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Université Paris-Dauphine
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Abstract

Several real-life problems are NP-hard. This means that, as it is widely

believed that P 6= NP, they cannot be solved in polynomial time. The two main

options to overcome this issue are: approximation and parameterized complexity.

The approximation paradigm consists of producing solutions which are not so close,

in terms of performance, from an optimal solution. The goal of parameterized

complexity is to solve problems in polynomial time, in the size of the input, times

a function, which can be exponential or even superexponential, of a parameter of

the problem. The idea hidden behind, is that if you know that your instances have

a small parameter, the complexity you get is roughly polynomial. An emerging

and interesting research area is to combine both paradigms. It can be called

parameterized approximation.

In this thesis, we present a new technique called greediness-for-parameterization

and we use it to improve the parameterized complexity of many problems.

We revisit a notion introduced in parameterized complexity called necessary

sets within the scope of approximation. We define a very close notion that we call

intersectivity, and which enables us to establish parameterized inapproximability

for a large class of problems that we call subset problems. We also use this notion

to obtain parameterized algorithms for some problems in bipartite graphs.

Aiming at establishing negative results on the approximability in subexponen-

tial time and in parameterized time, we introduce new methods of sparsification

that preserves approximation. We combine those sparsifiers with known or new

reductions to achieve our goal.

Finally, we present some hardness results of games such as Bridge and Havan-

nah.
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Résumé

De nombreux problèmes de la vie réelle sont NP-difficiles. Si, comme il

est très fortement conjecturé P 6= NP, ils ne peuvent pas être résolus en temps

polynomial. Deux paradigmes notables pour les résoudre quand même sont :

l’approximation et la complexité paramétrée. L’approximation consiste à produire

des solutions relativement proches de la performance d’une solution optimale.

La complexité paramétrée vise à résoudre en temps polynomial en la taille de la

donnée multiplié par une fonction pouvant être exponentiel ou même surexponen-

tiel d’un paramètre du problème. L’idée est que pour des instances où ce paramètre

est connu pour être petit, la complexité obtenue est bonne. L’approximation en

temps paramétrée, combinaison des deux paradigmes, est un domaine de recherche

récent et intéressant.

Dans cette thèse, on présente une nouvelle technique appelée greediness-for-

parameterization (gloutonnerie-pour-la-paramétrisation). On l’utilise pour établir

ou améliorer la complexité paramétrée de nombreux problèmes.

On revisite une notion en complexité paramétrée appelée necessary sets (en-

sembles nécessaires) dans le contexte de l’approximation. On définit alors une no-

tion voisine qu’on appelle intersectivité. Celle-ci nous permet d’établir des résultats

d’inapproximabilité en temps paramétré d’une large classe de problèmes qu’on

nomme ici subset problems (problèmes de sous-ensemble). On utilise également

cette notion pour obtenir des algorithmes paramétrés pour des problèmes à cardi-

nalité contrainte sur des graphes bipartis.

En vue d’établir des résultats négatifs sur l’approximabilité en temps sous-

exponentiel et en temps paramétré, on introduit différentes méthodes de sparsifi-

cation d’instances préservant l’approximation. On combine ces sparsifieurs à des

réductions nouvelles ou déjà connues pour parvenir à nos fins.

En guise de digestif, on présente des résultats de complexité de jeux comme

le Bridge et Havannah.
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Yann. . .

Maxime et la famille Martin, PE et mes anciens camarades de Lycée bisontins,

Youssef et la famille Ouchene, Arthur, Ambroise et la famille Brody vous avez égayé

mes vacances dans des locations exotiques comme Rabat, Vensac, Besançon ou encore
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avec vous a été une expérience amusante et enrichissante. Je suis reconnaissant de ce

cher Abdallah qui, il y a près de deux ans, m’a donné l’opportunité de vous rencontrer.
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Notes to the reader

The problems mentioned in this thesis are all defined in the appendix, and are listed

there in alphabetical order.

Within the pages, you will find two kinds of boxes: one with a light gray back-

ground, the other with a darker gray background.

In this kind of box, you will find important pieces of information, key ideas, or

summary of results. They might be worth reading since they clarify important

points.

In that kind of box, you will find anecdotes, non decisive remarks, or clarifica-

tion of minor pointsa. If you do not like anecdotes, you can skip the darker

gray boxes, and that might be the first and last you read until the end.

aThis is like a long footnote, in a way.

For the sake of readability, any PROBLEM, CLASS, and ALGORITHM have always

this very typography. What about words in italics? Mostly, words are in italics because

they are not defined yet, so the reader do not have to worry too much (in principle,

they will be explain later). Once explained those words will not be in italics anymore.

Additionally, a word can be in italics because it is crucial in its sentence. You may

encounter the description of an algorithm in pseudo-code.

Algorithm 1: Here is the standard procedure.

Input: A reader.

Output: An informed reader.

for each line L do
read L;

end

1
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And relevant figures in TikZ

We wish you a pleasant reading!
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1 Introduction

Each scientific field has its deep philosophical questions.

In physics, you have plenty: when/how/why did all start?, what is universe made

of?, will all end? if so, when/how/why?, etc. And basically, every time you look through

a window/telescope/microscope and you see something you cannot explain, you ask

a new question. As universe is oddly complicated, you receive too many answers to

be fully satisfied and you ask: can we explain everything in a more unified way?. In

mathematics, your inquiries position in an idealized world: what is a proof?, can we

prove every true statement?, is it odd that the same number appears so often?, etc. And

basically, every time you think of a statement which might be true, you ask yourself

if you can prove it. Physics and mathematics (at least practicing by humans) are

thousands years old, so the most crucial issues have been at least partially answered1.

Thus, our minds are sufficiently appeased to process the challenges of the new born

(only sixty years old) computer science.

The theoretical computer scientist is a special mathematician who likes to solve

problems constructively. What can I solve?, or equivalently, what can I compute? is

his main concern. But wait, what is it to solve or to compute? And, what is a problem?

1.1 Problems, Instances, and Algorithms

A problem is a question, defined in some formal system, that you can ask for an infinite

family of inputs or instances. The answer to this question is called output. For example,

give the prime factorization of your input is a problem, and its interesting instances are

the natural numbers. We may see problems as functions. If given the input 12, a desired

1Okay, this is truly debatable.
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1. INTRODUCTION

output would be (2, 2, 3). Our example is very much alike the function f : n 7→ the

prime factorization of n. In fact, this most general class of problems that we have just

defined is called function problems. Basically, given an input, we have to compute its

image by a function which is the core of the problem. Another example might be the

sorting problem. You are given a list of, say, integers and you are asked to order this

list by non decreasing values and to output the result.

A central subclass of problems is the class of decision problems. In a decision

problem, your answer is either YES or NO. Is the input an even number? is a decision

problem, though not particularly challenging. Is the input a prime number? is a more

interesting decision problem. Decision problems can be defined formally (contrary to

function problems) as the set of the instances for which the answer is YES, called for

short YES-instances. If Π is a decision problem, we denote by L(Π) the sets of its

YES-instances, and we will sometimes identify Π to L(Π).

Another crucial subclass of problems is the class of optimization problems. In

an optimization problem, given an input x, you have to find the output y optimizing

(minimizing or maximizing) the value m(x, y) where m is a function specified by the

problem. If the value of the solution y can be computed independently of the input x,

we will write val(y) instead of m(x, y).

Each function problem can be artificially translated in a maximization (or

minimization) problem. Assuming f is the function one wants to compute, we

set m(x, y) = 1 if y = f(x), and m(x, y) = 0 otherwise. On the contrary, a

decision problem cannot be seen as a function problem.

MAX CLIQUE is an optimization problem. Let us describe this problem2. Given

a graph3 G, you want to find the maximum number of vertices such that there is an

edge between each pair of vertices you have taken. Such a set of vertices is called

a clique. This is a maximization problem for which the function m is defined by

m(G,S) = |S| if G corresponds to the description of a graph, and S is a clique of G,

andm(G,S) =∞ otherwise. MIN DOMINATING SET is an example of a minimization

problem where, given a graph G = (V,E), you want to find the minimum number

2Additionally, we recall that all the problems introduced are defined in the appendix.
3If you do not know what a graph is, you may read first Section 1.4.
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1.1. Problems, Instances, and Algorithms

(a) A maximum clique of a graph. Ver-

tices in the clique are filled.

(b) A minimum dominating set in the

same graph.

Figure 1.1: Solutions for MAX CLIQUE and MIN DOMINATING SET on an instance.

of vertices whose closed neighborhood is V . There is a canonical way of projecting

optimization problems into decision problems, by fixing a threshold value. For instance,

CLIQUE consists of determining if there is a clique of size at least k. It is the decision

version of MAX CLIQUE.

An algorithm is a finite sequence of instructions specified in some formalism. This

definition is vague but the Church-Turing thesis states that all the realistic models of

computation that we could think of, are equivalent, in the sense that they define the

same set of computable functions. For instance, the λ-calculus of Alonzo Church, the

Turing Machine of Alan Turing, and the recursive functions of Kurt Gödel and Jacques

Herbrand are all equivalent. As far as we are concerned, we will define an algorithm as

a Turing Machine.

In 1928, David Hilbert asks in a conference if there was an algorithm which,

given a first-order formula, tells whether or not it is universally valid (or

equivalently provable, since first-order logic is complete). The first step was to

define properly what an algorithm was. Alonzo Church [42] and Alan Turing

[123] gives a negative answer to Hilbert’s question provided we accept their

(equivalent) definition of what is algorithmically computable. This started an

uninterrupted discussion around the Church-Turing Thesis.

5



1. INTRODUCTION

0 1 0 0

qi

(a) The configuration before the transition.

0 1 1 0

qj

(b) The configuration after the transition.

Figure 1.2: Applying the transition (0, qi, 1, qj ,←).

Definition 1. A Turing Machine is a tuple 〈Q, q1, qa, qr,∆〉 where Q is a finite set of

states; q1 ∈ Q is a distinguished initial state; qa ∈ Q is a distinguished accepting state;

qr ∈ Q is a distinguished rejecting state; ∆ ⊆ Q× {0, 1} ×Q× {0, 1} × {←, ↑,→}
is a set of transition rules.

A Turing Machine can be seen as a semi-infinite tape composed of cells filled with

0 or 1, together with a head positioned upon one of the cell.

Definition 2. A configuration is a triple (w1, q, w2) where q is the current state, w1w2

is the content of the tape, and the head is upon the first letter of w2.

When in a configuration (u, q, av) (a ∈ {0, 1}), the Turing Machine can apply the

transition (q, a, q′, b, d) ∈ ∆ and the following happens. Bit a is replaced by bit b, the

state changes to q′, and the head moves to the right if d =→, to the left if d =←, or

stays still if d =↑. A Turing Machine is said deterministic if given a state q and a bit a

there is at most one transition of the form (q, a, ·, ·, ·) in ∆ (at most one transition is

doable). Therefore, given an input, a deterministic Turing Machine has a unique run. A

configuration (w1, qa, w2) is accepting, while a configuration (w1, qr, w2) is rejecting.

When the Turing Machine reaches an accepting or a rejecting configuration, it halts.

A Turing Machine accepts an inputw, if there is a finite sequence of transitions from

the configuration (ε, q1, w) (where ε is the empty word) to an accepting configuration.

A Turing Machine rejects an input w, otherwise. The set of accepted inputs is the

language recognized by the Turing Machine. That definition fits the solving of decision

problems. If one wants to solve function problems in general, one can look at the

content of the tape (output) when the computation ends.

A decision problem Π is decidable if there is a Turing Machine stopping on every

input and whose language is exactly L(Π). Otherwise, Π is said undecidable. CLIQUE

6



1.2. Reductions

is an example of a decidable problem. Indeed, we can enumerate all the sets of k

vertices of the graph, and check if one of them constitutes a clique. Describing an

algorithm with the transition rules of a Turing Machine is fastidious. Instead, we will

give some Turing-complete pseudo-code. The problem of deciding if a Turing Machine

halts on the empty input is an example of an undecidable problem.

In this thesis, we focus on decidable problems. Our main concern will not be can I

solve? but how fast can I solve?. But before we introduce the main classes of efficiency,

we present a central notion known as reductions.

1.2 Reductions

In computer science, a reduction is a translation of a problem into another.

Formally, a reduction from a decision problem ΠA to another decision problem ΠB

is a function ρ : IA → IB , where Ix is the set of instances of Πx, such that ∀I ∈ IA,

I ∈ L(ΠA)⇔ ρ(I) ∈ L(ΠB).

Why could it be interesting to translate ΠA into ΠB? What comes in mind naturally

is that if you know how to solve ΠB , you now can solve ΠA. In this case, we use a

reduction to get a positive result.

In fact, we more often use the contrapositive, that is, assuming that we cannot solve

efficiently ΠA, we derive that ΠB also cannot be efficiently solved. In that case, we

use a reduction to get a negative result.

Reductions may happen in real-life. Let us assume that the standard procedure P

to make pasta is to take an empty pan, fill it with water, turn on the cooktop, put the

saucepan upon it, wait for the water to boil, add the pasta, wait for them to be cooked.

But now, you encounter a difficulty: the only saucepan you find is filled with water. You

still want to make pasta. What do you do? Well, this is easy: you throw the water away

and then you apply P. Throwing the water away is a (quite silly) real-life reduction

from the problem MAKING PASTA WITH A FILLED SAUCEPAN to the problem MAKING

PASTA WITH AN EMPTY SAUCEPAN which gives a positive result (pasta).

We now get back the theoretical world, and we present an example of a reduction

from SAT to INDEPENDENT SET which gives, as we will see in the next section, a

negative result. Again, the reader is referred to Section 1.4 and to the appendix for

the definitions of both problems. Let C = {C1, C2, . . . , Cm} be any instance of SAT

with n variables. We explain how we construct a graph G = ρ(C) such that G has an

independent set of size n+m if and only if C is satisfiable. For each variable xi, there

7



1. INTRODUCTION

v1 v1 v2 v2 v3 v3 v4 v4 v5 v5

Figure 1.3: The graph ρ(C) for the instance C = {x1∨¬x4∨x5, x2∨¬x3∨¬x4,¬x2∨
¬x3 ∨ ¬x5,¬x1 ∨ ¬x2 ∨ x3 ∨ x5} and an independent set corresponding to a truth

assignment.

are two vertices vi and vi linked by an edge in G. A piece of structure which encodes a

building block of the initial problem is called a gadget. Thus, a pair of vertices linked

by an edge is a fairly simple variable gadget. For each clause Cj = l1j ∨ l2j ∨ . . . ∨ lkj ,

we add a clique of size k in G. Each vertex of this clique represents one literal of Cj

(in a one-to-one correspondence) and is linked to the vertex encoding the same literal

in the variable gadgets. This defines the clause gadgets.

As each of the n variable gadgets and each of the m clause gadgets is a clique, an

independent set in G has size at most n+m (one vertex per clique).

If C is satisfiable, then taking the vertex corresponding to the opposite literal in one

fixed truth assignment, can be completed by taking one vertex in each clause gadget

(since in each clause of C there is a literal set to true). This defines an independent set

of size n+m. Reciprocally, if there is an independent set of size n+m, then it takes

exactly one vertex in each gadget. Setting xi to true if vi is in the independent set, and

to false if vi is, is a truth assignment. In each clause, this assignment satisfies at least

the literal whose corresponding vertex is in the independent set. Hence, C is satisfiable.

We observe that this reduction can be computed in polynomial time. More formally,

a reduction ρ is a polynomial time reduction, if ρ can be computed in polynomial time,

and in that case, we notice that |ρ(I)| is necessarily polynomial in |I|, where | · | maps

an instance to its size. This means that if we assume that SAT cannot be solved in

polynomial time, then neither can INDEPENDENT SET. We will discuss further this

phenomenon in the following section.
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1.3. Computational Complexity Classes

1.3 Computational Complexity Classes

Computational complexity classes measure how the running time (or the space required)

of an algorithm scales with respect to the size of the input. There are hundreds of

complexity classes. Here, we define only the most standard ones.

P is the class of problems that can be solved by a deterministic Turing Machine

in polynomial time, that is in time O(nc) for some constant c, where n is the size of

the input. For instance, PALINDROME, the problem of determining if a word reads the

same forwards and backwards like kayak, is in P. Indeed, in quadratic time O(n2),

we can check if the first letter matches the last one, the second matches the next to

last, and so forth, up to the middle of the word. With a Turing Machine, we lose some

time in meaningless comings and goings of the head within the input. In fact, we may

think algorithms as reading a bit of the input in constant time O(1), as in the RAM

(random-access machine) model, or equivalently as a piece of pseudo-code. It turns out

that all the reasonable models are polynomially equivalent, in the sense that the blow-up

to solve a same problem with different models of computation is always polynomially

bounded. Thus, the model does not alterate the class P and the upcoming classes.

Algorithm 2: A simple algorithm to solve PALINDROME

Input: A word w = w[1]w[2] . . . w[n] of size n.

Output: YES if w is a palindrome, NO otherwise.

i← 1;

while w[i] = w[n− i+ 1] ∧ i 6 ⌊n/2⌋ do
i← i+ 1

end

return i > ⌊n/2⌋

Obviously, this is a basic example. Finding a polynomial time algorithm for a

problem can be harder (2SAT [8]) or even harder than that (MAXIMUM MATCHING

[55]) or even way harder than that (PRIME [2]).

NP is the class of problems which can be solved in polynomial time by a (non

deterministic) Turing Machine. Algorithm 3 shows that SAT is in NP.

We may observe that in Algorithm 3, all the non-deterministic steps are grouped

together at the beginning. It consists of setting non-deterministically each variable to

either True or False. Then, the rest of the algorithm is purely deterministic: evaluating

the formula for the given assignment. In fact, with no loss of expressiveness, every

9



1. INTRODUCTION

Algorithm 3: A non-deterministic algorithm to solve SAT in polynomial time.

a|b is the non-deterministic transition which does either a or b.

Input: A CNF formula φ.

Output: YES if φ is a satisfiable, NO otherwise.

for each variable xi in φ do
xi ←True | xi ←False ;

end

return φ(~x);

problems in NP can be solved by performing first all the non-deterministic transitions

and then by doing only deterministic transitions. Thus, we can formulate an alternative

definition of NP. A problem Π is in NP if there are a constant c and a deterministic

polynomial time Turing Machine M such that:

• given any YES-instance I ∈ L(Π), there exists a word y of size |I|c called

certificate such that M(I, y) outputs YES.

• given any NO-instance I /∈ L(Π), for any word y of size |I|c such that M(I, y)

outputs NO.

The most natural certificate that we can think of is a solution of the instance. Provided

the description of a solution can always be done with only a polynomial blow-up in the

size of the instance, if we can check in polynomial time that something is a solution,

then the problem is in NP.

A problem Π is NP-hard if there is a polynomial time reduction from the problem

of simulating a non-deterministic Turing Machine which halts in polynomial time to Π.

The first problem shown to be NP-hard is SAT in a paper of Stephen Cook in 1971 [43],

and independently by Leonid Levin. This result is usually called the Cook Theorem

or the Cook-Levin Theorem. A problem which is simultaneously in NP and NP-hard

is said NP-complete. This class is denoted by NP-c. With the previous remarks, SAT

is NP-complete. The relation ΠA →
P

ΠB defined by there exists a polynomial time

reduction from ΠA to ΠB , is transitive. Thus, to show that a problem Π is NP-hard,

we can show that SAT
4→

P
Π. In Section 1.2, we did show that INDEPENDENT SET is

NP-hard. The reader is referred to the seminal paper of Richard Karp [87] and to the

4In fact, we can reduce our problem from any NP-hard problem.
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1.3. Computational Complexity Classes

book of Michael Garey and David Johnson [71] for further reading on the theory of

NP-hardness.

The polynomial time reduction also permits to define the classes of the hardest

problems within the two following classes PSPACE and EXP. They are similarly

denoted by PSPACE-c and EXP-c.

PSPACE is the class of problems that can be solved with a deterministic (or non

deterministic by Savitch’s Theorem [115]) Turing Machine using polynomial space,

that is space O(nc) for some constant c, where n is the size of the input. QBF is in

PSPACE and by a construction similar to the proof of the Cook-Levin Theorem it can

be shown PSPACE-complete (in PSPACE-c).

EXP is the class of problems that can be solved with a deterministic Turing

Machine in exponential time, that is, in time O(2n
c

) for some constant c. The problem

of deciding if a generalized5 chess position is winning for White is in EXP and it is

even EXP-complete (in EXP-c) [65].

R is the class of problems that can be solved by a Turing Machine. All the

problems introduced so far in this section are in R, whereas, as said above, the problem

of deciding if a Turing Machine halts on the empty input is not in R. As the following

holds P ⊆ NP ⊆ PSPACE ⊆ EXP ( R and P ( EXP, at least one of the three

inclusions P ⊆ NP, NP ⊆ PSPACE and PSPACE ⊆ EXP is strict. It is widely

believed that P ( NP, but it has not been proven yet though such a proof would be

rewarded by a generous tip of one million dollars from the Clay Mathematics Institute.

Anyway, it is likely that the NP-complete problems are not all solvable in polynomial

time, which is equivalent of saying that none NP-complete problem is solvable in

polynomial time. It is even conjectured that solving SAT requires exponential time

O∗(λn) for some λ > 1, where n is the number of variables. This constitutes the

Exponential Time Hypothesis (ETH, for short) [81]. The Strong Exponential Time

Hypothesis (SETH) is slightly more debatable and states that solving SAT requires time

O∗(2n). Thus, the brute-force algorithm, checking all the possible assignments, would

be asymptotically optimal. In general, the theoretical assumption that polynomial

time is tractable while exponential time is not, must be put into perspectives by

practical considerations: an algorithm performing in exponential time 1.0000001n is

far better than a polynomial time algorithm working in time n100000000 for instances

of a reasonable size.

In Section 1.3.1 and Section 1.3.2, we introduce two fields coping with NP-

5on a n× n board with an unbounded number of pieces, and without the fifty-moves rule.
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NP-c

PSPACE-c

EXP-c

P

NP

PSPACE

EXP

R

Figure 1.4: The dartboard of classical computational complexity. The difficulty of a

problem is the throwing distance. The more accurate you are, the better your algorithm

performs. Though, everything is not possible. For instance, at the distance of an

EXP-complete problem, the P area is physically untouchable.

hardness, namely approximation and parameterized complexity.

1.3.1 Approximation

The field of approximation can be traced back to the early seventies with the seminal

paper of David Johnson [84]. The crux of approximation is to produce in polynomial

time a solution whose performance is as close as possible to optimality. Therefore and

by essence, approximation algorithms only handle optimization problems. In fact, this

is not such a restriction since many decision problems can be seen as optimization

problems. For instance, MAX SAT is a natural maximization version of SAT, where

instead of satisfying all the clauses, we just need to satisfy as many clauses as we can.

Let opt(I) be the value of an optimal solution for a specified problem Π on

instance I . If there is no ambiguity on the instance considered, we may shorten opt(I)

to opt. An approximation algorithm A with ratio ρ : N → R is an algorithm such

that for all instance I , val(A(I)) 6 ρ(|I|) opt(I) for a minimization problem (and,

val(A(I)) > ρ(|I|) opt(I) for a maximization problem). For maximization problems,

it is sometimes more convenient to have ratios greater than 1 and we will explicitly
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redefine the ratio by val(A(I))ρ(I) > opt(I). A is a ρ(n)-approximation and the

problem is said ρ(n)-approximable. A problem Π is constant approximable if an

approximation algorithm with a ratio ρ which is a constant function. The class of such

problems is called APX.

APP-VC, detailed in Algorithm 4, is a 2-approximation algorithm for MIN VERTEX

COVER, hence MIN VERTEX COVER is in APX. The ratio 2 is obtained since if

you consider the set S = APP-VC(G) of the edges e whose two endpoints u and

v have been added to S, a feasible solution takes at least one vertex in {u, v}, so

val(S) 6 2 opt.

Algorithm 4: A 2-approximation algorithm for MIN VERTEX COVER

Input: A graph G = (V,E).
Output: A vertex cover of G of size at most 2 opt.
S ← ∅ ;

APP-VC(G):
while G is not empty do

pick any edge e = (u, v) in G ;

S ← S ∪ {u, v} ;

delete u and v from G ;
end

As MIN VERTEX COVER is NP-complete it is unlikely to solve it exactly in

polynomial time, but we might ask for a better ratio r < 2. We could be even more

optimistic and ask for a family of approximation algorithms achieving any ratio strictly

greater than 1. This is called a polynomial-time approximation scheme (PTAS for short).

In fact, a PTAS for MIN VERTEX COVER is ruled out by a gap-introducing reduction

showing that finding a 1.36-approximation is already NP-complete [50]. A gap-

introducing reduction is a reduction ρ from a decision problem ΠA to a minimization

(respectively, maximization) problem ΠB such that:

• If I ∈ L(ΠA) then opt(ρ(I)) 6 a (respectively, opt(ρ(I)) > a).

• If I /∈ L(ΠA) then opt(ρ(I)) > ra (respectively, opt(ρ(I)) < ra).

An approximation algorithm with ratio r or better would solve ΠA to the optimum, and

r is called the gap of the reduction. Thus, if ΠA is NP-hard and ρ can be computed in

polynomial time, then ΠB cannot be r-approximated unless P = NP.

13
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We give an example of how to obtain an inapproximability result with a gap-

introducing reduction. We recall a simple gap-introducing reduction from SAT to

MIN INDEPENDENT DOMINATING SET devised in [82] and then in [75]. Given an

instance φ of SAT, each variable xi in the instance of SAT is encoded by two vertices vi
(representing literal xi) and vi (representing literal ¬xi) linked by an edge. Each

clause Cj is encoded by an independent set of size rn, where n is the number of

variables in φ. If literal xi (resp., ¬xi) appears in clause Cj , then vertex vi, (resp. vi),

is linked to all the rn vertices encoding clause Cj . If φ is satisfiable, then there exists

an independent dominating set of size n which consists of the vertices representing

satisfied literals. If φ is not satisfiable, then any independent dominating set contains

more than the rn vertices representing a clause. Thus, the reduction builds a gap r and

therefore MIN INDEPENDENT DOMINATING SET is not in APX. We may even show

that MIN INDEPENDENT DOMINATING SET is not n1−ε-approximable, for any ε > 0,

assuming P 6= NP.

Now, we want to define the notion of gap for a problem itself. A promise problem

is a decision problem where it is guaranteed that the instances either come from LYES

a subset of YES-instances or from LNO a subset of NO-instances. Most combinatorial

optimization problems can be expressed as a max constraint satisfaction problem (max

CSP for short). In max CSP problems, one wants to find an assignment of the variables

in a specific domain, that satisfies the greatest number of constraints. The constraints

are relations over the variables. For instance, MAX SAT is a max CSP problem, where

the domain is {⊥,⊤} and the constraints are the clauses. For 0 6 s < c 6 1, the

gap problem (c, s)-GAP Π is a promise max CSP problem such that the instances

either come from LYES and in that case, at least cm constraints are satisfiable, or from

LNO and in that case, none assignment satisfies more that sm constraints, where m

is the total number of constraints. Assuming P 6= NP, showing that (c, s)-GAP Π is

NP-hard, proves that Π cannot be s
c -approximated. Gap-preserving reductions and

gap-amplifying reductions are two other kinds of reductions in the inapproximability

toolkit. The former preserves a function of the gap while the latter increases the gap.

Coming back to MIN VERTEX COVER, it is quite possible that the 2-approximation

does not admit any significant improvement. Indeed, if the Unique Games Conjecture

(conjecture, whose odds of being true is substantial) holds then, for every ε > 0, there

is no 2− ε-approximation for MIN VERTEX COVER [88].

In the eighties, the analysis of Interactive Proof systems lead to a new characteriza-

tion of the class NP by the PCP (Probabilistically Checkable Proofs) Theorem [7]. This
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1.3. Computational Complexity Classes

In the UNIQUE LABEL COVER problem, we are given a graph G = (V,E),
an integer k, and a function π : E → Sk where Sk is the set of permutations

on k elements. A k-coloring of G is a mapping c : V → {1, . . . , k}. An edge

{u, v} ∈ E is satisfied if π(c(u)) = c(v). The goal is to find a k-coloring

which satisfies the greatest number of edges. The Unique Games Conjecture

(UGC) states that there exist constants c < 1, s > 0 and integer k such that

(c, s)-GAP UNIQUE LABEL COVER is NP-hard.

Unlike P 6= NP, there is no general consensus in the scientific community

that UGC is true. Nevertheless, this conjecture has inspired many interesting

works and the interested reader is referred to the survey of Subash Khot [89].

theorem opened the door to inapproximability results and most of the approximation

algorithms of the seminal paper of David Johnson [84], as the greedy algorithm for

MIN SET COVER achieving ratio log(n) and the observation that nothing seems to

work for MAX CLIQUE, prove to be almost optimal. Irit Dinur gives a simpler and only

combinatorial proof of the PCP Theorem whose main ingredients are gap-amplifying

reductions and expanders [49]. At this point, we do not wish to bother the reader with

PCPs and expanders. Those definitions are deferred to Chapter 3.

The reader can learn a lot more about approximation algorithms and inapprox-

imability in a book edited by Dorit Hochbaum [78] and a book of Vijay Vazirani

[125].

1.3.2 Parameterized Complexity

The field of parameterized complexity has been invented in the early nineties by Rodney

Downey and Michael Fellows. All the definitions introduced in this section can also

be found in their book [51]. The seminal idea of parameterized complexity is that, in

practice, instances of (NP-)hard problems are not totally random. It is quite possible

that structural parameters such as degree, treewidth, diameter of a graph, or the size of a

solution, are small integers for a large class of instances for which we have to solve the

problem. For those instances, if we are able to confine the superpolynomial blow-up to

such a parameter and not anymore to the size of the input, then our algorithm performs

in polynomial time.
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FPT is the class of problems that can be solved in time O(f(k)nc), where k is the

value of the parameter and n is the size of the input. From hereon, time O(f(k)nc)

is called FPT time. FPT stands for fixed parameter tractable and corresponds to

the easiest parameterized problems. Often, we take as parameter k the size of the

solution, which is called the natural parameter. It is the implicit parameter. When

not precised otherwise, the parameterized complexity is with respect to the natural

parameter. Algorithm 5 shows that k-VERTEX COVER is in FPT.

Algorithm 5: A simple branching algorithm to solve k-VERTEX COVER

Input: A graph G = (V,E) and an integer k.

Output: A vertex cover of G of size k, if existing.

S ← ∅ ;

VC(G, k, S):
if G is empty then

return S ;

else

if k = 0 then
return Void ;

else
pick any edge e = (u, v) in G ;

run VC(G[V (G) \ {u}], k − 1, S ∪ {u}) ;

run VC(G[V (G) \ {v}], k − 1, S ∪ {v}) ;

end

end

The fact that a vertex cover contains at least one of the endpoint of every edge of

the graph ensures the soundness of VC. The running time of VC is O∗(2k) where O∗(·)
suppresses the polynomial factors.

If I is an instance of a parameterized problem, we denote by κ(I) the value of

the parameter for the particular instance I . An FPT reduction from a parameterized

problem ΠA to a parameterized problem ΠB is a reduction ρ from ΠA to ΠB , two

computable functions f and g, and a constant c, such that for every instance I of ΠA,

κ(ρ(I)) 6 f(κ(I)), ρ can be computed in FPT time O(g(κ(I))|I|c), and in particular,

|ρ(I)| 6 g(κ(I))|I|c. This reduction is defined so that if ΠB is in FPT then ΠA is in

FPT, too. Indeed, if we have an FPT algorithm solving ΠB in time O(h(κ(I))|I|c′),
we can then solve ΠA in FPT time O(h(f(κ(I)))(g(κ(I)))c|I|cc′). As for polynomial
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Sometimes, the easiest ideas are overlooked. In the paper [35], the authors

propose a linear time algorithm to find vertex covers of size up to 5. In fact, the

simple branching procedure of Algorithm 5 applied to graphs with bounded

vertex cover has a constant time complexity. During the eighties, this algorithm

has been discovered [105], forgotten [62], and rediscovered [61]. Currently,

the best known algorithm works in time O∗(1.274k) [39]

time reduction, we more often use FPT reductions to prove that ΠB cannot be solved

in FPT time (assuming that ΠA cannot be solved in FPT time).

A logical circuit is a directed acyclic graph6 whose vertices called gates partition

into input gates, negation gates, OR gates, AND gates, large gates, and one output gate.

The negation gate has in-degree 1 and out-degree 1. It outputs the negation of its input.

The OR gate (respectively, AND gate) has in-degree 2 and out-degree 1, and outputs

the logical or (respectively, logical and) of its two inputs. The large gates are special

OR gates or AND gates of arbitrary in-degree. The input gates have in-degree 0, and

the output gate has out-degree 0. An assignment of the input gates to 0 or 1, can be

seen as a boolean vector. The boolean vector satisfies the circuit if it outputs 1. A

boolean vector is of weight k if the number of 1s is equal to k. The height of a circuit

is the maximum length of a directed path from an input gate to the output gate. The

weft of a circuit is the maximum number of large gates along any directed path in the

logical circuit.

W[P] is the class of problems that can be FPT reduced to the problem of finding a

satisfying boolean vector of weight k in circuits of constant height. For each positive

integer t, W[t] is defined similarly to W[P] but is restricted to circuits of weft t. Thus,

W[1] ⊆W[2] ⊆ . . . ⊆W[P]. A problem Π is hard for one of those classes if all the

problems of that class FPT reduce to Π, and is complete if it also belongs to the class.

Again, the class of complete problems in the class X is denoted by X-c.

The classes W[1] and W[2] have a significant interest in practice since they classify

many standard problems. For instance, k-INDEPENDENT SET and k-CLIQUE are W[1]-

complete, while k-DOMINATING SET is W[2]-complete. Marco Cesati gives a charac-

terization with Turing Machines of W[1], W[2], and W[P] [36]. This is particularly use-

6Again, the reader will find in Section 1.4 the basic definitions concerning graphs.

17



1. INTRODUCTION

ful to show the membership in one of these three classes. Given a Turing Machine M ,

an input word w, and an integer k, the problem of deciding if there is an accepting run

of M on w which takes at most k steps is W[1]-complete for single-tape machines, and

W[2]-complete for multi-tape machines. The former problem is called SHORT NONDE-

TERMINISTIC TURING MACHINE COMPUTATION and the latter SHORT MULTI-TAPE

NONDETERMINISTIC TURING MACHINE COMPUTATION. Given a Turing Machine

M , an input word w, an integer k, and an integer n encoded in unary, the prob-

lem BOUNDED NONDETERMINISM TURING MACHINE COMPUTATION of deciding

if there is an accepting run of M on w which takes at most n steps and at most k

non-deterministic steps is W[P]-complete.

Let us use this characterization to show that k-INDEPENDENT SET is in W[1]. We

need to construct an FPT reduction from k-INDEPENDENT SET to SHORT NONDETER-

MINISTIC TURING MACHINE COMPUTATION. An important point is that the size of

the alphabet and the number of states of the Turing Machine can depend polynomially

in the number of vertices n of the instance of k-INDEPENDENT SET. So, let say that

there is one symbol in the alphabet for each vertex in the graph. If k is the parameter of

the starting problem, let k + α
(
k
2

)
be the parameter of SHORT NONDETERMINISTIC

TURING MACHINE COMPUTATION, where α is a constant to be defined. Now, we

informally describe the behavior of the Turing Machine. It guesses the k right vertices

in the independent set (recall that it takes only k steps since the alphabet is of size n).

