de simuler la pénétration

des RMP en prenant en compte la réponse du plasma.

Dans un premier temps, la réponse du plasma aux RMPs (sans ELMs) est étudiée

dans le cas des tokamaks JET, MAST et ITER, dans une géométrie réaliste et avec des

paramètres expérimentaux typiques. Dans le cas JET, trois régimes de réponse du plasma

sont observés dans les simulations, dépendant de la résistivité du plasma et de la rotation

diamagnétique : pour une résistivité élevée et une rotation faible, les îlots magnétiques

induits par les RMPs sur les surfaces de résonance tournent dans le sens diamagnétique

ionique, et la taille des îlots oscille. Mais lorsque la rotation diamagnétique est plus

importante, les îlots sont statiques et leur taille est réduite par l'écrantage induit par le

plasma. Un régime intermédiaire est également observé à faible résistivité, caractérisé

par des îlots quasi-statiques oscillant faiblement.

Le mécanisme global de l'interaction entre le plasma et les RMPs, commun aux trois

cas étudié, est le suivant : les RMPs sont globalement écrantées par des courants de

réponse induits par la rotation du plasma sur les surfaces de résonance. Les RMPs

pénètrent seulement à l'extrême bord (pour ψnorm > 0.95) où une zone ergodique se

forme. L'ampli�cation du spectre non-résonant de perturbations magnétiques est en re-

vanche observée au centre du plasma. L'ergodisation du bord génère une augmentation

du transport au bord, ce qui dégrade légèrement les pro�ls de piédestal. Les RMPs provo-

quent également la déformation tridimensionnelle des pro�ls de densité et température,

ainsi que de la séparatrice. Cette déformation est maximale près du point-X où une

structure de lobes se forme.

Ensuite, la modélisation de la dynamique d'un cycle d'ELMs (sans RMPs), obtenue
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pour la première fois en géométrie réaliste, est présentée. Un ELM est caractérisé d'abord

par la croissance d'un mode dit �précurseur� dans le piédestal, tournant dans la direc-

tion diamagnétique électronique, suivie par l'expulsion de �laments de plasma à travers

la barrière de transport externe. Cette description théorique d'un ELM correspond rel-

ativement bien avec les faits expérimentaux observés dans di�érents tokamaks. Nos

simulations montrent que la rotation diamagnétique est un paramètre clé permettant

au plasma de recouvrer un état stable après la relaxation d'un ELM. La compétition

entre la stabilisation diamagnétique et la déstabilisation du plasma par l'injection de

puissance induit alors une dynamique cyclique de reconstruction et d'e�ondrement du

pro�l de pression. Le déclenchement d'un ELM a lieu dès lors qu'un seuil relatif au

gradient de pression est franchi. Après quelques ELMs transitoires, un régime d'ELMs

quasi-périodique est observé dans les simulations, dans lequel le couplage des modes, le

maximum de gradient de pression pour lequel la relaxation a lieu ainsi que le dépot de

puissance sur le divertor, sont similaires pour chaque ELM. De plus, la prise en compte

de la rotation diamagnétique permet d'obtenir un dépot de puissance quasi-symétrique

sur les plaques de divertor interne et externe, proche des observations expérimentales.

En�n la mitigation et la suppression des ELMs sont obtenues pour la première fois

dans nos simulations. Le couplage non-linéaire des RMPs avec des modes instables du

plasma induit une modi�cation de la topologie magnétique au bord. Ainsi, les relax-

ations d'ELMs, subites et énergétiques, sont remplacées par une activité MHD continue

induisant un transport permanent important, d'où la mitigation de la puissance des

ELMs. Les empreintes des ELMs sur le divertor (�footprints�) suivent les empreintes

générées par les RMPs, mais sont légèrement modulées par la présence des autres modes.

Lorsque la vitesse diamagnétique est importante, est observée la bifurcation d'un état où

les ELMs ne sont pas mitigés (pour un faible courant circulant dans les bobines RMP)

vers un état où les ELMs sont totalement supprimés (pour un courant plus important) : le

transport important dû à l'activité MHD induite par les RMPs a pour e�et de maintenir

le plasma en-dessous du �seuil de stabilité� et donc de supprimer les ELMs.
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The increasing scarcity of fossil fuels as well as the impact of the carbon-fuels on the

climate change make it necessary to �nd clean and sustainable sources of energy. In this

respect, the achievement of fusion energy would represent a �grail� for mankind, as it

would provide a large amount of energy while burning almost inexhaustible and clean

resources (the deuterium found in sea water and the lithium found in rocks). Furthermore,

compared to �ssion power plants, the nuclear waste that would be produced by fusion

plants � which only consists in materials activated by neutrons � becomes less radioactive

than coal within one century, and the di�culty of sustaining fusion reactions make that

a Tchernobyl-like explosion would be impossible with a fusion plant.

However, whereas it took only a couple of decades to create �ssion power plants after

the discovery of the neutron in 1932, international collaborations on nuclear fusion have

been started since the 1950s without achieving yet to industrially produce energy issued

from fusion reactions. This is due to the fact that the physics involved is much more

complicated, which motivates worldwide research in this domain. The international col-

laboration ITER [ITER 1999] (for International Thermonuclear Experimental Reactor,

also meaning �the way� in Latin) currently in construction in Cadarache, France, rep-

resents a step forward towards the sustained and pro�table production of energy from

fusion reaction.

ITER will have to face several physical challenges. Among them is the control of

plasma instabilities called Edge Localized Modes (ELMs), which should induce large

transient heat loads on the machine. This thesis is thus motivated by the need for an

improved understanding of the physics underlying the ELMs and their control methods.
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1.1 Main principle of nuclear fusion

The cohesion of the nucleus of an atom depends on the mass number of the atom. The

binding energy per nucleon as a function of the atomic mass is presented in Fig. 1.1. It

shows that the light atoms such as Hydrogen and the heavy atoms such as Uranium are

less tightly bound than average mass numbers, Iron being the most tightly bound atom.

Thus considering Einstein's formula ∆E = ∆mc2, there are two di�erent ways to release

energy from nuclear reactions [CEA ]. Fission consists in the splitting of a heavy atom

such as Uranium when bombarded by a neutron: the �ssion products being more tightly

bound, the reaction releases 200MeV of energy corresponding to the di�erence of mass.

At the opposite, energy can be released by a fusion reaction, where light atoms (isotopes

of Hydrogen) fuse to form a more binded atom (Helium).

Figure 1.1: Binding energy per nucleon as a function of the atomic mass

Figure 1.2: Deuterium-Tritium fusion reaction

The most probable fusion reaction is the Deuterium-Tritium (D-T) reaction (Fig. 1.2),

which releases an atom of helium (3, 56MeV ) and a neutron (14, 03MeV ). As the D-T

reaction rate (Fig. 1.3) is larger than the rate of the other possible fusion reactions, the

present research on controlled nuclear fusion aims at producing energy from the D-T

reaction [Wesson 2011]. Since the Tritium is very rare in nature � T is radioactive with

an half-life of ∼ 12, 3 years [Lucas 2000] �, Lithium modules will be used in the ITER

blanket, such that Lithium bombarded with neutrons (issued from fusion reactions) will

breed Tritium [ITER 1999]:
6Li+ n→ 4He+ T (1.1)
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Thus the Li-D reaction can be sustained, since the combination of both reactions (Fig. 1.2

and Eq. (1.1)) gives:
6Li+D → 2 4He (1.2)

Figure 1.3: Reaction rate of fusion reactions depending on the temperature

However, the diagram presented in Fig. 1.3 shows that the D-T matter has to be

heated up to 10keV (≈ 100 million degrees) to make this reaction probable. At this

extremely high temperature, the D-T mix is in a state called plasma (ionized gas). The

two nuclei, positively charged, have to overcome the repulsive barrier between nuclei �

called Coulomb barrier � before fusing, which explains why such a high temperature

is necessary. An important parameter called the ampli�cation factor Q, quanti�es the

e�ciency of a fusion reactor. Q is the ratio of the power exhausted by fusion reactions

against the injected power. The larger Q is, the more �pro�table� a reactor is. Q ≈ 0.64

was obtained in the JET tokamak [Keilhacker 1999]. ITER aims at reaching Q = 10

during 100s [ITER 1999] and future fusion power plant (DEMO) should reach Q > 30.

The ampli�cation factor Q is related to the triple factor Tneτe, where T and ne are

respectively the plasma temperature and electron density and τe is the con�nement time.

The con�nement time is the time it takes for the plasma to lose its energy content if

the sources sustaining it are abruptly switched o�. The ignition (self-sustained fusion

reaction), corresponding to Q = ∞, is characterized by the Lawson criterion which

quanti�es this triple product. For the D-T reaction and for the optimum temperature

T ≈ 20keV given by Fig. 1.3, the Lawson criterion is:

neτe > 1.5× 1020s/m3 (1.3)

On Earth, there are two main ways to reach the Lawson criterion. First, in the fusion

by inertial con�nement, lasers are targeting a micro-ball of D-T, resulting in a high density

plasma (≈ 1031m−3) con�ned by inertia but a very low con�nement time (≈ 10−11s).

This method has among others military applications. Second, in the fusion by magnetic

con�nement, the plasma is magnetically con�ned by magnetic coils in a torus, resulting

in a lower density (≈ 1020m−3) but a larger con�nement time (≈ 10s). Two main kinds
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of machines allow for the magnetic con�nement, called stellerators and tokamaks. As

the tokamak is currently the most advanced technique in view of producing energy from

fusion reaction, the tokamak con�guration was chosen for ITER. An empirical scaling

law demonstrated that the energy con�nement time � and therefore the ampli�cation

factor � increases with the size of the tokamak (τE ∝ R1.98
0 , R0 being the major radius

of the tokamak) [Hawryluk 2009]. So ITER will be larger (R0 = 6.2m) than the existing

experimental tokamaks (R0 = 3m in the case of the largest tokamak, JET (UK)), and

future fusion plants should be even larger (R0 ≈ 9m).

1.2 Magnetic con�nement in tokamaks

Figure 1.4: Toroidal (a) and poloidal (b) �eld resulting in a helicoidal (c) �eld in a
tokamak.

The principle of the tokamak is to �trap� the particles in a magnetically con�ned

torus. Since the plasma is electrically charged, the ions and electrons gyrate around the

magnetic �eld lines at the cyclotron frequency ωs = qsB/ms, as presented in Fig. 1.5.

qs and ms are respectively the charge and mass of the species s (ion or electron) and B

is the magnetic �eld. The gyration radius around a magnetic �eld line is given by the

Larmor radius ρs = vth,s/ωs (vth,s =
√

2T/ms being the thermal velocity of the species).

For a hot tokamak plasma (T ∼ 10keV ) with a strong magnetic �eld B > 1 Tesla, the

ion Larmor radius is of the order of 1mm, which is much smaller than the minor radius

a ∼ 1m of the tokamak, and the electron Larmor radius is even smaller (around 10−5m).

Thus we can consider that the ions and electrons are �stuck� to the magnetic �eld applied

in the toroidal direction. However, the particles also have a slow drift movement (in the

poloidal direction), due to the gradient of the magnetic �eld and the centrifugal force,

and depending on the sign of their charge. Thus in addition to the toroidal magnetic

�eld, a poloidal component of the magnetic �eld is necessary to compensate for this drift

velocity. That is why both toroidal and poloidal components of the magnetic �eld are

needed to obtain the con�nement of the particles in the tokamak. The toroidal magnetic
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�eld is produced by a set of coils located in the poloidal plane (Fig. 1.4(a)), whereas the

poloidal �eld is induced by the toroidal plasma current (Fig. 1.4(b)), itself induced by

transformer e�ect � due to the discharge of a vertical solenoid placed at the center of

the tokamak � and by other current sources [Wesson 2011]. The total resulting magnetic

�eld is therefore helical (Fig. 1.4(c)).

Figure 1.5: Rotation of the particles around the magnetic �eld lines

Figure 1.6: Magnetic surfaces in a tokamak

The magnetic surfaces are embedded into each other, as drawn in Fig. 1.6. In this

particular case where the poloidal cross-section is circular, a magnetic surface can be

characterized by its minor radius r. Yet in the general case, the poloidal magnetic �ux,

which is the magnetic �ux in the poloidal direction averaged over the toroidal angle, is

the adequate radial coordinate. As a tokamak is toroidally axisymmetric, the poloidal

�ux on a point P is given by:

ψ(P ) =

∫ ∫
ΣP

B · dΣP (1.4)

where ΣP is the disk lying on P and whose axis is the axis of symmetry of the tokamak.

ψ is constant over a given magnetic surface, thus each magnetic surface can be labeled by

the value of ψ. In this thesis, we also use the normalized poloidal �ux ψN = ψ−ψaxis
ψedge−ψaxis

which varies between 0 at the center and 1 at the plasma edge. In the same manner, the

magnetic surfaces can be characterized by their helicity q given by

q =
rBϕ

RBθ

(1.5)
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The variables r and R are the radial coordinates along the minor (a) and major (R0)

radii, and Bϕ and Bθ represent the toroidal and poloidal �eld. The surfaces where q

can be written as q = m/n with m and n integer correspond to the rational surfaces: a

particle which follows (or more exactly gyrates around) a �eld line belonging to a rational

surface will return to the same point after covering n toroidal turns and m poloidal turns.

We will see in section 1.4 that these rational surfaces play a major role regarding the

magnetic stability.

1.3 H-mode plasmas and Edge Localized Modes

1.3.1 H-mode

A regime of improved con�nement was discovered in the ASDEX tokamak [Wagner 1982]

in 1982, called H-mode for �high con�nement�. The H-mode is obtained more easily in

an X-point con�guration for the magnetic �eld, presented in Fig. 1.7: additional coils are

used such that the poloidal �eld vanishes at a given position, resulting in an �X-point�

magnetic structure. In this con�guration, the magnetic surfaces are closed at the center

of the plasma, up to the last closed �ux surface called �separatrix�; over the separatrix,

the �eld lines are open, in an area called the Scrape-O� Layer (SOL). The open �eld

lines reach the Plasma Facing Components (PFC) called divertor, which is constituted of

two actively-cooled target plates (in the inner and outer sides of the tokamak), specially

designed in the aim of receiving high heat loads.

Figure 1.7: Poloidal section of the tomakak in X-point con�guration

Contrary to the L-mode (for �low con�nement�) where the radial pressure pro�le �

along the minor radius � is roughly parabolic (Fig. 1.8), the H-mode is characterized by

a very steep pressure pro�le at the edge of the plasma, as if the pressure was set on a

pedestal. This �pedestal� is formed due to the apparition of an external transport barrier

(ETB). This induces a signi�cant enhancement of the con�nement, i.e. a higher density
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Figure 1.8: Radial pressure pro�le in L and H modes. The radial coordinate in x-axis is
the normalized poloidal �ux ψN = ψ−ψaxis

ψedge−ψaxis
.

and temperature in the core. However the mechanisms governing the formation of the

ETB and the L-H transition are not yet well understood.

1.3.2 Edge Localized Modes

1.3.2.1 Experimental observations

Usually in the experiments, after the L-H transition, three consecutive phases appear.

First, small and frequent bursts (≈ 100Hz−2kHz) of energy are expelled from the plasma

and reach the divertor. These bursts are called �type-III ELMs� (for Edge Localized

Modes). Second, as the injected power is increased, a burst-free quiescent period is

observed, called �ELM-free period�. Third, at further increased injected power, a period

when large bursts are observed is reached [Sartori 2004]. These quasi-periodic bursts,

called �type-I ELMs� or �giant ELMs�, occur at a frequency of about 10− 100Hz. The

ELM relaxations are best detected by the Dα signal, which is the measurement of the

α-ray emissions occurring when the Deuterium is recycled, i.e. when it comes back to

the plasma after reaching the divertor. Therefore the Dα signal gives a good estimate

of the particle �ux reaching the divertor and of the ELM duration and frequency. The

Dα signal in blue in Fig. 1.9 clearly shows the three consecutive stages after the L-H

transition (type-III ELMs, ELM-free H-mode and type-I ELMs) in a typical discharge of

the JET tokamak.

A complete phenomenology of the ELMs occuring in the di�erent tokamaks can be

found in [Zohm 1996, Connor 1998, Suttrop 2000, Bécoulet 2003, Kamiya 2007]. ELMs

are characterized by the quasi-periodic relaxation of the pressure pedestal pro�le in H-

mode, associated with the expelling of energy and particles from the bulk plasma through

the Edge Transport Barrier, as sketched in Fig. 1.10. In the case of type-I ELMs, an
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Figure 1.9: Typical L-H transition in the JET tokamak. From [Perez von Thun 2004]

ELM can expulse up to 15% of the pedestal energy from the bulk plasma. After the

collapse of the pressure pro�le, the pedestal builds-up again until another ELM crash

occurs, resulting in a cyclical dynamics.

Figure 1.10: Pressure pro�le relaxation due to an ELM

Even though there is a complex and variable ELM zoology depending on the tokamaks

and the plasma con�guration, a general behaviour of the ELMs has been evidenced.
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During an ELM cycle, the following steps have been identi�ed. First, ELM precursors

are growing and rotating, associated with the observation of magnetic precursors and

temperature �uctuations observed with the Electron Cyclotron Emission (ECE) imaging

[Classen 2013, Yun 2011, Dunai 2014, Kirk 2013b]. Due to the growth of the precursors,

plasma �laments are formed �rst in the pedestal before they are ejected into the SOL.

The shear of the plasma �laments was observed with the ECE diagnotic, and the three-

dimentional �lamentation was also observed in the experiments, e.g. in MAST with the

fast camera, as presented in Fig. 1.11. The energy expelled from the pedestal then reaches

the divertor target plates, resulting in a high heat load on the divertor, diagnosed among

others by the Dα signal. After the ELM, a quiescent period can then be observed before

the growing of another ELM precursor, and so on.

Figure 1.11: Plasma �laments during an ELM in MAST. From [Kirk 2006].

Theoretically, type-I ELMs are believed to be peeling-ballooning instabilities, and

type-III ELMs (less clearly understood) are described either as pure peeling instabilities

(in low density plasmas) or as resisitive peeling-ballooning instabilities, as detailed further

in section 1.3.2.2. Experimentally, the main distinctions between type-I and type-III

ELMs are the following: type-III ELMs expel less energy (1− 5% of the plasma energy)

through the ETB than type-I ELMs (∼ 10−15%): thus the pedestal more quickly rebuilds

after type-III ELM relaxations, which induces more frequent ELMs in the case of type-III

(as described above). Moreover, the ELM frequency shows an opposite dependence on

the applied heating power: the type-III ELM frequency decreases with the heating power,

whereas the type-I ELM frequency increases [Zohm 1996]. As for the so-called �type-II�

ELMs, they characterize small instabilities (even smaller than type-III ELMs) associated

with small and frequent �uctuations of the pedestal, which are also observed in H-mode.

However since the physics of type-II ELMs is not well understood, their designation may

refer to di�erent instabilities. Indeed, small high-n ballooning modes, occuring when a

strong shaping of the plasma is achieved, as well as the ELMs mitigated by Resonant

Magnetic Perturbations (section 1.4), are referred to as type-II ELMs, even though the

underlying physics is di�erent.
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1.3.2.2 Theoretical understanding of the ELMs

The Edge Localized Modes have been theoretically identi�ed as plasma magneto-hydro

dynamic (MHD) instabilities triggered either by the large edge pressure gradient (so-

called �ballooning modes�) or by the large edge current (so-called �peeling modes�)

present in H-mode. MHD is a �uid description of the magnetized plasma, presented

further in section 2.2, which is believed to be accurate to describe fast large scale insta-

bilities such as ELMs. The linearization of the MHD equations Eqs. (2.9-2.12) around

an equilibrium state, while assuming that resistivity is negligible (ideal MHD), allows for

expressing all the variables (density, temperature, magnetic �ux, velocity) as a function

of the plasma displacement ξ. We can then express the potential energy δW as an only

function of ξ. The so-called �energy principle� states that the plasma is stable if δW

is positive for any displacement ξ [Freidberg 1982]. δW is calculated as an integral on

the domain including the plasma, surrounded by a vacuum region, itself surrounded by

an ideally conducting wall. δW is thus expressed as the sum of the plasma (�P�), the

vacuum (�V�) and the plasma-vacuum interface (�S� for surface) components:

δW = δWP + δWV + δWS (1.6)

The vacuum and surface terms are always positive, thus their contribution is only stabi-

lizing. So we can only consider the plasma component, expressed as ([Freidberg 1982]):

δWP =
1

2

∫ ∫ ∫
P

( |Q⊥|2
µ0

+
B2

µ0

|∇ · ξ⊥ + 2ξ⊥ · κ|2 + γP |∇ · ξ|2

−(ξ⊥ · ∇P )(2ξ∗⊥ · κ)− j||(ξ∗⊥ × b) ·Q⊥
)
dV (1.7)

Q is the linear perturbation of the magnetic �eld B, κ is the curvature of the equilibrium

magnetic �eld, γ = 5/3 is the adiabatic index (ratio of the speci�c heats), P is the plasma

pressure, j|| is the parallel current density and µ0 is the vacuum permeability. The || and⊥
symbols respectively designate the parallel and perpendicular components (with respect

to the equilibrium magnetic �eld), and stars designate the complex conjugate quantities.

The �rst term represents the energy associated with the bending of the magnetic �eld

lines and it is the dominant term for the shear Alfvén wave. The second term represents

the energy associated with the compression of the magnetic �eld and is dominant for

the compressional Alfvén wave. The third term represents the energy associated with

the compression of the plasma, it is the main source of energy for the sound wave.

Those three terms are always positive and therefore stabilizing. The remaining two terms

have inde�nite sign and are the ones that drive the instabilities, one is proportional to

the pressure gradient and will be associated with pressure-driven modes, the other is

proportional to j|| and is associated with current-driven modes.

In the framework of ideal MHD, it was shown that type-I ELMs are ideal instabili-

ties driven both by the pressure gradient (�ballooning modes�) and the parallel current

(�peeling modes�) in the pedestal [Snyder 2004, Zohm 1996, Huysmans 2007]. The ideal

stability boundary of an ELM can thus be plotted in a (∇P , j) diagram, called `peeling-
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Figure 1.12: Peeling-ballooning diagram showing the stability limit of an ELM. Fig. from
[Snyder 2004].

ballooning� (or P-B) diagram (an example is given in Fig. 1.12).

As for the type-III ELMs, they are regarded either as peeling modes (occuring at large

current but rather low density and thus low pressure gradient) or as resistive peeling-

ballooning instabilities. In the framework of the resistive MHD, �resistive type-III ELMs�

are found to be driven by the edge pressure gradient (�resistive ballooning modes�) and

the parallel current (�peeling modes�), similarly to type-I ELMs [Sartori 2004].

So for both type-I and type-III ELMs, the cyclical dynamics is theoretically under-

stood as follows: the edge pressure gradient and/or the edge current � whose bootstrap

component is proportional to the pressure gradient � increase with the applied heating

power. When the ideal (for type-I) or resistive (for type-III) P-B stability boundary

is crossed, an ELM (P-B instability) is triggered. Thus the instability grows until the

relaxation of the pro�les occurs, bringing back the plasma to the stable region. Then

the applied heating power progressively rebuilds the pedestal. The pedestal reconstruc-

tion increases again the edge current and pressure gradient, until the P-B boundary is

crossed another time, generating another ELM. This theoretical interpretation proved to

be consistent with the experimental observations above mentionned.

1.4 ELM control

1.4.1 Extrapolation of the ELM size in ITER

Owing to its good con�nement properties, the ELMy H-mode con�guration has been

chosen as reference mode of operation for ITER [Shimada 2007]. Thus several studies

have estimated the size that type-I ELMs should have in ITER (the type-I are a bigger

concern than the other ELM types since they induce the largest heat loads on PFCs).

In particular, the amount of energy released from the pedestal during an ELM ∆WELM

has been estimated to depend on the electron pedestal collisionality ν∗, given by ν∗ =

q95R0ε
−3/2/λe,e, where q95 is the safety factor at the edge (for ψN = 95%), ε = r/R0 is the
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inverse aspect ratio and λe,e is the electron-electron collision mean free path [Loarte 2002].

Fig. 1.13 shows a clear scaling of ∆WELM normalized against the pedestal energy Wped

with respect to the collisionality: ∆WELM increases when ν∗ is decreased. In ITER,

ν∗e is foreseen to be rather low (∼ 0.1) thus the energy load on the divertor due to an

ELMs could reach up to 15% of the pedestal energy (Wped = 110J), so ∆WELM = 17MJ

[Loarte 2003]. Laboratory experiments have reproduced the heat load that ELMs would

generate on the ITER divertor: over 1MJ , the Tungsten tiles of the divertor might melt,

as shown in Fig. 1.14. This means that uncontrolled ELMs would drastically reduce the

divertor life time; therefore the ELM control (either mitigation or suppression) will be

mandatory in ITER and future reactors [Hawryluk 2009].

Figure 1.13: ELM energy ∆WELM divided by the pedestal energy Wped as a function
of the collisionality ν∗ in existing tokamaks, and predicted value for ITER. Plot from
[Loarte 2003].

Figure 1.14: Melted Tungsten divertor after an ITER-like ELM. Picture from
[Linke 2007].

However, the ELMs also have a bene�cial role: they are able to �ush the impurities

and fusion ashes out of the plasma. As the impurities are likely to be at the origin of

other instabilities like disruptions, this bene�cial role is not negligible. Therefore the

question if the ELMs have to be either suppressed or mitigated is an important question.
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A �rst step towards the answer is to �nd reliable mitigation/suppression techniques and

to understand their physical mechanism.

1.4.2 ELM control techniques

Three ELM-control methods have been successfully tested in the current tokamaks. Two

methods allow for mitigating the ELMs: they are likely to induce smaller ELM relaxations

and thus smaller transient heat loads on the divertor.

• First, the repetitive injection of D-D or D-T ice pellets in the plasma [Lang 2007,

Pégourié 2007, Baylor 2009] aims at locally increasing the pressure gradient in the

area where the pellet ablation occurs: thus, the plasma locally becomes peeling-

balooning unstable, and ELMs are triggered by the pellet injection. The goal is to

trigger more frequent but smaller ELMs, at the frequency of the pellet injection. If

the pellet injection frequency is larger than the natural ELM frequency, the ELMs

triggered by pellets will be more frequent and thus the energy loss per ELM will

be reduced. This method presents the double advantage of controlling the ELM

frequency and to provide the particle fueling of the plasma, provided the `fuel� can

penetrate deep into the core. However the mechanism of the pellet ablation in the

plasma depending on the pellet size and the speed and position of the injection is

not yet fully understood: research is on the way to improve the system.

• Second, fast vertical displacements of the plasma, called �vertical kicks� [Degeling 2003,

Gerhardt 2010], can be periodically induced by the modi�cation of the magnetic

�eld in the coils dedicated to the control of the vertical plasma position. The pe-

riodical vertical plasma displacement is likely to perturb the magnetic �eld and

thus trigger ELMs at the frequency of the �kicks�. As for the pellet injection, high

frequency kicks induce more frequent but smaller ELMs, which results in a lower

peak power deposition on divertor. The major drawback of this method is that

it may lead to trigger instabilities called �vertical displacement events� which can

potentially induce a total loss of con�nement.

• This thesis focuses on the third promising method: the ELM control by Resonant

Magnetic Perturbations (RMPs). Contrary to the two �rst methods, RMPs can not

only induce the ELM mitigation, but also the total ELM suppression. The RMP

technique consists in applying small non-axisymmetric magnetic perturbations (of

the order of 103 or 104 lower than the total magnetic �eld), using dedicated coils

called �RMP coils�. This concept, which aims at generating a stochastic region

at the plasma boundary, drew inspiration from the ergodic divertor experiments

in the Tore Supra tokamak [Ghendrih 1996] and was �rst proposed for DIII-D

in [Grosman 2003]. It proved to be successful in either suppressing the ELMs

in the DIII-D [Evans 2004a, Fenstermacher 2008, Evans 2008], ASDEX Upgrade

[Suttrop 2011] and KSTAR tokamaks [Jeon 2012] or in mitigating the ELM power

in JET [Liang 2007a], MAST [Kirk 2010] and NSTX [Canik 2010], which validated

its use for ITER operation. Depending on the RMP coil geometry, a toroidal wave
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number of the magnetic perturbation n = 1, 2, 3, 4 or 6 is applied. In ITER, 3

rows of 9 coils (presented in Fig. 1.15) are designed and foreseen to apply a n = 3

or n = 4 toroidal perturbation [Hawryluk 2009]. The concept of this method is

described in more detail in the next section.

In ITER, both pellet and RMP methods are foreseen to be used to control ELMs

[Hawryluk 2009]. As for the vertical kicks, they might also be used in ITER, e.g. during

the plasma current ramp-up [De la Luna 2009].

Figure 1.15: 3 rows of 9 RMP coils designed for ITER

1.4.3 ELM control by RMPs

When the plasma is at equilibrium, the magnetic surfaces are nested into each other,

and the �eld lines close on themselves on the rational surfaces q = m/n located inside

the separatrix (m and n being the poloidal and toroidal mode numbers, as de�ned in

section 1.2). The transport of heat and particles principally follows the magnetic �eld

line: the parallel transport along the magnetic �eld is around 106 times larger than the

perpendicular transport.

However when a magnetic perturbation is applied, the magnetic �eld lines deviate

radially, which induces magnetic island chains on the rational surfaces � also called res-

onant surfaces �, as plotted on Fig. 1.16. In this schematic example, n = 1− 2 magnetic

perturbations generate the formation of magnetic islands on the surfaces q = 2/1 and

q = 3/2. At rather low perturbation (Fig. 1.16 (a)), the two consecutive island chains

do not interfere. Yet at larger applied perturbation (Fig. 1.16 (b)), the two island chains

overlap, which generates a chaotic (also called ergodic or stochastic) magnetic �eld be-

tween the two rational surfaces. In the stochastic region, the magnetic �eld lines are

no more de�ned. Thus this region with �broken� �eld lines is characterized by a largely

enhanced radial transport of heat and particles. Since type-I ELMs are mostly triggered

by the large edge pressure gradient in H-mode, the aim of the RMPs is thus to generate

an ergodic region at the edge (in the pedestal) in order to enhance the radial transport

ans subsequently to slightly reduce the edge pressure gradient under the ELM-triggering

threshold.
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Figure 1.16: Magnetic topology at low (a) and high (b) magnetic perturbation: island
chains are formed on the rational surfaces q = 2/1 and q = 3/2. For a large perturbation
(b), the two rows of islands overlap which generate an ergodic magnetic �eld in between.
The x- and y-axes respectively follow the poloidal angle θ and the radial direction r/a,
with the de�nitions given in Fig. 1.6.

The ELM suppression by RMPs was �rst obtained in DIII-D [Evans 2004a]. Fig. 1.17

shows that depending on the intensity of the applied magnetic perturbation, RMPs can

induce either the ELM mitigation (under a threshold in RMP current) or the full ELM

suppression (over a threshold in current applied in RMP coils).

A single criterion was established to predict when there should be ELM suppression

by RMPs. The magnetic �eld induced by a toroidal n perturbation was calculated in the

vacuum with Biot-Savart law. (Note that usually the RMP coils are disposed so that

a single n number is dominant, contrary to the example given in Fig. 1.16.) Then the

level of ergodization was usually characterized by the Chirikov parameter σ, calculated

as follows ([Nardon 2007]):

σ =
δm,n + δm+1,n

∆m,m+1

(1.8)

δm,n is the half-width (in the radial direction) of an island of the surface q = m/n,

expressed as :

δm,n =

(
8q2|b1

m,n|
mq′

)1/2

(1.9)

where b1
m,n is the (m,n) Fourier harmonic of the radial perturbation of the magnetic �eld

b1 = B·∇ψ1/2

B·∇ϕ on the resonant surface, and q′ = dq/dψ1/2 is the magnetic shear. ∆m,m+1 is

the distance between the two consecutive rational surfaces q = m/n and q = (m+ 1)/n,

approximately given by: ∆m,m+1 = q
mq′

. Thus the larger the magnetic perturbation is

induced on the rational surfaces, the more magnetic islands grow, since the island size
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Figure 1.17: Application of the RMPs in DIII-D. For a su�cient current I in the RMP
coils (I > 3kA, in blue and green), ELMs were suppressed (no Dα burst). For I = 2kA,
ELMs are only mitigated. From [Evans 2008].

is proportional to the square root of the magnetic perturbation. For a su�ciently large

magnetic perturbation, the islands exceed a critical size (corresponding to the Chirikov

parameter equals to 1), thus the magnetic island chains overlap and an ergodic �eld is

induced by RMPs. So for a su�ciently large current applied in RMP coils, it was thought

that if σ > 1 then the ELMs could be suppressed by RMPs [Fenstermacher 2008].

Figure 1.18: E�ect of the RMPs on ELMs for a same vacuum-like ergodization in di�erent
tokamaks. Fig. adapted from [Fenstermacher 2010] and [Suttrop 2011].
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However the physics at stake is actually found to be much more complicated. For

a same level of ergodization calculated in the vacuum, the RMP application, tested

on several tokamaks, leads to di�erent results Fig. 1.18: whereas the ELM suppres-

sion by RMPs was obtained in DIII-D (a) and AUG (d), �only� the ELM mitiga-

tion was obtained in JET (b), and on the contrary ELMs were triggered by RMPs

in MAST (c) [Fenstermacher 2010, Liang 2007a, Suttrop 2011]. This panel of di�er-

ent results is due to the fact that the level of ergodization was calculated for a vac-

uum magnetic �eld perturbation: thus it shows that the plasma response to RMPs

has to be considered to accurately assess the e�ect of RMPs. This motivates the in-

depth investigation among the fusion community, looking for the theoretical under-

standing of the plasma response to RMPs: [Fitzpatrick 1998, Heyn 2008, Bécoulet 2008,

Izzo 2008, Strauss 2009, Nardon 2010, Liu 2010b, Yu 2011, Bécoulet 2012, Ferraro 2012,

Waelbroeck 2012, Orain 2013].

As for the experimental results, which have been proli�c as well during the last decade,

a brief non-exhaustive overview can be given. Generally, a di�erent mechanism of the

ELM mitigation by RMPs was found depending on the electron collisionality ν∗. In

DIII-D, the ELM suppression was obtained at low ν∗ with a maximum (n = 3) resonant

MP spectrum (in even parity). The ELM suppression was associated with a strong

density pump-out induced by RMPs: the pedestal density is reduced by ≈ 20%, which

implies a small degradation of the con�nement. The low collisionality is besides due to

the low density. However, at high collisionality, ELMs are �only� mitigated by RMPs

(in odd con�guration: with a non-resonant MP spectrum). Mitigated ELMs correspond

to small type-II ELMs, characterized by small magnetic �uctuations and small density

oscillations at the edge; yet no density pump-out is observed. In both low/high ν∗e cases,

RMPs have little or no e�ect on the temperature pro�le [Osborne 2005, Moyer 2005]. In

JET, when a (n = 1 − 2) spectrum is applied by Error �eld correction coils (EFCCs),

this distinction between high and low ν∗ is also observed: at low ν∗, even though the

ELM suppression is not obtained, the ELMs mitigation is observed, associated with

density pump-out. Yet at high ν∗, type-I ELMs are replaced by small high-frequency

ELMs (f ∼ 0.2kHz) without density pump-out, similarly to the DIII-D observations at

high ν∗e [Liang 2007a, Liang 2012]. In AUG, a threshold in density (and thus maybe in

collisionality) is observed: at high density, the type-I ELMs have been suppressed by

(n = 3) RMPs and replaced by small �uctuations. No density pump-out was induced

by RMPs [Suttrop 2011]. This regime might be similar to the high ν∗ regime in DIII-D,

but it does not seem to depend on the resonant/ non resonant MP spectrum applied.

