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Il m’est impossible d’oublier toute la communauté libanaise de Grenoble : Roland,
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Chapter 1

Introduction

1.1 Industrial context

Risk management of industrial facilities, such as EDF power plants, needs to accurately
assess and predict systems reliability. Depending on the available knowledge, three main
types of approaches are commonly used to assess systems reliability. If operation feedback
data is available, the classical frequentist statistical approach can be used. When the
operation feedback data is not informative enough, the Bayesian statistical approach is
a convenient alternative since it allows adding knowledge from expert judgment [51].
When the systems failure has never been observed during the operation time period, a
structural reliability analysis can be carried out to assess risk indicators from numerical
models representing the physical behavior of the systems [86, 32].

In this dissertation, one considers the situation where operation feedback data is avail-
able and is the only source of knowledge about the systems reliability: thus the classical
frequentist statistical approach is our scope of work. Sometimes one can obtain useful
results using non parametric techniques that do not require any choice of a probabilistic
model. It is the case for instance when estimating a Mean Time to Failure (MTTF) by
the mean value of the observed operation lifetimes of the systems that failed. But, if
one is able to choose an appropriate probabilistic parametric model, this presents several
advantages:

• the hypothesis of the model may allow to better understand the nature of the random
observed phenomenon

• the estimation of the reliability indicators is of a better quality

• an adapted model allows to make predictions outside the operation feedback data
set which can not be accomplished by a non parametric method.

This parametric approach consists in three main steps illustrated in figure 1.1. The
first phase requires the building of relevant probabilistic parametric models in order to
reflect the randomness of the occurrence of systems failures. These models must be
complex enough to be able to represent the way the systems are operated. In a second
stage, statistical inference of the parameters of the developed models must be carried out,
based on the available operation feedback data. When these two steps are carried out,
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a final stage, as important as the previous ones, consists in firstly validating the fitted
models using statistical criteria and secondly comparing the different competing models.
The subject of the PhD thesis falls within this last stage of model validation and selection,
which is a crucial issue.

Figure 1.1: Three main steps of the approach

Indeed from a regulatory point of view, electric utilities have to present convincing
quantitative arguments to regulatory authorities in order to justify systems reliability.
It is thus essential to ensure the fitted models are relevant (even the best) given the
operation feedback data. From a performance point of view, the misspecification of the
systems reliability models can lead to establish inappropriate preventive maintenance
plans resulting in poor availability and economic performance of the power plants.

That is why it is crucial for EDF to have efficient probabilistic and statistical tech-
niques to determine the closest reliability models to the reality and prove their relevance
and quality.

1.2 Operation feedback data and reliability models

Depending on the characteristics of the studied systems, specific operation feedback data
are observed and appropriate probabilistic reliability models must be used to represent
real-life condition. The simplest case is the one of non repairable systems, generally
components. The quantity of interest is the operation time before the (unique) failure of
the systems. The feedback data from the operation of a fleet of components is made of:

• complete data associated with the operation times of the components that failed;
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• censored data relative, for instance, to the lifetimes of the components that did not
break down during the operation time period.

When the components are identical (from design, manufacturing, operation, mainte-
nance, environmental ... points of view) and independent (no common cause failures), the
operation feedback data is thus compounded of observations which constitute a sample
of independent random variables following the same distribution (identically distributed).
For instance, table 1.1 presents a classical data set of the literature [2]. It gives the failure
times of 50 devices.

Table 1.1: Failure data of 50 devices (Aarset data)

0.1 0.2 1 1 1 1 1 2 3 6
7 11 12 18 18 18 18 18 21 32
36 40 45 46 47 50 55 60 63 63
67 67 67 67 72 75 79 82 82 83
84 84 84 85 85 85 85 85 86 86

The most usual distribution used to represent the lifetime of components are the
Exponential and the Weibull distributions. These distributions are widely used to model
the lifetimes of non repairable systems. The Exponential distribution represents the
disadvantage of having a constant failure rate. The Weibull distribution is a more flexible
model since it allows decreasing, constant and increasing failure rates. It is then essential
to be able to check the relevance of these two distributions for a given data set. In this
work, we focus on the two-parameter Weibull distribution.

It is important to highlight that even if the Weibull distribution is popular in relia-
bility survival and analysis, it is also frequently used in many other technical fields: one
can mention environmental sciences (weather forecasting and hydrology), insurance, ge-
ology, chemistry, physics, medicine, economics and geography. Due to its close link to the
extreme value distribution, the Weibull model also appears in the extreme value theory.
Last but not least, the founding work of Waloddi Weibull [128] in the field of structural
mechanics stresses the relevance of using the Weibull distribution to model physical pa-
rameters such as the mechanical toughness (or strength) of a material and the length of
defects. EDF is also interested by data of that kind. For instance, table 1.2 presents
measures of toughness of EDF material at a specific temperature δ2. These data have
been modified for confidentiality reasons.

Table 1.2: Toughness data at δ2

14.13 67.54 70.68 98.96 102.10 105.24
105.24 149.22 171.21 177.49 183.78 190.06
205.77 240.33 252.89 268.60 284.31 293.73
300.02 303.16 312.58 362.85 369.13 409.97

The case of repairable systems is more complex. Firstly let us suppose no preventive
maintenance (PM) is carried out on the system (the ”run to failure” strategy is adopted).
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After a failure, a repair (or corrective maintenance - CM) is carried out so that the system
can perform its function again. Throughout the thesis, we will consider that repair times
are negligible or not taken into account, so failure times and CM times are identical. For
a given piece of equipment, one is interested in the time sequence of the successive CM.
It is a sequence of recurrent events which can be modeled by a univariate point process.
Figure 1.2 illustrates the occurrence of CM for a repairable system. Table 1.3 represents
CM times (in days) of some type of pipes within the boiler of an EDF coal-fired power
station. The welds of the straps holding these pipes are subjected to corrosion leading
to the initiation then propagation of flaws that may endanger the stability of the pipes.
Since it has no major impact on the operation of the plant, a run to failure maintenance
plan is carried out.

Figure 1.2: Occurrence of CM of a repairable system

Table 1.3: CM times of a repairable system

28 732 1152 1243 1327 1446 1502 1509 1739 1809
1852 2005 2198 2234 2521 2646 2804 2839 2873 2943
3090 3111

Now let us make the assumption that PM is also carried out on the system. PM in-
tends to slow down the wear process and reduce the frequency of occurrence of the system
failures. PM can be carried out at specific times previously fixed (planned maintenance
strategy) or depend on the monitoring of the system state (condition based maintenance
strategy). For a given system, one is interested in the sequence of both types of main-
tenance times (CM and PM). In this case, a multivariate point process must be used to
model the sequence of events illustrated in figure 1.3.

The second case study deals with a specific family of components within the boiler
of an EDF coal-fired power station. The welds holding these components are subjected
to thermal fatigue leading to the initiation then propagation of flaws that may generate
leaks. These require the immediate shutdown of the boiler, and consequently of the plant,
which may be critical from a performance point of view if the energy demand is huge.
That is why a specific maintenance plan combining corrective and preventive actions is
carried out:

1. when a leak occurs during plant operation, the incriminated weld is repaired without
delay to restart the plant as soon as possible.
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2. scheduled preventive inspections of the hazard zones of the system are carried out
periodically and the detected cracks are scoured.

Table 1.4 gives the PM and CM times of these welds [35].

Figure 1.3: Occurrence of CM and PM of a repairable system

Table 1.4: CM and PM times of a repairable system

25 50 93 109 114 141 163 164 195 225 264
PM CM CM CM PM CM CM CM CM PM PM

For maintained systems, the maintenance effect naturally impacts the system relia-
bility. A first classical approach to take into account this impact is to assume that the
maintenance is minimal, which means it leaves the system in the same state as it was
just before. It characterizes a maintenance effect that neither improves nor damages the
system. It is called As Bad As Old (ABAO) maintenance and the corresponding ran-
dom process family is the Non Homogeneous Poisson Processes (NHPP). A second basic
hypothesis consists in assuming that the maintenance is perfect, which means that it per-
fectly repairs the system and leaves it as if it was new. The latter is ”As Good As New”
(AGAN) after maintenance and the system is comparable to a similar new system put
into operation just after the previous maintenance. The corresponding random process
family is the renewal processes. Obviously standard maintenance reduces failure inten-
sity but does not systematically leave the system as good as new: reality is between the
two extreme cases previously presented. In the literature, models enabling to take into
account a maintenance effect between ABAO and AGAN are known as imperfect main-
tenance models. Many models have been suggested [63, 20] and among them the most
popular are the virtual age models, for which the maintenance rejuvenates the system
[63]. The Arithmetic Reduction of Age (ARA) models are one of those and are based on
an arithmetic reduction of what is called the virtual age of the system [33, 34, 35].

In order to take into account the diversity of the types of systems which are installed
within EDF power plants, it is necessary to have validation and selection statistical indi-
cators adapted for the different probabilistic models which have just been presented.

1.3 Goodness-of-fit tests

As already mentioned, it is fundamental to be able to choose an adapted parametric model
to a given data set and choose the best fitted model from a large range of candidate models.
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It is a classical statistical issue known as model validation and selection. Goodness-of-fit
(GOF) tests are a useful tool to achieve this goal.

There is a wide literature on GOF tests for the Exponential distribution, but very little
attention was paid to GOF tests for parametric models suitable in the field of industrial
reliability, such as the Weibull distribution and the imperfect maintenance models that
have been presented in the previous section.

Moreover, in nuclear electricity generation industry, systems failures are rare events,
leading to small and highly censored data sets which make the use of standard statistical
techniques difficult (even impossible). That is why the subject of the thesis, “GOF tests
in reliability: Weibull distribution and imperfect maintenance models”, is as challenging
as the imposed industrial constraints which require the development of new methods.

The first aim of the dissertation is to develop GOF tests for basic models like samples
of independent and identically distributed (iid) random variables, in order to answer the
question whether an iid sample comes from a specific distribution (the Exponential or the
Weibull distributions) or not. The second aim answers the same question for more so-
phisticated models: Non Homogeneous Poisson processes (NHPP), imperfect maintenance
models, ...

For non-repairable systems, we consider n similar systems operating independently
to each others. Their lifetimes are considered to be realizations of random variables
X1, . . . , Xn independent and identically distributed.

If all the lifetimes of the n systems are observed, they constitute a complete sample.
When not all the lifetimes are observed, it is a censored sample. There exist several kinds
of censoring: left or right, type I or type II, simple or multiple, etc ...

For non-repairable systems, we will be interested basically in complete samples and
in some cases simple type II censored samples. Type II left-censoring occurs when the
smallest s lifetimes are not observed and type II right-censoring occurs when the largest
r lifetimes are not not observed.

For repairable systems, we consider that we are studying one system that can be
subject to CM or PM. The quantities of interest are the CM times of the given system.
The PM are considered to be deterministic. The CM are considered to be the realizations
of a random point process. The question is still to find the best fitted point process to
model the occurrence of the failures. The system is assumed to be repaired after each
failure so we consider in all the studied cases that we have type I right-censoring which
means the observation stops after a given censoring time T .

The example of data in table 1.1 presents realizations of iid random variables. The
problem of interest is to find a model which fits well this data set. The problem is expressed
as a statistical test. We denote F the unknown distribution function of the sample.
This distribution is assumed to be continuous. In the case of discrete distributions, the
presented procedures need some arrangements that are not always simple. The GOF tests
for discrete distribution are detailed in chapter 7 of [18].

We distinguish two cases, depending on whether we want to test the goodness-of-fit
to an entirely specified distribution or to a family of distributions.

• GOF tests to an entirely specified distribution:

H0 : “F = F0” vs H1 : “F 6= F0”. (1.1)
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• GOF tests to a family of distributions:

H0 : “F ∈ F” vs H1 : “F /∈ F”. (1.2)

Often, family F is a parametric family: F = {F (.; θ); θ ∈ Θ}. It is the case when we
test whether the Aarset data comes from a Weibull distribution without precising specific
values of the parameters. If a Weibull distribution is adapted, we can estimate lately its
parameters.

The examples in tables 1.3 and 1.4 give CM and PM times of a repairable system. The
observations in this case are realizations of a point process. We want to find a relevant
model for this process. We denote λ. the unknown intensity function of the point process.
The GOF test in this case has the following hypotheses:

H0: “λ ∈ I” vs H1 : “λ /∈ I”

where the family I is a parametric family: I = {λ(.; θ); θ ∈ Θ}. For instance, one may
want to test a NHPP with a specific intensity function, either a power law intensity or a
NHPP with log-linear intensity function.

1.4 Structure of the dissertation

The thesis is structured in two parts of unequal size. Chapters 2 to 6 are devoted to non-
repairable systems and Chapters 7 and 8 to repairable systems. Two appendices provide
tables of results and a documentation of the R package EWGoF we have developed.

Chapter 2 presents a review of existing GOF tests for the Exponential distribution,
for complete and censored samples. A comprehensive comparison study is done, using
Monte-Carlo simulations. It leads to identify the best of these tests.

Chapter 3 is the first of 4 chapters dedicated to the two-parameter Weibull distribution.
First it gives the definitions and main properties of this distribution, that will be used
throughout the dissertation. Then, it presents a review of existing GOF tests for the
Weibull distribution.

In Chapters 4 and 5, we propose two new families of GOF tests for the Weibull dis-
tribution. Chapter 4 is dedicated to likelihood-based tests. These tests consist in nesting
the two-parameter Weibull distribution in three-parameter generalized Weibull families
and testing the value of the third parameter by using the Wald, score and likelihood
ratio procedures. We simplify the usual likelihood based tests by getting rid of the nui-
sance parameters, using three estimation methods, maximum likelihood, least squares and
moments.

Chapter 5 presents a second new family of GOF tests for the Weibull distribution,
based on the Laplace transform. These tests merge the ideas of Cabaña and Quiroz [22]
and those introduced by Henze [53] for testing the Exponential distribution. We also
introduce new versions of the statistics of Cabaña and Quiroz, using maximum likelihood
estimators instead of moment estimators.

Chapter 6 presents a comprehensive comparison study of all GOF tests for the Weibull
distribution. This comparison includes the usual GOF tests presented in Chapter 3 and
the new ones developed in Chapters 4 and 5. The idea of combining GOF tests is also
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introduced. Recommendations about the most powerful tests are given, according to the
characteristics of the tested data. The best tests that we have identified are little known
and rarely used.

In Chapter 7, we move to the repairable systems case. This chapter gives some prelimi-
nary results about nonhomogeneous Poisson processes and imperfect maintenance models,
when both corrective and preventive maintenances are performed. The tests proposed by
Lindqvist and Rannestad [79] for testing the fit of NHPPs are presented. They are based
on conditional sampling given a sufficient statistic.

Chapter 8 is a first attempt to building GOF tests for imperfect maintenance models.
The considered model assumes that the corrective maintenances are minimal (ABAO)
with a log-linear initial intensity. It also assumes that the preventive maintenances are
done at deterministic times and that their effect is of the Arithmetic Reduction of Age
with memory one (ARA1) type. In this case, a sufficient statistic exists and the tests of
Lindqvist and Rannestad [79] can be generalized.

Chapter 9 presents the application of this study to real data sets, some from the liter-
ature and some from EDF. These data sets are from both non repairable and repairable
systems. The practical use of the tests in an industrial context is detailed.

Appendix A contains a huge number of simulation results, which aim to assess the
power of GOF tests for the Exponential and Weibull distributions.

Appendix B gives a detailed documentation on the R package EWGoF that we have
developed. This package implements all the GOF tests for non repairable systems pre-
sented in this dissertation: GOF tests for the Exponential distribution of Chapter 2 and
GOF tests for the Weibull distribution of Chapters 3, 4 and 5. An important feature of
these tests is that they are all exact: the critical values needed for performing the tests
are obtained by Monte-Carlo simulation and no asymptotic results are used. Then, the
GOF tests can be applied for any sample size. All the simulation results and applications
to real data presented in the thesis have been done using the EWGoF package.



Chapter 2

Exponential distribution: basic
properties and usual GOF tests

This chapter is dedicated to the Exponential distribution. First, some definitions and
basic properties of this distribution are given. Then, we present a quick review of GOF
tests for the Exponential distribution, based on different approaches: probability plots,
empirical distribution function, normalized spacings, Laplace transform, characteristic
function, entropy, integrated distribution function, likelihood based tests, ... Complete
and censored samples are treated. Finally, an extensive comparison study is done which
leads to identify the best GOF tests for the Exponential distribution.

2.1 The Exponential distribution: definition and prop-

erties

A random variable X is from the Exponential distribution of parameter λ, denoted exp(λ),
if and only if its cumulative distribution function (cdf) is:

F (x;λ) = 1− exp(−λx), x ≥ 0, λ > 0. (2.1)

• The probability density function (pdf) is:

f(x;λ) = λ exp(−λx), x ≥ 0, λ > 0. (2.2)

• The reliability is R(x) = 1− F (x, λ) = exp(−λx).

• The expectation (or the Mean time to failure MTTF) is: MTTF = E[X] =
1

λ
.

• The variance is V ar[X] =
1

λ2
.
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• The hazard rate is h(x) =
f(x)

R(x)
=
λ exp(−λx)

exp(−λx)
= λ.

• The mean residual life is m(x) = E[X − x|X > x] =
1

λ
= E[X].

• The Laplace transform is ψ(t) = E [exp(−tX)] =
λ

λ+ t
.

• The characteristic function is ϕ(t) = E [exp(itX)] =
λ

λ− it .

• If X is from exp(λ), Y = λX follows a standard Exponential distribution exp(1).

The Exponential distribution is without memory. It means if that the system did
not fail yet at time t, then it behaves as if it was new at this time. Indeed, the random
variable X obeys the following relation:

∀x ≥ 0, P (X > t+ x | X > t) = P (X > x). (2.3)

In reliability, it means that the Exponential distribution is suitable for systems which are
not deteriorating neither improving with time.

Let x1, . . . , xn be realizations of independent and identically distributed (iid) random
variables X1, . . . , Xn with the exp(λ) distribution. The likelihood function is :

L(λ;x1, . . . , xn) =
n∏

i=1

f(xi) = λn exp

(
−λ

n∑

i=1

xi

)
. (2.4)

Maximizing this function, we obtain that the Maximum Likelihood Estimator (MLE)
of λ is:

λ̂n =
n

n∑

i=1

Xi

=
1

X̄n

. (2.5)

After estimating λ by λ̂n =
1

X̄n

, we will be interested in the random variables Ŷi =

λ̂nXi =
Xi

X̄n

that have a distribution that should be “close” to exp(1).

The vector
(
Ŷ1, . . . , Ŷn

)
/n has the Dirichlet distribution D(1, . . . , 1). This allows to

prove that asymptotically, distribution of this vector is independent of the parameter λ.

Therefore, each statistic built as a function of
(
Ŷi

)
1≤i≤n

can be a GOF test statistic.

Let X∗1 ≤ . . . ≤ X∗n be the order statistics of the sample X1, . . . , Xn, and X∗0 = 0. The
distribution of the (Xi)1≤i≤n has location and scale parameters µ and σ, if the distribution
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of Xi−µ
σ

does not depend on µ nor on σ. For such a distribution, the normalized spacings
are defined as:

Ei =
X∗i −X∗i−1

E
[
X∗i − µ
σ

]
− E

[
X∗i−1 − µ

σ

] , ∀i ∈ {1, . . . , n}. (2.6)

The expectations at the denominator of Ei do not depend on µ and σ, then the Ei are
observed. The normalized spacings can be written as follows:

Ei = σ
X∗i −X∗i−1

E
[
X∗i −X∗i−1

] = σ

X∗i − µ
σ

− X∗i−1 − µ
σ

E
[
X∗i − µ
σ

]
− E

[
X∗i−1 − µ

σ

] . (2.7)

Any statistic written as
∑

i aiEi/
∑

j bjEj is distributed independently of the param-
eters µ and σ, so it can be used to build a GOF test.

When the sample X1, . . . , Xn comes from exp(λ) (µ = 0 and σ = 1
λ
), the normalized

spacings are defined in this case as:

Ei = (n− i+ 1)(X∗i −X∗i−1), i ∈ {1, . . . , n}. (2.8)

Under the Exponential assumption, the (Ei)1≤i≤n are iid with the same distribution
exp(λ).

In the case of censored samples, when only the lowest n−r failure times x∗1 ≤ . . . ≤ x∗n−r
are observed, the likelihood function in this case is:

L(λ;x∗1, . . . , x
∗
n−r) =

n−r∏

i=1

f(x∗i )
[
1− F (x∗n−r)

]r

= λn−r exp

(
−λ

n−r∑

i=1

x∗i − λrx∗n−r

)
.

Thus, the maximum likelihood estimator of λ is:

λ̂n =
n− r

n−r∑

i=1

X∗i + rX∗n−r

. (2.9)

2.2 GOF tests for the Exponential distribution: com-

plete samples

In this section, we present a review of GOF tests for the Exponential distribution for
complete samples. There is a wide literature on GOF tests for the Exponential distribution
from the 50’s until now. Several review papers were published through time: Epstein [40,
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41], Spurrier [117], Ascher [7], Henze-Meintanis [53], chapter 10 of D´Agostino-Stephens
[31] and chapter 13 of Balakrishnan-Basu [10]. In all what follows, the studied GOF
tests have the most general alternative hypothesis. There are some GOF tests that aim
to test the Exponential distribution against a specific distribution such as the work of
Muralidharan [91], Basu-Mitra [14] and Gatto-Jammalamadaka [46].

The GOF tests families presented are the families of tests based on the probability
plot, the empirical distribution function, the normalized spacings, the likelihood, the
Laplace transform, the characteristic function, the entropy, the mean residual life and the
integrated distribution function.

2.2.1 Principles of GOF tests

Let X1, . . . , Xn be iid random variables and F their cumulative distribution function. For
the Exponential distribution, a GOF test is a statistical test of hypothesis H0: “F ∈ F”
vs H1: “F /∈ F”, where F is the family of the cdfs of the Exponential distributions.

The type I error consists in wrongly rejecting the null hypothesis H0. Here, it means
concluding that the distribution is not Exponential while it is Exponential indeed. The
significance level of the test, α, is the probability of type I error. It is generally set to
α = 5%. The type II error consists in not rejecting the Exponential hypothesis while the
distribution is indeed not Exponential. The power of the test is the probability of not
committing the type II error. It measures the test ability of concluding correctly that the
distribution is not Exponential.

A GOF test is generally based on a test statistic Z which is a measure of the distance
between two quantities: a theoretical one which characterizes the tested hypothesis H0

and an empirical one computed from the studied data set. The null hypothesis in this case
is rejected when Z is too large. The critical region is the set of values of Z for which H0

is rejected. If the observed value of Z, zobs, belongs to the critical region, the conclusion
of the test is the rejection of H0.

The determination of the critical region is based on the distribution of the test statistic
under H0. When the rejection is done for large values of the statistic, it means that, for a
fixed level α, H0 is rejected when zobs > q1−α, where q1−α is the quantile of order 1−α of
the distribution of Z under H0: PH0(Z > q1−α) = α. The test in this case is a one-sided
test. Some tests are two-sided: H0 is rejected when Z is either larger than the quantile
of order 1− α/2 or lower than the quantile of order α/2.

In most cases, the distribution of the test statistics under H0 is not known. Then,
their quantiles are computed using simulations. We simulate a large number K of samples
from the Exponential distribution. For each k ∈ {1, ..., K}, the value of the test statistic

Zk is computed. The quantile of order 1− α is approximated by the (1− α)th empirical
quantile of the sample Z1, ..., ZK .

The p-value of the test is the probability under H0 that the test statistic is greater
than its observed value: pobs = PH0(Z > zobs). If the distribution of Z is not known,
pobs is estimated by the frequency of simulated values of Z which are greater than zobs:

p̂obs = 1
K

K∑

i=1

1{Zi>zobs}.

The distribution of the test statistics under H0 has to be known or computable. Then,
it cannot depend on the parameters of the tested distribution. This is a very important
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point, on which we will focus in the following.

2.2.2 Test based on the probability plot

The probability plot is a graph that can be used to evaluate the fit of a distribution
F (.; θ) to the observations. The principle is to look for a linear relationship such as
h1[F (x; θ)] = α1(θ)h2(x) + α2(θ) where h1 and h2 are functions that do not depend on θ.
Thus, if the real cdf is F (; θ), then h1[IFn(x)] should be close to α1(θ)h2(x) +α2(θ) where

IFn(x) =
1

n

n∑

i=1

1{Xi≤x} is the empirical distribution function.

Let x∗1 < . . . < x∗n be order statistics of the observations x1, . . . , xn. For x = x∗i ,
h1[IFn(x∗i )] = h1

(
i
n

)
. When F is the real cdf, the points of the plot

(
h2(x∗i ), h1

(
i
n

))
should

be approximately aligned. For the Exponential distribution, F (x;λ) = 1−exp(−λx) then,
ln (1− F (x;λ)) = −λx. Thus, the probability plot of the Exponential distribution is the
plot of points [10]: (

x∗i , ln

(
1− i

n

))
, i ∈ {1, . . . , n− 1}. (2.10)

Patwardhan [99] worked on a variant of the probability plot based on the expectations
of the order statistics of the standard Exponential distribution [99]:

(
i∑

j=1

1

n− j + 1
, x∗i

)
, i ∈ {1, . . . , n}. (2.11)

For all i, let δi =
i∑

j=1

1

n− j + 1
and Ŷ ∗i =

X∗i
X̄n

. Under the Exponential assumption,

these points should be approximately on the line y = x. Patwardhan suggested a statistic
Pan that measures the proximity between vectors (δ1, . . . , δn) and (Ŷ ∗1 , . . . , Ŷ

∗
n ). This

statistic can also be written as a function of the normalized spacings Ei:

Pan = n(n+ 1)

n∑

i=1

E2
i

[
n∑

i=1

Ei

]2 . (2.12)

The null hypothesis H0 is rejected for large values of Pan.

2.2.3 Shapiro-Wilk test

The Shapiro-Wilk test [113] is based on the ratio of two estimators of 1/λ. Their procedure
is applied to Exponential distribution with a location parameter and can not be applied
to standard Exponential distribution. Stephens in [119] adapted Shapiro-wilk statistic for
the Exponential distribution with a null location parameter. The test statistic is:
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SWn =
X̄2
n

(n+ 1)S2
n + X̄2

n

, where X̄n =
1

n

n∑

i=1

Xi and S2
n =

1

n

n∑

i=1

X2
i − X̄2

n. (2.13)

The rejection of the null hypothesis H0 is done for too large or too small values of the
test statistic.

2.2.4 Tests based on the empirical distribution function

These tests are based on a measure of the departure between the empirical distribution
function IFn and the estimated theoretical distribution function F̂0(x) = F (x; λ̂n) = 1 −
exp(−λ̂nx). The null hypothesis is rejected when this difference is too large.

The best known statistics are [31]:

• Kolmogorov-Smirnov statistic (KS):

KSn =
√
n sup
x∈IR

∣∣∣IFn(x)− F̂0(x)
∣∣∣

=
√
nmax

[
max{ i

n
− U∗i },max{U∗i −

i− 1

n
}
] (2.14)

• Cramer-von Mises statistic (CM):

CMn = n

∫ +∞

−∞

[
IFn(x)− F̂0(x)

]2

dF̂0(x)

=
n∑

i=1

(
Û∗i −

2i− 1

2n

)2

+
1

12n

(2.15)

• Anderson-Darling statistic (AD):

ADn = n

∫ +∞

−∞

[
IFn(x)− F̂0(x)

]2

F̂0(x)
(

1− F̂0(x)
) dF̂0(x)

= −n+
1

n

n∑

i=1

[
(2i− 1− 2n) ln(1− Û∗i ))− (2i− 1) ln(Û∗i )

]
(2.16)

where Ui = F̂0(Xi) = 1− exp
(
−Xi/Xn

)
.

2.2.5 Tests based on the normalized spacings

Several statistics have been developed using the normalized spacings Ei = (n−i+1)(X∗i −
X∗i−1). Gnedenko in [49] suggested the following one:
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Gn(l) =

(n− l)
l∑

j=1

Ej

l

n∑

j=l+1

Ej

. (2.17)

The statistic Gn has, under H0, the Fisher-Snedecor distribution F (2l, 2(n − l)). A
second test statistic is proposed by Harris [52]:

Gn∗(l) =

(n− 2l)

(
l∑

j=1

Ej +
n∑

j=n−l+1

Ej

)

2l
n−l∑

j=l+1

Ej

. (2.18)

The test statistics Gn(l) and Gn∗(l) are functions of the parameter l. We will use the
recommended values of the parameter l given in [52]: l = [n/2] for Gn and l = [n/4] for
Gn∗. Gail and Gastwirth [45] proposed the Gini statistic:

GGn =

n−1∑

i=1

iEi+1

(n− 1)
n∑

i=1

Ei

. (2.19)

For the previous three tests, the Exponential hypothesis is rejected for large and small
values of the statistics.

Lin and Mudholkar in [77] used separately both terms of the Harris statistic Gn∗(l):

LM1(l) =

(n− 2l)
l∑

i=1

Ej

l

n∑

j=l+1

Ej

(2.20)

LM2(l) =

(n− 2l)
n−l∑

j=l+1

Ej

l
n−l∑

j=l+1

Ej

. (2.21)

The Exponential hypothesis is rejected if at least one of the two statistics LM1 and LM2

is too large or too small. The test is denoted LM(l). We choose l = b (n−1)
10
c as in [77].
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2.2.6 Tests based on a transformation to exponentials or uni-
forms

Some transformations can be applied to the original sample X1, . . . , Xn. For example the
normalized spacings Ei = (n− i+ 1)(X∗i −X∗i−1), i ∈ {1, . . . , n− 1}, are random variables
composing a new iid sample from exp(λ). Stephens in [31] called it the transformation
N. All the previous GOF tests for the Exponential distribution applied to X1, . . . , Xn can
also be applied to E1, . . . , En.

A second approach consists in transforming an iid sample from exp(λ) to an iid sample
from the uniform distribution over [0, 1], U [0, 1]. Therefore, testing the exponentiality

of the sample X1, . . . , Xn is equivalent to testing the uniformity of

i∑
j=1

Ej

n∑
j=1

Ej

. The last

transformation is called by Stephens in [31] the K transformation.

2.2.7 Likelihood based tests

The likelihood based tests consist in including the tested distribution in a larger para-
metric family and testing a specific value of the parameter of this family using some
procedures such as the score and likelihood ratio tests. In our case, the Exponential dis-
tribution exp(λ) is included in the family of Weibull distributions W(1/λ, β). The idea
is to test exponentiality by testing H0: “β = 1” and H1 : “β 6= 1”, where β is the shape
parameter of the Weibull distribution and λ is a nuisance parameter. The test proposed
by Cox and Oakes [29] is the score test using the observed Fisher information instead of
the exact Fisher information. The rejection of the null hypothesis H0 is done for large
values of the statistics. The likelihood based test statistics are as follows:

• Score test:

Scn =
6

nπ2

[
n+

n∑

i=1

lnXi −
1

X̄n

n∑

i=1

(lnXi)Xi

]2

(2.22)

• Cox-Oakes test:

COn =

[
n+

n∑

i=1

lnXi −
1

X̄n

n∑

i=1

(lnXi)Xi

]2

n+
1

X̄n

n∑

i=1

(
lnXi/X̄n

)2
Xi −

1

nX̄2
n

[
n∑

i=1

(
lnXi/X̄n

)
Xi

]2 (2.23)

• Likelihood ratio test:

LRn = 2n ln

β̂n

n∑

i=1

Xi

n∑

i=1

X β̂n
i

+ 2(β̂n − 1)
n∑

i=1

lnXi (2.24)
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where β̂n is the MLE of β defined in equation (3.5). The rejection of H0 is done for large
values of the statistics.

2.2.8 Tests based on the Laplace transform

Henze [53] proposed GOF tests for the Exponential distribution based on the Laplace
transform. The building of the test is based on the measure of the difference between the
empirical Laplace transform and its theoretical version.
Henze used the fact that the sample Yi = λXi, ∀i ∈ {1, . . . , n} is a sample from the unit
Exponential distribution. Its Laplace transform is:

ψ(t) = E[exp(−tYi)] =
1

1 + t
. (2.25)

Since λ is unknown, it can be estimated by the MLE λ̂n. The distribution of Ŷ1, . . . , Ŷn
is independent of λ.
Henze’s idea [53] is to reject the hypothesis that X1, . . . , Xn are exponentially distributed
if the empirical Laplace transform ψn(t) = 1

n

∑n
i=1 exp(−tŶi) is too far from the theoretical

Laplace transform of a standard Exponential ψ(t). The closeness between both functions
is measured by a test statistic of the form:

Hen,a = n

∫ +∞

0

[
ψn(t)− 1

(1 + t)

]2

w(t; a)dt (2.26)

where w(t; a) = exp(−at) is a weight function. Using the integration by parts, the test
statistic turns out to be:

Hen,a =
1

n

n∑

i,j=1

1

Ŷi + Ŷj + a
− 2

n∑

j=1

exp(Ŷj + a)E1(Ŷj + a) + n(1− aeaE1(a)) (2.27)

where E1(z) =
∫ +∞
z

exp(−t)
t

dt.
The choice of the parameter a allows to build powerful GOF tests for a large range of
alternatives.
Baringhaus and Henze [12] proposed to use the fact that ψ(t) is solution of the differential
equation (λ+ t)ψ′(t) + ψ(t) = 0. The corresponding test statistics is:

BHn,a = n

∫ +∞

0

[(1 + t)ψ′n(t) + ψn(t)]
2
w(t; a) dt. (2.28)

The integral defining BHn,a can be computed and expressed as an explicit function of the

Ŷi:

BHn,a =
1

n

n∑

j,k=1

[
(1− Ŷj)(1− Ŷk)
Ŷj + Ŷk + a

− Ŷj + Ŷk

(Ŷj + Ŷk + a)2
+

2ŶjŶk

(Ŷj + Ŷk + a)2
+

2ŶjŶk

(Ŷj + Ŷk + a)3

]
.

(2.29)
Both tests reject the Weibull assumption for large values of the statistics.
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2.2.9 Tests based on the characteristic function

The characteristic function of the Exponential distribution is

ϕ(t) = E [exp(itX)] =
λ

λ− it = C(t) + iS(t) =
λ2

λ2 + t2
+ i

λt

λ2 + t2
. (2.30)

Epps and Pulley [39] proposed to compare the characteristic function of the standard
Exponential distribution to the empirical characteristic function of the sample Ŷ1, . . . , Ŷn,

ϕn(t) =
1

n

n∑
j=1

exp(−itŶj) = Cn(t) + iSn(t), where Cn(t) =
1

n

n∑
j=1

cos(tŶj) and Sn(t) =

1

n

n∑
j=1

sin(tŶj). The expression of their statistic simplifies to:

EPn =
√

48n

[
1

n

n∑

i=1

exp(−Ŷi)−
1

2

]
. (2.31)

Henze and Meintanis [54] suggested to build a test based on the equation verified by the
real and the imaginary parts of the characteristic function: S(t)− tC(t)/λ = 0. This idea
applied to the Ŷj leads to a statistic of the form:

HMn,a = n

∫ +∞

−∞
[Sn(t)− t Cn(t)]2 w(t; a) dt (2.32)

Two weight functions are used: w1(t; a) = exp(−at) and w2(t; a) = exp(−at2). The

corresponding statistics are denoted HM
(1)
n,a and HM

(2)
n,a. The integral in (2.32) can be

computed and expressed as an explicit function of the
(
Ŷj

)
1≤j≤n

:

HM (1)
n,a =

a

2n

n∑

j,k=1

[
1

a2 + (Ŷj − Ŷk)2
− 1

a2 + (Ŷj + Ŷk)2
− 4(Ŷj + Ŷk)

(a2 + (Ŷj − Ŷk)2)2

+
2a2 − 6(Ŷj − Ŷk)2

(a2 + (Ŷj + Ŷk)2)3
+

2a2 − 6(Ŷj + Ŷk)
2

(a2 + (Ŷj + Ŷk)2)3

] (2.33)

HM (2)
n,a =

√
π

4n
√
a

n∑

j,k=1

[(
1 +

2a− (Ŷj − Ŷk)2

4a2

)
exp

(
−(Ŷj − Ŷk)2

4a

)

+

(
2a− (Ŷj + Ŷk)

2

4a2
− Ŷj + Ŷk

a
− 1

)
exp

(
−(Ŷj + Ŷk)

2

4a

)]
.

(2.34)

Henze and Meintanis [55, 56] used a similar technique inspired by the fact, reported by
Meintanis and Iliopoulos [84], that |ϕ(t)|2 = C(t). The statistic has the form:
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MIn,a = n

∫ +∞

−∞

[
|ϕn(t)|2 − Cn(t)

]2
w(t; a) dt. (2.35)

As before, both weight functions w1(t; a) = exp(−at) and w2(t; a) = exp(−at2) are used.

The corresponding statistics are denoted MI
(1)
n,a and MI

(2)
n,a and have the following explicit

expressions:

MI(1)
n,a =

a

n

n∑

j,k=1

[
1

a2 + Ŷ 2
jk−

+
1

a2 + Ŷ 2
jk+

]

− 2a

n2

n∑

j,k=1

n∑

l=1

[
1

a2 + [Ŷjk− − Ŷl]2
+

1

a2 + [Ŷjk− + Ŷl]2

]

+
a

n3

n∑

j,k=1

n∑

l,m=1

[
1

a2 + [Ŷjk− − Ŷlm−]2
+

1

a2 + [Ŷjk− − Ŷlm−]2

]
(2.36)

and

MI(2)
n,a =

1

2n

√
π

a

n∑

j,k=1

[
exp

(
−Ŷ 2

jk−

4a

)
+ exp

(
−
Ŷ 2
jk+

4a

)]

− 1

n2

√
π

a

n∑

j,k=1

n∑

l=1

[
exp

(
−

[Ŷ 2
jk− − Ŷ 2

l ]

4a

)
+ exp

(
− [Ŷjk− + Ŷl]

2

4a

)]

+
1

2n3

√
π

a

n∑

j,k=1

n∑

l,m=1

[
exp

(
− [Ŷjk− − Ŷlm−]2

4a

)
+ exp

(
− [Ŷjk− + Ŷlm−]2

4a

)]
(2.37)

where Ŷjk− = Ŷj − Ŷk and Ŷjk+ = Ŷj + Ŷk.

For all the previous tests, H0 is rejected for large values of the statistics.

2.2.10 Test based on the entropy

The entropy of a random variable X whose pdf is f , is defined by:

H(X) = E[− ln f(X)] = −
∫ +∞

−∞
f(x) ln f(x) dx.

For all the positive random variables, H(X) ≤ 1 + lnE[X], which is equivalent to
exp(H(X))/E[X] ≤ e. The equality in the previous inequation is verified only for the
Exponential distribution.

Grzegorzewski and Wieczorkowski [50] suggested a test that rejects the Exponential
hypothesis when an estimation of exp(H[X])/E[X] is too small. One of the known esti-
mators of the entropy used in [50] is Vasicek estimator [124] defined as:

Ĥm,n =
1

n

n∑

i=1

ln
n

2m
(X∗i+m −X∗i−m) (2.38)
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where m is an integer less than n/2, X∗i = X∗1 for i < 1 and X∗i = X∗n for i > n.
The corresponding statistic is:

GWm,n =
n

2mX̄n

[
n∏

i=1

(
X∗i+m −X∗i−m

)
] 1
n

. (2.39)

It can be rewritten as:

GWm,n =
n

2m
¯̂
Yn

[
n∏

i=1

(
Ŷ ∗i+m − Ŷ ∗i−m

)] 1
n

. (2.40)

Approximated formulas to compute the quantiles are given in [50].

2.2.11 Tests based on the mean residual life

The mean residual life of the Exponential distribution is:

m(t) = E[X − t|X > t] = E[X] = 1/λ, ∀t ≥ 0. (2.41)

This property is equivalent to E[min(X, t)] = F (t)E[X],∀t ≥ 0. Then, Baringhaus and
Henze [13] proposed to build a GOF test based on the comparison between an estimator
of E[min(X, t)] and an estimator of F (t)E[X].
Two statistics are suggested, using Kolmogorov-Smirnov and Cramer-Von Mises type
metrics:

BHKn =
√
n sup

t≥0

∣∣∣∣∣
1

n

n∑

i=1

min(Ŷi, t)−
1

n

n∑

i=1

1{Ŷi≤t}

∣∣∣∣∣ (2.42)

BHCn = n

∫ ∞

0

[
1

n

n∑

i=1

min(Ŷi, t)−
1

n

n∑

i=1

1{Ŷi≤t}

]2

exp(−t)dt. (2.43)

2.2.12 Tests based on the integrated distribution function

The integrated distribution function of the standard Exponential distribution is:

Ψ(t, λ) = E [max(X − t, 0)] =

∫ +∞

t

R(x) dx =
e−λt

λ
. (2.44)

Klar [65] proposed to build a GOF test based on the Cramer-Von Mises distance be-
tween the estimated Ψ(t; λ̂n) and the empirical integrated distribution function Ψn(t) =
1

n

n∑
j=1

max(Xj − t, 0). The statistic has the expression:

Kln = nλ̂3
n

∫ +∞

0

(
Ψn(t)−Ψ(t; λ̂n)

)2

dt (2.45)
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The statistic Kln can be written as a function of
(
Ŷi

)
1≤i≤n

which proves the fact that

the null distribution of Kln does not depend on the parameter λ:

Kln = n

∫ +∞

0

(
1

n

n∑

i=1

(Ŷi − u)1{Ŷi>u} − exp(−u)

)2

du. (2.46)

The use of a weight function usually allows to increase the power of the test. The statistic
will have the form:

Kla,n = na3λ̂3
n

∫ ∞

0

[Ψn(t)−Ψ(t; λ̂n)]2 exp(−aλ̂nt) dt. (2.47)

The statistic Kln,a can be written using the sample
(
Ŷi

)
1≤i≤n

:

Kln,a =
2(3a+ 2)n

(2 + a)(1 + a)2
−2a3

n∑

i=1

exp(−(1 + a)Ŷi)

(1 + a)2
− 2

n

n∑

i=1

exp(−aŶi)

+
2

n

∑

i<j

[a(Ŷ ∗j − Ŷ ∗i )− 2] exp(−aŶ ∗i ).

(2.48)

The Exponential hypothesis is rejected for large values of the statistic Kla,n.

2.3 GOF tests for the Exponential distribution: cen-

sored samples

In this section we give a short bibliographical review of some GOF tests for the Exponen-
tial distribution in the case of simply type II censored samples. s and r denote respectively
the number of the left and right censored observations. Let us remind that it means that
only X∗s+1, . . . , X

∗
n−r are observed.

2.3.1 Tests based on the normalized spacings

In the case of censored observations X∗s+1, . . . , X
∗
n−r, the observed normalized spacings are

Es+2, . . . , En−r. They constitute a sample of size n−r−s−1 of the exp(λ) distribution. So
all the previous GOF tests for the Exponential distribution can be applied to this sample.
In the simulations presented in section 2.4.1, we apply the GOF tests Gn,Gn∗, LM and
CO to the spacings Es+2, . . . , En−r.
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2.3.2 Tests based on the lack of trend

Two test statistics were suggested by Brain and Shapiro in the case of doubly censored
samples [19].

Under the Exponential assumption, the Ei are iid, so they do not exhibit a trend.
This lack of trend can be tested using the Laplace test statistic:

BS1 =

m−1∑

i=1

(i−m/2)(Ei+s+1 − E)

m−1∑

i=1

Es+i+1

{
(i−m/2)2/m(m− 1)

}1/2

(2.49)

where E =
m−1∑

i=1

Es+i+1/(m − 1) and m = n − r + 1. The Exponentiality assumption is

rejected for large and small values of the statistics. The distribution of BS1 under H0

converges to the standard normal distribution when m goes to infinity. The statistic can
be rewritten as:

BS1 = [12(m− 2)]1/2(U − 1/2)

where Ti =
i∑

j=1

Es+j+1, i = 1, . . . ,m−1, Ui = Ti/Tm−1, i = 1, . . . ,m−2, U =
m−2∑

i=1

Ui/(m−

2).
The last expression of the statistic BS1 is the usual expression of the Laplace test statistic
applied to the uniform order statistics Ui, i = 1, . . . ,m− 2.
A second statistic BS∗ is introduced. It is built as the sum of squares of two components,
the first one associated to BS1 and the second one to BS2 obtained by replacing in the
previous expression (i −m/2) by (i −m/2)2 −m(m − 2)/12. The aim is to build a test
sensitive to non-monotonic hazard functions.

BS2 = [5(m− 2)(m+ 1)(m− 3)]1/2
(
m− 3 + 6(m− 1)U − 12

m−2∑

i=1

iUi/(m− 2)
)

(2.50)

The combined statistic is BS∗ as follows:

BS∗ = BS2
1 +BS2

2 . (2.51)

The distribution of BS∗ under H0 can be approximated by the χ2 distribution. The null
hypothesis H0 is rejected when the statistic is too large. This idea of combining two test
statistics will be used later in section 6.2.

2.3.3 Tests based on the empirical distribution function

Pettitt and Stephens [100] introduced versions of the Cramer-von Mises, Watson and
Anderson-Darling statistics in the case of simple right censoring. The statistics are ob-
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tained by modifying the upper limit of integration in their definitions in subsection 2.2.4.
After simplification, the statistics have the following expressions [31]:

• Cramer-von-Mises statistic (CM):

CM =
n−r∑

i=1

(
U∗i −

2i− 1

2n

)2

+
n− r
12n2

+
n

3

(
U∗n−r −

n− r
n

)3

(2.52)

• Watson statistic (W):

W = CM − nU∗n−r
[
n− r
n
− U∗n−r

2
− (n− r)Ū

nU∗n−r

]2

(2.53)

• Anderson-Darling statistic (AD):

AD =− 1

n

n−r∑

i=1

(2i− 1)[lnU∗i − ln(1− U∗i )]− 2
n−r∑

i=1

ln(1− U∗i )

− 1

n
[r2 ln(1− U∗n−r)− (n− r)2 ln(U∗n−r) + n2U∗n−r]

(2.54)

• Kolmogorov-Smirnov statistic (KS) can also be adapted for censored data:

KS = sup
1≤i≤n−r

∣∣∣∣
i− 0.5

n
− U∗i

∣∣∣∣+
0.5

n
(2.55)

where Ui = 1− e−λ̂nXi , λ̂n = n−r
n−r∑

i=1

X∗i + rX∗n−r

and U∗1 , . . . , U
∗
n−r are the order statistics of

the sample U1, . . . , Un−r.

The same statistics can be applied in the case of left-censored samples. We use the
transformation V ∗i = 1− U∗n+1−i, i = 1, . . . , n− s, where s = r is the number of censored
observations. The exponentiality hypothesis is rejected for large values of the statistics.

2.3.4 Test based on the Kullback-Leibler information

This test is based on the Kullback-Leibler information. It was proposed in order to test
the exponentiality in the case of progressively censored samples of type II [11]. It can be
applied to the special case of simply right-censored samples:

KL = −H(w,m, n) +
m− 1

n

[
ln

(
1

m− 1

m−1∑

i=1

Xi

)
+ 1

]2

(2.56)

where m = n− r and

H(w,m, n) =
1

n

m∑

i=1

ln
(n+ 1)(X∗min(i+w,m−1) −X∗max(i−w,1))

min(i+ w,m− 1)−max(i− w, 1)
+

(
1− m− 1

n

)
ln

(
1− m− 1

n

)
.

The choice of w is given as a function of the sample size. We will use the value recom-
mended in [38]. The rejection of the Exponential hypothesis is done for large values of
the test statistic.
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2.4 Comparison of the GOF tests for the Exponential

distribution

In this section, we make an exhaustive comparison of all the previous GOF tests for the
Exponential distribution. The comparisons are based on Monte-Carlo simulations. Some
reviews were already done for complete samples, by Henze-Meintanis [55], Spurrier [117]
and Ascher [7]. The review presented here is more complete with more compared GOF
tests, more alternatives with various hazard rates shapes and more sample sizes. All the
GOF tests studied in this section have been implemented in the R package EWGoF that
we have developed.

2.4.1 Complete samples

For complete sample the comparison includes the following test statistics:

• Pa: Patwardhan test statistic defined in (2.12).

• SW : Shapiro-Wilk test statistic defined in (2.13).

• KS: Kolmogorov-Smirnov test statistic defined in (2.14).

• CM : Cramer-von-Mises test statistic defined in (2.15).

• AD: Anderson-Darling test statistic defined in (2.16).

• Gn: Gnedenko test statistic defined in (2.17).

• Gn∗: Harris test statistic defined in (2.18).

• GG: Gini test statistic defined in (2.19).

• LM1 and LM2: Lin-Mudholkar test statistics defined respectively in (2.20) and
(2.21).

• Sc: Score test statistic defined in (2.22).

• CO: Cox and Oakes test statistic defined in (2.23).

• LR: Likelihood ratio test statistic defined in (2.24).

• He: Henze test statistic defined in (2.27).

• BH: Baringhaus-Henze test statistic defined in (2.29).

• EP : Epps-Pulley test statistic defined in (2.31).

• HM (1) and HM (2): Henze and Meintanis test statistics defined respectively in equa-
tions (2.33) and (2.34).

• MI(1) and MI(2): Meintanis and Iliopoulos test statistics defined respectively in
equations (2.36) and (2.37).
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• GW : Grzegorzewski and Wieczorkowski test statistic defined in (2.40).

• BHK and BHC: Baringhaus and Henze test statistics based on the mean residual
life defined in (2.42).

• Kl: Klar test statistic defined in (2.48).

We first simulate iid exponentially distributed samples to verify that the rejection per-
centage of the Exponential distribution is close to the theoretical significance level. Then,
we simulate samples with the following alternative distributions. For each distribution we
give their pdfs f(x) and hazard rate h(x) when it has an explicit expression:

• The Gamma distribution G(α, λ):

f(x) =
λα

Γ(α)
exp(−λx)xα−1

• The Lognormal distribution LN (m,σ2):

f(x) =
1

xσ
√

2π
exp

(
− 1

2σ2
(lnx−m)2

)

• The Uniform distribution U [0, a]:

f(x) =
1

a
1[0,a](x)

h(x) =
1

a− x 1[0,a](x)

• The Inverse-Gamma distribution IG(α, β):

f(x) =
βα

Γ(α)
x−α−1 exp

(
−β
x

)
.

For the sake of simplicity, we adopt the following conventions: scale parameters of
the Weibull, Gamma and Inverse-Gamma distribution (respectively η, λ and β) are ar-
bitrarily set to 1 and the parameter m of the Lognormal distribution is set to 0. The
corresponding distributions are denoted W(1, β) ≡ W(β), G(α, 1) ≡ G(α), IG(α, 1) ≡
IG(α) and LN (0, σ2) ≡ LN (σ2). Parameters of the simulated distributions are selected
to obtain different shapes of the hazard rate:

• IHR: increasing hazard rate

• DHR: decreasing hazard rate

• BT: bathtub-shaped hazard rate

• UBT: upside-down bathtub-shaped hazard rate.
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Table 2.1: Simulated distributions

Exponential exp(0.2) exp(1) exp(2) exp(42)
IHR W(1.5) W(3) U [0, 2] G(2)
DHR W(0.5) W(0.8) W(0.98) G(0.5)
UBT LN (0.6) LN (0.8) LN (1.4)

For the Exponential case, we use only UBT alternatives. BT alternatives will be also used
for the Weibull case in the following chapter. Table 2.1 gives the values of the parameters
and the notations used for all the simulated distributions:

For a given alternative with fixed parameters and a fixed sample size, we simulate
50000 samples of size n ∈ {5, 10, 20, 50}.

All the GOF tests are applied with a significance level set to 5%. The power of the
tests is assessed by the percentage of rejection of the null hypothesis. The quantiles of
the distribution of the test statistics under H0 are obtained mainly by simulations. For
instance, let us consider the Cox-Oakes test, the test statistic is given by (2.23):

COn =

[
n+

n∑

i=1

lnXi −
1

X̄n

n∑

i=1

(lnXi)Xi

]2

n+
1

X̄n

n∑

i=1

(
lnXi/X̄n

)2
Xi −

1

nX̄2
n

[
n∑

i=1

(
lnXi/X̄n

)
Xi

]2 .

For a given sample size n, we simulate X1, . . . , Xn from exp(1), then we compute the
corresponding value of COn. This process is done m = 100000 times. The quantiles of
the distribution of COn under H0 are given by the empirical quantiles of the m values of
COn. Table 2.2 gives some quantiles for several values of n. We observe that, for small
n, the distribution of COn under H0 may be quite far from the χ2

1 distribution. So it is
important to be able to apply these GOF tests without using the chi-square approximation
especially for small samples.

Table 2.2: Quantiles of the distribution of COn under H0

n 75% 80% 85% 90% 95% 99%
5 1.548 1.847 2.214 2.697 3.422 5.079
10 1.460 1.762 2.164 2.728 3.658 5.853
20 1.379 1.702 2.128 2.729 3.777 6.318
50 1.335 1.656 2.079 2.690 3.810 6.537
χ2

1 1.323 1.642 2.072 2.705 3.841 6.635

For the power study, we simulate a sample X1, . . . , Xn of size n of a given distribution.
For n = 50, the Exponential assumption is rejected at the level 5% if COn > 3.810. This
process is done K = 50000 times. The percentage of rejection of H0 is an estimation of
the power of the test for this alternative. For instance, we see in Table 2.4 that the power
of the COn test for simulated LN (0, 0.8) samples and n = 50 is estimated at 63.8%. The
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higher the rejection percentage is, the better the test is. We will observe that the results
are tightly linked to the tested alternatives. In order to evaluate globally the power of
the tests, we compute for each test the mean value of the rejection percentage for all the
alternatives. The power tables of the studied GOF tests are given in Appendix A in order
to avoid a complex and long dissertation in this chapter.

