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Prognostics and Health Management (PHM) aims at extending the life cycle of engineering assets, while reducing exploitation and maintenance costs. For this reason, prognostics is considered as a key process with future capabilities. Indeed, accurate estimates of the Remaining Useful Life (RUL) of an equipment enable defining further plan of actions to increase safety, minimize downtime, ensure mission completion and efficient production. Recent advances show that data-driven approaches (mainly based on machine learning methods) are increasingly applied for fault prognostics. They can be seen as black-box models that learn system behavior directly from Condition Monitoring (CM) data, use that knowledge to infer its current state and predict future progression of failure. However, approximating the behavior of critical machinery is a challenging task that can result in poor prognostics. As for understanding, some issues of data-driven prognostics modeling are highlighted as follows. 1) How to effectively process raw monitoring data to obtain suitable features that clearly reflect evolution of degradation? 2) How to discriminate degradation states and define failure criteria (that can vary from case to case)? 3) How to be sure that learned-models will be robust enough to show steady performance over uncertain inputs that deviate from learned experiences, and to be reliable enough to encounter unknown data (i.e., operating conditions, engineering variations, etc.)? 4) How to achieve ease of application under industrial constraints and requirements? Such issues constitute the problems addressed in this thesis and have led to develop a novel approach beyond conventional methods of data-driven prognostics. The main contributions are as follows.

• The data-processing step is improved by introducing a new approach for features extraction using trigonometric and cumulative functions, where features selection is based on three characteristics, i.e., monotonicity, trendability and predictability.

The main idea of this development is to transform raw data into features that improve accuracy of long-term predictions.

• To account for robustness, reliability and applicability issues, a new prediction algorithm is proposed: the Summation Wavelet-Extreme Learning Machine (SW-ELM). SW-ELM ensures good prediction performances while reducing the learning iii time. An ensemble of SW-ELM is also proposed to quantify uncertainty and improve accuracy of estimates.

• Prognostics performances are also enhanced thanks to the proposition of a new health assessment algorithm: the Subtractive-Maximum Entropy Fuzzy Clustering (S-MEFC). S-MEFC is an unsupervised classification approach which uses maximum entropy inference to represent uncertainty of unlabeled multidimensional data and can automatically determine the number of states (clusters), i.e., without human assumption.

• The final prognostics model is achieved by integrating SW-ELM and S-MEFC to show evolution of machine degradation with simultaneous predictions and discrete state estimation. This scheme also enables to dynamically set failure thresholds and estimate RUL of monitored machinery.

Developments are validated on real data from three experimental platforms: PRONOS-TIA FEMTO-ST (bearings test-bed), CNC SIMTech (machining cutters), C-MAPSS NASA (turbofan engines) and other benchmark data. Due to realistic nature of the proposed RUL estimation strategy, quite promising results are achieved. However, reliability of the prognostics model still needs to be improved which is the main perspective of this work.
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General introduction

Any machine during its service life is prone to degrade with the passage of time. However, the failure of engineering assets or their critical machinery can not only be a loss in the manufacturing process or timely services to the customers, but can also have major negative outcomes. In some cases, machinery malfunctioning can even result in irreversible damages to the environment or in safety problems, for example, jet crash due to engine failure, rail accident due to bearing failure, etc. This highlights the need to maintain critical machinery before a failure could happen. Generally, maintenance can be defined as, "the combination of all technical and associated administrative actions intended to retain a system in a state at which it can perform the required function" [START_REF] En | Terminologie de la maintenance[END_REF]. With recent advances in modern technology, industrials and researchers are progressing toward enhanced maintenance support systems that aim at improving reliability and availability of critical engineering assets while reducing overall costs. Therefore, the role of maintenance has changed from a "necessary evil" to a "profit contributor" [START_REF] Waeyenbergh | A framework for maintenance concept development[END_REF]. Also, the trends have grown rapidly and shifted from fail-fix maintenance to predict-prevent maintenance. In this context, one should speak about the evolution in maintenance policies [START_REF] En | Terminologie de la maintenance[END_REF], that began from unplanned corrective maintenance practices for non-critical machinery, and then shifted to a planned preventive maintenance (PM). More precisely, the PM is performed by either pre-defined schedule or by performing Condition-Based Maintenance (CBM) on the basis of current state of the machinery. Further, the CBM evolved to predictive maintenance strategy, that is based on forecasts of future evolution of machine degradation. Therefore, upon detection of failure precursors, prognostics 1 becomes a necessary step to anticipate (and predict) the failure of degrading equipment at future times to estimate the Remaining Useful Life (RUL) [START_REF] Zio | Prognostics and health management of industrial equipment[END_REF]. Indeed, it is assumed that adequate actions (either maintenance tasks, either load profile changes) must be performed in a timely manner, such that, critical failures that could lead to major breakdowns or huge wastes can be avoided, which enables optimizing machinery service delivery potential during its lifetime. To fulfill such time critical needs, an enhanced application of CBM is through prognostics, and therefore, CBM has evolved into the concept of Prognostics and Health Management.

For modern industry, PHM appears to be a key enabler for improving availability of critical engineering assets while reducing inopportune spending and security risks. Within the framework of PHM, prognostics is considered as a core process for deploying an effective predictive maintenance scheme. Prognostics is also called as the "prediction of a system's lifetime", as its primary objective is to intelligently use the monitoring information of an in-service machinery, and to predict its RUL before a failure occurs, given the current machine condition and its past operation profile [START_REF] Jardine | A review on machinery diagnostics and prognostics implementing condition-based maintenance[END_REF].

Machinery operates in a dynamic environment, where its behavior is often non-linear due to different factors like environmental and operating conditions, temperature, pressure, noise, engineering variance, etc. As a result, the condition monitoring data gathered from machinery are subject to high levels of uncertainty and unpredictability. Also, with lack of knowledge and understanding about complex deterioration processes, predicting behavior of an in-service machinery can be a complicated challenge. Although in the past decade there are several efforts around the world, real prognostics systems to meet industrial challenges are still scarce. This can be due to a highly complex and nonlinear operational environment of industrial systems, which makes it hard to establish effective prognostics approaches that are: robust enough to tolerate uncertainty, reliable enough to show acceptable performance under diverse conditions, and applicable enough to fit industrial constraints. As a result, the need for an enhanced prognostics approach can be pointed out.

In this thesis, the developments are achieved following a thorough literature review on three different approaches for prognostics, i.e., physics based, data-driven, and hybrid approaches. This enables identifying the key challenges related to implementation of a prognostics model, i.e., robustness, reliability and applicability. To account for such challenges, a novel approach for prognostics is introduced by applying advanced techniques from data-driven category of prognostics approaches. The overall performances of data-driven prognostics framework are enhanced by focusing on data-processing, health assessment, and behavior prediction steps. Most importantly, as compared to conventional approaches of data-driven prognostics, RUL estimation is achieved by integrating two newly developed rapid machine learning algorithms. The proposed developments also give a new direction to perform prognostics with a data-driven approach.

The structure of the thesis manuscript is organized as follows.

Chapter 1 gives an overview of PHM, and the role of prognostics. Following that a thorough survey on the classification of prognostics approaches is presented including their pros and cons. Different RUL estimation strategies with data-driven approaches are also reviewed, and the challenges of prognostics modeling are defined.

Chapter 2 discusses the importance of data-processing, its impact on prognostics modeling, and on the accuracy of RUL estimates. Therefore, developments are focused on features extraction and selection steps, and aim at obtaining features that clearly reflect machine degradation, and can be easily predicted. In order, to validate the propositions, two PHM case studies are considered: real data of turbofan engines from PHM challenge 2008, and real data of bearings from PHM challenge 2012.

Chapter 3 presents a new rapid learning algorithm, the Summation Wavelet-Extreme Learning Machine (SW-ELM) that enables performing "long-term predictions". For issues related to time series (i.e., approximation, one step-ahead prediction, multi-step ahead prediction) and challenges of prognostics modeling, the performances of SW-ELM are benchmarked with different approaches to show its improvements. An ensemble of SW-ELM is also proposed to quantify uncertainty of the data / modeling phase, and to improve accuracy of estimates. In order, to further validate the proposed prediction algorithm, two PHM case studies are considered: real data of a CNC machine, and real data of bearings from PHM challenge 2012.

Chapter 4 is dedicated to the complete implementation of prognostics model, and its validation. Firstly, a new unsupervised classification algorithm is proposed namely, the Subtractive-Maximum Entropy Fuzzy Clustering (S-MEFC), that enables estimating the health state of the system. Secondly, a novel strategy for RUL estimation is presented by integrating SW-ELM and S-MEFC as a prognostics model. The proposed approach allows tracking the evolution of machine degradation, with simultaneous predictions and discrete state estimation and can dynamically set the failure thresholds. Lastly, to investigate the efficiency of the proposed prognostics approach, a case study on the real data of turbofan engines from PHM challenge 2008 is presented, and the comparison with results from recent publications is also given.

Chapter 5 concludes this research work by summarizing the developments, improvements and limitations. A discussion on the future perspectives is also laid out.

Chapter 1

Enhancing data-driven prognostics

This chapter presents a thorough survey on Prognostics and Health Management literature, importance of prognostics, its issues and uncertainty. Also, a detailed classification of prognostics approaches is presented. All categories of prognostics approaches are assessed upon different criteria to point out their importance. Thereby, recent strategies of RUL estimation are reviewed and the challenges of prognostics modeling are defined. Thanks to that, the problem statement and objectives of this thesis are finally given at the end of the chapter.

1.1 Prognostics and Health Management (PHM)

PHM as an enabling discipline

With aging, machinery or its components are more vulnerable to failures. Availability and maintainability of such machinery are of great concern to ensure smooth functioning and to avoid unwanted situations. Also, the optimization of service and the minimization of life cycle costs / risks require continuous monitoring of deterioration process, and reliable prediction of life time at which machinery will be unable to perform desired functionality. According to [START_REF] Hess | The maintenance aware design environment: Development of an aerospace phm software tool[END_REF], for such requirements, the barriers of traditional Condition-Based Maintenance (CBM) for widespread application, identified during a 2002 workshop organized by National Institute of Standards and Technology (USA), are as follows:

1. inability to continually monitor a machine;

2. inability to accurately and reliably predict the Remaining Useful Life (RUL); Chapter 1

3. inability of maintenance systems to learn and identify impending failures and recommend what action should be taken.

These barriers can be further redefined as deficiencies in sensing, prognostics and reasoning. Also, over the last decade, CBM has evolved into the concept of Prognostics and Health Management (PHM) [START_REF] Hess | The maintenance aware design environment: Development of an aerospace phm software tool[END_REF], due to its broader scope. Basically, PHM is an emerging engineering discipline which links studies of failure mechanisms (corrosion, fatigue, overload, etc.) and life cycle management [START_REF] Uckun | Standardizing research methods for prognostics[END_REF]. It aims at extending service cycle of an engineering asset, while reducing exploitation and maintenance costs. Mainly, acronym PHM consists of two elements [START_REF] Hess | Phm a key enabler for the jsf autonomic logistics support concept[END_REF][START_REF] Hess | The maintenance aware design environment: Development of an aerospace phm software tool[END_REF][START_REF] Zio | Prognostics and health management of industrial equipment[END_REF].

1. Prognostics refers to a prediction / forecasting / extrapolation process by modeling fault progression, based on current state assessment and future operating conditions;

2. Health Management refers to a decision making capability to intelligently perform maintenance and logistics activities on the basis of diagnostics / prognostics information.

PHM has by and large been accepted by the engineering systems community in general, and the aerospace industry in particular, as the future direction [START_REF] Saxena | Evaluating prognostics performance for algorithms incorporating uncertainty estimates[END_REF]. Among different strategies of maintenance (Appendix A.1), PHM is contemporary maintenance strategy that can facilitate equipment vendors, integrators or operators to dynamically maintain their critical engineering assets. According to [START_REF] Uckun | Standardizing research methods for prognostics[END_REF], in U.S military two significant weapon platforms were designed with a prognostics capability: Joint Strike Fighter Program [START_REF] Hess | Phm a key enabler for the jsf autonomic logistics support concept[END_REF], and the Future Combat Systems Program [START_REF] Barton | Prognostics for combat systems of the future[END_REF]. As technology is maturing, PHM is also and active research at NASA for their launch vehicles and spacecrafts [START_REF] Osipov | In-flight failure decision and prognostics for the solid rocket booster[END_REF].

In other words, PHM is a key enabler to facilitate different industries to meet their desired goals e.g. process industry, power energy, manufacturing, aviation, automotive, defence, etc. Some of the key benefits of PHM can be highlighted as follows:

• increase availability and reduce operational costs to optimized maintenance;

• improve system safety (predict to prevent negative outcomes);

• improve decision making to prolong life time of a machinery.

PHM makes use of past, present and future information of an equipment in order to assess its degradation, diagnose faults, predict and manage its failures [START_REF] Zio | Prognostics and health management of industrial equipment[END_REF]. Considering such activities, PHM is usually described as the combination of 7 layers adapted from Open System Architecture for CBM [START_REF] Lebold | Open standards for condition-based maintenance and prognostic systems[END_REF]140], that all together enable linking failure mechanisms with life management (Fig. 1.1). We can divided these layers into three main phases 1) observe, 2) analyze and 3) act. Details are as summarized in Table 1.1. Within analysis phase, prognostics is considered as a key task with future capabilities, which should be performed efficiently for successful decision support to recommend actions for maintenance [START_REF] Asmai | A framework of an intelligent maintenance prognosis tool[END_REF], or system configuration [START_REF] Balaban | An approach to prognostic decision making in the aerospace domain[END_REF]. Therefore, prognostics is a core process in PHM cycle, to decide plan of actions, increase safety, minimize downtime, ensure mission completion and efficient production [START_REF] Coble | Applying the general path model to estimation of remaining useful life[END_REF].

Chapter 1

Prognostics and the Remaining Useful Life

The concept of prognostics was initially introduced in the medical domain. Medical prognostics is defined as "the prediction of the future course and the outcome of disease process" [START_REF] Abu-Hanna | Prognostic models in medicine[END_REF]. In engineering, prognostics is generally understood as the process of monitoring health of an engineering asset, and of predicting the life time at which it will not perform the required function. According to literature, there are several definitions of prognostics [START_REF] Sikorska | Prognostic modelling options for remaining useful life estimation by industry[END_REF], but, few interesting ones are given as follows:

1. the capability to provide early detecting of the precursor and / or incipient fault condition of a component, and to have the technology and means to manage and predict the progression of this fault condition to component failure [START_REF] Engel | the real issues involved with predicting life remaining[END_REF];

2. predictive diagnostics, which includes determining the remaining life or time span of proper operation of a component [START_REF] Hess | Challenges, issues, and lessons learned chasing the[END_REF];

3. the prediction of future health states based on current health assessment, historical trends and projected usage loads on the equipment and / or process [START_REF] Wu | Prognostics of machine health condition using an improved arima-based prediction method[END_REF];

4. failure prognostics involves forecasting of system degradation based on observed system condition [START_REF] Luo | Model-based prognostic techniques [maintenance applications[END_REF];

5. the forecast of an asset's remaining operational life, future condition, or risk to completion [START_REF] Heng | Intelligent condition-based prediction of machinery reliability[END_REF].

A common acceptance can be dressed from above definitions: prognostics can be seen as the "prediction of a system's lifetime" as it is a process whose objective is to predict the Remaining Useful Life before a failure occurs. Also, let retain the definition proposed by the International Organization for Standardization [START_REF]Condition monitoring and diagnostics of machines prognostics Part1: General guidelines[END_REF]: "prognostics is the estimation of time to failure and risk for one or more existing and future failure modes". Note that, the implementation of prognostics for a particular application can be made at different levels of abstraction like: critical components, sub-system or entire system. Also, RUL is expressed by considering units corresponding to the primary measurement of use for overall system. For example, in case of commercial aircrafts the unit is cycles (i.e., related to number of take-offs), for aircraft engines it is hours of operation, for automobiles it is kilometers (or miles). Having said that, whatever the level of abstraction and the unit to define that, prognostics facilitate decision makers with information, that enables them to change operating conditions (e.g. load). Consequently, it may prolong service life of the machinery. In addition, it also benefits the planners to manage upcoming maintenance and to initiate a logistics process, that enables a smooth transition from faulty machinery to fully functional [START_REF] Saxena | Damage propagation modeling for aircraft engine run-to-failure simulation[END_REF].

The main capability of prognostics is to help maintenance staff with insight of future health states of a monitored system. This task is mainly composed of two different steps. The first step is related to the assessment of current health state (i.e., severity or degradation detection), which can also be considered under detection and diagnostics.

Different pattern recognition techniques can be applied to this phase. The second step aims at predicting (or forecasting) degradation trends to estimate the RUL, where time series techniques can be applied [START_REF] Eker | Major challenges in prognostics: Study on benchmarking prognostics datasets[END_REF].

As for illustration of RUL estimation task, consider left part of Fig. 1.2, where for sake of simplicity the degradation is considered as a one-dimensional signal. In such case, the RUL can be computed between current time tc after degradation has been detected tD, and the time at which predicted signal passes the failure threshold (FT) (assumed or precisely set by an expert), i.e., time tf, with some confidence to the prediction. The FT does not necessarily indicate complete failure of the machinery, but a faulty state beyond which there is a risk of functionality loss [START_REF] Saxena | Metrics for evaluating performance of prognostic techniques[END_REF], and end of life (EOL). Therefore, RUL can be defined by Eq. (1.1):

RU L = tf -tc (1.1)
where tf is a random variable of time to failure, and tc is the current time. Providing a confidence to predictions is essential for prognostics due to inherent uncertainties of deterioration phenomena, unclear future operating conditions and errors associated to the prognostics model. Therefore, decision making should be based on the bounds of RUL confidence interval rather than single value [START_REF] Sikorska | Prognostic modelling options for remaining useful life estimation by industry[END_REF]. Also, narrow confidence intervals represent high precision / accuracy and are preferred over wide confidence intervals that indicate large uncertainty, thus risky decisions should be avoided. Therefore, the combined uncertainty of RUL estimate is not only due to prediction but due to the FT as well (which should be precise).

The right part of Fig. 1.2 shows a situation, where estimated RUL value is updated when new data arrives at each time interval. In this manner, different RULs are estimated with some confidence according to availability of data from monitored machinery. Obviously, accuracy of RUL estimates should increase with time, as more data are available.

Prognostics and uncertainty

Aging of machinery in a dynamic environment is a complex phenomena, and it is often non-linear function of usage, time, and environmental conditions [START_REF] Uckun | Standardizing research methods for prognostics[END_REF]. Following that, Chapter 1 real monitoring data from machinery condition (vibration, temperature, humidity, pressure, etc.,) are usually noisy and open to high variability due to direct or indirect impact of usage and environmental conditions related to the degradation of failing machinery.

In other words, real-life machinery prognostics is subject to high levels of uncertainty, either due to gathered data or either due to degradation mechanisms. As for example, consider a process, where a component degrades from a healthy state to failure state (see Fig. From the above discussions, some key issues of prognostics can be pointed out.

• How to tackle inherent uncertainties of data?

• How to represent uncertainty of machine deterioration process (i.e., from good to faulty state)?

• How to avoid uncertainty of FTs, to enable accurate RUL estimates?

Such issues can be related to different sources of uncertainty [START_REF] Celaya | Uncertainty representation and interpretation in model-based prognostics algorithms based on kalman filter estimation[END_REF].

1. Input uncertainties that can be due to initial damage, material properties, manufacturing variability, etc.

2. Model uncertainties that can be due to modeling error related to inaccurate predictions (for data-driven prognostic approaches it can be related to incomplete coverage of data model training [START_REF] Francesca | Development of advanced computational methods for Prognostics and Health Management in energy components and systems[END_REF]). However, such uncertainties can be reduced by improved modeling methods.

3. Measurement uncertainties that are related to data collection, data processing, etc., and can be managed to a better level. For example sensor noise, loss of information due to data processing, etc.

4. Operating environment uncertainties like unforeseen future loads or environments.

Whatever the type of uncertainties in prognostics, they can impact the accuracy of RUL estimates which prevents to recommend timely actions for decision making process or system configuration. In brief, for prognostics system development, three different processes are essential to handle uncertainty [START_REF] Celaya | Uncertainty representation and interpretation in model-based prognostics algorithms based on kalman filter estimation[END_REF].

• To represent uncertainty of data, which include common theories like fuzzy set theory, probability theory, etc.;

• To quantify uncertainty related to different sources as correctly as possible;

• To manage the uncertainty by processing the data in an effective manner.

For example consider situation in Fig. 1.4, that illustrates the uncertainty of the RUL estimation by a prognostics model and updates its predictions when new data arrives. Initially the equipment is new and accumulated damage is minor, therefore uncertainty regarding the unknown future can be high. When the damage grows and the failure point is closer, the prognostics model can have much less uncertainty to estimate the exact time to failure. In addition, it is necessary to account for different sources of uncertainties of prognostics, that are associated with "long-term predictions" of machinery health. Without such information a prognostics model has limited use and cannot be integrated [START_REF] Uckun | Standardizing research methods for prognostics[END_REF])

for critical applications. Therefore, in this thesis, uncertainty of prognostics is dealt by: quantifying uncertainty due to data and modeling phase, representing uncertainty using fuzzy set theory, and managing uncertainty by processing data.

Prognostics approaches

The core process of prognostics is to estimate the RUL of machinery by predicting the future evolution at an early stages of degradation. An accurate RUL estimation enables to run the equipment safely as long as it is healthy, which benefits in terms of additional time to opportunely plan and prepare maintenance interventions for most convenient and inexpensive times [START_REF] Jardine | A review on machinery diagnostics and prognostics implementing condition-based maintenance[END_REF]. Due to the significance of such aspects, study on PHM has grown rapidly in recent years, where different prognostics approaches are being developed. Several review papers on the classification of prognostics approaches have been published [START_REF] Dragomir | Review of prognostic problem in condition-based maintenance[END_REF][START_REF] Gorjian | A review on reliability models with covariates[END_REF][START_REF] Jardine | A review on machinery diagnostics and prognostics implementing condition-based maintenance[END_REF][START_REF] Kothamasu | System health monitoring and prognostics-a review of current paradigms and practices[END_REF][START_REF] Pecht | Prognostics and health management of electronics[END_REF][START_REF] Peng | Current status of machine prognostics in condition-based maintenance: a review[END_REF][START_REF] Si | Remaining useful life estimation-a review on the statistical data driven approaches[END_REF][START_REF] Sikorska | Prognostic modelling options for remaining useful life estimation by industry[END_REF][START_REF] Vachtsevanos | Intelligent Fault Diagnosis and Prognosis for Engineering Systems[END_REF][START_REF] Van Noortwijk | A survey of the application of gamma processes in maintenance[END_REF]. In spite of divergence in literature, we bring discussions on common grounds, where prognostics approaches are classified into three types: 1) physics based prognostics, 2) data-driven prognostics and 3) hybrid prognostics. But still, these classes are not well addressed in literature, which requires a detailed survey.

Physics based prognostics

Overview

The physics based or model based approaches for prognostics use explicit mathematical representation (or white-box model) to formalize physical understanding of a degrading system [START_REF] Pecht | A prognostics and health management roadmap for information and electronics-rich systems[END_REF]. RUL estimates with such approaches are achieved on the basis of acquired knowledge of the process that affects normal machine operation and can cause failure. They are based on the principle that failure occurs from fundamental processes: mechanical, electrical, chemical, thermal, radiation [START_REF] Pecht | Physics-of-failure-based prognostics for electronic products[END_REF]. Common approaches of physics based modeling include material level models like spall progression models, crack-growth models or gas path models for turbine engines [START_REF] Heng | Rotating machinery prognostics: State of the art, challenges and opportunities[END_REF][START_REF] Sikorska | Prognostic modelling options for remaining useful life estimation by industry[END_REF][START_REF] Uckun | Standardizing research methods for prognostics[END_REF]. To identify potential failure mechanisms, such methods utilize knowledge like loading conditions, geometry, and material properties of a system [START_REF] Pecht | Prognostics and health management of electronics[END_REF]. To predict the behavior of the system, such methods require detailed knowledge and through understanding of the process and mechanisms that cause failure. In other words, failure criteria are created by using physics of failure (POF) analysis and historic data information about failed equipment [START_REF] Hong | Storage lifetime prognosis of an intermediate frequency (if) amplifier based on physics of failure method[END_REF]. Implementation of physics based approach has to go through number of steps that include, failure modes and effects analysis (FMEA), feature extraction, and RUL estimation [START_REF] Pecht | Prognostics and health management of electronics[END_REF].

It should be noted that in literature, different works categorize physics based (or modelbased) prognostics as POF and system modeling approach [START_REF] Pecht | A prognostics and health management roadmap for information and electronics-rich systems[END_REF][START_REF] Peysson | New approach to prognostic systems failures[END_REF]. However, they should be limited to POF [START_REF] Vachtsevanos | Intelligent Fault Diagnosis and Prognosis for Engineering Systems[END_REF][START_REF] Wang | Trajectory similarity based prediction for remaining useful life estimation[END_REF], because system modeling approaches are dependent on data-driven methods to tune parameters of physics based model and should be classified as hybrid approach for prognostics (see section 1.2.3).

Application point of view

In general, physics based approaches are application specific. They assume that system behavior can be described analytically and accurately. Physics based methods are suitable for a situation where accuracy outweighs other factors, such as the case of air vehicles [START_REF] Roemer | Development of diagnostic and prognostic technologies for aerospace health management applications[END_REF]. POF models are usually applied at component or material level [START_REF] Wang | Trajectory similarity based prediction for remaining useful life estimation[END_REF]. However, for most industrial applications physics based methods might not be a proper choice, because fault types can vary from one component to another and are difficult to identify without interrupting operating machinery [START_REF] Heng | Rotating machinery prognostics: State of the art, challenges and opportunities[END_REF]. In addition, system specific knowledge like material composition, geometry may not be always available [START_REF] Pecht | A prognostics and health management roadmap for information and electronics-rich systems[END_REF].

Besides that, future loading conditions also affect fault propagation. Therefore in a dynamic operating environment, the model may not be accurate due to assumptions, errors and uncertainty in the application [START_REF] Wang | Trajectory similarity based prediction for remaining useful life estimation[END_REF]. In such cases POF models are combined with data-driven methods to update model parameters in an on-line manner, which turns into a hybrid approach (and is discussed in section 1.2.3).

Data-driven prognostics

Data-driven (DD) prognostics approaches can be seen as black box models that learn systems behavior directly from collected condition monitoring (CM) data (e.g. vibration, acoustic signal, force, pressure, temperature, current, voltage, etc). They rely on the assumption that the statistical characteristics of system data are relatively unchanged unless a malfunctioning occurs. Such methods transform raw monitoring data into relevant information and behavioral models (including the degradation) of the system. Therefore, data-driven methods can be low cost models with an advantage of better applicability, as they only require data instead of prior knowledge or human experts [START_REF] Javed | A feature extraction procedure based on trigonometric functions and cumulative descriptors to enhance prognostics modeling[END_REF][START_REF] Javed | Robust, reliable and applicable tool wear monitoring and prognostic: approach based on[END_REF][START_REF] Pecht | A prognostics and health management roadmap for information and electronics-rich systems[END_REF]. According to literature, several studies are performed to categorize data-driven prognostics approaches. [START_REF] Eker | Major challenges in prognostics: Study on benchmarking prognostics datasets[END_REF][START_REF] Zhang | A hybrid prognostics and health management approach for condition-based maintenance[END_REF] classified data-driven methods into machine learning and statistical approaches. [START_REF] Dragomir | Review of prognostic problem in condition-based maintenance[END_REF][START_REF] Peng | Current status of machine prognostics in condition-based maintenance: a review[END_REF] classified data-driven approaches as artificial intelligence (AI) techniques and Statistical techniques. A survey on AI approaches for prognostics was presented by [START_REF] Schwabacher | A survey of artificial intelligence for prognostics[END_REF], where data-driven approaches were categorized as conventional numerical methods and machine learning methods. [START_REF] Peysson | New approach to prognostic systems failures[END_REF] classified data-driven prognostics methods as, evolutionary, machine learning / AI and state estimation techniques. However, we classify data-driven approaches for prognostics into two categories. 1) machine learning approaches and 2) statistical approaches.

Machine learning approaches

Machine learning approaches are branch of AI that attempt to learn by examples and are capable to capture complex relationships among collected data that are hard to describe. Obviously, such methods are suitable for situations where physics based modeling are not favorable to replicate behavior model [START_REF] Javed | Robust, reliable and applicable tool wear monitoring and prognostic: approach based on[END_REF]. Depending on the type of available data, learning can be performed in different ways. Supervised learning can be applied Chapter 1 to labeled data, i.e., data are composed of input and the desired output is known. Unsupervised learning is applied to unlabeled data, i.e., learning data are only composed of input and desired output is unknown. Semi-supervised learning that involves both labeled (few data points) and unlabeled data. A partially supervised learning is performed when data have imprecise and / or uncertain soft labels, (i.e., learning data are composed of input and desired outputs are known with soft labels or belief mass [START_REF] Côme | Learning from partially supervised data using mixture models and belief functions[END_REF]). Machine learning is a rapidly growing field in PHM domain, and vast numbers of algorithms are being developed. In brief, machine learning approaches for prognostics can be categorized with some examples as follows.

