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ἀλλ ὅτε δὴ πολύμητις ἀναιξειν ᾿Οδυσσεὺς

στάσκεν, ὑπαὶ δὲ ἴδεσκε κατὰ χθονὸς ὄμματα πήξας

σκῆπτρον δ΄ ὄυτ΄ ὀπίσω οὔτε προπρηνὲς ἐνώμα,

ἀλλ΄ ἀστεμπηὲς ἔχεσκεν ἀίδρει φωτὶ ἐοικώς·

φαίης κε ζάκοτόν τέ τιν΄ ἔμμεναι ἄφρονά τ΄ αὔτως.

ἀλλ΄ ὅτε δὴ ὄπα τε μεγάλην ἐκ στήθεος εἵη

καὶ ἔππεα νιφάδεσσιν εὀικότα χειμερίῃσιν

οὐκ ἂν ἔπειτ΄ ᾿Οδυσῆί γ΄ ἐρίσσειε βροτὸς ἄλλος·

οὐ τότε γ΄ ὧδ΄ ᾿Οδυσῆος ἀγασσάμεθ΄ εἶδος ἰδόντες.

Mais quand se leva Ulysse le subtil,
Il se tint d’abord immobile, les yeux fixés sur le sol,
Sans remuer son bâton, ni en avant, ni en arrière;
Il le gardait tout droit, comme un homme hébété;
On l’aurait cru quelqu’un qui s’est fâché, ou qui est sot.
Mais quand, de sa poitrine il laissa sortir sa grande voix,
Et des mots pareils à des flocons de neige en hiver,
Alors personne avec Uysse n’aurait pu rivaliser;
Et ce n’était plus l’allure d’Ulysse qui nous étonnait.

Iliade, III, v.216-224
trad. J.-L. Backès



Abstract

In the first part of this thesis, we focus on a recent model, called pop-
ulation protocols and introduced in [7], which describes large networks
of tiny wireless mobile anonymous agents with very limited resources.
The harsh constraints of the original model makes most of the classical
problems of distributed algorithmics, such as data collection, consensus
and leader election, either difficult to analyze or impossible to solve.

We first study the data collection problem, which mainly consists in
transferring some values to a base station. By using a fairness assump-
tion, known as cover times, introduced in [16], we compute tight bounds
on the convergence time of concrete protocols. Next, we focus on the
problems of consensus and leader election. It is shown that these prob-
lems are impossible in the original model. To circumvent these issues, we
augment the original model with oracles, and study their relative power.
We develop by the way a formal framework general enough to encompass
various sorts of oracles, as well as their relations.

In the second part of the thesis, we study the problem of state-
machine replication in the more classical model of asynchronous message-
passing communication. The Paxos algorithm introduced in [56, 57] is a
famous (partial) solution to the state-machine replication problem which
tolerates crash failures. Our contribution is the enhancement of Paxos in
order to tolerate transient faults as well. Doing so, we define the notion
of practically self-stabilizing replicated state-machine.
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Chapter 1

Introduction

The growing development of communication technologies, ranging from mobile
sensor networks to georeplicated databases, have received considerable atten-
tion in the past few years. The goal of the distributed computing community
is to provide the theoretical means to analyze and correctly use the variety of
these communication networks. In particular, one of the fundamental aspects
in distributed computing is the opposition asynchrony vs. synchrony, which
will be studied in this thesis.

Let’s first sketch why this opposition is ubiquitous in our domain. From
a very general point of view, a distributed system, or network, is a collection
of sequential processors together with communication abilities, e.g., message-
passing, shared memory, etc. The usual sense of synchrony and asynchrony
refers to the way processors’ local transitions are interleaved. For example, in
a synchronous system in the usual sense, each processor performs a local step
at each global clock signal. On the other hand, in an asynchronous system, the
processors perform their local steps almost independently of each other. This
conrete meaning of synchrony and asynchrony is a particular case of a more
general situation. Asynchrony is related to the relative independence of local
transitions at processors, whereas synchrony is related to the relative depen-
dence of distant processors among each other. We can associate with a given
network, a specific level of synchrony that represent the extent to which the
processors are relatively dependent on each other. Of course, this qualitative
definition encompasses the usual quantitative definitions of synchrony (in terms
of, e.g., delay, or periodicity), but it also applies to more general settings.

An important issue is that a problem in distributed computing usually con-
sists in designing local algorithms for the processors to coordinate themselves,
in order to perform a global task. Intuitively though, if the processors are too
much independent from each other, then there is few chance that they can
collaborate to perform the task. Put another way, if the level of synchrony
provided by the network is too low, then the target problem may be impossible
to solve. If the level of synchrony is fit, then a solution exists. And, if the level
of synchrony is high, then a more efficient solution to the problem may exist.

There are essentially two ways to assess the level of synchrony of a net-
work. First, we can adopt explicit assumptions: bounded communication de-
lay, known movement pattern of mobile agents, known kinds of failures, etc. In
that case, we usually adopt a bottom-up approach: we fix a level of synchrony
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1. Introduction

assuming explicit conditions on the network, and we design a distributed algo-
rithm implementing the considered task. If the task turns out to be impossible
for the given level of synchrony, one may also try to solve a weaker variant of
the task.

Another approach consists in adopting implicit assumptions. In that case,
the network is augmented with a black box, also known as an oracle, that
provides some global service. This black box increases, in some sense, the level
of synchrony of the network without referring to any inner mechanism. We
then usually adopt a top-down approach: we fix the problem, and we look for
the minimal level of synchrony required to solve1 the problem.

Many fundamental results in our field of research illustrate the remarks
above. The consensus problem fits perfectly in our discussion: intuitively, hav-
ing all the processors to agree on a common value requires a relatively high
level of synchrony. The seminal paper of Fischer, Lynch and Paterson [47] has
shown that an asynchronous message-passing network prone to crash failures
does not provide the required level of synchrony: a single crash failure may
prevent the system to reach a consensus2. Later, Dwork, Lynch and Stock-
meyer [45] adopted an explicit approach, and studied the consensus problem
in partially synchronous message-passing networks prone to crash failures: in
some cases, the consensus is solvable. In the same vein, some work focused on
weaker variants of the consensus problem, e.g. [18]. An implicit approach to
consensus was first presented in the seminal paper [32]. Instead of weakening
the problem, or using explicit assumptions on the network, they introduced
the concept of failure detector, i.e., an oracle that gives information about the
past crash failures. By augmenting the network with such a device, they man-
aged to solve the consensus problem. But their most important result is that
they found the weakest failure detector, in their class of oracles, for solving
the consensus problem [31]. Although the notion of weakest failure detector
is problematic [33], this is the first occurrence of the implicit approach in dis-
tributed computing, as far as we know.

This thesis builds on both explicit and implicit approaches to solve classical
distributed problems in two models. The first part concentrates on a model
of large networks comprising tiny, resource-limited, anonymous and mobile
agents, known as the population protocol model [7]. The second part, on
the other hand, takes place in the asynchronous message-passing model, and
studies the recently introduced relation [44] between self-stabilization and state-
machine replication. In both cases, a close analysis of the tension between
asynchrony and synchrony turns out to be the key for solving the considered
problems.

1One may also look for the minimal level of synchrony to solve efficiently the problem,
in some specific sense.

2A crash failure can occur at any time, independently of the other processors. The nature
of the model implies that the crash is undetectable. Thus, the possibility of crash can be
seen as an additional source of asynchrony in the general sense.
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1.1. Population Protocols

1.1 Population Protocols

The Original Model

The population protocols were introduced in [7] in order to model large net-
works of tiny, anonymous and asynchronous mobile agents. The basic idea
is that the agents move passively, have a limited communication range, and
two of them can communicate only if they are close enough (the two agents
meet). The actual protocol consists in a finite set of rules describing how the
states of two agents are updated when they meet. In this setting, a commu-
nication graph indicates the possibilities of meetings between the agents: a
node represents an agent, and an edge the possibility of a meeting between its
extremities. Time in population protocol is modeled by a scheduler, i.e., an
adversary that selects the order in which the meetings occur. The mobility of
the agents is modeled by a condition on this scheduler, usually referred to as
a fairness condition. The original fairness condition, known as global fairness,
somehow mimics a random scheduling of the meetings. Another important
feature is that the agents have a memory size independent of the population
size, and do not know which communication graph they are running on.

In terms of (a)synchrony, the original population protocol model is highly
asynchronous. The scheduling of the meetings is non-deterministic, and some
meeting between two agents can be arbitrarily delayed. Moreover, the restric-
tion on the memory size implies that the agents do not have, and cannot com-
pute, identifiers. Yet, the computational power of this model is not trivial. For
instance, Angluin et al. [9] have proved that the class of computable predicates
is exactly the Presburger class3. Later, the model began to be studied from a
distributed computing perspective, involving topics like, e.g., fault tolerance,
self-stabilization, leader election, mutual exclusion, and so on [10, 26, 36, 17].
Although some problems have a solution (e.g. self-stabilizing 2-hop coloring
[10]), it turns out that many problems are impossible to solve in this model (e.g.
silent leader election [27], self-stabilizing leader election [10]), and extensions
of the original model have been proposed [15, 49, 64].

Most of the previous work rely on an explicit enhancement of the original
model, and few adopted an implicit approach [65, 46]. A part of our contribu-
tions deal with the explicit approach: we apply an extension proposed in [16]
to the study of the data collection problem. Our main contribution, however,
is a formal framework which enables the correct manipulation of implicitly de-
fined entities (oracles). We apply this framework to the study of consensus and
(self-stabilizing) leader election in population protocols. The following sections
give more details.

Explicit approach

As mentioned previously, the original model of population protocol is highly
asynchronous. The original fairness condition allows a meeting between two
agents to be delayed arbitrarily. This is problematic when one wants to analyze
the speed of convergence of a protocol. In Chap. 4, we illustrate this issue by
studying the data collection problem. In this problem, the agents are required

3However, their notion of computation does not require the termination of the computa-
tion. This highlights the highly asynchronous nature of the model.
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1. Introduction

to forward their initial values (e.g., given by sensor devices) to a base station.
The convergence time is the time required to collect all the data at the base
station. Many works [51, 54, 25] were dedicated to simulate data collection
protocols in order to assess the convergence time. But simulations can only
give hints on the performance of an algorithm, and the original population
protocol model gives no analytical means to compute the convergence time.

Therefore, a new type of fairness, known as the cover time property, has
been introduced in [16]. This property is an explicit condition on the scheduler
that introduces a notion of partial synchrony (like in [40]). Roughly speaking,
it guarantees that the agents meet periodically, some of them being faster than
others.

This idea is applied to the study of a concrete example known as ZebraNet
[53]. ZebraNet is a project conducted by the Princeton University and deployed
in central Kenya. It aims at studying populations of zebras using sensors
attached to the animals. This project developed an history-based protocol
to deliver the sensed values to the base station. We incorporate “one-shot”
variants (executing the data delivery only once) of this ZebraNet protocol in
the population protocol model. Then, using the cover times, we give tight
bounds on their convergence duration, expressed in number of agents meeting.
As far as we know, this is the first analytical computation of convergence time
of concrete population protocols.

Implicit approach

We illustrate the implicit approach by the study of two problems in distributed
computing: consensus and leader election. In most cases, the highly asyn-
chronous nature of the original population protocol model prevents the exis-
tence of solutions to both problems. This leads to the introduction of oracles,
seen as the missing part of synchrony required to solve the considered problems.
Investigating the nature of these oracles, and looking for the weakest ones, we
were led to defining a whole framework to correctly manipulate these entities.
For didactical reasons, we present these oracles in relation to the considered
problems.

Consensus. In Chap. 5, we study the consensus problem: all the agents even-
tually decide on a common value among their initial values. The anonymous
nature of the agents in the population protocol model naturally leads to define
a variant of the consensus problem, namely the symmetric consensus, in which
we additionally require that the decision value is stable under permutation of
the initial distribution of the input values.

We first formally show that the consensus problem is impossible to solve,
even without failures, in the original population protocol model. Our implicit
approach consists in defining a class of oracles, similar to the failure detectors
of Chandra and Toueg [32]. Roughly speaking, while a failure detector pro-
vides information about the failure pattern, our oracles provide information
about the past schedule of meetings. In particular, we define an oracle, called
DejaV u, which notifies some agent when it has indirectly seen every other,
and we prove that it allows to solve the symmetric consensus. Next, similarly
to [32], we say that an oracle O1 is weaker than another oracle O2 when there
exists a population protocol that transforms the outputs of O2 into possible

4



1.1. Population Protocols

outputs of O1. We then prove that the oracle DejaV u is the weakest oracle
(in its class) to solve the symmetric consensus.

Leader Election. The leader election problem is another classical problem
in distributed algorithms, and consists in appointing a unique agent as the
leader, while the others remain non-leaders. In the population protocol model,
since there are no identifiers, the agents are not required to know who is the
leader. To avoid trivial solutions, the agents start with the same initial state4.

First, assuming that the agents are correctly initialized, we provide a pro-
tocol solving leader election over arbitrary communication graphs. As far as
we know, no solutions were given over arbitrary graphs.

Next, we focus on the study of the self-stabilizing leader election problem.
Self-stabilization, introduced by Dijkstra in [38], deals with transient faults, i.e.,
punctual corruptions of the states of the agents which put the whole system in
an arbitrary configuration. The goal is to ensure that, after the last transient
fault5, the system eventually behaves correctly. This is equivalent to requiring
that, in any fault-free execution from an arbitrary initial configuration, the
system eventually behaves correctly.

It turns out that the possibility of transient faults weakens6 the level of
synchrony provided by the system to the point that the leader election prob-
lem becomes impossible in many natural cases [10]. To circumvent this issue,
Fischer and Jiang [46] have introduced a new oracle, Ω?, known as the leader
detector, which basically notifies each agent about the presence of at least one
leader in the system. Fischer and Jiang then have exhibited solutions using
this oracle over the complete graphs, and over the rings.

Using the same oracle Ω?, we build a self-stabilizing solution over the family
of graphs with bounded degree. For a more general family of graphs, it seems
that the oracle Ω? is not sufficient. We then introduce natural stronger variants
of Ω?, and use them to design a self-stabilizing protocol for leader election over
arbitrary graphs.

As stated in the beginning, the implicit approach requires to look for the
weakest oracle allowing the existence of a self-stabilizing leader election pro-
tocol. We prove that, over the rings, implementing Ω? is as hard as solving
the self-stabilizing leader election problem. In particular, this implies that any
oracle strong enough to yield a self-stabilizing leader election protocol, can be
used to implement the oracle Ω?.

Enhanced Model

In contrast to the oracles introduced for consensus, and to the failure detectors
of Chandra and Toueg as well, the leader detector Ω? does not only observe the
schedule of meetings, but also looks into the agent states and provides infor-
mation about the absence or presence of leaders in the system. This introduces
a kind of feedback loop, since the output of the oracle influences the agents be-
haviour, and vice-versa. This aspect deeply modifies the kind of manipulation
allowed on oracles, and requires a proper framework.

4Except in the case of self-stabilization where the initial system’s configuration is arbi-
trary.

5It is usually assumed that there is a finite number of transient faults.
6Roughly because the processors cannot detect the occurrence of a transient fault.
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1. Introduction

In Chap. 3, after presenting the population protocol model, we develop a
natural framework that encompasses all the oracles mentioned above, as well
as means to compare them. The basic idea is that a population protocol is
a local piece of data, since it describes the states updates on meeting events.
But, a problem, or an oracle, is a global piece of data, since it specifies the
behaviour of the whole system. Naturally, a population protocol gives rise to a
global behaviour, and this protocol is said to solve a problem if the associated
behaviour matches with the problem specifications.

In our settings, oracles and problems live at the same level, and augmenting
the network with an oracle is seen as allowing to compose the global behaviours
of protocols with the oracle. Put another way, using an oracle to solve a problem
is seen as a reduction from the latter to the former. This is analogous to the
situation in complexity theory where one studies the complexity of a problem
relatively to another one, by means of, e.g., deterministic polynomial time
(sequential) algorithms.

In Chap. 3, we formally define the concepts of global behaviour, composition
and comparison relation. As far as we know, this is the first framework unifying
the various oracle-based approaches in population protocols.

1.2 State-Machine Replication and Self-Stabilization

The second part of this thesis takes place in the more classical asynchronous
message-passing model with crash failures, and is dedicated to the study of
state-machine replication. State-machine replication is a well-known technique
to guarantee a fault-tolerant service [73]. The basic idea is to have many
copies of the data, so that if some copies are lost, then the whole system is not
broken. More precisely, each processor, also known as replica, holds a copy of
the same program, or state-machine. The replicas start from the same initial
state and have to execute the same requests in the same order. In other words,
the replicas have to synchronize between themselves when the system receives
requests from clients. Doing so, the clients see the whole system as a unique
state-machine processing their requests in a sequential manner7.

The Paxos algorithm, introduced by Lamport in [56, 57], is a partial solu-
tion to the state-machine replication problem: the algorithm only ensures that
the replicas never “desynchronize”, i.e., never exhibit incoherent answers to the
clients; but, the replicas may, in some specific scenarios, undergo a livelock,
preventing the system to execute new requests. This last issue is mainly due
to the fact that the state-machine replication problem is related to the consen-
sus problem8, and it is well-known that the consensus problem is impossible
in asynchronous message-passing networks with crash failures [47]. However,
the livelock scenarios of Paxos can be avoided in practice using, e.g., failure
detectors [32]. The usefulness of Paxos is proven daily by the very leading
companies [30].

In our work, we enhance the original Paxos algorithm to make it self-
stabilizing. In other words, our goal is to guarantee that, in any execution
prone to crash failures and starting from an arbitrary configuration, the sys-
tem eventually behaves correctly. Our approach replaces a core mechanism of

7The state-machine is then linearizable [50].
8The replicas have to agree on a common sequence of requests to execute.
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Paxos, precisely its management of timestamps, with a more intricate struc-
ture, and we prove that the resulting algorithm eventually simulates the original
Paxos for a practically infinite amount of time. In particular, our algorithm
does not rely on additional assumptions to converge, and it requires the exact
same level of synchrony from the system as the original Paxos to operate cor-
rectly after the convergence. As far as we know, this is the first attempt toward
a self-stabilizing replicated state-machine in asynchronous message-passing.

1.3 Organization

The thesis is divided in two parts. The first part focuses on population pro-
tocols. In Chap. 3, we formally define the population protocols, along with
several basic notions (schedule, fairness, etc.). We also introduce the notion of
behaviour, which is used to model oracles and problems, as well as the notion
of composition, and comparison of behaviours. In Chap. 4, we present our
work on the data collection problem, giving a tight analysis of the convergence
time of variants of the ZebraNet protocol. In Chap. 5, we turn to the implicit
approach and study the consensus problem. In Chap. 5, we focus on the leader
election problem, both with and without transient faults.

In the second part of the thesis, we concentrate on the problem of self-
stabilizing replicated state-machine. Chap. 7 gives a general introduction to
the problem. In Chap. 8, we give an informal description of our algorithm. The
formal description is given in Chap. 9, and the detailed analysis and proofs are
presented in Chap. 10.
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Population Protocols
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Chapter 2

Introduction

Nowadays, we see the rise of new kinds of networks comprising very tiny mobile
sensors that can communicate with each other. The population protocol model
[7] is a theoretical model that has been introduced to study the properties of
these new networks. The basic idea of population protocols is to give rules
telling what are the new states of meeting sensors based on their previous
states. One may think of a population protocol as a set of chemical reactions
that can occur when two chemical species come close enough.

This model also embeds two key aspects of mobile sensor networks. First,
the sensors often move randomly in space, and two of them can communicate
only when they are close enough, i.e., when they meet. In some cases, some
sensors may never reach other sensors directly, or some sensors may move
faster than others, the schedules of meetings may be governed by a probability
distribution, etc. The variety of these cases leads to many sorts of mobility.

On the other hand, the sensors are usually small devices with very limited
computational power. Also, it is possible that when the sensors are deployed,
the exact number of active sensors and the communication possibilities are un-
known. Therefore, the original population protocol model assumes the weakest
hypothesis: the memory size of each sensor is independent of the size of the net-
work. In particular, the sensors are anonymous; they cannot hold identifiers,
nor compute them.

The original research on population protocols have focused on complexity
issues: the goal was to determine what can be computed in this model [9]. For
instance, imagine a population of penguins, each of them being equipped with
a sensor able to tell whether its carrier is healthy or ill. At some point, every
sensors make a measurement. One may then wonder, for instance, if it is possi-
ble for every sensors to collaborate and determine if a majority of penguins are
healthy or not. This direction of research has received an interesting answer in
[9]. Afterwards, the model was studied in relation with distributed algorithms
issues, such as the classical problems of consensus, leader election, and so on.
This line of research has required many modifications to the original model;
some of which are original contributions of this thesis.

This part of the thesis proceeds as follows. We first give a detailed account of
our model in Chap. 3. Then, in Chap. 4, we study the data collection problem.
In Chap. 5, we examine the consensus problem, and, finally, in Chap. 6, the
self-stabilizing leader election problem is analyzed.
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Chapter 3

Model

3.1 Population Protocols

Population Protocols

The population protocols have been introduced to model networks of mobile
and resource-limited agents. Roughly speaking, when two agents are close
enough, they can communicate and update their states. The model do not
describe explicitly the details of this communication. Indeed, the protocol is
simply a set of rules telling what are the new states based on the previous
states of the two meeting agents. The new states may additionally depend on
inputs, e.g., from some sensor device, provided during the meeting. Moreover,
the rules also specify the outputs produced by the agents during the meeting.

Formally, a population protocol A consists of a finite state space States(A),
a finite input alphabet In(A), a finite output alphabet Out(A), and a tran-
sition function δ : (States(A) × In(A))2 → P((States(A × Out(A))2) that
maps any tuple (q1, i1, q2, i2) to a non-empty (finite) subset δ(q1, i1, q2, i2) in
(States(A)×Out(A))2. The state space contains a set of initial states denoted
by InitStates(A). When it is clear from the context, we denote by States (resp.
In, Out) the state space (resp. input space, output space) of the protocol.

A (transition) rule of the protocol is a tuple r = (q1, i1, q2, i2, q
′
1, o1, q

′
2, o2)

such that (q′1, o1, q
′
2, o2) ∈ δ(q1, i1, q2, i2) and is denoted by q1, q2

i1,i2−−−→
o1,o2

q′1, q
′
2.

We refer to (q1, i1, q2, i2) (resp. (q′1, o1, q
′
2, o2)) as the input side (resp. out-

put side) of the rule r.

The population protocol is symmetric when q1, q2
i1,i2−−−→
o1,o2

q′1, q
′
2 is a rule if

and only if q2, q1
i2,i1−−−→
o2,o1

q′2, q
′
1 is a rule. The population protocol is deterministic

if for every tuple (q1, i1, q2, i2), the set δ(q1, i1, q2, i2) has exactly one element.
The population protocol is output deterministic if for every tuple (q1, i1, q2, i2),
the set {(j1, j2), ∃(q′1, j1, q′2, j2) ∈ δ(q1, i1, q2, j2)} has exactly one element. All
the population protocols we consider are output-deterministic. We will often
assume, in the details of the proofs, that the outputs actually depend only
on the states; this assumption is acceptable since it is possible to encode the
output in the states.
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3. Model

Communication Graphs

The set of rules as above only specify the protocol. To model the mobility of
a set of agents, a communication graph is required. The nodes of this graph
represent the mobile agents. Contrary to classical communication graphs, an
edge between two agents does not represent a physical communication link,
but only the possibility of a meeting between the two agents. For instance, one
may imagine a population of animals, such that each of them only visit specific
places. Then according their respective set of visited places, two animals in
the population may never meet.

Formally, a communication graph is represented by a weakly connected
directed graph G. We denote by V ert(G) (resp. Edges(G)) the set of vertices
(resp. of edges). Each vertex represents a finite-state sensing device called an
agent, and an edge (x, y) indicates the possibility of a communication between
x and y in which x is the initiator and y is the responder. The orientation of
an edge corresponds to this asymmetry in the communications.

Schedules

A communication graph describe the possibility of interactions between the
agents. In the population protocol model, a meeting event represents the meet-
ing of two agents. Note that the model precludes the simultaneous meeting of
more than two agents. A schedule then simply consists a sequence of events.

Formally, given a communication graph G, a meeting event is represented
by an edge of G. We denote by x ∈ e the fact that the vertex x is involved in
e, i.e., e is incident to x. We denote by e∩e′ the set of agents that are involved
in both events e and e′. We define an independence relation on Edges(G) as
follows: two events e and e′ are independent if and only if they involve no
common agent, i.e., e ∩ e′ = ∅.

A schedule S is a sequence S = (et)0≤t<T (T ∈ N ∪ {∞}) of events. An
event occurrence in S is a couple (t, e) ∈ N × Σ such that et = e. We often
refer to an event occurrence in a schedule simply as an event in this schedule.
The support of a schedule S is the set of agents, denoted by supp(S), that are
involved in the events occurring in S.

If S is a finite schedule, and S′ a finite or infinite schedule, we denote by
S · S′, or simply SS′, the concatenation of these schedules. A prefix (resp. a
factor) of the schedule S is a schedule K such that S = K ·B for some schedule
B (resp. S = A ·K ·B for some schedules A,B). If p is an event occurrence in
S, we denote by S ↑ p the prefix of S that ends with the event occurrence p.

Let S = (et)0≤t<T be a (possibly infinite) schedule, and α ∈ SG be an
automorphism of the underlying graph G, and S = e0e1 . . . be any schedule on
this graph. We denote by αS the schedule (α(et))0≤t<T . Let τ ∈ S[0, T ) be a
permutation of the indices. We denote by Sτ the schedule (eτ(t))0≤t<T .

Each schedule S yields a partially ordered set P(S) as follows. The elements
of P(S) are the event occurrences of S. The partial order is the transitive closure
of:

(t, e) (t′, e′)⇔ t ≤ t′ ∧ e ∩ e′ 6= ∅ (3.1)

We say that (t′, e′) causally depends on (t, e). We refer to this order as the
causal order on S. This order simply comes from the fact that, if two events
involve the same agent, then one of the events must causally precede the other.

14



3.1. Population Protocols

Figure 3.1: Causal diagrams – S = (a, b)(c, d)(b, c), S′ = (c, d)(a, b)(b, c).

The poset P(S) can be seen as a causal diagram describing the causal relations
between the event occurrences in S (Fig. 3.1).

Actually, we see in Fig. 3.1, that this partial order allows to define an equiv-
alence relation on schedules. Intuitively, two schedules S and S′ are causally
equivalent, denoted by S ' S′, if their causal diagrams look the same. Put
another way, S′ is obtained from S by permuting its event occurrences in a
way that respects causality.

Formally, two schedules S = (et)0≤t<T and S′ = (e′t)0≤t<T are causally
equivalent if there exists a permutation τ ∈ S[0, T ) of the indices such that
S′ = Sτ , and, for every t, t′, (t, eτ(t))  (t′, eτ(t′)) in P(Sτ) if and only if
(τ(t), eτ(t)) (τ(t′), eτ(t′)) in P(S).

Thanks to this equivalence relation, we can define weaker notions of prefixes,
and factors. A schedule K is a commuting prefix (resp. commuting factor) of
a schedule S if S ' K · B (resp. S ' A · K · B) for some schedule B (resp.
schedules A and B). In other words, a commuting prefix (resp. commuting
factor) is a prefix (resp. factor) up to equivalence.

Given an event occurrence p in S, we define the causal past (resp. causal
future) of p as the sub-poset of P(S) comprising the event occurrences on
which p causally depends (resp. comprising the event occurrences that causally
depend on p). We denote by Past(p, S) (resp. Future(p, S)), or simply Past(p)
(resp. Future(p)), the causal past (resp. causal future) of p in S.

Past(p) = {e in S, e p} (3.2)
Future(p) = {e in S, p e} (3.3)

A finite schedule K is a past cone (resp. future cone) if there exists an event
occurrence p in K such that all the event occurrences in K are in the causal
past (resp. causal future) of p. If p involves an agent x, K is said to be a past
cone (resp. future cone) at x.

Histories

Given a schedule of events, an external observer (out of the system) may ob-
serve the inputs provided to (or the outputs produced by) two agents during
a meeting. For instance, if one is interested in electing a leader, one will only
focus on the leader bit output by the agents, and will not burden herself with
all the details of the agents states. The concept of history is introduced to
model sequences of values attached to the events of a schedule. One may also
think of a history a schedule augmented with values from some domain.
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3. Model

Formally, a history with values in set R is a couple H = (S, h) where S is
a schedule, and h is function that associates with each occurrence of meeting
event e = (x, y), a couple (ix, iy) of values in R. The value ix (resp. iy) is
the output of the history at x (resp. at y) in event e. The schedule S is the
underlying schedule of the history H.

Given a prefix, or a factor, K of the schedule S, the restriction of H to K is
the history, denoted by H|K , with schedule K which outputs the same values
as H during K.

Given α ∈ SG an automorphism of the communication graph, we denote
by αH the history (αS, h′) where the function h′ maps (t, α(et)) to the value
h(t, et). In other words, αH is the history obtained from H by renaming the
agents according to α.

Given α ∈ S[0, T ) (T ∈ N ∪ {∞}) a permutation of the natural numbers,
we denote by Hτ the history (Sτ, h′) where h′ maps (t, eτ(t)) to the value
h(τ(t), eτ(t)). In other words, Hτ is obtained from H by permuting the order
of events in S along with their associated history values.

Assignments, Traces

With the definition of history, the values at some agent are provided during a
meeting event involving this agent. It is sometimes more convenient to record
at each agent the last value output by the history.

First, an assignment with values in a set R is a function that assigns to
each agent of the communication graph a value from R.

Then, we define the trace T associated with a history H = (S, h) defined as
follows. For every non-empty finite prefix K of S, for every agent x, T (K,x) is
the last value output at x by H during K if this value exists, or is left undefined
otherwise. We denote by T (K) the assignment that assigns the value T (K,x)
to each agent x. Note that if e = (x, y) is a meeting event, then T (K · e)
and T (K) may only differ at x and y. In other words, a trace is a sequence
of assignments such that two consecutive assignments may only differ at the
agents involved in the corresponding meeting event.

A trace is constant if all the assignments are equal. A trace is uniform if
all the assignments are equal and assign the same value to every agent in the
system. It is not difficult to see that a history is entirely determined by its
trace, and thus, the two formulations are equivalent. Similarly, a history is
constant (resp. uniform) if its associated trace is constant (resp. uniform).

Executions

Basically, given a configuration, one can first select two agents (an edge of
the communication graph), and input values for them, and then apply the
corresponding rule of the protocol (or one matching rule if the protocol is non-
deterministic) to get a new configuration. An execution is simply the repetition
of such choices. Equivalently, an execution can be defined as a sequence of
configurations along with a history with values in the input alphabet, and a
history with values in the output alphabet (and the same underlying schedule);
the configurations between related to each other by transition with inputs and
outputs given by the histories.
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Formally, consider a population protocol A. A configuration is an assign-
ment γ : V ert(G)→ States specifying the state of each agent in the network.

An action is a couple σ = (e, r) where e = (x, y) is an event, and r :

q1, q2
i1,i2−−−→
o1,o2

q′1, q
′
2 is a rule of the protocol. The couple (i1, i2) (resp. (o1, o2))

is the input (resp. output) values associated with the action σ.
Given two configurations γ, γ′, we say that the configuration γ goes to γ′

via the action σ when (γ(x), γ(y)) = (q1, q2), (γ′(x), γ′(y)) = (q′1, q
′
2) and for

all z 6∈ {x, y}, γ(z) = γ′(z); we denote such a relation by γ σ−→ γ′.
An execution of A is a tuple ((γt)t∈N, Hin, Hout) where the γt are con-

figurations, Hin = (S, hin) and Hout = (S, hout) are histories with the same
underlying schedule S = (et)0≤t<T and with values in In(A) and Out(A) re-
spectively, such that, for all t, there exists an action σt with event et, input
values hin(t, et) and output values hout(t, et) such that γt

σt−→ γt+1. It is also
assumed that the first configuration γ0 contains initial states only.

We say that an action σ = (e, q1, q2
i1,i2−−−→
o1,o2

q′1, q
′
2) is enabled at time t in E

if et = e, (γt(x), γt(y)) = (q1, q2), and hin(t, et) = (i1, i2).

We say that the action σ = (e, q1, q2
i1,i2−−−→
o1,o2

q′1, q
′
2) is triggered at time t in E if

et = e, (γt(x), γt(y)) = (q1, q2), (γt+1(x), γt+1(y)) = (q′1, q
′
2), hin(t, et) = (i1, i2)

and hout(t, et) = (o1, o2).
The history Hin (resp. Hout) is the input history (resp. output history) of

the execution. A priori, the protocol is non-deterministic, hence, there may
be many executions with the same input history Hin and the same starting
configuration γ0. We denote by Hin[γ0] the set of these executions. When
the protocol is deterministic, Hin[γ0] contains a unique execution which is also
denoted by Hin[γ0].

In some cases, it is simpler to deal with traces instead of histories. In that
case, an execution E is equivalently pictured as a sequence (γt, αt, βt)0≤t<T
where the γt’s are the configurations, Tin = (αt)0≤t<T is the trace correspond-
ing to the input history (the input trace), and Tout = (βt)0≤t<T is the trace
corresponding to the output history (the output trace). Moreover, the output
is often encoded in the states of the agents. In that case, the output trace Tout
is completely determined by the sequence of configurations (γt)O≤t<T , and an
execution is simply pictured as the sequence (γt, αt)0≤t<T .

Composition of Population Protocols

It is often desirable to split an object in simpler elements. Once each element
is defined, one can combine them to build the target object. The same is true
for population protocols. In this section, we define three basic operations that
syntactically produce new protocols from given ones.

For sake of readability, an element (x, y) in the cartesian product X × Y is
often denoted by x · y. Let A and B be two population protocols.

(Parallel). Intuitively, the parallel composition corresponds to running si-
multaneously two protocols. Hence, the new state space is the cartesian prod-
uct of the two previous state spaces, and the same for the input/output alpha-
bets mutatis mutandis. A transition rule in the new protocol corresponds to
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the conjunction of a rule from the first protocol and a rule from the second
protocol.

More formally, the parallel composition of A and B is the population pro-
tocol C defined as follows.

States(C) = States(A)× States(B) (3.4)
In(C) = In(A)× In(B) (3.5)
Out(C) = Out(A)×Out(B) (3.6)

For k = 1, 2, let ak, a′k ∈ States(A), bk, b′k ∈ States(B), iak ∈ In(A), oak ∈
Out(A), ibk ∈ In(B) and obk ∈ Out(B). The rule

a1 · b1, a2 · b2
ia1·ib1,ia2·ib2−−−−−−−−−−→
oa1·ob1,oa2·ob2

a′1 · b′1, a′2 · b′2 (3.7)

is a rule of C if and only if

a1, a2
ia1,ia2−−−−−→
oa1,oa2

a′1, a
′
2 in A (3.8)

b1, b2
ib1,ib2−−−−→
ob1,ob2

b′1, b
′
2 in B (3.9)

This new protocol is denoted by C = A⊗ B.

(Serial). Intuitively, the serial composition corresponds to plugging the val-
ues output by a protocol as input values to another protocol. Obviously, this
is possible if and only if the former’s output and the latter’s input alphabets
are the same. The transmission of the values is supposed to be instantaneous.

More formally, when Out(B) = In(A), the serial composition of A and B
is the protocol C defined as follows.

States(C) = States(A)× States(B) (3.10)
In(C) = In(B) (3.11)
Out(C) = Out(A) (3.12)

For k = 1, 2, let ak, a′k ∈ States(A), bk, b′k ∈ States(B), ik ∈ In(B), ok ∈
Out(A). The rule

a1 · b1, a2 · b2
i1,i2−−−→
o1,o2

a′1 · b′1, a′2 · b′2

is a rule of C if and only if there exists j1, j2 ∈ Out(B) = In(A) such that

b1, b2
i1,i2−−−→
j1,j2

b′1, b
′
2 in B (3.13)

a1, a2
j1,j2−−−→
o1,o2

a′1, a
′
2 in A (3.14)

This new protocol is denoted by C = A ◦ B.

(Feedback). The feedback composition operates on a single protocol, and
corresponds to plugging a part of its output to its own input.
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Formally, assume that In(A) = U × I and Out(A) = U ×O. The feedback
composition of A along U is the protocol C defined as follows.

States(C) = States(A) (3.15)
In(C) = I (3.16)
Out(C) = O (3.17)

For k = 1, 2, let ak, a′k ∈ States(A), bk, b′k ∈ States(B), ik ∈ I, ok ∈ O. The
rule

a1, a2
i1,i2−−−→
o1,o2

a′1, a
′
2 (3.18)

is a rule of C if and only if there exist u1, u2 ∈ U such that

a1, a2
u1·i1,u2·i2−−−−−−−→
u1·o1,u2·o2

a′1, a
′
2 in A (3.19)

This new protocol is denoted by C = FeedbackU (A), or simply C = Feedback(A)
when U is clear from the context.