For each of the
(
k
2

)
pairs of vertices, the Turing Machine checks in constant time α that

there is no edge linking the two vertices.

This reduction is quite general and shows that finding a special (induced) subgraph

of size k is in W[1]. The only part which differs is checking in time f(k) that you have

the desired subgraph. Thus, k-INDEPENDENT SET, k-CLIQUE but also k-DENSEST,

k-SPARSEST are in W[1].

XP is the class of problems that can be solved in time O(nf(k)), where k is the

value of the parameter, f is any computable function, and n is the size of the input.

k-INDEPENDENT SET is in XP. Indeed, one can enumerate in time nk the subsets of

size k of a graph, and check for each subset if it is an independent set. A more general

observation to put k-INDEPENDENT SET in the class XP is that W[P] ⊆ XP and we

saw that k-INDEPENDENT SET is in W[1]. On the contrary, k-COLORING is not in

XP since 3-COLORING is already NP-complete.
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FPT

W[1]

W[2]

W[P]
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W[1]-c

W[2]-c

W[P]-c

Figure 1.5: The parameterized complexity classes and their inclusions.

1.4 Graphs and Formulas

Graphs and formulas are simple and fundamental objects rich enough to formalize

nicely most of the problems in algorithmic.

1.4.1 Graphs

The definitions in this section constitute the very basics of graph theory and can be

found, for instance, in the book of Claude Berge [10]. An undirected graph G is a

pair (V,E) where V is a finite set of elements usually called vertices, and E ⊆
(
V
2

)

is a set of edges. A directed graph or digraph is a pair (V,A) where V is a finite set

of vertices, and E ⊆ V 2 is a set of arcs. A (directed) path is a sequence of vertices

u1, u2, . . . , ur such that for each i ∈ [1, r − 1], {ui, ui+1} is an edge ((ui, ui+1) is an

arc). A cycle is a path such that u1 = ur. A directed acyclic graph (DAG) is a directed

graph with no cycle. As we will deal almost exclusively with undirected graphs, a

graph will implicitly be undirected.

In an undirected graph (V,E), vertices u and v are neighbors if {u, v} ∈ E.

We also say that v is a neighbor of v. In a directed graph (V,A), v is a neighbor u if

(u, v) ∈ A. The set of neighbors of v in a(n un)directed graphG is denoted byN(v), or

NG(v) in case of ambiguity, and is called the neighborhood of v. N [v] = N(v) ∪ {v}
is the closed neighborhood of v. For any subset of vertices U ⊆ V , N(U) is defined

as
⋃

u∈U N [u] and N(U) = N [U ] \ U .

In what follows, we only deal with undirected graphs. A subgraph of G = (V,E)
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v

(a) An undirected graph. Vertices are

represented by circles, and edges by line

segments. The neighbors of vertex v are

filled.

w

(b) A directed graph. An arc (s, t) is

represented by an arrow from s to t. The

neighbors of vertex w are filled.

Figure 1.6: The neighborhood in graphs.

is a graph G′ = (V ′, E′) such that V ′ ⊆ V and E′ ⊆ E. An induced subgraph of

G = (V,E) is a subgraph G′ = (V ′, E′) of G such that V ′ ⊆ V and each edge in E

having both endpoints in V ′, is also in E′. The subgraph induced by U denoted by

G[U ] is the induced subgraph of G of the form (U,E′). The complementary G of a

graph G = (V,E) is defined by G = (V,E) where E = {{u, v} | {u, v} /∈ E}. We

denote by V (G) the vertex set of the graph G and E(G) its edge set. An independent

set S ⊆ V (G) is a subset of vertices such that ∀u, v ∈ S, {u, v} /∈ E(G). A clique

S ⊆ V (G) is a subset of vertices such that ∀u, v ∈ S, {u, v} ∈ E(G). A dominating

set S ⊆ V (G) is a subset of vertices such that ∀u ∈ V (G) \ S, there is a vertex v

satisfying {u, v} ∈ E(G). A vertex cover S ⊆ V (G) is a subset of vertices such that

∀e = {u, v} ∈ E(G), u ∈ S ∨ v ∈ S. A forest is an acyclic graph, that is a graph with

no cycle, and a tree is a connected forest.

1.4.2 Formulas

A boolean variable is a variable that can get value True or False. A boolean formula

is either a boolean variable, either the negation (¬) of a boolean formula, either

the conjunction (∧) of two boolean formulas, or the disjunction (∨) of two boolean

formulas. The semantics of ¬, ∨ and ∧ is as expected. As ∧ and ∨ are associative,

we can extend these two operators to any arity. A literal is a variable or the negation

of a variable, a clause is a disjunction of literals, and a conjunctive normal form
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(CNF for short) formula, is a boolean formula which is the conjunction of clauses.

Usually, the clauses of the conjunction are separated by commas. ψ = x1 ∨ ¬x2 ∨
x4 ∨ x5, x2 ∨ ¬x3 ∨ x5, x3 ∨ ¬x4 ∨ ¬x5 is an example of a CNF formula. An

assignment is a function mapping each variable to True or to False. A truth assignment

is an assignment which makes the formula to be valued at True. The formula is said

satisfiable if there is a truth assignment. SAT is the problem of deciding if a CNF

formula is satisfiable. In Section 1.3, we mentioned that this problem is NP-complete.

Given a CNF formula φ and a variable x appearing in φ, φ[x ← ⊤] (respectively,

φ[x← ⊥]) is the CNF formula obtained by setting x to True (respectively, to False)

in φ and simplifying. The simplification consists of removing the clauses where the

literal that contains x is satisfied, and removing the unsatisfied literals containing x (if

it has the effect of emptying a clause, this clause is replaced by False). For instance,

ψ[x2 ← ⊥] = ¬x3 ∨ x5, x3 ∨ ¬x4 ∨ ¬x5
A quantified boolean formula (QBF formula for short) is any formula of the form

Qx1Qx2 . . . Qxrφ where φ is a CNF formula, ∀i ∈ [1, r], xi appears in φ, Q ∈ {∃, ∀},
and the semantics of the quantifier Q is as expected: ∃xφ is logically equivalent to

φ[x ← ⊥] ∨ φ[x ← ⊤] and ∀xφ is logically equivalent to φ[x ← ⊥] ∧ φ[x ← ⊤].
QBF is the problem of deciding if a QBF formula is satisfiable. In Section 1.3, we

mentioned that this problem is PSPACE-complete. It remains PSPACE-complete if

we impose that the existential quantifiers ∃ and the universal quantifiers are alternated,

and that all the variables in the formula are quantified. In that case, the problem is to

decide if the formula is equivalent to True or to False.

1.5 Motivation and Organization

The next chapter is based on the following two papers and excerpt of a manuscript:

• [15] Édouard Bonnet and Vangelis Th. Paschos. Parameterized (in)approximability

of subset problems. Oper. Res. Lett., 42(3):222–225, 2014

• [17] Édouard Bonnet, Bruno Escoffier, Vangelis Th. Paschos, and Émeric Tour-

niaire. Multi-parameter complexity analysis for constrained size graph problems:

Using greediness for parameterization. In IPEC, pages 66–77, 2013

• [19] Édouard Bonnet, Vangelis Th. Paschos, and Florian Sikora. Multiparam-

eterizations for max k-set cover and related satisfiability problems. CoRR,

abs/1309.4718, 2013
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1. INTRODUCTION

This chapter entirely revolves around a simple idea occasionally called necessary

sets that knowing that in a local (bounded) area of elements, there exists an optimal so-

lution taking at least one of this element, is a precious help, and especially so to design

FPT algorithms. In Section 2.1, we define subset problems which are a bit more restric-

tive that what is sometimes informally called subset problems. We extend the notion of

safe approximation [73] to the more general intersective approximation. In Section 2.2,

we show that subset problems are unlikely to admit FPT intersective approximation.

In Section 2.3, we present a technique that we call greediness-for-parameterization.

In Section 2.4, we introduce a special subclass of size-constrained graph problems,

the local graph partitioning problems. In Subsection 2.4.1, we solve the degrading

local partitioning graph problem in time O∗((∆ + 1)k), improving on the random

separation technique, and in Subsection 2.4.2, we solve the local partitioning graph

problem, in general, in time O∗((2k
√
∆)2k), improving on the random separation

technique whenever k = 2o(∆). In Section 2.5, we show some additional properties

for two specific local partitioning graph problems, namely MAX (k, n− k)-CUT and

MIN (k, n− k)-CUT, for both exact and approximate computations. In Section 2.6,

we extend greediness-for-parameterization to size-constrained set and satisfiability

problems. We mainly show that MAX SAT-k is in FPT when parameterized by the

number of satisfied clauses. In Section 2.7, we show that the bipartiteness of a graph

separates the parameterized complexity the minimization and the maximization ver-

sions of some main size-constrained problems. More precisely, in Subsection 2.7.1, we

show that MAX k-VERTEX COVER and MAX (k, n− k)-CUT restricted to bipartite

graphs are in FPT, and in Subsection 2.7.2, we show that MIN k-VERTEX COVER and

MIN (k, n− k)-CUT restricted to bipartite graphs remain W[1]-complete. Whereas,

those four problems are W[1]-complete in general graphs. In Section 2.8, we conclude

Chapter 2 by relating recent advances on the topic and we give some open problems.

The third chapter is based on the following paper and manuscript:

• [16] Édouard Bonnet, Bruno Escoffier, Eun Jung Kim, and Vangelis Th. Paschos.

On subexponential and fpt-time inapproximability. In IPEC, pages 54–65, 2013

• [14] Édouard Bonnet and Vangelis Th. Paschos. Sparsification and subexponen-

tial approximation. CoRR, abs/1402.2843, 2014

As we have mentioned in the previous sections of this introduction, there are some

bad news for approximation (inapproximability) and for parameterized complexity
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1.5. Motivation and Organization

(W-hardness).

In this chapter, we try and combine those bad results, and show some inapproxima-

bility results in FPT time and in subexponential time.

In Section 3.1, we present a conjecture called LPC (for Linear PCP Conjecture),

which is more an open question than a widely believed conjecture (as ETH is), and a

novel notion: problems satisfying APETH, a generalization of ETH to constant-ratio

approximations. Then, we overview the main results of the two next sections. In

Section 3.2, we show some consequences of LPC combined with ETH to inapprox-

imability in superpolynomial time. In Section 3.3, we formalize the notion of an

approximation preserving sparsifier and show that many optimization problems are

equivalent with respect to APETH (that is, if any of the problem satisfies APETH,

then they all do). We finally link APETH to a credible hypothesis of paramaterized

inapproximability.

In Section 3.4, we state a recent and almost tight inapproximability result in

subexponential time for MAX INDEPENDENT SET [37]. Our objective is then to adapt

the sparsifier of Section 3.3 to extend this inapproximability to other problems.

We construct such a sparsifier in Section 3.5. In Section 3.6, we present yet another

sparsifier which runs in polynomial time. In Section 3.7, we obtain some results based

on the sparsifiers of the two previous sections, the result [37], and the inapproximability

in subexponential time of MIN VERTEX COVER of Proposition 10. We make further

remarks concerning sparsifiers and sparsification in Section 3.8.

The fourth chapter is based on the following papers:

• [20] Édouard Bonnet, Florian Jamain, and Abdallah Saffidine. On the complexity

of trick-taking card games. In Francesca Rossi, editor, 23rd International Joint

Conference on Artificial Intelligence (IJCAI), Beijing, China, August 2013.

AAAI Press

• [18] Édouard Bonnet, Florian Jamain, and Abdallah Saffidine. Havannah and

TwixT are PSPACE-complete. In Computers and Games, pages 175–186, 2013

Whenever the reader likes to refresh his/her mind from reading the previous two

chapters, he may find some results about the complexity of games in this last, and

hopefully playful and interesting, chapter. There, we mainly show that the perfect

information card play in Bridge and the board game Havannah are PSPACE-complete

to play optimally.
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1. INTRODUCTION

We briefly motivate why we consider those two games. First, Bridge is a popular

game played by 200 million people worldwide. Second, the purity of its card play7

makes it an interesting case study for other card games. There are some programs that

play Bridge quite well and some established polynomial fragments [126, 127], but no

hardness result for the general problem was known. Besides, the complexity of the

card play in Bridge was posed as a significant open problem in the thesis of Robert

Hearn dedicated to games and puzzles [76]. Havannah is more confidential a game

but there have been several papers on this game [122, 97, 120]. Yet its computational

complexity was not known, while the complexity of some games of roughly the same

notoriety, like Amazons, was [69].

In Section 4.1, we formalize the card play in Bridge as a decision problem and

introduce some notation and definitions on trick taking card games. In Section 4.2, we

show that when the number of hands is unbounded, the problem is PSPACE-complete,

even if the number of cards per suit is 2. In Section 4.3, we show that, even if the

number of hands is bounded (by 6), the problem remains PSPACE-complete. In

Section 4.4, we introduce connection games. In Section 4.5, we show that HAVANNAH

is PSPACE-complete and in Section 4.6 we show that TWIXT is PSPACE-complete.

In Subsection 4.7.1, we give some perspectives to the analysis trick-taking card games

and in Subsection , we do the same for connection games.

7There is basically just one rule: following a suit.
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2 FPT Algorithms and Approximation

2.1 Subset Problems

In Section 2.1 and Section 2.2, we discuss approximability in FPT time for a

large class of subset problems where a feasible solution S is a subset of the

input data. The class handled encompasses many well-known graph, set, and

satisfiability problems such as MIN VERTEX COVER, MIN SET COVER, MAX

INDEPENDENT SET. We introduce the notion of intersective approximability

that generalizes the one of safe approximability introduced in [73] and we

show parameterized inapproximability results for many subset problems.

Parameterized approximation aims at bringing together two very active fields of

theoretical computer science, polynomial approximation and parameterized complexity.

We say that a minimization (respectively maximization) problem Π, together with a

parameter k, is parameterized r-approximable, if there exists an FPT time algorithm

which computes a solution of size at most (respectively at least) rk whenever the

input instance has a solution of size at most (respectively at least) k, otherwise, it

outputs an arbitrary solution. This line of research was initiated by three independent

works [53, 32, 40]. Daniel Marx wrote an interesting overview on that topic [102].

Here, we define subset problems as follows:

Definition 3. A problem Π is called a subset problem, if the following conditions hold:
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2. FPT ALGORITHMS AND APPROXIMATION

• feasible solutions for Π are subsets of elements encoding its instances that verify

some specific property;

• Π is decomposable, that is, for any instance I and element e of the encoding

of I , there exists an instance I(e) computable in polynomial time and satisfying

|I(e)| 6 |I| such that if there is a solution S for I containing e, then S \ {e} is a

solution for I(e).

The existence of one instance encoding for Π satisfying Definition 3 is sufficient

for Π to be a subset problem; thus, Definition 3 does not depend on the encoding. In

what follows, we give several examples of graph, set, and satisfiability subset problems

in order to clarify the notion of decomposability of the second item in Definition 3.

We recall (see Section 1.4) the standard notation on graphs: G[S] is the subgraph

of G induced by S, N(v) is the set of neighbors of v, N [v] = N(v) ∪ {v}, V usually

denotes the set of vertices of a graph, E the set of its edges, n = |V |, and m = |E|.

• Let a graph be encoded by the set of its vertices and the set of its edges.

– MAX INDEPENDENT SET is decomposable withG(v) = G[V \N [v]] since

any independent set inG containing v, is an independent set inG[V \N [v]]

combined with the vertex v.

– MAX CLIQUE is decomposable with G(v) = G[N(v)]. Indeed, any clique

containing v is entirely included in N(v).

– MIN VERTEX COVER is decomposable with G(v) = G[V \ {v}].

– A generalized dominating set is a subset of vertices which dominates an im-

posed subset of vertices V ′ ⊆ V . Given a subset V ′ ⊆ V , GENERALIZED

MIN DOMINATING SET aims at finding a generalized dominating set of

minimum size. MIN DOMINATING SET is a special case of GENERALIZED

MIN DOMINATING SET with V ′ = V . GENERALIZED MIN DOMINATING

SET is decomposable with (G, V ′)(v) = (G[V \ {v}], V ′ \N [v]).

– A feedback vertex set is a vertex-subset S such that G[V \ S] is a forest.

MIN FEEDBACK VERTEX SET is decomposable with G(v) = G[V \ {v}].
– In GENERALIZED k-DENSEST, given a graph G and a subset V ′ of V ,

one looks for a superset of V ′ with k vertices inducing a subgraph of G
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2.2. Intersective Approximability of Subset Problems

with a maximum number of edges. k-DENSEST is a special case with

V ′ = ∅. GENERALIZED k-DENSEST is decomposable with (G, V ′)(v) =

(G, V ′ ∪ {v}). The minimization version GENERALIZED k-SPARSEST is

also a subset problem.

– In GENERALIZED MAX (k, n − k)-CUT, given a graph G and a set V ′

of vertices, one looks for a superset S of V ′ with k vertices with a max-

imum number of edges between S and V \ S. It is decomposable with

(G, V ′)(v) = (G, V ′∪{v}), so is its minimization version GENERALIZED

MIN (k, n− k)-CUT.

• Let a set system be encoded by a ground set X and a collection S of its subsets.

– A set cover is subcollection of S that covers C. MIN SET COVER is

decomposable with (S, X)(S) = ((S \ {S})|X\S , X \ S), where A|B is

the projection to B of all the subsets in A.

– In MAX k-SET COVER, one looks for a set of k subsets that covers a

maximum number of elements. It is decomposable in the same way as

MIN SET COVER.

• Let a CNF formula φ be encoded by its variables X and its clauses C.

– SAT asks for determining a set of variables (if any) whose assignment

to true satisfies the formula (the other variables all being assigned to false).

It is decomposable with φ(x) = C[x← ⊤] (i.e., the set of clauses satisfied

when setting variable x to true). Analogous formulations make that MAX

SAT or MIN SAT problems are subset problems.

– For the same reason, SAT-k, asking for determining a truth assignment

setting at most k variables to true, and its optimization counterpart MAX

SAT-k are subset problems.

In what follows, we will focus mainly on optimization subset problems.

2.2 Intersective Approximability of Subset Problems

In this section, we study parameterized approximability of subset problems. For that

purpose, we introduce a new approximability framework called intersective approxi-

mation. This framework is quite natural and really fits the class of subset problems.
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2. FPT ALGORITHMS AND APPROXIMATION

It is important to note that intersectivity generalizes the model of safe approxima-

tion, introduced in a paper by Guo et al [73]. An approximation is said to be safe, if

it produces solutions containing an optimal solution. The safe approximation can be

used to get strong inapproximability results. For instance, it is shown in [73] that a safe

c log n-approximation, for any c > 0, for GENERALIZED MIN DOMINATING SET,

can be turned into an exact FPT algorithm, contradicting FPT 6= W[2]. However, the

safe approximation only captures minimization problems and is very restrictive. The

intersective approximation just requires that an optimal solution intersects with the

approximate solution, and therefore, also fits the maximization problems.

Definition 4. A ρ-approximation algorithm A is said to be intersective for a problem Π

if, when running on any instance I of Π, it computes a ρ-approximate solution A(I)

and there exists an optimal solution S of I such that A(I) ∩ S 6= ∅.

In what follows, we prove that intersective approximation in FPT time is very

unlikely for W[·]-hard subset problems, since such an approximation can be trans-

formed into an exact FPT algorithm. However, as we will see, there is an important

difference between minimization and maximization problems since, for the former,

this transformation can be done only if intersective FPT approximation ratio is under a

certain approximation level, while, for the latter, such transformation is independent

on the level of the ratio.

We first prove the following more general theorem where, given an instance I of a

subset problem Π, we denote by k the optimal value of I .

Theorem 1. Let Π be an optimization subset problem. Then:

• if Π is a minimization problem and admits an intersective r-approximation

computed in time O(f(n, k)), for some r > 1 and some positive increasing

function f , then Π can be optimally solved in time O((rk)kf(n, k));

• if Π is a maximization problem, any intersective approximation computed in

time O(f(n, k)), for some positive increasing function f can be transformed

into an exact algorithm running in time O(kkf(n, k)).

Proof. Consider some minimization problem Π, an intersective FPT approximation

algorithm A for Π achieving approximation ratio r, and let I be any instance of Π.

Compute an intersective approximation S = A(I) = {e1, . . . , e|S|} for I . If |S| > rk,

then answer that I is a NO-instance.

28



2.2. Intersective Approximability of Subset Problems

Otherwise, branch on the at most rk instances I(e1), . . . , I(e|S|) (since Π is de-

composable, all these instances are well-defined). For all these instances, compute an

r-approximation and keep the recursion on. When k elements have been taken in the

solution, stop the recursion.

We claim that the best solution found at a leaf of the branching tree is an opti-

mal solution. Indeed, starting from the root one can, by definition of intersective

approximation, move to a child which has taken an element e contained in an optimal

solution.

The branching tree has depth k since, at each step, one element is added in the

solution, and arity bounded by rk. Hence, the number of its nodes is bounded by 2(rk)k.

On each node, some O(f(n, k)) computation is done. So, the overall complexity

is O((rk)kf(n, k)).

We now handle maximization problems. Consider some maximization problem Π,

an intersective approximation algorithm A for Π (achieving any approximation ratio)

and let I be any instance of Π. Compute an intersective approximation S = A(I) for I .

If |S| > k, answer YES and output this solution. Otherwise |S| < k, and the exact

branching algorithm of the previous paragraph runs in time O(kkf(n, k)). If one of

the leaves of the branching tree contains a feasible solution, answer YES and output

this solution. Otherwise, anwser NO.

Theorem 1 has the following important corollary.

Theorem 2. Let Π be a subset optimization problem. Then:

• if Π is a minimization problem and admits an FPT intersective (g(k) log n)-

approximation for some function g, then Π admits an exact FPT algorithm;

• if Π is a maximization problem and admits an FPT intersective approximation,

then Π admits an exact FPT algorithm.

Proof. For minimization problems just observe that, when r = g(k) log n, the number

of nodes in the branching tree is bounded by 2(kg(k))k(log n)k and, on each node,

some FPT computation is done, bounded by, say, f(k)p(n). So, the overall complexity

is 2(kg(k))kf(k)(log n)kp(n), which is FPT, considering that (log n)k is FPT with

respect to k [119].

For maximization problems, the proof comes directly from Theorem 1 and it can

be easily seen that no specific approximation guarantee is required for them.
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Remark 1. The result of Theorem 2 for the case of minimization problems works, in

fact, even if we consider approximation ratios O(g(k)(log n)h(k)) for any (increasing)

functions h and g. Indeed, O((g(k)(log n)h(k)k)kf(k)) (where f is the complexity of

the FPT intersective algorithm) isO(F (k)p(n)), for some function F and polynomial p

[119].

Based upon Theorem 2, the following holds for the intersective FPT approximability

of W[·]-hard problems.

Corollary 1. Unless the W-hierarchy collapses at some level:

• no FPT intersective (g(k) log n)-approximation exists for W[·]-hard minimiza-

tion problems, for any positive increasing function g;

• no FPT intersective r-approximation (for any r) exists for W[·]-hard maximiza-

tion problems.

In particular:

• unless FPT = W[2], no FPT intersective (g(k) log n)-approximation exists for

either MIN SET COVER, or GENERALIZED MIN DOMINATING SET, for any

positive increasing function g;

• unless FPT = W[1], no FPT intersective approximation exists either for MAX

INDEPENDENT SET, or for MAX CLIQUE.

Note that the negative result for MIN SET COVER above, transfers also to MIN

DOMINATING SET through the classical reduction from MIN SET COVER to MIN

DOMINATING SET [110] which preserves both the approximation and the parameter.

The fixed-cardinality (or size-constrained or cardinality-constrained) graph prob-

lems are also subset problems. Such problems are defined on some graph G(V,E) and

integer k and feasible solutions are subsets V ′ ⊆ V of size exactly k.

Notable representatives of such problems are MAX k-VERTEX COVER, GEN-

ERALIZED k-DENSEST and its minimization version GENERALIZED k-SPARSEST,

GENERALIZED MAX (k, n− k)-CUT and its minimization version GENERALIZED

MIN (k, n − k)-CUT, and MAX k-SET COVER. An intersective approximation for

fixed-cardinality problems implies that k′ elements from the solution, 0 < k′ 6 k, are

common to both the optimum and the approximate solution. Then, Theorem 2 derives

the following.
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Corollary 2. Unless W[1] = FPT, no intersective FPT approximation algorithm can

exist for any of the problems MAX k-VERTEX COVER, GENERALIZED k-DENSEST,

GENERALIZED k-SPARSEST, GENERALIZED MAX (k, n− k)-CUT, GENERALIZED

MIN (k, n− k)-CUT, MAX k-SET COVER. Unless W[2] = FPT, no intersective FPT

approximation algorithm can exist for MAX k-SET COVER.

The intersective approximation allowed us to prove negative results on the

possibility of subset problems of being intersectively approximable. The

intersective approximation importantly relaxes and generalizes the safe ap-

proximation of [73] since:

• it reflects the realistic behavior of an approximation algorithm.

• it encompasses maximization problems.

Finally, the intersective approximability can be extended to several problems that

are not subset problems per se. We sketch such an extension to coloring problems.

A solution for a k-coloring can be seen as k sets S1, . . . , Sk where Si is the set of

vertices (or edges) receiving color i. A ρ-intersective approximation to a k-coloring

problem can be defined as an h-coloring S′
1, . . . , S

′
h such that there exists an optimal

solution S1, . . . , Sk with k > h/ρ and two integers i, j satisfying Si = S′
j . Under

this extended definition of intersective approximability, the following can be proved

similarly to Theorem 2.

Corollary 3. If a k-coloring problem Π has an FPT intersective (c log n)-approximation

(as extended just above) for some constant c > 0, then Π admits an exact FPT algo-

rithm.

2.3 Greediness-for-Parameterization

Here, we present a technique for obtaining parameterized results for local graph parti-

tioning problems defined in Section 2.4. This technique is suited to size-constrained
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problems, where the solution should be a subset of exactly k elements1. We describe

the general idea in the case of a graph. As usual, ∆ is the degree of the graph.

Perform a branching with respect to a vertex chosen upon some greedy crite-

rion. This criterion could consist of choosing some vertex v which optimizes

the number of edges added to the solution under construction. Without branch-

ing, such a greedy criterion is not optimal. However, if at each step, either

vertex v, or some of its neighbors (more precisely, a vertex at bounded distance

from v) are a good choice (they are in an optimal solution), then a branching

rule on neighbors of v leads to a branching tree whose size is bounded by a

function of k and ∆, and at least one leaf of which is an optimal solution.

In order to prove the soundness of our algorithms, we will hybridize the solutions

that we compute with a given optimal solution. Therefore, we require the following

vocabulary. A partial solution is a subset of a (complete) solution. A branching

algorithm is a recursive algorithm. Its execution on an instance I can be seen as

a tree, called branching tree. In this tree, each node is labeled with a subinstance

of I together with a partial solution, or more generally with some data maintained by

the algorithm. The root is labeled with I and a leaf is a subinstance that causes the

branching algorithm to stop. At a leaf, a complete solution is computed and returned.

When identifying a node v to its label (a subinstance), the children of a subinstance are

the subinstances which label the children of v in the branching tree. A node v of the

branching tree is in accordance with a solution S if its corresponding partial solution

is included in S. A node v of the branching tree deviates from a solution S if it is in

accordance with S but none of its children are in accordance with S.

2.4 Local Graph Partitioning Problems

In a local graph partitioning problem the input is a graph G = (V,E) and two

integers k and p. Feasible solutions are subsets V ′ ⊆ V of size exactly k. The

value of a solution is a linear combination of the sizes of edge subsets E(V ′) and

E(V ′, V ⊆ V ′), and the objective is to determine whether there exists a solution of

1Here, elements is meant in the most general sense.
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value at least (or, at most) p. MAX k-VERTEX COVER, k-DENSEST, k-SPARSEST,

MAX (k, n− k)-CUT and MIN (k, n− k)-CUT are local graph partitioning problems.

They constitute a subclass of problems known as fixed-cardinality (or size-constrained

or cardinality-constrained) problems. The parameterized complexity of those problems

have mainly been studied in [29, 52], with respect to parameter k, and have been shown

W[1]-hard.

In Section 2.5 we study the fixed-cardinality problems MAX and MIN (k, n− k)-
CUT, parameterized by p. We prove that the former is in FPT. The latter has been

proven in FPT soon after this work has been published [46]. In order to handle MAX

(k, n− k)-CUT we first show that when p 6 k or p 6 ∆, the problem can be solved in

polynomial time. So, the only non-trivial case occurs when p > k and p > ∆. That

case is handled by greediness-for-parameterization. Unfortunately, this method gives

the inclusion of MIN (k, n − k)-CUT in FPT only for some particular cases. In a

technical report [64], the following problem is considered: given a graph G and two

integers k, p, determine whether there exists a set V ′ ⊂ V of size at most k such that at

most p edges have exactly one endpoint in V ′. They prove that this problem is in FPT

with respect to p. Looking for a set of size at most k is really different from looking

for a set of size exactly k. For instance, when k = n/2, the former is MIN CUT which

is in P, while the latter is MIN BISECTION which is NP-hard.

In Section 2.5.3, we revisit the parameterization by k with the point of view of

approximation. We prove that, although W[1]-hard, MAX (k, n− k)-CUT has an FPT

approximation schema with respect to k and MIN (k, n− k)-CUT a randomized FPT

approximation schema. These results exhibit two problems which are W-hard with

respect to a given parameter but which become FPT for a good approximation (which

is not feasible in polynomial time). Another problem having a similar behavior is

another fixed-cardinality problem: MAX k-VERTEX COVER, where one has to find

the subset of k vertices covering the greatest number of edges [102]. The existence

of problems having this behavior with respect to the value of the solution is an open

question asked in [102]. A polynomial approximation of MIN (k, n − k)-CUT has

been studied in [60] where it is proven that, if k = O(log n), then the problem admits

a randomized polynomial time approximation schema, while, if k = Ω(log n), then it

admits an approximation ratio (1 + εk
logn ), for any ε > 0. The approximation of MAX

(k, n − k)-CUT has been studied in several papers and a ratio 1/2 is achieved in [1]

(slightly improved with a randomized algorithm in [59]), for all k.

First, we formally define the class of local graph partitioning problems.
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Definition 5. In a local graph partitioning problem, the input is a graph G = (V,E)

and two integers k and p. The goal is to find a subset V ′ ⊆ V of size exactly k such

that val(V ′) = α1|E(V ′)|+α2|E(V ′, V \ V ′)| 6 p for a minimization problem (> p

for a maximization problem) where α1, α2 ∈ R.

In the optimization versions, the threshold p is not given, and one just wants

to optimize (minimize or maximize) val(V ′). We observe that α1 = 1, α2 = 0

corresponds to k-DENSEST and k-SPARSEST, α1 = 0, α2 = 1 to MAX (k, n − k)-
CUT or MIN (k, n− k)-CUT, and α1 = α2 = 1 to MAX k-VERTEX COVER or MIN

k-VERTEX COVER.

As a local graph partitioning problem is entirely defined by α1, α2 and goal ∈
{min,max} we will unambiguously denote by L(goal , α1, α2) the corresponding

problem. In what follows, local problem is a shortened form of local graph partitioning

problem, k denotes the size of a solution and p its value. A partition into k and n− k
vertices is completely defined by a subset V ′ of size k. We will therefore consider

V ′ to be the solution. A partial solution T is a subset of V ′ with less than k vertices.

Similarly to the value of a solution, we define the value of a partial solution, and denote

it by val (T ).

Informally, we devise algorithms for local problems that add vertices to an initially

empty set T (for taken vertices) and stop when T is of size k. A vertex introduced in T

is irrevocably introduced there and will be not removed later.

Definition 6. Given a local graph partitioning problem L(goal , α1, α2), the contri-

bution of a vertex v within a partial solution T (such that v ∈ T ) is defined by

δ(v, T ) = 1
2α1|E({v}, T )|+ α2|E({v}, V \ T )|.

Note that the value of any (partial) solution T satisfies val (T ) = Σv∈T δ(v, T ).

One can also remark that δ(v, T ) = δ(v, T ∩N(v)). Function δ is called the contribu-

tion function or simply the contribution of the corresponding local problem.

Definition 7. Given a local graph partitioning problem L(goal , α1, α2), a contribution

function is said to be degrading if for every v, T and T ′ such that v ∈ T ⊆ T ′,

δ(v, T ) 6 δ(v, T ′) for goal = min (respectively, δ(v, T ) > δ(v, T ′) for goal =

max).

We observe that for a maximization problem, a contribution function is degrading

if and only if α2 > α1/2 (α2 6 α1/2 for a minimization problem). In particular,
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MAX k-VERTEX COVER, k-SPARSEST, and MAX (k, n− k)-CUT have a degrading

contribution function.

2.4.1 Degrading Local Graph Partitioning Problems

Theorem 3. Every local partitioning problem having a degrading contribution function

can be solved in O∗((∆ + 1)k).

Proof. With no loss of generality, we carry out the proof for a minimization local

problem L(min, α1, α2). We recall that T is a partial solution that will eventually be a

feasible solution. Consider the following algorithm DLGPP (T, k) branching upon the

closed neighborhood N [v] of a vertex v minimizing the greedy criterion val(T ∪ {v}):

Algorithm 6: A description of the algorithm DLGPP.

Input: A graph G = (V,E), an integer k, and a triple goal ∈ {min,max},
α1, α2 defining a degrading local graph partitioning problem

L(goal, α1, α2).
Output: A set of k vertices T ⊆ V optimizing val(T ).
set T = ∅;
DLGPP (T, k):
if k > 0 then

pick the vertex v ∈ V \ T minimizing val(T ∪ {v});
for each vertex w ∈ N [v] \ T do

run DLGPP (T ∪ {w},k − 1);
end

end

else
(k = 0) store the feasible solution T ;

end

return the best among the solutions stored;

The branching tree of DLGPP has depth k, since we add one vertex at each recursive

call, and arity at most maxv∈V |N [v]| = ∆ + 1, where N [v] denotes the closed

neighborhood of v. Thus, the algorithm runs in O∗((∆ + 1)k).

For the optimality proof, we use a classical hybridization technique between some

optimal solution and the one solution computed by DLGPP.
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Vn

T

v

z

N [v] \ T

Figure 2.1: Situation of the input graph at a deviating node of the branching tree. Vertex

v can replace z since N [v] \ T and Vn are disjoint, and the contribution of a vertex can

only decrease while the solution is being built.

Consider an optimal solution V ′
opt different from the solution V ′ computed by

DLGPP. A node s of the branching tree has two characteristics: the partial solution

T (s) at this node (denoted simply T if no ambiguity occurs) and the vertex chosen by

the greedy criterion v(s) (or simply v). We recall that a node s of the branching tree

is said in accordance with the optimal solution V ′
opt if T (s) ⊆ V ′

opt and that a node s

deviates from the optimal solution V ′
opt if none of its sons is in accordance with V ′

opt.