Connectionist methods -Flexible methods that use examples to learn and infer complex relations among data e.g.:

• Artificial neural networks (ANN) [START_REF] Aka | A genetic algorithm and neural network technique for predicting wind power under uncertainty[END_REF][START_REF] Javed | Improving data-driven prognostics by assessing predictability of features[END_REF][START_REF] Mahamad | Predicting remaining useful life of rotating machinery based artificial neural network[END_REF];

• Combination of ANN and Fuzzy rules, e.g. Neuro-Fuzzy systems [START_REF] Dragomir | Medium term load forecasting using anfis predictor[END_REF][START_REF] Javed | Improving data-driven prognostics by assessing predictability of features[END_REF].

Bayesian methods -Probabilistic graphical methods mostly used in presence of uncertainty, particularly dynamic Bayesian approaches e.g.:

• Markov Models and variants, e.g. Hidden Markov Models (HMM) [138,[START_REF] Ramasso | Health assessment of composite structures in unconstrained environments using partially supervised pattern recognition tools[END_REF];

• State estimation approaches, e.g. Kalman Filter, Particle Filter and variants [START_REF] Baraldi | A kalman filter-based ensemble approach with application to turbine creep prognostics[END_REF][START_REF] Saxena | Designing data-driven battery prognostic approaches for variable loading profiles: Some lessons learned[END_REF][START_REF] Sikorska | Prognostic modelling options for remaining useful life estimation by industry[END_REF].

Instance Based Learning methods (IBL) -Obtain knowledge from stored examples that were presented for learning and utilize this knowledge to find similarity between learned examples and new objects:

• K-nearest neighbor algorithm [START_REF] Mosallam | Bayesian approach for remaining useful life prediction[END_REF];

• Case-based reasoning for advanced IBL [START_REF] Wang | Trajectory similarity based prediction for remaining useful life estimation[END_REF].

Combination methods -Can be an effective combination of supervised, unsupervised methods, semi-supervised and partially supervised methods or other possible combinations to overcome drawbacks of an individual data-driven approach, for e.g.:

• Connectionist approach and state estimation techniques [START_REF] Baraldi | Ensemble neural networkbased particle filtering for prognostics[END_REF];

• Connectionist approach and clustering methods [START_REF] Javed | Features selection procedure for prognostics: An approach based on predictability[END_REF][START_REF] Ramasso | Prognostics in switching systems: Evidential markovian classification of real-time neuro-fuzzy predictions[END_REF];

• Ensemble of different approaches to quantify uncertainty and to achieve robust models [START_REF] Baraldi | Prognostics under different available information[END_REF][START_REF] Baraldi | A kalman filter-based ensemble approach with application to turbine creep prognostics[END_REF][START_REF] Hu | Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life[END_REF].

Note that, some of the above mentioned categories can also include supervised, unsupervised, semi-supervised learning or partially supervised approaches, however we avoid any strict classification.

Statistical approaches

They estimate the RUL by fitting the probabilistic model to the collected data and extrapolate the fitted curve to failure criteria. Statistical approaches are simple to conduct. Like machine learning approaches, statistical methods also require sufficient condition monitoring (CM) data to learn behavior of degrading machinery. However, they can have large errors in case of incomplete data, and the nature of data has therefore its own importance in this category. [START_REF] Si | Remaining useful life estimation-a review on the statistical data driven approaches[END_REF] presented a state-of-the-art review of statistical approaches, where the taxonomy was mainly based on nature of CM data. From this systematic review, some commonly known prognostics approaches can be: regression based methods, stochastic filtering or state estimation methods like Kalman Filters Particle Filters and variants, Hidden Markov models and variants etc. Further details about this taxonomy are described in [START_REF] Si | Remaining useful life estimation-a review on the statistical data driven approaches[END_REF]. It should be noted that, Bayesian techniques cited just above can also be addressed as machine learning approaches. Other methods in this category can be classical time series prediction methods like Auto-Regressive Moving Average and variants or proportional hazards models [START_REF] Sikorska | Prognostic modelling options for remaining useful life estimation by industry[END_REF].

Application point of view

In general, the strength of data-driven approaches is their ability to transform highdimensional noisy data into low-dimensional information for prognostics decisions [START_REF] Dragomir | Review of prognostic problem in condition-based maintenance[END_REF]. However, data-driven methods encounter common criticism that they require more data as compared to physics based approach, which is not surprising. Obviously sufficient quantities of run-to-failure data are necessary for data-driven models to learn and capture complex relations among data. In this context, sufficient quantity means that data has been observed for all fault-modes of interest [START_REF] Uckun | Standardizing research methods for prognostics[END_REF]. However, some industrial systems can not be allowed to run until failure due to their consequences. Beside that, quantity and quality of data are also important. Indeed, real machinery operates in highly non-linear environment and monitored data could be of high variability, sensor noise, which can impact on performance of data-driven methods. Therefore, it is essential to properly process acquired data in order to obtain good features to reduce modeling complexity, and increase accuracy of RUL estimates. Machine learning approaches have the advantage that, they can be deployed rapidly and with low implementation cost as compared to physics based methods. In addition, they can provide system-wide scope, where scope of physics based approaches can be limited. Machine learning approach for prognostics could be performed with a connectionist feed forward neural network [START_REF] Javed | Improving data-driven prognostics by assessing predictability of features[END_REF] to predict continuous state of degradation recursively, until it reaches FT. However, such methods provide point predictions and do not furnish any confidence [START_REF] Javed | Robust, reliable and applicable tool wear monitoring and prognostic: approach based on[END_REF]. In comparison, Bayesian methods can be applied to manage uncertainty of prognostics [START_REF] Celaya | Uncertainty representation and interpretation in model-based prognostics algorithms based on kalman filter estimation[END_REF], but, again RUL estimates rely on FT. Instance based learning methods do not need FT and can directly estimate the RUL by matching similarity among stored examples and new test instances [START_REF] Mosallam | Bayesian approach for remaining useful life prediction[END_REF]. They can also be called as experience based approaches [START_REF] Wang | Trajectory similarity based prediction for remaining useful life estimation[END_REF]. Combination of different machine learning approaches Chapter 1 can be a suitable choice to overcome drawbacks of an individual method [START_REF] Ramasso | Prognostics in switching systems: Evidential markovian classification of real-time neuro-fuzzy predictions[END_REF]. But, whatever the approach considered for building a prognostics model, it is important to involve operating conditions and actual usage environment. Lastly, statistical approaches for prognostics also require large amount of failure data to implement models. These approaches are economical and require fewer computations as compared to machine learning approaches. For e.g. methods like classical regression are simpler to build. However, they do not consider operating conditions, actual usage environments and failure mechanism [START_REF] Zhang | A hybrid prognostics and health management approach for condition-based maintenance[END_REF].

Hybrid prognostics

A hybrid (Hyb) approach is an integration of physics based and data-driven prognostics approaches, that attempts to leverage the strengths from both categories. The main idea is to benefit from both approaches to achieve finely tuned prognostics models that have better capability to manage uncertainty, and can result in more accurate RUL estimates. According to literature, hybrid modeling can be performed in two ways [START_REF] Penha | Application of hybrid modeling for monitoring heat exchangers[END_REF]: 1) series approach, and 2) parallel approach.

Series approach

In PHM discipline, series approach is also known as system modeling approach that combines physics based approach having prior knowledge about the process being modeled, and a data-driven approach that serves as a state estimator of unmeasured process parameters which are hard to model by first principles [START_REF] Psichogios | A hybrid neural network-first principles approach to process modeling[END_REF]. Several works in recent literature address series approach as model based prognostics [START_REF] Baraldi | Investigation of uncertainty treatment capability of model-based and data-driven prognostic methods using simulated data[END_REF][START_REF] Pecht | A prognostics and health management roadmap for information and electronics-rich systems[END_REF][START_REF] Peysson | New approach to prognostic systems failures[END_REF][START_REF] Saxena | Designing data-driven battery prognostic approaches for variable loading profiles: Some lessons learned[END_REF]. However it cannot be regarded as model based, because, physics based model is dependant on a data-driven approach to tune its parameters (see Fig. 1.5).

Figure 1.5: Series approach for hybrid prognostics model (adapted from [START_REF] Francesca | Development of advanced computational methods for Prognostics and Health Management in energy components and systems[END_REF])

In brief, the representation (or modeling) of an engineering asset is made with mathematical functions or mappings, like differential equations. Statistical estimation methods based on residuals and parity relations (i.e., difference of predictions from a model and system observations) are applied to detect, isolate and predict degradation to estimate the RUL [START_REF] Liu | A divide and conquer approach to anomaly detection, localization and diagnosis[END_REF][START_REF] Vachtsevanos | Intelligent Fault Diagnosis and Prognosis for Engineering Systems[END_REF]. Practically, even if the model of process is known, RUL estimates might be hard to achieve, where the state of the degrading machinery may not be observable directly or measurements may be affected by noise [START_REF] Francesca | Development of advanced computational methods for Prognostics and Health Management in energy components and systems[END_REF]. In this case, a mathematical model is integrated with on-line parameter estimation methods to infer degrading state and furnish reliable quantification of uncertainty. State estimation techniques can be Bayesian methods like Kalman filter, Particle filter and variant [START_REF] Sikorska | Prognostic modelling options for remaining useful life estimation by industry[END_REF], that update the prediction upon collection of new data [START_REF] Doucet | Sequential Monte Carlo methods in practice[END_REF][START_REF] Doucet | On sequential simulation-based methods for Bayesian filtering[END_REF] (see Fig. 1.6).

Figure 1.6: Battery capacity predictions and new pdf of RUL [START_REF] Saha | Modeling li-ion battery capacity depletion in a particle filtering framework[END_REF] As for example from recent literature, [START_REF] Baraldi | Model-based and datadriven prognostics under different available information[END_REF] developed a physics based model relying on particle filtering to predict the RUL of turbine blades. An approach to RUL estimation of power MOSFETs (metal oxide field effect transistor) was presented by [START_REF] Celaya | Prognostics of power mosfets under thermal stress accelerated aging using data-driven and model-based methodologies[END_REF], which used an extended Kalman filter and a particle filter to accomplish prognostics models. An unscented Kalman filter based approach was applied for prognostics of PEMFC (polymer electrolyte membrane fuel cell) [START_REF] Zhang | An unscented kalman filter based approach for the health-monitoring and prognostics of a polymer electrolyte membrane fuel cell[END_REF]. Recently, another interesting application on prognostics PEMFC was presented by [112], using particle filter that enabled to include non-observable states into physical models. [START_REF] Bolander | Physicsbased remaining useful life prediction for aircraft engine bearing prognosis[END_REF] proposed a particle filter based approach to track spall propagation rate and to update predictions. [START_REF] An | A tutorial for model-based prognostics algorithms based on matlab code[END_REF][START_REF] An | Prognostics 101: A tutorial for particle filter-based prognostics algorithm using matlab[END_REF] presented a Matlab based tutorial that combines physical model for crack growth and particle filter, which uses the observed data to identify model parameters. [START_REF] Baraldi | Prognostics under different available information[END_REF] proposed a series approach concerning the prediction of the RUL of a creeping turbine blade.

Parallel approach

Physics based approaches make use of system specific knowledge, while data-driven approaches utilize in situ monitoring data for prognostics. Both approaches can have their own limitations and advantages. A parallel combination can benefit from advantages of physics based and data-driven approach, such that the output from resulting hybrid model is more accurate (see Fig. 1.7). According to literature, with parallel approach, the data-driven models are trained to predict the residuals not explained by the first principle model [START_REF] Francesca | Development of advanced computational methods for Prognostics and Health Management in energy components and systems[END_REF][START_REF] Thompson | Modeling chemical processes using prior knowledge and neural networks[END_REF].

In PHM discipline still different terminologies are being used for such modeling. [START_REF] Baraldi | An hybrid ensemble based approach for process parameter estimation in offshore oil platforms[END_REF] Chapter 1

Figure 1.7: Parallel approach for hybrid prognostics model (adapted from [START_REF] Francesca | Development of advanced computational methods for Prognostics and Health Management in energy components and systems[END_REF]) called it as parallel hybrid approach, to build a model by combining a data-driven ensemble to POF model for an application of choke valve. In some works, such a combination of physics based and data-driven approaches is also called as fusion prognostics, that also requires an accurate mathematical model to represent a system for POF, and data for the data-driven approach [START_REF] Sutharssan | Prognostics and health monitoring of high power led[END_REF]. As for some examples, [START_REF] Cheng | A fusion prognostics method for remaining useful life prediction of electronic products[END_REF] presented a fusion approach for prognostics of multilayer ceramic capacitors. A fusion methodology for electronics products was proposed by [START_REF] Kumar | A hybrid prognostics methodology for electronic products[END_REF]. A case study was performed on computer by considering environmental and operational loads that a system is exposed to throughout its life cycle. [START_REF] Pecht | A prognostics and health management roadmap for information and electronics-rich systems[END_REF] presented a road map for information and electronics-rich systems, where the proposed fusion approach was illustrated on an application of printed circuit card assembly. A hybrid approach to fuse outputs from model-based and data-driven approaches was proposed by [START_REF] Hansen | A new approach to the challenge of machinery prognostics[END_REF].

Application point of view

Series approach for hybrid prognostics requires detailed knowledge of degrading process. However, for the complex systems in a dynamic industrial environment, it's hard to achieve accurate mathematical models. Also, it is important to precisely have FTs to estimate the RUL. The need for implementation of parallel hybrid prognostics model lies in the limitation of building a prognostics model with an individual approach i.e., data-driven or modelbased approach. Therefore, accuracy of parallel approach should be higher. However, implementation of such models include several steps, which can limit their applicability in real-time for some cases, due to computational complexity factor [START_REF] Sutharssan | Prognostics and health monitoring of high power led[END_REF]. For example, the main steps to achieve RUL estimates by a parallel hybrid approach can be, parameter identification and monitoring, feature extraction and healthy baseline creation, anomaly detection, parameter isolation, POF models, failure definition, parameter trending and RUL estimation [START_REF] Cheng | A fusion prognostics method for remaining useful life prediction of electronic products[END_REF]. Finally, parallel hybrid prognostics approach has higher complexity than series hybrid approach.

Synthesis and discussions

1.2.4.1 Proposed classification of prognostics approaches

According to above discussions, prognostics approaches can be broadly categorized as physics based, data-driven, and hybrid approaches (see Fig. 1.8).

Physics based

Application specific

Hybrid

Series approach Parallel approach

Data-driven

Machine Learning Statistical

Connectionist methods Among these categories, physics based approaches require modeling POF progression, and can produce precise results. As compared to data-driven methods, they need less data, however, they are component / defect specific [START_REF] Eker | Major challenges in prognostics: Study on benchmarking prognostics datasets[END_REF]. Building an analytical model can be hard or even impossible for higher system level.

Regression methods

Combination methods

On the other hand, data-driven approaches are considered as model free, because they do not require any mathematical formulation of the process. They solely depend on sufficient run-to-failure data. The main strength of data-driven approaches is their ability to transform high dimensional noisy data into lower dimensional information for diagnostic / prognostics decision [START_REF] Dragomir | Review of prognostic problem in condition-based maintenance[END_REF]. They can be a good choice when it is hard to build POF model of complex non-linear system. But, gathering enough CM data is not always possible, and the applicability of data-driven approaches is limited. They are also known as black-box approaches, and are not suitable for applications that require transparency (e.g. credit card, earthquake, etc.) [START_REF] Liu | A data-model-fusion prognostic framework for dynamic system state forecasting[END_REF]. A hybrid of physics based and data-driven approaches could be a suitable choice to benefit from both categories. This area is also growing rapidly and several works have been published in recent years. Although with hybrid approach, reliability and accuracy of prognostics model is gained significantly [START_REF] Zio | Prognostics and health management of industrial equipment[END_REF], but in parallel such methods can have higher computational cost which makes them difficult for some applications.

In spite of several efforts, real prognostics systems are still scarce, because whatever the Chapter 1 prognostics approach either physics based, data-driven or hybrid, they are subject to particular assumptions [START_REF] Sikorska | Prognostic modelling options for remaining useful life estimation by industry[END_REF]. In addition, each approach has its own advantages and disadvantages, which limits their applicability. Thereby, for a particular application (either for system level or for component level) a prognostics approach should be selected by considering two important factors: 1) performance and 2) applicability.

Usefulness evaluation -criteria

In general, prognostics domain lacks in standardized concepts, and is still evolving to attain certain level of maturity for real industrial applications. To approve a prognostics model for a critical machinery, it is required to evaluate its performances a priori, against certain issues that are inherent to uncertainty from various sources. However, there are no universally accepted methods to quantify the benefit of a prognostics method [START_REF] Uckun | Standardizing research methods for prognostics[END_REF], where, the desired set of prognostics metrics is not explicit and less understood. Methods to evaluate the performances of prognostics have acquired significant attention in recent years. From a survey, [START_REF] Saxena | Metrics for evaluating performance of prognostic techniques[END_REF][START_REF] Saxena | Metrics for offline evaluation of prognostic performance[END_REF] provided a functional classification of performance metrics, and categorize them into four classes.

1. Algorithm performance: metrics in this category evaluate prognostics model performance by errors obtained from actual and estimated RUL. Selection among competitive models is performed by considering different accuracy and precision criteria, e.g. Mean Absolute Percentage Error (MAPE), standard deviations, etc.

2. Computational performance: metrics in this category highlight the importance of computational performance of prognostics models, especially in case of critical systems that require less computational time for decision making. Therefore, for a particular prognostics approach computational performance can be easily measured by CPU time or elapsed time (or wall-clock time).

3. Cost Benefit Risk: metrics in this category are related to cost benefits that are influenced by accuracy of RUL estimates. Obviously, operational costs can be reduced if RUL estimates are accurate. Because, this will result in replacement of fewer components before the need and also potentially fewer costly failures [START_REF] Saxena | Metrics for evaluating performance of prognostic techniques[END_REF]. For example, metrics in this class can be the ratio of mean time between failure (MTBF) and mean time between unit replacement (MTBUR), return on investment (ROI), etc.

4. Ease of algorithm Certification: metrics in this category are related to the assurance of an algorithm for a particular application (see [START_REF] Saxena | Metrics for evaluating performance of prognostic techniques[END_REF] for details).

From the above classification, Cost Benefit Risk metrics have a broad scope, and obviously it is hard to quantify probable risks that are to be avoided. The Ease of algorithm Certification metrics are related to algorithm performance class, because if the prognostics model error / confidence is not mastered, it can not be certified. In addition to above classification, a list of off-line metrics is also proposed by [START_REF] Saxena | Metrics for evaluating performance of prognostic techniques[END_REF][START_REF] Saxena | Metrics for offline evaluation of prognostic performance[END_REF] to assess prognostics models before they are applied to a real situation. For example, this includes metrics of: accuracy and precision, prognostics horizon, prediction spread, horizon / prediction ratio, which are again related to algorithm performance class. Therefore, finally this thesis focuses only on metrics from algorithm and computational performance classes for prognostics model evaluation (i.e., class 1 and 2).

As far as applicability of the prognostics approach is concerned, thanks to the discussions on the application point of view for each prognostics approach (in sections 1. • requirement of degradation process model;

• failure thresholds;

• generality or scope of the approach;

• learning experience, i.e., run-to-failure data;

• transparency or openness.

• modeling complexity and computation time.

Prognostics approach selection

According to above discussions, in order to select a prognostics approach, performance and applicability factors are assessed upon different criteria (based on previous survey).

An interval I = [1, 5] is considered to assign weights for each approach according to the given criteria, where 1 represents min weight and 5 represents max weight. For example in Table 1.2, consider the first entry "without degradation process model" (applicability factor). For this criteria, data-driven approach has max weight (i.e., 5), because it does not require any explicit model of degradation process for prognostics. Similarly, physics based approach has been assigned min weight (i.e., 1), as it is dependent on mathematical model of degradation process. In this manner, weights for each criteria are carefully given for both factors (i.e., applicability and performance) in Table 1.2, and are further averaged to finally select a particular prognostics approach. For more clarity, a plot of averaged weights in terms of applicability vs. performance is also shown in Fig. 1.9. The assessment clearly shows that data-driven methods have higher applicability as compared to other approaches, but performances need further improvement. Considering the importance of such broader aspects, following topics focus on data-driven approaches, particularly combination methods from machine learning category (section 1.2.2.1). Data-driven prognostics with combination of machine learning methods is a less explored area, but apparently growing rapidly due to its good potential to overcome drawbacks of conventional data-driven approaches. Like other machine learning methods, combination methods can be deployed quickly and cheaply, and can provide system wide coverage. Finally, combination approach can also be suitable to meet most of the criteria related to performance and applicability factors, which are considered in this thesis (i.e., Table 1.2). Figure 1.9: Prognostics approaches: applicability vs. performance

Frame of data-driven prognostics

Prognostics cannot be seen as a single maintenance task, the whole aspect of failure analysis and prediction must be viewed as a set of activities that are necessary to be performed. Therefore, when focusing on prognostics process, one can underline a flow that goes from multidimensional data through the RUL of equipment. Generally frame of data-driven prognostics is based on the following necessary steps: 1) data acquisition, 2) data processing (for feature extraction and selection), and 3) prognostics modeling (i.e., to estimate the RUL). Main aspects of each step are discussed as follows.

Data acquisition

Data acquisition is the process of collecting and storing useful data from the system, which can be manipulated by a computer. This is a necessary step to implement PHM program for machinery diagnostic and prognostic. The data collected for PHM can be classified into two types: 1) event data and 2) condition monitoring data [START_REF] Jardine | A review on machinery diagnostics and prognostics implementing condition-based maintenance[END_REF]. 

Data pre-processing

Raw data acquired from the machinery are normally redundant and noisy and cannot be used directly by a prognostics model. In other words, relevant information related to degrading machinery is often hidden in raw data, and should be processed to extract / select features. Also, the effectiveness of a prognostics model is closely related to the quality of features, that can impact uncertainty of prognostics. Besides that, it is also important to identify features that are sensitive to machine condition and clearly reflect failure progression to serve need of modeling task [START_REF] Camci | Feature evaluation for effective bearing prognostics[END_REF][START_REF] Yan | Feature extraction for bearing prognostics and health management (phm)-a survey[END_REF]. Feature selection or variable selection is an important process to obtain a subset of useful features that can be used for prognostics model construction.

Prognostics modeling strategies for RUL estimation

The primary objective of prognostics is to build an effective model that is capable of predicting the evolution of degrading features (or variables) under anticipated operating conditions, and can provide RUL of the machinery. However, estimation of RUL is usually hard to perform. In recent years, research to build accurate prognostics models has gained popularity, and there are rapid advances especially with data-driven approaches.

According to the discussions, we classify the RUL estimation strategies with a datadriven approach into three groups, 1) univariate degradation based modeling, 2) direct RUL prediction and 3) multivariate degradation based modeling.

Univariate degradation based modeling

The univariate degradation based prognostics modeling rely on the prediction of continuous degrading state followed by a failure criteria, where RUL estimate is obtained when degrading signal intersects a pre-defined FT (see Fig. 1.10). In this case, the datadriven approaches learn the model of degradation from time series observations through regression, trending or stochastic process modeling [START_REF] Caesarendra | Machine degradation prognostic based on rvm and arma/garch model for bearing fault simulated data[END_REF][START_REF] Zhang | Time series forecasting using a hybrid arima and neural network model[END_REF]. The main difficulty with this method is to define FTs, which is often very hard to achieve and can restrict the applicability of univariate degradation based approach. Due to this problem, some works in literature assume FTs to estimate the RUL [START_REF] Benkedjouh | Health assessment and life prediction of cutting tools based on support vector regression[END_REF][START_REF] Tobon-Mejia | Cnc machine tool's wear diagnostic and prognostic by using dynamic bayesian networks[END_REF]. However, such assumptions are Chapter 1 less realistic for prognostics application and should be avoided, because, the uncertainty of FT can lead to poor prognostics and negative outcomes. Direct RUL prediction approach learns from the data directly, the relation between observed trends and equipment EOL time to obtain RUL. Therefore, the RUL is derived from data-driven model by applying a pattern matching process (or finding similarity) between the current observation and the knowledge of equipment RUL [START_REF] Francesca | Development of advanced computational methods for Prognostics and Health Management in energy components and systems[END_REF][START_REF] Wang | A similarity-based prognostics approach for remaining useful life estimation of engineered systems[END_REF][START_REF] Zio | A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system[END_REF] (see Fig. 1.11). This method does not require definition of failure criteria, but rely on smooth and monotonic trends to facilitate pattern matching [START_REF] Mosallam | Bayesian approach for remaining useful life prediction[END_REF]. However, even a small deviation from matched history case, either due to uncertain operating conditions or non-linearity due to noise phenomena can lead to large RUL errors. In addition, it is also necessary to have sufficient knowledge on RULs available in training dataset. Lastly, the similarity search procedure can be costly as well [START_REF] Wang | Trajectory similarity based prediction for remaining useful life estimation[END_REF]. With univariate degradation based approach, failure definitions could be a difficult task to achieve. To resolve that issue, a new idea for RUL estimation was proposed by [START_REF] Dragomir | Framework for a distributed and hybrid prognostic system[END_REF]. According to this proposition, prognostics modeling is performed by using a prediction model and a health assessment model to estimate the RUL. The complete illustration of this method was given in [START_REF] Ramasso | Prognostics in switching systems: Evidential markovian classification of real-time neuro-fuzzy predictions[END_REF]. Later, this approach was further developed and named as joint approach for RUL estimation [START_REF] Ramasso | Joint prediction of continuous and discrete states in time-series based on belief functions[END_REF]. Mainly, the aim of multivariate degradation based modeling is to integrate a prediction model and a classification model to precisely set FT. Therefore, a RUL can be achieved by making continuous state predictions of multidimensional features data and simultaneous estimation of discrete states to determine the modes of degradation [START_REF] Javed | Novel failure prognostics approach with dynamic thresholds for machine degradation[END_REF][START_REF] Ramasso | Joint prediction of continuous and discrete states in time-series based on belief functions[END_REF] (see Fig. 1.12). This approach is new in the domain of data-driven prognostics, and relatively more realistic as compared to former methods and closely aligned with engineering reasoning for prognostics, i.e., with degradation phenomena, fault modes or severity of defect, failure definition, etc. However, the main limitation of this approach is the assumption about the number of degrading states. In fact, each machine could behave differently, even under same condition, which means they can have different states of degradation from a healthy state to a faulty state. Thus, the number of states cannot be fixed (or same) for all machines in the fleet. As a result FTs can vary and should be assigned dynamically, rather than static FT due to fixed number of states as presented in [START_REF] Ramasso | Joint prediction of continuous and discrete states in time-series based on belief functions[END_REF]. Nevertheless, multivariate degradation based modeling shows a strong potential and appears to be more realistic as compared to direct RUL prediction and univariate degradation based modeling approaches. Therefore, in this thesis, multivariate degradation based modeling is considered as a building block for prognostics modeling step, and its further enhanced in the succeeding chapters. 

Defining challenges of prognostics modeling

According to literature, various approaches for prognostics exist, i.e., physics based, data-driven and hybrid approaches. However, real prognostics systems to meet industrial challenges are still scarce. This can be due to highly complex and non-linear operational environment of industrial machinery, which makes it hard to establish efficient prognostics approaches, that are robust enough to tolerate uncertainty, and reliable enough to show acceptable performance under diverse conditions. In addition, the applicability of prognostics approaches is also necessary to meet industrial constraints and requirements. Finally, prognostics approaches should be enhanced by handling simulta-Chapter 1 neously all three challenges, robustness, reliability and applicability, which are still open areas. However, practitioners still encounter difficulties to identify their relationships and to define them. We propose to make it as follows.

1.4.1.1 From data to robustness Real industrial systems are intrinsically not perfect and the usefulness of gathered data are highly dependent on the variability of phenomena, sensor nonlinearity, etc. Also, the degradation of an engineering asset cannot always be directly measured, so that indirect observations must be imagined. This complicates understanding (and modeling) of complex and uncertain behavior of real systems. Following that, it is obviously difficult to provide a prognostics model that is insensitive to uncertainty, and is capable of capturing dynamics of degrading asset in an accurate manner. Robustness of prognostics models appears to be an important aspect [START_REF] Liao | An adaptive modeling for robust prognostics on a reconfigurable platform[END_REF], and still remains a critical issue [START_REF] Camci | Health-state estimation and prognostics in machining processes[END_REF].

