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Introduction

Graphene, the first one-atom thick material discovered in nature, has been isolated only
about a decade ago [1], which led the pioneering experimentalists K. Novoselov and A.
Geim to the Nobel Prize in 2010. From a crystallographic perspective, the carbon atoms in
this graphite layer design a triangular Bravais lattice with a diatomic pattern. This gives rise
to an extra degree of freedom in the electronic band structure, which is known as pseudospin.
Crucially, the graphene pseudospin reveals massless Dirac electrons at low-energy, whose
existence was experimentally confirmed by the observation of the anomalous quantum Hall
effect and the presence of zero-energy Landau levels [2, 3]. This offers the possibility
to study relativistic quantum phenomena in condensed matter physics. Importantly, it has
allowed a direct experimental observation of the Klein tunneling in graphene [4], whereas,
in high-energy physics, this effect would not have been tested yet since it was predicted in
1928 [5]. By analogy with the helicity that is based on the ’true’ spin in high-energy physics,
the pseudospin in graphene also enables the definition of an electronic helicity, or chirality,
at low-energy. The chiral nature of the massless Dirac electrons turns out to dramatically
affect the quantum interferences induced by defects in this material, by totally suppressing
the backscattering [6].

Moreover, the massless Dirac electrons refer to nodal dispersion relations. For this rea-
son, the semimetallic phase they define in graphene can also be considered as an invitation
to the world of topological matter. Indeed, the graphene nanoribbons are likely to host zero-
energy edge-states [7, 8]. Such boundary modes find a topological origin through a dimen-
sional reduction that consists in an appropriate mapping onto an effective one-dimensional
insulating system [9]. More generally, insulators, as well as superconductors, are multi-
band gapped systems that are likely to host boundary modes, whose existence depends on
topological properties of the bulk band structure. Like graphene, topological matter was
born in connection with a quantum Hall effect experiment [10], where the quantised Hall
conductance refers to chiral edge-channels [11]. Nevertheless, about twenty more years
of pioneering ideas [12–14] have been required, before the interest in topological matter
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was definitely boosted by the prediction of another kind of quantum Hall effect, namely the
quantum spin Hall effect, proposed in 2005 [15].

Topological matter, together with graphene, have certainly received most of the scientific
attention in condensed matter physics during the last decade. These two fields of research
define the main framework in which the present thesis can be apprehended. It is divided into
two parts.

Part I: Impurity and boundary modes in the hexagonal lattice

The first chapter can be considered as an introduction to some aspects of the graphene
physics. It begins with the descriptions of the atomic structure and the electronic band
structure, before touching on the absence of backscattering due to the chiral nature of the
low-energy electrons. It finally introduces the possibility to remove these chiral electrons
by opening an energy gap in the spectrum, which defines a Lifshitz transition [16].

The main idea of the second chapter consists in revisiting the impurity-scattering prob-
lem, already studied in graphene [17], in the context of the Lifshitz transition. A localised
impurity induces quantum interferences in the electronic density of states, which are known
as Friedel oscillations [18]. They are directly related to the electronic spectrum, as well as to
the pseudospin and the chirality enabled by this extra degree of freedom. After characteris-
ing the real-space interferences right at the transition and beyond (where the chiral electrons
have been removed and the spectrum gapped), we show that their decaying laws reveal the
phase the system belongs to [19].
The case of vacancies, scatterers that imply the existence of a zero-energy impurity-state, is
also considered. In this case again, we conclude that the impurity-state decay fully reveals
the phase the system belongs to. On top of that, it is qualitatively remarkable that, right
at the transition and beyond, all the zero-energy electrons are localised within a triangle,
where the wavefunction components appear to be connected to the binomial coefficients of
the Pascal triangle [19].

The third chapter deals with topological matter, or more explicitly with topological in-
sulators and superconductors. In such multi-band gapped systems, the ability of electrons
to be localised at a boundary depends on symmetry-protected topological properties of the
Bloch band structure.
A simple one-dimensional two-band insulator is first considered in order to illustrate the
connection there exists between the topological characterisation of a gapped band structure,
which is protected by symmetry, and the presence of boundary modes that turn out to be
zero-energy edge-states. Although this model was introduced a long time ago by Shock-
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ley [20] and discussed later on in the literature [21, 22], it was only considered within a
nearest-neighbour tight-binding limit. In the present thesis, we analyse the same model
when considering arbitrary distant-neighbour hopping processes. This extension allows the
system to reach new topological phases that are characterised by an arbitrary large number
of edge states.
Nevertheless, it happens that some gapless systems with a nodal dispersion relation, like
semimetals, also find a topological characterisation via a dimensional reduction, which is il-
lustrated in the case of a zigzag graphene nanoribbon. In this case, we study the persistence
of the edge states in the presence of localised disorder [23].
Finally, the chapter ends with the analysis of a two-dimensional eight-band superconduc-

tor, whose zero-energy boundary modes are Majorana modes [24]. The considered system
relies on a honeycomb lattice in the presence of spin-singlet superconductivity, Zeeman
splitting and Rashba spin-orbit coupling. So far the literature only focuses on monatomic
pattern lattices, or more generally on systems where the topological characterisation does
not depend on the spin-orbit interactions. In the case of a honeycomb lattice, which has
a diatomic pattern, we show that the magnitude of these interactions directly affects the
topological phases. We also give a prescription to access the topological properties of this
eight-band system [25], and thus predict the emergence of zero-energy Majorana modes that
are localised at the edges of doped and strained nanoribbons.

Part II: Spintronic in mesoscopic superconductors

The fourth chapter, however, is connected neither with graphene, nor with topological mat-
ter. It proposes the study of a spin accumulation occurring in an out-of-equilibrium s-wave
superconductor. At equilibrium, the superconductor is made of a condensate, i.e. particles
coupled by a s-wave pairing, as well as unpaired quasiparticles. Injecting charge- and spin-
polarised particles, namely spin-polarised electrons, into the superconductor induces charge
and spin imbalances. When the injection stops, it may happen that charge and spin do not
relax over the same time-scale. The first experiment that points out such a spin-charge
decoupling (charge relaxes much faster than spin) has recently been realised [26].

In order to confirm this chargeless spin-relaxation time, a new experiment has been
developed [27], based on measurements in the frequency domain. In the fourth chapter,
we address a model that fits the experimental data and thus enables the extraction of this
characteristic time [28].





Part I

Impurity and Boundary Modes in the
Honeycomb Lattice





Chapter 1

Graphene

The diatomic pattern of the graphene honeycomb lattice is responsible for an extra degree
of freedom in the band structure, known as pseudospin. In a tight-binding approach, the va-
lence and conduction bands are separated by an energy gap, except at two special momenta
in the vicinity of which the dispersion relation is conical. The Fermi surface of undoped
graphene simply consists in two Fermi points and the system is said to be semimetallic.
Moreover, the low-energy electrons are described by a massless Dirac equation and are
characterised by a chirality, defined as the projection of the pseudospin on the momentum
direction. This gives rise to unusual quantum phenomena, such as the absence of backscat-
tering. These properties are the focus of the present introductory chapter.

1.1 Atomic structure

Graphene consists of a one-atom-thick layer of graphite, a carbon allotrope. The six elec-
trons of carbon atoms fill orbitals following the Vsevolod Klechkovskii’s rule [29] and
1s22s22p1

x2p1
y2p0

z is the ground state configuration. Carbon-based solids, however, require
chemical bondings that are explained by sp hybridisations. In pencil lead graphite, the
2s orbital mixes with two 2p orbitals, for example the 2px and 2py ones. Together they
form σ covalent bonds that satisfy a trigonal planar geometry, with an interatomic distance
a0 ≃1.42Å. The remaining 2pz orbitals, which stand perpendicularly to the plan, overlap
between nearest neighbours. This is called π-bonding and it permits the involved electrons
to move from one orbital to another, explaining the ability of graphite to conduct electricity.
Additionally, Van der Waals bonds hold the layers together and build the graphite crystal.
This is precisely the weakness of these bonds that makes possible to use graphite to write
or to paint, literally graphein in Ancient Greek. It also enables graphene exfoliation that



8 Graphene

can be achieved by applying an adhesive tape onto graphite. Repeating this process leaves
fewer and fewer layers after each step, until only one remains... graphene [1].

According to the above description, the σ covalent bonds in graphene build a honey-
comb lattice. Crystallography describes it as a triangular Bravais lattice with a diatomic
pattern. Such a lattice is illustrated in Fig. 1.1. Of course, the Mermin-Wagner theorem
forbids any long-range order in two dimensions [30]. But in a three dimensional world,
the formation of out-of-plane ripples, or the presence of a substrate, make the existence of
graphene possible. Its dynamical and thermodynamical properties will be ignored in this
thesis in which we consider graphene as a rigorously two-dimensional crystal.

Besides, its periodic structure has geometric symmetries, i.e. it maps into itself under
isometries. These transformations have a group structure, which defines a point group. The
one that characterises graphene symmetries is the dihedral group D6h, following Schönflies
notations. This means the lattice and the physical vectors (wavevector, polarisation ...)
remain unchanged under six-fold rotations and mirror reflections. A fortiori, the crystal
also contains an inversion center. That is why D6h is said to be centrosymmetric.

A

B

a1a2 Γ0

Γ3

Γ1

Γ2

Γ0Γ0
a1
*a2

*

Fig. 1.1 The honeycomb lattice (left) and the hexagonal Brillouin zone (right).

The Bravais lattice invariance under discrete translations naturally leads to the notion
of a Brillouin zone in the reciprocal lattice, the two lattices being connected by a Fourier
transform. Here, we use an equivalent geometrical prescription to construct this reciprocal
lattice. The basis vectors that span the triangular Bravais lattice are labeled a1 and a2 in real
space. Then, the geometric relations

a∗1.a1 = 2π a∗1.a2 = 0

a∗2.a2 = 2π a∗2.a1 = 0 (1.1)

define a∗1 and a∗2, two basis vectors of the reciprocal lattice. From this definition, it is clear
that the reciprocal lattice is triangular as well. Actually, this is due to a more general prop-
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erty: if a function satisfies a certain symmetry in real space, so does its Fourier transform in
reciprocal space, and vice versa. Indeed, say S represents such a symmetry operator, so that
f [S(r)] = f (r). In momentum space

f [S(q)] =
∫

f (r)e−iS(q).rd2r

=
∫

f (r)e−iq.S−1(r)d2r

=
∫

f (S(r
′
))e−iq.r′d2r

′

=
∫

f (r
′
)e−iq.r′d2r

′

= f (q) . (1.2)

We finally introduce the unit cell of the reciprocal lattice, namely the first Brillouin zone

(BZ). This is the volume inside a surface built from the bisections of segments that connect
the origin to the nearest reciprocal-lattice nodes. Of course there also exist second BZs,
third ones, and so on. Nevertheless, the problem of free electrons in an infinite crystal
can be described in terms of Bloch wavefunctions that have the crystal periodicity. For
this reason, the corresponding wavefunctions in momentum space are periodically identical
up to a global phase from one BZ to another. That is why only one BZ suffices and by
convention one generally picks the first BZ. The hexagonal BZ of the triangular lattice in
the reciprocal space is illustrated in Fig. 1.1.

Here we insist on the properties of graphene reciprocal lattice, and on the fact that they
stem from the triangular geometry of the Bravais lattice in real space. They do not depend
on the hexagonal structure of graphene that involves the diatomic pattern. But, the existence
of the two nonequivalent atoms greatly matters when studying the electronic properties of
graphene, which is the topic of the next paragraphs.

1.2 Electronic band structure

1.2.1 A two-band description

As previously mentioned, the electronic properties of graphene arise from the π-orbitals
filling electrons. They were first investigated in 1947 by the Canadian physicist P. R. Wal-
lace [31], as he was considering graphene as the starting point in the study of graphite.
During these wartime years, graphite was indeed being used in nuclear reactors and it was
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primordial to understand its behaviour under intense neutron and ion bombardment. Like
Wallace, we start the study of graphene electronic properties using a tight-binding approx-
imation. Electrons are allowed to hop from one pz orbital to another. The presence of two
nonequivalent atoms, A and B, in the honeycomb lattice leads to two families of pz elec-
tronic orbitals. So two kinds of processes have to be distinguished. On the one hand, there
are processes that couple the two distinct sublattices. They are said to be inter-sublattice

processes. This is the case of nearest-neighbour (NN) and third nearest-neighbour hopping
processes for example. On the other hand, there are processes that involve only one sublat-
tice, like next nearest-neighbour (NNN) hopping processes or on-site potentials. One speaks
of intra-sublattice processes. Although there is no interaction, we write the free-electron
Hamiltonian in a second quantised form, which is more compact

H =
∫

BZ
dk ψ

†(k)H(k)ψ(k) , (1.3)

where the fermionic field ψ†(k) = (a†
k,b

†
k) depends on the two-dimensional momentum

k that runs over the BZ. The electronic spin is neglected here and the operator ak (bk)
annihilates an electron on sublattice A (B). The 2×2 Hamiltonian matrix H(k) is Hermitian
and can be expressed in terms of the identity matrix σ0 and the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0
0 −1

)
. (1.4)

Therefore, H(k) = h0(k)σ0 +h(k).σσσ , with σσσ = (σ1,σ2,σ3) and h = (h1,h2,h3). The di-
agonal components h0 and h3 refer to intra-sublattice processes, whereas the off-diagonal
components h1 and h2 refer to inter-sublattice processes. The spectrum is composed of
two bands defined by E±(k) = h0(k)±|h(k)|. The term linear in the identity matrix is k-
dependent, and thus is not just a constant that one could remove to fix the zero energy. It
breaks the particle-hole symmetry (PHS) since E+(k) ̸= −E−(−k). Even so, this term is
irrelevant when dealing with the eigenstates and we restrict our description to a particle-hole
symmetric Hamiltonian

H(k) = h(k).σσσ . (1.5)

The electronic dispersion relation is now given by E±(k) =±|h(k)|. The valence and con-
duction bands, namely E− and E+, simply refer to negative and positive energies respec-
tively.
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The Hamiltonian matrix (1.5) formally reminds us of a spin-1/2 (σσσ ) in a magnetic field
(h) that periodically depends on the momentum. The pseudospin precisely corresponds to
this extra degree of freedom. It directly arises from the existence of the two sublattices and
thus relates to the real space. By analogy with a ’true’ spin-1/2, we can give a geometrical
representation of the vector h on the Bloch sphere, also called the Riemann sphere. Let us
fashion the Hamiltonian matrix this way,

H(k) =±|h(k)|
(

cosφk sinφk e−iθk

sinφkeiθk −cosφk

)
. (1.6)

Defining the angles θk and φk is possible as long as the modulus of the vector h is non-
zero, or, in other words, as long as the two bands E+ and E− remain non-degenerate and
the spectrum gapped. Such a degeneracy concerns the Bloch sphere center (|h| = 0). The
projection of the vector h onto the sphere of radius 1, namely h/|h|, is depicted in Fig. 1.2.
The eigenstates of (1.6) are equivalent to

|ψ+(k)⟩=
1√
2

(
cot φk

2 e−iθk

1

)
, |ψ−(k)⟩=

1√
2

(
cot φk+π

2 e−iθk

1

)
. (1.7)

Their evolution is ruled by Schrödinger or Dirac equations that are linear. So two eigenstates
that differ from each other by a complex constant are equivalent and can be written under
the form (1.7). The state |ψ+⟩ (or equivalently |ψ−⟩) consequently defines an equivalence
class for any eigenstate in the two-dimensional complex Hilbert space H = C2. From
(1.7), every equivalence class is characterised by a complex number z = cot φk

2 e−iθk , which
is actually the stereographic projection of h(k)/|h(k)| onto the complex plan. There exists a

x

φ

ϑ

C

y

z

h
|  |
  ___

h

Fig. 1.2 Geometrical representation of the vector h/|h| on the Bloch sphere and its stereographic
projection onto the complex plane.
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one-to-one correspondence between any points of the Bloch sphere and the complex plane,
except the north pole maps away to the infinity. This is the reason why the projective space
of the Hilbert space C2 is a two-dimensional sphere.

Besides, the evolution of vector h, or equivalently the evolution of z, is crucial when
dealing with the topological properties of such a two-band system [13, 32]. The topological
properties of gapped Hamiltonians will be discussed in the third chapter of this thesis, but we
just mention here the main idea for such a two-band description. As long as there exists an
energy gap in the spectrum (|h| ̸= 0), it is possible to define an integer that counts the number
of times the vector h/|h| wraps the Bloch sphere when the momentum runs over the whole
BZ. This integer gives the number of zero-energy modes that live at a boundary between two
topologically distinct systems, which means two systems characterised by distinct wrapping
numbers. This idea can be generalised to systems described by more than two energy bands,
a case that we will encounter in the third chapter.

Moreover, if we take into account only inter-sublattice processes, then h0 = h3 = 0 and
the system is said to be bipartite. It means the Hamiltonian matrix (1.5) anticommutes with
σ3

{H(k),σ3}= 0 . (1.8)

This defines the so-called sublattice symmetry (SLS), also named chiral symmetry, and re-
quires the vector h/|h| to evolve along the equator of the Bloch sphere (φk = π/2). This
anticommutation relation necessarily implies the PHS, meaning E+(k) =−E−(k). We will
have the opportunity to discuss this symmetry in more detail in the two next chapters. Re-
garding the Bloch eigenstates defined in (1.7), they reduce to

|ψ±(k)⟩=
1√
2

(
1

±eiθk

)
. (1.9)

Of course they cannot wrap the entire Bloch sphere anymore under the SLS, and there is no
interesting topological property in the sense it has been defined above. Nevertheless, topol-
ogy is etymologically defined as the study (’logos’) of surfaces (’topos’). Then one can
similarly consider a one-dimensional closed surface described by k in the BZ, and count the
number of times h/|h| wraps the Bloch sphere equator. Such a consideration actually turns
out to be relevant to explain the zero-energy edge states of graphene [33, 34], as well as the
zero-energy Landau levels [2, 35, 36], whose existence is essentially based on the evolu-
tion of the phase θk along a periodic path in the BZ. This phase also contains information
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about the chiral nature of the low-energy electrons in graphene, which is responsible for the
absence of backscattering in this material [37].

1.2.2 Massless Dirac electrons

To be more specific, let us determine the low-energy band structure of graphene à la Wallace.
First, we consider a tight-binding Hamiltonian that takes into account NN and NNN hopping
processes

H = ∑
⟨i, j⟩

t(a†
i b j +b†

jai)+ ∑
⟨⟨i, j,⟩⟩

t ′(a†
i a j +b†

i b j) , (1.10)

where the indices i and j label the unit cell. The first sum runs over the three NN, while
the second sum runs over the six NNN. The corresponding hopping amplitudes would be
estimated as t ≃ 2.97eV and t ′ ≃ 0.073eV respectively [38].

Before determining the band structure relative to the 2×2 Hamiltonian matrix H(k), a
few remarks are in order. They concern the Fourier transform definitions, or equivalently
the description one chooses for the hexagonal lattice. First, the honeycomb lattice can be
thought of as a triangular Bravais lattice with a diatomic pattern. In that case the Fourier
transform reads

ai =
∫

k∈BZ
eik.Riak , bi =

∫

k∈BZ
eik.Ribk , (1.11)

with Ri a vector of the triangular Bravais lattice corresponding to the unit cell i. Second, the
honeycomb lattice can be described as a superposition of two triangular sublattices A and
B, and

ai =
∫

k∈BZ
eik.RAi ãk , bi =

∫

k∈BZ
eik.RBi b̃k , (1.12)

where RAi and RBi = RAi +δδδ 3 are two vectors specifying the position of the atoms A and
B in unit cell i. Here δδδ 3 denotes the NN vector inside a given unit cell. Consequently,
intra-sublattice processes are equal in both descriptions, whereas inter-sublattice processes
are not. In our case, the NNN hopping process remains unchanged in both descriptions and

h0(k) = 2t ′[cos(k.a1)+ cos(k.a2)+ cos(k.(a1 −a2))] . (1.13)

The NN hopping term however depends on the Fourier transform definition we choose. It
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reads

h1(k)+ ih2(k) = t(1+ eik.a1 + eik.a2) (1.14)

in the first description, whereas it is given by

h1(k)+ ih2(k)→ h̃1(k)+ ih̃2(k) = t(eik.δδδ 1 + eik.δδδ 2 + eik.δδδ 3)

= t(eik.a1 + eik.a2 +1)eik.δδδ 3

= f1(k)eik.δδδ 3 (1.15)

in the second description. Here δδδ i=1,2,3 are the NN vectors. Of course, |h|= |h̃| and the two
descriptions yield the same spectrum. Nevertheless, it turns out that one description can be
more convenient than the other. For example, the first description makes the Hamiltonian
matrix periodic in momentum space, which means H(k+G) = H(k), with G a vector of
the reciprocal lattice. From relation (1.15), it is clear that the Hamiltonian matrix is no
longer periodic in the second representation. Indeed it explicitly takes into account the
relative atomic positions via the NN vectors. For a more detailed discussion about this
representation problem, the reader can refer to [39].

Let us choose the first representation and determine the dispersion relation of graphene.
In the limit t ′ ≪ t, which is a reasonable assumption given the respective values of these
parameters, the bipartite system has a particle-hole symmetric spectrum. The valence and
conduction bands are separated by an energy gap a priori, since E±(k) = ±|h(k)|, but the
spectrum turns out to be degenerate right at the corners of the BZ where the two energy
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Fig. 1.3 Spectrum of the honeycomb lattice (left) and its projection onto the BZ (right) in a nearest-
neighbour tight-binding approximation. The red areas characterise the Dirac cones arising at low-
energy in the two nonequivalent valleys K and K’. The green dashed lines depict the BZ.
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bands touch each other. The two nonequivalent corners of the BZ are defined by

Kξ = ξ
a∗1 −a∗2

3
+m a∗1 +n a∗2, (1.16)

where m and n are two integers. One also speaks about valleys, each one being labeled by a
valley index ξ . Expanding the Hamiltonian matrix in their vicinity leads to

H(Kξ +q)≃ vF

(
0 −ξ qx − iqy

−ξ qx + iqy 0

)
(1.17)

and the energy bands are given by

E±(Kξ +q)≃±vF |q| (1.18)

with vF ≃ 106m.s the Fermi velocity. It means the dispersion relation is conical around
each valley, which describes relativistic fermions. The two nonequivalent Dirac cones are
illustrated by the red areas in Fig. 1.3. In other words, the low-energy modes are described
by massless Dirac equations when expressing the momentum operator in the position repre-
sentation

(
qx(y) →−i∂x(y)

)
in the Hamiltonian matrix (1.17). The Fermi surface of undoped

graphene consists of two Fermi points that correspond to the corners of the BZ. These nodal
points allow one to describe graphene as a two-dimensional semimetal.

1.2.3 Chirality and absence of backscattering

More interestingly, the graphene massless Dirac electrons are also chiral, a property that
directly emanates from the pseudospin, and that is encoded in the phase θk defined in (1.9).
Indeed, the Hamiltonian matrix (1.17) can be re-written as

H(Kξ +q)∼ q.σσσ , (1.19)

where q = (−ξ qx,qy,0). So the matrix H(k) commutes with the chiral operator

C =
q.σσσ
|q| =

(
0 e−iθq

eiθq 0

)
, (1.20)

defined as the projection of the pseudospin onto the momentum. This implies that the chiral-
ity (helicity), given by the eigenvalues of this operator (±1), is a conserved quantity within

a given valley and the pseudospin is either parallel or antiparallel to the momentum. An
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important consequence of the chirality is the absence of backscattering that was already
mentioned in connection with carbon nanotubes in [6], where a rigorous demonstration can
be found, as well as in [40], for the case of a large-scale potential. Here we simply touch
on this effect in a more intuitive way [40], which is sufficient to point out the pseudospin
effects. Consider a weak extended impurity potential V (r).σ0. This does not act on the
pseudospin (σ0) and it does not couple the distinct valleys in momentum space. The first
order Born approximation connects the Fourier transform of this potential to the following
scattering probability

P(q,q′)∼ |V (q′−q)|2
∣∣⟨ψ±(q′)|ψ±(q)⟩

∣∣2

∼ |V (q′−q)|2
∣∣∣1+ eθq−θq′

2

∣∣∣
2
. (1.21)

In the case of backscattering, the incident and outgoing massless Dirac electron wavevectors
satisfy q′ =−q. Additionally, θ−q = θq +π so that the extra term due to the pseudospin in
(1.21) vanishes. The scattering probability is rigorously zero in the case of backscattering
regardless of the impurity potential term V (2q′). In other words, this process requires the
electrons to reverse the direction of propagation, whereas the impurity potential does not
act on the pseudospin, which cannot be modified. This is the reason why backscattering is
totally suppressed in graphene. This effect also enables incoming electrons with a normal
incidence to tunnel as holes through a barrier potential with a transmission probability t = 1,
which is known as Klein tunneling [4, 5, 37].

The case of short-range impurities, which allow inter-valley scattering, is what the next
chapter focuses on. Again, it turns out that the quantum interferences ’suffer’ the conse-
quences of the pseudospin existence and of the backscattering suppression.

1.3 Lifshitz transition

1.3.1 Fermi points protection

Before moving to the scattering problem of localised impurities in two dimensions, we
would like to say a few words about the robustness of the chiral massless Dirac fermions
against perturbations, since they are the source of the striking properties that have been
mentioned so far. Two discrete symmetries [41], namely the time-reversal symmetry (TRS)
and the inversion symmetry, guarantee the robustness of conical points. They respectively
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acts on the Hamiltonian matrix as

T : H(k) = H∗(−k)

I : H(k) = σ1H(−k)σ1 . (1.22)

The time-reversal symmetry requires the dispersion relation to fulfil E(k) = E(−k), which
makes the Dirac cones come in pairs. The inversion symmetry reverses the coordinates in
real space and also exchanges the A and B sublattices. Consider a general Hamiltonian
matrix

H(k) =
3

∑
i=0

hi(k)σi , (1.23)

then the space-time inversion T I implies the mass term h3 to be zero. It means the Dirac
cones are stable with respect to perturbations that would not break any of these two discrete
symmetries. This is the case, for example, when taking into account the NNN hopping pro-
cesses. As already mentioned, such processes are described by the identity operator σ0. This
breaks the SLS and shifts the energy of the Fermi points without opening any energy gap. In
order to open an energy gap, one can for example consider a constant mass term h3(k) = µ .
Such an alternating on-site potential would make the two sublattices nonequivalent, break-
ing the inversion symmetry. This situation arises in the tight-binding description of electrons
in the boron nitride hexagonal lattice. An other way to gap the spectrum consists in breaking
the TRS by adding fluxes to the NNN hopping processes, such that there is no net magnetic
flux in the unit cell. This is the idea of the so-called Haldane model [13]. Since it breaks
the TRS, the Dirac cones, which are not symmetry protected, do not have to come in pairs.