In a first step, the tests are compared inside each family. The choice of parameters
such as a and m is discussed. In a second step, the best tests of each family are compared.

Tables A.1 and A.2 present the power results for the GOF tests based on the em-
pirical distribution function (KS, CM and AD) with and without the application of the
K transformation. AD is the best and KS is the worst of the three. The use of the K
transformation gives better results for some special cases such as the Weibull, LN (1.4)
and uniform distributions.

Tables from A.3 to A.5 present the power results of the tests based on the normalized
spacings. GG has the best performance followed by LM .

Tables A.6 and A.7 compare the power results for the three likelihood based tests
(Sc, CO and LR). It seems clearly that the score test Sc is more appropriate for the
DHR alternatives and the test LR based on the likelihood ratio is powerful for the IHR
alternatives. The test CO has never been the best one for specific alternatives, but it
represents an excellent compromise by giving generally good results.

Tables from A.8 to A.11 present the power results of Henze test based on the Laplace
transform. Small values of the parameter a are appropriate for DHR alternatives (W(0.5),
W(0.8), G(0.5)), while moderately large values of a, are appropriate to IHR alternatives
(W(1.5), W(3), G(2), uniform). The best compromise is made for a = 1.

Tables from A.12 to A.15, present the power results of Baringhaus-Henze test based
on the Laplace transform. The conclusions are similar to those of the previous test. We
recommend also the value a = 1. Baringhaus-Henze test is slightly more powerful than
the test of Henze.

Tables from A.16 to A.19 present the power results of Henze-Meintanis tests based on
the characteristic function. The power difference between the two tests HM

(1)
n,a and HM

(2)
n,a

can be very important for some alternatives, for instance: 82.3% and 28.9% for LN (0.8)

distribution with n = 50. Generally, the test HM
(1)
n,a is more powerful than HM

(2)
n,a. But

for DHR alternatives, we recommend the use of HM
(2)
n,a with large value of the parameter

a. If nothing is known about the tested alternatives, a good compromise is to choose the
test HM

(1)
n,a with a = 1.5 for n ≤ 10 and a = 1 for n > 10.

Tables from A.20 to A.22 present the power results of Meintanis-Iliopoulos tests based
on the characteristic function. The fact that the statistics MI

(1)
n,a and MI

(2)
n,a have more

complex expression than the previous ones, slows down the simulations. These tests
present the characteristic to have extremely weak powers for DHR alternatives and good
ones for IHR alternatives. There is no significant difference between MI

(1)
n,a and MI

(2)
n,a.

We choose a = 2.5, even if the choice of the parameter a has no significant effect on the
results.

Table A.23 presents the power results of Grzegorzewski-Wieczorkowski test based on
the entropy. The choice of the parameter m depends slightly on the tested alternatives.
We recommend m = 4 to have the best compromise. This test and Pa test are not very
powerful that is why they will not be presented later in the comparison tables.

Tables A.24 to A.27 present the power results of the test of Klar. For small size
samples, we should absolutely avoid to choose large values of the parameter a which give
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null rejection percentages for some alternatives. For n ≥ 20, the best suitable values of
the parameter a depend on the used alternatives. The best compromise is obtained for
a = 5.

After finding the best GOF tests within each family, tables A.28 to A.33 of the ap-
pendix are given to compare all the selected GOF tests for the sample sizes n ∈ {5, 10, 20}.
The following tables 2.3 and 2.4 give the power results for n = 50. Our first conclusion is
that none of these tests is always powerful. The performances of the tests depend strongly
on the alternatives used in the simulations. Secondly, the family of the likelihood based
tests gives globally the best results. The test Sc is recommended for the DHR alternatives
and LR test is rather recommended for the IHR alternatives. The test CO gives a good
compromise and can be recommended in all cases. Besides their good performances, the
likelihood based GOF test statistics do not require any parameter to be chosen and have
simple expressions.

altern. KS CM AD GG SW BHK BHC K5,n BHn,0.1 Hen,1
exp(0.2) 5.1 5.7 4.9 4.9 4.8 4.5 5.2 5.1 5.1 5.1
exp(1) 4.7 4.9 5.6 5 4.6 5.4 5.4 5.1 4.9 4.8
exp(2) 5.3 5.3 5.1 4.9 4.8 4.8 5.1 5 5.2 5.1
exp(42) 4.9 4.8 5.2 5 4.7 4.8 4.9 5 5.1 5

W(0.5) 99.9 99.9 100 100 98.6 99.9 99.9 100 100 100
W(0.8) 36.4 41.8 50.8 48.2 31.5 34.5 46.3 49.1 53.6 50
W(0.98) 5.3 5.5 5.9 5.6 5 4.8 4.3 5.5 6 5.4
G(0.5) 83.3 89.7 90.5 89.2 63.3 86.4 84.9 94.5 97.6 93
W(1.5) 79.4 89.5 91.4 92.6 89.1 88.1 87.5 91.2 87.7 93.9
W(3) 100 100 100 100 100 100 100 100 100 100
U [0, 2] 92.1 98.5 98.2 99 99.8 99.4 98.6 86.2 80.4 96.1
G(2) 81.7 90.4 91.4 89.2 79.9 81.2 82.1 94.5 93.6 93.6
LN (0.6) 99.2 99.6 99.1 99.2 88.8 100 98.2 100 100 99.9
LN (0.8) 71.1 75.9 85.5 46.5 28.2 64.5 61.7 82.1 93.6 61.9
LN (1.4) 81.5 85.1 87.4 88.4 84.8 83.6 87.2 80.7 77.6 86.9
Mean 75.4 79.6 81.8 78 69.9 76.6 77.3 80.3 80.9 80.1

Table 2.3: Exponential distribution - Tests comparison, n = 50 - 1

Without any information about the tested alternative, we recommend the test CO
followed by the tests AD and Kl. For the IHR alternatives, the test LR is the best
followed by MI and CO. For the DHR alternatives, the test Sc is the best followed by
BH, AD and CO. For the alternatives with upside-down bathtub shaped hazard rate,
the two tests Kl and BH are powerful. Even though the comparison study presented here
is larger than those of Ascher [7] and Henze-Meintanis [55], the conclusions are globally
similar.

2.4.2 Censored samples

For censored samples, to our knowledge similar reviews have never been done. In this
subsection, we compare the following tests:
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altern. MI
(1)
n,2.5 MI

(2)
n,2.5 HM

(1)
n,1.5 HM

(2)
n,0.5 EP Sc CO LR

exp(0.2) 5.2 5 4.9 5.3 5 5 5 5
exp(1) 5.4 5.2 5.1 5.2 5.1 5 4.9 5
exp(2) 5.1 5.2 5 5.2 5.2 4.9 5.1 5
exp(42) 5.5 5.2 5.1 5 5.4 4.9 4.8 5.1

W(0.5) 98.5 98.8 99.8 99.6 99.9 100 100 100
W(0.8) 24.8 31.2 38.1 36 47.8 56.4 52.8 48.4
W(0.98) 4 4.2 5.2 5.3 5.6 5.9 5.8 5.1
G(0.5) 71.8 74 83.4 79.5 89.3 97.4 97.2 96.5
W(1.5) 93.8 92.6 88.5 87.9 92.9 93.4 94.9 96.3
W(3) 100 100 100 100 100 100 100 100
U [0, 2] 99.8 99.9 99.5 99.7 98.2 90.1 93.7 95
G(2) 90 85.6 86.8 83.4 90.4 94.8 95.7 96.5
LN (0.6) 99.3 95.7 99.8 98.4 98.9 99.7 99.6 99.7
LN (0.8) 49.1 32.2 56.6 39.9 45.1 64.6 63.8 66
LN (1.4) 60.7 72.8 82.7 82.5 88.7 82.3 78.1 76.1
Mean 72 71.6 76.4 73.9 77.9 80.4 80.1 79.9

Table 2.4: Exponential distribution - Tests comparison, n = 50 - 2

• Gn: Gnedenko test statistic defined in (2.17) applied to the normalized spacings.

• Gn∗: Harris test statistic defined in (2.18) applied to the normalized spacings.

• LM1 and LM2: Lin-Mudholkar test statistics defined respectively in (2.20) and
(2.21) applied to the normalized spacings.

• CO: Cox and Oakes test statistic defined in (2.23) applied to the normalized spac-
ings.

• BS1 and BS∗: Brain and Shapiro test statistics defined respectively in (2.49) and
(2.51).

• CM : Cramer-von-Mises test statistic defined in (2.52).

• W : Watson test statistic defined in (2.53).

• AD: Anderson-Darling test statistic defined in (2.54).

• KS: Kolmogorov-Smirnov test statistic defined in (2.55).

• KL: Test based on the Kullback-Leibler information defined in (3.38).

As previously, we first simulate iid exponentially distributed samples to verify that the
rejection percentage of the Exponential distribution is close to the theoretical significance
level. Then, we simulate samples with the alternatives given in table 2.5.

For a given alternative with fixed parameters and a fixed sample size, we simulate
50000 samples of size n ∈ {10, 20, 50} and we consider only simple type II right-censoring
where r ∈ {bn

8
c, bn

4
c, bn

2
c}.
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Table 2.5: Simulated distributions for the censored samples

Exponential exp(0.2) exp(1) exp(2) exp(42)
IHR W(1.5) W(3) U [0, 2] G(2)
DHR W(0.5) W(0.8) W(0.98) G(0.5)
UBT LN (0.6) LN (0.8) LN (1.4) LN (2.4)

IG(0.5) IG(1.5) IG(2) IG(3)

As before, all the GOF tests are applied with a significance level set to 5%. The power
of the tests is assessed by the percentage of rejection of the null hypothesis. Table 2.6
shows the power results for n = 50 and r = 25.

altern. BS1 BS∗ CM W AD Gn Gn∗ LM KL CO

exp(0.2) 5.1 5.1 4.9 4.9 5 5 5 4.9 5.1 5
exp(1) 5.1 5 5 4.9 5 5.1 5 4.8 5.1 4.8
exp(2) 5 5 5 4.9 5 5.1 5.1 4.9 5.1 5.1
exp(42) 5 5 5.1 5 5 5 4.9 4.8 5.3 5.1

W(0.5) 80.4 75.2 83.9 0 94.1 79.8 74.3 71 44.4 53.8
W(0.8) 15.8 12.4 15.4 0 23.6 16.7 14.7 12.2 5.1 6.7
W(0.98) 5 5.1 4.9 4.1 5.2 5.2 5.2 5.2 5 5.2
G(0.5) 60 53.4 64.4 0 83.4 61.3 61.9 58.2 24.1 36.1

W(1.5) 28.1 24.5 47.9 58.3 46.5 28.4 25.8 23.7 29.1 6.7
W(3) 84.7 79 100 100 100 98.9 97.3 96.4 99.4 73.9
U [0, 2] 14 10.7 17.2 23.8 13.2 12.6 7.8 7.3 8.9 5.1
G(1.5) 15.5 14.4 27.1 35.7 26 15 15.7 15.7 19.2 5.3
G(2) 31.8 29.1 63.9 72.5 65.5 36.4 37.8 39.7 44.2 8.8
G(3) 53.7 49.6 96.6 97.8 97.5 74.5 76.6 80.8 84.3 27.6

LN (0.6) 46.5 45 99.8 99.8 99.9 86.7 93.8 98.4 98.2 53.2
LN (0.8) 24.8 26.2 84.3 86.5 89.8 44.4 61 76.1 72.7 16.1
LN (1.4) 7.5 8.4 5.8 4.2 5 4.1 3.9 7.1 11.6 5
LN (1.8) 29.5 23.7 23.3 0 24 23.4 6.2 9.5 11.5 6.3
LN (2.4) 71.3 62.4 70.5 0 78.1 68.4 39.3 28.7 31.6 23.2
IG(0.5) 26.5 25.6 15.4 3.5 14.5 7.8 6.4 19 24.4 6.1
IG(1.5) 13.8 18.7 91.9 88.6 96.7 44.4 76.4 95.1 19.2 27.6
IG(2) 22.6 26.5 99.1 98.1 99.8 68.8 91.5 99.4 43.9 47
IG(3) 37.3 38.6 100 100 100 92.9 99.1 100 83.8 77.7

Mean 35.2 33.1 58.5 45.9 61.2 45.8 47.1 49.7 40 25.9

Table 2.6: Exponential distribution - Tests comparison, n = 50 and r = 25

Tables from A.34 to A.41 present other power results. Mostly the same results come
out whatever the size and the rate of the censoring. For DHR alternatives, AD followed
by CM are the best tests; for IHR alternatives, the test W is recommended and for
UBT alternatives, CM is the best test. The CO test applied to the normalized spacings
E1, . . . , En−r, is the worst test. Generally, the two tests based on the empirical distribution
function AD and CM have the best performances, unlike the test of Watson W that is
biased in some cases.
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To sum up, for the censored samples, Anderson-Darling test has the best performances
among all the studied ones. For the complete samples, the GOF tests of Anderson-Darling
AD, Cox-Oakes CO and the tests based on the empirical characteristic function BH seem
to have the best performances. The comparisons were done among 60 GOF tests for
complete samples and 10 GOF tests for censored samples. All the previous GOF tests for
censored samples are implemented in the R package we have developed EWGoF. A part
of this work has been presented in ESREL 2012 conference [70].

The good performance of Cox-Oakes CO test has attracted our attention. That is why
we have developed new GOF tests based on the likelihood for the Weibull distribution
(chapter 4).
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Chapter 3

Weibull distribution: basic
properties and usual GOF tests

This chapter is dedicated to the two-parameter Weibull distribution. Some definitions
and basic properties of this distribution are given. Then we present a quick review of the
usual GOF test for the Weibull distribution. Several GOF tests families are presented such
as tests based on the probability plots, Shapiro-wilk tests, tests based on the empirical
distribution function, tests based on the normalized spacings, generalized smooth tests,
tests based on the Kullback-Leibler information and tests based on the Laplace transform.

3.1 The Weibull distribution: definition and proper-

ties

A random variable X is from the two-parameter Weibull distributionW(η, β), if and only
if its cdf is:

F (x; η, β) = 1− exp(−(x/η)β), x ≥ 0, η > 0, β > 0. (3.1)

• The pdf of W(η, β) is:

f(x; η, β) =
β

η

(
x

η

)β−1

exp(−(x/η)β), x ≥ 0, η > 0, β > 0. (3.2)

• The reliability is R(x) = exp(−
(
x
η

)β
).

• The expectation is: MTTF = E[X] = ηΓ
( 1

β
+ 1
)

.

• The variance is: V ar(X) = η2Γ
( 2

β
+ 1
)
− η2Γ2

( 1

β
+ 1
)

.
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• The hazard rate is h(x) =
f(x)

R(x)
=
β

η

(
x

η

)β−1

. Figure 3.1 illustrates the different

shapes of the hazard rate depending on parameter β:

– β < 1: h is decreasing and the system is improving,

– β > 1: h is increasing and the system is wearing,

– β = 1: h is constant and we find the special case of the Exponential distribu-
tion.

•
(
X
η

)β
has the standard Exponential distribution exp(1).

Figure 3.1: Hazard rate function for the W(η, β) distribution

When X is a random variable from the W(η, β) distribution, lnX has the type I
Extreme Value distribution EV1(µ, σ) with cdf:

G(y;µ, σ) = 1− exp(− exp((y − µ)/σ)), y ∈ R, µ ∈ R, σ > 0 (3.3)

where µ = ln η and σ = 1/β.

• The pdf of EV1(µ, σ) is:

g(y;µ, σ) =
1

σ
exp((y − µ)/σ − exp((y − µ)/σ)), y ∈ R. (3.4)

• The reliability is S(y) = exp(− exp((y − µ)/σ)).

• The expectation is: E[lnX] = µ− γEσ where γE = 0.577... is the Euler constant.

• The variance is V ar[lnX] =
π2

6
σ2.
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• The hazard rate is h(y) =
1

σ
exp(−(y − µ)/σ).

• The Laplace transform is ψ(t) = E [exp(−t lnX)] = Γ
(
1− σt

)
exp(µt), ∀t > 0.

• Y = β ln(X/η) = (lnX − µ)/σ follows EV1(0, 1).

Let X1, . . . , Xn be n (iid) random variables from theW(η, β) distribution. We consider
three methods for estimating the parameters η and β: the maximum likelihood, least
squares and moment methods.

• The maximum likelihood estimators (MLEs) of η and β, η̂n and β̂n, are solutions of
the following equations:





η̂n =

(
1

n

n∑

i=1

X β̂n
i

)1/β̂n

n

β̂n
+

n∑

i=1

lnXi −
n

n∑

i=1

X β̂n
i

n∑

i=1

X β̂n
i lnXi = 0.

(3.5)

• The Weibull probability plot (WPP) [92] is the plot of points:

(lnX∗i , ci) , i ∈ {1, . . . , n} (3.6)

where ci = ln [− ln (1− pi)] and pi, i ∈ {1, . . . , n}, are approximations of the order
statistics of a uniform sample. Usual choices are symmetrical ranks pi = (i− 0.5)/n
and mean ranks pi = i/(n+ 1). Under the Weibull assumption, these points should
be approximately on a straight line [31].

The least squares estimators (LSEs) based on the WPP, η̃n and β̃n, are defined as
follows [76]: 




β̃n =

n∑

i=1

(ci − c)2

n∑

i=1

(lnXi − lnX)(ci − c)

ln η̃n = lnX − c

β̃n

(3.7)

where lnX =
1

n

n∑

i=1

lnXi and c =
1

n

n∑

i=1

ci.
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• The moment estimators (MEs), η̆n and β̆n, are defined as follows [111]:




β̆n =
π√
6

[
1

n− 1

n∑

i=1

(lnXi − lnX)2

]−1/2

ln η̆n = lnX +
γE

β̆n

(3.8)

For all i ∈ {1, . . . , n}, Yi = β ln(Xi/η) has the EV1(0, 1) distribution. The order
statistics of this sample are denoted Y ∗1 ≤ . . . ≤ Y ∗n .

Since η and β are unknown, it will be useful in the following to replace them by
the above estimators. For all i, let Ŷi = β̂n ln(Xi/η̂n), Ỹi = β̃n ln(Xi/η̃n) and Y̆i =

β̆n ln(Xi/η̆n). It is expected that the distributions of Ŷi, Ỹi and Y̆i will not be far from
the EV1(0, 1) distribution.

From [6], the distribution of (Ŷ1, . . . , Ŷn) does not depend on η and β. From [76], it is

also the case of the distribution of (Ỹ1, . . . , Ỹn). The following property proves the same
result for (Y̆1, . . . , Y̆n).

Property 3.1 The distribution of (Y̆1, . . . , Y̆n) does not depend on η and β.

Proof: We know that ∀i ∈ {1, . . . , n}, lnXi =
Yi
β

+ ln η. So:

Y̆i = β̆n(lnXi − ln η̆n) = β̆n

(
Yi
β
− Y

β
− γE

β̆n

)
(3.9)

where Y =
1

n

n∑

i=1

Yi = β(lnX − ln η).

Moreover, S2 =
S2
Y

β2
, so β̆n = β

π√
6SY

, where SY =

[
1

n− 1

n∑

i=1

(Yi − Y )2

]1/2

. Hence:

Y̆i =
π√
6SY

(Yi − Y )− γE. (3.10)

Since the distribution of (Y1, . . . , Yn) does not depend on η and β, it is also the case for
the distribution of (Y̆1, . . . , Y̆n) and the property is proved.

�

The fact that the distributions of the samples Ŷi, Ỹi and Y̆i are independent of the
parameters of the underlying Weibull distribution is a very fundamental property since
it allows to build GOF test statistics as functions of these samples. If a statistic S is a
function of the Yi, we will denote Ŝ, S̃ and S̆ the same statistic as a function of respectively
the Ŷi, Ỹi and Y̆i.
The normalized spacings of the Extreme Value distribution Ei are:

∀i ∈ {1, . . . , n}, Ei =
lnX∗i − lnX∗i−1

E
[

lnX∗i − µ
σ

]
− E

[
lnX∗i−1 − µ

σ

] = σ
Y ∗i − Y ∗i−1

E
[
Y ∗i − Y ∗i−1

] . (3.11)
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Pyke [104] proved that for any distribution verifying given conditions, an appropriate
subset of the normalized spacings Ei constitutes a vector whose components are asymp-
totically independent and exponentially distributed. These results are exact in the case
of the Exponential distribution and asymptotic for the Extreme Value distribution. The
values of the expectations E [Y ∗i ] are known and have explicit expressions given in [121].

3.2 Usual GOF tests for the Weibull distribution

In this section, we present families of GOF tests for the Weibull distribution. There exist
several families such as tests based on the Weibull probability plot, tests based on the
empirical distribution function, tests based on the normalized spacings, tests based on
the Laplace transform, ... Thanks to a logarithmic transformation, these GOF tests can
also be used as GOF tests for the Extreme Value distribution.

3.2.1 Tests based on probability plots

We remind that the Weibull probability plot is the plot of points:

(lnX∗i , ci) , i ∈ {1, . . . , n}

where ci = ln [− ln (1− pi)] and pi, i ∈ {1, . . . , n}, are approximations of the order statis-
tics of a uniform sample. Under the Weibull assumption, these points should be approx-
imately on a straight line.

Smith and Bain [115] used the determination coefficient R2
SB of the ordinary least

squares to build a GOF test. The test is based on the statistic Z2 = n(1−R2
SB), where

R2
SB =

[
n∑

i=1

(lnX∗i − lnX) (ci − cn)

]2

n∑

i=1

(lnX∗i − lnX)2

n∑

i=1

(ci − cn)2

(3.12)

with ci = ln [− ln (1− pi)] , i = 1, ..., n, cn = 1
n

n∑

i=1

ci and pi = i
n+1

(mean ranks).

The test rejects the null hypothesis when Z2 is too close to 1. Evans, Johnson and Green

[42] proposed a GOF test based on a statistic similar to R2
SB:

R2
EJG =

[
n∑

i=1

(lnX∗i − lnX)Mi

]2

n∑

i=1

(lnX∗i − lnX)2

n∑

i=1

(Mi −Mn)2

(3.13)

where Mi =
1

β̂n
ln

[
− ln

(
1− i− 0.3175

n+ 0.365

)]
.
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The stabilized probability plot [87] is an alternative to the probability plot, which aims
to stabilize the variance of the plotted points. It is defined as the sets of points (ri, si),
i ∈ {1, . . . , n}, where:

ri =
2

π
arcsin

√
i− 0.5

n
and si =

2

π
arcsin

√

1− exp

(
−
(
X∗i
η̂n

)β̂n )
. (3.14)

Under the Weibull assumption, these points should be approximately on the line y = x.
Coles [28] proposed to measure the departure from this line by the statistic:

SPPn = max
1≤i≤n

|ri − si|. (3.15)

He used Blom estimators [17] instead of MLEs. Kimber [64] gave the quantiles tables
of the statistic SPPn using an approximation of the best unbiased linear estimators.

3.2.2 Shapiro-Wilk type tests

Shapiro and Brain [115] and Öztürk and Korukoğlu [97] adapted the idea of Shapiro-Wilk
GOF test of exponentiality. The idea of the test is to compute the ratio of two estimators
of 1

β
. The first estimator is a linear combination of the lnX∗i , suggested by d’Agostino

[30]:

1

n

n∑

i=1

[0.6079wn+i − 0.257wi] lnX∗i (3.16)

where the wi are defined as follows:

wi = ln
n+ 1

n− i+ 1
∀i ∈ {1, . . . , n− 1}

wn = n−
n−1∑

i=1

wi

wn+i = wi(1 + lnwi)− 1 ∀i ∈ {1, . . . , n− 1}

w2n = 0.4228n−
n−1∑

i=1

wn+i.

The second estimator proposed by Shapiro and Brain [112] is the empirical standard
deviation of the lnX∗i . The corresponding statistic has the following expression:

SBn =

(
1

n

n∑

i=1

[0.6079wn+i − 0.257wi] lnX∗i

)2

1

n

n∑

i=1

(lnX∗i − lnX)2

. (3.17)

The second estimator used by Öztürk and Korukoğlu [97] is another linear combination
of the lnX∗i :

n∑

i=1

(2i− n− 1) lnX∗i

ln 2n(n− 1)
. (3.18)
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The corresponding statistic is:

OKn =

ln 2 (n− 1)
n∑

i=1

[0.6079wn+i − 0.257wi] lnX∗i

n∑

i=1

(2i− n− 1) lnX∗i

. (3.19)

Öztürk and Korukoğlu recommended using the following standardized statistic that
improves the performance of the test:

OK∗n =
OKn − 1− 0.13/

√
n+ 1.18/n

0.49/
√
n− 0.36/n

. (3.20)

For the two GOF tests SBn and OK∗n, the null hypothesis H0 is rejected when the value
of the statistic (the ratio of two estimators of 1

β
) is too far from 1. Thus the rejection is

pronounced for too small or too large values of the statistic.

3.2.3 Tests based on the empirical distribution function

These tests are based on a measure of the departure between the empirical cdf of the

lnXi: Gn(x) =
1

n

n∑

i=1

1{lnXi≤x} and the estimated theoretical cdf using the MLEs Ĝ0(y) =

G(y; ln η̂n, 1/β̂n). The null hypothesis is rejected when this difference is too large. The
usual tests based on the empirical cdf can be used only when the tested distribution has
location-scale parameters. It is the case of the Extreme Value distribution that is why we
use the empirical cdf of lnXi instead of the one of Xi. The best known statistics [25, 31]
as those for the Exponential distribution previously defined in subsection 2.2.4 are:

• Kolmogorov-Smirnov statistic (KS):

KSn =
√
n sup
y∈IR

∣∣∣Gn(y)− Ĝ0(y)
∣∣∣ (3.21)

=
√
nmax

[
max

( i
n
− Û∗i , i = 1 : n

)
,max

(
Û∗i −

i− 1

n
, i = 1 : n

)]
(3.22)

• Cramer-von Mises statistic (CM):

CMn = n

∫ +∞

−∞

[
Gn(y)− Ĝ0(y)

]2

dĜ0(y) =
n∑

i=1

(
Û∗i −

2i− 1

2n

)2

+
1

12n
(3.23)

• Anderson-Darling statistic (AD):

ADn = n

∫ +∞

−∞

[
Gn(y)− Ĝ0(y)

]2

Ĝ0(y)(1− Ĝ0(y))
dĜ0(y) (3.24)

= −n+
1

n

n∑

i=1

[
(2i− 1− 2n) ln(1− Û∗i ))− (2i− 1) ln(Û∗i )

]
(3.25)
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where Ûi = Ĝ0(lnXi) = 1− exp(− exp(β̂n(lnXi − ln η̂n))) = 1− exp(− exp(Ŷi)).

Liao and Shimokawa [76] have proposed to replace the MLEs by the LSEs in (3.22),

(3.23) and (3.25). For instance, the ADn statistic will be denoted ÂDn when used with

the MLEs and ÃDn when used with the LSEs. Liao and Shimokawa [76] also combined
the ideas of Kolmogorov-Smirnov and Anderson-Darling statistics with the LSEs instead
of the MLEs. They proposed the statistic:

L̃Sn =
1√
n

n∑

i=1

max
∣∣∣Gn(lnXi)− G̃0(lnXi)

∣∣∣
√
G̃0(lnXi)(1− G̃0(lnXi))

=
1√
n

n∑

i=1

max
[
i
n
− Ũ∗i , Ũ∗i − i−1

n

]

√
Ũ∗i (1− Ũ∗i )

(3.26)

where G̃0(y) = G(y; ln η̃n, 1/β̃n) = 1− exp(− exp(β̃n(y − ln η̃n))) and Ũi = G̃0(lnXi).

They recommended the use of L̃Sn or ÃDn.

3.2.4 Tests based on the normalized spacings

The normalized spacings are defined as:

∀i ∈ {1, . . . , n}, Ei =
lnX∗i − lnX∗i−1

E
[

lnX∗i − µ
σ

]
− E

[
lnX∗i−1 − µ

σ

] = σ
Y ∗i − Y ∗i−1

E
[
Y ∗i − Y ∗i−1

] . (3.27)

Every statistic of the form

∑

i

aiEi

∑

j

bjEj
can be used as a test statistic because it has a

distribution that is independent of the two parameters η and β.

Mann, Scheuer and Fertig [82] used the fact that for i ∈ {1, . . . , n}, the Ei/σ are
asymptotically independent and distributed according to a standard Exponential distri-
bution [104]. The authors proposed the statistic:

MSFn =

n∑

j=bn2 c+2

Ej

n∑

j=2

Ej

(3.28)

where bxc is the floor of x. Under H0, MSFn is asymptotically distributed according
to the beta distribution β

(⌊
n−1

2

⌋
,
⌊
n
2

⌋)
. The Weibull assumption is rejected for both

large and small values of the statistic. For usual alternatives, Mann, Sheuer and Fertig
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recommended rejecting the null hypothesis only for large values of the statistic. This
wrong use of the test improves its power in some cases, but leads to a biased test.

Tiku and Singh [121] suggested to reject the Weibull hypothesis for both large and
small values of the statistic:

TSn =

2
n−1∑

i=2

(n− i)Ei

(n− 2)
n∑

i=2

Ei

. (3.29)

Under H0,
√

3(n− 2) (TSn − 1) has asymptotically the normal distribution N(0, 1).

Lockhart, O’Reilly and Stephens [81] used the random variables:

Zj =

j∑

i=2

Ei/

n∑

i=2

Ei, j = 2, . . . , n− 1. (3.30)

Under H0, the Zj are approximately distributed as the order statistics of the uniform
distribution U [0, 1]. Then, Lockhart et al proposed a GOF test based on the Anderson-
Darling statistic computed for the Zj:

LOSn = 2− n− 1

n− 2

n−1∑

i=2

[(2(i− n) + 1) ln(1− Zi)− (2i− 3) lnZi]. (3.31)

The previous statistics MSFn and TSn are based respectively on the median and the
mean value of the sample Zi as it was discussed in [81]. Other test statistics can be
applied to test the uniformity of the sample Zi such as the Cramer-Von-Mises statistic.

These tests require the computation of the expectations of the order statistics of the
standard Extreme Value distributions (E[Y ∗i ]) which makes the use of these statistics not
straightforward.

3.2.5 Generalized smooth tests

The principle of these tests consists in nesting the tested pdf g of the sample lnX1, . . . , lnXn

within an order k alternative [107]:

gk(y; θ, µ, σ) = C(θ, µ, σ) exp

(
k∑

i=1

θihi(y;µ, σ)

)
g(y;µ, σ) (3.32)

where θT = (θ1, . . . , θk) and {hi(y, µ, σ)}, i ∈ {1, . . . , k}, are orthonormal functions on
g(y;µ, σ) and C(θ, µ, σ) is a normalizing constant. Testing the Weibull assumption is

equivalent to test H0: “θ = 0” vs H1: “θ 6= 0”. Generalized score test statistic of order
k can be used to test the null hypothesis H0. The test statistic is a quadratic form of
the vector (ST1, . . . , STk) where STi = 1√

n
hi
(
Yi
)
. Each single component STi of the test
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statistic can be used as a test statistic.
The orthonormal polynomial functions used in the case of the Extreme Value distribution
are given in Appendix C of [107]. Using the moment estimators of the parameters given in
equation (3.8), the test statistics have simpler expressions and can be easily interpreted. It
has been shown in [16] that the two first non-zero components are related to the skewness
and the kurtosis coefficients of the sample Yi. They have the following expressions:

S̆T 3 = −
{√

b1 + 1.139547
}
/
√

20/n (3.33)

S̆T 4 =
{
b2 + 7.55

√
b1 + 3.21

}
/
√

219.72/n (3.34)

where
√
b1 and b2 are, respectively, the sample skewness and kurtosis defined by:

√
b1 =

1

n

n∑

j=1

(lnXi − lnX)3/
[ 1

n

n∑

j=1

(lnXi − lnX)2
]3/2

(3.35)

b2 =
1

n

n∑

j=1

(lnXj − lnX)4/
[ 1

n

n∑

j=1

(lnXi − lnX)2
]2

. (3.36)

The rejection of H0 is done for large values of the statistics.

3.2.6 Tests based on the Kullback-Leibler information

The following GOF test for the Extreme Value distribution is based on the Kullback-
Leibler information [123]. The test can be applied to the sample lnX1, . . . , lnXn with the
pdf g. The Kullback-Leibler discrimination information between g and ĝ is:

KL(g, ĝ) =

∫ +∞

−∞
g(y) ln

g(y)

g(y; µ̂n, σ̂n)
dy =

∫ +∞

−∞
g(y) ln(g(y)) dy −

∫ +∞

−∞
g(y) ln(ĝ(y)) dy.

(3.37)
To evaluate KL(g, ĝ), the first term of (3.37) is estimated by the Vasicek estimator

Hm,n = 1
n

n∑

i=1

ln
[ n

2m
(lnX∗i+m − lnX∗i−m)

]
where m < bn/2c, X∗j = X∗1 if j < 1, X∗j =

X∗n if j > n. Note that this estimation is computed for the lnXi while the simi-
lar one in equation (2.38) was computed for the Yi. The second term is estimated by

1
n

n∑

i=1

ln g(lnXi; µ̂n, σ̂n). Thus KL can be estimated by:

K̂Lm,n = − 1

n

n∑

i=1

ln
[ n

2m
(Ŷ ∗i+m − Ŷ ∗i−m)

]
− 1

n

n∑

i=1

Ŷi +
1

n

n∑

i=1

eŶi . (3.38)

The null hypothesis H0 is rejected for large values of the statistic K̂Lm,n. The values of

the parameter m are given in [38]. This test can have two additional versions K̃L and
K̆L using respectively the least squares and the moment estimators.
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3.2.7 Tests based on the Laplace transform

Cabaña and Quiroz [22] used the Laplace transform to build GOF tests for the Weibull
and type I Extreme Value distributions.

We remind that the Laplace transform of a sample Y1, ..., Yn from the EV1(0, 1) dis-
tribution is:

ψ(t) = E
[
e−tY

]
= Γ(1− t), ∀t < 1. (3.39)

Cabaña and Quiroz proposed to estimate ψ(t) by the empirical Laplace transform

ψn(t) = 1
n

∑n
j=1 e

−tY̆j using the moment estimators.
Their statistic is based on the closeness between the empirical and theoretical Laplace

transform which is measured by the empirical moment generating process:

v̆n(s) =
√
n
( 1

n

n∑

j=1

e−Y̆js − Γ(1− s)
)
. (3.40)

They proved the convergence, under H0, of v̆n(s), s ∈ J , to a Gaussian process Ğp(s),
for some interval J . They recommended to choose J ⊆ [−2.5, 0.49] and suggested two
test statistics based on v̆n. The first one has the following quadratic form:

C̆Qn = v̆n,SV
−1(S) tv̆n,S (3.41)

where v̆n,S = (v̆n(s1), . . . , v̆n(sk)), S = {s1, . . . , sk} ⊂ J and V (S) is the limiting covari-

ance matrix of v̆n,S given in equation (2.7) in [22]. The statistic C̆Qn has a limiting χ2

distribution with k degrees of freedom under the null hypothesis H0. The second test
statistic is similar to the test of Henze: it is based on a weighted L2 norm. The only
difference being the choice of the weight function that is different from the one used by
Henze:

S̆n =

∫

J

v̆2
n(s)/V (s) ds (3.42)

where V is the limiting variance of v̆n. The asymptotic distribution of the test statistic S̆n
converges to the distribution of

∫
J
Ğ2
p(s)/V (s) ds. The rejection of the Weibull assumption

is done for large values of the statistics.

In this chapter we presented a complete review of existing GOF tests for the Weibull
distribution. All the previous GOF tests will be compared later in chapter 6 with the new
developed GOF tests presented in chapters 4 and 5. All these GOF tests are implemented
in our R package EWGoF.
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Chapter 4

Simplified likelihood based GOF
tests for the Weibull distribution

The aim of this chapter is to present new likelihood based GOF tests for the Weibull
distribution. These tests consist in nesting the Weibull distribution in three-parameter
generalized Weibull families [92, 101] and testing the value of the third parameter by using
the Wald, score and likelihood ratio procedures. We simplify the usual likelihood based
tests by getting rid of the nuisance parameters, using the three estimation methods pre-
sented previously in chapter 3: maximum likelihood, least squares and moment methods.
The proposed tests are exact.

The Weibull distribution is embedded in generalized Weibull distributions, which have
been proposed in order to take into account bathtub-shaped or upside-down bathtub
shaped hazard rates. A comprehensive comparison study is presented. Theoretical asymp-
totic results are derived when the Weibull distribution is nested in the generalized Gamma
distribution.

4.1 Generalized Weibull distributions GW
Many generalizations of the Weibull distribution have been proposed in order to take into
account more general shapes of the hazard rate such as bathtub-shaped or upside-down
bathtub-shaped [92, 101], until very recently [96, 114, 4]. Most of them have three pa-
rameters θ = (θ, η, β)

′
, and, for a value θ0 of θ, they reduce to the two-parameter Weibull

distribution. These distributions will be called here generalized Weibull distributions and
will be denoted GW(θ, η, β). Then, GW(θ0, η, β) =W(η, β).

For a given data set, it is interesting to determine if the simple Weibull distribution is
an adapted model or if a more sophisticated model is needed. Then, within a particular
GW(θ, η, β) model, it is worthwhile to build a statistical test of H0: “θ = θ0” vs H1:
“θ 6= θ0”. Such a test can be considered as a GOF test for the Weibull distribution,
because H0 corresponds to the assumption that the distribution of the data is Weibull,
even if H1 is a more constrained hypothesis than the initial alternative. This approach
is similar to that of the Cox-Oakes test defined in equation (2.23), which is a GOF test
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of exponentiality based on the inclusion of the Exponential distribution in the Weibull
family. We showed in chapter 2 that this test is one of the most powerful GOF tests for
the Exponential distribution. That is why we use the same approach to build new GOF
tests for the Weibull distribution.

Table 4.1 presents the generalized Weibull distributions used in this work, mainly
selected from [92]. All these distributions are defined on R+, as the standard Weibull, so
in the table, x ≥ 0. For each distribution, the table gives its name, its cdf FX , the value
θ0 of parameter θ for which the distribution is Weibull, and describes the possible shapes
of the hazard rate.

For instance, Figures 4.1 and 4.2 present the 4 types of shape of the hazard rate of
respectively the Exponentiated Weibull and the Generalized Gamma distributions [88,
118].

For the Generalized Weibull distribution introduced in [89], we consider only the case
of unbounded lifetimes, corresponding to λ > 0. In this case, the distribution is linked
to the Burr type XII distribution [21], so we will call it the Burr Generalized Weibull
distribution.

For the Additive Weibull distribution, we consider the special case with three param-
eters instead of four, which happens to be also the B distribution [15].

*
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Figure 4.1: Shapes of the hazard rate for the Exponentiated Weibull distribution
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Table 4.1: Generalized Weibull distributions

Name Cdf Characteristics

Exponentiated Weibull FX(x; θ, η, β) =
[
1− e−(x/η)β

]θ
Weibull if θ = 1

EW(θ, η, β) [88] θ, η, β > 0 DHR if β < 1 and θ < 1
IHR if β > 1 and θ > 1
BT or IHR if β > 1 and θ < 1
UBT or DHR if β < 1 and θ > 1

Generalized Gamma FX(x; k, η, β) = 1
Γ(k) γ(k, (x/η)β) Weibull if k = 1

GG(k, η, β) [118] k, η, β > 0, if 1−kβ
β−1 > 0,

{
BT if β > 1
UBT if 0 < β < 1

γ(s, x) =
∫ x

0 v
s−1e−vdv otherwise

{
IHR if β > 1
DHR if 0 < β < 1

Additive Weibull FX(x; ξ, η, β) = 1− e−ξx−(x
η

)β
Weibull if ξ → 0

AW(ξ, η, β) [129, 15] ξ, η, β > 0 IHR if β > 1
DHR if β < 1

Burr Generalized Weibull FX(x;λ, η, β) = 1−
[
1 + λ(x/η)β

]− 1
λ Weibull if λ→ 0

BGW(λ, η, β) [89] λ, η, β > 0 DHR if β < 1
UBT if β > 1

Marshall-Olkin FX(x;α, η, β) = 1− αe−(x/η)β

1−(1−α)e−(x/η)β
Weibull if α = 1

Extended Weibull α, η, β > 0 IHR if α ≥ 1 and β ≥ 1
MO(α, η, β) [83] DHR if α ≤ 1 and β ≤ 1

other shapes

Modified Weibull FX(x; ρ, η, β) = 1− e−(x
η

)βeρx
Weibull if ρ→ 0

MW(ρ, η, β) [72] ρ, η, β > 0 IHR if β > 1
BT if 0 < β < 1

Power Generalized Weibull FX(x; ν, η, β) = 1− e1−(1+(x/η)β)
1
ν

Weibull if ν = 1
PGW(ν, η, β) [94] ν, η, β > 0 IHR if β > 1 and β > ν

DHR if 0 < β < 1 and β ≤ ν
BT if 0 < ν < β < 1
UBT if ν > β > 1
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Figure 4.2: Shapes of the hazard rate for the Generalized Gamma distribution

4.2 Likelihood based goodness-of-fit tests

Let us assume that X1, ..., Xn are from a generalized Weibull distribution GW(θ), with
pdf f(x;θ), where θ = (θ, η, β)

′
. When θ = θ0, the Xi have the W(η, β) distribution.

So we want to test the null hypothesis H0: “θ = θ0” vs H1: “θ 6= θ0”, where (η, β) is a
nuisance parameter.

The tests studied are the Wald, score and likelihood ratio tests, which are based on
the asymptotic properties of the maximum likelihood estimators. The likelihood function
for θ is:

L(θ) =
n∏

i=1

f(xi;θ). (4.1)

Let θ̂n = (θ̂n, η̂n, β̂n)
′

be the MLE of θ, value at which L(θ) is maximized. The score
vector is U(θ) = ∇ lnL(θ).

The Fisher matrix is the covariance matrix of the score. Since it is often difficult to
compute, it is more convenient to use the observed Fisher information matrix I(θ). Since
θ is partitioned in θ and (η, β), we partition U(θ) and I(θ) in the same way, so that the
score and observed information matrix can be written:

U(θ) =

(
U1(θ)
U2(θ)

)
and I(θ) =

(
I11(θ) I12(θ)
I21(θ) I22(θ)

)
. (4.2)

The inverse of I(θ) is denoted:

I(θ)−1 =

(
I11(θ) I12(θ)
I21(θ) I22(θ)

)
.
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For a given value θ0 of θ, let (η̃n(θ0), β̃n(θ0)) denotes the profile MLE of (η, β),
obtained by maximizing the profile likelihood L(θ0, η, β) with respect to (η, β). Let
θ̃n = (θ0, η̃n(θ0), β̃n(θ0)).

The Wald, score and likelihood ratio statistics are respectively [74]:

W =
(θ̂n − θ0)2

I11(θ̂n)
, (4.3)

Sc = U1(θ̃n)2I11(θ̃n), (4.4)

LR = −2 ln
L(θ̃n)

L(θ̂n)
. (4.5)

Under the null hypothesis H0, these statistics converge to the χ2
1 distribution when n

tends to infinity [74]. The (asymptotic) tests consist in rejecting the Weibull assumption
H0 at the significance level α, if the statistics are greater than the quantile of order (1−α)
of the χ2

1 distribution.
This approach has been used by Mudholkar-Srivastava [88], Mudholkar et al [89],

Bousquet et al [15] and Caroni [23], who nested the Weibull distribution in respectively the
exponentiated Weibull [88], Burr generalized Weibull [89], a particular additive Weibull
[15] and the Marshall-Olkin extended Weibull [83] distributions. In these papers, the aim
of the tests is to confirm that the considered generalized distribution is needed instead of
the basic Weibull. In each case, the asymptotic tests are used, with the χ2

1 distribution.
But this can lead to significant errors for small samples. For instance, Caroni showed
that the chi-square approximation for the distribution of the score statistics is still not
satisfactory for n = 200. Moreover, a simulation study showed that the distributions
under H0 of the Wald, score and likelihood ratio statistics may depend on η and β in the
case of small samples. Finally, the computation of θ̃n and θ̂n may be difficult for some
generalized Weibull distributions.

Since we want to use this kind of tests for small samples and for a large spectrum of
generalized Weibull distributions, we propose another approach. The first idea is to move
from the Weibull to the extreme value distribution with the logarithmic transformation.
Let us recall that the Yi = β ln(Xi/η) are a sample of the EV1(0, 1) distribution. The nice
fact is that this distribution has no unknown parameter. Using the idea of likelihood based
tests, the EV1(0, 1) distribution can be included in a larger family with only one parameter
θ. We can call these families generalized extreme value distributions and denote them
GEV(θ). It is possible to derive likelihood based tests of H0: “θ = θ0” vs H1: “θ 6= θ0”
in these families. This situation is simpler than the previous one because there are no
nuisance parameters.

In fact, these tests can not be used directly since η and β are unknown, so the Yi are
not observed. Given that the Yi, can be approximated by the Ŷi, Ỹi and Y̆i, previously
defined in section 3.1, our proposal is to test that the Xi come from a Weibull distribution
by testing that the Ŷi, Ỹi or Y̆i come from the EV1(0, 1) distribution using the Wald, score
or likelihood ratio tests.

Now we have to choose a particular GEV(θ) family. Since only parameter θ is con-
cerned, we can use the link between Weibull and extreme value distributions when η =
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β = 1. So we will define a GEV(θ) distribution as the distribution of lnX, when X has a
GW(θ, 1, 1) distribution.

This approach is summarized in the following steps:

1. Choose a generalized Weibull family GW(θ, η, β). Let FX(x; θ, η, β) be its cdf and
fX(x; θ, η, β) be its pdf.

2. Compute the pdf of Y = lnX when η = β = 1:

fY (y; θ) = eyfX(ey; θ, 1, 1).

3. Compute the likelihood L(θ) =
n∏
i=1

fY (yi; θ) and the MLE of θ, θ̂n. The computation

of θ̂n is of course much easier than that of θ̂n in the first approach.

4. Compute the score and observed information:

U(θ) =
∂ lnL(θ)

∂θ
, (4.6)

I(θ) = −∂
2 lnL(θ)

∂θ2
. (4.7)

Note that the score and information are here unidimensional, so their computation
is much easier than in the first approach (4.2).

5. The likelihood based statistics are:

W = I(θ0)(θ̂n − θ0)2, (4.8)

Sc =
U2(θ0)

I(θ0)
, (4.9)

LR = −2 ln
L(θ0)

L(θ̂n)
. (4.10)

The expressions of these statistics are much simpler than that of the corresponding
statistics in the first approach. The fact that Sc does not depend on θ̂n is generally
very convenient, but sometimes, this leads to undefined statistics. Then, it will be
useful to use Slutsky’s theorem and define W and Sc as:

W = I(θ̂n)(θ̂n − θ0)2, (4.11)

Sc =
U2(θ0)

I(θ̂n)
. (4.12)

6. In the expressions of θ̂n, W , Sc and LR, replace Yi by Ŷi. If T denotes a particular
GW model chosen, the corresponding statistics are denoted T̂w, T̂s and T̂l.

Do the same thing with Ỹi and Y̆i and derive T̃w, T̃s, T̃l, T̆w, T̆s and T̆l.
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7. For each possible GW model, we have 9 test statistics. In section 3.1, we have
shown that, under H0, the distributions of the vectors (Ŷ1, . . . , Ŷn), (Ỹ1, . . . , Ỹn) and
(Y̆1, . . . , Y̆n) are independent of the parameters of the underlying Weibull distribu-
tion. So the distribution of the test statistics under H0 is also independent of η and
β. Then, it is possible to compute any quantile of these distributions. Since it is
very difficult to obtain a closed form expression of these quantiles for finite n, we will
compute them by Monte Carlo simulations. Using the fact that the distributions do
not depend on η and β, the quantiles will be obtained by simply simulating samples
X1, . . . Xn from the Exponential distribution with parameter 1.

When n tends to infinity, the distributions of the test statistics (4.8) to (4.12) under

H0 converge to the χ2
1 distribution when they are computed with the

(
Yi

)
1≤i≤n

.

However, nothing proves that it will be also the case when the statistics are com-

puted with the
(
Ŷi

)
1≤i≤n

,
(
Ỹi

)
1≤i≤n

and
(
Y̆i

)
1≤i≤n

.

8. Finally, a GOF test consists in rejecting the Weibull assumption at the significance
level α if a statistic is greater than the corresponding quantile of order 1− α.

Section 4.3 derives the test statistics for all the GW distributions proposed in section
4.1. The detail of the computations is given for the first distribution studied, the Expo-
nentiated Weibull distribution. The expressions of the statistics for the other families will
be given directly.

4.3 Test statistics for several GW distributions

4.3.1 Tests based on the Exponentiated Weibull distribution

If X has the EW(θ, η, β) distribution, its cdf and pdf are respectively [88]:

FX(x; θ, η, β) =
[
1− e−(x/η)β

]θ
, (4.13)

fX(x; θ, η, β) = θ
β

η

(
x

η

)β−1

e−(x/η)β
[
1− e−(x/η)β

]θ−1

. (4.14)

So the pdf of Y = lnX when η = β = 1 is:

fY (y; θ) = eyfX(ey; θ, 1, 1) = θ
(
1− e−ey

)θ−1
ey−e

y

. (4.15)

The Weibull distribution for X or EV1(0, 1) for Y is obtained for θ = 1, so we have to
test H0: “θ = 1” vs H1: “θ 6= 1”. The log-likelihood function of a sample Y1, ..., Yn from
the distribution with pdf fY is:

lnL(θ) = n ln θ + (θ − 1)
n∑

i=1

ln(1− e−eYi ) +
n∑

i=1

Yi −
n∑

i=1

eYi . (4.16)

The score and observed information have the following expressions:

U(θ) =
n

θ
+

n∑

i=1

ln(1− e−eYi ), (4.17)
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I(θ) =
n

θ2
. (4.18)

The MLE of θ is:
θ̂n = − n

n∑

i=1

ln(1− e−eYi )
. (4.19)

Then, the general expressions of the likelihood based statistics can be easily derived:

• Wald:
EWw = I(1)(θ̂n − 1)2 = n(θ̂n − 1)2, (4.20)

• score:

EWs = U2(1)/I(1) = n

(
1− 1

θ̂n

)2

, (4.21)

• likelihood ratio:

EWl = −2 ln
L(1)

L(θ̂n)
= 2n

(
ln θ̂n − 1 +

1

θ̂n

)
. (4.22)

Each of the statistics (4.20), (4.21), (4.22) can be computed by using Ŷi, Ỹi and Y̆i
instead of Yi, i ∈ {1, . . . , n}. Then we obtain nine test statistics ÊWw, ÊW s, ÊW l,

ẼWw, ẼW s, ẼW l, ˘EWw, ˘EW s and ˘EW l. A remarkable fact is the extreme simplicity
of the expressions of the test statistics. The quantiles of their distributions under H0 are
easily obtained by simulating samples X1, . . . , Xn from the Exponential distribution with
parameter 1. The power of the corresponding nine GOF tests will be assessed in Section
4.4.

4.3.2 Tests based on the Generalized Gamma distribution

The cdf of the Generalized Gamma distribution GG(k, η, β) is [118]:

FX(x; k, η, β) =
1

Γ(k)
γ(k, (x/η)β). (4.23)

The pdf of Y is:

fY (y; k) =
1

Γ(k)
eky−e

y

. (4.24)

We have to test H0: “k = 1” vs H1: “k 6= 1”. The log-likelihood, score and information
are respectively given by:

lnL(k) = −n ln Γ(k) + k

n∑

i=1

Yi −
n∑

i=1

eYi (4.25)

U(k) = −nϕ(k) +
n∑

i=1

Yi (4.26)

I(k) = nϕ
′
(k) (4.27)
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where ϕ = Γ
′
/Γ and ϕ

′
are the digamma and trigamma functions [3]. ϕ(1) = −γE, where

γE is the Euler constant and ϕ
′
(1) = π2/6.

The MLE k̂n of k verifies the following equation:

ϕ(k̂n) =
1

n

n∑

i=1

Yi. (4.28)

The likelihood based statistics are:

• Wald:

GG1
w =

nπ2

6
(k̂n − 1)2 (4.29)

• score:

GG1
s =

6

nπ2

(
n∑

i=1

Yi + nγE

)2

(4.30)

• likelihood ratio:

GG1
l = −2n ln Γ(k̂n) + 2(k̂n − 1)

n∑

i=1

Yi. (4.31)

The G̃G and ĞG statistics are, respectively, functions of
n∑
i=1

Ỹi = nc = n
n∑

i=1

ln[− ln[1−(i−

0.5)/n]] and
n∑
i=1

Y̆i = −nγE. Therefore, the MLE k̂n and the test statistics are constant,

so the corresponding GOF tests are not defined.
That is why it is interesting to use a new parametrization of the Generalized Gamma

distribution, proposed in [73]: we consider now the GG(k, η1/
√
k, β
√
k) distribution.

