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Résumé

Cette thése traite plusieurs problémes qui se posent pour les marchés financiers avec coiits
de transactions et se compose de quatre parties.

On commence, dans la premiére partie, par une étude du probléme de couverture asymp-
totique d’une option Européenne pour un marché soumis & des cofits de transaction propor-
tionnels. Pour cela, on utilise la méthode d’approximation des portefeuilles suggérée par Hayne
Leland (1994). Plus précisément, on adapte la méthode modifiée proposée par Emmanuel Lé-
pinette (2008) et généralise les résultats & des modeéles de volatilité locale largement utilisés en
pratique. En utilisant les techniques de PDEs pour estimer les Greeks, on montre la convergence
en probabilité des portefeuilles discrétisés vers le pay-off lorsque le nombre de dates de révision
converge vers l'infini.

Dans la seconde partie, on considére le probléme de Merton sur 'optimisation de consom-
mation et d’investissement dans le modéle de Kabanov, modéle abstrait de marchés avec cofits
de transaction proportionnel, lorsque les prix sont conduits par un processus de Lévy. Le modéle
que 'on considére est générique au sens que le risque de défaut est autorisé, et que les stratégies
d’investissement sont supposées ladlag au lieu de cadlag. Dans ce contexte, on prouve que la
fonction valeur est solution d’une équation HJB integro-differentielle au sens des solutions de
viscosité. De plus, la stratégie optimale est construite a partir de la solution d’une équation
différentielle stochastique avec réflexions obliques.

Dans la troisiéme partie, on propose un modéle générique permettant de couvrir les modéles
avec la présence de coiits fixes et cotlits de transaction proportionnels sur le marché. En général,
le modéle que l'on considére n’est pas nécessairement convexe, donc la technique de dualité
classique ne marche plus. Néanmoins, la méthode de Maximum Essentiel Multidimensionel
proposée par Kabanov et Lépinette (2013) est encore valable grace a laquelle on arrive a établir
un théoréme de sur-réplication d’une option de type Européen ou Américaine. En suite, avec
le méme modéle, on s’intéresse a ’absence d’opportunité arbitrage. En introduisant la notion
de fonction liquidative, on réduit le probléme au cas unidimensionnel et étudie plusieurs types
d’opportunités d’arbitrage.

La derniére partie est consacrée a 1’étude du probléme de maximisation d’utilité de la richesse
terminale d’un portefeuille sous contraintes de risques. Dans ce cas, le risque est représenté par
une fonction de perte qui est typiquement concave et aléatoire. Pour cela, les techniques de
dualité convexe et de BSDEs sont appliquées pour obtenir la richesse optimale.






Abstract

This thesis deals with different problems related to markets with transaction costs and is
composed of four parts.

In the first part, we begin with the study of asymptotic hedging a European option in
markets with proportional transaction costs. To do so, we make use of the approximating method
suggested by Hayne Leland (1994). More precisely, we adapt the modified strategy proposed
by Emmanuel Lépinette (2008) and generalize the results to the models of local volatility. By
using the PDE technics for estimating the Greeks, we obtain the convergence in probability
of discrete portfolios to the given pay-off function when the number of revision dates tends to
infinity.

In the second part, we consider the portfolio optimization problem of Merton in Kabanov’s
model, an abstract model of markets with transaction costs, when the prices are driven by
a Lévy process. Our model is quite generic in the sense that the default risk is allowed, and
that the strategies are ladlag instead of cadlag as usually supposed in the literature. In this
setting, we prove that the value function is solution to a integro-differential HJB equation in
the viscosity sense. Moreover, the optimal policy is constructed thanks to the solution to a
differential stochastic equation with oblique reflections.

In the third part, we suggest a general model allowing to cover the case of markets with both
fixed and proportional transaction costs. In general, the model we consider is not necessarily
convex. Therefore, the duality technic is not valid anymore. However, the Multidimensional
Essential Supremum method suggested by Kabanov and Lépinette (2013) still works in our
setting thanks to which we can characterize the super-hedging prices of an option of European
or American type. In the same model, we are also interested in arbitrage theory. By introducing
the notion of liquidation function, we reduce the problem to the unidimensional case and study
several types of arbitrage opportunities.

The last part of the thesis is devoted to the study of the utility maximization problem under
expected shortfall risk constraints. In our setting, the risk is represented by some kind of loss
function which is typically random and increasing concave. To do so, the convex duality and
BSDE technic are used for obtaining the optimal wealth.
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Chapitre 1

Introduction générale

1.1 Motivation : Marchés avec coiits de transaction

Parmi les hypothéses fondamentales des modéles mathématiques pour les marchés financiers
est 'hypothése que les marchés sont sans friction. En particulier, les investisseurs peuvent faire
leurs transactions sans frais de courtage, taxes ou écarts acheteur-vendeur ... Cela conduit au
fait que trading peut se faire en temps continu, ce qui est une hypotheése irréaliste car trading
en temps continu, en réalité, signifie que les investisseurs peuvent subir une perte infinie en
raison des cotits de transaction. Les articles fondamentaux qui étudient des modéles de marché
avec colits de transaction appartiennent & Jouini et Kallal (1995) qui ont étudié le cas de
marchés avec deux actifs et le trading est soumis a des écarts acheteur-vendeur. Par la suite, un
grand nombre d’articles en économie et finance ont été proposées pour relacher I’hypothése de
I’absence des cofits de transaction. De nombreuses études revisitent les problémes classiques avec
des contraintes de cotits de transaction. Une attention particuliére a également été consacrée
pour la modélisation des structures de cotits de transaction

Les structures de cotits de transaction peuvent étre trés sophistiquées. Nous renvoyons le
lecteur a Kissell et Glantz (2003) pour une classification compléte des cotits de transaction. Dans
le sens le plus général, les colits de transaction se composent de cotits fixes et variables, ainsi
que les cotits visibles et cachés. Les composants fixes sont les cotits qui sont indépendants des
prix courants du marché ou de la stratégie mise en ceuvre et communément connue a ’avance
tels que les commissions, les frais. Les cotits variables sont les cotits qui sont déterminés par les
prix courants du marché et qui dépendent de la stratégie de trading. Cofits visibles sont connues
exactement & ’avance ou facilement mesurables & partir des données actuelles du marché. Ils se
composent des cofits fixes et une partie des cofits variables tels que les écarts de cours acheteur-
vendeur ou les taxes. Les cotits cachés sont les composants qui ne sont pas facilement connus ou
observables & partir des données actuelles du marché (par exemple, 'impact sur le marché ou
les autres effets de liquidité tels que le cotit de retard, I'appréciation des prix, le risque de timing
et le cotit d’opportunité). Dans cette thése, nous limitons le concept de coiits de transaction
dans les cofits visibles. Dans la pratique, les cofits visibles sont généralement représentés par
une fonction affine par morceaux du volume des transactions.

Beaucoup d’études simplifient la notion de cotits de transaction en supposant qu’ils sont
proportionnels au volume de trading. Plus réaliste est de modéliser les cotits de transaction en
incluant les cotts fixes et proportionnels (coiits linéaires). Jouini, Kallal et Napp (2001-2006)
ont d’abord tenté d’étudier la théorie de 'arbitrage en présence de coiits fixes. En fait, les
cofits fixes sont difficiles a traiter parce que la technique classique de dualité convexe n’est
plus valide. Par conséquent, il existe trés peu d’études sur les marchés avec a la fois des cofits
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12 1. Introduction générale

fixes et proportionnels. Au contraire, beaucoup a été fait pour les marchés avec seulement les
colits de transaction proportionnels. Dans le cadre multidimensionnel ou les échanges directes
entre les actifs sont possibles, ce qui est généralement le cas pour les marchés de change, une
approche géométrique a été introduite par Kabanov (1999). Dans ce modéle, le portefeuille
est représenté par un processus multidimensionnel (V;), dont chaque processus composant (V)
refléte la position sur l'actif ¢ exprimé en termes de quantité physique. Cette approche permet
d’éviter la question de numéraire et, tout aussi important, il est plus réaliste pour la description
des stratégies admissibles. Le cone de solvabilité K; au temps ¢ est défini comme ’ensemble
des positions qui peuvent étre transformées en positions dont les composants sont non-négatifs
aprés des échanges appropriées, et la condition auto-financant devient V, € —K; pour tout .

Bien que la linéarité des cotits de transaction est une forte simplification du monde réel,
il peut étre suffisant dans certains cas et conduit a des résultats mathématiques satisfaisants.
Cependant, cette approche peut produire des résultats erronés lorsque le montant de I'investis-
sement est faible et il est attribué & de nombreux actifs dans les petites fractions. La raison en
est simple : lorsque le volume de transactions est faible, les cotits fixes ne sont pas négligeables,
et ces cotts sont a la baisse lors de " augmentation de volume de trading (cotts de transaction
sont concaves). Sinon, la linéarité n’est pas une bonne idée pour modéliser les cotits de transac-
tion lorsque le volume de trading est grand, en raison de l'effet d’illiquidité. Autrement dit, si
pour un certain actif le volume de trading est élevé, alors il ne peut y avoir pas assez d’offre (ou
demande) de cet actif, et donc les coiits de transaction vont augmenter (cotts de transaction
sont convexes). Par conséquent, une fonction de cotits de transaction non-linéaire devrait étre
une approche pertinente : une fonction concave des coiits de transaction est bonne pour la mo-
délisation de petits investisseurs, tandis qu’une fonction convexe des coiits de transaction est
appropriée pour les modéles avec des grands investisseurs. Beaucoup de chercheurs supposent
un mélange des deux structures concave et convexe pour modéliser les cotits de transaction :
jusqu’a un certain niveau du volume de transaction, les coiits de transaction est une fonction
concave du volume des transactions. Cependant, la fonction de cotit de transaction est une
fonction convexe lorsque le volume de transaction va au-dela de ce niveau, pour les références,
voir Demchuk (2002), Kono et Wijayanayake (2001) et les références dedans.

Il existe une littérature considérable qui revoit les problémes classiques (et nouvelles) lorsque
les marchés sont soumis a la présence des coftits de transaction. Beaucoup d’articles analysent
Ieffet des cofits de transaction sur les opportunités d’arbitrage, a la fois en temps discret et
continu ( théorie de 'arbitrage avec coiits de transaction). Nous pouvons citer ici Jouini et
Kallal (1995), Soner, Shreve et Cvitanic (1995), Guasoni (2006), Cherny (2007), Guasoni et al.
(2010), Lépinette et Kabanov (2012). Une attention particuliére a été portée sur le probléme
de couverture approximative avec les cotits de transaction, par exemple la méthode de Leland
(1985) et certaines tentatives par la suite comme Kabanov et Safarian (1997), Bensaid et al.
(1992), Soner et al. (1995), Hodges et Neuberger (1989), Pergamenshchikov et Nguyen (2012). 11
v a aussi plusieurs recherches sur les problémes d’optimisation de portefeuille ou de minimisation
du risque sous les coiits de transaction, par exemple, Constantinides (1979) et Constantinides
(1986), Davis et Norman (1990), Dumas et Luciano (1991), Amihud et Mendelson (1986),
Framstad et al. (1999), Gerhold et al. (2013), et de nombreux autres documents.
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1.2

Contributions de la thése

La partie principale de cette thése traite de divers problémes sur les marchés avec cotits de
transaction. En particulier, nous essayons de répondre aux questions suivantes :

Q.1
Q.2

Q.3

Q.4
Q.5

Comment peut-on modifier la stratégie de couverture de Leland pour les modéles a
volatilité locale ?

Comment peut-on généraliser le probléme de la consommation optimale de Merton au
modéle de Kabanov lorsque les prix sont conduits par un processus de Lévy, et que le
risque de défaut est possible ?

Comment peut-on utiliser la notion de "Essential maximum" introduite par Kabanov et
Lépinette (2013) afin de caractériser le prix de couverture d’une option Européenne avec
colits de transaction fixes et proportionnels ?

Dans un modéle avec a la fois des cotits de transaction fixes et proportionnels, quels sont
les analogues de FTAP (The Fundamental Theorem of Asset Pricing) ?

Est-ce que la technique classique de dualité fonctionne toujours dans le probléme de la
maximisation de I'utilité sous les contraintes de perte espérée ?

Chaque question ci-dessus touche a un probléme spécifique en finance et sera présentée dans
les différentes parties de la thése. Les cing parties peuvent alors étre lues indépendamment. Sauf
le dernier, toutes les autres parties sont liées aux modéles de marché avec cotits de transaction.

La thése se compose de sept chapitres

Chapitres 1, 2. Dans ces deux premiers chapitres, nous proposons une bréve introduction
a la thése : le contexte de marchés avec coflits de transaction, la contribution de cette
theése, un apercu de chaque partie de la thése.

Chapitre 3. Dans ce chapitre, nous étudions le probléme de la couverture approximative

dans un modéle a volatilité locale en deux dimensions en présence de cotits de transaction

proportionnels. Nos principales contributions présentées dans ce chapitre sont

— Introduction d’une technique d’EDP qui permet d’obtenir des bornes supérieures des
Grecs d’une option Européenne dans un modéle a volatilité locale.

— Généralisation de la stratégie modifiée de Leland pour les modéles & volatilité locale.

Chapitre 4. Dans ce chapitre, nous étudions le probléme de la consommation optimale

dans le modéle Kabanov lorsque les prix sont conduits par un processus de Lévy. Le

probléme Merton classique est généralisé dans trois directions :

— Tout d’abord, on permet des chocs sur le marché en modélisant les prix par un
processus de Lévy.

— Deuxiémement, le risque de défaut est pris en compte : les transactions s’arrétent a
la premiére fois lorsque le portefeuille sort du cone de solvabilité. C’est plus réaliste
de supposer que les investisseurs pourrait étre en défaillance.

— Troisiémement, les stratégies de trading sont laglad afin de capturer des chocs ac-
cessibles et inaccessibles sur le marché. En outre, cette approche est également com-
patible avec la construction de la stratégie optimale en fonction des SDEs avec des
réflexions obliques.

Chapitre 5. Dans ce chapitre, nous étudions le probléme de la sur-couverture dans un

modeéle général de marché, y compris le cas des marchés avec cofits fixes et proportionnels.

Nos principales contributions dans ce chapitre sont

— Introduction d’un nouveau modéle de marché défini par le processus de liquidation
ce qui permet de réduire ’étude de portefeuilles multidimensionnelles aux processus
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de liquidation en valeur réelle.

— Caractérisation des prix de sur-couverture d’une option Européenne dans ce modéle
en utilisant la notion de maximum essentielle dans le cas multidimensionnel.

e Chapitre 6. Ce chapitre continue a étudier le modéle proposé dans le chapitre précédent
dans le cadre de la théorie de 'arbitrage. Nos principales contributions présentées dans
ce chapitre sont
— L’introduction d’une condition équivalente & l’existence d’une mesure de probabilité

risque neutre, c’est & dire ’absence de possibilité asymptotique-arbitrage.

— Caractérisation des prix de sur-couverture pour une option Européenne (en termes
d’argent, pas vecteur de quantités) dans le modéle Kabanov par la technique de
dualité.

— Etude des différentes notions des opportunités d’arbitrage pour ce modéle ainsi que
les relations entre les marchés avec cotits fixes & cofits proportionnels et les marchés
avec colits proportionnels seulement.

e Chapitre 7. Ce chapitre traite du probléme de maximisation de I'utilité sous contraintes
de risque. Nous utilisons la technique de dualité dans diverses situations. Nos principales
contributions présentées dans ce chapitre sont
— Une preuve de relation duale et la construction de la richesse optimale via la fonction

duale de Fenchel.

— Une solution & ce probléme dans le cas de marché compléte basée sur les techniques
d’EDSR et de dualité convexe.

Liste des publications ou des pré-publications

1.

Approximate Hedging in a Local Volatility Model with Proportional Transaction Costs,
with E. Lépinette. Applied Mathematical Finance. 2014.

Consumption-Investment Optimization Problem in a Levy Financial Model with Tran-
saction Costs, with Y. Kabanov and E. Lépinette. Preprint.

General Financial Market Model Defined by a Liquidation Value Process, with E. Lépi-
nette. Submitted to Stochastics. 2014.

. Risk Neutral Probabilities and Absence of Arbitrage Opportunity in Non Convex Finan-

cial Market Models, with E. Lépinette. Preprint.
Utility Maximization Problem With Expected Loss Constraints. Preprint.

1.3 Couverture approximative dans un modéle & volati-
lité locale avec cofits de transaction

e Motivation.

Ce troisiéme chapitre de la thése traite le probléme de couverture asymptotique
une option Européenne dans un modéle a volatilité locale avec deux actifs lorsque
I’écart de cours acheteur-vendeur est proportionnel & la valeur trading. Ce probléeme
était tout d’abord étudié dans le papier séminal de Leland (1985) pour le modéle de
Black-Scholes. Dans son travail, Leland suppose que la transaction de v actifs cotite
une quantité de kv.S, soit 'achat ou la vente, oll k est un coefficient des cotits de
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transaction et S; est le prix d’une unité d’actif au . Le portefeuille de couverture est
révisé chaque 6t ol dt est un petit pas de temps fini et fixe, malgré cela est optimale
ou non dans tous les sens. Dans ce modéle, la valeur actuelle de portefeuille au temps
t est définie par

t
V= Vi [ DS, = Y kaSulDia ~ DI <1,
0

t; <t

out; =t,0<i<n,ty=0,t, = 1, sont les dates de révision telles que t;11 —t; = 6t ;
et D™ désigne la stratégie de trading satisfaisant D™ = D} sur l'intervalle |t;_1,;].
En présence des cotits de transaction, Leland suggére une stratégie qui peut étre
considérée comme un delta modifié de la formule de Black-Scholes. L’idée est de
substituer la volatilité o par une "volatilité élargie" & afin de compenser pour les
cotits de transaction. La "volatilité élargie" est définie par

2 2
62 =02 4 2ko | — = 0> + 2H0né\/7.
ot T

La stratégie de trading est donnée par D = Cy(t;, St,) on C(t,x) = C™(t,z) est la
solution & I’équation de chaleur avec un nouveau coeflicient de diffusion &

~

Co(t,x) +  16202C.(t,x) =0, (x,t) €]0,00[x[0, 1],
C(l,z) = h(z), xz€]0,00[.,

D’aprés la stratégie de Leland, lorsque le nombre de révision n est grand, c’est & dire
quand it = % converge vers 0, la valeur du portefeuille de couverture convergera au
pay-off h(St) en probabilité, autrement dit, cette stratégie de couverture va asymp-
totiquement couvrir 'option Européenne sans erreur. En outre, la valeur initiale de
cette stratégie est donnée par V' = C (0, Sp) qui est supérieure au prix de couverture
dans les formules de Black-Scholes en raison de 'augmentation de la volatilité de la
stratégie de Leland. Ceci s’explique par l'intuition que le prix de 'option doit inclure
un montant supplémentaire que le vendeur de ’option doit payer en raison des écarts
de cours acheteurs-vendeurs quand il ou elle construit un portefeuille de couverture.
Lorsque l'intervalle de révision tend vers zéro, ce prix va augmenter au prix bid S§,
soit le coit de la stratégie "buy-and-hold". Cela signifie que la stratégie de Leland
n’est pas mieux que la stratégie sur-couverture lorsque les transactions se passent

presque en temps continu.

Malheureusement, la conjecture de Leland n’est vraie que dans le cas ol k, tend
vers 0 avec la vitesse de n7%,0 < a < % comme montrée par Kabanov et Safarian
(1997), mais elle est fausse dans le cas des cotits constants k, = const. Dans ce cas,
il est rapporté dans Kabanov et Safarian (1997) ou plus tard dans Pergamenshchikov
(2003) que l'erreur de couverture converge avec une vitesse de convergence de n1
vers une variable non-nulle. L’interprétation économique de ce phénomeéne est claire :
un trader ne dispose pas de motivation a la transaction "presque continuelle" §’il ne
regoit pas une réduction sur les cotits de transaction lors que les transactions sont
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plus fréquentes (de maniére équivalente, le trade avec des ordres nombreux), si non
il subira une perte importante en raison des cotits de transaction.

Une tentative de traiter le cas des colts constants appartient & Lépinette (2011). 11
suggére une modification de la stratégie classique de Leland pour supprimer Ierreur
de couverture. A savoir, il a construit une stratégie de la fagon suivante

~

ti
Dp = Cu(ti, Sh) +/ Coe(t, Sy)dt. (1.3.1)
0

Il est important de souligner que le prix de couverture de la stratégie de Lépi-
nette est exactement le méme que celui de la stratégie de Leland. Puisque l'erreur
de couverture asymptotiquement disparait, il est claire que la stratégie modifiée sur-
performe ’ancienne. Une étude de la vitesse de convergence est également effectuée
dans un article ultérieur de Lépinette et Darses (2012).

e Nouveaux résultats.

Le but de mon premier projet dans cette thése est donc de généraliser les résul-
tats de Lépinette pour le cas des modéles & volatilité locale. Nous montrons que la
stratégie de couverture modifiée fonctionne bien dans ce nouveau contexte, i.e. la
couverture est asymptotiquement sans erreur. Nous limitons notre attention & un
modéle a volatilité locale pour deux raisons. Premiérement, les modéles a volatilité
locale sont couramment utilisés dans la pratique car ils peuvent étre tout simplement
calibrés & des options "vanillas" par les formules de Dupire. Un des avantages des
modéles a volatilité locale par rapport a des modéles a volatilité stochastique est
que les premiers conservent la complétude du marché, ce qui est un facteur clé en
pratique pour évaluer des produits dérivés. Deuxiémement, la stratégie de Lépinette
ne pourrait pas étre valable dans des modéles & volatilité stochastique parce que la
couverture exacte échoue dans ces modéles. Il est donc sans intérét pour étudier une
stratégie de trading spécifique qui conduit & une erreur de couverture positif asymp-
totiquement (sauf que nous pouvons montrer que cette stratégie est optimale dans
un certain sens). Notre principal résultat de cette partie est le théoréme suivant :

Theorem 1.3.1. Soit o € [0, %] et supposons que h et o sont tels que Coz > 0. S

la stratégie 13;‘ est donnée par , alors sous quelques conditions techniques, la
valeur terminale du portefeuille

1 n—1
Vln = 6’8 + /Bzdsu - anStAﬁ?—‘rl - Bm
0

i=1

converges vers le pay-off h(S1) en probabilité.

La preuve de ce théoréme est essentiellement similaire a celle de Lépinette (2011).
La technique clé réside dans ’estimation des dérivées successives de C (t,z). Lorsque
la fonction de volatilité est constante ou déterministe, les choses sont simples car
nous pouvons employer explicitement les expressions de ces dérivés. Dans le cas de
volatilité locale, nous sommes confrontés a une difficulté considérable de ne pas savoir
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de telles expressions. La seule chose que nous pouvons faire est de faire appel a des
techniques classiques d’EDP afin d’obtenir des bornes précises pour les dérivés de
C (t,z). Une utilisation intelligente du changement de temps technique est nécessaire
pour obtenir les résultats souhaités.

e Perspectives.

Les résultats obtenus peuvent étre généralisés ou développées dans des directions

différentes.
Tout d’abord, notons que la fonction des cotits de transaction considérée dans ce
chapitre est de la forme linéaire, c’est & dire G(t, S, z) = |z|S: ot = désigne le

volume de transaction et S; désigne le prix de 'action au temps ¢. La linéarité de G
peut donc étre relaxée afin que le modéle soit plus réaliste, par exemple, I'impact du
marché ou contraintes réglementaires. Nous référons a Elie et Lépinette (2013) pour
la méme problématique dans le cas de modéle de Black-Scholes lorsque G ne dépend
pas du prix de l'action, soit G = G(z,t). Un probléme similaire est également étudié
dans Nguyen (2014) pour les modéles a volatilité stochastique et avec la fonction de
transaction de la forme G = G(t,zS;) (courbe de 'offre).

Deuxiémement, on sait que lerreur de couverture V{* — h(S1) converge vers zéro
quand n tend vers 'infini. Il est naturel d’étudier la vitesse de cette convergence.
Mais méme dans le cas le plus simple de modéle de Black-Scholes, la preuve a déja
utilisé des techniques probabilistes sophistiquées. Par conséquent, la question de
la vitesse de convergence reste ouverte dans notre modeéle & volatilité locale. En
outre, nous espére que quand n tend vers l'infini, le cott de couverture C"(0,.Sy)
converge vers le prix de sur-couverture du pay-off. Au moins c’est le cas pour les
Calls Européens, quand C™(0,Sy) converge vers le prix de la stratégie buy-and-
hold, c’est a dire S§ := So(1 + ). Nous nous intéressons également a la vitesse de
convergence S5 — C™(0,Sp). Cette question est d'une grande importance pour les
praticiens, en particulier si la vitesse de convergence de C™(0, Sp) vers le prix de la
stratégie buy-and-hold S§ est nettement inférieure a la vitesse de convergence de V"
vers h(S1), alors I'on peut conclure que la stratégie modifiée de Leland est vraiment
utile dans la pratique.

1.4 Optimisation de consommation dans le modéle de
Kabanov avec sauts

e Motivation.

Dans ce troisiéme chapitre, nous étudions le probléme classique de la consommation
optimale dans le modéle de Kabanov avec des sauts, c’est a dire les marchés avec
cotlits de transaction proportionnels et des prix étant conduits par un processus de
Lévy. Le probléme de consommation-investissement optimale en temps continu a été
initié par le papier séminal de Merton (1971). Il a considéré un modéle de marché
sans friction ot le processus de prix est un mouvement brownien géométrique. Etant
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donné une fonction d’utilité qui représente la référence de risque de l'investisseur,
son objectif est de maximiser 1'utilité espérée actualisée de la consommation sur I’in-
tervalle de temps infini. Pour la fonction d’utilité puissance, il a obtenu une solution
explicite du probléme de contréle optimal. Merton a prouvé que, dans la stratégie
d’investissement optimale, I'investisseur doit maintenir une proportion constante de
la richesse attribuée a 'actif risqué qui est facilement calculée & partir des paramétres
du modele (Merton proportion). Ce résultat trés important parmi les théories d’in-
vestissement et largement utilisé par les praticiens en gestion de fonds mutuels.

Le travail de Merton a été étendu par de nombreux auteurs dans de diverses di-
rections, y compris les modéles avec colits de transaction et avec sauts, qui sont
les principaux objets de notre intérét. Dans le cas des marchés avec deux actifs et
colits de transaction proportionnels (sans sauts), Davis et Norman (1990) ont étu-
dié la structure de la fonction de valeur. Ils ont également fourni une construction
rigoureuse de la solution optimale. Les auteurs ont montré que la politique optimale
est de garder les proportions de la richesse en actifs risqués toujours dans une ré-
gion contenant la ligne de Merton. Les limites supérieure et inférieure de cette région
peuvent étre évidemment calculées en fonction de paramétres du modéle. Lorsque les
proportions de la richesse de I'investisseur investies dans les actifs risqués se trouvent
dans cette région, I'investisseur ne fait aucune transaction. Lorsque les fluctuations
du processus de prix conduisent les proportions de la richesse investies dans les actifs
risqués a la frontiére de la région de I'inaction, I'investisseur fait une transaction de
montant minimal nécessaire pour maintenir la proportion dans la région de I'inaction.
En outre, la quantité optimale a consommer du compte bancaire est déduite & partir
de la solution a un EDP non-linéaire, connue sous le nom de ’équation de Hamilton-
Jacobi-Bellman (HJB). La principale difficulté pour obtenir cette solution est que le
domaine de I’équation HJB n’est pas spécifié de maniére exogéne. Au contraire, il
est spécifié de fagon endogéne par les conditions qui déterminent la région de I'in-
action. Pour un schéma de calcul afin de résoudre cette équation HJB dans le cas
multidimensionnel, nous renvoyons le lecteur a l'article de Muthuraman et Kumar
(2006), une solution compléte pour le probléme en termes de solutions de viscosité
est donnée dans Shreve et Soner (1994), le probléme d’optimisation de portefeuille
sous des petites cotits de transaction est étudi¢ par Touzi et Soner (2013).

Bien que le mouvement géométrique brownien gagne une popularité dans la modéli-
sation financiére, il est critiqué en raison de sa faible prévisibilité des mouvements de
prix sur les marchés. Les modeéles de diffusion & ’aide de processus de Lévy semblent
étre plus souple et permet de capturer les propriétés statistiques et économiques
des données du marché, et sont encore mathématiquement tractable. Récemment,
plusieurs articles ont étudié le probléme de la consommation et de l'investissement
optimal lorsque les prix sont modélisés par un processus de Lévy et les marchés sont
soumis & des coiits de transaction. Par exemple, Framstad et al. (2001) ont étudié
le cas de deux actifs, tandis que Kabanov et De Valliére (2009) ont généralisé le
probléme dans un cadre trés abstrait de modéles de multi-actifs avec cotits de tran-
saction. Le but de notre travail est de deux plis. Tout d’abord, il fournit des preuves
mathématiques rigoureuse pour des résultats dans ces deux documents, tels que
I’équation HJB et I'unicité de la solution, la construction d’une stratégie optimale.
Deuxiémement, il unifie les approches des deux documents dans un modéle général
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de Kabanov, ot les prix sont conduits par un processus de Lévy et les stratégies de
trading sont autorisés a étre ladlag, mais pas cadlag comme on les suppose dans la
littérature standard. Cela permet le travail, non seulement pour étre cohérent avec
la construction d’une stratégie optimale qui est généralement caglad dans un modéle
Lévy, mais aussi de capturer les chocs accessibles et inaccessibles du marché .

e Nouveaux résultats.

Le chapitre 4 est divisé en deux parties. Dans la premiére partie, nous étudions le
probléme de la consommation optimale dans un cadre abstrait basé sur le modéle
de Kabanov. La deuxiéme partie est consacrée a un cas particulier des marchés avec
deux actifs. Le modéle abstrait est décrit comme suit.

Soit (Q, F, (Ft)t>0, P) un espace probabilisé filtré compléte vérifiant les hypothéses
habituelles. Considérons un agent qui investit sa richesse dans un portefeuille de
plusieurs actifs dont le processus de la rentabilité est conduit par un processus de
Lévy d— dimentionnel (Y;)¢>0

dY; = ut + ZdW, +/ zN(dz, dt),
Rd

ot 1 € R? W est un mouvement brownien standard m-dimensionnel et = est un
d x m-matrice. De plus, N (dz,dt) désigne la mesure aléatoire compensé de Poisson
dont la compensation prendra la forme dtII(dz).II(dz) est généralement appelé la
mesure de Lévy qui est un mesure o—finie sur les ensembles de Borel sur R?\ {0}
vérifiant la condition suivante

/ (12 A |2]) TI(d2) < .
RA\(0)

On considére une version du modéle de Kabanov avec deux cones constants K et C
qui sont supposés étre fermés et que K N (—K) = {0},C N (—C) = {0}. Supposons
que C C int K # (. En termes financiers, K représente le cone de solvabilité, par
exemple, on peut choisir K pour 'ensemble des positions de sorte que lorsque 'on va
convertir le portefeuille en n’importe quel actif et payer les cofits de transaction, les
valeurs liquidatives sont non-négatives ; tandis que C se compose de toute possibilités
de consommation, par exemple, si l’on consomme uniquement sur le compte bancaire,
alors C = Rie;. La dynamique d’un processus de portefeuille est défini pour chaque
1=1,...,d par:

dVi =V dY} +dB; —dC}, Vy=Vo_ ==,

ou le control m = (B, (') est un processus ladlags, prévisibles et de variations bornées.
On exige que dB; € —Kdt et dCy = c¢;dt € Cdt. Ces conditions seront décrite en détail
dans la thése. La dynamique signifie que un tel portefeuille V' est auto-financant, c’est
a dire ses incréments sont uniquement dues aux incréments de Y, et les cotits de
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transaction modélisés par B sont retirés tandis que C représente la somme cumulée
de la richesse consommeée.

Pour chaque control admissible 7 € A,, on va introduire le temps d’arrét
0" =inf{t: V" ¢ int K }.

On définit le processus de 1'utilité

tAOT
J(@) = /0 B0 (¢y)ds,

ol f est un taux d’actualisation positif et U est une application non-négatif défini
sur C ce qui représente une fonction d’utilité; il est supposé étre concave, U(0) = 0
et U(x)/|z| — 0 quand |z| — co. Le probléme de la consommation optimale consiste
& optimiser le processus de 1'utilité au cours de I’ensemble des stratégies admisibles.
Pour ce faire, on va définir la fonction de Bellman comme suit

W(z) := sup E[J(2)], z€intK. (1.4.2)
WEAZ
Le résultat principal de ce chapitre est de montrer que, sous certaines conditions
faibles, la fonction de Bellman est la solution unique de ’équation HJB du formulaire
ci-dessous

FW"(x), W' (z), HW,z),W(z),z) =0, =z €intK,
W(z) =0 on0K.

On laisse tous les détails sur 1’équation et les conditions nécessaires au chapitre 4. A
ce stade, on fait quelques remarques suivantes.

e Tout d’abord, comme les contréles sont supposés étre ladlag, on doit redéfinir
la notion des intégrales stochastiques par rapport a des intégrants prévisibles et
ladlags. Ceci est présenté dans 'annexe du chapitre 4.

e Deuxiémement, on permet la possibilité que 'investisseur peut faire faillite si
sa situation est insolvable. Cette contrainte rend le probléme plus difficile dans
la mesure ou il n’est plus simple pour prouver la concavité de la fonction de
Bellman comme dans les modeéles des diffusions continues. En fait, la concavité
est importante car il permet d’étudier la structure de la fonction de Bellman.
Heureusement, on peut prouver que si I’équation HJB admet la solution unique,
alors la contrainte de défaut n’est pas obligatoire, c’est a dire qu’il n’est pas
optimal de délibérer le portefeuille hors de la céne de solvabilité.

e Enfin, notons que la seule différence entre notre modéle et un modéle conduit par
un mouvement brownien est la présence de 'opérateur H(f,z) qui est donnée
par

H(f) I‘) = /Rd [f($ + dlag (J")Z)lvardiag (z)z€intK — f(ﬂ?) - f’(x)dlag (.CU)Z] H(dz)

Cet opérateur intégro-différentiel n’est pas défini de maniére locale. Par consé-
quent, on doit ensuite définir des solutions de viscosité dans le sens global.
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Dans la deuxiéme partie du chapitre 4, on revisite le probléme de la consommation
optimale dans le cas bidimensionnel. Cette affaire a été complétement étudiée par
Soner et Shreve (1994) lorsque les prix sont conduits par un mouvement brownien
géométrique. Comme 'unicité de la solution est vérifiée dans ce modéle, la fonction de
Bellman est concave et donc I’on peut utiliser les techniques de I’analyse convexe pour
étudier la solution de I’équation HJB. On retrouve donc la plupart de leurs résultats
pour notre modéle, de la structure et de la régularité de la fonction de Bellman, & la
construction de la stratégie optimale basée sur la notion des EDSs avec des réflexions
obliques qui est & son tour, doit étre reformuler de fagon rigoureuse lorsque sauts
sont tenus en compte.

e Perspectives.

Le modéle de Kabanov s’avére étre un bon cadre pour étudier les marchés avec
frictions. Il est non seulement assez général pour modéliser les cotlits de transaction
proportionnels, mais conduit également & des résultats mathématiques satisfaisants
tels que les équations HJB. Dans ce nouveau contexte, on peut également généraliser
le probléme de consommation et d’investissement optimal dans des directions diffé-
rentes. Par exemple, si on permet a l'investisseur de fournir une certain capital pour
sauver 'investisseur lorsqu’il déclare de faillite, il n’est plus évident que 'investisseur
reste toujours dans la zone de solvabilité a I'optimalité. Certaines conditions doivent
étre relaxées ou modifiées, par exemple la fonction d’utilité peut étre dépendante de
la richesse, les coefficients du modéle peuvent étre stochastiques, le marché peut étre
confronté & des risques de liquidité, I'horizon peut étre fini ou aléatoire, I'investisseur
peut recoit les revenus du travail, ect.. On peut également envisager un probléme
d’optimisation plus générale de 'utilité récursive, et ajouter plus de contraintes de
risque sur les stratégies ou sur les richesses tels que contrainte sur la vente a dé-
couvert, ou contrainte de drawndown ... On croit que ces problémes peuvent étre
résolus dans le cadre du modéle de Kabanov et conduisent a de nombreux résultats
prometteurs dans ’avenir.

1.5 Un modéle général de marché défini par le processus
de valeur liquidative

e Motivation.

Dans les cinquiéme et sixiéme chapitres, nous introduisons un modéle général qui
capture les coiits de transaction fixes et proportionnels. Dans ce nouveau contexte,
nous étudions la théorie de I’arbitrage. Deux questions fondamentales se posent. Pre-
miérement, pour un modéle de marché financier, nous nous intéressons a la possibilité
de faire des profits & partir de rien par les activités de transaction sur le marché,
c’est & dire a partir d’'une position nulle ou endettée, peut-on se retrouver avec une
richesse non négative dans tous les scénarios, et un gain avec une probabilité stric-
tement positive ? Si la réponse & cette question est oui, on dit que le marché admet
une opportunité d’arbitrage. Deuxiémement, considérons un contingent-claim dans
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un modéle avec I'absence d’opportunités d’arbitrage qui rapporte un flux financier
dans ’avenir a son titulaire, quel est le plus petit montant initial z & partir de lequel le
vendeur du contingent-claim peut commencer un portefeuille de sorte que les valeurs
de ce portefeuille dominent les flux financiers du contingent-claim ? Nous appelons
cela le probléme de sur-couverture, et la valeur x est appelée le prix de sur-couverture
du contingent-claim. Dans le cas d’'un marché discrétisé sans cotits de transaction,
la théorie de I'arbitrage est lancée a partir du fameux théoréme de Dalang-Morton-
Willinger qui indique que le marché est sans arbitrage si et seulement s’il existe une
mesure de martingale équivalente. Ce résultat est généralement considéré comme le
théoréeme fondamental de 1'évaluation d’actif (FTAP). Une analogue de ce théoréme
dans des modeéles en temps continu est fournie par Harrison, Kreps et Pliska (1981)
ou par Delbaen Schachermayer (1994). Dans les deux cas, la théorie de Parbitrage
a été bien développée par un grand nombre d’auteurs en faisant appel au célébre
théoréme de séparation d’Hahn-Banach dans I'analyse fonctionnelle, ou le théoréme
de Kreps-Yan par la suite. Les prix de sur-couverture des options Européennes ou
Américaines sont également caractérisés en utilisant le théoréme de décomposition
optionnelle, voir Kramkov (1996).

Pour les cotits de transaction proportionnels, la théorie a été initiée par E. Jouini et
H. Kallal (1995). Dans leur article pionnier, les auteurs ont considéré un modele de
deux actifs et établi I’équivalence entre la condition non-arbitrage avec 'existence
d’un consistent price system, c’est a dire une martingale (sous une mesure probabilisé
équivalente) évoluant dans les écarts acheteur-vendeur. Cette nouvelle notion est
une généralisation naturelle des mesures de martingale équivalentes dans le cas sans
coiits de transaction. Kabanov (1999) a introduit un modéle général en temps discret
pour modéliser les marché des devises avec coiits de transaction et a donné une
description des dotations initiales qui permettent de couvrir un produit dérivé écrit
en diverses monnaies par un portefeuille autofinancant. Ce modéle posséde une belle
structure géométrique et a rapidement devenu un modéle standard de la théorie
de l'arbitrage pour les marchés avec cofits de transaction proportionnels. Il existe
plusieurs documents importants qui étudient le probléme de la sur-couverture dans le
modéle de Kabanov, par exemple Kabanov, Rasonyi, Stricker (2002), Schachermayer
(2004), Campi et Schachermayer (2006), Kabanov et Lépinette (2013).

Dans la pratique, les cotits fixes représentent une partie importante des cofits de
transaction. Rappelons que les cotits fixes sont bornés indépendamment de la taille
de la transaction. Il y a beaucoup d’exemples de cotits fixes dans la réalité comme
les frais fixes de courtage, les ententes de courtage ou les frais marginaux vont a zéro
au-dela d'un volume donné qui est périodiquement remis & zéro, les taxes fixes d’in-
vestissement pour avoir accés & un marché (comme un marché étranger), les cotts
d’exploitation et de transformation, les cofits fixes liés & la mise en place d’un bureau
ou pour obtenir ’accés a 'information, et le cotit d’opportunité de la recherche d’un
marché ou de faire un commerce particulier, etc ... Par conséquent, il est raisonnable
d’étudier des modéles qui capturent de I'impact des coiits fixes. Toutefois, jusqu’a
présent il y avait trés peu de travaux académiques sur cette direction. Il y a plu-
sieurs tentatives d’étudier formellement des modéles avec coitits fixes, par exemple
dans Jouini, Kallal, et Napp (2001, 2006) ou les auteurs ont établi ’équivalence
entre l'absence des opportunités arbitrages et I'existence d’une mesure probabilisé
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de martingale absolument continue.
e Nouveaux résultats.

Dans le chapitre 5, nous présentons un modéle mathématique qui est assez général
pour capturer & la fois les cotts fixes et proportionnels. Rappelons que, dans le
modeéle de Kabanov, la dynamique de portefeuilles doivent nécessairement étre écrite
pour chaque actif a la place d'un processus de richesse unique, comme dans le cas
sans cotits de transaction. Cela rend le modéle multidimensionnel. Notre idée est de
considérer le processus des valeurs liquidatives au lieu du processus de portefeuille
multidimensionnel afin de réduire le probléme au cas unidimensionnel. Pour ce faire,
nous formalisons le modéle comme suit.

Etant donné une base stochastique (€2, (F;)=o,...7, P), on définit processus des cones
de solvabilité un processus adapté a valeurs ensembles (Gy)o<¢<7 vérifiant les condi-
tions suivantes

Conditions sur (Gy) :

(i) G est un ensemble fermé et Fi-mesurable, 0 < ¢ < T
(ii) Gt + Gt C G, 0 <t < T, p.p.,
(iii) AGy C Gy, VA > 1, p.p.,

(iv) Gy + le_ = Gy, p.p-»

(v) Le cone R4 Gy est propre , i.e. RyGy N (=R Gy) = {0} p.p.

Les conditions (i) et (iv) sont évidentes. Les conditions (ii) et (iii) sont satisfaites
pour tout modéle avec coiits fixes, parce que les cotts fixes sont indépendants du
volume de transaction, ce qui conduit au fait que les cotts fixes sont relativement
décroissants quand on augmente la taille des transactions. La derniére condition
signifie que les coflits de transaction sont efficaces, c’est a dire que 'on ne peut pas
faire de transaction sans payer les coiits. Notons que les ensembles de solvabilité
ne sont pas nécessairement convexe, par conséquent, on ne peut plus appliquer les
techniques traditionnelles de ’analyse convexe. C’est le point clé qui rend le probléme
plus difficile que dans le cas des cotits de transaction proportionnels. Le processus
de liquidation (L;) est définie de telle sorte que

Gy = {z € RY: Ly(z) > 0}.

Plus précisément, on a

Li(z) :=sup{a € R: z—ae; € G¢}. (1.5.3)

Comme dans le cas de cotits proportionnels, un processus stochastique adapté (V,)i<u<r
est appelé un portefeuille si V,,—V,,_1 € G, p.p. On peut donc écrire Vpr = >, -1 &,
ou ¢, € LO(—GU, Fu). Désignons RtT I’ensemble de tous les valeurs terminales_V; des
portefeuilles V' telles que V;_1 = 0. i.e.

Ry :=REp(G) = Y L(-Gu, Fu).

t<u<T
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En utilisant la fonction de liquidation, on se concentre sur I’ensemble des valeurs
liquidatives terminales

LVF_F = {LT(VT) : Vr e Réﬂ}

Dans ce cadre, nous étudions les conditions non-arbitrages telles que NA, NA2 en
termes de LVY%.. La seule différence avec le cas classique est la caractérisation des prix
de sur-couverture des contingent-claims. Pour cela, la technique de dualité n’est plus
valide. Nous devons employer la notion de Multidimensional Essential Supremum
proposée par Kabanov et Lépinette (2013). Cette notion est une généralisation de
son analogue classique pour les variables aléatoires réelles au cas multidimensionnel,
ou la relation d’ordre linéaire sur R est remplacé par une nouvelle définie par le cone
de solvabilité, c’est & dire, par définition, = =! y < = —y € G;. Notons que cette
relation est bien définie en raison de la condition (ii). On rappelle ici la définition de
Multidimensional Essential Supremum, ot I'on désigne par > une relation d’ordre
entrainée par certains ensembles de solvabilité défini comme ci-dessus.