We start from the root of the branching tree and, while it is possible, we move

to a son in accordance with V ′
opt. At some point we reach a node s which deviates

from V ′
opt. We set T = T (s) and v = v(s). Intuitively, T corresponds to the shared

choices between the optimal solution and DLGPP made along the branch from the root

to the node s of the branching tree. Setting Vn = V ′
opt \ T , Vn does not intersect N [v],

otherwise s would not be deviating.

Choose any z ∈ Vn and consider the solution induced by the set Ve = V ′
opt ∪{v} \

{z}. As v has no neighbors in Vn, the contribution of v does not change when Vn \{z}
is added to T ∪ {v}. Moreover, as the problem is degrading, the contribution of z can

only worsen. So, val(Ve)− val(V ′
opt) 6 val(T ∪{v})− val(T ∪{z}) 6 0 (by choice

of v). In fact, by optimality of V ′
opt, val(Ve) = val(V ′

opt).

Thus, by repeating this argument at most k times, going down in the branching tree,

we conclude that the solution computed by DLGPP is as good as V ′
opt.

36



2.4. Local Graph Partitioning Problems

Corollary 4. MAX k-VERTEX COVER, k-SPARSEST, and MAX (k, n− k)-CUT can

be solved in O∗((∆ + 1)k).

Indeed, those local graph partitioning problems have a degrading contribution.

2.4.2 General Local Graph Partitioning Problems

Theorem 4. Every local partitioning problem can be solved in O∗((2k
√
∆)2k).

Proof. Once again, with no loss of generality, we prove the theorem in the case of

minimization, i.e., L(min, α1, α2). The proof of Theorem 4 involves an algorithm

fairly similar to DLGPP but instead of branching on a vertex chosen greedily and its

neighborhood, we will branch on sets of vertices inducing connected components (also

chosen greedily) and the neighborhood of those sets.

Let us first state the following straightforward lemma that bounds the number of

induced connected components and the running time to enumerate them.

Lemma 1. (Lemma 2 in [92]) One can enumerate the connected induced subgraphs

of size up to k in time O∗((4∆)k).

Consider now the following algorithm LGPP(T, k):

The branching tree of LGPP has size O(k2k). Computing the Si in each node

takes time O∗((4∆)k) according to Lemma 1. Thus, the overall running-time of the

algorithm is O∗((2k
√
∆)2k).

For the optimality of LGPP, we use the following lemma.

Lemma 2. Let A,B,X ,Y be pairwise disjoint sets of vertices such that val (A∪X) 6

val (B ∪ X), N [A] ∩ Y = ∅ and N [B] ∩ Y = ∅. Then, val (A ∪ X ∪ Y ) 6

val (B ∪X ∪ Y ).

Proof of Lemma 2. Simply observe that val (A ∪ X ∪ Y ) = val (Y ) + val (A ∪
X) − 2α2|E(X,Y )| + α1|E(X,Y )| 6 val (Y ) + val (B ∪ X) − 2α2|E(X,Y )| +
α1|E(X,Y )|= val (B ∪X ∪ Y ).

We now show that LGPP is sound, using again the hybridization of an optimal

solution V ′
opt and the one solution found by LGPP. We keep the same notation as in the

proof of the soundness of DLGPP. Node s is a node of the branching tree which deviates

from V ′
opt, all nodes in the branch between the root and s is in accordance with V ′

opt, the

shared choices constitute the set of vertices T = T (s) and, for each i, set Si = Si(s)
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Algorithm 7: A description of the algorithm LGPP.

Input: A graph G = (V,E), an integer k, and a triple goal ∈ {min,max},
α1, α2 defining any local graph partitioning problem L(goal, α1, α2).

Output: A set of k vertices T ⊆ V optimizing val(T ).
set T = ∅;
LGPP (T, k):
if k > 0 then

for i← 1 to k do
find Si ⊆ V \ T minimizing val(T ∪ Si), with Si inducing a connected

component of size i;
for each v ∈ Si do

run LGPP (T ∪ {v},k − 1);
end

end

else
(k = 0) store the feasible solution T ;

end

end

return the best among the solutions stored;

(analogously to v(s) in the previous proof, s is now linked to the subsets Si computed at

this node). Set Vn = V ′
opt \ T . Take a maximal connected (non empty) subset H of Vn.

Set S = S|H| and consider Ve = V ′
opt \H∪S = (T ∪Vn)\H∪S = T ∪S∪(Vn \H).

Note that, by hypothesis, N [S] ∩ Vn = ∅ since s is a deviating node. By the choice of

S at the node s, val (T ∪S) 6 val (T ∪H). So, val (Ve) = val (T ∪S ∪ (Vn \H)) =

val (T ∪H ∪ (Vn \H)) = val (T ∪ Vn) = val (V ′
opt) according to Lemma 2, since by

construction neither N [H] nor N [S], do intersect Vn \H . Iterating the argument at

most k times we get to a leaf of the branching tree of LGPP which yields a solution as

good as V ′
opt.

Corollary 5. MIN k-VERTEX COVER, k-DENSEST and MIN (k, n− k)-CUT can be

solved in O∗((2k
√
∆)2k).

Indeed, both problems are local graph partitioning problems.

Theorem 3 improves the time complexity O∗(2(∆+1)k ((∆ + 1)k)log((∆+1)k))

to solve local problems with the random separation technique introduced in [30].

Theorem 4 improves it whenever k = 2o(∆).
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Vn \H

Vn
S

T

H

Hc

Figure 2.2: Illustration of the proof, with filled vertices representing the optimal

solution V ′
opt and dotted vertices representing the set S = S|H| computed by LGPP

which can substitute H , since Vn does not interact with Hc nor with S.

Random separation is a special color coding [3] which consists of randomly

guessing if a vertex is in an optimal subset V ′ of size k (white vertices) or

if it is in the neighborhood N(V ′) \ V ′ (black vertices). For every other

vertices the guess is of no importance. As a right guess concerns at most

only k + k∆ vertices, one can guess correctly with high probability if one

iterates Θ(2(∆+1)k)) random guesses. Given a random assignment g : V →
{white,black}, a solution can be computed in polynomial time by dynamic

programming. So, the overall complexity is FPT with respect to k +∆. This

can be derandomized with universal families.
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V1 V2

v′

?

?

v
Swap

(a) Vertices v ∈ V2 and v′ ∈ V1 (that

has at least one neighbor in V1) will be

swapped.

V1 V2

v

?

?

v′

(b) The swap improves the value of the

cut.

Figure 2.3: Illustration of a swap.

2.5 The Special Case of MAX and MIN (k,n− k)-CUT

2.5.1 MAX (k,n− k)-CUT

As (k, n − k)-CUT and (n − k, k)-CUT are equivalent for the classical complexity,

and as the FPT algorithms in ∆ + k of the previous sections are in fact FPT in

∆+min(k, n− k), we assume now that k 6
n
2 6 n− k. In this section, we show that

MAX (k, n − k)-CUT parameterized by the value p of the solution, is in FPT. By a

swapping argument (see Figure 2.3), we show that the non-trivial case satisfies p > k.

We may also assume that p > ∆. Indeed, if we put a vertex v with degree ∆ in the

part V ′ with k elements, and as many neighbors of v as we can in the other part V \V ′,

the solution has at least value min(∆, n − k). If p > n − k, then, as by assumption

n− k >
n
2 , the O∗(2n) brute-force algorithm is FPT in p. So, if p < ∆ we can answer

positively or brute-force.

Thus, the parameters range accordingly to Figure 2.4. The rest of the proof is an

immediate application of Corollary 4.
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n
2 nk n− kp

∆

Figure 2.4: Location of parameter p, relatively to k and ∆.

Lemma 3. In a graph with minimum degree r, the optimal value opt of a MAX

(k, n− k)-CUT satisfies opt > min{n− k, rk}.

Proof. We divide arbitrarily the vertices of a graph G = (V,E) into two subsets V1
and V2 of size k and n− k, respectively. Then, for every vertex v ∈ V2, we check if v

has a neighbor in V1. If not, we try to swap v and a vertex v′ ∈ V1 which has strictly

less than r neighbors in V2 (see Figure 2.3). If there is no such vertex, then every vertex

in V1 has at least r neighbors in V2, so determining a cut of value at least rk. When

swapping is possible, as the minimum degree is r and the neighborhood of v is entirely

contained in V2, moving v from V2 to V1 will increase the value of the cut by at least r.

On the other hand, moving v′ from V1 to V2 will reduce the value of the cut by at most

r − 1. In this way, the value of the cut increases by at least 1.

Finally, either the process has reached a cut of value rk (if no more swap is

possible), or every vertex in V2 has increased the value of the cut by at least 1 (either

immediately, or after a swap), which results in a cut of value at least n− k.

Corollary 6. In a graph with no isolated vertices, the optimal value for MAX (k, n−k)-
CUT is at least min{n− k, k}.

Then, Corollary 4 suffices to conclude the proof of the the following theorem.

Theorem 5. The MAX (k, n− k)-CUT problem parameterized by the parameter p is

in FPT.

2.5.2 MIN (k,n− k)-CUT

We can prove that if p > k, then MIN (k, n− k)-CUT parameterized by the value p of

the solution is in FPT. This is an immediate corollary of the following proposition.

Proposition 1. MIN (k, n− k)-CUT parameterized by p+ k is in FPT.
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Proof. Each vertex v such that |N(v)| > k + p has to be in V \ V ′ (of size n − k).

Indeed, if one puts v in V ′ (of size k), among its k + p incident edges, at least p+ 1

leave from V ′. So, it cannot yield a feasible solution. All the vertices v such that

|N(v)| > k + p are then rejected. Thus, one can adapt the FPT algorithm in k +∆ of

Theorem 4 by considering the neighborhood of a vertex v not in the whole graph G,

but in G[T ∪ U ]. In those subgraphs the degree is bounded by p+ k, so we get an FPT

algorithm in p+ k.

In [60], it is shown that, for any ε > 0, there exists a randomized (1 + εk
logn )-

approximation for MIN (k, n − k)-CUT. From this result, we can easily derive that

when p < logn
k then the problem is solvable in polynomial time (by a randomized

algorithm). Indeed, fixing ε = 1, the algorithm in [60] is a (1 + k
log(n) )-approximation.

This approximation ratio is strictly better than 1 + 1
p . This means that the algorithm

outputs a solution of value lower than p+ 1, hence at most p, if there exists a solution

of value at most p.

We now conclude this section by claiming that, when p 6 k, MIN (k, n− k)-CUT

can be solved in time O∗(np).

Proposition 2. For p 6 k, MIN (k, n− k)-CUT can be solved in time O∗(np).

Proof. Since p 6 k, there exist in the optimal set V ′, p′ 6 p vertices incident to the p

outgoing edges. So, the k − p′ remaining vertices of V ′ induce a subgraph that is

disconnected from G[V \ V ′].

Hence, one can enumerate all the p′ 6 p subsets of V . For each such subset Ṽ ,

the graph G[V \ Ṽ ] is disconnected. Denote by C = (Ci)06i6|C| the connected

components of G[V \ Ṽ ] and by αi the number of edges between Ci and Ṽ . We have

to pick a subset C ′ ⊂ C among these components such that
∑

Ci∈C′ |Ci| = k−p′ and

maximizing
∑

Ci∈C′ αi. This can be done in polynomial time using standard dynamic

programming techniques.

2.5.3 Parameterized Approximation for MAX and MIN (k,n− k)-CUT

Recall that both MAX and MIN (k, n− k)-CUT parameterized by k are W[1]-hard [52,

29]. In this section, we give some approximation algorithms working in FPT time with

respect to parameter k.

Proposition 3. When parameterized by k:
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• MAX (k, n− k)-CUT admits an FPT approximation schema;

• MIN (k, n− k)-CUT parameterized by k has a randomized FPT approximation

schema.

Proof. We first handle MAX (k, n − k)-CUT. Fix some ε > 0. Given a graph

G = (V,E), let d1 6 d2 6 . . . 6 dk be the degrees of the k largest-degree vertices

v1, v2, . . . vk in G. An optimal solution of value opt is obviously bounded from above

by B = Σk
i=1di. Now, consider solution V ′ = {v1, v2, . . . , vk}. As there exist at most

k(k − 1)/2 6 k2/2 (when V ′ is a k-clique) inner edges, solution V ′ has a value sol

at least B − k2. Hence, the approximation ratio is at least B−k2

B = 1 − k2

B . Since,

obviously, B > d1 = ∆, an approximation ratio at least 1− k2

∆ is immediately derived.

If ε > k2

∆ then V ′ is a (1− ε)-approximation. Otherwise, if ε 6 k2

∆ , then ∆ 6
k2

ε .

So, the branching algorithm of Theorem 5 whose running time is O∗((∆ + 1)k) gives

here an FPT algorithm in time O∗((k
2

ε + 1)k).

For MIN (k, n − k)-CUT, it is proven in [60] that, for ε > 0, if k < log n, then

there exists a randomized polynomial time (1 + ε)-approximation. Else, if k > log n,

the exhaustive enumeration of the k-subsets takes time O∗(nk) = O∗((2k)k) =

O∗(2k
2

).

We conclude this paragraph by showing that an approximation ratio k2

f(k) + 1 for

MIN (k, n− k)-CUT can be achieved in time O∗(nf(k)). This, for instance, concludes

a ratio o(k2) in time O∗(no(k)).

Proposition 4. For every positive function f , MIN (k, n− k)-CUT is approximable

within ratio k2

f(k) + 1 in time O∗(nf(k)).

Proof. We distinguish three cases with respect to the parameter p. If p > k, then by the

discussion just above, since any solution has size at most k(k + p), an approximation

ratio at most 2k is immediately derived.

Assume now p 6 k. Here, we distinguish two sub-cases, namely p 6 f(k) and

k > p > f(k).

In the first of the sub-cases, using Proposition 2, an optimal solution for MIN

(k, n− k)-CUT can be found in time at most O∗(nf(k)).

For the second sub-case, consider a solution consisting of taking the set V ′ of the k

vertices of G with lowest degrees, and denote by σ the sum of these degrees. Then,

the value opt of an optimal solution is at least σ − k2, i.e., σ 6 opt+k2. Hence, if
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p < σ − k2, the algorithm answers “no”; otherwise, some easy algebra leads to an

approximation ratio bounded above by k2

f(k) + 1.

2.6 Set and Satisfiability Size-Constrained Problems

In the MAX k-SET COVER problem, we are given a family of subsets S = {S1, . . . , Sm}
over a set of elements X = {x1, . . . , xn}, and an integer p. We say that a set covers

an element if the element is contained in the set. The goal is to find a subcollection T
of at most k subsets that covers at least p elements. MAX k-SET COVER is significant

from a practical point of view, and arises frequently in several areas. For instance, in

location problems when resources location is needed to perform a maximum coverage

but the number of resources is restricted. In the MAX SAT-k problem, we are given

a CNF on n variables and m clauses, one asks for setting to true at most k variables

satisfying at least p clauses.

MAX k-SET COVER is known to be NP-hard (setting p = n, MAX k-SET COVER

becomes the seminal MIN SET COVER problem). It is also known to be approximable

within a factor 1− 1/e, but, for any ǫ > 0, no polynomial algorithm can approximate it

within ratio 1− 1/e+ ǫ unless P = NP [58]. Concerning the parameterized complexity

of the problem, MAX k-SET COVER is W[2]-hard for the parameter k, by setting

p = n since MIN SET COVER is W[2]-hard too [51]. An FPT algorithm with respect

to the standard parameter p is given by Bläser in [13].

In this section, we use the greediness-for-parameterization technique to show that

MAX k-SET COVER and MAX SAT-k are in FPT when parameterized by the value of

the solution.

We now prove that MAX k-SET COVER is FPT with respect to k +∆. The useful

vocabulary concerning branching algorithms is found in Section 2.3.

In fact, the following proposition can be obtained by the FPT algorithm for MAX

k-SET COVER with respect to p [13]. Indeed, as p 6 ∆k, this is also an FPT

algorithm with respect to ∆ and k combined. The alternative proof using greediness-

for-parameterization may be read as an introduction to the FPT algorithm for MAX

SAT-k.

Proposition 5. MAX k-SET COVER parameterized by k +∆ is FPT.

Proof. We present a branching algorithm (k-SC) whose particularity is to maintain,

in addition to a partial solution T of subsets of S , a subset C ⊆ X of elements which
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we commit to cover. The elements of C are therefore called the imposed elements.

If R is a set of sets,
⋃
R denotes the union of the elements of R. Now, a node v

of the branching tree is in accordance with a solution T0 if T ⊆ T0 and C ⊆ ⋃
T0.

Let l be the labeling function of the nodes of the branching tree, such that for each

node v, l(v) = (T,C) where T and C are the sets described above. We can infer the

subinstance I ′ at the node v from this labeling since I ′ = S \ T .

To understand the bound over the number of imposed elements used in k-SC,

note that if there exists a solution T covering more than p elements, then there exists

a solution T ′ ⊆ T that covers more than p elements and less than p + ∆ − 1 ones.

Indeed, when no subset can be removed from a solution T0 (without going under p

elements covered) then the number of covered elements can not exceed p + ∆ − 1,

since removing a subset can uncover at most ∆ elements. For a set of subsets R, we

denote by S ↓ R the set of subsets {Si \
⋃
R : Si ∈ S}. We set T = ∅ and C = ∅.

The overall specification of k-SC is the following: Let us first establish the time

Algorithm 8: A description of the algorithm k-SC.

Input: A finite collection S of subsets of X .

Output: A set of k sets of S that covers the greatest number of elements of X .

set T = ∅, C = ∅;
k-SC(T,C):
if |T | < k and |C| < p then

pick a set Si ∈ S \ T that covers the largest number of elements in X \ C;

run k-SC(T ∪ {Si}, C ∪ Si);
for each element x ∈ Si \ C do

run k-SC(T,C ∪ {x});
end

else

if |T | = k then
store T ;

else
(p 6 |C| 6 p+∆− 1) store a solution covering C, if possible;

end

end

return the best among the solutions stored;

complexity of k-SC. The number of children of a node of the branching tree is at

most ∆+ 1. At each step, we add either a subset or an element, so the depth of the
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branching tree is, at most, k+p+∆−1. Note that p 6 k∆ on non-trivial MAX k-SET

COVER-instances. So, the branching tree has size O((∆+1)k+p). On an internal node

of the branching tree, k-SC only does polynomial computations. In a leaf of this tree,

we find in time O∗(2p+∆−1) if at most k − |T | subsets of (S ↓ T )[C] can cover all

the ground elements in C [63], where S[C] denotes the subsets in S entirely contained

in C. So, k-SC works in time O∗(2p+∆−1(∆+ 1)k+p), i.e., it is fixed parameter with

respect to k +∆.

We now show that k-SC is sound. Let T0 be a solution which covers between p

and p + ∆ − 1 elements. Recall that each node of the branching tree has one child

adding a set to T and up to ∆ children each adding one imposed element to C. Let B
be a maximal branch in the branching tree from the root to a node v such that all the

nodes of B are in accordance with T0. By the maximality of the branch, v deviates

from T0. Let (T,C) = l(v) and Si the set chosen by our greedy criterion at the node v.

We know that Si /∈ T0. Substituting in T , any subset of T0 \ T by Si, we cover at

least as many elements as T0, since ∀x ∈ Si \ C, x is not covered by the solution T0.

From v, we consider again a maximal branch B′ in accordance with T0, and we iterate

the same hybridization trick at most k + p times until we reach a leaf. At this leaf,

k-SC computes an exact solution Tl containing at most k− |T | subsets of (S ↓ T )[C].
So, T ∪ Tl is as good as T0, hence, an optimal solution.

Let us now deal with MAX SAT-k. In what follows, C denotes the set of clauses

of an instance and C ′ any subset of this set. We denote by occ+(Xi, C
′) the number

of positive occurrences of the variable Xi in the instance, and by occ−(Xi, C
′) the

number of its negative occurrences. We set f(Xi) = occ+(Xi, C) + occ−(Xi, C); so,

the frequency of the formula is f = maxi{occ+(Xi, C) + occ−(Xi, C)}.
Lemma 4. MAX SAT-k is solvable in O(2m).

Proof. We take any variable X that appears positively and negatively. We do the

standard branching: either set X to true (and decrease k by 1), either set X to false.

This branching satisfies at least one more clause in each branch. Thus, it takes time

bounded by O(2m). The branching stops when each variable appears only negatively,

or only positively. At that point, the variables appearing only negatively can be set to

false. This step is safe since we are constrained to put at most (not exactly) k variables

to true. We end up with an instance containing only positive literals. This instance can

be seen as an instance of k-HITTING SET which can be solved in time O(2m) [63].

Overall, it takes time O(2m).
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Proposition 6. MAX SAT-k parameterized by p is FPT.

Proof. We can assume that p < m
2 . Indeed, if p >

m
2 , the algorithm of Lemma 4

is an FPT algorithm. We also assume that the number of clauses containing only

negative literals is bounded above by m
2 . Otherwise, setting all the variables to false,

satisfies more than p clauses. We recall that we are not forced to set exactly k variables

to true, but at most k. We observe that instances such that p < f
2 are always YES-

instances, since one can set one variable Xi with frequency f to true if occ+(Xi, C) >

occ−(Xi, C), and to false otherwise. Note also that instances such that p < k are all

YES-instances, too. Indeed, one can iteratively set to true k variables such that at each

step one satisfies at least one more clause. If, at some point this is no longer possible,

then setting all the remaining variables to false will satisfy all the clauses which do not

initially contain only negative literals, that is at least half of the clauses, so more than p

clauses. We may now assume that p > f
2 and p > k, so our parameter might as well

be p+ f + k.

Once again, we construct a branching algorithm which operates accordingly to a

greedy criterion. A solution, or complete assignment, is given by a set S of size up to k

which contains all the variables set to true. Additionally, we maintain a listCs of clauses

that we satisfy or commit to satisfy. We set Cu = C \Cs, di(C
′) = occ+(Xi, C

′), and

letC+(Xi, C
′) be the set of clauses inC ′ whereXi appears positively andC−(Xi, C

′)

the set of clauses whereXi appears negatively. Set, finally,C(Xi, C
′) = C+(Xi, C

′)∪
C−(Xi, C

′) and consider the following algorithm (SAT-k): The branching tree has

depth at most k + p and width at most f + 1, so the running time of SAT-k is

O∗(2p(f + 1)k+p) that is FPT with respect to p, because completing a solution to

satisfy all the clauses of Cs can be done in time O∗(2|Cs|) since SAT-k can be solved

in O(2m) by Lemma 4.

Let now S0 be an optimal solution. From the root of the branching tree, follow a

maximal branch where the variables set to true are all in S0, and the clauses in Cs are

satisfied by S0. Let Sc be the set of variables set to true along this branch (by definition,

Sc ⊆ S0), and set Sn = S0 \ Sc. By maximality of the branch, at its extremity v,

SAT-k deviates from S0, i.e., no child of v is in accordance with S0. Let Xi be the

variable chosen at this point by SAT-k and consider Cd = C(Xi, Cu) that is the

set of clauses not yet in Cs in which Xi appears positively or negatively. We know

that no clause in Cd is satisfied by S0. Let Xj be any variable in Sn. We claim that

Sh = (S0 \ {Xj}) ∪ {Xi} is also optimal and, by a straightforward induction, one
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Algorithm 9: A description of the algorithm SAT-k.

Input: A set C of clauses on a set X of variables.

Output: A subset S ⊆ X of size at most k such that setting all the variables in

S to true and all the variables in X \ S to false, satisfies the greatest

number of clauses in C.

set S = ∅, Cs = ∅ ;

SAT-k(S,Cs):
if |S| < k and |Cs| < p then

pick the variable Xi maximizing di(C \ Cs);
run SAT-k(S ∪ {Xi}, Cs ∪ C+(Xi, C \ Cs));
for each clause c ∈ C(Xi, C \ Cs) do

run SAT-k(S,Cs ∪ {c});
end

else

if |S| = k then
store S;

else
(|Cs| > p) store a complete assignment satisfying Cs, if possible;

end

end

return the best among the solutions stored;

solution at the leaves of the branching tree is as good as S0. Indeed, setting Xj to false

can lose at most occ+(Xj , Cu)− occ−(Xj , Cu) 6 dj(Cu) clauses and setting Xi to

true gains di(Cu) clauses and, by construction, di(Cu) > dj(Cu).

The complexity of MAX SAT-k parameterized by k + f remains open.

2.7 Size-Constrained Problems in Bipartite Graphs

In this section, we investigate the complexity of size-constrained problems in bipartite

graphs, where one looks for a set of exactly k vertices which realizes a specific local

property. This class of problems encompasses k-DENSEST, k-SPARSEST together

with the maximization and minimization versions of k-VERTEX COVER, (k, n− k)-
CUT, k-DOMINATING SET. In general graphs, we recall that the six first problems

parameterized by k are W[1]-complete, while both versions of k-DOMINATING SET
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are W[2]-complete [29]. We show the rather surprising result that MAX k-VERTEX

COVER and MAX (k, n − k)-CUT are in FPT in bipartite graphs, whereas their

minimization versions MIN k-VERTEX COVER and MIN (k, n− k)-CUT are W[1]-

complete.

Again, the number of edges covered by a set S of vertices is denoted by val(S).

We can notice that val(S) = |E(S)|+ δ(S), where E(S) is the set of edges in G[S],

and δ(S) is the number of edges having exactly one endpoint in S. In MAX k-VERTEX

COVER, given a graph G = (V,E), one has to find a subset S ⊆ V with k vertices

which maximizes val(S). There are three independent works showing that MAX k-

VERTEX COVER is NP-complete in bipartite graphs [85, 34, 5]. The easiest way to get

this result is to follow [34].

2.7.1 Positive Results

Given a solution S, an edge which is covered by a single vertex v of S is called private,

or a private edge of v. On the contrary, an edge covered by its two endpoints u and

v is called a shared edge. A vertex can cover at most k − 1 shared edges, in case its

closed neighborhood contains the solution S.

Proposition 7. MAX k-VERTEX COVER in bipartite regular graphs is trivial.

Proof. Any regular bipartite graph G = (V1 ∪ V2, E) satisfies |V1| = |V2| = n
2 . Let

∆ be the degree of the regular graph G. Taking any min(k, n2 ) vertices in V1 covers

min(k∆, |E|) edges which is at least as good as any other solutions since one cannot

cover more than ∆ edges per vertex taken.

We present an FPT algorithm for MAX k-VERTEX COVER which is inspired both

from the easy proposition shown above and from the notion of intersective algorithms

or necessary sets. Intuitively an intersective algorithm produces solutions which always

intersect an optimal solution. This notion is presented in [15]. In fact, we will show

that a generalization of MAX k-VERTEX COVER, called here GENERALIZED MAX

k-VERTEX COVER, is in FPT in bipartite graphs. In GENERALIZED MAX k-VERTEX

COVER, given a graph G = (V,E) and a subset V ′, one has to find a subset S ⊆ V ′

with k vertices which maximizes val(S). In this new and very similar problem, the only

difference lies on the fact that one cannot take any vertices of V \ V ′ in the solution.

Then, MAX k-VERTEX COVER is the special case when V ′ = V .
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Let G = (V,E), V ′ be an instance of GENERALIZED MAX k-VERTEX COVER.

For every i ∈ {1, . . . , |V ′|}, vi is the i-th vertex of V ′ by non increasing degree

(breaking ties arbitrarily). We show two lemmas to bound by 2k the difference among

the vertices of V ′ between the highest degree and the lowest degree.

Lemma 5. A vertex v ∈ V ′ such that d(v) 6 d(vk) − k will never be part of an

optimal solution.

Proof. If S is a solution containing v, then at least one of the vertices v1, v2, . . . , vk is

not in the solution, otherwise the solution would contain strictly more than k vertices.

So, let vi be a vertex such that i ∈ {1, 2, . . . , k} and vi /∈ S. Then, S \ {v} ∪ {vi}
is a better solution than S. Indeed, removing v from the solution loses at most d(v)

edges (in case all the edges covered by v are private). Adding then vi to the solution

gains at least d(vi) − k + 1 edges (in case vi covers k − 1 shared edges). And,

d(vi)− k + 1 > d(vk)− k + 1 > d(v).

Basically, Lemma 5 states that you can remove from V ′ all the vertices whose

degree is less than d(vk)− k and preserve all the optimal solutions. From hereon, we

can suppose that V ′ do not contain such vertices anymore.

Lemma 6. If d(vk) 6 d(v1)− k, any optimal solution intersects {v1, . . . , vk−1}, and

the intersection can obviously be guessed in FPT time.

Proof. Suppose S∗ is an optimal solution which does not intersect {v1, . . . , vk−1} and

v is a vertex in this solution. Then S∗ \ {v} ∪ {v1} is a better solution for the same

reason as the one invoked to prove Lemma 5. One can exhaustively guess in FPT time

2k−1 the intersection between an optimal solution and {v1, . . . , vk−1}.

In the computation of Lemma 6, the intersection is non-empty. Thus, we will use

it at most k times, since it adds at least one vertex to the solution. So, this first step

takes at most FPT time O∗(kk). Combining Lemma 5 and Lemma 6, one can suppose

that, after this step, the degree of all the vertices in V ′ is contained in the interval

[∆− 2k,∆] (even, [∆− 2k + 2,∆] but it is somewhat irrelevant).

Theorem 6. MAX k-VERTEX COVER parameterized by k, is in FPT in bipartite

graphs.
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Proof. We prove the stronger statement that GENERALIZED MAX k-VERTEX COVER

parameterized by k, is in FPT in bipartite graphs. Let G = (V1, V2, E), V ′ be an

instance of GENERALIZED MAX k-VERTEX COVER in bipartite graphs. The degrees

of the vertices in V ′ goes from ∆− 2k + 1 to ∆.

If there are more than 2k vertices with degree ∆ in V ′, then there are more than k

such vertices in one of the partite set, and taking them gives an optimal solution with

value k∆. Otherwise, the number of vertices in V ′ with degree ∆ strictly less than 2k.

Therefore, we can exhaustively guess the intersection between those vertices and an

optimal solution. The vertices which are taken in the solution are removed from the

graph, the vertices which are not, are just removed from V ′ but they stay in the graph

(since their incident edges could still be covered by the other endpoints). Now, the

intersection could be empty but the degree in V ′ decreases by at least 1.

Our algorithm branches on each of the at most 2k − 1 vertices of maximum degree

still in V ′. There is an additional branch where one does not take any vertices in this

subset. Therefore, a node of the branching tree has at most 2k − 1 sons where a vertex

is taken, and one son where only the maximum degree of vertices still in V ′ decreases.

Now, the measure we consider is l = k + d where d is the number of distinct degree of

vertices in V ′. We can observe that d is bounded by 3k. By the previous lemmas, the

distinct number of degrees in V ′ is initially bounded by 2k. Though, vertices having a

degree between ∆− 3k + 1 and ∆− 2k in V ′ can be created by taking one or several

of their neighbors in the solution.

As l 6 4k, and the measure l decreases by at least 1 in each of the at most 2k sons

of each node of the branching, our algorithm works in time O∗((2k)4k).

Theorem 7. MAX (k, n− k)-CUT parameterized by k, is in FPT in bipartite graphs.

Proof. Again, we show the stronger result that GENERALIZED MAX (k, n− k)-CUT

parameterized by k, is in FPT in bipartite graphs. We show two analogous lemmas to

Lemma 5 and Lemma 6 for MAX (k, n− k)-CUT. We identify a cut to the smallest set

of the partition. And an instance G = (V,E) is given with an additional set V ′ ⊆ V
such that only vertices in V ′ can be added to the solution.

Lemma 7. A vertex v ∈ V ′ such that d(v) 6 d(vk) − 2k will never be part of an

optimal solution.

Proof. If S is a solution containing v, then at least one of the vertices v1, v2, . . . , vk is

not in the solution, otherwise the solution would contain strictly more than k vertices.
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So, let vi be a vertex such that i ∈ {1, 2, . . . , k} and vi /∈ S. Then, S \ {v} ∪ {vi}
is a better solution than S. Indeed, removing v from the solution loses at most d(v)

edges. Adding then vi to the solution gains at least d(vi) − 2k + 2 edges. And,

d(vi)− 2k + 2 > d(vk)− 2k + 2 > d(v).

By Lemma 7, you can remove from V ′ all the vertices whose degree is less than

d(vk)− 2k and preserve all the optimal solutions.

Lemma 8. If d(vk) 6 d(v1) − 2k, any optimal solution intersects {v1, . . . , vk−1},
and the intersection can obviously be computed in FPT time.

Proof. Suppose S∗ is an optimal solution which does not intersect {v1, . . . , vk−1} and

v is a vertex in this solution. Then S∗ \ {v} ∪ {v1} is a better solution for the same

reason as the one invoked to prove Lemma 7. One can exhaustively guess in FPT time

2k−1 the intersection between an optimal solution and {v1, . . . , vk−1}.

Combining Lemma 7 and Lemma 8, we can assume that the degrees of the vertices

in V ′ are contained in [∆− 4k,∆]. We make the same observation as Proposition 7:

on regular bipartite graphs MAX (k, n− k)-CUT is trivially FPT. The algorithm is the

same as for MAX k-VERTEX COVER and we get this time an overall time complexity

in O∗((2k)6k).

2.7.2 Negative Results

Theorem 8. MIN k-VERTEX COVER and MIN (k, n− k)-CUT parameterized by k,

are both W[1]-complete even in bipartite graphs.

Proof. Both problems belong to W[1] even on general graphs. We reduce from the

problem k-CLIQUE which is W[1]-complete even on regular graphs. The reduction

is the same for MIN k-VERTEX COVER and MIN (k, n− k)-CUT up to p the target

value of the solution.

First, we describe the construction. Let G = (V,E) be any regular instance of

k-CLIQUE, ∆ be its degree, n = |V |, and m = |E|. We build the graph G′ = (V ′, E′)

where V ′ = V ∪ VE ∪D. VE consists of |E| vertices in a one-to-one correspondence

with the edges of G. D = {d1, . . . , d∆−2} is a set of ∆ − 2 dummy vertices. And,

E′ = {{v, ue} | v ∈ V, ue ∈ VE , v is one endpoint of e in G} ∪ {(ue, di) | ue ∈
VE , 1 6 i 6 ∆ − 2}. In other words, G′[V ∪ VE ] is the incidence graph of G, and
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v1 v2

v3 v4

v5

v6

;

V v1 v2 v3 v4 v5 v6

VE ue1 ue2 ue3 ue4 ue5 ue6 ue7 ue8 ue9

D d1

Figure 2.5: An example of a regular graph G and its corresponding G′. For MIN

k′-VERTEX COVER, we ask for a solution covering p = k∆− 2
(
k
2

)
edges. For MIN

(k′, n− k′)-CUT, we ask for a solution with p = k∆− 4
(
k
2

)
edges in the cut.

G′[VE ∪D] is a bipartite complete graph whose partite sets are VE and D. We can

observe that G′ is bipartite since both VE and V ∪D are independent sets.

Vertices in VE are called edge vertices, and vertices in D are called dummy vertices.