Its cdf is:

FX(x; k, η, β) =
1

Γ(k)
γ(k, (x/k)β

√
kη−β). (4.32)

The pdf of Y is:

fY (y; k) =
kk−0.5

Γ(k)
e
√
ky−key/

√
k

. (4.33)

We have to test H0: “k = 1” vs H1: “k 6= 1”. The log-likelihood, score and information
are respectively given by:

lnL(k) =

(
k − 1

2

)
n ln k − n ln Γ(k) +

√
k

n∑

i=1

Yi − k
n∑

i=1

e
Yi√
k (4.34)

U(k) = n ln k + n− n

2k
− nϕ(k) +

1

2
√
k

n∑

i=1

Yi −
n∑

i=1

(
1− Yi

2
√
k

)
e
Yi√
k (4.35)

I(k) = −n
k
− n

2k2
+ nϕ

′
(k)− 1

4k
3
2

n∑

i=1

Yie
Yi√
k +

1

4k
3
2

n∑

i=1

Yi +
1

4k2

n∑

i=1

Y 2
i e

Yi√
k (4.36)

where ϕ and ϕ
′

are the digamma and trigamma functions defined above.
The likelihood based statistics are:
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• Wald:

GG2
w = (k̂n − 1)2

(
−3n

2
+ nϕ

′
(1)− 1

4

n∑

i=1

Yie
Yi +

1

4

n∑

i=1

Yi +
1

4

n∑

i=1

Y 2
i e

Yi

)
(4.37)

• score:

GG2
s =

(
n

2
− nϕ(1) +

1

2

n∑

i=1

Yi −
n∑

i=1

eYi +
1

2

n∑

i=1

Yie
Yi

)2

−3n

2
+ nϕ

′
(1)− 1

4

n∑

i=1

Yie
Yi +

1

4

n∑

i=1

Yi +
1

4

n∑

i=1

Y 2
i e

Yi

(4.38)

• likelihood ratio:

GG2
l = (2k̂n− 1)n ln k̂n− 2n ln Γ(k̂n) + 2(

√
k̂n− 1)

n∑

i=1

Yi + 2
n∑

i=1

eYi − 2k̂n

n∑

i=1

e
Yi√
k̂n .

(4.39)

4.3.3 Tests based on the Additive Weibull distribution

The cdf of the Additive Weibull distribution with 3 parameters considered AW(ξ, η, β) is
[129, 15]:

FX(x; ξ, η, β) = 1− e−ξx−(x/η)β . (4.40)

The pdf of Y is:
fY (y; ξ) = (ξ + 1) ey−(ξ+1)ey . (4.41)

Y has the EV1(− ln(ξ + 1), 1) distribution. We have to test H0: “ξ = 0” vs H1:
“ξ 6= 0”. The log-likelihood, score and information are respectively given by:

lnL(ξ) = n ln(ξ + 1) +
n∑

i=1

Yi − (ξ + 1)
n∑

i=1

eYi , (4.42)

U(ξ) =
n

ξ + 1
−

n∑

i=1

eYi , (4.43)

I(ξ) =
n

(ξ + 1)2
. (4.44)

The MLE ξ̂n of ξ is:

ξ̂n =
n

n∑

i=1

eYi
− 1. (4.45)

The likelihood based statistics are:

• Wald:
AWw = nξ̂2

n (4.46)
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• score:

AWs =
nξ̂2

n

(ξ̂n + 1)2
(4.47)

• likelihood ratio:

AWl = 2n

(
ln(ξ̂n + 1)− ξ̂n

ξ̂n + 1

)
. (4.48)

When the vector (Ŷ1, . . . , Ŷn) is used,
n∑
i=1

eŶi =
n∑
i=1

(Xi/η̂n)β̂n = n, so ξ̂n = 0. Then,

only the ÃW and ˘AW statistics are defined in this case.

4.3.4 Tests based on the Burr Generalized Weibull distribution

The cdf of the Burr Generalized Weibull distribution BGW(λ, η, β) is [89]:

FX(x;λ, η, β) = 1−
[
1 + λ(x/η)β

]− 1
λ . (4.49)

The pdf of Y is:
fY (y;λ) = ey(1 + λey)−

1
λ
−1. (4.50)

We have to test H0: “λ ∼ 0” vs H1: “λ 6= 0”. The log-likelihood, score and information
are respectively given by:

lnL(λ) =
n∑

i=1

Yi −
(

1

λ
+ 1

) n∑

i=1

ln(1 + λeYi) (4.51)

U(λ) =
1

λ2

n∑

i=1

ln(1 + λeYi)−
(

1

λ
+ 1

) n∑

i=1

1

e−Yi + λ
(4.52)

I(λ) =
2

λ3

n∑

i=1

ln(1 + λeYi)− 2

λ2

n∑

i=1

1

e−Yi + λ
−
(

1

λ
+ 1

) n∑

i=1

1

(e−Yi + λ)2
. (4.53)

The MLE λ̂n of λ verifies:

n∑

i=1

ln(1 + λ̂ne
Yi) = λ̂n(1 + λ̂n)

n∑

i=1

1

e−Yi + λ̂n
. (4.54)

It happens that limλ→0 I(λ) = +∞, but

I(λ̂n) =
2

λ̂n

n∑

i=1

1

e−Yi + λ̂n
−
(

1

λ̂n
+ 1

) n∑

i=1

1

(e−Yi + λ̂n)2
. (4.55)

So for the Wald and score tests, we will use expressions (4.11) and (4.12) instead of
(4.8) and (4.9). Then, the likelihood based statistics are:

• Wald:

BGWw = 2λ̂n

n∑

i=1

1

e−Yi + λ̂n
− λ̂n(λ̂n + 1)

n∑

i=1

1

(e−Yi + λ̂n)2
(4.56)
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• score:

BGWs =

1

2

n∑

i=1

e2Yi −
n∑

i=1

eYi

2

λ̂n

n∑

i=1

1

e−Yi + λ̂n
−
(

1

λ̂n
+ 1

) n∑

i=1

1

(e−Yi + λ̂n)2

(4.57)

• likelihood ratio:

BGWl = −2

(
1

λ̂n
+ 1

) n∑

i=1

ln(1 + λ̂ne
Yi) + 2

n∑

i=1

eYi . (4.58)

4.3.5 Tests based on the Marshall-Olkin extended Weibull dis-
tribution

The cdf of the Marshall-Olkin extended Weibull distribution MO(α, η, β) is [83]:

FX(x;α, η, β) = 1− αe−(x/η)β

1− (1− α) e−(x/η)β
. (4.59)

The pdf of Y is:

fY (y; k) =
αey−e

y

[1− (1− α) e−ey ]2
. (4.60)

We have to testH0: “α = 1” vsH1: “α 6= 1”. The log-likelihood, score and information
are respectively given by:

lnL(α) = n lnα +
n∑

i=1

Yi −
n∑

i=1

eYi − 2
n∑

i=1

ln
[
1− (1− α) e−e

Yi
]
, (4.61)

U(α) =
n

α
− 2

n∑

i=1

e−e
Yi

1− (1− α) e−e
Yi
, (4.62)

I(α) =
n

α2
− 2

n∑

i=1

e−2eYi

[
1− (1− α) e−e

Yi
]2 . (4.63)

The maximum likelihood estimator α̂n of α verifies the following equation:

U(α̂n) = 0. (4.64)

The likelihood based statistics are:

• Wald:

MOw = (α̂n − 1)2

(
n− 2

n∑

i=1

e−2eYi

)
(4.65)

• score:

MOs =

(
n− 2

n∑

i=1

e−e
Yi

)2

n− 2
n∑

i=1

e−2eYi

(4.66)
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• likelihood ratio:

MOl = 2n ln α̂n − 4
n∑

i=1

ln
[
1− (1− α̂n) e−e

Yi
]
. (4.67)

4.3.6 Test based on the Modified Weibull distribution

The cdf of the Modified Weibull distribution MW(ρ, η, β) is [72]:

FX(x; ρ, η, β) = 1− e−(x/η)βeρx . (4.68)

The pdf of Y is:

fY (y; ρ) = (1 + ρey) ey+ρey−ey+ρey . (4.69)

We have to test H0: “ρ = 0” vs H1: “ρ 6= 0”. The log-likelihood, score and information
are respectively given by:

lnL(ρ) =
n∑

i=1

Yi + ρ
n∑

i=1

eYi +
n∑

i=1

ln(1 + ρeYi)−
n∑

i=1

eYi+ρe
Yi (4.70)

U(ρ) =
n∑

i=1

eYi +
n∑

i=1

eYi

1 + ρeYi
−

n∑

i=1

e2Yi+ρe
Yi (4.71)

I(ρ) =
n∑

i=1

e2Yi

(1 + ρeYi)2
+

n∑

i=1

e3Yi+ρe
Yi . (4.72)

The likelihood based statistics are:

• Wald:

MWw = ρ̂2
n

[
n∑

i=1

e2Yi +
n∑

i=1

e3Yi

]
, (4.73)

• score:

MWs =

[
2

n∑

i=1

eYi −
n∑

i=1

e2Y i

]2

n∑

i=1

e2Yi +
n∑

i=1

e3Yi

, (4.74)

• likelihood ratio:

MWl = 2(ρ̂n + 1)
n∑

i=1

eYi + 2
n∑

i=1

ln(1 + ρ̂ne
Yi)− 2

n∑

i=1

eYi+ρ̂ne
Yi . (4.75)
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4.3.7 Tests based on the Power Generalized Weibull distribution

The cdf of the Power Generalized Weibull distribution PGW(ν, η, β) is [94]:

FX(x; ν, η, β) = 1− e1−(1+(x/η)β)
1
ν

. (4.76)

The pdf of Y is:

fY (y; ν) =
1

ν
(1 + ey)

1
ν
−1 ey+1−(1+ey)

1
ν . (4.77)

We have to test H0: “ν = 1” vs H1: “ν 6= 1”. The log-likelihood, score and information
are respectively given by:

lnL(ν) = −n ln ν +
n∑

i=1

Yi +

(
1

ν
− 1

) n∑

i=1

ln(1 + eYi) + n−
n∑

i=1

(
1 + eYi

) 1
ν , (4.78)

U(ν) = −n
ν

+
1

ν2

n∑

i=1

ln(1 + eYi)
[(

1 + eYi
) 1
ν − 1

]
, (4.79)

I(ν) = − n

ν2
− 2

ν3

n∑

i=1

ln(1+eYi)+
2

ν3

n∑

i=1

ln(1+eYi)
(
1 + eYi

) 1
ν

[
1 +

1

2ν
ln(1 + eYi)

]
. (4.80)

The MLE ν̂n of ν verifies the following equation:

ν̂n =
1

n

n∑

i=1

ln(1 + eYi)
[
(1 + eYi)

1
ν̂n − 1

]
. (4.81)

The likelihood based statistics are:

• Wald:

PGWw = (ν̂n − 1)2

[
−n+ 2

n∑

i=1

ln(1 + eYi) eYi +
n∑

i=1

[
ln(1 + eYi)

]2
(1 + eYi)

]
,

(4.82)

• score:

PGWs =

[
−n+

n∑

i=1

ln(1 + eYi) eYi

]2

−n+ 2
n∑

i=1

ln(1 + eYi) eYi +
n∑

i=1

[
ln(1 + eYi)

]2
(1 + eYi)

, (4.83)

• likelihood ratio:

PGWl = −2n ln ν̂n + 2

(
1

ν̂n
− 1

) n∑

i=1

ln(1 + eYi)− 2
n∑

i=1

(1 + eYi)
1
ν̂n + 2

n∑

i=1

eYi + 2n.

(4.84)
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4.4 Simulation and comparison

Section 4.3 has proposed a large amount of likelihood based GOF tests for the Weibull
distribution. It is then important to select the best of them. One criterion is the simplicity
of the computation of the test statistics. In this case, the EW and AW tests are the
most interesting because they use an explicit estimator of the parameter. But the most
important criterion is the power of the tests. This section presents the results of an
intensive Monte-Carlo simulation study in order to assess the power of all the likelihood
based tests. The best of them will be compared with the usual GOF tests for the Weibull
distribution in chapter 6. All these GOF tests are implemented in our R package EWGoF.

4.4.1 The simulation framework

The study is carried out using a broad class of alternative distributions. For each distri-
bution, we simulate 50000 samples of size n ∈ {20, 50}. All the GOF tests are applied
with a significance level set to 5%. The power of the tests is assessed by the percentage
of rejection of the null hypothesis.

We first simulate Weibull samples, in order to check that the percentage of rejection is
close to the nominal significance level 5%. For the other simulations, we have chosen usual
alternatives of the Weibull distribution (Gamma G, Lognormal LN , Inverse-Gamma IG)
and generalized Weibull distributions (EW , GG, AW , PGW). For the sake of simplicity,
the scale parameters of the Weibull, Gamma and Inverse-Gamma distributions are set to
1 and the mean of the Lognormal distribution is set to 0. Parameters of the simulated
distributions are selected to obtain different shapes of the hazard rate. Table 4.2 gives
the values of the parameters and the notations used for all the simulated distributions.

Table 4.2: Simulated distributions

Weibull exp(1) W(1, 0.5) W(1, 3)
IHR G(3, 1) AW1 ≡ AW(10, 0.02, 5.2) EW1 ≡ EW(6.5, 20, 6)
DHR G(0.5, 1) AW2 ≡ AW(2, 20, 0.1) EW2 ≡ EW(0.1, 0.01, 0.95)
BT EW3 ≡ EW(0.1, 100, 5) GG1 ≡ GG(0.1, 1, 4) GG2 ≡ GG(0.2, 1, 3)

PGW1 ≡ PGW(0.01, 200, 0.9)
UBT LN (0, 0.8) IG(3, 1) EW4 ≡ EW(4, 12, 0.6)

GG3 ≡ GG(10, 0.01, 0.2) PGW2 ≡ PGW(4, 1, 3)

For instance, let us consider the Wald test based on the Exponentiated Weibull dis-
tribution, with maximum likelihood estimators. The test statistics is given by (4.20):

ÊWw = n(θ̂n − 1)2 = n

[
1 + n/

n∑

i=1

ln(1− e−eŶi )
]2

. (4.85)

For a given sample size n, we simulate X1, . . . , Xn from the Exponential distribution
with parameter 1. For all i, we compute Ŷi = β̂n ln(Xi/η̂n), then we derive ÊWw, as
detailed in section 4.3. This process is done m = 100000 times. The quantiles of the
distribution of ÊWw under H0 are given by the empirical quantiles of the m values of



70 Simplified likelihood based GOF tests for the Weibull distribution

ÊWw. Table 4.3 gives some quantiles for several values of n, and the same quantiles for
the χ2

1 distribution. We observe that, even for very large n, the distribution of ÊWw

under H0 is very far from the χ2
1 distribution. So it is important to be able to apply these

GOF tests without using the chi-square approximation.

Table 4.3: Quantiles of the distribution of ÊWw under H0

n 90% 95% 97.5% 99%
20 0.107 0.154 0.204 0.276
50 0.123 0.176 0.232 0.315
100 0.127 0.182 0.240 0.323
1000 0.132 0.188 0.247 0.328
χ2

1 2.706 3.841 5.024 6.635

For the power study, we simulate a sample X1, . . . , Xn of size n of a given distribution.
For n = 50, the Weibull assumption is rejected at the level 5% if ÊWw > 0.176. This
process is done K = 50000 times. The percentage of rejection of H0 is an estimation of the
power of the test for this alternative. For instance, we see in Table 4.4 that the power of
the ÊWw test for simulated LN (0, 0.8) samples and n = 20 is estimated at 29.8%. These
percentages are given in Tables A.42 to A.53 of the appendix, in order to assess the power
of the likelihood based tests within each family of generalized Weibull distributions.

Table 4.4: Power results for the tests based on the Exponentiated Weibull distribution,
n = 20

altern. ÊWw ÊW s ÊW l ẼWw ẼW s ẼW l
˘EWw

˘EW s
˘EW l mean

exp(1) 5 5 4.9 5 4.9 5 5 5 5 5
W(1, 0.5) 5.3 5.3 5.3 5.2 5.1 5.1 5 4.9 5 5.1
W(1, 3) 5 5 5 5.1 5 5 5 5 5 5

G(3, 1) 9.7 7.2 8 5.1 5.9 5.7 5 6 5.6 6.5
AW1 49.9 53.7 52.5 46.4 44.5 45.3 48.4 46.5 47.2 48.3
EW1 21.5 16.6 18.2 10.9 12.9 12.3 10.4 12.5 11.7 14.1

G(0.5, 1) 8.6 10.8 10 9.2 8.5 8.8 8.7 8 8.2 9
AW2 79.8 84.1 82.7 32.7 30.3 31.3 41.4 38.6 39.5 51.2
EW2 13.7 18.2 16.6 4.6 4 4.2 4.3 3.7 3.9 8.2

EW3 13.5 18 16.5 4.6 4 4.2 4.3 3.7 3.9 8.1
GG1 29.2 34.8 33 18 16.5 17.1 17.5 16 16.5 22.1
GG2 21.4 26 24.5 15.9 14.6 15.2 15 13.5 13.9 17.8
PGW1 11.2 14.1 13.1 11 10.1 10.5 10.2 9.4 9.6 11

LN (0, 0.8) 29.8 23.8 25.8 16.5 19.3 18.5 15 18 16.9 20.4
IG(3, 1) 56.2 49.9 52.3 44.9 48.9 48.9 36.5 41.3 39.9 46.5
EW4 15.7 11.9 13.2 7.6 9 8.6 7.2 8.9 8.3 10.1
GG3 16.9 12.6 14.1 8.3 9.9 9.4 8 9.7 9.1 10.9
PGW2 28.7 22.7 24.2 16.7 19.3 18.5 16.1 19 18 20.4

mean 27.1 27 27 16.8 17.2 17.2 16.5 17 16.8 20.3
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Table 4.5: Power results for the tests based on the Exponentiated Weibull distribution,
n = 50

altern. ÊWw ÊW s ÊW l ẼWw ẼW s ẼW l
˘EWw

˘EW s
˘EW l mean

exp(1) 5 5.1 5.1 5 5 5 5.1 5.1 5.1 5
W(1, 0.5) 4.9 5 5 5.1 5.2 5.1 4.9 4.9 4.9 5
W(1, 3) 5 5 5 5.1 5.1 5.1 5.1 5 5 5

G(3, 1) 20 17 18.1 11.6 12.9 12.4 9.9 11.3 10.7 13.8
AW1 81.8 83.4 83 80.2 79.2 79.4 81 80.1 80.4 80.9
EW1 53 48.5 50.2 23.7 25.8 25 31.4 34.4 33.3 36.2

G(0.5, 1) 14.6 17.4 16.6 11.7 10.9 11 11.9 11.1 11.3 12.9
AW2 99.7 99.8 99.8 55.4 53.4 53.8 70.9 68.5 69.3 74.5
EW2 41 46.9 45.2 1.9 1.6 1.6 2.3 1.9 2 16

EW3 40.6 46.6 44.9 1.8 1.5 1.6 2.3 1.9 2 15.9
GG1 69.5 73.6 72.4 29.9 28.3 28.7 31.1 29.3 29.8 43.6
GG2 51.5 56.4 55 24.9 23.4 23.7 25.2 23.7 24.1 34.2
PGW1 23.9 27.7 26.6 14.9 13.9 14.2 14.9 13.9 14.1 18.2

LN (0, 0.8) 68.5 64.3 65.9 56.6 59.4 59.3 49.2 52.7 51.3 58.6
IG(3, 1) 94.6 93.2 93.8 95 95.7 95.5 88 89.7 89.1 92.7
EW4 38.3 33.8 35.7 23.2 25.4 24.6 20 22.4 21.5 27.2
GG3 41.2 36.9 38.6 27.4 29.8 28.9 22.9 25.6 24.6 30.7
PGW2 66.5 61.9 63.5 53.8 56.3 55.4 48 51.2 49.8 56.3

mean 53.6 53.8 53.9 34.1 34.5 34.4 33.9 34.5 34.2 40.8

For comparison purpose, the tables give also two additional results:

• The last row gives the mean of the rejection percentages of each test for all simulated
alternative distributions, except the Weibull ones. This allows to identify the best
tests for a broad range of alternatives.

• The last column gives the mean of the rejection percentages of all tests for each sim-
ulated alternative distribution. This allows to identify the simulated distributions
for which the Weibull assumption is rejected easily or with difficulty.

4.4.2 Results and discussion

The most striking result of the analysis of these tables is that the performance of the
tests is strongly linked to the shape of the hazard rate of the simulated distribution.
More precisely, we see that the same kind of behavior appears for, on one hand the IHR
and UBT alternatives, and on the other hand the DHR and BT alternatives. This link is
not surprising since a UBT hazard rate starts by increasing and a BT hazard rate starts
by decreasing.

Another important remark is that many of these tests appear to be biased: for some
alternatives, their power is smaller than the significance level 5%. This fact was yet
noticed in [121] for the Mann-Scheuer-Fertig test. In fact, many tests which are very
powerful for IHR-UBT alternatives are biased for DHR-BT alternatives and vice versa.
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We can also notice that the powers of Weibull GOF tests are significantly lower than the
ones of the Exponential GOF tests.

In the following, we compare the performance of the GOF tests within each Generalized
Weibull family.

• Tests based on the Exponentiated Weibull distribution (tables 4.4 and 4.5). These

tests have globally good performance and none of them is biased. The tests ÊW
based on the MLE are the most powerful. ÊW s is slightly the best for the DHR-BT
alternatives and ÊWw is slightly the best in the IHR-UBT case.

• Tests based on the Generalized Gamma distribution (tables A.42 and A.43). Many

of these tests are biased. The three ĜG
1

tests have similar good performance. For

DHR-BT alternatives, ĜG
2

s is very good, except for AW2 samples. In the UBT

case, G̃G
2

w is the best. In the IHR case, G̃G
2

s is a good choice. ĜG
2

l is globally the
best test.

• Tests based on the Additive Weibull distribution (tables A.44 and A.45). The per-
formances of all tests are very bad for the DHR-BT alternatives. However the three
versions of the ÃW tests have good power in the UBT case. ÃWw is better than
the others for AW1 samples.

• Tests based on the Burr Generalized Weibull distribution (tables A.46 and A.47).
The comments are similar to the previous ones. These tests are highly biased for
the DHR-BT alternatives. They have globally the worst performance of all families
of distributions, but their power is satisfactory for some IHR and UBT alternatives.

• Tests based on the Marshall-Olkin distribution (tables A.48 and A.49). Only a few

tests are biased. M̂Ow is the most powerful for the DHR-BT alternatives and M̆Os

is the best in the UBT case. Globally, the best test is M̃Ow, it is close to the best
tests and never gives very bad results.

• Tests based on the Modified Weibull distribution (tables A.50 and A.51). Many

tests are biased, but only for IHR-UBT alternatives. In this case, M̃W s is the best.

M̂Ww has a particularly good power for DHR-BT alternatives. Globally, M̂W s can
be recommended.

• Tests based on the Power Generalized Weibull distribution (tables A.52 and A.53).

Half of the tests are biased. P̂GW s has the best performance for DHR-BT alterna-
tives and is not biased. ˘PGWw is the best in the IHR-UBT case, except for AW1

samples, but it is biased. Globally, P̂GW l and P̂GWw are the most powerful tests.

From this analysis, we can derive the following conclusions.

• Among the 3 methods of estimation, the maximum likelihood provides generally
more powerful tests than the least squares and moment methods.

• Among the 3 likelihood-based statistics, the Wald statistic gives generally better
results than the score and likelihood-ratio.
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• Among the 7 generalized Weibull distributions, the best average results are ob-
tained for the Power Generalized Weibull, Marshall-Olkin and Generalized Gamma
distributions.

• The tests with the best global performance are ĜG
2

l , M̃Ow and the families of

P̂GW , ĜG
1

and ÊW .

• The best test for DHR-BT alternatives is M̂Ww, but it is biased. Among the

unbiased tests, P̂GW s is the best.

• The best tests for UBT alternatives are ˘PGWw and ÃW s. Both are biased. Among

the unbiased tests, M̃W s is the best.

• For IHR alternatives, the results are not so clear. ˘PGWw is the best test for Gamma

and EW alternatives, but is biased for AW1 samples. Then, G̃G
2

s, ÃW s M̃W s and

P̃GW s are good choices for general IHR alternatives. Note that these tests are all

based on least squares estimators and the score statistics. ĜG
2

l has also good power
in this case.

• A test based on a given GW family is not more powerful than other tests for data
simulated according to this particular distribution.

• The power of the tests is very poor for Gamma samples. It means that it is diffi-
cult to discriminate the Weibull and Gamma distributions, which is not surprising.
The Weibull assumption is easily rejected for AW and IG samples. The power is
intermediate for the other distributions.

4.5 Asymptotic properties of some test statistics

General results on asymptotic properties of the previous tests are not available. Prac-
tically, they are exact and can be used for small samples: there is no need to use the
asymptotic distribution of these statistics since the exact quantiles can be found by Monte-
Carlo simulations. Furthermore, Monte-Carlo simulations of the quantiles show that the
convergence to the asymptotic distribution is quite long as shown in table 4.3.

However it is interesting from a theoretical point of view to study the asymptotic
properties of GOF test statistics. In this section we study the particular case when the
Weibull distribution is nested in the Generalized Gamma distribution. The Delta method
is used to prove the convergence of the Wald, score and likelihood ratio test statistics

ĜG
1

w, ĜG
1

s and ĜG
1

l to a scaled chi-squared distribution.

4.5.1 Asymptotic properties of ĜG1
s and ĜG1

w

Property 4.1 Under H0, the statistics ĜG
1

s and ĜG
1

w converge asymptotically to weighted
χ2

1 distributions:

ĜG1
s

1− 6/π2 − 36/π4

d−→
n→∞

χ2
1 (4.86)
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ĜG1
w

1− 6/π2 − 36/π4

d−→
n→∞

χ2
1. (4.87)

Proof:
For the demonstration, we will use the following Delta method [122].

Property 4.2 [Delta method]

Suppose nb(θn− θ0)
d−→

n→∞
Y where θn and Y are k-random vectors, θ0 is a non-random

k-vector, b > 0. Suppose φ : Rk −→ Rm is a differentiable function in a neighborhood of
θ0 and ∇φ(θ0) exists and is different from 0k. Then,

nb (φ(θn)− φ(θ0))
d−→

n→∞
∇φ(θ0)Y. (4.88)

A special case of the property 4.2 is given when k = 3, b = 1/2 and Y is from a Normal
distribution N(0, V ):

√
n (φ(θn)− φ(θ0))

d−→
n→∞

N
(
0,∇φ(θ0)V t∇φ(θ0)

)
. (4.89)

The two statistics ĜG
1

s and ĜG
1

w can be expressed thanks to two differentiable functions
φs and φw of the vector θn, where:

θn =




η̂n
β̂n

1

n

n∑

i=1

lnXi


 . (4.90)

Indeed:

ĜG
1

s =
6

π2

(√
nφs(θn)

)2
(4.91)

where φs : R∗+ × R2 −→ R



x1

x2

x3


 7−→ x2x3 − x2 lnx1 + γE (4.92)

and

ĜG
1

w =
π2

6

(√
nφw(θn)

)2
(4.93)

where φw : R∗+ × R2 −→ R



x1

x2

x3


 7−→ ϕ−1(x2x3 − x2 lnx1)− 1. (4.94)
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Property 4.3 The random vector θn is asymptotically a Gaussian vector and we have
the following asymptotic result:

√
n(θn − θ) d−→

n→∞
N(0, V ) (4.95)

where

V =


 I−1

η,β

v1,3

v2,3

v1,3 v2,3 v3


 (4.96)

where I−1
η,β is the Fisher information matrix of W(η, β):

I−1
η,β =

[
(η/β)2(1 + 6

π2 (1− γE)2) 6η
π2 (1− γE)

6η
π2 (1− γE) 6β2

π2

]
(4.97)

and 



v1,3 = (η/β2)(1 + 6
π2 (1− γE))

v2,3 = 6
π2

v3 = π2

6β2

θ =




η
β

ln η − γE
β


 . (4.98)

Proof:
The maximum likelihood estimators η̂n and β̂n verify asymptotically the condition (The-
orem 5.39, page 65 [122]):

√
n

(
η̂n − η
β̂n − β

)
=

1√
n
I−1
η,β

n∑

i=1

(
∂ ln f
∂η

(Xi; η, β)
∂ ln f
∂β

(Xi; η, β)

)
+ op(1). (4.99)

We know that
∂ ln f

∂η
(Xi; η, β) =

β

η

((
Xi

η

)β
− 1

)
(4.100)

and
∂ ln f

∂β
(Xi; η, β) =

1

β

(
1 + ln

((
Xi

η

)β)(
1−

(
Xi

η

)β))
. (4.101)

Consequently:

√
n (θn − θ) =

√
n

[
I−1
η,β 0

0 1

]
1

n

n∑

i=1

Ai + op(1) (4.102)

where

Ai =




β
η

(exp(Yi)− 1)
1
β

(1 + Yi(1− exp(Yi)))
1
β

(Yi + γE)


 (4.103)
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and exp(Yi) =
(
Xi
η

)β
, 1 ≤ i ≤ n follows a standard Exponential distribution and the

Yi, 1 ≤ i ≤ n follows EV(0, 1) (see section 3.1). Then,

E[exp(Yi)] = 1

E[Yi] = γE.
(4.104)

Moreover,

E[Yi(1− exp(Yi))] = E[Yi]− E[Yi exp(Yi)]

= −γE −
∫ +∞

0

x lnx exp(−x) dx

= −γE − Γ
′
(2)

= −γE − (1− γE)

= −1.

(4.105)

Then from (4.104) and (4.105), we have E[Ai] = 03.

Moreover using the Central limit theorem we have the asymptotic result:

Lemma 1
1√
n

n∑

i=1

(Ai − 03)
d−→

n→∞
N(03,Σ) (4.106)

where

Σ =




(
β
η

)2 γE−1
η

1
η

γE−1
η

π2

6β2

(
1 + 6

π2 (1− γE)2
)

γE
β2

1
η

γE
β2

π2

6β2



. (4.107)

Proof:

The results are found from the following equations, using some properties of the Gamma
function. For a fixed index i ∈ {1, . . . , n}:





Var (Yi) =π2/6

Cov (exp(Yi), Yi) =1

Cov
(
Yi
(
1− exp(Yi)

)
, Yi
)

=γE

Var (Yi(1− exp(Yi))) =π2/6 + (1− γE)2

Cov
(
Yi
(
1− exp(Yi)

)
, exp(Yi)

)
=γE − 1

(4.108)

Indeed,

Cov (exp(Yi), Yi) = E[exp(Yi)Yi]− E[Yi]E[exp(Yi)]

=

∫ +∞

0

x lnx exp(−x) dx− (−γE)× 1

= Γ
′
(2) + γE

= 1

(4.109)
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and
E[Y 2

i (1− exp(Yi))] = E[Y 2
i ]− E[Y 2

i exp(Yi)]

=
π2

6
+ γ2

E −
∫ +∞

0

ln2(y)y exp(−y) dy

=
π2

6
+ γ2

E − Γ
′′
(2)

= 2γE.

(4.110)

Using equations (4.109) and (4.110), we have:

Cov (Yi(1− exp(Yi)), Yi) = E[Y 2
i (1− exp(Yi))]− E[Yi(1− exp(Yi))]E[Yi]

= 2γE − (−1)× (−γE)

= γE

(4.111)

Cov (Yi(1− exp(Yi)), exp(Yi)) = E[Yi exp(Yi)(1− exp(Yi))]− E[Yi(1− exp(Yi))]E[exp(Yi)]

=

∫ +∞

0

x lnx(1− x) exp(−x) dx− E[Yi(1− exp(Yi))]E[exp(Yi)]

From equation (4.105) and the properties of the Gamma function, we obtain:

Cov (Yi(1− exp(Yi)), exp(Yi)) = Γ
′
(2)− Γ

′
(3) + 1

= 1− γE − (3− 2γE) + 1

= γE − 1.

By definition and using equation (4.109), we have:

Var (Yi(1− exp(Yi))) = E
[
Y 2
i (1− exp(Yi))

2
]
− E [Yi(1− exp(Yi))]

2

=

∫ +∞

0

ln2(x)(1− x)2 exp(−x) dx− E [Yi(1− exp(Yi))]
2

= Γ
′′
(1)− 2Γ

′′
(2) + Γ

′′
(3)− 1

= (1− γE)2 +
π2

6
.

(4.112)

�
Thus, we can deduce from results in (4.102) and (4.106) the asymptotic property of θn:

√
n(θn − θ) d−→

n→∞
N(03, V ) (4.113)

V =

[
I−1
η,β 0

0 1

]
Σ

[
I−1
η,β 0

0 1

]
. (4.114)

After computation, the value of V is:

V =




(
η
β

)2(
1 + 6

π2 (1− γE)2
) (

6η
π2

)(
1− γE

) (
η
β2

)(
1 + 6

π2 (1− γE)
)

(
6η
π2

)(
1− γE

)
6β2

π2
6
π2

(
η
β2

)
(1 + 6

π2 (1− γE)) 6
π2

π2

6β2



. (4.115)
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As expected the first 2× 2 blocks of V is I−1
η,β. �

Now, we apply the Delta method to θn, φs and φw:

√
n
(
φs(θn)−

=0︷ ︸︸ ︷
φs(θ)

) d−→
n→∞

N
(

0, ∇φs(θ)V t∇φs(θ)
)

(4.116)

√
n(φw(θn)−

=0︷ ︸︸ ︷
φw(θ))

d−→
n→∞

N
(

0, ∇φw(θ)V t∇φw(θ)
)
. (4.117)

Indeed, we use γE = −ϕ(1) to obtain:

φs(θ) = β
(

ln η − γE
β

)
− β ln η + γE = 0

φw(θ) = ϕ−1

(
β
(

ln η − γE
β

)
− β ln η

)

= ϕ−1(−γE)− 1

= ϕ−1(ϕ(1))− 1 = 0

We know that γE = −ϕ(1) and (ϕ−1)
′
(x) = 1

ϕ′ (ϕ−1(x))
. So we have:

∇φs(θ) = −
(β
η
,
γE
β
, −β

)

∇φw(θ) = −
(β
η

(ϕ−1)
′
(−γE),

γE
β

(ϕ−1)
′
(−γE), −β(ϕ−1)

′
(−γE)

)

=
1

ϕ′(ϕ−1(ϕ(1)))
∇φs(θ)

=
1

ϕ′(1)
∇φs(θ)

=
6

π2
∇φs(θ).

(4.118)

Using equations (4.91) and (4.93), we have:

√
ĜG1

s
d−→

n→∞
N
(

0, (6/π2)∇φs(θ)V t∇φs(θ)
)

√
ĜG1

w
d−→

n→∞
N
(

0, (6/π2)∇φs(θ)V t∇φs(θ)
)
.

(4.119)

Furthermore:

∇φs(θ)V t∇φs(θ) =
π2

6
− 6

π2
− 1. (4.120)

Consequently, we have the convergence:

√
ĜG1

s
d−→

n→∞
N
(

0, 1− 6/π2 − 36/π4
)

√
ĜG1

w
d−→

n→∞
N
(

0, 1− 6/π2 − 36/π4
)
.

(4.121)
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Finally, we have the following convergence of the two statistics ĜG1
s and ĜG1

w:

ĜG1
s

1− 6/π2 − 36/π4

d−→
n→∞

χ2
1 (4.122)

ĜG1
w

1− 6/π2 − 36/π4

d−→
n→∞

χ2
1. (4.123)

�

We notice that the asymptotic distributions of ĜG1
s and ĜG1

w are very far from the χ2
1

distribution as 1−6/π2−36/π4 = 0.022. So it is wrong to use the χ2
1 distribution to apply

the tests. Tables 4.6 and 4.7 give the quantiles for several values of n of ĜG1
s

1−6/π2−36/π4 and

ĜG1
w

1−6/π2−36/π4 , under H0. Quantiles for finite n are obtained by Monte-Carlo simulations.

We observe that, for small n, these distributions are far from the χ2
1 distribution. So it is

important to be able to use the quantiles found by simulation instead of the asymptotic
quantiles especially for small n.

Table 4.6: Quantiles of ĜG1
s

1−6/π2−36/π4 under H0

n 90% 92.5% 95% 97.5% 99%
10 1.843 2.169 2.651 3.522 4.703
20 2.207 2.608 3.207 4.265 5.650
50 2.466 2.886 3.523 4.657 6.244
100 2.583 3.035 3.712 4.874 6.435
1000 2.668 3.131 3.805 5.021 6.627
χ2

1 2.705 3.170 3.841 5.023 6.634

Table 4.7: Quantiles of ĜG1
w

1−6/π2−36/π4 under H0

n 90% 92.5% 95% 97.5% 99%
10 1.870 2.212 2.728 3.681 5.136
20 2.221 2.633 3.257 4.356 5.865
50 2.474 2.896 3.534 4.693 6.332
100 2.589 3.044 3.720 4.901 6.4913
1000 2.666 3.134 3.810 5.025 6.614
χ2

1 2.705 3.170 3.841 5.023 6.634
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4.5.2 Asymptotic property of ĜG1
l

Property 4.4 Under H0, the test statistic ĜG1
l converges asymptotically to a weighted

χ2
1 distribution:

ĜG1
l

1− 6/π2 − 36/π4

d−→
n→∞

χ2
1. (4.124)

Proof:

The test statistic ĜG
1

l can be expressed as a value of a differentiable function φl computed
in the vector θn defined in (4.90).

ĜG
1

l = −2n φl(θn) (4.125)

where φl : R∗+ × R2 −→ R



x1

x2

x3


 7−→ ln

(
Γ
(
ϕ−1(x2(x3 − lnx1))

))
−
(
ϕ−1(x2(x3 − lnx1))− 1

)(
x2(x3 − lnx1)

)
.

(4.126)

Since ϕ−1(−γE) = 1, ∇φl(θ) = (ϕ−1(−γE) − 1)(β
η
, γE

β
, −β) = 03, the first-order Delta

method in property 4.2 can not be applied. That is why we use the second-order Delta
method [122]:

Property 4.5 [Second-order Delta method]
Suppose φ is two-times differentiable in a neighborhood of θ0 and ∇φ(θ0) = 0k.

Then nb(θn − θ0)
d−→

n→∞
Y implies that

n2b (φ(θn)− φ(θ0))
d−→

n→∞

1

2
tY Hθ0Y (4.127)

where Hθ0 is Hessian matrix of φ computed in θ0.

We compute the Hessian matrix H of φl in θ. The computation is simplified thanks to
the equation (ϕ−1)

′
(−γE) = 1

ϕ′ (1)
= 6

π2 :

H = − 6

π2




(
β
η

)2 γE
η

−β2

η

γE
η

(
γE
β

)2 −γE

−β2

η
−γE β2



. (4.128)

Since ∇φl(θ) = 03 and the convergence in (4.95):

√
n(θn − θ) d−→

n→∞
N =




N1

N2

N3


 ∼ N(0, V ). (4.129)
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We can apply the second-order Delta method (b = 1
2
):

n
(
φl(θn)−

=0︷ ︸︸ ︷
φl(θ)

) d−→
n→∞

1

2
tNHN. (4.130)

Indeed,

φl(θ) = ln
(

Γ
(
ϕ−1(−γE)

))
+ γE

(
ϕ−1(−γE)− 1

)
= 0. (4.131)

Finally,

ĜG1
l

d−→
n→∞

− tNHN. (4.132)

The matrix H is symmetric, then it is orthogonally diagonalizable. We have to solve:

det|H − λI3| = 0, λ ∈ R,

We evaluate the determinant by expanding along the first row. After simplification, we
have:

det|H − λI3| = det

∣∣∣∣∣∣∣∣∣∣

−6
(
β
ηπ

)2 − λ 6γE
ηπ2

6β2

ηπ2

−6γE
ηπ2 −6

(
γE
βπ

)2 − λ 6γE
π2

6β2

ηπ2
6γE
π2 −6β2

π2 − λ

∣∣∣∣∣∣∣∣∣∣

= λ2

(
π2

6

((β
η

)2
+
(γE
β

)2
+ β2

)
+ λ

)
.

The zeros of the previous equation are the two eigenvalues, the first one is: λ0 =

− 6
π2

((
β
η

)2
+
(
γE
β

)2
+β2

)
with the corresponding eigenvector tP = (p1 p2 p3) =

(
β
η

γE
β
−

β). Indeed, we can easily verify that:

HP = λ0P.

The second eigenvalue is equal to 0 with order 2.

The quadratic form tNHN is, then, simplified using the diagonalization to:

tNHN = λ0

(
3∑

i=1

Nipi

)2

/
3∑

1

p2
i (4.133)

tNHN = − 6

π2

((β
η

)
N1 +

(γE
β

)
N2 − βN3

)2

= − 6

π2
( tPN)2.

(4.134)

From equation (4.129) and since tPV P = π2

6
− 6

π2 − 1,

tPN
d−→

n→∞
N

(
0,
π2

6
− 6

π2
− 1

)
. (4.135)
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Finally from equations (4.132), (4.134) and (4.135) and after normalization, we obtain
that:

ĜG1
l

1− 6/π2 − 36/π4

d−→
n→∞

χ2
1. (4.136)

�

We notice that the test statistic ĜG1
l has asymptotically the same distribution as ĜG1

s

and ĜG1
w. As we mentioned before, this distribution is far from the χ2

1 distribution
because 1− 6/π2 − 36/π4 = 0.022. Table 4.8 gives the quantiles for several values of n of

ĜG1
l

1−6/π2−36/π4 , under H0. We notice the convergence of these quantiles to those of the χ2
1

distribution. But for small n, we have to use the quantiles found by simulation instead of
the asymptotic quantiles.

Table 4.8: Simulated and asymptotic quantiles of
ĜG1

l

1−6/π2−36/π4 under H0

n 90% 92.5% 95% 97.5% 99%
10 1.841 2.187 2.694 3.611 5.059
20 2.211 2.594 3.192 4.279 5.764
50 2.458 2.892 3.495 4.629 6.252
100 2.590 3.027 3.692 4.856 6.449
1000 2.685 3.138 3.805 5.014 6.689
χ2

1 2.705 3.170 3.841 5.023 6.634

This chapter introduced new likelihood based GOF tests for the Weibull distribution.
Three estimation methods were used to get rid of the Weibull parameter: maximum
likelihood, least squares and moment methods. The proposed tests are exact.

A comprehensive comparison study is presented. It compares 54 likelihood based
GOF tests and recommends those with the best performances. Theoretical asymptotic
results are derived when the Weibull distribution is nested in the generalized Gamma
distribution.

The main part of this chapter has been presented in a paper to appear in Communica-
tions in Statistics - Simulation and Computation [71]. The asymptotic results of section
4.5 have been accepted for presentation in the MIMAR 2014 conference [68].



Chapter 5

GOF tests for the Weibull
distribution based on the Laplace
transform

The aim of this chapter is to present new GOF tests for the Weibull distribution based
on the Laplace transform. These tests merge the ideas of Cabaña and Quiroz [22] and
those introduced by Henze [53] for testing the Exponential distribution. We also introduce
new versions of the two statistics of Cabaña and Quiroz using the maximum likelihood
estimators instead of the moment estimators. The convergence of the distribution of one
of these statistics to the chi-squared distribution is established. The proposed tests are
not asymptotic and can be applied to small samples. Finally a comprehensive comparison
study is carried out.

5.1 Reminder of previous works

Henze proposed GOF tests for the Exponential distribution based on the Laplace trans-
form previously presented in subsection 2.2.8. The building of the test is based on the
measure of the difference between the empirical Laplace transform and its theoretical
version.

Henze proposed to compare the Laplace transform of the standard (λ = 1) Exponential

distribution,
1

1 + t
, to the empirical Laplace transform of the sample

(
Ŷi

)
1,...,n

(here

Ŷi = Xi
Xn

), ψn(t) =
1

n

n∑
i=1

exp(−tŶi). He built the following statistic (previously given in

(2.26)):

Hen,a = n

∫ +∞

0

[
ψn(t)− 1

1 + t

]2

w(t; a) dt (5.1)

where w(t; a) = exp(−at) is a weight function and a is a parameter to be chosen. The
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integrals defining Hen,a can be computed and expressed as explicit functions of the Ŷi
(see (2.27)).

The work of Cabaña and Quiroz [22], previously presented in subsection 3.2.7, uses
the Laplace transform to build GOF tests for the Weibull and type I extreme value distri-
butions. We remind that the distribution of Y̆i = β̆n ln Xi

η̆
is close to EV1(0, 1) distribution

and the Laplace transform of a sample Y1, ..., Yn from the EV1(0, 1) distribution is:

ψ(t) = Γ(1− t), ∀t < 1.

The tests are based on the closeness between the empirical Laplace transform ψn(t) =
1

n

n∑
i=1

exp(−tY̆i) and the theoretical Laplace transform ψ(t). This closeness is measured

by the empirical moment generating process v̆n(s):

v̆n(s) =
√
n
( 1

n

n∑

j=1

e−Y̆js − Γ(1− s)
)
. (5.2)

Cabaña and Quiroz proved the convergence, under H0, of v̆n(s), to a zero mean,
continuous Gaussian process Ğp(s) for s ∈ [−δ′ , η′ ], δ′ > 0, η

′
< 0.5. They suggested two

test statistics that are functions of the stochastic process v̆n given in previous equations
(3.41) and (3.42):

C̆Qn = v̆n,SV
−1(S) tv̆n,S (5.3)

S̆n =

∫

J

v̆2
n(s)/V (s) ds. (5.4)

In the following we combine both approaches, the one of Henze based on the weighted
L2 norm and the one of Cabaña and Quiroz based on the difference between the empirical
Laplace transform of the transformed data Yi, i ∈ {1, . . . , n}, and the Laplace transform
of the EV1(0, 1) distribution.

5.2 A new test combining the approaches of Henze

and Cabaña-Quiroz

Combining both approaches of Henze in (5.1) and of Cabaña and Quiroz in (5.4), we
propose a test statistic of the following form:

n

∫

I

( 1

n

n∑

j=1

e−Yjt − Γ(1− t)
)2

wa(t) dt =

∫

I

v2
n(t)wa(t) dt (5.5)

where wa is a weight function and I ⊂]−∞, 1[ is a bounded interval for which the above
integral is convergent. The function wa depends on a parameter a that can be chosen to
obtain the best performance of the test as in Henze’s work [53].

Henze chose wa(t) = e−at. This choice was justified by the fact of using a test of
Cramer-Von-Mises type which gives an explicit expression of the statistics and a good
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power for different alternatives by adjusting the value of a. It is common in Cramer-Von-
Mises and Anderson-Darling tests (statistics defined in equations (3.23) and (3.24)) to
use as a weight function the probability density function tested. Thus, we use as a weight
function the probability density function of the EV1(0, 1) after dilatation with parameter
a, wa(t) = eat−e

at
.

For the Exponential distribution, it was possible to find an explicit and simple expres-
sion of Henze’s statistic as a function of the sample Yj (see (2.27)). But, for the Weibull
distribution, the integral (5.5) is not easy to compute since Γ(1− t) is more complex than

1

1 + t
. We can compute the integral using Simpson or Monte Carlo integration or we can

simply compare the theoretical Laplace transform and the empirical one by discretizing
the integral on an appropriately chosen interval I. For instance, with a discretization on
[0, 1[, we obtain the following test statistic:

LTa,m =
m−1∑

k=1

v2
n(k/m)wa(k/m) = n

m−1∑

k=1

[ 1

n

n∑

j=1

e−Yjk/m − Γ(1− k/m)
]2

wa(k/m). (5.6)

The statistic LTa,m can be written as a quadratic form, as the first statistic of Cabaña
and Quiroz:

LTa,m = vn,mWa
tvn,m (5.7)

where vn,m = (vn( 1
m

), . . . , vn(m−1
m

)) and Wa =



wa(

1
m

) . . . 0
...

. . .
...

0 . . . wa(
m−1
m

)


 is a diagonal

weight matrix.
Equation (5.5) is similar to (5.4) and (5.7) is similar to (5.3): thus these tests are

linked to those of Cabaña and Quiroz. But they are much simpler since they do not
require the computation of the covariance matrix V (s).

We tried different range values of t by discretizing the intervals [−50, 1[, [−10, 1[,
[−1, 1[, [0, 1[, [−1, 0], [−10, 0] and [−50, 0]. We used normalizing factors in some cases in
order to have usual orders of magnitude of the statistics. The power results are similar
for the statistics based on the discretizations of [−50, 1[, [−10, 1[, [−1, 1[ and [0, 1[. Simi-
larly the statistics based on discretizing [−1, 0], [−10, 0] and [−50, 0] have a comparable
performance. That is why we use only the discretizations of [0, 1[ and [−1, 0]. The two
corresponding statistics are respectively denoted LT 1 and LT 2:

LT 1
a,m = n

m−1∑

k=1

[ 1

n

n∑

j=1

e−Yjk/m − Γ(1− k/m)
]2

wa(k/m) (5.8)

LT 2
a,m = n

−1∑

k=−m

[ 1

n

n∑

j=1

e−Yjk/m − Γ(1− k/m)
]2

wa(k/m). (5.9)

For a comparison purpose, let LT 3
a,m be a third test statistic based on the discretization

of the interval [−2.5, 0.49] recommended by Cabaña and Quiroz [22]:

LT 3
a,m = n

0.49m∑

k=−2.5m

[ 1

n

n∑

j=1

e−Yjk/m − Γ(1− k/m)
]2

wa(k/m). (5.10)
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Each of the statistics (5.8), (5.9), (5.10) can be computed using Ŷ1, . . . , Ŷn or Ỹ1, . . . , Ỹn
or Y̆1, . . . , Y̆n instead of Y1, . . . , Yn. The corresponding statistics are denoted respectively

L̂T
i
, L̃T

i
and L̆T

i
, i ∈ {1, 2, 3}.

Using the moment estimators, we can conclude from the convergence result of ν̆n(s), s ∈
J [22], and the continuous mapping theorem, that L̆T

i
, i ∈ {1, 2, 3}, converges under the

null hypothesis H0, to the distribution of:

∑

s∈Ii(m)

Ğ2
p(s)wa(s)

where I1(m) = { 1
m
, . . . , m−1

m
}, I2(m) = {−1, −m+1

m
, . . . , −1

m
} and I3(m) = {−2.5, −2.5m+1

m
,

. . . , 0.49}.

We have the same asymptotic convergence of the statistics L̂T
i
to
∑

s∈Ii(m) Ĝ
2
p(s)wa(s),

where Ĝp(s) is a zero mean continuous Gaussian process with a specific covariance matrix
that will be derived later in section 5.3. Indeed, theorem 2.1 in [22] can be applied to the
empirical process v̂n using MLEs instead of the MEs.

The behavior of the test statistics depends on the choice of the parameter value a of
the weight function. It is impossible to find a value of parameter a that maximizes the
power of the GOF tests whatever the tested alternative. Indeed the behavior of the tests
depends in theory on the alternative tested and the sample size. After several simulations

with different values of a, we recommend the use of a = −5 for both L̂T
1

a,m and L̂T
2

a,m.
We will use this value for the remaining test statistics.

Concerning the choice of parameter m, it was set in all the simulations to m = 100.
However m = 100 is not in all the cases the optimal value that gives the best performance.
For instance, we studied the Monte Carlo estimation of the power of the test LT 1

−5,m for a
sample simulated from the Gamma distribution with parameters (1, 2). Figure 5.1 shows
that the optimal value is m = 70 in this case. But this satisfactory value could have been
different if we had simulated another distribution. Choosing a large value of m guarantees
satisfying results in a large range of cases.

Figure 5.1: The power of the test L̂T
1

−5,m as a function of m
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Given the expression of the new GOF test statistics as the distance between the
theoretical and the empirical Laplace transforms, the null hypothesis H0 is rejected when
the statistics are too large. The Weibull assumption is rejected at the level α if the
statistics are greater than the quantile of order 1− α of its distribution under H0. These
quantiles can be easily obtained by simulation.

5.3 Cabaña and Quiroz statistics with Maximum Like-

lihood Estimators

The results of Cabaña and Quiroz are valid for affine invariant estimators of µ = ln η and
σ = 1

β
which are satisfying a condition denoted (2.6) in [22]. Cabaña and Quiroz showed

that this condition is fulfilled by the moment estimators, and obtained the test statistics
C̆Qn and S̆n.

In this section, we prove that the MLEs verify condition (2.6) in [22]. So we are able

to build the corresponding test statistics ĈQn and Ŝn. This condition is given in equation
(5.11) of the following theorem 5.1 (theorem 2.1 of [22]):

Theorem 5.1 Suppose that the parameters µ and σ are estimated by an affine pair of
estimators µ̂ and σ̂, such that linearly independent functions K1 and K2 exist in L2(P )
satisfying:

||√n t(µ̂, σ̂ − 1)− A 1√
n

∑

i≤n

t (K1(Yi), K2(Yi)) || = op(1) (5.11)

where A is a non-singular, 2 × 2 matrix. Then, under the null hypothesis, v̂n, as a
stochastic process indexed in J , converges in distribution to a zero-mean, sample contin-
uous Gaussian process Gp(s), with covariance structure given by:

E [Gp(u)Gp(v)] = Γ(1− u− v)− Γ(1− u)Γ(1− v)

+5(v)A tE[K1(Y ) exp(uY ), K2(Y ) exp(uY )]

+5(u)A tE[K1(Y ) exp(vY ), K2(Y ) exp(vY )]

+5(u)ACov(K1(Y ), K2(Y )) tA t5 (v)

where Y is a variable with the EV1(0, 1) distribution and 5(u) = u(−Γ(1−u),Γ
′
(1−u)).