However the ELM suppression by RMPs was not found at low density, until recently:

depending on the phase of the applied RMPs, the ELM mitigation with pump-out could

be observed at low density/low collisionality during the 2014 experimental campaign

[Suttrop 2014, Kirk 2014].
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1.5 Thesis plan

The aim of this thesis is to study numerically the ELMs and RMPs, while self-consistently

taking into account the plasma response. In numerical simulations, the plasma parame-

ters are taken as close as possible to the experimental con�guration, using JET, DIII-D

and MAST data. The parameters foreseen for the ITER standard scenario are also used

to give �predictions� for ITER.

In chapter 2, the reduced extended MHD model implemented in the JOREK code

[Huysmans 2009], including the newly added e�ects to self-consistently describe the

plasma �ows [Orain 2013], is presented. As well, the numerical tools used for the simula-

tion runs with JOREK will be introduced. Then the three following chapters will present

respectively the simulations of:

• the RMP penetration into the plasma (without ELMs).

• the ELM dynamics without RMPs.

• the interaction between ELMs and RMPs.

Concerning the RMP penetration, the current understanding is that depending on plasma

parameters, and particularly on the plasma rotation, RMPs can be either screened or

ampli�ed. So the interaction between plasma �ows has to be carefully studied and un-

derstood to make reliable predictions for ITER. Thus the interaction between plasma

�ows and RMPs (without ELMs) will be �rst described in chapter 3. This chapter will

be introduced by simulations performed in simpli�ed cylindrical geometry for DIII-D

parameters with the Reduced MHD code RMHD [Bécoulet 2012]. These cylindrical sim-

ulations will allow to present the generic features of the plasma response to RMPs and

the importance of several plasma parameters. Then JOREK simulations of the inter-

action between RMPs and plasma �ows will be presented in realistic toroidal geometry

successively for JET, MAST and ITER parameters [Orain 2013].

Furthermore, before studying the impact of RMPs on ELMs, it is worth consider-

ing the ELM dynamics alone. In chapter 4, simulations of the ELM dynamics will be

presented for a JET con�guration. The impact of the �ows on this ELM dynamics �

precursors, �laments, power reaching the divertor � will be stressed. Moreover, we will

present the �rst reproduction of the cyclical ELM dynamics obtained in modeling, and

show that the introduction of the realistic �ows in the model allows for obtaining the

ELM cycles.

Last, the modeling of the interaction between ELMs and RMPs will be presented in

chapter 5. The �rst simulations of the ELM mitigation and ELM suppression by RMPs

will be shown in a JET case. The mechanism of the ELM mitigation by RMPs will be

carefully described.
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2.1 Aim of the chapter

The ELM and RMP simulations are performed with the JOREK code which resolves

a system of reduced MHD equations. This chapter aims �rst at describing the initial

model used in JOREK [Huysmans 2009] and the main hypotheses made to develop the

set of equations. Then the new e�ects introduced in the model in order to obtain a

self-consistent description of the plasma �ows and of the radial electric �eld � namely

the diamagnetic bi-�uid e�ects, the neoclassical e�ects and a source of parallel rotation �

are presented. Third, the boundary conditions are described, which are important since

they a�ect e.g. the plasma �ows and the RMP penetration. Last, the di�erent steps of

a JOREK computation are given, with a description of the numerical tools used during

these steps.

2.2 Reduced Magneto-Hydro Dynamic model

2.2.1 MHD equations

In plasma physics, two di�erent approaches are used to describe the plasma dynamics:

the kinetic and the �uid approaches. In the kinetic description, the Boltzmann equation
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is solved for the probability distribution function of each species s (ions and electrons):

∂fs
∂t

+ u · ∇fs +
qs
ms

(E ×B) · ∇ufs =

(
∂fs
∂t

)
coll

(2.1)

fs(r,u, t) is the probability distribution function as a function of the position r, the

particle velocity u and the time t; qs and ms are respectively the charge and mass of the

species s.(
∂fs
∂t

)
coll

is the collision operator which denotes the friction between particles.

This 6-dimensional equation is coupled to the Maxwell equations describing the evo-

lution of the electric E and magnetic B �elds:

∇ ·E =
σ

ε0

(2.2)

∇ ·B = 0 (2.3)

∇×E = −∂B
∂t

(2.4)

∇×B = µ0J +
1

c2

∂E

∂t
≈ µ0J (2.5)

where σ and J are the charge and current densities, µ0 is the magnetic permeability, ε0

the vacuum permittivity and c the light speed. Even though Eq. (2.1) can be reduced

to a 5-dimensional equation by averaging the motion of particles around the gyrocenter,

the resolution of kinetic � or gyrokinetic � equations is very expensive in term of compu-

tational time. Thus this approach is generaly used to describe small-scale phenomena,

such as the plasma turbulence, which a�ects the quality of the con�nement.

However, to study larger scale phenomena a�ecting the stability of the plasma, such

as ELMs, we rather use the framework of the magnetohydrodynamics, which is a �uid

approach. MHD equations are obtained by taking the moments of the Boltzmann equa-

tion � i.e. multiplying by powers of u and integrating over the whole velocity space � as

well coupled to the Maxwell equations Eqs. (2.2-2.5).

The �uid quantities, namely the density n, the �uid velocity v and the pressure tensor

P̄ , are de�ned from the distribution function as follows:

ns =

∫
fsd

3u (2.6)

vs =
1

ns

∫
ufsd

3u (2.7)

P̄s =

∫
ms(u− vs)× (u− vs)fsd3u (2.8)

The pressure tensor can be decomposed into the scalar pressure P and the stress tensor Π̄i,

which contains the anisotropic and o�-diagonal terms of the pressure tensor: P̄ = P Ī+Π̄i,

where Ī is the identity tensor. We also de�ne the mass density of a species ρs = msns
and the �uid mass density ρ = mini +mene.
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The integration of Boltzmann equation (Eq. (2.1)) over the velocity space for a species

s and summed over both species (electrons+ions) yields the continuity equation:

∂ρ

∂t
+∇ · (ρv) = 0 (2.9)

If there is no creation of particles, the integration of the collision operator over velocity

space is indeed zero.

Multiplying Eq. (2.1) by u and integrating over the velocity space yields the momen-

tum equation (summed over both species):

ρ
d

dt
v = J ×B −∇P −∇ · Π̄i (2.10)

where the convective derivative is de�ned as d
dt

=
(
∂
∂t

+ v · ∇
)
and the plasma current

is given by J =
∑

s nsqsvs. Since we consider only the ion-electron and electron-ion

collisions, the integrated collision operator for ions and electrons Rie and Rei are oppo-

site: they translate the momentum transfer from a species to the other, thus their sum

vanishes.

Multiplying Eq. (2.1) by u2 and integrating gives the energy equation. However, we

notice that each equation involves the moment at the next order: the continuity equation

involves velocity, the momentum equation involves pressure, and on the same way, the

energy equation involves the third order moment (the heat �ux), and so on. Therefore a

closure is necessary to solve the equations. A common closure, used in the JOREK code,

is to assume that the system is adiabatic. This way, the energy equation is written as:

d

dt

(
P

ργ

)
= 0 (2.11)

where γ = 5/3 is the ratio of the speci�c heats. Note that numerous closures have been

developed in litterature, which depend on the physics the model aims at addressing. The

adiabatic closure is a simpli�ed version of the Braginskii closure for the energy equation

[Braginskii 1965], derived in appendix B.4. To these three equations (Eqs. (2.9-2.11)), a

fourth equation is added to complete the MHD equations. This fourth equation is the

Ohm's law, obtained by coupling the momentum equation for electrons with the Maxwell

equations:

E = −∂A
∂t
−∇φ = −v ×B − ηJ (2.12)

where A and φ are respectively the vector and scalar potential, and η is the resistivity

de�ned as

η =
me

nee2τe
(2.13)

τe being the electron collision time. The �ideal MHD� assumes that the resistivity is

negligible (η = 0). Using this approximation, the linearization of the ideal MHD allows

to obtain the form of the energy principle given in section 1.3.2.2. However, the �resistive

MHD�, which does not neglect the resistivity, is more complex but more realistic. The
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framework of resistive MHD is used in JOREK.

The full derivation of the MHD equations can be found e.g. in [Goedbloed 2004]. As

described in section 2.2.2, ad hoc terms of di�usion (of heat and particle, corresponding

to the Fick's law), the classical viscosity (considering the plasma as a newtonian �uid)

as well as sources (of heat, particle and parallel momentum) are added into the resistive

MHD equations. These terms must be added in MHD codes both to give a phenomenolog-

ical description of the transport (even though the transport is studied more accurately

in the kinetic description) and for numerical reasons: di�usion and viscosity allow for

suppressing small structures that cannot be numerically resolved in MHD codes.

It is important to note that several assumptions have been made to obtain the set of

MHD equations:

• MHD as well as most �uid descriptions of the plasma are valid for collisional plas-

mas. Indeed, the closure of the moments of the Botzmann equation at the second

order is a good approximation of the kinetic equations if the higher moments are

negligible. So when we neglect the higher moments, we suppose that the distribu-

tion function is rather well described by the two �rst moments and the closure is

done assuming that the distribution function is close to a Maxwellian. This implies

that the plasma is highly collisional: collisions relax the perturbed distribution

function to a Maxwellian in a timescale smaller than the thermal propagation time

of the plasma. This is expressed by the inequality: vth,sτs/a << 1.

• The approximation made in Eq. (2.5) corresponds to the hypothesis that the ther-

mal velocities are non-relativistic: vth,s << c, which is the case in the phenomena

described by our MHD simulations.

• The electron inertia is neglected compared to the ion inertia, since mi/me >> 1.

Thus the �uid mass density ρ = mini + mene ≈ mini and the �uid velocity v is

approximately equal to the ion velocity vi.

• The quasineutrality of the plasma is assumed, ensuring that:

n = ne = ni (2.14)

This means that the electron and ion density are locally equal, which is true if

we consider a �portion� of the plasma whose characteristic length is much larger

than the Debye length λd ∼ 10−5m, corresponding to the distance over which the

electrostatic potential of a particle is �not seen� by the surrounding particles. In our

simulations, the space is discretized into elements which are actually much larger

than λd.

2.2.2 Reduction of the equations

In order to simplify the resistive MHD model (the �nal aim being to reduce the compu-

tational time as much as possible), the MHD equations are reduced into a set of scalar



2.2. Reduced Magneto-Hydro Dynamic model 31

equations. The reduced MHD model implemented in JOREK [Huysmans 2009] is in-

spired from the four-�eld model [Strauss 1997]. First, in the framework of the reduced

MHD, we assume that the toroidal magnetic �eld is constant in time and that the poloidal

magnetic �eld is smaller than the toroidal component (which is actually the case in toka-

maks). The magnetic �eld is therefore decomposed in toroidal and poloidal components

as follows:

B = F0∇ϕ+∇ψ ×∇ϕ (2.15)

with
Bpol

Bϕ

=
|∇ψ|
F0

<< 1. ϕ is the toroidal angle, ψ is the poloidal �ux de�ned in

Eq. (1.4) and F0 = R0Bϕ0 is approximately constant; R0 is the major radius and Bϕ0 is

the toroidal magnetic �eld amplitude at the magnetic axis. In the reduced model, the

toroidal component of the vector potential given by Bpol = ∇×A is also considered to

be dominant over the poloidal components, thus:

A = Aϕeϕ =
ψ

R
eϕ (2.16)

As for the velocity v, it is decomposed into the parallel and poloidal component. Thus

the reduced MHD equations solved in JOREK are the continuity equation Eq. (2.9),

the parallel and perpendicular projection of the momentum equation Eq. (2.10), the

energy equation Eq. (2.11) and the projection of the Ohm's law Eq. (2.12) in the toroidal

direction. The unknowns of the 5 equations are respectively the mass density ρ, the

parallel (ion) velocity v||,i, the electric potential u, the temperature T and the magnetic

�ux ψ. Note that in the model used in this thesis, the electron and ion temperatures

Te and Ti are assumed to be equal (= T ). The semi-developped form of the equations,

normalized in JOREK units (the normalizations are described below), is the following:

∂ρ

∂t
= −∇(ρv) +∇ · (D⊥∇⊥ρ) + Sρ (2.17)

ρ
F0

R

∂v||,i
∂t

= b ·
(
− ρ(v · ∇)(v||,i + vE))−∇P

− ∇̄ · Π̄i,neo

)
+ µ||∆v||,i + Sv|| (2.18)

eϕ · ∇ ×
(
ρ
∂vE
∂t

= −ρ(v · ∇)(v||,i + vE)

+ J ×B −∇P − ∇̄ · Π̄i,neo + µ⊥∆v
)

(2.19)

ρ
∂T

∂t
= −ρv · ∇T − (γ − 1)P∇ · v +

1

2
v2Sρ

+∇ · (κ||∇||T + κ⊥∇⊥T ) + (1− γ)ST (2.20)

1

R2

∂ψ

∂t
= −B · ∇||u+

τIC
ρ
B · ∇||P +

ηJ

R2
(2.21)
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where the parallel gradient is de�ned as

∇||α = (B/B2)B · ∇α

=
b

B

(F0

R2
∂ϕα +∇ϕ · ∇α×∇ψ

)
(2.22)

To these 5 equations, 2 simple equations are added for the toroidal current j and the

toroidal vorticity W :

j = −R2J · ∇ϕ = −R2∇×B · ∇ϕ = ∆∗ψ (2.23)

W = ∇ϕ · (∇× v⊥) ≈ ∇2
⊥u (2.24)

The full derivation of the developed equations is given in appendix B. The normaliza-

tion of the variables in JOREK units (noted with superscript ∼) is the following: time

is de�ned as t = t̃
√
ρ0µ0, mass density is ρ = ρ̃ρ0, temperature is T (eV ) = mi/(ρ0µ0e)T̃ ,

the total pressure is P̃ = µ0P = ρ̃T̃ and the toroidal current is J̃ = µ0J . Note that

the toroidal current density is de�ned inEq. (2.23) in the direction opposite to the mag-

netic �eld and hence in JOREK system a co-current injection corresponds to a negative

source of parallel velocity. The electrostatic potential ũ is related to the electric �eld as

E = −F0∇ũ/
√
ρ0µ0. For each species s, the parallel and perpendicular components of

the velocity are v||,i = ṽ||,iB/
√
ρ0µ0 (ṽ||,i has no dimension) and v⊥ = ṽ⊥/

√
ρ0µ0 (ṽ⊥ is

expressed in Tesla).

Compared to the full MHD equations described in section 2.2.1, di�usive terms for the

density and heat are added in the continuity and energy equations, as well as viscosity

in the momentum equation. Sources of particle, heat and velocity are also added in the

model. These di�usive and source terms are necessary to reproduce phenomenologically

(and more simply) di�usive e�ects induced e.g. by turbulence which are not present in the

model. They also allow for damping the small structures that may appear numerically.

D⊥ is the perpendicular particle di�usion, µ|| and µ⊥ are the parallel and perpendicular

anomalous viscosity coe�cients, κ|| and κ⊥ are the parallel and perpendicular heat dif-

fusivity and η is the resistivity. These parameters are normalized as D̃⊥ = D⊥
√
ρ0µ0,

κ̃(||,⊥) = κ(||,⊥)
√
ρ0µ0, µ̃(||,⊥) = µ(||,⊥)

√
µ0/ρ0 and η̃ = η

√
ρ0/µ0. Both viscosity and resis-

tivity follow a Spitzer-like (T/T0)−3/2 dependence ([Wesson 2011], p.71 ) and the parallel

heat di�usivity varies as (T/T0)5/2 ([Braginskii 1965], p.215-217 ). In the core plasma,

for a particle density n0 = 6 × 1019m−3 (JET case), the typical values used in simula-

tions are D⊥ = κ⊥ = 2m2/s, κ||/κ⊥ = 2 × 108, µ⊥ = 4 × 10−7kg/(m.s), µ||/µ⊥ = 10

and η ∼ 10−7Ω.m. Sρ, SV|| and ST are sources of particles, parallel momentum and

heat respectively. Reproducing realistic sources of heat and particle is a di�cult issue

[Sarazin 2010]. We have opted here for a simple approach: the particle source is constant

throughout the plasma and the radial pro�le of the heat source is everywhere propor-

tional to the temperature pro�le. As for the source of parallel velocity, is it described

further below in section 2.3.3. As well, the di�erent components of the velocity and the

neoclassical tensor are detailed in section 2.3.1 and section 2.3.2 respectively.
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2.3 Implementation of realistic �ows

Several e�ects were added in the original JOREK model in order to self-consistently

describe the plasma �ows interacting with ELMs and RMPs, namely the diamagnetic

drifts (section 2.3.1), the neoclassical friction (section 2.3.2) and a source of toroidal

rotation (section 2.3.3).

2.3.1 Bi-�uid diamagnetic e�ects

The MHD ordering only considers the parallel and E×B drift components of the �uid ve-

locity, resulting in a single �uid system of equations. In our model, two-�uid e�ects called

diamagnetic e�ects are added to the initial model [Huysmans 2009]: the diamagnetic ve-

locity V ∗s = −∇Ps ×B/(ρesB2/mi) � due to the pressure gradient perpendicular to the

magnetic �eld � is taken into account for each species s (electrons and ions) and is of

special importance in the pedestal where the pressure pro�le is steep. Both diamagnetic

and E×B components are actually of the same order of magnitude. The decomposition

of the velocity of a species s then writes:

vs = v||,i + vE + v∗s (2.25)

where vE = E ×B/B2 is the electric drift velocity.

Once normalized, the decomposition of the �uid (ion) velocity Eq. (2.25) becomes:

v = vi = v||,iB −R2∇u×∇ϕ− R2τIC
ρ
∇P ×∇ϕ (2.26)

where the diamagnetic parameter (inverse of the normalized ion cyclotron frequency) is

de�ned as

τIC =
mi

2F0e
√
ρ0µ0

(2.27)

And the electron velocity is:

ve = v||,eB −R2∇u×∇ϕ+
R2τIC
ρ
∇P ×∇ϕ (2.28)

Using the de�nition of the current, in SI units, we have: v||,e = v||,i −
J||
ne
, which gives in

JOREK normalized units: v||,eB = v||,iB−
2F0τICJ||

ρ
≈ v||,iB+ 2F0τICj

ρ
∇ϕ. The de�nition

of the JOREK toroidal current given in Eq. (2.23) has been used. Thus the electron

velocity is:

ve = v||,iB +
2F0τIC
ρ

j∇ϕ−R2∇u×∇ϕ+
R2τIC
ρ
∇P ×∇ϕ (2.29)

Note that in Eqs. (2.26-2.29) we have used the fact that we assume Te = Ti = T and thus

Pe = Pi = P/2, so v∗e = −v∗i
We will see in this thesis that the diamagnetic drifts play a key role in order to
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consistently study the RMP penetration and the ELM dynamics.

2.3.2 Neoclassical transport

The second important terms added correspond to the so-called �neoclassical e�ects�.

When the particles gyrate around the twisted �eld lines, they see a larger magnetic �eld

B near the inside wall (High Field Side or HFS) and a smaller B near the outside wall

(Low Field Side LFS), due to the fact that the toroidal magnetic �eld is proportional to

1/R (Bϕ(R) = F0/R). Therefore, if the ratio of the parallel velocity of a particle over

the perpendicular one is too small, the particle undergoes a �mirror e�ect� and bounces

back from the high �eld region, instead of sampling all poloidal angle. As the trajectory

of these trapped particles projected on the poloidal plane has a banana shape, they are

called �banana particles� (see Fig. 2.1). Because of the collisions between trapped and

passing particles, the particles are successively trapped and untrapped (passing particles

becoming trapped and vice versa) or move from one banana orbit to another. The

di�usion of particles is thus enhanced by the presence of banana orbits: this is called the

�neoclassical transport�.

Figure 2.1: Banana orbit of the trapped particles due to the fact that Bϕ ∝ 1/R

One of the important �neoclassical� e�ects in tokamaks is the generation of a parallel

current (so-called �bootstrap current�) due to the �nite banana orbit width in the region

of density and temperature gradients. The real bootstrap current is not yet implemented

in the JOREK model, but a source of toroidal current reproducing the pro�le induced

by the bootstrap e�ects is included in the Ohm's law, such that the current pro�le

is �hooked� to the initial pro�le containing a bootstrap component, using the Krook

operator: η (j − (j0,classical + j0,bootstrap)), where η is the resistivity.

As for the neoclassical poloidal friction, describing the friction between the trapped

and passing particles, it is translated into the equations as an anisotropy of the pressure

tensor in the momentum equation. Indeed, the pressure tensor is written as P̄ = ĪP +

Π̄i,neo+Π̄i,gv. The cancellation of the gyroviscous tensor ∇· Π̄i,gv with the time derivative

of the diamagnetic velocity dv∗i /dt [Hazeltine 1985a] is used, and the divergence of the

neoclassical tensor is given by the heuristic closure taken from [Gianakon 2002]:

∇ · Π̄i,neo = ρµi,neo
B2

B2
θ

(vθ − vθ,neo)eθ (2.30)
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where µi,neo is the neoclassical friction. The so-called neoclassical tensor constrains the

poloidal velocity vθ to approach the value predicted by the neoclassical theory: vθ,neo =

−ki∇Ti ×B/eB2 · eθ, where ki is the neoclassical heat di�usivity.
We have used the following de�nition of the unit vector in the poloidal direction:

eθ = (∇ψ ×∇ϕ)
R

|∇ψ|
(2.31)

Note that this de�nition implies that the orthonormal basis (eψ, eθ, eϕ) = ( ∇ψ|∇ψ| , (∇ψ ×
∇ϕ) R

|∇ψ| , R∇ϕ) is left handed, and the poloidal magnetic �eld therefore writes

Bθ = B · eθ = |∇ψ|/R (2.32)

The projection of Eq. (2.26) along the poloidal direction (eθ Eq. (2.31)) gives the

expression of the poloidal velocity:

vθ = − 1

Bθ

(
∇⊥ψ · ∇⊥u+

τIC
ρ
∇⊥ψ · ∇⊥P − v||,iB2

θ

)
(2.33)

The combination of Eq. (2.33) and Eq. (2.31) with the expression of the normalized

neoclassical velocity vθ,neo = −kiτIC
Bθ

(∇⊥ψ · ∇⊥T ) leads to the developed form of the

neoclassical tensor Eq. (2.30):

∇ · Π̄i,neo = µi,neoρ
B2

B4
θ

(
− v||,iB2

θ +∇⊥ψ · ∇⊥u

+
τIC
ρ

(
∇⊥ψ · ∇⊥P + kiρ∇⊥ψ · ∇⊥T

))
(∇ψ ×∇ϕ) (2.34)

Realistic radial pro�les of the neoclassical parameters µi,neo and ki (calculated from

[Kessel 1994]) which depend both on the aspect ratio and on the collisionnality, are used

in the simulations in chapter 3 for the JET case (section 3.3). For the sake of simplicity,

these coe�cients are taken constant in the ITER case (in chapter 3, section 3.4) and in

the JET case in chapter 4 and chapter 5, where typical values µ̃i,neo = µi,neo
√
ρ0µ0 = 10−5

and ki = −1 [Bécoulet 2012] are used. In the MAST case, the neoclassical friction is not

included in the model.

Note that another neoclassical e�ect exists, which is the toroidal momentum damping

by the neoclassical toroidal viscosity (NTV), occuring in presence of error �elds. In order

to improve the study of the plasma rotation in presence of RMPs (chapter 3), the physics

of the toroidal momentum damping by NTV should also be taken into account. In rela-

tively recent NTV papers and modeling [Cole 2008, Park 2009, Sun 2010, Becoulet 2009,

Liu 2012], NTV is estimated in MHD codes a posteriori using an analytic solution of the

drift-kinetic equation for trapped particles at di�erent collisionality regimes. The solution

strongly depends both on the perturbed magnetic �eld � which was usually computed in

vacuum, or in approximation of ideal MHD response (no-islands) [Park 2009] � and on

the radial electric �eld which de�nes the E × B drift frequency. It should therefore be
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calculated taking into account the plasma response. However, so far we no consensual

agreement seems to appear between the modeling using analytical approximate kinetic

solution and the experiments. The reason is multiple: the collision operator within the

drift-kinetic framework is quite complex and only simpli�ed versions of it are used, which

give di�erent NTV predictions. At the same time, the plasma response itself, determined

through MHD codes, needs to be considered and gives an additional level of complexity

in predicting the NTV. The time coupling between kinetic and MHD computations is

thus a thorny problem. For these reasons, such a kinetic-MHD computation is currently

beyond the scope of the available models. As for the experimental side, the toroidal

torque is composed of several parts (intrinsic turbulent rotation, NTV, ripple and other

sources) thus the comparison of the NTV part of the toroidal rotation alone against the

theorethical NTV value is not straightforward.

2.3.3 Source of parallel rotation

The last e�ect implemented to described self-consistent plasma �ows is a source of par-

allel rotation that mimics the realistic parallel rotation pro�le. The source of parallel

rotation, implemented as S̃v|| = −µ̃||∆ṽ||,t=0, forces the parallel velocity to keep close to

the experimental rotation pro�le and compensates the losses due to the parallel viscosity.

Consequently the parallel and perpendicular �ows, constrained by the source of par-

allel rotation, the neoclassical and diamagnetic e�ects, self-consistently evolve towards

an equilibrium. This results in the self-consistent evolution of the radial electric �eld,

expressed by the radial force balance (in JOREK units):

Er =
τIC
ρ

∇⊥ψ · ∇⊥P
|∇ψ|

+
1

F0

(
vθBϕ −Bθvϕ

)
(2.35)

with vθ close to vθ,neo and vϕ ≈ vϕ,source in the bulk plasma. As for the Scrape-O� Layer

�ows, they are mostly a�ected by the Bohm boundary conditions described in section 2.4.

2.4 Boundary conditions

The boundary of the computational domain is chosen to follow the closed magnetic �eld

lines everywhere, except on the divertor target plates where the boundary crosses open

�eld lines. On the closed �eld lines, Dirichlet conditions are used for all the variables:

variable(x) = constant(x) on the boundary. On the divertor targets, the Dirichlet condi-

tions also apply for the variables u, j,W and ψ. However, Bohm conditions are set there

for the parallel velocity v||, the temperature T and the density ρ: the parallel velocity is

imposed to be equal to the sound speed on the divertor: v|| = cs =
√
γTe/mi), and the

temperature and density out�ow is left free.

Moreover, in RMP simulations, the application of the RMPs is modeled by a change

in boundary conditions for the magnetic �ux perturbation ψ(n 6= 0). The vacuum RMP

spectrum is previously calculated with the ERGOS code [Bécoulet 2008] and applied as

boundary conditions of the computational domain for the magnetic �ux perturbation.
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RMPs are progressively switched on in time: the amplitude of the perturbation is gradu-

ally increased in the typical timescale t ∼ 1000tA. That way, the magnetic perturbation

gradually penetrates inside the plasma, which self-consistently adapts in the process.

Also this method avoids possible problems with hysteresis e�ects that could occur if the

simulation was started with a fully penetrated magnetic perturbation [Nishimura 2012]:

the bifurcation from a fully penetrated state to a partially penetrated state might lead

to a di�erent plasma response. Note that this approach does not enable the plasma to

modify the magnetic �eld perturbation at the boundary of the computational domain.

Yet as this boundary is located far from the con�ned plasma (in the far SOL or at the

wall) the �vacuum� approximation at the boundary may not be too far from reality. A

more correct way to proceed is to include the real �eld generated by the RMP coils in

a �free boundary� domain. This is under implementation and should be used in future

works.

2.5 The JOREK code structure

JOREK is mainly composed of numerical computations on 3D data. The grid is dis-

cretized in 2D bi-cubic Bézier �nite elements [Czarny 2008, Huysmans 2009] in the poloidal

plane, and the toroidal direction is decomposed in Fourier series. Each Bézier element

has its local coordinates (s, t) and the local system (s, t, ϕ) is related to the global cylin-

drical (R,Z, ϕ) coordinate system in which the equations are de�ned, using the co- and

contra-variant vectors.

A JOREK computation is run as follows:

First an initial polar grid is generated for the Bezier elements (Fig. 2.2).

Figure 2.2: Initial polar grid for Bezier elements (poloidal plane) in the ITER case
(standard H-mode scenario 15MA/5.3T , described in section 3.4).
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Second the equilibrium �ux surfaces, including the X-point, are calculated while solving

the Grad-Shafranov equation for the magnetic �ux:

∆∗ψ = −µ0R
2dP

dψ
− F dF

dψ
(2.36)

F (ψ) is the current function related to the poloidal current: jpol = ∇× (F∇ϕ) and

the Grad-Shafranov operator is de�ned as:

∆∗ψ = R2∇ ·
(

1

R2
∇ψ
)

= R
∂

∂R

(
1

R

∂ψ

∂R

)
+
∂2ψ

∂Z2
(2.37)

The radial pro�les of the pressure P (ψ) and of the F dF
dψ

function are obtained from

equilibrium codes computing data extracted from experiments. These functions

injected into Eq. (2.36) thus determine the equilibrium �ux surfaces. The 2-D

elements of the poloidal grid, presented in Fig. 2.3, are modi�ed so that they are

aligned to these equilibrium �ux surfaces.

Note that the intrinsic �ux aligned coordinate system (∇ψ,∇θ,∇ϕ) is also used in

this thesis, as it is more convenient for the physical understanding. The equilibrium

poloidal �ux ψ is obtained from the Grad-Shafranov equation and the intrinsic

poloidal angle θ is obtained from the equation: dθ/dϕ = −1/q where q is the safety

factor.

As for the boundary of the computational domain, it is usually chosen to be aligned

to a magnetic �eld line located in the far Scrape-O� Layer, except in the divertor,

where the boundary follows the divertor target plates, as shown in Fig. 2.3.

Figure 2.3: Final ITER equilibrium �ux-aligned �nal mesh used in modeling. The squares
represent the position of the wall and divertor.
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Third the equilibrium �ows are established in a time scale of ∼ 103 Alfven times tA.

These �ows develop due to the Bohm boundary conditions, the diamagnetic and

neoclassical e�ects, as well as the toroidal source of rotation. Due to the initially

large velocity gradients e.g. on the divertor where v|| = cs, the time step has to

be very low at the beginning (∼ 10−3tA), and is progressively increased, until the

equilibrium state is reached. The example of the equilibrium radial electric �eld

(n = 0) is given in the ITER case in Fig. 2.4.

Figure 2.4: Poloidal pro�le of the radial equilibrium electric �eld in ITER (n = 0, without
RMPs or ELMs)

Fourth once the equilibrium �ows are obtained, the perturbation modes (n 6= 0) � due

e.g. to the ELMs and/or the RMPs � are added in the simulation (Fig. 2.5). In

RMP simulations, this implies a change in the boundary conditions, as described

in section 2.4.

The simulation time varies between a few thousand of tA and several tens of thou-

sand of tA, and the time stepping evolves between 10−2 and 1 tA. The weak form of

the equations Eqs. (2.17-2.21) are solved fully implicitely at each time step, using

either the Crank-Nicholson or the Gear scheme [Hölzl 2012]. The numerical scheme

used involves a direct solver on a large sparse matrix as a main computation of one

time step. The matrix is inverted with the PaStiX sparse matrix library (Paral-

lel Sparse matriX package, [Hénon 2002]), using the interating method GMRES

[Saad 1986]. The JOREK code is massively parallelized with MPI and OpenMP,

and a typical run requires around 104 − 105 CPU.h.

Last after the simulation, post-processing calculations are done to extract data such as

average pro�les, Fourier harmonics and Poincaré plots.
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Figure 2.5: Time integration for all n harmonics in ITER: example of the density per-
turbation either due to the growth of an ELM (n = 9, left) or to the RMP penetration
(n = 3, right, see section 3.4).

2.6 Summary

Modeling is performed with the reduced MHD code JOREK. The diamagnetic bi-�uid

velocity, the neoclassical friction and a source of parallel rotation are added to the ini-

tial standard MHD model. We will see in chapter 3 that these e�ects, as well as the

sheath conditions set as boundary conditions on the divertor targets, allow for describing

self-consistently the plasma �ows. The RMPs have also been implemented in JOREK:

vacuum RMPs, previously calculated with the ERGOS code, are imposed as boundary

conditions for the magnetic �ux perturbation ψn. This way, RMPs can penetrate in the

plasma while self-consistently taking into account the plasma response.

During a JOREK simulation, the poloidal grid � composed of Bézier elements � is

aligned on the �ux-surfaces, including the X-point and the SOL, and the toroidal direction

is decomposed in Fourier series. On this grid, the equilibrium plasma �ows (n = 0) are

�rst calculated; then the modes of perturbation n 6= 0 are added in simulation, describing

the time evolution of either the RMP penetration (chapter 3), or the ELM dynamics

(chapter 4) or the ELM interaction with RMPs (chapter 5).
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3.1 Introduction

The various results obtained (ELM suppression, ELM mitigation, ELM triggering or no

e�ect) when RMPs were applied in di�erent tokamaks � in spite of a similar theoretical

ergodization calculated in vacuum � showed that the vacuum theory was not su�cient,

as described in section 1.4.3. Thus it became clear that the plasma response to RMPs

had to be taken into consideration.
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The screening of externally applied static resonant magnetic perturbations was �rst

developed theoretically by Fitzpatrick [Fitzpatrick 1998]. This theory is summarized in

appendix C. The main idea is that a rotating plasma in presence of error �elds can evolve

in two di�erent ways:

• either the RMPs are screened by the plasma rotation: the rotating plasma gener-

ates strong eddy currents on the resonant surfaces q = m/n (n being the toroidal

number of the RMPs), in response to the RMPs. These currents induce a mag-

netic perturbation opposite to the applied RMPs, thus the magnetic perturbation

is screened (or shielded) on the rational surfaces.

• either the RMPs penetrate on the rational surfaces: the interaction between the

plasma and the RMPs induce an electromagnetic torque which generates the �res-

onant� braking of the plasma rotation at the vicinity of the resonant surfaces, until

the plasma rotation becomes close to zero on the rational surfaces. Thus the eddy

currents become weak and RMPs induce magnetic islands on the rational surfaces.

If the RMP amplitude is gradually increased, the bifurcation from the screened to the

penetrated state can occur, accompanied by the braking of the plasma rotation around

the resonant surfaces. Also a backward transition can be obtained when the RMP am-

plitude is decreased. However the backward transition occurs for a lower threshold in

amplitude, resulting in an hysteresis cycle of screening or penetration of RMPs. In

[Fitzpatrick 1998], eleven di�erent regimes are described depending on three parameters:

the plasma rotation, the viscosity and the resistivity. In these regimes, the �inward� bi-

furcation (i.e. from the screened to the penetrated state) is found to occur for a di�erent

threshold in RMP amplitude, which depends on these three parameters.

This theory was developed for a singular layer (one poloidal harmonicm is considered),

thus 2D and 3D e�ects of the plasma/RMP interaction cannot be described. However it

gives an accurate analytical background and it provides a good basis for the understanding

of the plasma response to RMPs.

In this chapter, the plasma response to RMPs is studied numerically in 3 dimensions.

In section 3.2, we start with a preliminary modeling of the plasma response in simpli�ed

cylindrical geometry, using the reduced MHD code RMHD [Bécoulet 2012]. DIII-D pa-

rameters are used. This study allows for understanding the main features of the plasma

response to RMPs, and to point out what impact the amplitude of the applied RMPs as

well as di�erent plasma parameters (the electron perpendicular rotation, the resistivity,

the neoclassical friction which can be associated to the viscosity) may have on the RMP

penetration.

