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Abstract

A deep understanding of the first instants of the Universe would not only complete our description

of the cosmic history but also enable an exploration of new fundamental phsyics at energy scales

unexplored on Earth laboratories and colliders. The most favoured scenario which describes

these first instants is the cosmic inflation, an ephemeral period of accelerated expansion shortly

after the big bang. Some hints are in favour of this scenario which is however still waiting for

a smoking-gun observational signature. The cosmic microwave background (CMB) B modes

would be generated at large angular scales by primordial gravitational waves produced during

the cosmic inflation. In this frame, the primordial CMB B-modes are the aim of various ongoing

or being-deployed experiments, as well as being-planned satellite mission. However, unavoidable

instrumental and astrophysical features makes its detection di�cult. More specifically, a partial

sky coverage of the CMB polarisation (inherent to any CMB measurements) leads to the E-to-B

leakage, a major issue on the estimation of the CMB B modes power spectrum. This e↵ect can

prevent from a detection of the primordial B modes even if the polarisation maps are perfectly

cleaned, since the (much more intense) leaked E-modes mask the B-modes. Various methods

have been proposed in the literature o↵ering a B modes estimation theoretically free from any

leakage. However, when applied to real data, they are no longer completely leakage-free and

remove part of the information on B-modes. These methods consequently need to be validate

in the frame of real data analysis. In this purpose, I have worked on the implementation and

numerical developments of three typical pseudospectrum methods. Afterwards, I have tested

each of them in the case of two fiducial experimental set ups, typical of current balloon-borne

or ground based experiments and of potential satellite mission. I have therefore stated on the

e�ciency and necessity of one of them: the so-called pure method. I have also shown that the

case of nearly full sky coverage is not trivial because of the intricate shape of the contours of

the point-sources and galactic mask. As a result this method is also required for an optimal B

modes pseudospectrum estimation in the context of a satellite mission.

With this powerful method, I performed realistic forecasts on the constraints that a CMB polar-

isation detection could set on the physics of the primordial universe. First of all, I have studied

the detectability of the tensor-to-scalar ratio r, amounting the amplitude of primordial gravity

waves and directly related to the energy scale of inflation, in the case of current suborbital ex-

periments, a potential array of telescopes and a potential satellite mission. I have shown that a

satellite-like experiment dedicated to the CMB polarisation detection will enable us to measure

a tensor-to-scalar ratio of about 0.001, thus allowing for distinguishing between large and small

field models of inflation. Moreover, in extension of the standard model of cosmology, the CMB

EB and TB correlations can be generated. In particular, I have forecast the constraints that one

could set on a parity violation in the gravitational waves during the primordial universe from

observations on a small and a large part of the sky. Our results have shown that a satellite-

like experiment is mandatory to set constraints on a range of parity violation models. I finally

address the problematic of the detectability of observational signature of a primordial magnetic

field.
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Résumé

La compréhension des premiers instants de notre Univers complèterait notre description de son

histoire et permettrait également une exploration de la physique fondamentale à des échelles

d’énergie jusque là inatteignables. L’inflation cosmique est le scénario privilégié pour décrire ces

premiers instants car il s’intègre très bien dans le modèle standard de la cosmologie. Selon ce

scénario l’Univers aurait connu une courte période d’expansion accélérée peu après le Big Bang.

Quelques indices favorisent ce modèle cependant toujours en attente d’une signature observation-

nelle décisive. Les modes B du fond di↵us comologique (FDC) aux grandes échelles angulaires

sont générés par les ondes gravitationnelles primordiales, produites durant l’inflation cosmique.

Dans ce cadre, la détection des modes B primordiaux est le but de nombreuses expériences,

actuelles ou à venir. Cependant, des e↵ets astrophysiques et instrumentaux rendent sa détection

di�cile. Plus précisément, une couverture incomplète de la polarisation du FDC (inhérente à

toute observation du FDC) entraine la fuite des modes E dans B, un problème majeur dans

l’estimation des modes B. Cet e↵et peut empêcher une détection des modes B même à partir

de cartes parfaitement nettoyées, car les modes E fuyant (beaucoup plus intenses) masquent les

modes B. Diverses méthodes o↵rant une estimation de modes B théoriquement non a↵ectés par

cette fuite, ont été récemment proposées dans la littérature. Cependant, lorsqu’elles sont ap-

pliquées à des expériences réalistes, elles ne corrigent plus exactement cette fuite. Ces méthodes

doivent donc être validées dans le cadre d’expériences réalistes. Dans ce but, j’ai travaillé sur

l’implémentation et le développement numérique de trois méthodes typiques de pseudospectres.

Ensuite, je les ai testé dans le cas de deux expériences fiducielles, typiques d’une expérience sub-

orbitale et d’une potentielle mission satellite. J’ai alors montré l’e�cacité et la nécessité d’une

méthode en particulier: la méthode dite pure. J’ai également montré que le cas d’une couverture

quasi complète du ciel n’est pas trivial, à cause des contours compliqués du masque galactique

et des points sources. Par conséquent, une estimation optimale de pseudospectre des modes B

exige l’utilisation d’une telle méthode également dans le contexte d’une mission satellite.

Grâce à cette méthode, j’ai fait des prévisions réalistes sur les contraintes qu’une détection

de la polarisation du FDC pourra apporter sur la physique de l’Univers primordial. J’ai tout

d’abord étudié la détectabilité du rapport tenseur-sur-scalaire r qui quantifie l’amplitude des

ondes gravitationnelles primordiales, directement relié à l’échelle d’énergie de l’inflation, dans

le cas de di↵érentes expériences dédiées à la détection de la polarisation du FDC. J’ai montré

qu’une mission satellite nous permettrait de mesurer un rapport tenseur-sur-scalaire de l’ordre

de 0.001, autorisant une distinction entre les modèles d’inflation à champ fort et faible. De plus,

dans le cas d’une extension du modèle standard de la cosmologie, des corrélations EB et TB du

FDC peuvent être générées. En particulier, j’ai prévu les contraintes que nous pourrons mettre

sur une violation de parité durant l’univers primordial à partir d’observations sur une grande ou

une petite partie du ciel. Mes résultats ont montré qu’une expérience satellite est nécessaire pour

mettre des contraintes sur une gamme de modèles de violation de parité. J’ai finalement abordé

la problématique de la détectabilité d’une signature observationnelle d’un champ magnétique

primordial.
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de mes premiers stages de recherche. Merci à Hervé pour (G)ALCOR, de m’avoir dit ’tiens,
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participé à l’élévation de mon alcoolémie, et enfin Vincent, Guigui, Asénath, Estelle, Samuel
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pour m’avoir laissé libre de faire ce que je voulais et enfin pour m’avoir soutenue. Si je devais

te remercier en pintes de stout, tu en aurais pour la vie. C’est vraiment chouette de bosser avec

toi, j’espère que ça continuera et qu’on trouvera plein de choses cools.





Contents

Abstract ii
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Introduction

Among all electromagnetic radiations surrounding us, there exists one particular light that orig-

inates from the first moments of the Universe, today constituting the cosmic microwave back-

ground (CMB). This light is composed of the oldest photons emitted in the Universe and is a

valuable source of knowledge since it holds information about the formation and evolution of

the Universe from the Big Bang up to now. Shortly after its discovery in 1964, the CMB was

at the origin of many questions for instance, the origin of its statistical isotropy along with its

tiny temperature fluctuations remain a mystery. Several theories have been proposed to solve

these enigma but one is favoured for its simple explanation of most observed phenomena: the

cosmic inflation. According to this paradigm, the Universe would have known a violent and

ephemeral accelerated expansion about 10�30s after the Big Bang. Its existence would assert

the consistency of the standard model of cosmology and is only waiting for a firm experimental

verification. It might seem impossible at first to observe such a distant epoch but cosmic inflation

would have left perturbations of the space-time curvature, first under the shape of variations of

the gravitational potential, but also under the shape of primordial gravitational waves. These are

ripples of space-time which would have left imprints in the fluctuations of the CMB temperature

and polarisation. By investigating its temperature and polarisation anisotropies, the CMB may

hold the answers to the issues it raised.

Figure 1: During my PhD, I have focused my research on the CMB, a light much older than
the light of any stars in the sky (picture by Marion Montaigne1)

1
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However, the evidence of the primordial gravitational waves is so tiny that it can be hidden by

the other sources of fluctuations in the CMB, except for one of the CMB polarisation modes:

the B modes. The gravitational waves are indeed the only source of CMB B modes at large

angular scales. The detection of the CMB B modes would therefore be a smoking gun for cosmic

inflation. Their amplitude is however expected to be extremely low making their detection an

instrumental and data processing challenge.

During my PhD thesis, my endeavour has consisted in developing, testing and validating new

statistical methods to perform an accurate estimation of the CMB B modes in order to set

thigh constraints on the cosmological parameters describing the very early universe. Due to its

cosmological origin, the CMB is a peculiar observable since the signal itself contributes to the

statistical uncertainties on its reconstruction, this is the so-called cosmic variance. This e↵ect

becomes more puzzling in the case of a low signal such as the CMB polarisation because the E

modes can contribute to the B modes signal. This e↵ect is known as the E-to-B leakage and

leads to a laborious, if not impossible, reconstruction of the B modes. The leakage can strongly

prevent from detecting the B-modes, even in an ideal noiseless case, because of the partial sky

coverage. These uncertainties can however be statistically reduced thanks to clever methods

correcting for this contamination. In that case, the CMB polarisation unveils clues about the

first instants of the Universe, in particular about the inflation period.

As an introduction, I will first detail in part I the formalism of polarisation, a key observable in

astrophysics. I will then portray the CMB in the frame of the current standard model of cosmol-

ogy, the ⇤CDM model. The CMB polarisation and its current detection status will be developed

next. Afterwards, the part II is dedicated to the reconstruction of the CMB polarisation power

spectrum from the CMB maps. After introducing the formalism of the CMB statistics, I will

demonstrate the e�ciency of di↵erent pseudospectrum methods aiming at estimating accurately

the uncertainties on the CMB power spectra. As a result, one of them proves to be the most

e�cient, so I use it as a tool to properly estimate the CMB B modes and derive the constraints

on the primordial Universe (part III). In particular, I investigated the potential detection of

the primordial Universe physics: the energy scale of the cosmic inflation, a parity violation and

finally the existence of a primordial magnetic field, each of these issues being dealt with in sepa-

rated chapters. I eventually conclude in part IV by summarizing the results of my PhD research

and outlining my future projects.



Part I

Introduction: Light Polarisation

and the CMB
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Chapter 1

Light Polarisation

During the 19th century, Malus and Arago have highlighted the light polarisation, a curious be-

haviour of light that they observed in peculiar crystals such as calcite. Ever since, the light

polarisation is widely used for technological purposes such as 3D vision or remote sensing. It

also explains numerous natural processes like the sky polarisation or the birefringence.

1.1 Polarisation Formalism in Optics

The light is classically described as a propagating electromagnetic wave. It is often reduced to

its electric field component, from which the magnetic field is deduced thanks to the Maxwell

equations. I present here the light description in the ideal but easier case of a monochromatic

plane wave with a frequency ⌫ and a direction of propagation along its wave number ~k. In a

( ~ex, ~ey, ~ez) orthonormal system coordinate, the electric field representing such a wave propagating

in the z direction is:
~E(~r, t) = [Ex ~ex + Ey ~ey]e

i(kz�2⇡⌫t), (1.1)

with Ei the complex amplitude of the electric field in the i-direction. In order to characterise

this electromagnetic wave, the two main quantities to be measured are its intensity and its

polarisation.

• Intensity

Measuring the electric field components at any moment would give a complete description of the

electromagnetic wave. Nonetheless, in the case of high frequency light (in the order of hundreds

of GHz) that are of interest to this thesis, the current detectors do not have high enough sampling

frequency to have access to the electric field every fraction of microseconds. Nonetheless, the

energy on a given surface during a given time lapse gives enough information to describe the

3
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wave. This measurable energy is the light intensity and is therefore defined as:

I(t) =
⌦
|Ex|2

↵
t
+
⌦
|Ey|2

↵
t
, (1.2)

where the brackets h.it stand for time average.

The light intensity I(t) is an essential quantity that permits to characterise most optical phe-

nomenons such as photometry, interferometry or polarimetry. It however eludes the light vecto-

rial behaviour.

• Polarisation

The polarisation of the light holds the information on the vectorial structure of the electromag-

netic field. More specifically, it defines the direction of its oscillations. Indeed, regarding the

process at the origin of the light emission or in the way of the light path, the electromagnetic field

can adopt a preferential direction with respect to the direction of propagation. A non-polarized

light, such as the natural light, has its electric and magnetic fields varying too fast with respect

to the sampling frequency of our best detectors and in an unpredictable direction. Nonetheless,

there are processes that favour a peculiar direction of these electromagnetic oscillations. For

instance, any kind of light outgoing from a linear polariser acquires one specific direction of the

electric field oscillations given by the device which acts as a filter. The light polarisation may

therefore give consequential information on the phenomenon from which it originates or on the

medium in which the light is propagating. An interesting example which is only explained thanks

to the polarisation is the birefringence. This peculiar e↵ect is due to anisotropies in the atomic

distribution of some medium such as crystal quartz which has two favoured directions. This

irregular arrangement implies local variations of the optical index. Consequently the di↵erent

polarisation directions of the propagating light see di↵erent optical index of the medium. The

di↵erent polarisations of the light thus refract in di↵erent directions. The light therefore emerges

from the medium in two separated light beams perpendicularly polarised to each other as shown

in Fig. 1.1. The birefringence is therefore tightly related to the light polarisation – and was at

the origin of polarisation discovery.

Figure 1.1: An example of birefringence: the drawing of the sheep is split into two parts
when looked through the birefringent crystal.

The light polarisation characterises the direction of the electric field oscillations, a general case

of which is displayed in Fig. 1.3. It is thus an intrinsic property of the light ensuring an access
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to additional information on the nature of the light and the medium the light is going through.

A specific formalism is therefore required to describe it.

Figure 1.2: A diagram of a polarised light. The black line stands for the direction of the
electric field in time and its projection onto a plane is shown in yellow, drawing an ellipse: the

light is elliptically polarised (from Wikipedia polarisation page).

1.1.1 Fully polarized light

1.1.1.1 Jones formalism

A specific case of polarisation is the case of a totally polarized light: the electromagnetic field

direction evolution is deterministic. Usually, in such a case, the Jones formalism is used to

describe the light polarisation. The light can be characterized by a Jones vector while the

properties of the medium it propagates in is embodied in the Jones matrix.

In this case, the equation (??) describing the behaviour of the electric field can be written as a

vector ~E verifying:

Re( ~E(~r, t)) = Re

 "
Eox

Eoyei�

#
ei(kz�2⇡⌫t)

!

=

"
Eoxcos(kz � 2⇡⌫t)

Eoycos(�+ kz � 2⇡⌫t)

#
, (1.3)

with � the phase between the two transverse components of the electric field and Eoi is the real

amplitude of the i electric field component.

Following this expression, the Jones vector is defined as:

~J =

"
Jx

Jy

#
=

"
Eox

Eoyei�

#
. (1.4)
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By reformulating Eq. (1.3) and combinating the two components of the electric field, an equation

giving insight on the evolution of each component Ei of the electric field is obtained:

E2
x

E2
ox

+
E2

y

E2
oy

� 2
Ex

Eox

Ey

Eoy
cos(�) = sin(�)2. (1.5)

This equation is the equation of an ellipse inscribed in a rectangle of side width 2Eox and 2Eoy, as

shown in Fig.1.3. The cross term in ExEy indicates that the ellipse is rotated. The polarisation

is said to be elliptic: the electric field vector draws an ellipse over the time. The polarisation is

either left- or right-handed depending on the sign of the phase shift �. If � > 0, the polarisation

is then left-handed (trigonometric orientation) and vice versa.

x"

y"

2Eox

2Eoy

." z


E(M, t)

Figure 1.3: The ellipse drawn by the evolution of the electric field ~

E(M, t) in time when the
light is elliptically polarised (see Eq. (1.5)).

From the general case of an elliptic polarisation, two peculiar cases come out: the linear and

circular polarisations. In the former case, the electric field oscillations are contained in a plane

and its components verify E
x

E
y

= cste. The Jones vector of a light linearly polarised along (Ox) is

therefore written: ~J =

"
1

0

#
. The electric field direction of a circularly polarised light follows a

circle in time. The Ex and Ey components of the electric field are therefore equal and the phase

is equal to ±⇡
2 . Thus, the Jones vector of right-handed circular polarisation is: ~J = 1p

2

"
1

�i

#

because here � = �⇡
2 .

1.1.1.2 Poincaré Sphere

The Poincaré sphere is a tool introduced in Poincaré et al. (1892) to easily describe the polarisa-

tion state of the light and its modification. It is very useful since it enables to quickly derive the

resulting polarisation state of light after going through a polarising device such as a waveplate.

As shown in figure 1.4, the coordinate system (Ox0y0z0) in which the electric field is measured is

rotated by an angle ↵ with respect to the proper coordinate system (Oxyz) of the polarisation

ellipse, with z = z0. Therefore, the electric field transforms as:

(
Ex0 = Ex cos(↵) + Ey sin(↵),

Ey0 = Ey cos(↵)� Ex sin(↵),
(1.6)

where Ex0,y0 denotes the electric field components defined in the coordinate system (Ox0y0z0).
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x"

y"

x'"

y'"

α
O"


E(M, t)

Figure 1.4: The coordinate change between (x, y) and (x0
, y

0), the proper axes of the polari-
sation ellipse drawn by the electric field ~

E(M, t) evolution.

Thus, the electric field in the (Oxyz) system is:

(
Ex = Ex0 cos(↵)� Ey0 sin(↵),

Ey = Ex0 sin(↵) + Ey0 cos(↵).
(1.7)

In (Ox0y0z0) the equation (1.5) of the polarisation ellipse consequently writes:

E02
x

✓
cos(↵)2

E2
ox

+
sin(↵)2

E2
oy

� 2 cos(↵) sin(↵) cos(�)

EoxEoy

◆

+E02
y

✓
sin(↵)2

E2
ox

+
cos(↵)2

E2
oy

� 2 cos(↵) sin(↵) cos(�)

EoxEoy

◆

+2E0
x

E0
y

✓
cos(↵) sin(↵)

✓
� 1

E2
ox

+
1

E2
oy

◆
� cos(↵)

EoyEox

◆
cos(�) = sin(↵). (1.8)

In this coordinate system (O0x0y0z0), the ellipse is not rotated as its proper axes are along (O0x0)

and (O0y0). The coe�cient of the cross term in bold letters of Eq. (1.8) must therefore be set

equal to zero. We therefore obtain a relation between ↵ and the characteristics of the polarisation

ellipse Eoi and �:

tan(2↵) = 2
EoxEoy

E2
ox � E2

oy

cos(�). (1.9)

The semi-major axis a and semi-minor axis b of the ellipse write:

(
a2 = E2

ox cos↵
2 + E2

oy sin↵
2 + 2EoxEoy cos↵ sin↵ cos�,

b2 = E2
ox sin↵

2 + E2
oy cos↵

2 � 2EoxEoy cos↵ sin↵ cos�.
(1.10)

Instead of using the three previously derived parameters a, b and ↵, the ellipse can be described

by the three following parameters:

- the light beam intensity I = E2
ox + E2

oy = a2 + b2;

- the azimuth angle ↵ that characterises the tilt of the polarisation ellipse and varies from 0 to

⇡;

- the ellipticity ✏ given by: tan ✏ = ± b
a , representing the width of the ellipse. ✏ varies from �⇡

4

to ⇡
4 . Fig. 1.5 illustrate a generic elliptic polarisation showing the ↵ and ✏ angles.
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x"

y"

α

ε

Figure 1.5: The ellipticity, ✏, and azimuth, ↵, angles of the polarisation ellipse.

These three parameters I, ↵ and ✏ therefore utterly describe the light polarisation. The Poincaré

sphere is a sphere of centre O, unity radius and axis OX, OY and OZ, where the polarisation

state is represented as a point which coordinates depend on the three parameters.

By convention, the (OXY ) plane is the plane with ✏ = 0 and the (OXZ) the one with ↵ = 0 as

illustrated in Fig. 1.6. The polarisation state of a totally polarised light with an azimuth ↵ and

an ellipticity ✏ is thus represented by a point M(X’,Y’,Z’) at the surface of the Poincaré sphere

whose coordinates are defined as:

8
>><

>>:

X 0 = cos 2↵ cos 2✏,

Y 0 = sin 2↵ cos 2✏,

Z 0 = sin 2✏.

(1.11)

X" Y"

Z"

M(X’,Y’,Z’)"

Figure 1.6: An elliptical polarisation of azimuth ↵ and ellipticity ✏ placed on the Poincaré
sphere.

By convention, the upper hemisphere is the location of the left-handed polarisation, while the

bottom is the one of the right-handed polarisation. The two particular cases of circular and

linear polarisation evoked above can thus be placed on the Poincaré sphere. For a fully polarised

beam light with intensity I:

- a right-handed circularly polarised light is represented by M(0, 0,�1);

- a light linearly polarised with an angle ↵ is represented by M(cos(2↵), sin(2↵), 0).

The Jones formalism is a useful formalism to describe a fully polarized light and it can be easily

pictured thanks to the Poincaré sphere. Nonetheless, it cannot be used to describe a partially

polarised light which is however the case of most polarised electromagnetic waves.
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1.1.2 Partially polarized light

1.1.2.1 Stokes parameters

Between the two cases of a fully polarised and an unpolarised light lies the case of the partially

polarised light that concerns most radiations. In this more realistic case, the Jones vector no

longer has a deterministic behaviour and is therefore not appropriate anymore. Proposed by

Stokes in 1852, the Stokes parameters are very handy quantities which contain all the needed

information about the light to accurately analyse its polarisation.

The Stokes parameters can be deduced from the so-called coherence matrix which encodes for

the covariance of the randomly evolving Jones vector.

However, as done in Collett (1992), the Stokes parameters can be easily derived from an empirical

perspective. The equation (1.5) describing an elliptical polarisation is valid in the case of fully

polarised light. The typical time scale involved here – such as the time for the electric field to

draw the ellipse – is nonetheless in the order of 10�15s. Thus the polarisation ellipse remains

elusive to our detectors. Therefore, in the same way we have introduced the intensity, we may

want to transcribe the polarisation ellipse characterised by the ✏, ↵ variables into observable

quantities.

Using current detectors gives access to the electric field integrated over a time period. We

therefore need to integrate in time the equation (1.5) of a monochromatic wave propagating in

the z-direction with an elliptical polarisation. As the electric field is periodic, it is equivalent to

average it in time over one oscillation:

⌦
Ex(t)2

↵
t

E2
ox

+

⌦
Ey(t)2

↵
t

E2
oy

� 2
hEx(t)Ey(t)it

EoxEoy
cos(�) = sin(�)2, (1.12)

with hEiit = lim
T!1

1
T

R1
0

Ei(t)dt, i = x, y. For a monochromatic wave propagating in the z-

direction, whose expression is given by Eq. (1.3), we obtain: hEiit = 1
2E

2
oi and hEiEjit =

1
2EoxEoy cos(�).

Multiplying by 4EoxEoy and inserting the expression of hEiit in the above equation gives:

4E2
oxE

2
oy � 4E2

oxE
2
oy cos

2(�) = 4E2
oxE

2
oy sin

2(�). (1.13)

We thus obtain the canonical expression:

(E2
ox + E2

oy)
2 � (E2

ox � E2
oy)

2 � (2EoxEoy cos(�))
2 = (2EoxEoy sin(�))

2. (1.14)

By rewriting the previous equation (1.14) in the form: S2
0 � S2

1 � S2
2 = S2

3 , we deduce:

8
>>>><

>>>>:

S0 = E2
ox + E2

oy,

S1 = E2
ox � E2

oy,

S2 = 2EoxEoy cos(�),

S3 = 2EoxEoy sin(�).

(1.15)
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These four quantities are the so-called Stokes parameters and fully describe any type of light

beam. The first Stokes parameter S0 is, compared to Eq. (1.2), the total intensity of the light

and is linked to the other parameters via the relation: S2
0 > S2

1 +S2
2 +S2

3 , the equality being the

case of a fully polarised light. Also, from these parameters, the polarisation degree P is defined.

It quantifies the ratio between the polarised contribution Ipol with respect to the total intensity:

P =
Ipol
Itot

=

p
S2
1 + S2

2 + S2
3

S0
. (1.16)

P is consequently ranging from 0 for an unpolarised light to 1 for a totally polarised light. A

partially polarised light has its polarisation degree such as 0 < P < 1.

In the general case of a light beam described with a complex amplitude as in Eq. (??), the same

reasoning gives: 8
>>>><

>>>>:

S0 = ExE⇤
x + EyE⇤

y ,

S1 = ExE⇤
x � EyE⇤

y ,

S2 = ExE⇤
y + EyE⇤

x,

S3 = i(ExE⇤
y � EyE⇤

x).

(1.17)

From these parameters, the so-called Stokes vector are built:

S =

0

BBBB@

S0

S1

S2

S3

1

CCCCA
. (1.18)

The Stokes parameters are also denoted Q, U and V , corresponding to S1, S2 and S3 respectively.

On the one hand, the (Q,U) Stokes parameters describe the linear polarisation and are tightly

coupled because U is equivalent to the Q quantity but defined in a coordinate system rotated by

45o. On the other hand, the V Stokes parameter characterises the circular polarisation. Thus,

for three peculiar examples of light with intensity I and polarisation degree P , the Stokes vectors

give:

- S = I (1 0 0 0)T if unpolarised;

- S = I (1 0 0 � P )T if right-handed circularly polarised;

- S = I (1 P 0 0)T if linearly polarised along (Ox);

where T denotes the transpose operation.

Any polarisation state can be described by the linear combination of a circularly polarised light

and a linerly polarised light. The (Q,U, V ) Stokes parameters thus ensure an utter description

of the light polarisation. The Jones formalism is used in the peculiar case where P = 1.
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1.1.2.2 Poincaré sphere

The reduced Stokes vector is defined as:

~s =

0

BB@

S1

S2

S3

1

CCA . (1.19)

The norm of this vector ~s is:

|~s| =
q
S2
1 + S2

2 + S2
3 = PItot, (1.20)

by definition of the polarisation degree P .

The expression of the azimuth parameter ↵ in equation (1.9) and the properties of the semi-axis

a and b give a relation between the Stokes parameters and the characteristics of the polarisation

ellipse: (
tan(2↵) = S2

S1
,

sin(2✏) = S3

S0
.

(1.21)

From these relations, we deduce the following expressions for the reduced Stokes vector:

s =

0

BB@

Q

U

V

1

CCA = PItot

0

BB@

cos(2↵) cos(2✏)

sin(2↵) cos(2✏)

sin(2✏)

1

CCA . (1.22)

From this reduced Stokes vector, it is noticeable that ~s sets the location of the polarisation state

inside the Poincaré sphere at a distance P from the centre. Moreover, it is the generalisation of

Eq. (1.13) for any polarisation degree.

For instance a partially linearly polarised light with an azimuth angle ↵ and a polarisation degree

P will be a point M inside the Poincaré sphere whose coordinates are: M(P cos 2↵, P sin(↵), 0).

In the specific case of an unpolarised light, M is located at the center of the sphere (P = 0).

1.1.2.3 Stokes parameters properties

By measuring a polarised light beam, we implicitly choose a reference coordinate system (O ~ex ~ey ~ez)

where the intensity parallel or orthogonal to (Ox) is measured, in order to measure the Stokes

parameters. Now we define a coordinate system (O ~ex0 ~ey0 ~ez0) such as:

8
>><

>>:

~ex0 = cos( ) ~ex + sin( )~ey,

~ey0 = � sin( ) ~ex + cos( )~ey,

~ez0 = ~ez,

(1.23)

with  the rotation angle between the old coordinate system and the new one.
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The electric field in the rotated frame is then:

8
>><

>>:

E00x = cos( )E0x + sin( )E0y,

E0y0 = � sin( )E0x + cos( )E0y,

E0z0 = E0z.

(1.24)

And the intensity measured in the system (O ~ex0 ~ey0 ~ez0) is:

I 0 = E2
0x0 + E2

0y0 = E2
0x + E2

0y = I. (1.25)

As expected, the intensity being an intrinsic scalar property of the light, it does not depend on

the choice of the coordinate system.

Moreover, because it characterises the circularly polarised part of the light, the Stoke parameter

V does not vary when rotating the reference frame:

V 0 = V. (1.26)

From their definition, the other Stokes parameters Q and U are transformed under this rotation

following: (
Q0 = cos(2 )Q+ sin(2 )U,

U 0 = � sin(2↵)Q+ cos(2↵)U.
(1.27)

This shows the peculiar feature of the (Q,U) Stokes parameters: they are dependent upon the

coordinate system in which they are defined, contrary to the intensity or V . We therefore have

to be very careful to the way we compute the Stokes parameters and we will see in Chapter 3

how this problem is circumvent in cosmology.

To conclude, the Stokes parameters are very useful as they are linear combinations of measur-

able quantities. The next section is dedicated to the method of detection of these polarisation

parameters. Some examples of application of the polarisation features in the field of astrophysics

will be presented.

1.2 Polarisation Detection

1.2.1 Instruments

Various materials, either natural or artificial, modify the polarisation state of the light. The

most common is the linear polariser: it transforms any light into a light linearly polarised in the

direction of its axis. The figure 1.7 displays this e↵ect in the case of a polariser, pictured as a

grid, with its axis along the vertical. Its action on the Poincaré sphere defined in the coordinate

system (OXY Z) is the projection of any point M of the sphere in a point M 0 in the (OXY )

plane. More precisely, M 0 has the coordinate (cos(2↵), sin(2↵), 0) with ↵ the angle made by the

polariser axis with respect to (OX).
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Figure 1.7: The e↵ect of a linear polariser pictured as grid on an incident unpolarised light:
the outgoing light is linearly polarised (from Wikipedia polariser page).

Two other kinds of useful analysers are the half-wave and the quarter-wave plates. Their prin-

ciple lies in introducing a phase shift of ⇡ and ⇡
2 (for the half-wave and quarter-wave plates

respectively) between the two orthogonal components of the incident light. On the Poincaré

sphere, it induces a rotation of an angle equal to the phase shift around the axis of the wave

plate. These wave plates are widely used for the detection of the light polarisation.

Finally, the devices dedicated to the detection of light polarisation are well known. We can

therefore have access to the information held in the light polarisation which are complementary

to the usual observed quantity I(t), the light intensity. The polarisation indeed probes various

physical processes up to the microscopic scale, such as the ones I will explain in the following

section.

1.2.2 Polarisation in astrophysics

In the field of astrophysics, the key property involved in polarisation studies is that any light

reflecting on a surface gives an outgoing polarised light. The induced polarisation can therefore

be a crucial source of information on distant medium.

Figure 1.8: The Crab Nebula as seen from the Hubble telescope. Its polarisation is well
known and is therefore a calibration source for CMB experiments (from APOD).
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The light polarisation is an observable of choice for planetary science. First, in the same way our

sky is polarised due to light scattering, Venus atmosphere is polarised. As this planet surface

is otherwise unobservable by current instruments, its atmosphere emission is thus crucial for

the study of this planet. Its polarimetry is consequently of interest as shown in Hansen and

Hovenier (1974). The same reasoning can be applied to Jupiter-like exoplanets as in Stam et al.

(2004). Their polarised emission can indeed help to detect and characteris them. This statement

has driven the construction of the promising zimpol instrument (which specifications are found

in Thalmann et al. (2008)) included in the sphere exoplanet imager, recently installed at the

Very Large Telescope. Moreover, other astrophysical objects such as nebula have also a polarised

emission. It originates from the reflection of the light from the inner object on the surrounding

matter. For instance, the Crab nebula, pictured in Fig. 1.8, has been intensively observed and

its polarisation is now very well known. It is thus a convenient astrophysical object for the

calibration of CMB experiments such as the polarbear experiment.

Furthermore, the dust is an appropriate example of the microphysics information revealed by the

polarised emission. The dust is indeed prominent in the interstellar medium of our galaxy and

give access to the process responsible for stellar formation. As a consequence, its constitution

and evolution are currently under scrutiny. The interstellar dust is polarised under the e↵ect

of the galactic magnetic field. It is thus a key observable to better understand the magnetic

field at galactic scales. In particular, in Planck Collaboration et al. (2014), the Planck team

has released a map of the magnetic field in the Milky Way shown at Fig. 1.9. However, the

dust polarisation is also a contaminant for the study of cosmological observable as developed in

Chapter 4. Therefore, for the understanding of the interstellar medium and also for cleanliness

of the cosmological surveys, a perfect knowledge of the dust polarisation is crucial. Also, the

ionised medium surrounding stars can be polarised by scattering.

Figure 1.9: The magnetic field in the Milky Way deduced from the dust polarisation as seen
from the Planck satellite (from Planck Collaboration et al. (2014)).

To conclude, several physical phenomenons including scattering, reflexion or magnetic field, can

induce light polarisation. Polarimetry is thus a powerful observational tool in astrophysics as it

can probe the microscopic scales physics of astrophysical objects. In order to share the knowledge

of the di↵erent communities using this key observable, an e-COST (European Cooperation in
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Science and Technology) has been dedicated to the polarisation 1 in astrophysics and cosmology

showing that the polarisation detection is decisive in our understanding of the Universe.

Conclusion

The light polarisation is of great importance for astrophysics and cosmology as it reveals a

multitude of information on the underlying processes such as the interstellar dust properties

for instance. The cosmic microwave background being one of the main cosmological probes, its

polarisation might tell us a lot about our Universe. In the next chapter, I will present the current

standard model of cosmology followed by a close look at the cosmic microwave background.

1
http://www.polarisation.eu





Chapter 2

The Cosmic Microwave

Background in the Frame of

⇤CDM Model

The existence of a remaining light from the first instants of the Universe was predicted by Gamow,

Alpher and Bethe in the late 40s. An indirect insight of this relic light has been found by McKel-

lar (1941) who studied the interestellar molecules. However, a real asset would have been a

direct detection of this cosmological background. After Dicke’s attempts for its observation, it

was unexpectedly discovered by Penzias and Wilson (1965). The existence of a cosmic microwave

backgroung radiation was therefore firmly confirmed, leading the way to numerous observations

for its utter characterisation. Meanwhile, this detection has permitted to establish the model of

the Hot Big Bang on observational ground.

2.1 The ⇤ CDM Model

Our current description of the Universe succeeds in explaining the origin of the large scale

structures, the presence of relics contents such as photons or atoms, the dynamics of the Universe

and its evolution. The observations are well outlined by the standard model but the underlying

microphysics remains under scrutiny.

2.1.1 A dynamic Universe

Universe in expansion

By virtue of his observation, Hubble (1929) has asserted that the furthest are the galaxies the

faster they recede. He has indeed measured the distance of galaxies thanks to the Cepheids

17
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emission and their velocity via the Doppler e↵ect. This observation has been interpreted as a

universe in expansion. A scale factor a(t) embodying the expansion of the universe is therefore

introduced and defined as:

r(t) = a(t)r(t = ttoday), (2.1)

with r(t) the physical distance between two objects and a(t = ttoday) = 1. The scale factor is

then varying from 0 to 1 today.

From this, we introduce the Hubble rate such as:

H(t) =
ȧ(t)

a(t)
, (2.2)

with ȧ the time derivative of the scale factor.

This e↵ect is translated in the Hubble law which quantifies the velocity of a galaxy as its own

peculiar velocity and the receding speed due to the stretch of the Universe. The redshift, denoted

z, is introduced to quantify the elongation of any light wavelength due to the expansion of the

universe. It is thus related to the scale factor as: 1 + z = a0

a(t) and defines the distance to an

object.

Since the first evidence of Hubble law, many observations have been dedicated to the refinement

of the Hubble diagram which displays the velocity of an object with respect to its distance. A

modern version of this Hubble diagram is shown in Fig. 2.1. Nonetheless, this theory is not

su�cient to explain the behaviour of the furthest galaxies. In 1998, observations of supernovae

indicated that the receding velocity is growing with the distance, as shown in Riess et al. (1998)

and Perlmutter et al. (1999). This is commonly understood as a recent accelerating expansion of

the universe which has entered an era dominated by the so-called dark energy. The numerous lat-

est accurate observations have confirmed that the Universe seems to be indeed in an accelerating

expansion state as displayed in Fig. 2.1.

General relativity and Friedmann equations

The newtonian formalism of the gravitation is the main ingredient required to roughly describe

our local environment. However, to understand the small trajectories deviations or the large

scale structures such as the galaxies, one needs a more general theory of gravitation: general

relativity. This theory first developed by Einstein tells us that the gravitation is a geometric

e↵ect: the space-time is curved by the presence of a massive object. The Einstein equations then

drive the relation between the space-time curvature and the contained mass. These equations

are very di�cult to solve in the general case. Thus the description of the Universe dynamics

requires to make a powerful assumption: the cosmological principle. It can be formulated as: the

Universe is homogeneous and isotropic at large scales. In this frame, the Einstein equations can

be solved and the metric describing the Universe is the one of Friedmann-Lemâıtre-Robertson-

Walker (FLRW). The space-time interval ds2 between two objects therefore writes:

ds2 = c2dt2 � a(t)2


dr2

1� kr2
+ r2(d✓2 + sin2(✓)d�2)

�
, (2.3)



Chapter 2. The Cosmic Microwave Background 19

Figure 2.1: Hubble diagram from past and modern supernovae measurements (from Suzuki
et al. (2012)). The black line is the expected profile for a flat ⇤CDM universe while the

coloured dots are observations.

k being the spatial curvature with k = �1, 0, 1 for an open, flat and closed universe respectively

and dr, d✓ and d� the spherical coordinates.