Fig. 1.4 Dispersion relations in the case of the Haldane model (left) and in the case of the boron
nitride (right).
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In the two ±K valleys indeed, the mass term is given by h3(±K) = µ ±3
√

3 t ′ sinφ , where
φ denotes the flux relative to the NNN hopping processes. So there exists a configuration
for which the mass term vanishes in a single valley only, which yields a dispersion relation
with a single Dirac cone (see Fig. 1.4).

Even in the absence of a mass term (h3=0), and without breaking the TRS and the in-
version symmetry, there actually exists another way to open an energy gap in the spectrum.
It comes from the fact that the Dirac points also support a topological characterisation [42].
When the momentum describes a closed path C in momentum space the equivalence class
of the Bloch wavefunctions defined in (1.9) can wind around the Bloch sphere equator. The
winding number W of this mapping characterises nonequivalent paths C that cannot be
continuously deformed into each other. It is related to the Berry phase [12] (right-hand side
term in the equation below) by

2π W (C ) =−i
∮

C
dk ⟨ψ±(k)|∇kψ±(k)⟩

=
∮

C
dk ∇kθk . (1.24)
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Fig. 1.5 Behaviour of the Bloch spinor phase θk in the BZ.
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The topological invariant W cannot change except if the phase θk becomes ill-defined,
which occurs right at the conical points at the corners of the BZ, where the phase ex-
hibits vortices (Fig. 1.5). From the low-energy expansion (1.19), this phase is defined as
θq = arctan(ξ qy/qx) in the valley Kξ , so that the two nonequivalent valleys have opposite
winding numbers and opposite Berry phases. Therefore, the paths Cξ that enclose once the
conical point referring to valley Kξ are topologically equivalent, for they are characterised
by the same invariant W (Cξ ) = ξ . Through this characterisation, the Dirac cones appear
to be topologically protected. Nevertheless, and because the two nonequivalent cones are
characterised by opposite invariants, the interesting situation arises if the two cones merge,
a situation which does not require breaking the TRS and the inversion symmetry. In that
case, the vortex and the anti-vortex in the phase θk annihilate each other, which describes
the absence of Dirac cone in the BZ

(
W (C ) = 0 for any path C

)
. Note finally that such a

merging can only occur at time-reversal invariant points ΓΓΓi (see Fig. 1.1), since they satisfy
E(ΓΓΓi) = E(−ΓΓΓi). Indeed they are defined as ΓΓΓi =−ΓΓΓi +G with G a Bravais lattice vector.
Otherwise, the TRS requires the existence of two conical points in the BZ, as previously
mentioned.

1.3.2 Dirac-cone merging transition

Thus, the Dirac-cone merging offers a third possibility to destroy the Dirac cones, even in
the presence of the TRS and inversion symmetry. The coincidence between the Dirac points
(determined by the band structure) and that of the corners of the BZ (intrinsic to the Bravais
lattice) occurs only when the three NN hopping amplitudes are equal [43]. Let us consider
one of the three NN hopping amplitudes as variable, say the one within the lattice unit cell
defined by the basis vectors a1 and a2 (see Fig. 1.1). This tunable amplitude is denoted t ′

and could simulate a uniform strain applied to the graphene sheet. Fig. 1.6 illustrates the
fact that the two nonequivalent Dirac cones move away from the corners of the BZ when

Fig. 1.6 Dispersion relation for t ′ = t, t ′ = 2t and t ′ = 3t (from left to right).



20 Graphene

varying this tunable parameter. Increasing the amplitude t ′ from t to 2t makes the two Dirac
points merge at momentum ΓΓΓ3. The critical value t ′ = 2t corresponds to the annihilation of
a pair of Dirac points with opposite winding numbers, or equivalently, with opposite Berry
phases. The Dirac cone merging defines a transition between a semimetallic phase and an
insulating one, since a gap opens at ΓΓΓ3 for t ′ > 2t.

This can be shown when expanding the Hamiltonian matrix in the vicinity of this mo-
mentum [44]

H(ΓΓΓ3 +q)≃
(

0 ∆+
q2

x
2m∗ − icyqy

∆+
q2

x
2m∗ + icyqy 0

)
, (1.25)

where cy = 3ta0, 2m∗ = 4
3ta2

0
, and ∆ = t ′− 2t characterises the distance from the transition

and also gives the value of the gap when t ′ > 2t. Exactly at the transition (∆ = 0), the
Hamiltonian exhibits a semi-Dirac energy dispersion [45] such that the spectrum is linear in
qy but quadratic with respect to qx

E±(ΓΓΓ3 +q) =±
√
(cyqy)2 +

(
q2

x
2m∗

)2

. (1.26)

Please note that the critical value of the strain magnitude (t ′ = 2t) is not experimentally
achievable in graphene [46]. However the Dirac-cone merging transition has already been
observed in the context of artificial lattices [47–49]. This transition consisting in the an-
nihilation of the two conical points, and corresponding to a change in the Fermi surface
topology, defines a Lifshitz transition [16], with reference to the work Lifshitz realised to-
gether with Kaganov in relation to the thermodynamical properties of electrons in metals
under pressure.



Chapter 2

Impurity scattering

This chapter mainly discusses Friedel oscillations, or equivalently quantum interferences,
induced by short-range impurities in the local density of states (LDOS). It covers the two-
dimensional cases of nonrelativistic electrons, massless Dirac electrons and semi-Dirac
electrons. The problem is apprehended through a T-matrix approach and simple lattice
considerations. It highlights the possibility to use impurity scattering as a real space probe
of the Dirac-cone merging transition.

2.1 Friedel oscillations in the very beginning

These oscillations were first introduced in the 1950’s by Jacques Friedel in a study of alloys
electronic structure [18]. The principal idea, addressed in that work, concerns the behaviour
of conduction electrons when a localised charge is introduced in an interstitial or substitu-
tional position. This many-body problem cannot be understood neither in a simple Hartree-
Fock approximation (mean field theory), nor in a perturbation theory since the long-range
electron-electron interactions lead to divergences to all orders. It is actually necessary to
take into account the rearrangement of the electron gas, as a response to the usual Coulomb
potential V (q) = e2/q2, where q is a three-dimensional momentum. Such a response is well
described by the following Dyson equation

Ṽ (q,ω) =V (q)+V (q)Π(q,ω)Ṽ (q,ω) , (2.1)

where Ṽ is the renormalised Coulomb interaction. It now depends on the frequency ω , for
there are retardation effects. The lowest diagrammatic expansion of the response function
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Π, sometimes called polarisation operator, leads to the Lindhard function

Π0(q,ω)∼
∫

d3k
f (εk)− f (εk+q)

ω − (εk − εk+q)+ iδ
, (2.2)

where f is the Fermi distribution, ε the free-electron dispersion relation, and the imaginary
part δ is the quasiparticle life-time. This approximation is known as the Random Phase
Approximation (RPA). Then, the static potential is obtained when ω = 0. First, Thomas
and Fermi computed the integral (2.2) in the limit q → 0. It results in the following Yukawa
potential [50]

Ṽ (r)∼ e2

r
e−kDr , (2.3)

where r is the distance to the localised charge added in the electron gas. The exponential
implies that the long-range Coulomb interaction is screened over the characteristic Debye
length 1/kD.

Nevertheless, the Thomas-Fermi approximation is not sufficient. It is a long wavelength
approximation, so it is likely to miss some effects in the electron gas response to the short-
range perturbation. This is what happens indeed, and it can be understood from the integral
(2.2). When ω = 0 in the denominator, there are also divergences, i.e. poles that contribute
to the integral and are missed in the Thomas-Fermi approximation. Such divergences oc-
cur here when εk = −εk+q, which is known as nesting. The nesting provokes instabilities
in the Fermi surface and it is responsible for fundamental phenomena such as the Peierls
transition, charge and spin density waves, as well as BCS superconductivity. As far as
we are concerned, the spectrum is parabolic and two Fermi surfaces locally nest together
with a translational vector q = 2kF , where kF is the Fermi momentum. This gives rise to a
long-range oscillating term, namely

Ṽ (r)∼ cos(2kFr)
r3 . (2.4)

The modulations it induces in the spatial electronic density are precisely the Friedel oscil-
lations. This effect also appears when dealing with spins instead of charges. The electronic
response function to a magnetic impurity exhibits divergences for wavevectors q = 2kF . It
results in an oscillating long-range magnetic interaction that spatially behaves as (2.4) [51].

Therefore, the 2kF oscillations turn out to emanate from a nesting property of Fermi
surfaces, instead of the screening effect that refers to the long-range Coulomb interaction.
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2.2 T-matrix approximation

2.2.1 Diagrammatic formalism

The impurity problem addressed in this thesis deals with non-interacting electrons, in con-
trast with the original Friedel’s work we have just discussed. Nevertheless, it still reveals
Friedel oscillations, i.e. 2kF -wavevector spatial modulations related to a nesting property
of Fermi surfaces. The considered localised impurities are neither charged nor magnetic.
Any of them can be represented by the potential V (r) =V0δ (r) in real space, whose Fourier
transform is only a constant term, V , in momentum space. Besides, the impurity cannot
pump any energy from the electronic background, which describes an elastic scattering. Of
course, impurity scattering does not conserve the momentum. Any incoming electron with
momentum k is scattered away with momentum k′. Fig. 2.1 gives a diagrammatic pertur-
bative representation to all orders in the impurity scattering. It leads to the following Dyson
equation for the T-matrix

T (k1,k2, iω) =V (k1,k2)+
∫

dk′ V (k1,k′)G0(k′, iω)T (k′,k2, iω) (2.5)

where iωn are the Matsubara frequencies. The bare Green’s function is defined from the
Hamiltonian in momentum space by G0(k, iωn) = [iωn −Hk]

−1. Remember that the impu-
rity potential is independent of the momentum, which greatly simplifies the calculation of
the T-matrix. Indeed, it is just a geometric series, so the infinite summation of diagrams can
be performed exactly. It results in

T (iωn) = [1−V
∫

dk′G0(k′, iωn)]
−1V . (2.6)

Fig. 2.1 Diagrammatic perturbative expansion of the generalised Green’s function to all orders in
the impurity potential.
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From Fig. 2.1, it follows that the retarded generalised Green’s function, obtained by analyt-
ical continuation iωn → ω + iδ , reads

G(r1,r2,ω) = G0(r1 − r2,ω)+G0(r1,ω)T (ω)G0(−r2,ω) . (2.7)

When an electron is added to the system at position r2 with a given energy ω , it is likely to
be scattered by the impurity once, twice, ... or not at all. By taking all these possibilities
into account, the generalised Green’s function simply expresses the probability amplitude to
find this electron with the same energy ω (elastic process) at position r1. This function con-
tains information about the spectrum, as well as about a lot of thermodynamical measurable
quantities. The measurable quantity we are interested in here is the local density of states

(LDOS). It gives a spatial representation of the electronic density at a certain energy. We
would like to determine how the LDOS changes in the presence of a localised impurity. On
the right-hand side of equation (2.7), the first term describes how the electrons propagate in
the absence of any impurity, which is not qualitatively relevant. This is the reason why we
define ∆G = G−G0 as the correction to the bare Green’s function. Then, the correction to
the LDOS in real space, due to the impurity, is given by

∆ρ(r,ω) =− 1
π

Im[Tr ∆G(r,r,ω)] . (2.8)

If the quantum interferences arising from elastic scattering can be probed with an atomic-
scale spatial resolution in scanning tunneling microscopy experiments [52], its Fourier trans-
form is meaningful too. The LDOS correction in momentum space can be written as

∆ρ(q,ω) =
i

2π

∫
dk [∆G(k+q,k,ω)−∆G∗(k,k+q,ω)] . (2.9)

2.2.2 Application to graphene

Since there are two nonequivalent atoms per unit cell in graphene, the impurity potential
and the bare Green’s function are 2×2 matrices

V =V0δ (r)
σ0 +σ3

2
, G0 =

(
G0,AA G0,AB

G0,BA G0,BB

)
. (2.10)

The above potential matrix describes an impurity that breaks the symmetry between the two
sublattices by being localised at the origin, on the sublattice A. The discussion is also limited
to a repulsive potential (V0 > 0), but the case of an attractive potential can be retrieved when
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reversing all energy signs. Furthermore, G0 refers to the unperturbed system where the two
sublattices are equivalent, so G0,AA = G0,BB. Now we derive some relations, rather practical
than conceptual, in order to compute the LDOS and its Fourier transform, both numerically
and analytically.

First of all, we establish a connection between the Green’s function defined in the con-
tinuum and the discrete ones defined in terms of the lattice-site coordinates. The Bloch
wavefunctions ψA,k(r) = uA,k(r)eik.r and ψB,k(r) = uB,k(r)eik.r are the eigenstates of the
one-body Hamiltonian. They have the lattice periodicity, since uA,k(r+R) = uA,k(r) with
R a Bravais lattice vector, and the same for uB,k. The fermonic field that creates a π-electron
at a position r referring to the sublattice A in the continuum can be expressed in terms of
these Bloch wavefunctions as

c†
A(r) =

∫

BZ
dk ψ

∗
A,k(r)c

†
A(k)

=
∫

BZ
dk ψ

∗
A,k(r)∑

i
eik.RAic†

A,i

c†
A(r) =∑

i
w∗

A(r−RAi)c
†
A,i , (2.11)

where w denotes the Wannier functions, and RAi a lattice vector corresponding to an atom
A in unit cell i. Besides, the Bloch wavefunctions in a tight-binding approach are given by

ψA,k(r) = ∑
j

φ(r−RA j)eik.RA j , (2.12)

where φ is an atomic orbital centered at RA j. Note that it does not depend on the sublattice
index since graphene is made of carbon atoms only. Relations (2.11) and (2.12) together
lead to wA(r−RAi) = φ(r−RA j) and finally

c†
A(r) =∑

i
φ
∗(r−RA j)c

†
A,i . (2.13)

Of course, the same relation holds on sublattice B when doing the substitution A 7→ B.
Therefore, the Green’s function reads

Gαβ (r1,r2, iωn) =−⟨cβ (r1, iωn)c†
α(r2, iωn)⟩

=∑
i j

φ(r1 −Rβ i)φ
∗(r2 −Rα j)Gαβ (Rβ i,Rαj, iωn) , (2.14)

where α and β are the sublattice indices. Also the thermic average ⟨...⟩ depends on the
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picture chosen for the operators (Heisenberg picture, interaction picture for perturbative
approaches...), so that the above expression holds for both Green’s functions G0 and G.
Under these conditions, the T-matrix reads

T (ω) =
V0

1−V0
∫

BZ G0,AA(k,ω)

(
1 0
0 0

)
, (2.15)

and the LDOS correction in real space is given by

∆ρ(r,ω) =− 1
π

Im
[
Tr ∆G(r,r,ω)

]

=− 1
π

Im
[
∆GAA(r,r,ω)+∆GBB(r,r,ω)

]

=− 1
π

∑
i j

Im
[
φ(r−RAi)φ

∗(r−RA j)∆GAA(RAi,RA j,ω)

+φ(r−RBi)φ
∗(r−RB j)∆GBB(RBi,RB j,ω)

]

=− 1
π

∑
i j

Im
[
φ(r−RAi)φ

∗(r−RA j)G0,AA(RAi,0,ω)TAA(ω)G0,AA(0,RA j,ω)

+φ(r−RBi)φ
∗(r−RB j)G0,BA(RBi,0,ω)TAA(ω)G0,AB(0,RB j,ω)

]

∆ρ(r,ω) =− 1
π

∑
i j

Im
[
φ(r−RAi)φ

∗(r−RA j)G0,AA(RAi,ω)TAA(ω)G0,AA(−RA j,ω)

+φ(r−RBi)φ
∗(r−RB j)G0,BA(RBi,ω)TAA(ω)G0,AB(−RB j,ω)

]
,

(2.16)

where G0,αβ (Rγi,ω) =
∫

BZ dk G0,αβ (k,ω)e−ik.Rγi . The atomic orbitals φ are basically
Gaussian or Lorentz functions for numerical computations. When the characteristic width
of these functions goes to zero, i.e. φ → δ (the Dirac delta function), the Fourier transform
of the LDOS correction on sublattice B reads

∆ρB(q,ω) =− 1
π

∫
dr eiq.rIm

[
∆GBB(r,r,ω)

]

=− 1
2iπ

∫
dr eiq.r

[
∆GBB(r,r,ω)−∆G∗

BB(r,r,ω)
]

=
i

2π

∫
dr eiq.r

∑
i, j

δ (r−RBi)δ (r−RB j)
[
G0,BA(RBi,ω)TAA(ω)G0,AB(−RB j,ω)

−G∗
0,BA(RBi,ω)T ∗

AA(ω)G∗
0,AB(−RB j,ω)

]
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∆ρB(q,ω) =
i

2π
∑

i
eiq.RBi

[
G0,BA(RBi,ω)TAA(ω)G0,AB(−RB,ω) (2.17)

−G∗
0,BA(RBi,ω)T ∗

AA(ω)G∗
0,AB(−RBi,ω)

]

=
i

2π

∫

BZ
dk
[
G0,BA(k+q,ω)TAA(ω)G0,AB(k,ω)−G∗

0,BA(k+q,ω)T ∗
AA(ω)G∗

0,AB(k,ω)
]

Note that the momentum q is not restricted to the BZ. Finally, the LDOS correction due to
sublatice A is obtained in the same way when doing the substitution B → A

∆ρA(q,ω) =
i

2π

∫

BZ
dk
[
G0,AA(k+q,ω)TAA(ω)G0,AA(k,ω)−G∗

0,AA(k+q,ω)T ∗
AA(ω)G∗

0,AA(k,ω)
]

(2.18)

2.3 Nonrelativistic electron gas

2.3.1 Free electrons Green’s function

Before studying the LDOS modulations induced by short-range potentials in graphene, we
first study the usual case of a two-dimensional nonrelativistic electron gas. Although the
results discussed in this chapter can essentially be found in the literature, the computational
work they involve is not mentioned generally. For this reason we pay a careful attention
to their establishment. In the case of a conventional electron gas, a parabolic spectrum
describes the free particles, ε(q) ∼ q2, where q labels the modulus of a two-dimensional
momentum q . In real space, the corresponding unperturbed Green’s function is given by

G0(r,Ω) =
∫

R2

dq
(2π)2

eiq.r

Ω−q2 . (2.19)

We define Ω = ω2, for more convenience. It does not prevent Ω (resp. ω) from being
negative (resp. imaginary). Using the following integral representation of the first kind
Bessel’s function J0

J0(qr) =
1

2π

∫ 2π

0
dθeiqr cosθ =

2
π

∫ +∞

1
du

sin(qru)√
u2 −1

, (2.20)

the unperturbed propagator can be rewritten as

G0(r,ω) =
1

π2

∫ +∞

1

du√
u2 −1

∫ +∞

0
dq

qsin(qru)
ω2 −q2 . (2.21)
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The second integral, which runs for an even function of q, is performed after being decom-
posed in partial fractions

1
2

∫ +∞

−∞

dq
qsin(qru)
ω2 −q2 =

1
i8ω

∫ +∞

−∞

[qeiqru

ω +q
+

qeiqru

ω −q
− qe−iqru

ω +q
− qe−iqru

ω −q

]
dq . (2.22)

The sine function has been expressed in terms of exponentials in order to apply Jordan’s
Lemma. Indeed, when computing the two first integrals on the right-hand side of equation
(2.22), we can use the complex-plane paths depicted in Fig. 2.2, where the origin-centered
contour C+ (remember that ur > 0) gives a zero contribution. The Γ contour around the
singularity leads to the following principal value

⟨p.v.
[ 1

ω ±q

]
|qeiqru⟩=−iπωe∓iωru , (2.23)

where we use the bra-ket Dirac’s notation for distributions. Via the Kramers-Kronig relation,

∫ +∞

−∞

qeiqru

ω +q
=⟨p.v.

[ 1
ω ±q

]
|qeiqru⟩− iπ⟨δ∓ω |qeiqru⟩

=− iπωe∓iωru ± iπωe∓iωru . (2.24)

Proceeding in the same way for the two last integrals in (2.22), with the origin-centered
contour C−, yields the following result

1
2

∫ +∞

−∞

dq
qsin(qru)
ω2 −q2 =−π

2
eiωru , (2.25)

so that the unperturbed Green’s function in real space reads

G0(r,Ω) =− 1
2π

∫ +∞

1
du

eiωru
√

u2 −1
=

1
4i

H(1)
0 (

√
Ω r) , (2.26)

��[�] ±ω 

�+ 

�− 

� 

Fig. 2.2 Contour integral
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where H(1) refers to the Hankel’s function, i.e. a Bessel’s function of the third kind. Re-
member that Bessel’s functions naturally appear in cylindrical (spherical) coordinate sys-
tems dealing with propagating waves, like the ones described by the radial Schrödinger
equation. Note also that one could have added equivalently an infinitely small imaginary
part to the poles ±ω in (2.22) to make them leave the real axis and then get the same result
without using the distribution formalism.

2.3.2 Friedel oscillations

As we are interested in the LDOS large-distance oscillations, we look for a series expansion
of the unperturbed Green’s function for large values of r. Besides, we consider Hankel’s
functions for any index ν , not necessarily ν = 0. This will become useful in the next sec-
tions. Such functions can be defined by the following integral representation

H(1)
ν (ωr) =

Γ(1
2 −ν)

iπΓ(1
2)

(
ωr
2

)ν
∫

CH

dzeiωrz(z2 −1)ν−1/2 , (2.27)

where CH is the Hankel contour depicted in Fig. 2.3. This contour was first introduced by
the German mathematician Hermann Hankel in his investigations of the Gamma function
[53]. When changing the integration contour by z = 1+ iz̃, which means translating CH by
−1 and then rotating it through an angle −π/2 about the origin, the two branch points move
to 0 and 2i respectively. The integral running over the new contour yields

H(1)
ν (ωr) =

√
2

iπ
Γ(1

2 −ν)

Γ(1
2)

(ωr)νei(ωr+ν
π

2 +
π

4 )
∫ +∞

0
dt

e−ωrt

t−ν+ 1
2 (1+ it

2 )
−ν+ 1

2
. (2.28)

At present, this integral converges for values of ν such that Re(ν)>−1/2. We also recog-
nise the Laplace transform of function tν− 1

2 (1+ it
2 )

ν− 1
2 . Based on Watson’s lemma, a series

+1-1

Fig. 2.3 Hankel contour representation in the complex plane.
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expansion of this term for ωr ≫ 1 leads to

H(1)
ν (ωr) =

√
2

iπ
Γ(1

2 −ν)

Γ(1
2)

(ωr)νei(ωr+ν
π

2 +
π

4 )
∫ +∞

0
dte−ωrttν− 1

2

+∞

∑
n=0

(
ν − 1

2

n

)( it
2

)n

=

√
2

iπ
Γ(1

2 −ν)

Γ(1
2)

(ωr)νei(ωr+ν
π

2 +
π

4 )
+∞

∑
n=0

Γ(1
2 +ν)

Γ(n+1)Γ(ν + 1
2 −n)

( i
2

)n ∫ +∞

0
dte−ωrttν− 1

2

=

√
2

iπ
Γ(1

2 −ν)

Γ(1
2)

(ωr)νei(ωr+ν
π

2 +
π

4 )
+∞

∑
n=0

Γ(1
2 +ν)Γ(ν + 1

2 +n)

Γ(n+1)Γ(ν + 1
2 −n)

( i
2

)n
(ωr)−ν− 1

2−n

=

√
2

iπ
Γ(1

2 −ν)Γ(1
2 +ν)

Γ(1
2)

ei(ωr+ν
π

2 +
π

4 )√
ωr

+∞

∑
n=0

Γ(ν + 1
2 +n)

n!Γ(ν + 1
2 −n)

( i
2ωr

)n

H(1)
ν (ωr) =

√
2

πωr
ei(ωr−ν

π

2 − π

4 )
+∞

∑
n=0

Γ(ν + 1
2 +n)

n!Γ(ν + 1
2 −n)

( i
2ωr

)n
. (2.29)

The method to get this expansion is quite tedious, but the result is going to be very useful all
along the present chapter. Coming back to the non-relativistic electron gas, the free electron
Green’s function at large distances is well approximated by

G0(r,Ω)∼ei(
√

Ωr− 3π

4 )

√
r

. (2.30)

From its definition (2.19), it is clear that this propagator is an even function of r and satis-
fies G0(r,Ω) = G0(−r,Ω). Actually this propagator is simply a function of |r| (rotational
invariance). The correction to the bare Green’s function is

∆G(r,r,Ω) = G0(r,Ω)T (Ω)G0(−r,Ω)∼ T (Ω)

r
ei(2

√
Ωr+ π

2 ) . (2.31)

Moreover, in the impurity problem we are considering, the T-matrix does not depend on
the position. So it will not modify the long-wavelength oscillations decay generated in the
LDOS. Thus, we only consider the limit of a small impurity potential for simplicity. To first
approximation, the LDOS correction defined in (2.8) behaves as

∆ρ(r,Ω)∼V0
cos(2

√
Ωr)√

Ωr
. (2.32)

This is the result Adhikari has already discussed in a careful analysis of the impurity prob-
lem for nonrelativistic electrons in two dimensions [54]. Therefore, a localised defect in-
duces Friedel oscillations with a wavevector q = 2kF in the LDOS. Indeed, the nonrelativis-
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tic electron energy is given by ΩF ∼ k2
F at the Fermi level. On top of that, these Friedel

oscillations decay algebraically, as the inverse of the distance to the impurity.

The quantum interferences, induced by step edges and point defects in the LDOS, have
already been observed at the Cu(111) surface [55], and the Au(111) surface [56] using scan-
ning tunneling microscopy (STM). This technique, developed by the 1986 Nobel laureates
G. Binnig and H. Rohrer [52], is based on the concept of quantum tunneling. When varying
the bias between a conducting tip and a metallic surface, it enables the electrons to tunnel
through the vacuum. The measurement of the conductance leads to the electronic density as
a function of the energy (LDOS). Although the specific features of the Friedel oscillations
can be obtained via this technique, it is useful to perform their Fourier transform too. Let us
see how they manifest themselves in momentum space by computing the Fourier transform
of the interference term (2.32)

∆ρ(q,ω) =
∫

R2
dr

cos(2ωr)e−iq.r

ωr

=
π

ω
lim
ε→0

∫ +∞

0
dr J0(qr)[e−(ε−i2ω)r + e−(ε+i2ω)r] , (2.33)

where the integral has been regularised by ε > 0. In the above expression, we recognise the
Laplace transform of the Bessel function J0. It is defined by

L[J0](p) =
∫ +∞

0
dx J0(x)e−px . (2.34)

Since J0 satisfies the Bessel equation xJ′′0 (x) + J′0(x) + xJ0(x) = 0, its Laplace transform
verifies the differential equation (1+ p2)L′(p)+ pL(p) = 0, whose solution is nothing but

L(p) = A/(1+ p2)1/2 . (2.35)

The constant A is obtained by remarking that, on the one hand lim
p→0

L[J′0] = 0, and on the

other hand lim
p→0

L[J′0] = pL[J0](p)− J0(0) = A− 1. So A = 1, and the Fourier transform in

(2.33) is rewritten as

∆ρ(q,ω) =
π

ωq

[ 1√
1−
(2ω

q

)2
+

1√
1−
(2ω

q

)2

]

=
2π

ω

θ(q−2ω)√
q2 −4ω2

(2.36)
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Fig. 2.4 LDOS correction for the square lattice (right) and its Fourier transform (left) in the
parabolic-band approximation (top, Ω = 0.20t) and at the Van Hove singularity energy (bottom,
Ω = 4.00t). The white dashed lines depict the Brillouin zone.

