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I N T R O D U C T I O N

The past decades have seen a strong tension of the economical con-
text but also a tremendously fast progress in new technologies. In
a changing environment industries have to adapt themselves. Out-
sourcing the production in countries with lower production costs cre-
ates new needs in logistics in order to bring back the products near
their European consumers. Selling products online means more in-
tense competition, while consumers are becoming used to free ship-
ping and very fast deliveries. In such a context, companies cannot
expect to survive without a fast, efficient and reactive supply-chain.
Thus logistic companies and logistic departments start turning their
attention to practices that used to be considered as reserved for man-
ufacturing only: lean, Just-In-Time (JIT), or continuous performance
improvement techniques.

Cross-docking is a JIT logistic technique. In a regular Distribution
Center (DC), items received from inbound trucks are unloaded and
put away in storage. When an item is needed it is retrieved from stor-
age (possibly through a picking process), packaged and loaded in an
outbound truck. In a cross-docking platform or crossdock, however,
items transit directly from inbound trucks to outbound trucks: they
are unloaded, dispatched, transferred and reloaded in less than 24
hours, with as little intermediate storage as possible. This technique
accelerates the flow of goods and eliminates most of the storage costs.

This dissertation focuses on the logistic operations occurring in a
crossdock, and the operational decisions to be made to operate the
platform efficiently. Many operational questions need to be answered
in the course of daily operations; our first goal is to determine which
are the most critical at the moment. A review of the literature on
the topic is thus carried out in chapter 1 and compared with the
practices observed in industry, thanks to a comparison framework.
This enables us to map the existing gaps between the research state-
of-the-art and the platform managers’ needs. From this study we
draw the motivation for this dissertation, which is to fill two of the
most critical gaps identified:

How to manage delayed trucks without disturbing other ongoing operations?

How to schedule the workers in a way that fits the operations workload?

Chapter 2, chapter 3 and chapter 4 address the first question, while
chapter 5 answers the second one. Finally, chapter 6 proposes to
combine the two aspects to address both issues together.

1



2 introduction

I N T R O D U C T I O N

Dans un contexte économique en forte tension et face à la pro-
gression fulgurante des nouvelles technologies, les industries doivent
s’adapter. La délocalisation crée de nouveaux besoins en matière de
logistique, afin de ramener les produits vers leurs consommateurs eu-
ropéens. Vendre ses produits en ligne signifie s’exposer à une concur-
rence plus intense, tandis que les consommateurs s’habituent à une
livraison gratuite dans des délais très courts. Dans ce contexte, les en-
treprises ne peuvent espérer survivre sans une supply-chain rapide,
efficiente et réactive. Les entreprises de logistique et les départements
logistiques se tournent donc vers des pratiques longtemps considé-
rées comme l’apanage de la production : le lean, le juste-à-temps ou
les méthodes d’amélioration continue.

Le cross-docking est une technique logistique de juste-à-temps. Dans
une plateforme logistique classique, les produits reçus sont déchargés
des camions entrants puis stockés. Lorsqu’un produit est demandé
par un client, il est ressorti du stock (éventuellement par le procédé
de picking), emballé et chargé dans un camion sortant. Dans une pla-
teforme de cross-docking ou crossdock, cependant, les produits tran-
sitent directement des camions entrants vers les camions sortants : ils
sont déchargés, triés, transférés et rechargés en moins de 24 heures,
avec le minimum de stockage intermédiaire. Cette technique permet
donc d’accélérer les flux et d’éliminer la majeure partie des coûts de
stockage.

Cette thèse s’intéresse aux opérations logistiques qui ont lieu dans
un crossdock, et aux décisions opérationnelles nécessaires pour un
fonctionnement efficace de la plateforme. De nombreuses questions
opérationnelles doivent être traitées au fil des opérations quotidiennes ;
notre premier objectif est de dégager celles qui sont actuellement les
plus critiques. Une revue de la littérature sur le sujet est donc réalisée
au chapitre 1 et comparée avec les pratiques observées dans l’indus-
trie, grâce à une grille de comparaison. Ceci nous permet d’identifier
les écarts existant entre l’état de l’art et les besoins des managers de
plateforme. De cette étude sont tirées les motivations de cette thèse, à
savoir répondre à deux besoins identifiés comme critiques:

Comment gérer les camions en retard sans perturber le reste des opérations ?

Comment planifier le travail des employés pour traiter toutes les opérations ?

Les chapitres 2, 3 et 4 traitent la première question, tandis que le
chapitre 5 répond à la seconde. Enfin, le chapitre 6 propose de combi-
ner les deux aspects afin de traiter les deux questionnements de façon
intégrée.



Le savant n’est pas l’homme qui
fournit les vraies réponses ; c’est

celui qui pose les vraies questions.

— Claude Levi-Strauss

Chapter 1

C O N T E X T

This chapter introduces the general context and defini-
tions of the concepts. A literature review is conducted
and compared with on-field observations using a common
framework. Analyzing the gaps between the state-of-the-
art and the industry practice helps drawing the research
questions addressed in this dissertation.

C O N T E X T E

Le cross-docking, aussi appelé en français groupage – dé-
groupage, consiste en un transbordement des produits avec
un minimum de stockage intermédiaire. Dans une plate-
forme de cross-docking (ou crossdock), les produits sont dé-
chargés des camions entrants, triés, et directement rechar-
gés pour repartir vers leur prochaine destination. Chaque
produit aura passé moins de 24 heures au total dans la
plateforme. En éliminant le stockage intermédiaire, cette
technique permet de réduire les coûts et d’accélérer les
flux, mais elle nécessite une planification rigoureuse. De



nombreuses questions se posent au manager en charge
des opérations: à quelle heure, à quelle porte, avec quelle
ressource faut-il décharger chaque camion ? Où déplacer
chaque palette, faut-il la stocker momentanément, ou faut-
il au contraire prendre une palette du stock pour com-
pléter un chargement ? Comment organiser le chargement
pour que chaque camion parte à l’heure prévue ?
Ce chapitre présente le contexte général de l’étude et la dé-
finition des concepts étudiés. Grâce à une grille d’analyse
commune et à une proposition de vocabulaire unifié, l’état
de l’art est comparé à nos observations sur le terrain de la
réalité de l’industrie. L’analyse des écarts observés permet
de dégager deux axes de travail pour cette thèse, qui sont
des problèmes fréquemment rencontrés dans l’industrie
mais peu abordés dans la littérature : l’incertitude sur les
horaires d’arrivée des camions, et la prise en compte des
ressources internes.



1
C O N T E X T

1.1 logistics and cross-docking

If you grow your own vegetables, breed your own poultry, and
dress with hemp that grows nearby, transportation is not really a
problem. But as soon as you start consuming products coming from How to move items

from the place where
they are made to the
place where they are
used?

further away, there arises the question: how to move items from the
place where they are made to the place where they are used? This
question does not only address the means of transportation, but also
the organization aspects: the best time and frequency for the move,
the number of items to be moved, the best path to be taken. . . And
just like that, you are doing logistics. In order to define logistics more
precisely, one can refer to the Council of Supply Chain Management
Professionals:

“Logistics: the process of planning, implementing, and
controlling procedures for the efficient and effective trans-
portation and storage of goods including services, and re-
lated information from the point of origin to the point of
consumption for the purpose of conforming to customer
requirements. This definition includes inbound, outbound,
internal, and external movements”.

Council of Supply Chain Management Professionals [52]

With experience and small volumes to move, farmers until the eigh-
teenth century managed to satisfactorily answer the question. Logis-
tics was a complex question only for the army, who needed to equip
and feed important numbers moving in potentially unknown areas.
The Industrial Revolution (from about 1760/1780 to 1830/1840) and
the appearance of mass production were game-changing: industries
were now producing massive quantities in a single place, to be dis-
tributed to consumers located all over the country – and later, all over
the world.

New means of transportation appeared, and with them new orga-
nizations. Competition, the search for new markets, and several eco-
nomic crises were incentives for industries to reduce and optimize
their manufacturing costs. Henry Ford addressed this question in
1908: optimizing logistic costs as well was an idea that arose very late
in comparison. Ikea started designing furniture in flat packages in Ikea’s idea to use flat

package optimizes
storage and truck
loads and thus
reduces logistic
costs.

1956; and it was only in 1980 that Porter [161] identified logistics as a
potential competitive advantage for companies.

Cost optimization or lean techniques are now widely used in the
manufacturing sector (more than 95% of big French industrial groups

5
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currently use lean management or similar concepts [151]), and the
supply chain is the next sector where important savings can be achieved
by implementing lean concepts. This fact was further highlighted by
the development of e-commerce. Online customers are at once very
demanding and very volatile: if not fully satisfied with the service
one gets in a shop, it is much easier to find another online shop selling
the same item, than physically going to another shop. Competition
between online sellers is thus even sharper than between traditional
sellers. The average quality and service level rises fast, and customers
now find it normal to order shoes online and find them in their mail-
box the next day – with free delivery. And if they find out the shoes
are not the right size, they expect the return process to be very quick
and easy.

Those new challenges, new markets, new organizations moved lo-
gistics from its old position of support function to a key position
within companies. As shown by the global supply chain survey car-Supply chain and

logistics are essential
for a company’s

performance.

ried out by PwC in 2013 [164], companies acknowledging supply
chain as a strategic asset achieve 70% higher performance than com-
panies who do not.

“Supply chain executives see increasing the profitability
of their companies’ supply chain and reducing total sup-
ply chains costs as their top priorities. In addition, more
than two-thirds say it’s vital to meet the requirements of
customers, who are becoming more demanding about the
delivery performance, flexibility and service levels they
expect”.

Global Supply Chain Survey 2013 by PwC [164]

How to create lean supply chains? How to achieve a fast delivery, a
good service level with a minimum cost? Cross-docking is a logistics
technique that helps tackling such challenges.

1.1.1 Cross-docking: definitions

A plant manufacturing consumer goods tends to produce them in
big batches, and thus sends full truck loads of one type of products.
But a retailer hardly ever needs high volumes of a single product. A
traditional way to cope with the problem is to make the products
transit through a stock. The stock can be located in the manufac-
turer’s plant, near the retailer’s shop, or somewhere in between. The
manufacturer can push all the production to storage while retailers
pull only the needed quantity. This solution is quite flexible but has
a major drawback: stock is expensive.

Cross-docking proposes an alternative solution: transferring goods
directly from the truck coming from the manufacturer to several out-
bound trucks going to different retailers. The outbound trucks are
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loaded with goods coming from different manufacturers, i. e. differ-
ent inbound trucks. On the whole, the goods stay less than 24 hours
in the platform, which accelerates the flow of goods and eliminates
most of the storage costs – making it a lean approach as emphasized
by Cook et al. [51]. For a formal definition of cross-docking, we refer to
the definition proposed by the Council of Supply Chain Management
Professionals in their glossary:

“Cross-docking: distribution system in which merchandise
received at the warehouse or distribution center is not Cross-docking

requires close
synchronization of
all inbound and
outbound shipment
movements.

put away, but instead is readied for shipment to retail
stores. Cross-docking requires close synchronization of
all inbound and outbound shipment movements. By elim-
inating the put-away, storage and selection operations, it
can significantly reduce distribution costs”.

Council of Supply Chain Management Professionals [52]

We call crossdock the platform (also called warehouse or distribution
center) where such a process takes place. Figure 1.1 shows an exam-
ple of crossdock. The inbound trucks on the left-hand side contain
products with different destinations (different colors). The products
are unloaded, sorted, and their content is reloaded in the outbound
trucks on the right-hand side heading to distinct destinations.

Figure 1.1: An example of crossdock

Crossdocks usually have a large number of doors, so as to accom-
modate several trucks at the same time. Originally, a dock is “a struc-
ture extending alongshore or out from the shore into a body of water,
to which boats may be moored.” 1 In the naval environment (which
the word comes from) there are obviously no doors involved. It may
explain why “door” and “dock” are two terms rather interchange-
able in the case of a logistic platform. For instance, following the
naval meaning, “docking a truck” is placing it at a given door. Strictly

1. Oxford Dictionaries. April 2010. Oxford University Press.
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speaking, the door is the opening in the wall, while the dock is the
area on the floor where the goods are unloaded.

1.1.2 Cross-docking in practice

The idea of cross-docking is about as old as postal service (or older:
Ertek [69] notices that the Silk Road was a complete cross-docking op-
eration); but Wal-Mart is often cited as the first retailer to implement
it, in the late 1980’s. In an analysis of Wal-Mart’s success published in
1992, Stalk et al. evoke “a largely invisible logistics technique known
as cross-docking” [187].

“In this system, goods are continuously delivered to Wal-
Mart’s warehouses, where they are selected, repacked, and
then dispatched to stores, often without ever sitting in in-
ventory. Instead of spending valuable time in the ware-
house, goods just cross from one loading door to another
in 48 hours or less. Cross-docking enables Wal-Mart to
achieve the economies that come with purchasing full truck-
loads of goods while avoiding the usual inventory and
handling costs”.

Stalk et al. [187]

Running 85% of its goods through its crossdocks enabled Wal-Mart
to lower its costs of sales by 2% to 3% compared to the industry av-
erage in 1992 – and to become the highest profit retailer in the world
at that time (Stalk et al. [187]). Office Depot is another American
company that achieved major gains with an early adoption of cross-
docking techniques (Ross [169]).See Ertek [68] for

other examples of
cross-docking

implementations.

In a survey carried out in December 2010 among supply chain pro-
fessionals in the United States, Saddle Creek Corporation [171] no-
tices a significant increase of cross-docking practices between 2007
and 2010, mainly prompted by the challenging economic conditions.
The greatest benefits of cross-docking according to the survey respon-
dents are detailed in Table 1.1.

Examples of successful cross-docking implementation in Europe
include Goodyear Great Britain in the 1990’s: according to Kinn-
ear [110], the new organization increased the service level (deliveries
the next day increased from 87% to 96%), reduced the inventory value
by 16%, released 12,500 square meters of warehousing, and reduced
the operating costs by over 12%. In France, Carrefour started cross-
docking fresh foods in 1994 and extended this logic to soft goods in
2009 (Rognon [166]).

Qiu et al. [165] show that cross-docking is particularly suitable for
cold or frozen food, which requires an especially fast transportation
and close to no storage. Their assertion is supported by the results
of the cost analysis by Vasiljevic et al. [206] regarding the implemen-
tation of cross-docking to distribute food in Serbia.
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Greatest benefit of cross-docking % of respondents

Improved service level 19.4%

Reduced transportation costs 14.3%

Consolidated shipments to destination 13.1%

Get products to market more quickly 10.2%

Reduced need for warehouse space 8.5%

Improved inventory management 8%

Savings from reduced inventory carrying costs 5.7%

Increased demand for JIT service 4.5%

Shipments/consignee customization 4%

Reduced labor costs 4%

Other 8.3%

Source: Saddle Creek Corporation [171]

Table 1.1: Motivations to make the move to cross-docking

To make the move to cross-docking, a company must have a ma-
ture supply-chain organization and an efficient Information Technol-
ogy (IT) system. Napolitano [153], Apte and Viswanathan [12], Gue
[89] and Vogt [210] propose practical guides and a list of key suc-
cess factors for cross-docking implementation. The key decisions to
be made cover different time scales and different stakes: in the next
section we divide them into three different levels.

1.1.3 Three decision levels

This dissertation
focuses on the
operational level,
but we review
quickly the other
two decision levels.

The decisions to be made when planning, designing, implement-
ing and running a crossdock cover three different levels: strategical,
tactical and operational.

1.1.3.1 Strategical decisions

Strategical decisions are long-term decisions with a strong influ-
ence on the crossdock lifespan, and the tactical and operational deci-
sions that follow. They are often the responsibility of the executive
board. Examples of strategical decisions to be made when designing
a new cross-docking system include:

the location of the platform, geographically and within a net-
work of suppliers, clients and other platforms. Influenced by
legislation, social matters and road access, the choice depends
on the position of the other actors of the network. Facility lo-
cation is a widely studied problem, in which the objective is
often to minimize transportation costs or duration. Facility lo-
cation problems become specific to cross-docking if temporary
storage is not allowed, or if the optimal flow of goods (with



10 context

transshipment) within the network is used in determining the
best location. For a review of articles dealing with crossdock
location problems, one can refer to Van Belle et al. [199].

the layout of the platform, namely the size, the shape and the
number of doors. Cross-docks can have a large variety of shapes,
usually described by a letter: i, l, u, t, h, e,. . . Doors are crucial
resources in a cross-docking platform, and buildings are often
built with the greatest possible number of doors, i. e. doors on
at least two sides of the building. Sometimes the layout is sim-
ply determined by external constraints (for example the shape
of the lot where the building is built, landscape integrity regula-
tions that force all doors to be on a single side). When there are
no external constraints, Bartholdi and Gue [19] study the shape
that maximizes crossdock performance, i. e. minimizes the travel
distances to transfer the goods, depending on its size (its num-
ber of doors). Although performance also depends on e. g. the
freight flow pattern, Bartholdi and Gue’s experiments suggest
that an i-shape is most suited for cross-docks with fewer than
about 150 doors, t-shape is best for intermediate sizes and x-
shape is the most efficient for more than about 200 doors. Note
that despite those results, the biggest crossdocks in France are62% of the logistic

service providers in
France rent their
platforms [177].

often built by estate agents who prefer the i-shape since it can
be easily split to be let to different logistic companies. Kapetan-
ios et al. [109] study the performance of a crossdock depending
on its number of doors, but with no precisions on the platform
shape. Carlo and Bozer [40], noticing that x-shaped crossdocks
can create significant congestions and safety issues, examine the
optimal shape of a rectangular crossdock and the location of its
“best doors”.

1.1.3.2 Tactical decisions

Tactical decisions are mid-term decisions on the platform manage-
ment. They are strongly influenced by the strategical decisions, and
have a direct impact on the operational decisions. Examples of tacti-
cal decisions include:

the products to be crossdocked. The technique is not adapted
to all types of products; it is especially suited for items that
are delivered frequently to a broad range of clients. Li et al.
[124, 125, 128] propose models to help deciding which products
are the most suitable for cross-docking.

the IT settings , which are a crucial factor for a successful cross-
docking system according to professionals [171]. The software
used to run warehouses, called Warehouse Management Sys-
tem (WMS), seldom includes a cross-docking module capable
of managing the case of a transfer without storage [70, 150].
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Companies can also develop a custom function to monitor their
cross-docking activity.

the routing of goods within the cross-docking network, from
the supplier to the client (through one or several cross-docking
platforms). The problem is to determine the flow of goods
through the network while matching supply and demand and
minimizing storage (extension of the transshipment problem).
Another way to look at the question is to consider vehicles in-
stead of representing the shipments of goods as flows. It is then
necessary to schedule the vehicles, and to determine pick-up
and delivery times for the trucks. A detailed review of these
types of problems can be found in Van Belle et al. [199].

the internal layout of the platform, and especially the design
of the temporary storage area(s). Ideally, the goods arriving
in a crossdock are transferred directly from truck to truck: but
such an organization is rarely possible for operational reasons
(control/value-added operation to be done on the incoming
freight, scheduling imprecision. . . ). The goods can then be tem-
porarily stored on the floor or in racks, after unloading or before
loading (single-stage), or both (two-stages). Gue and Kang [91]
use simulation to compare the different organizations and the
number and size of the storage locations required in each case.
In some cases (frozen food, for example), temporary storage can
also be completely forbidden.

Other examples of decisions to be made at the tactical level are
detailed in section 1.2.1.2.

1.1.3.3 Operational decisions

Operational decisions are made on a weekly or daily basis by the
platform manager. Following the path of a cross-docked product,

Arrival and docking

Unloading

Control

Transfer
Loading

Temporary storage

Value added operations

[ July 15, 2014 at 19:08 – version 2.8 ]

Figure 1.2: Cross-docking processes
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one can list the different processes (logistic operations) occurring in a
crossdock (see Figure 1.2), and the questions corresponding to differ-
ent operational decisions to be made.

truck arrival and docking . A truck is a tractor towing a trailer.
When an inbound truck containing pallets for different destina-
tions arrives at the platform, it awaits instructions regarding the
door where it should dock. When the trailer is safely docked,
the tractor can leave it without waiting for it to be loaded or
unloaded, and drive back with another loaded trailer. The dif-
ference between the terms trailer and truck being slight when
talking about scheduling operations, from this point on we will
use the term truck which is more commonly used in the litera-
ture.
Operational questions:

1. At what time should the truck be docked?
2. At which door should each truck be docked?

Note that such questions can be closely linked to the routing
decisions mentioned in the previous section.

unloading is the process of emptying the truck; its content can be
put on the floor in front of the door (dock), or directly moved to
the outbound truck or a temporary storage. Depending on the
size of the items to be unloaded and the way they are packaged,
the operation can be done manually, with a hand pallet truck,
a powered pallet truck or a forklift (see Figure 1.3). Bulk goods
might need to be palletized while being unloaded, and multi-
reference loads must be sorted. Depending of the item type
and the way the truck was loaded, the unloading might be done
following a Last In – First Out (LIFO) or First In – First Out (FIFO)
logic, or in any order. The truck leaves when it is empty.
Operational questions (also valid for all next operations):

3. At what time should the operation take place? How long
will it last?

(a) Hand pallet truck (b) Powered pallet truck (c) Forklift truck
Source: www.fao.org/docrep/003/p3407e/P3407E10.htm – accessed 2014, April 1st.

Figure 1.3: Material handling equipment

www.fao.org/docrep/003/p3407e/P3407E10.htm
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4. Which resources (workers, equipment) should be allocated
to this operation?

control . To be certain of the integrity of the data regarding the
incoming freight and/or its quality, it might be necessary to
control some incoming products, or all of them. The control can
consist in visually checking the product, counting the unloaded
pallets, scanning the items or pallets one by one. . .

value added operations . Some other operations can be done in
the cross-docking platform, to some of the freight or all of it:
re-labeling, re-packing, picking from the pallets to create pack-
ages. . .

temporary storage . As mentioned in section 1.1.3.2, there might
be one or several locations for temporary storage, with different
capacities, depending on the strategical decisions made earlier.
Operational questions:

5. Should a given product be temporarily stored? If so, in
which storage location?

6. When should a product be taken out of storage?

transfer . Again, depending on the freight type, the equipment
needed for transfer from the inbound side to the outbound side
can vary (see Figure 1.3). In automated platforms, conveyors are
used for the transfer. A direct transfer to the outbound truck is
possible only if the corresponding truck is docked. The time
needed for the transfer can depend on the product weight, the
distance to be crossed (often called travel distance), the platform
congestion.
Operational questions:

7. Where to put each product: in the outbound truck, in the
temporary storage?

loading . When an outbound truck is full, it is closed, sealed, and
can leave the dock. Depending on the client’s requirements,
loading might have to be done in a given order.
Operational questions:

8. At what time should each truck leave?

These eight different questions, although tackled together by logis-
tic managers, are considered separately in the literature. The next
section compares industrial practices with the existing cross-docking
operations literature.

1.2 state-of-the-art and industry practice

The objective of this section is not only to give a literature review,
but also to provide an industrial benchmark in order to identify the
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gaps between the current state-of-the-art and the observed industry
practice.

In order to compare the problems studied in the literature with the
real-life situations occurring in industry, a common reference grid
is necessary. Section 1.2.1 details the comparison framework used
to classify both the articles found in the literature in section 1.2.2,
and our on-field observations in section 1.2.3. Finally, section 1.2.4
discusses the common points and gaps observed between current re-
search and industry practice.

1.2.1 Comparison framework

This section describes the different elements used to characterize a
cross-docking platform and its performance indicators.

Our focus is on the decisions to be made on a daily or weekly basis
about the internal operations of the cross-docking platform. However,Our focus is on the

platform internal
operations.

decisions made earlier on a mid-term or long-term time scale have a
key impact on the operations. Therefore, we need to take strategical
(long term) and tactical (mid-term) levels into account as well: in this
comparison framework, they are comparison elements to identify the
type of crossdock under consideration. They consist in constraints
imposed by either the physical features of the platform, or tactical
decisions that will not be questioned at this point, or external stake-
holders.

Most of the elements listed as platform settings are introduced by
Boysen and Fliedner [31] in their classification of truck scheduling
problems, and re-used by Van Belle et al. [199] to categorize the arti-
cles of their review. The words in italics correspond to the possible
values for each criterion.

1.2.1.1 Platform settings: strategical level

We consider situations where the physical characteristics of the
platform are fixed. Following Van Belle et al. [199], the following
characteristics are used to characterize the platform:

shape , described by a letter (i, l, u, t, h, e, x. . . ) as explained in
section 1.1.3.1.

number of doors and how these doors are placed along the plat-
form (on one side only or more).

internal transportation. The goods inside the platform can
be moved either manually (e. g. by workers using pallet trucks
or forklifts) or with an automated system such as a network of
conveyor belts. A combination of these two transportation modes
is also possible.
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1.2.1.2 Platform settings: tactical level

The tactical decisions or policies are also important to classify a
cross-docking platform. The different characteristics are as follows:

service mode . As defined by Boysen and Fliedner [31], the door
mode is exclusive if each door is dedicated to inbound trucks,
or outbound trucks exclusively. The door mode is mixed if a
truck can be docked at any door. The combination mode occurs
when some doors follow an exclusive mode of service while the
others are used in mixed mode. Note that in an exclusive mode
of service, it is also possible to allocate each destination to one
specific outbound door, such as each outbound door serves a
fixed set of destinations. We call this mode a destination exclusive
mode of service. Oh et al. [158] study the tactical problem of
assigning destinations to doors in a destination exclusive mode
of service.

preemption. The preemption is allowed if the loading or unload-
ing of a truck can be interrupted. The truck is then moved to
a parking area to let another truck be processed at the door.
The interrupted operation must be completed later, possibly at
another dock.

temporary storage capacity. If the corresponding truck is not
available when a product is unloaded, it is put in a storage
area for a short period. This area may have a limited capacity,
if the space available is scarce; otherwise the capacity can be
considered as unlimited (∞). It is also possible, for instance in
the case of frozen goods, that the products are not allowed to
stay temporarily in the platform, in which case we consider the
storage capacity as zero.

internal resource capacity. The capacity of the conveyor belts
network in an automated transportation mode, or the maxi-
mum number of workers available if the transportation is done
manually, can be either considered limited or unlimited (∞).

1.2.1.3 Platform settings: operational level

Some operational characteristics of the cross-docking systems are
not driven by the manager of the platform but imposed by the ex-
ternal stakeholders, namely the client or the transportation providers.
Although those characteristics play a crucial role in the daily opera-
tions, they are not a decision variable the manager can easily adjust –
even if he may be able to negotiate if needed.

product interchangeability. Products are interchangeable if
one can be used instead of another for a given type of prod-
ucts. When products are interchangeable, two cases may occur:
if each outbound truck has a list of product types that should
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be loaded in, it is a post-distribution. The second case is when
each product unloaded in a cross dock is dedicated to a specific
destination. In both cases, defining the exact product-truck allo-
cation remains an operational decision. When the products are
not interchangeable, each product is dedicated to a specific out-
bound truck, thus the dispatching information is known from
the inbound side: it is a pre-distribution. See Yan and Tang [217]
and Tang and Yan [191] for a comparative study of pre- and
post-distributions.

arrival time . If any truck can be unloaded at any time, then it
is not restrictive to assume that all trucks are available from
the beginning of the planning horizon (time zero), ready to be
processed at any time. On the contrary, if truck arrivals are
subject to external constraints (for instance if the trucks have
other appointments prior to their arrival in the platform), then
the arrival times are defined per truck. Note that this applies for
both the inbound and outbound trucks.

departure time . There may be no restrictions on the departure
time of the trucks. But if a truck has another transportation task
scheduled after its departure from the crossdock, there will be
a deadline for its departure. This deadline can be defined for
the inbound trucks, outbound trucks or both. It is also possible that
each product has a specific time before which it should leave the
platform. In this case, the deadline is expressed on a product
level instead of a truck level.

truck filling . All the inbound trucks should be fully unloaded
before leaving the platform; but when the outbound trucks have
deadlines, they may leave the platform at the scheduled dead-
line without being fully loaded. In this case we say that a Less
than Truckload (LTL) departure is allowed. Otherwise, the trucks
leave only when they are full.

1.2.1.4 Performance measures

The performance of the cross-docking operations can be measured
by many different indicators. Here we list different possible perfor-
mance measures (which might be called elements of the objective
function for an optimization problem). We include all the objectives
mentioned by Boysen and Fliedner [31] (marked with * in the list)
who focus only on the truck scheduling problem. Their list is com-
pleted with other objectives related to the workers, specific operations
inside the platform, or truck filling rate.

inventory level . Since one of the cross-docking objectives is to
reduce the inventory, it is logical to follow some indicators on
the inventory level, such as the total* or the maximum number of
products stocked* in the planning horizon.



1.2 state-of-the-art and industry practice 17

working hours . The manpower is very often the first cost center
of a logistic platform where the operations are done manually.
Therefore the total number of working hours used to complete the
operations on the planning horizon is an important indicator.

travel distance . The previous indicator can be closely linked to
the total distance traveled by all the products inside the platform:
a longer distance to be crossed requires a longer time for a
worker to complete his task.

congestion. Minimizing the travel distance can lead one to group
all the loading and unloading tasks in the same area, which is
likely to generate congestion and on the overall, slow down the
process. There are no straightforward ways to measure the con-
gestion, but the percentage of total space used, or the total number
of times two products cross each other, are possible indicators.

total product stay time . If the main objective is to maximize
the turnover of goods, a meaningful indicator to monitor is the
total time spent inside the platform* (“completion time” for Boysen
and Fliedner) for all the products.

total loading or unloading time . In order to accelerate the
turnover of goods and free the doors as soon as possible, mini-
mizing the total time spent at the outbound docks by the outbound
trucks is a possible objective. Similarly, if the inbound door uti-
lization rate is high, the total time spent at the inbound docks by
the inbound trucks is a meaningful indicator to monitor.

truck processing time deviation. When arrival time or dead-
lines are defined, it is important to ensure that they are re-
spected, with an indicator on the earliness or tardiness* of the
inbound or outbound trucks. Note that we are not talking here
about the punctuality of the transportation provider. Although
very important, it is not directly influenced by the operations
management. The indicator discussed keeps track of situations
when the trucks are forced to arrive earlier or leave later than
planned, because it is not possible to start their unloading or
finish their loading on time.

door utilization. An indicator closely linked to the total loading
or unloading time is the inbound or outbound door utilization
rate.

truck filling rate . If a less-than-truckload departure is allowed,
it is reasonable to keep track of the filling rate of the truck, in
order to ensure that the cost savings by cross docking are com-
pensated for by increased transportation costs due to half-full
trucks.

products not loaded. Another indicator that can be monitored
when less-than-truckload departures are allowed is the number
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of missed orders, i. e. the number of products that could not be
loaded, or the corresponding lost profit.

schedule length . If an important goal is to finish the operations
as early as possible, the total schedule length or makespan* can
be monitored. It is the point in time at which the last operation
(possibly the last truck load) is completed.

1.2.2 Literature analysis

Since the scope of our analysis is the operational level of cross-
docking problems, we put aside of this literature review all the prob-
lems at strategic or tactical levels mentioned in sections 1.1.3.1 and
1.1.3.2, such as network design or truck routing. We focus on the op-
erations taking place at the platform. The literature review by Van
Belle et al. [199] cites 42 papers that enter this scope, the more re-
cent being published in 2011. Because the comparison framework
proposed in section 1.2.1 is largely inspired by the characteristics pro-
posed by Van Belle et al., this section includes the articles studied in
their review and complements it with additional articles.

1.2.2.1 Methodology and problem classification

We reviewed only articles written in English. Besides crossdock and
cross-docking 2 , we searched the key words transshipment, dispatch, Less
than Truckload (LTL) terminal, breakbulk terminal, yard management. The
articles found were filtered to keep only those dealing with the op-
erational level. On the whole, the review includes 120 articles from
different sources detailed in Table 1.2, which means that we add 78
papers to the 42 papers cited by Van Belle et al. [199].

Source Number of papers

Journal 64

Conference 31

Book chapter 8

Master thesis 7

Technical report 6

PhD thesis 4

Table 1.2: Source type for the different articles reviewed

The titles of the journals in which the 64 journal articles were pub-
lished are summarized in Table 1.3. Figure 1.4 gives an overview of
the authors who contributed most significantly to the field, with their
geographical location.

2. and their variations cross dock, cross-dock, crossdocking, cross docking.
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Journal title Number of articles

Computers & Industrial Engineering 15

Computers & Operations Research 5

The International Journal of Advanced Manufacturing Technology 5

European Journal of Operational Research 4

Transportation Science 3

Journal of Intelligent Manufacturing 2

Journal of the Operational Research Society 2

Transportation Research Part E: Logistics and Transportation Review 2

Applied Soft Computing 2

International Journal of Information Systems and Supply Chain Manage-
ment

2

International Journal of Production Economics 2

International Journal of Production Research 2

OR Spectrum 2

Transportation Research Record 1

Journal of Engineering Manufacture 1

Operations Research 1

Expert Systems with Applications 1

Transportation Journal 1

Annals of Operations Research 1

International Journal of Logistics Systems and Management 1

Journal of American Science 1

Journal of Industrial and Systems Engineering 1

Interfaces 1

Computers & Chemical Engineering 1

Journal of Service Science and Management 1

International Journal of Industrial Engineering Computations 1

International Journal of Logistics Research and Applications 1

IIE Transactions 1

Omega 1

Table 1.3: Source of the 64 journal articles reviewed
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Only the authors of more than 3 articles in total are presented – the city and
country are taken from their most recent reviewed article.

Figure 1.4: Main contributing authors

Cross-docking being a comparatively recent research field, it seems
that no standard names have been set for different optimization prob-
lems. In the titles of all the papers cited in the present article, we
could find different terms qualifying the problems at hand. The num-
ber of occurrences of those different terms are displayed in Table 1.4.
Note that the total number of papers in Table 1.4 does not equal the
total number of papers reviewed, because some of them do not in-
clude any of these expressions in their titles.

(a) (b) (c)

Door assignment (9)
Truck scheduling (16)

Crossdock scheduling (10)Truck dock assignment (3)

Dock door assignment (3)
Trailer scheduling (2)

Dock assignment (2) Crossdock operations

Truck-to-door assignment (1)
Truck sequencing (1)

scheduling (4)

Trailer to door assignment (1)

Table 1.4: Occurrence of different problem names in the titles of the papers
reviewed
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Most papers in column (a) of Table 1.4 consider a set of doors (in-
bound, outbound or both) and a set of trucks, the number of trucks
being less than or equal to the number of doors. The problem is
therefore restricted to a single moment in time, and the question is
to choose at which door each truck present at that time should be
placed. We will therefore refer to this problem as a truck-to-door as-
signment problem. Even if this term is used only once (by Shakeri
et al. [180]) in the set of papers studied, we believe that it is the most
descriptive name for this problem.

Papers listed in column (b) of Table 1.4 add a time dimension to
the previous problem. If there are more trucks than doors (i. e. if
we do not fall into the truck-to-door assignment problem), then it
is necessary to assign more than one truck to each door; therefore,
at each door the trucks should be sequenced in time. We call this
a truck-to-door sequencing problem. If the model determines exact ar-
rival/departure hours instead of the order in which the trucks arrive,
we call it a truck-to-door scheduling problem. We distinguish these from
another problem which aims at determining at what time the trucks
are docked, without specifying the exact dock. We call the latter a
truck sequencing problem or truck scheduling problem. Note that the truck
sequencing/scheduling problem can be solved in sequence with the
truck-to-door assignment problem in order to decide firstly at what
time, and secondly at which door the trucks are docked.

The terms “crossdock scheduling” and “crossdock operations sche-
duling”, found in the titles of 13 articles as shown in column (c) of
Table 1.4 are rather general. Looking more closely, we can see that
all the papers mentioning “crossdock scheduling” in their titles are
actually dealing with truck scheduling or sequencing problems. The
papers about “operations scheduling” deal with (outbound) truck se-
quencing, truck scheduling or truck-to-door scheduling problems.

Table 1.5 summarizes the definition of the different classes of prob-
lems which we propose. The N/A symbol indicates criteria that are
not applicable to the problem.

Which door? What time? In which order?

Truck-to-door assignment X N/A N/A

Truck-to-door sequencing X N/A X

Truck-to-door scheduling X X N/A

Truck sequencing N/A N/A X

Truck scheduling N/A X N/A

Table 1.5: Summary of the different operational cross-docking problems

Historically, as shown in Figure 1.5, the first problems studied by
the research community are the truck-to-door assignment and the
truck sequencing problems, which are somewhat simpler. The first
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paper considering a time horizon on this problem was published in
2002 (Yu [219]), and the first paper dealing with truck scheduling
appeared in 2009 (Chen et al. [44]). The interest of the community is
now equally spread between the four more complex problems: truck
sequencing/scheduling and truck-to-door sequencing/scheduling.
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Figure 1.5: Number of articles per year

Table 1.6 gives an overview of the solution methods used in the
different articles – note that one article can use more than one solution
method, thus some references appear several times in the table.

The next sections present the reviewed papers in each of the prob-
lem categories proposed. The type of platform and the type of prob-
lem studied in each paper are qualified according to the framework
detailed in section 1.2.1. In all the tables displaying the results, the
symbol v following a citation indicates that the article was already
present in the review by Van Belle et al. [199]. Similarly to the nota-
tion they adopted, the symbol * in the body of the table indicates that
the model studied is applicable to any non-zero value of the crite-
rion, “n/a” means that the criterion is not applicable to the problem
at hand, while “ns” means the information was not specified in the
article studied.

As noted already by Van Belle et al., some papers cited in one of the
categories proposed also make use of simulation to test their solution
approaches. Indeed, simulation is often used in order to gain insights
on complex operational problems within a crossdock. More details on
crossdock-related papers using simulation will be given in chapter 3.

1.2.2.2 Truck-to-door assignment

The truck-to-door assignment, sometimes also called yard manage-
ment, consists in allocating trucks to doors at a given point in time.
The papers dealing with this problem are listed in Table 1.7.
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Solution method Articles using the method

Ex
ac

t
m

et
ho

ds

Polynomial algorithm [44], [115], [172], [208], [209]

Mathematical programming [1], [2], [3], [11], [22], [33], [29], [34], [42],
[43], [46], [47], [63], [71], [105], [132], [131],
[138], [137], [142], [144], [149], [155], [157],
[159], [168], [174], [180], [179], [178], [182],
[186], [189], [193], [194],[200], [218], [220],
[221], [222], [223]

Dynamic programming [8], [10], [9], [16], [33], [28], [29], [30], [116],
[136], [138], [172], [173]

H
eu

ri
st

ic
s

IP-based heuristics [4], [46], [189], [214]

Scheduling heuristics [43], [44], [181], [186]

Other dedicated heuristics [1], [2], [9], [16], [21], [33], [28], [29], [30],
[35], [49], [50], [54], [85], [88], [99], [102],
[111], [113], [116], [115], [123], [127], [141],
[143], [157], [159], [175], [178], [182], [192],
[193], [194], [212], [216], [218], [220], [221],
[222]

M
et

ah
eu

ri
st

ic
s

Evolutionary algorithm [20], [24], [25], [26], [27], [46], [81], [107],
[129], [130], [136], [155]

Genetic algorithm [23], [24], [25], [26], [47], [57], [71], [73],
[83], [96], [107], [111], [113], [112], [120],
[122], [132], [131], [145], [146], [142], [149],
[183], [197], [195], [216], [218]

Tabu search [11], [16], [25], [130], [132], [197], [200]

Simulated annealing [18], [28], [30], [34], [130], [134], [140],
[185], [197]

Particule swarm optimization [24], [25], [26]

Memetic algorithm [82], [84], [106]

Local search [35], [96], [185], [197], [218]

Other metaheuristic [11], [73], [93], [92], [130], [134], [197],
[195], [196]

Table 1.6: Solution methods for the reviewed articles
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Bartholdi and Gue [18]v both I * * * Destination excl. X X
Bermúdez and Cole [23]v * * * Manually Exclusive w
Bozer and Carlo [34]v both * * * Manually Mixed X X
Brown [35]v both * * * Manually Exclusive total
Cohen and Keren [49] both I * * Manually Exclusive w
Cohen and Keren [50]v both I * * Manually Exclusive X
Gue [88]v inb. I * * Manually Exclusive w
Guignard et al. [93] both * * * Manually Destination excl. X
Jarrah et al. [105] outb. E * * Automated Exclusive
Ko et al. [111] outb. Combination Destination excl.
Ley and Elfayoumy [120] both I * * ns Exclusive X
Peck [159]v I * * Manually Exclusive
Tsui and Chang [193]v I * * Manually Exclusive X
Tsui and Chang [194]v I * * Manually Exclusive X
Yu et al. [218]v inb. * * * Manually Destination excl. X
Zhu et al. [223] both * * * Manually Exclusive X

Table 1.7: Truck-to-door assignment

As shown in Figure 1.5, this problem was mainly studied before
2010, which explains why most papers are listed in the review by
Van Belle et al. [199].

The case treated by Guignard et al. [93] is another version of the
problem which consists in assigning, for a given horizon, origins and
destinations to the different doors. This version considers a time hori-
zon and not a single moment in time, but aggregates all the data of
this horizon so that the time dimension is not explicitly considered.

Similarly, Ko et al. [111] assign destination to outbound doors in
a parcel sorting platform. But the objective function used is very
different from the others (thus it does not appear on the table): they
work with the double objective of minimizing the number of working
teams for loading the outbound freight, and balancing the workload
between the different teams.

Jarrah et al. [105] also study a parcel sorting platform in which
destinations should be assigned to doors; however, from time to time
this destination-to-door assignment should be modified. Their first
objective is to minimize the occurrences of such changes, the second is
to minimize the number of workers assigned to the loading operation,
and the third one is to evenly distribute the parcel at the different
loaders. Once again, the elements of the objective function being
very original compared to the rest of the truck-to-door assignment
literature, they are not displayed in Table 1.7.
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1.2.2.3 Truck-to-door sequencing

The truck-to-door sequencing problem assigns trucks to doors, but
on a time horizon rather than on a given point in time. Since there
are more trucks than doors (otherwise the problem is reduced to the
truck-to-door assignment problem), a given door is assigned to sev-
eral trucks, for which a processing order has to be determined. Ta-
ble 1.8 shows the articles dealing with this problem.