In G′, all the vertices in V ∪VE have degree ∆. Indeed, any vertex v ∈ V is connected

to ∆ vertices in VE corresponding to the ∆ edges incident to v in G. Any edge vertex

ue ∈ VE is connected to two vertices in V which correspond to the endpoints of e in

G, plus ∆− 2 dummy vertices. Any dummy vertex has degree m. Figure 2.7.2 gives

the above construction with an example of regular graph G and the reader might check

the previous observations on the degree of vertices in G′.

For MIN k′-VERTEX COVER, we ask for a set of k′ = k +
(
k
2

)
vertices which

covers at most p = k∆− 2
(
k
2

)
. First, we show a lemma in the same flavor as Lemma 5

and Lemma 6 but for the minimization version.

Lemma 9. An optimal solution of MIN k-VERTEX COVER cannot take a vertex v and

not a vertex w if d(v) > d(w) + k.

Proof. Removing v from a solution S can reduce the number of covered edges by at

least d(v)− k + 1, and taking w in the solution can increase the number of covered

edges by at most d(w). The resulting solution S \ {v} ∪ {w} covers at most val(S) +

d(w)− d(v) + k − 1 < val(S) which contradicts the optimality of S.

We can assume thatm > ∆+k′ = ∆+k+
(
k
2

)
. Otherwise, asm = ∆n

2 , we would

have ∆(n2 −1) < k+
(
k
2

)
and a function of the parameter would bound from above the

size of the input. In other words, instances of k-CLIQUE such that m 6 ∆+ k +
(
k
2

)
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are trivially FPT. For the same reason, we can assume that n+m > k′ = k +
(
k
2

)
, i.e.,

one is not forced to take a vertex in D for space constraint. Thus, by Lemma 9, any

optimal solution takes no vertex in D.

Therefore, an optimal solution consists of
(
k
2

)
+ r vertices of VE and k− r vertices

of V , with r ∈ [−
(
k
2

)
, k]. As all the vertices in V ∪ VE have degree ∆, the number of

edges covered by a set S of k′ vertices is k∆− |E(S)|. So, the problem is equivalent

to finding a set S ⊆ V ∪ VE such that |E(S)| > 2
(
k
2

)
. As all the vertices in VE

have exactly two neighbors in V ∪ VE , |E(S)| 6 2(
(
k
2

)
+ r). Thus, for a solution

covering p edges, r should be non negative, that is r ∈ [0, k]. The number of edges

in S is bounded from above by 2
(
k−r
2

)
+

(
k
2

)
+ r −

(
k−r
2

)
=

(
k−r
2

)
+

(
k
2

)
+ r. This

corresponds to the best case where we take a set U of k − r vertices in V which forms

a clique in G and
(
k−r
2

)
edge vertices corresponding to the edges of the clique, plus(

k
2

)
+ r −

(
k−r
2

)
edge vertices corresponding to edges having one endpoint in U . If

r > 0,
(
k−r
2

)
+ r <

(
k
2

)
for any k > 3. So, r has to be equal to 0, for S to cover p

edges or less. We have proven that a solution S, if existing, takes a set Sv of exactly k

vertices in V and a set Se of exactly
(
k
2

)
vertices in VE , with S = Sv ∪ Se. The edges

2|Se| = 2
(
k
2

)
edges going from Se to V should all reach Sv . Thus, there is a set of

(
k
2

)

edges whose endpoints are all in a set of k vertices. Therefore, Sv is a k-clique in G.

Reciprocally, if there is a k-clique C in G, then we can take the k corresponding

vertices in G′ and the
(
k
2

)
edge vertices in VE which corresponds to the inner edges of

the clique C, and that solution covers exactly p edges in G′.

For MIN (k′, n− k′)-CUT, we ask for a set S of k′ = k +
(
k
2

)
vertices such that

the cut (S, V ′ \ S) contains at most p = k∆− 4
(
k
2

)
edges.

Lemma 10. An optimal solution of MIN (k, n− k)-CUT cannot take a vertex v and

not a vertex w if d(v) > d(w) + 2k.

Proof. Removing v from a solution S can reduce the number of edges in the cut by

at least d(v)− 2k + 2, and taking w in the solution can increase the number of edges

in the cut by at most d(w). The resulting solution (S′ = S \ {v} ∪ {w}, S′) has

d(w)− d(v) + 2k − 2 < 0 edges more in the cut which contradicts the optimality of

S.

We can assume that m > ∆+ 2k′ = ∆+ 2k + 2
(
k
2

)
, and n+m > k′ = k +

(
k
2

)
,

k′ < |V ′|
2 , and identify a cut to the smallest set of the partition. Thus, by Lemma 10,

any optimal solution takes no vertex in D.
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k-VERTEX COVER (k, n− k)-CUT k-DOMINATING SET

min W[1]-complete (Th. 8) W[1]-complete (Th. 8) W[2]-complete (defined?)

max FPT (Th. 6) FPT (Th. 7) W[2]-complete [111]

Figure 2.6: The parameterized complexity of size-constrained problems in bipartite

graphs.

We can remark that a solution S induces a cut with k′∆− 2|E(S)|, so the problem

is equivalent to finding a set S ⊆ V ∪ VE with 2
(
k
2

)
inner edges. Henceforth, the rest

of the proof is the same as for MIN k′-VERTEX COVER.

We do not know if the minimization version of k-DOMINATING SET has already

been defined in the literature. To complete the landscape concerning the parameterized

complexity of size-constrained problems in bipartite graphs, k-SPARSEST is NP-

complete but trivially FPT in bipartite graphs, since there is an independent set of size
n
2 , whereas k-DENSEST is already known to be W[1]-complete in bipartite graphs

[44].

2.8 Recent Advances and Perspectives

We had two main open questions concerning local graph partitioning problems. The

first was the parameterized complexity status of MIN (k, n−k)-CUT with respect to the

value of the solution p. The second was whether or not we could improve the running

time of solving non degrading local graph partitioning problems to O∗((a∆)bk) for

some constants a and b. Two recent articles answered both questions.

In [46] it is shown that MIN (k, n − k)-CUT, parameterized by p, is solvable in

time O(2O(p3)n3 log3 n). The principal ingredient of the algorithm is a new tree-like

decomposition of any graph in small separators. The algorithm is first conceived for

MIN BISECTION and it is then generalized to MIN (k, n− k)-CUT and other variants.

In [117], it is shown that a time-complexity of O∗(4k+o(k)∆k) can indeed be

reached for general LGPPs. It is interesting to note that the algorithm presented in this

article use a reduction to weighted exact cover which only works for non degrading

LGPPs. So, our result of Theorem 3 is still needed to conclude that all LGPPs can be

solved within time O∗(O(∆)k).

Figure 2.8 summarizes the parameterized complexity landscape of the main local graph

partitioning problems.
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k-VERTEX COVER (k, n − k)-CUT SPARSEST/DENSEST

k, min W[1]-c⋄, O∗(4k+o(k)∆k)§ W[1]-c⋄, O∗(4k+o(k)∆k)§ W[1]-c⋄, O∗((∆ + 1)k) (Th 3)

max W[1]-c⋄, O∗((∆ + 1)k) (Th 3) W[1]-c⋄, O∗((∆ + 1)k) (Th 3) W[1]-c⋄, O∗(4k+o(k)∆k)§

p, min ? FPT [46] /∈ XP

max FPT [13] FPT (Th 5) W[1]-h

Figure 2.7: Symbol ⋄ refers to [29] and § refers to [117].

Concerning, now, what we have done for MAX (k, n − k)-CUT and MAX k-

VERTEX COVER in bipartite graphs, Lemmas 5, 6, 7, and 8 bounding the range of

the degrees, does not require the graph to be bipartite. They are still valid for general

graphs. We ask then the following question: can we use those lemmas to prove that

MAX (k, n − k)-CUT and MAX k-VERTEX COVER are in FPT in other classes of

graphs? It seems possible to show that both problems are FPT in strongly chordal

graphs which is a superset of proper interval graphs. Nonetheless, the parameterized

complexity of MAX (k, n− k)-CUT and MAX k-VERTEX COVER in chordal graphs

remains open. Finally, we observe that the lemmas bounding the range of the degrees

can also be extended to the minimization versions MIN (k, n − k)-CUT and MIN

k-VERTEX COVER for general graphs. It is possible that, though they are W[1]-hard

in bipartite graphs, they might be FPT in other classes of graphs.
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3 Inapproximability

3.1 Preliminaries

Fixed-parameter algorithms, approximation algorithms and moderately exponential/sub-

exponential algorithms are major approaches for efficiently solving NP-hard problems.

These three areas, each of them being very active in its own, have been considered

as foreign to each other until recently. A polynomial-time approximation algorithm

produces a solution whose quality is guaranteed to lie within a certain range from the

optimum. One illustrative problem indicating the development of this area is MAX

INDEPENDENT SET. The approximability of MAX INDEPENDENT SET within constant

ratios had remained as one of the most important open problems for a long time in the

field. It was only after the novel characterization of NP by PCP theorem [7] that such

inapproximability was proven assuming P 6= NP. Subsequent improvements of the

original PCP theorem led to much stronger result for MAX INDEPENDENT SET: it is

inapproximable within ratios Ω(nε−1) for any ε > 0, unless P = NP [129].

Moderately exponential (subexponential, respectively) computation allows expo-

nential (subexponential, respectively) running time for the sake of optimality. In this

case, the endeavor lies in limiting the growth of the running time function as much as

possible. Parameterized complexity provides an alternative framework to analyze the

running time in a more refined way [51]. Given an instance with a parameter k, the

aim is to get an O(f(k) · poly(n))-time (or equivalently, FPT-time) algorithm, where

poly(n) is independent of k. As these two research programs offer a generous running

time when compared to that of classic approximation algorithms, a growing amount of

attention is paid to them as a way to cope with hardness in approximability. The first one

yields moderately exponential approximation. In moderately exponential approxima-
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tion, the core question is whether a problem is approximable in moderately exponential

time while such approximation is impossible in polynomial time. Suppose a problem is

solvable in time γnpoly(n), but it is NP-hard to approximate within ratio r. Then, we

seek r-approximation algorithms of running time significantly faster than γnpoly(n).

This issue has been considered for several problems such as SET PARTITIONING, MAX

INDEPENDENT SET, COLORING, and BANDWIDTH [11, 23, 24, 45, 68].

The second research program handles approximation by fixed parameter algorithms.

We say that a minimization (maximization, respectively) problem Π, together with a

parameter k, is parameterized r-approximable if there exists an FPT-time algorithm

which computes a solution of size at most (at least, respectively) rk whenever the input

instance has a solution of size at most (at least, respectively) k. This line of research was

initiated by three independent works [53, 32, 40]. For an excellent overview on early

stages of the topic, see [102]. Since then very important research has been conducted

on several aspects (both computational and structural) of parameterized approximation

(see, for example, [24, 15, 41, 54, 73, 74]). In what follows, parameterization means

“standard parameterization”, i.e., where problems are parameterized by the cost of the

optimal solution.

Several natural questions can be asked dealing with these two programs. In particu-

lar, the following ones have been asked several times [102, 53, 68, 24]:

Q1: can a problem, which is highly inapproximable in polynomial time, be well-app-

roximated in subexponential time?

Q2: does a problem, which is highly inapproximable in polynomial time, become

well-approximable in FPT-time?

Few answers have been obtained until now. Regarding Q1, negative results can be

directly obtained by gap-reductions for certain problems. For instance, COLORING

is not approximable in subexponential time within ratio (4/3) − ǫ since this would

allow to determine whether a graph is 3-colorable or not in subexponential time. This

contradicts the widely-acknowledged computational assumption ETH [81].

Regarding Q2, [53] shows that assuming FPT 6= W[2], for any r the MIN INDE-

PENDENT DOMINATING SET problem is not r-approximable 1 in FPT-time.

Among interesting problems for which Q1 and Q2 are worth being asked are MAX

INDEPENDENT SET, COLORING and MIN DOMINATING SET. They fit in the frame of

1Actually, the result is even stronger: it is impossible to obtain a ratio r = g(k) for any function g.
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both Q1 and Q2 above: they are hard to approximate in polynomial time while their

approximability in subexponential or in parameterized time is still open.

Here, we study parameterized and subexponential (in)approximability of natural

optimization problems. In particular, we follow two guidelines: (i) getting inapprox-

imability results under some conjecture and (ii) establishing classes of uniformly

inapproximable problems under approximation preserving reductions.

Following the first direction, we establish a link between a major conjecture in PCP

theory and inapproximability in subexponential-time and in FPT-time, assuming ETH.

Just below, we state this conjecture while the definition of PCP is deferred to the next

section.

Linear PCP Conjecture (LPC): 3SAT ∈ PCP1,β [log |φ|+D,E] for some

β ∈ (0, 1), where |φ| is the size of the 3SAT instance (sum of lengths of

clauses), D and E are constant.

Unlike ETH which is widely held to be a reasonable conjecture, LPC is a wide open

question. We will claim in Lemma 12 that if LPC turns out to hold, it implies that one

of the most interesting questions in subexponential and parameterized approximation

is answered in the negative. In particular, the following holds for MAX INDEPENDENT

SET on n vertices, for any constant 0 < r < 1 assuming ETH:

(i) there is no r-approximation algorithm in time O(2n
1−δ

) for any δ > 0;

(ii) there is no r-approximation algorithm in time O(2o(n)), if LPC holds;

(iii) there is no r-approximation algorithm in time O(f(k)nO(1)), if LPC holds,

where k is the size of a maximum independent set and f is any function.

We observe that (i) is not conditional upon LPC. In fact, this is an immediate con-

sequence of the near-linear PCP construction achieved in [49]. Note that similar

inapproximability results under ETH for MAX 3SAT and MAX 3LIN for some subex-

ponential running time have been obtained in [107].

Following the second guideline, we show that a number of problems are equivalent

with respect to approximability in subexponential time. Designing a family of equiva-

lent problems is a common way to provide an evidence in favor of hardness of these

problems. One prominent example is the family of problems complete under SERF-

reducibility [81] which leads to equivalent formulations of ETH. More precisely, for a
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given problem Π, let us formulate the following hypothesis, which can be seen as the

approximate counterpart of ETH.

Hypothesis 1 (APETH(Π)). There exist two constants ǫ > 0 and r (r < 1 if Π is a

maximization problem, r > 1, otherwise), such that Π is not r-approximable in time

2ǫn.

We prove that several well-known problems are equivalent with respect to the

APETH (APETH-equivalent). To this end, a notion called the approximation pre-

serving sparsification is proposed. A recipe to prove that two problems A and B

are APETH-equivalent consists of two steps. The first is to reduce an instance of A

into a family of instances in “bounded” version (bounded degree for graph problems,

bounded occurrence for satisfiability problems), which are equivalent with respect to

approximability. This step is where approximation preserving sparsification comes

into play. The second is to use standard approximation preserving reductions to derive

equivalences between bounded versions of A and B. We consider L-reductions [109]

for this purpose. Furthermore, we show that if APETH fails for one of these problems,

then any problem in MaxSNP would be approximable for any constant ratio in subex-

ponential FPT-time 2o(k), which is also an evidence toward the validity of APETH.

This result can be viewed as an extension of [33], which states that no MaxSNP-hard

problem allows a algorithm in time 2o(k) under ETH.

Results derived from PCP and LPC are given in Section 3.2. The second direction

on equivalences between problems is described in Section 3.3. We now give some

preliminaries and notation.

We will use in the sequel the well known sparsification lemma [81]. Intuitively, this

lemma allows to work with 3SAT formula with linear lengths (the sum of the lengths

of clauses is linearly bounded in the number of variables).

Lemma 11. [81] For all ǫ > 0, a 3SAT formula φ on n variables can be written as

the disjunction of at most 2ǫn 3SAT formulæ φi on (at most) n variables such that φi
contains each variable in at most cǫ clauses for some constant cǫ. Moreover, this

reduction needs at most poly(n)2ǫn-time.

We denote by PCPα,β [q, p] (see for instance [7] for more on PCP systems) the set

of problems for which there exists a PCP verifier V which uses q random bits, reads at

most p bits in the proof and is such that:
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By Fagin’s Theorem, NP is characterized as the class of graph problems

expressible in existential second-order logic. In this logic, one can quantify

existentially and universally over the vertices but one is restricted to existential

quantification over sets of vertices. In SNP (for Strict NP), the quantification

over vertices can only be universal.

We now introduce L-reductions which are linear reductions mostly preserving

approximation schemata.

Let ΠA and ΠB be two optimization problems, vA and vB being the two

corresponding functions mapping a solution to its value. An L-reduction is

defined by two functions f and g computable in polynomial-time and two

constants α and β such that:

• f maps instances of ΠA to instances of ΠB .

• g maps solutions of f(I) to solutions of I .

• OPTB(f(I)) 6 αOPTA(I).

• for every solution S of f(I), |OPTA(I) − vA(g(S))| 6

β|OPTB(f(I))− vB(S)|.

MaxSNP is the class of problems that L-reduce to a maximization version of

a SNP problems.

A problem Π is MaxSNP-hard if all the MaxSNP problems L-reduce to Π.

A problem is MaxSNP-complete if it is both MaxSNP-hard and in MaxSNP.

• if the instance is positive, then there exists a proof such that V accepts with

probability at least α;

• if the instance is negative, then for any proof V accepts with probability at

most β.

The following theorem is proved in [49] (see also Theorem 7 in [107]), presenting a

further refinement of the characterization of NP.

Theorem 9. [49] For every ǫ > 0,

3SAT ∈ PCP1,ǫ [(1 + o(1)) log n+O (log(1/ǫ)) , O (log(1/ǫ))]
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A recent improvement [107] of Theorem 9 (a PCP Theorem with two-query projec-

tion tests, sub-constant error and almost-linear size) has some important corollaries in

subexponential-time approximation. In particular:

Corollary 7. [107] Under ETH, for every ǫ > 0, and δ > 0, it is impossible to

distinguish between instances of MAX 3SAT with m clauses where at least (1− ǫ)m
are satisfiable from instances where at most ((7/8) + ǫ)m are satisfiable, in time

O(2m
1−δ

).

Under LPC, a stronger version of this result follows by a standard argument.

Lemma 12. Under LPC and ETH, there exists r < 1 such that for every ǫ > 0 it is

impossible to distinguish between instances of MAX 3SAT with m clauses where at

least (1− ǫ)m are satisfiable from instances where at most (r+ ǫ)m are satisfiable, in

time 2o(m).

Proof. Suppose that 3SAT ∈ PCP1,β [log |φ|+D,E], where β ∈ (0, 1), |φ| is the sum

of the lengths of clauses in the 3SAT instance, D and E are constants.

Given an ǫ > 0, let ǫ′ such that 0 < ǫ′ < ǫ. Given an instance φ of 3SAT on n

variables, we apply the sparsification lemma [81] (with ǫ′) to get 2ǫ
′n instances φi on

at most n variables. Since each variable appears at most cǫ′ times in φi, the global size

of φi is |φi| 6 cǫ′n.

Then for each formula φi we use the previous PCP assumption. The size of the

proof is at most E2|R| = c′|φi| 6 cn for some constants c′, c that depend on ǫ′ (where

|R| = log n+D is the number of random bits) since E2|R| is the total number of bits

that we read in the proof. Take one variable for each bit in the proof: x1, · · · , xcn.

For each random string R: take all the 2E possibilities for the E variables read, and

write a CNF formula which is satisfied if and only if the verifier accepts. This can be

done with a formula with a constant number of clauses, say C1, each clause having a

constant number of variables, say C2 (C1 and C2 depends only on E).

If we consider the CNF formula formed by all these CNF formulas for all the

random clauses, we get a CNF formula with C12
|R| clauses on variables x1, · · · , xcn.

The clauses are on C2 variables but by adding ⌈C2/4⌉ variables we can replace a clause

on C2 variables by an equivalent set of 3-clauses. This way we get a 3-CNF formula

and multiply the number of variables and the number of clauses by a constant, so they

are still linear in n. For each R we have a set of say C ′
1 clauses.
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Suppose that we start from a satisfiable formula φi. Then there exists a proof for

which the verifier always accepts. By taking the corresponding values for the variables

xi, and extending it properly to the new variables y, all the clauses are satisfied.

Suppose that we start from a non satisfiable formula φi. Then for any proof (i.e.,

any truth values of variables), the verifier rejects for a proportion of at least (1 − β)
of the random strings. If the verifier rejects for a random string R, then in the set of

clauses corresponding to this variable at least one clause is not satisfied. It means that

among the C ′
12

|R| clauses (total number of clauses), at least (1 − β) · 2|R| are not

satisfied, i.e., a fraction (1−β)/C′
1 of the clauses.

Then either m = C ′
12

|R| = O(n) clauses are satisfiable, or at least m(1−β)/C′
1

clauses are not satisfied by each assignment. Distinguishing between these sets in time

2o(m) would determine whether φi is satisfiable or not in 2o(n). Doing this for each

φi would solve 3SAT in time poly(n)2ǫ
′n + 2ǫ

′nO(2o(n)) = O(2ǫn). This is valid for

any ǫ > 0 so it would contradict ETH.

The (conditional) hardness result of approximating MAX 3SAT stated in Lemma 12

will be the basis of the negative results of parameterized approximation in Section 3.2.1.

Let us now present two useful gap amplification results for MAX INDEPENDENT

SET. First, the so-called self-improvement property [71] can also be proven for MAX

INDEPENDENT SET in the case of parameterized approximation.

Lemma 13. If there exists a parameterized r-approximation algorithm for some

r ∈ (0, 1) for MAX INDEPENDENT SET, then this is true for any r ∈ (0, 1).

Also, the very powerful tool of expander graphs allows us to derive a gap amplifica-

tion for MAX INDEPENDENT SET, proved in Theorem 11. But first, in order to prove

the theorem, let us recall some basics about gap amplification and expander graphs.

Definition 8. A graph G is a (n, d, α)-expander graph if:

(i) G has n vertices;

(ii) G is d-regular;

(iii) all the eigenvalues λ of G but the largest one is such that |λ| 6 αd.

Lemma 14. For any positive integer k ∈ N∗ and any α > 0 there exist d and a

(k2, d, α)-expander graph. Moreover, d depends only on α, and this graph can be

computed in polynomial time for every fixed α.
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Proof. The lemma follows from the following two lemmata.

Lemma 15. [70, 79] For every positive integer k, there exists a (k2, 8, 5
√
2/8)-expander

graph, computable in polynomial time.

IfG is a graph with adjacency matrixM , let us denoteGk the graph with adjacency

matrix Mk. Then, the following lemma also holds.

Lemma 16. [112] If G is an (n, d, α)-expander graph, then Gk is an (n, dk, αk)-

expander graph.

Lemma 16. Gk is obviously dk regular, and the eigenvalues of Gk are the eigenvalues

of G to the power of k.

To complete the proof of the lemma, take α > 0 and let p be the smallest integer

such that (5
√
2/8)p 6 α. Graph Gp is as required and Lemma 14 is proved.

Let G be a graph on n vertices and H be a (n, d, α)-expander graph. Let t be a

positive integer. Build the graph G′
t on N = ndt−1 vertices: each vertex corresponds

to a (t − 1)-random walk x = (x1, · · · , xt) on H (meaning that x1 is chosen at

random, and xi+1 is chosen randomly in the set of neighbors of xi), and two vertices

x = (x1, · · · , xt) and y = (y1, · · · , yt) inG′
t are adjacent iff {x1, · · · , xt, y1, · · · , yt}

is a clique in G. Then, the following holds.

Theorem 10. [79] Let G be a graph on n vertices and H be a (n, d, α)-expander

graph. If b > 6α then, denoting by ω(G) the clique-number (size of a maximum clique)

of G, it holds that:

• if ω(G) 6 bn then ω(G′
t) 6 (b+ 2α)tN ;

• if ω(G) > bn then ω(G′
t) > (b− 2α)tN .

We are well prepared now to prove the following theorem.

Theorem 11. Let G be a graph on n vertices (for sufficiently large n) and a > b be

two positive real numbers. Then for any real r > 0 one can build in polynomial time a

graph Gr and specify constants ar and br such that:

(i) Gr has N 6 Cn vertices, where C is some constant independent of G (but may

depend on r);
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(ii) if ω(G) 6 bn then ω(Gr) 6 brN ;

(iii) if ω(G) > an then ω(Gr) > arN ;

(iv) br/ar 6 r.

Proof. Set k = ⌈√n⌉. We modify G by adding k2 − n dummy (isolated) vertices.

Let G′ be the new graph. It has n′ = k2 vertices. Note that n′ 6 (
√
n + 1)2 =

n+ 2
√
n+ 1 = n+ o(n). Let n be such that 1− ǫ 6 n/n′ 6 1 for a small ǫ. Due to

Lemma 14, we consider a (k2, d, α)-expander graph H for a sufficiently small α (the

value of which will be fixed later). According to Theorem 10 (applied on G′) we build

in polynomial time a graph G′
t on N = n′dt vertices such that (choosing α < b/6):

• if ω(G) 6 bn then ω(G′) = ω(G) 6 bn′, hence ω(G′
t) 6 (b+ 2α)tN ;

• if ω(G) > an then ω(G′) = ω(G) 6 an′(1− ǫ), hence ω(G′
t) > (a(1− ǫ)−

2α)tN .

We choose ǫ and α such that a(1− ǫ)− 2α > b+ 2α.

Then, we choose t such that (a(1−ǫ)−2α)t/(b+2α)t 6 r. The number of vertices of G′
t

is clearly linear in n (first point of the theorem). Then, br = (b + 2α)t and ar =

(a(1− ǫ)− 2α)t fulfill items (ii), (iii) and (iv) of theorem’s statement.

3.2 Some Consequences of (Almost-)Linear Size PCP System

3.2.1 Parameterized Inapproximability Bounds

It is shown in [38] that, under ETH, for any function f no algorithm running in time

f(k)no(k) can determine whether there exists an independent set of size k, or not (in a

graph with n vertices). A challenging question is to obtain a similar result for approxi-

mation algorithms for MAX INDEPENDENT SET. In the sequel, we propose a reduction

from MAX 3SAT to MAX INDEPENDENT SET that, based upon the negative result

of Corollary 7, only gives a negative result for some function f (because Corollary 7

only avoids some subexponential running times and not, for instance, time 2m/logm).

However, this reduction gives the inapproximability result sought, if the consequence

of LPC given in Lemma 12 (which strengthens Corollary 7 and seems to be a much

weaker assumption than LPC) is used instead. We emphasize the fact that the results in
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this section are valid as soon as a hardness result for MAX 3SAT as that in Lemma 12

holds.

The proof of the following theorem essentially combines the parameterized reduc-

tion in [38] and a classic gap-preserving reduction.

Theorem 12. Under LPC and ETH, there exists r < 1 such that no approxima-

tion algorithm for MAX INDEPENDENT SET running in time f(k)no(k) can achieve

approximation ratio r in graphs of order n.

Proof. We denote by N the number of vertices in a graph (to avoid confusion with the

number of variables in a formula). We will show that the existence of such an algorithm

for any r′ < 1 would contradict the hardness result for MAX 3SAT in Lemma 12,

hence ETH or LPC. Consider a constant r < 1. Let 0 < ǫ < 1 − r. We show that

the existence of an (r + ǫ)-approximation algorithm for MAX INDEPENDENT SET

running in time f(k)No(k) would allow to distinguish in time 2o(m) between instances

of MAX 3SAT where (1 − ǫ′)m clauses are satisfiable and instances where at most

(r + ǫ′)m clauses are satisfiable, for some ǫ′ > 0. W.l.o.g., we can assume that f is

increasing, and that f(k) > 2k.

Take an instance I of MAX 3SAT, let K be an integer that will be fixed later. We

build a graph GI as follows:

• partition the m clauses into K groups H1, · · · , HK each of them containing

roughly m/K clauses;

• each group Hi involves a number si 6 3m/K of variables; for all possible

values of these variables, add a vertex in the graph GI if these values satisfy at

least λm/K clauses in Hi (the value of λ will also be fixed later);

• finally, add an edge between two vertices if they have one contradicting variable.

In particular, the vertices corresponding to the same group of clauses form a clique. It

is easy to see that the so-constructed graph contains N 6 K23m/K vertices.

The following easy claim holds.

Claim 1. If a variable assignment A satisfies at least λm/K clauses in at most s groups,

then it satisfies at most λm+ (s(1−λ)m/K) clauses.
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Proof of claim. A satisfies at most m/K clauses in at most s groups, and at most λm/K

in the other K − s groups, so in total at most sm/K + (K−s)λm/K = λm+ s(1−λ)m/K,

that completes the proof of the claim. 3

Now, let us go back to the proof of the theorem. Assume an independent set of

size at least t in GI . Then one can achieve a partial solution that satisfies at least λm/K

clauses in at least t groups. So, at least tλm/K clauses are satisfiable. In other words,

if at most (r + ǫ′)m clauses are satisfiable, then a maximum independent set in GI

has size at most K · (r+ǫ′)/λ. Suppose that at least (1 − ǫ′)m clauses are satisfiable.

Then, using the claim, there exists a solution satisfying at least λm/K clauses in at least

((1−ǫ′−λ)/(1−λ)) ·K groups; otherwise, it should be λm + s(1−λ)m/K < (1 − ǫ′)m.

Then, there exists an independent set of size ((1−ǫ′−λ)/(1−λ)) ·K in GI .

Now, set K = ⌈f−1(m)/(1−ǫ2)⌉. Set also λ = 1− ǫ, and ǫ′ = ǫ3. Run the assumed

(r + ǫ)-approximation parameterized algorithm for MAX INDEPENDENT SET in GI

with parameter k = (1 − ǫ2)K. Then, if at least (1 − ǫ′)m clauses are satisfiable,

there exists an independent set of size at least ((1−ǫ′−λ)/(1−λ)) ·K = (1− ǫ3/ǫ)K =

(1−ǫ2)K = k; so, the algorithm must output an independent set of size at least (r+ǫ)k.

Otherwise, if at most (r+ ǫ′)m clauses are satisfiable, the size of an independent set is

at most K · (r+ǫ′)/λ = K · (r+ǫ3)/(1−ǫ) = k · (r+ǫ3)/((1−ǫ)(1−ǫ2)) = k(r + rǫ+ o(ǫ)).

So, for ǫ sufficiently small, the algorithm allows to distinguish between the two

cases of MAX 3SAT (for ǫ′), i.e., whether at least (1− ǫ′)m clauses are satisfiable, or

at most (r + ǫ)m clauses.

The running time of the algorithm is f(k)No(k), with f(k) = f((1− ǫ2)K) = m

and No(k) = Nk/ψ(k), for some increasing and unbounded function ψ. So, No(k) =

(K23m/K)k/ψ(k) = K23m(1−ǫ2)/ψ(k) = O(2o(m)).

The following result follows from Lemma 13 and Theorem 12.

Corollary 8. Under LPC and ETH, for any r ∈ (0, 1) there is no r-approximation

parameterized algorithm for MAX INDEPENDENT SET (i.e., an algorithm that runs in

time f(k)poly(n) for some function f ).

Let us now consider MIN DOMINATING SET which is known to be W[2]-hard [51].

The existence of a parameterized constant-factor approximation algorithm for this

problem is open [53].

Here, we present an approximation preserving reduction (fitting the parameterized

framework) which, given a graph G(V,E) on n vertices where V is a set of K cliques
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C1, · · · , CK , builds a graph G′(V ′, E′) such that G has an independent set of size α

if and only if G′ has a dominating set of size 2K − α. Using the fact that the graphs

produced in the proof of Theorem 12 are of this form (vertex set partitioned into

cliques), this reduction will allow us to obtain a lower bound (based on the same

hypothesis) for the approximation of MIN DOMINATING SET.

The graph G′ is built as follows:

• for each clique Ci in G, add a clique C ′
i of the same size in G′; add also: an

independent set Si of size 3K, each vertex in Si being adjacent to all vertices in

C ′
i and a special vertex ti adjacent to all the vertices in C ′

i;

• for each edge e = {u, v} with u and v not in the same clique in G, add an

independent set We of size 3K; suppose that u ∈ Ci and v ∈ Cj ; then, each

vertex in We is linked to ti and to all vertices in C ′
i but u, and to tj and to all

vertices in C ′
j but v.

Informally, the reduction works as follows. The set Si ensures that we have to take at

least one vertex in each C ′
i, the fact that |We| = 3K ensures that it is never interesting

to take a vertex in We. If we take ti in a dominating set, this will mean that we do not

take any vertex in the set Ci in the corresponding independent set in G. If we take one

vertex in C ′
i (but not ti), this vertex will be in the independent set in G. Let us state

this property in the following lemma.

Lemma 17. G has an independent set of size α if and only if G′ has a dominating set

of size 2K − α.

Proof. Suppose that G has an independent set S of size α. Then, S has one vertex

in α sets Ci, and no vertex in the other K − α sets. We build a dominating set T

in G′ as follows: for each vertex in S we take its copy in G′. For each clique Ci

without vertices in S, we take ti and an arbitrary vertex in C ′
i. The set T has size

α+ 2(K − α) = 2K − α. For each C ′
i, one of its vertices is in T ; so, vertices in C ′

i,

ti and vertices in Si are dominated. Now consider a vertex in We with e = {u, v},
u ∈ Ci and v ∈ Cj . If Ci ∩ S = ∅ (or Cj ∩ S = ∅), then ti ∈ T (or tj ∈ T ) and, by

construction, ti is adjacent to all vertices in We. Otherwise, there exist w ∈ S ∩ Ci

and x ∈ S ∩ Cj . Since S is an independent set, either w 6= u or x 6= v. If w 6= u, by

construction w (its copy in C ′
i) is adjacent to all vertices in We and, similarly, for x if

x 6= v. So, T is a dominating set.
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Conversely, suppose that T is a dominating set of size 2K − α. Since Si is an

independent set of size 3K, T cannot contain Si entirely, so at least one vertex inN(Si)

has to be in T . But any vertex in N(Si) dominates all the vertices in Si. Thus, we

can assume that T ∩ Si = ∅ and the same occurs with We. In particular, there exists

at least one vertex in T in each C ′
i. Now, suppose that T has two different vertices u

and v in the same C ′
i. Then, we can replace v by ti getting a dominating set (vertices

in Si are still dominated by u, and any vertex in some We which is adjacent to v is

adjacent to ti). So, we can assume that T has the following form: exactly one vertex in

each C ′
i, and K − α vertices ti. Hence, there are α cliques C ′

i, where ti is not in T .

We consider in G the set S constituted by the α vertices in T in these α sets. Take

two vertices u and v in S with, say, u ∈ Ci and v ∈ Cj (with ti 6∈ T and tj 6∈ T ). If

there were an edge e = {u, v} in G, neither u nor v would have dominated a vertex

in We (by construction). Since neither ti nor tj is in T , this set would not have been a

dominating set, a contradiction. So, S is an independent set.

Theorem 13. Under LPC and ETH, there exists an r > 1 such that there is no

r-approximation algorithm for MIN DOMINATING SET running in time f(k)no(k)

where n is the order of the graph.