Definition 1.5.1.A50it I' un sous-ensemble de L°(R%, F). On note par H-Esssup I'
un sous-ensemble I' de LO(RY, H) tel que la condition suivante est vérifice :

()T =T,
(b) Siy e LORL,H) et v =T, alors il existe 4 € T tel que v = 7,
(¢) SiA1,92 €T, 41 = A2 entraine 41 = .

Etant donné un pay-off Européen Y7 € LO(Fr), un processus de portefeuille (V;)
sur-couvre Yr si Vo =T Y. De plus, il est appelé minimal si tout portefeuille W
V tel que W =T Yr et V.= W (ie. V =t W pour tout t) coincide avec V.
Notons an;m(YT) I’ensemble de tout processus sur-couvrant Y. Le théoréme de sur-
couverture dans ce nouveau contexte est le suivant.

Proposition 1.5.2. Supposons que NA2 est vérifié et qu’il existe au moins une
V eV tel que Vp =T Yp. Alors Vgin(YT) # () and it coincides with the set of
solutions of backward inclusions et il coincide avec ’ensemble des solutions a des

inclusions rétrogrades

Vi € (F, =" -Esssup {Vip1}, t<T -1, Vp=Yrp. (1.5.4)
De plus, tout W €'V tel que Wr =T Yp vérifie W =V pour certaine V € ng(YT).
Une définition du prix de sur-couverture nécessite une formulation plus mathéma-
tique et sera détaillée au chapitre 5. Le probléme de sur-couverture d’une option
Américaine se fait de la méme maniére que dans le cas des cofits proportionnels.
Pour la démonstration du théoréme ci-dessus, la partie la plus difficile est de prouver
que VnE”n(YT) # (). Pour ce faire, il est souligné que toutes les conditions nécessaires
dans [57] ne sont pas vérifiées. En particulier, on ne sait pas s’il existe une repré-
sentation dénombrable d’utilité mesurable pour les relations d’ordre partiel ou non
(pour plus de détails, voir [57], [35] et les références citées dedans). Par conséquent,
on doit utiliser une autre approche pour résoudre le probléme.
Chapitre 6 est un projet en cours, nous continuons & étudier le modéle non-convexe
donné dans le chapitre 5. Notre objectif est d’examiner les différents critéres de
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non-arbitrage dans ce nouveau contexte. Plus précisément, nous nous intéressons &
répondre aux questions suivantes.

Q.1 Quelle est la condition d’absence de l’arbitrage qui est équivalent a [’existence
d’un mesure risque-neutre équivalente ? Dans le cas ot ['une de ces deux conditions
est vérifie, comment caractériser le prixz de sur-couverture d’une option Européenne ?

Pour cette question, nous introduisons une nouvelle notion des opportunités d’arbi-
trage appelé Extended No Asymptotic Arbitrage opportunity condition (ENAA).
Nous montrons que la condition (ENAA) est équivalente a I'existence d’un mesure
risque-neutre équivalente Q@ ~ P tel que Eg[Lr(Vr)] < 0 pour toutes les valeurs
liquidatives terminales du portefeuille Vi de notre modéle, ott Ly désigne la fonction
liquidative a 1’échéance.

Soit ¢ € LO(R, Fr) un pay-off qui est borné inférieurement. On définit le prix de
sur-couverture de £ comme suit

p(&) =inf{x e R|IVy € RY : o+ Ly(Vy) > €}

Dans le modéle de Kabanov, on peut prouver que, sous la condition (ENAA), ce
prix est caractérisé par
Ve = sup Eqg¢,
QeD

ou D désigne I'ensemble des mesures probabilisé risque-neutre équivalente.

Q.2 Quelle est la relation entre un modeéle avec seulement les cotits proportionnels
et un modéle avec a la fois codts fixes et proportionnels ¢

Rappelons que si le marché avec les cofits fixes et proportionnels admet une oppor-
tunité d’arbitrage, c’est également le cas pour le marché avec seulement les cofits
proportionnels (puisque les transactions dans le dernier sont moins chéres). Récipro-
quement, si le marché avec seulement les cotits proportionnels admet une opportunité
d’arbitrage (en quelque sorte), alors on peut multipier cette stratégie d’arbitrage par
une grande constante suffisante pour réduire 'impact des cotits fixes aussi bas que
possible. En conséquence, cette stratégie modifiée produira une nouvelle opportu-
nité d’arbitrage dans le modéle avec des cofits fixes et proportionnels. Cette idée est
formalisée dans la notion d’opportunités d’arbitrage faible (WAO). Nous montrons
que 'absence de (WAQ) est équivalente dans les deux marchés.

Q.3 Comment peut-on relier une condition non-arbitrage définie a l’aide de la fonc-
tion liquidative o celle définie en termes des vecteurs de portefeuille ¢

Pour cette question, on pourrait espérer que certaines conditions non-arbitrages sont
équivalentes dans tous les deux contextes. Si c’est le cas, cela montre que notre
théorie est compatible avec la théorie de 'arbitrage pour les modéles de Kabanov.
Dans un modéle général avec plusieurs actifs, cette question reste encore ouverte.
Mais au minimum, on peut montrer que c’est le cas pour le modéle avec deux actifs.
Q.4 Dans le cas ou les cotits fizes ne sont pas négligeables, c’est a dire lorsque les
colts fizes sont bornés inférieurement par une constante strictement positive, quel
est Uimpact des cotts fixes sur les conditions non-arbitrages ?

Si les cofits fixes ne sont pas négligeables, une transaction sur le marché conduira a
un colt strictement positif. Par conséquent, toute opportunité d’arbitrage de type
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asymptotique (par exemple, NFLVR) aurait pu conduire a la présence d’une nou-
velle opportunité d’arbitrage dans le sens classique (par exemple NA) s’il n’y avait
pas des coftits fixes sur le marché. Cependant, par un argument similaire & celui
mentionné dans le commentaire de Q.2, la présence d’une opportunité d’arbitrage
(non asymptotique) sur le marché avec seulement les cotits proportionnels conduira a
I'existence d’une nouvelle opportunité d’arbitrage (non asymptotique) sur le marché
avec les cotits fixes et proportionnels. En conclusion, la présence des opportunités
d’arbitrage asymptotiques et non asymptotiques sont équivalentes lorsque les cofits
fixes sont non négligeables.

1.6 Maximisation d’utilité avec contraintes de risque

e Motivation.

Un des problémes les plus classiques de la finance mathématique est la maximisation
de T'utilité espérée de la richesse terminale. Mathématiquement, on s’intéresse au
probléme d’optimisation suivant :

u(z) = sup E[U(X:™)].
TeH

Ici, (X}"™)o<t<r désigne le processus de la richesse produite par un capital initial
x avec une stratégie admissible m € H, U est une fonction d’utilité qui peut étre
aléatoire. Un choix commun de U est U(z) = u(z— B) ou B désigne, par exemple, un
passif aléatoire et u est une fonction non-décroissante, concave, déterministe comme
fonction logarithmique, exponentielle ou de la puissance. Il existe une vaste littérature
sur la maximisation de 'utilité espérée et on se contente & un trés bref apergu des
approches suivantes.

Théorie de dualité convexe. La méthodologie de dualité convexe remonte a Bis-
mut (1973). Dans la forme la plus simple des marchés complets, cette méthodologie
est essentiellement basée sur I’application de la transformation de Legendre-Fenchel
de la fonction d’utilité donnée par

Uly) == Sup [U(z) — zyl,y > 0.

La fonction duale permet d’associer le probléme primal au probléme duale formulé
comme suit

v(z) = inf E[U(yH)],
y>0

ou H désigne la densité risque-neutre. Il a été montré que 1'utilité marginale de la
richesse terminale du portefeuille optimal est, & une constante, égale & la densité
risque-neutre, c’est a dire U’ (X%’W*) = y*H. Le portefeuille optimal est construit en
utilisant le théoréme de représentation martingale (ou le théoréme de décomposition
optionnelle pour le cas des marchés incomplets). La méthode de dualité convexe a
été développé par Pliska (1986), Cox et Huang (1989, 1991) et Karatzas, Lehoczky

et Shreve (1987) pour les marchés financiers complets, et par He et Pearson (1991),
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Karatzas, Lehoczky, Shreve et Xu (1991), Kramkov & Schachermayer (1999) pour le
cas incompléte.

Programmation dynamique et les équations HJB. Bien que la théorie de
dualité convexe est puissante pour prouver l'existence des portefeuilles optimaux
dans le cas non-markovien, il ne montre pas une facon de caractériser ces stratégies
optimales. L’approche de programmation dynamique devrait étre considérée comme
complémentaire & la dualité convexe et reste comme une méthode appropriée pour
obtenir la caractérisation la stratégie optimale et la fonction de valeur. L’idée de
cette méthode consiste & appliquer les outils de la théorie de contréle stochastique
pour obtenir un EDP (qui est appelée I’équation Hammilton-Jacobi-Bellman) pour
la fonction valeur. Cependant, cette approche est basée sur 'hypothése que les prix
sont conduites par un processus de Markov. Pour les références, voir Merton (1971)
Karatzas et Zitkovic (2003), Karatzas et Kardaras (2007).

EDS rétrograde. La théorie des EDSRs a été développée par Pardoux & Peng
(1990). I1 a rapidement devenu l'un des principaux courants de la théorie de controle
stochastique avec une variété d’applications en finance mathématique. Pour le pro-
bléme de maximisation de 1'utilité, la méthode de EDSR s’avére étre un bon rempla-
cement pour les équations HJB dans un cadre non-markovien. Lorsque 'utilité prend
certaines formes communes telles que la puissance, logarithmique ou exponentielle, il
a été montré par Hu, Imkeller et Miiller (2005) que la maximisation de 'utilité peut
étre essentiellement réduite a la résolution d’'un EDSR qui caractérise la stratégie
optimale et la fonction de valeur. Une approche EDS forward-backward est proposée
par Horst et al. (2011) pour le cas des fonctions d’utilité générales.

L’optimisation statique et multiplicateurs de Lagrange. Cette méthode a
été utilisée pour traiter le probléme maximisation de I'utilité avec des contraintes
de risque imposés sur la valeur terminale de portefeuilles. L’'idée est de réduire le
probléme dynamique & un probléme d’optimisation statique avec des contraintes. Le
dernier est résolu en utilisant les multiplicateurs de Lagrange classiques. La stratégie
d’investissement optimale sous contraintes de risque en termes de valeur a risque et
un deuxiéme risque fonctionnelle ont été étudiés dans un cadre brownien par Basak
& Shapiro (2001) et Gabih et al. (2005). Une solution compléte dans une modéle
général de semi-martingale avec les contraintes de type "utility-based shortfall risk"
est donnée par Gundel et Weber (2005).

Comme mentionné ci-dessus, lorsque 'on impose une contrainte de risque sur la ri-
chesse terminale, le probléme est résolu par des techniques d’optimisation statique.
Ce travail vise & résoudre le probléme par une approche différente. Au début, notre
projet a visé & utiliser la méthode d’EDSR pour attaquer le probléme. Malheureuse-
ment, une telle tentative n’a pas réussi et nous avons di choisir une autre approche.
D’un point de vue de controéle stochastique, il n’est pas difficile de résoudre ce pro-
bléme au moyen de la programmation dynamique et des équations de Bellman, car
il est juste un cas particulier du probléme de contréle optimal sous contraintes des
cibles (voir Bouchard-Elie-Touzi (2008 ) pour plus de détails sur la technique). Par
conséquent, la dualité convexe reste comme une méthode de choix pour étudier notre
probléme de maximisation de I'utilité.

Comme discuté dans Gabih et al. (2005), la fonction de distribution de la richesse
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optimale dans un probléme de maximisation de I'utilité sans contrainte posséde beau-
coup de propriétés indésirables. D’un point de vue pratique, une mesure du risque
devrait étre envisagée pour une meilleure gestion de 'investissement. Par exemple,
un probléme commun est de limiter le déficit de la richesse finale au-dessous certain
repére B sur le marché. Ici, B pourrait se présenter pour un niveau de défaut dans la
gestion des risques, ou un indice boursier dans le cas ot un investisseur veut vaincre
le marché, ou tout simplement un passif ciblé dans la gestion des fonds ... Dans ces
cas, un choix de mesure de risque pourrait étre d’une grande importance. Quelques
exemples courants de mesures de risque sont la Value at Risk (VaR) et Expected

Shortfall (ES). Nous nous concentrons sur une autre catégorie de mesures de risque

de la forme p(X) := E[I(X — B)" |, ou l: Ry — Ry étant une fonction convexe non

décroissante. Ce genre de mesures de risque doit étre une bonne candidate pour la
gestion des risques, car il posséde les propriétés suivantes :

— Tout d’abord, il s’agit d’une mesure convexe, par conséquent, il soutient le prin-
cipe de la diversification en investissement.

— Deuxiémement, en choisissant une fonction de poids [ appropriée, la mesure du
risque p est sensible aux pertes, ce qui n’est pas le cas pour Valeur & Risque
(VaR).

— Troisiémement, cette mesure ne vérifie pas 'additivité ce qui est critiqué dans la
gestion des risques (rappelons que la mesure de risque p est dit cash-additif si
pour tout nombre réel ¢ et position financiére de X, p(X + ¢) = p(X) — ¢), il est
donc pertinent pour une mesure interne du risque.

— Enfin, p ne dépend que de la part de perte, pas la partie de gain. Il s’agit d’une
exigence naturelle parce que dans la gestion des risques, nous nous concentrons
sur les pertes plutot que des gains.

De arguments ci-dessus, nous sommes amenés & une forme générale de mesure du

risque p(X) := E[¢(X)] ou £ est une fonction de perte concave, non-décroissante

et éventuellement aléatoire. Dans ce cas, la contrainte de risque est de la forme

p(X7™) > m pour certaine constante m et richesse terminale X",

e Nouveaux résultats.

Ce chapitre vise a appliquer la méthodologie de dualité convexe dans des situations
différentes du probléme de maximisation de 'utilité sous contraintes de risque.
Nous commengons par le cas d’'un modéle de marché incompléte avec contrainte de
risque quand le portefeuille est non-négative.

u(w) = sup{ E[U(XE™)] : X5 > 0, E[U(XE™)] = m}.

Notons par C(x,m) I'ensemble des positions réplicables, c’est a dire ’ensemble des
variables aléatoires qui sont bornées inférieurement et dominées par des richesses
terminales ijfr vérifiant la contrainte de risque. Le domaine dual est défini par
YVi={(y,Y)eRy xLL: EY <y,6(Y):= sup FE[XY]< oo}
XeC(x,m)—x
Ici, 0 est appelée la fonction de support. Notre premier résultat principal est la re-
lation de dualité suivante. La preuve n’est pas trés différente du cas sans contraintes.
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La technique de la preuve est empruntée a Kramkov et Schachermayer (1999).
Theorem 1.6.1. Considérons le probléme dual

w(z) = inf [v(Y)+ ay],
(@) = ot [o(¥) + ]
ou v(Y) = E[V(Y)] +6(Y) et V est la fonction duale de Fenchel de U. Sous des
conditions nécessairement techniques, on a les résultats suivants
(i) Le probleme dual admet une solution optimale (y*,Y*) € Y :

w(z) =v(Y™) +zy”.
(i) La dualité est vérifiée

u(z) = inf [v(Y) +zy| =0(Y") + zv*.
(z) (y,Y)ey[() yl=v(Y") +zy

De plus, la richesse optimale est donnée par X* = I(Y*) := (U")~1(Y™).

Ensuite, dans le méme modéle, on relaxe la condition de positivité sur le processus
de richesse. L’idée de la preuve est de considérer le probléme d’approximation (voir
Schachermayer (2001)) :

up(x) =  sup EU,(X),
XeCp(z,m)

ouUy(z) =U(z)if x > —n et U,(x) = —oo par ailleurs. Dans une méme maniére que
le cas de richesses non-negatives, le probléme primal approximative admet solution
unique X,, donnée par X,, = I(Y,,)V—n € C,(x,m). En faisant n tendre vers l'infini,
on obtient un résultat similaire comme dans le cas précédent.

Il est facile de voir que, dans la méthode de dualité que nous utilisons ci-dessus, la
contrainte de la perte est déterminée implicitement par le domaine primal C(x,m)
et par la fonction de support. Par conséquent, il peut étre directement généralisé au
cas de contraintes convexes générales. Nous proposons une autre approche qui est
toujours basée sur la méthode de dualité. Pour des raisons de simplicité, nous ne
considérons que le cas des marchés complets avec des contraintes de positivité sur la
richesse. Cette approche permet de montrer la contrainte de risque explicitement dans
le probléme dual. L’idée est de remplacer la contrainte espérée par un nombre infini
de contraintes presque-sure comme considérée dans Bouchard-Touzi-Elie (2009).

EU(X7T)>m&IMeM: X" > M,

M = M(z,m) = {M € LY (Fr) : EgM < z, E[l(M)] > m}.

Il est alors naturel de remplacer la fonction duale de Fenchel sans contrainte par une
fonction duale de Fenchel avec contrainte V,(y) := sup,,[U(r) — ry]. En l'utilisant,
on est amené aux inégalités suivantes

u(z) < sup wy(z) < in%[v(y) + zy], (1.6.5)
MeM y>
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wyr () = LBV (yH)] + 2y}, (1.6.6)
et
v(y) = vem(y) == sup E[Vu(yH)]. (1.6.7)
MeM

Ici, @) désigne la mesure de martingale risque-neutre. Comme prévu, on peut montrer
que sous certaines conditions techniques, la dualité est vérifiée

u(z) = sup wyr(a) = inf [o(y) + ay) (L6.8)

et la richesse optimale est donnée par

X' = Vi 92) = max{ar, 10 92)),

ot M* est le maximizer du probléme dual supy;cp war(z) et y* = y*(M*) est le
minimizer de .

D’un point de vue pratique, tous les résultats obtenus ci-dessus ne sont pas tout a fait
satisfaisants, car ils ne présentent pas un moyen de calculer numériquement, au moins
la fonction de valeur. Méme en cas des marchés complets , la complexité du probléme
dual n’est pas significativement plus faible que le probléme primal (puisque nous
introduisons un nouveau ensemble M (x, m) de variables aléatoires supplémentaires).
Nous présentons ensuite une nouvelle méthode basée sur la relation entre le probleme
de maximisation d’utilité et le probléme de type de couverture (quantile). On travaille
encore sur un marché avec contrainte de positivité sur la richesse et une contrainte
de risque & I’échéance. Considérons le probléme suivant :

v(y,m) :=inf{z: Ir: E[UXT")] >y, EQl(X7")] > m}.

Il est clair que u(.,m) = v=!(.,m). Par conséquent, le probléme primal est réduit
& étudier un nouveau probléme de type de couverture avec des cibles stochastiques
multiples, ou EDSR avec les conditions terminales faibles, comme la terminologie
de Bouchard-Elie-Réveillac (2013). Pour ce nouveau probléme, nous appliquons la
technique de dualité pour caractériser la fonction de valeur et la richesse optimale.
Plus précisément, on s’intéresse & la problématique suivante

v(m) :=inf{z : I : E[I(X}7")] = m},

oul:=(lj,...,1,) est une fonction de perte qui est déterministe et multidimension-
nelle, m € Iml et > est entendu au sens composant. En outre, Iy est supposé étre
strictement croissante pour tous 1 < k < n. On a donc

ENX5™)] =m« IM e M: X5 > F(M),

ott F(M) = maxi<k<n{l, '(My)} étant une fonction convexe et croissante en com-
posant de M, et

M :={M = (My,...,Mg) € L*(Im1) : 1, (M) € L%, E(My) = my, Vk}.



1.6 Maximisation d’utilité avec contraintes de risque 31

Par le principe de comparaison, on obtient ’estimation suivante

> inf {xF7M)
v(m)_MlgM{ 0o b

ol X(f (M) est 1a solution a PEDSR suivante avec la condition terminale F(M).
o T T
xFMD = poury - / (re X + 0, Z;)dt — / Z,dW,.
0 0

En utilisant la fonction duale de Fenchel de F : F(p) := supyemm 1 [p-r — F(r)], on
obtient la relation duale suivante

v(m) = inf {Xé:(M)} = sup FElpm— F(L;'p)Ly],
MeM peRfH

ou (L;) désigne le processus de prix d’état. Le dernier probléme est facile & résoudre
car il est considéré sur Rf“. On peut alors caractériser la richesse optimale du
probléme primal au moyen de la solution au probléme dual.

e Perspectives.

On présente ici quelques perspectives du travail.

Tout d’abord, puisque 'on peut facilement simuler Ly & partir des paramétres du
modéle, la derniére équation de dualité pourrait étre exploitée pour calculer numé-
riquement la double fonction de la valeur v(m), donc la fonction valeur primale.

Deuxiémement, la technique de dualité utilisée dans les deux derniéres sections pour-
raient étre généralisés & des marchés incomplets. Dans ce cas, il n’est pas difficile
de prouver le théoréme de vérification en utilisant la fonction duale de Fenchel avec
contraintes. Cependant, ’existence de solutions au probléme dual reste encore comme
une question ouverte en raison du fait que certaines conditions d’intégrabilité ne sont
plus vérifiées lorsque nous introduisons des variables aléatoires M.

Troisiémement, les contraintes convexes de portefeuille peuvent étre prises en
compte. Notons que lorsque ’on utilise directement la méthode de dualité convexe,
la question clé est la convexité de ’ensemble des portefeuilles. Lorsque le probléme
primal est lié au probléme de type quantile-hedging par la méthode EDSR, nous
sommes amenés a une EDSR avec les contraintes en maturité et des contraintes
convexes dynamiques, ce qui pourrait faire objet intéressant pour les études futures.

Enfin, la contrainte terminale peut étre remplacée par une contrainte de type
ameéricain, c’est a dire les pertes sont contrélées a tout moment avant I’échéance. On
peut prouver que ce type de contrainte peut étre transformé en un nombre infini
de contraintes presque-siire, oll une situation similaire de celui-ci a été étudiée, par
exemple, dans Karoui & Jeanblanc (1998) en présence de revenus du travail.






Chapitre 2

(General Introduction

2.1 Motivation : Market with transaction costs

Among the fundamental assumptions of mathematical models for financial markets
is the assumption that markets are frictionless. In particular, investors can make
their transactions without brokerage fees, taxes or bid-ask spreads... This leads
to the fact that trading can be done in continuous time, which is an unrealistic
assumption since continuous trading in reality implies that investors may suffer an
infinite loss due to transaction costs. The seminal papers studying market models
with transaction costs belong to Jouini and Kallal (1995) who studied the case of
markets with two assets and trading is subject to bid-ask spreads. Thereafter, many
articles in economics and finance relaxing the assumption of no transaction costs have
been proposed. Numerous studies revisit classical problems with transaction cost
constraints. A special attention has also been paid to framework with transaction
cost structures.

The structures of transaction costs may be very sophisticated. We refer readers to
Kissell and Glantz (2003) for a thorough classification of transaction costs. In the
most general sense, transaction costs consist of both fixed and variable costs, as well
as both visible and hidden costs. Fixed components are those costs that are inde-
pendent of the current market prices or implementing strategy and commonly known
in advance such as commissions, fees. Variable costs are costs that are determined
by the current market prices and dependent upon the trading strategy. Visible costs
are either known exactly in advance or easily measurable from current market data.
They consists of fixed costs and part of variable costs such as bid-ask spreads or
taxes. Hidden costs are those components that are not readily known or observable
from the current market data (e.g. market impact and other liquidity effects such as
delay cost, price appreciation, timing risk and opportunity costs). In this thesis, we
restrict the concept of transaction costs to visible costs. In practice, visible costs are
commonly represented by some piecewise function of the transaction volume.

Lots of studies simplify the notion of transaction costs by assuming that they are
proportional to the trading volume. More realistic is to model transaction costs by
including both fixed and proportional costs (i.e. linear costs). Jouini, Kallal and Napp
(2001-2006) first attempted to study the theory of no arbitrage in the presence of
fixed costs. As a matter of fact, fixed costs are difficult to deal with as the classical
technic of convex duality is no longer valid. Therefore, there are very few studies
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about markets with both fixed and proportional transaction costs. On the contrary,
much has been done for markets with only proportional transaction costs. In the
multivariate setting where direct exchanges between assets is possible, which is typi-
cally the case for currency markets, a geometric approach is introduced by Kabanov
(1999). In this model, the portfolio is represented by a multidimensional process (V;),
whose each component process (V}') reflects the dynamics of trading position in a
special asset ¢ expressed in terms of physical quantity. This approach allows to avoid
the question of numéraire and, equally important, it is more realistic in describing
the admissibility condition of trading strategies. The solvency cone K; at time t is
defined as the set of positions which can be transformed into non negative holdings
after suitable exchanges, and the self-financing condition reads as V; € —K; for all ¢.

Though linearity of transaction costs is a strong simplification of the real world, it
may be adequate under certain circumstances and leads to satisfying mathematical
results. However, this approach may produce an erroneous result when the amount
of investment is small and it is allocated to many assets in smaller fractions. The
reason is simple : when transaction volume is small, the fixed costs are not negli-
gible, and this cost is decreasing when trading volume increase (transaction cost is
concave). Otherwise, linearity is not a good idea to model transaction costs when
trading volume is so large, due to the illiquidity effect. That is, if for a certain secu-
rity the transaction volume is high, then there can be not enough supply (demand)
of this security, and thus the unit transaction cost will increase (transaction cost
is convex). Therefore, a non-linear transaction cost function should be a relevant
approach : a concave transaction cost function is good for modelling small inves-
tors, while a convex transaction cost function is appropriate for models with large
investors. Lots of researchers suppose a mixture of both concave and convex transac-
tion cost structure : Up to a certain level of the transaction volume, the transaction
cost is a concave function of the transaction volume. However, the transaction cost
function becomes a convex function when transaction volume goes beyond this level,
for references, see Demchuk (2002), Kono and Wijayanayake (2001) and references
therein.

There is a considerable literature revisiting classical (and new) problems when mar-
kets are subject to the presence of transaction costs. Lots of papers analyse the effect
of transaction costs on arbitrage opportunities, both in discrete and continuous time
(arbitrage and pricing theory under transaction costs). We can cite here Jouini and
Kallal (1995), Soner, Shreve and Cvitanic (1995), Guasoni (2006), Cherny (2007),
Guasoni et al. (2010), Lépinette and Kabanov (2012). A special attention has been
paid for the problem of approximating hedging under transaction costs, for instance
the method of Leland (1985) and some further development thereafter such as Ka-
banov and Safarian (1997), Bensaid et al. (1992), Soner et al. (1995), and Hodges
and Neuberger (1989), Pergamenshchikov and Nguyen (2012). There are also several
researches on problems of portfolio optimisation or risk minimisation under tran-
saction costs, for example, Constantinides (1979) and Constantinides (1986), Davis
and Norman (1990), Dumas and Luciano (1991), Amihud and Mendelson (1986),
Framstad et al. (1999), Gerhold et al. (2013), and many other papers.
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2.2 Contributions of the thesis

The main part of this dissertation deals with various problems for markets with

transaction costs. In particular, we try to answer the following main questions :

Q.1 How can we modify the hedging strategy of Leland for models with local vola-
tility ?

Q.2 How to generalise the optimal consumption problem of Merton to the Kabanov
model when the prices are driven by a Lévy process, and default risk is possible ?

Q.3 How can we employ the notion of Essential Maximum introduced by Kabanov
and Lépinette (2013) in order to characterise the hedging price of a European
claim under both fixed and proportional transaction costs?

Q.4 In amodel with both fixed and proportional transaction costs, what are analogies
of FTAP?

Q.5 Does the classical duality technic still work in the problem of utility maximisa-
tion under expected loss constraints ?

Each question above touches on a specific problem in Finance and will be presented

in separate parts of the thesis. The five parts can then be read independently. Except

the last one, all other parts are related to market models with transaction costs.

The thesis is split into seven chapters

e Chapters 1,2. In these two first chapters we provide an brief introduction to the
thesis : the context of markets with transaction costs, the contribution of the
thesis, an overview of every part of the thesis.

e Chapter 3. In this chapter we study the problem of approximate hedging in a two
dimensional local volatility model in the presence of proportional transaction
costs. Our principal contributions in this chapter are
— Introduction of a PDE technic that allows to obtain upper bounds of Greeks

of a European option in a local volatility model.

— Generalisation of the modified Leland’s strategy to models with local volati-
lity.

e Chapter 4. In this chapter we study the problem of optimal consumption in the
Kabanov model when prices are driven by a Lévy process. The classical Merton
problem is generalised in three directions :

— First, we allow shocks in markets by modelling prices by Lévy processes.

— Second, default risk is taken to account : transactions stop at the first time
when the portfolio goes out of the solvency cone. This is more realistic than
assuming that investors never default.

— Third, trading strategies are allowed to be laglad in order to capture both
accessible and inaccessible shocks in the market. Moreover, this approach is
also consistent with the construction of optimal strategy based on SDEs with
oblique reflections.

e Chapter 5. In this chapter we study the problem of super hedging in a general
market model including the case of markets with both fixed and proportional
transaction costs. Our principal contributions in this chapter are
— Introduction of a new market model defined by the liquidation process that

allows to reduce the study of multidimensional portfolios to real valued liqui-
dation processes.
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— Characterisation of super hedging prices of a European option in this model
by using the notion of Essential maximum in the multidimensional case.
Chapter 6. This chapter continues to study the model suggested in the previous
chapter in the context of arbitrage theory. Our principal contributions in this

chapter are

— Introduction of an equivalent condition for existence of a risk neutral proba-
bility measure, i.e. absence of asymptotic-arbitrage opportunity.

— Characterisation of super hedging prices for a European option (in terms of
cash, not vector of quantities) in the Kabanov model via the duality technic.

— Study of different notions of arbitrage opportunity for this model as well as
the relationships between model with both fixed & proportional transaction
costs and markets with only proportional costs.

Chapter 7. This chapter deals with the problem of utility maximisation under

target risk constraints. We make use of the duality technic in various situations.

Our principal contributions in this chapter are

— A proof of duality relation and construction of the optimal wealth via the
constrained Fenchel dual function.

— A solution to the problem in the case of complete market based on a mixture
use of both BSDE technic and duality technic.
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2.3 Approximate hedging in a local volatility model
with proportional transaction costs

e Motivation.

This first chapter of the thesis deals with the problem of asymptotic hedging
a European option in a two dimensional local volatility market model when
the bid-ask spread is proportional to the traded value. This problem is first
studied in the seminal paper of Leland (1985) for the Black-Scholes model.
In his work, Leland assumes that the cost of trading v assets costs an amount
kvS for both buying and selling, where x is coefficient of transaction costs
and S is price of one unit share. The hedging portfolio is revised every §t
where 6t is a finite and fixed, small time step, whether or not this is optimal
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in any sense. In this model the current value of the portfolio process at time
t is defined by

t
V=V + /ngsu Y kS, |D} - DF, <1
0 i<t

where t; = t7',0 < i < n, tg = 0,%, = 1, are the revision dates such that
tix1 —t; = 0t; and D" is the trading strategy which is piece-wise, i.e. D" =
D! on the interval |t;_1,¢;]. In the presence of transaction costs, Leland
suggests a strategy which can be considered as a modified Delta of Black-
Scholes replication formula. The idea is to substitute the volatility o by
an enlarged one & in order to compensate for the transaction costs. The
"enlarged volatility" is defined by

~2 2 2 2 1 /2
0°=0"4+2k04| — = 0" 4+ 2Kr0n24/ —.
wot T
The hedging strategy is given by DI = Cy(t;, Sy,) where é(t,x) = CA’”(t,x)

is the solution to the Black-Scholes heat equation with new diffusion &

~

{at(t,x) + 16%2C., (L) =0, (z,1) €0,00[x[0,1],
C(l,z) = h(z), z€]0,00].,

Leland argued that when the number of revision dates n is large, i.e. when
ot = % converges to 0, the value of hedging portfolio will converge to the
value of contingent claim h in probability, i.e. this hedging strategy will
asymptotically hedge the European option without error. Moreover, the ini-
tial value of this hedging strategy is given by V' = C (0, Sp) which is greater
than the hedging price in the Black-Scholes formulae due to the increasing
of the volatility in the Leland’s strategy. This is implied from the intuition
that the option price should include an necessary extra cost that the writer
of the option has to pay due to the bid-ask spreads when he or she constructs
a hedging portfolio. When the revision interval tends to zero, this price will
increase to Sy, i.e. the cost of the buy-and-hold strategy. This means that
at the Leland strategy is not better than the trivial supper hedging when
trading happens almost continuously.

Unfortunately, the claim of Leland is only true in the case when k is de-
creasing to 0 with a speed of n7*,0 < a < % as proved by Kabanov and
Safarian (1997), But it fails to hold true in the case of constant cost coeffi-
cient k = const. In this case, it is reported in Kabanov and Safarian (1997)
or later in Pergamenshchikov (2003) that the error when using the approxi-
ma‘lce portfolio to hedge the option converges with a rate of convergence of
n~ 1 to a non-zero random variable. The economical interpretation of this
phenomenon is clear : a trader does not have any incentive to trading "almost
continuously" if he does not receive a reduction in transaction costs when
trading more frequently (equivalently, trading with large orders), otherwise
he will bear a significant loss due to transaction costs.
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An attempt to deal with the case of constant cost belongs to Lépinette
(2011). He suggests a modification of the conventional Leland’s strategy
in order to cancel out the hedging discrepancy. Namely, he construct the
strategy as follows

ti
D! = Cy(ti, 1) +/ Coe(t, Sy)dt. (2.3.1)
0

It is important to stress that the hedging price of Lépinette’s strategy is
exactly the same as that of Leland’s strategy. Since the asymptotic hedging
error disappears, it shows that the modified strategy outperforms the older
one. A study of convergence rate is also provided in a later paper of Lépinette
and Darses (2012).

e New results.

The goal of my first project in the present thesis is then to generalize the
result of Lépinette to the case of local volatility models. We prove that the
modified hedging strategy still works in this new setting, i.e. asymptotic
hedging without error. We restrict our attention to a local volatility model
for two reasons. First, local volatility models are popularly used in practice
as it can be simply calibrated to vanilla options by Dupire’s formulae. One
of the advantages of local volatility models over stochastic volatility models
is that they conserve the completeness of the market, which is a key factor in
derivative pricing practices. Second, Lépinette’s strategy might not be valid
in models with stochastic volatility due to the fact that the exact replication
fails in these models. It is therefore of no interest to study a specific trading
strategy that leads to an asymptotic positive hedging error (except that we
can show that this strategy is optimal in some sense). Our main result in
this part is the following theorem

Theorem 2.3.1. Let o € [0, %] and assume that h and o are such that

@\m > 0. If the strategy 13? s given by , then under some technical
conditions, the terminal value of the portfolio

1 n—1
Ve = O+ / DpdS. —kn 3. S| Dy — DY
0 =1

converges to the contingent claim h(S1) in probability.

The proof of this theorem is basically similar to the one in Lépinette QOll).
The key technic resides in the estimation of successive derivatives of C(¢, z).
When the volatility function is constant or deterministic, things are simpler
because we can employ explicitly expressions for these derivatives. In the case
of local volatility, we face a considerable difficulty as we do not know such
expressions. The only thing we can do is to appeal classical technics from
the PDE theories to obtain accurate bounds for the derivatives of C'(¢,x). A
clever use of time change technic is necessary to obtain the desired results.
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e Future perspectives.

The results obtained can be generalized or developed in different directions.
First, notice that the transaction cost function that we consider in this chap-
ter is of the linear form, i.e. G(t, S, z) = |z|S; where = denotes the trading
volume and S; denotes the spot at time ¢. The linearity of G therefore can
be relaxed in order that the model be more realistic, e.g. trading impact or
regulatory constraints. We refer to Elie and Lépinette (2013) for the same
problematic in the case of Black-Scholes model and when G is not dependent
on the spot price , i.e G = G(t,x). A similar problem is also studied in
Nguyen (2014) for stochastic volatility models and transaction function of
the form G = G(t,zS;) (supply curve).

Second, since we know that the hedging error Vi* — h(S1) converges to zero
when n tends to infinity. It is natural to study the rate of this conver-
gence. But even in the simplest case of Black-Scholes model, the proof
has already used heavily probabilistic technics. Therefore, the question of
convergence rate remains open in our local volatility model. Moreover, we
expect that when n tends to infinity, the hedging cost C™(0,Sp) converges
to the super hedging price of the pay-off. At least it is the case for Eropean
Calls, when C™(0,Sp) converges to the price of the buy and hold strategy,
ie. S§ := So(1 + k). We are also concerned with the rate of convergence
S¢ — C™(0,S50). This question is of great importance for practitioners, in
particular if the rate of convergence of C™(0,Sp) towards the buy and hold
price S§ is significantly lower than the rate of convergence of V" towards
h(S1), then we can conclude that the modified strategy of Lépinette is really
valuable in practice.

2.4 Optimal consumption problem in a Kabanov’s
model with jumps

e Motivation.

In this second chapter, we study the classical optimal consumption problem
in a Kabanov’s model with jumps, i.e. markets with proportional transac-
tion costs and prices being driven by Lévy processes. The study of consump-
tion—investment problems in continuous time was initiated by the seminal
paper of Merton (1971). He considered a model of frictionless market where
the price processes are geometric Brownian motions. Given a utility function
that represents the risk reference of the investor, his goal is to maximize the
expected discounted utility of consumption on the infinite time interval. For
the power utility function, he obtained an explicit solution of the optimal
control problem. Merton found that, in computing the optimal investment
rules, the investor has to keep the proportions of the total wealth held in
risky securities equal to a constant vector which is easily calculated from the
model parameters (Merton proportion). This result is of great importance
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in investment theories and largely used by practitioners in mutual funds
management.

The work of Merton was extended by many authors in various directions
including models with transaction costs and jumps, which are the main ob-
jects of our interest. In the case of markets with two assets and proportional
transaction costs (without jumps), Davis and Norman (1990) studied the
structure of the value function but also provided a rigourous construction of
the optimal solution. The authors claimed that the optimal policy is to keep
the proportions of the total wealth held in risky security always staying in a
wedge region containing the Merton line. The upper and lower bounds of this
wedge can be of course computed in terms of model parameters. When the
proportions of investor’s wealth invested in the risky asset lies within this
region, the investor does not transact. He merely consumes from his bank
account. When fluctuations in the price processes drive the proportions of
wealth invested in the stock to the boundary of the region of inaction, the
investor transacts the minimal amount required to keep the proportion in
the region of inaction. Moreover, the optimal amount to consume from the
bank account is deduced from the solution to a non-linear PDE, known as
the Hamilton-Jacobi-Bellman (HJB) equation. The main difficulty to obtain
this solution is that the domain of the HJB equation is not exogenously spe-
cified. Rather it is specified endogenously via conditions that determine the
region of inaction. For a computational scheme to solve this HJB equation
in multidimensional cases, we refer readers to the paper of Muthuraman and
Kumar (2006), a complete solution to the problem in terms of viscosity solu-
tions is given in Shreve and Soner (1994), the portfolio optimization problem
under small transaction costs is studied in Touzi and Soner (2013).

Though geometric Brownian motion gains a popularity in financial model-
ling, it is criticized because of its weak predictability of price movements
on markets. Diffusion models using Lévy processes seem to be more flexible
and capture statistical and economical properties of market data and are
still mathematically tractable. Recently, several papers have investigated
the optimal consumption and investment problem when prices are model-
led by Lévy processes and markets are subject to transaction costs. For
example, Framstad et al. (2001) studied the two assets case, while Kabanov
and De Valliere (2009) generalized the problem to a very abstract setting
of models with transaction costs and multi-assets. The goal of our work is
two-folds. First, it provide rigourously mathematical proofs for some results
in these two papers such as the HJB equation and uniqueness of solutions,
the construction of an optimal strategy. Second, it unifies the approaches of
two papers in a general Kabanov’s model where prices are driven by Lévy
processes and trading strategies are allowed to be ladlag, but not cadlag as
supposed in the standard literature. This allows the work not only to be
consistent with the construction of an optimal strategy which is typically
caglad in a Lévy model, but also to capture both accessible and inaccessible
market shocks.
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e New results.

Chapter 3 is divided in two parts. In the first part we study the optimal
consumption problem in a abstract setting based on Kabanov’s model. The
second part is devoted to a special case of markets with two assets. The
abstract model is described as follows.

Let (Q, F, (Ft)t>0, P) be a filtered complete probability space satisfying the
usual hypotheses. We consider an agent who invests his wealth in a portfolio
of multiple assets whose price return process is driven by a d— dimensional
Lévy process (Y:)e>0

dY; = ut + ZdW; + / zN(dz, dt),
Rd

where 1 € R%, W is an m-dimensional standard Brownian motion and Z
is a d x m-matrix. Moreover, N(dz,dt) denotes the compensated Poisson
random measure whose compensator take the form dtIl(dz).II(dz) is usually
called the Lévy measure which is a o— finite measure on the Borel sets of
R\ {0} satisfying the following condition

/ (|z|2 A |z]) I(dz) < oo.
R4\ {0}

We consider a version of Kabanov’s model which is slightly more general
than that of the standard model of financial market under constant propor-
tional transaction costs. We are given two constant cones K and C which are
supposed to be closed and proper, i.e. KN (—K) = {0} and CN(-C) = {0}.
We assume that C C int K # (). In financial terms, K stands for the solvency
cone, for instance we can chose K to be the set of positions such that when
we convert the actual portfolio to any asset and pay transaction costs, the
liquidation values are nonnegative ; while C consists of consumption possibi-
lities, for example, if we only consume on the bank account, then C' = R e;.
The dynamics of a portfolio process is defined for each i =1,...,d by :

dVi =V}l dY! +dBi —dCi, Vo=Vy_ =z,

where the controls 7 = (B, C') are ladlag and predictable processes of boun-
ded variations. We require that dB; € —Kdt and dC; = c;dt € Cdt. These
condition will be described in detail in the thesis. The dynamics means that
such a portfolio V' is self-financing, i.e. its increments are only due to the
increments of Y, and transaction costs modelled by B are withdrawn while
C represents the cumulated sum of consumed wealth.

Example 2.4.1. We give here an example of the abstract Kabanov’s model.
We consider a market consisting of two asset : the first one is a risk-free
asset with interest rate zero an the second one is a risky asset whose prices
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are driven by a Lévy process. Suppose that the dynamics of portfolio are given
by

dvil = dL — (1 +\?)dL'? - ¢at,

AV = V2 (udt + odW; + / x(p(dy, dt) — q(dy,dt))) +dL? — (14 M\*har*,
R

where L7, i,j = 1,2, are the transfer processes we suppose to be ladlag and

A9 i, 5 = 1,2, are the transaction costs coefficients. We rewrite the dynamics
of a portfolio process under the standard form :

dV; = diag V;_ (ﬂdt + 5dW, + / 2(N(dz, dt) — f[(dz)dt)) +dB, — dC,.

In this framework, the controls are 'dCy = (cidt,0), and
tdBy = (dL?' — (1 + X?)dL"?, dL}? — (1 + A\?1)aL?).
The solvency cone K is simply a sector generated by the two vectors
g1 =1+ 2He; —ez,92 = (1 + A )eg —ey.

The consumption region is C = Riey.

For every admissible control w € A, let us introduce the stopping time
0" =inf{t: V] ¢ int K }.

We define the utility process

tAOT
T(@) = /0 e~ (¢y)ds,

where  is a positive discount rate and U is a given non-negative mapping
defined on C which represents a utility function ; it is assumed to be concave,
U(0) =0 and U(z)/|x| — 0 as |z| — oo. The optimal consumption problem
consists in maximizing the utility process over the set of admissible strate-
gies. To do so, we define the Bellman function as

W(z) := sup E[JL (x)], =z €intK. (2.4.2)
TEAy

The main result of this chapter is to prove that, under some mild condi-
tions, the Bellman function is a unique solution to the HJB equation of the
following form

FW"(x),W'(z), HW,z),W(z),z) =0, z€intK,
W(x)=0 on0K.

We leave all details about the equation and conditions necessary to Chapter
3. At this stage, we have several remarks as follows.
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e First, as the controls are assumed to be ladlag, we have to redefine the
notion of stochastic integrals with respect to ladlag predicable integrands.
This is done and presented in the appendix of the chapter 3.

e Second, we allow the possibility that the investor may go bankrupt if his
position is insolvent. This constraint makes the problem more difficult
in the sense that it is no longer straightforward to conclude about the
concavity of Bellman function as in continuous diffusion models. Actually,
the concavity is important as it allows to study the structure of the Bell-
man function. Fortunately, we can prove that if the HJB equation admits
unique solution, then the bankruptcy constraint is not binding, i.e. it is
not optimal to deliberately get the portfolio out of the solvency cone.

e Last, note that the only difference between our model and a model driven
by a multidimensional. Brownian motion is the presence of the operator
H(f,x) which is given by

(1) = [ [+ g @)1 s orseimic = 1(2) = ['(a)ding (0)2] 1),

This integro-differential operator is not defined in a local way. Therefore,

we then need to define viscosity solutions in the global sense.
In the second part of Chapter 3, we revisit the optimal consumption problem
in the two dimensional case. This case has been fully studied by Soner and
Shreve (1994) when the prices are driven by a geometric Brownian motion.
As the uniqueness of solutions holds in this model, the Bellman function is
concave and therefore we can make use of the machinery of convex analysis
to study the solution to the HJB equation. We then recover most of their
results in this new setting, from the structure and regularity of the Bellman
function, to the construction of the optimal strategy based on the notion of
SDEs with reflections which is in turn, has to be rigourously rewritten when
jumps are involved.

e Future perspectives.