This hard problem cannot be reduced to a 1-inbound, 1-outbound
door case without making the door allocation trivial (it would thus
become a truck sequencing problem). In order to simplify the prob-
lem, about half of the authors consider only the inbound side, the
outbound side being either constraint-free or with fixed departures.

The distance traveled is an objective inherited from the truck-to-
door allocating problem, and it does not take into account the trucks
point of view which is incorporated with objectives such as the truck
time deviation, loading time or unloading time. If the speed is con-
sidered constant, which is a common assumption, then minimizing
the distance traveled amounts to minimizing the total travel time. As
an aggregating measure for the distance traveled and other time re-
lated indicators, the makespan is thus also a popular performance
measure.

1.2.2.4 Truck-to-door scheduling

The truck-to-door scheduling problem also consists in allocating
trucks to doors on a time horizon. The difference with the truck-
to-door sequencing problem is that the former does not model the
time explicitly since it considers only the order in which the different
trucks are processed at the dock. The papers related to the truck-to-
door scheduling problem, listed in Table 1.9, model the time dimen-
sion in an explicit way.

Again, the distance traveled and the makespan are popular perfor-
mance measures. Making the time dimension explicit also allows one
to follow the inventory level as a performance measure.

Chmielewski et al. and Naujoks and Chmielewski [46, 155] deal
with a variation of the problem that consists in allocating the door
role and destinations in a destination-exclusive crossdock. They look
for an optimal allocation of resources (workers, scanners, forklifts,
etc.), while minimizing firstly the total travel distance, and secondly
the trucks waiting time.

Two very recent papers appearing in Table 1.9 (Agustina et al. [4]
and Dondo and Cerdá [63]) actually deal with a more complex prob-
lem, which puts together truck routing (how to move products from
the suppliers to the platform, and from the platform to the clients,
with a limited amount of trucks) and truck scheduling.
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[113]
inb.

ns
*

ns
M

anually
Excl.

N
o

n/a
∞

/truck
N

o
n/a

n/a
X

X
K

onur
and

G
olias

[112]
inb.

*
*

*
M

anually
Excl.

N
o

n/a
∞

/truck
N

o
n/a

n/a
X

X
Liao

etal.
[130]

inb.
*

*
big

M
anually

Excl.
N

o
∞

∞
zero

O
utb.

LTL
D

est.
X

Lim
etal.

[132] v
both

*
*

*
M

anually
M

ixed
N

o
n/a

lim
/truck

Both
n/a

Pre-D
X

Lim
etal.

[131] v
both

*
*

*
M

anually
M

ixed
N

o
n/a

lim
/truck

Both
n/a

Pre-D
X

M
adani-Isfahanietal.

[134]
both

*
*

*
ns

Excl.
?

∞
∞

3
zero

N
o

full
D

est.
X

M
cW

illiam
s

etal.
[145] v

inb.
*

*
*

A
utom

ated
Excl.

N
o

0
lim

zero
N

o
full

D
est.

X
M

cW
illiam

s
[140]

inb.
*

*
*

A
utom

ated
Excl.

N
o

0
lim

zero
N

o
full

D
est.

X
M

cW
illiam

s
etal.

[146] v
inb.

*
*

*
A

utom
ated

Excl.
N

o
0

lim
zero

N
o

full
D

est.
X

M
cW

illiam
s

[142] v
inb.

*
*

*
A

utom
ated

Excl.
N

o
0

lim
zero

N
o

full
D

est.
X

M
cW

illiam
s

[141] v
inb.

*
*

*
A

utom
ated

Excl.
N

o
0

lim
zero

N
o

full
D

est.
X

M
cW

illiam
s

[143]
inb.

*
*

*
A

utom
ated

Excl.
N

o
0

lim
zero

N
o

full
D

est.
X

X
M

cW
illiam

s
and

M
cBride

[144]
inb.

*
*

*
A

utom
ated

Excl.
N

o
0

lim
zero

N
o

full
D

est.
X

M
iao

etal. v
[149] v

both
*

*
*

M
anually

M
ixed

N
o

n/a
lim

/truck
Both

n/a
Pre-D

X
N

ourm
oham

m
asiSharabiani

[157]
both

*
*

*
M

anually
Excl.

N
o

∞
∞

zero
N

o
full

Post-D
X

R
osales

etal.
[168] v

inb.
*

*
*

M
anually

Excl.
N

o
n/a

lim
zero

N
o

n/a
Pre-D

X
Saharidis

etal.
[174]

inb.
*

*
*

M
anually

Excl.
N

o
n/a

∞
/truck

N
o

n/a
n/a

X
X

Z
hang

[221]
both

I
*

*
M

anually
E+M

N
o

∞
lim

/truck
N

o
full

Pre-D
X

X
X

Z
hang

etal.
[222]

both
I

*
*

M
anually

E+M
N

o
∞

lim
/truck

N
o

full
Pre-D

X
X

X

Table
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Strategicallevel
Tacticallevel

O
perationallevel

Perform
ance

m
easures

On which doors

Shape

Nb inbound doors

Nb outbound doors

Internal transport

Service mode

Pre-emption

Storage capacity

Resources capacity

Arrival time

Departure time

Truck filling

Interchangeability

Inventory level

Distance traveled
Congestion

Total product stay time

Truck time deviation

Loading time

Unloading time

Door utilization

Makespan

A
car

[1] v
inb.

ns
*

nc
M

anually
Excl.

N
o

n/a
∞

/truck
N

o
n/a

n/a
X

A
car

etal.
[2]

inb.
ns

*
nc

M
anually

Excl.
N

o
n/a

∞
/truck

N
o

n/a
n/a

X
A

gustina
etal.

[3]
both

*
*

*
M

anually
Excl.

N
o

∞
∞

/truck
Both

full
Pre-D

X
X

A
gustina

etal.
[4]

both
*

*
*

M
anually

Excl.
N

o
∞

∞
/truck

Both
full

Pre-D
X

X
Bartz-Beielstein

etal.
[20]

both
ns

25
M

anually
M

ixed
N

o
0

∞
/truck

N
o

full
D

est.
X

X
C

hm
ielew

skietal.
[46] v

both
*

*
*

M
anually

D
est.

N
o

lim
lim

/truck
Both

n/a
D

est.
X

X
X

G
uignard

and
H

ahn
[92]

both
I

25
16

M
anually

Excl.
N

o
∞

∞
/truck

N
o

n/a
D

est.
X

X
X

G
uo

etal.
[96]

both
*

*
*

M
anually

Excl.
N

o
∞

∞
/truck

O
utb.

full
D

est.
X

X
H

erm
el

[102]
both

*
*

*
M

anually
M

ixed
N

o
0

lim
zero

N
o

full
Pre-D

X
X

Lietal.
[126]

both
*

*
M

anually
M

ixed
N

o
∞

∞
zero

N
o

full
D

est.
X

N
aujoks

and
C

hm
ielew

ski
[155]

both
*

*
*

M
anually

D
est.

N
o

lim
lim

/truck
Both

n/a
D

est.
X

X
X

Saharidis
etal.

[174]
inb.

*
*

*
M

anually
Excl.

N
o

n/a
∞

/truck
N

o
n/a

n/a
X

X
Shakerietal.

[180] v
both

*
*

*
M

anually
M

ixed
N

o
∞

∞
zero

N
o

n/a
Pre-D

X
Shakerietal.

[181]
both

*
*

*
M

anually
M

ixed
N

o
∞

∞
zero

N
o

n/a
Pre-D

X
Shakeriand

Low
[179]

both
*

*
*

M
anually

M
ixed

N
o

lim
lim

zero
N

o
full

Pre-D
X

Shakeri
[178]

both
*

*
*

M
anually

M
ixed

N
o

∞
lim

zero
N

o
full

Pre-D
X

Shakerietal.
[182]

both
I

*
*

M
anually

M
ixed

N
o

0
lim

zero
N

o
full

D
est.

X
Tesch

etal.
[192]

L
14

80
M

anually
Excl.

N
o

lim
lim

/truck
N

o
full

Pre-D
X

X
V

an
Belle

etal.
[200]

both
*

*
*

M
anually

Excl.
N

o
∞

∞
/truck

Both
n/a

Pre-D
X

X
W

ang
and

R
egan

[212] v
inb.

*
*

*
M

anually
Excl.

N
o

0
∞

/truck
N

o
full

D
est.

X
X

X
W

erners
and

W
ülfing

[214] v
outb.

U
*

*
C

om
bination

Excl.
N

o
0

lim
ns

O
utb.

full
D

est.
X

Table
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1.2.2.5 Truck sequencing

Contrary to truck-to-door problems, truck sequencing problems do
not take the space dimension into account. A truck is not allocated to
a specific door, but to any door as long as the total number of doors is
respected. The notion of distance between two doors inside the plat-
form, which was central for the truck-to-door assignment problem, is
not considered here. The truck sequencing problem only looks at the
order in which the trucks arrive at the doors. The related papers are
listed in Table 1.10.

Not taking the space dimension into account allows one to simplify
the problem into a 1-inbound, 1-outbound door situation. This is
not a realistic assumption but it can help to understand better this
difficult problem: 17 out of the 26 articles reviewed in this category
make such an assumption.

The makespan is the unique performance measure considered in
half the articles. The inventory level is also an important aspect for
the truck sequencing problem, which is consistent with the cross-
docking concept for which reducing inventory is one of the main
objectives.

1.2.2.6 Truck scheduling

Truck scheduling takes the time dimension explicitly into account,
rather than implicitly through the truck processing order. Articles
dealing with such problems are displayed in Table 1.11.

Again, 5 articles out of 12 assume a crossdock with one inbound
and one outbound door. Modeling the time explicitly enables one to
take into account the truck time deviation, which is thus an important
performance measure for the problem, besides the makespan.

1.2.2.7 Internal operations

Maknoon et al. [138] suppose the truck schedule known in a 1-
inbound, 1-outbound door platform, and optimize the moving pat-
tern of products inside the platform. The goal is to determine whether
the unloaded items should go directly to the outbound truck or rather
to the storage location for a later truck, in order to maximize the
number of direct transfers (minimizing the number of products put
in storage).

The location of temporary storage area (or staging area) is also a
problem addressed in the literature. See Van Belle et al. [199] for a
classification and review of the related works.

1.2.3 On-field observations

This section gives an account of visits made in eight different logis-
tic platforms in France (1 near Paris, 5 near Lyon, 1 near Grenoble and



1.2 state-of-the-art and industry practice 29

Strategicallevel
Tacticallevel

O
perationallevel

Perform
ance

m
easures

On which doors

Shape

Nb inbound doors
Nb outbound doors

Internal transport

Service mode

Pre-emption

Storage capacity

Resources capacity

Arrival time

Departure time

Truck filling

Interchangeability

Inventory level

Number of touch

Truck time deviation

Makespan

Preemption costs

A
lpan

etal.
[8]

outb.
n/a

*
*

ns
Excl.

Yes
∞

∞
zero

N
o

full
D

est.
X

X
A

lpan
etal.

[10] v
outb.

n/a
*

*
ns

Excl.
Yes

∞
∞

zero
N

o
full

D
est.

X
X

A
lpan

etal.
[9]

outb.
n/a

*
*

M
anually

Excl.
Yes

∞
∞

/truck
N

o
full

D
est.

X
X

Baptiste
and

M
aknoon

[16]
both

n/a
1

1
M

anually
Excl.

N
o

∞
∞

zero
N

o
full

D
est.

X
C

hen
and

Lee
[42] v

both
n/a

1
1

ns
Excl.

N
o

∞
zero

N
o

Pre-D
X

C
hen

and
Song

[43] v
both

*
*

*
ns

Excl.
N

o
∞

zero
N

o
Pre-D

X
D

avoudpour
etal.

[57]
both

n/a
1

1
M

anually
Excl.

N
o

0
∞

/truck
Both

full
Post-D

X
FazelZ

arandietal.
[71]

both
*

1
1

A
utom

ated
Excl.

Yes
∞

∞
/truck

O
utb.

full
D

est.
X

X
Forouharfard

and
Z

andieh
[73] v

both
n/a

1
1

ns
Excl.

N
o

∞
∞

zero
N

o
full

Post-D
X

G
hobadian

etal.
[79]

both
n/a

1
1

ns
Excl.

N
o

∞
∞

zero
N

o
full

D
est.

X
Joo

and
K

im
[107]

both
I

*
*

M
anually

Excl.
0

∞
zero

N
o

full
Post-D

X
Larbietal.

[116]
outb.

*
*

*
M

anually
Excl.

Yes
∞

∞
zero

N
o

n/a
D

est.
X

X
Larbietal.

[115] v
outb.

n/a
1

1
ns

Excl.
Yes

∞
∞

zero
N

o
D

est.
X

X
Liao

etal.
[129]

both
n/a

1
1

*
Excl.

N
o

∞
∞

zero
N

o
full

Post-D
X

M
aknoon

and
Baptiste

[136]
both

*
1

1
M

anually
Excl.

N
o

∞
∞

zero
N

o
full

D
est.

X
M

aknoon
and

Baptiste
[137]

both
*

*
*

M
anually

Excl.
N

o
∞

∞
/truck

Both
full

D
est.

X
M

aknoon
etal.

[135]
outb.

n/a
*

*
M

anually
Excl.

N
o

∞
∞

/truck
N

o
full

Pre-D
X

Sadykov
[172]

both
n/a

1
1

*
Excl.

N
o

lim
∞

zero
N

o
full

Post-D
X

Sadykov
[173]

both
n/a

1
1

*
Excl.

N
o

lim
∞

zero
N

o
full

Post-D
X

Shiguem
oto

etal.
[183]

both
*

1
1

A
utom

ated
Excl.

N
o

∞
∞

zero
N

o
full

D
est.

X
Soltaniand

Sadjadi
[185] v

both
n/a

1
1

A
utom

ated
Excl.

Yes
0

∞
zero

N
o

full
Post-D

X
Song

and
C

hen
[186]

both
*

*
1

M
anually

Excl.
N

o
n/a

∞
zero

N
o

full
Pre-D

X
V

ahdaniand
Z

andieh
[197] v

both
n/a

1
1

A
utom

ated
Excl.

N
o

∞
∞

zero
N

o
full

Post-D
X

V
ahdanietal.

[195] v
both

n/a
1

1
A

utom
ated

Excl.
Yes

∞
∞

zero
N

o
full

Post-D
X

V
ahdanietal.

[196]
both

n/a
1

1
A

utom
ated

Excl.
N

o
∞

∞
zero

N
o

full
Post-D

X
Yu

and
Egbelu

[220] v
both

n/a
1

1
A

utom
ated

Excl.
N

o
∞

∞
zero

N
o

full
D

est.
X

Table
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Strategicallevel
Tacticallevel

O
perationallevel

Perform
ance

m
easures

On which doors

Shape

Nb inbound doors
Nb outbound doors

Internal transport

Service mode

Pre-emption

Storage capacity

Resources capacity

Arrival time

Departure time

Truck filling

Interchangeability

Inventory level

Total product stay time

Truck time deviation

Loading time

Unloading time

Makespan

Balance workload

Á
lvarez

Pérez
etal.

[11] v
both

*
*

*
ns

n/a
N

o
∞

∞
/truck

Both
full

Pre-D
X

Bellanger
etal.

[21]
both

n/a
*

*
*

Excl.
N

o
0

∞
zero

N
o

full
D

est.
X

Berghm
an

etal.
[22]

both
*

*
*

M
anually

M
ixed

N
o

∞
∞

/truck
Both

n/a
Pre-D

X
BolooriA

rabanietal.
[24] v

both
n/a

1
1

A
utom

ated
Excl.

N
o

∞
∞

zero
O

utb.
n/a

Post-D
X

BolooriA
rabanietal.

[25] v
both

n/a
1

1
A

utom
ated

Excl.
N

o
∞

∞
zero

N
o

n/a
D

est.
X

X
BolooriA

rabanietal.
[26]

both
n/a

1
1

*
Excl.

N
o

0
∞

zero
O

utb.
n/a

Post-D
X

X
BolooriA

rabanietal.
[27]

both
n/a

1
1

*
Excl.

N
o

0
∞

zero
O

utb.
full

Pre-D
X

X
Boysen

etal.
[33] v

both
n/a

1
1

*
Excl.

N
o

∞
∞

zero
N

o
full

Post-D
X

Boysen
[28] v

both
*

*
*

M
anually

Excl.
N

o
0

∞
zero

O
utb.

Pre-D
X

X
X

C
hen

etal.
[44]

both
*

*
1

ns
Excl.

N
o

∞
∞

zero
N

o
n/a

Pre-D
X

Lietal.
[122] v

both
*

*
*

ns
n/a

N
o

∞
∞

/truck
Both

n/a
Pre-D

X

Table
1.11:Truck

scheduling
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1 near Annecy). For confidentiality reasons, the names of the compa-
nies and of the platforms have been made anonymous. In each plat-
form, we were able to observe the ongoing operations and interview
the platform manager and/or the logistics director of the company.
The interviews were all carried out with the same interview grid, de-
veloped in order to be able to compare the on-field observations with
the literature review described in the previous section. The interview
grid (in French) is available in Appendix A.

The eight platforms are very diverse in terms of size, products ma-
nipulated, and activity volumes. We believe they make a good sample
of the reality of cross-docking platforms in France. The eight visited

platforms are a good
sample of French
crossdocks.

Table 1.12 summarizes our observations and the outcomes of our
interviews with the platform managers. Platforms B, F, G and K han-
dle various retail products (electronics, cosmetics, clothes, toys. . . );
platforms S and T respectively handle fresh food and frozen food;
platforms C and Y deal with parcel delivery. Platforms B, C, G and
K belong to the companies selling the products, whereas the other
platforms are logistic service providers carrying their clients’ prod-
ucts. The first section of the table gathers information that give an
idea of the platform size: its physical surface, but also its number
of employees and yearly/daily volumes. Platform K, that unloads
bulk containers only (about 800 per year), could not give an estima-
tion in cases. Platform Y crossdocks parcels only during peak times
(e. g. Christmas) or punctually when its client its saturated; therefore
yearly estimations would not have made sense in their case.

Half of the platforms visited carried out pure cross-docking oper-
ations, where all products stay less than 24 hours in the platform.
In all four cases, all products received on a given day should leave
the same day; absolutely no product is stored overnight. Those four
platforms are the ones dealing with food and parcel deliveries – two
sectors where the flow of goods must be extremely fast. The other
four are either holding their crossdocked items in retention for up
to three days before loading them in the outbound trucks, or storing
some of the received items in racks for a longer period of time.

At the end of the interview with the platform managers, each was
asked to state the main issues or needs at the moment. Their answers
are summarized in Table 1.13.

1.2.4 Discussion

In truck sequencing and truck scheduling problems, 23 out of the
38 papers studied work on an imaginary crossdock with one inbound
and one outbound door. It is not too surprising to observe that real-
life platforms have more than two doors – 35 on the average for our
sample of eight platforms. In this section we discuss other gaps ob-
served between the literature and our observations in industry, or in
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Size
inform

ation
Strategicallevel

Tacticallevel
O

perationallevel
Perform

ance
m

easures

Surface (m2)

Nb permanent employees

Flow quantification 4

Cases 5 handled per year

Cases handled per day

Trucks handled per day

Shape

Total number of doors

Nb inbound doors

Nb outbound doors

Internal transport

Service mode

Preemption

Storage capacity

Resources capacity

Arrival time

Departure time

Truck filling

Interchangeability

Inventory level

Working hours

Congestion

Number of touches

Truck punctuality

Loading time

Unloading time

Door utilization

Products not loaded

Makespan

B
2

500
10

sm
all

60
000

300
10

I
4

C
om

bination
M

ixed
no

lim
lim

/truck
O

utb.
full

Post-D
X

C
30

000
230

big
261

000
000

180
000

320
I

64
32

32
A

utom
ated

D
est.

no
lim

lim
0

Both
full

D
est.

X
F

35
000

280
m

edium
/big

11
700

000
35

000
150-200

I
52

M
anually

M
ixed

no
lim

lim
/truck

Both
full

Post-D
.

X
X

X
X

X
G

46
000

130
m

edium
24

000
000

540
50

I
34

14
20

C
om

bination
D

est.
no

∞
6

lim
/truck

O
utb.

full
D

est.
X

X
X

X
K

24
000

57
m

edium
800

cont.
nc

10-60
I

32
M

anually
M

ixed
no

lim
lim

/truck
Both

full
Post-D

.
X

S
14

000
170

m
edium

50
300

000
220

000
105

L
40

M
anually

M
ixed

no
lim

lim
/truck

Both
full

Post-D
.

X
X

X
T

4
550

27
m

edium
13

725
000

45
000

70
I

22
M

anually
M

ixed+D
est. 7

no
lim

lim
0

Both
full

D
est.

X
X

Y
34

000
10

big
n/a

100
000

100
I

30
10

20
M

anually
Excl.

no
lim

lim
0

Both
full

D
est.

X
X

X

Table
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4A
s

perceived
by

the
m

anager
5C

ase:describes
a

unit
of

m
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Main concerns

B Schedule the human resources needed for scan and packaging operations

C No issues mentioned

F Problems for forecasting the volume of activity, thus the number of employ-
ees needed

G Forecasts known at the last minute: employee timetabling is a delicate task

K Managing the delayed trucks

S When and at which door to schedule the outbound trucks

T How to absorb delayed trucks during peaks of activity; how to schedule the
employees (done manually)

Y How many temporary workers are needed and for how long

Table 1.13: Main managerial issues in the visited platforms

the contrary we point out elements on which researchers and practi-
tioners converge.

shape . When a shape is mentioned in the literature, it is almost
always an i-shape. Seven out of the eight platforms visited were
also i-shaped, so this common assumption seems to be justified. All
visited platforms have less than 100 doors, a size for which an i-shape
is more efficient according to Bartholdi and Gue [19].

internal transport. 53% of the papers in the literature review
assume a manual internal transport, 15% an automated one and 1%
a combination of both (the remaining papers do not state the type of
internal transport used). These results match quite well our observa-
tions on a small sample of real platforms.

service mode . Four of the visited platforms have a destination-
exclusive or exclusive mode of service (in which case we state the
number of inbound and outbound doors), while five have a mixed
mode of service, i. e. use the same doors for inbound and outbound
operations (the total does not amount to eight because one platform
uses a mixed mode of service but the doors are dedicated to desti-
nations in their outbound mode). An exclusive mode of service may
lower the efficiency of the dock utilization, but is still widely used be-
cause having fixed inbound and outbound doors eases the operation
management inside a platform.

Academic works also use both assumptions (6% of all papers use
a destination-exclusive mode of service, 68% an exclusive mode, 13%
a mixed mode), but all the papers on truck sequencing and most
of those on truck scheduling assume an exclusive mode of service.
Because the number of platforms using a mixed mode is not negli-
gible in practice, the community should consider investigating truck
sequencing and scheduling in a mixed mode of service.
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preemption. None of the platforms studied use preemption when
unloading or loading their trucks – and the question raised real sur-
prise among the managers, who wondered what would be the point
of interrupting a loading or unloading operation. Preemption is not
used much in the literature, and most of the time in problems with
only one inbound and one outbound door. The assumption might
be valid in a production crossdock (where the inbound side is a con-
veyor from a production line, for example), but does not seem to be
a common practice for a regular crossdock.

storage and resource capacity. The idea that resource and
storage capacity are limited in most of the real-world logistic plat-
forms is quite straightforward, and comforted by our observations.
However this double constraint is taken into account in only 3% of
the cross-docking literature, and not at all in the articles dealing with
truck sequencing or truck scheduling. This is an important gap be-
tween theory and practice, that needs to be filled by including such
constraints in the theoretical models.

We also observe, from the list of managerial issues in Table 1.13,
that knowing the number of employees needed and scheduling them
is a major concern among the managers. The uncertainty of the activ-
ity volumes makes scheduling a difficult task. We found almost no
mention of this question in the cross-docking literature.

arrival and departure time . Truck arrivals in platforms C, T
and Y are concentrated, which means that all trucks arrive almost at
the same time. This type of organization is strongly linked to the sort
of products handled, parcels and frozen food, that need to be sorted
and dispatched in a time window as short as possible. Note that
the number of trucks handled by these platforms is quite big, which
can cause an important congestion in the parking lot or even the sur-
roundings of the platform. Other platforms handling retail products
deal with trucks arriving rather regularly through the day – in gen-
eral the arrival time of each truck is known quite precisely when the
platform is managed by the company that owns the products, and
is often unknown by logistic service providers. The management of
delayed arrivals is also a point appearing twice in our list of main
managerial issues (Table 1.13).

Both situations, concentrated and scattered arrival times, are al-
most equally studied in the literature; but the case of uncertain arrival
times is only addressed by ten papers: Acar et al. [2], Baptiste and Ma-
knoon [16], Guignard and Hahn [92], Konur and Golias [112, 113], Li
et al. [122, 127], Shakeri [178], Shakeri et al. [182], Werners and Wülf-
ing [214].

Departure times are imposed for the inbound and outbound trucks
in most platforms – the inbound truck departure times are uncon-
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strained for platform B and G only, who both receive products shipped
by their own company. Departure times are not constrained at all in
48% of the articles of our literature review: this assumption does not
seem to hold in real life.

truck filling . Truck filling is a subject on which researchers and
practitioners seem to reach the general consensus that trucks should
be fully loaded. Note that it means that trucks should be loaded with
all the pallets, parcels or items that were planned to be loaded in: it
does not necessarily mean that the available space in each truck is
fully used – as a matter of fact, this is rarely the case.

interchangeability. We observed an equal number of cross-
docks where each product is dedicated to a specific outbound truck,
and crossdocks where each product is headed to a destination and
the exact product/truck allocation is decided when loading the out-
bound trucks. This also matches the assumptions commonly made
by researchers.

performance measures . The makespan and the distance trav-
eled by workers are prominent performance measures in our litera-
ture review; the managerial practices do not reflect the same tenden-
cies. Reducing the distance traveled is admittedly among the man-
ager’s preoccupations for productivity and ergonomic reasons. How-
ever, they do not cite the distance traveled as a performance measure
because it is not an easily accessible data for them.

The success of the makespan as a performance measure in math-
ematical models is easily explained by its popularity in the schedul-
ing field in general. However, finishing early (i. e. minimizing the
makespan) is considered as important by only three of the managers
we interviewed: oftentimes the end of the day depends on the de-
parture time of the last truck, which is not necessarily flexible. The
important measure for six of the eight platforms considered is the
number of hours worked by the employees of the platform, which is
due to the fact that most of the work is carried out manually. Surpris-
ingly enough, congestion is a major concern in the larger platforms
only: it seems that the bigger the platform, the bigger the flows and
risks of congestion.

1.2.5 Conclusion

We used the comparison framework described in section 1.2.1 to
compare the literature review on the one hand, and the practices ob-
served in industry on the other hand. We observed some gaps be-
tween theory and practice, that would need to be filled by focusing
on the following research areas:
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– truck sequencing and scheduling with a mixed service mode, i. e.
when doors can serve as inbound or outbound doors as needed;

– including storage capacity and resource capacity in cross-docking
models;

– scheduling/timetabling of cross-dock employees;
– scheduling operations under uncertain or late truck arrivals;
– considering the number of hours worked by the platform em-

ployees as an objective function in cross-docking models.
This literature review was conducted on articles dealing with cross-

docking operations. However, other fields investigate problems that
can be closely related to cross-docking operations problems. It is e. g.
the case of railway yards management problems, that are reviewed by
Boysen et al. [32], and port operations reviewed by Vis and de Koster
[207]. Flight gate scheduling problems in airports are also closely
related to truck-to-door scheduling problems: a state-of-the art can
be found in Dorndorf et al. [64].

1.3 problem and motivations

The study carried out in the previous section helps drawing the
objectives and motivations for the rest of this dissertation.

1.3.1 Objectives of the study

Our objective in this dissertation is to fill the most critical of the
gaps between literature and industry practice identified in section 1.2.
Because they were mentioned several times in our discussions with
the platform managers, we focus on two main issues:

management of late arrivals . One of the managers’ main con-
cerns was to determine the best way to handle a delayed truck
without disturbing the rest of the operations. The first objective
of this dissertation is therefore to propose a scheduling tool that
would help managers to handle late trucks with as few pertur-
bations as possible for other ongoing operations. In order to be
able to study truck scheduling under late arrivals, an intermedi-
ate objective is to build a deterministic truck scheduling model
as a first step.

employees scheduling/timetabling . Scheduling the employ-
ees’ working hours seems to be a hard and time-consuming
task for the majority of the managers we have met; yet the
timetabling process needs to be quick to be adaptable in case
of changes in the available information regarding the activity
volume. The second objective of this dissertation is therefore to
propose a decision-support tool for employee timetabling.
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Late arrivals cannot be handled without available manpower, thus
both issues seem to be strongly linked. A last objective is therefore
to study the links between the two problems, in order to propose an
integrated solution.

1.3.2 Problem statement

From the objectives detailed above, we derive three questions that
this dissertation aims at answering:

How to schedule truck and pallet flows in a cross-docking platform?

How to manage delayed trucks without disturbing other ongoing operations?

How to schedule the workers in a way that fits the operations workload?

1.3.3 Dissertation outline

The rest of the document is organized in three different parts.
The first part, composed of chapter 2, chapter 3 and chapter 4, ad-

dresses the truck scheduling problem. Chapter 2 deals with the de-
terministic case and therefore answers the first of the three questions
of section 1.3.2. Handling delayed trucks without disturbing the on-
going operations is possible if the trucks schedule is robust to truck
delays; therefore chapter 3 proposes a methodology and a set of met-
rics to evaluate the robustness of the model – when the truck arrivals
and departures are subject to uncertainties, but also when the transfer
and unloading times are variable. These robustness metrics are then
used in chapter 4 to compare various robust variations of the original
model and thus answer the second question.

In the second part, composed of chapter 5, the employee schedul-
ing problem is addressed on different time scales (weekly timetabling
and daily rostering) in order to answer the third question.

Finally, chapter 6 explains how the truck scheduling model and the
employee scheduling model can be used together.

The conclusions at the end of each chapter are technical ones; the
global conclusion and perspectives are given at the end of the docu-
ment.





In preparing for battle I have
always found that plans are useless,

but planning is indispensable.

— Dwight D. Eisenhower

Chapter 2

O P T I M I Z I N G C R O S S D O C K T R U C K
S C H E D U L I N G

This chapter aims at proposing a decision-support tool
to schedule truck arrivals/departures and pallet transfers
(including storage) in a cross-docking platform. It is as-
sumed that the manager who schedules the operations
of a given day knows the list of inbound and outbound
trucks planned on that day and their content. Transporta-
tion providers use a reservation system to give their pre-
ferred arrival and departure times. The objective is to
schedule the trucks and pallet transfers, minimizing the
number of pallets temporarily stored and maximizing the
transportation providers’ satisfaction regarding the pres-
ence time windows that are allocated to each truck in the
final schedule. This chapter proposes to model the prob-
lem with an Integer Program (IP) and to solve it with three
different heuristics.

The work presented in this chapter is also presented in the
following articles:
Ladier, A.-L., and Alpan, G. 2013. Scheduling truck ar-
rivals and departures in a crossdock: earliness, tardiness
and storage policies. In International Conference on Indus-
trial Engineering and Systems Management. Rabat, Marocco.
Ladier, A.-L., and Alpan, G. Crossdock truck scheduling
with time windows: Earliness, tardiness and storage poli-
cies. Submitted for publication in the Journal of Intelligent
Manufacturing.



O P T I M I S AT I O N D E L A P L A N I F I C AT I O N D E S
C A M I O N S

Ce chapitre vise à proposer un outil d’aide à la décision
pour planifier les opérations (arrivées et départs des ca-
mions, transfert de palettes) d’une plateforme de cross-
docking. Le manager qui planifie les opérations d’un jour
donné dispose de la liste des camions prévus en entrée et
sortie, ainsi que de leur contenu. Grâce à un système de
réservation, les transporteurs indiquent leurs plages ho-
raires préférées pour chacun des camions. Si nécessaire, il
est possible de planifier un camion à une plage horaire
différente que celle qu’il a demandée ; mais cette situa-
tion doit être évitée autant que possible, car elle risque
de perturber la tournée du transporteur. Si le camion de
sortie correspondant n’est pas à quai au moment de trai-
ter une palette entrante, celle-ci est temporairement placée
en stock. Comme l’opération va demander deux coups
de fourche du cariste au lieu d’un (soit deux fois plus
de ressources), on cherche également à minimiser ces si-
tuations. L’objectif est donc de planifier les camions et
les transferts de palettes de façon à minimiser la quan-
tité de palettes mises en stock, et à maximiser la satis-
faction des transporteurs concernant les plages horaires
qui leur sont attribuées dans le planning final. Dans le
cas déterministe, on modélise le problème par un pro-
gramme linéaire en nombres entiers (plne). Les variables
de décisions concernent d’une part la plage horaire at-
tribuée à chacun des camions (entrants et sortants), et
d’autre part les mouvements de palettes (à chaque unité
de temps, le nombre de palettes déplacées d’un camion à
l’autre, depuis et vers le stock). Le plne ainsi formulé (ip*)
n’est utilisable que pour de très petites instances. Afin
de pouvoir traiter des instances de taille réaliste, nous
proposons trois heuristiques. Les deux premières décom-
posent le problème en deux plne plus petits. En suppo-
sant que les plages horaires exprimées pour les camions
sortants sont les plages horaires définitives, le plne ip1 dé-
termine le planning des camions sortants. Ce planning est
utilisé comme une donnée d’entrée pour une version re-
laxée d’ip*. La seconde heuristique suit la même logique,
en fixant cette fois les camions entrants. La troisième heu-
ristique est une recherche tabou, qui détermine la valeur
de la composante “stock” de la fonction objectif en ré-
solvant un problème de flot maximum. Les performances
des trois heuristiques sont testées et comparées dans dif-
férents cas de figure.
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O P T I M I Z I N G C R O S S D O C K T R U C K S C H E D U L I N G

As shown in chapter 1, the punctuality of the trucks is of crucial
importance for the platform managers. This chapter therefore aims at
providing logistic managers with a decision-support tool to schedule
the truck-related operations as well as the storage plan.

After describing the problem in section 2.1, a first formulation us-
ing an Integer Programming model (section 2.2) is detailed and tested.
In order to overcome the computational limitations, three heuristics
are proposed in section 2.3.

2.1 truck scheduling with time windows : problem de-
scription

The question is to plan inbound and outbound truck arrivals and
departures as well as pallet moves through a crossdock. It is as-
sumed that the platform manager knows the preferences of the trans-
portation providers regarding arrival and departure times, for both
inbound and outbound trucks. The resulting schedule should max-
imize the transportation providers’ preference satisfaction and mini-
mize storage.

In order to ensure the synchronization between inbound and out-
bound flows, it is also important to track the pallet moves. This in-
formation is valuable for the manager since it provides detailed infor-
mation about the workload inside the platform, both for moves from
trucks to trucks and for moves to and from storage.

2.1.1 Assumptions

According to the classification proposed in chapter 1 (section 1.2.2),
the issue is addressed as a truck scheduling problem. Therefore, the
spatial dimension is not taken into account. Unloading, scanning,
transfer and loading operations are all done within the same time
period; consequently the time period is defined to be long enough
(e. g. at least half an hour) to ensure the product transfers in masked
time.

The exact contents of the inbound trucks (number of pallets for
each destination) are assumed to be known. When a truck arrives, it
is entirely unloaded on the dock, and the pallets can then be picked
from the dock in any order.

The doors have an exclusive mode of service. No preemption is
allowed. The storage capacity is supposed to be unlimited. The out-

41
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bound trucks have a fixed capacity F, and cannot leave before they
are fully loaded. The resource capacity is limited by the number of
workers present, the number of material handling equipment or both:
no more than M units can be moved in one time period inside the
platform.

When the required outbound truck is not available to load a given
pallet, the pallet is placed in storage. All pallets entering the platform
on a given day will leave it on the same day, so the pallets are not
stored for a long time. Therefore, the model does not follow a FIFO

policy to empty the stock, and the pallets in storage can be taken out
in any order. Since the items are stored for a short amount of time, the
holding costs are negligible compared to the cost of extra handling.
Placing an item in the temporary storage area is more costly than
directly transferring it from an inbound to an outbound truck, since
the item is touched twice instead of just once. Therefore, the goal is
to minimize the total number of products put in storage.

The transportation provider expresses his preferences about the
wished arrival and departure times for all trucks, i. e. a preferred time
window of presence. Another goal is to maximize the transportation
provider’s satisfaction: a time window will be penalized if it starts
before, or ends after, the wished arrival or departure time. Hence,
both the earliness and tardiness of the inbound and the outbound
trucks are considered. This objective enters into the “truck time devi-
ation” performance measure in the comparison framework proposed
in section 1.2.1.

The different assumptions for the problem considered are summa-
rized in Table 2.1.
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Table 2.1: Classification of the truck scheduling problem studied in chapter 2

2.1.2 Similar problems in the literature

Time windows are introduced by Li et al. [122] for the inbound
trucks in the truck sequencing problem: each inbound truck (“incom-
ing container”) has a release time and due date, while each outbound
truck has only a due date. The goal is to minimize earliness and tar-
diness penalties, i. e. the absolute value of the difference between the
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actual truck departure time and its due date. The problem is mod-
eled as a machine scheduling problem and solved with two heuristics
(squeaky wheel optimization and linear programming, both embed-
ded in a genetic algorithm). Álvarez Pérez et al. [11] propose to com-
bine two metaheuristics (reactive GRASP and tabu search) to solve the GRASP stands for

Greedy Randomized
Adaptive Search
Procedure.

same problem.
Golias et al. [81] propose to further extend these work into a truck-

to-door sequencing problem, by adding another objective: maximiz-
ing the total throughput of the platform. This is actually done by
minimizing the total service time of all trucks. Early and late truck
departures at both the inbound and outbound doors are also penal-
ized when the departure is outside a predefined time window. Our
approach also makes use of time windows, but considers that both
the arrival and departure of the trucks should be in the time win-
dow, since the arrival time is also of importance for the transportation
provider.

As can be seen in Table 1.11, another work that uses truck time
deviation as a performance measure in a crossdock truck schedul-
ing problem is by Boysen [28] and focuses on the outbound trucks
only. Boysen proposes a model for a frozen food platform in which
the storage is forbidden. The objective is to minimize the flow time,
processing time and tardiness of the outbound trucks.

In a logistics platform, the punctuality of the trucks is of crucial
importance for the managers, not only for the outbound but also for
the inbound trucks. Early truck arrivals may disturb the internal
operations as much as delays (e. g. unexpected congestion inside the
platform or in the parking area, need for a reorganization of internal
resources, etc.). Therefore, unlike previous work found in the liter-
ature, this chapter considers both the earliness and tardiness of the
trucks, for both inbound and outbound operations.

2.1.3 Input data

As a convention in the entire document, we use calligraphic letters
to name the sets, capital letters for the known input parameters, and
lower-case letters for decision variables.

The input data and the decision variables are defined over the fol-
lowing sets:

H set of time periods (e. g. half an hour) in the planning horizon
considered;

I set of inbound trucks;
O set of outbound trucks;
C set of clients to whom the pallets should be delivered.

From the assumptions detailed in section 2.1.1, the input data con-
sidered include:
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Q i c number of pallets for client c ∈ C in truck i ∈ I ;
Zco = 1 if truck o ∈ O is for client c ∈ C , 0 otherwise;
N I number of inbound doors;
NO number of outbound doors;
M maximum number of pallets that can be moved during one time

period inside the platform;
F number of pallets needed to fully load one outbound truck.

The data listed above correspond to strategical decisions (physical
constraints in the crossdock) or tactical decisions (destinations and
capacity of different trucks). At the operational level, those decisions
are constraints that cannot be violated. The model, therefore, incor-
porates them as hard constraints. The only data corresponding to an
operational decision is M, the internal capacity of the platform. The
value of M can depend on the available material handling equipment,
and on the number of employees present on the day considered. In
this chapter we consider that M has a fixed value for the whole plan-
ning horizon; in chapter 6 this assumption will be relaxed by varying
M through the day, to incorporate workers’ timetable.

The earliest possible arrival time and latest possible departure time
of each inbound (resp. outbound) truck are known. In the general
case, they correspond to the beginning and the end of the planning
horizon – however, some hard constraints expressed by the trans-
portation provider can also be taken into account through this data.
The wishes of the transportation providers are known regarding the
arrival and presence time of trucks: the objective is to satisfy them as
much as possible.

hour
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Figure 2.1: Example of matrix W I for a given truck i
(for slot length from 3 to 7 hours)
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2.2 first formulation : integer programming model

The problem presented in section 2.1.1 can be formulated as an In-
teger Programming (IP) model. This section presents and explains the
IP model, the complexity of the problem, and numerical experiments.

2.2.1 Integer program

The model aims at defining the truck schedule, with the objec-
tive of being as close as possible to the wishes of the transportation
providers, and at the same time minimizing the storage.

Some modeling choices have to be made regarding the definition
of the truck presence slots and their penalties. The earliest possible
arrival time and latest possible departure time being known, the pos-
sible presence slots of a given truck can be enumerated. We note Ki
(resp. Ko) as the set of possible presence slots of the truck i ∈ I (resp.
o ∈ O). These possible presence slots are described by matrices W I

and WO, where:

W I
ikh = 1 if hour h ∈ H is in slot k ∈ K i for inbound truck i ∈ I ;

W O
okh = 1 if hour h ∈ H is in slot k ∈ Ko for outbound truck o ∈ O .

An example of matrix W I is given in Figure 2.1.
The wishes of the transportation providers are seen as soft con-

straints: if trucks are scheduled outside their wished slots, penalties
are paid. Those penalties P I and PO are therefore defined as follows:

P I
ik penalty paid for using slot k ∈ K i for truck i ∈ I , if k is

different from the wished time window expressed by the trans-
portation provider;

PO
ok penalty paid for using slot k ∈ Ko for truck o ∈ O .