• Robustness: It can be defined as the "ability of a prognostics approach to be insensitive to inherent variations of input data". It means that, whatever the subset from the entire learning frame is used, the performances of a robust prognostics model should not impair. In other words, a robust model should have steady performance when it is exposed to variations in learning data sets having same context, i.e., operating conditions, geometrical scale, material, coating etc. An illustration is given in Fig. 1.13. Even if the prognostics approach appear to be robust to tolerate uncertainty, it should also be reliable enough to be used for the context that is different from the one considered during the modeling phase [START_REF] Li | Fuzzy neural network modelling for tool wear estimation in dry milling operation[END_REF][START_REF] Massol | An exts based neuro-fuzzy algorithm for prognostics and tool condition monitoring[END_REF]. In other words, the prognostics should cope with the variations related to the context, such as, multiple operating conditions, geometric scale or materials differences of components, etc. Robustness and reliability 1 of a prognostics approach appear to be closely related [START_REF] Peng | Current status of machine prognostics in condition-based maintenance: a review[END_REF], and both should be considered as important to ensure the accuracy of RUL estimates.

• Reliability: It can be defined as the "ability of a prognostics approach to be consistent in situations when new / unknown data are presented". It means that, the prognostics model should show consistent performance (in terms of accuracy and precision), in situations when data with different context are presented to the model. In other words, a reliable prognostics model can adapt variations related to context, either in case it is exposed to new data with small deviation from learned cases (i.e., context is partially known), or when totally unknown data with large deviations are presented (i.e., unknown context). An illustration is given in Fig. 1.14. Besides robustness and reliability criteria, a prognostics model has to be chosen according to the implementation requirements and constraints that restrict the applicability of the approach. Mainly, these constraints can be related to the quality and quantity of data, the generalization capability that is expected, the complexity and computational time required by the model, the human assumptions that clearly impact accuracy of results, etc., [START_REF] El-Koujok | Reducing arbitrary choices in model building for prognostics: An approach by applying parsimony principle on an evolving neuro-fuzzy system[END_REF][START_REF] Sikorska | Prognostic modelling options for remaining useful life estimation by industry[END_REF]. The applicability problem still remains a technical challenge as well.

• Applicability: It can be defined as the "ability of a prognostics approach to be practically applied under industrial constraints". An applicability of a prognostics model can be referred to its suitability or ease of implementation for a particular application, i.e., requirements like failure definition, human intervention, model complexity, computation time, theoretical limits of the approach or any hypothesis.

1.4.2 Toward enhanced data-driven prognostics

1.4.2.

Issues to be addressed

Although in recent years, a vast number of prognostics methods have been proposed for different applications areas, the progress to build an effective and efficient prognostics Chapter 1 approach is still limited. Usually, lack of understating about complex and non-linear behavior of degrading machinery under dynamic operating environment prevents practitioners to develop precise mathematical models for prognostics. In such situations data-driven prognostics approaches can be a good alternate to learn behavior of degrading machinery directly from the data, without any physical understanding about the degradation process. However, performances of prognostics model can suffer due different factors like: inherent uncertainties associated to deterioration process, lack of sufficient quantities of run-to-failure data, sensor noise, unknown environmental and operating conditions, and engineering variations. Obviously in such situations it could be quite hard to precisely infer the exact state of degrading machinery, and to further predict the evolution of degradation from the collected data. In this context, inherent uncertainty of data (e.g. due to variability of phenomena, sensor non-linearity, etc,) can affect robustness of the prognostics model in the learning frame, and also small or large deviations from learned experiences (e.g. due to different context) can affect reliability of the prognostics model in the testing frame. Moreover, the applicability of the prognostics model is equally important from engineering point of view, to meet real-time constraints and requirements for a particular industrial application. According to these discussions, key issues of data-driven prognostics can be summarized as follows.

• How to obtain right information in the form of features that clearly reflect deterioration phenomena?

• How to improve robustness and reliability of prognostics model to handle uncertain inputs and deviations from learned experiences?

• How to improve the applicability of the prognostics model to meet constraints and requirements of a real application?

• How to validate the performances of a prognostics model?

The issues highlighted above confirm that, the need to enhanced data-driven prognostics is inevitable. Therefore, the main assumptions, objective and contributions of this thesis are provided in the following sections.

Assumptions

To address identified problems, following assumptions have been made for the proposed prognostics approach.

1. There is at least one way to extract features that are representative of machinery conditions.

2. Collected data should consist of historical run-to-failure observation sequences.

3. It is assumed that degradation has been already detected (see Fig. 1.2).

4. Degrading machinery can not go under self healing.

5. It is assumed that prognostics is achieved at component level.

Objective and contributions

According to issues and assumptions, the objective of this thesis is to develop an enhanced data-driven prognostics approach that can estimate the RUL in a realistic manner, with an acceptable level of accuracy under modeling challenges of robustness, reliability and applicability (Fig. 1.15). More precisely, the core of the thesis is to build an efficient prognostics model dealing with all three challenges simultaneously, i.e., robustness, reliability and applicability.

Prognostics

Leaving aside data acquisition step, data-driven prognostics framework is enhanced by focusing on data-processing and prognostics modeling steps. According to that, the main contributions of this thesis are as follows.

1. State prognostics modeling challenges (Chapter 1).

2. Propose a new data-processing approach to extract / select suitable features (Chapter 2).

Develop a new algorithm for long-term predictions (Chapter 3).

4. Develop a new algorithm to dynamically assess the health states of a degrading machinery. Also, to develop an innovative strategy for RUL estimation that performs simultaneous predictions, discrete state estimation and dynamically assign FTs (Chapter 4).

5. Validate all developments on three real data applications (Chapter 2, Chapter 3 and Chapter 4).

Chapter 1

Summary

This chapter presents a thorough survey on PHM literature and its growing importance as a modern strategy to maintain and manage life cycle of critical machinery. Also prognostics process is pointed out as a key enabler to ensure mission achievement of systems while reducing costs and risks. According to that, a detailed classification of prognostics approaches is presented. Data-driven prognostics appear to have better applicability as compared to other approaches, but still lacks in accuracy performances. Following that, open challenges of robustness, reliability and applicability are defined, and the main issues / requirements for data-driven approach are discussed. This enabled to highlight the objective of thesis. Following chapters are the building blocks toward enhanced data-driven prognostics, and focus on "data-processing" step to extract / select suitable features, and on "prognostics modeling" step to improve multivariate degradation based modeling strategy for RUL estimation.

Chapter 2

From raw data to suitable features

This chapter presents data-processing approaches to obtain suitable features, that reduce the uncertainty of prognostics and result in accurate RUL estimates. Following a survey on features extraction and selection, the data pretreatment approach is presented to extract features having monotonic trends, that clearly reflect evolution of machine degradation. To perform feature selection, recent metrics for feature fitness are considered from the literature. Moreover, a data post-treatment approach is introduced, which emphasize to further reduce multidimensional features data by assessing predictability of features. The underlying idea is that, prognostics should take into account the ability of a practitioner (or its models) to perform "long-term predictions". Thus, proposed method emphasizes on the post selection phase, and aims at showing that it should be performed according to the predictability of features: as there is no interest in retaining features that are hard to be predicted. The proposed developments are validated on real data of turbofan engines from PHM data challenge 2008 and bearings from PHM data challenge 2012.

Problem addressed 2.1.1 Importance of features for prognostics

According to literature, prognostics may encounter various situations regarding collected information and data from past, present or future behavior. Among different approaches for prognostics (physics based, data-driven, hybrid approaches [START_REF] Heng | Rotating machinery prognostics: State of the art, challenges and opportunities[END_REF][START_REF] Jardine | A review on machinery diagnostics and prognostics implementing condition-based maintenance[END_REF][START_REF] Sikorska | Prognostic modelling options for remaining useful life estimation by industry[END_REF]), datadriven techniques are easier to deploy when its hard to understand first principles of a complex machinery to build a diagnostics or prognostics model [START_REF] Javed | Novel failure prognostics approach with dynamic thresholds for machine degradation[END_REF][START_REF] Yin | Real-time implementation of fault-tolerant control systems with performance optimization[END_REF]. They are black-box models that learn system behavior directly from CM data and use that knowledge to infer its current state and to predict failure progression to estimate RUL.

Generally, modeling of data-driven prognostics (with machine learning methods) has to go through necessary steps of learning and testing, which is dependent on features extracted / selected from raw CM data. In brief, firstly, raw data are collected from machinery and pre-processed to extract useful features to learn the degradation model. Secondly, in the test phase, the learned model is used to predict future behavior and to validate model performance [START_REF] Javed | Improving data-driven prognostics by assessing predictability of features[END_REF]. For example, consider multivariate degradation based modeling strategy from data-driven category of prognostics approaches (Fig. The raw sensory data are normally redundant and noisy and cannot be used directly for prognostics. Transforming raw data into features serve need of degradation modeling in prognostics. The extracted features can be seen as multidimensional time series data. However, real industrial systems are intrinsically not "perfect" and usefulness of gathered data are highly dependent on variability phenomena, sensor non-linearity, etc. The form of extracted features can be non-linear, noisy or smooth, etc. Most importantly, the quality of extracted features has a direct affect on the learned prognostics model. In addition, features that properly reflect failure progression or have clear physical meaning can be easily predicted by the prognostics model. Therefore, three main problems can be highlighted.

1. Even if most of data-driven approaches are able to cater non-linearity of degrading signals, features with monotonic behavior are likely to lead to better RUL estimates. Therefore, how to obtain features that clearly reflect failure progression?

2. Some of the classical extracted features like Root Mean Square (RMS) or Kurtosis etc., do not show any variation until a few time before failure [START_REF] Javed | A feature extraction procedure based on trigonometric functions and cumulative descriptors to enhance prognostics modeling[END_REF][START_REF] Liao | Discovering prognostic features using genetic programming in remaining useful life prediction[END_REF]. Therefore, how to obtain features that are trendable and correlate to failure progression?

3. There is no way to ensure that the most relevant features (that contain the main information among all features) are those that can be easily predicted, and can result in better RUL estimates. Therefore, how to evaluate that features are predictable over long-term horizon?

Consequently, such situations prevent performing RUL estimates in a timely manner to optimize maintenance actions.

Toward monotonic, trendable and predictable features

The efficacy of a prognostics model is closely related to the form and trends of features, that could affect RUL estimates and result large uncertainty. Although, it could be very challenging to obtain features that explicitly reflect failure progression, nevertheless, it is desired to determine the quality of features prior to prognostics modeling phase. In this context, features for prognostics should have essential characteristics like monotonicity and trendability [START_REF] Coble | Identifying optimal prognostics parameters from data: A genetic algorithms approach[END_REF]. For understanding, consider Fig. Obviously, feature that clearly reflect failure progression (i.e., monotonic and trendable) up to current time tc has high predictability, and can lead to accurate RUL estimate with less uncertainty. Because, predicted fault is expected to grow in a same fashion till it reaches FT at time tf 1 . On the other hand, when a non-monotonic and non-trendable feature is presented to a prognostics model, its performances may impair, or rather, it would be impossible for the model to predict future unknown from current time tc to tf 2 , leading to large uncertainties that risk decision making. Therefore, it is strictly desired to extract features that can not only simplify prognostics modeling, but also lead to accurate RUL estimates. This is the aim of the propositions presented in the following sections.

• Firstly, a survey on data-processing is presented;

• Secondly, data pre-treatment approach is presented to extract / select monotonic and trendable features;

• Lastly, data post-treatment approach is introduced to further reduce multidimensional features data by assessing their predictability.

Data processing 2.2.1 Feature extraction approaches

Feature extraction is of great importance for machinery diagnostics / prognostics. In literature, a large number of signal processing techniques (or feature extraction methods) have been proposed. Prior to any selection among different possibilities, it is required to investigate an appropriate method for a specific application [START_REF] Jardine | A review on machinery diagnostics and prognostics implementing condition-based maintenance[END_REF][START_REF] Yan | Feature extraction for bearing prognostics and health management (phm)-a survey[END_REF]. However, there is huge literature on this topic, which is beyond the scope of the thesis. Let's highlight the three main categories of signal processing techniques which are shown in Fig. 2.3.

Time domain

Time-domain feature extraction is directly performed on the sensed waveforms (e.g. acoustic emissions, vibration signal) to identify signatures. In a classical manner timedomain approach extracts characteristic features using statistics like mean, variance, root mean square (RMS), standard deviation, etc. These are suitable in case of stationary signals. Otherwise extracted features may show sensitivity to variation in data and inherit non-linearity which can complicate prognostics modeling and may prevent RUL prediction in a timely manner. Apart from statistical approaches, time-domain analysis can be further categorized into model-based methods, like autoregressive moving average, or signal processing methods like synchronous averaging or correlation [START_REF] Yan | Feature extraction for bearing prognostics and health management (phm)-a survey[END_REF].

Frequency domain

Features extracted from time domain techniques are considered to be suitable for fault detection. However, frequency-domain techniques are considered more effective for fault diagnostic, because, they have good ability to identify and isolate frequency components. The most widely applied technique in this category is Fast Fourier Transform (FFT).

Other methods that belong to this category are cepstrum, spectral analysis, higher-order spectra and envelop analysis [START_REF] Jardine | A review on machinery diagnostics and prognostics implementing condition-based maintenance[END_REF][START_REF] Yan | Feature extraction for bearing prognostics and health management (phm)-a survey[END_REF][START_REF] Yu | A hybrid feature selection scheme and self-organizing map model for machine health assessment[END_REF]. The main limitation of frequency-domain techniques is their inability to deal with non-stationary signals, unfortunately which is the case in degrading machinery.

Time-frequency

Time-frequency techniques aim at investigating signals in both time and frequency domains. They are considered to be powerful tools to analyze non-stationary signals. Some of the popular time-frequency techniques proposed in literature are: Short Time Fourier Transform (STFT), Wigner-Ville Distribution [START_REF] Boashash | An efficient real-time implementation of the wigner-ville distribution[END_REF], Wavelet Transform (WT) [START_REF] Chui | An introduction to wavelets[END_REF], Empirical Mode Decomposition (EMD) [START_REF] Huang | The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF], Hilbert-Huang Transform based on EMD and Hilbert spectral analysis [START_REF] Huang | Hilbert-Huang transform and its applications[END_REF], spectral kurtosis [START_REF] Antoni | The spectral kurtosis: a useful tool for characterising non-stationary signals[END_REF] and cyclostationary analysis [START_REF] Gardner | Cyclostationarity: Half a century of research[END_REF]. A brief description of each approach can be found in [START_REF] Jardine | A review on machinery diagnostics and prognostics implementing condition-based maintenance[END_REF][START_REF] Yan | Feature extraction for bearing prognostics and health management (phm)-a survey[END_REF]. According to literature [START_REF] Chen | Fault feature extraction of gearbox by using overcomplete rational dilation discrete wavelet transform on signals measured from vibration sensors[END_REF], EMD and WT are the two outstanding examples among signal processing techniques since the last two decades. In brief, EMD is a self-adaptive signal processing technique that is suitable for non-linear and non-stationary processes [START_REF] Sun | Multiwavelet transform and its applications in mechanical fault diagnosis a review[END_REF]. However, the main weakness of EMD its high sensitivity to noise, and it also runs into the problem of mixing modes [START_REF] Lei | A review on empirical mode decomposition in fault diagnosis of rotating machinery[END_REF][START_REF] Wang | A comparative study on the local mean decomposition and empirical mode decomposition and their applications to rotating machinery health diagnosis[END_REF]. In addition to that, EMD is also reported to have characteristics like wavelet [START_REF] Flandrin | Empirical mode decomposition as a filter bank[END_REF], which encourages to use WT as a substitute in studying the behavior of the time-frequency signals [START_REF] Olhede | The hilbert spectrum via wavelet projections[END_REF]. Besides that, EMD is popular in demodulation applications, whereas WT is commonly used in vibration content characterization [START_REF] Chen | Fault feature extraction of gearbox by using overcomplete rational dilation discrete wavelet transform on signals measured from vibration sensors[END_REF].

On the other hand, WT have also gained attention among researchers / industrials, and is considered as effective approach for analyzing non-stationary signals, especially when they come from rotating machinery like bearings [START_REF] Bellini | Advances in diagnostic techniques for induction machines[END_REF][START_REF] Bendjama | Application of wavelet transform for fault diagnosis in rotating machinery[END_REF][START_REF] Tobon-Mejia | A datadriven failure prognostics method based on mixture of gaussians hidden markov models[END_REF][START_REF] Zarei | Bearing fault detection using wavelet packet transform of induction motor stator current[END_REF]. WT also addresses, the limitations of STFT with fixed window size in time-frequency plane, by adaptively partitioning the time-frequency planes for a range of window sizes to analyze the signal. [START_REF] Yan | Feature extraction for bearing prognostics and health management (phm)-a survey[END_REF])

In this thesis, WT is considered for the analysis of non-stationary vibration / acoustic signals. However, as far as our knowledge, there is no clear rule for vibration signals, but obtaining reliable features is the main requirement [START_REF] Rafiee | Application of mother wavelet functions for automatic gear and bearing fault diagnosis[END_REF]. Even the application of WT cannot guarantee ideal features for prognostics, and its performances can vary from case to case, or may be dependent on sensor non-linearity that affect observations of phenomena, manual settings, etc., which needs to be further addressed to extract features, that clearly reflect degradation process.

Feature selection approaches

The main aim of feature selection methodology is to avoid irrelevant or redundant features that do not provide any useful information and are hard to be predicted. Features dimensionality reduction can be performed in two ways:

1. by drawing features in a new space by applying methods like Principal Component Analysis or variants, Singular Value Decomposition, Self-Organizing Map, or clustering methods [START_REF] Benkedjouh | Health assessment and life prediction of cutting tools based on support vector regression[END_REF][START_REF] Mosallam | Nonparametric time series modelling for industrial prognostics and health management[END_REF]. However, in this case the resulting features obtained after transformation are different from actual features;

2. by selecting a feature subset based on highest information content, that can significantly improve prognostics. According to recent literature on prognostics, different metrics to characterize suitability of features are proposed for feature selection on the basis of essential characteristics like monotonicity, trendability and prognosability [START_REF] Coble | Identifying optimal prognostics parameters from data: A genetic algorithms approach[END_REF].

Leaving aside conventional approaches of feature transformation, recent works confirm that features subset selection by the second case is also vital to prognostics for its efficacy toward accurate RUL estimates [START_REF] Camci | Feature evaluation for effective bearing prognostics[END_REF][START_REF] Coble | Applying the general path model to estimation of remaining useful life[END_REF][START_REF] Javed | A feature extraction procedure based on trigonometric functions and cumulative descriptors to enhance prognostics modeling[END_REF][START_REF] Liao | Discovering prognostic features using genetic programming in remaining useful life prediction[END_REF][START_REF] Mosallam | Nonparametric time series modelling for industrial prognostics and health management[END_REF][START_REF] Wang | Bearing life prediction based on vibration signals: A case study and lessons learned[END_REF]. Therefore metrics for feature selection are used in this thesis.

Proposition of a new data pre-treatment procedure 2.3.1 Outline

PHM approaches derive useful features directly from routinely monitored operational data from machinery. As with change of time, wear in machinery increases and phenomena like excessive temperature, vibration or acoustic emission are observed [START_REF] Kumar | Modeling approaches for prognostics and health management of electronics[END_REF][START_REF] Loutas | Utilising the Wavelet Transform in Condition-Based Maintenance: A Review with Applications[END_REF]. Prognostics approaches assume that features are constant until a fault occurs in a component or system. However, real systems operate in dynamic environment, where rapid changes in machinery can take place. Although, feature extraction process transforms redundant CM data into features to show behavior of machinery, one cannot be sure that extracted features properly reflect failure progression and can serve the need for prognostics modeling due to high variability phenomena.

As for example, consider the case of bearings. They are the most common components in rotating machinery, and normally constitute a large percentage of failures in such machines. According to the research survey of Electric Power Research Institute, bearing faults account for the 40% of motor faults [START_REF] Lau | Detection of motor bearing outer raceway defect by wavelet packet transformed motor current signature analysis[END_REF]. RUL estimation of such components is a challenging task for prognostics approaches, that are based on vibration analysis [START_REF] Wang | Bearing life prediction based on vibration signals: A case study and lessons learned[END_REF]. However, vibration signals are normally noisy and also subject to variations from a component or a system to another [START_REF] Bendjama | Application of wavelet transform for fault diagnosis in rotating machinery[END_REF][START_REF] Wang | Bearing life prediction based on vibration signals: A case study and lessons learned[END_REF]. In such situations, it is quite challenging for signal processing approaches like time domain, frequency domain or time-frequency (wavelet) analysis to furnish vibration based features that have monotonic trends.

The global objective of the proposed approach is to achieve ease in implementing a prognostics model with improved accuracy. Mainly, in this section, developments on data-preprocessing step are focused on extracting novel features that clearly reflect failure progression in a meaningful way. The methodology is demonstrated on vibration data of bearings, a kind of signal widely used for prognostics, even if RUL estimates are hard to be performed [START_REF] Bendjama | Application of wavelet transform for fault diagnosis in rotating machinery[END_REF][START_REF] Wang | Bearing life prediction based on vibration signals: A case study and lessons learned[END_REF]. Nevertheless, the proposed approach is not limited to bearings, and may be applied to other applications that require vibration /acoustic signal processing. The complete procedure is depicted in Fig. 2.4.

• In the first phase, time-frequency analysis is performed by applying Discrete Wavelet Transform due to its good ability to deal with raw vibration data from rotating machinery. Following that, features are extracted / selected in a new manner: trigonometric functions are firstly applied to extract features, and then smoothed to remove unwanted noisy part.

• The extracted features are further transformed by performing a running total (or point-wise addition) and simultaneous scaling to build a cumulative feature having monotonic behavior and early trend. Note that, strategy of transformation can also be performed on classical features like RMS, skewness, kurtosis, energy, etc.

• Finally, multidimensional data (of extracted features) are analyzed for the fitness.

Steps for feature extraction / selection

As stated before, the approach is applied to vibration signals from monitoring of bearings. The details of each step are described in following topics.

Discrete Wavelet Transform and Trigonometric Features

In time-frequency domain, wavelet transform is considered as an effective tool to handle non-stationary signals, as it interprets the signal in time as well as frequency. WT is of two types: Continuous Wavelet Transform (CWT) and Discrete Wavelet Transform (DWT). CWT has a limit of impracticality with digital computers, where DWT is used for practical reasons, and is mainly achieved by discretization of CWT. An important implementation of DWT is known as Multi-Resolution Analysis (MRA) [START_REF] Mallat | A theory for multiresolution signal decomposition: the wavelet representation[END_REF], to analyze the signal at different frequencies with different resolutions (Fig. 2.5a). MRA is accomplished by two functions: scaling and wavelet that are associated with a low pass filter (L P F ) and a high-pass filter (H P F ) respectively [START_REF] Bendjama | Application of wavelet transform for fault diagnosis in rotating machinery[END_REF]. In brief, consider a discrete signal x[n] that has 512 samples, and frequency span of (0 -π) rad/s. At the first level of decomposition, the signal is passed through a L P F that gives approximation coefficients (A), and a H P F that gives detail coefficients (D), followed by a down sampling by 2 (see Fig. 2.5b for an illustration). At this level for A1, the entire signal is characterized by only half number of samples (as the output of L P F has 256 points), whereas the frequency resolution is doubled since the spanned frequency band is also halved (0 -π 2 ). The frequency band can be further broken down into lower resolutions by recursive decomposition of approximation part at current level [START_REF] Bellini | Advances in diagnostic techniques for induction machines[END_REF][START_REF] Bendjama | Application of wavelet transform for fault diagnosis in rotating machinery[END_REF][START_REF] Mallat | A theory for multiresolution signal decomposition: the wavelet representation[END_REF]205]. 1. the type of mother wavelet;

2. the level of decomposition;

3. the type of features to be extracted.

In literature, it is suggested that Daubichies wavelet of 4th order (D4) and 3-5 levels of decomposition are suitable for analysis of vibration signals from bearings [START_REF] Bendjama | Application of wavelet transform for fault diagnosis in rotating machinery[END_REF][START_REF] Dong | Bearing running state recognition based on non-extensive wavelet feature scale entropy and support vector machine[END_REF][START_REF] Tobon-Mejia | A datadriven failure prognostics method based on mixture of gaussians hidden markov models[END_REF]. However, D4 and 4-level of decomposition are considered for the proposed approach.

Classical features -The classical approach for feature extraction with DWT is performed at a required level of decomposition (and using approximation coefficients) to obtain different features. The extracted features can be entropy [START_REF] Dong | Bearing running state recognition based on non-extensive wavelet feature scale entropy and support vector machine[END_REF], Root Mean Square (RMS), variance [START_REF] Chebil | Wavelet decomposition for the detection and diagnosis of faults in rolling element bearings[END_REF] or other statistical features e.g. skewness, kurtosis, etc. However, each feature can be sensitive to different faults or the severity of degradation. For example, vibration based features RMS and kurtosis from the degraded bearings show variation only few time before failure (i.e., rate of change increases significantly Fig. 2.6), which can limit their use such features for prognostics. Therefore, a new set of features is introduced in the next topic. Trigonometric features -In this case, at a required level of decomposition (of vibration data), features extraction is performed by using a combination of statistics and trigonometric functions. Mainly, the trigonometric functions can be either monotonically increasing or decreasing, e.g. inverse hyperbolic cosine, inverse hyperbolic sine, inverse hyperbolic secant, etc. In this context, they can be grouped in two classes:

• functions that have domain (-∞, ∞), e.g. inverse hyperbolic sine (asinh), inverse tangent (atan), etc;

• functions that have different domain value but not (-∞, ∞), e.g. inverse hyperbolic cosine (acosh), inverse hyperbolic secant (asech), hyperbolic tangent (tanh).

For the second class, input values outside the domain are transformed to complex outputs (i.e., complex numbers), which can be further explored. However, the first class appears to be more relevant to a real data, as it allows domain values from (-∞, ∞). Therefore, we limit the study to the first class only.

The main benefit of using trigonometric functions is that: such function transform the input data to different scale such that, resulting features have better trends and low scale as compared to classical features. To achieve that, a trigonometric function operates on array (X) element-wise (x j , j = 1,2,..,n) to scale, and a standard deviation (SD) applied to the scaled array for extracting feature value: 1) standard deviation of inverse hyperbolic sin Eq. 2.1, 2) standard deviation of inverse tangent Eq. 2.2.

σ log x j + (x 2 j + 1) 1/2 (2.1) σ i 2 log i + x j i -x j (2.2)
For illustration, an example of features extracted with classical approach from a degraded bearing are presented in Fig. 2.6, and features extracted using Eq. 
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Feature Smoothing

To reduce variability of extracted features and to filter unwanted noise, smoothing process is performed on each feature F from multidimensional time series to capture important trends. This step is met by applying LOESS filter with span value 0.3 (i.e., 30 %) [START_REF]MATLAB. curve fitting toolbox[END_REF]. In brief, LOESS is a popular smoothing method based on locally weighted regression function and a second degree polynomial. The smoothing operation is considered to be local because, each smoothed value is obtained by data points within a defined neighborhood. Therefore, given some scattered data, LOESS filter can locally perform a weighted fit with the n-nearest points. Further details on LOESS filter can be found in [START_REF] Iwaniec | Nonparametric approach to improvement of quality of modal parameters estimation[END_REF]. Chapter 2

Cumulative features

Any machine is bound to degrade as time grows. In this context, the main idea of this step is obtain features that can clearly reflect failure progression and satisfy requirements mentioned in section 2.1.2. In fact, features with non-linear behavior don't clearly indicate state of the machinery under operation i.e., they don't distinguish among good, degrading or failure states. Note that such non-linearity can also represent self-healing as well. Here we assume that it is not possible to undergo self-recovery, which is the case for components like bearings, gears, or cutting tools. However, this assumption does not hold for batteries that may undergo self-recovery during non-use [START_REF] Coble | Applying the general path model to estimation of remaining useful life[END_REF]. Therefore, we propose a straightforward but effective strategy to build features, which aims at transforming an extracted feature into its cumulative form to have monotonicity and trendability characteristics. The transformation task is achieved by applying a cumulative function on a time series, to perform a (point-wise) running total and a scaling operation simultaneously. This procedure results features that can clearly distinguish among different states of degrading machinery.

C Fv = N i=1 Fv (i) N i=1 Fv (i) 1/2 , v = 1,2....,k (2.3) 
where,

N i=1

Fv (i) represents running total of a "smoothed vth" feature Fv (i) up to "N" points, and C Fv represents transformed cumulative feature. It should be noted that, the cumulation of a feature can be sensitive to noise, therefore, features smoothing must be performed a priori (section 2.3.2.2).

Analyzing fitness of features

This step aims at identifying subset of features that have better fitness for further prognostics modeling. The central assumption is that, monotonic and trendable features can lead to more accurate RUL estimates, as compared to features that have contrary behavior. Therefore two simple metrics are considered to assess suitability (or fitness) of a feature: 1) Monotonicity (from literature) 2) Trendability (proposed).