3.2 Fairness

Fix a communication graph G. In the definition of the executions above, no
constraints have been given. As a consequence, for instance, the execution
obtained by selecting the same pair of agents forever is possible. Therefore, in
order to preclude such pathological cases, one must define a criterion, usually
known as a fairness condition. In this section, we present several such criteria,
and thus, several kinds of fair executions. Note that, some of these notions
yield constraints on the underlying schedules only, while others formulas also
involve the sequence of configurations in the execution.

Classical Fairness

A schedule S is classically fair when, for every edge (x, y) of the communication
graph, the event (x, y) (x initiator, y responder) occurs infinitely often in S.

An execution is classically fair when its underlying schedule is. Thus, this
fairness condition only relies on the underlying schedule of the execution.

This fairness condition is not used very often, but it represents the most
natural definition of fairness. It is introduced here for didactical reasons as a
point of reference for the other fairness conditions.

Weak Fairness

The following fairness condition is a slightly weaker form of the classical fairness
in the sense that the agents are not required to meet directly infinitely often.
They are only required to meet indirectly, i.e., via the mediation of other agents.

Formally, consider a schedule S, a segment K of S, and two agents x and
y. We say that y meets indirectly with x during K if there are occurrences of
meeting events e1, . . . , es during u such that ei occurs before ei+1 and:

x ∈ e1 (3.20)
ei ∩ ei+1 6= ∅, 1 ≤ i < s (3.21)

y ∈ es (3.22)
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In other words, e1 involves x, es involves y, and we have the relations e1  
· · · es in P(K). Note that this notion is not symmetric.

A schedule S is weakly fair when every agent meets indirectly with every
other agents infinitely often during S. In other words, for each (ordered) pair
of agents (x, y), S contains infinitely many segments K during which y meets
indirectly with x.

An execution is weakly fair when its underlying schedule is. Thus, this
fairness condition only relies on the underlying schedule of the execution.

Cover Times

The following fairness condition introduce an idea similar to the partial syn-
chrony from [45]. This notion stems from the fact that in many real mobile
networks, the agents meet according to an almost regular pattern. In many
works [25, 29, 1, 51, 54], it is observed that the time between two meetings
of two agents x and y is bounded. The cover time property inspires from this
observation by attaching to every agent x an integer, known as the cover time
of the agent x, that represents the time (counted in number of meeting events)
required for x to meet every other agent at least once. This fairness condition
was first presented in [16].

More formally, we assume that the vertices of the communication graph are
labeled by positive integers. The integer cvx associated with the agent x is
called the cover time of agent x. The vector (cvx)x∈V is called the cover time
vector.

A schedule S is said to satisfy the cover time property if, for every agent x,
for every segment K in S of size greater than or equal to cvx, x meets at least
once with every other agents during K.

Again, an execution satisfies the cover time property if its underlying sched-
ule does.

Global Fairness

Contrary to the previous cases, the following fairness condition [7] is stated with
a reference to the protocol; it does not rely only on the underlying schedule
of the execution. The idea is to mimic the properties of a random walk: if
a configuration is infinitely often reachable, then this configuration is reached
infinitely often.

More formally, an execution E = ((γt)t∈N, Hin, Hout) is globally fair if for
every configuration γ and couple (i1, i2) of input values such that (γt, Hin(t)) =
(γ, (i1, i2)) infinitely often, if there exists a configuration γ′ and an action σ

with input values (i1, i2) such that γ σ−→ γ′, then γ′ occurs infinitely often in
E.

Local Fairness

The global fairness condition is related to the reachability of configurations,
but it does not tell anything about how the configurations are reached, i.e.,
about the actual transitions that lead to these configurations. For instance,
one can imagine a situation where there are at least two actions σ1 and σ2 that
both lead to a configuration γ′ from a configuration γ. Roughly speaking, if
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γ occurs infinitely often in the execution, the global fairness only ensures that
γ′ is reached infinitely often, but it may happen that the transition γ σ2−→ γ′ is
never triggered.

Therefore, the following “orthogonal” definition was introduced [46]: an
execution E is locally fair if for every possible action σ, if σ is enabled infinitely
often during E, then σ is triggered infinitely often during E.

As for the global fairness, the local fairness refers to the protocol; it does
not rely only on the underlying schedule.

3.3 Behaviours

In the previous sections, the population protocols have been defined. Roughly
speaking, a population protocol is a local data because it describes the be-
haviour of the agents at the level of pairwise interaction. However, most of the
problems such as, e.g., leader election, are stated from a global point of view:
one is only interested in the possible output histories of the execution given
some input history (if any). In addition, one may want to solve some problem
by assuming that some oracle is available.

In this section, the notion of behaviour is introduced to model this global
point of view. This notion is general enough to model both problems, and
oracles. In the sequel, it is shown how one can associate a behaviour (global
data) with a population protocol (local data).

Definitions

Intuitively, a behaviour is simply a relation between input histories and output
histories. One can think of it as a specification relating the legal output histories
given an input history.

Precisely, a behaviour B is given by a familyDom(B) of graphs (the domain
of B), an input alphabet In(B), an output alphabet Out(B) and a function
that maps any graph G in Dom(B), and any history Hin = (S, hin) with values
in In(B) to a set B(G,Hin) of histories Hout = (S, hout) with values in Out(B)
and the same underlying schedule S.

Composition of Behaviours

Like population protocols, the behaviours have inputs and outputs. Therefore,
we can define the same three operations (parallel, serial, feedback) of compo-
sition on the behaviours. These operations have the same meaning as in the
case of population protocols.

Let A and B be two behaviours with the same domain of graphs, i.e.,
Dom(A) = Dom(B).

(Parallel). First, the parallel composition of A and B is the behaviour C
defined as follows.

Dom(C) =Dom(A) = Dom(B) (3.23)
In(C) = In(A)× In(B) (3.24)
Out(C) = Out(A)×Out(B) (3.25)
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The history (S, (hAout, h
B
out)) belongs to C(G, (S, (hAin, h

B
in))) if and only if

(S, hAout) ∈ A(G, (S, hAin)) (3.26)

(S, hBout) ∈ B(G, (S, hBin)) (3.27)

We denote this behaviour by C = A⊗B.

(Serial). When Out(B) = In(A), the serial composition of A and B is the
behaviour C defined as follows.

Dom(C) =Dom(A) = Dom(B) (3.28)
In(C) = In(B) (3.29)
Out(C) = Out(A) (3.30)

The history (S, hAout) belongs to C(G, (S, hBin)) if and only if there exists a
history (S, h) such that

(S, hAout) ∈ A(G, (S, h)) (3.31)

(S, h) ∈ B(G, (S, hBin)) (3.32)

We denote this behaviour by C = A ◦B.

(Feedback). When In(A) = U×I and Out(A) = U×O for some sets U, I,O,
the feedback composition of A along U is the behaviour C defined as follows.

Dom(C) = Dom(A) (3.33)
In(C) = I (3.34)
Out(C) = O (3.35)

The history (S, hout) belongs to C(G, (S, hin)) if and only if there exists a
history (S, h) with values in U such that

(S, (h, hout)) ∈ A(G, (S, (h, hin))) (3.36)

This new behaviour is denoted by C = FeedbackU (A), or simply C = Feedback(A)
when U is clear from the context.

Sub-behaviour

Consider two behaviours A and B with the same domain Dom(A) = Dom(B),
same input alphabet In(A) = In(B) and same output alphabet Out(A) =
Out(B). We say that B is a sub-behaviour of A, denoted by B ⊆ A or A ⊇ B,
when B(G,H) ⊆ A(G,H) for every graph G in the domain, and every history
H on G with values in the input alphabet.

Intuitively, the behaviour B is “stronger” than the behaviour A, because,
given the same input history, the legal output histories ofB are also legal output
histories of A. Another way to see this is to consider the trivial behaviour
that associates with each input history the set of all possible histories with
values in the output alphabet. It becomes clear that any behaviour (with same
alphabets) is a sub-behaviour of this trivial behaviour.
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3.4 Behaviour associated with a Population Protocol

Intuitively, the behaviour of a population protocol sums up the observable part
of its executions; i.e., we forget about the states of the agents, and only focus on
the input and output histories yielded by the executions. However, we do not
always consider every possible execution: we generally fix a class of execution,
or context, and observe the input and output histories for such a class.

In the sequel, we show that, if the considered context is acceptable (see
Def. 1), then the behaviour associated with the composition of protocols im-
plements the composition of the behaviours associated with the population
protocols.

Context

A context C is a map which associates with every graph G from some family
of graphs and every population protocol A, a set of executions of A on G. The
context C is usually defined by

• a family Dom(C) of graphs.

• an initialization map telling what the possible initial configurations are
on any given graph from Dom(C)

• a fairness condition telling which executions are assumed to be fair.

The executions defined by C on a given graph G are referred to as the C-legal
executions on G, or simply the legal executions on G.

Behaviour associated with a protocol

The behaviour of the protocol A under the context C is the behaviour B defined
as follows. First

Dom(B) = Dom(C) (3.37)
In(B) = In(A) (3.38)
Out(B) = Out(B) (3.39)

We have (S, hout) ∈ B(G, (S, hin)) if and only if there exists a C-legal execution
of A on G with schedule S, input history (S, hin) and output history (S, hout).
This behaviour is denoted by B = BehC(A), or, when the context is obvious,
simply B = Beh(A).

Structure Theorems

Prop. 1 shows that the different composition operations (parallel, serial, feed-
back) for behaviours are compatible with the sub-behaviour relation. Prop. 2
shows that, given an acceptable context (see Def. 1), the map that associates
with each protocol A the behaviour Beh(A) almost preserves the composition
operations.

Proposition 1. Let A and B be sub-behaviours of C and D respectively. Then,
whenever the composition is defined,
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• A⊗B is a sub-behaviour of C ⊗D.

• A ◦B is a sub-behaviour of C ◦D.

• Feedback(A) is a sub-behaviour of Feedback(C).

Proof. These claims are straightforward from the definitions.

Definition 1 (Acceptable Context). A context C is acceptable if for any graph
G, any protocols A and B, the following holds:

• the set of initial configurations of A ⊗ B (resp. A ◦ B) is exactly the
cartesian product of the sets of initial configurations of A and B.

• the set of initial configurations of Feedback(A) is exactly the set of initial
configurations of A.

• A fair execution of A⊗ B (or A ◦ B) yields fair executions of A and B.

• A fair execution of Feedback(A) yields fair executions of A.

The first two points basically states that initializing the composed protocol
is equivalent to initializing each component separately. The last points state
that, in a fair execution of the composed protocol, everything looks like a fair
execution from the point of view of each component.

Proposition 2. Fix an acceptable context C. Let A,B be population protocols.
Then, whenever it is defined:

• Beh(A⊗ B) is a sub-behaviour of Beh(A)⊗Beh(B)

• Beh(A ◦ B) is a sub-behaviour of Beh(A) ◦Beh(B)

• Beh(Feedback(A)) is a sub-behaviour of Feedback(Beh(A)).

Proof. We study the cases separately. In each of them, C denotes the first be-
haviour, and D the second one, such that the claim is C being a sub-behaviour
of D.

(parallel). Let Hout = (S, (aout, bout)) be an output history of C corre-
sponding to the input history Hin = (S, (ain, bin)). We have to prove that
Ha
out = (S, aout) (resp. Ha

out = (S, bout)) is an output history of Beh(A)
(resp. Beh(B)) corresponding to the input history Ha

in = (S, ain) (resp.
Hb
in = (S, bin)).
By definition, there exists a C-legal execution E of A⊗B with the schedule

S, input history Hin and output history Hout. The execution E can be written

. . . (γat , γ
b
t )

σt−→ (γat+1, γ
b
t+1) . . . (3.40)

where γa∗ (resp. γb∗) are configurations of A (resp. B), and σt = (et =
(xt, yt), rt) is an action such that the rule rt of A⊗ B is equivalent to

rat : γat (xt), γ
a
t (yt)

ain(et)−−−−−→
aout(et)

γat+1(xt), γ
a
t+1(yt) (3.41)

rbt : γbt (xt), γ
b
t (yt)

bin(et)−−−−−→
bout(et)

γbt+1(xt), γ
b
t+1(yt) (3.42)
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and rat (resp. rbt ) is a rule of A (resp. B). Hence, we can extract an execution
Ea (resp. Eb) of A (resp. B) with schedule S, input history Ha

in (resp. Hb
in),

and output history Ha
out (resp. Hb

out). Since C is an acceptable context, Ea and
Eb are both C-legal executions. Hence, Ha

out ∈ Beh(A)(G,Ha
in) and Hb

out ∈
Beh(B)(G,Hb

in). Whence Hout ∈ C(G,Hin).
(serial). Let Hout = (S, aout) be an output history of C corresponding to

the input history Hin = (S, bin). We have to prove that there exists a history
H = (S, bout) ∈ Beh(B)(G,Hin) such that Hout ∈ Beh(A)(G,H).

By definition, there exists a C-legal execution E of A⊗B with the schedule
S, input history Hin and output history Hout. The execution E can be written

. . . (γat , γ
b
t )

σt−→ (γat+1, γ
b
t+1) . . . (3.43)

where γa∗ (resp. γb∗) are configurations of A (resp. B), and σt = (et =
(xt, yt), rt) is an action such that the rule rt of A⊗ B is equivalent to

rat : γat (xt), γ
a
t (yt)

vt−−−−−→
aout(et)

γat+1(xt), γ
a
t+1(yt) (3.44)

rbt : γbt (xt), γ
b
t (yt)

bin(et)−−−−→
vt

γbt+1(xt), γ
b
t+1(yt) (3.45)

for some vt; and rat (resp. rbt ) is a rule of A (resp. B). Then, we define
H = (S, bout) the history such that bout(et) = vt. We have thus constructed
an execution Ea (resp. Eb) with schedule S, input history H (resp. Hin) and
output history Hout (resp. H). Since C is acceptable, Ea and Eb are C-legal
executions. Thus, Hout ∈ Beh(A)(G,H) and H ∈ Beh(B)(G,Hin).

(feedback). Assume the alphabets of A are In(A) = U × I and Out(A) =
U × O. The protocol C has input alphabet I, and output alphabet O. Let
Hout ∈ Beh(C)(G,Hin), and write Hout = (S, hout) (with values in O) and
Hin = (S, hin) (with values in I). We prove that there exists a history H =
(S, h) with values in U such that (S, (hout, h)) ∈ Beh(A)(G, (S, (hin, h))).

By definition, there exists a C-legal execution E of A with the schedule S,
input history Hin and output history Hout. The execution E can be written

. . . γt
σt−→ γt+1 . . . (3.46)

where γ∗ are configurations of A, and σt = (et = (xt, yt), rt) is an action such
that the rule rt of C is equivalent to

r′t : γt(xt), γt(yt)
(hin(et),vt)−−−−−−−−→
(hout(et),vt)

γt+1(xt), γt+1(yt) (3.47)

(3.48)

for some vt; r′t is a rule of A. We simply define H = (S, h) with h(et) = vt.
Thus, we have constructed an execution E′ with schedule S, input history
(S, (hin, h)), and output history (S, (hout, h)). Since C is acceptable, E′ is a
C-legal execution.

3.5 Implementation, Comparison of Behaviours

The notion of behaviour is general enough to represent a problem. For instance,
the leader election problem can be seen as the behaviour which associates with
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every schedule on some graph, a history with values in {0, 1} that eventually
permanently outputs 1 at a unique agent. We first define what it means to
solve a problem in the model of population protocols, and then define how to
assess the relative difficulty of a problem.

Implementation

Roughly speaking, a protocol implements a behaviour, or solves a problem,
when all the legal executions satisfy the specifications described by the be-
haviour or the problem.

The protocol A is an implementation (or a solution) of the behaviour B
in the context C, when Beh(A,C) is a sub-behaviour of B. In other words, it
means that, for any C-legal execution of A on some graph G, and with input
history Hin, the corresponding output history Hout satisfies Hout ∈ B(G,Hin).

We will see that very often, depending on the context, the behaviour B1

admits no implementation by population protocols. However, if we allow the
protocol to use another behaviour B2 (as an oracle), it is possible to implement
the original behaviour B1. We thus introduce the definition of an implementa-
tion of B1 using the behaviour B2.

Formally, the protocol A is an implementation (or a solution) of B1 using
B2 in the context C when there exists a composition C involving B2 and
Beh(A,C) such that C is a sub-behaviour of B1.

In some sense, this last definition shows that the behaviour B1 is weaker
than the behaviour B2. We formalize this notion in the following.

Comparison

In complexity theory, to assess the power of deterministic polynomial-time
Turing machine, it is common to study the possibility of a reduction (known
as Karp, or Cook reductions) of a problem P1 to another problem P2 via some
polynomial-time (deterministic) algorithm. If such a reduction exists, P2 is said
to be stronger than P1, since any solution to P2 is transformed into a solution
to P1; the transformation being a polynomial-time algorithm. In other words,
the problems are compared on the basis of polynomial-time algorithms. Note
that, it does not mean that P1 or P2 admits a solution which is polynomial-
time. However, it implies that if P2 admits a polynomial-time solution, then
P1 admits a polynomial-time solution. It is also possible to define reductions
via other kinds of algorithms, like linear-time, or logarithmic-space, etc.

We mimic this approach in the case of population protocols. Let B1 and B2

be two behaviours with the same domain of graphs F = Dom(B1) = Dom(B2).
Assume we have a setH of behaviours, each with the domain F . The behaviour
B1 is weaker than the behaviour B2 over H if there exists a composition C
involving one instance of B2 and (any number of) instances of behaviours from
H such that C is a sub-behaviour of B1. Roughly speaking, this means that
it is possible to compose one instance of B2 with behaviours of H to obtain a
sub-behaviour of B1.

Since we deal with population protocols, in this thesis, the family H will
consists of behaviours associated with population protocols for a given context
C. By Prop. 2, assuming that C is acceptable, composing behaviours of pro-
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tocols amounts to focus on the behaviour of the corresponding composition of
protocols.

In this case, the comparison relation defined above translates to the follow-
ing: B1 is weaker than B2 in the context C, denoted by B1 4C B2, if there
exists a population protocol A and a composition C involving one instance
of Beh(A,C) and B2, such that C is a sub-behaviour of B1. The following
propositions derives directly from the definitions.

Proposition 3. The relation 4C is a preorder.

Corollary 1. The relation

B1 'C B2 ⇐⇒
def

B1 4C B2 ∧B2 4C B1 (3.49)

is an equivalence relation.

Note that, like Karp reductions, the reduction of B1 to B2 via population
protocols does not imply that B1 or B2 admit implementations by population
protocols. However, it implies that, if B2 admits an implementation, then
so does B1. This comparison relation is compatible with the notion of sub-
behaviour.

Proposition 4. In any context C, if B2 is a sub-behaviour of B1, then B1 4C
B2.

Proof. The identity behaviour IdX , with the same input and output alphabet
X, is the behaviour defined as follows: Hout ∈ P (G,Hin) if and only if Hout =
Hin. It is straightforward to see that for any behaviour B with output alphabet
X (resp. input alphabet X), we have IdX ◦B = B (resp. B ◦ IdX = B).

Actually, IdX = Beh(AX) where AX is the following protocol

In(A) = Out(A) = X

States(A) = {0}

0, 0
i1,i2−−−→
o1,o2

0, 0

Therefore, if B2 is a sub-behaviour of B1, then the composition B2 ◦
Beh(AIn(B1)) = B2 is a sub-behaviour of B1. Whence, B1 4C B2.

3.6 Related Work

Population Protocol Model

The model described above substantially differs from the original population
protocol model. Indeed, in [7], a population protocol simply consists in a set
of states, and transition rules without input/output values:

p, q → p′, q′ (3.50)

The aim of the authors was to define the class of predicates on initial config-
urations of executions that could be “computed” by a network of mobile agents.
For instance, the initial states of an agent denote “healthy bird” and “ill bird”,
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the protocol ensures that eventually every agent in the system has the answer
to the question, e.g., “Is there a majority of healthy birds ?”. Hence, the “input”
to the protocol is encoded in the initial configuration, and the “output” of the
protocol is the eventual (and stable) “all zero” or “all one” vector of answers.

Encoding the input in the initial configuration is a rather blunt assumption
since in real systems the inputs to the agents are not synchronized, and may
vary. In [6], the authors tackle this issue by allowing the inputs to the agents
to vary before stabilizing. Hence, although one may still encode initial data in
the initial configuration, the model is modified so that the rules of the protocol
are provided with input values.

p, q
i,j−→ p′, q′ (3.51)

Moreover, by using a part of the state from one protocol as an input in the rule
of another protocol, this modification allows to compose (serially) population
protocols.

Note, however, that in [6], the input values are given as a sequence (αt)t∈N
of assignments, i.e., maps associating a value with each agent. We take the
dual view: the input values are given during transition between configurations.

Finally, the output of an agent is usually encoded as a part of its state. In
our case, for sake of symmetry, the output values are produced during tran-
sition. The difference is analogous to the difference between Moore machines
and Mealey machines.

Oracles, Failure Detectors

The failure detectors were first introduced in [32, 31] to circumvent the impos-
sibility of consensus in asynchronous message-passing systems prone to crash
failures [47]. The idea was to augment the system with a blackbox that would
give (unreliable) information about the failure pattern. In the original formu-
lation, this information consists in a list of processes identifiers, but one can
easily imagine other kinds of information, e.g., numbers of crashed processes,
etc.

A definition of failure detector transformation was also introduced [31]: a
failure detector FD1 is weaker than a failure detector FD2 when there exists
an (asynchronous) algorithm that uses the output of the oracle FD2 produce
an output matching the specifications of FD1.

The idea of failure detectors can be translated in the population protocol
model via the notion of behaviour. Indeed, a behaviour whose input alphabet
reduces to a singleton is exactly a kind of failure detector that gives (possibly
unreliable) information about the schedule of events occurring in the system.
In a sense, such behaviours are “schedule observers”.

The idea of transformation can also be restated: a “schedule observer” O1

is weaker than a “schedule observer” O2 when there exists a a composition
involving O2 and behaviours of population protocols, which is a sub-behaviour
of O1. The structure theorems and the fact that the “schedule observers” have
no input (i.e. the input alphabet is a singleton) imply that any composition
involving O2 and population protocols amounts to design a population protocol
that uses the output of O2 to produce an output matching the specifications
of O1.

28



3.6. Related Work

In [46], the authors introduce a new kind of oracle, namely Ω?, that does
not only observe the schedule, but also a bit in the states of the agents. The
original definition is quite informal, as well as its combination with population
protocols. The concept of behaviour allows to formally define such an oracle
(see Chap. 6, Sec. 6.4). The main difference with the failure detectors above is
that the input alphabet is no more trivial (a singleton). In particular, this fact
allows the feedback operation: the population protocol uses the output of the
oracle, and the oracle uses the output of the protocol.

We see that the notion of behaviour is general enough to model both ora-
cles observing only the schedules, and more complex oracles allowing feedback
operations with population protocols. Actually, the notion of behaviour is gen-
eral enough to represent a problem. In the same way that Karp reductions
are transformations of problems via polynomial-time algorithm, in our case,
we look at transformations of behaviours via population protocols.
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Chapter 4

Data Collection

4.1 Introduction

In population protocols, the mobile agents may be viewed as moving in a non-
deterministic asynchronous way with pairs of agents repeatedly coming close
enough to communicate. The choice of the meetings (the mobility of agents) is
modeled by the considered fairness condition. The original fairness introduced
for population protocols [7] is the global fairness (see Chap. 3, Sec. 3.2), which
basically states that, during a fair execution, if any transition between two
global configurations γ and γ′ is possible infinitely often, then γ′ is reached
infinitely often during the execution.

On the one hand, this condition is strong, because it relates the possi-
ble schedules with the considered protocol. The motivation for such a strong
fairness comes from the point of view of population protocols as a model of
computation. The computability results of [7] greatly depend on this assump-
tion. On the other hand, this fairness condition gives no easy analytical means
to evaluate the convergence times of population protocols.

To achieve this goal, in this chapter, we adopt the fairness with cover times
(see Chap. 3, Sec. 3.2) introduced in [16]. Recall that, first, it deals only
with meetings between agents, i.e., it has no knowledge about local states
and/or protocol transitions. Second, it provides a notion of synchrony. The
cover time of an agent x is the minimum number of events happening in the
system for being certain that x has met every other agent (directly). Such a
condition imposes that one cannot postpone some meeting arbitrarily often,
as it is possible in [7]. Actually, the cover time property may be viewed as an
introduction of “partial synchrony” assumptions [45]; partial, because the cover
times are not assumed to be known to the agents. The main advantage of these
differences is that they allow to compute deterministic time complexities (or
event complexities), expressed in the number of events.

The assumption that an agent communicates with all other agents peri-
odically, with a bounded period, has been experimentally justified for some
types of mobility. Indeed, in the case of human or animal mobility within a
bounded area or with a “home coming” tendency (the tendency to return to
some specific places periodically), the statistical analysis of experimental data
sets confirms this assumption (e.g., [51, 54, 25]). These data sets concern stu-
dents on a campus [1], participants to a network conference [29] or visitors at
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Disneyland. All exhibit the fact that the inter-contact time (ICT) between two
agents, considered as a random variable, follows a truncated Pareto distribu-
tion. In particular, this involves that the ICTs, measured in terms of a real
time, are finite in practice. Thus, they are also finite when measured in events.
So is the cover time of an agent, which is the maximum of its ICTs measured
in events.

This chapter presents, on examples, some techniques for computing the
event complexity of population protocols. For this purpose, we propose and
analyze some adapted versions of the existing data collection protocol, used by
the ZebraNet project [53]. ZebraNet is a project conducted by the Princeton
University and deployed in central Kenya. It aims at studying populations
of zebras using sensors attached to the animals. This project developed an
history-based protocol to deliver the sensed values to the base station. When
an agent x has to deliver its data, it may relay it to an agent y that has
recently met the base station more frequently. The protocol assumes that y
will continue meeting the base station frequently in the near future and will
deliver the data sooner.

We incorporate a “one-shot” version (executing the data delivery only once)
of this ZebraNet protocol in the population protocol model with cover times
and we study analytically the complexity of the resulting protocol, as well as
other variants. For the sake of simplicity and due to the constraints of the
model (e.g., pairwise instead of multiwise interactions, finite cover times for all
agents), the resulting protocols are only simplified versions of the original one.

The scope of this work is worst case analysis. However, it is important to
note that an average case stochastic analysis is necessary to more accurately
compare data collection protocols. Still, the given worst case analysis intro-
duces several techniques that may prove useful in future studies of both average
and worst case time analysis. Moreover, in order to understand why some pro-
tocols have a better average complexity, it is possible to consider and analyze
some specific cases of executions. We give examples of such cases in Sec. 4.6.
Refer to this section also for additional discussion and protocols’ comparisons.

[16] is the most relevant work to the one presented here. There, several data
collection protocols are proposed and their worst case complexity analysis is
presented, in the model of population protocols with cover times. In addition,
a lower bound for the worst case convergence time for any data collection task
is proved and one of the proposed protocols is proved to be optimal in terms
of this bound (its complexity is less than 2 · cvmin). However, in contrast with
the current work, the communication model of [16] is stronger than the one
we assume here. Namely, [16] assumes that two interacting agents are able to
compare their cover times accurately. Thus, it is somewhat difficult to compare
the protocols proposed here (which do not rely on any knowledge of cover times)
with those in [16]. Nevertheless, the time complexity gap between the protocols
in [16] and the protocols presented here should not be so large when considering
average complexity. It can be easily justified by the complexity analysis of some
prevalent execution scenarios for specific cases of populations (see Sec. 4.6).

This work has been published in [13].
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4.1. Introduction

The Problem

Let G be a complete communication graph with n agents; n being unknown
to the agents. The Base Station (BS ) is a special distinguishable agent with
extended resources. BS is required here only by the nature of the data collection
problem. In contrast with BS , all the other agents are finite-state, anonymous
and are referred in the chapter as mobile. We denote by G∗ the set of mobile
agents. Mobile agents are enumerated from 1 to n− 1.

The data collection problem is defined as follows. Each mobile agent ini-
tially owns an input (data) value — the value provided by the sensor (e.g.,
temperature or heart-rate). Each input value has to be delivered to BS exactly
once. When this happens, we say that a legal configuration is reached. An
execution is said to converge, if it reaches a legal configuration. A protocol is
said to converge, if all its executions converge. The length of an execution that
converges is the minimum number of events until convergence. The worst case
event complexity of a protocol is the maximum length of its executions.

Context and Notations

The ZebraNet Protocol, and the variants proposed below, aim at solving the
data collection problem. These protocols are studied in the model with the
cover time property over the family of all complete communication graphs.
There are no failures (no crashes, nor transient faults). In particular, every
agent is initialized with its input value at the beginning of every execution.

As already explained in Chap. 3, Sec. 3.2, each agent x is associated with
a positive integer cvx, called the cover time of x. Agents are not assumed to
know the cover times. We denote by cv the vector of agents’ cover times and
by cvmin (resp. cvmax) the minimum (resp. maximum) cover time in cv.

A fastest (resp. slowest) agent x has cvx = cvmin (resp. cvx = cvmax).
We say that the cover time vector cv is uniform if all its entries are equal, i.e.,
cvmin = cvmax. In this case, we denote by cv the common value of the agents’
cover times.

It is assumed that, during a meeting, an agent x can transfer a set of values
to another agent y; it is also assumed that doing so, the agent x does not keep
any copy of the transferred values. For a meeting event (x y), the notation
(x y) indicates a transfer of values from x to y. However, the notation (x y)
does not imply that there is no transfer. To specify one of the values being
transferred, v for example, we note (x y)(v).

In this chapter, given any finite schedule S and any positive integer l, the
schedule Sl denotes the schedule obtained by repeating l times the sequence
S. The infinite schedule Sω denotes the infinite repetition of S.

Overview

The chapter is divided as follows. In Sec. 4.2, it is shown that some execution
of the original ZebraNet protocol does not converge. To circumvent this result,
two variants are proposed, MZP1 (Sec. 4.3) and MZP2 (Sec. 4.4), and their
worst-case complexity is analyzed. For sake of simplicity, in MZP1 and MZP2,
it is assumed that every agent can hold as many values as there are in the
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4. Data Collection

system (unbounded memory). In Sec 4.5, versions assuming bounded memory
are presented and analyzed.

4.2 Non-convergence of ZebraNet

In the original ZebraNet data collection protocol [53], an agent chooses, among
the agents in its range, the one which is the most likely to meet BS in a
near future, and transfers its values to it. In population protocols, agents in-
teract only in pairs, in contrast to the multiwise communications possible in
ZebraNet. Hence, the ZebraNet Protocol (ZP), Algorithm 1 presented below,
is a restricted version of the original ZebraNet protocol. However, as any exe-
cution of ZP is also an execution of the original protocol, the non convergence
of ZP involves the non convergence of the latter.

In ZP, the state of an agent x is defined by the integer variables accumulationx
and distancex, a set of data values valuesx (the type of which we do not spec-
ify) and an integer constant decay. The value of decay is predefined and is
the same for every agent. The integer variables are initially set to 0. The set
valuesx initially holds the input value of agent x.

For sake of simplicity, we assume first that the memory available to each
agent is large enough, so that it can store the values of all other agents. This
assumption prevents memory overflows during transfers. In other words, and
as already noted in the introduction, we assume first that agents have O (n)
memory size. The case of bounded (constant) memory is analyzed in Sec. 4.5.

In Algorithm 1, when an agent x meets BS , its variable accumulationx is
incremented and distancex is reset to 0. When an agent xmeets another mobile
agent, its variable distancex is incremented. If distancex becomes larger than
decay, accumulationx is decremented and distancex is reset to 0.

When an agent x holds some values in valuesx and meets another mobile
agent y, if accumulationy is strictly greater than accumulationx, then agent x
transfers all its values to agent y. An agent always transfers all its values when
it meets BS .

It appears that some executions of ZP do not converge. Indeed, a value
can circulate between mobile agents without ever being delivered to BS .

Proposition 5 (Non Convergence of ZP). For any graph G of n ≥ 4 agents,
for any decay ≥ 1, there exists a uniform cover time vector cv for which there
is an execution of ZP that does not converge.

Proof. Consider a graph G of n ≥ 4 agents and a constant decay ≥ 1. We first
define specific sequences of events :

• U1 = (1 BS )(2 1)

• V = [(2 3) . . . (2 n− 1)] · [(3 4) . . . (3 n− 1)] · . . . · (n− 2 n− 1)
All mobile agents, except agent 1, meet each other once.

• W1 = (1 2) . . . (1 n− 1)
Agent 1 meets every other mobile agent once.

• U2 = (2 BS )(1 2)
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4.2. Non-convergence of ZebraNet

Algorithm 1: ZebraNet Protocol
when x meets BS do
<x transfers valuesx to BS>
accumulationx := accumulationx + 1
distancex := 0

end when
when x meets y 6= BS do
if accumulationx < accumulationy ∧ <valuesx is not empty> then
<x transfers valuesx to y>

end if
distancex := distancex + 1
if distancex > decay then
if accumulationx 6= 0 then
accumulationx := accumulationx − 1

end if
distancex := 0

end if
end when

• W2 = (2 1)(2 3) . . . (2 n− 1)
Agent 2 meets every other mobile agent once.

• Z = (3 BS ) . . . (n− 1 BS )
All mobile agents, except agents 1 and 2, meet BS .

We choose an integer g such that g · (n− 3) ≥ decay + 1.
Now we build a schedule S as follows :

X = U1 V
g W g

1 U2 W
g
2 Z

S = Xω

By construction, in X, all agents meet each other at least once. For any
mobile agent x, we choose cvx = cv = |X|. That implies that S satisfies the
cover time property. Precisely, cv = g · (n−3)(n−2)2 + (2g + 1)(n− 2) + 3.

We claim that the input value v of agent 2 is never delivered to BS . To
see that, consider what happens when the sequence X is applied to an initial
configuration γ0. During U1 = (1 BS )(1 2), agent 1 receives the input value v
of agent 2. During the sequence V g, only agents 2 to n−1 are involved, thus, at
the end of V g, agent 1 still holds v. Then, comes the sequenceW g

1 , where agent
1 meets every other mobile agent g times. Since agents 2 to n− 1 have not met
BS yet, their variables accumulation equal 0 and agent 1 cannot transfer v to
any of them. In addition, since agent 1 is involved in g · (n − 2) ≥ decay + 1
meetings (thanks to the choice of g), the decay mechanism of ZP implies that
at the end of W g

1 , the variable accumulation1 of agent 1 equals 0.
Therefore, during U2 = (2 BS )(2 1), agent 1 transfers v to agent 2. In W g

2 ,
agent 2 is involved in g · (n−2) ≥ decay+1 meetings with other mobile agents.
Since all their variables accumulation equal 0, agent 2 keeps v. Note that the
decay mechanism implies that at the end ofW g

2 , the variable accumulation2 of
agent 2 equals 0. Finally, during Z, all mobile agents x 6∈ {1, 2} meet BS and
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4. Data Collection

increment their variable accumulationx accordingly. Therefore, the application
of the sequence X to an initial configuration γ0 leads to a configuration γ1 that
satisfies the following property P :

• agent 2 holds its input value v

• accumulation1 = accumulation2 = 0

• ∀x ∈ G∗ \ {1, 2}, accumulationx = 1

Now, apply X to γ1. At the end of U1, agent 1 has received v from agent
2 and satisfies accumulation1 = 1. During V g, each mobile agent x 6= 1 is
involved in g · (n − 3) ≥ decay + 1 meetings. Therefore, thanks to the decay
mechanism, at the end of V g, all agents, except agent 1, have their variable
accumulation set to 0. Hence, during W g

1 , agent 1 cannot transfer v to any
other mobile agents. In addition, the decay mechanism implies that at the end
ofW g

1 , the variable accumulation1 of agent 1 equals 0. Then, we can apply the
same arguments as in the previous paragraph to the sequence U2 W

g
2 Z that

follows. Thus, the application of the sequence X to γ1 leads to a configuration
γ2 that also satisfies the property P.

Hence, no matter how many sequences X are applied, the input value v of
agent 2 is never delivered to BS .

4.3 Modified ZebraNet Protocol 1

To obtain convergence, the algorithm is modified by ensuring that a mobile
agent that transfers data to another mobile agent can no longer accept data.
For this purpose, we add a boolean variable activex, initially set to true, that
indicates whether agent x is active or not, and we impose that only active
agents can receive values. Once an active agent has transferred its values to
another mobile agent, it becomes inactive. Algorithm 2 below presents the
pseudo-code of MZP1.