This way to define the penalties enables one to use any cost structure
to penalize different slots.

Monitoring the pallet moves is necessary to ensure the synchroniza-
tion of the inbound and outbound flows. The model therefore uses
the following decisions variables, that are summarized in Figure 2.2:

xhio amount of pallets transferred from inbound truck i ∈ I to out-
bound truck o ∈ O at time period h ∈ H;

w I
ik =1 if slot k ∈ K i is chosen for truck i ∈ I , 0 otherwise;

wO
ok =1 if slot k ∈ Ko is chosen for truck o ∈ O , 0 otherwise;

s I
hic amount of pallets for client c ∈ C going from truck i ∈ I to the

storage location at time period h ∈ H;
sO

ho amount of pallets going from the storage location to truck o ∈
O at time period h ∈ H;

shc amount of pallets for client c ∈ C stored at time period h ∈ H.
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Figure 2.2: Outputs of the Integer Program ip*

The planning problem can now be formulated as an Integer Pro-
gram noted ip* – see below.

The objective is to minimize the time window penalties for inbound
and outbound trucks defined by constraints (1) and (2), as well as the
number of pallets placed in storage defined by constraint (3). α0, β0

and γ0 are coefficients weighting those often conflicting objectives.
Constraint set (4) (resp. (5)) checks that the number of inbound

(resp. outbound) trucks present during a given time period does not
exceed the number of inbound (resp. outbound) doors.

Constraint set (6) (resp. (7)) ensures that the pallet moves from in-
bound trucks (resp. to outbound trucks) occur only when the con-

min α0Πα
0 + β0Πβ

0 + γ0Πγ
0

s.t. Πα
0 = ∑i∈I ∑k∈Ki

PI
ikwI

ik (1)

Πβ
0 = ∑o∈O ∑k∈Ko PO

okwO
ok (2)

Πγ
0 = ∑h∈H,i∈I ,c∈C sI

hic (3)

∑i∈I ∑k∈Ki
W I

ikhwI
ik ≤ N I ∀h ∈ H (4)

∑o∈O ∑k∈Ko WO
okhwO

ok ≤ NO ∀h ∈ H (5)

xhio + sI
hic ≤ F ∑k∈Ki

W I
ikhwI

ik ∀h ∈ H, i ∈ I , o ∈ O (6)

xhio + sO
ho ≤ F ∑k∈Ko WO

okhwO
ok ∀h ∈ H, i ∈ I , o ∈ O (7)

∑h∈H,o∈O Zcoxhio + ∑h∈H sI
hic = Qic ∀i ∈ I , c ∈ C (8)

∑i∈I ,h∈H xhio + ∑h∈H sO
ho = F ∀o ∈ O (9)

∑o∈O xhio + ∑c∈C sI
hid ≤ M ∀i ∈ I , h ∈ H (10)

∑k∈Ki
wI

ik = 1 ∀i ∈ I (11)

∑k∈Ko wO
ok = 1 ∀o ∈ O (12)

shc = s(h−1)c + ∑i∈I sI
hic −∑o∈O ZcosO

ho ∀c ∈ C , h ∈ Hr {0} (13)

s0c = ∑i∈I sI
0ic −∑o∈O ZcosO

0o ∀c ∈ C (14)

xhio , sI
hic, sO

ho , shc ∈N+ ∀h ∈ H, i ∈ I , o ∈ O, c ∈ C
wI

ik , wO
ok ∈ {0, 1} ∀i ∈ I , o ∈ O, k ∈ K

ip*
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cerned truck is present. Constraint set (8) makes sure that all pallets
from a given inbound truck are unloaded and dispatched to the right
client.

Constraint set (9) indicates the capacity of outbound trucks, and
makes sure that they are fully loaded. Constraint set (10) limits the
quantity of pallets transferred inside the platform at each time period.

Constraint sets (11) and (12) make sure that each inbound (resp.
outbound) truck is assigned to a single presence time window. Con-
straint sets (13) and (14) give the stock conservation rule for all h ∈
Hr {0} and for h = 0, respectively.

2.2.2 Complexity

In this section, the considered problem is shown to be np-hard in
the strong sense even in a simplified case. The np-hardness is proved
by a transformation from the 3-partition problem, which is np-hard
in the strong sense (see Garey and Johnson [77]). The idea of the
proof is inspired by Sadykov [173].

3-partition problem . Consider two integers B and n, and a set
of 3n integers r1, r2, ..., r3n given such that∑3n

i=1 ri = Bn
B
4 < ri <

B
2 ∀i

The 3-partition problem consists in determining if the set {1, 2, ..., 3n}
can be partitioned into n subsets {A1, A2, ..., An} such that

∑
i∈Aj

ri = B ∀j ∈ {1, 2, ..., n}

In other words, the problem is to divide 3n elements whose sum is
Bn into n groups of sum B. If such a partition exists, each group (each
subset Aj with j ∈ {1, 2, ..., n}) contains exactly 3 elements.

transformation into our truck scheduling problem .
Using the same notations used to describe the 3-partition problem,

let us consider an instance with a time horizon of n time units (|H| =
n) in which there are:

– 3 inbound and 3 outbound doors (N I = NO = 3);
– two different clients (|C| = 2) that will be called client 1 and

client 2;
– the length of each possible time slot k (k ∈ Ki∈I or k ∈ Ko∈O) is

one time unit;
– the platform’s internal capacity is not a constraint (M = ∞);
– 3n inbound trucks indexed by i ∈ 1, 2, ..., 3n, each containing:

– 1 item for client 1;
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– n + ri items for client 2;
– 3n outbound trucks, among which:

– 2n trucks are dedicated to client 1 and have a capacity 1;
– n trucks are dedicated to client 2 and have a capacity 3n + B.

Here the truck capacities are different from one another, which is not
the case in our model. However, this is not a loss of generality since
a truck capacity F can be reached by adding items for a third client
up to F.

Proposition. There exists a 3-partition if and only if there exists a solu-
tion to the corresponding instance of our truck scheduling problem
with Πγ

0 ≤ n (less than n items put in storage).

Proof. Necessity. Suppose there exists a 3-partition {A1, A2, ..., An}.
The j-th subset Aj is composed of three elements that we note ij1, ij2
and ij3. Let us build a solution to the truck scheduling problem such
that Πγ

0 ≤ n. The 3n inbound trucks can be divided into n groups
of three trucks using the 3-partition. The 3n outbound trucks can
easily be divided into n groups of three trucks as well, each group
containing two trucks for client 1 and one truck for client 2. Let us
consider a solution in which the j-th group of inbound truck and
the j-th group of outbound trucks (j ∈ {1, 2, ..., n}) are present at the
platform during the same time unit j (see Figure 2.3).

1 n + rj1 1

1

3n + B

n + rj2

n + rj3

1

1

Quantity in
inbound trucks

Capacity in
outbound trucks

client 1
client 2

Figure 2.3: Solution for the considered instance at time j

Since rj1 + rj2 + rj3 = B by definition of the 3-partition, there are
exactly 3n + B pallets in the three inbound trucks: they can all be di-
rectly reloaded in the outbound truck dedicated to client 2. There are
three pallets for client 1 to be unloaded in total: two can go directly
to the corresponding outbound trucks, and one has to go to storage.
Repeating the same pattern for the n time units of the horizon gives
a solution in which n items are put in storage in total.

Sufficiency. Suppose that a solution to this instance of our truck
scheduling problem exists, in which at most n products are put into
storage; let us show that a 3-partition exists. Every outbound truck
for client 2 needs 3n + B products, and no more than n can come
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from storage: thus it must be loaded with products coming from
at least three different inbound trucks, that stay one time unit each.
Besides the products for client 2, those three inbound truck contain
necessarily three products from client 1. Since there are two available
doors left, at most two products for client 1 can be directly reloaded:
the others must go into storage. At most n products are put into
storage, thus exactly one product per time unit goes into storage, and
this product must be for client 1. Therefore, the three inbound trucks
transfer all their products for client 2 (3n + rj1 + rj2 + rj3) directly to
the outbound truck of capacity 3n + B, and fill it (the truck being
present for only one time unit). This provides, for all time units j ∈
{1, 2, ..., n}, a partition of inbound trucks into triples {A1, A2, ..., An}
such that ∑i∈Aj

ri = B.

2.2.3 Instance generation

An instance generator has been developed, that takes as input val-
ues the parameters |H|, |I|, |O|, |C|, N I , NO, M, and F. From this
basic data, it generates the rest of the data needed to fully express the
problem. These data are generated based on random distributions,
but ensuring that they stay feasible and consistent. For instance, each
client should be served by at least one truck, and the inbound quan-
tity for each client should be kept equal to the total capacity of the
outbound trucks for this destination.

The instance generator always sets the earliest possible arrival time
and latest possible departure time of each truck as the beginning and
the end of the planning horizon. This corresponds to the most general
case and does not restrict the solution space. Penalties PI and PO are
directly calculated from W I and WO, as the number of hours outside
the “wished” range in slot k (number of hours in blue in Figure 2.4).

The instance generator is available at www.g-scop.fr/~gaujalg/

XDockInstances2, and details on the related algorithms can be found
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Figure 2.4: Extract of matrix W I with penalties

www.g-scop.fr/~gaujalg/XDockInstances2
www.g-scop.fr/~gaujalg/XDockInstances2
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in Appendix B. The instances used in this document are generated
by this tool.

Since a standard truck can carry 33 European pallets, the inbound
and outbound truck capacities F are set to 33 pallets in all instances.
Three sets of instances are generated and named after their number of
inbound and outbound doors: N I = NO = 3 for set3+3, N I = NO =

12 for set12+12, N I = NO = 25 for set25+25. They represent a very
small platform (set3+3), a small platform (set12+12) and a medium-
size one (set25+25) with different levels of activity. The other input
parameters used to generate each instance are described in Table 2.2.
The instances are named after their value of M.

set3+3 - Instance name 17_1 17_2 17_3 17_4 17_5 34_1 34_2 34_3 34_4 34_5 34_6

number of hours 10 10 12 12 12 7 7 7 7 10 10

number of inbound trucks 5 5 6 6 6 5 5 6 6 7 7

number of clients 3 4 3 3 4 3 4 3 4 3 4

max pallets per hour M 17 17 17 17 17 34 34 34 34 34 34

set12+12 - Instance name 85_1 85_2 85_3 85_4 85_5 102_1 102_2 102_3 102_4 102_5

number of hours 10 10 10 10 10 10 10 10 10 10

nb of inbound trucks 20 20 20 20 20 29 28 26 25 25

nb of clients 3 4 5 6 7 3 4 5 6 7

max pallets per hour M 85 85 85 85 85 102 102 102 102 102

set25+25 - Instance name 255_1 255_2 255_3 255_4 255_5 272_1 272_2 272_3 272_4 272_5

number of hours 10 10 10 10 10 10 10 10 10 10

nb of inbound trucks 60 60 60 60 60 70 65 65 65 65

nb of clients 3 4 5 6 7 3 4 5 6 7

max pallets per hour M 255 255 255 255 255 272 272 272 272 272

Table 2.2: Description of the instances

An example of a complete instance is given in Figure 2.5 for in-
stance 17_1. From the input data provided (|H| = 10, |I| = |O| = 5,
|C| = 3, N I = NO = 3, M = 17, F = 33), the instance generator cre-
ates the other data detailed in Figure 2.5 and visualized in Figure 2.6.
The contents of the inbound trucks correspond to Qic (Figure 2.5b),
the color (client) of the outbound trucks are obtained from Zco (Fig-
ure 2.5c), and the wished time windows match the data described in
Figure 2.5a. The details of the data composing all other instances are
available at www.g-scop.fr/~gaujalg/XDockInstances2.

www.g-scop.fr/~gaujalg/XDockInstances2
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Figure 2.5: Detail of the data composing instance 17_1
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2.2.4 Numerical results for the IP model

In the entire document, all linear programs are run with ibm ilog
cplex Optimizers 12.2, on a personal computer with a 2.40 ghz pro-
cessor and a 4.00 gb ram.

In this section only, we use very small instances to test the IP model.
The input parameters used to create these instances with the instance
generator described in section 2.2.3 are detailed in Table 2.3. Since
there are only four to eight doors in total, the instances tested repre-
sent a very small platform.

|H| |C| M F N I = NO

10 4 4 4 2, 3 or 4

Table 2.3: Instance parameters to test ip*

As a first approximation, the coefficients α0, β0 and γ0 are assumed
equally important and are all set to 0.33.

The execution time of ip* is tested with different number of doors
by simultaneously increasing the number of inbound trucks |I| and
outbound trucks |O|, keeping |I| = |O|. For the sake of comparison,
the results are presented in Figure 2.7 as a function of the concentra-
tion of trucks. The concentration of trucks (in trucks per door per
hour) is defined by the ratio:

R =
|I|+ |O|

(N I + NO) |H| (2.1)

R ≤ 1

Even with very small platforms (8 doors or less) and low concentra-
tion rates, the execution times increases very quickly as shown in Fig-
ure 2.7. If ten seconds is considered the limit for a logistics manager
to use this program as a daily decision-support tool, then we cannot
deal with more than ten trucks on a platform with two inbound and
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Figure 2.7: ip* execution time as a function of truck concentration
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two outbound doors. Due to the complexity of the problem, the per-
formances of ip* in terms of computation time do not permit to use
it on a daily basis within crossdocks. It can solve the instances of
set3+3 (see the results in Table 2.4, and the visualization of the result
of instance 17_1 in Figure 2.8) but cannot give a solution in a rea-
sonable amount of time for the instances in set12+12 and set25+25.
In the next section, different heuristics are presented that can help
overcome this issue.

17_1 17_2 17_3 17_4 17_5 34_1 34_2 34_3 34_4 34_5 34_6

Πα
0 0 1 0 0 0 0 0 0 0 0 0

Πβ
0 0 0 0 0 3 0 1 0 0 0 0

Πγ
0 0 2 0 0 0 0 9 0 7 0 4

Exec. time (s) 0.288 0.201 0.234 0.231 0.956 0.087 5.149 0.164 4.512 0.506 0.559

Table 2.4: Results of ip* on instance set3+3
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2.3 how to scale-up : heuristics

Since the Integer Program presented in the previous section takes
too long to compute the instances of real-life size, we propose in this
section three heuristics that can help solving the problem faster.

The principle of the first two heuristics is to relax a part of ip*, in
order to simplify the number of decisions taken during its execution.
In the first heuristic (h1), the first step aims at obtaining an inboundThe integration of IP

models in heuristics
is usually called

matheuristics.

trucks schedule used as data in a relaxed version of ip*, while the first
step of heuristic h2 aims at calculating an outbound schedule. In both
heuristics, the schedule of the first step is obtained by a dedicated
integer program (ip1 or ip2). Heuristic 3 (h3) is a tabu search. Each
iteration of the search fixes the schedule of both the inbound and
the outbound sides, and an integer program ip*3 or a network flow
evaluates the value of the objective function regarding the stock level.
The principle is described in Figure 2.9.
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Figure 2.9: Principle of heuristics h1, h2 and h3
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2.3.1 Heuristic 1

As the first step of heuristic h1, ip1 determine a good schedule
for the inbound trucks using the wished presence time windows of
the outbound trucks as data. Then the second step (ip*1) uses the
inbound truck schedule as data in order to compute the final schedule
of the outbound trucks.

Let us assume, just for this first part of the heuristic, that the wished
departure and arrival times of the outbound trucks are all satisfied.
Using matrix Z which indicates the destination of each outbound
truck, we can easily calculate XO, a binary matrix defined as follows:

XO
ch = 1 if there is an outbound truck for client c present at time

period h, 0 otherwise.

Integer program ip1 uses w I
ik as a decision variable, as well as two

new variables that measure the difference between the inbound and
the outbound plans:

δ+
ch for time period h ∈ H, positive difference between the number

of pallets for client c ∈ C available to be unloaded, and the
number of pallets that can be loaded in the trucks for client c
present at the outbound doors.

δ−ch for time period h ∈ H, negative difference between the number
of pallets for client c ∈ C available to be unloaded, and the
number of pallets that can be loaded in the trucks for client c
present at the outbound doors.

ip1 is thus formulated as follows:

min ∑c∈C ,h∈H(δ
+
ch + δ−ch) + ∑i∈I ∑k∈Ko PI

ikwI
ik

s.t. ∑i∈I ∑k∈Ki
QicW I

ikhwI
ik = MXO

ch + δ+ch − δ−ch ∀c ∈ C , h ∈ H (15)

∑i∈I ∑k∈Ki
W I

ikhwI
ik ≤ N I ∀h ∈ H (16)

∑k∈Ki
wik = 1 ∀i ∈ I (17)

δ+ch, δ−ch ∈N+ ∀c ∈ C , h ∈ H
wI

ik ∈ {0, 1} ∀i ∈ I , k ∈ K

ip1

The objective is to minimize the total difference between the in-
bound pallet supply and the outbound pallet demand, while respect-
ing the wishes regarding the inbound truck time windows. Con-
straint set (15) defines δ+ and δ− as described above. Constraint
set (16) ensures that the number of inbound doors is enforced, while
constraint set (17) makes sure that only one time window is assigned
to each inbound truck.

In the second step noted ip*1, the output of ip1 wI
ik is used as a

data to run ip*1. ip*1 is similar to ip*, except for the fact that wI
ik is
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no longer a decision variable but rather an input data. Constraint
sets (4) and (12) are therefore discarded in ip*1 – see Appendix C.
Note that the term of the objective function which includes wI

ik is not
removed, although it is now a constant, so that the objective value
stays comparable to the results of ip*.

2.3.2 Heuristic 2

ip2, the first step of heuristic 2, builds a feasible outbound truck
schedule independent of the inbound data. The objective is to mini-
mize the earliness and tardiness of the outbound trucks. Then, con-
sidering the outbound data fixed, ip*2 is used to generate the inbound
truck schedule.

Integer program ip2 uses wO
ok as the only decision variables. It is

formulated as follows:

min ∑o∈O ∑k∈Ko PO
okwO

ok

s.t. ∑o∈O ∑k∈Ko WO
okhwO

ok ≤ NO ∀h ∈ H (18)

∑k∈Ko wok = 1 ∀o ∈ O (19)

wO
ok ∈ {0, 1} ∀o ∈ O, k ∈ K

ip2

The objective is to minimize the outbound transport providers’ dis-
satisfaction. Constraint set (18) ensures that the number of trucks
in use at any time period does not exceed the number of outbound
doors, while constraint set (19) makes sure that only one time win-
dow is assigned to each outbound truck.

In the second step, the output of ip2, wO
ok, is used as a data to

run ip*2 – see Appendix C. Similarly to what was done for heuristic
1, the formulation of ip*2 is very similar to ip*, except for the fact
that wO

ok is no longer a decision variable but rather an input data.
Constraint sets (5) and (12) are thus discarded in ip*2. The term of
the objective function which includes wO

ok is not removed, for the sake
of comparison.

2.3.3 Heuristic 3

Heuristic 3 aims at finding a good truck schedule through a tabu
search. Each solution is characterized by its truck schedule only: the
detailed pallet moves are obtained from the truck schedule using
three different methods based on solving a maximum flow problem.

The main elements of the tabu search are as follows; the complete
algorithm can be found in algorithm 2.1.
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sBest = initialSolution

sBestValue = Π0(sBest)
tabuList = new List
nbIterations = 0
while nbIterations<nbNonImprovingIterations do

sValue = +∞
for each sCandidate in the neighborhood do

sCandidateValue = α0Πα
0(sCandidate)+ β0Πβ

0 (sCandidate)
if sCandidate/∈tabuList & sCandidateValue<sValue then

s = sCandidate

sValue = sCandidateValue

end
end
tabuList.add(s)
if tabuList.size > maxTabuListSize then

tabuList.removeLast
end
nbIterations++
if Π0(s) < Π0(sBest) then

sBest = s

nbIterations = 1
end

end
return sBest

Algorithm 2.1: Tabu search algorithm for h3

tabu list. The maximum size of the tabu list (maxTabuListSize)
is set to 7 as suggested by Glover [80].

stopping criteria . The tabu search stops if the objective value
does not improve after a fixed number of iterations (noted nbNonImpro-

vingIterations in algorithm 2.1). We set this value to 5000.

initial solution. To find an initial solution, ip* is run for a
short amount of time, e. g. 2 seconds. The search is stopped before
optimal. The solution obtained may or may not be feasible at this
stage. For big instances, ip* might not be able to obtain a feasible
solution within the time limit. The time limit can then be increased
(for instance up to 240 seconds to solve all the instances in set12+12).
For larger instances (set25+25), the result of heuristics h1 or h2 can
be chosen as initial solution. The tabu search is used in this case to
improve the result obtained by the heuristics.

neighborhood. Recall from section 2.1.3 that the sets Ki (resp.
Ko) of possible presence slots are completely enumerated for all in-
bound (resp. outbound) trucks. The enumeration is made by ascend-
ing starting date and ascending length, thus all the possible slots Ki
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Figure 2.10: Neighborhood of a given slot

are indexed in a logical order (see Figure 2.10). For a given solution
of the truck scheduling problem, a neighbor is obtained by changing
its allocated slot k with the slot indexed by k + 1 (move up) or with
the slot indexed by k− 1 (move down). A move up from the slot of
index |K| − 1 gives the slot of index 0, and a move down from index
0 gives the slot of index |K| − 1. Most of the moves just shift the
current slot one hour earlier or one hour later. Other moves make
bigger changes (e. g. moving from k = 7 to k = 8 in Figure 2.10) and
enable diversification during the search. Note that some solutions
generated in this manner can be unfeasible. Unfeasible solutions are
not excluded from the search because they can lead to better feasible
solutions.

The complete neighborhood of a given solution can therefore be
obtained by moving up and down all the inbound trucks and all the
outbound trucks in the solution, which generates 2× (|I|+ |O|) dif-
ferent neighbors. The algorithm selects the “best” of those neighbors
which is not already in the tabu list. The choice is based only on
the value of α0Πα

0 + β0Πβ
0 because the value of Πγ

0 is computationally
expensive to evaluate (see below).

objective evaluation. The objective Π0 is obtained with the
same formula used in ip*: Π0 = α0Πα

0 + β0Πβ
0 + γ0Πγ

0 . Penalties
regarding the inbound trucks (Πα

0) and the outbound trucks (Πβ
0 ) are

obtained directly from the truck schedule characterizing the solution
and from the penalty matrices PI and PO. In order to calculate Πγ

0 , it
is necessary to know how exactly the pallets are transferred from and
to the different trucks present. Three different methods are used to
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deduce this information from the truck schedules: they are detailed
in the three sections that follow.

2.3.3.1 Relaxed integer program

The first option uses the same idea already used in heuristics 1
and 2. In order to find the optimal flow of pallets when the truck
schedules are fixed, a version of ip* is run with wI and wO being
fixed. The resulting IP model is noted ip*3 – see Appendix C.

2.3.3.2 Maximum flow graph

The goal is to find the value of Πγ
0 , i. e. to determine how many

pallets go to storage when transferred in the best possible way from
inbound to outbound trucks for which the time window of presence
is fixed.

Another way to look at the problem is to determine how many
pallets are transferred directly, without going through storage. To
achieve this, the transfer problem can be modeled as a single-sink,
single source time-expanded flow network. The maximum flow in
the network is the maximum number of pallets that can be transferred
directly from inbound trucks to outbound trucks. It is then assumed
that the remaining pallets go to storage, which gives Πγ

0 .
Figure 2.11 shows how a given instance is transformed into the

corresponding flow network. Each column in the graph represents a
time interval h. At each time interval, the trucks present are modeled
by a set of vertices of different colors, representing different clients. A
single source provides each truck i, on its arrival date, with the right
amount of pallets of each color c (capacity Qic on the edge). Another
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Figure 2.11: Transformation of an instance with fixed time windows into a
maximum flow network
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set of vertices, one vertex per time interval, represents the outbound
side. If an outbound truck for client c is present on time interval h,
then there is an edge between all the inbound truck vertices of color
c at time h, and the outbound vertex at time h. All the outbound
vertices are linked to a single sink by an edge of capacity M.

This graph model has the advantage of solving the transfer prob-
lem in polynomial time, for instance using a shortest augmenting
path algorithm (see Ahuja et al. [5]). However it is not exactly equiv-
alent to the relaxed Integer Program ip*3. The limitations are of two
types:

1. The number of pallets put in each outbound truck is not limited
in the graph model.

2. The quantity transferred from inbound trucks to storage cannot
be included in the total transfer capacity.

For these reasons, the value of Πγ
0 given by the maximum flow algo-

rithm can be slightly different from the optimal value given by ip* or
ip*3. This difference is tolerable because the algorithm is used in a
metaheuristic that does not guarantee optimality.

2.3.3.3 Maximum flow integer program

On a single run, solving the maximum flow problem described in
the previous section is likely to be faster than solving an IP model.
However, the value of Πγ

0 is solved every time a better solution is
found in the tabu search, and only the capacities of a few edges
change between two iterations. It is possible to exploit this property
using cplex’s ability to solve models in an iterative way: if the model
has not been changed much in between, then cplex uses the previ-
ously found solution to find the new one, and behaves incrementally
regarding changes of the bounds. In order to use this capability of
cplex, the previous problem of finding a maximum flow in a graph
is thus formulated as a Linear Program (LP).

Let us denote by E the set of edges and V the set of vertices in the
graph, A(v) the set of edges entering vertex v ∈ V , and D(v) the set
of edges exiting vertex v ∈ V . The decision variables are the flows

max ∆

s.t. fe ≤ Ce ∀e ∈ E (20)

∑e∈A(v) fe = ∑e∈D(v) fe ∀v ∈ V r {s, t} (21)

∑e∈D(s) fe = ∆ (22)

∑e∈A(t) fe = ∆ (23)

fe ≥ 0 ∀e ∈ E

ipmax flow
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fe, constrained by capacities noted Ce on every edge e ∈ E . ipmax flow

is then written as a classical maximum flow model (see the LP model
on the preceding page).

2.3.4 Numerical experiments on the heuristics

In this section, the heuristics described above are tested in order
to assess their performances regarding computation time, compare
their results to the optimal solution when possible, and see in which
situation each heuristic provides good results.

2.3.4.1 Comparing different versions of h3

In this section, the different versions of h3 detailed in section 2.3.3
are tested and compared.

For small instances such as set3+3, the initial solution is likely to
be optimal already, thus the tabu search afterwards is useless. For
big instances on the other hand, it is possible that no initial solution
is found within the time limit: it is the case on all ten instances of
set25+25.

Figure 2.12 shows the results of the tests on the set of medium
size instances (set12+12). On average on all ten instances, the fastest
option is the method using a maximum flow integer program; it is
also the method that yields the smallest objective function result (al-
though it is really close to the relaxed integer program in this matter).
When using heuristic h3 in the rest of the document, we will there-
fore use the maximum flow integer program to evaluate the objective
function.
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versions of h3
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2.3.4.2 Comparing the three heuristics

In section 2.2.4 it is shown that ip* can only be used for very small
instances due to an unreasonable execution time. In order to compare
this result with those of the heuristics, the experiment settings used
are similar to section 2.2.4. The instance generator is used with pa-
rameters |H| = 10, |D| = 4, M = 4 and F = 4. Setting the concentra-
tion of trucks equal to 0.4 truck/door/hour, the total execution time
of the heuristic is monitored when the number of doors (inbound +
outbound) increases. Coefficients α0, β0 and γ0 are all equal and set
to 0.33. Each value in Figure 2.13 is the average of the execution times
or objective value obtained for 10 different instances, generated ran-
domly from the parameters, as explained in section 2.2.3. Figure 2.13
displays the results regarding the execution time on the left hand side,
and the value of the objective function on the right hand side.
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Figure 2.13: Results on ip*, h1, h2 and h3 as a function of the number of

doors

First of all, we note that the heuristics are 75 times faster than ip*
on the average for 2 doors and 8 trucks in total. The execution of
ip* for 4 doors and 16 trucks takes 205 seconds on average it is not
represented in the figure to avoid stretching the scale too much. h1,
h2 and h3 are about 570 times faster than ip* in this case.

h1 can be computed in less than 10 seconds with up to 72 doors
in the platform, whereas h2 can only handle 64 doors in 10 seconds.
Within one minute, we can get a result for 80 doors. We note that the
execution time increases exponentially beyond 80 doors. h3 is slower
that h1 and h2, but its execution time does not increase as fast for
bigger instances.

Regarding the quality of the result obtained, h1 and h3 are rather
equivalent and clearly dominated by h2, which gives a result 40%
smaller on average.

The results on the instance sets introduced in section 2.2.3 are dis-
played in Table 2.5 for set12+12 and Table 2.6 for set25+25.

They show the same general tendency as described in Figure 2.13
for smaller instances. Since the procedure described in section 2.3.3
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cannot find an initial solution for set25+25, the results for h3 in Ta-
ble 2.6 are obtained using h2 as an initial solution. The tabu search
enables to find a better solution for only one instance (272_3) in that
case.

h1 h2 h3

Exec time (s) Obj value Exec time (s) Obj value Exec time (s) Obj value

85_1 1.5 23.76 17 4.62 65.8 8.58

85_2 1.3 28.71 35 8.58 84.1 10.89

85_3 1.6 24.42 40 10.56 99.2 9.90

85_4 1.5 34.65 59 17.16 176.0 17.49

85_5 1.6 42.57 560 23.43 209.6 17.49

102_1 1.8 21.45 4 13.20 201.7 17.82

102_2 2.6 16.50 101 10.89 204.6 18.15

102_3 1.9 25.08 61 7.92 227.2 13.86

102_4 1.4 27.72 34 15.18 111.4 15.51

102_5 2.1 32.01 118 12.87 180.3 11.55

Table 2.5: Results of h1, h2, h3 on instance set12+12

h1 h2 h3

Exec time (s) Obj value Exec time (s) Obj value Exec time Obj value

255_1 10.9 41.91 13 16.83 136 16.83

255_2 9.6 44.55 121 18.81 143 18.81

255_3 11.7 36.63 24 13.20 209 13.20

255_4 86.0 50.16 out of memory no initial solution

255_5 76.3 58.74 9452 29.40 242 29.40

272_1 84.2 54.78 229 31.35 142 31.35

272_2 311.4 42.9 338 22.11 153 22.11

272_3 50.8 47.52 57 24.75 209 13.33

272_4 92.1 46.53 out of memory no initial solution

272_5 69.9 44.22 8567 36.30 193 36.30

Table 2.6: Results of h1, h2, h3 on instance set25+25
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2.3.4.3 Sensitivity analysis for the heuristics

In the second set of tests, the performance of heuristics h1, h2 and
h3 is compared to ip*. The number of doors (N I = NO = 4) and
the number of trucks (|I| = |O| = 8) are therefore fixed. They are
deliberately small (concentration 0.2 trucks/door/hour) so that the
computation time of ip* stays reasonable. For each dot on Figure 2.14,
10 different instances are generated from the data parameters. The
figure displays the average difference between the objective values of
the heuristics and the optimal value given by ip*. Coefficients α0, β0

and γ0 vary such that α0 + β0 + γ0 = 1.
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(c) γ0 = 0.1

Figure 2.14: Distance to optimal when using heuristics

We observe that h2 always performs better than h1 and h3. How-
ever, when α0 is small, the results are very close to the optimum for
both (h1 and h2 (less than 5% of deviation for h1 and 2% for h2).
It means that both heuristics perform well when the inbound truck
schedule penalties do not weight much in the objective function. The
best performance of h3 are for small values of γ0, and h3 is better
than h1 when both β0 and γ0 are small.

The results of h1 and h2 are almost insensitive to changes in β0,
the parameter weighting the outbound truck schedule penalties. It
is the consequence of the fact that both heuristics focus primarily
on the performance of the outbound truck schedule: h2 fixes the
outbound schedule, while h1 fixes the inbound schedule subject to
the synchronization of the inbound and outbound plans. h3 puts
the same weight on the inbound and outbound truck schedules, but
does not evaluate the value of Πγ

0 at each iteration, which explains
the deterioration of its result when γ0 increases.

h2 is less sensitive than h1 and h3 to the changes in parameters
α0, β0 and γ0, and performs quite well compared to ip*: Figure 2.14
shows less than 3% of deviation for any combination of α0, β0 and
γ0. Therefore, h2 can be used to solve any instance of reasonable size.Use h2 if the

instance is not too
big. For big

instances, prefer h1
if α0 is small and h3

if γ0 is small.

However, for big instances with small α0, h1 may be more interesting
to use since its execution time is shorter, and the results do not de-
teriorate much. h3 will be preferred for big instances with small γ0,
and can also be used to improve the solutions found by the other two
heuristics.
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2.4 conclusion

This chapter studies a truck scheduling problem with time win-
dows for the inbound and outbound trucks, minimizing the quantity
stored and the dissatisfaction regarding the time windows allocation.
The problem is shown to be np-hard in the strong sense.

Three heuristics are proposed in order to shorten the time needed
to obtain a satisfying solution. The first two heuristics use a decom-
position into two sub-problems, modeled by IP models used sequen-
tially. The third heuristic is a tabu search in which the evaluation of a
solution is done via an IP model or a network flow problem. Numer-
ical experiments show that those three formulations can solve bigger
problems, even if they cannot scale up to the biggest platforms with
150 inbound and 150 outbound doors.

Possible perspectives for this work would be to formulate, study
and compare other heuristics, especially heuristics using a rolling
horizon. The results of h1 or h2 could also be used as starting points
to run ip*, which could significantly improve its execution time. h3
could be improved by implementing the maximum flow algorithm
in an iterative manner, similarly to what was done for the maximum
flow IP model. Other meta-heuristics used in the literature (see Ta-
ble 1.6) could also be explored.

Two elements identified in section 1.2.5 as important gaps between
theory and practice have not been addressed in this chapter, but could
be added in the integer programs without too much difficulty: a
mixed service mode (where doors can be used as inbound or out-
bound doors as needed) and a limited storage capacity. The effects of
such modifications on the different models, their results and perfor-
mances, should be investigated.

The models developed in this chapter are deterministic. What hap-
pens if the input data are not totally reliable – for instance if the
transfer time is not constant, or if a truck arrives later than planned?
Is the schedule able to absorb these variations without too many per-
turbations? Chapter 3 aims at answering these questions.





Mais il y a pire que l’imprévu,
ce sont les certitudes !

— Daniel Pennac

Chapter 3

R O B U S T N E S S E VA L U AT I O N W I T H
S I M U L AT I O N

The models proposed in chapter 2 give optimal or close
to optimal schedules in a deterministic case. However,
the actual realization of the schedule is subject to uncer-
tainties. How is the initial schedule perturbed in case of
unplanned events, for instance if a truck is late or early?
A discrete-event simulation is developed with FlexSim©

to answer this question. After validation and verification,
the simulation model is used to evaluate the optimization
model subject to different sources of variations – on the
time needed to transfer or unload a pallet, and on the ac-
tual arrival time of the trucks in the platform.
Based on numerical experiments, robustness metrics are
proposed to evaluate the robustness of the schedule.

The work presented in this chapter is also presented in the
following articles:
Ladier, A.-L., Greenwood, A. G., Alpan, G., and Hales,
H. 2014. Issues in the complementary use of simulation
and optimization modeling. Les Cahiers Leibniz 211.
Ladier, A.-L., Alpan, G., and Greenwood, A. G. 2014.
Robustness evaluation of an IP-based cross-docking sched-
ule using discrete-event simulation. In Industrial and Sys-
tems Engineering Research Conference. Montréal, Canada.



E VA L U AT I O N D E R O B U S T E S S E PA R L A
S I M U L AT I O N

Les modèles décrits dans le chapitre 2 fournissent une
planification optimale, ou proche de l’optimal, dans un
cas déterministe. La situation réelle est plus incertaine.
Comment le planning initial est-il perturbé en cas d’évé-
nements imprévus, par exemple si un camion arrive en
retard ou en avance ?
Pour répondre à cette question, nous avons développé un
modèle de simulation à événements discrets avec le lo-
giciel FlexSim©. Ce modèle reproduit le fonctionnement
d’une plateforme de cross-docking, et utilise comme don-
née d’entrée le planning de camions obtenu grâce aux mo-
dèles du chapitre 2. Le détail des mouvements de palettes
n’est, en revanche, pas utilisé comme donnée d’entrée,
pour que le modèle puisse s’adapter en cas de changement
par rapport au planning prévu. Un algorithme simple est
donc proposé pour organiser le flot de palettes.
Afin de vérifier et valider le modèle de simulation, il est
nécessaire de s’assurer que dans un cas déterministe, le
modèle de simulation se comporte de façon similaire au
programme linéaire. Une analyse des différentes causes
de déviation et des moyens de contourner ces problèmes
est proposée.
Le modèle de simulation est ensuite utilisé pour évaluer
la robustesse du modèle d’optimisation face à des pertur-
bations à trois niveaux :
– variations sur la durée de transfert d’une palette au sein

de la plateforme ;
– variations sur le temps de déchargement d’une palette ;
– variations sur les heures d’arrivée des camions à la pla-

teforme (avance ou retard).
Le comportement du système est analysé en observant le
nombre de palettes mises en stock, la déviation sur l’heure
de mise à quai et la déviation sur le temps passé à quai,
pour établir un lien entre le niveau de variabilité appli-
qué et les perturbations observées. A partir des résultats
numériques, nous proposons trois indicateurs de robus-
tesse, permettant d’évaluer numériquement la robustesse
du modèle dans chacune des trois situations.



3
R O B U S T N E S S E VA L U AT I O N W I T H S I M U L AT I O N

In their 2010 review of crossdock truck scheduling problems, which
also includes a research agenda listing the main issues left to be ad-
dressed in this area, Boysen and Fliedner note the following:

“Arrival times of trucks are typically bound to heavy in-
accuracies, because traffic congestion or engine failures
delay inbound trucks [. . . ]. Thus, the following research
questions need to be answered in this context: up to which
“level of uncertainty” are expected arrival times of trucks
useful information to be considered in truck scheduling?
How to derive robust plans, i. e. plans which remain feasi-
ble in spite of (shorter) delays?”

Boysen and Fliedner [31]

This chapter addresses the first research question: up to which level
of uncertainty do the models of chapter 2 hold?

As noted by Rohrer [167], simulation can be used to test different
control algorithms before their implementation since it provides an
environment that is rather close to real-life situations. Simulation is
therefore proposed here as a tool to measure the robustness of the IP

model and heuristics that were presented in chapter 2.
Section 3.1 shows how to create a simulation model that enables

to evaluate the performances of an optimization model. Section 3.2
describes a robustness evaluation methodology, numerically tested
in section 3.3 in order to propose in section 3.4 robustness metrics
adapted to our problem.

3.1 linking optimization and simulation

Optimization models and simulation models are usually built for
different purposes and using different modeling rules. Combining
them can provide complementary insights to a given problem but can
also prove difficult because of their differences. This section shows
how to build a simulation model that can be used to evaluate the
optimization models described in chapter 2.

3.1.1 Optimization-simulation in the literature

Among the papers that combine optimization models with simula-
tion in the cross-docking literature, we identify four different ways of
combining simulation and optimization models. These relationships
are illustrated in Figure 3.1 and described below.

69



70 robustness evaluation with simulation

Simulation model Optimization model

[ July 15, 2014 at 19:33 – version 2.8 ]

[ July 15, 2014 at 19:36 – version 2.8 ]

(a) Optimization within a simulation
model
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(b) Simulation model provides data
to the optimization model
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(c) Simulation within an optimiza-
tion model
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(d) Simulation evaluates optimiza-
tion solutions under different con-
ditions (usually stochastic envi-
ronment)

Figure 3.1: Complementary uses of simulation and optimization models

(a) An optimization model is embedded within a simulation model. Wang
and Regan [212] apply this technique with two time-based algo-
rithms to schedule inbound trucks in a crossdock in real-time,
with the aim of minimizing pallet transfer time. The algorithms
are embedded in an Arena simulation model. In a different ex-
ample, Clausen et al. [48] simulate the operations within a net-
work of LTL terminals, using optimization (multi-stage mixed-
integer program, solved with a modified tabu search) to make
decisions regarding the routing between the different terminals.

(b) The output of a simulation is used as input to an optimization model.
Hauser [100] in her dissertation uses a simulation (developed
with Arena) of a Toyota manufacturing plant to test different
crossdock layouts. The objective is to minimize the walking dis-
tance during the dispatching operation, with the idea of even-
tually balancing the workload. Genetic algorithms are used
to decide where each destination goes in the best layout de-
termined by the simulation. Another example is given by Liu
and Takakuwa [133], who use a simulation model developed in
Arena to determine the workload at a cross-docking center. Data
from the simulation are then used as input in an IP model that
produces an optimal schedule for the operators.

(c) A simulation model is embedded within an optimization model. This
method, often called simulation-optimization, is widely used in
diverse fields. In the cross-docking literature, McWilliams [140]
generates an inbound truck schedule using this technique. A
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simulation model is used to evaluate the objective function af-
ter each permutation of the meta-heuristics. In a similar way,
Aickelin and Adewunmi [6] solve the crossdock truck-to-door
assignment problem with a local search (memetic algorithm); a
simulation model evaluates the objective function at every iter-
ation. Instead of using the simulation as a black box, Almeder
et al. [7] translate the solution of the optimization model into
decision rules for the discrete-event simulation, and apply the
procedure iteratively until a stable point is reached.

(d) The output of an optimization model is used as input to a simulation
model. Gambardella et al. [75] are, to the best of our knowledge,
the only ones applying this technique in the logistics platform
environment. They develop a discrete-event simulation model
of an intermodal container terminal in order to check the valid-
ity of a resource allocation within the terminal, that is generated
with an integer linear program. This work, carried out in 1998,
relies on a custom-coded simulation program lacking the nu-
merous functions of modern simulation software programs.

Our goal in this chapter is not only to fill the gap left in case (d),
but also to evaluate the robustness of our previous models. In the
case of cross-docking operations, we demonstrate the use of a simu-
lation model to evaluate the robustness of a solution provided by an
IP model.

3.1.2 Model description

The relationships between the simulation and optimization mod-
els are shown in Figure 3.2. As detailed in sections 2.2 and 2.3, the
outputs of ip* and the heuristics are the truck schedules (arrival and
departure times for the inbound and the outbound trucks) and the
detailed pallet moves (number of pallets moved from one point to
another at each time period).

