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― Albert Einstein, Relativityμ The Special and the General Theory 
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Introduction:	

From last few decades, frequency control technology has been the heart of modern day 

electronics due to its huge area of applications in communication systems, computers, navigation 

systems or military defense. Frequency control devices provide high frequency stabilities and 

spectral purities in the short-term stability domain. However, improvement of the performance of 

these devices, in terms of frequency stability on the long term, remains a big challenge for 

researchers. 

Frequency control systems are often made with ultra-stable oscillators (USO) using quartz 

crystals or atomic clocks in which quartz crystals provide the short term stability while the atomic 

part provides the accuracy. Hence, piezoelectric quartz crystals are the backbone of most of the 

frequency control systems due to some important features such as, availability of zero temperature 

coefficient cut, stress compensated cut, low loss, high ܳ, abundance in nature and low cost. Indeed, 

following John R. Vig, we may question “What would happen if all the quartz crystal stop 

vibrating?” [1], since then, the entire communication systems would be disabled, and all the 

computers would stop working... Furthermore, the number of users of such systems has been 

growing so rapidly that engineers keep trying to reduce the channel spacing in a given frequency 

band. Hence, the frequency tolerance of the communication systems should be tighter for both 

transmitters and receivers. Reducing noise in order to increase the short term stability and avoid 

unwanted switching between channels is thus very desirable. It is commonly admitted that the 

fundamental limitation to this short-term stability is due to flicker frequency noise in the quartz 

resonators. For more than fifty years many researchers have tried to find the physical origin of this 

inherent flicker noise, but till now there is no effective model to predict the origin and amplitude of 

flicker noise so that it is still an important fundamental problem for the current generation. 

This work is directed to investigate the physical origin of quantum ͳ/݂ noise (or pink noise 

where the spectral density of frequency fluctuation is inversely proportional to the frequency). 

Numerous scientists have proposed models on the origin of ͳ/݂ noise for different types of physical 

systems. But in their model, effective means to improve the frequency stability of the quartz crystal 

resonators cannot be found (except maybe in some of P. H. Handel’s papers). Hence, providing a 

physical model of good but not perfect piezoelectric resonators in order to get better fabrication 

yields, better frequency stability and higher spectral purity for space application, navigation and 

military defense systems is the main objective of this PhD thesis. 
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Recently, several other piezoelectric materials than quartz have been considered for 

applications at high temperatures (several hundred °C). In most cases, researchers and engineers are 

trying to reduce the flicker noise of ultra-stable oscillators or MEMS made with these new synthetic 

materials arbitrarily by using electric or electronic circuits instead of trying to find the fundamental 

physical origin of the flicker noise applicable for the whole class of material. However, this kind of 

task has been a formidable challenge for more than fifty years, because one needs to deal with many 

different aspects of physics (classical, quantum, statistical, …) and engineering. The goal of this 

PhD thesis was nonetheless to tackle this subject, with the help of a pluridisciplinary team of 

supervisors, in a pluridisciplinary institute of research. The progresses we have been able to do 

theoretically and experimentally are discussed in details in this document. 

In this manuscript, the first chapter recalls the basic crystallography, quartz crystal cuts, 

impurities in quartz and definitions of time and frequency domain needed to explore ultra-stable 

resonators and oscillators. The second chapter is devoted to a summary of the different theories and 

models on flicker frequency noise based on the different physical and mathematical background. 

Then, the third chapter concerns our studies on Handel’s quantum ͳ/݂ noise model, which although 

criticized by many, is still the only one that provides an estimation of the floor amplitude of ͳ/݂ 

noise that is not invalidated by experimental data. In the fourth chapter, another approach, based on 

the fluctuation-dissipation theorem, is used in order to put numerical constraints on a model of ͳ/݂ 

noise caused by an internal (or structural) dissipation proportional to the amplitude and not to the 

speed. The last chapter is devoted to experimental results. An ultra-stable resonator used during this 

study is described. Phase noise measurements on several batches of resonators are given. 

Measurements of resonator parameters have been done at low temperature in order to correlate them 

with noise results. Another approach with a procedure that use transient pseudo periodic oscillations 

and put to their limits the capacities of presently available digital oscilloscopes, is presented, in 

order to assess rapidly the quality of various resonators. 
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Chapter	1: General	Overview	

1. Piezoelectricity 
Piezoelectricity is the consequence of the linear interaction between the mechanical 

deformation and the electrical polarization of matter. Piezo is derived from the Greek word piezin 

and means “to press”. Piezoelectricity in piezoelectric crystals is due to the fact that an external 

mechanical stress which deforms the crystal lattice causes a separation of the centers of gravity of 

the positive and negative charges. This charge separation then generates a net dipole in each 

primitive unit cell of the crystal (Fig.1.1). As a result a dielectric polarization appears which 

changes the macroscopic electric field in the material (Fig. 1.2, upper part). This is known as the 

direct piezoelectric effect. In direct piezoelectric effect, the change of electric polarization is 

proportional to the strain. 

 
Fig.1.1: Schematic diagram of charge separation inside a piezoelectric crystal under the influence of 

external mechanical stress [2]. 

In converse piezoelectric effect, a piezoelectric crystal becomes strained under the influence 

of an external electric field (Fig.1.2, bottom part). Under a force F, a polarization P will appear 

inside the crystal. Thus displacements x will occur. 
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Fig.1.2: Direct and converse piezoelectric effect [3]. 

Piezoelectric crystals can make good oscillators due to three main propertiesμ 

1) Internal dissipation in most of the piezoelectric crystals is very low 

2) The density and elastic constants are very uniform, so that crystal cuts with the same given 

orientation have the same characteristic frequencies. 

3) Different kinds of crystal cuts are possible which have distinct advantageous physical 

properties. 
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1.1. General constitutive equations of piezoelectricity 

To understand the elastic constants and piezoelectric equations as described by L. E. 

Halliburton et al. (1λ85) [4], let us consider a cube with side length l inside the solid with the origin 

of orthogonal coordinate system located at the center of the volume element (Fig. 1.3). 

 
Fig. 1.3: The forces on the faces of a cube located inside a stressed body [4]. 

Here Cauchy’s stress tensor1 is represented by the symbol ܶ and strain is represented by the 

symbol ܵ. Under the application of a complex stress the point with initial coordinates ݔଵ, ,ଶݔ  ଷ isݔ

displaced to the position ݔଵ ൅ ,ଵݑ ଶݔ ൅ ,ଶݑ ଷݔ ൅  ଷ. The components of the strain tensor are givenݑ

byμ 

 ௜ܵ௝ ൌ ଵଶ ൬డ௨೔డ௨ೕ ൅ డ௨ೕడ௨೔൰ (1.1) 

Then Hooke’s law is given by2 3μ 

 ௜ܶ௝ ൌ ܿ௜௝௞௟ܵ௞௟ (1.2) 

or ௜ܵ௝ ൌ ௜௝௞௟ݏ ௞ܶ௟ (1.3) 

where ܿ௜௝௞௟ is the elastic stiffness tensor and ݏ௜௝௞௟ the elastic compliance tensor. Both of them are 

fourth rank tensors. Hooke’s law is a linear approximation, valid for small strains (with respect to 1) 

and in the absence of any other multiphysics effect. 

                                                 
1 The ݆௧௛ component of the stress vector is given by ௝ ൌ ∑ ݊௜ ௜ܶ௝ଷ௜ୀଵ , with ݊௜ the ݅௧௛ component of the vector normal to 

the surface on which the stress acts. 
2 Here we adopt the usual convention that repeated indices are summed, e.g. ௜ܶ௝ ൌ ∑ ∑ ܿ௜௝௞௟ܵ௞௟ଷ௟ୀଵଷ௞ୀଵ . 
3 In reality, even in the elastic regime and in the absence of any electric or magnetic excitation, there can be nonlinear 
elastic terms or anelastic terms due to the fact that the response is not instantaneous. 
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Indeed, in direct piezoelectric effect, applied stress produces an additional electric polarization 

given byμ 

 ∆ ௜ܲ ൌ ݀௜௝௞ ௝ܶ௞ (1.4) 

Since ܶ and ܵ are connected by Hooke’s law, this can also be expressed asμ 

 ∆ ௜ܲ ൌ ݁௜௝௞ ௝ܵ௞    with  ݁௜௝௞ ൌ ݀௜௠௡ܿ௠௡௝௞ா  (1.5) 

The superscript E denotes whether the electric field has been held fixed during the measurement. 

Similarly, for the converse piezoelectric effect, crystal becomes (further) deformed under the 

application of an electric fieldμ 

 ∆ ௝ܵ௞ ൌ ݀௜௝௞ܧ௜ (1.6) 

or equivalently (in linear response theory)μ 

 ∆ ௝ܶ௞ ൌ െ݁௜௝௞ܧ௜ (1.7) ݀௜௝௞ and ݁௜௝௞ represent the piezoelectric strain tensor and piezoelectric stress tensor respectively. 

So the total (small) strain experienced by the crystal, in these conditions, is the sum of two 

contributions, one due to the applied stress and the other due to the applied field via piezoelectric 

effectμ 

 ௜ܵ௝ ൌ ௜௝௞௟ாݏ ௞ܶ௟ ൅ ݀௞௜௝ܧ௞ (1.8) 

Similarly the total polarization is given byμ 

 ௜ܲ ൌ ݀௜௞௟ ௞ܶ௟ ൅  ௞ (1.λ)ܧ଴߯௜௞்ߝ

where ߯௜௞் corresponds to the electric susceptibility, measured under constant stress ܶ, of the 

material under consideration. 

Then, the dielectric displacement is obtained by adding ߝ଴ܧ௜ to the left hand side of (1.λ) and ߝ଴ߜ௜௞ܧ௞ to the right hand side of (1.λ) 4μ 

௜ܦ  ൌ ݀௜௞௟ ௞ܶ௟ ൅  ௞ (1.10)ܧ௜௞்ߝ
Alternatively, one can choose strain and electric field as independent thermodynamic 

variables. The characteristic equations then becomeμ 

 ௜ܶ௝ ൌ ܿ௜௝௞௟ா ܵ௞௟ െ ݁௞௜௝ܧ௞ (1.11) 

௜ܦ  ൌ ݁௜௞௟ܵ௞௟ ൅ ௜௞ௌߝ  ௞ (1.12)ܧ
where superscript S means that the strain has been held fixed during the measurement of the 

permittivity ߝ௜௞ௌ .  

Thanks to thermodynamic considerations (equality of second derivatives of the 

thermodynamic functions with respect to different thermodynamic variables whatever the order of 

                                                 
4 We recall that in SI units, the absolute electric permittivity is related to the susceptibility by ߝ௜௞் ൌ ௜௞ߜ଴ሺߝ ൅ ߯௜௞்ሻ. 
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derivation), it can be shown that stress and strain tensors are symmetric, so that ݀௜௝௞ ൌ ݀௜௞௝ and ݁௜௝௞ ൌ ݁௜௞௝, that ܿா and ݏா must also be symmetric with respect to the interchange of the first and 

second pair of indices, that ்ߝ and ߝௌ must be symmetric. Furthermore, it can be shown that5 ܿ௜௝௠௡ா ௠௡௣௤ாݏ ൌ ௜௞்ߝ ௝௤ and that6ߜ௜௣ߜ െ ௜௞ௌߝ ൌ ݀௜௠௡݁௞௠௡ ൌ ݁௜௠௡݀௞௠௡. 

1.2. Voigt’s notations 

Due to all the symmetry relations, a lot of coefficients are equal, hence a more compact 

matrix notations is possible (Voigt’s notations). Hence a pair of symmetric indices ݆݇ running from 

1 to 3 is replaced by a single index ߙ running from 1 to 6μ ݆݇  11  22  33 23 or 32 13 or 31  12 or 21 ߙ  1  2  3 4 5 6 

Hence stress and strain tensors become 1×6 matrices, while piezoelectric tensors become 3×6 

matrices, stiffness and compliance become 6×6 matrices and dielectric permittivity becomes a 3×3 

matrix. However, due to the equivalence of indices 4, 5 and 6 to 2 different pairs of indices ݆݇, one 

must be careful not losing factors of 2. It is therefore usually defined thatμ 

 ܵఈ ൌ ʹ௣ ௝ܵ௞, ݀௜ఈ ൌ ʹ௣݀௜௝௞ and ݏఈఉா ൌ ʹ௣ݏ௜௝௞௟ா  (1.13) 

with ݌ the number of Greek indices equal to either 4, 5 or 6 or equivalently to the number of pair(s) 

of roman indices that are not equal7. 

This means thatμ 

ଵܶ ൌ ଵܶଵ, ଶܶ ൌ ଶܶଶ, ଷܶ ൌ ଷܶଷ, ସܶ ൌ ଶܶଷ	, ହܶ ൌ ଵܶଷ, ଺ܶ ൌ ଵܶଶ 

ଵܵ ൌ ଵܵଵ, ܵଶ ൌ ܵଶଶ, ܵଷ ൌ ܵଷଷ, ܵସ ൌ ʹܵଶଷ	, ܵହ ൌ ʹ ଵܵଷ, ܵ଺ ൌ ʹ ଵܵଶ ݏଵଶா ൌ ଵଵଶଶாݏ ଷହாݏ , ൌ ଷଷଷଵாݏʹ ସହாݏ,  ൌ Ͷݏଶଷଷଵா . ݁ଵଶଶ ൌ ݁ଵଶ, ݁ଶଷଵ ൌ ݁ଶହ, ݀ଵଶଶ ൌ ݀ଵଶ, ʹ݀ଶଷଵ ൌ ݀ଶହ 
Using these notations, we haveμ 

 ቊ ఈܶ ൌ ܿఈఉா ఉܵ െ ݁௜ఈܧ௜ܦ௜ ൌ ݁௜ఉ ఉܵ ൅ ௝ܧ௜௝ௌߝ  or ቊܵఈ ൌ ఈఉாݏ ఉܶ ൅ ݀௜ఈܧ௜ܦ௜ ൌ ݀௜ఉ ఉܶ ൅ ௝ܧ௜௝்ߝ  (1.14) 

In this linear approximation, the first set of constitutive relations in the above equations can thus be 

written, for any anisotropic material in any coordinate system, asμ 

                                                 
5 E.g. by ௜ܶ௝ ൌ ܿ௜௝௠௡ா ܵ௠௡ െ ݁௞௜௝ܧ௞ ൌ ܿ௜௝௠௡ா ൫ݏ௠௡௣௤ா ௣ܶ௤ ൅ ݀௞௠௡ܧ௞൯ െ ݁௞௜௝ܧ௞ 
6 E.g. by ݀௜௞௟ ௞ܶ௟ ൅ ௞ܧ௜௞்ߝ ൌ ݀௜௠௡൫ܿ௠௡௣௤ா ܵ௣௤ െ ݁௞௠௡ܧ௞൯ ൅ ௞ܧ௜௞்ߝ ൌ ݁௜௣௤ܵ௣௤ ൅ ௜௞ௌߝ  ௞ܧ
7 With this notation, we have ௝ܵ௞ ௞ܶ௝ ൌ ܵఈ ఈܶ (but not ௝ܵ௞ܵ௞௝ ൌ ܵఈܵఈ or ௝ܶ௞ ௞ܶ௝ ൌ ఈܶ ఈܶ as with Mandel’s notation) 
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1.3. Simplifications for the trigonal crystallographic class 

In our case, we will be interested by materials in the 32 trigonal class. Taking into account 

this additional symmetries, the dielectric matrix is given byμ 

 ൭ߝଵଵ Ͳ ͲͲ ଵଵߝ ͲͲ Ͳ  ଷଷ൱ (1.16)ߝ

The piezoelectric stress matrix is given byμ 

 ൭݁ଵଵ െ݁ଵଵ ͲͲ Ͳ ͲͲ Ͳ Ͳ		݁ଵସ Ͳ ͲͲ െ݁ଵସ െ݁ଵଵͲ Ͳ Ͳ ൱ (1.17) 

and the elastic stiffness by (with ܿ଺଺ ൌ ሺܿଵଵ െ ܿଵଶሻ/ʹ)μ 
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ۋی
 (1.18) ۊۋ

It can then be proved that the compliance matrix ݏாധധധ ൌ ൣܿாധധധ൧ିଵ is of the same form than the elastic 

stiffness matrix except that ݏ଺଺ ൌ ʹሺݏଵଵ െ ̿݀ ଵଶሻ and that piezoelectric strain matrixݏ ൌ ݁̿ ∙ ாധധധ൧௧ݏൣ
 is 

of the same form than the piezoelectric stress matrix, except that ݀ଶ଺ ൌ െʹ݀ଵଵ. 

1.4. Electromechanical coupling factor 

Electromechanical coupling factor (or coefficient), k, is a numerical measure of the 

conversion efficiency between electrical and acoustic energy in piezoelectric materials. It can be 

determined as the ratio between the mechanical energy provided to the material and its part 

converted in electrical energy, and this, in a case of given strain and given electric fieldμ 

 ݇ଶ ൌ ௢௕௧௔௜௡௘ௗ	௘௟௘௖௧௥௜௖௔௟	௘௡௘௥௚௬	௠௘௖௛௔௡௜௖௔௟	௘௡௘௥௚௬	௣௥௢௩௜ௗ௘ௗ ൌ ௢௕௧௔௜௡௘ௗ	௠௘௖௛௔௡௜௖௔௟	௘௡௘௥௚௬	௘௟௘௖௧௥௜௖௔௟	௘௡௘௥௚௬	௣௥௢௩௜ௗ௘ௗ  (1.1λ) 

where the second equality comes from the equivalence between the direct and the converse 

piezoelectric effects. 

  



λ 

k is generally expressed using piezoelectric coefficients [5]μ 

 ሺ݇௄௅ሻଶ ൌ ሾ௘಼ೕ௟ೕሿሾ௟೔௘೔ಽሿሺ௖಼ಽಶ ሻሺ௟೔ఌ೔ೕೞ ௟ೕሻ (1.20) 

with li the wave vector directions. 

2. Crystal characteristics 
2.1. Quartz crystal 

The chemical formula of Silica (SiO2) consists of two elements, oxygen and silicon. Silica 

crystalizes into a number of different structures among which quartz, trydimyte and cristobalite are 

the most common whereas the crystalline polymorphs coesite, stishovite and keatite are rare [6] 

(Fig.1.4). Only one allotrope of silica, low quartz commonly known as alpha quartz, has application 

in frequency control systems. Alpha quartz is a member of the 32 point group that exists in two 

chiral varietiesμ left- handed alpha quartz (	ܲ͵ଵʹͳ space group) and right-handed quartz (ܲ͵ଶʹͳ 

space group). 

 
Fig.1.4: Phase diagram of Silica (SiO2) [2]. 

2.1.1. Quartz Crystallography 

2.1.1.1. DEFINITIONS OF THE CRYSTALLOGRAPHIC AND CARTESIANS AXES 

Normally alpha quartz can be viewed as rigid SiO4 tetrahedra connected at their corners by 

flexible Si-O-Si articulations [6]. The four oxygen atoms surround a silicon atom8 where the Si-O 

long bond distance is 1.612 Å and Si-O short bond is 1.606 Å. The angle O-Si-O is 10λ°, while the 

angle Si-O-Si is 144.2° (Fig.1.5) [7]. 
                                                 
8 The chemical bonds between oxygen and silicon are partly (doubly) covalent, partly ionic, so that one can either use 

the words ions or atoms to designate the entities forming the crystal. 
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Fig.1.5: The quartz lattice (from http://volga.eng.yale.edu/sohrab/grouppage/pics/SiO2bulksupercell.jpg). 

Si atoms/ions are in red, Oxygen atoms/ions in blue, iono-covalent bounds in black. 

In fact, due to the 32 symmetry class, the basic structural unit of quartz is a group of three 

connected SiO4 tetrahedra. However, since oxygen atoms are shared among two silicon atoms and 

therefore each account for ½, the crystallographic primitive unit cell chemical formula is Si3O6. 

Hence, in crystallographic databases, one can find the coordinates of these λ entities in a Cartesian 

frame that can however differ from a database to anotherλ.  

The coordination system of the alpha quartz can then be defined as a single axis of threefold 

symmetry known as trigonal axis ܿ (or optical axis10) and the three axes of twofold symmetry (ܽଵ, ܽଶ, and ܽଷ), known as diagonal axes (or electrical axes), perpendicular to the trigonal axis [8]. The 

major axis of quartz growth is c axis and it is taken parallel to Z axis (called optical axis) having 

positive arbitrary direction, in an orthogonal XYZ coordinate system. A quartz crystal having 6 

sides has three separate possible X axes and three separate corresponding Y axes. The X axis 

(called electrical) conventionally adopted lies along one of the three equivalent a axes and is chosen 

so that the piezoelectric constant ݀ଵଵ is positive for right handed quartz (cf. IEEE Standard on 

                                                 
λ For our molecular dynamics simulations that will be described in a subsequent chapter, we used the free-access 

Mincryst database to get input coordinates (httpμ//database.iem.ac.ru/mincryst/index.php). 
10 It is called optical axis because quartz being trigonal, it is uniaxial. Hence, a light beam propagating in the direction 

of the optical axis is not split (ordinary index ݊௢ ൌ ඥߝଵଵሺሻ ൌ 1.54422 for  ൎ ͷͻͲ nm) while a beam propagating 
perpendicularly to this axis is split into two beams of complementary polarization, according to a birefringence ݊௘ െ ݊଴ ൌ Ͳ.ͲͲͻͳͲ (݊௘ ൌ ඥߝଷଷሺሻ ൌ 1.55332). 
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piezoelectricity ANSI/IEEE Std 176-1λ87, table 5). The Y axis (called mechanical axis11) is chosen 

to form right handed coordinate system for both left and right-hand alpha quartz. The Y axes are 

perpendicular to the prism faces (ሼͳͲͳതͲሽ family of crystallographic planes) and X axes bisect the 

angles of the adjacent prisms (and would be perpendicular to the ሼʹͳതͳതͲሽ family of crystallographic 

planes).12 

2.1.1.2. LEFT AND RIGHT HANDED QUARTZ 

When a linearly polarized light beam is transmitted along the optic axis then a rotation of the 

direction of polarization occurs and the amount of the rotation is in first approximation proportional 

to the path length in quartz13. The direction of rotation can be used to understand the difference 

between left and right-handed alpha quartz. For the dextrorotary alpha quartz, the rotation of the 

plane of polarization is clockwise if the rotation is observed towards the source of light and the 

rotation is anti-clockwise for the levorotary alpha quartz14. This comes from the fact that, in a quartz 

crystal, the Si and O ions can be viewed as forming parallel, corkscrew-like chains or helices. 

In quartz crystal the orientation of the x and s faces15 with respect to the prism faces give a 

way of differentiation between left and right handed alpha quartz (Fig. 1.6). The different faces 

correspond to different crystal lattice planes. They can be related to different forms, and accordingly 

the whole crystal can be viewed as the intersection of these forms. Table 1.1 lists the most 

important crystallographic forms in quartz. 

                                                 
11 If a mechanical stress is applied to opposite faces perpendicular to the mechanical axis, along that 

 axis ሺ ଶܶଶ ൌ ଶܶ ് Ͳሻ, equal and opposite net charges appear on opposite surfaces perpendicular to the electric axis ሺ ଵܲ ് Ͳሻ, (direct piezoelectric effect). Conversely, if a time varying potential difference is applied to opposite faces 
perpendicular to the electric axes ሺܧଵ ് Ͳሻ, then the crystal vibrates along the corresponding mechanical axis 
(inverse piezoelectric effect). 

12 Even with the directions of the axes fixed, the origin of the frame still remains to be fixed… 
13 According to httpμ//en.wikipedia.org/wiki/Optical_rotation, this effect was first observed in 1811 in quartz (!) by 

French physicist François Arago, whereas John Herschel realized in 1822 that 2 crystals images from one another 
through a mirror symmetry, would rotate the polarization by the same amount but in opposite directions. 

14 A dextrorotary substance (crystal or solution) makes the polarization direction turn clockwise around the propagation 
direction as seen by an observer that receives light, while a levorotary substance makes it turn anticlockwise. This 
should normally not be mistaken with right or left handedness since these are normally two variants of a property of 
a non-linearly polarized propagating electromagnetic wave for which two conventions exist (e.g. clockwise rotation 
as seen from the source or from the detector). For a right-handed circularly polarized wave the polarization vector 
makes a complete turn clockwise after propagation on a distance equal to the wavelength, which is usually not the 
case for the propagation of a linearly polarized wave in a dextrorotary substance. 

15 “The typical s-face is a rhomb, whereas an x-face is usually either a triangle or - when it is bordering an s-face - a 
trapezoid. (…) If an x- or s-face is present at the left side of an r-face, the quartz is called left-handed (or left quartz, 
for short). If an x- or s-face is present at the right side of an r-face, the quartz is called right-handed (or right quartz, 
for short)” (cf. httpμ//www.quartzpage.de/crs_intro.html). 
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Table 1.1: Most important crystallographic forms in quartz. 

Form Symbol

Positive Rhombohedron r 

Negative Rhombohedron z 

Hexagonal Prism m 

Trigonal Bipyramid s 

Positive Trapezohedron x 

Right handed quartz is the usual characteristic of the synthetic quartz that can be found on the 

sale market. 

 
Fig. 1.6: Left-Handed and Right-handed quartz [2]. 

2.1.1.3. TWINNING AND PHASE TRANSITIONS 

Both optical and electrical twins occur in alpha quartz. The orientation of left and right 

handed quartz crystal depends on the orientation of the seed crystal. The synthetic quartz produced 

is generally right-handed quartz, whereas in natural quartz both left and right handed properties are 

equally distributed. The material in which left and right-handed forms are mixed is known as 

optically twinned or Brazil twinned material and it can’t be used to manufacture resonators. The 

electrically twinned or Dauphiné material is one in which the material has same handedness, but the 

material contains a region in which the orientation of electrical axis is reversed, as a result 

piezoelectric effect is reduced. In electrical twinning the breaking of Si-O bond is not needed, rather 

the slight displacements of Si-O bonds are required and these types of material are also not suitable 

for making good resonators. Polarized light and etching techniques can be used to identify the 

optical and electrical twining. 
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When alpha quartz is heated above 573°C at 1 atmosphere pressure, then alpha quartz changes 

into the hexagonal beta quartz. If the material is cooled down below 573°C temperature then it will 

again be reverted into alpha quartz but the material will be electrically twinned. Similarly an 

application of large mechanical stress can induce twining in the material. So, at the time of the 

processing of resonators it is necessary to avoid mechanical and thermal shocks on the material. 

2.1.1.4. STRUCTURAL DEFECTS 

Exhaustive lists of quartz defects can be found in the literature [7], [8]. In this paragraph, we 

just give the characteristics measured for the very high quality quartz crystal that was used to build 

the quartz resonators measured during this PHD thesis (see chapter 5). It is representative of the 

very high quality of the recent synthetic quartz crystals. Inclusions, dislocations and surface defects 

are the dominant structural defects in quartz crystals [7].  

The IEC-758 standard defines the inclusion density by cm3 [λ]. This standard takes into 

account several sizes of inclusions. In the best grade (Ia), the number of inclusions must be equal or 

lower than 3, 2, 1 and 1, respectively in the 10-30 ȝm, 30-70ȝm, 70-100 ȝm and above 100 ȝm size 

classes. Fig.1.7 shows the quartz crystal block illuminated with a white light beam. The big 

inclusions are clearly visible (single light spots). Most of them are located near the seed of the 

crystal block (horizontal white bar in the middle of the crystal). They are not taken into account 

because this part of the crystal is not used. Finally, the number of inclusions above 10 ȝm 

corresponds to the Grade Ia standard. 

 

Fig.1.7: Inclusion detection and seed localization with white light [10]. 

Concerning dislocations, X-ray topography is usually used to observe the residual dislocations 

inside the crystal. This topography is done in thin plates (“blanks”) cut perpendicularly to the Y-

axis (see § 2.1.2 in this chapter for the quartz cuts), which corresponds to the longest dimension of 

the crystal block (Fig.1.7). Fig.1.8 presents the results obtained in two such plates (the cutting of 

these plates is detailed in chapter 5). The length of exposure of the photos is about 5h30 with an X-

ray vertical beam given by a generator of 45 kV with 25 mA. 

X
Y

Z 
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Fig.1.8: X-ray topography of Y-cut plates. 

The number of dislocations, observed inside the black square zone with seed excluded, is 

visible. It is about 1 to 3 per cm2 which corresponds to a very high quality quartz crystal. 

Surface defects occur principally due to the polishing of the convex face of the resonator. This 

process step may be done differently by the manufacturers with which we have worked and is 

covered by confidentiality agreements. However, since we are concerned by noise in bulk acoustic 

wave oscillators, we will disregard surface defects in the following hence supposing that their effect 

is negligible compared to the effect of the bulk defects. 

In quartz minerals, one can also find traces of other elements than Si and O, e.g. H, Li, Al, Na, 

Ti, Fe, … [7]. These elements cause distortions in the quartz structure so that the optical properties 

can change and quartz which should normally be transparent to visible light, can get colored. Hence 

the distribution of some kinds of impurities can be detected with a good resolution by 

cathodoluminescence16. 

Chemical impurities of our crystal block have been measured by an inductively coupled 

plasma mass spectrometry technique (ICP-MS method). This method is a type of mass spectrometry 

which is capable of detecting metals and several non-metals at concentrations as low as one part in 

1012 (part per trillion). This is achieved by ionizing the sample with inductively coupled plasma and 

then using a mass spectrometer to separate and quantify those ions. These measurements have been 

done by colleagues from the LCABIE (LCABIE, IPREM, UMR CNRS 5254, Université de Pau et 

des Pays de l’Adour, Pau, France). Analyses were performed with an ICPMS 7500ce from Agilent 

technologies (Tokyo, Japan). A certified reference material, the NIST 612 (National Institute of 

Standards and Technology, USA), was chosen to validate optimized working conditions, due to its 

low concentrations in some analyzed elements. About 3 grams of quartz samples were used for 
                                                 
16 In cathodoluminescence, high-energy electron beams ("cathode rays") induce short-lived luminescence effects that 

can be captured on ordinary film 

Seed 
Seed

pure Z 

Dislocation
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analysis. The preparation procedure was composed of three stepsμ cleaning, dissolution and 

analysis. Table 1.2 presents the results of two samples from the triangular crystal parts in the front 

and end of the block. The impurities rates are very low and seem homogeneous along the crystal 

block. The Li concentration is similar in both samples. The concentrations of Al, Na, Li and K, 

lower than 0.1 µg/g, correspond to a very high quality of the crystal even though the Ca 

concentration varies between 0.2 to 0.5 g/g. The Fe concentration (lower than 1 g/g) seems to be 

more important at the front of the block and requires more investigations to confirm this difference. 

Table 1.2: Chemical impurities measured in the crystal block. 

(in ppmw) Front block End block 

Li 0.0λ ± 0.03 0.1 ± 0.02 

Na < 0.07 < 0.05 

Mg < 0.0004 < 0.0003 

Al < 0.03 < 0.02 

K < 0.06 0.058 ± 0.001 

Ca 0.22 ± 0.02 0.45 ± 0.03 

Fe 0.λ8 ± 0.02 < 0.0001 

 

Furthermore, fundamental resonant frequencies of vibration of quartz crystal are sensitive to 

infrared beam with low energy (typically between 10-21 and 10-1λ Joules equivalent to 10 meV to 

1 eV). This kind of measurements is used to define the intrinsic quality factor of the crystal [8]. The 

infrared measurements have been achieved with a Fourier transform infrared (FTIR) spectrometer 

(Nicolet Magna 750). With IR transmission measurements at room temperature, the absorption 

parameter  is defined according to the IEC758 standard [λ], by reference with the transmission at 

3800 cm-1. The expression for is given by the following equation, where d is the thickness of the 

sample (generally chosen perpendicular to the Y-axis) expressed in cm and T is the transmission in 

percentμ 

௡ߙ  ൌ ଵௗ ln య்ఴబబ೙்  (1.21) 

Measurement of the IR absorption rate along a quartz bar are usually performed to check the 

homogeneity of the areas Z along the Y axis of the bar by scanning the sample at a constant 

wavelength (3500 cm-1) from the seed to outwards. It requires the polishing of the Z surfaces. In our 

experiment, the diameter of the IR beam is about 8 mm. Measurements are performed every 8 mm 



16 

along the 70 mm of the bar. The thickness of the bar is equal to 14 mm. The Z-faces of sample have 

been polished with 5 µm abrasive grains. As an example, Fig.1.λ presents the  parameter of one of 

the quartz bars. 

  

Fig.1.9: Value of the IR transmission versus wavelength expressed in cm-1 (left) and parameters (at 

3410, 3500 and 3580 cm-1) versus inverted wavelength of crystal bar (right) [10]. 

The value of α3500 is close to 0.023. This value corresponds to a class which is the best one 

defined in IEC758 standard [λ]. The expected quality factor computed from an empirical 

relationship [11] gives a Q-value of about 2.8106 for a resonator working at 5 MHz. This value is in 

good agreement with those measured for the ultra-stable quartz resonators used in Chapter 5. 

2.1.2. Quartz crystal cuts 

A small piece of quartz material is obtained by cutting the crystal at specific angles to the 

various axes. In frequency control the different cuts are used to produce different kinds of 

performances according to the temperature sensibility (cf. §3.1.1), and different physical and 

electrical parameters of the resonators. Cuts are defined by the two rotation angles θ and φ around 

the X and Z crystallographic axis respectively. There are cuts along the crystallographic axis, such 

as X-cut and Y-cut crystal (Fig.1.10). In X-cut, the prism face should be normal to the X axis. The 

advantage of this cut is that it produces relatively large voltage under compression. However, there 

is a decrease in frequency when temperature increases. For the Y cut resonator, the prism face of 

the crystal should be normal to the Y axis and the advantage of this cut is that it exhibits positive 

temperature coefficient. 

 
Fig.1.10: Description of the axis of quartz and X, Y, and Z rotational cuts [12]. 
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Formerly, searchers and engineers were usually interested by zero temperature-coefficient 

cuts in which temperature coefficient lies along the locus of the zero temperature (Fig.1.11). In this 

figure, blue and dash lines represent cut angles where first order temperature coefficient of the 

frequency is equal to zero. This kind of cuts has usually two-letter names, where “T” in the name 

represents the temperature-coefficient cut. AT cut was the first temperature compensated cut 

discovered.  

 
Fig.1.11: Zero temperature–coefficient quartz cuts [2]. 

The FT, BT and CT are other different zero temperature compensated cuts, used in past for 

some special properties before discovering SC cut (Fig. 1.12). 
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Fig. 1.12: Schematic representation of various cuts in the quartz crystal [12]. 

2.1.2.1. AT CUTμ 

AT cut is the most popular cut in industry because it has very good performance over a wide 

temperature range. For AT cut, the rotation θ of the Z-axis around the X axis is equal to 35°15΄ and 

it is known as temperature compensated cut (Fig.1.13). AT cut is used for electronic instruments 

where oscillators are required to run in the range 500 kHz to 500 MHz. AT cut are used for TCXO 

(Temperature Compensated Crystal Oscillator). For AT cut necessary tolerance is ±30΄΄. Inflection 

temperature of AT cut is 25°C. 

 
Fig.1.13: Schematic diagram of quartz AT cut [13]. 