The Kabanov’s model turns out to be a good framework for studying markets
with friction. It is not only general enough to capture the case of proportio-
nal transaction costs, but also leads to satisfying mathematical results such
as HJB equations. In this new setting, we can also generalize the optimal
consumption-investment problem in different directions. For instance, if we
allow an endowment to rescue the investor in case of default, it is no longer
obvious that the investor always stays in solvency at optimality. Some condi-
tions should be relaxed or modified, for example the utility function may be
wealth-dependent, the market coefficients may be stochastic, the trading
may be faced to liquidity risks, the horizon may be finite or random, the
investor may receives labor income, so on and so forth. We can also consider
a more general optimization problem of recursive utility, and add some more
risk constraints on portfolios or wealths such as limit trading constraint or
drawn-down constraints... We believe that these problems can be solved
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within the context of Kabanov’s model and lead to many promising results
in the future.

2.5 A general market model defined by the liqui-
dation processes

e Motivation.

In the third and fourth chapters, we introduce a general model that captures
both fixed and proportional transaction costs. In this new setting, we study
the pricing theory in the absence of arbitrage opportunities. Two fundamen-
tal questions rise. First, given a financial market model, we are concerned
about the possibility of making profit out of nothing via trading activities on
the market, i.e. starting from a null or debted position, can we end up with
a nonnegative wealth and making a gain with strictly probability ? If the
answer to this question is yes, we say that the market admits an arbitrage
opportunity. Second, given a market model which is free of arbitrage oppor-
tunities and a contingent claim that pays off a financial flow in the future
to its holder, what is the smallest initial amount x of money from which the
writer of the claim can start a portfolio such that the values of this portfolio
dominate the financial flow of the contingent claim? We call it the super
hedging problem, and the value «x is called to be the super-hedging price of
contingent claim. In the case of a discrete market model without transaction
costs, the arbitrage theory is initiated from the famous theorem of Dalang-
Morton-Willinger which states that the market is arbitrage-free if and only
if there exists an equivalent martingale measure. This result is usually refer-
red to as The Fundamental Theorem of Asset Pricing (FTAP). A analog of
this theorem in continuous time models are provided in Harrison, Kreps and
Pliska (1981) or by Delbaen Schachermayer (1994). In both cases, the arbi-
trage theory has been well developed by a lot of authors by appealing to the
well-known Hahn-Banach separation theorem in convex functional analysis,
or the Kreps-Yan theorem thereafter. The super-hedging prices of European
or American options are also characterized by means of the optional decom-
position theorem, see Kramkov (1996).

For proportional transaction costs, the theory was initiated by E. Jouini
and H. Kallal (1995). In their pioneering paper, the authors considered a
two-assets models and established the equivalence between the no-arbitrage
opportunity condition with the existence of which is so-called consistent
price system, i.e. a martingale evolving within the bid-ask spreads under
some equivalent probabilistic measure. This new notion is a natural genera-
lization of equivalent martingale measures in the frictionless case. Kabanov
(1999) introduced a general semimartingale model in discrete time of a cur-
rency market with transaction costs and gave a description of the initial
endowments which allow to hedge a contingent claim in various currencies
by a self-financing portfolio. This model possesses a nice geometric structure
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and rapidly became a standard model in the theory of no arbitrage with pro-
portional transaction costs. There are several important papers studying the
super hedging problem in Kabanov’s model, for instance Kabanov, Rasonyi,
Stricker (2002), Schachermayer (2004), Campi and Schachermayer (2006),
Kabanov and Lépinette (2013).

In practice, fixed costs account for a significant amount of trading costs.
Recall that fixed costs are bounded regardless of the transaction size. There
are a lot of examples of fixed costs in reality such as fixed brokerage fees,
brokerage arrangements where marginal fees go to zero beyond a given vo-
lume that is reset periodically, fixed investment taxes to gain access to a
market (such as a foreign market), operational and processing costs that
typically exhibit strong economies of scale (e.g. through automation), fixed
costs involved in setting up an office and obtaining access to information,
and the opportunity cost of looking at a market or of doing a special trade,
so on and so forth. Therefore, it is reasonable to study models capturing the
impact of fixed costs. However, to the date there is very few academic papers
on this direction. There are several attempts to formally study models with
fixed costs, for example in Jouini, Kallal, and Napp (2001, 2006) where the
authors established the equivalence between the absence of arbitrage oppor-
tunity and the existence of an absolutely continuous martingale probability
measure.

e New results.

In chapter 4, we introduce a mathematical model which is general enough
to capture both fixed and proportional costs. Recall that, in "standard mo-
dels" like Kabanov’s model, the dynamics of portfolios necessarily need to
be written separately for each asset instead of a unique wealth process as
in the frictionless case. This makes the model to be multidimensional. Our
idea is to consider the liquidation value process instead of multidimensional
portfolio process in order to reduce the problem to the unidimensional case.
In order to do so, let us formalize the setting as follows.

Given a stochastic basic (€, (F¢)i=o,...,7, P), we define solvency process an
adapted set-valued process (G¢)o<t<7 satisfying the following conditions

Conditions on (Gy) :

i) Gy is a closed Fi-adapted set, 0 <t < T,
11) Gi+G CG, 0<t<T, as.,

(
(
(111) )\Gt Q Gt, VA Z 1, a.s.,
(IV) Gt + Ri = Gt, a.s.,

(v) The cone R4 Gy is proper |, i.e. RyGy N (—R41Gy) = {0} as.

The condition (i) and (iv) are obvious. Conditions (ii) and (iii) are satis-
fied for any model with fixed costs, because fixed costs are independent of
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transaction volume, which leads to the fact that fixed costs are relatively de-
creasing when we increase the size of transactions. The last condition means
that transaction costs are efficient, i.e. we cannot transact without paying
costs. Notice that the solvency sets are not necessarily convex, therefore we
cannot apply the traditional technics of convex analysis anymore. This is the
key point that makes the problem more difficult than the case of proportio-
nal transaction costs. The liquidation process (L;) is defined in such a way
that
Gy = {z € R%: Ly(z) > 0}.

More precisely, we have

Li(z) :=sup{a € R: z— ae; € Gi}. (2.5.3)

As in the case of proportional transaction costs, an adapted stochastic pro-
cess (Vi )i<u<r is called to be a portfolio if V,, —V,,_; € G, a.s. We can
therefore write Vi = >, -7 &, where &, € LY(—G,, F,,) and denote by RE,
the set of all terminal values Vi of portfolio processes V such that V;_; = 0.
ie.
R :=RE(G) = Y LY(-Gy, Fu).
t<u<T

By using the liquidation function, we focus on the set of all terminal liqui-
dation values

LV%« = {LT(VT) : Vr e R%}

In this setting, we study the classical no arbitrage conditions such as NA,
NA2 by means of LV5.. The only difference from the classical case is the cha-
racterization of super-hedging prices of contingent claims. For it, the duality
technic is not valid anymore. We have to employ the notion of Multidi-
mensional Essential Supremum proposed by Kabanov and Lépinette (2013).
This notion is a generalization of its classical analog of real random va-
riables to the multidimensional case, where the natural order relation on R
is replaced by the new one defined by the solvency cone, i.e. by definition,
x =ty & x —y € Gy Notice that this relation is well-defined because
of Condition (ii). We recall here the definition of Multidimentional Essen-
tial Supremum, where we denote by > an order relation implied by certain
solvency set as above.

Definition 2.5.1. Let " be a subset of L°(R%, F). We denote by H-EsssupT
a subset T' of L°(R®, H) such that the following conditions hold :

(@) I=T,
(b) if v € LO(R®, H) and v =T, then there is 4 € T' such that y = 4,
(¢) if 41,42 € I, then 41 = A implies 41 = Ao.

Given a European claim Y7 € LO(Fr), a portfolio process (V;) super-replicates
Yr if Vi =T Y. Moreover, it is called minimal if any portfolio process W € V
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such that Wp =7 Yy and V = W (i.e. V = W for all ) coincides with V.

We denote VZ, (Yr) the set of all minimal processes super replicating the

European claim Y. The hedging theorem in this new setting is the following.

Proposition 2.5.2. Suppose that NA2 holds and suppose there exits at least
one V€V such that Vp =T Y. Then VE. (Y1) # 0 and it coincides with

m
the set of solutions of backward inclusions

Vi € (Fp, =" -Esssup (Vi }, t<T -1, Vp=VYr. (2.5.4)
Moreover, any W € V with Wr =T Y is such that W = V for some
Ve ng(YT)

A definition of minimal hedging price needs more mathematical formulation
and will be detailed in Chapter 3. The hedging problem of an American
option is done in a similar manner as in the case of proportional costs.
For the proof of the above theorem, the most dificult part is to prove that
VE. (Yr) # 0. To do so, it is stressed that all necessary conditions as in
[57] are not available. In particular, we do not know whether there exists
a countable measurable utility representation for the order reference or not
(for more detail, see [57], [35] and the references therein). Therefore, we have

to use another approach to deal with the problem.

Chapter 4 is an ongoing project, we continue to study the non convex model

given in chapter 3. Our goal is to review various no arbitrage criteria in this

new setting. More precisely, we are interested in answering the following

questions.

Q.1 What is the no arbitrage condition that is equivalent to the existence of
an Equivalent Risk Neutral Probability Measure ? In the case where one of
these two conditions satisfies, how to characterize the super hedging price of
a European option ?

For this question, we introduce a new notion of arbitrage opportunity which

is called Extended No Asymptotic Arbitrage opportunity condition (ENAA).
We show that Condition (ENAA) is equivalent to the existence of an Equi-

valent Risk Neutral Probability Measure @ ~ P such that Eg[Ly(Vr)] <0

for all terminal liquidation values of the portfolio processes Vi of our model,

where L1 denotes the liquidation function at maturity.

Let ¢ € L°(R, Fr) be an arbitrary contingent claim which is bounded below.

We define the super hedging price of £ as follows

p(&) =inf{z € R|IVp € RY: x + Ly(Vp) > £}

In Kabanov’s model, we can prove that, under (ENAA) this price is cha-
racterized by
VE = sup Fgé,
QeD

where D denotes the set of Equivalent Risk Neutral Probability Measures.

Q.2 What is the relationship between a model with only proportional costs
and a model with both fixed and proportional costs ¢
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Recall that if the market with both fixed and proportional costs admits
an arbitrage opportunity, then it is also the case for the market with only
proportional costs (since trading in the latter is cheaper). Reciprocally, if
the market with only proportional costs admits an arbitrage opportunity (in
some sense), then we can leverage this arbitrage strategy by a sufficient large
constant in order to reduce the impact of fixed costs as low as possible. As a
consequence, this modified strategy will produce a new arbitrage opportunity
in the model with both fixed and proportional costs. This idea is formalized
in the notion of Weak Arbitrage Opportunity (WAQ). We prove that the
absence of (WAQ) are equivalent in both markets.

Q.3 How can we link our no arbitrage conditions (defined by the liquidation
function) to the ones defined in terms of portfolio vectors ¢

For this question, we would expect that most of no arbitrage conditions are
equivalent in both settings. If this is the case, it shows that our theory is
consistent with the no arbitrage theory for Kabanov’s models. In a general
model with multiple assets, this question still remains open. But at least, we
can show that it is the case for models with two assets.

Q.4 In the case where the fized cost is not negligible, i.e. when fixed cost is
bounded from below by some strictly positive constant, what is the impact of
fized costs on mo arbitrage conditions ?

If fixed costs are not negligible, any trading activity in the market will lead to
a strictly positive cost. Therefore, any arbitrage opportunity of asymptotic
kind (for example, NFLVR) could have led to the presence of a new arbi-
trage opportunity in classical sense (e.g.INA) if there were not fixed costs in
the market. However, by a similar argument as mentioned in the comment
of Q.2, the presence of an (non asymptotic) arbitrage opportunity in the
market with only proportional costs will lead to the existence of a new (non
asymptotic) arbitrage opportunity in the market with both fixed and pro-
portional costs. In conclusion, we see that the presence of asymptotic and
non asymptotic arbitrage opportunities are equivalent in the model where
fixed costs are non negligible.

2.6 Utility maximization problem under target risk
constraints

e Motivation.

One of the most classical problems of mathematical finance is the maxi-
mization of expected utility from terminal wealth. Mathematically, we are
concerned with the following optimization problem

u(z) = sup E[U(X7")].
TEH

Here, (X;"")o<t<T denotes the wealth process produced by an initial capital
x together with an admissible trading strategy m € H, U is a utility function
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which might be random. A common choice of U is U(x) = u(z — B) where
B denotes, for example, a given random liability and w is some deterministic
concave nondecreasing function such as power, logarithmic or exponential
functions. There is a vast literature on the maximization of expected utility
and we confine ourselves to a very brief overview of approaches as follows.

Convex duality theory. The convex duality methodology originally dates
back to Bismut (1973). In the simplest form (complete market), this metho-
dology is essentially based on applying the Legendre-Fenchel transformation
of the utility function given by

Uly) := Sup [U(x) — zyl,y > 0.

The dual function allows to associate the primal problem to the dual problem
formulated as

v(z) = inf E[U(yH)],

y>0
where H denotes the risk-neutral density of the unique martingale mea-
sure. It was shown that the marginal utility of the terminal wealth of the
optimal portfolio is, up to a constant, equal to the risk-neutral density, i.e
U’(X%’ﬁ*) = y*H. The optimal portfolio is constructed by using the mar-
tingale representation theorem (or the optional decomposition theorem for
the case of incomplete markets). The convex duality method was developed
by Pliska (1986), Cox and Huang (1989, 1991) and Karatzas, Lehoczky
and Shreve (1987) for complete financial markets, and by He and Pearson
(1991), Karatzas, Lehoczky, Shreve and Xu (1991), Kramkov& Schacher-
mayer (1999) for the incomplete case.

Dynamic programming and HJB equations. Though convex duality
theory is powerful in proving the existence of optimal portfolios in a gene-
ral non-Markovian framework, it does not show a way to characterize these
optimal strategies. The dynamic programming approach should be seen as
complementary to convex duality, which remains a relevant method to ob-
tain the characterization of both optimal strategies and the value function.
The idea of this method consists in applying tools from the stochastic control
theory to derive a PDE (which is so-called Hammilton-Jacobi-Bellman equa-
tion) for the value function. However, this approach is based on the assump-
tion that prices are driven by aQuartzes Markovian process. For references,
see Merton (1971) Karatzas and Zitkovic (2003) , Karatzas and Kardaras
(2007).

Backward SDEs. The theory of backward SDEs has been developed by
Pardoux & Peng (1990). It has rapidly become one of the mainstreams of
stochastic control theory with a variety of applications in mathematical fi-
nance. For the utility maximization problem, the BSDE method turns out
to be a good replacement for HJB equations in a non-Markovian setting.
When the utility takes some common forms such as power, logarithmic or
exponential, it has been shown by Hu, Imkeller and Muller (2005) that the
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utility maximization can essentially be reduced to solving a BSDE that cha-
racterizes the optimal strategy and the value function. A forward-backward
SDE approach is given in Horst et al. (2011) for the case of general utility
functions.

Static optimization and Lagrange multipliers. This method has been
used to deal with the utility maximization problem with risk constraints im-
posed on the terminal value of portfolios. The idea is to reduce the problem
from a dynamic framework to a static optimization problem with constraints
and then solve it by means of classical Lagrange multipliers. Optimal invest-
ment policies under downside risk constraints in terms of value at risk and
and a second risk functional have been studied in a Brownian setting by
Basak & Shapiro (2001) and Gabih et al. (2005). A complete solution in a
general semimartingale with utility-based shortfall risk constraints is given

by Gundel and Weber (2005).

As mentioned above, when we impose a risk constraint on the terminal
wealth, the problem is solved by static optimization technics. This work aims
at solve the problem by a different approach. At the beginning, our project
aimed at using BSDE method to tackle the problem. Unfortunately, such
an attempt did not succeed and we had to choose another approach. From
a stochastic control point of view, it is not difficult to solve this problem
by means of dynamic programming and Bellman equations, as it is just
a particular case of the optimal control problem under target constraints
problem, see Bouchard-Elie-Touzi (2008) for more details about the technic.
Therefore, convex duality remains as a method of choice to study our utility
maximization problem.

As discussed in Gabih et al. (2005), the distribution function of optimal
wealth in an unconstrained utility maximization problem possesses lots of
undesired properties. From a practical point of view, a risk measure should
be considered for a better investing management. For example, a common
problem is to limit the shortfall of terminal wealth below some benchmark B
on the market. Here B might stand for a default level in risk management,
or a stock index in the case an investor wants to defeat the market, or just
a target liability in mutual fund management... In this case, a choice of
risk mesure could be of great importance. Some common examples of risk
measures are Value at Risk (VaR) and Expected Shortfall (ES). We focus
on another class of risk measures of the form p(X) := E[I(X — B)~], where
Il : Ry — Ry being a non decreasing convex function. This kind of risk
measures should be a good candidate for risk management purposes since it
possesses the following properties :

— First, it is a convex measure, therefore it supports the diversification
principle in investment.

— Second, by choosing an appropriate weight function [, the risk measure
p is sensitive to losses, which is not the case for Value at Risk.

— Third, this measure is not cash-additive which is criticized in risk mana-
gement (recall that a risk measure p is said to be cash-additive if for any
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real number ¢ and financial position X, p(X 4 ¢) = p(X) — ¢), therefore it
is relevant for a internal measure of risk.

— Last, p only depends on the shortfall part, not the gain part. This is a
natural requirement because in risk management, we focus on losses rather
than in gains.

From above arguments, we are led to a general form of risk measure, namely,
p(X) := E[¢(X)] where ¢ is a possibly random non-decreasing concave loss
function. In this case, the risk constraint is of the form p(X7™) > m for
some constant m and terminal wealth X7".

e New results.

This chapter aims at applying the convex duality methodology in different
situations of the utility maximization problem under risk constraints.

We begin with the case of an incomplete market model with risk constraint
when the wealth is supposed to be non negative.

u(x) = sup{E[U(Xp")] - X7" =0, E[((X3™)] = m}.

Let us denote C(x, m) the set of hedgeable positions, i.e. the set of random
variables which are bounded from below and dominated by terminal wealths
X" satisfying the risk constraint. The dual domain is defined by

YVi={(y,Y)eRy x Ly : EY <y,6(Y):= sup FE[XY]< oo}
XeC(x,m)—x

Here, 4 is called to be support function. Our first main result is the following
duality relation. The proof is not much different from the non-constrained
case. The technic of proof is borrowed from Kramkov and Schachermayer

(1999).
Theorem 2.6.1. Consider the dual problem

= inf [u(Y)+ a2yl
w(@) = inf [o(Y) +

where v(Y) = E[V(Y)] 4+ 0(Y) and V is the Fenchel dual function of U.
Under necessarily technical conditions, we have the following
(i) The dual problem admits an optimal solution (y*,Y*) € Y :

w(z) =v(Y™) + zy*.
(ii) The duality holds

= inf [p(Y)+zyl =v(Y")+ay"
u(e) = inf (oY) +ay] = oY) +ay

Moreover, the optimal wealth is given by X* = I(Y*) := (U")~L(Y™).
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Next, in the same model, we relax the positivity condition on the wealth
process. The idea of proof is to consider the approximating problem (see
Schachermayer (2001)) :

up(z) = sup E[U,(X)],
XeCn(xz,m)

where Uy (z) = U(x) if £ > —n and U,(x) = —oo otherwise. In a same
manner as the case of positive wealth, the approximating primal problem
admits unique solution X, given by X,, = I(Y,,)V —n € C,(z, m). By letting
n tend to infinity, we obtain a similar result as in the previous case.

It is easy to see that in the duality method we use above, the loss constraint
is implicitly determined by the primal domain C(z,m) and by the support
function. Therefore, it can be directly generalized to the case of general
convex constraints. We suggest another approach which is still based on
duality method. For sake of simplicity, we only consider the case of complete
markets with positive-wealth constraints. This approach allows to show the
risk constraint explicitly from the dual problem. The idea is to replace the
expected constraint by an infinite number of almost sure constraints as consi-
dered in Bouchard-Touzi-Elie (2009).

EUX7M)]>me3IMeM: X537 > M,
where
M= M(z,m):={M € LY (Fr): EqM < z,E[l(M)] > m}.

It is then natural to replace the Fenchel dual function by a constrained
one V,(y) := sup,>,[U(r) — zy]. By using it we are led to the following
inequalities

u(z) < sup wy(z) < inflv(y) + zy, (2.6.5)
MeM y>0
where
war () = LBV (yH)] + 2y}, (2.6.6)
and
v(y) = vam(y) = sup E[Va(yH)]. (2.6.7)
MeM

Here, () denotes the unique risk-neutral martingale measure. As expected,
we can show that under some technical conditions, the duality holds

u(x) = sup wy(x) = in%[v(y) + zy], (2.6.8)
MeM y>

and the optimal wealth is given by

-4Q

d
X* = -V, (y*ﬁ) = max{M"*, I(y dP)}’

dP
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where M* is the maximizer of the dual problem sup,;c o war(x) and y* =
y*(M*) is the minimizer of ([2.6.6).

From a practical point of view, all results obtained above are not quite sa-
tisfactory because they do not show a way to calculate numerically, at least
the value function. Even in complete market case, the complexity of the dual
problem is not significantly lower than the primal problem (since we intro-
duce a new set M(z, m) of extra random variables). We then present a new
method based on the relationship between the utility maximization problem
and the (quantile) hedging-type problem. We still work on a complete mar-
ket with positivity constraint on the wealth and risk constraint at maturity.
Let us consider the following problem

v(y,m) :=inf{z: Ir: E[UXT")] >y, EQ(X7")] > m}.

It is clear that u(.,m) = v~!(.,m). Therefore, the primal problem boils
down to a new hedging-type problem under multiple targets, or backward
SDEs with weak-terminal conditions as in the terminology of Bouchard-
Elie-Réveillac (2013). For this new problem, we apply the duality technic to
characterize the value function and the optimal wealth. More precisely, we
are concerned with the following problem

v(m) :=inf{z: Ir: E(X7")] = m},

where 1:= (13,...,1,) is a multidimensional deterministic loss function, m €
Im1 and > is understood componentwisely. Moreover, 1y is supposed to be
strictly increasing for all 1 < k < n. We have

ENX5™)] = m<« IM e M : X5 > F(M),

where F(M) = maxi<r<,{l; ' (M)} being a convex function and compo-
nentwisely increasing of M, and

M= {M = (My,...,Mg) € L*(Im1) : I, (My) € L%, E[My] = my, ¥V k}.
By the comparison principle, we have the following estimation

> inf XF(M)
v(m)_MHElM{ o h

where Xg(M)

F(M).

is solution to the following BSDE with terminal condition

T T
Xé:'(M) — F(M) — / (TtXt + HtZt)dt — / thWt~
0 0

By using the Fenchel duality of F : F(p) := suppepm 1 [p-r — F(r)], we obtain
the following duality relation

v(m) = inf {Xé:(M)} = sup E[pm— F(L;'p)Lr],
MeM peRf“
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where (L;) denotes the state price process. The last problem is easier to solve
because it is considered on Rf 1 We can then characterize the optimal
wealth of the primal problem by means of the solution to the dual one.

e New perspectives.

We briefly present here several outlooks of the work.

First, since we can easily simulate L7 from model parameters, the last duality
equation could be exploited to calculate numerically the dual value function
v(m), hence the primal value function.

Second, duality technics used in the two last sections could be generalized
to incomplete markets. In this case, it is not hard to prove the verification
theorem by using the constrained Fenchel dual function. However, the exis-
tence of solutions to the dual problem still remains as an open question due
to the fact that some integrability conditions are no longer satisfied when
we introduce extra random variables M.

Third, convex portfolio constraints could be taken into account. Note that
when we directly use the convex duality method, the key issue is the convexity
of portfolio set. When the primal problem is related to the hedging problem
by BSDEs method, we are led to a BSDE with both terminal constraints
and dynamic convex constraints, which might rise an interesting subject for
future studies.

Last, terminal constraint can be replaced by an American-type constraint,
i.e. losses are controlled at any time prior to maturity. We can prove that
this type of constraint can be transformed to an infinite number of almost
sure constraints, where a similar situation of the latter has been investigated
in, for example, Kara & Jeanblanc (1998) in the presence of labor income.



Chapitre 3

Approximate hedging in local
volatility models under
transaction costs

Abstract

Local volatility models are popular because they can be simply calibrated
to the market of European options. We extend the results of [76], [75] for
such models, i.e. we propose a modified Leland method which allows us to
approximately replicate a European contingent claim when the market is
under proportional transaction costs.

Keywords : Black—Scholes formula, transaction costs, Leland strategy,
approximate hedging.

Note. This chapter is based on the paper Approzimate hedging in local volati-
lity models under transaction costs, T. Tran, E. Lépinette, To appear in Applied
Mathematical Finance.

3.1 Introduction

There are indications that the Black and Scholes model does not fit cer-
tain financial market phenomenons. In practice, the implied volatility is not
constant, i.e. depends on the expiration date and the strike. This problem
is known as the implied smile effect. More natural is then to consider lo-
cal volatility models. Indeed, under mild assumptions, the strong Markov
property and the continuity of the price process S implies that S is given
by a local volatility function o(t,S;). Bouchouev and Isakov [I3] and la-
ter Egger, Hein and Hofmann [33] suggest to search for local volatility in
the product form o(t,z) = o(x)p(t). These local volatility models are very
popular because they are simple to calibrate the call prices by the Dupire
formula. In this chapter, we consider a standard two-asset local volatility
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model in presence of transaction costs. Our goal is to provide a strategy
which replicates approximately a European contingent claim h(Sr) when
the number of revision dates of the portfolio tends to co. We show that the
Leland method can be adapted to the case of a local volatility model. This is
a generalization of Papers [70] and [75] to the case where the volatility is not
constant and depends on the underlying asset. The Leland strategy derives
from the solution C to the heat equation of the Black and Scholes model
where we increase the volatility in order to compensate for the transaction
costs. Contrarily to the case where the volatility is constant, we do not have
explicit expressions of the solution to the heat equation. The main difficulty
is to obtain appropriate estimates of the derivatives of C , which is necessary
to show the convergence of our scheme. To do so, we use PDEs techniques
and our main concern is the case where the proportional transaction costs
coefficient is constant, i.e. does not depend on the number n of revision dates.
For this model, the usual Leland method fails [76]. By modifying the Leland
technique, we show that it is possible to obtain an approximate hedging of
the pay-off h(S1) without limit error as n — oo for a large class of pay-off
functions h.

3.2 The model

We assume without loss of generality that the time horizon is T = 1. The
non-risky asset is the numéraire S° = 1 and the risky asset is given under
the martingale probability measure by the SDE :

dSt = StO'(t, St)th, 0 S t S 1.

We suppose that trading involves proportional transaction costs with the
transaction cost coefficients depending on the number of revision dates n :

kn = kon™%, o€ [0, %]

The case o > 0 means that the transaction costs decreases as the number
of times the agent rebalances his/her portfolio increases. This is the Leland
model. If a = 0, the transaction costs coefficient is constant, i.e. does not
depend on n. This model may be considered as more realistic and represents
our main concern. Although, a transaction costs rate, e.g. » = 0.001, can
be also seen as r = kgn~® with o > 0 and n large enough. In this case,
ko depends on « and we leave the qualitative analysis of such approach for
future research.

In our model the current value of the portfolio process at time ¢ is defined
by

t
V=V + /D;}dsu =Y kaSy|DP - DFl,  t<l. (32.1)
0

ti<t
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where t; =t7',0 < i < n, ty = 0,t,, = 1, are the revision dates ; and D" = D}
on the interval |t;_1,t;] where D} is F;, ,-mesurable, i.e. D" is the trading
strategy. The number of the risky asset that the holder possesses in the
period ¢ is then D}'. The dynamics means that the portfolio process
V™ is self-financed and with transaction costs which are proportional to the
traded volume. We suppose that the dates ts are uniform i.e. t; = tI" = i/n,
1=0,...,n.

In the complete model without friction, a contingent claim h(S7) is exactly
replicated by the terminal value of the self-financed portfolio :

t
Vi = B(h(S)|F) = C(£,S)) = Vi +/ Co(r, S,)dS,, t<1
0

where C is solution of the PDE :

<e>:{ Ci(t,z) + 302(t,2)2%Cop(t,z) =0, (2,t) €]0,00[x[0, 1]
0 C(l,z) = h(x), z€]0,00]

With transaction costs, we follow Leland’s approach [77], i.e. we construct
a strategy which can be considered as a modified Delta of Black-Scholes
replication formula. The idea is to subtitute the volatility ¢ by an enlarged
one o (t,z) in order to compensate for the transaction costs. The "enlarged
volatility" is defined by :

F*(t,z) = o*(t,2) + o(t,2) 7,

where

So, we introduce the PDE :

(e):{ Ci(t,z) + 30%(t,2)22Cha(t,2) =0, (x,1) €]0,00[x[0, 1],
C(,z) = h(x), z€]0,00[.,

The existence of a solution to the PDE (e) is ensured by Lemma Let
us precise the intuition behind the Leland strategy. By the Ito Formula,
assuming that the solution C' to (e) is smooth, we have

~ ~

t
C(t,Sy) = C(O,So)+/ Cx(u, Sy)dS,
0

1/t ~
+2/ [0%(u, Su) — 52 (u, Su)] S2Cou(u, Su)du.
0

~

Then, C(t,S¢) can be seen as the continuous version of a portfolio process
(]3.2_.1 provided that D} = c (ti—1,St,_,) and the drift term in the formula
above corresponds to the cumulated transaction costs, i.e. we want to make
equal the two following increments :

1 .
5 [0'2(11,, S,) — % (u, Su)] S2C 0 (u, Sy)Au
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and
—kon ™ Cx(u + Au, Su+Au) - Cx(“» Su) SutAu-

To do so, we use the Taylor approximation

t(u7 Su)Au + éxx(ua Su) (SquAu - Su) ,
x(uy Su) (SquAu - Su)

ax(u + Au, Su+Au) - C\x(uv Su) =

H>z§)>

where

Su+Au - Su = O'(u, Su)Su (WquAu - Wu) .
Assuming that ém > 0, this implies that we should look for & such that

1 u U
5 [0 (0.50) = 3%(u, Su)] Az —kon ™o (u, Su) W au = Wal =5 +A

Then, considering the conditional expectation knowing F,,, and the equalities

2 SutA
EWay,l = \/Au\/;, % =14 o(u, Su) Wysnu — Wa).
u
we obtain, considering only the main terms, that

1

2
= [0?(u, Sy) — 72(u, Su)] Au = —kon~ %o (u, Su)\/Au\/7.
7r

5 |
We deduce that

™

62 (u, Sy) = 0 (u, Sy) + kon'/> \/ga(u, Su).

We recall that the Leland strategy fails in the case a = 0, i.e. an approxi-
mation error appears. We propose a modified strategy as in [75] to treat the
general case a € [0, 3] :

t
Ur =T+ [ Didsu— 3 kaSulDly - Dl 0<t<l
0 t; <t

where YA/O" = C"(0,Sp), and DI = 133 on Jti—1,ti], ﬁg is given by
Dy = Citiots Sus) = D [ColtSty) = Coltyr, 81, )] -(32.2)

1<j<i-1

We make use the abbreviations H = C, (t,S) = Cn(t, S;) where we often
omit the index n, hy = Cyy(t, Sy), H, tn = Cx(ti, St..), ti =17, and

K=Y AK}:

th<t
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where AKZ%OI =0andfori<1:
ZZ’P = azv(tjvstjﬂ,) - a’ﬂ(tjfl’stja,) .

In this chapter, we impose hypothesis on the pay-off function :

Assumption (H) : h is a continuous convex function on [0, co[ which is
differentiable except at the points Ky < --- < K, < ... where the first
derivative h’' admit right and left limits. Morever, h has polynomial growth,
i.e, |h(z)| < M(1+|z|*) for some positive constants M, a and b’ is bounded.

In the case o = 0, we only consider pay-off functions h behaving as affine
functions at infinity. The pay-off functions in the European option contracts
are generally of this form.

Assumption (H’) h(x) = hi(z) +ax +b where h is a bounded continuous
function.

Assumption (E) : There exists some positive constant K such that :
(a) m <o < M for some positive constants M, m.
(b) lo(t,z) —o(t',2")| < K(|t = t'| + & — 2')).
oF 0?
—o(t, d
(©) gerobo) and 5 o
ok 0?
k
- t7 -
ek 0 Iy
Remark 3.2.1. Observe that Assumption (E) is satisfied by the local vola-
tility functions o(t,x) = y(t)e™*", o(t, ) = v(t)(atan(z) + ), where ¢ > 0
and v is a bounded, positive and Lipschitz function. In the second case, the
local volatility of the model increases as the price of the risky asset increases.
The following example is given in [33] :

o(t,z) are continuous, and

ot,r)| <K, Y0<k<3.

1 1
o(t,x) = \/10 (1 — 5 xp (—41n*(z)) sin(27rm)> 1+ %sin(27rt).
It is clear that Condition (a) holds. Since we have the inequalities
exp (—2In*(z)) < exp (2In(z)) < 2°

if © < e, we easily deduce that the first derivative o, (t, ) is uniformly
bounded in x, hence Condition (b) holds.

Using the bounds exp (—4ln2(x)) <exp(—4In(z)) <z *ifz > €', and the
fact that In*(z) exp (—21n2(m)) is bounded for all k > 0,we also deduce that
Condition (c) holds.

Remark 3.2.2. Note that Condition (c) implies that (t,x) — o(t,e*) is
a Lipschitz function uniformly with respect to (t,x) € R (since the first
derivative of this function is bounded).
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Our main result in this chapter is the following convergence theorem.

Theorem 3.2.3. Assume that a € [0, 3] and the conditions (H),(H’),(E)
hold. Morever, suppose that h and o are such that Cyy > 0. If the strategy
D7} s given by , then the terminal value of the portfolio

1 n—1
Vi = O+ / DpdS. —kn Y. S| Dy — DY
0 =1

converges to the contingent claim h(S1) in probability.

Remark 3.2.4. We do not need the portfolio rebalancing at the horizon date ;
that is why the cumulated sum of all transaction costs is taken only up to
n — 1. Notice that we need the condition am > 0 to avoid the approximative
error. In fact, this condition will not restrict so many our interesting cases.
We refer to Lemma 5.6 for a sufficient condition ensuring the convexity of
C(t,x) in the variable x and more generally to the papers [78] and [80] on
the convezity propagation.

The chapter is structured as follows. In Section [3.3] we state the proof of our
main result, i.e. the convergence of the suggested terminal portfolio value to
the pay-off. To do so, we need the upper bounds of the function a(t, x) and
its derivatives given in Section Appendix is devoted to some auxiliary
results used in the proofs.

3.3 Proof of the Theorem [3.2.3

By the Ito formula, we represent the difference V;* — h(S1) in a convenient
form.

Lemma 3.3.1. We have V|* — h(S1) = FI' + F}' + F3' where

1
0
1 n—1
n 1 N A n n
0 =1
1
F} = kn/deSt. (3.3.5)
0

Our objective is to prove that F}*, F}', F3' converge to zero in probability.
We will only separate two cases @ = 0 and « €]0,1/2] in proving F§* — 0
since FJ', F3' — 0 without Condition (H’). Throughout the section, C' will
designate a strictly positive constant independent of n that could be changed
from a line to another one. We put v, = n'/2-2.

Lemma 3.3.2. We have P — lim F* = 0.



3.3 Proof of the Theorem 61

Proof Let us first consider the case o < 3. As Co(t, ) and E(supyeo,1 S2)
are bounded, the integral

1
/ (Hp - A,
1

T

1

o let us
n

tends to 0 in L2, so in probability. For each t € [t;_1,t;[,t < 1 —
consider the Taylor expansion

aﬂf(ti—lﬂ Sti—l) - aﬂﬁ(tﬂ St) = awt(0i7 Sti—l)(ti—l - t) + éwév(t? gt)(sti—l - St)
where 0; € [t;_1,t] and S, € [St;_,, St]. Using Theorem we obtain that :

|Sti71 - St|

gt \Y4 ’Yn(l - t)

—ti—1
1—¢

2 ~ t
|Cx(ti—17 Stifl) - Cx(t, St)| < C’

C
As |At)| < —and 1 —t > % the first term tends to 0. Moreover, since
n

(St)o<i<1 is strictly positive and continuous we deduce that the second term
tends to 0 a.s. Hence

éx(tifla St2'71) - am(tv St) - 07 a.8.

Keeping in mind that E(sup,¢o 1 S2) and C,(t, z) are bounded, we get the
convergence

1-L 11
E(/O n (H}" —Ht)dSt)2 :/0 mn E[StQ(H? —Ht)Q]dt—> 0 as 1 o0

by virtue of the Lebesgue dominated convergence theorem. Hence we have

shown that lim E(F")? = 0 with a < % The case a = % is obivious because

C does not depend on n. A

Let us now show that ¥ — 0. By the Ito Formula, we have

Co(t, S;) = Cu(0, So) + MJ + A}

where
t —~
MP o= / (1, S)SuCinn (11, Su ) AW,
0
tr . 1 -
AP = / [C’xt(u,su)+202(u,5’u)550mx(u,su) du.
0

We write ! = Z?:l L; where
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1n—1

1 1 ~
/0 o (t, S)VnSZhydt — = 5 /O Zo(ti_l,Stifl)fynS,iflhtifll]tifhti}(t)dt
=1

N | =

n—1

1
(z 175tl 1 htl 1St 1 (2’}/nAti — knnl/zv/Ati’AWtio R

53
i
M

=1

n—1 n—1
Ly = k:n 0(tio1, Sy )SE e AL AW — K > Sh |AM,,
=1

n—1
Sti—l ’AMt1| — kn, Z Sti—l ‘Ath + AKti‘?
i=1

h
=3
Il
5
3
™M
I 1

1
i=1
Lemma 3.3.3. We have P —lim L} = 0.

Proof. We rewrite

1! ~ 0
n_ 2/ o(t, S)ymSihudt + Y LT,

tn—1 k=1

It is obvious that the first integral tends to 0 as n tends to co. We now show
that LT, — 0, Vk. These terms are defines as follows.

1n 1
/ o(t,St) — o(ti—1,S1)] 1 S? htI]tl L) (B)dt.

Using the hypothesis on o, and Theorem [3:4.4] we deduce a constant ¢,
depending on w € € such that :

< G [T Y - < nis
1> CwT
n 0 \/1 —

[N]1)

— 0.

1n 1
/ o(ti1, 1) — 0tio1, S )] mSThely, o (D).

Similarly, there is a constant ¢, depending on w € € such that |L{,| < CwL127
where

th—1 S Z
Ly = \/’%/ Z‘ . 1‘ t1,t,] (£)dE.

Since E|S; — S;—1| < C/t —t; we obtain that

1

E(L},) <Cn™i"% 0.

Q
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1n—1
/ Z 52 St2i71:| ")/nU(ti_l, Sti_l)htj}ti,l,ti](t)dt-

A reasoning similar to the one used for L}, leads to P — |Ls| — 0.

1 1
?4 = 2/0 R?dt,
By = 37 [1Cua(t, S0)| = |Gty St )] A0 (tims, St )SE Ty (D)

C

As R} is bounded by
vV In

\/%, we deduce that |/111 R}dt| <
1
It remains to show that Ly := % /0 T R}dt — 0. Using the inequality
[la| —1b|| < |a — b| and the Taylor expansion
Caa(t,St) = Caa(t, St _,) = Caaa(t, 5) (St = St,,)
where S; € [St, St,_,], we deduce a.s. a constant ¢, such that ‘L | < ch15
with

1—L n—1

T Tn 1 1
i nlSt = S + Iy, 1 (t)dt.
15 /0 ;7 St tia |( =1 ’Yn(]-_t)) it ()

Since E|S; — S, ,| < Cy/At;, we get that

- c 2
EL? < — n
15 < \/ﬁfo <’71—t+1—t
1
< Cn—rﬂr(}% 0.

Al 1>dt

1n—1
=1 3 [1Cantt )l = Ousttn, S| ot S DSE B0

By the same argument as for LY, we show that L} — 0. To do so, we write :
Cx:r:(ta Stl‘,l) - Cx:p(tifla Stz‘,1) = Cx:ﬁt(ftviv Stifl)(t - ti*l)

where ; € [t;_ 1,t;]. Using Theorem we deduce that, for some constant
Cu, | L5 < ¢ L7 where

1-LX 9
~ n 1
0 n ’Yn(l - t)

This integral tends to 0 as n — oo, i.e. P —lim L7, =0. &
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Lemma 3.3.4. We have P —1lim Ly = 0.

Proof. By hypothesis there exists a.s. a constant ¢, such that

n—1
13 < 0> |Conltion, 1)) Siise
=1

where

1
§i = §7nAti — k' AL | AW

is independent of F;,_,, verifies E¢; = 0, and E€? = k2n(At;)%. Using Theo-
rem we obtain that Ly < ¢, Ly where

&
ptz 1

By independence, we have

n—1
E(L2)2 < Z 2

im1 Ptia
< nk‘TQZ(Atzy
 om(l—tia)
n—1
1 At;
< Cn %2 c—
= ’ Z 11—t
=1
At; fno1 o dt
The sum 37"} [ can be approximated by of T—3 which is O(Inn).
1—

It then follows that LQL — 0in L? and then L§ — 0 in probability. B
Lemma 3.3.5. We have P — lim Ly = 0.
Proof. Let us write |Ly| < D} 4+ Dy + Dg where D}, i = 1,2,3, are defined

below.
=k, Z

t)dW,

ti—1
with R
gl(t) — StQi_l [U(tifla Stl',l) - O-(tifla St)] C’:Ux(tifla Stl',l)'

We immediately get that
n—1 t 1/2
D}z < Cn~ ) E&(tydt | .
i=1 \”ti-1
Using the hypothesis on ¢ and Theorem [3.4.4] we obtain that :

n—1

ti At;dt 2
DVl <en™@ / _on .
1D72 )3 ( G —m)

=1
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Hence
n—
D2 < 271
P < en” Zm
We have
n—1 ti
’;:an/ & (t)dW;
i=1 |/ti—1
where

gZ(t) = StQi,l [U(ti—h St) - U(t7 St)] é’mc(ti—la St'ifl)'
Using he hypothesis on ¢ and Theorem we also deduce that || D% |2 —

0. The last term is
Dy =Fkn Yy

-1 t;
/ Xi(t)dWy
-1 ti—1

where

X’L(t> - |:Sti_16:va}(ti—17 Sti_l) - Staacm(ta St):| 0(t7 St)
We first observe that

n—1 t 1/2
IDgl2 < Cn~ ) (/ EX;(t)dt> .
i=1 \/ti—1

Using the Ito formula
d[S;h'] = d[S;Cus(t, St)] = fedW + gedt

where

ft = O'Staxx(tu St) + Usfaxxcc (ta St)
~ 1 -~ A
gt ‘= Stcmmt(t7 St) + ia—zsgcxxxx(u St) + 0—2St20$$37 (t’ St)’
we deduce that

t; i
E(Siht — 8, hy, )2 <2 / E(f2)du + 2At; / E(g2)du
ti—1

ti—1

It follows that

( EXf(t)dt) < 2Ati< E(fﬁ)du> +At; <2 E(gg)du> :
ti—1 ti—1 ti—1

By Theorem we get the bounds

n—l —1
n —= E : At 71 4—a /2 2 : At')3/2

< Cnii Inn + Cn*1/4*°‘/2 Inn.

where C' is a constant. To obtain the last inequality, we have used the fact
that /At; /(1 — t;) is bounded for i < n—1. It follows that E(|D%|) converges
to 0. W
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Lemma 3.3.6. We have P —1lim L} = 0.
Proof. We first show that we may replace AKy, by
~ tz
AKy, = —/ Cot(u, Sy)du.
ti—1
To do so, it suffices to show that x™ — 0 where
kY Su, / (}t(u Su) — Coy(u, StH)) du.
i<n—1 ti-1

Using a Taylor expansion
a{Et(”? Su) - éxt(ua Sti_l) = aiﬂmt(/uﬂ gti_l) (Su - Sti_l)
we deduce that ¥ < ¢, Y™ where, by Theorem

Stz 1
=kt Z / Wflu

As E ‘Su — Stifl‘ < ¢/ At;, we easily conclude that Ex™ — 0.
Using the inequality ||a| — |b|| < |a — b] and assuming that AK;, = AK;,,
we get that

n—1 tn_1 R
Lol < kn Y Si  |AAy, + AKy| < c(w) kn / 028%Cpa (1, Sy)|du.
i=1 0

By virtue of Theorem [3.4.4] we get that :

fn=1 1 1
Lfl < c(w kn/ + dt — 0.
Ll ) 0 ( (1 —1t)  Ya(l—1t)
n

Lemma 3.3.7. We have P —lim Ly = 0.