Then the interaction between RMPs and plasma �ows is studied in realistic toroidal

geometry, including the X-point and the SOL, through JOREK simulations. The �ow

patterns present in X-point tokamaks are described, and di�erent regimes of RMP pen-

etration are found depending on the �ows. The 3D-corrugation of the pedestal pro�les

as well as the lobe structures near the X-point, induced by RMPs, are described. The

simulations are performed successively for realistic JET (section 3.3), ITER (section 3.4)
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and MAST (section 3.5) parameters. The resonant rotation braking is also addressed in

the MAST case.

3.2 Preliminary cylindrical modeling of the RMP pen-

etration

In this section, a preliminary modeling is done in simpli�ed cylindrical geometry with the

reduced MHD code RMHD [Bécoulet 2012]. The RMHD model is similar to the one im-

plemented in the JOREK code, but the simpli�ed cylindrical geometry (without X-point

or SOL) makes that the RMHD simulations are much shorter and easier to run than the

JOREK simulations, even though some physical phenomena are missing. The RMHD

modeling presented in this section is performed with parameters corresponding to the

DIII-D tokamak [Evans 2004a]: R0 = 1.8m, a = 0.6m, the central density, temperature,

and toroidal rotation are ne,0 = 8×1019m−3, Te,0 = 1.5keV and V0 = 72km/s. The resis-

tivity pro�le follows a T−3/2 dependence with a central resistivity η0 = 1/S = 10−8: this

value is one order of magnitude larger than the experimental value because of numerical

restrictions. Even though the neoclassical friction is a purely toroidal phenomenon, they

have been included arti�cially in the cylindrical model (in the sense that poloidal velocity

is constrained to approach the neoclassical poloidal velocity), as well as the diamagnetic

e�ects. The neoclassical coe�cients are taken constant: µneo = 5× 10−5 and ki = −0.8.

The spectrum of magnetic perturbations induced by the DIII-D I-coils (characterized by

a coil current I = 4kAt and an n = 3 even parity con�guration) is �rst calculated in the

vacuum with the ERGOS code [Bécoulet 2008], and then applied at the boundary of the

computational domain. Both toroidal and poloidal directions are discretized in Fourier

harmonics. An (n = 3,m = 6− 10) spectrum of RMPs is applied.

3.2.1 Generic features of the plasma response to RMPs

In order to give a picture of the plasma response to RMPs, the magnetic topology gen-

erated by the application of the (n = 3,m = 6 − 10) RMP spectrum is modeled in two

di�erent cases: Fig. 3.1 presents the RMPs penetration, either in the vacuum (on the

left) or in the DIII-D plasma (on the right). Note that the RMP screening by the plasma

is found to be negligible at high resistivity [Bécoulet 2008], so the vacuum-like simulation

is actually performed for a high resistivity η0 = 10−4.

In the vacuum, RMPs induce the formation of magnetic islands on the resonant

surfaces q = m/n, and the overlap of the consecutive island rows 9/3 and 10/3 generates

an ergodic zone at the edge. However, when RMPs are applied in the plasma (on the

right), magnetic island chains are formed only on the rational surfaces q = 7/3 and

q = 10/3: this represents the screening of the magnetic perturbations by the plasma on

the resonant surfaces, except the harmonics m = 7 and m = 10 which penetrate in the

plasma.

As explained in section 3.1, the plasma in rotation is likely to screen the RMPs on the

rational surfaces: the plasma generates eddy currents on these surfaces in response to the
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Figure 3.1: Formation of magnetic island chains on the resonant surfaces q = m/n due
to RMPs in the vacuum-like case (left) and in the plasma (right)

magnetic perturbation, and these eddy currents induce a magnetic perturbation opposite

to the applied perturbation. In fact, the response currents have been found to be linked

with the electron perpendicular rotation v⊥,e [Nardon 2010, Bécoulet 2012]: when v⊥,e is

close to zero on a rational surface q = m/n, the response currents vanish and the (m,n)

harmonic of RMPs penetrates, resulting in the formation of (m,n) magnetic islands

on the rational surface. This relation between the response currents and the electron

perpendicular velocity � found analytically by linearizing the Ohm's law (Eq. (2.21)) and

demonstrated in appendix A � writes:

imv⊥,eψm,n = ηJm,n (3.1)

ψm,n and Jm,n are respectively the magnetic and current perturbation, and the perpen-

dicular electron velocity is the sum of the electric vE×B and electron diamagnetic v∗e
drifts:

v⊥,e = v∗e + vE×B (3.2)

In light of Eq. (3.1), the penetration of the two poloidal harmonics m = 7 and m = 10

of the RMPs can be explained by a di�erent reason for each harmonic. First, the resonant

surface q = 7/3 is located in the region of the plasma where the perpendicular electron

velocity v⊥,e is close to zero, as illustrated in Fig. 3.2. Thus the current perturbation J7,3

which would prevent the RMPs from penetrating cancels on the surface q = 7/3, and the

RMPs can penetrate in the plasma.

Note that the cancellation of v⊥,e highly depends on the radial electric �eld, whose

evolution modi�es the E × B drift and subsequently the perpendicular velocity. So it is

important to study the self-consistent evolution of the electric �eld to determine if the

RMPs will be screened or not. In our example, the radial electric �eld is modi�ed by the

RMPs which induce an electromagnetic torque on the surface q = 7/3. Subsequently, on

this surface, the electric drift evolves such that it compensates the diamagnetic velocity,
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leading to penetration of the m = 7 component of the magnetic perturbation. The role

of the evolution of the electric �eld will be illustrated in section 3.2.2.2.

Figure 3.2: Radial pro�le of the electron perpendicular velocity (in pink): v⊥,e cancels at
the resonant surface q = 7/3. The q-pro�le is plotted in blue and the diamonds indicate
the resonant surfaces.

Eq. (3.1) can also explain the penetration of the m = 10 harmonic on the resonant

surface q = 10/3. Indeed, the surface q = 10/3 is located at the very edge of the plasma

where the resistivity is the highest (since η depends on T−3/2, and T is low at the edge).

In Eq. (3.1), the left hand side has to compensate the right hand side (= ηJm,n). Thus

the very large resistivity η at the edge (close to the vacuum resistivity) constrains the

current perturbation Jm,n to remain at a very low level. Consequently, the RMPs can

penetrate at the edge almost as well as in the vacuum, which explains the formation of

the magnetic islands on the surface q = 10/3. A resistivity scan, given in section 3.2.2.3,

illustrates in more detail the role of the resistivity.

This example allows to point out the importance of the perpendicular electron velocity

and the resistivity regarding the RMP penetration. Experimentally, for a given H-mode

pro�le, it is hardly possible to modify the resistivity in the pedestal, but the idea took

hold of positioning a rational surface precisely where the perpendicular electron velocity

cancels, at the top of the pedestal, in order of obtain the RMP penetration [Nardon 2010].

An important parameter for the RMP experiments and simulations is the safety factor

at 95% of the edge q95. This q95 factor is inversely proportional to the plasma current

and therefore translates the �working point� depending on the injected current. So, in

the experiments, it is possible to make a q95�scan corresponding to the variation of the

plasma current. A variation of the q95 parameter will indicate a modi�cation of the q-

pro�le and will then shift the position of the resonances. In particular, a resonant surface

q = m/n can be shifted to a position where the electron perpendicular velocity cancels

by modifying the plasma current. This allows to obtain the penetration of the (n,m)

harmonic characterized by the formation of magnetic islands on the surface q = m/n.

In Fig. 3.3, a simulation is presented where the resonant surface q = 8/3 (dash line)

is located either on a surface where v⊥,e 6= 0 (for q95 = 3.15, black case) or where v⊥,e = 0

(for q95 = 3.44, red case). In the �rst situation, a current perturbation Jm,n (left) is
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induced on the resonant surface by the plasma perpendicular rotation. This current

perturbation induces a magnetic �eld that compensates the RMPs, leading to the RMP

screening: the (n = 3,m = 8) Fourier component of the magnetic perturbation ψnm is

zero on the resonant surface q = 8/3. However, in the second case (red), there is no

current perturbation on the resonant surface, inducing the penetration of the m = 8

harmonic. Note that in this second penetrated case, the current perturbation has a

tearing parity around the resonant surface, which is characteristic of the formation of

magnetic islands.

Figure 3.3: (n = 3,m = 8) Fourier component of the current perturbation (left) and of
the magnetic perturbation (right) for two di�erent q-pro�les.

Moreover, if the RMP penetration is obtained for a large �operational window� in

terms of plasma current (and thus in terms of q95), then it is easier to actually observe

the RMP penetration in experiments. So it is interesting to study the range of the edge

safety factor values ∆q95 on which RMPs penetrate. In the following section 3.2.2, we

will see that this range depends both on the amplitude of the applied RMPs and on

the neoclassical friction rate. The values of these parameters as well as the value of the

plasma resistivity are scanned to assess their impact on the RMP penetration.

3.2.2 In�uence of plasma parameters on the RMP screening

3.2.2.1 Amplitude of the applied magnetic perturbation

First, the RMP penetration is studied for two di�erent amplitudes of the applied mag-

netic perturbation (ψm,n(1) = 2.5×10−5 and 5×10−5) for the single mode (n = 3,m = 8).

We notice �rst that when RMPs penetrate, the amplitude of the mode (m,n) on the cor-

responding q = m/n resonant surface is approximately two times larger for a two times

larger applied perturbation (as presented in Fig. 3.4). Indeed, when the magnetic pertur-

bation penetrates on a resonant surface, the penetration is total and the amplitude of the

perturbation on the resonant surface |ψm,n|res is similar as the �vacuum� perturbation

thus when the penetration occurs, |ψm,n|res scales linearly with the applied perturbation.
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Second, Fig. 3.4 shows that the range of edge safety factor values ∆q95 for which RMPs

penetrate is larger for a larger input perturbation. Indeed, for the mode (n = 3,m = 8),

the penetration window is ∆q95 ∼ 1.1 for a perturbation δψm,n = 5 × 10−5, compared

to ∆q95 ∼ 0.5 for a two times lower perturbation. This penetration window is centred

around the position where v⊥,e cancels. As we move away from this position, the bifur-

cation from the screened to the penetrated state becomes �harder�. Thus at larger RMP

amplitude, the bifurcation is more easily overcome when the perpendicular velocity is not

exactly zero, which explains the enlargement of the ∆q95 when the RMP amplitude is in-

creased. Other modeling with RMHD (not presented here) shows that this ∆q95 window

is shifted depending on the mode m considered. So, in the aim of obtaining the ergodiza-

tion of the edge, it is necessary to have a large enough window ∆q95 for two consecutive

modes: this way, the two consecutive modes penetrate, and thus the magnetic islands can

overlap and ergodize the region. Consequently, the RMP penetration and ergodization

should be more problable at larger RMP amplitude. However, over a certain threshold

in amplitude, RMPs and error �elds are likely to trigger locked tearing modes which can

then induce disruptions [Kirk 2010, Liang 2007b]. So the RMP amplitude should be high

enough to obtain the RMP penetration, but not too high in order to avoid reaching the

locked-mode triggering threshold.

Figure 3.4: Amplitude of the harmonic (n = 3,m = 8) for an applied perturbation
δψm,n = 5× 10−5 (in red) and for a two times smaller δψm,n = 2.5× 10−5 (in blue)

3.2.2.2 Neoclassical friction

Let us consider again a single mode (n = 3,m = 8, Figs. 3.5-3.7) for three di�erent values

of the neoclassical friction rate µneo = 10−5, 5× 10−5 and 10−4. A q95�scan, presented in

Fig. 3.5 for these di�erent values of µneo, shows that the window ∆q95 for which RMPs

penetrate becomes narrower when the neoclassical friction rate is increased. The physics



48 Chapter 3. Interaction between RMPs and plasma �ows

Figure 3.5: In�uence of the strength of the neoclassical friction rate µneo on the range
of penetration of the RMPs. For a larger µneo (in red), the penetration window ∆q95 is
smaller (as compared to a ten times smaller µneo in blue)

at stake is studied in the case corresponding to q95 = 3.27 (dashed line in Fig. 3.5):

the m = 8 penetrates for a small neoclassical friction µneo = 10−5, but is screened for

a 10 times larger neoclassical friction rate µneo = 10−4. When the neoclassical e�ects

are small (in blue), the non-linear interaction of the RMPs with the electric �eld is

stronger (Fig. 3.6) and the electric �eld becomes more positive on the resonance surface.

Consequently, the E × B drift compensates the diamagnetic velocity on the resonance

(Fig. 3.7), and thus the current perturbation is suppressed. This allows for the mode

of RMPs to penetrate. However, a larger neoclassical friction rate (in red) prevents the

radial electric �eld from evolving signi�cantly in presence of RMPs. Thus the perpendic-

ular electron velocity and subsequently the current perturbation cannot cancel: so the

magnetic perturbation is screened. Actually, the neoclassical friction, similarly to the

viscosity, induce a viscous torque which counteracts the electromagnetic torque (i.e. the

resonant braking) induced by RMPs. So the neoclassical friction, as well as viscosity,

reduce the modi�cation of the electric �eld by RMPs and the resonant braking, and then

act against the RMP penetration.

3.2.2.3 Plasma resistivity

The resistivity follows a radial dependence η(r) = η0(T (r)/T0)3/2. Thus the screening of

the RMPs depends on the central value η0. In this section, the impact of the value of η0

on the RMP penetration is tested for the application of a single mode (n = 3,m = 10).

When RMPs are applied, the magnetic perturbation on the resonant surface ψm,n
grows exponentially, until it saturates to a certain level corresponding to the saturation

of the island size. In the �vacuum-like� case (for η0 = 10−4), RMPs quickly penetrate,

and the saturation amplitude of the perturbation on the resonant surface is close to the

applied one (in blue on Fig. 3.8). The vacuum case is compared to the plasma, where the

realistic central resistivity is much lower (η = 10−8 − 10−9). Even though this realistic
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Figure 3.6: For q95 = 3.27 (dashed line on Fig. 3.5), the radial electric �eld Er is less
a�ected by the RMPs for a larger µneo = 10−4 (in red) than for µneo = 10−5 (in blue) on
the resonant surface q = 8/3 (r = 0.87). The initial Er (without RMPs, in black) is the
same for each simulation.

Figure 3.7: On the resonant surface q = 8/3 (diamond), the E × B drift does not
compensate the diamagnetic drift for µneo = 10−4 (in red) due to the lower electric �eld
(Fig. 3.6) On the contrary, the condition ( vE×B + v∗e ≈ 0) is satis�ed for µneo = 10−5 (in
blue) due to the larger electric �eld.

resistivity cannot be reached in simulations for numerical reasons, a resistivity scan can

give us the trend of the evolution of the RMP penetration as a function of η0. We observe

that the penetration time is longer and the amplitude on the resonance surface is lower

when the resistivity is lower (in Fig. 3.8, the �low resistivity� η0 = 0.25× 10−8, in black,

is compared to a larger plasma resistivity η0 = 10−8, in red). This is also seen in Fig. 3.9,

where the radial dependence of the amplitude of the m = 10 mode is plotted depending

on η0: on the resonant surface q = 10/3, the amplitude of the magnetic perturbation

is lower when the resistivity is lower. The explaination is similar to the one given in

section 3.2.1: for a given perpendicular electron velocity and magnetic perturbation in
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Eq. (3.1), a large resistivity forces the current perturbation Jm,n to remain low, and allows

the RMPs for penetrating. Yet for a lower resistivity, these currents are less �constrained�

and are likely to grow, which reduces the RMP penetration.

Figure 3.8: The penetration time (in x-axis) is increased for a lower resistivity η0 (in
black), and the amplitude on the resonant surface is also lower.

Figure 3.9: The screening of the perturbation is larger for a lower resistivity (in black):
the amplitude of the Fourier component of the magnetic pertubation ψn,m on the resonant
surface q = 10/3 is lower.
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3.2.3 Conclusion of the cylindrical modeling

The cylindrical modeling with the reduced MHD code RMHD, including diamagnetic

and neoclassical e�ects, allows for observing the main features of the plasma response

to RMPs. When RMPs are applied in a rotating plasma, either RMPs penetrate and

magnetic island chains are formed on the rational surfaces, or they can be screened by

the plasma �ows which induce response currents on the rational surfaces, counteracting

the applied RMPs.

The cancelation of the electron perpendicular velocity at the vicinity of a resonant

surface q = m/n has been identi�ed as the condition which enables the formation of

magnetic island chains on the resonant surface, due to the RMP penetration. RMPs also

penetrate at the edge where the high resistivity (∝ T−3/2) prevents the screening currents

from growing.

When RMPs penetrate, the RMP penetration is accompanied by the braking of the

electron perpendicular rotation which makes the penetration easier. This braking is due

to the non-linear evolution of the radial electric �eld induced by RMPs. The poloidal

neoclassical friction is found to act similarly as a viscous force: it reduces the modi�cation

of the radial the electric �eld by RMPs and thus prevents the resonant braking: so the

neoclassical friction reduces the �penetration window� ∆q95 where the RMPs penetrate

around the surface where the electron perpendicular velocity cancels.

The RMP penetration is facilitated by a larger applied RMP amplitude, which also

enlarges the �penetration window� ∆q95. Since this penetration window depend on the

rational surface and thus on the poloidal harmonic m considered, two poloidal harmonic

should be able to penetrate if the amplitude of the RMPs is large enough. The overlapping

of these two following island chains can then generate an ergodic zone, where the radial

transport is increased: this allows for locally reducing the pressure gradient under the

triggering threshold. However, the maximum amplitude of the applied RMPs is limited

by the risk of triggering �locked modes� which are deleterous for the plasma operation.

The plasma response to RMPs is given for realistic JET parameters, as well as for the

parameters foreseen for the ITER standard H-mode scenario in [Bécoulet 2012].

Nevertheless, these statements have to be either con�rmed or review in more realistic

toroidal geometry. Moreover, the interaction between RMPs and ELMs cannot be raised

here. This motivates the studies presented in the following.

3.3 RMP screening by �ows in JET in toroidal geom-

etry

Several parameters � such as the electron perpendicular rotation, the plasma resistivity,

the neoclassical friction and the amplitude of the applied RMPs � have been highlighted

to impact the RMP penetration in cylindrical geometry. However in the cylindrical

modeling, several elements of physics, such as the SOL transport and the impact of the

X-point, have been neglected. As well, only current instabilities were included in the

cylindrical model and all curvature e�ects and hence balloonning modes (ELMs) were
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neglected. Thus it is necessary to verify the above mentioned results in realistic toroidal

geometry.

This motivates the use of the JOREK code � which addresses these missing elements

of physics � to simulate the plasma response to RMPs in realistic geometry, including

the X-point and the SOL. In the following, JOREK simulations are presented, �rst for

JET realistic parameters, then for the parameters foreseen in the ITER H-mode reference

scenario, and last for MAST parameters. Note that the interaction between RMPs and

ELMs, which can also be addressed by JOREK simulations, will be presented in chapter 5.

3.3.1 Input parameters

In this section, JOREK simulations are run for JET-like plasma parameters: R = 3m, a =

1m,Bt = 2.9T, q95 ∼ 3 in toroidal geometry including the X-point and the SOL. Typical

H-mode density and temperature initial pro�les are chosen: the central electron density

is ne,0 = 6 × 1019m−3, the central temperature is Te,0 = 5keV and the central toroidal

rotation is Ω ∼ 9kHz. Input pro�les are given in Fig. 3.10. Realistic pro�les of the

neoclassical coe�cients are used in this section, given in Fig. 3.11. The RMP spectrum

generated by the external Error Field Correction Coils (EFCC) [Liang 2007b] is consid-

ered in the simulations, with the following con�guration: a toroidal symmetry n = 2 is

taken and a current Icoil = 40kAt is injected in the EFCC. The vacuum magnetic �ux

perturbation calculated with ERGOS is given in Fig. 3.12.

Figure 3.10: Initial radial pro�les at t = 0 for JET-like simulations: electron temperature
Te in keV , density ne in 1019m−3 and safety factor q. These pro�les are typical experi-
mental JET pro�les (previously used in simulations in [Huysmans 2009]); the q-pro�le is
almost �at in the pedestal due to the bootstrap current.
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Figure 3.11: Realistic radial pro�les of the neoclassical coe�cients ki (left axis) and µi,neo
(right axis) used for simulations in the JET case.

Figure 3.12: cosine component of the n = 2 magnetic �ux perturbation generated by
EFCC for Icoil = 40kAt. The black dots correspond to the boundary of the computational
domain where the perturbations are applied.

3.3.2 Equilibrium plasma �ows

The modeling of the plasma �ows in a consistent way is primordial since they impact

the penetration or the screening of the RMPs. In this subsection, equilibrium plasma

�ows are �rst studied without RMPs, in order to highlight the patterns generated by the

di�erent e�ects both in the scrape-o� layer and the pedestal, in the poloidal and toroidal

directions.

In the SOL, the poloidal and toroidal �ows are mainly set by the sheath boundary

conditions: the parallel Mach = 1 condition (V|| = ±Cs, where Cs is the ion sound

speed) set on the divertor targets results in the evolution of the parallel velocity in the

SOL until an equilibrium parallel �ow is reached, characterized by an opposite direction

in the low and high �eld sides and a �stagnation point� located at the top of the SOL
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(Fig. 3.13). The divergence-free condition of the velocity thus constrains also the poloidal

�ow pattern (Fig. 3.14) in the SOL.

Figure 3.13: Parallel velocity (in km/s) in the JET case

Figure 3.14: Poloidal velocity (in km/s) in JET

As for the central plasma, the parallel velocity (Fig. 3.13) is constrained by the source

of parallel velocity which mimics the experimental pro�les. In the poloidal direction, the

�ows (Fig. 3.14) are close to their neoclassical prediction (Fig. 3.15), especially in the

strong temperature gradient pedestal region where neoclassical damping is strong.

The radial electric �eld Er (Fig. 3.16) resulting from the equilibrium force balance

(Eq. (2.35)) adapts accordingly. In particular, in the pedestal, a deep electric �eld well

is generated by the diamagnetic terms (Fig. 3.16), reaching up to −105V/m, which is

in the ballpark of the values measured in the experiments [Andrew 2008]. Note that Er
has been estimated only in a few papers, so we compare our case with another pulse,

presented in Ref. [Andrew 2008], corresponding to di�erent pedestal pro�les which are

anyhow comparable.The absolute value of Er at the bottom of the well is �ve times

larger in our simulation than in the pulse considered in Ref. [Andrew 2008], yet this
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Figure 3.15: Neoclassical velocity (in km/s) in JET

Figure 3.16: Radial electric �eld (in kV/m) in JET with diamagnetic e�ects, neoclassical
e�ects and the source of toroidal rotation

is consistent with the fact that the pedestal is much higher in our case and thus the

diamagnetic velocity is larger than in Ref. [Andrew 2008]. Indeed, the values of the

density (5 × 1019m−3) and temperature (2keV ) at the top of the pedestal are 2-3 times

larger in our simulation than in the experimental pulse considered in Ref. [Andrew 2008].

Therefore the pressure gradient and consequently the diamagnetic velocity are around

5 times larger in our case. So the value at the bottom of the Er well obtained in our

simulation � which is approximately proportional to v∗ � is consistently 5 times larger

than in Ref. [Andrew 2008]. Fig. 3.16 also shows that the toroidal source of rotation

(ftor = 9kHz) combined with the neoclassical e�ects make the radial electric �eld positive

in the core. Indeed, in the core plasma, the pressure gradient is close to zero and the

poloidal velocity is close to the neoclassical value (proportional to the low temperature

gradient), so the radial electric �eld approximates Er = −Bθvϕ in order to satisfy the

radial force balance Eq. (2.35). The radial electric �eld is thus positive in the core

and negative in the pedestal, so the perpendicular electron velocity v⊥,e = vE×B + v∗e
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(depending on Er) is zero on a particular surface at the top of the pedestal. If this surface

is a rational surface (q = m/n, n being the mode driven by the RMPs), the magnetic

perturbation is likely to fully penetrate [Nardon 2010, Bécoulet 2012, Orain 2012]. The

radial pro�les of the parallel, poloidal, neoclassical and perpendicular velocities and the

radial electric �eld are given in Fig. 3.17 (Low Field Side) and Fig. 3.18 (High Field Side)

at the midplane.

Figure 3.17: Radial pro�les of the parallel, poloidal and neoclassical velocities and radial
electric �eld at the Low Field Side at the midplane

Figure 3.18: Radial pro�les of the parallel, poloidal and neoclassical velocities and radial
electric �eld at the High Field Side at the midplane

3.3.3 RMP screening by large diamagnetic rotation and low re-

sistivity

Once the equilibrium �ows are established, RMPs (n = 2, generated by EFCC, Icoil =

40kAt) are progressively increased at the boundary in ∼ 1000tA. Without RMPs, the

n = 2 mode is marginally stable (Fig. 3.19). In the presence of RMPs, the �ux of magnetic

perturbation (Fig. 3.20) penetrates inside the plasma: the energy of the n = 2 toroidal

mode grows, until a quasi-steady state is reached (Fig. 3.19). On the resonant surfaces

(q = m/n, n = 2,m ≥ 3), magnetic islands grow up to the saturation, due to reconnection
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forced by magnetic perturbations. Parallel current perturbations (Fig. 3.21) are induced

on these resonant surfaces in response to the magnetic perturbations and allow for the

screening of the RMPs: if the response current is in phase with the radial magnetic

perturbation on a given resonant surface, the corresponding RMP harmonic is screened.

If the magnetic and current perturbations are in antiphase, the magnetic perturbation

penetrates on the corresponding resonant surface as in vacuum and can even be ampli�ed

[Bécoulet 2012].

Figure 3.19: Time evolution of the magnetic and kinetic energies (in arbitrary units) of
the n = 2 mode without/with RMPs, at high resistivity η0 = 10−7 and slow diamagnetic
rotation (τIC = 10−3). Time is normalized to the Alfvén time tA.

Figure 3.20: n = 2 magnetic �ux perturbation ψn=2 penetrating in the plasma (η0 = 10−7,
τIC = 10−3)
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Figure 3.21: Response toroidal current perturbation Jn=2 on the resonant surfaces due
to RMPs (η0 = 10−7, τIC = 10−3)

These induced currents depend both on the plasma �ows and on the resistivity, so the

di�erent terms in�uencing the �ows (diamagnetic velocity, neoclassical friction and source

of parallel rotation) and a�ecting the plasma response to RMPs are progressively added

in the simulation. The central resistivity is scanned between η0 = 10−7 and η0 = 5×10−8

(in JOREK units). Note that for numerical reasons these values are taken 1 − 2 orders

of magnitude larger than the realistic (Spitzer) value in JET (∼ 10−9).

The e�ects of the diamagnetic �ow and the resistivity are �rst studied ; the source

of parallel momentum and then the neoclassical friction are added in the model over a

second phase. In all the studied cases, the central harmonic of the perturbation located

on the resonant surfaces q = 3/2 is screened. The Poincaré plot of the magnetic topology

is given in Fig. 3.22 (here for low poloidal rotation τIC = 10−3 and high resistivity

η0 = 10−7). Note that θgeom (only used in the Poincaré plots) represents the geometric

poloidal angle, which di�ers from the intrinsic angle θ de�ned in section 2.5. θgeom is

de�ned as follows:

θgeom =

{
arctan((Z − Z0)/(R−R0)) forR > R0

(π − arctan |Z−Z0

R−R0
|)× sign(Z − Z0) otherwise

The Poincaré plot (Fig. 3.22) shows that small islands are generated on the resonant

surface q = 4/2: this means that the screening of the (m = 4, n = 2) harmonic is only

partial. However the magnetic perturbation mostly penetrates at the very edge of the

plasma where the resistivity is higher (Fig. 3.22). In these simulations, the magnetic shear

is strong for q ≥ 2.5 (Fig. 3.10) so the proximity of the surfaces q = 5/2 and q = 6/2

explains the formation of a stochastic layer at the edge, for ψ ≥ 0.97 (Fig. 3.22). Yet, since

the modes m ≥ 6 are located too close to the separatrix, only the m = 5 mode seems

to develop signi�cantly, as suggested by the structure of the density and temperature
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Figure 3.22: Poincaré plot of the magnetic topology in (ψ0, θgeom) coordinates (η0 = 10−7,
τIC = 10−3).

perturbations presented in Fig. 3.24 and Fig. 3.25. It is also interesting to note that

the coupling of the modes generates secondary islands on the rational surface q = 9/4

and even tertiary islands on q = 13/6 (Fig. 3.22). The observation of these secondary

and tertiary islands can be explained by the �at q-pro�le in this area (Fig. 3.10), since

the island size is inversely proportional to the magnetic shear dq/dψ ([Lieberman 1983]).

The secondary islands are the result of the non-linear coupling between the n = 2 mode

with itself whilst the tertiary islands correspond to the coupling between this resulting

n = 4 component with n = 2. Even though the n = 4 and n = 6 modes are not explicitly

included in these simulations, they appear nonetheless as a result of non-linear couplings.

From the resistivity scan and the progressive addition of the di�erent �ows, we �nd

that the diamagnetic rotation and the resistivity are the two main parameters a�ecting

the penetration of the RMPs, and three di�erent regimes are identi�ed depending on

these two parameters (Fig. 3.26).

At low diamagnetic rotation (τIC = 10−3, which is half the realistic value) and high

resistivity (η0 = 10−7), the generated islands rotate in the electron diamagnetic direction

at the ion poloidal rotation frequency f ∗ ∼ m Vθ
2πrres

, where m is the poloidal mode

number corresponding to the resonant surface. The main poloidal mode generated being

the m = 5 mode (Fig. 3.24 and Fig. 3.25), the oscillation of the magnetic energy of the

n = 2 mode (Fig. 3.26) mainly corresponds to the rotation of the magnetic islands on the

surface q = 5/2 at the frequency f ∗ ∼ 6kHz. The amplitude of these islands oscillates at

the same frequency f ∗: indeed, while they are rotating with the plasma, they successively

face maxima and minima of external static magnetic perturbations, which explains the
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Figure 3.23: Poincaré plot of the magnetic topology in (ψ0, θgeom) coordinates at larger
diamagnetic rotation τIC = 2×10−3 (Resistivity is kept η0 = 10−7). Note that the islands
generated by the RMPs are smaller compared to Fig. 3.22, which points out the larger
screening induced by the large diamagnetic (poloidal) rotation.

Figure 3.24: n = 2 density perturbation with RMPs, mainly located on the resonant
surface q = 5/2 (η0 = 10−7, τIC = 10−3)

�uctuation of the island size at the frequency f ∗. This mode is probably related to the

Rutherford regime described in the Fitzpatrick theory [Fitzpatrick 1998] and such an

oscillating regime is also found in simulations with toroidal rotation included [Izzo 2008].
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Figure 3.25: n = 2 temperature perturbation with RMPs, mainly located on the resonant
surface q = 5/2 (η0 = 10−7, τIC = 10−3)

Figure 3.26: Three di�erent regimes of penetration of the RMPs: magnetic energy of the
n = 2 mode depending on the diamagnetic parameter τIC and the plasma resistivity η0

Small �uctuations of the SOL density and temperature are observed in this regime to

rotate at the same frequency as the magnetic �ux �uctuations (Fig. 3.27, solid line). Note

that the volume integrated density and temperature in the SOL increase when switching

on the RMPs, suggesting an enhancement of the density and heat transport due to the

formation of an ergodic region at the edge (Fig. 3.22). However no signi�cant changes

in plasma density and temperature pro�les were observed in modeling ; the density

pump-out has not been observed so far: less than 1% of the pedestal density is lost in the

simulations, as compared to up to 20% in the experiments [Evans 2008, Liang 2007a]. The

regime of oscillating islands is possibly related to the ELM suppression regimes at high

collisionality (characterized by a smaller pedestal, a smaller diamagnetic rotation and a

high resistivity [Suttrop 2011, Moyer 2005]), but more modeling of realistic experimental
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cases is needed to con�rm this statement.

Figure 3.27: Volume integrated electron density and temperature in the Scrape-o� layer
at resistivity η0 = 10−7 for two di�erent diamagnetic velocities (τIC = 10−3 and 2×10−3).

At larger diamagnetic rotation (τIC = 2× 10−3, corresponding to the realistic value)

and high resistivity (η0 = 10−7), the driven mode is on the contrary static and �locked�

to the external RMPs. The Poincaré plot (Fig. 3.23) shows that the islands generated on

the rational surface q = 4/2 are smaller at larger τIC , which means that the RMPs are

more screened by the diamagnetic �ow. As for the secondary and tertiary islands, they

are totally invisible in this case. Consistently, the magnetic energy of the n = 2 mode is

decreased as compared to the oscillating case (Fig. 3.26). Nonetheless, an ergodic layer

is formed at the very edge (for ψ ≥ 0.98), but its width is smaller and the deformation of

the boundary is reduced. The heat transport, slightly enhanced by RMP application (as

suggested by the increase in SOL temperature in Fig. 3.27, dash line), is weak compared

to the previous case, due to the smaller ergodization of the edge.

An intermediate regime is also found at lower resistivity (η0 = 5× 10−8) with τIC =

10−3: the magnetic islands are quasi-static and slightly oscillate at the ion poloidal

rotation frequency. The screening level is approximately the same as in the static case.

RMP screening is quanti�ed in these three cases in Fig. 3.28, where the Fourier

harmonics (n = 2,m = 3− 6) of the magnetic �ux perturbation are plotted. In the three

cases, the central islands (m = 3−4) are screened on the corresponding resonant surfaces.

Yet the Fourier harmonics |ψmn| (m = 3−4) do not totally vanish on the resonant surfaces

(which is consequent with the formation of small islands on q = 4/2), contrary to the

previous modeling in cylindrical geometry [Bécoulet 2012] where the central harmonics

were totally screened. The discrepancy between cylindrical and toroidal modeling is not

really understood, but will be discussed in section 3.4. Regarding the edge harmonics

(m = 5− 6), the amplitude of the Fourier harmonics |ψmn| is 2-3 times lower in the cases

at low resistivity or high diamagnetic rotation than it is in the oscillating case, which

means that the corresponding island size, proportional to |ψmn|1/2, is reduced.
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Figure 3.28: Fourier harmonics of the magnetic �ux (n = 2,m = 3−6) depending on the
resistivity and the diamagnetic rotation for t ∼ 4950tA.

From now, the source of parallel momentum is added in the model. If the screening

e�ect provided by high diamagnetic rotation and/or low resistivity is clear in the JET

case, the e�ect of the parallel rotation is more complex (Fig. 3.29). As the parallel

rotation does not directly a�ect the screening of RMPs, an increased parallel rotation

does not necessarily imply an increased screening of RMPs. Indeed, at low resistivity

(η0 = 5 × 10−8), in the slightly oscillating regime characterized by low diamagnetic

rotation (τIC = 10−3), the parallel rotation increases both the average island size and the

�uctuation of the island width: this can explain the larger �uctuation of the magnetic

energy of the n = 2 mode in Fig. 3.29. The oscillation frequency of the islands is also

modi�ed by the parallel rotation, probably because of the induced change in the radial

electric �eld and the poloidal rotation. On the contrary, at higher diamagnetic rotation

(τIC = 2× 10−3), the energy of the n = 2 mode is lower when the parallel velocity source

is added, showing a slightly stronger screening by parallel velocity.

Last, in our simulations with the realistic diamagnetic rotation (τIC = 2× 10−3) and

the source of parallel rotation (at η0 = 10−7), the addition of the neoclassical e�ects

in the model modi�es the plasma response. For a same simulation without neoclassical

friction, the magnetic islands generated on q = 5/2 are static; however with neoclassical

e�ects the generated islands are �rst static and then progressively rotate in the ion �ow

direction, until they reach the electron perpendicular rotation frequency f ∗ (Fig. 3.30).