It finally reads

∆ρ(q,Ω) =
2π√

Ω

θ(q−2
√

Ω)√
q2 −4Ω

. (2.37)

The Heaviside step function means that their is no intensity for wavevectors whose modu-
lus is smaller than 2kF . The intensity diverges for wavevectors satisfying q = 2kF , before
vanishing for larger momenta. Thus, the 1/r decaying long-range modulations the impurity
induces should manifest themselves through an empty 2kF -radius circle in the reciprocal
space.

In order to illustrate this point, we numerically compute the LDOS and its Fourier trans-
form in the case of a square lattice with a localised impurity. They are depicted in Fig. 2.4.
The first row corresponds to the parabolic-band approximation we have discussed so far,
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Fig. 2.5 Constant-energy contours of the square-lattice spectrum in the first Brillouin zone and
nesting vectors. The rotated square line outlines the constant zero-energy contour that corresponds
to the Van Hove singularity in the density of states.

while the second row refers to the Van Hove singularity that occurs at half-filling for the
tight-binding model on the square lattice. The impurity is located at the real space origin.

At low energy, i.e. Ω = 0.2t where t is the nearest-neighbour amplitude, the Fourier
transform of the LDOS correction shows a high-intensity circle in red, within the first Bril-
louin zone. Other circles are just replicas relative to reciprocal lattice vectors. This feature
is in agreement with the analytical prediction (2.37). More generally, any elastic scattering
between two states k and k′ yields spatial modulations with wavevector q = k′− k. The
scattering probability depends on the curvature of the constant-energy contour defined by
the Fermi surface. It is particularly efficient for good nesting vectors, namely wavevectors
satisfying q = 2kF in our case [56, 57]. In the parabolic-band approximation, the Fermi
surface is circular. The nesting vectors are then defined by k′ =−k, which corresponds to a
backscattering process. Such a wavevector, namely Q3, is depicted in Fig. 2.5 for a circular
constant-energy contour. By isotropy, one easily realises that the orientation of vector Q3

does not matter, which explains the high-intensity circles in the LDOS Fourier transform in
Fig. 2.4.

At the Van Hove singularity however, the topology of the Fermi surface changes and
the constant-energy contour is a square. There are four efficient scattering wavevectors that
connect two opposite edges of this square. It concerns the nesting vectors ±Q1 and ±Q2

in Fig. 2.5. This is what the four high-intensity areas, which are located at the corners of
the Brillouin zone, describe in Fig. 2.4. So the scattering in real space is predominant with
respect to these four nesting vectors.
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Not only the STM spectroscopy measurement is a local probe of the electronic density
even in the presence of defects, but it also reveals the constant-energy contours in momen-
tum space via the nesting vectors. The electronic filling does not matter for such a technique,
since it is able to probe both the empty states (above the Fermi sea) when injecting electrons
and the occupied states (below the Fermi sea) when injecting holes. In the two following
sections, we will see that STM experiments can also probe the chirality of electrons, namely
the projection of the pseudospin on the momentum direction.

2.4 Chiral massless Dirac electrons

2.4.1 Scanning tunneling microscopy analysis

The constant-energy contours that describe massless Dirac electrons in graphene are also
circular. They are depicted by the black dashed lines in Fig. 2.6 and refer to the Dirac cones
located at the corners of the hexagonal Brillouin zone. Thus, there are two nonequivalent
circular Fermi surfaces, one per valley. Consequently, the scattering may take place within
a given valley, and one speaks of intravalley scattering, but it may also occur between two
distinct valleys. Indeed, the presence of a short-range impurity yields a large potential in
momentum space, so that it can couple two momenta that are far apart. In such a case, one
speaks of intervalley scattering.

Whatever it is, backscattering should be the more efficient process again, due to the cir-
cular shape of the constant-energy contours. Therefore, the Friedel oscillations generated by
a point defect should exhibit a 1/r algebraic decay, as they do in the case of a nonrelativis-
tic electron gas. However, this is not what is observed in STM experiments [58, 59]. We
numerically compute the LDOS as well as its Fourier transform, whose two-dimensional
patterns are presented in Fig 2.7. This is an illustration of what is experimentally obtained.
In the conical approximation (ω = 0.15t), the LDOS have a three-fold symmetry with re-
spect to the defect which is located at the origin, on the sublattice A. It appears that the
electrons are mainly localised on the sublattice B, which corresponds to the red areas in the
figure. First, we rather focus on the Fourier transform of the LDOS correction.

On the one hand, let us identify the modulations induced by intervalley scattering. From
Fig. 2.6, there are six distinct vectors that couple two nearest-neighbour valleys, among
which vectors ±Q4. Together, the six vectors should lead to six 2kF -radius circles located at
the corners of the hexagonal Brillouin zone, delimited by the white dashed lines in the figure.
This is what happens in Fig 2.7, except that the rotational symmetry is broken resulting in
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Fig. 2.6 Constant-energy contours of the graphene spectrum and good nesting vectors. The nesting
vector Q4 connects constant low-energy contours of two non-equivalent valleys, whereas the nesting
vector Q3 refers to a the constant low-energy contour within a single valley. The nesting vectors Q5
and Q6 describes scattering processes at the Van Hove singularity energy (ω = t).

circular arcs only. The reason why it is broken is given later on. But at least, the 2kF -radius
circular arcs are the manifestation of the intervalley backscattering efficiency.

On the other hand, intravalley scattering occurs within any single valley. Its manifesta-
tion is then expected for small momenta. Based on Fig 2.7 there is an intensity modulation
around the zero momentum. It corresponds to the red central disk around the zero mo-
mentum. This is in opposition to the intervalley scattering and the nonrelativistic electrons
cases. Note that the replicas of intravalley scattering, which are associated to reciprocal
lattice vectors and lie at the edges of the plot, lead to empty circles. The explanation based
on an analytical computation of the Friedel oscillations will be given later.

This discrepancy between intravalley and intervalley scattering means that the shape of
the Fermi surfaces is not sufficient to give a qualitative picture of the impurity scattering
in graphene. The issue actually relies on the pseudospin, this extra degree of freedom that
refers to the two sublattices A and B in the real space. As mentioned in Chapter 1, chiral
Dirac electrons propagating in opposite directions, as it should be for backscattering, must
have opposite pseudospin within a given valley, for their chirality is a conserved quantity.
Then the overlap between the incoming and outgoing wavefunctions should be zero. This is
what happens in the presence of long-range disorder, which does not couple the two distinct
valleys and entirely suppresses the backscattering process [6].

Before studying the Friedel oscillations in more details, we qualitatively discuss what
happens when focusing right at the Van Hove singularity energy. The Fermi surface is now
hexagonal. As illustrated in Fig. 2.6, there are six good nesting vectors that couple two
opposite edges of the hexagonal contour, among which ±Q5. They are the wavevectors that
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lead to the red areas in reciprocal space in Fig 2.7. In real space, the quantum interferences
are well marked with respect to these six wavevectors. There are also nesting vectors that
couple two states along the same edge of the hexagonal contour, like ±Q6 in Fig. 2.6.
The modulus of these vectors is allowed to vary along the constant energy contour. This is
the reason why there is a star-shape modulation around the zero momentum sin the LDOS
Fourier transform (see Fig. 2.7).
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Fig. 2.7 LDOS correction (right) and its Fourier transform (left) for Dirac fermions in the honey-
comb lattice (top, ω = 0.15t) and at the Van Hove singularities (bottom, ω = 1.00t). The white
dashed lines depict the Brillouin zone.
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2.4.2 Friedel oscillations

To determine accurately the role played by the graphene pseudospin, we describe the impu-
rity problem in terms of the T-matrix. The low-energy Hamiltonian matrix

H(Km +q)≃ vF

(
0 q fm(q)

q f ∗m(q) 0

)
(2.38)

describes graphene Dirac electrons in the valley Km, where m labels any of the six valleys in
the first Brillouin zone. Here fm(q) = q.Jm/q is a simple phase factor, since Jm are complex
unit vectors [60]. Such fermions correspond to the following eigenstates in momentum
space

ψm,±(q) =

(
1

± fm(q)

)
, (2.39)

The function fm is the phase factor responsible for the absence of backscattering in graphene.
Remember that fm(−q) = − fm(q) requires ψ

†
m,±(−q)ψm,±(q) = 0, which means that the

overlap between two counter propagating waves referring to the same valley m is rigorously
null. The unperturbed Green’s function introduced in (2.10) is a 2× 2 matrix and can be
written as

G0(r,ω) =
∫ dq

(2π)2
eiq.r

ω2 −q2

(
ω q fm(q)

q f ∗m(q) ω

)
. (2.40)

In the above expression, ω refers to the energy, whereas it was Ω = ω2 that denoted the
energy in the non-relativistic electrons problem. Two kinds of integrals have to be computed
when looking for a large-distance expression of the bare Green’s function. The first one
corresponds to the diagonal components of matrix (2.40). It has already been seen in the
definition (2.19), and results in

G0,AA(r,ω) =
ω

4i
H(1)

0 (ωr) . (2.41)

The second integral, which have to be computed, corresponds to the off-diagonal component
of matrix (2.40). It turns out that

G0,AB(r,ω) =
∫ dq

(2π)2 (Jm,xqx + Jm,yqy)
eiq.r

ω2 −q2
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G0,AB(r,ω) =(−i)
[
Jm,x∂x + Jm,y∂y

]∫ dq
(2π)2

eiq.r

ω2 −q2

=− ω

4

[Jm,xx+ Jm,yy√
x2 + y2

]
∂H(1)

0 (ω
√

x2 + y2)

G0,AB(r,ω) =
ω

4
fm(r) H(1)

1 (ωr) , (2.42)

where fm is the phase factor introduced in (2.39), except that we will use from now on its
real space form. Thus, the 2×2 unperturbed Green’s function becomes

G0(r,ω) =
ω

4

(
−iH(1)

0 (ωr) fm(r)H
(1)
1 (ωr)

f ∗m(r)H
(1)
1 (ωr) −iH(1)

0 (ωr)

)
. (2.43)

Based on the expansion (2.29), a first order approximation leads to

∆ρA(r,ω)≃ i
8π

T (ω) ei2ωr+i(Km−Kn).r ω

r

[
1+

Γ(3
2)

Γ(−1
2)

i
2ωr

+ ...
]

∆ρB(r,ω)≃ i
8π

T (ω) ei2ωr+i(Km−Kn).r ω

r
f ∗m(r) fn(−r)

[
1+

Γ(5
2)

Γ(1
2)

i
2ωr

+ ...
]
,

(2.44)

where T is the only non-zero T-matrix component. The momenta Km and Kn correspond to
two valleys in momentum space.

In the case of intervalley scattering (m ̸= n) a localised impurity induces long-range os-
cillations in the LDOS that decay as 1/r on both sublattices [60]. The total LDOS averaged
on the unit cell exhibits the same algebraic decay

∆ρ(r,ω)∼ cos(2ωr)
r

. (2.45)

The Friedel oscillations induced by intervalley scattering in graphene decay with the same
algebraic law as in a nonrelativistic electron gas (2.32). In momentum space, we have
pointed out in (2.37) that these oscillations generate high-intensity empty circles. We remind
here their expression in momentum space

∆ρ(q,ω)∼ θ(q−2
√

Ω)√
Ωq2 −4Ω2

. (2.46)

Again, the 2kF oscillations are predominant, which is an evidence of the backscattering
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efficiency. Coming back to the STM experiments whose Fourier transform is illustrated in
Fig. 2.7, two kinds of intervalley scattering can be distinguished. First, the circular arcs
at the corners of the Brillouin zone (white dashed lines) result from scattering processes
between two nonequivalent valleys for which f ∗m(r) fn(−r) is a function of r, which breaks
the rotational symmetry as explained in [60]. Second, the empty circles at the plot edges
result from a scattering occurring between two neighbouring equivalent valleys that are
consequently coupled by reciprocal lattice vectors. This refers to an Umklapp process. In
this case, f ∗m(r) fn(−r) is just a phase factor independent of the vector r and the rotational
invariance is preserved [60].

In the case of intravalley scattering (m = n), the LDOS is still given by (2.44) at large
distances. Thus, one could still expect backscattering to be the predominant process, with
modulations wavevectors q = 2kF . As previously mentioned, this is not what is observed in
STM experiments. Because m= n now, the following situation arises f ∗m(r) fm(−r) =−1. It
means that the two sublattice contributions given in (2.44) are in antiphase, and they cancel
each other when averaging on the unit cell. The long-range oscillations are obtained from
the next leading order, which leads to

∆ρ(r,ω)∼ sin(2ωr)
r2 . (2.47)

Due to the pseudospin induced phase factor fm(r), the Friedel oscillations are strongly re-
duced to a 1/r2 decay, in the case of intravalley scattering [17, 61, 62]. This can be inter-
preted as a chirality effect of the graphene Dirac electrons, which requires the pseudospin to
be either parallel or antiparallel to the momentum within a given valley. This is a fundamen-
tal discrepancy with intervalley-scattering-induced modulations that decay as 1/r, similarly
to the case of a conventional electron gas.

Concerning the Friedel oscillations in momentum space, they are given by

∆ρ(q,ω) =
∫

dr
sin(2ωr)

r2 e−iq.r

∼ π

2
θ(2ω −q)+ arcsin

(2ω

q

)
θ(q−2ω) , (2.48)

where we have used the fact that the Fourier transform of the cardinal sine function is the
rectangular function. This leads to a filled circle of high intensity in momentum space for
wavevectors satisfying q < 2kF (ω ∼ k). It explains the red-filled circular area around q = 0
in the LDOS Fourier transform illustrated in Fig. 2.7. The chirality of massless Dirac elec-
trons, by forbidding the intravalley backscattering, strongly reduces the 2kF modulations. It
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means that STM can also be used to probe the chiral nature of massless Dirac fermions.

2.5 Semi-Dirac electrons at the Lifshitz transition

2.5.1 Friedel oscillations

In the above sections, we have shown that the impurity scattering is usually most efficient
for wave vectors satisfying q = 2kF , meaning backscattering is generally the predominant
process. In graphene, the chirality within a given Dirac cone strongly affects this and the
Friedel oscillations. In what follows, we would like to focus on the case of the Dirac merg-
ing transition. As explained in Chapter 1, it is possible to make the two-nonequivalent Dirac
cones move away from the corners of the BZ by applying a uniform strain onto the graphene
sheet [43]. For a critical value of the strain magnitude, which is not experimentally achiev-
able in graphene [46], the two cones merge into a single one, defining a Lifshitz transition
[16]. At low energy, the dispersion relation close to this valley is given by

ε±(q) =±
√

(cyqy)2 +

(
q2

x
2m∗

)2

, (2.49)

where cy is a characteristic velocity and m∗ plays the role of renormalised mass. Ex-
actly at the transition, the dispersion relation is said to be semi-Dirac, for it is linear in
qy but quadratic with respect to qx. The constant-energy contours have an elliptical shape
at low energy, as depicted by the black dashed lines in Fig. 2.8. By analogy with the
conical-dispersion case studied above, the linearity along qy requires the pseudospin to be
either parallel or antiparallel to the momentum. The phase of the spinor Bloch eigenstates
ψ±(q) = (1,±eiθq) satisfies θ−qy = θqy + π . Note it only occurs for momenta satisfying
qx = 0, but one expects it to affect the Friedel oscillations. To check this, we start from the
low-energy expansion of the Hamiltonian matrix [45]

H(q)≃
(

0 q2
x

2m∗ − icyqy
q2

x
2m∗ + icyqy 0

)
. (2.50)

The unperturbed Green’s function is given by

G0(x,y,ω) =
∫ dq

(2π)2
eixqxeiyqy

ω2 −q2
y −q4

x

(
ω q2

x − iqy

q2
x + iqy ω

)
, (2.51)
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where we have defined new variables, so that cy and m∗ are now hidden inside the coordi-
nates of the vector r. The diagonal integrals yields

G0,AA(x,y,ω) =−iω
∫

∞

0
dαeiαω2

∫ dqx

2π
eixqx−iαq4

x

∫ dqy

2π
eiyqy−iαq2

y , (2.52)

where we have exponentiated the denominator by introducing an additional integral running
over α . For x = 0 it yields

G0
AA(0,y,ω)≃ 2−5/2

Γ(1/4)ω3/4y1/4H(1)
− 1

4
(ωy) . (2.53)

In a similar way we get

G0
AB(0,y,ω)≃ F2−3/4

Γ(3/4)ω1/4y−1/4H(1)
1/4(ωy)

± iF2−5/4
Γ(1/4)ω3/4y1/4H(1)

3/4(ωy)

G0
BA(0,y,ω) = F̄2−3/4

Γ(3/4)ω1/4y−1/4H(1)
1/4(ωy)

± iF̄2−5/4
Γ(1/4)ω3/4y1/4H(1)

3/4(ωy) . (2.54)

Note that on the right-hand-side of the above formulae we have chosen to denote the abso-
lute value |y| simply by y. Moreover, the ± signs correspond to a positive and respectively
negative value for y. And F is just a phase factor. Now we turn back to the Friedel Oscilla-
tions and evaluate the corrections to the LDOS using the above expressions for the Green’s
function components. The results are presented in Fig. 2.9. We compare these results to a
full evaluation of the T-matrix (without making the low-energy expansion), as well as with
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Fig. 2.8 Constant-energy contours at the Lifshitz transition.
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Fig. 2.9 LDOS correction as a function of position in the vicinity of the impurity right at the Lifshitz
transitions. The second line presents a series of zooms-in of the plots outlined on the first line. In
the first column we compare ∆ρ obtained using the full T-matrix approximation to the one obtained
by the tight-binding method for an energy ω = −0.20t. Note that, consistent to the low energy
expansion given by Eq. (2.55), the Friedel oscillations are dephased by π between the two sublattices.
The second column presents a comparison between the correction to the LDOS ∆ρ along the x = 0
direction obtained by the full T-matrix approximation (full lines) and by the low energy expansion
(dotted lines) for ω =−0.20t. In blue we plot the LDOS on the A sublattice comprising the impurity
(y = 0) whereas in green the LDOS on the B sublattice. In the third column we plot the LDOS along
the y = 0 direction obtained by the full T-matrix approximation for ω = −0.20t. The blue curve
is obtained using the full T-matrix approximation while the black one is obtained in the continuum
approximation.

results obtained using the tight-binding method. As it can be seen in Fig. 2.9 all methods
yield very similar results, which confirms their accuracy for this type of calculation. We also
note that the LDOS correction is asymmetric between the positive and negative values of y

on the B sublattice, whereas it is symmetric on the A sublattice. To obtain the asymptotic
expansion of the Friedel oscillations we expand the Hankel functions for large values of ωy.
Based on expansion (2.29), we get

∆ρA(0,y,ω)∼ cos(2ωy+π)√
y

∆ρB(0,y,ω)∼ cos(2ωy)√
y

(2.55)
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Fig. 2.10 LDOS (right) and its Fourier transform (left) for semi-Dirac electrons (ω = 0.15t).

The resulting Friedel oscillations decay as 1/
√

y at large distances on both sublattices [19],
slower than the typical inverse decay for a regular two-dimensional system, however their
period is still proportional to 1/ω . When summing the contribution of the two sublattices,
the terms in y−1/2, which are dephased by a factor of π , vanish. The Friedel oscillations are
then described by the next leading correction which is non-zero only on the B sublattice

∆ρ(0,y,ω)∼∓1
y

cos
(2ωy

cy
+

π

4

)
. (2.56)

Here the minus/plus signs correspond to positive and respectively negative values of y. The
long wavelength oscillations thus decay following the usual 1/y law, different from the 1/r2

law corresponding to the intra-nodal scattering in typical graphene. Thus the transition from
the 1/r2 decay to a 1/r decay in the low-energy FO provides a real-space signature of the
Dirac points merging.

The Friedel oscillations along the perpendicular direction (y = 0) cannot be evaluated
analytically, however in the third column of Fig. 2.9 we plot the dependence of the Friedel
oscillations as a function of x for y = 0. Note that the amplitude of the oscillations is greatly
reduced with respect of the oscillations in the y direction. Besides, the total LDOS correction
∆ρ and its momentum dependence are plotted in Fig. 2.10. In momentum space the outer
regions, which were circular arcs in Fig. 2.7, have disappeared at the merging transition
for which internodal quasiparticle scattering no longer exists. Moreover, we note that the
features corresponding to intranodal scattering, centered on the sites of the reciprocal lattice
are strongly anisotropic, corresponding to the low-energy anisotropic semi-Dirac spectrum.
Regarding the LDOS correction, the modulations are much more pronounced at the position
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right under the impurity site. This is depicted by the red dots. Note also that the three fold
symmetry is broken by the uniform strain.

Finally, we would like to point out an interesting situation that occurs when considering
the limit of an infinite impurity potential. As explained in the next section, such an impurity
generates a zero-energy state. It can be described when using the relation

H(1)
−1/4 = J−1/4 − i

cos(π/4)J−1/4 − J1/4

sin(π/4)
(2.57)

and considering the limit ω → 0 in (2.53) and (2.54), instead of the ωr ≫ 1 limit we have
considered to calculate the form of the Friedel oscillations. The LDOS turns out to be zero
on the sublattice A, whereas it behaves in the following manner on the sublattice B

ρB(0,y,ω → 0)∼ θ(−y)
y

. (2.58)

While there is no electronic weight on the entire sublattice A, the Heaviside step function
means that there is no electronic weight on the sublattice B for all the positive values of y.
The explanation of this peculiar behaviour is given in the last chapter section through simple
lattice considerations.

2.5.2 Beyond the merging transition

So far, the physics beyond the merging transition has not been explored. In such a gapped
phase the spectrum is quadratic in both directions, although anisotropic

ε±(q) =±
(

∆+
q2

x
2m∗ +

c2
yq2

y

2∆

)
, (2.59)

where 2∆= t ′−2t is the energy gap beyond the merging. Defining X = xm∗/∆ and Y = y/cy

so that R = (X ,Y ), and using expansion (2.29), the LDOS correction for electrons in the
valence or conduction bands (ω2 > ∆2) can be written as

∆ρA(R,ω)∼ ω

R
cos
(

2
√

ω2 −∆2R
)

∆ρB(R,ω)∼ ∆2

R
cos
(

2
√

ω2 −∆2R
)
. (2.60)

Note that the Friedel oscillations decay as 1/R on both sublattices, typical of a usual bidi-
mensional electron gas.
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Besides, when ω2 < ∆2, expansion (2.29) holds with ω → iω , so that the LDOS decays
exponentially

∆ρA(R,ω)∼ ω

R
e−2

√
∆2−ω2R

∆ρB(R,ω)∼ ∆2

R
e−2

√
∆2−ω2R . (2.61)

To conclude, the long-wavelength modulations are reduced to a 1/r2 decay, as long as
there exist chiral massless Dirac electrons, which typically refers to the semimetallic phase.
Right at the Lifshitz transition, the two nonequivalent Dirac cones merge into a semi-Dirac
spectrum. The massless electrons remain chiral along one direction. In this case, we recover
the usual 1/r decay for the long-wavelength oscillations, although 1/

√
r decaying modu-

lations do exist on both sublattices. Beyond the Lifshitz transition, the gapped spectrum,
which define an insulating phase, is parabolic and we recover the conventional 1/r decay-
ing modulations. Thus the Friedel oscillations induced by point defects reveal the nature
(mass, chirality, ...) of the electrons in the system, and can be used as a real space signature
for the Dirac-cone merging transition.

The table below qualitatively summarises the spatial decay of the Friedel oscillations as
a function of the sublattice and the dispersion relation.

Dispersion relation conical semi-conical (along ky) parabolic
ρA 1/r 1/

√
y 1/r

ρB 1/r 1/
√

y 1/r
ρA +ρB 1/r2 1/y 1/r

2.6 Vacancies as resonant scatterers

2.6.1 Low-energy resonances

From the T-matrix expression (2.15), the impurity induces resonances in the LDOS when

1−V0G0,AA(0,ω) = 0 . (2.62)

This condition leads to virtual bound states, namely localised states that hybridise with a
continuum of delocalised states [63]. They have been described in the previous sections in
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a real space picture. The above condition is equivalent to

V0 ≃
1

ω ln
(
|ω|
D

) , (2.63)

when assuming that the resonance energy ω is small compared to the bandwidth D [64]. It
means that we have to consider strong impurities in order to get a reasonably small reso-
nance energy in graphene. To be more specific, the potential magnitude higher than 10eV
is required to generate a resonance within 1eV of the Dirac point [61]. It fundamentally
contrasts with a two-dimensional electron gas where any value of the potential gives rise to
a low-energy resonance. In this case indeed, the resonance condition is given by

V0 ≃
1

ln
(
|ω|
D

) . (2.64)

Both conditions (2.63) and (2.64) are illustrated in Fig. 2.11 where the bandwidth is the
energy unit (D = 1). It is clear that a minimum potential magnitude is required in graphene
(green curve) in order to get a resonance at low energy, whereas any impurity can be con-
sidered as a resonant scatterer in a usual electron gas (blue curve). Such strong impurity
potentials come only from vacancies [62] and adatoms [65], so they seem to be the only
ones realistic low-energy resonant scatterers in graphene.
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Fig. 2.11 Potential magnitude as a function of the resonance energy it induces in the case of a
two-dimensional electron gas (blue lines) and in the case of graphene (green lines).
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2.6.2 Lattice considerations

This last chapter section deals with vacancies, which can be induced by ion irradiation [66].
They are simulated by considering the potential magnitude as infinite, V0 → ∞. So the
impurity site is not available for electrons and the resonant energy is rigorously zero. It
turns out that the zero-energy resonant states induced by vacancies also reveal the phase the
system belongs to in the vicinity of the Lifshitz transition.