Proof. We use similar arguments. First, using a Taylor expansion and Theo-
rem |3.4.11 we deduce that

[ (as,)? AtiASti]

=kn ASy |AH: | < eykn, +
Z t‘ t’ Z /7'}%1_15) (1_ti>
As E(AS)? < CAt;, we deduce that A — 0. Secondly, as in Lemmam

, we may assume without loss of generality that AK;, = AK;,. Therefore, it
remains to estimate, by virtue of Theorem [3.4.4]

. n—1 ~ n—1 . ASt
=k > ASLIAK] < cokn Y T Ldu.
i=1 i=1Jti-1 =

We easily get that B™ — 0. B
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Lemma 3.3.8. We have P — lim F3' = 0.

1
Proof. Let us define F}' := / K]'dS;. Observe that FJ' can be rewritten as
0

n n—1 n—1
Fy = Y K[AS, =—> S,AK] +K!S1— K!So=—» S,AK[+ K{'S)
=1 i=1 i=1

Since F3' = knﬁ’?? , we assume without loss of generality that AK;, = Af(ti
as shown in Lemma [3.3.6] Therefore,

tnfl ~
Z/ Cira(u, Sy) Sy, du — 51/ Cra(u, Sy)du,
0

~

tn—1 n—1 t; ~
_ / Crat, 5.)(Su — S1)du+ 3 / (1, Su) (S, — Su)du
0 i=1 Jti—1

Note that E|S, — Si| < Cy/|t —u| < Cy/|1 —u|, WVu,t, and recall that

E( sup S,) < oo. Let us now separate the analysis in two cases :
0<u<l1

e « €]0,1/2]. We use the bound ‘@Et(t, x)‘ < and we deduce that

tn—1

1
E|F3| <en™@ \/1—u1
0 _

du <en @ = 0.
U

e o = 0. In this case we use Lemma We get that

tn—1 1
E|F3| <¢ 7du§cn_1/4lnn—>0.
0

Vn(1 —1)

Therefore, we have shown that P —lim F3' = 0. B

3.4 Estimation of the Derivatives of C (t,z)

Before analysing the function C (t,z) and getting some upper bounds for its
derivatives, we are going to use the time change technique to reduce our
problem into the case where the diffusion coefficient in (e) is bounded inde-
pendently of n. We then give an explicit expression of C (t,x) and 5$(t, x)
and we deduce estimates of the derivatives. To do so, we utilize the ana-
lysis of the fundamental solution associated to a parabolic-type PDE given
in [37]. Notice that Friedman imposes that the coefficients of the parabolic-
type PDE are Holder continuous of exponent 0 < 8 < 1. In fact, the uniform
Lipschitz condition is sufficient as shown in [74]. In all this section, we sup-
pose that the assumptions (E), (H) hold. We shall pay special attention to
the case a = 0 with Assumption (H”). This is the most difficult case of our
analysis for which we need specific bounds of the derivatives of C.
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Recall that C(t,z) satisfies the equation

{@(t,x) + 16%(@)22Chu(t,x) = 0, (,t) €]0, 00[®]0,1]
C(l,z) = h(x), =z€]0,00[.,

Consider the change of time s := t7y,,. Then, u(s,x) := é(i, x) satisfies the
g
following PDE : "

(f) - at(t"T) + %(a*)2(t,x)x2ﬂm(t,x) - 07 (.’L‘,t) E]O,OO[@[O,’}/TL[ ’
| u(ym,z) = h(z), x €]0,00[,
~\2 a(t, x) : . .
where (6%)%(t,z) = . We easily check that *(s, x) satisfies Assump-

n
tion (E) for some constants which do not dependent of n. Using the definition
of u, it can be shown that

ok o 1 9% o
Bk 0750 = pr pr O (6 2). (3.4.6)

According to the proof of Lemma the unique solution of (f) is given
by

ﬁ(s,x) = Eh(é\s,z('Yn)) (3'4'7)

where §s,w is solution of the PDE

o [ dSea(u) = T (u, S0 (u)Ssp(w)dWe, u €ls, ]
(S)_{ 5'\57;,;(5) = =z

We need the probabilistic representation (|3 of u(s,x) in the case o = 0.
If o > 0, we use the following representatlon of Uy (s, x). Let us define

K*(t,x) = (0" (t,x) + zo,(t,x)) 0" (t, x)
and, by Lemma we consider gx,t the solution of the SDE :

{ dSei(u) = G*(t, Sus(u)Sea(w)dWy + N (u, Sp i () Sop(w)du,  u €s, 7]
Sm,t(t) = xZ.

Then, we have :
Lemma 3.4.1.

Uy ( ) En (Ss z(’)/n)) (3.4.8)

Proof. We write :

~

u(t, ) — u(t,zo) = oct('Yn)) - Eh( 20t (1)),
Tn ~
a(t, x) — a(t, 330) = E/ 7h 20,t ’)/n) + H(Sa;,t('}/n) - Sxo,t(’)/n))) dp.
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Since A/ exists out of a countable set, (a(t, z) — C(t, x0)> /(z — x0) is equal

~ ~

to
on ra a r Sz n) S:v s n
B [0 (Braalon) + Baa(n) — Srgalrn)) 22102 = Frealn) g,
0 xr —Zo

As Assumption (E) holds, we apply Theorem 5.12 p120 [36] and deduce that

% exists in the L? sense, i.e. :

~

Sa.t(1n) = Saot(n) _, 0Suyi(m) |
T — xo ox

n L2 (3.4.9)

Indeed, we check that Condition (A) page 108 [306] is satisfied by the SDE

~

(S). First, we have |6*(¢,z)x| < C'|z| and secondly :
|o*(t,x)x — o (t,T)x| < |o*(t,2)| |z —Z| + |T (6" (t, ) — 0" (¢, T))|
where a Taylor expansion yields
o (t,x) —o*(t,x) = o,(t,x0)(z — T), =0 € [x,T).
Then,
73" (t,2) — 5 (4, )| < 37, 2) — 3°(, )| [T — 2ol + 2055 (t, 20)] [ — T

where |z¢7%(t, zg)| is bounded by virtue of Assumption (E). It follows that
there exists a constant such that for all =

5% (t,2)x — &*(t,7)7| < Clz — 7.

As o0, is continuous, we conclude that Condition (A) holds.

Furthermore, we have :

a u K* S, §x,t(5) a
8Sm7t(u) -1 +/ ( )85’%,15(8) dWs
t

Oz o (Sa§z,t(3)> Ox

which is a strictly positive martingale (see Lemma. In the proof Lemma
it is shown that the distribution of §x0,t(’Yn) is of density with respect
to the Lebesgue measure. We deduce that, out of the null-set §xo,t(’yn) €
{K, : p € N*}, we have almost surely :

Tn ~ ~ ~ ~
L (o) (S a) = ) it = W ()

provided that z,, is sufficiently near to g and z,, is a subsequence such that
(3.4.9) holds. Since A’ is bounded, it follows that

agx,t ('Yn)

ﬂx(t, x) = Eh/(gx,t(’yn)) O
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Finally, we define dP = as%ag%)dP so that u,(t,x) = Eh’(§z7t(7n)). By
virtue of the Girsanov theorem ((5.1) p 190 [72]), the process

B W W /u A* (s, §zt(3)) du

s (s, §x,t(s))

is a standard brownian motion under P. Moreover, §z¢ verifies the SDE

~

S, (u) = 6" (u, Syt (1)) St (W) dBy + A(t, Sy p (1)) Sy p(uw)du.  (3.4.10)

Since 5* and A are bounded, (3.4.10) admits a unique strong solution, hence

a unique weak solution. We conclude that u,(t,z) = Eh'(Sz(7n)). B

Let us now give an explicit representation of #,(t,x) using the notion of
fundamental solution of a PDE of parabolic type.

Lemma 3.4.2. We have :

ﬂm(t,x)—/ B (e*)T*(z,t, 2,y )dz

—00
where T*(x,t, z,T) is the fundamental solution of the operator :

1, &2 o 0

and
ou(t,z) = T*(t,€e"),
(/J'\b(t,flf) = K(tvex) - 7(8*)2@7 el‘)

Proof. Let us define the process 7, ¢(u) = In §em7t(u). It satisfies the following
SDE :

(f/) :{ dﬁm,t(u) = 8[1(’&, ﬁx,t(u))dwu+8b(u77/7\w,t(u))du
ﬁit,t(t = T

To see it, it suffices to apply the Ito formula with the process exp (7, +) where
Tz, is the solution of (f”). By virtue of Lemma 7zt is a Markov process
of transition density function I'*(z, ¢, z,v,), the fundamental solution of the

operator :

1, 8 )
50@(15,!1))@ +0'b(t,$)% + a

This means that : P(7),+(u) € dz) =I'"(,t, z, u)dz hence

ém(t,m):/ B (e*)T*(Inx, t, 2, v,)dz.

—00
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Let us now consider the special case o = 0. With Assumption (/I\{’), the
function h is assumed to be of the form h(z) = hi(z) +ax +b. As S, z(u) is
a martingale, Lemma [3.4.1] m yields

Using the same arguments as in Lemma , the function Ehl(gs’m(vn))
has also an explicit representation, and so is u(s,z), which is given by the
following lemma.

Lemma 3.4.3. Assume that Assumption (H’) holds. Then,

u(t,z) = / hi(e*)T*(z,t, 2,7, )dz + ax + b

where I*(x,t, z,T) is the fundamental solution of the operator :

1., 0 o 0
50a(t,2) 55 +ou(t,2) 5 + o

and
~ oy A~ 1o, o
ouo(t,x) = o(t,e"), ap(t,x) = —30 (t,e®).

We now aim to estimate the fundamental solution I'*(x, ¢, z,v,). To do so
we use the bounds given by Theorem 8, p.263 [37]. Notice that we only need
the differentiability of o (¢, z) up to order n = 3. In particular, we recall that

o+ ¢ o — ¢
T (2,1, )| € —— exp{ —C 3.4.11
PR CA RN O p{ o) (3.4.11)

where C, C" are two positive constants which, because of the change of time,
do not depend on n and py,(t) = v, — t.

We then obtain explicit expressions of the derivatives of C (t,x). According
to Lemma [3.4.3] we have

ﬂm(t,x)—/ B (e)T*(Inz,t,y, v )dy

—00

and by the change of variable z = e, we obtain :

h/
Uy(t,z) = / ()F*(lnx,t,lny,’yn)d
0

z
N 1 [*HW(z) 0
zz (1, = - (1 b Iny, yn)dz,
inalt) = 1 [ et g,
1 2
Upge(t, ) = —fum( x) + /0 i );F*(ln$,t, Iny,v,)dz,
- > (2 )
Uge(t,x) = atF (Inz,t,Iny, v,)dz,
0

~ o0 h’ (2)
Upgt(t,x) = /0 . 8158:5 M(lnz,t,Iny,v,)dz.
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Using the bounds given by (3.4.11)) and the relations (3.4.6), we immediately
deduce some bounds for the derivatives of C(¢,x) which are given in the

following theorem.
Theorem 3.4.4. There ezists a constant C > 0 independent of n such that :

. C
< — 4.
‘Ca}x(tvx) = T (3 4 12)
~ C C
zxx\ls < 5 4.1
\c (t,z) it (3.4.13)
. C
‘cm(t,x) < (3.4.14)
‘@m(t,:p) < G (3.4.15)
TPy

where py = v, (1 — ).

We conclude this section with a specific bound we need in the case a = 0 un-
der Assumption (H’). As u(s,x) has a probabilistic representation given by
Lemma where the function h; is bounded, we get a bound for C’m(t, x)
which is comparable to that of amt(t,x) in the case a > 0. Indeed, recall
that the bound we obtain for amt(t,x) is deduced from the probabilistic
representation of u;(s,x). Therefore, we have

Lemma 3.4.5. Suppose that Assumption (H’) holds. Then,
Cyn

3
TPy

(3.4.16)

where pp = v, (1 —t).

3.5 Appendix

Lemma 3.5.1. The stochastic equation defined on [s,+oo| for all s > 0 by :

~

o [ dS. (t) = F(t, Spu(t)Se(t)dW;
(S)_{ §x,5(s) = z

has a unique solution such that for some constant C* = C*(n,T),

S

E sup S2,(t) < C*(1+2?).
0<t<T
Proof. Tt suffices to apply Theorem 2.2 p104 [36]. B

Lemma 3.5.2. Assume that Condition (H) holds. Then, the PDE (e) has
a unique solution.

Proof. Note that it is not possible to conclude immediately on the exis-
tence of a solution of (e) because the operator is not uniformly parabolic on
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10, 00[®[0, 1]. This is why, we transform the problem in such a way that the
required uniform parabolic condition holds.

By virtue of Lemma recall that §x,8(t) is the unique solution of the
stochastic equation defined on [s,1], s € [0,1] by :

{dé\x,s(t) = :Y\(t7§x,s(t))th
Sps(s) = =@

where J(t, z) = \/02(t,z)22 + o(t, 2)x27,. Recall that

E sup S2,(t) < Ci(1 +a?)
s<t<1

where C} is a constant depending on n. Let us define g(z,t) := Eh(§x7t(1)).
It satisfies the inequality

9@t < e (1+E|S(0)]) < e (1+(BS2,0)"?)
c (1+|z]).

IN

Since A’ is bounded, we obtain by virtue of the Cauchy—Schwarz inequality,
that

~ ~

2
960.6)—ot00] < ¢/ (8.400) = 5,000))".
Let 53(;77;) be the solution of the SDE

{ dS(t)y = e, S (1)) aw,
sy = @

where 7™ (t, x) := \/02(t, 2)2% + o (t,2)y,2% + m~1. Observe than |7(™) —
Alloo < m~2 hence §x75(1)(m) — S, 4(1) in L2(, P) as m — oo uniformly
in  and s. Then, g(™(z,t) := Eh(ginz)(l)) converges uniformly to g(z,t).
Applying Lemma 3.3 p 112 with Condition (A’) p 113 [36], we deduce the
existence of a constant Cl(_zm) such that

19" (2, 1) — ¢ (y, )| < O /(@ — y)2 + [t — uf

if |z|, |y| < R. We deduce that ¢(™) is continuous hence so is g.
We use the notations of page 138 [36] where we replace ¢ by 1 — ¢. Let us
consider the following sets with m € N\{0} :

Qn = | mlx]0,1]
Ba = Jomix{1},
To = Jomlx{0},
Sy = {%,m}x[o,l[.



74

3. Approximate hedging in local volatility models under transaction costs

For each y € 0Q,, it is easy to observe that there exists a closed ball K
such that K" N Qp = 0 and K" N Q= {y}. It follows that the function
W, proposed p 134 [36] defines a barrier for each y € Sy, € 0Qy,. Moreover,
observe that g(x,t) = Eh(gmvl(l)) = h(z) if (z,t) € By, N Sy By virtue of
Theorem 3.6 p 138 [36], Assumptions (G) and (P), implie that the Dirichlet
problem

(Dm) =3 u(l,2) x € B

u(t,z) = g(z,t) (z,t) € Sy

|
5
~—

{ w(t,z) + 352t 2)2%um(t,z) =0 (x,t) € Qm U T,
h

admits a unique solution u™. Indeed, g and h are continuous. Since @,, is
bounded, there is a constant ¢, depending on m such that

[72(t,2) = 32(t,7)| < emlo — 3.

Note that u™ is continuous on Q,, and the derivatives u}*, u". are continuous
on Qm UT, (see Theorem 3.6 p 138 [36]). By virtue of Theorem 5.2 p 147
[36], we deduce that that w,, has the following stochastic representation

u(z,t) = Bg(Sp4(7), 7)Ir<1 + Eh(Sp4(1)) =1,

where 7 is a stopping time. It follows that u™(z,t) = Eg(§x7t(r), 7).
On the other hand,

g(§z,t(7), 7)=FEh (§§m(7)’7(1)>

where §§“(T) (1) = §x7t(1). It follows that u™(x,t) = g(x,t) and, as m —
oo, we deduce that g is a solution to the PDE (e). Indeed, it is easy to check
that g verifies (e). Moreover, v(t,y) = u(t,e¥) is a solution of the following

uniformly parabolic PDE

() _{ vi(t, y) i

52(
v(l,y) v

152 (e
2
h(eY), =z €eR.

By virtue of Theorem 3.6 [36], v is also the unique solution of the same PDE
restricted to an arbitrary smooth bounded domain. Moreover, by virtue of
Theorem 5.2 p 147 [36], we deduce that the solution v has a probabilistic
representation which is unique. We then conclude that w is also unique. B

Lemma 3.5.3. Assume that t € [0,v,]. Then, the stochastic equation :

{dgz,t<u) = 5% (u, Syt (1) St (W) AW,y + A (1, Sy s (1)) Sy s (u)du
Sx7t(t) = I

has a unique solution on [t,y].

Y)vyy(t,y) —%Ez(ey)vy(t, y) =0, (y,t) e Rx[0,1]
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Proof. It suffices to use Theorem 2.2 p104 [36]. For this, we verify the needed
conditions with :

From

(6M2(t z) = 717102(15,&6) +o(t,z)

we deduce that

2
20, (t,x)o" (t,x) = —o(t,z)o(t,x) + o.(t, ).
Tn

Recall that R
R (t,2) = (5%)2(t, @) + (1, 2)5" (1, @)

Then, from the hypothesis |xo,(t,x)] < const it is easy to deduce that
|b(t,z)| < const|z|. Otherwise, it is clear that |o(t, z)| < const|z|.
Finally, we suppose that |z|,|Z| < N. We have

b(t, @) = b(t,7)| < |R*(t,2)| | — 71 + [l [R* (¢, 2) — B*(£,2)
where ‘f\*(t, x)‘ < const, |T| < N and
A*(t,2)— A (1, 7) = (6%)%(t, 2)—(6")(t, T)+a(t, 2)5" (t, v)—T6 s (, T)5" (1, ).
But we have |(5%)%(t,z) — (6%)*(t,T)| < const |z — T| and

N o 2
2x0,(t,x)o" (t,x) = x—o0,(t,x)o(t,x) + xox(t, ).
Tn

Since the next expression is bounded, we first write * = (r — %) + T and
finally, we have to estimate

ox(t,x)o(t,x) — o, (t,T)o(t,Z) = o(t,z) (ox(t,x) — 0x(t,T))
+0,(t,T) (o(t,x) — o(t,T))
where

|02 (t, ) — 0x(t,T)]
|o(t, 2) — o(t,7)|

< const|r — 7|,
< const|r —7|.

because 044 (t, ) is bounded. Then, we can conclude that for |z|, |Z] < N,
|b(t,z) — b(t,T)| < const(N) |z —Z|.
In a similar way, it is easy to prove that

lo(t,z) —a(t,T)| < const(N) |x — T
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Lemma 3.5.4. The local martingale

8§$7t(u) s /u A* (s,@;,t(s)) agx’t(s)dW
ox t G (87 §x,t(5)> oz s

is a strictly positive martingale on any interval [t,T] C [0, 00).

Proof. The Doleans—Dade formula give us

OBeilt) _ [ R (08 - L / (@ (08000 ).

Since A* is bounded, we deduce that there exists a constant ¢ such that
08, 4(u)
u
( :C7t( )) S CNu
ox

where

N, = exp {/tu 2R° (0,5, (v)) dW, % /tl AR (0,5,.(0)) dv}

is a strictly positive locale martingale, hence a supermartingale verifying
AN, = 2N, A* (u §x,t(u)) AW,

In particular N is integrable and finally

So, we can conclude about the lemma. H

Lemma 3.5.5. The process 7yt is a Markov process of transition density
function I'*(z,t, z,7), the fundamental solution of the operator :

1 _, 0?2 0 0

Z52(t, ) —s ta)— + —.
2(7“( ’x)agﬂ + 0l ’w)ax + ot
Proof. According to Theorem 5.4 p 149 [36], it suffices to verify the needed
conditions. Condition (A;) is well verified since 2(t,x) > const > 0. Let
us verify Condition (Bi)(i) : First, 2(t,z) = (*)2(t,x) and (¢, ) are
bounded. Secondly, suppose that |z|, |Z| < N. Then

82(t,¢") — 2(t, )| < |32 (t, %) — (B () |+ (67, ) — (37, )

where, as already shown, [(*)2(#',e%) — (%)%(¥, 65)‘ < ¢|z — Z|. Moreover,

|(6*)2(t, e’) — (6*)2(t’,ex)] < 71n ‘02(15, e’) — aQ(t’,ex)H]o—(t,ex) —o(t',e")|.
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It follows that if |z|, |Z| < N,
[52(t,e") —Ga(t',e")| < C(N) (t—t|+ |z — 7).
In a similar way, since we suppose that 7, ¢ is bounded, we have
5o (t, %) — ay(t', €)| < const(N) (|t —t'| + |z —T).

Finally, since x0,(t, x) is bounded, we deduce that Condition (Bj)(i¢) holds,
i.e. for any x,7,

} te)‘SC(|x—f|).

|
Lemma 3.5.6. Assume that h is a convex function verifying Condition H.
If o does not depend on t, then Cyy > 0.

According to the Tanaka—Meyer formula, we have :

(Bea)) =)+ [0 (Suatw) w3 [ wtutan

where h’_ is the left derivative and

1= h"(u)du + Z[h;(Ki) — W' (K)]dk,,

dk, is the Dirac measure. Moreover, (L)c[,1) is a continuous and positive
semi-martingale verifying

/Rg(u)Lgdu = /ts g (§x7t(u)> d<§x,t>U7 s € [t,1]

for any positive and bounded measurable function g. It follows that

h(gx,t(l)) - h(a:)+/tlh’_ (§ ())dW +2 Zh’ ~W(K)|LS

+

% /t 1 " (gm(“)) e (§x,t(U)) S2 4 (u)du. (3.5.17)

Recall that

Then,

1 ) ~
iEL{(Z = C’i(t,a:) — (1‘ - Ki>+

where C(t, ) is the solution of (e) when h(z) = (z — K;)*. Taking the
expectations, we deduce from (3.5.17)) that

S aGitta) - 58 (0" (80(1)) 32 (S.u()) S22 )5)
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where o; = I/ (K;) — b/ (K;) > 0. Indeed, to differentiate (3.5.17) with
respect to ¢, we note that Sy ¢(u) = Sy o(u —t) where Sy o verifies

dSz0(v) =7 (S2,0(v)) Sgo(v)dW,, ve[0,1—1]

and we use the change of variable v = u — t. Since h” > 0 and

o)

1. ~
t(t7 l.) - _50-2(t7 m)xzcxa?(t’ .fL'),

it is then sufficient to show the lemma for h(z) = (z — K)™. To do so, we
define :

hn(z) = 0 z€[0,K—1/n]
= n(z—K+1/n)?/4 ze[K—-1/nK+1/n]
= x z€[K+1/n,00]

The function h, is a continuous and convex function which satisfies the
inequalities

< — < —
0 < hp(x) —h(z) < i
| (@) = B ()| < T 1/ 141 /m) (2)-

It follows that C7(t,z) — Cy(t,z) where C",C are the solutions of (e)
respectively when the terminal conditions are given by h,, and h(z) = (x —
K)*. Since h,, is a C'-function, the coefficients o;; = 0 and we deduce from
that @;‘z(t, z) >0 and z — 6’;} is increasing. Then, z — C, is also
increasing and finally ém >0.1



Chapitre 4

Consumption-investment
optimization problem in a Lévy
financial model under
transaction costs

Abstract

We consider a consumption-investment optimization problem for the Kaba-
nov model when the proportional transaction costs rate is constant and the
prices are modeled by a Lévy process. We naturally extend the preliminary
work of [26] to portfolio processes that are only supposed to be ladlag. This
allows to suitably rebalance portfolio processes which jumps induced by the
Lévy process and identify an optimal strategy in the two dimensional case.

Keywords : Optimal consumption-investment, Merton problem, Transac-
tion costs, Dynamic programming priciple, HJB equation.

Note. This chapter is based on the article Consumption-investment optimization
problem in a Lévy financial model under transaction costs, T. Tran, E. Lépinette,
Y. Kabanov. Preprint.

4.1 Introduction

In this chapter, we study a consumption-investment problem with infinite ho-
rizon in the setting of Kabanov’s model with proportional transaction costs.
We consider a multidimensional and continuous-time model whose price’s
dynamics is driven by a Lévy process. This problem originates from the se-
minal paper of [I8]. Davis and Norman [25] rigorously solve the problem and
provide the optimal consumption plan in a diffusion model with transaction
costs. In the case where the value function is not smooth, Soner and Shreve
[94] have shown that it can be considered as a weak solution, i.e. a viscosity

79
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solution of the HJB equation. When the risky asset prices follow exponential
Lévy processes, Framstad et al. [40] have obtained the same results as those
in [94] under some mild conditions. An extension of the jumping diffusion
case is proposed by Kabanov et al. [26] where they consider a general market
model with conic constraints.

This present chapter aims at giving an unified framework for the optimal
consumption-investment problem with transaction costs. It extends [26] to
the case where the controls (the portfolio strategies and consumption plans)
are only supposed to be ladlag but we also provide the optimal strategy
accordingly. It should be stressed that it is more realistic as confirmed when
constructing the optimal strategy. To be more precise, we go back to the
paper of Framstad et al. [40]. The strategies are only supposed to be cad-
lag but the optimal strategy, which is constructed by reflected diffusions at
local times, appears to be ladlag, i.e. does not belong to the set of admis-
sible controls the authors consider. Nevertheless, it is a good intuition to
consider ladlag strategies as the negative effects induced by the jumps of
the price process on the portfolio processes may be corrected by an imme-
diate re-balancement. The economic intuition behind this consideration is
also straightforward. When asset prices move in response to unpredictable
events, which is typically the case for jumping times of a Lévy process, tra-
ding will take place immediately after the event, i.e. the strategy is caglad.
However, if a market information is announced at a predictable time, e.g.
models with the presence of a predictable labor income stream, it is perfectly
feasible to trade immediately before the announcement, i.e. the strategy is
cadlag. Therefore, the ladlag assumption is economically relevant.

The main results in this chapter extend those of [26] and [40]. Though the
general line of arguments is common (but more technical), one needs to
re-examine carefully each step of the proofs. One of the most difficult part
is to show that the Bellman function is the viscosity solution of an HJB
equation. In the case of only one riskless and one risky assets, we study the
regularity of the Bellman function and give a rigorous construction of the
optimal strategy as conjectured in [40].

The rest of the chapter is structured as follows. In section 3.2, we study
the optimal consumption-investment problem in a general Kabanov’s model.
After the formulation of the problem, we present the main results of the
chapter, including the derivation of the Hamilton-Jacobi-Bellman equation
and the uniqueness of the solution. Some needed results for the proof of the
main theorems are also presented in this section. Section 3.3 is devoted to
the classical Merton problem. We study the structure and give some results
on the regularity of the Bellman function. Furthermore, the construction of
an optimal strategy to the problem is also provided. Auxiliary results are
presented in Appendix, Section 3.4, including the construction of an integral
with respect to ladlag bounded-variation processes, reflected SDEs, and some
important properties of the Bellman function.

Notations : We shall use the notations AT and A~ to designate the left (resp.
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right) limit of a process A and we also denote by A;— and A;; the left and
right limit, respectively, at time ¢. If A is a ladlag and predictable process
of bounded variations, the jump processes are denoted by

AA:=A— A", ATA:= AT — A,
and we introduce the following cadlag processes :

Af =Y AA, AT =) CATA, t>0.

s<t s<t

The continuous part of A is defined as
AC = A— A% - A%T,

We denote A° the optional version of the Radon-Nikodym derivative dA¢/d|| A¢||
where ||A€|| is the total variation of A°.

4.2 Optimal Consumption-Investment in the Ka-
banov Model

4.2.1 Formulation of the Problem

We consider the financial market model with jumps adopted in [26]. The price
return process is modeled by a d-dimensional Lévy process (Y;)¢>0 defined on
a stochastic basis (Q, F, (Fi)¢, P) satisfying the usual conditions. We denote
by p(dz,dt) its jump measure and ¢(dz,dt) = II(dz)dt its compensator such
that TI(dz) is a positive measure concentrated on (—1,00)? and

| (P k) s < . (42.1)
Rd

The dynamics of Y is given by

dY; = pt + ZdW; + / z (p(dz, dt) — q(dz,dt)), (4.2.2)
R

where 1 € RY, W is an m-dimensional standard Brownian motion and Z is
a d X m-matrix. In the identification of an optimal strategy we shall only
consider a pure jump Lévy process with finite activity, i.e, [ga [2|7(dz) < o0.

We consider a conic constraint model as a generalization of the Kabanov’s
model. We are given two constant cones K and C which are supposed to be
closed and proper, i.e. K N (—K) = {0} and C N (—=C) = {0}. We assume
that ¢ C int K # (). In finance K and C stand for the set of transaction
constraints (solvency cone) and consumption constraints, respectively. The
dynamics of a portfolio process is defined for each ¢ =1,...,d by :
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AV} =V} dY; +dB; — dC}, Vy=Vy_ =u, (4.2.3)

where the controls m = (B, (') are ladlag and predictable processes of boun-
ded variations. The notion of integral with respect to such a process is given
in Appendix. The dynamics means that such a portfolio V is self-financed,
i.e. its increments are only due to the increments of Y, and transaction costs
modeled by B are withdrawn while C' represents the cumulated sums of
consumed wealth. Precisely, we assume that 7 = (B, C') belongs to the class
(we denote by A, ) of admissible controls satisfying the following properties :

1) B¢ € —K, dP d||B°|| a.e., C¢eC dP d||C°| a.e.,
2) AtTB, € —K, ATC; € C, for all stopping times T,
3) AB; € —K, AC; € C, for all predictable stopping times 7,

H IV :=V" 7= (B,C), is such that V; € int K for some stopping time
7, then V.F =V, + ATB, — ATC, € int K,

5)IfV:=V" = (B,C),issuch that V;_ € int K (or K) for some stopping
time 7, then V;_ + AB; — AC; € int K (or K),

6) 2+ ATBy € int K.

The three last conditions mean that the agent is rational enough. He does not
deliberately take his position out of the solvency cone. It is also assumed that
ABSr = ACy = ATCy = 0 and dC* is absolute continuous with respect to
the Lebesgue measure and we write dCf = ¢;dt. It can be deduced, from the
monotonicity of the controls B, C with respect to the partial order induced
by K (ie. Vo,y € R4z <y < y—2 € K), that B and C are of finite
variations. Indeed, since int K # (), by an appropriate change of coordinates
we may assume w.l.o.g. that all coordinates of B, C' are monotonic, hence are
of bounded variations. Without loss of generality, in the rest of the present
chapter we may assume that C' is continuous since the jumps of C' are not
taken into account in the maximization problem. For the sake of simplicity,
we assume that dCy = c¢;dt almost everywhere w.r.t the Lesbegue measure

on R.
For every control m € A,, let us introduce the stopping time
0" =inf{t: V" ¢ int K }. (4.2.4)

We suppose that the strategy m = (B, C) is frozen after the exit time, i.e.
AT By =0 and dB; = 0 for t > 6. Throughout the chapter, we fix a discount
coefficient 8 > 0.

For every control m = (B,C) € A,, = € int K, we define the utility process

tAOT
T(@) = /0 e~ (cy)ds,
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where U is a fixed non-negative mapping defined on C which represents a
utility function; it is assumed to be concave, U(0) = 0 and U(z)/|z| — 0
as |x| — oco. The optimal consumption problem consists in maximizing the
utility process over the set of admisible strategies. To do so, we define the
Bellman function as

W (z) := sup E[JL(z)], = €intK. (4.2.5)
ﬂ'E.Az

The finiteness of the Bellman function is not a trivial property in the clas-
sical optimal consumption problem. The conditions ensuring it is studied in
lemma by means of the existence of classical supersolutions to the
HJB equation. From now on, we will always suppose that W is finite. The
continuity of W is proven in theorem given in Appendix.

4.2.2 Main Results

In the following, we denote by C,(K) the set of all continuous functions f on
K such that sup,cx | f(2)|(1 + |2])7P < oo; and by C?(int K) the set of all
functions f which are C? on int K. Let us define for each 7 = (B,C) € A,
and any function f € C1(K) N C?(int K), increasing with respect to the
order <, the operator

H(f,z):= /Rd [f(a: + diag (2)2)I(z, z) — f(x) — f/(x)diag (x)z] II(dz),

where I(v,2) = I, | diag (v)-eintk- Notice that the operator H(f,z) is well-
defined if we set f(x + diag (z)z)I(x,z) = 0 when I(z,z) = 0. For conve-
nience, we shall always assume that all the functions f defined on K we
consider are extended to R? by setting f(z) = 0 for 2 € R?\ K. Using a
Taylor expansion for f € C1(K), we claim that

|f(z + diag (2)2)I (2, 2) — f(x) — f'(z)diag (x)2] < Ca(l2| A |2,

where C,, is a constant depending on x. Therefore, the operator H is well
defined. Let us now define

G: = (—K)nao0),
Yalp): = Sup pe,
U'p): = ilég(U(fv)—px),

Av: = (diagv).E((diagv).E)', ©ve R,
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and the operators :

Fo(X,p,HW,z): = %Tr A(x)X 4 p” (diagz)p + H — BW, (4.2.6)
Lop: = Fo(¢"(x),d (x), H(p,x),p(x),2), (4.2.7)
F(X,p,HW,z): = max{Fy(X,p, H,W,z)+U"(p),Xc(p)}4.2.8)
Lo: = F(¢"(x),¢ (), H(¢,x),p(2), ). (4.2.9)

Let us consider the Dirichlet problem for the HJB equation

FW"(x), W (z), HW,z),W(x),z) =0, z€intK, (4.2.10)
W(z)=0 ondK. (4.2.11)

We recall the concept of viscosity solution to an HJB equation. Note that
the integro-differential operator considered in this chapter is not defined in
a local way. We then need to define viscosity solutions in the global sense :

A function v € C(K) is called a viscosity supersolution of if for every
r € int K and every f € C(K)NC?(int K) such that v(z) = f(z) and v > f
on K, the inequality £f(z) < 0 holds.

A function v € C(K) is called a viscosity subsolution of if for every
x € int K and every f € C1(K)NC?(int K) such that v(z) = f(z) and v < f
on K, the inequality £f(z) > 0 holds.

A function v € C(K) is a viscosity solution of if v is simultaneously a
viscosity super- and subsolution.A function v € C(K) is a viscosity solution
of if v is simultaneously a viscosity super- and subsolution.

At last, a function v € C1(K) N C?(int K) is called classical supersolution of
if Lv <0 on int K. We add the adjective strict when Lv < 0 on the
set int K.

We denote by @ the set of all continuous function f : K +— R increasing
with respect to the partial ordering > and such that for every x € int K
and m = (B, C) the positive process th is a supermartingale. The following
lemma is a consequence of lemma and confirms the relevance of the
HJB equation.

Lemma 4.2.1. Let f € C?*(R%) be a positive classical supersolution of
4.2.10]) which vanishes outside int K, then f € ®.

Proof. See [26].

Let us now present the first main result of this chapter. The proof of the
following theorem and of the next one are given in Subsection

Theorem 4.2.2.
i) The Bellman function W is a viscosity supersolution to (4.2.10).

i) IfW e C1(K), or [ga|n|Il(dn) < oo, then W is a viscosity subsolution
2
to (7.2.10).
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Theorem shows that the Bellman function is, in particular, a viscosity
solution to (4.2.10)) under some mild conditions. We now establish an uni-
queness theorem for this equation. To do so, we need the following concept :

Definition. We say that a positive function ¢ € C1(K) N C?(int K) is a
Lyapunov function if the following properties are satisfied :

1) ¢'(z) € int K* and Lol(x) <0 for all z € int K,

2) {(z) — o0 as |z| = 0.

In other words, £ is a classical strict supersolution of the truncated equation
(excluding the term U*), continuous up to the boundary, and increasing to
infinity at infinity.

Let us introduce the following condition on II which guaranties the unique-

ness of solutions to the HJB equation we consider, under the condition that
there exists a Lyapunov function as stated in the next theorem:.

Condition IT° : Vx € int K, TI(2 : z + diagzz € 0K ) = 0.
Remark 4.2.3. This condition holds in the two dimensional case if the first

component of the underlying asset is a bond B = 1 so that Il = §g ® m where
we suppose that w does not charge the singletons.

Theorem 4.2.4. Suppose that there exists a Lyapunov function ¢ and 11
satisfies Condition 11, Then, the Dirichlet problem has at most one
viscosity solution in the class of continuous functions satisfying the growth
condition

|W(z)|/l(z) =0, |z|] — occ. (4.2.12)
The proof is given in [26]. Notice that Proposition [4.4.47| ensures the exis-
tence of a Lyapunov function under mild assumptions.
4.2.3 Technical Results
It6 Expansion

Let us define for each n the compact set

K,={zeK: |z|<n}n{zeK: dz,d0K)> -}

1
n
It is obvious that {K,} is an increasing sequence whose union is int K. For

each 7 = (B,C) € A,z € int K, we define V% as the stopped portfolio
process.

VI = VIS = VI L guf + Vay " Lgn o], (4.2.13)

where 6" is the first time the portfolio exits K,. We also define B+ in a
similar manner. Note that the value of ng{x may not be in int K due to a
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possible jump of the Lévy process at " but, in this case, Ven’ ¢ 0K by
virtue of lemma [£.4.21] We deduce from the dynamics of V™% that

0 t on on n
v = x+/I[om(>diag<v;+><usds+zdws>+3ﬁ—Cf,

/ /R ding (V)21 g0y (5) (p(dz, ds) — g(dz, ds))
Below, we study the quantity
X[ = e P+ T

by means of the Ito formula. Recall that we set f(x) = 0 for ¢ K, hence
th’n is well-defined. If K, is replaced by K we note th instead of th’n. We
also denote V" := ViyIjggn((t) + Von Ijgn oo[(t). We have the following key
result :

Lemma 4.2.5 (It6 expansion). For any function f € C1(K) N C?%(int K),
increasing with respect to the order <k, we have

th’n = f(x) 4+ Nipon + Ripon

AO™
N / e-ﬁu[zof@"_)—f’(Vu"_>cu+U<cu> dau,
0

where N is a local martingale and R is a decreasing process such that Ry = 0.

Proof. Note that we do not assume any regularity of f across 9K, so that we
can not apply directly the Ito formula to th ™. To overcome this difficulty,
instead of considering V% we study the process V9 defined by

Veﬁ = VI[O,@"[ =+ ‘/071[[9",00[' (4214)
This process involves in K,. We also have a representation for V9~
on t . on _ o gn
Vi = z+ I[O,H"](S)dlag (V; ") (usds +=dWs) + B,~ — Ci

4 / /Rd diag (V; 2’[[0 ony(s) (p(dz,ds) — q(dz,ds)) .

For a sake of simplicity, we denote ‘N/t = Vﬁg The Ité6 formula applied to
the process e Pt f(V;) := e‘ﬁtf(Vti’) yields

T = fa)+ / e (V, )V, — B / Mo gn(s)du
+ ;/0 e P Tr AV,_f" (Ve )jg,0n)(s)ds

b Y [fT) - fV) - T - V)]

s<t
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Using , we have
t ~ o~
/0 BT, VT = /0 e (Vi Vg gy () dling (V2) (ads + ZAWS)
t ~
T / e Pu I (V, )dBE + / e P (Vi Vewdu
0

+ e P I gy (s)f' (Vi) (AT B, + AB,)

s<t

+ / /R e (Vi iag (Vs )2 T 00y (5) (p(d2,ds) — a(d=, ds)).

Note that
V, =V, +diagV, AY, + AtB, + AB,.

We rewrite

S e FV) = F(Vl) = S (Ve ) (Vs = Vi)

= Y e [V~ F(Va + ding Vs AY:)] T (s)

s<t

e (Vo 4 ding (Ve )AY:) = f(Va) = £/ (Vs )ding (Vi )AY:] Tigony(9)

s<t

— S e PP W) (AT B, + AB,) T gny (9)-

s<t

Moreover,

S [ (Vo + ding (Vo )AY:) = f(Vio) = f'(Vs )dling (Vo JAY | Lo 9n)(5)

/0 e [T+ ding (V2 )2) = 1T ) = (Ve ing (V)] Tom(s) p(d. ).

Since 1(1757, AY;) =1 for s < 0™, we may omit the indicator I within the
operator H for s < ™. We deduce that

e f(V) = f(x)+ Ningn + Repgr (4.2.15)

977.
+ /tA eﬁ“[zof(%)— f’(f/u)cu}du, (4.2.16)
0

N = / e (T, >dlag<%>afm,en]<u>dwu (42.17)

+ / e (£ ding (72 )2) = £(720)] Tiony(5) 0z, ) = a(dz, ).
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The residual term is

S e o T gny () [ (175, + diag (V,_)AY, + ABF + ABS>

s<t
t ~
— f(V + diag (V )JAY )] /0 G_Buf,(vu_)I[O?gn)(S)ng.

The process R is decreasing due to the monotonicity of f with respect to K.
Finally, observe that
X{" = V) = I 4 e (Vo) I (Vo AYg, ) — f (Vi -)] Legr

= S+ [f(van+> — [(Vgn_ + diag (m)AYen_ﬂ I(Vgn_, AYy, ) 1i—gn

+ e [f(%n, + diag (Vgn ) AYgn )1 (Von—, AYG,,) — f(Ve"—)] Li—gn.

(4.2.18)

Plugging the r.h.s of (4.2.18) into (4.2.15)), as the Lesbesgue measure dt does
not charge any point, we conclude the theorem with

N, = / e~ (T, )diag (V,)E g gy () AW, (4.2.19)

+ //Rd B“ f(Vs_ + diag (V,_ ))I(‘Z,,AYS)—f(?L)}X

% Togn(s) (p (dz du) — q(dz, du)) . (4.2.20)
and
Re: = S e P Iggm(s)[f (v + diag (V,_)AY, +AB++AB)
s<t
e+ g () AT AY) + [ T g5
(4.2.21)
|

Remark 4.2.6. If the function f € C*(RY), we may apply directly the Ito
formula to th = e PF(Viy) + JI and obtain the following result

tAf
X/ =X/ = f(x)+ N+ R, + / e Pu [.cof(f/u) — 'V )ew + Ul(cy) | du
0

where V = VO N is a local martingale and R is a decreasing process with
Ry = 0. Moreover, X/ = tf if f vanishes outside int K.

Jets

Let f and g be functions defined on a neighborhood of zero. We shall write
f() S g()if f(R) < g(h)+o(|h|?) as |h| — 0. The notations f(.) Z g(.) and
f(.) = g(.) have the obvious meaning.
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For p € R¢ and X € S; we consider the quadratic function
Qpx(2) i=pz+(1/2)(Xz,2), zeR,
and define the super- and subjets of a function v at the point x :

Tro(@) = {(p.X): v(e+.) S (@) + Qux ()},
Jo(@) = {pX): v(e+.) 2 o) + Qux ()}

In other words, J"v(z) (resp. J v(x)) is the family of coefficients of quadra-
tic functions v(z)+Q)p x (y—.) dominating the function v(.) (resp., dominated
by this function) in a neighborhood of the point  with precision up to the
second order included and coinciding with v(.) at this point.

In the classical theory developed for differential equations, the notion of
viscosity solutions admits an equivalent formulation in terms of super- and
subjets. But this is not the case in our formulation due to the non-local
property of the integro-differential operator. The following results establish
a link between the notion of viscosity solutions and super- and subjets.
Lemma 4.2.7.  Letv € C1(K)NC(K) be positive and (p, X) € J v(zx),x €
int K. There is a function f € C1(K)NC?(z) such that f'(x) = p, f"(z) =
X, f(x) = v(x), f < v on a neighborhood of x. Moreover, if v > 0, the
function f can be chosen such that f <wv on K, f € C2(R%) and f vanishes
outside an abitrary neighborhood of x.

Proof. See [26].