Proof. In the proof of Theorem 12, we produce a graph GI which is made of K

cliques and such that: if at least (1− ǫ)m clauses are satisfiable in I , then there exists

an independent set of size (1 − O(ǫ))K; otherwise (at most (r + ǫ)m clauses are

satisfiable in I), the maximum independent set has size at most (r + O(ǫ))K. The

previous reduction transforms GI in a graph G′
I such that, applying Lemma 17, in the

first case there exists a dominating set of size at most 2K−(1−O(ǫ))K = K(1+O(ǫ))

while, in the second case, the size of a dominating set is at least 2K − (r+O(ǫ))K =

K(2− r−O(ǫ)). Thus, we get a gap with parameter k′ = K(1+O(ǫ)). Note that the

number of vertices in G′
I is n′ = n+K + 3K + 3K|EI | = O(n3) (where EI is the

set of edges in GI ). If we were able to distinguish between these two sets of instances

in time f(k′)n′o(k
′), this would allow to distinguish the corresponding independent set

instances in time f(k′)n′o(k′) = g(k)no(k) since k′ = K(1 + O(ǫ)) = k(1 + O(ǫ))

(k = K(1− ǫ3) being the parameter chosen for the graph GI ).

Such a lower bound immediately transfers to SET COVER since a graph on n

vertices for MIN DOMINATING SET can be easily transformed into an equivalent

instance of SET COVER with ground set and set system both of size n.
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Corollary 9. Under LPC and ETH, there exists r > 1 such that there is no r-appro-

ximation algorithm for SET COVER running in time f(k)mo(k) in instances with m

sets.

3.2.2 On the Approximability of MAX INDEPENDENT SET and Related

Problems in Subexponential Time

As mentioned in Section 3.1, an almost-linear size PCP construction [107] for 3SAT

allows to get the negative result stated in Corollary 7. In this section, we present further

consequences of Theorem 9, based upon a combination of known reductions with

(almost) linear size amplifications of the instance.

First, Theorem 9 combined with the reduction in [7] showing inapproximability

results for MAX INDEPENDENT SET in polynomial time and the gap amplification of

Theorem 11, leads to the following result.

Theorem 14. Under ETH, for any r > 0 and any δ > 0, there is no r-approximation

algorithm for MAX INDEPENDENT SET running in time O(2n
1−δ

), where n is the

order of the input graph.

Proof. Again, to avoid confusion we denote in this proof by N the number of vertices

in a graph. Given an ǫ > 0, let ǫ′ be such that 0 < ǫ′ < ǫ. Given an instance φ of

3SAT on n variables, we first apply the sparsification lemma [81] (with ǫ′) to get 2ǫ
′n

instances φi on at most n variables. Since each variable appears at most cǫ′ times in φi,

the global size of φi is |φi| 6 cǫ′n.

Consider a particular φi, r > 0 and δ > 0. We use the fact that 3SAT ∈ PCP1,r[(1+

o(1)) log |φ| + Dr, Er] (where Dr and Er are constants that depend only on r), in

order to build the following graph Gφi (see also [7]):

• for any random string R of size (1 + o(1)) log |φ|+Dr, and any possible value

of the Er bits read by V, add a vertex in the graph if V accepts;

• if two vertices are such that they have at least one contradicting bit (they read

the same bit which is 1 for one of them and 0 for the other one), add an edge

between them.

In particular, the set of vertices corresponding to the same random string is a clique.

Assume that φi is satisfiable. Then there exists a proof for which the verifier

accepts for any random string R. Take for each random string R the vertex in Gφi
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corresponding to this proof. There is no conflict (no edge) between any of these 2|R|

vertices, hence α(Gφi) = 2|R| (where, in a graph G, α(G) denotes the size of a

maximum independent set).

If φi is not satisfiable, then α(Gφi) 6 r2|R|. Indeed, suppose that there is an

independent set of size α > r2|R|. This independent set corresponds to a set of bits

with no conflict, defining part of a proof that we can arbitrarily extend to a proof Π. The

independent set has α vertices corresponding to α random strings (for which V accepts),

meaning that the probability of acceptance for this proof Π is at least α/2|R| > r, a

contradiction with the property of the verifier.

Furthermore, Gφi has N 6 2|R|2Er 6 C ′|φi|1+o(1) = Cn1+o(1) vertices (for

some constants C,C ′ that depend on ǫ′) since |φi| 6 cǫ′n. Then, one can see that, for

any r′ > r, an r′-approximation algorithm for MAX INDEPENDENT SET running in

timeO(2N
1−δ

) would allow to decide whether φi is satisfiable or not in timeO(2n
1−δ′

)

for some δ′ < δ. Doing this for each of the formula φi would allow to decide whether

φ is satisfiable or not in time poly(n)2ǫ
′n + 2ǫ

′nO(2n
1−δ′

) = O(2ǫn). This is valid

for any ǫ > 0 so it would contradict ETH.

Combining this reduction with the gap amplification of Theorem 11 allows to create

a gap with any constant in (0, 1). Since the reduction in this amplification is linear with

respect to the number of vertices, we get the claimed result.

Let us note that the result of Theorem 14 has been powerfully improved very

recently in [37], where it is proved that under ETH, for any δ > 0 any r larger than

some constant, any r-approximation algorithm for MAX INDEPENDENT SET must run

in at least 2n
1−δ/r1+δpoly(n) time.

Note also that, since (for k 6 n), nk
1−δ

= O(2n
1−δ′

), for some δ′ < δ, the

following holds.

Corollary 10. Under ETH, for any r > 0 and any δ > 0, there is no r-approximation

algorithm for MAX INDEPENDENT SET running in time O(nk1−δ

), where n is the

order of the input graph, and k is the size of a maximum independent set.

The results of Theorem 14 and Corollary 10 can be immediately extended to

problems that are linked to MAX INDEPENDENT SET by approximation preserving

reductions (that preserve at least constant ratios) that have linear amplifications of the

sizes of the instances, as in the following proposition.
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Proposition 8. Under ETH, for any r > 0 and any δ > 0, there is no r-approximation

algorithm for either MAX SET PACKING or MAX COMPLETE BIPARTITE SUBGRAPH

running in time O(2n
1−δ

) in a graph of order n.

Proof. Consider the following reduction from MAX INDEPENDENT SET to MAX

COMPLETE BIPARTITE SUBGRAPH given in [118]. Let G(V,E) be an instance

of MAX INDEPENDENT SET of order n. Construct a graph G′(V ′, E′) for MAX

COMPLETE BIPARTITE SUBGRAPH by taking two distinct copies of G (denote them

by G1 and G2, respectively) and adding the following edges: a vertex vi1 of copy G1 is

linked with a vertex vj2 of G2, if and only if either i = j or (vi, vj) ∈ E. The graph G′

has 2n vertices.

Let now S be an independent set of G. Then, obviously, taking the two copies of S

in G1 and G2 induces a bipartite graph of size 2|S|. Conversely, consider an induced

bipartite graph in G′ of size t, and take the largest among the two color classes. By

construction, it corresponds to an independent set in G, whose size is at least t/2 (note

that it cannot contain 2 copies of the same vertex). So, any r-approximate solution

for MAX COMPLETE BIPARTITE SUBGRAPH in G′ can be transformed into an r-

approximate solution for MAX INDEPENDENT SET in G. Observe finally that the size

of G′ is two times the size of G.

Dealing with minimization problems, Theorem 14 and Corollary 10 can be extended

to COLORING, using the reduction given in [98].

Note that this reduction uses the particular structure of graphs produced in the

inapproximability result in [7] (as in Theorem 14). Hence, the following result can be

derived.

Proposition 9. Under ETH, for any r > 1 and any δ > 0, there is no r-approximation

algorithm for COLORING running in time O(2n
1−δ

) in a graph of order n.

Proof. In [98] the following reduction is presented. Given a graph G whose vertex

set is partitioned into K cliques each of size S, and given a prime number q > S, a

graph Hq having the following properties can be built in polynomial time:

• the vertex set of Hq is partitioned into q2K cliques, each of size q3;

• α(Hq) 6 max{q2α(G); q2(α(G)− 1) +K; qK};

• if α(G) = K, then χ(Hq) = q3.
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Fix a ratio r > 1, and let rIS > 0 be such that rIS + r2IS 6 1/r. Start from the

graph Gφi produced in the proof of Theorem 14 for ratio rIS . The vertex set of Gφi is

partitioned into K = 2|R| cliques, each of size at most 2Er . By adding dummy vertices

(a linear number, since Er is a fixed constant), we can assume that each clique has the

same size S = 2Er , so the number of vertices in Gφi is N = KS = 2|R|2Er .

Let q > max{S, 1/rIS} be a prime number, and consider the graph Hq produced

from Gφi by the reduction in [98] mentioned above. If φi is satisfiable, α(Gφi) = K

and then by the third property of the graph Hq, χ(Hq) = q3. Otherwise, by the

second property α(Hq) 6 max{q2α(Gφ); q
2(α(Gφ) − 1) + K; qK}. Formula φi

being not satisfiable, α(Gφi) 6 rISK. By the choice of q, qK 6 q2rISK, so

α(Hq) 6 q2rISK +K = (q2rIS + 1)K. Since the number of vertices in Hq is Kq5,

we get that χ(Hq) > q5/(q2rIS+1). The gap created for the chromatic number in the

two cases is then at least:

q5

(q2rIS + 1) q3
=

1

rIS + 1/q2
>

1

rIS + r2IS
> r

The result follows since Hq has Kq5 vertices and q is a constant (that depends only on

the ratio r and on the constant number of bits p read by V), so the size of Hq is linear

in the size of Gφi .

Concerning the approximability of MIN VERTEX COVER and MIN SAT in subex-

ponential time, the following holds.

Proposition 10. Under ETH, for any ǫ > 0 and any δ > 0, there is no ((7/6)− ǫ)-app-

roximation algorithm for MIN VERTEX COVER running in time O(2n
1−δ

) in graphs of

order n, nor for MIN SAT running in time O(2m
1−δ

) in CNF formulæ with m clauses.

Proof. We combine the following theorem with a well known reduction.

Theorem 15. [107] Under ETH, for every ǫ > 0, and δ > 0, it is impossible to

distinguish between instances of MAX 3-LIN with m equations where at least (1− ǫ)m
are satisfiable from instances where at most ((1/2) + ǫ)m are satisfiable, in time

O(2m
1−δ

).

Consider an instance I of MAX 3-LIN on m equations. Build the following

graph GI :
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• for any equation and any of the eight possible values of the 3 variables in it, add

a vertex in the graph if the equation is satisfied;

• if two vertices are such that they have one contradicting variable (the same

variable has value 1 for one vertex and 0 for the other one), then add an edge

between them.

In particular, the set of vertices corresponding to the same equation is a clique. Note

that each equation is satisfied by exactly 4 values of the variables in it. Then, the

number of vertices in the graph is N = 4m. Consider an independent set S in the

graph GI . Since there is no conflict, it corresponds to a partial assignment that can

be arbitrarily completed into an assignment τ for the whole system. Each vertex in S

corresponds to an equation satisfied by τ (and S has at most one vertex per equation), so

τ satisfies (at least) |S| equations. Reciprocally, if an assignment τ satisfies α clauses,

there is obviously an independent set of size α in GI . Hence, if (1− ǫ)m equations are

satisfiable, there exists an independent set of size at least (1− ǫ)m, i.e., a vertex cover

of size at most N − (1− ǫ)m = N(3/4 + ǫ/4). If at most ((1/2) + ǫ)m equations are

satisfiable, then each vertex cover has size at least N − ((1/2) + ǫ)m = N(7/8− ǫ/4).

We now handle the MIN SAT problem via the following reduction [101]. Given

a graph G, build the following instance on MIN SAT. For each edge {vi, vj} add a

variable xij . For each vertex vi add a clause ci. Variable xij appears positively in ci
and negatively in cj . Then, take a vertex cover V ∗ of size k; for any xij , fix the variable

to true if vi ∈ V ∗, to false otherwise. Consider a clause cj with vj 6∈ V ∗. If xij is

in cj then vi is in V ∗, hence xij is true; if xji is in cj then, by construction, xji is

false. So cj is not satisfied, and the assignment satisfies at most k clauses. Conversely,

consider a truth assignment that satisfies k clauses ci1 , · · · , cik . Consider the vertex

set V ∗ = {vi1 , · · · , vik}. For an edge {vi, vj}, if xij is set to true, then ci is satisfied

and vi is in V ∗; otherwise, cj is satisfied and vj is in V ∗; so V ∗ is a vertex cover of

size k. Since the number of clauses in the reduction equals the number of vertices in

the initial graph, the result is concluded.

All the results given in this section are valid under ETH and rule out some ratios in

subexponential time of the form 2n
1−δ

. It is worth noticing that if LPC holds, then all

these results would hold for any subexponential time (in contrast to the result of [37] for

MAX INDEPENDENT SET that holds only for the form 2n
1−δ

). Note that this is in some

sense optimal since it is easy to see that, for any increasing and unbounded function
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r(n), MAX INDEPENDENT SET is approximable within ratio 1/r(n) in subexponential

time (simply consider all the subsets of V of size at most n/r(n) and return the largest

independent set among these sets).

Corollary 11. Under LPC and ETH Theorem 14 and Propositions 8, 9 and 10 hold

for any time complexity 2o(n).

Indeed, using LPC, the same proof as in Theorem 14 creates for each φi a graph on

N = O(n) variables with either an independent set of size αN (if φi is satisfiable) or a

maximum independent set of size at most (α/2)N (if φi is not satisfiable). Then using

expander graphs, usual arguments allow to amplify this gap from 1/2 to any constant

r > 0 while preserving the linear size of the instance (see Theorem 11). Results for

the other problems immediately follow from the same arguments as above.

3.3 Subexponential Approximation Preserving Reducibility

In this section, we study subexponential approximation preserving reducibility. Recall

that APETH(Π) (Hypothesis 1) states that it is hard to approximate in subexponential

time problem Π, within some constant ratio r. We exhibit that a set of problems are

APETH-equivalent using the notion of approximation preserving sparsification. We

then link APETH with approximation in subexponential FPT-time.

3.3.1 Approximation Preserving Sparsification and APETH

Equivalences

We first informally describe the basic idea behind sparsification [81] and its use for

deriving lower bounds in exact computation. Assuming a reference problem Π′ cannot

be solved in O∗(λn), for some λ > 1, we are interested in showing that another

problem Π cannot be solved in O∗(f(λ)n). For instance, if the reference problem is

SAT and λ = 2, our assumption is the Strong ETH (SETH).

For doing this, we use reductions from Π′ to Π. Note that one can easily derive

negative results if there exists a linear reduction from Π′ to Π (i.e., a reduction with

linear instance-size amplification). Although, linear reductions are quite rare, so that

approach is limited. Yet, reductions where Π′ is a graph problem, amplifying the

instance to a size O(n+m) where n is the number of vertices and m the number of

edges (or, dealing with some satisfiability problem, n is the number of variables, and m
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the number of clauses) are much less rare. But, in general m is not linear in n but

quadratic.

A way to overcome that issue is to “sparsify” instances of Π′, producing, from an

instance I , γ(n) instances where the number of edges is linear to n and to prove that,

for at least one of them, an optimal solution is also (or can be transformed in time at

most O∗(γ(n)) into) an optimal solution for I . We then apply the reduction to all of

these sparsified instances.

The sparsifier for SAT, presented in [81], shows that for every integer k > 3, and

every ε > 0 there exists a constant Cε,k and 2εn Cε,k-sparse instances of k-SAT whose

disjunction is equivalent to the initial instance. But, as noticed above this idea does

not work for approximation.

Recall that the sparsification lemma for 3SAT reduces a formula φ to a set of formu-

las φi with bounded occurrences of variables such that solving the instances φi would

allow to solve φ. We attempt to build an analogous construction for subexponential

approximation using the notion of approximation preserving sparsification.

Given an optimization problem Π and some parameter of the instance, Π-B denotes

the problem restricted to instances where the parameter is at most B. For example,

we can prescribe the maximum degree of a graph or the maximum number of literal

occurrences in a formula as the parameter.

Note that we could consider a more general definition, leading to the same theorem,

by allowing:

• a slight amplification of the size of Ii (ni 6 αn for some fixed α in item 1)

• an expansion of the ratio in item 3 (if Si is r-approximate S is h(r) approximate

where h(r) goes to 1 when r goes to 1)

• a computation time 2ǫnpoly(n) for g in item 4.

With a slight abuse of notation, let APETH(Π-B) denote the hypothesis: ∃B such that

APETH(Π-B), meaning that Π is hard to approximate in subexponential time even for

some bounded parameter family of instances. Then the following holds:

Theorem 16. If there exists an approximation preserving sparsification from Π to

Π-B, then APETH(Π) if and only if APETH(Π-B).

Proof. Obviously, APETH(Π) is implied by APETH(Π-B). Now, assume APETH(Π)

holds, for some ratio r. We show that APETH(Π-B) holds for the same ratio. Let
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Definition 9. An approximation preserving sparsification from a problem Π
to a bounded parameter version Π-B of Π is a pair (f, g) of functions such

that, given any ǫ > 0 and any instance I of Π:

1. f maps I into a set f(I, ǫ) = (I1, I2, . . . , It) of instances of Π, where

t 6 2ǫn and ni = |Ii| 6 n; moreover, there exists a constant Bǫ

(independent on I) such that any Ii has parameter at most Bǫ;

2. for any i 6 t, g maps a solution Si of an instance Ii (in f(I, ǫ)) into a

solution S of I;

3. there exists an index i 6 t such that if a solution Si is an r-
approximation in Ii, then S = g(I, ǫ, Ii, Si) is an r-approximation

in I;

4. f is computable in time 2ǫnpoly(n), and g is computable in time poly-

nomial in |I|.

ǫ > 0, ǫ′ = ǫ/2, and suppose that Π-B is r-approximable in time 2ǫ
′npoly(n). Then

given an instance I of Π, compute f(I, ǫ′) (in time 2ǫ
′npoly(n)). For each of the t in-

stances Ii, compute an r-approximate solution Si in time 2ǫ
′nipoly(ni) = 2ǫ

′npoly(n),

and use g to transform Si into a solution S for I . Let S∗ be the best of these solutions.

We obtain S∗ in time 2ǫ
′n2ǫ

′npoly(n) = 2ǫnpoly(n). By item 3 of Definition 9, S∗ is

an r-approximation of I . We can do this for any ǫ, leading to a contradiction.

We now illustrate this technique on some problems. It is worth noticing that the

sparsification lemma for 3SAT in [81] is not approximation preserving2; one cannot

use it to argue that approximating MAX 3SAT (in subexponential time) is equivalent to

approximating MAX 3SAT with bounded occurrences.

Proposition 11. There exists an approximation preserving sparsification from MAX

INDEPENDENT SET to MAX INDEPENDENT SET-B and one from MIN VERTEX

COVER to MIN VERTEX COVER-B.

2One of the reasons is that when a clause C is contained in a clause C′, a reduction rule removes C′,

that is safe for the satisfiability of the formula, but not when considering approximation.
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Proof. Let ǫ > 0. It is well known that the positive root of 1 = x−1 + x−1−B goes

to one when B goes to infinity. Then, consider a Bǫ such that this root is at most 2ǫ.

Our sparsification is obtained via a branching tree: the leaves of this tree will be the

set of instances Ii; f consists of building this tree; a solution of an instance in the

leaf corresponds, via the branching path leading to this leaf, to a solution of the root

instance, and that is what g makes.

More precisely, for MAX INDEPENDENT SET, consider the following usual branch-

ing tree, starting from the initial graph G: as long as the maximum degree is at least Bǫ,

consider a vertex v of degree at least Bǫ, and branch on it: either take v in the indepen-

dent set (and remove N [v]), or do not take it. The branching stops when the maximum

degree of the graph induced by the unfixed vertices is at most Bǫ− 1. When branching,

at least Bǫ + 1 vertices are removed when taking v, and one when not taking v; thus

the number of leaves is t 6 2ǫn (by the choice of Bǫ). Then, f and g satisfy items 1

and 2 of the definition. For item 3, it is sufficient to note that g maps Si in S by

adding adequate vertices. Then, if we consider the path in the tree corresponding to an

optimal solution S∗, leading to a particular leaf Gi, we have that |S∗| = |S∗ ∩Gi|+ k

for some k > 0, and the solution S computed by g is of size |S| = |Si| + k. So,
|S|/|S∗| > |Si|/|S∗∩Gi| > r if Si is an r-approximation for Gi. The same argument

holds also for MIN VERTEX COVER.

Analogous arguments apply more generally to any problem where we have a

“sufficiently good” branching rule when the parameter is large. Indeed, suppose we

can ensure the decrease in instance size by g(B) for non decreasing and unbounded

function g in all (possibly except for one) branches. Then such a branching rule can be

utilized to yield an approximation preserving sparsification as in Proposition 11.

We give another approximation preserving sparsification, where there is no direct

branching rule allowing to remove a sufficiently large number of vertices.

Let GENERALIZED DOMINATING SET be defined as follows: given a graph

G(V,E) where V is partitioned into V1, V2, V3, we ask for a minimum size set of

vertices V ′ ⊆ V1 ∪ V2 which dominates all vertices in V2 ∪ V3. Of course, the

case V2 = V corresponds to the usual MIN DOMINATING SET problem. Note that

GENERALIZED DOMINATING SET is also a generalization of SET COVER, with

V2 = ∅, V3 being the ground set and V1 being the set system.

Proposition 12. There exists an approximation preserving sparsification from GEN-

ERALIZED DOMINATING SET to GENERALIZED DOMINATING SET-B.
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Proof. Let ǫ > 0, and consider the following branching algorithm, where B′ > 4 will

be specified later (as a function of ǫ):

1. remove all edges between two vertices in V1, as well as all edges between two

vertices in V3;

2. if there exists a vertex v ∈ V1 of degree at least B′, branch on it;

3. otherwise, if there exists a vertex v ∈ V2 of degree at least B′2, branch on it;

4. otherwise, if there exists a vertex v ∈ V3 of degree at least B′3, branch on a

neighbor of v.

Note that branching on a vertex v in V1 or V2 means that if v is taken, then v is removed

from the graph, its neighbors in V2 are transferred to V1 (they are already dominated),

while its neighbors in V3 are removed from the graph. If v is not taken, if it is in V1
then it is removed from the graph, and if it is in V2 then it is transferred to V3 (we still

need to dominate it).

By principle, in a leaf of the tree, each vertex in V1 has degree at most B′, while

each vertex in V2 has degree at most B′2, and each vertex of V3 has degree at most B′3.

Then the graph has bounded maximum degree B = B′3.

However, when branching it might be the case that only at most one vertex is

removed from the graph in each branch. To show that the number of leaves in the tree is

indeed sufficiently small, we change the branching measure by introducing appropriate

weights on the vertices of the graph. Let w1 = min{1/2, 1/4+ d(v)/4B′} be the weights

of vertices in V1, w2 = min{1, 3/4+ d(v)/4B′} and w3 = 1/2 be the weights of vertices

in V2 and V3 respectively. Then the global weight of G is W (G) 6 n.

Consider a branching step on a vertex v ∈ V1 corresponding to item 2 of the

algorithm: if v is taken, the weight of the instance is reduced by at least (1/2) + (B
′
/4)

(1/2 for v, and at least 1/4 for each of its neighbors). If v is not taken, then the weight is

reduced by 1/2.

In a branching step on a vertex v ∈ V2 corresponding to item 3 of the algorithm, if

v is taken, the weight of the instance is reduced by at least 1+B′2
/B′ = 1+B′. Indeed,

there is a weight-reduction of 1/2 for v, and of at least 1/B′ for each of its neighbors,

since we know that every vertex in V1 has degree at most B′ − 1. If v is not taken, the

weight reduces by at least 1/4.

In a branching step on a vertex w ∈ V1 ∪ V2 neighbor of v corresponding to item 4,

when w is taken v is removed, so the degree of at least B′3 vertices decreases by 1.
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Since vertices in V1 and V2 have degree at most B′ − 1 and B′2 − 1 respectively, the

total weight is reduced by at least B′3
/B′2 = B′. When w is not taken, the weight is

reduced by at least 1/4.

Then, it suffices to choose B′ sufficiently large such that the branching factor of

these three branchings is at most 2ǫ.

The fact that an approximate solution on a leaf can be transferred to an approximate

solution to the root is completely similar to the case of independent set.

Combining Proposition 12 with some reductions, the following can be shown.

Lemma 18. APETH(MIN DOMINATING SET) implies APETH(MAX INDEPENDENT

SET-B).

Proof. Using Proposition 12, it holds that:

APETH(MIN DOMINATING SET) ⇒ APETH(GENERALIZED DOMINATING SET)

⇒ APETH(GENERALIZED DOMINATING SET-B)

Consider an instance G = (V1, V2, V3, E) of GENERALIZED DOMINATING SET-B,

and use the following reduction (adapted from [109] to this generalized version). Build

a graph G′ = (V ′, E′) where:

• for each vertex v in V2 ∪ V3, consider a clique Cv of size |N [v] ∩ (V1 ∪ V2)|,
where each vertex of Cv corresponds to one vertex in N [v]∩ (V1∪V2) (note that

cliques are disjoint; if a vertex is in the neighborhood of two such vertices, there

will be two different vertices in G′); such vertices will be informally referred to

as vertices in the cliques;

• for each vertex v in V1∪V2, add a vertex v′ inG′, and link v′ to all its homologous

vertices in the cliques (there is at most one per clique); hence, if v ∈ V1 ∪ V2
has t neighbors in V2 ∪ V3, v′ will be linked to t vertices; such vertices v′ will

be informally referred to as vertices not in the cliques or vertices outside the

cliques.

Note that the size of each clique Cv is at most B, so there is at most Bn vertices in all

the cliques. There are |V1| 6 n vertices v′, so |V ′| 6 (B+1)n, the reduction has linear

size (with respect to n). Each vertex in a clique has degree at most (B − 1) + 1 = B,

and each vertex v′ has degree at most B, so G′ has degree at most B.
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Let D be a generalized dominating set of G. For each vertex v in V2 ∪ V3, there

exists a vertex w ∈ D dominating it. We select the corresponding vertex in G′ in

the clique Cv. This adds up to |V2 ∪ V3| vertices. Moreover, for each vertex v in

V1 ∪ V2 which is not in D, we select the corresponding vertex v′; hence, we select

|V1 ∪ V2| − |D| more vertices. By construction, this is an independent set S in G′ of

size |S| = |V1|+ 2|V2|+ |V3| − |D|.
Conversely, take an independent set S of G′. Suppose that S contains no vertex

from a clique Cu. Then we can add a vertex from Cu to S, and (possibly) remove

the vertex v′ which was adjacent to it. We get an independent set of at least the

same size. By repeating the argument, we can assume that S takes one vertex from

each clique Cu. Consider in G the set D of vertices that corresponds to vertices v′

(which are not in cliques) in G′ that are not in S. Note that S is made of |V2|+ |V3|
vertices in the cliques and |V1|+ |V2| − |D| vertices outside the cliques. So, we have

|D| = |V1|+2|V2|+ |V3| − |S|. Consider now a vertex v in V2 ∪ V3. There is a vertex

w ∈ S in the clique Cv , so the vertex v′ adjacent to this vertex w is not in S, hence its

corresponding vertex is in D. Then, D is a generalized dominating set.

Suppose that we have an r-approximate solution S in G′: |S| > rα(G′), we

can build a solution D of size |D| 6 |V1| + 2|V2| + |V3| − rα(G′) = rγ(G) +

(1 − r)(|V1| + 2|V2| + |V3|) where γ(G) is the size of a generalized dominating set

in G. Since vertices in V1 and V2 have degree at most B, we know that γ(G) >

(|V2|+|V3|)/B. Note that each vertex in V1 has at least one neighbor (otherwise, it can

be removed from the graph), so that there are at most |V1| 6 B(|V2| + |V3|). Then

|V1|+ 2|V2|+ |V3| 6 (B + 2)(|V2|+ |V3|) 6 B(B + 2)γ(G). Putting all the above

together, we get |D| 6 γ(G)(r + (1− r)B(B + 2)).

Note that similarly, APETH(SET COVER) implies APETH(MAX INDEPENDENT

SET-B), when the complexity of SET COVER is measured by n+m.

Then, we have the following set of equivalent problems.

Theorem 17. SET COVER, MAX INDEPENDENT SET, MAX INDEPENDENT SET-

B, MIN VERTEX COVER, MIN VERTEX COVER-B, MIN DOMINATING SET, MIN

DOMINATING SET-B, MAX CUT-B, MAX kSAT-B (for any k > 2) are APETH-

equivalent.

Proof. Equivalence between MIN VERTEX COVER-B, MAX INDEPENDENT SET-B,

MAX CUT-B, MAX-3SAT-B, 2SAT-B, MIN DOMINATING SET-B follow immedi-

ately from [109]. Indeed, for these problems [109] provides L-reductions with linear
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size amplification. The equivalence between MAX kSAT-B problems is also well

known (just replace a clause of size k by k − 1 clauses of size 3).

The equivalence between MAX INDEPENDENT SET and MAX INDEPENDENT SET-

B, MIN VERTEX COVER and MIN VERTEX COVER-B follows from Proposition 11.

Finally, Lemma 18 allows us to conclude for MIN DOMINATING SET.

3.3.2 APETH and Parameterized Approximation

The equivalence drawn in Theorem 17 gives a first intuition that the corresponding

problems should be hard to approximate in subexponential time for some ratio. In

this section we show another argument towards this hypothesis: if it fails, then any

MaxSNP problem admits for any r < 1 a parameterized r-approximation algorithm in

subexponential time 2o(k), which would be quite surprising. The following theorem

can be construed as an extension of [33].

Theorem 18. The following statements are equivalent:

(i) APETH(Π) holds for one (equivalently all) problem(s) in Theorem 17;

(ii) there exist a MaxSNP-complete problem Π, some ratio r < 1 and a constant

ǫ > 0 such that there is no parameterized r-approximation algorithm for Π with

running time O(2ǫkpoly(|I|));

(iii) for any MaxSNP-complete problem Π, there exist a ratio r < 1 and an ǫ >

0 such that no parameterized r-approximation algorithm for Π can run in

time O(2ǫkpoly(|I|)).

Proof. (i)⇒ (ii): We show it for Π =MAX INDEPENDENT SET-B, which is MaxSNP-

complete. Suppose that for any r and any ǫ there is a parameterized r-approximation

algorithm A which runs in time O(2ǫk). Given an instance G of MAX INDEPENDENT

SET-B, we run A on the instance (G, k) for k = 1 to n. Consider the largest k for

which an independent set is given: it has size at least ρ · k, while the optimum is at

most k since no solution is output for k + 1. Since k 6 n, the overall iteration takes

n · 2o(n)-time.

(ii)⇒ (iii): suppose that (iii) is false, and consider a MaxSNP-complete problem Π2

which admits for every ǫ′ > 0 and every r′ < 1 a parameterized r-approximation

algorithm running in time 2ǫkpoly(|I|). Then, as we will show, this is true for any

MaxSNP problem, contradicting (ii).
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Indeed, let Π1 be a MaxSNP problem. There exists an L-reduction from Π1 to Π2,

let α and β be the constants of the L-reduction. Let (I1, k) be an instance of Π1 and

let (I2, α · k) be the instance of Π2, where I2 := f(I1) defined by the L-reduction.

Let r ∈ (0, 1) and ǫ > 0, and let A be a parameterized r′-approximation of Π2 which

runs in time 2ǫ
′kpoly(|I|) where r′ = 1− (1−r)/(αβ) < 1 and ǫ′ = ǫ/α. We present an

algorithm which uses A as a subroutine and produces in time 2ǫkpoly(|I|) a solution

of Π1 of size at least rk whenever opt(I1) > k.

Suppose that opt(I1) > k. We iteratively runA over the instances (I2, αk), (I2, αk−
1), · · · by decreasing the parameter. Let lb > αk be the first integer for which thatA re-

turns a solution, let us call it sol2, of size at least r′lb upon (I2, lb). Let sol1 := g(sol2),

where g is defined by the L-reduction. Note that if opt(I2) > αk then sol2 > αr′k; if

opt(I2) 6 αk, then lb > opt(I2) hence sol2 > r′opt(I2).

Now, from the property ofL-reduction, we have opt(I1)−sol1 6 β(opt(I2)−sol2),
or equivalently sol1 > opt(I1)− β(opt(I2)− sol2). By considering the two previous

cases, and the fact that opt(I2) 6 αopt(I1) we easily get that whenever opt(I1) > k,

the iterative applications of A combined with the algorithm g returns a solution sol1 of

size at least (1− αβ(1− r′))k = rk. It is easily verified that the overall algorithms

performs O(2ǫk · poly(|I1|)) steps.

(iii)⇒ (i): Suppose that for any r and any ǫ there is an r-approximation algorithm

for MAX INDEPENDENT SET-B with running time O(2ǫn). Given a graph G and

an integer k, if k 6 n/(B+1) we output an independent set of size n/(B+1) (any

maximal independent set). Otherwise, we compute an r-approximate solution S in time

O(2ǫ
′n) = O(2ǫk) for ǫ′ = ǫ/(B+1). If |S| > rk we output it, otherwise ropt(G) 6

|S| < rk, hence opt(G) < k. This contradicts (iii) for MAX INDEPENDENT SET-

B.

As an interesting complement of the above theorem, we show that trade-offs

between (exponential) running time and approximation ratio do exist for any MaxSNP

problem. In [31], it is shown that every MaxSNP problem Π is fixed-parameter tractable

in time 2O(k) for the standard parameterization, while in [109] it is shown that Π is

approximable in polynomial time within a constant ratio ρΠ. We prove here that there

exists a family of parameterized approximation algorithms achieving ratio ρΠ + ǫ, for

any ǫ > 0, and running in time 2O(ǫk). This is obtained as a consequence of a result

in [91].
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Proposition 13. Let Π be a standard parameterization of a MaxSNP-complete problem.

For any ǫ > 0, there exists a parameterized (ρΠ + ǫ)-approximation algorithm for Π

running in time γǫk · poly(|I|) for some constant γ.

Proof. Given a parameter k and a set of constraints with at most c variables per

constraint, the problem MAX c-CSP ABOVE AVERAGE asks if there is a variable

assignment that satisfies at least ρ ·m+k constraints. Here ρ is the expected fraction of

constraints satisfied by a uniform random assignment. In [91], the following theorem

is proved.

Theorem 19. ([91]) For every c > 2, MAX c-CSP ABOVE AVERAGE can be solved

in time O(γk ·m), where γ is a constant depending only on c.

Let Π be a problem in the class MaxSNP, defined in the standard way by maxS |{x :

φ(x,G, S)}|. As shown in [109], for each of the (polynomially many) possible val-

ues xi of x, consider the corresponding formula φi(G,S) = φ(xi, G, S). Since φ is

fixed, this is a fixed size formula involving (at most) a fixed number t of variables (cor-

responding to the predicate S). The goal is then to find S satisfying the largest number

of formulas φi. Let ρΠ be the expected fraction of constraints satisfied by a uniform

random assignment. It is easy to find deterministically an assignment satisfying as

many formulas as a random one, so Π is ρΠ-approximable in polynomial time. Note

that Π can be interpreted as a MAX c-CSP parameterized by the number of satisfied

constraints.

To get the claimed (ρΠ + ǫ)-approximation algorithm for 0 6 ǫ 6 1− ρΠ, we run

the algorithmA given in Theorem 19 on the instance ({φi : 1 6 i 6 m}, k′) (wherem

is the number of formulas φi). We take k′ so that it satisfies ρΠ ·m+ k′ = k(ρΠ + ǫ).