Convergence

We now show that any execution of MZP1 converges. The proof relies on the
fact that the set of active agents cannot increase, so that at some point of any
execution, it remains constant. From that point, there is no value transferred
between the mobile agents, and since all mobile agents eventually meet BS
(due to the cover time property), all values are eventually delivered.

Proposition 6 (Convergence of MZP1). MZP1 converges.

Proof. Let E be an execution. We denote by ACT (k) the set of active agents
in the k-th configuration in E . The sequence (ACT (1), ACT (2), . . . ) is non-
increasing, thus it is eventually constant : ∃k0 ∈ N,∀k ≥ k0, ACT (k) =
ACT (k0). Starting from the k0-th configuration, there cannot be any fur-
ther transfer between two active agents. Otherwise, the set of active agents
would decrease. Also, according to Algorithm 2, there cannot be any trans-
fer from an active agent to another inactive agent, nor from an inactive agent
to an inactive agent. In other words, once the set of active agents remains
constant, there cannot be any transfer between two mobile agents. Since all
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4.3. Modified ZebraNet Protocol 1

Algorithm 2: Modified ZebraNet Protocol 1
when x meets BS do
<x transfers valuesx to BS>
accumulationx := accumulationx + 1
distancex := 0

end when
when x meets y 6= BS do
if accumulationx < accumulationy ∧ activey ∧ <valuesx is not empty>
then
<x transfers valuesx to y>
activex := false

end if
distancex := distancex + 1
if distancex > decay then
if accumulationx 6= 0 then
accumulationx := accumulationx − 1

end if
distancex := 0

end if
end when

mobile agents meet BS in the next cvmax events, all the values are eventually
delivered.

Upper Bound to the MZP1 Complexity

In this section, we present an upper bound to the number of events needed to
collect all the values at the base station. First we define the notion of path
followed by a value.

Definition 2 (Path followed by a value). Let E be an execution and v be an
initial value of some agent. The path followed by v in E is the sequence (possibly
infinite) of the mobile agents that successively carry v.

For example, let x1 be an agent whose input value is v. It is possible that
x1 transfers v to some agent x2, then agent x2 transfers v to some agent x3,
which finally delivers v to BS . In this case, the path followed by v is x1x2x3.
Note that, without the active variable (e.g. in ZP), the agent x3 could be the
agent x1.

Proposition 7 (Upper Bound - MZP1). For any graph G of n ≥ 3 agents,
for any cover time vector cv, and for any decay ≥ 1, any execution of MZP1
converges in no more than

∑
x∈A∗ cvx − 2 · (n− 2) events.

Proof. Let E be an execution of MZP1. By Prop. 6, E converges, i.e., all the
values are eventually delivered. Let v be an input value of some agent x1 such
that v is the last delivered value in E . Consider the path π followed by v in E .
It is of the form x1x2 . . . xk for some k ≥ 1, xk being the agent that delivers v to
BS . Since a mobile agent becomes inactive as soon as it transfers some values,
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4. Data Collection

all the agents appearing in π are different. Hence, we have 1 ≤ k ≤ n − 1.
Then, the execution E can be written as the following sequence of events1:

E =
[
. . . (x1 x2)(v)

]
︸ ︷︷ ︸

e1

[
. . . (x2 x3)(v)

]
︸ ︷︷ ︸

e2

. . .
[
. . . (xk−1 xk)(v)

]
︸ ︷︷ ︸

ek−1

[
. . . (xk BS )(v)

]
︸ ︷︷ ︸

ek

. . .

The subsequence ei starts after the transfer of v from xi−1 to xi and ends with
the transfer of v from xi to xi+1, except e1 (that starts with the beginning of
E) and ek (that ends when v is delivered to BS ).

Now, we show that for every 2 ≤ i ≤ k − 1, the length of ei is upper
bounded by cvxi − 2. Consider i in this range and the following sequence of
events in E , e′i :=

[
(xi−1 xi)

(v) . . . (xi xi+1)(v)
]
. Note that xi does not meet

BS during e′i. Hence, |e′i| ≤ cvxi − 1 and |ei| ≤ cvxi − 2. For the same reason,
|e1| ≤ cvx1 − 1. For i = k, as before (for e′i), starting with event (xk−1 xk)(v)

and till the last event in ek, xk does not meet BS . Only during this last event
in ek, xk necessarily meets BS and finally delivers v. Hence, |ek| ≤ cvxk − 1.
Therefore, the value v is delivered to BS in no more than

|e1|+ · · ·+ |ek| ≤ (cvx1
− 1) + (cvx2

− 2) + · · ·+ (cvxk−1
− 2) + (cvxk − 1)

≤
∑
x∈π

cvx − 2 · (|π| − 1)︸ ︷︷ ︸
T

Now, we denote by α1 > · · · > αr the distinct values of the cover times of
the mobile agents. Note that αr ≥ n − 1 ≥ 2. We denote by Γα the number
of mobile agents in the system with a cover time equal to α, and by πα the
number of agents in π (there are only mobile agents in π, by construction) with
a cover time equal to α. Hence, |π| = πα1 +· · ·+παr and n−1 = Γα1 +· · ·+Γαr .
Then, we have T = πα1 · α1 + · · · + παr · αr − 2 · (|π| − 1). By replacing παr
with |π| − πα1

− · · · − παr−1
, we get :

T = πα1
· (α1 − αr) + · · ·+ παr−1

· (αr−1 − αr) + |π| · (αr − 2) + 2

≤ Γα1
· (α1 − αr) + · · ·+ Γαr−1

· (αr−1 − αr) + (n− 1) · (αr − 2) + 2

≤ Γα1
· α1 + · · ·+ Γαr · αr − 2 · (n− 2)

≤

(∑
x∈G∗

cvx

)
− 2 · (n− 2)

Since all the other values are delivered before v, E converges in no more than∑
x∈G∗ cvx − 2 · (n− 2) events.

Lower Bound to the MZP1 Complexity

Now, we show that the upper bound stated in Prop. 7 is optimal. Building a
“long” worst case execution is made difficult by two contradictory constraints.
On the one hand, the mechanism of accumulation variables and of decay, in
particular when the value of the constant decay is small, forces to add events

1We remind the reader that this is an abusive notation, refer to Sec. 4.1.
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4.3. Modified ZebraNet Protocol 1

in the construction for controlling the transfers. However, on the other hand,
the cover time property forces some specific events (and not necessarily those
needed for the construction) to happen before fixed deadlines (given by the
cover times). For the sake of clarity, we assume a uniform cover time vector cv,
for which the upper bound stated in Prop. 7 becomes (n−1) ·cv−2 ·(n−2). In
the sequel, we build an execution that converges in exactly (n−1)·cv−2·(n−2)
events and satisfies the cover time property for cv.

Proposition 8 (Lower Bound - MZP1). For any graph G of n ≥ 4 agents,
for any decay ≥ 1, there exists a uniform cover time vector cv for which there
is an execution of MZP1 that converges in exactly (n − 1) · cv − 2 · (n − 2)
events.

Proof. We consider a graph G of n ≥ 4 agents and a constant decay ≥ 1. Let
g be an integer such that g · (n− 3) ≥ decay + 1. We consider a uniform cover
time vector cv, the value of which is defined later.

We build, step by step, an execution in which the input value of agent 1
is successively carried by every other agent. First, for each 1 ≤ k ≤ n − 2,
we consider a sequence Ek of length cv in which the value v is transferred
from agent k to k + 1, and another sequence ∆ in which agent n− 1 delivers
v to BS . Since a schedule is an infinite sequence, we complete by repeating
a pattern Ω and we define S = E1E2 · · ·En−2∆Ωω. The difficulty lies in the
definition of the sequences Ek, ∆ and Ω for the schedule S to satisfy the cover
time property and for the value v to be delivered to BS at the end of ∆.

For this purpose, we define specific sequences as follows :

• For 1 ≤ k ≤ n − 1, U(k) is a sequence of events in which all the mo-
bile agents, except agent k, meet each other once. Hence, each mo-
bile agent (except agent k) is involved in n − 3 meetings. We have
|U(k)| = (n−3)(n−2)

2 .

• For 1 ≤ k ≤ n−1, V (k) is a sequence in which agent k meets every other
mobile agent once. We have |V (k)| = n− 2.

• For 1 ≤ p ≤ q ≤ n − 1, Bpq = (q BS )(q − 1 BS ) . . . (p BS ) is a sequence
in which each agent x, from q to p, successively meets BS in this order.
We have |Bpq | = q − p+ 1.

• For 1 ≤ p ≤ q ≤ n − 2, Cpq = [(q q + 1)(q BS )] . . . [(p p+ 1)(p BS )] is a
sequence in which each agent x, from q to p, meets its successor x+ 1,
then BS . We have |Cpq | = 2 · (q − p+ 1).

Examine the effect on the executions of the iteration, g times, of U(k)
and V (k). In U(k)g, each mobile agent x 6= k is involved in g · (n − 3) ≥
decay+ 1 meetings with other mobile agents. Thus, thanks to the decay mech-
anism, applying U(k)g to any configuration of the system makes each non-
zero accumulationx, for each mobile agent x 6= k, decrease at least by one.
The same argument shows that applying V (k)g to any configuration makes
accumulationk decrease at least by one, unless accumulationk already equals
0. In other words, the sequences U(k)g and V (k)g help resetting the variables
accumulation.
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Now, consider a configuration in which for all x ∈ G∗, accumulationx = 0.
In addition, assume that some mobile agent k, such that 1 ≤ k ≤ n− 2, holds
a value w and that agent k + 1 is active (i.e., it can receive values). Then, it is
easy to see that during the sequenceBk+1

n−1·C1
k = Bk+2

n−1(k + 1 BS )(k k + 1)(k BS )C1
k−1,

agent k transfers w to k + 1. Moreover, at the end, every accumulationx (for a
mobile agent x) equals 1. In other words, applying Bk+1

n−1 ·C1
k to the appropriate

configuration results in a transfer from agent k to agent k + 1.
We also define, for each 1 ≤ k ≤ n − 2, a “filling” sequence Fk of meetings

between mobile agents. We only require that |Fk| = n − 2 − k (which implies
that Fn−2 = ∅). The purpose of the sequence Fk is to ensure that the length
of each Ek is constant (independent of k). Now we are ready to define the
sequences Ek (1 ≤ k ≤ n− 2), ∆ and Ω :

E1 = U(2)gV (2)g︸ ︷︷ ︸
prologue

·U(1)g(1 2)F1︸ ︷︷ ︸
center

·B2
n−1C

1
1︸ ︷︷ ︸

epilogue

(2 ≤ k ≤ n− 2) Ek = U(k)gV (k)g︸ ︷︷ ︸
prologue

·U(k)g(k k + 1)Fk︸ ︷︷ ︸
center

·Bk+1
n−1C

1
k︸ ︷︷ ︸

epilogue

∆ = U(n− 1)gV (n− 1)gU(n− 1)g · (n− 2 n− 1) · (n− 1 BS )

Ω = Bn−1n−1C
1
n−2︸ ︷︷ ︸

epilogue of En−2

· ∆ = (n− 1 BS )C1
n−2 ·∆

Then, for having the result, we set cv = |Ek|. Precisely, we have cv = g · (n−
3)(n− 2) + (g + 2)(n− 2) + 2.

(Time to convergence). Now, we focus on the circulation of the input value
v of agent 1. Let γ1 be an initial configuration. The prologue and the center of
E1 only involves meetings between mobile agents, and, since each mobile agent
has its variable accumulation equal to 0, there is no transfer. At the end of
the epilogue of E1, the previous remarks show that agent 1 has transferred v
to agent 2 and each mobile agent x satisfies accumulationx = 1. Moreover,
during the epilogue of E1, every mobile agent x 6= 1 has transferred its input
value to BS . We denote by γ2 the configuration at the end of E1.

Consider now the prologue U(2)gV (2)g of E2. At the end of U(2)g, every
accumulationx with x 6= 2 is set to 0. Thus, during V (2)g, agent 2 does not
transfer v to anyone. In addition, at the end of the prologue of E2 each mobile
agent’s accumulation variable is set to 0. Hence, during the center of E2, there
is no transfer. It is only during the epilogue of E2 that agent 2 transfers v to
agent 3 (which is still active since it has not transferred any value to any other
mobile agent). At the end of E2, agent 3 holds the value v and every mobile
agent x satisfies accumulationx = 1. Therefore, the process can be iterated.

At the end of En−2, agent n− 1 holds the value v. Every mobile agent
1, . . . , n− 2 is inactive since it has transferred v to its successor, and cannot
receive v again. Therefore, the value v is delivered to BS exactly at the end of
∆ = U(n− 1)gV (n− 1)gU(n− 1)g · (n− 2 n− 1) · (n− 1 BS ).

A simple calculation shows that |∆| = cv − 2 · (n − 2). Hence, with the
schedule S, the algorithm converges in exactly (n− 1) · cv − 2 · (n− 2) events.
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U(2)g V (2)g U(1)g (1 2) F1 (n− 1 BS)B3
n−2 (2 BS) C1

1

U(2)g V (2)g U(2)g (2 3) F2(n− 1 BS) B3
n−2(2 3) (2 BS) C1

1

Table 4.1: Comparison of the same relative positions in E1 and E2.

(S satisfies the cover time property). To show this, we first introduce
a supplementary definition. If e is an event in some Ek, for 1 ≤ k ≤ n − 2
(resp. ∆), then its relative position within Ek (resp. ∆) is defined as follows.
If e is the first event in Ek, then its relative position is 1. If it is the second,
its relative position is 2, and so on. Tables 4.1, 4.2 and 4.3 compare the same
relative positions of different sequences in S. Sequences in the same column
start at the same relative position.

We have to check that in any sequence Z of cv consecutive events in S, each
agent meets every other agent at least once. Note that if a sequence Z contains
(or can be reordered to contain) a prologue and an epilogue (not necessarily
from the same sequence Ek), then, in Z, each agent meets every other agent
at least once. The following analysis relies on this observation. We denote by
Z1 the first event in Z. In the sequel, we distinguish several cases according to
the position of Z1 in S, and, for each case, several subcases.

• Z1 is in E1 (refer to Table 4.1)

– Z1 is in U(2)gV (2)g, in the prologue of E1.
The sequences E1 and E2 have the same prologue. Thus, in this
case, for any event that appears in E1, from the first event until Z1

(such event is not in Z), a similar event will appear in E2 and hence,
in Z. Therefore, Z can be reordered to contain the prologue and
the epilogue of E1.

– Z1 is in the center of E1.
Then, Z contains the epilogue of E1 and the prologue of E2.

– Z1 is in the epilogue of E1.
If Z1 is the first event of the epilogue of E1, then Z obviously
contains the epilogue of E1 and the prologue of E2. If we shift
Z1 to the right by one position, then the sequence Z looses the
event (n− 1 BS ), but a similar event appears in Z from the center
of E2 (see Table 4.1). This is due to the fact that the sequence
(n− 1 BS )B3

n−2 of E1 starts one event later than the same se-
quence in E2. We can repeat this argument until the entire se-
quence (n− 1 BS )B3

n−2 of E1 is “consumed”. Hence, if Z1 is in
(n− 1 BS )B3

n−2, we can reorder Z in order to contain the epilogue
of E1 and the prologue of E2. The last subcase is when Z1 is in
(2 BS )C1

1 . This sequence has the same relative position in E1 and
in E2, thus Z can also be reordered to contain the epilogue of E1,
and the prologue of E2.

• Z1 is in Ek (2 ≤ k ≤ n− 3) (refer to Table 4.2)

– Z1 is in the prologue U(k)gV (k)g of Ek.
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U(k)g V (k)g U(k)g (k k + 1) Fk (n− 1 BS)Bk+2
n−2 (k + 1 BS) C1

k

U(k + 1)g V (k + 1)g U(k + 1)g (k + 1 k + 2) Fk+1(n− 1 BS) Bk+2
n−2(k + 1 k + 2) (k + 1 BS) C1

k

Table 4.2: Comparison of the same relative positions in Ek and Ek+1 (2 ≤ k ≤
n− 3).

If Z1 is in U(k)g in the prologue, then, since U(k)g also appears in
the center of Ek, Z can be reordered to contain the prologue and the
epilogue of Ek. If Z1 is in V (k)g in the prologue , then Z contains
the epilogue of Ek. Thus every mobile agent meets the base station.
Z also contains U(k)g from the center of Ek, hence every mobile
agent, except agent k, meets each other agent at least once. We
just have to check that agent k meets every other mobile agent. Z
contains the sequence U(k+1)g from the prologue of Ek+1, in which
agent k meets every other mobile agent except agent k + 1. But Z
also contains the event (k k + 1) from the center of Ek. Hence, every
agent meets every other agent at least once.

– Z1 is in the center of Ek.
Then, Z contains the epilogue of Ek and the prologue of Ek+1.

– Z1 is in the epilogue of Ek.
This case is analogous to the case in which Z1 is in the epilogue of
E1.

• Z1 is in En−2 (refer to Table 4.3)

– Z1 is in the prologue U(n− 2)gV (n− 2)g of En − 2.
If Z1 is in U(n − 2)g in the prologue, then, since U(n − 2)g also
appears in the center of En−2, Z can be reordered to contain the
prologue and the epilogue of En−2. If Z1 is in V (n − 2)g in the
prologue, then Z contains the epilogue of En−2. Thus, every mobile
agent meets the base station. Z also contains U(n − 2)g from the
center of En−2, hence every mobile agent, except agent n− 2, meets
each other at least once. We just have to check that agent n− 2
meets every other mobile agent. Z contains the sequence U(n− 1)g

from ∆, so agent n− 2 meets every other mobile agent except agent
n− 1. But Z also contains the event (n− 2 n− 1) from the center
of En−2. Hence, every agent meets every other agent at least once.

– Z1 is in the center of En−2.
Then, Z contains the epilogue of En−2 and the sequence U(n −
1)gV (n − 1)g from ∆. So every agent meets every other agent at
least once in Z.

– Z1 is in the epilogue of En−2.
If Z1 is the first event of the epilogue, then it is not difficult to see
that Z = Ω and that in Ω, every agent meets each other at least
once. By construction, the suffix of the schedule S consists of an
infinite repetition of Ω. Therefore, no matter how many times Z1 is
shifted to the right, Z can always be reordered to be identical to Ω.
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U(n− 2)g V (n− 2)g U(n− 2)g (n− 2 n− 1) Fn−2 = ∅ (n− 1 BS) C1
n−2

U(n− 1)g V (n− 1)g U(n− 1)g (n− 2 n− 1) ∅ (n− 1 BS)

Table 4.3: Comparison of the same relative positions in En−2 and ∆.

This last argument shows that the suffix Ωω of S satisfies the cover time
property. As a conclusion, in all cases, every agent meets each other at least
once in every Z in S. Thus, the schedule S satisfies the cover time property.

4.4 Modified ZebraNet Protocol 2

As already explained, the non convergence of ZP is due to the fact that a value
can circulate between two or more mobile agents, without ever being delivered
to the base station. To prevent that, in MZP1, we imposed that a mobile
agent that transfers some values cannot receive any values later. Another way
to prevent the cycling of values is to impose that a mobile agent receiving some
values cannot transfer them to any other mobile agent later. For this purpose,
an active bit is also introduced, which yet has not the same functionality as in
MZP1. Algorithm 3 below presents the resulting protocol, called MZP2.

Algorithm 3: Modified ZebraNet Protocol 2
when x meets BS do
<x transfers its values to BS>
accumulationx := accumulationx + 1
distancex := 0

end when
when x meets y 6= BS do
if accumulationx < accumulationy ∧ activex ∧ <valuesx is not empty>
then
<x transfers its values to y>
activey := false // agent y becomes inactive

end if
distancex := distancex + 1
if distancex > decay then
if accumulationx 6= 0 then
accumulationx := accumulationx − 1

end if
distancex := 0

end if
end when

Upper Bound to the MZP2 Complexity

Proposition 9 (Upper Bound - MZP2). For any graph G of n ≥ 1 agents,
for any cover time vector cv and for any decay ≥ 1, any execution of MZP2
converges in no more than 2 · cvmax − 2 events.
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Proof. Consider an execution of MZP2 and an agent x with input value v.
During the first cvx events, there are two possibilities. Either agent x does not
transfer v to any other mobile agent, but straightly to BS . In this case, v is
delivered in at most cvx events. Otherwise, xmeets some mobile agent y (before
it meets BS ), in an event (x y)(v), and transfers v to y. This happens in at
most cvx-1 events. According to Algorithm 3, after such a transfer, y becomes
inactive. Now, agent y cannot transfer v to any other mobile agent. This
implies that agent y will transfer v to BS during the next cvy events (starting
with event (x y)(v)). Hence, v is delivered to BS in at most cvx + cvy − 2
events. In all cases, any value v is delivered to the base station in no more
than 2 · cvmax − 2 events.

Lower Bound to the MZP2 Complexity

Proposition 10 (Lower Bound - MZP2). For any graph G of n ≥ 4 agents
and any decay ≥ 1, there exists a uniform cover time vector cv for which there
is an execution of MZP2 that does not converge in strictly less than 2 · cv − 2
events.

Proof. We consider an integer g such that g · (n−3) ≥ decay+1, and we define
specific sequences as follows :

• U = (3 BS ) . . . (n− 1 BS ).
Agents 3 to n− 1 meet the base station once.

• V = [(2 3) . . . (2 n− 1)] · [(3 4) . . . (3 n− 1)] · . . . · (n− 2 n− 1)
All mobile agents, except agent 1, meet each other once.

• W = (1 3) . . . (1 n− 1).
Agent 1 meets every other mobile agent, except agent 2, exactly once.

• X = U · V g ·W · (2 BS )(1 2)(1 BS )

We build a schedule S by repeating X infinitely many times : S = Xω. We
choose the same cover time, cv = |X|, for all agents. A simple computation
shows that cv = 2n− 3 + g · (n−3)(n−2)2 . By construction, S satisfies the cover
time property.

Now we prove that the execution of MZP2, induced by the sequence S,
does not converge before the first 2 · cv − 2 events. At the end of the first U
in S, agents 3 to n− 1 have successively met BS and transferred their values.
Thus, all variables accumulationx, for 3 ≤ x ≤ n− 1, equal 1. In the sequence
V g, each agent x 6= 1 is involved in g · (n − 3) ≥ decay + 1 meetings. Hence,
thanks to the decay mechanism, at the end of the first V g, every agent x, from
2 to n− 1, has its variable accumulationx reset to 0. As a consequence, there
is no transfer from agent 1 to any other mobile agent during the sequence W
that follows V g. Then, during the sequence (2 BS )(1 2)(1 BS ), agent 2 receives
the input value v of 1. From this point, agent 2 cannot transfer v to any other
agent but BS . This event can happen cv events later (event (2 BS ) in the
second X of S). Therefore, the value v is delivered to BS exactly after the
(2 · cv − 2)-th event of the schedule.
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4.5 Bounded Memory

Up to now, we have assumed that mobile agents have an “unbounded” (O (n))
memory. In this section, we discuss the case of bounded (constant) memory,
i.e., a memory size independent of the number of agents. We assume that the
memory of an agent can hold at most k data values, with k ≥ 1. Both MZP1
and MZP2 can be adapted to this assumption. Any transfer of values between
mobile agents is now limited by the available memory and the transfer may
be partial. During an event, as much as possible values are transferred. Note
that all the data values are equivalent for the data collection problem, thus it
is unnecessary to precise which values are actually transferred. In the adapted
version of MZP1, once an agent has transferred some values, even partially, it
becomes inactive and cannot receive any other value. For every agent x, the
values held by x are stored in a dynamic array valuesx, whose size is denoted
by size(valuesx). By definition, we have size(valuesx) ≤ k. Algorithm 4
presents an adaptation of MZP1, but the same idea can be applied to MZP2.
For the sake of clarity, we do not present in the code the management of the
dynamic array valuesx. We denote by MZP1-BM (resp. MZP2-BM) the
bounded-memory version of MZP1 (resp. MZP2).

Algorithm 4: Modified ZebraNet Protocol 1 - Bounded memory
when x meets BS do
<x transfers its values to BS>
accumulationx := accumulationx + 1
distancex := 0

end when
when x meets y 6= BS do
count := min(size(valuesx), k − size(valuesy))
if accumulationx < accumulationy ∧ activey ∧ count > 0 then
<x transfers count values to y>
activex := false

end if
distancex := distancex + 1
if distancex > decay then
if accumulationx 6= 0 then
accumulationx := accumulationx − 1

end if
distancex := 0

end if
end when

For both MZP1-BM and MZP2-BM, it appears that the proofs given
in the previous sections (Secs. 4.3, and 4.4) are still applicable. Indeed, the
memory size tightens the constraints on transfers, but do not fundamentally
affect the structures of the executions of the algorithms MZP1 and MZP2.
Still, we sketch the proofs for MZP1-BM and MZP2-BM.

Proposition 11 (Bounds to the MZP1-BM complexity). For any graph G of
n ≥ 1 agents, for any cover time vector cv, for any decay ≥ 1, any execution
of MZP1-BM converges in no more than

∑
x∈G∗ cvx − 2 · (n− 2) events.
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For any graph G of n ≥ 4 agents, for any decay ≥ 1, there exists a uni-
form cover time vector cv for which there is an execution of MZP1-BM that
converges in (n− 1) · cv − 2 · (n− 2) events.

Proof. The fact that MZP1-BM converges is due to the fact that the set of ac-
tive agents cannot increase. As in MZP1, once the set of active agents remains
constant, there cannot be any transfer between any two mobile agents. Since
all mobile agents meet BS in the next cvmax events, the protocol converges.

The upper bound to the complexity of MZP1-BM is computed by observing
the path followed by the last delivered value v, i.e., the sequence of the mobile
agents that successively carry v. The memory size does not affect the fact that
a mobile agent in this path cannot appear twice, thanks to the active bit, nor
the fact that a mobile agent x in this path holds v for at most cvx−1 or cvx−2
consecutive events. The same construction as in the proof in Sec. 4.3 shows that
any execution of MZP1-BM converges in no more than

∑
x∈G∗ cvx−2 · (n−2)

events.
The lower bound to the complexity of MZP1-BM is obtained thanks to

the same schedule as in Sec. 4.3. Indeed, applying this schedule to an initial
configuration gives an execution in which each agent holds at most one value,
which is compatible with the assumption k ≥ 1.

Proposition 12 (Bounds to the MZP2-BM complexity). For any graph G of
n ≥ 1 agents, for any cover time vector cv, for any decay ≥ 1, any execution
of MZP2-BM converges in no more than 2 · cvmax − 2 events.

For any graph G of n ≥ 4 agents, for any decay ≥ 1, there exists a uniform
cover time vector cv for which there is an execution of MZP2-BM that does
not converge in strictly less than resp. 2 · cv − 2 events.

Proof. During the first cvx events, agent x either transfers its input value v to
BS or to another mobile agent y. In the second case, the transfer occurs in
the first cvx − 1 events. At this point, agent y is inactive and cannot transfer
v to any other agent, but BS , which is done in the next cvy − 1 events. Thus
MZP2-BM also converges in no more than 2 · cvmax − 2 events.

The lower bound to MZP2-BM is obtained thanks to the same schedule
as in Sec. 4.4. Indeed, applying this schedule to an initial configuration gives
an execution in which each agent holds at most one value, which is compatible
with the assumption k ≥ 1.

4.6 Remarks

(MZP1 and MZP2 vs. a “trivial” protocol). One can notice that the
worst case complexities of MZP1 and MZP2 are worse than for a very trivial
protocol, in which each agent can transfer its value only directly to the base
station (its complexity is cvmax). By the same measure, this protocol is better
than the protocol that is practically used by ZebraNet (the one which does not
converge according to Sec. 4.2). The reason is that the worst case value is
obtained when all agents have the same cover time, cvmax (see Lem. 8 and 10).
In practice, and in particular concerning the ZebraNet project, there are most
likely different types of agents and the effective complexity, as we demonstrate
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below, is most likely better for MZP1, MZP2 (and even for the original pro-
tocol) than for the trivial one. In the actual settings of ZebraNet, there are
some frequent periods of time when the base station may be inactive and some
zebras may be sleeping or ill and thus motionless. In contrast with the trivial
protocol, during such periods, the other protocols perform better.

Let us give a more quantitative example. Consider a population of zebras,
distributed more or less into two major categories : (1) the healthy zebras which
are very mobile, very often near the base station and near the other zebras;
and (2) the ill zebras which are most of the time motionless and away from the
base station. Thus, assume that there are h ill zebras and each has a very high
(near infinite) cover time, at least cvh. There are s healthy zebras and each
has a much smaller cover time, at most cvs. Thus, cvs � cvh and s + h = n.
In addition, for the sake of simplicity, assume that cvs < decay � cvh and
that for every healthy zebra x, size(valuesx) ≥ h, i.e., every healthy zebra has
enough memory to collect the values of all the ill zebras.

Now, compare the expected complexities of the trivial protocol with the
protocols MZP1 and MZP2. The trivial protocol has a very large complexity
of cvmax ≥ cvh, since the only transfers are towards the base station. The
protocol MZP1, intuitively, will have an average complexity of the order of
less than s · cvs. This is an upper bound on the number of events of some
prevalent scenario, where a value of an ill zebra is relayed to a healthy active
zebra, then, every cvs events, to another healthy active zebra, and finally to
the base station. If there are much more healthy mobile zebras than ill and
motionless ones, finding an active healthy zebra is not a problem. The scenario
in which a value of an ill zebra is relayed by ill zebras (this is the type of
scenario that gives the near worst case complexity), is not likely to happen
when the mobility of zebras is modeled by random walks. In consequence, the
weight of such scenarios will be very small in the computation of the average
complexity.

On the same population (distributed into two categories), MZP2, intu-
itively, will have an average complexity less than 3 · cvs. This is a worst case
complexity of a prevalent scenario of MZP2 where, first, the healthy zebras
meet the base station (in at most cvs events) and augment their accumulation
variables. Then, in at most cvs events, a value of an ill zebra is relayed to a
healthy zebra and then, in at most additional cvs events, to the base station.

(MZP1 vs. MZP2). In spite of the worst case complexity results, MZP1
has some advantages over MZP2. First, note that MZP1 is a multi-hop pro-
tocol, in contrast with MZP2 which is a two-hop one. Hence, MZP1 approx-
imates better the original ZebraNet protocol (which is also multi-hop) than
MZP2. Second, note that, although the example above describes a population
where MZP2 performs better than MZP1, there is a large class of populations
where, at the contrary, MZP1 exhibits a better performance than MZP2. Con-
sider, for instance, a population which is distributed more or less into several
(more than two) major categories. For example, there are young healthy, old
healthy, young ill and old ill zebras’ categories. Then, consider scenarios where,
at the beginning, a value of an old ill zebra is transferred to some young ill
zebra. Then, with MZP2, this young ill zebra is the only zebra that could de-
liver the value to the base station. However, with MZP1, the value is likely to
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be transferred to an active young and healthy zebra. Thus, it may be delivered
to the base station faster than with MZP2. It could be interesting to make a
deeper investigation on the comparison between MZP1 and MZP2.
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Chapter 5

Consensus

5.1 Introduction

Consensus is a decision problem, classical in fault-tolerant distributed com-
puting. In this problem, each process (agent in our case) is given initially a
value and has to take eventually an irreversible decision (termination condi-
tion). Processes must decide on a common value depending on the input values,
according to agreement and validity (non-triviality) conditions [74, 62, 11].

Consensus-related problems are relevant to mobile sensor networks in many
different contexts like for example, flocking (see, e.g., [35]), swarm formation
control (see, e.g., [75]), distributed sensor fusion (see, e.g., [70]) and attitude
alignment (see, e.g., [61]). See also [72, 69, 71] for surveys and references on
consensus-related problems in mobile wireless networks.

A fundamental result by Fisher, Lynch and Paterson [47] states that in the
classical asynchronous message passing model, no deterministic algorithm for
consensus exists, even in the case of a unique possible crash (halting) failure. It
is not surprising that the same impossibility holds in the model of population
protocols. This model is fundamentally asynchronous, which is one of the main
reasons for the result in [47]. However, some inherent characteristics of pop-
ulation protocols make consensus even more difficult. The agents are uniform
(indistinguishable and executing the same code). They have a constant memory
size and thus cannot neither obtain nor store labels or any other information
depending on the network size. Agents communicate by asynchronous interac-
tions such that each interaction is between a couple of agents. No broadcast
communication is available. Due to all these limitations, the agents are unable
to detect which other agents are present but not interacting, even if no crash
failure is possible. Hence, in population protocols, even with the assumption
of absence of failures, consensus is impossible (Sec. 5.2).

Like in the message passing model, it seems interesting to study what is
missing for solving consensus in population protocols. We adopt the point of
view of Chandra and Toueg [32] for defining the possible missing information
under the form of oracles, i.e., specific behaviours. Recall that, an oracle can
be thought as a collection of modules able to provide each process with some
information, hopefully useful to solve a given problem. The failure detectors
[32] usually provide each process with failure-related information. Specifically,
the failure detectors of [32] cannot be used in our case, because they furnish
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lists of process identifiers (estimated to have crashed). As already mentioned,
identifiers are absent in population protocols (due to the constant size memory
requirement).

Nevertheless, several identity-free oracles exist in the literature. The fail-
ure detector introduced in [37] outputs a boolean value at every processes,
and solves the (n − 1)-set agreement problem in n-process message passing
system. This failure detector has been shown to be the weakest to solve this
problem, which is weaker than consensus. This involves that such an oracle
cannot be helpful to solve consensus in population protocols. Another type of
oracles proposed in [68, 67] (and used, e.g., in [21, 22]) to deal with anonymity,
provide information on the number of crashed processes (bounded by f < n),
and, for the same reason of constant agent state space, cannot be used in the
framework of population protocols. A so called “heartbeat” failure detector
proposed in [3] requires to maintain unbounded counters at every process, and
thus, again, is not suitable in our case. Some other failure detectors that are
used to solve consensus and adapted to anonymous systems, like AΩ [22], AL
and AΣ′ [24, 23], but these provide information whose size depends on the
number of agents. In addition, in message-passing system, these oracles are
used in combination with other powerful model assumptions and capabilities
(as possible “terminating” broadcast and unbounded process memory) which
are unavailable in our case.

This is the reason why we introduce a new class of oracles. The constraints
we had in mind, when designing these oracles, are basically to make them
implementable with minimum external assumptions on the system. In short,
these oracles provide information related only to the past schedules. To provide
this information, an oracle outputs a boolean value at every agent (similarly
to the failure detector in [37]). The oracle is not required to provide this
information at the precise time when it appears, but only eventually, at least
once and at some agent (i.e., it is unreliable in this sense). Finally, the proposed
oracles are anonymous, in the sense that a permutation of the agents identities
does not affect the possible output of these oracles (see Sec. 5.3 for precise
definitions).

The Problem

Consider a population protocol A with initial values V. We assume that the
agents have an instruction decide which causes them to decide irreversibly on
some value in V.

The population protocol A (possibly using an oracle) is said to solve the
consensus problem if, for each complete graph G, for each initial configuration
γ, for any legal execution H[γ], it satisfies the following: i. (termination) every
agent eventually decides in the execution H[γ]; ii. (agreement) two agents
cannot decide on different values; iii. (validity) if all the agents have the same
initial value v, then an agent can only decide on v.

We now define the symmetric consensus problem that will be studied here.
The protocol A is said to solve the symmetric consensus problem if it solves the
consensus problem and, in addition, for each complete graph G, it satisfies the
following additional condition: iv. (symmetry) for any legal execution H[γ],
for any permutation α ∈ SG of the vertices, any agent decides on the same
value in the execution H[γ] and in H[γα].
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Intuitively, the decision value in an execution does not depend on the dis-
tribution of the initial values between the agents.

Context

In this chapter, we study the symmetric consensus in the following context.
We focus on the family of complete graphs. The agents are initialized with
input values, on which they have to decide. The fair executions are the ones
whose underlying schedules satisfy the weak fairness condition. Recall that a
schedule S is weakly fair when every agent meets indirectly with every other
agents infinitely often during S. In other words, for each (ordered) pair of
agents (x, y), S contains infinitely many segments u during which y meets
indirectly with x. Refer to Chap. 3, Sec. 3.2 for further details.

Overview

In Sec. 5.2, it is shown that there is no population protocol that solves the
consensus problem (hence, including the symmetric consensus) in the cur-
rent context. This impossibility suggests the introduction of oracles (i.e. be-
haviours) to study the hardness of the symmetric consensus. In Sec. 5.3, the
class Mnemosyne of oracles is defined. Intuitively, an oracle of Mnemosyne
notifies the agents whenever it finds some predefined schedule patterns in their
causal pasts. A specific oracle in Mnemosyne, namely DejaV u, is introduced:
this oracle notifies an agent whenever this agent has indirectly met with every
other agent (at least once). In Sec. 5.4, it is shown that DejaV u is sufficient to
solve the symmetric consensus problem. Then, in Sec. 5.5, it is shown that this
oracle is “necessary” to solve the symmetric consensus problem, in the sense
that, it is the weakest oracle in Mnemosyne able to solve this problem. The
definition ofMnemosyne may look intricate at first sight. Yet, in Sec. 5.6, it is
shown that the class Mnemosyne derives from axioms which are very natural
in the context of population protocols.