The island width also oscillates at the frequency f ∗. We are thus in the same regime of

plasma response as for the case at low diamagnetic rotation. The change in the regime of

plasma response is not due to a modi�ed perpendicular rotation (in both cases without

and with neoclassical e�ects, the perpendicular velocity is the same at the vicinity of the

resonant surface q = 5/2). The reason why this regime is obtained at large diamagnetic

rotation with neoclassical friction is not really understood, but it may be explained by a

change in viscosity resulting from the balance between the neoclassical friction force and
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Figure 3.29: E�ect of the source of parallel rotation on the magnetic energy of the driven
mode n = 2 (resistivity η0 = 5×10−8) at low (τIC = 10−3) and high (2×10−3) diamagnetic
rotation

Figure 3.30: E�ect of the neoclassical friction on the magnetic energy of the driven mode
n = 2 (resistivity η0 = 10−7) at large diamagnetic rotation (2×10−3). Without neoclassi-
cal e�ects in the model (in blue), the islands are static. With neoclassical friction included
(in red), the generated islands are �rst static but �nally rotate at the ion perpendicular
rotation frequency.

the viscous force in the momentum equation. More modeling would be necessary to give

a global interpretation of the phenomena at stake. The Poincaré plot of the magnetic

topology of this case is given in Fig. 3.31. Compared to Fig. 3.23 (case without source

of parallel rotation or neoclassical friction), the island width and the size of the ergodic

layer is similar. Actually, in all cases, the position where perpendicular velocity cancels

(red dashed line on Fig. 3.31) is located between q = 4/2 and q = 5/2 and does not match



3.3. RMP screening by �ows in JET in toroidal geometry 65

a resonant surface. It explains why the perturbations signi�cantly penetrate only at the

very edge (ψ ≥ 0.97) where resistivity is higher and where the perpendicular rotation is

dominated by the diamagnetic e�ects.

Figure 3.31: Poincaré plot of the magnetic topology in (ψ0, θgeom) coordinates with dia-
magnetic rotation (τIC = 2 × 10−3), parallel source of rotation and neoclassical friction
(resistivity η0 = 10−7). The surface where the perpendicular velocity V⊥ cancels (indi-
cated by the red dashed line) does not match a resonant surface, which explains that the
RMPs do not fully penetrate.
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3.4 Predictions for ITER

3.4.1 Input parameters and equilibrium plasma �ows

In this section, the equilibrium and plasma parameters of the ITER standard H-mode

scenario 15MA/5.3T are used. The machine dimensions are R = 6.2m, a = 2m and the

safety factor is q95 = 3.5. The density, temperature and toroidal rotation pro�les are given

in Fig. 3.32. Central density is ne,0 = 8× 1019m−3, central temperature is T0 = 27.8keV

and the initial toroidal rotation pro�le is similar to the temperature pro�le with a central

arbitrary rotation frequency ∼ 0.9kHz, which is in the range of the expected value

in ITER. The �ux-aligned mesh used for modeling is given in Fig. 2.3. The resonant

magnetic �ux perturbations generated by In-Vessel Coils, in the con�guration n = 3 and

a current Icoil = 54kAt (Fig. 3.33, [Scha�er 2008]) are calculated from the vacuum code

ERGOS [Bécoulet 2008] and are applied as boundary conditions in 103tA in the same

way as in the previous section.

Figure 3.32: ITER input density, temperature and toroidal rotation pro�les

Equilibrium plasma �ows are computed for a central resistivity η0 = 10−8, which is,

for numerical reasons, 100 times higher than the normalized Spitzer value calculated for

ITER (η0 = 10−10). As the diamagnetic parameter is inversely proportional to F0 =

R0Bϕ0, the value for ITER τIC = 5× 10−4 is 4 times smaller than in the JET simulation.

Neoclassical coe�cients are taken constant in this part for simplicity: µneo = 10−5 and

ki = −1 [Bécoulet 2012]. The pro�les of the parallel, poloidal and neoclassical velocities

along the midplane are given in Fig. 3.34. The equilibrium radial electric �eld Er =

−∇⊥u · ∇ψ/|∇ψ|, with the characteristic well in the pedestal, is plotted in Fig. 2.4.
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Figure 3.33: Vacuum solution for the magnetic �ux perturbation (n = 3, IVC at max
Icoil = 54kAt) from the ERGOS code, JOREK boundary in black and sketch of the ITER
RMP coils in the bottom right corner

Figure 3.34: Pro�les of the parallel, poloidal and neoclassical velocities along the mid-
plane in ITER simulations

3.4.2 RMP screening in ITER

When the RMPs are not activated, the n = 3 mode remains stable: as shown in Fig. 3.35,

the magnetic energy of the n = 3 mode is negligible. When RMPs are switched on

(Fig. 3.33) at the boundary of the computational domain, the energy of the n = 3

toroidal harmonics grows until it saturates, corresponding to the saturation of the size of

the magnetic islands generated by the RMPs on the resonant surfaces q = m/3,m ≥ 4.

These magnetic islands are static: they are �locked� to the external RMPs and their
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size is constant. The magnetic �ux perturbation n = 3 is given in Fig. 3.36. The

plasma response is manifested by a perturbation of the parallel current induced on the

resonant surfaces (Fig. 3.37). The perturbation of density (Fig. 2.5 (b)) and temperature

(Fig. 3.38) mainly develops at the very edge (q = m/3,m ≥ 10) where the resistivity

is higher ; on the more internal resonant surfaces (q = 4/3 → 9/3), the perturbation

vanishes, which means that the central harmonics are screened. The temperature and

density perturbations and the stochastization of the edge (for ψ ≥ 0.96, as shown on the

Poincaré plot Fig. 3.42) slightly increase the edge heat and particle transport, resulting

in a small degradation of the pedestal (Fig. 3.39).

Figure 3.35: Magnetic energy of the n = 3 mode without/with RMPs

Figure 3.36: Static n = 3 magnetic �ux perturbation due to RMPs in ITER

The pro�les of the Fourier coe�cients of the magnetic perturbation ψm,n calcu-

lated with JOREK in presence of the plasma response are compared to the coe�-

cients calculated in the vacuum with the code ERGOS. Compared to the vacuum case
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Figure 3.37: n = 3 toroidal current perturbation appearing in response to RMPs in ITER

Figure 3.38: n = 3 temperature perturbation due to RMPs in ITER

[Bécoulet 2012], the central harmonics m = 4 − 9 (Fig. 3.40, Fig. 3.41) are screened by

the rotating plasma on the corresponding resonant surfaces q = m/n. Yet it is impor-

tant to note that the screening of the resonant part of the magnetic perturbations is

only partial and that the screening factor |ψm,n|/|ψm,nvacuum| on the resonance reaches

∼ 10% for m = 4 − 9. This partial penetration is consistent with the fact that small

magnetic islands are formed on the resonant surfaces (Fig. 3.42). The screening factor

is much larger here than in the cylindrical modeling where the resonant component was

reduced under 2% [Bécoulet 2012]. Comparatively, other simulations made with toroidal

codes [Ferraro 2012, Liu 2010b] also found a similar screening factor (∼ 10 − 20%),

which is larger than the results in cylindrical approximation [Heyn 2008, Nardon 2010,

Bécoulet 2012] and in the analytical calculations from layer theory [Waelbroeck 2012],

where the screening factor ranges between one per mil and a few percent. The discrep-

ancy between modeling in realistic geometry and simpler models is not fully understood.
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Figure 3.39: Density and temperature pro�les at the edge for Z=-0.6m without (full line)
and with RMPs (dash)

Figure 3.40: Fourier harmonics of the magnetic �ux perturbation |ψm,n|, n = 3, m = 4−7
in the vacuum case (ERGOS code, dash) and taking into account the plasma response
(JOREK, full line). The q-pro�le is given and the positions of the resonant surfaces
are indicated by the dots. Note that compared to the vacuum case, all these harmonics
m = 4 − 7 are screened on the corresponding resonant surfaces q = m/n in presence of
the rotating plasma.

Yet in cylindrical geometry, the current pro�le is less sheared than in toroidal geometry,

thus the cylindrical current and q pro�les cannot be taken consistently with experiments.

Thus in cylindrical modeling we must either keep the cylindrical current pro�le and thus

the q-pro�le is less sheared, hence moving resonances towards the plasma center; or we
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Figure 3.41: Fourier harmonics of the magnetic �ux perturbation |ψm,n|, n = 3,m = 8−11
in the vacuum case (ERGOS code, dash) and taking into account the plasma response
(JOREK, full line). The q-pro�le is given and the positions of the resonant surfaces are
indicated by the dots. The edge harmonics m = 10 − 11 have a comparable amplitude
on the resonant surfaces q = 10 − 11/3 in the ERGOS and JOREK cases, showing the
penetration of these harmonics in the plasma.

have to use an arti�cial current to keep the resonant surfaces at the right radial position.

This inconsistency may explain the discrepancy between cylindrical and toroidal model-

ing, however other parameters such as toroidal e�ects, compressibility or di�erences in

resistivity and viscosity might also play a role.

Another new phenomenon pointed out in toroidal simulations (Fig. 3.40, Fig. 3.41 and

[Liu 2010b]) is the ampli�cation of the non-resonant harmonics due to the so-called res-

onant �eld ampli�cation (RFA). Indeed, the amplitude of the magnetic perturbations in

the core is larger with plasma response than in the vacuum modeling, due to the resonant

response of a marginally stable kink mode [Liu 2010a]. At the edge, the amplitude of the

resonant harmonics m = 10 − 11 (Fig. 3.41) have the same order of magnitude in both

vacuum and plasma cases. The magnetic perturbation thus signi�cantly penetrates only

at the very edge where the resistivity is the highest, which is similar to the cylindrical

non-linear MHD modeling results [Bécoulet 2012].

3.4.3 Stochasticity at the edge

The RMP penetration at the edge generates the formation of islands on the resonant

surfaces q = m/3,m ≥ 10. As the edge resonant surfaces are close to each other due to

strong magnetic shear, the islands overlap and therefore form an ergodic layer at the edge

for ψ ≥ 0.96, as suggests the Poincaré plot of the magnetic topology in (ψ, θ) coordinates

Fig. 3.42.

The formation of the ergodic layer is correlated with a splitting of the separatrix [Joseph 2008].
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Figure 3.42: Poincare plot of the magnetic topology with RMPs in (ψ0, θgeom) coordinates:
magnetic �eld lines (starting at the edge inside the separatrix) integration after 200
toroidal turns at ϕ = 0. Resonant surfaces q = m/3,m ≥ 5 are indicated. A stochastic
layer is formed for ψ ≥ 0.96

The separatrix under the RMP transforms into a homoclinic tangle de�ning the plasma

edge [Evans 2005], manifesting itself as lobe structures (∼ 20cm) near the X-point

(Fig. 3.43) and as smaller �nger-like structures (∼ 6cm) at the top of the plasma

(Fig. 3.44). The homoclinic tangle is de�ned as the intersection of the two stable

and unstable invariant manifolds associated with the X-point, which stem from the

splitting of the unperturbed separatrix due to the magnetic perturbation [Evans 2004b,

Guckenheimer 1983]. The superposition of the magnetic topology with the plot of the ho-

moclinic tangle (stable and unstable manifolds) de�ning the deformation of the separatrix

is given in Fig. 3.45. These lobes near the X-point are observed in the experiments, either

directly ([Kirk 2012], [Chapman 2012]) or as the footprints of high heat and/or particle

�uxes where the lobes intersect the divertor [Cahyna 2013b, Evans 2007, Schmitz 2008,

Nardon 2011]. Models of plasma response based on a simpli�ed assumption of screening

currents on resonant surfaces [Cahyna 2011] or on a linear MHD model [Cahyna 2013a]

predict signi�cant shortening of the lobes when the RMP is screened by the plasma re-

sponse. Shortening is observed in the magnetic �eld topology [Cahyna 2013a, Nardon 2011,

Cahyna 2011] and through the reduction of �uxes [Schmitz 2013, Frerichs 2012] and gen-

erally increases with the increase of the width of the plasma region where the RMP is

screened [Cahyna 2011]. The shortening of lobes currently represent the most convenient

way to quantify experimentally the screening of RMPs. In the same way, in our sim-

ulations, the size of the lobes quali�es the screening of the RMPs by plasma �ows. In



3.4. Predictions for ITER 73

Figure 3.43: Magnetic topology near the X-point in (R,Z) coordinates. A lobe structure
characteristic of the ergodicity in X-point geometry is observed. On the left, a RMP
simulation without neoclassical, diamagnetic �ows or toroidal rotation is run for a central
resistivity η0 = 10−7. On the right, the same RMP simulation is run with all �ows
included for a central resistivity η0 = 10−8: the resulting lobe size is smaller by 1/3
compared to the the case without �ows.

Figure 3.44: Magnetic topology at the top of the machine. Small deformations of the
separatrix (∼ 6cm) are observed.

Fig. 3.43, a simulation with the same input RMP amplitude is run in two cases: with

SOL �ows only (induced by sheath conditions) and with all �ows included (neoclassical

and diamagnetic �ows, source of toroidal rotation). The addition of the �ows in the

simulation shortens the length of the lobe structures near the X-point by ∼ 1/3, which

corroborates the hypothesis (so far deduced from simpler models) that the RMP screening

by plasma �ows is correlated to lobe/footprint shortening.

A 3D-deformation of the density, temperature and pressure pro�les is observed. The

deformation of the pressure pro�le close to the separatrix is found to be due to the mode

(n = 3,m ∼ 12), Fig. 3.46. A small degradation of the density and temperature pro�les is
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Figure 3.45: Superposition of the Poincaré plot of the magnetic topology in (R,Z) coor-
dinates with the stable (red) and unstable (blue) homoclinic tangles de�ning the defor-
mation of the separatrix.

Figure 3.46: 3D-plot of the pressure on an initial equilibrium �ux surface without RMP
near the separatrix. The 3D-deformation corresponds to a mode (n = 3,m ∼ 12).

also observed near the X-point when RMPs are applied. The comparison of the density

pro�le with (Fig. 3.47) and without RMPs (Fig. 3.48) shows the enhancement of the

particle transport towards the divertor targets by the RMPs. A similar enhancement of

the heat transport is observed. This increase in heat and particle �uxes subsequently

generates a small splitting of the strike points on the divertor targets, mostly on the

outer target (Fig. 3.49).
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Figure 3.47: Degradation of the density pro�le near the X-point due to RMPs

Figure 3.48: Density near the X-point without RMPs

Figure 3.49: 2D-Poincaré plot (in the poloidal plane) of the magnetic topology (connec-
tion length) near the X-point, plotted together with the electron density on the divertor
targets (toroidal section). Note the induced splitting of the strike points on the outer
divertor target.
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3.5 E�ects of RMPs on MAST in DND con�guration

3.5.1 Input parameters

Figure 3.50: Fourier harmonics of the radial magnetic �eld generated by the RMP coils
in disposition �90L�: in this con�guration, the magnetic perturbation is maximal on the
resonances (m,n = 3)

Figure 3.51: Input resonant magnetic perturbation generated by the RMP coils calcu-
lated in the vacuum with the ERGOS code and applied as boundary conditions of the
computational domain (in black)

RMP penetration in MAST is studied in Double Null Divertor (DND) con�gura-

tion with plasma parameters corresponding to the shot #24763 (previously considered

in [Pamela 2013]). The central density is ne,0 = 4.25 × 1019m−3, the central electron

temperature is Te,0 = 1.04keV and the central resistivity is taken η0 = 10−7 (this is two

orders of magnitude larger than the normalized Spitzer value). The disposition of the

RMP coils chosen is the �90L� con�guration, since it corresponds to a maximal amplitude

of the radial magnetic �eld (generated by the RMPs) located on the resonant surfaces,
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as shown in Fig. 3.50. The n = 3 Fourier component of the vacuum RMP �eld imposed

at the boundary of the computational domain is given in Fig. 3.51. For numerical rea-

sons, in the simulation the current circulating in the RMP coils is taken to be 1/10 of

the experimental value. The reason is that during the transitory phase when RMPs are

switched on progressively at the boundary, toroidal currents J = ∆ψ appear close to the

boundary and dissipate when the stationary solution is reached. If the RMP amplitude

is too large, these toroidal currents evolve on a very fast time scale, setting a stringent

constraint on the allowed time step. For the moment, we did not succeed in optimizing

the numerical scheme for the realistic MAST parameters.

Two di�erent cases are studied and compared: �rst, the simulation is run with only

the SOL �ows generated by sheath conditions. Second, the diamagnetic e�ects are added,

with a diamagnetic parameter τIC = 10−2 (note that the large rotation in MAST implies

a realistic diamagnetic parameter τIC = 5 × 10−2, ie 100 times the one of the ITER

case, but a lower value is taken here for numerical reasons: as the very large value of

τIC again imposes a severe constraint on the time step, we opted here for intermediate

well resolved values; realistic values are left for future work). In this section, neither the

source of parallel rotation nor the neoclassical poloidal friction are included in the model

so as to focus on the e�ects of the diamagnetic rotation on RMP penetration.

3.5.2 RMP penetration

In both cases (with or without diamagnetism), a static n = 3 mode grows due to the

RMPs (Fig. 3.52). The magnetic energy of the mode is a few percent higher in the case

including the diamagnetic �ow, which means that the diamagnetic e�ects slightly amplify

the magnetic perturbations in this MAST con�guration.

Figure 3.52: Magnetic energy of the n = 3 mode driven by RMPs in the 2 cases: without
and with diamagnetic e�ects

The penetration of the magnetic �ux perturbation is given in Fig. 3.53 and the induced

current perturbations on the resonant surfaces is shown in Fig. 3.54 (case without diamag-

netic �ow). The electron density (Fig. 3.55) and temperature perturbations (Fig. 3.56,
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Figure 3.53: Magnetic �ux perturbation penetrating in the plasma (without diamagnetic
e�ects)

Figure 3.54: Current perturbation generated on the resonant surfaces q = m/n, n = 3
(without diamagnetic e�ects)

n = 3) represent up to 10% of the central average value and are mainly located at the

edge on the LFS, at the proximity of the RMP coils.

The radial pro�les of the Fourier harmonics of the magnetic �ux perturbation |ψm,n|
(n = 3, m = 4−12), are presented Fig. 3.57 and Fig. 3.58 for both cases with and without

diamagnetic �ow. In both cases, the central resonant harmonics m = 4− 9 are screened

near the corresponding surfaces q = m/n. The screening of the resonant harmonics is

only partial (reduced to ∼ 10% of the vacuum perturbation) and magnetic islands are

thus generated on the resonant surfaces in both cases (without Fig. 3.59 and with dia-

magnetic e�ects Fig. 3.60). These islands are larger in the core plasma in the simulation

without diamagnetic rotation: the amplitude of the low poloidal numbers is reduced by

the rotation. Also the ampli�cation of the non-resonant magnetic perturbation due to
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Figure 3.55: Density perturbation with n = 3 RMPs in MAST (without diamagnetic
e�ects)

Figure 3.56: Electron temperature perturbation with n = 3 RMPs in MAST (without
diamagnetic e�ects)

RFA is observed in the core. At the edge, the harmonics m = 10− 12 penetrate in both

cases, but the amplitude is larger in the diamagnetic case (Fig. 3.58): the diamagnetic

�ow seems to amplify the perturbation at the edge. Indeed the resonant components

of the Fourier harmonics m = 9 − 12 are slightly larger with diamagnetic e�ects on the

corresponding resonant surfaces q = m/n (Fig. 3.59-Fig. 3.60).

3.5.3 Ergodization and 3D-e�ects

The penetration of the external RMP harmonics creates an ergodic layer at the edge for

ψ ≥ 0.95 (Fig. 3.59-Fig. 3.60). Related to the ergodization are lobe structures formed

near the X-point, as shown in Fig. 3.61 (case with diamagnetic �ows included). It is

interesting to notice that the presence of the two separatrices in DND con�guration
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Figure 3.57: Radial pro�le of the Fourier harmonics of the magnetic perturbation |ψm,n|,
m = 4−7 in both cases: without diamagnetic e�ects (dash) and with diamagnetic e�ects
included (full line). The approximate position of the resonant surfaces q = m/n are
represented by the dots. All the central harmonics m = 4 − 7 are screened near their
corresponding resonant surfaces in both cases

Figure 3.58: Radial pro�le of the Fourier harmonics of the magnetic perturbation |ψm,n|,
m = 8 − 12 in both cases: without diamagnetic e�ects (dash) and with diamagnetic
e�ects included (full line). The approximate position of the resonant surfaces q = m/n
are represented by the dots. The more central harmonicsm = 8−9 are screened near their
corresponding resonant surfaces in both cases, whereas the external ones (m = 10− 12)
penetrate close to the surface q = m/n in both cases but are slightly more ampli�ed in
the case including the diamagnetic e�ects.

constrains the trajectories of the magnetic �eld lines so the lobes are only formed in

the LFS. This phenomenon is also observed in MAST DND experiments with the fast

camera. The size of the lobes in the LFS are comparable in both studied cases (with and

without diamagnetic e�ects).

The 3D-deformation following a n = 3 toroidal mode number is observed in both sim-
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Figure 3.59: Poincare plot of the magnetic topology in MAST without diamagnetic
rotation, in (ψ0, θgeom) coordinates: magnetic �eld lines integration after 200 toroidal
turns. The resonant surfaces q = m/3,m ≥ 4 are indicated. A stochastic layer is formed
for ψ ≥ 0.96

Figure 3.60: Poincare plot of the magnetic topology in MAST with diamagnetic rotation
included, in (ψ0, θgeom) coordinates: magnetic �eld lines integration after 200 toroidal
turns. The resonant surfaces q = m/3,m ≥ 4 are indicated. A stochastic layer is formed
for ψ ≥ 0.96

ulations in the LFS. The separatrix is displaced towards the interior by a few centimeters

at the midplane: ∼ 2 − 3cm without diamagnetism and ∼ 1.5cm in the diamagnetic
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Figure 3.61: Poincare plot of the magnetic topology with diamagnetic �ow. The color
represents the temperature of the starting point of the �eld line inside the separatri-
ces. The length of the lobes near the X-points is sensibly the same in the case without
diamagnetic �ow

Figure 3.62: Zoom in Poincare plot Fig. 3.61 around the midplane (case with diamagnetic
�ow): the displacement of the last closed �ux surface due to RMPs at the toroidal angle
ϕ = 0◦ is approximately 1.5cm

case (Fig. 3.62) for a toroidal angle ϕ = 0◦. The inward displacement of the electron

density and temperature pro�les at the midplane in the LFS (Fig. 3.63) is maximum for

a toroidal angle ϕ = 0◦ (position where the RMP coils deliver the largest negative �ux

perturbation) and minimum for ϕ = 180◦ (angle where the maximum positive �ux per-

turbation is applied). Compared to the density and temperature pro�les without RMPs,

the gradients are lower in the pedestal when the RMPs are applied, showing a small

degradation of the con�nement by the RMPs: this can be explained by the enhancement

of the heat and particle transport due to the ergodicity at the edge. The 3D-corrugation
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Figure 3.63: Radial pro�les of the electron temperature (dash) and the density (full line)
at the midplane without RMPs (black), with RMPs at the toroidal angles ϕ = 0◦ (blue)
and 180◦ (red): note the small degradation of the pedestal and the 3D-deformation of
density and temperature due to RMPs

Figure 3.64: 3D-deformation of the electron temperature near the separatrix due to RMPs

of the electron density and temperature pro�les are observed: the deformation of the

temperature near the separatrix is given in Fig. 3.64.

Last, it is observed in the experiments that the radial electric �eld is made more

positive by RMP application ([Kirk 2011]). This phenomenon was found in simulations

in the cylindrical case (section 3.2 and [Bécoulet 2012]) and is also found in our toroidal

simulations with JOREK, as plotted in Fig. 3.65 in the LFS (diamagnetic e�ects are

included). The braking of the perpendicular electron velocity v⊥,e induced by RMPs

is also evidenced in JOREK simulations (Fig. 3.66), following the same trend as in the

experiments ([Kirk 2013a], [Chapman 2012]). If the plasma brakes until v⊥,e becomes zero

on the resonant surfaces, the magnetic perturbations are not screened on the resonant

surfaces, as it was found in [Nardon 2010, Bécoulet 2012, Orain 2012] and in section 3.2
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Figure 3.65: Radial pro�le of the radial electric �eld at the midplane in the LFS without
RMPs (- - black) and with RMPs (red)

Figure 3.66: Radial pro�le of the electron perpendicular velocity at the midplane in the
LFS without RMPs (- - black) and with RMPs (red)

in cylindrical geometry and here demonstrated in appendix A for toroidal geometry.

Fig. 3.66 shows that the damping of the perpendicular electron rotation occurs close to

the resonant surface q = 4/3 (ψ ∼ 0.58), which enables the growth of the 4/3 magnetic

islands (Fig. 3.60).

It is important to note that this study for the MAST case is a preliminary study,

and can only give trends of the e�ect of RMPs on the plasma in this particular case

of a spherical tokamak in DND con�guration. Clearly, the size of the displacements

calculated here cannot be quantitatively compared to the experiments, since numerical

limits imposed us to �minimize� two antagonist e�ects: on the one hand, the realistic

RMP amplitude (10 times the one used in our simulations) should generate much larger

penetration, on the other hand the realistic diamagnetic rotation (5 times the one used

here) is likely to have much larger screening e�ects on the RMPs. However these results

can be compared qualitatively to the experimental trends.
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3.6 Conclusion and discussion

First, the cylindrical modeling of the plasma response to RMPs was presented as an

introductory study. Typically, the RMP penetration occurs in a narrow region near the

separatrix due to higher resistivity. However, at certain plasma parameters or/and be-

cause of the non-linear evolution of the radial electric �eld due to RMPs, the electron

perpendicular velocity v⊥,e = v∗e + vE×B can vanish on a rational surface q = m/n. In

this case, the (m,n) harmonic of the RMPs penetrates locally, which generates mag-

netic island chains on the resonant surface q = m/n. The generic feature of the RMP

interaction with a rotating plasma is the following: a larger RMP amplitude, a larger re-

sistivity, a lower electron perpendicular rotation and a lower neoclassical poloidal friction

are favourable factors for the RMP penetration.

The will to study the RMP interaction with more realistic plasma �ows in a realistic

tokamak con�guration, as well as to be able to study the impact of RMPs on ELMs,

motivated us to carry out the study in toroidal geometry with the JOREK code.

Thus the penetration of the RMPs in the plasma was studied through JOREK simu-

lations � in toroidal geometry including the X-point and the SOL �, taking into account

the plasma �ows generated by the diamagnetic and neoclassical e�ects, by a source of

toroidal rotation and by the sheath boundary conditions on the divertor. The screen-

ing of the RMPs on the resonant surfaces is observed in the center of the plasma in all

the studied cases (JET, ITER, MAST) but the screening is only partial. The factor

|ψm,n|/|ψm,n,vacuum| on the resonance is larger than in the previous cylindrical modeling.

The perturbation however signi�cantly penetrates at the edge: magnetic islands grow on

the resonant surfaces and eventually form an ergodic layer at the edge (for ψ ≥ 0.95 in

the three studied cases).

In JET geometry, a low plasma resistivity and a large diamagnetic rotation are found

to increase the screening of the RMPs. Three regimes of RMP penetration are found

depending on these two parameters: at low diamagnetic rotation and high resistivity, the

generated islands co-rotate with the plasma electron �ow and their size �uctuate at the

same frequency. At larger diamagnetic rotation, the islands are static and "locked" to the

external static RMPs; a stronger screening of the perturbations is observed. An interme-

diate regime is observed at lower resistivity, in which the generated island are quasi-static

and slightly oscillate. The possible link between these regimes and the di�erence in ELM

mitigation at high and low collisionality [Evans 2008, Moyer 2005] is under investigation.

As for the toroidal rotation, depending on the plasma parameters (in particular on the

resistivity), it can either reduce or amplify the RMP penetration. Also, contrary to the

JET case, the magnetic perturbation seems to be slightly ampli�ed by the diamagnetic

rotation at the edge in MAST simulations.

In MAST and ITER cases, static magnetic islands are formed on the resonant sur-

faces due to n = 3 magnetic perturbations. The presence of lobe structures related to

the ergodization at the edge are evidenced in both cases (∼ 20cm in ITER, ∼ 7cm in

MAST). In ITER, the comparison of simulations run with and without �ows demon-

strates that the plasma rotation reduces the length of the lobes by 1/3. The heat and

particle transport is enhanced by the ergodicity near the X-point, resulting in the lo-
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cal degradation of the electron density and temperature pro�les and the splitting of the

strike points on the divertor targets, mostly in the LFS. In MAST, the separatrix fol-

lows a (n = 3,m ∼ 11) 3D-corrugation (the last close �ux surface is moved inward by

∼ 3cm at the midplane for a zero poloidal angle). The pedestal position follows the same

inward movement, accompanied by a small degradation of the pedestal (relaxation of

the density and temperature gradients). Last, the radial electric �eld evolution and the

braking of the electron perpendicular velocity is observed, following the same trend as in

the experiments.

The two main limits of this study are the following: �rst, for numerical reasons,

the resistivity was taken around two orders of magnitude larger than the experimental

resistivity, however it is the smallest value that can be used so far in computations run

with the existing MHD codes. Second, even though the particle transport is found to be

increased by the stochastic layer formed by RMPs at the edge, no clear density pump-out

was observed in our simulations: less than 1% of the pedestal density is lost, as compared

to up to 20% in the experiments [Evans 2008, Liang 2007a]. This might be due to some

missing physics in our model. Indeed, several papers, e.g. Ref [Waelbroeck 2012], have

shown that the gradient of the parallel current, which appears in the electron density

equation, plays a major role in the pump-out of density in the plasma when RMPs are

applied: the parallel current �owing along perturbed magnetic �eld lines (phenomenon

called �magnetic �utter�) generates an enhanced radial transport of the electron density.

This parallel current does not appear in the ion density equation considered in our model,

however the ion and electron density equations should be equivalent. The inclusion of

several components of the �uid (ion) velocity so far neglected, such as the polarization

drift and the velocity induced by the neoclassical friction, should therefore be added in

the ion �ux (in the ion density equation) to make these equations fully consistent. This

is the ambipolarity constraints, raised e.g. in [Tokar 2008], which imposes for the ion

�ux to be equal to the electron �ux: this way, an enhanced electron transport should

also induce an enhanced ion transport. The purpose of an ongoing study, presented in

appendix D, is thus to implement the magnetic �utter in the JOREK code, either by

implementing the electron density equation � including the gradient of parallel current �

instead of the ion equation, or by adding the corrective terms of the ion velocity in the

ion density equation. The increased particle transport induced by magnetic �utter might

then allow for the observation of the density pump-out generated by RMPs in JOREK

simulations, consistently with experimental observations.
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4.1 Introduction

Experimentally, ELM relaxations consist in a cyclical phenomenon, resulting in the

quasiperiodic deposition of energy on the divertor target plates. Modeling this phe-

nomenon requires to reproduce this cyclical behavior. Besides, the simulation of ELM

cycles rather than a single ELM crash which depends on the initial unstable pressure pro-

�le involves di�erent physical mechanisms. Indeed, after the �rst ELM crash, memory

of the choice for the initial state is lost. The phase coherence between modes that de-

termines the ELM instability growth has reorganized and is now consistently determined

by the dynamics rather than imposed through the choice of initial conditions. And so is

the energy content within the bath of toroidal harmonics. In this respect, an ELM crash

starting from such a coherent state is signi�cantly di�erent from a �rst initial relaxation

triggered by the choice of an initial state. This chapter discusses the speci�cities of the

multiple ELM dynamics starting from self-consistent inter-ELM states (section 4.5) with

respect to the single ELM relaxation from an initial chosen condition (section 4.2).

The ELM dynamics without RMPs is studied through JOREK simulations performed

for JET-like plasma parameters and geometry, similarly to chapter 3. First, a simulation

of a single ELM crash is presented without diamagnetic �ows in section 4.2. Even though

the simulation without diamagnetic �ows does not allow for obtaining an ELM cycle, it
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gives a relatively acurate picture of the dynamics of a single ELM, from the growth of the

peeling-ballooning instabilities to the crash of the pressure pro�le. In a second time, the

diamagnetic rotation is included in simulation. The diamagnetic e�ects are known to re-

duce the growth rate of ideal and resistive instabilities [Drake 1983, Huysmans 2001] and

thus have a stabilizing e�ect on plasma instabilities. The stabilizing e�ect of the diamag-

netic rotation on ELMs is discussed in section 4.3.1 and the impact of the diamagnetic

�ow on the rotation of the ELM precursors and �laments is described in section 4.3.2.

Then we show in section 4.4 that ELM simulations with diamagnetic �ows present a

near-symmetric ELM power deposition on the inner and outer divertor target plates,

which is in closer agreement with the experimental observations, as compared to the pre-

vious simulations without diamagnetic �ow. Finally, we present in section 4.5 the �rst

simulations of multi-ELM cycles obtained in realistic geometry. The diamagnetic �ows

have been evidenced to be a key parameter for simulating cycles of sawtooth crashes

[Halpern 2011]; we show in this chapter that they also enable to simulate cycles of ELM

crashes.

4.2 Dynamics of a single ELM without �ows: growth

and crash

In order to compare the ELM dynamics either in presence or in absence of diamagnetic

�ows, an ELM simulation is �rst performed without diamagnetic drifts, for the JET-like

parameters given in chapter 3. In the following sections, the diamagnetic drifts will be

added and compared to this reference case. The simulation starts from a chosen typical

unstable H-mode pedestal pro�le. As an example, we consider the dynamics of a single

harmonic n = 8 unstable mode.

The ELM is triggered due to the initial large pressure gradient and the current

(bootstrap-like) pro�le at the edge: the initial state is slightly over the peeling-ballooning

threshold. As shown in Fig. 4.1, the ELM starts with the exponential growth of the n = 8

mode � characterized by a constant linear growth rate γ �, until non-linear e�ects saturate

the mode and generate the relaxation of the pedestal pro�les that brings back the system

below the peeling-balloning stability boundary. During the linear growth, an n = 8 per-

turbation of density and temperature develops, which induces the ballooning structure

of the edge density and temperature pro�les, mainly located on the low �eld side (see

Fig. 4.2 (b)). Then, as described in [Huysmans 2009], the n = 8 mode saturates due to

the non-linear generation of an n = 0 �ow, induced by the Maxwell stress [ψn=8, jn=8] in

the momentum equation. This n = 0 �ow � corresponding to the n = 0 kinetic energy

in Fig. 4.1 � distorts and shears the density pattern (Fig. 4.2 (c)), inducing the expelling

of sheared �laments of density from the pedestal.

Meanwhile, the n = 8 magnetic perturbation due to the ELM generate the magnetic

reconnection of the edge. As shown by the Poincaré plot Fig. 4.3, the magnetic �eld

is fully reconnected in the pedestal: the magnetic �eld is ergodic for a normalized �ux

ψ > 0.9. Note that the Poincaré plot in (ψ, θ) coordinates (Fig. 4.3) also highlights
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Figure 4.1: Time variation of the magnetic energy of the n = 8 mode and kinetic energies
of the modes n = 8 and n = 0 during an n = 8 ELM without diamagnetic e�ects. Time
is normalized to the Alfvén time tA.