The Einstein equations are therefore simplified in the so-called Friedmann equations:

H2(t) = 8⇡G⇢
3 � 

a2(t) +
⇤
3 ,

ä
a = � 4⇡G

3 (⇢+ 3p) + ⇤
3 ,

⇢̇+ 3H(⇢+ p) = 0,

(2.4)

with ⇢ the energy density of the universe contents, p the pressure, ⇤ the cosmological constant

and G the gravitation constant. For perfect fluids, the pressure is related to the energy density

by the equation of state: p = w⇢. From Eqs. (2.4), the equation of state is such that w < �1/3

for an accelerated expansion of the Universe (ä > 0) while w > �1/3 for a decelerated expansion

(ä < 0).

Besides, the first equation of Eqs. (2.4) gives:

⌦k = ⌦m + ⌦⇤ � 1, (2.5)

with:

⌦m =
⇢

⇢c
, (2.6)

⌦k =
k

a2H2
,

⌦⇤ =
⇤

3H2
,
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with ⇢c =
3H2

8⇡G the critical density for which the Universe is flat.

As the Universe is expanding, it is expected to be denser and hotter in the past. In particular, the

Universe is assumed to be once in such an extreme state that general relativity cannot be applied:

it is the Big Bang singularity. This prediction from general relativity is part of the standard

model of cosmology. The model of the hot Big Bang indeed well explain the observations such

as the origin of the lightest elements in the universe as first explored by Alpher et al. (1948), or

the existence of the cosmic microwave background (CMB) for instance.

2.1.2 Components of the Universe and thermal history

From the observations and according to the standard model, the main components of our Universe

today are, by decreasing abundance: dark energy, responsible for the recent accelerated expansion

of the universe, dark matter which weakly interacts with known matter, baryonic matter, photons

and finally the curvature.

The Friedmann equations (2.4) applied to each component give di↵erent kind of dilution of their

respective density. The figure 3.2 shows the behaviour of the di↵erent components with time:

we directly see that the Universe go through epochs dominated by di↵erent components. The

temperature of the Universe is given by the photon temperature which scale as ⇠ 1
a(t) . Within

this frame, the main events that occured in our universe are recalled below along with the

Universe temperature at the time of the event, following a chronological order. This permits to

give an overview if our Universe history which is illustrated by Fig. 3.2.

Figure 2.2: The dependence of each components density with respect to the time from the
Big Bang singularity.
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GUT Scale: all the interactions except gravitation are coupled (GUT standing for Grand Uni-

fication Theory). TGUT ⇠ 1026K.

Electroweak Phase Transition: the electromagnetism and the weak interaction are decou-

pled. The Higgs mechanism breaks SU(2) ⇥ U(1)1. Quarks and gluons are in a plasma state.

T ⇠ 1016K.

QCD Phase Transition: quarks are confined in nucleons (protons p and neutrons n) by the

strong interaction. T ⇠ 1013K.

Big Bang Nucleosynthesis: the previously created protons p and neutrons n interact via:

n + p ! D + � releasing a photon � and a Deuterium nucleus D. The lightest nuclei (Deu-

terium, Tritium) are formed, followed by heavier ones (3H,4H), up to the lithium (6Li,7Li).

T ⇠ 1011 � 109K. During this time, the neutrino decouple and propagate freely, forming the

cosmic neutrino background with a temperature today of 1.96K.

Matter-Radiation equality: the Universe ceases being dominated by radiation thus starting

the matter dominated era. T ⇠ 65000K.

Recombination: the electrons are bound to the nuclei forming the first atoms. In absence of

scattering particles, the photons decouple and then propagate freely. The temperature corre-

sponding to the photon decoupling is Tdec = 3700K corresponding to an energy Edec = 0.3eV .

The photons are more abundant than the electrons (of a factor ⇠ 1010), in consequence there is

high energy photons remaining in the Universe when the energy is equal to the one of hydrogen

ionisation (Eion = 13.6eV ). These photons freely propagating in the expanding universe consti-

tute the cosmic microwave background at a temperature T ⇠ 3000K at the time of their release.

Structures Formation: the galaxies are gathered in clusters and superclusters along dense

matter filaments. The structure formation process is not yet fully understood although the

‘bottom-up’ scenario2 is favoured nowadays. The galaxy surveys such as SDSS (in Tegmark

et al. (2004)) done so far seem to match the N-body simulations which tends to lean towards

this model. The cold dark matter is however required in this scenario. T ⇠ 15K

Today: the Universe today is structured in galaxies aggregated in clusters and superclusters.

The photon bath released during recombination has a temperature today of T ⇠ 2.725K.

2.2 Cosmic Inflation Paradigm

In the previous section, the consistency of the hot Big Bang model has been show to succeed very

well in outlining the evolution and the properties of the Universe. However, a closer look reveals

some flaws in the model, three of which will be enumerated along with a qualitative explanation.

2.2.1 Three examples of the ⇤CDM model inconsistency

Flatness problem

A nearly null spatial curvature, ⌦k << 1, of the Universe is observed today: the Universe is

nearly flat. From the Friedmann equation (2.4), the density of the curvature ⌦k evolves as ȧ�2.

1
SU(2) (U(1)) is the group representing the weak (electromagnetic) interaction which has therefore 3 (1) gauge

bosons.

2
Small galaxies are formed first followed later by the large scale structures.
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In a decelerated universe, ȧ is decreasing, which means that the curvature density is growing

with time. Assuming a decelerated universe expansion from GUT scale to today, ⌦k(t0) ⇠ 10�5

today would require ⌦k(tGUT ) ⇠ 10�60. Therefore, back in the past, the curvature must have

been incredibly closed to 0. It consequently suggests that the initial conditions ought to be

extremely precise: this is known as the flatness problem.

Horizon problem

A region of causally connected events (inside the horizon) is growing with the scale factor as

pictured in Fig. 2.3. The CMB photons we receive today seem to roughly have the same temper-

ature regardless of the line of sight. Every photon is therefore expected to be causally connected

to the other in the past. However as the horizon was much smaller in the past, most photons

were necessarily causally disconnected and then not thermalised. This disagreement between

the observed CMB isotropy and the size of the horizon when photons were released is called the

horizon problem.

Figure 2.3: A sketch of the horizon problem from Dodelson (2003). Two photons emitted
from the last scattering surface outside the horizon - outside of the grey shaded conical region -
were causally disconnected. We however observe that they have roughly the same temperature.

Inhomogeneities problem

The so-called inhomogeneities problem lies in the origin of the CMB fluctuations and consequently

in today’s structures. Indeed, in the frame of a FLWR Universe, the Universe is expected to

be homogeneous and isotropic contrary to our highly structured Universe. The evolution of

the primordial fluctuations is well understood as it simply consists in a competition between

the gravitation and the expansion of the universe.Nonetheless, the origin of these primordial

perturbations is not explained in the standard model.

These three problems are examples illustrating some discrepancies that exist between the obser-

vations and the hot Big Bang model. An elegant theory have been therefore established to solve

these significant issues: the cosmic inflation.

2.2.2 Inflation as an answer

Accelerated expansion

In Starobinskii (1979) and Guth (1981), the inflation scenario was proposed to solve the flatness

and horizon controversies over the standard model. The inflation epoch is defined as a period

of accelerating expansion of the Universe, the second derivative of the scale factor is therefore
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positive. On the one hand, the curvature density decreases with time during the inflation period,

thus the curvature is diluted in the accelerating expansion since ȧ is increasing: the issue of the

curvature fine tuning is solved. On the other hand, the inflationary epoch is such that the

Universe is tremendously stretched while the comoving Hubble radius, quantifying the size of

the causally connected regions, is decreasing. At the beginning of the inflation, a causally

connected region of the Universe is expected to expand and it can become a region with size

greater than the Hubble radius at the end of inflation. Consequently, the same region observed

today will seem causally disconnected. Therefore, accounting for cosmic inflation, the CMB

photons, which appear to come from causally disconnected regions, were in causally connected

region before inflation. It explains the CMB properties such as its isotropy and homogeneity.

Hence, the inflation brings a solution to the flatness and horizon problems. It is an appealing

answer which however needs a source that accelerates the expansion of the Universe. To describe

this process, the economical theory of a scalar field may be used.

2.2.3 Scalar field inflation

The simplest way of having an ephemeral accelerating expansion of the Universe is to introduce

the presence of a scalar field at the beginning of the Universe. The main current model is a

scalar field whose potential is slowly falling towards its minima as shown on Fig. 2.4.

Figure 2.4: A scalar field slowly rolling down towards the potential minimum.

At the time of inflation, the Universe was in a fluid state with a density ⇢� and pression P�

driven by the scalar field � following:

(
⇢� = 1

2 (�̇
2 + V (�)),

p� = 1
2 (�̇

2 � V (�)).
(2.7)

To induce an acceleration of the Universe expansion, the scalar field has to satisfy: �̇2 < V (�),

making p� ⇠ ⇢� (i.e. w < �1/3). Profiling the scalar field potential by a simple well is thus

favoured. When this condition is no longer true, the inflation period stops.
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Furthermore, the slowing rolling conditions on the potential and the scalar field are:

(
�̇2 << V (�),

�̈ << 3H�̇.
(2.8)

The first equation warrants an accelerated expansion while the second one ensures the slow

evolution of the scalar field, thus guaranteeing a long enough acceleration period.

The slow roll parameters ✏V and ⌘V are introduced and defined as a function of the scalar field

potential and its derivatives:

✏V =
1

16⇡G

✓
V�

V

◆2

, (2.9)

⌘V =
1

8⇡G

✓
V��

V

◆
, (2.10)

where the subscript � stands for the derivative with respect to �. The first parameter quantifies

the slope of the potential shape while the second one measures its curvature. Therefore, the

slow-rolling conditions in Eq. (2.8) boils down to ✏V << 1 and ⌘V << 1. As shown in the next

section, the slow-roll parameters will be relevant for they are a pivot between the properties of

the scalar field and the primordial perturbations.

Therefore, the conditions for the inflationary period are such that the scalar field is expected

to be in a slow rolling potential. Such an inflationary epoch also ensures the generation of

primordial perturbations, crucial for our description of the universe.

2.2.4 From micro- to macro-fluctuations

Besides answering the flatness and horizon problem, the inflation also enables to enlarge the

microscopic quantum fluctuations to macroscopic scales. The acceleration of the universe ex-

pansion indeed produces growing modes of the perturbations. The quantum fluctuations of the

scalar field yield scalar perturbations described by a primordial power spectrum. These scalar

fluctuations are translated into density inhomogeneities which will be able to gravitationally col-

lapse to form great structures such as galaxies or clusters later in the Universe history. Thus, the

scalar perturbations generated during the inflationary epoch are the seeds of today structures.

In addition, tensor perturbations, the so-called primordial gravitational waves, emerge from the

quantum fluctuations of the traceless and divergent-free part of the metric.

The mechanism of the quantum fluctuations amplification is easier to explain thanks to tensor

perturbations. The perturbed Einstein equations give the evolution of the gravitational waves

in a spatially-flat Universe as:

(ahk)
00 +

✓
k2 � a00

a

◆
(ahk) = 0, (2.11)

with hk the tensor modes in Fourier space and
0
standing for the derivative with respect to

conformal time. The resulting tensor modes ahk therefore undergo di↵erent regimes regarding
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the sign of k2 � a00

a . If this quantity is positive, the regime is oscillatory. On the contrary, if

k2 � a00

a < 0, an exponential growing mode is solution of the equation: the tensor modes are

amplified. The exponential behaviour of the scale factor a(t) during the inflation ensures both
a00

a to be positive valued and to grow rapidly. As inflation goes, k2 � a00

a becomes negative and

the tensor perturbations are therefore generated. A similar analysis explains the generation of

the density perturbations.

The primordial power spectra of the scalar perturbations PS(k) and of the gravitational waves

PT(k) are parametrised following a power law:

PS(k) = AS ⇥ (
k

k0
)nS�1, (2.12)

PT(k) = AT ⇥ (
k

k0
)nT ,

with AS(T ) the amplitude of the scalar (tensor) modes, nS(T ) the spectral index of the scalar

(tensor) modes and k0 the so-called pivot scale, an arbitrary scale at which the perturbation

amplitude is evaluated.

In the scope of a slow-rolling inflation, the primordial power spectrum parameters are related to

the slow roll parameters ✏V and ⌘V . The scalar modes amplitude and scalar index are given by:

AS t V

24⇡2M4
Pl✏V

. (2.13)

nS � 1 t 2⌘V � 6✏V , (2.14)

The tensor modes parameters write:

AT t 2V

3⇡2M4
Pl

. (2.15)

nT t �2✏V , (2.16)

The tensor primordial power spectrum is usefully expressed by introducing the tensor-to-scalar

ratio r. It quantifies the ratio between the tensor and scalar modes amplitude at the pivot scale:

r =
AT (k0)

AS(k0)
/ ✏V . (2.17)

This phenomenological parameter is convenient to check the consistency relation:

r t �8nT. (2.18)

Its value also characterised the shape of the potential V (�). Consequently, the scalar and tensor

primordial power spectra are directly related to the potential of the scalar field and its derivatives.

A measurement of the primordial power spectra would thus determine the characteristics of the

inflationary period such as its energy. Fortunately, both the generated density fluctuations and

the gravitational waves leave their imprints during the photons released at the recombination

that form today cosmic microwave background (CMB). For this reason, the CMB is an open

window on the first instants of the Universe.
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2.3 The Cosmic Microwave Background

2.3.1 Temperature anisotropies

The CMB is the remaining light from the first instants of the Universe, its first detection was

consequently a milestone in favour of the hot Big Bang model. Before the CMB emission, the

density and temperature were such that the Universe was opaque due to the short mean free path

of the light. They were indeed constantly interacting with the free electrons of the primordial

plasma via Thomson scattering3. However, as the Universe was expanding, the temperature was

decreasing and when it reached T ⇠ 3000K, the nuclei and the electrons could form the first

lightest atoms as previously mentioned in the main steps of the Universe thermal story. The

light could then propagate freely, without collapsing with free electrons, and formed the so-called

cosmic microwave background.

As the photons were tightly coupled to the matter before being release, they have a black body

spectrum distribution with a today temperature of TCMB = 2.7260 ± 0.0013K (Fixsen (2009))

as shown in Fig. 2.5. The frequency peak is at ⌫ = 160GHz that is to say photons belong to the

microwave domain. Moreover, this light appears to be isotropic in the sky once we have removed

the so-called dipole due to the motion of the Sun in the CMB photon bath.

Figure 2.5: The black body spectrum of the CMB measured by the FIRAS instrument of
COBE satellite (Mather et al. (1994)).

At first, the CMB appears to be roughly homogeneous over the whole sky. The COBE satellite

however revealed the presence of tiny fluctuations of the CMB temperature. These fluctuations

are known to have an amplitude of:

�T

TCMB
= 10�5. (2.19)

Their spatial correlations give a prodigious amount of information on the Universe history either

on its primordial or in its late time state. The figure 2.6 displays a Mollweide projection4 of

3
Scattering of photons by a free charged particle.

4
Also known as the Babinet projection, the proportions in areas are conserved as much as possible.
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the most precise CMB temperature fluctuations map to date which has detected by the Planck

satellite in Planck Collaboration et al. (2013d).

Figure 2.6: Mollweide projection of the CMB temperature fluctuations detected by team
Planck.

Primary anisotropies

The primary anisotropies emerge from the properties of the primordial baryonic-photon fluid

before the emission of the CMB. They were sourced by the primordial fluctuations described in

the previous section. The amplitude and form of the temperature fluctuations are driven by a

competition of various processes such as the Doppler e↵ect or the Saches-Wolfe e↵ect. An utter

description of these anisotropies statistics is reviewed in Hu et al. (1997).

Secondary anisotropies

During the journey of the CMB photons from the last scattering surface to our instruments,

they have faced di↵erent cosmological phenomenons such as the reionisation or the gravitational

potential of large scale structures. The latter alter the photons’ energy through, for instance,

the Sunyaev-Zel’dovich e↵ect or the gravitational lensing. These alterations must be corrected

to fully characterise the primordial e↵ects hidden in the CMB. Also, they can be very useful to

probe the late time Universe. A complete review of those secondary anisotropies can be found

in Aghanim et al. (2008).

2.3.2 Statistics of the CMB temperature anisotropies

Instead of handling the large temperature fluctuations map, the CMB temperature anisotropies

are usually decomposed on the spherical harmonics:

T (✓,�) =
1X

`=1

aT`m(~n)Y`m(✓,�). (2.20)

The temperature can indeed be expanded in modes on the sphere with the multipoles ` - analog

to the Fourier wavenumber |~k| - the inverse of the scale between two points on the sky and m
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the orientation on the sphere. Small ` values therefore correspond to large angular scales on

the celestial sphere. The coe�cients of this decomposition contain all the information on the

amplitude of the fluctuations for a given scale.

These temperature fluctuations contain a remarkable amount of information on the state of the

scalar and tensor perturbations at the time of the last scattering surface. To extract as much

information as possible, we deal with their statistics. From the second moment of their statistics,

the angular power spectrum is built as:

ha`ma⇤`0m0i = C`�``0�mm0 , (2.21)

with h.i standing for an average over all the possible universe realisations for a given repartition

of the a`m. The C` angular power spectrum is independent of m due to statistical isotropy of the

temperature fluctuations. A peculiar feature arises from this definition: as we only have access

to one observable universe, we only do have a finite amount of information to sample the a`m

distribution. This inherent uncertainty on the observed angular power spectrum is called the

cosmic variance and is such as: 2CTT2
`

2`+1 . For a given `, there are indeed 2`+1 independent modes,

so that the cosmic variance is larger at low `. The chapter 4 is dedicated to the properties of

the angular power spectrum estimation.

The angular power spectrum C` reconstructed from the temperature CMB map of Fig. 2.6

imaged by the Planck satellite is displayed as red points in Fig. 2.7. The green line represents

the best-fit angular power spectrum of the standard model of cosmology: the model and the data

are incredibly consistent. The green area symbolises the sampling variance that is the previously

explained cosmic variance applied to an incomplete sky coverage. The Planck satellite has been

designed to get the best sensitivity by the use of fifty-two cooled down bolometers. The obtained

CMB temperature map is therefore said to be the ultimate one as its precision is only limited

by the sampling variance.

Figure 2.7: The angular power spectrum of the CMB observed by the Planck satellite from
Planck collaboration et al. (2013). The red points stand for the data while the best fit model
is displayed as a green line. The green shaded area indicates the cosmic variance magnitude.

Probing primordial perturbations

As explained in Sec. 2.2.4, the temperature fluctuations of the CMB are directly linked to the

primordial scalar and tensor perturbations in the Universe. In pratice, the CMB temperature
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angular power spectrum C` is directly related to the initial power spectrum P(k) modulated

by a transfer function �`,,S/T including the information on the evolution of the matter power

spectrum up to today and on radiative transfer:

C` =

Z
dk
⇥
�2

`,S(k, ⌘0)PS(k) +�
2
`,T(k, ⌘0)PT(k)

⇤
, (2.22)

with ⌘ the line of sight and �`,S(T ) the transfer function of the scalar (tensor) perturbations.

The transfer functions and the primordial power spectra lean on the considered cosmology and

thus depend on a set of cosmological parameters. Therefore, fitting the data with a predicted

angular power spectrum allows to set constraints on the cosmological parameters.

2.3.3 Constraints on cosmological parameters

The standard model of cosmology is described by a set of cosmological parameters. The main

ones are:

- the density of Universe contents: ⌦b, ⌦⇤, ⌦DM are respectively the density of baryonic matter,

dark energy and dark matter;

- the optical depth due to the reionisation of the Universe: ⌧ ;

- the amplitude of the primordial scalar fluctuations AS and its spectral index nS;

- the tensor-to-scalar ratio r and the spectral index of the primordial tensor fluctuations power

spectrum nT.

A large set of other cosmological parameters such as the Hubble constant H0 can be deduced

from them. Their current tightest constraints mainly come from the CMB detection from the

Planck satellite in Planck Collaboration et al. (2013c) whose observations have permitted the

elaboration of a precise temperature power spectrum from which shape can be derived the

cosmological parameters.

Figure 2.8: The universe contents as derived by the preceding experiments on the left and
by the Planck satellite on the right. Picture taken from ESA website (The scientific results

can be found in Planck Collaboration et al. (2013c)).

In 2013, the Planck collaboration has released a large set of results concerning the primordial and

the late-time Universe. The results relevant for the present manuscript concern the constraints

on inflation. However, it is worth mentioning here that the constraints on the universe contents
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are slightly changed compared to the results provided by WMAP, the former satellite dedicated

to CMB detection, as shown in Fig. 2.8.

In Planck Collaboration et al. (2013a), precise constraints on the tensor-to-scalar ratio r and

the scalar spectral index nS are calculated. With nS = 0.960 ± 0.0073, the scale invariance of

the primordial power spectrum of the scalar perturbations is excluded at more than 5�. This

strong statement favours the inflation mechanism as a generation of the density perturbations

and the gravitational waves. Moreover, r is upper bounded by 0.11 at 3� for a pivot-scale

k0 = 0.002Mpc�1. The setting constraints enable to discriminate between the abundant in-

flationary models. The figure 2.9 from Planck Collaboration et al. (2013a) shows the main

inflationary models on a (r, nS) graph along with their constraints. The ruled out models are

clearly represented on the same graph. As an example, an inflationary model with a potential

in �3 is clearly disfavoured.

Figure 2.9: Behaviour of r in function of nS for di↵erent inflation models (colored lines)
along with the constraints coming from the Planck satellite and other observations (in shaded

areas). Picture taken from Planck Collaboration et al. (2013a).

In addition, the Planck satellite has provided a tremendous amount of cosmological results.

Among others, no deviation from gaussianity of the primordial temperature fluctuations has

been shown in Planck Collaboration et al. (2013b).

Conclusion

The Planck satellite has provided an utter knowledge on the CMB temperature anisotropies and

subsequently on the cosmological parameters. The ⇤CDM remains nowadays the favoured model

to describe the evolution of the Universe. Nonetheless the CMB temperature power spectrum

fails to constrain the whole physics of inflation, such as its energy scale. However as explained

in Chapter 1, the CMB polarisation might hold some valuable information on the primordial

universe. The next chapter consequently details the characteristics of the CMB polarisation.
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CMB Polarisation

The CMB polarisation comes in two flavours: the E and B modes. The E modes have been

detected twelve years ago by the Dasi team while the B modes are still imperceptible due to their

faintness. A variety of experiments were nonetheless dedicated to their detection as they are a

unique probe of the very first instants of the Universe. This e↵ort have been rewarded by a great

stride during this year 2014. For the first time, a direct detection of the lensed B-modes has

been claimed by the polarbear experiment, and only one week later a direct detection of the

primordial B modes was announced by the bicep2 experiment. The latter detection have been

widely relayed on the web and in the newspapers (the importance of the detection has even been

explained in a comic strip1). However, since then, the primordial B modes detection remains

controversial and the BICEP2 team has tempered their conclusions on this detection.

The Planck satellite has recently given the ultimate map of the CMB temperature anisotropies

in Planck Collaboration et al. (2013d). The extracted information are the basis of the current

standard model of cosmology describing the evolution of the Universe and its contents. How-

ever, an important piece of information on the primordial Universe is not reachable using the

CMB temperature power spectrum alone. Indeed, at large angular scales, the imprints of the

gravitational waves are hidden owing to the cosmic variance. As highlighted in a generic case

in chapter 1, the CMB polarisation may be a very useful tool giving access to di↵erent physical

processes that cannot be obtained when observing only the CMB intensity. The CMB is indeed

polarised due to the state of the primordial plasma and the perturbed background. The present

chapter starts with a qualitative description of the origin of these polarised anisotropies. Because

it is linear, the CMB polarisation can be described only by the two Stokes parameters (Q,U),

but a description in E and B modes is preferred since they are physically more relevant. I will

therefore focus on the link between (Q,U) and (E,B), first within a harmonic approach, and

secondly in the real space, and eventually on the CMB polarised power spectra. The last section

of this chapter is dedicated to the current and forthcoming experiments aiming at detecting the

1
http://phdcomics.com/comics.php?f=1691
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CMB polarisation and subsequently setting constraints on cosmological parameters such as the

tensor-to-scalar ratio r.

3.1 Origins of the CMB Polarisation

3.1.1 Thomson scattering

Before the release of the CMB photons, they were tightly coupled to the matter via the Thomson

scattering. As the cross section of this interaction scales as the inverse of the squared mass of

the scattering particle, the photons were mostly scattered by the free electrons of the primordial

plasma. They have kept trace of this scattering witnessed by the temperature fluctuations today

observed in the CMB as seen in the previous Chapter 2. We explained in Chapter 1 that the

scattering is responsible for the polarisation of the light. Thus the Thomson scattering also

determines the vector description of the scattered light. The Thomson scattering di↵erential

cross section between a monochromatic electromagnetic plane wave on an electron is written as:

d�

d⌦
=

3�T

8⇡
|~✏.~✏0|2 (3.1)

with �T the total Thomson cross-section, d⌦ the elementary solid angle and ~✏ and ~✏0 the polar-

isation state of the incoming and scattered photon respectively. This equation comes from the

re-radiation along the direction ⌦ of the electron accelerated by the incoming light. Thomson

scattering of photons is accurately analysed in terms of Stokes parameters in Collett (1992).

Figure 3.1: Transmitted intensity after scattering of photons presenting a quadrupolar
anisotropy on a free electron. On the left panel, two incident perpendicular light beams with
di↵erent intensity and the resulting intensity are depicted as projected on the plane orthogonal
to the line of sight. The right panel displays the same scheme in pseudo-perspective. Picture

taken from Ponthieu (2003).

This way, the Thomson scattering selects a polarisation vector even if the incoming light is not

polarised. Moreover, the polarisation degree of the scattered light is driven by the observation

angle of the scattered light. In practice, the electric field of a non polarised light can be decom-

posed over two orthogonal axes as shown in Eq. (1.1) of Chapter 1. If such a light meets an

electron, the latter will be accelerated along the direction of the electric field and will therefore
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radiate light – the scattered light. The scattered light intensity, polarisation direction and degree

depend on the observation angle. In reality, the CMB photons can be polarised due to Thomson

scattering on the free electrons. However, in the primordial Universe made of the plasma, the

light is coming from every direction before reaching the scattering electron. Thus, Thomson

scattering of an isotropic light beam on an electron would not select a specific polarisation di-

rection. In order to observe a net polarisation of the CMB light, it is necessary for the incoming

light to be anisotropic for the scattering electron. To explain this e↵ect, we will first consider

that the electron scatters light coming from four orthogonal direction denoted by the cardinal

points: on Fig 3.1, North (South) stands for the light beam along ~e2 (�~e2) and West (East) for

the light beam along ~e1 (�~e1). Also, for convenience sake, the line of sight is along the i axis

orthogonal to the figure plane.

First of all, according to Eq. (3.1), the light coming from the North or South will give a WE

contribution to the polarisation of the scattered light observed along our line of sight. Indeed,

the scattered light does not have any component on the i axis, which is the direction of propa-

gation. In the same way, the light from the West and East will only give NS contribution. This

consideration acts as a rule of thumb which will make the conclusions easier to draw.

The simplest pattern of incoming light on the electron is an isotropic pattern: the light coming

from the four directions have the same intensity. The contributions from each light beams will

give the same contribution on the NS and WE axis of the scattered light. Or equivalently, each

light beams will accelerate the electron by the same amount thus the outgoing light electric field

has no favoured direction. As a consequence, the scattered light is not polarised.

The light can now present a dipole pattern: the intensity of the North (respectively South) light

is greater (resp. lower) than the West and East light beams which have the same intensity. Using

the rule of thumb, the light coming from West and East will induce a NS contribution. The

North light beam will provide a greater contribution on the WE components of the scattered

light. However, it will be compensated for by the lower contribution from the light coming from

the South direction. In other words, the induced acceleration of the electron is the same in all

directions: no polarisation is produced.

A more elaborated pattern is the quadrupole: the North and South light have a greater intensity

than the West and East ones. Automatically, we deduce that the selected polarisation has not

the same magnitude in the NS direction than the WE one. Since the electron is more accelerated

in the WE direction, the scattered light is then polarised.

As a result, an incoming light showing a quadrupolar anisotropy of its intensity induces a net

polarisation of the scattered light. The same kind of analysis shows that there is no other

pattern which can produce polarised scattered light. To better understand the process of po-

larisation production, we assumed the electron is surrounded by four orthogonal light beams

as an illustration. The results obtained in this example remain true for a continuous pattern.

Also, we have considered that the line of sight is perpendicular to the plane of the quadrupolar

anisotropy. In the general case, we have to integrate over all the di↵erent lines of sight which

leads to a modulation of the signal. The quadrupolar origin of the polarisation can be explicitly

derived as in Kosowsky (1996) (and interestingly interpreted in Ponthieu (2003)) by computing
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the Stokes parameters for Thomson scattering using a harmonic decomposition of the intensity.

A quadrupole corresponds to the ` = 2 components in the spherical harmonics expansion. Thus

the contribution from Y`=2,m (with m 2 [�2; 2]) of the intensity decomposition alone therefore

causes the CMB polarisation. It is noticeable that the phase of the electromagnetic wave does not

play a role in the equation (3.1). And consequently, the Thomson scattering does not produce

any circular polarisation.

As a conclusion, the CMB can be linearly polarised if the light intensity presents a quadrupolar

anisotropy around the scattering electron. The following section is dedicated to the explanation

of the existence of such anisotropies in the primordial plasma.

3.1.2 Quadrupolar anisotropies

In the electron reference frame, only the quadrupolar component Y`=2,m of the intensity decom-

position on the spherical harmonics contributes to the CMB polarisation. There exists several

configurations that coincide with a quadrupolar pattern corresponding to the di↵erent values

of the azimuthal number m (m 2 [�2; 2]). Consequently, the perturbations of the background

sourcing quadrupolar anisotropies come in three flavours: scalar (m = 0), vector (m = ±1) and

tensor (m = ±2). Each of them cause distinct polarisation pattern.

m = 0: scalar perturbations

The scalar perturbations are fluctuations of energy density which are translated into potential

fluctuations. At scales where the gravitation exceeds the pressure, over(under)-densities do

attract (respectively repel) the surrounding matter. As the gravity has a radial symmetry, this

system has an azimuthal symmetry as shown in the left panel of Fig. 3.2 displaying a density

perturbation in the primordial plasma. As a consequence, this radial case corresponds to the

Y20 component of the decomposition on spherical harmonics.

In the case of an over-density, an electron falling into the gravitational potential is accelerating

towards the centre. The forward plasma is thus falling faster than the electron while the backward

plasma is falling slower than the electron. Therefore, the electron sees the forward and backward

plasma receding from him. Moreover, the surrounding plasma in iso-latitude annulus will appear

flowing towards the electron. The photons being tightly coupled to the plasma, the intensity

distribution of the incoming light gets the same pattern. The electron thus sees light showing a

quadrupolar anisotropy as sketched in the left panel of Fig. 3.2.

Moreover, in this case, the polarisation pattern will necessarily be radial. Indeed, by applying

to the present case the rule of thumb seen in previous section and assuming that the line of

sight is perpendicular to the quadrupolar plane, the scattered light is polarised in the direction

orthogonal to the incoming light. As the electron sees a more intense light in the direction

tangent to its trajectory, the outgoing light is polarised along the radius of the perturbation as

shown in the right panel of Fig. 3.2. In the same way, the polarisation pattern is tangential

for an under-density. The symmetry of the perturbation is then memorised at the level of the

polarisation pattern.
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Figure 3.2: Over-density in the primordial plasma. Around a given electron, the light in-
tensity is quadrupolar. On the right panel, the polarisation pattern induced by the density

perturbation. Image taken from Ponthieu (2003).

m = ±1: vector perturbations

The vector perturbations are characteristics of vortical perturbation – i.e. presenting a null-

divergence but a non zero curl component of the velocity – in the cosmological fluids, they

correspond to the Y2,±1 component. Such perturbations are negligible as they do not outlast the

inflationary phase due to their amplitude being proportional to the inverse of the scale factor,

a(t). They thus will not be taken into account in the present manuscript.

m = ±2: tensor perturbations

The tensor perturbations of the perturbed metric stands for gravitational waves. When a gravi-

tational wave go through a circle of motionless test particles, the circle is deformed. The photons,

coupled to the plasma, are therefore redshifted in one direction while they are blueshifted in the

orthogonal direction. An electron being localised at the centre of the test particles therefore

sees quadrupolar anisotropy of the light intensity. The figure 3.3 shows such a process for the

plus- (+) and cross- (⇥) polarisations of the gravitational waves in the upper and lower panel

respectively. The induced polarisation pattern has a radial and a curl component.

Figure 3.3: A gravitational wave passing through a circle of motionless test particles. On
the upper (lower) panel, the gravitational wave have a ‘+’ (‘⇥’) polarisation. The induced
polarisation patterns corresponding to each gravitational wave polarisation are shown on the

right planel.
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To summarise, the Thomson scattering induces a linearly polarised light if a quadrupolar anisotropic

light scatters on electrons in the primordial plasma. Because quadrupolar anisotropies are gen-

erated by scalar and tensor perturbations, the CMB is linearly polarised. Moreover, the imprint

of the CMB polarisation is made at the last scattering of the CMB photons on the primordial

electrons. Indeed, before the recombination, no quadrupole anisotropy could remain for there

were too many Thomson scatterings. Also, after the recombination, there is no more free elec-

trons left to permit the scattering of photons. The thickness of the last scattering surface leads

to a low polarisation degree of the CMB: p = 10%.

Being linearly polarised, the CMB polarisation can be described only by the two Stokes parame-

ters (Q,U) introduced in the Chapter 1. The Figure 3.4 shows maps of the observed CMB Q and

U Stokes parameter derived from the POLARBEAR CMB observations in The POLARBEAR

Collaboration et al. (2014).

Figure 3.4: Q and U maps from The POLARBEAR Collaboration et al. (2014).

3.2 Statistics of CMB Polarisation

The CMB polarisation is a stupendous property of the primordial Universe because it traces the

density perturbations and the primordial gravitational waves amplitude. In the same manner as

temperature, the polarisation angular power spectra would be a useful tool directly extract the

cosmological information. Nonetheless, the (Q,U) Stokes parameters define a spin-(±2) field and

therefore depend on a change of coordinate system: constructing their power spectra is conse-

quently intricate but doable as in Melchiorri and Vittorio (1997). Constructing temperature-like

quantity from (Q,U) parameters could avoid this complexity. I will expose how to build such

temperature-like quantities, which are the so-called E and B modes, firstly in the harmonic

domain and secondly in the real domain. The CMB polarised power spectra are then easily built

from these scalar expressions and show peculiar feature that I will develop later.
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3.2.1 Harmonic approach: E and B modes

In this section, I will detail the main steps to derive the harmonics of the scalar fields deduced

from the (Q,U) Stokes parameters following Zaldarriaga and Seljak (1997).

From the (Q,U) Stokes parameters, the polarisation fields P±2 along the line of sight ~n that

encompass all the information about polarisation are defined:

P±2(~n) = Q(~n)± iU(~n). (3.2)

The equation (1.27) in Chapter 1 shows that, under a rotation of an angle  , such a field P±2

is transformed into P 0
±2 following:

P 0
±2(~n) = e±2i P±2(~n). (3.3)

This is why the polarisation field is by definition a spin-(±2) field. It thus can be decomposed

over the basis of the spin spherical harmonics:

P±2(~n) =
X

`m

±2a`m ±2Y`m(~n), (3.4)

or equivalently:

±2a`m =

Z
d⌦ ±2Y`m(~n)⇤P±2(~n). (3.5)

The spin-raising @ and spin-lowering @̄ operators, built from the derivatives on the sphere, respec-

tively increase or decrease the spin of a unity as shown in Goldberg et al. (1967) and Zaldarriaga

and Seljak (1997). The spin-(±2) spherical harmonics, ±2Y`m, are linked to the standard spher-

ical harmonics following:

2Y`m =
1

p
↵`

@@Y`m,

�2Y`m =
1

p
↵`

@̄@̄Y`m, (3.6)

with ↵` =
q

(`+2)!
(`�2)!