2.1.2.2. SC CUTμ 

SC cut or stress compensated cut, was defined theoretically in 1λ76 by Earl Eer Nisse and 

confirmed through experiment by Jack Kusters, in 1λ77, in an attempt to find a thickness shear 

mode with low sensitivity to thermal and mechanical stress and better aging. This cut needs a 
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double rotation, with X-axis rotation φ is approximately 21.λ3° and Z-axis rotation θ is equal to 

34.11° (Fig.1.14)17 with a tolerance of േͳͲ′′. The SC cut has 2 quasi-thickness shear modes, the C 

mode which has classic cubic thermal coefficient and the B mode which has a steep positive slope 

operating approximately +10% higher in frequency than the C mode. The SC cut oscillator has the 

capability to trap out the B mode if the operation of the C mode is only desired. SC cut resonators 

are generally operated within the frequency range 0.5 to 200 MHz. 

 
Fig.1.14: Schematic diagram of quartz SC cut. 

SC cut oscillators are usually used for OCXO (Oven Controlled Crystal Oscillator) applications 

since it has a low temperature turn over point (70~85)°C which corresponds to a null slope of the 

frequency-temperature curve (see §3.1.1). The inflection temperature of SC cut is around λ3°C. 

The advantages of SC cut areμ 

 Thermal transient compensated allows faster warm up OCXO. 

 Static and dynamic behaviors of frequency vs temperature allows higher stability OCXO 

and MCXO (Microcomputer-Compensated Crystal Oscillators). 

 Lower motional capacitance (cf. § 3.1.2). 

 Higher ܳ factor. 

 Higher frequency times thickness constant18. 

 Lower phase noise and better short term stability. 

 Higher operating temperature. 

 Lower acceleration sensitivity. 

 Improved thermal stability. 

 Improved thermal stress. 

                                                 
17 It means that the X axis rotates by an angle  around the Z axis and that the Z axis rotate by an angle  around the X 

axis
18 The resonant frequencies are generally found to be inversely proportional to thickness 
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But much higher cost due to the difficulty of the two cutting angles is the big disadvantage of SC-

cut quartz. 

2.2. Crystals Homeotypic to Quartz (LGS, LGT and GaPO4) 

During the last two decades, a new group of materials isomorphous with quartz has been 

developed and studied for high temperature piezoelectric crystal devices [14]. Traditional 

piezoelectric materials such as quartz are widely used for high precision frequency control systems 

and sensor based applications. However, at normal pressure and 573°C, the trigonal -quartz will 

transform into hexagonal -quartz, thus limiting the temperature at which quartz crystal devices can 

be used. Crystals homeotypic to quartz such as Langasite (LGS), Langanite (LGN), Langatate 

(LGT), Berlinite (AlPO4), Gallium Orthophospate (GaPO4) are promising candidates for high 

temperature applications, since their phase transition temperature or melting point is far higher than 

573°C (Fig.1.15). Furthermore, their piezoelectric and electromechanical coupling constants are 

higher than those of quartz, they also exhibit temperature compensated cuts for various modes of 

vibration and they have lower acoustic attenuations than quartz and higher quality factor for AT and 

SC-cut than quartz. 

 
Fig.1.15: Temperature dependent resonant frequency of langasite, gallium phosphate and quartz BAW 

resonators [14]. 

2.2.1. Langasite (La3Ga5SiO14) 

The lanthanum gallium silicate was first developed in Russia from a joint research of the 

Moscow State University (MSU) and the Institute of Crystallography of the Russian Academy of 

Sciences. The Langasite family crystals have been developed for their possible applications as a 

bulk acoustic wave (BAW) and surface acoustic wave (SAW) devices with a high coupling and a 

better temperature-frequency behavior. For, the langasite family, crystal growth [15], [16], crystal 

structure [14], [15], [16], [17], [18], piezoelectricity [15], [17], [18], [1λ] structural perfections and 

acoustic properties [20], dielectric properties [1λ], [21], electrical properties [16], elastic properties 



21 

[1λ], magnetic properties [21] have been studied and compared with quartz. The interesting 

characteristic of langasite is its high temperature performance because it has no phase transition up 

to the melting point at 1475°C. Furthermore, the piezoelectric factor d11 of langasite is 2.7 times 

greater than that of quartz, so this allows to make piezo sensors with significantly higher sensitivity. 

The langasite family crystal structure has the same trigonal symmetry than quartz with 

spacegroup P321 and is isostructural to CaGa2Ge4O14 [22]. Langasite is a piezoelectric material 

according to its composition, that is, La, Ga and silicate minerals with structural group 

A3BC3D2O14, where A and B represents a decahedral site coordinated by eight oxygen ions, and an 

octahedral site coordinated by six oxygen ions, respectively; while C and D represent tetrahedral 

sites coordinated by four oxygen ions, with the size of D site being smaller than that of the C site. In 

case of Langasite, La3+ occupies the A sites, Ga3+  occupies sites B, C and half of the D sites and 

Si4+ occupies the half of the D sites as shown in Fig.1.16. 

 
Fig.1.16: Crystal structure of Langasite. (a) a1-a2 plane and (b) a1-c plane are viewed from [001] and 

[120], respectively. (c) four kinds of cation of cation polyhedra [15]. 
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2.2.2. Langatate (La3Ga5.5Ta0.5O14) 

Langatate (LGT) is another synthetic piezoelectric crystal homeotypic to quartz, with 

chemical composition La3Ga5.5Ta0.5O14. It has exciting properties, such as its higher piezoelectric 

coupling, structural stability up to 1400°C and presence of temperature compensated acoustic wave 

orientations, which have drawn the attention of sensor and frequency control communities as a 

possible alternative to quartz. The advantages of langatate areμ 

1) no Langatate phase transitions at normal pressure, up to the melting temperature 1450°C. 

2) It has no pyroelectric effect. 

3) Langatate has very small hysteresis loss. 

4) High electromechanical coupling factor. 

5) Steady-state value of piezoelectric constant d11 in a temperature range up to 600 °C (less than 5% 

change up to 450 °C). 

6) High electrical resistivity. 

Its piezoelectric properties [23], [24] dielectric and elastic properties [23], piezoelectric coupling 

factor [25] have been studied for high temperature applications in acoustic waves sensors or timing, 

and frequency control. Y cut oscillators are usually used for OCXO applications. 

2.2.3. Gallium orthophosphate (GaPO4) 

Gallium Orthophosphate is a quartz homeotypic piezoelectric crystal with a high sensitivity 

and a thermal stability up to λ70°C. The number of formula units per unit cell is 3, the same as in 

quartz, but due to the alternate sequence of Ga and P there is a doubling of the unit cell dimension 

in the c-direction, compared with quartz (Fig.1.17). The detailed crystal structure and temperature 

dependence of gallium orthophosphate was studied by H. Nakae et al. [26]. 
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Fig.1.17: Gallium orthophosphate (GaPO4) crystal. 

There exist two enantiomorphous structures of GaPO4 with the alpha-quartz space group ܲ͵ଵʹͳ and ܲ͵ଶʹͳ, yielding the (structural) right-handed and left-handed varieties. The lattice 

parameters are a = 4.λ01 Å and c = 11.048 Å at room temperature. GaPO4 is not ferroelectric so it 

has no Curie temperature and it does not show any pyroelectric effect. Gallium orthophosphate 

exhibits electromechanical coupling factors and longitudinal piezoelectric coefficients higher than 

those of quartz. GaPO4 is usually used for direct piezoelectric applications (accelerometers, force 

sensors), bulk acoustic wave applications (VCXOs – voltage controlled crystal oscillators –, 

OCXOs, chemical sensors, biosensors), surface acoustic wave applications (wireless identification 

system, remote control sensors). Y-16° cut oscillators are usually used in OCXO applications. 

2.3. Materials constants comparison 

A comparison of the material properties of alpha quartz, LGT, LGS and GAPO4 (LGT and 

LGS main properties from AXTAL, www.AXTAL.com, and GaPO4 properties from 

www.piezocryst.com) are given in the following tables. 

Table 1.3 to Table 1.7 respectively present the general properties, the expansion coefficients, 

the piezoelectric and dielectric constants, the elastic moduli and the temperature coefficient of those 

elastic moduli for -Quartz, GaPO4, LGS and LGT. 
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Table 1.3: Material properties of -Quartz, GaPO4, LGS, LGT. 

Material SiO2 GaPO4 La3Ga5SiO14 La3Ga5,5Ta0,5O14 

Crystal space group 32 32 32 32 

Melting point (°C) 1650 1670 1470 1510 

Curie temperature (°C) 
ߙ 573 →  ߚ

λ33 ߙ →  ௖௥௜௦௧௢ߚ
No phase transition No phase transition

Lattice parameter (Å) 
a = b = 4.λ13

c = 5.406 
a = b = 4.λ01

c = 11.048 
a = b = 8.1685 

c = 5.0λ20 
a = b = 8.2470 

c = 5.1303 

Density (kg/m3) 2648.6 3570 5742.4 6126 

Moh’s Hardness 7.0 5.5 6.5 6.4 

Electromechanical 
coupling factor % 

X-cut vibrating 
according Y axis 

10.λ 14.5 16.6 16.7 

Table 1.4: Values of the expansion coefficients of -Quartz, GaPO4, LGS, LGT (given at 25 °C). 

Material SiO2 GaPO4 La3Ga5SiO14 La3Ga5,5Ta0,5O14 ߙଵଵሺଵሻ ሺͳͲି଺	ܭ	ିଵሻ 13.71 12.78 5.68 6.17 ߙଷଷሺଵሻ ሺͳͲି଺	ܭ	ିଵሻ 7.48 3.6λ 4.08 3.λ3 ߙଵଵሺଶሻ ሺͳͲିଽ	ܭ	ିଶሻ 6.5 10.6 5.43 4.77 ߙଷଷሺଶሻ ሺͳͲିଽ	ܭ	ିଶሻ 2.λ 5 5.43 4.01 ߙଵଵሺଷሻ ሺͳͲିଵଶ	ܭ	ିଷሻ -1.λ -16.1 - - ߙଷଷሺଷሻ ሺͳͲିଵଶ	ܭ	ିଷሻ -1.5 -5.4 - - 
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Table 1.5: Values of the piezoelectric and dielectric constants of -Quartz, GaPO4, LGS, LGT 

(given at 25 °C). 

Material SiO2 GaPO4 La3Ga5SiO14 La3Ga5.5Ta0.5O14 

d11 (10-12C/N) 2.31 4.5  -6.36  -6.54  

d14 (10-12C/N) -0.726 1.λ 5.85 5.30 

e11 (Cm-2) 0.171 0.20λ -0.456 -0.456 

e14 (Cm-2) 0.0406 0.107 0.150 0.0λ4 ߝଵଵ் ⁄଴ߝ  4.428 6.1 18.λλ 1λ ߝଷଷ் ⁄଴ߝ  4.634 6.6 50.44 78.λ5 

Table 1.6: Values of the elastic constants of -Quartz, GaPO4, LGS, LGT (given at 25°C). 

Material SiO2 GaPO4 La3Ga5SiO14 La3Ga5.5Ta0.5O14 

CE
11 (1010 Nm-2) 8.674 6.658 18.873 18.852 

CE
12 (1010 Nm-2) 0.6λλ 2.181 10.45λ 10.788 

CE
13 (1010 Nm-2) 1.1λ1 2.487 λ.624 10.336 

CE
14 (1010 Nm-2) 1.7λ1 0.3λ1 1.414 1.351 

CE
33 (1010 Nm-2) 10.72 10.213 26.151 26.18 

CE
44 (1010 Nm-2) 5.7λ4 3.766 5.3λ 5.11 

CE
66 (1010 Nm-2) 3.λλ 2.238 4.207 4.032 

Table 1.7: Values of the temperature coefficient of elastic constants of -Quartz, GaPO4, LGS and 

LGT (given at 25 °C). 

Material SiO2 GaPO4 La3Ga5SiO14 La3Ga5.5Ta0.5O14 

T(1)CE
11 (10-6 K -1) -48.5 -44.1 -54.6 78.3 

T(1)CE
12 (10-6 K -1) -3000 -226.7 -104.6 165.5 

T(1)CE
13 (10-6 K -1) -550 -57.6 -73.1 -111.4 

T(1)CE
14 (10-6 K -1) 101 507.2 -351 -35λ.6 

T(1)CE
33 (10-6 K -1) -160 -127.5 -101.3 -102.2 

T(1)CE
44 (10-6 K -1) -177 -0.4 -66.1 21.6 



26 

T(1)CE
66 (10-6 K -1) 178 44.λ 7.51 -43.6 

T(2)CE
11 (10-λ K -2) -107 -28.5 -72.3 -273.6 

T(2)CE
12 (10-λ K -2) -3050 -70.8 -25.2 313.λ 

T(2)CE
13 (10-λ K -2) -1150 41.3 -64.λ -557.7 

T(2)CE
14 (10-λ K -2) -48 280.6 212 1604.8 

T(2)CE
33 (10-λ K -2) -275 -18.3 -63.2 -107.7 

T(2)CE
44 (10-λ K -2) -216 -43.8 -74.2 -11.λ8 

T(2)CE
66 (10-λ K -2) 118 -7.λ -131 -λ01.4 

T(3)CE
11 (10-12 K -3) -70 -5λ.4 - - 

T(3)CE
12 (10-12 K -3) -1260 -205.7 - - 

T(3)CE
13 (10-12 K -3) -750 -10λ.λ - - 

T(3)CE
14 (10-12 K -3) -5λ0 -λλ.λ - - 

T(3)CE
33 (10-12 K -3) -250 -134.8 - - 

T(3)CE
44 (10-12 K -3) -216 -37.1 - - 

T(3)CE
66 (10-12 K -3) 21 11.λ - - 

 

3. Crystal resonators and oscillators 
3.1. Crystal resonators 

A resonator is a device which produces electromagnetic or mechanical oscillations at resonant 

frequency by using the property of piezoelectricity. A crystal resonator can have many modes of 

vibration. Generally, only one of these modes is important for a particular application in 

communication systems. Resonators are usually used to generate the waveform with a specific 

frequency or as a selector to select a specific frequency from many other frequencies. 

3.1.1. Frequency temperature characteristics of a quartz resonator 

The temperature characteristics of AT and SC cut are represented by 3rd order polynomials. 

The amount of frequency variation due to the crystal temperature coefficients depends on the crystal 

cut. The relative change in frequency is described byμ 

 ∆௙௙ ൌ ܶ∆௜ܣ ൅  ௜∆ܶଷ (1.22)ܥ

with ∆ܶ ൌ ܶ െ ௜ܶ, where ௜ܶ is the inflection temperature. 
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Fig.1.18: Model of temperature-frequency curve of AT cut [27]. 

In the equation (1.22), ௜ܶ varies between +25°C and +35°C for AT cut crystal and from +85°C to 

+λ5°C for SC cut, depending on the dimensions of the crystal. The frequency-temperature 

characteristics is primarily dependent on the cut angle, because in equation (1.22), the quantity ܣ௜ 
changes with ߠ, while ܥ௜ is almost constant. 

 
Fig.1.19: Frequency-Temperature characteristics of AT-cut for different values of θ. [2]. 

Note the different scale between Fig.1.1λ and Fig.1.20, the SC-cut presents a very low 

dependency of frequency against temperature. So, this is a big advantage of SC cut over AT cut. 
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Fig.1.20: Typical frequency-temperature characteristics of SC-cut, third overtone, for different values of θ. 

 varies from -1’ to 8’ from  = 34°, [27]. 

3.1.2. Equivalent circuit of crystal resonator: 

The electrical equivalent circuit provides the link between the physical properties of crystal 

and the oscillator. The electrical parameters areμ 

C0 = Shunt capacitance (capacitance between the electrodes, crystal holder, leads). 

C = Motional capacitance which represents the mechanical elasticity. 

L = Motional inductance which represents the mechanical inertia. 

R = Motional resistance which represents the mechanical losses. 

 
Fig.1.21: Equivalent electrical circuit [27]. 

Physically, a piezoelectric resonator is not exactly equal to its equivalent circuit. This is just 

an approximation valid in the vicinity of a resonant frequency that gives another way to express the 

relation of the current through the resonator as a function of the frequency by using a schema 

instead of the analytical expression. If we consider a portion of surface ܵ of an infinite plate (AT 

 34°-1’ 

 34°+8’ 



2λ 

cut, thickness ʹ݄), having its faces coated by thin electrodes, the current is given, without 

approximation, by [28]μ 

ܫ  ൌ 	଴ܸ߱ܥ݆ ൅	ܫଵ (1.23) 

ଵܫ  ൌ ݆߱ ௘మలమ ௌଶ௛ ୱ୧୬ሺ௤௛ሻ௖ల̅ల௤௛ୡ୭ୱሺ௤௛ሻ	ି	 ೐మలమഄమమ೓	ୱ୧୬ሺ௤௛ሻܸ (1.24) 

where 

଴ܥ  ൌ	 ఌమమௌଶ௛  (1.25) 

and 

ݍ  ൌ ɘට ஡ୡതలల (1.26) 

where  is the density of the material. 

and  

 ܿ଺̅଺ ൌ ܿ଺଺ா ൅ ௘మలమఌమమೄ  (1.27) ܿ଺̅଺ is a so-called “stiffened” constants [2λ]. It is not a true elastic constant since it is defined only 
for plane wave and it depends on the propagation direction. Hence, here, the coefficients are 
expressed in the coordinate axes of the AT cut (rotated coefficients). The resonant frequency r is 
found by solvingμ 

 cotanሺ݄ݍሻ ൌ 	 ୣమలమୡതలలఌమమ௤௛ (1.28) 

At a frequency  near r the current I1 can be approximated to the first order in  - r byμ 

 ூభ௏ ൌ ʹ݆߱௥ ௘మలమ ௌ௛ ଵ௡మగమ௖ల̅లቀଵି ഘഘೝቁ (1.2λ) 

Where n is the overtone rank. 

One then obtains an expression of the current which is of the same form than the current through a 

dipole consisting of a series circuit ܥܮ in parallel with a capacitance C0 withμ 

ܥ  ൌ ସ௘మలమ ௌ௡మగమ௖ల̅ల௛ (1.30) 

ܮ  ൌ ఘ௛య௘మలమ ௌ (1.31) 

To take into account the (small) damping in the material, one can simply replace cത଺଺ by cത଺଺ ቀͳ ൅ ௝ఎలలఠୡതలల ቁ where ଺଺ is the viscoelastic coefficient. In this case ܥ become complex and is 

equivalent to the preceding capacitance in series with a resistance ܴ equal toμ 

 ܴ ൌ ௡మగమఎలల௛ସ௘మలమ ௌ  (1.32) 
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This results in the approximate equivalent circuit depicted in Fig.1.21. Let us insist on the fact that 

this modeling is valid only near the resonant (series) frequencyμ 

 ௥݂ ൌ ௦݂ ൌ ଵଶగ√௅஼ (1.33) 

  
Fig.1.22: Resonance and phase curves [27]. 

When a crystal operates at series resonance then it looks like purely resistive and the 

reactances of the inductor and capacitor are equal. A series resonant circuit is characterized by the 

angular frequency ߱௦ and its quality factor Q given byμ 

 ߱௦ଶ ൌ ଵ௅஼ , ܳ ൌ ௅ఠೞோ ൌ ଵோ஼ఠೞ (1.34) 

where the quality factor (Q) is usually defined asμ 

 ܳ ≡ ߨʹ ா௡௘௥௚௬	௦௧௢௥௘ௗ	ௗ௨௥௜௡௚	௔	௖௬௖௟௘ா௡௘௥௚௬	௟௢௦௦	ௗ௨௥௜௡௚	௔	௖௬௖௟௘  (1.35) 

Q is inversely proportional to the linewidth of resonance. Classically, higher Q means higher 

frequency stability and higher accuracy capability of a resonator. 

With a load capacitance in series to the crystal (Fig.1.23), the resonance frequency is shifted 

according toμ 

 ௅݂ௌ ൎ ௦݂ ቀͳ ൅ େଶሺ஼బା஼ಽሻቁ (1.36) 

and the resistance at resonance is given byμ 

 ܴ௅ௌ ൌ ܴ ቀͳ ൅ ஼బ஼ಽቁଶ (1.37) 
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Fig.1.23: Load capacitance in series[27]. 

3.2. Crystal Oscillators 

An electronic oscillator can be characterized as a device for producing a periodic oscillating 

signal such as sine wave or square wave. An oscillator produces AC signal of specific frequency 

from a DC power source. A simple harmonic oscillator circuit consists of an active amplifier and 

passive feedback network. If the output of the feedback amplifier can be used as a signal with 

suitable amplitude and phase then sustained oscillations can occur [6]. (Fig.1.24). Usually, the 

frequency of the main loop can be tuned by a voltage using a varicap diode in a small range 

(typically 1 or 2 Hz maximum at 5 MHz). Finally, an output amplifier is used as a buffer to get the 

final voltage level of the output. 

 
Fig.1.24: Classical circuit of a crystal oscillator [2]. 

If the amplifier network has a voltage gain ܣ and the feedback network has a feedback ratio	ߚ, 

then in order to sustain oscillations, one must have 	ߚܣ ൌ ͳ. Both ܣ and ߚ are complex functions of 

angular frequency and can be written as |ܣ|݁௝ఃಲ and |ߚ|݁௝ఃഁ where ߔ஺ and ߔఉ are the phase shifts 

of the amplifier and feedback network respectively. Then the conditions for sustained oscillations 

areμ 

|ሺ߱௥ሻߚ||ሺ߱௥ሻܣ|  ൌ ͳ (1.38) 

and ߔ஺ሺ߱௥ሻ ൅ ఉሺ߱௥ሻߔ ൌ  (1.3λ) ߨܰʹ

where ܰ is an integer. 
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These conditions (1.38-1.3λ) are called Barkhausen criterion. Equation (1.3λ) shows that, at 

the frequency of oscillation, the closed loop phase shift must be an integer multiple of	ʹߨ. When the 

system is initially closed, the only signal in the circuit is noise. The component of the noise which 

satisfies the phase condition for oscillation propagates around the loop with increasing amplitude. 

Amplitude continues to increase until the amplifier gain is reduced by nonlinearities or by an 

automatic gain control (AGC). For the real world oscillators [30]μ 

1. It is necessary that for small signalμ ߚܣሺ߱ሻ ൐ ͳ 

2. For large signal gain saturationμ |ߚܣ|ሺ߱ሻ ൌ ͳ 

3. The frequency of oscillation is determined by the phase conditionμ argሾߚܣሺ߱ሻሿ ൌ Ͳ 

3.2.1. Long-term and short term stabilities 

A gradual change in frequency over days or months is known as aging or long term stability. 

This occurs for various reasons such as the change of crystal coefficients of elasticity due to 

creation or diffusion of defects, or when the crystal is subjected to stress or when trapped gasses 

escape. Aging occurs at a relatively constant rate per decade for each crystal (Fig.1.25). 

 
Fig.1.25: Time domain stability of the fractional frequency change (in ppm) over time (days), starting from a 

point of calibration. Zoom in the figure shows the short term time domain stability or the fractional 

frequency change over time (seconds) and its relationship to aging [12]. 

Therefore, to maintain an accurate frequency, adjustments should continuously be made to 

remove these effects. In general, frequency of an oscillator can be varied by a few cycles by slight 

change of phase in the feedback signal by using an adjustable capacitor. For example, a 10 MHz 
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oscillator with an adjustment range of 20 Hz can be corrected for λ or 10 years of aging at a 10-10 

per day rate. 

Short term Root Mean Square (RMS) frequency variations are a measure of the frequency 

fluctuations or phase noise. This can be defined as the standard deviation of the fractional frequency 

fluctuations for a specific averaging time  (typically ߬ = 1 s for short term stability). This means that 

a time window ߬ is used to measure the value of δf/f, then the RMS value is computed from many 

time windows. Shorter or longer averaging times may be required to assess the accuracy for a given 

application. The manufacturers of high performance oscillators usually measure averages over 10-4 

to 102 s and represent the results in log-log scale (Fig.1.26).  

As detailed in the next paragraph, time domain stability is related to frequency domain 

measurements through the power spectral density of frequency fluctuations. 

 
Fig.1.26: Exemple of short term time domain stability curve: RMS of averaged relative frequency 

fluctuations, for specific averaging times. [12]. 

 

3.3. Noise and stabilities in the time and frequency domains 

3.3.1. Noise in time domain 

Let us consider the sinusoidal voltage delivered by a real oscillator [31]μ 

ሻݐሺݒ  ൌ ଴ܸሾͳ ൅ ߨʹሾݏ݋ሻሿܿݐሺߙ ଴݂ݐ ൅ ߮ሺݐሻሿ (1.40) 
whereμ 

 ଴ܸ is the nominal peak voltage amplitude, 

 ߙሺݐሻ is the amplitude noise (around nominal amplitude ଴ܸ), 

 ଴݂ is the nominal frequency, 
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 ߮ሺݐሻ is the phase noise (around nominal phase ʹߨ ଴݂ݐ). 
For ultra-stable systems, low noise conditions are considered and the amplitude noise is 

always neglected (|ߙ| ൌ Ͳ and |߮| ا ͳ). To study the phase noise of an oscillator, two random 

quantities are usedμ 

1) Phase timeμ ݔሺݐሻ ൌ ఝሺ௧ሻଶగ௙బ where ߮ሺݐሻ (phase noise) and ݔሺݐሻ (jitter) are instantaneous 

2) Fractional frequency fluctuationμ ݕሺݐሻ ൌ ௙ሺ௧ሻି௙బ௙బ ൌ ∆௙ሺ௧ሻ௙బ ൌ ఝሶ ሺ௧ሻଶగ௙బ ൌ  ሻݐሶሺݔ
Then ݕሺݐሻ is averaged over successive time intervals ߬ starting at regularly spaced instants 

(Fig.1.27). 

௞തതതݕ  ൌ ଵఛ ׬ ௧ೖାఛ௧ೖݐሻ݀ݐሺݕ ൌ ௫ሺ௧ೖାఛሻି௫ሺ௧ೖሻఛ  (1.41) 

 
Fig.1.27: Samples divided into time steps by an interval τ to get the average value of y(t) [32]. 

The definition of the true variance is given byμ 

ଶሺ߬ሻܫ  ൌ ௞തതതݕሺۃ െ  (1.42) ۄሻଶۄ௞തതതݕۃ
Thus, the estimation of the true variance for ܰ samples, is given byμ 

,ଶሺܰߪ  ߬ሻ ൌ ଵேିଵ∑ ቀݕത௜ െ ଵே∑ ത௝ே௝ୀଵݕ ቁଶே௜ୀଵ  (1.43) 

In the Time & Frequency domain, the Allan variance is usually used. It is in fact the 2 samples 

variance and it is given byμ 

௬ଶሺ߬ሻߪ  ൌ ,ʹଶሺߪۃ ߬ሻۄ ൌ ∑ۃ ቀݕത௜ െ ଵଶ∑ ത௝ଶ௝ୀଵݕ ቁଶଶ௜ୀଵ ۄ ൌ ଵଶ തଶݕሺۃ െ  (1.44) ۄതଵሻଶݕ

Thus, Allan deviation is given byμ 

௬ሺ߬ሻߪ  ൌ ඥߪ௬ଶሺ߬ሻ ൌ ටଵଶ തଶݕሺۃ െ  (1.45) ۄതଵሻଶݕ
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3.3.2. Noise in frequency domain 

For a stationary process, the IEEE norm [31] states that “The measure of frequency instability 

is the (one-sided) spectral density of normalized frequency fluctuations, ܵ௬ሺ݂ሻ, given byμ 

 ܵ௬ሺ݂ሻ ൌ ௥௠௦ଶݕ ሺ݂ሻ ଵ஻ௐ (1.46) 

 ௥௠௦ሺ݂ሻ is the measured root mean squared (rms) value of normalized frequencyݕ -

fluctuations in a band of Fourier frequencies containing frequency ݂ 

 is the width of this frequency band in Hz ܹܤ -

 

For sufficiently narrow Fourier frequency bands (such that ܵ௬ሺ݂ሻ is approximately constant 

over the bandwidth), we haveμ lim்→ஶ ଵ் ׬ ା்/ଶି்/ଶݐሻ|ଶ݀ݐሺݕ| ≡ ௥௠௦ଶݕ ൌ ׬ ܵ௬ሺ݂ሻ݂݀ஶ଴ ൎ ∑ ܵ௬ሺ ௞݂ሻஶ௞ୀଵ ܹܤ ൌ ∑ ௥௠௦ଶݕ ሺ ௞݂ሻஶ௞ୀଵ  (1.47) 

 

Similarly, for the amplitude and phase one-sided spectral densities, we haveμ  

 ܵ௔ሺ݂ሻ ൌ ܽ௥௠௦ଶ ሺ݂ሻ ଵ஻ௐ and ܵఝሺ݂ሻ ൌ ߮௥௠௦ଶ ሺ݂ሻ ଵ஻ௐ (1.48) 

However, manufacturers prefer the quantity L(f) (dBc/Hz) instead of ܵఝሺ݂ሻ. L(f) (pronounced “ell 

of f”) is the ratio of the power in one sideband due to phase modulation (PM) by noise (for a 1 Hz 

bandwidth) to the total signal power (carrier plus sidebands). L(f) can be defined asμ 

 L(f) ൌ ଵଶ ܵఝሺ݂ሻ (1.4λ) 

In decibels, L(f) = ܵఝሺ݂ሻ െ	3 dB 

Due to Fourier transform properties, the power spectral densities ܵ௫ሺ݂ሻ	 and ܵ௬ሺ݂ሻ	 are given byμ 

 ܵ௫ሺ݂ሻ ൌ ଵሺଶగ௙బሻమ ܵఝሺ݂ሻ  (1.50) 

 ܵ௬ሺ݂ሻ ൌ ௙మ௙బమ ܵఝሺ݂ሻ (1.51) 

Experimental practice shows that, besides long-term frequency drifts, the frequency of a high-

quality frequency source can be perturbed by a superposition of independent noise processes, which 

can be adequately represented by random fluctuations having the following one-sided power 

spectral density of phase fluctuationsμ 

 ܵఝሺ݂ሻ ൌ ∑ ܾ௜݂௜ିସ௜ୀ଴  (1.52) 

This power law model can be applied to ܵ௫ሺ݂ሻ and ܵ௬ሺ݂ሻ. The five common power-law noise 

processes in precision oscillators areμ 

 ܵ௬ሺ݂ሻ ൌ ∑ ݄ఈ݂ఈାଶఈୀିଶ  (1.53) 



36 

 ܵ௬ሺ݂ሻ ൌ 					݄ିଶ݂ିଶ 					൅ 					݄ିଵ݂ିଵ 					൅ 					݄଴ 					൅ 					݄ଵ݂					 ൅ 					݄ଶ݂ଶ (1.54) 

  (Random-walk FM) (Flicker FM) (White FM) (Flicker PM) (White PM) 

with FM =Frequency Modulation and PM = phase modulation. 

3.3.3. Relationship between time and frequency stabilities 

When one of the five common power-law noise processes, is a good approximation, the 

corresponding Allan variance can be calculated by [31]μ 

௬ଶሺ߬ሻߪ  ൌ ׬ʹ ݄ఈ݂ఈ ௦௜௡రሺగఛ௙ሻሺగఛ௙ሻమ ݂݀ஶ଴   (1.55) 

Table 1.8 presents the correspondence between noise types, PSD and Allan variance. 

Table 1.8: Correspondence between noise types, power spectral densities and Allan variance (fh is 

the high cut-off frequency) [31]. ܵ௬ሺ݂ሻ ܵఝሺ݂ሻ ܵ௬ ↔ ܵఝ ߪ௬ଶሺ߬ሻ Noise type Origin ݄ଶ݂ଶ ܾ଴ ݄ଶ ൌ ܾ଴ߥ଴ଶ 
͵݄ଶ ௛݂Ͷߨଶ ߬ିଶ 

White PM Environment 

݄ଵ݂ ܾିଵ݂ିଵ ݄ଵ ൌ ܾିଵߥ଴ଶ  
ሾͳ.ͲͶ ൅ ͵lnሺʹߨ ௛݂߬ሻሿ݄ଵͶߨଶ ߬ିଶ 

Flicker PM Resonator 

݄଴ ܾିଶ݂ିଶ ݄଴ ൌ ܾିଶߥ଴ଶ  
݄଴ʹ ߬ିଵ 

White FM Thermal noise 

݄ିଵ݂ିଵ ܾିଷ݂ିଷ ݄ିଵ ൌ ܾିଷߥ଴ଶ  ʹlnሺʹሻ݄ିଵ Flicker FM Electronic noise 

݄ିଶ݂ିଶ ܾିସ݂ିସ ݄ିଶ ൌ ܾିସߥ଴ଶ ͵ଶ݄ିଶߨʹ  ߬ 
Random 
walk FM 

External white 
noise 

 

4. Conclusions 
During this PHD thesis, we were mainly concerned by flicker of frequency noise, that can be 

modeled by a process with a power spectral density of frequency fluctuations proportional to the 

inverse of the difference between the instantaneous frequency and the resonance frequency. From 

Table 1.8, we can see that such processes have a constant Allan variance which is therefore a good 

characteristic of the process. In the remaining chapters, we will explore how the intrinsic floor for 

this variance could be linked to the relative amounts of defects in the material of the resonator or to 

the quantum fluctuations of the cross-sections for 2 or 3 phonons interaction processes. 
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Chapter	2: Bibliography	of	1/f	noise	models	

In 1λ21, C.A. Hartman attempted to verify Schottky’s formula (1λ18) of shot noise spectral 

density for the current originating from electron motion inside a vacuum tube but he failed. 

However in 1λ26, J. B. Johnson successfully measured white noise spectrum and in addition with 

that he also measured an unexpected “flicker noise” in the low frequency range [1] as shown in 

Fig.2.1. Schottky later explained that this flicker noise might appear due to fluctuations of electron 

emission rate by the cathode due to molecule adsorption on this cathode.  

 
Fig.2.1: Spectral density observed by J.B. Johnson(1925) [1]. The vertical scale represents the 

observed noise power density divided by the theoretical shot noise power density; the horizontal 

scale is the frequency in Hz. 

After this unexpected discovery of 1/f noise by Johnson, it has been seen that this strange 

noise is present in the response of many electric and electronic devices and even in natural 

phenomena like earthquakes, thunderstorms, rate of the Nile over the last 2000 years, annual 

thickness of glacial varves (clay deposits formed from the yearly runoff from a receding glacier) [2] 

or in biological systems like heart beats, blood pressure etc... Searchers in these various fields have 

therefore tried to find a common mathematical framework that they could apply to their particular 

case. In the following, we shall first review the models that find 1/f PSD as suitably weighted sums 

of Lorentzians for several different distributions of characteristic relaxation rate or time. Then, we 

give account of other models that might be pertinent to our study of 1/f noise in quartz oscillators.  
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1. 1/f noise by summing Lorentzians 
1.1. Schottky’s theory and its derivatives 

In 1λ26, W. Schottky gave a mathematical explanation [3] to understand the ͳ/݂ఈ noise in 

vacuum tubes. He assumed that the fluctuations in the number of electrons released from the 

cathode, due to surface trapping by foreign atoms/molecules of a given kind, adsorbed at ݐ଴, are 

supposed to be governed by a simple exponential lawμ 

 ܰሺݐ, ଴ሻݐ ൌ ቊ ଴ܰ݁ିఒሺ௧ି௧బሻ, ݐ 	 ൒ ,଴Ͳݐ ݐ																					 ൏  ଴ (2.1)ݐ

where Ȝ is the relaxation rate.  