5.2 Impossibility of Consensus without Oracle

We first show that the consensus problem is impossible without an oracle. This
obviously shows that the symmetric consensus problem is also impossible. The
proof relies on the well-known partitioning argument.

Proposition 13. Under weak fairness, there is no population protocol that
solves the consensus problem over the complete graphs.

Proof. Assume that there exists a population protocol A that solves the con-
sensus problem over all complete graphs. Pick a complete graph G of 2·n agents
(vertices), and select two complete subgraphs G0, G1 of n agents each. Let γ
be the initial configuration of A corresponding to the agents in G0 (resp. G1)
having the initial consensus value 0 (resp. 1). Let Sv be a weakly fair schedule
(crash free) over Gv. By the validity condition of the consensus problem, in
the execution Sv[γ], all agents in Gv decide on the value v. Let S′v be a finite
prefix of Sv such that all the agents in Gv decide (on v) in the finite execution
S′v[γ]. Let S′′ be any weakly fair (crash-free) extension of the concatenated
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schedule S′0 · S′1. Then, in the execution S′′[γ], the agents in G0 decide on 0,
and the agents in G1 decide on 1; whence a contradiction with the agreement
condition.

Note that this results is easily extended for any non-simple family of graphs.
A family F is non-simple if there exist graphs G1, G2, G ∈ F such that G1 and
G2 are disjoint subgraphs of G.

5.3 Class of Oracles

Prop. 13 motivates the use of oracles. In this section, we define a specific class
of oracles (Mnemosyne), in which we will look for the weakest oracle able to
solve the symmetric consensus. The Mnemosyne class lives in a larger class U
of oracles that we first present.

Anonymous Binary Oracles

Roughly speaking, the oracles in U observe the schedule S of events, and give
to each agent some information, in {0, 1}, about S. This is similar to the
situation in [32], where a failure detector gives information (list of identifiers)
about the failure pattern.

Formally, for every oracle O in the class U , its domain is the complete
graphs, its input alphabet is a singleton (i.e. no input), and its output alphabet
is {0, 1}. Note that since the input alphabet is a singleton, an input history
H = (S, h) reduces to its underlying schedule S.

In addition, the oracles of U are anonymous. Roughly speaking, an oracle
can be seen as a collection of local modules, or blackboxes, each of them being
attached to an agent in the population. But, saying that an oracle is anonymous
means that there are no preferred ways of mapping these modules to the agents.

Formally, an oracle O is anonymous if, for every graphG, every fair schedule
S, the set of legal output histories can be written

O(G,S) =
⋃

σ∈SG

O(G, σ, S) (5.1)

where SG denotes the group of permutation of the vertices of G (i.e. the
automorphism group of the graph G since G is complete), and the O(G, σ, S)’s
are sets of histories satisfying

∀α ∈ SG, H ∈ O(G, σ, S)⇔ αH ∈ O(G,ασ, αS) (5.2)

Recall that αS denotes the schedule obtained by replacing each event e with
the event α(e), and αH denotes the history obtained from H by transporting
the values likewise.

Intuitively, the set O(G, σ, S) represents the legal histories when the local
blackboxes are mapped to the agents according to σ. The condition in Eq. 5.2
implies that if a history H is legal for the mapping σ, then any of its permu-
tation αH is also legal for the corresponding mapping ασ. In other words, the
sets O(G,α, S) and O(G, β, S) are the same modulo a permutation σ = αβ−1

of the vertices.
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An example of non-anonymous oracle would be the oracle that outputs 1
at a unique and specified agent λ, and zero everywhere else. The anonymous
counterpart of this oracle would be the oracle that outputs 1 at a unique agent
drawn arbitrarily from the population.

Mnemosyne

We now define a subclass Mnemosyne ⊆ U of oracles. Intuitively, an oracle
of Mnemosyne outputs 1 at some agent x if the oracle recognizes a predefined
pattern in the causal past of x.

Each oracle O in Mnemosyne is defined by a family of (possibly empty)
sets Cones(O,G, σ, x) of finite schedules for every complete graph G, every
permutation σ of the vertices and every agent x in G. The set Cones(O,G, σ, x)
represents the patterns that will be looked for in the causal past of x. In
addition, it satisfies the following properties:

• i. (anonymous) for every permutation α ∈ SG of the agents, K ∈
Cones(O,G, σ, x) if and only if αK ∈ Cones(O,G, ασ, α(x))

• ii. (cone) every schedule K in Cones(O,G, σ, x) is a past cone at x.

• iii. (saturation) if K ∈ Cones(O,G, σ, x) and K ' K ′, then K ′ ∈
Cones(O,G, σ, x)

• iv. (unavoidable) for every (weakly) fair schedule S, there exists an
agent x such that S contains, as a commuting factor, a schedule from
Cones(O,G, σ, x).

A history H belongs to O(G, σ, S) if and only if it satisfies

• i. (safety) If H outputs 1 at x in some event p in S, then the prefix S ↑ p
contains, as a commuting factor, some schedule from Cones(O,G, σ, x).

• ii. (liveness) the history H eventually outputs 1 at some agent in some
event during S.

Intuitively, the property (safety) ensures that if O outputs 1 at x, then the
corresponding prefix actually contains (as a commuting factor) a schedule from
Cones(O,G, σ, x). The property (liveness) ensures that at least one agent is
eventually notified about this fact. Note that, thanks to the condition (un-
avoidable), it is always possible for an oracle to output 1 at some agent in any
schedule. The property (saturation) implies that an oracle in Mnemosyne is
not able to distinguish schedules like S1 = e1e2 and S2 = e2e1, where e1 and
e2 are independent events. The schedule S1 (resp. S2) means that in real-time
the event e1 (resp. e2) occurs before e2 (resp. e1). Hence, the property (satura-
tion) expresses the fact that the oracle has no access to a real-time clock. The
condition (anonymous) on the Cones sets is required for the oracle to satisfy
the anonymity condition of U (Eq. 5.2). Note that the set Cones(O,G, σ, x)
is possibly empty, which means that it is possible, a priori, for the oracle to
permanently output 0 at x.
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DejaV u oracle

The oracle DejaV u in the Mnemosyne class is defined as follows. A schedule
K belongs to Cones(DejaV u,G, σ, x) if and only if K is a past cone at x such
that supp(K) = G. Intuitively, thanks to the properties of the Mnemosyne
class, the DejaV u oracle can output 1 at an agent x when x has indirectly met
all the agents.

5.4 Symmetric Consensus with DejaV u

The purpose of this section is to show that DejaV u is strong enough to solve
the symmetric consensus. A simple protocol using DejaV u is presented under
the form of pseudo-code (Alg. 5), which is equivalent to the representation
using transition rules.

We denote by V the set of initial consensus values. Every agent x has the
following variables: an estimate of the consensus value valx (initially set to a
value in V), a boolean flag decidedx (initially false), and a read-only boolean
variable doneDVx which is output by the oracle DejaV u. We assume that the
set of consensus values is totally ordered. When two agents x and y meet, they
both select the minimum of valx and valy as a new estimate of the consensus
value. An agent x decides on its estimate when either the oracle DejaV u
outputs true, or it meets with an agent that has already decided; the agent
then sets its flag decidedx to true.

Algorithm 5: Symmetric consensus with DejaV u
1 doneDVx : output of the oracle DejaV u at x;
2 Initialization:;
3 valx ← a value in V;
4 decidedx ← false;
5 On a meeting event (x, y) of the agents x and y:;
6 valx ← min(valx, valy);
7 if ¬decidedx ∧ (doneDVx ∨ decidedy) then
8 decide on valx;
9 decidedx ← true;

Lemma 1 (Termination and Validity). Let H ∈ DejaV u(G, σ, S) be a legal
history and γ be an initial configuration. Then, in the execution H[γ], every
agent eventually decides on some initial value present in γ.

Proof. Since an agent x can only decide on its estimate valx, and since every
update of valx assigns a value of some agent, x can only decide on a value
present in γ. The liveness property of the oracle DejaV u implies that the
oracle eventually outputs true at some agent x, which thus decides. Thanks to
weak fairness, every agent will eventually indirectly meet with x, and decides
too (if it has not decided already).

Lemma 2. Let H = (S, h) be any history with values in {0, 1} on the complete
graph G, and γ be an initial configuration. Consider the prefix S ↑ p of S for
some event p in S, and let x be an agent involved in p. Then, at the end of the
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finite execution H|S↑p[γ], the value of valx at x is equal to the minimum of the
initial values of the agents in the support of the causal past of p.

Proof. For any occurrence of a event p in S, for any agent z involved in p, we
denote by val(p, z) the value of valz right after p. We denote by val(ε, z) the
initial value of the agent z.

Let x, y be the agents involved in the event p. Let px (resp. py) be the
immediate predecessor1 of p in Past(p) that involves the agent x (resp. the
agent y). If such an immediate predecessor does not exist (i.e. p is the first
event involving x (resp. y)), then we set px = ε (resp. py = ε). By line 6 in
Alg. 5, val(p, x) = min(val(px, x), val(py, y)). By iterating, we get val(p, x) =
min{vz, z ∈ supp(Past(p))}.

Lemma 3. Consider Alg. 5 using DejaV u. Let H ∈ DejaV u(G, σ, S) be a
legal history of DejaV u, γ be an initial configuration. In the execution H[γ]
of Alg. 5, if some agent x′ decides in some event p′, then supp(Past(p′)) = G.

Proof. When x′ decides, it is either because of the meeting with an agent which
has already decided, or because the oracle has output 1 at x′i (Alg. 5, line 7).
Hence, there is an event pi (in S) involving some agent x such that p p′ and
the oracle has output 1 at x during p (note that p and p′ may be the same
event).

By the safety property of DejaV u, S ↑ p contains, as a commuting fac-
tor, some schedule from Cones(DejaV u,G, σ, x). Hence, supp(Past(p′)) =
supp(Past(p)) = G, by the definition of DejaV u.

Proposition 14. If Alg. 5 uses DejaV u, then it solves the symmetric consen-
sus.

Proof. The termination and validity conditions are satisfied thanks to Lem. 1.
The agreement and symmetry conditions are satisfied thanks to Lem. 2 and 3.

5.5 Weakest Oracle for Symmetric Consensus

In this section, we prove that any oracle O in Mnemosyne allowing to solve
symmetric consensus can be used to implement DejaV u. Thus, together
with the result of Sec. 5.4, this proves that DejaV u is the weakest oracle
in Mnemosyne to solve symmetric consensus.

Lemma 4. Let A be a population protocol that solves the consensus problem
using an oracle O in Mnemosyne. For every graph G, and every permutation
σ ∈ SG, there exists an agent x such that Cones(O,G, σ, x) 6= ∅.

Proof. On the contrary, if for some graph G, and some σ, for every agent
x, Cones(O,G, σ, x) = ∅. Then, there is a contradiction with the property
(unavoidable).

1immediate means that, if p′ involves x and px  p′  p, then p′ = px or p′ = p.
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The following crucial lemma shows that the sets Cones defining O are
subsets of those defining DejaV u respectively. Note that, it is still possible for
some Cones(O,G, σ, x) to be empty. The lemma states that if it is not, then
the support of each of its schedules is the entire graph G.

Lemma 5. Let A be a population protocol that solves the symmetric consensus
problem over all complete graphs using an oracle O in Mnemosyne. Then,
for every complete graph G, every permutation σ, and every agent x in G,
Cones(O,G, σ, x) ⊆ Cones(DejaV u,G, σ, x).

Proof. In this proof, for sake of clarity, we use the same notation for the initial
value of an agent, and the corresponding initial state. Assume that there is
some schedule K ∈ Cones(O,G, σ, x) that is not in Cones(DejaV u,G, σ, x),
i.e., K is a past cone at x whose support D = supp(K) is a strict subgraph of
G.

By Lemma 4, for some agent y, the set Cones(O,D, σ, y) 6= ∅. Let α ∈ SG
that swaps x and y and β = ασ. Then, by the anonymity property of the cones
set, Cones(O,D, β, x) 6= ∅. Thus, pick some K ′ ∈ Cones(O,D, β, x).

Let S = K · K ′ · S′ be any weakly fair extension of K · K ′ on D. We
build a history H with schedule S as follows: the history always outputs 0
everywhere except at x, for which it permanently outputs 1 only after K ·K ′.
Since K ′ ∈ Cones(O,D, β, x), we have H ∈ O(D,β, S), i.e. H is a legal history
of O on D.

For any initial configuration γ on D, we have an execution H[γ] of A in
which every agent in D decides. By the validity property of the consensus, if
all the agents have the same initial value 0 (resp. 1), then all agents decide on
0 (resp. 1).

Hence, there exist two initial configurations γ0 and γ1 on D such that,
for some agent a in D, γ0(a) = 0, γ1(a) = 1 and for every z ∈ D − {a},
γ0(z) = γ1(z), and the agents decide on the value 0 (resp. 1) in the execution
H[γ0] (resp. H[γ1]).

In particular, x decides on 0 in H[γ0] after some event p0 in S, and decides
on 1 in H[γ1] after some event p1 in S. Let L be the a prefix of S that has
both S ↑ p0 and S ↑ p1 as prefixes. By the end of the finite executions H|L[γ0],
H|L[γ1], x decides on the values 0 and 1 respectively.

We can extend H|L to get a weakly fair legal history H ′ of O on the graph
G as follows. Consider the schedule L ·S′′ for some weakly fair schedule S′′ on
G. In L, the history H ′ outputs the same values as H|L; and in S′′, it outputs
0 everywhere except at x, for which it outputs 1. Since K ∈ Cones(O,G, σ, x),
we have H ′ ∈ O(G, σ, x), i.e., H ′ is a legal history of O on G.

For v ∈ {0, 1}, let gv be the initial configuration on G such that gv is equal
to γv on D, and 1 elsewhere. In H ′[g0], agent x decides by the end of L. The
support of the causal past of the event preceding its decision, is included in
D. Hence, since g0 and γ0 are equal on D, x decides 0 in H ′[g0]. For similar
reasons, x decides 1 in H ′[g1]. Now pick an agent y in G − D, and let g be
the initial configuration obtained from g0 by permuting the values of a and y.
In other words, g(a) = g0(y) = 1, g(y) = g0(a) = γ0(a) = 0, and, for every
b ∈ G − {a, y}, g(b) = g0(b). The restriction of g to D is equal to γ1. Hence,
in H ′[g], the agent x decides on the value 1. On the other hand, since the
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protocol solves the symmetric consensus, x decides on the value 0; whence a
contradiction.

Theorem 1 (Weakest Oracle). The DejaV u oracle is the weakest oracle in
the Mnemosyne class that can be used to solve symmetric consensus.

∀O ∈Mnemosyne, O solves symmetric consensus ⇒ DejaV u 4 O (5.3)

Proof. Consider such an oracle O. By Lemma 5, we have Cones(O,G, σ, x) ⊆
Cones(DejaV u,G, σ, x) for every triple (G, σ, x). We claim that O is a sub-
behaviour of DejaV u.

Indeed, let H ∈ O(G, σ, S). By the liveness property of O, H eventually
outputs 1 in some event; hence H satisfies the liveness property of DejaV u.
On the other hand, if H outputs 1 at x in some event p, then, by the safety
property of O, the prefix S ↑ p contains, as a commuting factor, some schedule
K ∈ Cones(O,G, σ, x). Since K ∈ Cones(DejaV u,G, σ, x), H also satisfies
the safety property of DejaV u. Hence, H ∈ DejaV u(G, σ, S). In other words,
O(G,S) ⊆ DejaV u(G,S), i.e., O is a sub-behaviour of DejaV u. In particular,
DejaV u 4 O (see Chap. 3, Sec. 3.5, Prop. 4).

5.6 Derivation of Mnemosyne

In this section, we show that Mnemosyne, although quite intricate at first
sight, derives from a limited number of natural axioms.

Axioms

We define a subclass V ⊆ U of anonymous binary oracles. Every oracle O in
V is defined over complete graphs, have no input values2, has output values
Out(O) = {0, 1}, and satisfy the following conditions (see comments below):

• (anonymous) There is a family {O(G, σ, S)} of history sets such that

O(G,S) =
⋃

σ∈SG

O(G, σ, S)

∀α ∈ SG, H ∈ O(G, σ, S)⇔ αH ∈ O(G,ασ, αS)

• (no future) For every H ∈ O(G, σ, S), for every prefix L @ S, for every
extension S′ A L, there exists a history H ′ ∈ O(G, σ, S) such that H|L =
H ′|L.

• (unreliable delay) i. for every H ∈ O(G, σ, S), for every finite schedule
L, let H ′ be the history with schedule L that outputs 0 during L and the
same values as H during S. Then, H ′ ∈ O(G, σ, L · S).
ii. Also, for every H ∈ O(G, σ, S), for every agent x, for every (occur-
rence of) event p0 in S involving x, let p0, p1, . . . be the successive events
involving the agent x, and v0, v1, . . . the corresponding output of the his-
tory H at x. Then the history H ′ which outputs the same values as H
except at p0, p1, p2, . . . where it respectively outputs 0, v0, v1, . . . , belongs
to O(G, σ, S).

2i.e. In(O) is reduced to a singleton.
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• (causality) for every H ∈ O(G, σ, S), for any permutation τ ∈ SN such
that Sτ ' S, Hτ ∈ O(G, σ, Sτ).

• (liveness) Every history in O(G, σ, S) eventually outputs 1 at some agent
in some event occurring in S.

• (schedule dependent) For any H1, H2 ∈ O(G, σ, S), for any event e in S
involving the agent x, let v1 the value output by H1 at x in e, then the
history H which outputs the same values as H2 everywhere except at x
in e where it outputs v1, belongs to O(G, σ, S).

The condition (anonymous) is exactly the condition characterizing the ora-
cles of U (Sec. 5.3); thus V is a subclass of U . The condition (no future) states
the oracle cannot foresee the future events of the schedule. The condition (un-
reliable delay) states that the signal of the oracle can be delayed arbitrarily.
The condition (causality) states the oracle has no access to a real-time clock,
i.e., it cannot distinguish independent events. The condition (liveness) simply
states that the oracle eventually indicates something. Finally, the condition
(schedule dependent) states that the value output by the history in some event
only depends on the past schedule, and not on the previous output values.

Derivation

We now show how to derive Mnemosyne from the previous axioms. The
idea is to extract from the histories of an oracle O a family of schedule sets
{Z0(O,G, σ, x)} that will eventually play the role of the sets Cones(. . . ). First,
we define the following sets.

Definition 3 (Sets Z(O,G, σ, x)). Given an oracle O in V, a finite schedule L
belongs to Z(O,G, σ, x) if and only if x ∈ supp(L) and there exist an extension
S A L and a history H ∈ O(G, σ, S) that outputs 1 at x in the last event in L
involving x.

Intuitively, the oracle gives information about the past when it raises its
signal from 0 to 1. Hence, these schedule sets somehow represent the patterns
that the oracle observes. Note that, these are not yet candidates for being the
family Cones. The following lemma highlights the properties of the family Z.

Lemma 6. For any oracle O in V, the family {Z(O,G, σ, x)} satisfies the
following properties:

• (anonymous) for any permutation α ∈ SG, L ∈ Z(O,G, σ, x) if and only
if αL ∈ Z(O,G, ασ, α(x)).

• (saturation) if L ∈ Z(O,G, σ, x) and L ' L′ then L′ ∈ Z(O,G, σ, x).

• (extension) if L ∈ Z(O,G, σ, x), then for any finite schedules A and B,
A · L ·B ∈ Z(O,G, σ, x).

Proof. (anonymous). We prove that if L ∈ Z(O,G, σ, x) then for any permu-
tation α, αL ∈ Z(O,G, ασ, α(x)). Indeed, by definition, there exists an exten-
sion S A L and a history H ∈ O(G, σ, S) which outputs 1 at x in the last event
in L involving x. Since O ∈ V is anonymous, we have αH ∈ O(G,ασ, αS). But
αH outputs 1 at α(x) in the last event in αL involving α(x); thus the claim.
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(saturation). Let L ∈ Z(O,G, σ, x) and L′ ' L. By the definition of causal
equivalence, there exists a permutation τ ∈ SN of the natural numbers, such
that L′ = Lτ ' L. Let S be the extension of L as above and H ∈ O(G, σ, S)
the history which outputs 1 at x in the last event of L involving x. Since
O satisfies the property (causality), we have Hτ ∈ O(G, σ, Sτ). And since τ
respects the causal constraints, the history Hτ also outputs 1 at x in the last
event of L involving x. Hence, Lτ ∈ Z(O,G, σ, x).

(extension). We now show that for any finite schedules A and B, if L ∈
Z(O,G, σ, x), then A ·L ·B ∈ Z(O,G, σ, x). It suffices to prove that A ·L and
L · B belong to Z(O,G, σ, x). In the following, S and H are the schedule and
history associated with L as above.

We know H ∈ O(G, σ, S) outputs 1 at x in the last event of L involving
x. Since O satisfies (unreliable delay), the history H ′ with schedule A · S
which outputs 0 during A and the same values as H during S, belongs to
O(G, σ,A ·S). This history H ′ outputs 1 at x in the last event of A ·L; whence
A · L ∈ Z(O,G, σ, x).

We now prove that L ·B ∈ Z(O,G, σ, x). Consider any extension S′ A L ·B.
Since O satisfies (no future), there exists a history H ′ ∈ O(G, σ, S′) such that
H ′|L = H|L. In particular, H ′ outputs 1 at x in the last event of L involving x.
Since O satisfies (unreliable delay), it is possible to transform (by delaying the
outputs of the history at x) H ′ into a history H ′′ ∈ O(G, σ, S′) which outputs
1 at x in the last event of L ·B involving x. Thus, L ·B ∈ Z(O,G, σ, x).

Since Z(O,G, σ, x) is closed under concatenation on the left or right, it is
possible to define the notion of minimal schedule.

Definition 4 (Sets Z0(O,G, σ, x)). A schedule K ∈ Z(O,G, σ, x) is minimal
if it cannot be written K = A · L · B with L ∈ Z(O,G, σ, x) in a non-trivial
manner (i.e. A or B non-empty). The set of minimal schedule of Z(O,G, σ, x)
is denoted by Z0(O,G, σ, x).

The following proposition shows that the family of minimal schedules sat-
isfy the same properties as the family Cones in the definition of Mnemosyne
(Sec. 5.3).

Proposition 15. For every schedule L ∈ Z(O,G, σ, x), there exists a mini-
mal schedule K ∈ Z0(O,G, σ, x) such that K is a commuting factor of L. In
addition, the family {Z0(O,G, σ, x)} of minimal schedules satisfy the following
properties:

• (anonymous) for every permutation α ∈ SG of the agents, K ∈ Z0(O,G, σ, x)
if and only if αK ∈ Z0(O,G, ασ, α(x)).

• (cone) every schedule in Z0(O,G, σ, x) is a past cone at x.

• (saturation) if K ∈ Z0(O,G, σ, x) and K ' K ′, then K ′ ∈ Z0(O,G, σ, x)

• (unavoidable) for every (weakly) fair schedule S, there exists an agent x
such that S contains, as a commuting factor, a schedule from Z0(O,G, σ, x).

Proof. The first claim is proven by a direct induction. The properties (anony-
mous) and (saturation) for Z0 are direct consequences of the corresponding
properties for Z.
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We prove the property (cone). Let K ∈ Z0(O,G, σ, x) be a minimal sched-
ule, and p be the last event in K involving the agent x. Let L be the schedule
corresponding to the causal past of p in K.3 Then, we have K ' L ·B for some
schedule B.

Since L · B ' Kτ also belongs to Z(O,G, σ, x), there exists an extension
S of Kτ and a history H ∈ O(G, σ, S) that outputs 1 at x in the last event
of L · B involving x. By construction, this last event occurs in L. Hence,
L ∈ Z(O,G, σ, x). The minimality of K implies that B is the empty schedule.
Hence K is a past cone at x.

We now prove the property (unavoidable). Let S be any weakly fair sched-
ule. Let H ∈ O(G, σ, S) be any legal history. By the property (liveness) of O,
H eventually outputs 1 at some agent x in some event p during S. Therefore,
the prefix S ↑ p belongs to Z(O,G, σ, x). By the first claim, there exists a
schedule K ∈ Z0(O,G, σ, x) which is a commuting factor of S ↑ p.

Before stating the last proposition, we need the following definition.

Definition 5 (Adherence). Let H be a set of histories. The adherence of H,
denoted by adh(H), is the set of histories H such that, for any prefix L of its
underlying schedule S, there exists a history HL ∈ H with schedule S satisfying
HL|L = H|L.

Given an oracle O ∈ U , we define the oracles O and O
+
as follows

O(G, σ, S) = adh(O(G, σ, S)) (5.4)

O
+

(G, σ, S) = adh(O(G, σ, S))− {zero history} (5.5)

Intuitively, a history H belongs to the adherence of a set H of histories if
one cannot determine, by looking at finite prefixes of H, if H actually belongs
to the set H or not. We can now state the main proposition of this section.

Proposition 16. Let O ∈ V and O∗ be the oracle of Mnemosyne such that
Cones(O∗, G, σ, x) = Z0(O,G, σ, x). Then

O
+
4 O∗ 4 O (5.6)

Proof. We will prove that (a) O is a sub-behaviour of O∗, and (b) O∗ is a
sub-behaviour of O

+
.

(a). Let H ∈ O(G, σ, S) be a legal history of O. If H outputs 1 at
some agent x in some event p, then S ↑ p belongs to Z(O,G, σ, x), and,
thus, contains, as a commuting factor, some schedule from Z0(O,G, σ, x) =
Cones(O∗, G, σ, x). In addition, by the liveness property of O, we know that
H eventually outputs 1 at some agent in some event during S. Therefore, H
is also a legal history of O∗. In other words, O is a sub-behaviour of O∗.

(b). Let H∗ ∈ O∗(G, σ, S). By the liveness property of O∗, we already know
that H∗ is not the zero history. It remains to show H∗ is in the adherence of
O(G, σ, S). We prove it by recurrence. Assume we have already found, for
some prefix L @ S, a history HL ∈ O(G, σ, S) such that HL|L = H|L. Let’s

3Many choices are available, but they are all causally equivalent.
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write S = L · e · . . . where e = (x, y) is the event occurring right after L. We
will build a legal history HLe of O out of HL which matches with H on L · e.

Let v∗ = (v∗x, v
∗
y) (resp. v = (vx, vy)) be the values output by H∗ (resp.

HL) in e. We have four cases:

• v∗ = (0, 0): If vx = vy = 0, then there is nothing to do; taking HLe = HL

suffices. If vx = 1, then by using the unreliable delay property of O, we
can delay the values in HL so that the resulting HLe outputs 0 at x in
e. Idem, if vy = 1.

• v∗ = (0, 1): If v = (0, 1), then there is nothing to do. If vx = 1, the same
technique as above is sufficient. The subtle case is vy = 0. The fact that
H∗ outputs 1 at y in e implies that S ↑ e belongs to Z(O,G, σ, y). Hence,
there exists an extension S′ A S ↑ e, and a historyH ′ ∈ O(G, σ, S′) which
outputs 1 at y in e. Using the schedule dependent property of O, we can
transform HL to output 1 at y in e; the resulting history HLe is also a
legal history of O.

• v∗ = (1, 0) or v∗ = (1, 1): : The same reasoning as above yields the claim.

Hence, we managed, in every case, to build a legal history HLe of O which
matches with H on the prefix L · e. To start the induction, it suffices to take
the empty schedule for L. Therefore, H∗ is in the adherence of O(G, σ, S).

Intuitively, the oracles O and O
+

are both live (each of them eventually
outputs 1 at some point), and cannot be distinguished by looking at finite
prefixes. Therefore, if the studied task involves a notion of termination, there
is a chance that O solves this task if and only if O

+
solves this task.

Conjecture 1. A “terminating” problem P (such as consensus) can be solved
using the oracle O if and only if it can be solved using the oracle O

+
.

If this conjecture is true (which would require to define formally what a
terminating problem is), then Prop. 16 implies that oracles in V and oracles in
Mnemosyne solves the same set of “terminating” problems.
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Chapter 6

Leader Election

6.1 Introduction

Leader election, like consensus, is a fundamental problem in distributed com-
puting. This task mainly consists in selecting a unique agent in the system,
and turns out to be impossible to solve in many cases. The impossibility is
usually related to the system asynchrony, limited resources, the presence of
failures, their type, or other general conditions.

Actually, the leader election problem is intimately related to the consensus
problem. Indeed, as already explained in Chap. 5, [47] have shown that the
consensus is impossible in asynchronous message-passing systems where one
processor may crash, and [32] have circumvented this issue by introducing the
notion of failure detectors. Among the different failure detectors proposed to
solve consensus in the conventional asynchronous communication model, the
eventual leader elector Ω, has been proven to be the weakest [31]. Informally,
that means that it supplies the minimum supplementary information necessary
to obtain a solution.

In this chapter, we mainly study the self-stabilizing leader election (SSLE)
problem in population protocols. Due to the harsh constraints of population
protocols, it is not surprising that this problem is impossible in many cases
[10, 46, 12]. Self-stabilization [39] is a framework for dealing with transient
state-corrupting faults and can be viewed as allowing the system to start from
an arbitrary configuration. In other words, a protocol solves a problem in a self-
stabilizing way if every feasible execution starting from any initial configuration
solves the problem.

The eventual leader elector Ω of Chandra and Toueg and other classical
failure detectors cannot be used with population protocols, because they as-
sume that the network nodes have unique identifiers, unavailable to anonymous
agents in population protocols. Many other previous oracles, like those pro-
posed for anonymous models (e.g., [22]), cannot be used in population protocols
either, because of the memory constraints imposed by the model (this issue is
discussed in Chap. 5, Sec. 5.1).

To deal with this issue, Fischer and Jiang introduced a new type of oracle,
called the eventual leader detector [46] and denoted by Ω?. Instead of electing a
leader, like Ω, Ω? simply reports to each agent an (eventually correct) estimate
about whether or not one or more leaders are present in the network (see
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Sec. 6.4 for a formal definition). This oracle does not require unique identifiers
and has additional drastic differences. One of the important differences is
motivated by the self-stabilizing nature of the SSLE problem considered in
[46].

While Ω is designed to circumvent impossibility related to crash faults,
Ω? is designed to deal with state-corrupting faults. Thus, while Ω is related
to a failure pattern and is independent of the protocol using it, Ω? interacts
with the protocol, providing information related to the system configurations
reached during the execution. With Ω?, there is some sort of feedback loop:
the outputs of the oracle influence the protocol; and conversely, the protocol
influences the outputs of the oracle. Yet, there are some features in common
with Ω. Both Ω and Ω? are unreliable in the sense that Ω? can make errors,
that is, to give false information at some point and at some agents, and is only
required to eventually provide correct answers, similarly to Ω. Finally, such
weak guarantees allow both Ω and Ω? to be implemented in practice using
timeouts and other features often found in real systems (more details about
the implementation of Ω? can be found in [46]; about Ω, in [32]).

A part of this work has been published in [12].

Related Work

Being an important primitive in distributed computing, leader election has been
extensively studied in various other models, however much less in population
protocols. Because of model differences, previous results do not directly extend
to the model considered here. For surveys on these previous results in other
models, refer to [10, 46]. In the following, we mention only the most relevant
works to SSLE in population protocols.

It was shown, e.g. in [8, 16], that fast converging population protocols can
be designed using an initially provided unique leader. Moreover, many self-
stabilizing problems on population protocols become possible given a leader
(though together with some additional assumptions, see, e.g., [10, 14]). Nev-
ertheless, SSLE is impossible in population protocols over general connected
communication graphs [10]. Yet, [10] presents a non-uniform solution for SSLE
on rings. A uniform algorithm for rings and complete graphs is proposed in [46],
but uses Ω?. Recently, [26] showed that at least n agent states are necessary
and sufficient to solve SSLE over a complete communication graph, where n
is the population size (unavailable in population protocols). For the enhanced
model of mediated population protocols (MPP ) [64], it is shown in [66] that
(2/3)n agent states and a single bit memory on every agent pair are sufficient
to solve SSLE. It is also shown that there is no MPP that solves SSLE with
constant agent’s state and agent pair’s memory size, for arbitrary n. In [27],
versions of SSLE are considered assuming Ω? together with different types
of local fairness conditions, in contrast with the original population protocols’
global fairness.

The Problem

We formally define the behaviour ELE corresponding to the leader election
problem. ELE is defined with the input alphabet {⊥} (i.e., no input) and the
output alphabet {0, 1} such that, given a graph G and a schedule S on G, a
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history H ∈ ELE(G,S) if and only if its associated trace T has a constant suffix
T ′ = ααα . . . and there exists an agent λ such that α(λ) = 1 and α(u) = 0 for
every u 6= λ. In other words, λ is eventually permanently the unique leader.
Note that for all our protocols, there is an implicit output map that maps a
state to 1 if it is a leader state, and to 0 otherwise.

In our framework, the informal problem of Self-Stabilizing Leader Election
(SSLE) consists in obtaining a population protocol that solves ELE using an-
other behaviour (if necessary) and starting from arbitrary initial configurations.

Note that, in contrast to some formulations, the agents are not required
to know when a leader is elected. Put another way, there is no termination
condition in this formulation. This stems from the fact that a self-stabilizing
solution to a one-shot problem is meaningless1.

Contexts and Overview

We will study the leader election problem in several contexts. Recall that
a context is defined by a family of communication graphs, an initialization
procedure and a fairness condition. The contexts used in this chapter are
summarized in the following table:

Context Graph family F Initialization Fairness Sections
(1) Contains a covering Uniform Local 6.2
(2) Arbitrary Uniform Global 6.3
(3) Rings Arbitrary Global 6.5
(4) Bounded-degree Arbitrary Global 6.6
(5) Arbitrary Arbitrary Global 6.7, 6.8
(6) Non-simple family Arbitrary Global 6.9

We first start by examining the problem in a non self-stabilizing setting.
The contexts, (1) and (2), deal with uniformly initialized protocols. A uniform
initialization means that, in every execution, all the agents start with the same
initial state. In Sec. 6.2, it is shown that, in the context (1) no population
protocol can implement leader election problem over a family of graphs which
contains a covering (see Sec. 6.2 for details). On the hand, if we use the global
instead of the local fairness, as in the context (2), then the leader election
becomes solvable over arbitrary graphs. This result highlights the power of
global fairness.

In the following contexts, (3) to (6), from Sec. 6.4 until the end of the
chapter, we will focus on self-stabilization, and assume everywhere that the
considered protocols start in arbitrary initial configurations. All these contexts
impose the global fairness, and differ only in the graph family. We then speak
of self-stabilizing protocols, solutions, or implementations, to highlight the fact
that the corresponding context assumes an arbitrary initialization.

In (almost) all these contexts, it is proven that the leader election problem
admits no self-stabilizing implementations. In Sec. 6.4, we present the main
reason (drawn from [10]) for this impossibility. We also introduce a new class
of oracles to circumvent this issue that generalize Fischer and Jiang’s oracle Ω?
[46]. Note that, as explained in the introduction, in contrast with Chap. 5, these

1We will come back to this point in the second part of this thesis where we examine the
idea of a self-stabilizing replicated state-machine.
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oracles do observe the outputs of the protocols with which they are composed
(non-trivial input alphabet).

Fischer and Jiang have proposed a self-stabilizing solution to the leader
election problem using Ω? over the family of rings. In Sec. 6.5, we show that the
leader election problem is actually equivalent to the oracle Ω? (as an equivalence
of behaviours). In particular, this shows that any oracle strong enough to yield
a self-stabilizing solution to the leader election on rings, is in fact stronger than
Ω?.

In Sec. 6.6, we propose a self-stabilizing solution to leader election using the
same oracle Ω? over the family of bounded-degree graphs (with a known upper
bound). Next, we study the same problem over the more general family of
arbitrary graphs; this requires, a priori, oracles stronger than Ω?. In Sec. 6.7,
we provide a simple solution, using the oracle Ω?(2) from the class defined in
Sec. 6.4. In Sec. 6.8, we provide a more intricate solution using a (a priori)
weaker oracle, namely Ω?⊗ Ω? (the parallel composition of two copies of Ω?),
over arbitrary graphs.