A spin-0 quantity can thus be deduced from the spin-(±2) polarisation field multipoles in Eq. 3.5

using twice the spin-raising @ and spin-lowering @̄ operators and by integrating by part:

2a`m = 1
↵

`

R
d⌦Y ⇤

`m(~n) @̄@̄P2(~n), (3.7)

�2a`m = 1
↵

`

R
d⌦Y ⇤

`m(~n) @@P�2(~n). (3.8)

From the spin multipole coe�cients ±2a`m, two new relevant multipoles are introduced:

aE`m = �1

2
[ 2a`m + �2a`m ],

aB`m =
i

2
[ 2a`m � �2a`m]. (3.9)
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The E and B multipoles are characterised by their behaviour under parity change. The Eq. (1.15)

of Chapter 1 recalls the expression of the (Q,U) Stokes parameters. If the coordinate system

( ~ex,~ey) undergoes a parity transformation in ( ~ex
0, ~ey

0) = ( ~ex,�~ey), then the Stokes parameters

are straightforwardly expressed as Q0 = Q and U 0 = �U . Consequently, the E multipoles aE`m
are not changed under this transformation while the B modes multipoles aB`m become �aB`m.

The behaviour of E and B multipoles under parity change is the reason for their denomination

recalling the electric and magnetic field properties.

The built E and B multipoles, aE`m and aB`m respectively, are the coe�cients of the scalar E and

B modes fields:

E(~n) =
X

`m

aE`mY`m(~n),

B(~n) =
X

`m

aB`mY`m(~n). (3.10)

Alternatively, the E and B modes have a unequivocal correspondence with respectively divergent-

and curl-like quantity as shown in Kamionkowski et al. (1997). As a result, the decomposition

in the harmonic domain of the spin-(±2) polarisation field allows the construction of the scalar

quantities E and B.

3.2.2 Real space approach: �E and �B fields

Otherwise, it is possible to adopt a real space approach to construct scalar quantities from the

(Q,U) Stokes parameters as in Zaldarriaga and Seljak (1997). To this purpose, the spin-raising

and spin-lowering operators are applied twice to the polarisation field, thus defining two new

scalar quantities denoted �E/B related to the E/B modes:

�E(~n) = �1

2
[@̄@̄P2(~n) + @@P�2(~n)], (3.11)

�B(~n) =
i

2
[@̄@̄P2(~n)� @@P�2(~n)].

The �E/B fields are thus scalar maps which contain all about the polarisation information.

Moreover, they give a local description of the polarisation field.

Using the previous equations along with Eqs. (3.8), it can be easily shown that the �E/B field is

directly related to the E/B modes in an unambiguous way by:

�E =
X

`m

↵`a
E
`mY`m, (3.12)

�B =
X

`m

↵`a
B
`mY`m. (3.13)

Therefore, the �E/B fields are equivalent to the E and B modes as derived in the harmonic

domain, though �E/B field power spectra di↵er from the E and B ones by a factor of ⇠ `4.
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As a consequence, although the observables of the polarisation field are the (Q,U) Stokes pa-

rameters, the decomposition in E and B modes in the harmonic space or in �E and �B fields in

the real space is more convenient. Indeed, these quantities are scalars that enable to build the

polarisation power spectra. In addition, the decomposition in E and B fields has also an under-

lying benefit: they are directly related to the physics of the primordial universe as described in

the following section.

3.2.3 E and B modes physical interpretations

In this section, we will consider the E and B modes as constructed in the harmonic space albeit

the same conclusions can be drawn for the �E/B fields. The main issue for interpreting the E

and B modes is that they are not locally related to the (Q,U) Stokes parameters. We cannot

deduce the value for E or B modes on a given pixel from the observed (Q,U) parameters on

the same pixel. Nonetheless, the E and B modes have characteristic polarisation patterns. As

shown above, the E modes are an even quantity therefore the corresponding polarisation pattern

should be also parity invariant. On the contrary, the B modes are an odd quantity as their sign

change under a parity transformation.

From previous considerations, we have acknowledged that the scalar perturbations always pro-

duce a symmetric polarisation pattern, so they only account for the even E modes. The figure 3.3

shows that the gravitational waves are partly invariant and partly variant under a parity trans-

formation. In the reference frame (O,~e1,~e2) in Fig. 3.3, the + polarisation gravitational waves

displayed in the upper panel are indeed even while the ⇥ polarisation gravitation waves on the

lower panel are odd. The even gravitational waves can thus induce both temperature (T modes)

and E modes. The odd gravitational waves can however only generate B modes pattern in the

CMB, unlike scalar perturbations. In other words, the B modes are only a signature of the

tensor perturbations.

However, from the last scattering surface, the CMB photons have crossed gravitational potentials

implying that they are deflected, which results in E modes deformation. The distorted E modes

behave like B modes and are thus called the lensed B modes. Fortunately, this only a↵ects the

small angular scales of the B modes pattern while the primordial signal in B modes is expected

to be predominant on the largest scales.

Thus, the large scales B modes are a powerful probe of the primordial universe as they are a

signature of the primordial gravitational waves. The latter also a↵ect the temperature and E

modes anisotropies power spectra. Nonetheless, the contribution from the scalar perturbations

overwhelms the tensor perturbations presumed to be low. Thus, the B modes power spectra is

a key quantity to target the primordial universe.

3.2.4 Polarisation power spectra

The CMB temperature and polarisation power spectra are built thanks to the scalar description

of the polarisation field. Similarly to the temperature, the polarised power spectra are defined
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by:

< aT`maT⇤
`0m0 >= CTT

` �``0�mm0 ,

< aE`maE⇤
`0m0 >= CEE

` �``0�mm0 ,

< aB`maB⇤
`0m0 >= CBB

` �``0�mm0 ,

< aE`maE⇤
`0m0 >= CTE

` �``0�mm0 ,

< aT`maB⇤
`0m0 >= CTB

` �``0�mm0 ,

< aE`maB⇤
`0m0 >= CEB

` �``0�mm0 . (3.14)

with aT/E/B
`m the coe�cients of the decomposition of the T ,E and B modes on the spherical

harmonics Y`m and ±2Y`m. We point out that the �E/B can also be used to build the power

spectra but, as mentioned upwards, the E and B modes power spectra are more convenient.

Furthermore, as the E modes are even and the B modes are odd, the TB and EB cross-

correlations are expected to vanish in the standard model of cosmology as the universe is parity

invariant. It is worth reminding that although the B modes are odd, their power spectrum is

even because it involves squared quantities.

Figure 3.5: Scalar (tensor) contributions to the power spectra T , E and B modes and to the
TE correlations on the left (right) panel (from Challinor (2013)).

The figure 3.5 shows the scalar (left panel) and tensor (right panel) part of the temperature as

well as the polarised power spectra, from Challinor (2013). The temperature is, as expected,

at least an order of magnitude higher than the polarisation. Furthermore, the temperature and
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the E modes are anti-correlated because of the E modes amount for the velocity gradient in the

primordial plasma, whereas the T -modes are only sensitive to the velocity itself. Moreover, the

bump at ` . 10 in the polarised power spectra is the signature of a second scattering process

during the reionisation, the formation of the first stars. Besides, the B modes power spectra

is decomposed on its expected primordial tensor part, peaking at low `, and its lensing scalar

part, dominating at ` ⇠ 1000. In the end, the detected power spectra are the sum of the two,

scalar and tensor, contributions. Nevertheless, the temperature, E modes power spectra and TE

correlations are dominated by the scalar contribution which is at least one order of magnitude

higher than the tensor contribution, as clearly shown on Fig. 3.5. It establishes the B modes as

a unique signature of the tensor perturbations at low `.

Furthermore, the angular power spectra C` directly depend on the primordial power spectra P (k).

The peculiar case of the temperature power spectrum of the Eq. (2.22) formula is generalized

following:

CXY
` =

Z
dk
⇥
�X

`,S(k, ⌘0)�
Y
`,S(k, ⌘0)PS(k) +�

X
`,T(k, ⌘0)�

Y
`,T(k, ⌘0)PT(k)

⇤
, (3.15)

where X and Y stand for T , E or B modes. The tensor perturbations being the only responsible

for the B modes existence, in this case we have the equation:

CBB
` =

Z
dk
h
�B

`,T

2
(k, ⌘)PT(k)

i
. (3.16)

The tensor primordial power spectrum PT(k) therefore drives the B modes angular power spec-

trum shape which thus can be potentially used to constrain the tensor parameters r or nT.

parameter constrains

As just mentioned, the angular power spectra are sensitive to the cosmological parameters. The

E modes are caused by the same perturbations than the ones causing temperature fluctuations,

they therefore o↵er a redundancy on their determination. However, they also enable to break

degeneracy between cosmological parameters. In particular, the E modes give an important

constraint on the reionisation optical depth ⌧ thus breaking the degeneracy between for instance

⌧ and the scalar spectral index nS.

The origin of the B modes being the tensor perturbations, their detection at large angular scales

would provide the best constraints on the tensor-to-scalar ratio r, which gives the scale of the

energy scale of inflation. The temperature and E modes power spectra are indeed not su�cient

to set tight constraints on r as the signal is overwhelmed by the higher scalar contribution as

shown in Fig. 3.5. Their detection can therefore only help to set upper bounds on r since the

tensor contribution is within the cosmic variance. Moreover, the B modes power spectrum is also

a↵ected by the reionisation, it would then help to constrain ⌧ . At smaller scales, the detected

B modes power spectrum enables to check our knowledge on the gravitational potential field in

the universe thus providing information about the great structures formation.

The detection of the CMB B modes is thus essential in modern observational cosmology for the

study of the first instants of the universe. Numerous kinds of experiments aiming at detecting
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either its primordial or lensing part are ongoing or being developed. The low expected signal is

however an instrumental challenge to overcome which requests a meticulous design.

3.3 CMB Polarisation Detection
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Figure 3.6: TT , EE and TE power spectra from the ACTPol experiment. Picture taken
from Naess et al. (2014).

The era of CMB polarisation observation has begun with the first detection of the E modes

by Leitch et al. (2002), Kovac et al. (2002). Ever since, important improvements have been

made on the instrumental aspect as well as on the data analysis domain to answer the challenge

that represents the CMB polarisation detection. A profusion of experiments has been designed

to obtain the E modes power spectrum. The ACTPol collaboration has recently provided

an accurate reconstruction of the temperature, E modes and their correlations at small scales

(` 2 [200; 9000]) as shown in Fig. 3.6 from Naess et al. (2014).

The WMAP satellite had access to the largest scales allowing for a reconstruction of the E

modes power spectrum for ` 2 [26; 500] as shown in Fig. 3.7. The data from the Planck satellite

are however expected to provide better constraints especially at the lower multipoles.

The B modes power spectrum is a key issue for the completion of the standard model of cosmol-

ogy. The motivation for its detection therefore leads the way to designing a large set of ground

based spatial or balloon experiments. The figure 3.8 displays the past and current constraints

on the B modes power spectrum. The B modes were still imperceptible to our instruments

up to the beginning of 2014. Indeed, the POLARBEAR experiment has directly detected the

lensed B-modes at small angular scales (` 2 [500; 2100]) for the first time in The POLARBEAR

Collaboration et al. (2014). The reconstructed lensed B modes power spectrum is displayed on

the figure 3.8 as blue points.

In March 2014, the BICEP2 team claimed the very first detection of the primordial B modes in

the multipole range of ` 2 [30; 150] in Ade et al. (2014). The corresponding data points are dis-

played in black on the Fig. 3.8. This observational achievement sets the current best constraints
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Figure 3.7: E modes power spectrum from the 7-yr WMAP experiment (from Larson et al.
(2011).)

Figure 3.8: Earlier constraints and current measurements of the B modes power spectrum.

on the tensor-to-scalar r to r = 0.2+0.07
�0.05. However, their results are controversial mainly due to

the way they remove the foregrounds, that are thought to be underestimated (see Mortonson

and Seljak (2014) or Flauger et al. (2014) for instance). These results, though impressive, should

be regarded with precautions: confirmation or invalidation from the Planck satellite is expected

in the next few months since it will provide a measurement of the foreground contamination in

the BICEP2 field of view. Contrary to BICEP2 experiment that only observes at 150 GHz, the

Planck satellite has nine frequency channels which enables to e�ciently estimate the galactic

foregrounds, and especially of the galactic dust emission thanks to the HFI instrument.

Observational and theoretical cosmology are consequently living an exciting era as for the first

time, the primordial universe is directly observable. This year 2014 is indeed a pivot in the B

modes detection and the obtained results are a good augur for the exploitation of the B modes

power spectrum. Furthermore, the current experiments dedicated to the B modes detection

among which POLARBEAR 2 (see Tomaru et al. (2012)) or the Keck array (see Staniszewski

et al. (2012)) will be upgraded in the coming years. Also the QUBIC experiment (Qubic Col-

laboration et al. (2011)) based on bolometric interferometry is one of the promising forthcoming
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B modes experiments to be built. Moreover, B modes observation over the full celestial sphere

would give access to the crucial low multipoles, including the reionisation bump, of the B modes

power spectrum. Several spatial experiments such as LiteBird (which design is described in

Matsumura et al. (2013)) or a Core-like satellite (see The COrE Collaboration et al. (2011)) are

under studies to be proposed in the coming years to the spatial agencies.

Conclusion

The B modes detection is part of current observational cosmology challenges as they are a unique

open window on the primordial universe physics. To answer these, a large set of experiments

is currently acquiring data or being upgraded and some new experiments are being designed.

However, the B modes signal is low compare to the T or E modes. The uncertainties on

its detection have therefore to be fully understood in order to set the best constraints on the

primordial universe parameters. The noise level of the CMB experiments is lowering thanks to

the instrumental improvements. The data analysis have therefore to be very accurate to take

benefit of the high quality data taken by the instruments. Nonetheless, any kind of experiment

provides noisy (but still at a low level), pixelised CMB maps covering only a small part of the

celestial sphere. Crucial issues such as the E-to-B leakage arise from these inherent experimental

features and can ruin all the work of map making or foregrounds cleaning.

The following part II is therefore dedicated to my work on accurate estimation of the B modes

power spectrum taking into account the complications in analysis of the CMB maps. In the

part III, I will expose the constraints on the primordial physics such as inflation, parity violation

or magnetic field that one can put from the properly estimated B modes power spectrum in the

case of current and forthcoming CMB experiments.
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Chapter 4

Power Spectrum Estimation

Cosmology is a science like no other: we study a unique realisation of a process, our only and

unique Universe in which we live. The cosmic variance originates from this peculiar feature.

Also, I like to see cosmology as a science of variances as the main information we have from the

CMB is contained in the angular power spectrum, which is nothing less than the variance of the

a`m distribution.

4.1 A Brief Overview of Data Analysis

In order to e�ciently extract their cosmological information, the acquired CMB data undergo

a long process which is described in Tristram and Ganga (2007). The current experiments

dedicated to the CMB polarisation observation (such as the HFI instrument of Planck satellite

for instance) are based on bolometers sensitive to polarisation. These detectors provide raw

data which are then transformed in time-ordered data (TOD) removing parasitic signals from

electronic or external sources such as the glitches. The TOD go through an important pipeline

including a step which consists in subtracting the systematics such as thermal fluctuations or

1/f noise present in the TOD. Afterwards, the detectors features such as its gain, its pointing or

its response to a point source are reconstructed. The next key step is the noise power spectrum

estimation which has to be properly done to ensure the cleanliness of the data. The data analysis

pipeline goes on with the map-making: the clean data are projected on a pixelised map of the

sky. The pixelisation used in the present work is the common one: the HEALPIX pixelisation

from Górski et al. (2005) in which the pixels have the same area and are distributed in iso-

latitude rings. The obtained CMB maps thus contain the CMB signal along with the one from

astrophysical foregrounds such as dust emission, a dominant foreground beyond 100GHz, or

point sources emissions superposed to the CMB signal. Taking advantage of their spectral and

spatial distributions, di↵erent methods are constructed to separate them from the CMB signal.

However, the galactic emission – at least its most intense part – and the point sources are usually

47



Chapter 4. Power Spectrum Estimation 48

simply masked reducing the observed fraction of the sky. Once clean CMB maps are obtained,

the very last step of the analysis is the power spectrum estimation which has to be properly

carried out in order to profit from all the data analysis pipeline.

The main goal of the present chapter is precisely to carefully estimate the CMB polarised power

spectra on masked CMB maps which have gone through all the previous pipeline (including

foregrounds subtraction). The standard way of reconstructing the CMB polarisation in the

harmonic domain indeed leads to a problematic e↵ect in the case of an incomplete sky coverage:

the E-to-B leakage. This e↵ect can be disastrous for the CMB polarisation detection even if the

previous pipeline provides the cleanest CMB (I,Q, U) maps. Diverse methods which circumvent

the E-to-B leakage have been proposed in the literature in the recent years. During my PhD I

choose to focus only on the ones based on the pseudospectrum estimation for they are expected

to be fast in analysing the large amount of produced CMB maps. I therefore firstly give a

brief overview on ‘cosmostatistics’ paying particular attention to the pseudospectrum estimation

in Sec. 4.2. Secondly, the section 4.3 is dedicated to the principle of the standard method to

reconstruct the CMB polarisation, highlighting the E-to-B leakage. Thirdly, the section 6.3

give hints on the optimal estimator which can finally be well approximated by pseudospectrum

approaches. Three of them correcting for the leakage at all the order moments of the statistics

are exposed in Sec. 4.5.

All along the analysis, the binary mask (equal to 1 on observed pixels and 0 if not observed) will

be denoted M(~n) while the window function, taking its values between 0 and 1 will be referred

to as W (~n).

4.2 Harmonic Approach of the CMB Statistics

The current and forthcoming experiments dedicated to the CMB detection are producing sub-

stantial amount of data: the Planck satellite has for instance provided TeraBytes of raw data to

be analysed. In order to extract the cosmological information from the CMB maps, the usual

procedure is to perform the data analysis in the harmonic domain instead of the pixel space.

A map of Npix pixels (Npix ⇠ 105(107) for small (large) scale experiment) is indeed equivalent

to a set of about
p
Npix numbers in the harmonic domain which contains all the information

assuming isotropy and gaussianity of the CMB anisotropies (`max C` with `max ⇠
p
Npix).

The founding principle for the extraction of information from the CMB (I,Q, U) maps in the

harmonic domain is thus the construction of the power spectrum C`. It takes advantage of the

statistical properties of the CMB as its statistical isotropy. Nevertheless, the CMB being a non

reproducible experiment, peculiar statistical features arise and a↵ect the reconstruction of the

power spectra. In order to present the main ideas of these features, I will first take the example

of a perfect detection of the CMB anisotropies followed by a realistic detection.
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4.2.1 An ideal detection

In this section, a perfect and ideal detection of the CMB temperature anisotropies – i.e. over all

the celestial sphere and with no instrumental noise – is assumed.

Usually, a power spectrum is built from the Fourier transform of the signal. However, the CMB

anisotropies potentially contain information at all scales on the celestial sphere, its accurate ex-

pansion is then made on the orthonormal basis on the sphere, equivalent to the Fourier transform:

the spherical harmonics Y`m. The CMB temperature and polarised anisotropies give:

T (~n) =
X

`m

aT`mY`m,

P±2(~n) = �1

2

X

`m

(aE`m ± iaB`m)±2Y`m(~n), (4.1)

with ~n the vector defining the line of sight direction and P±2(~n) = (Q± iU)(~n).

All the statistics of the CMB anisotropies is consequently contain in the aT`m, aE`m and aB`m
distribution. Due to the physics of the CMB anisotropies, their distribution is thought to be a

Gaussian with zero mean. The cosmological information consequently lies in the variance of this

process. The true CMB power spectrum CXY
` is then related to the multipole variance as:

⌦
aX`maY ⇤

`0m0
↵
= CXY

` �``0�mm0 , (4.2)

with X,Y either the temperature T or the E and B modes. If X = Y , CXX
` is called the

auto-spectrum and cross-spectrum if not.

As explained in the Chapter 2, the brackets h.i stand for an ensemble average over all the possible

realisations of the universe, or in other words over all the sets of multipoles a`m. Carrying out

such an ensemble average is equivalent to averaging over the CMB anisotropies observations

seen by all possible observers in our universe. This operation obviously can not be achieved as

we observe only one realisation of our Universe. Nevertheless, the ergodic principle enables to

partly circumvent this observational limitation. Indeed, the continuous average over the possible

realisations of our universe can be translated into a discrete arithmetic average on independent

directions on the sky. The obtained quantity is the so-called estimator of the CMB XY power

spectrum:

Ĉ`
XY

=
1

2`+ 1

X̀

m=�`

aX`maY ⇤
`m. (4.3)

The estimator is thus the observable we have access to, the issue is now to know how it is related

to the underlying true CMB power spectrum CXY
` . We would especially expect the estimator to

coincide with the true power spectrum in a particular way. To answer this question, the statistics

of the CMB power spectrum estimator have to be studied.
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First of all, using the above equations (4.2) and (4.3), the first statistical moment of the CMB

estimator ĈXY
` is:

D
Ĉ`

XY
E

=
1

2`+ 1

X̀

m=�`

⌦
aX`maY ⇤

`m

↵

=
1

2`+ 1

X̀

m=�`

CXY
` �``0�mm0

=
1

2`+ 1
⇥ (2`+ 1)CXY

` = CXY
` . (4.4)

The mean of the CMB power spectrum estimator is therefore the true CMB power spectrum

itself: the estimator is said to be unbiased. Consequently, the estimator of the CMB anisotropies

we have access to does correctly reconstruct the true CMB power spectrum on average. How-

ever, an accurate reconstruction of the CMB anisotropies power spectrum can be ruined by the

uncertainties on the CMB power spectrum estimator.

Using Eq. (4.3), the full covariance of the CMB XY power spectrum estimator ĈXY
` is:

⌃XY,X0Y 0

`1`2
=

D
ĈXY

`1 ĈX0Y 0

`2

E
�
D
ĈXY

`1

ED
ĈX0Y 0

`2

E

=
1

2`1 + 1

1

2`2 + 1

`1X

m1=�`1

`2X

m2=�`2

D
aX`1m1

aY ⇤
`1m1

aX
0

`2m2
aY

0⇤
`2m2

E
�
D
ĈXY

`1

ED
ĈX0Y 0

`2

E
.(4.5)

As the estimator is unbiased, the last term of the right-hand side of this equation (4.5) is directly

CXY
`1

CXY
`2

. The four-point correlation function in the first term of the right hand side of Eq.

(4.5) can be expressed thanks to Wick theorem (as the CMB anisotropies are a Gaussian process)

as:

D
aX`1m1

aY ⇤
`1m1

aX
0

`2m2
aY

0⇤
`2m2

E
=

⌦
aX`1m1

aY ⇤
`1m1

↵ D
aX

0

`2m2
aY

0⇤
`2m2

E

+
D
aX`1m1

aX
0

`2m2

ED
aY ⇤
`1m1

aY
0⇤

`2m2

E

+
D
aX`1m1

aY
0⇤

`2m2

ED
aY ⇤
`1m1

aX
0

`2m2

E
. (4.6)

By definition of the unbiased power spectrum estimator, the first term of this summation gives:

1

2`1 + 1

1

2`2 + 1

`1X

m1=�`1

`2X

m2=�`2

⌦
aX`1m1

aY ⇤
`1m1

↵ D
aX

0

`2m2
aY

0⇤
`2m2

E

=
1

2`1 + 1

1

2`2 + 1
(2`1 + 1)(2`2 + 1)CXY

`1 CX0Y 0

`2 = CXY
`1 CX0Y 0

`2 . (4.7)

This term therefore cancels with the last term of the right-hand side of equation (4.5). Besides,

making use of the property of the multipole stating that a`(�m) = (�1)ma⇤`m and noticing that

the summation is symmetric, the second term of the four-point correlation function expression
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can be written as:

1

2`1 + 1

1

2`2 + 1

`1X

m1=�`1

`2X

m2=�`2

D
aX`1m1

aX
0

`2m2

ED
aY ⇤
`1m1

aY
0⇤

`2m2

E

=
1

2`1 + 1

1

2`2 + 1

`1X

m1=�`1

`2X

m2=�`2

CXX0

`1 �`1`2�m1m2
CY Y 0

`2 �`1`2�m1m2

= CXX0

`1 CY Y 0

`2 �`1`2 . (4.8)

Additionally, proceeding as for the first term, the third term of the four-point correlator can be

simplified into:

1

2`1 + 1

1

2`2 + 1

`1X

m1=�`1

`2X

m2=�`2

D
aX`1m1

aY
0⇤

`2m2

ED
aY ⇤
`1m1

aX
0

`2m2

E

=
1

2`1 + 1

1

2`2 + 1

`1X

m1=�`1

`2X

m2=�`2

CXY 0

`1 �`1`2�m1m2C
Y X0

`1 �`1`2�m1m2

= CXY 0

`1 CY X0

`2 �`1`2 . (4.9)

Thus, adding Eqs. (4.8) and (4.9), the generic expression for the covariance of the CMB XY

power spectrum estimator results in:

⌃XY,X0Y 0

`1`2
=

CXX0

`1
CY Y 0

`2
+ CXY 0

`1
CY X0

`2

2`1 + 1
�`1`2 , (4.10)

the covariance is therefore diagonal.

As an example, the covariance of the B modes power spectrum estimator has the following

expression:

⌃BB,BB
`1`2

=
2�`1`2
2`1 + 1

CBB
`1

2
. (4.11)

The full covariance of the CMB XY power spectrum estimator is therefore depending on the

true CMB power spectrum itself. This unusual behaviour is owing to the lack of independent

directions to average on at large scales: the lower is `, the higher is the covariance of the estimator.

In other word, the a`m distribution for a given ` is not sampled enough for low ` to e↵ectively

reconstruct its true distribution. The resulting covariance is called the cosmic variance.

As a consequence, the estimator ĈXY
` of the CMB anisotropies is unbiased but its reconstruc-

tion accuracy is limited by the inherent cosmic variance. Besides, the assumption of a perfect

detection is ideal: the construction of the CMB power spectrum estimator has to be adjusted in

the presence of experimental e↵ects.
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4.2.2 A noisy sky

In this section, the detection is supposed to be made over all the celestial sphere but with an

instrumental noise. The CMB anisotropies observations are thus altered by irreducible experi-

mental e↵ects. Two main e↵ects will be considered: the instrumental noise and the experimen-

tal main beam function, whose angular power spectrum can be derived. As shown in Tegmark

(1997a), the multipole b` of a Gaussian beam function is indeed well approximated by:

b` = e✓
2
b

`(`+1)/2, (4.12)

with ✓b the standard deviation of the Gaussian beam.

Furthermore, as derived in Kamionkowski et al. (1997) and Zaldarriaga and Seljak (1997), a uni-

form instrumental noise can be considered as an additional random field with a power spectrum

such as:

N` =
4⇡�2

Npix
, (4.13)

with � the root mean square of the noise in each of the Npix pixels.

In this frame, the estimator of the CMB XY power spectrum is changed regarding the previous

ideal case and is given by:

ĈXY
` =

1

2`+ 1

X

m

(b`a
X
`m + nX

`m)(b`a
Y
`m + nY

`m)⇤, (4.14)

with n`m the harmonic coe�cients of the noise. Under the realistic assumption of uncorrelated

CMB signal and noise, the correlator
⌦
aX`mn`m

↵
cancels. As the signal estimator is unbiased (see

previous section), the mean of the power spectrum estimator is therefore simplified into:

D
ĈXY

`

E
= b2`C

XY
` +NXY

` , (4.15)

with N` defined as: N` = 1
2`+1

P
m

hn`mn⇤
`mi. If the noise and beam power spectra are known,

the estimator thus can be debiased.

As previously computed, the variance of the estimator ĈXY
` is expressed as:

⌃XY,X0Y 0

``0 =
�``0

2`+ 1
[(CXX0

` +
NXX0

`

b2`
)(CY 0Y 0

` +
NY Y 0

`

b2`
)

+(CX0Y
` +

NX0Y
`

b2`
)(CXY 0

` +
NXY 0

`

b2`
)]. (4.16)

The estimator of the total CMB power spectrum is therefore unbiased and its variance is a

combination of the cosmic variance, noise and beam e↵ects. Nonetheless, an unavoidable issue

still have to be taken into account: the partial sky coverage of any CMB experiment.
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4.2.3 A masked sky

The observations of the CMB anisotropies on the whole celestial sphere are in practice infeasible.

In the case of suborbital experiments (ground-based or balloon borne), Ja↵e et al. (2000) indeed

showed that only few percent of the sky are required for an optimal B modes detection, for

a fixed time of observation and sensitivity. Besides, a carefully chosen mask – choose as a

compromise between foregrounds contamination removal and loss of statistics – is generally

applied to the CMB maps provided by a satellite mission. In this case, the e↵ective sky coverage

can fall from the expected 100% to ⇠ 70% of the sky. We intuitively expect this e↵ect to be

dramatic for the CMB power spectrum reconstruction especially for the large angular scales. The

estimator introduced in equation 4.14 can be debiased from this e↵ect. An approximation of the

resulting covariance matrix is obtained by simply counting the accessible modes and neglecting

the correlations between modes. Thus the covariance matrix writes:

⌃XYX0Y 0

``0 =
�``0

(2`+ 1)fsky
[(CXX0

` +
NXX0

`

b2`
)(CY Y 0

` +
NY Y 0

`

b2`
)

+(CX0Y
` +

NX0Y
`

b2`
)(CXY 0

` +
NXY 0

`

b2`
)]. (4.17)

This variance will be refer to the mode-counting variance in the following. The variance obtained

without instrumental noise is called the sampling variance and is thus written as Eq. (4.10)

replacing 2`+ 1 by (2`+ 1)fsky. As expected, the equation (4.17) shows that the low ` range of

the true CMB power spectrum is less precisely reconstructed in the case of a small scale survey.

This reasoning however does not explicitly take into account all the issues arose by a partial sky

coverage. An appropriate estimator and the non idealised variance has to be derived to ensure

a proper reconstruction of the true CMB power spectrum on a masked sky.

4.3 The standard pseudospectrum approach

In order to correctly reconstruct the true CMB power spectrum on a portion of the celestial

sphere, an approach built on previous discussions, the so-called pseudospectrum approach, is

usually employed. In this section, I will first expose the principle of this standard approach in

the case of the CMB temperature anisotropies. The standard approach consists in decomposing

the masked CMB anisotropies on the spherical harmonics and then correcting for these masking

issues at the level of the power spectrum mean (see MASTER method in Hivon et al. (2002)). The

more di�cult case of the CMB polarisation anisotropies will be treated afterwards highlighting

the issue of the E-to-B leakage.
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4.3.1 CMB temperature

The coe�cient of the masked temperature map decomposition on the basis of the spherical

harmonics are called the pseudomultipoles. They are expressed as:

ãT`m =

Z

⌦

T (~n)M(~n)Y ⇤
`m(~n)d~n, (4.18)

with ~n the vector defining the line of sight direction and ⌦ the observed fraction of the sky (thus

⌦ < 4⇡). M is the binary mask which is 1 in the observed or kept-in-analysis pixels while 0 if

unobserved.

Using the decomposition of the true temperature anisotropies on the Y`m in equation (4.1), the

temperature pseudomultipoles are related to the true temperature multipoles as:

ãT`m =

Z

⌦

X

`0m0

M(~n)aT`0m0Y`0m0Y ⇤
`md~n

=
X

`0m0

K`m,`0m0aT`0m0 , (4.19)

with K`m,`0m0 =
R
⌦
M(~n)Y`0m0Y ⇤

`md~n, the convolution kernel only depending on the applied

mask. It drives the induced coupling between the modes (`,m) and (`0,m0). The origin of such

a convolution kernel can be understood as the Y`m not being orthogonal on a portion of the

sphere.

By correlating the pseudomultipoles, the temperature pseudospectrum is built as:

C̃TT
` =

1

2`+ 1

X

m

ãT`mãT⇤
`m. (4.20)

The pseudospectrum can be expressed as a function of the true multipoles thanks to the equa-

tion (4.19) as:

C̃TT
` =

1

2`+ 1

X

m

X

`00m00

X

`0m0

K`m,`0m0K⇤
`m,`00m00aT`0m0aT⇤

`00m00 . (4.21)

In order to recover the underlying true CMB temperature multipoles, we therefore need to

invert the convolution kernels for each m and m0 for each multipole ` thus asking for heavy

computations. However, carrying out an ensemble average on the pseudospectrum gives a more

straightforward and computationally tractable relation:

< C̃TT
` >=

X

`0

K``0C
TT
`0 , (4.22)

where the convolution kernel K``0 stands for: K``0 = 1
2`+1

P
mm0

|K`m`0m0 |2. Nonetheless, as we

have underlined it in the section 4.2, an ensemble average cannot be performed on all the possible

realisations of the Universe. As a consequence, we define an estimator ĈTT
` of the true angular

power spectrum CTT
` , called the pseudo-C` estimator as:

C̃TT
` =

X

`0

K``0Ĉ
TT
`0 . (4.23)
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The interest of the defined estimator is that it is unbiased, the previous expression indeed

straightforwardly gives:

< ĈTT
` >= CTT

` . (4.24)

An estimator of the temperature pseudospectrum accounting for the issue of the partial sky

coverage has consequently been built. In the realistic case of an experimental CMB detection,

the estimator ĈTT
` is defined by inverting the following system:

C̃TT
` =

X

`0

K``0b
2
`0Ĉ

TT
`0 +N`, (4.25)

with b2` and N` the beam and noise power spectrum respectively.

The pseudospectrum C̃TT
` is debiased firstly from the noise by subtracting its power spectrum,

secondly from the beam and finally from the mode mixing by inversion of the K``0 matrix.

Besides, if the power spectrum estimator is built by correlating two sets of aT,(A)
`m and aT,(B)

`m

coming from two di↵erent uncorrelated detectors or experiments (A) and (B), the noise cor-

relation
D
n(A)
`m n(B)

`m

E
cancels. Such a power spectrum estimator is called a cross-spectrum (see

Tristram (2005)). The same reasoning is usually applied to the case of polarisation, a more

subtle issue as the polarisation field is a linear combination of the two Stokes parameters Q and

U .

4.3.2 CMB polarisation

In the same way as for the temperature, the masked CMB polarisation field M(~n)P±2 can be

decomposed on the spin-±2 spherical harmonics leading to the definition of E and B modes

pseudomultipoles:

ãE`m = �1

2

Z

⌦

M(~n)[P+2(~n)+2Y
⇤
`m(~n) + P�2(~n)�2Y

⇤
`m(~n)]d(~n),

ãE`m =
i

2

Z

⌦

M(~n)[P+2(~n)+2Y
⇤
`m(~n) + P�2(~n)�2Y

⇤
`m(~n)]d(~n). (4.26)

We recall the expression for the expansion of the polarisation field P±2 = Q± iU on the spin-±2

spherical harmonics:

P±2(~n) = �1

2

X

`m

(aE`m ± iaB`m)±2Y`m. (4.27)

By making use of this expansion and appropriate use of the spin-±2 spherical harmonics proper-

ties, the E and B modes pseudomultipoles are related to the true CMB polarisation multipoles

aE/B
`m as:

ãE`m =
X

`0m0

[Kstd,+
`m,`0m0aE`0m0 + iKstd,�

`m,`0m0aB`0m0 ],

ãB`m =
X

`0m0

[�iKstd,�
`m,`0m0aE`0m0 +Kstd,+

`m,`0m0aB`0m0 ], (4.28)
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with Kstd,±
`m,`0m0 the convolution kernels (also called the mixing matrices) defined as:

Kstd,±
`m,`0m0 =

Z

4⇡

M(~n) [2Y
⇤
`0m0�2Y`m ± �2Y

⇤
`0m02Y`m] d~n. (4.29)

The expression of the E and B pseudomultipoles in Eq. (4.28) shows that both the E and B

modes contribute to the E and B pseudomultipoles. The spin-weighted spherical harmonics does

not form an orthogonal basis on a portion of the sky. Besides, the amount of mixing between

the E and B modes is driven by the convolution kernel Kstd,±
`m,`0m0 (a more detailed interpretation

of this e↵ect is exposed in the section 4.3.4).

This e↵ect would potentially lead to a laborious recovery of the true B (E) modes power spectrum

if the E (B) modes weighted by the mixing kernel are higher than the B (E) modes. In practice,

the E modes amplitude is at least 10 times higher than the expected B modes. Therefore a

small fraction of leakage is su�cient to spoilt the B modes signal. This problematic contribution

of the E modes to the B modes signal is known as the E-to-B leakage. This masking e↵ect

can be corrected for on average. As for the temperature anisotropies, the correlation of the

pseudomultipoles indeed provides the following E and B modes pseudospectra:

C̃EE
` =

1

2`+ 1

X

m

ãE`mãE⇤
`m,

C̃BB
` =

1

2`+ 1

X

m

ãB`mãB⇤
`m. (4.30)

The relation between the defined E and B modes pseudospectra and their true power spectra

appears by making use of the equation (4.28) and performing an ensemble average:
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``0
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``0
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!
, (4.31)

with the convolution kernels Kstd,±
``0 defined as:

Kstd,±
``0 =

1

2`+ 1

X

mm0

|Kstd,±
`m,`0m0 |2. (4.32)

In the case of a realistic CMB detection, following the same procedure as for the temperature

power spectrum estimator, the estimators ĈE/B
` of the CMB polarisation power spectra are

defined as:

 
C̃EE

`

C̃BB
`
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=
X

`0

b2`0

 
Kstd,+

``0 iKstd,�
``0

�iKstd,�
``0 Kstd,+

``0

! 
ĈEE

`0

ĈBB
`0

!
+

 
NEE

`

NBB
`

!
. (4.33)

By inverting the previous system and employing the relation 4.31, we confirm that the estimator

is constructed to be unbiased: < ĈEE/BB
` >= CEE/BB

` . The estimator is therefore free from

any polarisation modes mixing at the level of the mean, the first order moment of the statistics.
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However, the variance of the estimator still includes a contribution from leaked polarisation

mode. For its explicit expression, we refer the reader to Tristram (2005). In practice, three

distinct source of variance contribute to the variance on the estimator of the B modes Var(ĈBB
` )

and can be understood as this non rigorous expression:

Var(ĈBB
` ) = Var(C̃BB

` ) + Var(C̃EE!BB
` ) + Var(noise),

with Var(C̃BB
` ) the B modes sampling variance, Var(C̃EE!BB

` ) the contribution to the variance

of the leaked E modes and Var(noise) the noise variance.