Using the fact that the Fourier transform of ܰሺݐ,  ଴ሻ is given byμݐ

׬  ܰሺݐ, ାஶିஶݐ଴ሻ݁ି௜ఠ௧݀ݐ ൌ ேబఒା௜ఠ ݁ି௜ఠ௧బ (2.2) 

one can show that the power spectral density for independent adsorption times and for a given 

relaxation rate, is Lorentzianμ ܵሺఒሻሺ߱ሻ ൌ lim்→ஶ ଵ் ׬หۃ ∑ ܰሺݐ, ௞ାஶିஶݐ௞ሻ݁ି௜ఠ௧݀ݐ หଶۄ ൌ ேబమఒమାఠమ lim்→ஶ ଵ் ∑หۃ ݁ି௜ఠ௧ೖ௞ หଶۄ ൌ ேబమ௡ఒమାఠమ  (2.3) 

where the triangular bracket denotes the statistical ensemble average and n represents the average 

pulse rate i.e. the number of pulse characteristic times ݐ௞ during an interval of time ∆ݐ, divided by ∆ݐ, when ∆ݐ → ∞. 

The above expression of the power spectral density (PSD) is constant near f = 0 and nearly 

proportional to ͳ/݂ଶ for large f. 

If there are multiple relaxation rates ߣ uniformly distributed between ߣଵ and ߣଶ then, the total 

PSD is given by the following “sum” of Lorentzians [4], [5]μ 

 ܵሺ߱ሻ ൌ ׬ ܵሺఒሻሺ߱ሻ ௗఒሺఒమିఒభሻఒమఒభ  (2.4) 

 ܵሺ߱ሻ ൌ ேబమ௡ఠሺఒమିఒభሻ ቂtanିଵ ቀఒమఠቁെtanିଵ ቀఒభఠቁቃ ൎ ۔ۖەۖ
ۓ ேబమ௡ఒభఒమ , Ͳ ൏ ߱ ا ଵߣ ا ଶேబమ௡గଶఠሺఒమିఒభሻߣ 	 , ଵߣ ا ߱ ا ଶேబమ௡ఠమߣ 	 , ଵߣ		 ا ଶߣ ا ߱  (2.5) 

Hence, if ߣଵ ا ߱ ا  ଶ, one obtains fluctuations in the number of electrons released from theߣ

cathode with a 1/f PSDμ 

 ܵሺ߱ሻ ൎ ேబమ௡గଶሺఒమିఒభሻ ൈ ଵఠ (2.6) 
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Fig.2.2: Log power spectral density plot with respect to log frequency [4]. 

Alternatively, if the relaxation rate is distributed according to a lawμ 

 ݀ܲሺߣሻ ൌ ஺ఒഁ ଵߣ				,ߣ݀ ൏ ߣ ൏   (2.7)	ଶߣ

the PSD is then given by [4], [6]μ 

 ܵሺ߱ሻ ∝ ׬ ଵఒమାఠమఒమఒభ ௗఒఒഁ ൌ ଵఠభశഁ ׬ ଵଵା௫మఒమ/ఠఒభ/ఠ ௗ௫௫ഁ (2.8) 

Hence, in the limit ߣଵ ا ߱ ا  we haveμ	ଶ,ߣ

 ܵሺ߱ሻ ∝ 	 ଵఠభశഁ (2.λ) 

Thus, we get the family of colored noises and with ߚ ൌ Ͳ, we get 1/f noise. 

1.2. F.K Du Pré’s theory 

In 1λ50, F. K. Du Pré [7] proposed a theory for flicker noise by summing Lorentzians with an 

exponential distribution of relaxation times due to a thermally activated process with a distribution 

of activation energy that would vary little around its maximum.  

He started from Schottky’s expression of the mean square noise current per unit frequency 

interval, for a given characteristic time ߬=1/[3] ߣμ 

஺௩ۄଶ݅ۃ  ∝ ఛூమଵାఛమఠమ  (2.10) 

where I is the average current and ߬ is the average time spent by an atom/molecule on the surface of 

the cathode. 

Du Pré modified Schottky’s theory to predict the frequency and temperature dependence correctly 

at the same time. He assumed first that the temperature dependence of the relaxation time is given 

byμ 
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 ߬ ൌ ߬଴ exp ቀ ொ௞ಳ்ቁ (2.11) 

where, Q is the diffusion activation energy. Then he supposed that there could be a certain spread in 

the values of the diffusion activation energy at the different points of the surface barrier given by a 

distribution ݂ሺܳሻ. Then, Eq. (2.10) can be written as. 

஺௩ۄଶ݅ۃ  ∝ ׬ ݂ሺܳሻஶ଴ ఛூమଵାఛమఠమ ݀ܳ ൌ ሺூమఠሻ ׬ ݂ሺܳሻஶ଴ ఛఠଵାఛమఠమ ݀ܳ (2.12) 

The expression ఛఠଵାఛమఠమ possesses a sharp maximum for ߬ ൌ ߬௠ such that ߬௠߱ ൌ ͳ. This 

corresponds to a diffusion activation energy given by ܳ௠ ൌ െ݇஻ܶ lnሺ߬଴߱ሻ. Du Pré then assumed 

that ݂ሺܳሻ varies relatively little in a range of the order of ݇஻ܶ around ܳ௠. As a resultμ 

஺௩ۄଶ݅ۃ  ∝ ቀூమఠቁ ݂ሺܳ௠ሻ ׬ ఛఠଵାఛమఠమஶ଴ ݀ܳ (2.13) 

Since ߬௠߱ ൌ ͳ, ߬߱ ൌ ߬ ߬௠⁄ ൌ expሺሺܳ െ ܳ௠ሻ ݇஻ܶ⁄ ሻ, the change of variable ݖ ൌ ߬߱ givesμ 

஺௩ۄଶ݅ۃ  ∝ ቀூమఠቁ ݇஻݂ܶሺܳ௠ሻ ׬ ଵଵା௭మஶୣ୶୮ሺିொ೘ ௞ಳ்⁄ ሻ  (2.14) ݖ݀

Assuming ܳ௠ ب ݇஻ܶ givesμ 

஺௩ۄଶ݅ۃ  ∝ ቀூమఠቁ ݂ܶሾെ݇஻ܶ lnሺ߬଴߱ሻሿ (2.15) 

Thanks to the ln in its argument, the value of the function ݂ depends very weakly on ߱. Hence the 

main dependence is ͳ ߱⁄  over several decades, provided ݂ varies little over an interval of several ݇஻ܶ around ܳ௠. 

1.3. Dutta, Dimon and Horn’s theory 

In 1λ7λ, P. Dutta et al. proposed a theory of 1/f noise based on the concept of summing the 

Lorenzian spectrum in metals [8]. Their model has been developed on the basis of three basic 

assumptionsμ 

1) The noise arises from random fluctuation with characteristic times that are thermally 

activated. 

2) The resistance is linearly coupled to the fluctuating quantity with a coupling constant that is 

non-singular at long wavelengths. 

3) All samples studied are inhomogeneous. 

Their derivation begins exactly as that of Du Pré, but integrates a Taylor expansion of ݂	around ܳ௠ instead of just taking ݂ሺܳ௠ሻ out of the integral. They obtainμ 

 ܵ௩ሺ߱, ܶሻ ∝ ௞ಳ்ఠ ൤݂ሺܳ௠ሻ ൅ ∑ ࣡೙ሺଶ௡ሻ! ቀగ௞ಳ்ଶ ቁଶ ௗమ೙ௗொమ೙ ݂ሺܳሻ|ொୀொ೘ஶ௡ୀଵ ൨ (2.16) 

where ܳ௠ ൌ െ݇஻ܶ lnሺ߬଴߱ሻ and ࣡௡ is the nth Euler number. The conclusion is the same as that of 

Du Pré, but the interval of validity of the approximation can be evaluated more precisely. 
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1.4. F. N. Hooge and P. A. Bobbert’s theory 

In 1λλ7, F. N. Hooge and P A. Bobbert calculated the correlation function of approximate 1/f 

noise and studied how it could be derived from summing Lorentzians [λ]. They started from the 

consideration that even if pure ͳ/݂ noise can not exist down to ݂ ൌ Ͳ, since the variance of the 

process ׬ ሺܣ ݂⁄ ሻ݂݀௙೓଴  would be infinite, it is nonetheless reasonable to consider some process ܺ that 

would have a noise power spectral density experimentally undistinguishable from ܣ/݂ on a wide 

interval ሾ ௟݂ , ௛݂ሿ. Furthermore, they supposed that below ௟݂ the spectrum would be white and that 

above ௛݂ the spectral power density would decrease as ͳ/݂ଶ. With a ratio ௛݂/ ௟݂~ͳͲଵ଴, they could 

estimate that around λ0% of the variance was in the interval ሾ ௟݂ , ௛݂ሿ. 
Considering the summation of Lorentzians with a wide range of relaxation times between ߬ଵ 

and ߬ଶ, with a statistical distribution given byμ 

 ݃ሺ߬ሻ݀߬ ൌ ଵ୪୬ቀഓమഓభቁ	 ଵఛ ݀߬ (2.17) 

givesμ 

 ܵ௑ሺ݂ሻ ൌ ܺଶതതതത ׬ ݃ሺ߬ሻఛమఛభ ସఛଵାఛమఠమ ݀߬ ൌ ସ௑మതതതതఠ	 ୪୬ቀഓమഓభቁ׬ ଵଵାఛమఠమ ݀ሺ߬߱ሻఠఛమఠఛభ  (2.18) 

As in the previous paragraphs, the value of the integral in the above equation  

is గଶ for ͳ/߬ଶ ا ߱ ا ͳ/߬ଵ, so that the power spectrum of the summed Lorentzians isμ 

 ܵ௑ሺ݂ሻ ൌ ௑మതതതത୪୬ቀഓమഓభቁ ଵ௙  (2.1λ) 

Hence, a sum of Lorentzians spectra gives rise to 1/f noise in the frequency range between ௟݂ ൌ ͳ/ʹ߬ߨଶ and ௛݂ ൌ ͳ/ʹ߬ߨଵ, provided the distribution of relaxation times is given by Eq. (2.17) 

and no transitions are allowed between processes with different relaxation times. 

Hooge and Bobbert then proved that the correlation function of limited ͳ/݂ noise isμ 

  ߰ሺݐሻ ൌ ܺଶതതതത ୪୬൫ഓమ౪ ൯୪୬ቀഓమഓభቁ		 ߬ଵ ൏ ݐ ൏ ߬ଶ           (2.20) 

Finally, they proved that such a correlation function in െ lnሺݐሻ can also be found for a process 

consisting of a random series of pulses with a power time dependence in ିݐଵ ଶ⁄ , such as the process 

introduced by Schönberg to find a 1/f spectrum thanks to Carson’s theorem (H. Schönfeld, 

Z. Naturf., vol. 10a, pp. 2λ1, 1λ55). 

Unfortunately, for this physical explanation, in 2002, C. M. van Vliet showed that the claim 

that a 1/f spectrum could be associated with a sum of pulses arising from a one-dimensional 

collective random walk stochastic diffusion process, is fallacious [10]. 
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2. 1/f noise from the fluctuations of time intervals between pulses 
In 1λλ8, B. Kaulakys and T. Meškauskas made the observation that for a signal composed of 

a sequence of random pulses of identical shapes, the shape of the pulses mainly influences the high 

frequency part of the power spectral density while fluctuations of the pulse amplitude result in 

white or Lorentzian but not ͳ/݂ noise. Hence they considered a sequence of Dirac impulsions ܫሺݐሻ ൌ ∑ ݐሺߜ െ ௞ሻ௞ݐ , with random increments of the time intervals between pulsesμ 

 ߬௞ ൌ ߬௞ିଵ െ ሺ߬௞ିଵߛ െ ߬̅ሻ ൅  ௞ (2.21)ߝߪ
with ߬௞ ൌ ௞ݐ െ  is ߪ the rate of relaxation to the average time interval between pulses ߬̅ and ߛ ,௞ିଵݐ

the standard deviation of white noise and ሼߝ௞ሽ is a sequence of uncorrelated normally distributed 

random variables ߝ௞ with zero expectation and unit variance. Their model could e.g. describe a flow 

of identical objects such as electrons, photons, or cars! 

In their paper, Kaulakys and Meškauskas prove that the power spectral density of the current 

is then given by a ͳ/݂ lawμ 

 ܵሺ݂ሻ ൌ ܫʹ ̅நሺ଴ሻ௙ , ଵ݂ ൏ ݂ ൏ ଶ݂, ఛ݂ with ɗሺͲሻ ൌ ଵଶగ ׬ ାஶିஶߠ݀ۄ௞ሻ߬ߠexpሺ݅ۃ  (2.22) 

where ܫ ̅ ൌ ͳ ߬̅⁄  is the average current of pulses, ۃ	ۄ is an averaging over the distributions of the time 

intervals between pulses ߬௞, which coincides with the usual average on all the realizations of the 

process and ଵ݂, ଶ݂, ఛ݂ are characteristic frequencies which expression depends on the distribution of ߬௞ considered.  

For example, for a Gaussian distribution of time intervals between pulsesμ 

 ɗሺͲሻ ൌ ଵ√ଶగఙഓ expሺെ ߬̅ଶ ⁄ఛଶߪʹ ሻ (2.23) 

Kaulakys and Meškauskas find that the power spectrum is then given byμ 

 ܵሺ݂ሻ ൌ ூమ̅ఈಹ௙ , ଵ݂ ൏ ݂ ൏ ଶ݂, ఛ݂ (2.24) 

with ߙு is a dimensionless quantity similar to the Hooge parameter. 

ுߙ  ൌ ଶ√గ	ି݁ܭ௄మ , with	ܭ ൌ ఛത√ଶ	ఙഓ ൌ	 ఛത√ఊ	ఙ  (2.25) 

The interesting feature of the Gaussian model is that it allows calculating the analytical approximate 

forms for the frequencies at which a transition between two kinds of noise is observed. The 

Gaussian model gives (after some lengthy derivation detailed in the paper) ͳ/݂ noise for only one 

relaxation rate ߛ, in an adjustable frequency range ଵ݂ ൏ ݂ ൏ ଶ݂ and ݂ ا ఛ݂ (with ଵ݂ ൌ ଷߛ ଶ⁄ ⁄ߪߨ , 

ଶ݂ ൌ ଵߛʹ ଶ⁄ ⁄ߪߨ  and த݂ ൌ ͳ ⁄̅߬ߨʹ ). They also find a Lorentzian power spectrum density  ܵሺ݂ሻ ൌ ܫʹ ̅ ఙమఛమതതതఊమ ଵଵାሺగ௙ఙమ ఛതఊమ⁄ ሻమ	 for ݂ ൏ ଵ݂ and thus white noise for ݂ ا ଴݂, with ଴݂ ൌ ଶߛ̅߬ ⁄ଶߪߨ . As a 

consequence, this Gaussian model does not present any physical divergence for small frequencies. 
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3. 1/f noise and self-organized criticality 
In 1λ87, P. Bak et al. got inspiration from the fact that power-law temporal or spatial 

correlations extend over several decades in self-similar temporal and/or spatial fractal structures. 

They introduced the notion of locally minimally stable (and maximally sensitive) states [12]1λ. 

Under a small perturbation those states redistribute their “energy” on local neighbors which 

themselves do the same if their energy is above some critical value, triggering some avalanche 

process with a characteristic time much faster than the build-up time of energy. A cluster of 

minimally stable states is then defined dynamically as the spatial region over which a small local 

perturbation will propagate. In numerical simulations, the system is randomly initialized with some 

energies much bigger than the critical energy. Then it evolves until all the energies are below the 

critical value. The dynamics is then probed by the measurement of the state resulting from a small 

local random perturbation. They found power-law distributions of the 1/f  type for avalanche sizes 

and durations respectively. This introduced the concept of Self-Organized Criticality (SOC) where 

the lack of characteristic length leads directly to a lack of characteristic time for the resulting 

fluctuations, without any need for a “fine tuning” of the parameters of the model!  

The analogy was made with a sand pile with slopes so steep that a single sand grain addition 

can trigger a collapse of the pile until the average slope reaches a critical value where the system is 

barely stable with respect to the addition of new sand grains. 

 

However, in 1λλλ, P. De Los Rios and Y. Zhang argued that for such systems, the  exponent 

is seldom close to 1 and that it depends strongly on the dimensionality of the system. Moreover, 

power-law time correlations corresponds to power-law (long-range) spatial correlations, for which 

they claim that there is no evidence in most systems exhibiting 1/f noise. To remedy these problems, 

they added two new ingredients [13] to the model developed by Bak et al.μ they added the energy 

only on one side of the lattice, defining implicitly a preferred propagation direction and added some 

dissipation during the (non-linear since there is a threshold) redistribution of energy on neighboring 

sites. With this model, they showed numerically that they got a 1/f power spectrum on several 

decades in 1D and 2D with the same other conditions, thus hinting towards the independence of 

such behavior on the actual dimensionality of the system. They also pointed out the fact that the 1/f 

power spectrum for the whole lattice comes from the superposition of local (measured and not 

imposed as in sum of Lorentzians theories!) power spectra that are far from 1/f spectra. 

 

                                                 
1λ According to the statistics on the APS web site, this paper has been cited more than 2860 times at the time of this 
writing. 
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In 2001, studying fluctuations with a 1/f PSD in oscillatory combustion regimes, V. N. 

Skokov et al. proposed a mathematical model for the origin of flicker spectrum fluctuations at the 

interaction of phase transitions in distributed systems to interpret their experimental data on flame 

front fluctuations in combustion of a porous wick impregnated with spirits [14]. They made the 

observation that the absence of a lower temporal scale for flicker could be due to the fact that the 

system is in the vicinity of a critical phase transition. Hence they proposed that self-organization of 

a critical state in their system may be the consequence of the intersection and interaction of a 

subcritical non-equilibrium phase transition and a supercritical one, namely the boiling-up of an 

ignitable matter before its combustion front could lead to stochastic oscillations of the reaction front 

with a 1/f  (with  significantly different from 1) power spectrum experimentally and theoretically. 

4. 1/f noise in quartz crystal resonators by using statistical mechanics: 
Michel Planat’s Model 

In 2003, M. Planat proposed a model based on quantum statistical thermodynamics to explain 

the 1/f noise in quartz crystal resonators [15]. In this paper, M. Planat considered the case of a 

population of massless bosons (phonons) with degenerate energy levels, ݄݂݊, with ݄ being Planck’s 

constant and ݊ a positive integer. This may be interpreted physically by the fact that, in Debye’s 

approximation the dispersion relation is linear (ʹ݂ߨ ൌ |݇|ܿ, with ݇ the pseudo wave vector and ܿ 

the celerity of the corresponding sound wave). Hence the allowed frequencies are integer multiples 

of a fundamental frequency since, due to the confinement of the waves in an interval of length ܮ, in 

that direction the wave vectors are integer multiples of ʹܮ/ߨ. According to M. Planat, the degree of 

degeneracy of the energy level ݄݂݊ is equal to the number of unrestricted partitions of the integer ݊ 

i.e. the number of different ways to calculate ݊ as a sum of integers. The explicit consideration of 

this degeneration in the partition function per mode (instead of it being implicitly included in the 

density of modes as in the standard formulation) introduced changes in the standard calculation of 

the spectral density of thermal phonons, which eventually lead M. Planat to a hyperbolic fluctuation 

spectrum at low frequencies. 

Indeed, under this approach, the natural logarithm of the partition function per mode is 

writtenμ 

 ln ቀ ෨ܼሺ݂, ܶሻቁ ൌ െ∑ lnሺͳ െ expሺെ݂݄݊ߚሻሻ௡ஹଵ  (2.26) 

with ߚ ൌ ͳ/݇஻ܶ, instead ofμ 

 ln ቀ ෨ܼሺ݂, ܶሻቁ ൌ െ lnሺͳ െ expሺെ݂݄݊ߚሻሻ (2.27) 

in standard Planck (photons) or Einstein-Debye (phonons) approaches. Nonetheless, in both cases, 

the internal energy per mode can be calculated byμ 
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,෨ሺ݂ܧ  ܶሻ ൌ െ డ ୪୬௓෨డఉ  (2.28) 

and the fluctuation of the internal energy per mode by (Gibbs (1λ02) and Einstein (1λ04 and 

1λ0λ) [16])μ 

,ଶሺ݂̃ߝ  ܶሻ ൌ ෨െ൏ܧ൫ۃ ෨ܧ ൐൯ଶۄ ൌ െ డమ ୪୬ ௓෨డఉమ  (2.2λ) 

M. Planat then used the standard spectral density of modes ܦሺ݂ሻ to define the spectral density of 

energyμ 

,ሺ݂ݑ  ܶሻ ൌ ,෨ሺ݂ܧሺ݂ሻܦ ܶሻ (2.30) 
and the power spectral density (PSD) of the energy fluctuationsμ 

 ܵ௨ሺ݂, ܶሻ ൌ ,ଶሺ݂̃ߝሺ݂ሻܦ ܶሻ (2.31) 
and the PSD of the relative fluctuations of energyμ 

 ௌೠሺ௙,்ሻ௨మሺ௙,்ሻ ൌ ଵ஽ሺ௙ሻ 	 ఌమሺ௙,்ሻா෨మሺ௙,்ሻ ൌ ଵ஽ሺ௙ሻ 	 ങమ ౢ౤ೋ෩ങഁమ൬ങ ౢ౤ೋ෩ങഁ ൰మ  (2.32) 

As in the standard approach for phonons in an isotropic crystal, M. Planat took a spectral density of 

modes equal toμ 

ሺ݂ሻܦ  ൌ ଵଶగ௏௖೛೓య ݂ଶ (2.33) 

with ܸ the volume of the crystal and ଷ௖೛೓య ൌ ଵ௖ಽయ ൅ ଵ௖೅భయ ൅ ଵ௖೅మయ  , where ܿ௅ , ்ܿଵ, ்ܿଶ are the velocities of the 

longitudinal (L) and transverse (T1, T2) modes respectively. 

In the standard approach, the complete calculation can be carried out analytically (by casting 

Eqs. (2.26), (2.30), (2.31), and (2.33) in Eq. (2.32)) and we findμ 

 ௌೠሺ௙,்ሻ௨మሺ௙,்ሻ ൌ ௖೛೓యଵଶగ௏ 	ୣ୶୮ሺ ೓೑ೖಳ೅ሻ௙మ  (2.34) 

which is proportional to ͳ/݂ଶ at low frequencies. 

Using his partition function (Eq. (2.26)) instead of the standard one, M. Planat found, in the 

limit of low frequencies, and after a mathematical proof using advanced notions of number theoryμ 

 ቂௌೠሺ௙,்ሻ௨మሺ௙,்ሻቃ௅ி ൌ ଽ௛௖೛೓యସగయ௏ 	 ଵ௞ಳ்௙ ൌ ஺೛೓௏௙  (2.35) 

The transition to the spectral density of relative fluctuations of frequency was then obtained by 

considering the ͳ/ܳସ law proposed by P. Handel (cf. [17] and next chapter). The resulting formula 

isμ 

 ܵ௬ሺ݂ሻ ൌ ௌഘሺ௙ሻఠమ ൌ ଵொర ஺೛೓௏௙ ൌ ௛షభ௙  (2.36) 
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where Q is the unloaded quality factor of the resonator. 

The floor of the short-term stability is then classically given by Allan’s standard deviationμ 

௬_௙௟௢௢௥ߪ  ൌ ඥʹ lnሺʹሻܵ௬ሺͳݖܪሻ  (2.37) 

However, the order of magnitude for ߪ௬_௙௟௢௢௥ obtained from M. Planat’s formula, in the case 

of a 5 MHz SC-cut resonator, using the volume under the electrodes, is ͷ ൈ ͳͲିଵଶ. This limit is far 

exceeded by the experimental results of the best resonators [18], [1λ] and [20]. 

In our opinion, this problem may be due to the fact that in his model, Planat used the standard 

density of modes. Thus, the modes corresponding to frequencies of the type ݂݊ with ݊ integer are 

counted both in the partition function and in the density of modes.  

Using an adapted density of modes with only the lowest frequency in each direction may 

avoid this double counting and lower the theoretical limit for the spectral power density of noise, 

but the ͳ/݂ behavior would probably disappear to give the standard ͳ/݂ଶ behavior at low 

frequencies, so that we did not try to find the modified density of modes. 

5. A possible explanation for the absence of observation of lower cut-
off 

Since 1/f noise cannot extend to infinitely small frequencies (otherwise the total power would 

diverge), experimentalists have tried to find a lower frequency cut-off value for this regime. 

However, most of the time this quest remained elusive, even for an observation period of 300 years 

of weather data [21]! In 2013, Markus Niemann et al. [22] proposed an explanation for this 

phenomenon by making a connection between power-law intermittency and 1/f noise. They used 

weak ergodicity breaking to explain the absence of observed cut-off frequency for 1/f by the fact 

that, the cut-off frequency ௖݂ is nearly equal to the inverse of the observation time and got back an 

integrable power spectral density. 

To illustrate their findings, they considered a two-state model with states up ܫሺݐሻ ൌ  ଴ andܫ

down ܫሺݐሻ ൌ െܫ଴. After waiting a random time ߬௜ in any state, the particle chooses the next state to 

be up or down with equal probability. The waiting times in each of these states are supposed to be 

independently, identically distributed random variables with Probability Density Function (PDFs) 

with long tails ߰ሺ߬ሻ ∝ ߬ିሺଵାఈሻ with Ͳ ൏ ߙ ൏ ͳ. In their numerical experiment, for a given ߙ, the 

waiting times were generated according to ߬ ൌ ܿఈܺିଵ ఈ⁄ , with ܺ a random number uniformly 

distributed between 0 and 1 and ܿఈ chosen so that ݊ۃሺͳሻۄ ൎ ͳͲ	ͲͲͲ, with ݊ሺݐሻ the number of 

completed waiting times up to time t and ۃ	ۄ the ensemble average (10 000 realizations of times 

series in their case). Then, for a given measurement time ݐ, they defined the power spectrum byμ 

 ܵ௧ሺ߱ሻ ൌ ሾܫሚ௧ሺ߱ሻܫሚ௧∗ሺ߱ሻሿ ⁄ݐ , with ܫሚ௧ሺ߱ሻ ൌ ׬ ሺെ݅௧଴	ሻexp′ݐሺܫ  (2.38) ′ݐሻ݀′ݐ߱
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A plot of ܵۃ௧ሺ߱ሻۄ for various values of the measurement time ݐ clearly matches their 

theoretical result that20μ 

ۄ௧ሺ߱ሻܵۃ  	ൎ ଶூబమୡ୭ୱ	ቀഀഏమ ቁ௰ሺଵାఈሻ 	 ௧ഀషభ|ఠ|మషഀ 	as	߱ → Ͳ (2.3λ) 

Furthermore, from Eq. (2.38), we get ܵ௧ሺͲሻ ൌ ቚ׬ ሻ௧଴′ݐሺܫ ቚଶ′ݐ݀ ൗݐ ≡  for a single realization ݐଶ̅|ܫ|

and ܵۃ௧ሺͲሻۄ ൌ ଴ଶሺͳܫ െ  for the ensemble average21. Niemann et al. then define a crossover ݐሻߙ

circular frequency ߱௖ by the approximation that ܵۃ௧ሺ߱ሻۄ is constant between 0 and ߱௖ and equal to 

Eq. (2.3λ) for ߱ ൐ ߱௖. Hence, 

 
ଶூబమୡ୭ୱ	ቀഀഏమ ቁ௰ሺଵାఈሻ 	 ௧ഀషభ|ఠ೎|మషഀ ൌ ۄ௧ሺ߱௖ሻܵۃ ൌ ۄ௧ሺͲሻܵۃ ൌ ଴ଶሺͳܫ െ ݐሻߙ ⟹ ߱௖ ൌ ଵ௧ ଶୡ୭ୱ	ቀഀഏమ ቁሺଵିఈሻ௰ሺଵାఈሻ (2.40) 

The crossover frequency is thus inversely proportional to the measurement timeμ the measurement 

itself sets the time scale for the crossover since there is no time scale in the dynamics of the 

process22! This means that for such intermittent power-law processes it is not useful to increase the 

measurement time to try to see the crossover frequency since it will decrease with the increase of 

the measurement time. Furthermore, this resolves the nonintegrability paradox, since the amplitude 

of the power spectrum itself decreases with timeμ 

 
׬ ஶ଴߱݀ۄ௧ሺ߱ሻܵۃ ൎ ଴ଶሺͳܫ െ ௖߱ݐሻߙ ൅ ׬ ଶூబమ ୡ୭ୱቀഀഏమ ቁ௰ሺଵାఈሻ 	 ௧ഀషభ|ఠ|మషഀ ݀߱ஶఠ೎ൌ ଶିఈଵିఈ ቈሾܫ଴ଶሺͳ െ ሻሿଵିఈߙ ቆଶூబమ ୡ୭ୱቀഀഏమ ቁ௰ሺଵାఈሻ ቇ቉ଵ ሺఈିଶሻ⁄ 	 (2.41) 

Hence ׬ ஶ଴߱݀ۄ௧ሺ߱ሻܵۃ  indeed turns out to be finite and measurement time independent. 

Finally, we point out that Niemann et al. proposed two tests to experimentalists to check 

whether or not measured data (or numerical simulation data) is compatible with intermittency-

caused ͳ/݂ଶିఈ noise with Ͳ ൏ ߙ ൑ ͳμ 

 The first one is to check that ܵۃ௧ሺ߱ሻۄ indeed decays as ݐఈିଵ with the measurement 

time ݐ. 
 The second one is to compare the distribution of frequency averaged spectrum ܯ ൌ ଵே∑ ௌ೟ሺఠ೔ሻۃௌ೟ሺఠ೔ሻۄே௜ୀଵ  (with ܰ large enough), with a normalized Mittag-Leffler 

distribution ఈܻ (see e.g. httpμ//en.wikipedia.org/wiki/Mittag-leffler_distribution). 

                                                 
ሻݐሺ߁ 20 ൌ ׬ ஶ଴ݔ௧ିଵ݁ି௫݀ݔ  is the function that generalizes the factorial since ߁ሺݐ ൅ ͳሻ ൌ ሺͳሻ߁ ሻ andݐሺ߁ݐ ൌ ͳ. 
21 For the non ergodic processes considered by Niemann et al. the time average of a quantity remains a random variable 
in the infinite time limit and is thus not equal to its ensemble average. 
22 Furthermore ͳ ⁄ݐ  appears as the frequency resolution of the discrete Fourier transform used in spectral analysis. 
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6. Other interesting models of 1/f noise 
 In 1λ80, B. Pellegrini showed that the flicker noise arises in islands, of any size (from a 

few nm to several ȝm), which are enclosed by a potential-energy barrier or which, especially 

for the smallest volumes, present an energy well for the carriers [23]. This model was later 

improved in several papers, see, e.g. [24] and references therein. 

 In 1λ83, E. Marinari et al. proposed a model of 1/f power spectrum from one-dimensional 

random walks in random environments [25]. 

 In 2007, Erland and Greenwood proposed a general mathematical construction of reversible 

Markov chains which leads to ͳ ߱ఈ⁄  noise with ߙ between 0.5 and 1.5 [26]. 

 In 2007, K. A. Kazakov gave a new model of flicker noise by considering the quantum 

fluctuations of coulomb potential [27]. 

 In 2011, T. Prevenslik proposed another quantum theory of flicker noise, in the case of 

nanowires [28]. 

7. Conclusions 
Many mathematical models have been proposed to explain the origin of ͳ/݂ఈ noise with Ͳ.ͷ ൏ ߙ ൏ ͳ.ͷ. However, exact ͳ/݂ noise is still pretty much controversial since very few papers 

propose a way to compute the amplitude of the ͳ/݂ noise for a particular system. Furthermore, 

there are even fewer papers providing a specific model suitable for quartz ultra-stable oscillators 

compared to what exists for electronic devices. We shall see in the next two chapters two possible 

route towards this goal, namely Handel’s quantum theory of ͳ/݂ noise and the study of the 

hysteretic motion of dislocations using the Fluctuation-Dissipation theorem. 
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Chapter	3: Investigation	of	Quantum	1/f	noise	

1. On some of Handel’s theories concerning 1/f noise 
1.1. Handel’s theory of quantum 1/f noise in electronic devices 

During the last few decades lots of papers have been published on the theory of quantum 1/f 

noise. In 1λ75, P. H. Handel devised a quantum theory of 1/f noise [1], [2], [3], [4] in electronic 

devices by assuming that the origin of 1/f noise is due to the intrinsic current fluctuations during the 

quantum interaction of the current carriers with some scattering electromagnetic field (which for 

one current carrier can be due solely to the interaction with the other current carriers). Indeed, in 

these conditions, some change of speed of current carriers may occur, which must be accompanied 

by the emission of one or several photon(s) (so-called Bremsstrahlung process). The differential 

cross-section for the emission of a low energy photon has the peculiarity of being inversely 

proportional to that (small) energy ߳ (hence frequency since ߳ ൌ ݄݂ for a photon) [4]23. Handel then 

first proved [1] that this translates into DC current fluctuations with a power spectral density similar 

to the phenomenological expression of Hooge, then that the power spectral density of the phase 

fluctuations of an electric AC current also has a 1/f spectrum [2]24. Paper [3] essentially reviews the 

physical meaning, accuracy and limits of application of the approximations done in [1]. 