• "Monotonicity" characterizes underlying increasing or decreasing trend [START_REF] Coble | Identifying optimal prognostics parameters from data: A genetic algorithms approach[END_REF]:

M = no. of d/dx > 0 n -1 - no. of d/dx < 0 n -1 (2.4)
where "n" is for number of observations in a particular feature. Monotonicity M is measured by absolute difference of "positive" and "negative" derivatives for each feature. The value of M can be from 0 to 1: highly monotonic features will have M =1 and for non-monotonic features M =0.

• "Trendability" is related to the functional form of an extracted feature and its correlation to time. That is, how the state of an engineering asset varies with time. Surely, a constant function (of feature) will have zero correlation with time, where a linear function will have strong correlation. In similar way, correlation can vary with increase in non-linearity (i.e., a non-linear feature will result low correlation).

To measure trendability a straight forward formula is given in Eq. (2.5).

R = n ( xy) -( x) ( y) n x 2 -( x) 2 n y 2 -( y) 2 (2.5)
where R is the correlation coefficient between two variables x and y. Correlation can be positive, negative, perfect or no correlation. Thus, R ∈ [-1; 1] is the correlation coefficient between feature x and time index y.

2.4

First PHM case study on real data For PHM challenge, data were recorded with specific sampling frequency to capture complete frequency spectrum of degrading bearings. The sampling frequency of acceleration and temperature measures is set to 25.6 kHz and 0.1 Hz respectively. Three loads condition were considered and experiments were stopped when amplitude of the vibration signal overpasses 20g limit. To learn a prognostics model, authors of the experiments provided run-to-failure data from 6 bearings, whereas, for test, incomplete data were given from 11 bearings (see Table 2.2). Further details can be found in [5,[START_REF] Nectoux | Pronostia: An experimental platform for bearings accelerated life test[END_REF]. For all the experiments, vibration data from horizontal accelerometer are considered. 
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Bearing2 -7

Feature extraction and selection results

The proposed feature extraction approach is applied on data from all 17 bearings to extract features listed in Table 2.1. For simplicity, bearings are labeled as Ber i-j , where i represents the load condition and j represents the bearing number.

Trigonometric features vs. classical features

Here, we compare performances of proposed trigonometric features with classical ones which are listed in Table 2.1, on first bearing Ber 1-1 (see Fig. Back to the accuracy of prognostics problem, one can point out that classical features (RMS, Kurtosis, Skewness, etc.) are not well adapted to catch machine conditions (health states). In addition, they can have large scales, which require normalization before feeding a prognostics model. Therefore, they should be avoided for real application, which strengthens the interest of trigonometric features.

Classical features vs. cumulative features

Trigonometric features appear to be suitable as compared to classical features listed in Table 2.1, but such results are achieved for only few bearings like Ber 1-1 , as depicted in Fig. 2.11. It could be quite challenging to obtain monotonic and trendable features in cases where raw data do not show clear progression of failure. As for an example, consider the bad case of Ber 1-6 shown in Fig. 2.12, for which it is difficult to obtain good results by all features including trigonometric functions. In this case one can neither perform correct health assessment of bearing condition, nor can accurately predict the RUL, which enables pointing out the interest of cumulative features. Therefore, consider now the proposition of cumulative transformation, which is an effective and straightforward approach to deal with this problem. In brief, following a smoothing task (by LOESS filter), cumulative features are obtained in simple manner by performing running total on a particular feature and simultaneous scaling operation. For example in Fig. 2.11 or Fig. 2.12, the RMS features extracted from the vibration signal (from 4th level of decomposition) is transformed to its respective cumulative features C-RMS. Similarly, for both bearing (Ber 1-1 and Ber 1-6 ) all the extracted features (Table 2.1) are transformed to build respective cumulative features (using Eq. (2.3)). The results from both cases i.e., Ber 1-1 and Ber 1-6 , clearly show that the transformed feature have higher monotonicity and trendability than the classical ones. It is also confirmed by analyzing fitness measures M and R (Eq. (2.4) and (2.5)), which are summarized in Table 2.3. The fitness plots from these results are presented in Fig. 2.13 to As a synthesis, whatever the case is (and thereby, whatever load conditions), cumulative transformation lead to highly monotonic and trendable wear patterns. On the opposite, classical procedure result highly non-linear and complicated patterns that do not clearly show machine condition, which can impair performance of the prognostics model to a very low accuracy, and should result in large uncertainty of RUL estimates.

Predictability based prognostics: underlying concepts 2.5.1 Proposition of a new data post-treatment procedure

As discussed earlier, the standard of machine learning approaches for prognostics is divided into two phases, i.e., learning phase and testing phase section. In classical way prognostics model is learned by set of features that are acquired from a sensor signal. The model must be retrained upon these features, until significant performance level is achieved. This approach can be time expensive because some of the features can be very hard to be predicted. In other words, there is no use in retaining such features that are not predictable. According to existing procedure of data-driven prognostics, critical phase of prediction should be met in appropriate manner for further classification and RUL estimation (see Fig. 2.1), where learning phase of prognostics modeling should consider the important steps of "feature selection" and "prediction modeling" in a simultaneous manner in order to retain or reject features on the basis of predictability.

From aforesaid procedure, two issues can be pointed out. Firstly, there is no unique way to select most relevant features that are predictable and contribute for better RUL estimation. Secondly, the predictability should be assessed according to a prediction model as well as the horizon of prediction. The main purpose of this method is to reconsider the learning phase of data-driven approaches by considering both steps "feature selection" and "prognostics modeling" as complementary and closely related.

Time series models and accuracy over horizon

In fact, predictability is not a well defined concept. Generally, predictability attributes to the capability in making predictions of future occurrence on the basis of past information. It should depict a goodness of predictions, so that undesirable events can be avoided by making accurate forecasts in a timely manner. Predictions can be incorrect, therefore, it is important to understand their quality in a framework that is dependent on the considered time series. Also, predictability can be affected by different factors that vary from event to event and make modeling process more complicated [START_REF] Wang | title = Measuring predictability of Daily Streamflow Processes Based on Univariate Time Series Model[END_REF].

According to literature, predictability states for the degree of correctness in forecasting or shows the usefulness of a forecasting method [START_REF] Abbas | New time series predictability metrics for nearest neighbor based forecasting[END_REF]. In this context, it must be considered that up to what extent accurate predictions of a given time series can be provided by an applied modeling approach. Therefore, metrics are required in order to show significance of accurate prediction modeling. Remarkably, there are few works that focus on the predictability aspect by considering modeling accuracy. [START_REF] Wang | title = Measuring predictability of Daily Streamflow Processes Based on Univariate Time Series Model[END_REF] used seasonally adjusted coefficient of efficiency to evaluate predictability of univariate stream flow process. However, in this study need of a suitable forecasting approach as well as model performance measure is highlighted for a particular domain. [START_REF] Kaboudan | A measure of time series predictability using genetic programming applied to stock returns[END_REF] presented a quantitative metric to measure time series predictability using genetic programming.

[62] provided an improvement of those developments. [START_REF] Teodorescu | Analysis of the predictability of time series obtained from genomic sequences by using several predictors[END_REF] defined metrics to determine suitable predictors for genomic sequence: quantitative metrics that depict the ability of time series to be predicted by a particular approach. However, they were useful for single step-ahead forecasting methods.

Chapter 2

Accuracy of prediction is greatly affected by horizon of prediction. A time series can be well predicted over a short horizon, but difficult to be predicted for a long term horizon. As error grows with increasing horizon, prediction accuracy is reduced, and this denotes low predictability of a time series. In this context, [START_REF] Diebold | Measuring predictability: theory and macroeconomic applications[END_REF] proposed a general measure of predictability to assess relative accuracy over different horizons for macroeconomic application. [START_REF] Abbas | New time series predictability metrics for nearest neighbor based forecasting[END_REF] presented new metrics for predictability that were applied to multi-step ahead predictions of surrogated time series. However, no consensual point of view appears in existing contributions.

Defining predictability

As a synthesis, either considering correctness or horizon of prediction, literature points out that predictability is closely related to accuracy of predictions that are evaluated against certain error tolerance. In others words, assessing a prognostics model requires the user to define the limit of prediction he would like to obtain, as well as the performance of prediction which follows from that. Discussions enables to explicitly state that predictability is not only closely related to the type of prognostics model one mean to use, but also to the horizon of prediction that is evaluated as useful (short-term, mid-term, long-term). Also it depends on a limit of accuracy one wants to achieve (see Fig. 2.15). Finally, we define predictability as follows.

• Predictability is the ability of a given time series T S to be predicted with an appropriate modeling tool M that facilitates future outcomes over a specific horizon H and with a desired performance limit L. Formally, we propose to formulate it as:

Predictability

Accuracy target

Goodness of fit

P red (T S/M,H,L) = exp -ln( 1 2 ). M F E H T S/M L (2.6)
where, H states for the horizon of prediction, L is the limit of accuracy that is fixed, and M F E is the mean forecast error in between the actual values of T S and the predicted ones (thanks to M ):

M F E H T S/M = 1 H . H i=1 e i= 1 H . H i=1 M i -T S i (2.7)
Perfect value for M F E is 0. M F E > 0 indicates under forecast and M F E < 0 over forecast. Predictability has an exponential form (Fig. 2.16) and is as higher (maximum=1) as the M F E is lower. A T S can be considered as predictable if its predictability coefficient is in between 0.5 and 1, i.e., if the M F E is in between 0 and the limit value L chosen by the user. As stated before, (and illustrated in Fig. 2.1) the prognostics model uses a set of selected features to provide RUL estimation. The learning phase of the model has to be reiterated until suitable prognostics performances are obtained ("try and error approach"). However, this can be a waste of time, because some features can be very hard (even impossible) to be predicted, i.e., since there is no certainty that an accurate prognostics model can be provided. In other words, there is no interest in retaining features that cannot be forecasted in time. Therefore, learning phase of a prognostics model should be extended to the selection of features: not only the user aims to build the model for prognostic, but he also has to define the appropriate set of features that can be more accurately predicted over different horizons. Following that, the "features selection" phase should be performed while building a prognostics model. On this basis, features set obtained from classical data-mining techniques can be further reduced to final set of predictable features in accordance to learned prediction models. Consider Fig. 2.17 for understanding such methodology, where the depicted procedure aims at defining which features are predictable (according to a model and a horizon of prediction). This enables either to retain or reject each potential couple of "feature-model" to be used for prognostics. The proposed developments are applied to the challenge dataset of diagnostics and prognostics of machine faults from first international conference of prognostics and health management (2008). The data were collected from C-MAPSS (Commercial Modular Aero-Propulsion System Simulation), which is a tool for simulating a large commercial turbofan engine (see Fig. 2.18). This challenge dataset consists of multidimensional time series signals (26 variables or features) from different degrading instances and contaminated with measurement noise. Each set of time series comes from a different engine of a same fleet. Each engine starts from different initial conditions and manufacturing conditions are not known to the user. Each engine begins from a normal state but, due to some fault occurrence, starts to degrade. Thus, the fault magnitude increases with time until failure state takes place (see [START_REF] Saxena | Damage propagation modeling for aircraft engine run-to-failure simulation[END_REF] for details). The RUL estimates are in units of time, i.e., hours or cycles. From the dataset among 26 available features 8 were pre-selected, as suggested in previous works by using information theory and Choquet Integral [START_REF] Ramasso | Prognostics in switching systems: Evidential markovian classification of real-time neuro-fuzzy predictions[END_REF]. The selected features from different sensors listed in Table 2.5 (i.e., F1 to F8), are filtered with "moving average" filtering technique to remove noise content (Fig. 2. [START_REF] Baraldi | Investigation of uncertainty treatment capability of model-based and data-driven prognostic methods using simulated data[END_REF]), and are used as a starting point to show the impact of proposed "predictability-based" features selection on prognostics (section 2.5.2). Also, when input-output data set are main source of information to develop better understanding of systems current health state [START_REF] Huang | Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods[END_REF]. Due to such properties, machine learning methods are of great interest for prognostics. Among these techniques, adaptive networks like ANN and NFS are increasingly used for prediction problems [START_REF] Chinnam | A neuro-fuzzy approach for estimating mean residual life in condition-based maintenance systems[END_REF][START_REF] De Freitas | Neural networks for pneumatic actuator fault detection[END_REF][START_REF] Wang | An adaptive predictor for dynamic system forecasting[END_REF]. These connectionist approaches are capable to capture complex relationship among inputs and outputs and have good approximation capability for non-linear modeling of real systems. Moreover, they have shown good performances in prognostics applications as well [START_REF] El-Koujok | Towards a neuro-fuzzy system for time series forecasting in maintenance applications[END_REF][START_REF] Wang | Fault prognostic using dynamic wavelet neural networks[END_REF][START_REF] Yam | Intelligent predictive decision support system for condition-based maintenance[END_REF].

Reject Fi j = M? j = 1 i = 1 OK !OK Choose Fi Choose Mj OK !OK i = i j = j+1 i = i + 1 j = 1 Retain Fi/Mj
The ANN is to be tuned (learning phase) by Levenberg-Marquardt algorithm which is considered to be faster and more effective learning technique as compared to other algorithms [START_REF] Hagan | Training feedforward networks with the marquardt algorithm[END_REF]. The adaptive neuro-fuzzy inference system (ANFIS) proposed by [START_REF] Jang | Neuro-fuzzy modeling and control[END_REF] is also considered, due to its good potential for forecasting in maintenance applications [START_REF] El-Koujok | Towards a neuro-fuzzy system for time series forecasting in maintenance applications[END_REF]. Each approach has its own benefits as well as limitations, which are not deeply presented here, but interested reader can refer to [START_REF] Hagan | Neural Network Design[END_REF][START_REF] Li | Recurrent neuro-fuzzy hybrid-learning approach to accurate system modeling[END_REF] for more theoretical details.

General formalization -Connectionist systems like ANNs or NFS aim at approximating an input-output function. This kind of systems must be tuned to fit to the studied problem thanks to a learning phase of parameters. Let [X] be the input data set, [Y ] the output data set. The approximation function can be formalized as:

[ Ŷ ] = f t ([X],[θ]) (2.8)
where [ Ŷ ] states for the estimated output set [Y ], and [θ] for the set of parameters that have to be tuned during the learning phase.

In a similar manner, let's formalize the problem of connectionist-based multi-steps ahead prediction of a univariate time series (like a feature for prognostic). A univariate time series T S t is a chronological sequence of values describing a physical observation made at equidistant intervals: T S t = {x 1 ,x 2 , . . . ,x t } (where t states for the temporal index variable). With these notations, the multi-steps ahead prediction problem consists in estimating a set of future values of the time series:

[ Xt+1→t+H ] = [x t+1 , xt+2 , xt+3 , . . . , xt+H ]
where H states for the final prediction horizon. This approximation can be expressed as:

[ Xt+1→t+H ] = msp([X t ]) (2.9)
where, "msp" states for "multi-steps ahead prediction", and [X t ] ∈ T S t is know as the set of regressors used (for example

[X t ] = [x t , x t-1 , x t-2 ]).
Multi-steps ahead predictions with an iterative approach -The msp can be obtained in different ways and by using different connectionist approaches (structure + learning algorithm). [START_REF] Gouriveau | Connexionist-systems-based long term prediction approaches for prognostics[END_REF] dress an overview of those approaches and suggested that iterative approach is a more suitable choice for prognostics. Mainly, msp are achieved by using a single tool (an ANN or a NFS) that is tuned to perform a one-step ahead prediction xt+1 . This estimated value is used as one of the regressors of the model to estimate the following ones and the operation is repeated until the estimation of xt+H . The procedure is illustrated in Fig 2 .21. Formally:

xt+h =            if h = 1, f 1 x t , . . . ,x t+1-p ,[θ 1 ] elseif h ∈ {2, . . . ,p}, f 1 xt+h-1 , . . . ,x t+1 ,x t , . . . ,x t+h-p ,[θ 1 ] elseif h ∈ {p + 1, . . . ,H}, f 1 xt+h-1 , . . . ,x t+h-p ,[θ 1 ] (2.10)
where f 1 ,[θ 1 ] states for the one-step ahead prediction model (ANN or NFS) with its parameters set calculated during the learning phase, p the number of regressors used, i.e., the number of past discrete values used for prediction. Note that, from the time h > p, predictions are made only on evaluated data and not on observed data. txt" is considered. The msp are performed from time tc = 50 till the defined prediction horizon (tc + 134), using an iterative approach. According to the dimension of feature space, "M " univariate prediction models (either ANN or NFS) are learned in the off-line phase, i.e., feature-model couple. In the on-line phase, the learned models are tested on data from 5 different engines. Prediction results obtained from each test are thoroughly investigated on predictability criteria to retain or reject each couple of potential "feature-model" to be used for prognostics, where limit of predictability L is set to 0.5 (see Fig. 2.17). As for illustration, the upper part of Fig. 2.23 depicts prediction results on feature F5 with both models ANN and ANFIS. The lower part presents the corresponding predictability measures over the horizon of prediction. As expected, ANFIS shows better prediction and higher predictability as compared to ANN with changing horizon. In other words, predictability measure not only shows the significance of a tool but also gives confidence in making predictions over the increasing horizon. In addition, higher predictability values can provide better confidence in predictions. Therefore, the prediction results from ANFIS are only used for further classification. The main aim of the classification phase is to determine most probable states of the degrading equipment, and thus to provide a snapshot of time from projected degradations. In this step, the temporal predictions made by the predictor are analyzed by a classifier to estimate discrete states. Due to the absence of ground-truth information the unsupervised classification phase is met by well known FCM approach to handle unlabeled data [START_REF] Bezdek | Pattern Recognition with Fuzzy Objective Function Algorithm[END_REF]. Therefore, given the number of clusters and initial centers values, FCM can partition the data into groups of similar objects (or clusters) and can optimize center positions.
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In brief, consider a dataset ℓ D = {X i } N i=1 containing N unlabeled samples of n-dimension. FCM is used to obtain clusters c among multidimensional data, and centers belonging to each cluster V = {v j } c j=1 . Formally, the FCM clustering is attained by assigning membership grade (µ ij ) between [0, 1] to every data point that corresponds to each cluster center (or in other words belong to various groups), based on the measured distance between a data point and center of the cluster. If a data point is closer to a particular cluster center, a greater membership value is assigned. The summation of membership grades from all data points correspond to a membership equal to '1'. FCM aims to operate in an iterative manner, assuming the number of clusters is known it reduces following objective function:

J = N i=1 c j=1 (µ ij ) m . x i -v j 2 (2.11)
where, x i -v j 2 represents the Euclidean Distance (ED) (to measure similarity between) between the i th data point and the j th cluster center v (Eq. 2.12), fuzzy partition matrix can be represented as U = [µ ij ] c×N , where µ ij describes the membership of the i th data point to the j th centroid, and m > 1 is a weighting exponent. The key steps of FCM algorithm are summarize in Appendix A. [START_REF]Microarray cluster analysis and applications[END_REF]. 

ED = n i=1 (x i -v j ) 2 (2.

Prognostics results and impact of predictability

According to features prediction results using ANN and ANFIS predictors in Table 2.7. Prognostics should be performed by using only predictable features, that leads to better RUL estimation i.e., with features {F1 ; F4 -F8}. Let's validate this assumption by estimating the RUL for each multidimensional time series predictions from ANFIS, using on one side, the whole set of pre-selected features {F1 -F8}, and on the other side, the final "predictability-based" selected features for a comparison. To show that, the temporal predictions from test -1 are classified to estimate the RUL. The results are organized according to two different cases (Fig. 2.26 and 2.27). In the first case, classification is performed with "all features" {F1 -F8}, whereas in the second case the classification is performed with "predictable features" only i.e., excluding {F2 and F3}. It can be clearly seen from the results that, the RUL estimated from second case of classifications is closer to the actual RUL, thus, validating better prognostics accuracy and improvements achieved from proposed methodology. The RUL percentage errors obtained from simulations are summarized in Table 2 Results arrangement show that for each test, percentage error of RUL by considering all features {F1 -F8} is much higher as compared to the case of selected features, i.e., excluding F2 and F3. Also, results seem to be more stable among all tests when using the selected set of predictable features. Thus, features selection procedure based on predictability enhances significantly prognostics results.

Observations

According to predictability driven prognostics results with multivariate degradation based modeling strategy, the key observations are summarized as follows.

• Performances of RUL estimates are obviously closely related to accuracy of the msp model. As for example, ANFIS appears to be more suitable as compared to classical ANN for long-term predictions. This aspect has to be addressed to encounter the challenges of robustness and reliability (Chapter 3).

• Health assessment is performed by FCM algorithm, which is sensitive to parameter initialization and has inconsistent performance. Also, FCM clustering results are based on number of clusters set by the user, e.g. in this application even the life span of each engine is different, the multidimensional data are clustered into 4 groups. Therefore, it is required to further enhance the performances (i.e., robustness, reliability) of health assessment model and also its applicability (Chapter 4).

Summary

This chapter discusses the importance of data-processing to extract and select features with essential characteristic like monotonicity, trendability and predictability. A new approach for feature extraction and selection is proposed by performing pre-treatment of raw CM data to obtain cumulative features that show high monotonicity and trendability. The proposed developments are validated on real data of bearings from PHM challenge 2012. Surely, such features can lead to highly accurate long term predictions and ease in implementation of prognostics model. This aspect is validated in Chapter 3. Secondly, another concept of predictability driven prognostics is presented to perform post-treatment of features subset for further reduction. Indeed, there is no use of features that are hard to be predicted. The proposed developments are validated on real data of turbofan engines from PHM challenge 2008. Prognostics modeling is achieved by multivariate degradation based modeling strategy. For the sake of illustration ANN and ANFIS are used as prediction models and FCM algorithm is used for unsupervised classification phase. Besides that, some weaknesses of multivariate degradation based modeling are also highlighted in section 2.6.4. To further enhance this strategy, and according to the objective of this thesis (section 1.4.2.3). Chapter 3 presents a new approach for "long-term predictions", and Chapter 4 presents a new approach for unsupervised classification.

Chapter 3

From features to predictions

This chapter presents a new connectionist approach to perform "long-term predictions" for prognostics. More precisely, a Summation Wavelet-Extreme Learning Machine algorithm is proposed to address issues related to prognostics modeling challenges, i.e., robustness, reliability, applicability. Moreover, an ensemble of SW-ELM models is proposed to quantify the uncertainty due to data and modeling phase. Firstly, for issues related to time-series, i.e., approximation, one step-ahead prediction, and multi-steps ahead prediction, SW-ELM is benchmarked with Extreme Learning Machine, Levenberg Marquardt and ELMAN algorithms on six industrial data sets. Secondly, to validate the efficiency of SW-ELM with respect to challenges, a real case of Computer Numerical Control (CNC) machine is considered for tool wear monitoring task. Thorough comparisons with ELM algorithm are given to show enhanced robustness and reliability of SW-ELM on different data sets. Finally, to validate the concept of cumulative features (Chapter 2), SW-ELM is used as a potential model to perform "long-term predictions" with cumulative features. For this case study, SW-ELM is applied to real data of bearings from PHM challenge 2012.

Long-term predictions for prognostics

According to multivariate degradation based modeling strategy (Chapter 1), the prognostics phase is composed of two complementary modules: a prediction engine that forecasts observations in time, and a classifier which provides the most probable states of the machinery. The RUL is obtained from the estimated time to reach the faulty state (see Fig. 1.12). Obviously, for prognostics part, the prediction phase is critical and must Chapter 3 be dealt in an accurate manner for recommending timely maintenance actions / system configurations (e.g. load profile changes). Therefore, while building a prediction model it is important tackle following issues.

• How to handle complex multidimensional data?

• Is the model capable enough for "long-term" predictions?

• How to associate confidence to predictions for decision making?

Generally, the dynamic behavior of a machinery can be represented by time series measurements (or features) collected over long periods of time. Usually the time series data are inherently non-stationary, and properties of underlying system are not known. Also such data can be high dimensional, and are source of behaviors (states) that the machine may have undergone in the past [START_REF] Dong | A tutorial on nonlinear time-series data mining in engineering asset health and reliability prediction: concepts, models, and algorithms[END_REF]. For example, consider a dataset

ℓ D = {X i } N i=1
containing N unlabeled samples of n time series Eq. (3.1).

ℓ D =    x 11 . . . x 1n . . . • • • . . . x N 1 . . . x N n    (3.1) 
Given such data, machine learning methods from data-driven prognostics category can be applied to predict the behavior of the degrading machinery. More precisely, connectionist approaches like Artificial Neural Networks (ANN) and Neuro Fuzzy systems (NFs) benefit from a growing interest [START_REF] Gouriveau | Connexionist-systems-based long term prediction approaches for prognostics[END_REF]. According to PHM literature, several works confirm strong approximation capabilities of such connectionist approaches [START_REF] Aka | A genetic algorithm and neural network technique for predicting wind power under uncertainty[END_REF][START_REF] Baraldi | Ensemble neural networkbased particle filtering for prognostics[END_REF][START_REF] Chinnam | A neuro-fuzzy approach for estimating mean residual life in condition-based maintenance systems[END_REF][START_REF] El-Koujok | Towards a neuro-fuzzy system for time series forecasting in maintenance applications[END_REF][START_REF] Huang | Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods[END_REF][START_REF] Mahamad | Predicting remaining useful life of rotating machinery based artificial neural network[END_REF][START_REF] Massol | An exts based neuro-fuzzy algorithm for prognostics and tool condition monitoring[END_REF][START_REF] Ramasso | Prognostics in switching systems: Evidential markovian classification of real-time neuro-fuzzy predictions[END_REF][START_REF] Samhouri | An intelligent machine condition monitoring system using time-based analysis: neuro-fuzzy versus neural network[END_REF][START_REF] Wang | Fault prognostic using dynamic wavelet neural networks[END_REF][START_REF] Wang | Prognosis of machine health condition using neuro-fuzzy systems[END_REF][START_REF] Zemouri | Improving the prediction accuracy of recurrent neural network by a pid controller[END_REF].

To recall, the aim of a connectionist approach is, to "learn" the relationship between input data (i.e., training inputs) and the output data (or training targets). Suppose that, actual relations is [ Ŷ ] = f t ([X],[θ]) (Eq. 2.8). The learning problem is to estimate the unknown function f t using training data, which is know as supervised learning. Further, for prognostics, the learned connectionist approach is used for performing multi-steps ahead prediction (msp) over a long prediction horizon.

In literature, different methods can be applied to achieve msp with connectionist approaches (iterative approach, direct approach, DirRec approach, MISMO approach, parallel approach, see [START_REF] Gouriveau | Connexionist-systems-based long term prediction approaches for prognostics[END_REF] for details). However, for prognostics the future is unknow, except "iterative approach" all other msp approaches require prior knowledge of final horizon step, which is preset by the practitioner. As for illustration, consider Fig. 3.1, where the iterative approach is presented as the only one to achieve RUL estimates, for whatever the actual horizon [START_REF] Gouriveau | Connexionist-systems-based long term prediction approaches for prognostics[END_REF]. This advantage can also be seen especially, while performing simultaneous discrete state estimation (or health assessment by a classifier). Besides that, while building a prediction model, it is also important to consider robustness, reliability and applicability challenges, which affect prognostics performances. Therefore, following topics aim at introducing a new connectionist approach for performing long-term predictions namely, Extreme Learning Machine (ELM). 3.2 ELM as a potential prediction tool

From ANN to ELM

ANN is a mathematical model which replicates the functionality of biological neurons in the human brain [START_REF] Jalab | New activation functions for complexvalued neural network[END_REF]. In simple words, an ANN can be addressed as a parallel structure of multi-input multi-output (MIMO) data processing nodes, that appears to the user as a black box. ANNs are extensively applied to different domains such as engineering, physics, medicine to solve problems like pattern classification, clustering, optimization, function approximation or prediction [START_REF] Jalab | New activation functions for complexvalued neural network[END_REF][START_REF] Rajesh | Extreme learning machines-a review and stateof-the-art[END_REF][START_REF] Singh | Application of extreme learning machine method for time series analysis[END_REF]. In PHM domain, ANNs are a special case of adaptive networks that are most commonly used among machine learning methods [START_REF] Heng | Rotating machinery prognostics: State of the art, challenges and opportunities[END_REF][START_REF] Zemouri | Improving the prediction accuracy of recurrent neural network by a pid controller[END_REF]. Indeed, they have the ability to learn from examples and can capture complex relationships among CM data (even if noisy). They do not require a priori assumptions on the properties of given data set, neither they assume any a priori model [START_REF] Bishop | Neural Networks for Pattern Recognition[END_REF].

In brief, ANN can have two types of architectures: feed-forward networks (FFNNs) and recurrent neural networks (RNNs). FFNN has connected strengths in forward direction, and RNN has cyclic connections Fig. 3.2. Such models must be tuned to learn parameters like weights and bias, in order to fit the studied problem. In other words, all the parameters of FFNNs and RNNs need to be adjusted, and there exist dependence among parameters of different layers [START_REF] Feng | Error minimized extreme learning machine with growth of hidden nodes and incremental learning[END_REF]. According to Jaeger's estimation, around 95% of literature is on FFNNs [START_REF] Jaeger | Tutorial on training recurrent neural networks[END_REF].