As mentioned in Chapter 1, the graphene honeycomb lattice is made of two triangular
sublattices A and B. The π-band electrons of graphene are well described in a nearest-
neighbour tight-binding approximation. As long as we consider such a description, and
more generally, as long as there is no intra-sublattice process considered, the lattice is said
to be bipartite. The Hamiltonian of a bipartite system generically takes the form

H =

(
0 T

T † 0

)
. (2.65)

In the above matrix, T is a NA ×NB block, not necessarily a square matrix. NA(B) is the
number of atoms in the A(B) sublattice, assuming there is only one electron per atom. Here
we restrict ourself to NB ≥ NA. Such a Hamiltonian anti-commutes with

S =

(
INA 0
0 −INB

)
, (2.66)

where IN is the N ×N identity matrix so that the unitary operator S always squares to +1,
which defines a chiral symmetry also called sublattice symmetry. This fundamental sym-
metry implies a particle-hole symmetric spectrum. Indeed, assuming H|ψ⟩ = E|ψ⟩, then
HS|ψ⟩=−ES|ψ⟩. Thus, the eigenstates always come by pairs with opposite energies when
E ̸= 0. But it also includes the possibility of existence of zero-energy states, which trans-
form into themselves under the transformation S, i.e. S|ψ⟩=±|ψ⟩. As a consequence, they
have null components on one sublattice. In other words, the two sublattices are independent
at zero energy.

Moreover, every finite bipartite lattice has an extra number of NB − NA zero-energy
eigenstates living on the sublattice B, regardless of the components of the block T [67].
This property was first highlighted by B. Sutherland in the eighties [68]. While he was
investigating the effect of the lattice quasiperiodicity on the wavefunction localisation, he
found systems that reveal localised states at energies inside the bands and inside the band
gap. He subsequently realised this has nothing to do with the lack of periodicity, but that it
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rather concerns the bipartite nature of the lattice. The proof relies on an elementary rank-
nullity theorem. Consider the off-diagonal block T of the Hamiltonian (2.65) as the matrix
representation of a linear transformation θ . This transformation maps the Hilbert space
referring to sublattice B, ηB, onto the one referring to sublattice A, ηA. The rank-nullity
theorem states that dim ηB = dim Ker(θ)+Rank(θ). Since the rank is the dimension of the
image of the linear map θ , it necessarily meets the following inequality Rank(θ) ≤ NA, so
that

dim Ker(θ)≥ NB −NA . (2.67)

It means that an additional number of NB −NA zero-energy eigenstates of T , which are
zero-energy eigenstates of H too, live exclusively on the sublattice B (in the case NB ≥ NA).
Note this is sometimes called the Lieb’s theorem, making reference to his study of itinerant-
electron magnetism in bipartite lattice [69].

In the presence of a single vacancy, NB−NA = 1, i.e. we have one zero-energy impurity-
state wavefunction. Here the fundamental point is that the uniform strain, which enables to
make the two Dirac cone merge, is encoded in the nearest-neighbour hopping amplitudes,
which does not change the structure of the matrix (2.65). Then the sublattice symmetry
ensures that such a zero-mode does exist both in the semi metallic phase and in the gapped
phase. As a consequence, this zero-energy state is a good candidate to characterise the
Dirac cones merging in real space. We study the form of this wavefunction, using simple
arguments along the lines of [62]. In this work, the authors have determined the exact
analytic form of the impurity wavefunction for an isotropic honeycomb lattice (graphene)
with a single vacancy. Their method consists in an appropriate matching of the zero modes
of two semi-infinite and complementary graphene sheets. This is the method we generalise
in what follows for anisotropic graphene.

In Fig. 2.12 the two semi-infinite graphene sheets are defined such that their edges are
orthogonal to the anisotropic direction, along which t ′ = αt. Here we have introduced an
anisotropy parameter α , that allows us to explore the Lifshitz transition. The presence of
Dirac cones in the semimetallic phase corresponds to α < 2, whereas the merging transition
occurs for α = 2. Then, the insulating phase corresponds to α > 2. The upper half-plane
has a ‘bearded’ edge, whereas the lower half-plane has a zigzag edge.

Let us first consider the lower half-plane terminated by the zigzag edge. The localised
states at a ’zigzag graphite edge’ were already determined by Fujita and collaborators in
1996 [7], a few years before the graphene research boom. Here we follow the prescrip-
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Fig. 2.12 Honeycomb lattice in presence of a vacancy (black square) on the sublattice A. The sites
referring to the sublattice B are depicted by grey disks. The black dashed line divides the sheet into
two semi-infinite planes. The lower half-plane has a zigzag edge, whereas the upper-half one has
a ’bearded’ termination. The nearest-neighbour hopping amplitude t ′ simulates an anisotropy and
controls the Dirac cone merging transition.

tion addressed in this precursory work. There is a ’good’ quantum number, which is the
momentum k, associated to the translational invariance along the edge. Therefore, we set
the wavefunction components on the edge as in Fig. 2.13. The wavefunction components
referring to question marks are determined by taking into account the fact that we are look-
ing for zero-energy states of the Hamiltonian. In the nearest-neighbour approximation, the
wavefunction component b(l) satisfies the following recurrence relation

b(l)m,n +b(l)m+1,n +αb(l)m,n+1 = 0 , (2.68)

where (l) refers to the lower half-plane. A general solution is

b(l)m,n =
(
− 2

α
cos

k
2

)n
eik(m+ n

2 ) . (2.69)

The zero-energy evanescent modes vanish when n → ∞, which means |2cos(k/2)| < α . It
leads to values of the momentum such as 2Qc < k < 2(π −Qc), where Qc = arccos(−α/2).
While for isotropic graphene (α = 1) this condition is verified for 2π/3 ≤ k ≤ 4π/3, above
the merging point (α ≥ 2) such a condition is satisfied for all values of k (0 ≤ k ≤ 2π).
The case α = 2 leads to k = 0, associated to an extended state, and there are no allowed
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Fig. 2.13 Lower (left) and upper (right) half-planes, respectively with zigzag and ’bearded’ edges
made of atoms B.

edge states in this limit. In a similar manner, the wavefunction components b(u) in the upper
half-plane are given by

b(u)m,n =
(
− 2

α
cos

k
2

)−n
eik(m+ n

2 ) . (2.70)

The evanescent modes require |2cos(k/2)|>α . It leads to a range of complementary values
for the momentum 0< k < 2Qc or 2(π−Qc)< k < 2π . Importantly, there are no evanescent
modes in the upper half-plane in the insulating phase (α ≥ 2). It is a crucial point that will
enable a direct evaluation of the impurity state.

The condition that the impurity wavefunctions on the two semi-infinite planes match at
the interface can be written as

αB(l)
m,0 +B(u)

m,0 +B(u)
m+1,0 = 0 , (2.71)

where B labels the impurity wavefunction components and differs from b a priori.The above
relation is valid everywhere on the edges except for m = 0, since it refers to the vacancy
position. Introducing Bm,0 = ∑k Bk,0eikm, the condition (2.71) can be rewritten in terms of
momentum as

α ∑
k

B(l)
k,0eikm +∑

k
B(u)

k,0(1+ eik)eikm = 0 . (2.72)
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Fig. 2.14 Zero-energy wavefunction components (left) and impurity state obtained numeri-
cally (right) in the insulating phase.

A possible solution for the boundary solution is

{
αB(l)

k,0 = 1, 2Qc < k < 2(π −Qc)

B(u)
k,0 (1+ eik) = 1, 0 < k < 2Qc and 2(π −Qc)< k < 2π .

(2.73)

As for the case of isotropic graphene studied in Ref. [62], this solution corresponds to the
edge solutions for two isolated complementary semi-infinite planes. This implies that the
impurity wavefunction can be expressed as a linear combination of the edge states given by
(2.69) and (2.70). Focusing on the lower half-plane, it yields

B(l)
m,n ≃

2(π−Qc)

∑
k=2Qc

(
− 2

α
cos

k
2

)n
eik(m+ n

2 ) . (2.74)

Before computing the above integral, we can already discuss what happens in the in-
sulating phase, where the impurity state lies within the band gap. As already mentioned,
QC is null for α ≥ 2, and there is no evanescent mode in the upper half-plane. In other
words, all the electrons are all localised on sublattice B in the lower-half plane. The im-
purity wavefunction components are null everywhere else. The condition (2.71) becomes
αB(l)

m,0 + 0+ 0 = 0 and must be satisfied along the black dashed line in Fig. 2.14, except
for the impurity site. So the wavefunction has zero components along the zig-zag edge,
except at the site situated right under the impurity, for which we take B(l)

0,0 = 1. Then the

Hamiltonian (2.65) implies that αB(l)
m,1+B(l)

m,0+B(l)
m+1,0 = 0 for all values of m. This leads to
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B(l)
−1,1 = B(l)

0,1 =−1/α and B(l)
m,1 = 0 for all other sites with n = 1. If we extend this analysis

to the subsequent rows, we obtain the impurity wavefunction values shown in Fig. 2.14. So
above the merging point, the zero-energy electrons are all localised in a triangle ’under’ the
vacancy, which seems in agreement with numerical exact diagonalisation [19]. Besides note
that, due to the lattice geometry, this peculiar state reveals the Pascal’s triangle correspond-
ing to the blue numbers in the figure, as also mentioned recently in [70] and [71].

2.6.3 Zero-energy bound-state evaluation

Considering that the lattice as infinite, the discrete sum in (2.74) turns into an integral, and
the impurity wavefunction can be written as

B(l)
m,n ≃

∫ 2(π−Qc)

2Qc

dk
(
− 2

α
cos

k
2

)n
eik(m+ n

2 ) . (2.75)

For large values of n, i.e. at large distances, only the largest values of the cosine need to be
considered in the integral. This occurs in the vicinity of Qc and π −Qc. We assume that the
cutoff parameter which controls this approximation is kc

B(l)
m,n ≃

∫ Qc+kc

Qc

dk
(
− 2

α
cosk

)n
eik(2m+n)+

∫
π−Qc

π−Qc−kc

dk
(
− 2

α
cosk

)n
eik(2m+n) (2.76)

A Taylor expansion of the cosine around the momenta Qc yields cos(Qc+q) = cos(Qc)[1−
q tan(Qc)−q2/2]+o(q2). Note that the first order term is non-zero only for α < 2. In this
case we can limit ourselves to the first order approximation

B(l)
m,n ≃

∫ kc

0
dq(−1)ne−n tan(Qc)qeiq(2m+n)eiQc(2m+n)+

∫ kc

0
dq(−1)2nen tan(π−Qc)qe−iq(2m+n)ei(π−Qc)(2m+n)

≃
∫

∞

0
dq(−1)ne−n tan(Qc)qeiq(2m+n)eiQc(2m+n)+

∫
∞

0
dqe−n tan(Qc)qe−iq(2m+n)ei(π−Qc)(2m+n)

≃ (−1)n eiQc(2m+n)

tan(Qc).n− i(2m+n)
+

ei(π−Qc)(2m+n)

tan(Qc).n+ i(2m+n)
. (2.77)

Introducing the cartesian coordinates x= a0
√

3(2m+n)/2 and y=−n3a0/2, with a0 nearest-
neighbour distance, leads to

B(l)(x,y)≃ ei2Qcx/
√

3+2iπy/3

− tan(Qc)y/3− ix/
√

3
+

ei2(π−Qc)x/
√

3

− tan(Qc)y/3+ ix/
√

3
. (2.78)
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In the semimetallic phase, the vacancy induces a localised state at zero-energy that de-
cays algebraically as 1/r, albeit exhibiting a strong asymmetry between x and y. Here
r =

(
2x/

√
3, 2tan(Qc)y/3

)
. In the case of isotropic graphene (Qc = π/3),

B(l)(x,y)≃ a0
√

3
ei2π(−y+x/

√
3)/(3a0)

−y− ix
+a0

√
3

ei4πx/(3
√

3a0)

−y+ ix
, (2.79)

and we recover the result of [62] by doing the substitution x → y and −y → x.

For α ≥ 2 however, Qc = 0. The first order terms in the above expansions vanish and
we need to consider the second order corrections. It leads to

B(l)(x,y)≃
∫ kc

0
2dq(−2/α)ne−n q2

2 eiq(2m+n)+
∫ kc

0
dq(−2/α)ne−n q2

2 e−iq(2m+n)

≃ (−2/α)ne−
(2m+n)2

2n

∫
∞

0
dqe−

n
2 (q+i 2m+n

n )+(−2/α)ne−
(2m+n)2

2n

∫
∞

0
dqe−

n
2 (q−i 2m+n

n )

≃ (−1)n e−nln(α

2 )−
(2m+n)2

2n√
n

B(l)(x,y)≃ e2yln(α

2 )/3+ x2
y

√
|y|

e2iπy/3 . (2.80)

Thus, the localised wavefunction decays exponentially in the insulating phase (y < 0). In-
deed, y is negative in the lower half-plane. Right at the Dirac cone merging transition, the
wavefunction exhibits an algebraic decay as 1/

√
|y| (assuming y ≫ x2) [19]. It means the

LDOS, which is given by the modulus squared of the wavefunction, is zero in the upper half-
plane and decays as 1/|y| in the lower half-plane. This is in agreement with our findings in
the Friedel oscillations section dealing with semi-Dirac electrons. Indeed, the T-matrix ap-
proach for a vacancy led to a vanishing LDOS on the sublattice A, whereas on the sublattice
B the LDOS correction was found to be

∆ρB(0,y,ω → 0)∼ θ(−y)
y

. (2.81)

Once again, the form of the decay for the zero-energy impurity states provides a real-space
signature of the Dirac-cone merging transition. Importantly, remark that the phase θq and
the chirality are not defined at zero-energy, and thus, are not responsible for the distinct
features of the zero-energy impurity state. Since this transition has already been observed
in the case of artificial honeycomb lattices [47–49], the impurity state induced by a missing
site (vacancy) becomes particularly relevant experimentally.
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The table below summarises the possible spatial decays of the zero-energy vacancy-
induced wavefunction.

Phase semimetallic semimetallic insulating
Dispersion relation conical semi-conical parabolic

B(x,y) 1/r 1/
√

|y| e2y ln(α/2)/3+x2/y

Note finally that the sublattice symmetry is not mandatory in the above discussion.
This symmetry can be broken in systems such as boron nitride. The two nonequivalent
atoms, namely A and B, respectively correspond to boron and nitrogen atoms. In a nearest-
neighbour tight-binding description, Hamiltonian (2.65) changes to

H =

(
µ.INA T

T † −µ.INB

)
. (2.82)

The distinction between boron and nitrogen atoms is simulated by opposite on-site energies
(±µ). Due to these intra-sublattice terms, the system is no longer bipartite. In the case
of a vacancy on the sublattice B, the form of the induced-impurity state, which emerges at
zero energy in regular graphene, remains unchanged, except that in boron nitride it forms
at energy −µ . In the same manner, a single vacancy on the sublattice A would induce a
similar state at energy +µ .



Chapter 3

Topological boundary modes

The characterisation of condensed phases of matter took a serious step with Landau’s theory
of phase transitions [72]. Unlike the glass transition and Berezinsky-Kosterlitz-Thouless
transition, classical and quantum second-order transitions occur when a collective order
of the many-body system spontaneously breaks continuous or discrete symmetries, such
as the spin rotation symmetry in magnets, the translational symmetry in Peierls structural
transition, the gauge symmetry in Bose condensation and BCS superconductivity, etc.

The present chapter deals with the more recent concept of symmetry protected topologi-

cal order. The discussion of this type of order has begun in connection to the discovery of
the integer quantum Hall effect in the early eighties [10, 73], followed by the topological
characterisation of its measurable quantised Hall conductance that ensures the presence of
chiral edge channels [11]. More generally, symmetry protected topological order is about
systems that have a bulk energy gap and preserve a given symmetry, namely topological
insulators and superconductors. As long as this symmetry is preserved, a topological char-
acterisation of the system becomes possible, and can then be related to the existence of
boundary modes within the energy gap. For non-interacting particles, as it will be the case
all along the present chapter, the existence of such boundary modes relies on the topology of
the Bloch band-structure of the single-particle Hamiltonian that describes the system. Under
the preserved symmetry, distinct topological phases cannot be continuously deformed into
each other without a phase transition, which requires an energy-gap closing. Since topologi-
cal properties ensure their existence, the boundary modes are therefore expected to be robust
against any disorder that does not close the energy-gap and preserves the given symmetry.
In other words, the existence of boundary modes within the energy-gap is guaranteed by
topological properties of the band structure, which are themselves protected by a preserved
symmetry. This has to be distinguished from the notion of topological order introduced by
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X. G. Wen in [74], where this is the degeneracy of the many-body ground-state that is topo-
logically protected, without requiring such a preserved symmetry. For instance spin liquids
[75] and the fractional quantum Hall effect [76] both manifest a topological order.

In order to highlight how symmetry, topology and robust boundary modes intervene in
symmetry protected topological systems, we begin this chapter with the generalisation of
an old one-dimensional two-band topological insulator, namely the Shockley model [20].
It offers the benefit to be illustrative, exactly solvable, and quite universal [22]. Although
it was subsequently discussed in the literature [21, 22], it was only considered within a
nearest-neighbour tight-binding limit. Here, we also consider arbitrary distant-neighbour
hopping processes and show that this extension allows the system to reach new topological
phases that are characterised by an arbitrary large number of edge states.
After saying a few words about the topological classification of single-particle gapped
Hamiltonians [77], we will see that even in the case of semimetals, gapless systems like

graphene, the edge-state emergence finds a topological explanation, via a dimensional re-
duction. As a simple illustration, we will consider a zigzag graphene nanoribbon and also
investigate the robustness of its edge states agains local disorder such as point defects [23].

The second half of this chapter mainly focuses on the analysis of a two-dimensional

eight-band topological superconductor, whose zero-energy boundary modes are Majorana
modes [24]. The considered system relies on a honeycomb lattice in the presence of spin-
singlet superconductivity, magnetic field induced Zeeman splitting and Rashba spin-orbit
interactions. So far the literature has only focused on monatomic pattern lattices, or more
generally on systems where the topological characterisation does not depend on the spin-
orbit interactions. In the case of a honeycomb lattice, we show that the diatomic pattern
directly affects the topological phases via the magnitude of these interactions. We also give
a prescription to access the topological properties of this eight-band system [25], and thus
predict the emergence of zero-energy Majorana modes that are localised at the edges of
doped and strained nanoribbons.
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3.1 A generalised Shockley model

3.1.1 On the topology of the Bloch band structure

As an illustrative introduction to topological systems, we consider the one-dimensional two-
band model of a dimerised Peierls chain. It is the underlying model Su, Schrieffer and
Heeger used to explain the formation of solitons as topological excitations in polyacetylene
[21]. But this model also refers to the anterior work of Shockley [20] in which he discussed,
from the atomic level, the surface states in semi-infinite crystals predicted by Tamm [78].
This is the subject of the subsequent paragraphs, where the formation of spinless surface
states is extended here to a distant-neighbour tight-binding analysis. The Hamiltonian ma-
trix of the infinite system in momentum space is generically written as

H(k) = h0(k)σ0 +h1(k)σ1 +h2(k)σ2 +h3(k)σ3 , (3.1)

where σi refers to the Pauli matrices. The system preserves the time-reversal symmetry,
which requires H∗(k) = H(−k). So every component is an even function of the momentum,
except h2 which is odd. Less importantly, intra-sublattice processes h0 are neglected here
for simplicity. Although such a process would break the particle-hole symmetry, it would
not change neither the (direct) gap closing condition of the spectrum, nor the eigenstates,
that are two crucial points when dealing with topological matter. Finally, it is assumed
that h3 = 0 too. Thus, the two sublattices remain equivalent and the system preserves the
chiral (or sublattice) symmetry given by the anticommutation relation {H(k),σ3}=0. As
already mentioned, the chiral symmetry leads to a particle-hole symmetric spectrum, but
even when this symmetry is broken, the relation σ∗

2 H∗(k)σ∗
2 =−H(k) requires the spectrum

to be particle-hole symmetric. Under those conditions, the only non-null components in the
Hamiltonian matrix are the off-diagonal ones

h1(k) = t1 +

N−1
2

∑
n=1

(
t ′2n−1 + t2n+1

)
cos(nk)+ t ′N cos

(N +1
2

k
)

h2(k) =

N−1
2

∑
n=1

(
t ′2n−1 − t2n+1

)
sin(nk)+ t ′N sin

(N +1
2

k
)
, (3.2)

where tn (t ′n) denotes the hopping amplitude between a certain site and its n-th nearest neigh-
bour on its right (left), according to Fig. 3.1. Here N refers to the highest order hopping
process allowed in the model. It is necessarily an odd integer, since only inter-sublattice cou-
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plings are taken into account. Introducing the complex off-diagonal component h = h1+ ih2

and its argument θ , the band structure of the dimerised chain is given by

E(k) =±|h(k)| , ⟨ψ±(k)|=
(
1, ± eiθk

)
. (3.3)

Importantly, we are limiting the band structure, or equivalently the Hamiltonian matrix, to
a periodic Brillouin zone (BZ), thus Bloch’s theorem implies H(k+G) = H(k), with G a
reciprocal lattice vector. As long as there is an energy gap separating the conduction and
the valence bands, θk remains well defined. It is then possible to define a mapping from
the BZ, a one-dimensional sphere S1, to the space of gapped Bloch Hamiltonians, restricted
by the chiral symmetry to the equator of the Bloch sphere, which is also a one-dimensional
sphere S1. For such gapped Hamiltonians which respect the chiral symmetry, the question
is to know whether they are equivalent or not, whether the mappings they define can be
continuously deformed into one another or not. If the answer is yes, the mappings are said
to be homotopic. It defines equivalence classes, called homotopy classes, that form a group.
They are examples of topological invariants. The case we are considering concerns map-
pings from a circle S1 to another circle S1 and π1(S1) denotes the corresponding homotopy
group. It is the simplest case of spheres homotopy groups that describe how spheres can
wrap around each other. As far as we are concerned the wrapping is given by counting the
number of times θk wraps around the circle when k runs over the whole BZ. This number,
also called winding number, is an integer that characterises the homotopy class. This is the
reason why π1(S1) = Z, and the topological invariant is defined as

W =
1

2π
Im
∫

BZ
dk ∂k lnh(k). (3.4)

AB

t1t'1

t3

t'3

B B
B

Fig. 3.1 One-dimensional dimer chain with the four intrasublattice hopping processes (black lines)
allowed for N = 3.
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h1

h2

h1

h2

Fig. 3.2 Illustrations of two nonequivalent closed paths that h(k) is likely to outline.

Here h(k) is a complex number and the above integer simply reduces to

W =
1

2π

∫

BZ
dk ∂kθk . (3.5)

A geometrical interpretation of this winding number is illustrated in Fig. 3.2. Since θk

is the argument of h(k), the topological invariant is given by counting the number of times
the closed path drawn by h(k) encloses the complex-plane origin. To compute this integer,
it is not necessary to know the behavior of h(k) along the curve described by it. For any
kn satisfying h1(kn) = 0, it is usually sufficient to know the sign of h2(kn) and the direction
h(k) is going in. The later is given by the sign of the speed of h1(kn). Therefore, the winding
number can be computed from a discrete sum instead of an integral

W =
1
2 ∑

kn

sgnh2(kn) sgn∂kh1(kn) . (3.6)

Of course, an equivalent expression is obtained when defining kn using h2(kn) = 0.

3.1.2 Chiral symmetry and zero-energy modes

As mentioned above, the role played by the chiral (sublattice) symmetry is fundamental in
the topological characterisation of the one-dimensional band structure. If this symmetry is
broken, the mapping is defined from the BZ (S1) to the entire two-dimensional Bloch sphere
(S2), and it is no longer restricted to the Bloch sphere equator. The one-dimensional closed
path drawn by |ψ±⟩ on S2 can be continuously deformed to a point. So the relative homotopy
group is trivial, meaning π1(S2) = 0. More generally, any mapping from a p-dimensional
sphere into a q-dimensional sphere is trivial when p < q, so that πp(Sq) = 0.

The chiral operator S, which squares to the identity S× S = 1, and anticommutes with
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the Hamiltonian {S,H}= 0, acts onto the wavefunctions as

S|A,B⟩= |A,−B⟩ , (3.7)

where A (resp. B) within the bra-ket is a set of wavefunction components referring to the
sublattice A (resp. B). Thus the transformation S consists in reversing all the signs of the
wavefunction components on one sublattice that is the sublattice B here. It also implies the
particle-hole symmetry

H |A,B⟩= E |A,B⟩
H S|A,B⟩=−E S|A,B⟩ , (3.8)

where |A,B⟩ is an eigenstate of the Hamiltonian. Any non-zero energy state has its own
pair with opposite energy. An interesting situation occurs when focusing on the zero-energy
states. Such states are necessarily eigenstates of the operator S, whose eigenvalues are ±1.
From the definition (3.7), it is clear that the zero-energy states have null components on one
sublattice and verify

S|A,0⟩= |A,0⟩
S|0,B⟩=−|0,B⟩ . (3.9)

Reciprocally, it is obvious that any eigenstate of the Hamiltonian such as |A,0⟩ or |0,B⟩
are zero-energy modes. It means that the chiral symmetry enables the distinction between
two families of zero-energy states depending on their ’chirality’ (eigenvalue ±1), or equiv-
alently, depending on the sublattice they refer to.

When the system belongs to an insulating phase, meaning there is a bulk energy gap as in
Fig. 3.3, some of the zero-energy states are protected by the chiral symmetry. In the figure,
two distinct cases arise. First, two zero-energy states may have opposite chirality (red and
blue colors), that is they refer to opposite sublattices. In this case, any continuous perturba-
tion is likely to make them hybridise (if they are not far apart in real space) and then move
away from zero energy, resulting in two states with opposite non-null energies. Second, it
may happen that there is an imbalance between the number of positive and negative chirality
zero-energy states. The figure illustrates this point in the case of two zero-energy states (in
blue) having the same chirality. Because they live on the same sublattice, they necessarily
stay at zero energy, as long as no perturbation breaks the chiral symmetry, or equivalently
as long as the system remains bipartite. The only way to make them leave the zero-energy
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E

0
robust

Fig. 3.3 Illustration of zero-energy states within the bulk energy gap (in white). Blue and red colors
describe states of opposite chirality.

level without breaking this symmetry is to close the gap. That is why such states are said to
be robust, or symmetry protected.

Therefore, the number of robust zero-energy modes cannot change under the chiral sym-
metry, except if the energy gap closes.

3.1.3 Bulk-edge correspondence

In what follows, we present the connection there exists between the topological number W

and the number of robust zero-energy modes. This is more commonly known as bulk-edge
correspondence, for it relates the topological invariant, which is defined from the bulk band
structure, to the number of edge states living at a boundary with the vacuum.