Since paper [2] uses results of paper [1], we shall summarize both of these papers at the same 

time to illustrate the claim by Handel, that the intrinsic quantum 1/f noise25 is due to quantum 

beats between two quantum waves. The first one is attached to the current carriers that 
contributes to the nominal frequency of the signal. The second one corresponds to the 
quantum of current carriers that have emitted low energy photons in Bremsstrahlung 
processes one at a time and independently. Indeed, according to this mechanism, the individual 

current carriers that have emitted a Bremsstrahlung photon contribute to frequencies with small 

differences to the nominal frequency and therefore to the fluctuations of the nominal frequency. In 

paper [2], P. H. Handel assumes that, in the presence of a harmonic signal of circular frequency ߱଴, 

                                                 
23 This means that the amount of energy radiated through these low-energy photons is the same in any frequency 
interval of given bandwidth ݂݀, down to ݂ ൌ Ͳ, so that a logarithmically divergent number of photon are emitted in the 
low energy limit. 
24 In fact, if one takes into account both real and virtual multi-photon processes, one does not find exactly ͳ/݂ but ͳ/݂ଵିఈ஺, where 	ߙ ൌ ଶ݁ߨʹ ሺͶߝߨ଴ሻ݄ܿ ൎ ͳ ͳ͵͹⁄⁄  is the so-called fine structure constant of quantum electrodynamics 

and ܣ ൎ ଷ଼గ ቀ௩௖ቁଶ ଶ݊݅ݏ ఏబଶ , with ݒ ا ܿ the speed of the current carrier and ߠ଴ ا ͳ the change of direction of this speed 
during the emission. Hence ܣߙ ا ͳ. This little change is nonetheless very important it renders convergent the otherwise 
logarithmically divergent spectral integral.
25 Being intrinsic to the motion of charge carriers in an electric device, this contribution is supposed to always exist and 
be the lower limit for 1/f noise, since other contributions of different physical origins may also exist. 
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the state of a current carrier can be written as a mixture of pure quantum states, among which one 

can find states of the following formμ 

,Ԧݎ଴ሺߖ  ሻݐ ൌ ܽሼexpሾሺ݅ ԰⁄ ሻሺ݌ଵሬሬሬԦ ∙ Ԧݎ െ ሻሿݐଵܧ ൅ expሾሺ݅ ԰⁄ ሻሺ݌ଶሬሬሬሬԦ ∙ Ԧݎ െ  ሻሿሽ (3.1)ݐଶܧ

where,	ܧଶ െ ଵܧ ൌ ԰߱଴. This kind of split states generates a current ଔԦ଴ ൌ ԰ଶ௠௜ ൫ߖ଴ାߖ׏଴ െߖ଴ߖ׏଴ା൯ 
of circular frequency ߱଴. However, the interaction of the wave function (3.1) with the quantized 

electromagnetic field gives rise to low-frequency photon emission or absorption. As a result, the 

current carrier wave function must be complemented by a coherent superposition of waves with 

slightly different energiesμ ߖሺݎԦ, ሻݐ ൌ ܽሼexpሾሺ݅ ԰⁄ ሻሺ݌ଵሬሬሬԦ ∙ Ԧݎ െ ሻሿݐଵܧ ൅ expሾሺ݅ ԰⁄ ሻሺ݌ଶሬሬሬሬԦ ∙ Ԧݎ െ ሻሿሽݐଶܧ ൅׬ ܾఌሼexp ቂሺ݅ ԰⁄ ሻ ቀ݌′ଵሬሬሬሬሬԦ ∙ Ԧݎ െ ሺܧଵ െ ߳ሻݐቁቃఢభఢబ ൅ 	exp ቂሺ݅ ԰⁄ ሻ ቀ݌′ଶሬሬሬሬሬԦ ∙ Ԧݎ െ ሺܧଶ െ ߳ሻݐቁቃሽ	ܽఢା 	ௗఢ√ఢ
  (3.2) 

where ߳଴ is either the soft-photon detection threshold or the lower-frequency limit of the electric-

current-noise spectral measurement, ߳ଵ ا ,ଵܧ  ଶ is some arbitrary energy loss which must be weakܧ

enough not to change appreciably the momentum amplitude of the current carrier, ܾఌ is a relative 

amplitude connected to the differential emission cross-section for a photon of energy ߳ and ܽఢା is 

the normed second quantization creation operator for this photon of energy ߳, emitted in any 

direction26μ ܽఢା ൌ √԰௖ఢ ׬ ఢ݂∗ସగ଴ ሺߠ, ߮ሻܽ௞ሬԦା݇ଶ݀ߗ௞, with ׬ | ఢ݂∗ሺߠ, ߮ሻ|ଶସగ଴ ௞ߗ݀ ൌ ͳ and ߳ ԰ܿ⁄ ൌ หሬ݇Ԧห ൌ ݇ (3.3) 

 ௕ച௔ ൌ ሺܣߙሻభమሺ߳/߳଴ሻఈ஺/ଶ݁௜ఊሺఢሻ ≡  ఢ݁௜ఊሺఢሻ, (3.4)ߩ

where ߙ ൌ ݁ଶ ሺͶߝߨ଴ሻ԰ܿ ൎ ͳ ͳ͵͹⁄⁄  is the so-called fine structure constant of quantum 

electrodynamics and ܣ is defined thanks to an approximate expression for the infrared exponent of 

the Bremsstrahlung photon emission differential cross-section for small four-momentum transfers 

(adapted from Eq. 2.34 of Ref. [4])μ 

 A ൎ ଷ଼గ ቀ௩௖ቁଶ sinଶ ఏబଶ ൌ ଶଷగ ቀ∆௩௖ ቁଶ (3.5) 

where ݒ is the velocity norm of the current carrier before and after emission (small transfer!) and ߠ଴ 

is the change of direction of this speed during the transfer ሺ∆ݒ ൌ ݒʹ sinሺߠ଴ ʹ⁄ ሻሻ. 
Now subtracting dc and dc 1/f noise currents from the total current calculated from this new 

wave function, the ac current contribution ȷԦ~ is given by27μ 

                                                 
26 In the following formula, ܽఢା is homogeneous to ͳ √߳⁄ , while ܽ௞ሬԦା is homogeneous to ݇ିଷ ଶ⁄ . 
27 In paper [3], P. H. Handel states that the inclusion of an electromagnetic vector potential term into the definition of 
the current operator would add terms in the current (linear and quadratic in this vector potential) that can be neglected 
with respect to the leading ͳ/݂ term, because they are at least a factor ߙ ݒ ܿ⁄  smaller. 
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ଔԦ~ ൌ ቀ|௔|మ௠ ቁ ሼ݌ଵሬሬሬԦ expሾെ݅߱଴ݐ ൅ ሺ݅ ԰⁄ ሻሺ݌ଵሬሬሬԦ െ ଶሬሬሬሬԦሻ݌ ∙ Ԧሿݎ ൅ ଶሬሬሬሬԦ݌ expሾ݅߱଴ݐ െ ሺ݅ ԰⁄ ሻሺ݌ଵሬሬሬԦ െ ଶሬሬሬሬԦሻ݌ ∙ Ԧሿሽݎ
ൈ ቌͳ ൅ ׬ ሾ݅	ఢሼexpߩ ݐ߳ ԰⁄ ൅ ሺ߳ሻሿܽఢାߛ݅ ൅ expሾെ݅ ݐ߳ ԰⁄ െ ሺ߳ሻሿܽఢሽఢభఢబߛ݅ ቀௗఢ√ఢቁ൅׬ ׬ ఢᇲߩఢߩ expሾ݅ሺ߳ᇱ െ ߳ሻ ݐ ԰⁄ ൅ ሺ߳ᇱሻߛ݅ െ ሺ߳ሻሿܽఢܽఢᇲାߛ݅ ቀௗఢ√ఢቁ ቀௗఢᇲ√ఢᇲቁఢభఢబఢభఢబ ቍ (3.6) 

The (small) phase shift ߮ߜ ا ݐof this contribution with respect to ߱଴ ߨ ൅ ሺሺ݌ଵሬሬሬԦ െ ଶሬሬሬሬԦሻ݌ ԰⁄ ሻ ∙  Ԧݎ
can be detected either by coherent detection (multiplication by a quadrature carrier ܣ sinሺ߱଴ݐሻ 
followed by low-pass filtering) of by envelop detection (addition of a quadrature carrier followed by 

rectification, low-pass filtering and subtraction of the constant). In both cases, the intensity of the 

detected signal will be proportional to ߮ߜ, with a proportionality constant named ݇஽ by Handel. 

Replacing everywhere cosሾ߱଴ݐ െ ሺ݌ଵሬሬሬԦ െ .ଶሬሬሬሬԦሻ݌ Ԧሿ by ݇஽ݎ sin߮ in the real part of Eq. (3.6), the 

expression of the detected current density is found to beμ 

 
ଔ஽ሬሬሬԦ ൌ െ݇஽ ቀ|௔|మ௠ ቁ ሺ݌ଵሬሬሬԦ െ ׬ଶሬሬሬሬԦሻሼ݌ ఢఢభఢబߩ sinሾ߳ ݐ ԰⁄ ൅ ሺ߳ሻሿሺܽఢାߛ െ ܽఢሻ ቀௗఢ√ఢቁ൅׬ ׬ ఢᇲߩఢߩ sinሾሺ߳′ െ ߳ሻ ݐ ԰⁄ ൅ ሺ߳′ሻߛ െ ሺ߳ሻሿఢభఢబఢభఢబߛ ܽఢܽఢᇲା ቀௗఢ√ఢቁ ቀௗఢᇲ√ఢᇲቁሽ (3.7) 

The autocorrelation function of the detected current can then be calculated asμ 

ݐሻଔԦ஽ሺݐଔԦ஽ାሺۃۃ ൅ ߬ሻۄۄ௔௩ ൌ ݇஽ଶ |ܽ|ସ݉ଶ ሺ݌ଵሬሬሬԦ െ ଶሬሬሬሬԦሻଶ݌ ൈන න ఢᇲߩఢߩ ԰ݐsinሾ߳ۃ ൅ ሺ߳ሻሿߛ sinሾ߳′԰ ሺݐ ൅ ߬ሻ ൅ ௔௩ۄሺ߳′ሻሿߛ ఢܽఢᇲାܽۃ ۄ ൬݀߳√߳൰ቆ݀߳ᇱ√߳ᇱቇఢభఢబ
ఢభఢబ

 

 ൌ ݇஽ଶ |௔|రଶ௠మ ሺ݌ଵሬሬሬԦ െ ଶሬሬሬሬԦሻଶ݌ ׬ ఢଶߩ cos ቀఢఛ԰ ቁ ௗఢఢఢభఢబ  (3.8) 

Where the first ۃ ۃ is the quantum expectation value and ۄ  .௔௩ is a time averageۄ

According to the Wiener-Khintchine theorem28, the power energy density of the detected 

current is therefore found to be2λμ 

ࣕۄଔԦ஽ାଔԦ஽ۃ  ൌ ௞ವమଶ |௔|ర௠మ ሺ݌ଵሬሬሬԦ െ ଶሬሬሬሬԦሻଶ݌ ఘചమఢ  (3.λ) 

The power energy density of phase fluctuations is then defined and calculated by Handel as30μ 

ఢۄሻଶ߮ߜሺۃ  ൌ ച௞ವమۄఫԦವశఫԦವۃ మۄ~ఫԦۃ ൌ ሺ௣భሬሬሬሬԦି௣మሬሬሬሬԦሻమଶሺ௣భሬሬሬሬԦା௣మሬሬሬሬԦሻమ ሾͳ െ ׬ ఢଶߩ 	ௗఢఢఢభఢబ ሿିଶ ఘചమఢ  (3.10) 

By introducing the definition of ߩఢ ൌ ሺܣߙሻభమሺ߳/߳଴ሻఈ஺/ଶ, performing the integration and finally 

replacing the energies by frequencies, one finds that the power spectral density of phase fluctuations 

is given byμ 

                                                 
28 Cf. e.g. httpμ//en.wikipedia.org/wiki/Wiener-Khintchine_theorem 

2λ 
ࣕۄଔԦ஽ାଔԦ஽ۃ ൌ ׬ ݐሻଔԦ஽ሺݐଔԦ஽ାሺۃۃ ൅ ߬ሻۄۄ௔௩exp ቀെ ௜ఢఛ԰ ቁ ݀ ߬ ԰⁄ାஶିஶൌ ݇஽ଶ |௔|రଶ௠మ ሺ݌ଵሬሬሬԦ െ ଶሬሬሬሬԦሻଶ݌ ׬ ఢᇱଶߩ ׬ cos ቀఢᇱఛ԰ ቁ exp ൬െ݅ ቀఢఛ԰ ቁ൰݀ ቀఛ԰ቁାஶିஶ ௗఢᇱఢᇱఢభఢబ  

30 In Handel’s paper, it is ሾͳ ൅ ׬ ఢଶߩ 	ௗఢఢఢ߳బ ሿ and not ሾͳ െ ׬ ఢଶߩ 	ௗఢఢఢభఢబ ሿ which surprises us. 
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 ܵఝሺ݂ሻ ൌ ቀ஑୅ଶ ቁ ሺ௣భሬሬሬሬԦି௣మሬሬሬሬԦሻమଶሺ௣భሬሬሬሬԦା௣మሬሬሬሬԦሻమ ቀ௙௙బ௙భమ ቁఈ஺ ݂ିଵ (3.11) 

Integrating over frequencies from ଴݂ to ଵ݂, we obtain a finite total equivalent phase dispersionμ 

׬  ܵఝሺ݂ሻ݂݀௙భ௙బ ൌ ቀଵଶቁ ሺ௣భሬሬሬሬԦି௣మሬሬሬሬԦሻమଶሺ௣భሬሬሬሬԦା௣మሬሬሬሬԦሻమ ሺ ଴݂/ ଵ݂ሻఈ஺ ൤ͳ െ ቀ௙బ௙భቁఈ஺൨ (3.12) 

Thus equation (3.11) shows that the spectral density of phase fluctuations is inversely 

proportional to the frequency i.e. 1/f spectrum.  

According to Handel, 1/f noise similar to the equation (3.11) is obtained when the incoming 

particles are described by a density matrix which corresponds to incoherent mixture of states with a 

definite energy. This 1/f noise is an incoherent sum of 1/f noise contributions arising from all 

components of the density matrix. He suggested that, phase noise in a simple harmonic signal 

modifies the power spectrum of the current which carries the signal. On both sides of the ߜ function 

singularity present at the frequency of the harmonic signal, the power spectrum exhibits sidebands 

due to the random phase and frequency fluctuations which define phase noise. 

P.H. Handel also suggests in [2] that the upper frequency limit ଵ݂ is determined by the validity 

of the approximationሺ݌′ሬሬሬԦଵ,ଶ െ .Ԧଵ,ଶሻ݌ Ԧݎ ا  ԰. However, in the presence of negative feedback, theߨ

passage of the signal through the sample will be iterated over a closed loop, and ൫݌ᇱሬሬሬԦ െ .Ԧ൯݌  Ԧ willݎ

lead to destructive self-interference, for which the condition ݂ ا ଵ݂ is well satisfied. This results in 

a substantial reduction of 1/f phase noise generated by amplifiers or frequency multipliers, when 

feedback is included. 

 

Since these 1λ75 papers, P. H. Handel has been applying his model to several physically 

different systems in numerous papers (see e.g. httpμ//www.umsl.edu/~handelp/QuantumBib.html). 

On the same web site (httpμ//www.umsl.edu/~handelp/research.htm#res1) he also summarizes his 

findings on quantum ͳ/݂ noise effects by writing that “These simple and fundamental effects 

explain ͳ/݂ noise as a universal infrared divergence phenomenon. According to this theory, any 

current ܫ with infrared-divergent coupling to a system of infraquanta must exhibit ͳ/݂ noise with a 

spectral density of fractional fluctuations of ʹ݂ܰߨ/ߙ (coherent quantum ͳ/݂ effect observed in 

large samples, devices or systems) or ʹܣߙ/݂ܰ (conventional quantum ͳ/݂ effect observed in small 

devices or systems). Here ܰ is the number of carriers in the sample used for the definition of the 

current ܫ. For electric currents, taking the photons as infraquanta, we get a quantum ͳ/݂ noise 

contribution with ߙ ൌ 	ͳ/ͳ͵͹ the fine structure constant. Finally31, ܣߙ	 ൌ 	 ሺʹߨ͵/ߙሻሺݒ߂/ܿሻଶ is the 

                                                 
31 We have taken the liberty to correct a typing error on Handel’s web site since, there, it is written αA = (2α/3π)(Δv/e)2 
(e instead of c). 
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infrared exponent, essentially the quadratic velocity change in the process considered, in units of the 

speed of light”.32 Concerning experimental verifications, Handel states on the same web page that 

“The theory has been verified in many waysμ ͳ/݂ noise was found experimentally to be caused by 

mobility fluctuations, not carrier concentration fluctuations, and the magnitude and temperature 

dependence was shown to agree with the measurements in submicron metal films and vacuum 

tubes. Furthermore, ͳ/݂ fluctuations in the rate of a-radioactive decay, predicted by the theory in 

1λ75 have been verified experimentally, recently also for lo-decay33. Additional evidence comes 

from ͳ/݂	noise in frequency standards and in SQUIDS. Finally, the quantum ͳ/݂ noise theory has 

recently been most successful in explaining partition noise in vacuum tubes, and ͳ/݂ noise in 

transistors, pen junctions and infrared radiation detectors.” We also note that this theory was 

favorably presented in several papers by Aldert van der Ziel, including his 1λ88 review [1λ] from 

which, we reproduce the conclusionμ 

“This project started as an attempt to verify or refute the predictions made by Handel's 

quantum 1/f noise theories; more particularly his theory of the Hooge parameter ߙு. This is now 

practically complete, except for some more work on vacuum photodiodes, on BJTs and on ballistic 

devices. We see from Section V, that Handel's result, if properly applied to the device under test, 

agrees with our measurements in nearly all cases. Both the experimental numbers for the various ߙு 

values and their agreement with Handel's predictions represent scientific information that should not 

be ignored. 

Our project cannot check the validity or invalidity of Handel's derivation of his predictions for ߙு. This is the domain of the theoreticians. They have every right to criticize the derivation and 

replace it by a better one. In the latter case, they should see to it that their prediction for ߙு agrees 

with Handel's prediction for ߙு, when the latter has been verified experimentally. Up to now this 

has not been done. 

It is difficult for some scientists to understand how a theory that is in their opinion incorrect 

can give correct predictions. It must be emphasized that only experiment can decide whether a 

conclusion is correct or incorrect. In our situation experiments decided that the predictions were 

right, and I see no way to avoid this conclusion. 

Since the accuracy of the measurements is ± 30 percent, correction factors close to unity 

cannot be detected.” 

                                                 
32 We also note incidentally that section IV of Ref. [11] proposes a general “Sufficient Criterion for Fundamental l/f 
Noise”. 
33 There must be a typing mistake or a problem during the conversion to HTML here also. 
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1.2. Criticisms of Handel’s theory 

In the first papers in a series, it seems to us that P.H. Handel puts more the emphasis on 

physical ideas that mathematical rigorousness. Furthermore, the use of ad hoc units such that ܿ ൌ ͳ, ԰ ൌ ͳ or the use of CGS units does not facilitate the understanding of some formula through 

dimensions equation analysis. However, in subsequent papers, remarks or notes often provide more 

insights, explanations or corrections of small calculations mistakes. This may be a reason why, 

although Handel’s theory has proved interesting as a guide for the optimization and study of several 

electronic devices, it has remained quite controversial over the years with strong opponents. See e.g. 

comments by Weissman in his 1λ88 review [7]34. Some more recent comments (2010) by 

Weissman can also be found in httpμ//en.wikipedia.org/wiki/TalkμQuantum_1/f_noise35. 

In 1λ86, L. B. Kiss and P. Heszler published a paper [8] in which they claim to prove the 

invalidity of Handel’s model of 1/f noiseμ “On the basis of rigorous quantum electrodynamics we 

show that the value of the beating term is zero at any given time, consequently this hypothetical 

type of l/f noise does not exist”. Since this paper is quite short and is in our opinion wrong, we study 

it here. 

For them, P. H. Handel starts from the idea that an electron Schrodinger field ߖ௫ሺݎԦ,  ሻݐ
emerging from a scattering event consists of two parts, a weak Bremsstrahlung part ߖ஻௥ሺݎԦ,  ሻ, and aݐ

larger non-Bremsstrahlung part, ߖ௡௢ሺݎԦ, ,Ԧݎ஻௥ሺߖ ,ሻ. The Bremsstrahlung partݐ  ሻ of the electron waveݐ

function is the sum of components ߖ஻௥௜ሺݎԦ,  ሻ, describing the probabilities of different photonݐ

emission events during the scattering (݅ labels the different frequencies and polarizations that the 

emitted photon can have. Note that the remaining electron then has a lower frequency due to energy 

conservation)μ 

,Ԧݎ஻௥ሺߖ  ሻݐ ൌ ∑ ,Ԧݎ஻௥௜ሺߖ ሻ௜ݐ  (3.13) 
The probability density of the scattered electron isμ 

                                                 
34 “Some of the theories that try to find a fundamental explanation of the Hooge formula are well enough known to 
make it worthwhile to look at some of their particulars, despite the general argument against such theories as an 
explanation for ͳ/݂ noise. The theory of Handel (1λ80) and the related theory of Ngai (1λ80) both explain ͳ/݂ noise as 
arising from quantum beats between elastically scattered and weakly inelastically scattered carriers, with different 
inelastic scattering mechanisms used by the two theories. In order to obtain the low-frequency beats, however, 
monochromatic incident quantum waves are assumed —a completely unrealistic assumption in view of the fact that 
thermal frequencies are almost always 6-15 orders of magnitude greater than the frequencies in the observed ͳ/݂ range. 
Severe problems also arise for the theory when one remembers that the wave packet is localized within the sample, so 
that the beats, if any, integrate to zero.” 
35 “The basic reasons that this "theory" cannot be correct areμ 1. It treats the wave function of an electron which has 
some amplitude for having had a weakly inelastic scattering event as a coherent superposition of the scattered and 
unscattered components, with the noise coming from their interference. Of course, those components are actually 
entangled with different versions of the scatterer and therefore exist as an incoherent interference-free mixture (density 
matrix). 2. In almost every reported case, the characteristic noise times extend to much longer than the dwell time of the 
carrier in the device. That rules out not only the Handel idea but any other idea that treats the noise as coming from 
independent properties of individual mobile carriers.” 
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,ݎሺߩ  ሻݐ ൌ ,Ԧݎ௫ሺߖ| ,ݎሺߩ ሻ|ଶ (3.14)ݐ ሻݐ ൌ ,Ԧݎ௡௢ሺߖ| ሻ|ଶݐ ൅ ∑ หߖ஻௥௜ሺݎԦ, ሻหଶ௜ݐ ൅ ∑ ,Ԧݎ஻௥௜∗ሺߖ ,Ԧݎ௡௢ሺߖሻݐ ሻ௜ݐ ൅ ∑ ,Ԧݎ௡௢∗ሺߖ ,Ԧݎ஻௥௜ሺߖሻݐ ሻ௜ݐ (3.15) 

The cross terms ߖ஻௥௜∗ሺݎԦ, ,Ԧݎ௡௢ሺߖሻݐ ∑ ሻ andݐ ,Ԧݎ௡௢∗ሺߖ ,Ԧݎ஻௥௜ሺߖሻݐ ሻ௜ݐ  are beating (oscil1ating) in 

space and time because they are the products of frequency-shifted and non-shifted components. As 

we have seen in the previous paragraph, Handel then uses approximate results for the infrared 

contribution to the emission cross-section to show that the low-frequency power density spectrum 

of the third and fourth terms in the right-hand side of Eq. (3.15) is of ͳ/݂-type. 

Restricting themselves to one photon emission processes, Kiss and Heszler proposed 

alternatively that the exact wavefunction of the entire system should also include wavefunctions for 

photons of all types multiplying the corresponding parts for the electronμ ߖ௦௬௦ሺݎԦ, …Ԧଵݖ . , Ԧ௜ݖ , … . , ሻݐ ൌ ,Ԧݎ௡௢ሺߖ ∏ሻݐ ,Ԧ௞ݖ଴௞ሺߔ ሻ௞ݐ ൅ ∑ ሺߖ஻௥௜ሺݎԦ, ௜ሺ௜ߔሻݐ Ԧ௜ݖ , ∏ሻݐ Ԧ௝ݖ଴௝൫ߔ , ൯௝ஷ௜ݐ ሻ(3.16) 

Where ߔ଴௞ሺݖ௞, Ԧ௜ݖ௜ሺߔ ሻ is the vacuum wavefunction for type ݇ photons that have not been irradiated andݐ ,  Ԧ௝ is the space vector of aݖ ሻ is the wave function for an irradiated photon of type ݅ (whereݐ

type ݆ photon). 

The electron probability density can then be calculated by integrating on the coordinates of all the 

photons, with ݀ݖԦ ൌ ∏ పሬሬԦ௜ݖ݀ μ 

,Ԧݎሺߩ ሻݐ ൌ න หߖ௦௬ሺݎ, …ଵݖ . , ௜ݖ , … . , ∏ሻหଶݐ ௩೔೔  Ԧݖ݀
,Ԧݎሺߩ ሻݐ ൌ ׬ หߖ௡௢ሺݎԦ, ∏ሻݐ ,Ԧ௞ݖ଴௞ሺߔ ሻ௞ݐ หଶ݀ݖԦ ൅∏ ௩೔೔ ׬ ห∑ ሺߖ஻௥௜ሺݎԦ, ௜ሺ௜ߔሻݐ Ԧ௜ݖ , ∏ሻݐ Ԧ௝ݖ଴௝൫ߔ , ൯௝ஷ୧ݐ ሻหଶ௩ ׬Ԧ൅ݖ݀ ሺߖ௡௢∗ሺݎԦ, ∏ሻݐ ,Ԧ௞ݖ଴௞∗ሺߔ ሻ௞ݐ ∑ ሺߖ஻௥௜ሺݎԦ, ௜ሺ௜ߔሻݐ Ԧ௜ݖ , ∏ሻݐ Ԧ௝ݖ଴௝൫ߔ , ൯௝ஷ௜ݐ ሻሻ∏ ௩೔೔ ׬Ԧ൅ݖ݀ ሺߖ௡௢ሺݎԦ, ∏ሻݐ ,Ԧ௞ݖ଴௞ሺߔ ሻ௞ݐ ∑ ሺߖ஻௥௜∗ሺݎԦ, ௜∗ሺ௜ߔሻݐ Ԧ௜ݖ , ∏ሻݐ Ԧ௝ݖ଴௝∗൫ߔ , ൯௝ஷ୧ݐ ሻሻ݀ݖԦ∏ ௩೔೔

 (3.17) 
Using the following relations of the photon wavefunctions (according to them) ׬ Ԧ௝ݖ௝∗൫ߔ , ൯௩ݐ ,Ԧ௞ݖ௞ሺߔ Ԧ௞ݖԦ௝݀ݖሻ݀ݐ ൌ ׬ ௝௞ and presumably alsoߜ Ԧ௝ݖ଴௝∗൫ߔ , ൯௩ݐ ,Ԧ௞ݖ଴௞ሺߔ Ԧ௞ݖԦ௝݀ݖሻ݀ݐ ൌ  ,௝௞ߜ

Kiss and Heszler claimed that Eq.  (3.17) would simplify intoμ 

,ݎሺߩ ሻݐ ൌ ,Ԧݎ௡௢ሺߖ| ሻ|ଶݐ ൅෍หߖ஻௥௜ሺݎԦ, ሻหଶ௜ݐ ൅ߖ௡௢∗ሺݎԦ, ,Ԧݎ஻௥௜ሺߖሻ෍ቊݐ ሻනݐ ଴௜ߔ ∗ሺݖԦ௜ , ሻ௩ݐ Ԧ௜ݖ௜ሺߔ , Ԧ௜ቋ௜ݖሻ݀ଶݐ  

 ൅ߖ௡௢ሺݎԦ, ሻݐ ∑ ቄߖ஻௥௜∗ሺݎԦ, ሻݐ ׬ ଴௜ߔ ሺݖԦ௜ , ሻ௩ݐ Ԧ௜ݖ௜∗ሺߔ , Ԧ௜ቅ௜ݖሻ݀ଶݐ   (3.18) 

Then, they claim that the 3rd and 4th terms of the above equation are corresponding to the 3rd 

and 4th term of the equation (3.15) and that since, according to them, ׬ Ԧ௝ݖ଴௝൫ߔ , ൯௩ݐ ,Ԧ௞ݖ௞∗ሺߔ Ԧ௞ݖԦ௝݀ݖሻ݀ݐ ൌ Ͳ, their 3rd and 4th term of the above equation become zero and 
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hence Handel’s interference beating term does not exist physically. However (without even 

discussing the use of space-time functions for the photons), we note that in our opinions Eq. (3.18) 

is wrong because it should beμ ߩሺݎ, ሻݐ ൌ ,Ԧݎ௡௢ሺߖ| ሻ|ଶݐ ൅෍หߖ஻௥௜ሺݎԦ, ሻหଶ௜ݐ ൅ߖ௡௢∗ሺݎԦ, ,Ԧݎ஻௥௜ሺߖሻ෍ቊݐ ሻනݐ ଴௜ߔ ∗ሺݖԦ௜ , ሻ௩೔ݐ Ԧ௜ݖ௜ሺߔ , Ԧ௜ቋ௜ݖሻ݀ݐ  

 ൅ߖ௡௢ሺݎԦ, ሻݐ ∑ ቄߖ஻௥௜∗ሺݎԦ, ሻݐ ׬ ଴௜ߔ ሺݖԦ௜ , ሻ௩೔ݐ Ԧ௜ݖ௜∗ሺߔ , Ԧ௜ቅ௜ݖሻ݀ݐ   (3.1λ) 

where we do not see why the remaining single integrals should be 0. Furthermore one can question 

whether their normalization relations should not be ׬ Ԧ௜ݖ଴௝∗ሺߔ , ሻ௩೔ݐ Ԧ௜ݖ଴௞ሺߔ , Ԧ௜ݖሻ݀ݐ ൌ  ௝௞, instead of theߜ

relation ׬ Ԧ௝ݖ଴௝∗൫ߔ , ൯௩೔ݐ ,Ԧ௞ݖ଴௞ሺߔ Ԧ௝ݖԦ௝݀ݖሻ݀ݐ ൌ  ௝௞, they wrote in the paper. Then the conclusion of Kissߜ

and Heszler does not seem firmly established for us. We also note that P. H. Handel published a 

detailed rebuttal of the paper of Kiss and Heszler [λ]. 

Finally, we note that in 1λ87, Th. M. Neiuwenhuigen, D. Frenkel and N.G. van Kampen also 

published a paper [10] containing several physical and mathematical objections to Handel’s theory 

of quantum 1/f noise, some of which seem much more serious than the above one. However, we do 

have demonstrations from Handel taking into account explicitely the correlations between bosons 

(photons, phonons,…) or fermions (electrons,…) e.g. in [11] in which one can find demonstrations 

of the conventional quantum ͳ/݂ effect and the coherent quantum ͳ/݂ effect36, both in the second 

quantization framework and in an approximate semi-classical derivation. The problem is that the 

application of these formulae to frequency standards [12] and particularly the numerical estimates 

that can be computed for the hydrogen maser and Cs or Rb or laser clocks do not seem to convince 

the specialists. 

1.3. Handel’s theory of quantum 1/f noise for piezoelectric quartz 
crystal resonators 

P. H. Handel has been applying these predictions to several physically different systems (see 

e.g. [6], [12], [13], [14]), among which quartz crystal resonators. Indeed, in the case of bulk 

acoustic wave resonators, the model proposed by Handel based on the “conventional quantum ͳ/݂ 

                                                 
36 Handel’s predicts 1/f noise in any system whenever the cross section for scattering of particles exhibits an infrared 
divergence due to the generation of low-frequency excitations. Namely, the power spectral density of relative cross-
section fluctuations in small devices or systems is given by (conventional quantum ͳ/݂ effect)μ 
 ܵఋఙ ఙ⁄ ሺ݂ሻ ൌ ସఈሺ௤ ௘⁄ ሻమሺ∆௩ ௖⁄ ሻమଷగ௙ே  
while in bigger systems, coherence must be taken into account (coherent quantum ͳ/݂ effect) and the power spectral 
density of relative current density fluctuations is given byμ 
 ܵఋ௝ ୨⁄ ሺ݂ሻ ൌ ଶఈగ௙ே  
where ܰ is the number of particles involved in the definition of the cross-section or the current density. 
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effect” is given in term of power spectral density of relative frequency fluctuations as follows (see 

[15] and all subsequent papers on that subject with Handel among the authors)μ 

 ܵ௬ሺ݂ሻ ൌ ఉᇲ௏ொర௙ (3.20) 

with ܸ the active volume of the resonator (cm3), ܳ the intrinsic quality factor of the resonator and ߚ’ 
a proportionality factor function of the physical parameters of the material that will be detailed (and 

numerically evaluated) below. The demonstration of this formula can be separated into three main 

steps. 

1.3.1. Obtention of the power spectral density for the relative fluctuations of the 

number of interactions per unit time 

For this part, we refer to e.g. [16] for a formal quantum derivation, to e.g. [13] or [14] for a 

semi-classical derivation by Handel and to [17] and [1λ] for a classical justification using Carson’s 

theorem37 applied to the square root of the power dissipated, by van der Ziel. 

The first step is to consider the disappearance of a phonon from the main mode ଴݂ of the 

resonator, due to an interaction supposed to be instantaneous (local in time ߜሺݐ െ  ଴ሻ). Thisݐ

elementary process leads to a sudden decrease ݄ ଴݂ of the main mode total energy. The total 

fluctuation of the main mode energy therefore corresponds to the fluctuation in the number of 

phonons in that mode. Hence, the relative fluctuation of the power (ܲ) is equal to the relative 

fluctuation in the number of interactions per unit time (߁)μ ሺ∆߁/߁ ൌ ∆ܲ/ܲ). Two kinds of 

processes can occur. The first one, the three-phonon process is characterized by a number of 

interactions per second	߁′. It is characteristic of the non-harmonic part of the vibrations in a perfect 

crystal. In this case, a phonon of the main mode interacts with a thermal phonon to give another 

thermal phonon plus an energy amount of hf. At high temperatures, this process is dominant. The 

second one, the two-phonon process, characterized by ߁′′, involves the interaction of a phonon of 

the main mode with a primary defect of the resonator. This process gives a phonon in another mode 

and a defect having absorbed energy. This process is characteristic of a non-perfect crystal. This 

process is said to be the dominant one at very low temperature38. 

                                                 
37 Consider a realization of a series of random pulses ்ݔሺݐሻ ൌ ∑ ܽ௞݂ሺݐ െ ௞ሻ௄௞ୀଵݐ , with ݂ a fixed pulse shape function of 
Fourier transform ܨ and random amplitude ܽ௞ such that ∀݇, ۄ௞ܽۃ ൌ  the common mean pulse amplitude independent ۄܽۃ
of the random ݐ௞ which are distributed uniformly in ሾͲ, ܶሿ. Its Fourier transform is given by ்ܺሺ݅߱ሻ ൌ ∑ሺ݅߱ሻܨ ܽ௞expሺെ݅߱ݐ௞ሻ௄௞ୀଵ  and its one-sided power spectral density by ܵ௑ሺ߱ሻ ൌ lim்→ஶ ۄሺ݅߱ሻ|ଶ்ܺ|ۃʹ ܶ⁄ . It 
can then be demonstrated thatμ ܵ௑ሺ߱ሻ ൌ ሺ݅߱ሻ|ଶܨ|ۄଶܽۃߥʹ ൅ Ͷߥߨଶۄܽۃଶ|ܨሺͲሻ|ଶߜሺ߱ሻ  (Carson’s theorem), 
with ߥ ൌ lim்→ஶܭ ܶ⁄ , the average rate of pulse emission and ܽۃଶۄ ൌ lim்→ஶ∑ ௄௞ୀଵۄ௞ଶܽۃ ⁄ܭ  the mean-square of the 
pulse amplitudes. 
38 Here, we are considering not only intrinsic defects (since their number usually decreases exponentially with the 
inverse of T), but also extrinsic defects. 
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Total losses of the main mode per unit time are thus defined as the sum of both interaction 

rates of disappearance of a quantum of the main mode, following interaction with another phonon 

or a defect in the crystalμ ߁ ൌ ᇱ߁ ൅ Furthermore, ቚఋఙఙ .′′߁ ቚ ൌ ቚఋ௰௰ ቚ because the ratio , equal to the 

flux of phonon-phonon collisions and phonon-defect interactions, is considered constant because of 

the stability of the involved oscillators. Consequently the power spectral densities of relative 

fluctuations of cross-section, interaction rate, power are all the same. 