The simulation model takes as input the truck arrival times that are
determined by the IP model or one of the three heuristics depending
on the instance size. It is assumed that the manager has called the
transportation providers to set up their arrival time according to the
optimization results. However, the truck departure time is not forced
according to the optimization results: the inbound trucks leave when
they are empty, and the outbound trucks leave when they are full.

For the simulation model to be able to react to a planning change,
the pallet moves have to stay flexible. If each pallet was required to
move only at the time and to the location decided by the IP model, the
simulation would be totally blocked when a truck is late, or operators
would stay idle in front of an early truck. Therefore, instead of using
the exact times determined by the IP model to move each pallet, the
simulation uses a greedy algorithm (algorithm 3.1) to decide which
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for all outbound docks which need pallets available in the inbound
side do

find the dock o whose truck has to leave first
note c the matching client;

end
if no dock was found then

for all clients of the pallets present on the inbound side do
find client c whose truck leaves last

end
set o as the storage location

end
for all inbound docks which have pallets for client c do

find dock i whose truck has to leave first
end
Pull a pallet of type c from dock i to dock o.

Algorithm 3.1: Pulling policy

pallet (for which client c) is pulled from which inbound dock i, and
sent to which outbound dock o.

The data on the pallet moves determined by the IP model, when ag-
gregated, give information on how many pallets are moved per hour,
and therefore what staffing levels are needed for the transfer at each
time period. Assuming that the manager has staffed the platform
accordingly, the output of the IP model is used to limit the hourly
capacity of pallet transfer in the simulation model.

Figure 3.2 features a simplified flow diagram of the simulation
model shown in Figure 3.3. The simulation model is developed using
FlexSim© . www.flexsim.com

3.1.3 Model validation and verification

To validate a model is to determine whether or not it is a mean-
ingful and accurate representation of the real system, and contains
sufficient accuracy to meet its intended use. Verification is the process Validation is about

building the right
model.
Verification is about
building the model
right.

of determining whether a model is working as intended.

Figure 3.3: Screenshot of the simulation model

www.flexsim.com
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In order to validate and verify the simulation model, one expects
it to behave similarly to the optimization model under deterministic
conditions. The validation and verification of the simulation model
is done in this section with the instances of set3+3 described in sec-
tion 2.2.3.

The next sections describe the disparities occurring between the
two models (optimization and simulation) due to differences in the
modeling approaches, and how these issues can be solved or circum-
vented for the validation of the model. Explanations on how valida-
tion is carried out can be found in section 3.1.3.6.

3.1.3.1 Spatial representation

The choice was made for the optimization model to ignore the spa-
tial dimension (see section 2.1.1): the doors are interchangeable and
the transfer time does not depend on the distance. Because of the
spatial nature of the actions, such assumptions do not adapt well to
discrete-event simulation. There is a trade-off to be made between
fidelity to the optimization model and closeness to realistic opera-
tions. A compromise approach is thus adopted: the transfer time is
controlled by making it a process step in the simulation instead of
a distance- and speed-affected move from one point to another. The
consistency of the simulation model with the optimization model is
validated by setting the transfer time to zero.

3.1.3.2 Transfer logic

The logic implemented by the simulation model through algorithm 3.1
is close to what a manager would do; however, it does not give the
optimal solution (i. e. exactly the same solution as the one given by
the IP model) in all cases. In some cases, it leads to having outbound
trucks leaving earlier than planned while inbound trucks leave late.
The simulation can be driven towards a solution closer to the optimal,
but it cannot determine the optimal solution unless it embeds an opti-
mization module (this is case (a) in Figure 3.1, and beyond the scope
of this work).

3.1.3.3 Transfer rate and resources

The optimization model only determines a given amount of tasks
that have to be carried out within a given time interval: its output
does not give information about the order, the batch size, the par-
allelism of the tasks. The simulation needs to have information (or
to make choices with its default internal logic) on the resources that
carry each task.

Let us assume that M = 30 pallets/hour: there are different ways of
modeling such a transfer rate. The first option consists in using three
resources at a rate of 10 pallets/hour each; the second option uses
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one resource at a rate of 30 pallets/hours. Those two different ways
of modeling do not give the same results over a given time interval. If
an outbound truck arrives at 10:00, then any pallet transferred from
the inbound side before that time goes to storage, while any pallet
processed after 10:00 goes directly into the outbound truck. In the
first option, each pallet needs 6 minutes to be transferred. Therefore,
between 9:55 and 10:00, no pallet is fully transferred and no pallet
goes into storage. In the second option, the resource transfers each
pallet in 2 minutes. Therefore, between 9:55 and 10:00, two pallets are
processed and they both go into storage.

Because it is more realistic and creates less unnecessary storage,
the first option (multi-channel process) is chosen. In the simulation For detailed

calculations of the
standard times, see
Appendix D.

model, we thus assume that one resource can process 17 pallets per
hour (i. e. takes about 3.5 minutes to scan, transfer and load a pallet).
The number of resources R is set such that R = M

17 .

3.1.3.4 Transfer capacity

By its nature, simulation is greedy, i. e. it processes as many pallets
as possible in one event while the IP model can transfer less pallets
per time period if it improves the objective function. In order to force
the simulation model to obtain a result similar to the optimization
model, it is thus necessary to limit the amount of pallets that can
flow through the model during each time period. This is done by us-
ing the output of the IP model (number of pallets transferred per time
interval) to determine the capacity of the transfer process in the sim-
ulation model. This capacity, i. e. the number of available resources in
the multi-channel process modeling the transfer, vary through time.

3.1.3.5 Time representation

The granularity of both models is different: the optimization model
uses discrete time intervals of e. g. half an hour or one hour, whereas
in discrete-event simulation, events occur at precise instances of time,
e. g. a truck arrives 27.1752 minutes after the arrival of the previous
truck. ip* only allows a truck to leave at a multiple of 60 minutes,
while the trucks in the simulation model leave at any time; they leave
when a specified condition is met, e. g. when a truck is empty (in-
bound) or full (outbound). Therefore, the difference between the
trucks departure time as calculated by the optimization model and
the trucks departure time as observed in the simulation, can be as
large as 59 minutes even though the system behaves as expected.
Those gaps can be reduced by shortening the time intervals used in
the optimization model; however, that makes the optimization model
more complex (and possibly incomputable) and some gaps will al-
ways be observed. In order to circumvent this issue, performance is
measured in terms of intervals, as detailed in the next section.
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3.1.3.6 Model validation

In order to check that the simulation model is an accurate repre-
sentation of the optimization model, it is run under deterministic
settings, without adding any source of uncertainty. Using as input
the schedules calculated by ip* or h2 for each instance of set3+3,
set12+12 and set25+25, we check that the schedule is correctly real-
ized in this deterministic setting for each instance. This is done by
ensuring that the values of Πα

0 , Πβ
0 and Πγ

0 in the objective function
of the optimization model are close to the experimental values mea-
sured in the simulation model.

3.2 evaluating the robustness of the ip model

The performance indicators needed when testing an optimization
model with a simulation model differ from the indicators that would
classically be used in a simulation. The main goal here is to com-
pare the performance of the simulation model in the deterministic
case with its performance when some elements of the model follow
random distributions.

3.2.1 Robustness evaluation using simulation in the literature

The robustness literature gives several examples of robustness eval-
uation through simulation. Leon et al. [117] propose slack-based ro-
bustness measures and evaluate them with a simulation study. Val-
ckenaers et al. [198] review simulation-based studies that analyze
scheduling problems, especially rescheduling techniques (repairing
the schedule after an unexpected event occurred). They propose a
method to evaluate the different rescheduling techniques. In [202],
van de Vonder et al. conduct a simulation experiment to investigate
whether it is beneficial to concentrate safety time in project buffers (po-
sitioned at the end of the critical chain) and feeding buffers (inserted
when a non-critical chain activity joins the critical chain), or whether
it is preferable to insert time buffers that are scattered throughout
the baseline project schedule in order to maximize schedule stabil-
ity. They show how to choose the buffering strategy depending on
the characteristics of the project. In another article, van de Vonder
et al. [201] propose different algorithms to include time buffers in a
project schedule, and evaluate these algorithms with a simulation-
based analysis. Canon and Jeannot [39] compare different robustness
metrics used in the literature by performing an experimental study
and showing how the different metrics relate to each other. Hazır
et al. [101] propose a number of performance measures for robust
project scheduling. They use a Monte-Carlo simulation to see which
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of these measures have the highest correlation with indicators on the
project punctuality.

Those different papers deal mostly with project scheduling. Our
goal is to propose a method that is applicable to cross-docking oper-
ations.

3.2.2 Robustness evaluation methodology

This section details the methodology used to evaluate the robust-
ness of truck schedules obtained with an IP-based model that inputs
deterministic data.

3.2.2.1 Modeling variability

How disrupted is the system subject to stochastic events? To an-
swer this question, three possible sources of variability are consid-
ered:

– Time needed to complete the transfer of a pallet due to the perfor-
mance of the workers doing the transfer, the traveling distance,
or the congestion of the platform.

– Time needed to unload a pallet due to the way trucks are loaded,
number of workers working on the same truck, and skills of the
workers. Both activities, transfer and unloading, are not explic-
itly taken into account in the IP model: they are assumed to be
performed in masked time. Thus, it is interesting to see how
sensitive the schedule is to variations in process times.

– Truck arrival times due to, for example, traffic congestion or bad
weather conditions.

We next describe how variability regarding transfer and unloading
time, as well as truck arrival time, is inserted into the simulation
model.

transfer and unloading time . Transfer and unloading times
are modeled in the simulation with triangular distributions. Such dis-
tributions can be used when limited data about a process is available
(Jannat and Greenwood [104]). It also has the advantage of being
bounded, which is not the case of e. g. normal or exponential distribu-
tions. A triangular distribution is defined by its location parameters:
a (minimum value), b (maximum value) and m (mode).

The minimum and maximum values of the unloading time and
transfer time are detailed in the “Standard process time” column of
Table 3.1 on the following page. Those values are determined using
the classic crossdock sizes given by Bartholdi and Gue [19], and stan-
dard process times for logistic operations (Gauvreau [78]). For detailed

standard time
calculations, see
Appendix D.

The behavior of the system is to be tested when the variability of
the transfer time increases; therefore, the coefficient of variation is
increased while keeping a constant skewness (equal to 0 since the
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Standard process time Experimental values

cv = 0.1 cv = 0.2 cv = 0.3 cv = 0.4

Unloading a 3.5 3.10 2.09 1.09 0.08

b 4.7 5.10 6.11 7.11 8.12

Transfer a 2.8 2.67 1.80 0.94 0.07

b 4.3 4.39 5.26 6.12 6.99

Table 3.1: Distributions parameters for unloading and transfer process times
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cv = 0.4
cv = 0.5

Figure 3.4: Transfer time triangular distribution

distribution is symmetric) and a constant mean. Using the table pro-
posed by Jannat and Greenwood [104], we calculate the values of a
and b when the coefficient of variation cv increases. Since the distri-
bution represents a process time, only the cases when a > 0 are kept.
Only symmetric triangle distributions are used, for which the mode
m equals the mean. This simplifying assumption is not contradictory
with the industrial standard times (Appendix D), and using only sym-
metric distributions eliminates the bias a skewed distribution could
introduce. The parameters of the resulting triangular distributions
are shown in Figure 3.4 for the transfer time, and Table 3.1 for a syn-
thesis of all values used. Note that the standard process times are
closer to the case cv = 0.1, which is thus the most realistic range for
the transfer and unloading time.

truck arrival time . The truck arrival times are defined by the
IP model: to test the effect of variability in truck arrival times, what
should be modeled in the simulation is only a deviation compared to
this predefined arrival time. The deviations represent early or late ar-
rivals; zero deviation means the corresponding truck arrives on time.

Let us call d the random deviation applied to each scheduled truck
arrival time t0 calculated by the IP model. Since most deviations
are very short (a few minutes) and large deviations occur only oc-
casionally, the arrival deviations d are assumed to be exponentially
distributed, similarly to what is done by Wang and Regan [212]. Their
mean is denoted by δ. In order to avoid unrealistically large time devi-
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ations, the distribution is truncated such that no value can be greater
than 10× δ.

In order to determine whether the deviation corresponds to a late
or an early arrival, a multiplier σ is defined such that

σ = −1 for an early arrival

σ = +1 for a late arrival

σ = 0 for an on-time arrival

The probability mass function for σ is specified as P(σ = +1), P(σ =

−1) and P(σ = 0). Therefore, for each truck arrival, its simulated
arrival time is:

ta = max(0; t0 + d× σ)

where d and σ are random samples from their respective distribu-
tions.

3.2.2.2 Measuring perturbations

In order to measure the deviation between the performance of the
realized schedule and the initial deterministic performance, the fol-
lowing measurement indicators are used:

total number of pallets in stock I1

error in docking time (inbound I2 and outbound I3): for each
truck which docks later than expected, we compute the absolute
difference between the scheduled docking time and the time at
which the truck actually docks, in minutes. The indicator is the
sum of those deviations for all inbound or outbound trucks.

error in staying time (inbound I4 and outbound I5): for each
truck which stays docked longer than expected, we compute
the absolute difference between the scheduled time spent at the
dock, and the actual time spent at the dock by the truck, in
minutes. The indicator is the sum of those deviations for all
inbound or outbound trucks.

The time-related indicators I2 to I5 are only considered for the
trucks that arrive and/or leave later than planned. Earliness is not
explicitly taken into account in order to keep the number of indi-
cators to follow reasonable. Part of the earliness situations do not
impact the schedule: for example, a truck arriving early will have to
wait if all doors are busy, and eventually be docked at the time orig-
inally planned for its arrival. If a door and the matching resources
are available when the truck arrives, it can be unloaded early, which
can impact the stock level. This side effect of early arrivals can be
captured in I1.
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3.2.2.3 Simulation parameters

The simulation is run until the platform is empty and all trucks
have left. This occurs after about 10 simulation hours due to the
structure of the instances, but in some cases the operations are de-
layed and finish later.

The tests are run on instance set3+3 and set25+25 defined in sec-
tion 2.2.3. The schedule for set3+3 is obtained with the IP model.
Since the size of the instances with 25 inbound and 25 outbound
doors is too large to be handled by the integer program used previ-
ously, the truck schedules for set25+25 are calculated using heuristic
h2, which was shown to be faster and better for larger instances.

Each of the 21 instances of set3+3 and set25+25 is tested over a
number of scenarios, i. e. a set of different values for the experiment
parameters. Each scenario is tested over 20 different replications –
with a confidence interval of 95%, this provides sufficient precision
for analysis. For each replication, the value of each indicator Ii is
compared to the value Vi of the deterministic case, checking whether
or not this value is in the interval Vi ± ε i, where ε i represents an ac-
ceptable tolerance for indicator i (ε1 is a number of pallets, ε2 to ε5

are in minutes). The percentage of replications off-limits obtained de-
pends on ε i: see Figure 3.5. The values of the performance measures
Ii are averaged for each scenario over the 20 replications and the 21
instances.

deterministic
value Vi

| Ii
εi % off-limits

Figure 3.5: Definition of εi and percentage off-limits

Note that in general, the platform manager knows the tolerances ε

of his/her organization. For example, some companies give financial
penalties to their transportation providers if they are more than 15
minutes late; implicitly, the company assumes it can absorb delays
smaller than 15 minutes, but not larger. In the next section, we use
the simulation model to estimate ε in different cases, and propose
robustness indicators linked to this tolerance.

3.3 numerical results

Following the methodology detailed in section 3.2.2, the simulation
model is used to gather insights on the reaction of the IP schedules
subject to variability (in transfer times, unloading times and truck
arrival times). The objective is to propose a robustness indicator for
each cause of variability studied.
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3.3.1 Variability in transfer time

In this section, unloading time is equal to zero; transfer times
are stochastic and follow a triangular distribution as detailed in sec-
tion 3.2.2.1.

Figure 3.6 shows the value of the percentage off-limits for each
indicator Ii, for different sets of values of ε i, for instance set3+3 and
set25+25.

set3+3 set25+25

0.1 0.2 0.3 0.4
0

20

40

Coefficient of variation ctransfer
v

Pe
rc

en
ta

ge
of

f-
lim

it
s

(%
)

[ July 21, 2014 at 14:55 – version 4.0 ]

(a) ε1=1 pallet; ε2 = ε3 = ε4=15 min

0.1 0.2 0.3 0.4
0

20

40

Coefficient of variation ctransfer
v

I1
I2
I3
I4
I5

(b) ε1=1 pallet; ε2 = ε3 = ε4=2 min

0.1 0.2 0.3 0.4
0

20

40

Coefficient of variation ctransfer
v

Pe
rc

en
ta

ge
of

f-
lim

it
s

(%
)

(c) ε1=3 pallets; ε2 = ε3 = ε4=30 min

0.1 0.2 0.3 0.4
0

20

40

Coefficient of variation ctransfer
v

I1
I2
I3
I4
I5

[ July 24, 2014 at 9:29 – version 4.2 ]

(d) ε1=3 pallets; ε2 = ε3 = ε4=5 min

Figure 3.6: Percentage off-limits with different values of εi

Figure 3.6 shows that a higher coefficient of variation leads to a
higher percentage of results off-limits: the curves are monotonically
increasing for all indicators, for both instance sets). The different
indicators are less sensitive to changes in the coefficient of variation
in the case of set25+25, compared to the case of set3+3. The total
number of pallets in storage and the error in stay time for the inbound
side are the most sensitive indicators when the transfer times become
more variable. The outbound side indicators (I3, I5) are less sensitive
for both instance sets.

Table 3.2 on the next page separates the indicators related to in-
bound and outbound trucks. We observe again that the outbound
indicators are less sensitive. This is because the transfer algorithm
favors the outbound side in the simulation.
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inbound (I2 and I4) outbound (I3 and I5)

cv = 0.1 cv = 0.4 cv = 0.1 cv = 0.4

to
le

ra
nc

e
ε 0 min 65% / 27% 71% / 27% 26% / 10% 27% / 9%

5 min 17% / 3% 44% / 8% 8% / 0% 21% / 0%

10 min 4% / 0% 31% / 1% 2% / 0% 14% / 0%

15 min 2% / 0% 23% / 0% 2% / 0% 12% / 0%

(set3+3 / set25+25)

Table 3.2: Transfer time variations: percentage off-limits for inbound- and
outbound-related indicators
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(b) set25+25

Figure 3.7: Transfer time variations: percentage off-limits for the average of
I2 to I5
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(b) set25+25

Figure 3.8: Transfer time variations: percentage off-limits for I1
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Nevertheless, since the shapes of the curves for the different indi-
cators are similar, in the remaining of this chapter we aggregate the
temporal indicators I2 to I5 together for the sake of readability.

Figure 3.7 shows how the average percentage off-limits (average of
I2 to I5, with 20 replications for each instance) varies with different
values of the tolerances, set such that ε2 = ε3 = ε4 = ε5 = ε.

For set3+3 and for a coefficient of variation cv = 0.1, the deviation
drops to zero for ε ≥ 60 minutes. The percentage off-limits is very
sensitive for tolerances smaller than 15 minutes, and almost insensi-
tive when the tolerances are greater than 30 minutes. Instances of
set25+25 are less sensitive than those of set3+3; this is due to their
structure. Having a great number of doors provides more flexibility:
when a pallet is unloaded it is more likely that a corresponding truck
is available, even when the system is perturbed. A similar behavior
is observed for indicator I1: see Figure 3.8.

3.3.2 Variability in unloading time

In this set of experiments, the transfer time is deterministic and
equal to 3.5 minutes. The unloading time is stochastic and follows
the triangular distributions described in section 3.2.2.1. Results (Fig-
ure 3.9) show a pattern similar to the one in Figure 3.7: a higher
coefficient of variation implies a higher percentage of cases off-limits,
for all tolerance values.
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(b) set25+25

Figure 3.9: Unloading time variations: percentage off-limits for I2 to I5

3.3.3 Variability in truck arrival time

The percentages of trucks arriving late, early, and on time are var-
ied such that the total is 100%. We observe the percentage off-limits
(aggregated over I2 to I5) as a function of the tolerance ε, with differ-
ent values of the mean delay δ. An example of result obtained when
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(b) set25+25

Figure 3.10: Truck arrival time variations: percentage off-limits for I2 to I5

40% of trucks arrive late, 27% are early, 33% unchanged) is displayed
in Figure 3.10.

Again, the curves’ patterns are similar to the observations made in
sections 3.3.1 and 3.3.2. But the proportion of trucks arriving early,
late and on time is a new parameter compared to what is done in
the previous section. Let us suppose that 33% of the trucks arrive on
time, and the remaining 67% are either delayed or early with vary-
ing proportions. Figure 3.11 shows the effect of this proportion, for
different values of δ, on the tolerance to be set in order to get 10%
off-limits.
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set3+3 – Aggregated I2 to I5 – 33% of the trucks are on time

Figure 3.11: Tolerance to get 10% off-limits function of the truck punctuality

We note that the curves in Figure 3.11 are rather flat, which shows
that early arrivals tend to compensate late ones. Tolerance ε is not
very sensitive in that case: for example in set3+3, when the delays
follow an exponential distribution of mean δ = 5 min, the tolerance
to get 10% off-limit is always around 50 minutes, no matter what the
proportion of delayed/early trucks is.
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set3+3 – Aggregating I2 to I5

Figure 3.12: Tolerance to get 10% off-limits function of the proportion of
early/delayed trucks

In order to get more variations and thus a monotonic curve, we
vary the percentages of trucks arriving late P(σ = 1), or the percent-
age of trucks arriving early P(σ = −1), but not both at the same time
– the rest are trucks arriving on time. Figure 3.12 shows the tolerance
to be set in that case, in order to get 10% off-limits for different values
of δ. For example, if 20% of the trucks are delayed and the truck de-
lays follow an exponential distribution of mean δ = 10 minutes, the
tolerance has to be set to 50 minutes.

Note also on Figure 3.12, that a given percentage of early trucks
creates a smaller disruption than the same percentage of late trucks.
This confirms the intuitive idea that delayed trucks are “worse” than
early trucks – early trucks can wait, while the delay of a truck arriving
late can be difficult to compensate.

3.3.4 Correlation analysis

While carrying out the numerical experiments, we noticed an in-
teresting fact about the way the two indicators I2 and I4 (error in
docking time and error in staying time in the inbound side) relate
to each other. For instances for the set3+3, a linear correlation of
coefficient r ≥ 0.75 exists between these two indicators, as shown in
Table 3.3 on the following page.

Recall that an error in docking time occurs when a truck cannot
dock at the scheduled time, because the dock is occupied by another
truck. This happens when the previous truck stayed docked for too
long. When the linear regression line has a coefficient 1 (instances
17_3, 34_4 and 34_5), the total error in docking time is totally ex-
plained by the total error in stay time, i. e. a set of inbound trucks that
stayed x minutes longer caused trucks that followed to dock x min-
utes late, exactly. We will refer to the trucks which stayed longer than
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Instances Coefficient of the regression line Coefficient r

17_1, 17_2, 34_2, 34_3 0 -

17_4 0.15502 0.75

34_1 0.408 0.9

17_5 0.59386 0.91

34_6 0.71394 0.83

17_3, 34_4, 34_5 1 1

set3+3

Table 3.3: Linear correlation between I2 (error in stay time) and I4 (error in
docking time)

planned as “critical”. When the linear regression line has a coefficient
zero, (instances 17_1, 17_2, 34_2, 34_3), there may be error in the stay
time of some inbound trucks, but they do not cause any error in the
docking time, i. e. those trucks are considered not critical. For the
other instances for which the coefficient of the linear regression line
is between 0 and 1, the situation is mixed: among the trucks staying
longer than planned, some are critical and some are not.

From this observation, we draw the idea that finding ways to mini-
mize the number of critical trucks would help improving the robust-
ness of the IP model. We will come back to this idea in the next
chapter.

3.4 proposal of robustness metrics

In section 3.3, we show that the curves linking the tolerance ε to the
percentage off-limits are continuous and monotonic for two sources
of variability: arrival time and unloading time. When the variability
of truck arrival times increase, the tolerance to get a given percentage
off-limits is also a strictly increasing curve when the percentage of
trucks early or late increases. Based on these results, we propose a
set of metrics to evaluate the robustness of a model subject to the
three different sources of variability. Each robustness measure being
a single numerical value, it is easier to exploit than a full set of data
as represented for example in Figure 3.7. The robustness measures
can be used to quantify how different IP models are able to absorb
variations in transfer, unloading or truck arrival time.

robustness to variability in transfer time :

Rtransfer = tolerance ε (in min) to get 10% off-limits when ctransfer
v = 0.1

(3.1)
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robustness to variability in unloading time :

Runload = tolerance ε (in min) to get 10% off-limits when cunload
v = 0.1

(3.2)

robustness to variability in truck arrival time :

Rarrival = tolerance ε (in min) to get 10% off-limits

when


P(σ = +1) = 20%

P(σ = 0) = 80%

P(σ = −1) = 0%

and δ = 10 min (3.3)

Recall that tolerance ε corresponds to the value set for ε2 = ε3 =

ε4 = ε5, as defined in section 3.2.2.3. The value of 10% off-limits is an
arbitrary choice. When comparing two schedules, the idea of the indi-
cator is to indicate whether the tolerance of one schedule is above or
below the tolerance of the other. The indicator basically captures this
information at a single state, which is 10% off-limits. The value does
not seem unreasonable since 10% could be the maximum amount of
trucks off-limit a platform can handle.

The values of ctransfer
v and cunload

v are set to 0.1 because this value
is the closest to industrial standard times, as shown already in sec-
tion 3.2.2.1. A mean deviation of δ = 10 minutes for late trucks
seems a reasonable value, although we do not have industrial data to
support this assumption.

Finally, the indicator on truck arrival times focuses on delayed
trucks following the idea (mentioned in section 3.3.3) that delayed
trucks have more impact on the schedule than early trucks.

If one wants to compare the robustness of two distinct scheduling
models m1 and m2, subject to changes in truck arrival times, one
shall use the simulation model to test both schedules and calculate
the value of Rarrival. If Rarrival(m1) < Rarrival(m2), then m1 is more
robust than m2 subject to changes in truck arrival times.

3.5 conclusion

In order to know whether the models presented in chapter 2 are
robust or not, this chapter proposes to use a discrete-event simula-
tion model in order to submit the schedules to stochastic events. To
answer the research question asked by Boysen and Fliedner [31], the
acceptable level of uncertainty was shown to depend on the tolerance
set by the operations manager. Based on a set of experiments, indica-
tors are proposed to quantify the robustness of the models submitted
to “reasonable” levels of uncertainty.

An extension of this work would be to test other sources of vari-
ations, e. g. uncertainties regarding the truck content. The possible
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correlations that can appear in practice between different sources of
variations could also investigated.

The greedy algorithm used pallet routing in the simulation (algo-
rithm 3.1) could also be used instead of the exact approaches (max-
imum flow) used in the tabu search (h3). Conversely, a maximum
flow algorithm could be embedded in the simulation model (case (a)
in Figure 3.1) in order to assess its performance when the pallets are
transferred in an optimal way.

Different management policies for arriving trucks could be investi-
gated – instead of being docked in a FIFO order, the trucks could be
prioritized according to their punctuality, for example. The simula-
tion model could then help comparing the different policies.

Another perspective is to use the simulation model and robustness
indicators developed in order to design a simulation-optimization ap-
proach (case (c) in Figure 3.1 on page 70).

Is it possible to propose some models more robust than the mod-
els described in chapter 2 and evaluated in this chapter? To answer
this question, the indicators developed will be used in chapter 4 to
compare different robust versions of the original IP model.



L’incertitude est de tous les tourments
le plus difficile à supporter.

— Alfred de Musset

Chapter 4

R O B U S T C R O S S D O C K T R U C K S C H E D U L I N G

This chapter proposes robust reformulations of the truck
scheduling problem described in chapter 2. Reformula-
tions are based on classical techniques in robust optimiza-
tion (minimax, minimization of the expected regret) but
also on techniques from robust project scheduling. Two
different methods are used, resource redundancy and time
redundancy. The robustness of the nine different models
proposed is evaluated using the methodology and robust-
ness indicators defined in chapter 3.



P L A N I F I C AT I O N R O B U S T E D E S C A M I O N S

Dans ce chapitre, on cherche à proposer des reformula-
tions plus robustes du modèle de planification de camions
énoncé au chapitre 2. Les reformulations s’appuyent sur
des techniques classiques d’optimisation robuste (minimax
et minimisation du regret moyen), mais aussi sur des tech-
niques issues d’un autre domaine, la planification de pro-
jets robustes. On distingue deux types de méthodes : celles
qui assurent la robustesse par une redondance de ressources
(peu pratiquée en gestion de projet puisque les ressources
sont chères, mais adaptable à notre cas où les ressources
sont les portes) et celles utilisant la redondance du temps,
c’est-à-dire prévoyant des périodes-tampon pour compen-
ser les aléas. Les modèles classiques d’optimisation ro-
buste sont résolus en adaptant légèrement la recherche
tabou du chapitre 2. Les trois modèles proposés qui uti-
lisent la redondance de ressources sont résolus avec des
versions adaptées d’ip* ou de h2, ainsi que deux modèles
utilisant la redondance de temps. Les deux autres modèles
ajoutant des périodes-tampons le font en post-traitement
du résultat donné par ip* ou h2.
La robustesse de ces neuf modèles différents est évaluée
à l’aide de la méthodologie et des trois indicateurs de ro-
bustesse définis au chapitre 3. Les résultats numériques
permettent de montrer que la redondance de ressources,
peu voire pas utilisée en gestion de projet à cause de son
coût prohibitif, donne de très bons résultats une fois ap-
pliquée au cas du cross-docking.



4
R O B U S T C R O S S D O C K T R U C K S C H E D U L I N G

Recall from chapter 3 the question asked by Boysen and Fliedner
in their crossdock truck scheduling research agenda:

“How to derive robust plans, i. e. plans which remain fea-
sible in spite of (shorter) delays?”

Boysen and Fliedner [31]

This chapter seeks to answer this question by proposing schedules
that are robust to common levels of perturbations, i. e. that remain
feasible (or can easily be fixed to become feasible again) when pertur-
bations occur.

After a reminder of the problem’s assumptions and a review of
the literature regarding robustness in scheduling as well as robust-
ness in cross-docking (section 4.1), we propose in section 4.2 different
variations of the deterministic model described in chapter 2. They are
compared and evaluated in section 4.3 using the indicators developed
in chapter 3.

4.1 robust truck scheduling with time windows : prob-
lem description

The model studied is similar to the one in chapter 2, but the real-
ization of the schedule is now subject to uncertainties.

4.1.1 Assumptions

The platform considered is exactly the same as in chapter 2, thus
all assumptions detailed in section 2.1.1 still hold.

The preferences of the transportation provider regarding the de-
sired arrival and departure time for each truck are still expressed
as time windows. The output of our model is then communicated
back to the transportation provider that uses them as new references
for the truck arrival and departure time. The difference with chap-
ter 2 is that the schedule obtained is not necessarily executed exactly
as planned. The trucks might actually arrive later than planned; the
transfer or unloading processes might take longer, so that the assump-
tion that product transfer is ensured in masked time does not hold
any more.

When proposing robust schedules for the daily management of
the platform, the perturbations considered should stay in a “reason-
able” range, corresponding to discrepancies that can happen daily or
weekly in the platform. Very big delays that occur in crisis situations,
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for instance a snowfall that paralyses all highway infrastructures in
an entire region of France, are not taken into account in this study.

The three main sources of variability studied therefore take the
following values, following the discussions in chapter 3:

– the transfer time follows a triangular distribution with a = 2.67,
b = 4.39 and m = 3.50 minutes;

– the unloading time follows a triangular distribution with a = 3.10,
b = 5.10 and m = 4.10 minutes;

– 20% of the trucks arrive late, and their delay follows an exponen-
tial distribution of parameter δ = 10 minutes.

The objective of this chapter is to find robust solutions to our truck
scheduling problem, i. e. solutions that are as close to optimal as pos-
sible for every possible situation that might occur. The robustness of
each solution will be measured with the robustness indicators pro-
posed in section 3.4.

The problem studied in this chapter therefore adds a robustness
indicator to the performance measures used previously. The assump-
tions are summarized in Table 4.1.
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Table 4.1: Classification of the truck scheduling problem studied in chapter 4

4.1.2 Robust scheduling: literature review

In our context of mathematical programming for scheduling, adding
robustness as a performance measure means changing the objective
function in order to capture the robustness idea. It can be done in
many different ways, reviewed by Sabuncuoglu and Goren [170] in
their review focusing on robustness and stability in a manufacturing
environment. They propose an organized list of different objective
functions used to ensure stability and robustness. Based on their
work and after adding other measures proposed in more recent pa-
pers, we can list (not exhaustively) the main possible objective func-
tions for robust scheduling.

objective functions based on realized performance . The
idea is to ensure that the performance level achieved by the
schedule stays high when facing a disruption. For a minimiza-
tion problem, this can be done by minimizing the expected real-



4.1 problem description 93

ized performance, minimizing the worst-case performance (min-
imax method: the worst-case performance is the max of the per-
formances obtained for all the scenarios considered; this criteria
is called absolute robustness by Kouvelis and Yu [114]), minimiz-
ing the performance of the schedule in the most probable sce-
nario, minimizing the expected deviation of the realized sched-
ule’s performance from the initial deterministic performance,
minimizing the variance of realized performance measure. . .

objective functions based on regret. We call regret the dif-
ference between the realized and the optimal performance, i. e.
the performance that would have been realized if the disrup-
tions were known in advance and used as data. The idea is to
ensure that the performance level achieved is close to what it
would have been with a full information. It is usually done by
minimizing the expected regret, or minimizing the regret in the
worst case (minimax regret method; this criteria is called absolute
deviation or relative deviation by Kouvelis and Yu [114]).

objective functions based on slacks . These measures are pro-
posed by Hazır et al. [101] in the context of robust project schedul-
ing. They are based on the slack of some project tasks, i. e. the
amount of delay that a task can take without delaying the com-
pletion time of the total project. A slack is therefore a buffer
time that can protect a specific task against delay or disrup-
tions, when placed right after the task in a Gantt chart. Using a
simulation experiment, Hazır et al. show that two performance
measures have a high correlation with indicators on the project
punctuality: the maximum weighted slack (where the weight
of a slack is the number of immediate successors, in the Gantt
chart, of the task protected by the slack, or its total number of
successors), and the maximum ratio between the total project
buffer size and the total project completion time.

Objective functions based on realized performance and based on
regret are not specific to robust scheduling, and are largely used in
robust optimization in general. The interested reader can refer, for
example, to Nikulin [156] for an extended annotated bibliography of
robustness in combinatorial optimization and scheduling theory, or to
Gabrel et al. [74] for a more recent review of the literature regarding
robust optimization.

Slack-based measures, on the contrary, are very specific to project
scheduling. They follow the idea emphasized by Davenport and
Beck [55], who show that redundancy-based techniques are a way
to proactively ensure the robustness of a schedule. For slack-based
indicators, the redundancy is applied on time, since the idea is to
keep reserve time or buffer time periods. Davenport and Beck [55]
note that resource redundancy (keeping some resources in standby) is
another way to ensure robustness in scheduling. However, resource
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redundancy is not usually used in project management, since keeping
idle resources would be unreasonably expensive.

Time redundancy is much more frequently used in project schedul-
ing. It has been originally proposed in 1990 by Chiang and Fox [45]
(and later Gao [76]) who developed the concept of temporal protec-
tion. The “protected” duration of each activity equals its original
duration augmented with the duration of breakdowns that are ex-
pected to occur during the activity execution, based on breakdown
statistics from the resources. The schedule is obtained by solving
the scheduling problem in which the task durations are the protected
ones. Similarly, Mehta and Uzsoy [147] insert additional idle time
into the predictive schedule to absorb the impact of machine break-
downs. The insertion is done as a post-treatment of a sequence ob-
tained by a heuristic. Davenport et al. [56] propose improvements of
this temporal protection technique with their time window slack and
focused time window slack approaches. Slacks are not included into
the activity duration, but explicitly computed per activity in solution
schedules. In this way, the same slack time can protect more than one
activity, and slacks can be concentrated in the areas of the schedule
that are the most crucial. In [201], van de Vonder et al. propose dif-
ferent algorithms to include time buffers in a project schedule: the
virtual activity duration extension in which the time buffer depends on
the variability in the activity durations of the predecessors, and the
starting time criticality in which the time buffers depend on both the
weights of the activities and the variance of the activities duration.
The heuristic adds time buffers in front of the most critical activities
until adding more safety would no longer improve stability. They pro-
pose local search improvements, with a specific algorithm combining
steepest and fastest descent, and a tabu search. They experimentally
show that the starting time criticality heuristic performs best.

Fuzzy set theory can also be used to determine the size of the
buffer; see e. g. Li and Chen [121].

The different techniques detailed here are either generic robust op-
timization techniques, or techniques that are specific to scheduling or
project scheduling. In the next section, the cross-docking literature
is reviewed to see which papers deal with robustness, and which of
the techniques presented above are actually used in the cross-docking
context.

4.1.3 Robustness in the cross-docking literature

In their review of the scheduling and project scheduling litera-
ture, Herroelen and Leus [103] identify different strategies used toSensitivity analysis

checks the effect of
parameter changes.

cope with uncertainty: reactive scheduling, stochastic scheduling,
fuzzy scheduling, proactive robust scheduling and sensitivity anal-
ysis. Keeping the sensitivity analysis aside, we use the same classi-
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fication to order the articles mentioned in this section. They are a
subset of the articles mentioned in chapter 1 that address robustness,
or more broadly speaking any sort of uncertainty on the input data.

4.1.3.1 Reactive scheduling

Reactive scheduling aims at revising or re-optimizing the schedule
when an unexpected event occurs. It is often called “on-line schedul-
ing" in the cross-docking literature.

Wang and Regan [212] solve a truck-to-door assignement problem
in which the arrivals of inbound trucks follow an exponential dis-
tribution, and all other process times are deterministic. Their algo-
rithm, using real-time information about freight transferring within
the crossdock, chooses on-line the best truck to be placed at each
door that becomes available. The robust truck-to-door assignment
problem is also dealt with by Yu et al. [218], who propose an online
policy when most of the data regarding the inbound trucks (number,
arrival time, contents, unloading time) is uncertain. Acar et al. [2]
also propose a dynamic heuristic to assign the trucks to the docks in
real time. Larbi et al. [115] schedule the transshipment of pallets in
a single receiving door and a single shipping door crossdock where
preemption is allowed, with partial and no information on the se-
quence of upcoming trucks. In the case of no information, only the
daily quantities for each destination are supposed to be known. The
problem is solved with a heuristic based on a probabilistic decision
rule: after an inbound truck has been unloaded, the outbound truck
which has the highest probability to be fully loaded with the mini-
mum expected cost is placed at the outbound door. In the case of par-
tial information, only the sequence of the next Z inbound trucks and
their contents are known. Two different approaches are presented:
first, applying on a rolling horizon the optimal algorithm developed
for the full-information case; second, a heuristic that hybrids the full-
information and the no-information methods.

Reactive scheduling can be seen as a way to fix a schedule when
unexpected events occur, it is an a posteriori approach. It is, for exam-
ple, the role of the greedy algorithm which is in charge of the pallet
transfer in the simulation (see algorithm 3.1 in section 3.1.2). The goal
in this chapter is rather to make the schedule robust a priori, or in a
“proactive” way as named by Herroelen and Leus [103].

4.1.3.2 Stochastic scheduling

Stochastic scheduling aims at minimizing the expected objective
value, which implies that the probability distributions of the uncer-
tain data are known.

Beside their on-line policy for the truck-to-doors assignment prob-
lem, Yu et al. [218] propose a scenario-based stochastic model in order
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to assign fixed destinations to the outbound doors, given the on-line
policy. The objective is to minimize the expected workload (total dis-
tance walked by the worker), taking the random variation of freight
volumes into account. The problem is solved by local search and
genetic algorithm.

Yu et al. are the only authors who use stochastic programming for
crossdock scheduling, more precisely to allocate destinations to doors.
A possible explanation for the scarcity of stochastic optimization in
cross-docking resides in the fact that the probability distributions of
uncertain data can be hard to obtain in the industrial context. In our
case, we assume some probability distributions in order to test the
model; but using them as input data in our optimization might make
the problem too hard to be solved.

4.1.3.3 Fuzzy scheduling

Fuzzy scheduling involves imprecision rather than uncertainty; in-
stead of probability distributions that are not always easy to obtain,
the uncertain data are modeled with fuzzy numbers. For more in-
formation on fuzzy scheduling, the interested reader can refer to Ste-
fanini et al. [188].

However, the precise form of a fuzzy number is difficult to describe
by an expert. It might be why no articles dealing with cross-docking
operations make use of this method.

4.1.4 Proactive robust scheduling

Within the proactive robust scheduling method, we can distinguish,
as done already in section 4.1.2, between generic robust optimization
techniques and redundancy-based techniques.

Four articles among the ones listed in chapter 1 use robust opti-
mization techniques. Bozer and Carlo [34] propose a model for in-
bound and outbound door assignments in crossdocks, but notice that
it can create large variations in the workload from one night to the
next. In order to reduce those variations, they solve two different
problems: minimizing the total workload (minisum) and minimizing
the maximum workload (minimax). A solution is called robust if the
workload of the worst night in the minisum solution is close to the
workload in the minimax solution. Werners and Wülfing [214] pro-
pose a model to schedule the outbound trucks in a parcel sorting
center, minimizing the total transportation effort. In order to achieve
robustness, they minimize the maximal regret of four different scenar-
ios corresponding to different activity levels in the facility. They also
ensure that the transportation effort in the robust solution is close to
every scenario-optimal objective value. These two articles focus on
the activity level within the platform. To find articles closer to the
work presented in this chapter, one has to refer to Konur and Go-
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lias [112, 113] who deal with the inbound truck-to-door scheduling
in a crossdock, where the truck arrival times are uncertain (modeled
by a triangular distribution). They solve the problem for determin- Hybrid case: the

expected truck
arrival times are the
arithmetic average of
the expected truck
arrival times given
by the pessimistic
and optimistic
approaches.

istic, optimistic (the total waiting times is expected to be minimum),
pessimistic (the total waiting times is expected to be maximum) and
hybrid cases. The hybrid approach is shown to outperform the oth-
ers in certain cases. The work by Konur and Golias focuses on the
inbound trucks only and aims at minimizing the total waiting time of
the trucks. In this chapter, we also use robust optimization techniques
but for inbound and outbound sides, with different performance mea-
sures.