Finally, in Sec. 6.9, we show that, in contrast to the equivalence of Ω? and
leader election on rings, these problems are not equivalent over any non-simple
family (see Sec. 6.9 for details). This implies that there is no self-stabilizing
implementation of Ω? using the leader election behaviour over, for instance,
the family of complete graphs, or arbitrary graphs with bounded degree, and
many more.

Sec. 6.10 develops a technical issue that is used in many of the previous
sections.

6.2 Impossibility with Local Fairness, Uniform
Initialization

In this section, we show that the eventual leader election problem cannot be
solved by any uniformly initialized population protocol under the local fairness
assumption. A population protocol is uniformly initialized if there is unique
initial state for the agents, i.e., an initial configuration assigns the same state
to every agent.

We first recall the notion of graph covering [5, 20]. A fibration (resp. opfi-
bration) between graphs G and B is a graph morphism φ : G→ B such that for
every node b in B, for every node y satisfying φ(y) = b, φ induces a bijection
between the set of incoming (resp. outgoing) edges at y and the set of incoming
(resp. outgoing) edges at b. A covering from G to B is a graph morphism from
G to B that is both a fibration and an opfibration. The graph G is called the
total graph, and B is the base graph. The fiber over a node b in B is the set
of nodes in G that are mapped to b via φ, which we denote by φ−1(b). A fiber
is trivial if it is a singleton. A covering is a k-covering if every fiber has k
elements, i.e., ∀b, |φ−1(b)| = k. For instance, there is a covering from a ring of
size 2 · n to a ring of size n obtained by mapping two diametrically opposite
nodes to the same node.

The following proposition is inspired by the impossibility result of leader
election in the family of rings under local fairness [46] and the ideas developed
in [5, 20]. Note that the models considered in [5, 20] are different from the
population protocols. Hence, the results do not directly apply to our case.
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Proposition 17. Let F be a family of graphs that contains graphs G and B
such that there exists a k-covering φ : G→ B with k ≥ 2. There is no uniformly
initialized population protocol that implements ELE over the family F under
the local fairness assumption.

Proof. We prove the result by contradiction. Assume that there exists a pro-
tocol A that solves the leader election problem with uniform initialization (all
agents are initially in the same state q) under local fairness. We first show how
to simulate a step of A on B with a specific sequence of steps on G. Then we
show how to lift any locally fair execution on B to a locally fair execution on
G, and finally we prove the contradiction.

(Simulation). Consider configurations γ, γ′ onB and an action σ = ((a, b), (p, q)→
(p′, q′)) enabled in γ such that γ σ−→ γ′. Since φ is an opfibration, we know that
for each node xi in φ−1(a) (1 ≤ i ≤ k), there is a unique edge (xi, yi) that is
mapped to (a, b); then let si = ((xi, yi), (p, q)→ (p′, q′)) be an action (on G). If
there were indices i 6= j such that yi = yj = y, then y would have two incoming
edges that are both mapped to the edge (a, b); whence a contradiction with the
fact that φ is a fibration. Hence, the yi’s are pairwise distinct (as well as the
xi’s by definition).

We denote by u0 the configuration on G such that u0(φ−1(c)) = {γ(c)}
for every c in B. The action s1 is enabled in u0 since (u0(x1), u0(y1)) =

(γ(a), γ(b)) = (p, q). Thus the configuration u1 such that u0
s1−→ u1 is well-

defined, and we have (u1(x0), u1(y0)) = (p′, q′). The action s2 is enabled in
u1 since x1 6= x2, y1 6= y2 and (thus) (u1(x1), u1(y1)) = (u0(x1), u0(y1)) =

(p, q). Hence, the configuration u2 such that u1
s2−→ u2 is well defined. We

can iterate the construction until i = k. In the last configuration we have
(uk(xi), uk(yi)) = (p′, q′) for every 1 ≤ i ≤ k. Actually, uk(φ−1(b)) = {γ′(b)}
for every agent b in B. In other words, we have simulated the step γ → γ′ in
B by a sequence of steps u0

∗−→ uk in G.
(Locally Fair Lift). Consider a locally fair execution EB = γ0γ1 . . . of A on

the graph B; we have ∀b, γ0(b) = q. Thanks to the simulation above, we can
build a virtual execution EG = g0 . . . g1 . . . g2 . . . of A on G such that for every
t ∈ N, for every node b ∈ B, gt(φ−1(b)) = {γt(b)}. Note that g0 maps every
node in G to q, so EG is uniformly initialized.

We show that EG is locally fair. Assume that an action s = ((x, y), (p, q)→
(p′, q′)) is enabled infinitely often in EG. The construction of EG involves that
s is enabled in gi for infinitely many i. But, since (gi(x), gi(y)) = (p, q) =
(γi(φ(x)), γi(φ(y))), the action σ = ((φ(x), φ(y)), (p, q) → (p′, q′)) is enabled
infinitely many times in EB . Hence, by local fairness, there are infinitely many
i such that γi

σ−→ γi+1. Then, for infinitely many i, the construction of the
sequence gi

∗−→ gi+1 involves that the action s is triggered during it. Whence
EG is locally fair.

(Contradiction). If A solves the leader election problem, there exists some
i0 ∈ N such that for every i ≥ i0, the configuration γi on B outputs a unique
leader at λ. By construction, for every l ∈ φ−1(λ), gi(l) = γi(λ). This involves
that gi outputs a leader at k agents (since |φ−1(λ)| = k) for infinitely many
i. This contradicts the fact that any locally fair execution of A solves leader
election on G.
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Note that imposing only that φ is a fibration (or an opfibration) is not
enough to lift a locally fair execution on the base graph to a locally fair execu-
tion on the total graph.

6.3 Solution with Global Fairness, Uniform Initialization

We establish that, under global fairness, solving the leader election problem on
arbitrary communication graphs is possible without oracle, when an uniform
initialization is possible (Alg. 6). In other words, there exists a uniformly
initialized population protocol that solves the ELE problem over the family
of all graphs under the global fairness assumption. This result highlights the
difference between global and local fairness. It also shows that the necessity
to use an oracle comes from the requirement of self-stabilization. We focus on
strongly connected graphs; Sec. 6.10 shows how to extend these results to weakly
connected graphs. Each agent x can be leader or non-leader (implemented with
a variable leaderx) and can hold a white or black token (implemented with a
variable tokenx). Initially, every agent is a leader and holds a black token
(uniform initialization). The tokens move through the network by swapping
between two agents during an interaction. When two black tokens meet, one
of them turns white. When a white token interacts with a leader x, x becomes
a non-leader and the token is destroyed.

Algorithm 6: Leader Election with Uniform Initialization
1 variables for every agent x:
2 leaderx : 0 (non-leader) or 1 (leader);
3 tokenx : ⊥ (no token), white or black;
4 initialization: ∀x, (leaderx, tokenx) = (1, black); /* uniform */
5 protocol (initiator x, responder y):
6 if tokenx = tokeny = black then
7 tokeny ← white;
8 if tokenx = white ∧ leadery = 1 then
9 leadery ← 0 ; /* y becomes a non-leader */

10 tokenx ← ⊥ ; /* the token is destroyed */
11 tokenx ↔ tokeny ; /* swap the tokens */

We consider an execution E of Alg. 6 and prove that there is eventually a
unique leader. We will use the formalism of traces instead of histories, and the
outputs (leader or not leader) are encoded in the states. Hence an execution E
is represented by a sequence of configurations and input assignments (γt, αt)t∈N.
We denote by E∞ the infinite suffix of E such that each couple (γ, α) in E∞
occurs infinitely often in E∞. Given a configuration γ, let b(γ) be the number
of black tokens, w(γ) the number of white tokens and l(γ) the number of leaders
in γ. In addition, for every agent x, we denote by γ.leaderx (resp. γ.tokenx)
the value of the variable leaderx (resp. tokenx) in the configuration γ.

Lemma 7. In each configuration γ in every execution E of Alg. 6, b(γ) +
w(γ) = l(γ) and b(γ) ≥ 1.

Proof. In the initial configuration, b(γ) = l(γ) = n the number of agents, and
w(γ) = 0. We show that for any configuration γ satisfying the property, any
configuration γ′ such that γ → γ′, γ′ satisfies the property. In the algorithm,
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the swapping of tokens (line 11) does not modify the number of tokens nor the
number of leaders. If line 7 is executed, then b(γ′) = b(γ)−1 ≥ 1 (the condition
in the if statement implies b(γ) ≥ 2), w(γ′) = w(γ)+1 and l(γ′) = l(γ); whence
b(γ′) + w(γ′) = l(γ′). If lines 9 and 10 are executed, then b(γ′) = b(γ) ≥ 1,
w(γ′) = w(γ)− 1 and l(γ′) = l(γ)− 1; whence b(γ′) +w(γ′) = l(γ′). Hence, in
all cases, γ′ also satisfies the property.

Lemma 8. For every configuration γ in E∞, b(γ) = 1.

Proof. First note that, since no black token is ever created in Alg. 6, if γ → γ′,
then b(γ) ≥ b(γ′). Hence, the number of black tokens cannot increase during
E∞. Assume that there is a configuration γ in E∞ such that b(γ) = t ≥ 2.
By global fairness, there is a configuration in E∞ where two black tokens
are in two neighboring nodes. From this configuration, there is a reachable
configuration γ′ resulting from the interaction of these two neighbors. In γ′,
b(γ′) ≤ t − 1 < b(γ). The global fairness ensures that γ′ is in E∞. By the
first remark, γ cannot occur in E∞ after the first occurrence of γ′. This is a
contradiction with the definition of E∞.

Proposition 18. In ever execution E of Alg. 6, there exists exactly one agent
λ such that for every configuration γ in E∞, γ.leaderλ = 1 and for every agent
µ 6= λ, γ.leaderµ = 0.

Proof. We show by contradiction that for every γ in E∞, w(γ) = 0. Assume
that there exists a γ such that w(γ) ≥ 1. Since b(γ) = 1, l(γ) = w(γ) + b(γ) =
w(γ) + 1 ≥ 1. By global fairness, there is a configuration in E∞ where a white
token and a leader are in two neighbouring nodes. From this configuration,
there is a reachable configuration γ′ resulting from the interaction of these
two neighbours such that l(γ′) < l(γ). The global fairness ensures that γ′ is
in E∞. Since γ is also in E∞, there must be a sequence of steps γ′ ∗−→ γ.
During this sequence, a leader must be created. This is impossible since no
leader is ever created. Then, w(γ) = 0 for every γ in E∞. This implies that
l(γ) = w(γ) + b(γ) = 0 + 1 = 1 for every γ in E∞. Since the variables leaderx’s
are never swapped, there exists an agent λ such that for every configuration γ
in E∞, γ.leaderλ = 1 and for every agent µ 6= λ, γ.leaderµ = 0.

6.4 Oracles Ω?(d)

Motivation

Let’s first define the notion of non-simple family of graphs (introduced in [10]).

Definition 6 (Non-simple Graph Family). A graph family F is non-simple
if there are exist graphs G,G1, G2 ∈ F such that G1 and G2 are two disjoint
subgraphs of G. If there are no such graphs, the family is simple.

For instance, the family of complete graphs is non-simple, whereas the
family of rings is simple. In [10], the authors have shown that, even with
the global fairness, if the graph family F is non-simple, then there is no self-
stabilizing solution to the leader election problem over F . The argument relies
on a well-known partitioning technique.
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In the same paper [10], the authors have managed, for each k ≥ 2, to
propose a self-stabilizing solution over any family of rings whose sizes are not
multiples of k. Yet, it is still unknown whether there exists a self-stabilizing
solution over the whole family of rings. We conjecture that such a solution
does not exist.

Conjecture 2. There is no protocol that implements ELE over the rings, with
global fairness, and arbitrary initialization.

In [46], the authors have introduced the oracle Ω? which somehow gives in-
formation about the absence of leaders in the system. Using Ω?, they proposed
a self-stabilizing solution over the whole family of rings. In this section, we
define a class of oracles that generalize Ω?.

Definition

We define, for each d ≥ 1, an oracle Ω?(d). Its input alphabet is {0, 1}, and its
output alphabet is {0, . . . , d}. The domain of Ω?(d) is all the graphs.

For sake of simplicity, we define the oracle Ω?(d) in terms of traces, instead
of histories. Recall the two formulations are equivalent (see Chap. 3, Sec. 3.1).

Intuitively, the oracle observe its input history, and gives an estimate (up
to the maximum value d) of the number of agents that are assigned2 the value
1.

Given an assignment α, we denote by l(α) the number of vertices that are
assigned the value 1 by α. If 0 < r ≤ (α) ≤ r′ ≤ d for all α in a suffix of
the input trace (i.e. trace associated with the input history), then the oracle
will eventually permanently output values in {r, . . . , r′} at every agent. When
l(α) = 0 for all α in a suffix the input trace, it is only required that the oracle
permanently outputs 0 at some agent (at least one).

More formally, let Hin (resp. Hout) be a history with values in {0, 1} (resp.
{0, . . . , d}, and Tin (resp. Tout) its associated trace. The histories Hin and
Hout have the same underlying schedule. Then Hout ∈ Ω?(d)(G,Hin) if and
only if the traces Tin and Tout satisfy the following conditions:

• If Tin has a suffix which is uniform constant with value 0, then Tout has
a suffix in which at least one agent is permanently assigned the value 0.

• For every 1 ≤ r ≤ r′ ≤ d, if Tin has a suffix α0α1 . . . such that ∀s, r ≤
l(αs) ≤ r′, then Tout has a suffix with values in the interval {r, . . . , r′}.

• If Tin does not match any of the previous conditions, then any Tout is
possible.

Note that Ω?(1) corresponds to the Fischer and Jiang’s oracle Ω? in [46]. It
is easy to see that the oracles Ω?(d) are linearly ordered: if d ≤ d′, then Ω?(d′)
is a sub-behaviour of Ω?(d), hence Ω?(d) 4 Ω?(d′) (in any context).

2These agents are usually referred to as leaders, but, at this stage, it is just a convention.
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6.5 Equivalence of ELE and Ω? over Rings

Thanks to [46], we already know that Ω? is stronger than ELE over rings.
One may then wonder how strong Ω? is. We answer this question by showing
that Ω? and ELE are actually equivalent over rings. Precisely, we define the
RingDetector protocol (see Algorithm 7) that uses the output of ELE to im-
plement Ω?. We also assume that the rings are oriented, since the authors in
[10] have presented a self-stabilizing ring orientation protocol.

For the sake of clarity, the unique leader provided by ELE is called the
master, whereas the output of Ω? reports about the leaders. Hence, the goal
consists in the master detecting the presence or the absence of leaders in the
graph, that is to mimic Ω?.

RingDetector

Let us define the self-stabilizing protocol RingDetector. The input variables
(read-only) at each agent x are: the master bit masterx (values in {0, 1}) that
keeps the output of ELE ; and the leader bit leaderx (values in {0, 1}), which
represents the input of Ω?. The working variables are: the probe field probex
(with values: ⊥ - no probe, or 0 - white probe, or 1 - black probe); the token
field (with values: ⊥ - no token, or 0 - white token, or 1 - black token); the
flag bit flagx (with values: 0 - cleared, 1 - raised); and the output bit (values
in {0, 1}), which represents the corresponding output of Ω?.

Each time an agent has its leader bit set to 1, it raises its flag (and the flag
of the other agent in the interaction) – line 5. A token moves clockwise, and
its purpose is to detect a leader (actually, a raised flag) and to report it to the
master (lines 18 –26). A probe moves counter-clockwise, and its purpose is to
report to the master the lack of tokens (lines 7 – 13). The master loads a white
probe each time it is the responder of an interaction (line 2). When a probe
meets a token, the probe becomes black (line 10). When two probes meet,
they merge into a black probe if one of them was black, and into a white probe
otherwise (line 12). The master loads a token colored with its flag only when
it receives a white probe (line 17). Each time a token meets an agent with its
flag raised, the token becomes black (line 21) and the flag is cleared (line 25).
Two meeting tokens merge into a black token if one of them is black, and into a
white token otherwise (line 23). When the master receives a token, it whitens
the token, and it outputs 0 if the token is white, and 1 otherwise (lines 28 –31).
In any interaction, the responder copies the output of the initiator, unless the
responder is the master (line 33).

Correctness

In the following, the input trace T = α0α1 . . . of every execution E is assumed
to provide a unique master, i.e., there exists a unique agent λ in E such that
αi(λ).master = 1 for all i.3 By the definition of ELE and RingDetector, such
an input trace exists in an infinite suffix of every E of RingDetector. For the
correctness proof, we focus only on such suffixes, for every execution.

3We precise the notations. α being an assignment (resp. C a configuration), α.v (resp.
C.v) is the projection of α (resp. C) on the variable v; and α(x).v (resp. C(x).v) is the value
of this projection at agent x.
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Algorithm 7: Protocol RingDetector - initiator x, responder y

1 (if the master is the responder, it creates a
white probe);

2 if mastery = 1 then probey ← 0;
3 ;
4 (raise flags if needed);
5 if leaderx ∨ leadery then
flagx ← flagy ← 1;

6 ;
7 (move probe from y to x);
8 if probey 6= ⊥ then
9 (the probe becomes black when meeting

a token);
10 if tokenx 6= ⊥ then probex ← 1;
11 otherwise, keeps the same color or

merges);
12 else if probex ∈ {⊥, 0} then

probex ← probey ;
13 probey ← ⊥;
14 end
15 ;
16 (if the master receives a white probe, it

loads a token);
17 if masterx = 1 and probex = 0 then

tokenx ← flagx;
18 (move token from x to y);
19 if tokenx 6= ⊥ then
20 (the token becomes black when meeting

a flag);
21 if flagy = 1 then tokeny ← 1;
22 (otherwise, keeps the same color or

merges);
23 else if tokeny ∈ {⊥, 0} then

tokeny ← tokenx;
24 (the flag is cleared);
25 flagy ← 0;
26 tokenx ← ⊥;
27 end
28 (if the master receives a token, it changes its

output and whitens the token);
29 if mastery = 1 and tokeny 6= ⊥ then
30 outy ← tokeny ;
31 tokeny ← 0;
32 (a non-master responder copies the output

of the initiator);
33 if mastery = 0 then outy ← outx;

The leader bit component in the input trace corresponds to the input of
Ω?. In this trace, leaders can appear or disappear almost freely, during each
meeting. In particular a leader can “jump” from u to v during an interaction
between u and v. Though, a leader cannot “jump” to a distant (non interact-
ing) agent on the ring, by the compatibility of an input trace with a schedule
(see Chap. 3, Sec. 3.1). The fact that a leader can “jump” counter-clockwise
from the responder to the initiator introduce some subtleties in RingDetector.
Without taking care, such a “jumping” leader could be undetectable. To ensure
its detection, the flag bits of both the responder and the initiator are raised,
even if the leader is detected only at one of the two interacting agents (line 5).

We use the following notations. Given an execution E, E∞ denotes the
maximum (infinite) suffix of E such that each couple (γ, α) (γ being a configu-
ration, and α an input assignment) in E∞ occurs infinitely often. IRE denotes
the (finite) set of configurations occurring in E∞, i.e., the set of “infinitely
recurrent” configurations.

Lemma 9. For any execution E, in any configuration of IRE, there is a unique
agent holding a token (black or white).

Proof. Consider a configuration γ ∈ IRE . We first prove that in γ at least
one agent holds a token. By contradiction, assume that, for every agent x,
γ(x).token = ⊥. The following scenario will produce a token. First, the
master λ interacts as a responder and produces a white probe at λ. Then,
all the other probes move (counter-clockwise) to the master. Then the white
probe at λ visits all agents and returns to λ. Since there are no tokens in the
graph, the white probe does not turn black. Then, the white probe arriving at
λ produces a token (line 17). This scenario does not depend on the presence of
leaders. Hence, there exists a configuration γ′ with at least one token such that
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γ
∗−→ γ′, for any input trace. By global fairness, γ′ ∈ IRE . Together with that,

no rule of the protocol can remove all tokens. In line 26, the token is removed
from an initiator x, but is present or created in the responder y (line 23). No
other instruction removes a token. Thus γ cannot occur infinitely often; hence
a contradiction. Hence, in γ at least one agent holds a token.

Assume now that γ has at least two tokens. Since two meeting tokens
merge into one, there is a configuration γ′ with exactly one token such that
γ
∗−→ γ′, for any input trace. By global fairness, γ′ belongs to IRE . Since γ

also occurs infinitely often in the execution, γ′ ∗−→ γ, for any input trace. To
reach γ, a token should be created. It can happen only if the master receives
a white probe. Thus, the master should receive infinitely many white probes
during E∞. However, once there is a token, since the tokens move clockwise
and the probes counter-clockwise, any probe arriving at the master must be
black; hence a contradiction. Therefore, γ has exactly one token.

Thus, in the suffix E∞, there is a unique token moving clockwise. We
divide E∞ into rounds, defined as follows. A round begins with an interaction
in which the master holds the token and is the initiator; the round ends with
the first event in which the master is the responder and the initiator holds the
token. In other words, a round corresponds to the token traveling around the
whole ring starting and ending at the master.

Lemma 10. Let R be a round in E∞. We denote by (γ0, α0) . . . (γr, αr) the
sequence of configurations and input assignments corresponding to R.

case (a). If there are no leaders in R (i.e., for every 0 ≤ i ≤ r, and every
agent x, we have αi(x).leader = 0), then after the last action in R, all the
agents have their flags cleared (set to 0).

case (b). If there are no leaders in R, and if all agents have their flags
cleared at the beginning of the round, then at the end of the round, the master
outputs 0 and all agents have their flags cleared.

case (c). If there is at least one leader at each assignment αi during the
round, i.e., for every 0 ≤ i ≤ r there is some agent xi such that αi(xi).leader =
1, then at the end of the round, the master outputs 1.

Proof. case (a). Assume there are no leaders during the round R. Since the
token moves clockwise from the master to the master, and since a token clears
any flag it encounters, at the end of the round, the token has cleared all the
possible raised flags in the ring.

case (b). Assume that there are no leaders during R, and that all the flags
are cleared at the beginning. During the first action in R, the master holds
the token and colors it in white. Since there are no leaders in R, in every
configuration within the round, all the flags are cleared. Hence, when moving
clockwise from the master to the master, the token meets no raised flags and
stays white. At the end of the round, the master receives a white token and
outputs 0.

case (c). Assume that there is a leader at each assignment during the
round. Let µ be a leader agent in the assignment α0, i.e., α0(µ).leader =
1. During the round, there must be some action i, such that µ = vi is the
responder, and the initiator ui holds the token. If µ is a leader in an assignment
αi, then after the transition, the token turns black. If µ is not a leader, in
assignment αi, since µ is a leader in the assignment α0, there must be some
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action j < i such that αj(µ).leader = 1 and αj+1(µ).leader = 0. Now, since
the input trace is compatible with the schedule, µ must be the initiator uj
or the responder vj in the transition (γj , αj) → γj+1. Hence, µ must raise
a flag in both the responder vi and the initiator ui (line 5), i.e., we have
γj+1(µ).f lag = 1 (j + 1 ≤ i). Recall that there is a unique token, so the flag
cannot be cleared during the remaining actions until i. Hence, at action i, the
token turns black (line 21) when the token moves from the initiator ui to the
responder vi = µ. In all cases, the master receives a black token at the end of
the round, and thus outputs 1.

Proposition 19. The protocol RingDetector is a self-stabilizing implementa-
tion of Ω? using ELE (i.e., Ω? 4 ELE) over oriented rings.

Proof. Consider a globally fair execution E and focus on the suffix E∞. By
Lemma 16, in E∞, there is a unique token moving clockwise. Let E∞ =
. . . R1R2 . . . Ri . . . , where each Ri is a round.

Consider first the case where the input trace T = α0α1 . . . in E∞ per-
manently assigns no leader everywhere, i.e., for every i, for every agent x,
αi(x).leader = 0. By Lemma 10, at the end of R1, all flags are cleared. Hence,
at the end of R2, the master outputs 0 and all flags are cleared. By iteration,
at the end of each round Ri, i ≥ 2, the master outputs 0. Since the master
updates its output only when it receives the token, and since this happens
exactly at the end of a round, in the suffix R2R3 . . . , the master permanently
outputs 0. The fact that the responder always copies the output of the initiator
(unless the responder is the master) implies that there is a suffix during which
all agents permanently output 0.

Assume now that the input trace in E∞ is such that there is at least one
leader at every input assignment. By Lemma 10, at the end of each Ri, the
master outputs 1. The same argument as above shows that there is a suffix of
execution during which all agents permanently output 1.

Note that, in the remaining cases of input traces in E∞, that is when there
are input assignments with a leader and some other without, nothing has to
be proven, because then, the output of Ω? is arbitrary.

Remark 1. Note that a simpler solution managing only tokens, sent periodi-
cally by the master, and without managing any probes, would not be correct. To
see this, consider an input trace where there is one leader in every input assign-
ment, but this leader moves repeatedly clockwise, “jumping” from one agent to
its successor on the ring. By the definition of Ω?, in this scenario, the master
should eventually and permanently output 1. However, it is infinitely often pos-
sible that there are two tokens directly following the leader one after the other,
during the whole tour, from the master to the master. In this case, the first
token arriving at the master is black, but the following token is white. This is
because the first token has cleared every flag raised by the leader. The repetition
of this scenario causes an oscillation of the output of the master between 0 and
1.

74



6.6. SSLE with Ω? over Bounded-Degree Graphs

6.6 SSLE with Ω? over Bounded-Degree Graphs

In [46], the authors have proven that Ω? is strong enough to yield a self-
stabilizing implementation of ELE . In this section, we extend their result to
the family of graphs with bounded degree. Precisely, given any integer d,
the behaviour ELE can be implemented using Ω? over the family of weakly
connected graphs with in/out-degree bounded above by d. We will first focus
on the family Fd of strongly connected graphs with in/out-degree bounded
above by d. A simple transformation explained in Sec. 6.10 allows to extend
the result to weakly connected graphs with in/out-degree bounded by d.

The main design difficulty comes from the fact that the information given
by the oracle does not allow to distinguish between the presence of a single or
more leaders. Thus, a leader should try to kill possible other leaders, when
avoiding a scenario where all leaders are killed infinitely often. This metaphor
comes from [46] – leaders sending bullets for killing other leaders, and may
protect themselves with shields. Although the protocol in [46] is not simple,
the ring topology is of great help. For arbitrary graphs, managing bullets
and shields is much more complicated, and agents must in some sense keep a
trace of them. As the agents are finite-state, a bounded degree is needed for
implementing such a management.

As a basic tool for our protocol, we use the 2-hop coloring self-stabilizing
population protocol, denoted by 2HC, proposed in [10]. A 2-hop coloring is a
coloring such that all neighbours of the same agent have distinct colors. We
denote by Colors the corresponding set of possible colors. The protocol 2HC
uses a set Colors of size O(d2).

The Protocol Ad
The input variables (read-only) of Ad at each agent x are: the oracle output
Ω?x (values in {0, 1}); and the agent color cx (values in Colors), which stores
the output of 2HC. The working variables are: the leader bit leaderx (val-
ues {0, 1}); the bullet vector bulletx (vector with values in {0, 1} indexed by
Colors); and the shield vector shieldx (vector with values in {0, 1} indexed by
Colors).

The idea of the protocol is the following. An agent may hold several shields
(resp. bullets), each of them waiting to be forwarded to an out-neighbour,
from initiator to responder, with associated color, lines 14 – 18 (resp. in-
neighbour, from responder to initiator, lines 7 – 12). The information required
for implementing this is encoded in the shield and bullet vectors. The purpose
of the bullets is to kill leaders (line 10), whereas the purpose of the shields
is to protect them by absorbing bullets (line 17). A leader is created when
the oracle reports that there are no leaders in the system (lines 2, 3). When
a leader is created, it comes with (loads) a shield for every color (line 5),
and thus is protected from any bullet that could come from one of its out-
neighbors. To maintain the protection, each time an agent receives a shield
from its in-neighbor, it reloads shields for every color (line 16). Dually, any
time an agent receives a bullet, it reloads bullets for every color (line 11). In
addition, whenever a leader interacts as an initiator, it loads bullets for every
color (line 22).
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Algorithm 8: Protocol Ad - initiator x, responder y

1 (Create a leader at x, if needed);
2 if Ω?x = 0 then
3 leaderx ← 1;
4 ∀c ∈ Colors, bulletx[c]← 1;
5 ∀c ∈ Colors, shieldx[c]← 1;
6 end
7 (Move bullet from y to x, if any);
8 if bullety [cx] = 1 then
9 if shieldx[cy ] = 0 then

10 leaderx ← 0;
11 ∀c ∈ Colors, bulletx[c]← 1;
12 bullety [cx]← 0;

13 end
14 (Move shield from x to y, if any);
15 if shieldx[cy ] = 1 then
16 ∀c ∈ Colors, shieldy [c]← 1;
17 bullety [cx]← 0;
18 shieldx[cy ]← 0;
19 end
20 (Load bullets if x is a leader);
21 if leaderx = 1 then
22 ∀c ∈ Colors, bulletx[c]← 1;

Correctness

Consider a strongly connected graph G of degree (in and out degree together)
less than or equal to d. For the sake of clarity, in any execution we consider, we
assume that the protocol 2HC permanently outputs a correct 2-hop coloring
from the beginning (variables cx, for every agent x).

A path in G is a sequence of agents π = x0 . . . xr such that (xi, xi+1) is a
directed edge of G. If x0 = xr, π is a loop at x0. If u is an agent that appears
in π, we denote it by u ∈ π, and by indπ(u) the index of the first occurrence of
u in π, i.e. the minimum i such that xi = u. If (x, y) is an edge of G, we say
that x has a shield against y if shieldx[cy] = 1. Similarly, we say that y has a
bullet against x if bullety[cx] = 1.

Definition 7 (Protected Leader). Consider a loop π = x0 . . . xr+1 at a leader
λ (= x0 = xr+1). We say that λ is a leader protected in π if there exists
i ∈ {0, . . . , r} such that xi has a shield against xi+1 and, if i ≥ 1, xi is not a
leader and has no bullet against xi−1. In addition, for every j ∈ {1, . . . , i− 1},
xj is not a leader, has no shield against xj+1 and no bullet against xj−1. The
agent xi is the protector of λ in π; the path x0 . . . xi is the protected zone in
π. The agent λ is a protected leader if it is protected in every loop at λ.

Note that a new leader or a leader that receives a shield becomes protected
by loading shields for every color.

As before, given an execution E, E∞ denotes the maximum (infinite) suffix
of E such that each couple (γ, α) (γ being a configuration, and α an input
assignment) in E∞ occurs infinitely often. IRE denotes the (finite) set of con-
figurations occurring in E∞, i.e., the set of “infinitely recurrent” configurations
in E.

Lemma 11. If γ ∈ IRE has a protected leader, then every configuration in
IRE has a protected leader.

Proof. Consider a couple (γ, α) that occurs in E∞, γ being a configuration (in
IRE) and α an input assignment. Let γ′ be a configuration s.t. (γ, α) goes to
γ′ via an action involving a directed edge (x, y). By global fairness, γ′ ∈ IRE
too, and we show that it has a protected leader.

Note that when a leader is created, it is already protected by itself since
it has a shield against every of its out-neighbors (line 5). We thus focus on
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transition rules that do not involve the creation of a leader. Let λ be a protected
leader in γ and π be any loop at λ. Let µ be the protector of λ in π. If x and y
do not appear in the protected zone in π, then after the transition, the states
of the agents in the protected zone have not changed and λ is still protected in
π. Then, assume that x or y appear in the protected zone and let z ∈ {x, y}
be the agent with lowest index indπ(z). By the choice of z, indπ(z) ≤ indπ(µ).

Consider first the case indπ(z) < indπ(µ). If z = x, then z cannot receive a
bullet (from y), i.e., either x has a shield against y or y has no bullets against
x. Otherwise, the path that goes from λ to (the first occurrence of) z = x
followed by any path that goes from y to λ yields a loop within which λ is not
protected in γ; hence a contradiction. Hence, if z = x, after the transition, λ
is still protected by µ in π. Now, if z = y, y may only receive a shield, and
thus, after the transition, λ is still protected in π (by µ or y).

Now, assume that indπ(z) = indπ(µ). This implies that z = µ ∈ {x, y},
and that every agent in the protected zone, except µ, is different from x and y.
If µ = y, then during the transition, µ may only receive a shield (which merges
with its own shield); hence, λ is still protected by µ in π after the transition.
The case µ = x is more complicated. First consider the subcase where y is not
the agent that follows the first occurrence of µ in π. Then µ cannot receive
a bullet during the transition, otherwise, the same argument as above shows
the existence of a loop at λ within which λ is not protected in γ. After the
transition, (the first occurrence of) µ has still a shield against the agent right
after it, which proves that λ is still protected in π. Consider now the subcase
where y is the agent that follows the first occurrence of µ in π. If y is not a
leader, then after the transition, y becomes the new protector of λ in π. If y is
a leader, then after the transition, λ is no longer protected, but y is protected
since the reception of a shield produces shields for every color. In both cases,
after the transition, there is a protected leader in γ′.

We thus have shown that, in all cases, γ′ contains a protected leader. Given
any configuration γ′′ ∈ IRE , there must be a sequence of actions from (γ, α)
to (γ′′, α′′) during E∞, for some input assignment α′′. Since γ has a protected
leader, the proof shows that every configuration in this sequence, and in par-
ticular γ′′, has also a protected leader. Therefore, any configuration γ′′ in IRE
has a protected leader.

Lemma 12. If no configuration in IRE has a leader, then in every input
assignment in E∞, Ω?x = 0 for some agent x. If every configuration in IRE
has a leader, then in every input assignment in E∞, Ω?x = 1 for every agent
x.

Proof. This stems from the definition of Ω?.

Lemma 13. Every configuration in IRE has a leader.

Proof. Assume that some configuration γ in IRE lacks a leader. On the one
hand, if no configuration in IRE has a leader, then by Lemma 12, in every
input assignment in E∞, Ω?x = 0 for some agent x. Hence, in E∞, during a
transition involving x, a protected leader is created (lines 2 – 5). On the other
hand, if IRE contains a configuration γ′ with a leader, then there is a sequence
of actions from (γ, α) to (γ′, α′) for some input assignments α, α′, since both
γ and γ′ occur infinitely often in E∞. According to the protocol, during some
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of these actions, a protected leader must be created. In both cases, there is a
configuration γ′′ ∈ IRE with a protected leader. By Lemma 11, this implies
that every configurations in IRE , and in particular γ, has a protected leader;
hence a contradiction.

Lemma 14. All configurations in IRE have the same number of leaders.

Proof. By the lemmas 12 and 13, in every input assignment in E∞, Ω?x = 1
for every agent x. Thus no leader is created during E∞. Assume that there
exists two configurations γ, γ′ in IRE such that the number l of leaders in γ is
different from the number l′ of leaders in γ′. Without loss of generality, we can
assume l < l′. By definition of E∞, there must be a sequence of actions from
(γ, α) to (γ′, α′) for some input assignments α, α′. The fact that l < l′ implies
that during this sequence a leader is created; hence a contradiction.

Lemma 15. No configuration in IRE contains an unprotected leader.

Proof. By the lemmas 12 and 13, in every input assignment in E∞, Ω?x = 1
for every agent x. Assume that γ ∈ IRE contains an unprotected leader λ.
Since λ is not protected in γ, there exists a path π = x0 . . . xr from x0 = λ to
some agent xr such that for every 0 ≤ i < r, xi has no shield against xi+1, and
xr is either a leader or has a bullet against xr−1. If xr is a leader, then in any
transition where it is the initiator, it creates a bullet against xr−1. Thus, in
both cases, there is a bullet that, by moving (backward) along this path to λ,
can kill this non-protected leader. Thus, a configuration γ′ within which λ is
not a leader is reachable from γ. During the sequence of actions from γ to γ′,
no leaders are created. Thus, γ′ has fewer leaders than γ. The global fairness
ensures that γ′ ∈ IRE . This contradicts Lemma 14.

Proposition 20. The protocol Ad solves the problem ELE using Ω? (i.e., Ω? <
ELE) over strongly connected graphs with degree less than or equal to d.