Remark 4.2.8. As a consequence of the lemma above, if we assume that v
is a global viscosity supersolution of the HJB equation, then, by definition,
we have

F(X,p,H(f,z),v(z),z) <O0.

Lemma 4.2.9.  Letv € C1(K)NC?%*(z) and (p,X) € Jtv(z),r € int K.
Then, there is a function f € C1(K)NC?(z) such that f'(z) = p, f"(z) = X,
f(x) =v(x), f > v on a neighborhood of x. Moreover, the function f can be
chosen such that f > v on K.

Proof. Take r > 0 arbitrarily small such that the ball Oy, (z) = {y : ly—z| <
4r} lays in the interior of K. By similar arguments as in lemma We find
a function ¢ € C1(K)NC?(x) such that ¢/(x) = p, ¢"(z) = X, ¢(z) = v(z),
¢ > v on a neighborhood of .

For the second statement, Since v € C}(K), there exists a constant A such
that v(z) < A(1 + |z|) =: 9. Choosing A large enough, we have ¢ > ¢ on
Oy (). By virtue of the unity partition theorem, there exist a C*° —functions
0 < ¢ <1 such that :

¢ =1,0n09.(z)and ¢ = 0, on OF,.(z). (4.2.22)

We set f = 1 — ¢ and we define ¢ := ¢¢ 4 ¢x. This function satisfies all
required conditions of the lemma, and, by the construction, f > v on K. R
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Remark 4.2.10. In addition, if we assume that v is a global viscosity sub-
solution of the HJB equation, then we have

F(X,p,H(f,z),v(z),x) > 0.

Strict Local Supersolutions

In this subsection, we formulate a strict supersolution property which is the
key point for deducing, from the Dynamic Programming Principle, that W
is a global viscosity subsolution of the HJB equation.

We fix a closed ball O,(x) C int K such that the larger ball Oy,.(z) C int K
and we define the stopping time 7™ := 77 as the exit time of V™" from
O, (z), i.e.

" i=inf{t >0: |V —z| >r}. (4.2.23)

Lemma 4.2.11. Let f € C?(int K) N Cy(K) be such that Lf < —e <0 on
O, (x). Suppose that [a |n|II(dn) < oo or f € C% (K). Then, there ezists a

constant 1 :=n(e,r) and an interval (0,to] such that

sup EX/". < f(x) —nt, te(0,t).
TEAL

Observe that 7™ < 0™ if n is large enough hence X{/’\Zﬁ does not depend on
n.

Proof. We fix a strategy m and omit its symbol in the notations below. In
what follows, only the behavior of the processes we consider on [0, 7] does
matter. For n large enough, we have Oy, (z) C int K,,. Hence 77 < 6" and

we may apply theorem and get that
tAT
X[ = f(@)+ Niar + Ripr + / e P [Lof (Vul) + U (V)] du
0
tAT
— / e Pu [U*(Vu_) + ' (Vu_)ew — U(cu)] du,
0
tAT
= f(a:) + Nt/\’T + Rt/\T + / efﬁuﬁf(vuf)du
0
tAT
— / e Pu [U*(Vu_) + (Vi )ew — U(cu)] du
0
tAT
+ / e P [Lof (Vul) + U (Vo) = Lf(Va)] du.
0
We deduce that
_ - tAT
th/\?. = f(CC) + Nt/\'r + Rt/\'r + / efﬁuﬁf(Vuf)du
0

_ / " e P [U*(u, Vi) + ' (Vu_)ew — Uley) | du, (4.2.24)
0
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where R is a decreasing process such that Ry = 0and N is a local martingale.
We shall prove that N7 is a martingale. First, suppose that f € C1 (K). By
2

definition, V,,_ € O,(z) on [0,7]. It follows that f/(V,_) and diag (V,_) are
bounded on [0, 7). Moreover, choosing z small enough, the finite increment
formula yields

F(Vs_ + diag (Vs_)2) — f(Vs_) = f(O)diag (Vi_)2
where § € Oy, (x). From there and the fact that f is in C 1 (K), we deduce
two constants ki, ko > 0 and € > 0 (depending on z, ) such that

|f(Vs_ +diag (Vs_)2) — F(Ve)|* Le<r k12 I <c + Kol 2 | 2 s e,

<
< (22| A ).

By virtue of theorem I1.1.33 [51] and (4.2.19)), we deduce that N7 is a square
integrable martingale. Hence EN'\" = 0.

Similarly, if f € C1(K) and [ga |n|TL(dn) < oo, we also have

| f(Ve_ +diag (Vi_)z) — f(Ve_)| Le<r k12l <e + ko (1 + [2]) 115

<
< clal,

which implies that N7 is also a martingale and then EN!\T = (.

By assumption, Lf(y) < —¢ for all y € O,.(z) and so g (f'(y)) < —¢ on
[0, 7]. It follows that f’(y)k < —e|k| whatever k € —K so that f/(O,(z)) C
int K* on [0, 7]. In particular, for s € [0, 7]

f'(Vs_)BS < —e| B

We deduce that the following term in the expression (4.2.21)) of R is bounded

as follows :

tAT

tAT
/ e [ (Vi Voo Bod]| B, < / e P T  BEId| B ..
0 0

On the other hand, the other terms defining R can be estimated as follows :

f (Ve +diag (Vi )AY, + ABY + AB;) — f(V._ + diag (V,_)AY)
= f'(vs) (ABf + ABy)

where v5 € [V, Vsi]. Observe that 75 € O,.(z) if s < 7. If s = 7 we may
assume without loss of generality that the control ABJ equals 0 which is
less expensive. Therefore, we have

[f (Vs_ + diag (Vs )AY, + ABF + ABg) — f(Vi_ + diag (Vs )AYs)] Li<r
< —e (|AB2_| + |ABS|) ISST
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Therefore, by Equality (4.2.24)), we deduce that

EthA’TTL < f(z) —ee Pt AT)—e PEZ,

where
tAT AT
Z,: = / r(cs,f’(Vs_))ds+e/ BEd) B+ S (ABF |+ AB,]) .
0 0 s<tAT
r(e,p): = U*(p)+pc—U(c).
Recall that U*(p) = sup,ec(U(z) — pz) > 0 since U(0) = 0. Moreover, by
assumption,

__inf pc > €.
pEef(Or(x)), ceC,|c|=1
Since U(c)/|c| — 0 as |¢| — oo, we finally deduce that there exists a constant
k > 1 such that

inf  r(c,p)) > r7e|, Veel, |¢f>r.
pEf'(Or(z))

Therefore,
tAT T
| e s = w7t [ D dedds.
0 0

Moreover, the second integral defining Z dominates k1 || B¢||¢a- for some 1 >

0. Indeed, recall that all norms iIl Rd are e uivalent, in particular C 1 <
q >
d

|1 < ¢|.| for some ¢ > 0 where |z|; := Z |z;| and |.| is the Euclidean norm.

i=1
It follows that

¢ Be|| < Var BC < | B,

where Var B¢ is the total variation of B° with respect to |.|;. At last, we
have :
d

B = ZIB”\ Z}
(2

The claimed property follows. We deduce some constant v > 0 such that

dVar B*" _ dVar B°
d|Be| dlBe|

dBci
dVar B¢t

BC’L
< | d]| B

EthAT < f(z) —e Py EZ,

where
» tAT
7 ::t/\7'+/ Iicy>xleslds + | Bllenr+-
0
Then

- tAT
Zo> t A+ | Bl — / T jcnlealds > (1= R)EAT + | Bllonrs-
0
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Using the stochastic formula given by lemma4.4.23| since &y(Y) = &4 (V) =
1, we immediately get the existence of a number ¢y > 0 and a measurable
set I' with P(I") > 0 on which

(VT — 2| <r/2+ 6B+, ][0, t,

whatever the control 7 = (B, (). Diminishing t(, we may assume without
loss of generality that xtg < r/(46). For any t < ty, the inequality ||B||;4+ >
r/(29) holds on the set I' < {7 < t}. Therefore,

Zy > (1 — K)T + 2kt > Kt > L.
On the set I' < {7 > t}, the inequality Zy >t obviously holds. Thus,
EZ, > tP(I') if t € [0,%0] and the result is proven. B
Dynamic Programming Principle

Theorem 4.2.12. Let 7 be a finite stopping time. Then

W(a) = sup B (JZ(x) + ¢ W (VET) ).
TEAL

This theorem is derived from the two following lemmas :

Lemma 4.2.13. Let Ty be the sets of finite stopping times. Then,

W(z) < sup inf E (J;r + eiﬁTW(Vf’”)ITd) . (4.2.25)
red, TET}

Proof. The proof is the same than in [26].

Lemma 4.2.14. For any stopping time 7 € Ty , we have :

W) = sup B (7 (@) + e W (VE) ).
Tl'e.Az
Proof. See the similar proof in [26].

Remark 4.2.15. By similar arguments than in [26], we can prove that

lemmal[{.2.13 and lemmal[{.2.1] also hold if we replace V' by V... The version
of lemma (4.2.14) for Vi will serve to prove that the Bellman function is a

global viscosity subsolution to the HJB equation (see Section .

4.2.4 Proof of the Main Results
Proof of theorem

Proof i). Using rem we repeat the proof given in [26].

Proof ii). Let z € int K and ¢ € C1(K)N C?(int K) be a function such that
¢(z) = W(z) and W < ¢ on K. Suppose that ¢ does not satisfy the sub-
solution inequality at x. By continuity, suppose there exists a neighborhood
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O, (z) C int K of x on which L < —e where ¢ > 0. By virtue of lemma
4.2.11] there exists a constant 7 := n(c) and an interval (0, ¢o] such that

sup E (JfA’:;T - e_B(t/\T:)cb(‘/{f\’;}ur)I(Vt%—}_,AYZM:)) < ¢(x) —nt, te(0,t]
TEAz

(4.2.26)

We may assume w.l.o.g. that » = /. Fix an arbitrary ¢ € (0, to]. Using lemma
(4.2.13) for V,, we deduce that there exists m € A, such that

1

W(z) < inf E (JfA’f + e_ﬁ(tAT)W(V}?’L)ImKe) +ont. (4.2.27)
TE f

AsW < ¢ and I(Vtgf\f;_, AYiprr) = 0 imply that I;,<¢ = 0, we obtain from

the above relations that W(z) < ¢(x) — int, which yields a contradiction

since W(z) = ¢(z). B

4.3 Two-asset Model : Structure of the Bellman
Function and Optimal Policy

4.3.1 Assumptions of the Model and Main Results

We investigate the structure of the Bellman function and construct an opti-
mal policy for the case d = 2. In the following, we use the notations z = (x, y)
to designate a generic element z of R2. The canonical basis (e, e3) is consi-
dered, i.e. e; = (1,0) and eg = (0, 1). The risk-free asset is supposed to be a
constant, and the risky asset follows a geometric Lévy process :

asf = 0,8 =1

is? = s <udt+adwt+ / x(p(dy,dw—q(dy,dt))),S§=1,
R

where p is the jump measure of S? and ¢(dy, dt) = w(dy)dt is its compensator
such that 7(dy) is a positive measure concentrated in (—1,00) which does
not charge the singletons and satisfies the following condition

Condition (I) :
/ max (1, |t])m(dt) < oco. (4.3.28)
-1

The inequality (4.3.28)) ensures that 7 is a finite measure, and that the
associated Lévy process has a finite activity. This implies that the Lévy
process Y = (Y1 Y?) has the following representations :

Ny
Y1=0, Y =oWi+pt+ > xi
=1
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where Ny = ) "> | 17, <; is a Poisson process of intensity A > 0 and (x;) is a
family of i.i.d. T-distributed random variables independent of N.

A portfolio process in the two-dimensional Kabanov model we consider sa-
tisfies the following dynamics :

dvil = dr?* — (14 \?)dL"? — ¢dt,
avp = V2 <udt + odW, +/ z(p(dy, dt) — Q(dy,dt))> +dL;? — (1+ M\*h)dL?,
R

where L¥, i j = 1,2, are the transfer processes we suppose to be ladlag.
At last, A, i, j = 1,2, are the transaction costs coefficients. We rewrite the
dynamics of a portfolio process under the vector form :

dV; = diag Vi_ (ﬂdt +EdW; + / 2(p(dz, dt) — f[(dz)dt)) +dB; — dC;.
Here, we denote ‘i = (0, u),' = (0,0) and, with z = (x,y),

Bldz, dt) = So(dz)dt © Y 61, , (dt,dy), T(dz) = do(dx) & m(dy)

n=1

This means that A = diag (0,02). Morever, we denote *dCy = (c;dt,0) and
tdBy = (AL — (1 + A'2)dL'2, dL}? — (1 + A21)dL?)

The optimization problem reads as
0
E/ e Pu(cy)ds — max,
0

where v : Ry — R is a concave utility function. In the sequel, we consider
the case of power utility functions, i.e. u(r) = %,7 € (0,1). Observe that,
in this case, W is homogeneous of degree = :

W(vz) =v'W(z), VreK,v>0. (4.3.29)

In this framework, the solvency cone K is simply a sector generated by the
vectors g1 = (1 4+ A'?)e; — ea, g2 = (1 + A?Y)eg — e1. The dual cone of K is
given by K* = cone {g1,go} with g1 = (1+A2)ea+e1,d0 = (1+A%)e; +ea.
For the sake of simplicity, we suppose that A'?> = A2l = X\. The consumption
region is C = Re;. The HJB equation is given by :

F(W"(2),W'(2), HW, 2), W(2), 2) = 0, (4.3.30)
W(z)=0 ondK, (4.3.31)
where
1
Fo(X,p, H,W,2): = 50*y(X)a2 + piypa + H — W, (4.3.32)

F(X,p,HW,z): = max{Fy(X,p,H,W,z)+U"(p), Zc(p)4.3.33)
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~

Some simple calculation shows that U*(p) = %(pl)ﬁ, where p = (p1, p2).
Moreover

EG(p) S 0= maX{_91p7 _92p} S 07

and
H(u,z) = /R [u(x,y(l +t)I(z,t) —u(x,y) — u;(:z:,y)yt] w(dt),

where I(z,1) := 1{(z y4yt)cintk}> 2 = (7, y). We provide some simple proper-
ties on the operator H(u, z) as follows

Lemma 4.3.1. i) Ifu € C1(K)N C*(K\Rey) is a concave function such
that L(u') <0 on K (i.e. u is increasing with respect to the natural order
on K ), then the operator H(u,z) is non positive.

i) If u € C1(K \ Req) is homogeneous of degree v < 1 and m(R) < oo then
H(u,.) is continuous on K N{(z,y) : y > 0}. Moreover, if uy(z,0") exists
and is finite, then so is H(u,x,07).

iii) If u € C%(K \ Rey) is homogeneous of degree v < 1 and w(R) < oo then
H(u,.) is C* on KN{(z,y) : y > 0}. Moreover, if uy(z,07), uy,(z,07) exist
and are finite, then so is H(u,x,07).

Proof. i) We aim to prove that
P(z,t) = u(z,y(1 +))I(2,t) — u(z,y) — uy(z,y)yt < 0.

It is clear that P(z,t) = 0 in the case y = 0. If y > 0 or if y < 0 and
t € (—1,0), then I(z,t) =1 for all t > —1 (since y(1 +t) > y) and we get,
by the concavity of the function y — u(z,y) that

Pz, t) =u(z,y(1+t)) —u(z,y) — u;(a:,y)yt <0.
The case y < 0 and ¢ > 0 is obvious because uj,(z,y) > 0 since t — u(z+tez)

is a increasing funtion. We then have P(z,t) > 0.

ii) Assume that (z,y) € K and y > 0. Let 2z, := (zn,yn) € K,yn, > 0 be
a sequence convergent to z := (z,y). By assumption, we have P(xy,yy) —
P(z,y) = o(1) uniformly on ¢ € (—1,0). We now consider ¢t > 0. Using the
homogeneity of u, we obtain

x x
(e, bt =, yrht) = (1) (0l 2 )l ) = (1801,

uniformly on ¢ > 0. Finally,

u(xnayn) - u(x7y) = 0(1)7

and
Uy(xna yn>ynt - Uy((L’, y)yt = tO(l).
We deduce that

P(l‘nayn) - P(:L'vy) = o(l)max (17 ’t’)a
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which implies that H(u,z,) — H(u,z) when n — oo. The case y = 0 is
proved similarly, using the boundedness of {u,(z,)} when y, — 0.

iii) The proof is similar than ii). B

Note that, under Condition [£.3:28] the Bellman function is a global viscosity
solution to the HJB equation without the condition v < % To have more
insight on the Bellman function and the HJB equation, we consider the
following assumption

Condition (II) :
2
Vi
> —.
772
By using lemma we deduce that Condition (4.3.34)) implies the condi-
tion which is supposed in Corollary ie.

(4.3.34)

ol )

B> 2021 =) + 1 (),
where funtion h* is given in Appendix Al. As shown in Corollary
Condition ensures the existence of a classical super solution to the
HJB equation. Therefore, using Proposition we deduce that the Bell-
man function is finite on K and continuous up to the boudary 0K.
It is not difficult to verify that Condition (TI°) is satisfied in the two-
dimentional model we consider. Additionally, the existence of a Lyapunov
function with higher growing order than the Bellman function is also confir-
med in Corollaryunder Condition . Therefore, we deduce from
theorem that the HJB equation has a unique solution in the class
C1(K). By combining with theorem in Appendix A2 we conclude
that the Bellman function is concave.
We now summarize some well known results of the literature on the structure
of the Bellman function. Recall that these results holds provided that W is
continuous, concave and monotone with respect to K. But, we may easily
adapt all the proofs given for continuous diffusion processes, see [94] and
[61], to the case with jumps. Indeed, to do so, it suffices to use lemma m
Moreover, the regularity of the Bellman function is studied in Subsection
4.5.2
Theorem 4.3.2. The cone K can be splitted into three non-empty open
disjoint cones K;,i = 0,1,2 : K = Ko U Ky U Ko such that, if we denote
Ky = cone{gi1, g2}, K1 = cone{g1,§1}, Ko = cone{g2, g2} for some vectors
J1, G2, then K;,1 =0,1,2 are determined by :

Ki = {(z,y) € int K; — W' =0}, (4.3.35)

Ky = {(z,y) €eint K; —gsW’ =0}, (4.3.36)
Ko = {(z,y) €int K; —g1W' <0, —g2W’ < 0}. (4.3.37)
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Moreover, Ky contains cone (g1,e1). On K1 U Ko, W is C™ and is given by
W(z) = aru(p1z) on K,

W(z) = agu(p2z) on Ko,

where a1,ay are some constants. On Ky, the derivatives W', Wy, are well
defined and continuous, the Bellman function W is then a unique solution
to the following PDE in classical sense :

%U%gwyy + uyey + H(p, x) — Bp + u*(pz) = 0.
Below is the second main result which provides an optimal policy for the
optimization problem. We give a rigorous proof based on the notion of so-
lution to a Skorohod problem. We refer the readers to Appendix A3 where
details on the Skorokhod problem are given.

Theorem 4.3.3. Suppose that the boundaries of Ky are different from the
z- and y-azves. Let (x,y) € Ko, then the Skorokhod problem with
o(Vi) = (—Wx(‘/})ﬁ,%) has a unique solution. Moreover, the portfolio
process V' participating in the solution of this problem is an optimal portfolio.
The optimal strategy is given by the formula

t
B = [ gV, (4.3.38)
0

o = Wi, (4.3.39)

where W is the Bellman function.

The proof of the theorem is postponed to subsection [4.3.3

Remark 4.3.4. The situations where x € K;,©1 = 1,2, are easily reduced
to the one treated in the theorem above. Indeed, recall that the function W
restricted on the set K; is constant along the direction g;, 1 = 1,2. Instead
of considering the initial position x € K;,i = 1,2, we consider the point
Z lying on the boundary of Ky by projecting x onto Ko parallel to g;. This
translation does not change the value of the Bellman function, meaning that
W(x) = W(z). Therefore, the optimal strategy for x is constructed simply
by adding the initial jump ABgy := T — x to the optimal strategy given by the
Skorokhod problem for .

In the next subsection, we recall some well known facts on the regularity of
the Bellman function.

4.3.2 Reduction to One Variable and Regularity of the Va-
lue Function .

Using the homogeneity property of the Bellman function we reduce our pro-
blem to the case of one variable by considering the restriction of the Bellman
function on the intersection of the line {(x,y) : x+y=1} with the interior of
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K. Indeed, if we denote ¢(2) :== W (1 —2,2),z € A= [—1,1+ ], then we
may reconstruct W from ¢ by the formula

Wey) = (e +y) (), (o) € LK.

As in [94] and [61], we may show that 9 is the viscosity solution of the new
HJB equation obtained by the change of variables above :

max li(y) =0, (4.3.40)

1=U,1,

with the two first-order operators

(W) = =M+ 1+, L@) =M+ (1+A- )Y,

and the second-order operator

() =l + it + forr+ o = 07T+ H ),

where
fale): = 5?21 -2
) =~ (=)~ )= - 6),
folz): = %G%(v —1)2° +ypz - B,
o) = [0 G e — 0 - 1 + (L= 20)
X dr(n).

Recall that W is concave hence 9 is also concave on A and its derivatives
' 1" exist almost everywhere. Therefore, holds in classical sense
a.s. Moreover, ¥ has left and right derivatives which are continuous from the
left and right, respectively, and satisfy the inequality DT+ < D7, which
is strict only on a countable set.

In what follows, we briefly recall some results of the literature on the regu-
larity of the Bellman function and focus on then extra term H(z,1, ).
Proposition 4.3.5. The function 1 is continuously differentiable on the
interval A except, maybe, zero. If 1 has a discontinuity at 0, then

1—
»(0) = i <1_ﬁ7> T iﬁi”. (4.3.41)

We refer to [61], lemma 4.8.6 for the proof of this lemma. The only difference
is that : for each (p, X) € JT9(2),z € A, we have to construct a concave
test function h € C?(A) such that h > 1 and h — ¢ atains local minimum
at z. The existence of such a function is straightforward by noting that
p € (DT(2), D™ 4(z)). A direct consequence of the proposition above is
that the Bellman function is C! on int K \ R e;. More precisely we have :
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Corollary 4.3.6. The value function is C* on int K \ Ryey. If v is not C*
on Ryeq, then holds. Furthermore, even if v is not C' on Ryeq, the
partial derivative W, is defined and continuous, and the one-sided derivatives
Wy(x,0%) are also defined and satisfy the one-sided continuity conditions

Wy(x,0L£) = lim wWy(&,n), =>0.
(@, 0%) (€m)—>(w,0%) v(&m)

Since K # () and K; contains cone (g1, e1), there exists numbers 61,602 € A
such that

1
0§91<02<1+X

and Y
K() = {(.fC,y) €int K : 01 < m < 92}

The following result is Proposition 8.5 in [94]. The proof is easily adapted
to the case with jumps, using the continuity of the function z — H(z,,¢")
given in lemma i).

Proposition 4.3.7. The function 1 is C? on (61,02) \ {1} and satisfies the
HJB equation lgtp = 0 on this set in the classical sense.

The proposition above implies that the value function satisfies the HJB
equation Lo(W) + U*(W,) =0 on Ky \ Res in the classical sense and is C?
on this set. It remains to study W on the set Rey. To do so, we follow the
proof of theorem 9.1. in [94] :

Proposition 4.3.8. The second derivative Wy, is well defined and conti-
nuous accross Ryes and W satisfies on Ky the equation

Lo(W) + U*(W,) =0,

i the classical sense.

Theorem m shows that the sector cone (ey, g1) is contained in K; but we
do not know whether cone (e1, g1) = Kj. In this case, it seems to be difficult
to prove the smoothness of the value function on R e;.

Proposition 4.3.9. Suppose that m(R) and [g nm(n) exists and satisfies
m(R) — J[gnm(n) = 0. Then, e; € int K.

Proof. The proof of this proposition is similar to that of Proposition 4.8.8,
[61]. The only difference is that we need to calculate the right derivative of
the function

o z4z
@)= [ [(1 ) W s atmyen — $(2) — 20l + (1= 2))| ()
at zero. Note that, if 2 > 0, then 1(1__ _(14y))ex = 1 hence H admits a right
derivative at zero. Some elementary calculations show that its value coincides

with (m(R) — [g 77 (n))7(0). We then follow the proof of Proposition 4.8.8,

[61]. =

In order to apply the It6 formula and construct an optimal policy, we need
the value function W to be C? across the boundary of the cone Kj, except
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at 0. The following result shows that this condition is satisfied provided that
the boundary does not coincide with the positive z—axis or the positive
y—axis. We omit the proof which is similar to that of theorem 10.1 in [94]
(since the operator H does not affect the proof).

Proposition 4.3.10. If the cone Ky does not shares its boundary with that

of the first quadrant, then the Bellman function is C? across the boundary
Of Ko.

4.3.3 Proofs of theorem [4.3.3l

Proof of theorem |4.3.3 Note that §™ = oo since V;* € Ko, Vt, and W, is
positive (hence makes sense). We shall only consider the case where
K is included in the first quadrant. Otherwise, we refer the readers to rem
10.4 in [94]. The Bellman function is then C? on Kj hence o is locally
lipschitz on this set. We then deduce that the Skorokhod problem admits a
unique solution. We check the second assertion. Applying lemma we
get that

e PWVH + T = W(z,y)+ N+ Ry,

te_’Bu —-w c c U.
-/ [cowwm WV Jeu + Ulen) | d

From construction of the solution to the Skorokhod problem, we obtain that
R; = 0. Moreover, when c is defined by , we have W,(Vy, ey +
U(cy) = U*(cy). Therefore, the integral is zero, by virtue of theorem [4.3.2}
It remains to prove that N; is a martingale and

lim Ee "W (V,;h) — 0, (4.3.42)
n—o0
for a sequence of real numbers ¢, — oo.
To prove , we observe that |W(2)| < k|z|? and [W,(2)| < k|z|7~1
where k is an upper bound of W and W, on the intersection Ay of the set
Ko with the line x +y = 1. This is deduced from ¢/(04+) < oo and the

continuity of W on Ag. We deduce (for some varying constant s from one
line to another one) that,

B[t Wi <eB [T nB [T e Mued < aW(a). (1343
0 0 0

Since W is finite, this implies the existence of a sequence t,, T co for which
holds. Details of this assertion are given in lemma
We now prove that N, is a true martingale. Indeed, by a similar argument,
we have

|2Wy(2)] < klz|7 < (1+]2]), =z€ K.

Hence, we infer that the stochastic process [je ™ #“W, (V2 )VZodW, is a
martingale. Let us focus on the integral with respect to the Lévy measure.
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Observe that, for each fixed s, we have I(V;_, z) = 1 (because V" € Ky, Vs).
Moreover, using a finite taylor expansion, we get

(W (Vi +ding (Vi_)2) = W(Va)| < [W/(n)]|ding (V5 )z,

where n € [Vi_, Vi + diag (V,_)z] satisfies |n] < |Vs_|(1 + |2|). It follows
that

WV + diag (Vi )2) = W(Va)| < sln)~|diag (Vi_ )2l < #lT_ 717721,

where the last inequality is deduced from the inequality |W’(n)| < s|n[7~ 1,
We then obtain

W (Vs + diag (Vi_)2) = W(Vi_)| < wIVi_Pzl.

Therefore, as the Lévy process is of finite activity and (4.3.43) holds,

E / t / e PUUW (V. + diag (Vs )2)I(Vs_, 2) — W(ffs,)‘ 7(dz)ds < kW (z) < co.
0 JR

By theorem 1.1.33 b. page 73 [51], we deduce that the purely discontinuous
local martingale N satisfies E var(/N)., < oo hence is a martingale. l

To complete the proof of the theorem, we need the following lemma
Lemma 4.3.11. Suppose that fooo X, du < oo where X, = Ee PUW (V1) >
0. Then limy_,oo Xt — 0.

Proof. Observe that e #*W (V,")4+-JF = W (2)+N;. With Y,, = e W (V,,1),
we get that for u > s, Y, — Y = N, — Ny — (J] — JT) where J] — JT > 0.
Since N is a martingale, we deduce that X,, — X, <0, i.e. X is decreasing.
Therefore, the integrablity of fooo X, du ensures that lim; .., Xy — 0. Indeed,
if limy_y oo X3 — ¢ > 0 then fooo X,du > fooo cdu = oo, hence a contradiction.
|

4.4 Appendix

4.4.1 AO : Stochastic Integral with Ladlag Integrands

This subsection is devoted to define the integral f(f X,dB, for any adapted
cadlag process X and any predictable ladlag process B of bounded varia-
tions. Assume that we are given a right-continuous filtration (F;)s>0. Such
an integral may not exist in the standard Stieltjes sense. Typically, this is
the case where X and B share common discontinuity points. We refer to the
book of Wheeden and Zygmund [100] for more details and [43] where such
a construction is considered.

For any predictable process of bounded variations B starting from zero and
having trajectories with left and right limits, we put AB := B— B_ as usual
and ATB := B, — B_. We also define the right-continuous processes

Bf =3 AB,, B} =) ATB,

s<t s<t
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and, at last, the continuous part of B :
B®:=B-B'-B""

Definition 4.4.1. Let X be an adapted cadlag process and B a predictable
ladlag process of bounded variations. Define :

Ir(X,B) = X,dB, := XudBi+ Y Xi ABi+ > X ATB,
[0,7] [0,T] 0<t<T 0<t<T
(4.4.44)

Note that the integral part in the definition above is finite in the sense
of Stieltjes since the integrator is continuous and of finite variations; the
discrete sum is absolutely convergent (bounded by 2|/ B||r maxo<i<7 | X (¢)]).
Therefore, the integral is well-defined.

From the economic viewpoint, we may think of X as the dynamics of a risky
asset while B is the quantity of assets invested in the portfolio. The cost
of this strategy is then given by f[O,T] X,dB, which consists of three terms.
The integral term reflects the cumulative cost with respect to all changes in
the trend of the strategy. The two last terms are cumulative costs charged at
discontinuity points of the strategy (right before and after economic shocks).
Let us establish some major properties of the predictable Stieltjes integral
given in the following theorem :

Theorem 4.4.2. The map I satisfies the following properties :

i) I.(X,B) is an adapted ladlag process.

i) It is linear both in X and in B and, with X} = sup,cpoq |Xt|, we have :

(X, T)| < |[Bllr X7

ii1) If B™ is a sequence of predictable ladlag processes of bounded variations
converging pointwise to B such that sup,, || B"||r < oo, then (f(f XudB})i<T
converges pointwise to (fg XudBy)i<T.
i) If (Bp)n>1 satisfy iii) and X > 0, then liminf, I(X, || By||) > I(X, || B]|)-
Proof. The proofs of the asertions i) — iv) are given in [43]. It suffices to
prove the first asertion. We check that Ir(X, B) is Fr-measurable for all
T > 0. First, note that the second and the third terms in [£.4.44] are trivially
Fr-measurable since F is right-continuous. Thus, it suffices to check that the
first term, which is a pathwise Stieltjes integral, is Fpr-measurable. But this is
true because this integral is the limit of Riemann sums along a deterministic
grid
[nT]
X,dBS = lim S X (Bii s ) :

n

each term of which is Fp-measurable.

To prove that the paths t — I;(X, B) have right and left limits, we observe
that the integral in [£.4.44] is continuous, while the discrete summations are
ladlag.
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The following theorem shows that we can approximate the integral f[o 7) X.dBy,
by integrals with respect to simple integrators. The proof is given in [43].

Theorem 4.4.3. Let B be a predictable ladlag process of bounded variations
and X be a locally bounded cadlag process. Then, for all € > 0, there exists
a strictly increasing sequence of stopping times ™" such that sup,, ™" > T,
and a predictable process B of the form :

B® = Benljppny + BroLn pni (4.4.45)

such that |B — B| < ¢, ’ Jy XudB, — [ XudBy| < e, | Be|| < || B|| pointwise

on [0,T] outside of a non null set.

Lemma 4.4.4. Let (B¥) be a sequence of predictable ladlag processes of
bounded variations. Suppose that B* converges pointwise to B such that for
all k, |A*B*| < |ATB| and ATB* — AT B. Then, (B*)4* — B9 point-

wise.

Proof. Let us consider for each k, a sequence of stopping times (T”k) exhaus-
ting the jumps of B¥ and let (7) be a sequence of stopping times exhausting
the jumps of B. Let us define

T:={r"*: (n,k) e NJU{r" :n € N} := {s; : i € N}

Consider the positive measure p := ), ds, Where d,, are Dirac measures
at points s;. Then,

t
(B = [ A*Blduta)

As |[ATB¥| < |A*TB| and |AtB| is p-integrable as a process of finite varia-
tions, we deduce by the dominated convergence theorem that

t t
(BR){+ = /0 At BEdp(u) — /0 A* Budp(u) = B+,

From there, we deduce an integration by parts formula :

Theorem 4.4.5. Let X be a locally bounded cadlag semimartingale and B
be a predictable ladlag process of bounded variations. Then,

t t
X,;B; = XoBo + / X, dBy, + / B, dX, + Z AX;AB,.
0 0

s<t

Proof. We may assume without loss of generality that By = Xg = 0. We
first assume that B has the form

B = Z BTnI[[Tn” + BTﬁl}T"’T""’l['
n
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We may assume without generality that there exists ng such that 70 = ¢.
From the definition [£.4.44] recall that

/ t X,dB, = Z X nABpn + Z X nATBn.
0

T<t TNt

On the other hand, notice that
B, = Z BT_T'_LI}Tn’T'rH»l].
n

Then,

t
/0 By dX, =) Bt (Xpn = Xpnot).

Tn<t

It follows that

t t
/ X,dB, + / Bu_dXy =Y By (Xon = Xon ) 4+ Xi_ B,
0 0

Tn<t
+ > Beo(Xpn = Xpn)+ > XenBen — Y Xon1B o,
Tt T<t Tn<¢ ’
t t
/ XudB, + / B, dX, = -3 (BTH - Bﬂ) (XTn - Xﬂ) + X,B,.
0 0 <t

In the general case, we use theorem with a refining sequence of stopping
times (77'); . Note that 3., AX;AB, = [X, B“t?), where B¢t? = B*+ B%.
If B* converges uniformly to B where B¥ is of the form as in theorem
then by lemma m (BF)etd converges pointwise to Bt? as k —
oo. Therefore, it suffices to show that : > ., AX;ABF = [X, (B¥)“td], —
[X,Bt), = 3., AX;AB;,. This is obvious if X is of finite variations.
Otherwise, it suffices to observe that we may uniformly approximate X by a
process X € of finite variations such that | X — X¢| < ¢ as done in [43]. Since
supy, || B¥|| < ||B||, we then conclude. B

We need more results :
Lemma 4.4.6. Let X be locally bounded cadlag processes and B be a pre-
dictable ladlag process of bounded variations. Then,

Al / XudBy)i = X; AB;, AT( / ' XudBy): = X;AT B,
0 0

Proof. The equalities obviously hold if B is of the form . Otherwise,
by theorem [£.4.3] we may approximate B by a sequence of elementary pro-
cesses B™ of the form such that B™ and B" converge pointwise to
Band B_and X-B}! - X -B+ . 1

Using theorem and lemma we obtain the following result :
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Theorem 4.4.7. Let X,Y be locally bounded cadlag processes and B be a
predictable ladlag process of bounded variations. Then,

t t t U_
X, / Y, dB, = / X, Y, dB, + / ( / YvdBv> qu+ZAXSYLABs.
0 0 0 0

s<t

4.4.2 Al : Existence of Lyapunov Functions and Classical
Supersolutions

In this subsection we study the existence of Lyapunov functions and classical
supersolutions to the HJB equation. Our purpose is to seek for explicit condi-
tions which guarantees the concavity and finiteness of the Bellman funciton
of the two-dimentional Merton problem with power utility functions. We
only focus on the case where the matrix A = (a;;) is diagonal with a;; = o,
such that 0% = 0, = 0 and o # 0,i = 1...d (i.e. the first asset is a
numéraire and the others are risky assets). We also suppose that the utility
function has the power form U(z) = u,(xeg), where u,(t) = %,7 € (0,1);
and that C = Ryeg. For the general case, readers should consult the paper
[26] for more details.

In this subsection we work under the following condition
/ 12T(d2) < oo.
Rd

Lyapunov Functions

For p € int K*, we find a Lyapunov function of the form v(z) := u,(px),where
up(x) = % and v < n < 1. Note that the Bellman function is homogeneous
of degree ~y. Therefore, the parameter 7 is chosen bigger than ~ to assure
that the Lyapunov function is growing faster than the Bellman function. If
such a Lyapunov exists, the HJB equation has a unique solution, and, by
virtue of theorem this unique solution is a concave function.

We have uy(z) = (pz)"'p € int K* as required for v to be a Lyapunov
function. Moreover,

1

Lov(z) = S{A@)p,p)uy(pz) + (u(), p)uy (pe) — Buy(pz)

+ / [un(gm + tpdiag (x)2)I(x, 2) — uy(pr) — u%(px)tpdiag (:E)z] II(dz).
Rd

Let us denote the integral expression above by H, (x). Our goal is to choose
u so that on int K we have Lov(x) < 0, or equivalently on int K

uy (p) 1 . uy(pr) | Hy(x)
won) 5 (A@)p, p) wn(p2) " (p)

B > sup {pdiag (z)p
rxeK

Denote
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We have
1 0 K oipiT pi
L S Hi 2o 1Pidq 7
) = g S g >Z( DI
d
1 7 I
< - —.
- 21—7];%2

We then choose S such that

d 2
Y s Hy(x)
i=1 z

zeK un( )

l\DM—l

Put k(p,z) = ﬁp diag (x). It is clear that

Hn(x)
uy (pz)

< /Rd [(1 + k(pa x)z)n1{1+k(p,a:)z>0} —-1- nk(pwr)z} H(d’z)

Note that k(p,tx) = k(p,z) for t > 0. Therefore, instead of considering the
r.h.s of the equality above on K, we may simply consider it on By := KNOq,

where Oy is the unit ball {z : |x| = 1}. It is easy to prove that this expression
is bounded on B;. We then define

— n 1
h(n) : peggth 5;112 / (1 + E(p, 2)2) "L {14 k(pa)e>0r — 1 — nk(p, 2)z] T(dz),

and chose 8 such that
1 p T
8> 317 — + h(n). (4.4.46)

We get the following result as a direct consequence of all the calculations
above.

Proposition 4.4.8.

i) If the condition (4.4.46]) holds, then v(x) = (pi)n, 1 >n >~ is a Lyapunov
function with respect to Lo for some p € K* with p* = 1.

ii) Set h(y) := lim i{le h(n) and suppose that
N\

=
<. w‘@ [
;~|

(4.4.47)

L\’)M—t

Then, the HJB equation has unique solution in the class C1(K).
[ |
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Classical Supersolution
Let us set v(z) := kuy(p.z). By definition,

U*(v'(z)) = Sug(Cﬂy)—-vxw)y):=sug(CN y) — kul (px)py) ,

ye ye
v
= sup <(y1) _ k(px)w—lplgh)
y1>20 Y

Then, with p; =1, U*(U’(-f)) = kﬁ(px)'Y(l/")/ — 1). We have EG(U’(.Q?)) _
SUP,cq uﬁ,(p.x)px < 0since v’ >0and G C —K, p e K*\{0}.

Our goal is to choose p, k so that on intK, we have

(A, Pyl o) + {p(x), (o) — R (pa)

+/ [uy(pz + 'pdiag (z)2)I(z, 2) — uy(pz) — ufy(px)tpdiag (z)z] H(dz) <0
R4

kT (pa) (1/y — 1) +

Following a similar reasoning as in the preceding subsection, we choose 3
such that

)+ ETT(L - ). (4.4.48)

l\.')\r—t

‘7;
<ol

Proposition 4.4.9.
i) Suppose that Condition holds. Then, the function

wm=j@mn

is a classical solution of the HJB equation for some p € K* with p* = 1.

ii) In the two—dimensional model with the power utility function, assume that
the Merton parameter

oad = 1i (6—?{‘2_7)—h<v))>0-

Then, there exists p € K* with p' = 1 such that the function f(x) = m(px)”

. . . . )
is a classical solution of the HIB equation and m > (1/7)k], .

Combining Propositions and we obtain the following result
Corollary 4.4.10. Let us set h*(y) = max(h(y),h(y)). The following
condition

d
}: (4.4.49)
guarantees the existence of a classical super solution to the HJB equation
and a Lyapunov function with higher growing order than that of the Bellman
funtion (in the considered case).

l\.')\r—t
S \7;
NS D



4.4 Appendix

109

4.4.3 A2 : Some Elementary Properties of The Bellman
Function

We denote by > the partial order defined by K, i.e. if z,y € R, z = y <
z—yeK.

Proposition 4.4.11. The function W is increasing with respect to the par-
tial order =.

Proof. Suppose that xo > x1. Let m = (B,C) € Ay, and V@) be such that

‘/O(i) = I,
avV' = vWigyi 4 aBi —dci, t>0,i=1,---,d.

Let us define VO(E) = x9 and Vt(Q) = V;(l) if t > 0. From the dynamics of V(1)
we deduce that

‘/0(2) = T2,

VP = v®ayj 4 dBi—dci, t>0,i=1,---d,

where Bl = Bl + (x — 2b)I [0,00) (%) is still a ladlag and predictable process
of bounded variations satisfying AB; € —K a.s. since x1 — 29 € —K. Since
VO(E), VO(P € int K it is straightforward that 62 = #' where 6%, i = 1,2,
are the stopping times defined by respectively for V® and V(M. Tt
follows that 7 = (B, C) € A, and we deduce that W(z;) < W(zz). R

Theorem 4.4.12. Assume that W (zo) < oo where x¢ € int K. Then, W is
continuous at xg.

We need some following technical results

Lemma 4.4.13. Let us consider xo € int K. Then, limsupy_,; W(Azg) <
W($0)
Proof. We may find #" = (B",C") € Ay,, depending on X such that

o™"
1
Wle) < E / U5 + (4.4.50)
0

Observe that if 7 = (B",C™) € Ay, then 7%/X := (B"/X,C"/)\) € Ay,
and 07"/ = 07" We rewrite 7" as @ = Ar™ where ™ := (B",C") € Ay,.

By (4.4.50)), we deduce that
om" 1
W(Azg) < E/ e U ds + =
0 n

As A7t €]0,1[ and x + U(x) is concave with U(0) = 0, we get that

U =UNTA) + (1 =271 x0) > AU (D).

S

We then get W (Azo) < AW (xg) +n~! and the conclusion follows as n — oo.
|
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Lemma 4.4.14. Let us consider a sequence x, — x9 € int K and T €
(0,00). Then, for any ™ € Ag,, the sequence of portfolios V) = yman yith
wnitial values Vo(f) = Ty, 15 such that

TAO<liminf0, AT
n

where 0, 0, are the stopping times defined by V := V™%, V(") respectively

in :
Proof. By virtue of lemma (4.4.23), V(™ and V are uniquely defined by
() Moreover, V" := V(") —V satisfies the dynamic

v = VY, V=
Hence V" = (zi — z8)Si or equivalently Vit = diag ((z, — 20)/S0) Si. We

n
deduce that
|2y — 20

S0

where S7. := sup;<r |St[. On the other hand, if § > 0 is small enough,

sup |V, — ;| < Sy
t<T

inf  d(Vy; 0K) = limd(V, ; OK)
s<TNO—6 n

where we may assume that s,, € [0,T A — ] converges to sg € [0,T N — §]
by a compactness argument. First assume that s, T sg. Then,

inf 0K) = 0K
sg%rke_éd(vs,@ ) =d(Vs,_;0K) > 0,

by virtue of Corollary Otherwise, we get that

inf _d(Vs;0K) = d(Vs,;0K) > 0.

s<TNO— 0+’

Therefore, there exists € > 0 such that
d(Vs;0K) > €, Vse[0,TNO—9].

Applying the triangular inequality d(V;0K) < d(Vs; V') + d(V'; 0K) we
then deduce that

|z, — @0

d(VH0K) > e—d(Vg V') >e— ———
|Sol

St, se€[0,TANO—0].

It follows that for n large enough
AV 0K) >0, sel0,TAN0—9].