We know that the MLEs verify asymptotically the following property (theorem 5.39, page
65 [122]):

√
n t (µ̂n, σ̂n − 1) =

1√
n
I−1

(µ=0,σ=1)

n∑

i=1

t

(
∂ ln g

∂µ
(Yi, µ = 0, σ = 1),

∂ ln g

∂σ
(Yi, µ = 0, σ = 1)

)
+op(1)

(5.12)
where I−1 is the inverse of the Fisher information matrix of the EV 1(0, 1) distribution
which can be derived as:

I−1
(µ=0,σ=1) =

∣∣∣∣
1 + 6

π2 (1− γE)2 6
π2 (γE − 1)

6
π2 (γE − 1) 6

π2

∣∣∣∣ .
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Property (5.12) becomes:

√
n t (µ̂n, σ̂n − 1) =

1√
n
I−1

(µ=0,σ=1)

n∑

i=1

t
(
−1 + eYi ,−1− Yi + Yie

Yi
)

+ op(1). (5.13)

The two functions K1(y) = −1+ey and K2(y) = −1−y+yey are linearly independent.
Then, condition (5.11) is fulfilled for the MLEs and we can apply theorem 5.1. Under the

null hypothesis H0, v̂n(s) =
√
n
(

1
n

n∑

j=1

e−sŶj − Γ(1− s)
)

, as a stochastic process indexed

on J , converges in distribution to a zero mean, sample continuous Gaussian process Ĝp(s)
with covariance structure given by:

E[Ĝp(v)Ĝp(u)] = Γ(1− u− v)− Γ(1− u)Γ(1− v)

+5(v)I−1 tE
[
(−1 + eY )e−uY , (−1− Y + Y eY )e−uY

]

+5(u)I−1 tE
[
(−1 + eY )e−vY , (−1− Y + Y eY )e−vY

]

+5(u)I−1Cov
(
−1 + eY ,−1− Y + Y eY

)
tI−1 t5 (v)

where 5(u) = u(−Γ(1−u),Γ
′
(1−u)) and Y is a variable with the EV1(0, 1) distribution.

After computation, the limiting covariance structure is as follows:

E[Ĝp(v)Ĝp(u)] = Γ(1− u− v)− Γ(1− u)Γ(1− v)

+5(v)I−1

(
Γ(2− u)− Γ(1− u)

−Γ(1− u)− Γ
′
(1− u) + Γ

′
(2− u)

)

+5(u)I−1

(
Γ(2− v)− Γ(1− v)

−Γ(1− v)− Γ
′
(1− v) + Γ

′
(2− v)

)

+5(u) tI−1 t5 (v).

We use the following results similar to those presented in section 4.5:





E[Y e−vY ] = Γ
′
(1− v)

E[Y 2e−uY ] = Γ
′′
(1− u)

E[(−1 + eY )e−vY ] = Γ(2− v)− Γ(1− v)

E[(−1− Y + Y eY )e−uY ] = −Γ(1− u)− Γ
′
(1− u) + Γ

′
(2− u)

Var(−1 + eY ) = 1

Var(−1− Y + Y eY ) =
π2

6
+ (γE − 1)2

Cov(−1 + eY ,−1− Y + Y eY ) = 1− γE.

(5.14)

Hence, we can define new versions of the Cabaña and Quiroz statistics based on the MLEs
instead of MEs:

ĈQn = v̂n,SV̂
−1(S) tv̂n,S (5.15)
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Ŝn =

∫

J

v̂2
n(s)/V̂ (s) ds (5.16)

where v̂n,S = (v̂n(s1), . . . , v̂n(sk)), S = {s1, . . . , sk} ⊂ J and V̂ (S) is the limiting covariance

matrix of v̂n,S given above. Statistic ĈQn has a limiting chi-squared distribution with k
degrees of freedom. Figure 5.2 shows that the limiting variance of v̂n grows very fast when
s goes to −∞ and the same when s approaches 0.5. In this case, we recommend that the
interval J should be included in [−1.5, 0.49]. In the simulations presented in section 5.4,

we will use the test ĈQn with the following values: k = 2, s1 = −0.1 and s2 = 0.02.

Figure 5.2: The asymptotic variance of v̂n(s) as a function of s

Since the test statistics can be used for small values of the sample sizes, the asymptotic
results are not often relevant in practice. That is why we had the idea of using a different

version of the test statistic ĈQn that we denote ĈQ
∗
n, whose expression is given by using

any non singular matrix A:

ĈQ
∗
n = v̂n,S A

−1 tv̂n,S. (5.17)

In this case, we have no more convergence of the test statistic distribution to a chi-
squared distribution, but this is not important since we use simulated quantiles for a

given sample size. Nevertheless we still have the property that the distribution of ĈQ
∗

is
independent of the parameters of the Weibull distribution under H0. In the simulations

in the next section, we will use the test ĈQ
∗
n where k = 2, S = {−0.1, 0.02} and we fix

the following matrix, found after several simulations: A =

[
1.59 0.91
0.91 0.53

]
.



90 GOF tests for the Weibull distribution based on the Laplace transform

5.4 Simulation and comparison

The previous section has proposed new GOF tests for the Weibull distribution. As in
chapter 4, it is then important to select the best of them and compare them with the best
GOF tests of the literature. This section presents the results of an intensive Monte Carlo
simulation study in order to assess the power of the new GOF tests.

The study is done using a broad range of alternative distributions. We have four
classes depending on the shape of the hazard rates (IHR, DHR, BT and UBT).

As previously, for each distribution, we simulate 50,000 samples of size n ∈ {10, 20, 50,
100}. All the GOF tests are applied with a significance level set to 5%. The tests reject
the Weibull hypothesis when the statistic is greater than the quantile of order 95% of its
distribution under H0. These quantiles are obtained by simulation, thus the asymptotic
results are not used in this case.

The power of the tests is assessed by the percentage of rejection of the null hypothesis.
The algorithms have been written in R and are included in the package EWGoF that we
have developed.

We first simulate Weibull samples, in order to check that the percentage of rejection
is close to the nominal significance level 5%. For the other simulations, we have chosen
the following distributions:

• Gamma G

• Lognormal LN

• Inverse-Gamma IG

• Generalized Weibull distributions (see table 4.1):

– Exponentiated Weibull distribution EW(θ, η, β)

– Generalized Gamma distribution GG(k, η, β)

– Additive Weibull distribution AW(ξ, η, β).

As before, for the sake of simplicity, the scale parameters of the Weibull, Gamma and
Inverse-Gamma distributions are set to 1 and the mean of the Lognormal distribution is
set to 0. The choice of the parameters of the simulated distributions is done in order to
obtain different shapes of the hazard rate. Table 5.1 gives the values of the parameters
and the notation used for all the simulated distributions.

Table 5.1: Simulated distributions

Weibull exp(1) W(1, 0.5) ≡ W(0.5) W(1, 3) ≡ W(3)
IHR G(2, 1) ≡ G(2) G(3, 1) ≡ G(3) AW1 ≡ AW(10, 0.02, 5.2)
DHR G(0.2, 1) ≡ G(0.2) AW2 ≡ AW(2, 20, 0.1) EW1 ≡ EW(0.1, 0.01, 0.95)
BT EW2 ≡ EW(0.1, 100, 5) GG1 ≡ GG(0.1, 1, 4) GG2 ≡ GG(0.2, 1, 3)

UBT LN (0, 0.8) ≡ LN (0.8) LN (0, 2.4) ≡ LN (2.4) LN (0, 3) ≡ LN (3)
IG(3, 1) ≡ IG(3) GG3 ≡ GG(10, 0.01, 0.2)
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We remind the values of the parameters used for the new test statistics:

• For LT i, i ∈ {1, 2, 3}: m = 100 and a = −5

• For C̆Q: k = 2, S = {−1, 0.4}

• For ĈQ: k = 2, S = {−0.1, 0.02}

• For ĈQ
∗
: k = 2, S = {−0.1, 0.02} and A =

[
1.59 0.91
0.91 0.53

]
.

For the power study, the percentage of rejection of H0 is an estimation of the power of

the test for this alternative. For instance, we see in table 5.4 that the power of the L̂T
1

test for simulated LN (0, 0.8) samples and n = 20 is estimated at 37.1%.

In the following tables, we assess the powers of the new GOF statistics LT i, i ∈
{1, 2, 3}, with the three estimation methods and the new version of Cabaña and Quiroz

test ĈQ.

We compare the performance of these new GOF tests to the one suggested by Cabaña
and Quiroz C̆Q defined in (3.41). The last rows of tables 5.2, 5.3, 5.4 and 5.5 give the mean
of rejection percentages of each test for all simulated alternative distributions, except the
Weibull ones. This allows to identify the best tests for a broad range of alternatives.

Table 5.2: Power results for the tests based on Laplace transform, n = 100

altern. L̂T
1
L̂T

2
L̂T

3
L̃T

1
L̃T

2
L̃T

3
L̆T

1
L̆T

2
L̆T

3
C̆Q ĈQ ĈQ

∗

exp(1) 5.1 5.1 4.9 5 5 5.3 5.1 5 5.1 5.1 5.1 5
W(0.5) 5.1 5.1 4.9 4.9 4.9 5.1 5 5 4.9 4.9 5 4.8
W(3) 5.3 5.1 5.1 5.1 5 5.2 5.1 5.1 4.9 5 5.1 5.1

G(2) 22.1 17.1 2.2 23.2 39.5 6.8 17.9 10.8 9.2 22.8 11.3 19.6
G(3) 38.4 31.7 5.7 27.5 39.5 12.3 28.9 21.6 17.1 40.4 23.9 34.7
AW1 84.9 94.1 97.9 35.9 10.8 91.1 19.6 96 83 96.4 98.3 94.3

G(0.2) 16.3 84.7 61.5 2.5 0.2 22.9 1.4 36.4 17.2 45.5 76.9 87.7
AW2 60.7 100 99.7 6.8 0.3 66.2 2.8 86.1 36.3 98.9 100 100
EW1 0 95.2 14.2 0.2 0.2 0 0.3 0.7 0 7.5 50.4 88.4

EW2 0 95.3 14.4 0.1 0.2 0 0.3 0.7 0 7.7 50.4 88.5
GG1 21.1 96.6 73.9 1.3 0.2 27.5 1.5 44.4 19.4 59.6 89.3 97.5
GG2 16.1 84.4 61.2 2.5 0.2 22.7 1.4 36.8 16.7 45.6 77.2 88.2

LN (0.8) 97.5 89.7 70.5 87.2 97.6 78.8 89.9 92.8 86 97.7 92.3 93.2
LN (2.4) 97.6 89.9 70.9 87.4 97.7 78.5 89.8 92.5 86.2 97.8 92.5 93.1
LN (3) 97.4 89.7 70.5 87.3 97.6 78.7 90 92.7 86.4 97.6 92.3 93.3
IG(3) 100 99.7 99.2 99.9 100 99.9 100 100 100 100 99.9 99.9
GG3 76.3 63.7 27.2 56.5 76.8 37.9 59.1 58.2 46.5 78.5 61.8 69.5

mean 52 80.8 54.9 37.1 40.1 44.5 35.9 55 43.2 64 72.6 82
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Table 5.3: Power results for the tests based on Laplace transform, n = 50

altern. L̂T
1
L̂T

2
L̂T

3
L̃T

1
L̃T

2
L̃T

3
L̆T

1
L̆T

2
L̆T

3
C̆Q ĈQ ĈQ

∗

exp(1) 4.9 5.3 5.1 5 4.9 4.8 4.8 5 4.9 5.1 4.8 5.1
W(0.5) 5 5.2 5 5 5 5 4.9 5 4.9 5.1 5 5
W(3) 5.1 5.2 5 5 4.9 5 4.8 5.2 5 5.1 5 5

G(2) 14.5 11.7 1.4 13.4 15.6 7.6 13.6 6.7 10.2 15.4 4.7 11.6
G(3) 23.2 18.2 1.4 19.8 24.2 11.9 20.2 10.7 15.8 25.1 8.4 18.6
AW1 64.1 75.8 86.2 18.8 3.1 67.8 6 79.6 53.1 74.7 87.4 76.4

G(0.2) 11.6 52.9 40.4 1.3 0.2 14.1 0.4 23.5 9.4 17.7 49.6 57.2
AW2 44.8 99.9 93.1 3.6 0.3 41.7 0.5 61.1 20.3 74 98.3 99.9
EW1 0.1 65.3 11.5 0.2 0.3 0.2 0.3 1.3 0.1 1.6 26.1 53.9

EW2 0.1 65.3 11.2 0.2 0.3 0.2 0.3 1.3 0.1 1.6 26.5 54.4
GG1 15 73.8 51.4 1.4 0.2 16.5 0.3 28.5 10.5 24.2 63.2 75.6
GG2 11.8 53.1 40.9 1.2 0.2 13.9 0.3 23.4 9.3 17.9 49.9 57.1

LN (0.8) 78.8 62.6 19.9 65.8 78.2 55.9 68.2 59.9 66 79.3 53.4 66.3
LN (2.4) 78.7 62.4 20 65.8 78.4 56.3 67.8 60 66.2 79.4 52.7 65.7
LN (3) 78.5 62.1 19.7 66.2 78.6 55.7 67.8 60.1 65.5 79.7 52.8 66
IG(3) 98.6 91.3 66.7 96.7 98.8 93.1 97.5 95.5 97.3 98.3 91.2 93.5
GG3 48.1 37.1 5.4 38.9 48.6 27.2 38.9 28.1 34.9 50.3 23.8 39.4

mean 40.6 59.4 33.5 28.1 30.5 33.1 27.3 38.6 32.8 45.6 49.2 59.7

Table 5.4: Power results for the tests based on Laplace transform, n = 20

altern. L̂T
1
L̂T

2
L̂T

3
L̃T

1
L̃T

2
L̃T

3
L̆T

1
L̆T

2
L̆T

3
C̆Q ĈQ ĈQ

∗

exp(1) 4.9 4.9 4.9 5 5.1 5 4.9 5 5.1 5 5 5.4
W(0.5) 4.8 4.9 5 5 5.1 5.1 4.9 5 5 4.9 5.2 5.3
W(3) 4.9 5 5 5 5.1 4.9 5 5 4.9 5 5 5.5

G(2) 9 7 1.9 9.5 10.1 8.5 9.3 3.8 9.7 10 2.8 6.6
G(3) 12.1 8.7 1.1 12.7 13.6 11 4.6 0.9 13.3 5 2.4 8.4
AW1 33.4 45.1 56.2 3.1 3.1 27.9 0.7 47.4 12.6 27.5 57.8 49.6

G(0.2) 6.9 22.1 23.5 0.5 0.6 5 0.7 14.8 1.6 3.8 26.5 26
AW2 25.9 87.9 66.7 0.5 0.8 16.4 0 37.9 4.1 19.4 75.4 87.1
EW1 1 22.7 11 0.4 0.7 0.7 0.6 4.2 0.5 0.5 15.1 20.8

EW2 0.9 22.8 10.8 0.4 0.7 0.7 0.6 3.9 0.5 0.4 14.8 21.3
GG1 8.6 32.2 28.9 0.3 0.4 5.7 0.4 17.6 1.6 5 33.3 35.4
GG2 6.8 22.6 23.6 0.5 0.6 5 0.6 14.8 1.6 3.9 26.7 25.9

LN (0.8) 37.1 26.5 1.8 35.3 39.3 27.5 35.8 17.7 38.1 40.7 10.1 27.2
LN (2.4) 37.3 26.6 1.8 35.3 39.7 27.1 35.5 17.7 38.2 40.5 9.7 26.7
LN (3) 37.4 26.7 1.8 35.4 39.3 27 35.3 17.3 37.9 40.4 9.8 26.9
IG(3) 68.9 51.6 10.5 67.7 71.9 45.3 68.6 47 71.4 70.3 31.1 53.3
GG3 21.8 15.5 0.6 21.2 23.3 17 20.9 8.2 22.7 24.1 4.2 15.4

mean 21.9 29.9 17.2 15.9 17.4 16.1 15.3 18.1 18.1 21.4 22.8 30.8
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Table 5.5: Power results for the tests based on Laplace transform, n = 10

altern. L̂T
1
L̂T

2
L̂T

3
L̃T

1
L̃T

2
L̃T

3
L̆T

1
L̆T

2
L̆T

3
C̆Q ĈQ ĈQ

∗

exp(1) 5.1 5 4.9 4.9 5.1 5.4 5.2 5 4.8 4.9 5.1 5.2
W(0.5) 5.4 5.1 4.8 5 5 5.2 5.1 4.8 4.9 5 5.1 5.1
W(3) 5.1 5 5 5.1 5.2 5 5 4.9 5.1 5.1 5 5.2

G(2) 7.6 5 2.6 7.8 7.9 7.4 7.8 3.1 7.7 7.8 2.7 4.5
G(3) 9.3 5.5 1.8 9.3 9.4 8.2 9.1 2.6 9.3 9.6 1.9 4.7
AW1 15.6 27.4 33.8 1.9 2.6 6.5 1.8 28.8 1.8 11.7 34.6 31.9

G(0.2) 4 13.5 15.4 1.2 1.4 2.2 1.3 12.3 1.2 2.7 16.4 15.2
AW2 14 56 43.3 0.1 0.9 3.6 0.2 29.6 0.1 9.2 47.5 53.9
EW1 1.8 12.1 10.1 0.9 1.1 1.4 1.1 7.1 0.9 1.1 11.2 11.6

EW2 1.9 12.1 10.1 1.1 1.4 1.4 1.2 7.3 1 1.2 11.3 11.8
GG1 4.4 17.6 18.3 0.7 1 1.6 0.9 14.1 0.8 2.7 19.9 19.2
GG2 4.1 13.4 15.5 1.2 1.3 2 1.4 12.3 1.2 2.7 16.3 15.2

LN (0.8) 20.2 11 0.3 19.5 19.8 12.1 19.8 3.5 20.2 21 1 8.9
LN (2.4) 20.4 11 0.3 19.7 20.1 12 19.7 3.4 20.2 20.3 0.9 9.2
LN (3) 20.4 10.8 0.4 19.6 20 12.3 19.7 3.4 20.2 20.5 0.9 9
IG(3) 37.3 21.9 0.2 35.7 37.2 13.8 37.4 9.4 37.8 37.1 0.9 19.2
GG3 13.5 7.3 0.2 13.4 13.5 9.9 13.3 2.4 13.5 13.6 1.2 5.7

mean 12.5 16.1 10.9 9.4 9.8 6.7 9.6 9.9 9.7 11.5 12.1 15.7

5.5 Results and discussion

The first obvious result of the analysis of these tables is that, as for the likelihood based
tests, the performance of the tests is strongly linked to the shape of the hazard rate of the
simulated distribution. We see the same behaviour of the tests that appears for, on one
hand the IHR and UBT alternatives and on the other hand the DHR and BT alternatives.

The second important remark is that the new GOF tests are biased for some alterna-

tives except the test L̂T 2; their power is smaller than the significance level 5%.

The tests based on the LSEs L̃T
i
, i ∈ {1, 2}, and one based on the MEs L̆T

1
are

powerful for IHR-UBT alternatives and biased for DHR-BT alternatives. The tests

L̂T
1
, L̃T

3
, L̆T

i
, i ∈ {2, 3} and C̆Q are biased for Exponentiated Weibull distributions

(EW1 and EW2) for large n (≥ 20). For small values of the sample size n ≤ 10, the

tests L̂T
1
, L̃T

i
, i ∈ {1, 2, 3}, L̆T i, i ∈ {2, 3}, and C̆Q are biased for the DHR-BT alterna-

tives and the tests L̂T
3

and ĈQ become biased for IHR-UBT alternatives (except for the
alternative AW1 for n = 10).

The two tests ĈQ and C̆Q depend on the choice of the values of S. The test ĈQ
∗
n

depends on both the value of S and the choice of matrix A. Thus we do not guarantee
the representativeness of the results and we may have better performances for different
values than those used for the comparison. The tables comparison shows that the test
ĈQ is more powerful than C̆Q, but the results can be very different depending on the

choice of S. The test ĈQ
∗

is the most powerful among both C̆Q and ĈQ.

The only non biased test for all the sample sizes is the test based on the MLEs L̂T
2
.

The performance of the test statistics is very dependent on the shape of the hazard rate.
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The GOF tests have the following behaviour:

• For the IHR alternatives: L̃T
2

is powerful except for the alternative AW1 where
the power is very low and biased for n ≤ 50.

• For the DHR-BT alternatives: the new GOF tests based on the LSEs L̃T
i
, i ∈ {1, 2},

and the MEs L̆T
1

are biased for all the DHR-BT alternatives. The two tests L̃T
3

and L̆T
3

become biased for small values of n ≤ 20 not only for the alternatives
EWi, i = 1, 2, but for all the remaining DHR-BT alternatives.

• For the UBT alternatives: the three tests L̂T
1
, L̃T

2
and C̆Q are very powerful.

For n ≤ 20, the test C̆Q becomes powerful for the UBT alternatives and loses the
performance it has against DHR-BT alternatives and becomes biased in this case.

For the majority of the studied alternatives, there exists a new GOF test that is
significantly powerful but no test is uniformly the best. Globally, the two best tests

among all the new GOF tests are L̂T
2

and ĈQ
∗
.

This chapter presents new GOF test (11 tests) for the Weibull distribution based
on the Laplace transform. The implementation of these tests was done in the package
EWGoF.

It also introduces new versions of Cabaña and Quiroz test statistics using the maxi-
mum likelihood estimators and proves the convergence of the distribution of one of these
statistics to the chi-squared distribution.

This work has been presented in JSFdS conference [66] and has been published in the
Journal de la Société Française de Statistique [67].



Chapter 6

Comprehensive comparison of the
Weibull GOF tests

The aim of this chapter is to present a comprehensive comparison study of all the GOF
tests for the Weibull distribution. We also propose to combine GOF tests with comple-
mentary behaviors to build better tests. Recommendations about the most powerful tests
are given.

6.1 Simulation framework

The purpose of this section is to present the framework of Monte Carlo simulations in
order to assess the performance of all the presented tests and to compare them all. The
tests have been implemented in our R package EWGoF.

The study is done using a broad class of alternative distributions. For each distribu-
tion, we simulate 50000 samples of size n ∈ {10, 20, 50}. All the GOF tests are applied
with a significance level set to 5%. The power of the tests is assessed by the percentage
of rejection of the null hypothesis.

As in previous chapters, first, Weibull samples are simulated in order to check that
the percentage of rejection is close to the nominal significance level 5%. For the other
simulations, we have chosen a broad range of alternative distributions (Table 6.1): with in-
creasing hazard rate (IHR), decreasing hazard rate (DHR), bathtub hazard rate (BT) and
upside-down hazard rate (UBT). We have chosen usual alternatives (Gamma G, Lognor-
mal LN , Inverse-Gamma IG) and Generalized Weibull distributions EW , GG and AW .
We added some new alternatives in order to have various ones with different hazard rates
monotony and that are not Generalized Weibull distributions. These alternatives have
never been tested before in the literature, which gives more originality to the comparison
study.

• Distribution I of Dhillon [36] D1(β, b) with the cdf:

F (x) = 1− e−(e(βx)
b−1), b, β > 0, x ≥ 0

• Distribution II of Dhillon [36] D2(λ, b) with the cdf:

F (x) = 1− e−(ln(λx+1))b+1

, λ > 0, b ≥ 0, x ≥ 0
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• Inverse Gaussian distribution [44] IS(µ, λ) with the cdf:

F (x) = Φ((λ/x)
1
2 (1 + x/µ)) + e2λ/µΦ(−(x/λ)

1
2 (1 + x/µ)), µ > 0, x ≥ 0

where Φ is the cdf of the standard normal distribution

• Hjorth distribution [58] H(β, δ, θ) with the cdf:

F (x) = 1− e−δx
2/2

(1 + βx)θ/β
, x ≥ 0

• Chen’s distribution [26] C(λ, β) with the cdf:

F (x) = 1− eλ(1−exβ ), λ, β > 0, x > 0.

Table 6.1: Simulated distributions

Weibull exp(1) W(0.5) ≡ W(1, 0.5) W(3) ≡ W(1, 3)

IHR G(2) ≡ G(2, 1) G(3) ≡ G(3, 1) AW1 ≡ AW(10, 0.02, 5.2)
EW1 ≡ EW(6.5, 20, 6) D2(2) ≡ D2(1, 2)

UBT LN (0.8) ≡ LN (0, 0.8) IG(3) ≡ IG(3, 1) EW4 ≡ EW(4, 12, 0.6)
IS(0.25) ≡ IS(1, 0.25) IS(4) ≡ IS(1, 4)

DHR G(0.2) ≡ G(0.2, 1) AW2 ≡ AW(2, 20, 0.1) EW2 ≡ EW(0.1, 0.01, 0.95)
H(0) ≡ H(0, 1, 1) D2(0) ≡ D2(1, 0)

BT EW3 ≡ EW(0.1, 100, 5) GG1 ≡ GG(0.1, 1, 4) GG2 ≡ GG(0.2, 1, 3)
C(0.4) ≡ C(2, 0.4) D1(0.8) ≡ D1(1, 0.8)

For the sake of simplicity, the scale parameters of the Weibull, Gamma and Inverse-
Gamma distribution are set to 1 and the mean of the lognormal distribution is set to 0.
The choice of the parameters of the simulated distributions is done to obtain different
shapes of the hazard rate. Table 4.2 gives the values of the parameters and the notations
used for all the simulated distributions.

We studied the following tests:

• Z2: test based on the correlation coefficient of Smith and Bain defined in (3.12)

• R2
EJG: test based on the correlation coefficient of Evans-Johnson-Green defined in

(3.13)

• SPP : test based on the stabilized probability plot defined in (3.15)

• SB: test of Shapiro and Brain defined in (3.17)

• OK∗: test of Öztürk and Korukoğlu defined in (3.20)



Comprehensive comparison of the Weibull GOF tests 97

• KS: test of Kolmogorov-Smirnov defined in (3.21)

• CM : test of Cramer-von Mises defined in (3.23)

• ÂD and ÃD: test of Anderson-Darling defined in (3.24) computed using respectively
the MLEs and LSEs as recommended in [76]

• LS: test of Liao and Shimokawa defined in (3.26)

• MSF : one-sided test of Mann-Scheuer-Fertig defined in (3.28). This test should
be two-sided, but, for comparison purposes, we use the one-sided version, as recom-
mended by Mann, Scheuer and Fertig.

• TS: test of Tiku-Singh defined in (3.29)

• LOS: test of Lockhart-O’Reilly-Stephens defined in (3.31)

• S̆T 3 and S̆T 4: generalized smooth tests defined in (3.33) and (3.34)

• K̂L and K̆L: tests based on the Kullback-Leibler information defined in (3.38)
computed with respectively the MLEs and MEs

• C̆Q, ĈQ and ĈQ
∗
: test of Cabaña and Quiroz and our generalizations defined

respectively in (3.41), (5.15) and (5.17)

• L̂T
2
: test based on the Laplace transform defined in (5.9)

• ÊWw, ĜG
2

l , M̃Ow and P̂GWw: likelihood based tests defined respectively in (4.20),
(4.39), (4.65) and (4.82).

We remind the values of the parameters used for some test statistics:

• For L̂T
2
: m = 100 and a = −5

• For C̆Q: k = 2, S = {−1, 0.4}

• For ĈQ: k = 2, S = {−0.1, 0.02}

• For ĈQ
∗
: k = 2, S = {−0.1, 0.02} and A =

[
1.59 0.91
0.91 0.53

]
as in section 5.3.
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6.2 Combination of GOF tests

Complementary behaviors of some likelihood based GOF tests have been mentioned in
section 4.4.2 (see tables A.50 and A.52). For instance, when the statistic ˘PGWw has a

very low power against a fixed alternative, the statistic M̂Ww has, conversely, very high
power against the same alternative and vice versa. Building a GOF test that combines
both statistics might help to get rid of the bias and give a global good performance for a
large range of the tested alternatives. This approach can be applied to any test statistics
with complementary behaviors.

For instance, we combine here the two test statistics M̂Ww and ˘PGWw. In order

to keep the same order of magnitude, we center each statistic M̂Ww and ˘PGWw by its

mean value (respectively M̂Ww and ˘PGWw) and normalize it by its standard deviation

(respectively sd(M̂Ww) and sd( ˘PGWw)). These two last quantities are computed using

simulations. For instance, in order to compute sd(M̂Ww) and M̂Ww for a fixed sample
size n, we simulate a large number K of Xk

1 , . . . , X
k
n, k ∈ {1, . . . , K}, iid samples from

the exp(1) distribution. Indeed, since the distributions of the test statistics under H0

do not depend on the value of the parameters η and β of the Weibull distribution, the
simulation can be carried out using the simplest Weibull distribution, which is exp(1).

For each sample, we compute the statistic M̂Ww defined previously in equation (4.73).

Then, we obtain a sample of size K M̂W
1

w, . . . , M̂W
K

w . Both quantities sd(M̂Ww) and

M̂Ww are approximated respectively by the empirical standard deviation and the mean

value of the sample M̂W
1

w, . . . , M̂W
K

w .
Different combinations can be used to obtain new GOF tests. We noticed previously

in equation (2.51) of subsection 2.3.2 that the sum was used by Brain and Shapiro in
[19] as a way of combining two statistics. In our case, the maximum and the sum of the
standardized statistics can be used as GOF test statistics:

T1 = max

(
1

sd(M̂Ww)
|M̂Ww − M̂Ww|,

1

sd( ˘PGWw)
| ˘PGWw − ˘PGWw|

)
(6.1)

T2 =
1

sd(M̂Ww)
|M̂Ww − M̂Ww|+

1

sd( ˘PGWw)
| ˘PGWw − ˘PGWw|. (6.2)

The Weibull assumption is rejected for large values of the statistics. The quantiles of
the distributions of T1 and T2, under H0, are given by Monte-Carlo simulations so the
tests can be applied to any sample size. The two test statistics T1 and T2 will be added
to the compared GOF tests presented in section 6.1.

6.3 Results and discussion

Tables 6.2 to 6.7 present the power results of all the compared tests. These powers are
significantly lower than the ones of the Exponential GOF tests studied in subsection 2.4.1.
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Table 6.2: Power results for the Weibull GOF tests, n = 50

altern. Z2 R2
EJG SPP SB OK∗ KS CM ÂD ÃD L̃S MSF TS LOS

exp(0.5) 4.8 4.9 5 5.1 4.8 5 4.9 4.8 4.9 4.8 5.1 5.3 4.9
W(0.5) 4.8 4.9 5 4.9 5.1 4.9 5 5 5 4.9 5.1 5.1 4.9
W(3) 4.9 5.1 4.9 5 4.8 5.1 5 5 5 5 5.1 5.2 4.9

Increasing Hazard Rate

G(2) 2.3 3.8 10.3 8.2 11.7 7.3 8.4 8.6 11.2 16.2 14.5 11.7 10.7
G(3) 2.3 5.2 15.6 12.3 19.1 10.1 12.3 13.2 17 25.4 21.7 20.1 17.5
AW1 80.1 79.6 65 54.2 80.2 57.2 64.3 71.3 77.9 67.5 0.1 82.1 81.8
EW1 10.6 20.4 42.6 36.8 52.9 25.2 34.7 39.2 46.2 61.2 50.1 55.4 51.9
D2(2) 2.6 4.9 14.8 11.2 18.9 9.7 11.9 12.7 15.5 24 20.2 18.9 16.8

Upside-down bathtub Hazard Rate

LN (0.8) 21.9 37.5 60.1 55.6 68.9 36.3 50.1 55.8 64.7 78.2 65.3 72.8 70.2
IG(3) 75.7 87.5 94.9 94.7 95.3 76 88.1 91.5 96.1 98.3 93.3 97.2 97.2
EW4 5.1 11.5 29.2 23.5 37.7 17.4 23.6 26.1 31.8 45.3 36.8 39.1 35.3
IS(0.25) 73.5 88.7 95.9 97.2 91.9 67.8 84.1 89.5 96.9 98.6 91.4 96.3 97.1
IS(4) 24.2 42 64.7 63.2 70.2 37 50.2 56.4 69.7 81.3 67 75.4 72.9

Decreasing Hazard Rate

G(0.2) 23.2 23.3 32.1 15.8 59.7 30.3 38.4 45.8 30.8 13 0.1 55.4 55.2
AW2 85.4 88.7 99.8 34.4 99.9 99.5 99.9 99.9 99.6 95.3 0 99.9 99.9
EW2 2.7 4 40.5 0.4 58.6 34.4 47.1 56.5 23.9 7.8 0 48.3 57.5
H(0) 33.2 43.5 64.5 46 77.9 52.5 65 68.7 65.1 80.1 70.4 77.2 74.5
D2(0) 33.1 43.5 63.8 45.5 77.6 52.1 65.3 68.9 65 80 70.6 76.7 74.9

Bathtub Hazard Rate

EW3 2.6 4 40.7 0.4 58.5 34.4 47.2 56.2 23.7 7.7 0 48.1 57.3
GG1 29.5 29.6 56.7 18.8 80.4 46 58.3 67.8 46.5 20.8 0 74.1 77.3
GG2 23.2 23.2 31.4 15.5 58.8 30.5 38.1 45.6 31 13.2 0 55.2 54.9
C(0.4) 9.8 9.2 7.1 7.1 15.4 8.8 10.4 12 7.7 2.9 1.1 14.7 14.3
D1(0.8) 14.5 14 12.6 10.6 28.1 14 16.7 20.3 13.1 5 0.4 26.8 25.2

Mean 27.8 32.7 47.1 32.6 58.1 37.3 45.7 50.3 46.7 46.1 30.1 57.3 57.1
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Table 6.3: Power results for the Weibull GOF tests, n = 50

altern. S̆T 3 S̆T 4 K̂L5 K̆L5 C̆Q ĈQ ĈQ
∗
L̂T

2
ÊWw ĜG

2

l M̃Ow P̂GWw T1 T2

exp(0.5) 4.9 5.1 5.1 5 5.3 5 5.1 5.1 5 5.1 5 5.1 5.1 5
W(0.5) 5.1 5.1 5.2 5 5.3 5 4.8 5.1 4.8 5.1 5.1 4.9 5.2 5
W(3) 5.2 5.2 5.1 5.1 5.3 5.1 5 5 4.9 5.1 5 5.1 5 5

Increasing Hazard Rate

G(2) 10 15 6.7 10.9 1.8 4.7 11.8 11.8 12.4 13 12.4 11.3 12.5 13
G(3) 15.6 23.7 8.6 17 2.3 8.3 18.8 18.2 19.9 21.2 20.3 18.6 20.6 21.8
AW1 67.5 69.8 56.6 73.3 86.9 87.3 76.4 75.8 81.9 82.4 68 80.6 74.5 76.2
EW1 47.6 61.1 22.6 48.6 14.9 34.7 50.1 47.5 52.6 55.9 54.4 50.2 56.9 57.5
D2(2) 14.5 22.3 9.9 16 2.5 8.3 18.5 18.6 19.6 20.7 19 18.4 19.9 20.5

Upside-down bathtub Hazard Rate

LN (0.8) 68.3 79.1 35.4 67.5 28.2 52.7 66 62.8 68.6 72.3 72.1 65.8 73.7 74.7
IG(3) 97.5 98.7 79.7 96.8 75.7 90.7 93.5 91.5 94.3 96.2 96.5 93.1 97.1 97.3
EW4 31.2 43.9 15.2 33.2 7.3 20.9 36.2 34.9 38.1 40.5 38.9 36.1 40.6 41.2
IS(0.25) 98.1 98.9 91.4 97.3 59.7 85.3 87.9 83.3 89.6 93.7 95.2 87.1 96.1 96.3
IS(4) 73.6 83.1 52.1 71.8 27.5 54 65.9 62 69.2 73.1 73.7 65.3 76.2 77.1

Decreasing Hazard Rate

G(0.2) 13.7 17.5 28.5 41 42.7 49.7 57 53.1 51.5 55.8 45.1 56.4 59.7 57.7
AW2 36.1 69.9 99.7 99.9 94.2 98.3 99.9 99.9 99.7 99.8 99.8 99.9 100 100
EW2 0.2 2.1 44.5 55.7 13.2 26.2 54.5 64.9 40.9 47.2 53.1 51.9 63.6 62.1
H(0) 62.6 75.9 51.8 69.8 44.3 63.3 77.1 76.1 78.3 79.5 76.1 77.1 77.7 78.3
D2(0) 62.9 75.8 52 69.8 43.5 62.9 77.1 76.6 78.3 79.2 76.2 76.8 77.2 77.9

Bathtub Hazard Rate

EW3 0.2 2 44.6 56 13.3 26.4 54.5 65.2 40.6 47.3 52.9 51.7 63.8 62.3
GG1 16.3 23.6 51 67.4 53.2 63 75.3 73.8 69.1 73.3 63.2 75.1 81.6 79.6
GG2 13.7 17.4 28.5 41.4 43 50.2 56.8 52.9 51.7 55.7 45.9 56.7 59.5 58.1
C(0.4) 6.4 4.9 9.4 9.8 16 17.1 15.2 13.5 12.9 15.5 11.6 15 14.6 13.7
D1(0.8) 8.9 8.3 14.6 16.8 25.3 27.8 27.3 23.7 24.5 27.1 20.4 27.4 27.2 25.7

Mean 37.2 44.6 40.1 53 34.8 46.6 56 55.3 54.7 57.5 54.7 55.7 59.6 59.6
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Table 6.4: Power results for the Weibull GOF tests, n = 20

altern. Z2 R2
EJG SPP SB OK∗ KS CM ÂD ÃD L̃S MSF TS LOS

exp(0.5) 4.9 4.9 4.8 5.1 4.9 5.1 5.1 5 5.1 5 5.1 5.2 5.1
W(0.5) 4.9 5 4.9 5.2 4.9 5 5.1 4.9 4.9 4.8 5.1 5 5
W(3) 4.9 4.9 4.9 5.1 5 5 4.9 4.8 5 5 5.2 5 4.9

Increasing Hazard Rate

G(2) 3.3 4.4 6.5 6.1 7.1 5.7 6.4 5.9 8.2 11 9.6 6.5 6.7
G(3) 3.3 5 7.8 7.1 9.5 6.7 7.6 7.1 10.9 15.2 12.5 8.6 8.5
AW1 49.5 47.5 36.5 33.6 46.9 30.1 33.9 40.1 39.1 14.6 0.8 49.3 48.1
EW1 6.6 11.2 15.7 15.4 22 12.3 14.9 15 22.7 31.6 24.3 20.5 20.4
D2(2) 3.4 5.1 7.9 7.1 9.1 6.7 7.3 7 10.2 14.8 11.8 8.7 8.4

Upside-down bathtub Hazard Rate

LN (0.8) 10.5 17 21.7 22.1 29.9 16 20.9 21.4 31.4 41.7 32.2 29.3 29
IG(3) 35.6 46 48.7 53 58 35.3 46.3 48.4 62.2 71.4 58.9 60.3 59.7
EW4 4.7 7.9 11.9 11.2 15.6 9.2 11.2 11 16.4 23.7 18.6 14.6 14.6
IS(0.25) 28.8 41.9 44.2 53.9 49.5 29 39.5 41.5 61.2 68.3 54.7 53.6 55.7
IS(4) 10.6 18.1 22.4 23.9 30 16 21 21.6 32.9 43 33.1 29.8 29.6

Decreasing Hazard Rate

G(0.2) 15.2 14.2 12.4 11.1 23.8 14.5 16.7 20.1 10.4 1 0.6 23.9 22.9
AW2 52.9 52.3 75.9 23.8 89.4 77.3 84.6 88.8 69.4 16.8 0 86.8 90.7
EW2 4.9 4.9 11.1 2.7 19.4 14.8 18.4 21.7 6.7 0.4 0.6 17.8 19.4
H(0) 17.8 23.5 28.9 23.3 39.4 23.3 30 30.7 35.6 47.7 36.4 36.3 35.9
D2(0) 18.1 23.3 29.2 23.7 38.8 22.9 29.8 30.6 35.9 47.8 36.3 36.3 36.1

Bathtub Hazard Rate

EW3 5.1 4.7 11.1 2.6 19.6 14.5 18.3 21.6 6.8 0.4 0.6 17.9 20.1
GG1 18.4 17.1 17.6 12.8 35.5 19.9 24 29.1 15 1.2 0.4 33.9 33.6
GG2 15.3 13.9 12.3 10.9 24.1 14.4 16.4 19.8 10.5 1 0.6 24 22.3
C(0.4) 8.1 7.4 5.4 6.3 7.9 6.6 6.9 7.6 4.9 1.6 2.2 8.5 7.9
D1(0.8) 10.9 9.6 7.2 8.1 11.9 8.4 9 10.6 6 1.2 1.5 12.7 11.9

Mean 16.1 18.7 21.7 17.9 29.4 19.2 23.1 25 24.8 22.7 16.8 29 29.1
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Table 6.5: Power results for the Weibull GOF tests, n = 20

altern. S̆T 3 S̆T 4 K̂L5 K̆L5 C̆Q ĈQ ĈQ
∗
L̂T

2
ÊWw ĜG

2

l M̃Ow P̂GWw T1 T2

exp(0.5) 5.1 5.1 4.9 5.1 4.6 5.3 5.1 5.1 5 4.9 5 4.7 5.1 5
W(0.5) 5 5 4.9 4.9 4.6 5.1 5.4 5 5.1 5 5 4.9 5.1 4.9
W(3) 5 5 5.1 5 4.9 5.1 5.4 4.9 5.2 5 5.1 4.8 5.1 4.9

Increasing Hazard Rate

G(2) 8.9 9.9 5.9 7.4 1.5 2.5 6.5 7.1 7.1 7.3 7.8 6.3 8.3 8.3
G(3) 11.9 13.5 6.5 9.6 0.9 5.4 8.7 9.2 9.8 9.5 10.7 8.2 11.1 11.5
AW1 25.9 26.1 27.3 36.6 54.7 58 49.4 45 49.9 49.7 39.6 49.8 42.9 40.7
EW1 26.3 29.7 11.6 20.7 0.2 5.8 19.5 19.6 21.6 21.9 23.8 18.6 24.9 25.5
D2(2) 11.6 13.3 6.8 9.2 1 2.8 8.9 8.9 9.8 9.5 10.5 8.1 11.1 11.3

Upside-down bathtub Hazard Rate

LN (0.8) 36.4 40.1 16 28.9 0.5 10 26.9 26.6 29.8 30.5 33.4 26.2 34.5 35
IG(3) 69.7 72 39.4 60.2 4.3 30.8 53.1 51.5 56.1 59.1 63.5 51.7 63.6 64.9
EW4 19.5 22.3 8.7 14.8 0.4 3.7 14.3 14.5 15.7 16.2 17.4 13.6 18.4 18.8
IS(0.25) 67.4 68.8 44.2 58.3 0.7 19.1 41.7 39.6 45.6 50.1 58.3 39.9 56.2 57.5
IS(4) 38.7 42.3 20.2 30.3 0.3 9.2 26.3 25.8 29.1 30.6 33.8 25.1 34.7 35.5

Decreasing Hazard Rate

G(0.2) 4.8 3.5 14.6 15.6 22.1 26.5 26.3 22.2 20.9 22.5 16.4 24.1 20.6 19.1
AW2 12.9 15.5 82.6 86.5 63.9 75.2 87.3 87.7 79.9 82.3 79.3 85.6 88.3 87.4
EW2 0.7 0.4 20.7 17.9 9.7 15.2 21.2 22.8 13.7 15 16.3 18.2 18 16.5
H(0) 39.7 44.3 22.4 34.7 2.7 17.9 37.4 37.4 39.3 39.3 39.8 36.2 42.2 42.4
D2(0) 39.5 44.1 22.1 34.4 2.5 18 36.9 37.5 39.6 39.2 39.7 36.4 41.7 42.8

Bathtub Hazard Rate

EW3 0.7 0.5 20.8 18.3 9.4 14.7 21.2 22.7 13.7 15.2 16.1 18.2 18.1 16.2
GG1 5.6 4.5 24 26.2 27.3 32.8 36.3 32.4 29.3 30.6 23.5 33.5 31.8 28.8
GG2 4.9 3.7 14.5 15.7 22.3 26.2 26.1 22.6 21.2 21.9 16.6 24.4 20.7 18.5
C(0.4) 3.5 2.7 6.5 5.8 9.9 11.5 9.4 7.6 7.5 7.8 5.9 8.1 9.8 6
D1(0.8) 3.8 2.8 8.3 8.1 14 16.3 14.2 11.5 11.5 11.7 8.6 12.7 10.3 9.1

Mean 21.6 23 21.1 27 12.4 20.1 28.6 27.6 27.5 28.5 28 27.2 30.4 29.8
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Table 6.6: Power results for the Weibull GOF tests, n = 10

altern. Z2 R2
EJG SPP SB OK∗ KS CM ÂD ÃD L̃S MSF TS LOS

exp(0.5) 5.1 5 5.1 5.2 5.1 5 4.9 5 5.2 5.1 5.2 5.1 5
W(0.5) 5 4.9 5.1 5.1 5 5.1 4.9 4.9 5.1 5.1 5.2 5.2 5.1
W(3) 5 4.9 5.1 5.1 5.2 5.1 5 5.1 5.2 5.1 5 5.1 5.2

Increasing Hazard Rate

G(2) 4.5 5.2 5.3 5.2 5.5 5.3 5.4 4.9 7.2 8.2 7.6 5.6 5.6
G(3) 4.5 5.5 5.8 5.7 6.4 5.5 5.9 5.4 8.5 9.9 8.8 6.3 6.1
AW1 27.6 25 22.1 22.1 26.7 18.6 20.3 24.8 16.5 2 2 28.1 26.2
EW1 6.5 8.8 8.5 8.7 10.7 7.8 8.6 7.6 14 16.9 14 10.5 9.8
D2(2) 4.5 5.6 5.8 5.6 6.4 5.5 5.9 6.2 8.4 9.8 8.4 6.3 6.1

Upside-down bathtub Hazard Rate

LN (0.8) 8.6 11.4 10.2 10.9 13.6 9.2 10.7 9.7 17.6 21.4 17.2 13.6 12.5
IG(3) 19.2 24.3 19.8 23.6 26.9 17.3 21.8 20.9 33.1 38.3 31 28 26.5
EW4 5.4 6.9 7.3 7 8.6 6.8 7.2 6.5 11.2 13.7 11.4 8.4 7.9
IS(0.25) 16.1 20.6 16.3 21.6 21.7 14.8 18.1 16.8 30.8 34.5 28.4 23.5 23
IS(4) 8.6 11.4 10.1 11.3 13.1 9.5 10.9 10.1 18.1 21.7 17.5 13.7 13.1

Decreasing Hazard Rate

G(0.2) 10.6 8.7 9.1 9.3 12 9.5 9.7 11.9 5 0.9 1.5 11.9 11.3
AW2 32.7 29.4 40.5 21.7 53.3 42.9 48.6 54.6 26.1 0.4 0.2 50.9 54.3
EW2 6.1 5.3 7.4 5.5 9.4 8.7 9.6 11.1 3.5 0.8 1.5 8.9 9.5
H(0) 12.4 14.7 14.1 13.3 18.3 12.3 14.3 13.5 20.8 25.7 19.5 18.3 16.5
D2(0) 12.2 14.9 14.1 13.3 17.9 11.9 14.5 13.7 20.7 25.6 19.8 17.7 16.4

Bathtub Hazard Rate

EW3 6 4.9 7.2 5.3 9.2 8.7 9.4 11.6 3.4 0.7 1.5 8.9 9.5
GG1 12.1 10.2 11.3 10.8 16.1 11.9 12.7 15.7 5.9 0.6 1.2 15.9 15.6
GG2 10.6 8.6 9.1 9.2 12.1 9.3 9.5 11.8 4.9 1.1 1.5 12 11.4
C(0.4) 6.4 5.4 5.4 5.9 6.2 5.8 5.6 6.4 4 2.5 3.2 6.2 5.9
D1(0.8) 7.7 6.6 6.7 7.2 7.8 6.6 6.7 8.1 3.9 1.9 2.5 7.7 7.5

Mean 11.1 11.7 11.8 11.2 15.1 11.4 12.8 13.6 13.2 11.8 9.9 15.1 14.7
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Table 6.7: Power results for the Weibull GOF tests, n = 10

altern. S̆T 3 S̆T 4 K̂L3 K̆L3 C̆Q ĈQ ĈQ
∗
L̂T

2
ÊWw ĜG

2

l M̃Ow P̂GWw T1 T2

exp(0.5) 5 5 5.1 4.9 5 5.1 5.1 5.2 4.9 5.1 5 4.9 5 5
W(0.5) 4.9 5 5.1 4.9 4.9 5.1 5.1 5 5.1 4.9 5.1 5 5.1 5.1
W(3) 5 5 4.9 4.9 4.9 5 5.1 5 4.9 4.9 4.9 5.1 5.2 4.9

Increasing Hazard Rate

G(2) 7.6 7.7 5.4 6.5 2.1 2.6 4.5 4.9 5.3 5.4 6.3 4.6 6.2 6.4
G(3) 9.1 9.3 5.8 7.6 1.5 1.9 4.7 5.5 5.8 6.1 7.4 4.7 6.9 7.1
AW1 1.9 1.9 13.8 17.3 31.5 34.3 31.1 27.9 28.8 28.8 23.4 30.7 25.8 24.6
EW1 16.1 16.5 7.8 12.4 0.5 1.1 7 8.5 9.4 9.8 12.5 7.4 11.9 12.2
D2(2) 9.3 9.5 6.5 7.5 1.6 2.1 4.7 5.5 5.8 5.7 7.5 4.9 6.9 7.1

Upside-down bathtub Hazard Rate

LN (0.8) 20.8 21.1 9.5 15.8 0.3 0.9 9.2 11.1 12.4 12.5 15.9 9.5 15.1 15.4
IG(3) 38.6 38.7 18.6 31.3 0 2.5 19 21.5 24.3 25.3 30.9 20.2 29.7 30.1
EW4 13 13.3 6.9 9.8 0.9 1.3 5.7 6.9 7.7 7.8 9.9 6 9.4 9.9
IS(0.25) 35.2 34.8 23.2 28.7 0 1.3 13.5 16.4 18.4 20.3 26.7 14.6 24.3 24.8
IS(4) 21 21.2 12.7 16.2 0.2 0.7 8.9 10.8 11.9 12.3 16.1 9.5 15.2 15.4

Decreasing Hazard Rate

G(0.2) 1.1 1 8.7 6.9 13.8 16.5 14.8 13.3 11.7 11.9 8.8 14 11 10.1
AW2 0.1 0 45.4 44.1 40.2 46.7 53.8 55.9 44.7 46.6 40.5 52 50 48.5
EW2 0.8 0.7 10.5 6.6 8.6 11.2 11.5 11.8 8.1 8.3 6.9 10.5 8.6 7.7
H(0) 24.6 25.4 13.9 19.1 0.8 2.6 13.7 15.9 17.3 17.5 20.6 14.2 20.2 20.5
D2(0) 24.4 25.2 14 19.2 0.8 2.6 13.7 16.1 17.2 17.4 20.4 14.4 20.1 20.3

Bathtub Hazard Rate

EW3 0.8 0.7 10.4 6.5 8.7 11.1 11.7 12.2 7.9 8.4 6.7 10.4 8.4 7.8
GG1 0.7 0.6 12 9.7 16.4 19.5 19.3 17.7 14.8 15.3 11 18.1 14.5 13.6
GG2 1.2 1.1 8.5 6.8 13.5 16.3 15.5 13.7 12.1 12 8.7 14.3 10.8 10.1
C(0.4) 2.5 2.4 5 4.5 7.1 8.6 7.6 6.7 6.3 6.3 5.2 7.1 5.8 5.3
D1(0.8) 1.8 1.8 5.3 4.8 9.4 11.6 10.3 8.6 7.9 8 6.2 9 7.2 6.5

Mean 11.5 11.6 12.2 14.1 7.9 9.8 14 14.5 13.9 14.3 14.6 13.8 15.4 15.2
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Indeed, it is more difficult to detect a departure from the Weibull distribution than from
the Exponential distribution.

Similarly to previous chapters (2, 4 and 5), the first remark is that the powers of the
Weibull GOF tests are close to the significance level 5% when the alternative used is the
Weibull or the Exponential distribution. The second one is that some of the GOF tests,
such as SB, S̆T 3 and S̆T 4, seem to be biased especially when the sample size n is lower
than 20. Indeed, some powers are smaller than the significance level 5%. This remark
has already been discussed in [121] for the Mann-Sheuer-Fertig test.

We also notice that the performance of the test statistics is tightly linked to the shape
of the hazard rate. The behavior appears to be the same for the DHR and BT hazard
rates on one hand and the IHR and UBT hazard rates on the other hand, with some
special cases. In the following, we compare the GOF tests within each specific family.

• Tests based on probability plots: These tests have globally bad performance.
The test SPP based on the stabilized probability plot is the best among these tests.
It is the only unbiased test, unlike Z2 and REJG. This result proves that one can
not rely only on the Weibull probability plot to assess the fitness of the Weibull
distribution to a data set, as it is often done in industry.

• Shapiro-Wilk type tests: The modified test OK∗ of Öztürk and Korukoğlu is
significantly more powerful than the biased test SB, as it is also shown in [97].
The test OK∗ is among the most powerful studied tests. It has globally a good
performance and it can be recommended whatever the shape of the hazard rate.

• Tests based on the empirical distribution function: ÂD is globally the best
test in this family. The test L̃S seems to be very powerful for IHR and UBT
alternatives but very bad for DHR and BT alternatives; it is a biased test. The
test ÃD of Anderson-Darling based on the LSEs is better than the test ÂD only for
IHR and BT distributions but it is less powerful for the DHR and UBT alternatives;
this test can be biased for small n. These results may seem contradictory with what
Liao and Shimokawa have concluded in [76]. This is mainly due to the limited range
of alternatives they chose to test these GOF tests: the comparisons we made seem
to use a broader range of alternatives with different shapes of the hazard rate.

• Generalized smooth tests: Both tests S̆T 3 and S̆T 4 are biased and have gener-
ally bad performance compared to the other tests. S̆T 4 is very powerful for UBT
alternatives and some special IHR alternatives. Those two tests are generally not
recommended; they are related to the skewness and the kurtosis of the tested sample.
Similar results have been found in [16].