Constructing a good neural network model is non-trivial task and practitioners still have to encounter several issues that may affect the performance of ANNs and limit their applicability (ease of application) for real industrial case [START_REF] Singh | Application of extreme learning machine method for time series analysis[END_REF]. As for examples, such problems involve: parameter initialization, complexity of hidden layer, type of activation functions, slow iterative tuning, presence of local minima, over-fitting, generalization ability [START_REF] Javed | Robust, reliable and applicable tool wear monitoring and prognostic: approach based on[END_REF]. To overcome such drawbacks, comparatively two new learning schemes recently proposed for FFNN and RNN, namely, Extreme Learning Machine [START_REF] Huang | Extreme learning machine: a new learning scheme of feedforward neural networks[END_REF], and Echo State Network (ESN) [START_REF] Jaeger | The echo state approach to analyzing and training recurrent neural networks-with an erratum note[END_REF]. Both learning schemes are based on random projection, because input-hidden layer parameters are randomly initialized, and learning is only achieved by solving the inverse of a least square problem. A comparative study between ELM and ESN on non-linear prediction benchmark problems shows that, ESN requires more training time as compared to ELM for acquiring the dynamic performance [START_REF] Bin | Comparison of echo state network and extreme learning machine on nonlinear prediction[END_REF].

Both are sensitive to the number of hidden neurons. Moreover, for small data ESN was robust and show good generalization, however, with sufficient training samples, in most cases ELM show better generalization performances [START_REF] Bin | Comparison of echo state network and extreme learning machine on nonlinear prediction[END_REF]. Most importantly, to the best of our knowledge, ELM has been proved for its universal approximation capability [START_REF] Huang | Convex incremental extreme learning machine[END_REF][START_REF] Huang | Enhanced random search based incremental extreme learning machine[END_REF][START_REF] Huang | Universal approximation using incremental constructive feedforward networks with random hidden nodes[END_REF][START_REF] Huang | Extreme learning machine: theory and applications[END_REF], whereas for ESN its not the case. In addition, recent survey show the advantages of ELM over conventional methods to train ANNs [START_REF] Huang | Extreme learning machines: a survey[END_REF]. Such findings highlight the importance of ELM as a suitable candidate for prognostics case, to achieve "long-term predictions".

ELM for SLFN: learning principle and mathematical perspective

Unlike conventional learning algorithms for FFNNs, ELM is a new learning scheme for SLFN that has been recently proposed by Huang et al. [START_REF] Huang | Extreme learning machine: a new learning scheme of feedforward neural networks[END_REF]. Almost all learning algorithms for SLFNs require adjustment of parameters that results dependence between different layers of parameters like, weights and biases. Therefore, many iterative tuning steps are required by traditional learning algorithms [START_REF] Huang | Extreme learning machine: theory and applications[END_REF]. In opposite to that, ELM algorithm avoids slow iterative learning procedure and only requires a one-pass operation to learn SLFN. This is mainly due to the fact that there is no bias for the output layer neuron (see Fig. 3.

3).

In brief, to initiate one-pass learning operation, the hidden node network parameters (weights and biases) are randomly generated without any prior knowledge or training procedure [START_REF] Cao | Composite function wavelet neural networks with extreme learning machine[END_REF]. Consequently, the ELM turns into a system of linear equations and the unknown weights between the hidden and output layer nodes can be obtained analytically by only applying Moore-Penrose generalized inverse procedure [START_REF] Li | Fully complex extreme learning machine[END_REF][START_REF] Rao | Generalized Inverse of Matrices and its Applications[END_REF]. Let note n and m the numbers of inputs and outputs (i.e., targets), N the number of learning data samples (x i ,t i ), where i ∈ [1 . . . N ], x i = [x i1 ,x i2 ,...,x in ] T ∈ ℜ n and t i = [t i1 ,t i2 ,...,t im ] T ∈ ℜ m , and Ñ the number of hidden nodes, each one with an activation function f (x). For each sample j, the output o j is mathematically expressed as:

Ñ k=1 β k .f (w k .x j + b k ) = o j , j = 1,2,...., N (3.2) 
where w k = [w k1 ,w k2 ,...,w kn ] T ∈ ℜ n , is an input weight vector connecting the k th hidden neuron to the input layer neurons, (w k • x j ) is the inner product of weights and inputs, and b k ∈ ℜ is the bias of k th neuron of hidden layer. Also,

β k = [β k1 ,β k2 ,...,β km ] T ∈ ℜ m ,
is the weight vector to connect the k th neuron of hidden layer and output neurons. Therefore, in order to minimize the difference between network output o j and given target t j , Ñ j=1 o j -t j = 0, there exist β k , w k and b k such that:

Ñ k=1 β k .f (w k .x j + b k ) = t j , j = 1,2,...., N (3.3) 
which can be expressed in matrix form as,

Hβ = T (3.4)
where,

H w 1 , . . . ,w Ñ ,x 1 , . . . ,x Ñ ,b 1 , . . . ,b Ñ =    f (w 1 .x 1 + b 1 ) . . . f (w Ñ .x 1 + b Ñ ) . . . • • • . . . f (w 1 .x N + b 1 ) . . . f (w Ñ .x N + b Ñ )    N × Ñ (3.5) β =    β T 1 . . . β T Ñ    Ñ ×m T =    t T 1 . . . t T N    N ×m (3.6)
The least square solution of the linear system defined in Eq. (3.4), with minimum norm (magnitude) of output weights β is:

β = H † T = H T H -1 H T T (3.7)
where H † represents the Moore-Penrose generalized inverse solution for the hidden layer output matrix H [START_REF] Rao | Generalized Inverse of Matrices and its Applications[END_REF]. Finally, learning of ELM can be summarized in Algorithm 1.

Algorithm 1 Learning scheme of an ELM Assume -n inputs, m outputs, Ñ hidden nodes (k = 1 . . . Ñ )

Require

-N learning data samples -An activation function f (x) (e.g sigmoid)

1: Randomly assign parameters of hidden nodes i.e., weights and bias (w k ,b k ).

2: Obtain the hidden layer output matrix H. 

Discussions: ELM for prognostics

Better applicability of ELM

ELM approach shows rapid learning and good generalization ability for SLFNs [START_REF] Huang | Extreme learning machine: theory and applications[END_REF]. It requires less human intervention, because, it doesn't have any control parameters to be manually tuned, except the number of hidden layer neurons, which makes it appropriate for real applications [START_REF] Bhat | Prediction of melting point of organic compounds using extreme learning machines[END_REF]. In addition, an ELM can also show good performance in situations where it is hard to obtain enough data to train SLFN and recent study confirms the advantages of ELM over earlier approaches for ANN [START_REF] Huang | Extreme learning machines: a survey[END_REF]. This shows fitness and improved applicability of an ELM for real applications like prognostics, that encounter difficulties like data scarcity, time complexity, human involvement etc. However, as far as authors know, there is no explicit application of ELM for machine failure prognostics.

Issues and requirements

ELM method has two parameters that are set by the user, number of hidden layer neurons and variance of the hidden layer weights [START_REF] Parviainen | Interpreting extreme learning machine as an approximation to an infinite neural network[END_REF]. The interaction between improper initialization of weights and neurons of the hidden layer may impair performance of the ELM model [START_REF] Bhat | Prediction of melting point of organic compounds using extreme learning machines[END_REF]. In view of expected performances of a prognostics model highlighted in section 1.4, practical considerations related to model accuracy and implementation issues should be addressed for real applications.

• Due to random initialization of parameters (weights and biases), ELM model may require high complexity of hidden layer [START_REF] Rajesh | Extreme learning machines-a review and stateof-the-art[END_REF]. This may cause ill-condition, and reduce robustness of ELM to encounter variations in the input data, and the expected output of the model may not be close to the real output [START_REF] Guopeng | On improving the conditioning of extreme learning machine: a linear case[END_REF]. Also the randomly initialized weights can affect model generalization ability which should also be considered.

• It is required to carefully choose hidden neuron activation functions that can participate in better convergence of the algorithm, show good ability to transform non-linear inputs, and also result in a compact structure of network (i.e, hidden neurons) for a suitable level of accuracy [START_REF] Huang | Enhanced random search based incremental extreme learning machine[END_REF][START_REF] Jalab | New activation functions for complexvalued neural network[END_REF][START_REF] Javed | Robust, reliable and applicable tool wear monitoring and prognostic: approach based on[END_REF].

• Finally, ELM can perform estimates after learning phase, however, it does not quantify uncertainty of modeling phase like any ANN. Therefore, it is necessary to bracket unknown future with confidence intervals to show reliability of estimates and also to facilitate decision making step for prognostics applications.

Therefore, to address these issues and requirements, the next section presents a new learning scheme for SLFN, which is an improved variant of ELM, namely, the Summation Wavelet-Extreme Learning Machine (SW-ELM).

SW-ELM and Ensemble models for prognostics

Combining neural networks and wavelet theory as an approximation or prediction models appears to be an effective solution in many applicative areas. However, when building such systems, one has to face parsimony problem, i.e., to look for a compromise between the complexity of the learning phase and accuracy performances. Following topics focus on building a new structure of connectionist network, the SW-ELM that enables good accuracy and generalization performances, while limiting the learning time and reducing the impact of random initialization procedure.

Wavelet neural network

Concept and structure

Wavelet theory is an outcome of multidisciplinary struggles, that brought together engineers, mathematicians and physicists [START_REF] Pourtaghi | Wavenet ability assessment in comparison to ann for predicting the maximum surface settlement caused by tunneling[END_REF]. The term wavelet means a "little wave".

Mainly, a Wavelet Transform (WT) of continuous form behaves as a flexible timefrequency window, that shrinks when analyzing high frequency and spreads when low frequency behavior is observed [START_REF] Banakar | Artificial wavelet neural network and its application in neuro-fuzzy models[END_REF]. The WT can be divided into two types, Continuous Wavelet Transform (CWT) and Discrete Wavelet Transform (DWT). CWT can be considered as the inner product of a signal x(t) with a basis function Ψ * s,d , which can be formulated as follows (Eq.3.8).

CW T (d

,s) = 1 √ d +∞ -∞ x (t) Ψ * t -s d dt (3.8)
where Ψ is a mother wavelet function, * denotes complex conjugation, and d and s are scale (or dilate) and translate (or shift) factors for the mother wavelet. It should be noted that CWT has the drawback of impracticality with digital computers, where, DWT is used in practice. Thus, the scale and translation factors are evaluated on a discrete grid of time scale to generate scaled and shifted daughter wavelets from a given mother wavelet Ψ, for e.g. see Fig. 3.4. Therefore, discretized wavelet (DW) for the sequence of samples x i from x(t) can be formulated as follows (Eq. 3.9). Further details can be found in [START_REF] Banakar | Artificial wavelet neural network and its application in neuro-fuzzy models[END_REF]. An analogy can be found between the expression of the DWT and ANN output. Indeed, Eq. (3.9) can be seen as the output expression of a SLFN that would have an activation function Ψ for a hidden node, with a linear neuron in the output layer. This lead to a combination of WT theory with basics from FFNNs, to produce a new category of neural networks known as WNN. Generally, such combination can be classified into two types.

DW = i x i d -1/2 i Ψ t -s i d i (3.9)
In the first case, the wavelet part is decoupled from network learning. In this manner, a signal is decomposed on some wavelets and its wavelet coefficients are furnished to a FFNN. In the second category, wavelet theory and FFNN are combined into a hybrid structure. The scope of following topics cover the latter category. Let note n the number of inputs of a WNN, and Ñ the number of hidden nodes with wavelet functions (eg. Morlet, see Fig. 3.3). According to this, the output of a WNN can be formulated as:

y = Ñ k=1 v k Ψ k   n j=1 w kj x j   (3.10) Ψ k (x) = |d k | -1/2 Ψ x -s k d k (3.11)
where x = x 1 ,x 2 ,...,x n depicts the input values, Ψ k represents the family of daughter wavelets that are scaled and translated from a single mother wavelet function Ψ, d k and s k are the corresponding scale (dilate) and translation factors. Lastly, w k = [w k1 ,w k2 ,..., w kn ] T ∈ ℜ n is an input weight vector connecting the k th hidden neuron to the input layer neurons, and v k is the weight to connect the k th neuron of hidden layer and the output.

Issues and requirements

According to literature, the initialization of dilation and translation factors (d k and s k in Eq. (3.11)) is considered as a critical phase. Indeed, it is necessary to properly initialize these parameters for fast convergence of algorithm [START_REF] Cao | Composite function wavelet neural networks with extreme learning machine[END_REF][START_REF] Oussar | Initialization by selection for wavelet network training[END_REF]. As wavelets functions vanish rapidly, improper initialization may lead to the following issues:

• a wavelet can be too local for a very small dilation;

• improper translation may be out of interest domain.

Therefore, the random tuning of dilation and translation factors of wavelets is inadvisable, and parameters initialization should be based on the input domain. This aspect is taken into account in the proposed model (section 3.3.2).

Summation Wavelet-Extreme Learning Machine for SLFN

Structure and mathematical perspective

As mentioned in previous section, ELM is quiet efficient as compared to traditional methods to learn SLFNs. However, issues like parameters initialization, model complexity and choice of activation functions have to be carefully addressed for improved performance. Since structure and proper choice of activation functions enhances the capability of the SLFN network to encounter low and high frequency signals simultaneously. The number of neurons required for hidden layer decreases and a compact structure is achieved [START_REF] Banakar | Artificial wavelet neural network and its application in neuro-fuzzy models[END_REF][START_REF] Jalab | New activation functions for complexvalued neural network[END_REF][START_REF] Li | Fully complex extreme learning machine[END_REF]. Therefore, we propose the Summation Wavelet-Extreme Learning (SW-ELM) algorithm. The proposed structure of SW-ELM takes advantages of WT and SLFN (see Fig. 3.5), for which two significant modifications are performed in the hidden layer.

• Structure -Non-linear transformations are dealt in a better manner by using a conjunction of two distinct activation functions (f 1 and f 2 ) in each hidden node rather than a single activation function. The output from a hidden node is the average value after performing transformation from dual activations ( f = (f 1 + f 2 ) /2).

• Activation functions -To improve convergence of algorithm, an inverse hyperbolic sine ( [START_REF] Li | Fully complex extreme learning machine[END_REF], Eq. (3.12)) and a Morlet wavelet ( [START_REF] Cao | Composite function wavelet neural networks with extreme learning machine[END_REF][START_REF] Pourtaghi | Wavenet ability assessment in comparison to ann for predicting the maximum surface settlement caused by tunneling[END_REF], Eq. (3.13)) are used as dual activation functions.

f 1 = θ (X) = log x + (x 2 + 1) 1/2 (3.12) f 2 = ψ (X) = cos (5x) e (-0.5x 2 ) (3.13)
Such a combination of activation functions makes the network more adequate to deal with dynamic systems.

According to modifications mentioned above, for each sample j Eq. 3.2 can be adapted and the output o j is mathematically expressed as:

Ñ k=1 β k . f [(θ,ψ) (w k .x j + b k )] = o j ,j = 1,2,...,N (3.14) 
where w k = [w k1 ,w k2 ,...,w kn ] T ∈ ℜ n , is an input weight vector connecting the k th hidden neuron to the input layer neurons, (w k .x j ) is the inner product of weights and inputs, and b k ∈ ℜ is the bias of k th neuron of hidden layer. Also, β k = [β k1 ,β k2 ,...,β km ] T ∈ ℜ m , is the weight vector to connect the k th neuron of hidden layer and output neurons. Finally, f shows the average output from two different activation functions i.e., an inverse hyperbolic sine activation function θ and a Morlet wavelet activation function ψ. In order to minimize the difference between network output o j and given target t j , Ñ j=1 o j -t j = 0, there exist β k , w k and b k such that:

Ñ k=1 β k . f [(θ,ψ) (w k .x j + b k )] = t j , j = 1,2,...,N (3.15) 
which can be expressed in matrix form as,

H avg β = T (3.16)
where H avg is a N × Ñ matrix expressed as,

H avg w 1 , . . . ,w Ñ ,x 1 , . . . ,x Ñ ,b 1 , . . . ,b Ñ = f (θ,ψ)    (w 1 .x 1 + b 1 ) . . . w Ñ .x 1 + b Ñ . . . • • • . . . (w 1 .x N + b 1 ) . . . w Ñ .x N + b Ñ    (3.17)
and,

β =    β T 1 . . . β T Ñ    Ñ ×m T =    t T 1 . . . t T N    N ×m (3.18)
Finally, the least square solution of the linear system defined in Eq. (3.16), with minimum norm (magnitude) of output weights β is:

β = H † avg T = H T avg H avg -1 H T avg T (3.19)
where H † avg represents the Moore-Penrose generalized inverse solution for the hidden layer output matrix H avg [START_REF] Rao | Generalized Inverse of Matrices and its Applications[END_REF]. 

Learning scheme of SW-ELM

Main learning phase derives from Eq. (3.17) and (3.19). However, according to issues and requirements related to ELM and WNN (sections 3.3.1.2 and 3.2.3.2), it is required to take care of parameters initialization task and to provide a better starting point to algorithm. We address those aspects by considering to types of parameters: those from the wavelets (dilation and translation factors) and those from the SLFN (weights and bias for input to hidden layer nodes). Details of the learning scheme are given in Algorithm 2, and an outline of the main steps is synthesized hereafter.

• Initializing wavelet parameters -To initialize wavelet dilation and translation parameters (d k and s k in Eq. (3.11)) before the learning phase, a heuristic approach is applied to generate daughter wavelets from a mother wavelet function (in our case, a Morlet wavelet). Dilation and translation values are adapted by considering Chapter 3 the domain of the input space where wavelet functions are not equal to zero [START_REF] Oussar | Initialization by selection for wavelet network training[END_REF]. This procedure is detailed in Algorithm 2. Besides that, wavelet function with a small dilation value are low frequency filters, whereas with increasing dilation factors the wavelet behave as high frequency filter [START_REF] Banakar | Artificial wavelet neural network and its application in neuro-fuzzy models[END_REF]. Finally, the effects of random initialization of wavelet parameters are avoided, and the initialization guarantees that wavelet function stretches over the whole input domain [START_REF] Oussar | Initialization by selection for wavelet network training[END_REF].

• Initializing weights and bias -The hard random parameters initialization step is substituted by well known Nguyen Widrow (NW) procedure to initialize weights and bias [START_REF] Nguyen | Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights[END_REF]. The intent is to provide a better starting point for learning. NW method is a simple alteration of hard random initialization that aims at adjusting input weights intervals and hidden bias according to the input-hidden layer topology. It has been argued that NW method has shown improved performances over others methods for random parameters initialization of ANNs [START_REF] Pavelka | Algorithms for initialization of neural network weights[END_REF].

Algorithm 2 Learning scheme of the SW-ELM

Require -N learning data samples (x i ,t i ), n inputs (j = 1 . . . n) -Ñ hidden nodes (k = 1 . . . Ñ ) -An inverse hyperbolic sine and a Morlet wavelet activation functions Ensure -Initialize weights and bias from SLFN, initialize Morlet parameters -Find hidden to output weights matrix β SW-ELM learning procedure 1: Initialization of wavelet parameters [START_REF] Oussar | Initialization by selection for wavelet network training[END_REF] 2:

-Define the input space domain intervals 3:

-Compute [x jmin ; x jmax ]: {domain containing the input x j in all observed samp.}

4:

-Define dilation and translation parameters per domain 5:

-Compute D kj = 0,2 × [x jmax -x jmin ]: {temporal dilatation parameter for input x j } 6:

-Compute M kj = [x jmin + x jmax ]/2: {temporal translation parameter for input x j } 7:

-Initialize Morlet parameters (d k and s k ) -Compute s k = mean(M kj ) j=1...n : {translation factor} 10: Initialization of weights and bias parameters by Nguyen Widrow approach [START_REF] Nguyen | Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights[END_REF] 11:

-Initialize small (random) input weights w k(old) in [-0.5 ; +0.5]: {weights from input nodes to hidden nodes} -Adjust weights parameters by applying NW approach 13:

-Compute

β f actor = C × Ñ 1 n : {C is a constant ≤ 0.7} 14: -Compute w k(new) = β f actor × w k(old)
w k(old)

: {normalized weights} 15:

-Initialize bias values b k 16:

-b k = random number between -β f actor and +β f actor 17: Adjust linear parameters: those from the hidden to the output layers -Obtain hidden layer output matrix H avg using Eq. (3.17 -Find the output weight matrix β in Eq. (3.19) by applying Moore-Penrose generalized inverse procedure

SW-ELM Ensemble for uncertainty estimation

Despite the fact that ELM based algorithms have several advantages over traditional methods to learn SLFN, one of the main shortcoming can be, that their solution vary for each run due to random initialization of learning parameters (weights and biases). Thus unsatisfactory or low performances can occur. This is also a common existing issue of classical ANNs, that parameters are randomly initialized without prior information of final parameters (from hidden to output layer) [START_REF] Meireles | A comprehensive review for industrial applicability of artificial neural networks[END_REF][START_REF] Sun | Sales forecasting using extreme learning machine with applications in fashion retailing[END_REF]. Also, such models do not furnish any indication about the quality of outcomes in order to facilitate practitioner with decision making. That is, considering the uncertainties which arise either due to model misspecification or either due to variations of input data by probabilistic events [START_REF] Khosravi | Comprehensive review of neural network-based prediction intervals and new advances[END_REF]. Although there is no single algorithm or model for prognostics that works for all sorts of situations, the integration (ensemble) of multiple models appears to be less likely to be in error than an individual model [START_REF] Hu | Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life[END_REF][START_REF] Khosravi | Comprehensive review of neural network-based prediction intervals and new advances[END_REF]. Due to such issues, in literature it is preferred to apply an ensemble strategy of multiple models to improve robustness and to show reliability of estimates [START_REF] Hu | Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life[END_REF]. Mainly, the ensemble strategy is achieved by integrating several SW-ELM models, where each individual model is initialized with different parameters (Fig. 3.6). This strategy enables building confidence intervals (CI) that indicate the presence of uncertainty and can facilitate in decision making (e.g. to perform further maintenance actions). Following that, the desired output O can be obtained by averaging outputs from multiple SW-ELM models.

O j = 1 M M m=1 ôm j (3.20)
where ôm j is the predicted output of m th model against the j th input sample. Assuming that SW-ELM models are unbiased, variance σ 2 o j due to random initialization of parameters and input variations can be estimated via variance of M models outcomes [START_REF] Khosravi | Comprehensive review of neural network-based prediction intervals and new advances[END_REF].

V ar(O j ) = σ 2 o j = 1 M -1 M m=1 ôm j -O j 2 (3.21)
Thanks to variance σ 2 o j , the final estimated output can be constructed according to a confidence limit interval (CI):

CI = O j ± z * × σ 2 o j (3.22)
where z * is the critical value for CI up to desired level, i.e. the 100(1 -α)% quantile of a normal distribution. In our case, confidence level is 95%, where z * = 1.96 according to standard Gaussian distribution table. 

Benchmarking SW-ELM on time series issues

Outline: aim of tests and performance evaluation

The aim of this part is to demonstrate enhanced performances of the proposed SW-ELM, that is benchmarked with the ELM, Levenberg-Marquardt algorithm for SLFN and ELMAN network. For simulation purpose, a sigmoid function is used as hidden node activation function for ELM, LM-SLFN and ELMAN network, whereas for SW-ELM, dual activations are used: an inverse hyperbolic sine function and a Morlet wavelet (Eq. (3.12) and (3.13)). Note that, number of hidden neurons for each model are assigned using trial and error approach, which obviously could not guarantee optimal structure. Simulations are carried on six real datasets from industry as shown in Table 3.1, where information about model inputs / outputs and training / testing samples are also mentioned (see section 2.4, 3.5.1 and Appendix A.5 for further details on the datasets). Three kind of issues related to time series application are considered: two "input-output" approximation problems, two one-step ahead prediction problems, and two msp problems. To compare performances, three criteria are selected.

1. Computation time to learn the dataset for a single trial (T ime).

The accuracy of SW-ELM show a best fitting among all methods for both datasets

as measured by R2 i.e., (R2=0.96 and R2=0.92). Comparative plots representing approximation of fault codes and tool wear estimation are shown in Fig. 3.7 and Fig. 3.8, where model fitting errors are also depicted for a better understanding of results. Note that, for more clarity, plots of only two methods with higher accuracies are compared.

3. Lastly, when considering model complexity factor, the number of hidden neurons required by LM-SLFN and ELMAN network appears to be twice (i.e., 30 hidden nodes) as compared to ELM based models when applied to Pump dataset. However, same network complexity of 4 hidden nodes is sufficient for all methods with CNC dataset. 

Second issue: one-step ahead prediction problems

In case of one-step ahead prediction issue, the datasets used are from an industrial dryer and a mechanical hair dryer. In both cases, the aim of tests is to predict temperature variations (Table 3.1). In order to evaluate model performances, same criteria as for approximation problems are used. Comparative performances from all models are summarized in Table 3.3. Again, results indicate that SW-ELM shows improved performances over ELM, LM-SLFN and ELMAN networks.

1. ELM can still perform faster learning (0.0012 and 3.4e -004 sec) with both datasets, even if the learning data size is increased (500 samples). Like in previous issue, the learning times of SW-ELM is still close to ELM.

2. The accuracy indicator of SW-ELM shows a higher prediction performance i.e., R2 = 0.85 with dataset of an industrial dryer. However the accuracy of SW-ELM and ELM are same (R2 = 0.944) in case of second data of a mechanical hair dryer. It should be noted that, in the second test all methods show good prediction performances. As for illustration, comparative plots of predictions with only two methods are shown in Fig. 3.9 and Fig. 3.10 by considering model accuracy, where predictions errors are also depicted. In Fig. 3.9, one can note that SW-ELM catches better non-linearity from the signal since the error is quite constant among all predictions.

3. ELM based models show a more compact structure (20 hidden nodes) as compared to LM-SLFN and ELMAN network (30 hidden nodes) when applied to industrial dryer data. However, again small network complexity of 4 hidden nodes is sufficient for all methods with the second data of mechanical hair dryer. 

Third issue: multi-steps ahead prediction (msp) problems

In case of msp problems, again two data sets are used to test models performances using iterative approach (section 2.6.2.1). The first test data, are from NN3 competition, where horizon of prediction is defined as last 18 values of each time series for test. The second dataset are from NASA data repository, and is composed of run to failure sensor measurements from degrading Turbofan engines, where the horizon of prediction is from a current time tc up to end of degradation (see A comparative plot is shown in Fig. 3.11 with two models having higher accuracies of msp with NN3 competition data for time series 61. Averaged performances of prediction models for all randomly selected time series [START_REF] Das | Essential steps in prognostic health management[END_REF][START_REF] Doan | Derivation of effective and efficient data set with subtractive clustering method and genetic algorithm[END_REF][START_REF] Dong | Bearing running state recognition based on non-extensive wavelet feature scale entropy and support vector machine[END_REF][START_REF] Doucet | On sequential simulation-based methods for Bayesian filtering[END_REF][START_REF] Dragomir | Review of prognostic problem in condition-based maintenance[END_REF][START_REF] Dragomir | Framework for a distributed and hybrid prognostic system[END_REF][START_REF] Huang | Universal approximation using incremental constructive feedforward networks with random hidden nodes[END_REF][START_REF] Jarrell | Prognostics and conditionbased maintenance: A new approach to precursive metrics[END_REF] are given in Table 3.4.

In case of Turbofan engines dataset, the comparative plot of two models on test-engine 5 is shown in Fig. 3.12, where SW-ELM explicitly shows good prediction capability over long horizon. Averaged performances of prediction models for all tests are given in Table 3.4.

1. Among all methods, ELM requires less computation time for learning with both datasets (i.e., 5.5e -004 and 0.004 sec), where SW-ELM also shows rapid learning behavior closer to ELM. As explained before, this is mainly due to the one-pass learning phase.

2. Most importantly, accuracy indicator (CV RM SE) of SW-ELM is highest in comparison to others models for both datasets (i.e., NN3 competition and Turbofan engines). A synthetic but explicit view of that is given in Fig. 3.13. Note that such performances of SW-ELM are obtained with a same structure like other methods (see point 3).

3. The network complexity of all models is same with both datasets (i.e., 30 hidden nodes and 3 hidden nodes). Note that for all test on 5 Turbofan engines even with more complex models of ELM, LM-SLFN and ELMAN network poor prediction performances where obtained, therefore the only complexity of 3 hidden nodes is compatible with the data.