Proof. By the previous lemmas, every configuration γ ∈ IRE has l ≥ 1 pro-
tected leaders and no unprotected leaders; and in every input assignment in
E∞, Ω?x = 1 for every agent x. Assume, by contradiction, that l ≥ 2. Let
λ1, λ2 be two protected leaders in γ. Consider a shortest path p1 (resp. p2)
from λ1 to λ2 (resp. from λ2 to λ1). Consider the loop π1 = p1p2 at λ1, and
the loop π2 = p2p1 at λ2. Denote by µ1 (resp. µ2) the protector λ1 (resp. λ2)
in π1 (resp. π2). By construction, in γ, the first occurrence of µ1 (resp. µ2) is
in p1 (resp. p2). By definition and according to the protocol, it is possible to
move the (first occurrence of the) protector µ1 to the position right before λ2.
Another movement makes the protector transfer its shield to λ2, thus turning
λ1 into a non-protected leader (λ2 is still a protected leader). Then λ2 can
fire a bullet that kills λ1. Since no leader is created during the described se-
quence of actions (Ω?x = 1 for every agent x), the reached configuration γ′

has l − 1 leaders. As global fairness ensures that γ′ ∈ IRE , this contradicts
Lemma 14. Therefore, all configurations in IRE have a unique leader. Since a
leader cannot move, there is a permanent leader.
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6.7 SSLE with Ω?(2) over Arbitrary Graphs

In this section, we show that ELE can be implemented using Ω?(2) over the
family of arbitrary (connected) graphs. According to Sec. 6.10, it is sufficient
to prove the result over strongly connected graphs. The idea of the protocol is
simple. A leader moves when it “knows” there are other leaders and does not
move when it “knows” it is the unique leader, this information being provided
by the oracle. We define the protocol as follows. The input alphabet is {0, 1, 2},
the state space is {•, ◦} where • (resp. ◦) stands for leader (resp. non leader).
The rules are :

◦, ◦ 0,0−−→ •, ◦ (6.1)

•, ◦ 2,2−−→ ◦, • (6.2)

•, • ∗,∗−−→ •, ◦ (6.3)

The symbol ∗ means “any possible value”. During a transition, the output
values are the state values; they are omitted in the rules above. In every
case not listed above, the states are unchanged. Basically, a leader is created
whenever the oracle outputs 0 (rule 6.1). The leaders keep moving in the
graph while the oracle outputs 2 (rule 6.2). When two leaders meet, one of
them disappears (rule 6.3).

Proposition 21. The protocol above is a self-stabilizing implementation of
ELE using Ω?(2) over strongly connected graphs.

Proof. Consider a strongly connected graph G and consider a globally fair ex-
ecution E of the protocol. Assume that every configuration γ in IRE lacks a
leader. The definition of Ω?(2) implies that every input assignment that occurs
in E∞ assigns 0 to every agent. But, by rule (1), γ can reach a configuration
γ′ with a leader, and the global fairness ensures that γ′ ∈ IRE ; whence a con-
tradiction. Thus, there exists a configuration γ ∈ IRE that has a leader. The
rule (3) (the only rule to kill a leader) implies that, for any input assignment
α and for any configuration γ′ such that (γ, α) → γ′, γ′ has a leader. Now,
consider any γ′′ ∈ IRE . By definition of E∞, there must be a sequence of steps
from (γ, α) to (γ′′, α′′) during E∞, and the previous argument shows that every
configuration during this sequence has a leader; in particular γ′′.

Thus, every configuration in IRE has at least one leader. The definition of
Ω?(2) implies that any input assignment in E∞ does not assign 0 to any agent.
Therefore, no leaders are created during E∞. If there were two configurations
in IRE with different number of leaders, then there would be a step in E∞
during which a leader is created; this is impossible. Hence, every configuration
in IRE has the same number c of leaders. If c ≥ 2, then the definition of the
oracle implies that every input assignment in E∞ assigns 2 to every one. Since
the graph is strongly connected, from any configuration γ ∈ IRE with c ≥ 2
leaders, it is possible (via rule (2)) to move the two leaders to two neighbor
nodes and to kill one of them (via rule (3)), thus reaching a configuration
γ′ ∈ IRE with less than c leaders; whence a contradiction. Hence, c = 1, i.e.
there is a unique leader in every configuration in IRE . Then the definition
of the oracle implies that every input assignment assigns 1 everywhere. Thus,
during E∞, the three rules of the protocol are disabled, and the unique leader
is permanently located at some node.
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6.8 SSLE with Ω?⊗ Ω? over Arbitrary Graphs

In Sec. 6.7, the oracle Ω?(2) seems a bit strong (the protocol is very simple).
In this section, we focus on using only the oracle Ω? of Fischer and Jiang.
Precisely, we exhibit a self-stabilizing solution to ELE using Ω?⊗Ω?, i.e., two
copies of the Fischer and Jiang’s oracle, over the family of arbitrary graphs.

The Protocol B

Alg. 9 below, referred to as the protocol B, is a self-stabilizing solution to ELE
using Ω?⊗ Ω? over the arbitrary graphs.

In this protocol, each agent can be a leader or not, and a leader can be
either black or white. An agent can also hold a token, and a token can be
either black or white. We denote by Ω?l, resp. Ω?t, the copy of the oracle Ω?
used to detect the absence of leaders, resp. tokens. As explained in Sec. 6.10,
we only consider strongly connected graphs.

Whenever the oracle Ω?l, resp. Ω?t, outputs 0, a black leader, resp. a black
token, is created. The tokens keep moving through the network by swapping
between two agents during an interaction. When a black token interacts with
a white leader, the leader becomes a non-leader. When a white token interacts
with a black leader, the leader becomes white. When a token interacts with a
leader having the same color, then both the token and the leader turn into the
opposite color.

Algorithm 9: The Protocol B
1 variables agent x
2 Ω?lx : input (read-only) from the leader detector;
3 Ω?tx : input (read-only) from the token detector;
4 leaderx : ⊥ (non-leader), white or black;
5 tokenx : ⊥ (no token), white or black;
6 protocol (initiator x, responder y)
7 if Ω?lx = 0 then leaderx ← black;
8 ;
9 if Ω?tx = 0 then tokenx ← black;

10 ;
11 if tokenx = black ∧ leadery = white then leadery ← ⊥;
12 ;
13 if tokenx = white ∧ leadery = black then leadery ← white;
14 ;
15 if tokenx = leadery = black then tokenx ← leadery ← white;
16 ;
17 if tokenx = leadery = white then tokenx ← leadery ← black;
18 ;
19 if tokenx 6= ⊥ ∧ tokeny 6= ⊥ then tokenx ← ⊥;
20 ;
21 tokenx ↔ tokeny ;

Correctness

Given an input assignment α for the Alg. 9, we denote by α.Ω?lx (resp. α.Ω?tx)
the value assigned by α to the (read-only) variable Ω?lx (resp. Ω?tx). Simi-
larly, given a configuration γ, for every agent x, we denote by γ.leaderx (resp.

80



6.8. SSLE with Ω?⊗ Ω? over Arbitrary Graphs

γ.tokenx) the value of the variable leaderx (resp. tokenx) in the configuration
γ.

Given a configuration γ, let t(γ) (resp. l(γ)) be the total number of tokens
(resp. leaders) in γ. In γ, if an agent x is a leader and an agent y holds a
token (x and y not necessarily neighbours), we say that the leader at x and the
token at y are synchronized if they have the same color. Then, we say that the
configuration γ contains a synchronized pair of leader and token.

As before, given an execution E, E∞ denotes the maximum (infinite) suffix
of E such that each couple (γ, α) (γ being a configuration, and α an input
assignment) in E∞ occurs infinitely often. IRE denotes the (finite) set of con-
figurations occurring in E∞, i.e., the set of “infinitely recurrent” configurations
in E.

Lemma 16. For every (γ, α) in E∞, there is a unique token in γ and α assigns
1 to every variable Ω?tx, i.e. t(γ) = 1 and ∀x, α.Ω?tx = 1.

Proof. Assume first that for every (γ, α) in E∞, t(γ) = 0. Then by the defi-
nition of Ω?t, for every (γ, α) in E∞, α.Ω?tx = 0 for every agent x. By line 9,
a token is created at some point during E∞; whence a contradiction. Hence,
there exists (γ′, α′) in E∞ such that t(γ′) ≥ 1. Since the only way to reduce
the number of tokens is by merging two existing tokens (line 19), for every
configuration γ such that (γ′, α′)→ γ, t(γ) ≥ 1. Hence, for every couple (γ, α)
in E∞, t(γ) ≥ 1. The definition of Ω?t involves that for every (γ, α) in E∞,
α.Ω?tx = 1 for every agent x. This disables the creation of token during E∞.
Thus, the number of tokens cannot increase during E∞. Actually, since each
couple (γ, α) occurs infinitely often in E∞, the number of tokens during E∞
is constant, say t0. The previous argument shows that t0 ≥ 1. Assume that
t0 ≥ 2. Then, by global fairness, there is a configuration in E∞ in which two
tokens are located at two neighbouring nodes. From this configuration, there is
a reachable configuration γ′ resulting from the interaction of these two neigh-
bours, such that t(γ′) ≤ t0 − 1. The global fairness ensures that γ′ is in E∞;
whence a contradiction. Hence, t0 = 1, i.e., there is a unique token during
E∞.

Lemma 17. Consider a configuration γ that contains a synchronized pair of
leader and token such that l(γ) ≥ t(γ) = 1. Consider an input assignment α
that assigns 1 to every variable Ω?tx, i.e., for all x, α.Ω?tx = 1. Then for any
configuration γ′ such that (γ, α)→ γ′, γ′ contains a synchronized pair of leader
and token and l(γ′) ≥ t(γ′) = 1.

Proof. In Alg. 9, if line 7 is executed, then the number of leader increases.
Line 9 is not executed since α.Ω?tx = 1 for every x.

If line 11 is executed, then l(γ′) = l(γ) − 1 and t(γ′) = t(γ) = 1. Since γ
contains a synchronized pair of leader and token and since the unique token is
black in γ, there must be a black leader in γ (not involved in the interaction).
Thus l(γ) ≥ 2, l(γ′) ≥ t(γ′) = 1 and γ′ also contains a synchronized pair of
leader and token.

If line 13 is executed, then l(γ′) = l(γ) and t(γ′) = t(γ) = 1, whence
l(γ′) ≥ t(γ′) = 1. Since γ contains a synchronized pair of leader and token
and since the unique token is white in γ, there must be a white leader in γ
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(not involved in the interaction). Hence, γ′ also contains a synchronized pair
of leader and token.

If line 15 is executed, then l(γ′) = l(γ) and t(γ′) = t(γ) = 1, whence
l(γ′) ≥ t(γ′) = 1. The interaction involves a synchronized pair of leader and
token, and since both the leader and the token flip their color, γ′ also contains
the same synchronized pair of leader and token. The same argument applies
for line 17.

Finally, line 19 cannot be executed since t(γ) = 1, and line 21 just swap the
token values. Therefore, in all cases, γ′ contains a synchronized pair of leader
and token and l(γ′) ≥ t(γ′) = 1.

Lemma 18. There exists a configuration γ in E∞ that contains a synchronized
pair of leader and token such that l(γ) ≥ t(γ) = 1.

Proof. We prove the result by contradiction. By Lem. 16, we already know
that every configuration in E∞ contains a unique token. Hence, assume that,
for every configuration γ in E∞, any leader in γ (if any) does not have the
same color as the (unique) token in γ. Note that, if every configuration γ in
E∞ has no leader, then the definition of Ω?l, the global fairness and the rules
of the protocol involve that a (black) leader is created at some point in E∞;
whence a contradiction. Hence, there exists a configuration γ in E∞ which has
at least one leader, l(γ) ≥ t(γ) = 1.

By our hypothesis, every leader in γ has the same color, opposite to the color
of the token. Consider the case where the token is white. Thus all the leaders
in γ are black. Whatever the sequence of input assignment is, it is possible
to reach from γ a configuration γ′ with one white leader and one white token,
simply by moving the white token towards one of the black leaders, and apply
the rule of the protocol that turns this leader white. The configuration γ′ has
a synchronized pair of leader and token, and l(γ′) ≥ t(γ′) = 1. By the global
fairness, γ′ must belong to E∞; whence a contradiction.

Consider the case where where the token is black. Thus all the leaders in
γ are white. By moving the token, it is possible to turn all the leaders into
non-leaders. Hence, there exists a configuration γ′ occurring in E∞ with no
leaders and one black token. Now since γ occurs in E∞, it occurs infinitely
many times in E∞, and there is a sequence of steps (γ′, α′) . . . (γ, α) in E∞.
During this sequence, a leader is created. Before this creation, the unique token
stays black since it interacts with no leader. The rules of the protocol involve
that the first created leader is black. Hence, there exists a configuration γ′′

in E∞ which contains a synchronized pair of leader and token, and such that
l(γ′′) ≥ t(γ′′) = 1; whence a contradiction.

Lemma 19. For every (γ, α) in E∞, γ contains a synchronized pair of leader
and token, l(γ) ≥ t(γ) = 1 and for every agent x, α.Ω?lx = α.Ω?tx = 1.

Proof. By Lem. 16, we already know that for every (γ, α) in E∞, t(γ) = 1 and
for every agent x, α.Ω?tx = 1. Also by Lem. 18, we know that there exists a
(γ, α) in E∞, such that γ contains a synchronized pair of leader and token,
and l(γ) ≥ t(γ) = 1. These two results, and Lem. 17 ensure that every (γ, α)
in E∞ contains a synchronized pair of leader and token, and l(γ) ≥ t(γ) = 1.
Then, the definition of Ω?l involves that every input assignment α occurring
in E∞ is such that for all x, α.Ω?lx = 1.
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Proposition 22. Alg. 9 is a self-stabilizing implementation of ELE using Ω?⊗
Ω?. Precisely, in any execution, there exists exactly one agent λ such that
for every configuration γ in E∞, γ.leaderλ 6= ⊥ and for every agent µ 6= λ,
γ.leaderµ = ⊥.

Proof. By Lem. 19, we know that during E∞, the leader detector Ω?l outputs
1 everywhere. Hence, no leader is ever created during E∞. This involves that
the number of leaders (greater than or equal to 1) cannot increase during E∞.
Actually, since each (γ, α) in E∞ occurs infinitely often in E∞, the number of
leaders is constant during E∞. We denote by c this constant; we already know
that c ≥ 1.

Assume that c ≥ 2. Consider a configuration γ occurring in E∞. We know
that γ contains a synchronized pair of leader and token and that l(γ) = c ≥ 2,
t(γ) = 1. We now describe scenarios that produce a configuration γ′ out of γ,
such that γ′ contains a unique leader (synchronized with the unique token).

case (a). The unique token in γ is black. There must be a black leader
since γ contains a synchronized pair of leader and token. By global fairness, it
is possible to move the token near this leader, and to turn them both white.
Then we come down to case (b).

case (b). The unique token in γ is white. By moving the token to meet every
black leaders, we can turn all the black leaders white. Then by global fairness,
we can assume that there are no black leaders in γ. Still by global fairness, the
following sequence of moves is possible. First, the white token meets a white
leader and they both turn black. Then the black token successively meets the
white leaders and turn them into non-leaders. The resulting configuration has
a unique (black) leader (and a unique black token). The global fairness ensures
that this configuration occurs in E∞; whence a contradiction with the fact that
the number of leaders is c ≥ 2.

Therefore, c = 1, i.e., there is a unique leader in every configuration during
E∞. Since every configuration in E∞ contains a synchronized pair of leader and
token, in each configuration, the unique leader must be synchronized with the
unique token. Since a leader cannot be turned into a non-leader by a token with
which it is synchronized, the unique leader is the same for every configuration
in E∞. Precisely, there exists an agent λ such that for every configuration γ
in E∞, γ.leaderλ 6= ⊥ and for every agent µ 6= λ, γ.leaderµ = ⊥.

6.9 Ω? is not stronger than ELE⊗k over a Non-Simple
Graph Family

We show that there is no self-stabilizing implementation of Ω? using ELE⊗k
(i.e. k parallel instances of ELE) for any k ≥ 1, over a non-simple family F of
graphs. Recall that a family F is non-simple if there are graphs G,G1, G2 ∈ F
such that G1, G2 are disjoint subgraphs of G.

Proposition 23. For any non-simple family of graphs F , there is no self-
stabilizing population protocol A implementing Ω? over F using the behaviour
ELE⊗k (k ≥ 1). In other words, there is no composition B = ELE⊗k ◦
Beh(A) ⊆ Ω?.
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Proof. We prove the result by contradiction using a classical partitioning argu-
ment. Assume such a protocol A and consider a graph G ∈ F , such that there
are two disjoint subgraphs of G, G1 and G2 that are also in F . Without loss
of generality, we assume the output of the protocol are encoded in the states.

Every execution E of A has an input trace (T, Tin), where T is an output
trace of ELE⊗k and Tin represents the input trace of Ω?. The trace T has values
in {0, 1}k. We choose T to be the constant trace which outputs (1, . . . , 1) at
some agent λ ∈ G1, and (0, . . . , 0) everywhere else. We denote by β this specific
assignment (T = ββ . . . ). On the other hand, we choose the trace Tin (with
values in {0, 1}) to be the constant trace which outputs 1 at some agent µ ∈ G2.
We denote by α this specific assignment (Tin = αα . . . ).

The choice of T and Tin yields an execution E, say with schedule S, and
an output trace Tout. Since the composition B is a sub-behaviour of Ω?, the
output trace Tout belongs to Ω?(G,S, Tin). Hence, (∆) the output trace Tout
has a suffix equal to the constant trace assigning 1 to every agent. Since the
outputs are encoded in the states of the agents, it means that, for every couple
(γ, (β, α)) in E∞, the output associated to γ assigns 1 to every agent.

If we restrict (γ, (β, α)) to the graph G1, we obtain a configuration and
input assignment (γ1, (β1, α1)). The agent λ is still the unique agent to be
assigned (1, . . . , 1) by β1, and α1 assigns 0 to every agents in G1. Since the
protocol is self-stabilizing, and since G1 ∈ F , there is a sequence of actions,
involving all the agents of G1 and having the constant trace with the assign-
ment (β1, α1) during the sequence. This leads to a configuration γ′1 that
outputs 0 at at least one agent in G1. This involves that there is a finite exe-
cution (γ, (β, α))(γ1, (β, α))(γ2, (β, α)) . . . (γ′, (β, α)) such that γ′ outputs 1 at
the agents of G2 and 0 at some agent in G1. The global fairness ensures that γ′
occurs in E∞. This implies that Tout outputs 0 at some agent (in G1) infinitely
often. This contradicts (∆).

6.10 From Strongly to Weakly Connected Graphs

In this section, we show how to extend the results on strongly connected graphs
to the weakly connected graphs. Given a weakly connected graph G, the sym-
metric closure Gsym of G is the graph with the same set of vertices, V ert(Gsym)
such that a couple (x, y) ∈ Edges(Gsym) if and only if (x, y) ∈ Edges(G) or
(y, x) ∈ Edges(G). It is straightforward to check that Gsym is strongly con-
nected.

Proposition 24. Let F be a family of strongly connected graphs, and WF
be the family of (weakly connected) graphs G whose symmetric closure Gsym
belongs to F .

Given any population protocol A implementing the behaviour ELE over the
family F , there is a population protocol A′ (given in the proof) implementing
ELE over the family WF

Proof. We give a constructive proof. Without loss of generality, we assume
that the outputs of A are encoded in the states of the agents. We show how
to transform A into a population protocol A′. Given A, we define below a
(possibly) non-deterministic protocol AND. It can be transformed into a de-
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terministic one by the transformer proposed in [10] (since ELE is an elastic
behaviour).
AND has the same state space, inputs and outputs as A, and the following

transition rules.

p, q
i1,i2−−−→
o1,o2

p′, q′ in AND ⇔


p, q

i1,i2−−−→
o1,o2

p′, q′

or q, p i2,i1−−−→
o2,o1

q′, p′
in A (6.4)

Note that, if A is a symmetric deterministic protocol, then AND is determin-
istic.

Intuitively, AND, executing over a weakly connected graph G, simulates
A over a strongly connected graph which is the symmetric closure Gsym of
G. Alternatively, it is as if AND simulated a scheduler, over a non directed
graph induced by G, which could choose at every interaction which agent is
the initiator, and which is the responder.

We now show that AND also implements ELE as A over a family of weakly
connected graphs. Consider a (globally fair) execution E of AND on G

. . . γt
σt−→ γt+1 . . . (6.5)

where σt is the action triggered at time t. We build a globally fair execution
E′ of A on Gsym with the same sequence of configurations. Indeed, for any t,
if

σt =

(
(x, y), p, q

ix,iy−−−→
ox,oy

p′, q′
)

(6.6)

then we define

σ′t =


σt if p, q

ix,iy−−−→
ox,oy

p′, q′ is a rule of A(
(y, x), q, p

iy,ix−−−→
oy,ox

q′, p′
)

otherwise
(6.7)

Is not difficult to check that the following

. . . γt
σ′t−→ γt+1 . . . (6.8)

is a globally fair execution of A on Gsym (with the same sequence of configu-
rations). Hence, since A solves ELE on Gsym, the protocol AND solves ELE
on G.

Remark 2. Note that we have only used the fact that electing a leader on
Gsym is similar to electing a leader on G. Hence, the given proof also applies
to any behaviour B (other than ELE) with a similar relation between the legal
histories on G and the legal histories on Gsym.
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Chapter 7

Introduction

7.1 Introduction

State-Machine Replication

Imagine a system processing requests from clients and replying adequate re-
sponses. If this system is implemented on a unique machine, then the requests
are likely to be processed slowly, and, first and foremost, the whole system
is broken whenever the machine fails. A very common approach to provide a
reliable system is to replicate the program (state-machine) over many servers
(replicas). The basic idea is that if some of the replicas fail, then the system
should be able to keep processing the requests.

However, one does not want the system to give absurd responses to the
clients requests. For instance, if there are three copies of the same book left
in the bookshop’s storage, then we do not want the system to sell the book to
more than three different clients. Indeed, the system must process the requests
in a coherent way. But what is coherence ? From a very general perspective,
it is natural to require that the whole system behaves globally as a unique
state-machine processing the different requests sequentially. In other words,
the system is required to be linearizable [50].

This is a difficult issue because, in a distributed system, the requests may
not arrive at different replicas in the same order. Hence, the replicas must
somehow agree on the order of requests when executing them. One approach
consists in relating this issue to the consensus problem. Indeed, if all the repli-
cas initially share the same state and if they execute the same requests in the
same order, then the system is coherent from the client’s point of view. It
is possible then to picture the system as a sequence of consensus instances
that decide on the request to execute at each step. Roughly speaking, the re-
quirements are the following: (safety) two processes cannot decide on different
requests for the same step; (liveness) every process eventually decides on a
request for every step, unless it crashes.

However, in an asynchronous message-passing system prone to crash fail-
ures, solving a single consensus instance has been proven impossible [47]. This
hinders the possibility of a state-machine replication protocol. Yet, Lamport
has provided an algorithmic scheme, namely Paxos [56, 57], that partially sat-
isfies the requirements of state-machine replication in the following sense. The
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safety property is always guaranteed. But, the liveness property requires ad-
ditional assumptions; usually any means to elect a unique leader for a long
enough period of time.

Note that the original formulation [57] presented Paxos as a (partial) solu-
tion to the consensus problem, but its actual purpose is to implement a repli-
cated state-machine. Since then, many improvements have been proposed, e.g.,
Fast Paxos [59], Generalized Paxos [58], Byzantine Paxos [60], and the study
of Paxos has become a subject of research on its own. The extreme usefulness
of such an approach is proven daily by the usage of this technique by the very
leading companies [30].

Practical Self-Stabilization

Unfortunately, none of these approaches deal with the issue of transient faults,
i.e., punctual corruptions of the data that may put the system in an arbitrary
configuration. In the context of replicated state-machines, these faults may
induce two kinds of effect. First, they can corrupt the local states of the replica,
and thus, even if the replicas execute the same requests in the same order, they
will permanently give wrong answers to the clients: the linearizability of the
system is altered. However, this is not the worse issue. Indeed, if the replicas
still have the possibility to agree on something, then they can also agree on
a common state to start with. A much worrying issue is when the transient
fault corrupts the core of the algorithm that synchronizes the replicas. For
instance, the replicas may be permanently unable to process new requests, or,
they execute different sequences of requests. This last issue threatens both the
linearizability and the liveness of the system.

Self-stabilization was introduced in the seminal paper [39] of Dijkstra. Roughly
speaking, a self-stabilizing system is able to recover from any transient fault
after a finite period of time. In other words, after the last transient fault, a
self-stabilizing system ensures that eventually the processors behave according
to the specifications of the problem. Since the effect of a transient fault is to
put the system in an arbitrary configuration, and since we only focus on the
suffix after the last transient fault, an equivalent formulation states that a self-
stabilizing system, started in an arbitrary configuration, eventually behaves
correctly forever.

The nature of self-stabilization implies that it only concerns “live” problems,
i.e., problems in which the processors must guarantee a service forever. There
is no obvious meaning to a self-stabilizing solution of a “one-shot” problem.
For instance, if an algorithm claims to be a solution of the consensus problem,
then transient fault may force the replicas to decide on their own input values
right from the beginning. On the other hand, the closely related-problem of
the replicated-state machine is a live problem. We cannot prevent, though,
transient faults making the replicas decide on different requests to execute at
some point in time. Yet, we look for means to guarantee that eventually the
replicas will execute the same requests in the same order from a common state.

Completing this goal is rather difficult. Indeed, one of the main ingredients
of any Paxos-based replicated state-machine algorithm is its ability to distin-
guish old and new messages. At a very abstract level, one uses natural numbers
to timestamp data, i.e., each processor is assumed to have an infinite memory.
At a more concrete level, the processes have a finite memory, and the simplest
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timestamp structure is given by a natural number bounded by some constant
2b, where b is the size of the register. Roughly speaking, this implies that the
classic Paxos-based replicated state-machine approach is able to distinguish
messages in a window of size 2b.

This constant is so large that it is sufficient for any practical purposes, as
long as transient faults are not considered. For example, if a 64-bits counter
is initialized to 0, incrementing the counter every nanosecond will last about
500 years before the maximum value is reached; this is far greater than any
concrete system’s timescale. But, a transient fault may corrupt the timestamps
(e.g. counters set to the maximum value) and, thus, lead to replicas executing
requests in different order or being permanently blocked although the usual
liveness related conditions (e.g. unique leader) are satisfied.

This remark leads to a weaker form of self-stabilizing systems. Indeed, in
the original self-stabilization formulation, one looks for a suffix of the execution
(started in an arbitrary configuration) during which everything behaves cor-
rectly. We weaken this condition by requiring only that the execution (started
in an arbitrary configuration) contains a finite factor, or segment, of execution
during which the system behaves correctly; this segment being “long enough”
compared to some predefined timescale. By a long enough segment, we mean
a segment of execution whose longest causal chain of events has length greater
than 2b. An algorithm satisfying this weaker self-stabilization is called a prac-
tically self-stabilizing algorithm.

Practical self-stabilization may look weak at first sight, but one should
notice that any implementation of the original Paxos (no transient faults as-
sumed) behaves correctly until the timestamps reach the maximum value 2b.
This yields a correct but finite execution of length O(2b), which is practically
infinite, i.e., largely greater than any concrete system’s timescale.

Our goal, in this part of the thesis, is to enhance the original Paxos algo-
rithm so that it may start in an arbitrary configuration and still reach a point
from which the system behaves correctly for a finite but practically infinite
period of time. To sum up, we provide a new bounded timestamp architecture
and describe the core of a practically self-stabilizing replicated state-machine
(based on Paxos), in an asynchronous message passing communication envi-
ronment prone to crash failures.

This work will appear in the proceedings of the Netys 2014 conference. A
preliminary version has been published in [19].

7.2 Overview

In Chap. 8, we specify the model and the notations (Sec. 8.1), and we present
the original Paxos algorithm to the extent we need for our purpose (Sec. 8.2). In
Sec. 8.3, we informally explain how to make Paxos self-stabilizing. In Chap. 9,
we formally describe our algorithm, and prove its main properties in Chap. 10.

7.3 Related work

If a process undergoes a transient fault, then one can model the process be-
haviour as a byzantine behaviour. In [28], Castro and Liskov present a concrete
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replicated state-machine algorithm that copes with byzantine failures. Lam-
port presents in [60] a byzantine tolerant variant of Paxos which has some
connections with Castro and Liskov’s solution. Note, however, that in both
cases, the number of byzantine processes must be less than the third of the
total number of processes. This is related to the impossibility of a byzantine
tolerant solution to consensus where more than a third of the system are byzan-
tine. The issue of bounded timestamp system has been studied in [41] and [52],
but these works do not deal with self-stabilization.

The first work, as far as we know, on a self-stabilizing timestamp system
is presented in [2], but it assumes communications based on a shared memory.
In [4], the authors present the notion of practical1 stabilization, and provide
an implementation of a practically self-stabilizing single-writer multi-reader
atomic register. Doing so, they introduce a self-stabilizing timestamp system.
However, their approach assumes that a single processor (the writer) is respon-
sible for incrementing timestamps. Our timestamp system is a generalization
which allows many processors to increment timestamps. Finally, in [44], the au-
thors present the first practically replicated state-machine in the case of shared
memory based communications.

1“pragmatic” in their text.
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Chapter 8

Towards a Self-Stabilizing
Replicated State-Machine

8.1 Model

In contrast with the first part of this thesis, where we have developed a new
model, in this part, we use the classical model of asynchronous message-passing
systems. All the basic notions (state, configuration, execution, asynchrony, . . . )
can be found in, e.g., [42, 63]. Another main difference with the previous part
is that we have no limitations (besides being finite) on the size of the processors
states.

The model represents a a system of n asynchronous processors in a complete
communication network. Each communication channel between two processors
is a bidirectional asynchronous communication channel of finite capacity C [43].
Every processor has a unique identifier and the set Π of identifiers is totally
ordered. If α and β are two processor identifiers, the couple (α, β) denotes the
communication channel between α and β.

A configuration is the vector of states of every processor and communication
channel. If γ is a configuration of the system, we denote by γ(α) (resp. γ(α, β))
the state of the processor α (resp. the communication channel (α, β)) in the
configuration γ. We informally1 define an event as the sending or the reception
of a message at a processor or as a local transition at a processor.

Given a configuration, an event induces a transition to a new configuration.
An execution is denoted by a sequence of configurations (γk)0≤k<T , T ∈ N ∪
{∞} related by such transitions2. A local execution at processor λ is the
sequence of states obtained as the projection of an execution on λ. If E is an
execution, we denote by E(λ) the corresponding local execution at λ.

We consider transient and crash faults only. The effect of a transient fault
is to corrupt the state of some processors and/or communication channels; but
it does not corrupt the memory where the program is located3. As usual in
self-stabilization, it is assumed that all the basic services related to message
transmission (in particular identifiers) are reliable. Also, we only consider the
suffix of execution after the last transient fault; though crash faults may occur

1For a formal definition, refer to, e.g., [42, 63].
2For sake of simplicity, the events and the transitions are omitted.
3This would create Byzantine processes, and is outside of our scope.
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in this suffix. This amounts to assume that the initial configuration of every
execution is arbitrary.

In addition, at most f processors are prone to crash failures. We assume
that at most half of the system may crash, i.e., n ≥ 2 · f + 1. A quorum is
any set of at least n − f processors. Thus, there always exists a responding
majority quorum and any two quorums have a non-empty intersection.

We use the “happened-before” strict partial order introduced by Lamport
[55]. In our case, we denote by e f and we say that e happens before f , or f
happens after e. Note that the sentences “f happens after e” and “e does not
happen before f ” are not equivalent.

Finally, we fix a state-machine , and each processor has a local copy of it.
A request corresponds to a transition of the state-machine. We assume that
the machine has a predefined initial state.

8.2 The Original Paxos Algorithm

Description

In the original Paxos [56, 57], there are three roles:

• The proposers are responsible for receiving client requests and coordinat-
ing their execution with the other replicas.

• The acceptors form the memory of the system. They accept or reject the
requests transmitted by the proposers. A request is ready to be executed
if it is accepted by a quorum of acceptors.

• The learners are notified when a request is accepted by a quorum of
acceptors. They then execute the request and respond to the client.

There are many ways to map these roles on the processors. For sake of clarity,
we will assume that every processor can play the three roles simultaneously.
Precisely, a replica always play the role of acceptor and learner. However, as
we will see below, a proposer can be active or inactive, and thus, a replica can
start and stop acting as a proposer.

We now describe the algorithm. Each proposer λ and each acceptor α has a
ballot number tλ and tα respectively. These ballot numbers are simply natural
numbers (unbounded). The algorithm comprises two different phases called
phase 1 and phase 2. We first describe the second phase. This phase, indeed,
corresponds to the “normal-case operation” of Paxos. The phase 2 is triggered
at λ when the proposer λ has received requests from some clients. The proposer
λ then forges a sequence proposedλ of requests (by appending the received
client requests) and broadcasts a phase 2 accept message 〈p2a, proposed, tλ〉
comprising the sequence of requests and its ballot number to the acceptors.

When the acceptor α receives this message, if tα ≤ tλ, then the proposer
adopts λ’s ballot number, accepts the sequence of requests proposedλ, and
notifies the learners about this fact. Otherwise, tα > tλ, the acceptor does
not accept proposedλ, and replies negatively to λ. When a learner receives
the notifications for the sequence proposedλ from a quorum of acceptors, it
executes the requests in proposedλ that it has not yet executed, and respond
to the clients.
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Hence, we see that if there is a single proposer λ, and if all the acceptors
have the same ballot number as λ, then λ is able to coordinate the requests it
received and make them executed by the replicas. However, since the proposer
λ may crash, we need a sort of “take-over mechanism” for a new proposer to
take its place. This the purpose of phase 1.

Phase 1 is triggered at µ when the processor µ begins to act as a proposer.
It then creates a new value for its ballot number tµ, and, before proceeding
to phase 2, it broadcasts a phase 1 prepare message, 〈p1a, tµ〉, comprising its
ballot number, to the acceptors.

When the acceptor α receives this message, if tµ < tα (notice the strict <
instead of ≤ as in phase 2), then the acceptor α adopts the ballot number tµ and
replies positively to µ while also piggybacking the last sequence of proposals it
has accepted. Otherwise, it replies negatively to µ.

If µ receives positive replies from a quorum of acceptors, then, thanks to
the data they sent, µ is able to build the latest already accepted sequence of
requests. It can then proceed to phase 2, and append new requests to this
sequence, so that the future decisions will be coherent. If µ does not receive
enough positive replies, it must create a greater value for its ballot number
tµ and re-execute the phase 1. Also, if at the end of some phase 2, µ sees
that its ballot number is beaten by some acceptor’s ballot number, then it also
re-executes a phase 1 with a higher ballot number.

The Paxos algorithm is summed up in Alg. 10, 11 and 12. In this pseudo-
code, the proposer plays the role of a distinguished learner which notifies other
learners about decisions.

Algorithm 10: Paxos : Variables at processor α
1 (proposer)
2 client requests, queueα : queue (read-only)
3 proposer ballot number, tpα : integer (init. 0)
4 proposed requests, proposedα : requests sequence (init. empty)
5 (acceptor)
6 acceptor ballot number, taα : integer (init. 0)
7 accepted requests, acceptedα = (t, seq) : t integer (init. 0), seq
requests sequence (init. empty)

8 (learner)
9 learned requests, learnedα : requests sequence (init. empty)

10 local state, q∗α : state of the state-machine (init. initial state of the
state-machine)

Remark 3. The original formulation of Paxos [56, 57] presented the algorithm
as a (partial) solution to the consensus problem. In the description above, we
have presented it as a solution to the replicated state-machine, to connect more
easily with the sequel. In particular, in the original formulation, there are many
parallel consensus instances, the s-th of them being dedicated to decide on the
s-th request to execute. We have avoided the inclusion of another counter s,
and the replicas, in our presentation, decide on growing sequences of requests.
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Algorithm 11: Paxos : Prepare phase (Phase 1)
1 Processor λ becomes a proposer:
2 increment tλ
3 broadcast 〈p1a, tλ〉
4 collect replies R from some quorum Q
5 if all replies are positive then
6 order R according to acceptedα.t
7 proposedλ ← acceptedα.seq the maximum in R (break ties if

necessary)
8 else repeat phase 1
9

10 Processor α receives p1a message from λ:
11 if tα < tλ then adopt tλ
12

13 reply to λ, 〈p1b, tα, acceptedα〉

Algorithm 12: Paxos : Accept phase (Phase 2) and Decision
1 Once λ gets requests in queueλ:
2 append requests to proposedλ
3 broadcast 〈p2a, tλ, proposedλ〉
4 collect replies R from some quorum Q
5 if all replies are positive then
6 broadcast 〈dec, tλ, proposedλ〉
7 else proceed to phase 1
8

9 Processor α receives p2a or dec message from λ:
10 if tα ≤ tλ then
11 accept (tλ, proposedλ)
12 if it is a dec message then
13 learn proposedλ
14 update q∗α by executing the new requests
15 if it is a p2a message then
16 reply to λ, 〈p2b, tα, acceptedα〉
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Paxos is a Partial Solution

Lamport has shown [57] that Paxos always guarantee linearizability. In our
case, it means that if two sequences of requests are decided on by some replicas,
then one of them is the prefix of the other. Indeed, if there is a unique proposer,
we have seen there are no conflicts: the requests are ordered by the proposer and
the replicas decide on the requests built by the proposer. The difficulties occur
when the proposer λ awakes and execute phase 1. In this phase, λ retrieves
information about the past decisions from a quorum of acceptors. If it were to
choose a wrong sequence of requests to start with, then it could compromise
future decisions. However, this does not happen because, roughly speaking,
a sequence of requests may be decided on, only when a quorum of acceptors
have accepted it. The fact that two quorums have a non-empty intersection
implies that, at the end of phase 1, the proposer λ actually gets the correct
information about the past decisions.