Following previous reasoning on the pseudomultipoles, the high E modes amplitude leads to high

variance induced by the E-to-B leakage on B modes power spectrum. This could be dramatic

for their reconstruction, specially if Var(CBB
` ) > CBB

` . Of course, the E modes estimation is

also a↵ected by the B modes signal but the e↵ect is much less significant due to the low expected

level of B modes amplitude.

To conclude, a peculiar feature appears carrying out the standard pseudospectrum approach on

a masked sky to reconstruct the polarisation field. The polarisation E and B modes are indeed

tightly entangle, their mixing being driven by a convolution kernel depending on the applied

mask. An unbiased estimator of the CMB polarisation is easily constructed. The main issue

is thus to cancel the contribution of the leaking modes in the variance, the second moment of

the statistics, of the estimator. The standard approach to estimate the CMB polarisation is

therefore not e�cient, specially to reconstruct the low amplitude signal of B modes: we need to

construct new estimators to get rid of the polarisation modes mixing issue.

4.3.3 A word on the convolution kernels

The K`m,`0m0 convolution kernels amount the coupling between the modes (`,m) and (`0,m0).

In the quantum formalism, the convolution kernel K`1m1,`2m2
can be seen as the probability of

having an angular momentum (`3,m3) given by the coupling of the momentum (`1m1) of the

window function and the momentum (`2m2).

The mixing kernels only depend on the mask M(~n) applied to the CMB map. The K`m,`0m0

are therefore very long to compute and in any case not invertible due to their oscillations.

The matrix K``0 has thus been introduced: it is invertible although its computation scales as

O(N2
pix). However, the K``0 convolution kernels appear when taking the mean of the power

spectrum. Therefore, it guarantees the correction of the leakage only at the first order moment

of the statistics. The variance is spoilt by the E-to-B leakage because the pseudomultipoles

themselves are not pure in E or B modes. This demonstrates the need for correcting for the

leakage at the level of the pseudomultipoles.

4.3.4 Interpreting the E to B leakage

The E-to-B leakage is a phenomenon arising from masking the CMB maps. In this case, the

decomposition in pure E and B modes is not direct any more. In addition to the E and B
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subspaces, there exists a third subspace of the so-called ambiguous modes which can not be

determined as E or B modes as explained in Bunn et al. (2003) and Smith and Zaldarriaga

(2007). They indeed satisfy the conditions of both modes. In one dimension, it can be understood

as modes at all scales with infinite extension, for which we would have only access to on a finite

interval. Only a sub-part of the modes will cancel at the boundary of this interval. The modes

can thus be fully characterised as a E or B modes. However, the modes non vanishing at the

edge of the interval are equivocal as there is not enough information to fully characterise them.

The modes cancelling at the edges of the interval are the analogous of pure E and pure B modes

while the ones non vanishing are the so-called ambiguous modes which fulfil both the conditions

to be E or B modes. Following this reasoning, on the complete celestial sphere, the polarisation

field has a unequivocal decomposition in E and B modes. If only a part of the sky is accessible,

the polarisation field is thus decomposed on pure E modes, pure B modes and ambiguous modes

containing both E and B modes. These modes thus cause the E-to-B leakage. In the standard

method, pure B modes and the ambiguous modes contribute to the reconstructed, and therefore

polluted, B modes signal. Discarding the ambiguous modes would ensure the leakage removal

but at the same time a part of information on the E and B modes would be lost.

4.4 Minimal Variance Quadratic Estimator

The best estimator of the angular CMB power spectra has to satisfy two conditions: it has

to be unbiased and give the smallest variance. Besides, a good estimator should also be fast

to compute and loss as less information as possible. Tegmark (1997b) and Tegmark and de

Oliveira-Costa (2001) derive the best estimator for the temperature and the polarisation CMB

power spectra, the so-called minimal variance quadratic estimator. It is built by requiring to

minimise the variance. Here we propose its reconstruction in the pseudospectrum-like frame.

A given polarised data set (Q(i) U(i))T (in the ith pixel) has a covariance matrix Cij such as:

Cij =

* 
Q(i)

U(i)

!
(Q(j) U(j))

+
(4.34)

=

 
hQ(i)Q(j)i hQ(i)U(j)i
hU(i)Q(j)i hU(i)U(j)i

!
, (4.35)

containing signal and noise.

In order to construct an optimal estimator, the data has first to be multiplied by the inverse of

the covariance matrix. In that way, the data are optimally filtered:

 
Q

U

!(opt)

= C�1

 
Q

U

!
. (4.36)

An optimal polarisation field P opt
±2 can be constructed from this optimal vector of Stokes param-

eters. Optimal E and B modes multipoles can thus be derived by projecting P opt
±2 on the spin-2
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spherical harmonics ±2Y`m:

aE`m = �1

2

Z

4⇡

h
P (opt)
2 2Y

⇤
`m + P (opt)

�2 �2Y
⇤
`m

i
d~n,

aB`m =
i

2

Z

4⇡

h
P (opt)
2 2Y

⇤
`m � P (opt)

�2 �2Y
⇤
`m

i
d~n, (4.37)

From these multipoles, optimal pseudospectra can be defined as:

C̃XY,(opt)
` =

1

2`+ 1

X

m

aX`maY ⇤
`m, (4.38)

with X, Y standing for E or B modes.

Correcting for the remaining leakages which amplitude is driven by a mixing kernel [F ]XY
``0 , the

optimal estimator (formerly noise debiased) is obtained by inverting the following system:

 
C̃EE,(opt)

` �NEE
`

C̃BB,(opt)
` �NBB

`

!
=

1

2

X

`0m0

 
[F]EE

``0 [F]EB
``0

[F]BE
``0 [F]BB

``0

! 
ĈEE,(opt)

`

ĈBB,(opt)
`

!
, (4.39)

with the Fisher matrices [F]XY
``0 defined as (see Chapter 6 for a description of the Fisher formal-

ism):

[F]XY
``0 =

1

2
Tr


@C

@CXX
`

C�1 @C

@CY Y
`

C�1

�
. (4.40)

The constructed estimator ĈXY,(opt)
` is unbiased and has a variance of: Cov(ĈXY,(opt)

` , ĈXY,(opt)
`0 ) =

[F�1]XY
``0 . By definition of the Fisher matrix, the obtained estimator therefore has the lowest

uncertainties and is thus optimal.

It was shown in Bond et al. (1998) that this optimal estimator coincide with the estimator

obtained by maximum likelihood at the likelihood maximum. The minimal variance quadratic

estimator is therefore a powerful quantity as it is optimal and approach a maximum likelihood

method. However the main issue is that it requires the knowledge and the inversion of the data

covariance matrix C. The pseudospectrum methods can be preferred as they do require less

stringent prior on the signal. The minimal variance quadratic estimator is a guideline for the

construction of these pseudospectrum approaches. The latter can indeed be seen as filtering

data with a diagonal matrix which has to be close to the inverse of the covariance matrix to

ensure an e�cient estimation. The following section is dedicated to the description of three

pseudospectrum approaches aiming at correcting for the E-to-B leakage.

4.5 Pseudospectrum Approaches to Correct for the E-to-B

Leakage

The issue of the E-to-B leakage lies in the definition of the polarisation estimators. The standard

estimator tackles the problem at the level of the mean but not at the level of the higher order

moments of the statistics, in particular the variance. A remedy is therefore to construct an
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estimator free from any leakage at the level of the pseudomultipoles. In this perspective, three

pseudospectrum approaches have been proposed in the literature: their goal is to construct

pseudomultipoles pure in the E and B modes. The �E/B fields containing only E/B modes

respectively o↵er a wonderful quantity to build a leakage-free estimator. However, by definition,

their direct reconstruction requires to derive the noisy CMB polarisation maps. This operation is

indeed laborious owing to the presence of the noise. The core of the considered methods thus lies

in the reconstruction of the �E/B fields avoiding the direct derivation of the CMB polarisation

maps.

For each of the proposed methods, the key issue is to ensure a B modes pseudomultipole free

from any leakage by cancelling the convolution Kmethod,�
`m,`0m0 in the following system:

 
ãE`m
ãB`m

!
=
X

`0m0

 
Hmethod,+

`m,`0m0 Hmethod,�
`m,`0m0

Kmethod,�
`m,`0m0 Kmethod,+

`m,`0m0

! 
aE`0m0

aB`0m0

!
, (4.41)

where Kmethod,±
`m,`0m0 are the convolution kernels mixing the E and B modes in the B modes pseu-

domultipoles. They have di↵erent expressions regarding the pseudospectrum methods and can

potentially di↵er from the Hmethod,±
`m,`0m0 which quantifies the contribution to the E modes. The

masks applied to the CMB maps for the E modes reconstruction can indeed di↵er from the ones

used for the B modes reconstruction leading to di↵erent mixing kernels.

Including the e↵ect of the beam b` and the noise N`, the system to be inverted at the level of

the power spectrum is:

 
C̃E

` �NE
`

C̃B
` �NB

`

!
=
X

`0

B2
`0

 
Hmethod,+

`,`0 Hmethod,�
`,`0

Kmethod,�
`,`0 Kmethod,+

`,`0

! 
ĈE

`0

ĈB
`0

!
(4.42)

with Kmethod,±
``0 such as:

Kmethod,±
``0 =

1

2`+ 1

X̀

m=�`

`0X

m0=�`0

|Kmethod,±
`m,`0m0 |2 (4.43)

The present section is consequently dedicated to the theoretical principle of each of pseudospec-

trum method correcting for the leakage in the perspective of their numerical implementations,

driving some choices. The first technique operates in the harmonic domain while the two last

are pixel based.

4.5.1 The pure method

A convenient decomposition of the polarisation field in the harmonic domain has been proposed

in Smith (2006) and then in Smith and Zaldarriaga (2007), which approach will be refer to as

the pure method in this manuscript. Instead of expanding the polarisation field on the basis of

the spin-(±2) spherical harmonics, the point of this method is to decompose the polarisation

field on the spherical harmonics weighted by a window function W ensuring to be on the pure
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B modes basis. The so-called pure pseudomultipoles are then defined by:

ãE`m = � 1

2↵`

Z

⌦

[P2(~n)(@@W (~n)Y`m(~n))⇤

+P�2(~n)(@̄@̄W (~n)Y`m(~n))⇤]d~n,

ãB`m =
i

2↵`

Z

⌦

[P2(~n)(@@W (~n)Y`m(~n))⇤

�P�2(~n)(@̄@̄W (~n)Y`m(~n))⇤]d~n, (4.44)

with ⌦ the observed sky fraction, thus ⌦ < 4⇡. We also recall the expression of the ↵` which

has been introduced in Chapter 3: ↵` =
q

`+2
`�2 .

A su�cient condition on W to warrant the decomposition on the pure basis is to satisfy the

Dirichlet and Neumann boundary conditions i.e. at the boundaries:

(
W = 0,

@W = 0.
(4.45)

Assuming these conditions, the system (4.44) can indeed be integrated by part twice. The pure

B modes pseudomultipoles are thus expressed as the following (not mathematically rigorous)

expression:

ãB`m / [@(WY )⇤P2]C �
Z

⌦

@P2(@WY`m)⇤ � [@̄(WY )⇤P�2]C +

Z

⌦

@̄P�2(@̄WY`m)⇤

/ [@(WY )⇤P2]C + [(WY )⇤@P2]C �
Z

⌦

@@P2(WY`m)⇤

+ [@̄(WY )⇤P�2]C � [(WY )⇤@̄P�2]C +

Z

⌦

@̄@̄P�2(WY`m)⇤, (4.46)

where C indicates that the expression has to be evaluated on the boundaries of the mask. In the

end, the pure E and B pseudomultipoles are consequently expressed as:

ãB`m =
i

2↵`

Z

⌦

WY ⇤
`m[@̄@̄P2(~n)� @@P�2(~n)]

=
1

↵`
�̃B
`m. (4.47)

In a similar way, for the E modes:

ãE`m =
�1

2↵`

Z

⌦

WY ⇤
`m[@̄@̄P2(~n) + @@P�2(~n)]

=
1

↵`
�̃E
`m. (4.48)

As a result, the pure B (E) pseudomultipoles are the pseudomultipoles of the �B (�E resp.)

field including a normalisation factor: they therefore contain only B (E resp.) modes. Window

functions satisfying the Dirichlet and Neumann conditions enables a decomposition of the CMB

polarisation field on the basis of pure B and E modes and thus the construction of leakage-free

pseudomultipoles. The pure estimator and all its statistical moments are therefore theoretically
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free from any polarisation modes leakage. The convolution kernel Kpure,�
`m,`0m0 is therefore exactly

equal to zero. The expression of the mixing kernels can be found in Appendix A

4.5.2 The zb approach

The principle of this method lies in the direct reconstruction of the �E/B fields. Its procedure

has been proposed in Zhao and Baskaran (2010) and can be seen as the pure method performed

in the real space. The method will be refer to as the zb method, from the initial of the authors

of the original article.

For an incomplete sky coverage, the pseudo-�E/B fields are defined as:

�̃E(~n) = �1

2
[@̄@̄(W (~n)P2(~n)) + @@(P�2(~n)W (~n))],

�̃B(~n) =
i

2
[@̄@̄(W (~n)P2(~n))� @@(P�2(~n)W (~n))], (4.49)

with W a window function cancelling outside the observed region of the sky.

Following the reasoning of Zhao and Baskaran (2010), the pseudo-�E/B fields are related to the

underlying �E/B fields. The masked �B field expression is recalled:

W (~n)�B(~n) =
i

2

⇥
W @̄@̄(P2(~n))�W@@(P�2(~n))

⇤
. (4.50)

As this expression includes derivation of the noisy polarisation field, the masked �B field can be

rewritten as the contribution of the pseudo-�B field and counter terms:

W (~n)�B(~n) =
i

2

⇥
@̄@̄ (WP2)� @@ (WP�2)

⇤

� i


@̄W

W
@̄ (WP2)�

@W

W
@ (WP�2)

�

� i

2
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@̄@̄W

�
P2 � (@@W )P�2

⇤

+ i

"�
@̄W

�2

W
P2 �

(@W )2

W
P�2

#
. (4.51)

The derivatives of the weighted polarisation field @n(WP±2) or @̄n(WP±2) are computable, there-

fore their linear combination intervening in equation (4.51) can a fortiori be derived. Moreover,

to ensure the continuity of the window function W which is di↵erentiated twice, its value and

first derivative have to cancel on the mask boundaries.

From the masked polarisation field WP±2, it is thus possible to reconstruct the �B field but

only in the observed pixels. Two ways to reconstruct the true underlying �B field on the whole

celestial sphere are manageable. The first one originally proposed in Zhao and Baskaran (2010)

consists in dividing the right hand side of the equation (4.51) by W and then compute the

pseudomultipoles of �B field. However, the masked �B field would be divergent at the edges

of the mask as the window function W is cancelling on the boundaries. We therefore have to
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be careful not to divide by the window function. In Zhao and Baskaran (2010), the procedure

applied to avoid this problem is to define a new binary mask M 0 where the edge of the window

functionW have been removed. The �E/B pseudomultipoles ã�
E/B

`m are then defined by projecting

the reconstructed M 0 ⇥ �B map on the spherical harmonics:

ã�
E/B

`m =

Z

⌦

M 0(~n)�E/B(~n)Y ⇤
`m(~n)d~n. (4.52)

Nevertheless, as the binary mask M 0 is smaller than the originally observed part of the sky,

information have been lost. It can be dramatic specially when the signal to be detected is

expected to be as low as the primordial B modes.

In order to circumvent this issue, we have improved on the proposed method and propose to

reconstruct an apodised version of the �B field and to derive its pseudomultipoles. Following

this procedure, we would aim at recovering the masked field W�B directly. However, as the

right-hand side of the equation (4.51) shows a division by the window function W which cancels

at the edges, W�B is undefined. We consequently choose to reconstruct the masked W 2�B field

to avoid any singularities issue:

W 2(~n)�B(~n) =
i

2
W
⇥
@̄@̄ (WP2)� @@ (WP�2)

⇤

� i
⇥
@̄W @̄ (WP2)� @W@ (WP�2)

⇤
(4.53)

� i
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+ i
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@̄W

�2
P2 � (@W )2 P�2

i
.

In this approach, the Eq. (4.52) is modified and the �E/B field pseudomultipoles ã�
E/B

`m are

consequently determined by:

ã�
E/B

`m =

Z

⌦

W (~n)2�E/B(~n)Y ⇤
`m(~n)d~n. (4.54)

The here defined pseudomultipoles of the �B(E) fields contain only B (E respectively) modes: the

constructed polarisation fields are free from any leakage. The E and B modes pseudospectrum

are then simply constructed from these pseudomultipoles. Therefore, by construction, the pure

and zb methods are equivalent in theory as they both consists in constructing the W�E/B fields,

in the harmonic domain for the former one and in the pixel domain for the latter. In the same

way as the pure method, the convolution kernel Kzb,�
`m,`0m0 is consequently exactly vanishing.

4.5.3 The kn approach

A second real space pseudospectrum approach was proposed in Kim and Naselsky (2010) and

re-address in Kim (2011). It takes advantage of the fact that the E-to-B leakage is very localised

in the real space. Its main principle is to estimate the �E/B fields on the masked sky after the

rejection of the pixels plagued by the E-to-B leakage. This technique will be refer to as the

kn-method in the present manuscript.
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The �E/B fields being defined by di↵erentiating twice the polarisation map, their decomposition

on the spherical harmonics gives:

�E =
X

`m

↵` ⇥ aE`mY`m, (4.55)

�B =
X

`m

↵` ⇥ aB`mY`m. (4.56)

Besides, we recall the relation between the E and B modes multipoles and the polarisation field

P±2:

aE`m =

Z

4⇡

�1

2
[P2 ⇥ �2Y

⇤
`m + P�2 ⇥ 2Y

⇤
`m] d~n,

aB`m =

Z

4⇡

i

2
[P2 ⇥ �2Y

⇤
`m � P�2 ⇥ 2Y

⇤
`m] d~n. (4.57)

Inserting this equation in the expressions of the �E/B maps gives:

�E(~n) = �1

2

✓Z

4⇡

[F+(~n,~n
0)P�2(~n

0) + F�(~n,~n
0)P2(~n

0)]

◆
d~n0, (4.58)

�B(~n) =
i

2

✓Z

4⇡

[F+(~n,~n
0)P�2(~n

0)� F�(~n,~n
0)P2(~n

0)]

◆
d~n0, (4.59)

with the pixel-filter function F±(~n,~n0) defined as:

F±(~n,~n
0) =

X

`m

↵` ⇥ ±2Y`m(~n0)Y ⇤
`m(~n). (4.60)

This convolution function appears to be highly peak in the direction ~n as shown in the figure

4.1 taken from Kim and Naselsky (2010): it selects the pixels near from the direction of ~n. It

however has a non zero extension in the case of pixelised maps as we will see in the next chapter.
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Figure 4.1: The modulus of the convolution kernel F±(~n) for a given ~n such as ✓ = ⇡

2
and

� = 0, from Kim and Naselsky (2010). This filter is highly peak for cos(✓) = 0.

The above procedure only applies in the case of a CMB detection on all the celestial sphere. In

the case of a masked sky, the �E/B reconstruction can be done thanks to their pseudomultipoles
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defined as:

�̃E(~n) = �1
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✓Z

⌦
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0)P�2(~n
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,
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0)P�2(~n

0)� F�(~n,~n
0)P2(~n

0)] .

◆
(4.61)

The B modes pseudopower spectrum resulting from the auto-correlation of pseudo-�B multipoles

does also contain E modes: the induced E-to-B leakage can therefore be quantified. The next

step is crucial and consists in flagging the pixels where this leakage is high compared to a carefully

chosen value.

First of all, the equation (4.61) can be re-expressed in terms of the usual E and B modes true

multipoles. In particular the pseudo-�B field writes:

�̃B(~n) = �2i
X

`m

⇥
K�

`m(~n)aE`m + iK+
`m(~n)aB`m

⇤

= �̃E!B(~n) + �̃B!B(~n) (4.62)

with K±
`m(~n) =

R
4⇡

M(~n0)[F+(~n,~n0)�2Y`m(~n0) ± F�(~n,~n0)2Y`m(~n0)]d~n0. The term �̃E(B)!B

stands for the contribution of the E (B respectively) modes in the B modes. The convolu-

tion kernels K±
`m amount the level of the contribution of the E modes from potentially the

whole celestial sphere to the obtained pseudo-�B field in a given direction. If M is constant, the

pseudo-�E/B fields boil down to the expression of �E/B fields for a full sky coverage in Eq. (4.59),

the convolution kernel being highly peaked in this case. Therefore, the leakage is expected to be

higher on an extended layer around the edge of the mask where M is varying abruptly from 0

to 1 because of the oscillating behaviour of the convolution kernels.

Secondly, the pixels plagued by this leakage expected to be on the edge of the mask can be

flagged by quantifying the ratio R(~n) between the leaking E modes and the B modes given by:

R(~n) =
< |�E!B(~n)|2 >

< |�B!B(~n)|2 >
. (4.63)

The comparison of this ratio with a carefully chosen threshold would lay down the pixels rejection

or admission. If the value of R(~n) in a given pixel is too high regarding the threshold, the pixel

will be considered as ‘ambiguous’ and then actually be rejected. The �B field will consequently

be reconstructed on the remaining pixels. In practice, Kim and Naselsky (2010) proposed to

perform Monte Carlo simulations for a given cosmological model in order to amount R(~n).

The kept pixels are considered to be ‘pure’ in B modes and consequently verifies the following

condition:

R(~n) <
rc
r
, (4.64)

where r is the value of tensor-to-scalar ratio of the input cosmological model and rc is the level

of B-modes due to the leaking E-modes. rc plays the role of the threshold. If it is chosen as

too low, a large amount of pixels would be considered as ambiguous and subsequently the final

mask will cover a small part of the sky, leading to a significant loss of cosmological information.

However, if rc is too high, the kept pixels might not be as pure as required. By minimizing the
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variance of the B mode power spectrum, Kim and Naselsky (2010) derived the equation to be

verified by rc which gives the best compromise between the loss of information and the pixels

cleanliness. The �B field is then reconstructed from the pseudo-�B estimated on the cut binary

mask containing only ‘pure’ pixels.

A second strategy to reject the leakage has been proposed in Kim (2011). Instead of choosing

a binary mask, an apodised window function W (~n) is applied to the maps. In this case, the

convolution kernel becomes:

K±
`m(~n) =

Z

4⇡

W (~n0)[F+(~n,~n
0)�2Y`m(~n0)± F�(~n,~n

0)2Y`m(~n0)]d~n0. (4.65)

The window function W is a function which is constant in the centre of the observed region of

the sky and smoothly decreases to zero at the edge of the mask. The edge e↵ects are therefore

expected to be smaller than in the case of a binary mask M , so that the leakage is expected

to be minimised. This second approach will be used in the following as the criterion on the

apodisation length of W is directly found, the leakage being concentrated on the edges where W

varies.

In both approaches, the power spectrum estimator can be defined by auto-correlating the ob-

tained pseudo-�E/B field. The �B on the built mask MW�

B containing only ‘pure’ pixels, poorly

a↵ected by the leakage, is therefore constructed. Similarly to the previously described methods,

the convolution kernel Kkn,�
`m,`0m0 exactly cancels.

4.6 Visualisation of the leakage

The three presented pseudospectrum approaches o↵er an expression for �E/B(~n) on a masked

sky. They thus enable to map the E-to-B leakage. Such maps are convenient to comprehend the

localisation of the leakage and its sensitivity regarding the choice of the method. The leakage is

obtained by setting the input B modes to zero and subsequently constructing the �B map. The

resulting map therefore directly traces the E-to-B leakage. The issue rests on the construction

of the �B field.

The pure method B pseudomultipoles are proportional to the ones of W ⇥ �B as shown in

Eqs. (4.47). Consequently, masked map of �B is constructed by projecting the pure polarised

pseudomultipoles weighted by the ↵` factor on the spherical harmonics Y`m. Moreover, the

masked �B field can be reconstructed straightforwardly in the frame of the zb technique by

applying Eq. (4.54). In the kn approach, the B modes maps are made by the use of the pseudo-

�B fields in Eq. (4.61). The involved window function W can be tuned to remove the aliased

pixels. In the peculiar case of W = M with M a binary mask, the kn approach boils down to

the standard method.

Thanks to the implementation of their computation in each approach, the masked �B fields

are numerically constructed for an input power spectrum with E modes power spectrum from

WMAP-7yr and no input B-modes. In practice, the RMS over the simulated �̃B maps give a
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good insight on the resulting leakage map (the mean being equal to zero by construction). The

maps shown afterwards are thus the RMS of the simulated maps:

��̃B =
q⌦

�̃B2
↵
MC

(4.66)

with h.iMC the average on the Monte Carlo simulations.

Figure 4.2: Leakage map obtained using the standard pseudospectrum reconstruction. The
redder areas are the most aliased pixels.

By way of example, leakage maps are constructed in the frame of the di↵erent methods for a

small scale experiment covering 1% of the sky. Holes are present to mask polarised point sources.

As a benchmark, the leakage map obtained in the standard method is displayed in Fig. 4.2. The

leakage is concentrated at the edges of the mask as expected. Nonetheless, the inner part of the

observed sky patch is also spoilt by the E-to-B leakage.

Figure 4.3: Leakage map in the frame of the pure (zb) pseudospectrum reconstruction in the
left (right) panel.

In the frame of the pure and zb approaches, the leakage maps are shown respectively on the left

and right panel in Fig. 4.3. The results are striking: the leakage is at the same time reduced

and more localised on the edges of the maps compared to the standard method. The leakage

is however more important and extended around the mask contours in the zb approach than in
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the pure method. Moreover, the leakage does not fall down exactly to zero as expected because

of pixelisation e↵ects.

Figure 4.4: Leakage map reconstructed via knpseudspectrum reconstruction. The map in
the left (right) panel is obtained using an apodised window function with an apodisation length

of ✓
apo

= 0.5o (✓
apo

= 1o).

The window function involved in the kn approach has to be designed to reduce the leakage.

The left panel of Fig. 4.4 shows the leakage map obtained with an apodised window function

of apodisation length ✓apo = 30 arcmin. The resulting map for a larger apodisation length of

✓apo = 1o is displayed in the right panel. The leakage appears to have a di↵erent behaviour

regarding the chosen apodisation length. For ✓apo = 0.5o the leakage is more extended although

less powerful than for ✓apo = 1o. The leakage therefore appears to be located where W is varying

giving insight of which pixels have to be removed. Also, a residual leakage is present in the inner

part of the patch but lowered for larger values of ✓apo. Moreover, the leakage is more present in

these maps than the ones obtained in the pure and zb methods.

To summarise, E-to-B leakage is intrusive and can potentially spoil an important amount of

pixels over all the observed sky, although highly concentrated on the edges of the mask. By the

use of the leakage free methods to reconstruct the leakage map, the leakage is diminished and

more localised. However, its power and localisation depend on the chosen methods and on the

window function shape. And last but not least, the obtained leakage maps are obviously not

zero contrary to one would expect from the theory. The issue of reducing the E-to-B leakage is

thus more subtle than foreseen if applied to realistic CMB pixelised maps. The present analysis

can not conclude on the respective e�ciency of the di↵erent approaches as only the B modes

power spectrum reconstruction is relevant to compare performance on B modes estimation.

Conclusion

The pseudospectrum estimation o↵ers a fast and reliable method to construct the CMB power

spectra on a masked sky. The standard method is nonetheless not optimal as the resulting

variance on the estimated spectra are high due to the E-to-B leakage only corrected for in the

mean. It can significantly damage the measurement of the polarisation power spectra, specially
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in the case of the faint B modes. Thus, the use of leakage free methods is mandatory to get

the most precise detection. Three pseudospectrum methods proposed in the literature has been

exposed: they all exactly correct for the leakage in theory. They however seem to give di↵erent

performances and to depend on the window function shape. Moreover, the E-to-B leakage is

not the only source of variance in the power spectra reconstruction as at the end, the minimal

global variance (including the noise) on the estimated power spectra is required. A numerical

exploration of the e�ciency of the di↵erent methods is thus necessary in order to study the

obtained total variance on the reconstructed power spectra.





Chapter 5

Numerical Results on B Modes

Estimation

‘Another reason for the recent focus on analysis is one I hope to convey in this chapter:

analysis is exciting.’

S. Dodelson in Dodelson (2003).
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The founding principles of three di↵erent pseudospectrum approaches (the so-called pure, zb and

knmethods) built to accurately reconstruct the CMB B modes have been exposed in the previous

chapter. In theory, these methods are constructed to completely correct for the E-to-B leakage.

71
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As they involve distinct calculations, their numerical implementation di↵ers thus leading to

di↵erence in the reconstructed power spectrum in practice. A residue of the leakage mainly

owing to the pixelisation of the CMB maps indeed remains and could potentially invalidate all

the beforehand theoretical work. The variances on the estimated angular power spectra can

consequently be higher than expected from the calculations. The issue addressed in the present

chapter is therefore to test the e�ciency of each method on realistic cases in the scope of B

modes angular power spectrum estimation, specially its variance.

In this purpose, the zb and kn techniques have been implemented and intensely tested, along

with the pure method which implementation is presented in Grain et al. (2009). Their per-

formances are examined thanks to numerical simulations applied to two fiducial experimental

set-ups, one characteristic of current ground based or balloon-borne experiment (referred to as

small scale survey) and one typical for potential satellite mission (referred to as large scale sur-

vey). For the three considered techniques, the best reconstruction is ensured by both a good

choice of the window function W and the construction of B modes multipoles free from any

leakage. In this chapter, the issue of the window function choice is therefore briefly tackle. In

the second section, the main step of the methods implementations and the used supercomputer

system are exposed. The chapter ends on the performances of the three considered first at the

level of the pseudospectrum for a first glimpse on the leakage and last but not least, on the B

angular power spectrum reconstruction.

5.1 Binning Power Spectra

The considered pseudospectrum approaches allow for a reconstruction of the angular power

spectrum multipole-by-multipole. In practice, the power spectra are estimated in multipole

band (or band power) of width �b, the power spectra is thus said to be binned. This width

�b is set by the experimental multipole resolution which scales as the inverse of the largest

angular scales accessible from a given observed region of the sky (in the simplified case of an

observed spherical cap, this would scales as the inverse of the square root of the sky fraction).

The binning process has two opportune side e↵ects. Firstly, the inversion of the mixing kernel is

simplified. Secondly, the correlation between the multipoles ` are reduced. Indeed, the mixing

kernel Kmethod,±
``0 induces a contribution from the multipole `0 to the estimated power spectrum

at the multipole `. Averaging over ` thus reduces these correlations: the correlations between

two adjacent bins are lower than the correlation between two adjacent `.

The pseudospectrum C̃` and the estimated angular power spectrum Ĉ` are averaged over ` in

band power as:

C̃` =
X

`2b

Pb`C̃`, (5.1)

Ĉ` =
X

`2b

Pb`Ĉ`,
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with the binning operator Pb`. Its inverse Qb`, that can be understood as the interpolation in a

band power, is defined as:

Pb` =

(
S
`

`b
max

�`b
min

, ` 2 [`bmin; `
b
max],

0, ` /2 [`bmin; `
b
max],

(5.2)

Qb` =

(
1
S
`

, ` 2 [`bmin; `
b
max],

0, ` /2 [`bmin; `
b
max].

(5.3)

In a first approximation, the CMB angular power spectra roughly behave as 1
`2 , the operator S`

is consequently expressed as:

S` =
`(`+ 1)

2⇡
. (5.4)

This choice makes the power spectra to be averaged over flat band power thus allowing for an

even contribution of the ` within the band power.

As a consequence, the linear system (4.42) to be inverted boils down to:

 
C̃E

b �NE
b

C̃B
b �NB

b

!
=
X

b0

 
Hmethod,+

bb0 Hmethod,�
bb0

Kmethod,�
bb0 Kmethod,+

bb0

! 
ĈE

b0

ĈB
b0

!
, (5.5)

with Kmethod,±
bb0 such as:

Kmethod,±
bb0 =

X

`,`0

Pb`K
method,±
``0 B2

`0Qb0`0 . (5.6)

In the present analysis, the chosen bandwidth �` is �` ⇠ 40 ensuring a large enough band to

reduce the correlation between multipoles.

5.2 Apodised Window Functions

In order to retrieve leakage free polarised power spectra, the pseudomultipoles are built on a

map weighted by a window function W . This window function is a priori arbitrary, nevertheless

it may have to be properly tuned for an e�cient reconstruction of the power spectrum. As

shown in the previous chapter, the window function W in the case of all the methods has to

verify the Dirichlet and Neumann conditions: W = 0 and @W = 0 at the edges of the mask. It

indeed guarantees the projection on pure basis and warrants W continuity. An apodised window

function varying smoothly from 0 on the unobserved pixels to 1 on the observed region of the

sky verifies this condition. The apodisation shape can be chosen in two ways that are exposed

in this section. A window function with a simple analytic expression which fulfils the Dirichlet

and Neumann conditions can indeed be fashioned. Another strategy consists in optimising the

shape of the window function in the perspective of minimising the variance on the reconstructed

B modes power spectrum.
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5.2.1 Analytic apodisation

A possible procedure to build a window function is to set its boundaries layer equal to an analytic

function which verifies the required Dirichlet and Neumann conditions. The window function is

consequently fast to compute and do not need any preconception on the CMB signal. A cosine

function is usually chosen as in Smith (2006). Besides Grain et al. (2009) have proposed an

analytic expression of W such that its second derivative is also vanishing at the boundaries of

the observed patch. Such a condition is expected to give better performance as second derivative

of W enters in the computation of the B modes pseudomultipoles. The window function is in

this case given by:

W =

(
� 1

2⇡ sin(2⇡ �
i

�
c

)� �
i

�
c

, if �i < �c,

1, if �i > �c,
(5.7)

and with W = 0 outside of the observed patch of the sky. The index i stands for the ith pixel of

the map, �i is the distance of the ith pixel to the closest boundary and �c represents the width

of the boundary layer in which the window function is smoothly decreasing from 0 to 1, also

called the apodisation length. This analytically apodised window function has been made using

the implementation by M. Betoule1.

As mentioned in the previous chapter, the selection of the apodisation length is a competition

between the loss of information on B modes and the E-to-B leakage decrease. In this analysis,

Monte Carlo (MC) simulations have been carried out in order to explore the performance of the

B modes power spectrum reconstruction for di↵erent apodisation lengths as detailed in the next

section.

This method has consequently the benefit to be quick and to satisfy the required conditions on

W for the methods to be reliable. In addition, another strategy have been proposed for the

peculiar case of the pure method.

5.2.2 Variance-optimised apodisation

A family of window functions adapted to the pure B modes estimation have been introduced in

Smith and Zaldarriaga (2007). The apodisation is optimised regarding the obtained variance on

the estimated power spectrum. This apodisation can be either pixel-based or performed in the

harmonic domain as exposed in Grain et al. (2009). A qualitative insight on both window func-

tion computations are exposed in the following and the reader is referred to the aforementioned

articles which give substantial details and tests.

The central idea for the computation of the variance-optimised window functions is to minimise

the global variance on the reconstructed angular power spectrum. The three pseudospectrum ap-

proaches under scrutiny have been shown to theoretically correct for the leakage, thus cancelling

the contribution of the leaked E modes to the variance on the B modes power spectrum. The

polarisation field is indeed projected on the pure E and B modes basis, removing the ambigu-

ous modes. Although damaging for B modes reconstruction, the ambiguous modes nonetheless

1
http://www.apc.univ-paris7.fr/betoule/doku.php?id=fr:software
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hold a part of the B modes signal. They therefore represent a loss of information which could

potentially increase the variance on B modes reconstruction. As a consequence, cancelling the

leakage does not warrant the minimisation of the global variance. The issue tackled down in the

window function computation is thus more subtle and comes down to a competition between the

minimisation of the E-to-B leakage and the loss of information on the B modes.