If k formulas are satisfiable, then, clearly, k(ρΠ + ǫ) formulas are also satisfiable, so

the algorithm will output an assignment satisfying at least this number of constraints

(formulas). The running time is γk
′

poly(n). The claim holds since k′ = ǫk−ρΠ(m−k)
and k 6 m.

3.4 Recent Advances

Soon after the results of the previous sections of this chapter were published, Theo-

rem 14 has been powerfully improved by [37], where an implementation of PCP [107]

leads to the following theorem.
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Theorem 20. [37] Under ETH, in graphs of order n with maximum degree ∆:

1. (General graphs) for any δ > 0 and any r larger than some constant, any

r-approximation algorithm for MAX INDEPENDENT SET runs in time at least

O∗(2n
1−δ/r1+δ);

2. (∆-sparse graphs3) for any sufficiently small ε > 0, there exists a constant ∆ε,

such that for any ∆ > ∆ε, MAX INDEPENDENT SET on ∆-sparse graphs is not

∆1−ε-approximable in time O∗(2n
1−ε/∆1+ε

).

Our goal now is to capitalize on those results to derive inapproximability in subex-

ponential time results for several other fundamental problems as MIN DOMINATING

SET, MIN FEEDBACK VERTEX SET, etc. To do so, we propose two new sparsifiers in

Section 3.5 and Section 3.6.

The first sparsifier, called superlinear sparsifier, generalizes the (linear) sparsifier

introduced in Section3.3. The superlinear sparsifier relaxes the requirement that Bǫ

has to be constant and allows the sparsification tree to stop even for non-constant

degrees. For simplicity, we present this sparsifier for the case of MAX INDEPENDENT

SET and MIN VERTEX COVER, but similar sparsifiers can be developed for several

other problems, in particular for the APETH-equivalent problems. As previously, this

more general sparsifier allows the transfer of negative results to problems linked to

MAX INDEPENDENT SET, or to MIN VERTEX COVER, by approximability preserving

reductions building instances of size O(n+m), where m denotes the number of edges

of the input graph.

The second sparsifier devised in Section 3.6, is called k-step sparsifier and runs

in polynomial time. It deals with problems whose solutions satisfy some domination

property (as MAX INDEPENDENT SET, MIN DOMINATING SET, MIN INDEPENDENT

DOMINATING SET, and MIN VERTEX COVER) and gives quite interesting results

when handling maximization problems.

Using either superlinear or k-step sparsifier, together with gap-preserving reduc-

tions, we prove in Section 3.7 rather strong negative subexponential inapproximability

results for several fundamental problems.

More precisely:

• via superlinear sparsifier we show that under ETH, and for any ε > 0, none of

MIN DOMINATING SET, MIN SET COVER, MIN HITTING SET, MIN FEEDBACK

3Graphs where the maximum degree is bounded by ∆.
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VERTEX SET, MIN INDEPENDENT DOMINATING SET, and MIN FEEDBACK

ARC SET can be (7/6− ε)-approximable in time O∗(2n
1−2ε

);

• via k-step sparsifier we show that under ETH, for any ε > 0 and any ∆ < ∆ε,

in ∆-sparse graphs and in time O∗(2O(n1−ε/∆1+ε
ε )), MAX INDEPENDENT SET,

MAX ℓ-COLORABLE INDUCED SUBGRAPH and MAX INDUCED PLANAR

SUBGRAPH are inapproximable within ratios ∆/2 − (∆ε/2 − ∆1−ε
ε ), ∆/2 −

(∆ε/ℓ−∆1−ε
ε ) and ∆− (∆ε −∆1−ε

ε ), respectively;

• finally, using Item 1 of Theorem 20 we show that under ETH, for any δ > 0 and

any r > n1/2−δ, MAX MINIMAL VERTEX COVER and MIN INDEPENDENT

DOMINATING SET are inapproximable within ratios (c+r)/(1+c) and 1/(1−c)

respectively, in less than O∗(2n
1−δ/r1+δ) time, in a graph of order nr, with c the

stability ratio of the MAX INDEPENDENT SET-instance of [37].

Our technique for proving negative results via approximation preserving sparsification

(on graph problems) can be outlined as follows. Let Π be some problem inapproximable

in time O∗(2n
1−ǫ

), for any ǫ > 0, Π′ be some problem such that Π reduces to Π′ by

some approximation preserving reduction R that works in polynomial time and builds

instances of Π′ of size n +m, and let F be a superlinear approximation preserving

sparsifier for Π. Then, for an instance G of Π we do the following:

− apply F to G in order to build at most O∗(2n
1−ǫ

) nǫ-sparse instances Gi;

− transform any sparse instance Gi into an instance G′
i of Π′;

− if Π is not approximable in time O∗(2n
1−ǫ

) within ratio r and if R transforms

any ratio r′ for Π′ into ratio r = c(r′) for some invertible function c, then Π′ is

no more approximable in time O∗(2n
1−ǫ

) within ratio c−1(r).

3.5 Superlinear Sparsifier

Given an optimization graph problem Π and some parameter of the instance (this

can be, for instance, the maximum, or the average degree) let Π-B be the problem

restricted to instances where the parameter is at most B (we use the same notations as

in Section 3.3). Then, a superlinear sparsifier can be defined as follows.
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Definition 10. An approximation preserving superlinear sparsification from a graph

problem Π to its bounded parameter version Π-B is a pair (f, g) of functions such

that, given any function φ computable in polynomial time, sublinear in n, and any

instance G of Π:

• f maps G into a set f(G,φ) = (G1, G2, . . . , Gt) of instances of Π, where

t 6 2φ(n) and the orders ni of the Gis are all bounded by n; moreover, there

exists a function ψ (depending on φ) such that anyGi has parameter at most ψ(n)

(for instance, if the parameter is the degree of the graph, the number of edges

of Gi’s is linear in n, if ψ is constant, superlinear otherwise);

• for any i 6 t, g maps a solution Si of an instance Gi ∈ f(G,φ) into a solution S

of G;

• there exists an index i 6 t such that if a solution Si is an r-approximation for Gi,

then S = g(G,Gi, Si) is an r-approximation for G;

• f is computable in time O∗(2φ(n)), and g is polynomial in |n|.

We observe that, if the parameter considered is, say, the degree of the graph, the

graph Gi is ψ(n)-sparse but not necessary ψ(|Gi|)-sparse.

The sparsifier can be extended to problems defined on set-systems, as MIN SET

COVER, MIN HITTING SET, or SET PACKING. Here, parameters can be the cardinality

of the largest set, or the frequency. It can also be extended to fit optimum satisfiability

problems, where as parameter B can be considered the maximum occurrence of a

variable in the input formula. The soundness of this sparsifier relies on the following

lemma.

Lemma 19. A branching algorithm Π with branching vector (1, ψ(n)) has running

time O∗(2(ln(ψ(n)+1))n/ψ(n)).

Proof. Let T (x) denote a bound on the running time of Π when the instance is of size x.

T (n) 6 T (n− 1)+T (n−ψ(n)) 6 T (n− 2)+T (n−ψ(n)− 1)+T (n−ψ(n)) 6
. . . 6 T (n − ψ(n)) + T (n − 2ψ(n) + 1) + T (n − 2ψ(n) + 2) + . . . + T (n −
ψ(n)) 6 (ψ(n) + 1)T (n − ψ(n)). Thus, the running time of Π is bounded by

O∗((ψ(n) + 1)n/ψ(n)) = O∗(2(ln(ψ(n)+1))n/ψ(n)).
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Lemma 20. For any ε > 0, there exists an approximation preserving nε-sparsi-

fication for MAX INDEPENDENT SET and MIN VERTEX COVER computable in

time O∗(2n
1−εε logn).

Proof. While the maximum degree ∆ of the surviving graph exceeds nε, the standard

branching has vector better than (1, nε) and is approximation preserving.

For MAX INDEPENDENT SET, this branching consists in either including a vertex v

of maximum degree to the solution and removingN [v] (∆+1 vertices are so removed),

or not including v in the solution and removing it from the graph (1 vertex removed).

For MIN VERTEX COVER, either include a vertex v of maximum degree in the

solution and remove it from the graph (1 vertex removed), or discard v and mandatorily

include N(v) to the solution and remove N [v] (∆+ 1 vertices fixed).

By Lemma 19, this branching takes time O∗(2n
1−εε logn).

One of the main characteristics of the classical notions of reducibility used for

proving NP-completeness (i.e., Karp- or Turing-reducibility) is the superlinear ampli-

fication of the instance sizes. This fact constitutes a major drawback for using these

reductions in order to transfer (in)approximability results between problems. Most

of the approximation preserving reductions (see [9] for an extensive presentation and

discussion of such reductions) manage to limit this amplification in such a way that,

in most cases, it remains (almost) linear. In this sense, a reduction which transforms

a graph G of order n into an instance of size O(m), has very few chances to be ap-

proximation preserving (the bounded-degree requirement of the L-reductions in [109]

basically guarantees that m remains linear in n).

As we show in the following Theorem 21, allowing the approximation preserving

sparsifier to stop before the degree becomes a constant, enables us to exploit approxi-

mation preserving reductions amplifying the instance “more than linearly”, and more

precisely in O(n + m). Note that, for short, the theorem handles approximability

preserving reductions from Π to Π′ that transform some ratio r′ for Π′ into ratio

r = c(r′) = r′ for Π, i.e., c is the identity function.

Theorem 21. Under ETH:

1. if there exists an approximation preserving reduction from MAX INDEPENDENT

SET to a problem Π building instances of size O(n+m), then, for any ε > 0,

and any r larger than some constant satisfying r 6 n1/2−ε, Π cannot be c(r)-

approximable in time O∗(2n
1−2ε/r1+ε);
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2. if there exists an approximation preserving reduction from MIN VERTEX COVER

to a problem Π building instances of size O(n+m), then, for any ε > 0, Π is

not c(7/6− ε)-approximable in time O∗(2n
1−2ε

).

Proof. We first handle the case of reductions from MAX INDEPENDENT SET. For

any ε > 0, take a value η = ε+ arbitrary close to ε such that η > ε. Apply Lemma 20

to obtain nη-sparse instances in time O∗(2n
1−ηη logn). Reduce all those instances to Π;

instances of size O(n+ nnη) = αn1+ε, for some constant α, are so built.

Assume, one can compute an r-approximation for Π in time O∗(2n
1−2ε/r1+ε).

Then, one would r-approximate MAX INDEPENDENT SET in time O∗(2n
1−ηη logn

2((αn1+η)1−2ε)/r1+ε) = O∗(2n
1−ηη logn+(α1−2εn1+η−2ε−2εη)/r1+ε) = O∗(2n

1−ε/r1+ε); a

contradiction to the inapproximability of MAX INDEPENDENT SET [37].

We now handle reductions from MIN VERTEX COVER. Beforehand let us do the

following important remark. The instance of MAX INDEPENDENT SET built in [37]

to ensure the inapproximability gap for MAX INDEPENDENT SET, cannot be used

to produce some gap for MIN VERTEX COVER that is greater than 7/6, the gap of

Proposition 10. Indeed, using this instance, the negative result that can be derived for

MIN VERTEX COVER is just the impossibility of a subexponential time approximation

schema. So, in what follows, we will design gap-preserving reductions from MIN

VERTEX COVER.

Suppose that Π is (7/6 − ε)-approximable in time O∗(2n
1−2ε

) for some ε > 0.

Again, take a value η = ε+ arbitrary close to ε such that η > ε. Apply Lemma 20

to obtain nη-sparse instances in time O∗(2n
1−ηη logn). Reduce all those instances

to Π; 2n
1−ηη logn instances of size O(n + nnη) = αn1+η are so built. By assump-

tion, in time O∗(2n
1−ηη logn2(αn

1+η)1−2ε

) = O∗(2n
1−ηη logn+α1−2εn1+η−2ε−2εη

) =

O∗(2n
1−ε

), one can (7/6− ε)-approximate all those subinstances and therefore one can

(7/6− ε)-approximate MIN VERTEX COVER, a contradiction with Proposition 10.

3.6 A k-Step Sparsifier for Maximization Subset Graph Problems

The superlinear sparsifier developed in Section 3.5 works in superpolynomial time.

In what follows, we develop, a simple approximability preserving sparsifier, working

in polynomial time. Here also, sparsification is done with respect to the maximum

degree ∆ of the input graph G.

89



3. INAPPROXIMABILITY

We deal with maximization graph problems where feasible solutions are subsets

of the vertex-set verifying some specific property (we consider hereditary property);

we call informally these problems “subset problems”. Furthermore, we suppose that

non-trivial feasible solutions dominate the rest of vertices of the graph. The degree

decreasing (sparsification) is done thanks to this domination characteristic of the

solution. For reasons of simplicity, we describe the sparsifier for the case of MAX

INDEPENDENT SET, but it can be identically applied for any subset problem whose

non-trivial solutions dominate the rest of the vertices of the input graph.

Consider a graph G with degree ∆ and a constant k < ∆. Then the sparsifier,

builds an instance of MAX INDEPENDENT SET-∆−k running the following procedure:

for 1 6 i 6 k, repeatedly excavate maximal (for inclusion) independent

sets Xi, until the degree of the surviving graph becomes equal to ∆− k.

Denote by G′(V ′, E′) the instance of MAX INDEPENDENT SET-∆− k, so-built. Note

that, since maximal independent sets dominate the vertices of the graph where they

are excavated, their removal reduces the maximum degree. Hence, at the end of the

sparsification, G′ has degree ∆− k. Furthermore, the sparsifier iterates k times, that is

polynomial in n.

Remark that non-trivial solutions of several maximization subset graph-problems

verify vertex-domination property. This is the case, for instance of MAX ℓ-COLORABLE

INDUCED SUBGRAPH, or of MAX INDUCED PLANAR SUBGRAPH. Indeed if there

exists a vertex non dominated by a vertex-set V ′ inducing an ℓ-colorable subgraph, it

suffices to add it in one of the color-classes. The graph G[V ′ ∪ {x}] always remains

ℓ-colorable. The same holds for MAX INDUCED PLANAR SUBGRAPH.

Theorem 22. Let P(Π, r′,∆− k) be the following property: ”if problem Π is approx-

imable within ratio r′ in time f(n) on (∆−k)-sparse graphs then, on ∆-sparse graphs,

it is (r′ + 1)-approximable in time O(f(n) + n2)”. Then:

1. P(MAX INDEPENDENT SET, r′,∆− 2);

2. P(MAX ℓ-COLORABLE INDUCED SUBGRAPH, r′,∆− ℓ);

3. P(MAX INDUCED PLANAR SUBGRAPH, r′,∆− 1).

Proof. Let G(V,E) be a graph on n vertices with maximum degree ∆. Let S∗ be a

maximum independent set of G. Run the k-step sparsifier for two steps and stop it (this
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obviously takes polynomial time). It computes two maximal independent sets S1 in G,

and S2 in G[V \ S1]; G
′ = G[V \ (S1 ∪ S2)] has degree degree at most ∆ − 2. Set

B = G[S1 ∪ S2], the bipartite subgraph of G induced by the union of S1 and S2.

Since B is bipartite, a maximum independent set S∗
B in B can be computed in poly-

nomial time. If |S∗
B | > α(G)/r, then S∗

B is an r-approximation MAX INDEPENDENT

SET in G.

Assume now that |S∗
B | < α(G)/r and consider the graph G′ = G[V \ (S1 ∪ S2)].

Let S∗′

be the part of S∗ contained in G′. Since |S∗
B | < α(G)/r, and since S∗

B has size

at least equal to the size of the part of S∗ that belongs to B, |S∗′ | > (1− 1/r)α(G).

The graph G′ has degree at most ∆− 2, since if a vertex v has degree ∆, or ∆− 1

in G[V \ (S1 ∪ S2)], then it has no neighbors in either S1, or S2 and this contradicts

the maximality of at least one of them.

Run in G′ the r′-approximation algorithm (with complexity f(n)) assumed for

(∆ − 2)-sparse graphs and denote by S′ the solution returned. Since S′ is an r′-

approximation, |S′| > |S∗|/r′, so, |S′| > ((1− 1/r)1/r′)α(G). The independent set S′

is obviously a solution also for G and guarantees ratio r·r′/r−1.

Finally, take the best among independent sets S∗
B and S′ as solution for G.

Equality of ratios r and r·r′/r−1 derives r = r′ + 1. Since ratio r′ is achieved in

time f(n) and the application of the sparsification step takes time O(n2), ratio r is

achieved for MAX INDEPENDENT SET in G in time O(f(n) + n2) as claimed.

For MAX ℓ-COLORABLE INDUCED SUBGRAPH, let G(V,E) be a graph on n ver-

tices with maximum degree ∆. Let L∗ be an optimal solution for MAX ℓ-COLORABLE

INDUCED SUBGRAPH on G. Run the the k-step sparsifier for MAX INDEPENDENT

SET for ℓ steps. It iteratively excavates ℓ maximal independent sets S1, S2, . . . Sℓ. Set

V ′ = S1 ∪ S2 ∪ . . . ∪ Sℓ, and G′ = G[V ′], the ℓ-colorable subgraph of G induced

by V ′. Denote by L∗′

the part of L∗ belonging to L∗.

If |L∗′ | > L∗
/r then, since |V ′| > |L∗′ | > L∗

/r, V ′ is an r-approximation MAX

INDEPENDENT SET in G.

Assume now |L∗′ | < L∗
/r and consider the graph G′′ = G[V \ V ′]. Let L∗′′

be

the part of L∗ contained in G′′. Since |L∗′ | < L∗
/r, |L∗′′ | > (1− 1/r)|L∗|.

The graph G′′ has degree at most ∆− ℓ and the rest of the proof remains similar to

the corresponding part of that of the first item.

For MAX INDUCED PLANAR SUBGRAPH, one just excavates only one independent

set. An independent set is a planar graph. The rest of the proof of the third item is the
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same as above.

3.7 Some More Subexponential Inapproximability Results

3.7.1 Via Superlinear Sparsification

Combining the superlinear sparsifier of Definition 10 in Section 3.5 together with

approximation preserving reductions from MIN VERTEX COVER to several problems,

the following theorem can be proved.

Theorem 23. Under ETH, and for any ε > 0, none of MIN DOMINATING SET, MIN

SET COVER and MIN HITTING SET, MIN FEEDBACK VERTEX SET, MIN INDEPEN-

DENT DOMINATING SET, and MIN FEEDBACK ARC SET is (7/6− ε)-approximable in

time O∗(2n
1−2ε

).

Proof. For MIN DOMINATING SET, let G(V,E) be an instance of MIN VERTEX

COVER and assume G is connected. Build a graph G′(V ′, E′) as follows. Start from a

copy of G and for each edge e = (u, v) ∈ E, add two dummy vertices ye and ze in V ′

and link those vertices to u and v. The graph G′ so built has order n+ 2m.

A minimum dominating set in G′ does not contain any dummy vertex. Indeed, if a

solution S contains y(u,v) or z(u,v), then S \ {y(u,v), z(u,v)}∪ {u} is still a dominating

set of at most equal cardinality. Thus, a minimum dominating set in G′ naturally maps

to a subset of V which covers all the edges, hence a vertex cover of the same size.

Furthermore, given an r-approximation of MIN DOMINATING SET in G′, one can

start by removing the potential dummy vertices as explained above, and then obtain

an r-approximation for MIN VERTEX COVER. Item 2 of Theorem 21 suffices for

completing the proof.

The result for MIN SET COVER immediately follows from a well-known approxima-

tion preserving reduction from MIN DOMINATING SET (function c being the identity

function). Given an instance G(V,E) of MIN DOMINATING SET, one can construct

an instance (S, C) of MIN SET COVER, where S is a set-system over the ground set C,

by taking S = V , C = V and, for each vertex vi ∈ V , the corresponding set Si ∈ S
contains as elements cj ∈ C such that vertex vj is either vi or vj ∈ N(vi).

For MIN HITTING SET, just observe is the problem is similar to MIN SET COVER

where roles of S and C are interchanged.
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Notice that the previous reduction still works for MIN FEEDBACK VERTEX SET.

In G′, every subset of vertices containing non-dummy vertex is a dominating set, iff it

is a feedback vertex set4.

For MIN INDEPENDENT DOMINATING SET, tune the previous reduction by delet-

ing all the edges in the copy of the graph G. In other words, build G′ from an

independent set V of size n = |V | where each vertex corresponds to a vertex in V ,

and link all the vertices u ∈ V to an independent set Ie with 2 dummy vertices for

each edge e = (u, v). Again, an optimal solution contains only copy vertices (no

dummy vertices). Furthermore, in G′, every subset containing non-dummy vertex is an

independent dominating set iff it is a vertex cover in G.

For MIN FEEDBACK ARC SET, the reduction in [87] is approximation preserving

with c the identity function. The graph G′(V ′, E′) for MIN FEEDBACK ARC SET is

built with:

V ′ = V × {0, 1}
E′ = {((u, 0), (u, 1)) : u ∈ V } ∪ {((u, 1), (v, 0)) : (u, v) ∈ E}

In any solution, an arc ((u, 1), (v, 0)) can be advantageously replaced by arc ((v, 0), (v, 1)).

Indeed, a cycle containing edge ((u, 1), (v, 0)), necessarily contains also edge ((v, 0), (v, 1))

since the vertex (v, 0) has out-degree 1. Thus, removing ((v, 0), (v, 1)) destroys the

same cycles (plus potentially others). We can therefore assume that a solution is

{((v, 0), (v, 1)) : v ∈ S}, for some S ⊆ V . Now, S is a vertex cover, and an r-

approximation for MIN FEEDBACK ARC SET transforms into an r-approximation for

MIN VERTEX COVER.

Let us note that using the classical reduction from MIN VERTEX COVER to MIN

SAT [101] a similar result can be derived for MIN SAT.

3.7.2 Via k-Step Sparsification

Revisit Item 2 of Theorem 20. There, ∆ε is related to ε in the following way: there

exists a universal constant C such that ∆ε = 2C/ε. Our purpose in this section is to

strengthen this item deriving inapproximability for MAX INDEPENDENT SET, MAX

ℓ-COLORABLE INDUCED SUBGRAPH and MAX INDUCED PLANAR SUBGRAPH, in

subexponential time O∗(2O(n1−ε/∆1+ε
ε )) with a smaller bounded degree.

4These reductions rely on the fact that, in graphs without isolated vertices, a vertex cover is both a

dominating set and a feedback vertex set.
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Theorem 24. Under ETH, for any ε > 0 and any ∆ < ∆ε, in ∆-sparse graphs,

MAX INDEPENDENT SET, MAX ℓ-COLORABLE INDUCED SUBGRAPH and MAX

INDUCED PLANAR SUBGRAPH are inapproximable within ratios ∆/2−(∆ε/2−∆1−ε
ε ),

∆/2− (∆ε/ℓ−∆1−ε
ε ) and ∆− (∆ε −∆1−ε

ε ), respectively, in time O∗(2O(n1−ε/∆1+ε
ε )).

Proof. By Item 2 of Theorem 20, for any ε > 0, MAX INDEPENDENT SET on ∆ε-

sparse graphs, is inapproximable within ratio ∆1−ε
ε in time O∗(2n

1−ε/∆1+ε
ε ), with

∆ε = 2C/ε for some constant C.

For any ∆, run the k-step sparsifier on a ∆ε-sparse graph G for (∆ε−∆)/2 steps,

from ∆ε down to ∆, in order to get a ∆-sparse instance G′ of MAX INDEPENDENT

SET. Combination of the Item refmain1 of Theorem 22 and of Item 2 of Theorem 20

directly derives inapproximability of MAX INDEPENDENT SET in G within ratio

∆1−ε
ε − (∆ε−∆)/2 = ∆/2− (∆ε/2−∆1−ε

ε ) in time O∗(2O(n1−ε/∆1+ε
ε )).

Consider now the following simple reduction from MAX INDEPENDENT SET to

MAX ℓ-COLORABLE INDUCED SUBGRAPH. Let G(V,E) be an instance of MAX

INDEPENDENT SET of order n. We keep G as the instance of MAX ℓ-COLORABLE

INDUCED SUBGRAPH. Any independent set S ofG can be considered as an ℓ-colorable

graph with empty the ℓ− 1 of its color classes. Conversely, given an ℓ-colorable graph

on sets S1, S2, . . . , Sℓ, all them are independent sets and the largest among them has

size more than 1/ℓ times the size of the ℓ-colorable graph. So, any ratio r for MAX

ℓ-COLORABLE INDUCED SUBGRAPH becomes ratio ℓr for MAX INDEPENDENT SET.

In the same spirit, one can devise a reduction from MAX INDEPENDENT SET to

MAX INDUCED PLANAR SUBGRAPH. An independent set is a planar graph per se.

On the other hand since any planar graph is 4-colorable, a solution G′ = G[S] of MAX

INDUCED PLANAR SUBGRAPH can be transformed into an independent set by coloring

the vertices of S with four colors and taking the largest of them. So an approximation

ratio r for MAX INDUCED PLANAR SUBGRAPH is transformed into ratio 4r for MAX

INDEPENDENT SET.

The proofs for MAX ℓ-COLORABLE INDUCED SUBGRAPH and MAX INDUCED

PLANAR SUBGRAPH above of the theorem immediately derive from the remarks

above.

Note that the inapproximability bound for MAX INDEPENDENT SET of Theorem 24

(Item 1) cannot be derived by Theorem 20 for ∆ > 2C/ε(1/2− 2−C). So, Theorem 24

extends the result of [37] to degree ∆ε/2.
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Also, from the discussion of for MAX ℓ-COLORABLE INDUCED SUBGRAPH and

MAX INDUCED PLANAR SUBGRAPH in the proof of Theorem 24, the following

corollary holds.

Corollary 12. Under ETH, and for any ε > 0, neither MAX ℓ-COLORABLE IN-

DUCED SUBGRAPH nor MAX INDUCED PLANAR SUBGRAPH is r-approximable in

time O∗(2n
1−δ/r1+δ

), where r is the approximability-gap of MAX INDEPENDENT SET.

3.7.3 Via Theorem 20

Similar results as those of Corollary 12 can be obtained for several other problems

linked to MAX INDEPENDENT SET by approximability-preserving reductions.

For instance, for SET PACKING, take S = V , C = E and, for any set Si ∈ S,

Si = {cj : ej incident to vi}. This very classical reduction transforms any independent

set of G to an equal-cardinality set-packing of (S, C), and vice-versa.

For MAX UNUSED SETS, observe that its optimal value is an affine transformation

of the optimum for MIN SET COVER. Since this latter problem is a generalization

of MIN VERTEX COVER (indeed MIN VERTEX COVER can be seen as a MIN SET

COVER problem where all ground elements have frequency 2), MAX UNUSED SETS is

a generalization of MAX INDEPENDENT SET.

In what follows in this section, we handle inapproximability bounds for two prob-

lems that are closely linked between them, MIN INDEPENDENT DOMINATING SET

and MAX MINIMAL VERTEX COVER. In fact, they are related in the same way as

MAX INDEPENDENT SET and MIN VERTEX COVER.

Let us first consider MAX MINIMAL VERTEX COVER and revisit the following

reduction from MAX INDEPENDENT SET given in [21]. Given an instance G(V,E)

of MAX INDEPENDENT SET, link any vi ∈ V to n + 1 new vertices. The so-built

graph H for MAX MINIMAL VERTEX COVER has size n2 +2n. Then, by considering

a MAX MINIMAL VERTEX COVER-solution for H consisting of taking the out-of-G

neighbors of some some independent set S of G together with V \ S as solution for

MAX MINIMAL VERTEX COVER, one can guarantee the following:

sol(H) 6 n · |S|+ n

opt(H) > n · α(G) + n
(3.1)

where sol(H) and opt(H) denote the sizes of an approximate and of an optimal

solutions for MAX MINIMAL VERTEX COVER, respectively. Then, using expressions
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in (3.1) and considering G the MAX INDEPENDENT SET-instance of [37], one easily

derives the following.

Proposition 14. Under ETH, for any δ > 0 and any r > n1/4−δ, MAX MINIMAL

VERTEX COVER is inapproximable within ratio r in less than O∗(2n
1/2−δ/r1+δ) time.

Observe that, in the reduction above, ∆(H) > n ≈
√
n(H). So, the following

corollary derives from Proposition 14.

Corollary 13. Furthermore, under ETH, for any δ > 0 and any r > ∆1/2−δ, MAX

MINIMAL VERTEX COVER is inapproximable within ratio r in less thanO∗(2∆1−δ/r1+δ)

time.

The result of Proposition 14 can be further strengthened by slightly changing the

reduction of [21]. Denote by c the stability ratio α(G)/n of G. Then the following holds.

Proposition 15. Under ETH, for any δ > 0 and any r > n1/2−δ, in any graph of

order nr, MAX MINIMAL VERTEX COVER is inapproximable within ratio (c+r)/(1+c)

in time less thanO∗(2n
1−δ/r1+δ), where c the stability ratio of the MAX INDEPENDENT

SET-instance of [37].

Proof. Consider the MAX INDEPENDENT SET-instance of Theorem 20 and link any

of its vertices to r + 1 new vertices where r is as in Item 1 of Theorem 20. The MAX

MINIMAL VERTEX COVER-instance H has now n(r + 1) vertices. Set ρ′(H) =
sol(H)/opt(H), the inverse of the approximation ratio for MAX MINIMAL VERTEX

COVER in H . Then, using (3.1), it holds that:

|S|
α(G)

> ρ′(H)− (1− ρ′(H))n

rα(G)
(3.2)

As one can see in the proof of Item 1 of Theorem 20, α(G) is linear in n, i.e., α(G) >

cn for some fixed (independent on n) c < 1. So, (3.2) becomes:

1

r
>
|S|
α(G)

> ρ′(H)− (1− ρ′(H))c

r
> ρ′(H)− c

r
(3.3)

where the first inequality above is due to the inapproximability bound 1/r for MAX

INDEPENDENT SET in the graph of Item 1 of Theorem 20. Then some simple algebra

derives ρ(H) = 1/ρ′(H) > c+r/1+c, as claimed.
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Interestingly enough, although MIN INDEPENDENT DOMINATING SET is one of

the hardest problems for polynomial approximation, only subexponential inapprox-

imability within ratio 7/6− ε can be proved for it, using sparsification. The following

proposition gives a stronger subexponential inapproximability bound for MIN INDE-

PENDENT DOMINATING SET using the fact that an independent dominating set in

some graph G is the complement of a minimal vertex cover of G.

Proposition 16. Under ETH, for any δ > 0 and any r > n1/2−δ, in any graph of or-

der nr, MIN INDEPENDENT DOMINATING SET is inapproximable within ratio 1/(1−c)

in time less than O∗(2n
1−δ/r1+δ

), where c is the stability ratio α(G)/n of the MAX

INDEPENDENT SET-instance of [37].

Proof. Consider again the graph G built in Item 1 of Theorem 20 and the reduction of

Proposition 15 to MAX MINIMAL VERTEX COVER. Denote by c the stability ratio

of G, i.e., c = α(G)/n, and recall that c is a fixed constant [37]. Then:

ι(H) = α(G) + (n− α(G))(r + 1) = (1− c)n(r + 1) (3.4)

Denote by ι′(H), the independent dominating set associated with the approximate

minimal vertex cover of H , i.e., ι′(H) = n(r + 1)− sol(H) and by b the inverse of

the inapproximability bound for MAX MINIMAL VERTEX COVER (b < 1). Then,

using (3.4), we get:

b >
sol(H)

opt(H)
>
n(r + 1)− ι′(H)

n(r + 1)− ι(H)
=⇒ ι′(H)

ι(H)
>
n(r + 1)(1− b)

ι(H)
+ b

>
1− b
1− c + b ∼ 1

1− c

where the last approximation for b is due to the fact that b = o(1).

3.8 More About Sparsifiers

If one revisits the informal description of sparsification in Section 3.5, the sparsifier

designed in [81] may yield very weak lower bounds, in the sense that f(λ) may be

very close to 1.

Suppose that there exists a polynomial time reduction R from k-SAT to a problem Π,

and two integers α and β such that, for an instance φ of k-SAT with n variables
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and m clauses, R(φ) is of size αn + βm. To solve an instance of k-SAT on φ, one

can sparsify it, reduce all the 2εn sparsified formulas, and solve each instance of Π

built by application of R to any sparse instance produced from φ. This takes time

O∗((2ελα+βCεk)n). Assuming ETH, let λk be the smallest real number such that

k-SAT is solvable in O∗(λnk ). Then, 2ελα+βCεk > λk. Adjusting ε to get the best

possible lower bound for λ, one gets λ− 1 < 10−10, for plausible values of α and β.

So, one only shows that Π is not solvable in, say, O∗((1 + 10−10)n).

We show that the superlinear sparsifier of Section 3.5 may be used to produce

stronger lower bounds than those get by the sparsifier of [81].

In order to do that, we will use the central problem MAX INDEPENDENT SET.

AssumeHIS(λ) is the hypothesis that MAX INDEPENDENT SET is not solvable in

time O∗(λn), and g : (1, 2)→ N maps any real value x in (1, 2) to the smallest integer

p such that the positive root Xp+1 −Xp − 1 = 0 is smaller than x. The superlinear

sparsifier can be used to show the following.

Proposition 17. Let Π be problem such that there exists a polynomial time reduction R

from MAX INDEPENDENT SET to Π and two positive numbers α and β satisfying,

for all instances G of MAX INDEPENDENT SET, |R(G(V,E))| 6 α|V | + β|E| =
αn+ βm. UnderHIS(λ), if Π is solvable in O∗(µn), then µ > λ1/α+⌊g(λ)/2⌋β

Proof. Use the superlinear sparsifier with the threshold ∆ = g(λ), that is, stop the

branching when the degree of the graph becomes strictly less than g(λ). The branching

factor is the positive root of Xg(λ)+1 − Xg(λ) − 1 = 0 which, by construction, is

smaller than λ. At a leaf of the branching tree, if the number of vertices is n− k, then

the number of edges in the remaining graph is at most ⌊g(λ)/2⌋(n− k).
Thus, by performing the reduction R on the instances at each leaf of the branching

tree, and then solving the obtained instances of Π, one gets an algorithm solving

MAX INDEPENDENT SET in time O∗(λkµ(α+⌊g(λ)/2⌋β)(n−k)). So, µ > λ1/α+⌊g(λ)/2⌋β ,

otherwise λkµ(α+⌊g(λ)/2⌋β)(n−k) 6 λn.

Since the superlinear sparsifier is approximation preserving, if reduction R from

MAX INDEPENDENT SET to Π preserves approximation, one can obtain relative expo-

nential time lower bounds even for approximation issues. The following proposition

provides a lower bound to the best currently known complexity (function of the number

of clauses) of MAX 3SAT, underHIS. Note that the best known running time for MAX

3SAT is O∗(1.324m).
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Proposition 18. UnderHIS(λ), MAX 3SAT is not solvable in O∗(λ(1/1+⌊g(λ)/2⌋)n).