Finally, again SW-ELM enables a good compromise among model accuracy, learning time and network complexity. To investigate suitability of the proposed approach (i.e., SW-ELM and Ensemble), a case study is carried on a high speed CNC machine for tool wear monitoring task. The high speed machining process has become the most important and cost-effective means in manufacturing industry to produce products with high surface quality [START_REF] Zhai | Intelligent monitoring of surface integrity and cutter degradation in high-speed milling processes[END_REF]. This process is performed in a dynamic environment and under diverse conditions, where a cutting tool acts as a backbone of machining process. Failure of cutting tool can affect the product quality and cause machine down-time [START_REF] Zhou | Tool wear monitoring using acoustic emissions by dominant-feature identification. Instrumentation and Measurement[END_REF]. Mainly, during cutting treatment of the metal work-piece, the cutter wear can increase due to irregular varying loads on its flutes that are always engaged and disengaged with the surface of workpiece [START_REF] Das | Essential steps in prognostic health management[END_REF]. This may result in increased imperfections in the work-piece surface i.e., dimensional accuracy of finished parts. Due to complex nature of cutting tool (flute) wear phenomena, the uncertainties of machining conditions and the variability in cutting tool geometry make the modeling of tool wear a complicated task [START_REF] Torabi | A survey on artificial intelligence technologies in modeling of high speed end-milling processes[END_REF]. Most CNC machines are unable to detect tool wear on-line. Therefore, the estimate of cutting performance is usually performed through indirect method of tool condition monitoring (without shutting down the operating machine) by acquiring monitoring data that can be related to suitable wear models [START_REF] Zhou | Tool wear monitoring using acoustic emissions by dominant-feature identification. Instrumentation and Measurement[END_REF]. As for some examples, [START_REF] Li | Multi-scale statistical process monitoring in machining[END_REF] used acoustic emission signal, [START_REF] Leem | A customized neural network for sensor fusion in on-line monitoring of cutting tool wear[END_REF][START_REF] Zhai | Intelligent monitoring of surface integrity and cutter degradation in high-speed milling processes[END_REF] used force signals, [START_REF] Haddadi | Effect of different tool edge conditions on wear detection by vibration spectrum analysis in turning operation[END_REF] used vibration signals. Among all those approaches, cutting force signals are preferred for modeling: force measurements are easy to manipulate, have been found as suitable indicators in association with tool wear (due to high sensitivity), and are considered as the most useful to predict cutting performance (due to good measurement accuracy) [START_REF] Zhai | Intelligent monitoring of surface integrity and cutter degradation in high-speed milling processes[END_REF][START_REF] Zhou | Intelligent diagnosis and prognosis of tool wear using dominant feature identification[END_REF]. As for an example, consider the cutting force signals in three axes (Fx, Fy, Fz) are depicted in Fig. 3.14. 

Experimental arrangements

The real data were provided by SIMTECH Institute in Singapore, where a high-speed CNC milling machine (Roders Tech RFM 760) was used as a test-bed. In the machining Chapter 3 treatment, the spindle speed was set to 10360 rpm. The material of work-piece used was Inconel 718. Also, 3 tungsten carbide cutters with 6 mm ball-nose / 3-flutes were used in the experiments. To achieve high quality surface finish, the metal work-piece was made via face milling to remove its original skin layer of hard particles. During milling, the feed rate was 1.555 mm / min, the Y depth of generated cuts was 0.125 mm and the Z depth of cuts was 0.2 mm [START_REF] Massol | An exts based neuro-fuzzy algorithm for prognostics and tool condition monitoring[END_REF]. Authors of experiments recorded CM data in terms of tool wear represented by force, acoustic and vibration properties of cutting operation. In our case, the cutting force signal has been used instead, because of its high sensitivity to tool wear and good measurement accuracy [START_REF] Zhou | Genetic algorithms for feature subset selection in equipment fault diagnosis[END_REF]. A dynamometer was positioned between the metal work-piece and the machining table in order to acquire cutting forces in the form of charges, that are converted to voltage (voltage signal was sampled by PCI 1200 board at 50 kHz). The acquired data were composed of 315 cuts made by 3 different cutters that are utilized in experiments, namely C18, C33 and C09.

During experiments, the cutting operation was stopped after each cut and tool wear was measured via Olympic microscope. The cutting force is mainly affected by cutting conditions, cutter geometry, coating and properties of work-piece. Also, considering complications of tool wear modeling, it is important to highlight the characteristics of all cutters that are used. That is, cutting tools C33 and C18 had the same geometry but different coatings, while cutting tool C09 has its own geometry and coating. 

Tool wear estimation -methodology

The methodology described below is depicted in Fig. 3.15.

Data acquisition and pre-processing -As explained before, force signals are utilized to build the behavior models of degrading cutters. Mainly, 16 features were derived from force signals and a subset of 4 features are selected to learn behavior models (see Fig. 3.16) [START_REF] Massol | An exts based neuro-fuzzy algorithm for prognostics and tool condition monitoring[END_REF]. The detail of feature extraction / selection can be found in [START_REF] Li | Fuzzy neural network modelling for tool wear estimation in dry milling operation[END_REF][START_REF] Zhou | Genetic algorithms for feature subset selection in equipment fault diagnosis[END_REF].

Tool wear modeling -All the collected data were stored so that the complete database represents records from 3 cutters, whereas each record contained collected feature subset and its measured wear for 315 cuts. The database is used to establish the model which enables to generate a relation between input features and measured wear output. For that purpose, the SW-ELM is used to predict the tool wear, and it is benchmarked with ELM model. Note that, due to inherit complexity of tool degradation phenomena, it is hard to deduce complex relationships between features and measured wear.

Simulations -The simulations presented in next sections aim at estimating the life span of degrading cutters (cuts that can be made safely). Learning and testing datasets have been defined accordingly: for each model (SW-ELM, ELM) same datasets from the database are used to learn the association between input features and machinery behavior. Besides that, to improve the generalization performance of ELM as well, and considering the discussion in section 3.2.3.2, small random weights of input-hidden nodes are initialized for ELM model i.e., [-0.1, + 0.1], rather than default values [-1, + 1]. Provided a learning data set for a model (ELM or SW-ELM), 100 trials are performed and model performances are averaged for a specific network complexity (for 4 to 20 hidden nodes). It should be noted that model performance for a single trial is equal to an accumulated performance from 10 different simulations: for which data subsets (of cutting tools) are learned after random permutation (to introduce variation in data), while test are performed on remaining data in chronological order (see Fig. Performance criteria -To discuss the robustness, reliability, and applicability of the models (and according to the analysis scheme proposed in Fig. 1.15), performances of the models are assessed in terms of accuracy and network complexity. More precisely, 3 criteria are computed: the Mean Average Percent Error of prediction (M AP E) that should be as low as possible, the coefficient of determination (R2) that should be closer to 1 (see Appendix A.4), and the learning time (T ime). The obtained results are divided into two different cases for better understanding (section 3.5.1.4 and 3.5.1.5).

Results discussion: robustness and applicability

This case aims at evaluating the prediction accuracy of each model by assessing its robust performance with a single cutting tool (with data of same attributes) to establish a model i.e., C18, C33 and C09. For learning, data set from a particular cutting tool is created by randomly selecting 150 data samples, while rest of the data (165 data samples) are presented in chronological order to test the accuracy of the learned model (Fig. 3.17). This procedure is repeated 10 times for each model-cutting tool couple and is considered as a "single trial". Comparative analysis on robust tool wear prediction performances from all model-cutting tool couples are shown in Table 3.6. Among all model-cutting tool couples with varying learning data, SW-ELM model has more robust performance on tests as compared to ELM, even when small learning data are presented to both models. However, the average learning time of ELM is slightly faster than SW-ELM. The detailed simulations from the obtained results are presented in Fig. 3.18. In brief, Fig. 3.18a, shows an average accuracy (R2) performance for 5 different network complexities, where best results are achieved by SW-ELM for tests on cutter C09 and C18 (with no. hidden nodes 16 and 12). Considering these results, Fig. 3.18b compares the steadiness of both models (SW-ELM and ELM) for 100 trials. One can see that SW-ELM is more robust to input variations as its test accuracy (R2) is steady for 100 trials with tests on both cutters i.e., C09 and C18. In addition, Fig. 3.18c depicts a comparison on average results of tool wear estimation on cutter C09. Reliability / partially known data -This case aims at evaluating the reliability performances of each model (ELM and SW-ELM) when data from multiple cutters with different attributes (geometrical scale and coating -see Table 3.5) are utilized to establish a model. In order to build a "multi-cutters" model, a partial data set of 450 samples from all cutters are presented in random order for learning and 165 data samples from any of these cutters are presented for test (Fig. 3. 19). This procedure is repeated 10 times for each multi-cutters model and is considered as "single trial" like in the previous case. A comparative analysis on reliable tool wear prediction performances (on data of different attributes) from all model-cutting tool couples is shown in Table 3.7. It can be observed from results that, even if the learning data are increased, both methods are still fast. However, in this case, when looking at average learning times for both tests, again ELM requires slightly less time for learning for same complexity of models.

As far as accuracy (R2) performance is concerned, SW-ELM shows superiority and consistency on data of different attributes as compared to ELM, thanks to improvements made in Algorithm 2. Like the previous case, detailed simulations from the results are presented in Fig. 3.20. In brief, Fig. 3.20a, shows an average accuracy (R2) performance for 5 different network complexities, where best results are achieved by SW-EM for tests on cutter C18 and C33 (with no. hidden nodes 20 and 16). Considering these results, Fig. 3.20b compares the steadiness of both models (SW-ELM and ELM) for 100 trials.

One can see that SW-ELM is more stable to input variations, as its accuracy (R2) is consistent for 100 trials with tests on both cutters i.e., C18 and C33. Finally, Fig. 3.20c shows a comparison on the average results of tool wear estimation on cutter C33. It can be observed from the results that SW-ELM shows better reliability performance as compared to ELM, but requires slightly more time to train on data. However, it should be noted that, when cutters C33 and C09 are presented as unknown data to the prediction models, the prediction accuracy of each approach decreased to a poor level. Indeed, results of SW-ELM for cutter C18 are better because the scale of its wear pattern exists between cutters C33 and C09 as wear increases with respect to number of cuts (Fig. 3.24). In addition, as stated before, cutters C33 and C18 have same geometry while cutter C09 has its own geometry. Finally, detailed simulations for performance comparison on model stability (on 100 trials) and tool wear estimation are shown in Fig. 3.22 and Fig. 3.23, which indicates that the reliability still needs to be improved when unknown data of different attributes (context) are presented to the model. 

SW-ELME and its reliability performance

Simulation settings -Considering the superiority of SW-ELM over ELM, the ensemble strategy is only performed with SW-ELM approach. In this strategy, the initial step is to determine structure of a single SW-ELM model. That is, a structure of model which results satisfactory performances with minimum possible complexity. Following that, multiple SW-ELM models of same complexity are integrated to produce averaged output and to improve accuracy of estimates (Table 3.9). However, to be more explicit on that, each individual model is learned with same dataset, but initialized with different parameters, i.e., weights and biases. Tests are performed on three different cutters i.e., C18, C33 and C09, where each individual SW-ELM model is learned with 680 samples and tested on unknown data of 265 samples. For example, learning set includes cutter data C18, C33 and C09 (up to 50 samples) and testing set is composed of remaining 265 samples from C09 (starting from current time tc=50 till the last cut 315) that are totally unknown to the model. Wear limit -Setting a precise wear limit is vital to any prognostics approach. Any assumptions should be avoided for practical reasons. Therefore, it should be precisely assigned for a particular application. For CNC application, tool wear evolution is classified in 5 wear states, "initial wear, slight wear, moderate wear, severe wear and worn-out" [START_REF] Ertunc | Drill wear monitoring using cutting force signals[END_REF]. As for all cutters tool life span are same, we use a simple partition based clustering approach, namely, K-means algorithm to cluster their wear patterns (see [START_REF] Xu | Survey of clustering algorithms[END_REF] for clustering details). The benefit of this step is to identify worn-out state for all cutters. Therefore, threshold can be set when tool degrades from severe wear to worn-out state (see Fig. 3.24 where max wear is common limit for tests i.e., wear limit is set to 130 10 -3 mm). However, the aspect of wear limits or thresholds is addressed in Chapter 4 with details.

Results and discussion -Results from all cases i.e., C18, C33 and C09 with SW-ELME model are summarized in Table 3.10. The cutting tool life span or remaining life is estimated by setting a common wear limit among all cutters. That is, the number of cuts that can be successfully made until defined wear limit. Finally, 95% CI intervals indicating lower and upper confidence bounds of estimates with an SW-ELME model are furnished for each test case (see Fig. It can be observed from the results in Table 3.10, that, due to ensemble strategy and increased data size, the total learning time SW-ELME model is M times greater than an individual SW-ELM, but still remains very short. As far as other performances are concerned, the accuracy of SW-ELME model is surely superior than a single SW-ELM model as indicated in Table 3.10. For example, if a comparison is made between results on cutter C18 in Tables 3.8 and 3.10, the R2 is improved from 0.701 to 0.768, where the complexity of each SW-ELM in an ensemble is set to 10 hidden neurons (Table 3.9). Moreover, the overall performances of SW-ELME are still satisfactory on C18 and C33 (with R2 = 0.768 and R2 = 0.525). However, poor results are obtained for test C09. Obviously, performance of model decreases when the unknown test data has large deviation from learned data or when data are not within the bounds of data used during learning. For clarity, see Fig. 3.24b which enables to see that wear pattern of cutter C18 is between C33 and C09. Besides that, when looking at the CIs, true target value is within the confidence level as indicated by lower and upper bounds in Table 3.10. However, in case of cutter C09 unsatisfactory results are achieved with a wide CI. Predicting continuous state of a degrading machinery acts as prerequisite of a prognostics model to achieve RUL estimates. In other words, accuracy of prognostics is related to its ability to predict future behavior of equipment. However, for a real application, performances of a prognostics model are closely related to critical issues that limit its applicability, like the horizon of prediction, the expected accuracy, the acceptable uncertainty level, human intervention, or convergence of algorithm. Such aspects should be considered while building a prediction model. Therefore, a case study is performed on IEEE PHM 2012 challenge bearing datasets (section 2.4). The aim of these experiments is not only to show long-term prediction capability SW-ELM, but also to highlight the significance of the cumulative features extraction procedure proposed in section 2.3.1. The performances of SW-ELM are compared for msp with cumulative features and classical features (section 2.1.2) using iterative approach as described in section 2.6.2.1.

Learning and testing schemes

To perform msp, a compact structure SW-ELM with topology 3 inputs, 4 hidden and 1 output nodes is used. Note that, 3 inputs represent regressors from a particular feature (x t , x t-1 , x t-2 ), where output represents msp (x t+1→t+H ), H∈ msp horizon. To minimize the impact of random parameters on learning and testing tasks, small norms of input-hidden weights and bias are initialized by setting C = 0.001 (i.e., for beta value in NW procedure see Algorithm 2 

Results and discussion

For illustration, predictions results with classical and proposed feature extraction approaches are compared for test bearings Ber 1-3 and Ber 1-7 in Fig. 3.26. One can qualitatively note the accuracy of predictions with proposed methodology: the figure depicts very minor difference between the actual and predicted trends, where predictions with classical feature show poor results. This conclusion can be extended for all tested bearings (see Table 3.11 for all results): predictions with cumulative features are achieved with high accuracy and generalization even for long prediction horizons like Ber1 -7 ("757 steps") with M AP E = 0.46 %. Such results are of good omen for prognostics: since predictions follow trending behavior of features in an accurate manner (as illustrated in Fig. 2.2). The complete approach (cumulative features with SW-ELM) should lead to low uncertainty of RUL estimates. 

Summary

This chapter addresses issues related to time series application and challenges of prognostics modeling, to develop a new prediction model. Therefore, SW-ELM algorithm is proposed as a potential approach for performing "long-term predictions" for a prognostics model (i.e., multivariate degradation based modeling strategy). In addition, to account for uncertainty from data and modeling phase, an ensemble of SW-ELM models is proposed (SW-ELME) to associate confidence to estimates. These, developments are thoroughly investigated on several data sets, and benchmarked with other methods to show improvements. Moreover, two PHM case studies are also considered: firstly, real data of a CNC machine are used to analyze robustness and reliability of SW-ELM as compared to existing ELM. Secondly, bearings datasets of IEEE PHM Challenge 2012 are used to perform long-term prediction with SW-ELM (using cumulative and classical features). Chapter 4 focuses on development of an unsupervised classification model, which is integrated with SW-ELM to enhance "multivariate degradation based modeling strategy".

Chapter 4

From predictions to RUL estimates

This chapter presents an enhanced multivariate degradation based modeling strategy for data-driven prognostics. To estimate the RUL of a machinery, prognostics modeling phase requires precise knowledge about failure thresholds (FTs). However, prognostics can have large uncertainty, when there is absence of prior knowledge about actual states of degrading machinery (i.e., unlabeled data).

To address this issue, and also to further improve prognostics performances (i.e., robustness, reliability, applicability), firstly, a new clustering algorithm is proposed to handle unlabeled data and to represent the uncertainty of degradation process namely, Subtractive-Maximum Entropy Fuzzy Clustering (S-MEFC). Following that, a novel approach for prognostics is presented to enhance "multivariate degradation based modeling strategy" to avoid uncertain FTs. In brief, the proposed prognostics model integrates two new algorithms, namely, the SW-ELM (introduced in Chapter 3) and the S-MEFC, in order to predict the behavior of degrading machinery, to dynamically assign the FTs, and to automatically determine different states of degradation. Indeed, for practical reasons there is no interest in assuming FT for RUL estimation. The effectiveness of the approach is evaluated by applying it to real dataset of turbofan engines from PHM challenge 2008.

4.1 Problem addressed: dynamic threshold assignment 4.1.1 Failure threshold: univariate approach and limits

Forecasting future of complex machinery is a complicated task, which is encountered in many PHM applications for industry [START_REF] Ramasso | Joint prediction of continuous and discrete states in time-series based on belief functions[END_REF]. Mainly, for PHM applications, prognostics models are applied to perform "long-term predictions" of continuous observations followed by a failure thresholds (FT) to detect faulty state, and to estimate the RUL of the degrading machinery. The FT does not necessarily indicate complete failure of the machinery, but beyond which risk of functionality loss [START_REF] Saxena | Metrics for evaluating performance of prognostic techniques[END_REF]. As discussed in section 1.1.2, in a classical manner the RUL estimate is based on the study of one-dimensional signal: RUL is computed between a current time to initiate prediction and the time at which degrading signal passes the FT or a limit on damage level. The assessment of system's health requires the threshold to be tuned precisely which can be a practical limitation especially in situations when the signal does not represent any physical meaning [START_REF] Ramasso | Joint prediction of continuous and discrete states in time-series based on belief functions[END_REF]. Therefore, uncertainty of RUL estimates is not only due to prediction, but to FTs as well. The uncertainty of FT can lead to large RUL errors. According to [START_REF] Ramasso | Joint prediction of continuous and discrete states in time-series based on belief functions[END_REF], to ensure reliability of RUL estimates, the use of multidimensional degradation signals is preferred rather than one-dimension signal. Practically, this restricts the use of classical thresholding techniques, where specification of FT is a critical issue and there is lack of standard approaches for this purpose [START_REF] Kumar | Modeling approaches for prognostics and health management of electronics[END_REF][START_REF] Pecht | A prognostics and health management roadmap for information and electronics-rich systems[END_REF]. In other words, the use of multidimensional degrading signals makes thresholding techniques more complicated.

Failure threshold: multivariate approach and limits

With multivariate degradation based modeling strategy for RUL estimates, machine degradation can be represented by continuous and discrete states (section 1. 3.3.3), where continuous state shows value of degrading signal, while discrete states depict fault mode. Therefore, to perform prognostics with multivariate degradation based modeling, it is required to build an efficient tool to predict continuous states of signals (that represent features) and a classifier to estimate discrete states reflecting the probable states of degradation. Most importantly with this approach, it is not only the question of performing good predictions, but also to stop prediction process at right time, which is the task of a classifier that sets FTs. Describing the problem of prognostics by means of continuous states and discrete states, is new in PHM community and it's only addressed in few publications [START_REF] Javed | Features selection procedure for prognostics: An approach based on predictability[END_REF][START_REF] Ramasso | Prognostics in switching systems: Evidential markovian classification of real-time neuro-fuzzy predictions[END_REF][START_REF] Ramasso | Joint prediction of continuous and discrete states in time-series based on belief functions[END_REF]. The use of discrete states not only avoids classical way of assuming thresholds, but can also benefit in reducing uncertainty of RUL estimates. However, works presented in [START_REF] Javed | Features selection procedure for prognostics: An approach based on predictability[END_REF][START_REF] Ramasso | Prognostics in switching systems: Evidential markovian classification of real-time neuro-fuzzy predictions[END_REF][START_REF] Ramasso | Joint prediction of continuous and discrete states in time-series based on belief functions[END_REF] have a common drawback that the number of discrete states are pre-assumed for continuous observations and the RUL estimates are achieved accordingly. This assumptions is not realistic in case of degrading machinery, because, the behavior of each machine can differ according to operational environment. Even if two identical machines are exposed to similar operating conditions, most probably, their degrading behavior would be different, and each could represent different level of degradation. In such situations, it can be quite challenging or even impossible for previous approaches (that pre-assume fault modes or discrete states) to assign FTs, which limits their applicability.

Toward dynamic failure threshold

During operation each machine can have different states or degradation levels toward failure or faulty condition [START_REF] Nystad | Lifetime models for remaining useful life estimation with randomly distributed failure thresholds[END_REF][START_REF] Cheng | A fusion prognostics method for remaining useful life prediction of electronic products[END_REF]. In other words, different failure mechanisms have different trending parameter which requires FT to be assigned dynamically according to a particular case. However, prognostics can be quite challenging when few knowledge or previous experiences on degradation process are available [START_REF] El-Koujok | Reducing arbitrary choices in model building for prognostics: An approach by applying parsimony principle on an evolving neuro-fuzzy system[END_REF], or when there is absence of ground truth. In other words, prognostics with data-driven models can be difficult, as one has to handle unlabeled data with no prior knowledge about actual states or transitions between these states (see Fig. 4.1). According to above discussions, two key issues can be pointed out.

• How to manage unlabeled multidimensional data to determine states of degrading machinery?

• How to dynamically assign FTs without any prior knowledge? To enhance multivariate degradation based modeling strategy and to handle unlabeled data, an unsupervised classification procedure is necessary to assess the health of a degrading machinery. Therefore, in order to dynamically set the FTs, the classifier should have the capability to find hidden structure in an unlabeled data that represent degradation from healthy to faulty state, and secondly, the data classification should clearly show the transition between states. The important aspects of unsupervised classification are discussed in detail as follows.

Clustering for health assessment: outline & problems 4.2.1 Categories of classification methods

Basically for PHM, the main aim of classification phase is to assess the health state of the machinery. This task requires multidimensional data (variables or features) in order to determine the health of monitored machinery. Briefly, classification methods are of four types: supervised, unsupervised, semi-supervised and partially supervised (Fig. 4.2). In context to PHM, the case of supervised classification is considered when the data are accompanied with a ground truth (or labels), which indicates the actual structure of data classes. Therefore, data are already labeled and the health states are known. An unsupervised classification is applied when there is absence of ground truth (or labels): unsupervised classification (or data clustering) to identify hidden data structure is only based on data from sensors. The third category, of semi-supervised classification is applied when only few data points have their identity represented by labels for a specific data class [START_REF] Gouriveau | Strategies to face imbalanced and unlabelled data in phm applications[END_REF]. Lastly, the fourth category of partially supervised classification is applied, when the class memberships of learning data are partially known and are expressed as imprecise and or / uncertain soft labels (or belief mass) [START_REF] Côme | Learning from partially supervised data using mixture models and belief functions[END_REF], (for example see recently published article [START_REF] Ramasso | Making use of partial knowledge about hidden states in hmms: an approach based on belief functions[END_REF]). Among these categories, supervised approaches appear to be irrelevant for real PHM applications in the absence of ground truth. Even the semi-supervised and partially supervised approaches can have limited applicability as they assume that ground truth can be known with limited uncertainty. Therefore, an underlying "data clustering" (or an unsupervised classification) step is often required to assess the health for a PHM application. However, unsupervised techniques still have some limits, that are highlighted in the following topic.
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Clustering and discrete state estimation

Mainly, the goal of clustering is to organize data into homogeneous groups such that, intra group similarity is minimized to have compact clusters and inter group dissimilarity is maximized to increase separation among clusters. However, time series data for clustering can be static or dynamic. In case of static data, the time series features do not vary with time or the change is negligible. In case of dynamic data, the time series features vary with time. CM data for prognostics falls in the later category. In addition, the time series data can be discrete-valued or real valued, non-uniformly sampled or uniformly sampled, univariate or multivariate and finally can have equal or unequal length [START_REF] Liao | Clustering of time series dataa survey[END_REF]. Given unlabeled multidimensional data, it is required to determine groups of time series with similar properties to assess the health of monitored machinery. For prognostics modeling, the discrete state estimation phase can be performed in two steps. Firstly, an off-line step is required, where data are clustered to determine the hidden structure representing states of degradation, i.e., good state to faulty state. This step can also be called as learning phase to build an unsupervised classifier. 

Issues and requirement

According to literature, clustering approaches can be classified into five categories: density based methods, graph based methods, hierarchical methods, partition methods and model based methods [START_REF] Liao | Clustering of time series dataa survey[END_REF]. As clustering methods are totally data-driven, each approach can have its own limitations, however some key issues can be pointed out according to prognostics modeling challenges defined in section 1.4.

• Clustering algorithms can be sensitive to noise and outliers, which can influence cluster centers and distort clusters. As a result, the robustness of a prognostics model is affected.

• Clustering algorithms can have inconsistent performance, such that each run gives different results, which can affect robustness and reliability of a prognostics model.

• Clustering algorithms can be time consuming, dependent on human involvement to initialize parameters (i.e., number of clusters and initial centers values), limited to specific data types (e.g. time series with equal lengths). Such issues reduce the applicability of the clustering approach for a prognostics model.

As for real prognostics application where machinery operates in a dynamic environment and data are affected by inherent non-linearities, with the absence of prior knowledge of ground truth, clustering of an unlabeled data could be quite hard. In this case, it is also important to represent uncertainty of unlabeled multidimensional data like, transitions among different states, which can be performed by theories like fuzzy sets, probability, etc. Therefore, to achieve the goal of dynamic FTs, it is required to propose a new algorithm that accounts for issues mentioned above and can improve the efficiency of the prognostics model. The clustering algorithms attempt to find an inherent structure for a given set of unlabeled data points by partitioning data into subgroups or clusters (representing similar objects). Typically, the partition based clustering algorithm (either hard or fuzzy) run as follows: assuming the initial positions of cluster center (or centroids) a membership function generates partition, which is measured by a cost function for fitness analysis. An iterative approach is implemented until the membership function create a partition that reduces the cost function [START_REF] Beni | Pattern Analysis and Machine Intelligence[END_REF]. Most importantly, whatever the clustering algorithm, it should provide compact clusters by minimizing the distance between similar objects (or data points) and separate dissimilar objects objects by maximizing their distances.

In other words, intra-cluster distances should be minimized and inter-cluster distances should be maximized to obtain boundaries of clusters. According to literature, to handle the issue of vague (imprecise) boundaries of clusters, fuzzy logic is considered as an effective tool [START_REF] Bataineh | A comparison study between various fuzzy clustering algorithms[END_REF]. Also, there are several approaches for fuzzy clustering, but, such techniques may induce biases in the choice of membership function [START_REF] Beni | Pattern Analysis and Machine Intelligence[END_REF]. Thereby, [START_REF] Li | A maximum-entropy approach to fuzzy clustering[END_REF] proposed an algorithm namely, the maximum entropy based fuzzy clustering algorithm (MEFC), that ensures a maximum fairness to handle imprecise data and minimize such choice of bias of membership function via maximum entropy principle. In addition, MEFC algorithm is considered to be robust as compared to FCM which is recognized to be sensitive to noise and outliers [START_REF] Zaidi | Fuzzy clustering-based segmented attenuation correction in whole-body pet imaging[END_REF]. As compared to other fuzzy clustering approaches, the maximum entropy function also give a clear physical meaning for clustering data. This means, that data points closer to cluster centers will have higher memberships (representing higher entropy values), as compared to data points that are far from cluster centers [START_REF] Zaidi | Fuzzy clustering-based segmented attenuation correction in whole-body pet imaging[END_REF] (see Fig. To represent uncertainty of unlabeled multidimensional data, the maximum entropy inference (MEI) problem aims at assigning membership grade (µ ij ) between [0, 1] to every data point which avoids bias [START_REF] Li | A maximum-entropy approach to fuzzy clustering[END_REF]. Formally, the entropy of cluster centers (H) with respect to data, i.e., the clustering entropy is given as:

H = - N i=1 c j=1 µ ij log (µ ij ) (4.1)
the entropy of data points with respect to the cluster centers to improve partitioning (i.e., clustered entropy), the loss function is given as:

L = N i=1 c j=1 µ ij D 2 ij (4.2)
where D ij is the euclidean distance (ED) (Eq. 2.12) between the i th data point and the j th cluster. Fuzzy partition matrix can be represented as U = [µ ij ] c×N , where µ ij describes the membership of the i th data point to the j th cluster and satisfies following conditions. 0

≤ µ ij ≤ 1 ∀ i,j (4.3) 0 ≤ N j=1 µ ij < N ∀ i (4.4) c i=1 µ ij = 1 ∀ j (4.5)
A fuzzy clustering based on MEI aims at obtaining data points that minimize Eq. (4.2) and the membership assignments that meet Eq. (4.3-4.5). Further, to maximize Eq. (4.1) subject to Eq. (4.2) and constraints by Eq. (4.3-4.5), a Langrangian multiplier approach is used which gives following solutions [START_REF] Li | A maximum-entropy approach to fuzzy clustering[END_REF]:

µ ij = e -D 2 ij /2σ 2 c k=1 e -D 2 ik /2σ 2 ∀ i,j (4.6) 
where σ represents the fuzziness parameter, and 2σ 2 is "temperature" in statistical physics. When σ = 0, the clustering becomes hard, when σ → ∞ each pattern is equally assigned to all clusters [START_REF] Li | A maximum-entropy approach to fuzzy clustering[END_REF]. Therefore, σ has similar properties like fuzziness parameter "m" in FCM clustering, however it has more clear physical meaning. In should be noted that the resulting Eq. (4.6) satisfies (4.2) only when centers v j are fixed. Similarly, when µ ij are fixed, the centers are updated with a following solution achieved from a proof similar to [START_REF] Bezdek | Pattern Recognition with Fuzzy Objective Function Algorithm[END_REF] for FCM:

v j = N i=1 µ ij • x i N i=1 µ ij ∀ j (4.7)
which means that v j is the center of j th cluster.