Figure 4.2: Normalized density (top) and electron temperature (bottom, in keV) at the
equilibrium (a), just before the ELM crash (b), during the crash (c) and at the end of
the crash (d).
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the ballooning deformation on the low �eld side. The ergodization of the edge magnetic

�eld largely enhances the heat di�usive transport at the edge, hence the temperature

transport through the pedestal and in the scrape-o� layer is increased �rst on the low

�eld side (Fig. 4.2 (c)) and then on both �eld sides (Fig. 4.2 (d)).

Figure 4.3: Poincaré plot of the magnetic topology at the onset of the ELM crash: (a)
in (R,Z) coordinates; (b) in (ψ, θ) coordinates, zoomed at the edge (for ψ > 0.8).

As a result, due to the enhancement of both the convection of density by the n = 0

�ow and the di�usion of temperature by the ergodization, the pedestal pressure has

signi�cantly reduced at the edge at the end of the ELM crash, as plotted in Fig. 4.4:

the edge pressure pro�le has �attened due to the expelled energy that has reached the

divertor targets.

Figure 4.4: Edge pressure pro�le at the midplane before an ELM (black), during an ELM
(red) and after an ELM (blue). The pressure is normalized to the central value.

The single ELM simulations obtained without diamagnetic �ows reproduce quite well
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e.g. the ballooning deformation, the expelling of density �laments and the �attening of

the pressure pro�le observed in experiments [Gohil 1988, Kirk 2004, Kirk 2006]. However,

we show that the diamagnetic drifts are necessary to improve the theoretical description of

the ELMs. In particular, ELM simulations with diamagnetic drifts give a more accurate

picture (in the sense that they better reproduce experimental facts) of the rotation of

precursors and �laments (section 4.3.2), of the power deposition on the divertor due to

an ELM (section 4.4) and of the cyclical dynamics of the ELMs (section 4.5).

4.3 Diamagnetic e�ects: ELM stabilization and ELM

rotation

4.3.1 Diamagnetic stabilization

The diamagnetic e�ects strongly a�ect the ELM dynamics. The �rst well know ef-

fect of the diamagnetic rotation is the stabilization of the MHD modes and in partic-

ular the stabilization of ideal and resistive ballooning modes [Drake 1983, Rogers 1999,

Diamond 1985, Huysmans 2001]. Indeed, it is found theoretically that the growth rates of

medium and high n modes is reduced by the diamagnetic stabilization. The high n→∞
ballooning modes are even fully stabilized by the diamagnetic rotation for a large enough

value of τIC [Huysmans 2001] and thus medium n numbers are the most unstable modes.

The diamagnetic stabilization is also observed in our simulations. As compared to ELM

simulations without diamagnetic drifts where the highest n number was the most unsta-

ble mode [Pamela 2013], in the ELM modeling with diamagnetic rotation we �nd that

the most unstable modes are medium n numbers, between around 6 and 12 depending on

the cases. As an example, the linear growth rate of a single harmonic ELM is plotted for

the JET-like case in Fig. 4.5, depending on the toroidal mode number considered. The

growth rate is largest for an n = 8 ELM, which means that the n = 8 mode will domi-

nate the linear growth of a multi-harmonic ELM simulation made for these parameters.

However, it is possible that the other mode numbers may be non-linearly more unstable.

Moreover, the linear growth rate of an n = 8 ELM is calculated for di�erent plasma

diamagnetic velocity characterized by the τIC parameter (see Fig. 4.6). The realistic

value � used in all other JET-like simulations � is τIC = 2 × 10−2. The linear growth

rate of the n = 8 mode is divided by ∼ 3 − 4 with diamagnetic rotation (compared to

the case without rotation), and it decreases if τIC is increased. Note that the toroidal

number n of the most unstable mode also depends on the diamagnetic rotation. An

analytical estimation of nmax depending on τIC is given in [Huysmans 2001]. We show in

the next subsection that the diamagnetic rotation does not only a�ect the growth rate

of the ELM, but also its rotation frequency.

4.3.2 ELM rotation: precursors and �laments

The rotation of the ELM and their associated �laments has recently been measured

during the ELM crash in KSTAR [Yun 2011] and in ASDEX Upgrade [Classen 2013]. It
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Figure 4.5: Linear growth rate of a single harmonic ELM depending on its toroidal mode
number n with diamagnetic e�ects.

Figure 4.6: Linear growth rate of an n = 8 ELM depending on the diamagnetic parameter
τIC .

is unclear which mechanism is responsible for the ELM rotation, either the E × B or

the diamagnetic velocity during the growth phase of the ELM. Also the experimentally

observed deceleration [Yun 2011] and reversal [Classen 2013] of the �lament rotation at

the ELM crash remains unexplained.

Here, we study the impact of the E × B and diamagnetic rotation on the ELM

rotation. The JOREK simulations are performed using the parameters of a realistic JET

shot (#77329, described in [Bécoulet 2012]) and compared to an analytical calculation,

given in more details in [Morales 2014]. The rotation of an n = 6 ELM is studied during

its linear growth, either without or with diamagnetic drift. As presented in Fig. 4.7,

without diamagnetic rotation, the instability is almost static while growing. However,

with diamagnetic rotation, the ELM precursor (i.e. during the linear growth) rotates in

the the electron diamagnetic or E ×B direction (anticlockwise).
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Figure 4.7: Rotation of the ELM precursors without (top) or with (bottom) diamagnetic
rotation. The (n = 6) magnetic �ux perturbation is plotted for three di�erent times
separated by 20tA.

In comparison, the analytical calculation [Morales 2014] using the ballooning repre-

sentation (see e.g. [Connor 1978]) demonstrates that in the zero resistivity and low shear

limit, the ELM frequency is equal to half the ion diamagnetic velocity (ω∗i /2) in the

plasma reference frame. Thus the mode rotates at the following velocity:

vmode = vE×B + v|| +
v∗i
2

(4.1)

Thus in the poloidal direction, vmode,θ ≈ vE×B + v∗i /2. Yet in the pedestal the E × B
drift scales as v∗e since the electron pressure gradient term is dominant in the equilibrium

force balance (Eq. (2.35)). Thus the poloidal velocity of the mode is approximately

equal to v∗e + v∗i /2 = v∗e/2: the mode rotates in the electron diamagnetic direction

at the frequency ω∗/2. This velocity direction and the magnitude of the speed of the

ELM rotation (several km/s) are in agreement with the experimental observations of the

rotating ELM precursors [Yun 2011, Classen 2013].

In the non-linear stage, the mode velocity v∗/2 is added to the n = 0 �ow, which is

non-linearly induced by the Maxwell stress, as described in section 4.2. Qualitatively,

the mechanism of the �lament shearing remains comparable to the one observed without

diamagnetic drift: the pedestal plasma rotates in the electron diamagnetic direction,

while the plasma displaced towards the SOL rotates in the ion diamagnetic direction, as

plotted in Fig. 4.8. Therefore the density �laments are sheared o� from the plasma and

expelled in the ion diamagnetic direction. However the advection of �laments is modi�ed
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by the diamagnetic drifts, thus more density is expelled towards the inner divertor plates,

as explained as follows.

Figure 4.8: Expelling of the ELM �laments on the non-linear stage of an ELM with
diamagnetic e�ects. 10tA separate two pictures.

4.4 Power deposition on divertor

During an ELM, the temperature is conducted by the heat di�usivity from the recon-

nected edge plasma to the divertor plates, whereas the density is convected by the E×B
and diamagnetic rotation. Experimentally, the deposition of the heat �ux due to an ELM

is either symmetric on the inner/outer divertor target plates, or the inner target receives

twice more power [Pitts 2007, Eich 2003]. In the previous modeling performed without

diamagnetic drifts, the outer target received almost all the ELM power deposition, which

was contrary to the experimental observations.

As an example, an n = 2 − 8 ELM simulation is performed with realistic JET pa-

rameters (shot #77329) for two di�erent cases: one without including �ows in the model

(Fig. 4.9 (a)) and one with diamagnetic e�ects, neoclassical friction and toroidal source

of rotation included (Fig. 4.9 (b)). In the case without �ows, almost all the heat �ux

generated by the ELM �laments is deposited on the outer divertor, whereas in the case

where �ows are included in the model, the deposited heat �ux is near-symmetric on the

inner and outer. A cut along the radial direction of the divertor targets, given in Fig. 4.10,

shows the large di�erence of the power deposition in the cases without/with �ows.

This di�erence can be explained by the fact that the diamagnetic velocity advects

more density towards the inner divertor plate than the outer plate, hence the heat �ux

reaching the divertor at the sound speed is deposited near-symmetrically in the inner

and outer divertor plates: even though the temperature is larger on the outer than on

the inner side, the density is larger in the inner region so a similar power, proportional

to both the plasma temperature and density, reaches the inner and outer divertor target



4.5. Non-linear cyclical dynamics 95

Figure 4.9: Heat �ux (in MW/m2) reaching the inner and outer divertor target plates
after an ELM: without �ows (a) or with diamagnetic, neoclassical and toroidal �ows (b).

Figure 4.10: Radial section of the heat �ux reaching the inner and outer divertor target
plates along the divertor: almost all �ux reaches the outer divertor (full line) without
�ows whereas the deposition is near-symmetric with �ows (dash line).

plates due to an ELM. Thus simulations with diamagnetic drifts allow for reproducing

more realistically the dynamics of an ELM up to the deposition on the divertor.

4.5 Non-linear cyclical dynamics

Last but not least, in this section, we show that the diamagnetic drifts is also a key ingre-

dient which allows for reproducing the ELM cyclical dynamics. In the modeling without

diamagnetic drifts (section 4.2), the ELM crash is generated by the chosen initially unsta-

ble pressure pro�le. After the crash, the unstable modes remain unstable, and the residual

magnetic activity expels the plasma outside the separatrix, which prevents the pedestal

from building-up again. As an example, the simulation of the n = 8 mode without dia-
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magnetic e�ects (described in section 4.2) is continued during several thousands of Alfvén

times: we observe that a signi�cant MHD activity remains after the crash. Indeed, the

magnetic and kinetic energies of the n = 8 mode, plotted in Fig. 4.11, is not completely

damped after the crash. Because of this magnetic activity, magnetic island chains remain

after the crash for ψ > 0.85 and an ergodic layer subsists at the very edge (ψ > 0.95), as

shown in Fig. 4.12, plotted for t ∼ 7 × 103tA. This perturbed magnetic structures and

particularly the edge stochastization increase both the heat parallel di�usivity and the

E × B convection of particles. The enhanced transport prevents the reconstruction of

the pedestal pro�les and keeps the plasma below the peeling-ballooning stability limit,

thus a second ELM cannot be obtained in the simulations without diamagnetic e�ects.
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Figure 4.11: Time variation of the magnetic and kinetic energies of the mode n = 8
without diamagnetic e�ects. A large magnetic activity remains after the crash.

4.5.1 Cyclical self-consistent evolution

However, the inclusion of the diamagnetic rotation induces two major stabilizing e�ects

on ELMs. First, it reduces the amplitude of the ELM perturbation and crash. Indeed,

compared to the simulation without diamagnetism (Fig. 4.11), the magnetic and kinetic

energies of the same n = 8 ELM with diamagnetic drifts included (Fig. 4.13) are 1-2

orders of magnitude lower. In Fig. 4.13, the multi-harmonic simulation of the modes

n = 0, 2, 4, 6 and 8 with diamagnetic drifts is presented. The most unstable n = 8 mode

is hardly coupled with the other modes during the �rst ELM crash and the energy of

the other modes remain several orders of magnitude lower than the energy of the n = 8

mode. So the dynamics of the �rst ELM is almost only governed by the n = 8 mode.

Note that the modes n > 9 are less unstable than the n = 8 mode due to the diamagnetic

stabilization of the high toroidal numbers section 4.3.1; for this reason and in order to

reduce the time-consumption of the simulation, the highest n > 9 modes were not kept

in simulation. The odd modes were not included either to reduce the time-consumption.
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Figure 4.12: Poincaré plot of the magnetic �eld topology long after the n = 8 ELM crash
without diamagnetic e�ect, at t ∼ 7 × 103tA: (a) poloidal projection; (b) at the plasma
edge (normalized �ux ψ ≥ 0.8).
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Figure 4.13: Kinetic energy of the modes n = 2 − 8 in the multi-harmonic n = 0 : 2 : 8
simulation with diamagnetic e�ects.

After the �rst ELM crash, we observe the second major role of the diamagnetic

stabilization: instead of remaining unstable after the crash, the plasma is stabilized by

the diamagnetic rotation (Fig. 4.13). Only when the pressure pro�le is built up by

the applied heating power, the plasma is destabilized again. The ballooning modes are

growing again until a threshold in pressure gradient is reached, triggering the second

ELM relaxation. Therefore the ELM dynamics results from a competition between the

diamagnetic stabilization and the destabilization of the plasma by the heat and particle

sources �lling the pedestal and steepening the pressure pro�le. The ELM cycles obtained

in simulation Fig. 4.13 can be decomposed into two periods. The �rst three transient

ELMs are largely dominated by the most unstable modes (n = 8 during the �rst two
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ELMs then n = 6), and their triggering threshold is dependent on the initial chosen state.

However, after 3-4 ELMs, the memory of the initial state is lost, and a quasi-periodic

regime of ELM crashes is obtained. These ELMs are characterized by a strong non-linear

coupling between the n = 2−8 modes. The n = 6 mode is growing �rst, directly followed

by the other modes. After a crash in this quasi-periodic regime, the plasma reorganizes

into a self-consistent state. Thus, the ELM frequency does not depend any more on initial

conditions, but depends on intrinsic parameters: the diamagnetic rotation (which have a

stabilizing e�ect on ELMs) and the applied heating power (destabilizing), as described in

the next section 4.5.2. The competition between these two parameters governs the cyclical

dynamics of the ELMs. Each ELM in the quasi-periodic regime can be decomposed into

three steps (Fig. 4.14): �rst, the instability grows as the pressure gradient (and in a

smaller extent the edge current) increase. Second, the ELM crash occurs when a limit

of pressure gradient is reached. And third, the pedestal pro�les relax: particles and

energy are expelled out of the plasma, and the pressure gradient collapses, as presented

in Fig. 4.14 (a). Note that the bootstrap current is not included in the model (the current

is forced to tend to the initial realistic current pro�le via a current source, but does not

depend on the pressure gradient evolution, as it is in experiments), so the dynamics of

the instabilities simulated here shows only a small dependence on the pedestal current

(Fig. 4.14 (b)).

Figure 4.14: In quasi-periodic regime: (a) Edge pressure gradient before, during and after
an ELM. (b) Peeling-ballooning diagram of the ELMs.

After a small delay (∼ 100tA) corresponding to the ion parallel time τ||,i = πqR/cs
(where cs is the sound speed), the energy and particles due to the ELM �laments reach

the divertor target plates at the sound speed. The distinction between the �rst transient

ELMs and the quasi-periodic regime is also observed on the plot of the integrated power

reaching the divertor after an ELM (Fig. 4.15): although the power deposition due to the

four �rst ELMs is very variable, the integrated peak power deposited by an ELM on the

divertor (Fig. 4.15) is approximately the same for all the ELMs in quasi-periodic regime
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(∼ 5 − 6MW on the outer divertor, ∼ 2 − 3MW on the inner divertor). This again

shows that the �rst ELMs before reorganization are singular. Note that in quasiperiodic

regime, the peak power deposition on the inner divertor is slightly delayed (by ∼ 50tA)

compared to the outer deposition: because of the ballooning character of the instabilities,

the �laments are mostly expelled from the Low Field Side, so the �laments �rst hit the

outer target.

Furthermore, the deposition on the inner and outer divertor targets is near-symmetric

in this simulation: the integrated deposited power has the same order of magnitude

on both targets, even though roughly two-times more power is deposited on the outer

divertor target.
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Figure 4.15: Integrated power reaching the inner (dash line) and outer (full line) divertor
plates.

4.5.2 Characterization of the ELM frequency

The ELM frequency obtained in Fig. 4.13 is about 3kHz. This frequency depends on both

the stabilizing e�ect of the diamagnetic rotation and the destabilization by the steepening

of the pressure pro�le due to the heat source. To assess these e�ects, simulations are

performed �rst with a twice larger heat source and second with a twice larger diamagnetic

parameter τIC . First, we notice that the enhanced heat source has the e�ect of raising the

maximal pressure gradient reached at the ELM crash, which is about 5% larger with the

enhanced source (Fig. 4.16). This can be explained by two combined e�ects. First, whilst

the peeling-ballooning modes are growing, the enhanced heating power induce a quicker

increase in the edge pressure gradient during the delay needed by the non-linear e�ects

to induce the pedestal relaxation. Second, due to the larger heating power, the mean

equilibrium (inter-ELM) temperature T0 is raised after several ELMs. Consequently, the

resistivity (proportional to T
−3/2
0 ) is reduced, so the boundary stability is improved. For

both reasons, a larger pressure gradient develops in the pedestal before the ELM crash,
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which induces a larger amount of particles and energy expelled by the ELM. Subsequently,

the power reaching the divertor (Fig. 4.17) is increased. This means that the pedestal

has lost more energy and that more time is needed to reconstruct the pedestal. Therefore

the ELM frequency is decreased as the heat power is increased. This behavior is similar

to the type-III ELMs observed in experiments [Sartori 2004].

Figure 4.16: Time variation of the maximal edge pressure gradient in quasi-periodic n = 8
ELMy regime in the reference case (dash) and with a double injected power.

Figure 4.17: Integrated power on the inner and outer divertor plates in quasi-periodic
n = 8 ELMy regime in the reference case (dash) and with a double injected power.

Second, simulations at larger diamagnetic rotation present a larger ELM frequency.

Actually, due to the diamagnetic stabilization, smaller instabilities develop at the edge
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plasma and a smaller energy is expelled from the pedestal. So the plasma after the crash

remains just below the stability limit, such that less time is needed to cross again the

stability threshold, which explains a larger ELM frequency. In the case with a diamagnetic

parameter twice larger than the realistic one (Fig. 4.18), not only the ELM frequency

(obtained after the transient phase) is increased, but the large diamagnetic rotation

gradually decreases the amplitude of the ELMs, so that in terms of peeling-ballooning

cycles, the plasma moves from the initially unstable state towards a "�x point" in the

P-B diagram by doing smaller and smaller cycles. As it represents a bifurcation from

a cycling dynamics towards a stable state, it may present similarities with the so-called

dithering cycles [Zohm 1996].

Figure 4.18: Magnetic energy of the n = 8 ELM depending on the diamagnetic parameter:
realistic value (dash) and doubled (full)

4.6 Conclusion of the chapter

In this chapter, the ELM cyclical dynamics was reproduced in non-linear modeling per-

formed with JOREK. The main limitations of our model is the large resistivity which is

two orders of magnitude larger than the experimental value due to computational limi-

tations and the ad hoc heat and particle sources taken in simulation that a�ect the ELM

frequency. In spite of these restrictions, the modeling of these resistive ELMs represents

a signi�cant step forward in the understanding of the cycling dynamics.

In the ELM modeling without diamagnetic drifts, the overall dynamics of a single

ELM crash is rather well reproduced: the growth of the peeling-balloning modes induces

the deformation of the plasma edge until density �laments are sheared and expelled

out of the pedestal. Meanwhile, the edge ergodization induced by the ELM enhances

the heat transport through the ETB. As a result, the collapse of the edge pressure

pro�le occurs. This description matches quite accurately the experimental observations.
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However several experimental observations, such as the rotation of the ELM precursors

and the symmetric ELM power deposition on the divertor targets, are not reproduced

in simulation without diamagnetic rotation. As well, an ELM cycle cannot be obtained

without dimagnetic drifts since the plasma remains unstable after the ELM crash: the

residual edge transport prevents the pedestal from rebuilding, and thus a second ELM

cannot grow.

The addition of the bi-�uid diamagnetic rotation in the model allows to improve

signi�cantly the decription of the ELM dynamics, summarized in the following.

The diamagnetic rotation has a stabilizing e�ect on the plasma instabilities, and in

particular on the ballooning modes: it reduces the linear growth rates of medium and high

n modes and even fully stabilizes the high n modes. Subsequently the ELM dynamics � at

least during the linear growth � is dominated by the medium (6 ≤ n ≤ 12) modes, which

is relatively consistent with the experimental measurements of the toroidal mode number

[Kirk 2006, Classen 2013]. Note that larger toroidal mode numbers have been measured

in some experiments (e.g. up to n = 35 in [Yu 2008]); this may indicate that larger n

modes are likely to be non-linearly more unstable. Regrettably, non-linear simulations at

large n number are numerically very costly (since it requires to simulate a larger number

of harmonics and to have a very �ne meshing), so the non-linear e�ect of these large n

modes could not be tested in this work.

During the linear growth, the edge localized mode rotates in the electron diamagnetic

direction at the frequency ω∗/2. This velocity direction and the magnitude of the speed

of the ELM rotation (several km/s) are in agreement with the experimental observations

of the rotating ELM precursors [Yun 2011, Classen 2013]. In the non-linear stage, an

n = 0 �ow, which is non-linearly induced by the Maxwell stress, is added to the velocity

v∗/2 of the mode. This �ow shears o� the density �laments in the pedestal plasma and

expels them in the SOL in the ion diamagnetic direction. The advection of �laments due

to the diamagnetic and E×B drifts expels more density towards the inner divertor plate

than towards the outer plate. As for the temperature, whose transport is enhanced by

the ergodization of the edge magnetic �eld during the ELM, it is larger on the outer than

on the inner side. Due to the compensation of the inner/outer asymmetry of the density

and temperature pro�les, the heat �ux � proportional to the plasma density multiplied

by temperature � reaching the divertor at the sound speed, is almost equally deposited

on the inner and outer target plates. As a comparison, in the experiments, either the

ELM power deposition is symmetric, or twice as much power reaches the inner plate than

the outer plate. Thus the modeling with diamagnetic drifts is closer to the experimental

observations compared to simulations without diamagnetic drifts where the outer plate

receives almost all the power.

Last, the diamagnetic �ows appear to be a key parameter for the simulation of ELM

cycles, since they allow for the stabilization of the plasma after an ELM relaxation. After

the �rst ELM crash, the stabilized plasma reorganizes and memory of the initial chosen

pro�les is lost. The phasing and the energy repartition between modes is consistently

determined. The steepening of the pressure pro�le generated by the pedestal recon-

struction destabilizes again the edge plasma until the edge pressure gradient reaches the
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ELM-triggering threshold: a new ELM growth and crash then occurs. Similar coupling

between modes, similar maximum pressure gradient reached when the crash occurs and

similar power deposition on the divertor plates are cyclically recovered for all the ELMs

in the quasiperiodic regime. These di�er much from the �rst transient ELMs, pointing

out the importance of simulating cycles rather than a single ELM crash.

The diamagnetic rotation and the applied heating power are found to be two main

parameters a�ecting the cyclical ELM dynamics. If the diamagnetic rotation is increased,

the ELM frequency is increased and the ELM size is progressively reduced, so that the

plasma gravitates towards an attracting point in the peeling-ballooning diagram. In

our particular case of resistive (type-III like) ELMs, an enhanced heat source leads to a

larger maximum pressure gradient reached at the ELM crash, resulting in a larger ELM

frequency and a larger heat �ux reaching the divertor.
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5.1 Introduction

In chapter 3, we found that RMPs interact with the plasma, resulting in either the

screening or the penetration of RMPs. This can lead to the simple idea that if they are

screened, the applied RMPs may have no e�ect on ELMs and on the contrary if they

penetrate they should be able to mitigate or even suppress them. However studying

the RMP penetration alone does not give a clue on the actual mechanism of the ELM

mitigation of RMPs. Therefore this motivates the study of the interaction between RMPs

and ELMs. In addition, we have seen that the plasma rotation strongly a�ects both

the RMP penetration and the ELM dynamics, so the ELM/RMP interaction has to be

studied while self-consistently taking into account the plasma rotation. In this chapter,

we present the �rst non-linear simulations of the ELM mitigation and suppression by

RMPs. The plasma diamagnetic rotation and the RMP amplitude are found to impact

the ELM mitigation/suppression.

In section 5.2, the modeling of the ELM mitigation by RMPs is presented in a typical

case performed with JET experimental parameters. The RMP application is found to

reduce the ELM power deposition on the divertor targets by a factor of ten. Then the

mechanism of the ELM mitigation by RMPs is carefully described in section 5.3. Last,

section 5.4 reports the e�ect of the RMPs on an ELM cycle, using similar parameters as

in section 5.2, but with a larger diamagnetic velocity. We observe the bifurcation from a

case where RMPs have no e�ect on ELMs (for a rather low applied RMP current) to a

case where RMPs fully suppress the ELMs (for a two times larger applied RMP current).
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5.2 Mitigation of the ELM power deposition on diver-

tor by RMPs

In this chapter, experimental JET parameters � except the resistivity, two orders of

magnitude larger than the experimental value � corresponding to the shot #77329 are

used. Typical JET values are taken for the diamagnetic parameter and the neoclassical

coe�cients: the constant values given in section 2.3.2 are used. The (n = 2) RMP

spectrum due to the error �eld correction coils (EFCC) is �rst calculated in the vacuum

with the ERGOS code ([Bécoulet 2008]) and applied as boundary conditions for the

magnetic �ux perturbation in JOREK. Once the plasma response to (n = 2) RMPs has

stabilized to an equilibrium (a�ected by RMPs), the other toroidal modes are added

to the simulation. The e�ect of RMPs on ELMs is tested �rst in a simulation with

n = 0, 2, 4, 6 and 8, the RMP coil current being scanned between 20 and 60kAt. In the

simulation run without RMPs, the most unstable mode is the n = 8, which leads to a

large ELM crash (Fig. 5.1, left). When RMPs are applied, instead of this large ELM

crash, a more continuous activity of the modes n = 2, 4, 6 and 8 coupled altogether is

observed (Fig. 5.1). This activity starts with a peak of energy of the mode n = 6, which

is the most unstable with RMPs. This peak is smaller compared to the peak of the

n = 8 mode without RMPs thus it leads to a mitigated ELM with a smaller peak energy

released. Moreover, as the RMP current is increased from 20 to 60kAt, the n = 6 peak

size is reduced, which means that a stronger ELM mitigation is obtained when the RMP

current is larger. The power reaching the divertor in the 40kAt case is plotted in Fig. 5.2.

The deposited power is divided by ten when RMPs are applied compared to the �natural�

ELM (without RMPs).
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Figure 5.1: Magnetic energy of the modes n = 2 − 8; from left to right: without RMP,
with RMP current Icoil = 20kAt, 40kAt and 60kAt
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Figure 5.2: Power on inner/outer divertor targets without (left) and with RMPs (right)
for Icoil = 40kAt

5.3 Mechanism of the ELM mitigation by RMPs

We try to understand the mechanism at stake in the ELMmitigation. The �rst hypothesis

is that the edge ergodization due to RMPs which results in a lower edge pressure gradient

(as shown in Fig. 5.3) may generate a (partial) stabilization of the ELMs. To test this

hypothesis, a simulation is run without RMPs with a reduced pressure gradient similar

to the pressure gradient obtained with RMPs (Fig. 5.3, line with crosses). In fact, the

reduction of the edge pressure gradient delays the ELM crash (full line in Fig. 5.4)

compared to the reference ELM (dashed line in Fig. 5.4), but still leads to a large ELM

crash. So the only reduction of the pressure gradient by RMPs does not explain the

observed ELM mitigation. The second tested hypothesis is that the modi�cation of the

magnetic topology due to RMPs induces the mitigation. A linear run of an ELM with

RMPs is thus performed, where the magnetic topology is a�ected by both the ELM and

the RMPs but where the RMPs and the unstable modes are not coupled. This linear run

also leads to a large ELM crash.

This proves that it is really the coupling between the (n = 2) RMPs and its harmonics

(even modes) that generate the ELM mitigation. Fig. 5.5 presents the simulation at

60kAt with n = 0− 8, where the odd modes are also included. We notice that the initial

amplitude of the even modes n = 4, 6 and 8 is large due to the non-linear drive by (n = 2)

RMPs. The magnetic energy between these even modes is equally redistributed after the

�rst relaxation of the n = 6 modes and the magnetic energy non-linearly cascades from

the naturally unstable n = 8 mode towards the lower n even modes [Biskamp 1997].

As for the odd modes (Fig. 5.5), they are totally damped due to the activity of the

even modes driven by RMPs, and hence they remain at the noise level. The reduction

of the ELM toroidal mode number when mitigated by RMPs was observed in KSTAR

[Yun 2011], but not in the general case [Kirk 2013a]. Actually, in another simulation
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Figure 5.3: Edge pressure gradient: cases without RMP (circles), with RMP at Icoil =
40kAt (dash-dot) and 60kAt (full line) and without RMP at reduced pressure gradient
(crosses)

Figure 5.4: Magnetic energy of the modes n = 2 − 8 without RMP: in the simulation
run at reduced pressure gradient (full line), the ELM crash is delayed compared to the
reference case, but remains large.

performed at 15% larger diamagnetic rotation (not presented here), the n = 6 mode is

the most unstable for the natural ELM due to the diamagnetic stabilization of the larger

n modes, and remains the most unstable mode while non-linearly coupled with (n = 2)

RMPs. Thus the energy cascade implies a redistribution between the non-linearly coupled

modes but does not necessarily mean a reduction of the main toroidal mode number.

The coupling of ELM and RMPs induce a change in the edge magnetic structure, as

plotted in Fig. 5.7. The magnetic topology of the natural ELM (Fig. 5.7 (a)) is dominated

by the n = 8 ballooning perturbation that induces a large reconnection at the edge (for

ψnorm > 0.85). As well, the corresponding footprints in the outer divertor (Fig. 5.8

(a)) present a clear n = 8 structure. These structures rotate in the ion diamagnetic

direction due to the rotation of the ELM �laments. In the case of RMPs without ELMs
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Figure 5.6: Radial pro�les of the Fourier harmonics of the magnetic �ux perturbation
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(Fig. 5.7 (b)), n = 2 magnetic islands are formed on the rational surfaces q = m/n

due to the forced magnetic reconnection, and present a tearing-like parity (ψmn 6= 0

on the rational surfaces). It is important to notice that the perpendicular (E × B +

diamagnetic) electron rotation is zero on the rational surface q = 5/2 (at ψnorm ≈ 0.85)

which leads to the RMP penetration and the formation of large islands on this surface, as

demonstrated in [Nardon 2010, Bécoulet 2012, Orain 2013] and in chapter 3. Moreover,

the corresponding footprints in the outer divertor (Fig. 5.8 (b)) show a typical static

n = 2 structure. As for the magnetic topology of the ELMs with RMPs (Fig. 5.7 (c)),

it is clearly di�erent from the topology of the natural ELM. The magnetic structure is

dominated by the modes n = 4 and n = 6, with magnetic islands observed on the rational
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surfaces q = 9/4, 14/6 and 15/6. The overlapping of the surfaces q = 16/6, 17/6 and 18/6

generates an ergodic zone deeper in the pedestal than in the case of RMPs alone. The

n = 4 and 6 modes have a tearing-parity (ψmn 6= 0) on these rational surfaces that is

imposed by the driving by RMPs (as plotted in Fig. 5.6), in place of the ballooning parity

in the natural ELM case (ψmn = 0). The magnetic islands and above all the ergodic zone

at the edge induce an enhanced transport at the edge that continuously expels the heat

and particles out of the plasma. The corresponding footprints (Fig. 5.8 (c)) keep the

n = 2 structure imposed by external RMPs, nevertheless they are modulated by the

presence of the n = 4 and 6 modes during the small continuous relaxations that replaced

the large n = 8 ELM crash without RMPs. This typical footprint structure of ELMs in

presence of RMPs was reported in [Jakubowski 2009].

Figure 5.7: Magnetic topology at the edge (0.8 < ψnorm < 1): in case of an ELM without
RMP (a), in case of RMPs without ELM (b) and in case of an ELM with RMPs (c).

5.4 ELM cycles with RMPs

A multi-harmonic (n = 2, 4, 6 and 8) simulation of an ELM cycle with (n = 2) RMPs

is performed for a larger diamagnetic rotation (this is done both by increasing the dia-

magnetic parameter τIC and by taking a steeper pressure pro�le). In this case, the most

unstable mode without RMPs is the n = 6 mode (in red in Fig. 5.9) due to the dia-

magnetic stabilization of the larger mode numbers. At rather low applied RMP current

(40kAt, left of Fig. 5.9), the ELMs are not mitigated by RMPs. Neither the ELM ampli-

tude or frequency is a�ected by the RMPs. This may be explained by the large screening

of RMPs at large diamagnetic (perpendicular) rotation, which does not allow for a large

coupling between unstable modes and RMPs. However at twice larger applied RMP

current (80kAt, right of Fig. 5.9), the n = 4, 6 and 8 modes are more strongly coupled

to RMPs, thus they are now fully driven by n = 2 RMPs and present a large initial

amplitude due to the coupling with RMPs. Contrary to the case presented in section 5.2,

these coupled modes do not generate a turbulent MHD activity. Instead, static islands

driven by RMPs are formed. The presence of these islands � reconnected at the edge �
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Figure 5.8: Footprints in the outer divertor obtained by the edge �eld lines integration
until crossing with divertor plate: in case of an ELM without RMP (a), in case of RMPs
without ELM (b) and in case of an ELM with RMPs (c). The colorbar represents the
number of toroidal turns.
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Figure 5.9: Comparison of the magnetic energy of the n = 6 mode without and with
RMPs (in log scale). At "low" RMP current (40kAt, left), RMPs have no e�ect on the
ELM amplitude and frequency, whereas at larger RMP current (80kAt, right), the ELM
is fully stabilized by RMPs.

generate a permanently enhanced heat and particle transport, which reduces the edge
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pressure gradient and thus keeps the plasma under the stability threshold. Therefore, by

increasing the RMP current from 40 to 80kAt, a bifurcation from a largely screened state

toward a reconnected state takes place [Fitzpatrick 1998], which leads to the full ELM

suppression. Subsequently we have observed three di�erent regimes: ELM mitigation

by RMPs, no e�ect of RMPs on ELMs and ELM suppression by RMPs. These regimes

depend on both the RMP amplitude and the diamagnetic rotation. Future work will

focus on quantifying more precisely the access to these di�erent regimes.

5.5 Conclusion of the chapter

In this chapter, three regimes of ELM/RMP interaction have been found in JOREK

simulations of the JET case with n = 2 RMPs. First, at rather low diamagnetic rotation,

the ELM mitigation is obtained, where the large ELM crash is replaced by a continuous

(in time) magnetic activity or turbulence, also called type-II ELMy activity [Evans 2008,

Suttrop 2011, Jeon 2012]. The size of the small initial relaxation is reduced as the RMP

coil current is increased. For Icoil = 40kAt, the integrated peak power on the divertor is

found to be divided by a factor of ten. The ELM mitigation is not due to the reduction

of the edge pressure gradient but is rather due to the non-linear coupling of the even

modes which are driven by the n = 2 RMPs. These RMP-driven modes generate plasma

reconnection � characterized by magnetic island chains in the pedestal and an edge ergodic

zone � and thus continuously expel heat and particles out of the plasma. The footprint

on the divertor target plates due to the mitigated ELMs exhibit essentially structures

created by the n = 2 RMPs, however modulated by the presence of the other n modes.