On the other hand, Paxos is a partial solution in the sense that the live-
ness property is not guaranteed. This is not a surprise since state-machine
replication is closely related to the consensus problem, and [47] has shown that
consensus is impossible in this environment. In Paxos, liveness is not achieved
because many proposers may be active at the same time. This can happen
because, the take-over mechanism implemented in phase 1, is usually triggered
when a replica detects the crash of the proposer. But detecting crashes is unre-
liable. Two active proposers may compete in having the greatest ballot number
to be able to coordinate the requests. Thus, they never execute phase 2, the
system is stalled. Such a scenario, though, is unlikely in practice.

8.3 How to Make Paxos Self-Stabilizing ?

In this section, we informally present how to make Paxos (practically) self-
stabilizing. We first need to examine what would be the effects of a transient
fault on the original Paxos algorithm. Obviously, it can corrupt the local
copies of the state-machine (variables q∗α, learnedα or proposedα). However,
as stated in Chap. 7, this is not the worse issue. If the replicas can still agree on
sequences of requests, they can reset their local state-machines and re-execute
the common sequence of requests to be up-to-date.

The core of the Paxos algorithm relies on a clever management of the ballot
numbers. In any concrete implementation of Paxos, these ballot numbers are
integers bounded by a large (but finite) constant 2b. A corruption that sets
some of these ballot numbers to the maximum value will permanently hinders
the system. For instance, the proposers will not be able to get a higher ballot
number, which prevents them to succeed in any phase 1 or phase 2.

Our approach consists in resetting the ballot numbers only if necessary. If
we call epoch the segment of execution between two such resets, the goal is to
force the existence of a practically infinite epoch (i.e. an epoch containing a
causal event chain of length greater than 2b) during which the ballot numbers
start with low values. During such an epoch, everything looks like an initialized
Paxos execution.

We now explain how to implement such resets. The crucial property of
the ballot numbers are the fact that, when the proposer λ sees a collection
of ballot numbers from a quorum of acceptors, λ is able to create a ballot

97



8. Towards a Self-Stabilizing Replicated State-Machine

Figure 8.1: Incrementing ballot numbers – (left) the acceptors and the proposer
have the same label, (right) they have different labels.

number greater than all these ballot numbers. Obviously, unbounded natural
numbers are the most intuitive structure which offers this possibility. Note
that the whole problem relies on the fact that bounded natural numbers are
not suitable for such a task, since it is impossible to create a value greater than
the maximum value.

Anyway, the structure of natural numbers is not necessary. Indeed, a
bounded labeling scheme, as in [4], offers this possibility too. Informally, it
consists in a finite set L of labels, along with a comparison operator ≺ and an
increment function ν. The increment function maps any (bounded) set H of
labels to a label ν(H) that is greater than all the labels in H, according to the
relation ≺. See Chap. 9, Sec. 9.3 for details on how to implement a bounded
labeling scheme.

To see how we can use such a a scheme to implement clean resets, let’s
focus on a toy example where a unique replica plays the role of the proposer.
We then redefine a ballot number as a couple (l, t) where l is a label, and t is
a bounded integer. These ballot numbers are compared lexicographically. If
the proposer and the acceptors all use the same label l, as depicted in Fig. 8.1,
then, to produce a greater ballot number, the proposer simply increments the
integer field. This corresponds exactly to the use of ballot numbers in Paxos.
But, since the initial configuration is arbitrary, the replicas may use different
labels, or have an integer value close to the maximum 2b, as in Fig. 8.1. In
that case, the proposer stores in a history Hcl every canceling label, i.e., the
labels that are not beaten by the proposer’s label, use the increment function
to produce a greater label ν(Hcl), and reset the integer field to zero. Doing so,
in the sequel, the acceptors will adopt this new label and start with low integer
values: the system will then behave as an initialized Paxos instance. Therefore,
if the proposer collects enough information in its history Hcl about the labels
present in the system, then the proposer can produce a greatest label, and
from there on, the system will behave as in the original Paxos. Note that the
proposer does not actually need to collect all the initially hidden labels in the
system. If a canceling label remains hidden for a practically infinite period of
time, then it does no harm to the system. If this label shows up, the proposer
notices it, and produces a greater label.

Unfortunately, one cannot require that a unique replica plays the role of a
proposer because of crash failures. If we use the previous technique in case of
many proposers, then the proposers will compete in trying to get the greatest
label. This prevents the system to reach a practically infinite period during
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Figure 8.2: Comparison of tags - Invalid entries are darkened.

which the label is stable, and the integer fields behave as the ballot numbers
in the original Paxos.

To avoid the interferences between the proposers, we introduce slightly more
intricate data structure called tag. Roughly speaking, a tag v is a vector indexed
by the proposers identifiers. The entry µ of the tag v contains a label field, and
a “canceling field” used to notifies about possible canceling labels or overflows
of integer counters. The basic idea is that the proposer whose identifier is µ
is the unique proposer producing new labels in the entry µ of the tags. Each
proposer µ then tries, as in the single proposer case, to get a greatest label for
the entry µ only.

Similarly to the single proposer case, we will define a ballot number as a
couple (v, t) where v is a tag, and t a bounded integer. To compare such ballot
numbers, it remains to define how to compare tags. To do so, we assume that
the identifiers are totally ordered. The basic idea is that if the two proposers
λ < µ manage to find greatest labels in their respective entries, then they
should both use the entry λ = min(λ, µ) as their “active entry”. Put another
way, if the active entry of a tag refers to the first non-canceled entry, then we
compare tags as in Fig. 8.2. More precisely, if the active entry of the tag v is
located after the active entry of the tag v′, then v ≺ v′. If the active entries
refer to the same place, then we simply compare the corresponding labels.

Thanks to this comparison relation, a proposer will seek to adopt tags
which have the “leftmost” active entry. Fig. 8.3 illustrates how the tags propa-
gate among many proposers. Time goes downwards and the arrows represent
exchanges of messages. The processors have, as ballot numbers, couples (v, t)
where v is a tag, and t a bounded integer. A first proposer uses a tag v and
manages to impose v to the acceptors. Meanwhile, a second proposer awakes
with a greater tag v′, and the acceptors adopt it. Then the former proposer
also adopts the tag v′.
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Figure 8.3: Paxos message flow – ballot number = (tag, integer)
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Chapter 9

Practically Self-Stabilizing
Replicated State-Machine

In this chapter, we give a more detailed description of our algorithm.

9.1 Data structures

Given a positive integer b, a b-bounded integer, or simply a bounded integer,
is any non-negative integer less than or equal to 2b. A finite labeling scheme
is a 4-tuple L = (L,≺, d, ν) where L is a finite set whose elements are called
labels, ≺ is a partial relation on L that is irreflexive (l 6≺ l) and antisymmetric
(6 ∃(l, l′) l ≺ l′ ∧ l′ ≺ l), d is an integer, namely the dimension of the labeling
scheme, and ν is the label increment function, i.e., a function that maps any
finite set A of at most d labels to a label ν(A) such that for every label l in A,
we have l ≺ ν(A). We denote the reflexive closure of ≺ by 4. The definition of
a finite labeling scheme imposes that the relation ≺ is not transitive. Hence,
it is not a preorder relation. Given a label l, a canceling label for l is a label
cl such that cl 64 l. See Sec. 9.3 for a concrete construction of a finite labeling
scheme of any dimension.

A tag is a vector v[µ] = (l cl) where µ ∈ Π is a processor identifier, l is a
label, cl is either the null symbol ⊥, the overflow symbol∞ or a canceling label
for l. The entry µ in v is said to be valid when the corresponding canceling
field is null, v[µ].cl = ⊥. If v has at least one valid entry, we denote by χ(v)
the first valid entry of v, i.e., the smallest identifier µ such that v[µ] is valid. If
v has no valid entry, we set χ(v) = ω where ω is a special symbol (not in Π).
Given two tags v and v′, v ≺ v′ if either χ(v) > χ(v′) or χ(v) = χ(v′) = µ 6= ω
and v[µ].l < v′[µ].l (see Fig. 8.2 in Chap. 8, Sec. 8.3). We write v ' v′ when
χ(v) = χ(v′) = µ and v[µ] = v′[µ]. We write v 4 v′ when either v ≺ v′ or
v ' v′.

A fifo label history H of size d, is a vector of size d of labels along with
an operator + defined as follows. Let H = (l1, . . . , ld) and l be a label. If l
does not appear in H, then H + l = (l, l1, . . . , ld−1), otherwise H + l = H.
We define the tag storage limit K and the canceling label storage limit Kcl by
K = n+ C n(n−1)

2 and Kcl = (n+ 1)K.
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9.2 The Algorithm

In this section, we describe the practically self-stabilizing Paxos algorithm. In
its essence, our algorithm is enhances the Paxos scheme with the tag system
in order to cope with overflows.

The variables are presented in Alg. 13. The clients are not modeled here;
we simply assume that each active proposer α can query a stream queueα to
get a client request to propose. The variables are divided in three sections
corresponding to the different Paxos roles: proposer, acceptor, learner. In each
section, some variables are marked as Paxos variables while the others are
related to the tag system.

The message flow is similar to Paxos. When a proposer λ becomes active,
it executes a prepare phase (phase 1), trying to recruit a majority of acceptors.
An acceptor α is recruited if the proposer ballot number is (strictly) greater
than its own ballot number. In this case, it adopts the ballot number. It also
replies (positively or negatively) to the leader with its latest accepted sequence
of requests acceptedα along with the corresponding (integer) ballot number.
After recruiting a quorum of acceptors, the proposer λ records the latest se-
quence (w.r.t. the associated integer ballot numbers) of requests accepted by
them in its variable proposed proposedλ. If this phase 1 is successful, the pro-
poser λ can execute accept phases (phase 2) for each request received in queueλ.
For each such request r, the proposer λ appends r to its variable proposedλ,
and tell the acceptors to accept proposedλ. An acceptor accepts the proposal
proposedλ when the two following conditions are satisfied: (1) the proposer’s
ballot number is greater than or equal to its own ballot number, and (2) if
the ballot integer associated with the lastly accepted proposal is equal to the
proposer’s ballot integer, then proposedλ is an extension of the lastly accepted
proposal. Roughly speaking, this last condition avoids the acceptor to accept
an older (hence shorter) sequence of request. In any case, the acceptor replies
(positively or negatively) to the proposer. The proposer λ plays the role of a
special learner in the sense that it waits for positive replies from a quorum of
acceptors, and, sends the corresponding decision message. The decision proce-
dure when receiving a decision message is similar to the acceptation procedure
(reception of a p2a message), except that if the acceptor accepts the proposal,
then it also learns (decides on) this proposal and execute the corresponding
new requests.

We now describe the treatment of the variables related to the tag system.
Anytime a processor α (as an acceptor, learner or proposer) with tag vα re-
ceives a message with a tag v′, it updates the canceling label fields before
comparing them, i.e., for any µ, if vα[µ].l (or vα[µ].cl) is a label that cancels
v′[µ].l, or vα[µ].cl =∞ is the overflow symbol, then the field v′[µ].cl is updated
accordingly1, and vice versa. Also, if the processor α notices an overflow in its
own variables (e.g. its ballot integer, or one of the request sequence variables,
has reached the upper bound), it sets the overflow symbol ∞ in the cancel-
ing field of the first valid entry of the tag. If after such an update, the label
vα[α].l is canceled, then the corresponding canceling label is added to Hcl

α as
well as the label vα[α].l, and vα[α].l is set to the new label ν(Hcl

α ) created from

1i.e., the field v′[µ].cl is set to vα[µ].(l or cl). In case, there is a canceling label and the
overflow symbol, the canceling label is preferred.
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the labels in Hcl
α with the label increment function. The purpose of Hcl

α is to
record enough canceling labels for the proposer to produce a greatest label. In
addition, if, after the update, it appears that vα 4 v′, then α adopts the tag
v′, i.e., it copies the content of the first valid entry µ = χ(v′) of v′ to the same
entry in vα (assuming µ < α). Doing so, it also records the previous label in
vα in the label history Hα[µ]. If there is a label in Hα[µ] that cancels vα[µ].l,
then the corresponding field is updated accordingly. The purpose of Hα[µ] is
to avoid cycle of labels in the entry µ of the tag. Recall that the comparison
between labels is not a preorder. In case µ = α, then α uses the label increment
function on Hcl

α to produce a greater label as above.
We say that there is an epoch change in the tag vλ if either the first valid

entry χ(vλ) has changed, or the first valid entry has not changed but the
corresponding label has changed. Whenever there is an epoch change in the
tag vλ the processor cleans the Paxos related variables. For a proposer λ, this
means that the proposer ballot integer tpλ is reset to zero, the proposed requests
proposedλ to the empty sequence; in addition, the proposer proceeds to a new
prepare phase. For an acceptor (and learner) α, this means that the acceptor
ballot integer is reset to zero, the sequences acceptedα and learnedα are reset
to the empty sequence, and the local state q∗α is reset to the predefined initial
state of the state-machine.

The pseudo-code in Algorithms 14 and 15 sums up the previous description.
Note that, the predicate (vα, tα) < (vλ, tλ) (resp. (vα, tα) ≤ (vλ, tλ)) means
that either vα ≺ vλ, or vα ' vλ and tα < tλ (resp. vα ≺ vλ, or vα ' vλ and
tα ≤ tλ).

Remark 4. Note that, in our algorithm, the replicas agree on growing se-
quences of requests, of length at most 2b. We do not focus on optimizations
for the sake of simplicity. Yet, a means to control the length of the sequences
would be to replace a prefix of request sequence by the state reached from the
initial state when applying the prefix. Then the replicas can agree on (possibly
conflicting) states by the latest found in a quorum.

9.3 Bounded Labeling Scheme

In this section, we give a concrete implementation of the bounded labeling
scheme used in our algorithm. This construction comes from [4].

First, consider the set of integers X = {1, 2, ..., d2 + 1}. We define the set
L to be the set of every tuple (z,A) where z ∈ X is the sting, and A ⊂ X with
|A| ≤ d is called the antistings. The relation ≺ is defined as follows

l = (z,A) ≺ l′ = (z′, A′)⇔ (z ∈ A′) ∧ (z′ 6∈ A) (9.1)

The function ν is defined as follows. Given r labels (s1, A1), . . . , (sr, Ar) with
r ≤ d, the label ν(l1, . . . , lr) = (s,A) is given by

s = any element in X − (A1 ∪ · · · ∪Ar) (9.2)
A = {s1, . . . , sr} (9.3)

The function is well-defined since r ≤ d and |A1 ∪ · · · ∪ Ar| ≤ d2 < |X|. In
addition, for every i, we have s 6∈ Ai and si ∈ A, thus (si, Ai) ≺ (s,A).

103



9. Practically Self-Stabilizing Replicated State-Machine

Algorithm 13: Variables at processor α
1 (tag system)
2 vα : tag
3 canceling label history, Hcl

α : fifo history of size (K + 1)Kcl

4 for each µ ∈ Π, label history, H[µ] : fifo history of size K
5 (proposer)
6 client requests, queueα : queue (read-only)
7 [Paxos] proposer ballot integer, tpα : bounded integer
8 [Paxos] proposed requests, proposedα : requests sequence of size ≤ 2b

9 (acceptor)
10 [Paxos] acceptor ballot integer, taα : bounded integer
11 [Paxos] accepted requests, acceptedα = (t, seq) : t bounded integer,

seq requests sequence of size ≤ 2b

12 (learner)
13 [Paxos] learned requests, learnedα : requests sequence of size ≤ 2b

14 [Paxos] local state, q∗α : state of the state-machine
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Algorithm 14: Prepare phase (Phase 1)
1 Processor λ becomes a proposer:
2 increment tλ
3 if tλ reaches 2b then
4 set vλ[χ(vλ)].cl to ∞
5 update the entry vλ[λ] with Hcl if it is invalid
6 clean the proposer Paxos variables
7 broadcast 〈p1a, vλ, tλ, λ〉
8 collect replies R from some quorum Q
9 update (if necessary) the tag vλ and the label histories

10 if no epoch change in vλ and all replies are positive then
11 order R with lexicographical order (acceptedα.t, |acceptedα.seq|)
12 proposedλ ← acceptedα.seq the maximum in R (break ties if

necessary)
13 if proposedλ has reached max length then
14 set vλ[χ(vλ)].cl to ∞
15 update the entry vλ[λ] with Hcl if it is invalid
16 clean the Paxos variables
17 repeat phase 1

18 else
19 if epoch change in vλ then
20 clean the Paxos variables
21 repeat phase 1

22 Processor α receives p1a message from λ:
23 update canceling fields in (vα, vλ)
24 if (vα, tα) < (vλ, tλ) then
25 adopt vλ, tλ
26 if epoch change in vα then
27 clean Paxos variables
28 reply to λ, 〈p1b, vα, tα, acceptedα, α〉
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Algorithm 15: Accept phase (Phase 2) and Decision
1 Once λ gets requests in queueλ:
2 append requests to proposedλ
3 broadcast 〈p2a, vλ, tλ, proposedλ〉
4 collect replies R from some quorum Q
5 update (if necessary) the tag vλ and the label histories
6 if no epoch change in vλ and all replies are positive then
7 broadcast 〈dec, vλ, tλ, proposedλ〉
8 else
9 if epoch change in vλ then clean the Paxos variables

10

11 proceed to phase 1
12 Processor α receives p2a or dec message from λ:
13 update canceling fields in (vα, vλ)
14 if (vα, tα) ≤ (vλ, tλ) then
15 adopt vλ, tλ
16 if epoch change in vα then clean the Paxos variables
17

18 if acceptedα.t < tλ or acceptedα.seq is a prefix of proposedλ
then

19 accept (tλ, proposedλ)
20 if it is a dec message then
21 learn proposedλ
22 update q∗α by executing the new requests
23 if it is a p2a message then
24 reply to λ, 〈p2b, vα, tα, acceptedα, α〉
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Chapter 10

Analysis

In this chapter, we prove the main properties of our algorithm. We first present
some basic and useful lemmas in Sec. 10.1. In Sec. 10.2, we prove that there
exists a practically infinite epoch at at least one proposer (Prop. 25). This
epoch is safe in a specific sense (Def. 10). In Sec. 10.3, we use the previous result
to exhibit a globally defined segment of execution (Def. 20) and prove that,
within this segment of execution, the safety property is ensured (Prop. 27), in
the sense that, if two sequences of requests are decided on within this segment,
then one of them is the prefix of the other. Finally, in Sec. 10.4, we exhibit
a simple, but non-trivial, self-stabilizing implementation of a failure detector
that works under a partial synchrony assumption.

10.1 Basics

The pigeon-hole principle is a well-known combinatorial argument used to prove
the existence of an object.

Lemma 20 (Pigeon-hole Principle). Consider a sequence u = (ui)1≤i≤N such
that ∀1 ≤ i ≤ N, ui ∈ {0, 1}, and N = (n + 1)m for some n,m ∈ N − {0}.
Assume that the cardinal of {i | ui = 1} is less than or equal to n. Then there
exists 1 ≤ i0 ≤ N such that for every i0 ≤ i ≤ i0 +m− 1, ui = 0.

Proof. Divide the sequence u in successive subsequences σj , 1 ≤ j ≤ n+1 such
that each σj length is m. If for every 1 ≤ j ≤ n+ 1, the sequence σj contains
at least one 1, then the number of 1 appearing in u is at least n + 1, which
leads to a contradiction. Hence, there is some j0 such that the sequence σj
only contains 0.

Since the initial configuration of an execution is arbitrary, we do not know
the initial values of the states, the messages, and, in particular, the label values
they contain. The following lemma gives a bound on the maximum number of
different label values present in a configuration. Given any configuration γ of
the system and any processor identifier µ, let S(γ) and Scl(µ, γ) be two sets
as follows. The set S(γ) is the set of every tag present either in a processor
memory or in some message in a communication channel, in the configuration
γ. The set Scl(µ, γ) denotes the collection of labels l such that either l is the
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value of the label field x[µ].l for some tag x in S(γ), or l appears in the label
history Hα[µ] of some processor α, in the configuration γ.

Lemma 21 (Storage Limits). For every configuration γ and every identifier
µ, we have |S(γ)| ≤ K and |Scl(µ, γ)| ≤ Kcl. In particular, the number of label
values x[µ].l with x in S(γ) is less than or equal to K.

Proof. Consider a configuration γ. For each processor α, there is one tag value
in the processor state γ(α) of α. For each communication channel (α, β), there
are at most C different messages in the channel state γ(α, β); each of them have
one tag. Hence, the maximum number of tags present in the configuration γ
is n plus C times the number of communication channels. The network being
complete, the number of communication channels is C n(n−1)

2 , thus we have
K ≥ |S(γ)|. For every α, the maximum size of the history Hα[µ] is K. Hence,
the size of Scl(µ, γ) is bounded above by K (labels x[µ].l for x in S(γ)) plus K
times the number of processors (labels from Hα[µ] for every processor α), i.e.,
(n+ 1) ·K = Kcl.

10.2 Tag Stabilization

Definitions

As state in the introduction, our approach relies on a clean reset mechanism
of the Paxos related variables. These resets occur when the corresponding tag
undergoes a change of label or a change of active entry. We refer to such events
as interrupts. The following definition classify the possible kinds of interrupts.

Definition 8 (Interrupt). Let λ be any processor (as a proposer, or an ac-
ceptor) and consider a local execution segment σ = (γk(λ))k0≤k≤k1 at λ. We
denote by vkλ the λ’s tag in γk(λ). We say that an interrupt has occurred at
position k in the local subexecution σ when one of the following happens

• µ < λ, type [µ,←] : the first valid entry moves to µ such that µ =
χ(vk+1

λ ) < χ(vkλ), or the first valid entry does not change but the label
does, i.e., µ = χ(vk+1

λ ) = χ(vkλ) and vkλ[µ].l 6= vk+1
λ [µ].l.

• µ < λ, type [µ,→] : the first valid entry moves to µ such that µ =
χ(vk+1

λ ) > χ(vkλ).

• type [λ,∞] : the first valid entry is the same but there is a change of label
in the entry λ due to an overflow of one of the Paxos variables; we then
have χ(vk+1

λ ) = χ(vkλ) = λ and vkλ[λ].l 6= vk+1
λ [λ].l.

• [λ, cl] : the first valid entry is the same but there is a change of label in
the entry λ due to the canceling of the corresponding label; we then have
χ(vk+1

λ ) = χ(vkλ) = λ and vkλ[λ].l 6= vk+1
λ [λ].l.

For each type [µ, ∗] (µ ≤ λ) of interrupt, we denote by |[µ, ∗]| the total number
(possibly infinite) of interrupts of type [µ, ∗] that occur during the local execution
segment σ.
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If there is an interrupt like [µ,←], µ < λ, occurs at position k, then nec-
essarily there is a change of label in the field vλ[µ].l (due to the adoption of
received tag). In addition, the new label l′ is greater than the previous label
l, i.e., l ≺ l′. Also note that, if χ(vkλ) = λ, the proposer λ never copies the
content of the entry λ of a received tag, say v′, to the entry λ of its tag, even
if vkλ[λ].l ≺ v′[λ].l. New labels in the entry λ are only produced with the label
increment function applied to the union of the current label and the canceling
label history Hcl

λ .
It is now possible to formally define an epoch as a local execution at some

processor between two interrupts.

Definition 9 (Epoch). Let λ be a processor. An epoch σ at λ is a maximal1
local execution segment at λ such that no interrupts occur at any position in
σ except for the last position. By the definition of an interrupt, all the tag’s
values within a given epoch σ at λ have the same first valid entry, say µ, and the
same corresponding label, i.e., for any two processor states that appear in σ, the
corresponding tag values v and v′ satisfies χ(v) = χ(v′) = µ and v[µ].l = v′[µ].l.
We denote by µσ and lσ the first valid entry and the corresponding label common
to all the tag values in σ.

If there is an epoch σ at processor λ such that µσ = λ and λ has produced
the label lσ, then necessarily, at the beginning of σ, the Paxos variables have
been reset. However, other processors may already be using the label lσ with,
for example, arbitrary ballot integer value. Such an arbitrary value may be
the cause of the overflow interrupt at the end of σ. The definition of a h-safe
epoch ensures that the epoch is truly as long as counting from h to 2b.

Definition 10 (h-Safe Epoch). Consider an execution E and a processor λ.
Let Σ be an execution segment in E such that the local execution segment
σ = Σ(λ) is an epoch at λ. Let γ∗ be the configuration of the system right
before Σ, and h be a bounded integer. The epoch σ is said to be h-safe when the
interrupt at the end of σ is due to an overflow of one of the Paxos variables.
In addition, for every processor α (resp. communication channel (α, β)), for
every tag x in γ∗(α) (resp. γ∗(α, β)), if x[µσ].l = lσ then any corresponding
integer variables (ballot integers, or lengths of request sequences) have values
less than or equal to h.

Results

Since each processor λ keeps looking for a greatest label in the entry λ of its
tag, the first valid entry of its tag is eventually always located before the entry
λ.

Lemma 22. Let λ be any processor. Then the first valid entry of its tag is
eventually always located at the left of the entry indexed by λ, i.e., χ(vλ) ≤ λ.

Proof. This comes from the fact that whenever the entry vλ[λ] is invalid, the
processor λ produces a new label in vλ[λ]. Once χ(vλ) ≤ λ, every subsequent
tag values is obtained as above, or by copying the content of a valid entry
µ < λ of some tag to the entry vα[µ]. Hence the first valid entry remains
located before the entry λ.

1For the inclusion of local execution segments.
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Thanks to this lemma, for every processor λ, it is now assumed, unless
stated explicitly, that the entry χ(vλ) is always located before the entry λ, i.e.,
χ(vλ) ≤ λ.

The processor λ is not responsible for the creation of labels in any entry
µ < λ. Yet, since the label comparison operator is not transitive, it is possible
for the label field in the entry µ to follow a cycle of labels. Lem. 23 gives
information about the length of such cycles. Indeed, since the label history
Hλ[µ] records the latest values that were present in the label field of the entry
µ, the cycle length must be greater than the history size. The history size is
chosen so that the proposer µ must have produced a label meanwhile.

Lemma 23 (Cycle of Labels). Consider an execution segment E, a processor
λ and an entry µ < λ in the tag variable vλ. The label value in vλ[µ].l can
change during E and we denote by (li)1≤i≤T+1 for the sequence of successive
distinct label values that are taken by the label vλ[µ].l in the entry µ during E.
We assume that the first T labels l1, . . . , lT are different from each other, i.e.,
for every 1 ≤ i < j ≤ T , li 6= lj. If T > K, then at least one of the label
li has been produced2 by the processor µ during E. If T ≤ K and lT+1 = l1,
then when the processor λ adopts the label lT+1 in the entry µ of its tag vλ, the
entry µ becomes invalid.

Proof. First note that a processor adopts a new label in the entry µ of one of
its tag, only when the old label is less than the new label. Hence, we have for
every 1 ≤ i ≤ T , li ≺ li+1 and, in particular, if l1 = lT+1, l2 64 lT+1. Assume
T > K. Since in every configuration there is at most K tags in the system,
since µ is the only source of labels in the entry µ, and since λ records the last
K label values in the history Hλ[µ], the fact that λ has seen more than K
different label values in the entry µ is possible only if µ has produced at least
one label during E. If T ≤ K and l1 = lT+1, i.e., there is a cycle of length T ,
then when λ adopts the label lT+1 = l1, the label history Hλ[µ] contains the
whole sequence l1, . . . , lT since its size is K. Hence, λ sees the label l2 that
cancels the label lT+1, and the entry µ becomes invalid.

Thanks to this control on the length of the cycles, we can compute a bound
on the number of interrupts which induce a label change in the entry µ.

Lemma 24 (Counting the Interrupts). Consider an infinite execution E∞ and
let λ be a processor identifier such that every processor µ < λ produces labels
finitely many times. Consider an identifier µ < λ and any processor ρ ≥ λ.
Then, the local execution E∞(ρ) at ρ induces a sequence of interrupts such that
|[µ,←]| ≤ Rµ = (Jµ + 1) · (K + 1) − 1 where Jµ is the number of times the
processor µ has produced a label since the beginning of the execution.

Proof. We denote by (vkρ)k∈N the sequence of ρ’s tag (vρ) values appearing in
the local execution E∞(ρ). Assume on the contrary that |[µ,←]| is greater
than Rµ. Note that after an interrupt like [µ,←], the first valid entry χ(vρ) is
equal to µ. In particular, the entry µ is valid after such interrupts. Also, the
label value in the entry vλ[µ].l does not change after an interrupt like [µ,→].

2Precisely, it has invoked the label increment function to update the entry µ of its tag
vµ.
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We define an increasing sequence of integers (f(i))1≤i≤Rµ+1 such that the i-
th interrupt like [µ,←] occurs at f(i) in the sequence (vkρ)k∈N. The sequence
li = v

f(i)+1
ρ [µ].l is the sequence of distinct labels successively taken by vρ[µ].l.

We have li ≺ li+1 for every 1 ≤ i ≤ Rµ.
Divide the sequence (li)1≤i≤Rµ+1 in successive segments uj , 1 ≤ j ≤ Jµ+1,

of size K+1 each. For any j, if all the K+1 labels in uj are different, then, by
Lem. 23, the processor µ has produced at least one label. Since the processor
µ produces labels at most Jµ many times, there is some sequence uj0 within
which some label appears twice. In other words, in uj0 there is a cycle of length
less than or equal to K. By Lem. 23, this implies that the entry µ becomes
invalid after an interrupt like [µ,←]; this is a contradiction.

We are now able to prove the main proposition of this section, i.e., the
existence of a 0-safe epoch at a processor.

Proposition 25 (Existence of a 0-Safe Epoch). Consider an infinite execution
E∞ and let λ be a processor such that every processor µ < λ produces labels
finitely many times. We denote by |λ| the number of identifiers µ ≤ λ, Jµ for
the number of times a proposer µ < λ produces a label and we define

Tλ = (
∑
µ<λ

Rµ + 1) · (|λ|+ 1) · (Kcl + 1) · (K + 1) (10.1)

where Rµ = (Jµ+1)·(K+1)−1. Assume that there are more than Tλ interrupts
at processor λ during E∞ and consider the concatenation Ec(λ) of the first Tλ
epochs, Ec(λ) = σ1 . . . σTλ . Then Ec(λ) contains a 0-safe epoch.

Proof. By Lem. 24, we have
∑
µ<λ |[µ,←]| ≤

∑
µ<λRµ in the local execution

E∞(λ), a fortiori in the execution Ec(λ). By the pigeon-hole principle, there
must be a local execution segment E1(λ) = σi . . . σi+X−1 in Ec(λ), where
X = (|λ| + 1) · (Kcl + 1) · (K + 1), that contains only interrupts like [µ,→],
[λ,∞] or [λ, cl]. Naturally, the number of interrupts like [µ,→] in E1(λ) is less
than or equal to |λ|. Hence, another application of the pigeon-hole principle
gives a local execution segment E2(λ) = σj . . . σj+Y−1 in E1(λ) where Y =
(Kcl + 1) · (K + 1) that contains only interrupts like [λ,∞] or [λ, cl].

Assume first that within E2(λ), there is a execution segment E3(λ) =
σk . . . σk+Z−1 where Z = K + 1 in which there are only interrupts like [λ,∞].
Since K + 1 is less than or equal to the size of the canceling label history3, we
have lσk , . . . , lσh−1 ≺ lσh , for every k < h < k + Z. In particular, all the labels
lσk , . . . , lσk+Z−1 are different. Since Z = K + 1 and since there is at most K
tags in a given configuration, there is necessarily some k ≤ h < k + Z such
that the label lσh does not appear4 in the configuration γ∗ that corresponds to
the last position in σh−1. Also, by construction, we have µσh = λ and σh ends
with an interrupt like [λ,∞]. Hence, σh is 0-safe.

Now, assume that there is no execution segment E3 in E2 as in the previous
paragraph. This means that if we look at the successive interrupts that occur
during E2(λ), between any two successive interrupts like [λ, cl], there is at most

3Recall that the canceling label history also records the label produced in the entry λ.
4Note that λ is the only processor to produce labels in entry λ, so during the execution

segment that corresponds to an epoch σh at λ, the set of labels in the entry λ of every tag
in the system is non-increasing.
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K interrupts like [λ,∞]. Since the length of E2(λ) is (Kcl + 1) · (K + 1), there
must be at least Kcl+1 interrupts like [λ, cl]. Let E4(λ) be the local execution
segment that starts with the epoch associated with the first interrupt like [λ, cl]
and ends with the epoch associated with the interrupt [λ, cl] numbered Kcl.
Let σ in E2(λ) be the epoch right after E4(λ). By construction, there is at
most Kcl · (K+ 1) epochs in E4(λ) which is the size of the history Hcl

λ . Hence,
at the beginning of σ, the history Hcl

λ contains all the labels the processor λ
has produced during E4 as well as all the Kcl (exactly) labels it has received
during E4. Since there is at most Kcl candidates label for canceling in the
system, necessarily, in the first configuration of σ, the history Hcl

λ contains
every candidates label for canceling present in the whole system. And since
lσ is greater, by construction, than every label in the history Hcl

λ , lσ was not
present in the entry λ of some tag in the configuration that precedes σ and it
cannot be canceled by any other label present in the the system. In addition,
by construction, E2 only contains interrupts like [λ,∞] or [λ, cl]. From what
we said about lσ, the interrupt at the end of σ is necessarily [λ,∞]. In other
words, the epoch σ is a 0-safe epoch.

Note that the epoch found in the proof is not necessarily the unique 0-
safe epoch in Ec(λ). The idea is only to prove that there exists a practically
infinite epoch. If the first epoch σ at λ ends because the corresponding label
lσ in the entry µσ gets canceled, but lasts a practically infinite long time, then
this epoch can be considered, from an informal point of view, safe. One could
worry about having only very “short” epochs at λ due to some inconsistencies
(canceling labels or overflows) in the system. Prop. 25 shows that every time
a “short” epoch ends, the system somehow loses one of its inconsistencies, and,
eventually, the proposer λ reaches a practically infinite epoch. Note also that a
0-safe epoch and a 1-safe or a 2-safe epoch are, in practice, as long as each other.
Indeed, any h-safe epoch with h very small compared to 2b can be considered
practically infinite. Whether h can be considered very small depends on the
concrete timescale of the system. Besides, every processor α always checks that
the entry α is valid. Doing so the processor α still works to find a “winning”
label for its entry α. In that case, if the entry µ becomes invalid, then the entry
α is ready to be used, and a safe epoch can start without waiting any longer.

10.3 Safety

Definitions

To prove the safety property within an execution segment, we have to focus on
the events that correspond to deciding a proposal, e.g., (v, t, p) at processor α
(v being a tag, t a ballot integer, p a sequence of requests). Such an event may
be due to corrupted messages in the communication channels an any stage of
the Paxos algorithm. Indeed, a proposer computes the proposal it will send
in its phase 2 thanks to the replies it has received at the end of its phase 1.
Hence, if one of these messages is corrupted, then the safety might be violated.
However, there is a finite number of corrupted messages since the capacity of the
communication channels is finite. To formally deal with these issues, we define
the notion of scenario that corresponds to specific chain of events involved in
the Paxos algorithm. Consider an execution segment E = (γk)k0≤k≤k1 . A
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scenario in E is a sequence U = (Ui)0≤i<I where each Ui is a collection of
events in E. In addition, every event in Ui happens before every event in Ui+1.

Definition 11 (Phase Scenario). Consider a proposer ρ, an acceptor α, quo-
rums S and Q of acceptors, a tag v, a ballot integer t, and a sequence of requests
p.

A phase 1 scenario is defined as follows. The proposer ρ broadcasts a mes-
sage p1a containing the tag v, and ballot integer t. Every acceptor in the
quorum S receives this message and adopts5 the tag v. Every processor α in
the quorum S replies to the proposer ρ a p1b message telling they adopted the
couple (v, t), and containing the last proposal they accepted. These messages
are received by ρ. We denote this scenario by ρ p1a−−→ (S, v, t)

p1b−−→ ρ.
A phase 2 scenario with acceptation is defined as follows. The proposer

ρ broadcasts a p2a message containing the tag v, the ballot integer t, and the
proposed sequence of requests p. The acceptor α accepts the proposal (v, t, p).
We denote this scenario by ρ p2a−−→ (α, v, t, p).