According to Handel, the expression of the energy lost ∆ܧ, in a unit frequency interval  ∆݂ ൌ ͳ Hz, due to the disappearance of phonon(s) from the main resonator mode is given by a law 

similar to Larmor’s formula for Bremsstrahlungμ 

 ∆ா∆௙ ൌ ଵସగఌబ ଶቛ∆௉ሬԦሶቛ
మଷ௖య  (3.21) 

In order to try to demonstrate or at least justify this formula, we adopt the “elementary” 

derivation of his formula by Handel (see e.g. [13]) which starts from the classical Larmor formula 

(18λ7) 3λ for the total electromagnetic power radiated in all the directions by a moving particle of 

charge q with acceleration a (Bremsstrahlung)μ 

 ܲ ൌ ௗாௗ௧ ൌ ଵସగఌబ ଶ௤మ௔మଷ௖య  (3.22) 

P. H. Handel then makes an assumption that for a fluctuation event, there is an interaction of 

the particle with something else that changes its speed at a given time t. This gives rise to a 

supplementary acceleration of the formμ 

 Ԧܽሺݐሻ ൌ ሻݐሺߜԦݒ∆ ൌ Ԧݒ∆ ׬ ݁േ୧ଶగ௙௧݂݀ାஶିஶ  (3.23) 

Since the square of a Dirac delta has no meaning for a mathematician, Handel uses a trick to go 

further40μ 

 

׬ ାஶିஶݐ݀ܲ ൌ ଵସగఌబ ଶ௤మ‖∆௩ሬԦ‖మଷ௖య ׬ ׬ ׬ ݁ି୧ଶగ௙௧݁ି୧ଶగ௙ᇱ௧݂݂݀݀′ାஶିஶାஶିஶ ାஶିஶൌݐ݀ ଵସగఌబ ଶ௤మ‖∆௩ሬԦ‖మଷ௖య ׬ ׬ ൫׬ ݁ି୧ଶగሺ௙ା௙ᇱሻ௧݀ݐାஶିஶ ൯݂݀′݂݀ାஶିஶାஶିஶൌ ׬ ଵସగఌబ ଶ௤మሺ∆௩ሬԦሻమଷ௖య ݂݀ାஶିஶ
 (3.24) 

This quantity is infinite, but it allows us first to recover Eq. (3.21) 41, then to define a 1-sided 

spectral density of Bremsstrahlung energy radiated by a single charged particle due to a sudden 

speed change42. 

                                                 
3λ see e.g. Jackson - Classical electrodynamics (Wiley - 2001), paragraph λ.2 or  
 httpμ//en.wikipedia.org/wiki/Larmor_formula. 
40 We note incidentally that the total energy radiated by this suddenly accelerated charge (after the sudden change, if 
causality is to be respected…) is ׬ ൅∞Ͳݐ݀ܲ  and not ׬ ∞൅∞െݐ݀ܲ !... 
41 ∆ ሬܲԦሶ ൌ ∆ ቂௗ௉ሬԦௗ௧ቃ ൌ ∆ ቂ ௗௗ௧ ൫∑݌Ԧ௜൯ቃ ൌ ௜ݍ∑ Ԧ௜݌ Ԧ௜ withݒ∆ ൌ Ԧ௜ݒ Ԧ௜ andߜ௜ݍ ൌ 	Ԧ௜ߜ݀ ⁄ݐ݀  Ԧ௜ being the difference of positionsߜ ,
between the barycenter of positive charges (total ݍ௜) and the barycenter of the negative charges (total െݍ௜) in unit cell i. 
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 ଵସగఌబ ସ௤మ‖∆௩ሬԦ‖మଷ௖య ൌ ଵସగఌబ ସቛ∆௉ሬԦሶቛ
మଷ௖య  (3.25) 

If we divide this quantity by ݄݂, we get the 1-sided spectral number density of photon 

radiated by a single charged particle due to a sudden speed change i.e. the number of emitted 

photon in a unit frequency interval from the Bremsstrahlung processμ 

 ௣ܰ ൌ ଵସగఌబ ସ௤మ‖∆௩ሬԦ‖మଷ௖య௛௙ ൌ ఈ஺௙ , with ܣ ൌ ଶሺ௤ ௘⁄ ሻమ‖∆௩ሬԦ ௖⁄ ‖మଷగ  and ߙ ൌ ଶగ௘మሺସగఌబሻ௛௖ (3.26) 

This is the general (approximate43) formula for Handel’s conventional quantum 1/f noise. The 

problem is then to relate the speed change of charge ݍ to other measurable quantities, whose 

fluctuations constitutes the noise to evaluate. This process is specific to each class of physical 

systems to study. 

In order to find this relation, in section V of paper [16], it is demonstrated that the (1-sided?) 

power spectral density of the relative fluctuation of the charge probability density |ߖ|ଶ isμ 

 Sఋ|అ|మ |అ|మ⁄ ሺ݂ሻ ൌ ʹ ఈ஺൫ଵାఈ஺	୪୬ሺ௙భ ௙బ⁄ ሻ൯మ௙ ൎ ʹ ఈ஺௙  (3.27) 

The origin of the extra factor 2 seems to be in the double product of the cross-correlation function in 

section IV of [16]. Since the number of particles having a sudden speed change per unit time is 

proportional to the amount of sudden crystal polarization change which is itself related to the 

change in the elastic energy of the piezoelectric crystal, hence to the number of phonons, the 

fluctuations of the phonon interaction rate in a given frequency interval due to the emission of 

photons in the same interval by the charge are considered equal by Handel44. Thus, the 1-sided 

power density of phonon interaction rate  is given by45μ 

 ܵఋ௰/௰ሺ݂ሻ ൌ ସఈቛ∆௉ሬԦሶቛమଷగ௙௘మ௖మ  (3.28) 

Finally, we recall a remark put forward by Handel below Eq. (5.6) of [16], that “one will have 

to replace ܿ by the speed of light in the medium considered” in all these formula. 

                                                                                                                                                                  
Since, for time separated events, only one charge has a sudden change of speed, we have ∆ ሬܲԦሶ ൌ q∆ݒԦ. However, we 
stress that here ሬܲԦ is the total dielectric momentum and not the polarization vector (as stated in Handel’s papers on 1/f 
noise in quartz resonators), as can be checked from dimensions. 
42 This means that the energy spectrum of the emitted radiation is independent of frequency (at low frequencies 
compared with the inverse of the characteristic time for the speed change of the charges particle (of the scattering 
process)), or that the number of photon emitted per frequency band ∆݂ is inversely proportional to ሺ∆ܧ ൌ ݄݂∆݊ሻ. 
43 If one realizes that the ௣ܰ computed here is nothing else than the quantity ߩఢଶ ߳⁄  introduced in the first paragraph (see 
Eqs. (3.2), (3.4) and (3.5)), we can see that the semi-classical derivation given here recovers the quantum result up to a 
factor ሺ߳/߳଴ሻఈ஺ which is essentially 1, since ܣߙ ا ͳ. 
44 Here, we can question the fact that the rate of loss of a phonon (i.e of an energy quantum from an eigenmode of 
vibration of the whole crystal) is directly connected to the rate of events occurring locally in the crystal at the position 
of the charged particle having a change of speed, but we must also keep in mind that there are statistical ensemble 
averages in the quantum derivation of these formula by Handel... 
45 One may wonder whether this should be ۃቛ∆ ሬܲԦሶ ቛଶۄ instead of ቛ∆ ሬܲԦሶ ቛଶ, with an additional quantum expectation value 
or time average or statistical ensemble average… 
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1.3.2. Obtention of the 1/Q
4
 factor 

The next step is to explain the factor ͳ/ܳସ in Eq. (3.20). For this, we follow Ref. [18] and 

start from the differential equation of the classical forced harmonic oscillator with dampingμ 

 ௗమ௫ௗ௧మ ൅ ߛʹ ௗ௫ௗ௧ ൅ ߱଴ଶݔ ൌ  ሻ (3.2λ)ݐሺܨ

Since, the resonance frequency is given byμ 

 ߱௥ଶ ൌ ߱଴ଶ െ  ଶ (3.30)ߛʹ
the fluctuations in the resonant frequency due to fluctuations in the damping coefficient can be 

computed byμ 

 ߱௥߱ߜ௥ ൌ െʹ(3.31) ߛߜߛ 

 ఋఠೝఠೝ ൌ െʹቀ ఊఠೝቁଶ ቀఋఊఊ ቁ ൌ െቀ ଵଶொమቁ ቀఋఊఊ ቁ (3.32) 

where ܳ ൌ ఠೝଶఊ is the quality factor. It then follows immediately that the spectral power density of 

frequency fluctuations is given byμ 

 ܵ௬ሺ݂ሻ ൌ ܵఋఠ ఠ⁄ ሺ݂ሻ ൌ ቀఋఠೝఠೝۃ ቁଶۄ௙ ൌ ቀ ଵସொరቁ ቀఋఊఊۃ ቁଶۄ௙ (3.33) 

Since the damping coefficient ߛ is assumed to be proportional to the rate of interactions ߁ leading to 

a loss of energy of the eigenmodes of the crystal, (i.e. the disappearance of phonons), which is itself 

inversely proportional to the loss event cross section, we getμ 

 ܵ௬ሺ݂ሻ ൌ ଵସொర 	ܵఋఊ/ఊሺ݂ሻ ൌ ଵସொర 	ܵఋఙ/ఙሺ݂ሻ ൌ ଵସொర 	ܵఋ௰/௰ሺ݂ሻ (3.34) 

Finally, we note that since we use ܳ ൌ ߱௥/ʹߛ, viscous damping must be the dominant cause 

of damping in the vicinity of resonance and that this ܳ is an unloaded ܳͶ͸. 
1.3.3. Detailed expression of the  factor 

The final step consists in determining the coefficient of proportionality ߚ′ between ܵ௬ሺ݂ሻ and ܸ/ሺܳସ݂ሻ in Eq. (3.20). For this, we put Eq. (3.28) into Eq. (3.34) to getμ 

 ܵ௬ሺ݂ሻ ൌ ଵସொర 	ସఈቛ∆௉ሬԦሶቛమଷగ௙௘మ௖మ  (3.35) 

We must now relate ሺ∆ ሬܲԦሶ ሻଶ to measurable quantities. In order to do this, Handel47 used the fact 

that the vibrational energy in a given mode of circular frequency ۄ߱ۃ (corresponding to the average 

frequency of the thermal phonons that interacted with the main mode phonons to create the 
                                                 
46 In Ref. [1λ], T. Parker found by studying numerous surface acoustic wave devices that the 1/f process is essentially 
the same for bulk and surface acoustic wave devices and that “the power spectral density of frequency fluctuations 
shows a clear power law dependence that is very close to ͳ ܳ௨ସ⁄ , where ܳ௨ is the unloaded Q. However, the observed 
dependence on loaded Q is weak.” 
47 cf. for example Eq. (2) of Ref. [15] (first paper in which it appears) which is the same as Eqs. (11) and (12) of Ref. 
[13] (a priori Handel’s most recent journal paper in which they appear). 
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dissipation) is twice48 the kinetic energy of the corresponding crystal vibration eigenmode 

expressed thanks to a quantum harmonic oscillator in the corresponding normal coordinate (called 

“interacting resonator mode” by Handel)μ 

 ܹ ൌ ݊԰ۄ߱ۃ ൌ ʹ ቀே௠ଶ ቁ	ቀௗ௫ௗ௧ቁଶ (3.36) 

with “݉ the reduced mass of the elementary oscillating dipoles” and “ܰ their number in the 

resonator” as stated in all Handel’s papers in which this equation appears.4λ 

The time derivative of the total dipole momentum of the crystal is then introduced through the 

following identificationμ 

 ቀௗ௫ௗ௧ቁ ൌ ቀ ଵேୣቁ ௗሺே௘௫ሻௗ௧ ൌ ቀ ଵேୣቁ ߯ቛ ሬܲԦሶቛ (3.37) 

with e the charge of the elementary oscillating dipole and χ a polarization constant (stated as being 

of the order of unity, sometimes named ߝ or g (or even V in Eq. (5) of Ref. [20]) and never defined 

in Handel’s papers…). By inserting Eq. (3.37) into Eq. (3.36), we getμ 

 ܹ ൌ ݊԰ۄ߱ۃ ൌ ቀ ௠ே௘మቁ߯ଶ ቛ ሬܲԦሶቛଶ (3.38) 

By differentiating this expression and setting ∆݊ ൌ ͳ, we can the find the change of total dipole 

time derivative due to the loss of a single phononμ 

 ∆௡௡ ൌ ʹ ቛ∆௉ሬԦሶቛቛ௉ሬԦሶ ቛ  with ∆݊ ൌ ͳ, gives ቛ∆ ሬܲԦሶቛ ൌ ቛ௉ሬԦሶቛଶ௡   (3.3λ) 

Using (3.38), we then obtainμ ቛ∆ ሬܲԦሶቛଶ ൌ ԰ۃఠۄ௡ ൈ ே௘మସ௠ఞమ (3.40) 

If we insert this result into Eq. (3.35), we getμ 

 ܵ௬ሺ݂ሻ ൌ ଵொర ఈቛ∆௉ሬԦሶቛమଷగ௙௘మ௖మ ൌ ଵொర ఈଷగ௙௘మ௖మ ൈ ԰ۃఠۄ௡ ൈ ே௘మସ௠ఞమ ൌ ఉᇲ௏ொర௙ (3.41) 

with 

ᇱߚ  ൌ ቀೇಿቁఈ԰ழఠவ	ଵଶగ௡௠ఞమ௖మ (3.42) 

The final expression of Handel can then be obtained by recalling that if ԰ۄ߱ۃ/݇஻ܶ ا ͳ (which is 

valid in our case), then Planck’s distribution reduces to ݊ ൎ ݇஻ܶ/԰ۄ߱ۃμ 
ᇱߚ  ൌ ቀೇಿቁఈሺ԰ழఠவ	ሻమଵଶ௞ಳ்గఞమ௠௖మ (3.43) 

                                                 
48 For a harmonic oscillator the kinetic and potential energies are equal. 
4λ One could wonder how this could be related to some average of the values given by the diagonalization of the 
dynamic matrix in the quasi-harmonic approach… 
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Finally, for an arbitrary temperature, Handel generalizes the above expression by taking into 

account the loss of a main mode phonon through interaction with a defect (point-like or extended) 

which is the dominant term at low temperature and obtains (Refs. [13], [14], [20], [21],…)μ 

ߚ  ൌ ఉᇲሾ௰ᇲమାቀ ഘۃഘۄቁమ௰ᇱᇱሿ௰మ  (3.44) 

 

2. Calculation of β' 
2.1. Handel’s evaluation of the order of magnitude of β' 

For the SC cut quartz resonators at their inversion temperature, interaction with defects can a 

priori be neglected with respect with 3-phonon processes. We therefore first recall the evaluation of 

the order of magnitude of the numerical value of ߚᇱ as given by Eq. (3.43) done by Handel in 

several of his papers e.g. [13], [14] and [15]. 

The numerical values used by Handel in his calculations areμ 

 ۄ߱ۃ ൎ 	ͳͲ଼ rad/s 

 T=300K ݇஻ܶ ൌ Ͷ ൈ ͳͲିଵସ erg (1 erg = 1g·cm2·s2 = 107 J)

 Polarization constant ߯ ൌ ͳ 

 ܰ ܸ⁄ ൎ ͳͲଶଶ cm3

 ԰ ൎ ͳͲିଶ଻ erg·s (Planck’s reduced constant) 

 ߙ ൎ ͳ/ͳ͵͹ (fine structure constant) 

 m = mass of electron ൎ ͳͲିଶ଻ g 

Hence, Handel finds the following order of magnitudeμ 

ᇱߚ  ൌ ሺଵ଴మమ	௖௠షయሻሺଵ/ଵଷ଻ሻሺଵ଴షమళ௘௥௚.௦ൈଵ଴ఴ	௥௔ௗ/௦ሻమଵଶൈሺସൈଵ଴షభర௘௥௚ሻൈଷ.ଵସൈଵ଴షమళ௚ൈଽൈଵ଴మబሺ௖௠/௦ሻమ ൎ ͳ cm3. (3.45) 

2.2. Points of concern in Handel’s model as concerns the 
evaluation of β' 

Nowadays, quartz oscillators are so good that they seem to tackle the limit set by Handel’s 

model. Furthermore, the limit set by this model for oscillators made with other materials than quartz 

are desirable. Hence, it is important to evaluate ߚᇱ more precisely. However, even if we accept Eq. 

(3.43) as is (which is questionable), several problems remain for an accurate evaluation of ߚᇱ. 
 The physical origin of the “polarization constant” ߯ in Eq. (3.36) is not clear. From Eq. 

(3.36), P/Nex…, with P being the total dipole of the quartz crystal (and not the 

polarization of the quartz crystal, as stated in some of the papers, which is not possible due 

to dimensionality constraints). How can it be connected to the quartz dielectric constant? 

However, we note that if we recall the remark that the speed of light in quartz should be 



6λ 

used instead of the speed of light in vacuum in Eq. (3.35), then a factor ݊ଶ ൌ  should be ߝ

present in the denominator of (3.43) and one may wonder if it is the same as ߯ଶ or a new 

factor. We also note that setting a numerical value for this parameter is not evident since 

quartz is optically anisotropic. 

 

 P. H. Handel used the mass of an electron (݉ ൎ ͳͲିଶ଻ g) in his numerical calculation of ߚᇱ, 
whereas he used ܰ ܸ⁄ ൎ ͳͲଶଶ cm3 which is approximately the volume density of unit cells 

in quartz!... How can we define properly this “reduced mass of the elementary oscillating 

dipoles”? Furthermore, is ݉ the mass of an oscillating dipole or the effective mass 

associated to a crystal vibration mode? Shouldn’t we use the (27×27) dynamic matrix 

approach? Shall we consider that the elementary oscillatory dipole used by Handel is 

constituted by a massive ion and a single (light) electron, so that the reduced mass is indeed 

the mass of the electron and the effect on the motion of the heavy ion due to the loss of a 

phonon or the Bremsstrahlung process can be neglected with respect to the amplitude of the 

sudden change of speed of the electron? Then what would be N exactly? The total number of 

silicon and oxygen ions or the number of crystallographic unit cells in the crystal (that we 

would have if the elementary dipole would be the quartz unit cell with 6 oxygen ions and 3 

Si ions), or …? We take the occasion to mention en passant that in the first paper [15] in 

which Eq. (3.43) appears, Walls et al. used ݉ ൎ ʹ ∙ ͳͲିଶସ g in their numerical calculations 

below their Eq. (λ), but nonetheless found ߚᇱ ൎ ͳ cm3 (also stating that ۄ߱ۃ ൎ 	ͳͲଵଵ rad/s, 

but using ۄ߱ۃ ൎ 	ͳͲ଼ rad/s in the developed expression of the numerical calculation…). 

 

 How should we define ۄ߱ۃ? The value ۄ߱ۃ ൎ 	ͳͲ଼ rad/s used by Handel is never justified. 

Furthermore, since phonons from the main mode have a frequency (5 MHz) well below the 

average frequency of the thermal modes, is it possible that they interact efficiently with one 

another? Is there somewhere an expression of the 3-phonon process cross-section in a form 

simple enough so that we could use it as a weight to be able to compute the average as 

advocated by P. H. Handel in a reply mail to us? 

 

 We note that contrarily to the electronic devices also studied by Handel, there is no electron 

“transit” inside quartz since it is an insulator. Hence, is the Bremsstrahlung radiation (also) 

emitted by the surface electrons of the metallic electrodes that are “moved” by the 

piezoelectric field created by quartz at the surface of the electrodes (which creates the 

detected current)? The loss of a phonon may be seen has a sudden reduction in the amplitude 
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of the eigenmode for the whole crystal. Can we really consider that this can give rise to a 

local variation for a single particle? 

2.3. Our calculation of β' 

In our paper [22], we tried to calculate ߚ′ more precisely. However, considering the problems 

stated in the previous paragraph, we finally restricted ourselves to the evaluation of the value of ۄ߱ۃ 
which would give ߚᇱ ൌ ͳ cm3 if we would take the mass of an ܱܵ݅ଶ pattern for ݉, the density of ܱܵ݅ଶ pattern for ܰ/ܸ and more precise values for the other parametersμ 

Since, ܱܵ݅ଶ ൌ ܵ݅ ൅ ʹܱ, the molar mass of a ܱܵ݅ଶ pattern can be computed thanks toμ 

	ܯ  ൌ ʹͺ.Ͳͺͷͷ ൅ ʹ	 ൈ 	ͳͷ.ͻͻͻ͵Ͳͷ ൌ ͸Ͳ.ͲͺͶʹ g/mol 

so that  ݉ ൌ ͸Ͳ.Ͳͺ/ሺ͸.Ͳʹʹ ∙ ͳͲଶଷሻ 	ൎ 	 ͻ.ͻ͸ ∙ ͳͲିଶଷ g 

 ே௏ ൌ ఘேಲெ ൌ ଶ.଺ସ଼	ൈ	଺.଴ଶଶଵସଵ଻ଽ	௑	ଵ଴మయ଺଴.଴଼ସଶ /	ܿ݉ଷ ൌ ʹ.͸ͷͶ ൈ ͳͲଶଶ	/	ܿ݉ଷ 

where the density of quartz is 

ߩ  ൌ ʹ.͸Ͷͺ	 g/cm3 

 ஺ܰ = ͸.Ͳʹʹ	 ൈ ͳͲଶଷ mol-1 is the Avogadro number ݇஻ܶ at quartz turnover temperature 353 K (80°C) isμ 

 ݇஻ܶ = 1.3810-16×353 = 4.87ൈ10-14 erg 

 ԰ =	ͳ.Ͳͷͷ ∙ ͳͲିଶ଻	erg ∙ s 
Speed of light c = 3.001010 cm/s 

With these values, we find that we need to have ۄ߱ۃ ൎ 	߯ ൈ ʹ.ͺ ∙ ͳͲଵ଴ rad/s to have ߚᇱ ൌ ͳ 

cm3 50.By recalling that ߚᇱ is proportional to ۄ߱ۃଶ we can see that it is really very important to at 

least set an order of magnitude for ۄ߱ۃ to have even a crude estimate of ߚᇱ. We will turn to this 

again in the last section of this chapter. 

 

3. Volume dependence in Handel’s model of quartz crystal resonator 
noise 

Though criticized by many [8], [10], Handel’s quantum model for 1/f noise remains the only 

model giving a quantitative estimation of the level of intrinsic 1/f noise in quartz crystal resonators, 

compatible with the best experimental results. In our paper [23], we reconsider the volume 

dependence in this model. We first argue that an acoustic volume, representing the volume in which 
                                                 
50 We left ߯ in the final result since it is also not known precisely. 
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the vibration energy is trapped, should be used instead of the geometrical volume between the 

electrodes. Then, we show that since there is an implicit dependence of the quality factor of the 

resonator with its thickness, the net effect of Handel’s formula is not an increase of noise 

proportionally to the thickness of the resonator, as could be naively expected, but a net decrease 

when thickness increases. Finally, we show that a plot of Q4
Sy versus the acoustic volume, instead 

of the usual Sy plot, could be useful to compare the quality of acoustic resonators having very 

different resonance frequencies. 

So far, ultra-stable oscillators (USO) using quartz crystal resonators remain the best solution 

to have the highest short-term stability in volumes of a few cm3 which is very important for local 

time references in space applications (for example) since size and weight are important parameters. 

With low noise electronics at the state of the art, the fundamental limitation for this short-term 

stability is flicker frequency noise in the resonator (hereafter simply called 1/f noise). Until recently, 

the best short-term stability for a quartz crystal resonator was measured in 1λλ4 by J. Norton, for a 

5 MHz, SC cut, resonator, mounted in an electrode-less structure (BVA) [24]. The corresponding 

result in terms of Allan standard deviation was 3.7410-14 at  = 10 s. 

Furthermore, two 10 MHz BVA, SC-cut quartz crystal oscillators were measured in 1λλλ, by 

R. J. Besson, to have a 510-14 at   10 s Allan standard deviation [25]. This seemed to be the 

ultimate limit that one could obtain for a quartz based oscillator in the short-term stability domain 

since, no more tangible solution had been found to improve the phase noise of the resonator itself. 

Recently, better experimental results [26], [27] and [28] have reintroduced hopes that quartz 

crystal oscillators may still have a progression margin in the short-term stability domain and 

refueled the discussion about what is the main factor limiting the stability between the phase flicker 

noise in the electronics and the intrinsic noise of the quartz crystal. 

P. H. Handel used the equation (3.20) for the power spectral density of relative frequency 

fluctuations. In this equation Q is the intrinsic quality factor of the resonator, V (in cm3) is the 

volume of the resonant part inside the resonator, and  is the proportionality factor dependent on the 

physical parameters of the material, numerically estimated to be of the order of 1 cm3 in quartz 

resonators as seen previously. We note first that this is supposed to represent the fundamental lower 

limit of noise spectral density at low frequencies, in the resonator, therefore in the oscillator. 

Second, we recall that A. van der Ziel was able to recover the same formula [15], except for the 

detailed expression of , using semiclassical arguments. However, we should also note that a 

careful analysis of this detailed analytical expression of  and the way it is demonstrated by Handel 
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calls for more precise definitions of some of the quantities occurring in this expression, so as to 

have an explicit way to numerically evaluate them more precisely.

In formula (3.20), the volume V has been traditionally approximated by the volume between 

the electrodes [22], but then, the latest experimental results [28] seem to be below the prediction 

(considering  = 1 cm-3). Now, we try to show that a better estimation of the theoretical limit may 

be extracted from Handel's model, using the acoustic volume of the resonator, defined by the 

trapping of energy, instead of the volume between the electrodes. Additionally, the presence of the 

volume V in the numerator of (3.20), instead of in the denominator as naively expected from 

experimental facts, will be discussed. 

3.1. Acoustic volume estimation 

The acoustic volume estimation is carried out using Tiersten’s model as e. g. in [2λ]. 

 
Fig.3.1: Geometric definition of a plano-convex resonator. 

Because of the plano-convex shape of a resonator (Fig.3.1), the thickness 2h of the resonator 

at some off-axis point with coordinates ሺݔଵ, ,ଶݔ  ଷሻ, is given by the following expressionμݔ

 ʹ݄ ൎ ʹ݄଴ ቂͳ െ ൫௫భమା௫యమ൯ସோ௛బ ቃ (3.46) 

where ݄଴ is the maximum height of the resonator (on the ݔଶ axis) and R the curvature radius of the 

convex face. Furthermore, for stationary shear waves propagating in the ݔଶ direction, the amplitude 

of the mechanical displacement modes in the resonator can be approximated by [2λ]μ 

௡௠௣ݑ  ൎ ܣ sin ቀ௡గ௫మଶ௛ ቁܪ௠൫ඥߙ௡ݔଵ൯ܪ௣൫ඥߚ௡ݔଷ൯expሺെߙ௡ ଵଶݔ ʹ⁄ െ ௡ߚ ଷଶݔ ʹ⁄ ሻexp൫݆߱௠௡௣ݐ൯(3.47) 

withμ 

௡ଶߙ  ൌ ௡మగమ௖଼̂ோ௛బయெᇲ೙ and ߚ௡ଶ ൌ ௡మగమ௖଼̂ோ௛బయ௉ᇲ೙ (3.48) 

where mnp is the mode pulsation with n = 1, 3, 5, … the overtone (OT) number, m, p = 0, 2, 4, … 

the numbers of the anharmonic modes, label the different mode shapes in the plane of the resonator, ܪ௠ and ܪ௣ are Hermite polynomials, ܯ′௡ and ܲ′௡ are the dispersion constants and ܿ̂ is the effective 

elastic constant associated to the propagation of this kind of mode. 

For the 3rd overtone (OT 3), we consequently haveμ 

ଷ଴଴ݑ  ൎ ܣ sin ቀଷగ௫మଶ௛ ቁ expሺെߙଷ ଵଶݔ ʹ⁄ െ ଷߚ ଷଶݔ ʹ⁄ ሻexpሺ݆߱ଷ଴଴ݐሻ (3.4λ) 

with 
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ଷଶߙ  ൌ ଽగమ௖଼̂ோ௛బయெయᇲ and ߚଷଶ ൌ ଽగమ௖଼̂ோ௛బయ௉యᇲ (3.50) 

The eigenfrequency ߱ଷ଴଴	  is obtained fromμ 

 ߱ଷ଴଴ଶ ൌ ଽగమ௖̂ସ௛బమఘ ቈͳ ൅ ଵଷగටଶ௛బோ ቆටெయ,௖̂ ൅ට௉య,௖̂ ቇ቉ (3.51) 

The elastic energy in the resonator is approximately given byμ 

 ଵܹ ൎ ஺మଶ ܿ̂ ቀ ଷగଶ௛బቁଶ׮ cosଶ ቀଷగ௫మଶ௛బ ቁ expሺെߙଷݔଵଶ െ ଷଶሻ୚ݔଷߚ ܸ݀ (3.52) 

We then define the acoustic volume as the volume that would contain the same elastic energy, 

for a hypothetical wave that would have constant amplitude in the ሺݔଵ,  ଷሻ plane, for a resonatorݔ

with two plane electrodes (1/R = 0) of equivalent surface ܵ௘௤ separated by a distance ʹ݄଴. For this 

hypothetical resonator, the trapped elastic energy would beμ 

 ଶܹ ൎ ஺మଶ ܿ̂ ቀ ଷగଶ௛బቁଶ ׬ cosଶ ቀଷగ௫మଶ௛బ ቁ݀ݔଶ௛బି௛బ ൈ ܵ௘௤ (3.53) 

Thusμ 
 ଵܹ ൌ ଶܹ		 ௔ܸ௖ ൌ ʹ݄଴ܵ௘௤ ൌ ʹ݄଴׭expሺെߙଷݔଵଶ െ  ଷ (3.54)ݔଵ݀ݔଷଶሻ݀ݔଷߚ

However, thanks to the Gaussian functions, as long as the electrodes diameter 	ܦ ൐ Ͷ Min൫ඥߙଷ, ඥߚଷ൯⁄ , their real outer shape is not important and the diameter can even be taken 

to be infinite. Using the fact that ׬ expሺെݔߙଶሻ݀ݔ∞ିஶ ൌ ඥߨ ⁄ߙ , we then find thatμ 

 	 ௔ܸ௖ ൌ ʹ݄଴ܵ௘௤ ൎ ʹ݄଴ߨ ඥߙଷߚଷ⁄ ൌ ට͵ʹܴ݄଴ହඥܯଷᇱ ଷܲᇱ ͻܿ̂⁄  (3.55) 

3.2. Application of the models to experimental measurements 

As seen in [28], the best measured resonators are the 5 MHz BVA SC-cut, 3rd OT C-mode, 

manufactured by the Oscilloquartz S.A. Company (Swatch Group), based in Neuchatel, 

Switzerland. Since for SC-cut quartz resonators, the cut is defined by a double rotation ( = 22°45’, 

 = 34°), the relevant effective parameters are ܿ̂ ൎ 34.6 GPa, ܯଷᇱ ൎ 57 GPa and ଷܲᇱ ൎ 67 GPa [30]. 

In [31], a succinct geometrical description of the resonator is given which allows us to estimate the 

diameter of the resonant part of the resonator (around 20 mm) and the electrodes diameter D (about 

11 mm). Using Stevens and Tiersten’s results [2λ], we can relate the motional capacitance ܥ௠௢௧ of 

the resonator, for the 3rd OT, to the thickness and curvature radius of the resonatorμ 

௠௢௧ܥ  ൌ ଺ସ௘̂మలమଽగయ௛బ௖̂ඥߙଷߚଷ ቂ׬ expሺെߙଷ ଵଶݔ ʹ⁄ ሻ݀ݔଵ஽ ଶ⁄଴ ׬ expሺെߚଷ ଷଶݔ ʹ⁄ ሻ݀ݔଷ஽ ଶ⁄଴ ቃଶ (3.56) 

With ܦ the electrode diameter and ݁̂ଶ଺ ൌ െͲ.Ͳͷ͹͸ C/m2 the effective piezoelectric constant. 

Since, for the same specific kind of resonator that was used for the record measurement [28], 

the motional capacitance was measured to be 0.1λ5 fF in [26], we have together with (3.51), a set of 

two nonlinear equations in ݄଴ and R. In order to solve them numerically, we compute initial 
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estimates of ݄଴ and R using first the fact that the thickness at the center of the resonator ʹ݄଴ is 

approximately given by ʹ݄଴ ൎ  .ʹ/ߣ͵

In the present case, since the acoustic velocity for the 5 MHz thickness shear C-mode in a SC-

cut quartz crystal is ඥܿ̂ ⁄ߩ ൎ 3613 m/s (ρ= 2650 kg/m3), we find that ʹ݄଴ ൎ 1.084 mm. Then, we 

use the fact that the electrodes diameter is always chosen big enough so that the two Gaussian 

integrals in (3.56) can be approximated by ඥߨ ⁄ଷߙʹ  and ඥߨ ⁄ଷߚʹ  respectively. Thusμ 

௠௢௧ܥ  ൎ ଵ଺௘̂మలమଽగ௛బ௖̂ඥఈయఉయ ൌ ଷଶ௘̂మలమగమሺଽ௖̂ሻయ మ⁄ ටʹ݄଴ܴඥܯଷᇱ ଷܲᇱ	 (3.57) 

Accordingly, the initial value for R, can be estimated byμ 

 ܴ ൌ ଵଶ௛బටெయᇲ௉యᇲ ቀగమሺଽ௖̂ሻయ మ⁄ ஼೘೚೟ଷଶ௘̂మలమ ቁଶ (3.58) 

With ܥ௠௢௧ ൎ 0.1λ5 fF, we find ܴ ൎ 148 mm. Then, by solving together (3.51) and (3.56) 

(with D = 11 mm), we refine our estimation to ʹ݄଴ ൎ 1.0λ7 mm and ܴ ൎ 146.6  0.2 mm 

(depending whether the integrations are performed for a square in Cartesian coordinates or for a 

disk in polar coordinates). This leads to ͳ ඥߙଷ⁄ ൎ 1.38 mm and ͳ ඥߚଷ⁄ ൎ 1.43 mm. Using (3.55), 

we can now compute 	 ௔ܸ௖ ൌ 6.8110 m3, whereas a direct numerical integration of (3.54) in polar 

coordinates, gives 	 ௔ܸ௖ ൌ 6.8010 m3. In both cases, this is much smaller than the volume under 

the electrodes ܸ ൎ ʹ݄଴ ଶܦߨ Ͷ⁄ ൎ1.0410 m3. 

Finally, we note, that if we would know the static capacitance ܥ଴ of the same resonator, we 

could estimate D by adding the following formula [2λ]μ 

  (3.5λ) 

to the set of nonlinear equations to solve. Conversely, using ߝଶଶ= 3λ.781012
 F/m the permittivity 

constant corresponding to the ݔଶ direction in the SC-cut and D = 11 mm, we estimate ܥ଴ ൎ 3.6 pF. 