On the one hand, let us determine the winding number as a function of the model pa-
rameters. From its definition (3.4), it can be rewritten as

W =
1

2iπ

∫

C
dz

h′(z)
h(z)

, (3.10)

where we define z = eik, so that C is the unit circle enclosing the complex-plane origin. In
complex analysis, this integral is given by the Cauchy’s argument principle, states that the
above integral is given by the difference between the number of zeros (r) and poles (p) of
the function h, that are located inside the closed contour C . Consequently,

W = r− p . (3.11)
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Based on the definitions (3.2), the function h is given by

h(z) = t1 + t ′1 z+ t3 z−1 + t ′3 z2 + ...+ tN z−
N−1

2 + t ′N z
N+1

2

= z−
N−1

2 (tN + ...+ t ′N zN) (3.12)

So z= 0 is the only pole of h with multiplicity (N−1)/2. It leads to p= (N−1)/2, whereas
the zeros located inside C are obtained from the roots of the polynomial tN + ...+ t ′N zN .

On the other hand, let us consider the system as semi-infinite, which means there is a
boundary with the vacuum according to Fig. 3.1. The following independent recurrence
relations define the zero-energy modes

{
t1An + t ′1An+1 + t3An−1 + t ′3An+2 + ...+ tNAn−N−1

2
+ t ′NAn+N+1

2
= 0

t1Bn + t ′1Bn−1 + t3Bn+1 + t ′3Bn−2 + ...+ tNBn+N−1
2

+ t ′NBn−N+1
2

= 0
, (3.13)

where An (Bn) denotes the wavefunction component on the sublattice A (B) for the dimer
indexed by n. Solutions of (3.13) are obtained from the solutions, denoted zi, of the charac-
teristic equations

{
h(zi) = 0

h∗
(

1
zi

)
= 0

. (3.14)

If zi is a root of h, then 1/z∗i is a root of h∗, so that the wavefunction components are





An = ∑
N
i=1 αi zn

i

Bn = ∑
N
i=1 βi

(
1
z∗i

)n , (3.15)

where αi and βi are two complex numbers. When keeping only the evanescent modes, which
correspond to |zi|< 1 for An and |1/z∗i |< 1 for Bn, the zero-energy modes satisfy





An = ∑
r
i=1 αi zn

i

Bn = ∑
N−r
i=1 βi

(
1
z∗i

)n . (3.16)

There are r (resp. N − r) independent zero-energy modes on sublattice A (resp. B). They
additionally fulfil NA and NB boundary conditions respectively, where NA +NB = N and
NB = NA +1. This can be checked from Fig. 3.1. It leads to NA = p and NB = p+1. Under
those constraints, we are left with r− p (resp. p− r) independent zero-energy edge states
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on sublattice A (resp. B).

The number of zero-energy edge states can be directly related to W via the relation
(3.11), which establishes the bulk-edge correspondence of our model:

• if W > 0 there are |W | robust edge states on the sublattice A (chirality +1)

• if W < 0, there are |W | robust edge states on the sublattice B (chirality −1)

• if W = 0 there is no edge state and the system belongs to a trivial gapped phase.

Note that the topological invariant is limited by the highest hopping process allowed in the
model, namely N, in the following way

−N −1
2

≤W ≤ N +1
2

. (3.17)

Actually, this is the main idea addressed in [32]. The authors consider distant-neighbour
hopping in the Haldane model [13], in order to explore topological phases characterised by
an arbitrary large Chern number. We will encounter such a topological invariant later on.

3.1.4 Application and robustness against disorder

As an application, we consider the above model with hopping processes allowed up to the
third nearest-neighbour. If N = 1, then the inequality (3.17) involves their is either one edge
state on the sublattice A or none at all. The situation is much more interesting when N = 3.
Indeed, the winding number is restricted to values {−1,0,1,2}. It means that, for the edge
given in Fig. 3.1, the system can exhibit up to two evanescent modes on the sublattice A,
or one evanescent mode on the sublattice B. In order to evaluate the winding number of the
system according to expression (3.6), we first look for the roots of

h2(k) = (t ′1 − t3)sin(k)+ t ′3 sin(2k) . (3.18)

Obviously, 0 and π are two roots regardless of the hopping amplitudes. Two more roots do
exist when |t3 − t ′1|< 2t ′3, which finally leads to the four roots





k1 = 0

±k2 =±arccos
(

t3−t ′1
2t ′3

)

k3 = π

. (3.19)



64 Topological boundary modes

0.0 0.2 0.4 0.6 0.8 1.0

t3/ t1

0.0

0.2

0.4

0.6

0.8

1.0

t, 3
/t

1 0

0
+1 +1

-1

+2

Fig. 3.4 Phase diagram of the third nearest-neighbour model and possible winding number values.

For such momenta, the derivatives of h2 are





∂kh2(k1) = t ′1 − t3 +2t ′3
∂kh2(±k2) =−2t ′3
∂kh2(k3) = t3 − t ′1 +2t ′3

, (3.20)

while the function h1 takes the following values





h1(k1) = t1 + t ′1 + t3 + t ′3
h1(±k2) =

(t1−t ′3)t
′
3+(t3−t ′1)t3
t ′3

h1(k3) = t1 − t ′1 − t3 + t ′3

. (3.21)

Their signs are summed up in the table below, when assuming that all the hopping ampli-
tudes are positive.

k1 k2 k3

∂kh2 + − +

h1 + ± ±

Moreover we restrict ourselves to t1 = t ′1 for simplicity, so that

{
sgnh1(k2) = sgn(t1 − t3 − t ′3)sgn(t ′3 − t3)

sgnh1(k3) = sgn(t ′3 − t3)
. (3.22)

The possible values of the winding number can be summarised as follows

• t3 − t1 > 2t ′3 and W = 1
2

[
1+ sgn(t ′3 − t3)

]
∈ {0,+1}
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Fig. 3.5 Zero-energy LDOS for W =+1 (left, t3 = 0.5t1 and t ′3 = 0.4t1) and W =−1 (right, t3 = 0.7t1
and t ′3 = 0.4t1) in the case of a 400 site chain.

• t3 − t1 < 2t ′3 and W = 1
2

[
1+
(
1−2sgn(t1 − t3 − t ′3)

)
sgn(t ′3 − t3)

]
∈ {−1,0,+1,+2} .

They are represented in a phase diagram as a function of the third nearest-neighbour hopping
in Fig. 3.4. The border (black lines) between two distinct topological phases correspond to
a gap closing condition, i.e. the energy gap vanishes for these values of the parameters. This
is an obstruction in the definition of the mapping S1 → S1. Since |h(k)| = 0, the argument
θk becomes ill-defined and so does W , which enables this integer to change values in a
discontinuous way.

Besides, Fig. 3.5 illustrates the property of W that its sign refers to the sublattice, or
equivalently to the chirality of the zero-energy modes. We plot the LDOS, which is simply
the modulus square of the single (|W | = 1) zero-energy wavefunction, in the case of a 200
dimers chain. Of course numerical computations require a finite chain that has consequently
two ends, so two boundaries with the vacuum. Regarding the edge lying on the left of the
system (see Fig. 3.1), one recovers indeed an evanescent mode on sublattice A (B) when
W =+1 (W =−1).

We would like to end this section touching upon the edge-states robustness against disor-
der. This is a fundamental issue since the topological arguments usually rely on the periodic-
ity of the Bloch band structure, allowed by the crystal translational invariance. Nevertheless,
we have seen the system cannot move from a topological phase to another continuously. For
this reason, the zero-energy modes are expected to be robust against any disorder that re-
spects the chiral symmetry. This is illustrated in Fig. 3.6 in the case of W =+2. For such a
value of the winding number, there are two edge states on the same sublattice per boundary.
Thus, four zero-energy modes are expected for a finite system with two ends made of one
atom A and one atom B respectively. For the left-figure plot, the disorder respects the chiral
symmetry for it is simulated by random fluctuations δ ti in the hopping parameters such that
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Fig. 3.6 Dimerised chain spectrum for W=+2 (t3 = 0.5t1 and t ′3 = 0.4t1), in presence of random
hopping amplitudes (left) and random on-site potentials (right).

|δ ti=1,3| ≤ 0.2ti=1,3. Although the bulk spectrum is affected by the disorder, the zero-energy
modes persist as long as the energy gap persists. For right-figure plot however, the disorder
breaks the chiral symmetry, since it is simulated by random on-site potential δ µ such that
|δ µ| ≤ 0.2t1. In this case, not only the bulk spectrum is affected, but the zero-energy states
are not protected anymore by the chiral symmetry. They are then allowed to move away
from the zero energy, even if the gap does not close. In this sense, the edge states addressed
in the generalised Shockley model can be topologically characterised only if the chiral sym-
metry is not broken, as already mentioned by Kane [79] about the quite similar model of
Su, Schrieffer and Heeger.

Finally, it is sometimes noted in the literature that considering opposite constant on-site
potentials ±µ on the two sublattices removes the zero-energy degeneracy by shifting the
edge modes up (down) to energy ±µ [22, 80]. The resulting edge states are still within the
bulk energy gap, but they immediately move away from these energies as soon as random
on-site potential fluctuations are introduced, since this is not forbidden by any symmetry.
Therefore, the ±µ-energy edge-states are not protected in this case.

3.2 Intermezzo: topological insulators & superconductors

Since the above study is based on a specific ’toy’ model, it is natural to wonder to what
extent it applies to other systems. In other words, to what extent the existence of boundary
modes can be predicted from the band-structure topology of a gapped Bloch Hamiltonian?
The answer actually relies on Table 3.1 and depends on the affiliation to one of 10 symmetry
classes [81], as well as on the system dimensionality.

Inspired by Wigner’s ideas [82], Dyson started a classification of many-body systems
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whose statistical properties are described in terms of random-matrix ensembles [83]. This
classification in three and subsequently in six categories was finally completed by the in-
troduction of four symmetry classes encountered in noninteracting Bogoliubov-de Gennes
(BdG) systems [81], so that, there would be ten possible universality classes for single-
particle disordered systems. Three discrete symmetries, which resist disorder, generate
the classification. They are the time-reversal symmetry (TRS), the particle-hole symme-
try (PHS) and the composition of these two, which yields the chiral or sublattice symmetry
(SLS). Operators representing those symmetries are respectively denoted T , C and S = TC.
The antiunitary time-reversal and particle-hole operators, T and C, can square to ±1. These
symmetry can also be broken so that T = 0 or C = 0. Altogether these distinct values define
nine possible classes. The tenth class (AIII) comes from the SLS which can be present even
if the two other symmetries are absent.

T C S d=1 d=2 d=3

Standard A 0 0 0 - Z -
(Wigner-Dyson) AI +1 0 0 - - -

AII −1 0 0 - Z2 Z2

Chiral AIII 0 0 1 Z - Z
(sublattice) BDI +1 +1 1 Z - -

CII −1 −1 1 Z - Z2

BdG D 0 +1 0 Z2 Z -
C 0 −1 0 - Z -

DIII −1 +1 1 Z2 Z2 Z
CI +1 −1 1 - - Z

Table 3.1 Periodic table of topological insulators and superconductors defined in [77].

Based on these symmetry classes, exhaustive classifications of single-particle gapped
Hamiltonians were given [9, 77, 84] as a function of spatial dimensions (see Table 3.1).
There are five topological classes per dimension. For any of these five classes, the gapped
phase of the system is topologically characterised either by an integer (Z) or by an integer
parity (Z2). Since this integer, which is either a winding number or a Chern number, cannot
change continuously, the energy gap necessarily closes at interfaces between regions that
are characterised by distinct topological invariants. This guarantees the existence of gapless
boundary modes. Note the insulating vacuum is characterised by a null topological invariant.
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In the two-dimensional quantum Hall phase (class A), a non-zero TKNN number [11],
or Chern number [13], which intervenes in the measurable Hall conductance, ensures the
presence of chiral edge channels. Even if the TRS is preserved and if the system is charac-
terised by a zero Chern number, it is possible to make electrons with opposite spins satisfy
integer quantum Hall effects under opposite magnetic fields. Such a two-dimensional quan-
tum spin Hall phase (class AII) was proposed by Kane and Mele and leads to helical edge
modes characterised by a Z2 invariant [15, 85]. This work definitively injected enthusiasm
into the field of topological insulators.

Although they belong to other classes in the Altland-Zirnbauer table of gapped Hamilto-
nians [81], namely the BdG ones, topological superconductors also exhibit robust boundary
states. Such a topological order was predicted by A. Kitaev [14], in a one-dimensional
time-reversal invariant model, considering p-wave pairing. Moreover, the zero-energy edge
states, which emerge in the topological phase, are Majorana modes. These modes were first
introduced in 1937 by E. Majorana [86] as real solutions of the Dirac equation. They will
be discussed later in this chapter, but note they obey non-Abelian statistics, which would
open the perspective of their use in topological quantum computation [87]. Moreover, Ma-
jorana modes were also investigated in spin-singlet superconductors [24, 88–90], provided
the TRS is broken by a Zeeman splitting.

Consequently, the one dimensional generalised Shockley model introduced in the previ-
ous section is just a little piece of the topological classification (class BDI in Table 3.1), but
it highlights a universal property it shares with both insulators and superconductors. The
symmetries of the Hamiltonian enable the topological characterisation of its gapped band
structure, which guarantees the existence of robust zero-energy modes at a boundary where
the topological invariant changes. Note the topological invariants can be also expressed in
terms of Green’s function [91] , which is a convenient formalism for eventual extensions to
interacting systems [92, 93].

3.3 Graphene edge-states

3.3.1 Topological characterisation

Graphene is a two-dimensional semimetal that exhibits a nodal dispersion relation. Conse-
quently, it does not directly enter the topological classification of gapped systems presented
in the previous section. However, there generally exist peculiar zero-energy localised states
along the edges of graphene nanoribbons. In 1996, a few years before the graphene boom,
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Fig. 3.7 Band structure of a zigzag graphene nanoribbon. The flat bands at zero energy correspond
to the edge states and connect the two Dirac cones projection at momenta k∥ =±2π
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they were first predicted to appear at a zigzag graphite edge [7], using simple lattice consid-
erations such as the ones discussed in Sec. 2.6. A topological explanation of these localised
states at a zigzag termination was given six years later by Ryu and Hatsugai [33]. But it
was only recently that the analysis of the zero-energy edge-state formation was generalised
to arbitrary terminations [8], and then explained through topological arguments [34, 80].
Note that these arguments, which will be detailed below, similarly hold in the topological
characterisation of nodal superconductors [94], systems in which the edge states are known
as zero-energy Andreev bound states [95].

In presence of the SLS, the zero-energy edge-states of graphene find a topological char-
acterisation through a dimensional reduction [9]. Given an arbitrary termination, the mo-
mentum along the edge k∥ is a good quantum number and the tight-binding Hamiltonian
matrix can be considered as describing an effective one-dimensional system for any value
of this momentum k∥. As an illustration, let us consider the simple case of the zigzag edge
introduced in Fig. 2.13. The NN tight-binding Hamiltonian can be written as

H = t ∑
m,n

a†
m,nbm,n +a†

m,nbm,n+1 +a†
m,nbm+1,n +h.c.

= t ∑
k∥

[
∑
n

(
1+ eik∥

)
a†

k∥,n
bk∥,n +a†

k∥,n
bk∥,n+1 +h.c.

]
, (3.23)

where m and n index the unit cell according to Fig. 2.13. Thus, for any value of the momen-
tum k∥ there corresponds an effective one-dimensional system described by the term within
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the bracket in the above equation and that can be mapped onto the generalised Shockley
model illustrated in Fig. 3.1. Based on this figure, it turns out that t1 =

(
1+eik∥

)
t and t ′1 = t

by identification and the effective system is described by the following Hamiltonian matrix

H(k∥,k) = ∑
k

(
t1(k∥)+ t ′1eik)a†

kbk +h.c. (3.24)

This Hamiltonian matrix still has the SLS but it explicitly breaks the TRS, since t1 is now
a complex number and H(k∥,k) ̸= H(k∥,−k)∗. Therefore, the effective model belongs to
the class AIII (see Table 3.1) and a winding number W (k∥) characterises its band-structure
topology. In the first section, we have seen that this integer is given by the number of
times the closed path outlined by t1(k∥)+ t ′1eik encloses the complex-plane origin, when k

describes the whole one-dimensional BZ (here −π < k < π). Here it occurs if and only
if |t1(k∥| < |t ′1|, which implies the existence of a zero-energy edge-state for values of k∥
satisfying −π < k∥ < −2π/3 or 2π/3 < k∥ < π . These edge states correspond to the flat
bands in the band structure of a zigzag graphene nanoribbon that is shown in Fig. 3.7.

Such a dimensional reduction can be generalised to the description of boundary ter-
minations more complicated than the zigzag one [34]. Any one-dimensional Hamiltonian
matrix H(k∥,k) effectively describes a one-dimensional topological insulator which can be
in a trivial phase or not. If this effective system belongs to a trivial phase (none edge state),
its one-dimensional energy-gap must vanish and reopen when varying k∥, in order to reach
a non-trivial phase. Such a gap closing can only occur if the one-dimensional BZ referring
to k crosses a nodal point in the graphene two-dimensional BZ. This is the reason why the
flat energy bands corresponding to the graphene edge-states necessarily connect two Dirac
cones (nodal points), as illustrated in Fig. 3.7.

3.3.2 Localised disorder

The topological features of the edge states in graphene relies on the translational invariance
of the lattice. Here we consider a localised impurity in a zigzag graphene nanoribbon. First,
we numerically check to what extent the edge states resist this kind of disorder. Fig. 3.8
depicts the density of states of a zigzag nanoribbon without and with a single on-site po-
tential in the bulk. The potential magnitude is large (V0 = 10t), which yields a resonance
around the energy E ∼−1/V0, as discussed in the previous chapter. This corresponds to the
defect-state peak in the figure. The central peak refers to the zero-energy edge states and
does not appear to be affected by the impurity.

Then, one can wonder what happens to the edge states when the impurity induces a res-
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Fig. 3.8 Density of states of a zigzag graphene nanoribbon in the presence of an on-site
defect.

onance at zero-energy. We have already encountered such resonators in the second chapter,
and here again we consider the case of a vacancy, say localised on the sublattice A. We have
shown that the missing atom necessarily induces an extra zero-energy state with non-null
component only on the sublattice B. On top of that, the zigzag termination enables a strictly
localised edge-state at k∥ = π , as it can be seen from the wavefunction definition (2.69).
The wavefunction components of this state are depicted on the right part of the Fig. 3.9.
As this state is strictly localised along the edge, it is expected to be the edge-state the most
insensitive to the vacancy. Therefore we consider the limit case of a vacancy localised right
underneath an edge atom, as illustrated by the black square in the figure. Because the miss-
ing atom A does not break the SLS, the zero-energy edge-states have non-null components
only on the sublattice B. Thus they are insensitive to the vacancy and remain unchanged.
The extra zero-energy state induced on the sublattice B by the missing atom can be charac-

+1 -1 +1 +1 -1 +1 +1 -1 +1 -1 +1 -1

Fig. 3.9 The two edge states localised on the sublattice B when the vacancy is on the sublattice A
(black square) and is localized strictly underneath an edge atom.
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terised exactly in this case. Its wavefunction components are depicted in the left part of the
Fig. 3.9 [23].

In this sense, the edge-states of a zigzag termination resist a localised disorder that
breaks the translational invariance of the lattice.

3.4 Majorana fermions

3.4.1 Real solutions of the Dirac equation

In 1928, P. Dirac proposed a Lorentz invariant equation in order to describe relativistic spin-
1/2 particles [96]. Although he entitled this work ’The Quantum Theory of the Electron’,
his equation also predicted the existence of antimatter. Indeed, for any particle satisfying
the Dirac equation of motion, there exists a conjugated solution with the same mass but
opposite charge: the antiparticle. The discovery of the positron by C.D. Anderson a few
years latter was therefore a great success for Dirac’s equation [97]. The covariant form of
this relativistic equation is

(
iγµ

∂µ −m
)

Ψ = 0 , (3.25)

where γµ denotes the 4×4 Dirac matrices, m the electron mass in the vacuum and c = 1.
They fulfil the Clifford algebra

{γ
µ ,γν}= 2gµν (3.26)

where gµν is the Minkowski spacetime metric whose signature is (−,+,+,+) and they are
defined as

γ
0 = σ

0 ⊗ τ
3 , γ

µ=1,2,3 = iσ µ ⊗ τ
µ . (3.27)

The Pauli matrices σ µ and τµ respectively refer to the spin and charge sectors. If one is
interested in real fermionic fields Ψ, one needs to make Eq. (3.25) be real too. This is the
problem E. Majorana faced to [86], and he found out a basis where the Dirac matrices are
purely imaginary

γ̃
0 = σ

2 ⊗ τ
1

γ̃
1 = iσ1 ⊗ τ

0

γ̃
2 = iσ2 ⊗ τ

1
γ̃

3 = iσ3 ⊗ τ
0. (3.28)
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In Majorana’s representation, the Dirac equation is real, so that it can describe the evolution
of real fermionic fields by simply imposing the reality condition

Ψ̃ = Ψ̃
∗. (3.29)

Now, let us see how this reality condition turns out in another representation, such as the
Dirac’s one (3.27). There exists a unitary transformation U so that Ψ =UΨ̃. After defining
C =UU†∗, which is a unitary operator too, the reality condition becomes

Ψ =CΨ
∗. (3.30)

Moreover, this matrix satisfies

C†
γ

µC =U∗(U†
γ

µU)U†∗

= (U γ̃
µ∗U†)∗

=−γ
µ∗ , (3.31)

so that the complex conjugation of Dirac equation (3.25) leads to

C
(
− iγµ∗

∂µ −m
)

Ψ
∗ = 0

(
iγµ

∂µ −m
)

CΨ
∗ = 0 . (3.32)

It means that CΨ∗, which satisfies the same Dirac equation as Ψ, is its charge conjugate
counterpart. This is the reason why Majorana fermions are defined as being their own
antiparticle and are neutral objects. Fortunately, the Majorana fermion definition (3.30) is
Lorentz invariant and holds in any inertial frame, thanks to the property (3.31) [98].

3.4.2 Condensed matter realisations

Majorana fermions in condensed matter physics were introduced in the context of vortices
in two-dimensional px + ipy superconductors [99, 100]. Superconductivity, indeed, appears
to be the natural playground for a condensed matter realisation of Majorana fermions, since
it allows excitations that are BdG quasiparticles made of electrons (particles) and holes (’an-
tiparticles’). Moreover the PHS is inherent to the mean-field description of superconductors,
which requires every non-zero-energy state to have its own particle-hole conjugate partner
with opposite energy and yields a redundancy. Therefore, the neutral Majorana fermions are
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linear combinations of an electron and a hole state with equal weights, which occurs only at
zero-energy.

A. Kitaev subsequently proposed a one-dimensional tight-binding model that describes
electrons in a finite chain in the presence of p-wave superconductivity [14]. Such a system
is likely to host zero-energy Majorana modes localised at the ends of the chain. At a mean-
field level, the Hamiltonian of the infinite system is

H = ∑
i

µc†
i ci + t

(
c†

i+1ci + c†
i ci+1

)
+∆
(
c†

i+1c†
i + cici+1

)
, (3.33)

where µ is the chemical potential, t the nearest-neighbour hopping amplitude and ∆ the
superconducting gap, supposed to be real. This p-wave pairing couples electrons with the
same spin on neighbouring sites. Then the Hamiltonian can be re-written as

H =
1
2 ∑

k
ψ

†(k)H(k)ψ(k) , (3.34)

where ψ†(k) = (c†
k ,ck) and the 2×2 Hamiltonian matrix is given by

H(k) = 2∆sink σ2 +
(
µ +2t cosk

)
σ3 . (3.35)

It leads to the following dispersion relation

E± =±
√

(µ +2t cosk)2 +(2∆sink)2 . (3.36)

It can be remarked already that any gap closing may occur at the momenta k = 0 and k = π

only. Remember that this is a necessary condition to enable the system to change topological
phases. As explained in [101], this one dimensional spinless model belongs to the class
BDI and therefore supports a Z topological characterisation. Indeed, when performing the
rotation defined by the unitary operator U = ei π

4 σ2 , the above Hamiltonian matrix becomes

H̃(k) =U†H(k)U

=
(
µ +2t cosk

)
σ1 +2∆sink σ2 , (3.37)

whose topological characterisation is equivalent to the one of the generalised Shockley
model discussed in Sec. 3.1. Based on the relation (3.6), the winding number that char-
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acterises the two-band model is

W =
sgn∆

2
[

sgn(2t +µ)+ sgn(2t −µ)
]
, (3.38)

where we have used the fact that 2∆sink vanishes at k = 0 and k = π . Thus there is one
Majorana mode localised at each end of the finite chain if 2|t| > |µ|, and none at all if
2|t| < |µ|. This precisely corresponds to the criterion introduced in Kitaev’s original work
[14]. Discussions about multiple Majorana edge modes and larger winding numbers can be
found in references [102, 103].

These fermions were also predicted in Sr2RuO4 [104] and in systems made of cold
fermionic atoms [105], again in the context of spinless px + ipy superconductors. The quest
for a possible realisation of Majorana fermions actually took a serious step when Fu and
Kane proposed to mimic the spin-triplet superconductivity at the surface of a topological in-
sulator, using proximity-induced s-wave superconductivity [106]. Then, it was realised that
a two-dimensional semiconductor could replace the topological insulator when consider-
ing a spin-orbit coupling and a Zeeman splitting, in addition to the s-wave pairing [89, 107].
One-dimensional versions of these proposals were suggested soon after [88, 108]. Majorana
modes are also expected in two-dimensional noncentrosymmetric s-wave superconductors
[24, 90], as well as in s-wave superfluids of cold fermionic atoms [109].

3.5 Spin-singlet superconductivity and Majorana modes in
a honeycomb lattice

More generally, topological spin-singlet superconductors are known to manifest Majorana
boundary modes in the presence of Rashba spin-orbit interactions, when a Zeeman magnetic
field breaks the time-reversal symmetry (TRS) [24, 88–90, 107, 108]. Such boundary modes
are investigated here in the honeycomb lattice with s-wave or d-wave superconductivity.
Their emergence is connected to topological properties of the Bloch band structure, which
is characterised by a first Chern number (class D). In a similar manner as the case of the
quantum spin Hall effect [110], these topological properties can also be reduced to the
knowledge of energy-band parities defined at any of the time-reversal invariant momenta
in the Brillouin zone. In the case of the honeycomb lattice, we show that the diatomic
pattern is responsible for a non-vanishing Rashba spin-orbit coupling at such momenta.
Therefore, and contrary to similar superconductors the literature focuses on [24, 88–90, 107,
108], the Majorana-mode emergence explicitly depends on the magnitude of the spin-orbit



76 Topological boundary modes

A

B

a1a2

Γ0 

Γ3 

Γ1 

Γ2 

Fig. 3.10 The honeycomb lattice (left) and the hexagonal Brillouin zone (right) with its TRI mo-
menta.

coupling. Although the band structure of the considered system relies on eight energy bands,
symmetries enable us to characterise its topology and subsequently to give an analytical
criterion that describes the emergence of Majorana modes. Importantly, such boundary
modes cannot exist in the case of a zero doping, and their emergence is finally predicted at
the edges of strained and doped nanoribbons.