A phase 2 scenario with quorum acceptation is defined as follows. The pro-
poser ρ broadcasts a p2a message containing the tag v, the ballot integer t, and
the proposed sequence of requests p. Every acceptor in the quorum Q accepts
the proposal (v, t, p). Every acceptor α in the quorum Q sends to the proposer
ρ a p2b message telling that it has accepted the proposal (v, t, p). The proposer
ρ receives these messages. We denote this scenario by ρ p2a−−→ (Q, v, t, p)

p2b−−→ ρ.
A phase 2 scenario with decision is defined as follows. The proposer ρ

broadcasts a p2a message containing the tag v, the ballot integer t, and the
proposed sequence of requests p. Every acceptor in the quorum Q accepts the
proposal (v, t, p). Every acceptor α in the quorum Q sends to the proposer ρ a
p2b message telling that it has accepted the proposal (v, t, p). The proposer ρ
receives these messages. The proposer ρ sends a decision message containing
the proposal (v, t, p). The processor α receives this message, accepts and decides
on the proposal (v, t, p). We denote this scenario by ρ

p2a−−→ (Q, v, t, p)
p2b−−→

ρ
dec−−→ (α, v, t, p).
In all the previous cases, we say that the phase scenarios are conducted by

the proposer ρ and use the ballot (v, t).

A simple acceptation scenario is simply a basic execution of the Paxos
algorithm that leads a processor to either accept a proposal, or decide on a
proposal (accepting it by the way).

Definition 12 (Simple Acceptation Scenario). A simple acceptation scenario
is the concatenation of a phase 1 scenario, followed by a finite number of phase
2 scenarios with quorum acceptation, and ending with a phase 2 scenario with
either acceptation, or decision; all the phase scenarios being conducted by the
same proposer ρ, and using the same ballot (v, t). Let S be the quorum of accep-
tors in the phase 1 scenario, p be the sequence of requests accepted (or decided
on) in the last event of the scenario, and α be the corresponding acceptor. If
the last phase scenario is a phase scenario with acceptation, then we denote the
simple acceptation scenario by ρ p1a−−→ (S, v, t)  ρ

p2a−−→ (α, v, t, p). If the last

5Recall that this means the acceptor, say α, copies the entry v[χ(v)] in the entry vα[χ(v)].
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phase scenario is a phase scenario with decision, then we denote the simple ac-
ceptation scenario by ρ p1a−−→ (S, v, t) ρ

p2a−−→ (Q, v, t, p)
p2b−−→ ρ

dec−−→ (α, v, t, p).
When we want to indicate that both cases are possible, we simply denote the
simple acceptation scenario by (ρ, S, v, t) (α, v, t, p).

Since the initial configuration is arbitrary, there is necessarily a prefix of the
execution during which the behaviour of the system is unknown. In particular,
it may produce incoherent messages that can alter future events. We refer to
these as fake messages.

Definition 13 (Fake Message). Given an execution segment E = (γk)k0≤k≤k1 ,
a fake message relative to E, or simply a fake message, is a message that is in
the communication channels in the first configuration γk0 in E.

This definition of fake messages comprises the messages at the beginning
of E that were not sent by any processor, but also messages produced in the
prefix of execution that precedes E. We now define the analogues of phase
scenarios when a fake message is involved.

Definition 14 (Fake Phase Scenario). Consider a proposer ρ, an acceptor α,
quorums S and Q of acceptors, a tag v, a ballot integer t, and a sequence of
requests p. Fix an execution segment E. A fake phase scenario relative to E is
one of the following scenario.

(Fake phase 1 scenario) The proposer ρ sends a p1a message with ballot
(v, t). It receives positive replies from a quorum S, one of these replies at least
being fake (i.e. it was not actually sent by an acceptor). We denote this fake
phase scenario by ρ p1a−−→ (S, v, t)

fake p1b−−−−−−→ ρ.
(Fake phase 2 scenario with acceptation) The acceptor α receives a fake p2a

with proposal (v, t, p) that seems to come from the processor ρ. The acceptor α
accepts the proposal. We denote this scenario by ρ fake p2a−−−−−−→ (α, v, t, p).

(Fake phase 2 scenario with quorum acceptation) The proposer ρ sends a
p2a message with proposal (v, t, p). The proposer ρ receives positive replies from
a quorum Q, one of these replies, at least, being fake. Then ρ sends a decision
message with proposal (v, t, p) to the acceptor α, and α decides accordingly. We
denote this scenario by ρ p2a−−→ (Q, v, t, p)

fake p2b−−−−−−→ ρ
dec−−→ (α, v, t, p).

(Fake phase 2 scenario with decision) The acceptor α receives a fake de-
cision message with proposal (v, t, p) which seems to come from the proposer
ρ. The acceptor α decides accordingly. We denote this scenario by ρ fake dec−−−−−−→
(α, v, t, p).

Definition 15 (Simple Fake Acceptation Scenario). A simple fake acceptation
scenario is either a fake phase 2 scenario with acceptation, a fake phase 2
scenario with quorum acceptation, a fake phase 2 scenario with decision, or the
concatenation of a fake phase 1 scenario, followed by a finite number of (non-
fake) phase 2 scenarios with quorum acceptation, and ending with a (non-fake)
phase 2 scenario with either an acceptation, or a decision; all the scenarios
being conducted by the same proposer ρ, and using the same ballot (v, t). We
often denote this kind of scenarios by fake (α, v, t, p) where (α, v, t, p) refers
to the last acceptation (or decision) event.
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Figure 10.1: Composition of scenarios - Time flows downward, straight lines
are local executions, arrows represent messages.

A simple fake acceptation scenario is somehow similar to a simple accepta-
tion scenario except for the fact that at least one fake message (relative to the
given execution segment) is involved during the scenario.

Definition 16 (Composition). Consider two simple scenarios

U = X  (α1, v1, t1, p1)

V = (ρ2, S2, v2, t2) (α2, v2, t2, p2)

where X = fake or X = (ρ1, S1, v1, t1) such that the following three conditions
are satisfied. (1) The processor α1 belongs to S2 (2) Let e2 be the event that
corresponds to α1 sending a p1b message in scenario V . Then the event “α1

accepts the proposal (v1, t1, p1)” from U is the last acceptation event before e2
occurring at α1. In addition, the proposer ρ2 selects the proposal (t1, p1) as the
highest-numbered proposal at the end of the Paxos phase 1. In particular, p1 is
a prefix of p2, i.e., p1 v p2. (3) All the tags involved share the same first valid
entry, the same corresponding label.

Then the composition of the two simple scenarios is the concatenation
the scenarios U and V . This scenario is denoted by X  (α1, v1, t1, p1) →
(ρ2, S2, v2, t2)  (α2, v2, t2, p2). Note also that the ballot integer is strictly
increasing along the simple scenarios.

Definition 17 (Acceptation Scenario). Given an execution segment E, an ac-
ceptation scenario is the composition U of simple acceptation scenarios U1, . . . , Ur
where U1 is either a simple acceptation scenario or a simple fake acceptation
scenario relative to E, whereas the other are real (i.e. non-fake) simple accep-
tation scenarios. We denote it by X  (α1, v1, t1, p1) → (ρ2, S2, v2, t2)  
(α2, v2, t2, p1) . . . (ρr, Sr, vr, tr)  (αr, vr, tr, pr) where X is either fake or
some (ρ1, S1, v1, t1).

An acceptation scenario whose first simple scenario is not fake relative to E
is called real acceptation scenario relative to E. An acceptation scenario whose
first simple scenario is fake relative to E is called fake acceptation scenario
relative to E.

Given an acceptation event or a decision event, there is always at least one
way to trace back the scenario that has lead to this event. If one of these
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scenarios involve a fake message, then we cannot control the safety property.
Besides, all the tags involved share the same first valid entry µ and the same
corresponding label l. Also, the ballot integer value, as well as the sequence of
requests, is increasing along the acceptation scenario; i.e., if i < j, then ti < tj
and pi v pj .

Definition 18 (Real event). Consider an event e that corresponds to some
processor accepting a proposal, let U be the simple acceptation scenarios that
ends with the event e. The event e is said to be real relative to an execution
segment E if U is a real simple acceptation scenario relative to E. The event
e is said to be fake relative to E otherwise.

Definition 19 (Simple Scenario Characteristic). The characteristic of a simple
acceptation scenario U with tag v, ballot integer t, is the tuple char(U) =
(χ(v), v[χ(v)].l, t).

When a proposer λ manages to reach a h-safe epoch (with low h), then
λ cannot see any event that would cause an interrupt during its epoch. This
remark allows to associate to such an epoch at λ, a globally defined period of
time, namely the zone observed by λ. In Prop. 27, we show that during this
period of time, under some specific assumptions, the safety property is ensured.

Definition 20 (Observed Zone). Consider an execution E. Let λ be a proposer
and let Σ be an execution segment such that the local execution σ = Σ(λ) at λ
is a h-safe epoch. We denote by F the suffix of the execution that starts with
Σ. Assume that λ hears from at least two quorums during its epoch σ. Let Q0,
Qf be the first and last quorums respectively whose messages are processed by
the proposer λ during σ. For each processor α in Q0 (resp. Qf ), we denote
by e0(α) (resp. ef (α)) the event that corresponds to α sending to λ a message
received in the phase that corresponds to Q0 (resp. Qf ).

The zone observed by λ during the epoch σ, namely Z(F, λ, σ), is the set
of acceptation scenarios relative to F described as follows. An acceptation
scenario relative to F belongs to Z(F, λ, σ) if and only if it ends with a real
acceptation (or decision) event (relative to F ) that does not happen after the
end of σ and it contains a real simple acceptation scenario U = (ρ, S, v, t)  
(β, v, t, p) such that there exists an acceptor α in S∩Q0∩Qf at which the event
e0(α) happens before the event e that corresponds to sending a p1b message in
U , and the event e happens before the event ef (α) (cf. Figure 10.2).

Results

The following lemma highlights the causal relation between an epoch at some
proposer, and a local execution at another processor which undergoes a cycle
of labels.

Lemma 25 (Epoch and Cycle of Labels). Consider an execution E. Let λ be
a processor and consider an execution segment Σ such that the local execution
σ = Σ(λ) is an epoch at λ. We denote by F the suffix of the execution E
that starts with Σ. Consider a processor ρ and a finite execution segment G
in F as follows: G starts in Σ and induces a local execution G(ρ) at ρ such
that it starts and ends with the first valid entry of the tag vρ being equal to µσ
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Figure 10.2: Scenario (ρ, S, v, t) (β, v, t, p) in Z(F, λ, σ) - Time flows down-
ward, straight lines are local executions, curves are send/receive events, arrows
represent messages.

and containing the label lσ, and the label field in the entry vρ[µσ] undergoes
a cycle of labels during G(ρ). Assume that, if µσ < λ, the processor µσ does
not produce any label during G. Then µσ = λ and the last event of σ happens
before the last event of G(ρ).

Proof. By Lem. 23, since the entry vρ[λ] remains valid after the re-adoption of
the label l at the end of G(ρ), the proposer µσ must have produced some label
l′ during G (hence µσ = λ) that was received by ρ during G. Necessarily, the
production of l′ happens after the last event of σ at λ, thus the last event of
G(ρ) at ρ also happens after the last event of σ at λ.

We now focus on proving the safety property. The following crucial propo-
sition focuses on real simple acceptation scenarios.

Proposition 26 (Safety - Weak Version). Consider an execution E. Let λ be
a processor and let Σ be an execution segment such that the local execution σ =
Σ(λ) at λ is an h-safe epoch. We denote by F the suffix of the execution that
starts with Σ. Consider the two simple scenarios U1 = ρ1

p1a−−→ (S1, v1, t1)  

ρ1
p2a−−→ (Q1, v1, t1, p1)

p2b−−→ ρ1
dec−−→ (α1, v1, t1, p1) and U2 = (ρ2, S2, v2, t2)  

(α2, v2, t2, p2) with characteristics (µσ, lσ, t1) and (µσ, lσ, t2) respectively.
We denote by ei the acceptation event (αi, vi, ti, pi). Assume that the events

e1 and e2 occur in F and that h ≤ t1 ≤ t2. In addition, assume that, if µσ < λ,
then the processor µσ does not produce any label during F . We then have two
cases: (a) If t1 = t2, then either p1 v p2, or p2 v p1, or the last event of σ
happens before one of the event e1 or e2. (b) If t1 < t2, then p1 v p2 or the
last event of σ happens before one of the event e1 or e2.

Proof. We assume that both events e1 and e2 do not happen after the last
event of σ and we prove the result. We denote by γ∗ the configuration right
before Σ. We prove the result by induction on the value of t2.

(Bootstrapping). We first assume that t2 = t1. Recall the ballot integers
include the identifiers of the proposer, hence ρ1 = ρ2. If p1 6v p2 and p2 6v p1,
then ρ1 has sent two p2a messages with different proposals and the same ballot.
Let e and f be the events corresponding to these two sendings. None of the
events e and f occurs in the execution prefix A, otherwise, since e1 and e2
occur in F , the configuration γ∗ would contain a ballot (x, t) with x[µσ].l = lσ
and t ≥ h; this is a contradiction since σ is h-safe.
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Hence, e and f occur in F . The fact that p1 6v p2 and p2 6v p1 implies that
there must be a cycle of labels in the entry vρ1 [µσ] between the e and f . By
Lem. 25, this implies that the last event of σ happens before the event e1 or
e2; this is a contradiction. Hence, p1 v p2 or p2 v p1.

(Induction). Now, t1 < t2 and we assume the result holds for every value
t such that t1 ≤ t < t2. Pick some acceptor β in Q1 ∩ S2. From its point of
view, there are two events f1 and f2 at β that respectively correspond to the
acceptation of the proposal (v1, t1, p1) in the scenario U1 (reception of a p2a
message), and the adoption of the ballot (v2, t2) in the scenario U2 (reception
of a p1a message). First, the events f1 and f2 do not occur in the execution
prefix A. Otherwise there would exist a ballot (x, t) in γ∗ such that x[µσ].l = lσ
and t ≥ h; this is a contradiction, since σ is h-safe. Hence, f1 and f2 occur in
the suffix F .

We claim that f1 happens before f2. Otherwise, since t2 > t1, there must
be a cycle of labels in the field vβ [µσ].l. By Lem. 25, this implies that the
last event of σ happens before the event f1, and thus before the event e1;
contradiction. Hence, f1 happens before f2.

We claim that the p1b message the acceptor β has sent contains a non-null
lastly accepted proposal (t, p) such that t1 ≤ t < t2 and p1 v p. Otherwise,
there is a cycle of labels in the field vβ [µσ].l, which implies that the last event
of σ happens before the event f2, and thus before the event e2 also; this is
impossible.

Now, the proposer ρ2 receives a set of proposals from the acceptors of
the quorum S2, including at least one non-null proposal from β. Then, it
selects among the replies, the accepted proposal (tc, pc) with the highest ballot
integer, and highest request sequence length (lexicographical order). Since ρ2
has received the proposal (t, p) from β, we then have h ≤ t1 ≤ t ≤ tc < t2 and
(t, |p|) ≤ (tc, |pc|) (lexicographically).

Let βc be the proposer in S2 which has sent to ρ2 the proposal (tc, pc) in
the p1b message. There is an event fc in F that corresponds to βc accepting
the proposal (tc, pc). Otherwise there would exist a ballot (x, t′) in γ∗ such
that x[µσ].l = lσ and t′ ≥ h; this is a contradiction, since σ is h-safe.

Consider the simple acceptation scenario Vc that ends with fc, and let
char(Vc) = (µc, lc, tc) be its characteristic. Since fc is the last acceptation event
before βc replies to ρ2 (with a p1a message), we must have (µc, lc) = (µσ, lσ);
otherwise, the accepted variable acceptedβc would have been cleared (epoch
change at βc), and βc would have not sent the non-null proposal (tc, pc) to ρ2.
If Vc were a fake simple acceptation scenario, then there would exist a ballot
(x, t′) in γ∗ such that x[µσ].l = lσ and t′ ≥ h; this is impossible, since σ is
h-safe. Hence Vc is a real simple acceptation scenario.

By applying the induction hypothesis to Vc, and since fc cannot happen
after the last event of σ (otherwise e2 would also happen after it), we have two
cases. The case (A) t1 = tc. Then p1 v pc or pc v p1. But, the fact that
(t, |p|) ≤ (tc, |pc|) (lexicographically) and p1 v p implies that |pc| ≥ |p| ≥ |p1|,
and thus p1 v pc. The case (B) t1 < tc. But then p1 v pc.

In all cases, we have p1 v pc. But, we also have pc v p2 (scenario U2),
hence p1 v p2.

We get the following corollary for decision events.
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Corollary 2. Consider an execution E. Let λ be a processor and let Σ be
an execution segment such that the local execution σ = Σ(λ) at λ is an h-safe
epoch. We denote by F the suffix of the execution that starts with Σ.

Consider two decision events ei = (αi, vi, ti, pi), i = 1, 2, such that χ(vi) =
µσ, vi[µσ].l = lσ and ti ≥ h. Assume that both events e1 and e2 are real
decision events relative to F . In addition, assume that, if µσ < λ, then the
processor µσ does not produce any label during F . Then either p1 v p2, p2 v p1
or the last event of σ happens before one of the event e1 or e2.

Proof. Since e1 and e2 are real decision events relative to F , there are two real
simple acceptation scenarios with decision U1 and U2 ending with e1 and e2.
Let’s denote them as follows:

U1 = ρ1
p1a−−→ (S1, v1, t1) ρ1

p2a−−→ (Q1, v1, t1, p1)
p2b−−→ ρ1

dec−−→ (β1, v1, t1, p1)
(10.2)

U2 = ρ2
p1a−−→ (S2, v2, t2) ρ2

p2a−−→ (Q2, v2, t2, p2)
p2b−−→ ρ2

dec−−→ (β2, v2, t2, p2)
(10.3)

They have characteristics (µσ, lσ, t1) and (µσ, lσ, t2) respectively and t1, t2 ≥ h.
Whether t1 ≤ t2 or t2 ≤ t1, Prop. 26 yields the result.

Finally, we can now state the main proposition of this section: within the
observed zone associated the h-safe epoch at some proposer, the safety property
is ensured.

Proposition 27 (Safety). Consider an execution E, a proposer λ proposer
and an execution segment Σ such that the local execution σ = Σ(λ) at λ is a h-
safe epoch for some bounded integer h. We denote by F the suffix of execution
that starts with Σ. Assume that the observed zone Z(F, λ, σ) is defined and
that, if µσ < λ, then the processor µσ does not produce any label during F .
Consider two scenarios U1 and U2 in Z(F, λ, σ) ending with acceptation events
e1 = (α1, v1, t1, p1) and e2 = (α2, v2, t2, p2). Let µi = χ(vi) and li = vi[µi],
i = 1, 2, and assume that µσ ≤ min(µ1, µ2) and t1, t2 ≥ h. Then (µ1, l1) =
(µ2, l2) = (µσ, lσ), and p1 v p2 or p2 v p1.

Proof. Assume that µ1 > µσ. By definition of the observed zone Z(F, λ, σ),
there exists a simple acceptation scenario V = (ρ, S, v, t)  (β, v, t, p) in U1

and an acceptor α in S∩Q0∩Qf such that we have the happen-before relations
e0(α)  e  ef (α), where e is the event that corresponds to α sending a p1b
message in the scenario V . We also have χ(v) = µ1 and v[µ1].l = l1.

At e0(α) and ef (α), messages are sent to λ and are processed during σ.
Hence, the corresponding tag values of the variable vα must use the entry µσ
and the label lσ. Otherwise, the message either is not processed or causes an
interrupt at processor λ.

Now, at event e, the first valid entry of the variable vα is µ1 > µσ which
implies that the entry µσ is invalid.

Hence, between e0(α) and ef (α), the entry vα[µσ] becomes invalid and valid
again. Thus, there has been a cycle of labels in the label field vα[λ].l. Lem. 25
implies that the last event of σ happens before ef (α); by the definition of ef (α),
this is a contradiction. Therefore µ1 = µσ.
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If l1 6= lσ, then there is also a cycle of labels in the entry vα[µσ] between
e0(α) and ef (α), which leads to a contradiction again, thanks to the same
argument. Therefore, l1 = lσ.

Of course, the previous argument also applies to U2 and shows that (µ2, l2) =
(µσ, lσ). Therefore, Corollary 2, the fact that t1, t2 ≥ h and the fact that the
two acceptation events e1, e2 do not happen after the end of σ imply that
p1 v p2 or p2 v p1.

In the case µσ < λ , assuming that µσ does not produce any label during
F means that the proposer λ should be the live processor with the lowest
identifier. To deal with this issue, one can use a failure detector.

10.4 Liveness

Liveness in Paxos is not guaranteed unless there is a unique proposer. The
original Paxos algorithm assumes that the choice of a distinguished proposer
is done through an external module. In the sequel, we present an implementa-
tion of a self-stabilizing failure detector that works under a partial synchrony
assumption. Note that this assumption is strong enough to implement an
eventual perfect failure detector, but such a failure detector is not mandatory
for our tag system to stabilize. This brief section simply explains how a self-
stabilizing implementation can be done; which is, although not difficult, not
obvious either. Each processor α has a vector Lα indexed by the processor iden-
tifiers; each entry Lα[µ] is an integer whose value is comprised between 0 and
some predefined maximum constant W . Every processor α keeps broadcasting
a heartbeat message 〈hb, α〉 containing its identifier (e.g., by using [42, 43]).
When the processor α receives a heartbeat from processor β, it sets the entry
Lα[β] to zero, and increments the value of every entry Lα[ρ], ρ 6= β that has
value less than W . The detector output at processor α is the list Fα of every
identifier µ such that Lα[µ] = W . In other words, the processor α assesses that
the processor β has crashed if and only if Lα[β] = W .

(Interleaving of Heartbeats). For any two live processors α and β, between
two receptions of heartbeat 〈hb, β〉 at processor α, there are strictly less than W
receptions of heartbeats from other processors. Under this condition, for every
processor α, if the processor β is alive, then eventually the identifier β does
not belong to the list Fα. A distinguished proposer ρ can be defined as follows:
ρ = min(µ; Lρ[µ] < W ).
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Chapter 11

Perspectives

As explained in the introduction of this thesis, there are two approaches to
solve a problem in a given model. The explicit approach consists in having
explicit assumptions on the parameters of the model, and try to use them to
solve the problem. The other approach, namely the implicit approach, takes
the opposite point of view: one augments the system with a (distributed)
oracle strong enough to solve the problem, and looks for the minimal oracle
able to solve this problem. Our results naturally follow this distinction. In
the following, we sum up our results, and highlight interesting perspectives for
future work.

11.1 Population Protocols

Explicit Approach - Fairness

Fairness and Solvability. In Chap. 6, we have studied the leader election
problem. In particular, we have shown that, if the agents are uniformly initial-
ized, then the problem is impossible to solve using the local fairness, whereas
the problem has a solution when considering the global fairness. The reason
for the impossibility result is that there are locally fair schedules which main-
tain a form of “symmetry” in the population(see the notion of graph coverings
in Chap. 6, Sec. 6.2). On the other hand, the global fairness mimics a form
of randomness: it basically ensures that any configuration reachable infinitely
often is actually reached infinitely often. It is folklore that randomization is
useful to break symmetry, and this somehow explains why the global fairness is
sufficient to solve the leader election problem. An interesting perspective is to
look for intermediate fairness conditions between the local fairness and global
fairness and see where exactly the impossibility/possibility barrier is located.

Graph family F Initialization Fairness Notes
Contains a covering Uniform Local LE is impossible

Arbitrary Uniform Global LE is possible

Fairness and Efficiency. In Chap. 4, we have studied the (adapted) Ze-
braNet protocol as well as two variants. By using an explicit assumption on
the schedules under the form of cover times, we were able to analytically derive

123



11. Perspectives

tight bounds for the worst-case convergence time. The same techniques can be
used to provide a qualitative analysis given a particular distribution of cover
times (see Chap. 4, Sec. 4.6).

A natural extension of this work would be to perform an average-case analy-
sis. However, this task is not easy to achieve. A usual average analysis consists
in enumerating the fair schedules that induce a given convergence time, but,
doing so, one is necessarily confronted with a combinatorial explosion.

Another approach is to take a probabilistic scheduler: at each step, an
edge is randomly selected according to some probability distribution on the
edges of the communication graph. The notion of speed of agents can then
be modeled by a non-uniform distribution. The whole system can be seen
as a Markov process; the Markov state corresponding to a configuration, and
the Markov transition matrix is computed from the probability distribution on
the communication graph’s edges. Doing so, one is again confronted with a
combinatorial explosion since the number of configurations is exponential in
the number of agents. But, there is chance that the tools developed in the
domain of Markov processes could be useful in this analysis.

Implicit Approach - Oracles

The implicit approach based on oracles is relatively new in the population
protocols model. As far as we know, oracles adapted to population protocols
are presented in [65, 46], but no work has focused on comparing oracles, and
looking for minimal ones. In this thesis, we have paved the way to a general
oracle-based approach in the model of population protocols. We sum up our
results in increasing order of the power of the introduced oracles.

Consensus. In Chap. 5, we have studied the consensus problem and a vari-
ant, called the symmetric consensus, which guarantees that the decision value
is independent of the distribution of the initial values among the agents. We
have proven that the consensus is impossible without oracles. We have then
introduced a class of oracles, called Mnemosyne, which mainly notifies each
agent in the population about the presence of specific patterns in their causal
pasts. This class of oracles is a natural adaptation of the classical failure de-
tectors [32] to the population protocol model. They observe the schedule of
meetings, output binary values, are anonymous, and are not required to give
the correct information right on time. We have exhibited the oracle DejaV u
from this class, which, basically, notifies an agent when it has indirectly seen
every other agent. We have then proven that DejaV u is the weakest oracle in
Mnemosyne for solving the symmetric consensus problem.

An open problem is to find the weakest oracle in Mnemosyne for solving
the original consensus problem. An intuitive candidate is a leader-like oracle:
in each execution, a unique agent is eventually notified by the oracle. With such
an oracle, the selected agent may decide on its own input value and force the
others to decide accordingly. Note that this leader-like oracle may notifies an
agent which has not yet seen (indirectly) every other agent. Hence, requiring
this agent to be unique is crucial, as otherwise, two agents could decide on
different proposals.

Note however that finding the weakest oracle in Mnemosyne for consensus
is a difficult task. Indeed, our proof for the symmetric consensus relies on the
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construction of a contradictory execution, for which the symmetry condition is
crucial. To adapt the proof, one needs a more detailed analysis of the behaviour
associated with an unknown population protocol (see the remarks below).

Self-Stabilizing Leader Election. In the second part of Chap. 6, we have
studied the self-stabilizing leader election (SSLE) problem. It turns out that
this problem is impossible in most cases [10]. Following the implicit approach,
the oracle Ω? has been introduced in [46] for solving the problem over complete
graphs and rings. A large part of our work has been devoted to extend these
results as shown in the table below1. We have proven that Ω? is strong enough
to solve SSLE over graphs with bounded-degree. We then introduced a lattice
of oracles {Ω?(d)⊗k}d,k≥1 that generalize the Fischer and Jiang’s oracle Ω?,
and we have proven that Ω?(2) and Ω?⊗2 are sufficient to solve SSLE over
arbitrary graphs.

Graph family F Initialization Fairness Notes
Bounded-degree Arbitrary Global SSLE 4 Ω?

Arbitrary Arbitrary Global SSLE 4 Ω?(2)
SSLE 4 Ω?⊗2

Rings Arbitrary Global SSLE ' Ω?
Non-simple family Arbitrary Global SSLE⊗k 64 Ω?

We now turn to the main motivation of the implicit approach: finding
minimal oracles. In this direction, we have proven that the problem SSLE and
the oracle Ω?, seen as a problem too, are equivalent over rings. In particular,
this implies that any oracle strong enough to solve SSLE over rings can be
used to build a self-stabilizing implementation of Ω? over rings. A simple
generalization of the corresponding proof shows that, over rings, all the oracles
in the lattice {Ω?(d)⊗k}d,k≥1 are equivalent (to SSLE); the lattice structure
collapses over the rings.

It turns out that this phenomenon is related to the ring family. Indeed, we
have shown that over a non-simple graph family, the problem of self-stabilizing
implementation of Ω? is not weaker than, nor equivalent to the SSLE prob-
lem. Yet, although Ω?(2) and Ω?⊗2 are (strictly) stronger than SSLE over the
arbitrary graph family, it is unknown whether Ω? is also stronger than SSLE.
Besides, this suggests that the relations in the lattice {Ω?(d)⊗k}d,k≥1 become
strict over a non-simple graph family. The main difficulty in proving the im-
possibility of a reduction between oracles like Ω? relies on the fact that these
oracles can be composed with protocols using the feedback operation. This
suggests investigating more closely the behaviour associated with population
protocols.

Remarks. For both leader election, and consensus, the proofs of most of our
results rely on the analysis of an unknown protocol. For instance, to prove
that an oracle solving a problem is stronger than another one, we usually start
from the existence of protocol that solves the problem given the first oracle.
The difficulty lies in the fact that we do not have much information, a priori,

1In this conclusion, we denote both the behaviour ELE and the informal self-stabilizing
leader election problem by SSLE.
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on this protocol, besides the fact that it solves the given problem. However,
we also know that it is a population protocol. And the behaviour associated
with a population protocol is not completely arbitrary. The main obstacle to
the extensions of our results, as stated above, is the lack of a more precise
understanding of the behaviour associated with a population protocol.

Let’s take a basic example coming from the leader election problem. One of
the main difficulty is that a leader must try to “kill” the other leaders without
killing itself. Most of our techniques are based on token circulation, and since
the schedules are non-deterministic, the circulating tokens perform a sort of
random walk. If no protection mechanism is established, this randomness may
force a leader to kill itself. Yet, this randomness is the price to pay for using
circulating tokens to communicate. Now, given an unknown protocol, we do
not know how information is transmitted between the leaders. If we knew that
it uses a form of token circulation, then many proofs, especially impossibility
proofs, would be easier. Thus, an interesting perspective is to aim at a better
understanding of the behaviour associated with a protocol; this should high-
light, for instance, the constraints on how information is transmitted among
the agents. This naturally leads to the following section.

The Model

To encompass the various kinds of oracles, we have developed a formal frame-
work in Chap. 3. Our model is two-fold. On the first hand, there is a local
description under the form of a population protocol (the list of rules). On the
other hand, there is a global description under the form of a behaviour. Nat-
urally, any local description (population protocol), associated with a context
(graph family, fairness condition, etc.), yields a global description (behaviour).
On both levels, we have notions of composition (parallel, serial, feedback) which
are compatible (see structure theorems in Chap. 3, Sec. 3.3).

The notion of behaviour is general enough to model both oracles and prob-
lems. Put another way, oracles and problems live on the same level. Imple-
menting an oracle (resp. solving a problem) amounts to design a protocol
whose associated behaviour is a sub-behaviour of the oracle (resp. the prob-
lem). Solving a problem P using an oracle O amounts to design a protocol such
that some composition involving the protocol’s behaviour and the behaviour
O yields a sub-behaviour of P . These natural definitions give a sound notion
of comparison between behaviours (oracles, problems): the behaviour B1 is
weaker than or equivalent to the behaviour B2 if there exists an implementa-
tion of B1 using B2. The induced comparison relation is a partial order on
behaviours.

Therefore, this framework gives the basic settings for studying reductions
between problems in the context of population protocols. However, as seen in
the cases of consensus and leader election, an important line of research is to
study the function that maps a protocol to its associated behaviour. With this
objective in mind, a reformulation of the model in terms of category2 theory
should give interesting insights. Very briefly, a population protocol A with
input set X and output set Y can be seen as a morphism X

A−→ Y in some cat-
egory PP . The morphisms can be composed using the serial composition. The

2More precisely, in terms of bicategories.
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parallel and feedback yield a sort of traced monoidal structure. The category
PP somehow represents the local or microscopic objects since a population
protocol only describes how the states of two meeting agents are updated. On
the other hand, we can also define a category Bhv of behaviours. A behaviour
B with input set X and output set Y are the morphisms of the category. Com-
position of morphisms is given by the serial composition, and the parallel and
feedback compositions yield a traced monoidal structure. The category Bhv
represents the global or macroscopic objects, like oracles and problems. Given
a context C, thanks to the structure theorems (Chap. 3, Sec. 3.3, Th. 2), the be-
haviour map Beh : A 7→ Beh(A,C) can be seen as a functor from the category
PP of local objects to the category Bhv of global objects. Such a reformulation
may highlight analogies with other fields of research. For instance, a closely
related formulation in automata theory has yielded a very interesting result:
the functor behaviour arises from an adjunction [48]; this somehow character-
izes the behaviours which are associated with automata. Adopting the same
approach in our situation is an interesting perspective.

11.2 State-Machine Replication

Explicit approach - Enhancing the Algorithm

In the second part of this thesis, we have studied the problem of state-machine
replication in the classical asynchronous message-passing model with crash fail-
ures and transient faults. Paxos [56, 57] is a well-known algorithmic scheme for
implementing a replicated state-machine in the asynchronous message-passing
model with crash failures, but it does not cope with transient faults. By replac-
ing a core component of Paxos, namely the timestamp management, we have
managed to design a practically self-stabilizing state-machine replication pro-
tocol. The algorithm ensures that, after the last transient fault, which set the
replicas in an arbitrary configuration, eventually the replicas will reach a seg-
ment of execution, whose length3 is large enough relatively to some predefined
timescale, during which they behave as in the original Paxos algorithm.

A perspective in the short-term is to optimize our algorithm. For instance,
the size of the label histories has been defined so as to correspond to the
maximum number of different labels in the system. This maximum is, a priori,
equal to the total label capacity of the system, but it is very unlikely that
the system would hold so many different label values. In practice, one could
tune the size of the label histories to correspond to an estimate of the number
of different labels currently present. Another room for optimization is the
type of value on which the replicas agree. In our work, for sake of clarity, the
replicas agree on a growing sequence of requests of length less than a predefined
maximum value. Doing so, if a replica is corrupted, it can rebuild a correct
state by replaying the first requests. However, one could also reduce a prefix of
the request sequence to the corresponding state: the corrupted replica would
just need to access this state before executing the next requests. Moreover, if
one can ensure that at some point the replicas are coherent, then, from this
point on, the proposers could just propose the most recent requests, as in the
original Paxos, instead of sending the whole sequence.

3Measured by the longest causal chain in the execution segment.
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Another perspective would be to extend our work to tolerate byzantine
failures. The Castro-Liskov algorithm [28], and the closely related Byzantine
Paxos [60], are state-machine replication algorithms tolerating byzantine faults,
but they require to be started in a correct initial configuration. Both algo-
rithms rely on the use of “proofs” to guarantee the correctness of the messages.
Adapting such proof system to the self-stabilizing case is an open challenging
problem.

Implicit Approach - Conditions for Solvability

In the study of state-machine replication, our first goal was to design a practi-
cally self-stabilizing variant of Paxos. However, it is an open problem whether
a self-stabilizing implementation of a replicated state-machine exists in the
strong sense, i.e., an implementation that ensures that some infinite suffix (in-
stead of a practically infinite segment) of the execution is correct. Or more
precisely, it is an open problem to find the minimal conditions under which
the self-stabilizing state-machine replication problem is solvable. This task is
difficult. We have seen that the main obstacle to self-stabilization is due to the
finite memory of the replicas, and the asynchrony of message-passing. Indeed,
the memory finiteness implies that the replicas must somehow “forget” a part
of their past, and, since the messages take an arbitrary amount of time to be
delivered, the replicas may not distinguish old from new messages.

By slightly weakening the problem, i.e., by aiming at a practically self-
stabilizing state-machine replication protocol, we were able to derive a solution
by adapting Paxos. A possible line of attack for the problem stated above
is to study the minimal conditions under which our algorithm implements a
practically self-stabilizing replicated state-machine. For instance, we have seen
that no particular condition is required for our tag system to stabilize, specific
conditions (e.g. unique proposer) are required only during the stabilized period
to ensure liveness.

Following this line of research, an interesting perspective is to translate
our algorithm in the HO model, or a variant of it, introduced in [34]. In this
work, the authors study the conditions under which the one-shot version of
the original Paxos is able to solve the consensus problem. To do so, they in-
troduce a model that abstracts from the inner details of the communications,
and focuses on the effects of these communications. More precisely, each exe-
cution is a sequence of rounds, and during each round, each processor receives
a set of messages, perform some local updates, and send new messages. A
predicate over the sequence of sets of received messages encodes the effects of
communication. Thanks to this implicit approach, the authors have managed
to provide a clear picture of the conditions under which the one-shot version
of Paxos solves the consensus problem. Adapting our algorithm to this model,
or a variant, should provide interesting insights on the problem of (practical)
self-stabilizing state-machine replication.
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