• Tests based on normalized spacings: The test of Tiku-Singh TS has the best
performance. The test LOS is slightly better than CMZ because generally the
Anderson-Darling test is more powerful than the Cramer-Von-Mises test. Mann-
Sheuer-Fertig test MSF is the only biased test among those based on the normalized
spacings. This is essentially due to the wrong use of the test as a one-sided test
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like it was recommended in [82]. The test TS is the most powerful of all these tests
and even among all those studied. But the test TS, as well as all the other tests
based on the normalized spacings, are not recommended for samples with ties such
as Aarset data presented previously in table 1.1. Some test statistics are not even
defined in this case, for instance, LOS. When the statistic is defined (for example
the case of TS and MSF ), the use of one of these statistics may lead to some wrong
conclusions. This point will be detailed in chapter 9.

• Tests based on the Kullback-Leibler information: Generally the two tests
K̂L and K̆L are less powerful than the best ones. Using the MEs improves the
performance of the test, but they are still less powerful than TS and OK∗.

• Tests based on the Laplace transform: The test of Cabaña and Quiroz C̆Q
is biased and has the lowest mean rejection percentage. The new test ĈQ is more

powerful than C̆Q but is still biased for small n and less powerful than both ĈQ
∗

and L̂T
2
. These two tests ĈQ

∗
and L̂T

2
are the best ones to recommend within

this family. Indeed, they have globally very good performance that is very close to
the one of TS and OK∗. Moreover, their expressions are simple than the ones of
Cabaña and Quiroz C̆Q and Tiku-Singh test statistic TS.

• Tests based on the likelihood: The tests ÊWw, ĜG
2

l , M̃Ow and P̂GWw have

the advantage of being unbiased GOF tests. For n ≤ 20, the test M̃Ow is the

best one for IHR and UBT alternatives and P̂GWw is the best for DHR and BT

alternatives. The test ĜG
2

l has the best performance among them which is very
close to the one of TS and sometimes better.

• Combined likelihood based tests: The two tests T1 and T2 have very good per-
formance and they have even the highest mean of rejection percentages compared
with all the previous tests. These tests are combinations of both tests ˘PGWw and

M̂Ww. These latest two tests have complementary performances: they are both
biased, but when the power of one test is high, the other test has a null power [71].
That is why, combining the two tests gives an unbiased GOF test with very good
performances. The test T1 uses the maximum of the absolute value of the two tests
after they have been centered and normalized. The test T2 uses the sum of the
centered and normalized tests. The reason why these two tests are powerful may
also be the fact that the estimation of the two Weibull parameters is done in two
different ways (MLEs and LSEs). The use of these two tests could be recommended
for all kinds of alternatives.
The principle of combining two tests with complementary behavior is then a promis-
ing way of improving the performance of the tests. Further work is needed in order
to identify the best possible combinations.

From this analysis, we can have the following conclusions.

• Among all these tests, the tests TS and OK∗ are very powerful. The test OK∗ has
the simplest expression which is more convenient for practical purposes.
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• The test T1 is the most powerful test, because it combines two GOF test statistics
with two different methods of estimating the parameters.

• According to the shape of the hazard rate, the recommended tests are:

– For IHR alternatives: L̃S

– For UBT alternatives: S̆T 4

– For DHR-BT alternatives: T1.

This chapter presents a comprehensive comparison of the GOF tests for the Weibull
distribution. Until now 84 GOF tests were compared. Preliminary comparisons were
done in chapter 4 to compare all the likelihood based GOF tests (54 GOF tests) between
them and a second comparison was done in chapter 5, comparing the tests based on the
Laplace transform within the same family (11 GOF tests). The best of the previous GOF
tests within each family were finally compared to the GOF tests of the literature (19 GOF
tests). The R package EWGoF includes all these GOF tests.

Some new alternatives were tested using these GOF tests, conclusions and recom-
mendations about the use of these tests are given depending on the shape of the hazard
rate.

To our knowledge, the best tests that we have identified are little known and rarely
used. So the main outcome of our study is to advise the users of the Weibull and Extreme
Value distributions to apply these tests before any study using these distributions.
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Chapter 7

Repairable systems: preliminary
results

This chapter gives some preliminary results about Non-Homogenous Poisson processes
(NHPP) and imperfect maintenance models. Properties of NHPP are detailed. Lindqvist
and Rannestad suggested exact GOF tests to check the relevance of a NHPP using a
sufficient statistic. When both CM and deterministic PM are performed, some imperfect
maintenance models based on the idea of virtual age are presented.

7.1 Introduction

The context of the study in this chapter is different from what we have presented until now.
We are interested this time in systems that are repairable and subject to maintenance.
There are several kinds of maintenance:

• Corrective maintenance (CM), also called repair, is carried out after a failure and
intends to put the system into a state in which it can perform its function again.

• Preventive maintenance (PM) is carried out when the system is operating and in-
tends to slow down the wear process and reduce the frequency of occurrence of
system failures.

Mathematically, the failure times of a repairable system are random variables and so are
the CM. The PM are, in our case, fixed before the system is put into service and they are
consequently carried out at deterministic times.

These maintenances can have different effects on the system reliability. The basic
assumptions on maintenance efficiency are known as minimal repair or As Bad As Old
(ABAO) and perfect repair or As Good As New (AGAN). In the ABAO case, each main-
tenance leaves the system in the state it was before maintenance. In the AGAN case,
each maintenance is perfect and leaves the system as if it were new. It is well known
that reality is between these two extreme cases: standard maintenance reduces failure
intensity but does not leave the system AGAN. This is known as imperfect maintenance.
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The mathematical modeling of the occurrence and efficiency of maintenance is done
using random point processes. In this framework, the model is completely characterized by
its failure intensity. The likelihood function can be written as a function of this intensity.

The most known and used models for repairable systems are Non Homogeneous Poisson
Processes (NHPP). They assume that the effect of the CM is ABAO. The two classical
intensities are the power-law and the log-linear intensity functions. The objective of our
study, as it was mentioned in chapter 1, is to be able to measure the fitness of a given
data set to a given maintenance model. Lindqvist and Rannestad [79] suggested exact
Monte-Carlo GOF tests for NHPP with both power-law and log-linear intensity functions.

7.2 Repairable systems with CM only

7.2.1 Point processes

The point processes allow to model the occurrence of events in time. In general, the times
between occurrences are neither independent nor identically distributed. The maintenance
durations are assumed to be negligible, or not taken into account, then the failures and
CM times are the same. So in the following, failures and CM times are confounded.

Let {Ti}i≥1 be the CM times, that is to say the times of the events occurrences of a
random point process and let T0 = 0. After each CM, the system is imperfectly repaired
and then is put again into service.

Definition 7.1 Let Nt be the random variable that denotes the number of failures in the
interval [0, t]. {Nt}t≥0 is called a counting process [5] if it verifies:

• N0 = 0 a.s.

• {Nt}t≥0 is an integer.

• The trajectories of {Nt}t≥0 are increasing, constant piecewise functions, and right
continuous with left hand limits.

We consider that the process {Nt}t≥0 is simple, i.e we can not have more than one failure
at once:

∀t ≥ 0, ∀∆t ≥ 0, P (Nt+∆t −Nt ≥ 2) = o(∆t). (7.1)

A failure process is defined equivalently by one of the following three random processes
[5, 27] (see figure 7.1):

• {Ti}i≥1 the failure times of the system, with T0 = 0. Tn denotes the vector of first
n failure times Tn = (T1, . . . , Tn).

• {Xi}i≥1 the times between CM where

∀i ≥ 1, Xi = Ti − Ti−1 (7.2)

• {Nt}t≥1 the counting process of the failures.
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Figure 7.1: Observations of a counting process and corresponding notations

Nt− denotes the left hand limit of Nt, it means the number of failures occurred in [0, t[. We
assume that ∀t ∈ R+, P (Nt < +∞) = 1 which means that the number of CM occurred,
at each instant, is always finite.

In order to be able to predict the future of the process, we need its history. That is
why we need to introduce, formally, the notion of filtration [27]. We consider first that
all the random variables Nt, t > 0, are defined in the same probability space (Ω,A,P).
A filtration H = {Ht}t≥0 is an increasing sequence of sub-σ−algebras of A:

s < t⇒ Hs ⊂ Ht. (7.3)

The process {Nt}t≥0 is H−adapted if and only if for all t ≥ 0, Nt is H−measurable.
This means that the filtration Ht includes all the information of the history at time t that
is likely to influence the random variable Nt. Let Ht− = ∩s<tHs.

Since the process {Nt}t≥0 is a piecewise constant function that changes its values only
at the times {Ti}i≥1, its history at time t is entirely known by the number and the times
of CM occurred between 0 and t. Thus Ht is the σ−algebra generated by the history of
the process at time t:

Ht = σ(Nt, T1, . . . , TNt). (7.4)

In this case the future of the process depends only on its history Ht. It is called
self-exciting process [116].

Definition 7.2 The failure intensity function of the counting process {Nt}t≥0 [5] is:

∀t ≥ 0, λt = lim
∆t→0

1

∆t
P (N(t+∆t)− −Nt− = 1|Ht−)

= lim
∆t→0

1

∆t
P (t ≤ TNt−+1 < t+ ∆t|Ht−)

(7.5)

The failure intensity function expresses the propension of the system to have a failure at
[t, t + ∆t[, given Ht− which represents all the available information just before t. A self
exciting process is completely characterized by its failure intensity [27].

In a parametric approach, we assume that the failure intensity is specified using a
vector parameters θ. The failure intensity is either denoted λt or λt(θ). The integral of
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the failure intensity is called the cumulative intensity function, denoted Λt [5, 27]:

Λt =

∫ t

0

λs ds. (7.6)

The estimation of θ can be done thanks to maximum likelihood method.

Property 7.1 Let t > 0 be a deterministic time (time censoring). The likelihood function
associated to the observation of the failure process over [0, t] is [27]:

Lt(θ) =

[
Nt∏

i=1

λTi(θ)

]
exp(−Λt(θ)). (7.7)

The log-likelihood is the logarithm of the likelihood:

Lt(θ) =
Nt∑

i=1

ln (λTi(θ))−
∫ t

0

λs(θ) ds. (7.8)

The maximum likelihood estimator θ̂t is defined as the value of I0 that maximizes the
likelihood or equivalently the log-likelihood:

θ̂t = argmax
θ∈I0

Lt(θ). (7.9)

7.2.2 Non Homogeneous Poisson processes (NHPP)

A special case of the previous counting processes are the Non-Homogenous Poisson pro-
cesses (NHPP). They are characterized by their failure intensities that are deterministic
functions of the time: λ(t) and Λt = Λ(t). CM are carried out at random dates, while
the intensity function is deterministic. Therefore, the CM can not have any effect on the
intensity function: they are ABAO. Then, repair is minimal.
In what follows, we give some useful properties of the NHPP.

Property 7.2 The NHPP {Nt}t≥0 verifies the properties [27]:

• {Nt}t≥0 has independent increments.

• ∀t ≥ 0, Nt has Poisson distribution P (Λ(t)) where:

∀n ∈ N, P (Nt = n) = exp (−Λ(t))
(Λ(t))n

n!
. (7.10)

• ∀(s, t), 0 ≤ s ≤ t, Nt −Ns follows a Poisson distribution:

P (Λ(t)− Λ(s)) = P
(∫ t

s

λ(u)du

)
.
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Property 7.3 Given the times of the n first CM, the conditional distribution of the next
time between CM Xn+1 is given by [5]:

∀x ≥ 0, P (Xn+1 > x|Tn) = exp

(
−
∫ Tn+x

Tn

λ(u) du

)
(7.11)

The simplest model is the Homogeneous Poisson Process (HPP). It assumes that the
system does not deteriorate neither improve.

Definition 7.3 The HPP is a NHPP with a constant intensity:

∀t ≥ 0, λt = λ.

It will be denoted HPP (λ).

Property 7.4 The joint pdf of failure times Tn from a HPP (λ) is [27]:

fTn(t1, . . . , tn) = λn exp(−λtn)1{0<t1<...<tn} (7.12)

The following properties 7.5 and 7.6 allow transformations from NHPPs to HPPs [27].

Property 7.5 If T1, . . . , Tn are the successive event times of a NHPP with cumulative
intensity Λ, then Λ(T1), . . ., Λ(Tn) are event times of a HPP (1).

Property 7.6 If the NHPP is observed on the interval time [0, t], then conditionally to

Nt = n, the transformed times Vi = Λ(Ti)
Λ(t)

, i = 1, . . . , n, are distributed as order statistics

of n iid variables from U [0, 1].

The most popular parametrizations of NHPPs are the power law and log-linear processes
[110]:

• Power law process (PLP):

λt(α, β) = αβtβ−1, α, β > 0, t > 0. (7.13)

For repairable systems, this model is equivalent to the Weibull distribution for non
repairable systems. Parameter α is a scale parameter. Parameter β is a shape
parameter which characterizes the wear out of the system:

– β > 1: wear out or aging;

– β < 1: improvement or rejuvenating;

– β = 1: stability (HPP(α)).

Figure 7.2: Power law failure intensity
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Figure (7.2) gives illustrations of the shapes of the power-law failure intensity function,
the stars on the abscissa representing the CM times. The left figure shows the power law
intensity for the parameters (α = 1, β = 3.6) and the right is plotted for (α = 1, β = 0.3).

• Log-linear process:

λt(a, b) = exp(a+ bt), a, b ∈ R, t > 0. (7.14)

Illustrations of different shapes of its intensity are given in figure 7.3 (left figure
(a = 1, b = 1.53), right figure (a = 1, b = −3)). Parameter a is a scale parameter
and the parameter b is a shape parameter. The sign of b characterizes the wear of
the system:

– b > 0: wear or aging;

– b < 0: improvement or rejuvenating;

– b = 0: stability (HPP(exp(a))).

Figure 7.3: Log-linear failure intensity
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7.2.3 AGAN model

The perfect maintenance model considers that each maintenance is perfect and leaves the
system as it were new (see figure 7.4). The random process is then a renewal process (RP).
The times between two maintenance actions are independent and identically distributed.
This implies that the failure intensity can be written as [78]:

λt = λ(t− TNt− ). (7.15)

Figures 7.4 represents a trajectory of the failure intensity of a system with AGAN main-
tenance in the case of power-law intensity function with the parameters α = 1, β = 3.6.
The CM times are the times when the intensity function jumps. After maintenance, the
intensity function starts from zero in parallel to the initial intensity function.
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Figure 7.4: Power Law failure intensity and AGAN effect

7.3 Repairable systems with CM and PM

7.3.1 Notations

For a system preventively maintained at predetermined deterministic times {τi}i≥1, the
number of PM at t is denoted by mt. CM are done at unpredictable random times {Ti}i≥1.
The associated counting process is denoted by {Nt}t≥0. The duration of maintenance (PM
and CM) actions is not taken into account. The counting process of both CM and PM is
is denoted by {Kt}t≥0. Finally, {Ci}i≥1 and {Wi}i≥1 denote respectively the maintenance
times (PM and CM) and the times between maintenance. {Xi}i≥1 denotes the times
between two successive CM (Xi = Ti − Ti−1) and the {χi}i≥1 denotes the times between
two successive PM (χi = τi − τi−1). Figure 7.5 illustrates all the previous notations.

Before the first failure, the failure intensity is assumed to be a not always null function,
non decreasing, deterministic, from R+ to R+, called initial intensity and denoted by
λ(t). The initial intensity represents the intrinsic wear out which means the wear out in
the absence of maintenance actions. When the initial intensity is known, an imperfect
maintenance model is only characterized by the effect of maintenance actions on the
failure intensity. Deterministic PM is a particular case of planned PM, for which Doyen
and Gaudoin [35] have proposed a general framework for simultaneous modeling and
assessment of aging and maintenance efficiency.

In this context, the PM-CM process is completely defined by its failure intensity λt
which has the same expression as in (7.5):

∀t ≥ 0, λt = lim
∆t→0

1

∆t
P (N(t+∆t)− −Nt− = 1|Ht−)

7.3.2 Imperfect maintenance: virtual age models

In practice, the effect of maintenance is neither minimal (ABAO) nor maximal (AGAN),
it is between these to extreme situations. Indeed, it is more reasonable to think that the
maintenance has an effect more than minimal, which means that the system after repair
is better than old. It is also less likely that the maintenance leaves the system as good as
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Figure 7.5: Observations of a counting process and the corresponding notations
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new. The system in this case after repair is worse than new. This situation is known as
Better than minimal repair or as imperfect maintenance. Many imperfect maintenance
models have been proposed [102]. Virtual age [63] models are among these imperfect
maintenance models. They assume that after the ith maintenance the system behaves
like a new one that has survived without failure until Ai [35]:

P (Wi+1 > w|W1, . . . ,Wi, Ai) = P (Y > Ai + w|Y > Ai, Ai) (7.16)

where Y is a random variable independent of Ai and with the same distribution as the
time to failure of the new unmaintained system. The corresponding failure intensity is
[35]:

λt = λ(AKt− + t− CKt− ). (7.17)

AKt is called the effective age at time t and AKt + t − CKt is the virtual age at time t.
The effective age is the virtual age of the system just after the last maintenance action.
The idea that repair actions reduce the age of the system is the basis of Kijima’s virtual
age models [63]. Several models can be derived. Some of them will be presented in the
following and illustrated by a trajectory of the corresponding intensity function (chosen
to be power-law with parameters α = 1, β = 3.6), the stars on the abscissa representing
the CM times and the circles the PM times .

• AGAN PM-AGAN CM: each maintenance is supposed to be AGAN. Effective ages
are then equal to zero Ai = 0, ∀i ≥ 1. The failure intensity is:

λt = λ(t− CKt− ). (7.18)
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Figure 7.6: Failure intensity in the case of AGAN PM-AGAN CM

• ABAO PM-ABAO CM: each maintenance is supposed to be minimal. Then effective
ages are equal to the last maintenance times Ai = Ci, ∀i ≥ 1. The failure intensity
is only a function of time, and the failure process is a NHPP:

λt = λ(t) (7.19)
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Figure 7.7: Failure intensity in the case of ABAO PM-ABAO CM

• ABAO PM-AGAN CM: Each preventive maintenance is minimal, while each correc-
tive maintenance renews the system. The effective age is equal to the times elapsed
between the last maintenance and the last perfect maintenance: Ai = Ci − TNCi .
The failure process is a renewal process with failure intensity:

λt = λ(t− TNt− ). (7.20)
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Figure 7.8: Failure intensity in the case of ABAO PM-AGAN CM

• AGAN PM-ABAO CM: the preventive maintenances are perfect and the corrective
maintenances are ABAO, then the effective ages are Ai = Ci − τmCi and the failure
intensity is:

λt = λ(t− τmt− ). (7.21)
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Figure 7.9: Failure intensity in the case of AGAN PM-ABAO CM

• Virtual age PM effect-ABAO CM: the effective age is equal to the effective age at
the time of the last PM plus the time elapsed since the last PM. In this case, the
effective ages are Ai = AKτmCi

+ Ci − τmCi . Then the failure intensity is:

λt = λ(AKτm
t−

+ t− τmt− ). (7.22)

• ARA1 PM-ABAO CM: when preventive maintenance are considered to have the
Arithmetic Reduction of Age effect with memory one (ARA1) [33], the effective
ages are Ai = Ai−1 + (1− ρ)(τi − τi−1) = (1− ρ)τi. The failure intensity is:

λt = λ(t− ρτmt− ). (7.23)

We have the following special cases when the initial failure intensity is increasing
(the system wears out with time and usage):

– ρ = 0: minimal PM (ABAO),

– ρ = 1: perfect PM (AGAN),

– 0 < ρ < 1: imperfect PM,

– ρ < 0: harmful PM,

– According to the choice of the initial intensity, it may be possible to have
ρ > 1 corresponding to a “better than new” PM. This is possible for a log-
linear intensity (because exp(a + bt) > 0,∀t < 0) but not for the power law
intensity (because αβtβ−1 is not defined for t < 0).

Figure 7.10 illustrates trajectories of the power law failure intensity in the case of
ARA1 PM-ABAO CM. We can notice that at each PM times, the intensity function
is reduced in the case (ρ = 0.35) and increased in the case (ρ = −0.35). This
figure illustrates the fact that the maintenance efficiency depends on the sign of the
parameter ρ.
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Figure 7.10: Failure intensity in the case of ARA1 PM-ABAO CM
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In the next chapter, we will use this model with a log-linear intensity function:

λt(a, b, ρ) = exp(a+ b(t− ρτmt− )). (7.24)

The model will be denoted ARA1−LLP. Figure 7.11 illustrates a trajectory of
ARA1−LLP with the parameter values: a = −0.1, b = 1.2 (at left ρ = 0.8 and
at right ρ = 1.2). The fact that PM is better than new for ρ > 1 can be seen on the
right figure.

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

Figure 7.11: Intensity failure of the model ARA1−LLP

• ARA∞ PM-ABAO CM: when the effects of the preventive maintenance are consid-
ered to have the Arithmetic Reduction of Age effect with infinite memory (ARA∞)[33],
the effective ages are Ai = (1−ρ)(Ai−1+(τi−τi−1)). Recursively the failure intensity
of ARA∞ is [33]:

λt = λ


t− ρ

mt−−1∑

j=0

(1− ρ)jτmt−−j


 . (7.25)

Figure 7.12 shows the failure intensity of ARA∞ PM-ABAO CM (left ρ = 0.7 and
right ρ = −0.5).
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Figure 7.12: Failure intensity in the case of ARA∞ PM-ABAO CM
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• ABAO CM-Brown Proschan PM [20]: this model is defined by external random
variables B = {Bi}i≥1, independent of Bernoulli distribution with parameter p. Bi

represents the efficiency of the ith repair:

Bi =

{
1 if the ith PM is AGAN

0 if the ith PM is ABAO
(7.26)

The effective ages are Ai =
i∑

j=1

[
i∏

k=j

(1−Bk)χj

]
. The failure intensity is:

λt = λ(t− τmt− + Amt− ). (7.27)

7.4 Exact conditional GOF tests for NHPP

Our aim is to build GOF tests for the maintenance models presented before. Very few
work exist for imperfect maintenance models [80, 131], but some work have been done for
NHPP, i.e maintenance with ABAO effects [98, 9, 47, 48]. Here we will focus on a recent
work by Lindqvist-Rannestad [79]. Their GOF tests are developed for any NHPP having
sufficient statistic, particularly, for both the power-law and the log-linear NHPP models.

Suppose that the failure process is a NHPP with intensity function λ(t).

Definition 7.4 A statistic S = s(Tn) is a sufficient statistic for the parameter θ if it
contains all the information about θ that is available from the data. The conditional
distribution of Tn given S does not depend on θ i.e:

P (Tn = tn|S(Tn) = s, θ) = P (Tn = tn|S(Tn) = s) (7.28)

where tn = (t1, . . . , tn).

In practice the sufficient statistic can be found using the factorization theorem [24].

Theorem 7.1 Factorization theorem
A statistic S = s is sufficient for θ if and only if there exist functions g(s, θ) and h(t)
such that the likelihood function Lt is factorized as follows:

Lt(θ) = g (s, θ)h(t).
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In accordance with the Factorization Theorem 7.1, we will compute the joint pdf
resulting from the observed failure times T1, . . . , Tn observed in [0, T ] in order to find the
sufficient statistics for both power law and log-linear process. We will take into account
that the failure times are time truncated. The corresponding log-likelihood function is
derived by replacing λt by λ(t) in (7.8). Then, the corresponding sufficient statistics of
both cases are deduced.

• The power law case:

LT (α, β) = ln

(
NT∏

j=1

αβT β−1
j exp

(
−
∫ T

0

αβsβ−1ds

))

= NT (ln(α) + ln(β)) + (β − 1)

NT∑

j=1

ln(Tj)− αtβ.
(7.29)

Then, the sufficient statistic is:

Sp =

(
NT ,

NT∑

j=1

ln(Tj)

)
. (7.30)

• The log-linear case:

LT (a, b) = ln

(
NT∏

j=1

exp(a+ bTj) exp

(
−
∫ T

0

exp(a+ bs)ds

))

= aNT + b

NT∑

j=1

Tj − (exp(a)/b)(exp(bT )− 1).

(7.31)

Then, the sufficient statistic is:

Sl =

(
NT ,

NT∑

j=1

Tj

)
. (7.32)

The tested null hypothesis is:

H0: “λ ∈ I” vs H1 : “λ /∈ I”.

where the family I = {NHPP (λ(.; θ)); θ ∈ Θ} is the family of NHPPs with intensity
function λ(t; θ) depending on some unknown parameters θ. Let D = (NT , T1, . . . , TNT )
be the data observed at time T . Lindqvist-Rannestad test is based on the following
sufficiency property: if S is a sufficient statistic, the distribution of D|S is independent
of the parameters θ.

Let Z be a GOF test statistic that has the ability to reveal departure from H0. For
example, we can consider that large values of Z correspond to the rejection of the null
hypothesis.

Given S = sobs, a test with a significance level α rejects H0 when Z > k(sobs), where
k(sobs) is a critical value verifying PH0(Z ≥ k(sobs)|S = sobs) = α. The critical value
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k(sobs) depends on the sufficient statistic and then on the tested data. Practically, the
conditional p-value is considered:

pobs = PH0(Z ≥ zobs|S = sobs) (7.33)

where sobs and zobs are the observed values of respectively the sufficient and the test
statistics.

We suppose that we are able to simulate K realizations Z∗1 , . . . , Z
∗
K of Z given S = sobs.

Using Monte Carlo method, the p-value in (7.33) can be estimated by the frequency of
the event Z ≥ zobs:

p̂obs =
1

K

K∑

i=1

1{Z∗i ≥zobs}. (7.34)

The conditional sampling is straightforward when the intensity admits pivotal statis-
tics such as in the power law case [79]. The conditional sampling can be done using the
Gibbs algorithm.

To sum up, in order to build Linqdvist-Rannestad exact conditional GOF test for
NHPPs, we need:

1. existence of a sufficient statistic;

2. conditional simulations of D|S = sobs (that can be done either by using an explicit
expression or by Gibbs algorithm);

3. computation of a GOF test statistic Z. Lindqvist and Rannestad chose for Z a
statistic that tests the fitness of Λ(Ti)

Λ(T )
to the uniform distribution. The transfor-

mation defined in proposition 7.6 is applied to the CM times T1, . . . , Tn in order
to reduce the problem to a GOF test for the uniform distribution. Lindqvist and
Rannestad proposed to use classical GOF test statistics Z such as Laplace, Green-
wood, Cramer-Von Mises, ...

Then the exact (non asymptotic) p-value of the test can be estimated by Monte Carlo
simulations.

We give in this chapter the principal properties of NHPP and we introduced the im-
perfect maintenance models. We presented Lindqvist-Rannestad GOF tests. In the next
chapter, we aim to generalize these methods in order to derive GOF tests for imperfect
maintenance models with deterministic PM.
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Chapter 8

Exact conditional GOF tests for the
ARA1−LLP imperfect maintenance
model

In this chapter, we propose a generalization of Lindqvist-Rannestad GOF tests for a
particular imperfect maintenance model with both CM and PM. The CM are assumed to
be minimal (ABAO) with a log-linear initial intensity. It also assumes that the PM are
carried out at deterministic times and that their effect is of the ARA1 type. In this case,
a sufficient statistic exists and the tests of Lindqvist-Rannestad [79] can be generalized.

8.1 Principle of the test

The construction of an exact conditional GOF test for the ARA1−LLP imperfect main-
tenance model is possible. In this model, PM effect is of the ARA1 type and the failure
intensity is considered to be log-linear. We remind the failure intensity of ARA1−LLP:

λt(a, b, ρ) = exp(a+ b(t− ρτmt− )). (8.1)

The CM effects are assumed to be ABAO. This assumption is meaningful because CM
aims to quickly restore the system in working order. It is also common [80] and absolutely
necessary in order to be able to apply Lindqvist-Rannestad [79] GOF test method since
a NHPP is needed.

The GOF test in this case has the following hypotheses:

H0 : λt(θ) ∈ I vs H1 : λt(θ) /∈ I

where I is the family of failure intensities defined in (8.1) for all (a, b, ρ) ∈ R3.
The considered model needs also to have a sufficient statistic. The ARA1−LLP

model has this property. There exists a second model that has a sufficient statistic (PM-
GRA1 (Geometric Reduction of age [33]) and CM ABAO with power-law intensity), but
this model presents some drawbacks, so in all what follows we study only the model
ARA1−LLP.
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model

In order to apply the same approach as Lindqvist and Rannestad [79] to ARA1−LLP
model we need:

• existence of a sufficient statistic;

• conditional simulation of D|S = sobs;

• computation of a GOF test statistic Z.

8.1.1 Sufficient statistic

Property 8.1 The cumulative intensity function of the ARA1-LLP model is:

Λt(a, b, ρ) =
exp(a)

b

mt∑

m=1

exp(−bρτm−1)
[

exp(bτm)− exp(bτm−1)
]

+
exp(a)

b
exp(−bρτmt )

[
exp(bt)− exp(bτmt )

]
if b 6= 0

Λt(a, 0, ρ) = exp(a)t

Proof:

By definition and equation (8.1), if b 6= 0, the cumulative intensity function is as
follows:

Λt(a, b, ρ) =

∫ t

0

exp(a+ bs− bρτms) ds

= exp(a)
mt∑

m=1

∫ τm

τm−1

exp(bs− bρτm−1) ds+ exp(a)

∫ t

τmt

exp(bs− bρτmt) ds

=
exp(a)

b

mt∑

m=1

exp(−bρτm−1)
[

exp(bτm)− exp(bτm−1)
]

+
exp(a)

b
exp(−bρτmt )

[
exp(bt)− exp(bτmt )

]

and Λt(a, 0, ρ) = exp(a)t.

�

We consider that the failure times are observed on the time interval [0, T ]. For sim-
plification reasons we denote τmT+1 = T and we will use this notation in all the following.

Property 8.2 The log-likelihood function is:

LT (a, b, ρ) = aNT + b
∑

Ti≤T

Ti − bρ
mT +1∑

m=2

τm−1

(
Nτm −Nτm−1

)
− ΛT (a, b, ρ).



Exact conditional GOF tests for the ARA1−LLP imperfect maintenance
model 127

Proof:

Using previous property 7.1, the likelihood function evaluated in θ = (a, b, ρ) at T denoted
LT (a, b, ρ) is:

LT (a, b, ρ) =

[∏

Ti≤T

λ(Ti)

]
exp(−ΛT (a, b, ρ))

=

[∏

Ti≤T

exp(a+ bTi − bρτmTi )
]

exp (−ΛT (a, b, ρ))

Therefore, property 8.2 is proved applying the logarithm to the previous expression. In-

deed, we can easily prove that

NT∑

i=1

τmTi =

mT+1∑

m=2

τm−1

(
Nτm −Nτm−1

)
.

�

Since ΛT is a deterministic function, we apply the factorization theorem (7.1) and
deduce the three components of the sufficient statistic S = (S1, S2, S3).

Property 8.3 The sufficient statistic of the ARA1−LLP model exists and is:

S =

(
NT ,

∑

Ti≤T

Ti,

mT+1∑

m=2

τm−1(Nτm −Nτm−1)

)
. (8.2)

8.2 Parameters estimation

In this section we derive the maximum likelihood estimation of the parameters.

Property 8.4 Let â, b̂, and ρ̂ be respectively the MLEs of the parameters a, b and ρ of
the ARA1−LLP model. They verify the following equations:





â = ln(S1)− ln
(

Λ̃T (b̂, ρ̂)
)

−S1

(
∂Λ̃T
∂b

(b̂, ρ̂)
)
/Λ̃T (b̂, ρ̂) + S2 − ρ̂S3 = 0

b̂S3 + S1

(
∂Λ̃T
∂ρ

(b̂, ρ̂)
)
/Λ̃T (b̂, ρ̂) = 0

(8.3)

where τ0 = 0, τmT+1 = T,

Λ̃T (b, ρ) = exp(−a)ΛT (a, b, ρ)

=
1

b

mT+1∑

m=1

exp(−bρτm−1)
[

exp(bτm)− exp(bτm−1)
] (8.4)
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and





∂Λ̃T
∂b

(b, ρ) = − 1
b2

mT+1∑

m=1

exp(−bρτm−1) (exp(bτm)− exp(bτm−1))

+1
b

mT+1∑

m=1

(τm − ρτm−1) exp(bτm − bρτm−1) +
1

b
(ρ− 1)

mT+1∑

m=1

τm−1 exp(−b(ρ− 1)τm−1)

∂Λ̃T
∂ρ

(b, ρ) = −
mT+1∑

m=1

τm−1 exp(−bρτm−1) (exp(bτm)− exp(bτm−1)) .

(8.5)

Proof:

We have ΛT (a, b, ρ) = exp(a)Λ̃T (b, ρ). The MLEs â, b̂ and ρ̂ are solutions of the maxi-
mization problem:

(â, b̂, ρ̂) = argmax LT
(a,b,ρ)∈R

(a, b, ρ)

which is equivalent to solving

∇LT (â, b̂, ρ̂) = 0.

Thus,
∂LT
∂a

(a, b, ρ) = S1 −
∂ΛT

∂a
(a, b, ρ)

⇒
S1 − exp(â)Λ̃T (b, ρ) = 0

⇒

â(b, ρ) = ln

(
S1

Λ̃T (b, ρ)

)
.

After substituting the value of â in the log-likelihood function, the two remaining param-
eters estimators maximize the function:

LT (â(b, ρ), b, ρ) = S1 ln
S1

Λ̃T (b, ρ)
+ bS2 − bρS3 − S1.

The two first partial derivatives of LT (â(b, ρ), b, ρ) are given in (8.6). The MLEs set these
partial derivatives to zero and verify the equations in (8.3).





∂LT
∂b

(â(b, ρ), b, ρ) = −S1

(
∂Λ̃T
∂b

(b, ρ)
)
/Λ̃T (b, ρ) + S2 − ρS3

∂LT
∂ρ

(â(b, ρ), b, ρ) = −bS3 − S1

(
∂Λ̃T
∂ρ

(b, ρ)
)
/Λ̃T (b, ρ).

(8.6)

�

The classical BFGS algorithm method [43] is used to solve the optimization problem and
obtain the MLEs of the model parameters.
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8.3 Extension of the sufficient statistic

The conditional sampling given the sufficient statistic S is too difficult especially given
the third component. That is why we use a larger sufficient statistic in order to make the
conditional sampling possible. The new sufficient statistic has the following expression:

S̃ =

(
Nτ1 , ..., NτmT

, NT ,
∑

Ti≤T

Ti

)
. (8.7)

It is obvious that there is no loss of information when conditioning by the statistic S̃
defined in equation (8.7) instead of S defined in (8.2). Apparently there is no need to

know explicitly
(
Nτ1 , ..., NτmT

, NT

)
in order to know S3 =

mT+1∑

m=2

τm−1(Nτm − Nτm−1), but

it is not always true.

The following example illustrates this fact. We consider 4 PM at times τ1 = 1.833, τ2 =
2.404, τ3 = 2.985, τ4 = 3.538 and the CM are such that Nτ1 = 6, Nτ2 = 17, Nτ3 = 19, Nτ4 =

24. Let T = τ4. Then, Nτ4 = 24 and S3 =
4∑

m=2

τm−1(Nτm − Nτm−1) = 39.896. It can be

proved that (6, 17, 19, 24) is the only value of (Nτ1 , Nτ2 , Nτ3 , Nτ4) which verifies Nτ4 = 24

and S3 = 39.896. So in this case S and S̃ are equivalent. This fact will also happen
in many cases for which the PM times are not periodic, because we have to find integer
solutions to real coefficients equations.

8.4 Conditional sampling given the large sufficient

statistic

8.4.1 First step

The conditional sampling is done using the statistic S̃. We will use a classical trick for
computational distributions given the sufficient statistic which consists in choosing the
parameters values that give rise to particular simple models. This can be done since the
conditional distribution, given the sufficient statistic, is the same whatever the parameter
values are (definition 7.4). For simplification reasons, we shall use parameter values
(a = b = 0) for which the model ARA1−LLP is an HPP(1).

The objective is to be able to simulate HPP(1) conditionally to the sufficient statistic.
Since the statistic in (8.7) includes the number of observed failures at each PM time,
our first objective is to condition by NT = (Nτ1 , ..., NτmT

, NT ). We will use the following
property.

Property 8.5 Conditionally on NT, the event times of HPP(1) are distributed like (mT+
1) independent samples, the ith sample having the distribution of independent order statis-
tics of (Nτi − Nτi−1

) variables uniformly distributed on [τi−1, τi], for i ∈ {1, . . . ,mT + 1}
where τ0 = 0, τmT+1 = T .
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Proof:

We denote fTn|NT
the conditional pdf of Tn|NT and n = (n1, . . . , nmT , n) where nmT+1:

fTn|NT=n(t1, . . . , tn) = P
(
Nτ1 = n1, . . . , NτmT

= nmT , NT = n|T1 = t1, . . . , Tn = tn
)
×

fTn(t1, . . . , tn)/P
(
Nτ1 = n1, . . . , NτmT

= nmT , NT = n
)
.

Tn are failure times from HPP (1). Property 7.4 gives the joint pdf of Tn:

fTn(t1, . . . , tn) = exp(−tn)1{0<t1<...<tn}.

Using property 7.2, we have:

P
(
Nτ1 = n1, . . . , NτmT

= nmT , NT = n|T1 = t1, . . . , Tn = tn
)

=1{0<t1<...<tn1<τ1<tn1+1<...<T}×
P (NT −Ntn = 0)

and

P
(
Nτ1 = n1, . . . , NτmT

= nmT , NT = n
)

=P (Nτ1 = n1)P (Nτ2 −Nτ1 = n2 − n1)× . . .×
P (NT −NτmT

= n− nmT ).

Since {Nt}t≥0 is a particular case of NHPP, we will use property 7.2 that justifies the
independence of the increments and gives their probabilities. Then,

fTn|NT=n(t1, . . . , tn) = exp(−T )1{0<t1<...<tn1<τ1<tn1+1<...<T}/[
exp(−τ1)

τn1
1

n1!
exp(−(τ2 − τ1))

(τ2 − τ1)n2−n1

(n2 − n1)!
× . . .×

exp(−(T − τmT ))
(T − τmT )n−nmT

(n− nmT )!

]
.

Finally,

fTn|NT=n(t1, . . . , tn) = n1!

[
n1∏

i=1

1

τ1

1{0≤ti≤τ1}

]
1{0<t1<...<tn1<τ1}×

(n2 − n1)!

[
n2∏

i=n1+1

1

τ2 − τ1

1{τ1≤ti≤τ2}

]
1{τ1<tn1+1<...<tn2<τ2} × . . .×

(n− nmT )!




n∏

i=nmT +1

1

T − τmT
1{τmT≤ti≤T}


1{τmT<tnmT +1<...<tn<T}

(8.8)
The distribution in (8.8) is the distribution of (mT + 1) independent samples of order
statistics of uniforms in [τi−1, τi] for i ∈ {1, . . . ,mT + 1} and τmT+1 = T . We have
consequently proved property 8.5.

�
Thanks to property 8.5, the simulation of Tn conditionally to NT is reduced to sim-

ulating independent order statistics of uniforms (U1, ..., Un). Our next objective is to
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simulate these uniforms (U1, ..., Un) conditionally to the remaining components of the

sufficient statistic S̃ which is
n∑

i=1

Ui =
n∑

i=1

Ti = s2.

The simulation problem is then transformed into a problem of conditional sampling
of uniform variables. The purpose of the next subsection is to show how this conditional
sampling can be carried out.

8.4.2 Second step

We consider the desired sample U1, ..., Un composed of (mT + 1) independent samples
of iid random variables. Each sample i is, respectively, of size (ni − ni−1) and follows
U [τi, τi−1], i ∈ {1, ...,mT + 1}, where n0 = 0. There is apparently no simple direct way of

sampling from the conditional distribution of the uniforms U1, ..., Un given
n∑

i=1

Ui = s2.

Inspired from [79], we use Gibbs sampler algorithm to simulate the desired samples. As

explained in [79], there is no simple expression for the pdf of
n∑

i=1

Ui. The algorithm is

based on the following property 8.6 which gives the conditional distribution of a pair

(Ui, Uj) with i 6= j given
n∑

i=1

Ui = s2 and on the values of all Uk for k 6= i and k 6= j. Since

the conditional distribution of U1, . . . , Un given
n∑

i=1

Ui = s2 is singular, in order to have

a proper conditional pdf we have to leave out one variable, for example Uj. We consider

then the conditional distribution of U1, . . . , Uj−1, Uj, . . . , Un given
n∑

k=1

Uk = s2 and deduce

Uj = s2 −
∑

k 6=j

Uk.

We use a modified Gibbs algorithm where in each iteration two of the vector compo-
nents (Ui, Uj), i 6= j, are updated. The algorithm consists in simulating at iteration m the

conditional pdf of Um
i |Um−1

k = um−1
k , k 6= i, k 6= j,

n∑

k=1

Um−1
k = s2. This last simulation is

equivalent to the simulation of Um
i |Um−1

i + Um−1
j = s2 −

∑

k 6=i,j

um−1
k . That is why we will

compute in the following the conditional cdf of Ui|Ui + Uj.

Property 8.6 Let 0 ≤ c1
i < c2

i , 0 ≤ c1
j < c2

j , Ui and Uj two independent random variables
from respectively U [c1

i , c
2
i ] and U [c1

j , c
2
j ].

Then the conditional distribution of Ui given Ui + Uj = s is uniform on I where:

• I = [c1
i , s− c1

j ] if c1
i + c1

j ≤ s ≤ min(c2
i + c1

j , c
1
i + c2

j)

• I = [c1
i , c

2
i ] if c2

i + c1
j ≤ s ≤ c1

i + c2
j

• I = [s− c2
j , s− c1

j ] if c1
i + c2

j ≤ s ≤ c2
i + c1

j

• I = [s− c2
j , c

1
i ] if max(c1

j + c2
i , c

1
i + c2

j) ≤ s ≤ c2
i + c2

j .
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Proof:

We know that the conditional pdf of Ui|Ui + Uj = s is:

fUi|Ui+Uj=s(u) =
fUi(u)

fUi+Uj(s)
fUi+Uj |Ui=u(s). (8.9)

Let us now compute each of the pdfs of Ui + Uj|Ui = u and Ui + Uj. By definition, we
have:

fUi+Uj |Ui=u(s) = fUj |Ui=u(s− u)

= fUj(s− u)

=

{
1

c2j−c1j
if u ∈ [c1

i , c
2
i ] ∩ [s− c2

j , s− c1
j ] = I

0 else

(8.10)

The values of the interval bounds I depend on the order of s, c1
i , c

2
i , c

1
j and c2

j . We will
check all the possible configurations.

If

s− c2
j c1

i s− c1
j c2

i

then
I = [c1

i , s− c1
j ] and c1

i + c1
j ≤ s ≤ min(c1

i + c2
j , c

2
i + c1

j).

If

s− c2
j c1

i c2
i s− c1

j

then
I = [c1

i , c
2
i ] and c2

i + c1
j ≤ s ≤ c1

i + c2
j .

If

c1
i s− c2

j s− c1
j c2

i

then
I = [s− c2

j , s− c1
j ] and c1

i + c2
j ≤ s ≤ c2

i + c1
j .

If

c1
i s− c2

j c2
i s− c1

j

then
I = [s− c2

j , c
2
i ] and max(c1

i + c2
j , c

2
i + c1

j) ≤ s ≤ c2
i + c2

j .
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If

c1
i c2

i s− c2
j s− c1

j s− c2
j s− c1

j c1
i c2

i

then

I = ∅ and s ≥ c2
i + c2

j or s ≤ c1
i + c1

j .

Only 4 cases from 5 are explored. Indeed, the two cases: c2
i + c1

j ≤ s ≤ c1
i + c2

j and
c1
i + c2

j ≤ s ≤ c2
i + c1

j are exclusive. Now, we compute the pdf of Ui + Uj:

fUi+Uj(s) =

∫ c2i

c1i

fUi+Uj |Ui=u(s)fUi(u) du =
1

(c2
i − c1

i )(c
2
j − c1

j)

∫

I

du. (8.11)

From equations (8.9), (8.10) and (8.11), we can deduce the conditional pdf of Ui|Ui +
Uj = s:

fUi|Ui+Uj=s(u) =
fUi(u)fUj(s− u)

fUi+Uj(s)

=
1

c2
i − c1

i

1[c1i ,c
2
i ]

(u)
1

c2
j − c1

j

1[s−c2j ,s−c1j ](s− u)/

(
1

(c2
j − c1

j)(c
2
i − c1

i )

∫

I

du

)

=
1I(u)∫
I
du
.

(8.12)

Hence the distribution of Ui|Ui + Uj = s is the uniform distribution on I.

�

Finally, the Gibbs sampler algorithm is given next in algorithm 2 for the model
ARA1−LLP. It makes conditional sampling of Tn|Nτ1 = n1, . . . , NτmT

= nmT , NT =

n,
n∑

i=1

Ti = s2.

For the initialization of the algorithm, Lindqvist and Rannestad used the same value
s2/n of all the components: (t01, . . . , t

0
n) = (s2/n, . . . , s2/n). We propose here in algo-

rithm 1 a random initialization which guarantees
n∑

i=1

t0i = s2 and Nτ1 = n1, . . . , NτmT
=

nmT , NT = n.

This initialization is independent of the first configuration of the tested data, which
makes the convergence of the Gibbs algorithm faster. Furthermore, our procedure guar-

antees the independence of the successive simulated values of Tn|
n∑

i=1

Ti = s2. Then it is

not necessary to use a burn in period as in [79].

Let n = nmT+1 and n0 = 0.
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Algorithm 1 Initialization of Gibbs sampler algorithm

for all j ∈ {1, . . . ,mT + 1} do
for all i ∈ {nj−1, . . . , nj} do

draw u0
i ∼ U [τj−1, τj]

d1
i ← u0

i − τj−1

d2
i ← τj − u0

i

end for
end for

if
n∑

i=1

u0
i > s2 then

for all i ∈ {1, . . . , n} do

t0i ← u0
i − d1

i

n∑

i=1

u0
i − s2

n∑

i=1

d1
i

end for
else

for all i ∈ {1, . . . , n} do

t0i ← u0
i + d2

i

s2 −
n∑

i=1

u0
i

n∑

i=1

d2
i

end for
end if
sort t01, . . . , t

0
n

return t01, . . . , t
0
n
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Proof: We will prove that t0i ∈ [τm(i)−1, τm(i)], i ∈ {1, . . . , n} wherem(i) = argmin {i ≤ nj
j∈{1,...,mT+1}

}

and
n∑

i=1

t0i = s2. We have:

n∑

i=1

t0i =





n∑

i=1

u0
i −

(
n∑

i=1

d1
i

)
n∑

i=1

u0
i − s2

n∑

i=1

d1
i

= s2 if
n∑

i=1

u0
i > s2

n∑

i=1

u0
i +

(
n∑

i=1

d2
i

) s2 −
n∑

i=1

u0
i

n∑

i=1

d2
i

= s2 if
n∑

i=1

u0
i < s2

Since s2 is observable then,

n∑

i=1

τm(i)−1 ≤ s2 =
n∑

i=1

Ti ≤
n∑

i=1

τm(i) (8.13)

⇒

−
n∑

i=1

d1
i ≤ s2 −

n∑

i=1

u0
i ≤

n∑

i=1

d2
i . (8.14)

If
n∑

i=1

u0
i > s2 then, 0 <

n∑

i=1

u0
i − s2

n∑

i=1

d1
i

≤ 1

and if
n∑

i=1

u0
i < s2 then, 0 <

s2 −
n∑

i=1

u0
i

n∑

i=1

d2
i

≤ 1.

We can deduce easily that t0i ∈ [τm(i)−1, τm(i)], i ∈ {1, . . . , n}.
�

Let nb be a large number to guarantee the convergence of the Gibbs algorithm.
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Algorithm 2 Gibbs sampler algorithm for conditional sampling of Tn|Nτ1 =

n1, . . . , NτmT
= nmT , NT = n,

n∑

i=1

Ti = s2

Start with initializing t0i , i = 1, . . . , n (algorithm 1)
for all k ∈ {1, . . . , nb} do
tk−1
i ← tki , i = 1, . . . , n

draw integers 1 ≤ i < j ≤ n randomly
let ni and nj of {n1, . . . , nmt , n}2 be such that ni−1 < i ≤ ni and nj−1 < j ≤ nj
let s← tk−1

i + tk−1
j , c1

i ← τni−1
, c2

i ← τni , c
1
j ← τnj−1

, c2
j ← τnj

if c1
i + c1

j ≤ s ≤ min(c2
i + c1

j , c
1
i + c2

j) then
draw tki ∼ U [c1

i , s− c1
j ]

else if c2
i + c1

j ≤ s ≤ c1
i + c2

j then
draw tki ∼ U [c1

i , c
2
i ]

else if c1
i + c2

j ≤ s ≤ c2
i + c1

j then
draw tki ∼ U [s− c2

j , s− c1
j ]

else if max(c1
j + c2

i , c
1
i + c2

j) ≤ s ≤ c2
i + c2

j then
draw tki ∼ U [s− c2

j , c
1
i ]

end if
tkj ← s− tki

end for
return tnb1 , . . . , t

nb
n

It has been shown in [24] that the distribution of the sample (tk1, . . . , t
k
n) converges to

the target distribution, whatever the starting vector is. The successive simulated samples
are from a Markov chain, and the target distribution is the stationary distribution of this
Markov chain. ’Burn in’ samples are needed before the samples can be taken to be from
the correct distribution.

8.5 Transformation to uniforms

When the conditional sampling is done, a GOF test is chosen to detect the departure
from the tested model. We will present later the GOF tests used and we first use the
previous transformation given in property 7.6.

Since the parameters (a, b, ρ) of the model ARA1−LLP are unknown, we use the MLEs
(â, b̂, ρ̂) defined in property (8.4). Let Λ̂(.) be an estimate of the cumulative intensity
function Λ(.) based on the observation (T1, . . . , Tn, NT ), defined as:

Λ̂t = Λt(â, b̂, ρ̂). (8.15)

We consider the estimated transformed times defined as follows: V̂i = Λ̂(Ti)

Λ̂(T )
. The

distribution of the last sample V̂1, . . . , V̂n is very close to order statistics of uniforms
(property 7.6). We can use the classical GOF tests for the uniform distribution to suggest
GOF tests for the tested model based on the V̂i. This was already the approach of
Lindqvist-Rannestad [79] and before him of Baker in [9]. For ARA1−LLP model, we
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check the uniformity of the variables V̂i, i = 1, . . . , n:

V̂i =

mTi∑

m=1

exp(−b̂ρ̂τm−1)
[
exp(b̂τm)− exp(b̂τm−1)

]
+ exp(−b̂ρ̂τmTi )

[
exp(b̂Ti)− exp(b̂τmTi )

]

mT +1∑

m=1

exp(−b̂ρ̂τm−1)
[
exp(b̂τm)− exp(b̂τm−1)

]

(8.16)
where (b̂, ρ̂) are the maximum likelihood estimators of parameters (b, ρ) in property 8.4.

After obtaining (V̂1, . . . , V̂n), instead of using these random variables, we can transform
the simulated samples to another iid order statistics on U [0, 1]. Since Λ̂ is an increasing

function, ∀j ∈ {1, . . . ,mT}, ∀i ∈ {nj, . . . , nj+1}, let Vτ = Λ̂(τ)

Λ̂(T )
, we have:

V̂τj =
Λ̂(τj)

Λ̂(T )
≤ Λ̂(Ti)

Λ̂(T )
≤ Λ̂(τj+1)

Λ̂(T )
= V̂τj+1

.

Then, all the order statistics
(
V̂i

)
nj ,...,nj+1

follow U
[
V̂τj , V̂τj+1

]
. We define for all i ∈

{1, . . . , n}:
Ṽi =

(
V̂i − V̂τm(i)

)
/
(
V̂τm(i)+1

− V̂τm(i)

)
. (8.17)

The following approaches can be applied on either the samples (V̂1, . . . , V̂n) or (Ṽ1, . . . , Ṽn).

8.6 Test statistics

In all the following simulations, we apply to the transformed samples
(
V̂j

)
j=1,...,n

the

classical test statistics for the uniform distribution as it was done in [79].

• Laplace statistic:

L =

√
12

n

n∑

j=1

(
V̂j −

1

2

)
(8.18)

• Greenwood statistic:

G =
n+1∑

j=1

(V̂j − V̂j−1)2 (8.19)

• Modified Cramer Von Mises statistic:

CM =
n∑

j=1

[
V̂j −

(2j − 1)

2n

]2

+
1

12n
(8.20)

• Modified Anderson Darling statistic:

AD = − 1

n

[
n∑

j=1

(2j − 1)[ln(V̂j) + ln(1− V̂n+1−j)]

]
− n (8.21)
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• Modified Kolmogorov-Smirnov statistic:

KS = max

[
max1≤j≤n

(
j

n
− V̂j

)
,max1≤j≤n

(
V̂j −

j − 1

n

)]
. (8.22)

To sum up the whole approach, if we have failure times T1, . . . , Tn and we wish to test if
these instants are from the ARA1−LLP model, we apply the following steps in algorithm
3. Let K be a large number to guarantee the computation of the p-value estimated by:

p̂obs =
1

K

K∑

k=1

1{Z∗k≥zobs}. (8.23)

Algorithm 3 Steps to follow for the computation of the p-value

Compute the observed sufficient statistic S̃ = s̃obs.
Compute the test statistic zobs from the observation.
Compute the MLEs (â, b̂, ρ̂) using property 8.4.
for all k ∈ {1, . . . ,K} do

apply algorithm 2 to simulate T1, . . . , Tn|(S̃ = s̃obs)
compute the transformation to the uniforms given in (8.16)
compute the test statistic Zk given in subsection 8.6

end for

Compute the p-value
K∑

k=1

1{Z∗k≥zobs}/K

8.7 Simulation results

In this section, we use all the previous tools to assess the performance of the developed
GOF tests for the ARA1−LLP model.