Then, at larger diamagnetic rotation, two other regimes are observed in simulation. At

rather low RMP current (Icoil = 40kAt), the RMPs have no e�ect on the ELM dynamics:

the ELM amplitude and frequency are not a�ected by the RMPs since the RMPs are

too �shielded� by the plasma rotation to be coupled with unstable modes. However, at

larger RMP current (Icoil = 80kAt), RMPs penetrate and are strongly coupled with the

even modes, such that these modes are �locked� to the RMP driving: hence the large

permanent transport induced by these RMP-driven modes stabilizes the plasma under

the stability threshold and the ELMs are fully suppressed. Current and future works are

dedicated to a more precise understanding of the parameters that demarcate these three

regimes.
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Conclusion

Tokamak plasmas, in high con�nement regime, undergo large periodical relaxations of the

edge pressure pro�le, called Edge Localized Modes or ELMs. These ELMs induce a large

transient heat load on the divertor target plates. In ITER, if they are not controlled,

ELMs are foreseen in the nominal D-T 15MA scenario to represent a loss of 17MJ of

energy, expelled from the bulk plasma and reaching the divertor. Since the divertor plates

could be damaged over 1MJ , uncontrolled ELMs represent a particular concern for the

divertor limetime in ITER. This motivates research to achieve a better understanding of

the nature of ELMs and of their dynamics, and to �nd reliable methods enabling to control

the ELMs. This thesis has focused on a promising control method: the application of

Resonant Magnetic Perturbations or RMPs. The purpose of RMPs is to induce magnetic

island chains on particular magnetic surfaces called resonant surfaces; the overlapping

of two consecutive island chains at the plasma edge should generate an ergodic zone

where the radial heat and particle transport are enhanced. Since ELMs are believed to

be peeling-ballooning modes, triggered by the large edge pressure gradient and/or the

large edge current, the increased radial edge transport induced by RMPs should allow

to reduce the edge pressure gradient under the peeling-ballooning triggering threshold.

This method has already proven to be successful, yet the mechanisms of the ELM control

by RMPs � far more complicated than this simple picture � is still not fully understood.

In this respect, this thesis aimed at improving this theoretical understanding through

numerical simulations using parameters taken from experimental plasmas, following three

axes:

• the interaction between RMPs and plasma �ows.

• the ELM dynamics, in particular their cyclical behaviour.

• the interaction between ELMs and RMPs.

These numerical simulations were performed using the non-linear reduced magneto-

hydrodynamic code JOREK, presented in chapter 2. New features were added to the

original single �uid MHD model, in order to self-consistently decribe the plasma �ows:

the bi-�uid diamagnetic e�ects, the neoclassical poloidal friction and a source of parallel

rotation. As well, RMPs have been implemented in the code as boundary conditions for

the magnetic �ux perturbation, to allow for simulating the RMP penetration inside the

plasma while taking into account the plasma response.

In chapter 3, a preliminary modeling of the plasma response to RMPs in cylindrical

geometry with the RMHD code was �rst presented. It shows that RMPs, which would
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generate magnetic island chains on all rational surfaces in the vacuum, are actually

fully screened by the plasma, except on particular rational surfaces where the electron

perpendicular velocity cancels, and at the very edge where the plasma resistivity is large.

RMPs non-linearly a�ect the radial electric �eld, which can evolve such that the electric

drift compensates the electron diamagnetic velocity: then the RMP penetration occurs.

A large RMP amplitude, a large resistivity, a small electron perpendicular velocity and

a small neoclassical poloidal friction are found to be favorable conditions for the RMP

penetration.

Then the RMP penetration has been modeled in toroidal geometry, including the

X-point and the SOL, for JET, ITER and MAST parameters. In these three cases, the

RMPs are found to be screened, except at the very edge (ψN > 0.95) where they induce

an ergodic layer. The edge ergodization actually enhances the radial heat and particle

transport, resulting in a small degradation of the edge density and temperature pro�les.

Note that even though magnetic perturbations are screened on central resonant surfaces,

very small islands appear anyhow: this indicates that the screening is only partial, con-

trary to the previous cylindrical modeling. Another new feature observed in toroidal

geometry is the ampli�cation of the non-resonant component of the magnetic perturba-

tion in the core plasma, associated with the so-called �Resonant Field Ampli�cation�. In

the JET case, three di�erent regimes of RMP penetration have been observed depending

on the diamagnetic rotation and the resistivity: at low diamagnetic rotation and high re-

sistivity, the generated islands co-rotate with the plasma ion �ow and their size �uctuate

at the same frequency. At larger diamagnetic rotation, the islands are static and �locked�

to the external static RMPs; a stronger screening of the perturbations is observed. An

intermediate regime is observed at lower resistivity, in which the generated island are

quasi-static and slightly oscillate. In ITER and MAST, the regime of static magnetic

islands prevails.

RMPs are also found to induce the 3D-displacement of the plasma boundary, char-

acterized by the deformation of the separatric and the 3D-corrugation of the pedestal

density and temperature pro�les. Nevertheless, the plasma displacement is not large

enough to reach the wall. The maximum displacement of the separatrix occurs near the

X-points, where lobes structures are induced by RMPs. These lobe structures associated

with the edge ergodization are responsible for the splitting of the strike points on the

divertor targets. Last, the radial electric �eld evolution and the braking of the electron

perpendicular velocity is observed, following the same trend as in the experiments.

In chapter 4, the ELM dynamics has been studied for JET parameters and geometry.

The diamagnetic rotation is found to be a key parameter which allows for depicting

rather well the experimental behaviour of the ELMs in simulations. In particular, the

diamagnetic stabilization enables to reproduce the cyclical dynamics of the ELMs, which

has been modeled for the �rst time in toroidal geometry in this thesis. The dynamics

of an ELM cycle is modeled as follows. The initial density and temperature pro�les are

chosen to be unstable, just over the peeling-ballooning stability threshold. Thus the �rst

ELM is triggered by the initially large edge pressure gradient and edge density. Since
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the diamagnetic rotation stabilizes the high-n modes, the ELM growth is dominated by

the most unstable medium-n. The unstable modes grow in the pedestal and rotate in

the electron diamagnetic direction at half the diamagnetic frequency ω∗/2. Since the

modes appear in the pedestal before the ELM crash, they are called ELM precursors.

As these modes grow, the pedestal density takes the shape of �blobs�, mostly in the Low

Field Side ; An axisymmetric (n = 0) �ow is induced by Maxwell stresses, which shear

o� the plasma density �laments and expel them through the external transport barrier.

Thus the density �laments are advected by the E ×B and diamagnetic drifts in the ion

diamagnetic direction. Meanwhile, the temperature di�usive transport through the ETB

is also largely enhanced by the ergodization of the pedestal induced by the ELM. Because

of the advection of the density and of the heat di�usive transport, the pedestal pro�les

collapse: this is the ELM crash. Due to the ELM crash, a large heat �ux reaches the

divertor target. The temperature is larger in the LFS, yet since the diamagnetic velocity

advects more density towards the inner divertor plate, the heat �ux (proportional to both

the density and temperature) is �distributed� near-symmetrically between the inner and

outer divertor plates. The near-symmetric repartition is in closer agreement with the

experimental repartition (either symmetric or twice more important in the inner side)

compared to simulations without diamagnetic e�ects.

After the ELM crash, in simulations without diamagnetic e�ects, the plasma remained

unstable and therefore the transport through the ETB remains large, preventing the

pedestal from reconstructing. However when the diamagnetic drifts are present, they are

found to stabilize the plasma after the ELM crash. Thus the plasma self-consistently

reorganizes in a state which does not depend on the initial conditions: the phasing

and the energy repartition between modes is now consistently determined. Due to the

applied heating power, the pedestal gradually rebuilds and the edge pro�les streepen until

the ELM-triggering thresohold is reached: thus another ELM growth and crash occurs.

After a few transient ELMs, a quasiperiodic ELMy regime is obtained, characterized by

a similar coupling between modes, similar maximum pressure gradient reached when the

crash occurs and similar power deposition on the divertor plates, cyclically recovered

for all the ELMs. These di�er much from the �rst transient ELMs, pointing out the

importance of simulating cycles rather than a single ELM crash.

The ELM cycles, as drawn in peeling-balloning diagrams, result in a competition

between the diamagnetic stabilization of the plasma and the destabilization by the applied

heating power. In our particular case, the ELM frequency is decreased when the applied

heating power is increased, resulting in less frequent but larger ELMs: at larger applied

power, more energy is lost during a crash so the pedestal needs more time to build-up

again. This behaviour is simular to the type-III ELMs observed in experiments. However,

if the diamagnetic rotation is signi�cantly increased, the ELM frequency is progressively

increased, and the energy loss per ELM is gradually decreased: this results in the gyration

towards a �x point in the peeling-diagram. This may be related to the compound ELMs

observed experimentally.

Last, the �rst modeling of the ELM mitigation and suppression by RMPs is presented
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in chapter 5 for a JET con�guration. The ELM mitigation by RMPs (generated by n = 2

EFCC) was obtained in JOREK simulations, resulting in a reduction of the ELM power

reaching the divertor by a factor of ten. The mitigation is not due to the reduction of

the edge pressure gradient by RMPs (observed in simulations), yet it is generated by the

coupling between the RMPs and all the modes multiples of the RMP mode (here the

even modes are �locked� with n = 2 RMPs). These modes couple together and generate

magnetic reconnections on the resonant surfaces with a large ergodic zone, thus inducing

a continuous transport through the ETB. Subsequently, in place of the large sudden

relaxation that characterizes an ELM, a continuous turbulent MHD activity is induced

by the ELMs mitigated by the RMPs.

When the diamagnetic rotation is increased, two other regimes of the ELM/RMP

interaction are observed in modeling. At su�ciently low applied RMP amplitude, the

RMPs have no e�ect on ELMs, since RMPs are shielded by the plasma rotation. However

for a larger RMP amplitude, a bifurcation from the �shielded� state to a �reconnected�

state occurs, in which the RMPs are found to fully suppress the ELMs. In this con�gura-

tion, the even modes, coupled to the RMPs, induce a large permanent transport, which

stabilizes the plasma under the P-B limit: thus ELMs are suppressed.

Perpectives

The simulations performed with the JOREK code have enabled to give a comprehensive

picture of the ELM cyclical dynamics and of the ELM mitigation by RMPs. This con-

stitutes a step forward in accurately simulating the ELMs and the RMPs, yet a certain

number of questions remain open and some re�nement of the model should be neces-

sary to improve this theoretical description. A list of possible further investigations and

developments is proposed below.

• In the short run, a realistic bootstrap current should be added to the model: when

taken into account, the bootstrap current could signi�cantly a�ect the ELM dy-

namics and change the peeling-ballooning description of the cycles.

• Also, as discussed in section 3.6 and in appendix D, the impact of the magnetic

�utter on the density pump-out induced by RMPs is being investigated. A version

of the code is under development, where the electron density equation is solved

(including the current parallel gradient term, which is suspected to be responsible

for the magnetic �utter) instead of the ion density equation. The ion/electron

ambipolarity is assured by the vorticity equation. The in�uence these new terms

have on the particle transport induced by the RMP application will be checked.

• The modeling of RMPs as boundary conditions for the magnetic perturbation does

not allow for the magnetic perturbation to be ampli�ed at the edge. A more realistic

description of the RMPs will be developped in the coming years: RMP coils will

be directly implemented in the JOREK-STARWALL model [Hölzl 2012], such that

the perturbation induced by RMP coils will be modeled fully consistently.



117

• In the longer run, the detailed divertor recycling physics, including ionization and

recombination processes, will be included in the JOREK model, in order to be able

to compare quantitatively the heat �uxes reaching the divertor � in low and high

recycling regimes � with experimental observations.

In parallel to these further developments of the code, the physics of the ELM cycles

and the ELM mitigation by RMPs, modeled for the �rst time here, will be explored

in depth for di�erent realistic cases (AUG, JET, MAST, ITER). Particular emphasis

with be placed in the comparison between modeling and experiments. The aim is to

further understand the complex non-linear physics involved (among others the non-linear

dynamics of the rotating precursors and �laments, the coupling between modes during

ELM cycles, the demarcation between the regimes of ELM mitigation or suppression by

RMPs...), and in �ne to be able to give reliable predictions for ITER.





Appendix A

Linearization of the Ohm's law:

non-screening of the RMPs when

electron perpendicular velocity cancels

It was found that the cancellation of the perpendicular velocity (Eq. (A.4)) on the reso-

nant surfaces implies the vanishing of the screening currents, which is the "no screening"

condition for RMPs [Bécoulet 2012]. This can be shown by linearizing the Ohm's law

(Eq. (2.21)) using the Fourier transform A(ψ0,0, θ, ϕ) = A0,0(ψ0,0) + Am,n(ψ0,0)ei(mθ+nϕ)

of the variables P, ψ and J . m and n are the poloidal and toroidal mode numbers respec-

tively, and ψ0,0 is the equilibrium poloidal �ux (label of the �ux surfaces). We consider

a single mode (m,n) developing on the resonant surface q = m/n. The system is sup-

posed to be at the steady state, which means that the growth of the mode has arrived

at saturation. We also suppose that the density perturbation is low compared to the

average value: ρ ∼ ρ0,0. In the framework of our model, we assume that electron and ion

temperature are equal but the following calculation remains true if Ti 6= Te. At the �rst

order, the linearization of Eq. (2.21) yields:

0 =
F0

R2
in(−um,n +

τIC
ρ0,0

Pm,n) +
im

R
ψm,n(−∂ψu0,0

+
τIC
ρ0,0

∂ψP0,0)− im

R
∇ψ0,0(−um,n +

τIC
ρ0,0

Pm,n) +
η

R2
Jm,n (A.1)

Using the de�nition of the safety factor q =
~B · ∇ϕ
~B · ∇θ

=
F0/R

2

|∇ψ|/R
=

F0

R|∇ψ|
, Eq. (A.1)

becomes:

iF0

R2
(
τIC
ρ0,0

Pm,n − um,n)(
m

q
− n) +

im

R
ψm,n(

τIC
ρ0,0

∂ψP0,0

− ∂ψu0,0) =
η

R2
Jm,n (A.2)

On the resonant surface, the safety factor is equal to q = m/n, which implies that:

im

R
ψm,n(

τIC
ρ0,0

∂ψP0,0 − ∂ψu0,0) =
η

R2
Jm,n (A.3)
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Appendix A. Linearization of the Ohm's law: non-screening of the RMPs

when electron perpendicular velocity cancels

We can write the perpendicular component of the electron velocity:

V⊥,e = (~V ∗e + ~VE×B) · ~eθ

=
(R2τIC

ρ
∇P ×∇ϕ−R2∇u×∇ϕ

)
· ~eθ

= R
(τIC
ρ
∇⊥P −∇⊥u

)
· ∇ψ
|∇ψ|

= R
( τIC
ρ0,0

∂ψP0,0 − ∂ψu0,0

)
(A.4)

The combination of Eq. (A.4) with Eq. (A.3) yields:

imV⊥,eψm,n = ηJm,n (A.5)

This relation shows that the current perturbation which appears on the resonant surface

q = m/n in response to the magnetic perturbation is proportional to the local electron

perpendicular velocity V⊥,e. Therefore it appears that the cancellation of the perpendic-

ular �ow on a resonant surface is the non-screening condition of the corresponding RMP

harmonics (m,n) by the plasma rotation. The surfaces where this condition is ful�lled

can be found via a q95-scan, which shifts the radial position of the resonant surfaces.
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In this appendix the set of reduced MHD equations with diamagnetic and neoclassical

e�ects, implemented in the JOREK code, is derived. To simplify the MHD system of

equations, a reduction of the problem is done. This allows to write the vector di�erential

equations as scalar di�erential equations, a non negligible simpli�cation of the problem.

First we present the reduction of the induction equation followed by the reduction of

the density, momentum and temperature equations.
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Appendix B. Derivation of the reduced MHD equations with diamagnetic

and neoclassical e�ects implemented in JOREK

B.1 Induction equation

The magnetic �eld is separated between a toroidal and a poloidal component. The

toroidal component is considered constant

B = Bϕ +BPol

= Bϕ +∇ψ ×∇ϕ

=
F0

R
eϕ +∇ψ ×∇ϕ

= F0∇ϕ+∇ψ ×∇ϕ,

(B.1)

with∇ϕ = 1/R eϕ, ϕ the toroidal direction. R is the horizontal direction along the major

radius and Z is the vertical direction. The three dimensional cylindrical coordinate

system convention is (R, Z, ϕ) that could be noted (1, 2, 3). The magnetic �ux ψ =

R(A ·eϕ) with A the vector potential. Note that in the general case we have B = ∇×A.

The magnetic �eld is considered to be axisymmetric. The total current density is

assumed to be mainly toroidal so we can write, using Ampère's law

j = − 1

µ0R
∆∗ψ eϕ, (B.2)

with

∆∗ = R2∇ ·
(

1

R2
∇⊥
)

=

(
R
∂

∂R

(
1

R

∂

∂R

)
+

∂2

∂Z2

)
. (B.3)

The induction equation is the following

∂BPol

∂t
= −∇×E. (B.4)

The poloidal magnetic �eld can also be written

BPol = ∇ψ ×∇ϕ = ∇× (ψ∇ϕ) , (B.5)

thus if the magnetic �eld is replaced by the magnetic �ux ψ we have

∇× [∂t (ψ∇ϕ) +E] = 0. (B.6)

The expression inside brackets can be expressed as the gradient of a scalar potential u.

So that,

∂t(ψ∇ϕ) = −E − F0∇u. (B.7)

The F0 coe�cient has been added to simplify the �nal formulation of the E×B velocity

(vE). The expression for the electric �eld E can be derived from the generalized Ohm's

law (see for instance [Goedbloed 2004]),

E = − 1

en
∇Pe − v ×B +

1

en
(j ×B) + ηj

HHH
HH

−me

e

dve
dt
. (B.8)
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with e the electron charge, n = ne = ni = ρ/mi the particle density (m−3), mi and me

respectively the ion and electron mass (kg). In this equation we have kept the pressure

term because there is an important macroscopic gradient in the pressure pro�le. On the

other hand the electron inertia term is neglected.

The induction equation becomes

∂t(ψ∇ϕ) =
mi

ρe
∇Pe + v ×B − mi

ρe
(j ×B)− ηj − F0∇u. (B.9)

Projecting this equation along the magnetic �eld B, we obtain

1

R

∂ψ

∂t
Bϕ =

mi

ρe
∇Pe ·B − F0∇u ·B +

η

µ0R
∆∗ψBϕ (B.10)

The terms v ×B and j ×B are perpendicular to B. Also we have replaced the current

density by its expression as a function of the magnetic �ux (see Eq. (B.2)).

Using the Poisson bracket notation we have

[a, ψ] = eϕ · (∇a×∇ψ) = ∇a · (∇ψ × eϕ) = R∇a ·BPol (B.11)

and the scalar product with B is:

∇a ·B =
F0

R2

∂a

∂ϕ
+

1

R2
[a, ψ] (B.12)

Thus using Eq. (B.12) and knowing that Bϕ = F0/R, Eq. (B.10) becomes:

1

R2

∂ψ

∂t
=

η

µ0R2
∆∗ψ +

mi

ρeF0

(
F0

R2

∂Pe
∂ϕ

+
1

R
[Pe, ψ]

)
− F0

R2

∂u

∂ϕ
− 1

R
[u, ψ] (B.13)

t = t̃
√
ρ0µ0 j = j̃/µ0

ρ = ρ̃ρ0 D = D̃/
√
ρ0µ0

η = η̃
√
µ0/ρ0 Pe = P/(1 + Ti/Te)

ϕ = ũF0/
√
ρ0µ0 P = P̃ /µ0

v⊥ = ṽ⊥/
√
ρ0µ0 v|| = ṽ||‖B‖/

√
ρ0µ0

µi,neo = µ̃i,neo/
√
ρ0µ0 Sρ = S̃ρ

√
ρ0/µ0

Table B.1: JOREK normalization. The superscripts ∼ represent the JOREK normalized
variables.

In JOREK the normalization presented in Tab. B.1 is used. Writing Eq. (B.13) as a
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and neoclassical e�ects implemented in JOREK

function of the normalized variables we obtain

1
√
ρ0µ0R2

∂ψ

∂t̃
=

η̃
√
ρ0µ0R2

∆∗ψ +
1

√
ρ0µ0

mi

F0e
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1
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− 1
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[ũ, ψ] (B.14)

For simplicity, in the following, the tildes are omitted. The previous normalized ex-

pression simpli�es to

1

R2

∂ψ

∂t
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η

R2
∆∗ψ + τIC

1

ρ

(
F0

R2

∂P

∂ϕ
+

1

R
[P, ψ]

)
− F0
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∂u

∂ϕ
− 1

R
[u, ψ] (B.15)

with

τIC =
mi

F0e
√
ρ0µ0(1 + Ti/Te)

B.2 Density equation

The normalized continuity equation (noted without the tilde symbols) is

∂ρ

∂t
= −∇ · (ρv) +∇ · (D∇ρ) + Sρ (B.16)

The normalized velocity can be decomposed as

v = v||B + vE + v∗i

= v||B +R2∇ϕ×∇u+ τIC
R2

ρ
(∇ϕ×∇P )

(B.17)

We recall that the parallel velocity normalization (dimensionless) is di�erent from the

perpendicular component normalization (Tesla, [B] units). Thus to recover the homo-

geneity in the expression the parallel velocity is multiplied by the magnetic �eld. The
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�rst term in the right hand side of Eq. (B.16) can be decomposed in

∇ · (ρv) =∇ ·
(
−ρR2∇u×∇ϕ+ ρv||B + τICR

2 (∇ϕ×∇P )
)
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(B.18)

Thus the full ion density equation is solved:

∂ρ

∂t
=R [ρ, u] + 2ρ∂Zu+

ρ

R

[
ψ, v||

]
+
v||
R

[ψ, ρ]− F0

R2
v||∂ϕρ−

F0

R2
ρ∂ϕv|| + 2τIC∂ZP

+∇ ·
(
D||∇||ρ

)
+∇ · (D⊥∇⊥ρ) + Sρ

(B.19)

B.3 Momentum equation

B.3.1 Developed form of the momentum equation and gyro-viscous

cancellation

We start with the momentum equation for a single �uid (≈ ion) taking into account the

`cross' or gyro-viscous stress tensor and the neoclassical tensor,

∂(ρv)

∂t
+∇ · (ρv ⊗ v) = −∇P + j ×B −∇ ·Πgv −∇ ·Πneo (B.20)

with ρ the ion mass density and Πgv the gyro-viscous tensor. We have neglected the elec-

tron inertia and the parallel and perpendicular stress tensors. The neoclassical tensor

Πneo and the viscosity µ∆v are �rst neglected, but will be added at the end of the sub-

section. For more details about these tensors see e.g. Ref. [Schnack 2006] and references

therein.

Let us consider the continuity equation neglecting the di�usive terms:

∂ρ

∂t
= −∇ · (ρv) + Sρ (B.21)
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This equation allows us to simplify the inertial term in the momentum equation Eq. (B.20)

as follows

ρ
∂v

∂t
+ v

[
∂ρ

∂t
+∇ · (ρv)

]
+ ρ(v · ∇)v = −∇P + j ×B −∇ ·Πgv

ρ
∂v

∂t
+ vSρ + ρ(v · ∇)v = −∇P + j ×B −∇ ·Πgv

(B.22)

Then the velocity vector can be decomposed as:

v = v||B + vE + v∗i

= v||B +R2∇ϕ×∇u+ τIC
R2

ρ
(∇ϕ×∇P )

(B.23)

Developing the material derivative, the momentum equation can be written

ρ
[
∂t
(
vE + v∗i + v||B

)
+
[(
vE + v∗i + v||B

)
· ∇
] (
vE + v∗i + v||B

)]
=

−∇P + j ×B −∇ ·Πgv − vSρ
(B.24)

Separating the v∗i from the other components in the material derivative we �nd

ρ
[
∂t
(
vE + v||B

)
+
[(
vE + v||B + v∗i

)
· ∇
] (
vE + v||B

)]
+ ρ

[
∂tv

∗
i +

[(
vE + v||B + v∗i

)
· ∇
]
v∗i
]

= −∇P + j ×B −∇ ·Πgv − vSρ (B.25)

The utility of the introduction of the gyro-viscous tensor is that it algebraically cancels

a signi�cant part of the advection acceleration. In fact we can write the gyro-viscous

cancellation as [Schnack 2006]

ρ
[
∂tv

∗
i +

[(
vE + v||B + v∗i

)
· ∇
]
v∗i
]

+∇ ·Πgv ≈ ∇χ− ρ (v∗i · ∇) v||B (B.26)

Replacing this expression in Eq. (B.25) we �nd

ρ∂t(vE + v||B) + ρ
[(
vE + v||B + v∗i

)
· ∇
]

(vE + v||B) =

−∇(P + Sχ) + j ×B + ρ (v∗i · ∇) v||B − vSρ
(B.27)

The gradient term (∇χ) is introduced in the gradient of the pressure (in Eq. (B.25))

and χ can be considered as negligible in comparison to the pressure value (P ). We have

then the material derivative of the diamagnetic velocity `cancelled' by the gyro-viscous

tensor. We note that the actual calculation of Eq. (B.26) is complex [Hazeltine 1985b,

Hsu 1986, Chang 1992] and as stated in Ref. [Schnack 2006] �it seems to have been carried

out only under restricted conditions (i.e., uniform magnetic �eld , sheared slab geometry ,

uniform temperature, etc...). Further, there is not universal agreement on the exact form

of the cancellation. Some authors [Hazeltine 1985b, Hsu 1986] �nd additional terms on

the right hand side of Eq. (B.26).� For our case we are interested in the most simpli�ed
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formulation, so we keep the above presented cancellation.

In JOREK, we also add the viscosity, as if plasma was a newtonian �uid, and a source

of rotation Sv. The neoclassical friction can also be added (see the description below),

which gives the full momentum equation:

ρ∂t
(
vE + v||B

)
+ ρ

[(
vE + v||B + v∗i

)
· ∇
]
vE + ρ

[(
vE + v||B

)
· ∇
]
v||B

= −∇P + j ×B −∇ ·Πneo + Sv − vSρ + µ∆v. (B.28)

To get the perpendicular momentum equation (derived in section B.3.3), we apply the

operator ∇ϕ · ∇ × [R2...] on Eq. (B.28). And the parallel momentum equation (derived

in section B.3.4) is the projection of Eq. (B.28) along the magnetic �eld B.

B.3.2 Addition of the neoclassical tensor

The divergence of the neoclassical tensor is given by the heuristic closure taken from

Ref. [Gianakon 2002]:

∇ · Πi,neo = ρµi,neo
B2

B2
θ

(vθ − vθ,neo) eθ (B.29)

where µi,neo is the neoclassical friction. This formulation expresses the friction between

trapped and passing particles and constrains the poloidal velocity vθ to approach the

neoclassical value vθ,neo = −ki∇Ti×B/eB2·~eθ, where ki is the neoclassical heat di�usivity.
We have used the following de�nition of the unit vector in the poloidal direction:

eθ = (∇ψ ×∇ϕ)
R

|∇ψ|
(B.30)

Note that this de�nition implies that the orthonormal basis (eψ, eθ, eϕ) = ( ∇ψ|∇ψ| , (∇ψ ×
∇ϕ) R

|∇ψ| , R∇ϕ) is left handed, and the poloidal magnetic �eld therefore writes

Bθ = B · eθ = |∇ψ|/R (B.31)

The projection of Eq. (B.17) along the poloidal direction eθ Eq. (B.30) gives the

expression of the poloidal velocity:

vθ = − 1

Bθ

(
∇⊥ψ · ∇⊥u+

τIC
ρ
∇⊥ψ · ∇⊥P − v||B2

θ

)
(B.32)

The combination of Eq. (B.32) and Eq. (B.30) with the expression of the normalized

neoclassical velocity vθ,neo = −kiτIC
Bθ

(∇⊥ψ · ∇⊥T ) leads to the normalized developed
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form of the neoclassical tensor Eq. (B.29):

∇ · Πi,neo = µi,neoρ
B2

B4
θ

(
− v||B2

θ +∇⊥ψ · ∇⊥u

+
τIC
ρ

(
∇⊥ψ · ∇⊥P + kiρ∇⊥ψ · ∇⊥T

) )
(∇ψ ×∇ϕ) (B.33)

Where we have used the normalization de�ned in (B.1)

B.3.3 Derivation of the perpendicular momentum equation

B.3.3.1 Derivation of the diamagnetic term

The new term which comes from the introduction of the diamagnetic e�ects is

ρ (v∗i · ∇)vE (B.34)

In JOREK the perpendicular momentum equation is written as a function of the

toroidal vorticity de�ned as

W = ∇ϕ · (∇× vE) = ∇ · ∇⊥u (B.35)

We then express the term in Eq. (B.34) in terms of toroidal vorticity. To do so we apply

the following operator

∇ϕ · ∇ ×
[
R2 ... (B.36)

The details of this calculation are presented in the following. Here we consider this term

on the right hand side of Eq. (B.28) so a minus sign is added

−∇ϕ · ∇ ×
[
R2ρ (v∗i · ∇)vE

]
= ∇ ·

(
∇ϕ×

[
R2ρ (v∗i · ∇)vE

])
= ∇ ·

(
∇ϕ×

[
τICR

4 (∇ϕ×∇P ) · ∇
]
vE
) (B.37)

Projecting the diamagnetic velocity in the cylindrical coordinates (R, Z, ϕ) we get the

following form

−∇ϕ · ∇ ×
[
R2ρ (v∗i · ∇)vE

]
= ∇ ·

(
∇ϕ×

[
τICR

4 (∇ϕ×∇P ) · ∇
]
vE
)

= ∇ ·
(
∇ϕ× τICR3 [−∂ZP ∂R + ∂RP ∂Z ] (vEReR + vEZeZ)

)
.

(B.38)

Writing the E ×B velocity terms as a function of the scalar u function we get

vER = −R∂Zu and vEZ = R∂Ru. (B.39)
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Replacing in Eq. (B.38) and developing we have

−∇ϕ · ∇ ×
[
R2ρ (v∗i · ∇)vE

]
= ∇ ·

(
τICR

2
[

[R∂ZP∂RR −R∂RP∂RZ + ∂ZP∂R]u eR

+ [R∂ZP∂RZ −R∂RP∂ZZ + ∂ZP∂Z ]u eZ

])
(B.40)

Using the divergence operator in cylindrical coordinates we �nd

−∇ϕ · ∇ ×
[
R2ρ (v∗i · ∇)vE

]
= τIC

(
R3 [∂ZP∂RRR + ∂ZP∂RZZ − ∂RP∂RRZ − ∂RP∂ZZZ ]u

+R2 [∂ZP∂RR − ∂RP∂RZ ]u−R∂ZP∂Ru
+R2 [∂RZP∂R + ∂ZP∂RR + ∂ZZP∂Z + ∂ZP∂ZZ ]u+R∂ZP∂Ru

+R3 [∂RZP∂RR − ∂RRP∂RZ + ∂ZZP∂RZ − ∂RZP∂ZZ ]u

+ 3R2

[
∂ZP∂RR − ∂RP∂RZ + ∂ZP

∂R
R

]
u

)
(B.41)

Using the Poisson bracket notation this last expression can be written

−∇ϕ · ∇ ×
[
R2ρ (v∗i · ∇)vE

]
= τIC

{
R3 [W, P ] +R2∇ · (∂ZP∇Polu)

−R3 [∂RZu (∂RRP − ∂ZZP )− ∂RZP (∂RRu− ∂ZZu)]

+3R3

[(
1

R
∂Ru

)
, P

]}
(B.42)
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B.3.3.2 Implementation of the other terms in the perpendicular momentum

equation

The time derivative terms are the following:

∇ϕ · ∇ ×
[
R2ρ

∂vE
∂t

]
=∇ϕ · ∇ ×

[
R2ρ

∂

∂t
(−R2∇u×∇ϕ)

]
=∇ · ∇ϕ×

[
R4ρ

∂

∂t
(∇u×∇ϕ)

]
=∇ ·

[
R4ρ

∂

∂t

(
∇⊥u
R2

)]
=∇ ·

(
R2ρ∇⊥

∂u

∂t

)
(B.43)

∇ϕ · ∇ ×
[
R2ρ

∂(v||B)

∂t

]
=−∇ · ∇ϕ×

[
R2ρ

∂(v||B)

∂t

]
=−∇ ·

[
R2ρ

∂

∂t
(v||∇ϕ×B)

]
=−∇ ·

[
R2ρ

∂

∂t

(
∇⊥ψ
R2

)]
=−∇ ·

(
ρ∇⊥

∂

∂t
(v||∇⊥ψ)

)
(B.44)

This second term is neglected as the parallel component of the velocity projected on the

poloidal plane is considered negligible as compared to the perpendicular component of

the velocity.

The advection terms, quite complicated, are developed below. We write ρ̂ = R2ρ and

we use the identity (v · ∇)v = ∇(v2/2)− v× (∇× v). The advection, on the right hand

side of the equation, is:

∇ϕ · ∇ ×
[
R2 (−ρ (vE · ∇)vE)

]
=−∇ϕ · ∇ρ̂× (vE · ∇)vE + ρ̂∇ϕ · ∇ × (vE · ∇)vE

=−∇ϕ · ∇ρ̂×∇(v2
E/2) +∇ϕ · ∇ρ̂× (vE × (∇× vE))

−∇ϕρ̂(((((
(((∇×∇(v2
E/2) +∇ϕρ̂∇× (vE ×∇× vE)

=
1

R

[
v2
E

2
, ρ̂

]
−∇ρ̂ · ∇ϕ× (vE ×wE)︸ ︷︷ ︸

(wE ·a3)vE−����(vE ·a3)wE

−ρ̂∇ · ∇ϕ× (vE ×wE)︸ ︷︷ ︸
(wE ·a3)vE

=
1

2R

[
R4|∇⊥u|2, ρ̂

]
+ (wE · a3)R2∇ρ̂ · (∇u×∇ϕ)

− ρ̂(wE · a3)∇ · vE − ρ̂vE · ∇(wE · a3)

(B.45)
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We calculate the developed form of the E ×B velocity and the vorticity:

vE =


−R ∂u

∂Z

+R ∂u
∂R

0,

wE = ∇× vE =


− ∂
∂ϕ

∂u
∂R

− ∂
∂ϕ

∂u
∂Z

R∇ · ∇⊥u

Thus (wE · a3) = ∇ · ∇⊥u = wE. Furthermore, we use: ∇ · vE = −2 ∂u
∂Z

which gives the

following term:

∇ϕ · ∇ ×
[
R2 (−ρ (vE · ∇)vE)

]
=

1

2R

[
R4|∇⊥u|2, ρ̂

]
+RwE [ρ̂, u] + 2ρ̂wE

∂u

∂Z
− ρ̂vE · ∇wE

=
1

2R

[
R4|∇⊥u|2, ρ̂

]
+RwE [ρ̂, u] + 2ρ̂wE

∂u

∂Z
+ ρ̂R [wE, u]

=
1

2R

[
R4|∇⊥u|2, ρ̂

]
+R [ρ̂wE, u] + 2ρ̂wE

∂u

∂Z
(B.46)

Where we have used the following identity:

vE · ∇w = −R2∇u×∇ϕ · ∇w = −R [w, u] . (B.47)

We can show that R [ρ̂w, u] + 2ρ̂w ∂u
∂Z

= 1
R

[ρ̂wR2, u], then we can also write the term as:

∇ϕ · ∇ ×
[
R2(−ρ(vE · ∇)vE)

]
=

1

2R

[
R4|∇⊥u|2, ρ̂

]
+

1

R

[
ρ̂wR2, u

]
(B.48)

The terms ∇ϕ · ∇ × R2
[
−ρ
(
v|| · ∇

)
vE
]
and ∇ϕ · ∇ × R2

[
−ρ
(
v|| · ∇

)
v||
]
are ne-

glected as they are small compared to the terms involving the perpendicular velocity:

{∇ϕ · ∇ ×R2(−ρ [(vE + v∗i ) · ∇]vE)}. However they are not zero and a laborious calcu-

lation can show that they are expressed as follows (see the full development in Emmanuel

Franck's paper [Frank 2014]):

R∇ϕ · ∇ ×R2
(
−ρv|| · ∇v||

)
=[

ρv2
||j, ψ

]
+
[
ρv||
(
∇⊥v|| · ∇⊥ψ

)
, ψ
]

+R∇ ·
(
ρ
F0

R2
v||∂ϕ

(
v||∇⊥ψ

))
− 1

2

[
ρ̂, v2

|| |Bpol|2
]

(B.49)
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and

R∇ϕ · ∇ ×R2
[
−ρ
(
v|| · ∇vE + vE · ∇v||

)]
=

−
[
ρ, v|| (∇polψ · ∇polu)

]
+
[
ρv||ωE, ψ

]
−
[
u, ρv||j

]
−
[
u, ρ

(
∇polψ · ∇polv||

)]
+R∇ ·

(
ρ
F0

R2
v||∇pol (∂ϕu)

)
.