3.5.1 Tight-binding Hamiltonians

Let us denote a1 and a2 the basis vectors that span the triangular Bravais lattice of the honey-
comb lattice, as illustrated in Fig. 3.10. The electrons are described in a nearest-neighbour
tight-binding approximation. In momentum space, the Hamiltonian for free particles is

H0 = t ∑
k,σ

f (k) a†
kσ

bkσ +h.c.

+µ ∑
k,σ

a†
kσ

akσ +b†
kσ

bkσ (3.39)

where µ is the chemical potential and t the nearest-neighbour hopping amplitude. More-
over f (k) = (α + eik.a1 + eik.a2

)
, while α refers to a tunable hopping amplitude, related to

an eventual uniaxial strain. This parameter controls the existence of chiral massless Dirac
fermions in the honeycomb lattice spectrum [43]. The fermionic operator akσ (bkσ ) annihi-
lates an electron with momentum k and spin σ in sublattice A (B).

As Majorana fermions are defined as being their own antiparticle, it is natural to intro-
duce a superconducting pairing for a condensed matter realisation. Here we focus on spin-
singlet superconductivity. It can be induced by proximity effect or originate from strong
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electron-electron interactions [111–113]. At a mean-field level, this is described by

HS =∆0 ∑
k
(a†

k↑a†
−k↓+b†

k↑b†
−k↓)+h.c.

+∆1 ∑
k

f (k)(a†
k↑b†

−k↓−a†
k↓b†

−k↑)+h.c. (3.40)

The real numbers ∆0 and ∆1 respectively denote on-site and nearest-neighbour electronic
interactions. Attractive interactions correspond to negative values of these parameters, re-
sulting in conventional and unconventional spin-singlet superconducting phases [111–113]
respectively.

The time-reversal symmetry is broken by an applied magnetic field perpendicularly to
the lattice. This yields a Zeeman potential Vz such that

HZ =Vz ∑
k,σ

σ(a†
kσ

akσ +b†
kσ

bkσ ) . (3.41)

Finally, breaking the reflection symmetry relatively to the lattice plane, for example
with ad-atoms [114], induces a Rashba spin-orbit coupling. It tends to align the spin in the
direction defined by the nearest-neighbour vectors, which breaks the inversion symmetry
between the two sublattices. The corresponding Hamiltonian in momentum space is given
by

HR = λ ∑
k,σ ,σ ′

(
0 L+(k)

L−(k) 0

)

σσ ′
a†

kσ
bkσ ′ +h.c. (3.42)

where λ characterises the coupling magnitude. The Rashba spin-orbit coupling does not
break the time-reversal symmetry. This requires the functions L± to satisfy L±(k) =
−L ∗

∓(−k) in momentum space.

As detailed in the next section, the topological order, which characterises the presence
of Majorana modes, can be described from the TRI-momentum properties. In the case of a
Bravais lattice with a monatomic pattern, there is the additional condition L ∗

±(k) =L∓(k),
coming from the Hamiltonian matrix that must be Hermitian. The spin-orbit coupling is
then an odd function of the momentum and vanishes at any TRI momentum: L±(ΓΓΓi) = 0.
Indeed, these specific momenta are defined by ΓΓΓi = −ΓΓΓi +G, with G a vector of the re-
ciprocal lattice. For this reason, the Rashba spin-orbit coupling does not appear in the
Majorana-existence criterion [24, 88–90]. In that sense, the spin-dependent process essen-
tially gaps the spectrum and protects the gapless boundary modes, in the same way as the
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intrinsic spin-orbit does in the quantum spin Hall phase [15, 85]. For the honeycomb lat-
tice however, there are two non-equivalent atoms per unit cell. The spin-orbit coupling is a
function of the momentum such as

L±(k) = i
[
α −2cos

(√3
2

kx ±
π

3

)
ei 3

2 ky
]
. (3.43)

Now, this process does not vanish at the TRI momenta, i.e. L±(ΓΓΓi) ̸= 0 a priori. That is
why one expects this process to explicitly affect the Majorana-existence condition. This
is the essential difference from the previous studies in the literature that mainly concern
monatomic-pattern lattices and noncentrosymmetric superconductors.

3.5.2 Energy-band parity definition

The Bogoliubov-de Gennes Hamiltonian of the total system, namely H0 +HR +HZ +HS, is

H =
1
2 ∑

k
ψ

†(k)H (k)ψ(k) . (3.44)

The fermionic fields are defined by

ψ
†(k) =

(
a†

k↑,b
†
k↑,a

†
k↓,b

†
k↓,a−k↑,b−k↑,a−k↓,b−k↓

)
, (3.45)

whereas the Hamiltonian matrix is generically written under the form

H (k) =

(
H(k) ∆(k)

−∆∗(−k) −H∗(−k)

)
. (3.46)

Here, ∆ labels a 4×4 block. It results from the spin-singlet superconducting gaps introduced
in (3.40) and verifies the condition ∆∗(−k) = ∆(k). Of course the Hamiltonian matrix
satisfies the fundamental particle-hole symmetry (PHS)

C †H (k)C =−H ∗(−k). (3.47)

The charge conjugation operator is defined by C = σ0 ⊗ s0 ⊗ τ1, where σ , s and τ are Pauli
matrices referring to the sublattice, spin and charge subspaces respectively. It squares to
plus the identity operator and the system belongs to the Bogoliubov-de Gennes class D
[77]. This symmetry relation results in the remarkable property that every non-zero energy
state has its own pair. If |ψ(k)⟩ in an eigenstate with energy E(k), then the PHS requires
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C |ψ∗(−k)⟩ to be eigenstate with energy −E(−k).

Let us perform the following unitary transformation

H̃ (k) =U†H (k)U (3.48)

with

2U =σ0 ⊗ s0 ⊗ (τ0 + τ1)

+σ1 ⊗ s3 ⊗ (τ0 − τ1) . (3.49)

The Hamiltonian matrix still reads

H̃ (k) =

(
H̃(k) ∆̃(k)

−∆̃∗(−k) −H̃∗(−k)

)
. (3.50)

In the new basis, the Bogoliubov-de Gennes Hamiltonian matrix still respects the PHS, rel-
atively to the same operator C since [U,C ] = 0. But now, the 4×4 blocks satisfy the two
constraints H̃(k) = H̃(−k) and ∆̃(k) = −∆̃(−k). The off-diagonal block ∆̃ has acquired
an odd momentum dependence under the unitary transformation. Therefore, the Hamil-
tonian matrix formally describes an odd-parity superconductor [115, 116]. Periodicity in
momentum space also requires the blocks of the Hamiltonian matrix H̃ (k) to satisfy more
restrictive conditions

H̃(ΓΓΓi −k) = +H̃(ΓΓΓi +k)

∆̃(ΓΓΓi −k) =−∆̃(ΓΓΓi +k) . (3.51)

Hence, the off-diagonal blocks are also odd functions of k in the vicinity of any ΓΓΓi. They
consequently vanish at every TRI momentum, where the Hamiltonian matrix H̃ (k) be-
comes purely block-diagonal. This leads to the following commutation relation

[P,H̃ (ΓΓΓi)] = 0, (3.52)

where the operator P = σ0 ⊗ s0 ⊗ τ3 plays the role of a parity operator. Since a common
basis of eigenvectors does exist, if one of these vectors, say |ψ(ΓΓΓi)⟩, is an eigenstate of the
Hamiltonian matrix H̃ (ΓΓΓi) with energy E(ΓΓΓi), then it is also an eigenvector of the parity
operator P , with the eigenvalue π(ΓΓΓi) =±1. This eigenvalue defines an energy-band parity
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Fig. 3.11 Illustration of a band inversion that would occur at zero-energy. The lowest band and its
particle-hole symmetric are depicted by dashed lines. The ±1 values define the energy-band parity
at any TRI momenta, although only two of them are shown.

at any TRI momentum. Additionally, there is the anticommutation relation

{P,C }= 0 , (3.53)

so that C |ψ∗(ΓΓΓi)⟩ is eigenvector of the parity operator too, but with the eigenvalue −π(ΓΓΓi).

For now, let us assume that, in the presence of spin-orbit coupling, the energy gap can
only close at the TRI momenta. Then, together with the PHS, the band parity enable us to
identify any gap closing that occurs at zero energy. This is illustrated in Fig.3.11. The parity
eigenvalues are only mentioned for the lowest energy band and its particle-hole symmetric
one, at two TRI momenta. From the figure, it is clear that any parity change for a given
band requires a gap closing. More generally, any gap closing happening at zero energy is
characterised by a sign change of the quantity

δi = ∏
En<0

πn(ΓΓΓi) , (3.54)

which is the parity product of all the negative-energy bands, with n the energy-band index.
Besides, dealing with the parity at a given energy is equivalent to dealing with the energy
sign at a given parity, except for a possible sign discrepancy

δi = (−1)N/2
∏

πn>0
sgnEn(ΓΓΓi) , (3.55)

where N is the number of bands in the bulk spectrum. Note that the PHS ensures N to
be even. In (3.55), the eigenvalue product for given positive parities is nothing but the
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determinant of the diagonal block H̃(ΓΓΓi). As a result, (3.55) can be re-written as

δi = (−1)N/2 sgn[Det H̃(ΓΓΓi)] . (3.56)

3.5.3 Topological characterisation

Following the prescription introduced by L. Fu [110] and M. Sato [115], a connection is
established between Eq. (3.56) and the first Chern number. Let us start with the the Berry
connection

A(k) = i∑
n
⟨ψn(k)|∇k|ψn(k)⟩

=
i
2

Tr[M†(k)∇kM(k)]

=
i
2

∇k lnDetM(k) (3.57)

with Mm,n = ⟨ψm(k)|PC |ψ∗
n (k)⟩, and |ψm(k)⟩ a common eigenvector of the Hamiltonian

matrix (3.50) and the parity operator. It can easily be checked that taking the eigenstates of
(3.46) leaves that quantity unchanged, so that the Chern number remains exactly the same
under the unitary transformation (3.48). The Berry connection also satisfies

A+(k) = i ∑
En>0

⟨ψn(k)|∇k|ψn(k)⟩

= i ∑
En>0

⟨ψ∗
n (k)|C †

∇kC |ψ∗
n (k)⟩

= i ∑
En<0

⟨ψn(−k)|∇k|ψn(−k)⟩

= A−(−k). (3.58)

Besides, relation (3.57) requires the Berry curvature to vanish

F(k) = ∇k ×A(k) = 0. (3.59)

According to (3.58) also

F±(k) = F±(−k), (3.60)
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therefore the knowledge of this curvature over the full Brillouin zone can be reduced to a
half Brillouin zone (BZ+). Regarding the Chern number, it can be defined as the integral of
the Berry curvature relative to the negative energy band

ν =
1

2π

∫

BZ
F−(k)

=
1
π

∫

BZ+

F−(k)

=
1
π

∮

∂BZ+

A−(k). (3.61)

Using relation (3.58), it follows that

ν =
1
π

∫
Γ1

Γ0

A(k)+
1
π

∫
Γ3

Γ2

A(k)

=
i
π

ln

√
DetM(ΓΓΓ1)

DetM(ΓΓΓ0)

DetM(ΓΓΓ3)

DetM(ΓΓΓ2)
. (3.62)

Since

Mm,n(ΓΓΓi) = ⟨ψm(ΓΓΓi)|PC |ψ∗
n (ΓΓΓi)⟩

= πm(ΓΓΓi)⟨ψm(ΓΓΓi)|C ψ
∗
n (−ΓΓΓi)⟩, (3.63)

it finally turns out

(−1)ν =

√
N

∏
m=1

πm(ΓΓΓ0)πm(ΓΓΓ1)πm(ΓΓΓ2)πm(ΓΓΓ3)

= ∏
Em<0

πm(ΓΓΓ0)πm(ΓΓΓ1)πm(ΓΓΓ2)πm(ΓΓΓ3)

=
3

∏
i=0

δi. (3.64)

This relation connects the Chern number to the product of the negative-energy band parities
at the TRI momenta. For a trivial phase, i.e. a null Chern number, the product (3.64) takes
the positive value +1. The negative value −1 can only be met for odd Chern numbers. It is
important to note that this relation only refers to the parity of the Chern number, which does
not allow us to discriminate the topological phase characterised by ν = 2 (for example) from
the trivial phase ν = 0. Nevertheless, it seems that if the parity change occurs at a single
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TRI momentum only (and cannot simultaneously occur at distinct TRI momenta), then the
Chern number appears to be restricted to values 0 and ±1, as it can be checked from the
phase diagrams in Fig. 3.13, Fig. 3.14 and Fig. 3.15. In this case, the relation in Eq. (3.64)
appears to be sufficient to distinguish the trivial and topological phases.

The topological criterion is given by the parameter values that define the border between
two distinct topological phases. As previously mentioned, going from one topological phase
to another requires the parity product (3.54) to change signs. It also involves a gap closing
at zero-energy. Indeed, when the gap closes, the two particle-hole symmetric eigenstates
cannot be distinguished from each other, and so it is about their parity. The Chern number
becomes ill-defined and it can then take another integer value. Then the gap closing occurs
at the TRI momenta when Det H̃(ΓΓΓi) = 0. This determinant can be expressed in terms of
the model parameters as well and

DetH(ΓΓΓi) =V 4
z −2bV 2

z +b2 −4t2 f 2
µ

2d , (3.65)

where

b = ∆
2
0 +(∆2

1 + t2) f 2 +µ
2 −λ

2L2 (3.66)

and

d = 1−
(

1+
∆2

0
t2 f 2

)
λ 2L2

µ2 +
(

2+
∆0∆1

tµ

)
∆0∆1

tµ
. (3.67)

ΓΓΓi has been omitted in the expression of functions f and L = |L ∗
+ −L−|/2. Note that

L(ΓΓΓi) = |L+(ΓΓΓi)|. The gap closing condition at the TRI momenta is given by the roots of
Eq. (3.65), namely

V 2
z = ∆

2
0 +(∆2

1 + t2) f 2 +µ
2 −λ

2L2 ±2 f µt
√

d , (3.68)

provided that d ≥ 0, which means

µ
2 ≥ µ

2
c =

(
1+

∆2
0

t2 f 2

)
λ

2L2 (3.69)

if one consider only s-wave superconductivity (∆1 = 0), or

µ
2 ≥ µ

2
c = λ

2L2 (3.70)
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Fig. 3.12 Honeycomb lattice spectra in a nearest-neighbour approximation for α = 1 (left) and α = 3
(right).

if only d-wave superconductivity is considered (∆0 = 0). The first consequence of the di-
atomic pattern, which implies L(ΓΓΓi) ̸= 0, is that a non-zero doping is mandatory to make
a band inversion occur at a time-reversal invariant momentum. Second, the diatomic pat-
tern, via the magnitude of the Rashba spin-orbit coupling, also constraints the gap closing
condition (3.68), which is not the case in the previous studies in the literature, as previously
mentioned. Nevertheless, we are about to show that the formation of Majorana boundary
modes remains possible in the honeycomb lattice, even though constrained its diatomic pat-
tern.

3.5.4 Applications

According to relation (3.64), the emergence of Majorana modes depends on the parity-
product sign defined at each TRI momentum. This section illustrates this connection through
concrete examples. For simplicity, we consider ∆1 = 0, and we discuss cases where a parity
change only occurs at a single TRI momentum, namely either ΓΓΓ0 or ΓΓΓ3. We consider three
cases.

Top of the band structure

First, the system is highly doped in order to focus on the quadratic part of the free-electron
spectrum, which means µ ∼ f (ΓΓΓ0)t. It corresponds to the blue regions at the top (or bottom)
of the band structure in Fig. 3.12. For simplicity we consider

µ = f (ΓΓΓ0)t = (α +2)t . (3.71)
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Fig. 3.13 Parity product δ0 (left) and zigzag-nanoribbon band structure (right): α = 1, µ = f (ΓΓΓ0) =
3t and λ = 0.1t for both pictures, whereas Vz = 0.3t and ∆ = 0.2t in the right plot. The blue (green)
color corresponds to δ0 = +1 (−1), while the black line in between is given by the gap closing
condition (3.68). The parameters are expressed in units of t.

Assuming that λ 2 ≪ µ2, then d > 0 is always satisfied. The gap closing condition (3.68)
becomes

V 2
z =

[
f (ΓΓΓi)− f (ΓΓΓ0)

][
f (ΓΓΓi)− f (ΓΓΓ0)+

L2(ΓΓΓi)

f (ΓΓΓ0)

λ 2

t2

]
t2

+
[
1+

L2(ΓΓΓi)

f (ΓΓΓ0) f (ΓΓΓi)

λ 2

t2

]
∆

2
0 (3.72)

in a first order approximation, at any TRI momentum ΓΓΓi=0,1,2,3. Moreover,

f (ΓΓΓi=1,2) = α , f (ΓΓΓ3) = (α −2) , (3.73)

so that | f (ΓΓΓi=1,2,3)− f (ΓΓΓ0)| ∼ 1. It is clear that no gap closing can occur at such momenta
for values of the Zeeman fields like Vz ≤ 0.5t. Thus the parity product is only likely to
change signs at ΓΓΓ0. The topological phase corresponds to

Vz >
[
1+

L2(ΓΓΓ0)

f 2(ΓΓΓ0)

λ 2

t2

]
∆0 . (3.74)

This is illustrated by the phase diagram in Fig. 3.13. Note that L(ΓΓΓ0) = 0 would lead to the
usual criterion Vz > ∆0 which is obtained in the case of a monatomic pattern [25].

Van-Hove Singularities

Second, Majorana modes can also emerge due to a parity change that occurs at a non-zero
TRI momenta, like ΓΓΓ3. We consider a strain such that 1 < α < 2. In that case | f (ΓΓΓi=1,2)| ≠
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Fig. 3.14 Parity product δ3 (left) and zigzag nanoribbon band structure (right): α = 1.2, µ =
f (ΓΓΓ3) = 0.8t and λ = 0.1t for both pictures, whereas Vz = 0.3t and ∆ = 0.2t in the right plot. The
blue (green) color corresponds to δ0 =+1 (−1), while the black line in between is given by the gap
closing condition (3.68). The parameters are expressed in units of t.

| f (ΓΓΓ3)| according to the definitions in Eq. (3.73), such that a parity change can occur at ΓΓΓ3

only.

We focus on a system which is strained and sufficiently doped to approach the Van-Hove
singularity that arises at ΓΓΓ3. It is related to a saddle point around which the free-electron
spectrum is hyperbolic. This is described by the yellow regions in Fig. 3.12. This singularity
is related to a divergence in the electronic density of states. Note that the electronic density
strongly increases such that a d-wave pairing may also appear (∆1 ̸= 0) and dominate over
the s-wave pairing, without compromising the Majorana mode existence [113]. As already
mentioned however, we consider here ∆1 = 0.

From (3.73), it is clear that stretching the lattice, i.e. increasing α , reduces the van Hove
singularity energy given by | f (ΓΓΓ3)t|. This enable us to decrease the doping down to about
one-tenth of the bandwidth. Note that such a doping becomes relevant in a graphene layer
[117] that can be strained up to twenty percent [118]. When considering µ = f (ΓΓΓ3) the
topological criterion reads

Vz >
[
1+

L2(ΓΓΓ3)

f 2(ΓΓΓ3)

λ 2

t2

]
∆0 , (3.75)

as long as λ 2 ≪ µ2. A phase diagram is presented in Fig. 3.14 for a strained honeycomb
lattice, α = 1.2t. The spin-orbit coupling λ = 0.1t yields a clear gapped band structure, but
considering a smaller coupling would not compromise the Majorana modes existence.
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Fig. 3.15 Parity product δ3 (left) and zigzag nanoribbon band structure (right): α = 2.2, µ =
f (ΓΓΓ3) = 0.2t and λ = 0.03t for both pictures, whereas Vz = 0.3t and ∆ = 0.2t in the right plot.
The blue (green) color corresponds to δ0 =+1 (−1), while the black line in between is given by the
gap closing condition (3.68). The parameters are expressed in units of t.

Dirac Cone Merging

Finally, Majorana modes may also appear after a parity product changes signs at ΓΓΓ3, when
the spectrum is quadratic in its vicinity. Such a situation is reached when increasing the
strain magnitude beyond a critical value α = 2. At this point, the two-nonequivalent Dirac
cones (red regions in Fig. 3.12) merge, which defines a Lifshitz transition [16, 43]. Beyond
this transition, the spectrum become gapped and quadratic around ΓΓΓ3.

Let us consider a system that is sufficiently strained (α ≳ 2) and weakly doped so that we
focus on the quadratic part of the spectrum around ΓΓΓ3 (red regions in Fig. 3.12). Contrary
to the two previous cases, the doping and the spin-orbit coupling are of comparable orders
of magnitude. Any expansion like (3.72) does not hold in that case and the condition d ≥ 0
is not necessarily met. This leads to a critical value for the superconducting gap. Majorana
modes can exist only when

∆
2 < ∆

2
c =

(
µ2

λ 2L2(ΓΓΓ3)
−1
)

f 2(ΓΓΓ3)t2 , (3.76)

which requires a doping such that µ > λL(ΓΓΓ3). It turns out that the Rashba spin-orbit cou-
pling drastically affects the existence of the topological phase , leading to a phase diagram
similar to the one in Fig. 3.15. Note that the zigzag-boundary termination is responsible for
the flat bands that appear in the band structure. They were not visible in the two previous
cases, because the energies considered were too high.

Although this third scenario is not achievable in graphene, it should find a possible
reasilation in s-wave superfluids of cold fermionic atoms [109].





Part II

Spintronic in Mesoscopic
Superconductors





Chapter 4

Frequency-dependent spin accumulation
in out-of-equilibrium superconductors

4.1 Introduction

Chargeless spin accumulation has recently been realised experimentally [26, 119, 120], en-
abling an estimate of the spin-relaxation time in mesoscopic superconductors. This is re-
markably long, of the order of nanoseconds, significantly longer than the charge-relaxation
time [121–126]. The measurement of this spin relaxation time using the injection of spin
from a ferromagnet (FM) into a superconductor (SC) has recently been presented [26] yield-
ing an estimation of the order of 10ns [127]. The SC was subject to a Zeeman magnetic field
which splits its density of states (DOS) for the up and down quasiparticles [128, 129]. To
test that this spin relaxation time value is accurate a new experiment has been developed
in which a normal-superconducting junction is subject to both a constant (DC) and a time
dependent (AC) bias. The ferromagnetic lead is replaced by a normal one, as in [26] it
was shown that spin accumulation was mostly due to the Zeeman split rather than to the
ferromagnetic character of the lead. In the new experiments the SC is much cleaner, with a
DOS much closer to the BCS form [27]. The time-averaged spin chemical potential differ-
ence resulting from the spin accumulation is measured as a function of the applied chemical
potential, the intensity of the AC signal, and as a function of the frequency.

Here we present the model which allows us to fit the experimental data in [27] (a pdf
version of this reference is provided at the end of the chapter), extract the value of the spin-
relaxation time, and explain the experimental dependence of the accumulated spin with
respect to various parameters. The injection between the SC and the FM/metallic lead is
simulated using the Fermi’s golden rule (FGR) and taking into account all possible tunnel-
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ing processes when an electron from the lead is injected into the SC (the electron can enter
the SC as a quasiparticle with the same spin, or as a quasihole of opposite spin) [130, 131].
Our model generalises the theory presented in [26] which was an incomplete approxima-
tion, as some of the tunneling processes have not been taken into account, and which was
valid only for small values of the spin imbalance. We subsequently write down and solve
self-consistently the time-dependent semi-classical equations of motion for the spin accu-
mulation in the SC. The relation between the spin accumulation in the SC and what is seen
in a non-local measurement of this accumulation performed using a FM lead is obtained
by imposing the condition that the electric current through the non-local probe is zero [27].
The bias voltage to which the probe is subjected to satisfy this condition is the measured
non-local voltage that we can relate theoretically with the applied voltage.

A crucial observation to be made is that a frequency dependence for the time-averaged
non-local measured voltage is conditioned by the existence of non-linearities in the system
(such as the non-linearity of the conductance of the detection junction, and the non-linear
dependence of the spin accumulation in the SC on the difference of chemical potentials
between the spin up and down quasiparticles). Such non-linearities are automatic in a SC for
not too small values of the spin accumulation due to the strong non-linear form of the BCS
DOS. For a fully linear system the measured spin accumulation is independent of frequency,
and the spin-relaxation time cannot be obtained from frequency-domain measurements.

First we remind the reader of the theory of spin injection into a SC, as well as the relation
between the injection electric and spin current as a function of the applied voltage. Then the
experimental setup is presented, and we introduce the semi-classical equations of motion
that rules the time-evolution of the spin. Finally we solve these equations for a DC bias,
before studying sinusoidal and rectangular AC biases.

4.2 FM-SC junction

In this section we introduce the model to describe the FM-SC junction and we compute the
tunneling currents flowing through it.
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4.2.1 Theoretical model

The total Hamiltonian for the junction is : H = HF +HS +HT . The Hamiltonian for the FM
lead is

HF = ∑
q,σ

(
εq +µF

)
c†

q,σ cq,σ , (4.1)

with εq = h̄2q2/2m and µF the chemical potential in the FM. Actually, the ”ferromagnetic”
character of the lead will be encoded in the spin-dependent tunnel amplitude . The BCS
Hamiltonian HS is given by

HS = ∑
p,σ

(
εp +µs −σ µBH

)
c†

p,σ cp,σ −∑
p

(
∆c†

p,↑c†
−p,↓+h.c.

)
, (4.2)

with εp = h̄2 p2/2m, ∆ is the superconducting energy gap and µBH is the Zeeman energy.
The tunneling Hamiltonian is

HT = ∑
p,q,σ

(
T σ

p,qc†
p,σ cq,σ +h.c.