Proof. We recall the reduction in [109]. An instance (G(V,E), k) of the decision

version of MAX INDEPENDENT SET is transformed into an instance of the decision

version of MAX 3SAT in the following way: each vertex vi ∈ V encodes a variable Xi

and for each edge (vi, vj) ∈ E we add a clause ¬Xi ∨ ¬Xj . Finally, we add the

1-clause Xi for all vi ∈ V . In the so built instance of MAX 3SAT we wish to satisfy at

least k+m clauses. This reduction builds n+m clauses, so α = β = 1. Hence, under

HIS, and according to Proposition 17, one cannot solve MAX 3SAT in time O∗(µn)

when µ = λ1/1+⌊g(λ)/2⌋.

Suppose that Π is a problem (like MAX 3SAT when considering its complexity in

terms of m) with a reduction from MAX INDEPENDENT SET in n+m (α = β = 1),

and Π is solvable in O∗(µn). Then, the following table gives some values of µ as

function of λ.

λ Infeasible value for µ

1.1 1.0073

1.18 1.027

1.21 1.038

We conclude by pointing out that the k-step sparsifier of Section 3.6 has also some

interesting consequences when handling parameterized issues. MAX INDEPENDENT

SET can be solved in time O∗((∆ + 1)α) with a standard branching algorithm [108]

(here α = α(G) is the size of a maximum independent set, or equivalently the natural

parameter for MAX INDEPENDENT SET). The excavation performed by the k-step

sparsifier can be used to obtain an algorithm running in time O∗(2(∆−2)α). Indeed,

one can excavate consecutively ∆− 2 maximal independent sets S1 to S∆−2, where

each Si is a maximal independent set in G[V \⋃k=1...i−1 Sk]. By hypothesis, for all i,

|Si| 6 α, so an exhaustive search on
⋃

k=1...∆−2 Si takes time O∗(2(∆−2)α). Graph

G[V \ ⋃k=1...∆−2 Sk] is a graph with degree 2, hence it takes polynomial time to

complete a solution by finding a maximum independent set on this part of the graph.

This algorithm improves the branching algorithm for ∆ 6 4. as the following table

shows.

∆ Exhaustive branching Sparsification

3 4α 2α

4 5α 4α
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3.9 Conclusion

More interesting questions remain untouched in the junction of approximation and

(sub)exponential-time/FPT-time computations. Among a range of problems to be

tackled, we propose the following.

• Our inapproximability results are conditional upon the Linear PCP Conjecture.

Is it possible to relax the condition to a more plausible one?

• Or, we dare ask whether (certain) inapproximability results in FPT-time imply

strong improvement in the PCP theorem. For example, would the converse of

Lemma 12 hold?

• Can we design approximation preserving sparsifications for problems like MAX

CUT or MAX 3SAT? It seems to be difficult to design a sparsifier based on

branching rules, so a novel idea is needed.

Note that we have considered constant approximation ratios. As noted earlier,

ratio 1/r(n) is achievable in subexponential time for any increasing and unbounded

function r for MAX INDEPENDENT SET. However, dealing with parameterized ap-

proximation algorithms, achieving a non-constant ratio is also an open question. More

precisely, finding in FPT-time an independent set of size g(k) when there exists an

independent set of size k is not known for any unbounded and increasing function g.

Finally, let us note that, in the same vein of the first part of our work, [103] studied

a proof checking view of parameterized complexity. Possible links between these two

approaches are worth being investigated in future works.
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4.1 Complexity of Trick-Taking Card Games

Determining the complexity of perfect information trick taking card games

is a long standing open problem. This question is worth addressing not

only because of the popularity of these games among human players, e.g.,

DOUBLE DUMMY BRIDGE, but also because of its practical importance as

a building block in state-of-the-art playing engines for CONTRACT BRIDGE,

SKAT, HEARTS, and SPADES.

We define a general class of perfect information two-player trick taking card

games dealing with arbitrary numbers of hands, suits, and suit lengths. We

investigate the complexity of determining the winner in various fragments of

this game class.

Our main result is a proof of PSPACE-completeness for a fragment with

bounded number of hands, through a reduction from Generalized Geography.

Determining the complexity class of games is a popular research topic [76], even

more so when the problem has been open for some time and the game is actually of

interest to players and researchers. For instance, the game of AMAZONS was proved

PSPACE-complete by three different research groups almost simultaneously [69, 76].

In the following sections, we investigate the complexity of trick taking card games. The

class of trick taking card games encompasses a large number of popular card games
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such as CONTRACT BRIDGE, HEARTS, SKAT, SPADES, TAROT, and WHIST.1

The rules of the quintessential trick taking card game are fairly simple. A set of

players is partitioned into teams and arranged around a table. Each player is dealt a

given number of cards n called hand, each card being identified by a suit and a rank.

The game consists in n tricks in which every player plays a card. The first player to

play in a given trick is called lead, and the other players proceed in the order defined by

the seating. The single constraint is that players should follow the lead suit if possible.

At the end of a trick, whoever put the highest ranked card in the lead suit wins the trick

and leads the next trick. When there are no cards remaining, after n tricks, we count

the number of tricks each team won to determine the winner.2

Assuming that all hands are visible to everybody, is there a strategy for the team of

the first player to ensure winning at least k tricks?

Despite the demonstrated interest of the general population in trick taking card

games and the significant body of artificial intelligence research on various trick taking

card games [28, 72, 66, 93, 99], most of the corresponding complexity problems remain

open. This stands in stark contrast with other popular games such as CHESS or GO, the

complexity of which was established early [65, 95, 114].

There are indeed very few published hardness results for card games. We only

know of a recent paper addressing UNO [48], a card game not belonging to the category

of trick taking card games, and Frank and Basin [67]’s result on the best defense

model. They show that given an imperfect information game tree and an integer w, and

assuming the opponent has perfect information, determining whether one has a pure

strategy winning in at least w worlds is NP-complete.

As for tractability, after a few heuristics were proposed [86], Wästlund’s performed

an in-depth combinatorial study on fragments of perfect information two-hands WHIST

proving that some important fragments of trick taking card games are polynomial [126,

127].

Note that contrary to the hypotheses needed for Frank and Basin [67]’s NP-

completeness result, we assume perfect information and a compact input, namely

the hands and an integer k. There are several reasons for focusing on perfect informa-

tion. First, it provides a lower bound to the imperfect information case when compact

1A detailed description of these games and many other can be found on http://www.pagat.com/

class/trick.html.
2There are more elaborate point-based variants where tricks might have different values, possibly

negative, based on cards comprising them. We focus on the special case where each card has the same

positive value.
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input is assumed. More importantly, perfect information trick taking card games actu-

ally do appear in practice, both among the general population in the form of DOUBLE

DUMMY BRIDGE problems, but also in research as perfect information Monte Carlo

sampling is used as a base component of virtually every state-of-the-art trick taking

game engine [94, 72, 121, 96].

It is rather natural to define fragments of this class of decision problems, for

instance, by limiting the number of different suits, the number of hands, or even

limiting the number of cards within each suit. We will soon define the lattice of such

fragments.

In Section 4.2, we show that the general problem is PSPACE-complete and it

remains so even if the number of cards per suit is 2. The proof is a rather straightforward

reduction from Generalized Geography (GG). Our main result is a more involved

reduction from GG to address the fragment with bounded number of hands, it is

presented in Section 4.3.

4.1.1 Trick-Taking Game

Definition 11. A card c is a pair of two integers representing a suit (or color) s(c) and

a rank r(c). A position p is defined by a tuple of hands h = (h1, . . . , hn), where a

hand is a set of cards, and a lead turn τ ∈ [1, n]. We further assume that all hands

in a given position have the same size ∀i, j ∈ [1, n], |hi| = |hj | and do not overlap:

i 6= j ⇒ hi ∩ hj = ∅.

An example position with 4 hands and 12 total cards is given in Figure 4.1.

The position is written as a diagram, so for instance, hand h3 contains 3 cards

{(s1,A), (s1,J), (s2,K)}.

Definition 12. Playing a trick consists in selecting one card from each hand starting

from the lead: cτ ∈ hτ , cτ+1 ∈ hτ+1, . . . , cn ∈ hn, c1 ∈ h1, . . . , cτ−1 ∈ hτ−1. We

also require that suits are followed, i.e., each played card has the same suit as the first

card played by hand τ or the corresponding hand hi does not have any card in this suit:

s(ci) = s(cτ ) ∨ ∀c ∈ hi, s(c) 6= s(cτ ).

Definition 13. The winner of a trick is the index corresponding to the card with highest

rank among those having the required suit. The position resulting from a trick with

cards C = {cτ , . . . , cτ−1} played in a position p can be obtained by removing the

selected cards from the hands and setting the new lead to the winner of the trick.
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h1 ⋆

s1 4

s2 2

s3 A

h2

s1 K Q

s2 A

s3 —

h3

s1 A J

s2 K

s3 —
h4

s1 —

s2 Q

s3 K Q

Figure 4.1: Example of a trick-taking game position with 4 hands, 3 suits, and 1 as

lead turn. If team A controls h1 and h3 and team B controls h2 and h4, then team A
can make all three remaining tricks by starting with (s3, A)

In the example in Figure 4.1, the lead is to 1. A possible trick would be

(s3,A), (s1,Q), (s1,J), (s3,Q); note that only hand h4 can follow suit, and that 1 is the

winner so remains lead.

Definition 14. A team mapping σ is a map from [1 . . . n] to {A,B} where n is the

number of hands, A is the existential player, and B is the universal player. A (perfect

information, plain) trick-taking game is pair consisting of a position and a team mapping

σ.

For simplicity of notation, team mappings will be written as words over the alphabet

{A,B}. For instance, 1 7→ A, 2 7→ B, 3 7→ A, 4 7→ B is written ABAB.

Definition 15. A trick is won by team A if its winner is mapped to A with σ. The

value of a game is the number of tricks that team A wins, if both team A and team B

play optimally with respect to making the greatest number of tricks.

The value of the game presented in Figure 4.1 is 3 as team A can ensure making all

remaining tricks with the following strategy known as squeeze. Start with (s3,A) from

h1 and play (s1,J) from h3, then start the second trick in the suit where h2 elected to

play.

4.1.2 Decision Problem and Fragments

The most natural decision problem associated to trick-taking games is to compute

whether the value of a game is larger or equal to a given value ν. Put another way,
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is it possible for some team to ensure capturing more than ν tricks? We will see in

Section 4.2 that the general problem is PSPACE-hard, but there are several dimensions

along which one can constrain the problem. This should allow to better understand

where the complexity comes from.

Team mappings only allow team mappings belonging to a language L ⊆ {A,B}∗,

typically L = Li = {(AB)i} or L = = {A,B}∗.

Number of suits the total number of distinct suits s is bounded by a number s = S,

or unbounded s = .

Length of suits the maximal number of ranks over all suits l is bounded by a number

l = L, or unbounded l = .

Symmetry for each suit, each hand needs to have the same number of cards pertaining

to that suit.

The fragments of problems respecting such constraints are denoted by B(L, s, l).
The largest class, that is, the set of all problems without any restriction isB( , , ).

Example 1. The class of double-dummy Bridge problems is exactly B(L2, 4, 13).

Proposition 19. B( , , ) is in PSPACE.

Proof. The game ends after a polynomial number of moves. It is possible to perform a

minimax search of all possible move sequences using polynomial space to determine

the maximal number of tricks team A can achieve.

4.1.3 Generalized Geography

Generalized Geography (GG) is a zero-sum two-player game over a directed graph with

one vertex token. The players take turn moving the token towards an adjacent vertex

and thereby removing the origin vertex. The player who cannot play anymore loses.

An example of a GG instance on a bipartite graph is given in Figure 4.2.

Deciding the winner of a GG instance is PSPACE-complete [116], and GG was used

to prove PSPACE-hardness for numerous games including GO [95], OTHELLO [83],

AMAZONS [69], UNO [48]. Lichtenstein and Sipser have shown that GG remains

PSPACE-hard even if the graph is assumed to be bipartite [95].
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1 2 3

4 5 6

Figure 4.2: Example of an instance of GG.

4.2 Unbounded Number of Hands

We present a polynomial reduction φ from bipartite GG on graphs of degree 3 to

B( , , 2).

An instance of GG on a bipartite graph is given by (G = (VA∪VB , EAB∪EBA), v1)

where v1 ∈ VA denotes the initial location of the token. Let m = mAB +mBA =

|EAB |+ |EBA| the number of edges and n = nA + nB = |VA|+ |VB | the number of

vertices. We construct an instance of B( , , 2) using m + n(m + 1) suits, and 2n

hands with m+ 1 cards each as follows.

Each vertex v ∈ VA (resp. ∈ VB) is encoded by a hand hv owned by team A

(resp. B). We add n additional dummy hands, hand hA1 up to hand hAnB for team A

and hB1
up to hand hBnA for team B.

Each edge (s, t) ∈ EAB (resp. EBA) is encoded by a suit ss,t of length 2, for

instance {AK}. The cards in suit ss,t are dealt such that hand hs receives K, hand ht
receives A. We add n(m + 1) additional dummy suits sAi,j for all i ∈ {1, . . . , nB}
and j ∈ {1, . . . ,m+ 1} and sBi,j for all i ∈ {1, . . . , nA} and j ∈ {1, . . . ,m+ 1}.

For all i ∈ {1, . . . , nB (resp. nA)}, hand hAi (resp. hBi) receives A in all suits

sAi,j for j ∈ {1, . . . ,m+ 1}, while hand hi (resp. hnA+i) receives K in all suits sAi,j
for j ∈ {1, . . . ,m − deg(vi)}. Recall that 1 6 deg(vi) 6 3 and note that the suits

sAi,j with m− 2 6 j might only feature A (with no K).

The goal of team A is to make at least mBA + 1 tricks. Intuitively, for team A

(resp. B) playing in a suit sBi,j (resp. sAi,j ) makes them lose all the remaining tricks

(provided, of course, that hand hBi (resp. hAi ) has not discarded its corresponding A)

so it cannot be good. The interesting and difficult part of this bridge game would only

occur in playing accurately the suits ss,t between hands hi for i, s, t ∈ {1, . . . , n}, that

is the non dummy suits and the non dummy hands. Remark that this part simulates GG

on the instance (G, v1).
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h1 h2 h3

sB1,1 K sB2,1 K sB3,1 K

...
...

...

sB1,6 K sB2,6 K sB2,5 K

s1,4 K s2,6 K s3,5 K

s1,5 K s4,2 A s3,6 K

s6,3 A

h4 h5 h6

sA1,1 K sA2,1 K sA3,1 K

...
...

...

sA1,6 K sB2,6 K sA3,5 K

s1,4 A s1,5 A s2,6 A

s4,2 K s3,5 A s3,6 A

s6,3 K

hA1 hA2 hA3

sA1,1 A sA2,1 A sA3,1 A

sA1,2 A sA2,2 A sA3,2 A

...
...

...

sA1,8 A sA2,8 A sA3,8 A

hB1 hB2 hB3

sB1,1 A sB2,1 A sB3,1 A

sB1,2 A sB2,2 A sB3,2 A

...
...

...

sB1,8 A sB2,8 A sB3,8 A

Figure 4.3: Reduction from Figure 4.2.

Lemma 21. If Player 1 has a winning strategy in (G, v1), then team A can make

mBA + 1 tricks in φ(G, v1).

Proof. Let ψ be the winning strategy of player 1, mapping a path v1 . . . v ending in VA
to a vertex v′ in VB . We define the following winning strategy for team A in φ(G, v1).

When in a hand hAi for some i, cash all the remaining A (all the remaining tricks).

When in a hand hi for some i, cash all A (they are in suits ss,t). Then ψ tells you

which of the K in a non dummy suit (suits of the form ss,t) to play. Keeping track of

which hands have taken the lead so far (without counting several times a hand which

cashes some A) h1hk2hk3 . . . hi, play the K in si,t where ψ(v1vk2vk3 . . . vi) is the

t-ieth vertex.

As for discarding, hands hi for i ∈ {1, . . . , nA} can throw away any of the dummy

K in suits sBj in any order. Hands hAi for i ∈ {1, . . . , nB} have to be more careful.

They can start by discarding the A in suits sAi,m−deg(vi)+1
up to sAi,m+1 . Then, they

can discard in the same suit hand hnA+i has discarded its K at some previous trick.

Indeed, hand hnA+i does not discard at most deg(vi) times in the part of the game in

non dummy hands.

From a hand hj , team B cannot play towards a non dummy hand hi of team A

which has already taken the lead, since by construction, hi has cashed all the A in
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non dummy suits, and in particular the one in si,j , so the K owns by team B has gone.

Team B, had therefore two losing options: follow an actual GG game simulation where

he will eventually lose, or play in a dummy suit and lose all the remaining tricks. All in

all, team B cannot cash more than its number of A in non dummy suits which is equal

to mAB . So, team A will make at least the complement mBA + 1.

The same result also applies to team B. Therefore team A has a winning strategy in

φ(G, v1) if and only if the first player has a winning strategy in the instance (G, v1) of

GG. The reduction is thus complete, leading to PSPACE-hardness.

Theorem 25. B( , , 2) is PSPACE-complete.

4.3 Bounded Number of Hands

The trick balance in an intermediate position is the number of tricks made by team A

so far minus the number of tricks made by team B so far.

The basic idea of this reduction is that we have a termination gadget that allows

both team to end the game by splitting the remaining tricks evenly. However, using the

termination gadget comes with a small cost. So each team tries to achieve a sufficiently

high trick balance before terminating the game. The termination gadget involves two

suits sA and sB and four hands h3 through h6 that do not otherwise influence the game.

Besides the termination gadget, we have two hands, one per team, and one suit sv
for each vertex v of the GG instance. A team, say A, can threaten to increase the trick

balance in their favor by playing in the attacking gadget of a suit sv . This can only be

defended by having the opponent team, say B, counter-attacking in a suit sv′ . B can

choose sv′ , but for the defense to be successful, v′ needs to be a neighbor of v in GG.

After this exchange is performed, team B has priority to attack but can only attack in

suit sv′ ’s attacking gadget. The same process goes on until the defending team cannot

find an appropriate counter-attacking suit. At that moment, the attacking team manages

to increase the trick balance enough to safely terminate the game in their favor. We see

that picking the counter-attacking suits emulates a game of GG on G.

Let G = ((V = VA ∪ VB , E), v0), a directed bipartite graph and one of its vertex

v0, be an instance of GG. Let n = nA + nB the number of vertices, and N(v) denote

the set of neighbors of a vertex v. We construct in polynomial time an equivalent

instance of B(L3, , ) using 6 hands and s = n+ 2 suits. In the instance we create,

the seating order does not have any influence so we will represent gadgets and positions

108



4.3. Bounded Number of Hands

Hand Suit Ranks

h1 sA 1

h2 sB 1

h3 sA 2t+1
2

— 3

h4 sA 2t
2

— 2

h5 sB 2t+1 — 2t-3ω+1
2

— 3

h6 sB 2t-3ω 2
— 3ω+1 — 2

Figure 4.4: The termination gadget.

simply by listing the cards in each hand in a table. In the following, we will use ω

to represent a large number, for instance we can set ω = 8n. We will also use t to

represent the total number of tricks to be made.3 Team A wins if they make strictly

more than t/2 + ω/4 tricks.

4.3.1 Presentation of the Gadgets

Unless the gadgets are not symmetrical, we only describe one team’s version of

the gadgets. Assume an arbitrary ordering on the vertices in VA and in VB , that is

VA = {v1, v2, . . . vnA} and VB = {v′1, v′2, . . . v′nB}.
The termination gadget. The suit sA has length 2t + 1 and is possessed only by

hands h1, h3 and h4. Hand h1 only has the smallest card in the suit, hand h3 has all

the other cards of the suit with an odd rank and hand h4 has all the cards of that suit

with an even rank. Thus, hands h3 and h4 have only cards in the suit sA. The suit sB
is owned only by hands h2, h5 and h6. It is defined similarly except h5 has 3ω top

cards to cash in that suit, then the cards are interleaved.

The following two lemmas allow us to focus on hands h1 and h2 in the rest of the

reduction.

Lemma 22. If h1 leads and the trick balance is ω, then team A can ensure winning

the game.

Proof. Team A can play in the suit sA then the rest of the game will hold between

hands h3 and h4. It is easy to see that team A wins half (rounded up) of the remaining

3t’s exact value can be computed and is polynomial in the input.
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Hand Suit Ranks Concise notation

h1 s 7 — 1 3|4
h2 s 10 — 8 xxxx

Figure 4.5: A 3|4-block in a suit s for team A. Only the hands and the suits involved in

this gadget are displayed. h2 does have cards in suit s, but they are not displayed in the

compact notation, as they can be deduced from the cards in h1.

Hand Suit Ranks Concise notation

h1 s 27 — 20 15 — 9 5 — 1 3|5 4|3 3|2
h2 s 30 — 28 19 — 16 8 — 6 xx. . .

Figure 4.6: Concatenation of 3|5-, 4|3- and 3|2-blocks in s for team A. There are

5 + 3 + 2 = 10 x in suit s in hand h2.

tricks.

Lemma 23. If h2 leads and the trick balance is −2ω, then team B can ensure winning

the game.

Proof. Team B can play in the suit sB then the rest of the game will hold between

hands h5 and h6. Team B first loses 3ω tricks, then the remaining tricks are split.

The e|w-block. An e|w-block in a suit s for team A is the possibility for team A to

cash w tricks by playing e times in the suit. In other words, hand h2 has the e top cards

and h1 has the e + w following top cards. e stands for establish and w for winners.

Figure 4.5 provides an example of a 3|4-block.

We can concatenate several e|w-blocks for the same team in the same suit. For

instance, Figure 4.6 shows how blocks are concatenated and provides a more concise

notation.

Given a vertex v ∈ V , a concatenation of e|w blocks with various values for e

allows to encode the index of v in an attacking gadget. It also allows to encode which

vertex v′, v is adjacent to in a counter-attacking gadget via their indices. If v ∈ VB
(resp. VA), the (counter-)attacking gadgets will be for team A (resp. B) and we say that

the corresponding suit is a defensive suit for team B (resp. A). The e|w-blocks we need

in the following have e an integer in [1, . . . , 6], and w a fraction of ω.
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Suit Counter-attacking Attacking

Word c Gadget C Word a Gadget A

sv1 1 000 1 3|ω 2|ω 2|ω 1|ω 1 100 0 2|ω 3|ω 2|ω 2|ω
sv2 1 100 1 2|ω 3|ω 2|ω 1|ω 1 010 0 3|ω 1|ω 3|ω 2|ω
sv3 1 001 1 3|ω 2|ω 1|ω 2|ω 1 001 0 3|ω 2|ω 1|ω 3|ω

sv4 1 100 1 2|ω 3|ω 2|ω 1|ω 1 100 0 2|ω 3|ω 2|ω 2|ω
sv5 1 101 1 2|ω 3|ω 1|ω 2|ω 1 010 0 3|ω 1|ω 3|ω 2|ω
sv6 1 011 1 3|ω 1|ω 2|ω 2|ω 1 001 0 3|ω 2|ω 1|ω 3|ω

Figure 4.7: Counter-attacking and attacking gadgets in the instance corresponding to

Figure 4.2.

The counter-attacking and attacking gadgets. Consider two words over {0, 1} for

each suit sv with v ∈ VA. The attacking word for suit svi is a such that a(0) = 1,

a(nA + 1) = 0, and for each j 6= i, j ∈ [1, nA], a(j) = 0 and a(i) = 1. The

counter-attacking word for suit svi is c such that c(0) = 1, c(nB + 1) = 1, and for

each j ∈ [1, nB ], if vi ∈ N(vj) then c(j) = 1 else c(j) = 0.

The gadgets can be built by looking at adjacent letters in these words. If these

letters are 11 or 00, put a 2|ω-block. If they are 10, put 3|ω-block, and if they are

01, put 1|ω. We thus define for each suit sv, a counter-attacking gadget C(v) and an

attacking gadget A(v). The words and gadgets for the GG instance in Figure 4.2 are

given in Figure 4.7.

Let v ∈ VA and v′ ∈ VB . Observe that the sum of the e parts of the A(v) gadgets

is equal to 2(nA + 1) + 1 and that of the C(v′) gadgets is 2(nA + 1). Similarly, the

sum of the w parts is ω(nA + 1). The same holds for A(v′) and C(v), replacing nB

with nA.

Assume one hand leads (s, r), the other team is said to duck if it has cards higher

than r in suit s but plays a card lower than r, thereby refusing to take the trick.

Lemma 24. When a team sets up tricks in a suit, there is no point in ducking.

Proof. Anyway, the tricks will be established. Ducking only enables the opponent to

get her winners earlier.

In the next two lemmas, we assume optimal play from both teams subject to leading

from a single suit.
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Lemma 25. Assume the initial trick balance is 0, team B starts, team A only leads

cards from A(v), and team B only leads cards from C(v′). The trick balance remains

> −ω. If v′ ∈ N(v), it remains 6 1, else it reaches ω + 1.

Proof. It is optimal to play blocks from the highest to the lowest ranked when in lead,

and to take any trick offered when not in lead. Let i the index of v. Observe that team

A needs to 2j + 1 tempi to establish the jth block if j 6= i, and 2i tempi for the ith

block. Team B needs 2j tempi to establish the jth block if v′ ∈ N(vj), and 2j + 1

tempi otherwise.

Lemma 26. Assume the initial trick balance is−3ω/2, team A starts, team A only leads

cards from C(v), and team B only leads cards from A(v′). The trick balance remains

6 −ω/2. If v ∈ N(v′), it remains > −3ω/2− 1, else it reaches −5ω/2.

When team A attacks in the suit sv and team B does not play in an admissible

counter-attacking suit, team A establishes ω tricks before her (Lemma 25) and wins by

termination (Lemma 22). Conversely, if team A does not play in a neighboring suit

when team B attacks, team A loses (Lemma 23, 26). Thus, Lemmas 25 and 26 give the

graph structure to the suits.

Combining the attacking and counter-attacking gadgets. We now need to complete

the picture so that the assumptions of Lemmas 25 and 26 are met.

In each suit sv of hand h1 (resp. h2) but the one corresponding to the starting vertex

v0, we start by the counter-attacking gadget C(v) surrounded by the fixed sequences

5|ω 1|3ω/2 and 2|ω (resp. 4|ω/2 3|2ω and 2|2ω) and call it first part of the suit. We

then add to each suit, including sv0
, the attacking gadget A(v) surrounded by the fixed

sequences 4|ω 3|3ω/2 1|3ω/2 and 1|ω (resp. 6|ω 1|3ω/2 and 1|3ω/2) and call it second

part of the suit. Figure 4.8 displays the combination resulting from the GG instance in

Figure 4.2.

These fixed starting sequences ensure that once a team leads in suit sv, they will

continue leading only in sv until the suit is emptied. They also ensure, that while

one team chooses the attacking suit first, the opponent actually starts leading in the

counter-attacking gadget.

The ending sequences, on the other hand, ensure that after the attacking suit sv
and the first part of the counter-attacking suit sv′ have been emptied, the situation

corresponds to the reduction from the GG instance with the edges adjacent to v removed

and v′ as a starting vertex.
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Hand Suit Ranks

sv1 6|ω 1|3ω/2 A(v1) 1|3ω/2
h2 sv2 4|ω/2 3|2ω C(v2) 2|2ω 6|ω 1|3ω/2 A(v2) 1|3ω/2

sv3 4|ω/2 3|2ω C(v3) 2|2ω 6|ω 1|3ω/2 A(v3) 1|3ω/2

sv4 5|ω 1|3ω/2 C(v4) 2|ω 4|ω 3|3ω/2 1|3ω/2 A(v4) 1|ω
h1 sv5 5|ω 1|3ω/2 C(v5) 2|ω 4|ω 3|3ω/2 1|3ω/2 A(v5) 1|ω

sv6 5|ω 1|3ω/2 C(v6) 2|ω 4|ω 3|3ω/2 1|3ω/2 A(v6) 1|ω

Figure 4.8: Combination of attacking and counter-attacking gadgets for the instance

corresponding to Figure 4.2, with v1 as starting vertex.

Lemma 27. A trick balance of ω cannot be achieved by leading in defensive suits.

Ensuring the players simulate GG.

Let P a position resulting from one constructed from a GG instance.Assume there

exists a suit sv (and v the corresponding vertex in the original GG instance), such that

for any suit s different from sA, sB , and sv , s is dealt among hands h1 and h2 so as to

form a first part and a second part in h1 or in h2. If sv forms only a second part in h2
(resp. h1), h2 (resp. h1) is on the lead, and the trick balance is 1

2ω (resp. 0), then we

say that P is A-clean (resp. B-clean) and sv is the current starting suit.

Lemma 28. Let P a B-clean position with starting suit sv, and a suit sv′ such that

v′ ∈ N(v). Assume team A can ensure winning with optimal play from P . If team

B only leads from suit sv′ and team A only leads from sv until sv is empty, then we

reach a A-clean position P ′ with sv′ as the starting suit. Moreover, team A can ensure

winning with optimal play from P ′.

Proof. As P is a B-clean position, the trick balance is 0 and the lead is on h1. Suppose

team A plays in a suit su with u 6= v and u ∈ VA, before having established and cashed

the ω tricks of the 6|ω-block of the color sv (first block of the second part of that color).

After 6 tempi, team B has had time to cash the 5ω
2 tricks of the two first blocks 5|ω and

1| 3ω2 of the color sv′ , while team A has at most cash the ω
2 winners of the first block

4|ω2 of su. Consequently, the balance trick takes a value smaller than −2ω and team B

wins accordingly to Lemma 23. In particular, team A cannot ensure winning. Thus,

team A has to use the 6 first tempi to play in sv. At this point, team B threatens to

enter in C(v′) while team A cannot yet enter A(v). That forces team A to play again
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in v. Then, team B enters C(v′) immediately followed by team A cashing 3ω
2 tricks

(the trick balance is now 0) and entering A(v). According to Lemma 25, team A has to

play solely in A(v) until emptying this gadget.

In the end, the balance is −ω, the lead is in h2 and the only remaining cards in

h1 in the color sv are 3ω
2 winners. So the trick balance is virtually ω

2 and we reach a

A-clean position winning for team A.

Proof. As P is an A-clean position, the trick balance is ω
2 and the lead is on h2.

Suppose team B plays in a suit su′ with u′ 6= v′ and u′ ∈ VB , before having established

and cashed the ω tricks of the 4|ω-block of the color sv′ (first block of the second

part of that color). After 4 tempi, team A has had time to cash the ω
2 tricks of the

two first blocks 4|ω2 of the color sv, while team B could not cash any winners of a

block. Consequently, the balance trick takes a value greater than ω and team A wins

accordingly to Lemma 22. Thus, team B has to use the 4 first tempi to play in sv.

For similar considerations on the balance trick, team B has to use the next 3 tempi

playing in sv. Note that the trick balance does not reach a lethal value: taking values

ω2, −ω
2 , 3ω

2 , ω
2 . At this point, team A threatens to enter in C(v) while team B cannot

yet enter A(v′). That forces team B to play again in A(v). Then, team A enters

C(v) immediately followed by team B cashing 3ω
2 tricks (the trick balance is now

−ω) and entering A(v′). According to Lemma 26, team B has to play solely in A(v′)
until emptying this gadget. At last, the balance is −ω, the lead is in h1 and the only

remaining cards in h2 in the color sv′ are ω winners. So, we reach a B-clean position

which is necessarily winning for team B, and the trick balance is virtually 0.

Lemma 29. Let P a A-clean position with starting suit sv′ . Assume team A can ensure

winning with optimal play from P . Then there exists a suit sv such that v ∈ N(v′) and

such that if team B only leads from suit sv′ and team A only leads from sv until sv′

is empty, then we reach a B-clean position P ′ with sv as the starting suit. Moreover,

team A can ensure winning with optimal play from P ′.

Lemma 30. Let G be an GG instance, and consider the corresponding B(L3, , )

instance B. If team A can win in B, then the second player in G does not have a

winning strategy.

Proof. Let σ a strategy for the second player in G and let us show that σ is not winning.

Assume team B plays according to σ in the B instance. Team A can answer by keeping

simulating GG and still ensure winning (Lemma 28 and 29), thereby generating a
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strategy in GG. Since there are only finitely many suits to be emptied, we will reach

a B-clean position with starting suit sv and without any suit sv′ such that v′ ∈ N(v).

This shows that the corresponding GG situation is lost and that σ is not a winning

strategy.

Lemma 31. Let G be an GG instance, and consider the corresponding B(L3, , )

instance B. If team B can win in B, then the first player in G does not have a winning

strategy.

Proof. Similar proof with the dual to Lemmas 28 and 29.

These two propositions lead us to our main result.

Theorem 26. The B(L3, , ) fragment is PSPACE-hard.

4.4 Connection Games

Numerous popular abstract strategy games ranging from HEX and HAVANNAH

to LINES OF ACTION belong to the class of connection games. Still, very few

complexity results on such games have been obtained since HEX was proved

PSPACE-complete in the early eighties.

We study the complexity of two connection games among the most widely

played. Namely, we prove that HAVANNAH and TWIXT are PSPACE-

complete.

The proof for HAVANNAH involves a reduction from GENERALIZED GEOG-

RAPHY and is based solely on ring-threats to represent the input graph. On

the other hand, the reduction for TWIXT builds up on previous work as it is a

straightforward encoding of HEX.

A connection game is a kind of abstract strategy game in which players try to make

a specific type of connection with their pieces [25]. In many connection games, the

goal is to connect two opposite sides of a board. In these games, players take turns

placing or/and moving pieces until they connect the two sides of the board. HEX,

TWIXT, and SLITHER are typical examples of this type of game. However, a connection
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game can also involve completing a loop (HAVANNAH) or connecting all the pieces of

a color (LINES OF ACTION).

A typical process in studying an abstract strategy game, and in particular a con-

nection game, is to develop an artificial player for it by adapting standard techniques

from the game search literature, in particular the classical Alpha-Beta algorithm [4]

or the more recent Monte Carlo Tree Search paradigm [26, 6]. These algorithms

explore an exponentially large game tree are meaningful when optimal polynomial

time algorithms are impossible or unlikely. For instance, tree search algorithms would

not be used for NIM and SHANNON’S EDGE SWITCHING GAME which can be played

optimally and solved in polynomial time [27].

Until now, connection games have received few attention. Besides Even and Tar-

jan’s proof that SHANNON’S VERTEX SWITCHING GAME is PSPACE-complete [56]

and Reisch’s proof that HEX is PSPACE-complete [113], the only complexity results

on connection games that we know of are the PSPACE-completeness of virtual con-

nection detection [90] in HEX, the NP-completeness of dominated cell detection in

SHANNON’S VERTEX SWITCHING GAME [12], as well as an unpublished note showing

that a problem related to TWIXT is NP-complete [104].4

The two games that we study in Section 4.5 and Section 4.6 rank among the most

notable connection games. They were the main topic of multiple master’s theses and

research articles [80, 104, 106, 124, 122, 97, 57], and they both gave rise to competitive

play. High-level online competitive play takes place on www.littlegolem.net.

Finally, live competitive play can also be observed between human players at the Mind

Sports Olympiads where an international TWIXT championship has been organized

every year since 1997, as well as between HAVANNAH computer players at the ICGA

Computer Olympiad since 2009.5

4.5 Havannah

HAVANNAH is a 2-player connection game played on a hexagonal board paved by

hexagons. White and Black place a stone of their color in turn in an unoccupied cell.