The power study is carried out using different alternative models chosen to be Brown-
Proschan models. The significance level in all the simulations results is fixed at 5% and
4 PM are made at the times (τ1 = 1.833, τ2 = 2.404, τ3 = 2.985, τ4 = 3.538). These
values are the same as those used in section 8.3. They are chosen such that there is an
equivalence between S and S̃.

The power of the test is assessed by the percentage of rejection of H0 over the total
number of simulated samples. We set the number of the simulated samples from each
tested alternative to 5000. We apply the approach presented in algorithm 3: we simulate
K = 10000 samples of V̂i, i = 1, . . . , n. The ’burn in’ period is set to 200.

The GOF tests used here are Laplace L, Greenwood G, Cramer-Von-Mises CM ,
Anderson-Darling AD and Kolmogorov-Smirnov KS tests. We denote respectively the
GOF tests L̃, G̃, C̃M , ÃD and K̃S the same tests based on the transformation in equation
(8.17).

We first simulate samples from the ARA1−LLP model, in order to check that the
percentage of rejection is close to the nominal significance level 5%. All the simulations of
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the alternative models are done using the inverse of the conditional cdf given in property
7.3.

The difficulty we faced for the simulations is how to find a compromise between the
number of simulated CM between two successive PM and the choice of the parameters
values. Indeed, the simulated sample sizes depend on the parameters values and the PM
times. In all the simulations, we tried to adjust the parameters in a way we can both
test large and small sample sizes and to have at least one CM in average between two
successive PM.

Tables 8.1 to 8.3 show the computed rejection percentages (powers) of the GOF tests.
The first column gives the parameter values of the simulated models and the last column
gives the mean value of the number of the simulated CM.

Table 8.1 gives the powers when the simulated model is ARA1−LLP. The first column
presents the values of parameters (a, b, ρ). We obviously obtain the significance level 5%
as a power of the test when we simulate the model under the null hypothesis H0.

alternatives L G CM AD KS L̃ G̃ C̃M ÃD K̃S n
(1, 0.1, 0.9) 4.8 5 4.7 5.3 5 5.1 5.7 4.3 4.7 4.5 115
(1, 0.8, 0.75) 5.4 4.1 4.8 4.9 4.1 4.5 5 4.1 4.3 4.3 28
(1, 2.8, 1.2) 5 5.8 4.8 5 5.5 5.4 5 5.3 5.2 5 160

Table 8.1: Power results: ARA1−LLP under H0

Among several simulated alternatives, we choose to present the following ones.

1. The Brown-Proschan model defined previously in section 7.3.2 with a log-linear
initial intensity function, denoted BPl(a, b, p). When p = 0 or p = 1, this model is
a special case of the model ARA1−LLP with ρ = 0 (if p = 0 ABAO) and ρ = 1 (if
p = 1 AGAN). If 0 < p < 1, we expect to have a model that should be rejected by
the developed test. Unfortunately, the power of the tests is close to 5% for all the
values of probability p. Table 8.2 shows the power results. The GOF tests in this
case did not detect the departure from H0.

alternatives L G CM AD KS L̃ G̃ C̃M ÃD K̃S n
BPl(1, 0.9, 0) 5.7 5.2 5.6 5.5 4.4 4.9 5.1 4.8 5.3 4.9 70
BPl(1, 0.9, 1) 5.7 5.5 5.8 5.3 5.1 4.7 4.1 4.4 5.4 5.3 18
BPl(1, 0.9, 0.5) 4.1 4 4.2 4.4 5.9 3.1 5.5 4.7 4.5 5.6 45
BPl(1, 0.9, 0.7) 5 5.8 5 4.5 4.3 4.9 4.5 4.9 5.3 4.9 34
BPl(1, 0.9, 0.3) 5 5 5.2 4.5 5.9 5.1 4 4.7 5 4.9 55
BPl(3, 0.5, 0.5) 4.4 4.4 5 4.6 5 4.5 5.5 4.2 4.4 4.8 145

Table 8.2: Power results: BPl(a, b, p) as alternative

2. The Brown-Proschan model with a power-law intensity function, denotedBPp(α, β, p).
Table 8.3 gives the power results. For β = 1, the BPp is an HPP, which is a special
case of the ARA1−LLP model. So it is normal to find a power close to the signif-
icance level 5%. We also notice that this model is rejected by the developed GOF
tests and their performances depend tightly on the chosen parameter values.
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alternatives L G CM AD KS L̃ G̃ C̃M ÃD K̃S n
BPp(3.8, 1, 0) 4.9 4.3 4.6 5 5 5.1 5.6 4.2 5.1 5.2 13
BPp(3.8, 1, 0.6) 5.2 5 4.6 5 5 5.1 5.6 5.2 5.2 5.4 13
BPp(3, 1, 0) 5.2 5.6 5.4 5.4 4.6 4.9 5.2 4.9 5.2 5.2 10
BPp(3.8, 0.1, 0.6) 72.4 23.4 12.3 11.9 9.6 75.9 46.3 32.8 81 34.9 10
BPp(3.8, 0.1, 0.3) 71.5 23.3 5.3 5.3 4.2 73.1 35.6 18.3 51.4 18.3 8
BPp(3.8, 0.1, 0.8) 72.7 24.3 14 14.3 11 81.1 55.3 44.2 90.7 44.5 12
BPp(3.8, 0.1, 1) 72.6 26.4 18.1 18.6 14.7 83.7 58.1 58.5 98.2 58.5 15
BPp(3.8, 0.2, 0.3) 50.7 16.5 3.6 4.5 3.4 51.2 17.5 8.7 29.1 7 8
BPp(20, 0.2, 0.3) 82.3 12.5 0.4 0.4 1.7 75.5 30.3 7.1 34.9 7.6 40
BPp(3.8, 1.5, 0.5) 5.6 4.9 4.6 5 7.1 5.2 6.2 5.5 5.5 6.3 20
BPp(10, 1.5, 0.5) 9.6 7.8 4.7 3.8 11.1 6.6 5.1 7 6.1 8.7 50
BPp(1, 2.4, 0.5) 5.1 5.1 4.3 4.1 5.7 5.2 6.1 2.1 2.3 3.8 13
BPp(10, 2.4, 0.5) 28.4 22.4 3.4 3.2 23.8 22.3 6.3 4.3 3.7 6.5 130

Table 8.3: Power results: BPp as alternative

We notice that some of the GOF tests are biased with powers less than the significance
level (for instance CM , AD and KS when the tested alternative is BPp(20, 0.2, 0.3)).
Moreover, the rejection percentages do not always increase with the sample size. The
departure from H0 is detected for a decreasing intensity function i.e when β < 1. But
when β > 1, the GOF tests are not able to reject the null hypothesis: the power is less or
equal than the significance level. The GOF test ÃD has the highest rejection percentage
for even small samples (90.7% and 98.2% for respectively n = 12 and n = 15).

The two tests L̃ and L are among the most powerful ones with high rejection percent-
ages.

It seems that the ’adapted’ GOF test ÃD has a very good performance. This is due
to the effect of the transformation in equation (8.17) on the repartition of the sample Ṽi,
but this test has the disadvantage of being biased on some cases.

From the previous power results (tables 8.2 and 8.3), we deduce that the GOF tests
are able to detect the shape of the tested initial failure intensity λ(.) but unable to detect
the different effects of the PM. This is may be due to the sufficient statistic that includes
a lot of information and deteriorates the tests performances.

We have started to study the case of periodic PM. In this case, the problem of section
8.3 may have several solutions. Then, it is possible to perform the conditional sampling
given the minimal sufficient statistic. This is a promising prospect, but further research
is needed

In this chapter, we developed a generalization of Lindqvist-Rannestad GOF tests ap-
plied to a specific imperfect maintenance model with deterministic PM. The power results
are mitigated, but some tests are reasonably powerful. Then, this is a promising area of
future research. The work has been presented in the MMR 2013 conference [69].



Chapter 9

Application to real data sets

In this chapter, we apply the presented GOF tests to real data sets. Firstly, we check the
relevance of the Weibull distribution for some data sets from the literature representing
lifetimes of non repairable systems and data sets from EDF representing physical quan-
tities: toughness and length of defects. Secondly, GOF tests for repairable systems are
also applied to real data sets from EDF consisting in sequences of CM and PM times.

Warning

For confidentiality reasons, EDF data used in this chapter have been modified. However
the results presented here are consistent with the results of the original data.

9.1 Non repairable systems

9.1.1 Literature data

In this section, the GOF tests for the Exponential and Weibull distributions are applied to
two data sets. The first data set (Xie data) deals with the time to failure of 18 electronic
devices [130] (Table 9.1).

Table 9.1: Failure data of 18 electronic devices (Xie data)
5 11 21 31 46 75
98 122 145 165 195 224
245 293 321 330 350 420

The second data set (Aarset data) is a classical data set of the literature [2] previously
introduced in chapter 1. It represents failure times of 50 devices. Table 9.2 represents
these data.



142 Application to real data sets

Table 9.2: Failure data of 50 devices (Aarset data)

0.1 0.2 1 1 1 1 1 2 3 6
7 11 12 18 18 18 18 18 21 32
36 40 45 46 47 50 55 60 63 63
67 67 67 67 72 75 79 82 82 83
84 84 84 85 85 85 85 85 86 86

Figure 9.1 presents the Weibull probability plots (WPP) of the two previous data sets.
For Aarset data, we can notice easily that the points are not aligned, so we can deduce
that the Weibull assumption is rejected for this data set. This decision will be confirmed
later using the GOF tests. For Xie data, the graphical approach is not concluding, the
judgment about the points alignment is not straightforward. As a consequence, any
decision based on the WPP is not robust enough. In this case, the use of the GOF tests
is needed.

Figure 9.1: Weibull probability plots of the data sets

We remind that the previous chapters 4, 5 and 6 showed that the GOF tests per-
formances depend on the monotony of the hazard rate. Non parametric estimation of
the hazard rates of the tested data sets is then useful. In all that follows, we use a non
parametric estimation of the hazard rate. A smoothed estimator of the hazard rate [90]

using the cumulative hazard Nelson-Aalen estimator [93, 1] Hn =
n∑

i=1

{Xi≤t}

n− i+ 1
has the

expression:
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ĥn(t) =

∫
1

b
K

(
t− x

b

)
dHn(t)

=
1

b

n∑

i=1

K

(
t−Xi

b

)
1

n− i+ 1

We chose to use a bi-weight (quartic) kernel K(x) = 15
16
(1− x2)2 |x|≤1 and an optimal

bandwidth b that minimizes the mean integrated squared error E
[∫

(ĥn(t)− h(t))2 dt

]

[90]. The same kernel is used for the density estimation:

f̂n(t) =
1

nb

n∑

i=1

K

(
t−Xi

b

)
.

Figures 9.2 and 9.3 show respectively the estimated hazard rates and pdfs of the pre-
vious data sets. For Xie data, the estimated hazard rate can be considered as increasing
then according to chapter 6, the best GOF test to use is L̃S. For Aarset data, the esti-
mated hazard rate is not BT neither IHR then the recommended GOF test in this case is
T1. The estimated pdf of Xie data in figure 9.3 looks like the pdf of an exponential dis-
tribution, while the estimated hazard rate is not constant. This contradiction is probably
due the bad performance of the non parametric estimation of the hazard rate for small
data set (18 observations). For Aarset data the estimated pdf is bimodal, thus far from
the pdf of the Weibull distribution.

Figure 9.2: Estimated hazard rates of the data sets

In order to check the previous remark about the Xie data pdf that looks like an
Exponential distribution, we apply the best GOF tests for the Exponential distribution.



144 Application to real data sets

Figure 9.3: Estimated pdfs of the data sets

We use the R package EWGoF to apply the GOF tests. The example below illustrates
the use of the functions of the EWGoF package:

> LK.test(Xie.data, type=’CO’)

Test of Cox and Oakes for the Exponential distribution

data: Xie.data

S =0.4062, p-value=0.556

sample estimates:

[1] 0.005812076

> CF.test(Xie.data, type=’EP’)

Test of Epps and Pulley for the Exponential distribution

data: Xie.data

S =-0.8985, p-value=0.737

sample estimates:

[1] 0.005812076

Each function from EWGoF package is dedicated to a special family of the GOF tests,
for instance LK.test is the function that includes all the likelihood based tests for the
Exponential distribution such as CO, Sc and LR. The functionCF.test includes the GOF
tests based on the characteristic function: EP,HM (1), HM (2),MI(1), . . . The input ’type’
in each function should be specified. In addition to the p-value of the test, the outputs of
each function are: the value of the test statistic, the maximum likelihood estimation of the
parameter λ̂n, the name of the applied test and the data’s name. Detailed documentation
of the EWGof package is given in appendix B.
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Table 9.3 gives the p-values of the best GOF tests. These p-values are high, thus the
Exponential distribution is not rejected for Xie data set.

Table 9.3: P-values of the GOF tests for the Exponential distribution (Xie data)

GOF tests AD CO BH He
P-values 0.616 0.556 0.517 0.523

Since the Exponential distribution is not rejected for Xie data, the Weibull distribution
should not be rejected either. We apply the best GOF tests for the Weibull distribution to
Xie data set in order to check that the Weibull distribution is not rejected and to Aarset
data in order to test whether or not the Weibull distribution is a relevant distribution.
The example below illustrates the application of the Weibull GOF tests to Aarset data.
As for the Exponential distribution, the functions of the R package are dedicated to the
families of the GOF tests for the Weibull distribution. The functions names start with
the letter W for Weibull. For instance, for the tests based on the empirical distribution
function, the function name in the package is WEDF.test. The input ’funEstimate’
precises the method used for parameters estimation (LSE, MLE or ME). By default the
MLEs are used. The output of the function are the p-value of the test, the value of the
test statistics and the estimates of parameters η and β (LSE, MLE, ME).

> WEDF.test(Aarset,type=’AD’)

Test of Anderson and Darling for the Weibull distribution using the

MLEs

data: Aarset

S = 3.5877, p-value < 2.2e-16

sample estimates:

eta beta

44.9125175 0.9490436

> WEDF.test(Arset, type=’LS’, funEstimate=’LSE’)

Test of Liao and Shimokawa for the Weibull distribution using the LSEs

data: Aarset

S = 1.5971, p-value = 0.014

sample estimates:

eta beta

46.4540001 0.7523908

> WNS.test(Aarset,type=’TS’)

Test of Tiku and Singh for the Weibull distribution

data: Aarset
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S = 1.3715, p-value < 2.2e-16

sample estimates:

eta beta

44.9125175 0.9490436

The p-values of the tests are given in table 9.4 for Xie data and table 9.5 for Aarset data.

Table 9.4: P-values of the best GOF tests for Weibull distribution (Xie data)

GOF tests OK∗ SPP ÂD L̃S TS LOS S̆T 4

P-values 0.118 0.643 0.297 0.587 0.148 0.238 0.693

GOF tests ĈQ
∗

ĜG
2

l ÊWw P̂GWw M̃Ow T1 T2

P-values 0.111 0.15 0.161 0.11 0.172 0.896 0.896

Table 9.5: P-values of the best GOF tests for Weibull distribution (Aarset data)

GOF tests OK∗ SPP ÂD L̃S TS LOS S̆T 4

P-values < 2.2 10−16 < 2.2 10−16 < 2.2 10−16 0.014 < 2.2 10−16 not defined 0.09

GOF tests ĈQ
∗

ĜG
2

l ÊWw P̂GWw M̃Ow T1 T2

P-values 10−7 < 2.210−16 10−5 < 2.210−16 4 10−3 10−7 10−5

• For Xie data, the p-values are quite high. The recommended GOF test is this case,
L̃S, has a large p-value of 58.7%. Some of the GOF tests such as OK∗, CQ∗ and

P̂GWw have lower p-values around 11% but they are high enough, so we can not
reject the Weibull distribution. This is consistent with the previous results of the
Exponential GOF tests. The given estimated scale and shape parameters of the
Weibull distribution are η̂ = 179.59 and β̂ = 1.14. Since β̂n is close to 1, the
Exponential distribution is a distribution that fits well Xie data.

• For Aarset data, the p-values are all very low. All the GOF tests strongly reject the
Weibull assumption at very low significance level, except the S̆T 4 that has a larger
p-value (9%). Since this test is biased, we consider that the Weibull assumption
is rejected. These results confirm the previous work of Lai et al [72] which showed
that the new modified Weibull distribution presented in section 4.3.6 can fit better
this data set.

9.1.2 EDF data

In this section, the application is carried out to EDF data sets. The observations in
this case are not the lifetimes of components but some physical quantities and mechanical
characteristics of the studied component. As said in chapter 1, the work of Weibull himself
[127] justifies the relevance of using Weibull distribution for this kind of data.



Application to real data sets 147

The case study deals with the mechanical performance of a passive component within
EDF power plant. The reliability of the component depends on two main characteristics:
the length of the defects and the toughness of the material. Under severe stress conditions,
the preexisting flaws, which uneventfully remain non-progressive through the operation of
the structure, might initiate if the toughness is not high enough. Examinations have been
performed, resulting in 150 measures of the length of the defects, 143 and 24 measures of
the toughness, under respectively, fixed temperatures δ1 and δ2.Table 9.6 gives the data
of the toughness at δ2.

Table 9.6: Toughness data at δ2

14.13 67.54 70.68 98.96 102.10 105.24
105.24 149.22 171.21 177.49 183.78 190.06
205.77 240.33 252.89 268.60 284.31 293.73
300.02 303.16 312.58 362.85 369.13 409.97

The first question to be answered is whether or not the Exponential distribution is
adapted for the studied variables. Figure 9.4 shows Exponential probability plots of the
data sets. The alignment of the points is clearly questionable for all the data sets. This
doubt about the Exponential distribution has to be confirmed by a GOF test.

Figure 9.4: Exponential probability plots of the data sets

We apply the best recommended GOF tests for the Exponential distribution to the
previous three data sets. Tables 9.7, 9.8 and 9.9 give the p-values of the GOF tests. The
p-values are very small so the Exponential distribution is strongly rejected for the three
data sets.
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Table 9.7: P-values of the GOF tests for the Exponential distribution (length of defects)

GOF tests AD CO BH He
P-values < 2.2 10−16 < 2.2 10−16 < 2.2 10−16 < 2.2 10−16

Table 9.8: P-values of the GOF tests for the Exponential distribution (toughness at δ1)

GOF tests AD CO BH He
P-values < 2.2 10−16 < 2.2 10−16 10−2 < 2.2 10−16

Table 9.9: P-values of the GOF tests for the Exponential distribution (toughness at δ2)

GOF tests AD CO BH He
P-values 3 10−2 3 10−2 4.5 10−2 6.5 10−2

Since the Exponential distribution is rejected, we check now the relevance of the
Weibull distribution for the three data sets. Figure 9.5 shows the Weibull probability
plots. The alignment of the points is striking for length of defects and toughness at δ1,
but less obvious for toughness at δ2.

Figure 9.5: Weibull probability plots of the data sets

Graphically in figure 9.6, the estimated hazard rates (kernel non-parametric estima-
tion) of the data sets show that they have increasing hazard rates and that the Weibull
distribution can be a candidate distribution. The estimated pdfs in figure 9.7 show the
same thing (the Weibull distribution may be a possible model).
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Figure 9.6: Estimated hazard rates of the data sets

Figure 9.7: Estimated pdfs of the data sets

Table 9.10: P-values of the GOF tests for Weibull distribution (length of the defects)

GOF tests OK∗ SPP ÂD L̃S TS LOS S̆T 4

P-values 0.626 0.218 0.184 0.125 0.31 not defined 0.193

GOF tests ĈQ
∗

ĜG
2

l ÊWw P̂GWw M̃Ow T1 T2

P-values 0.569 0.446 0.498 0.576 0.227 0.41 0.126
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Table 9.11: P-values of the GOF tests for Weibull distribution (toughness at δ1, n = 143)

GOF tests OK∗ SPP ÂD L̃S TS LOS S̆T 4

P-values 0.956 0.435 0.867 0.907 0.885 0.94 0.908

GOF tests ĈQ
∗

ĜG
2

l ÊWw P̂GWw M̃Ow T1 T2

P-values 0.915 0.885 0.891 0.908 0.861 0.488 0.321

Table 9.12: P-values of the GOF tests for Weibull distribution (toughness at δ2, n = 24)

GOF tests OK∗ SPP ÂD L̃S TS LOS S̆T 4

P-values 0.169 0.761 0.431 0.546 0.172 0.266 0.336

GOF tests ĈQ
∗

ĜG
2

l ÊWw P̂GWw M̃Ow T1 T2

P-values 0.161 0.164 0.168 0.15 0.301 0.946 0.974

We apply the best GOF tests for the Weibull distribution. The p-values are given in
tables 9.10, 9.11 and 9.12.

Table 9.13 gives the estimation of the two parameters of the Weibull distribution for
the length of defects and the toughness data.

Table 9.13: Parameters estimation

Data η̂ β̂
Length of defects 10.31 1.8
Toughness at δ1 226.8 1.78
Toughness at δ2 235.7 2.03

For the toughness data, the p-values are very high especially for the toughness at δ1.
Thus, the Weibull distribution is clearly not rejected in this case. It is consistent with the
habit of using the Weibull distribution to model the materials toughness [127]. For the
length of defects data, the p-values are not too high, especially for some GOF tests such
as ÂD, L̃S, M̃Ow and T1, but still large enough to not reject the Weibull distribution.

The p-value of TS is not so high either. This can be explained by the fact that the
tested data set has a lot of ties. Since the statistic TS is based on the spacings, a large
number of these spacings are null. So the p-value is not too high, but it is still high
enough to lead to the same conclusion. The GOF test LOS is not defined. This is also
due to the presence of tied observations, since the expression of the test statistic (3.31) is
based on logarithms. For instance for Aarset data, the two largest values of the sample
are equal X∗n−1 = X∗n = 86. Then the normalized spacing En is equal to 0 and the random
variable defined in (3.30): Zn−1 = 1. Then ln(1 − Zn−1) is infinite, so the statistic LOS
is not defined. The presence of tied observations presents the weakness of the GOF tests
based on the normalized spacings in spite their global good performances.

To sum up, for the three data sets (length of defects and the toughness under δ1 and
δ2) the Weibull distribution can be used to model these quantities.
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9.2 Repairable systems

The first case study deals with the welds of three systems within the boiler of an EDF
coal-fired power station. The welds are subjected to thermal fatigue leading to the initi-
ation then propagation of cracks that may generate leaks. These require the immediate
shutdown of the boiler, and consequently of the plant, which may be critical for the in-
stallation and electric power transmission operators when the energy demand is huge and
the power grid is over-stretched. In order to manage the technical and economic risks, a
specific maintenance plan is carried out:

• When a leak occurs during plant operation, the incriminated weld is repaired with-
out delay to restart the plant as soon as possible.

• Scheduled preventive inspections of the hazard zones of the system are carried out
and the detected cracks are scoured.

The operation feedback data of three systems are available but not since the commis-
sion date of the plant: it only covers the operation period 1997 − 2006. Over this time
interval, CM times and PM times are at our disposal. Table 9.14 shows data of the first
system. The data is not expressed in calendar time, but in the (cumulative) number of
cold starts (CS) over the observation period of the plant: indeed, from a physical point of
view, this operation parameter is known to be one of the most influential on the wear-out
of the system welds. Thus, considering year 1997 as the time of reference, for the first
system:

• 7 CM occurred, the first one after 50 CS and the last one after 195 CS.

• 3 scheduled PM actions were carried out.

• the ending time of the OF data 1 (right censoring) is T = 264 CS. This time is
considered to be the last PM.

In [108], the data set 1 was studied and the PM AGAN-CM ARA∞ model was adopted.

Table 9.14: Available OF data 1

Number of CS 25 50 93 109 114 141 163 164 195 225 264
Maintenance type PM CM CM CM PM CM CM CM CM PM PM

We will assume that the system was new in 1997, as data has only been available since
then. Consequently, the presented results will characterize the relative wear-out of the
system since 1997 rather than its absolute one.
The data of the two other systems are given in the following tables 9.15 and 9.16:
We want to check whether the data are consistent with the model ARA1−LLP using the
statistics presented in chapter 8 (L, G, CM , AD and KS). For data 1, we first apply
Laplace statistic L and compute its value for the observed data (OF data 1) L1

obs = 0.273.
After, we simulate the distribution of L: this is done by simulating 100000 samples of
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Table 9.15: Available OF data 2

Number of CS 43 156 180 189 190 214 243 257
Maintenance type PM CM PM CM CM CM CM PM

Table 9.16: Available OF data 3

Number of CS 2 130 149 161 178 181 225 227 235
Maintenance type PM PM CM CM CM CM CM PM PM

V̂i and for each simulated sample we compute the value of the statistic L. The resulting
histograms of some statistics are given in figure 9.8. The resulting p-value is 81.1% (twice
the tail to the left of the observed since the test is two-sided). Hence the Laplace statistic
does not reject the ARA1−LLP model.
The estimated p-values of the statistics are given in table 9.17. All the p-values are quite
high and all conclude the acceptance of the null hypothesis. The lower p-values are 14.2%
and 14.1% respectively, given by CM and AD. The estimates of the parameters are given
by the MLEs: â = −3.995, b̂ = 0.0131 and ρ̂ = 1.253. We notice that ρ̂ > 1 which means
that the PM are better than new, which is consistent with the AGAN assumption in [108].

Table 9.17: P-values of the GOF tests

GOF tests L G CM AD KS
P-values 0.811 0.708 0.142 0.141 0.374

GOF tests L̃ G̃ C̃M ÃD K̃S
P-values 0.943 0.796 0.578 0.791 0.413

The previous GOF tests were applied with nb = 100000. The same application of the
GOF tests were carried-out to the two data sets data 2 and data 3. Tables 9.18 and 9.19
give the p-values of the presented GOF tests applied to respectively data 2 and data 3.
The p-values are high which implies the non-rejection of the ARA1−LLP model of H0.

Table 9.18: P-values of the GOF tests for OF data 2

GOF tests L G CM AD KS
P-values 0.289 0.554 0.355 0.433 0.446

GOF tests L̃ G̃ C̃M ÃD K̃S
P-values 0.311 0.587 0.412 0.390 0.421

The estimates of the parameters are â = −6.0534, b̂ = 0.00380468 and ρ̂ = −3.314 for
the OF data 2.
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Figure 9.8: Simulated distribution of some test statistics
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Table 9.19: P-values of the GOF tests for OF data 3

GOF tests L G CM AD KS
P-values 0.979 0.712 0.381 0.429 0.263

GOF tests L̃ G̃ C̃M ÃD K̃S
P-values 0.979 0.187 0.246 0.378 0.135

The estimated â = −5.894, b̂ = 0.00872862 and ρ̂ = −0.849999 for the OF data 3.



Chapter 10

Prospects

This work constitutes a contribution to both theoretical and practical mathematics applied
to reliability. It deals with goodness-of-fit tests for non repairable and repairable systems.
These tests represents an efficient tool to check the relevance of a model to a given data
set.

The developed works presented in this dissertation open doors to new prospects. First,
concerning the new GOF tests for the two-parameter Weibull distribution, we showed that
some of these new GOF tests are very competitive with the classical ones. Until now only
complete samples were studied, future work can be done to adapt these GOF tests for
type II simple censoring. For instance, for the likelihood based tests, the censoring can be
considered when estimating the Weibull parameters. The maximum likelihood estimators
for simple censoring exist and can be computed and plugged in the expression of the
statistics. GOF tests are needed for data with other kinds of censoring such as multiple
and interval censoring.

Secondly, we showed that the combination of the test statistics with complementary
behavior is a promising way of improving the tests performances. A future work is needed
to identify the best combinations to be used.

Third, in some industrial cases, the use of the three parameter Weibull distribution
is usual. However, GOF tests for this distribution are less developed in the literature.
Future work can be inspired from the GOF tests for the two-parameter distribution.

Finally, multiple GOF tests can be done. It might be intersting to nest the Weibull
distribution in more than one Genrelized Weibull distributions and test all the parameters
at once.

Concerning repairable systems, more GOF tests need to be developed for more im-
perfect maintenance models. The performance of the GOF tests based on the sufficient
statistic can be improved in the case of periodic and semi periodic PM. Indeed, the con-
ditional sampling given the minimal sufficient statistic seems to be possible.

The application to EDF data sets brings the need to explore more research tracks and
raise questions that the GOF tests can not answer. Indeed, when the null hypothesis
is rejected, we are not able to know which model to adapt. Sometimes, we have more
than one candidate models to test and we need to choose the closest one from a range
of possible models. These kinds of questions can be answered using the model selection
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tools.
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Appendix A

This appendix contains all the simulation results which aim to assess the power of the
GOF tests for the Exponential and Weibull distributions.

A.1 Power results of the GOF tests for the Exponen-

tial distribution: complete samples

n n = 5 n = 5 n = 10 n = 10

altern. KS CM AD KS CM AD KS CM AD KS CM AD

exp(0.2) 4.9 5.5 5.4 4.9 4.8 4.7 4.8 4.9 5.1 4.5 5.2 4.9
exp(1) 5.2 5.6 5.4 4.8 5.2 5.2 5 5 5.1 5.2 4.7 5.2
exp(2) 4.9 5.4 5.2 5.1 5.1 4.8 5.1 5.1 5.2 4.8 4.9 5.2
exp(42) 4.8 5.2 5.2 5.2 4.7 5 5.2 5.2 5.2 5.1 4.8 5.1

W(0.5) 34.5 37.6 47.4 27.5 30.2 51 60 64.7 74.3 56.2 61 77
W(0.8) 9.4 10.4 11.6 6.9 6.6 13.5 13.2 14.6 19.7 9.6 11.6 17.9
W(0.98) 5.3 5.7 5.7 5 4.2 5.8 5.2 5.4 5.6 4.4 3.9 5.4
W(1.5) 9 10.5 9.4 11.6 12.6 8.3 18.9 22 21.1 21.2 22.9 17.2
W(3) 47.9 57.2 52.4 53.2 62.1 50.7 90.3 96.1 96 89.5 96.6 95.4
LN (0.6) 18 20.6 17.1 23.7 23.9 16.9 42.5 47.9 42.6 48.7 51.9 47.5
LN (0.8) 8.5 9.3 7.5 10.4 10.3 6.8 14.1 15.3 13.1 16.3 16.6 14.8
LN (1.4) 16.7 17.8 16.1 13.7 12.2 16 31.4 32.6 30.7 26.7 26.6 27
U [0, 2] 13 15.1 16.8 15.4 17.3 12.8 28.5 33.8 40.7 27.8 37.7 31.9
G(0.5) 17.9 19.7 27.5 13.7 14.3 31.1 28 31.5 42.3 23.8 30.3 48.9
G(2) 9.2 10.5 9.2 12.1 12.3 8 18.8 21.5 20 21.2 24.4 21.2

Mean 17.2 19.5 20.1 17.5 18.7 20.1 31.9 35.1 36.6 31.4 34.8 36.7

Table A.1: Exponential distribution - Power results of the GOF tests KS, CM et AD,
with the transformation K (left) and without the transformation K (right) for n = 5 and
n = 10
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n n = 20 n = 20 n = 50 n = 50

altern. KS CM AD KS CM AD KS CM AD KS CM AD

exp(0.2) 5.1 5.2 5.3 5.2 4.9 5 4.9 4.9 5 5.1 5.7 4.9
exp(1) 4.9 5 5 4.7 4.7 5.1 4.9 4.9 5 4.7 4.9 5.6
exp(2) 5 4.9 5.1 4.8 5.1 5.3 5 5.1 5.2 5.3 5.3 5.1
exp(42) 5.2 5.1 5.1 5 5 5.4 4.9 4.9 4.9 4.9 4.8 5.2

W(0.5) 88.3 91.2 95 86.4 89.8 95.7 99.8 100 100 99.9 99.9 100
W(0.8) 20.3 22.9 25.7 17.4 20 26.9 40.6 46.2 50.5 36.4 41.8 50.8
W(0.98) 5.4 5.5 5.6 5.4 5.6 5.8 5.5 5.6 5.7 5.3 5.5 5.9
W(1.5) 40 47 40.3 40.1 47.9 44.7 83.7 90.6 91.2 79.4 89.5 91.4
W(3) 100 100 100 99.8 100 99.9 100 100 100 100 100 100
LN (0.6) 80.3 84.1 82.4 84.6 88.9 89.7 100 100 100 99.2 99.6 99.1
LN (0.8) 25.1 27.3 25.6 28.9 33.7 34.1 60.4 61.5 67.8 71.1 75.9 85.5
LN (1.4) 53.6 56 54 45.8 51.2 51.1 87.2 89 88.4 81.5 85.1 87.4
U [0, 2] 60.9 69 80 51.8 67.6 63.8 98.3 99.3 100 92.1 98.5 98.2
G(0.5) 48.4 53.6 65.9 39.8 48.2 45.8 85.4 89.3 94.9 83.3 89.7 90.5
G(2) 38.6 45.5 44.3 39.8 48.2 45.8 82.9 89.4 90.2 81.7 90.4 91.4

Mean 51 50 56.8 49.5 54.6 54.8 76.7 79.2 80.8 75.4 79.6 81.8

Table A.2: Exponential distribution - Power results of the GOF tests KS, CM et AD,
with the transformation K (left) and without the transformation K (right) for n = 20 and
n = 50

altern. Gn Gn∗ LM1 LM2 LM GG
exp(0.2) 5.1 4.9 5.1 5.2 4.9 5.2
exp(1) 5.1 4.9 5 5 4.8 5.5
exp(2) 4.9 5.1 5 5 5 4.7
exp(42) 5 5.1 5.2 5.1 4.9 4.8

W(0.5) 61.2 48.9 44.4 28.2 49.3 65.6
W(0.8) 13 10.4 9 9.3 10.4 14
W(0.98) 5.3 5.1 5.1 5.1 5.1 5.3
G(0.5) 30.4 33.6 32.5 11.8 29.6 31.7
W(1.5) 13.7 13 15.9 4.2 11.5 21.7
W(3) 78.5 70.4 74.2 6.7 64.9 97.3
U [0, 2] 32.3 12.2 12.7 12.8 14.4 36.5
G(2) 12.2 14.4 18.7 3.9 12.6 23.4
LN (0.6) 19.9 36.5 52 4.6 37.5 48.3
LN (0.8) 6.7 13.9 20.1 7.4 15 14.5
LN (1.4) 24.7 2.8 1.2 23.8 19.3 34.3
Mean 27.1 23.7 25.9 10.7 24.5 35.7

Table A.3: Exponential distribution - Power results of Gn, Gn∗, LM1, LM2, LM and
GG, n = 10
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altern. Gn Gn∗ LM1 LM2 LM GG
exp(0.2) 4.9 5 5 5.2 4.8 5.8
exp(1) 5.1 5 5 5 5.1 5
exp(2) 5 5 5.1 5 5 4.9
exp(42) 5 5.2 5 5.1 4.8 5

W(0.5) 85.6 71.5 74.3 45.1 78.9 91.3
W(0.8) 19.5 14.5 12.8 11.2 14.4 23.8
W(0.98) 5.1 5.1 5.2 5.4 5.1 5.4
G(0.5) 46.5 48.1 52.4 15.5 48.4 54.7
W(1.5) 30.8 22.8 29.6 5.9 23.4 49.9
W(3) 99.5 95.5 96.7 15.6 95 100
U [0, 2] 61.6 18.1 17.8 49.4 42.4 71.3
G(2) 25.5 25.4 36.6 4.7 28 47.3
LN (0.6) 42.6 64.4 89.1 5.3 80.1 80.1
LN (0.8) 9.8 23.9 43.5 9.8 32.7 24.4
LN (1.4) 46 5.6 1.2 39.5 33.3 55
Mean 42.9 35.9 41.7 18.8 43.8 54.8

Table A.4: Exponential distribution - Power results of the tests based on the normalized
spacings, n = 20

altern. Gn Gn∗ LM1 LM2 LM GG
exp(0.2) 5 5 5 5.2 4.9 4.9
exp(1) 5.2 5 5 5 5 5
exp(2) 4.9 4.8 5 5 5.2 4.9
exp(42) 5.1 5 5 5 5 5

W(0.5) 99.5 97.3 98.5 75.8 99.4 100
W(0.8) 37.2 26.4 26.2 16.6 27.6 48.2
W(0.98) 5.4 5.2 5.4 5.2 5.2 5.6
G(0.5) 78.8 81.3 87.1 24.1 84.6 89.2
W(1.5) 73.4 57.5 64.2 13.6 57.5 92.6
W(3) 100 100 100 57.5 100 100
U [0, 2] 99.1 64.9 32.3 98.7 97.9 99
G(2) 64 65.3 35.1 7.8 69.9 89.2
LN (0.6) 86.9 99.1 100 6 99.9 99.2
LN (0.8) 18.7 63.9 89.2 15 81.8 46.5
LN (1.4) 82.2 10.5 2.4 71 65 88.4
Mean 67.7 61 58.2 34.4 68.6 78

Table A.5: Exponential distribution - Power results of the tests based on the normalized
spacings, n = 50
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n n = 5 n = 10
altern. Sc CO LR Sc CO LR

exp(0.2) 5.2 5 5 5.1 5 4.8
exp(1) 5 4.9 5.2 5 5 5.1
exp(2) 5 5 5 5 5 4.8
exp(42) 5 5.2 5 5 5 5

W(0.5) 52.7 46.8 27 79.5 75.7 65.7
W(0.8) 12.9 10.2 4.3 18.6 14.8 8.4
W(0.98) 5.2 5.2 4.8 5.4 5.2 4.7
G(0.5) 32.2 27.6 13 50.4 45.3 33.4
W(1.5) 7.6 11.6 17.6 20.3 27.2 33.5
W(3) 49.3 62.6 75.3 96 98.2 99.2
U [0, 2] 11.9 16.7 23.6 24.9 33.5 40.3
G(2) 7.5 11.9 18.1 20.9 27.3 34
LN (0.6) 15.4 23 32.4 49.8 57 63.1
LN (0.8) 5.9 9.7 14.5 14.9 19.5 24
LN (1.4) 14.7 10.7 5 28.1 21.8 14.1

Mean 19.6 21.4 21.4 37.1 38.6 38.2

Table A.6: Exponential distribution - Power results of the likelihood based tests, n = 5
and n = 10

n n = 20 n = 50
altern. Sc CO LR Sc CO LR

exp(0.2) 4.9 5 5 5 5 5
exp(1) 4.9 4.8 5.1 5 4.9 5
exp(2) 4.9 5 5.3 4.9 5.1 5
exp(42) 5 5 5 4.9 4.8 5.1

W(0.5) 96.7 96.2 94.3 100 100 100
W(0.8) 29.2 25.4 19 56.4 52.8 48.4
W(0.98) 5.5 5.6 4.8 5.9 5.8 5.1
G(0.5) 74.6 71.9 64.8 97.4 97.2 96.5
W(1.5) 48.7 56.2 62.7 93.4 94.9 96.3
W(3) 100 100 100 100 100 100
U [0, 2] 49.5 59.1 66.1 90.1 93.7 95
G(2) 51.1 57.5 63.2 94.8 95.7 96.5
LN (0.6) 87.2 88.2 90 99.7 99.6 99.7
LN (0.8) 31.8 34.3 39.2 64.6 63.8 66
LN (1.4) 48.5 41.5 35.5 82.3 78.1 76.1

Mean 56.5 57.8 58.1 80.4 80.1 79.9

Table A.7: Exponential distribution - Power results of the likelihood based tests, n = 20
and n = 50
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altern. a = 0.1 a = 1 a = 2.5
exp(0.2) 4.8 4.9 5
exp(1) 4.8 5.1 4.9
exp(2) 4.7 4.9 5.1
exp(42) 4.7 4.9 5

W(0.5) 55.1 38 34.5
W(0.8) 15 9 8.7
W(0.98) 5.5 5 5.1
G(0.5) 34.3 19.5 17.2
W(1.5) 18.1 11.2 11.5
W(3) 18.2 60.2 62.6
U [0, 2] 4.4 15.6 16.7
G(2) 1.8 11.1 11.8
LN (0.6) 3.8 22.1 23.2
LN (0.8) 14 9.3 9.7
LN (1.4) 15.6 15.1 15.7
Mean 16.9 19.6 19.7

Table A.8: Exponential distribution - Power results of the tests He, n = 5

altern. a = 0.1 a = 1 a = 2.5
exp(0.2) 4.7 5.1 5.3
exp(1) 4.8 4.8 5.1
exp(2) 4.8 4.8 5.2
exp(42) 4.8 4.7 5.1

W(0.5) 79.3 68.4 65.3
W(0.8) 19.5 14.2 14.5
W(0.98) 5.4 5 5.1
G(0.5) 50.7 35.5 31.6
W(1.5) 15 24.7 24.6
W(3) 90 97.5 97.9
U [0, 2] 16.6 29.8 33.7
G(2) 15.8 25.4 24.3
LN (0.6) 44.6 55.4 51
LN (0.8) 11.9 18.2 17.1
LN (1.4) 24.9 30 32.6
Mean 34 36.7 36.2

Table A.9: Exponential distribution - Power results of the tests He, n = 10
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altern. a = 0.1 a = 1 a = 2.5
exp(0.2) 4.8 5 5.1
exp(1) 5 5.1 5.1
exp(2) 4.8 5.2 5
exp(42) 4.9 5 4.9

W(0.5) 96.3 93.2 91.2
W(0.8) 28.4 24.8 23.6
W(0.98) 5.4 5.2 5.5
G(0.5) 74.1 60.4 54.7
W(1.5) 41.7 52.7 51
W(3) 100 100 100
U [0, 2] 33.7 60 66.2
G(2) 47.9 53.7 49.1
LN (0.6) 94.3 88.5 80.1
LN (0.8) 39.1 33.1 26.7
LN (1.4) 40.9 53 56.1
Mean 54.7 56.8 55

Table A.10: Exponential distribution - Power results of the tests He, n = 20

altern. a = 0.1 a = 1 a = 2.5
exp(0.2) 5.1 5.1 5.1
exp(1) 4.9 54.8 5.1
exp(2) 5.1 5.1 4.8
exp(42) 5 5 4.9

W(0.5) 100 100 100
W(0.8) 54.3 50 48.3
W(0.98) 5.9 5.4 5.6
G(0.5) 97.3 93 89.5
W(1.5) 89.3 93.9 93.1
W(3) 100 100 100
U [0, 2] 74.7 96.1 98.5
G(2) 94.9 93.6 90.7
LN (0.6) 100 99.9 98.9
LN (0.8) 89.8 61.9 46.2
LN (1.4) 73.2 86.9 89.1
Mean 80 80.1 78.2

Table A.11: Exponential distribution - Power results of the tests He, n = 50
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altern. a = 0.1 a = 1 a = 1.5 a = 2.5 a = 10
exp(0.2) 5.2 4.9 4.9 4.8 5
exp(1) 5.1 4.9 5.2 5 4.7
exp(2) 4.9 5 4.9 4.8 5.1
exp(42) 4.9 4.9 4.9 4.8 4.9

W(0.5) 57.5 39.1 37.5 35.2 31.4
W(0.8) 15.8 9.5 9.3 9.1 8.4
W(0.98) 5.4 5.1 5.2 5.1 5.1
G(0.5) 37.6 20.1 19.1 17.6 15.9
W(1.5) 0.2 11 12.1 11.4 11.1
W(3) 0.2 60.1 62.8 61.6 60.8
U [0, 2] 15.6 15.5 16.8 16.1 16.1
G(2) 0.07 11.1 11.9 11.5 10.8
LN (0.6) 0.03 22.4 23.7 22.4 21.1
LN (0.8) 0.2 9.3 10.3 9.5 9.4
LN (1.4) 14.7 15.5 15.7 15.5 16.5
Mean 13.4 19.9 20.4 19.5 18.8

Table A.12: Exponential distribution - Power results of the tests BH, n = 5

altern. a = 0.1 a = 1 a = 1.5 a = 2.5 a = 10
exp(0.2) 5.2 4.9 4.9 5 4.8
exp(1) 5.1 4.8 4.8 5.0 4.9
exp(2) 5.1 5.1 4.9 5.1 4.9
exp(42) 4.9 5.1 4.9 4.9 5.1

W(0.5) 80 69.8 67.7 64.9 60.9
W(0.8) 19.9 14.8 14.3 14.5 14.6
W(0.98) 5.7 5 5.2 5.3 5.4
G(0.5) 52.7 36.2 34.4 31.9 28.3
W(1.5) 12.3 25 24.7 24 19.3
W(3) 86.9 97.6 97.8 97.7 96.4
U [0, 2] 14.5 30.1 31.6 33.2 31.2
G(2) 12.6 25.4 25 23.8 18.5
LN (0.6) 38.5 55.8 53.6 50.2 40.7
LN (0.8) 9.1 18.3 17.8 16.7 13.2
LN (1.4) 25.5 30.1 30.9 32.4 34.6
Mean 32.5 37.1 36.6 35.9 33

Table A.13: Exponential distribution - Power results of the tests BH, n = 10
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altern. a = 0.1 a = 1 a = 1.5 a = 2.5 a = 10
exp(0.2) 4.9 4.8 4.8 5.2 4.7
exp(1) 5.1 4.9 4.8 5.0 4.8
exp(2) 5 4.9 4.7 5.1 4.7
exp(42) 5.1 4.7 4.8 5.1 4.8

W(0.5) 96.4 93.7 92.5 91.3 87.6
W(0.8) 29.2 24.5 23.9 24 23.2
W(0.98) 5.6 5.2 5.2 5.4 5.4
G(0.5) 74.9 61.5 58.4 54.7 48.1
W(1.5) 38.1 52.2 51.9 50.8 40.6
W(3) 100 100 100 100 100
U [0, 2] 34.1 59.2 62.7 66.6 66
G(2) 43.8 53.2 51.5 48.9 36.9
LN (0.6) 93.2 89.1 86 81 65.7
LN (0.8) 36.6 33.2 30.1 26.8 18.7
LN (1.4) 42.5 52.8 54.5 56.1 58.5
Mean 54.1 56.8 56.1 55.1 50.1

Table A.14: Exponential distribution - Power results of the tests BH, n = 20

altern. a = 0.1 a = 1 a = 1.5 a = 2.5 a = 10
exp(0.2) 5.1 4.9 5 5.2 5.1
exp(1) 4.9 4.9 4.8 5.0 5.1
exp(2) 5.2 5.1 4.9 5 4.8
exp(42) 5.1 4.9 4.8 4.9 5.1

W(0.5) 100 100 100 100 99.8
W(0.8) 53.6 50.2 49.3 48.4 45.5
W(0.98) 6 5.6 5.6 5.7 6
G(0.5) 97.6 93.6 92 89.6 82.2
W(1.5) 87.7 93.5 93.3 93.1 88.6
W(3) 100 100 100 100 100
U [0, 2] 80.4 96.2 97.5 98.5 99.2
G(2) 93.6 93.7 92.7 91 81.3
LN (0.6) 100 100 99.8 99.3 93.3
LN (0.8) 93.6 67 57.6 47.9 30.4
LN (1.4) 77.6 86.9 87.9 89 90
Mean 80.9 80.6 79.6 78.4 74.2

Table A.15: Exponential distribution - Power results of the tests BH, n = 50
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a a = 0.5 a = 0.75 a = 1 a = 1.5 a = 2.5

altern. HM
(1)
n,a HM

(2)
n,a HM

(1)
n,a HM

(2)
n,a HM

(1)
n,a HM

(2)
n,a HM

(1)
n,a HM

(2)
n,a HM

(1)
n,a HM

(2)
n,a

exp(0.2) 5.2 5 5 5.2 5 4.9 5.1 5.4 5 5.1
exp(1) 4.8 5 5.1 5.3 5 4.9 5 5.1 5.2 5
exp(2) 5 5 5 5 5.1 4.8 5 5.2 5 5.1
exp(42) 5 5.1 5 5 5.2 5.1 4.9 5.1 5.3 5.2

W(0.5) 28.4 25.5 28.4 29.5 27.8 32.3 26 34.8 28.4 34.8
W(0.8) 7 6.8 6.6 8.8 6.7 10.1 6.7 11.6 8.8 11.8
W(0.98) 5.2 5.2 5 5.2 5 5.3 5 5.5 5.3 5.6
G(0.5) 14.5 11.8 13.9 14.8 13.3 17 12 18.8 14.4 19.4

W(1.5) 9.2 13.7 11.9 9.9 13.8 7.1 14.2 4.8 10.8 2.9
W(3) 37 66.6 55.7 57.3 64.7 46.7 67.5 35 59.6 22.9
U [0, 2] 13.8 20.7 17.8 16.6 20.6 12.3 20.8 8.6 17.4 6.6
G(2) 9.2 13.1 12.5 10.3 14 7.1 13.9 4.7 10.8 2.8

LN (0.6) 17.1 24.3 23 18.8 25.5 13.9 25.3 9.1 20.5 5.4
LN (0.8) 8.9 11.2 10.5 8.8 11.1 6.8 11.5 5.1 9.4 4.1
LN (1.4) 9.3 13.3 10.3 16.9 11 18.7 12.4 20.6 16.7 20.9

Mean 14.5 19.3 17.8 17.9 19.4 16.1 19.6 14.4 18.4 12.5

Table A.16: Exponential distribution - Power results of the tests HM , n = 5

a a = 0.5 a = 0.75 a = 1 a = 1.5 a = 2.5

altern. HM
(1)
n,a HM

(2)
n,a HM

(1)
n,a HM

(2)
n,a HM

(1)
n,a HM

(2)
n,a HM

(1)
n,a HM

(2)
n,a HM

(1)
n,a HM

(2)
n,a

exp(0.2) 5.2 4.9 5.3 4.8 5 5 5.1 5.1 4.8 4.8
exp(1) 5 5 5.2 4.9 5.2 5 5.1 5.1 4.9 4.9
exp(2) 4.9 5.1 5.4 5 5 4.9 5.1 5 5.1 4.9
exp(42) 5 5 5.2 4.8 5 4.9 5.2 5.1 5 5

W(0.5) 54.8 51.2 54.6 52.1 54.8 55.2 54.6 58.4 56.1 59.3
W(0.8) 9.6 9.8 9.8 10.8 10 12.6 10.1 15.3 12.2 16.9
W(0.98) 5.2 5.1 5.2 4.9 5 5.2 5 5.5 5.1 5.6
G(0.5) 26.7 21.3 25.9 22.6 24.9 24.8 24 28.2 25 29.5

W(1.5) 14.9 25.4 21.7 22.5 24.4 19 25.8 11.9 21.6 1.5
W(3) 76.4 97.5 93.1 96.7 96.1 95.1 97.5 88.3 96.5 41.4
U [0, 2] 20.6 45.5 31.2 44.6 37.1 41.7 42.8 31.4 42.2 7.2
G(2) 16.2 23.6 23 20.6 25.3 17.5 25.1 10.1 19.6 1.5

LN (0.6) 40.1 42.4 54 37 54.9 32 49 21.3 37.1 3.6
LN (0.8) 17.3 14.1 20.5 13 19.2 11.2 16.4 8.2 12.6 4.2
LN (1.4) 15.5 24.6 18.8 27.9 21.2 31.7 25.5 36.1 30.7 38.1

Mean 27.1 32.8 32.5 32.1 33.9 31.4 34.2 28.6 32.6 18.9

Table A.17: Exponential distribution - Power results of the tests HM , n = 10



176

a a = 0.5 a = 0.75 a = 1 a = 1.5 a = 2.5

altern. HM
(1)
n,a HM

(2)
n,a HM

(1)
n,a HM

(2)
n,a HM

(1)
n,a HM

(2)
n,a HM

(1)
n,a HM

(2)
n,a HM

(1)
n,a HM

(2)
n,a

exp(0.2) 5.1 5 5 4.7 5 5 5 4.7 4.9 5
exp(1) 5.1 4.9 4.9 4.7 4.8 4.7 5 5 5 4.9
exp(2) 4.7 4.7 5.1 4.9 5.1 4.9 5 4.8 4.9 4.9
exp(42) 5 5 4.9 4.9 5 4.9 5.1 5.1 4.8 5.2

W(0.5) 83.7 81.9 85.4 82 85.1 82.3 85.1 83.2 84.6 83.4
W(0.8) 14.3 15.8 15.2 16.9 15.9 18.3 16.9 20.5 18.7 23.2
W(0.98) 5 5 4.9 4.5 5 5.2 5 5.5 5.2 5.1
G(0.5) 48.1 40.7 46.7 40.1 46 39.9 44.6 41.6 42.8 42.8

W(1.5) 27.8 47.6 39.2 45.3 45 42 48.3 35.6 44.5 20.6
W(3) 99.3 100 100 100 100 100 100 100 100 100
U [0, 2] 37.7 79.3 55.6 81.9 65.9 82.6 72.3 80.6 80.5 69.3
G(2) 32.6 43.2 43 38.8 46.4 35.2 45.8 28.4 38.5 15.8

LN (0.6) 83.8 71.2 89.7 61.2 88.5 54 82.1 45.7 63.5 28.9
LN (0.8) 38.1 20.1 38.8 16.3 65.9 82.6 26.5 12.6 17.5 8.9
LN (1.4) 26.5 45.6 34.3 49.5 46 39.9 45.7 55.8 53.3 60.1

Mean 45.2 50 50.2 48.8 55.4 51 52 46.3 49.9 41.6

Table A.18: Exponential distribution - Power results of the tests HM , n = 20

a a = 0.5 a = 0.75 a = 1 a = 1.5 a = 2.5

altern. HM
(1)
n,a HM

(2)
n,a HM

(1)
n,a HM

(2)
n,a HM

(1)
n,a HM

(2)
n,a HM

(1)
n,a HM

(2)
n,a HM

(1)
n,a HM

(2)
n,a

exp(0.2) 4.7 5.3 5.1 5 5.1 5 4.9 5 5.1 5.2
exp(1) 4.8 5.2 5.1 5 5 5 5.1 5.1 5 5.2
exp(2) 4.7 5.2 5.1 5.1 5.2 5 5 5 4.9 5.2
exp(42) 4.7 5 5 5 5.1 5.1 5.1 5.1 5 5.1