)
. (4.3)

The first term of HT describes the transfer of electrons with spin σ and momentum q into
the superconductor with a spin dependent amplitude T σ

p,q. We assume that there is no spin
flip at the interface but that the momentum is not conserved, p → q. It is more convenient
to express the operators for electrons in the SC in terms of quasiparticle operators using the
Josephson’s definition of the Bogoliubov-Valatin transformation [132, 133]

c†
p,↑ = upγ

†
e,p↑+ vpγh,p↓, (4.4)

c†
−p,↓ = upγ

†
e,p↓− vpγh,p↑, (4.5)

where the γ
†
e(h),p are creation operators of electronlike (holelike) excitations. Since a quasi-

particle has probability u2
p to be an electron and probability v2

k to be a hole, the quasiparticle
charge is given by qp = u2

p − v2
p. The corresponding charge carried by the condensate is

2v2
p = 1− qp [130]. With the proper choice of the coherence factors up and vp, the BCS

Hamiltonian can be written as

HS =µs ∑
p,σ

c†
p,σ cp,σ +∑

p,σ
Ep,σ

(
γ

†
e,pσ γe,pσ + γ

†
h,pσ

γh,pσ

)
, (4.6)



94 Frequency-dependent spin accumulation in out-of-equilibrium superconductors

where

up =
1
2

(
1+

εp√
ε2

p +∆2

)
,

vp =
1
2

(
1− εp√

ε2
p +∆2

)
,

and Ep,σ =
√

ε2
p +∆2 −σ µBH the excitation energy [128, 129]. Introducing σ̄ = −σ , the

tunneling Hamiltonian becomes

HT = ∑
p,q,σ

(
T σ

p,q
[
upγ

†
e,pσ cq,σ + vpγ

†
h,pσ̄

cq,σ
]
+h.c.

)
. (4.7)

4.2.2 Tunnel current

We now calculate the particle tunneling current flowing through the junction by using
Fermi’s Golden rule[130, 134]. The allowed tunneling processes and the corresponding
probabilities are described in Table 4.1. For example, for a γ

†
e,pσ cq,σ process (an electron

cq,σ is annihilated in the FM to create a quasiparticle γ
†
e,pσ in the SC), the total probability

is a product of the tunnel probability given by the tunnel Hamiltonian, |T σ
p,q|2u2

p, the prob-
ability to have a filled state in the FM to tunnel from, f (εq), and the probability to have an
empty state in the SC to tunnel into, 1− fpσ (Ep,σ ).

The tunneling average current through the junction for a given spin can be written as

Iσ =
2π

h̄ ∑
p,q

|T σ
p,q|2

{
u2

pδ (εq −Ep,σ + eV )
[

f (εq)− fpσ (Ep,σ )
]

−v2
pδ (εq +Ep,σ̄ + eV )

[
1− f (εq)− fpσ̄ (Ep,σ̄ )

]}
, (4.8)

Process Probability Charge Quasiparticle charge Condensate charge Spin
γ

†
e,pσ cq,σ u2

p[1− fpσ (Ep,σ )] f (εq) +1 +qp 1−qp σ

c†
q,σ γe,pσ u2

p[1− f (εq)] fpσ (Ep,σ ) −1 −qp −1+qp σ̄

γh,pσ̄ cq,σ v2
p fpσ̄ (Ep,σ̄ ) f (εq) +1 −qp 1+qp σ

c†
q,σ γ

†
h,pσ̄

v2
p[1− fpσ̄ (Ep,σ̄ )][1− f (εq)] −1 +qp −1−qp σ̄

Table 4.1 Tunneling processes in excitation representation [130, 131].
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where we assumed T σ
p,q = T σ

q,p. To simplify this formula we note that for each state with
p+ > kF , energy Ep+,σ and up+ , there exists another state p− < kF with the same energy
Ep−,σ = Ep+,σ (note however that εp+ =−εp−). This implies for the coherence factors that
u2

p± = v2
p∓ . Moreover we can reasonably assume that |Tp+,q| = |Tp−,q|. By separating the

sum over p into two sums over p±, and by noting that only the coherence factors depend on
p± (with up± = vp∓ , u2

p± + v2
p± = 1) we obtain

Iσ =
2π

h̄ ∑
p+,q

|T σ

p+,q|2
{

δ (εq −Ep+,σ + eV )
[

f (εq)− fp+σ (Ep+,σ )
]

−δ (εq +Ep+,σ̄ + eV )
[
1− f (εq)− fp+σ̄ (Ep+,σ̄ )

]}
, (4.9)

where we assumed that there is no charge accumulation, meaning that the Fermi-Dirac
distribution in the superconductor is identical for momenta greater and lesser than the Fermi
momentum kF . In the following the sign + of the momentum p will be omitted for brevity.
We can now convert the momentum summation into an energy integral, using

∑
q
→
∫

dq ρ(q)︸︷︷︸
(L/2π)d

→
∫

dEρ(E). (4.10)

For the energy range we consider, it is reasonable to assume that the FM DOS and the tun-
neling probabilities are roughly independent of energy. Performing the momentum-energy
conversion for the ∑q in the FM, and subsequently the resulting energy integral, we obtain

Iσ =
2π

h̄ ∑
p

ρF |T σ |2
{

f (Ep,σ − eV )− fpσ (Ep,σ )+ fpσ̄ (Ep,σ̄ )− f (Ep,σ̄ + eV )
}
. (4.11)

Here ρF is the total density of states of the ferromagnetic lead (integrated over the volume of
the FM). The conversion of the summation over the momentum p in the SC into an energy
integral is more tricky. This is because the two first terms of the above expression correspond
to the injection of an electron as an electron-like excitation of energy Ep,σ . The last two
terms correspond to the conversion of an electron into a hole-like excitation at energy −Ep,σ̄ .
The SC densities of states are different for the two processes, due to the presence of the
Zeeman field: ρS(Ep,σ ) ̸= ρS(−Ep,σ̄ ). Converting the momentum summation over p into
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an energy integral thus leads to

Iσ =
2π

h̄
ρFρ0|T σ |2

∫ +∞

−∞

dE
{

ρ(Eσ )
[

f (Eσ − eV )− fσ (Eσ )
]

+ρ(Eσ̄ )
[

fσ̄ (Eσ̄ )− f (Eσ̄ + eV )
]}

,

(4.12)

where Eσ = E −σ µBH, ρ0 is the DOS of the superconductor at the Fermi energy, and

ρ(E) =θ(E −∆)
E√

E2 −∆2
, (4.13)

is the usual normalised BCS density of states, with θ the Heaviside step function. In real
materials this DOS needs to be modified to round-off singularities and to take into account
the existence of states inside the gap [135]. Such states can be induced for instance by disor-
der (static impurities, magnetic impurities, etc.). Several theoretical models which describe
the presence of such gap states can be used in order to fit properly the experimentally mea-
sured DOS. The most commonly used is the Dynes model for the DOS [136], in which a
phenomenological parameter δ is added to the energy as an imaginary part corresponding
to a quasiparticle lifetime

ρD(E) =
∣∣∣∣Re
[

E + iδ√
(E + iδ )2 −∆2

]∣∣∣∣. (4.14)

We can also use the Fulde DOS which also takes into account the presence of spin orbit
effects, disorder, etc., in conjunction with an applied magnetic field [137]. It is however
very difficult to properly fit the experimentally measured DOS using this models. Some-
times is most useful to use in the numerical calculations directly the DOS measured exper-
imentally. The total spin and electric tunneling current can be written as Ie = e∑σ Iσ and
Is = h̄/2∑σ σ Iσ where

Iσ =
π

h̄
ρFρ0|T σ |2

∫ +∞

−∞

dE
{

ρ(Eσ )
[

f (E − eV )− f (E −σ µs)
]

+ρ(Eσ̄ )
[

f (E +σ µs)− f (E + eV )
]}

. (4.15)

Here µs refers to the shift of the chemical potential due to the spin imbalance.
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Fig. 4.1 Illustration of the experimental setup.

4.3 Spin accumulation in a SC-FM junction

4.3.1 Experimental setup

The setup that we consider is presented in Fig. 4.1. A voltage bias V is applied between
a lead and the SC at point A (injection junction). The spin accumulation S(t) in the SC
is measured at point B (detection junction) by applying a voltage difference Vm between a
ferromagnetic lead and the SC and imposing the condition that the electrical current flowing
through the detection junction is zero.

4.3.2 Semiclassical equations of motion

We assume that the time dependent spin accumulation S(t) in the superconductor satisfies a
simple equation of motion

dS(t)
dt

=Ii
s(t)−

S(t)
τs

, (4.16)

where τs is the spin relaxation time in the SC. As described in the previous section, Ii
s, the

spin current in the injection junction, is a function of the applied voltage V between the SC
and the injection lead. In much of our analysis, as well as in the experiments presented in
Ref. [27] the injection lead is considered to be non-FM (i.e. T i

↓ = T i
↑ = T i) and the injected
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spin current can be written as

Ii
s =h̄/2∑

σ

σ Iσ

=πρFρ0|T i|2
∫ +∞

−∞

dE
{[

ρ(E↑)+ρ(E↓)
][

f (E − eV )− f (E + eV )
]

−2ρ(E↓) f (E +µs)−2ρ(E↑) f (E −µs)
}
. (4.17)

The spin accumulation in the superconductor can be written as

S(t) = h̄/2ρ0

∫
dE[ρ(E↓) f (E +µs)−ρ(E↑) f (E −µs)]. (4.18)

This relates the accumulated spin to the chemical potential difference between the up and
down spins in the SC. The equation of motion can be formally integrated

S(t) = e−t/τs

∫ t

0
dt ′Ii

s(t
′)et ′/τs. (4.19)

Note that Ii
s is also a function of µs. The equations (4.17), (4.18), and (4.19) form a self-

consistent system of integral equations which can be solved numerically to determine µS as
a function of V for all times t. An exception to this can be made for very small values of µs

when we can neglect the dependence of Ii
s on µs, and we calculate the accumulated spin and

correspondingly of µs directly from Eq. (4.19), as done in [26].

When the applied voltage is constant in time the system will end up in a stationary
state in which the injected spin current will exactly compensate the spin relaxation in the
superconductor such that dS(t)/dt = 0. Imposing this condition in the equations of motion
yields Ii

s = S/τs, where now both S and Ii
s are time-independent. Equations (4.17) and (4.18)

form a self-consistent system of equations which can be solved numerically to determine
the stationary value of µS as a function of V . To determine the measured voltage Vm as
a function of µs, and correspondingly on the value of the applied voltage, V , we need to
impose the extra condition that in the detection junction the total electrical current Id

e = 0,
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where, as described in the previous section Id
e is given by

Id
e = e∑

σ

Iσ

=
2πe2

h̄
ρFρ0

∫ +∞

−∞

dE
{[

|T d
↑ |2ρ(E↑)+ |T d

↓ |2ρ(E↓)
]

f (E − eV ) (4.20)

−
[
|T d

↑ |2ρ(E↓)+ |T d
↓ |2ρ(E↑)

]
f (E + eV )

−
[
|T d

↑ |2 −|T d
↓ |2
][

ρ(E↑) f (E −µs)−ρ(E↓) f (E +µs)
]}

,

Note that the currents through the injector and the detector satisfy the same equations but
with different parameters. Here, for the FM detector the transmission coefficients are spin-
dependent T d

↑ ̸= T d
↓ . If this is not the case, Vm = 0 for all accumulated µs. Conversely,

the measured Vm value depends strongly on the polarisation of the detector Pd = (|T d
↑ |2 −

|T d
↓ |2)/(|T d

↑ |2 + |T d
↓ |2), with a typical experimental Pd ≈ 0.1 for the Cobalt lead.

4.4 Results for an applied DC voltage

In Fig. 4.2 we present a typical dependence of Vm on V . Similar to Ref. [26] this fol-
lows qualitatively the form of Is(V ) which exhibits the same main features as the BCS
DOS [26] (e.g. two coherence peaks, a quasi-null value at small V ’s and a saturation at
large V ’s). To understand the difference between our approach and previous approxima-
tions we will separately take into account the effects of two important factors, the non-
linearity and the self-consistency. The non-linearity comes into play when H and µs are
large, and the above current formulas cannot be Taylor expanded in these parameters. The
self-consistence expresses the back-reaction of the accumulated µs on the injection current;
when µs is small with respect to the applied voltage, we can neglect it in Eq. (4.17) and
solve the equations of motion in a non-self-consistent matter. We begin by analysing the
effect of the self-consistence. In Fig. 4.2 we present the dependence of Vm on V obtained
both self-consistently (full line) and non-self-consistently (dashed line). It appears that the
main difference is quantitative, i.e. the self-consistence is introducing an overall correct-
ing factor which does not depend strongly on V . To test this assumption we write down
the self-consistent and non-self-consistent solutions of the equations of motion in the linear
limit (small µs). In this regime we can perform a Taylor expansion of Eq. (4.18) in µS,
S = h̄ρ0ρ(µBH)µnsc

s , which together with the condition Ii
s = S/τs yields

µ
nsc
s = τs[h̄ρ0ρ(µBH)]−1Ii

s(V ). (4.21)
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Fig. 4.2 The measured Vm (in meV ) as a function of the applied chemical potential V (also in meV )
calculated in a self-consistent manner (full line) and non-self consistent manner (dashed line) for
parameter values of ∆ = 0.22meV , Pd = 2%,and τs = 0.44 in the normalised units described in the
text. The DOS is considered to be of BCS Dynes type with a δi = 7µV for the injection DOS,
δd = 1µV for the detector DOS. The temperature is taken to T = 270mK. The magnetic field is
H = 0.21T .

We can also solve the equations of motion self-consistently by making a Taylor expansion
of Eq. (4.17) in µs

Ii
s = Ii

s(V )+(2gnsh̄/e2)ρ(µBH)µsc
s = S/τs, (4.22)

with gns = (2πe2/h̄)ρF |T i|2ρ0 is the normalised conductance of the injection junction. Not-
ing that S = 2h̄ρ0ρ(µBH)µsc

s , we find

µ
sc
s =

τs[h̄ρ0ρ(µBH)]−1Ii
s(V )

1−2τsgns/e2ρ0
(4.23)

and µsc
s /µnsc

s = 1/(1−2τsgns/e2ρ0). In our numerical calculations we will set gns/e2ρ0 = 1,
so that τs is measured in units of e2ρ0/gns. Indeed, it seems that in the linear limit, the non-
self-consistent and self-consistent approaches differ by a simple numerical factor, which
converges to 1 when τs ≪ 1. This observations has been checked numerically in Fig. 4.3
where we have plotted the accumulated µs calculated using the non-self-consistent and the
self-consistent approach (with a correcting factor of 1/(1−2τs) taken into account). Indeed
we see that the two give the same result in the linear (small V ) regime.

It appears thus that the effect of solving the equations of motion in a self-consistent or
non-self-consistent manner is mainly quantitative (an overall numerical factor), which is
however very important if we are interested in extracting the value of the spin relaxation
time from a fit of the experimental data for an applied DC voltage. A factor of 10 difference
arising in the model from the self-consistency can give thus a factor of 10 error in the
estimation of the spin-relaxation time.
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Fig. 4.3 The calculated accumulated spin-chemical potential µs (meV ) as a function of the applied
voltage (meV ) using the self-consistent formalism (full line), and the non-self-consistent formalism
(multiplied by a factor of 1/(1−2τs)) (dashed line). The parameters are the same in Fig. 4.2.

The second important factor to be understood is the non-linearity, in particular the non-
linearity of the detection. We note that the chemical potential describing the spin accumula-
tion µs depends qualitatively similar on the applied V as the measured Vm. The differences
come from the non-linearity of the detection junction. To understand this, we have plotted
in Fig. 4.4 the measured Vm as a function of the accumulated µs. Note the pronounced non-
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Fig. 4.4 The measured voltage Vm (in meV ) as a function of µs (in meV ) (full line). The dashed line
corresponds to Vm = Pd µs. The parameters are the same in Fig. 4.2.

linearity of the detection junction, thus for V ≤ ∆/2, corresponding to a small µs, we have a
linear dependence of Vm on µs, Vm ∝ Pdµs as expected, while for V > ∆/2 the linearity does
not hold (for reminder: ∆ = 0.22meV and Pd = 2%).
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4.5 Results for an applied AC voltage

4.5.1 Time-dependent behavior

Numerical results

We now apply a time-dependent (AC) sinusoidal voltage of frequency ω and amplitude Vr f

on the injector, such that V (t) = V +Vr f cos(ωt). The expressions for the spin currents do
not change (see Eq. (4.17)). The only change comes from the dependence on time of the
spin imbalance. We can solve numerically the self-consistent integral equations of motion
(Eqs. (4.16)-(4.20)) to obtain the time-dependent Vm(t), µs(t) and accumulated spin S(t), as
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S

Fig. 4.5 Spin imbalance (in arbitrary units) as a function of time (in units of τs) for Vr f = 0.05meV
and ω = 0.8/τs (blue), ω = 0.2/τs (black), and ω = 0.04/τs (red). Note that the average of the
oscillations (denoted by the dotted line) is independent of frequency, while their amplitude is not.

a function of applied V for various values of frequencies and AC amplitudes.

We begin by plotting the accumulated spin S(t) as a function of time. The time depen-
dence of the spin accumulation can be understood easily thinking that the superconductor
acts as a capacitor (its charge could be viewed as the spin imbalance). Indeed, for large
frequencies the capacitor is loading (the spins are accumulating up to a maximal value) but
its decreasing never happens because the spin relaxation time is larger than the period of the
oscillations. On the contrary, for small frequencies voltage the spins can relax because of
the large period of the oscillations. In Fig. 4.5 we plot S(t) for three values of frequency,
ω = 0.8/τs, ω = 0.2/τs and ω = 0.04/τs. All other parameters are the same as in the previ-
ous section. We note that the average of the oscillations is independent of frequency, while
their amplitude is not. The larger the frequency, the more the behavior of S(t) approaches
that of a charging capacitor with smaller and smaller oscillations around the saturation value.

It would thus seem that experimentally one cannot see a frequency dependence for the
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Fig. 4.6 Calculated Vm (in meV ) as a function of time (in units of τs) for Vr f = 0.05meV , and
ω = 0.8/τs (blue), ω = 0.2/τs (black), and ω = 0.04/τs (red). Note that both the averages (denoted
by the corresponding dashed lines) and the amplitude of the oscillations depend on frequency.

time-averaged spin accumulation. However, in an actual experiment one does not measure
S but Vm, which can exhibit a strong non-linear behavior. We should then expect that if the
amplitude of the oscillations in S(t) depends on frequency, the time average of Vm depends
on frequency via rectification effects. In Fig. 4.6 we plot the time dependence of Vm for
three different frequencies and we see that indeed both the amplitude of the oscillations and
the time average depend on frequency.

Taylor expansion

To understand the above numerical results we study a few limiting cases that can be solved
analytically. For a small applied AC voltage (Vr f ≪ V ), with V (t) = V +Vr f cos(ωt), we
can use a Taylor expansion, and the spin current can be expressed as

Is(t) = Is[V +Vr f cos(ωt)]

≈ Is[V ]+
∂ Is

∂V

∣∣∣∣
V
.Vr f cos(ωt)+

1
2

∂ 2Is

∂V 2

∣∣∣∣
V
.[Vr f cos(ωt)]2 + ... (4.24)

Injecting Eq. (4.24) in Eq. (4.19) gives us an expansion for the spin imbalance in powers of
Vr f : S(t) = S0(t)+S1(t)+S2(t)+ .... We focus on the first two terms in the expansion, but
the next orders can be studied in a similar fashion. For times much more larger than τs we
obtain

S(t) = Is(V )τs +
∂ Is

∂V

∣∣∣∣
V
.Vr f

τs

1+ τ2
s ω2 [cos(ωt)+ωτssin(ωt)] . (4.25)
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We see from the above formula that the average accumulated spin is independent of
frequency, consistent with the numerical analysis in the previous section (see Fig. 4.5).
However, the amplitude of the oscillations does depend on frequency. By having a quick
look at the above expression we can directly point out two regimes. Thus, for ωτs ≪ 1 we
should expect a constant behavior for the dependence of the amplitude of the oscillations
with the frequency, as τs

1+τ2
s ω2 −→ τs. The opposite regime where ωτs ≫ 1 gives us a 1/ω

dependence. This behavior is confirmed by a numerical analysis of the dependence of the
amplitude of oscillations with the frequency where we indeed note a crossover behavior for
a frequency ω ≈ 1/τs. However this analysis in valid only when Vr f is very small, and
in the regime in which the system is well described by the non-self-consistent calculation.
Also, since the timescales involved are very short, it is much harder to have experimentally
access to the amplitude of the oscillations than to the time averages, and in what follows we
will focus rather on time-averaged quantities than on time-dependent ones. We expect that
the non-linearity will give rise to a frequency dependence even when averaging over time,
allowing us to detect directly this spin relaxation time in the frequency domain. Experimen-
tally, one uses 0.5−50MHz frequencies since we expect a spin relaxation time of the order
of nanoseconds.
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Fig. 4.7 Dependence of Vm(in meV ) and dVm/dV as a function of the applied V (in meV ) for various
frequencies (in units of 1/τs), at fixed AC amplitude (Vr f = 0.2meV ).

4.5.2 Time-averaged quantities

In this section we study the dependence of the average measured Vm as a function of the
applied voltage for different AC amplitudes and frequencies. We begin by plotting Vm and
its derivative dVm/dV as a function of V for different frequencies at fixed AC amplitude (see
Fig. 4.7). All frequencies are given in units of 1/τs. Subsequently, in Fig. 4.8 and Fig. 4.9
we fix the frequency and plot the average Vm and the derivative of the average dVm/dV as
a function of applied V for various values of the AC amplitude. Finally, in Fig. 4.10 we
plot the dependence of Vm on the AC frequency at a fixed AC voltage amplitude and for
various applied voltages. We note that the main features that we observe, i.e a flattening of
the Vm dependence on V , with an eventual extra peak arising at V = 0, a doubling of the
peaks in the dVm/dV dependence on V , whose position depend quasi-linearly on Vr f , and a
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Fig. 4.8 Dependence of Vm (in meV ) and dVm/dV as a function of the applied V (in meV ) for various
values of the AC amplitude at a fixed frequency of ω = 0.2/τs.
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(4.27)

Fig. 4.9 3D plot of Fig 4.8: Dependence of dVm/dV as a function of the applied V (in meV ) and Vr f

at a fixed frequency of ω = 0.2/τs.

saturation of Vm and dVm/dV with increasing the frequency, are qualitatively similar to what
is measured in Ref. [27]. The frequency at which the saturation occurs is directly related
to the inverse of the spin-relaxation time. Thus our theory seems to describe very well the
frequency and amplitude dependence of the measured accumulation. We have checked that
while the measured Vm and µs do depend on the frequency, the accumulated spin S does
not as described also in the previous section. We have calculated the accumulated spin S

(see Fig. 4.11) for different values of V and frequency and we have seen that S is indeed
unaffected by the frequency.
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Fig. 4.10 Dependence of Vm (in meV ) on the AC frequency (in units of 1/τs) at fixed AC voltage
amplitude Vr f = 0.2meV , for various applied voltage V (in meV ).
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Fig. 4.11 Dependence of S (in arbitrary units) on V at fixed AC voltage amplitude Vr f = 0.2meV
and for the same frequencies ω as in Fig. 4.7 (all curves overlap).

4.5.3 Different type of AC voltage: rectangular pulse

To get an analytical understanding of the numerical results presented in the previous section
we consider also a different type of AC signal, for example a chain of rectangular pulses. In
this case we can also calculate analytically the form of the spin imbalance, if we make the
assumption that the self-consistent effects are negligible. The pulse has the following shape

Vr f (t) =
N

∑
i=0

Vr f

[
θ

(
t − 2πi

ω

)
−θ

(
t − ε − 2πi

ω

)]
, (4.28)

with T = 2π/ω the period of the signal, Vr f its amplitude, and ε the width of the pulse. The
difference of spin imbalance between the stationary regime (Vr f = 0) and the time-dependent
one (Vr f ̸= 0) can be calculated exactly using Eq. (4.19):

δS(t) = S[Vr f (t)]−S[Vr f (t) = 0]

= e−t/τs

∫ t

0
ex/τs[Ii

s[V +Vr f (x)]− Ii
S(V )]dx. (4.29)

Performing the integral over time leads to

δS(t) = {Ii
s[V +Vr f (x)]− Ii

S(V )}τse−t/τs
[
(eε/τs −1)

e2πN/ωτs −1
e2π/ωτs −1

+θ

(
t − 2πN

ω
− ε

)(
e2πN/ωτs+ε/τs − e2πN/ωτs

)

+θ

(2πN
ω

+ ε − t
)(

et/τs − e2πN/ωτs
)]

. (4.30)

The average of Eq. (4.30) can be written as δ S̄ = 1/T
∫ T

0 δS(t)dt and leads to

δ S̄ = [Ii
s(V +Vr f )− Ii

S(V )]
ωετs

2π
+O

(
e−2π/ωτs

)
. (4.31)



108 Frequency-dependent spin accumulation in out-of-equilibrium superconductors

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
-0.03

-0.02

-0.01

0.00

0.01

0.02

V

S
p
in

HA
C

+
D

C
L-S

p
in

HD
C

L

Fig. 4.12 Numerically calculated Vm (full line) (in arbitrary units), and Ii
s(V +Vr f )− Ii

S(V )(dashed
line), as a function of V for Vr f = 0.2meV and the frequency ω = 0.04/τs. Note the qualitatively
similar behavior of the two curves (a constant has been introduced to uniformise the two curves).

If the pulse constitutes a constant fraction of the period (ωε is constant), the accumulated
average S should be independent of frequency. We have checked that is indeed the case by a
numerical analysis. Also this is consistent with our previous observations for the sinusoidal
signal. An interesting observation that we make is that, as it can be seen from Eq. (4.31) the
dependence of S on V is given generically by Ii

s(V +Vr f )− Ii
S(V ). In Fig. 4.12 we plot the

dependence on Vm as a function of V obtained numerically for a specific value of Vr f and of
frequency. We also sketch the behavior of Ii

s(V +Vr f )− Ii
S(V ), showing that indeed, to first

approximation, the behavior of Vm follows qualitatively the behavior of Ii
s(V +Vr f )− Ii

S(V ).

A simple generalisation can be made to understand qualitatively the behavior of Vm

with V for the sinusoidal signal. To first approximation a sinusoidal signal is equivalent
to a superposition of two Vr f and −Vr f pulses, with an εω = 1/2. We would then expect
an overall dependence of Vm qualitatively similar with Ii

s(V +Vr f )+ Ii
s(V −Vr f )− 2Ii

S(V ).
In Fig. 4.13 we plot the dependence of the excess accumulated spin as a function of V

obtained numerically for a specific value of Vr f = 0.2meV and ω = 0.04/τs for a sinusoidal
signal, and we also sketch the behavior of Ii

s(V +Vr f )+ Ii
s(V −Vr f )−2Ii

S(V ), showing that,
remarkably enough, the two behaviors are indeed qualitatively similar.