We deduce that ™ > T A0 — § if n is large enough. Therefore, we have
shown that whatever § > 0 is small enough, there exists a.s. ng such that
n > ng implies that T A0 — 6 < 6", hence T'A 0§ — 6 < inf,, >y, 0" and finally
TAO<liminf,0, ANT. R
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Proof of theorem It suffices to show that W is both upper semicon-
tinuous and lower semicontinuous.

e Let us first show that limsup,_,,, W(z) < W (xo). In the contrary case, we
have lim sup,_,,, W(x) > W (xo). Note that lim sup,_,, W (z) = lim; W (xy)
where x; is a subsequence converging to zg. As xg € int K, we may as-
sume that x, € int K. We define 7, = (1 + k~!)zo € int K such that
T € 2o + int K if k is large enough. As xp — x¢ and 7 — int K is an open
set containing xg, there exists a subsequence xz,, such that x,, € rj —int K
hence z,, = Zj. Since W is increasing with respect to >, we obtain that
lim sup;, W(Zy) > limy W(z,,) > W(xp). On the other hand, by virtue of
lemma W (zy) < W(zo) hence a contradiction.

e Let us show that liminf, ., W(z,) > W(xg). For an arbitrary € > 0,
there exists m € Ay, such that

971'
Wi(zg) < e+ E/ e 75U (¢cs)ds.
0
We then deduce T" € (0, 00) such that
0T AT
Wi(zg) < 2+ E/ e 75U (¢cs)ds.
0

We introduce the stopping times 6" associated to the portfolios defined by
the strategy m and the initial values x,,. Observe the inequality

Is<tim inf, OnAT < 11%1nf ISSG"/\T-

So by virtue of Proposition and Fatou’s lemma, we then deduce that

W (zo)

IN

0" AT
2¢ + lim inf E/ e 75U (¢cs)ds,
" 0

W(zg) < 2e+liminf W (x,).

Since € > 0 is arbitrarily chosen, we deduce that W (zg) < liminf, W(z,).
|

Recall that ® is the set of all continuous function f : K +— R increasing
with respect to the partial ordering > and such that for every x € int K
and m = (B, C) the positive process th is a supermartingale. The following
proposition presents the finiteness and continuity up to boundary 0K of the
Bellman function in term of ®.

Proposition 4.4.15.
a) If f € @, then W < f on int K. Hence, if ® is non-empty, then W is
finite.

b) If a point xo € OK is such that there exists f € ® with f(xg) = 0, then
W is continuous at xo, i.e. W(x,) — W(xg) := 0 as x,, € int K converges
to xp.
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Proof. If f € ®, (th)te[(),oo) is a positive supermartingale. We deduce that
W(z) < EXL < f(z) by virtue of Fatou’s lemma.

From a), the inequality 0 < W(x,) < f(z,) allows us to immediately
conclude about the second statement. B

Theorem 4.4.16. If the HIB equation (4.2.1(}) has an unique global visco-
sity solution in C1(K), then the Bellman function is concave.

Proof. If we define the Bellman function only on the class of admissible
strategies generating portfolio processes evolving in K all the time, i.e

A\x::{FGAi‘/tﬂEKVt>O}7é®,

and

/W($) = sup EJ (z), =z €intK,
71'6./2‘\1

then the Bellman function W is a global viscosity solution to the same HJB
equation as W. By assumption, the global viscosity solution of this HJB
equation is unique, i.e W = W. It is well known that the function W is
concave (the proof of it is straightforward and given in Framstad et al. [40]).
Therefore, W is also concave. B

4.4.4 A3 : Skorokhod Problem

In order to provide a rigorous construction of the optimal policy to the two-
dimentional optimal consumption problem, we present in this section the
existence and uniqueness of solutions to a class of SDEs with reflection, also
called the Skorokhod problem. We first recall some results for the continuous
diffusion case, and then pass to the case of finite activity pure-jumps Lévy
processes.

Skorokhod Problem for Continuous Diffusion Processes

Let v : 0Ky — R? be a vector-valued function with g(x) = —g; on the set
(0KoNAK;)\{0} and v(0) = 0. Let Y be the process Y; = (Y, YZ)+ (¢, Wy),
t > 0, where W is a standard brownian motion. Let ¢ = R? — R? x R? be
a matrix-valued function which is Lipschitz-continuous.

On the closed cone K, we consider the Skorokhod problem formulated as
follows : find a pair of adapted continuous processes, V, starting from « € Ky
and k, real-valued, starting at zero, and increasing such that

AV, = o(V)dY; +~(Vi)dky, (4.4.51)
dky = Iv,cor,dks, (4.4.52)
V, € Ko,Vt>0. (4.4.53)

1. Observe that A, # (). Indeed, rebalance the portfolio starting from z € int K so that V. = 0.
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The aim of this section is to show that this r.s.d.e has a solution on the set
K which is trapped at zero. To do so, we shall prove several intermediate
lemmas. The main proof is based on the existence of a solution to a r.s.d.e.
on a bounded domain G when the direction of the reflection is given by a
C?-function 7 satisfying the following condition (see [30]) :

C1 : v € C%(R?,R?) and there is b € (0, 1) such that

U Bz —ty(x),th) CG°, forz € dG.
0<t<b

Theorem 4.4.17. The Skorokhod problem (4.4.51|) has a solution which is
trapped at zero.
Proof.

Denote by D the bisector of the cone Ky and we put d > 0 such that
D :={—dxz + y = 0}. Let us introduce the polygons

Ky =Kon{e,' <z +dy<e,}

where €, — 00. Let x € 0K be a starting point. The case x = 0 being
trivial, we assume that x # 0 hence z € K} if n is large enough.

e Step 1. There exists closed regions f(g such that Kj C IE'{)‘ - KS“H
verifying the condition C1 for some reflection function =, satisfying v, (z) —
v(z) for all x € 0Ky. Indeed, we denote by a,, and b, the two points of
0KoN{e, = x+dy} such that y,, > yp, . Observe that b, is the symmetric of
a,, with respect to the bisector D. Similarly, ¢,, and d,, are the two symmetric
points of 0Ky N{e, ! = 2+ dy}. Denote &, := DN{(en+€nt1)/2 = x+dy}.
We then define f((’} as the polygon

KSL = KogN {(6;1 + 6;41_1)/2 <z+dy < (en+ €nt1)/2},

and denote by @, and b, the two points of Ky N {(en + €n+1)/2 = x + dy}
such that yz, > y; . Similarly, é, and dy, are the two points of dKoN{(e; ' +
e;}H)/2 =z +dy} such that yz, > y; .

Let 1 be the outward normal to KoM K7 and 79 be the outward normal to
0KyN Ky. We consider g3 a unit vector such that gsn; > 0 and g3(1,d) > 0.
Similarly, we define g4 as a unit vector such that g4m2 > 0 and g4(1,d) > 0,
g5 is a unit vector such that gsn; > 0, gsne > 0.

Let us introduce the smooth function

(@) = - (mxl(x) (@) + 951 — (@)1 - ¥ (@) (@)
Tl @) — @) + g5l — X @)1 - x2<x>>x5<x>>,

where, by lemma [4.4.18] the functions y; € C*°(R?,[0,1]),i=1,--- ,5 and,
with 7, — 0 small enough,
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x'(x) =1 on [dy, by, and x'(x) = 0 on R?\[dy, by)2y,
x2(z) =1 on [cy, anly, and x*(x) = 0 on R?\[cp, an2y,
X(a) = Lon (Gf)s, := ([0 ] Ulbn.bu])  and x*(2) = 0 on RA\(C5),.
X x) =1 on (CF})~, = ([én,an] U [an, an]).,, and x (z) = 0 on R?\(C})2,.
X’(z) =1 on (CY),, = ([cn,én] U [én, dn] U [Jn,dn])% and x°(z) = 0 on

R2\(Cg)2'7n :

Let us denote by n(z) the outward normal at each point of 8I~(Z}. The map-
ping 1 : Bkg — R? is continuous except at the points a,, l;n, Cn, d,, where it
admits left and righ limits we denote by n(x=£). Moreover, by construction
we have 4, (z)n(z—) > 0 and v, (z)n(z+) > 0 for all = € K.

Observe that

d(z — ty,(x), 0KY) > min d(z — ty,(x), 0KY) :=m, Yz K.
z€OKy

Indeed, by a compactness argument, m = d(Too — 1V (T0), OKp) for some
Too € K{'. Since

d(Zoo — Y (T0), 8I~(g) > —tyn(Too)N(Toot) = 20,

where 2b 1= —7,(20)n(2ooE) > 0, we finally deduce that Condition C1
holds.

e Step 2. By virtue of Corollary 5.2 [30], there exists a unique strong solution
(V™ k™) starting from z to the reflected s.d.e. (4.4.51) on the domain K.
Let

™ =inf{t: V*(1,d) = €,'},

p" =inf{t: V"(1,d) = €, },
and p" := 7" A p". On the intervall [0, u"], the process (V", k") is solution to
(4.4.51) on the domain K[’}H with respect to 4"+, Indeed, on the intervall
[0, u™], the reflection only occurs on the boundary dK( on which 4"+ and ™
coincides with 7. By the uniqueness property given by Corollary 5.2 [30], we
deduce that (V" k") = (V™1 k") on [0, u"]. Tt follows that ™ < p™*i.
The rest of the proof is done as in [61], page 229. B

For any compact subset C' of R? and for all € > 0, let us define

C.:= U Be(e).

ceC

Recall the well known result :
Lemma 4.4.18. For any compact subset C' of R? and for all € > 0, there

exists x¢ € C®°(R2,[0,1]) such that x¢ = 1 on C. and X° vanishes outside
Coe.
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Skorokhod Problem for Pure-Jumps Lévy Processes

Let v : 0Kg — R? be a vector-valued function with g(zr) = —g; on the
set (0Ko N 0K;)\{0} and ~v(0) = 0. Recall that a Lévy process has finite
activity when v(R?) < oo. In this case, it can be represented as the sum
of a compound poison process and a scaled Wiener process with drift. So,
consider Y a process such that V; = (Y, Y2, 0) + (¢, Wy, Ny), t > 0, where
W is a standard brownian motion and N is a pure jump process of finite
activity. This means that

N
=> ANy,
k=1

where ANy, are ii.d. random variables and Nt = > l7,<¢ is a Poisson
process with jump stopping times (7).

Let 0 = R? — R? x R? x R? be a matrix-valued function assumed to be
Lipschitz-continuous.

We consider the Skorokhod problem on Ky formulated as follows : find a
pair of adapted ladlag (resp. caglad) processes, V, starting from = € K( and
k, real-valued, starting at zero, and increasing such that

dVy = o(Vi-)dY: +~(Vi)dk,
dke = Iy,ex\int Ko dkt,
Vit e Kovt>0. (4.4.54)

The aim of this subsection is to show that this r.s.d.e has a solution on the
set Kg.

Theorem 4.4.19. There exists a unique solution to the Skorokhod problem
4. 4.54)).

Proof. Let (Tk)keN\{o} the jump stopping times of the process Y. Assume we
have already constructed a solution (V, k) to on the interval [0, T}).
Define

Vir ==V + o (Vpr_ ) AY we.

Let us set

Vi, =Pl (Vi) € LOR?, Fpu) € 0K,

where the projection operator P, is defined in lemma [£.4.20 We define
ATkr, by the equality

A+VTk = V(VTk)A+ka-

Applying theorem [4.4.17] and the strong markov property, there exists a
solution (V k:) to 1) from the starting point Vj := Ve, with respect
to Ny := Nrwyy—Npw, Wy := Wie = W on the interval [0, THF—T*]. We
then set V; := V,_pw and ky := kp,y + ky_qu on (T, T*+1). The uniqueness
follows from the uniqueness on each interval [T}, Tj1). B
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In the following, we assume that K C R? is a constant cone satisfying the
hypothesis of the introduction and Ky C K is a closed cone with 0Ky C
int K and int Ko # 0.

Lemma 4.4.20. [Projection onto Ky parallel to —K| Given x € K, there
exists a unique y 1= P;(f(x) € Ko such that

—y| = min{[|z — k|| : 2 — k € K}.
lz =yl = min{l|lz — k|| : 2 - k € K}

We omit the proof which is standard. It is easily observable that the direction
of x — P}f(w) is given by ¢o if x € K9 and ¢ if z € K;.

4.4.5 A4 : Auxiliary Results

In the following, we present some technical results.
Lemma 4.4.21. For every portfolio process V.= V™, m € A, the process
Iv_cox |AY |Ijg gn) is indistinguishable from zero.

Proof. Consider an arbitrary € > 0,

EY Iv,_cox|AYllay,zelsco = E /

Iy, _cor|2|1)2j> Is<op(dz, ds)
SZO [0,00)XRd

Since the process s +— Iv,_cor|2||.|>cIs<p is predictable and q(dz,dt) =
I1(dz)dt, we deduce that

EY Iy, cox|AYillay,zelsco = E / Iy, eor| 2|5 Ls<oTl(dz)dt,
s>0 [0,00) xR

= E/ IVS,€8K’Z|I\z|zaISSGIAVsi(]H(dZ)dt-
[0,00) x R4

We recall that for s < 0, V; € int K. Hence, AV, = 0 implies that V;_ €
int K. Since the Lebesgue measure does not charge any countable set, we
deduce that
EY Iy, cor|AY;|ljay,zcls<o = 0.
s>0

Therefore, Iy_cox|AY |I|ay|>c1[0,97] = 0 a.s. and, by letting € — 0, we then
conclude that Iyv_cor|AY|Iggr) = 0 a.s. B

Corollary 4.4.22. We have V;_ € int K if t € [0,0].

Proof. Suppose that V;_ € 9K for some t < 0. Then, by virtue of lemmas

4.4.21] and Assumption 5) of the model, we have AY; = AB, = AC, = 0.
Therefore, V; = V;_ € 0K hence a contradiction. l

Note that we also deduce from lemma that the portfolio process moves
out of K either in a continuous manner (in the case Vp_ € 0K) or due to a
jump (in the case Vp_ € int K). B
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Let us denote by S! := &(Y?) the Doleans-Dade exponential defined as

E(Y) =21+ AY)e A

s<t

Observe that S° is strictly positive by assumption and (S;)i>o is the price
process whose dynamics is given by

If X is a cadlag process and B is a predictable ladlag process of bounded
variations we may define the Stieltjes integral fg X,dB, following the defini-
tion of [43] (with some modifications given in the appendix of this chapter).
We then deduce a closed form of the portfolio process expression controlled
by ©# = (B, C).

Lemma 4.4.23. For every control m = (B, C),

Wy =t a0 [ e, (V) ld(BL - O,

1s the unique solution of the dynamics ,
Proof. Let us set

Wi = Siai+ 5} [ (S8, - )
0
The integration by part formula of theorem yields
. t . . t . . . .
Wi = +/ xS, dY, + / Si(SI)rd(BE — CY)
0 0
s ([ shami- o) siavie st AvisL ) AB - O,
0 0 u<t
We then deduce that
Wy = xi—l—/ W, dYy, + B, — C,,.
0

Let V be an other process verifying (4.2.3)). Then, U = W — V satisfies the
s.d.e. dU} = Uf_dY}, Up— =0, hence U = 0. B
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Chapitre 5

(General Financial Market
Model Defined by a
Liquidation Value Process

Abstract

We present a general financial market model defined by a liquidation va-
lue process. This approach generalizes the conic models of Schachermayer
and Kabanov where the transaction costs are proportional to the exchanged
volumes of traded assets. This allows to consider financial market models
where proportional transaction costs and fixed costs coexist. In this case,
the solvency set of all portfolio positions that can be liquidated without any
debt is not necessary convex. Therefore, the usual duality principle based on
the Hahn-Banach separation theorem is not appropriate to characterize the
prices super hedging a contingent claim. We propose an alternative method
to price European or American contingent claims under absence of arbitrage
opportunity of the second kind.

Keywords : Financial markets, Liquidation value, Transaction costs, Eu-
ropean and American options, Hedging, Partial order.

Note. This chapter is based on the article General Financial Market Model Defined
by a Liquidation Value Process, T. Tran, E. Lépinette, Submitted in Journal of
Stochastics .

5.1 Introduction

Since the pioneering work of Jouini and Kallal [52], a lot has been done
in the direction of financial market models with proportional transaction
costs. On the one hand, the Schachermayer model [92] focuses on markets
where prices are defined by bid-ask spreads, which is a generalization of [52].
The main theorems in the literature [52] [92] 45] are formulated for models
with only one risky asset. They show the equivalence between absence of
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arbitrage opportunity and existence of a martingale evolving in the bid-
ask spread. They may be interpreted as generalizations of the well-known
Dalang-Morton-Willinger theorem for frictionless market models defined by
a unique price process S on a time horizon [0,7] [24]. It asserts that there
is no arbitrage opportunity if and only if there exists a deflator (a strictly
positive martingale) (pt)¢cpo,7] such that pS is a martingale or, equivalently,
S is a martingale under the equivalent probability measure ) such that
dQ/dP = pr.

On the other hand, the Kabanov model is oriented towards currency markets
where any asset can be exchanged directly to any other one. A first approach
was suggested in [56] (inspired by the paper [19] where a two-asset diffusion
model is considered) : one should think in terms of the martingale density
rather than of the measure and the natural analog of the latter (called in [92]
a consistent price system) is a martingale whose values are in the dual of the
solvency cone. The random solvency cone is the set of all portfolio positions
one can change, paying transaction costs, into new ones with nonnegative
positions in every asset. Most of the results in the literature are obtained
under the condition that the solvency cone G is proper, i.e. GN(—G) = {0},
which means that at any instant there exists at least one strictly positive
transaction costs coefficient. This ensures that the interior of the positive
dual of the solvency set is nonempty, see [72] for more details and the general
case for discrete-time models.

Abstract models are also considered with general random cones. A strong
form of absence of arbitrage opportunity is required to deduce a dual charac-
terization of prices super hedging a European or American claim, see [55],
[15],]7] and [31]. This is equivalent to the existence of a strictly consistent
price system, i.e. a martingale evolving in the interior of the positive dual
of the solvency cone. As shown in [45], this corresponds to a robust ab-
sence of arbitrage opportunity, i.e. there is still no arbitrage opportunity for
smaller transaction cost coefficients. This concept is extensively studied by
Schachermayer [46] for small transaction costs. Moreover, in Proposition 9
[15], a new condition which is called (B) in [72] is considered meaning that
the set of consistent price systems is rich enough. As shown by Résonyi for
discrete-time models, this condition is equivalent to the absence of arbitrage
opportunity of second kind [91] and is studied in further papers [10] and [57]
for continuous-time settings. Under Condition (B), it is possible to charac-
terize the set of all minimal portfolio processes super hedging a European
claim with respect to the random preorder induced by the random solvency
cone [58], [59].

For all the models mentioned above, studying absence of arbitrage opportu-
nity allows to exhibit dual elements, precisely either deflators for frictionless
models or consistent price systems for Kabanov’s models, which characterize
the set of all super hedging prices of European or American options. The
technique we use to construct such dual elements is very standard. Indeed,
since the models are convex in the sense that the terminal values Ry of port-
folio processes is a convex set, it is sufficient to show that R is closed under



5.1 Introduction

121

absence of arbitrage opportunity so that we may apply the Hahn-Banach
separation theorem. This is the well known Kreps-Yan theorem in the case
of conic market models, see for instance [73] and [II]. Even if the solvency
set is only convex but not conic, it is also possible to formulate results on ab-
sence of arbitrage opportunity as well as a characterization of super hedging
prices as proposed in [85].

In presence of both fixed and proportional transaction costs, for instance
when the prices are defined by bid-ask spreads, the solvency set is not neces-
sarily convex. A first attempt to formally study models with fixed costs is
proposed in [53] and [54] where the absence of arbitrage opportunity appears
to be equivalent to the existence of an absolutely continuous martingale pro-
bability measure, at least for a finite probability space. To do so, the authors
equivalently reformulate the absence of arbitrage opportunity in the model
with friction in a new type of absence of arbitrage opportunity but for the
associated frictionless model so that convexity may be used. It is quite reaso-
nable to study such models including fixed costs as observed a long time ago
by Brennan [I4] since such models capture the basic features of the commis-
sion structure of many stock exchanges which involve a stated amount plus
a declining percentage of the value of the transaction [53]. We send readers
to [53] for a rich list of references on the subject.

In this chapter, we unify these different approaches by proposing a model de-
fined by a liquidation value process in a discrete-time setting. This is very na-
tural. Indeed, suppose that a discrete-time stochastic basis (€2, (F¢)s=o,... 1, P)
is given and a portfolio process is a predictable vector-valued strategy V ex-
pressed in physical units, i.e. the quantities of assets an agent holds. The very
question is how can we change the portfolio position V;_1 into V; at time
t? The answer is immediate : write V;_1 = V; + (V; — V;_1) and liquidate
without any debt the remaining part V; — V;_;. This means that V; — V;_;
belongs to the solvency set. Equivalently, L;(V; — Vi—1) > 0 where Ly(x) is
the liquidation value function at time ¢ of the position x, i.e. the maximal
amount of cash we obtain when we liquidate all the risky positions. In this
chapter, we only consider discrete-time models for the sake of simplicity. In
Section 4.2, we introduce a financial market model defined by a liquidation
value process. We consider a two-dimensional example defined by a riskless
bond and a risky asset given by bid and ask prices in presence of fixed costs.
In Section 4.3, we study the absence of arbitrage opportunity of the second
kind as introduced by [91] under which we formulate, in Section 4.4, a cha-
racterization of super hedging prices for European and American options, by
means of the essential supremum and maximum notions. Most of the proofs
are presented in Appendix.

Notations.

e1 = (1,0,---,0) e R%, d > 1.

For some subset G C R,z =C y oz —y € G.

For random sets (Gt)o<t<7, Gt C Rl,z >ty z—yecG,.
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Ri (resp. Ri ) is the set of vectors in R? having positive (resp. positive
and non null) components.

E designates the expectation of a random variable.

LY(E,F) is the metric space of all E-valued random variables which are
F-measurable.

L>*(E,F) is the normed space of all E-valued random variables which are
F-measurable and bounded.

5.2 Model and basic properties

Let us consider a probability space (2, F, P) and let (F;);=o,... 7 be a discrete-
time filtration. Let (Uy(x))s=0,... 7 be a Caratheodory function defined on the
product Qx {0,---,T} xRY, i.e. a function which satisfies the following pro-
perties :
a) For each w, P-a.s., and every t = 0,--- , T, Uy(w,-) is continuous on R,
b) For each (t,z) € {O -, T} x RY Uy(-,z) € LO(R, F),
¢) Uy (0) >0 aus. forallt—0,~--,T,
d) For all t = 0,---,T, the property (Ui (z) > 0 and U;(y) > 0) for some
z,y € R? 1mphes that Uy(x + y) > 0 holds a.s.
Remark 5.2.1. Observe that we may replace U by U defined by

-  Ui(w, )
Ut(w7$) T 1+ |Ut(w,$)|’

which satisfies |U] < 1.

We suppose that the portfolio processes we consider are expressed in physical
units, i.e. the number of assets an agent holds. Moreover, we suppose that the
first component of such portfolios corresponds to a cash account. Precisely,
we assume without loss of generality that the bond is S = 1 so that the
first component of a portfolio position is an amount of cash.

Definition 5.2.2. A self-financing portfolio process (Vi)i=o,... T s an (Ft)i=0,-. 7-
adapted process such that
U (Vi1 —Vy) >0, vt=0,---,T a.s. (5.2.1)

Let us comment this definition. At time ¢, when we re-balance a portfolio
process (V4)¢=o,... 1, we change the position V;_; into V4. To do so, we split the
position V;_; into two portfolio positions as follows : V;—1 = Vi + (Vi1 — V;).
We need to liquidate without any debt the part V;_; — V;. By definition
of our model, this means that U;(V;—1 — V;) > 0. Such a portfolio is said
self-financing since no extra wealth is added for the trading of V. Observe
that the binary relation x =ty if and only if Uy(z —y) > 0 is a preference
relation so that (| reads as Vi_; =t V;.

Let (Ug(2))t=0,... T be a Caratheodory function and let us define the solvency
set
Gi(w) := {zr € RY: Uy(x) > 0}.
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Observe that G is an adapted random set in the sense that its graph at time
t, i.e.
GrG;:={(w,x): =€ G(w)},

belongs to F; x B(R?) where B(R?) is the Borel ¢-algebra on R?. This is
a closed set containing 0 and such that Gy + Gy C G; a.s. This set corres-
ponds to the set of all solvent positions at time ¢. Conversely, suppose that
at each instant ¢ we are given a random Fi-adapted closed set G; containing
0 and such that Gy + Gy C G; a.s. We interpret G; as the solvency set at
time t. Let us define U (z) = —d(z, G¢) where d is the Euclidean distance
on R?. We observe that U(x) > 0 if and only if Uy(z) = 0, i.e. if z € G.
Obviously, (U(z))¢=o,... 7 is a Caratheodory function. It follows that Cara-
theodory functions and solvency sets equivalently define the financial market
model we suggest. Many situations may be described by such a solvency set
and we may restrict Gy to N? so that the model is realistic, i.e. the number
of stocks an agent holds is integer-valued provided that Vy_ € N¢.

Note that the solvency sets (Gt)i>0 are not necessarily convex cones in ge-
neral. Contrary to the classical financial market models with proportional
transaction costs, the model is not convex hence it is not possible a priori
to formulate absence of arbitrage opportunity thanks to the Hahn—Banach
separation theorem as usual. Consequently, it is not possible to derive a dual
characterization of all super hedging prices of European or American claims
except if we consider the artificial enlarged market defined by the random
cone (Ky)i>0 where K is given below by (6.1.2).

In the present chapter, we restrict our attention to models satisfying the
following conditions. They are motivated by markets with both fixed and
proportional transaction costs.

Condition G° :

(i) Gy is a closed Fy-adapted set, 0 <t < T,
(i) Gt + Gt C G, 0 <t < T, as.,
(iii) NGy C G, VA > 1, aus.,

(iv) G + R = Gy, ass.,

(v) The cone R G is proper , i.e. R1G; N (=R G;) = {0} ass.

Remark 5.2.3. Under the conditions above, we easily show the following
equalities

conv Gy = cone Gy = Ry Gy =: K4, (5.2.2)

where conv Gy and cone G; respectively designate the convex and the conic
hull of G;. In particular, if G is convex, then Gy = K;. The enlarged market
given by the solvency set (K¢)¢>0 is therefore the minimal conic market model
that dominates (G¢)¢>0. For instance, if (G¢)¢>0 models a financial market
with both fixed and proportional transaction costs, then (K):>o defines the
market model with only proportional transaction costs.
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Since we interpret the closed random set G; as the set of all solvent positions
at time ¢, it is natural to introduce a liquidation value process L; such that
Gy = {x € R?: Ly(z) > 0}. Very naturally, if z is a portfolio position, then
L¢(x) is the largest amount of cash we get at time ¢, when liquidating the
risky assets contained in the portfolio . The new portfolio position after
liquidation is therefore Li(x)e;. The liquidation value process L; defined
below satisfies the same property than U; except that L; is not necessarily
continuous.

Definition 5.2.4. Consider a random set G satisfying Condition G°. The
liquidation value process associated to the process G is

LY (2) :=sup{a € R: z —ae; € Gy¢}. (5.2.3)

Recall that Gy is assumed to be closed. Therefore, under Condition G?,
L; := L can be rewritten as follows :

Li(z) == max{a € R: z —ae; € Gi}.

It is clear that L;(z) > 0, Vz € G;. Reciprocally, if Ly(z) > 0, this means
that z = ae; + g € Gy where a > 0 and ¢g; € G;. This implies that Gy is
represented by Ly, i.e. Gy(w) = {x € R?: Ly(x) > 0}.

Definition 5.2.5. We say that the random preorders = are represented by
the liquidation value process L if the set of solvent positions at time t is given
by Gi(w) = {x € R?: Ly(x) > 0}.

We sumarize in the following proposition some basic properties of the liqui-
dation value process.

Proposition 5.2.6.  Suppose that Condition G° holds and the liquidation
value process L is defined by . Then,

(i) Ly satisfies the followings properties

+y) > Ly(z) + Ly(y), z,y € RY,
+Xe1) =Liz)+ )\, MeR,zeRY
Lt )\IE) > )\Lt(ZL‘), VA Z 1.

(ii) Ly(z) < oo, Vo € R If Gy dominates RY, i.e. RL\ {0} C int Gy,
then Ly(x) > —oo, Vo € R%.

(i4i) {Ly = 0} C 0G;. Consequently, x — Li(z)e; € 0G;, x € RY.

(iv) Ly is upper-semicontinuous for all t.

(v) In the case where G is a convex cone dominating Ri, the liquidation

value function Ly is homogeneous, concave and continuous on R, We
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also have

Gy = {zx € R?: Ly(x) = 0}.

(vi) Suppose that the liquidation function LE of K is finite on RY, then the
concave hull function of LS coincides LE for allt =0,--- ,T.

See the proof in Appendix.

Corollary 5.2.7. Suppose that Condition G° holds and the liquidation
value process L is defined by . Let v € LO(Rd, Fi). Then, the mapping
w i Ly(w,vy(w)) s Fr measurable.

See the proof in Appendix. The binary relation z =% y iff Ly(z —y) > 0
defines a preorder as soon as L, satisfies Condition (d). This is the case when
L is super additive, i.e. if Ly(z +vy) > L(x) + Ly(y) for every z,y € R? a.s.
Note that the liquidation value process given by is super additive and
upper semi-continuous. Reciprocally, observe that, if L; is an upper semi-
continuous and super additive function, then the set G; := {L; > 0} is closed
and stable under addition.

Example 5.2.8. Consider the following example in R?. Suppose that the
financial market model consists of two underlying assets. The first asset is
a cash account such that the bond is given by S* =1 on [0,T]. The second
asset is risky and modeled by a bid (sell) price S° and an ask (buy) price
S® such that the bid-ask spread is given by [S®; S?]. Moreover, we suppose
that there is a fized cost for each transaction at time t we denote by ¢, > 0.
Besides, when the portfolio position is (x,y) such that y > 0, we suppose
that the agent is rational enough not to deliberately sell the stock when the
bid-price is too low to compensate for the fized cost, i.e. when, at time t,
ySf’ — ¢ <0.

Let us characterize (z,y) € Gy. If y > 0, you sell the risky assets of your
portfolio so that the position (x,y) is solvent meaning that max(x + SPy —
c,x) > 0. If y < 0, you buy |y| units of risky assets hence (x,y) € Gy
when x + S{y — ¢ is positive. We deduce that Gy is the intersection of two
half-planes plus the first orthant Ri hence Gy is closed. We easily check that
Gt + Gy € Gy and Gy N (—Gy) = {0}. At last, observe that A\Gy C Gy for
all X > 1. Note that K; := R G} coincides with the solvency cone in the
Kabanov model [77)], i.e. such that ¢ = 0. It is proper as soon as S° < S®.
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FIGURE 5.1 — The stripy domain corresponds to the set Gy of solvent points.

For such a model, the preorder >t is represented by the liquidation function
Li((2,y)) == max(z, @ + 57y — i) y>0 + ( + Sy — i) ly<o.

We may easily check that Ly is a.s. continuous except the points of the form
(z,0) where L is only upper semi-continuous. Moreover, Ly is upper additive.

5.3 Absence of arbitrage opportunity

Arbitrage theory for financial markets with transaction costs is mainly consi-
dered under the multidimensional approach which consists in expressing the
portfolio processes as well as the contingent claims in physical units [72].
In practice, agents acting on the market are essentially interested in the li-
quidation values of such portfolio processes. This is the approach we adopt
here when considering arbitrage opportunities, which is also coherent with
the arbitrage theory for frictionless market models.

In the following, we consider a financial market model defined by a random
solvency set (@ satisfying Condition G or equivalently defined by the asso-
ciated liquidation value process given by which satisfies Proposition
. In this case, a portfolio process is just an adapted process (V;)i=o.... 1
satisfying AV, : =V, — V1 € —G4.

5.3.1 NA condition

Definition 5.3.1. An adapted portfolio process (Vi )u>t, t € {0,--- , T}, rea-
lizes an arbitrage opportunity of the first kind if Vp >* 0 and P(Lr(Vr) >
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0) > 0. We say that NA Condition holds when there is no arbitrage oppor-
tunity of the first kind.

We denote by R(% the set of all terminal values Vp of portfolio processes V'
such that V_; = 0. i.e.

R} :=R}(G):= Y LY-Gi,F).
0<t<T
We also define
VY% .= LVY(G) := {Ly(Vy) : Vp € R%Y,

and more generally, we also define R%, := Zugth L°(—Gy, F;) and, similarly,
LVY%. Observe that LY(—R., Fr) € LVS. Let us introduce the convex cone

Af =D NXi: Ai>0, X; € LVE}.
=1

Lemma 5.3.2.
A ={\X: Ne0,1], X € LV}}.

See the proof in Appendix. The following result shows that the NA condition
may be reformulated as an absence of arbitrage opportunity for the convex
model defined by the terminal values AOT. This could be an idea to obtain a
characterization of the NA condition we leave for future research in a second
paper on non convex market models.

Corollary 5.3.3.
NA =AY NLOR, Fr) = {0} & A¥ N LO(R,, Fr) = {0}

where A := A% N LR, Fr).

The following lemma exhibits the relationship between Condition NA un-
der the liquidation value approach and the condition NAY [72] under its
associated multidimensional approach.

Lemma 5.3.4. If Gy dominates RY . ie RfiH C int Gp, then we have
R} N LY(RYL, Fr) = {0} & VY. N L°(R4, Fr) = {0}.
Proof. (=) Let Ly (Vy) € LV N LO(R.y, Fr). We then have
Lr(Vr)er € RE N L°(RL, Fr) = {0},

which implies that Ly (Vr) = 0.

(<) Let Vo € RY. N LY%RY, Fr). Recall that Gr dominates R%. Hence,
Ly > 0 on RY and, on R4, Ly(x) = 0 if and only if z = 0. Therefore, if
Vr € R4, then Ly (Vy) € Ry, which yields a contradiction. B
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Remark 5.3.5. The previous lemma states that, in the case where G
dominates R‘i, Condition NA defined under the liquidation value viewpoint
is equivalent to the classical notion NAY. Unfortunately, the requirement
that G dominates Ri does not hold in general. Indeed, consider models
with both fixed and proportional transaction costs (see Example . In
this case, Lp(Vr) = 0 even if Vp € Ri 4. In general, we only have the
implication

R} N L°(RY, Fr) = {0} = IV§. N LR, Fr) = {0}.

In case of Example [5.2.8] observe that NA is equivalent to

cr
S?D

R} N LR, Fr) € L°({0} x [0, (5.3.4)

The proof is obvious. Indeed, we first note that NA is equivalent to
ng N LO(GT,]‘-T) - {LT = 0}.
Therefore, if NA holds and X € R% N LY(R2, Fr) we have

X € {Ly =0y LR, Fr) = LO({0} x [0. 7)),

T
ie. holds. Conversely, if NA does not hold, there exists X € R% such
that Ly(X) > 0 and Ly(X) # 0. Hence Ly(X)e; € RS N LY(R2, Fr), a
contradiction to [5.3.4
Proposition 5.3.6. NA holds if and only if for all Vi € RY., there exists
7Z =27V € L*((0,00), Fr) such that EZLy(Vr) < 0.
Proof. Suppose that Ly (Vr) > 0. AsEZLp(Vr) < 0, we get that ZLp(Vy) =
0 and Ly (Vr) = 0, i.e. NA holds. Reciprocally, suppose that NA holds and
consider w.l.o.g. that Lp(Vp) # 0. Then, P({Lp(Vy) < 0}) > 0. Indeed,
otherwise, NA implies Ly(Vy) = 0. To conclude, it is then sufficient to
choose

Z = 6_‘LT(VT)|(C¥1LT(VT)<0 + 1L (vp)>0)5

where

ELT(VTW*'LT(VT)'1LT(VT)20

EL7(Vr)e br(Vollly, oo

o>

5.3.2 NA2 condition

Definition 5.3.7.  The market defined by G satisfies the condition NA2

if for all t € (0,71, for all initial endowment Vi_y € F;_1 and all Wy € R,
such that Lp(Vi—y + Wrp) € L® (R4, Fr), we have Vi_1 € Gi—1 a.s.
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Definition 5.3.8. Given a family of sets of adapted processes A = (A¢)o<i<T
such that Ay € L°(R.y, ), we say that a real-valued adapted process (My)o<i<T
is a A-super martingale if, for all t, there exists Ziy1 € Ny11 such that

E(Zi1 M1 |Fe) < M.

Let Gf := {y € RY: yx > 0,Vx € Gy} be the positive dual of Gy. The
following result is shown in Appendix.

Theorem 5.3.9. In the conic Kabanov model, NA2 holds if and only if
for all adapted portfolio process (Vy)u>t, t € {0,-++ , T}, (Ly(Va))u>t s a
A-super martingale where

Ay = {Zer : Zy € LO(GF, Fy)}.

This theorem can be generalized to the case of non-conic models under mild
conditions.

Theorem 5.3.10. Suppose that the random set of solvable positions is given
by Gy := {L; > 0} where L is the liquidation value process which is super
additive. Then, NA2 holds if and only if for all adapted portfolio process
(Vi)uzt, t €{0,--- T}, (Ly(Vi))ust is a A-super martingale for some A.

Proof. The reverse direction of the equivalence is shown as in the previous
theorem. Let us now suppose that NA2 holds and consider a portfolio pro-
cess (Vy,)u>t. Let us define

Ly (Vi)

Zu = 71 .
o Loy1(Va) Lut1(Va)/Lu(Vu)>0

Then, as Lqul(Vu) > Lu+1(Vu+1) + Lu+1(Vu - Vu+1) > Lqul(Vqul)a we
deduce that

E(Zu-i-lLu-i-l(Vu-i-l)‘J:U) E(Zu+1Lu+1(Vu)‘}_U)7

Lu(VW)E(lL, , , (vi)/Lu (Vi) >0l Fu)-

It remains to show that

0 < Ly(VW)E(L,, , (vi)/Lu (Vi) <0l Fu)-

To do so, it is sufficient to prove that E(1y,, ., (v,)>0lL,(vi)<0lFu) = 0. In the
contrary case, there exists F, € F, such that 1y, (v,)>0lL,(vi)<0 > 0 on

F,. Tt follows that the portfolio process (V2)r=uu+1 such that V,,— =V, and
Vut1 = Vi, = V15, satisfies Ly 41 (V1) > 0 while L, (V,,) < 0 on F,, i.e.
there is an arbitrage opportunity of the second kind hence a contradiction.

Corollary 5.3.11. Suppose that the random set of solvent positions is given
by Gy := {L; > 0} where L is the liquidation value process which is super
additive. Then, the following statements are equivalent :

(i) NA2 holds,
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(ii) For all t, L°(Gyy1, Fy) C LY(Gy, F),
(iii) For every portfolio process and for every t =0,--- , T — 1,

Liv1(Vigr)
L, (V))E | ———————=1 —1 <0.
(Vi) ( AR Lo |F: ) <

Lt (Vz)

Proof. The implication (i)=- (ii) is trivial. Condition (iii) means that V; >
E(Z;11Vis1|F) where Zyq € L°(R, F;), which implies (i) by the previous
theorem. The implication (ii)=- (iii) can be shown by following the proof of
the last theorem since Lu+1(f/u+1) > 0 means that f/u+1 >u+l () hence, by
(i), Vi = Valp, >*0, i.e. a contradiction. W

In Example suppose that there is @ ~ P such that S® and S¢ are
respectively (Q-supermartingale and ()-submartingale. Then, if ¢ is constant,
the N A2 condition L°(Gyy1,F;) € L°(Gy, F;) holds. To show it, let us first
observe that for all t, Gy = T, U (K; + ce;) where T; C R‘i and K is the
solvency cone of the Kabanov model i.e. the same model but with ¢ = 0.
Consider 7; := (x4,9;) € L°(Gy11, F;). Since Rﬁlr C Gy, we have %1%6111 €

Gy a.s. Otherwise, (v — Cel)l,ythi € K1, ie.

(ﬂﬁt —c+ ytsfﬂlytzo + ytSf+11yt<0> 1%¢Ri = 0.

Taking the conditional expectation with respect to F; under @) and using
the assumptions, we get that

(ajt —c+ ytStb]-ytZO + ytsflyt<0) 17t¢Rfl’_ > 07

ie. (v — 661)1%¢Ri € ?tl'MZRi hence %1%¢Ri € (K + 061)1%¢Ri C Gy.
The conclusion follows.

5.4 Super hedging prices

In the model we consider, recall that a stochastic basis (€, (F¢)i=0,...7, P)
is given. We consider a liquidation value process L such that the associated
random set Gy := {z: L;(z) > 0} is closed. We suppose that, for each ¢, L
is upper additive and upper semi-continuous.

When we suppose that U; is continuous (e.g. Us(x) = —d(z, Gt)), we deduce
that the associated preorder defined by z = y if Uy(x —y) > 0 is continuous
hence admits a continuous multi-utility family [35]. Let us endow the set
of R%valued random variables with the following preference relation : for
71,72 € L°(R%, F), we write 1 =t 49 if Up(y1 —72) > 0 a.s. Observe that the
relation >? defines, for each ¢, a preorder on L°(R%, F) which is continuous.
This means that the graph

GR(t) :=={(11.72) € L'R%, F) x LORY, F) : v =" m},
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is closed in L°(R%, F)x L°(R%, F). Indeed, as the function U; satisfies Condi-
tion (a), it follows that the preorder =! admits both a lower and upper
semi-continuous multi-utility representation, [35]. But it is not clear whe-
ther there exists such a family which is countable. Similarly, for each w
in the probability space 2, we may also consider the associated (random)
preorder on R? at time ¢, i.e. =%t y if and only if Uy(w,z —y) > 0.
Since R? is both g-compact and locally compact, by [59], we deduce that
for each (w,t), there exists a countable family of utility functions charac-
terizing the preorder =“*. Nevertheless, it is unclear whether there exists
such a countable family whose utility functions are measurable in the sense
given in [58]. When this is the case, we may define two concepts of essential
supremum and maximum [58|, [59]. The first notion, which is not a random
variable but a family of vector-valued random variables, is a generalization
of the real-valued essential supremum of a family of real-valued random va-
riables to the set of vector-valued random variables equipped with a random
preorder. This allows to characterize the minimal super-hedging prices of
European and American contingent claims. In the present setting, the nee-
ded conditions do not seem to be satisfied so that we can not apply the
existence theorems formulated in [58] and [59] which state that the essential
supremum and maximum of a family of vector-valued random variables I"
are nonempty provided that I' is bounded from above with respect to the
random preorder considered. Actually, the mentioned results still hold in our
case under mild conditions, as proved in Appendix by using a new approach.
In the sequel, we use the notation [a, b]' when we denote an interval with
respect to the preorder >*.

In the following, we assume that all order intervals [y1(w),v2(w)]t, v1,~% €
LY(RY, Fr), v2 = 1, are compact a.s. This is the case when the cone K is
proper as shown in the following lemma (see Appendix).

Lemma 5.4.1. Suppose that the cone K; is proper. Let us consider two
random variables y',~v* € LO(RY, F) such that v1 =<' ~3. Then, the order
interval [y', 72t is a.s. compact.

In Example K, is proper. It follows that the (random) order intervals
Y1 (w), ¥ (w)]t, v =t +2, with respect to Gy are compact a.s.

We consider the set V of R%valued Fi-adapted portfolio processes V such
that the increments AV, := V; — V;_1 € —Gy for all t. In this model, Eu-
ropean contingent claims are d-dimensional random vectors and American
contingent claims are adapted d-dimensional random processes. This means
that the claims are expressed in physical units.

A portfolio process V' € V super-replicates a European claim Y7 if Vi =T Y7
Moreover, it is called minimal if any portfolio process W € V such that
Wr = Yy and V = W coincides with V. The notation > means that we
use the partial order >**! when comparing values of the processes at time
t < T. Observe that under NA2 Condition, the inequality W; <'*! V; is
equivalent to Wt <Gi+1NGy 17,5 We denote VEm(YT) the set of all minimal

m
processes super replicating the European claim Y7. Observe that the super
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hedging problem Lz (V7) > & where € € L°(R, Fr) reads as Vp =7 £ey. This
is a restriction of the more general problem we consider.

Similarly, the value process V' € V super replicates an American claim
(Yi)t—o,... 7 f V = Y, ie. V; =" Y, at any time ¢, and we define analo-
gously V4. (V). Before characterizing the set of all minimal super hedging
portfolio processes and prices, we introduce the following concepts.

Let H be a sub-o-algebra of F := Fr. We consider in the space L°(R?, F) of
d-dimensional random variables a partial order defined by a Caratheodory
function U satisfying the conditions (a)---(d) of Section For instance,
when U = Uy as in Section for elements 1,72 € LO(R?, F), the relation
y2 =% 71 means that Ug(y2 — 1) > 0 a.s. In the following, for the sake of
simplicity, we write U = U; whatever t is and we use the notation s > ;.
Recall that the solvency set is GU := {x € R?: U(x) > 0} which defines a
liquidation value function L given by ).

Definition 5.4.2. Let T be a subset of L°(R%, F). We denote by H-Esssup T’
a subset ' of LO(R®,H) such that the following conditions hold :

()T =T,
(b) if v € LO(RY, H) and v = T, then there is 4 € [ such that v = 74,
(c) if 1,92 € f‘, then 41 = Ao tmplies 41 = 2.