As expounded in Chapter 4, the best and lossless quadratic estimator ĈXY
`

(opt) for the polari-

sation angular power spectrum is such as:

 
C̃EE,(opt)

` �NEE
`

C̃BB,(opt)
` �NBB

`

!
=

1

2

X

`0

 
FEEEE
``0 FEEBB

``0

FBBEE
``0 FBBBB

``0

! 
ĈEE

`0
,(opt)

ĈBB
`0

,(opt)

!
, (5.8)

with FXY
``0 the Fisher matrix of the CXY

` power spectrum and where the data have been filtered

by the inverse of the covariance matrix. The performance of a given estimator i.e. its ability

to give the smallest uncertainties on the B modes reconstruction, therefore boils down to know

its discrepancy from the best estimator ĈXY
`

,(opt). The pure estimator gives the opportunity to

tune the window function W to make the estimator as close as possible to the optimal one. It

amounts to the inversion of the following system:

N
obsX

i=1

CijP
b
ijWi = 1 for all j, (5.9)

where i,j denote the pixel index, Nobs stands for the number of observed pixels, Cij is the

covariance matrix of the data, P (b)
ij the projection matrix averaged on a band power and Wi the

optimised window function.

The pixel-based approach consists in solving for the linear system Eq. (5.9) in the pixel domain

dealing with the non-diagonal matrix P b
ij . The implementation made by Grain et al. (2009) is

based on an iterative preconditioned conjugate gradient method. Such a procedure enables to

solve this inversion problem in a minimum of iterations thanks to a preconditioner already close

to the inverse of CijP b
ij . The pixel-based variance-optimised window functions will be denoted

PCG window function.

The crucial point of this approach is that it allows for flexibility in the computation of the

window function. The spin-s window functions Ws are related to spin-0 window function W and

its derivative following:

W0 = W, (5.10)

W1 = @W,

W2 = @@W.

As developed in the following section, the construction of the pure pseudomultipoles does not

explicitly require these conditions to be exactly verified. The pixel-base approach precisely

authorises W0, W1 and W2 to be independent. The PCG window function can consequently be

applied to the pure B modes estimation. Relaxing these constraints allows for the minimisation

of the global variance by means of remaining ambiguous modes, thus avoiding an excessive loss
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of information on the B modes. Although this PCG computation requires numerical time of

about nitern2
pix with nites / 100 (few thousands) for a noise of 5.75 (1.)µK-arcmin, it can be

performed in a reasonable amount of time with current supercomputer. This approach has the

advantage to be systematised and very robust.

When the noise is uncorrelated and homogeneous over the observed part of the sky, the inversion

of Eq. (5.9) can be done in the harmonic domain. The linear system is reduced to a division in

the harmonic domain, the numerical time therefore scales as N3/2
pix . In this case, the conditions

on the window function lead to constraints on the mask and its contour harmonic representation.

From those quantities, the spin-1 an spin-2 window functions are constructed. This approach has

the merit to be fast as it basically only involves spherical harmonics transforms (SHT). However,

numerical issues such as the SHT of the contour of the mask lead to small discrepancy from the

Dirichlet and Neumann conditions. This issue is handling by adding an extra-apodisation on

the window function which makes it slightly suboptimal with respect to the previous pixel based

approach.

Figure 5.1: From left to right: the spin-0, spin-1 and spin-2 window functions of a spherical
cap of radius 11o. The input signal is E modes from WMAP-5yr and the induced lensing
B modes, assuming a primordial B modes signal with r = 0.05 and a noise level of 5.75µK-
arcmin. Only the real part of the spin-1 ans spin-2 window functions are depicted. The top and
middle rows show the spin-weighted optimized window function respectively in the pixel and
the harmonic space, for the bin ` 2 [20, 60]. The bottom row illustrates the window function

computed with an analytic apodisation. The figures are taken from Grain et al. (2009).

Moreover, as shown in Eq. (5.9), the covariance matrix Cij intervenes in the window function

optimisation. It therefore requires a prior on the signal to be reconstructed. The impact of

the prior on the window function optimisation has therefore been extensively explored in Grain

et al. (2009). The E-modes and the induced lensed B-modes being well known, the main issue

is the prior on the primordial B modes. The drawn conclusion is that the derived optimised
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window function shape is fortunately little a↵ected by the a priori assumption on the primordial

B modes signal.

To summarise, examples of the window functions for a spherical cap of radius 11o computed using

the three aforementioned approaches are depicted in Fig.5.1. The figures are taken from Grain

et al. (2009) where they assume a E mode signal from WMAP-5yr and the induced lensing B

modes, along with a primordial signal with a tensor-to-scalar ratio r = 0.05. They show di↵erent

features albeit they satisfy the similar conditions.

The pixel-based variance-optimised window functions enable to find a compromise between the

cancellation of E-to-B leakage and the induced loss of information on B modes information. The

independence of the spin-weighted window functions is indeed permitted leading to a better ex-

ploration of the W apodisation which provides the minimal global variance on the reconstructed

B modes. Therefore, the PCG window functions are expected to give the best performance in the

perspective of B modes reconstruction, thanks to the flexibility of its implementation. However,

the computation in the harmonic domain has the advantage of being fast and might give the

same results as the PCG window functions for simple contour of the observed sky patch.

The question that has now to be addressed is: which strategy should we choose to properly

estimate the B modes for a given experiment? The theoretical investigation developed in the

previous chapter tells us that they are conceptually equivalent. Their numerical implementations

might however show di↵erent behaviour as foreseen through the study of the leakage maps (in

Chapter 4) and the di↵erent usable families of window functions.

5.3 Numerical Implementations

The pure method has been implemented and intensely studied in Grain et al. (2009) specially

in the case of a small scale survey and was extended to TB and EB correlations in Grain et al.

(2012). The main ideas of its implementation and operating system are described in the present

section. Our own implementation of the zb and kn methods rests upon the same design as the

pure method although their practical computations are di↵erent, essentially in the computation

of the pseudomultipoles and the convolution kernels. The principles of the produced codes will

be exposed afterwards. For any selected strategy, a large numbers of CPUs and parallelisation

implementation (chosen to be made in MPI) are nonetheless required. We will therefore first

dwell on the description of the used supercomputer system.

5.3.1 The Hopper system at NERSC and numerical tools

The National Energy Research Scientific Computing Center (NERSC) is a division of the Lawrence

Berkeley National Laboratory and is based in Oakland. Its goal is to provide one of the world

best computer facilities for scientific research. The computational power and storage system are

colossal, the NERSC distinctive feature being its attentive maintenance. The facilities attract

diverse field of research from climatology to biology or high energy physics. The NERSC has
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6 computational systems including one of the most powerful, the Hopper system used for this

analysis.

Hopper is a CRAY XE6 system made of a total of 153,216 cores with the peak performance

of 1287 TFlops/sec. The Hopper system was therefore ranked as the 28th of TOP500 list of

November 2013 which classifies the world most powerful computer system.

Figure 5.2: The hopper system (from NERSC website).

The architecture of the Hopper system is a key concern for the speed of the calculation time.

The system is composed of 6,384 nodes, each of them organised in 2 twelve-cores processors. The

transfer between cores in a given node being faster than between two nodes, the required number

of processors for numerical computation will have to be carefully chosen in order to minimised

the computation time.

Both the computation of the window function and the simulations for the estimation of the

CMB power spectra have been implemented on the Hopper system for it provides very robust

and e�cient facilities. The main numerical issues reside in the spherical harmonic transforms

computations, solving a linear system and inverting large matrices. The use of the MPI library

is therefore require to take advantage of the supercomputer system. Nonetheless, the available

tools for SHT were not adapted to parallelised computation: the s2hat spherical harmonics

transform library has been therefore implemented by Stompor (2011), a description of which can

be found in s2hat webpage. This library is implemented to be optimal in the distribution in the

harmonic and in the pixel spaces and has the benefit to be automatised. It was also adapted

in the ps2hat library for the pure polarised multipoles, its specifications can be found on the

ps2hat webpage.

5.3.2 The pure method

As mentioned above, the pure method implementation is at the heart of Grain et al. (2009). The

implemented code is denoted by x2pure and is made of three main steps.

Step 1: pseudomultipoles

In the scope of the implementation of the pure method, Grain et al. (2009), Smith (2006), Smith

and Zaldarriaga (2007) propose to compute the pure pseudomultipoles formulated as Eq. (4.44)

in Chapter 4 as they avoid a direct derivation of the noisy maps P±2. We recall the formulation



Chapter 5. Numerical Results 79

for the B modes:

ãB`m =
i

2

s
1

↵`,2

Z

⌦

[P2(~n)(@@W (~n)Y`m(~n))⇤ � P�2(~n)(@̄@̄W (~n)Y`m(~n))⇤], (5.11)

remembering that ↵`,s =
p
`+sp
`�s

.

For convenience, the following spin-weighted window functions are introduced:

W0 = W, W1 = @W,W2 = @@W. (5.12)

The spin-1 and spin-2 window functions are potentially complex but as W is real, we have:

W ⇤
s = W�s. Three spin-weighted apodised maps are also introduced:

P0 = W0P±2, P±1 = W±1P±2, P±2 = W⌥2P±2 (5.13)

Consequently, by performing the spin-lowering or -raising operators and using the properties of

the window function, the Eq. (5.11) is written as:

ãB`m =
1

↵`,2
(B0,`m + 2↵`,1B1,`m + ↵`,2B1,`m) (5.14)

with Bs,`m standing for the B modes pseudomultipoles of the spin-weighted polarised maps:

Bs,`m =
i

2

Z
[P+s(~n)sY

⇤
`m(~n)� (�1)sP�s(~n)�sY

⇤
`m(~n)] d~n. (5.15)

The previous Eq. (5.14) is the implemented equation to build the pseudomultipoles2 and then

straightforwardly the corresponding pseudospectrum: C̃B
` = 1

2`+1

P
m

ãB`mãB⇤
`m.

Step 2: mixing kernels

The mixing kernels Kpure,+/�
``0 embody the relation between the pseudospectrum and the true

power spectrum estimator and only depend on the window function. Therefore, from the multi-

poles of the window function and the computation of the Wigner symbol, the convolution kernel

are directly computed and their expressions are shown in Appendix A. Their explicit compu-

tations is possible thanks to the independence of the spin-weighted window functions Ws. The

mixing kernel Kpure,�
``0 (vanishing in theory) can therefore be evaluated and thus amount the

residual leakage due to the pixelisation.

Step 3: power spectrum

The last step of the implementation of the pure method consists in the inversion of the linear

system of Eq 4.41 in Chapter 4 relating the true power spectrum to its estimator.

2
The W�E/B

maps (such as the ones in Sec. 4.6 in Chapter 4) are constructed by projecting these pseudo-

multipole on the spherical harmonics.



Chapter 5. Numerical Results 80

Window function apodisation

The three kinds of apodised window functions, analytic and the two variance-optimised apodis-

ations, can be use in the scope of the pure CMB power spectra estimation.

5.3.3 The zb method

Step 1: pseudomultipoles

The masked W 2�B field is reconstructed on the observed part of the sky as explicitly for-

mulated in the Eq. (4.54) of Chapter 4. The explicit derivative operations are performed in

the harmonic domain for more manageability. The pseudomultipoles of the computed field are

then straightforwardly carried out by projecting the masked �E/B on the spherical harmonics:

ãE/B
`m =

R
W 2�E/BY`m.

Step 2: mixing kernels

TheW 2�B field is a scalar field, the mixing kernelKzb,±
``0 is therefore computed in the same way as

for temperature, which expression is shown in Appendix A. The mixing kernelKzb,�
``0 is set to zero

and thus ignores the remaining leakage coming from the pixelisation. Step 3: power spectrum

Ultimately, the polarisation power spectrum is retrieve by inverting the pseudospectrum linear

system Eq. (4.41) in Chapter 4.

Widow function apodisation

The computation of the pseudomultipole is such as the equalities in Eq. (5.11) cannot be relaxed,

thus preventing for the use of the PCG window function. The harmonic variance-optimised along

with the analytically apodised window functions are suitable.

5.3.4 The kn method

Step 1: pseudomultipoles

The �̃B field is first computed on the sky weighted by a window function W with an apodisation

length ✓apo. The estimation is performed afterwards on a mask MW�B

cutting a layer of width

✓cut which contains only pixels poorly a↵ected by leakage.

Step 2: mixing kernels

The mixing kernels are computed in the same way as for the zb method also setting Kkn,�
``0 equal

to zero.

Step 3: power spectrum

As previously, the B modes power spectrum is retrieved by inverting Eq. 4.41 in Chapter 4.
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Window function apodisation

This approach only allows for the use of analytic apodisation. In Kim (2011), a window function

apodisation with a Gaussian profile was used. We however choose apodisation such as Eq. 5.7

in our analysis. Besides, our implementation is made to test various apodisation lengths at

the same time. In that way, the apodisation length ✓apo is tuned by performing Monte Carlo

simulations in the perspective of the performance on the bias and variance on the reconstructed

B modes power spectrum. In the analysis, the results for three values of ✓apo are shown. Also,

we have seen that cut such as ✓cut = ✓apo ensures a ‘pure’ enough binary mask.

5.3.5 Inputs

In our analysis, the implementations of the three methods have been used in a simulation mode.

Schematically, from an input power spectrum Ctheo
` , the a`m are drawn from a Gaussian distribu-

tion of mean zero and variance Ctheo
` . The procedures described above are applied to reconstruct

the input Ctheo
` for each method. As we do not have an analytic expression for the variances,

Monte Carlo (MC) simulations are performed in order to estimated the error bars on the power

spectrum reconstruction. The speed of pseudospectrum approaches enable to carry out such

simulations. In this analysis, Nsim = 500 simulations were required in order to minimise the

scattering variance.

In practice, the inputs of the codes are divided to in two parts. The first part is dedicated to

the computation of the convolution kernel Kmethod,±
`,`0 . The required inputs are the:

- spin-0, spin-1 and spin-2 window functions W0, W1 and W2;

- maximal multipoles `max up to which the convolution kernel are computed.

The second part consists in the Nsim CMB temperature and polarisation angular power spectra

reconstruction. The inputs of the codes for all the methods are:

- the input theoretical CMB temperature and polarisation power spectra Ctheo
` (or I,Q, U map);

- above computed mixing kernels for a given window function W ;

- noise level of the temperature and polarisation maps;

- The spin-0, spin-1 and spin-2 window functions W0, W1 and W2;

- Beam function b`;

- The maximal multipoles `simmax up to which the simulations are performed and `estmax up to which

the spectra are estimated.

5.4 Numerical Results: Pseudospectra and Angular Power

Spectra

The pure, zb and kn methods are theoretically constructed to give the same B modes power

spectrum reconstruction free from any leakage. They may nonetheless give di↵erent results due

to their distinct numerical implementation. The practical behaviour of each of these pseudospec-

trum approaches and their relative e�ciency is the driving question of the present section. At
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the end, we will be able to conclude on which power spectrum reconstruction is most appropriate

for CMB data analysis.

All along the analysis, the input signal for the simulations is a E modes signal according to the

parameters obtained by WMAP-7 years in Larson et al. (2011). The B modes signal includes

the lensing part and a fiducial primordial contribution with r = 0.05.

5.4.1 Fiducial experimental set-ups

For an utter study of the e�ciency of the di↵erent strategies applied to realistic CMB maps, we

have designed two fiducial experimental set-ups mainly di↵ering on their observed sky fraction:

a small and a large scale survey. Both set-ups have indeed distinct issue specially regarding to

the mask shape. Albeit they are idealised, their outlines are based on current or forthcoming

CMB experiments dedicated to B-modes.

Figure 5.3: Left panel : The binary mask of the fiducial satellite-like experiment designed
from the polarised galactic mask of WMAP-7yr release with the corresponding polarised point
sources catalogue removal. The (grey) red area is the (non) observed region of the sky. Right

panel : same with no point sources removal.

The large scale experiment imitates is characteristic of a satellite-like experiment dedicated to the

B modes detection with the specifications of the potential forthcoming satellite such as EPIC-

2m described in Bock et al. (2008). It is typical of Stage IV (expected around the year 2020)

experiments as described in Abazajian et al. (2013). The beam is supposed to be a Gaussian

with a FWHM of 8 arcmin while the noise level is 2.2 µK-arcmin. In order to simulate a realistic

large scale coverage, the galactic mask from WMAP-7yr release adding its point source catalogue

mask is used. The obtained sky fraction is then about 71% of the celestial sphere and the shape

of the mask is displayed in Fig.5.3. As the large angular scales are the main interest in this

analysis, the chosen HEALPIX pixelisation Nside is of 512 corresponding to a pixel resolution of

7 arcmin. A sub-case of the satellite-like experiment was also defined with the same instrumental

characteristics but now without masking the point sources. The mask therefore boils down to

the galactic mask alone as shown in the right panel of Fig. 5.3. Such a sky coverage can be

achieved by performing an in-painting of the holes masking the point sources. This set-up will

be useful for the following analysis in order to study the e↵ect of the holes in the mask.

The designed fiducial small scale experiment is inspired by the balloon-borne experiment EBEX

described in Reichborn-Kjennerud et al. (2010) which has flew in 2013. The observed sky coverage

is fsky = 1% with a Gaussian beam of 8 arcmin and an homogeneous noise level of 5.75µK-

arcmin. The designed mask, shown in Fig. 5.4, is a square of area 400 square degrees including
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Figure 5.4: Binary mask of the fiducial small scale experiment covering 1% of the sky. The
holes in the mask corresponds to masked point sources. The (grey) red area is the (non)

observed region of the sky.

5 holes standing for possible cut out of polarised foregrounds. In the healpix convention, the

chosen Nside is of 1024 leading to a pixel size of roughly 3.5 arcmin.

The fiducial experiments being designed, we are now able to test the di↵erent approaches of

B modes reconstruction for the two distinct scanning strategies. A first hint of the method

e�ciency is the resulting pseudospectra which quantify the remaining E-to-B leakage.

5.4.2 At the pseudospectrum level: looking at the E-to-B leakage

For both fiducial experimental set-ups, the conclusions drawn on the leakage minimisation by the

use of the three described approaches are expected to be di↵erent, the mask shape being deeply

dissimilar. The remaining leakage will therefore be under scrutiny in the case of a satellite-like

experiment first where the leakage is presumed to be low, followed by the case of the small-scale

survey.

The B-modes pseudospectrum C̃BB
` is straightforwaldy built from the B pseudomultipoles ãB`m

as computed above in the case of the standard, pure, zb and kn approaches:

C̃BB
` =

1

2`+ 1

X

m

ãB`mãB
⇤

`m. (5.16)

The pseudospectra are easily calculated by performing a mean on the di↵erent simulated pseu-

dospectra. Moreover, we point out that at this stage the binning is not required as no matrix

inversion is involved.

This analysis consists in measuring the residual leakage which boils down to amount the ratio

between the two following relevant quantities. The first quantity to evaluate is the B modes

pseudospectrum only coming from the leaked E modes. In practice, C̃E!B
` =

P
`0
Kmethod,�

``0 CEE
`

is calculated with solely E-modes in input (no B modes). The second quantity amounts the B

modes contribution to the B modes pseudospectrum. It is quantified thanks to the B modes

pseudospectrum C̃B!B
` =

P
`0
Kmethod,�

``0 CBB
` produced with only B modes in input. Comparing

these quantities or their ratio gives an estimate of the left-over leakage.
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Standard method: large scale and small scale surveys

The first outlook to appreciate the control of the leakage by the di↵erent approaches is to

reconstruct the B modes pseudospectrum in the standard method. By virtue of its non vanishing

mixing kernels, the standard method is expected to lead to high amount of leakage. The resulting

pseudospectra are shown in Fig. 5.5 in the case of a large scale survey (left panel) and of a small

scale survey (right panel). The obtained contribution3 from the leakage to the B modes, C̃E!B
` ,

is displayed in solid black line. The contribution from the B modes only, C̃B!B
` , is shown in

coloured lines for di↵erent values of the tensor-to-scalar ratio r ranging from 0.001 to 0.1.

First of all, it is noticeable that the level of the factitious contribution C̃E!B
` is higher, by roughly

two orders of magnitude, than the one in the small scale survey. In a first approximation, the

pseudospectrum level indeed scales with the observed sky fraction. This explains the discrepancy

between the obtained C̃E!B
` on the small and large scale surveys. The amount of residual leakage

is quantified by the ratio between the two contributions C̃E!B
` and C̃B!B

` . As a first guess, this

ratio is expected to be small in the case of large scale experiment as the accessible part of the

sky is large. The obtained results displayed in Fig. 5.5 are striking: the contribution from the E

modes to C̃BB
` is around one order magnitude higher than the one from the true B modes, up

to ` = 800 for r = 0.1. This discrepancy is more marked in the case of a small scale experiment:

C̃E!B
` is higher than C̃B!B

` up to ` = 1000 with at least one order of magnitude. At low ` and

for r = 0.001, the contribution is 3 orders of magnitude higher than the one from the B modes

due to the low signal of the primordial B modes.

Figure 5.5: Left panel: The pseudospectrum C̃

E!B

`

obtained with no input B modes and E

modes power spectrum from WMAP-7yr best fit in solid black line obtained using the standard
method for a large scale experiment. The coloured curves stand for the pseudospectrum C̃

B!B

`

with no input E modes and a theoretical B modes power spectrum for di↵erent values of r
(r = 0.001, 0.01, 0.05, 0.1) along with the lensing contribution.Right panel: Same for the small

scale experiment.

As a result, even for a detection of the CMB polarisation on 71% of the sky, the leakage between

polarisation modes is significant and has to be considered. The reason for such a high leakage

seems to be due to the shape of the mask instead of its covered area. The WMAP-7yr polarised

3
Notice that the B modes pseudospectrum

˜CB!B

`

does not have the shape of the input B modes angular

power spectrum as one would expect. Indeed the pseudospectrum is related to the true angular power spectrum

by a convolution which a↵ects the spectrum shape.
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galactic mask shown in the right panel of Fig. 5.3 and the holes masking the foregrounds are

indeed associated to give a complicated and twisted contours of the mask.

Figure 5.6: The pseudospectrum C̃

E!B

`

obtained with no input B modes and E modes power
spectrum from WMAP-7yr best fit in solid black line obtained using the standard method for
a large sky coverage without holes. The colored curves stand for the pseudospectrum C̃

B!B

`

with no input E modes and a theoretical B modes power spectrum for di↵erent values of r
(r = 0.001, 0.01, 0.05, 0.1) along with the lensing contribution.

The shape of the mask consequently appears to be the key ingredient in the level of the E-to-B

leakage as indicated in Bunn et al. (2003). We therefore propose to quantify the impact of the

holes on the overall leakage level. The corresponding mask is solely the galactic one as illustrated

in the right panel of Fig. 5.3 and covers 73% of the celestial sphere. The resulting pseudospectra

are displayed in Fig. 5.6 with the same conventions as previously. The E modes contribution

to the B modes pseudospectrum is lower with respect to the case with holes. Nonetheless, the

true B modes contribution to C̃BB
` is higher and exceeds the leakage for ` higher than 200. In

particular, for r = 0.1, the E modes contribution C̃E!B
` is equivalent to the true signal C̃B!B

`

in the range of the recombination bump. The amount of E-to-B leakage is therefore reduce when

filling the holes of the mask. While masking the point sources only slightly reduces the observed

sky fraction, it does have a substantial impact on the amount of leakage. The holes indeed add

a lot of disjointed small edges to the mask thus increasing the source of E-to-B leakage.

As a conclusion, this analysis does not necessarily mean that the variance on the B modes power

spectrum reconstruction will be higher than its amplitude. However it demonstrates that the B

modes sampling variance is dominated by the contribution from the leaked E modes. Moreover,

the issue of the shape mask has been arose in the case of the full sky survey which appears to

be more intricate than expected and thus have to be investigated.

Leakage free methods: the satellite-like survey

The pure, zb and kn methods o↵er a way to correct for the leakage by cancelling the mixing

matrix K�
``0 .

Performing the same procedure as above in the case of the pure and zb methods for a large

scale survey give the pseudospectra displayed in the left panel of Fig. 5.7. The first conspicuous

result is that the contribution from the E-to-B leakage C̃E!B
` (in solid lines) is not completely
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Figure 5.7: Pseudospectra built from leakage free methods in the case of a large scale exper-
iment.

Left panel: The pseudospectrum C̃

E!B

`

obtained with no input B modes and E modes power
spectrum from WMAP-7yr best fit in solid (red) black line obtained using the pure (zb)
method. The pseudospectrum C̃

B!B

`

obtained with no input E modes and a theoretical B
modes power spectrum for r = 0.05 in dashed (red) black line obtained using the pure (zb)

method.
Right panel: The ratio C̃

E!B

`

/C̃

B!B

`

between the B modes pseudospectrum with no B modes
in input and no E modes in input obtained in the kn method for di↵erent applied masks

(f
sky

= 72%, 70% and 66% in black, purple and blue respectively).

vanishing contrary to what was theoretically expected. The leakage coming from the mask being

mainly correcting, the pseudospectra are now sensitive to more subtle e↵ects. In particular, the

pixelisation of the CMB maps is a source of E-to-B leakage and is expected to a↵ect the small

scales. The pixel finite size is therefore thought to be the cause of the C̃E!B
` high ` increase.

At low `, the ratio between the true B modes contribution and leakage is lower for the zb method

with respect to the one obtained using the pure method, inversely to the high `. On the right

panel of Fig. 5.7, the ratios C̃E!B
` /C̃B!B

` for the kn method are directly shown for various

apodisation lengths of the mask. The highest apodisation length, ✓apo = 2o ensures the best

reduction of the leakage. However, for a window function covering 72% of the sky, the ratio

C̃E!B
` /C̃B!B

` stays around 0.4 in the multipole range ` 2 [2; 100] while the same ratio evaluated

thanks to the zb method stays below 0.01. Besides, the B modes pseudospectra originating from

the true B modes obtained with the kn method have more power than the one obtained with

the pure and zb method. A competition between the level of reconstructed power of the true B

modes and the leakage removal do arise. An analysis at the level of the angular power spectrum

is thus required to state on the e�ciency of each method.

Influence of the holes in the mask

The holes removal may have an impact on the e�ciency of the leakage free B modes pseudospec-

trum reconstructions. For clarity, only the results for the pure method are shown as the other

methods show similar results. The figure 5.8 shows the contribution from the leakage (true B

modes) to the B modes pseudospectrum in black (coloured) lines. The leakage is lowered by

one order of magnitude with respect to the case with holes in the mask. As a consequence, the

presence of the holes also contribute to the amount of remaining leakage in the case of leakage

free methods.
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Figure 5.8: The pseudospectrum C̃

E!B

`

obtained with no input B modes and E modes power
spectrum from WMAP-7yr best fit in solid black line obtained using the pure method for a
large sky coverage without holes. The colored curves stand for the pseudospectrum C̃

B!B

`

with no input E modes and a theoretical B modes power spectrum for di↵erent values of r
(r = 0.001, 0.01, 0.05, 0.1) along with the lensing contribution.

Leakage free methods: the small-scale survey

Similarly, in the case of the small scale survey, the figure 5.9 shows the obtained results for the

pure and zb methods in left panel and for the kn method in the right panel. In this case also, the

true B modes contribution C̃B!B
` is much higher than the spurious E modes contribution. For

the pure method, the true pseudospectrum (in dashed lines) remains two orders of magnitude

higher than the leakage at large angular scales, a priori ensuring a confident reconstruction of the

B modes. The zb method shows again its ability to accurately reduce the leakage contribution

to the B modes pseudospectrum. The kn strategy appears to be more e�cient in retrieving the

B modes as C̃B!B
` is higher than in the pure and zb methods. Nonetheless, as in the previous

cases, the leakage contribution also appears to be high compared to the one obtained in the

two other approaches. A large apodisation length (✓apo = 2o corresponding to fsky = 0.4%) is

required for the leakage contribution to reach the level of the one obtained in the pure method.

Intermediate conclusion:

The performed analysis at the pseudospectrum level enables to catch a glimpse on the leakage

e↵ects for realistic experimental set-ups. First of all, the E-to-B leakage is potentially a dramatic

e↵ect as, if not corrected, for a large scale and a small scale surveys, the E modes contribution to

the B modes pseudospectrum overwhelms the one originating from the true signal respectively

up to ` = 800 and ` = 1000. Moreover, we have shown that in the case of nearly full sky

experiment the leakage is unexpectedly elevated: the mask complexity is a key ingredient of

B modes purity. For a clean B modes reconstruction, the leakage free methods theoretically

described in Chapter 4 are therefore required. They all result in a much lower level of the

leakage, although unfortunately not completely vanishing. The residual leakage is thought to be

due to the pixelisation and cannot be reduced in the current methods implementations.

However, the amplitude of the remaining leakages di↵ers regarding the used leakage free method.

In both fiducial experiments, the pure method indeed leads to a higher residual compared to the

one obtained with the zb method. The case of the kn strategy is more subtle as the final sky
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Figure 5.9: Pseudospectra built from leakage free methods in the case of a small scale
experiment.

Left panel: The pseudospectrum C̃

E!B

`

obtained with no input B modes and E modes power
spectrum from WMAP-7yr best fit in solid (red) black line obtained using the pure (zb)
method. The pseudospectrum C̃

B!B

`

obtained with no input E modes and a theoretical B
modes power spectrum for r = 0.05 in dashed (red) black line obtained using the pure (zb)

method.
Right panel: The ratio C̃

E!B

`

/C̃

B!B

`

between the B modes pseudospectrum with no B modes
in input and no E modes (r = 0.05) in input obtained in the kn method for di↵erent applied

masks (f
sky

= 1%, 0.7% and 0.4% in black, blue and turquoise respectively).

coverage is chosen a posteriori. In this special case, the ratio between the E modes contribution

and the B modes true signal is higher for higher value of the sky coverage due to the non

removed ambiguous pixels. To conclude on the practical e�ciency of each strategy to correct for

the leakage, we must now study the reconstruction at the level of the B modes angular power

spectrum.

5.4.3 At the angular power spectrum level: large scale survey

The two following sections are focused on the bias and variances on the B power spectrum

reconstruction by the three considered leakage free approaches. The bias is estimated by the

deviation of the reconstructed power spectrum to the input power spectrum. The variance is

derived by averaging over the simulated power spectra:

Var(ĈBB
` ) =

1

Nsim � 1

2

4
N

simX

i=1

ĈBB,i
` ĈBB,i

` � 1

N2
sim

N
simX

i=1

ĈBB,i
`

N
simX

j=1

ĈBB,j
`

3

5 (5.17)

with Nsim the number of simulation and ĈBB,i
` the ith simulated reconstructed estimator of the

B modes power spectrum. The reference level is the mode-counting variance as introduced in

Chapter 4, the idealised variance on the B modes power spectrum. All along the analysis, the

power spectra are reconstructed with Nsim = 500 simulations for reliable results.

Minimal bias and variance are therefore the two requirements on which the following examination

will focus on to settle on the leakage free method e�ciency and robustness. The case of the

fiducial balloon-borne and satellite-like experiments give rise to distinct issues. The results on a

large scale experiment will thus be under scrutiny before the outcomes of the small-scale survey
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which was already deeply studied in the case of the pure method in Smith (2006), Smith and

Zaldarriaga (2007), Grain et al. (2009), Grain et al. (2012).

The first investigation at the pseudospectrum level has given hint on the necessity of using a B

modes reconstruction correcting for the leakage even in the case of a large scale survey. To support

this presumption, the B modes angular power spectrum behaviour derived in the standard

framework has to be explored. The standard method to estimate the B modes is unbiased (as

shown in Chapter 4), we therefore expect the reconstructed simulated B modes power spectrum

to be unbiased. However, from the previous analysis at the level of the pseudospectrum, we

predict a high variance induced by the leaked E modes contribution. In Fig. 5.10, the input

angular power spectrum to be recover is shown in black solid line along with the mode counting

error bars including noise and beam e↵ects in black dashed line.

Figure 5.10: The red crosses stand for the `-by-` reconstructed power spectrum using the
standard method for a large scale experiment. The input B modes power spectrum to be
estimated is the solid black line. The dashed black line set a benchmark on the obtained
uncertainties as it is the ideal mode counting ones. The error bars obtained using a binary
mask, an analytic apodisation with an apodisation length ✓

apo

= 1o and ✓

apo

= 4o are displayed
as red, blue and yellow curves respectively.

The red crosses depict the obtained `-by-` B power spectrum obtained via the standard method

– i.e. without correcting for the E-to-B leakage – on a binary mask M . The crosses well follow

the input power spectrum, showing nonetheless a slight scattering at low `. The latter is due to

the finite amount of simulations adding to the fact that its variance appears to be higher than the

power spectrum itself. As a result, the reconstructed power spectrum is unbiased: the theoretical

standard calculations are corroborated by their numerical implementation. In particular, the

convolution kernel K�
``0 is well computed. The coloured lines show the MC uncertainties for

three apodisation lengths of the applied window functions. The red solid lines evince the lowest

variance on ĈBB
` power spectrum, obtained using a binary mask. For ` lower than 30, the

variance exceeds the reconstructed B modes preventing us from a genuine B modes detection

on large scales. The issue is dramatic especially since the low ` B modes are the key observable

to constrain the primordial universe. One may argue that the binary mask is not appropriate

because of the sharp edges, I have therefore simulated standard B modes reconstruction with

apodised window functions with apodisation lengths of 1o and 4o. The resulting variances are

respectively shown in turquoise and yellow solid lines in Fig. 5.10. They appear to give worth

results than for the binary mask, the uncertainties level growing with the apodisation length.

This is explained by the induced loss of information on the B modes.
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This preliminary work confirms the need for approaches correcting for the E-to-B leakage, as

presumed by analysing the pseudospectrum. The issue is particularly mandatory to detect

the primordial B modes as the error bars exceed the signal at least up to ` = 30. For higher `,

although the signal-to-noise ratio is greater than one, the obtained error bars remain higher than

the mode counting ones. The power spectrum reconstruction can thus be improved. The three

methods of interest are expecting to give better result and I propose to quantify it by performing

the same procedure as above firstly focusing on the pure method performances followed by the

zb and kn strategies.

Pure method

The pure method enables a wide exploration of CMB B modes estimation as its implementation

allows for various kinds of window functions optimisation. In the scope of minimising variance

on the recovered B modes power spectrum, an `-by-` reconstruction up to ` = 300 is convenient

as the leakage is the most intrusive in the range of low multipoles. At first, the window functions

optimised in the harmonic domain seem to be the best solution as they are a priori built to

minimise the variance on the reconstructed B modes and their computation is fast, taking

advantage of the s2hat library and homogeneous noise distribution. The Fig. 5.11 displays the

reconstructed B modes power spectrum from an input signal in solid black line with a mode

counting variance in dashed black line. The uncertainties on the recovered B modes power

spectrum in red crosses obtained using the harmonic optimised window function is represented

by the yellow line. The window functions were optimised bin-by-bin. The obtained performances

strongly depend on the angular scales. The variance is indeed greater than the signal itself for

` < 50 but quickly decreases towards the mode counting variance at high `. The variance

obtained by an analytic apodisation of 7o appears to be lower than the harmonic optimised

window function up to ` = 60. The endeavour for optimisation in the harmonic domain therefore

seems to be useless for the low ` range.

Figure 5.11: The red crosses stand for the `-by-` reconstructed power spectrum using the
standard method for a large scale experiment. The input B modes power spectrum to be
estimated is the solid black line. The dashed black line set a benchmark on the obtained
uncertainties as it is the ideal mode counting ones. The error bars obtained using a binary
mask, an analytic apodisation with an apodisation length ✓

apo

= 7o and an harmonic variance-
optimised window function are displayed red, blue and yellow curves respectively.
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However, the error bars obtained using PCG window functions are depicted as the red solid

line in Fig. 5.11. The conclusions are undeniable: the resulting uncertainties only eclipse the B

modes signal for ` < 3 and rapidly decrease close to the mode counting variance. The obtained

uncertainties are at least two orders of magnitude lower than the ones obtained using the other

window function, for ` < 10. It is thus a significant achievement especially in the perspective

of setting constraints on the primordial physics. The price to pay is the numerical cost. In

practice, a computation time of one hour and a half on 70 processors is indeed required to build

the window function in the harmonic domain while more than 7 hours for one hundred processors

are needed for pixel-based window function optimisation.

The e�ciency of the PCG window functions is explained by its flexibility in the minimisation

process. The release of the constrains on the spin-weighted window function actually allows for a

better minimisation of the overall variance on the B modes power spectrum. It indeed finds the

compromise between correcting the E-to-B leakage and the induced loss of information ensuring

the lowest global uncertainties. The need for such an elaborated tool in the case of a large scale

survey – expected to be easier – is a key issue raised during my PhD thesis.

Furthermore, although the obtained variance is low, it stays as high as the signal up to ` ⇠ 20.

An appropriate binning would lower the variance on the recovered power spectrum of roughly

a factor 1
�

`

with �` the bin width. We therefore apply the binning process as exposed at the

beginning of the present chapter. The first bin ranges between ` = 2 up to ` = 20 and �` = 40

for higher multipoles.Such a binning is convenient for it reduces the variance but still keeps the

shape of the B modes spectrum (in particular, the recombination bump remains well sampled).

Learning from the previous work, we have carried out the estimation of the CMB B modes power

spectrum in the pure method framework using PCG window functions optimised per bin. The

resulting binned estimated B modes power spectrum along with its uncertainties are displayed

on Fig. 5.12 by respectively a solid and a dashed red line. In order to appreciate the e�ciency of

the method, the binned mode-counting – and therefore ideal – uncertainties are shown in dashed

black line as a benchmark. First of all, the reconstructed B modes power spectrum is unbiased

as theoretically presumed.