W(0.5) 99.7 99.6 99.8 99.5 99.8 99.4 99.8 99.4 99.6 99.2
W(0.8) 29.7 36 34.1 36.9 36.2 37.7 38.1 38.3 39.3 39.6
W(0.98) 4.9 5.3 5.1 5.3 5.2 5.2 5.2 5.6 5.4 6
G(0.5) 85.6 79.5 85.9 77.1 85.4 75.8 83.4 74.3 78.9 71.6

W(1.5) 66.5 87.9 81.3 87.1 85.9 85.8 88.5 82.3 87.5 74.5
W(3) 100 100 100 100 100 100 100 100 100 100
U [0, 2] 82.4 99.7 95.3 99.8 98.3 99.9 99.5 99.9 99.9 99.9
G(2) 77.3 83.4 86.1 79.7 88 75.8 86.8 68.9 80.4 57.9

LN (0.6) 100 98.4 100 95.2 100 90.9 99.8 81.9 96.4 67.8
LN (0.8) 86.1 39.9 82.3 28.9 74.3 22.9 56.6 17.8 31.1 14
LN (1.4) 56.1 82.5 69.5 85.2 75.8 86.2 82.7 87.9 87.6 89.4

Mean 71.6 73.9 76.3 72.3 77.2 70.9 76.4 68.8 73.3 65.4

Table A.19: Exponential distribution - Power results of the tests HM , n = 50
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a a = 0.5 a = 0.75 a = 1 a = 1.5

altern. MI
(1)
5,0.5 MI

(2)
5,0.5 MI

(1)
5,0.75 MI

(2)
5,0.75 MI

(1)
5,1 MI

(2)
5,1 MI

(1)
5,1.5 MI

(2)
5,1.5

exp(0.2) 5.2 5.3 4.8 4.8 4.8 4.9 4.9 5
exp(1) 5.3 5.4 5.2 5.2 5.3 5.3 5.2 5.2
exp(2) 4.9 4.8 5.1 5.1 4.7 4.8 4.8 5
exp(42) 4.7 4.9 5.4 5.5 5 5.1 5 4.9

W(0.5) 0.5 0.5 0.5 0.4 0.5 0.5 0.5 0.4
W(0.8) 2.3 2.2 2.5 2.4 2.6 2.7 2.3 2.3
W(0.98) 4.2 4.2 4.6 4.5 4.7 4.6 4.7 4.8
G(0.5) 1 0.9 1.1 0.9 1 0.9 1.1 1.1
W(1.5) 16.5 17.6 17.6 17.7 17.4 17.4 17.7 18
W(3) 70.3 74.8 74.4 75.5 75.7 76.3 74.4 75
U [0, 2] 22 25.7 25 25.7 24.9 25.1 25.1 25.1
G(2) 16.6 17.5 17 16.7 17.5 17.6 18.1 18.3
LN (0.6) 31.8 31.7 32.7 32 31.3 31.4 30.8 31.5
LN (0.8) 14.5 14.3 15 14.8 14.1 14.2 13.8 14.1
LN (1.4) 2.4 2.3 2.2 2.2 2.2 2.2 2 2
Mean 16.6 17.4 17.5 17.5 17.5 17.5 17.3 17.5

Table A.20: Exponential distribution - Power results of the tests MI, n = 5

a a = 0.5 a = 0.75 a = 1 a = 1.5

altern. MI
(1)
5,0.5 MI

(2)
5,0.5 MI

(1)
5,0.75 MI

(2)
5,0.75 MI

(1)
5,1 MI

(2)
5,1 MI

(1)
5,1.5 MI

(2)
5,1.5

exp(0.2) 5.1 5.1 4.9 4.7 5.4 5.2 5.1 5
exp(1) 4.7 5 4.8 4.8 5 4.8 4.4 4.5
exp(2) 5.3 5.4 5 4.9 5.2 5 4.8 4.8
exp(42) 5 4.7 4.7 4.7 5 4.9 5.2 5.2

W(0.5) 0 0 0 0 0 0 0 4.8
W(0.8) 1.5 1.4 1.7 1.7 1.3 1.2 1.3 1.4
W(0.98) 5 4.6 4.2 4.5 4.5 4.5 4.4 4.4
G(0.5) 0.4 0.4 0.4 0.4 0.3 0.4 0.4 1.4
W(1.5) 29.6 33.3 31.2 32.9 33.3 33.8 33.5 33.6
W(3) 97.7 98.8 98.4 99.1 98.7 99 98.9 99.1
U [0, 2] 40.5 53.8 44.5 53.3 47.1 53.4 50.8 53.1
G(2) 31 30.8 32.3 30.9 32.8 31.7 32.6 32.3
LN (0.6) 64 53.8 62.8 51.9 60.4 51.6 57.8 53.1
LN (0.8) 26.6 19.3 24.7 19.4 23.3 19.1 20.8 19.4
LN (1.4) 1.5 1.1 1.3 0.9 0.9 0.8 0.8 1.5
Mean 27.1 27 27.4 26.8 27.5 26.9 27.4 27.6

Table A.21: Exponential distribution - Power results of the tests MI, n = 10
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n n = 20 n = 50

altern. MI
(1)
20,1.5 MI

(2)
20,1.5 MI

(1)
20,2.5 MI

(2)
20,2.5 MI

(1)
50,1.5 MI

(2)
50,1.5 MI

(1)
50,2.5 MI

(2)
50,2.5

exp(0.2) 4.4 4.5 4.5 5 5.2 5.1 5.2 5
exp(1) 5.1 4.7 5.1 5.2 5.2 5.5 5.4 5.2
exp(2) 5 5 5.2 4.9 5.2 5.4 5.1 5.2
exp(42) 4.6 4.9 4.8 4.8 5 5 5.5 5.2

W(0.5) 16.1 52.1 50 69 96.5 98.1 98.5 98.8
W(0.8) 1 5.4 3.6 9.8 17.3 26.8 24.8 31.2
W(0.98) 4.1 4.2 4.2 4.6 4.1 4.8 4 4.2
G(0.5) 3.4 19.8 16.3 30 65.7 71.9 71.8 74
W(1.5) 58.9 58.9 59.6 56.2 93.5 93.6 93.8 92.6
W(3) 100 100 100 100 100 100 100 100
U [0, 2] 82.7 87.3 85.9 85.8 99.6 99.9 99.8 99.9
G(2) 56.7 52.5 53.8 49.2 92.4 88.7 90 85.6
LN (0.6) 86.7 74.1 79.7 69.7 99.9 98.1 99.3 95.7
LN (0.8) 34.2 24.5 28.3 23.2 65.5 40.4 49.1 32.2
LN (1.4) 1.1 14.6 11.9 29.6 38.4 60.8 60.7 72.8
Mean 40.4 44.8 44.8 48 70.3 71.2 72 71.6

Table A.22: Exponential distribution - Power results of the tests MI, n = 20 et n = 50

altern. m = 2 m = 4 m = 5 m = 6 m = 7 m = 8
exp(0.2) 4.8 5.3 5.1 4.4 5.4 4.8
exp(2) 5.5 5.5 4.5 4.1 4.4 4.9
exp(42) 4.7 5.6 4.7 3.8 4.7 4.9

W(0.8) 7.2 5.7 1.2 1.4 0.5 0.4
W(0.98) 5.1 5 4.1 3.5 3.7 3.5
G(0.5) 27.7 22.8 6.5 5.3 0.2 0.1
W(1.5) 35.7 46.5 52.7 50.4 58.3 57.8
U [0, 2] 77.1 85.1 88.2 87.9 91.3 91.3
G(2) 38 47.6 52.3 50.6 56.8 52.3
LN (0.6) 84.6 89.9 88.6 88.3 86.9 83.8
LN (0.8) 35.9 43.1 39.3 38.3 37.7 34.9
LN (1.4) 29.2 27.2 11.4 10.4 1.7 0.5
Mean 37.8 41.4 38.2 37.3 37.4 36.1

Table A.23: Exponential distribution - Power results of the tests GW , n = 20
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altern. KLn a = 1 a = 5 a = 10 a = 20
exp(0.2) 5 5 5 4.9 4.9
exp(1) 5 5.2 5 5 5.1
exp(2) 5.3 4.8 5.1 4.9 5
exp(42) 5 5.1 5 4.8 5

W(0.5) 32.1 32.9 41.2 53.7 56.4
W(0.8) 9.4 8.4 10 15.3 15.3
W(0.98) 5.1 5.2 5 5.6 5.7
G(0.5) 16.1 15.6 22.3 33.2 37.2
W(1.5) 9.4 12.2 10.7 0.1 0
W(3) 55.9 63.5 57.4 0 0
U [0, 2] 14.8 17.6 14.5 1 1.3
G(2) 9.3 12.3 10.9 0 0
LN (0.6) 18.4 23.2 21.7 0 0
LN (0.8) 8.6 10.2 8.9 0 0
LN (1.4) 17.6 15.6 14.9 16.8 13.1
Mean 17.8 19.7 19.8 11.4 11.7

Table A.24: Exponential distribution - Power results of the tests Kl, n = 5

altern. KLn a = 1 a = 5 a = 10 a = 20
exp(0.2) 5.1 4.9 4.9 5.5 5.1
exp(1) 4.9 4.8 4.9 5.4 4.9
exp(2) 5 5 4.8 5.4 5
exp(42) 5.1 5 5 5.4 5

W(0.5) 60.1 61.5 70.5 76.4 79.6
W(0.8) 15.3 13.6 14.6 18.3 21
W(0.98) 5.5 5.3 5.2 5.9 5.9
G(0.5) 28.8 28.7 38.2 48 54.5
W(1.5) 14.6 23.4 23.6 16.8 0.07
W(3) 93.7 97.5 95.3 84.8 0
U [0, 2] 29.2 37 23.4 14.6 0.8
G(2) 13.6 22.3 25.6 18.6 0.01
LN (0.6) 31 45.5 61.1 53.2 0
LN (0.8) 10.7 15.3 20.1 16 0.01
LN (1.4) 35.6 32.2 26.7 24.9 19.7
Mean 30.8 34.7 36.7 34.4 16.5

Table A.25: Exponential distribution - Power results of the tests Kl, n = 10
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altern. KLn a = 1 a = 5 a = 10 a = 20
exp(0.2) 4.8 4.9 4.9 5 4.9
exp(1) 4.8 5 5 5.1 5.1
exp(2) 4.8 4.9 5.1 4.9 5.1
exp(42) 5.2 4.9 5.1 4.9 5.1

W(0.5) 86.2 89.3 93.8 95.1 95.7
W(0.8) 23.5 21.8 23.1 26.1 29.5
W(0.98) 5.6 5.3 5 5.7 6
G(0.5) 45.8 50.4 63.5 70.2 75.2
W(1.5) 32.2 48.1 50 37.9 17.9
W(3) 100 100 100 99.8 91.6
U [0, 2] 68 72.3 44.7 24.8 10
G(2) 27.9 44.2 54.3 46.7 24.1
LN (0.6) 53.9 75.6 94.7 96.2 83.2
LN (0.8) 14.6 22.7 41.7 46.6 27.6
LN (1.4) 59.1 56 46.3 38.6 29
Mean 46.9 53.2 56.1 53.5 44.7

Table A.26: Exponential distribution - Power results of the tests Kl, n = 20

altern. KLn a = 1 a = 5 a = 10 a = 20
exp(0.2) 5.1 5.2 5 4.9 4.9
exp(1) 4.9 4.7 5.1 5 5
exp(2) 4.9 5.1 4.9 5 4.9
exp(42) 4.9 5.1 4.9 5 4.9

W(0.5) 99.6 99.8 100 100 60
W(0.8) 42.8 45.4 49.1 49.7 48.6
W(0.98) 6 5.4 5.5 5.6 5.9
G(0.5) 78.6 86.5 94.5 96.1 96.8
W(1.5) 81.3 91.4 91.2 84.2 67.3
W(3) 100 100 100 100 100
U [0, 2] 99.7 99.4 86.2 58.2 29.5
G(2) 70.6 87.5 94.5 92.9 84.2
LN (0.6) 90 99 100 100 100
LN (0.8) 25 42.4 82.1 93.3 96.2
LN (1.4) 90 89.2 80.7 69.1 50.2
Mean 71.2 76.9 80.3 77.2 67.1

Table A.27: Exponential distribution - Power results of the tests Kl, n = 50
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altern. KS CM AD GG SW BHn,1.5 HEn,1 Kln,5 BHK BHC
exp(0.2) 4.9 4.8 4.7 5.1 4.9 4.9 4.9 5 5 5.1
exp(1) 4.8 5.2 5.2 4.8 5.2 5.2 5.1 5 5 5.1
exp(2) 5.1 5.1 4.8 5.3 5 4.9 4.9 5.1 5.1 5
exp(42) 5.2 4.7 5 5.1 5.1 4.9 4.9 5 5 5

W(0.5) 27.5 30.2 51 37.6 29.8 37.5 38 41.2 11.4 32.5
W(0.8) 6.9 6.6 13.5 10.3 8.4 9.3 9 10 3.4 8.2
W(0.98) 5 4.2 5.8 5.1 5.2 5.2 5 5 4.7 5.2
G(0.5) 13.7 14.3 31.1 18.9 14.5 19.1 19.5 22.3 4.7 15.7
W(1.5) 11.6 12.6 8.3 10.1 11.8 12.1 11.2 10.7 15.4 13
W(3) 53.2 62.1 50.7 57.6 62.9 62.8 60.2 57.4 63.4 65
U [0, 2] 15.4 17.3 12.8 15.5 17.3 16.8 15.6 14.5 21.3 18.2
G(2) 12.1 12.3 8 10.1 11.6 11.9 11.1 10.9 15 12.9
LN (0.6) 23.7 23.9 16.9 20.1 22.8 23.7 22.1 21.7 27.1 24.5
LN (0.8) 10.4 10.3 6.8 8.2 10.1 10.3 9.3 8.9 12.4 10.7
LN (1.4) 13.7 12.2 16 16.8 15.5 15.7 15.1 14.9 6.5 15
Mean 17.5 18.7 20.1 19.1 19.1 20.4 19.6 19.8 16.8 20.1

Table A.28: Exponential distribution - Tests comparison, n = 5 - 1

altern. MI
(1)
n,1.5 MI

(2)
n,1.5 HM

(1)
n,1.5 HM

(2)
n,0.5 EP Sc CO LR

exp(0.2) 4.9 5 5.1 5 5.2 5.2 5 5
exp(1) 5.2 5.2 5 5 5.2 5 4.9 5.2
exp(2) 4.8 5 5 5 5.1 5 5 5
exp(42) 5 4.9 4.9 5.1 5 5 5.2 5

W(0.5) 0.5 0.4 26 25.5 37.1 52.7 46.8 27
W(0.8) 2.3 2.3 6.7 6.8 10.4 12.9 10.2 4.3
W(0.98) 4.7 4.8 5 5.2 5.2 5.2 5.2 4.8
G(0.5) 1.1 1.1 12 11.8 19.2 32.2 27.6 13
W(1.5) 17.7 18 14.2 13.7 10.6 7.6 11.6 17.6
W(3) 74.4 75 67.5 66.6 58.6 49.3 62.6 75.3
U [0, 2] 25.1 25.1 20.8 20.7 15.2 11.9 16.7 23.6
G(2) 18.1 18.3 13.9 13.1 10.3 7.5 11.9 18.1
LN (0.6) 30.8 31.5 25.3 24.3 20.4 15.4 23 32.4
LN (0.8) 13.8 14.1 11.5 11.2 8.9 5.9 9.7 14.5
LN (1.4) 2 2 12.4 13.3 16.8 14.7 10.7 5
Mean 17.3 17.5 19.6 19.3 19.3 19.6 21.4 21.4

Table A.29: Exponential distribution - Tests comparison, n = 5 - 2
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altern. KS CM AD GG SW Kn,5 BHn,1 Hen,1 BHK BHC
exp(0.2) 4.5 5.2 4.9 5.2 4.8 4.9 4.9 5.1 5 5
exp(1) 5.2 4.7 5.2 5.5 4.9 5 4.8 4.8 4.8 4.8
exp(2) 4.8 4.9 5.2 4.7 4.8 4.9 5.1 4.8 5.1 5
exp(42) 5.1 4.8 5.1 4.8 4.8 5.1 5.1 4.7 5.1 5

W(0.5) 56.2 61 77 65.6 52.3 70.5 69.8 68.4 45.4 62.5
W(0.8) 9.6 11.6 17.9 14 11.7 14.6 14.8 14.2 6.4 12.5
W(0.98) 4.4 3.9 5.4 5.3 5 5.2 5 5 4.6 5.1
G(0.5) 23.8 30.3 48.9 31.7 22.3 38.2 36.2 35.5 15.8 29.1
W(1.5) 21.2 22.9 17.2 21.7 21.7 23.6 25 24.7 27.2 23.9
W(3) 89.5 96.6 95.4 97.3 97.3 95.3 97.6 97.5 95.2 97.2
U [0, 2] 27.8 37.7 31.9 36.5 36.3 23.4 30.1 29.8 42 36.9
G(2) 21.2 24.4 21.2 23.4 20.8 25.6 25.4 25.4 25.6 23.8
LN (0.6) 48.7 51.9 47.5 48.3 42.1 61.1 55.8 55.4 51.7 50.1
LN (0.8) 16.3 16.6 14.8 14.5 14.6 20.1 18.3 18.2 17.8 16.9
LN (1.4) 26.7 26.6 27 34.3 30.7 26.7 30.1 30 20 30.8
Mean 31.4 34.8 36.7 35.7 32.2 36.7 37.1 36.7 32 35.3

Table A.30: Exponential distribution - Tests comparison, n = 10 - 1

altern. MI
(1)
n,1.5 MI

(2)
n,1.5 HM

(1)
n,1.5 HM

(2)
n,0.5 EP Sc CO LR

exp(0.2) 5.1 5 5.1 4.9 5 5.1 5 4.8
exp(1) 4.4 4.5 5.1 5 5.1 5 5 5.1
exp(2) 4.8 4.8 5.1 5.1 5 5 5 4.8
exp(42) 5.2 5.2 5.2 5 5.1 5 5 5

W(0.5) 0 4.8 54.6 51.2 65.3 79.5 75.7 65.7
W(0.8) 1.3 1.4 10.1 9.8 14.3 18.6 14.8 8.4
W(0.98) 4.4 4.4 5 5.1 5.2 5.4 5.2 4.7
G(0.5) 0.4 1.4 24 21.3 32.1 50.4 45.3 33.4
W(1.5) 33.5 33.6 25.8 25.4 22.9 20.3 27.2 33.5
W(3) 98.9 99.1 97.5 97.5 97.6 96 98.2 99.2
U [0, 2] 50.8 53.1 42.8 45.5 32.6 24.9 33.5 40.3
G(2) 32.6 32.3 25.1 23.6 23.2 20.9 27.3 34
LN (0.6) 57.8 53.1 49 42.4 48.9 49.8 57 63.1
LN (0.8) 20.8 19.4 16.4 14.1 16.1 14.9 19.5 24
LN (1.4) 0.8 1.5 25.5 24.6 32.6 28.1 21.8 14.1
Mean 27.4 27.6 34.2 32.8 35.5 37.1 38.6 38.2

Table A.31: Exponential distribution - Tests comparison , n = 10 - 2
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altern. KS CM AD GG SW BHK BHC Kn,5 BHn,1 Hen,1
exp(0.2) 5.2 4.9 5 5.8 4.7 5.2 5.3 4.9 4.8 5
exp(1) 4.7 4.7 5.1 5 4.7 5.1 4.8 5 4.9 5.1
exp(2) 4.8 5.1 5.3 4.9 4.7 5.1 4.8 5.2 4.9 5.2
exp(42) 5 5 5.4 5 4.9 5.4 5.3 5.1 4.7 5

W(0.5) 86.4 89.8 95.7 91.3 77 82.4 90.6 93.9 93.7 93.2
W(0.8) 17.4 20 26.9 23.8 16.2 13.4 19.3 23.1 24.5 24.8
W(0.98) 5.4 5.6 5.8 5.4 4.9 5.8 4.9 5.1 5.2 5.2
G(0.5) 45.9 53.2 71.2 54.7 33.5 37.6 56.7 63.6 61.5 60.4
W(1.5) 40.1 47.9 44.7 49.9 47 46.1 47.8 50 52.2 52.7
W(3) 99.8 100 99.9 100 100 100 100 100 100 100
U [0, 2] 51.8 67.6 63.8 71.3 76.7 72.6 72.6 44.7 59.2 60
G(2) 39.8 48.2 45.8 47.3 42.2 45.6 55.5 54.3 53.2 53.7
LN (0.6) 84.6 88.9 89.7 80.1 66.4 84.4 84.7 94.7 89.1 88.5
LN (0.8) 28.9 33.7 34.1 24.4 20.9 28.6 25.9 41.8 33.2 33.1
LN (1.4) 45.8 51.2 51.1 55 51.5 45.5 53.4 46.4 52.8 53
Mean 49.6 55.1 57.1 54.8 48.7 51.1 56 56.1 56.8 56.8

Table A.32: Exponential distribution - Tests comparison, n = 20 - 1

altern. MI
(1)
n,2.5 MI

(2)
n,2.5 HM

(1)
n,1.5 HM

(2)
n,0.5 EP Sc CO LR

exp(0.2) 4.5 5 5 5 5 4.9 5 5
exp(1) 5.1 4.7 5 4.7 4.9 4.9 4.8 5.1
exp(2) 5.2 5 5 4.9 5.2 4.9 5 5.3
exp(42) 4.8 4.9 5.1 4.9 4.9 5 5 5

W(0.5) 50 69 85.1 81.9 91.1 96.7 96.2 94.3
W(0.8) 3.6 9.8 16.9 15.8 24 29.2 25.4 19
W(0.98) 4.2 4.6 5 5 5.4 5.5 5.6 4.8
G(0.5) 16.3 30 44.6 40.7 54.7 74.6 71.9 64.8
W(1.5) 59.6 56.2 48.3 47.6 50.5 48.7 56.2 62.7
W(3) 100 100 100 100 100 100 100 100
U [0, 2] 85.9 85.8 72.3 79.3 66.7 49.5 59.1 66.1
G(2) 53.8 49.2 45.8 43.2 48.4 51.1 57.5 63.2
LN (0.6) 79.7 69.7 85.1 71.2 79.8 87.2 88.2 90
LN (0.8) 28.3 23.2 26.5 20.1 25.5 31.8 34.3 39.2
LN (1.4) 11.9 29.6 45.7 45.6 55.7 48.5 41.5 35.5
Mean 44.8 48 52 50 54.7 56.5 57.8 58.1

Table A.33: Exponential distribution - Tests comparison, n = 20 - 2
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A.2 Power results of the GOF tests for the Exponen-

tial distribution: censored samples

altern. BS1 BS∗ CM W AD Gn Gn∗ LM KL CO
exp(0.2) 5 5 4.9 5 4.9 5 4.9 5 5 5
exp(1) 4.9 5 5 5.1 5.1 5 5.1 4.9 5 5
exp(2) 4.8 4.7 4.9 5.1 5 5 5 5.1 5.2 5
exp(42) 4.8 5 5.1 4.9 5 5.1 5 5 5.1 5

W(0.5) 41.4 32.1 52.2 0 70.2 54.7 43.6 43.5 11.7 38.2
W0.8) 9.4 8.1 10.6 1.4 16.4 11.8 9.6 9.4 3.4 6.7
W0.98) 5 5 5 4.4 5.3 5.2 5 4.9 4.7 5
G(0.5) 19 14.2 27 0.4 45.5 31 31.1 28.6 3.8 20.3
W(1.5) 9.7 9 20.1 30 13.4 12.6 11 9.9 18.5 4.7
W(3) 32.8 26.7 91.6 97.3 85.3 71.6 59.6 57.7 81.4 25.5
U [0, 2] 18.8 13 22.5 34.4 14.9 20.3 9.6 10.1 17.3 6.5
G(1.5) 5.9 6.1 10.7 16.2 6.7 6.9 6.9 6.4 11.6 4.8
G(2) 8.2 7.8 21.1 30.8 14.5 12.1 12.4 11.5 20.5 5
G(3) 12.7 11.6 46.9 60.5 36.4 25.5 25.9 25.5 40.5 6.8
LN (0.6) 8.5 8.9 52 61.2 41.7 23.6 31.3 34.2 47.8 7.2
LN (0.8) 6 7.3 18.9 25.4 13.2 8.6 12.8 13 22.1 4.6
LN (1.4) 18.8 17 16.6 1.6 17 12.1 2.5 11.1 7.6 7.1
LN (1.8) 35.9 30.3 38.5 0.4 44 35.1 9.4 19.4 12.2 16.6
LN (2.4) 59.1 50 66.4 0 75.8 66.4 33.5 39.1 25.1 43.4
IG(0.5) 61.3 55.5 59.8 0.5 61 53.5 6.7 38.3 3.8 37.9
IG(1.5) 13.3 14 17.9 15.7 13.4 5.6 11.6 17.8 11.6 5.6
IG(2) 8.7 10.3 27.2 30 20.7 9.4 19.9 24.2 20.9 5.2
IG(3) 7 8.4 53.1 57.1 43.9 20.5 35.9 42.7 40.9 8.2
Mean 20.1 17.7 34.6 24.6 33.6 25.6 19.9 23.5 21.3 13.6

Table A.34: Exponential distribution - Tests comparison, n = 10 and r = 1
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altern. BS1 BS∗ CM W AD Gn(4) Gn∗ LM KL CO
exp(0.2) 5 5 4.9 4.8 4.7 5 4.9 5 5 5
exp(1) 5 4.9 4.8 4.7 5 5 4.8 4.8 5 5.1
exp(2) 5 5 4.7 4.7 4.8 4.9 4.8 4.9 5 5
exp(42) 5 5 5.1 5 5 5 5 4.9 5.1 5.1

W(0.5) 26.7 20.2 34 0.1 55.2 42 33.5 35.3 7.8 28.8
W0.8) 7.5 6.9 7.4 1.7 12.5 5.2 5.1 8.7 3.5 6.5
W0.98) 5 5.1 4.9 4.5 5.1 5.2 5.1 5 4.9 4.8
G(0.5) 15.2 11.5 20.4 0.5 39.1 27.9 27.2 25.9 4.1 19.1
W(1.5) 7.2 6.9 15.6 21.1 10.1 9.5 10.3 7.6 15 5
W(3) 16.5 18.8 77.3 85.4 66.8 50.4 51.8 40.3 64.4 15.4
U [0, 2] 8.7 7.3 12.1 16.5 8.2 9.8 7.9 6.6 10.8 5.4
G(1.5) 5.4 5.5 9.7 13.3 5.9 6.2 7 5.5 10.7 5.1
G(2) 7.1 6.9 18 24 12 10 12.5 9.1 17.4 5
G(3) 9.4 8.8 37.4 46.5 27.5 19.5 25.8 17.6 32.5 5.8
LN (0.6) 7.4 7.4 47 55.4 36.6 21.8 36.5 24.5 41.5 6.5
LN (0.8) 5.6 6 19.9 25.9 13.7 9.5 16.4 11.1 20.2 4.8
LN (1.4) 8.7 8.5 6.4 2.9 5.9 4.7 2.2 6 5.4 5.1
LN (1.8) 15.8 13.5 15.4 0.8 19 15.1 2 9.6 5.1 7.2
LN (2.4) 31.3 24.6 35.6 0.2 47.5 39.7 11.3 21.8 10.1 20
IG(0.5) 25.2 21.9 21.1 1.8 21.1 15.3 2.2 15.9 4 10.8
IG(1.5) 6 6.7 19.3 23.8 13.6 7.8 19.4 13.2 10.6 4.5
IG(2) 5.7 6.4 31.5 37.3 23.7 12.6 29.7 19.2 17.5 5
IG(3) 6.2 6.4 54.4 60.2 44.5 23.5 48.5 32.8 32.4 7.6
Mean 11.6 10.5 25.6 22.2 24.6 11.6 10.5 16.6 16.7 9.1

Table A.35: Exponential distribution - Tests comparison, n = 10 and r = 3
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altern. BS1 BS∗ CM W AD Gn Gn∗ LM KL CO
exp(0.2) 4.9 4.9 5.1 5.1 5.1 5 4.9 4.7 5 5.1
exp(1) 5.1 5 5.1 5.3 5 4.9 4.9 4.8 5 5.2
exp(2) 5 4.9 5.1 5.2 5 5 4.9 4.9 5 5.1
exp(42) 5 5 5.2 5.2 5.3 4.9 4.8 4.8 5 4.9

W(0.5) 15.6 13.7 16.4 0.5 39.6 31.5 26.5 27.4 4.1 22.5
W0.8) 6 5.9 4.9 2.5 10.2 8.9 7.7 7.7 3.6 6.4
W0.98) 5.2 5.2 5.1 5 5.4 5 5 5 4.8 5.1
G(0.5) 11.6 10.2 11.7 0.9 31.7 24.8 22.9 22.8 3.2 17.7
W(1.5) 5.8 5.8 13.5 16.1 8.1 6.9 7.1 5.5 11.8 5.1
W(3) 9.6 9.4 58.1 64.3 43.7 31.5 29 20 42.4 9.1
U [0, 2] 5.5 5.4 8.9 10.1 6.4 6.4 5.8 5.2 7.5 5.1
G(1.5) 5.2 5.2 9.9 11.7 5.7 5.3 5.4 4.5 9.3 5.3
G(2) 5.5 5.5 16.6 19.9 10.1 8 8.4 6.3 13.5 5.2
G(3) 6.4 6.5 30.7 37.5 20.2 14 14.7 10.3 23.6 5.2
LN (0.6) 5.9 5.9 41.4 47 28.8 18.5 21.9 14.4 31.9 5.6
LN (0.8) 5.2 5.2 20.7 24.7 37.6 9.3 11.6 7.9 18.1 4.9
LN (1.4) 5.5 5.5 5 4.9 13 3 2.9 4.2 5.7 5.1
LN (1.8) 8 7.6 4.9 5.1 3.4 6 2.3 5.4 4.1 5.1
LN (2.4) 13.6 12.4 5.2 2.3 7.5 18.8 7.1 11.6 4.1 9.8
IG(0.5) 8.8 8.6 6.9 5.6 5.6 3.1 3.7 6.6 3.2 5.2
IG(1.5) 4.9 5 24.6 28.7 15.9 9.8 14.7 9.5 9.1 4.5
IG(2) 5 5.2 34.7 39.6 23.4 14.2 20.4 12.7 13.8 4.9
IG(3) 5.6 5.7 52.2 57.2 38.3 22.5 30.1 18.7 23.6 6.8
Mean 7.3 7 19.5 20.2 17.7 13 13 10.8 12.5 7.3

Table A.36: Exponential distribution - Tests comparison, n = 10 and r = 5
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altern. BS1 BS∗ CM W AD Gn Gn∗ LM KL CO
exp(0.2) 5.1 5 4.8 4.9 5.1 4.9 5.1 5 5 5.1
exp(1) 5 5 4.9 5 4.9 4.9 5 5 5.1 5
exp(2) 4.9 4.9 5.1 5 5.1 4.9 5 5.1 5 5.1
exp(42) 4.9 4.8 4.9 5.1 5 4.9 5.1 4.9 5.1 5

W(0.5) 76.9 70 82.8 0 92.2 77.9 68.4 55.1 38.9 57.8
W(0.8) 15.4 12.1 16.7 0.6 23.8 16.7 13.4 10.2 4.3 7.1
W(0.98) 5.2 5.1 5.2 4.3 5.7 5.2 5.4 5.3 4.7 5
G(0.5) 39.9 32.4 49.1 0 68.5 44.3 48.1 37.2 11.3 27.6
W(1.5) 23.6 19.5 39.5 54.6 34.4 24.5 21.7 18.4 29.2 6.3
W(3) 77.8 68.2 99.9 100 99.9 97.7 93.7 85.3 98.9 65.4
U [0, 2] 43.4 31.1 42.6 62 33.3 40.1 14.2 12.4 29.9 10.1
G(1.5) 10.4 9.7 17.3 26.5 14.4 10.3 11.4 10.4 16.2 5.2
G(2) 19.1 17.1 42.6 55.9 38.8 22.5 25.7 24.4 33.9 6.3
G(3) 34.2 30.4 83.7 91.2 82.1 50.8 56.8 57 69.6 15.4
LN (0.6) 19.5 20.6 88.5 89.8 89 43.7 68.9 80.3 80.3 19.5
LN (0.8) 8.1 11.3 36.3 41.8 35.9 12.3 27.7 36.5 38.6 5.9
LN (1.4) 33.9 30.2 29.2 0.5 28.8 24.2 3.2 13.7 14.2 8.9
LN (1.8) 66.8 59.2 66.3 0 70.1 61.8 19.6 23.8 29.9 26.6
LN (2.4) 90.7 86.7 92.6 0 95.5 89.9 61.6 45.9 64.1 67.4
IG(0.5) 89 85.8 86.1 0 86.1 82.8 13.8 47.8 10.7 60.3
IG(1.5) 18.9 23.2 30.5 19.2 30.8 6.4 23.7 43.3 15.9 8.3
IG(2) 10.7 16.1 51.6 43.5 53.7 11.6 43.9 67.5 34.1 10.4
IG(3) 10.8 15.8 88 81.7 86.7 34.6 75.5 93 69.6 23.5
Mean 36.5 33.9 55.2 35.3 56.3 39.9 36.7 40.4 36.5 23

Table A.37: Exponential distribution - Tests comparison, n = 20 and r = 2
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altern. BS1 BS∗ CM W AD Gn Gn∗ LM KL CO
exp(0.2) 5 5 5 4.9 4.9 4.8 4.9 5.1 4.8 5.1
exp(1) 5 5.1 5.1 5.1 5 5 5 4.9 5.1 5
exp(2) 5 5.1 5.1 5.2 5 5 5 5 5 4.9
exp(42) 5 5 5.1 5 5 5 5 4.9 4.9 4.9

W(0.5) 61.8 52.4 69.8 0 84.2 67.6 60.7 48.4 22.8 45.8
W(0.8) 12.2 9.5 13 0 19.1 13.9 11.9 9.7 3.6 6.3
W(0.98) 5.2 5.1 5 4.4 5.4 5.5 5 5 4.7 5
G(0.5) 34.2 26.5 42.4 0.1 62.5 4.5 44.9 35.3 8.2 25.8
W(1.5) 17 14.6 31.9 43.7 27.1 19.3 18.4 15.2 22.8 5.7
W(3) 60.8 52.2 99.5 99.9 99.2 92.1 87.7 79.5 94.4 47.9
U [0, 2] 21 14.9 23.6 35 17.4 19.7 10.4 8.7 13.8 5.8
G(1.5) 8.7 8.6 16 23.5 12.9 9.5 10.8 9.6 14.3 5.1
G(2) 15.2 14.3 37.2 48.9 33.5 20.1 23.5 21.1 28.9 5.7
G(3) 26.6 24.1 75.9 84.3 73.8 45.5 51.6 49.3 59.6 12.5
LN (0.6) 18.4 18.6 86.5 89.3 87 47.6 68.3 74 75.7 17.5
LN (0.8) 8.8 10.3 39.5 47.2 38.5 16.1 29.9 33.3 38.1 5.8
LN (1.4) 16.2 14.7 12.6 1.6 11.1 9.5 2.3 8 8.8 5.5
LN (1.8) 40.5 32.8 38.7 0.1 41.6 35.4 9.4 13.7 13.3 11.6
LN (2.4) 71.7 62.6 75.1 0 81.9 72.6 41.8 29.1 32.9 39
IG(0.5) 59.6 53.4 51.9 0.4 49.6 43.5 3.1 25.4 8.2 21.6
IG(1.5) 7.9 11 34.2 34.4 35.1 9.9 32.3 44.7 14.2 6.4
IG(2) 7.5 10.4 60.8 60 62.6 21 52.1 67.3 28.6 10.6
IG(3) 11.6 13.7 90.8 89 92.1 46.3 79.8 91.2 59.6 23.9
Mean 26.6 23.7 47.6 34.8 49.2 31.6 33.9 35.2 29.1 16.2

Table A.38: Exponential distribution - Tests comparison, n = 20 and r = 5
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altern. BS1 BS∗ CM W AD Gn Gn∗ LM KL CO
exp(0.2) 4.9 4.9 5.2 5.1 5.1 5.1 5 5.1 5.1 4.9
exp(1) 5 5 5 5 5 4.9 4.9 4.7 5.1 4.8
exp(2) 5 5 5.2 5.2 5.2 5 5 5 5.1 4.9
exp(42) 5.2 5 5 5 4.9 5.1 4.9 4.9 5.3 5.1

W(0.5) 36.1 26.8 41.1 0 64.6 46.9 43.8 38.7 11 31.4
W(0.8) 8.4 6.9 7.7 1.5 13.6 10.4 9.6 8.7 3.6 6.2
W(0.98) 5.1 5 4.9 4.5 5.3 5.2 5.1 5 5.1 4.9
G(0.5) 23.6 17.1 27.1 0.2 50.2 33.6 35.6 31.4 6.4 22.5
W(1.5) 9.7 9.1 22.9 28.7 17.7 11.1 12.2 10.2 16.6 5.1
W(3) 30.8 26.6 92.2 95.2 89.5 61.9 64.4 59.3 75.8 23.8
U [0, 2] 7.5 6.6 10.9 13.7 8 7.7 6.5 5.6 7.9 5
G(1.5) 6.8 6.9 13.9 18.4 10.4 7.4 8.4 7.4 12.2 5.1
G(2) 9.9 9.5 29.2 36.4 24 13.1 16.3 14.4 22.2 5.1
G(3) 15.5 14.4 60.5 68.1 55.3 27.4 35.5 32.5 44.6 8.3
LN (0.6) 8.1 8.5 79.2 83.4 77.2 35.1 53.8 54.9 65.1 12.8
LN (0.8) 6.5 6.6 41.4 48.1 37.6 15.5 26.3 25 34.6 5.5
LN (1.4) 13.3 8.2 5 4.9 3.9 3.7 3.3 5.2 7.5 5.1
LN (1.8) 24.4 11.1 9.7 1.1 11.9 11.7 3 6.8 6 5.3
LN (2.4) 30.8 23.7 30.2 0.1 41.4 35.3 15.2 14.9 9.7 13.1
IG(0.5) 14.3 13.3 8.9 4.9 7.6 5.7 4.6 10.1 6.4 5.3
IG(1.5) 6 7.1 48.7 53.1 47.2 15.2 35.6 38.6 11.9 6.7
IG(2) 7.8 8.6 69.1 71.6 68.1 24.6 50.5 55.1 22.4 10.5
IG(3) 10.6 10.8 90.1 90.7 90 41.5 71.3 77.8 44.6 20
Mean 14.5 11.9 36.4 32.9 38.1 21.7 26.4 26.4 21.8 10.6

Table A.39: Exponential distribution - Tests comparison, n = 20 and r = 10
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altern. BS1 BS∗ CM W AD Gn Gn∗ LM KL CO
exp(0.2) 5.1 5.1 4.9 4.9 5.1 4.7 4.9 5 5 5
exp(1) 5 5 5 4.9 5 5.1 4.9 5 5.1 5
exp(2) 4.9 5 5 4.7 5 4.9 4.8 5.1 5 5
exp(42) 5.1 5.1 4.9 4.9 5 4.9 5 5 5.1 5

W(0.5) 99.1 98.8 99.5 0 99.9 97.7 94 96.8 90.3 85.6
W(0.8) 32.8 26 33.8 0 43.2 29.3 23.2 21.5 9.3 7.9
W(0.98) 5.3 5.2 5.4 3.7 5.8 5.3 5.2 5.2 4.7 5.1
G(0.5) 80.6 78.5 86 0 94.9 74.8 76.8 79.8 45.9 45.3
W(1.5) 65.3 56.5 79.9 90.2 79.6 59.6 47.6 48 54.7 11.5
W(3) 99.8 99.4 100 100 100 100 100 100 100 98.9
U [0, 2] 84.4 77.9 81.1 93 73.6 74.8 24.6 44.1 57.9 18.5
G(1.5) 26.1 23.9 38.8 51.8 39.5 22.3 23.2 24.4 26.4 5.7
G(2) 57 53.1 84.9 91.4 87.1 56.7 57.3 63.7 65.3 13.6
G(3) 84.9 80.6 99.9 100 99.9 93.8 94.1 97.1 97.9 50
LN (0.6) 60.1 63.4 100 99.9 100 90.4 98.4 99.9 99.8 68.2
LN (0.8) 19.6 30 80.9 75.1 89 30 63.3 83.6 77.5 16.7
LN (1.4) 61 55.4 52.9 0 50.2 45.8 5.2 27.1 30.8 11.2
LN (1.8) 95 92 94.1 0 94.7 91 44.7 58.7 69.6 44.4
LN (2.4) 99.9 99.8 99.9 0 100 99.7 91.8 96.5 97.7 92.4
IG(0.5) 99.6 99.4 99.2 0 99.1 98.6 28.6 86.7 45.5 86.4
IG(1.5) 21.5 38.4 70.1 28.1 83.9 6.9 54.6 86.2 26.9 24
IG(2) 11.3 32.6 95.1 72.8 98.6 26.2 85.4 98.9 64.4 41.8
IG(3) 28.6 45.3 100 99.2 100 78.2 99.3 100 97.9 80.9
Mean 59.6 60.8 79 47.6 81 62.2 58.8 69.4 61.1 42.5

Table A.40: Exponential distribution - Tests comparison, n = 50 and r = 6
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altern. BS1 BS∗ CM W AD Gn Gn∗ LM KL CO
exp(0.2) 5.1 5 5 4.9 5 5.1 5 4.9 4.8 5
exp(1) 5 5 5.1 5 5 5 5.2 5 5.1 4.7
exp(2) 5.1 5 4.9 5.1 5.1 5 5.1 5 5 5.1
exp(42) 5.1 5 5 5.1 5 5 5.1 5 4.9 5

W(0.5) 96.8 96 97.9 0 99.5 94.6 91 91 78.1 76
W(0.8) 26.3 20.8 27.3 0 36.1 24.3 20.5 16.6 6.8 7.4
W(0.98) 5.5 5.2 5.2 4 5.7 5.2 5.3 5.2 4.7 5
G(0.5) 75.6 72.2 80.8 0 92.5 70.8 74.2 73 37.6 42.6
W(1.5) 52.5 45.2 70.2 82 70.5 48.4 41.7 39 45.2 9.3
W(3) 98.7 97.2 100 100 100 100 99.9 99.8 100 96.1
U [0, 2] 55.2 43.7 54.1 71 45.8 47.4 16.9 18.4 27.9 9
G(1.5) 22.9 21 34.5 47.2 35.8 20 22 21.8 24.2 5.5
G(2) 49.1 45.8 79.1 86.8 82.3 50.3 54.4 56.7 58.4 11.8
G(3) 76.8 72.5 99.7 99.8 99.8 89.7 91.9 94.2 95.3 43.1
LN (0.6) 58.8 59.5 100 99.9 100 90.4 98.4 99.8 99.6 65.2
LN (0.8) 23.7 29.8 83.7 82.4 91 37 67.4 84.1 77.2 17.4
LN (1.4) 33.5 30.2 26.8 0.5 23.1 21.9 3 13.7 18.3 6.4
LN (1.8) 80.2 73.1 77.4 0 78.4 72.6 27.4 30.5 41.3 21.2
LN (2.4) 98.7 98 98.9 0 99.4 97.5 81.1 78.2 85.9 72.8
IG(0.5) 93 90.6 88.1 0 86.5 83.1 7.3 54.7 37.9 46.3
IG(1.5) 9.1 22.4 77.2 56.3 89.5 15.7 68.2 92.9 24.4 23.3
IG(2) 14.5 27.6 97.5 89.3 99.5 44.1 91.2 99.5 58.6 44.9
IG(3) 35.9 44.5 100 99.8 100 87.2 99.6 100 95.6 82.5
Mean 53 52.4 73.6 48.4 75.5 57.9 55.9 61.5 53.6 36.1

Table A.41: Exponential distribution - Tests comparison, n = 50 and r = 12



192

A.3 Power results of the simplified likelihood GOF

tests for the Weibull distribution

altern. ĜG
1

w ĜG
1

s ĜG
1

l ĜG
2

w ĜG
2

s ĜG
2

l G̃G
2

w G̃G
2

s G̃G
2

l ĞG
2
w ĞG

2
s ĞG

2
l mean

exp(1) 5.1 5.1 5 5.1 5 5.7 5.2 5 5 5 5.1 5 5.1
W(1, 0.5) 5.1 5.1 5.1 5.1 5 5.5 5.1 5 5 5.1 5.1 5.1 5.1
W(1, 3) 5 5 5 5.1 4.9 5.6 5 4.8 4.8 5.1 5.1 5.1 5

G(3, 1) 7.9 6.9 7.2 15.4 1.1 10.4 15.6 13.5 15.2 15.2 13.5 15.3 11.4
AW1 53 54.1 53.7 0.7 27.9 49.6 0.7 35.2 0.7 0.7 16.5 0.8 24.5
EW1 17.9 16.2 16.7 32.4 0.3 22.4 32.7 29.3 32.1 32.4 28.9 32.3 24.5

G(0.5, 1) 10 10.7 10.4 1.6 12.7 9.4 1.6 4.1 1.5 1.4 4.3 1.4 5.8
AW2 81.5 83.3 82.7 0 20.6 82.3 0 71.7 0 0 63.7 0 40.5
EW2 15.9 18 17.3 0.1 24.3 15.3 0.1 8.5 0 0.1 12.4 0.1 9.3

EW3 16.3 17.9 17.3 0 24.4 16.9 0.1 8.6 0.1 0.1 12.7 0.1 9.5
GG1 32.2 34.5 33.8 0.1 32 30.7 0 16.2 0 0 16.9 0 16.4
GG2 24.1 26.1 25.4 0.2 26.3 21.9 0.2 10.6 0.2 0.2 11 0.2 12.2
PGW1 13.2 14.5 14.1 0.7 17.5 11.6 0.8 4.9 0.8 0.9 5.5 0.9 7.1

LN (0, 0.8) 25.3 22.8 23.5 42.3 0 30.5 42.7 38.7 41.9 42 38.2 42 32.5
IG(3, 1) 52.1 48.9 49.8 70.5 0 60.9 72 68.4 71.2 70.4 66.3 69.8 58.4
EW4 13 11.7 12.2 24.3 0.4 15.7 24.6 21.9 24.1 24.5 21.7 24.4 18.2
GG3 13.5 12.1 12.5 25.9 0.4 17.1 26.1 23 25.5 26.2 23.3 26.1 19.3
PGW2 23.9 21.7 22.5 41.5 0.1 29.8 41.8 37.9 40.9 41.4 37.3 41.1 31.6

mean 26.6 26.6 26.6 17.1 12.5 28.3 17.2 26.1 16.9 17.1 24.8 16.9 21.2

Table A.42: Power results for the tests based on the Generalized Gamma distribution,
n = 20
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altern. ĜG
1

w ĜG
1

s ĜG
1

l ĜG
2

w ĜG
2

s ĜG
2

l G̃G
2

w G̃G
2

s G̃G
2

l ĞG
2
w ĞG

2
s ĞG

2
l mean

exp(1) 5.1 5.1 5.1 5 5 5.5 5 5 4.9 5 5 5 5
W(1, 0.5) 5.1 5 5 5 5.2 5.6 4.9 4.9 4.9 4.9 5 4.9 5
W(1, 3) 5.1 5 5 5 5 5.3 5 5 5.1 5 5 4.9 5

G(3, 1) 18.2 16.8 17.2 29 1 21.1 28.9 25.2 28.8 29 25 29.2 22.5
AW1 83.7 84.1 83.9 0 62.4 82.3 0 73.5 4.7 0 44 0 47.8
EW1 50.7 49 49.6 66.1 7.3 56.3 66.1 61.7 65.8 65.5 60.3 65.4 55.3

G(0.5, 1) 16.8 17.6 17.2 0.5 24.9 16.7 0.5 9.3 0.5 0.4 9.6 0.4 9.5
AW2 99.8 99.8 99.8 0 13.1 99.8 0 99.8 27.8 0 96 2.7 53.2
EW2 44.1 46.2 45.5 0 63.3 47.4 0 39.6 0 0 45.1 0 27.6

EW3 43.7 45.3 44.6 0 63.3 47.5 0 39.9 0 0 45.9 0 27.5
GG1 71.7 73.4 72.9 0 77.4 73.3 0 62.1 0.2 0 61.1 0 41
GG2 54.9 56.7 56.2 0 66.4 55.8 0 41.6 0 0 41.9 0 31.1
PGW1 26.9 28.4 27.9 0.1 38.2 27 0.2 16.3 0.1 0.2 16.8 0.2 15.2

LN (0, 0.8) 66.9 65.3 65.8 80.5 15.7 72.5 80.8 77.4 80.5 80.3 76.3 80.4 70.2
IG(3, 1) 94.2 93.6 93.7 97.9 57.7 96.2 98.2 97.6 98.2 98 97.1 98 93.4
EW4 35.8 33.7 34.3 50.6 3.3 40.6 50.3 46 50.2 50.1 44.9 50.4 40.9
GG3 38.8 37.1 37.7 54.4 3.8 44.1 54.5 49.9 54.3 54.4 49 54.3 44.4
PGW2 64.6 62.5 63.1 78.4 12.3 69.9 78.9 75.3 78.7 78.6 74.4 78.5 67.9

mean 54.1 54 54 30.5 34 56.7 30.6 54.4 32.7 30.4 52.5 30.6 43.1

Table A.43: Power results for the tests based on the Generalized Gamma distribution,
n = 50

altern. ÃWw ÃW s ÃW l
˘AWw

˘AW s
˘AW l mean

exp(1) 5.1 5.1 5 5 5.1 5 5
W(1, 0.5) 5.1 5 5 5.1 5.2 5.1 5.1
W(1, 3) 4.9 4.9 4.8 4.8 5 5 4.9

G(3, 1) 14.8 14.8 14.7 10.7 14.2 13.4 13.8
AW1 12.6 0.7 0.7 41.5 23.7 31 18.4
EW1 31.5 31.6 31.5 24.2 30.7 28.9 29.7

G(0.5, 1) 1.9 1.6 1.6 5.8 2.6 3.6 2.8
AW2 5.3 0 0 35.7 13.8 21.5 12.7
EW2 0.2 0.2 0.2 2.3 0.3 0.7 0.6

EW3 0.2 0.2 0.2 2.3 0.3 0.7 0.6
GG1 1.5 0.1 0.1 12.9 4.2 6.9 4.3
GG2 1.3 0.3 0.3 10.7 3.3 5.4 3.6
PGW1 1.4 0.9 0.9 6.8 2.5 3.7 2.7

LN (0, 0.8) 42.4 42.4 42.4 33.5 40.7 38.8 40
IG(3, 1) 72.8 72.9 72.8 63.9 70.7 69 70.4
EW4 23.7 23.7 23.7 17.3 22.8 21.3 22.1
GG3 25.8 25.9 25.8 19 24.8 23.2 24.1
PGW2 41.1 41.2 41.1 32.9 40.5 38.5 39.2

mean 18.4 17.1 17.1 21.2 19.7 20.4 19

Table A.44: Power results for the tests based on the Additive Weibull distribution, n = 20
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altern. ÃWw ÃW s ÃW l
˘AWw

˘AW s
˘AW l mean

exp(1) 4.9 4.8 4.8 5 5.1 5.1 4.9
W(1, 0.5) 5.1 5 5 5 5 5 5
W(1, 3) 5 4.9 5 4.9 5 5 5

G(3, 1) 26.1 27.8 27.7 19.5 24.6 23.2 24.8
AW1 70.1 42.7 55.7 80.1 72.3 75.6 66.1
EW1 63.8 65.8 65.6 55.7 62.5 60.5 62.3

G(0.5, 1) 5 1.3 2.2 10.1 5.5 7.1 5.2
AW2 51.4 17.1 30.2 77.6 60.5 67.5 50.7
EW2 0.4 0 0 2.9 0.6 1.1 0.8

EW3 0.4 0 0 2.8 0.6 1.1 0.8
GG1 19.5 3.8 8.6 32.2 19.6 24.2 18
GG2 14.3 2.7 6.1 25 15.1 18.7 13.6
PGW1 6.9 1.1 2.6 13.7 7.6 9.7 6.9

LN (0, 0.8) 81 82.3 82.2 73.6 79.2 77.6 79.3
IG(3, 1) 98.8 98.9 98.9 97.5 98.4 98.2 98.5
EW4 47.1 49.2 49 39.2 46 44.1 45.8
GG3 51.8 53.9 53.7 43.4 50.5 48.4 50.3
PGW2 77.4 78.7 78.6 70.6 76.4 74.7 76.1

mean 40.9 35 37.4 42.9 41.2 42.1 39.9

Table A.45: Power results for the tests based on the Additive Weibull distribution, n = 50

altern. B̂GWw B̂GW s B̂GW l B̃GWw B̃GW s B̃GW l
˘BGWw

˘BGW s
˘BGW l mean

exp(1) 4.9 5 4.9 5 4.9 5 5.1 5 5.1 5
W(1, 0.5) 4.9 5 4.9 5 5 4.9 5.3 5 5.3 5
W(1, 3) 4.9 4.9 4.9 5.1 5 5 5.1 4.9 5.2 5