The following condition holds for the Kabanov model as well as the model
in Example Indeed, it suffices to consider ug(z,y) = arctan(x + SPy).

Condition II. There exists a measurable bounded continuous real-valued
function u such that the following properties hold with G = {L = 0} :

(i) : z —y € G implies that u(x) > u(y),

(ii) z —y € G and z # y implies that u(x) > u(y).

Theorem 5.4.3. Let = be a partial order in L°(R®, F) represented by a
measurable liquidation value function L which is upper semi-continuous and
upper additive and such that all order intervals [y1(w),v2(w)], v2 = 71, are

compact a.s. Suppose that Condition II holds. If a non-empty subset I' is
such that 4° = T for some 7° € LO(RY,H), then H-EsssupT" # ().

The proof is given in Appendix.

In the sequel, we denote by envyI" the smallest ’H—decomposablelﬂ subset of
L°(X, F) containing I' and by clenvyT its closure in LO(X, F).
Definition 5.4.4. Let T' be a non-empty subset of L°(X,F). We put

H-Essmax ' := {7 € clenvyI' : clenvyI' N[y, 00[= {7}}.

Definition 5.4.5. Let I' be a non-empty subset of L°(X,F). We denote
by H-EssmaxiI' the unique subset I' C clenvyl' such that the following
conditions hold :

1. A set E is H-decomposable if A € H and 71,72 € E implies that 1ay1 + 1og\ay2 € E.
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(i) if v € clenvyl, then there is 4 € T' such that 4 = v ;

(1) if 41,42 €T, then 41 = 4o implies 41 = Ao.

Though our definitions are given for I' € L°(X,F), the most important is
the case where I' € L°(X,H). Observe that H-Essmax;I' C H-Essmax T’
and the equality holds provided that H-Essmax; I # () due to ().
Theorem 5.4.6. Let = be a partial order in L°(R®, F) represented by a
random liquidation value function L which is upper semi-continuous and
upper additive and such that all order intervals [y1(w), v2(w)], v2 = 71, are
compact a.s. Suppose that Condition II holds. Let I' be a non-empty subset
of L°(R%, H). Suppose that there exists 4° € LO(RY, H) such that ° = T.
Then H-Essmax ' = H-Essmax; T’ # ().

The proof is given in Appendix. Following the proofs given in [58] and [59],
Theorems [5.4.3] and [5.4.6] allow to deduce the following characterizations.

We recall that [z,00)" := {2 : 2 =! z} and, in the following, the random
preorder we use to define an essential supremum or minimum is precised in
parenthesis.

Proposition 5.4.7. Suppose that NA2 holds and suppose there exits at least
one V €V such that Vi =T Yp. Then VE, (Y1) # 0 and it coincides with

m
the set of solutions of backward inclusions

Vi € (F, =) -Esssup {Vipa}, t<T -1, Vp=Yr. (5.4.5)

Moreover, any W € V with Wr =T Yo is such that W = V for some
Ve ng (YT)

Proof. The reasoning is very similar to Proposition 5.1 in [58]. We only need
to check that if 2,y € L°(RY, F;) are such that x =1 g, i.e. Ly (z—y) > 0,
then Ly(z—y) > 0, i.e.  =! y. This actually holds under the NA2 condition
by Corollary [

Remark 5.4.8. Observe that, if a characterization of the minimal super
hedging portfolio processes of any attainable European contingent claims is
given by the set of solutions of backward inclusions above, then NA2 holds.
Indeed, suppose that Ly(Vy) > 0, V € V, ie. Vp =7 0. With Yy = 0,
we easily deduce that there exists a unique minimal super hedging portfolio
process of Y = 0, precisely the zero portfolio process. Therefore, V' > 0.

Definition 5.4.9. Assume that the set F)% of superhedging price of Y is
closed. We say that Vg is a minimal super-hedging price of Yr if the property
Vo =0 Wy where Wy is a super hedging price of Yr, implies Vo = W.
This means that the minimal superhedging prices for Yr coincide with Gg —
Min F% (with respect to the partial order generated by Gy ).

Proposition 5.4.10. Assume that the set F)% of superhedging price of Y
s closed. Any minimal superhedging price of Y is the initial value of a
minimal superhedging portfolio process of Yr.

Proof. Consider a minimal superhedging price of Y7. This is the initial value
Wy of a portfolio process W superhedging the payoff Yr. By definition,
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there exists a minimal superhedging portfolio process V for Y7 such that
W =%V hence Wy =% Vj. This implies that Wy = Vj since Wy is minimal.
Therefore, Wy = Vj is the initial endowment of the minimal superhedging
portfolio process V. B

Corollary 5.4.11. Assume that the set F{;T of all superhedging prices for Yt
is closed. Let VO. (Y7) be the set of all initial values of minimal superhedging
portfolio processes for Yp. Then, Go — MinTI'y,, = Gg — Min Vgﬁn(YT).
Observe that I'y, = (Gp — MinTy,.) + Gp. Therefore, the corollary above
and Proposition give a constructive approach to characterize I'y;..
Proposition 5.4.12. Let Y be an American claim. Suppose there exists a
process VO € V such that VO =Y. Then, the set V;;‘Lm(Y) s non-empty and
coincides with the set of solutions of backward inclusions

Vi € (F, itﬂ)—EssminLO([Yt, 00) N [Vit1, oo)tH,}"t), t<T-1, Vp=Yr.
(5.4.6)

Notice that by Proposition ) or Proposition , the set of all
super hedging prices is simply deduced by adding an element of Gy to any
initial value of a minimal super hedging portfolio process. Contrary to the
traditional approach using convex analysis, in particular the Hahn-Banach
separation theorem, it is not necessary to suppose that the financial market
model is convex since we do not use fundamental elements like risk neutral
probability measures or more generally consistent price systems in a dual
approach. Here, it is sufficient to compute the minimal portfolio processes.
As shown in Appendix, they are deduced by solving expected liquidation
value minimization problems.

5.5 Appendix

Let us recall some elementary facts from convex analysis.
Lemma 5.5.1.

(i) Let K be a convex cone in R? such that int K # (. If x € 0K and
y € int K, then x + y € int K.
(i) Let K be a conver set in R® such that int K # 0. Then int K C K.

Proof of Proposition [5.2.6
(i) These properties are directly deduced from the condition G°.

(ii) If there is no a > 0 such that z —ae; € Gy, we deduce that L;(z) = —oo.
Otherwise we assume that L;(x) = lim, T o" where the sequence (a")
satisfies * — a™e; € Gy. Suppose that sup, a” = +4o0. Then, using the
normalization procedure " = x/a™, we get that #" — e; € K;. Taking the
limit, we get that —e; € K;N(—K;) = {0}, i.e. a contradiction. Therefore, we
may assume without loss of generality that o™ — o* and L;(z) = o* < co.
We now suppose that G; dominates Ri. Since e; € int Gy we can chose
r > 0 small enough such that B(e;,r) C G;. So, for all z such that ||z|| <r,
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we have Li(e; + z) > 0 which implies that L;(z) > —o0, V2, |2]| < r. Since
AG; C Gy, Y\ > 1, we easily deduce that Li(z) > —oo,Vz € R,

(iii) Suppose that there exists € {L; = 0} and r > 0 such that B,(z) C G;.
Since  — re; € Gy, we have —r = Ly(x — re1) > 0, i.e. a contradiction.

(iv) Consider a sequence " € R¢ which converges to 2o € R%. Let us denote
a’ := Ly(z"™). We have 2™ — a™e; € G;. Let us suppose that sup,, a" = oo.
Then, using the normalization procedure, we get that —e; € K; N (—K;) =
{0}, i.e. a contradiction. So, we may assume that o> = limsupa” € R and
xo — a®ey € Gy. It follows that L;(zg) > lim sup L;(z") which implies that
L; is upper-semicontinuous.

(v) If G is a cone, it is straightforward that L; is homogeneous. Since Ly is
super-additive, we deduce that L; is concave, hence continuous (because Ly
is finite on R?). We now prove the last statement. It is sufficient to verify
that Li(z) = 0, Vo € 0G;. We rewrite © = g4+ L¢(z)ey such that Ly(g;) = 0.
If Ly(x) > 0, then Ly(z)e; € intG;. By Lemma x € int Gy, ie. a
contradiction. Hence, L(z) = 0. B

(vi) Recall that the concave hull of LY is given by
conc LY (z) := sup{z Nilg(xi) = N\ >0, Z \ix; = x}.
Since LY < LE and Lf is concave, we deduce that conc L; < L. Moreover,

L& (X
conc LY () > sup =% ( a:)
A>0

In order to prove that conc LY (x) > L (x), it is sufficient to show that for
all z € R% and € > 0, there exists § > 0 such that

L& (6x
t((s ) > LE(z) —e.

To do so, write x as
x =k + LE(2)ey, k€ K.

Using the property of L on Rey, we have L (k;) = 0. Define g. := ki +-ce1.
By Lemma we deduce that g. € int K; C Ry G¢. We now rewrite k; as

ki = \g — €eq,

where g := gf € Gy and A > 0. Since aGy C Gy, Ya > 1, we may assume,
w.l.o.g that A € (0,1].

Choosing 6 = A\™!, we get that

LE(5r) _ LE(9)
) -9

The conclusion follows. B

+ LE(z) —e > LE(z) —e.
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Proof of Corollary
Using the last lemma above, for all ¢ € R, we get that

{w: Li(w,y(w)) >c} = U {w: (w,y(w) —qe1) € Gr Gy}
q€(e,00)NQ

and the conclusion follows.
Proof of Lemma [5.3.2]

Let Y =Y | \iLp(V4) € AY. We assume w.l.o.g. that ); # 0 for all i and
we put « := inf; A\;. Therefore,

"\ . LN .
Y = —Lp(V}) = AL (V7
a;a (V) a; r(Vr)
where \; > 1 and Vi = L~T(Vf~)~€1 € RY. Observe that Vi € R% since
LT(X{r} — V:ﬁ) = 0. Moreover )\iLT(V:,?) = LT()\iV:ﬁ) and )\in} € ROT as \; > 1
and \;G; C G¢. By linearity of L on the line Rey, we deduce that

Y = aLT(Z S\IV%) = OtLT(VT)
=1

where Vi € ROT. Indeed, as G¢ + G C Gy, a finite sum of portfolio process
is still a portfolio process. Therefore, it remains to show that an element of
the form Y = aLp(Vr), a > 0, can be rewritten in the same form where
a € [0,1]. To do so, we only consider the case a > 1 and we may assume
w.lo.g. that Vo € Rey. It follows that Y = Ly (aVr) where aVr € RY. as
a>1.1

Proof of Theorem [5.3.9]
Recall that in the Kabanov model [72],

Li(z) == max{a: z—ae; € Gi} = min  zz =22

2 €GY,zte1=1
where z; € LY(Gj, F;) satisfies zfe; = 1. Recall also that Gf C R%. Moreo-
ver, z — L;(2)e1 € Gy. Suppose that the supermartingale property holds and
there is a portfolio process V such that Vy =7 0. As Ly(Vr) > 0, we deduce
that Lyp_1(Vp_1) > E(Z}LT(VT)|]:T_1) > 0 hence V1 =11 0. We repeat
the reasoning by induction and we get that NA2 holds since V;_; =! V;.
Reciprocally, suppose that NA2 holds. By a measurable selection argument,
we may write Ly, (V,) = Z,V,, where Z, € L°(G%, F,), Z,e1 = 1. By virtue
of [91], Condition NA2E| implies that Z, is the initial value of a consistent
price system (Z;)r>y, i.e. a martingale such that Z, € G, r > u. It follows
that

Zu+1€1Lu+1(Vu+1) S Zu+1Vu+1 S Zu+lvu-

2. Note that the NA2 condition as defined for the Kabanov model and the one we introduce for more general
models coincide.
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Taking the conditional expectation, we deduce that

E(ZqulelLqul(Vqul”fu) < LU(Vu)'

|
Proof of Lemma [5.4.1]

Let us consider a sequence 2" € [y',¥%]%, i.e. such that 2" —y',y? — 2" € G;.
Let us suppose that sup,, |z"| = 4+00. Using the normalisation procedure, we
get a contradiction. B

Proof of Theorem [5.4.3

Let us consider vy € LY([T',00),H) and fix Y € T. For all ¢ € [I',~], L(7°) <
L(¢) < L(7). From the inequality L(vy) > L(y — ¢) + L(¢), we deduce that

0<L(y-¢) <L(y) - L) < L(y) — L(7").

With dQ" = ce EOIFLG] ¢ s a constant, we deduce that L(y — ()
is uniformly @Q7-integrable whatever ¢ € LO([T',~],H). We denote by E?
the expectation under Q7. For any ¢ € L°([I',7],H), the mapping w +>
L(w,v(w) — {(w)) is an F-measurable random variable by Corollary
Put

a(y):= sup E'L(y - ()
¢CeLO(IT ), H)

and consider a sequence ¢,, € L°([T, 7], H) such that a(vy) = lim,, EYL(y—(,).
Without loss of generality, we may assume that the sequence of random
variables L(y—(,) is such that the conditional expectations EY(L(y—(,)|H)
are increasing. Indeed, we can replace the sequence ¢, by the sequence (,
by putting ¢{ = v, and defining recursively the random variables

G = Goalan + Glayan,
0" = {EV(L(y - Go)H) > BY(L(y = G H)}, n>2.

Due to the assumption of the theorem, the order intervals [Jo(w),y(w)] are
compact (a.s.). It follows that sup,, |(,| < 0o a.s. By virtue of the lemma on
converging subsequences (Lemma 2.1.2 [72]), there exists a strictly increasing
sequence of H-measurable integer-valued random variables 73 such that the
sequence G, converges a.s. to some ¢ such that I' < ¢ < . The monotonicity
implies that

E” ( (7 CTk ’H ZE’Y 7 Cm ‘H)I{Tk =m} >E’Y< (V_Ck)’H)
m>k

It follows that
E’YL(’Y - CTk) > E’YL(FY - Ck)

Using the upper semi-continuity of L(w,.) and the uniform integrability of
the sequence (L(y — (7)), we have :

E'L(y = () 2 lmsupE"L(y — G,) 2 ImE'L(y — ) = a().
k
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Thus,
a(y) =E"L(y = ¢). (5.5.7)

We denote by A(y) the set of all random variables ¢ € L°([T,v],H) verifying
(5.5.7)). For each 4 € A(y), observe that ¥ < 4 and 7 € L°([T", 00), H) implies
that ¥ € A(y) and L(y — %) = 0 due to the definition of a(y) since the
inequality L(y — %) > L(y —4) + L(¥ — %) holds. So, ¥y — 5 € G = {L =0}
a.s. Under Condition II, consider the corresponding function u and set

b(®) = inf Eu(5).

)= . (7)

As previously shown, the set /A\('_y) of all random variables 4 € LO([T", 7], H)
verifying b(5) = Eu(%) is non empty. Define the set

r= U A (5.5.8)

yELO([I,00[,H) FEA(7)

It remains to show that this set satisfies (a)—(c). Obviously, ' = T, i.c. (a)
holds. If ¢ € LY([T, c0[, H), then ¢ = A(¢) by construction and for every
v €M),V = /;("y) by construction as well i.e. (b) holds. At last, consider
(1, G2 € I'with (1 € A(%1) and ¢2 € A(72), 71,72 € [I, 00], such that (1 = (.
Then, (o GALO([F,%],H) and (2 = (1 = 71. As already mentionned, we get
that 91 — (1 € G and 91 — ¢ € G. We deduce that (; — ¢ € G. Tt follows
that u(gi ) — u(gg) > 0 and the inequality is strict on a non-null set as soon
as (1 # (o. It follows that there exists a non-null set B € H on which

E(u(G) — u(G)[H) > 0.
Observe that, if B € H,
u(Calp + Cilpe) = u(C)Ip +u(C)pe,

and

E(u(Colp + Gilpe)|H) = E(u(C)H) 15 + E(u(C)[H) Ise.
It follows that

b(71) = Bu(G1) > Bu(Galp + Gilpe) (5.5.9)
where Colp + (1 1pe € [, 71]. This is a contradiction. Hence, (c¢) also holds.
|
Proof of Theorem [5.4.6]

The arguments are similar to those of Theorem [5.4.3] It remains only to
verify (i). For v € clenvyI', we put

c(v) = sup EL(Y — 7).
yecl enVHFmLO([V’OO)vH)

Let (45) be a sequence on which the supremum in the above definition is
attained. As the set clenvyI' C LO(RY, H) is decomposable, we may assume
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without loss of generality (by applying Lemma 2.1.2 [72] on convergent sub-
sequences) that the sequence of conditional expectations E(L(~y, —v)|H) is
increasing and 7, converges a.s. to some 9, € clenvy'N LY([y, 00), H) such
that c(7) := EL(Ys — ). Indeed, observe that clenvyI' C L°((—o00,~°], H)
hence we use a compactness argument. For such an element 4., we solve

(7, Joo) 1= sup Eu(7)
FELO([Foo,00))Nclenvy T

where u is given by Condition II. As previously, we obtain elements 4 €
L([Fs0, 20)) N clenvyI' such that d(v,%s) = Eu(%). By definition of d,

using Condition II, we deduce that ¥ € H-Essmax;I' and the conclusion
follows. B
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Chapitre 6

Arbitrage theory in non convex
financial market models

Abstract

This chapter continues to study the general financial market model defined
by a liquidation value process mentioned in the previous chapter. First, we
provide a no arbitrage condition that charaterizes the existence of an equiva-
lent risk neutral probability measure through which we establish the super-
hedging price of a european option for markets with proportional transaction
costs. In the rest of the chapter, we review various notions of no arbitrage
opportunities in this new model as well as study the relationship between
this model and its extended model, i.e. market with only proportional tran-
saction costs.

Keywords : Financial markets, Liquidation value, Transaction costs, Eu-
ropean and American options, Hedging, Partial order.

Note. This chapter is based on an pre-article Risk neutral probabilities and ab-
sence of arbitrage opportunity in non convex financial market models, T. Tran, E.
Lépinette, Preprint.

6.1 Introduction

The present chapter accompanies the previous one. For the motivation and
history of the problematic as well as for references we refer in the sequel to
Chapter 3 without further notice. Let us briefly recall some notations and de-
finitions here. We are given a filtered probabilistic space (€2, F, (F¢)¢=o,... 7, P)
satisfying the usual conditions. Suppose that the portfolio processes we consi-
der are expressed in physical units, i.e. the number of assets an agent holds.
Moreover, we assumed that the first component of such portfolios corres-
ponds to a cash account. Precisely, we assume without loss of generality
that the underlying bond is S* = 1 so that the first component of a portfolio
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position is an amount of cash. The model is defined by a adapted process of
random sets (Gy)¢=o,... 7 satisfying the following conditions

Condition G :

(i) Gy is a closed set, VO <t < T,
(ii)) Gi+ Gt C G, 0 <t < T,
(iii) AGy C Gy, VA > 1,

(iV) Gy + Ri = Gy,

(v) The cone R1 Gy is proper , i.e. RyGy N (—R4+Gy) = {0}.

In financial terms, (G}) are called to be solvency sets. A self-financing port-
folio process (Vi)i=o,... 7 is an (F¢)s=o,... r-adapted process such that

Vicirn =V, eGy, Vt=0,---,T a.s. (6.1.1)
The enlarged market is defined by K = (K})=o,... 1, where
Ky :=coneGy = R Gy (6.1.2)

Here, cone G denotes the conic hull of G;.The enlarged market (K¢)i—o,... 7
is therefore the minimal conic market that dominates (G¢);=o,... 7. For ins-
tance, if (G¢)=o,...  models a financial market with both fixed and propor-
tional transaction costs, then (K¢)i—o.. 7 will be the market model with
only proportional costs.

Consider a market G = (G¢)¢—o.... 7 satisfying Condition G°. The liquidation
value process associated to G is defined by

Li(z) :=sup{la € R: z —ae; € G} (6.1.3)

In other words, if x is a portfolio position, then L;(x) is the largest amount
of cash we get at time ¢, when liquidating the risky assets contained in the
portfolio z. The new portfolio position after liquidation is therefore L;(z)es.
We can prove that (L;) defines (G¢) in the sense that

Gy = {33‘ € Rd : Lt(l') > 0}

When G satisfies Condition G, the liquidation value process given by (6.1.3)
is super additive and upper semi-continuous. As a consequence, we can define
a pre-order on R¢ by

z =ty o Li(z —y) > 0.

We denote by R%. the set of all terminal values Vp of portfolio processes V
such that V;_1 = 0. i.e.

Ri :=RE(G) = Y LY(-Gu, Fu).

t<u<T
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We also define
LV = LVL(G) == {Lr(V7) : Vr € RE}.

Observe that L°(—R., Fr) C LV%. Let us introduce the convex cone

A={) XNXi: A >0, X; € LVE).
=1

6.2 Risk neutral probabilities in a general model

In the "standard model" of Kabanov for markets with transaction costs,
the arbitrage theory is studied through a multidimensional conic cone RY
consisting of final positions of portfolios starting from zero endownment.
In this chapter, we provide another view based on the idea of liquidation
function, which seems to be more intuitive. Moreover, it is also coherent to
the classical arbitrage theory for frictionless markets that deals with real-
valued portfolio positions.

For classical models without friction, but also for the Schachermayer mo-
del, absence of arbitrage opportunities is related to the existence of a risk
neutral probability measure, precisely a probability measure Q ~ P such
that Eq[Vr] <0 for all terminal values V7. Since the mentioned models are
convex, this allows to formulate a dual characterization of the super-hedging
prices of European type contingent claims. So, it is natural to characterize
the existence of such a risk neutral probability measure in our model. As
shown in this section, it appears that the latter is equivalent to the absence
of asymptotic arbitrage opportunities but for the convex extended model.
When this convex model satisfies absence of asymptotic arbitrage oppor-
tunities, we say that the Extended No Asymptotic Arbitrage opportunity
condition (ENAA) holds for our initial model. We show that Condition
(ENAA) is equivalent to the existence of @ ~ P such that Eg[Ly (V)] <0
for all terminal liquidation values of the portfolio processes Vp of our model.
Not suprisingly, we also show that these conditions are equivalent to ENFL,
the No Free Lunch condition for the Extended model.

Definition 6.2.1. We say that the Extended No Asymptotic Arbitrage op-
portunity condition ENAA holds if there is no sequence (X™) € A% such
that X™ converges a.s. to ¢ € LR, Fr) such that P(€ > 0) > 0.

We need the following lemma

Lemma 6.2.2. Let X be a convex cone in LY(R, Fr) containing —LY.. We
denote by X¥ the closure of XP := X N LP(R, Fr) for the LP topology when
1 <p < oo. Let us introduce for any P' ~ P and q € (1, 0]

dQ

DI(P):={Q ~ P : 7P

€ L}, EgX <0, VX € A7},

The following conditions are equivalent
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(i) X N LY (R4, Fr) = {0}, where X is the closure of X in probability.

(ii) VP' ~ P, X (P') N L2, (Ry, Fr) = {0},1 < p < o0.

(iii) VP' ~ P, 1 < p < 0o, DUP') # 0, where 5 + 1 = 1.

Proof. The implication (i) = (i7) is straightforward. The implication (i) =
(7i7) is deduced from the Hahn—Banach separation theorem and the Kreps-
Yan theorem. We now prove the implication (#ii) = (7). Suppose that (7)
does not hold and let (¢,,)n>0 be a sequence in X' converging a.s to ¢ €
LY (R4, Fr) \ {0}. Therefore, 1, — 0 hence sup,[t,]” < oo, P- a.s. We
then choose P’ ~ P such that sup,[¢,]” € Lp(P"). We may also suppose
without loss of generality that ¢, € L,(P’) for all n. By assumption, there
is Q ~ P’ such that dQ/dP" € Ly(P’) and Egiy < 0 for all n. Observe that
sup,[¢¥n]” € L1(Q) . Therefore, we may apply the Fatou lemma and deduce
that

Egy < liminf ¢, <0,

i.e. a contradiction. It follows that ENA A holds.

[ |

Let us denote by A% the closure of A% := A9 N L>(R, Fr) with respect
to the o(L*>°, L})-topology. By applying the above lemma with X = A% we
obtain the following theorem.

Theorem 6.2.3. The following conditions are equivalent

(i) ENAA holds, i.e. AY N LY (R, Fr) = {0},
(i) ENFL holds, i.e. A7® N L*(R4, Fr) = {0},
(i1i) There exists a Risk Neutral Probability Measure

d

DY(P):={Q~P: £ € Lp, EQX <OVX e LVj} #0,  (6.24)
where LVY := {X € IV} : || X 7| < oc}.
Proof. (i) = (ii) : By virtue of Lemma if ENAA holds, the Kreps—
Yann theorem asserts that there exists Z € L¥ (R4, Fr) such that E[ZY] <
0, VY € AL. By definition of the weak topology, we deduce that E[ZY] <
0, VY € A" hence, A® N LR, Fr) = {0}.
(7i) < (iii)It is deduced from the Kreps-Yan theorem that ENFL is equi-
valent to

DY(P):={Q~P: Z% € Lp,EgX <O0VX € AF"} £0.  (6.2.5)

We will show that D!(P) = D!(P). Indeed, if Q € D'(P) we have
EgX <0VX € AF.

We aproximate each Z € LV]% by Z An € AP. By using the Fatou’s lemma
we get that FgZ < 0 which deduces that @ € D'(P).
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We now consider @ € D'(P). By deffinition, we have

EoX < 0VX € LV,
Since AY = {AX, X € LVF, X € [0,1]}, we then deduce that

EgX <0VX € AF.
Note that the mapping X + EpX is a continuous linear form with respect
to the o(L>, LL)- topology. We have A® C X(Q) := {X : EgX < 0}
where the latter is weak-star closed, which implies that A®" C X(Q) or
equivalently,

EoX <0VX € A%,
i.e. D(P), hence DY(P) = DL(P).
(i4i) = (i) : Recall a fact in Functional Analysis that , if P’ ~ P and X
is a convex set in L, then X" (P) = X" (P'). By applying this remark to
X = A%, we then conclude as in the proof of (iii) = (i) in Lemma
|

6.3 Pricing and non arbitrage theory : Kabanov’s
model

6.3.1 Super-hedge pricing

In this subsection we present the super hedging prices of European contin-
gent claims for the Kabanov model. In the presence of transaction costs,
contingent claims are traditionally supposed to be multidimensional. By
using liquidation functions, we get back to the classical case where contin-
gent claims are unidimensional, and super hedging prices are expressed in
terms of cash rather than vector of physical delivery.

Let ¢ € L°(R, Fr) be an abitrary contingent claim. For ease of arguments,
we wil assume that £ is bounded below. Let us define

Ie={zeR|IVr € R} : .+ Lp(Vy) > £},
The super hedging price of the contingent claim £ is given by
VOg = inf [e.

Let us define
Q' = (@~ P: T2 = 7}, 7 € MY(G\(0)), 24 = 1)

Here, MY.(G*\{0}) denotes the set of martingale evolving in G*\{0}. When
Q' #£ 0, it is clear that Q' C D! where D! is defined in Theorem We
then get the following lower bounds of VOé :

VE > sup{Egt: Q € D'} > sup{Egt: Q € Q'}. (6.3.6)

In fact, we have a stronger result as follows
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Theorem 6.3.1. Suppose that MY.(int G*) # 0. We have D # 0 and

VO5 = sup Egf = sup EgQ¢. (6.3.7)
QeD! QeQ!

Proof. 1t suffices to verify that VO5 = supgeor E@§. Let us rewrite I'¢ in a
multidimensional form :

I'e={zreR: EIVTGR%:xelJrVTzéel}.

Define
D¢ :={z € R: Zjz > EZ}(NVZ € M(G*\{0})}.

Since MY.(int G*) # 0, the set RY. is closed in probability. So, we can mimic
the proof of Theorem 3.3.3 [72] to deduce that I'c = D¢. Consequently, we
have Vbs = supgeor E@S- B

6.3.2 NAVR and NABR

In this subsection, we suppose that the fixed cost is negligible, i.e. the
Schachermayer-Kabanov model. By means of liquidation functions, we in-
troduce two notions of non-arbitrage NAVR and NABR which are the
analogs of NFLVR and NFLBR in the classical frictionless cases. A natu-
ral question is, how to link these non-arbitrage criteria to the coresponding
ones for the multidimensional models ? Not suprisingly, it will be shown that
there are indeed a strong connection between two frameworks.

Let us now denote @ and @w the closures of A% in strong topology and
weak-star topology of L, respectively. We also denote @Sw the sequential
closure of A7 in weak-star topology of L>°. We say that the market satisfies
NAVR, NFL or NABR , if A%, AX" or A" does not contain any non
null random variable z € L%, respectivly. Since A% is solide convex cone,
by similar arguments as in [72], we can rewrite the conditions NAVR and
NABR as follows

Lemma 6.3.2. i) The market satisfies NAVR if and only if for a sequence
(&n) € AP, the condition ||&, ||cc — O implies that &, — 0 in probability.

ii) The market satisfies NABR if and only if for a sequence uniformly boun-
ded below (£,) € AT, the condition &, — 0 in probability implies that &, — 0
in probability.

Note that the liquidation function expresses a final wealth in terms of cash.
Therefore, it is natural to consider solvency sets in terms of value, i.e Gy =
oGy and Kt = ¢ Ky where ¢; is the diagonal operator

th: (xlv"‘7$d) = (xlstlu"'vxdsgl)’

Let us now define E%O = ¢rRT. The following results establish a link bet-
ween NAVR and NABR with the coresponding non-arbitrage criteria for
the multidimensional market model
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Theorem 6.3.3. Assume that (Gy) is a conic model and Gp dominates Ri,
we have

i) The market satisfies NAVR if and only if
Ry n LT (RY, Fr) = {0}.
it) The market satisfies NABR if and only if
R NLFRY, Fr) = {0}.

Proof. i) As a basic property of the liquidation function, we have A7e; C ﬁ%o

which deduces that @el - f{%o The part "if" of the statement then follows.
We now suppose that the market satisfies NAVR and that there exists a
random variable X € f{%o NLY (R, Fr). Suppose that X is aproximated by a
sequence X, € 1?{%0, i.e. || Xn—X]|loo — 0. This sequence is therefore bounded.
Since L is uniformly continuous in any compact set, it is straightforward
that [|[L7(X,) | — 0 and Ly (X,) — Lp(X) > 0,# 0. By applying the
lemma i) we deduce that Ly (X) = 0, therefore X = 0.

ii) The part "if" is proved similarly as in ). Suppose NABR and let X €

ﬁ%osw N Lf(Rd,}"T). There exists X,, € ]/%%o such that X,, — X in weak-
star topology. Hence (X,,) is uniformly bounded. By passing through convex
combinations, we can suppose that X,, — X a.s. Since (L7 (X,,)) is uniformly
bounded below and Ly (X,) — Lp(X) > 0,# 0 it is deduced, by using
Lemma [6.3.2]ii) that Ly(X) =0or X =0. W

Remark 6.3.4. 1.The theorem rises a natural question : is it true that NFL
18 equivalent to

R N LE(RY Fr) = {0}. (6.3.8)

It is trivial that NFL is deduced from[6.3.8, but the reverse direction is not
necessarily true in general. This still remains as an open question. However,
we have a affirmative answer for the two assets case, see Theorem [6.4.0]
below.

2. It is well known that in some frictionless markets, the conditions NFLVR,
NFLBR. and NFL are equivalent. Furthermore, these conditions are also
equivalent to the existence of a local martingale probability measure. In the
presence of transaction costs, e.g in the Kabanov model, a similar result has
not been known yet to date.

3. Suppose that the probability space is finite. Is it true that the conditions
NWA and NA are equivalent for the conic model K ? (In this case NA is
also equivalent to the existence of a separate probability measure Q@ ~ P).
The answer is no. For example : Let us take a financial market model of
one period. The probability is finite : Q = {wi,wa} such that P(w;) = %
Suppose that the interest rate is zero : By = B1 = 1 and the risky asset is
So=1,51 =1+ & where {(w1) = 0,&(w1) = 1. The market is assumed to be
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frictioness. It is straightforward that this model admits an infinite number
of Arbitrage Opportunity : If the number of risky asset hold at maturity
T =11isx >0, then the final wealth is x& > 0 and x& # 0. However, this
model does not admit any Weark Arbitrage Opportunity. It is easily proved
that the separation martingale measure in this case is the Dirac Measure
concentrating at wy which is not equivalent to P.

5. Question : can we generalize the above result to the non convex case ? The
answer would be no ! The reason is that the condition LV, 7 NLP (R, Fr) =

= w
{0} does not imply Ry N LL(RY, Fr) = {0} as Ly is not continuous. For
istance, let us take an example when the model is two dimensional : the

sequence Vi = (F, —%) converges to (4,0) € LY but Lp(Vy) — =% < 0.

6.4 Market with one risky asset

Let us consider a market model with two underlying assets : one risk-free
asset whose value is constant over time : B; = 1 for all ¢, and one risky
asset of which the fixed cost process ¢; is assumed to be bounded, and the
bid-ask spreads are given by [S?,S¢] where S¢ and S? are two adapted
processes. Denote the solvency set process of the initial market and the
extended one by (G¢) and (K;), respectively. For more details about the two
dimensional case, see [52]. Observe that K; O Ri is the closed proper proper
cone generated by the bid-ask interval [SP, S?], usually called the solvency
cone in the Schachermayer model. We denote C; = c;e; and observe that
K; + C; C G; consists of transactions that the investor has to pay fixed
costs. The following lemma will be used frequently in this section. The proof
is straightforward so we will leave it to readers.

Lemma 6.4.1. i) Suppose that Vp = Z?:o & € RY(G) where & € —Gy be
a portfolio in the market G. Let us define

T

‘7T = Z[gt + Ctl—EtEKH-C't]'
t=0

Hence, VT s a terminal wealth in the market K satisfying VT > Vr.

ii) Suppose that Vip = ZtT:OEt € RY.(K) where & € —K; be a porfolio in the
market K. Let us define

T

VE = [k& — cile,z0) k € R.
t=0

Hence, V:,]f is a terminal wealth in the market G.

6.4.1 NWA condition

In this subsection, we study the relationship between the market G and it
enlarged one K. We introduce a new notion of arbitrage called No Weak
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Arbitrage Opportunity. The following definition can be applied for a general
market model.

Definition 6.4.2. In a financial market model defined by a liquidation va-
lue process L, we say that a portfolio process V' starting from the initial
endowment Vo— = 0 realizes a weak arbitrage opportunity if there exists
te€{0,1,---,T} such that V,, = 0 for allu < t—1, there exists By € F; with
P(By) > 0 such that V,1g\p, =0 for allu=t,---,T and Lr(Vr) > my on
By where my € L°((0,00), F;). When there is no weak arbitrage opportunity,
we say that the property No Weak Arbitrage ( NWA ) holds.

Remark 6.4.3. The above definition is motivated from and designed for
the model with fixed transaction costs as follows : if there is an arbitrage
opportunity in the model with fixed transaction cost, there is a first moment
t = u when the agent holding the portfolio pays the fixed cost ¢, with
a strictly positive probability. Indeed, otherwise, the terminal liquidation
value of the portfolio process is negative. Therefore, the terminal value of the
portfolio process generated by the same strategy but for the model without
fixed transaction cost is larger than ¢, with a strictly positive probability.
Theorem 6.4.4. Suppose that the fixed cost process is uniformly bounded
above, i.e. ¢ < cpax < ooVt =1,...,T. Then, G satisfies NWA if and only
if K does.

Proof. By using Lemma i) we can easily deduce that G satisfies NWA
if K does. Conversely, suppose that K does not satisfy NWA.. By definition,
there exists B, € F; with P(B;) > 0 and a fortfolio Vp = Z?zo & € RY.(K)
such that Vulg\Bt =0forall u=t,---,T and LE(Vy) > m; on B; where
my € LY((0,00), F¢). Without lost of generality we can suppose that m; >
e>0and Vp = lef(f/T)el. Lemma ii) shows that we can construct a
new portfolio V¥ in the market G such that V2 := Efzo[ké—ct15t¢o], k> 0.

We then have VF = kLE (Vr)er — C¥T where C¥T is the cumulated fixed
cost which is bounded by ¢paxT. Therefore

LE(VE) > LE(kVr) — cmaxT > ke — cmaxT > 0

for k large enough which deduces that V:,]f is a Weak Arbitrage Opportunity
in the market G, i.e. G does not satisfy NWA. R

Remark 6.4.5. The crucial point in the proof of the above proposition is
that the fixed costs in the market G are bounded and do not depend on
the size of transactions. This leads to the fact that if we scale the trading
strategy up to a very large scalar, then the fixed costs become rather small
in compare with the bid-ask effect. This observation is important because it
show us the way to construct asymptotic arbitrage strategies for the market
G from those of the market K. In a general setting we can also obtain the
same results provided that the fixed costs in G are bounded.

6.4.2 NFL condition

The following theorem is one of the main result of this section. It establishes
the equivalence between ENAA of the liquidative model and NFL of the
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multidimensional conic model. Unfortunately, the technics of the proof are
not able to be generalized to the multidimensional case.

Theorem 6.4.6. Suppose that S¢ > S? for all t € [0,T] a.s. Then, the
following statements are equivalent :

(i) ( ENAA) holds for the model under both fixed and proportional transac-
tion costs,

(i1)) (ENAA ) holds for the same model under proportional transaction costs
and ¢ = 0,

(iii) ( NFL) holds for K, i.e the multidimensional market model with only
proportional transaction costs.

(i) For all P' ~ P, there exits a process S € [S®, S and Q ~ P’ such that
dQ/dP" is bounded and S is a Q-martingale.

Proof.

First, observe that (ii7) and (iv) are equivalent. This is a classical result,
see Proposition 2.1 [57]. Indeed, we may choose dQ/dP = Z} and S; =
Z2/Ep(Z:|F) where Z = (Z',Z?) is a consistent price system according
to the associated Kabanov model. Moreover, it is clear that these condi-
tions imply (¢4) and (é¢) also implies (7). Let us show that (i) = (iv). By
virtue of Theorem there exists @ ~ P’ such that dQ/dP € L* and
Eg[Lr(Vr)] < 0 for all Ly(Vy) € LY N LY(P'). We may assume without
loss of generality that sup,(|S#| + |SP| + |ct|) is P’ integrable. Consider two
stopping times o and 7 such that ¢ < 7 < T a.s. and take F, € F, and
Ny € L*®(R4, Fs). We define the portfolio process V' such that V- = 0,
AV = AVl{U} + AVl{T} and

Vo = (_NO'Sg"_CUlNg#OaNU)ngv
Vi = L;(Vy)e.

Since L,(—V,) = 0, we deduce that AV, € —G,. Moreover, AV, € -G,
since V. is the liquidation value of the frozen position V,. It follows that
LT(VT) = LT(VJ) where

a b +
L. (V,) = [ —N,S% — coln, 40 + (NUST - cT) 1p,.
We deduce that
+
EQ [(NUSE — C7—> ’fg] < Na'Sg + CUING;AO- (6.4.9)

Similarly, we define the portfolio process V such that Vo = 0, AV =
AVl{J} + AVl{T} and

Vo = ((Nasg_ca)—‘ra_No)lFav
Ve = L.(Vy)er
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Let us explain how we obtain V. First, we write
R235V, 1 =0= (NS’ —co,—Ny)1g, + (—NyS° + ¢o, Ny)1p,

and we liquidate the second position in the equality above at time o. We get

L, ((—Ngsg ¥y, NU)IF[,)) - (—Ngsf; tey+ (N,SE — co)+> 15,

= max(—NoSg +co;0)1p, .

At last, we add this liquidation value to the first component of the portfolio
position (NyS% — ¢y, —Ny)1f,. We then deduce that that Ly (Vr) = L, (V)

where
L,(V,) = ((Nanj —eg)t — NS — cT) 1F,.
We deduce that
(N, S% — co)t < EQ [NyS® + ¢ | Fs]. (6.4.10)

We then choose N, = n € N and we make n converged to co. By virtue of
Inequalities (6.4.9) and (6.4.10)), we deduce that for all stopping times o and

T, we have

Eo [Sﬂfg} < 59, (6.4.11)
St < Eq[S%F,]. (6.4.12)

Therefore, we deduce the existence of a Q-martingale S € [S?, S%] a.s. B

6.4.3 Case 0 < Cpip < Cpax < 00

In this subsection, we study some types of arbitrage opportunities for a non
convex market model. Inspired from Lemma/6.3.2] in the definition below we
introduce two notions NAVR and NWAVR which naturally are asymptotic
analogs of NA and NWA. We make use of LV instead of A7 since the
former has a naturally economical interpretation. More suprisingly is the
theorem [6.4.8 below which states that NAVR and NWAVR are in fact
not really a strict generalization of NA and N'WA in the case 0 < cpin <
Cmax < OQ.

Definition 6.4.7. We say that the NAVR condition holds if, for all se-
quence £" € RY. such that Lp(€") > —B, for all n where B, — 0 and
& — &€ Gr a.s., we have Lp(§) = 0.

The market is said to be satisfied the NWAVR. condition if, for all t =
1,...,T and all sequence ™ € R?’T such that Lp(§™) > —py, for all n where
Bn — 0 and £" — Ea.s.,Ly(€) > ¢y € LY (F) we have ¢y = 0.

Theorem 6.4.8. If 0 < cmin < Cmax < 00 then four conditions NA,
NAVR, NWA and NWAVR are equivalent.
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Proof. By elementary arguments we can show that NAVR = NA = NWA
and NAVR = NWAVR = NWA. It then suffices to verify that NWA =
NAVR. Suppose on the contrary that, if NAVR does not satisfy, then we
can find a sequence V* € R such that Ly(V2) > —8, for all n where
Bn — 0 and V! = X7 € G a.s. such that Ly(X7) > 0, Ly (X7) # 0.

We now aim at constructing a new sequence of porfolio ijb = 23:1 éf such

that Vf‘ = V7 and éf = éﬁl—ége}(ﬁa. Let us define, for each 1 <t <T':

t
V=V YLV = Ve i (Vi = V),
u=1

where 7} is defined by /" (z) := Tt(x)lrt(x)ERi>rt($) := x—L¢(z)ey denoting
the remaining part of x after liquidating. The above equality shows that

~

Vit = V. We also get that
VL =V =V = V= LV = Vier = rf (V2 = V)

We deduce from this equality that —£ € Ky+Cy C Gy where £ = Vt”—f/;’il.
Therefore, th is a portfolio satisfying all required properties.

We now choose ng large enough such that 8, < —cminVn > ng. Since f/{f -
V2 we have Ly (Vi) > Ly(V). We then get that

lim inf Ly (V) > Lp(X7) > 0, Lp(X7) # 0.

Therefore, we can deduce that there exists ny > ng such that Vr}” # 0. We
rewrite V' = ZtT:o & where ' € —Gy. For ease of notations we will
denote V; = f/jfl '. We also suppose that V} = Lp(V})e;. Let us define

7 :=min{t > 0: & # 0},

and
t* :==min{t > 0: P(r* =t) > 0}.

This means that we start making transactions from the instant ¢* and do
nothing before t*. Denote By := {{}+ # 0}, we have P(By+) > 0. From the
construction of V7 we have —¢. € Ky + Ct on By« By using Lemma
i), we can construct a new porfolio Vp in the anlarged market K associated
to V such that VT = Vi + Cre; where Cr is the cumulated fixed costs
incuring in the portfolio V. It is now clear that C7 > cyin on the event Byx.
As V¥ = Lp(V})er we get that

L?(VT) 2 Cmin — ,Bnl =1 > OonBt* .

By Lemma ii) we can construct a new porfolio V¥ in the market G
such that
VQIE = k‘VT — C’Tel,k: > 0,
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where C7 < cpaxT'. By choosing k large enough we have
LT(V:,]f) > ke — Cmaxd > 0on By« :,
ie. lef is a Weak Arbitrage Opportunity in the market G.

Corollary 6.4.9. Suppose that 0 < cpin < Cmax < 00. Then NAVR is
equivalent to LV N LY(Ry, Fr) = {0} and NWAVR. is equivalent to
LV NLO(Ry, Fy) = {0}.
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Chapitre 7

Utility Maximization under
Target Risk Constraints

Abstract

This chapter studies the classical utility maximization problem in a general
continuous-time financial markets model under target risk constraints, i.e.
given in terms of some expected loss constraints imposed on the final wealth.
The standard duality technics are used to solve the problem. In a complete
market, we relate the utility maximization problem to some kind of hedging
problem with multiple targets. The latter is solved by using both backward
stochastic differential equation (BSDE) and convex duality technics.