Figure 5.12: Power spectrum uncertainties on B-modes in dashed red line using the pure
estimation for the case of a satellite-like experiment (fsky ⇠ 71%). The dashed black line
displays the ideal mode counting uncertainties. The sold red curve stand for the reconstructed
B modes power spectrum of the input power spectrum in solid black curve. The grey shaded

boxes represent the bins.
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Second of all, the binned uncertainties on the reconstructed B modes power spectrum tightly

follow the mode-counting variance as indicated by the dashed lines in Fig. 5.12. It therefore

ensure a high signal-to-noise ratio on B modes detection – the uncertainties are well below the

B modes powerspectrum. This demonstrates that the pure method is numerically e�cient to

minimise the B modes variance and to reconstruct B modes power spectrum over the whole

multipole range.

As a result, thanks to the PCG window function optimisation, the pure method is proficient

in estimating the genuine B modes on the whole multipole range. The pure method is then

promising for the CMB data analysis in the case of a satellite experiment dedicated to B modes

detection.

zb method

The B modes estimation using the pixel-based zb technique consists in reconstructing the masked

W 2�B field. As explained at the beginning of the chapter, the zb technique allows for the use

analytically apodised or harmonic-based variance-optimised window functions. The release of

the conditions on the spin-weighted window functions allowed by the pixel-based implementation

has been checked to be incompatible with the zb method.

Figure 5.13: Power spectrum uncertainties on B-modes in dashed red line using the
zb method thanks to an harmonic variance optimised window function for the case of a
satellite-like experiment (fsky ⇠ 71%). The coloured dashed lines are the obtained error
bars for di↵erent lengths of apodisation ranging from ✓

apo

= 5o to ✓

apo

= 8o. The dashed
black line displays the ideal mode counting uncertainties. The sold red curve stand for the
reconstructed B modes power spectrum of the input power spectrum in solid black curve. The

grey shaded boxes represent the bins.

The outcomes of the zb technique to estimate B modes are illustrated in Fig. 5.13 where the

coloured dashed lines represent the variances on the estimated B modes power spectrum dis-

played by the solid red curve. The first bin is manifestly plagued by a high variance, which

swamps the signal, leading to a scattering of the estimated power spectrum. This explained the

negative value of the estimated power spectrum in the first bin. However, it is not an impediment

to the unbiased estimation as for the higher bins the power spectrum is consistent with the input

power spectrum.
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Moreover, I have explored the zb method e�ciency in the perspective of minimising the obtained

variance. The two authorised families of window functions have di↵erent issues. On the one

hand, the apodisation length of the analytic window functions have to be properly chosen via

MC simulations. For clarity, only the results for four apodisation lengths ✓apo ranging from 5o

to 8o are shown in Fig. 5.13. I have checked that higher or lower values of ✓apo give highest

uncertainties. For the highest multipoles, the variance is simply increasing with the apodisation

length because of the induced loss of cosmological information due to the lowering of e↵ective

sky fraction. Nonetheless, in the low ` range, the most appropriate apodisation length is the one

resulting from the analytically apodised window function with ✓apo = 7o which thus best lower

the leakages. On the other hand, the harmonic-optimised window function give the uncertainties

depicted by the dashed-dotted red line in the figure above. From the third bin, the obtained

variance is below the one obtained via analytic apodisation and is following the mode-counting

variance. In spite of this high-` e�ciency, the uncertainties on the reconstructed B modes are

higher than the error bars get from analytically apodised window function for ` < 60 thus

exceeding the B modes amplitude.

Being pixel-based, the zb method does not o↵er as much flexibility as the pure technique thus

prohibiting the use of PCG window functions. Nonetheless, it gives competitive results for the

highest multipoles ` & 60 as the obtained variances are very low. Using an harmonic optimisation

or an analytically apodised window function, the B modes power spectrum cannot be recovered

in the first two bins i.e. ` 2 [2; 60], where the primordial B modes is peaking.

kn method

The kn method is expected to give worse performances than the two previous approaches as it

is an approximation of the zb technique. The Fig. 5.14 displays the recovered B modes power

spectra in solid coloured lines along with their respective variances.

Figure 5.14: Power spectrum uncertainties on B-modes in dashed red, yellow and blue lines
using the kn method thanks to di↵erent mask (with fsky = 65%, 57%, 39% respectively) in the
case of a satellite-like experiment (fsky ⇠ 71%). The dashed black line displays the ideal mode
counting uncertainties. The coloured solid lines are the obtained reconstructed power spectra
for the di↵erent e↵ective sky fraction. The input power spectrum is in solid black curve. The

grey shaded boxes represent the bins.

Each power spectrum have been obtained by applying a C2 apodised window function with

width ✓apo and by removing external layers on a width ✓cut = ✓apo where the window function is
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varying. The chosen apodisation lengths are ✓apo = 300, 1o, 2o, a compromise between a loss of

information and an e↵ective leakage reduction. The sky coverage where the power spectra are

estimated is therefore respectively of 65%, 57% and 39%.

For ✓cut = 300, the reconstructed B modes power spectrum is biased on the five first bins and

reach a level two order of magnitude higher than the expected signal. This marked gap to the

expected power spectrum is explained by the non vanishing convolution kernel Kkn,�
``0 , which is

set to zero. The cut layer is indeed too narrow thus pixels plagued by leakage are still left in the

analysis. For wider trimmed layer, the bias in the recovered power spectrum is less strong. The

corresponding variances are displayed in coloured dashed lines while the mode counting variance

for a sky coverage of fsky = 65% is symbolised by the black dashed curve. The lowest variance

is reach for the highest sky coverage i.e. ✓apo = 300. Even in this optimistic case, the variance

exceeds the signal itself in the first two bins, up to ` = 60. From ` = 150, the obtained variances

behave as the mode counting variance.

As a consequence, if the apodised window function is not properly chosen the kn technique leads

to biased estimated power spectrum. However, reducing the bias boils down to reducing the

kept-in-analysis sky coverage meaning that the variance will rise. In any case, the kn method

estimation does not enable to put constrain on the B modes primordial part.

Influence of the holes in the mask

In order to quantify and explore the impact of the mask shape, the impact of the holes masking

the polarised point sources on the B modes reconstruction is investigated. This study comes in

two correlated parts, the first regarding the choice of window function and the second focusing

on the pseudospectrum methods.

We expect the various families of window function to behave di↵erently regarding the mask

shape. The pure method allows for the use of each kinds of window function. In the scope of

exploring the chosen apodisation, we therefore reconstruct the B modes power spectrum using

the pure estimation on a sky where only the galactic emission is masked. The Fig. 5.15 shows the

`-by-` reconstructed B mode angular power spectrum in red crosses and its variance for various

choices of window function. By comparison with Fig. 5.12, the use of PCG window functions,

results in uncertainties level, depicted as the solid red curve, similar to the one obtained on 71%

of the celestial sphere. The PCG window functions thus well handle the complexity of the mask

to recover the lowest variance. On the contrary, the uncertainties obtained for an analytically

apodised window functions, in turquoise (with ✓apo = 22o, the lowest obtained variance) and

for harmonic-based window functions in yellow are less accurate to reconstruct the B modes

power spectrum, especially at low `. It proves that the presence of holes in the mask a↵ects

the e�ciency of both kinds of window functions in the scope of the pure estimation. The space

between the holes can indeed be small consequently leading to a harder optimisation. As a result,

the PCG window functions allow for a good treatment of the mask complexity while the other

families of window function, being less flexible by construction, are sensitive to the mask shape.

From this work on the impact of the choice of window function regarding the presence of holes

in the mask, we expect the pure method to be the more robust approach to deal with the mask
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Figure 5.15: The red crosses stand for the `-by-` reconstructed power spectrum using the
standard method for a large scale experiment without holes. The input B modes power
spectrum to be estimated is the solid black line. The dashed black line set a benchmark on the
obtained uncertainties as it is the ideal mode counting ones. The error bars obtained using a
binary mask, an analytic apodisation with an apodisation length ✓

apo

= 22o and an harmonic
variance-optimised window function are displayed red, blue and yellow curves respectively.

shape. The results of the B modes reconstruction in the pure, zb and kn methods for a galactic

mask only are shown in Fig. 5.16. In particular, the induced uncertainties on B modes power

spectrum are depicted following the same convention as Fig. 5.12. A significant gain is obtained:

the reconstruction starting from the second bin is possible now with the kn strategy and the

whole power spectrum is recovered using the zbmethod. The pure estimation using PCG window

function does not show any di↵erence between the case with and without holes. As expected,

the pure method used with the PCG window functions has the advantage not to be a↵ected by

the presence of the holes in the mask.

Figure 5.16: Summary of the power uncertainties obtained with a pure, zb and kn approach
in dashed red, yellow ans blue curves respectively, in the case of a large scale survey without
holes. The solid curve stands for the input power spectrum to be estimated. The grey shaded

boxes represent the binning of the power spectra.

As a result, the PCG window functions, optimised to give the lowest variance, are e�cient to

reconstruct the B modes for all kinds of mask, in the pure estimation framework.
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5.4.4 At the angular power spectrum level: small scale survey

The B modes reconstruction on a wide patch of the sky is expected to be less a↵ected by

polarisation modes mixing than on a small sky coverage. In particular, the sampling variance

is such that the first bin (` 2 [2, 20]) cannot be recover. Besides, the mask used for our fiducial

experiment is more simple than the ones of large scale coverage. Both statements imply that the

issue of optimising the window function will not be as crucial as in the satellite-like experiment

where the recovery of the primordial B modes on the first multipoles was the ultimate goal. The

analysis in the scope of a small-scale survey is therefore presumed to be more straightforward

than in the case of a large scale coverage although the various B modes estimations show distinct

performances. The pure method has been designed specifically for small scale surveys in Smith

(2006), Smith and Zaldarriaga (2007), Grain et al. (2009), Grain et al. (2012). The zb method

has only be tested in the case of simple spherical cap while the kn method has never be used to

reconstruct angular power spectrum on small scale experiment.

Pure method

The conclusions of the large scale survey analysis definitely state that the PCG window function

is a powerful tool associated to the pure estimation for an e�cient B modes power spectrum

reconstruction. Its e�ciency in the case of a small scale experiment was also shown in Grain et al.

(2009), Grain et al. (2012). The lowest variances are therefore expected to be achieved thanks

to the PCG window functions, in the present case. The Fig. 5.17 pictures the resulting variance

in dashed red line on the estimated B modes power spectrum. The first bin is obviously not

recovered being one order of magnitude higher than the mode-counting variance in dashed black

which is already exceeding the power spectrum. The variance on the B modes power spectrum

in the second bin (` 2 [20; 60]) is below the power spectrum consequently allowing for a detection

in this bin. For the higher multipoles, the variance is closely behaving as the mode-counting

variance indicating that the lowest variance level is achieved for this ` range. Furthermore, the

numerical results confirm the unbiased construction of the estimator.

Figure 5.17: Power spectrum uncertainties on B-modes in dashed red line using the
zb method for the case of a small scale experiment (fsky ⇠ 1%). The dashed black line
displays the ideal mode counting uncertainties. The sold red curve stand for the reconstructed
B modes power spectrum of the input power spectrum in solid black curve. The grey shaded

boxes represent the bins.
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Thus the pure estimation using PCG window function enables a clean recovery of the B modes

starting from ` = 20, the reionisation bump being thus out of reach because of the small accessible

sky fraction.

zb method

The zb strategy o↵ers the possibility of using two kinds of window function: the analytically

apodised or the harmonic variance-optimised window functions. The resulting variance on ĈBB
`

for both estimation are displayed on Fig. 5.18 respectively in coloured dashed and in red dotted-

dashed. For both cases, the uncertainties are significantly higher than the input signal for

` 2 [2; 70], although the use of harmonic-based optimised window function gives the smallest

error bars. In this multipole range, the analytic window function with ✓apo = 3o leads to the

lowest variance. The variance level however scales with the used e↵ective sky fraction for the

highest mulitpoles. In this ` range, the variance obtained using ✓apo = 1o follows the one obtained

from an harmonic optimised window function, close to the mode-counting variance. Moreover,

the estimation is unbiased albeit the reconstructed power spectrum shows a departure from the

input power spectrum in the first bin due to the high variance.

Figure 5.18: Power spectrum uncertainties on B-modes in dashed red line using the
zb method thanks to an harmonic variance optimised window function for the case of a small
scale experiment (fsky ⇠ 1%). The coloured dashed lines are the obtained error bars for dif-
ferent lengths of apodisation ranging from ✓

apo

= 1o to ✓

apo

= 4o. The dashed black line
displays the ideal mode counting uncertainties. The sold red curve stand for the reconstructed
B modes power spectrum of the input power spectrum in solid black curve. The grey shaded

boxes represent the bins.

The lowest uncertainties on the B modes power spectrum is therefore obtained by using the

harmonic optimised window function in the zb estimation. This combination allows for a clean

reconstruction on the multipoles starting from ` = 60.

kn method

In our implementation, the kn strategy is based on window function which apodisation length

is tuned a posteriori.

In the present analysis, we also take window function with ✓apo = 300, 1o and 2o. In Fig. 5.19,

the error bars obtained for the various apodisation lengths are shown respectively in dashed
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Figure 5.19: Power spectrum uncertainties on B-modes in dashed red, yellow and blue lines
using the kn method thanks to di↵erent mask (with fsky = 0.86%, 0.72%, 0.42% respectively)
in the case of a small scale experiment (fsky ⇠ 1%). The dashed black line displays the ideal
mode counting uncertainties. The colored solid lines are the obtained reconstructed power
spectra for the di↵erent e↵ective sky fractions. The input power spectrum is in solid black

curve. The grey shaded boxes represent the binning of the power spectra.

red, yellow and turquoise. The lowest variance results from a window function with apodisation

length of ✓apo = 300 and overreaches the estimated signal in the first five bins. For higher

apodisation length, too much information is lost resulting in high variance for a wide range of

`. For ✓apo = 2o for instance, the B modes detection is impossible for the seven first bins. Such

high variance and loss of information leads to a bias of the estimated power spectrum, more

significant for the highest apodisation length.

At best, the kn method recovers the B modes power spectrum from ` = 180, the primordial

part including the reicombination bump (` ⇠ 100) is therefore out of reach, without ensuring an

unbiased estimation for the lowest mulitpoles.

5.4.5 The case of TB and EB correlations

From the above work, the pure estimation appears to be the most e�cient method for B modes

reconstruction. We expect the second polarisation mode – the E modes – to be less sensitive to

the mode mixing as the B modes amplitude is presumed to be much weaker than the E modes.

In the scope of E modes power spectrum, the standard method might be su�cient. However,

the issue of the choice of a pseudospectrum method arises when estimating TB and EB cross

correlations: should we use the standard or pure estimation ? Grain et al. (2012) exposed their

investigation to answer this question. In this article, the EB and TB power spectra are assumed

to be zero as it is the case in standard model of cosmology. Nonetheless, a proper estimation of

TB and EB is crucial e.g. as a criteria to calibrate the detectors dedicated to CMB polarisation

detection.

It can be intuitively understood that the estimation of E modes power spectrum, being poorly

a↵ected by the B-to-E leakage, should be done using the standard method in order to keep the

information on E modes held in the ambiguous modes. On the contrary, the B modes have to be

estimated using the pure method as shown in this section. The TB and EB correlations would

therefore be reconstructed using the standard (pure) method to reconstruct E (B) modes power
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Figure 5.20: Error bars on the reconstructed angular power spectra for each of the three
formalisms (colored curves) alongside the naive (binned) mode counting estimate of such un-

certainties for a small scale survey with inhomogeneous noise (from Grain et al. (2012)).

spectrum. This estimation of the TB and EB correlations is the so-called hybrid method. The

key drawn conclusion is that the hybrid estimation indeed gives the lowest uncertainties on the

EB and TB cross-correlations. The Fig. 5.20 is taken from Grain et al. (2012) and displayed

the obtained variance on the E, B, TB and EB spectra using a pure, standard an hybrid

estimation for a fiducial balloon-borne experiment. In each panel, the hybrid estimation shows

its e�ciency to give the smallest variance on the power spectra reconstruction. This statement

will be essential for the following part.

Conclusions

The pure, zb and kn pseudospectrum methods were built to minimise the variance originating

from the E-to-B leakage on the reconstructed B modes. They are representative of the family

of leakage-free pseudospectrum estimators. The kn method is the most intuitive one as it

consists in removing the pixels plagued by the leakage before the B modes estimation. The

zb method principle resides in the reconstruction of the masked �B field from which the polarised

pseudospectra are deduced. The pure estimation sorts out the loss of orthogonality between the

decomposition on E and B modes by introducing a new basis of pure E and B modes.

The apodisation of the involved window functions W to be applied to the CMB maps can

be derived following three procedures: an analytic apodisation and variance-optimised window

functions including a pixel- and an harmonic-based computation. They all di↵er in principle
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and can thus lead to di↵erent e�ciency regarding B modes estimation. In particular, the pixel-

based variance-optimised window function is a powerful tool adapted to the pure method which

allows for flexibility in its numerical computation. The numerical implementations of the three

proposed methods and of the di↵erent kinds of window functions allowed for an utter exploration

of the e�ciency in B modes power spectrum reconstruction.

In the scope of a CMB detection by a satellite-like mission (typical for Stage IV), the best results

obtained for each method are diplayed in Fig. 5.21. A pure estimation of the B modes gives

extremely accurate results: both the reionisation and the recombination bumps are achievable.

Moreover, the obtained error bars closely follow the ideal ones. The zb approach enables a

detection of the recombination bump with a variance higher than the B modes power at large

angular scales. Furthermore, the kn method leads to a detection of the recombination bump

only on a small multipole range.

Although the sky coverage is large, the E-to-B leakage can be intrusive owing to the intricate

shape of the mask and thus have to be corrected for. A key result of our analysis is that the

choice of window function is crucial in this case. In particular, in the scope of B modes pure

estimation, the pixel-based variance-optimised window functions ensure an e�cient recovery of

the power spectrum. Its flexibility indeed allows for a minimisation of the global variance on the

estimated B modes.

Figure 5.21: Power spectrum uncertainties on B-modes using cross-spectrum estimation for
the case of satellite experiment with holes mimicking point sources-removal (fsky ⇠ 71%).
The red dashed line represents the uncertainties obtained via pure method, the blue dashed
line corresponds to zb method and at last the yellow dashed dotted to the kn method. The

dashed-black curve stand for mode counting estimate of the error bars.

The analysis were also performed in the case of a small scale experiment (typical of Stage II). A

detection of the reionisation bump is infeasible for such a sky coverage as shown in the figure 5.22

where the ideal error bars are displayed in the dashed black line. However, the pure method

enables a detection of the recombination bump as the zb method although less e�cient. The

kn method does not give access to the primordial B modes, only detecting the lensed B modes.

As a result, thanks to the pixel-based variance-optimised window function, the pure method is

the most e�cient estimation of the CMB B modes. Also, the window function of a large scale

survey have to be carefully optimised in order to e�ciently reconstruct the primordial B modes.

The obtained results were published in Ferté et al. (2013) which is found further to the present

chapter.
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Figure 5.22: Power spectrum uncertainties for each of the three techniques for the case of a
small-scale experiment with fsky ' 1%, a noise level of 5.75 µK-arc minute and ✓Beam = 8 arc
minutes. Dashed-red, dashed-cyan and dashed-yellow curves are respectively for the pure,
zb and kn techniques. The dashed-black curve stand for mode counting estimate of the error

bars.

The implementation by Grain et al. (2009) of the pure estimation of the B modes power spec-

trum, the x2pure code, is intensively used and is constantly developed either in the scope of

performance forecasts or data analysis. The POLARBEAR team in particular has used the

x2pure implementation for the estimation of the first direct detection of the lensing B modes

as exposed in The POLARBEAR Collaboration et al. (2014). Moreover, the implementation of

the pure method is also expected to be applied to other CMB polarisation experiments such as

the QUBIC experiment. Furthermore, a flat-sky implementation of the pure method has been

performed by Louis et al. (2013) in the frame of the ACTPOL experiment.

Finally, our analysis validates the use of the pure pseudospectrum method in order to e�ciently

reconstruct the B modes angular power spectrum. It can thus be employed to perform realistic

forecasts on forthcoming CMB experiments. In the next chapters, the detectability of the pri-

mordial Universe physics – such as the energy scale of inflation or a parity violation – with the

current and potential CMB polarisation experiments will be investigated.
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The estimation of the B-mode angular power spectrum of polarized anisotropies of the cosmic

microwave background is a key step towards a full exploitation of the scientific potential of this probe.

In the context of pseudospectrum methods the major challenge is related to a contamination of the B-mode

spectrum estimate with the residual power of the much larger E-mode. This so-called E-to-B leakage is

unavoidably present whenever only an incomplete sky map is available, as is the case for any realistic

observation. The leakage has to be then minimized or removed and ideally in such a way that neither a bias

nor extra variance is introduced. In this paper, we compare from these two perspectives three different

methods proposed recently in this context [K.M. Smith, Phys. Rev. D 74, 083002 (2006); W. Zhao and D.

Baskaran, Phys. Rev. D 82, 023001 (2010); J. Kim and P. Naselsky, Astron. Astrophys. 519, A104 (2010)],
which we first introducewithin a common algebraic framework of the so-called! fields and then study their

performance on two different experimental configurations: one corresponding to a small-scale experiment

covering 1% of the sky motivated by current ground-based or balloon-borne experiments, and another to a

nearly full-sky experiment, e.g., a possible cosmic microwave background B-mode satellite mission. We

find that although all these methods allow us to reduce significantly the level of the E-to-B leakage, it is the

method of Smith that at the same time ensures the smallest error bars in all experimental configurations

studied here, owing to the fact that it permits straightforwardly an optimization of the sky apodization of the

polarization maps used for the estimation. For a satellite-like experiment, this method enables a detection of

the B-mode power spectrum at large angular scales but only after appropriate binning. The method of

Zhao and Baskaran is a close runner-up in the case of a nearly full-sky coverage.
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I. INTRODUCTION

Polarized anisotropies of the cosmic microwave back-
ground (CMB) radiation come in two flavors: gradient-
like, E, and curl-like, B, [1,2]. Ten years ago, the first
detection of the E-mode anisotropies was announced by
the DASI team [3]. Since then many subsequent experi-
ments, e.g., WMAP [4], QUAD [5], or BICEP [6] have
detected the E-mode anisotropies with high significance,
deepening and confirming our understanding of the
Universe’s evolution and structure formation. PLANCK
[7] is widely expected to shortly provide the most compre-
hensive and precise constraints on the E-mode polarization
properties in a range of angular scales, extending from the
largest down to a few arc minutes.

In contrast, no B-mode anisotropy has been detected yet
and only some upper limits are currently available (see, e.g.,
Refs. [4–6]). This is expected given the minute amplitudes
predicted for this signal. At the same time the scientific

potential of the B-mode probe has been generally recognized
as extremely promising. For instance, on the linear level the
B-modes can be sourced by the primordial gravitational
waves [8,9] and not by the scalar fluctuations, thought to
be largely responsible for the observed total intensity and
E-mode anisotropies. Consequently, a detection of the
B-mode anisotropy at large angular scales (‘ & 100) in
excess of what is expected from the gravitational lensing
signal (see below) could be seen as a direct validation of
inflationary theories, as the latter are considered to be the
most likely source of the gravity waves, and could allow for
discrimination between different inflationarymodels. It could
also set useful constraints on the reionization period [10]. At
smaller angular scales, B-modes are expected to be mainly
due to gravitational lensing of CMB photons, which converts
E-modes into B-modes [11] and therefore allows for their
detection—a source of constraints on the matter perturbation
evolution at redshift z" 1 when light massive neutrinos and
elusive dark energy both play potentially visible roles.
For these reasons, many polarization experiments target-

ing B-modes have been built or proposed, including
ground-based observatories, those already operating, e.g.,
POLARBEAR [12] or SPTPOL [13], those which are being
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developed, e.g., QUBIC [14] or ACTPOL [15], balloon-
borne experiments such as SPIDER [16] or EBEX [17]
(which flew in the winter of 2012/2013), or even a potential
satellite mission, such as LiteBIRD [18], COrE [19], or
PIXiE [20]. With the exception of the QUBIC experiment,
all these experiments scan the sky with one or more dishes
and therefore most directly produce maps of the polarized
Stokes parameters,Q andU. The calculation of the E and B
signals from the Q and U maps is a nonlocal operation [21]
and can be done uniquely only if the full sky maps are
available. However, this can hardly be the case even for
the satellite missions due to the presence of heavy non-
cosmological contamination due to Galactic emissions,
which typically have to be masked out even after advanced
and complex cleaning procedures have been applied. In the
context of the pseudospectrum methods [22–24] the incom-
plete sky coverage leads to the so called E-to-B leakage,
when the signal from E-modes is present in the reconstruc-
tion of the B-modes’ power spectrum CB

‘ and—more
problematic—in the B-modes’ uncertainties. Though no
bias is directly introduced, the leakage is a problem due to
the much higher amplitudes of the E-modes’ signal, which
then inflates the overall uncertainty of the estimated
B-modes’ signal, potentially precluding its detection.

Several extensions of the standard pseudospectrum meth-
ods have been recently proposed that are designed to alle-
viate the E-to-B leakage problem. In this work we focus on
the technique presented in Refs. [25–27], which works in the
harmonic domain and is referred to as the SZ method here-
after, and on two other techniques operating in the pixel
domain presented in Refs. [28–30], referred to as the ZB and
KN techniques,1 respectively. All these methods consist in
filtering E-modes leaking into B-modes for each specific
realization of the polarized anisotropies and thus potentially
resolving the excessive variance problem referred to earlier.

In this article, we first describe each of these methods
within a common framework of so-called ! fields and then
describe our implementations of them, emphasizing differ-
ences and similarities with those proposed in the original
papers. Throughout this work we compute spatial deriva-
tives of the sky maps in the harmonic domain. This is in
agreement with the original implementations of the con-
sidered techniques. We note however that an interesting,
pixel-domain alternative has been recently proposed in
Ref. [31] and could be exploited in future work. For
spectrum estimators we consistently use cross spectra
[32], rather than auto spectra, therefore avoiding a need
for estimating the instrumental noise spectrum.

We use numerical experiments to test the efficiency of
each of these methods in terms of the quality of the CB

‘
reconstruction and above all of the resulting uncertainty.
The numerical experiments involve two experimental

setups: one mimicking a satellite mission (loosely based
on EPIC [33]), and the other a balloon-borne instrument
(inspired by EBEX [34]). We note that these kinds of
analyses of satellite-mission-like setups are largely absent
in the literature, which predominantly has focused on small-
sky cases only. Though other techniques, e.g., maximum-
likelihood-based power spectrum estimators, may better
address some of the problems faced by nearly full-sky
observations, the performance of the pseudospectrum
methods in this regime is clearly of practical importance.
The general pseudospectrum formalism, as well as its

standard and extended renditions relevant for this work, are
introduced in Sec. II. An overview of the methods and their
implementations can be found in Sec. III. The numerical
results are given in Sec. IV, which also presents the case for
the SZ method as the one which gives the smallest varian-
ces while avoiding a bias. More extensive conclusions are
then given in Sec. VII, while technical details are deferred
to the appendices, with Appendix C treating the problem of
the noise bias for the ZB and KN methods.

II. PSEUDOSPECTRUM POLARIZED POWER
SPECTRUM ESTIMATORS

A. General considerations

The linearly polarized CMB polarization field is
completely described by spin-2 and spin-(-2) fields,
P#2ð ~nÞ ¼ Qð ~nÞ # iUð ~nÞ, with Q and U denoting two
Stokes parameters. Pseudospectrum methods distill the
observed information into a set of harmonic coefficients,
~aE‘m and ~aB‘m, referred to as pseudomultipoles. These are
related to true multipoles, aE‘m and aB‘m, as follows:

~aE‘m ¼
X

‘0m0

h
HðþÞ

‘m;‘0m0aE‘0m0 þ iHð!Þ
‘m;‘0m0aB‘0m0

i
; (1)

~aB‘m ¼
X

‘0m0

h
!iKð!Þ

‘m;‘0m0aE‘0m0 þ KðþÞ
‘m;‘0m0aB‘0m0

i
; (2)

where Hð#Þ and Kð#Þ are kernels, which in general can
all be different, nonvanishing, and nondiagonal in both ‘
and m. Noise terms have been neglected in these equations
for shortness.
The kernels are typically singular and it is not in general

possible to solve the inverse problem to recover the true
multipoles, aX‘m, directly. Instead the pseudospectrum
approaches attempt to do so only on the power-spectrum
level. This is achieved in two steps. First, owing to the
statistical isotropy of CMB fluctuations, we can rewrite
Eqs. (1) and (2) on the power spectrum level as

h ~CE
‘ i ¼

X

‘0

h
HðþÞ

‘‘0 hCE
‘0 iþHð!Þ

‘‘0 hCB
‘0 i
i
; (3)

h ~CB
‘ i ¼

X

‘0

h
Kð!Þ

‘‘0 hCE
‘0 iþ KðþÞ

‘‘0 hCB
‘0 i
i
; (4)1The methods’ names are based on the first letters of the names

of the authors of the corresponding papers.
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where the new kernels Xð#Þ
‘‘0 are given by (X ¼ K, H)

Xð#Þ
‘‘0 ¼

X‘0

m0¼!‘0

1

2‘þ 1

X‘

m¼!‘

jXð#Þ
‘m;‘0m0 j2; (5)

where h. . .i denotes an ensemble average and

~CX
‘ ( 1

2‘þ 1

X‘

m¼!‘

j~aX‘mj2: (6)

The kernels obtained on the power-spectrum level are
clearly more manageable and easier to calculate; never-
theless, they still will be singular. To avoid this issue, the
inverse problem defined in Eqs. (3) and (4) is solved only
for binned spectra [24],

~CX
b (

X

‘

Pb‘
~CX
‘ ; CX

b (
X

‘

Pb‘C
X
‘ ; (7)

where the binning operators are defined as

Pb‘ ¼
8
<
:

S‘
‘bmax!‘bmin

; ‘ 2 ½‘bmin ; ‘
b
max *;

0; ‘ =2 ½‘bmin ; ‘
b
max *;

Qb‘ ¼
8
<
:

1
S‘
; ‘ 2 ½‘bmin ; ‘

b
max *;

0; ‘ =2 ½‘bmin ; ‘
b
max *;

therefore satisfying the relation
P

‘Qb‘Pb0‘ ¼ "bb0 . Here,
we have introduced a shape function, S‘. Its role is to
minimize possible binning effects by making S‘ ~C nearly
flat within the bin. Hereafter, we will adopt the standard
choice for it, i.e., S‘ ¼ ‘ð‘þ 1Þ=2#. The binned version
of Eqs. (3) and (4) now reads

~CE
b

~CB
b

 !
’
X

b0

HðþÞ
bb0 Hð!Þ

bb0

Kð!ÞÞ
bb0 KðþÞ

bb0

0
@

1
A CE

b0

CB
b0

 !
; (8)

where, for X ¼ K or H,

Xbb0 (
X

‘;‘0
Pb‘X‘‘0Qb0‘0 : (9)

To include a correction for the presence of the instrumental
noise, the pseudopower spectrum on the right-hand side of
the first of Eqs. (7) needs be corrected for the noise
pseudospectrum prior to the binning operations.

The estimates of the true spectra, CX
‘ , can then be

obtained by directly solving the full system in Eq. (8).
We note that by construction, and neglecting the binning
effects, which are largely controllable, these will be
unbiased estimates of the true binned spectra. However,
as long as the polarization mode-mixing kernel, Kð!Þ, does
not vanish2 the power contained in the E-polarization

component will contribute to the overall variance of the
B-spectrum estimate—an effect referred to as the E-to-B
leakage. To avoid this one should resort to methods for
which Kð!Þ is either zero or nearly so. We also note that
if Kð!Þ ¼ 0 then the estimate of the B-mode spectrum can
be derived independently of the E one. This could also
be the method of choice even if Kð!Þ vanishes only
approximately. In this case, however, a small bias in the
B-spectrum estimate is to be expected.

B. Standard pseudospectrum approach

If the polarization fields are known on the entire celestial
sphere, their E and B representation can be easily obtained
in the harmonic domain using the spin-weighted spherical
harmonics,3

aE‘m ¼ !1

2

Z
½P2ð ~nÞ2Y?

‘mð ~nÞ þ P!2ð ~nÞ!2Y
?
‘mð ~nÞ*d ~n;

aB‘m ¼ i

2

Z
½P2ð ~nÞ2Y?

‘mð ~nÞ ! P!2ð ~nÞ!2Y
?
‘mð ~nÞ*d ~n:

(10)

If the polarization field is measured on a fraction of the sky
only, the above decomposition can be most straight-
forwardly applied to such a case by positing that the signal
over the unobserved part of the sky vanishes. This choice
defines the standard pseudospectrum method, in which
the resulting pseudomultipoles, ~aX‘m, X ¼ E, B, can be
expressed as follows:

~aE‘m ( !1

2

Z
M½P2ð ~nÞ2Y?

‘mð ~nÞ þ P!2ð ~nÞ!2Y
?
‘mð ~nÞ*d ~n

¼
X

‘0m0
½KðþÞ

‘m;‘0m0aE‘0m0 þ iKð!Þ
‘m;‘0m0aB‘0m0*; (11)

~aB‘m ( i

2

Z
M½P2ð ~nÞ2Y?

‘mð ~nÞ ! P!2ð ~nÞ!2Y
?
‘mð ~nÞ*d ~n

¼
X

‘0m0
½!iKð!Þ

‘m;‘0m0aE‘0m0 þ KðþÞ
‘m;‘0m0aB‘0m0*; (12)

whereM is a binary mask defining the observed patch, and

where we introduced the convolution kernels, Kð#Þ
‘m;‘0m0 ,

explicit expressions for which are well known and can be
found elsewhere, e.g., Ref. [27]. We see that for the stan-
dard technique both theHð#Þ andKð#Þ kernels, Eqs. (1) and
(2), coincide and that the polarization-mode-mixing

kernel, Kð!Þ
‘m;‘0m0 , does not vanish and therefore—though

unbiased—the standard pseudopower spectrum estimator
suffers from the E-to-B leakage. This can be quite severe.
For instance, an experiment covering around 1% of the sky
is essentially unable to detect a power at scales larger than
‘ & 140 (see Fig. 16 of Ref. [27]).

2Strictly speaking, what is required is that the multipole

kernel, Kð!Þ
‘m;‘0m0 vanishes, but if Eq. (5) is satisfied, exactly or

approximately, it is equivalent to requiring that the power

spectrum kernel, Kð!Þ
‘‘0 , be (nearly) zero.

3All the integrals in this paper are taken over the entire
celestial sphere. We therefore do not specify that the integration
domain is S2.
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The above formulas can be extended to include an
arbitrary weighting of the observed sky pixels as given
by a window function, W. This can be done by inserting
WM instead of M in all the equations above, including
those for the kernels. If we further assume that the window
function is always zero outside of the observed sky,
i.e., if M ¼ 0 then also W ¼ 0, then, as a consequence,
WM ¼ W and M can be dropped from the equations in
favor of W. The mask, M, is then assumed to be defined
implicitly by W. We will use this simplification in the
following. Also, for definiteness hereafter, we assume
that a field defined on the sphere, e.g., P#2, is known on
the full sky and will apply a mask or an apodization
explicitly to such a field to emphasize that it is known
only over a limited sky area, e.g., WP#2.

C. Leakage-free pseudopower spectrum approaches

To alleviate the leakage problem within the pseudo-
spectrum methods one would need to adapt a different
definition of the pseudomultipoles than the one used in
the standard approach. Such a new definition should not
rely directly on the polarization fields, as does the standard
approach, as those unavoidably incorporate contributions
from both types of polarized multipoles. Instead it should
be based on some other fields, which depend only on one
set of the multipole coefficients, and which would
therefore ensure that the polarization-mode-mixing

kernels, Kð!Þ
‘m;‘0m0 and Hð!Þ

‘m;‘0m0 , indeed vanish, resolving

the leakage issue.
Such a construction has been proposed by Ref. [1] and

the corresponding fields are called ! fields. They can be
derived from the polarization fields as follows:

!Eð ~nÞ ¼ ! 1

2
½ !@ !@P2ð ~nÞ þ @@P!2ð ~nÞ*; (13)

!Bð ~nÞ ¼ i

2
½ !@ !@P2ð ~nÞ ! @@P!2ð ~nÞ*; (14)

where @ð !@Þ denotes the spin-raising(lowering) operator [1].
These ! fields indeed involve either E-modes (in the
case of !E) or B-modes (for !B). This can be seen directly
by noting that the !X fields, X ¼ E, B, are scalars and
given by

!Xð ~nÞ ¼
X

‘;m

N‘;2a
X
‘mY‘mð ~nÞ; (15)

where for future convenience we have introduced

N‘;s (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þ sÞ!
ð‘! sÞ!

s
:

In the full-sky case, Eq. (15) can be readily inverted, giving

!X
‘m ¼

Z
!Xð ~nÞY?

‘mð ~nÞd ~n ¼ N‘;2a
X
‘m; (16)

which in turn can be adapted for cases of partial-sky
experiments in a usual manner, rendering the following
definition of the pseudomultipoles:

~aX‘m ( 1

N‘;2

Z
Mð ~nÞ!Xð ~nÞY?