(B.50)

The pressure term is the following:

∇ϕ · ∇ × [R2(−∇P )] =−∇ϕ · (2R∇R×∇P )−∇ϕ ·����
��

(∇×∇P )

=− 2
∂P

∂Z

(B.51)

The J ×B term is derived as:

∇ϕ · ∇ × [R2J ×B] =∇ϕ · [(B · ∇)JR2 − (J · ∇)BR2]

=(B · ∇) (J · ∇ϕ)R2︸ ︷︷ ︸
−∆∗ψ=−j

−(J · ∇) (B · ∇ϕ)R2︸ ︷︷ ︸
F0

=−B · ∇j

=− F0

R2

∂j

∂ϕ
+

1

R
[ψ, j]

(B.52)

The viscous term was �rst implemented using only the E × B vorticity. Yet the

diamagnetic vorticity seems important to also consider, and there is as much a component

due to the parallel velocity, which is non zero but is so far neglected. The E×B vorticity

was calculated in the above paragraph. As for the diamagnetic vorticity, it is expressed

as:

w∗ = ∇× v∗ = ∇×

τICR
ρ


− ∂p
∂Z
∂p
∂R

0

 = τIC


−1
ρ
∂
∂ϕ

∂p
∂R

+ 1
ρ2

∂ρ
∂ϕ

∂p
∂R

−1
ρ
∂
∂ϕ

∂p
∂Z

+ 1
ρ2

∂ρ
∂ϕ

∂p
∂Z

− R
ρ2

(∇⊥p · ∇⊥ρ) + R
ρ

(∇ · ∇⊥p)

The toroidal component of the diamagnetic vorticity is then:

w∗ · ∇ϕ = −τIC
ρ2

(∇⊥p · ∇⊥ρ) +
τIC
ρ

(∇ · ∇⊥p) = ∇ ·
(
τIC
ρ
∇⊥p

)
. (B.53)

As for the vorticity due to the parallel component of the velocity, we have:

w|| =∇× (v||B)

=v||∇×B +∇v|| ×B
=v||J + F0∇v|| ×∇ϕ+∇v|| ×∇ψ ×∇ϕ
=v||J + F0∇v|| ×∇ϕ− (∇v|| · ∇ψ)∇ϕ+ (∇v|| · ∇ϕ)∇ψ.

(B.54)
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Thus the toroidal component of this term is:

w|| · ∇ϕ =v||J · ∇ϕ−
1

R2
(∇v|| · ∇ψ) +

1

R4

∂v||
∂ϕ

∂ψ

∂ϕ

=− v||∇ ·
(

1

R2
∇⊥ψ

)
− 1

R2
(∇⊥v|| · ∇⊥ψ).

(B.55)

Finally, the total toroidal component of the vorticity is expressed as follows:

w · ∇ϕ = ∇ · ∇⊥u+∇ ·
(
τIC
ρ
∇⊥p

)
− v||∇ ·

(
1

R2
∇⊥ψ

)
− 1

R2
(∇⊥v|| · ∇⊥ψ). (B.56)

The perpendicular viscous term is:

∇ϕ · ∇ ×
[
R2µ∆v

]
=∇ϕ · ∇ ×

[
R2µ∇(∇ · v)−R2µ∇× (∇× v)

]
=∇ϕ ·

[
(((

((((
(((

R2µ∇×∇(∇ · v) +∇(R2µ)×∇(∇ · v)
]
−∇ϕ · ∇ ×

(
R2µ∇×w

)
=∇ϕ · 2µR∇R×∇(∇ · v)−∇ϕ ·

[
∇(R2µ)× (∇×w) +R2µ∇× (∇×w)︸ ︷︷ ︸

∇���(∇·w)−∇2w

]
=2µ

∂

∂Z
(∇ · v)−∇ϕ ·

[
∇(R2µ)× (∇×w)

]
+R2µ∇2w · ∇ϕ

(B.57)

The term −∇ϕ ·
[
∇(R2µ)× (∇×w)

]
is derived as follows:

−∇ϕ ·
[
∇(R2µ)× (∇×w)

]
=−∇ϕ · 2µR∇R× (∇×w)

=− 2µR(∇×w) · ∇ϕ×∇R︸ ︷︷ ︸
1
R
∇Z

(B.58)

with ∇×w = ∇× (∇× v) = ∇(∇ · v)−∇2v. Thus:

−∇ϕ ·
[
∇(R2µ)× (∇×w)

]
=− 2µ∇(∇ · v) · ∇Z + 2µ∆v · ∇Z

=− 2µ
∂

∂Z
(∇ · v) + 2µ∇2vz

(B.59)

where the Z component of the velocity is:

vz = v · ∇Z = R
∂u

∂R
+
R

ρ

∂p

∂R
−
v||
R

∂ψ

∂R
(B.60)

We combine Eqs. B.56, B.57, B.59 and B.60 to obtain the following form of the
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perpendicular viscous term:

∇ϕ · ∇ ×
[
R2µ∇2v

]
=2µ∆vz +R2µ∇2w · ∇ϕ

=2µ∇2

(
R
∂u

∂R
+
R

ρ

∂p

∂R
−
v||
R

∂ψ

∂R

)
+Rµ∇2

[
R∇ · ∇⊥u

+R∇ ·
(
τIC
ρ
∇⊥p

)
−Rv||∇ ·

(
1

R2
∇⊥ψ

)
− 1

R
(∇⊥v|| · ∇⊥ψ)

]
(B.61)

In the code, the term 2µ∆vz is neglected, as well as the vorticity issued from the

parallel component of the velocity, so the implemented term is:

∇ϕ · ∇ ×
[
R2µ∆v

]
= +Rµ∇2

(
R∇ · ∇⊥u+R∇ ·

(
τIC
ρ
∇⊥p

))
(B.62)

As for the neoclassical component, its derivation is:

∇ϕ · ∇ ×
[
−R2∇ · Πi,neo

]
=∇ϕ · ∇ ×

[
−R2µi,neoρ

B2

B4
θ

(
− v||B2

θ +∇⊥ψ · ∇⊥u

+
τIC
ρ

(
∇⊥ψ · ∇⊥P + kiρ∇⊥ψ · ∇⊥T

) )
(∇ψ ×∇ϕ)

]

= +∇ · ∇ϕ×

[
R2µi,neoρ

B2

B4
θ

(
− v||B2

θ +∇⊥ψ · ∇⊥u

+
τIC
ρ

(
∇⊥ψ · ∇⊥P + kiρ∇⊥ψ · ∇⊥T

) )
(∇ψ ×∇ϕ)

]

= +∇ ·

[
µi,neoρ

B2

B4
θ

(
− v||B2

θ +∇⊥ψ · ∇⊥u

+
τIC
ρ

(
∇⊥ψ · ∇⊥P + kiρ∇⊥ψ · ∇⊥T

) )
∇⊥ψ

]
(B.63)

Where we have used the identity:

∇ϕ · (∇ψ ×∇ϕ) = |∇ϕ|2∇ψ − (∇ϕ · ∇ψ) =
1

R2
∇⊥ψ (B.64)

The calculation of the divergence of this term is quite complicated, but the weak form
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used in JOREK is much simpler:∫
V

∇ϕ · ∇ ×
[
−R2∇ · Πi,neo

]
dV =−

∫
V

(∇u∗ · ∇⊥ψ)

[
µi,neoρ

B2

B4
θ

(
− v||B2

θ +∇⊥ψ · ∇⊥u

+
τIC
ρ

(
∇⊥ψ · ∇⊥P + kiρ∇⊥ψ · ∇⊥T

) )]
dV

The full perpendicular momentum equation is the following:

∇ ·
(
R2ρ∇⊥

∂u

∂t

)
=

1

2R

[
R4 |∇⊥u|2 , ρ̂

]
+

1

R

[
ρ̂wER

2, u
]

−2
∂P

∂Z
− F0

R2

∂j

∂ϕ
+

1

R
[ψ, j]

+Rµ∇2

(
R∇ · ∇⊥u+R∇ ·

(
τIC
ρ
∇⊥p

))
+τIC

{
R3 [W,P ] +R2∇ · (∂ZP∇⊥u)

−R3 [∂RZu (∂RRP − ∂ZZP )− ∂RZP (∂RRu− ∂ZZu)]

+3R3

[(
1

R
∂Ru

)
, P

]}

+∇ ·

[
µi,neoρ

B2

B4
θ

(
− v||B2

θ +∇⊥ψ · ∇⊥u

+
τIC
ρ

(
∇⊥ψ · ∇⊥P + kiρ∇⊥ψ · ∇⊥T

) )
∇⊥ψ

]

(B.65)

Note that we have neglected the following terms: the term due to the time derivative of

the parallel velocity, the cross terms
{(
v||B · ∇

)
vE
}
,
{

(vE · ∇) v||B
}
and the

∂

∂Z
(∇·v)

term. Also the vorticity issued from the parallel component of the velocity in the viscous

term. We have also considered the visous coe�cient µ as a constant whereas it is a

temperature-dependent factor whose gradient might not be negligible.

B.3.4 Derivation of the parallel momentum equation

The parallel momentum equation does not contain new diamagnetic terms as the term

in Eq. (B.34) is normally perpendicular to the magnetic �eld, so the projection along B

is exactly zero. However we make the approximation that the perpendicular velocity is
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poloidal:

vE =
E ×B
B2

=
−F0∇u× (F0∇ϕ+∇ψ ×∇ϕ)

F 2
0

R2 + |∇ψ|2
R2

vE =
−R2∇u×∇ϕ

1 + |∇ψ|2
F 2
0

− RF0

F 2
0 + |∇ψ|2

[u, ψ]

vE =−R2∇u×∇ϕ− R

F0

[u, ψ] +O

(
|∇ψ|2

F 2
0

)
vE =−R2∇u×∇ϕ+O

(
|∇ψ|
F0

)
vE ∼−R2∇u×∇ϕ = vE, poloidal

(B.66)

On the same way, the diamagnetic velocity at the following order is:

v∗ =−R2 τIC
ρ
∇p×∇ϕ− RτIC

ρF0

[p, ψ] +O

(
|∇ψ|2

F 2
0

)
(B.67)

This approximation makes that �nally the projection of the term (v · ∇)vE along B

is actually not zero, but is neglected because it is small and unphysical. As well, the

perpendicular component of the term (v · ∇)v|| is not exactly zero and is also neglected.

The projection of the momentum equation Eq. (B.28) on B gives the parallel velocity

equation:

ρ
∂(v||B)

∂t
·B+ρ

((
vE + v||B

)
· ∇
)
v||B·B = −∇P ·B−∇·Πneo·B+Sv·B−v·BSρ+µ∆v·B

(B.68)

The time derivative term is:

ρ
∂(v||B)

∂t
·B =ρB2∂(v||)

∂t
+ ρv||

∂B

∂t
·B

=ρB2∂(v||)

∂t
+ ρv||

∂(B2/2)

∂t

=ρB2∂(v||)

∂t
+
ρv||
2R2

∂ ((∇⊥ψ)2)

∂t

=ρB2∂(v||)

∂t
+
ρv||
R2
∇⊥ψ · ∇⊥

∂ψ

∂t

(B.69)

The second term is neglected as compared to the �rst one, since B2 varies in a larger

timescale as compared to the velocity.
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The advection by the parallel velocity is:

−
(
ρ
(
v||B · ∇

)
v||B

)
·B =− ρ∇

(
v2
||B

2

2

)
·B −

((((
((((

((((
∇× (v||B)

)
× v||B︸ ︷︷ ︸

⊥B

·B

=− ρ

2

(
F0∇ϕ · ∇(v2

||B
2) +∇ψ ×∇ϕ · ∇(v2

||B
2)
)

=− ρ F0

2R2

∂(v2
||B

2)

∂ϕ
− ρ

2R

[
v2
||B

2, ψ
]

(B.70)

However the implementation in the code is simpler with the weak form. Writing the

test function v∗, the weak form of this term is the following:∫
V

−v∗ρ∇

(
v2
||B

2

2

)
·BdV =

∫
V

−∇

(
v∗ρ

v2
||B

2

2

)
·BdV︸ ︷︷ ︸∫

S

(
v∗ρ

v2||B
2

2

)
·dS·B=0

+

∫
V

−∇ (v∗ρ) ·B
v2
||B

2

2
dV

=

∫
V

(
F0

R2

∂ρ

∂ϕ
+

1

R
[ρ, ψ] +

F0

R2

∂v∗

∂ϕ
+

1

R
[v∗, ψ]

)
v2
||B

2

2
dV

(B.71)

The advection by the E ×B velocity (so far neglected in the code) is expressed as:

−
(
ρ (vE · ∇) v||B

)
·B =− ρvE · ∇(v||B

2) + ρvE · (v|| B∇B︸ ︷︷ ︸
∇(B2/2)

)

=ρR2∇u×∇ϕ · ∇(v||B
2)− ρR2v||∇u×∇ϕ · ∇

(
B2

2

)
=ρR[v||B

2, u]− ρRv||
[
B2

2
, u

]
=ρR

(
v||[B

2, u] +B2[v||, u]
)
− ρRv||

[
B2

2
, u

]
=ρRB2[v||, u] + ρRv||

[
B2

2
, u

]
(B.72)

The pressure term projected on B is:

−B · ∇P =−∇P (F0∇ϕ+∇ψ ×∇ϕ)

=− F0

R2

∂p

∂ϕ
+

1

R
[ψ, P ]

(B.73)

The viscous term and the source terms are de�ned so that viscosity imposes the ve-

locity to mimics the imposed rotation pro�le (corresponding to the experimental pro�le),
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so both terms give:

µ||∆v||B
2 + Sv ·B = µ||∆(v|| − v||,source)B2 (B.74)

The parallel projection of the divergence of the neoclassical tensor is given by:

−B ·
[
∇ · Πi,neo

]
=−B ·

[
µi,neoρ

B2

B4
θ

(
− v||B2

θ +∇⊥ψ · ∇⊥u

+
τIC
ρ

(
∇⊥ψ · ∇⊥P + kiρ∇⊥ψ · ∇⊥T

) )
(∇ψ ×∇ϕ)

]

= −µi,neoρ
B2

B2
θ

[
− v||B2

θ +∇⊥ψ · ∇⊥u

+
τIC
ρ

(
∇⊥ψ · ∇⊥P + kiρ∇⊥ψ · ∇⊥T

) ]
(B.75)

since B · (∇ψ ×∇ϕ) = (∇ψ ×∇ϕ)2 = |∇ψ|2
R2 = B2

θ

Finally, the total parallel velocity equation is:

ρB2∂(v||)

∂t
+
ρv||
R2
∇⊥ψ · ∇⊥

∂ψ

∂t
=− ρ F0

2R2

∂(v2
||B

2)

∂ϕ
− ρ

2R

[
v2
||B

2, ψ
]

+ ρRB2[v||, u] + ρRv||

[
B2

2
, u

]
− F0

R2

∂p

∂ϕ
+

1

R
[ψ, P ]

− µi,neoρ
B2

B2
θ

(
− v||B2

θ +∇⊥ψ · ∇⊥u

+
τIC
ρ

(
∇⊥ψ · ∇⊥P + kiρ∇⊥ψ · ∇⊥T

) )
+ µ||∆(v|| − v||,source)B2

(B.76)

The current equation implemented, neglecting the lowest order terms, is the following:

ρB2∂(v||)

∂t
=− ρ F0

2R2

∂(v2
||B

2)

∂ϕ
− ρ

2R

[
v2
||B

2, ψ
]
− F0

R2

∂p

∂ϕ
+

1

R
[ψ, P ]

− µi,neoρ
B2

B2
θ

(
− v||B2

θ +∇⊥ψ · ∇⊥u+
τIC
ρ

(
∇⊥ψ · ∇⊥P + kiρ∇⊥ψ · ∇⊥T

) )
+ µ||∆(v|| − v||,source)B2

(B.77)
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B.4 Energy equation

The energy equation from the moment of the Boltzmann equation at the second order,

as in Ref. [Braginskii 1965]. This equation for a given species s is the following (using

the Einstein notation)

∂fs
∂t

+
∂

∂xβ
(Vsβfs) +

∂

∂Vsβ

(
Fsβ
ms

fs

)
= C, (B.78)

with

Fs = esE + es (V ×B) ,

fs the distributtion function, Vs the total velocity for a given species and C is the collisions

term. The quantity C is the change per unit time in the distribution function for particles

of one species due to collisions with other particle species. To obtain the energy equation

we follow the method given in [Braginskii 1965]. Eq. (B.78) is multiplied by mV 2/2 and

it is integrated over the velocity. We �nd the following form for a species (hereinafter we

ommit the subscript s for simplicity except in the charge e)

∂

∂t

(mn
2
〈V 2〉

)
+∇ ·

(mn
2
〈V 2V 〉

)
− esn E · V =

∫
mV 2

2
CdV (B.79)

with V 2 = ‖V ‖2 the squared norm of the velocity, m the mass (kg) and n the particle

density (m−3) for the consider species. To simplify and calculate the average in Eq. (B.79)

we consider the total velocity divided between a mean and a �uctuating part, V = v+v′.

It is important to note that 〈v′〉 = 0. We recall that we note vectors with bold type (e.g.

v) or with a subscript (e.g. vβ) in this section. To simplify the previous equation we

develop the averaged terms

〈V 2〉 = 〈v2〉+XXXXX2〈v · v′〉+ 〈v′2〉
1

2
〈V 2Vβ〉 =

1

2
v2vβ +

1

2
vβ〈v′2〉+ v〈v′αv′β〉+

1

2
〈v′βv′2〉

(B.80)

Now we introduce the isotropic pressure (P ), the stress tensor (Παβ) and the mean change

in the momentum by collisions between one species of particles with the other species

(R). These three quantities write

P = nT =
nm

3
〈v′2〉

Παβ = nm

〈
v′αv

′
β −

v′2

3
δαβ

〉
R =

∫
mv′Cdv

(B.81)
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This three expressions are introduced in Eq. (B.79). We �nd the energy equation for a

species

∂

∂t

(
nm

2
v2 +

3

2
P

)
+

∂

∂xβ

{(
nm

2
v2 +

5

2
P

)
vβ + Παβ · vα + qβ

}
= esnE · v +R · v +Q

(B.82)

with the notations

qβ =
nm

2
〈v′βv′2〉

Q =

∫
mv′2

2
Cdv

The vector q is the �ux density of heat carried by particles of a given species and repre-

sents the transport of the energy associated with the random motion in the coordinate

system in which the particle gas as a whole is at rest at a given point in space. The

quantity Q is the heat generated by collisions. This term compensate with the (R · v)

term that expresses the change of momentum due to collisions. The kinectic energy lost

in a collision is converted into heat. Thus the two last terms on the right hand side of

Eq. (B.82) compensate one another. We can write

∂

∂t

(
nm

2
v2 +

3

2
P

)
+

∂

∂xβ

{(
nm

2
v2 +

5

2
P

)
vβ + Παβ · vα + qβ

}
= esnE · v (B.83)

B.4.1 Total energy equation

We now combine the energy equation for the ions and electrons. Neglecting the electron

mass, the electron stress tensor, considering n = ni = ne and taking into account that

e = ei = −ee, we �nd the following energy equation expression

∂

∂t

(
nmi

2
v2
i +

3

2
(Pi + Pe)

)
+

∂

∂xβ

{(
nmi

2
v2
i +

5

2
Pi

)
viβ +

5

2
Peveβ + Πiαβ · viα + qiβ + qeβ

}
= enE · vi − enE · ve (B.84)

The energy equation can be written as a function of a single �uid pressure or tem-

perature equation. The pressure is here de�ned as

P = ρT with P = Pe + Pi and T = Te = Ti. (B.85)

Also we introduce the current density vector

j = en(vi − ve) (B.86)

Taking into account the total pressure P and the current density j, Eq. (B.84) takes the



B.4. Energy equation 141

form

∂

∂t

(
nmi

2
v2
i +

3

2
P

)
+

∂

∂xβ

{(
nmi

2
v2
i +

5

2
P

)
viβ −

5

2

Pejβ
en

+ Πiαβ · viα + qiβ + qeβ

}
= E·j

(B.87)

Taking into account Poynting theorem the single terme on the right hand side of Eq. (B.87)

can be written

E · j = − ∂

∂t

(
B2

2µ0

)
−∇ ·

(
E ×B
µ0

)
(B.88)

We consider the total heat �ux

qβ = qiβ + qeβ (B.89)

Therefore the total energy time evolution derived from Eq. (B.87) has the form (here we

consider v ≈ vi and ρ = nmi)

∂

∂t
ETotal +

∂

∂xβ
(qβ Total) = 0, (B.90)

with

ETotal =

{
ρ

2
v2 +

3

2
P +

B2

2µ0

}
,

qβ Total =

{
ρ

2
v2vβ +

5

2
Pvβ −

5

2

Pejβ
en

+ Πiαβ · vα + qβ +
E ×B
µ0

}
.

B.4.2 Energy equation as a function of the total isotropic pres-

sure P and temperature T

To write the energy equation as a function of the isotropic pressure we can take the

energy equation for a single species (Eq. (B.82)) and replace the velocity terms using the

momentum and the continuity equations. In fact the �rst and third term in the left hand

side of Eq. (B.82) can be expressed (considering v ≈ vi and ρ = nmi)

∂

∂t

(ρ
2
v2
)

+
∂

∂xβ

(ρ
2
v2vβ

)
= v ·

{
∂

∂t
(ρv) +

∂

∂xβ
(ρvvβ)

}
. (B.91)

And using the continuity equation

∂ρ

∂t
+∇ · (ρv) = 0, (B.92)

we can write

v ·
{
∂

∂t
(ρv) +

∂

∂xβ
(ρvvβ)

}
= v ·

{
ρ

(
∂v

∂t
+ (v · ∇)v

)}
. (B.93)
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Thus the �rst and the third term in Eq. (B.82) can be replaced by the right hand side

of Eq. (B.93). And this last term can be expressed using the momentum equation for a

single species (we recall that the subscript s indicating the species is not used except for

the electric charge e). This momentum equation for a species s writes

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇P −∇ ·Π + esn (E + v ×B) +R. (B.94)

Then the scalar product in the right hand side of Eq. (??) can be written, using the

Einstein notation

vα ·ρ
(
∂vα
∂t

+ vβ
∂vα
∂xβ

)
= −vα ·

∂P

∂xα
−vα ·

Παβ

∂xβ
+vα ·esnEα+((((

((((vα · (v ×B)α+vα ·Rα. (B.95)

Replacing in Eq. (B.82) we obtain

3

2

∂P

∂t
+

5

2
vβ
∂P

∂xβ
+

5

2
P
∂vβ
∂xβ

+
��

��
��

vα ·
∂Παβ

∂xβ
+ Παβ ·

∂vα
∂xβ

+
∂qβ
∂xβ

− vα ·
∂P

∂xα
−
�
�
�
��

vα ·
Παβ

∂xβ
+((((

((vα · esnEα +���
�vα ·Rα =((((

((esnEα · vα +���
�Rα · vα +Q. (B.96)

Then the energy equation for a single species simpli�es to

3

2

∂P

∂t
+

3

2
vβ
∂P

∂xβ
+

5

2
P
∂vβ
∂xβ

+ Παβ ·
∂vα
∂xβ

+
∂qβ
∂xβ

= Q. (B.97)

Considering ions and electrons, we add the two energy equations for this two kind of

particles to �nd the total energy equation as a function of the total isotropic pressure.

We neglect the electron stress tensor and we write the electron velocity as a function of

the current density. The sum of the ions and electrons energy equations yields

3

2

∂P

∂t
+

3

2
viβ

∂P

∂xβ
− 3

2

jβ
en

∂Pe
∂xβ

+
5

2
P
∂viβ
∂xβ
−
Z
Z
Z
Z
Z

5

2

Pe
en

∂jβ
∂xβ

+Πiαβ
∂viα
∂xβ

+
∂

∂xβ
(qiβ + qeβ) = Qi+Qe.

(B.98)

Here we have considered that the charge conservation law is stationary thus the current

density j is divergence free.

Finally we can write Eq. (B.98) taking into acccount that v ≈ vi as

3

2

∂P

∂t
+

3

2
v · ∇P +

5

2
P (∇ · v) = −∇ · q +

3

2

j · ∇Pe
en

+
∑

Q. (B.99)

The right hand side of this equation contains all heat sources, including the heating

due to the viscosity,
∑
Q = QHeating +QV iscosity.

We note that the left hand side of Eq. (B.99) can be written in the following form if



B.4. Energy equation 143

the continuity equation (Eq. (B.92)) is used

3

2

∂P

∂t
+

3

2
v · ∇P +

5

2
P (∇ · v) =

3

2

dP

dt
− 5

2

P

ρ

dρ

dt

=
3

2
P
d

dt

{
ln

(
P

ργ

)} (B.100)

with the material derivative d/dt = ∂/∂t + v · ∇ and where γ = 5/3 is the adiabaticity

index for a monoatomic gas.

If the characteristic time of the dissipative processes (electric resistance, thermal

conductivity, viscosity, etc.) is large compared with the reciprocal frequency of the plasma

motion (e.g. L/v) the dissipative terms are small. Under these conditions we can assume

that the process is adiabatic and write as a �rst approximation

d

dt

(
P

ργ

)
= 0. (B.101)

From Eq. (B.99) we can write the energy equation introduced in JOREK

∂P

∂t
= −v · ∇P − γP (∇ · v)−∇ · q +

j · ∇Pe
en

+Q. (B.102)

Taking into account only the total pressure P , considering the heat �ux proportional to

the temperature gradient and replacing the velocity by the E ×B, parallel and diamag-

netic velocity we can write

∂P

∂t
= R [P, u]− v||

(
1

R
[P, ψ] +

F0

R2
∂ϕP

)
+ 2γP∂Zu+ γτIC

P

ρ

(
2∂ZP +

R

ρ
[P, ρ]

)
− γP

(
1

R

[
v||, ψ

]
+
F0

R2
∂ϕv||

)
−∇ ·

(
κ⊥∇⊥T + κ||∇||T

)
+

1

2

j · ∇P
en

+ SP .

(B.103)

Writting Eq. (B.102) equation as a function of the total temperature (we recall here

that P = ρT ) and taking into account the continuity equation (Eq. (B.92)) we have

∂T

∂t
= −v · ∇T + T (1− γ) (∇ · v)− 1

ρ
∇ · q +

3

4

mi j · ∇P
eρ2

+Q. (B.104)

Also taking into account the total pressure P and replacing in this last equation the

velocity by the E ×B, parallel and diamagnetic velocity we �nd
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∂T

∂t
= R [T, u]− v||

(
1

R
[T, ψ] +

F0

R2
∂ϕT

)
+ T (1− γ)

{
1

R

[
v||, ψ

]
+
F0

R2
∂ϕv|| − 2∂Zu− 2

τIC
ρ
∂Z (ρT )

}
+ γ τIC

T

ρ
R [T, ρ]

−∇ ·
(
κ⊥∇⊥T + κ||∇||T

)
+

3

4

mi j · ∇ (ρT )

eρ2
+ ST .

(B.105)
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This appendix summarizes the original theory of the screening of error �elds by rotat-

ing plasmas, proposed in [Fitzpatrick 1998]. In section C.1, the induction motor paradigm

is �rst presented. The analogy between this induction motor and a rotating tokamak

plasma with error �eld (or RMPs) will then be made in section C.2.

C.1 The induction motor paradigm

C.1.1 Assumptions

We consider an induction motor, sketched in Fig. C.1 composed of:

- a non-conducting stationary core

- a thin freely rotating conducting armature (radius ra, rotation frequency ωa, thickness
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δa)

- a viscous �uid between the core and the armature (viscosity µ)

- rotating �eld coils at radius rc > ra

Figure C.1: Sketch of the induction motor considered in this section

The main idea is that the magnetic �eld produced by the rotating �eld coils crossed

with the eddy currents induced in the armature will force the armature to co-rotate with

the coils.

C.1.2 Calculation of the magnetic �ux

The magnetic �eld perturbation is written in polar coordinates (r, θ, z):

δ ~B = ∇ψ × ~ez (C.1)

and Maxwell-Faraday equation gives

µ0δ~j = ∇× δ ~B = −∇2
⊥ψ~ez (C.2)

The combination with Ohm's law in the armature's referential is

∇× (∇× δ ~B) = µ0σ∇× (δ ~E + ~Varm × δ ~B) (C.3)

∇× (∇2
⊥ψ~ez) = µ0σ(

∂

∂t
(∇ψ × ~ez)−∇× (~Varm × δ ~B)) (C.4)

and the projection on ez direction is

∇2
⊥ψ = µ0σ(

∂ψ

∂t
+ raωaδBr) (C.5)
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The magnetic �eld is assumed to be dominated by one single poloidal harmonic m:

ψ = ψ(r).ei(mθ−ωct) (C.6)

and the linearization gives

1

r

∂

∂r
(rψ′)− m2

r2
ψ = µ0σ(−iωc + iωa)ψ (C.7)

This expression is then integrated across the armature, assuming that the magnetic �ux

is constant (ψ(r) = ψa) and that the term in m2

r2
is negligible compared to the others.

We �nally get

[r
dψ

dr
]rara−δa = iωτaψa (C.8)

where the time constant of the armature τa = µ0σraδa and the slip frequency ω = ωa−ωc
have been de�ned. This slip frequency corresponds to the di�erence in rotation frequency

between the armature and the coils.

Outside the armature, Faraday's law yields ∇2
⊥ψ = 0 since there is no current. The

general solution of the equation is

ψ(r) = A(
r

ra
)m +B(

r

ra
)−m (C.9)

The vacuum �ux ψv is de�ned as the magnetic �ux that would penetrate if there was no

current: ψv = ψc(
ra
rc

)m, where ψc and rc are respectively the magnetic �ux and the radius

of the coils. Using the boundary conditions ψ(ra) = ψa and ψ(rc) = ψc = ψv(
rc
ra

)m, we

have:

ψ(r) = ψa(
r

ra
)m (C.10)

for r < ra − δa and
ψ(r) = ψv(

r

ra
)m + (ψa − ψv)(

r

ra
)−m (C.11)

for ra < r < rc. The integration of Eq. (C.8) using Eq. (C.10) [r = ra−δa] and Eq. (C.11)
[r = ra] gives the expression of the magnetic �ux perturbation induced in the armature,

as a function of the vacuum magnetic perturbation:

ψa =
2mψv

iωτa + 2m
(C.12)

Eq. (C.12) shows the value of the magnetic �ux perturbation on the armature depending

on the slip frequency ω. If the slip frequency is rather low (ω << 2m/τa), then the

magnetic �ux perturbation penetrate the armature and the eddy currents induced by the

di�erence of rotation between the armature and the external coils are low, and the mag-

netic �ux penetrate almost as in vacuum: ψa ≈ ψv. However, for a large slip frequency

(ω >> 2m/τa), the large eddy currents exclude the magnetic �ux from the armature,

and ψa << ψv.
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C.1.3 Electromagnetic torque

The integrated electromagnetic torque per unit length acting on the armature is given

by

Tθ,EM =

∫ ra

ra−δa

∮ 2π

0

r~er × ~FEM .~ezrdθdr (C.13)

~FEM .~eθ =
1

2
<(~j × ~B∗).~eθ =

1

2
<(jzδB

∗
r ) '

1

2
<
[
− 1

µ0

1

r

∂

∂r
(rψ′).(−im

r
ψ∗)
]

(C.14)

⇒ Tθ,EM = <
[imπ
µ0

∫ ra

ra−δa

∂

∂r
(rψ′)ψ∗dr

]
= =

[
− mπ

µ0

[
(rψ′)

]ra
ra−δa

ψ∗a

]
(C.15)

The combination of Eq. (C.8) and Eq. (C.15) yields

Tθ,EM = −mπ
µ0

ωτa|ψa|2 = −2m2π|ψv|2

µ0

ωτa/2m

1 + (ωτa/2m)2
(C.16)

The electromagnetic torque is plotted as a function of the slip frequency in Fig. C.2.

This torque always acts to reduce the slip frequency and forces the armature to co-rotate

with the coils. The maximal torque is exerted when the slip frequency ω is equal to

2m/τa.

Figure C.2: Electromagnetic torque normalized to its maximul value πm2|ψv|2/µ0 as a
function of the normalized slip frequency ωτa/2m.

C.1.4 Torque balance

We note d the distance between the armature and the non-rotating core. The viscous

force per unit length exerted by the viscous �uid on the armature is written as follows:

FV S = −µ.2πr
2
aωa

dm
(C.17)
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The corresponding torque is:

Tθ,V S = −µ.2πr
3
aωa

dm
(C.18)

The torque balance yields, at steady state:

Tθ,EM + Tθ,V S = 0 (C.19)

⇒ ωa =
τam

2d

2µ0r3
aµ
|ψv|2

ω

1 + (ωτa/2m)2
(C.20)

We assume in the following that ωc is negative, so that the slip frequency is always

positive. Thus we have ωa = |ωc| − ω, and Eq. (C.20) writes:

|ωc| − ω =
|ψv|2

|ψv1|2
ω

1 + (ωτa/2m)2
(C.21)

with ψv1 =
√

2µ0r3aµ
τam2d

.

In the case where the coil frequency |ωc| is under a critical value (= 6
√

3m/τa), �

which is correlated with a small value of ω << 2m/τa� we have ω/(1 + (ωτa/2m)2) ∼ ω,

thus we obtain the simple equation:

ω ≈ |ωc|
1 + |ψv|2/|ψv1|2

(C.22)

In this case, the slip frequency remains low enough, so that the eddy currents are too

low to exclude the magnetic �ux from the armature.

However, over the critical value of ωc, Eq. (C.21) presents two branches of solutions.

The �high slip� branch, obtained for ω >> 2m/τa, is given by:

ω ≈ |ωc|
2

(
1 +

√
1− |ψv|

2

|ψv2|2

)
(C.23)

where ψv2 = ψv1|ωc| τa4m

As for the �low slip� branch, it veri�es:

ωτa
2m
≈ |ψv|

2

|ψv3|2
−

√
|ψv|4
|ψv3|4

− 1 (C.24)

with ψv3 =
√
|ωc|τa
m

ψv1.

In the high slip branch, the large slip frequency induce eddy currents which prevent

the magnetic �ux from penetrating the armature. However, when the coil �eld strength

is progressively increased, the slip frequency is reduced, until a bifurcation towards the

low slip branch occurs, when the �eld strength is equal to ψv2. The critical slip frequency

of the bifurcation is ω = |ωc|/2. In the low slip branch, the eddy currents remain low
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enough to let the magnetic �ux perturbation penetrate the armature. When the coil

�eld strength is reduced, the slip frequency is gradually increased, until the backward

bifurcation to the high slip branch occurs. The critical �eld when the transition occurs

is equal to ψv3 < ψv2, thus an hysteresis e�ect is observed, as plotted in Fig. C.3.