Keywords : Utility maximization, Duality method, Shortfall risk, Convex
risk measures, Optimal portfolio choice, Quantile hedging.

Note. This chapter is based on the article Utility Mazximization under Target
Risk Constraints, T. Tran. Preprint. It was done under the supervision of Bruno
Bouchard and I want to thank him for his advice and helpful comments.

7.1 Introduction

In this chapter, we consider the utility maximization problem under expected
loss constraints. First introduced by Merton (1971) in the non constraint
case, the problem has attracted a lot of attentions from academicians and
practitioners. Especially in the case of complete markets, it is solved by the
martingale and duality methods, see for example Karatzas, Lehoczky and
Shreve (1987) or Cox and Huang (1989). These technics appear to be very
powerful even for incomplete markets. In the non-Markovian case without
constraints, the existence of solutions and the characterizations of optimal
strategies are given by He and Pearson (1991), Karatzas, Lehoczky, Shreve
and Xu (1991). Similar results have been derived by Cvitanic and Karatzas
(1992) or Cuoco (1997) in the case of portfolio constraints.
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For financial institutions the measurement and management of downside risk
is a key issue. Regulators, for example, might impose a risk constraint to cer-
tain companies, a manager of a firm might require his traders to stay within
some risk limit, or an investor might wish to bound his own risk exposure.
It is then natural to consider the utility maximization problem under risk
constraints. Optimal investment policies under downside risk constraints in
terms of value at risk and and a second risk functional have been studied
in a Brownian setting by Basak & Shapiro (2001) and Gabih et al. (2005).
A complete solution in a general semimartingale with utility-based shortfall
risk constraints is given by Gundel and Weber (2005). In the latter, the au-
thors reduce the problem to a static optimization one under constraints and
then solve it by means of classical Lagrange multipliers. These mutipliers
corespond to the expected loss and the budget constraints.

In this chapter, we investigate the utility maximization problem under expec-
ted loss constraints in a general setting, where the price process is described
by a general semimartingale and the risk constraint is represented by a non
decreasing concave function. This framework is more or less similar to that of
Gundel and Weber (2005). The difference is that we chose the convex duality
theory in the spirit of Kramkov and Schachermayer (1999) or Schachermayer
(2001) to tackle the problem. Therefore, rather than providing a closed-form
solution to the optimization problem, we only characterize the optimal solu-
tion through the duality relation between the primal and the dual problem
by apealing to the set of equivalent local martingale measures. The duality
technic is reviewed in different situations and with different ways. We consi-
der both complete and incomplete markets ; the wealth might be negative or
non-negative. We also consider both unconstrained and constrained Fenchel
dual functions and provide the link between utility maximization problem
and hedging-type problem in the complete market case.

The remainder of the chapter is structured as follows. In Section 6.2, we
consider the problem with positive wealth constraint in an incomplete mar-
ket framework. We show that the duality technic used in Kramkov and
Schachermayer (1999) can be easily adapted to our new setting. Section 6.3
relaxes the positivity constraints by approximating the given utility function
by a sequence of new utility functions bounded from below as being done in
Schachermayer (2001). The case of complete markets is studied in Section
6.4 and Section 6.5 by two approaches which are still based on duality tech-
nics. By introducing new random shortfall thresholds which is inspired from
the paper of Bouchard-Touzi-Elie (2009), in Section 6.4 we boil down the
problem from one expected loss constraint to an infinite number of almost
sure constraints. The latter is simpler to deal with by means of constrained
Fenchel dual function, which leads to a new kind of duality in the case of
complete markets. In Section 6.5, we relate the utility maximization problem
to the hedging-type problem with multiple targets. This is a special kind of
minimal solutions to a BSDE with weak terminal conditions as considered
in Bouchard-Elie-Réveillac (2013).
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7.2 Utility Maximization Problem on The Half Real
Line

7.2.1 Formulation of the problem

We consider a financial market model over a finite time horizon [0,7],7 > 0
which consists of d risky assets and one risk-free asset defined on a filtered
probability space (€, (Ft)o<t<7, R) satisfying the usual conditions. Suppose
that the price of the risk-free asset is constant over time and equal to 1,
and the prices of the risky assets are described by a strictly positive d—
dimensional semi-martingale (S;)o<¢<7 adapted to the filtration (F;)o<i<7-
Throughout this chapter we only consider the case where (S¢)o<i<r is a
locally bounded process. The dynamics of the portfolio is given by

t
X" =z +/ msdSs, 0<t<T, (7.2.1)
0

where z is a positive initial endownment, and (7;)o<¢<7 denotes the portfolio
process that is assumed to be an element of L(S), the set of all R%-valued
predictable processes which are integrable with respect to S. We assume
throughout this chapter that the family of equivalent local martingale mea-
sure M(S) is non empty.

In this section, we consider the case of non-negative wealth.The next section
will be devoted to the case where wealth may be negative. Let us first denote

Ad(z) == {(m)o<t<r € L(S): X" >0 VO<t<T}, (7.2.2)

At maturity, the wealth is subject to a loss constraint which is described by
some random utility-type function ¢

At (w,m) = {(m)oier € AT(2): EUXEM] =m),  (12.3)

where ¢ : @ x Ry — R is a non decreasing random continuous concave
function and m is some constant in Im £. Throughout this chapter, we sup-
pose that the inactive strategy belongs to A*(z,m), i.e. E[{(z)] > m. A
typical example for this kind of loss function is ¢(X) := —I[(X — B)7],
where [ : Ry — R is a strictly increasing deterministic convex function
and B € LY may be some random liability or some market benchmark at
maturity. This risk constraint measures the weighted expected shortfall loss
from the level B. In particular, if [ is the identity function then we turn back
to the case of the usual expected shortfall risk measure; and if [ = 1g_, we
are led to the case of controlled loss probability constraints.

In the remainder of the chapter, we will assume that ¢ is bounded from
above. This condition is natural from the practical point of view because,
when it comes to risk management, we focus on the loss rather than the
gain.

Let us now define the set of hedgeable positions :

CH(z,m):={X € LY (Fr,P) — L(Fr,P): 3re AT (z,m), X < X7"(F.2.4)
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We also denote Cj (z,m) := C*(z,m) — z. Our goal is to study the utility
maximization under target constraint :

u(zr) = sup E[UX)]. (7.2.5)
XeCt(z,m)

Here, U : R* — R denotes the utility function which is assumed to be a
strictly increasing concave C''—function satisfying the Inada condition :

lim U'(r) = +ocand lim U’(r) = 0.
r—0 r—+00
In order to avoid the trivial cases, we suppose in this chapter that u(z) <
U(o0). Moreover, we need the following condition :
Assumption A : The asymptotic elasticity of the utility function at oo is
strictly smaller than 1 :
rU’'(r)

AEOO(U) = limsupr_mom
r

We recall here the definition of Fenchel duality function

<1. (7.2.6)

V(y) = i‘ilo)[U(T) —ryl,y > 0.

The explicit form of V is given by

V(y) =U(y)) —yl(y),

where I(y) := (U')~! = —V’. The duality function V is a decreasing and
strictly convex function. Moreover V(0) = U(o0), V(c0) = U(0) and, under
the Inada conditions, we have V/(0) = —oo and V’(00) = 0.

7.2.2 Convex duality approach

We now follow the approach in [12] : Let Y := YT (z,m) be the duality
domain defined by

Vii={(y,Y)eRy xLL : BY <y, 6(Y):= sup E[XY]< co}7.2.7)
Xecy (xz,m)

Here, § is called to be support operator. From its definition, we can deduce
that J is non-negative and convex. As a consequence, )" is a convex set in
Ry x L}k' The following result characterizes the set of hedgeable claims :

Lemma 7.2.1. Under the assumption M(S) # 0, we have

Cta,m)={XeLL-LY: sup {BXY]-46Y)—ay}<0}.(7.2.8)
(. Y)eyt
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Proof. Let C*(z) be the set of hedgeable claims without loss constraints, i.e.
Ct(z):={X € LY(Fr,P) — LY(Fr,P): 3re Af(z): X < X7}

It is well known that C*(x) is Fatou closed when the set of equivalent local
martingale measures is not empty. We first prove that C*(z,m) is also Fatou
closed. Indeed, let (X,,) € CT(x,m) be a sequence which is Fatou convergent
to a random variable X. Obviously X € C*(z). By definition we can find a
sequence of final wealth (X7™) such that X,, < X72™ and E[((X7™)] > m
for all n. Since (X77™) is uniformly bounded from below we can construct a
new sequence X" such that )?53 € conv {X7™, X7 ..} and X’% - Xr
a.s. We have X7 € C*(z) since CT(x) is convex and Fatou closed. By virtue
of the concavity of ¢ we first observe that £ [E(f(%)] > m for all n. As E(f(;l)
is uniformly bounded from above we can apply the Fatou’s Lemma to deduce
that E[((X7)] > limsup E[{(X?)] > m. Therefore, X7 € C*(x,m). Since
X, < X&™ for all n we also have X < X and then X € C*(z,m), which
deduces that C*(z,m) is Fatou closed.

Let’s get back to the proof. Note that if X € C*(x,m) then, by the definition
of support operator § we have

E[XY]-6(Y) -2y <0V(y,Y) e Y. (7.2.9)

The first inclusion in ((7.2.8) is therefore trivial. Let’s take X € Lg_ i
satisfying (7.2.9). We will show that X € C*(x,m). By considering X A n
instead of X and taking the limit when n tends to infinity, we can assume
that X € L* (because C*(z,m) is Fatou closed). Now, suppose on the
contrary that X —z ¢ C5°(z,m) := Cg (x,m) N L*. Since C°(x,m) 2
—L°(Fr), by the Kreps-Yan theorem, we can find a separating probability
measure ) ~ P such that Y := g—g € L' and that

sup FEXY]|<E[(X —2)Y] < cc.

XeCge (z,m)
Consequently, 6(Y) < oo and therefore (1,Y) € Y*. But the previous in-
equality also deduces that E[XY] — §(Y) — x > 0, a contradiction with
(7.2.9). Hence, we can conclude that X € C*(x,m). B
Remark 7.2.2. Additionally, if the portfolio is subject to another convex
constraint, for instance, we require that w € K for all t, where K is some
closed convex set in R%, then we also obtain the same result as in Lemma
above. We refer readers to [38], Proposition 5.1. and [88], Theorem 4.1.
for more details.
By using the definition of Fenchel dual function, we can easily prove the
following lemma.
Lemma 7.2.3.

w(z) < inf  [o(Y) + 2y, (7.2.10)

where

w(Y) = E[V(Y)] +5(Y). (7.2.11)
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In the sequel we suppose that
V= {(y,Y) eV : E[V(Y)] < oo} #0. (7.2.12)

It is straightforward that Yt is also convex in R, x Li_. The following
preliminary result will be frequently used. The interested reader can find its
proof in, for example, Lemma 3.2 of [72].

Lemma 7.2.4. The set {V(Y)™ : Y € YT} is uniformly integrable.

The existence of solutions to dual problem is given in the following proposi-
tion.

Proposition 7.2.5. Let w(x) := inf(, yyey+[v(Y)+zy]. There exists unique
(y*,Y*) € VT such that E[Y*] =y* and

w(z) =v(Y™) + zy*. (7.2.13)

Proof. First, we note that if (y*,Y™*) € )7+ is a minimizer of w, then ne-
cessarily y* = E[Y™]. Indeed, if this is not the case, i.e. y* > E[Y™*], we
can replace (y*,Y*) by (E[Y*],Y*) € Y* at which the function v(Y) + zy
takes a smaller value, contradicting with the optimality of (y*,Y™*). Moreo-
ver, since V' is strictly convex, there are no more than one minimizer to the
dual problem.

Since V and ¢ are convex functions, (y,Y) — v(Y) + xy is also convex. Let
(Yn, Yn) be a minimizing sequence for the function w(z), i.e.

w(z) = lim [v(Yn) +2yn] = lim [E[V(Ya)] +0(Ya) + 2y].

We now prove that (y,,) and (6(Y;,)) are bounded. Indeed, for n sufficiently
large we have
v(Yn) + zyn < w(x) + 1.

By using the Jensen’s inequality and the decreasing property of V we get
that

w(z) + 12> V(EY,]) +6(Ya) +2yn > V(yn) + 5(Yn) + zyn.

Since x > 0, by 'Hospital rule we have lim, o, Vx(y) V’éy) = 0.
Therefore, if (yy,) or (§(Y},)) is not bounded, the expression on the right-hand
side tends to oo as n tends to oo, which is a contradiction. This shows that
(yn) and (6(Y;,)) are two bounded sequences. Therefore, we can apply the
Komlos theorem for the sequence (yn,Y,) to find out another minimizing
sequence that is, for ease of notation, still denoted by (y,,Ys) (by convexity
of Y*) such that limy o0 (Yn, Yn) = (y*,Y*) € Ry x LY as. By applying
Fatou’s Lemma, we have E[Y*] < y* < co. We now show that (E[Y*],Y™)
is a minimizer of w. Indeed, by using Lemma and Fatou’s Lemma, we
have

— llmy_>oo

E[V(Y*)] < liminf E[V(Y,)]. (7.2.14)

n—oo
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Let X7°™ be an arbitrary non negative terminal wealth in C*(z,m). By
Fatou’s Lemma we get that

E[Y*X7"] <liminf E[Y, X7"] < liminf[§(Y;,) + zyn].

n—o0 n—o0

By taking supremum over all non negative X7" € C(z,m), we have

S(Y*)+zE[Y"] < nli_)rréo[é(Yn) + zyp]. (7.2.15)

By combining (7.2.14]) and (7.2.15)) we have

v(Y*) + zE[Y*] < lim [v(Yy) + zy,) = w(x). (7.2.16)

n—oo

Hence, (E[Y*],Y*) € Yt and v(Y*) + zE[Y*] = w(z). B

The duality relation is reported in the following result.

Proposition 7.2.6. Let (y*,Y™) be the minimizer of the dual problem. We
have y* # 0 and the duality holds

u(z)= inf  [w)+zy] =) +zy”. (7.2.17)
(y,Y)eyt

Moreover, the optimal wealth is given by

X* = I(Y*) = V(Y. (7.2.18)

Proof. We devide the proof into several steps.
Step 1 : We first show that

E[Y*X*] - §(Y*) — ay* = 0. (7.2.19)
Indeed, we rewrite Y* = y*Y; such that E[Y;] =1 and let us define
L(y) == E[V(yY1)] +yo(Y1) + zy.

By virtue of Lemma below, L is well-defined. It is straightforward
that L is a convex function on [0,00) and attains its global minimum at
y*: L(y) > L(y*) = w(x). Let us check that L is C! and

L'(y) = EY1V'(yY1)] + 6(Y1) + . (7.2.20)

Indeed, if the equality above is true, then L'(y*) = 0 by optimality. Mo-
reover, we can also show that y* > 0 since L’ is a decreasing function and
lim,_,o+ L'(z) = co. We then obtain the desired result. Let us now define

G(y) ==V (yY1) +yd("1) + 2y
which is a random convex function. We have L(y) = E[G(y)]| and

G'(y) =NV (y")] + (1) + =,
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where G’ denotes the derivative of G in y. For each convex function f : R —
R and h,z € R, denote

f(z+h)—
h

Apf(x) = /(@) and Ay f(z) := hlirgi Apf(x).

We recall from the theory of real convex functions that

1&% LARf(z) = Ay f(z) =2 A_f(z) = 1}%1 T Apf(x).

Therefore, by applying the monotone convergence theorem, in order to prove
the (continuously) differentiability of L it suffices to show that G'(y) € L',
or equivalently, Y1I(yY1) € L'. But this is done easily by using Lemma
below.

Step 2 : We now prove that X* € C*(x,m) . Indeed, let us consider, for
each 0 <e<1land (y,Y) €Y' :

(Ye, Yo) = (1 =) (", Y") +e(y,Y)

It is straightforward that (y.,Yz) € Y. Note that (y*,Y*) is a global mini-
mum point of the function

(y,Y) = E[V(Y)]+6(Y) + xy.

We have, by the convexity

0 > E[V(Y*) VY +e(0(Y") = 6(Y)) +2(y” - y°)
> E[(Y" =YV +e(6(Y") = 6(Y)) +ex(y” — )
> eB[(Y” Y)V( N+e(@(Y) =o(Y)) +ex(y” —y)
= eB[(Y =Y)IY)] +e(0(Y") = 6(Y)) +ex(y” —v).

Let us check that [(Y — Y*)I(Y*®)]™ is uniformly integrable for 0 < ¢ < &,
where €g being small enough. Indeed, we have :

(Y = YH)I(YO)]” < Y*I(YS) < Y*I((1—e)Y™).

The final term is uniformly integrable for ¢ positive small enough, by virtue
of Lemma below. We can then apply the Fatou’s lemma to get that

B[(Y = Y)I(Y*)] + (0(Y*) = 6(¥)) +aly" —y) 0. (72.21)
Or, equivalently,

E[YX*| = §(Y) —ay < E[Y*X*| = 6(Y*) — zy* =0V (y,Y) € Y1(7.2.22)

By using Lemma this inequality deduces that X* € C*(z,m).
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Step 3 : We now prove that X* is the optimal wealth of the primal problem
for which the duality relation holds. Indeed, by using the equality ([7.2.19)
we have E[X*Y™*] = §(Y™*) 4+ zy*. Therefore

v(Y*) +axy* = E[V(Y")] + E[Y*X"].
Moreover, by the definition of X* , we have the duality
ElU(X")]=E[V(Y")]+ E[Y*X"].
In combining the two equalities above we get that
EUX")]) =v(Y") +ay".

This equality also implies that there actually exists a final wealth X%’Tr*
which is the optimal solution to the primal problem. B

Lemma 7.2.7. Suppose that |[E[V(Y)]| < co,Y € Y. Let 0 < tg < t1 be
two real constants, we have

(i) |E[V(tY)]] < oo for allt > 0 and {V(tY) : to <t < t1} is uniformly
integrable.

(i) |EYI(tY)]| < oo for allt >0 and {YI(tY): to <t <t1} is uniformly
integrable.

Proof. These results are standard. We provide the proof for the complete-
ness. Let us first recall some well-known facts about utility functions : If
AE«(U) < 1 then there exists yp > 0 such that

V€ (0,1)3C, > 0: V(py) < CuV (y) Yy € (0,50),

and

3C > 0:yl(y) < CV(y)Vy € (0,%0).
For the proofs, we refer to [72], Lemma 6.3 and Corrolary 6.1.
(i) By the Jensen’s inequality we have E[V(tY)] > V(ty) > —oo, where
y = EY. We now prove that E[V(tY)] < oo. It is sufficient to prove the
statement for 0 <t < 1.

V(tY) V(Y )Liysy + V(Y ) Ly <yo<y + V(Y )1y <y,
V(yo)ley>ye + V(tyo)ley <yo<y + CeV (Y )1y <y,

Note that all terms are integrable, hence we can conclude about the first
statement of (7). The second statement is now an imediate consequence,
since t — V(tY') is increasing and the two bounds V (t¢Y), V(1Y) are in
L.

(ii) Note that YI(tY) > 0. We then only care about the upper bounds for
YI(tY'). We have

YI(Y) = YIAY)lysy + YIEY )Ly <y

IN

C
< I(0)Y Liysyy + V(Y ) Ly <y

Therefore, (i7) is deduced directly from (3).
|
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7.3 Utility Maximization Problem on The Whole
Real Line

In this section we consider the utility maximization problem under target
constraint, where the utility function is defined on the whole real line. In
order to avoid arbitrage opportunities, the portfolio process is assumed to be
uniformly bounded from below as usual. We then define the set of admissible
strategies as follows

Ao(z) :== {(mt)o<e<r € L(S): X" > —c"as. VO<t<T}, (7.3.23)

where x denotes the initial endownment which might be negative, and ¢™
denotes some real constant that depends on the strategy w. By making an
appropriate translation of variable for the utility function, we can suppose
that x > 0.The set of constrained portfolios is defined by

.A(:L‘, m) = {(ﬂ't)OStST S .Ao({L‘) : E[E(X;i’ﬂ-)] > m} (7.3.24)

Here, the expected loss constraint is similar than that in the previous section,
except that the loss function now is defined on the whole real line. The set
of hedgeable positions is given by

C(z,m) ={X € LY (Fr) — L(Fr): 3Ire Alx,m): X < X;"}7.3.25)

We also denotes Cy(x, m) := C(x, m) — x. The utility function U is assumed
to satisfy the Inada conditions
lim U'(r) = +ocand lim U’(r) = 0.
r——00 r—+00
As for the condition on the asymptotic elasticity, we require both Assump-
tion A in the previous section, and :
Assumption B : The asymptotic elasticity of the utility function at —oo
is strictly greater than 1 :
rU'(z)

AE_OO(U) = limsuprﬁ_wm

We still denote by V' the Fenchel dual function

<1 (7.3.26)

V(y) := sup[U(r) —ryl,y > 0.
reR
It worths noting that in this setting, the utility maximization problem might
not admit a solution in C(z,m), i.e. the maximizer is not necessarily uni-
formly bounded from below. Therefore, we need to expand the set of hed-
geable claims C(x, m) to Cy(z, m) defined by

Cy(z,m):={X e L’: 3(X,) CC(z,m),U(X,) = U(X)in L'}.
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We now define the utility maximization problem on the larger set Cy(x, m)
instead of C(x,m) (But the value function u keeps unchanged by definition
of Cy(x,m)).

u(z) = sup E[UX)]. (7.3.27)
XeCy(z,m)

As we willl see, this reformulation ensure the existence of solution to the
primal optimization problem. The dual domain is defined as follow

YVi={(y,Y)eRy x L} : BEY <y,6(Y):= sup FE[XY]< col7.3.28)
XeCo(xz,m)

We also suppose that
Y:={(y,Y)eY: EV(Y)] < oo} #0. (7.3.29)
The dual problem is

w(zr) = (y,i?)fey[v(y) + xy], (7.3.30)

where v(Y) := E[V(Y)] + d(Y). It is straightforward that u < w.
We now follow the methodology of [93] and [12], consisting in approximating
U by U,, whose domain is bounded from below :

U (z) = {(jz) E Z - (7.3.31)

Let us denote V,, the Fenchel duality of U,. It is easy to show that

Va(y) = sup [U(x) —2y] = U (y) V —n) —y[l(y) V —n].  (7.3.32)

r>—n

We also define the coresponding approximating optimization problem

up(z) = sup  EUn(X)], (7.3.33)
XeCy(z,m)

This problem is equivalent to

up(x) = sup E[U(X)], (7.3.34)
X€eCn(z,m)

where
Cn(z,m) :={X € Cy(x,m): X > —n as}.

The dual domain for this problem is

Vo ={(y,Y)eRy x L : BY <y,6,(Y):= sup FE[XY]< o62.3.35)
X€eCn(xz,m)
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It is easy to show that YV C YV,.1 € YV, C YT for all n > 0. The dual
approximating optimization problem is

wp(x) = (y’il/l)léyn [on,(Y) + 2], (7.3.36)
where v, (Y) := E[V,,(Y)] + 6, (Y).
The duality relation for the approximating problems is given in the following
theorem
Theorem 7.3.1. For each n > 0 the dual optimization problem has
a solution (Yn,Yn) € Vn,yn > 0 such that EY,, = y,. The primal optimiza-
tion also admits a solution X,, given by X,, = I(Y,)V—n € Cp(x, m).
Moreover, the duality relation holds

un () (%g)lg 5 [on(Y) + 2y,

Proof. The verification procedure is proceeded in a similar manner than in
the case of non negative wealth, so it will be omitted here. We now briefly
prove the existence of solutions to the dual problem . As before,
we denote by (y¥,Y¥);>; be a minimizing sequence of the dual problem
such that E[Y*] = y*. Assume that this sequence converges to (y5,Y,*) €
R x L (Fr) almost surely. We have to show that (y,,Y;) := (E[Y,}],Y,r) is
solution to the dual problem. Indeed, by the definition of V,, we have V,,(y)—
ny > U(—n). Consequently, ([V,,(Y) — nY]" )yey, is uniformly integrable.
By using Fatou’s Lemma, we have

E[V(Y,) —nY,] < lilginf{E[V(Yf)] — nyky. (7.3.37)

Let X" be an arbitrary terminal wealth in Cy,(x, m), we have X77" +n > 0.
By Fatou’s Lemma we get that

E[Yo(X3™ +n)] < liminf E[YF(X3™ + n)]

k—o0

< liminf[5(YF) + (n + )k

- k—o0

By taking supremum over all X" € C,,(z, m), we have

5(Yn) + (n+2)E[Y,] < klgrolo[a(Yf) + (n+ 2)yk]. (7.3.38)

By combining ([7.3.37) and ([7.3.38)) we have
v(Y,) + 2E[Y,] < klim (YR + 2yt = wy(z). (7.3.39)
—00

Hence, (yn, Yn) € Vn and v(Yy,) + zyp = wp(z). W

We now aim at linking the solutions of the approximating maximization
problems to the initial ones. Observe that the two sequences of function
(up), (wy) are identical and pointwise increasing (and bounded above by
u,v). It is natural to expect that the limiting functions of (u,) and (wy,) are
u and v, respectively. In fact, this is the case. We first have the following
result for the duality problem
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Theorem 7.3.2. There ezists a subsequence (ny) along which (Yn, , Yo, On, (Yn,))
converges to (y*,Y*,6(Y*)) € Y x Ry in L' such that EY* = y* > 0. Mo-
reover, (y*,Y™) is the unique minimizer for the duality problem

w(z) = E[V(Y")] +0(Y") + zy™.

Furthermore, (Vy, (Yn,)) converges to V(Y*) in L and therefore, wy, converges
to w.

Proof. We first observe that V(y) > U(0)Vy > 0. Since V,, <V we have
w(x) > wy(x) > U(0) + 0n(Yy) + 2yn.

Hence, (6,(Y;)) and (y,) are bounded sequences (since = > 0). We then
deduce a subsequence (ny) along which y, — y* and 6,(Y,) — §*. For ease
of notations we still denote nj by n. By using the same arguments as in Step
2, Theorem 2.2 [93] we deduce the existence of Y* such that Y,, converges
to Y*in L' and that EY* = y*.

We now verify (y*,Y™*) € V. Indeed, let us consider an arbitrary random
variable X € Cy(x,m) such that X > —Fk a.s., where k is some positive
integer. Since (Y},) is uniformly integrable and X is bounded below, we can
apply the Fatou’s lemma to get that

E[Y*X] < liminf E[Y, X] < liminf 6,(Y;,) = 6*.

Therefore, by taking supremum over all X € Co(z, m) we have §(Y*) < 6* <
oo. Hence (y*,Y™*) € Y. By applying the Fatou’s lemma one more time we
obtain

w(z) < E[VY")]+6(Y") 4+ 2y* < liminf wy,(z) < w(z).

The above inequalities show that w(z) = E[V(Y™)] + 6(Y™) + zy* and then
(y*,Y™*) is the unique minimizer of the duality problem. We also deduce
that V,,(Y,) — V(Y*) in L' as (V,,(Y,)) is uniformly bounded below and
converges a.s to V(Y™) as well as E[V,,(Y,,)] — E[V(Y™)]. It is also straight-
forward that §(Y™*) = lim 6,(Y},).

Finally, by the same arguments as in Step 1, Proposition[7.2.6] we can easily
deduce that y* > 0.

|

From the previous theorem and the fact that v < w we deduce that u, — u
and u = w. Not supprisingly, we obtain the following

Theorem 7.3.3. The sequence (U(X,)) converges to U(X*) in L', where
X*:=1I(Y*) € Cy(xz,m) is the maximizer of the primal optimization pro-
blem. We have E[((X*)] > m and the duality relation holds

uwx) = EUX")]=E[VY")]+6Y7) +zy* =w(zx). (7.3.40)

The proof of theorem is basically the same as in the Step 7, Theorem 2.2,
[93].
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7.4 Complete Market : A Constrained Duality Ap-
proach

We now turn to the case where the market is complete, i.e. the set of equiva-
lent martingale measures reduces to a singleton {@}. In order to keep things
as simple as possible, we consider in this section the case where the utility
function is defined on the half positive real line. In general, the dual space
Yt (x,m) is quite large, even in the complete market case. It then turns out
to be difficult to characterize the "optimal pricing measure" Y;*. Therefore,
we need another technic which is still based on duality to cope with the pro-
blem. The idea is to replace the expected loss constraint by an infinite num-
ber of almost-sure shortfall constraints. We recall that in the case of short-
fall constraint, i.e. constraint of the form X7°" > k, where k denotes some
constant threshold and X77™ denotes a terminal wealth, the optimal wealth
to the utility maximization problem is given by X3 =k V U) Ny %),
Here, y* is determined by the equation Eg [X%’ﬂ*] = x. We refer readers to
[32] for more details.

Let us define the constrained Fenchel duality of the utility function U :

Vply) == m>ax[U(r) —ryl,y >0,peR. (7.4.41)
r>p

The explicit form of V,(y) is given by

Vo(y) =U(I(y)Vp)—yll(y)Vpl, (7.4.42)

where I = U'~!. The following lemma is easy to prove but it is useful for
further analysis.

Lemma 7.4.1. V,(y) is a non increasing convex function in y and a non
increasing concave function in p. Moreover, its partial derivatives are conti-
nuous and given by

%’(y) G ) (7.4.43)
C;‘j(m - V) -y (7.4.44)

We keep the setup and all necessary notations as in Section 6.2, except that
the dual space now is YT := {yH : y > 0} which does not depend on z,m.
Here H = % denotes the risk-neutral density of the unique equivalent
martingale measure Q. Let C*(z) denote the set of hedgeable claims (which
are bounded below) without target constraint. Hence C*(z) is characterized
by

Ct(z) ={X € LY (Fr,P) — LT (Fr,P) : EgX <0}.

Let us define the set of shortfall thresholds as follows

M= M(z,m):={M e LY (Fr): EqgM <z, E[{(M)] > m}.
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Let er’” denote a terminal wealth satisfying the expected loss constraint.
We have :

EU(X7T)) >m< 3IM e M: X" > M. (7.4.45)
Therefore, solving the primal problem :

u(z) == sup {E[U(X)]: E[((X77)] > m} (7.4.46)
XeCt(x)

boils down to solve the following

up(z) = sup {EUX)]: X>M} MecM, (7.4.47)
XeCt(z)

i.e. we have u(z) = suppepunm(z). By using (7.4.45) and the definition
of the constrained Fenchel dual function ([7.4.41)), we have the following in-
equalities

u(z) < sup inf{E[Viy(yH)] + zy} < inf sup {E[Vy(yH)| + xyf7.4.48)
Memy>0 ¥>0 Mem

In order that the expressions in ([7.4.48) are well-defined, we assume that
E[V(yH)] < oo for all y > 0. Let us denote

wy(z) == ;I;%{E[VM(yH)] + zy}, (7.4.49)
and
v(y) = vem(y) == sup E[Vy(yH)]. (7.4.50)
MeM

We rewrite (|7.4.48|) as follows

u(z) < sup wy(z) < in%[v(y) + zy]. (7.4.51)
MeM y>

Our goal is to prove that under appropriate conditions, the inequalities in
(7.4.51)) become equalities. The first equality is established in the following

theorem.
Theorem 7.4.2. (i) For each M € M, there exists 0 < yi; < oo such that

wy (z) = E[Va(ypH)| + 2y (7.4.52)

Moreover, the optimal wealth of the utility mazimization problem with

shortfall constraint is given by
X3 =MV I(yiH), (7.4.53)

and we also have up = wyy.
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(i) There exists M* such that

wl(z) = sup wy(z) = wy+ ().
MeM

Moreover, the duality holds, i.e. w = w'; and the optimal wealth of the
primal utility mazimization problem is given by

X* = M*V I(y*H), (7.4.54)

where y* 1= Yy«
Proof.
(i) For each M € M, let us define

Gu(y) == Vu(yH) + xy,

and Ly/(y) := E[Gp(y)]. By using the same arguments as in Proposition
we can show that Ly, is C' and its derivative is given by

Liy(y) =z — Eq[M v I(yH)].

On the one hand, since y — M VI(yH) is an non-increasing positive function,
{MVI(yH) : y > yo > 0} is uniformly integrable for all strictly positive
constant yg and we can apply the monotone convergence theorem to deduce
that
yli_{go Lhy(y) =z — EgM > 0.

On the other hand, since limy,_,o I(yH) = +00, we can apply Fatou Lemma
to get that

lim L), (y) = —c0.

y—0
Therefore, if EgM < x then there exists y}, > 0 such that L', (y},) = 0
or equivalently, Lys(.) attains the global minimum at yj3, by its convexity.
Otherwise if EqM = z then L,(y) > 0 for all y > 0, hence Ly(.) at-
tains its infimum at y}, = oco. In both cases, X3, := M V I(y},H) satis-
fies Eg[X};] = x. By definition of the constrained dual function, we have
up(z) < wpr(x) Vo > 0 and it is straightforward to verify that X3, is the op-
timal solution to the utility maximization under shortfall constraint .
As a result, we also have uys(z) = wpr(z).
(ii) Notice that since M — E[Vas(yH)] 4+ zy is a concave function, M —
wyr(z) is also a concave one. Let (M,,) be a maximizing sequence for M —
wps(x). That is

. _ 1
nh_}ngo wyy, () = w (x).

Since M,, > 0 for all n, by Lemma A.1.1 of Delbaen and Schachermayer
(1994), there exists a sequence of F-measurable random variables

Mn € conv(M,, My 41, ...)
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such that Mn converges almost surely to M* which is F7— measurable. We
will prove that M* € M and M* is solution to the optimization problem
w?. Indeed, by the concavity of M — E[Vy(yH)] + zy and the fact that

Vir(yH)t < V(yH)" € L',
we can apply the Fatou’s lemma to obtain that, for all y > 0 :

E[Vy+(yH)] + xy > lim sup{E[VMn (yH)] + zyn} > nlg]go wyy, (z) = wh(z).

n—oo

Consequently, we have wys«(x) > w!(x).Therefore, we only need to verify
that M* € M. First, we have M* > 0 and Eg[M*] < z by the virtue of
Fatou’s Lemma. Second, since £ is continuous, concave and bounded from
above, the Fatou’s lemma gives

E[¢(M™)] > limsup E[¢(M,)] > m.

n—oo

We then deduce that M* € M and wy+(z) = maxpepm wpr(x). The re-
mainder of the proof is straightforward.

[ |

The following theorem establishes the second dual equality.

Theorem 7.4.3. (i) If there exists ¢ > 0 such that E[{(x — €)] > m, then
there exists (y, M) € (0,00) X M such that

w?(z) == v(§) + x§ = E[Vi(§H)] + 3. (7.4.55)
(i) Moreover, if y* < oo then the minimaz theorem holds, i.e.

sup inf{E[Vy(yH)] + 2y} = inf sup {E[Va(yH)] + zy}. (7.4.56)
Memy>0 ¥>0 prem

Consequently, the dual equalities hold, i.e. u = w' = w?.

Proof. (i) Let y > 0 arbitrary. By similar argument as in the previous theo-
rem, we can prove the existence of a M\y € M such that v(y) = E[Vﬁy (yH)].
Our goal now is to show that there exists a 7 € (0,00) such that w?(z) =
v(9) + xg. Note that y — E[Vay(yH)] is convex for each M € M fixed.
We then deduce that y — v(y) + xy is also convex. Let y, be a minimizing
sequence for the function w(x), i.e.

w(z) = lim [v(yn) + zyn)].

n—oo

Let us verify that (y,) is bounded. Indeed, we deduce from the assumption
that x —e € M. By using Jensen’s Inequality for the convex function V,_.(.)
we have

V(Yn) + xyn > EVe—e(ynH)] + zyn > Vae(yn) + 2yn = U(z — €) + €yn.
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Since {v(yn) + TYn fn>1 is bounded, it is obvious that {y, },>1 is also boun-
ded. Therefore, we can suppose that lim, -0 ¥, = ¢ > 0. We now verify the
equality

w?(x) = v(§) + z7.

To do so, let us rewrite

v(y) + 2y = sup {E[Vi(yH) +yHM] — yEqQM}.
MeM

Since Vj,(y) + py > V(y), it is easy to check that (Vas(ynH) + yn HM)™
is uniformly integrable for every M € M (by virtue of the lemma [7.2.7)).
Therefore, we can apply Fatou’s Lemma to get that

E[Vy(yH)] < liminf{E[VM(ynH)—l—ynHM]—ynEQM}
< liminf sup EVa(ynH)]

- n—oo Me

= lim 1nfv(yn).
n—oo
By taking the supremum over M € M we have

(@) + i < lim inf [o(yn) + 2] = w(z).

Hence w(z) = v(§) + 29 = E[V3;(§H)] + g, where M = My

(ii) Observe that y — E[Viy(yH)| + xy is a continuous function. Moreo-
ver, since Vi (yH) < V(yH) € LY(Fr), we can easily check that M —
E[Vay(yH)] + 2y is an upper semi-continuous function in L' —topology. Note
also that M is a closed convex set of L!(Fr). Hence, we can apply the mi-
nimax theorem (for reference, see for example [97], Theorem 45.8) to get
that

sup inf {E[VM(yH)] +ay} = 1nf sup {E[Vy(yH)] + xzy},
MeMUYEA yEA MeM

where A C (0, 00) denotes an arbitrary closed convex compact set. By chos-
sing A large enough such that A contains y* (see the previous theorem), and
such that {y,} C A, we then obtain the following minimax equality

sup mf{E[VM(yH)] +ay} = mf sup {EVMm(yH)] + zy}.
MemVY

The theorem then follows.
[ ]

7.5 Complete Market : Multiple Target Constraints
and BSDEs

In this section we will consider the utility maximization problem under mul-
tiple constraints imposed on the final wealth :

u(z,m) :=sup{E[U(X7")] : E[¢(XT™)] = m}, (7.5.57)
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where ¢ = ({1,...,¢k) is a multidimensional loss function, each component
of which is a scalar loss function as considered in the previous parts of the
chapter; m = (mq,...,mg) € Im/{ is a constant vector; the sign > is

understood componentwisely. The initial endownment z is assumed to be
large enough such that the set of admissible strategies is non-empty. For
instance, we can suppose that E[{(x)] = m. Let us consider the following
problem :

v(y,m) :=inf{z: Ir: E[UX3")] >y, El(X7")] =m} (7.5.58)

Some elementary arguments show that v(u(xz,m), m) = z, and symetrically,
u(v(y,m),m) = y. In other words u(.,m) = v=1(.,,m), where v=1(.,m) de-
notes the right-inverse of v with respect to the y— variable. This observation
leads us to study the relation between the utility maximization problem
and a hedging-type problem. Moreover, both of them are under multiple
constraints. In order to calculate wu(.,m), we only need to (theoretically)
calculate v(.,m) and then invert it with respect to the y—variable.

For ease of notations, we can rewrite the conjugate problem in a multidi-
mensional constraint form :

v(m) :=inf{z: Ir: EU(X7")] = m}. (7.5.59)

Here { = (4o, €),m = (mo,m), where y := U and mg := y. In the sequel,
we use the notations ¢, m instead of Z m. To avoid non necessarily technical
difficulties, we will assume that £ is a smooth deterministic function and m is
some constant vector in the interior of Im £, i.e. ¥, < my <1k Vk=0,..K,
where [, = 1,(0) and IF . := lim, o0 L (7).

Assumption C : () : Ry — R is C?, strictly concave and lim,_, o ¢}, () =
0VEk=0,...,K. Moreover, lim,_,o4 £,(z) = +o0.

We consider a complete market model where the interest rate is rs, the
risk premium is 6; and the volatility of the risky asset is oy which is an
invertible matrix. We also suppose that (1), (6;), (o¢) are bounded processes.
The dynamics of the portfolio is given by

dXtas,ﬂ' _ (rtth’ﬂ+9t0t7Tt)dt+Ut7rtth‘ (7560)
X = o, (7.5.61)

The set of admissible strategies consist of adapted processes (m;) such that
T
/ |lop.me|?dt < 0o P — a.s.
0

By a similar argument than in the unique constraint case, let us define the
set, of extra controls as follows.

M= {M = (My,...,Mg) € L'(Im¥¢) : £, '(My) € L3, E[My] = mi Y k}.
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We have two remarks here. First, note that the notation of M in this sec-
tion has a different meaning than that in the previous sections. Second, the
requirements ¢, '(Mj) € L%Vk ensure that the BSDEs in this section are
well-defined. We have

EU(XTT)) =m<< 3IM e M: X7" > F(M),

where F(M) = max{¢y (M), ..., {5 (Mk)} being a convex function of M.
Let us define the Fenchel duality of F' as follows

F(p) = sup [pr = F(r)], p e R
relm

We can easily show that F is also convex and that

ﬁ(p) =sup sup [p.r— F(r)] =sup[pLl(t) —t].
t>0 F(r)=t >0

Here, x.y denotes the scalar product of two vectors x and y. For each p €
Rf“, the function f(t) := p.l(t) — t is strictly concave. We have f'(t) :=
p.0'(t) — 1 which is a strictly decreasing function and that

lim f'(t) = oo, lim f'(t) = —1,

t—0+4 t——+o0

which deduces the existence of a unique global maximal point of f , denoted
by t(p) which is an increasing function of p with respect to the natural order
on RE*! and solves the equation p.¢/(t(p)) = 1. We then have

F(p) = p.L(t(p)) — t(p).

Back to the main problem, let us introduce the BSDE version of the dynamics

(7.5.60)) as

T T
th =¢{— / (rsXs + gsZs)dS - / ZsdWs.
t t
By the comparison principle, we have the following estimation

v(m) > inf {xI*y, (7.5.62)
MeM

Consider the state-price process
t t
L;=1 —|—/ Lsrsds—i—/ Ls0,dWs.
0 0

Let @ the unique equivalent martingale measure defined by % = Lp. For
M e M, (XtF(M)Lt) is a martingale, therefore Eg[F(M)] := E[F(M)Ly] =
X(])V[ . By definition of the Fenchel dual function F' we have, for all p € Ri{ +,

Xy ™ = B[F(M)Lz] > E[p.M — F(L3'p)L1).
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We then get that

inf {X'™} > sup [p.m— EgF (L 'p)]). (7.5.63)
MeM pERerl

By combining ([7.5.62)) and ((7.5.63|) we are led to

o(m) > inf {XFMY > sup [pm— Eo[F(Ly'p)]].  (7.5.64)
MeMm eRf“‘l

In fact, we can prove that the inequalities become equalities in (|7.5.64)). The
following theorem is the main result of this section. Note that in the theorem,
the notation < y means that x; < y; for all 4.

Theorem 7.5.1. If the constant vector m satisfies min < M < Lmax then
there exists a maximizer p* for the optimization problem on the right-hand

side of . Let us denote X* = t(L;lp*). Suppose that p* > 0 and that
X* is square integrable. Then the duality holds, i.e.

v(m) = ian{Xg(M)} = sup [p.m— EQ[ﬁ(L;lp)]]. (7.5.65)
MeM peRf+1

Moreover, the optimal wealth of the dual problem is giwen by X*
and the coresponding optimal control is M* = £(X™).

Proof. We first prove the existence of a maximizer p* = p*(m) to the follo-
wing optimization problem

sup [p.m — Eo[F(Lz'p)]).
pGRf"'1

Notice that the expression K (p) = Ky, (p) :== p.m—Eq [ﬁ(L;lp)]] is a convex
function of p whose derivative is given by

K'(p) =m — E[VF(Ly'p)).

By envelope theorem we have

Hence,
K'(p) = m — E[((t(Ly'p))]-

Therefore, K (.) admits a maximizer p* > 0 if and only if K'(p*) = 0. Observe
that F' is a convex function, so we can apply Jensen’s inequality to get that

K(p) < p.m — F(Eq[Ly'pl) = pm — F(p) =: J(p).

The application p — J(p) is also a concave function whose derivative is
given by J'(p) = m — £(t(p)). Notice that lim,|_ot(p) = oo and that
m < fpax by assumption, we obtain that limjp_. J'(p) < 0. Therefore,
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J(.) converges to —oo when ||p|| tends to oo, and so does K (.) Consequently,
K(.) attains its global maximum over Rf 1 at p*. If p* > 0 we can deduce
that K'(p*) = 0, or E[((t(L;'p*))] = m. Let us denote X* = t(L'p*) and
M* = ¢(X*) we have E[{(X*)] = m. By the duality we get that
E[LrX*] = E[LyF(M*)]

= B[Lr (L7 - F(L'p))]

= p'm— BE[F(L;'p")).
The theorem then follows. H
Remark 7.5.2. Consider the primal problem . It is deduced from

the theorem above that if p(x,m) = p*(u(x,m),m) exists and lies in the
interior of Rf“, then the optimal wealth of s given by

X* =t(L: 'p(z,m)).
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