Stones cannot be taken, moved nor removed. Two cells are neighbors if they share an

edge. A group is a connected component of stones of the same color via the neighbor

4For a summary in English of Reisch’s reduction, see Maarup’s thesis [100].
5See www.boardability.com/game.php?id=twixt and www.grappa.univ-lille3.

fr/icga/game.php?id=37 for details.
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relation. A player wins if they realize one of the three following different structures:

a circular group, called ring, with at least one cell, possibly empty, inside; a group

linking two corners of the board, called bridge; or a group linking three edges of the

board, called fork.

As the length of a game of HAVANNAH is polynomially bounded, exploring the

whole game tree can be done with polynomial space, so HAVANNAH is in PSPACE.

In our reduction, the HAVANNAH board is large enough that the gadgets are far

from the edges and the corners. Additionally, the gadgets feature ring threats that are

short enough that the bridges and forks winning conditions do not have any influence.

Before starting the reduction, we define threats and make two observations that will

prove useful in the course of the reduction.

A simple threat is defined as a move which threatens to realize a ring on the next

move on a unique cell. There are only two kinds of answers to a simple threat: either

win on the spot or defend by placing a stone in the cell creating this very threat. A

double threat is defined as a move which threatens to realize a ring on the next move

on at least two different cells. We will use threat as a generic term to encompass both

simple and double threats. A winning sequence of threats is defined as a sequence of

simple threats ended by a double threat for one player such that the opponent’s forced

move never makes a threat. Thus, when a player is not threatened and can initiate

a winning sequence of threats, they do win. To be more concise, we will denote by

W : a1,a2; a3,a4; . . . ; a2n−1(,a2n) the sequence of moves starting with White’s move

a1, Black’s answer a2, and so on. a2n is optional, for the last move of the sequence

might be White’s or Black’s. Similarly, B : a1,a2; a3,a4; . . . ; a2n−1(,a2n) denotes

the corresponding sequence of moves initiating by Black. We will use the following

lemmas multiple times:

Lemma 32. If a player is not threatened, playing a simple threat forces the opponent

to answer on the cell of the threat.

Proof. Otherwise, no matter what have played their opponent, placing a stone on the

cell of the threat wins the game.

Lemma 33. If a player is not threatened, playing a double threat is winning.
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1 2 3

4 5 6

Figure 4.9: Example of an instance of GG with vertex 1 as initial vertex.

Proof. The player is not threatened, so their opponent can not win at their turn. Let u

and v be two cells of the double threat. If their opponent plays in u, the player wins by

playing in v. If their opponent plays somewhere else, the player wins by playing in u.

4.5.1 Generalized Geography

Lichtenstein and Sipser have proved that the game remained PSPACE-hard even if G

was assumed to be bipartite and of degree at most 3 [95]. This time, we will reduce

from such a restriction of GG to show that HAVANNAH is PSPACE-hard.

We denote by P (v) the set of predecessors of the vertex v in G, and S(v) the set

of successors of v. A vertex with in-degree i and out-degree o is called (i, o)-vertex.

The degree of a vertex is the sum of the in-degree and the out-degree, and the degree of

G is the maximal degree among all vertices of G. If V is the set of vertices of G and

V ′ is a subset of vertices, then G[V \ V ′] is the induced subgraph of G where vertices

belonging to V ′ have been removed.

To limit the number of gadgets we need to create, we will also assume a few

simplifications detailed below. An example of a simplified instance of GG can be found

in Fig. 4.9.

Let (G, v0) be an instance of GG with G bipartite and of degree at most 3. We

can assume that there is no vertex v with out-degree 0 in G. Indeed, if v0 ∈ P (v)
then (G, v0) is trivially winning for Player 1. Else, (G[V \ ({v} ∪ P (v))], v0) is an

equivalent instance, since playing in a predecessor of v is losing.

All edges coming to the initial vertex v0 can be removed to form an equivalent

instance. So, v0 is a (0, 1)-, a (0, 2)-, or a (0, 3)-vertex. If S(v0) = {v′}, then

(G[V \ {v0}], v′) is a strictly smaller instance such that Player 1 is winning in (G, v0)

if and only if Player 1 is losing in (G[V \ {v0}], v′). If S(v0) = {v′, v′′, v′′′}, then

Player 1 is winning in (G, v0) if and only if Player 1 is losing in at least one of the
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three instances (G[V \ {v0}], v′), (G[V \ {v0}], v′′), and (G[V \ {v0}], v′′′). In those

three instances v′, v′′, and v′′ are not (0, 3)-vertices since they had in-degree at least 1

in G. Therefore, we can also assume that v0 is (0, 2)-vertex.

We call an instance with an initial (0, 2)-vertex and then only (1, 1)-, (1, 2)-, and

(2, 1)-vertices a simplified instance.

In the following subsections we propose gadgets that encode the different parts of

a simplified instance of GG. These gadgets have starting points and ending points. The

gadgets are assembled so that the ending point of a gadget coincides with the starting

point of the next one. The resulting instance of HAVANNAH is such that both players

must enter in the gadgets by a starting point and leave it by an ending point otherwise

they lose.

4.5.2 Edge Gadgets

Wires, curves, and crossroads will enable us to encode the edges of the input graph.

In the representation of the gadgets, White and Black stones form the proper gadget.

Dashed stones and gray stones are respectively White and Black stones setting the

context.

In the HAVANNAH board we name the 6 directions: North, North-West, South-West,

South, South-East, and North-East according to standard designation. While figures

and lemmas are mostly presented from White’s point of view, all the gadgets and

lemmas work exactly the same way with colors reversed.

The wire gadget. Basically, a wire teleports moves: one player plays in a cell u and

their opponent has to answer in a possibly remote cell v. u is called the starting point

of the wire and v is called its ending point. A wire where White prepares a threat and

Black answers is called a WB-wire (Fig. 4.10a); conversely, we also have BW-wires.

We say that WB-wires and BW-wires are opposite wires. Note that wires can be of

arbitrary length and can be curved with 120◦ angles (Fig. 4.10b). On an empty board, a

wire can link any pair of cells as starting and ending point provided they are far enough

from each other.

Lemma 34. If White plays in the starting point u of a WB-wire (Fig. 4.10a), and Black

does not answer by a threat, Black is forced to play in the ending point v (possibly with

moves at a and b interleaved).
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u

v

a
b

(a) Entire WB-wire which

starts in u and ends in v.

(b) Curved fragment for a

BW-wire.

u

v

x

y

s

t

(c) Crossover gadget.

Figure 4.10: Edge gadgets.

Proof. If Black does not play neither in a nor in b, then White plays in v which makes

a double threat in a and b and wins by Lemma 33. If Black plays in a (resp. in b),

at the very least White can play in b (resp. in a) which forces Black to play in v by

Lemma 32.

The crossover gadget. The input graph of GG might not be planar, so we have to

design a crossover gadget to enable two chains of wires to cross. Fig. 4.10c displays a

crossover gadget, we have a South-West BW-wire with starting point u which is linked

to a North-East BW-wire with ending point v, and a North BW-wire with starting point

s is linked to a South BW-wire with ending point t.

Lemma 35. In a crossover gadget (Fig. 4.10c), if White plays in the starting point u,

Black ends up playing in the ending point v and if White plays in the starting point s,

Black ends up playing in the ending point t.

Proof. By Lemma 32, if White plays in u, Black has to play in x, forcing White to

play in y, forcing finally Black to play in v. If White plays in s, again by Lemma 32,

Black has to play in t.
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u v

s

a

b
c

d

e
f

g

h

i
j

(a) Gadget before being used. The wires for the

in-edges end in u and v, the wire for the out-edge

starts in s.

k
l m

n

(b) Gadget after being used and then reentered.

White wins with a double threat.

Figure 4.11: The (2, 1)-vertex gadget links three WB-wires. The North-West and

North-East ones end in u and v, the South WB-wire starts in s.

Note that the South wire is linked to the North wire irrespective of whether the

other pair of wires has been used and conversely. That is, in a crossover gadget two

paths are completely independent.

4.5.3 Vertex Gadgets

We now describe the gadgets encoding the vertices. Recall from Section 4.5.1 that

simplified GG instances only feature (1, 2)-, (1, 1)-, and (2, 1)-vertices, and a (0, 2)-

vertex. One can encode a (1, 1)-vertex with two consecutive opposite wires. Thus, we

will only present three vertex gadgets, one for (2, 1)-vertices, one for (1, 2)-vertices,

and one for the (0, 2)-vertex.

The (2,1)-vertex gadget. A (2, 1)-vertex gadget receives two wire ending points. If

a stone is played on either of those ending points, it should force an answer in the

starting point of a third wire. That simulates a vertex with two edges going in and one

edge going out.

Lemma 36. If Black plays in one of the two possible starting points u and v of a

(2, 1)-vertex gadget (Fig. 4.11b), and White does not answer by a threat, White is

forced to play in the ending point s.
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u
s t

(a) The (1, 2)-vertex gadget. The wire

for the in-edge ends in u.

s t

(b) The (0, 2)-vertex gadget representing the

starting vertex v0.

Figure 4.12: In these choice gadgets, White can defend by playing in s or in t. A

North-West BW-wire starts in s and a North-East BW-wire starts in t.

Proof. Assume Black plays in u and White answers by a move which is not in s nor

a threat. This move from White has to be either in v or in j, otherwise, Black has a

double threat by playing in s and wins by Lemma 33. Suppose White plays in v. Now,

Black plays in s with a simple threat in j, so White has to play in j by Lemma 32.

Then Black has the following winning sequence: B: a,b; c,d; h,i; f . Black has now a

double threat in g and e and so wins by Lemma 33. If White plays in j instead of v,

the argument is similar.

If Black plays the first move in v, the proof that White has to play in s is similar.

The (1-2)-vertex and (0,2)-vertex gadgets. A (1, 2)-vertex gadget receives one

ending point of a wire (Fig. 4.12a). If a stone is played on this ending point, it should

offer the choice to defend either by playing in the starting point of a second wire, or by

playing in the starting point of a third wire. That simulates a vertex with one edge going

in and two edges going out. The (0, 2)-vertex gadget (or starting-vertex gadget) can

be seen as a (1, 2)-vertex gadget where a stone has already been played on the ending

point of the in-edge. The (0, 2)-vertex gadget represents the two possible choices of

the first player at the beginning of the game.

Lemma 37. If Black plays in the starting point u of a (1, 2)-vertex gadget (Fig. 4.12a),

and White does not play a threat, White is forced to play in one of the two ending

points s and t, then, if Black does not answer by a threat, they have to play in the other

ending point.
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Proof. Black plays in u. Suppose White plays neither in s nor in t nor a threatening

move. Then Black plays in s. By Lemma 32, White has to play in t but Black wins by

playing in the ending point of the wire starting at s by Lemma 34.

Assume White’s answer to u is to play in s. t can now be seen as the ending point

of the in-wire, so Black needs to play in t or make a threat by Lemma 34.

Corollary 14. If White is forced to play a threat or to open the game in one of the two

opening points s and t of the (0, 2)-vertex gadget (Fig. 4.12b). Then, if Black does not

play a threat, they are forced to play in the other opening point.

4.5.4 Assembling the Gadgets Together

Let (G, v0) be a simplified instance of GG, and n be its number of vertices. G being

bipartite, we denote by V1 the side of the partition containing v0, and V2 the other side.

Player 1 moves the token from vertices of V1 to vertices of V2 and player 2 moves the

token from V2 to V1. We denote by φ the reduction from GG to HAVANNAH. Let us

describe the construction of φ((G, v0)). As an example, we provide the reduction from

the GG instance from Fig. 4.9 in Fig. 4.13.

The initial vertex v0 is encoded by the gadget displayed in Fig. 4.12b. Each player

1’s (2, 1)-vertex is encoded by the (2, 1)-vertex gadget of Fig. 4.11a, and each player

2’s (2, 1)-vertex is encoded by the same gadget in reverse color. Each player 1’s

(1, 2)-vertex is encoded by the (1, 2)-vertex gadget of Fig. 4.12a, and each player 2’s

(1, 2)-vertex is encoded by the same gadget in reverse color.

All White’s vertex gadgets are aligned and all Black’s vertex gadgets are aligned

on a parallel line. Whenever (u, v) is an edge in G, we connect an exit of the vertex

gadget representing u to an entrance of a gadget encoding v using wires and crossover

gadgets. Let n be the number of vertices in G, since G is of degree 3, we know that the

number of edges is at most 3n/2. The minimal size in terms of HAVANNAH cells for a

smallest wire and the size of a crossover are constants. Therefore the distance between

Black’s line and White’s line is linear in n. Note that, two wires of opposite colors

might be needed to connect two vertex gadgets or a vertex gadget and a crossover.

Similarly, we can show that the distance between two vertices on Black’s line or on

White’s line is constant.
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Figure 4.13: HAVANNAH gadgets representing the GG instance from Fig. 4.9.

Lemma 38. If Black reenters a White’s (2, 1)-vertex gadget (Fig. 4.11b), and Black

has no winning sequence of threats elsewhere, White wins.

Proof. If Black reenters a White’s (2, 1)-vertex by playing in v, White plays in e. As

Black cannot initiate a winning sequence, whatever he plays White can defend until

Black is not threatening anymore. Then White plays in k or in l with a decisive double

threat in m and n.

Theorem 27. HAVANNAH is PSPACE-complete.

Proof. We already mention that HAVANNAH ∈ PSPACE and we just presented a

polynomial time reduction from a PSPACE-complete problem. We shall now prove

that the reduction is sound, that is: player 1 is winning in (G, v0) if and only if White

is winning in φ((G, v0)). First we show that the players in the game of HAVANNAH

lose if they make a move which does not correspond to anything in the instance of

GG. Such a move will be called a cheating move. The exhaustive list of non cheating
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moves is: defending a threat, playing at the end of a wire when the opponent had just

played at its starting point, choosing which wire starting point s or t to block when

the opponent had just play in u (Fig. 4.12a), which forces them to take the other wire,

and playing in the exit s of a (2, 1)-vertex gadget when the opponent had just play in u

or in v (Fig. 4.11a). In order to conclude by invoking Lemma 34 up to Corollary 14,

we should show that making a threat is not helpful in all the above situations. Note

that those Lemmas imply the following invariant: while White and Black play a legal

game of GG, at their turn, a player is threatened or their opponent can initiate a winning

sequence of threats. There is only two kinds of places where one can play a threat: the

crossroad gadget (Fig. 4.10c) and the (2, 1)-vertex gadget while already being entered

(Fig. 4.11b).

Let us start by showing that playing a threat in a crossroad gadget which does not

defend a threat, that is, the action was occurring in a different place, is losing. If White

plays in s then Black plays in t which is the starting point of a BW wire. And now,

they are at least two places where Black can initiate a winning sequence of threats, so

White loses (after possibly playing some additional but harmless threats). The same

holds by reversing the colors or by reversing s and t, and is not affected by whether

or not stones have been played in u, x, y and v. If, instead, White plays in u, Black

answers in x, White answers in y and Black plays in v, and again Black can initiate a

winning sequence of threats in two places. If, instead, White plays in x, Black answers

in u and again White is losing. If, instead, Black plays in x, White plays in y and Black

plays in v, and now White plays their winning sequence of threats.

Now, let us show that the threats in the already entered (2, 1)-vertex gadget are

harmless. Consider now Fig. 4.11b. If Black plays in b, White answers in a and there

is no more threats for Black. If Black plays in a, White answers in b. Black can threat

again in c or d but White defends in d or c, respectively, and there are no more threats.

Note that this does not affect the fact that reentering in the gadget is losing for Black.

Summing up, White and Black has to simulate a proper game of GG in the instance

(G, v0).

We now show that if a player in the game of HAVANNAH has no more move in the

corresponding GG instance, they lose. The only non cheating move would be to reenter

in a (2, 1)-vertex but it is losing by Lemma 38.
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4.6 TwixT

Alex Randolph’s TWIXT is one of the most popular connection games. It was invented

around 1960 and was marketed as soon as in 1962 [80]. In his book devoted to

connection games, Cameron Browne describes TWIXT as one of the most popular and

widely marketed of all connection games [25]. We now briefly describe the rules of

TWIXT and refer to Moesker’s master’s thesis for an introduction and a mathematical

approach to the strategy, and the description of a possible implementation [106].

TWIXT is a 2-player connection game played on a GO-like board. At their turn,

player White and Black place a pawn of their color in an unoccupied place. Just as in

HAVANNAH and HEX, pawns cannot be taken, moved, nor removed. When 2 pawns of

the same color are spaced by a knight’s move, they are linked by an edge of their color,

unless this edge would cross another edge. At each turn, a player can remove some of

their edges to allow for new links. The goal for player White (resp. Black) is to link

top and bottom (resp. left and right) sides of the board. Note that sometimes, a player

could have to choose between two possible edges that intersect each other. The pencil

and paper version TWIXTPP where the edges of a same color are allowed to cross is

also famous and played online.

As the length of a game of TWIXT is polynomially bounded, exploring the whole

tree can be done with polynomial space using a minimax algorithm. Therefore TWIXT

is in PSPACE.

Mazzoni and Watkins have shown that 3-SAT could be reduced to single-player

TWIXT, thus showing NP-completeness of the variant [104]. While it might be possible

to try and adapt their work and obtain a reduction from 3-QBF to standard two-player

TWIXT, we propose a simpler approach based on HEX. The PSPACE-completeness

of HEX has already been used to show the PSPACE-completeness of AMAZONS, a

well-known territory game [69].

We now present how we construct from an instance G of HEX an instance φ(G)

of TWIXT. We can represent a cell of HEX by the 9× 9 TWIXT gadgets displayed in

Fig. 4.14. Let n be the size of a side of G, Fig. 4.15 shows how a TWIXT board can be

paved by n2
TWIXT cell gadgets to create a HEX board.

It is not hard to see from Fig. 4.14a that in each gadget of Fig. 4.15, move w

(resp. b) is dominating for White (resp. Black). That is, playing w is as good for White

as any other move of the gadget. We can also see that the moves that are not part of

any gadget in Fig. 4.15 are dominated for both players. As a result, if player Black
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w

b

(a) Empty cell. (b) White cell. (c) Black cell.

Figure 4.14: Basic gadgets needed to represent cells.

(resp. White) has a winning strategy in G, then player Black has a winning strategy

in φ(G). Thus, G is won by Black if and only if φ(G) is won by Black. Therefore

determining the winner in TWIXT is at least as hard as in HEX, leading to the desired

result.

Theorem 28. TWIXT is PSPACE-complete.

Proof. We already mentioned that TWIXT ∈ PSPACE. We presented a polynomial

time reduction from a PSPACE-complete problem.

Observe that the proposed reduction holds both for the classic version of TWIXT

as well as for the pencil and paper version TWIXTPP. Indeed, the reduction does

not require the losing player to remove any edge, so it also proves that TWIXTPP is

PSPACE-hard.

4.7 Conclusions and Perspectives

4.7.1 Trick-Taking Card Games

In his thesis, Hearn proposed the following explanation to the standing lack of hardness

result for BRIDGE [2006, p122].

There is no natural geometric structure to exploit in BRIDGE as there is in a typical

board game.
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4. COMPLEXITY OF GAMES

Figure 4.15: Empty 3× 3 HEX board reduced to a TWIXT board.

Theorem 26 achieves a significant milestone in that respect. The gadgets in the

reduction indeed show that it is possible to find a graphical structure within the suits.

From all, the attacking and counter-attacking gadgets stand as the central idea, giv-

ing an adjacency list structure to suits, by means of a precise race to establishment.

Termination gadgets make those races decisive.

Finding a PSPACE-hardness proof necessitating only 2 hands per team is very

appealing. Another interesting problem is to find a hardness proof with a bounded

number of suits.

Many actual trick taking card games also feature a trump suit and potentially

different values for tricks based on which cards were involved. Such a setting can be

seen as a direct generalization of ours, but remains bounded. Therefore our PSPACE-
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completeness results carry over to point-based trick taking card games involving

trumps.

4.7.2 Connection Games

We have established the PSPACE-hardness of HAVANNAH and TWIXT but the com-

plexity of other notable connection games remains open. In particular, the following

games seem to be good candidates for future work on the complexity of connection

games.

In LINES OF ACTION, each player starts with two groups of pieces and tries to

connect all their pieces by moving these pieces and possibly capturing opponent

pieces [128]. While the goal of LINES OF ACTION clearly makes it a connection game,

the mechanics distinguishes it from more classical connection games as no pieces are

added to the board and existing pieces can be moved or removed. As a result, it is not

even clear that LINES OF ACTION is in PSPACE.

SLITHER is closer to HEX but each move actually consists of putting a new stone

on the board and possibly moving another one. Obtaining a PSPACE-hardness result

for SLITHER is not so easy since the rules allow a player to influence two different

areas of the board in a single turn.
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5 Conclusion

The second chapter was mainly devoted to the greediness-for-parameterization tech-

nique. We hope that this technique may be useful for other problems than the ones

tackled in that chapter. We are also glad that the formalism of local graph partitioning

problems (LGPPs) have been adopted in another work [117]. This framework is a good

way of generalizing algorithms or hardness results to the whole class of LGPPs. It

might constitute an economy of energy, in the sense that it prevents us from showing a

result for a specific local graph partitioning problem and observing after some time

that the result, in fact, extends to many similar problems.

Another key idea concerning cardinality-constrained graph problems is the bound

on the range of possible degrees in the subset of vertices from which an optimal solu-

tion has to be built (see Lemma 5 and Lemma 6). We are currently investigated the

parameterized complexity of cardinality-constrained problems in other classes than

bipartite graphs, and this observation proves quite useful.

The first half of the third chapter was a step towards tight inapproximability results

within superpolynomial time (subexponential time and FPT time). The main result of

[37] constitutes a major breakthrough in that direction. Indeed, it yields an almost tight

result between the lower bound and the upper bound of approximating MAX INDEPEN-

DENT SET in subexponential time. The second half of that chapter can be seen as a

first attempt to extend this tight result to other optimization problems. Again, we hope

that the framework of approximation preserving sparsifiers will serve in the near future.

Concerning the fourth chapter on the complexity of games, we would like to address

some last observations. We want to give some additional motivations in studying the
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complexity of natural fragments of trick taking card games. Usually (and it is almost

always the case for board games) one can classify the complexity of an interesting

game with perfect and complete information by asking: 1) Is the game singled-player?

2) Is the length of the games polynomially bounded? Then, if one gets two yeses, the

game is likely to be NP-complete, if one gets exactly one yes, then the game is likely

to be PSPACE-complete, and EXP-complete in case of two noes.

In fact, that only proves membership but the lower bound often matches it. Now,

there are some fragments of trick taking card games where it is even hard to have an in-

tuition. For instance, if both teams are limited to a single hand (that is B(L1, , )), it

is not clear if there is a polynomial time algorithm or if the problem remains PSPACE-

complete. Indeed, it is close to the polynomial fragment B(L1, , )) restricted to

symmetric hands (i.e., in each suit the two players have the same number of cards)

[127]. But, it seems also close to the PSPACE-hardness result for B(L3, , )) of

Theorem 26, since of the three hands of each player, only one is really significant.

Finally, we list some open questions inspired by this thesis:

• What is the complexity of MIN k-VERTEX COVER with respect to the value of

the solution p?

• In general, is there a unifying view of a superset of local graph partitioning

problems or another set of problems which may be useful to produce generic

results (and not to have to write s algorithms for s problems)?

• Can we establish the parameterized complexity with respect to the size of the

solution of each LGPP in chordal graphs?

• Can we use the trick of Lemma 5 and Lemma 6 to get FPT results for other

classes of graphs?

• What is the parameterized complexity of MAX SAT-k with respect to k + f

where k is the number of variables that we can set to true, and f is the maximum

number of occurrences among all the variables.

• Can we establish a tight result on the approximability in subexponential time

status of MIN INDEPENDENT DOMINATING SET?

• Same question for other minimization graphs problems.
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• Can we design an approximation preserving sparsifier for SAT?

• Can we adapt the proof of Theorem 26 to show that B(L2, , ) is PSPACE-

hard?

• What is the complexity of B(L1, , )? Can we venture a guess?

• What is the complexity of Lines of Actions?
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6 Appendix

Decision Problems

CLIQUE

Input: A graph G = (V,E) and an integer k.

Question: Does G contain a clique of size (at least) k? (i.e., a subset of vertices in V

which are pairwise adjacent)

MAX c-CSP ABOVE AVERAGE

Input: A collection of m boolean functions on the variable set V , where each function

depends on at most c variables, and a nonnegative integer k.

Question: Does there exist a boolean assignment of V that satisfies at least ρ · m
functions, where ρ is the average fraction of functions satisfied by a uniform

random assignment?

INDEPENDENT SET

Input: A graph G = (V,E).

Question: DoesG contain an independent set of size (at least) k? (i.e., a set of vertices

which are pairwise nonadjacent)
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PRIME

Input: An integer n.

Question: Is n prime?

QBF

Input: A quantified CNF formula φ on the variable set V .

Question: Does there exist a truth assignment of the free variables in V satisfying φ?

2SAT

Input: A 2-CNF formula φ on the variable set V .

Question: Does there exist a truth assignment of V satisfying all clauses of φ?

3SAT

Input: A 3-CNF formula φ on the variable set V .

Question: Does there exist a truth assignment of V satisfying all clauses of φ?

kSat

Input: A k-CNF formula φ on the variable set V .

Question: Does there exist a truth assignment of V satisfying all clauses of φ?

SAT

Input: A CNF formula φ on the variable set V .

Question: Does there exist a truth assignment of V satisfying all clauses of φ?

SAT-k

Input: A CNF formula φ on the variable set V , and an integer k.

Goal: Is there a truth assignement of V , setting at most k variables to true, satisfying

all the clauses?
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Optimization Problems

GENERALIZED k-DENSEST

Input: A graph G = (V,E), a subset V ′ ⊆ V , and an integer k.

Goal: Find a set S ⊇ V ′ of k vertices maximizing the number |E(S)| of inner edges.

GENERALIZED k-SPARSEST

Input: A graph G = (V,E), a subset V ′ ⊆ V , and an integer k.

Goal: Find a set S ⊇ V ′ of k vertices minimizing the number |E(S)| of inner edges.

GENERALIZED MAX (k, n− k)-CUT

Input: A graph G = (V,E), a subset V ′ ⊆ V , and an integer k.

Goal: Find a set S ⊇ V ′ of k vertices maximizing the number |E(S, V \ S)| of edges

in the cut.

GENERALIZED MIN DOMINATING SET

Input: A graph G = (V,E) with a partition V = (V1, V2, V3) (some of the sets being

possibly empty).

Goal: Find a smallest set of vertices V ′ ⊆ V1 ∪ V2 which dominate all vertices in

V2 ∪ V3.

GENERALIZED MIN (k, n− k)-CUT

Input: A graph G = (V,E), a subset V ′ ⊆ V , and an integer k.

Goal: Find a set S ⊇ V ′ of k vertices minimizing the number |E(S, V \ S)| of edges

in the cut.

k-DENSEST

Input: A graph G = (V,E), and an integer k.

Goal: Find a set S of k vertices maximizing the number |E(S)| of inner edges.
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k-SPARSEST

Input: A graph G = (V,E), and an integer k.

Goal: Find a set S of k vertices minimizing the number |E(S)| of inner edges.

LOCAL GRAPH PARTITIONING PROBLEM

Input: A graph G = (V,E), two reals α1 and α2, an objective opt ∈ {min,max},
and an integer k.

Goal: Find a set S of k vertices opt-imizing the number α1|E(S)|+α2|E(S, V \S)|.

MAX CLIQUE

Input: A graph G = (V,E).

Goal: Find the clique of maximum size, i.e., where a clique is a subset of vertices in

V which are pairwise adjacent.

MAX COMPLETE BIPARTITE SUBGRAPH

Input: A graph G = (V,E).

Goal: Find an induced bipartite subgraph of G containing a maximum number of

vertices.

MAX c-CSP

Input: A collection of m boolean functions on the variable set V , where each function

depends on at most c variables.

Goal: Find a boolean assignment of V that satisfies a maximum number of equations.

MAX CUT

Input: A graph G = (V,E).

Goal: Find a set S ⊆ V such that the number of edges having exactly one endpoint in

S is maximized.
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MAX INDEPENDENT SET

Input: A graph G = (V,E).

Goal: Find a largest independent set in G, i.e., a set of vertices which are pairwise

nonadjacent.

MAX INDUCED PLANAR SUBGRAPH

Input: A graph G = (V,E).

Goal: Find a largest subset S ⊆ V , such that G[S] is planar.

MAX k-DOMINATING SET

Input: A graph G = (V,E) and an integer k.

Goal: Find a set S of k vertices maximizing the number |N(S)| of vertices dominated

by S.

MAX (k, n− k)-CUT

Input: A graph G = (V,E) and an integer k.

Goal: Find a set S of k vertices maximizing the number |E(S, V \ S)| of edges in the

cut.

MAX kSAT

Input: A CNF formula φ on the variable set V containing at most k literals per clause.

Goal: Find a truth assignement of V that satisfies a maximum number of clauses.

MAX k-SET COVER

Input: A universe X , a collection S of subsets of X , and an integer k.

Goal: Find k subsets in S whose union has the maximum cardinality.
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MAX k-VERTEX COVER

Input: A graph G = (V,E) and an integer k.

Goal: Find a set S of k vertices maximizing the number |E(S)|+ |E(S, V \ S)| of

edges covered by S.

MAX ℓ-COLORABLE INDUCED SUBGRAPH

Input: A graph G = (V,E).

Goal: Find a largest subset S ⊆ V such that G[S] is ℓ-colorable.

MAX MINIMAL VERTEX COVER

Input: A graph G = (V,E).

Goal: Find a largest subset S ⊆ V such that S is a minimal vertex cover, that is, S is

a vertex cover and for any T ( S, T is not a vertex cover.

MAX SAT

Input: A CNF formula φ on the variable set V .

Goal: Find a truth assignement of V that satisfies a maximum number of clauses.

MAX SAT-k

Input: A CNF formula φ on the variable set V , and an integer k.

Goal: Find a truth assignement of V , setting at most k variables to true, that satisfies

a maximum number of clauses.

MAX UNUSED SETS

Input: A universe X , a collection S of subsets of X .

Goal: Find a set T ⊆ S of maximum size, such that S \ T covers X .
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Max 2Sat

Input: A CNF formula φ on the variable set V containing at most 2 literals per clause.

Goal: Find a truth assignement of V that satisfies a maximum number of clauses.

MAX 3LIN

Input: A system Az = b of linear equations in the variable set V over F2, each

equation involving exactly 3 variables.

Goal: Find an assignment of values to V satisfying a maximum number of equations.

Max 3Sat

Input: A CNF formula φ on the variable set V containing at most 3 literals per clause.

Goal: Find a truth assignement of V that satisfies a maximum number of clauses.

MIN BISECTION

Input: A graph G = (V,E).

Goal: Find a partition (V1, V2) of V such that ||V1| − |V2|| 6 1, minimizing the

number |E(V1, V2)| of edges in the cut.

MIN COLORING

Input: A graph G = (V,E).

Goal: Find a proper (vertex-)coloring of G, i.e., a coloring where no adjacent vertices

get the same color, using a smallest number of colors.

MIN CUT

Input: A graph G = (V,E).

Goal: Find a set S ⊆ V such that the number of edges having exactly one endpoint in

S is minimized.
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MIN DOMINATING SET

Input: A graph G = (V,E).

Goal: Find a smallest dominating set in G, i.e., a set of vertices S such that every

vertex in V \ S has a neighbor in S.

MIN FEEDBACK ARC SET

Input: A directed graph G = (V,A).

Goal: Find a smallest feedback arc set in G, i.e., a set of arcs F such that (V,A \ F )
is acyclic.

MIN FEEDBACK VERTEX SET

Input: A graph G = (V,E).

Goal: Find a smallest feedback vertex set in G, i.e., a set of vertices S such that

G[V \ S] is a forest.

MIN HITTING SET

Input: A universe X and a collection S of subsets of X .

Goal: Find a smallest subset of elements C ⊆ X such that C intersects every subset

in S .

MIN INDEPENDENT DOMINATING SET

Input: A graph G = (V,E).

Goal: Find a smallest set of vertices which is simultaneously an independent set and a

dominating set in G.

MIN k-DOMINATING SET

Input: A graph G = (V,E) and an integer k.

Goal: Find a set S of k vertices minimizing the number |N(S)| of vertices dominated

by S.
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MIN (k, n− k)-CUT

Input: A graph G = (V,E) and an integer k.

Goal: Find a set S of k vertices minimizing the number |E(S, V \ S)| of edges in the

cut.

MIN k-VERTEX COVER

Input: A graph G = (V,E) and an integer k.

Goal: Find a set S of k vertices minimizing the number |E(S)| + |E(S, V \ S)| of

edges covered by S.

MIN SAT

Input: A CNF φ on the variable set V .

Goal: Find a truth assignement of V that satisfies a minimum number of clauses.

MIN SET COVER

Input: A universe X and a collection S of subsets of X .

Goal: Find a minimum number of sets from S whose union is X .

MIN VERTEX COVER

Input: A graph G = (V,E).

Goal: Find a smallest vertex cover of G, i.e., a set C of vertices such that for every

e = {u, v} ∈ E, C ∩ {u, v} 6= ∅.

SET PACKING

Input: A universe X and a collection S of subsets of X .

Goal: Find a maximum number of sets from S which are pairwise disjoint.
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[127] Johan Wästlund. Two-person symmetric whist. The Electronic Journal of

Combinatorics, 12(1):R44, 2005.

[128] Mark H. M. Winands, Yngvi Björnsson, and Jahn-Takeshi Saito. Monte Carlo

tree search in Lines of Action. IEEE Transactions on Computational Intelligence

and AI in Games, 2(4):239–250, 2010.

[129] David Zuckerman. Linear degree extractors and the inapproximability of max

clique and chromatic number. In Proc. STOC’06, pages 681–690, 2006.

156


	Contents
	Introduction
	Problems, Instances, and Algorithms
	Reductions
	Computational Complexity Classes
	Graphs and Formulas
	Motivation and Organization

	FPT Algorithms and Approximation
	Subset Problems
	Intersective Approximability of Subset Problems
	Greediness-for-Parameterization
	Local Graph Partitioning Problems
	The Special Case of max and min (k,n-k)-cut
	Set and Satisfiability Size-Constrained Problems
	Size-Constrained Problems in Bipartite Graphs
	Recent Advances and Perspectives

	Inapproximability
	Preliminaries
	Some Consequences of (Almost-)Linear Size PCP System
	Subexponential Approximation Preserving Reducibility
	Recent Advances
	Superlinear Sparsifier
	A k-Step Sparsifier for Maximization Subset Graph Problems
	Some More Subexponential Inapproximability Results
	More About Sparsifiers
	Conclusion

	Complexity of Games
	Complexity of Trick-Taking Card Games
	Unbounded Number of Hands
	Bounded Number of Hands
	Connection Games
	Havannah
	TwixT
	Conclusions and Perspectives

	Conclusion
	Appendix
	Bibliography