One can then verify that the applicability condition ܦ ൐ Ͷ Min൫ඥߙଷ, ඥߚଷ൯⁄  stated in the 

previous paragraph is indeed numerically verified in this case since ܦ ൌ ͳͳ mm and Ͷ Min൫ඥߙଷ, ඥߚଷ൯ ൎ ͷ.͸⁄  mm. As argued in the previous paragraph, in contoured resonators, the 

energy trapping is quasi-independent of the electrodes dimension, provided they are big enough, 

though they influence the motional elements and the static capacitor of the Butterworth - van Dyke 

equivalent circuit. Indeed, for such a radius of curvature the energy density at the edge of the 

volume between the electrodes is at least 2106 smaller than the energy density at the same height on 

the axis. 
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In order to use Handel’s formula (3.20), we still need to compute the quality factor Q of this 

kind of resonator, which can be obtained using the following classical equation (cf. next chapter)μ 

 ܳ ൌ ௖̂ଶగ௙ෝ (3.60) 

In our case, ෝ ൎ ͵.ͻͷ ∙ ͳͲିସ Ns/m2 [32], which turns into an estimation of the maximum quality 

factor of about 2.7λ106. This value corresponds well with the one given in [26] (2.7106). 

We now turn to the experimental quantities that we could compare to Handel’s 1/f noise 

threshold. The short-term stability is usually given in the time domain by the Allan variance [33], 

which is the variance of the difference of the average fractional frequencies measured for two 

consecutive samples of time length . It can be computed in the frequency domain by using the 

power spectral density of frequency fluctuations [34]μ 

௬ଶሺ߬ሻߪ  ൌ ׬ ܵ௬ሺ݂ሻஶ଴ ଶ௦௜௡రሺగ௙ఛሻሺగ௙ఛሻమ ݂݀ (3.61) 

In the case of flicker frequency noise (which is the limiting resonator noise at low 

frequencies), the Allan standard deviation corresponding to the power spectral density (PSD) of 

relative frequency fluctuations ܵ௬ሺ݂ሻ ൌ ܵ௬ሺͳ	Hzሻ ݂⁄  turns out to be independent of  and 

constitutes the floor of the noise at low frequencies (cf. end of chapter 151). It is then given by the 

expression [34]μ 

௬ሺ߬ሻߪ  ൌ ඥʹlnሺʹሻܵ௬ሺͳݖܪሻ (3.62) 

Table 3.1 presents the comparison between measurements and the results of Handel's model, 

considering both definitions of volume in (3.20) (and  = 1 cm3). One can see that the limit set by 

Handel's model with  = 1 cm3, is indeed below the experimental results if one uses the acoustic 

volume defined here, whereas it is not if one uses the geometrical volume between electrodes. 

Table 3.1: Comparison of the short-term stability in terms of Allan standard deviation y_floor of a 

SC-cut, 5 MHz and 3
rd

 OT resonator. 

Frequency (MHz)  5 

Quality factor Q (106)  2.7λ 

Volume under electrodes Vel (mm3) 104.3 

Acoustic volume Vac (mm3) 6.81 

Volume ratio 15 

y_floor_Handel (vol. under electrodes) 4.8λ10-14 

y_floor_Handel (acoustic vol.) 1.2510-14 

y_floor_exp [24] (oscillator measurement) 3.7510-14 

y_floor_exp [27] (oscillator measurement)  2.510-14 

                                                 
51 We recall that ܵ௬ሺͳ	Hzሻ is a notation for a numerical value (without dimension) and not the value of ܵ௬ሺ݂ሻ for  ݂ = 1 Hz, which is homogeneous to the inverse of a frequency, hence a time, for 1/f noise. 



76 

3.3. Size dependence 

A point that can be a priori surprising with Handel’s formula is the proportionality of ܵ௬ሺͳ	Hzሻ with the volume. In Fig.3.2, we plotted experimental values for ܵ௬ሺͳ	Hzሻ as a function of 

the volume ௘ܸ௟ between the electrodes, using results from various publications [24], [25], [35] and 

[36], including those used by Handel to justify his model and recent results obtained for 5 MHz 

oscillators specially designed by FEMTO-ST for industrials partners. One can easily see that a 

linear increase of 	ܵ௬ሺͳ	Hzሻ with ௘ܸ௟ is NOT supported by the experimental results. This seems at 

first sight to be a very serious problem for Handel’s theory, but if we look closer at (3.20), we see 

that there are other factors in this equation that may also depend on the geometrical dimensions of 

the resonator. 

 

Fig.3.2: Sy(1 Hz) as a function of the volume between the electrodes of the resonator for 

experimental points from various authors. 

Indeed, a plot of the ܳସܵ௬ሺͳ	Hzሻ product for the same experiments, as a function of ௘ܸ௟ 
(Fig.3.3), gives a very different trendμ the volume dependence is now similar to that predicted by 

Handel in his model! This is due to the fact that Q4 also depends on the dimensions of the resonator 

(particularly its thickness ʹ݄଴). This introduces a hidden dependence with the size of the resonator 

that we will study in more details below. However, several points seem to have a lower noise than 

the intrinsic limit supposedly set by Handel’s model if one uses  = 1 cm3 as proposed in Handel’s 

papers. At this point, one could either question this  = 1 cm3 value, as we did in paper [22], or use 

the above-defined acoustic volume, describing the volume in which elastic energy is confined, 

instead of the geometric volume between the electrodes. 
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Fig.3.3: Q4Sy as a function of the volume between the electrodes of the resonator, experimental points from 

various authors + straight line for Handel’s prediction with  = 1 cm3. 

 

Fig.3.4: Q4Sy as a function of the acoustic volume of the resonator (given by (3.55) for plano-convex 

resonators and (3.65) for plano-plano resonators), experimental points from various authors + straight line 

for Handel’s prediction with  = 1 cm3. 



78 

For plano-convex resonators, formula (3.55) was used instead of the volume between 

electrodes to draw Fig.3.4. However, higher frequency resonators have a plano-plano shape and we 

had to use another formula for the acoustic volume. According to [2λ] section III, the trapped 

energy mode shape can then be approximated by products of simple trigonometric functions in such 

resonators, the trapped energy W1 is computed from the following equationμ 

 ଵܹ ൎ ஺మଶ ܿ̂ ቀ ௡గଶ௛బቁଶ׮ ቂcos ቀ௡గ௫మଶ௛బ ቁ cos ቀగ௫భଶ௟ ቁ cos ቀగ௫యଶ௟ ቁቃଶ୚ ܸ݀ (3.63) 

with l the half width of a square electrode. At this point, following Stevens and Tiersten, we 

consider that circular electrodes can be approximated by square electrodes with a width equal to the 

diameter of the real electrodes. Thus using (3.53), we findμ 

 ଵܹ ൌ ଶܹ		 ௔ܸ௖ ൌ ʹ݄଴ܵ௘௤ ൌ ʹ݄଴ ׬ ׬ ቂcos ቀగ௫భଶ௟ ቁ cos ቀగ௫యଶ௟ ቁቃଶ ଷ௟ି௟௟ି௟ݔଵ݀ݔ݀  (3.64) 

 	 ௔ܸ௖ ൌ ʹ݄଴ܵ௘௤ ൎ ʹ݄଴݈ଶ ൎ ௘ܸ௟ Ͷ⁄  (3.65) 

In the plano-plano case, the acoustic volume Vac is simply proportional to the thickness of the 

resonator and to the area of the electrodes and equals a fourth of the volume between the electrodes. 

Data from [35] and [36], necessary to compute Vac for these high frequency plano-plano resonators, 

are recalled in Table 3.2. We note that we only kept the best measurements from [35], in order to 

draw Fig.3.4. 

Table 3.2: Resonator parameters from [35] and [36] used to draw Fig.3.4. Q factor of resonators 

from [36] have been found more precisely in [37]. 

Reference [35] [35] [35] [36] [36] [36] 

Frequency (MHz) 100 100 100 80 100 160 

Overtone  5 5 5 3 3 5 

Crystal-Cut SC SC SC SC SC SC 

Unloaded quality factor 1.3105 1.3105 1.3105 1.25105 1.1λ105 1.25105 

Electrode diameter (mm) 2.16 3.05 4.32 1.63 1.40 2.54 

Resonator Thickness (µm) λ0 λ0 λ0 67.8 54.4 56.7 

 

Looking at Fig.3.4, one can see that the line corresponding to Handel’s model is now lower 

than all the experimental points. Furthermore, the proportionality of Q
4
Sy with Vac for the best 

resonators now seems reasonable. Finally this kind of Q4
Sy plot seems to be useful to compare the 

performance of resonators with various resonant frequencies. 
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Since the comparison of the previous graphs clearly shows that one should not forget that the 

quality factor depends on the physical dimensions of the resonator, we study in more details the 

thickness dependence of ܸ ܳସ⁄ . For that purpose, we recall that, in the expression (3.60) of the 

intrinsic quality factor of an acoustic resonator, ݂~ͳ ݄଴⁄  (cf. e.g. Eq. (3.51) for ݄଴ ا ܴ), hence ܳ~݄଴. Given the ݄଴ dependence of Q and V, we then get for constant area electrodes, an inverse 

proportionality of Sy with ݄଴ଷ if V is the volume between the electrodes, or ܵ௬~ͳ ݄଴ଷ ଶ⁄⁄ , if V is the 

acoustic volume. In both cases, noise reduction should be enhanced by an increase of thickness. In 

high purity crystals, this trend seems to be confirmed by the fact that 5 MHz resonators (2h ~ 1 mm) 

have so far shown short-term stabilities below that of 10 MHz resonators (2h ~ 0,5 mm). 

From the previous considerations, we showed how the intrinsic lower limit for 1/f noise 

limiting short term stability, set by Handel's model can be reconciled with the best latest 

experimental results, provided one uses the acoustic volume computed from Tiersten's model, 

instead of the volume between the electrodes. We also showed how Handel’s model can be 

qualitatively very useful in order to compare the quality of oscillators of various resonant 

frequencies, thanks to the Q
4Sy plot. Furthermore, we showed how Handel’s model is not in 

contradiction with the fact that usually thicker resonators exhibit less noise, despite an apparent 

proportionality of the noise with the volume of the resonator in this model. 

4. Attempts to compute the average circular frequency present in 
Handel’s theory of quantum 1/f noise for BAW quartz resonators 
thanks to molecular dynamics 

As stated in a previous paragraph, we had some concerns about Handel’s theory of quantum 

1/f noise, one of them being the numerical evaluation of at least an order of magnitude for the 

average circular frequency of the 3-phonon interactions appearing in Eq. (3.43). Since this 3-

phonon interactions come from non-harmonic terms in the quartz elastic energy, we decided to use 

molecular dynamics to compute the Phonon Density Of States (PDOS) for α-quartz using a realistic 

non harmonic interaction energy between the ions of quartz ܲܪܰ_ܱܵܦሺ߱ሻ. Then by substracting 

the density of states found in the harmonic approximation by Lee et al. [38] ܲܪ_ܱܵܦሺ߱ሻ, our goal 

was to concentrate on the effect of the non-harmonic terms and compute ۄ߱ۃ thanks toμ 

ۄ߱ۃ  	ൌ ׬ ௉஽ைௌ_ேுሺఠሻఠௗఠಮబ׬ ௉஽ைௌ_ேுሺఠሻௗఠಮబ െ ׬ ௉஽ைௌ_ுሺఠሻఠௗఠಮబ׬ ௉஽ைௌ_ுሺఠሻௗఠಮబ  (3.66) 

4.1. Simulation details 

4.1.1. Introduction to molecular dynamics simulations 

At the core of a classical Molecular Dynamics (MD) code, there is a method to solve 

Newton’s equations for a collection of point-like particles in a given thermodynamic environmentμ 



80 

 ∀݅ ൌ ͳ,… ,ܰ			݉௜ ௗమ௥Ԧ೔ௗ௧మ ൌ െ׏ሬሬԦ௜ܸሺሼݎԦ௝ሽ௝ୀଵ,…,ேሻ (3.67) 

where ܸሺሼݎԦ௝ሽሻ is the potential energy functional which describes the physical interactions between 

the ܰ particles (atoms, ions, molecules, rigid groups of atoms,…). However, several other steps 

must be taken for a good simulationμ 

‐ Choice of the units for the simulation (most code work with adimensioned quantities internally), 

selection of the type of particles used in the simulation and of the functional form of the 

potential energy between them, choice of the environmental conditions (which quantities will be 

considered constant (volume or pressure, total energy, entropy or temperature,…) 

‐ Initialization of the time step ∆ݐͷʹ, positions, speeds and forces at initial time ݐ଴ + initialization 

of the thermodynamic quantities to be computed through statistical means. 

‐ Loop on the discretized instants (usually equidistant)μ computations of the positions, speeds and 

forces at ݐ௝ାଵ knowing them at previous instants (usually only values at ݐ௝ are used). The most 

widely used integrator is the Velocity Verlet Algorithm [3λ], [40], [41] (which is in fact a 3D 

version of a mid-point Runge-Kutta of order 2 algorithm)53μ 

 For ݆ from 0 to ݆௠௔௫ and ݅ from 0 to ܰ, estimate the speeds at ݐ௝ ൅  then estimate the ,ʹ/ݐ∆

positions at ݐ௝ାଵ ൌ ௝ݐ ൅  μݐ∆
௝ݐపሬሬሬԦ൫ݒ  ൅ ൯ʹ/ݐ∆ ൌ ௝൯ݐపሬሬሬԦ൫ݒ	 ൅ ሺʹ݉௜ሻ/ݐ∆௝൯ݐపሬሬԦ൫ܨ 	൅ ܱሾሺ∆ݐሻଷሿ (3.68) 

௝ାଵ൯ݐపሬሬԦ൫ݎ  ൌ ௝ݐపሬሬԦ൫ݎ ൅ ൯ݐ∆ ൌ ௝൯ݐపሬሬԦ൫ݎ ൅ ௝ݐపሬሬሬԦ൫ݒ ൅ ݐ∆൯ʹ/ݐ∆ ൅ ܱሾሺ∆ݐሻସሿ (3.6λ) 

 Compute the forces ܨపሬሬԦሺݐ௝ ൅ ௝ݐ	ሻ, then the speeds atݐ∆ ൅  μݐ∆
௝ݐపሬሬሬԦ൫ݒ  ൅ ൯ݐ∆ ൌ ௝ݐపሬሬሬԦ൫ݒ ൅ ൯ʹ/ݐ∆ ൅ ிഢሬሬሬԦ൫௧ೕା∆௧൯∆௧ଶ௠೔ ൅ ܱሾሺ∆ݐሻଷሿ (3.70) 

 Use some numerical procedure to enforce the thermodynamic constraints (e.g. Nosé-Hoover 

thermostat or barostat [42], [43]). These procedures need not necessarily be the same during 

a first period of time called “equilibration” in which the system relaxes towards a 

thermodynamic equilibrium situation and a second period of time (“production phase”), 

during which sums or accumulated to later compute time averages54, standard deviations,… 

                                                 
 is of ݐ∆ must be much smaller than the characteristic time of the fastest internal motion of the structure. Usually ݐ∆ 52
the order of a femtosecond or less (!) except when some part(s) of the structure is(are) considered rigid. 
53 This algorithm uses only 3 arrays of 3N elements (positions, speeds and forces), and has errors smaller than 
traditional algorithm based on the direct use of Taylor expansions because the errors done on the estimations of the 
quantities at ݐ௝ାଵ are partially compensated by the error done at ݐ௝. Furthermore, this algorithm is invariant by time 
reversal which improves the numerical accuracy of the total energy conservation, while numerical stability is improved 
by the fact that one never adds terms of order ሺ∆ݐሻଶ to terms of order ሺ∆ݐሻ଴. 
54 Thanks to the ergodic hypothesis, time averages are used instead of statistical ensemble averages (averages on all the 
possible initial conditions that lead to an equilibrium situation respecting some set of thermodynamic constraints). 
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 Save results from time to time for offline treatment or to be able to restart the code in case of 

a power failure or computer crash. 

‐ After end of loop, finalize the computation of all the statistical estimates, extract useful data 

from raw atomic trajectory information. Compute material properties of interest and visualize 

them. 

Usually, most of the execution time is spent in the computation of the forces െ׏ሬሬԦ௜ܸሺሼݎԦ௝ሽ௝ୀଵ,…,ேሻ, 
hence various kinds of more or less phenomenological forms of potential are used to speed up the 

computations. 

4.1.2. BKS Potential 

The interionic potential energy functional used in our molecular dynamics simulation is called 

BKS potential according to the initials of the names of the authors of the paper in which it is 

parameterized [45] (van Beest, Kramer and van Santen). The BKS potential is the sum of a 

Coulomb potential plus a modified Buckingham potential which does not only account for the 

repulsion but also incoporates a ͳ/ݎ଺ dispersion-like term. It is given byμ 

 ܷ஻௄ௌሺݎԦ௜ሻ ൌ ∑ ௤೔௤ೕ௥೔ೕ௝வ௜ ൅∑ ൤ܣ௜௝ exp൫െܾ௜௝ݎ௜௝൯ െ ஼೔ೕ௥೔ೕల൨௝வ௜  (3.71) 

where ݎ௜௝ is the distance between the ions i and j. The first term represents the long-range 

electrostatic interaction between i and j determined by the species-dependent effective charges ݍ௜	ܽ݊݀	ݍ௝. The second term represents the short-range interaction in a Buckingham-type form 

where ܣ௜௝, ܾ௜௝ and ܥ௜௝ are the constants derived from fitting to Hartree-Fock ab-initio calculations 

and selected empirical measurements. The parameter set for BKS potential suitable for quartz is 

recalled in Table 3.3. We note that a version of the BKS potential improved for simulations at high 

pressures has been proposed Farow and Probert in Ref. [45], but we shall not need this version here 

since we are interested only by simulations at around 1 bar. 

Table 3.3: Parameter set for quartz BKS potential. 

Atom pair Aij (eV) Bij (Å-1) Cij (eV Å6) Charges 

O-O 1388.773 2.760 175.000 ݍை ൌ െͳ.ʹ 

Si-O 18003.757 4.873 33.538 ݍௌ௜ ൌ ൅ʹ.Ͷ 

 

4.1.3. Short description of the software used 

LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) is an open source 

classical molecular dynamics code, distributed for free and partly maintained by Sandia National 
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Labs (see [46] and httpμ//lammps.sandia.gov). It can model the classical dynamics of an ensemble 

of only a few particles up to millions or billions of particles in a liquid, solid, or gaseous state. It can 

model atomic, polymeric, biological, metallic, granular, and coarse-grained systems using a variety 

of force fields and boundary conditions. LAMMPS must be used through input scripts (that can 

include external data files). It is written internally in C++ in a modular way so that it can be easily 

extended by other pieces of codes called fixes. 

Fix-phonon is such a user-contributed extension, which implements a method to evaluate the 

phonon dispersion [3λ] directly from molecular dynamics simulations. The basic algorithm is to 

construct the dynamical matrices by observing the displacement fluctuations and not effective force 

constants. The implemented method enables one to evaluate the phonon dispersion under finite 

temperature/pressures without turning to the usual quasi-harmonic procedure. A post-processing 

code (called phana) is also provided to help analyze the binary files in which fix-phonon saves the 

dynamic matrices calculated from the LAMMPS runs. It is driven by menu, so that one can follow 

the menu step by step to perform the post-processing tasks. Details on phana can be found in Refs. 

[48] and [4λ] and by following the linkμ httpμ//code.google.com/p/fix-phonon/wiki/Help_on_phana. 

4.2. Estimation of the average angular frequency 

We have calculated numerically the phonon dispersion curves and density of states for -

quartz, by running LAMMPS, fix-phonon and phana on the clusters of the “Mesocentre de calculs 

de Franche-Comté”. We used ͳͲ ൈ ͳͲ ൈ ͳͲ hexagonal primitive cells with 3 Si and 6 O, at constant 

temperature T = 300 K and pressure P = 1 bar, during a total of 6.5 million time steps of 2 fs each. 

The corresponding dynamic matrices were saved in binary ouput files every 0.5 million time steps, 

after an initial period of 0.5 million times steps for equilibration. An example script is given in 

appendix A. 

The resulting phonon dispersion curves are shown on the left part of Fig.3.5 and compared 

with the ab-initio quasi-harmonic results of Gonze et al. [50] and experimental values also found in 

[50]. A fair agreement is found. 
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Fig.3.5: Phonon dispersion curves for -quartz, i.e. eigenfrequencies (in THz) as a function of one of the 

vibration wave vector reduced coordinate, following paths along several cristallographic directions, starting 

from the center of the Brillouin zone (), going in the ሺͳͳതʹͲሻ direction ( K), then in the ሺͳതʹͳͲሻ direction 

(KM),or in the ሺͲͲͲͳሻ direction (A) Left: Circles are experimental values and solid lines represent the 

results of our calculations for 6.5 million time steps in LAMMPS. Right: Circles are experimental values and 

solid lines represent the results of the quasi-harmonic calculations of Gonze et al. [50] 

Next, we turn to the PDOS curves. Fig.3.6 shows our results for 6.5 million time steps in 

LAMMPS. Fig.3.7 shows the same quantity as obtained by Lee and Gonze [38]. After completing 

the LAMMPS simulations, we found a paper by Bosak et al. that includes the graph of an 

experimental approximation of the PDOS (called X-VDOS in their paper, for Vibration Density Of 

States as measured by inelastic X-ray scattering) that we reproduce in Fig.3.8. 

(T
H

z)
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Fig.3.6: -quartz phonon density of states vs frequency (in THz), for 6.5M time steps in LAMMPS. 

 

 

Fig.3.7: -quartz phonon density of states vs frequency (in THz), as digitized from Fig. 1 of Ref. [38], which 

is recalled in the insert. 
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Fig.3.8: Experimental X-VDOS of a-quartz (room temperature) compared to the calculated X-VDOS (with 

the CASTEP code) and the true VDOS (as measured by neutron inelastic scattering). The areas underneath 

the curves are normalized to the same surface. (Fig. 1 from [51]). 

 

Since, due to the digitization, the frequencies are not equally spaced, we have used Matlab’s 

function for integration with the trapezoidal rule to calculate the average frequencies55. 

׬  ௉஽ைௌ_ேுሺఠሻఠௗఠಮబ׬ ௉஽ைௌ_ேுሺఠሻௗఠಮబ  and ׬ ௉஽ைௌ_ுሺఠሻఠௗఠಮబ׬ ௉஽ைௌ_ுሺఠሻௗఠಮబ  (3.72) 

The values of the average frequencies calculated for the LAMMPS simulations for different 

time steps are given in Table 3.4 

                                                 
ேு	௢௥	ுۄ߱ۃ 55 ൌ	trapz(x, x.*y)/trapz(x,y), with x the vector filled with the frequencies and y the vector with the 
corresponding values of the PDOS. 
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Table 3.4: Average frequency for different time steps. 

Nb of times 
steps (in 106) 1 1.5 2 2.5 3 3.5 ۄ߱ۃேு	ሺin	THzሻ 18.151λ 18.1546 18.1537 18.1525 18.152λ 18.151λ 

Nb of times 
steps (in 106) 4 4.5 5 5.5 6 6.5 ۄ߱ۃேு	ሺin	THzሻ 18.1507 18.1507 18.1512 18.1510 18.1514 18.151λ 

 

We can see that the values are pretty much constant, hence that we could have used less than 1 

million time steps, while still keeping a good accuracy… 

 

The average frequencies corresponding to the experimental curve [51] and Lee and Gonze’s 

curve [38] (both digitized thanks to Engauge digitizer) are 17.7206 THz and 16.1601 THz 

respectively56. We note that the difference between our estimation and the value derived from the 

experimental curve is smaller than the difference between the result extracted from the curve of Lee 

and Gonze and the one extracted from the experimental curve found in Ref. [51]. 

Hence, the average angular frequency of the “anharmonic phonons” is estimated byμ ۄ߱ۃ ൌ ߨʹ ൈ ሺͳ͹.͹ʹͲ͸ െ ͳ͸.ͳ͸Ͳͳሻ ൈ ͳͲଵଶ rad/s ൎ ͻ.ͺ ൈ ͳͲଵଶ rad/s 
If we now compute ߚ′ thanks to Eq. (3.43) and numerical values from paragraph 2.3, then the 

new value of ߚ′ with ۄ߱ۃ ൌ ͻ.ͺ ൈ ͳͲଵଶ rad/s and ߯ ൌ ͳ, is ͳ.͹ ൈ ͳͲ଻ cm3 which is far above the 

experimental limit that corresponds approximately to ߚ′ ൎ ͳ cm3. Hence, this result could 

invalidate Handel’s quantum 1/f noise theory as applied to BAW quartz resonators but it could also 

invalidate our method for computing ۄ߱ۃ (or the numerical values used for the other parameters in 

Handel’s formula for ߚ′)! Indeed, the precision of our method is very probably not enough to 

compute quantitatively a difference between two similar quantities, but our goal was just to provide 

an order of magnitude so as to prove that ۄ߱ۃ ൌ ͳͲ଼ Hz (as taken by Handel) was out of reach of 

what we could get with the definition (3.66). 

5. Conclusions 
We have reviewed Handel’s theory of quantum 1/f noise as applied to quartz crystal 

resonators. We have been able to prove that Handel’s main formula (3.20) for the determination of 

the PSD of relative frequency fluctuations is not in contradiction with experimental data though the 

                                                 
56 We also found 16.561 THz from another independent (but less precise) digitization of Lee and Gonze’s curve, 
meaning that the accuracy of the digitization process is quite important! 
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volume of resonator is at the numerator and not the denominator as would be expected because of 

the observation that thicker resonators tend to have less ͳ/݂ noise. 

Unfortunately, we still have points of concern about the derivation of formula (3.20), in spite 

of two visits of P. Handel to Besançon. This causes problems to assign clear physical meaning to 

the quantities that are present in the expression of the ߚ′ factor (Eq. (3.43)) and therefore limit our 

ability to get a precise estimation of the noise floor for quartz oscillators and even more for 

oscillators made with other materials, in spite of our attempts at using molecular dynamics 

simulations to get a well-defined value of the average frequency appearing in Eq. (3.43). 

We note, nonetheless that further checks of the stability of our result for ۄ߱ۃ could be done by 

varying the parameters used to extract ۄ߱ۃ (particularly replace Gonze’s results with results 

obtained with LAMMPS/fixphonon/phana for a quadratic effective potential between all pairs of 

ions) and making other digitizations with even more imposed points. 

As a transition to the study of the impact of dislocations on noise, in the next chapter, we note 

that the power dissipated in the resonator (of the order of 56 µW) can be used to estimate that 

roughly 108 eV are dissipated per period of our 5 MHz oscillators. Supposing that this energy 

comes from the breaking of bonds along the dislocations, molecular dynamics studies could perhaps 

provide a relation between the concentrations of dislocation-pinning impurities and the length of 

dislocations per unit volume. Rough estimations show that it may not be very different from an 

order of magnitude of 1 cm/cm3 that is actually measured (cf. chapter 1). 
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APPENDIX A: example of LAMMPS input script 
# Calculation of vibrations properties of alpha quartz using BKS potential and fixPhonon 

 

units           metal 

newton          on 

atom_style      charge 

dimension       3 

boundary        p p p 

 

variable n equal 10 

 

read_data quartz$n.pos 

 

kspace_style ewald/n 1.0e-5 

pair_style buck/coul/long 10.0 

pair_coeff 1 1 0.0 0.0001 0.0 

pair_coeff 1 2 18003.7572 0.205205 133.5381 

pair_coeff 2 2 1338.7730 0.36231λ 175.0000 

 

#value for time steps  

variable ts equal 2e-3   # since time unit is ps, this is 2 fs 

# parameters for the thermostat/barostat fix 

variable r equal 57085 

variable t equal 300 # temperature (in K) 

variable p equal 1  # pressure (in bar(s) if units = metal) 

#variable td equal 0.05 # 100 time steps 

variable td equal 100*${ts}  # as advocated in LAMMPS nvt help page 
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variable pd equal 1000*${ts} # 1000 time steps 

 

# initialize 

velocity all create $t $r rot yes dist gaussian mom yes 

reset_timestep 0 

dump init all xyz 100000 Quartz-tilt-$n.xyz 

 

# fixes  

#fix      1 all npt temp $t $t $d iso 1. 1. 1. pchain 8 drag 1.0 

fix      1 all npt temp $t $t ${td} iso $p $p ${pd} 

#fix      1 all nvt temp $t $t ${td} 

fix      2 all phonon 10 50000 500000 map.quartz$n.in QuartzPhonon$n 

 

timestep ${ts} 

 

# output             1    2    3  4  5     6 7 8 λ 10 11 12 

thermo_style  custom step temp pe ke press vol lx ly lz xy xz yz cella cellb cellc cellalpha cellbeta 

cellgamma 

thermo  500000 

restart 2000000 restart.one restart.two 

# execution 

run      6500000 

write_restart Restart.final 
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Chapter	4: Investigation	of	1/f	Noise	With	The	help	of	Fluctuation‐

Dissipation	Theorem	

In this chapter we use the fluctuation-dissipation theorem to investigate the origin of 1/f noise 

in quartz crystal resonators. First, we concentrate on the contribution of thickness fluctuations on 

the level of noise, at low frequencies. For that purpose, we solve a motion equation with both 

viscous and some structural damping, i.e. with a term proportional to speed and another to 

amplitude. We show how the fluctuation dissipation theorem allows us to recover a 1/f noise 

spectral density at low frequency. We can then numerically estimate the absolute level of 1/f noise 

as a function of the structural damping coefficient. Finally, we use the Granato-Lücke theory of 

dislocation motion to provide some hints on a possible physical origin of the type of structural 

damping that we modelled. 

1. Fluctuation-Dissipation Theorem (FDT) 
The fluctuation-dissipation theorem (later on called FDT for short) finds its origins in works 

of Einstein (First connection between a diffusion coefficient and an energy damping coefficient) 

[1], Callen and Welton (First demonstration using statistical mechanics) [2], Callen and Greene 

(extension to the macroscopic thermodynamic domain) [3] and Kubo [4] (review paper on the 

subject with an emphasis on the use of correlation functions, collective modes of a many-particles 

systems and a matrix formulation). It is a powerful tool in statistical mechanics to study the 

behavior of a thermodynamic system near thermal equilibrium. It uses the fact that if a statistical 

system in thermal equilibrium is subjected to a small external force that drives it out of equilibrium, 

the dissipative forces that will restore a thermal equilibrium are the same as those that occur during 

a spontaneous fluctuation of some thermodynamic variable of the systems. Thus, the FDT may be 

used to deduce the response of the statistical system to an arbitrary but small perturbation since it 

gives a relation between the “impedance” of a general dissipative linear system and the fluctuations 

of the corresponding “generalized forces” [2]. FDT is a link between an equilibrium property of the 

system (spectrum of fluctuations) and some quantity characterizing an irreversible loss of energy 

due to the interaction with some external perturbation. Furthermore, it applies both to classical and 

quantum mechanical systems, but in slightly different forms57. We will use the classical form for 

our application. 

                                                 
57 In the quantum case, autocorrelation functions must be redefined so as to take into account the fact that observables 
may not commute (see e.g. [4]), furthermore, in the classical case the equipartition theorem for quadratic terms in the 
energy is used. 



λ6 

1.1. Callen-Welton form of the FDT 

First, we recall some definitions from [2]μ “A system may be said to be dissipative if it is 

capable of absorbing energy when subjected to a time-periodic perturbation”. It may be said to be 

linear “if the power dissipation is quadratic in the magnitude of the perturbation”. Hence, for a 

linear dissipative system, the proportionality constant between the power and the square of the 

perturbation amplitude may be used to define the (generalized complex) impedance of the system as 

the ration of the (complex) amplitude of the perturbation ሺܸሻ by the time derivative of the response 

of the system to the perturbation ሺݍሶ ሻ. If the perturbation is not sinusoidal, then the definition applies 

for the Fourier componentsμ ෠ܸ ሺ߱ሻ ൌ ܼሺ߱ሻݍሶ෠ሺ߱ሻ. We will also say that the eigenstates of the 

dissipative quantum system are densely distributed in energy if we can replace the summation over 

the eigenstates by an integral on the energy, weighted by the density of states. In their conclusion 

Callen and Welton see this process as a loss of internal coherence in a source system caused by the 

random fluctuations generated by the dissipative system and acting on the source system. “The 

dissipation thus appears as the macroscopic manifestation of the disordering effect of the Nyquist 

fluctuations and, as such, is necessarily quantitatively correlated with the fluctuations”. 

Callen and Welton fundamental theorem (Eq. 4.8 and 4.11 of [2]) is thenμ 

௘௤ۄଶܸۃ  ൌ ଶగ ׬ ܴሺ߱ሻ ቂቀ݊ሺ߱ሻ ൅ ଵଶቁ ԰߱ቃ ݀߱ஶ଴ ఠا௞ಳ்/԰ሱۛ ۛۛ ۛۛ ሮ ଶ௞ಳ்గ ׬ ܴሺ߱ሻ݀߱ஶ଴  (4.1) 

where ۃ	ۄ௘௤ represents a statistical ensemble average of the fluctuation at equilibrium, ܴሺ߱ሻ ൌRe൫ܼሺ߱ሻ൯ and ݊ሺ߱ሻ is Planck’s distribution ͳ/ሾexpሺ԰߱ ݇஻ܶ⁄ ሻ െ ͳሿͷͺ. 
A simple change from circular frequency to frequency then allows to find the usual Johnson-

Nyquist formula5λ for the one-sided spectral power density of voltage fluctuationsμ ܵ௏ሺ݂ሻ ൎ Ͷ݇஻ܴܶ 

(or ோܸெௌଶ ൌ Ͷ݇஻ܴܶ ൈ ∆݂ in a given frequency band, if ܴ is independent of frequency). 

We note that Callen and Welton also applied their fundamental formula (that they called 

“generalized Nyquist relation”) to the case of Brownian motion, electric dipole radiation resistance 

and electric field fluctuations in vacuum (rederiving Planck’s radiation law) and to the calculations 

of pressure fluctuations in a gas, thanks to the definition of an acoustic radiation resistance. 