Issues and requirements -According to [START_REF] Zaidi | Fuzzy clustering-based segmented attenuation correction in whole-body pet imaging[END_REF], the performance of MEFC algorithm is dependent on the choice of the number of clusters and their initial centers. Therefore, it is required to properly initialize such parameters, to achieve an optimized solutions and avoid issues like inconsistency due to parameter initialization, which gives different results for different parameter inputs.

Subtractive Clustering

According to literature, to overcome issues of parameter initialization and to achieve the global optimum solution, methods like genetic algorithm and particle swarm optimization were applied [START_REF] Zhu | Subtractive fuzzy c-means clustering approach with applications to fuzzy predictive control[END_REF]. However, such methods are computationally expensive which limits their applicability, for real prognostics applications. A simple and effective algorithm has been proposed by Yager and Filev [START_REF] Yager | Approximate clustering via the mountain method[END_REF], to estimate number of clusters and their initial centers, namely mountain clustering. But again, the algorithm was computationally expensive, because the computations grow exponentially according to the dimensions of the problem [START_REF] Chiu | Fuzzy model identification based on cluster estimation[END_REF]. Finally, an extension of Mountain Clustering was proposed by Chiu [START_REF] Chiu | Fuzzy model identification based on cluster estimation[END_REF], called as Subtractive Clustering (SC) which has an additional advantage to handle high dimensional data. Briefly, SC is a one pass approach to estimate cluster centers among numeric data (based on the density function), that does not require any iterative optimization. Therefore, this method can be used to provide number of clusters and initial centers for algorithms like FCM or its other variants [START_REF] Li | A maximum-entropy approach to fuzzy clustering[END_REF]. According to [START_REF] Doan | Derivation of effective and efficient data set with subtractive clustering method and genetic algorithm[END_REF], SC is robust clustering algorithm could (a) remove outliers (robust to outliers that can impact clusters centers), (b) resolve conflicting data and (c) discard unnecessary patterns. In addition, it does not have inconsistency issue like FCM that gives different results for different simulations [START_REF] Bataineh | A comparison study between various fuzzy clustering algorithms[END_REF], which shows reliability of the method.

Cluster estimation -Consider a dataset ℓ D = {X i } N i=1 as already given by Eq. (3.1). SC is used to estimate clusters c among multidimensional data and their centers V = {v j } c j=1 . Without loss of generality, data are normalized in each dimension such that all are bounded by a hypercube [START_REF] Chiu | Fuzzy model identification based on cluster estimation[END_REF]. Each data point is considered as a potential cluster center. A density measure at each data point is computed, such that a data point having more neighboring data (or density of surrounding points) has higher chance to be selected as a cluster center, as compared to data point with fewer surrounding data points. Obviously, this approach can surely remove the effects of noisy data and outliers. The density or potential of a data point x i , is given as:

D i = N j=1 exp - x i -x j 2 (r a /2) 2 (4.8)
where r a is a positive constant that defines radius of neighborhood. A data point outside the range have less influence on the potential. Thus, the density measure for a data point is a function of its distances to neighboring data points (see Fig. Following the computation of density of each data point, the first cluster center x c1 is selected representing highest density value D c1 . Then again, the density measure of each data point is calculated as follows:

D i = D i -D c1 exp - x i -x c1 2 (r b /2) 2 (4.9)
where r b is a positive constant (i.e., r b = 1.5 r a to avoid closely spaced clusters). According to Eq. (4.9), after subtraction data points closer to the first cluster center From some point i calculate Di will have lower density as compared to data points that are far (Fig. 4.6). Therefore, the next cluster center x c2 is selected representing the highest density D c2 . This procedure is revised until sufficient number of clusters are achieved (see [START_REF] Chiu | Fuzzy model identification based on cluster estimation[END_REF] for details). Lastly, according to cluster estimation procedure, SC appears to be a computationally efficient algorithm, that only requires one parameter to be set by the user i.e., radius of neighborhood, which shows its better applicability.

Issues and requirements -Although SC algorithm is a consistent algorithm with improved computational efficiency, robustness and applicability advantages. However, the main problem with this algorithms is the absence of uncertainty representation for the clustered data. Besides that, the centers are not optimized and require further adjustment [START_REF] Bataineh | A comparison study between various fuzzy clustering algorithms[END_REF]. Therefore, SC can be combined with iterative optimization (e.g. fuzzy clustering) methods to fine tune the centroids. This idea is presented in the following topic.

S-MEFC for discrete state estimation

We propose a new unsupervised classification algorithm namely, the Subtractive-Maximu m Entropy Fuzzy Clustering (S-MEFC), that enables estimating the health state of the system. Mainly, S-MEFC algorithm takes benefits of density based SC algorithm [START_REF] Chiu | Fuzzy model identification based on cluster estimation[END_REF] and of a MEFC approach by means of MEI [START_REF] Li | A maximum-entropy approach to fuzzy clustering[END_REF]. S-MEFC algorithm is summarized in Algorithm 3. In brief, consider a training dataset ℓ D = {X i } N i=1 as already given by Eq. (3.1) containing N unlabeled samples of n time series. SC approach is used to automatically determine clusters c in multidimensional data, and their centers V = {v j } c j=1 (see [START_REF] Chiu | Fuzzy model identification based on cluster estimation[END_REF]). SC is a one-pass approach that requires only one parameter to be set by the user, i.e., the radius of neighborhood ra, but, the centers positions are not optimized and need to be adjusted. For this task we propose to use fuzzy clustering approach by means of MEI. The obtained centers, V from SC serve the need of MEFC clustering algorithm, that avoids any random initialization of centers. To optimize centers positions and to assign membership to each data point in a particular cluster, given σ a fuzziness parameter (set by user), the algorithm runs in an iterative manner until termination criteria (ǫ) is met. The MEI based fuzzy partition matrix can be represented as U = [µ ij ] c×N , where µ ij represents the membership degree of i th object in j th cluster.

It should be noted that, the key component in clustering is to measure similarity between two data being compared [START_REF] Liao | Clustering of time series dataa survey[END_REF]. This can strongly influence shape of clustering, because different distance similarity measures can lead to different partition of data. In our case we use Standardized Euclidean Distance D SE distance metric, while updating cluster partitions matrix U and centers matrix V with MEFC algorithm. It is very similar to ED except that every dimension is divided by its standard deviation. This leads to better clustering than would be achieved with ED, when each dimension has different scales. As for illustration, consider Fig. 4.7, where clustering is performed with D SE (left part) for data with actual scales, in comparison to clustering with ED metric (right part). Better clustering is achieved by D SE due to equalization of variances on each axis. Note that, it is also recommended in literature [START_REF] Wang | Assessment of different genetic distances in constructing cotton core subset by genotypic values[END_REF][START_REF] Wu | Statistical measures of dna sequence dissimilarity under markov chain models of base composition[END_REF], to use D SE rather than ED. Let x, v each be a n-dimensional vector and SD the standard deviation. The D SE distance between data points and the centers is computed as follows: 

D SE (x,v) = n k=1 1/SD k 2 (x k -v k ) 2 ( 
µ ij = e -D 2 ij /2σ 2 c k=1 e -D 2 ik /2σ 2 ∀ i,j (4.11 
) Consider training dataset containing multidimensional signal (sensor measurement or feature) F Li , which can be from multiple learning instances L. According to dimension of feature space in the data, n univariate predictors P i are build using SW-ELM and trained with data from L instances (Fig. 4.9, left part). The features set is further reduced by post-treatment (section 2.5.1) to final set of predictable features according to learned prediction models. This enables either to retain or reject each potential couple of "feature-model" to be used for prognostics. Following that, an unsupervised classifier is build using S-MEFC for each learning instance considering multidimensional signals F i that are predictable (Fig. 4.9, right part). Each classifier C L can represent different cluster or states depending on particular learning instance, that enables to dynamically set FTs in the on-line phase. In the off-line phase, n univariate predictors and C L classifiers are build with predictable features. In the on-line phase (Fig. 4.10), consider a new test instance T F i containing partial data from multidimensional signals (i.e., predictable ones) up to some current time tc (or piece of trajectories up to tc, from where prognostics should be initiated). Prior to RUL estimation task, threshold is dynamically assigned by looking at distance similarity (ED) among learned classifiers and indexes of test data from instance T F i (e.g. multidimensional data from index= 1:tc). Note that each index of T F can have similarity to a particular C L . This step can be simply met by applying "mode operation" to identify most frequently matched classifier with indexes of test data. Suppose that, most of the indexes T F match classifier C m that is build in the learning phase. Now consider that the total states (cluster) in C m are 4, which means 4 th state is faulty, and threshold for the test instance T F i is set according to that. When the matched C m is identified, the severity of degradation at the current state tc is also determined by distance similarity between tc and states of C m . After assigning threshold and assessment of severity of degradation at current state, RUL estimation task is initiated. Finally, n predictors are used to perform msp in an iterative manner [START_REF] Gouriveau | Connexionist-systems-based long term prediction approaches for prognostics[END_REF], and simultaneously discrete states are estimated by distance similarity (ED), due to best match C m (see Fig. 4.3). The msp continues until discrete state reaches threshold point i.e., transition from degrading state to faulty (see Eq. (2.13)). The aim of this case study is to validate the performances of the proposed "enhanced multivariate degradation based modeling strategy". For this purpose, the real data of turbofan engines are considered, which are available at NASA data repository [143]. In this case study, complete data of text files "train -F D001.txt" and "test -F D001.txt" are used, (whereas, in our earlier experiments in section 2.6.1.1, data of only 40 engines from file "train -F D001.txt" were considered). To recall, it should be noted that, each file record is composed of 100 instances (i.e., turbofan engines), and each instance either from the train or test file has 26 multidimensional time series signals contaminated with measurement noise. However, only 8 features were used from each instance for the experiments presented in Chapter 2 (see Table 2.5). As an example, consider the left part of Fig. 4.11, where run-to-failures data of "sensor measurement 2" are shown from 100 engines in the training data set. One can clearly notice that, the data are highly noisy and should be filtered before feeding the prognostics model. On the other hand, the right part of Fig. 4.11 shows the life spans distribution of 100 engines in the training data. The variability in learning histories can affect the training and testing performances. The tests file "test -F D001.txt" is composed of pieces of trajectories up to current time tc (for all of 100 instances), and the remaining life span or RUL is unknown. Note that, RUL estimates are in units of time, i.e., number of cycles.
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Performance evaluation and simulation setting

For results evaluation, estimated RULs are compared with actual RULs provided in the file "rul -F D001.txt". Most importantly, for a given test instance TF (up to current time tc), an interval I = [-10,13] is considered to assess RUL estimates as on-time, early or late (Fig. 4.12). This interval is further used to compute final score for comparison (see [START_REF] Saxena | Damage propagation modeling for aircraft engine run-to-failure simulation[END_REF]), which should be as low as possible. In PHM context, it is generally desirable to have early RUL estimates rather than late RULs, since the main aspect is to avoid failures. Therefore, for engines degradation scenario, an early RUL estimate is preferred over late RUL. In brief, the scoring function for the challenge data is asymmetric around the true failure time to heavily penalize late RUL estimates as compared to early RULs [START_REF] Saxena | Damage propagation modeling for aircraft engine run-to-failure simulation[END_REF]. However, with the increase in error the scoring penalty grows exponentially. The scoring function (s) is given by Eq. (4.14) as follows: 

Accuracy of prognostics model evaluated by the coefficient of determination (R2),

that should be close to 1.

According to the proposed scheme in this chapter, SW-ELM is used to build univariate predictors. The network topology of each SW-ELM predictor is set as follows: 3 regressors input node, 5 hidden nodes, 1 output node and constant C = 0.1 (i.e., for beta value in NW procedure, see Algorithm 2). As for state estimation, the S-MEFC classifier is used with a neighborhood radius ra = 0.4, and the fuzziness parameter σ = 0.38. As mentioned in section 4.1, the RUL estimate is achieved by predicting multidimensional features and simultaneously estimating discrete state to stop the prediction task by dynamic FT. The dynamic FTs assignment is possible due to S-MEFC algorithm, that can automatically determine different clusters (or states) among multidimensional data. Obviously, this is a realistic approach, because each machine can have different level of degradation from good state to faulty state, and any assumption abouts states should be avoided. For e.g. consider Fig. 4.14, where clustering results on run-to-failure data on two engines from file "train -F D001.txt" are provided for different sensor measurements. The right part of the figure represents a color code sequence which corresponds to the membership of data points in the clusters shown in the left part of Fig. 4.14 with the same color. In case of turbofan engine 1, data are automatically partitioned into 4 groups, whereas for turbofan engine 100 data are automatically partitioned into 6 groups using S-MEFC algorithm. Similarly, each classifier C L (for a particular engine in the training data) can represent different states of degradation. Now, lets validate our proposed methodology to get correct RUL estimates falling in an interval I = [-10,13], i.e., enhanced multivariate degradation based modeling strategy with predictable features. Table 4.1 summarizes performances for all tests initiated at current time tc, and compares prognostics results with all features {F1 -F8} and with predictable features {F1 ; F4 -F7}. [START_REF] Saxena | Damage propagation modeling for aircraft engine run-to-failure simulation[END_REF].

The estimated RULs with the proposed approach are also compared with actual RULs provided in the file "rul -F D001.txt", where the overall accuracy achieved is R2=0.614 with a global score of 1046 (whereas score is 4463 when using all features). Most importantly, the RUL error distribution with the proposed approach (using predictable features) has lowest span I= [-39,60] as compared to other methods (Fig. 4.17 ). This shows robust performance of the prognostics model when exposed to test data without any knowledge about the RULs and their variability. As shown in Fig. 4.16, the estimated RULs are closely mapped to actual RULs.

Besides that, it is also important for a prognostics model to meet real time constraints. In this context, the total computation time with the proposed approach to learn and test the data from fleet of 200 turbofan engines is just 3m 54sec. As expected, predictability based prognostics model has much better results as compared to prognostics with all features (including unpredictable ones). Obviously, features that are hard to be predicted can lead to poor prognostics results. But still, it is required to further compare the performances of the "enhanced multivariate degradation based modeling strategy", to other approaches in the literature. Unfortunately the authors who use data "train -F D001.txt" and "test -F D001.txt" do not clearly mention errors of RUL estimates and scoring (for each test) which prevents benchmarking approaches. In literature only one publication was made with same data of 200 turbofan engines (and also the same Features {F1 ; F4 -F7}) by applying "classical multivariate degradation based modeling" strategy [START_REF] Ramasso | Joint prediction of continuous and discrete states in time-series based on belief functions[END_REF], but again limited information on results were given. Nevertheless, it will help to make a final comparison with RUL estimates achieved with our method. The RUL error distribution obtained with proposed approach is compared with the recent results published by [START_REF] Ramasso | Joint prediction of continuous and discrete states in time-series based on belief functions[END_REF], (see Fig. 4.17). According to these results, the proposed approach has better precision of RUL estimates as indicated by the compact distribution of RUL errors (i.e. from I= [-39, 60]). In comparison, the results provided by [START_REF] Ramasso | Joint prediction of continuous and discrete states in time-series based on belief functions[END_REF] are less precise with a wider distribution of RUL errors (i.e., approximately from I= [-85, 120]). However, [START_REF] Ramasso | Joint prediction of continuous and discrete states in time-series based on belief functions[END_REF] achieved higher number of on-time estimates as compared to our method, i.e., 53 vs. 48. But, the RUL error distribution has a wide spread on interval I= [-85, 120], which shows very early/ late estimates and will result large score according to criteria of data challenge Eq. (4.14). Therefore, when the proposed method is evaluated on the basis of scoring criteria, the achieved total score is 1046, (see Table 4.1). The score curve for all 100 tests is given in Fig. 4.18, where only 5% RUL estimates are very early, which affects the scoring. However, the score plot clearly reflects that, the proposed method has preference for early RUL estimates rather than late RULs. Further, it is not possible to compare our score with other approaches in the literature, due to the absence of scoring results with this data (i.e., train -F D001.txt). Lastly, in case of the total computation time comparison, the proposed approach is much faster (i.e., 3m 54sec) than "trajectory similarity based prediction approach" by [START_REF] Wang | Trajectory similarity based prediction for remaining useful life estimation[END_REF], which could take few hours even with only data of 100 test instances (i.e., engines).

Benefits of the proposed approach

As stated before, it is not possible to further benchmark our approach with previous works. Nevertheless, leaving aside performances criteria, one can point out the following aspects that highlight the benefits of our approach from application point of view.

• Does not require any normalization of data and work on actual scales;

• Manages unlabeled data of different temporal lengths;

• Requires no assumption about the data and can dynamically estimates states;

• Failure thresholds are dynamically assigned without any prior knowledge;

• Fast approach and requires only four parameters to be set by the user.

Summary

This chapter addresses the challenges of prognostics modeling while building a classification model, and also discusses the key importance of FTs for the reliability of RUL estimates. Firstly, the S-MEFC algorithm is proposed as a potential approach to handle unlabeled multidimensional data, and to dynamically assess the health of degrading machinery. Secondly, an enhanced strategy for RUL estimates is proposed, that integrates SW-ELM and S-MEFC for performing simultaneously predictions and discrete state estimation and to dynamically assign FTs. Further, to investigate the efficiency of proposed prognostics model, a complete prognostics application is considered for real data of turbofan engines from PHM challenge 2008. RUL estimation results of the proposed approach are also compared with recently published articles to show its significance.

Chapter 5

Conclusion and future works

This chapter concludes the research work by summarizing issues addressed in the thesis, developments and contributions. A discussion on limits of the approach is also laid out to address future perspectives.

Conclusion

To optimize machinery service delivery potential during its lifetime, the main goal of prognostics is to intelligently use condition monitoring data from an in-service machinery, and estimate the Remaining Useful Life (RUL) before a failure. Therefore, it is a core process of Prognostics and Health Management (PHM) discipline that links the studies of failure mechanism and life cycle management of critical engineering assets. However, in a dynamic operational environment, the deterioration process of a machinery can be affected by different factors like engineering variances, failure modes, environmental and operating conditions. The data acquired from such machinery are usually noisy and subject to high level of uncertainty / unpredictability, and estimation of RUL is usually a hard task. To perform an accurate prognostics, one has to address the challenges of modeling phase i.e., robustness to encounter uncertain inputs, reliability to encounter unknown data operating conditions, engineering variations, etc., and applicability to meet industrial constraints and requirements. According to this, data-driven prognostics approaches appear to be a valuable alternative to deal with uncertainty of available data, in applications where a deep understanding of system physics is not available. In this thesis, a novel prognostics approach is developed that aims at enhancing datadriven prognostics in a realistic manner, with an acceptable level of accuracy under modeling challenges of robustness, reliability and applicability. For this purpose, mainly two aspects are considered: data processing and prognostics modeling. In Chapter 1, the literature on PHM and classification of prognostics approaches is extensively reviewed. Prognostics approaches, (i.e., physics based, data-driven, and hybrid) are assessed upon different criteria that are related to two important factors: 1) applicability and 2) performances. The assessment shows that data-driven methods have higher applicability as compared to physics based and hybrid approaches, but their performances require further improvement that can be linked with robustness and reliability of the approach. Different strategies for data-driven prognostics are further reviewed which enables us to point out that the "multivariate degradation based modeling strategy" for RUL estimation has a strong potential, and is more realistic as compared to direct RUL prediction and to univariate degradation based modeling. Therefore, it is considered as a building block for prognostics modeling step. Besides that, for open challenges of prognostics modeling, i.e., robustness, reliability and applicability, new definitions are also proposed, which are not clearly defined in the literature. Whatever the prognostics approach is, it requires suitable time series features or variables that are sensitive to machine degradation, reflect failure progression, and can be predicted easily. In Chapter 2 we propose the data pre-treatment and data post-treatment methods for feature extraction and selection. In brief, for data pre-treatment firstly, raw data are analyzed by applying discrete wavelet transform. Secondly feature extraction is performed in a new manner by using trigonometric functions and cumulative transformation. Finally, feature selection is performed by assessing their fitness in terms of monotonicity and trendability characteristics. Experiments on real data bearings from PHM challenge 2012 show significant improvements by the proposed data pre-treatment procedure, as compared to classical way of feature extraction and selection. The data post-treatment phase emphasize to further reduce multidimensional features data by assessing their predictability, as there is no interest in retaining features that are hard to be predicted. To show the impact of data post-treatment procedure, the multivariate degradation based modeling strategy is applied to estimate the RUL by simultaneous predictions and discrete state estimation. Experiments on real data of turbofan engines from PHM data challenge 2008 show that, the use of multidimensional data with predictable features is beneficial in improving accuracy of RUL estimates. In addition, some weaknesses of multivariate degradation based modeling strategy are also identified, to be addressed in succeeding chapters. To account for issues related to time series prediction and the challenges of prognostics modeling (i.e., robustness, reliability and applicability), a new prediction algorithm is proposed in Chapter 3: the Summation Wavelet-Extreme Learning Machine (SW-ELM). SW-ELM is a supervised approach that does not require any iterative learning like classical neural network and has only two parameters to be set by user. For time series prediction issues, the performances of SW-ELM are benchmarked with existing Extreme Learning Machine (ELM), Levenberg-Marquardt algorithm for SLFN and EL-MAN network on six different data sets. Results show improved performances achieved by SW-ELM in terms of computation time, model complexity and prediction accuracy. To validate the efficiency of SW-ELM with respect to robustness and reliability challenges, a real case of Computer Numerical Control (CNC) machine is considered for tool wear monitoring task. Moreover, it is observed that, lower magnitude (or norm) of weights and bias of SW-ELM during learning phase can play a significant role in improving testing accuracy. Although, performances of SW-ELM are of great interest but, such rapid learning methods should be used as ensemble of multiple models to achieve more robust and accurate performances rather than a single model. Therefore, an ensemble of SW-ELM is also proposed to quantify uncertainty and improve accuracy of estimates. Note that, during experiments the reliability of SW-ELM is assessed on unknown data of cutting tools with engineering variations like geometry and coating. Moreover, SW-ELM is further used to perform "long-term predictions" with real data of degraded bearings from PHM challenge 2012, with constant operating conditions. The multi-step ahead prediction (msp) results with cumulative features are also compared by msp using classical features. In Chapter 4 prognostics performances are further enhanced by a new health assessment algorithm: the Subtractive-Maximum Entropy Fuzzy Clustering (S-MEFC). S-MEFC is an unsupervised classification approach that can automatically determine the number of states (clusters) from multidimensional data, i.e., without human assumption and has consistent performance for each run. S-MEFC uses Maximum Entropy Inference to represent uncertainty of data rather than traditional fuzzy memberships. Moreover, a novel strategy for RUL estimation is also presented by integrating SW-ELM and S-MEFC as prognostics model. Both models are run simultaneously in order to perform "long-term predictions" and discrete state estimation, and to dynamically set failure thresholds (FTs). Lastly, the efficiency of the proposed "enhanced multivariate degradation based modeling strategy", is investigated on a case study of turbofan engines from PHM challenge 2008, and the results are thoroughly compared with recent publications. From results analysis we find that, the proposed RUL estimation strategy is more realistic as compared to existing methods in terms of applicability criteria like computational time, model complexity and parameters, human assumptions and domain knowledge. In addition, the accuracy of RUL estimates show better robustness of the proposed approach over fleet of test engines with different life spans. Besides that, the reliability of the prognostics approach is also improved by avoiding uncertain FTs based on assumptions and are assigned dynamically in precise manner for each test case.

Obviously no model is perfect, however, the proposed developments on data-processing and prognostics modeling show good potential and improved performances as compared to traditional methods. In addition, they also fulfill four main conditions of data-driven prognostics, as mentioned in [START_REF] Bechhoefer | Data Driven Prognostics for Rotating Machinery[END_REF], 1) ability to extract features related to damage, 2) to set FTs, 3) fault propagation model to project fault growth up to the FT and 4) associate confidence. The main limits of proposed data-driven approach are as follows.

1. How to automate the initialization of two important parameters of the prognostics model, which are to be set by the user, i.e., number of neurons in the hidden layer of SW-ELM, and the radius of neighborhood of a cluster in S-MEFC?

2. How to further manage the uncertainty related to data and prognostics modeling?

3. How to integrate variable operating conditions to enhance learning / testing performances of the prognostics model?

Nevertheless, this research work is a step ahead in PHM domain toward maturity of prognostics.

Future works

In general, inherent uncertainty in the machinery is a major hurdle while developing prognostics models, and indeed one of the factors that add to uncertainty is variable operating conditions. Such issue can greatly affect reliability of the prognostics model. Indeed, the variations of operating conditions can affect the behavior of degrading machinery, for e.g. increase in load can speedup the deterioration process and reduce RUL of machinery, while decrease in load results opposite behavior. Thus, operating conditions should be used as inputs of the prognostics model, and this topic needs to be further explored. Also, another problem could be the absence of future operating conditions, which demands to intelligently manage the learning phase of data-driven prognostics model, to avoid large uncertainty of predictions phase. Among different limits highlighted above, the key areas for future focus are uncertainty management and integration of variable operating conditions. Therefore, current developments of this thesis will be further extended as follows.

1. To manage and quantify uncertainty related to data and prognostics modeling; 2. To investigate the effects of variable operating conditions on the proposition of cumulative features; 3. To integrate variable operating conditions as inputs of the prognostics model; 4. To extend the development to higher level rather than a component level.

equipment. Therefore, maintenance decisions are based on the estimation of currentstate only and equipment is run as long as it is healthy [START_REF] Gupta | Characterization of prognosis methods: an industrial approach[END_REF][START_REF] Peysson | New approach to prognostic systems failures[END_REF].

Predictive maintenance: it is an innovative maintenance approach that is founded on assessment of current health state of equipment and on the prediction of future evolution (i.e., prognostics) using specific future conditions. It means, the same item could have different service life, when different future conditions are applied [START_REF] Baraldi | Ensemble neural networkbased particle filtering for prognostics[END_REF][START_REF] Gupta | Characterization of prognosis methods: an industrial approach[END_REF][START_REF] Jardine | A review on machinery diagnostics and prognostics implementing condition-based maintenance[END_REF]. Identification of problems at early stages and estimation of remaining operating life enables the machinery to run till healthy state, and provide time to opportunely plan / scheduled necessary maintenance actions prior to break down.

A.2 Relation between diagnostics and prognostics

Like prognostics, diagnostic is also an important element of PHM cycle (section 1.1.1).

In literature, there is a little disagreement, that prognostics is related to and highly dependent upon diagnostics. Mainly, diagnostics involves fault / failure detection, isolation and identification of damage that has occurred, while prognostics is concerned with RUL estimation and associated confidence interval (see Fig. Therefore, in terms of relation between diagnostics and prognostics, diagnostics process detects and identifies a fault / failure that has caused degradation, where prognostics process generates a rational estimation of RUL until complete failure [START_REF] Sikorska | Prognostic modelling options for remaining useful life estimation by industry[END_REF]. However, in general, diagnostics is a reactive process that is performed after the occurrence of fault / failure and cannot stop machine downtime in, where a prognostics is a predictto-prevent behavior [START_REF] Lee | Prognostics and health management design for rotary machinery systemsreviews, methodology and applications[END_REF]. It should be noted that there is a difference between "fault diagnostics" and "failure diagnosis". The terminology of fault diagnostics implies that, the machinery under observation is still operational, however, cannot continue operating indefinitely without any maintenance intervention. Where, failure diagnostics is performed on machinery that has ceased to perform its functionality [START_REF] Butler | Prognostic Algorithms for Condition Monitoring and Remaining Useful Life Estimation[END_REF].