‘mð ~nÞd ~n: (17)

This definition can then be used in the general pseudo-
spectrum formalism developed in Sec. II, and though it
will result in a mixing of different ‘ modes it will not
cause any leakage between the polarization modes as by
construction the off-diagonal kernels—Hð!Þ and Kð!Þ in
Eqs. (1) and (2)—vanish.
The major difficulty of this approach is the computation

of the !X fields. Indeed, Eqs. (13) and (14) as they are
require in principle knowledge of the full-sky polarization
fields. As we will see in the next section all three methods
designed to resolve the leakage problem and studied in this
work rely on the !X-field calculation, implicitly or explic-
itly, and circumvent the problem of having only a limited
sky coverage differently.
We note that if the !X fields were known exactly on the

cut sky, the inverse problem in Eq. (8) could be solved
separately for E and B spectra, as the off-diagonal kernels
would, by construction, vanish. In more realistic circum-
stances the !X fields actually estimated on the cut sky may
be imperfect giving—at least in principle—rise to nonzero
off-diagonal contributions. These, if not corrected for,
could lead to a bias of the estimated power spectra.
Solving the full system and accounting for the nondiagonal
kernels could help to trade the bias for an extra—but
presumably small—variance of the spectrum estimate.
Though this indeed could be possible at least for some of
the methods, for others, the difficulty in calculating the off-
diagonal kernels—either analytically or numerically, e.g.,
via Monte Carlo (MC) simulations—can be prohibitive,
and an approach favored in practice is often simply to
accept the bias once it is found to be sufficiently small.

III. SPECIFIC APPROACHES

A. SZ approach

1. Theoretical description

Let us start from the pseudomultipoles for B-modes as
defined in Eq. (17) with the binary mask,M, replaced by an
arbitrary window, W. By performing an integration by
parts twice [25,26], we can rewrite this equation as

~aB‘m ¼ i

2N‘;2

Z
d ~n½P2ð ~nÞ + ð@@Wð ~nÞY‘mð ~nÞÞ?

! P!2ð ~nÞ + ð !@ !@Wð ~nÞY‘mð ~nÞÞ?*; (18)

where all the boundary terms are omitted corresponding to
an assumption that the apodization window Wð ~nÞ and its
first derivative @W vanish at the observed patch bounda-
ries. This latter equation has an advantage over the former,
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Eq. (17), as it does not involve any explicit calculation of
derivatives of noisy sky maps. Instead, the differentia-
tion needs to only be applied to a presumably smooth
window function, W. We can therefore use Eq. (18) as a
definition of the pseudomultipoles, which we will also
apply from now on in cases when the apodization does
not conform with the boundary conditions. Note that in
these latter cases there will be no assurance that no E-to-B
leakage is present.

Hereafter we will refer to this technique as a pure
pseudospectrum estimator, as Eq. (18) can be interpreted
as projecting the polarization field P#2 onto a basis of
‘‘pure’’ functions representing only B-like polarization
modes on a cut sky [25,26,35].

2. Numerical implementation

Our implementation of the approach follows closely that
proposed in Ref. [27] and proceeds in four steps.

Step 1:
We compute spin-0, spin-1, and spin-2 renditions of the

window function W given by

W0 ¼ W; W1 ¼ @W; W2 ¼ @@W: (19)

Because W is real, then W?
s ¼ W!s for a spin s ¼ 1, 2.

Step 2:
We compute pure pseudomultipoles by first constructing

three apodized maps,

P#2 ¼W0P#2; P#1 ¼W,1P#2; P#0 ¼W,2P#2;

(20)

and then calculating the pure ~aB‘m as

~aB‘m ¼ 1

N‘;2
ðB0;‘m þ 2N‘;1B1;‘m þ N‘;2B2;‘mÞ; (21)

where Bs;‘m is a B-type mutlipole of P#s defined as

Bs;‘m ¼ i

2

Z
½Pþsð ~nÞsY?

‘mð ~nÞ

! ð!1ÞsP!sð ~nÞ!sY
?
‘mð ~nÞ*d ~n: (22)

Step 3:
In this step we compute the convolution kernels for

pseudo-C‘ as defined in Eqs. (3) and (4). This can be
done using, e.g., Eqs. (A13) and (A14) of Ref. [27]. If
the applied apodization does not fulfill the boundary con-
ditions then the off-diagonal block Kð!Þ has to be included
as well. In practice, the off-diagonal coupling between the
polarization components will also occur due to pixelization
effects. Though such effects are not accounted for in the
analytic formulas for the kernels, they can be corrected for,
to some extent, by a procedure described in Ref. [27],
leading to a removal of the majority of the small bias
induced by the residual, pixel-induced E-to-B leakage.

We note that typically, if the method is applied consis-
tently to both E- and B-modes, the correspondingH and K
kernels are identical. However, in some circumstances it
may be advantageous and possible to apply hybrid ap-
proaches in which both kinds of spectra are treated differ-
ently. Such cases have been discussed recently in Ref. [36].
Step 4:
This step consists of standard operations involved in any

pseudospectrummethod as summarized by Eqs. (7) and (8)
and discussed in Sec. II.

3. Sky apodization

As emphasized in Refs. [25–27], an appropriate sky
apodization is a key element of such a construction. In
the specific method discussed here the degree to which the
apodization fulfills the boundary conditions will be a prin-
cipal factor determining the level of suppression of the
E-to-B leakage. At the same time any apodization applied
to realistic (meaning noisy) data will have a direct impact
on the resulting uncertainties of the spectrum estimate. In
the context of the pure pseudospectrummethod, systematic
approaches have been developed and studied in detail,
which allow for a numerical optimization of sky apodiza-
tions in order to ensure a nearly minimal value of the final
spectrum uncertainty [25–27]. These are either based on
MC simulations or semianalytic techniques. In the former
case, MC simulations are used to tune the length of the sky
apodization given by some analytic formulas. In this work,
we will use the so-called C2 function as given by Eq. (31)
of Ref. [27]. In the latter case, the optimized sky apodiza-
tion can be computed by solving a large linear system as
proposed in Ref. [26]. We refer to these latter windows as
variance-optimized apodization. In both cases the optimi-
zation could, and should, be applied bin-by-bin to ensure
the best results. As discussed at length in Ref. [27] both of
these approaches require some prior assumptions concern-
ing, for instance, the angular power spectra of E- and
B-modes; however, the results of the optimization are
found to be only mildly dependent on details of the
assumed B-mode spectrum.
It has been shown via numerical experiments [27] that

the variance-optimized apodizations lead systematically
to the lowest error bars on the reconstructed CB

‘ ’s, and
therefore we will use them in this work. These variance-
optimized apodizations can be computed in two ways,
depending on the domain (harmonic domain or pixel
domain) in which the linear system is solved. For the
peculiar case of homogeneous noise, resolution can be
done in the harmonic domain. In such a case, the derivative
relationship Ws¼1;2 ¼ @sW0 and the boundary conditions
W0ðCÞ ¼ W1ðCÞ ¼ 0 on the contour of the observed region
are fulfilled (up to pixelization effects). For more general
cases, the linear system providing the variance-optimized
apodization is solved in the pixel domain. In such a
setting, both the derivative relationship and the boundary
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conditions are relaxed (W0, W1, and W2 are considered
as independent). As a consequence, the final sky apodiza-
tion does not strictly satisfy these conditions and the
resulting pseudomultipoles will not be strictly equal to
the pure pseudomultipoles. However, it was shown in
Refs. [26,27] that the angular power spectra recovered in
such cases consistently achieve smaller uncertainties than
those of other apodization choices.

B. ZB approach

1. Theoretical description

In this approach the !X fields are computed directly in
the pixel domain and for the cut sky. This is made possible
thanks to a formula derived in Ref. [28], which reads

Wð ~nÞ!Bð ~nÞ ¼ i

2
½ !@ !@ðWP2Þ ! @@ðWP!2Þ*

! i
" !@W
W

!@ðWP2Þ !
@W

W
@ðWP!2Þ

#

! i

2
½ð !@ !@WÞP2 ! ð@@WÞP!2*

þ i
"ð !@WÞ2

W
P2 !

ð@WÞ2
W

P!2

#
: (23)

As usual, here W is assumed to be zero outside the ob-
served region. Moreover, if we assume that it and its first
derivative vanish at the edges of the observed region, all the
operations on the right-hand side of this equation can be
performed with only the knowledge of the polarization
field on the cut sky. Consequently, we could estimate the
field !B consistently on the cut sky by first computing the
rhs of Eq. (23) and then dividing it by the window W, and
later use it to calculate pseudomultipoles via Eq. (17)—as
proposed in Ref. [28]—or use some apodized rendition of
the !B field to derive the pseudomultipoles, which are
then corrected on the power spectrum level—as proposed
here.4 In either case the pseudomultipoles are in principle
free of any E-to-B leakage due to cut-sky effects and the

Kð!Þ
‘‘0 kernel should vanish. However, as emphasized by

Ref. [28], both pixelization and convolution by the beam
lead to some residual E-to-B leakage and ideally one
would like to solve the full linear system, Eq. (8), to get
the final, unbiased power-spectrum estimation.

2. Numerical implementation

An implementation of this technique was proposed in
Ref. [28] and involves four steps. The implementation used
in this work follows that of the original authors with the
exception of the second step, as detailed below.

Step 1:
We compute the !B field on the observed patch of the

sky using Eq. (23). This in turn requires a numerical
calculation of derivatives of noisy fields, which constitutes
the principal difficulty of this technique. In our implemen-
tation as well as that of Ref. [28] these calculations are
performed in the harmonic domain. We emphasize that
with such a choice this method becomes effectively a
harmonic space approach. Yet another potential problem
is related to the calculation of the terms, which involve
explicit multiplication by W!1@W, as W itself becomes
very small at the boundary. This problem cannot be
avoided by imposing more boundary conditions on W as
W!1@W " j$! $cj!1 at the boundary $c, and therefore
necessarily diverges at the boundary.5 This can however be
dealt with in Step 2.
Step 2:
We compute the pseudomultipoles ~aB‘m of the newly

constructed !B map. This requires effectively dividing by
the window W. Though straightforward a priori, care has
to be exercised while doing this because W vanishes at the
observed area edges.
One option, adopted in Ref. [28], relies on simply

trimming the troublesome boundary layer, leaving only
those pixels for which the division is numerically reliable.
This leads to some loss of the information but solves
simultaneously the divergence problem appearing in
Step 1. The amount lost due to trimming will depend on
the details of how the trimming is done—a practical com-
plication, which needs to be addressed in this approach.
An alternative way of resolving both these issues at the

same time, which we propose here and which is free of
such practical complications, is to define pseudomultipoles
using the fieldW2!B and then to correct for the presence of
the apodization in the binned spectrum estimation step,
Eq. (8). It is clear from Eq. (23) that the estimation of the
W2!B field does not suffer any singularities at the edges.
This method is the method of choice in this work.
We note that this method is not lossless either, as the

apodization it invokes will unavoidably compromise some
information. Nevertheless, the information loss in this case
is expected to be smaller than in the former one. For
instance, it was argued in Sec. IV of Ref. [28] that to
analyze a map covering 3% of the sky (a spherical cap
with a radius of 20 degrees is assumed as the observed part
of the sky), it is necessary to remove an external layer with
a width of 2 degrees, thus reducing the effective sky cover-
age from 3% to 2.4% (assuming a binary mask to weight
the resulting !B map). As shown hereafter, by focusing on
W2!B we are able to solve for the E-to-B leakage by using
an apodization length of 1 degree. As a consequence, for a

4Strictly speaking, the pseudomultipoles are not divided by
N‘;2 in the implementation of Ref. [28]. Instead, the pseudospec-
trum are divided by N2

‘;2 in the binning process. The two choices
are however completely equivalent.

5By constraining W together with its first derivative @W to be
continuous on the entire celestial sphere but zero outside the
observed part of the sky necessarily leads toW " j$! $cjn with
n - 1, close to the boundary.
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spherical cap with a radius of 20 degrees, the effective sky
coverage is reduced from 3% to 2.9% (an explicit expres-
sion for the effective sky coverage assuming a nonbinary
mask can be found in Ref. [36]).

Step 3:

The kernelKðþÞ
‘‘0 is computed taking advantage of the fact

that the !B field is a scalar—like temperature—made of

B-modes. The explicit expression of KðþÞ
‘‘0 is given by

Eq. (39) of Ref. [28] (following what was derived for
temperature [22,24,32,37]), i.e.,

KðþÞ
‘‘0 ¼

ð2‘0 þ 1ÞN2
‘0;2

4#N2
‘;2

X

‘00m00
jwð2Þ

‘00m00 j2
‘ ‘0 ‘00

0 0 0

 !
2

; (24)

with wð2Þ
‘00m00 being the multipoles of the W2 function.6

Step 4:
The linear system in Eq. (8) is inverted, neglecting the

off-diagonal block Kð!Þ
‘‘0 , and therefore also the residual

E-to-B leakage.

3. Sky apodization

In this approach we could either use analytic windows or
the variance-optimized windows obtained from the opti-
mization procedure developed within the framework of the
SZ method. In this former case, we will always use the C2

family of windows from Ref. [27] and use MC simulations
to determine their optimal apodization length.

In the case of the variance-optimized apodizations com-
puted in the harmonic domain, it may appear that to ensure
their optimality we should use a window given by a square
root of the actual optimized one, i.e., WZB ( ffiffiffiffiffiffiffiffiffi

WSZ
p

, to
compensate for the fact that it is a square of the window
which is used as the apodization in our implementation of
the ZB approach. Whether such a window could be a viable
option will depend on whether it does not cause any prob-
lems in the calculation of the rhs of Eq. (23) at the patch
edges. It is straightforward to show that this is always the
case for windows, which are forced to obey the boundary
conditions strictly. This is because such windows scale at
the boundary as WSZ " j$! $cjn, with n > 2 [26], and
therefore both quantities, @WZB and @@WZB (whereWZB ¼ffiffiffiffiffiffiffiffiffi
WSZ

p
), needed to compute the rhs of Eq. (23) are well

behaved for $" $c. However, the variance-optimized win-
dows fulfill the boundary condition only approximately,
which may lead to singularities of the derivatives of WZB.
To avoid this, we further multiply the variance-optimized
windows by some analytic window with a narrow apodiza-
ton length. This is designed to affect as little as possible the
properties of the initial window but enforce the boundary
conditions strictly and therefore ensure the proper behav-
iour of the resultingwindow at the boundary. In practice, we

have found that using either the corrected WZB window or
directly usingWSZ leads to comparable results, and numeri-
cal results presented hereafter use the latter ones.
It is important to notice that in such settings the

variance-optimized windows computed in the pixel
domain cannot be directly applied. Indeed, such windows
do not typically conform with the derivative relationship
between the different windows, i.e., Ws¼1;2 ! @sW0 or the
boundary conditions, i.e., W0ðCÞ ! W1ðCÞ ¼ 0. However,
these conditions are essentially mandatory for the ZB
method for two reasons. First, the method requires that
W!B is related to Ws¼0;1;2P#2 and MP#2, as e.g., it is in
Eq. (23), which however without the assumptions about the
window properties is rather tedious. Second, even if such
an expression is found, this will lead to mixing kernels,
which will not be numerically computable from the ‘‘first
principles,’’ as in, e.g., Eq. (24), as they will involve the
product of three functions : P#2 multiplied by eitherW0 or
M, and by Ws¼1;2. Therefore, this leaves time-consuming
Monte Carlos as the only viable option for their estimation.

C. KN approach

1. Theoretical description

Another way of estimating the !B field is by generaliz-
ing its definition to the cut-sky case. This can be done
straightforwardly by modifying Eq. (14) as follows:

~!Bð ~nÞ ¼ i

2
½ !@ !@MP2ð ~nÞ ! @@MP!2ð ~nÞ*; (25)

where as usual M stands for a binary mask and the tilde
over the ! symbol is used to emphasize that at least in
principle this is a different object than the true !B field
defined on the cut sky, i.e., M!B. We note however that as
long as M is constant (and for simplicity assumed to be
equal to 1), i.e., in the interior of the observed patch, the
two fields are indeed identical, ~!Bð ~nÞ ¼ !Bð ~nÞ. Therefore,
in principle the only problem arises at the patch edges. As
proposed in Ref. [29] one could use this observation to
reconstruct the true !B field everywhere with the exception
of the boundary layer. The problem then becomes technical
and boils down to a question how to calculate the deriva-
tives required by such a procedure. Reference [29] pro-
posed doing it in the harmonic domain and using the
semianalytic formulas of Ref. [21] to represent the deriva-
tives via convolutions of some geometrical kernels. Given
that the mask falls abruptly from 1 to 0 at the edges, it is not
surprising that such a procedure leads to significant oscil-
latory behavior at the edges, which extends well within the
center part of the observed patch. This is a result of the
necessity of imposing a finite band limit on all harmonic
decompositions performed as part of this procedure, even if
the considered functions with an abrupt jump do not have
such a limit. Such a band limit is directly related to the
pixelization used to represent the polarization fields. This
has two practical consequences. First, a robust criterion has

6We stress that the multipoles ofW2 are not equal to the square
of the multipoles of W.
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to be found that decides which pixels are to be retained,
i.e., which are sufficiently clean of any E-mode contami-
nation. Second, the loss of area is expected to be rather
significant. We refer the reader to Ref. [29] for more details
of this specific implementation.

A more robust approach would either invoke different
ways of calculating the derivatives, e.g., as proposed by
Ref. [31], or by introducing into Eq. (25) a smooth apod-
ization W in place of the binary mask M. This second
option was proposed by Ref. [30] and this is the one we
implement in this work. The apodization could alleviate the
pixelization effects described earlier by truncating the band
limit of the apodized polarization field so the harmonic
domain derivatives perform better. Such a window would
need to have a central regionwhereW is constant (and equal
to 1) before smoothly rolling off at the edges. As in the case
where the binary mask is only in this central region the
reconstructed ~!B field would coincidewith the true one and
would be used for the power-spectrum estimation.

The main advantage of such a technique is that it pro-
vides a clear criterion for which pixels to retain or reject.
Nevertheless, it does not completely solve the pixelization
effects as pixels inside the central area can be affected by
the pixel-induced leakage, but this time originating from
the contour around this central area. However, and as
numerical results shown in Ref. [30] suggest, the pixeliza-
tion effects at the inner contour are mitigated by the fact
thatW is continuous as compared to the pixelization effects
induced by considering the noncontinuous binary mask.

Hereafter, we will use this second approach and apply a
sky apodization to the polarization field. We will then use
Eq. (25), but with a mask M replaced by a window W to
calculate ~!B and later the true !B ¼ ~!BjM!B

, whereM!B is

the binary mask built from the kept-in-the-analysis pixels,
i.e., pixels for which W is essentially constant.

2. Numerical implementation

The numerical implementation of this approach consists
then of two main steps, which need to be applied first to
simulated data and later to actual data. The Monte Carlo
simulations are employed to select optimal windows for a
given problem.

Step 1:
We calculate the apodized ~!B field for a selected win-

dow W. This involves performing numerical derivatives of
the available polarization fields P#2, and these are per-
formed in the harmonic domain. In this work we use a
family of arch-sine windows as defined in Ref. [27] with an
apodization length which is to be tuned via Monte Carlo
simulations. The criteria we use in the apodization-length
optimization process are the level of the B-spectrum bias
and variance.

Step 2:
We compute the B-mode power spectrum from the

precomputed ~!B field. The spectrum is computed using

only the trimmed, central part of the available patch,
~!BjM!B

, which can be further apodized if needed, and

follows the general pseudospectrum-method framework.
Hereafter, following Ref. [29] we will neglect possible
leakages from the E spectrum and use the scalar kernel
as it is used in the ZB approach [Eq. (24)]. We note
however that unlike in the ZB method the leakage in this
approach can be more pervasive, affecting even the most
central areas of the patch, and therefore is never fully
removed via simple area trimming. For this reason one
may ponder whether a more appropriate kernel cannot be
derived that could account for these effects. The answer,
which we discuss in more detail in Appendix A, is that such
kernels would need to be evaluated numerically and would
be necessarily very costly. We will therefore only consider
the simplified case in this work.

3. Sky apodization

The sky apodization and masking needs to be performed
in three different stages in this approach. First, we need to
apodize the maps before computing the ~!B field. Then we
need to mask pixels, which are expected to be contami-
nated by the residual E-to-B leakage. Finally, we may want
to apodize the reduced ~!B maps to better localize the
bin-to-bin correlations of the recovered B spectrum.
Unlike in the case of the SZ and ZB techniques, one

cannot here derive some optimal windows from ‘‘first
principles.’’ Instead, for the sky apodization required for
the computation of ~!B we use a family of the arch-sine
analytic windows, proposed in Ref. [27], and resort to
Monte Carlo simulations to optimize their apodization
length. In this optimization procedure we always trim all
the pixels within the boundary layer of W, i.e., where it is
not constant, as these are the pixels which are unavoidably
affected by the E-to-B leakage, and we use only the
remaining ones for the spectrum estimation. Clearly, there
will still be some level of the E-mode power in the map left
over after such a trimming procedure, mostly due to pixel-
induced E-to-B leakage. The level of this leakage depends
on the assumed apodization length, becoming slower for its
larger values, and the MC simulations are then used to find
the smallest value of the latter ensuring a sufficiently low
level of the leakage. This will at the same time maximize
the sky area—given the acceptable leakage requirement—
left for the final spectrum determination and therefore
ensure that the spectrum variance is the smallest.

D. Brief appraisal

The three methods considered in this work can be
introduced within a common framework based on the
!B-field concept, as has been done in this section where
it was demonstrated that all the methods rather closely
related—a fact which may be potentially somewhat
surprising given their original derivations.
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The two first methods, SZ and ZB, in the renditions
considered in this paper are clearly equivalent on the
analytical level if the apodizations employed in both
these cases are related to each other as WZB ¼ ffiffiffiffiffiffiffiffiffi

WSZ
p

and
if WSZ fulfills strictly the boundary conditions. The differ-
ences between these two approaches are therefore only in
their numerical implementations and approximations that
they imply. Both these methods suffer due to pixelization
issues, in particular arising due to a need to compute
numerical derivatives, and which give rise to a residual
contamination of the B spectrum with the E-mode power.
The SZ method requires only derivatives of the window
functions; therefore, at least in the cases when these are
given analytically, it is possible to estimate the nondiago-

nal coupling kernel Kð!Þ and correct for some of those
effects. Such corrections are more difficult in the case of
the ZB approach, where the nondiagonal kernel would
have to be estimated completely numerically. The SZ
method can potentially offer more freedom for an optimi-
zation of the B-spectrum variance as estimated for realistic
noisy maps as the boundary conditions on the applied
apodizations can be relaxed, leading to an increase of the
signal variance that allows for some E-to-B leakage but a
decrease of the total signalþ noise one. At the same time
the off-diagonal polarization-mode coupling kernels can
be readily calculated and the estimated B spectrum will be
unbiased.

The KN approach can be looked at as an approximation
of the ZB method. Indeed, the first term on the rhs of
Eq. (14) used by the ZB method coincides with the rhs of
Eq. (25) (replacing M by a sky apodization W), which
defines the first step of the KN approach. We refer to
Appendix B for a detailed discussion. The contributions
of the extra three terms in Eq. (14) are localized around the
patch boundary and removed in the KN method by trim-
ming the boundary layer, which is retained and used for the
power-spectrum estimation in the case of the former
method. For this reason we may expect that the perform-
ance of the KN method should be inferior to both the ZB
and SZ approaches, which in turn we could expect to be
nearly equivalent. In turn, the KN method may appear as
the most straightforward approach on the implementation
level and therefore attractive at least at first stages of the
analysis.

IV. NUMERICAL EXPERIMENTS

A. Experimental setups

For numerical investigations, we define two fiducial
experimental setups. Though idealized, they are chosen
to reflect the general characteristics of forthcoming
CMB experiments dedicated to B-mode detection. Those
characteristics which crucially impact the angular power-
spectrum reconstruction are the noise level, the beam
width, and a peculiar sky coverage.

We first consider the case of a possible satellite experi-
ment aimed at B-mode detection. For such an experiment,
we relied on the EPIC 2 m [33] specifications for the noise
level and the beam width, setting these to 2:2 %Karcmin
for the noise level and 8 arcmin for the beam width. For the
peculiar sky coverage of such a ‘‘nearly full-sky’’ experi-
ment, we consider the galactic mask r9 used for polarized
data in the WMAP 7-year release (see Ref. [38]), adding
the point-sources catalog mask. So we obtain a "71% sky
coverage patch, shown in the lower panel of Fig. 1.
Throughout this work we use the HEALPIX pixelization
scheme [39]. Here the pixel size is "7 arcminutes,
i.e., Nside ¼ 512.
Second, we consider the case of a balloon-borne experi-

ment inspired by the ongoing EBEX experiment [34]. The
noise level and the beam width are respectively set equal to
5:75 %Karcmin and 8 arcmin. The observed part of the sky
covers "1% of the total celestial sphere and its peculiar
shape is displayed in the upper panel of Fig. 1. It consists of
a square patch of an area of"400 square degrees including
holes to mimic polarized point-source removal. In such a
case, we chooseNside ¼ 1024 corresponding to a pixel size
of "3:5 arcminutes.

FIG. 1 (color online). Sky areas as observed by the fiducial
satellite-like experiment (upper panel) and for the balloon-borne,
small-scale experiment (lower panel) as considered in this work.
The sky coverages are respectively "71% and "1% of the total
celestial sphere. For the satellite experiment, the mask is a
combination of the galactic mask R9 and the point-sources
catalog used for polarized data in WMAP 7 yr release. Only the
latter mask is used for the balloon-borne case.
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B. Simulations

We numerically implement the three techniques
described in the previous section and test their respective
efficiency with Monte Carlo simulations. We investigated
the full performances of those approaches from the per-
spective of B-mode power-spectrum reconstruction and
therefore incorporate noise with the level, as stated in
Sec. IVA. To simulate the CMB sky, the input E-mode
signal is that of the cosmological model with parameters as
given by theWMAP 7-year data [40] and the input B-mode
includes lensing and primordial B-modes with r ¼ 0:05.
(Our convention for r follows the WMAP convention: r ¼
P Tðk0Þ=P Sðk0Þ, with P SðTÞ, the primordial scalar(tensor)
power spectrum and k0 ¼ 0:002 Mpc!1 the pivot scale.)

We will assume that two identical maps are always
available with the same level of the homogeneous noise
in each of them—which is taken to be uncorrelated
between the two maps—and use their cross spectra and
their variance to compare different approaches. We calcu-
late the latter with the help of Monte Carlo simulations and
use as a common reference an estimation of the variance
based on simple mode counting and given by

!‘‘0 ¼
"‘;‘0

ð2‘þ 1Þfsky

"
ðCB

‘ Þ2 þ
$
CB
‘ þ 4#

Npix

&2
p

B2
‘

%
2
#
; (26)

where B‘ is the beam function and&p is the noise per pixel.
This formula applies to a cross spectrum between two
maps and assumes that the noise of the two maps is
uncorrelated and its level per pixel is given by &p. This
naive mode counting is bound to underestimate the
variance in our study cases and is therefore used only as
a lower limit.

An effective, observed fraction of the sky, fsky, depends
on an assumed apodization and therefore will be in general
different for each of the methods considered here and may
vary from one bin to another. For definiteness, hereafter as
a reference we will use its value computed assuming only a
binary mask,M. Such a choice in terms of the Fisher errors
leads to the lowest variances.

V. RESULTS: SATELLITE CASE

A. Standard pseudospectrum method

The major advantage of the satellite experiments is their
ability to measure the sky signals on the largest angular
scales, and therefore they have the potential to constrain
their power spectra all the way to the lowest multipoles.
Indeed, the simple Fisher variance formula introduced
earlier seems to suggest that this should be possible only
if the sky coverage is sufficiently large. Though this for-
mula neglects the leakage it seems only natural to expect
that it should be small for nearly full sky maps, and there-
fore should lead to subdominant effects as compared to
other uncertainties, e.g., cosmic variance.

In this section we confront these expectations with real-
istic simulations within the paradigm of pseudospectrum
methods. In this context, if the leakage is indeed small,
we may expect that even the standard pseudospectrum
technique could perform sufficiently well, assuring a pre-
cision comparable to that of the other methods—which
explicitly invoke some leakage correction—and not
that far off the Fisher predictions. Below we therefore
start from a discussion of the standard pseudospectrum
technique.

1. Leakage

We quantify the level of the E-to-B leakage using stan-
dard pseudospectra calculated in the case of simulations
with no input B-mode power, which would have been zero
had there been no leakage at all. These are denoted here-
after as ~CE!B

‘ . We compare these pseudospectra with those
calculated assuming no input E-mode power, denoted as
~CB!B
‘ , and therefore expressing the pseudopower of the

genuine B-modes. These pseudospectra are shown in
Fig. 2, which displays ~CE!B

‘ (upper curve) and ~CB!B
‘

(lower curves), computed for three different values of
r ¼ 0:1, 0.05, 0.01. Clearly, the leaked power ~CE!B

‘ domi-
nates over the true B-modes at least up to ‘" 700. We
therefore conclude that the leakage is by far not insignifi-
cant even in the satellite case.
Furthermore, if we take the ratio of ~CE!B

‘ and ~CB!B
‘ as a

measure of the magnitude of the leakage we find that its
values are within a factor of 2 from those obtained for the
small-scale experiment considered later on, indicating that
the leakage amount in both cases is in fact comparable,
even if the latter experiment covers roughly a sky area"71
times smaller than the former.

FIG. 2 (color online). Contribution of E-modes (black curve)
and B-modes (colored curves) to the B-modes’ pseudo-C‘ for the
case of a satellite mission. This measures the relative amount of
E-mode leaking into B if one does not correct for such leakages.
The corresponding mask is depicted in the upper panel of Fig. 1.
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This demonstrates that it is not merely the sky area that
matters as far as the leakage is concerned. In fact, the gain
in the sky area in the case of the satellite experiment
considered here comes at the price of a significantly
more complex and longer perimeter, the effects of which
(see, e.g., Ref. [35]) offset the sky area advantage. We note
that although we may attempt to simplify the boundary of
the Galactic mask to suppress the leakage, this is more
difficult when done with the point sources, which indeed
seem to provide the major contribution to the observed
level of the leakage.

2. Variance

The large leakage present on the pseudospectrum level
will inevitably lead to an excess variance of the B-mode-
spectrum estimate. These are depicted in Fig. 3, where
variances computed assuming three different apodizations
are shown. We see that in either case no meaningful con-
straints on the lowest multipoles, ‘ & 30, can be set at least
as long as no binning is applied. These results demonstrate
that for realistic observations the standard pseudospectrum
method can not ensure sufficient precision for the largest
angular scales and some alternatives, explicitly correcting
for the leakage, need to be considered instead, as we do so
in the next section.

Figure 3 also shows a B-mode spectrum averaged over
all performed MC simulations. It is unbiased, as expected,
given that we include explicitly in the calculations the off-

diagonal coupling kernel Kð!Þ
‘‘0 , correcting the spectra on

average for the E-mode power leaked to B. In practice, we
find however that special care needs to be taken while
calculating this kernel to ensure the absence of the bias.
This is because the leaked power is indeed grossly domi-
nant over the genuine B-mode (see Fig. 2), setting very
demanding constraints on the precision of the kernel. For
instance, the good agreement shown in Fig. 3 is only
obtained when we minimize the spurious contributions
due to the pixelization coming specifically from the polar
caps by rotating the sky map so they have been hidden in
the regions excluded by the employed mask. The residual
scatter at its low-‘ end is just a result of the insufficient
number of simulations and the huge variance displayed by
the standard pseudospectrum estimator on these scales.
The good overall agreement of the averaged spectrum

with the theoretical spectrum used for the simulations
validates our MC-based predictions for the variances.

B. Leakage-correcting methods

1. Apodization

The results described above demonstrate that the stan-
dard approach is not suitable for the low-‘ recovery of the
B-mode spectrum even for the nearly full-sky experiments.
Therefore, if such a goal is achievable at all with a pseu-
dospectrum method, it would have to be a method which
tackles the leakage problem case-by-case, as do the three
methods discussed earlier. It is important however to
emphasize that the suppression of the E-to-B leakage in
these methods comes at a price as the corrections they
invoke may affect the variance of the recovered spectrum.
Consequently, this variance will not in general be close to
the variance of the B-mode spectrum obtained in the
standard pseudospectrum approach in a case when the
CMB E-mode power, and therefore the leakage, is set
artificially to zero, as one could ideally hope for. Instead
there will typically be an extra contribution to the variance,
not due to the leakage anymore—as it is explicitly treated
for—but rather from the removal of part of the information
resulting from the leakage correction procedure.
This in principle calls for some optimization procedure

between the level of the leakage and the bias (at least for
some of the methods studied here) and the variance of the
recovered B-mode power spectrum. As the loss of the
information is related to the apodization and/or masking
applied in these methods, and is used sometimes in mul-
tiple stages, such an optimization could be in general rather
cumbersome to formalize and to date has been imple-
mented in a systematic way only in the case of the SZ
approach [26]. In this method the estimated power spec-
trum is always unbiased and the variance level is uniquely
determined by one window function—if the boundary
conditions and relations between different spin windows
are strictly enforced—or three window functions—if the
boundary conditions are relaxed and no relations between
the windows is imposed. In the latter case, one admits some

FIG. 3 (color online). Reconstruction of the B-modes’ power
spectrum for r ¼ 0:05 in the case of a satellite mission (fsky ¼
71%) using the standard pseudospectrum approach. The noise
level is 2:2 %Karcmin and the beam is 8 arcmin. The solid black
curve is the input power spectrum and the dashed black curve is
the Fisher estimate of the error bars. The red crosses stand for the
recovered power spectrum and the colored curves stand for the
error bars from MC simulations using different apodization
lengths for the sky apodization applied to the polarization maps.
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level of leakage but tries to capitalize on the additional
freedom to gain on the resulting variance. In past studies
(e.g., Refs. [25–27]) a number of either ad hoc or opti-
mized windows have been considered and shown to per-
form comparably at least in the simplest circumstances. In
Fig. 4 we show the variances obtained with the SZ method
assuming a selection of windows in the case of our satellite

setup, assuming the presence (upper panel) or absence
(lower panel) of the masked point sources. We observe
that there is a huge disparity in the performance of the
different windows, in particular at the low-‘ end of
the spectrum. The windows, which tend to impose the
boundary condition, i.e., the harmonic and analytic ones,
perform significantly worse than the window for which
these are relaxed, i.e., the pixel-domain-optimized win-
dow. Moreover, the variances in the former cases are often
significantly worse than those obtained in the case of the
standard approach, in particular at the low-‘ end.
We can therefore conclude that not only do the

pixel-domain-optimized windows provide the best
performance—at least out of the cases we have looked at
here—but also that they are unique in ensuring essentially
the same performance in the cases of both of the masks
considered here. For this reason we will use these windows
whenever we apply the SZ approach in the following.
We note that the pixel-domain computation of the opti-

mized windows does involve significant computational
resources, which are needed to solve iteratively large linear
systems [26] for a number of ‘ bins and which dominate
the overall computational cost of the approach.
The situation is more complicated in the cases of the

other two methods as equivalent optimization procedures
have not been proposed in their context. This is in part due
to technical problems related to the dimension of the
parameter space, which would have to be considered. We
therefore do not attempt to devise such procedures in this
work. Instead, in these cases we will apply simple analytic
apodizations and demonstrate the dependence of the
obtained results on their parameters. As these apodizations
may not be optimal, it may be in principle possible to
improve on the results we derive in the following.
However, we find that in general the results for these two
methods are less sensitive to the apodization choices than
those derived in the case of the SZ approach and therefore
we do not expect the improvement to be significant enough
to affect our conclusions.
We note that even with the proper optimization the deter-

mination of the low-‘multipoles multipole-by-multipole is
burdened with a significant error. Indeed, the variance is
comparable to the signal amplitude for ‘ & 20 and even
larger than the latter for ‘ & 3–4. For this reason, in the
following we will always bin the spectra even in the nearly
full-sky case considered here. The choice of binning will
be marked at the bottom of each plot as grey shaded boxes.
The lowest bin will then span ‘ values from 2 up to 20.
The gain in using the SZ approach as compared to the

standard approach—which does not correct for E-to-B
leakage—is visualized in Fig. 5. It depicts the signal-to-
noise ratio (SNR) of the B-mode angular power spectrum

reconstruction, CB
‘ =

ffiffiffiffiffiffiffiffi
!‘‘

p
. The red curve stands for the

SNR as obtained using the SZ method while the yellow
curve stands for the SNR as obtained using the standard

FIG. 4 (color online). Upper panel: Reconstruction of the
B-modes’ power spectrum for r ¼ 0:05 in the case of a satellite
mission (fsky ¼ 71%) using the SZ pseudo-C‘ approach and

using three types of sky apodizations. The noise level is
2:2 %Karcmin and the beam is 8 arcmin. The solid black curve
is the input power spectrum and the dashed black curve is the
Fisher estimate of the error bars. Red crosses are the recovered
power spectrum. The solid yellow curve stands for error bars on
CB
‘ recovery using a variance-optimized apodization, forcing

the boundary conditions and the relationship derivative to be
fulfilled (the computation is done in the harmonic domain). The
solid red curve corresponds to the error bars using a variance-
optimized apodization to relax those conditions (the computation
is done in the pixel domain.) The solid cyan curve shows the
error bars as obtained using an analytic sky apodization with
$apo ¼ 7 degrees. Lower panel: Same as upper panel but con-

sidering the galactic mask only and not the holes. The sky
coverage is 73%. The apodization length for the analytic sky
apodization is 22 degrees.
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pseudo-C‘ method. The black curve corresponds to an
idealized SNR based on the Fisher estimate of the uncer-
tainties. The shaded grey areas highlights the 1&, 2&, and
3& detections. It is clear from such a figure that detecting
the primordial component of the B-modes, peaking at
‘ < 100, for a satellite-like survey requires a correction
for the E-to-B leakage.