1.2. Callen-Greene form of the FDT 

Trying to find new ways to deal with thermodynamic irreversible processes, Callen and 

Greene generalized the previous formula. Their fundamental results are [3]μ 

                                                 
58 ݊ሺ߱ሻ ൅ ଵଶ ൌ ଵଶ coth ቀ ԰ఠଶ௞ಳ்ቁ ఠا௞ಳ்/԰ሱۛ ۛۛ ۛۛ ሮ ௞ಳ்԰ఠ , which can be showed to be equivalent to using the equipartition theorem. 
5λ In 1λ26, at Bell labs, J. B. Johnson discovered that the mean square of the fluctuations of the potential difference across a resistor is proportional to its resistance and to its absolute 

temperature and independent of the material and shape of the conductor. He also noted that “in the range of audio frequencies, at least, the noise contains all frequencies at equal 

amplitude”. He attributed that phenomenon to the thermal agitation of the carriers of electricity in the conductors [5]. His colleague, Harry Nyquist was able to justify a law that would 

describe these results. In 1λ28, Johnson published a detailed account of his experiment [6] and Nyquist his theory [7]. 
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௝ݔ൫ۃ  െ ௝ܺ൯ଶۄ ൌ െ ଶ௞ಳగ ௌሺ߱ሻߪ׬ ௗఠఠమ (4.2) 

௝ݔ൫ۃ  െ ௝ܺ൯ଶۄ ൌ ଶ௞ಳ்గ ௎ሺ߱ሻߪ׬ ௗఠఠమ (4.3) 

The first relation applies in the microcanonical case for which all the extensive parameters of 

the system (including total energy ܷ) other than the one which fluctuations are computed are 

supposed to be constant, while the second applies in canonical case where the constraint on the 

energy is replaced by the condition of adiabatic insulation (no flow of heat through the frontiers of 

the system, which is almost the same as a condition of constant entropy ܵ). ߪௌ and ߪ௎ are 

generalized conductances (real part of the complex generalized admittance ܻሺ߱ሻ to be defined later 

in this paragraph). In these relations, ۃ൫ݔ௝ െ ௝ܺ൯ଶۄ is the mean square fluctuations of the jth extensive 

thermodynamic variable ݔ௝ around its equilibrium value ௝ܺ, in the frequency interval determined by 

the effective range of the integral. To a fluctuation extensive parameter ݔሺݐሻ of the system is 

attached a generalized force ݂ሺݐሻ which is the corresponding intensive parameter of the “driving 

reservoir” whose interactions with system cause the fluctuations of ሺݐሻ͸Ͳ. Then, the generalized 

admittance is defined by61μ 

 ܻሺ߱ሻ ൌ /ොሺ߱ሻݔ߱݅ መ݂ሺ߱ሻ,  (4.4) 

where ݔොሺ߱ሻ and መ݂ሺ߱ሻ are the Fourier transforms of	ݔሺݐሻ and ݂ሺݐሻ͸ʹ.  
These relations can be restated in terms of the fluctuations of the corresponding (intensive 

thermodynamic variables conjugated to the corresponding intensive variable ݔ௝ in the development 

of the entropy ܵ or the internal energy ܷμ ܨ௝ ൌ ൫߲ܵ ߲ ௝ܺ⁄ ൯௎,௑ೕ and ௝ܲ ൌ ൫߲ܷ ߲ ௝ܺ⁄ ൯ௌ,௑೔μ 
ۄଶܨߜۃ  ൌ െ ଶ௞ಳగ  ௌሺ߱ሻ݀߱ (4.5)ܴ׬

ۄଶܲߜۃ  ൌ ଶ௞ಳ்గ  ௎ሺ߱ሻ݀߱ (4.6)ܴ׬

where ܴௌ and ܴ௎ are generalized resistances (real part of the complex generalized impedance ܴ ൌ Reሾܼሺ߱ሻሿ ൌ Reሾͳ/ܻሺ߱ሻሿ) corresponding respectively to the constant energy or adiabatic 

constraints. 

                                                 
60 The driving reservoir must be big enough compared to the original system so that a change of an extensive 
thermodynamic variable of this original (small) system does not change appreciably the corresponding intensive 
variable of the driving reservoir. Then, the driving reservoir can be considered in quasi-static thermodynamic 
equilibrium and hence may be assigned instantaneous intensive thermodynamic characteristic variables with frequency 
components መ݂ሺ߱ሻ (as long as ߱ ا ͳ ߬⁄ , with ߬ the highest relaxation time of the “driving reservoir”). 
61 Callen and Greene proved that ܻሺ߱ሻ ൌ ݅߱ ߲ܺ ⁄ܨ߲ ൅ ܱሺ߱ଶሻ, and ܻሺ߱ሻ ൌ ݅߱ ߲ܺ ⁄ܨ߲ ൅ ܱሺ߱ଶሻ, so that a constant 
impressed force induces a finite and definite value of the extensive parameter ݔ and that ܻሺ߱ሻ may have poles only in 
the upper half of complex -plane. 
62 We use here the definitions ݔොሺ߱ሻ ൌ ׬ ାஶିஶݐሻ݁ି௜ఠ௧݀ݐሺݔ ሻݐሺݔ , ൌ ሺͳ ⁄ߨʹ ሻ ׬ ାஶିஶݐොሺ߱ሻ݁௜ఠ௧݀ݔ , which are not the same as in 
the paper of Callen and Greene, which use a factor ͳ ⁄ߨʹ√  in front of both integrals. 
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1.3. Kubo’s form of the FDT 

In his 1λ66 review paper [4], Kubo begins by the general remark that during random 

interactions (collisions or impacts in the paper) between molecules or atoms, there are two effectsμ a 

“random part” corresponding to the effect of all these random interactions as a driving force to 

maintain the incessant irregular motion of the system and a “systematic part” corresponding to the 

frictional force for a forced motion (coming from inelastic interactions that redistribute part of the 

energy of the forced motion onto other internal degrees of freedom). The fact that the physical 

origin of these two effects of the microscopic forces are the same, lead to the fact that the 

systematic part of the microscopic force, appearing as friction, is actually determined by the 
correlations of the random part of the force, conversely the random part must have its power 
spectrum determined by friction. Hence, the FDT can be used in two waysμ it can predict the 

characteristics of the fluctuation or the noise intrinsic to the system from the known characteristics 

of the admittance or the impedance, or it can be used as the basic formula to derive the admittance 

from the analysis of thermal fluctuations of the system. 

Kubo used a modified Langevin equation [8] approach of Brownian motion, with a retarded 

(frequency or time dependent) friction coefficient ߛሺݐ െ  ᇱሻ, to demonstrate relations involvingݐ

autocorrelation functions of stationary processes that can be calculated at the atomic level and are 

therefore used in modern Molecular Dynamics code to estimate various macroscopic diffusion or 

energy loss coefficients. This modified Langevin equation is63μ 

ሶݑ݉  ሺݐሻ ൅ ׬ ݐሺߛ݉ െ ᇱሻ௧଴ݐሺݑᇱሻݐ ᇱݐ݀ ൌ ሻݐሺܭ ൅ ܴሺݐሻ										ݐ ൐ Ͳ (4.7) 

Where ݑሺݐሻ is the velocity of the particle at time ,ݐ	ܭሺݐሻ is the driving force imposed from the 

exterior of the system (from which only the linear effect is considered) and ܴሺݐሻ is a random force, 

independent of the presence or absence of ܭሺݐሻ, such thatμ 

଴ݐ	∀		  ,			 ௗௗ௧బ ଴ݐ଴ሻܴሺݐሺܴۃ ൅ ߬ሻۄ ൌ Ͳ    (stationarity) (4.8) 

ۄሻݐሺܴۃ				,ݐ	∀  ൌ Ͳ and		∀	ݐ ൐ ۄ଴ሻݐሺݑሻݐሺܴۃ				,଴ݐ ൌ Ͳ (4.λ) 
If a periodic external force ܭሺݐሻ ൌ ଴ܭ cos߱ݐ is applied, then one can define a complex admittance ܻሺ߱ሻ (or mobility) of the system byμ 

ۄሻݐሺݑۃ  ൌ Re൫ܻሺ߱ሻܭ଴expሺ݅߱ݐሻ൯, with ܻሺ߱ሻ ൌ ଵ௠ ଵ௜ఠାஓሾఠሿ (4.10) 

with γሾ߱ሿ ൌ ׬ ାஶ଴ݐሻ݁ି௜ఠ௧݀ݐሺߛ . Kubo then proves thatμ 

 ܻሺ߱ሻ ൌ ଵ௠ۃ௨మ׬ۄ ݁ି௜ఠఛݑۃሺݐ ൅ ߬ሻݑሺݐሻ߬݀ۄஶ଴  (4.11) 

                                                 
63 The total (internal) microscopic force is ܨሺݐሻ ൌ ܴሺݐሻ െ ׬ ݐሺߛ݉ െ ᇱሻ௧଴ݐሺݑᇱሻݐ ׬ሻ its random part and െݐᇱ, with ܴሺݐ݀ ݐሺߛ݉ െ ᇱሻ௧଴ݐሺݑᇱሻݐ  .ᇱ its systematic (friction) partݐ݀



λλ 

If the equipartition theorem ݑۃଶۄ ൌ ݇஻ܶ ݉⁄  can be assumed, we then getμ 

 ܻሺ߱ሻ ൌ ଵ௞ಳ் ׬ ݁ି௜ఠఛݑۃሺݐ ൅ ߬ሻݑሺݐሻ߬݀ۄஶ଴ ≡ ଵ௞ಳ்Φሾ߱ሿ (4.12) 

This is the first classical form of the FDT for one fluctuating classical dynamic variable for Kubo. 

Going back to Eq. (4.7) with ܭሺݐሻ ൌ Ͳ, Kubo also showed thatμ 

ሾ߱ሿߛ݉  ൌ ଵ௠ۃ௨మ׬ۄ ݁ି௜ఠఛܴۃሺݐ ൅ ߬ሻܴሺݐሻ߬݀ۄஶ଴ ൎ ଵ௞ಳ் ׬ ݁ି௜ఠఛܴۃሺݐ ൅ ߬ሻܴሺݐሻ߬݀ۄஶ଴  (4.13) 

This is the second classical form of the FDT for one fluctuating classical dynamic variable for 

Kubo. 

Going back to the generalized Langevin equation, and the fact that the total internal 

microscopic force can be decomposed in ܨሺݐሻ ൌ ሶݑ݉ ሺݐሻ ൌ ܴሺݐሻ െ ׬ ݐሺߛ݉ െ ᇱሻ௧଴ݐሺݑᇱሻݐ  ᇱ, inݐ݀

section 8, Kubo proves thatμ 

 ଵஓሾఠሿ ൌ ଵఊ೟ሾఠሿെ ଵ௜ఠ (4.14) 

withμ ߛሾ߱ሿ ൌ ଵ௠௞ಳ் ׬ ݁ି௜ఠఛܴۃሺݐ ൅ ߬ሻ; ܴሺݐሻ߬݀ۄஶ଴  and ߛ௧ሾ߱ሿ ൌ ଵ௠௞ಳ் ׬ ݁ି௜ఠఛܨۃሺݐ ൅ ߬ሻ; ஶ଴߬݀ۄሻݐሺܨ ͸Ͷ. 
This implies that the random force correlation is finite at low frequencies, while the total force 

correlation tends to 0 as ݅߱ (i.e. ׬ ;ሺ߬ሻܴۃ ܴሺͲሻ߬݀ۄஶ଴ ൌݕݐ݅ݎܽ݊݋݅ݐܽݐݏ ׬ ݐሺܴۃ ൅ ߬ሻ; ܴሺݐሻ߬݀ۄஶ଴ ് Ͳ while 

׬ ݐሺܨۃ ൅ ߬ሻ; ஶ଴߬݀ۄሻݐሺܨ ൌ Ͳ), whereas at high frequencies both correlations give the same result. If 

we go back to the time domain, this means that both the correlation function of the random force ܴ 

and the total force ܨ will decay in a time interval (named ߬௖ by Kubo since this decay is due to 

random collisions of the big particle with atoms in Brownian motion) which is generally much 

shorter than the relaxation time ߬௥ ൌ ͳ ⁄ሾͲሿߛ ൌ ͳ ׬ ⁄ାஶ଴ݐሻ݀ݐሺߛ ൌ ݉݇஻ܶ ׬ ݐሺܴۃ ൅ ߬ሻ; ܴሺݐሻ߬݀ۄାஶ଴⁄  

characterizing the decay of the negative part of the time correlations of ܨ (remember ׬ ݐሺܨۃ ൅ஶ଴߬ሻ; ߬݀ۄሻݐሺܨ ൌ Ͳ). 

Finally let us note that, in section λ, Kubo uses a generalization of the FDT to several 

fluctuating variables using an impedance matrix and matrices of correlation functions to 

show that the friction spectral matrices that generalize ߛሾ߱ሿ and ߛ௧ሾ߱ሿ behave very 

differently around the eigen-frequencies of the matrix Ω௝௞ ൌ െ݅ۃ ௝ܺሺݐሻ; ሶܺ௞ሺݐሻۄ, but they 

approach the same limit at high frequencies because the source of both parts of the forces 

are always in the same fast microscopic processes. 

                                                 
64 The « ; » sign in the middle of the correlation functions, comes from a definition of correlation that was generalized 
in section 5 and used in sections 6 and 7 to generalize the FDT for the quantum case in which operators do not 
necessarily commute. In classical mechanics this is the usual correlation function. 
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2. Investigation of 1/f Noise with the help of the FDT 
2.1. Evaluation of the contribution of thickness fluctuations to 

frequency noise 

In [λ], we have applied the fluctuation-dissipation theorem (FDT) as formulated in [10] and 

[11] to estimate the power spectral density of thermal noise coming from fluctuations in the 

thickness (2h) of quartz resonators (Fig.4.1). 

 
Fig.4.1: Resonator design. 

In order to fulfill this task, we first describe these fluctuations by a 1D viscoelastic model of 

the longitudinal vibrations along the thickness of the quartz resonator. Indeed, for this mode, 

characterized by the mechanical displacement u2(x2; t) inside the resonator along the x2 axis, the 

strain and stress are respectively given byμ 

 ܵଶ ൌ డ௨మడ௫మ (4.15) 

 ଶܶ ൌ ܿଶଶܵଶ ൅ ଶଶߟ డௌమడ௧  (4.16) 

with ܿଶଶ is the elastic constant and ߟଶଶ is the viscoelastic damping constant of quartz crystal. 

The local version of the fundamental principle of dynamics for continuum media can then be 

written asμ 

ߩ  డమ௨మడ௧మ ൌ ܿଶଶ డమ௨మడ௫మమ ൅ ଶଶߟ డయ௨మడ௫మమడ௧ (4.17) 

With ߩ is the quartz mass per unit volume. 

Searching for solutions of the typeμ 

,ଶݔଶሺݑ  ሻݐ ൌ ሺܽ sinሺ݇ݔଶሻ ൅ ܾ cosሺ݇ݔଶሻሻ݁௝ఠ௧ (4.18) 
with limit conditionsμ 

 ଶܶሺേ݄, ሻݐ ൌ .ܨ ௘ೕഘ೟ௌ  (4.1λ) 
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with F the modulus of the harmonic mechanical force applied to the surface S of the electrodes 

(perpendicular to ݔଶ), givesμ 

 ݇ଶ ൌ ఘఠమሺ௖మమା௝ఎమమఠሻ (4.20) 

 ܽ ൌ ி ௌ⁄ሺ௞ ୡ୭ୱሺ௞௛ሻሻሺ௖మమା௝ఎమమఠሻ (4.21) 

 ܾ ൌ Ͳ	 (4.22) 
We can now define and compute the complex mechanical admittance of the system by [10]μ 

 തܻሺ߱ሻ ≡ ങೠమሺേ೓,೟ሻങ೟േி.௘ೕഘ೟ ൌ ௝ఠ௔	ୱ୧୬	ሺ௞௛ሻி   (4.23) 

The FDT then states that the spectral power density of the thickness fluctuations can then be 

computed by [10] and [11]65μ 

 ௨మమሺേ௛,ఠሻ஻ௐ ൌ ସ௞ಳ்ఠమ ܴ݁൫ തܻሺ߱ሻ൯ (4.24) 

The connection with the spectral density of noise in the resonator in a bandwidth BW is then 

provided by the fact thatμ 

 ߱௥ ∝ ଵ௛ ⇒ ܵ௬ሺ߱ሻ ≡ ሺఋఠೝሻమఠೝమ஻ௐ ൌ ௨మమሺേ௛,ఠሻሺଶ௛ሻమ஻ௐ  (4.25) 

Inserting Eq. (4.21) into (4.23), then the result into Eq. (4.24) and finally into Eq. (4.25) and 

introducing the volume between electrodes ܸ ൌ ܵ ൈ ʹ݄, we getμ 

 ܵ௬ሺ߱ሻ ൌ ଶ௞ಳ்௛௏ఠమ ܴ݁ ቀ ௝ఠሺ௖మమା௝ఎమమఠሻ . ୱ୧୬	ሺ௞௛ሻ௞ ୡ୭ୱሺ௞௛ሻቁ (4.26) 

For quartz, ܿଶଶ = 8.61010 Pa and ߟଶଶ ൌ ͳ.ͶͳͲିଷ Pas [32]. Since we are interested by the low 

frequency noise, we can safely assume that ߱ ا ௖మమఎమమ ൎ ͸ͳͲଷ rad/s. Thus, we haveμ 

 ݇ ൎ ට ఘ௖మమ߱ ቀͳ െ ݆ ఎమమఠଶ௖మమ ቁ (4.27) 

If we further assume that we restrict ourselves to frequencies such that 

 ߱ ا ඥܿଶଶ/݄ߩଶ ൎ ͸ ∙ ͳͲ଺ rad/s (for quartz ߩ ൌ ʹ.͸ͷ ∙ ͳͲଷ kg/m3 and ݄ ൌ ͳͲିଷ m for 5 MHz 

oscillators), we get |݄݇| ا ͳ, hence tanሺ݄݇ሻ /݇ ൎ ݄ and finallyμ 

 ܵ௬ሺ߱ሻ ൌ ଶ௞ಳ்ఎమమ௏௖మమమ   (4.28) 

Hence, for ܸ ൌ ͳͲି଼	݉ଷ, T = 350 K, Fig.4.2 presents numerical estimation of the variations 

of Sy() according . The fluctuations of thickness of the quartz resonator produce a white noise at 

low frequencies, with ܵ௬ሺ߱ሻ ൌ ʹ ∙ ͳͲିଷ଻ ሺrad/sሻିଵ, hence can be safely neglected with respect to 

the limiting noise source(s) (experimentally ~ 10-27 ሺrad/sሻିଵ).  

                                                 
65 BW = ʹߨ rad/s. 
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Fig.4.2: Variations of Sy() in log-log scale. 

The level of white noise was found to be far below what is measured; meaning that viscoelastic 

damping of thickness fluctuations is not the dominant noise process. 

 

In our next calculation [12], an internal friction term ߮, is added in the formulation, in order 

to obtain a 1/f spectrum at low frequencies. This gives us a complex elastic constant i.e. a frequency 

independent (at low frequencies ) delay between stress and strain. The strain equation (4.15) is 

conserved as previously but the stress ଶܶ is now given byμ 

 ଶܶ ൌ ܿଶଶሺͳ ൅ ݆߮ሻܵଶ ൅ ଶଶߟ డ௦మడ௧  (4.2λ) 

where ߮ is the internal friction coefficient [10], [11]. 

Then, the fundamental principles of dynamics for continuum media can be written asμ 

ߩ  డమ௨మడ௧మ ൌ ܿଶଶሺͳ ൅ ݆߮ሻ డమ௨మడ௫మమ ൅ ଶଶߟ డయ௨మడ௫మమడ௧  (4.30) 

By using the solution like (4.18) and using the limit condition (4.1λ) we haveμ 

 ݇ଶ ൌ ఘఠమሺ஼మమା௝ሺ஼మమఝାఎమమఠሻሻ (4.31) 

 ܽ ൌ ி ௌ⁄ሺ௞ ୡ୭ୱሺ௞௛ሻሻሺ஼మమା௝ሺ஼మమఝାఎమమఠሻሻ, ܾ ൌ Ͳ (4.32) 

The complex mechanical admittance is given, as previously, by (4.23) and the power spectral 

density of thickness fluctuations is given by (4.24). 
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Inserting (4.32) into (4.23), then the result into (4.24) with the assumptions ߮ ا ͳ and ߱ ا ஼మమఎమమ, we 

obtained a new expression of ݑଶଶμ 

 ௨మమሺേ௛,ఠሻ஻ௐ ൎ ସ௞ಳ்௛ௌఠ஼మమమ ሺܿଶଶ߮ ൅  ଶଶ߱ሻ (4.33)ߟ

Moreover, we can consider that the circular frequency at resonance ߱௥~ͳ/݄ (4.25), thusμ 

 ܵ௬ሺ߱ሻ ൌ ଶ௞ಳ்௏௖మమ ൈ ଵఠ ቀ ఎమమఠ௖మమ஼మమ ൅ ߮ቁ (4.34) 

where V is the volume of the resonator. One can then see from the previous expression that for 

circular frequencies lower than ߮ܿଶଶ/ߟଶଶ, the internal friction becomes dominant and gives a 1/f 

spectrum. Hence,	߮ could, in principle, be determined by the corner frequency between 1/f noise 

and white noise in the bare resonator (Fig.4.3) if it would not be masked by the white noise of the 

amplifier (cf. chapter 5).  However, we recall that these results are obtained for a thickness 

oscillation mode (and not for the traditional shear mode) under the assumptions that neither  ߟଶଶ, 

nor ܿଶଶ nor ߮ are frequency dependent. 

 
 

Fig.4.3: Behavior of Sy(ω) for various values of φ for a  thickness oscillation mode with ߱௥ ൌ ඥܿଶଶ/݄ߩଶ ൎ ͸ ∙ ͳͲ଺  rad/s. The transition frequency between the 1/ω regime and the white noise regime is proportional to 

φ. At low frequencies Sy(ω) is also proportional to φ, whereas at resonance and above the influence of φ can 

be completely neglected with respect to the traditional ߟଶଶ߱ ܿଶଶ⁄  viscoelastic damping  term. 

For 1/f (flicker) noise, the standard deviation of the difference of the average fractional 

frequencies measured for two consecutive samples is given by the expression [13]μ 

௬_௙௟௜௖௞௘௥ߪ  ൌ ඥʹ lnሺʹሻ ܵ௬ሺͳݖܪሻ (4.35) 

This is the square root of the Allan variance [14]. It is commonly used to compare the short-term 

stabilities of various resonators, since it is the noise floor at low frequencies in terms of relative 

frequency fluctuations. 
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Provided the corner frequency is bigger than 1 Hz, ߪ௬_௙௟௜௖௞௘௥ would be given by66μ 

௬_௙௟௜௖௞௘௥ߪ  ൌ ටʹ lnሺʹሻ ଶ௞ಳ்௏௖మమ ߮ (4.36) 

We note that ߮ could depend upon the temperature and that no assumptions were made about this 

possible dependence. 

To numerically evaluate ߪ௬_௙௟௜௖௞௘௥, we consider numerical values typical for a 5 MHz oscillator 

equipped with an SC-cut quartz crystal resonator. Due to the rotations for the SC cut, the 2 axis is 

not the usual one, so that the constants must be evaluated in the rotated basis67μ ܿଶଶ ൌ ͳͳͷ	ߟ ,ܽܲܩଶଶ ൌ ͳ.͵͸ ∙ ͳͲିଷܲܽ ∙  .T = 350 K and V = 0.104 cm3 ,ݏ

This givesμ 

௬_௙௟௜௖௞௘௥ߪ  ൎ ͳ.Ͳ͸ ∙ ͳͲିଵଶඥ߮ (4.37) 

Unfortunately, in present measurements, the white noise of the amplifier is masking the white noise 

of the resonator, so that we cannot estimate the maximum possible value of ߮ from our 

measurements. 

Hence, using a damping force proportional to strain and independent of frequency, naturally 

allows to get a ͳ ݂⁄  noise spectrum at low frequencies. Indeed, we could get the noise limit of 

measured resonators, a few 10-14 ([15], [16], [17]), with  > 10-4. However, this would mean that 

the effective value of Q at the resonance would be dominated by internal damping (addition of 

lossesμ 1/Qeff = (1/Qviscous + ) and lower than what is measured by at least 2 orders of magnitude. 

We therefore conclude that internal damping of thickness fluctuations by any force proportional to 

strain and independent of frequency, may not be the dominant noise mechanism for the best SC-cut 

quartz resonators. However, other modes may be more noisy… 

2.2. Tentative physical explanation of the internal friction 

coefficient φ 

In this paragraph, we consider whether the imaginary part of the complex spring constant	߮ in 

the equation (4.34), referred as internal friction coefficient, can be explained by the modified 

Granato-Lücke theory [18] of the energy loss due to some kinds of dislocation motion at the low 

frequency range. 

                                                 
׬ 66 ܵ௬ሺ߱ሻ݀߱ ൌ ௬ሺ݂ሻ݂݀ so that ܵ௬ሺ݂ሻܵ׬ ൌ ଶ௞ಳ்௏௖మమ ൈ ଵ௙ ቀఎమమଶగ௙௖మమ ൅ ߮ቁ, since ݂݀ ݂⁄ ൌ ݀߱ ߱⁄ . Furthermore, at 1 Hz ߮ ب ఎమమଶగ௙௖మమ , so that ܵ௬ሺͳ	ݖܪሻ ൎ ଶ௞ಳ்௏௖మమ ߮. 

67 These values are private communications from Roger Bourquin. 
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In 1λ52 Koehler proposed a mathematical model for the equation of motion of a pinned down 

dislocation loop [1λ]. In 1λ56, Granato and Lücke proposed a more complete theory of the 

mechanical damping due to both viscous and hysteretic motions of a pinned dislocation loop under 

the influence of an externally applied stress (cf. Fig.4.4 from [20]). 

 
Fig.4.4: Motion of a pinned dislocation loop under the influence of externally applied stress (A. Granato 

and K. Lucke, “Theory of mechanical damping due to dislocations”, J. Appl. Phys. Vol. 27, No-583, 1956. 

(page.584)). 

For zero applied stress, the (network) length (LN) is pinned down by the impurity particles (A). For 

a very small stress (B) loops of characteristic length Lc bend down continuously between the 

pinning impurities, until the breakaway stress is reached and a fast transition occurs from (C) to (D). 

Further increase of the stress make the resulting line of length LN bend (E) since it is assumed that 

the pinning at the extremities of LN is much stronger than the pinning at the intermediate impurities 

such that no breakaway of network lengths occurs and in this interval the effective modulus is 

determined by the network length LN. Now, further increment of the stress (D-E) causes the creation 

and expansion of a new closed dislocation loop (F-G) as in the Franck-Read source mechanism. The 

dislocation strain in this process is irreversible since a decrease of stress after (D) will not make the 

system go through (C) and (B). 

After simplification, Granato and Lucke obtained an analytical expression for the logarithmic 

decrement of the weakly damped mechanical oscillations in the material68μ 

                                                 
68 The logarithmic decrement Δ is the natural logarithm of the ratio of two successive maxima of weakly damped 
oscillations, when no external forces are applied to maintain the oscillations. For high quality factors, Δ ൌ
π ඥQଶ െ ͳ/Ͷൗ ൎ ߨ ܳ⁄ . The logarithmic decrement is also equal to the product of the damping factor and the pseudo-
period of the weakly damped oscillations. The quality factor is ʹߨ the ratio of the energy stored in an oscillatory system 
to the energy lost by the system during one oscillation cycleμ ܳ ൌ ߨʹ ܧ ⁄ܧ∆ . If ݔሷ ൅ ሶݔߚʹ ൅ ߱଴ଶݔ ൌ Ͳ and ߚ ൏ ߱଴, ݔ ൌ ሻݐߚexpሺെ	ܣ cosሺ߱ݐ ൅ ߮଴ሻ with ߱ ൌ ඥ߱଴ଶ െ ଶ, Δߚ ൌ lnሺݔሺݐሻ ݐሺݔ ൅ ܶሻ⁄ ሻ ൌ ܶߚ ൌ ߚߨʹ ߱⁄ , so that ܳ ൌ ߱଴ ⁄ߚʹ  ߚ .
is the damping coefficient, reciprocal to the relaxation time ߬, so that the period of the weakly damped oscillations is 
equal to the relaxation time multiplied by the logarithmic decrementμ ܶ ൌ ߬Δ. For forced oscillation the resonance 
circular frequencyμ ܳ ൌ ߨʹ ܧ ⁄ܧ∆  is ߱௥ ൌ ඥ߱଴ଶ െ ଶߚʹ ൌ ߱଴ඥͳ െ ͳ ʹܳଶ⁄ . 
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 ∆ൌ ∆బ௸௅మಿగ ቀ௅௅ಿ೎ቁ ቂ ௰ఙబ െ ͳ ൅⋯ቃ exp ቀെ ௰ఙబቁ (4.38) 

where ∆଴ൌ ͺܽܩଶ/ߨଷܥ where ܩ is the shear modulus, a is Burger’s vector and ܥߨ is the loop 

tension. 

	= Total length of movable dislocation line per unit volume. ܮே ൌ Network length, i.e. characteristic distance between two strongly pinning impurities. ܮ௖ ൌ Characteristic distance between two weakly pinning impurities. ߁ ൌ ߨ ௠݂/Ͷܽܮ௖, where ௠݂ is the maximum value of the binding force. ߪ଴	= Amplitude of the applied stress ߪ ൌ ݐሾ݅߱ሺ	ሿexpݔߙሾെ	଴expߪ െ  .ሻሿݒ/ݔ

  
Fig.4.5: The stress-amplitude dependence of the decrement (A. Granato and K. Lucke, “Theory of 

mechanical damping due to dislocations”, J. Appl. Phys. Vol. 27, No-583, 1956. (page.584)). 

Eq. (4.38) shows that the logarithmic decrement is frequency independent as our internal 

friction coefficient term	߮ in the equation (4.34). However it is also strain amplitude dependent. 

This dependency is even exponential (cf. Fig.4.5). However, in 1λ61, Swartz and Weermann 

proposed a modified Koehler-Granato-Lücke theory [18] in order to account for other experimental 

observations that “an amplitude independent damping exists which is independent of frequency and 

which varies with the impurity content inversely to a power less than four”. They supposed first that 

the pinning force ܨ of the impurity atom which arises from elastic interactions depends on the 

orientation of the dislocation line. Second, they supposed that, once a dislocation has broken away 

from its pinning points, its motion is not necessarily limited by its line tension, but that the distance 

it moves may be determined by the stress field of neighboring impurity atoms. With these 
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assumptions, they found an expression of the decrement for the impurity spacing controlled 

dislocation motion that, in the small stress amplitude limit, is given byμ 

 ∆ൌ ఉே௕௅ಿగ௖భ/యఢ (4.3λ) 

whereμ 

 ߚ is a parameter having value between 1 to 2 for impurity limited motion. We have taken the 

value of ߚ as 1.5 for our calculation. 

 ܰ =  Total length of dislocation line in a unit volume of material = 2 ൈ surface dislocation 

density [21]. This value used to be between 600 cm/cm3 and 200 cm/cm3 for high quality 

quartz [22] but is now of the order of 6 cm/cm3 judging from an X-ray image of the surface 

of one of the oscillators used nowadays at FEMTO-ST. 

 ܾ =  mean length of a Burger’s vector ൎ ͵ ൈ ͳͲି଼ cm. 

 ܮே ൌ Network length =ඥ͵ ܰ⁄   (according to Ref. [18]). 

 ܿ = Atom fraction of impurity which must be lower than 1 ppm to get ܳ values as high as 

a few 106. 

 ߳ = Fractional difference between the radius of impurity and host atoms. Using covalent 

radii from the database of the software “kalzium”, we estimate that for Lithium impurities 

and Si host atoms, ߳ could be of the order of 20%. 

George A. Alers, in his paper [23] (see the paragraph “Results”), measured the decrement of 

quartz experimentally. He found that the decrement due to the internal friction below 170°C is of 

the order of ͵ ൈ ͳͲିହ. If we take ܰ=200 cm/cm3 and ܿ = 10-4 in Eq. (4.3λ), then we getμ ∆ൌ ͳ.ͷ ൈ ʹͲͲ ൈ ͵ ∙ ͳͲି଼ ൈ ඥ͵ ʹ⁄ ͲͲ͵.ͳͶ ൈ ሺͳͲିସሻଵ/ଷ ൈ Ͳ.ʹ ൎ ͵.ͺ ∙ ͳͲିହ 

which is quite similar to the experimental value. 

However, in our case ܰ = 6 cm/cm3 and ܿ ൑ ͳͲି଺, we findμ ∆൒ ͳ.ͷ ൈ ͸ ൈ ͵ ∙ ͳͲି଼ ൈ ඥ͵ ͸⁄͵.ͳͶ ൈ ሺͳͲି଺ሻଵ/ଷ ൈ Ͳ.ʹ ൎ ͵.Ͳ ∙ ͳͲିହ 

Unfortunately, we will see in the next chapter that the values of logarithmic decrement we measure 

are an order of magnitude smaller. 

Finally, we recall that, previously, we saw that ͳ/ܳ௘௙௙ ൌ ͳ/ܳ௩௜௦௖௢௨௦ ൅ ߮, with  ͳ/ܳ௩௜௦௖௢௨௦ ൌ ఎమమఠ஼మమ . Therefore at low frequencies ͳ/ܳ௘௙௙ ൎ ߮. Hence, we attempt to identify ∆ with ߮ߨ at low frequencies, in a first approximation in spite of the fact that we are not in the dominantly 

viscous regime, since we saw in a previous footnote that Δ ൎ ߨ ܳ⁄  in that regime. This would give 



108 

ܳ௘௙௙ ൎ ͳͲହ and ߮ ൎ ͳͲହ in the low frequency regime, which would be an interesting order of 

magnitude to to attribute at least some non negligible part of the 1/f noise to the fluctuations of 

thickness. However, this would also mean that at resonance ଵொ೐೑೑ ൌ ଵொೡ೔ೞ೎೚ೠೞ ൅ ߮ ൎ Ͷ ∙ ͳͲି଻ ൅ͳͲିହ ൎ ͳͲିହ ൌ ߮, hence that the viscous damping would not be dominant at resonant frequency 

which is contradictory to experimental facts. 

3. Conclusions 
We have seen that it is possible to find ͳ/݂ noise through the fluctuation-dissipation theorem, 

by adding a complex part to the elastic constant in the usual differential equation characteristic of a 

viscously damped harmonic oscillator. This corresponds to a frequency independent energy loss in 

the limit of small frequencies. The hysteretic motion of the dislocations described by a modified 

Koehler-Granato-Lücke model [18] could a priori describe such a loss mechanism. Indeed, it could 

provide an explanation for the experimental observations that the logarithmic decrement generally 

decreased when the dislocation density decreased when quartz were not as good as now and that 

sometimes a slightly higher concentration of impurity could improve the quality factor. However, 

numerical estimations seem to provide values that are at least an order of magnitude too high. 
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Chapter	5: Experimental	observations	

The Centre National d’Etudes Spatiales (CNES), Toulouse, France and the FEMTO-ST 

Institute, Besançon, France, have initiated a program of investigations on the origins of noise in 

bulk acoustic wave resonators. Several European manufacturers of high quality resonators and 

oscillators are involved in this partnership [1]. For this program, quartz crystal resonators have been 

cut from a quartz crystal block supplied specifically for this study on 1/f noise. This crystal block 

was grown from a seed which originated from a previous synthetic crystal which was grown from a 

natural seed. This kind of synthetic crystal is usually used to grow new generations of quartz crystal 

blocks [2]. In this chapter, the blank realization and the topology of the resonator prototype are 

exposed. The resulting resonators are SC-cut with a 5 MHz resonant frequency. A comparison of 

these resonators is given in terms of motional parameters and ܳ factors. The results are presented 

according to the position of the resonators inside the mother crystal block. Then, we report the noise 

measurements made on these quartz crystal resonators using an advanced phase noise measurement 

system [3]. Attempts to correlate these noise results using cryogenic temperature characterization of 

the resonators and time measurements of the acoustic attenuation will be presented. 

1. Resonator Realization 
1.1. Crystal block and blank cutting 

The C2 crystal block is presented in Fig.5.1. This crystal block is obtained from a seed cut in 

a previous synthetic crystal which was grown using a natural seed. Its dimensions were 

approximately 220 mm along the Y-axis, 36 mm along the Z-axis and 110 mm along the X-axis. 

Two Y-cut slices have been cut before and after an oriented block used to achieve quartz bars (see 

red marks in Fig.5.1). The Y-cut slices have been used to make X-ray topographies for dislocations 

evaluation (cf. chapter 1). The crystal bars are cut in order to get the doubly rotated SC-cut. 