Time redundancy techniques are only used in the crossdock opera-
tions context by Acar et al. [2]. They aim at minimizing the variance
of the doors’ idle times, in order to spread the inbound trucks on a
given dock as evenly as possible and thus create buffer times between
trucks. Their technique will be adapted to our case and compared to
other robust versions of the model.

4.2 robust versions of the initial problem

Among the various methods detailed in the literature review, four
are used to propose robust versions of our problem.

Two are based on widely used robust optimization techniques and
prefixed with the letter r: the minimax method (r1) and the minimiza-
tion of expected regret (r2).

The other two methods are derived from project scheduling and
adapted to the cross-docking context: resource redundancy (too ex-
pensive and therefore barely used for project scheduling, but easy
to adapt to our case) and time redundancy. The resources that can
be made redundant are the doors in our case. Therefore the models
implementing this method are prefixed with the letter d, while the
models implementing time redundancy are prefixed with t.

Figure 4.1 on the following page shows with a small case (3 in-
bound and 3 outbound doors) how an original schedule (a) can be
modified to ensure resource redundancy (b) or time redundancy (c).
In case (b), the trucks are all grouped on two doors so that the third
one stays constantly available as a buffer door; it can process any ar-
riving truck if the operations get delayed. In case (c), time buffers are
inserted in between the different trucks to avoid delays propagation.
In both cases, the truck arrival and departure times are not modified
too much compared to the initial schedule (a).

Depending on the nature of the problem, different solution strate-
gies are used. The different robust versions and their resolution meth-
ods are summarized in Figure 4.2 on the next page, and detailed in
the following sections.
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(a) Original schedule
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(b) Door redundancy
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(c) Time redundancy

Figure 4.1: Two ways of adding robustness

Robust optimization Project scheduling

Min objective in
the worst case

Min expected
regret

Resource
redundancy

Time redundancy

r1: minimax
r2: min Π0(S)−

Π0(S0)

d1: min the
door occupation

ratio

t1: insert buffers
of equal length

d2: min nb of
doors used every

hour

t2: insert buffers
of length prop. to

nb successors

Solution methods
ip* or h1/h2
Tabu search h3
ip* or h1/h2 + post-treatment

d3: min nb of
critical trucks

t3: min buffer
lengths standard

deviations

t4: max buffer
lengths weighted

sum

Figure 4.2: Summary of the robust versions
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4.2.1 Robust optimization techniques

In most papers using robust optimization such as minimax or the
minimization of expected regret, local searches (generally tabu searches
or genetic algorithms) are used to solve the robust counterparts of the
models. In our case, the tabu search described in section 2.3.3 (h3) can
easily be adapted by changing the evaluation of the objective function
to match the cases displayed below.

4.2.1.1 r1: minimax method

The minimax method consists in minimizing worst case perfor-
mance. Applied to our problem, the minimax model is formulated as
shown below.

min Ω

s.t. Ω ≥ Π0(s) ∀ scenario s in the set of scenarios considered

other constraints of ip*

r1

The set of scenarios considered represents different cases where the
trucks are delayed. Similar to chapter 3, the scenarios chosen have
20% of trucks late, with delays following an exponential distribution
of parameter δ = 1 min, 5 min, 10 min, 15 min and 30 min.

4.2.1.2 r2: minimizing the expected regret

The objective in this case is to minimize the expected deviation
between the realized schedule’s performance (here when 20% of the
trucks are delayed) and the performance of the deterministic scenario
(noted S0). The problem is formulated as shown below.

min Π0(S20% delayed)−Π0(S0)

s.t. constraints of ip*

r2

4.2.2 Resource redundancy

The objective of resource redundancy is to ensure that another re-
source will be available to execute a job when disruptions occur. This
solution is not often used in project scheduling, because resources are
expensive: it is financially more interesting to plan a longer project
than to pay people to stay idle. In cross-docking however, the re-
sources (doors) are not necessarily very expensive, especially in big
platforms that do not always use all their doors.
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Various strategies are therefore developed in this section, aiming at
using less than the total number of doors available.

4.2.2.1 Model d1

The goal of this model is to minimize the door occupation ratio. Re-
call from Equation 2.1 section 2.2.4 that ratio R is the average number
of trucks present per door and per hour. This definition is adapted
here in order to define an inbound and an outbound ratio. Denot-
ing by nI

h (resp. nO
h ) the number of inbound (resp. outbound) trucks

docked at time h ∈ H, the inbound ratio RI and outbound ratio RO

are defined as follows:

RI =
∑h∈H nI

h
N I |H| RO =

∑h∈H nO
h

NO|H| (4.1)

The number of inbound and outbound trucks docked at time h can
be expressed for all h ∈ H using their presence time windows:

nI
h = ∑

i∈I
∑

k∈Ki

W I
ikhwI

ik nO
h = ∑

o∈O
∑

k∈Ko

WO
okhwO

ok (4.2)

Reducing the door occupation ratio is likely to leave more free
doors, which ensures resource redundancy. The objective of model
d1 is therefore to minimize ratios RI and RO.

Adding another weighted penalty to the objective function would
make the weight setting difficult – how can the importance of the
original objectives be compared relatively to the new objective of min-
imizing ratio R? To circumvent this issue, the different objectives are
solved in lexicographic order. ip* is first solved to find the optimal
value of the different parts of the objective function (Πα

0 , Πβ
0 , Πγ

0 ).
Then the model noted (ip*)d1 finds among the optimal solutions, the
solution whose ratio RI + RO is the smallest. (ip*)d1 is formulated
using two new decision variables, rI and rO, representing the ratios
defined in Equation 4.1.

(ip*)d1 has a few differences with ip*: the objective function aims at
minimizing the ratio of trucks present at the door. Constraints (1)d1

to (3)d1 ensure that the different elements of ip* objective function
stay equal to their optimal value calculated before. Constraints (15)d1

and (16)d1 define rI and rO using a combination of Equation 4.1 and
Equation 4.2.

In the case of larger instances, we need to use the heuristics. To
adapt the above method to heuristics h1 and h2, we use this lexico-
graphic objective for both steps of the heuristic. Similar modifications
are brought to the IP models composing the heuristics. For example,
h1 is solved as follows:

– Solve ip1 as before (model on page 55).
– Solve (ip1)d1 (see Appendix C).
– Run ip*1 as before (see Appendix C).
– Run (ip*1)d1 (see Appendix C).
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min rI + rO

s.t. ∑i∈I ∑k∈Ki
pI

ikwI
ik ≤ Πα

0 (1)d1

∑o∈O ∑k∈Ko pO
okwO

ok ≤ Πβ
0 (2)d1

∑h∈H,i∈I ,c∈C sI
hic ≤ Πγ

0 (3)d1

∑i∈I ∑k∈Ki
W I

ikhwI
ik ≤ N I ∀h ∈ H (4)

∑o∈O ∑k∈Ko WO
okhwO

ok ≤ NO ∀h ∈ H (5)

xhio + ∑c∈C sI
hic ≤ F ∑k∈Ki

W I
ikhwI

ik ∀h ∈ H, i ∈ I , o ∈ O (6)

xhio + sO
ho ≤ F ∑k∈Ko WO

okhwO
ok ∀h ∈ H, i ∈ I , o ∈ O (7)

∑h∈H,o∈O Zcoxhio + ∑h∈H sI
hic = Qic ∀i ∈ I , c ∈ C (8)

∑i∈I ,h∈H xhio + ∑h∈H sO
ho = F ∀o ∈ O (9)

∑o∈O xhio + ∑c∈C sI
hic ≤ M ∀i ∈ I , h ∈ H (10)

∑k∈Ki
wI

ik = 1 ∀i ∈ I (11)

∑k∈Ko wO
ok = 1 ∀o ∈ O (12)

shc = s(h−1)c + ∑i∈I sI
hic −∑o∈O ZcosO

ho ∀c ∈ C , h ∈ Hr {0} (13)

s0c = ∑i∈I sI
0ic −∑o∈O ZcosO

0o ∀c ∈ C (14)

∑h∈H,i∈I ∑k∈Ki
W I

ikhwI
ik ≤ rI N I |H| (15)d1

∑h∈H,o∈O ∑k∈Ko WO
okhwO

ok ≤ rONO|H| (16)d1

xhio , sI
hic, sO

ho , shc, rI , rO ∈N+ ∀h ∈ H, i ∈ I , o ∈ O, c ∈ C
wI

ik , wO
ok ∈ {0, 1} ∀i ∈ I , o ∈ O, k ∈ K

(ip*)d1
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4.2.2.2 Model d2

Model d2 aims at minimizing the number of doors used every hour.
d2 uses an idea similar to d1, but instead of minimizing the ratio in
general, the model minimizes the number nI

h (resp. nO
h ) of inbound

(resp. outbound) doors used at every hour h ∈ H: the inequalities
(15)d1 and (16)d1 are thus defined for every hour instead of a sum
over all hours of the horizon. Similarly to d1, the decision variables
noted nI

h and nO
h are introduced in an optimization model (ip*)d2,

called in lexicographic order after ip*, which determines the values
of Πα

0 , Πβ
0 and Πγ

0 .
When heuristics are to be used for larger instances, the solution

strategy is also similar to the one described for d1.

min ∑h∈H nI
h + nO

h

s.t. ∑i∈I ∑k∈Ki
pI

ikwI
ik ≤ Πα

0 (1)d2

∑o∈O ∑k∈Ko pO
okwO

ok ≤ Πβ
0 (2)d2

∑h∈H,i∈I ,c∈C sI
hic ≤ Πγ

0 (3)d2

∑i∈I ∑k∈Ki
W I

ikhwI
ik ≤ N I ∀h ∈ H (4)

∑o∈O ∑k∈Ko WO
okhwO

ok ≤ NO ∀h ∈ H (5)

xhio + ∑c∈C sI
hic ≤ F ∑k∈Ki

W I
ikhwI

ik ∀h ∈ H, i ∈ I , o ∈ O (6)

xhio + sO
ho ≤ F ∑k∈Ko WO

okhwO
ok ∀h ∈ H, i ∈ I , o ∈ O (7)

∑h∈H,o∈O Zcoxhio + ∑h∈H sI
hic = Qic ∀i ∈ I , c ∈ C (8)

∑i∈I ,h∈H xhio + ∑h∈H sO
ho = F ∀o ∈ O (9)

∑o∈O xhio + ∑c∈C sI
hic ≤ M ∀i ∈ I , h ∈ H (10)

∑k∈Ki
wI

ik = 1 ∀i ∈ I (11)

∑k∈Ko wO
ok = 1 ∀o ∈ O (12)

shc = s(h−1)c + ∑i∈I sI
hic −∑o∈O ZcosO

ho ∀c ∈ C , h ∈ Hr {0} (13)

s0c = ∑i∈I sI
0ic −∑o∈O ZcosO

0o ∀c ∈ C (14)

∑i∈I ∑k∈Ki
W I

ikhwI
ik ≤ nI

h ∀h ∈ H (15)d2

∑o∈O ∑k∈Ko WO
okhwO

ok ≤ nO
h ∀h ∈ H (16)d2

xhio , sI
hic, sO

ho , shc, nI
h, nO

h ∈N+ ∀h ∈ H, i ∈ I , o ∈ O, c ∈ C
wI

ik , wO
ok ∈ {0, 1} ∀i ∈ I , o ∈ O, k ∈ K

(ip*)d2



4.2 robust versions of the initial problem 103

4.2.2.3 Model d3

Model d3 aims at minimizing the number of critical trucks. As
observed experimentally in section 3.3.4, a key role is played in the
operations’ punctuality by some trucks we call critical trucks, after the
project management term of “critical tasks". A critical task in project
management is a task that does not have flexibility, e. g. that delays
the entire project if the task is delayed (see e. g. Project Management
Institute [163]). Similarly, we define a critical truck as one that, when
late, propagates its delay to the next arriving trucks. When a truck i1
arrives at the platform, it can be docked at one of the doors that are
available at that time. If it has no choice but to dock at a door that
was just freed by a truck i0, we call i0 critical. Indeed, if i0 is late, i1
will have to wait before docking.

The number of critical trucks is formally defined in Definition 1.

Definition 1. Critical trucks. We denote by nI
h (resp. nO

h ) the number
of inbound (resp. outbound) trucks docked at time h ∈ H, and by
mI

h ≤ N I (resp. mO
h ≤ NO) the number of inbound (resp. outbound)

trucks coming in at time h > 0. The number of critical inbound (resp.
outbound) trucks leaving at time h ≥ 0 is:

cI
h = max(0, mI

h + nI
h−1 − N I)

cO
h = max(0, mO

h + nO
h−1 − NO)

No truck leaves at time h = 0, so cI
0 = cO

0 = 0.

New decision variables cI
h (resp. cO

h ) are added to represent the
number of critical inbound (resp. outbound) trucks leaving at time
h ∈ H, that should be minimized in d3.

In order to express the number of critical trucks as defined in Defi-
nition 1, a new data element is needed:

A I
kh = 1 if hour h ∈ H is the starting time of slot k ∈ K i (i ∈ I );

AO
kh = 1 if hour h ∈ H is the starting time of slot k ∈ Ko (o ∈ O).

The value of matrices A I and AO can easily be derived from the
values of W I and W O . Using this new data, the number of inbound
(resp. outbound) trucks arriving to dock at time h ∈ H can be written
as:

m I
h = ∑

i∈I
∑

k∈K i

A I
kh w I

ik mO
h = ∑

o∈O
∑

k∈Ko

AO
kh wO

ok (4.3)

Model (ip*)d3 can thus be formulated as shown on the next page.
Constraints (1)d3 to (3)d3 ensure that the values of Πα

0 , Π β
0 and Πγ

0
stay consistent with the first step of the optimization. Constraints
(17)d3 and (18)d3 define the number of critical trucks as defined in
Definition 1. Constraints (15)d3 and (16)d3 define the number of
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min ∑h∈H cI
h + cO

h

s.t. ∑i∈I ∑k∈Ki
pI

ikwI
ik ≤ Πα

0 (1)d3

∑o∈O ∑k∈Ko pO
okwO

ok ≤ Πβ
0 (2)d3

∑h∈H,i∈I ,c∈C sI
hic ≤ Πγ

0 (3)d3

∑i∈I ∑k∈Ki
W I

ikhwI
ik ≤ N I ∀h ∈ H (4)

∑o∈O ∑k∈Ko WO
okhwO

ok ≤ NO ∀h ∈ H (5)

xhio + ∑c∈C sI
hic ≤ F ∑k∈Ki

W I
ikhwI

ik ∀h ∈ H, i ∈ I , o ∈ O (6)

xhio + sO
ho ≤ F ∑k∈Ko WO

okhwO
ok ∀h ∈ H, i ∈ I , o ∈ O (7)

∑h∈H,o∈O Zcoxhio + ∑h∈H sI
hic = Qic ∀i ∈ I , c ∈ C (8)

∑i∈I ,h∈H xhio + ∑h∈H sO
ho = F ∀o ∈ O (9)

∑o∈O xhio + ∑d∈D sI
hid ≤ M ∀i ∈ I , h ∈ H (10)

∑k∈Ki
wI

ik = 1 ∀i ∈ I (11)

∑k∈Ko wO
ok = 1 ∀o ∈ O (12)

shc = s(h−1)c + ∑i∈I sI
hic −∑o∈O ZcosO

ho ∀c ∈ C , h ∈ Hr {0} (13)

s0c = ∑i∈I sI
0ic −∑o∈O ZcosO

0o ∀c ∈ C (14)

∑i∈I ∑k∈Ki
W I

ikhwI
ik ≤ nI

h ∀h ∈ H (15)d3

∑o∈O ∑k∈Ko WO
okhwO

ok ≤ nO
h ∀h ∈ H (16)d3

cI
h ≥ ∑i∈I ∑k∈Ki

AkhwI
ik + nI

h−1 − N I ∀h ∈ Hr {0} (17)d3

cO
h ≥ ∑o∈O ∑k∈Ko AkhwO

ok + nO
h−1 − NO ∀h ∈ Hr {0} (18)d3

xhio , sI
hic, sO

ho , shc, nI
h, nO

h , cI
h, cO

h ∈N+ ∀h ∈ H, i ∈ I , o ∈ O, c ∈ C
wI

ik , wO
ok ∈ {0, 1} ∀i ∈ I , o ∈ O, k ∈ K

(ip*)d3
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trucks docked at time h ∈ H as defined in Equation 4.2. Other con-
straints are the same as those in ip*.

The solution strategy for small instances and larger ones is again
similar to the one described for d1: the models are solved in lexico-
graphic order, calculating first that the values of Πα

0 , Πβ
0 and Πγ

0 , then
minimizing the number of critical trucks using (ip*)d3.

4.2.3 Time redundancy

Time redundancy methods aim at adding buffer time periods (or
slacks) in the schedule in order to ensure that no truck is critical. Since
time redundancy techniques are broadly used in the project manage-
ment literature, the different solutions presented here are derived
from ideas already mentioned in the literature review (section 4.1.2).

4.2.3.1 Post-treatment t1

An idea very simple to understand for the manager and easy to
implement is to insert buffers of equal lengths between the presence
slots of the trucks at the doors. It can be done by adapting the project
scheduling techniques for inserting buffer developed by Mehta and
Uzsoy [147].

Buffers are inserted by a post-treatment of the schedule (calculated
by ip* or h1, h2 or h3 as detailed in chapter 2). The planning horizon t1 inserts buffers of

equal length.should not be extended, therefore the goal is not to add extra time
but to redistribute the free time available in the planning.

The total buffer available on the planning horizon is divided equally
among all trucks as show in algorithm 4.1 on the following page.
Since t1 is a greedy post-treatment heuristic, it cannot ensure the co-
ordination between inbound and outbound trucks. Because the truck
presence time windows are only shifted by a small amount of time
compared to the solution calculated with the IP model, the solution is
likely to stay feasible. However, this cannot be guaranteed.

4.2.3.2 Post-treatment t2

t2 consists in inserting buffers, similar to t1; but in this version
the length of the buffer inserted after a specific truck is proportional
to the number of successors, as suggested by Hazır et al. [101]. The t2 inserts buffers of

length proportional
to its number of
successors.

number of successors of a truck i ∈ I (resp. o ∈ O) is the number
of trucks that come at the same door after truck i (resp. o). When
its number of successors is bigger, a given truck is more likely to be
critical and to propagate a delay. A bigger buffer is thus allocated
to the trucks with the bigger number of successors, in order to avoid
propagating the delays to its successors.

The insertion is made as a post-treatment, similar to t1. The inser-
tion heuristic is detailed in algorithm 4.2 on the next page.
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1. Run ip* for small instances, or h2 for larger instances.

2. Following a FIFO policy, match each inbound truck to an
inbound door and each outbound truck to an outbound door.

3. Calculate the total inbound (resp. outbound) buffer size βI
d

(resp. βO
d ) at each inbound door dI (resp. outbound door dO).

4. Insert a buffer of length βI

|I| after each truck i ∈ I , i. e. move the
next truck arriving at the same door so that the time between

them is exactly βI
|I| . Similarly, insert a buffer of length βO

|O| after
each outbound truck o ∈ O.

Algorithm 4.1: Inserting buffers of equal lengths between successive
trucks

1. Run ip* for small instances, or h2 for larger instances.

2. Following a FIFO policy, match each inbound truck to an
inbound door and each outbound truck to an outbound door.

3. Calculate the total inbound (resp. outbound) buffer size βI
d

(resp. βO
d ) at each inbound door dI (resp. dO).

4. Calculate the number of successors σI
i of each inbound truck

i ∈ I , and the number of successors σO
o of each outbound

truck o ∈ O.

5. Insert a buffer of length βI×σI
i

∑i∈I σI
i

after each truck i ∈ I , i. e. move

the next truck arriving at the same door so that the time
between them is exactly the calculated length. Similarly, insert

a buffer of length βO×σO
o

∑o∈O σO
o

after each truck o ∈ O.

Algorithm 4.2: Inserting buffers of lengths proportional to the number of
successors
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4.2.3.3 Model t3

Model t3 implements the idea proposed by Acar et al. [2]. Their
objective is to minimize the standard deviation of the buffer lengths,
i. e. to ensure that the buffer lengths tend to be similar.

New data and new decision variables must be added to ip* in order
to model the buffer lengths explicitly. The set of possible buffers,
including the buffer of length 0, is denoted by L.

B l h = 1 if buffer l ∈ L includes hour h ∈ H, 0 otherwise.
D l duration of buffer l ∈ L (in hours).
b I

i l = 1 if buffer l ∈ L is chosen to protect inbound truck i ∈ I , 0
otherwise.

bO
ol = 1 if buffer l ∈ L is chosen to protect outbound truck o ∈ O ,

0 otherwise.

Because a buffer protects a truck by being placed directly after the
truck departure time, buffers are closely related to the presence time
windows selected for the trucks. We therefore denote by Lk the sub-
set of L that only includes buffers starting right after the ending time
of slot k. t3 minimizes the

deviation between
the buffer length and
their average length.

The standard deviation is not a linear function, therefore the objec-
tive function must be adapted to be solved with an IP model. The
idea of Acar et al. [2] is to unify the buffer lengths as much as possi-
ble. To reach a comparable aim, the choice is made to minimize the
difference between the length of each selected buffer and the average
length of all buffers, denoted av g.

Model (ip*)t3 is written as shown on the following page. Absolute
values appear in the objective function, to define the gap between the
length of a particular buffer and the average buffer length. Note that
a function of the form z = |x− y| can be linearized as follows if z
appears in the minimization objective:

z = |x− y| ⇔

z ≥ x− y

z ≥ y− x
(4.4)

The average buffer length used in the objective function is defined
by constraint (17)t3. Constraints (4)t3 and (5)t3 replace constraints
(4) and (5) of ip*, adding buffers in between the truck presence time
windows. Constraints (15)t3 and (16)t3 make sure that each truck is
protected by exactly one buffer.

Similar to the other IP models presented in the previous sections,
model (ip*)t3 is used in lexicographic order after running ip*. Con-
straints (1)t3 to (3)t3 ensure that the different elements of the objective
function stay within the limits defined in the first step of the optimiza-
tion.
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min ∑i∈I
∣∣avg−∑l∈L DlbI

il

∣∣+ ∑o∈O
∣∣avg−∑l∈L DlbI

il

∣∣
s.t. ∑i∈I ∑k∈Ki

pI
ikwI

ik ≤ Πα
0 (1)t3

∑o∈O ∑k∈Ko pO
okwO

ok ≤ Πβ
0 (2)t3

∑h∈H,i∈I ,c∈C sI
hic ≤ Πγ

0 (3)t3

∑i∈I ∑k∈Ki
(W I

ikhwI
ik + ∑l∈Lk

BlhbI
il) = N I ∀h ∈ H (4)t3

∑o∈O ∑k∈Ko (W
O
okhwO

ok + ∑l∈Lk
BlhbO

ol) = NO ∀h ∈ H (5)t3

xhio + ∑c∈C sI
hic ≤ F ∑k∈Ki

W I
ikhwI

ik ∀h ∈ H, i ∈ I , o ∈ O (6)

xhio + sO
ho ≤ F ∑k∈Ko WO

okhwO
ok ∀h ∈ H, i ∈ I , o ∈ O (7)

∑h∈H,o∈O Zcoxhio + ∑h∈H sI
hic = Qic ∀i ∈ I , c ∈ C (8)

∑i∈I ,h∈H xhio + ∑h∈H sO
ho = F ∀o ∈ O (9)

∑o∈O xhio + ∑d∈D sI
hid ≤ M ∀i ∈ I , h ∈ H (10)

∑k∈Ki
wI

ik = 1 ∀i ∈ I (11)

∑k∈Ko wO
ok = 1 ∀o ∈ O (12)

shc = s(h−1)c + ∑i∈I sI
hic −∑o∈O ZcosO

ho ∀c ∈ C , h ∈ Hr {0} (13)

s0c = ∑i∈I sI
0ic −∑o∈O ZcosO

0o ∀c ∈ C (14)

∑l∈L bI
il = 1 ∀i ∈ I (15)t3

∑l∈L bO
ol = 1 ∀o ∈ O (16)t3

avg = 1
|I|+|O|

(
∑i∈I ,l∈L DlbI

il + ∑o∈O,l∈L DlbO
ol
)

(17)t3

xhio , sI
hic, sO

ho , shc, nI , nO ∈N+ ∀h ∈ H, i ∈ I , o ∈ O, c ∈ C
wI

ik , wO
ok , bI

il , bO
ol ∈ {0, 1} ∀i ∈ I , o ∈ O, k ∈ K, l ∈ L

(ip*)t3

4.2.3.4 Model t4

t4 uses the same model as t3, but with a different objective func-
tion. The idea of the method comes from Hazır et al. [101], who show
that the maximum weighted slack of a project is correlated with the
punctuality of the project (roughly, the probability that it ends before
its deadline). They define the weight of each task as its number of
successors in the Gantt chart of the project. The idea is adapted to
the cross-docking context as shown in algorithm 4.3.
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1. Run ip* for small instances, or h2 for larger instances.

2. Following a FIFO policy, match each inbound truck to an
inbound door and each outbound truck to an outbound door.

3. Calculate the number of successors σI
i of each inbound truck

i ∈ I , and the number of successors σO
o of each outbound

truck o ∈ O.

4. Run (ip*)t4, i. e. (ip*)t3 with the following objective function:

max ∑
i∈I ,l∈L

σI
i bI

il + ∑
o∈O,l∈L

σO
o bO

ol

Algorithm 4.3: Maximizing the weighted sum of buffers

4.3 numerical results

In this section, the different models described previously are tested
in order to compare their performances in terms of robustness.

4.3.1 Methodology

The instance sets tested in this chapter are the ones described in
section 2.2.3.

The robustness of the schedules generated by the different models
is assessed following the methodology detailed in chapter 3. Partic-
ularly, the robustness is measured using the indicators introduced in
section 3.4:

– Rtransfer (Equation 3.1 on page 86),
– Runload (Equation 3.2 on page 87),
– Rarrival (Equation 3.3 on page 87).

4.3.2 Results on instance set3+3

For each instance of set3+3, a truck schedule is calculated with
ip* and with the different models detailed in section 4.2. Figure 4.3
shows the relative value of the robustness indicator (average on all the
instances of the set) compared to ip*, for each of the robust versions
proposed. When the value is positive for a source of uncertainty
(transfer time, unloading time or truck arrival time), it means that
the robustness of the schedule regarding this source of uncertainty
is better than the robustness of a schedule generated with ip*. A
negative value means the robustness is degraded compared to ip*.
Figure 4.4 shows the standard deviations for the values averaged in
Figure 4.3. Because robustness can be created at the expense of stock
level, Figure 4.5 monitors in each model the average increase of the
number of pallets stored temporarily.
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Figure 4.3: Robustness evaluation
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Figure 4.4: Standard deviation of the results
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Figure 4.5: Stock level increase for the different models
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robust optimization techniques Model r1 follows a mini-
max logic, e. g. finds a schedule which gives the best results in the
worst scenario. However, “best” in this case is measured through the
value of the objective function (truck presence time window penalties,
number of pallets in storage) and not in terms of robustness. Because
only the worst case is taken into account, the average robustness of
the schedules obtained is not very good, except regarding robustness
to changes in the transfer time.

Model r2 improves the average result regarding robustness to the
truck arrival time – which could be expected since the objective is to
have a performance when trucks are delayed as close as possible to
the performance in the deterministic case. Yet the robustness against
changes in the truck arrival times is not very high compared to the
results of other methods, and compensated by a bad resistance to
changes in unloading time.

Both models create a moderate increase in the level of temporary
storage.

resource redundancy The three models d1, d2 and d3 have
a positive or null robustness improvement compared to ip* for the
three sources of uncertainty, while having a low standard deviation d1 is very robust

but increases
storage.

which means that this result is homogeneous on the different in-
stances. Method d1, which minimizes the average number of trucks
present at the doors, has an excellent robustness when facing changes
in the truck arrival times: 67% improvement compared to the robust- d3 offers a good

robustness/storage
trade-off.

ness of ip*. The price for robustness is paid here by an important
increase of the amount of pallet stored. d3 offers a good compromise
between robustness and stock level.

time redundancy The time redundancy-based models that give
the best results (positive or null improvement in robustness for all
three sources of variability) are t2 and t3. Besides, t3 has almost no
impact on the number of pallets put in storage – on the average it
is even a bit smaller than ip* when truck arrival times are variable.
However, t2 and t3 also have the largest standard deviations, which t2 is a linear

post-treatment that
gives good results.

means that the quality of the results can be quite different depending
on the instance. It is interesting to note that t1 and t2, which use
a rather simple post-treatment (linear in function of the number of
trucks), give better results than some IP formulations, with only a
moderate increase in the amount of pallet stored.

4.4 conclusion

This chapter proposes various reformulations of the crossdock truck
scheduling problem introduced in chapter 2, with the aim of im-
proving the robustness of the schedules obtained. The robust ver-
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sions proposed make use of standard robust optimization techniques,
but also techniques inspired from robust project scheduling methods:
resource redundancy (i. e. door redundancy when applied to cross-
docks) and time redundancy (i. e. insertion of buffers or slacks). Nine
different versions are numerically tested using the simulation model,
methodology and robustness indicators introduced in chapter 3. The
comparison shows that the methods based on resource redundancy,
a method barely used in project scheduling because of its expensive
cost, give the best results overall in the cross-docking case. Minimiz-
ing the average number of trucks docked at a given door is a good
way to ensure robustness in the schedule, but increases storage.

The proposed models could of course be improved. Models r1
and r2 that use robust optimization techniques could include more
scenarios in order to take more potential cases into account. The
models based on time-redundancy could be refined by making the
length of the buffer a function of other parameters such as the door
utilization, the transfer time, unloading time. . . The simulation model
could also be used to find the best buffer length.

Developing a simulation-optimization approach would be another
way to improve the robustness of the models. In models r1 and r2,
the tabu search is led by the value of the objective function Π0. By
connecting the tabu search to the simulation model, the value of the
robustness indicator(s) could be used instead, to lead the search for
robust schedules.

Finally, let us remember how robustness is achieved in practice
in a crossdock: unexpected changes in the schedule will be met by a
higher engagement of the workers in order to finish the work. When a
critical truck is late, it is compensated internally by putting a high pri-
ority or allocating more resources for unloading/loading this truck.
The allocation of resources is thus a major issue to consider: it is
addressed in chapter 5.



Allez, le temps est cher: il le faut employer.

— Jean Racine

Chapter 5

O P T I M I Z I N G C R O S S D O C K E M P L O Y E E
S C H E D U L I N G

The study carried out in chapter 1 shows that human and
material resources of the platform are often assumed in-
finite in the literature, whereas platform managers find
it crucial to match the resources to the activity volume.
Constraints for scheduling and rostering are numerous:
logistic employees are multi-skilled employees and have
flexible working hours or short-term contracts. Legal con-
straints and handling equipments’ capacities should also
be met. This chapter describes a model supporting the
chain of decisions from weekly timetabling to daily ros-
tering (detailed task allocation). The problem is divided
into three sub-problems depending on the type of deci-
sion to be made: workforce dimensioning, task allocation
for a week, and detailed rostering for a day. The three
decisions are made sequentially; each step is modeled as
a Mixed and Integer Linear Program. The proposed mod-
els are tested with industrial data as well as generated
instances.

The work presented in this chapter is also presented in the
following article:
Ladier, A.-L., Alpan, G., and Penz, B. 2014. Joint em-
ployee weekly timetabling and daily rostering: A decision-
support tool for a logistics platform. European Journal of
Operational Research 234, 1, 278-291.



O P T I M I S AT I O N D E S E M P L O I S D U T E M P S

L’étude du chapitre 1 montre que les ressources humaines
et matérielles à l’intérieur de la plateforme sont souvent
supposées infinies dans la littérature, alors que pour les
managers de plateforme l’adéquation des ressources au
volume d’activité est cruciale en termes de performance.
Les emplois du temps doivent respecter de nombreuses
contraintes :
– les opérateurs sont polyvalents, avec un profil de com-

pétences spécifique pour chacun ;
– la modulation est autorisée (en France par exemple, se-

lon les accords d’entreprise, les 35 heures par semaine
peuvent être réalisées en moyenne sur l’année) ;

– l’embauche d’intérimaires est possible, avec des coûts
qui dépendent des compétences ;

– le nombre d’engins de manutention disponibles, la pé-
nibilité des tâches, l’équité et la régularité du planning
obtenu. . . doivent être également pris en compte.

Ce chapitre présente un modèle permettant d’accompa-
gner la chaîne de décision qui va de la réalisation du plan-
ning hebdomadaire à l’allocation quotidienne des tâches.
Le problème est divisé en trois sous-problèmes en fonction
du niveau de décision : dimensionnement de l’équipe, al-
location des tâches pour la semaine, et planning détaillé
de la journée. Ces étapes sont modélisées par trois pro-
grammes linéaires mixtes résolus de façon séquentielle. Ils
permettent d’affecter aux employés leur volume de travail
par jour (milp1), leurs horaires exacts et leurs tâches avec
une précision à l’heure (milp2), et leurs tâches pour un
jour donné avec une précision au quart d’heure (milp3).
Les modèles proposés sont testés sur des données indus-
trielles et des instances générées aléatoirement. Les obser-
vations menées dans un contexte industriel permettent de
montrer en quoi le modèle est un outil d’aide à la décision
pour les managers. L’outil est actuellement utilisé par l’en-
treprise qui a fourni les données industrielles. Les résul-
tats sur les instances générées permettent de déterminer
sous quelles conditions les modèles peuvent être résolus
en un temps raisonnable. Une étude de sensibilité est éga-
lement menée pour observer les effets d’un changements
sur les données d’entrée entre l’exécution de milp2 et celle
de milp3.



5
O P T I M I Z I N G C R O S S D O C K E M P L O Y E E
S C H E D U L I N G

In chapter 1, the comparative study of the cross-docking literature
and the practice of crossdock managers has shown that workforce
management is a problem of crucial importance for the managers
which is barely addressed in the cross-docking literature. Most arti-
cles consider the human resources within the platform as unlimited.
In chapter 2, chapter 3 and chapter 4, the platform capacity is as-
sumed to be fixed and is equal to M during the entire planning hori-
zon. In order to make this assumption more realistic, it is necessary
to know exactly how many workers are present in the platform and
available for the different operations to be carried out (e. g. unload-
ing, control, transfer. . . ). Therefore, this chapter studies a personnel
scheduling problem in the context of a logistic platform. Note that
it can apply to any type of logistic operations and not only cross-
docking.

5.1 employee timetabling and rostering for logistics :
problem description

As noted in section 1.2.1.1, goods can be moved inside the cross-
docking platform either manually, with an automated system (e. g.
conveyor belts) or with a combination of both. Automation can also
be used for storage (automated storage and retrieval systems) and
picking (pick-to-light systems) – see e. g. Baker and Halim [15] or
Granlund [87]. Note that these systems support human’s work but
do not replace it. In general, automated systems represent heavy in-
vestments, but are feared to be not flexible enough to meet changing
market requirements (Baker and Halim [15]). Therefore, automation
is generally adopted by companies dealing with a limited range of
product types, in a stable or growing market (e. g. postal and par-
cel services). For logistic service providers, whose survival depends
on their flexibility, the operations stay mainly manual. Manpower is
therefore the first cost center in logistics and especially for logistics
providers (see Graham [86] and van den Berg [203]).

It is thus crucial to stick to the activity volume when dimension-
ing the task force. A difficulty is that the workload is variable: the
number of arriving trucks and the number of orders to be prepared
change every day. For instance, one third of the warehouses in France
have a seasonal activity (Service de l’observation et des Statistiques
[177]).

115
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In a recent article, de Leeuw and Wiers [60] study the effects of the
financial crisis over warehouse manpower planning strategies. They
show that in times of financial crisis, companies in the Netherlands
increase the number of temporary workers, increase the use of flex-
ible planning for employees with fixed contracts, and increase the
workload balancing. Techniques for workload balancing can include
planning time slots for incoming trucks (as done in chapter 2) or
postponing some tasks to the next day if feasible. They also show
that flexible planning has a strong positive influence on warehouse
performance.

How to build a flexible planning? The number of working hours
for a given employee may differ from one week to another, and short-
term contracts are also used to ensure more flexibility – 80% of the
French warehouses use temporary workers according to the statis-
tics department of the French ministry for sustainable development
(Service de l’observation et des Statistiques [177]). These parame-
ters, together with other constraints such as the employees’ qualifica-
tions, vacations, the handling equipment availability, etc., make weeklySee definitions of

weekly timetabling
and daily rostering

in section 5.1.2.

timetabling and daily rostering a complex process.
Although weekly timetabling and daily rostering are intertwined,

they are often treated separately in the literature; we propose to deal
with the two of them together through sequential solving. Logis-
tics is not a common application area for personnel scheduling prob-
lems, and the few existing papers use heuristic methods to solve the
problem. The decision-support tool proposed in this chapter meets
the specific requirements of a logistics platform to support the per-
sonnel scheduling process for warehousing operations, and its so-
lution is based on optimal methods, i. e. Mixed and Integer Linear
Programs (MILPs). The problem is divided into three steps, each rep-
resenting a decision to be made. Each step is modeled by a Mixed
and Integer Linear Program.

The assumptions for this problem are detailed in section 5.1.1, fol-
lowed by a literature review of timetabling and rostering problems
(section 5.1.2). An overview of the model is given in section 5.2: the
first part of the model, namely the weekly timetabling (step 1 and
step 2) is detailed in section 5.2.1, while section 5.2.2 deals with the
detailed daily rostering (step 3). An analysis of the complexity of
the different steps is given in section 5.2.3. Section 5.3 presents the
numerical results, and concluding remarks are given in section 5.4.

5.1.1 Assumptions

The goal is to define a model which can be used in logistics plat-
forms to generate personnel schedules based on optimal methods. To
be as close as possible to an industrial context when building the
model and defining its main assumptions, we observed the schedul-
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ing process within a warehouse where the timetabling generation is
done manually.

According to the agreements signed with the trade unions, the
working hours for the following week have to be communicated to
the employees seven days in advance. The daily roster, however, can
be given every morning or even redefined at any time during the day.
Of course the working hours of each employee in this detailed ros-
ter must be as close as possible to what has been announced a week
before.

The workload is varying over time, while the employees’ working
hours are flexible. Two types of employees are considered: regular
employees and temporary workers. For regular employees, various
shifts are possible as long as they respect the trade agreements. Tem-
porary workers with short-time contracts, though, do not have flex-
ible working times: they are hired for the exact number of hours
allowed by the law per week. All employees (regular employees and
temporary workers) have different qualifications for each task, de-
pending on their training. Of course, legal requirements and safety
principles should also be met in the model.

The problem presented in this chapter falls in the category of “multi-
day personnel scheduling problems” defined by Brucker et al. [36] in
their general model for personnel scheduling.

5.1.2 Similar problems in the literature

Following Ernst et al. [67], we use the words personnel scheduling
to describe the whole process of constructing work timetables for an
organization’s staff, in order to satisfy the demand for its goods or
services. As mentioned by Musliu et al. [152], personnel scheduling
algorithms consist of different stages related to each other, that can
be solved simultaneously or in sequence, depending on the context.

Brucker et al. [36] underline that personnel scheduling problems
can be decomposed into two levels: in the first stage, the working
days are assigned to the employees, whereas the second stage assigns
a shift for each employee working on a given day, and a task for which
the employee is qualified on each working period. In this document,
we call weekly timetabling the first stage of the process which consists
of determining the number of employees needed and allocating these
employees to shifts (sets of consecutive time periods within a day) in
order to meet the forecast workload. The second stage of the process
matches Wren’s definition of rostering as:

“the placing, subject to constraints, of resources into slots
in a pattern. One may seek to minimize some objective, or
simply to obtain a feasible allocation. Often the resources
will rotate through a roster”.

Wren [215]
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In this document, the expression daily rostering therefore refers to the
assignment of tasks to employees on a daily level.

Our literature review will focus on two aspects: firstly, section 5.1.2.1
focuses on the application areas of personal scheduling problems, to
see how the logistics field relates with the fields covered by current
research. Secondly, in section 5.1.2.2 we have a closer look at the
methods used in the literature to solve weekly timetabling and daily
rostering problems.

5.1.2.1 Personnel scheduling in logistics

The logistics industry faces several challenges which are specific to
this field:

– The highly variable demand makes the workload very different
from one day to another, which means that regular patterns can-
not be used to create the workers’ timetables;

– The qualifications are very specific to a person: two employees
are very likely to have different skills and different licenses to
drive the handling equipment. Therefore, the set of tasks mas-
tered by a given employee will be different from the set of tasks
mastered by any of his colleagues, and clustering the employees
according to their skills does not simplify the problem – see De
Bruecker et al. [58] for a detailed review of workforce planning
problems incorporating skills and an analysis of the impact of
different skill types on the problem formulation;

– The unequal distribution of busy periods over a day does not fit a
standard 8-hour shift: supervisors must therefore assign shorter
or longer shifts, force some employees to take a day off, or hire
temporary workers.

Personnel scheduling questions have been broadly studied for trans-
portation systems (including airlines, railways and buses): the con-
straints tackled by the so-called crew scheduling problems are very
specific, since the location of the crews is also a variable. The inter-Crew scheduling

and nurse rostering
are active streams of

research in
personnel

scheduling.

ested reader can refer to Castillo-Salazar et al. [41] for a survey on
workforce scheduling and routing. Nurse scheduling and, more gener-
ally, health care systems scheduling is also a major application area
(see the survey by Burke et al. [37]), in which the problems are highly
constrained because hospitals work around the clock. The main dif-
ferences between the health care field and logistics are:

– The relative simplicity of the qualifications profiles used in nurse
scheduling. As mentioned earlier, a logistics employee has qual-
ifications that allow him to work only on specific tasks, while a
nurse has one qualification which allows her to do all the tasks.
Therefore, the daily rostering is not needed for nurses, since they
know precisely what they are supposed to do when assigned to
a given shift. The problem can be solved on a shift level.
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– The shape of the coverage function (number of employees re-
quired each hour). As highlighted by De Causmaecker et al. [59],
hospital personnel scheduling problems are permanence centered,
while warehouse personnel planning are based on fluctuating de-
mand.