Figure C.3: Hysteresis cycle of the high and low branches of solutions of Eq. (C.20). The
x- and y-axes respectively represent the normalized coil �eld strength |ψv|2/|ψv2|2 and
the normalized slip frequency ω/|ωc|.

C.2 The plasma induction motor

The anology is now made with a �plasma induction motor�, where a tokamak plasma is

approximated by a periodical cylinder. The toroidal direction, 2πR0 periodic, is described

by the toroidal angle ϕ = z/R0. Even though the error �elds or RMPs are static in

a tokamak, the plasma is rotating so there is still a di�erential velocity between the

resonant surfaces of the plasma and the error �eld. Thus the error �eld can, similarly

to the induction motor, exert a j ×B torque on the rotating plasma by inducing eddy

currents on the resonant surfaces.

C.2.1 Tearing mode equation

The equilibrium magnetic �eld and plasma current are given by:

B =


0

Bθ(r)

Bϕ

and j =


0

0

jϕ(r)

Maxwell-Faraday equation yields:

µ0jϕ(r) = µ0j0z =
1

r

d(rBθ)

dr
(C.25)
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We consider the plasma at the vicinity of a resonant �eld line characterized by its safety

factor:

q(r) =
dϕ

dθ
=
rBϕ

RBθ

(C.26)

and q on the resonant surface is given by

qs =
m

n
(C.27)

The equilibrium plasma is submitted to a static error-�eld (or static magnetic perturba-

tions). We suppose that the plasma response has the same helicity as the error-�eld, and

that the steady state equibrium � a�ected by the static error �elds � is already reached:

ψ(r, θ, ϕ, t) = ψ̂(r)ei(mθ−nϕ) (C.28)

We separate the magnetic �eld and current into the equilibrium (without error �eld) and

the pertubated parts: B = B0 + δB and j = j0 + δj. The perturbed �eld are given by:

δB = ∇ψ × ez =


im
r
ψ

−∂ψ
∂r

0

and δj =
1

µ0

∇× δB =
1

µ0


− in

R
∂ψ
∂r

mn
rR
ψ

−∇2
⊥ψ = µ0δjz

Then the equilibrium force balance writes in the ideal MHD assumption:

∇× (j ×B) = ∇×∇P = 0 (C.29)

Using the identity j × B = j0 × δB + δj × B0, and the relation Bϕ = qRBθ/r, the

projection of Eq. (C.29) along ez yields the so-called tearing mode equation:

∇2
⊥ψ +

µ0ψqsdj0z/dr

Bθ(q − qs)
= 0 (C.30)

C.2.2 Invalidity of the ideal MHD on resonant surfaces

The electromagnetic torque due to the j ×B force is:

Tθ,EM =

∮ 2π

θ=0

∮
(rer × ((j0 + δj)× (B0 + δB))) · ezrdθRdϕ

=

∮ ∮
r2R0dθdϕδjzδBr

(C.31)

since
∮
θ
(j0 × δB + δj ×B0)dθ = constant(θ)

∮
θ
ψdθ = 0.

Thus:

Tθ,EM =

∮ ∮
r2R0dθdϕ

1

2
<
(
−∇

2
⊥ψ

µ0

(
−im
r

)
ψ∗
)

= −rR0m

2µ0

4π2=
(
∇2
⊥ψψ

∗) (C.32)
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Yet the tearing mode equation (Eq. (C.30)) gives:

∇2
⊥ψψ

∗ = − µ0dj0z/dr

Bθ(nq/m− 1)
|ψ|2 ∈ R (C.33)

Thus Tθ,EM = 0. It means that no electromagnetic torque can be exerted on the regions

governed by ideal MHD. Except on the resonant surfaces, we consider that the ideal

MHD is valid, so no torque is exerted outside the resonant surfaces. However, the tearing

mode equation clearly presents a singularity on the resonant surfaces q = m/n, thus the

ideal MHD is not valid any more on these surfaces. Indeed, if we write the magnetic

perturbation as a function of the displacement ξ in the framework of ideal MHD, we

have:

δB = ∇× (ξ ×B0) (C.34)

thus the radial displacement of the plasma induced in response to the external error �elds

such that no eddy currents appear is given by:

ξr =
ψ

Bθ(1− nq/m)
(C.35)

So, if there were no eddy currents appearing on the resonant surfaces q = m/n, then an

in�nite displacement ξr would be induced. Subsequently the ideal MHD is not valid at

the vicinity of the rational surfaces, and a �nite displacement occurs, due to the viscosity

and the plasma inertia. This displacement is insu�cient to prevent eddy currents from

appearing, and the error-�elds are capable to exert a torque on the rational surfaces.

C.2.3 Plasma response theory

We consider a resonant surface located on the radius rs, with a thickness δs and a con-

ductivity σ(rs). By analogy with section C.1, we de�ne the time constant of the resonant

layer:

τs = µ0σ(rs)rsδs (C.36)

On the same way, the slip frequency is de�ned:

ω = mΩθ(rs)− nΩϕ(rs) (C.37)

where Ωθ(r) and Ωϕ(r) are respectively the poloidal and toroidal rotation frequencies.

The equivalent to the thin armature hypothesis (in the induction motor) is the assumption

that ψ is constant over the layer, considered to be thin.

In this assumption, the following equation is veri�ed, analogous to Eq. (C.8):

[r
dψ

dr
]
rs+δs/2
rs−δs/2 = iωτsψs (C.38)

where ψs = ψ(rs) is the reconnected magnetic �ux. If ψs 6= 0, then a magnetic island

chain forms on the rational surface.
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C.2.4 Asymptotic matching

Outside the resonant layer, the ideal MHD rather well describes the plasma dynamics,

so the magnetic �ux satis�es the tearing mode equation (Eq. (C.30)), and the plasma

current is negligible. The solution to the tearing mode equation can be decomposed as

follows:

ψ(r) = ψsψplasma,N(r) + ψshield (C.39)

where the normalized plasma solution is ψplasma,N(r) = ψplasma(r)/ψ(rs) . It satis�es the

boundary conditions (at r = 0 and r →∞) corresponding to the boundary conditions in

absence of the error �elds.

The tearing stability index ∆′ needs to be de�ned:

∆′ = [r
dψplasma,N

dr
]r

+
s

r−s
(C.40)

If ∆′ < 0 then the plasma is tearing stable. Else if ∆′ > 0, the magnetic �eld sponta-

neously reconnects (without error �elds) to form magnetic islands on the rational surface.

The oscillation frequency of the magnetic �eld due to a spontaneously created island is:

ω0 = mΩθ0(rs)− nΩϕ0(rs) (C.41)

Note that such islands are static in the frame of the plasma. So they rotate with the

plasma in the laboratory frame. In the following, we consider that the plasma is tearing

stable: ∆′ < 0.

As for the shielded solution ψshield, it is de�ned as the magnetic �ux satisfying the

boundary conditions in presence of error-�eld, assuming no magnetic reconnection has

occured inside the plasma: ψshield(rs) = 0. The vacuum magnetic �ux is de�ned as in

previous section, as in absence of plasma:

ψv = ψc

(
rs
rc

)m
(C.42)

where ψc is the magnetic �ux at the coil. The error �eld coils are located outside the

plasma thus their radius veri�es rc > a, a being the minor radius of the tokamak. Simi-

larly to Eq. (C.9), the shielded solution veri�es Faraday's law outside the resonant surface:

ψshield(r) = A(
r

rs
)m +B(

r

rs
)−m for rs < r < rc. (C.43)

Using the boundary conditions on r = rs and r = rc, we �nd:

ψshield(r) = ψv

[
(
r

rs
)m − (

r

rs
)−m

]
for rs < r < rc. (C.44)

Both plasma and shielded solutions are plotted in Fig. C.4.

Using Eq. (C.39), Eq. (C.40) and Eq. (C.44), we obtain the equation governing the
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Figure C.4: Typical plasma and shielded solutions. The resonant surface is indicated by
the dashed line.

region outside the resonant layer:

[r
dψ

dr
]r

+
s

r−s
= ∆′ψs + [r

dψshield
dr

]r
+
s

r−s︸ ︷︷ ︸
2mψv |r+−0|r−

(C.45)

[r
dψ

dr
]r

+
s

r−s
= ∆′ψs + 2mψv (C.46)

Finally, the combination of Eq. (C.38) and Eq. (C.46) yields:

ψs =
2mψv

−∆′ + iωτs
(C.47)

Thus if the slip frequency ω is equal to zero, the reconnected �ux takes its maximum

value: ψs,max =
(

2m
−∆′

)
ψv. In the general case, −∆′ < 2m so |ψs| > |ψv|: this means that

the error �eld is ampli�ed on the resonant surface. Else if ω > −∆′

τs
, eddy currents are

generated on the rational surfaces, which suppress the magnetic reconnection, and the

magnetic perturbation is screened: |ψs| << |ψv|.
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C.2.5 Torque balance

The electromagnetic torque integrated over the rational surface is calculated, using

Eq. (C.32):

Tθ,EM =

∫ rs+

rs−

(
− 2π2R0m

µ0

=
(
r∇2
⊥ψ︸ ︷︷ ︸

∂
∂r (r

dψ
dr )

ψ∗
))
dr

= −2π2R0m

µ0

=
(
[r
dψ

dr
]r

+
s

r−s
ψ∗s
) (C.48)

Injecting Eq. (C.46) into Eq. (C.48), we get:

Tθ,EM = −2π2R0m

µ0

=
(
iωτs ψs · ψ∗s︸ ︷︷ ︸

|ψs|2

)
(C.49)

Finally, using Eq. (C.47), we obtain the formulation of the electromagnetic torque:

Tθ,EM = −8π2R0m
3

µ0

ωτs
(−∆′)2 + (ωτs)2

|ψv|2 (C.50)

Similarly to the induction motor, when the slip frequency is zero, no electromagnetic

torque is exerted so no eddy currents are induced. The electromagnetic torque increases

with the slip frequency, until the critical value of the slip frequency ω = (−∆′)/τs is

reached. Over this value, the torque decreases with ω.

Actually, the neoclassical damping of the poloidal rotation is mostly due to the neo-

classical friction (vθ → vθ,neo) so the e�ect of the electromagnetic torque on the poloidal

rotation may not be observed experimentally. However, the toroidal plasma velocity is

not constrained as the poloidal velocity, so the electromagnetic torque has more e�ect on

the toroidal rotation. The safety factor on the rational surface is:

qs =
m

n
=
rBϕ

RBθ

≈ −Tϕ,EM
Tθ,EM

(C.51)

So the toroidal electromagnetic torque is expressed as:

Tϕ,EM ≈ −
n

m
Tθ,EM =

8π2R0nm
2

µ0

ωτs
(−∆′)2 + (ωτs)2

|ψv|2 (C.52)

We consider the variation of toroidal angular rotation induced by the error �elds,

noted ∆Ωϕ(r). The perpendicular viscosity acts to relax the toroidal rotation back to

the unperturbed pro�le. The viscous force takes the form Fv = µS ∂∆Ωϕ
∂r

, where µ(r) is

the perpendicular viscosity and S the surface of the �uid layer. At the steady state, the

force only acts on the resonant layer, so the variation of the force is zero outside the
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resonant layer:
d

dr

(
rµ
∂∆Ωϕ

∂r

)
= 0 (C.53)

At the edge of the plasma, we also assume that the error �eld does not modify the plasma

rotation: ∆Ωϕ(a) = 0. The integration of Eq. (C.53) yields:

∂∆Ωϕ

∂r
= cst.

1

rµ(r)
(C.54)

The integration using the boundary conditions yields the general solution:

∆Ωϕ(r) =

 ∆Ωϕs for r < rs

∆Ωϕs

∫ a
r
dr
µr∫ a

rs
dr
µr

for rs < r < a

The integrated viscous torque acting on the resonant layer is given by:

Tϕ,V S = 4π2R0

[
rµR2

0

d∆Ωϕ

dr

]rs+
rs−

(C.55)

Integrating the solution of ∆Ωϕ into Eq. (C.55), the following expression of the viscous

torque is obtained:

Tϕ,V S = 4π2R0∆Ωϕs/

∫ a

rs

dr

rµ
(C.56)

The slip frequency, which is modi�ed when the toroidal rotation is reduced by the error

�elds, is given by:

ω = ω0 − n∆Ωϕs (C.57)

where we have used Eq. (C.37) and Eq. (C.41). We have assumed that the poloidal rota-

tion is strongly damped (e.g. by the neoclassical poloidal friction). ω0 is the oscillation

frequency of a naturally unstable (m,n) tearing mode, also called �natural frequency�.

The torque balance at the steady state is given by:

Tϕ,EM + Tϕ,V S = 0 (C.58)

Using Eq. (C.52), Eq. (C.56) and Eq. (C.57), we have:

2n2m2τs(
∫ a
rs
dr/rµ)

µ0R2(−∆′)2

ω

1 + [ωτs/(−∆′)]2
|ψv|2 = ω0 − ω (C.59)

This equation is simular to Eq. (C.20) which governs the behaviour of the induction

motor. In the same way, under a critical value of the natural frequency of the (m,n)

tearing mode ω0,c = 3
√

3(−∆′)/τs, the slip frequency always remains low such that the

response currents are too low to prevent the magnetic �eld from reconnecting. However,

if the natural frequency is larger than this critical value � and it is always the case in

tokamak plasmas �, then there are (as for the induction motor) two branches of solutions:
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the unreconnected (high slip) branch where very little magnetic reconnection occurs

due to the large slip frequency, and the fully reconnected (low slip) branch at low slip

frequency. The bifurcation from the high slip to the low slip branch is similar as the one

plotted in Fig. C.3.

C.3 Conclusion

When the error �elds or RMPs are switched on and ramped up gradually, �rst no magnetic

reconnection occurs, and eddy currents are induced on the resonant surfaces as a response

to the error �elds. These currents shield the induced magnetic perturbation, and are due

to the rotation of the plasma.

The eddy currents generate an electromagnetic torque at the vicinity of the resonant

surfaces, which acts to slow down the plasma rotation. Over a certain threshold in the

error-�eld amplitude, the plasma rotation is damped up to half its original value, and the

bifurcation to the reconnected state occurs: the electromagnetic torque brakes the plasma

rotation to standstill on the resonant surfaces. Thus the eddy currents are su�ciently

low to let magnetic island chains form on the rational surfaces: the magnetic �eld in fully

reconnected. When the error �eld or the RMPs are reduced, the plasma progressively

spins until the backward transition to the unreconnected state occurs. The error �eld

has to be reduced to a much lower than the inward threshold, resulting in an hysteresis

e�ect, as plotted in Fig. C.3.

This analysis is only a preliminary study, which demonstrates the bifurcation between

the two states. In [Fitzpatrick 1998], eleven regimes are identi�ed, which depend on

the plasma resistivity, the plasma rotation and the plasma viscosity. For each of these

regimes, the transition from the unreconnected to the fully reconnected state occur for a

di�erent amplitude of the applied error �eld. The aim of this appendix is not to describe

all these regimes, but to understand why error �eld or RMPs can either be screened or

penetrate, and to clarify the bifurcation phenomenon that actually occurs in the tokamak

plasmas.
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D.1 Aim of the study

The density equation should be equivalent if we consider either ion or electron species.

Yet in most MHD codes including JOREK, the particle �uxes induced by the polariza-

tion drift and the neoclassical velocity are neglected in the ion density equation, which

makes the electron and ion density equations inconsistent. Several papers, e.g. Ref

[Waelbroeck 2012], have shown that the gradient of the parallel current, which appears

as an electron �ux in the electron density equation, plays a major role in the pump-out

of density in the plasma when RMPs are applied. Indeed, the following derivation shows

that the parallel current �owing along perturbed magnetic �eld lines (phenomenon called

magnetic �utter) is likely to generate an enhanced radial transport of electron density.

Due to the ambipolarity constraints, raised e.g. in [?], the ion �ux and the electron �ux

have to be equal, so that an enhanced electron transport will also induce an enhanced

ion transport. This derivation shows that the terms inducing the magnetic �utter can

be added in the JOREK model in two di�erent ways, depending on if we consider the

electron or ion equation.
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D.2 Density equation for electrons and ions

The density equation for electrons writes:

∂ne
∂t

+∇ · (neve) = D⊥∇2
⊥ne + Sne (D.1)

The density equation for ions is:

∂ni
∂t

+∇ · (nivi) = D⊥∇2
⊥ni + Sni (D.2)

We will show that if assuming the quasineutrality of the plasma:

ni = ne = n (D.3)

both equations may not be equivalent as we neglect several components of the velocity.

The momentum equation for ions leads to the expression of the �uid velocity, which

is approximately equal to the ion velocity. The momentum equation for ions writes:

mini
dv

dt
=eni(E + v ×B)−∇Pi −∇ · Π̄i −meniνei(vi − ve)

min
dv

dt
=en(E + v ×B)−∇Pi −∇ · Π̄i − enηJ

(D.4)

where we have used the quasineutrality equation (Eq. (D.3)), the de�nition of the resis-

tivity η = meνei
ne2

and the de�nition of the current:

J = ne(vi − ve) (D.5)

Using the identity (v × B) × B = (B · v)B − (B · B)v = v||B
2 − vB2, the cross

product of Eq.(??) with the magnetic �eld gives the expression of the �uid velocity:

v =vi,|| +
E ×B
B2

− ∇Pi ×B
neB2

− mi

eB2

dv

dt
×B − ∇ · Π̄i ×B

neB2
− ηJ ×B

B2

v =vi,|| + vE + v∗i + vpol,i + vΠi + vη

(D.6)

The gyroviscous cancellation gives:

dv∗i
dt
×B ≈ −∇ · Π̄i,gv ×B (D.7)

The polarization velocity is usually approximated to its �rst order:

vpol,i = − mi

eB2

dv

dt
×B = +

mi

e

B

B2
× dv

dt
≈ +

mi

e

B

B2
× dvE

dt
(D.8)
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Thus the total ion velocity is given by:

v =vi,|| +
E ×B
B2

− ∇Pi ×B
neB2

+
mi

e

B

B2
× dvE

dt
− ∇ · Π̄i,neo ×B

neB2
− ηJ ×B

B2
(D.9)

In the density equation, the advection of the last term (∇·(nvη)) is small as compared

to the di�usive terms. Indeed, the ordering of the advection of the resistive velocity vη
is:

∇ ·
(
n
ηJ ×B
B2

)
= ∇ ·

(
n
η∇P
B2

)
(D.10)

Using η = meνei
ne2

and ∇P ≈ T∇n, we write this advection term as a di�usive term:

∇ ·
(
n
ηJ ×B
B2

)
≈ ∇ · (Dη∇n) (D.11)

with Dη = meνeiT
e2B2 = νeiρ

2
e, where ρe = vth,e/Ωc,e is the electron Larmor radius. In

comparison, the di�usive �ux is written:

Γe = −De∇n (D.12)

with De = νe
q2ρ2e
ε3/2

, ε = r/R0 being the inverse aspect ratio. So the ratio between Dη and

De is:
Dη

De

=
ε3/2

q2
<< 1 (D.13)

in tokamaks with a large aspect ratio.

In the MHD ordering, v = vi,|| + vE. In the bi-�uid (drift) ordering used in JOREK,

vE + v∗i have the same order of magnitude and v = vi,|| + vE + v∗i . It is furthermore

useful to consider in addition the polarization drift (�rst order compared to E × B and

diamagnetic drifts) if we want to have the electron density and ion density equations

consistent / equivalent with each other. Actually, the polarization drifts/currents may

be important to provide the ambipolarity ne = ni. In this study, we therefore keep the

ion polarization velocity, as well as the neoclassical term:

v =vi,|| +
E ×B
B2

− ∇Pi ×B
neB2

+
mi

e

B

B2
× dvE

dt
− ∇ · Π̄i,neo ×B

neB2
(D.14)

In the same way as we derived the ion velocity, we calculate the electron velocity from

the momentum equation for electrons:

men
dve
dt

= en(E + ve ×B)−∇Pe −∇ · Π̄e + enηJ (D.15)

We neglect the electron inertia, which is of order (me/mi) compared to the ion inertia.

Thus the electron velocity is:

ve =ve,|| +
E ×B
B2

+
∇Pe ×B
neB2

− ∇ · Π̄e,neo ×B
neB2

+
ηJ ×B
B2

(D.16)
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For a large aspect ratio, as previously discussed for ions, the velocity associated to the

resistive term is neglected. The electron neoclassical term is also neglected as compared

to the ion neoclassical term. So the electron velocity writes:

ve = ve,|| +
E ×B
B2

+
∇Pe ×B
neB2

(D.17)

The electron parallel velocity is expressed using the projection of the plasma current

(D.5) along the magnetic �eld:

v||,e = −
J||
ne

+ v||,i (D.18)

with v||,s = (vs.B) B
B2 .

Thus with the hypotheses made, the density equation for ions and electrons are re-

spectively:

∂n

∂t
+∇ · (nvE) +∇ · (nv∗i ) +∇ · (nvpol,i) +∇||(nv||,i) +∇ · (nvΠi) = D⊥∇2

⊥n+ Sn(D.19)

∂n

∂t
+∇ · (nvE) +∇ · (nv∗e)−

1

e
∇||J|| +∇||(nv||,i) = D⊥∇2

⊥n+ Sn(D.20)

The operator ∇|| is de�ned here as:

∇||A = ∇A ·B/B (D.21)

We calculate the divergence of nv⊥ for ions and electrons :

∇(nvE) = vE · ∇n+ n∇(
B ×∇u
B2

) = vE · ∇n+ n∇u · ∇ × B

B2
(D.22)

∇(nv∗s) =
1

es
∇(
B ×∇Ps

B2
) =

1

es
∇Ps · ∇ ×

B

B2
(D.23)

for each species s = e, i. And the neoclassical term is:

∇ · (nvΠi) = ∇ · (nB ×∇ · Π̄i,neo

neB2
) =

1

e
∇ ·
(
B

B2
×∇ · Π̄i,neo

)
(D.24)
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The complete density equations for ions and electrons are thus the following:

∂n

∂t
+ vE · ∇n+∇ · (nvpol,i) +∇||(nv||,i) + n(∇u+

∇Pi
ne

) · ∇ × B

B2

+
1

e
∇ ·
(
B

B2
×∇ · Π̄i,neo

)
= D⊥∇2

⊥n+ Sn

(D.25)

∂n

∂t
+ vE · ∇n−

1

e
∇||J|| +∇||(nV||,i) + n(∇u− ∇Pe

ne
) · ∇ × B

B2
= D⊥∇2

⊥n+ Sn

(D.26)

Eq. (D.26) shows that the current �owing along the magnetic �eld lines will transport

the electron density (and thus the ion density). If the magnetic �eld lines are bended by

RMPs in the radial direction, the transport of particles will therefore be enhanced, and

will be even larger if the magnetic �eld is stochastic. So this magnetic �utter is likely to

induce the density pump-out.

D.3 Equivalence of the equations

The equivalence of these two equations is checked in the following, using the fact that

the current is divergence-free. The di�erence between the 2 equations (Eq. (D.25) �

Eq. (D.26)) yields:

∇ · (nvpol,i) +
1

e
∇||J|| +

∇P
e
· ∇ × B

B2
+

1

e
∇ ·
(
B

B2
×∇ · Π̄i,neo

)
= 0 (D.27)

Now with the exact expression of the polarization velocity given in Eq. (D.8):

∇ ·
(
min

e

B

B2
× dv

dt

)
+

1

e
∇||J|| +

∇P
e
· ∇ × B

B2
+

1

e
∇ ·
(
B

B2
×∇ · Π̄i,neo

)
= 0 (D.28)

To check the truthfulness of this equation, we need to use the �uid momentum equation

(where we neglect the viscous and source terms), on which we apply the operator (B×)
to get the perpendicular component:

B ×
(
min

dv

dt

)
= B ×

(
J ×B −∇P −∇ · Π̄i,neo

)
(D.29)

Using B × (J ×B) = B2(J − J||) = B2J⊥, we have:

minB ×
(
dv

dt

)
= B2J⊥ −B ×∇P −B ×∇ · Π̄i,neo (D.30)
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And the divergence of ( Eq. (D.30) divided by B2 ) yields:

∇ ·
(
min

B

B2
× dv

dt

)
= −∇||J|| −∇ ·

(
B

B2
×∇P

)
︸ ︷︷ ︸
∇P ·∇×(B/B2)

−∇ ·
(
B

B2
×∇ · Π̄i,neo

)
(D.31)

where we have used the current conservation law: ∇ · J⊥ = ∇ · J − ∇||J|| = −∇||J||.
We notice that Eq. (D.31) is identical to Eq. (D.28). Thus the perpendicular momentum

equation provides the equivalence of the two MHD systems of equations including either

the ion or the electron density equation.

D.4 What modi�cations should be done in JOREK?

The equation currently implemented in JOREK is the density equation for ions, but

without the polarization and neoclassical terms:

∂n

∂t
+ vE · ∇n+∇||(nv||,i) + n(∇u+

∇Pi
ne

) · ∇ × B

B2
= D⊥∇2

⊥n+ Sn (D.32)

Thus two possibilities enable to add the �magnetic �utter� terms: the �rst solution is

to add the terms at the next order for the velocity (vpol,i and vΠi) into the ion density

equation. Numerically, this solution may be di�cult since the polarization drift involves

the time derivative of the velocity.

The other solution, which consists in solving the electron density equation instead of

the ion density equation, seems simpler. Only a new term −1
e
∇||J|| has to be added in

the equation and the ion pressure Pi must be replaced by the opposite of the electron

pressure −Pe. We opt for this solution.

The ion and electron pressure are equal in our model (Pi = Pe = P/2), so only the

sign must be changed in the diamagnetic term (∇ · (ρv∗)), and the new term −1
e
∇||J|| is

close to the one that already exists in the vorticity equation so there are very few things

to implement.

D.5 Normalization and weak form

Using the normalizations ρ̃ = ρ/ρ0, t = t̃
√
ρ0µ0, ṽ = v

√
ρ0µ0, J̃ = µ0J and D̃⊥ =

D⊥
√
ρ0µ0, we obtain the coe�cient behind the J|| term:

∂ρ̃

∂t̃
= −∇(ρ̃ṽalready−implemented−except−sign(vdia)) +

mi

e
√
ρ0µ0

∇||J̃|| − D̃⊥∇2
⊥ñ (D.33)

From now, the quantities are normalized in JOREK units yet the tildes are omitted

in order to make the equations more readable. The last remaining calculation is the

expression of the parallel current J||. Actually, the real parallel current J|| (normalized

to µ0) is di�erent from the de�nition of the current in JOREK. Because of the reduction
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of the MHD equations, the rotational of the toroidal magnetic �eld is zero, and the

projection of J on B is purely toroidal. Thus we have:

J|| =
J ·B
B

=
1

B
(∇×Bpol)× F0∇φ = −F0

B
∇ ·
(

1

R2
∇⊥ψ

)
(D.34)

Furthermore, if we replace B by Btor = F0/R, we obtain:

J|| ≈ −R∇ ·
(

1

R2
∇⊥ψ

)
= −∆∗ψ

R
= Jtor (D.35)

where Jtor is the real toroidal current. Yet the de�nition of the toroidal current in

JOREK is j = J3 = +∆∗ψ so

J|| ≈ −j/R (D.36)

Thus ∇J|| is given by:

∇J|| ≈−∇
(
j

R

)
· B
B

≈− 1

B
∇
(
j

R

)
· (F0∇φ+∇ψ ×∇φ)

≈− 1

BR
∇j · (F0∇φ+∇ψ ×∇φ) + j

∇R
BR2

· (����F0∇φ+∇ψ ×∇φ)

≈− 1

R2

∂j

∂φ
+

1

F0R
[j, ψ] +

j

R3

∂ψ

∂Z

(D.37)

The density equation for ions that is currently solved is the following (which ne-

glects the ion polarization drift and the neoclassical �ux ; see the complete derivation in

appendix B) :

∂ρ

∂t
=R[ρ, u] + 2ρ∂Zu+

ρ

R
[ψ, v||] +

v||
R

[ψ, ρ]− F0

R2
v||∂φρ−

F0

R2
ρ∂φv|| + 2τIC∂ZP

+∇ · (D⊥∇⊥ρ) + Sρ

(D.38)

with τIC = mi
F0e
√
ρ0µ0(1+Ti/Te)

. (The hypothesis Ti = Te is made, so Pi = Pe = P/2).

So if we assimilate the parallel current to the toroidal current (which is hardly avoid-

able in reduced MHD), the density equation for electrons to be solved is not much dif-

ferent:

∂ρ

∂t
=R[ρ, u] + 2ρ∂Zu+

ρ

R
[ψ, v||] +

v||
R

[ψ, ρ]− F0

R2
v||∂φρ−

F0

R2
ρ∂φv|| − 2τIC∂ZP

+
mi

e
√
ρ0µ0

(
− 1

R2

∂j

∂φ
+

1

F0R
[j, ψ] +

j

R3

∂ψ

∂Z

)
+∇ · (D⊥∇⊥ρ) + Sρ

(D.39)
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Now using the τIC coe�cient:

∂ρ

∂t
=R[ρ, u] + 2ρ∂Zu+

ρ

R
[ψ, v||] +

v||
R

[ψ, ρ]− F0

R2
v||∂φρ−

F0

R2
ρ∂φv|| − 2τIC∂ZP

+2τICF0

(
− 1

R2

∂j

∂φ
+

1

F0R
[j, ψ] +

j

R3

∂ψ

∂Z

)
+∇ · (D⊥∇⊥ρ) + Sρ

(D.40)

D.6 Other modi�cations in JOREK

In momentum and energy equations, the time derivative terms are split into two parts, one

of them containing the time derivative of density: d(ρv)
dt

= ρdv
dt

+v dρ
dt
and d(ρT )

dt
= ρdT

dt
+T dρ

dt
.

However the density equation injected in the equation cancels: dρ
dt

= 0 = ∂ρ
∂t

+ ∇ · ρv,
and the new ∇||J|| term is included in the ∇ · ρv term, so in this respect no additional

term is required in the momentum and energy equations. However, as the addition of the

parallel current term in the density equation is equivalent to the addition of corrective

velocities in the system of equations, the term P∇ · v should also include a polarization

part P∇ · vpol and a neoclassical part P∇ · vΠi .

D.7 Additional study: coupling between vorticity and

density: introduction of new waves in simulation

In this section, all quantities are normalized to unity for simplicity.

We note that the vorticity and density equations have a similar expression, and both

equations involve the parallel current gradient:

dW

dt
+∇||J|| = ν∇2

⊥W (D.41)

dn

dt
+∇||J|| = D⊥∇2

⊥n (D.42)

We also write the induction equation:

∂ψ

∂t
= −ηJ +∇||u+ T∇||n (D.43)

Where ∇||u = ∇||,equ+[ψ, u]. We use the expressions of current and vorticity J = −∇2
⊥ψ

and W = ∇2
⊥u, and we assume that ν ∼ D⊥. In this assumption, n can be replaced by

W in the induction equation.

If we neglect all dissipative and di�usive terms, we can �nd the dispersion relation

for Alfven waves (�rst without diamagnetics) :

dW

dt
−∇||∇2

⊥ψ = 0 (D.44)

∂ψ

∂t
= ∇||u (D.45)
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The linearization of the system yields:

ik2
⊥ωu+ ik||k

2
⊥ψ = 0 (D.46)

−ωψ = k||u (D.47)

⇒ k2
⊥(ω −

k2
||

ω2
) = 0 (D.48)

We thus �nd the Alfven equation (without normalization): ω2 = k2
||V

2
A

The addition of diamagnetic e�ects just adds a correction to the expression:

∂ψ

∂t
= ∇||u+ T∇||n (D.49)

⇒ ω2 = k2
||V

2
A(1 + Ck2

⊥ρ
2
s) (D.50)

Also, in steady state, without neglecting the viscosity or di�usivity, we �nd the rela-

tion between density and potential:

∇||J|| = D⊥∇2
⊥n = ν∇2

⊥W (D.51)

⇒ δn

n0

=
ν

D⊥
(k⊥ρs)

2 eδu

T
(D.52)

So the addition of polarization current in the electron density equation should introduce

new types of waves (sheared Alfven drift waves?) and might introduce turbulence in

simulations.





Symbols, variables and acronyms

Symbols and variables
• Q: ampli�cation factor

• τE: energy con�nement time

• B: magnetic �eld

• E: electric �eld

• ψ: poloidal magnetic �ux

• ψN or ψnorm: normalized poloidal magnetic �ux, label of the �ux surfaces

• F0: toroidal component of the magnetic �eld multiplied by the major radius R,

assumed to be constant

• q: safety factor characterizing the helicity of the �ux surfaces

• q95: safety factor at the edge (for ψN = 95%)

• R0: major radius of the tokamak

• a: minor radius of the tokamak

• R: horizontal coordinate along the major radius

• Z: vertical coordinate
• r: coordinate along the minor radius

• θ: angle in the poloidal direction

• ϕ: angle in the toroidal direction

• m: poloidal mode number (Fourier harmonic)

• n: toroidal mode number (Fourier harmonic)

• t: time

• n: particle density ; ne: electron density, ni: ion density

• ρ: mass density

• T : temperature

• P : scalar pressure
• Π̄: pressure tensor

• v: �uid velocity

• v||: parallel velocity
• v∗: diamagnetic velocity

• vE: electric drift
• cs: sound speed

• J : plasma current

• j: toroidal current
• u: electric potential (scalar)
• A: vector potential

• W : toroidal vorticity

• τIC : diamagnetic parameter: inverse of the normalized ion cyclotron frequency

• η: plasma resistivity

• µ||, µ⊥: plasma parallel and perpendicular viscosity
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• κ||, κ⊥: parallel and perpendicular heat di�usivity
• D||, D⊥: parallel and perpendicular particle di�usivity
• µi,neo: neoclassical friction rate
• ki: ion neoclassical heat di�usivity
• Sρ: particle source
• ST : heat source
• Sv|| : source of parallel velocity

• f : probability distribution function
• ν∗e : electron collisionality
• λe,e: electron-electron collision mean free path
• vth,s: thermal velocity
• τe: electron collision time
• λd: Debye length

• me,mi: electron and ion mass
• qe, qi: electron and ion charge
• e: Coulomb charge
• µ0: magnetic permeability
• ε0: vacuum permittivity
• c: light speed
• γ = 5/3: ratio of the speci�c heats

Acronyms

• AUG: Asdex Upgrade: tokamak located in Garching (Germany)
• DEMO: Prototype for future fusion reactors (generation after ITER)
• DIII-D: Doublet III � D : tokamak in San Diego (USA)
• DND: Double Null Divertor
• EFCC: Error Field Correction Coils
• ELM: Edge Localized Modes
• ERGOS: ERGOdic Spectrum: code computing vacuum magnetic perturbations

generated by coils, using Biot-Savart law
• ETB: External Transport Barrier
• HFS: High Field Side
• ITER: International Thermonuclear Experimental Reactor, also meaning �the way�:

tokamak currently in construction in Cadarache, France
• JET: Joint European Torus: European tokamak, located in Culham (UK)
• JOREK: reduced MHD code in toroidal geometry, named after the bear in Philip

Pullman's His Dark Materials
• LFS: Low Field Side
• MAST: Mega Ampere Spherical Tokamak, located in Culham (UK)
• MHD: Magnetohydrodynamics
• NTV: Neoclassical Toroidal Viscosity
• RFA: Resonant Field Ampli�cation
• RMHD: Reduced MagnetoHydroDynamic code in cylindrical geometry
• RMP: Resonant Magnetic Perturbation
• SOL: Scrape-O� Layer
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