G(3, 1) 14.3 14.2 14.2 15.1 15 15 15.5 15.1 15.5 14.9
AW1 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
EW1 28.5 28.3 28.3 31.8 31.5 31.6 32.4 31.7 32.4 30.7

G(0.5, 1) 1.5 1.4 1.5 1.6 1.5 1.6 1.4 1.5 1.5 1.5
AW2 0 0 0 0 0 0 0 0 0 0
EW2 0 0 0 0.1 0.1 0.1 0 0.1 0 0

EW3 0 0 0 0.1 0 0.1 0.1 0 0.1 0
GG1 0 0 0 0.1 0.1 0 0 0 0 0
GG2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
PGW1 0.7 0.7 0.7 1 0.9 0.9 0.8 0.7 0.8 0.8

LN (0, 0.8) 35.8 35.6 35.8 42.2 41.8 42 42.2 41.4 42.1 39.9
IG(3, 1) 60.2 59.8 60 71.6 70.9 71.2 70.4 69.4 70.2 67.1
EW4 21.8 21.7 21.7 23.9 23.9 23.9 24 23.4 24 23.1
GG3 23.1 22.9 22.9 25.9 25.8 25.8 26.1 25.5 26.1 24.9
PGW2 34.9 34.6 34.7 41.6 41 41.3 41.3 40.3 41.3 39

mean 14.8 14.7 14.7 17 16.9 16.9 17.3 16.7 17 16.2

Table A.46: Power results for the tests based on the Burr Generalized Weibull distribution,
n = 20
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altern. B̂GWw B̂GW s B̂GW l B̃GWw B̃GW s B̃GW l
˘BGWw

˘BGW s
˘BGW l mean

exp(1) 4.9 5 4.9 4.9 4.9 5 5 4.9 5 5
W(1, 0.5) 4.9 4.9 4.9 4.9 5.1 5 5 4.9 5 5
W(1, 3) 5 4.9 5 4.9 4.9 5 5.1 4.9 5.2 5

G(3, 1) 25 24.7 25 26.8 26.9 27 25.8 25.6 25.7 25.8
AW1 0.1 0.1 0.1 0 0 0 0 0 0 0
EW1 55.2 54.5 55.1 62.8 62.6 62.9 60 59.7 59.9 59.2

G(0.5, 1) 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6
AW2 0 0 0 0 0 0 0 0 0 0
EW2 0 0 0 0 0 0 0 0 0 0

EW3 0 0 0 0 0 0 0 0 0 0
GG1 0 0 0 0 0 0 0 0 0 0
GG2 0 0 0 0 0 0 0 0 0 0
PGW1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2

LN (0, 0.8) 68.3 67.5 68.1 79.5 79.3 79.4 76.7 76.4 76.4 74.6
IG(3, 1) 91.4 90.8 91.2 98.5 98.5 98.5 97.9 97.7 97.9 95.8
EW4 43.4 42.8 43.3 46.9 46.8 47.1 44.8 44.5 44.7 44.9
GG3 44.8 44.3 44.8 51.2 51.1 51.3 49.2 48.8 49.1 48.3
PGW2 66.2 65.4 66.1 77.5 77.2 77.5 74.6 74.3 74.5 72.6

mean 26.3 26.1 26.3 29.6 29.5 29.7 28.6 28.5 28.6 28.1

Table A.47: Power results for the tests based on the Burr Generalized Weibull distribution,
n = 50

altern. M̂Ow M̂Os M̂Ol M̃Ow M̃Os M̃Ol M̆Ow M̆Os M̆Ol mean

exp(1) 5 5.1 5 5.1 5.1 5.1 5.1 5 5.1 5.1
W(1, 0.5) 5.1 5 5.1 5 5 5 4.9 4.9 4.9 5
W(1, 3) 4.8 5 4.9 4.9 4.9 4.9 5.1 5 5.1 5

G(3, 1) 1 5.7 3.7 10.4 14.1 13.7 14.8 14.7 14.8 10.3
AW1 57.6 53.3 55.6 39.5 15.3 25.5 2.2 0.8 0.8 27.7
EW1 0.6 12.1 7.6 24.3 30.8 29.8 31.3 30.1 31.3 22

G(0.5, 1) 13.7 10.6 12.2 6.6 2.1 3.1 1.8 1.6 1.6 5.9
AW2 86.9 82.7 85.1 79.5 38.3 58.7 18 0 0 49.9
EW2 23.8 17.7 20.6 16 2.5 6.3 1.7 0.2 0.2 9.9

EW3 23.6 17.5 20.6 16.2 2.3 6.4 1.9 0.2 0.2 9.9
GG1 39.9 33 36.6 23.6 3.9 9.7 1.8 0.1 0.1 56.5
GG2 31.1 25.1 28 16.5 2.6 6.5 1.2 0.3 0.3 12.4
PGW1 17.9 14 16 8.6 1.8 3.6 1.3 1.1 1.1 7.3

LN (0, 0.8) 0.7 17.1 11.2 33.5 40.8 39.7 41.6 41.4 41.6 29.7
IG(3, 1) 3.1 38.2 28.3 63.6 70.4 69.4 71.5 71.5 71.6 54.2
EW4 0.6 8.7 5.5 17.7 22.7 21.8 23.4 23.2 23.4 16.3
GG3 0.5 9.6 6.1 19.2 24.6 23.7 25.3 25.1 25.3 17.7
PGW2 0.8 18.1 12 32.8 40.3 39.1 41.3 40.9 41.1 29.6

mean 20.1 24.2 23.3 27.2 20.8 23.8 18.6 16.8 16.9 21.3

Table A.48: Power results for the tests based on the Marshall-Olkin distribution, n = 20
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altern. M̂Ow M̂Os M̂Ol M̃Ow M̃Os M̃Ol M̆Ow M̆Os M̆Ol mean

exp(1) 4.9 5 5 5.1 5 5 5 4.9 4.9 5
W(1, 0.5) 4.9 4.8 4.8 5 4.8 4.9 5 5 5 4.9
W(1, 3) 4.8 4.8 4.9 5.2 5 4.9 5.1 5.1 4.9 5

G(3, 1) 5.7 12.6 10.4 20.2 25 23.7 25.4 27.3 26.8 19.7
AW1 86 83.6 84.5 68 54.7 60.1 13.7 3.3 6.2 51.1
EW1 21.4 37.9 33.3 54.3 60.5 59 61.8 64 63.5 50.6

G(0.5, 1) 21.2 16.9 18.6 12.3 6 8.2 4.8 1 1.8 10.1
AW2 99.7 99.6 99.7 99.8 98.8 99.4 79.2 56.4 66.9 88.8
EW2 47.4 39.7 42.7 52.7 35.6 42.5 37.4 10.7 19.6 36.5

EW3 47.2 39.5 42.5 53.2 36.2 42.8 37.1 10.6 19.3 36.5
GG1 73.1 67.2 69.6 63 44.3 51.9 35.7 9.6 18.4 48.2
GG2 58.7 52 54.6 45 27.9 34.3 22.6 4.5 9.7 34.4
PGW1 31.8 26.1 28.3 20.2 10.1 13.5 8.5 1.2 2.8 15.8

LN (0, 0.8) 33.4 53.2 47.9 71.5 76.6 75.5 77.3 79.3 79 66
IG(3, 1) 64.8 79.1 75.8 96.5 97.5 97.3 97.7 98.1 98 89.4
EW4 13 25.6 21.3 38.9 45.2 43.4 45.5 47.8 47.3 36.5
GG3 14.7 28.4 24.3 42.5 48.9 47.3 49.9 52.2 51.7 40
PGW2 35.8 54.8 49.7 71 76.5 75.1 76.9 78.6 78.2 66.3

mean 43.6 47.7 46.8 53.9 49.6 51.6 44.9 36.3 39.3 45.9

Table A.49: Power results for the tests based on the Marshall-Olkin distribution, n = 50

altern. M̂Ww M̂W s M̂W l M̃Ww M̃W s M̃W l
˘MWw

˘MW s
˘MW l mean

exp(1) 5.1 5.1 5.1 5.1 5.3 5.1 5 5.1 5.1 5.1
W(1, 0.5) 5.1 5.1 5.1 5.2 5.1 5.2 5 5.1 5.1 5.1
W(1, 3) 5 4.9 5 5.1 5.1 5.1 5 5 5.1 5

G(3, 1) 1.2 4.4 1.2 1 11.9 1 0.9 9.6 0.9 3.6
AW1 53.4 51.7 53.5 58.3 44.6 58.4 58.2 50 58.5 54.1
EW1 0.3 9.5 0.3 0.2 26.6 0.2 0.1 21.6 0.2 6.5

G(0.5, 1) 14.3 12.6 14.3 13.6 6 13.6 13 7.9 13.1 12
AW2 95 94 94.9 82.8 60.3 82.2 82 67.5 81.6 82.3
EW2 35.2 31.5 35 20.3 5.2 19.9 18.3 7.9 18.3 21.3

EW3 35 31.3 34.9 20.4 5.3 20 18.5 8 18.4 22.4
GG1 49.5 45.8 49.3 38.9 18.6 38.5 36.9 23.5 36.9 37.5
GG2 35.9 32.8 35.8 30.1 13.4 30 29.1 18.1 29.2 28.3
PGW1 19.7 17.6 19.7 17.9 7.3 17.9 17.5 10.4 17.8 18.4

LN (0, 0.8) 0.1 13.9 0.1 0 36.5 0 0 30 0 9
IG(3, 1) 0 32.4 0 0.2 66.1 0 0 58.4 0 17.5
EW4 0.6 7 0.6 0.3 19.9 0.3 0.4 16 0.4 5
GG3 0.5 7.3 0.5 0.3 21.3 0.2 0.2 17.1 0.2 5.3
PGW2 0.2 12.6 0.2 0.1 35.5 0.1 0.1 29.1 0.1 8.9

mean 12.7 26.9 22.7 19 25.2 18.8 18.4 25 18.4 20.8

Table A.50: Power results for the tests based on the Modified Weibull distribution, n = 20
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altern. M̂Ww M̂W s M̂W l M̃Ww M̃W s M̃W l
˘MWw

˘MW s
˘MW l mean

exp(1) 5 5.1 4.9 5.1 4.9 5.1 4.9 4.9 4.8 5
W(1, 0.5) 5 5.1 4.9 4.9 5.1 5.1 5 5.1 5 5
W(1, 3) 5.3 5.3 5.1 4.9 4.9 5 5 5 4.9 5

G(3, 1) 0.4 12.1 0.4 0.3 22.8 0.3 0.2 19.5 0.2 6.3
AW1 81.1 78.1 81.1 88.1 81.6 88.1 88.2 83.6 88.1 84.3
EW1 0 35.2 0 0 59.1 0 0 53 0 16.4

G(0.5, 1) 24.3 19.6 24.4 23 11.3 23.2 22.5 14 22.3 20.5
AW2 100 100 100 99.6 97.9 99.6 99.7 98.5 99.6 99.4
EW2 78.8 71.6 78.5 44.9 18.6 44.1 41.6 21.5 40.4 48.9

EW3 78.9 71.9 78.6 44.6 18.7 43.8 41.9 21.7 40.7 49
GG1 89.9 86 89.8 75.7 55.5 75.3 73.4 58.1 72.7 75.2
GG2 73.2 66.9 73 61.2 40.5 60.7 58.2 43.4 58.2 59.5
PGW1 40.1 33.2 39.9 34.7 18.6 34.5 32.7 21.2 32.4 31.9

LN (0, 0.8) 0 48.3 0 0 75.3 0 0 69.9 0 21.5
IG(3, 1) 0 81.8 0 2.1 97.5 0 0.4 95.6 0 30.8
EW4 0 24.1 0 0 42.6 0 0 37.5 0 11.6
GG3 0 26.8 0 0 47 0 0 41.6 0 12.8
PGW2 0 44.2 0 0 72.2 0 0 66.9 0 20.4

mean 37.8 53.3 37.7 31.6 50.5 31.3 30.6 49.7 30.3 39.2

Table A.51: Power results for the tests based on the Modified Weibull distribution, n = 50

altern. P̂GWw P̂GW s P̂GW l P̃GWw P̃GW s P̃GW l
˘PGWw

˘PGW s
˘PGW l mean

exp(1) 4.8 4.8 4.8 4.8 5.1 4.9 5 5 4.9 4.9
W(1, 0.5) 4.9 4.9 4.8 5 5.2 5 5.1 5.2 5.1 5
W(1, 3) 5 4.9 5 4.8 5.1 4.9 5 5 5 5

G(3, 1) 8.1 5.7 6.6 14.9 13.4 14.8 15.4 9.3 13.5 11.3
AW1 46.7 52.7 51.9 0.7 38.3 8.7 0.8 48.7 35.5 31.6
EW1 18.4 13.6 15.3 31.2 28.9 31.3 32.2 21.4 28.9 24.6

G(0.5, 1) 9.3 11.2 10.7 1.6 4.8 1.7 1.5 7.5 3.9 5.8
AW2 85.8 88.7 88 0 36.5 3.7 0 52.9 31 43
EW2 18.5 22.8 21.7 0.2 1.9 0.2 0 5.2 1.1 7.9

EW3 17.8 22.4 21.2 0.2 1.9 0.2 0.1 5.1 1.1 7.7
GG1 33.7 38.7 37.3 0.1 11.6 0.6 0 19.5 8.8 16.7
GG2 24.1 28.2 27.1 0.2 9 0.6 0.2 15.2 6.8 12.4
PGW1 12.8 15.5 14.7 0.9 5.5 1 0.7 9.3 4.3 7.2

LN (0, 0.8) 25.7 19.7 21.9 42 39.5 42.1 42.7 30.3 39.2 33.7
IG(3, 1) 51.6 43.6 46.8 72 69.9 72.1 71.1 58.8 67.9 61.5
EW4 13.5 9.6 10.9 23.7 21.7 23.8 24.1 15.1 21.4 18.2
GG3 14.5 10.3 11.8 25.8 23.6 25.8 25.9 16.4 23.1 19.7
PGW2 24.9 18.8 21.1 41.4 38.7 41.5 41.1 28.8 37.6 28.2

mean 27.2 26.7 27.1 17 23 17.8 17.1 22.9 21.6 22.3

Table A.52: Power results for the tests based on the Power Generalized Weibull distribu-
tion, n = 20
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altern. P̂GWw P̂GW s P̂GW l P̃GWw P̃GW s P̃GW l
˘PGWw

˘PGW s
˘PGW l mean

exp(1) 4.9 4.9 5 4.9 4.9 5 5 5.1 5.2 5
W(1, 0.5) 5 5 5 5 5.1 5.1 5 5.1 5.2 5
W(1, 3) 5 5 5.1 5.1 5 5.1 4.9 5 5 5

G(3, 1) 18.6 15.6 16.7 28.5 23.7 27.2 28.9 18.5 23.9 22.4
AW1 80.6 82.2 81.8 0 79.2 68.8 0 83.5 78.2 58.1
EW1 49.6 44.8 46.7 66.5 60.9 65.4 66.8 53.2 60.6 57.2

G(0.5, 1) 16.1 18.6 17.7 0.5 8.7 3.7 0.5 12.7 8 9.6
AW2 99.9 99.9 99.9 0 84.8 66.9 0 91.9 83.9 69.6
EW2 52.2 57 55.8 0 4.8 0.7 0 8.8 3.1 20.3

EW3 51.8 56.6 55.4 0 4.9 0.7 0 8.9 3.1 20.2
GG1 75.3 78.4 77.6 0 37.7 20.5 0 44.6 31.9 40.7
GG2 56.3 60.6 59.4 0 28 13.8 0 34 23.3 30.6
PGW1 26.9 30.2 29.3 0.2 13.1 5.5 0.2 18.3 11.5 15

LN (0, 0.8) 65.5 60.9 62.7 82.2 77.8 81.4 82.5 71.6 78 73.6
IG(3, 1) 93.3 91.6 92.4 98.8 98.2 98.7 98.6 96.5 97.8 96.2
EW4 35.8 31.4 33.2 50.2 44 48.8 51.2 37.6 44.9 41.9
GG3 39 34.5 36.3 54.5 48.5 53.4 55.6 41.4 49.2 45.8
PGW2 63 58.1 59.9 79.7 75 78.6 79.7 68.4 75 70.8

mean 54.9 54.6 55 30.7 45.9 42.3 30.9 46 44.8 45

Table A.53: Power results for the tests based on the Power Generalized Weibull distribu-
tion, n = 50

altern. ĜG
1

w ĜG
1

s ĜG
2

l M̃Ow M̂Ww P̂GWw P̂GW s P̂GW l
˘PGWw AD MSF TS

exp(1) 5.1 5.1 5.7 5.1 5.1 4.8 4.8 4.8 5 5.6 4.9 5.1
W(1, 0.5) 5.1 5.1 5.5 5 5.1 4.9 4.9 4.8 5.1 5.6 4.9 5.2
W(1, 3) 5 5 5.6 4.9 5 5 4.9 5 5 5.6 4.8 5

G(3, 1) 7.9 6.9 10.4 10.4 1.2 8.1 5.7 6.6 15.4 8.5 8.3 8.7
AW1 53 54.1 49.6 39.5 53.4 46.7 52.7 51.9 0.8 42.1 32.6 49.5
EW1 17.9 16.2 22.4 24.3 0.3 18.4 13.6 15.3 32.2 16.5 16.9 19.9

G(0.5, 1) 10 10.7 9.4 6.6 14.3 9.3 11.2 10.7 1.5 8.8 7.7 9.2
AW2 81.5 83.3 82.3 79.5 95 85.8 88.7 88 0 89.7 85.7 87
EW2 15.9 18 15.3 16 35.2 18.5 22.8 21.7 0 23.3 19.9 18.1

EW3 16.3 17.9 16.9 16.2 35 17.8 22.4 21.2 0.1 23.7 19.6 17.6
GG1 32.2 34.5 30.7 23.6 49.5 33.7 38.7 37.3 0 31.7 28.2 34.1
GG2 24.1 26.1 21.9 16.5 35.9 24.1 28.2 27.1 0.2 21.6 19 24
PGW1 13.2 14.5 11.6 8.6 19.7 12.8 15.5 14.7 0.7 11.7 10.1 12.6

LN (0, 0.8) 25.3 22.8 30.5 33.5 0.1 25.7 19.7 21.9 42.7 22.8 23 28.8
IG(3, 1) 52.1 48.9 60.9 63.6 0 51.6 43.6 46.8 71.1 50.5 47.9 59.7
EW4 13 11.7 15.7 17.7 0.6 13.5 9.6 10.9 24.1 12.1 12.4 14.4
GG3 13.5 12.1 17.1 19.2 0.5 14.5 10.3 11.8 25.9 12.9 13.2 15.7
PGW2 23.9 21.7 29.8 32.8 0.2 24.9 18.8 21.1 41.1 23.2 23.2 28.6

mean 26.6 26.6 28.3 27.2 12.7 27.2 26.7 27.1 17.1 26.6 24.5 28.5

Table A.54: Comparison with usual GOF tests, n = 20



altern. ĜG
1

w ĜG
1

s ĜG
2

l M̃Ow M̂Ww P̂GWw P̂GW s P̂GW l
˘PGWw AD MSF TS

exp(1) 5.1 5.1 5.5 5.1 5 4.9 4.9 5 5 5.6 5.3 4.9
W(1, 0.5) 5.1 5 5.6 5 5 5 5 5 5 5.4 5.2 5
W(1, 3) 5.1 5 5.3 5.2 5.3 5 5 5.1 4.9 5.3 5.2 5.1

G(3, 1) 18.2 16.8 21.1 20.2 0.4 18.6 15.6 16.7 28.9 14.6 15.7 18.9
AW1 83.7 84.1 82.3 68 81.1 80.6 82.2 81.8 0 72.2 63.4 82.2
EW1 50.7 49 56.3 54.3 0 49.6 44.8 46.7 66.8 40.8 41.4 55.2

G(0.5, 1) 16.8 17.6 16.7 12.3 24.3 16.1 18.6 17.7 0.5 13.5 10.6 15.5
AW2 99.8 99.8 99.8 99.8 100 99.9 99.9 99.9 0 99.9 99.6 99.6
EW2 44.1 46.2 47.4 52.7 78.8 52.2 57 55.8 0 57.9 39.9 49.4

EW3 43.7 45.3 47.5 53.2 78.9 51.8 56.6 55.4 0 58.1 39.8 49.8
GG1 71.7 73.4 73.3 63 89.9 75.3 78.4 77.6 0 69.4 57.5 74.9
GG2 54.9 56.7 55.8 45 73.2 56.3 60.6 59.4 0 48.3 39.9 56.2
PGW1 26.9 28.4 27 20.2 40.1 26.9 30.2 29.3 0.2 21.1 17.4 27.2

LN (0, 0.8) 66.9 65.3 72.5 71.5 0 65.5 60.9 62.7 82.5 56.5 56.2 72
IG(3, 1) 94.2 93.6 96.2 96.5 0 93.3 91.6 92.4 98.6 92.3 89.9 96.9
EW4 35.8 33.7 40.6 38.9 0 35.8 31.4 33.2 51.2 27.9 28.3 38.9
GG3 38.8 37.1 44.1 42.5 0 39 34.5 36.3 55.6 30.1 31.6 42.9
PGW2 64.6 62.5 69.9 71 0 63 58.1 59.9 79.7 56.9 57.1 71.6

mean 54.1 54 56.7 53.9 37.8 54.9 54.6 55 30.9 50.6 45.9 56.7

Table A.55: Comparison with usual GOF tests, n = 50

Appendix B

This appendix presents a documentation on the R package EWGoF that we have devel-
oped. it can be downloaded at the link (http://cran.r-project.org/web/packages/EWGoF/
index.html).

B.1 Documentation of EWGoF package



Package ‘EWGoF’
July 2, 2014

Type Package

Title Goodness-of-fit tests for the Exponential and two-parameter Weibull distributions

Version 2.0

Date 2014-01-13

Author Meryam KRIT

Maintainer Meryam KRIT <meryam.krit@imag.fr>

Description This package contains a large number of the goodness-of-fit tests for the Exponen-
tial and Weibull distributions classified into families: the tests based on the empirical distribu-
tion function, the tests based on the probability plot, the tests based on the normalized spac-
ings, the tests based on the Laplace transform and the likelihood based tests.

License GPL (>= 2.0)
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LinkingTo Rcpp

LazyLoad yes

NeedsCompilation yes

Repository CRAN
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EWGoF-package Goodness-of-fit tests for the Exponential and two-parameter Weibull
distributions

Description

This package contains a large number of the goodness-of-fit tests for the Exponential and Weibull
distributions classified into families: the tests based on the empirical distribution function, the tests
based on the probability plot, the tests based on the normalized spacings, the tests based on the
Laplace transform and the likelihood based tests ...

Details

Package: EWGoF
Type: Package
Version: 1.0
Date: 2014-01-13
License: GPL (>=2.0)
Imports: Rcpp (>= 0.10.3), inline, maxLik
LazyLoad: yes
LinkingTo: Rcpp

Computes the p-value of the chosen test statistic, the value of the observed statistic and an estimation
of the distribution parameters (either the parameter of the Exponential distribution or the shape and
the scale Weibull parameters).

Author(s)

Meryam KRIT Maintainer: Meryam KRIT <meryam.krit@imag.fr>

References

• D’Agostino R.B. and Stephens M.A., Goodness-of-fit techniques, Marcel Dekker, 1986.

• Henze N. and Meintanis S.G., Recent and classical tests for exponentiality: a partial review
with comparisons, Metrika, 61, 29-45, 2005.
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BLOMEst 3

• Liao M. and Shimokawa T., A new goodness-of-fit test for type-I extreme-value and 2-parameter
Weibull distributions with estimated parameters, Journal of Statistical Computation and Sim-
ulation, 64 (1), 23-48, 1999.

• Tiku M.L. and Singh M., Testing the two-parameter Weibull distribution, Communications in
Statistics, 10, 907-918, 1981.

• Mann N.R., Scheuer E.M. and Fertig K.W., A new goodness-of-fit test for the two-parameter
Weibull or extreme-value distribution, Communications in Statistics, 2, 383-400, 1973.

• Lockhart R.A., O’Reilly F. and Stephens M.A., Tests for the extreme-value and Weibull dis-
tributions based on normalized spacings, Naval Research Logistics Quarterly, 33, 413-421,
1986.

• Cabana A. and Quiroz A.J., Using the empirical moment generating function in testing the
Weibull and type 1 Extreme Value distributions, Test, 14(2), 417-431, 2005.

• Krit M., Goodness-of-fit tests for the Weibull distribution based on the Laplace transform,
J-SFdS, 2014.

BLOMEst Blom’s estimators of the two parameters of the Weibull distribution

Description

Computes the Blom’s estimators of the shape and scale parameters of the Weibull distribution
from an i.i.d sample x. It also gives the sample y̌ after using the logarithmic transformation
(y̌ = ( ˇshape) ln(x/ ˇscale), where ˇshape and ˇscale are the estimated shape and scale parameters).

Usage

BLOMEst(x)

Arguments

x a numeric vector of data values.

Value

A list containing the following elements:

eta the Blom’s estimator of the scale parameter of the Weibull distribution ( ˇscale).

beta the Blom’s estimator of the shape parameter of the Weibull distribution ( ˇshape).

y the pseudo-observations y̌ after using the logarithmic transformation and the
Blom’s estimators.

Author(s)

Meryam KRIT
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4 CF.test

References

Blom G., Statistical Estimates and Transformed Beta-variables. New York: Wiley, 1958.

Examples

x <- rweibull(50,2,3)

#Value of the Blom's estimator of the scale parameter
BLOMEst(x)$eta

#Value of the Blom's estimator of the shape parameter
BLOMEst(x)$beta

CF.test GoF tests based on the empirical characteristic function for the Expo-
nential distribution

Description

Computes the GoF tests based on the characteristic function of the Exponential distribution: Epps-
Pulley (EP), Henze-Meintanis (W1, W2) and Meintanis-Iliopoulos test statistics (T1, T2).

Usage

CF.test(x, type = "EP", a = 1, nsim = 1000)

Arguments

x a numeric vector of data values.

type the type of the test statistic used. "EP" is the default used test of Epps-Pulley,"W1"
and "W2" for Henze and Meintanis, "T1" and "T2" for Meintanis-Iliopoulos test
statistics.

a parameter value to be adjusted for the test statistics ("W1", "W2", "T1" and
"T2").

nsim an integer specifying the number of replicates used in Monte Carlo.

Details

The computation time of this function is quite long for the test statistics "W1", "W2", "T1" and
"T2" because of their complex expression. The Monte-Carlo simulations take more time compared
to the other tests. These tests are not defined for a=0.

Value

An object of class htest.
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EDF_NS.test 5

Author(s)

Meryam KRIT

References

Epps T.W. and Pulley L.B., A test for exponentiality vs. monotone hazard alternatives derived from
the empirical characteristic function, Journal of the Royal Statistical Society, Series B, 48, 206-213,
1986.

Henze N. and Meintanis S.G., Recent and classical tests for exponentiality: partial review with
comparisons, Metrika, 61, 29-45, 2005.

Henze N. and Meintanis S.G., Goodness-of-fit tests based on a new characterization of the expo-
nential distribution, Communications in Statistics, Theory and Methods, 31, 1479-1497, 2002.

Meintanis S.G. and Iliopoulos G., Characterizations of the exponential distribution based on certain
properties of its characteristic function, Kybernetika, 39 (3), 295-298, 2003.

Examples

x <- rgamma(10,0.3)

#Apply the Epps-Pulley test
CF.test(x,type="EP")

# Apply the test of Meintanis-Iliopoulos
CF.test(x,type="T1",nsim=200)

# Apply the test of Henze-Meintanis
CF.test(x,type="W1",nsim=200)

EDF_NS.test GoF tests based on the empirical distribution function, the normalized
spacings and the probability plots for the Exponential distribution

Description

Computes the Exponential GoF tests based on the empirical distribution function: the Kolmogorov-
Smirnov (KS), Cramer-Von-Mises (CM) and Anderson-Darling (AD) tests, the tests based on the
probability plot: Shapiro-Wilk (SW) and Patwardhan (PA) tests and the tests based on the normal-
ized spacings: Gnedenko (Gn) and Gini (G) tests.

Usage

EDF_NS.test(x, type = "AD", nsim = 2000)
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6 EDF_NS.test

Arguments

x a numeric vector of data values.

type the type of the test statistic used. "AD" is the default used test of Anderson-
Darling,"KS" for Kolmogorov-Smirnov, "CM" for Cramer-Von-Mises, "SW"
for Shapiro-Wilk, "PA" for Patwardhan, "Gn" for Gnedenko and "G" for Gini
test statistic.

nsim an integer specifying the number of replicates used in Monte Carlo.

Details

This function computes the GoF test statistics of three different families: the tests based on the
empirical distribution function, the tests based on the probability plots and the tests based on the
normalized spacings. The p-value of the tests is computed using Monte-Carlo simulations because
only the asymptotic distribution of the previous statistics is known. Therefore the tests can be
applied to small samples.

Value

An object of class htest.

Author(s)

Meryam KRIT

References

• D’Agostino R.B. and Stephens M.A., Goodness-of-fit techniques, Marcel Dekker, 1986.

• Gail M.H. and Gastwirth J.L., A scale-free goodness-of-fit test for the exponential distribution
based on the Gini statistic, Journal of the Royal Statistical Society, Series B, 40, 350-357,
1978.

• Gnedenko B.V., Belyayev Y.K. and Solovyev A.D., Mathematical Models of Reliability The-
ory, Academic Press, 1969.

• Shapiro S.S. and Wilk M.B., An analysis of variance test for the exponential distribution
(complete samples), Technometrics, 14, 355-370, 1972.

• Patwardhan G., Tests for exponentiality, Communications in Statistics, Theory and Methods,
17, 3705-3722, 1988.

Examples

x1 <- rexp(50,2)

#Apply the Kolmogorov-Smirnov test
EDF_NS.test(x1,type="KS")

x2 <- rlnorm(50,0.2)

#Apply the Patwardhan test
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LK.test 7

EDF_NS.test(x2,type="PA")

#Apply the Cramer-von Mises test
EDF_NS.test(x2,type="CM")

#Apply the Gini test
EDF_NS.test(x2,type="G")

LK.test GoF tests based on the likelihood for the Exponential distribution

Description

Computes the Exponential GoF tests based on the three following statistics: the score of Cox-Oakes
(CO), Wald (W) and likelihood ratio (LR) GoF tests. These tests include the Exponential distribu-
tion in the Weibull distribution and apply a parametric test to check whether the shape parameter is
equal to one.

Usage

LK.test(x, type = "CO", nsim = 1000)

Arguments

x a numeric vector of data values.

type the type of the test statistic used. "CO" is the default used test of Cox-Oakes,"W"
for Wald, "LR" for likelihood ratio test statistic.

nsim an integer specifying the number of replicates used in Monte Carlo.

Details

The test statistic of Cox and Oakes is equivalent to the score test applied to the shape parameter of
the Weibull distribution. The expression of the score is given using the observed information matrix
and not the exact one.

Value

An object of class htest.

Author(s)

Meryam KRIT

References

Cox D.R. and Oakes D., Analysis of survival data, Chapman and Hall, 1984.
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8 LRI.test

Examples

x <- rgamma(20,0.3)

#Apply the Cox and Oakes test (score) test
LK.test(x,type="CO",nsim=200)

# Apply the test based on Wald
LK.test(x,type="W",nsim=200)

# Apply the test based on the likelihood ratio
LK.test(x,type="LR",nsim=200)

LRI.test GoF tests based on the Laplace transform, the mean residual life and
the integrated distribution function for the Exponential distribution

Description

Computes the Weibull GoF tests based on the Laplace transform: Baringhaus-Henze (BH) and
Henze (He). The test statistic of Klar (Kl) is based on the integrated distribution function. Two tests
are based on the mean residual life (BHC, BHK).

Usage

LRI.test(x, type = "BH", a = 1, nsim = 2000)

Arguments

x a numeric vector of data values.

type the type of the test statistic used. "BH" is the default used test of Baringhaus-
Henze,"He" for Henze, "Kl" for Klar, "BHC" and "BHK" for the tests based on
the integrated distribution function.

a parameter value to be adjusted for the test statistics.

nsim an integer specifying the number of replicates used in Monte Carlo.

Value

An object of class htest.

Author(s)

Meryam KRIT
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References

Baringhaus L. and Henze N., Tests of fit for exponentiality based on a characterization via the mean
residual life function, Statistical Papers, 41, 225-236, 2000.

Baringhaus L. and Henze N., A class of consistent tests for exponentiality based on the empirical
Laplace transform, Annals of the Institute of Statistical Mathematics, 43, 551-564, 1991.

Henze N., A new flexible class of omnibus tests for exponentiality, Communications in Statistics,
Theory and Methods, 22, 115-133, 1993.

Klar B., Goodness-of-fit tests for the exponential and normal distribution based on the integrated
distribution function, Annals of the Institute of Statistical Mathematics, 53, 338-353, 2001.

Examples

x <- rlnorm(50,0.3)

#Apply the Baringhaus-Henze test
LRI.test(x,type="BH",nsim=200)

# Apply the test of Henze
LRI.test(x,type="He",nsim=200)

# Apply the test of Klar
LRI.test(x,type="Kl")

# Apply the test of Barighaus based on the integrated distribution function
LRI.test(x,type="BHC")

LSEst Least Squares Estimators of the two parameters of the Weibull distri-
bution

Description

This function computes the Least Squares Estimators (LSEs) of the shape and scale parameters of
the Weibull distribution, based on the probability plot, from an i.i.d sample x. It also gives the
sample ỹ after using the logarithmic transformation (ỹ = ( ˜shape) ln(x/s̃cale), where ˜shape and
s̃cale are the estimated shape and scale parameters).

Usage

LSEst(x)

Arguments

x a numeric vector of data values.
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10 LSEst

Details

The elements of the numeric vector should be positive. The support of the Weibull distribution is
R+*. These estimators are used by Liao and Shimokawa; they are based on the probability plot and
symmetrical ranks.

Value

A list containing the following elements:

eta the least squares estimator of the scale parameter of the Weibull distribution
(s̃cale).

beta the least squares estimator of the shape parameter of the Weibull distribution
( ˜shape).

y the pseudo-observations ỹ after using the logarithmic transformation and the
LSEs.

Author(s)

Meryam KRIT

References

Liao M. and Shimokawa T., A new goodness-of-fit test for type-I extreme-value and 2-parameter
Weibull distributions with estimated parameters, Journal of Statistical Computation and Simulation,
64 (1), 23-48, 1999.

Krit M., Gaudoin O., Xie M. and Remy E., Simplified likelihood goodness-of-fit tests for the
Weibull distribution, Communications in Statistics - Simulation and Computation.

Examples

x <- rweibull(50,2,3)

Est <- LSEst(x)

#Value of the least squares estimator of the scale parameter
Est$eta

#Value of the lest squares estimator of the shape parameter
Est$beta
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MEst Moment Estimators of the two parameters of the Weibull distribution

Description

This function computes the Moment Estimators (MEs) of the shape and scale parameters of the
Weibull distribution from an i.i.d sample x. It also gives the sample y̆ after using the logarithmic
transformation (y̆ = ( ˘shape) ln(x/ ˘scale), where ˘shape and ˘scale are the estimated shape and
scale parameters).

Usage

MEst(x)

Arguments

x a numeric vector of data values.

Details

The elements of the numeric vector should be positive. The support of the Weibull distribution is
R+*. These estimators are based on the moments of the extreme value distribution.

Value

A list containing the following elements:

eta the moment estimator of the scale parameter of the Weibull distribution ( ˘scale).

beta the moment estimator of the shape parameter of the Weibull distribution ( ˘shape).

y the pseudo-observations y̆ after using the logarithmic transformation and the
MEs.

Author(s)

Meryam KRIT

References

Rinne H., The Weibull distribution - A handbook, CRC-Chapman & Hall, 2009.

Examples

x <- rweibull(50,2,3)

Est <- MEst(x)

#Value of the moment estimator of the scale parameter
Est$eta
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12 MLEst

#Value of the moment estimator of the shape parameter
Est$beta

MLEst Maximum Likelihood Estimators of the two parameters of the Weibull
distribution

Description

This function computes the Maximum Likelihood Estimators (MLEs) of the shape and scale pa-
rameters of the Weibull distribution from an i.i.d sample x. It also gives the sample ŷ after using the
logarithmic transformation (ŷ = ( ˆshape) ln(x/ ˆscale), where ˆshape and ˆscale are the estimated
shape and scale parameters).

Usage

MLEst(x)

Arguments

x a numeric vector of data values.

Details

The elements of the numeric vector should be positive. The support of the Weibull distribution is
R+*.

Value

A list containing the following elements:

eta the maximum likelihood estimator of the scale parameter of the Weibull distri-
bution ( ˆscale).

beta the maximum likelihood estimator of the shape parameter of the Weibull distri-
bution ( ˆshape).

y the pseudo-observations ŷ after using the logarithmic transformation and the
MLEs.

Author(s)

Meryam KRIT

References

D’Agostino R.B. and Stephens M.A., Goodness-of-fit techniques, Marcel Dekker, 1986.

Krit M., Gaudoin O., Xie M. and Remy E., Simplified likelihood goodness-of-fit tests for the
Weibull distribution, Communications in Statistics - Simulation and Computation.
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WEDF.test 13

Examples

x <- rweibull(50,2,3)

Est <- MLEst(x)

#Value of the maximum likelihood estimator of the scale parameter
Est$eta

#Value of the maximum likelihood estimator of the shape parameter
Est$beta

WEDF.test GoF tests based on the empirical distribution function for the Weibull
distribution

Description

Computes the Weibull GoF tests based on the empirical distribution function: Kolmogorov-Smirnov
(KS), Cramer-Von-Mises (CM), Watson (W), Anderson-Darling (AD) and Liao-Shimokawa (LS)
statistics using the three following estimation methods: Maximum Likelihood Estimators (MLE),
Least Squares Estimators (LSE) and Moments Estimators (ME). A test statistic (KL) is added to
this family but it is based on the Kullback-Leibler information; this test can also be computed with
the three estimation methods.

Usage

WEDF.test(x, type = "AD", funEstimate = "MLE", paramKL = 2, nsim = 2000)

Arguments

x a numeric vector of data values.
type the type of the test statistic used, "AD" is the default used test of Anderson-

Darling,"KS" for Kolmogorov-Smirnov, "CM" for Cramer-Von-Mises, "W" for
Watson, "LS" for Liao-Shimokawa and "KL" for Kullback-Leibler.

funEstimate the method used to estimate the two Weibull parameters. "MLE" is the default
used method based on the maximum likelihood estimators, "LSE" for the least
squares estimators and "ME" for the moment estimators.

paramKL the value of the parameter m used in the expression of the statistic KL.
nsim an integer specifying the number of replicates used in Monte Carlo.

Details

The above test statistics are known in the literature by using the maximum likelihood estimators
except the test "LS" that Liao and Shimokawa recommend to use with the least squares estimators.
Each of the tests can have three versions, depending on the estimation method used.

All these tests statistics can be used for small samples. The asymptotic distributions of the tests are
known in some cases but the use of their quantiles for small samples may lead to wrong conclusions.
That is why we use Monte-Carlo simulations to apply the tests.
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14 WLK.test

Value

An object of class htest.

Author(s)

Meryam KRIT

References

• D’Agostino R.B. and Stephens M.A., Goodness-of-fit techniques, Marcel Dekker, 1986.

• Liao M. and Shimokawa T., A new goodness-of-fit test for type-I extreme-value and 2-parameter
Weibull distributions with estimated parameters, Journal of Statistical Computation and Sim-
ulation, 64 (1), 23-48, 1999.

• Chandra M., Singpurwalla N.D and Stephens M.A, Kolmogorov statistics for tests of fit for
the Extreme Value and Weibull distributions, Journal of American Statistical Association, 76
(375), 729-731, 1981.

• Vaquera-Huerta P.P. and Villasenor-Alva J.A., A Goodness-of-fit test for the Gumbel distribu-
tion based on Kullback-Leibler information, Communications in Statistics, Theory and Meth-
ods, 38: 842-855, 2009.

Examples

x1 <- rweibull(50,2,3)

#Apply Kolmogorov-Smirnov test with maximum likelihood estimators
WEDF.test(x1,type="KS",funEstimate="MLE")

x2 <- rlnorm(50,0.2)

#Apply the Liao and Shimokawa test using the least squares estimators
WEDF.test(x2,type="LS",funEstimate="LSE")

#Apply the Cramer-von Mises test with the moment estimators
WEDF.test(x2,type="CM",funEstimate="ME")

#Apply the test based on the Kullback-Leibler information with the moment estimators
WEDF.test(x2,type="KL",funEstimate="ME")

WLK.test GoF tests based on the likelihood for the Weibull distribution

Description

Computes the Weibull GoF tests based on the three following statistics: the score, Wald and like-
lihood ratio GoF tests. These tests include the Weibull distribution in larger statistics and apply a
parametric test to the additional parameter.
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Usage

WLK.test(x, type = "GG1", funEstimate = "MLE", procedure = "S", nsim = 500)

Arguments

x a numeric vector of data values.

type the type of the test statistic used:

• "GG1" is the default used test based on the Generalized Gamma distribu-
tion,

• "GG2" is also based on the Generalized Gamma distribution after a trans-
formation,

• "EW" for the tests based on the Exponentiated Weibull,
• "PGW" for the tests based on the Power Generalized Weibull,
• "MO" for the tests based on the Marshall-Olkin distribution,
• "MW" for the tests based on the Modified Weibull distribution,
• "T" for a combination of two tests "PGW" and "MW".

funEstimate the method used to estimate the two Weibull parameters. "MLE" is the default
used method based on the Maximum Likelihood Estimators, "LSE" for the Least
Squares Estimators and "ME" for the Moment Estimators.

procedure the procedure used as a default is the score "S". The procedure can be either "W"
for the Wald test or "LR" for the test based on the likelihood ratio procedure.

nsim an integer specifying the number of replicates used in Monte Carlo.

Details

The tests are based on different generalized Weibull families: the tests (GG1) and (GG2) are based
on the Generalized Gamma distribution, the tests (EW) are based on the Exponentiated Weibull,
(PGW) on the Power Generalized Weibull, (MO) on the Marshall-Olkin distribution and (MW) are
based on the Modified Weibull distribution. Each family can have nine versions depending on the
procedure used (score, Wald or likelihood ratio statistic) and on the parameters estimation methods:
maximum likelihood, moment or least squares method, except GG1 which has only three versions
using the maximum likelihood estimators.

The test statistics T is a combination between two Wald test statistics: PGW with ME ( ˘PGWw)
and MW with MLE ( ˆMWw) after they are centered with their mean values ( ˘PGWw and ˆMWw)
and normalized by their standard deviations (respectively sd( ˘PGWw) and sd( ˆMWw)).

The expression of the statistic T is as follows:

T = 0.5

∣∣∣∣
˘PGWw− ˘PGWw

sd( ˘PGWw)

∣∣∣∣+ 0.5

∣∣∣∣
ˆMWw− ˆMWw

sd( ˆMWw)

∣∣∣∣

Value

An object of class htest.

Author(s)

Meryam KRIT
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16 WLP.test

References

Krit M., Gaudoin O., Xie M. and Remy E., Simplified likelihood goodness-of-fit tests for the
Weibull distribution, Communications in Statistics - Simulation and Computation.

Examples

x <- rlnorm(50,.3)

#Apply some likelihood based tests
WLK.test(x,type="GG1",funEstimate="MLE",procedure="W")
WLK.test(x,type="PGW",funEstimate="ME",procedure="S")
WLK.test(x,type="MO",funEstimate="LSE",procedure="LR")

WLP.test GoF tests based on the Laplace transform for the Weibull distribution

Description

Computes the Weibull GoF tests based on the Laplace transform: (CQ) Cabana-Quiroz with the
two versions either with the Maximum Likelihood Estimators (MLE) or the Moment Estimators
(ME) and (LT) based on the Laplace transform with discretization which has three versions, it can
be computed either with the MLE, ME or the Least Squares Estimators (LSE).

Usage

WLP.test(x,type = "CQ",funEstimate="MLE",s1=-1,s2=0.4,mr=100,a=-5,nsim=500)

Arguments

x a numeric vector of data values.

type the type of the test statistic used. "CQ" is the default used test of Cabana and
Quiroz and "LT" is the test statistic based on the Laplace transform discretiza-
tion.

funEstimate the method used to estimate the two Weibull parameters. "MLE" is the default
used method based on the maximum likelihood estimators, "LSE" for the least
squares estimators and "ME" for the moment estimators. The test statistic "CQ"
can be computed for MLE or ME only.

s1 the first value where the quadratic form of the statistic "CQ" is computed.

s2 the second value where the quadratic form of the statistic "CQ" is computed.

mr the number of the discretizations done to compute the test "LT"; mr = 100 is the
default value recommended.

a the value of the adjusting parameter used in the statistic "LT"; a = -5 is the
default value used.

nsim an integer specifying the number of replicates used in Monte Carlo.
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Value

An object of class htest.

Author(s)

Meryam KRIT

References

Cabana A. and Quiroz A.J., Using the empirical moment generating function in testing the Weibull
and type 1 Extreme Value distributions, Test, 14(2), 417-431, 2005.

Krit M., Goodness-of-fit tests for the Weibull distribution based on the Laplace transform, J-SFdS,
2014.

Examples

x<-rlnorm(50,3)

#Apply test based on the discretized Laplace transform
WLP.test(x,type="LT",funEstimate="MLE")

#Apply test of Cabana and Quiroz with maximum likelihood estimators
WLP.test(x, type="CQ",funEstimate="MLE",s1=-0.1,s2=0.02)

#Apply test of Cabana and Quiroz with the moment estimators
WLP.test(x, type="CQ",funEstimate="ME",s1=-1,s2=0.4)

WNS.test GoF tests based on the normalized spacings for the Weibull distribu-
tion

Description

Computes the Weibull GoF tests based on the normalized spacings: (TS) Tiku-Singh, (MSF) Mann-
Scheuer-Fertig only with right censoring and (LOS) Lockhart-O’Reilly-Stephens test statistics.

Usage

WNS.test(x, type = "TS", s = 0, r = 0, nsim = 2000)

Arguments

x a numeric vector of data values.
type the type of the test statistic used. "TS" is the default used test of Tiku-Singh,"MSF"

for Mann-Scheuer-Fertig and "LOS" for Lockhart-O’Reilly-Stephens test statis-
tic.

s the index of the smallest observed value of x (s=0 if no left censoring).
r the index of the largest observed value of x (r=0 if no right censoring).
nsim an integer specifying the number of replicates used in Monte Carlo.
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Details

For these tests statistics, there is no need to estimate the unknown values of the Weibull parameters
and they are among the most powerful ones especially TS and LOS.

The p-value computed is not the exact p-value: the null hypothesis distribution of some statistics
is known only asymptotically and sometimes is not even known. The asymptotic approximation is
not correct especially for small samples. That is why Monte Carlo simulation is needed to compute
the p-value.

Value

An object of class htest.

Author(s)

Meryam KRIT

References

Tiku M.L. and Singh M., Testing the two-parameter Weibull distribution, Communications in Statis-
tics, 10, 907-918, 1981.

Mann N.R., Scheuer E.M. and Fertig K.W., A new goodness-of-fit test for the two-parameter
Weibull or extreme-value distribution, Communications in Statistics, 2, 383-400, 1973.

Lockhart R.A., O’Reilly F. and Stephens M.A., Tests for the extreme-value and Weibull distribu-
tions based on normalized spacings, Naval Research Logistics Quarterly, 33, 413-421, 1986.

Examples

x1 <- rweibull(50,2,3)

#Apply the Tiku-Singh test with censored sample: 4 left censored and 5 right censored values
WNS.test(x1,type="TS",s=4,r=5)

#Apply the Lockahrt-O'reilly and Stephens test to the complete sample
WNS.test(x1,type="LOS")

x2 <- rlnorm(100,.3)

#Apply the Mann-Scheuer and Fertig test
WNS.test(x2,type="MSF")

#Apply Tiku-Singh test to the complete sample x2
WNS.test(x2)
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WPP.test GoF tests based on the Weibull probability plot for the Weibull distri-
bution

Description

Computes the GoF tests based on the Weibull probability plot (WPP). The test statistics are similar
to the coefficient of determination of the regression on the WPP: (RSB) test statistic of Smith and
Bain, (REJG) test statistic of Evans, Johnson and Green, (SPP) test statistic of Coles based on the
stabilized probability plot.

The second family includes the Shapiro-Wilk type test statistics: (SB) Shapiro and Brain and (OK)
Ozturk and Korukoglu test statistic.

Two additional statistics can also be computed: the first one (ST1) is based on the kurtosis and the
second one (ST2) is based on the skewness coefficient.

Usage

WPP.test(x, type = "SB", nsim = 2000)

Arguments

x a numeric vector of data values.

type the type of the test statistic used. "OK" is the test statistic of Ozturk and Ko-
rukoglu, "RSB" the test statistic of Smith and Bain, "REJG" the test statistic of
Evans-Johnson and Green, "SPP" the test statistic of Coles based on the stabi-
lized probability plot, "SB" the test statistic of Shapiro and Brain, "ST1" the test
statistic based on the kurtosis and "ST2" the test statistic based on the skewness.

nsim an integer specifying the number of replicates used in Monte Carlo.

Value

An object of class htest.

Author(s)

Meryam KRIT

References

• Coles S.G., On goodness-of-fit tests for the two-parameter Weibull distribution derived from
the stabilized probability plot, Biometrika, 76 (3), 593-598, 1989.

• Evans J.W., Johnson R.A. and Green D.W., Two and three parameter Weibull goodness-of-fit
tests, Research paper FPL-RP-493, U.S. Forest Products Laboratory, Madison, WI, 1989.

• Ozturk A. and Korukoglu S., A new test for the extreme value distribution, Communications
in Statistics - Simulation and Computation, 17, 1375-1393, 1988.
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• Smith R.M. and Bain L.J., Correlation type goodness-of-fit statistics with censored sampling,
Communications in statistics, 5, 119-132, 1976.

• Best D.J., Rayner J.C.W and Thas O., Comparison of five tests of fit for the extreme value
distribution, Journal of Statistical Theory and Practice, 1 (1), 89-99, 2007.

Examples

x <- rlnorm(50,3)

#Apply the Ozturk-Korukoglu test
WPP.test(x,type="OK")

# Apply the test based on the stabilized probability plot
WPP.test(x,type="SPP")

# Apply the generalized smooth test based on the kurtosis
WPP.test(x,type="ST1")

#Apply the test of Shapiro and Brain
WPP.test(x)
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Abstract: This work deals with goodness-of-fit (GOF) tests in reliability for both
non repairable and repairable systems. GOF tests are efficient techniques to check the
relevance of a model for a given data set.

For non repairable systems, the Exponential and Weibull distributions are the most
used lifetimes distributions in reliability. A comprehensive comparison study of the GOF
tests for the Exponential distribution is presented for complete and censored samples
followed by recommendations about the use of the tests.

The two-parameter Weibull distribution allows decreasing and increasing failure rates
unlike the Exponential distribution that makes the assumption of a constant hazard rate.
Yet, there exist less GOF tests in the literature for the Weibull distribution. A compre-
hensive review of the existing GOF tests is done and two new families of exact GOF tests
are introduced. The first family is the likelihood based GOF tests and the second is the
family of tests based on the Laplace transform. Theoretical asymptotic properties of some
new tests statistics are established.

A comprehensive comparison study of the GOF tests for the Weibull distribution
is done. Recommendations about the most powerful tests are given depending on the
characteristics of the tested data sets.

For repairable systems, new GOF tests are developed for imperfect maintenance mod-
els when both corrective maintenance and deterministic preventive maintenance are per-
formed. These tests are exact and can be applied to small data sets.

Finally, illustrative applications to real data sets from industry are carried out for
repairable and non repairable systems.

Key words: goodness-of-fit test, statistics, reliability, Weibull distribution, imperfect
maintenance.

Résumé : Ce travail porte sur les tests d’adéquation en fiabilité, à la fois pour les
systèmes non réparables et les systèmes réparables. Les tests d’adéquation sont des outils
efficaces pour vérifier la pertinence d’un modèle pour un jeu de données.

Pour les systèmes non réparables, la loi exponentielle et la loi de Weibull sont les
lois de durée de vie les plus utilisées en fiabilité. Une comparaison exhaustive des tests
d’adéquation pour la loi exponentielle est présentée pour des données complètes et cen-
surées, suivie par des recommandations d’utilisation de ces tests.

La loi de Weibull à deux paramètres permet de modéliser des taux de hasard décroissants
et croissants contrairement à la loi exponentielle qui suppose un taux de hasard constant.
Cependant, il existe moins de tests d’adéquation à la loi de Weibull dans la littérature.
Une revue exhaustive des tests existant est effectuée et deux familles de tests exacts sont
présentées. La première famille est la famille des tests basés sur la vraisemblance et la
deuxième est la famille des tests basés sur la transformée de Laplace. Des propriétés
asymptotiques des nouvelles statistiques de tests sont établies.

Une comparaison complète des tests d’adéquation pour la loi de Weibull est effectuée.
Des recommandations sur les tests les plus puissants sont données en fonction des car-
actéristiques du jeu de donnés testé.

Pour les systèmes réparables, de nouveaux tests d’adéquation sont développés pour
des modèles de maintenance imparfaite avec à la fois des maintenances correctives et des
maintenances préventives déterministes. Ces tests sont exacts et peuvent être appliqués
à des petits jeux de données.
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Finalement, des applications à de vrais jeux de données issus de l’industrie sont ef-
fectuées pour des systèmes réparables et des systèmes non réparables.

Mots clés : test d’adéquation, statistique, fiabilité, loi de Weibull, maintenance
imparfaite.