Overall, the granularity of the nurse timetabling problems is larger
than staff timetabling for logistics and, more generally, for the service
industry.

The service industries whose characteristics and requirements are
the closest to the logistics area are retailing, call centers and postal
service; for instance, the model proposed by Bard et al. [17] to sched-
ule the United States Postal Service staff meets most of the constraints
encountered in logistics operations. However, they focus on the long-
range planning problem rather than the weekly scheduling problem.
The weekly personnel scheduling problems raised in the US Postal
Service mail processing are addressed by Wan [211], who also deals
with the US Postal Service distribution centers, whose activities are
typical logistics operations. But like Bard et al. [17], he considers a
homogeneous workforce, without distinctions in skills and qualifica-
tions.

The literature studying warehouse personnel scheduling as such
is still very limited: no paper appears in the comprehensive review
made by Ernst et al. [66], covering the literature until 2004 of more
than 700 analyzed sources dealing with personnel scheduling prob-
lems. The review by De Bruecker et al. [58], covering the articles pub-
lished between 2004 and 2012 that incorporate skills in the timetabling
problem, does not include any article regarding warehouse person-
nel scheduling either. Only De Causmaecker et al. [59] mention this Very few articles

deal with personnel
scheduling for
logistic plaforms.

field as an application area, since a small warehouse (20 employees)
was included in the sample of Belgian companies they investigated to
classify the scheduling problems. A recent state-of-the-art by van den
Bergh et al. [204] reviews 291 articles from 2004 to 2012, in which Gün-
ther and Nissen [94, 95] are the only ones dealing with a real-world
scheduling problem in logistics, comparing three heuristics and an
evolutionary method to solve a daily rostering problem for a German
logistics service provider with 65 employees. The model proposed
by these authors is a multi-objective model. They seek to minimize
the over and under-staffing, the extra hours worked every week, and
the cases where the working days are too short, too long, or split up
during a working day. The industrial data used is in open access.
We will come back to these data at the numerical experiments section
(section 5.3.2).

5.1.2.2 Joint approaches for weekly timetabling and daily rostering

In this chapter, we propose to solve in sequence a weekly timetabling
and a daily rostering problem.
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From the articles gathered by Ernst et al. [66], it can be noticed
that these concepts (named a bit differently in the review, since the
authors use the words “workforce planning”, “shift scheduling” and
“task assignment”) are never studied at the same time: amongst the
articles reviewed, 163 deal with workforce planning and shift schedul-
ing, 33 for task assignment, but none tackles these problems together.

Since the review by Ernst et al. [66] was conducted in 2004, two
articles proposed some global models to solve a timetabling problem:
Detienne et al. [61] and Naudin et al. [154]. The similarity with our ap-
proach resides in the fact that they also consider the overall problem
as a two-stage decision problem (a weekly stage and a daily stage). In
their case, this idea is exploited to propose bounds or decomposition
methods that can help solving one overall model. Detienne et al. [61]
use this idea to implement a Lagrangian lower bound for their model.
They also propose a multi-dimensional multi-choice knapsack prob-
lem which aggregates the two decision stages in one, but the latter
formulation generates an exponential number of constraints. Naudin
et al. [154] propose two decompositions: a Dantzig-Wolfe decompo-
sition reformulated with mid-term variables, and another one with
long-term variables. These two approaches are not easily applicable
in our case because of the multiple constraints we have. In the cur-
rent chapter, we use the decomposition idea in order to propose a
sequential approach where the problem is divided into steps solved
one after the other, each stage using as an input the output of the pre-
vious stage. Each phase having only limited information about the
others, the solution is unlikely to be optimal, but this approach can
solve large timetabling problems. Another advantage of our model
compared to Detienne et al. [61] and Naudin et al. [154] is that the
outcome of our approach is not only a daily timetable but both the
weekly schedule and the daily timetable. From a managerial point of
view, both are of importance. The managers need the weekly sched-
ule for workforce dimensioning and planning, and the daily roster-
ing for operations management. Furthermore, having both gives a
certain flexibility in case of unexpected events. For instance, the daily
rostering can be readjusted very quickly based on a new piece of in-
formation, which was not available when the weekly schedule was
done.

A sequential approach with two stages is used in a recent paper by
van Veldhoven et al. [205] but to solve a different problem: the nurse
days-off scheduling problem. The first stage specifies the days off for
each employee (days off scheduling), then the second phase specifies
which shifts are actually assigned to the employees on their working
days. Each phase is solved with an integer program. We note that our
problem is of finer granularity, since we deal with the daily rostering
as well.
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5.1.2.3 Similar approaches to each step of of the sequential approach

Each stage of our model, taken separately, presents some similari-
ties with problems which have been modeled already:

workforce dimensioning . This step is close to the one solved
by Eitzen et al. [65] for an Australian power station: the employees
have different skill qualifications and need to be allocated under legal
constraints, while ensuring the equity of the outcome. The authors
formulated the problem as a generalized set-covering problem mini-
mizing the total under-staffing, and tested various solution strategies.
Only the method of branch and price is capable of finding a provably
optimal solution for a problem size of 20 to 110 employees. Note
also that Eitzen et al. [65] do not consider hiring temporary workers
if the demand gets too high. The review by van den Bergh et al. [204]
shows that the possibility of hiring interim or casual workers is not
very common in the personnel scheduling literature.

assigning shifts and tasks to employees . This second step
is close to the one described by Schaerf and Meisels [176], although
they do not give the exact formulation of their model in this paper.
Their generalized local search is tested for nurses in a hospital depart-
ment and for a production line in a factory, with 20 to 50 employees,
100 to 300 tasks and 20 to 40 shifts, after relaxing all soft constraints.
Their coverage function is less precise than the one we use, since
it only gives a number of employees that should be present during
each shift. Also, it is not clear whether the length of the shifts can
vary in their case. Another model close to ours is the one proposed
by Dahmen and Rekik [53], who deal with a multi-activity shift prob-
lem. The goal is to construct the shifts and assign the activities for
employees with various qualifications (although all the employees are
qualified for all tasks in the instances used to test the model). The con-
straints considered are very similar to ours: over and under-staffing
are penalized, and the tasks have minimum and maximum durations.
The limit of this model is that it supposes an explicit enumeration of
all admissible shifts with assigned activities for each employee. This,
in practice, is quite complex to do when the number of activities or
employees is high. The authors propose a hybrid heuristic to solve
the problem, combining tabu search and branch and bound.

daily rostering . The daily rostering problem has been modeled
by Campbell and Diaby [38] in the case of multi-skilled workers. In
their model, a worker less skilled than another needs more time to
complete his work. They propose a linear program for the special
case of binary capabilities, and an assignment heuristic for the gen-
eral allocation problem. More recently, other problems closer to our
third stage have been studied by Smet and Vanden Berghe [184] and
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Lequy et al. [118, 119]. Smet and Vanden Berghe [184] deal with a
shift minimization personnel task scheduling problem, where the ob-
jective is to assign tasks to multi-skilled employees (with binary capa-
bilities) while minimizing the number of employees used. Solutions
are obtained with a very large-scale neighborhood search algorithm,
combining metaheuristics and exact approaches. A model closer to
our approach is the multi-activity assignment problem proposed by
Lequy et al. [118]. The work shifts being already assigned to the em-
ployees, the problem is to assign activities, taking the qualifications
into account and covering the demand as much as possible on the
planning horizon (from one day to one week). The objective is to
minimize the under-staffing, over-staffing and transition costs (paid
when an employee changes activity). This work is extended by Lequy
et al. [119]: the workload is now divided between tasks which are un-
interruptible pieces of work, and activities for which preemption is
allowed. The solution strategy proposed is a two-stage heuristic: the
task assignment is done first, then the activities are assigned consid-
ering the fixed tasks.

It is important to note that in all those papers, the employees’ shifts
cannot be changed anymore at this stage. In our model however,
shift changes are allowed in exchange for a penalty cost, if there are
differences between the forecast and the actual workload occurring
on that day.

The articles cited above solve a part of the global problem we want
to solve, and they mainly do it through heuristics or metaheuristics.
The originality of our approach is to combine the workforce schedul-
ing problem and the daily rostering through sequential solving, each
step being modeled by a MILP solved to optimum.

5.1.3 Input data: notations

In the following sections, the input data and the decision variables
are defined over these sets:

E set of employees considered in the timetabling operation.
E fixed subset of E , set of employees whose shift is fixed beforehand.

These employees are working under a special contract (pre-
retirement, for instance) and their working time is fixed instead
of flexible. Their exact tasks during that time still have to be
calculated.

T set of tasks to be processed by the employees. Two tasks are
different if they require different abilities or different handling
machines. The time when the tasks have to be done depends
on their nature: some tasks must be carried out in precise time
windows, while some can be carried out at any time during the
day. We therefore split the tasks into two groups:
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T 1 subset of T , set of tasks whose workload is defined pre-
cisely, hour per hour. For instance, containers have to be
unloaded right after their arrival, so the workload for the
task “unloading containers” is defined hour per hour. Note
that this definition helps expressing precedence relation-
ships among tasks in the data set. For each arriving con-
tainer, the distribution of the workload over all tasks are
estimated. For example, if a container arrives at 8am, a non-
zero workload will be estimated for the “unloading” task at
8am, then the workload for the “scanning and computer re-
ception” task will be estimated at 9am. The constraints on
consecutive tasks are therefore not needed in the model.

T 2 subset of T , complementary to T 1, set of tasks whose
workload is defined for a whole slot. For instance, stock-
taking is a task that can be completed at any time during
the day, the workload for this task is therefore defined for
the whole slot 8am–5pm.

P set of temporary workers profiles. In case the workload is
too heavy compared to the workforce available, the decision-
support tool will suggest to hire temporary workers of a given
profile. A temporary worker profile is a set of tasks that this
type of worker can handle. For example, the profile of an “or-
der picker” could be {manual unloading, picking, wrapping}.

D set of working days considered for the weekly schedule. That
can be five to seven, depending on whether work over the week-
end is allowed or not.

H set of working hours in a day. That can be eight to twenty-four,
depending on whether the activity runs with one, two or three
shifts a day.

S set of possible shifts. A shift, for example, is “8am–4pm” or
“10am–6pm”. Two shifts are different if they have different be-
ginning and/or ending times.

Q set of intervals considered for the daily rostering. The unit may
be smaller than an hour, e. g. a quarter of an hour.

5.2 sequential solving

Since there are two different time scales in the decisions to be made,
the problem can be split into two distinct phases. First, working days
and shifts are assigned to employees for one week (weekly timetabling);
then the weekly timetable is used as a basis to re-assign tasks within
a day with more precision, taking into account the possibly new data
which may arrive in the meantime (daily rostering).

Looking more closely at the weekly timetabling problem, we can see
that it is also a two-stage decision. First, the workforce has to be di-
mensioned (decision about the number of employees to hire on short-
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Figure 5.1: Overview of the decision-support tool

term contracts, and the total number of hours worked) before de-
ciding upon the shifts themselves (when each employee should start
and finish his day) and the task allocation. The scheduling system is
therefore composed of three different MILPs, as shown in Figure 5.1.
These are referred to in this chapter as milp1, milp2 and milp3. The
weekly timetabling part, composed of milp1 and milp2, is detailed in
section 5.2.1, and the daily rostering part (milp3) in section 5.2.2. What
needs to be noted at this point is the fact that some inputs of milp2
and milp3 are the outputs of milp1 and milp2 respectively.

The objective of each MILP is to get a feasible solution under the
hard constraints related to legal requirements, while minimizing un-
wanted situations like non-equity, over-staffing or having an employee
working on the same task for too long. A penalty point is counted
for the occurrence of each one of these situations, and the objective
function is a weighted sum of the penalty points.

5.2.1 Weekly timetabling

This section presents in detail how to obtain a weekly timetable for
the employees. First, the workforce dimensioning is calculated using
milp1, and this data is used to process the weekly shift allocation in
milp2.

5.2.1.1 milp1

The aim of the first Mixed and Integer Linear Program is to define
the workload per person and per day. The decisions made are there-
fore about the number of temporary workers to hire, and the number
of hours per task assigned to a worker (temporary or regular) each
day, for a one-week horizon.

Initially, a pre-treatment of the input data is made, in order to re-
duce the size of the linear programs in terms of number of constraints.
We have information about:

– the abilities (E ×T ): for each task, whether or not each employee
is able to carry it out;
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– the availabilities (E × D): for each day, whether or not each em-
ployee is present;

– the work planning (D × T ): for each day, whether or not each
task needs to be carried out on that day.

Instead of considering these three bi-dimensional matrices in the lin-
ear program, we build a three-dimensional binary matrix that puts
this information together without redundancies. We call this matrix
X and define it over E × D × T . Xedt = 0 if employee e is not quali-
fied for task t, or if employee e is not available on day d, or if there is
no work needed for task t on day d; Xedt = 1 otherwise.

input data . The following data are used as inputs:
Xedt Data matrix as defined above.
Wtd Workload (in working hours) for task t ∈ T and day d ∈ D .
Ntd Minimum number of people needed at the same time to carry

out task t ∈ T on day d ∈ D .
Q et Non-binary qualifications of employee e ∈ E for task t ∈ T ,

defined on {0..ζ} where ζ ∈ N∗ . The value of Q et depends
on the level of experience of the employee e for a given task t.

Ppt Temporary workers profile description: Ppt = 1 if a worker
with profile p ∈ P is qualified for task t ∈ T , 0 otherwise.

Cp Temporary workers cost Cp is the cost of hiring a worker with
profile p ∈ P .

Max t Maximum amount of time (in hours) that a worker can spend
per day on task t ∈ T . This value enables one to respect safety
and ergonomics principles.

Fed Working time of the employee e ∈ E fixed, whose shift is defined
beforehand, on day d ∈ D .

In order to be as general as possible, we note minday the minimum
number of hours that an employee can work per day, maxday the max- In France,

minday = 4,
maxday = 10 and
maxweek = 44.

imum number of daily hours, and maxweek the maximum number of
hours per week permitted by the law. The model can therefore be
adapted to different labor legislations or local agreements.

decision variables . This step uses the following decision vari-
ables regarding the regular workers:
h edt Number of hours worked by employee e ∈ E on day d ∈ D

and task t ∈ T .
p ed Presence of employee e ∈ E on day d ∈ D : p ed = 1 if e works

on day d, 0 otherwise.
x edt Task allocation: x edt = 1 if employee e ∈ E works on task

t ∈ T on day d ∈ D , 0 otherwise.
Regarding the temporary workers:

hdt p Number of hours worked by all temporary workers of profile
p ∈ P on day d ∈ D and task t ∈ T .

n p Number of temporary workers hired with profile p ∈ P .
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objective function. The objective function is a weighted sum
of the penalties listed below.

Πα
1 Temporary workers penalty. We give Cp penalty points for each

temporary worker of profile p ∈ P we suggest to hire.
Π β

1 Qualifications penalty. We give (ζ − λ) penalty points for each
hour spent on a task by an employee who has a qualification λ.

Πγ
1 Equity penalty. We give a penalty point for each hour of differ-

ence between two employees’ total numbers of working hours
on one day.

Πδ
1 Ergonomic penalty. We give a penalty point for each hour in

excess compared to the maximum amount of time allowable
for a task, per worker and per day.

Π ε
1 Unplanned absence penalties. We give a penalty point each time

we force a regular employee to take a day off, which was not
planned by the employee himself (i. e. not defined in the matrix
X). From the company’s point of view, these extra days off are
a good way to compensate overtime work.

model . milp1 is formulated as shown below. Note that some con-
straints use absolute values and are therefore not linear; but they can
be easily linearized as described in Equation 4.4 on page 107.

The objective function minimizes the weighted sum of all penal-
ties, defined by constraints (24) to (28) as detailed in the penalty list

min α1Πα
1 + β1Πβ

1 + γ1Πγ
1 + δ1Πδ

1 + ε1Πε
1

s.t. Πα
1 = ∑p∈P npCp (24)

Πβ
1 = ∑e∈E ,d∈D,t∈T (ζ −Qetxedt) (25)

Πγ
1 = ∑e1 ,e2∈E ,d∈D

∣∣∑t∈T he1dt −∑t∈T he2dt
∣∣ (26)

Πδ
1 = ∑e∈E ,d∈D,t∈T (hedt −Maxt) (27)

Πε
1 = ∑e∈E ,d∈D (∑t∈T Xedt − ped) (28)

mindayped ≤ ∑t∈T hedt ≤ maxday ped ∀e ∈ E , d ∈ D (29)

∑d∈D,t∈T hedt ≤ maxweek ∀e ∈ E (30)

∑t∈T hdtp = 7np ∀p ∈ P , d ∈ D (31)

∑t∈T hedt = pedFed ∀e ∈ Efixed, d ∈ D (32)

∑e∈E hedt + ∑p∈P Ppthdtp = Wtd ∀t ∈ T , d ∈ D (33)

∑e∈E xedt + ∑p∈P Pptnp ≥ Ntd ∀t ∈ T , d ∈ D (34)

ped ≤ ∑t∈T xedt ∀e ∈ E , d ∈ D (35)

hedt ≤ 10xedt ≤ maxdayXedt ∀e ∈ E , d ∈ D, t ∈ T (36)

xedt, ped ∈ {0, 1} ∀e ∈ E , d ∈ D, t ∈ T
nedt, np, hdt ∈N+ ∀e ∈ E , d ∈ D, t ∈ T , p ∈ P
Πα

1 , Πβ
1 , Πγ

1 , Πδ
1, Πε

1 ∈ R+

milp1
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above. The determination of weights α1 to ε1 will be discussed in
section 5.3.1. Constraint sets (29) to (31) are related to legal require-
ments. Constraint set (29) ensures that an employee cannot work
less than minday hours nor more than maxday hours during a work-
ing day. The total number of hours worked in a week cannot exceed
maxweek hours (constraint set (30)). Short-term contract employees
cannot work more than 35 hours a week; on the other hand, hiring an
employee for less than a week is not common and not easy. For these
reasons, we make sure that all temporary workers work exactly 7
hours a day (constraint set (31)). As mentioned in section 5.1.3, some
employees work under a special contract which makes their working
time fixed instead of flexible, although their exact tasks during that
time still have to be calculated. Constraint set (32) ensures that the
total number of hours worked by those employees matches exactly
their contract.

Constraint set (33) ensures that the total number of hours worked
by regular employees and short term workers matches the workload
need. Constraint (34) ensures that the number of persons needed at
the same time is consistent for each task and day.

Constraint sets (35) and (36) define the links between x, p and h,
followed by the non-negativity constraints. Constraint set (35) en-
sures that an employee is present on a given day if and only if he
has tasks assigned for that day. The left-hand side of the inequality
in constraint set (36) defines the number of hours worked by each
employee per day, making sure that it cannot exceed the maximum
number of daily hours required by the law. The right-hand side in-
equality of the constraint ensures that the abilities, availabilities and
work planning constraints (as defined in the data matrix X) are met.

5.2.1.2 milp2

Solving milp1 gives the number of hours per employee and per
day, and the number of temporary workers to be hired with their
profiles. These data (hedt, hdtp and np) are then reprocessed in order
to include the temporary workers in a new employee set E ′, such that
|E ′| = |E |+∑p∈P np. The number of hours hedt obtained at the end of

1 week

milp1

E × D × T
P × D × T

milp2

E ′ × D × S
E ′ ×D ×H× T
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Figure 5.2: Weekly timetabling inputs and outputs
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the first step is reprocessed to include the temporary workers as well,
to become H′edt (defined on E ′ ×D × T ) and be used as an input for
milp2 – see Figure 5.2.

Sets S and H, namely the shifts and hours, are now used besides
the sets used in milp1. milp2 is thus refining the decisions made in
milp1 by considering the timetabling on a more detailed scale.

input data . milp2 uses the following input data:
– From the outputs of step 1:

H ′edt Number of hours worked by employee e ∈ E ′ on day d ∈
D and task t ∈ T .

– Data describing the workload:

W 1
tdh Workload (in working hours) for task t ∈ T 1 defined on a

precise time window, for hour h ∈ H and day d ∈ D .
W 2

td Workload (in working hours) of task t ∈ T 2 defined on a
slot, for day d ∈ D .

S thd Slot description: S thd = 1 if task t ∈ T 2 can be done on
hour h ∈ H and day d ∈ D , 0 otherwise.

Max tdh Handling equipment upper bound. Maxtd is the amount
of handling equipment available for task t ∈ T , day d ∈ D
and hour h ∈ H. Its value can be infinite.

– Description of the shifts:

Zsh Shift description: Zsh = 1 if hour h ∈ H is in shift s ∈ S ,
0 otherwise.

Ds Shift duration: Ds is the length of shift s ∈ S , in hours.

decision variables . The aim of this step is to create a weekly
schedule, giving for each employee (temporary workers included)
their exact working times. Since the possible shifts are input data, the
aim of the current step is to choose the right shift for each employee
per day, ensuring that this allocation matches the workload needed.
The decision variables used at this step are therefore the following:

x ′etdh Percentage of time spent on task t ∈ T by employee e ∈ E ′ on
day d ∈ D and hour h ∈ H.

y ′eds Shift allocation: y ′eds = 1 if employee e ∈ E ′ is allocated to
shift s ∈ S on day d ∈ D .

objective function. The penalties which are part of the objec-
tive function are defined as follows.

Πα
2 Under/over-staffing penalty. We give a penalty point each time a

person is assigned in excess or missing for a task, compared to
the needed workload.

Π β
2 Hour adjustments penalty. The number of hours calculated in

step 1 did not take the task slots into account; it could therefore
need a few adjustments to have a feasible solution for milp2.
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We give a penalty point if we have to remove an hour from the
working time calculated for an employee on a given day.

Πγ
2 Handling equipment penalty. Knowing the upper bound on the

amount of handling equipment, we give a penalty point each
time we have to rent an extra machine during one hour to be
able to perform a task.

model . milp2 is written as follows.

min α2Πα
2 + β2Πβ

2 + γ2Πγ
2

s.t. Πα
2 = ∑t∈T 1 ,d∈D,h∈H

∣∣W1
tdh −∑s∈S ,e∈E ′ Zshy′eds

∣∣
+∑t∈T 2 ,d∈D

∣∣W2
td −∑h∈H,e∈E Sthdx′etdh

∣∣ (37)

Πβ
2 = ∑e∈E ,d∈D,t∈T

(
H′edt −∑h∈H x′etdh

)
(38)

Πγ
2 = ∑t∈T ,d∈D,h∈H

(
∑e∈E x′etdh −Maxtdh

)
(39)

∑s∈S Dsy′eds = ∑t∈T H′edt ∀e ∈ E ′, d ∈ D (40)

∑t∈T x′etdh = ∑s∈S Zshy′eds ∀e ∈ E ′, d ∈ D, h ∈ H (41)

∑s∈S y′eds ≤ 1 ∀e ∈ E ′, d ∈ D (42)

x′etdh ≤ 1, x′etdh ∈ R+ ∀e ∈ E ′, t ∈ T , d ∈ D, h ∈ H
y′eds ∈ {0, 1} ∀e ∈ E ′, d ∈ D, s ∈ S
Πα

2 , Πβ
2 , Πγ

2 ∈ R+

milp2

Constraint sets (37) to (39) define the penalties as described above.
We note that constraint set (37) matches the employees’ presence with
the workload need, both for the tasks t ∈ T 1 defined per hour and
the tasks t ∈ T 2 defined per slot.

Besides constraint set (38), constraint set (40) also ensures the con-
tinuity with step 1, by matching the length of the shifts with the
number of hours per employee defined by milp1. Constraint set (41)
defines the link between x′, y′ and Z, while set (42) makes sure that
each employee has no more than one task per hour.

5.2.2 Daily rostering: milp3

The aim of this step is to build the detailed schedule for a given day
of the week. While milp1 and milp2 are meant to be used every week
to set up the following week’s planning, this third model is supposed
to be run every morning to plan the upcoming day.

Depending on the rostering requirements, the time scale can be
further refined to use time windows smaller than an hour (in our
tests for example, we use 15 minutes time windows). Recall from
section 5.1.3 that these time windows are called intervals and defined
on the set Q. The outcome of milp3 is thus an assignment of tasks to
employees for each interval.
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Figure 5.3: Daily rostering inputs and outputs

Some information may be adjusted before running milp3. For in-
stance, the temporary workers suggested by milp1 have been hired
and we now know their exact qualifications; the employees who are
absent do not need to be considered; the manager also has the possi-
bility to make a few changes in the timetable produced by milp2. The
new set of employees is therefore noted E ′′. The data about the work-
load also evolves; it is more precise than (and possibly very different
from) previous available forecasts.

The interval structure and the given day being known, the out-
put of milp2 x′etdh is reprocessed to obtain the matrix X′′ defined on
E ′′ × T × Q. X′′etq gives the percentage of time spent on task t by
employee e during interval q, as calculated by milp2 and possibly ad-
justed by the manager if needed. Similarly, the output of milp2 y′eds
are reprocessed into the matrix Y′′es defined on E ′′×S , which contains
the shift allocations planned for the given day. The other input data
needed are similar to the ones used in the previous steps, but they
are now defined on intervals rather than hours, and for the given day
only. Figure 5.3 summarizes the mechanism of milp3.

input data . To summarize, the following data is used as inputs
for milp3:

Xetq Binary matrix similar to Xedt described in section 5.2.1.1. Xetq =

1 if employee e ∈ E ′ ′ is present on time interval q ∈ Q, able
to do task t ∈ T , and if task t can be done on interval q; 0
otherwise.

X ′ ′etq Task allocation as calculated by milp2 and possibly adjusted by
the manager: X ′ ′etq = 1 if employee e ∈ E ′ ′ is allocated to task
t ∈ T during time interval q ∈ Q; 0 otherwise.

Y ′ ′es Shift allocation as calculated by milp2 and possibly adjusted by
the manager: Y ′ ′es = 1 if employee e ∈ E ′ ′ is allocated to shift
s ∈ S , 0 otherwise.

W 1
tq Workload for task t ∈ T 1 defined per interval, for time interval

q ∈ Q.
W 2

t Workload of the considered day for the task t ∈ T 2 defined per
slot.
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S tq Slot description: S tq = 1 if task t ∈ T 2 can be done during
interval q ∈ Q, 0 otherwise.

Max tq Handling equipment upper bound: Maxtq is the number of
machines available for task t ∈ T during interval q ∈ Q. This
value can be infinite.

Max t Maximum amount of time (in intervals) that a worker can
spend per day on task t ∈ T . This value enables one to re-
spect safety and ergonomics principles.

decision variables . This step uses two decision variables:

y ′ ′es Shift allocation: y ′ ′es = 1 if employee e ∈ E ′ ′ is allocated on
shift s ∈ S , 0 otherwise.

x ′ ′etq Task allocation: x ′ ′etq = 1 if employee e ∈ E ′ ′ works on task
t ∈ T during interval q ∈ Q, 0 otherwise.

objective function. The following penalties are part of the ob-
jective function:

Πα
3 Shift changes penalty. A penalty point is given for each employee

whose shift has been changed, compared to the plan made at
the end of milp2.

Π β
3 Task changes penalty. A penalty point is given each time the task

of an employee is changed compared to what was planned at
the end of milp2.

Πγ
3 Knowing the handling equipment upper bound, a penalty is given

for each interval for which an additional handling machine has
to be rent to be able to perform a task.

Πδ
3 Ergonomy penalty. A penalty point is given for each interval in

excess for a worker, compared to the maximum amount of time
per day defined for his task.

model . milp3 is expressed as shown on the following page. Con-
straint sets (43) to (46) define the penalties (shift changes, task changes,
handling equipment, ergonomy) as described above. Constraint sets
(47) and (48) match the workers to the workload, for the tasks from
T 1 defined per hour and for the tasks from T 2 defined by slots, re-
spectively. Constraint set (49) checks that the tasks are allocated to
the employees only when it is possible. Finally, constraint sets (51)
and (52) ensure that each employee has no more than one shift per
day, and one task per interval.
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min α3Πα
3 + β3Πβ

3 + γ3Πγ
3 + δ3Πδ

3

s.t. Πα
3 = ∑e∈E ′′ ,s∈S |Y′′es − y′′es| (43)

Πβ
3 = ∑e∈E ′′ ,t∈T ,q∈Q

∣∣∣X′′etq − x′′etq

∣∣∣ (44)

Πγ
3 = ∑t∈T ,q∈Q (∑e∈E ′′ x′′etq)−Maxtq (45)

Πδ
3 = ∑e∈E ′′ ,t∈T (∑q∈Q x′′etq)−Maxt (46)

∑e∈E ′′ x′′et1q = W1
t1q ∀t ∈ T 1, q ∈ Q (47)

∑e∈E ′′ ,q∈Q St2qx′′et2q = W2
t2

∀t ∈ T 2 (48)

x′′etq ≤ Xetq ∀e ∈ E ′′, t ∈ T , q ∈ Q (49)

x′′etq = ∑s∈S Zsqy′′es ∀e ∈ E ′′, t ∈ T , q ∈ Q (50)

∑t∈T x′′etq ≤ 1 ∀e ∈ E ′′, q ∈ Q (51)

∑s∈S y′′es ≤ 1 ∀e ∈ E ′′ (52)

x′′etq, y′′es ∈ {0, 1} ∀e ∈ E ′′, t ∈ T , q ∈ Q
Πα

3 , Πβ
3 , Πγ

3 , Πδ
3 ∈ R+

milp3

5.2.3 Complexity

In this section, each step of the problem is shown to be np-hard
in the strong sense, by a transformation from the 3-partition problem
already described in section 2.2.2. Recall from section 2.2.2 that theThe values of all

elements are
between B

4 and B
2 .

3-partition problem consists in dividing 3n elements ri whose sum is
Bn into n groups of sum B. If such a partition exists, each group (each
subset Aj with j ∈ {1, 2, ..., n}) contains exactly 3 elements. Garey and
Johnson [77] have shown that the problem is np-hard in the strong
sense.

instance of the timetabling problem (step 1).
Let us consider an instance of step 1 with:

– one day: D = {1};
– 3n tasks: T = {1, ..., 3n};
– n employees, none of them having a fixed shift: E = {1, ..., n},
Efixed = ∅; all employees are available on day 1 (Xedt = 1 for all
e ∈ E , d ∈ D, t ∈ T ) and perfectly skilled for all tasks (Qet = ζ

for all e ∈ E , t ∈ T );
– one temporary worker profile (P = {1}): the profile is one of a

worker skilled on all tasks (P1t = 1 for all t ∈ T ) and hiring such
a worker costs 1 unit (C1 = 1);

– a working day that cannot be longer than B hours: minday = 0,
maxday = B, maxweek = B ;

– there are no safety or ergonomics constraints: Maxt = ∞;
– a workload that matches the integers given as data in the 3-

partition problem: Wtd = rt for day d ∈ D and all tasks t ∈ T .
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Proposition. There exists a 3-partition if and only if there exists a solu-
tion to the corresponding instance of step 1 of our timetabling prob-
lem with a cost 0.

Proof. Necessity. Suppose there exists a 3-partition {A1, A2, ..., An}.
Let us build a solution to step 1 with a total cost of zero. Since all
employees are qualified for all tasks, it is possible to allocate the three
tasks indexed by the elements of set Aj to employee j. By definition
of the 3-partition, ∑i∈Aj

ri = B, thus B hours are needed to complete
these three tasks: employee j works B hours on day 1, which re-
spects the legal constraints. This way, all tasks can be allocated with
no need for temporary workers, thus Πα

1 = 0. All employees are
perfectly qualified and planned to be present, thus the qualification
penalty and the unplanned absence penalty are equal to zero. So is
the equity penalty since all workers work exactly the same amount of
time (B hours). The ergonomic penalty is also zero since there are no
ergonomic constraints. The total cost of the solution is therefore zero.

Sufficiency. Suppose that a solution of cost zero exists for step 1; let
us show that a 3-partition exists. A cost equal to zero means that no
temporary worker is hired in this solution: therefore all the workload
(equal to ∑t∈D,d∈DWtd = ∑t∈{1,...,3n} rt = Bn) has been divided among
regular employees. Because the equity penalty and the unplanned
absence penalty are both equal to zero, the workload Bn is equally
distributed between the n employees. Each employee therefore works
B hours in the solution considered. This provides, for all employees
j ∈ {1, 2, ..., n}, a partition of tasks into triples {A1, A2, ..., An} such
that ∑i∈Aj

ri = B.

The same proof can be done for step 2 by refining the same instance
as follows. From step 1 it comes that H′edt = B for all employees, days
and tasks. The planning horizon counts B hours, thus H = {1, ..., B}.
The data can be refined by setting T 1 = T and T 2 = ∅. Only one
shift is needed that lasts B hours: S = 1, Z1h = 1 for all hours h ∈ H
and D1 = 1. Finally Maxti = ∞.

The same demonstration is also valid for step 3 by setting one-hour
long intervals (H = Q) and Maxti = Maxt = ∞.

5.3 numerical results

In this section, the linear programs detailed previously are tested
to assess their performances in different situations. The results de-
scribed in section 5.3.1 have been obtained using industrial data, while
section 5.3.2 details the results obtained on a benchmark data set
made available by Günther and Nissen [94, 95]. The results in sec-
tion 5.3.3 are based on instances generated for testing purposes.
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5.3.1 Testing industrial instances

The models were tested on data provided by our industrial partner,
using cplex for academic purposes and a free integer programming
solver for industrial use.

5.3.1.1 Instance description

30 different data sets from real-life industrial cases were tested.
Three different warehouse teams with different configurations were
considered, and the decision-support tool was tested for 10 weeks in
each team. The different configurations are as follows:

configuration 1 has 5 days, 16 hours, 64 intervals, 17 possible
shifts, 19 tasks, 11 employees, 18 temporary workers profiles.
This warehouse team has only one big client. The products ar-
rive in containers from overseas, and the arrival of containers
creates a peak of activity for the unloading-related tasks. One
single task can therefore represent the major part of the work-
load, which makes the workload distribution geometric. The
execution time is 5 seconds on the average for this configura-
tion.

configuration 2 has 5 days, 16 hours, 64 intervals, 12 possible
shifts, 44 tasks, 15 employees, 1 temporary worker profile. This
warehouse has several smaller clients. It makes the number of
tasks higher, and statistically smooths the occurrences of un-
loading and preparation tasks, therefore the workload distribu-
tion is normal. It does not vary much from one day to another,
therefore this team almost never uses temporary workers – this
is why they define only one temporary worker profile. The exe-
cution time is 10 seconds on the average for this configuration.

configuration 3 has 6 days, 12 hours, 24 intervals, 36 possible
shifts, 13 tasks, 2 employees, 8 temporary worker profiles. This
activity is only seasonal, therefore the 2 regular employees han-
dle the management tasks, and the operational work is done by
up to 200 temporary workers of 8 different profiles. The execu-
tion time is 8 seconds on the average for this configuration.

Two instances, typical of configurations 1 and 2, and made anony-
mous for confidentiality concerns, are available at www.g-scop.fr/

~gaujalg/TimeTabling.

5.3.1.2 Numerical results with cplex

The results obtained on the two instances available online are dis-
played in Table 5.1 – the figures for milp3 are the mean of the results
obtained for the five days. More details on solutions, including the
penalty points and results on each day of the week (via milp3), can

www.g-scop.fr/~gaujalg/TimeTabling
www.g-scop.fr/~gaujalg/TimeTabling
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Execution time (seconds) Value of the obj. function

Instance milp1 milp2 milp3 milp1 milp2 milp3

instance1 2.57 1.53 0.05 5 900 40 388 704

instance2 5.62 2.05 0.14 8 290 35 274 889

Table 5.1: Results obtained on instance1 and instance2

be found online along with the instances, together with a graphical
interface that enables one to visualize the instances. Another version
of this interface has been developed, that permits to run the three See some screenshots

of this interface in
Appendix E.

sequential models using cplex. It is used for teaching purposes, to
let students build their own timetabling models by a trial and error
approach.

5.3.1.3 Results in the industrial context

Our industrial partner favored a free integer programming solver,
for economical reasons. Thus for company use, our methods are im- The GNU Lesser

General Public
License allows
companies to
integrate software
into their own
proprietary software
– see www.gnu.org/
copyleft/lesser.

plemented with lp_solve 5.5.2, a free MILP solver under the gnu lgp
license. With cplex, for all the instances tested, the computing times
were below 10 seconds. The computation times are much higher with
lp_solve for the same instances. For practical reasons, the computa-
tion of lp_solve is interrupted after a short period of time, and we
keep the best feasible solution found during its search. For our in-
stance1, setting up a time-out at 20 seconds gives a 40% gap to op-
timal, and waiting for 2 minutes reduces this gap to 15% for milp1
(which is the longer step in terms of execution time) – see Figure 5.4.
The company was satisfied with the quality of the solution obtained
at this point, even though it is not optimal.
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Figure 5.4: Gap to optimal with time-out on lp_solve

In our industrial context, the logistics provider was satisfied with
the quality of the timetable the managers could obtain manually; the
problem was that the operation was extremely long and tedious. The
main objective was therefore to automate that process, but keeping an

www.gnu.org/copyleft/lesser
www.gnu.org/copyleft/lesser
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outcome similar to the one the manager would have obtained manu-
ally. The soft constraints were created in this perspective: listing the
criteria that make a timetable better than another from the manager’s
point of view. These soft constraints being weighted in our objective
functions, the manager has the possibility to play with the parame-
ters until he gets the solution he is most satisfied with. The managers
who are experienced in manual timetabling can therefore choose the
settings with a trial and error approach.

From a theoretical point of view, using a weighted objective func-
tion raises some issues about the best way to fix the parameters
for non-homogeneous criteria – see Pöyhönen and Hämäläinen [162].
Methods like UTA (additive utilities) or AHP (Analytical Hierarchy Pro-
cess) can be used to determine the weights; the interested reader can
refer to the survey on multiple criteria decision analysis by Figueira
et al. [72].

Here, the weights in the objective function are determined in an
iterative process, using interviews and expert opinions, together with
the trial and error test runs, prior to real planning runs. During these
test runs, the weights are set such that the solution proposed by our
tool is not very different from what a manager would have planned
himself. We note that such iterative procedures can be found in the
literature for industrial applications (see Günther and Nissen [94]). In
this practical situation, the fact that the weight settings are not fixed
is perceived as an asset by the end user, who uses them as an actual
managing tool. It offers more flexibility, for instance to change the
relative importance of the soft constraints depending on the nature
of the upcoming activity.

The outputs are the weekly timetable (see Figure 5.5 as an exam-
ple) and the daily roster (Figure 5.6). They are presented in a table
format, ready to be used by the manager. The value added compared
to the former situation is the speed of the timetable operation: the au-
tomated timetable is generated in a few seconds, whereas the manual
process was tedious and time consuming and took up to four hours.

5.3.2 Benchmark

In order to assess the performance of our model compared to exist-
ing benchmarks, we tested it on the instances provided by Günther
and Nissen [94, 95]. This benchmark 1 comes from a real-world logis-
tics case. Since the context is similar to ours, this data set matches the
main characteristics of our problem, as described in section 5.1.2.1:
very diverse skills, flexible working hours, uneven workload.

With 65 employees, 9 tasks and 13 shift types to be scheduled over
7 days, this set of data is different from the instances tested in sec-

1. available at http://www.tu-ilmenau.de/fileadmin/media/wid/forschung/

TestproblemePersonaleinsatzplanung/

http://www.tu-ilmenau.de/fileadmin/media/wid/forschung/TestproblemePersonaleinsatzplanung/
http://www.tu-ilmenau.de/fileadmin/media/wid/forschung/TestproblemePersonaleinsatzplanung/
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Figure 5.5: Weekly timetable used by the manager

Figure 5.6: Daily roster used by the manager
Each color represents a task.
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tion 5.3.1. It has half as many tasks but up to 6 times more employees,
and the scheduling period is two days longer. Note that the objective
function used by Günther and Nissen is also different. They penal-
ize under-staffing and the number of job changes as we do, but they
distinguish between two cases for over-staffing: over-staffing at a pe-
riod when the workload needed (i. e. demand) is zero is seen as much
worse than over-staffing when there is a positive demand. All the
other criteria we used in our objective functions are not taken into
account by Günther and Nissen. This is due to how their model con-
straints are related to the daily rostering only, whereas we use three
different models with different time scales in our approach. Solving
three MILPs sequentially requires extra constraints to link the differ-
ent steps with each other (e. g. the output of milp1 is included in a
constraint in milp2).

For this reason, we decided to run our model keeping the same co-
efficients of the objective function used in the previous section. Hence,
it is important to note that we do not optimize exactly the same cri-
teria as Günther and Nissen. This test only aims at checking that we
can process a different type of data in a reasonable amount of time.
Nevertheless, in order to have some comparison points, we repro-
cessed our output in order to evaluate it with Günther and Nissen’s
criteria. The results are shown in Table 5.2.
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Our results 2.59 min 7 995 795 0 664

Günther’s manual
timetabling

unknown 33 795 14 610 20 130 0

Günther’s best solution about 50 min 7 245 28 395 7 355 1 502

Table 5.2: Comparison with Günther and Nissen’s results

The differences observed in Table 5.2 in terms of objective function
values is due to the differences in the constraints of the two models.
Our model does not allow under-staffing at the daily level, which
explains why we get 0 on that criterion. Günther and Nissen’s model
also gives work to each and every employee, while our model can
assign days off rather than creating over-staffing. But we see that our
sequential method gives results in about 3 minutes, while Günther
and Nissen’s particle swarm optimization requires an execution time
of about 50 minutes. It meets our goal of providing logistic managers
with a decision tool that can be used daily without a long execution
time.
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5.3.3 Numerical results from the generated instances

The previous section demonstrates that the weekly and daily timeta-
bles for real size problems can be solved easily and in a fast manner.