Differences between accumulation and relaxation times

In this section we consider the possibility that the time for accumulation (loading) and re-
laxation (unloading) are different. Such phenomenon could be detected by applying a time
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Fig. 4.13 Measured excess accumulated spin (full line), and Ii
s(V + Vr f ) + Ii

s(V − Vr f ) −
2Ii

S(V )(dashed line), as a function of V for a sinusoidal signal with Vr f = 0.2meV and the frequency
ω = 0.04/τs. Note the qualitatively similar behavior of the two curves.

dependent voltage with the following shape (see Fig. 4.14)

Vr f (t) =
N

∑
i=0

A1

[
θ
(
t − 2πi

ω

)
−θ

(
t − ε1 −

2πi
ω

)]

+
N

∑
i=0

A2

[
θ

(
t − ε1 −

2πi
ω

)
−θ

(
t − ε1 − ε2 −

2πi
ω

)]
. (4.32)

This is because if A1 > 0 and A2 < 0 the first step corresponds to the loading of the super-
conductor and is controlled by τ1, and the second one to the unloading and is controlled by
τ2. A similar calculation as before can be performed leading to the following form for the
average spin imbalance

δ S̄
Ii
s(V +Vr f )− Ii

S(V )
=

ω(A1ε1τ1 +A2ε2τ2)

2π
. (4.33)

By setting ε1 = ε2 = ε , A1 = A2 = A and τ1 = τ2 = τ we effectively restore the previous
situation

δ S̄ = [Ii
s(V +Vr f )− Ii

S(V )]
2τωε

2π
, (4.34)

with τs being replaced by 2τ = τ1 + τ2. We can see that in this limit the dependence is still
linear with frequency. One important observation to make is that the difference between τ1

and τ2 can be measured directly by applying an AC voltage with A1 =−A2 and ε1 = ε2. If
the two times are different, the average excess accumulation will be non-zero, which is not
the case when τ1 = τ2.
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Fig. 4.14 Applied time dependent voltage for A1 =−A2 = 1, ε1 = 0.3 and ε2 = 0.2.

4.6 Conclusion

We have calculated the accumulated spin in a junction between a superconductor and a nor-
mal or ferromagnetic contact, taken out of equilibrium, and in the presence of a Zeeman
magnetic field. The effects of DC and AC applied voltages, for different amplitudes and
frequencies, have been considered. For an applied DC voltage, the dependence of the mea-
sured spin accumulation Vm on the applied voltage V roughly follows the form of the DOS,
i.e. two coherence peaks, a reduction at small biases, and a saturation for large applied
voltages. When an AC component is added to the applied voltage one observes a flatten-
ing of the measured spin voltage with the applied V , with an eventual extra peak arising at
V = 0, a doubling of the peaks in the dVm/dV dependence on V , whose position depends
quasi-linearly on the amplitude of the AC voltage, and a saturation of Vm and dVm/dV with
increasing the frequency. The frequency at which the saturation occurs is directly related to
the inverse of the spin-relaxation time. Our theoretical predictions show a qualitative agree-
ment with the experimental measurements in Ref. [27]. A detailed comparison between our
theoretical analysis and these experimental measurements allows the extraction of the spin
relaxation time in the SC, in particular from the dependence of the measured accumulation
as a function of frequency. We find that this value is of the order of ns.
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Abstract

We have measured the lifetime of spin imbalances in the quasiparticle population of a supercon-

ductor in the frequency domain. A time-dependent spin imbalance is created by injecting spin-

polarised electrons into a thin-film mesoscopic superconductor (Al) at finite excitation frequencies

and finite magnetic field. The time-averaged value of the spin imbalance as a function of excitation

frequency shows a cut-off corresponding to the spin lifetime. The spin lifetime is relatively constant

in the accessible ranges of magnetic fields and temperatures; its value is in agreement with previous

estimates. Our data are qualitatively well-described by a theoretical model taking into account all

quasiparticle tunnelling processes from a normal metal into a superconductor.
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Spin-polarised electrons injected into superconductors eventually disappear into the con-

densate, which is made up of Cooper pairs of electrons of opposite spin. To disappear, the

injected electrons — which become quasiparticles in the superconductor — must lose energy,

flip their spin and recombine with quasiparticles of the opposite spin to form Cooper pairs.

These processes may be sequential or occur in parallel. For example, (1) quasiparticles may

undergo elastic or inelastic spin flip processes, (2) quasiparticles may lose energy without

flipping their spin, and (3) low-energy quasiparticles recombining in pairs necessarily lose a

quantity of energy equivalent to the superconducting gap, usually in the form of a phonon.

The characteristic timescale for these processes — as well as the order in which they occur

and any interdependence between them — can shed light on microscopic properties of the

superconductor, including relaxation pathways [1–8] as well as the gap structure and the

pairing mechanism in unconventional superconductors [9–12].

Time- and frequency-domain experiments, whether using transport, optical pump-probe

or other techniques, provide the most direct measure of the timescales involved [13–16].

Most of the work in this area has focused on the recombination of quasiparticles, usually

with techniques sensitive to the number of quasiparticles and their diminution over time. A

quasiparticle population which is larger than that at equilibrium does not however exhaust

the possible non-equilibrium phenomena: the quasiparticle population can also manifest spin

and/or charge imbalances [17–23]. These do not necessarily relax in the same way, nor on

the same timescale. In this Letter we report the first frequency-domain measurement of the

lifetime of a spin imbalance in the quasiparticle population in a mesoscopic superconductor.

The idea of our experiment, in brief, is as follows: We inject spin-polarised quasiparticles

into a superconductor at a finite frequency fRF = ω/2π while measuring the time-averaged

spin-up quasiparticle chemical potential, < µs(ω, t) >t. We expect a cut-off at roughly

ω = 1/τs, with τs the spin lifetime of quasiparticles in the superconductor (Figure 1b). This

is akin to filling a leaky bath from a tap, turned on and off at a regular rhythm, while

measuring the time-averaged water level in the bath.

Our samples, fabricated with standard electron-beam lithography and evaporation tech-

niques, are thin-film superconducting (S) bars, with a native insulating (I) oxide layer, across

which lie normal metal (N) and ferromagnetic (F) electrodes used either as ‘injectors’ or as

‘detectors’. (Figure 1) In our devices, S is aluminium, I Al2O3, F cobalt and N thick alu-

minium with a critical magnetic field of∼50mT. (In all the data shown here, this Al electrode
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FIG. 1: (a) Scanning electron micrograph of a typical device (scale bar = 1µm) and schematic

drawing of the measurement setup. S = superconductor (∼8.5nm thick Al film with a native

oxide), N = normal metal (100nm Al), F = ferromagnet (40nm Co, with a 4.5nm Al capping

layer). The native oxide on S constitutes a tunnel barrier between it and any other given electrode.

Quasiparticles are injected into S across a tunnel barrier by applying a voltage VDC across J1

or J2. These are spin-polarised because of the Zeeman field in S. The nonlocal voltage VNL and

differential nonlocal signal dVNL/dVDC are measured between a distant ferromagnetic electrode

and the superconductor (at J3) as a function of magnetic field and temperature, as well as as a

function of the amplitude VRF and frequency fRF = ω/2π of high-frequency (1-50MHz) voltages

applied to the injection electrode. The local conductance dI/dVDC is measured simultaneously at

the injection electrode. (b) Numerical calculations of VNL(t) (and its time average) for different

ω. The time-averaged VNL depends on ω; this is our main experimental result. These calculation

were done for VDC = 200µV, VRF = 250µV and using the measured local conductance at J2 and

J3 at 680mT.

is in the normal state.) A typical device is shown in Figure 1a. As in previous experiments,

the SIF and NIS junctions have ‘sheet resistances’ respectively of ∼ 2 and ∼ 6 ·10−6Ω · cm2

(corresponding to barrier transparencies of ∼ 4 and ∼ 1 · 10−5) and tunnelling is the main
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transport mechanism across the insulator. (See Supp. Info. of Ref. [19]) Measurements were

performed at temperatures down to 50mK, in a dilution refrigerator.

FIG. 2: (a) The conductance dI/dVDC across J2, which is proportional to the quasiparticle

density of states in the superconductor, as a function of VDC at different magnetic fields. (b) The

differential nonlocal signal dVNL/dVDC measured at J3 as a function of VDC at the same fields.

(c,d) Theoretical fits to VNL(VDC) measured at J3 at two different fields. These yield τs of several

nanoseconds.

We simultaneously perform local and non-local transport measurements using standard

lock-in techniques: We apply a voltage VDC across junction J2, between N and S, and

measure the (‘local’) current I injected into the superconductor through J2 and the (‘non-

local’) voltages across the other junctions, which act as detectors. We also measure the

local conductance dI/dVDC and the nonlocal differential signal, dVNL/dVDC . The distance

between injection and detection junctions is '1µm, well within the Al spin relaxation length

in the superconducting state [20]. In the presence of an in-plane magnetic field, H (applied

parallel to the non-superconducting electrodes), electrons injected into the superconductor

create a spin imbalance in its quasiparticle population due to the Zeeman effect [19]. The

non-local voltage drop VNL at J3 is proportional to either (µQP↑ − µP ) or (µQP↓ − µP ),

depending on the relative alignments of the F magnetisation and the magnetic field. Here

µQPα is the chemical potential of the spin α quasiparticle population and µP the Cooper
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pair chemical potential. We remind the reader that µC = (µQP↑ + µQP↓)/2 and µS =

(µQP↑−µQP↓)/2 quantify charge and spin accumulation respectively. The non-local voltage

drop at J1 is proportional to µC − µP .

To explore the frequency dependence of the spin imbalance, we add higher-frequency

components of amplitude VRF and frequency fRF =500kHz–50MHz to VDC via a bias-tee

located next to the device and at low-temperature.

Before presenting the experimental data, let us sketch out our main theoretical expecta-

tions. We assume that the spin accumulation, S in the superconductor satisfies

dS(t)

dt
= Is(t)−

S(t)

τs
, (1)

where τs is the spin relaxation time in the superconductor and Is the spin current.

This equation admits an exact analytical solution:

S(t) = e−t/τs
∫ t

0

dt′Is(t
′)et

′/τs . (2)

We first consider a spin current of the form Is(t) = IDC + IRF e
iωt, where IDC and IRF

are constants, we then have

S(t) = τsIDC +
τsIRF

1 + ω2τ 2s
ei(ωt+α) + transient terms (3)

with α a constant phase. The amplitude of the oscillations in S(t) (and thus µs(t) and

VNL(t), the quantity we measure) are frequency-dependent and show a Lorentzian cut-off

behaviour. This could be measured with high-frequency detection techniques.

If, however, the spin current is generated by a sinusoidal voltage, which we assume for

the moment to be small, we can write

Is(t) = Is[V (t)] = Is[VDC + VRF cos(ωt)] =
∞∑

n=0

1

n!

∂nIs
∂V n

∣∣∣∣
V=VDC

[VRF cos(ωt)]
n (4)

and insert this into Eq. 4 for S(t). If the current-voltage characteristic of the injection

junction is nonlinear, a frequency cut-off should also appear in the time-averages of S(t),

µs(t) and VNL(t). Numerical work, with no approximations and assuming a non-linear

injection junction, shows that this is indeed the case for µs(t) and VNL(t) though the cut-

off was not observable in S(t) [24]. In the case of linear injection, a non-linear detection

junction will nevertheless yield a frequency cut-off in VNL(t). In the case of injection which

is already non-linear, detector nonlinearity can further enhance the cut-off behaviour. In
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our devices, both injection and detection junctions are non-linear, due to the quasiparticle

density of states in the superconductor.

Further details of our theoretical model, which takes into account spin but not charge

imbalance, can be found in Ref. [24]. Our model is based on previous work by Zhao and

Hershfield [22], which takes into account all quasiparticle tunnelling process at a normal-

superconducting junction, extended to include the Zeeman effect induced by the magnetic

field. In contrast to the (similar) model presented in our previous work [19], no assumptions

were made about the amplitude of the Zeeman energy or µS (which can be up to half the

size of the superconducting gap in these measurements).

Turning now to our measurements, we begin by characterising our device in the absence

of high-frequency excitation. Figures 2(a) shows the local conductance as a function of bias

voltage and magnetic field. We see that, for this device, the superconducting critical field

at J2 is ∼1.9T. Figure 2(b) shows the corresponding differential nonlocal signal measured

at J3. We remind the reader that, as the injection electrode is normal, the (anti-)symmetric

part of this signal comes from the charge (spin) imbalance [19]. In contrast, if the injection

electrode were ferromagnetic (and the S DOS highly nonlinear), the ‘spin imbalance peaks’

in the differential nonlocal signal would be of unequal heights [20]. As in our previous work,

we see a spin signal which first increases with magnetic field then dies out as the magnetic

field approaches its critical value. Theoretical fits to these data at fixed magnetic field such

as those shown in Figures 2(c) and (d) allow us to estimate the spin lifetime τS at several

magnetic fields, yielding results on the order of several nanoseconds, consistent with previous

measurements.

Note that spin lifetimes estimated from these fits are good only to about an order of

magnitude as it is difficult to theoretically account for effects on the superconducting DOS

due to stray fields coming from the cobalt electrode. We emphasise, nevertheless, that our

theoretical model is able to reproduce all qualitative features of our data. (Figures 2–4,

Ref. [24])

We apply a magnetic field of H = 680mT (to obtain a large non-local signal) and a

sinusoidal excitation at 1MHz while sweeping the VDC and varying the RF power. The

results are shown in Figures 3(c)–(f). The main effect of the RF excitation on both the local

conductance and the nonlocal signal is the phenomenon known as ‘classical rectification’:

As sinusoidal signals spend most time at their extrema, each feature in the original trace is
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‘split’ by a distance in bias voltage corresponding to the peak-to-peak amplitude of the RF

excitation. These splitting of the BCS coherence peaks in the local conductance (Figure 3(c))

as well as that of the spin imbalance peaks in the nonlocal conductance (Figure 3(d)) are

well-reproduced qualitatively by our theory. (Figure 3(a-b)) Figure 3 looks the same for all

frequencies, modulo an offset in the RF power due to frequency-dependent attenuation in

the RF lines. These measurements can thus be used as a calibration of RF power.

We next study the frequency-dependent response of our system at constant RF amplitude,

using the value of the local conductance at zero bias voltage as a calibration of RF amplitude.

(The RF amplitude can be more accurately determined from the location of the ‘classically

rectified’ peaks and is generally ∼250µV.) Figure 4a shows the non-local signal as a function

of bias voltage at constant RF amplitude at 1MHz and 50MHz. For both frequencies,

‘classically rectified’ peaks appear at the same location, but their amplitudes are different:

At frequencies which are high compared to ∼ 1/2πτS, the classifically-rectified peaks have

smaller amplitudes than they do at low frequencies. (Whether peak amplitudes increase

or decrease with frequency depend on the particular parameters of the system. [24]) To

track the frequency evolution of the peak amplitude, we measure the nonlocal signal as a

function of RF frequency at the bias voltages indicated by the dashed lines (Figures 4(c) and

(d)). Fitting Lorentzians to our data yields spin lifetimes of 10ns and 16ns, consistent with

previous results. However, our numerical results indicate that such fits can over-estimate τS

by a factor of 2–3 depending on the bias voltage at which the cut-off is measured.

Measurements similar to those shown in Figure 4 were also performed at different fields

(at the base temperature of the dilution refrigerator, ∼60mK) and at different temperatures

(at 680mT). These results are shown in Figure 5. No significant change in the cut-off

frequency (within measurement error) was observed in the range of accessible temperatures

and magnetic fields.

To ascertain that the cut-off was not due to the measurement circuit, we modified the lat-

ter slightly, obtaining the same result. We measured similar cut-offs in samples with different

detector differential resistances at zero applied voltage (different levels of depairing due to

stray fields), thus ruling out detector bandwidth effects. We also checked that the injection

of electrons at several times the superconducting gap energy did not significantly affect the

quasiparticle temperature, thus also ruling out thermoelectric effects. (See Supplementary

Information.)
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FIG. 3: (a) Calculated local conductance dI/dVDC as a function of RF amplitude VRF at a

magnetic field of 680mT, based the superconducting DOS extracted from the measured local con-

ductance at VRF = 0. (b) Calculated differential nonlocal signal dVNL/dVDC as a function of VRF

at a magnetic field of 680mT, based on the superconducting DOS extracted from the measured

local conductance at VRF = 0. (c) Measured local conductance at J2 as a function of VRF at fRF =

1MHz and H = 680mT. (d) Measured differential nonlocal signal at J3 as a function of of VRF at

fRF = 1MHz and H = 680mT. Classical rectification is the dominant RF effect. The VRF given

here are a little higher than what actually arrives at the sample due to attenuation in the line. As

noted in the main text, VRF can in any case be estimated from the classical rectification of features

in the VRF = 0 trace. (e,f) Two slices of (c,d).

In conclusion, we have measured the lifetime of spin imbalances in the quasiparticle pop-
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FIG. 4: (a) Measured local conductance dI/dVDC at J2 as a function of VDC with constant-

power excitations at fRF = 1MHz, 50MHz. (b) Numerical calculation of the local conductance

as a function of VDC with constant-power excitations at fRF = 0.02/2πτs, 1/2πτs, based on the

superconducting DOS extracted from the measured local conductance at VRF = 0. (c,d) Local

conductance at J2 at the VDC values indicated in (a) as a function of fRF . We subtract ‘opposing’

peaks to obtain the anti-symmetric part of the signal, which is due to spin. Lorentzian fits give

τs = 16ns and 10ns respectively; however, these may be slight over-estimates (see text).

ulation of a superconductor in the frequency domain. This is the most direct measurement

to date of this quantity. The charge lifetime could in principle be measured in a similar

way, at much higher excitation frequencies. Pushing these experiments one step further,

one could look at variations in the spin accumulation either in real-time or at the excitation

frequency. All of these techniques could in principle be used to measure spin lifetimes in

other superconducting materials.
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I. SUPPLEMENTARY INFORMATION

A. Injecting from J1

FIG. 6: (a) Local conductance dI/dVDC measured at J1, over a range of magnetic fields. (b)

Corresponding differential nonlocal signal dVNL/dVDC measured at J3.

As noted in the main text, all the data shown were with quasiparticles injection into the

superconductor at the junction J2 and detection at J3.

In Figure 6, we show data from the same device, with injection across J1 instead and

detection still at J3. The measured local conductance, proportional to the density of states

(DOS) in the superconductor (S), shows that the latter is less depaired at J1 than at J2

(compare Figure 6a to Figure 2a of the main text). This is because the main cause of

depairing is stray fields from the cobalt electrode at J3, which can have a component per-

pendicular to the plane of the device. As the distance J1–J3 is larger than J2–J3, the S

DOS is less depaired at J1 compared to J2. Thus, the Zeeman splitting of the DOS at high

magnetic fields is also more apparent in these data. The nonlocal differential signal can also

be seen to be larger (Figure 6b) (To a very rough first approximation, it is proportional to

the derivative of the injection DOS [19]. While this is no longer true in this case, generally

the ‘sharper’ the injection and detection DOS, the larger the nonlocal signal.)

N.B. The data shown in Figure 6a are the in-phase component of the differential nonlocal

signal. As J3 is very resistive (eµs ∼ ∆/2 at most and the density of states at J3 highly non-

linear, see Figure 9), the out-of-phase component can be of comparable amplitude; however,
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we checked that the in-phase signal is the same as the numerical derivative (with respect to

the bias voltage) of the DC nonlocal signal to an overall factor of . 2.

B. Ruling out Thermoelectric Effects

FIG. 7: Local conductance dI/dVDC at J1 at two different magnetic fields, with and without a

large voltage bias on J2.

To rule out thermoelectric effects [25], we measured the local conductance at J1 while

biasing J2 very much above the superconducting gap, thus creating large spin and charge

imbalances at J1. We compare this to the same measurement when J2 is not biased. This

test was done at two different magnetic fields and the results shown in Figure 7. It can be

seen that biasing J2 does not do much to broaden the DOS at J1. Thus, thermoelectric

effects are negligible in the results presented in this Letter.

Biasing J2 does however induce a slight narrowing of the gap at J1 as well as an asymmetry

in the amplitudes of the BCS coherence peaks. These effects will be discussed in a separate

publication.
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C. Very High-Frequency Injection

FIG. 8: Differential nonlocal signal dVNL/dVDC as a function of VDC at different fRF . These data

are from a device which is different from, but nominally identical to, the one from which data are

shown in the main text.

To verify that the behaviour we observe in the frequency domain is indeed a cut-off rather

than e.g. an oscillatory phenomenon, we also performed measurements at RF injection

frequencies very much above the observed cut-off. Figure 8 shows the differential nonlocal

signal dVNL/dVDC as a function of DC bias voltage VDC at several RF injection frequencies

(and at constant amplitude VRF ). Between 500kHz and 500MHz, similar to data shown in

the main text, the amplitudes of the classically-rectified spin imbalance peaks diminishes.

However, there is no further change in the signal at higher frequencies, in agreement with

our theoretical expectation of a cut-off.
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D. Cobalt Polarisation

FIG. 9: Local conductance measured at J3, over a range of magnetic fields.

In order to estimate the polarisation, P of the cobalt electrode and to determine its sign,

we measure local conductance spectra at J3 as a function of magnetic field. (Figure 9)

From the asymmetry of the inner Zeeman-split peaks, it is already possible to see that the

polarisation is negative, which is to say in the direction opposite to that of the applied field

(cf. Ref. [26]). This is consistent with the work of Münzenberg and Moodera [27], indicating

that the polarisation of electrons injected from cobalt across a thin Al2O3 barrier can be

negative. From the heights of the inner ‘shoulders’ we estimate P to be 7–10% [26, 28],

consistent with results from previous work on similar samples [19].
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Conclusion

The first part of this thesis mainly focuses on multi-band models, based on the honeycomb
lattice. The low-energy physics of graphene is ruled by chiral massless Dirac electrons that
refer to two Dirac cones in the spectrum. Even if these two cones appear to be protected
by the inversion and the time-reversal symmetries, they are characterised by two opposite
winding numbers, which, in principle, allows a topological Dirac-cone merging transition
from a semimetallic phase toward an insulating one.

The main idea of the second chapter has been to describe this transition through the im-
purity scattering. A localised impurity in the honeycomb lattice induces Friedel oscillations
in the local density of states. If these 2kF -wavevector modulations are directly related to the
existence of a Fermi surface and its nesting properties, they turn out to be sensitive to the
pseudospin and the chiral nature of the massless Dirac electrons. When there are two Dirac
cones in the semimetallic phase, as well as when the spectrum is parabolic in the insulating
one, a localised impurity induces Friedel oscillations that qualitatively decay as 1/r with
the distance to the impurity on every sublattice. However, the chirality defined in the case
of massless Dirac electrons requires the oscillations on the sublattice A and those on the
sublattice B to be in antiphase. Therefore, the 1/r decaying signals cancel each other when
averaging over a unit cell, reducing the quantum interferences to a 1/r2 decay. A similar
feature arises right at the Dirac-cone merging transition, where the spectrum is quadratic
in one direction, albeit linear in the orthogonal one. Along this latter indeed, a chirality
can still be defined, and the 1/

√
r decaying Friedel oscillations are in antiphase on the two

sublattices, resulting in a 1/r decay when averaging over the unit cell. Therefore the Friedel
oscillations, which behave differently as a function of the phase the system belongs to, can
be considered as a real space signature of the Dirac-cone merging transition. Although this
transition is not reachable in graphene, it may be achieved in organic layered compound
α-(BEDT-TTF)2I3 under hydrostatic pressure [138, 139].
If the impurity consists of a missing atom on one of the two sublattices, it induces a zero-
energy impurity wavefunction with non-null components only on the other sublattice. The
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chiral nature of electrons does not make sense at such an energy, but the two sublattices
are now decoupled, which makes possible the evaluation of the impurity state. Remarkably,
the non-null components of the wavefunction are given by the binomial coefficients and
design the Pascal’s triangle, as soon as the system reaches the insulating phase. Moreover,
the evaluation of the impurity states reveals a 1/r decay in the semimetallic phase when
there are two conical points in the spectrum. Right at the Dirac-cone merging transition,
the wavefunction decays as 1/

√
r, whereas it exhibits an exponential decay in the insulat-

ing phase. Thus, a vacancy-induced zero-energy state also enables the characterisation of
the transition in real space, which would be particularly relevant in the context of artificial
lattices experiments [49, 70].

In the third chapter, the formation of robust boundary modes in three systems has been
discussed, as a function of the topology of their tight-binding band structure.
First, a one-dimensional two-band model, originally known as Shockley model, has been
introduced and then generalised to the case of arbitrary distant neighbour processes. Under
the sublattice symmetry, a winding number characterises the topology of the band struc-
ture. This topological invariant has been related to the number of zero-energy edge states
that are localised at a boundary with the vacuum, which establishes a bulk-edge correspon-
dence. If the absolute value of the winding number leads to be the number of edge states, its
sign refers to the sublattice on which these evanescent modes are localised. This has been
exemplified through the study of a dimerised chain when allowing third nearest-neighbour
hopping processes. The topological aspect of the prediction of the zero-energy boundary
modes makes them robust against disorder, as long as it does not break the chiral symmetry.
Second, it is shown how the emergence of boundary modes in two-dimensional systems that
have a nodal dispersion relation, like graphene, can be topologically characterised through
a dimensional reduction. In the case of graphene nanoribbons, this dimensional reduction
leads to an effective mapping onto the generalised Shockley model. The effect of a lo-
calised impurity that breaks the translational invariance is investigated in a zigzag graphene
nanoribbon, where the edge states appear to be robust against this kind of disorder.
Third, the topological characterisation of a two-dimensional eight-band model has been in-
vestigated. It describes electrons in a honeycomb lattice with spin-singlet superconductivity
and Rashba spin-orbit coupling, when a magnetic field breaks the time-reversal symme-
try. Although the spectrum cannot be obtained exactly, it is possible to reach the exact
topological criterion that describes the emergence of Majorana boundary modes in the sys-
tem. Indeed the Chern number that characterises the topology of the band structure has
been evaluated from the band-parity defined at the time-reversal invariant points. Therefore,
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Majorana modes are predicted in doped and strained nanoribbons, which appears to be ex-
perimentally relevant in s-wave superfluids of ultracold fermionic atoms [109]. Contrary to
what is mainly considered in the literature, it turns out that their existence explicitly depends
on the Rashba spin-orbit coupling, due to the diatomic pattern of the honeycomb lattice.

The second part of the thesis focuses on chargeless spin-imbalance occurring in out-of-
equilibrium superconductors. The fourth chapter has addressed a model to fit experimental
data obtained in the frequency domain and to extract the spin-relaxation time. The spin cur-
rent injected in the superconductor has been obtained from the Fermi’s golden rule taking
into account all the quasiparticle tunneling processes between the superconductor and the
normal metal. This current has then been related to the spin accumulation via a diffusion
equation of motion that has to be solved self-consistently, in order to obtain the time de-
pendence of the measured voltage and spin accumulation, as a function of the applied AC
voltage. When increasing the frequency, a saturation arises with respect to the measured
voltage. It qualitatively refers to the inverse of the spin-relaxation time that appears to be of
the order of a few nanoseconds.
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