Fourteen quartz bars pre-oriented on the φ angle have been achieved. The length of the bars is about 

70 mm. Fig.5.2 shows a side view of 5 bars and the position of the fourteen bars in the initial crystal 

block. Taking into account the width of the cutting saw, about 24 resonators can be obtained in each 

bar (Fig.5.3). At the end of the technical step, about 160 resonators have been achieved. 
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Fig.5.1: Quartz C2 crystal block. 

 
Fig.5.2: Quartz crystal bars and their positions in the crystal. 

 

 
Fig.5.3: SC-cut plates obtained in the quartz crystal bar. 

In bar 11 to 14, the position of all resonators is known along the bar. Resonators from bar 1 to 
11 are not precisely localized along the bar. 
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1.2. Final 5 MHz SC-cut resonators 

The prototype of the resonator is a typical 5 MHz SC-cut resonator. The diameter of the 

resonator is 14 mm for a thickness of 1.0λ mm. As seen in the third chapter of this thesis, a plano-

convex shape allows the energy trapping for the 3rd overtone of the slowest thickness shear mode 

(C-mode). Electrodes diameter is 8 mm. The enclosure is HC40 (Fig.5.4). 

 
Fig.5.4: Quartz resonator. 

A radius of curvature of 130 mm has been chosen to optimize this energy trapping according 

to the Tiersten-Stevens model [4]. In theory, the ratio of the vibration amplitude at the center of the 

resonator to the one at its edge is higher than 106. The mode shape pattern obtained by X-ray 

topography is presented in Fig.5.5. It shows the optimized energy trapping of the (300) C-mode 

vibration. The temperature turn over point of the resonator is chosen between 80 °C and 85 °C by 

adjusting the cutting angles φ and θ. 

 
Fig.5.5: X-ray topography of the resonator in its (300) vibration mode [5]. 

1.3. Resonator parameters 

To compute an estimation of the motional parameters, we used Tiersten’s formulation [4], 

valid for the case of square electrodes, for the squares that are internally and externally tangent to 

the circular electrodes (cf. drawing below). The theoretical interval of values for the motional 

parameters are then calculated to be (with Q = 2.5106)μ 

6λ  < Rm < 7λ  

5.47 H < Lm < 6.24 H  

0.15λ fF < Cm < 0.183 fF 

0.λ4 pF < C0_th < 1.λ pF) 

Resonator 

   

The red circle represents the 

diameter of real electrodes. The 

squares allow setting limits on the 

parameter results. 
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Motional parameters of a batch of about forty resonators were measured using an impedance 

analyzer. The link between parameters is given by the classical formula ܳ	 ൌ ݂ߨʹ	 ܮ ܴ⁄ 	ൌ	ͳ/ሺܴ݂ߨʹܥሻ. The following figures (Fig.5.6 to Fig.5.λ) respectively show the motional resistance, 

the resonant frequency, the turnover temperature and the unloaded quality factor, for each 

individual resonator, as a function of the resonator number. Lines indicating the average value, and 

the ±σ and ±2σ distances with respect to this average value (σ is the standard deviation) are also 

indicated. 

 
Fig.5.6: Motional resistances of measured resonators. 
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Fig.5.7: Resonant frequency of the measured resonators. 

 
Fig.5.8: Turnover temperature of the measured resonators. 
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Fig.5.9: Unloaded quality factor of the measured resonators. 

A projection on the Y axis of these pictures would show that in the four cases, the data points 

are approximately Gaussian distributed. This kind of repartition proves the very high quality of the 

batch of resonators. Indeed, the values of the unloaded quality factor (Q) are as high as expected for 

this kind of quartz crystal resonators. 

2. Resonator noise measurements 
2.1. Measurement set-up 

The passive technique using carrier suppression is used to characterize the inherent phase 

stability of the ultra-stable resonators [6]. The general idea of this passive method, presented in 

Fig.5.10, consists in reducing the noise of the source as much as possible. 
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Fig.5.10: Resonator noise measurement set-up. 

An oscillator is always noisier than the resonator alone. The reason is that the random noises 

of the resonator and of the sustaining electronics are added in the output signal. Therefore we can 

state that the noise of the best oscillator used as source is always higher than the noise of the best 

resonator alone. Thus, the direct feeding of the driving source signal through only one resonator 

does not permit the extraction of information about the resonator noise from the total output noise. 

To perform the resonator noise measurement, the source signal can be subtracted when passing 

through two identical arms with two resonators considered as quasi-identical. Then, the contribution 

of the source is reduced while the characteristic noise of both resonators is preserved. This is due to 

the non-correlation of the intrinsic noise of each resonator. When the carrier suppression is 

achieved, the resulting signal is free of the source noise. Hence, the sum of both resonators noises is 

measured. This signal is then strongly amplified and mixed with the source signal in order to be 

transposed to the low frequency domain. Finally, it is processed by a fast Fourier spectrum analyzer 

(FFT). With this method, the measured noise for the two resonators is above the noise level of the 

driving source. Calibration of the measurement system is obtained by injecting a known sideband 

on one of the arms of the bridge. The result of the measurement bench is corrected using the 

calibration factor determined from this sideband. 
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The noise results are usually given in term of L(f), the one-sided power spectral density 

(PSD) of the phase fluctuations. Fig.5.11 shows the phase noise of resonator #λ, measured with an 

excitation power of 56 ȝW factor in vacuum. 

 
Fig.5.11: Typical phase noise measurement. 

For this same resonator (#λ) and excitation power, Fig.5.12 shows the transfer function. These 

curves are used in the conversion of the resonator’s flicker frequency noise into the measured phase 

noise. Around the null phase, ܨ௅ can be obtained by inverting the slope of the phase curve [6]μ 

௅ܨ  ൌ ଵ౴ഝ౴೑ቚേభ° (5.1) 

The measurement of this slope should be done in the same context as in the noise 

measurement. F୐(#λ) is equal to 1.65 Hz, which corresponds to a quality factor over 60% of the 

unloaded quality factor. 
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Fig.5.12: Transfer function: a) amplitude b) phase. 
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If the two resonators can be considered reasonably identical, then, half of the total noise is 

attributed to each resonator. In that case, L(1Hz) is equal to SΦ(1Hz) which can be used to compute 

the PSD of relative frequency fluctuations Sy(f), using [6]μ 

 ܵ௬ሺͳݖܪሻ ൌ ቂிಽమାଵ௙ೝ೐ೞమ ቃ ܵఃሺͳݖܪሻ (5.2) 

with fres the resonant frequency of the resonator. Finally, for 1/f (flicker) noise, the standard 

deviation of the difference of the average fractional frequencies measured for two consecutive 

samples is given by the equation [6]μ 

௬_௙௟௢௢௥ߪ  ൌ ඥʹln	ሺʹሻ ∙ ܵ௬ሺͳݖܪሻ (5.3) 

This is the square root of the Allan variance [7]. It is commonly used to compare the short-term 

stabilities of various resonators, since it is the noise at low frequencies floor in terms of relative 

frequency fluctuations (see Chapter 1). 

2.2. Noise results 

As example, Fig.5.13 gives the short-term stability floors of resonators obtained in bar 14. 

Error bars are given according accuracies of the measurements (error on FL = ±0.1 Hz and ±2dB on 

the measured spectrum). They span approximately two orders of magnitude. The best resonators 

have a short-term stability (Flicker floor) below 810-14, whereas the worst are above 10-12. 

Although the positions of the blanks are known, no clear correlation between the noise results and 

the blanks positions (e.g. center or edges) can be found for this bar. Same behavior is observed in 

bar 11 to 13. 

 
Fig.5.13: Noise measurements from resonator cut in bar 14 [2]. 
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Fig.5.14 presents the standard deviation of the noise floor of all the resonators measured so 

far, including those from bar 14. They span approximately two orders of magnitude. As in bar 14, 

the best resonators have a short-term stability (Flicker floor) below 810-14, whereas the worst are 

above 10-12. No clear correlation between the noise results and the blanks positions in the initial 

crystal block (e.g. center or edges) can be found. 

 
Fig.5.14: Noise measurements from resonators [8]. 

No clear correlation between the blank position and the quality of the resonator can be seen in 

these preliminary data. Furthermore, since all the resonators have almost the same value for the 

quality factor at resonance, this confirms (once more) that Allan variance is not directly connected 

with Q in these series of oscillators, which seems contradictory with the ͳ ܳସ⁄  law of Handel, in 

spite of the fact that this law was found in order to interpret experimental data of that time.  

The resonators denoted from a to h will be used in time measurements. All noise 

measurements in Fig.5.14 have been done in comparison with a reference resonator previously 

characterized at about the same level of our best specified resonators (around 5∙10-14). Additional 

measurements have been done to measure our specified resonators one against another in order to 

find better results by triangulation but unfortunately without successμ the noise level were the same 

than with the reference oscillator, up to the measurements uncertainties. 
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3. Low temperature measurements 
During the last 65 years of low temperature experiments, it has been established that BAW 

quartz crystal resonators show very high Q-factors at cryogenic temperatures [λ]-[16] and that Q 

factors of the resonators at low temperature could be correlated with noise at room temperature. 

Hence, we have carried such measurements in order to find a correlation between noise results at 

ambient temperature and acoustic defects in the active volume of the resonator. 

3.1. Cryogenic set-up 

A cryogenerator is a machine that is used to produce low temperatures. The Fig.5.15 

represents the general view of a cryogenerator and measurement devices [15]. In our experiment, a 

two-stage pulse-tube cryocooler is used at the cryogenic system’s core. Usually, the cryocooler 

absorbs up to 1 W at temperatures lower than 10K, typically 4.2K. The core of the experimental 

system is a cold head, where a device under test (DUT) is mounted on and enclosed in a vacuum 

chamber. The DUT is attached to a temperature-controlled copper block. 

 
Fig.5.15: General construction of the cryogenic system [15]. 

A M Series Helium Compressor serves as the central source of ultrahigh purity helium gas in 

a closed circuit system. Our system is built on an F-70H helium compressor from Sumitomo Heavy 

Industries (SHI) which is compatible with a pulse tube. The pressure produced by the compressor is 

approximately 16.5 Bar and it consumes an electric power of 6.7 to 7.2 kW. External refrigeration 

by cold water is needed to maintain the compressor at a temperature of 15°C, to prevent the thermal 

emission. 

A two-stage pulse-tube cryocooler (see Fig.5.16) is used at the cryogenic system’s core. The 

cryocooler head used in our system is the helium pulse tube RP-082A from SHI. As described by 
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M. Goryachev [16], the cryocooler is shielded with two protection screens (a vacuum chamber and 

an anti-radiation shield). The air pressure inside the chamber is lower than 10-5 Pa. This shield is at 

room temperature and is made with a light-reflecting material. Both primary and secondary pumps 

are cut off from the chamber during the whole measurement time. The anti-radiation shield is 

attached to the first cryocooler stage and its temperature is about 50K. Its inner and outer surfaces 

are covered with a specially fabricated light-reflecting paper comprising several layers of metalized 

mylar sheets to reduce radiation losses of the second stage. 

 
Fig.5.16: Schematic diagram of the pulse tube cryocooler [16]. 

Three resonators can be inserted inside final head. At controlled temperature the resonators 

are connected to a network analyzer in order to measure their impedance responses Fig.5.17. 

Classical calibration of the analyzer is made using load inserted in the head at 4K in order to 

suppress the length effect of the cables. 
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Fig.5.17: Resonator impedance measurements [15]. 

3.2. Measurement results 

Ten resonators have been tested at 4 K. The tested resonators a to l have different noise levels. 

Table 5.1 gives theoretical expectations for the resonant frequencies at cryogenic temperature for 

each modes that we observed, computed using a formula found in Ref. [4]. Theoretical computation 

is done using Eq. (126) from [4] to get the theoretical values. Then, the experimental values are 

searched near these theoretical values on the network analyzer. 

Table 5.1: Theoretical values of resonant frequencies of the designed resonator for A, B and C 

modes (overtones and anharmonic modes of C300 modes (Temperature = 4 K)). 

 

A sum-up of Q-factors for the different modes is given in Table 5.2. The observed modes are 

both thickness shear and longitudinal modes. Q-factor of C-modes at different overtone ranks and 

anharmonic modes of C300 have been measured. Only overtones of B-modes and A-modes have 

been tested. 

C Mode C300 C320 C302 C340 C322 C304 C500 C700

Res. Freq. (MHz) 4.993 5.117 5.127 5.242 5.251 5.267 8.287 11.583

B Mode B300 B500 B700 B1100 B1300 B1500

Res. Freq. (MHz) 5.487 9.112 12.736 20.161 23.631 27.244

A mode A300 A500 A900 A1100 A1300 A1500

Res. Freq. (MHz) 9.362 15.569 27.988 34.177 40.385 46.587
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Table 5.2: Q-factor at cryogenic temperature of selected resonators (a to l in Fig.5.14). 

 

White cells correspond to unfound modes or computation of the Q-factor aborted due to failed 

calibration. Like at room temperature, the evolution of the Q-factors seems to be independent of the 

noise level (see Fig.5.18). 

 

 
Fig.5.18: Resonator noise as a function of Q-factor of the resonators for different modes of vibration 

(Temperature 4K). 
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Results for anharmonic modes of C300 are presented in Fig.5.1λ. Q factors could not be 

measured for some of the tested resonators. 

 

 

 
Fig.5.19: Resonator noise as a function of Q-factor of the resonators for anharmonic modes of C300 

(Temperature 4K). 

Fig.5.20 presents noise results according to Q-factor of overtones of C300 mode, C500 and 

C700. 
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Fig.5.20: Resonator noise as a function of Q-factor of the resonators for overtone modes of C300. 

Unfortunately, no clear tendency appears to give a relationship between inherent noise of 

resonators and behavior at low temperature which could have been related to internal defects inside 

the resonant volume. 

4. Exploration of 1/f noise origin using time measurements 
4.1. Time measurement setup 

Resonators are put at their turnover temperature in the specific double oven of the noise 

measurement system. The tested resonator is driven by a synthesizer at its resonant frequency 

(Fig.5.21) during 2 s, by a sinusoidal signal. The excitation amplitude is limited in order to avoid 

the classical amplitude-frequency effect (frequency of the resonator is non-linearly dependent of the 

electrical power applied in the resonator). Then, the output of the synthesizer is stopped. The 

synchronization of the quartz signal is obtained using the TTL output of the synthesizer. High speed 

oscilloscope HDO6000 (courtesy of Lecroy) has been used to get the quartz signal. This kind of 

oscilloscope has 12 bits of vertical resolution. This vertical resolution allows 40λ6 voltage steps 

instead of traditional 256 steps for an 8 bits oscilloscope. The maximum sampling rate is 2.5 GS/s. 

The memory depth of this oscilloscope is 250 Mpts. In our case, the frequency of resonators is 

about 5 MHz. Thus the period of quartz signal is 200 ns. We store the signal during 0.5 s or 0.2 s, 

with a sampling rate of 2 ns and 800 ps respectively, corresponding to data files with 250 million 

points. 

 
Fig.5.21: Time measurement setup [8]. 

 

Synthesizer High speed 
Oscilloscope 

C2 

C3 TTL Output 
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Table 5.3 presents the characteristics of the tested resonators obtained with the resonator noise 

measurement set-up detailed in paragraph 2 above. The quality factor has the same order of 

magnitude for resonator a to g around 2106. The resonator h has a Q factor about two times lower 

than the other resonators. The Allan standard deviation is below 810-14 for resonator a, d, e and f 

and higher than 10-12 for resonators b, g and h. These resonators were chosen so as to represent at 

least one good and one bad resonator for each industrial provider participating in the CNES 

contract. The detailed origin of these resonators is hidden here due to confidentiality requirements 

in the contract. 

Table 5.3: Resonators selected for time measurements. 

Resonator Q (10
6
) y_floor 

a 2.62 7.110
-14

 

b 2.65 2.310
-12

 

c 2.16 1.810
-12

 

d 2.04 6.310
-14

 

e 2.35 6.310
-14

 

f 2.30 7.810
-14

 

g 2.24 1.110
-12

 

h 1.12 2.310
-12

 

 

4.2. Results 

The synchronization signal is presented in Fig.5.22a. The fall edge corresponds to the 

shutdown of the synthesizer output. Then, the quartz crystal vibrates freely. Fig.5.22b shows the 

signal obtained with the resonator a. The duration of the recording is 0.5 s. The sample rate is 

800 ps. That corresponds to 250 samples per period. A zoom of this figure is given in Fig.5.22c. 

Such zoom allow to find the value of the first maximum to be provided as initial guess in latter fits. 
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Fig.5.22: a) Synchronization signal, b) Attenuation of resonator a, 

 c) Zoom on a maximum value of resonator a. 

 

 

5 V 

a) 

50 ms 

b) 

50 ms 

205 mV 

c) 
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The result of resonator h is shown in Fig.5.23. The lower Q factor is representative of the faster 

attenuation of the signal. 

 
Fig.5.23: Attenuation signal of resonator h. 

4.3. Mathematical treatments 

The characteristic time of the exponential envelop is related to the loaded quality factor of the 

resonator byμ 

 ߬ ൌ ଶொಽఠ ൌ ொಽగ௙ (5.4) 

During the time measurement, the load applied on the resonator is given by the input 

impedance of the oscilloscope. This impedance is classically represented by a resistor of about 

1 M in parallel with an input capacitor which is given by Lecroy to be of the order of 15 pF. As a 

result, the loaded Q factors of the resonators are about 60 % of the unloaded Q. It is approximately 

the same working condition than in an oscillator or in the passive measurement system. A Spice-

OrCAD® simulation is in good agreement with the time results (Table 5.4). QL_th is the computed 

value of the loaded Q obtained by the electrical simulation. 

 

50 ms 

124 mV 
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Table 5.4: Loaded Q-factor measured from the logarithmic decrement of weakly damped 

oscillations, for several very good and not so good resonators. 

Res. Q (106) y_floor ߬ (s) ߪఛ ሺͳͲି଺ sሻ QL() (106) QL_th (106) 

a 2.62 7.110-14 0.0λ604 4.3 1.51 1.56 

b 2.65 2.310-12 0.0λ665 3.6 1.52 1.56 

c 2.16 1.810-12 0.0λ471 4.3 1.4λ 1.41 

d 2.04 6.310-14 0.08248 2.6 1.30 1.3λ 

e 2.35 6.310-14 0.0λ318 4.1 1.46 1.53 

f 2.30 7.810-14 0.0λ301 3.3 1.46 1.52 

g 2.24 1.110-12 0.08λ77 3.7 1.41 1.51 

h 1.12 2.310-12 0.055λλ 1.3 0.88 0.λ2 

 

In all the damped oscillations curves it is clear that the signal envelop exhibits the exponential 

decay characteristic of the underdamped oscillations of a simple harmonic oscillator with viscous 

damping. Hence, all the attenuation curves were fitted using the NonlinearModelFit function of 

Mathematica®, with the following model function (f0 = 5106 Hz)μ 

଴ܣ  ൅ ଵexpሺെܣ ݐ ߬⁄ ሻ sinሺʹߨሺ ଴݂ െ ∆݂ሻ ൅ ߮଴ሻ (5.5) 
For practical considerations (amount of RAM), we down-sampled the 250 Mpts randomly by a 

factor of 10 before actually fitting the data. (25 points on average per period). 

As we can see from Fig.5.24, the residuals look quite similar for these 4 resonators (randomly 

down-sampled by a factor 10), with quite steep variations. 

 



132 

 

 
Fig.5.24: Residuals of the fit (in mV) as a function of the number of the residual for resonator a (top left), 

b(top right), f (bottom left), g (bottom right). The upper (or lower) enveloppe could be described by 

piecewise linear functions giving some hint at solid friction, as discussed in the conclusions. 

Zooms on these variations show that there are no discontinuities but an enhanced probability for 

higher residuals (Fig.5.25). 

 
Fig.5.25: Zoom of Fig.5.24. Zoom on the residuals of the fit as a function of the number of the residual used 

in the figure, for resonator f. 

Bad and good resonators (a and g, b and f) give similar shapes of the residuals that cannot 

authorize any distinguish between resonators. 

5. Conclusions 
In spite of systematic campaigns of measurements, we have not been able to find some 

systematic tendency in the data that would allow classifying the resonators in good and bad ones 

without needing to make the long measurement of the 1/f noise level. Correlations of the quality 
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with position in the original bars and with optically detected defects in these bars have not provided 

clear results. Cryogenic experiments do not seem to provide any additional information with respect 

to room temperature measurements, for this classification. 

First attempts at fitting the underdamped transient oscillations of very good and bad ultra-

stable oscillators by a classical exponentially damped sinusoid show residues with envelopes that 

can be approximated by piecewise linear functions (as can be found in the oscillations of a 

pendulum damped by solid friction instead of viscous friction) that could indicate the equivalent of 

“solid (internal) friction”. Further studies using different fitting procedures and Matlab® are under 

way, to assess the fact that it could be artefacts of the Plot function of Mathematica® or not. 
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Conclusion	and	perspectives:	

Conclusion 
This work is one more step in the quest of a usable model for ͳ/݂ noise origin in bulk 

acoustic wave resonators. The general overview of piezoelectricity, basic crystallography of alpha 

quartz, defects of quartz crystal, different types of crystal cuts, quartz crystal resonators and 

oscillators with their time and frequency definitions, given in chapter 1, shows the difficulties and 

the large knowledge necessary to enter in this research domain. 

Due to the existence of a very large bibliography, the background research on ͳ/݂ noise, 

presented in the second chapter, is focused on the different theories and the models of ͳ/݂ noise 

that could be applicable to quartz crystal resonators. It can be observed that this topic has remained 

active for the last 80 years. One of the two well-known model that provide a prediction for the 

amplitude of ͳ/݂ noise in quartz crystal resonators, proposed by Michel Planat, is studied in detail 

and shows its limits in terms of order of magnitude comparing with experimental results. However, 

we think we traced the origin of the problem in the use of the classical density of vibration modes in 

Planat’s model. Thus, the modes corresponding to frequencies of the type ݂݊ with ݊ integer are 

counted both in the partition function and in the density of modes. Using an adapted density of 

modes with only the lowest frequency in each direction may avoid this double counting and lower 

the theoretical limit for the spectral power density of noise, but the ͳ/݂ behavior could disappear. 

Since, in our opinion, this is very likely, we did not attempt to find such an adapted density of 

modes. 

The third chapter presents the other model providing a prediction for the amplitude of ͳ/݂ 

noise in quartz crystal resonators, namely Handel’s theory of quantum ͳ/݂ noise. P. H. Handel has 

been continuously improving a universal theory of ͳ/݂ noise since 1λ75. He has tried to implement 

his theory in electrical, electronic and frequency control systems and has published numerous 

papers on this topic, with successes concerning the optimization of several electronic devices. 

Somehow, his theory explains the origin of ͳ/݂ noise in many areas of engineering and physics. 

Although criticized by many, Handel’s quantum model for ͳ/݂ noise remains the only model 

giving a quantitative estimation of the level of intrinsic ͳ/݂ noise in quartz crystal resonators that is 

compatible with the best experimental results. During this work, we reconsidered the volume 

dependence in this model. We first argue that an acoustic volume, representing the volume in which 

the vibration energy is trapped, should be used instead of the geometrical volume between the 

electrodes. Then, we show that because there is an implicit dependence of the quality factor of the 

resonator with its thickness, the net effect of Handel’s formula is not an increase of noise 
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proportionally to the thickness of the resonator, as could be naïvely expected, but a net decrease 

when thickness increases. Finally, we show that a plot of ܳସܵ௬ versus the acoustic volume, instead 

of the usual ܵ௬ plot, could be useful to compare the quality of acoustic resonators having very 

different resonance frequencies. Nevertheless, in spite of a careful inspections of Handel’s 

derivations of his formula (semi-classical or quantum), there are some points in Handel’s theory 

which remains difficult to understand for us, especially as concerns the connection between 

Bremsstrahlung radiation by electron, the loss of a vibration quanta from the main mode and the 

polarization of the material, which are specific to quartz devices. Indeed, some numerical values 

used in Handel’s formula of sensitivity limit for the betterment of the short term stability, seem hard 

for us to justify since the physical meaning and/or definition of the corresponding quantity is not 

clear. Attempts to correct the numerical values of the parameters to obtain a more accurate value of 

the sensitivity limit in Handel’s theory have been done, with a limited success in spite of our using 

some molecular dynamics simulations to try to give a clear interpretation and numerical value to the 

average frequency used by P. H. Handel. However, the physical picture of ͳ/݂ noise coming from 

loss of a quanta from the main mode at random uncorrelated times and locations still seems 

appealing. 

The 4th chapter investigates the origin of ͳ/݂	noise by adding an internal friction term to the 

classical equation of motion (already including viscoelastic damping), for the thickness oscillations 

of the quartz resonator. If this term is frequency independent and linear in the vibration amplitude, 

the fluctuation dissipation theorem allows us to recover a ͳ/݂ power spectrum for the frequency 

fluctuations. There are many possible reasons behind the physical origin of internal friction 

coefficient such as anelasticity, hysteretic dislocation motion or maybe motion of kinks along the 

dislocation, and many other physical aspects can be taken into account. However, it is not so 

evident to get a term frequency independent and linear in the vibration amplitude in the small 

frequencies limit. The possibility to explain this internal friction coefficient through the hysteretic 

dislocation motion thanks to modified Koehler-Granato-Lücke theory has been explored, but 

numerical applications seem to show that it is still not the dominant mechanism in our quartz 

resonators. 

The 5th chapter is devoted to the presentation of experimental results achieved in parallel to 

the previously exposed theoretical studies. Numerous specific resonators, provided by industrial 

partners, have been measured and compared by the passive noise measurement technique. For this 

program, quartz crystal resonators have been cut from a quartz crystal block supplied specifically 

for this study on 1/f noise. The results, in terms of noise level, span approximately two orders of 

magnitude but the best ones are almost at the state of the art, thus increasing considerably our stock 
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of excellent resonators. The best items have a short-term stability (Flicker floor) below 810-14, 

whereas the worst are above 10-12. Although the positions of the resonators have been followed, no 

clear correlation between the noise results and the blanks positions in the mother crystal block has 

been put in evidence. To understand the dispersion of these noise results, some investigation of Q-

factor at cryogenic temperature is proposed in order to correlate it with the measured noise. First 

results show that no clear tendency appears to give a relationship between inherent noise of 

resonators and behavior at low temperature which could be related to internal defects inside the 

resonant volume. Another way has been explored during this workμ The possibility of finding the ͳ/݂ noise by high speed time measurements of the weakly damped free oscillations. The results are 

not so easy to extract due to the big number of data and still need work. 

We hope to have shown that this work gives answers to several points evocated in the past but 

also brings some new interesting questions. 

 

 

Perspectives 
At the beginning of this work, investigations of other quartz homeotypic materials (for 

exampleμ Langasite, langatate, gallium orthophosphate, cf. chapter 1) were envisaged. However, up 

to now, it is difficult to find enough ultra-stable resonators made in this other materials to make 

systematic studies at a level of noise that can compete with those obtained for quartz resonators. 

Nonetheless, they can have an important role in the near future to produce high quality crystal 

resonators that could work at temperature much higher than the quartz resonators. These materials 

have a more complex crystallography than quartz and will be very interesting to study in order to 

extend the models proposed in this work. Moreover, the molecular dynamics simulations could be 

very useful to have a better understanding of these materials (none have been published up to now), 

especially to go further with Handel’s model. 

The research on the investigations of the origin of ͳ/݂ noise is difficult because, owing to the 

very low level of noise reached, usual approximations always have to be questioned and sometimes 

rejected. A lot of new developments of this kind can be found in the papers concerning gravitational 

wave detectors such as VIRGO or LIGO, which could serve as inspiration for our studies. 

Furthermore, there are many mathematical models able to give rise to a ͳ/݂ఈ power spectrum (less 

for a pure ͳ/݂ spectrum), but finding how they could be restated in terms of physical processes 

taking place in the quartz resonators is not evident. Nonetheless, there are some promising research 
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lines that can be proposed for future research on the dominant origin of ͳ/݂ noise for BAW quartz 

crystal resonatorsμ 

1) Study of phonon generation and energy localization for quartz crystal resonators by 

calculating the quantum mechanical energy of the radiated phonon created by moving 

edge dislocations [1]. 

2) A collaboration with Pr. Moncef (University of Monastir, Tunisia) has been started to try 

to parameterize efficient potential energy functions for molecular dynamics studies of 

quartz homeotypic materials such as GaPO4 or some members of the langasite family. 

3) The nucleation of kink-antikink pairs along dislocations are thermally activated with 

possibly several different activation energies. This could lead to 1/f noise by the 

mechanism studied in paragraph 1 of chapter 2. Maybe this could be studied taking 

inspiration from works by Fabio Marchesoni and his collaborators (see e.g. [2]). 

4) Some studies using a limited amount of radiation to increase slightly the amount of point 

defects in quartz could be attempted to control whether their hardening influence could be 

interpreted by the modified Koehler-Granato-Lucke theory of Swartz and Weertman [4] or 

possibly more recent theories on this subject. 

5) The two tests proposed by Niemann et al. could be done on our data to assess whether the 

proposed power-law intermittency model developed in their paper could apply to the noise 

data from our resonators. 

6) The exploitation of the residuals of the fits by a classical exponentially damped sinusoid, 

(or a better function to be developed) of the free weakly damped oscillations of the 

resonators shall be finished in order to try to find some characteristics of these residuals 

that would help classify the quality of the resonators without having to make the full 

passive noise measurements. 

On the experimental side, in parallel to this work, an important set of resonators have been 

built during these three years by the very best industrial specialists. A study of each resonator by a 

reverse engineering process could give lots of information. X-ray and optical observations can be 

done to localize and quantify internal defects inside the resonators. The comparison between 

resonators with different noise results in spite of the same design would be very useful not only for 

understanding the physical origin of ͳ/݂ noise, but also improve fabrication yields or at least to find 

faster and earlier ways to classify the best, good and bad resonators and oscillators during 

production. 
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P. H. Handel explored many kinds of systems with his quantum ͳ/݂	theory, some with 

success. The physical ideas behind his theory should be retained to investigate more resonators 

using vibration as the “heart of signal”. For example, micromechanical resonators (MEMS) or even 

nanomechanical resonators (NEMS)6λ have a recent and interesting development in the time and 

frequency domain. These resonators will provide a large range of different frequencies (from 

100 kHz to almost 5 GHz) and a lot of different structures. This is very exciting for future studies 

trying to bring these devices to their intrinsic noise limits. 
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6λ For example, the most sensitive mass measurement (resolution of the order of the mass of a single proton or hydrogen 
atom!!!) was obtained by studying the change of oscillation frequencies of a clamped-clamped carbon nanotube in the 
team of Adrian Bachtold (see e.g. J. chaste et al., Nature Nanotechnology, vol. 7, pp. 301–304, 2012). 
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Résumé 
 
 

Depuis quelques décennies, la technologie de contrôle de la fréquence a été au cœur de l'électronique des temps 
modernes grâce à son vaste domaine d'applications dans les systèmes de communication, les ordinateurs, les systèmes 
de navigation ou de défense militaire. Les dispositifs temps-fréquence fournissent des stabilités de fréquence et des 
puretés spectrales élevées dans le domaine de la stabilité court-terme. L'amélioration de la performance de ces 
dispositifs reste un grand défi pour les chercheurs. La réduction du bruit afin d'augmenter cette stabilité court-terme et 
d'éviter les commutations non souhaitées entre les canaux est donc très souhaitable. Il est communément admis que la 
limitation fondamentale à cette stabilité court-terme est due au bruit flicker de fréquence des résonateurs. Dans ce 
manuscrit, un premier chapitre rappelle quelques faits de base sur l’acoustique, la cristallographie et les définitions du 
domaine temps-fréquence nécessaires à l’étude des résonateurs et oscillateurs ultra-stables. Le deuxième chapitre est 
consacré à un résumé de la littérature sur le bruit de fréquence en 1/f. Ensuite, le troisième chapitre concerne nos études 
sur le modèle quantique de bruit en 1/f du Pr. Handel, qui, bien que critiqué par beaucoup, est encore le seul qui fournit 
une estimation de l'amplitude de plancher de bruit en 1/f et qui n'est pas infirmé par les données expérimentales. Dans le 
quatrième chapitre, une autre approche, basée sur le théorème de fluctuation-dissipation, est utilisée afin de mettre des 
contraintes numériques sur un modèle de bruit en 1/f causé par une dissipation interne (ou de structure) proportionnelle 
à l'amplitude, et non à la vitesse. Le dernier chapitre est consacré aux résultats expérimentaux. Le design et les 
paramètres du résonateur ultra-stable utilisé lors de cette étude sont décrits. Les mesures de bruit de phase sur plusieurs 
lots de résonateurs sont données. Les mesures des paramètres de résonateur ont été effectuées à basse température afin 
de les corréler avec les résultats de bruit. Afin d'évaluer rapidement la qualité des différents résonateurs, une autre 
approche dans le domaine temporel a été testée. Elle utilise des oscillations pseudo-périodiques transitoires mettant les 
oscilloscopes numériques actuellement disponibles à leurs limites de capacité. Enfin, les conclusions et perspectives 
sont présentées. 
 
Mots-clés : bruit 1/f, résonateurs acoustiques, quartz, bruit de phase, mesures passives, théorème de fluctuation-

dissipation; stabilité court-terme. 
 
 
 
 

Summary 
 
 
Since a few decades, frequency control technology has been at the heart of modern day electronics due to its huge area 
of applications in communication systems, computers, navigation systems or military defense. Frequency control 
devices provide high frequency stabilities and spectral purities in the short term domain. However, improvement of the 
performance of these devices, in terms of frequency stability, remains a big challenge for researchers. Reducing noise in 
order to increase the short term stability and avoid unwanted switching between channels is thus very desirable. It is 
commonly admitted that the fundamental limitation to this short-term stability is due to flicker frequency noise in the 
resonators. In this manuscript, a first chapter recalls some basic facts about acoustic, crystallography and definitions of 
time and frequency domain needed to explore ultra-stable resonators and oscillators. The second chapter is devoted to a 
summary of the literature on flicker frequency noise. Then, the third chapter concerns our studies on Handel’s quantum 
1/f noise model, which although criticized by many, is still the only one that provides an estimation of the floor 
amplitude of 1/f noise that is not invalidated by experimental data. In the fourth chapter, another approach, based on the 
fluctuation-dissipation theorem, is used in order to put numerical constraints on a model of 1/f noise caused by an 
internal (or structural) dissipation proportional to the amplitude and not to the speed. The last chapter is devoted to 
experimental results. An ultra-stable resonator used during this study is described. Phase noise measurements on several 
batches of resonators are given. Measurements of resonator parameters have been done at low temperature in order to 
correlate them with noise results. Another approach with a procedure that use transient pseudo periodic oscillations and 
put to their limits the capacities of presently available digital oscilloscopes, is presented, in order to assess rapidly the 
quality of various resonators. Finally, conclusions and perspectives are given. 
 
 
Keywords: 1/f noise, acoustic resonators, quartz crystal, phase noise, passive measurements, fluctuation-dissipation 

theorem; short-term stability. 
 
 
 
 
 
 
 
 
  
 