Real-life problems are actually very constrained: if some employees
have shifts fixed beforehand, or are absent for one or two days, the
solution space is reduced and the problem is easier to solve. The goal
of the current section is to show the performance and limits of the
models detailed previously, regarding some of the input parameters
that can make the situation more complicated.

The focus is especially set on the workload variations and the work-
force abilities. Since workload variations are one of the main chal-
lenges warehouses have to cope with, it is important to check how
the model behaves when the workload changes. One of the main
tools to absorb these variations is the adjustment of the workforce
skills; therefore, this piece of data is also varied in our test. One goal
is to see what could be a good policy for the employees’ training in
the warehouse.

The weights linked to soft constraints which are not related to the
workload (β1, γ1, δ1 ε1, γ2, γ3 and δ3) are put to zero. The remaining
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Figure 5.7: Example of matrix Ppt
Geometric distribution on one dimension, normal distribution on the other
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weight parameters are assumed to be equally important, and hence
fixed such that α1 = α2 = β2 = α3 = β3 = 1.

The data matrices representing the workload (W2
td), the temporary

workers profiles (Ppt) and the abilities (part of Xedt or Xeti) are gen-
erated randomly. Each dimension of the given matrix is generated
using a normal, geometric or uniform distribution function. As an
example, Figure 5.7 on the previous page displays a temporary work-
ers profile matrix Ppt. In this figure, the number of tasks mastered
by each employee (given in the rows) follows a normal distribution,
while the number of employees who can perform each task (given in
the columns) is randomly drawn from a geometric distribution. Simi-
larly, different Ppt are generated by changing the type of distribution
(normal, geometric or uniform) for the columns or the rows.

Considering that a temporary worker is likely to be paid more if
he has more skills, the temporary workers cost Cp are defined as the
number of tasks mastered by the worker p.

The workload is assumed to be entirely defined per slots, i. e. T 1 =

∅ and T 2 = T . The slot description matrix S is set such as Sthd = 1
for all t ∈ T , h ∈ H, d ∈ D. Once W2

tdh is generated as described
above, the workload Wtd and the number Ntd of people needed at the
same time are deduced easily.

As seen with the industrial case study, most of the input param-
eters (e. g. fixed work times Fed and planned absences) are context
dependent. Therefore, such input parameters (listed below) are fixed
in all tested instances:

Xedt Data matrix containing the abilities, availabilities and work plan-
ning information. The planned absences narrow the decision
space; therefore all the employees e ∈ E are assumed to be avail-
able for all time units t ∈ T and q ∈ Q. Similarly, all tasks t ∈ T
need to be carried out during all the time intervals considered.

Q et Non-binary qualifications matrix. This matrix only plays a role
in one soft constraint (penalty Πα

1 defined in constraint (24)). For
the sake of simplicity, only binary qualifications are used for our
tests, thus Q et = 1 if the employee e is qualified for the task t, 0
otherwise.

Max t Safety and ergonomics upper bound. This vector is also only
related to soft constraints. We relax it setting Maxt = ∞ for all
t ∈ T .

Max tdh , Max tq Handling equipment upper bounds. Similarly, these
matrices are only related to soft constraints. We relax them set-
ting Maxtdh = Maxtq = ∞ for all t ∈ T , d ∈ D , h ∈ H, q ∈ Q.

Fed Fixed work times. Defining some shifts beforehand also narrows
the decision space, thus we set E fixed = ∅, which means that Fed
does not need to be defined.
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Zsh Shift description. This matrix is built enumerating all legally
possible shifts. The shift duration Ds is easily obtained from the
matrix Z.

5.3.3.1 Tests on weekly timetabling

One set of tests is carried out on milp1 to study the impact of the
abilities matrix shape on the execution time. The size of the instances
is as follows: 10 employees, 8 tasks, 8 temporary worker profiles, 5
days, 24 hours, 115 possible shifts. 30 different abilities matrices are
generated, using normal, geometric and uniform distributions. The
normal distribution models a case where 80% of the employees can
handle 20% of the tasks; it is the situation encountered most often
in the real-life cases studied. The uniform distribution represents a
case which can be seen as fairer: all the employees master the same
number of tasks. The geometric distribution models a situation where
most of the workers are hired for short periods of time, and therefore
master only a few tasks. The organization relies upon a very small
number of long-term employees to handle all the complex tasks.

Each matrix is tested with 40 different workload distributions. Each
dot on Figure 5.8 shows the average computation time of milp1 for
these 40 different runs for a given abilities matrix. This average com-
putation time is displayed as a function of the total number of abilities
in the ability matrix.

The result is shown in Figure 5.8. On one extreme, when the abil-
ity matrix is near empty (low total number of abilities), the problem
size is highly reduced, therefore the solution is obtained faster. On
the other extreme, when the ability matrix is nearly full (high total
number of abilities), it is easy to find a solution without any tem-
porary workers, so the problem can be solved quickly as well. The
most complex problems are for a half-full ability matrix, because the
problem in this situation can become highly combinatorial. The in-
stances generated from a geometric distribution regarding the tasks
are especially difficult, because they contain one or two tasks, which
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Figure 5.8: Execution time with different ability matrices
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have a high workload compared to the others: if many employees are
qualified for these tasks, there are many possible combinations for
the allocation of tasks to employees. Therefore the search of a solu-
tion can fail; some of these instances cannot be solved with our test
configuration due to a memory overflow.

On the contrary, the instances generated from normal distributions
are faster to solve. Note that the computation times needed to solve
the industrial instances were short, because the real-life data distribu-
tions were close to normal ones.

Since the other penalties are left aside, the only element optimized
in the objective function of milp1 is the number of temporary workers
hired. Figure 5.9 shows how the total number of abilities influences
this objective. It shows that training multi-skilled employees brings
a real added value for the company up to 50% of the qualification
matrix. It offers no further benefits, however, to increase this rate
from 60% to 70% or higher.
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Figure 5.9: Temporary workers with different ability matrices

milp1 determines the number of hours worked by each employee
per day and per task. milp2 refines this decision by choosing the
exact shifts (starting and ending times) for each employee. Since the
soft constraints are left aside and the workload used is only defined
by slots, the problem modeled by milp2 can be solved with a short
computation time. With the test settings described previously, milp2
can be solved in less than one second on all generated instances.

5.3.3.2 Tests on daily rostering

As explained in section 5.2.2, milp3 is meant to be run every morn-
ing to plan the upcoming day, with input data that can possibly be
very different from the ones used in the weekly timetable generation.
Therefore the most important criterion to assess for milp3 is the sensi-
bility of the outcome, when the input data change between runs. For
this set of tests, milp1 and milp2 are therefore run in sequence, with
a set of instances which can be computed in a reasonable time (ability
matrix filled to 60%), and different workload distributions (geometric
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and normal). Those were the two distribution types observed in our
real-life situations, as explained in section 5.3.1 (see configurations 1
and 2). The workload matrix W2

ti is created by increasing or reducing
the workload used in milp2 (W2

tdh) for each task by a given percent-
age. milp3 is solved with this new workload as an input and with all
the other input data left unchanged. We then look at the values of Πα

3
(number of employees whose shifts have been changed, compared to
the plan made at the end of milp2) and Πβ

3 (total number of times an
employee’s task has been changed, compared to what was planned
at the end of milp2). The length of an interval is set to 15 minutes,
which means that the planning horizon considered has 96 intervals
in total.

The results of these tests are shown in Figure 5.10 for Πα
3 and Πβ

3 ,
respectively. For improved readability, the values have been turned
into percentages. Each dot is an average obtained from the results of
20 different instances, and the vertical lines show the corresponding
standard deviations.

Figure 5.10a shows a linear increase of the number of changed
shifts for the geometric workload distributions: with 30% change in
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Figure 5.10: milp3 sensitivity when the workload changes
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the workload, all the shifts need to be changed. Normal distributions
are very sensitive to small workload changes, and reach stability very
fast. Changing 50% of the shifts can handle a workload change of
5% to 30%. As shown in Figure 5.10b, the tasks changes stay below
10%: they are more constrained, since the qualification matrix does
not allow to allocate an employee to any task. The number of task
changes increases linearly for both distributions, which behave simi-
larly for up to 10% of changes. For higher percentages, the normal
distributions are the most robust again.

The daily schedule recreated by milp3 from the weekly timetable
can therefore stay close to the original plan, if the changes made in the
workload are below 30%. Geometric distributions are more sensitive,
since they contain one or two tasks which are very heavy compared
to the others, and thus more difficult to redistribute without changing
the employees’ pre-planned shifts.

In the industrial context, it would thus be interesting to have work-
load distributions that are rather normal than geometric. The man-
ager could try to negotiate with his client in order to get a better fore-
cast of the upcoming volumes: since a better forecast leads to a better
timetable, it can also help reducing the costs the client is charged for.
The other option for the manager is to try and consolidate the flows,
for instance by having several clients served by the same warehousing
team, in order to further smoothen the workload.

5.4 conclusion

This chapter proposes a decomposition approach to solve com-
plex timetabling problems on different time scales (weekly and daily).
Three Mixed and Integer Linear Programs are solved sequentially in
order to achieve both weekly timetabling and daily rostering in an
integrated manner. The proposed decision-support tool can solve
a real-life, complex industrial problem within a reasonable amount
of time, providing important time savings compared to the manual
scheduling process. It also offers improvements compared to the man-
ual schedule that mainly focused on feasibility: it helps in reducing
the number of temporary workers and in making better use of the
qualifications of each employee.

One prospect for future work would be to support the managers in
setting their parameters, particularly by automatically tuning these
optimization parameters through machine learning methods (see e. g.
Jurisica [108]).

Note that, although the model was designed for a logistic platform,
it could be adapted to other service systems, such as mail process-
ing or cleaning companies. Another opportunity for future research
would be to apply this decomposition method to similar problems.
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Finally, we provide new real-life instances that can be used to
benchmark different scheduling techniques. It would be interest-
ing to compare, for each of those instances, the performance of our
method with techniques like column generation, the decomposition
methods described by Detienne et al. [61] and Naudin et al. [154], or
constraint programming approaches.





All we have to decide is what to do
with the time that is given us.

— J. R. R. Tolkien

Chapter 6

I N T E G R AT E D T R U C K S C H E D U L I N G A N D
E M P L O Y E E R O S T E R I N G

In this last chapter, we show how the truck scheduling
model from chapter 2 and the employee timetabling and
rostering model from chapter 5 can be combined to ad-
dress both problems in an integrated manner. Three ap-
proaches are compared. The sequential approach consists
in sequentially solving the different models at our dis-
posal: first ip* or h2, from which a workload is deduced
and used as input for milp1, milp2 and milp3. The it-
erative approach, inspired by Weide et al. [213], consists
in solving both problems one after another until a stable
point is reached. Two iterative procedures are proposed,
employees-first and trucks-first.



P L A N I F I C AT I O N I N T É G R É E D E S C A M I O N S E T D E S
E M P L O Y É S

Dans ce dernier chapitre, on montre comment combiner
le modèle de planification de camions du chapitre 2 d’une
part, et le modèle de génération des emplois du temps
des employés du chapitre 5 d’autre part, afin de traiter
les deux aspects de façon intégrée. On adapte à notre
problème une idée proposée par Weide et al. [213], qui
consiste à résoudre les deux modèles l’un après l’autre
de façon itérative, jusqu’à atteindre un point stable. On
compare trois approches. L’approche séquentielle est une
approche intuitive qui pourrait être utilisée par un mana-
ger ; elle consiste à résoudre d’abord ip* ou h2 pour en
déduire une charge de travail qui sert de donnée d’entrée
à milp1, milp2 et milp3. Deux approches itératives sont
ensuite proposées : l’une qui résout d’abord le modèle dé-
dié aux employés, et l’autre qui commence par le modèle
de planification des camions. Les contraintes d’ip* d’une
part et de milp3 d’autre part sont légèrement modifiées,
afin d’introduire davantage de souplesse pour permettre
à chaque modèle d’influencer l’autre, et pour les relier via
de nouveaux éléments dans les fonctions objectif. Les ré-
sultats numériques présentent une étude exploratoire. On
montre sur un exemple en quoi l’approche itérative do-
mine l’approche séquentielle. Les résultats sur une série
de petites instances permettent ensuite de montrer que les
meilleurs résultats pour l’approche itérative sont obtenus
lorsqu’on détermine le planning de camions en premier.
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I N T E G R AT E D T R U C K S C H E D U L I N G A N D
E M P L O Y E E R O S T E R I N G

Chapter 2 and chapter 4 propose several models to schedule truck
and pallet moves in a cross-docking platform. In chapter 5, a sequen-
tial approach is used to create weekly timetables and daily rosters
for logistic platform employees. Truck-related models and employee-
related models have been described independently, they actually are
strongly linked: the work planned by the truck scheduling models
cannot be carried out without logistics employees.

“To achieve globally optimal solutions, the interdependen-
cies between the different planning functions should be
taken into account, and planning decisions should be made
simultaneously. In other words, planning problems should
be integrated”.

Maravelias and Sung [139]

This chapter demonstrates how the two models can be combined
to create an integrated decision-support model for a cross-docking
platform.

6.1 problem description

The model described in chapter 5 can be applied to any type of
logistic platform, and can therefore be used for the special case of a
cross-docking platform. In the truck scheduling model described in
chapter 2, the internal capacity of the platform is expressed only by
a constant M, which is the maximum amount of pallets that can be
transferred within one time unit.

The problem consists in combining the two models. The employee
timetabling and rostering should be done for the specific case of a
cross-docking platform, while truck scheduling should incorporate
detailed information on the workforce’s availability.

6.1.1 Assumptions

All assumptions described in section 2.1.1 on the one hand, and
in section 5.1.1 on the other hand, still hold. Only the assumption
regarding M is now relaxed in the truck scheduling model: the inter-
nal capacity is not necessarily considered as a constant, but can vary
throughout the day according to the staffing decisions that have been
made.

149
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Six different tasks already listed in chapter 1 (see e. g. Figure 1.2 on
page 11) are considered in the integrated model:

0. unloading an inbound truck,
1. controlling and scanning the unloaded content,
2. direct transfer (from an inbound truck to an outbound truck),
3. transfer to stock,
4. transfer from stock,
5. loading an outbound truck.

It is assumed that these different tasks require different skills from
the employees. For example, carrying out the control and scan re-
quires a training on the different control points, and on the use of
the WMS. Direct transfers can be done with a hand pallet truck or a
powered pallet truck depending on the size of the platform, while a
transfer to or from stock would require a forklift truck (see Figure 1.3
on page 12) – thus different licenses are needed.

The time needed to carry out each one of the different tasks, noted
ST for “standard time”, is expressed in hour/pallet. As done alreadyFor detailed

standard time
calculations, see

Appendix D.

in chapter 3, the values are obtained from the classic crossdock sizes
given by Bartholdi and Gue [19], and standard process times for lo-
gistic operations (Gauvreau [78]). The values used in this chapter and
detailed in Table 6.1 are an average between the worst case and the
best case.

Task Process time (h/pallet)

ST0 Unloading 0.0492

ST1 Control and scan 0.0181

ST2 Direct transfer 0.0583

ST3 Transfer to stock 0.0583

ST4 Transfer from stock 0.0583

ST5 Loading 0.0492

Table 6.1: Process times for cross-docking operations

6.1.2 Similar problems in the literature

As shown in chapter 1, in cross-docking literature resource con-
straints are not often taken into account, let alone detailed timetabling
issues. Only Ko et al. [111] integrate “fairness” when solving a truck-
to-door assignment problem: the objective is to minimize both the
number of workers engaged in loading operation and the imbalance
ratio among the workers. They use a genetic algorithm approach
with a line balancing heuristic. Li et al. [127] are the only ones who
attempted a totally integrated approach: they propose an Excel tool
(the exact functioning of which is not really provided) to conduct the
operations planning, sequencing, real-time scheduling for container
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arrivals and pallet transfer, and real-time resource management. Al-
though the detailed models are not given in the article, their approach
seems to be based on greedy heuristics.

It is necessary to turn to different fields to find examples of com-
bined operations planning and employee timetabling using exact meth-
ods: production planning on the one hand, and vehicle and crew
scheduling on the other hand. Artigues et al. [13] give a review of
articles dealing with the integration of task and employee schedul-
ing in both application fields. Since the publication of this review
in 2007, more recent work was done on the topic. Artigues et al.
[14] use a hybrid branch-and-bound to solve an integrated employee
timetabling and job-shop scheduling problem. Working on two com-
parable problems, Guyon et al. [97, 98] propose to use a Benders de-
composition, a specific decomposition with cut generation, and a hy-
bridization of a cut generation process with a branch and bound strat-
egy. In the transportation field, Mercier and Soumis [148] propose an
integrated model for aircraft routing, crew scheduling and flight re-
timing, solved with a Benders decomposition method. Alternatively,
Weide et al. [213] propose to solve the two models (aircraft routing
and crew scheduling) in an iterative way. Traditionally, the routing
problem is solved prior to the crew scheduling problem; but the au-
thors note that this procedure might cause some crews to have a very
short amount of time to transfer from one aircraft to another, which
is likely to propagate delays. By solving both models in an integrated
way, they aim at increasing the overall robustness of the operations.

“We start with a minimal cost crew pairing solution with-
out taking aircraft routings into account. Then, in each
iteration we solve the individual aircraft routing problem
first, taking into account the current crew pairing solu-
tion. Then, given the aircraft routing solution we resolve
the crew pairing problem. We only use the objective func-
tions in both problems to pass information from the prob-
lem solved previously to generate more and more robust
solutions. [. . . ] We stop the process when the level of
robustness cannot be improved any further”.

Weide et al. [213]

The analysis carried out in chapter 1 highlights the gap between
the cross-docking literature and industry needs regarding crossdock
employee timetabling and rostering. In this chapter, we propose to
apply a procedure comparable to the one used by Weide et al. [213]
in order to connect the truck scheduling and the employee rostering
models introduced in the previous chapters.
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6.2 scheduling trucks and employees together

A simple sequential approach, that could be used by a manager
having both decision support tools at his disposal, is described in
section 6.2.1 in order to have a comparison reference when evaluat-
ing the iterative approaches described in section 6.2.2; two different
iterative strategies (employees-first and trucks-first) are detailed.

6.2.1 Sequential approach

The sequential approach is the “intuitive” one, which could be used
by a manager who has at his disposal both the truck scheduling tool
described in chapter 2 and the weekly timetabling and daily rostering
tool described in chapter 5.

The employee timetabling models needs a workload as input, work-
load which is directly linked to the truck schedule. Yet the truck
schedule is difficult to obtain in a cross-docking platform. Hence it
would be natural to first run the truck scheduling model for each day
of the week – using ip* for small instances, or h2 for bigger ones, or
one of their robust versions proposed in chapter 4. The workload
for the week can then be deduced from the truck schedules (see the
detailed procedure below) and used as input to run the weekly steps
of the timetabling process. The daily roster is created every morn-
ing, using the workload deduced from the truck schedule of the day,
and the timetable already created for the week. milp3 thus creates
a schedule that matches the workload and does not differ too much
from the weekly schedule. The process is summarized in Figure 6.1.

deducing workload W 1 from the result of ip*. Among
the outputs of ip* are Xhio , which gives the direct moves of pallets
from truck i to truck o within time unit h; s I

hic which denotes the

Instance

ip* or h2

Truck schedule

W1Weekly

milp1

milp2

Weekly timetable

Daily
W1

X, Y
milp3

Daily roster

[ July 22, 2014 at 18:14 – version 4.1 ]

Figure 6.1: Principle of the sequential approach
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moves from truck i to storage at time h (for each client c) and sO
ho

which gives the number of pallets transferred from storage to truck o
at time h. Using these three outputs, the workload can be expressed
precisely, hour by hour: all tasks therefore belong to T 1. The work-
load is defined as follows for all h ∈ H:
Unloading W1

0dh = (∑i∈I ,o∈O xhio + ∑i∈I ,c∈C sI
hic)× ST0

Control and scan W1
1dh = (∑i∈I ,o∈O xhio + ∑i∈I ,c∈C sI

hic)× ST1

Direct transfer W1
2dh = ∑i∈I ,o∈O xhio × ST2

Transfer to stock W1
3dh = ∑i∈I ,c∈C sI

hic × ST3

Transfer from stock W1
4dh = ∑o∈O sO

ho × ST4

Loading W1
5dh = (∑o∈O sO

ho + ∑i∈I ,o∈O xhio)× ST5

6.2.2 Iterative approaches

The sequential approach described in the previous section does not
guarantee global optimality. Although the employee timetable and
roster match the previously calculated truck schedule, maybe a bet-
ter solution could be reached if the trucks schedule was calculated
taking staffing issues into account. We therefore apply an approach
similar to the one described by Weide et al. [213] to our problem. The
truck schedule and the employee roster are run iteratively until a sta-

Instance

W2, S(1)

milp1

milp2

Weekly timetable

Mh, N I
h , NO

h (2) X, Y

ip* or
(3)

h2

Truck schedule

W1 (4)

milp3 (5)Daily roster

(6)

[ July 22, 2014 at 18:14 – version 4.1 ]

(a) Employees first

Instance

ip* or h2

Truck schedule

W1

milp1

milp2

Weekly timetable

X, Y

milp3

Daily roster

Mh, N I
h , NO

h

ip* or h2

Truck schedule
W1

[ July 22, 2014 at 18:14 – version 4.1 ]

(b) Trucks first

Figure 6.2: Principle of the iterative approaches
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ble point is reached. Two different cases are studied: starting with
the calculation of the employee timetable and roster (employees-first)
and starting with the truck schedule (trucks-first). Both principles are
described in Figure 6.2 and further detailed in the following sections.

6.2.2.1 Employees-first

This solution considers the timescale of the different decisions to be
made and therefore calculates first the employees weekly timetabling;
the output is communicated to the employees one week in advance.
In the following we detail the steps to follow in the employee-first
procedure.

Step (1) in
Figure 6.2 deduce workload W 2 from an instance . A difficulty of this

approach is that the employee timetable has to be calculated before
the actual truck schedule is known, since ip* has not been run yet at
this stage. Hence, the workload has to be estimated. The proposed
solution is to define all tasks as defined by slots, i. e. all tasks belong
to set T 1. The slots are defined based on the wishes of the trans-
portation providers. milp1 and milp2 take the decision about when
to carry out the different tasks, within the predefined slots. In order
to quantify the workload regarding storage, an estimation τstock is
given as the proportion of pallets which usually go to stock – based
e. g. on historical data. More precisely, workload W 2 and slots S are
defined for day d as follows:

Unloading W 2
0d = |I | × ST0

S0hd = 1 if h is in the wished presence time
window of an inbound truck;

Control and scan W 2
1d = |I | × ST1

S1hd = 1 if h is in the wished presence time
window of an inbound truck;

Direct transfer W 2
2d = (1 − τstock) × ST2

S2hd = 1 if h is in the wished presence time
window of an inbound truck;

Transfer to stock W 2
3d = τstock × ST3

S3hd = 1 if h is in the wished presence time
window of an inbound truck;

Transfer from stock W 2
4d = τstock × ST4

S1hd = 1 if h is in the wished presence time
window of an outbound truck;

Loading W 2
5d = |I | × ST5

S5hd = 1 if h is in the wished presence time
window of an outbound truck.
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deduce new data Mh , N I
h , NO

h from the weekly timetable .
The staffing decisions made in the weekly schedule create some con- Step (2) in

Figure 6.2straints for the platforms operations, in terms of the number of per-
sons available to carry out the different tasks. Three new data ele-
ments are thus calculated from the weekly timetable:

Mh maximum number of pallets that can be transferred at time unit
h ∈ H, according to the weekly employees timetable;

N I
h maximum number of pallets that can be unloaded at time unit

h ∈ H, according to the employees’ weekly schedule;
NO

h maximum number of pallets that can be loaded at time h ∈ H,
according to the employees’ weekly schedule.

The values of Mh , N I
h and NO

h are deduced from the allocation of
employees to the transfer, unloading and loading tasks (t = 0, t = 2,
t = 5). For a given day d, they are calculated from the output of
milp2 x ′etdh as follows:

Mh = ∑
e∈E

x ′e2dh
ST2 ∀h ∈ H (6.1)

N I
h = ∑

e∈E

x ′e0dh
ST0 ∀h ∈ H (6.2)

NO
h = ∑

e∈E

x ′e5dh
ST5 ∀h ∈ H (6.3)

Mh is obtained from the allocation of employees to task 2 (direct
transfer). Variable x ′etdh , which gives a number of persons, is divided
by the standard time of the operations (in hour/pallet) to obtain a
number of pallet for each hour. Similarly, N I and NO are calculated
from the allocation to tasks 0 (unloading) and 5 (loading), respec-
tively.

Step (3) in
Figure 6.2include new data Mh , N I

h , NO
h in ip* or h2 . The truck daily

schedule is calculated every day using ip* for small instances, or h2
for bigger ones. In order to take into account the new staffing-related
information as soft constraints, three new constraints are added to
ip*:
∑o∈O , i∈I xhio + ∑ i∈I ,c∈C s I

hid ≤ N I
h + δ I

h ∀h ∈ H (10.1)

∑o∈O , i∈I xhio + ∑o∈O sO
ho ≤ NO

h + δO
h ∀h ∈ H (10.2)

∑o∈O , i∈I xhio ≤ Mh + ε h ∀h ∈ H (10.3)

Πδ
0 = ∑h∈H δ I

h + δO
h (53)

Π ε
0 = ∑h∈H ε h (54)

Constraint sets (10.1), (10.2) and (10.3) give a penalty point each time
the soft constraint is violated. The sums of these penalty points, de-
fined by constraints (53) and (54), are then added to the objective func-
tion, thus the new objective is to minimize α0 Πα

0 + β0 Π β
0 + γ0 Πγ

0 +

δ0 Πδ
0 + ε 0 Π ε

0.
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Step (4) in
Figure 6.2

deduce W from the result of ip*. After ip* is solved with
the new constraints and new objective function, the output is used
to calculate workload W as detailed in section 6.2.1. The workload is
used as an input in milp3, together with the values of X and Y fixed
by milp2.

Step (5) in
Figure 6.2 add interval flexibility in milp3 . For the daily truck sched-

ule and employee roster to be able to influence each other until a sta-
ble point is reached, it is important to leave some flexibility to milp3
regarding the intervals in which the work can be done. Therefore,
constraint set (24) defined in section 5.2.2:

∑e∈E ′′ x′′et1q = W1
t1q ∀t ∈ T 1, q ∈ Q (24)

is replaced by constraint sets (24.1), (24.2) and (24.3) as follows:

∑e∈E ′′ x′′et1q = W1
t1q + ε+t1q − ε−t1q ∀t ∈ T 1, q ∈ Q (24.1)

∑e∈E ′′ ,q∈Q x′′et1q = ∑q∈QW1
t1q ∀t ∈ T 1 (24.2)

Πε
3 = ∑t∈T 1 ,q∈Q ε+t1q + ε−t1q (24.3)

Constraint set (24.1) replaces constraint set (24) and changes it into a
set of soft constraints. Constraint (24.2) ensures that, despite the flex-
ibility provided to replace the work in different time slots, the total
amount of hours worked still matches the workload. The objective
function is changed in order to add Πε

3, defined in constraint (24.3),
to the objective function of milp3.

Step (6) in
Figure 6.2 iterate until reaching a stable point. Using the daily ros-

ter output of milp3, the values of Mh, N I
h and NO

h can be updated and
used to run ip* again. The new versions of ip* and milp3 are run iter-
atively until a stable point is reached. The stable point is considered
reached when the values of the different penalties that measure ad-
justments, i. e. Πδ

0, Πε
0, Πα

3 , Πβ
3 and Πε

3, are stable. Table 6.2 gives a
reminder of the different penalties described in section 2.2.1 for ip*
and section 5.2.2 for milp3. In some cases, the iteration does not
converge to a single stable point but to a set of two, three or more
solutions (oscillator): in this case the loop is stopped and the solution
with the smallest objective function Π3 is chosen.

ip* penalties milp3 penalties

Πα
0 inbound truck time window penalty Πα

3 shift changes

Πβ
0 outbound truck time window penalty Πβ

3 task changes

Πγ
0 number of pallets in storage Πγ

3 handling equipment penalty

Πδ
0 transfer capacity violations Πδ

3 ergonomy penalty

Πε
0 loading/unloading capacity violations Πε

3 interval changes for tasks in T 1

Table 6.2: ip* and milp3 penalties description (reminder)
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6.2.2.2 Trucks-first

Calculating the employees timetable first can favor the employees,
but leaving the employees-related MILPs to decide when the trucks
should be docked could lead to strongly sub-optimal truck schedules.
In order to prevent that problem, the trucks-first approach starts as
the sequential approach: ip* or h2 is used to calculate a truck sched-
ule from the instance. The workload W is calculated from the truck
schedule (see section 6.2.1 for details) and used as input to generate
the weekly schedule, followed by the daily roster. While the sequen-
tial approach stops there, the iterative approach questions this daily
roster to adapt it to the truck schedule constraints.

From the output x′′ of the daily roster, one can calculate the values
of Mq, N I

q and NO
q , which are capacity constraints at time interval

q ∈ Q for the transfer, unloading and loading operations, respec-
tively. The values of these data elements are calculated as detailed
in section 6.2.2.1. The truck schedule is then obtained with the new
version of ip* or h2 described in section 6.2.2.1, with constraints sets
(10.1), (10.2) (10.3), (53) and (54). Based on this truck schedule, a new
workload W is calculated and used as input for milp3 as well as the
outputs of milp2 X an Y. The version of milp3 used also replaces con-
straint set (24) by constraints sets (24.1), (24.2) and (24.3) as detailed
in section 6.2.2.1, in order to add flexibility regarding the possible
intervals to execute each task.

Similar to the employees-first approach, ip* or h2 and milp3 are
run iteratively until a stable point or an oscillator is reached – for the
latter, the solution with the smallest objective function Π0 is chosen.

6.3 numerical results

In this section, exploratory numerical experiments are carried out:
the aim is to demonstrate that the method detailed in section 6.2.2 is a
valid way to combine the truck scheduling model with the employee
scheduling model. After a presentation of the instance generation
process in section 6.3.1, section 6.3.2 uses an example to show how
the iterative approach outperforms the sequential approach. In sec-
tion 6.3.3, the performances of both iterative approaches (truck-first
and employees-first) are compared and discussed.

6.3.1 Instance generation

The truck-related parts of the instances correspond to the instance
set3+3 described in section 2.2.3. The employee-related parts of the
instances are generated randomly, using the principle detailed in sec-
tion 5.3.3, with the number of employees set to 10 for the instances
where M = 17, and set to 15 for the instances where M = 34. The
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time horizon (number of hours |H|) on the employees side is set equal
to the value of |H| on the trucks side.

In order to keep the weekly and daily stages easily comparable, the
time unit considered when creating the daily roster (interval) has a
length of one hour, thus H = Q.

The value of τstock, estimation of the percentage of pallets that go
through storage, is set to 3%. The handling equipment upper bound
Maxtq and the safety and ergonomics bound Maxt are set to ∞ for all
t ∈ T , q ∈ Q so that Πγ

3 and Πδ
3 will always be 0.

6.3.2 Comparison sequential / iterative approaches

When introducing the iterative approach, we pointed out the fact
that reaching a local optimum for both models separately does not
necessarily mean reaching a good solution when both are combined.
This point is illustrated in this section by applying the sequential
procedure and an iterative one (here trucks-first) to instance 17_1.
Recall from section 2.2.3 that instance 17_1 has a time horizon |H| =
10, 5 inbound and 5 outbound trucks (|I| = |O| = 5) serving 3
different clients.

sequential approach . For a small instance like 17_1, the first
step of the sequential approach as described in section 6.2.1 is to run
ip*. The solution obtained, with an objective value of 0 (Πα

0 = 0,
Πβ

0 = 0, Πγ
0 = 0) was already displayed in Figure 2.8 on page 53.

As a first approximation, let us assume that this truck schedule will
apply to each of the five days of the week. The workload W corre-
sponding to this truck schedule, as well as the qualification matrix Q
used in this instance, are as follows:

Wtd =


8 3 10 0 0 8

8 3 10 0 0 8

8 3 10 0 0 8

8 3 10 0 0 8

8 3 10 0 0 8

 Qet =



0 1 0 0 1 0

0 0 1 1 0 1

0 1 0 0 1 0

1 0 1 0 0 0

1 0 0 1 0 1

0 1 0 1 1 0

0 0 1 0 1 0

1 0 0 0 0 1

0 1 0 1 0 1

1 0 1 0 0 0


Note that two tasks related to storage have a null workload, since no
pallet is put in storage in this solution. Using this workload as an in-
put, milp1 and milp2 give the weekly timetable shown in Figure 6.3.

Employees 0, 2 and 5 are not put to work in this timetable and are
absent all week. Running milp3 for day d = 0 (Monday) gives a daily
roster exactly equal to the one displayed in Figure 6.3 for Monday,
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Figure 6.3: Sequential approach on 17_1: weekly timetable

thus the objective value for milp3 is 0 (Πα
3 = 0, Πβ

3 = 0, Πγ
3 = 0 and

Πδ
3 = 0).

Colors legend
Unloading
Scan&control
Direct transfer
Loading

When looking at the objective functions only, this approach seems
very good since each model, taken independently, is solved to opti-
mum with no soft constraint violated. But can these two results (truck
timetable and employee daily roster) be combined easily? Looking at
the number of employees allocated to each task at the different time
units on Monday (Figure 6.3), and using equations 6.1 to 6.3, we can
calculate the employee capacities available at every time unit h ∈ H:

M = [ 17 17 17 17 17 17 34 17 17 0 ]

N I = [ 20 20 20 20 20 0 0 20 20 0 ]

NO = [ 0 20 20 20 20 20 20 20 20 0 ]

For example, Figure 6.3 shows that two employees are allocated to
direct transfer at time h = 6, therefore M6 = 34.
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Figure 6.4: Sequential approach on 17_1: truck schedule

Looking at the truck schedule used by the sequential approach (dis-
played in Figure 2.8 on page 53 and presented in a more compact
form in Figure 6.4) we can see that those capacity constraints are vi-
olated many times. The loading/unloading capacities N I and NO

are violated for 51 pallets in total (all the pallets loaded or unloaded
when the capacity is 0 for those tasks), and the transfer capacity M
for 17 pallets (all the pallets transferred at time h = 9). That would
be equivalent to objective values Πδ

0 = 51 and Πε
0 = 17. Is it possible

to do better with the trucks-first approach?
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trucks-first approach . The trucks-first approach starts exactly
like the sequential approach, but the values of M, N I and NO are
now integrated to ip* as soft constraints. The result, displayed in
Figure 6.5, yields to the objective function Π0 = 58 where Πα

0 = 1,
Πβ

0 = 0, Πγ
0 = 0, Πδ

0 = 57, Πε
0 = 0.
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Figure 6.5: Iteration 1 on 17_1: truck schedule

From this truck schedule, the detailed workload for each interval
q ∈ Q can be expressed as shown on this page. Then, using this
workload as input, milp3 is run again to give the result shown in
Figure 6.6. The corresponding penalties are Πα

3 = 2, Πβ
3 = 6, Πγ

3 =

0, Πδ
3 = 0, Πε

3 = 8. It means that there is a 2-hour change in the
allocated shifts compared to the result of milp2 (for employee 9) and
6 hours of task changes (for the tasks of employee 8).

Wt1q =



1 0 1 0 0 1

1 0 1 0 0 1

1 0 1 0 0 1

1 0 1 0 0 1

1 0 1 0 0 1

1 0 1 0 0 1

2 1 2 0 0 1

1 0 1 0 0 1

1 0 1 0 0 1

0 0 0 0 0 0
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Figure 6.6: Iteration 2 on 17_1:
employee roster

New capacity constraints can be derived from this employee roster:

M = [ 17 17 17 17 17 17 34 17 17 0 ]

N I = [ 20 20 20 20 20 40 20 20 20 0 ]

NO = [ 0 20 40 20 20 20 20 20 20 0 ]

and used in ip* to obtain the truck schedule in Figure 6.7, with penal-
ties Πα

0 = 1 (because of the hour added at h = 5 for inbound truck
i = 2), Πβ

0 = 0, Πγ
0 = 0, Πδ

0 = 37, Πε
0 = 0.
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Figure 6.7: Iteration 2 on 17_1: truck schedule

The next iteration yields exactly the same solution – therefore the
procedure stops after three iterations in total. The comparison be-
tween the sequential and the truck first approach, in terms of value
of the objective function, is done in Table 6.3. The trucks-first ap-
proach reduces the values of Πδ

0 and Πε
0, i. e. reduces the violations of

the staff-related capacity constraints. It also increases the value of Πα
0

(one inbound truck is assigned to a time windows slightly different
from its wish) and the difference between the weekly timetable and
the daily roster (Πα

3 , Πβ
3 ), but it is a price to pay to make the truck

schedule and the employee roster more compatible.

ip* milp3

Πα
0 Πβ

0 Πγ
0 Πδ

0 Πε
0 Πα

3 Πβ
3 Πγ

3 Πδ
3 Πε

3

Sequential 0 0 0 51 17 0 0 0 0 0

Trucks-first 1 0 0 37 0 2 6 0 0 8

Table 6.3: Sequential/trucks-first results for 17_1

6.3.3 Comparison employees-first / trucks-first

Intuitively, one could think that the employees-first procedure fa-
vors the employees’ wishes, while the truck-first procedure favors the
transportation providers’ wishes instead. The results obtained on in-
stance set3+3, displayed in Table 6.4, confirm this idea. Most of the
time, the values of Πα

3 and Πβ
3 are smaller for the employees-first ap-

proach. All the other penalties, however, are bigger for the employee
approach. The penalties regarding truck time windows assignments
(Πα

0 and Πβ
0 ), especially, are significantly bigger for the employees-

first approach compared to the trucks-first approach. On this set
of small instances, the trucks-first approach therefore dominates the
employees-first approach.
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Employees-first Trucks-first

Ite. Πα
0 Πβ

0 Πγ
0 Πδ

0 Πε
0 Πα

3 Πβ
3 Πγ

3 Πδ
3 Πε

3 Ite. Πα
0 Πβ

0 Πγ
0 Πδ

0 Πε
0 Πα

3 Πβ
3 Πγ

3 Πδ
3 Πε

3

17_1 3 1 1 0 135 1 2 3 0 0 14 3 1 0 0 37 0 2 6 0 0 8

17_2 4 8 12 0 195 0 2 3 0 0 14 3 0 1 0 31 0 3 6 0 0 6

17_3 5 16 16 0 208 0 2 2 0 0 24 3 0 2 0 31 0 3 11 0 0 6

17_4 2 15 15 0 208 0 0 0 0 0 24 3 0 0 0 51 1 3 9 0 0 4

17_5 3 14 12 0 198 6 2 3 0 0 22 3 0 3 0 51 0 3 9 0 0 4

34_1 3 0 0 0 52 0 4 3 0 0 6 3 0 0 0 38 0 4 4 0 0 4

34_2 3 0 0 0 72 8 4 4 0 0 14 4 0 1 0 42 0 4 8 0 0 4

34_3 2 0 1 0 11514 2 1 0 0 14 3 0 1 0 44 0 0 0 0 0 4

34_4 3 12 12 0 210 0 2 4 0 0 22 5 1 2 0 51 0 2 8 0 0 6

34_5 4 18 20 0 21012 2 4 0 0 24 5 0 2 0 51 1 2 9 0 0 6

34_6 5 24 24 0 198 0 4 4 0 0 24 5 0 3 0 48 0 6 8 0 0 6

Table 6.4: Results for both iterative approaches

6.4 conclusion

This chapter demonstrates how an iterative procedure can be used
to combine the models described in chapter 2 and chapter 5, namely
a truck scheduling model on the one hand and an employee weekly
timetabling and daily rostering problem on the other hand. Numer-
ical experiments on small instances show that the best results are
obtained when the truck scheduling model is run first. Further work
is needed to check whether this result scales-up for bigger instances,
and to analyze the behavior of the system when the different param-
eters change.

This chapter uses ip* as truck scheduling model: an extension of
this work would be to use instead some of the robust versions de-
scribed in chapter 4. The simulation model described in chapter 3
could also be adapted to properly model the human resources of the
platform, and therefore used to evaluate the robustness of the inte-
grated timetable and roster.

The limits of this approach reside in the fact that no fully inte-
grated model is available, therefore the quality of the solutions given
by the iterative process cannot be compared to the optimal value. A
model integrating all the industrial constraints of the truck schedul-
ing and the employee rostering would probably be too hard to be
solved. However, the different decomposition processes proposed by
Guyon et al. [97, 98] might be applicable to our case (or a simplified
version of it). They are exact methods yielding to optimal solutions.
Specifically, the cut generation process presented in [97] splits the
model into a master problem, which assigns a work pattern to each
operator, and a sub-problem which checks the feasibility of the as-
signment – this sub-problem is actually a maximum flow problem
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on a directed transportation network. Because the crossdock truck
scheduling problem also contains a maximum flow problem as a sub-
problem (see section 2.3.3), applying the method proposed by Guyon
et al. to the cross-docking environment seems a promising idea. Ap-
plying Benders decomposition is also a possible perspective in order
to get an exact solution to the integrated problem.





Science never solves a problem
without creating ten more.

— George Bernard Shaw
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summary of the contributions

In a decade of highly tensed economical context but also very fast
progress in new technologies, industries have to undertake a muta-
tion to adapt themselves. It becomes critical for them to have a fast,
efficient and reactive supply-chain.

Cross-docking is an example of Just-In-Time technique in logistics.
By transferring products from inbound trucks to outbound trucks
with almost no temporary storage, it speeds up the delivery flow
while reducing inventory costs. However, like any Just-In-Time pro-
cess, a cross-docking platform needs a flawless scheduling system to
operate properly.