As compared to prognostic, diagnostics domain is well developed and has several applications in industry. The main approaches for diagnostics can be model based or data-driven, however these topics are not covered in the thesis (see [START_REF] Yang | Model-based and data driven fault diagnosis methods with applications to process monitoring[END_REF]).

A.5.2 Industrial dryer dataset

The industrial dryer dataset used for one-step ahead prediction were contributed by Jan Maciejowski from Cambridge University [1]. Data consists of three exogenous variables, namely the fuel flow rate (x 1 ), the hot gas exhaust fan speed (x 2 ), and the rate of flow of raw material (x 3 ) Fig. A.5, and a corresponding endogenous variable, the dry bulb temperature (y). The tests aim at predicting the temperature of the dry bulb at next step ŷ(t + 1) by using current input values x 1 (t), x 2 (t), x 3 (t). An additional input of one regressors from the dry bulb temperature is also utilized (y(t)) Fig. A.6. The complete dataset consists of 867 samples, from which 500 samples were used to learn the models, whereas the remaining 367 were used for testing purpose. 
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  2.10). Vibration data appear to be noisy and have low trendability: the vibration signal is almost constant until 4 th hour, but grows suddenly till the end of the life. Results comparison of Fig.2.10a and 2.10b shows that trigonometric features clearly depict failure progression with high monotonicity and trendability, where classical features depict high level of noise, low monotonicity and trendability, and higher scales.
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  The second step corresponds to labeling new data in test phase. Therefore, in the on-line phase, discrete states (or labels) are assigned to new data by looking at distance similarity between multidimensional time series and clusters obtained in the off-line phase. To illustrate this procedure with respect to multivariate degradation based modeling strategy, consider 2D visualization in Fig.4.3. The continuous state time series data are firstly assessed by the unsupervised classifier to determine clusters and transition from good state to faulty state, where in test phase new data from prediction are matched with obtained clusters. On the basis of distance similarity, data closer to particular cluster centers are assigned labels that represent discrete states (S), and the RUL can be estimated when the transition from degrading (d) state to faulty (f) occurs, indicating a FT to stop prediction process (see Eq. (2.13)).
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Table 1 .

 1 1: 7 layers of PHM cycle

	Observe	1. Data acquisition: gather useful condition monitoring (CM) data records using digitized sensors.
		2. Data processing: perform data cleaning, denoising, relevant features extraction
		and selection.

  2.1), which performs prognostics by integrating a prediction model and a classification model to achieve RUL estimate.

	Multidimensional data	Raw data	Selected Features
	Processing		
	Extract, select, clean	time	time
		Selected Features	
	Prediction		
	From t+1 to t+h		
			time
	Classification	Selected Features	RUL= time to
	Probable states		reach faulty mode
			time
	Functioning mode at any time t		
		Mode i	Mode k

Table 2 .

 2 2: Datasets of IEEE PHM 2012 Prognostics challenge

	Datasets	Condition 1	Condition 2	Condition 3

Table 2 .

 2 3: Features fitness analysis Mean performances by each approach are summarized in Table2.4. According to results, one can clearly notice that, cumulative features have higher fitness as compared to features obtained from classical procedure. Also, cumulative features based on trigonometric functions (C-σ(atan) and C-σ(asinh) in Table2.4) appear to be the more monotonic and trendable ones. Same conclusion can be drawn qualitatively by considering Fig.2.14 that compares the form of features, extracted from classical and proposed approaches.

				Feature	R		Ber 1-1 Good case M Cumulative Feature R	M	
				σ(asinh)	0.99 0.90 C-σ(asinh)		0.99 1		
				σ(atan)	0.99 0.90 C-σ(atan)		0.99 1		
				Entropy	0.95 0.93 C-Entropy		0.98 1		
				Energy		0.81 0.43 C-Energy		0.99 1		
				RMS		0.91 0.90 C-RMS			0.99 1		
				Skewness	0.92 0.50 C-Skewness		0.97 0.89	
				Kurtosis	0.13 0.34 C-Kurtosis		0.97 1		
				Upper bound 0.85 0.79 C-Upper bound	0.99 1		
				Feature	R		Ber 1-6 Bad case M Cumulative Feature R	M	
				σ(asinh)	0.74 0.21 C-σ(asinh)		0.98 1	
				σ(atan)	0.73 0.19 C-σ(atan)		0.98 1	
				Entropy	0.70 0.08 C-Entropy		0.98 1	
				Energy		0.75 0.41 C-Energy		0.99 1	
				RMS		0.73 0.21 C-RMS			0.98 1	
				Skewness	-0.51 0.06 C-Skewness		0.92 0,66	
				Kurtosis	-0.26 0.24 C-Kurtosis		0.97 1	
				Upper bound 0.64 0.10 C-Upper bound	0.98 1	
				Bearing 1-1						Bearing 1-6		
		1.2							1.2					
			Features						Features			
			Csum-Features						Csum-Features			
		1							1					
		0.8							0.8					
	Monotonicity	0.6						Monotonicity	0.6					
		0.4							0.4					
		0.2							0.2					
		0							0					
		-1.5	-1	-0.5	0	0.5	1	1.5	-1.5	-1	-0.5	0	0.5	1	1.5
				Trendability						Trendability		
						Figure 2.13: Fitness plots				
	further highlight the benefit of cumulative transformation.			
	Finally, fitness analysis is performed to compare classical features extraction procedure
	and the proposed approach (Fig. 2.4). Both methods are thoroughly examined on all 17 bearings by assessing trendability R and monotonicity M characteristics of extracted

Table 2 .

 2 4: Comparing features fitness (mean performances on 17 bearings)

	Feature	R	M	Cumulative Feature R	M
	σ(asinh)	0.47 0.28 C-σ(asinh)	0.984 1
	σ(atan)	0.47 0,31 C-σ(atan)	0.984 1
	Entropy	0.47 0.31 C-Entropy	0.983 1
	Energy	0.36 0.29 C-Energy	0.982 1
	RMS	0.45 0.28 C-RMS	0.978 0.99
	Skewness	-0.06 0.11 C-Skewness	-0.5	0.61
	Kurtosis	-0.04 0.15 C-Kurtosis	0.972 1
	Upper bound 0.39 0.21 C-Upper bound	0.973 0.99

Table 2 .

 2 As stated before, in order to exclude unpredictable features, predictability analysis is performed on each test. For illustration, simulation results from a single test are reported in Table2.7 over different indexes of prediction horizon for a better understanding. The obtained results show that features F2 and F3 do not satisfy predictability criteria, neither by ANN nor by ANFIS, as it is clearly indicated by their lower values of predictability (i.e., P red < 0.5). Similar findings about F2 and F3 are obtained from other test cases as well, by applying both connectionist tools. This behavior is shown in Fig.2.22, that presents a global picture of features predictability over prediction horizon (tc + 134) steps ahead. Note that, ANFIS showed better performance with higher predictability values as compared to ANN for most of the simulations. Also results show that predictability is highly dependent on the horizon of prediction and can vary from one prediction model to another.

	ANN-Parameters	Settings
	Input / Hidden / Output layer neurons	3 / 5 / 1
	Hidden / Output layer Activation function	sigmoidal / linear
	Training Algorithm	Levenberg-Marquardt
	ANFIS-Parameters	Settings
	Input / Output layer neurons	3 / 1
	Number / type of input membership function	3 / Pi-shaped
	Rules / Fuzzy Inference System	27 / First order Sugeno
	Defuzzification method	Weighted Average
	Training Algorithm	Hybrid Method
	2.6.2.2 Predictability results from prediction phase

6: Prediction models -Settings

  The number of clusters is preset to 4 for the FCM algorithm. Accordingly, the multidimensional training data of 40 engines are partitioned into four groups, where each group represents a particular state of degradation. It should be noted that, each engine has different life span or number of cycles. For illustration purpose, 2D visualizations from clustering phase are shown in Fig.2.24. In the on-line test phase, discrete states are assigned to continuous state predictions (or msp) by measuring the ED between predictions (of multidimensional data) and clusters centers (Eq. 2.12). Following that, class labels can be given by looking at the closest match. For more clarity, measured distances for the case of all features and predictable features are shown in Fig.2.25. Finally, RUL estimate is obtained, when transition from degrading state (d) at time tc to faulty state (f) at time tf occurs (see Eq. (2.13)).

		Visualization of classes in 2 dimensions (with features F2 and F3)	Visualization of classes in 2 dimensions (with features F4 and F5)
	Sensor 4 (Total temperature at LPT outlet)	1395 1400 1405 1410 1415 1420 1425 1430							Sensor 11 (Static pressure at HPC outlet)	48.4 47.2 47.4 47.6 47.8 48 48.2			
		1580 1390	1585	1590	1595	1600	1605	1610	2387.9 47	2388	2388.1	2388.2	2388.3	2388.4
	a)	Sensor 3 (Total temperature at HPC outlet)		b)		Sensor 8 (Physical fan speed)
						transition d	State → f ⇒ RU L = S d→f -tc		(2.13)

12)

2.6.2.4 Health assessment

Briefly, in the learning phase, a classifier is built to identify states of degrading equipment. For this purpose, different functioning modes have to be considered. In this case, four states of degradation are assumed, namely: steady state, degrading state, transition state and critical state. FCM is used to assign temporal predictions to different classes based on fuzzy partitioning (to cluster) multidimensional data.

  .8.

	Table 2.8: RUL percentage error with ANFIS
	Test	All features Selected Features
	1	7.096 %	0.636 %
	2	11.83 %	1.898 %
	3	24.34 %	1.265 %
	4	15.95 %	0.6211 %
	5	1.324 %	0.632 %
	Mean % error	12,10 %	1,01 %

Table 3 .

 3 2: Approximation problems: results comparison

						Pump					CNC
		Method Hid-node Time (s) Epoch R2 Hid-node Time (s) Epoch R2
		SW-ELM	15	6.5e-004		-	0.96	4		7.7e-004	-	0.92
		ELM		15	5.8e-004	-	0.94	4		5.0e-004	-	0.77
		LM-SLFN	30	1.02		50 0.79	4		0.22	10 0.80
		ELMAN	30	8.88		50 0.81	4		0.21	10 0.77
						Carnallite surge tank pump		
		350										
		300										
	Fault code	150 200 250										
													Fault
		100											ELM
													SW-ELM
		50	0	2	4	6	8		10	12	14	16	18	20
							Fault index Approximation error		
		50											ELM
	Error	0											SW-ELM
		-50	0	2	4	6	8		10	12	14	16	18	20
								Fault index			

Table 3 .

 3 3: One step-ahead prediction problems: results comparison

			Industrial Dryer		Mechanical hair dryer
	Method Hid-node Time (s) Epoch R2 Hid-node Time (s) Epoch R2
	SW-ELM	20	0.0024	-	0.85	4	6.1e-004	-	0.944
	ELM	20	0.0012	-	0.66	4	3.4e-004	-	0.944
	LM-SLFN	30	1.03	50 0.81	4	0.21	10 0.9434
	ELMAN	30	8.9	50 0.80	4	0.20	10 0.9434

Table 3

 3 .1 data record train -F D001.txt is used to train and test the models). Similarly, like in previous issues, 50 trials are performed and best results are presented. The msp accuracy of each model is assessed by computing CV RM SE, that enables evaluating relative closeness of predictions, which should be as low as possible. Whereas, computational time (for a single trial) and network complexity are evaluated similarly as in previous cases. Models performances are summarized in Table3.4.

Table 3 .

 3 4: Multi-setp ahead prediction problems: results comparison

		NN3 (avg.)				Turbofan (avg.)
	Method Hid-node Time (s) Epoch CVRMSE Hid-node Time (s) Epoch CVRMSE
	SW-ELM		30	0,0014	-	10.83%	3		0.006	-	0.042%
	ELM		30	5.5e-004	-	11.06%	3	0.004	-	0.0578%
	LM-SLFN	30		0.20	10	11.51%	3		0.72	10	0.0570%
	ELMAN		30		0.45	10	10.83%	3		0.75	10	0.0570%
					Multi-steps predictions of time series # 61 (NN3 datasets)
		7000			Serie 60	ELM	SW-EM		MSP
	Scale	5000 6000							
		4000			Learned samples			
		70		80	90	100	110	120	130	140
							Index		

Table 3 .

 3 5: Type of cutting tools used during experiments

	Cutters Geometry Coating
	C18 C33	Geom1	Coat1 Coat2
	C09	Geom2	Coat3

Table 3 .

 3 6: Robustness and applicability for a single cutter model

	Cutter 09	SW-ELM	ELM
	Hidden nodes	16	16
	Activation function asinh & Morlet	sig
	Training time (s)	0.0009	0.0005
	R2	0.824	0.796
	Cutter 18	SW-ELM	ELM
	Hidden nodes	12	12
	Activation function asinh & Morlet	sig
	Training time (s)	0.0007	0.0004
	R2	0.955	0.946

Table 3 .

 3 

	Train: C33, C18, C09 Test: C18	SW-ELM	ELM
	Hidden nodes	20	20
	Activation function	asinh & Morlet	sig
	Training time (s)	0.002	0.001
	R2	0.837	0.836
	Train: C33, C18, C09 Test: C33	SW-ELM	ELM
	Hidden nodes	16	16
	Activation function	asinh & Morlet	sig
	Training time (s)	0.002	0.0009
	R2	0.847	0.80

7: Reliability and applicability for 3 cutters models

Table 3 .

 3 

	Train: C33 & C09 Test: C18	SW-ELM	ELM
	Hidden nodes	4	4
	Activation function	asinh & Morlet	sig
	Training time (s)	0.0009	0.0004
	R2	0.701	0.44

8: Reliability and applicability for unknown data

Table 3 .

 3 9: Tool wear estimation with SW-ELME -Settings

	SW-ELME	Settings
	No. of models in ensemble 100
	Hidden neuron per model	10
	Actv. functions	asinh & Morlet
	Current time tc	50

Table 3 .

 3 10: Reliability and applicability for unknown data with SW-ELME

	Cutter	C18	C33	C09
	Time (s)	0.154	0.187 0.187
	M AP E	9.475% 9.77% 14.20%
	R2	0.768	0.525 -6.99
	Actual cuts	265	278	257
	Estimated cuts 287	261	280
	Lower 95% CI	257	238	219
	Upper 95% CI 291	286	292

  ). Learning of SW-ELM model is performed on run-to failure data sets from bearings Ber 1-1 and Ber 1-2 under operating conditions 1800 rpm and 4000N [5, 144]. In test phase, incomplete data sets from 5 bearings under same operating conditions (i.e., Ber 1-3 to Ber 1-7 ) are used to predict the RUL (see details about data in section 2.4). In other words, predictions are performed from a current time (of test data) to the end of the bearings life. Assuming that a single model cannot guarantee accuracy of predictions for all tests, 100 SW-ELM models (with different parameters) are learned, and the best model with minimum learning error is selected for testing phase. Note that, the learning of a single model is achieved in a rapid manner in just 0.0063 sec, due to one-step learning phase (section 3.3.2).

Table 3 .

 3 11: Long term prediction results for 5 test bearings

	Bearing Predicted steps MAPE (classical) MAPE (proposed)
	1 -3 1 -4 1 -5 1 -6 1 -7	573 289 161 146 757	2.09 % 32.14 % 0.38 % 0.68 % 16.92 %	1.32 % 1.89 % 0.186 % 0.184 % 0.46 %
	MAPE: Mean Absolute Percent Error -[0,∞[, Perfect score = 0

  , where the task of S-MEFC is to stop the prediction process by estimating discrete states, which also enables to set FTs when transition from degrading state to faulty state occurs (see Eq. (2.13)). In comparison, the classical approach does not ac-count for these important issues. The flow diagram of prognostics using "enhanced multivariate degradation based modeling strategy " with dynamic threshold assignment procedure is shown in Fig.4.8. Here two main phases are highlighted: 1) off-line phase to learn the predictor and the classifier, and 2) the on-line phase to simultaneously perform continuous state predictions and discrete state estimation, which also enables to dynamically assign FTs. The detailed descriptions of each phase are given in the following sections.

	Learning Database	O
	LD = 1..m	F
	4.4 Enhanced multivariate degradation based modeling 4.4.1 Outline: dynamic FTs assignment procedure According to discussions in Chapter 1 (section 1.3.3.3), we propose to perform RUL estimates by enhancing classical multivariate degradation based modeling strategy. The classical approach is mainly based on assumption, that all the machines can have same states of degradation e.g. 3 or 4 states. According to that, FTs are assigned by parti-tioning unlabeled multidimensional data into specific number of groups set by the user [164, 166]. However, in reality this is not true, because each machine can have different levels of degradation, even when similar operating conditions are applied. For practical reasons such assumptions are avoided to enhance multivariate degradation based mod-eling, by proposing S-MEFC algorithm that enables to improve health assessment phase of prognostics model. The proposed prognostics model integrates two algorithms namely, the SW-ELM (sec-tion 3.3.2) and the S-MEFC (section 4.3.2) to estimate RUL in a realistic manner. In other words, the main task of SW-ELM is to perform long-term multi-step ahead predic-extract / select Set of feat. "FLi" t=tc Set of feat. "TFi" Similarity "ED" State {TFt+1 / Cm} Learn Classifiers Pred. TFt+1 Match Classifier "Cm" No State Assess State Multi-var. Classifier {TFt+1 / CL} State= T Set of feat. "TFi" i= 1..n RUL Multi-step ahead Pred {TFi / Pi} Yes No Pred. TFt+1 State t = 1..tc F L I N O N L I N E t=t+1 tions (msp)Feature i = 1..n Learn Pred. model Pred. {FLi / Pi} Learn Classifiers Cluster {FL / CL} i= 1..n Similarity "ED" {TFt / CL} Cluster {FL / CL} LD = 1..m t = 1..tc Match Classifier "Cm" # of States Threshold (T) selection Yes E Test Predictability (see sec. 2.5.1) Couple {FLi / Pi} Set of predictable features With predictable features With predictable features

4.12)

4: Repeat step 2 and 3 untill termination criteria is met

v new -v old < ǫ

(4.13)

  According to previous discussions in section 2.6.2.2 prognostics should be performed by using only predictable features, that leads to better RUL estimates. To avoid any confusion, the RUL estimates for turbofan data are expressed in units time i.e., number of cycles. From the experiments on training data, it was found that, among multidimensional data 8 features, only 5 are predictable, i.e., features {F1 ; F4 -F7} or sensor[START_REF]Mechanical hair dryer dataset[END_REF][START_REF] Abu-Hanna | Prognostic models in medicine[END_REF][START_REF] An | Prognostics 101: A tutorial for particle filter-based prognostics algorithm using matlab[END_REF][START_REF] Asmai | A framework of an intelligent maintenance prognosis tool[END_REF][START_REF] Banakar | Artificial wavelet neural network and its application in neuro-fuzzy models[END_REF] as shown in Table2.5. Let us again validate this assumption by estimating the RUL for each multidimensional time series test data set, by using, on one side, the whole set of pre-selected features {F1 -F8}, and on the other side, these final "predictability-based" selected features. To estimate the RULs for both cases, SWELM and S-MEFC model are learned with 100 instances and tests are performed on 100 as well. It should be noted that for the learning and testing tasks, datasets are used with actual scales, without any normalization. As for example, the RUL estimation result with simultaneous prediction (by SWELM) and state estimation (by S-MEFC) involving multidimensional signals {F1 -F8} from the first test instance is shown in Fig.4.13.

	4.5.3 Prognostics results on complete test data
	4.5.3.1 Results comparison: with all features & with predictable features
									Continuous state Prediction
	Multi-varite features	391 392 393 394 390	8.4 8.41 8.42 8.43 8.44 8.45 8.46	2388.06 2388.08 2388.1 2388.12 2388.14 2388.16 2388.04	47.15 47.2 47.25 47.3 47.35 47.4 47.45 47.5	1400 1405 1410 2388.05 2388 2388.1 2388.15	1580 1585 1590 1595	642 642.2 642.4 642.6 642.8 643		Current time tc
									20	40	60	80	100	120	140
										Time(cycles)
		5							Discrete state estimation
					Failure threshold			
	Degrading State	2 3 4				Current time tc	Failure threshold θ	Faulty state
		1			20		40		60	80	100	120	140
										Time(cycles)

Table 4 .

 4 1: Prognostics model results comparison for 100 test engines Among 100 tests instances, when using predictable features RUL estimates of 48 cases fall in interval I = [-10,13], i.e., on-time estimates. The amount of early estimates is 40, and amount of late estimates is only 12. It should be noted that early estimates are preferable than late estimates that can cause catastrophic situations

	Criteria	With all features With predictable features	By [166]
	RUL error distribution span	I = [-85,74]	I=[-39,60]	I = [-85,120]
	On time estimates	32	48	53
	Early estimates	34	40	36
	Late estimates	34	12	11
	R2	0.55	0.614	N/A
	T ime	5m 33sec	3m 54sec	N/A
	Score	4463	1046	N/A

Note: classical definition of reliability "the ability of an item to perform a required function under given conditions for a given time interval"[START_REF] En | Terminologie de la maintenance[END_REF] is not retained here. Actually, the acception used in this thesis is according to application machine learning approaches in PHM, that do not consider reliability as dependability measure[START_REF] Bosnić | An overview of advances in reliability estimation of individual predictions in machine learning[END_REF].
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2. Model fitting accuracy is evaluated by the coefficient of determination (R2) that should be close to 1 and coefficient of variation of the Root Mean Squared Error (CV RM SE) that should be as low as possible (close to 0 -it is often expressed in percentage) (see Appendix A.4).

3. Network complexity is reflected by the number of hidden neurons (Hid -nodes).

With each approach (i.e., ELM, SWELM, LM-SLFN, ELMAN), 50 simulations are performed on a particular dataset and the best results are summarized. Multi-step ahead prediction problems NN3 [START_REF]NN3 forecasting competition[END_REF] Time series Time series (4 reg.) Same series 51, 54, 56, 58, All series Appendix A.5 forecast (x t , x t-1 , x t-2 , x t-3 ) x t+1→t+18 60, 61, 92, 106 (18 samp.) Turbofan [START_REF] Saxena | Damage propagation modeling for aircraft engine run-to-failure simulation[END_REF] Predict Degradation series Same series 90 engines 5 engines section 2.6.1.1 degradation 3 reg. (x t , x t-1 , x t-2 )

x t+1→t+H H ∈ [103, 283]

First issue: approximation problems

In case of approximation or estimation problems, real datasets from two different degrading machineries are used for condition monitoring task. The first dataset is from a Carnallite surge tank pump, which is used to approximate fault codes, where the second dataset is from a CNC milling machine to estimate wear of degrading cutting tools (Table 3.1). Results in Table 3.2 show that SW-ELM for both test datasets performs best approximations, with a compact structure, and it requires less learning time.

1. ELM has clear superiority of fast learning times (5.8e -004 and 5.0e -004 sec) for both datasets. In addition, SW-ELM and ELM can learn much rapidly as compared to LM-SLFN or ELMAN network. This is mainly due to the advantages of single-step learning phase of ELM based models, whereas LM-SLFN and ELMAN network required additional 50 epochs for the P ump dataset and 10 epochs for CN C dataset to achieve better accuracy performances.

Appendix A

A.1 Taxonomy of maintenance policies Corrective maintenance is an earliest form of maintenance that is unplanned (or reactive) and is undertaken after machinery breakdown. A failed item is repaired or replaced with a new one to store functional capabilities. This type of maintenance can be further categorized as immediate corrective maintenance or deferred corrective maintenance [START_REF] Gupta | Characterization of prognosis methods: an industrial approach[END_REF]. However, such maintenance is suitable for non-critical engineering assets, where failure consequences are slight and no immediate safety risks are involved. In other words, it should be used when there are no serious consequences of unscheduled downtime.

A.1.2 Preventive maintenance

Preventive maintenance is a planned (or proactive) strategy for maintaining machinery, that was introduced in 1950s [START_REF] Tran | Machine fault diagnosis and prognosis: The state of the art[END_REF]. The main objective was to increase availability of machinery as compared to corrective maintenance. Preventive maintenance can be further classified as predetermined maintenance and Condition Based Maintenance (CBM).

A.1.2.1 Predetermined maintenance

With predetermined maintenance repairs are performed on the basis of pre-defined schedule (or fixed intervals). Maintenance tasks are carried periodically (like lubrication, calibration, refurbishing, checking and inspecting machinery) after fixed time intervals to decrease the deterioration phenomena [START_REF] Tran | An intelligent condition-based maintenance platform for rotating machinery[END_REF]. However, the maintenance procedures do not involve evaluation of current state in particular. Although predetermined maintenance can be a simple approach to maintain equipment, it can be costly due to unnecessary stoppages or replacements of operating machinery. Another problem of this approach is that failures are assumed to occur in well defined intervals [START_REF] Kothamasu | System health monitoring and prognostics-a review of current paradigms and practices[END_REF].

CBM strategy is a step forward from predetermined maintenance, as it utilizes real-time condition monitoring data to maintain machinery, and repair only when need arises [START_REF] Eker | Major challenges in prognostics: Study on benchmarking prognostics datasets[END_REF][START_REF] Peysson | New approach to prognostic systems failures[END_REF]. Therefore, unnecessary maintenance procedures are avoided and maintenance costs are reduced significantly. A CBM program has three main stages that are discussed in [START_REF] Jardine | A review on machinery diagnostics and prognostics implementing condition-based maintenance[END_REF]: 1) data-acquisition, 2) data pre-processing and 3) decision making. The first stage is a building block for CBM procedure, where monitored information is gathered and stored. In the second stage feature extraction and selection tasks are performed. Lastly, the third stage of decision making recommends maintenance actions through diagnostics (for fault detection, isolation and identification) and prognostics of degrading equipment. Having knowledge of the current state of the equipment, and predicting its future behavior are the basis of CBM [START_REF] Jarrell | Prognostics and conditionbased maintenance: A new approach to precursive metrics[END_REF]. Therefore, in industrial context CBM approach can be of two types.

Current state CBM: in this case CBM is based only on the current-state of the equipment and do not include prediction / forecasting of future states of the degrading 

A.3 FCM algorithm

According to [START_REF] Bezdek | Pattern Recognition with Fuzzy Objective Function Algorithm[END_REF], the main steps of FCM algorithms are summarized as follows. 

3: Repeat step 1 and 2 untill termination criteria is met

A.4 Metrics for model accuracy

• MAPE: the mean absolute percentage error, or known as mean absolute percentage deviation (MAPD). MAPE usually expresses accuracy as a percentage and can be formulated as follows,

where y i indicates the actual value and ŷi indicates the predicted value.

• R2: evaluates the variability in the actual values explained by the model and can be computed by dividing explained variation by total variation:

where SSE is the measure of deviation of observations from the predicted values, i.e., SSE = i (y i -ŷi ) 2 , and SS yy is the measure of observation from the mean value, i.e., SS yy = i (y i -ȳ) 2 .

• CVRMSE: Coefficient of Variation of the Root Mean Squared Error evaluates the relative closeness of the predictions to the actual values and can be formulated as,

where RM SE is the root mean square error i.e.,

It should be noted that, all metrics are unit less.

A.5 Benchmark datasets A.5.1 Carnallite surge tank dataset

The dataset was provided by Arab Potash company [START_REF] Samhouri | An intelligent machine condition monitoring system using time-based analysis: neuro-fuzzy versus neural network[END_REF]. Mainly, the data were acquired from a critical component called as Carnallite surge tank pump to perform condition monitoring task in an intelligent manner. The main objective was to replace visual inspection (human) for condition monitoring with an automated system to detect faults and avoid breakdowns. The tests aim at approximating the output "fault codes" by feeding neural networks with two inputs (RMS and σ 2 ). The whole dataset consists of 92 samples, from which 73 samples were used to learn the models, whereas the remaining 19 were used for testing purpose. 

A.5.3 Mechanical hair dryer dataset

The hair dryer dataset used for one-step ahead prediction were contributed by W. Favoreel from the Kuleuven Unversity [START_REF]Mechanical hair dryer dataset[END_REF]. The air temperature of the mechanical hair dryer is linked to voltage of the heating device. The data have one exogenous variable x 1 for the voltage of the heating device, and one endogenous variable y for the air temperature 

A.5.4 NN3 forecasting data

To evaluate multi-steps ahead prediction performances, simulations were made on data sets from the NN3 competition, that were originally provided to test the accuracy of computational intelligence methods (notably neural networks) in time series forecasting [START_REF]NN3 forecasting competition[END_REF]. Mainly, the advantage of the data resides in diversity and quantity of time series: the complete data are composed of 111 monthly time series derived from homogeneous population of empirical business time. Among all data, tests were carried out on time series numbers 51, 54, 56, 58, 60, 61, 92, 106 (randomly chosen), without data processing. A plot of those time series is given in Fig . A.8 which reflects the diversity of behaviors to be predicted. As for the horizon of prediction (and according to NN3 competition), the last 18 values of each time series were used for test, whereas the remaining data (the previous ones) were used to learn the models. 
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