This dissertation focuses on the operations within a cross-docking
platform. As a first contribution, chapter 1 establishes a picture of the
state-of-the-art in the cross-docking literature on the one hand, and
of the reality encountered daily by crossdock managers on the other
hand. Besides proposing unified problem names and a comparison
framework that can be reused by experts in the field, this study brings
out two major gaps between the current state of research and the prac-
tice in industry. The first issue is a concern about truck punctuality,
that is not often taken into account in the cross-docking models of
the literature; the second issue is the scheduling of human resources,
which are crucial in a crossdock as its first cost center.

Chapter 2, chapter 3 and chapter 4 address the first issue. In chap-
ter 2, a crossdock truck scheduling model is proposed which takes
into account the wishes of the transportation providers regarding
their arrival and departure times. The problem, formulated as an
Integer Program, is shown to be np-hard in the strong sense, and
three different heuristics are proposed to solve it for rather large in-
stances. Two of the three heuristics are based on a decomposition of
the original IP model into IP submodels solved sequentially; the third
one is a tabu search in which the objective function is evaluated using
a maximum flow graph. In order to address the platform managers’
concern about delayed trucks, chapter 3 proposes a methodology to
evaluate the robustness of a schedule, i. e. its ability to react with
as few perturbations as possible to unexpected events. A simulation
model is developed to represent the platform operations with various
sources of uncertainty. We propose a novel way to combine a simu-
lation model with an optimization model, here the model presented
in chapter 2. Robustness metrics are proposed based on the results
of the simulation. These metrics are used in chapter 4 to compare
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different robust reformulations of the original truck scheduling prob-
lem. Besides applying standard robust optimization techniques, this
chapter proposes to adapt ideas from robust project scheduling and
shows that they can perform well to obtain robust crossdock truck
schedules.

The second aspect identified as a key issue for crossdock managers
is employee timetabling and rostering. Chapter 5 proposes a decom-
position of this problem into three sub-problems, corresponding to
the three levels of decisions to be made. Each step is modeled with
a Mixed and Integer Linear Program and shown to be np-hard in the
strong sense. However, the decomposition enables one to solve in-
stances of realistic sizes in a reasonable amount of time, as evidenced
by a successful implementation of our timetabling tool in industry.
Different graphical interfaces have been developed for different uses
of the tool, one of them for teaching purposes.

Finally, chapter 6 demonstrates how the two models developed in-
dependently, namely the truck scheduling model and the employee
timetabling and rostering model, can be combined to solve the inte-
grated problem.

Along the entire dissertation, we followed a typical operations re-
search process as illustrated in Figure 7.1. Through visits and inter-
views in cross-docking platforms, we could identify the cross-docking
optimization problems that are relevant for today’s industry, and thus
write business-specific models. We propose to solve in an integrated
manner the operational problems that were identified as key elements.
Lastly, the suitability of the model in a business environment is vali-
dated by using a simulation model integrating uncertainty.

Business-
specific model

Solving Validation

[ July 22, 2014 at 18:14 – version 4.1 ]

Figure 7.1: A typical operations research process

perspectives

The perspectives for this work can be seen at different levels. Short-
term and technical perspectives regarding possible extensions of the
models and numerical experiments presented are detailed in the con-
clusion of each chapter (chapter 2 on page 65; chapter 3 on page 87;
chapter 4 on page 111; chapter 5 on page 144; chapter 6 on page 162).

A mid-term perspective could be to combine this work on cross-
dock operations scheduling with crossdock network scheduling. Be-
cause this dissertation focuses on internal operations, all the network-
related problems were set aside. Designing a cross-docking network,
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or a distribution network including one crossdock or more, is a strate-
gic decision. However, operating this network and scheduling the
daily transfers between the different actors of the supply-chain corre-
spond to operational decisions. It is clear that this problem is strongly
linked to decisions made by the platform management: if a single
truck is used for different transfers in the network, a delay at one
platform will impact the whole network. This year, Agustina et al. [4]
and Dondo and Cerdá [63] started addressing the integrated problem,
which needs to be further explored.

Another perspective would be to integrate environmental issues in
our model, especially because logistic companies will probably expe-
rience a stronger economical pressure on these aspects in the upcom-
ing years. In logistics, a compromise has to be found between the
speed of delivery and the truck filling. In a crossdock, what should
be done with a truck which is only half-full at the time when it is
supposed to leave? Keeping the truck longer impacts the delivery
time and the service level; but sending a truck half-full is also a bad
decision from the economical and ecological points of view. In this
dissertation the assumption was made that all trucks leave full; a de-
tailed study on how to manage this trade-off is a possible extension.

The different models presented in this dissertation (especially the
truck-related models) thus require further work before they can be
adopted in an industrial context. More realistic assumptions need to
be added and the execution times should be shortened for instances
representing large platforms.

Another important aspect is the real-time control of logistics oper-
ations. The WMS (Warehouse Management Systems) already gather a
lot of data in real-time, and this trend is likely to increase in the next
years with the development of vocal and augmented-reality technolo-
gies. Optimization models should then be run not only on a weekly
or daily scale, but also regularly through the day, exploiting the new
information to give real-time decision support. It means developing
very reactive and fast optimization models, likely to use important
amounts of data as inputs to recalculate new schedules.

Once this work is done, the next step will be to integrate the tool in
the information system of a logistics platform. Several benchmarks of
existing WMS are available – see e. g. Supply Chain Magazine [190] for
index cards on the solutions used by platforms in France. However
it is difficult to have a clear view of how much “optimization” these
support systems are using, and which sort of optimization – greedy
allocation, local search. . . ? A detailed study would be needed to
have a clear picture; but from our experience in industry it seems
that optimization techniques are very rarely used in logistic platforms.
Integrating our optimization tool into existing WMS in order to use
their data as input would thus be the next mid-term step.
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The long-term perspectives are strongly linked to the way the logis-
tics industry will evolve in the next decade.

“Like plants, warehouses belong to a larger supply-chain
scheme, and although their intrinsic performance is im-
portant, what will make a difference is the way they will
be relevantly used”.

Freely translated from Polge [160]

Currently emerging trends, which should become the norm by the
year 2025 or 2050, are identified in several studies such as those by
Deutsche Post DHL [62] or Gue et al. [90]. Of course not all the iden-
tified trends are linked to cross-docking; but cross-docking platforms
and operations scheduling have their part to play in several of them.

Urban logistics and the last-kilometer issue currently form a very
active stream of research and a serious challenge. In order to reduce
city congestion, new modes of urban freight transportation should
be developed. But to keep a fast flow of goods streaming in the city,
cross-docking platforms are needed to transfer items from long-haul
trucks to those new urban means of transportation.

“Open shared-use, crossdock facilities that can be dynam-
ically scheduled for use by multiple, often competing re-
tailers may enable more cost-effective last-mile distribu-
tion. To create such facilities, equitable and efficient space,
door and labor allocation and scheduling systems need to
be created”.

Gue et al. [90]

Our work fits very well in this big picture drawn by Gue et al. Apply-
ing it to platforms especially dedicated to urban logistics is a possible
long-term perspective.

Researchers in Canada, Europe, and the United States have recently
proposed a new concept in logistics, called the Physical Internet (PI
or π). It is an ambitious vision aiming at transforming the way phys-physicalinternet

initiative.org ical objects are moved, stored, supplied and used – inspired from
the way computers are interconnected through Internet. The goal is
to entirely reorganize the distribution of goods in an efficient way
which is economically, environmentally and socially sustainable. The
goods, encapsulated in standardized π-containers, could be handled
by dedicated material handling equipment – π-movers, π-conveyors.
π-crossdocks or transit centers, possibly multimodal, would then fa-
cilitate the truck-to-truck transshipment in a fully automated and
very fast way. Of course the model developed in chapter 5 for logistics
employees cannot apply in this case: thanks to the high standardiza-
tion of the π-containers, all transshipment operations could be 100%
automated. However, crossdock truck scheduling models would be
highly needed to operate smoothly such automated facilities.

http://www.physicalinternetinitiative.org
http://www.physicalinternetinitiative.org
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résumé des contributions

Dans un contexte économique tendu où les nouvelles technologies
progressent à toute vitesse, les industries doivent évoluer. Posséder
une supply-chain rapide, efficiente et réactive est devenu un enjeu
critique.

Le cross-docking est un exemple de technique de “juste-à-temps”
en logistique. En transférant des produits des camions entrants aux
camions sortants avec peu ou pas de stockage intermédiaire, cette
technique permet d’accélérer les flux tout en réduisant les coûts de
stockage. Néanmoins, comme tout processus en juste-à-temps, une
plateforme de cross-docking nécessite un système de planification
sans failles pour pouvoir fonctionner correctement.

Cette thèse traite de la gestion des opérations au sein d’une plate-
forme de cross-docking. Le chapitre 1 est une première contribu-
tion qui propose un état des lieux de la littérature en cross-docking
d’une part, et de la réalité du quotidien des managers de plateforme
d’autre part. Outre la proposition de renommer de façon unifiée les
problèmes rencontrés, et la création d’une grille de comparaison qui
peut être réutilisée par les experts du domaine, ce travail dégage deux
écarts principaux entre l’état actuel de la recherche et les pratiques de
l’industrie. Le premier axe concerne la ponctualité des camions, peu
prise en compte dans la littérature du cross-docking ; le second axe
est la planification des ressources humaines, point crucial dans les
plateformes puisqu’elles sont le premier centre de coût.

Les chapitres 2, 3 et 4 développent le premier axe de travail. Dans
le chapitre 2, un modèle de planification des camions est proposé
qui prend en compte les souhaits des transporteurs concernant leurs
heures d’arrivée et de départ. On montre que le problème, formulé
comme un programme linéaire en nombres entiers (plne), est np-
difficile au sens fort. Trois heuristiques sont proposées pour permettre
de le résoudre pour des instances d’assez grande taille. Les deux pre-
mières sont basées sur une décomposition du plne initial en deux
sous-problèmes, modélisés en plne et résolus de façon séquentielle.
La troisième est une recherche tabou dont la fonction objectif est éva-
luée par un flot maximum dans un graphe. Afin de répondre à la
problématique des managers concernant la gestion des camions en
retard, le chapitre 3 propose une méthodologie d’évaluation de la ro-
bustesse d’un planning, c’est-à-dire sa capacité à réagir à des événe-
ments imprévus avec le moins de perturbations possibles. Un modèle
de simulation est développé pour représenter les opérations d’une
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plateforme soumise à diverses sources d’incertitudes. Ce modèle de
simulation est combiné de manière innovante avec le modèle d’opti-
misation du chapitre 2. Des indicateurs de robustesse sont proposés
à partir des résultats de la simulation. Ces indicateurs sont utilisés
dans le chapitre 4 pour comparer différentes reformulations robustes
du problème initial. En plus des techniques génériques d’optimisa-
tion robuste, ce chapitre propose d’adapter des idées provenant de
la planification de projets robustes. On montre qu’elles donnent de
bons résultats et permettent d’obtenir des plannings robustes pour
les camions de la plateforme.

L’élaboration des emplois du temps des employés est le second axe
de travail identifié comme un levier important pour les managers de
plateforme. Le chapitre 5 propose une décomposition de ce problème
en trois sous-problèmes résolus séquentiellement, qui correspondent
à trois niveaux différents de décision. Chacune des étapes, modéli-
sée par un programme linéaire mixte, est np-difficile au sens fort. La
décomposition permet cependant de résoudre des instances de taille
réaliste dans des délais raisonnables, comme le prouve la mise en
œuvre réussie de notre outil de génération d’emplois du temps en
industrie. Différentes interfaces graphiques ont été développées pour
différents usages de l’outil, dont une destinée spécifiquement à l’en-
seignement.

Enfin le chapitre 6 montre comment les deux modèles développés
indépendamment – le modèle de planification des camions et celui
permettant de générer les emplois du temps des employés – peuvent
être combinés afin de résoudre le problème intégré.

Au cours de cette thèse, nous avons suivi une démarche typique
de recherche opérationnelle, comme illustré en figure 7.2. À la suite
de visites et d’entretiens dans des plateformes de cross-docking, nous
avons pu identifier les problématiques d’optimisation en cross-docking
qui sont pertinentes pour l’industrie actuelle, et ainsi proposer des
modèles orientés métier. Nous proposons de traiter de façon intégrée
les décisions opérationnelles qui ont été identifiées comme des points
clés. Enfin, la pertinence du modèle au niveau métier est validée par
un modèle de simulation qui permet d’intégrer l’incertain.

Modèle métier Résolution Validation

[ 22 juillet 2014 at 18:15 – version 4.1 ]

Figure 7.2: Une démarche de recherche opérationnelle
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perspectives

Les perspectives de ces travaux peuvent être considérées à plu-
sieurs niveaux. Les perspectives techniques et de court terme concer-
nant les extensions possibles des modèles et des résultats numériques
présentés sont détaillées dans la conclusion de chacun des chapitres
(conclusion du chapitre 2 à la page 65 ; chapitre 3 page 87 ; chapitre 4
page 111 ; chapitre 5 page 144 ; chapitre 6 page 162).

Une perspective à moyen terme est de combiner ce travail sur la
planification des opérations de cross-docking avec des problèmes de
planification de réseaux de crossdocks. Les problèmes relatifs aux ré-
seaux n’ont pas été abordés dans cette thèse qui ne traite que des
opérations internes. La conception de réseaux de crossdocks, ou de ré-
seaux logistiques comprenant un crossdock ou plus, est une décision
stratégique. Cependant, la gestion quotidienne de ce réseau et des
transferts entre les différents acteurs de la supply-chain est bien un
ensemble de décisions opérationnelles. Il est clair que ce problème est
intimement lié aux décisions prises par les managers de plateforme :
si un seul camion est utilisé pour plusieurs transferts au sein du ré-
seau, un retard sur une plateforme risque d’impacter l’ensemble du
réseau. Cette année, Agustina et al. [4] et Dondo and Cerdá [63] ont
commencé à traiter ces deux problèmes de façon intégrée, idée qui
mérite d’être explorée davantage.

Une autre perspective serait de prendre en compte des aspects envi-
ronnementaux dans notre modèle, en particulier parce que les entre-
prises logistiques devraient subir une forte pression économique sur
ces questions dans les années qui viennent. En logistique, un compro-
mis doit être trouvé entre la vitesse de livraison et le remplissage des
camions. Dans un crossdock, que faire avec un camion qui n’est qu’à
moitié plein à l’heure planifiée pour son départ ? Garder le camion
à quai plus longtemps impacte le délai de livraison et la qualité de
service ; mais envoyer sur la route un camion à moitié plein est éga-
lement une mauvaise décision du point de vue économique comme
écologique. Dans cette thèse nous avons postulé que tous les camions
partent pleins ; une étude détaillée de la façon de gérer ce compromis
est une extension possible.

Les différents modèles présentés dans cette thèse, et notamment les
problèmes de planification de camions, nécessitent donc davantage
de travail avant de pouvoir être adoptés dans un contexte industriel.
Des hypothèses plus réalistes doivent être ajoutées et les temps d’exé-
cution doivent être raccourcis pour traiter rapidement des instances
représentant de grandes plateformes.

Un autre aspect important est le contrôle en temps réel des opéra-
tions logistiques. Les WMS (logiciels de gestion d’entrepôts) regroupent
déjà une grande quantité de données, et cette tendance devrait encore
augmenter dans les prochaines années avec le développement des
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technologies vocales et de réalité augmentée. Les modèles d’optimi-
sation devraient donc être utilisés non plus à l’échelle de la semaine
ou de la journée, mais régulièrement dans la journée, exploitant les
nouvelles informations pour apporter une aide à la décision en temps
réel. Cela implique de développer des modèles d’optimisation très ré-
actifs et rapides, capables d’exploiter des quantités importantes de
données pour recalculer de nouveaux plannings.

Une fois ce travail réalisé, l’étape suivante est d’intégrer l’outil au
système d’information d’une plateforme logistique. Plusieurs bancs
d’essais sont disponibles qui comparent les WMS existants – voir par
exemple les fiches proposées par Supply Chain Magazine [190] concer-
nant les solutions utilisées par les plateformes françaises. Il est cepen-
dant difficile d’avoir une vision claire sur la part d’“optimisation”
utilisée par les logiciels, et sur le type d’optimisation réalisée – allo-
cation gloutonne, recherche locale. . . ? Une étude détaillée serait né-
cessaire pour obtenir un panorama clair ; mais notre expérience en
industrie suggère que les techniques d’optimisation ne sont pratique-
ment jamais utilisées par les plateformes logistiques. Intégrer notre
outil d’optimisation dans un WMS existant de façon à utiliser les don-
nées du logiciel en entrée serait donc l’étape suivante de ce plan à
moyen terme.

Les perspectives à long terme sont fortement liées à la façon dont
l’industrie de la logistique va évoluer au cours des dix prochaines
années.

“Tout comme les usines, les entrepôts s’inscrivent dans un
schéma supply chain plus vaste, et si leur performance in-
trinsèque est importante, c’est davantage la manière dont
ils seront utilisés avec pertinence qui fera la différence”.

Polge [160]

Les tendances qui émergent actuellement, et qui pourraient devenir
la norme d’ici 2025 ou 2050, sont identifiées dans plusieurs études
dont celles menées par Deutsche Post DHL [62] ou Gue et al. [90]. Bien
entendu, toutes les tendances identifiées ne sont pas liées au cross-
docking ; mais les plateformes de cross-docking et la planification de
leurs opérations ont leur rôle à jouer dans plusieurs d’entre elles.

La logistique urbaine et la problématique du dernier kilomètre sont
un sujet de recherche très actif et un défi majeur. Afin de réduire la
congestion dans les villes, de nouveaux modes de transport de fret en
ville doivent être développés. Mais afin de conserver un flux rapide
de marchandises vers la ville, des plateformes de cross-docking sont
nécessaires pour transférer les produits depuis les poids lourds vers
ces nouveaux moyens de transport urbain.

“Des crossdocks en accès ouvert et partagé, capables de
planifier de façon dynamique un usage simultané par des
distributeurs multiples et souvent concurrents, devraient
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permettre une distribution rentable pour le dernier kilo-
mètre. Afin de mettre en place de telles installations, il
est nécessaire de créer des systèmes équitables et efficaces
pour l’allocation et la planification de l’espace, des portes
et de la main d’œuvre”.

Traduit librement de Gue et al. [90]

Notre travail s’intègre bien dans cette vision proposée par Gue et al.
L’appliquer à des plateformes spécialement dédiées à la logistique
urbaine constitue une possible perspective à long terme.

Des chercheurs au Canada, en Europe et aux États-Unis ont ré-
cemment proposé un nouveau concept en logistique, celui de l’In-
ternet Physique (abbrégé PI ou π). Il s’agit d’une vision ambitieuse physicalinternet

initiative.orgvisant à transformer la façon dont les objets physiques sont trans-
portés, stockés, fournis et utilisés – en s’inspirant de la façon dont les
ordinateurs sont interconnectés via Internet. L’objectif est de réorgani-
ser entièrement la distribution de marchandises d’une façon efficace,
mais aussi soutenable des points de vue économique, environnemen-
tal et social. Les marchandises, encapsulées dans des π-conteneurs
standardisés, seraient manutentionnées par des engins dédiés – π-
déplaceurs, π-convoyeurs. Les π-crossdocks ou centres de transit, po-
tentiellement multimodaux, faciliteraient ainsi le transbordement de
camion à camion de façon automatisée et très rapide. Bien sûr le mo-
dèle développé au chapitre 5 pour les employés d’une plateforme
logistique ne s’applique pas dans ce cas : grâce à la standardisation
poussée des π-conteneurs, toutes les opérations de transbordement
pourraient être automatisées à 100%. Cependant, les modèles de pla-
nification des camions dans les plateformes de cross-docking seraient
tout à fait indispensables pour exploiter de telles installations de ma-
nière fluide.

http://www.physicalinternetinitiative.org/index_fr.php
http://www.physicalinternetinitiative.org/index_fr.php
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The interview grid used in every platform visit we made is dis-
played below. The grid is entirely in French since all the companies
visited are French companies.

Guide d’entretien 
Caractérisation d’un crossdock, identification de ses contraintes et objectifs 
Entreprise :       Lieu : 

Caractérisation du Xdock 
Secteur d’activité 
Client(s) 
 
Données de la plateforme  
I  L  U  T  H  E   … 
Surface 
Nombre de portes 
Nombre d’employés CDI/CDD 
Nombre d’intérimaires 
 
Amplitude d’ouverture  
Horaires des équipes 

Certifications 

Flux 
Qualification des flux:   tendus   stockés 
Quantification des flux : gros   moyens  faibles 
 Volumes annuels 

Volumes quotidiens 
Variabilité 
 
Mode de service 
Porte exclusivement dédiées à l’entrée ou à la sortie 
Gestion mixte 
Portes exclusivement dédiées à une destination 

Restrictions pour assigner les camions aux portes ? 
 
Transport interne  
Manuel   quelles contraintes engins   quelles contraintes RH – CACES 

 
Automatique 
Mixte 
 
Système d’information 
Quel système ? 

Développement :  externe  interne 
Support :  externe  interne 

Contraintes 
Temps de déplacement d’une porte à l’autre 
Négligeables  
Fonction de :   distance  congestion  RH disponibles   engins disponibles 
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Planification des ressources  
Humaines 
 Tâches, métiers 
 Polyvalence ? 
 Modulation ? 
Matérielles 
 
 
Arrivées des camions  
Tous en même temps/concentration 
Répartition régulière 
Heures estimées    Heures exactes    Tranche horaire 
 
Gestion des aléas, des retards ? 
 
 
 
Déchargement 
Composition    mono-produits    multi-produits 
Tps de déchargement   dépend du camion ± constant entre 2 bornes 
Départ des camions   non contraint  borne sup entre 2 bornes 
 
Interchangeabilité des produits 
Produits spécifiquement assignés à des destinations  
On a  uniquement un nb et type de produit à charger par destination 
 
 
Opérations à valeur ajoutée 
Oui  Non 
Systématiques ?   Temps 
 
Stockage intermédiaire 
Totalement interdit  
Après déchargement      

Au sol sur les quais  En zone de rétention    Sur racks  
Avant rechargement  
 Au sol sur les quais  En zone de rétention    Sur racks 
Capacités, coûts 
 
Préemption 
Interruption du chargement autorisé ?  oui  non 
Coût du changement de camion 
 
 
Heures de départ des camions sortants 
Non contraint 
Entre deux bornes  Borne sup uniquement  
Dès que camion chargé   A heure fixe même si pas plein    à heure fixe, doit être plein 

Objectifs 
Evaluation de performance 
Somme pondérée des temps de prise en charge   Makespan 
Retard maximum       Somme pondérée des retards 
Total stocké        Niveau de stock max 
Coups de fourche 
Mouvements de camion 
Engorgement 
 
 
Besoins 
Points difficiles, délicats, bloquants dans la planif ?  
 
 
 
 
 
 
Objectifs de performance  



B
D O C U M E N TAT I O N O F T H E I N S TA N C E
G E N E R AT O R

Three files can be found at www.g-scop.fr/~gaujalg/XDockInstances2:

instanceinput.txt, a text file that enumerates the input data needed
to generate an instance

instancegenerator.jar generates a new instance from the input
data file placed in the same directory. The instance is visualized
through an applet and saved in a file named instanceData.txt.

instances.zip, zip archive file containing all the instances used in
this document (see Table 2.2), described with the same syntax
as instanceData.txt.

b.1 instance generator : quick start

To generate an instance, follow the instructions:

1. Download instanceInput.txt and instanceGenerator.jar and
place them in the same directory.

2. Ensure that Java is installed on your system.

3. Open instanceInput.txt with any text editor, modify it de-
pending on your needs and save. The file enumerates, in this
order:

|I | number of inbound trucks to be scheduled;

|O | number of outbound trucks to be scheduled;

|C | number of clients to be served – pay attention to the fact
that there should be enough trucks to serve the clients, so
|I | must be greater than or equal to |C |;

|H| number of time units in the planning horizon;

N I number of inbound doors in the platform;

NO number of outbound doors in the platform;

F outbound truck capacity, i. e. number of pallets that can be
loaded in each outbound truck;

M internal platform capacity, i. e. maximum number of pallets
that can be transferred at each time unit.

4. Click on instanceGenerator.jar. An instance is generated from
the input data. A window opens to show a visual representa-
tion of the instance; the description of the instance data is saved
in the same directory, in a file named instanceData.txt.
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b.2 instance generator input

Figure B.1 gives an example of input file instanceInput.txt used
to generate instance 17_1. The numbers should be integers, separated
by a single string of characters (no spaces are allowed in the comment
lines). The order in which the different data elements are declared
must be respected.

//|I|_nb_inbound_trucks

5
//|O|_nb_outbound_trucks

5
//|C|_nb_clients

3
//|H|_nb_hours

10
//NI_nb_inbound_doors

3
//NO_nb_outbound_doors

3
//F_outbound_trucks_capacity

33
//M_internal_platform_capacity

17

Figure B.1: Input file used to generate instance 17_1

b.3 instance generator output

b.3.1 Description of the output file syntax and the embedded algorithms

Figure B.2 gives an example of output file that is generated by the
instance generator. The file is named instanceData.txt and placed
in the same directory as the generator and the input file.

The first eight lines of the text document repeats the input data,
in the same order as in instanceInput.txt. Next, we give details
regarding the generated data:

the inbound truck matrix lists all the information about the
inbound trucks. Each row represents a truck. The first column gives
the earliest possible arrival time for the truck – this generator always
uses 0 for this value. The second column gives the latest possible
departure time – always |H| in the case of this generator. The third
column gives the wished arrival time for this truck, noted as A, ob-
tained by picking a random integer within the range [0, |H| − 1[ (the
truck cannot arrive at the last time unit or it could not be unloaded on
time). The length of the wished presence time window is an integer
noted L, randomly picked within the range [1, |H| − A[ so that the
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5
5
3
10
3
3
33
17

InboundTrucks

0 10 1 8 1
0 10 8 10 1
0 10 5 6 1
0 10 6 10 1
0 10 8 9 1

OutboundTrucks

0 10 7 8 3
0 10 3 10 3
0 10 9 10 3
0 10 1 8 3
0 10 3 5 3

Q_ic

7 1 25
8 6 19
4 14 15

10 9 14
4 3 26

Z_co

1 0 0 0 0
0 1 0 0 0
0 0 1 1 1

Figure B.2: Example of output file instanceData.txt

time window is at least one time unit long. The fourth column is the
wished departure time, i. e. A + L. Finally, the last column is needed
to generate matrix W I : it is the minimum length of the presence slots
enumerated in W I . The generator calculates this as the minimum
amount of time needed to unload the truck, i. e. its total number of
pallets divided by M.

the outbound truck matrix groups exactly the same infor-
mation as detailed above, but for the outbound trucks.

Q i c matrix describes the contents of the incoming trucks. Each
row represents an inbound truck, and each column corresponds to
a client. A cell ( i , c) in the matrix gives the number of pallets in
inbound truck i in destination to client c. For the data to be consistent,
the inbound quantity for each destination should be equivalent to the
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capacity of the outbound trucks for this destination. Matrix Q i c is
therefore generated with the algorithm detailed in algorithm B.1.

Fill the matrix with 0
foreach c ∈ C do

qty = F ∑o∈O Zco // Total number of pallets for client c
for pallet from 0 to qty do

repeat
i = random integer within the range[0, |I|[

until truckload(i) < F|O|
|I| // A truck not full is found

Qic = Qic + 1 // Add 1 pallet in truck i for client c

Update truckload(i)
end

end

Algorithm B.1: Generation of matrix Qic

matrix Zdo links the outbound trucks to the clients. To ensure
that each client is served by at least one truck, the first |C | columns
of the matrix are filled with “1” along the diagonal. The remaining
columns are filled picking a random destination number for each
truck left; algorithm B.2 details the procedure used.

Fill the matrix with 0
for o from 0 to |C| − 1 do

Zoo = 1
end
for o from |C| to |O| do

c = random integer within the range [0, |C|[
Zco = 1

end

Algorithm B.2: Generation of matrix Zco

b.3.2 Example of visual representation

Figure B.3 on the facing page gives an example of visual represen-
tation proposed by the instance generator, along with some explana-
tions on what the different elements represent.
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C
I N T E G E R P R O G R A M M I N G M O D E L S

Below are the detailed formulations of the integer programming
models which do no appear explicitly in the main body of the disser-
tation.

min α0Πα + β0Πβ + γ0Πγ

s.t. Πα = ∑i∈I ∑k∈Ki
PI

ikwI
ik (1’)

Πβ = ∑o∈O ∑k∈Ko PO
okwO

ok (2’)

Πγ = ∑h∈H,i∈I ,c∈C sI
hic (3’)

∑o∈O ∑k∈Ko WO
okhwO

ok ≤ NO ∀h ∈ H (5’)

xhio + sI
hic ≤ F ∑k∈Ki

W I
ikhwI

ik ∀h ∈ H, i ∈ I , o ∈ O (6’)

xhio + sO
ho ≤ F ∑k∈Ko WO

okhwO
ok ∀h ∈ H, i ∈ I , o ∈ O (7’)

∑h∈H,o∈O Zcoxhio + ∑h∈H sI
hic = Qic ∀i ∈ I , c ∈ C (8’)

∑i∈I ,h∈H xhio + ∑h∈H sO
ho = F ∀o ∈ O (9’)

∑o∈O xhio + ∑c∈C sI
hic ≤ M ∀i ∈ I , h ∈ H (10’)

∑k∈Ki
wI

ik = 1 ∀i ∈ I (11’)

shc = s(h−1)c + ∑i∈I sI
hic −∑o∈O ZcosO

ho ∀c ∈ C , h ∈ Hr {0} (13’)

s0c = ∑i∈I sI
0ic −∑o∈O ZcosO

0o ∀c ∈ C (14’)

xhio , sI
hic, sO

ho , shc ∈N+ ∀h ∈ H, i ∈ I , o ∈ O, c ∈ C
wO

ok ∈ {0, 1} ∀o ∈ O, k ∈ K

ip*1
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min α0Πα + β0Πβ + γ0Πγ

s.t. Πα = ∑i∈I ∑k∈Ki
PI

ikwI
ik (1”)

Πβ = ∑o∈O ∑k∈Ko PO
okwO

ok (2”)

Πγ = ∑h∈H,i∈I ,c∈C sI
hic (3”)

∑i∈I ∑k∈Ki
W I

ikhwI
ik ≤ N I ∀h ∈ H (4”)

xhio + sI
hic ≤ F ∑k∈Ki

W I
ikhwI

ik ∀h ∈ H, i ∈ I , o ∈ O (6”)

xhio + sO
ho ≤ F ∑k∈Ko WO

okhwO
ok ∀h ∈ H, i ∈ I , o ∈ O (7”)

∑h∈H,o∈O Zcoxhio + ∑h∈H sI
hic = Qic ∀i ∈ I , c ∈ C (8”)

∑i∈I ,h∈H xhio + ∑h∈H sO
ho = F ∀o ∈ O (9”)

∑o∈O xhio + ∑c∈C sI
hic ≤ M ∀i ∈ I , h ∈ H (10”)

∑k∈Ki
wI

ik = 1 ∀i ∈ I (11”)

shc = s(h−1)c + ∑i∈I sI
hic −∑o∈O ZcosO

ho ∀c ∈ C , h ∈ Hr {0} (13”)

s0c = ∑i∈I sI
0ic −∑o∈O ZcosO

0o ∀c ∈ C (14”)

xhio , sI
hic, sO

ho , shc ∈N+ ∀h ∈ H, i ∈ I , o ∈ O, c ∈ C
wI

ik ∈ {0, 1} ∀i ∈ I , k ∈ K

ip*2

min Πγ = ∑h∈H,i∈I ,c∈C sI
hic

s.t. xhio + sI
hic ≤ F ∑k∈Ki

W I
ikhwI

ik ∀h ∈ H, i ∈ I , o ∈ O (6′′′)

xhio + sO
ho ≤ F ∑k∈Ko WO

okhwO
ok ∀h ∈ H, i ∈ I , o ∈ O (7′′′)

∑h∈H,o∈O Zcoxhio + ∑h∈H sI
hic = Qic ∀i ∈ I , c ∈ C (8′′′)

∑i∈I ,h∈H xhio + ∑h∈H sO
ho = F ∀o ∈ O (9′′′)

∑o∈O xhio + ∑d∈D sI
hic ≤ M ∀i ∈ I , h ∈ H (10′′′)

shc = s(h−1)c + ∑i∈I sI
hic −∑o∈O ZcosO

ho ∀c ∈ C , h ∈ Hr {0} (13′′′)

s0c = ∑i∈I sI
0ic −∑o∈O ZcosO

0o ∀c ∈ C (14′′′)

xhio , sI
hic, sO

ho , shc ∈N+ ∀h ∈ H, i ∈ I , o ∈ O, c ∈ C

ip*3

(ip1)d1 is a version of ip1 ( on page 55) with min rI as objective
function, and constraint (15)d1 added, as well as constraint (1)d1 to
ensure that the search is restricted to the optimal solutions of ip1.
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min rI

s.t. ∑i∈I ∑k∈Ki
pI

ikwI
ik ≤ Πα

0 (1)d1

xhio + sI
hic ≤ F ∑k∈Ki

W I
ikhwI

ik ∀h ∈ H, i ∈ I , o ∈ O (6′′′)

xhio + sO
ho ≤ F ∑k∈Ko WO

okhwO
ok ∀h ∈ H, i ∈ I , o ∈ O (7′′′)

∑h∈H,o∈O Zcoxhio + ∑h∈H sI
hic = Qic ∀i ∈ I , c ∈ C (8′′′)

∑i∈I ,h∈H xhio + ∑h∈H sO
ho = F ∀o ∈ O (9′′′)

∑o∈O xhio + ∑d∈D sI
hic ≤ M ∀i ∈ I , h ∈ H (10′′′)

shc = s(h−1)c + ∑i∈I sI
hic −∑o∈O ZcosO

ho ∀c ∈ C , h ∈ Hr {0} (13′′′)

s0c = ∑i∈I sI
0ic −∑o∈O ZcosO

0o ∀c ∈ C (14′′′)

∑h∈H,i∈I ∑k∈Ki
W I

ikhwI
ik ≤ rI N I |H| (15)d1

xhio , sI
hic, sO

ho , shc ∈N+ ∀h ∈ H, i ∈ I , o ∈ O, c ∈ C

(ip1)d1

(ip*1)d1 is a version of ip* ( on page 46) with min rO as objective
function, and constraint (16)d1 added, as well as constraints (2)d1 and
(3)d1 to restrict the search to the optimal solutions of ip*1.

min rO

s.t. ∑o∈O ∑k∈Ko pO
okwO

ok ≤ Πβ
0 (2)d1

∑h∈H,i∈I ,c∈C sI
hic ≤ Πγ

0 (3)d1

Πα
0 = ∑i∈I ∑k∈Ki

PI
ikwI

ik (1)

Πβ
0 = ∑o∈O ∑k∈Ko PO

okwO
ok (2)

Πγ
0 = ∑h∈H,i∈I ,c∈C sI

hic (3)

∑i∈I ∑k∈Ki
W I

ikhwI
ik ≤ N I ∀h ∈ H (4)

∑o∈O ∑k∈Ko WO
okhwO

ok ≤ NO ∀h ∈ H (5)

xhio + sI
hic ≤ F ∑k∈Ki

W I
ikhwI

ik ∀h ∈ H, i ∈ I , o ∈ O (6)

xhio + sO
ho ≤ F ∑k∈Ko WO

okhwO
ok ∀h ∈ H, i ∈ I , o ∈ O (7)

∑h∈H,o∈O Zcoxhio + ∑h∈H sI
hic = Qic ∀i ∈ I , c ∈ C (8)

∑i∈I ,h∈H xhio + ∑h∈H sO
ho = F ∀o ∈ O (9)

∑o∈O xhio + ∑c∈C sI
hid ≤ M ∀i ∈ I , h ∈ H (10)

∑k∈Ki
wI

ik = 1 ∀i ∈ I (11)

∑k∈Ko wO
ok = 1 ∀o ∈ O (12)

shc = s(h−1)c + ∑i∈I sI
hic −∑o∈O ZcosO

ho ∀c ∈ C , h ∈ Hr {0} (13)

s0c = ∑i∈I sI
0ic −∑o∈O ZcosO

0o ∀c ∈ C (14)

∑h∈H,o∈O ∑k∈Ko WO
okhwO

ok ≤ rONO|H| (16)d1

xhio , sI
hic, sO

ho , shc ∈N+ ∀h ∈ H, i ∈ I , o ∈ O, c ∈ C
wI

ik , wO
ok ∈ {0, 1} ∀i ∈ I , o ∈ O, k ∈ K

(ip*1)d1





D
S TA N D A R D T I M E C A L C U L AT I O N S

This appendix details how the standard time used for simulation
are obtained.

d.1 distances

The distances are not explicitly taken into account in our model,
but they should appear implicitly in the processing times. To calcu-
late the processing time, the following assumptions are made regard-
ing distances:

platform width . According to Bartholdi and Gue [19], I-shaped
platforms are about 60 to 120 feet wide. In the case of small
platforms, the width of the platform is therefore 60 feet, i. e. 18
meters.

platform length . Bartholdi and Gue also state that the space be-
tween doors is generally 12 feet. The length of a platform with
3 inbound and 3 outbound doors will therefore be 12× 3 = 36
feet, i. e. 11 meters.

truck size . We assume that a standard truck capable of carrying 33
European pallets of 800× 1200 mm, measures 8.8× 3.6 meters.

door-dock distance . We assume that there is 1 meter between
the truck door and the dock.

In the best case, a pallet has to go from a given inbound dock to the
one just opposite: the distance from dock to dock is then 18 meters.
In the worse case, the pallet has to go from a side dock to the dock on
the opposite side in diagonal: the distance is then

√
602 + 362 = 70

feet, i. e. about 21 meters. The distances to be crossed during transfer
and unloading are presented in Figure D.1.

8.8m 1m 11m

18m

unloading transfer (best case)

21m

transfer (worst
case)

Loaded pallet truck
Empty pallet truck

Figure D.1: Distances for unloading and transfer
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d.2 standard times

The standard times in Table D.1 and D.2 are taken from Gauvreau [78].

Operation In a clear area (s) In a congested area (s)

Load a pallet 70 88

Start the loaded pallet truck 8 8

Stop the loaded pallet truck 8 8

Unload the pallet truck 34 34

Total set-up time 120 138

Source: Gauvreau [78]

Table D.1: Standard times: set-up

Operation Load < 60kg Load > 60kg Empty

Move a pallet truck 2.36 s/m 3.34 s/m 2.36 s/m

Source: Gauvreau [78]

Table D.2: Standard times: moving a pallet truck

Operation Worse conditions Best conditions

Scan a pallet 40 seconds 90 seconds

Source: measures taken in an industrial context

Table D.3: Standard times: scanning a pallet

d.3 details of the calculations

The distance and standard time enable to calculate the following
values:
unloading in the best case . In the best case, the pallet truck

travels a distance of 9.80 m at a speed of 2.36 s/m when loaded,
then the same distance empty to come back to the next pallet.
Adding the set-up time and the time needed to scan the pallet,
the total time needed to unload a pallet in the best case is:

9.80× 2.36 + 9.80× 2.36 + 120 + 40 = 202.26 s = 3.5 min

unloading in the worst case . In the worst case, the pallet truck
travels a distance of 9.80 m at a speed of 3.34 s/m when loaded
with a heavy pallet, then the same distance empty. Adding the
set-up and scanning time, the total time needed to unload a
pallet in the worst case is:

9.80× 3.34 + 9.80× 2.36 + 138 + 90 = 283.86 s = 4.7 min
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transfer in the best case . In the best case, the pallet truck trav-
els a distance of 11 m at a speed of 2.36 s/m when loaded,
then the same distance empty to come back to the next pallet.
Adding the set-up time, the total time needed to transfer a pallet
in the best case is:

11× 2.36 + 11× 2.36 + 120 = 171.92 seconds = 2.8 minutes

transfer in the worst case . In the best case, the pallet truck
travels a distance of 21 m at a speed of 3.34 s/m when loaded,
then the same distance empty to come back to the next pallet.
Adding the set-up time, the total time needed to transfer a pallet
in the worst case is:

21× 3.34 + 21× 2.36 + 138 = 257.70 seconds = 4.3 minutes

The values obtained are the values of parameters a and b in the
triangular distribution in Table 3.1.
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résumé

Dans une plateforme de cross-docking, les produits sont déchargés des
camions entrants, triés puis directement rechargés dans les camions sor-
tants – chaque produit passe moins de 24 heures sur la plateforme.

L’analyse des écarts entre la littérature et les observations réalisées sur le
terrain permet de dégager deux axes de recherche : la prise en compte des
incertitudes opérationnelles d’une part, et de la capacité des ressources
humaines de la plateforme d’autre part.

Le problème de planification des camions entrants et sortants avec fe-
nêtre de temps est modélisé par un programme linéaire et résolu par trois
heuristiques différentes. La robustesse des plannings obtenus est ensuite
testée à l’aide d’un modèle de simulation à événements discrets, qui per-
met d’évaluer plusieurs reformulations robustes du modèle initial.

Le problème de planification des employés sur la plateforme est traité à
l’aide de trois programmes linéaires mixtes, résolus de façon séquentielle.
La combinaison des deux modèles permet d’obtenir un modèle d’aide à
la décision pour une plateforme de cross-docking.

mots-clés Logistique, cross-docking, programmation linéaire, heuristiques,
planification des camions, emplois du temps.

abstract

In a cross-docking platform, goods are unloaded from inbound trucks,
sorted and directly reloaded in outbound trucks – each product typically
stays less than 24 hours in the platform.

By analyzing the gaps between the literature and on-field observations,
we highlight two research directions: accounting for operational uncer-
tainties, and for the human resource capacity in the platform.

A truck scheduling problem with time windows for the inbound and
outbound trucks is modeled with an integer program and solved with
three different heuristics. The robustness of the schedules obtained is then
tested with a discrete-event simulation model, which enables to evaluate
several robust reformulations of the initial model.

The employee timetabling and rostering problem in the platform is ad-
dressed with three mixed integer linear problems solved sequentially. The
two models can be combined to serve as a decision-support tool for a
cross-docking platform.

key words Logistics, cross-docking, linear programming, heuristics, truck
scheduling, employee timetabling.
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