2. Power spectrum recovery: bias and uncertainties

The reconstructed B-modes’ angular power spectra and
their uncertainties for each of the three above-described
methods are shown in Fig. 6. The upper, middle, and
lower panels, respectively stand for the SZ, ZB, and
KN techniques. As explained in Sec. VB1, the angular
power spectra are estimated for ‘ 2 ½2; 1020*within multi-
pole bands with bandwidth of "‘ ¼ 40. For each method,
we optimize the sky apodization to obtain the lowest
error bars.

The plotted solid black curve stands for the input
B-modes’ angular power spectrum, while the solid red
curve is the estimated one, averaged over 500 simulations,
which is built to be unbiased (we will discuss the results
in practice for each method). The dashed black curve in
each panel represents the mode-counting estimate of the
uncertainties of the CB

‘ ’s, which are calculated as
explained in Sec. IVB. The dashed colored curves are
the MC-estimated uncertainties. The estimated binned
power spectra and their associated error bars are plotted
at the central value of each bandpower. The width of the
bandpowers adopted here are depicted by the grey
shaded rectangles.

As already mentioned, the three pseudo-C‘ techniques
are theoretically built to provide unbiased estimations of

CB
‘ . Nonetheless, due to numerical effects such as the

pixelization, the reconstructed B-modes may be biased.
The bias and the uncertainty behaviors for each technique
are analyzed and compared hereafter.

FIG. 5 (color online). Signal-to-noise ratio CB
‘ =

ffiffiffiffiffiffiffiffi
!‘‘

p
. The red

and yellow curves respectively stand for the SZ and the standard
pseudo-C‘ estimation. The black curve shows the SNR as
obtained using the Fisher estimate of the uncertainties in the
reconstructed CB

‘ . The shaded grey areas highlight the 1&, 2&,
and 3& detections.

FIG. 6 (color online). Power spectrum uncertainties on
B-modes using cross-spectrum estimation for the case of a
satellite-like experiment with holes mimicking point-source
removals (fsky " 71%). The upper, middle, and lower panels

are respectively for the SZ, ZB, and KN methods. Grey shaded
boxes represent the binning of the power spectra. The sky
apodizations used for each technique are described in Sec. III.
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(i) SZ technique: As expected, our estimation of the
B-mode angular spectrum is unbiased. The window
functions are optimized in the pixel domain leading
to uncertainties very close to the mode-counting
estimation throughout the entire range of angular
scales considered.

(ii) ZB technique: As for the SZ technique, the
B-modes’ angular power spectrum CB

‘ is recon-
structed unbiased. The dashed-dotted red curve
depicts the uncertainties in CB

‘ via the ZB approach
using harmonic-variance optimized apodizations
calculated for the SZ approach, while the colored
dashed curves represent the window function
with different apodization lengths $apo ranging

from 5 to 8 degrees. We have checked that using
an apodization length either smaller than 5 degrees
or wider than 8 degrees systematically leads to
higher uncertainties. For this technique, one cannot
a priori apply the pixel-domain computation of the
variance-optimized apodizations. We nevertheless
check that this is indeed the case using numerical
experiments. Our results show that weighting the
maps of the Stokes parameters with the spin-0 pixel
variance-optimized apodizations as derived for the
SZ technique leads to very high uncertainties for
‘ < 100. At low multipoles, a larger apodization
length reduces the E-to-B leakage, lowering the
uncertainties in CB

‘ . At high multipoles, uncertain-
ties are driven by the sky cut, which increase with
$apo. The harmonic-optimized window functions

give the smallest uncertainties in CB
‘ for ‘ > 100

but, as expected, fail to provide the smallest uncer-
tainties for ‘ < 100. For these large angular scales,
the recovery of CB

‘ is only possible for ‘ > 20 and
by making use of analytic sky apodization.

(iii) KN technique: The estimation of the angular power
spectrum appears to be biased. The solid red curve
shows the estimated CB

‘ for an apodization length
of 300 and is biased in the first four bins. The more
we decrease the length of the apodization, the less
the estimated CB

‘ is biased to get an unbiased
estimation with $apo ¼ 1 degree. This bias comes

from the approximation Kð!Þ
‘‘0 ¼ 0, which is not

verified in practice. The uncertainties derived in
the KN approach are depicted in the lower panel
of Fig. 6. The error bars have been obtained by first
computing the map of ~!B using a C2 window
function with an apodization length $apo and then

by removing those pixels for which the sky apod-
ization varies (that is, an external layer with a width
$apo). The three here-adopted values for $apo are

0.5, 1, and 2 degrees. As expected from the mode-
counting estimation, the lowest error bars are
achieved for the highest sky coverage, that is, for

$apo ¼ 0:5 degrees. Nonetheless, for the first two
bins, the error bars for the three values of fsky are
higher than the value of the signal, which means
that it is impossible to detect the primordial part.
They decrease up to ‘ ’ 200 and then behave like
the mode-counting uncertainty until ‘ ¼ 1020.

3. Pseudopower spectrum

A way to qualitatively describe potential bias in the
methods is to study the B-modes’ pseudopower spectrum
~CB
‘ . Comparing these two quantities allows for a quantita-

tive description of the leakage that bias the B-mode
pseudopower spectrum. In Fig. 7, we plot the ratios
~CE!B
‘ = ~CB!B

‘ for the ZB and KN methods. First of all,
this ratio is not zero because of the pixelization effects.
This may bias the final estimate of CB

‘ if such a residual

leakage is not corrected for via a nonzeroKð!Þ
‘‘0 and if

~CE!B
‘

cannot be safely neglected compared to ~CB!B
‘ . For the SZ

technique, these residual leakages are corrected for via the

implementation of Kð!Þ
‘‘0 . However, such an off-diagonal

block of the mode-mode coupling matrices cannot be

computed in the ZB and KN techniques. The block Kð!Þ
‘‘0

is systematically set equal to zero, which implicitly
assumes that effectively ~CE!B

‘ . ~CB!B
‘ . Figure 7 (the solid

black curve) indicates that this assumption is valid for the
ZB technique, where the ratio is approximatively equal to
10!2 at most. On the contrary, Fig. 7 (red curves) shows

FIG. 7 (color online). Ratio between ~CE!B
‘ (E-mode power

spectrum is derived from the WMAP 7-year best fit) and ~CB!B
‘

computed by correcting for such a leakage using the ZB and KN
E=B separation techniques (respectively represented by the
black curve and the red curves). This ratio amounts to the
leakage of E-modes into B. The dashed black line is the bench-
mark to which the pseudo-C‘ is compared. For the KN method,
the three curves are the value of the ratio for the different values
of the apodization length: $ap ¼ 0:5, 1, and 2 degrees from top to

bottom, respectively. The sky coverage is the one expected for a
satellite-like experiment with holes due to point-source removals
(see upper panel of Fig. 1).
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that ~CE!B
‘ cannot be neglected with respect to ~CB!B

‘ for the
KN method inducing a bias in the B-modes’ angular power
spectrum, as seen in the lower panel of Fig. 6.

4. Effect of point sources in the mask

Furthermore, as already highlighted in Sec. VA 2, we
confirm the importance of the point sources’ holes in the
mask. Indeed, we also calculated the B-modes’ angular
power spectra for a mask, which do not account for the
polarized point sources (fsky ¼ 73%). The lowest achieved

uncertainties for each method are depicted in Fig. 8 with
holes (upper panel) and without holes (lower panel). With
the difference between the two fsky’s being 2%, one could

expect—from a naive mode counting—the error bars to
increase by a factor of "1:01 by adding holes. Though
such a scaling indeed applies to the case of the SZ method,
it appears that both the ZB and the KN method are very
sensitive to the presence of holes at large angular scales.
Clearly, the uncertainties increase by more than "1:01 by

adding holes for ‘ < 140 for both the ZB and KN methods.
Though the SZ technique can handle the impact of holes,
the increase of the variance at large scales for the ZB and
KN techniques shows that a dedicated treatment of holes
could be mandatory.
It is instructive to compare the SZ approach to the ZB

approach to understand why the latter can deal with holes
while the former cannot. They differ from each other by the
use of two different sky apodizations: the pixel-domain,
variance-optimized apodization for the SZ technique, and
the harmonic-domain, variance-optimized sky apodization
for the ZB technique. If one uses the harmonic-domain,
variance-optimized sky apodization, the SZ approach
would suffer from the high increase of the variance at large
angular scales, similar to the increase of the variance
observed in the ZB approach. In other words, all the addi-
tional complexity due to holes in the mask is nicely treated
in the SZ approach thanks to its flexibility and a dedicated
computation of the sky apodization in the pixel domain.

5. Conclusion for a satellite-like experiment

To summarize, the SZ method gives unbiased B-mode
power spectra and the smallest uncertainties, close to the
mode-counting one, for the case of a large sky coverage
(see Fig. 4 for a reconstruction multipole-by-multipole
and Fig. 8 for a reconstruction using bandpower). The
results with the ZB method with the harmonic-optimized
windows are similar to those of the SZmethod for ‘ > 100.
For ‘ 2 ½20; 100*, estimating CB

‘ is still possible but with a
smaller significance. For ‘ < 20, the ZB method fails
to reconstruct the B-modes’ angular power spectra. Our
implementation of the KN method does not manage to
reconstruct an unbiased CB

‘ for the first four bins if the
apodization length is too small. For those apodizations
that allow the KN method to provide an unbiased
estimation ($apo - 1 degree), reconstructing CB

‘ is not
possible for ‘ < 60. For intermediate angular scales,
60< ‘< 300, the reconstruction is possible with a lower
signal-to-noise ratio than the one achieved thanks to either
the Sz technique or the ZB technique.

VI. RESULTS: SMALL-SCALE EXPERIMENT

In the case of a balloon-borne-like experiment, the
reconstructed B-mode angular power spectra and their
associated uncertainties are shown in Fig. 9 for the three
techniques. The angular power spectra are estimated from
‘ ¼ 2 to ‘ ¼ 1020 with the first bin ranging from 2 to 20
and the following bins having a bandwidth "‘ equal to 40.
We emphasize that for such a small value of the sky
coverage, the amplitude of the binned CB

‘ in the first bin
b1 ¼ ½2; 20*, is CB

b1
’ 5:9+ 10!4 %K2 for r ¼ 0:05. The

Fisher estimate of the uncertainties for the same value of r

leads to
ffiffiffiffiffiffiffiffiffiffiffi
!b1b1

q
’ 7:6+ 10!4 %K2. Detecting a nonvan-

ishing CB
‘ at angular scales between ‘ ¼ 2 and ‘ ¼ 20

FIG. 8 (color online). Power spectrum uncertainties on
B-modes using cross-spectrum estimation for the case of a
satellite experiment with holes mimicking point-source
removals (fsky " 71%). The red dashed line represents the

variance obtained via the SZ method, the blue dashed line is
via the ZB method, and the yellow dashed dotted line for the KN
method.

EFFICIENCY OF PSEUDOSPECTRUM METHODS FOR . . . PHYSICAL REVIEW D 88, 023524 (2013)

023524-15

Chapter 5. Numerical Results 116



appears unfeasible for small-scale experiments since the
Fisher calculation underestimates the variance on the
pseudo-C‘ reconstruction of angular power spectra. On
each of the three graphs, the solid black curve corresponds
to the input B-mode power spectrum to be estimated, while
the solid red curve stands for the estimated angular power
spectrum averaged over 500 simulations. The dashed black

curves correspond to the mode-counting estimate of power
spectrum uncertainties obtained with fsky ¼ 1%, which

serves as a benchmark. For each of the graphs, the dashed
colored curves stands for MC estimations of the power
spectrum uncertainties for each of the techniques.
(i) SZ technique: We confirm that the reconstructed

angular B-mode power spectrum is unbiased for
the entire range of multipoles considered here. As
previously mentioned, we only use pixel-optimized
window functions for the case of the SZ technique
(upper panel of Fig. 9) and the displayed error
bars are therefore the lowest ones to be expected in
such an approach. We refer the reader to Ref. [27] for
an exhaustive discussion on the performances of
such a technique. The relevant conclusion in such
a case is that a precise-enough estimation of CB

‘
is achieved for multipoles starting from ‘ ¼ 20 to
‘ ¼ 1020.

(ii) ZB technique: In such a case, the estimated CB
‘ ’s are

also unbiased from ‘ ¼ 2 to ‘ ¼ 1020. We show the
power-spectrum uncertainties for two kind of win-
dowing. Dashed colored curves ranging from blue
to orange stand for error bars derived using a C2

window function with an apodization length varying
from 1 to 4 degrees. It clearly shows that depending
on angular scales the apodization length has to be
adapted to reach the lowest uncertainties. For the
three first bins, i.e., 2 / ‘ < 100, an apodization
length of 3 degrees provides the lowest error bars.
For higher multipoles, an apodization length of
1 degree leads to the smallest error bars. The dashed
red curve corresponds to the uncertainties in the
reconstructed CB

‘ ’s using an optimized window
function computed in the harmonic domain.7 This
clearly shows that—unlike the case of a satellite
mission—using such harmonic-variance-optimized
sky apodizations provides the lowest error bars in
the entire angular range. However, although it is
very efficient at multipoles greater than 60, this
approach fails to reconstruct the B-mode angular
power spectrum for the two first bins comprised in
2 / ‘ < 20 and 20 / ‘ < 60.

(iii) KN technique: The KN technique provides an un-
biased B-mode angular power spectrum, although
it is highly scattered because of the high level of the
variance at low ‘. As for the discussed case of a
satellite-like experiment, the lowest uncertainties
are obtained for the highest sky coverage, i.e., for
$apo ¼ 0:5 degrees, though the KN technique is

able to estimate CB
‘ only for ‘ values greater than

FIG. 9 (color online). Power spectrum uncertainties on
B-modes using cross-spectrum estimation for the case of a
balloon-borne experiment (fsky " 1%). The upper, middle,

and lower panels are for, respectively, the SZ, ZB, and KN
methods. The sky apodizations used for each technique are
described in Sec. III.

7Because the contour of the mask is rather simple for the
small-scale experiment, the harmonic computation of the
variance-optimized apodizations leads to very similar results to
the pixel-domain computation for the SZ technique.
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"150 and therefore ‘‘misses’’ the bump at ‘" 100
due to the primordial component of the B-mode
angular power spectrum.

Figure 10 summarizes our results, depicting the lowest
error bars on the B-mode estimation for each of the three
techniques. From these results, it is rather obvious that
the SZ technique performs the best for power-spectrum
reconstruction from the viewpoints of both bias and
uncertainties. This approach allows for an accurate enough
estimation of CB

‘ for ‘ - 20, while the ZB technique and
the KN technique allow for such a reconstruction for
‘ - 60 and ‘ - 150, respectively. Those differences may
drastically affect our ability to set constraints on the cos-
mological parameters probing the inflationary phase such
as, e.g., the tensor-to-scalar ratio r. We remind the reader
that the primordial component of CB

‘—from which the
constraint on r can be set—is dominant for ‘ values lower
or equal to "100 while the lensing-induced B-modes start
to dominate the angular power spectrum for ‘ > 100. With
our binning, this means that with the SZ technique one
can detect the primordial B-modes in two bins (i.e.,
‘ 2 ½20; 60* and ‘ 2 ½60; 100*). With the ZB technique,
the primordial component of CB

‘ can be detected in only
one bin, ‘ 2 ½60; 100*, while a detection of the primordial
component seems impossible with the KN approach.8

VII. CONCLUSION AND DISCUSSION

We first presented three different pseudospectrum esti-
mators designed to remove–or at least reduce—the E-to-B
leakage, which may compromise any detection of the

B-modes and especially its primordial part. We then tested
the relative efficiency of these estimators to reconstruct the
B-modes’ angular power spectrum through Monte Carlo
simulations. Two different kinds of sky coverage have
been chosen for our analysis: a small-scale coverage
(where the observed part of the sky is "1%) and a large
coverage of the celestial sphere as motivated by a future
satellite mission dedicated to B-mode detection with
fsky " 71%. Both sky coverages incorporate holes mim-

icking point-source removals.
All three techniques studied here try to reconstruct,

implicitly or explicitly, the !B field, which is known to
contain only the B-modes. We first described the so-called
SZ method whose efficiency lies in an adapted choice of
basis to decompose the E- and B-modes optimizing the
apodization of the applied mask. Then, the ZB-technique
principle was developed. It consists in calculating the
masked !B with an adapted apodized mask; it implies
derivation operations of the masked polarization field
which are actually done in the harmonic space. Finally,
the KNmethod is based on the fact that applying a mask on
the reconstructed B-modes reduces significantly the level
of E-to-B leakage. In this article, we do not claim to
exactly implement the methods as they were described in
the referred articles. Slight changes have been made in
their implementation in order to minimize as much as
possible the effective E-to-B leakage.
We compare the results of these methods in each of our

simulation sets.
First, we found that correcting for E-to-B leakages at the

levels of both the mean and variance is mandatory in
the case of a satellite mission covering "71% of the sky
for an efficient recovery of the primordial component
of B-modes, ‘ < 30. Moreover, we have shown that the
intricate shape of the galactic mask makes the uncertainties
of the reconstructed CB

‘ using methods correcting for
E-to-B leakages very sensitive to sky apodization applied
to Q and U maps for ‘ < 60. An efficient computation of
variance-optimized sky apodization is therefore crucial for
the applicability of these methods. From this practical
perspective, the SZ method appears to be better armed as
it offers some flexibility in the computation of the sky
apodization.
Second, we computed the pseudo-C‘, which amounts to

the E-modes leaking into Bwhile applying the three differ-
ent techniques. Each are able to significantly decrease the
E-to-B leakage, though none manage to exactly cancel it
because of the pixelization effects. Nonetheless, the value
of the uncertainties in theCB

‘ reconstruction is the key issue
because it tells us if a detection is possible or not. As shown
by our numerical results, the final uncertainties in the
estimated B-modes’ power spectra can overwhelm the
signal even when the E-to-B leakage is well controlled.
The SZ method gives the smallest error bars on the
B-modes’ angular power spectra for both the large- and

FIG. 10 (color online). Power spectrum uncertainties for each
of the three techniques for the case of a small-scale experiment
with fsky ’ 1%, &Q ¼ 5:75 %Karcmin and $Beam ¼ 8 arcmin.
Dashed red, dashed cyan, and dashed yellow curves are for,
respectively, the SZ, ZB, and KN techniques. The dashed black
curve stands for the fsky estimate of the error bars.

8Strictly speaking, some constraint can be set on r even by
using the KN approach (at least some upper limit). But this may
probably prevent any measurement of r.
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small-scale experiments as they follow quite well the
mode-counting uncertainties. Though we cannot recover
the largest angular scales ‘-by-‘ for ‘ / 5 with the SZ
approach, we can reach a detection for such scales using
the appropriate binning. The ZB method, as explained in
Sec. III D, is theoretically equivalent to the SZ one. From
the numerical results, we showed that practically this
method is less efficient at large angular scales (‘ < 60
for a satellite-like mission and ‘ < 100 for a small sky
survey), allowing us to reconstruct CB

‘ starting at ‘" 20
for a satellite-like mission (starting at ‘ ¼ 60 for a small
sky survey). For smaller angular scales, ‘ > 60, these two
methods provide similar results. The KN method is by
construction expected to be less efficient than the other
methods in our implementation, as described in Sec. III D.
Indeed, the sky coverage decreases according to the apod-
ization length, leading to a higher variance compared to SZ
estimator. The power-spectrum analysis shows that this
method is reliable for high ‘, but the error bars overwhelm
the signal for the two first bins (i.e., ‘ < 60) in the case
when the fraction of the sky is 71% (for the three first bins,
‘ < 100, for a small sky survey).

Figures 10 and 8 sum up the errors made on the esti-
mated CB

‘ via the SZ, ZB, and KN methods in the two
experimental configurations. In the way we have imple-
mented these techniques, the SZ method is the most effi-
cient one. For both types of experimental setups, it makes
possible the estimation of CB

‘ with uncertainties on par
with the most optimistic Fisher estimates. The key step
making the SZ approach more efficient is its flexibility in
terms of sky apodization. This is highlighted in Fig. 4:
relaxing the derivative relationship relating the spin-1 and
spin-2 windows to the spin-0 window is mandatory for
computing variance-optimized sky apodizations, drasti-
cally lowering the final uncertainties on the estimated
CB
‘ ’s. However, neither the ZB nor the KN approaches

are currently designed to offer such a flexibility. We have
checked that if one uses the same sky apodization
(for example an analytic window function with a given
apodization length) the SZ and ZBmethods leads to similar
uncertainties. Inversely, we have also checked that one
cannot use the pixel-domain, variance-optimized sky apod-
ization (relaxing the derivative relationship) in the ZB
approach as it systematically leads to an increase of the
final error bars as compared to, e.g., using analytic win-
dows with an appropriate choice of the apodization length.
This shows that the applicability of these pseudo-C‘ esti-
mators, which do not mix E- and B-modes, is highly
conditioned by the precomputation of variance-optimized
sky apodization.
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APPENDIX A: CONVOLUTION KERNELS FOR
THE KN METHOD

We show in this appendix that a complete derivation of
the convolution kernels in the KN approach is computa-
tionally prohibitive.
In such an approach, a map of the masked !B field is first

built by applying Eq. (B3). As a function of the ‘‘true’’
CMB E and B multipoles, this masked !B field reads

~!Bð ~nÞ ¼ !
X

‘0m0
½Kð!Þ

‘0m0ð ~nÞaE‘0m0 þ iKðþÞ
‘0m0ð ~nÞaB‘0m0*: (A1)

The above convolution kernels should be viewed as scalar
functions in the pixel domain parametrized by some
harmonic indices. They measure the amount of ð‘;mÞ
multipoles of BðEÞ types contributing to the masked !B

field in the direction ~n. In principle, these coupling
functions are given by

Kð#Þ
‘m ð ~nÞ ¼ '#½ !@ !@ðM2Y‘mÞ # @@ðM!2Y‘mÞ*; (A2)

with '# a complex-valued numerical constant. Expanding
the spin-raising and spin-lowering operation, we obtain

KðþÞ
‘m ð ~nÞ¼N‘;2+M+Y‘mþ'þ;1;‘½1Y‘m

!@Mþ!1Y‘m@M*
þ'þ;2;‘½2Y‘m

!@ !@Mþ!2Y‘m@@M* (A3)

and

Kð!Þ
‘m ð ~nÞ ¼ '!;1;‘½1Y‘m

!@M! !1Y‘m@M*
þ '!;2;‘½2Y‘m

!@ !@M! !2Y‘m@@M*; (A4)

where the explicit expression of the 'i’s are of no impor-
tance here. It is clear from the above computation that

where the mask is constant, i) Kð!Þ
‘m ð ~nÞ is zero and there

is no E-to-B leakage, and ii) ~!B ¼ P
‘mN‘;2 +M+ Y‘m,

which is just the definition of the !B field on the mask M.
Here, we have just reconfirmed that the derivation of !B

proposed in Ref. [29] is exact on the part of the sky where
the mask is constant. The above result is made possible
if and only if the convolution kernels F# computed in
the harmonic domain [see Eq. (B4)] are an effectively
precise enough representation of the operator [@@# !@ !@ ].
However, the truncation in the ð‘;mÞ summation and the
pixelization show that it is not the case. Indeed, if it was the
case, the F#ð ~n; ~n0Þ would be completely local and the map
of the leaking E-modes would be concentrated on the
boundaries of the observed sky. But the results displayed
in Ref. [29] show that F# is not local—though well
peaked—and that leaked E-modes extend inside the

observed patch. As a consequence, the Kð#Þ
‘m functions

are not strictly equal to the above expressions leading to
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residual E-to-B leakages as well as potential ‘-to-‘0 alias-
ing. These functions should be computed differently in
order to keep track of, at least, the ð‘;mÞ truncation, and
to subsequently derive an unbiased pseudo-C‘ estimator by
correcting for the different residual leakages. For this
purpose, we propose here an alternative expression for

the Kð!Þ
‘m ð ~nÞ which can then be plugged into the final

expression for the pseudo-C‘ estimator.
The ð‘;mÞ-to-pixel convolution kernels are expressed as

functions of Wigner-3j symbols and the multipoles of the
binary mask M describing the observed sky,

Kð#Þ
‘0m0ð ~nÞ¼

i

2

X

‘1m1

X

‘2m2

ð!1Þm1N‘1;2Fð‘0;‘1;‘2Þ

+
‘0 ‘1 ‘2

m0 !m1 m2

 !
M‘2m2

Y‘1m1
ð ~nÞ

+
"

‘0 ‘1 ‘2

2 !2 0

 !
#

‘0 ‘1 ‘2

!2 2 0

 !#
; (A5)

with

Fð‘; ‘0; ‘00Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘þ 1Þð2‘0 þ 1Þð2‘00 þ 1Þ

4#

s
: (A6)

Being scalar functions, their multipoles are obtained by
projecting them onto the spherical harmonic basis,

Kð#Þ
‘0m0ð‘;mÞ ¼

Z
Kð#Þ

‘0m0ð ~nÞY?
‘m0ð ~nÞ

¼ i

2

X

‘2m2

ð!1ÞmN‘1;2Fð‘; ‘0; ‘2Þ

+
‘0 ‘ ‘2

m0 !m m2

 !
M‘2m2

+
"

‘0 ‘ ‘2

2 !2 0

 !
#

‘0 ‘ ‘2

!2 2 0

 !#
:

(A7)

Secondly, the reconstructed ~!B field is masked again with
the M!B from which pseudomultipoles, denoted by ~!B

‘m

hereafter, are derived. It is easily shown that

~!B
‘m ¼

X

‘0m0
½KðþÞ

‘m;‘0m0aB‘0m0 ! iKð!Þ
‘m;‘0m0aE‘0m0*; (A8)

with

Kð#Þ
‘m;‘0m0 ¼ð!iÞ

X

‘1m1

X

‘4m4

ð!1ÞmFð‘;‘1;‘3ÞKð#Þ
‘0m0ð‘1;m1Þ

+Mð!BÞ
‘3m3

‘ ‘1 ‘3

!m m1 m3

 !
‘ ‘1 ‘3

0 0 0

 !
: (A9)

Finally, at the level of power spectra, the convolution
kernels are in principle derived using

Kð#Þ
‘‘0 ¼ 1

2‘þ 1

X

m;m0
jKð#Þ

‘m;‘0m0 j2:

In a more convential approach, the above azimuthal averag-
ing is done analytically and allows us to greatly simplify the

expression ofKð#Þ
‘‘0 . However, it is easily understood by first

plugging the expression of Kð#Þ
‘0m0ð‘;mÞ into Kð#Þ

‘m;‘0m0 , and

second by plugging the expression ofKð#Þ
‘m;‘0m0 intoK

ð#Þ
‘‘0 , that

such simplifications cannot be applied in the KN approach.

As a consequence, the computation ofKð#Þ
‘m;‘0m0 implies three

summations over ð‘;mÞ indices and the intricate multipli-
cation of four Wigner-3j symbols. It is therefore obvious
that the complete derivation of the convolution kernels in
the KN technique cannot be performed numerically.

APPENDIX B: COMPARING THE KN
AND ZB METHODS

We show in this appendix that the KN method
approximates the ZB technique if W satisfies the
Dirichlet and Neumann boundary conditions. Our starting
point is the first term of the rhs of Eq. (23),

Bð ~nÞ ¼ i

2
½ !@ !@ðWð ~nÞP2ð ~nÞÞ ! @@ðWð ~nÞP!2ð ~nÞÞ*

¼ i

2

Z
d ~n0

X

‘m

Y‘mð ~nÞY?
‘mð ~n0Þ½ !@ !@ðWð ~n0ÞP2ð ~n0ÞÞ

! @@ðWð ~n0ÞP!2ð ~n0ÞÞ*: (B1)

The second line is obtained by inserting the closure prop-
erties of the spherical harmonics. By performing two
integrations by parts and using the boundary conditions
verified by W to cancel the contour integrals, one obtains

Bð ~nÞ ¼ i

2

Z
d ~n0

X

‘m

Y‘mð ~nÞ½Wð ~n0ÞP2ð ~n0Þ !@ !@Y?
‘mð ~n0Þ

!Wð ~n0ÞP!2ð ~n0Þ@@Y?
‘mð ~n0Þ*: (B2)

We recall that

!@ !@Y?
‘m ¼ N‘;2 + þ2Y

?
‘m; @@Y?

‘m ¼ N‘;2 + !2Y
?
‘m:

By inserting the above expression into Eq. (B2), one easily
recognizes the convolution kernels used in the KN method
to finally get

Bð ~nÞ¼
Z
d ~n0Wð ~n0Þ½Fþð ~n; ~n0ÞP2ð ~n0Þ!F!ð ~n; ~n0ÞP!2ð ~n0Þ*;

(B3)

with

F#ð ~n; ~n0Þ ¼
i

2

X

‘m

N‘;2 + Y‘mð ~nÞ + #2Y
?
‘mð ~n0Þ: (B4)

This finishes our proof that the KN method applied to
W + P#2 is equal to the first term of the central equation,
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i.e., Eq. (23), of the ZB approach, as Eqs. (B3) and (B4)
are exactly the numerical starting point of the KN method
(see Eqs. (11) and (12) of Ref. [29]).

APPENDIX C: NOISE BIAS

We provide in this appendix the explicit calculation of the
noise bias for the ZB and KN techniques. Indeed, as under-
lined in Sec. III D, computing the noise bias in these two
techniques may be problematic, specifically for the case of
inhomogeneous noise which has not been addressed in
neither Ref. [28] nor in Ref. [29]. Forthcoming data sets as
provided by balloon-borne or ground-based experiments are
plagued by inhomogeneous noise and it is therefore of
primary importance to have formulas of the noise bias that
are applicable to inhomogeneous noise. For this purpose, we
will suppose that the noise in theQ andUmaps is potentially
inhomogeneous but still uncorrelated from pixel-to-pixel,
translating into the two-point correlation functions

hnQð ~nÞnQð ~n0Þi ¼ &2
Qð ~nÞ"2ð ~n! ~n0Þ;

hnUð ~nÞnUð ~n0Þi ¼ &2
Uð ~nÞ"2ð ~n! ~n0Þ;

and

hnQð ~nÞnUð ~n0Þi ¼ 0;

leading to the following correlations in the harmonic space:

hnB‘mnB ?
‘0m0 i ¼

1

4

Z
d ~nM2ð ~nÞ½&2

Qð ~nÞ þ &2
Uð ~nÞ*

+ ½2Y‘mð ~nÞ2Y?
‘0m0ð ~nÞ þ !2Y‘mð ~nÞ!2Y

?
‘0m0ð ~nÞ*:

The main challenge in computing the noise bias in the
inhomogeneous case is to find an expression of ~NB

‘ which
is a function of hnQð ~nÞnQð ~n0Þi and hnUð ~nÞnUð ~n0Þi only—as
we cannot know a priori how noise is modified by taking
derivatives—and which is numerically tractable.

From the above correlation, it is easily checked that
on the full sky the noise is described by a power spectrum
if it is homogeneous, i.e., &2

Qð ~nÞ ¼ const and &2
Uð ~nÞ ¼

const, with

hnB‘mnB ?
‘0m0 i ¼

1

2
½&2

Q þ &2
U*"‘;‘0"m;m0 :

1. The SZ-technique case

For such an approach, the noise bias is easily computed,
assuming only that the pixel-to-pixel correlation is vanish-
ing. The pseudo-a‘m’s are the ones of W + !B resulting in
the following noise bias of the pseudopower spectrum:

~NB
‘ ¼ 1

8#

Z
d ~nð&2

Q þ &2
UÞðN2

‘;2W
2 þ 4N2

‘;1j@Wj2

þ j@@Wj2Þ: (C1)

We refer the reader to Ref. [26] or to the Appendix of
Ref. [36] for a detailed derivation of such a noise bias.

2. The ZB-technique case

The noise bias as computed in Ref. [28]—given by their
Eq. (50)—clearly assumes that the noise is described by a
power spectrum and is therefore homogeneous. Their
computation proceeds as follows. First, one assumes that
second-order moments of the noise statistics are com-
pletely described by a power spectrum, denoted by N‘ in
Ref. [28], and are valid on the entire celestial sphere. As a
consequence, this noise bias is valid at the level of power
spectra and not at the level of pseudopower spectra.
Second, one computes the noise bias at the level of
pseudo-C‘—denoted by N ‘ in Ref. [28] and denoted by
~N‘ in this paper—using the convolution kernel, i.e.,

~N‘ ¼
X

‘0
K‘‘0N‘0 :

For the above relation to be valid, assuming that
hn‘mn?‘0m0 i ¼ N‘"‘;‘0"m;m0 is mandatory. In other words,
the noise properties should be such that the instrumental
noise, as reprojected on the celestial sphere, is statistically
isotropic. To our knowledge, there is no experimental setup
leading to such properties of the noise.
For the case of inhomogeneous noise, one can easily

obtain the noise bias by noticing that the resulting map is
equivalent to the map of the pure pseudo-a‘m’s as com-
puted in the SZ approach by replacing W by W2. Our
purpose is to derive the noise of the power spectrum
estimated from W2 + !B as a function of the noise power
per pixel of the Q and U maps. Our starting point is the
pseudomultipoles given by

~!B
‘m ¼

Z
W2 + !B + Y?

‘md ~n: (C2)

Since the !B field is defined by !B ¼ i½ !@ !@P2 !
@@P!2*=2, it is easily shown by performing two integra-
tions by parts and using the fact that W2 and @ðW2Þ are
vanishing at the contour that

~!B
‘m ¼ i

2

Z
½P2

!@ !@ðW2Y?
‘mÞ ! P!2@@ðW2Y?

‘mÞ*d ~n; (C3)

which is exactly the definition of the pure pseudomulti-
poles. As a consequence, the noise bias for the ZB method
is given by the noise bias as computed in the SZ method.
However, W2!B is effectively computed using the

following expression:

W2ð ~nÞ!Bð ~nÞ ¼
$
i

2

%
W½ !@ !@ðWP2Þ ! @@ðWP!2Þ*

! i½ !@W + !@ðWP2Þ ! @W + @ðWP!2Þ*

!
$
i

2

%
W½ð !@ !@WÞP2 ! ð@@WÞP!2*

þ i½ð !@WÞ2 + P2 ! ð@WÞ2 + P!2*: (C4)

Let us show that we obtain the same expression for ~!B
‘m

using the right-hand-side of the above formulas. By
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plugging the above expression into the expression for ~!B
‘m,

one can perform some integrations by parts in order to
replace terms like F+ @ðWP#2Þ by terms like ðWP#2Þ +
@F. For the first line of the rhs of the above expression, two
integrations by parts are required, and only one is needed
for the second line. With such a procedure, some contour
integrals should appear. However, the integrand in these
contour integrals are always proportional toW and/or @W.
As these functions are required to vanish at the contour, all
the contour integrals are equal to zero and we are left with

~!B
‘m ¼ i

2

Z
½P2 + 2W

?
‘m ! P!2 + !2W

?
‘m*d ~n; (C5)

with

2W
?
‘m ¼W+ !@ !@ðWY?

‘mÞþ2W+ !@ðY?
‘m

!@WÞ
!W+Y?

‘m+ !@ !@Wþ2+Y?
‘m+ð !@WÞ2; (C6)

!2W
?
‘m ¼W+@@ðWY?

‘mÞþ2W+@ðY?
‘m@WÞ

!W+Y?
‘m+@@Wþ2+Y?

‘m+ð@WÞ2: (C7)

Expanding the derivatives and appropriately rearranging
the different terms, one easily sees that ~!B

‘m is given by
Eq. (C3). From Eq. (C3), and defining the noise bias as

~NB
‘ ¼ 1

2‘þ 1

X‘

m¼!‘

hj~!B
‘mj2i;

with ~!B
‘m containing noise only, it is straightforward to

apply the noise bias calculation performed for the pure
pseudo-C‘ techniques (see, e.g., Appendix C of Ref. [36])
to get

~NB
‘ ¼ 1

8#

Z
d ~nð&2

Q þ &2
UÞðN2

‘;2W
4 þ 4N2

‘;1j@W2j2

þ j@@W2j2Þ: (C8)

3. The KN-method case

For such a method, computing the noise bias is more
involved. We list here three possible approaches, but none
of them allows a numerical calculation of ~NB

‘ from&Q=U to
be implemented.

(i) First method: The pseudo-a‘m’s are derived via

~!B
‘m ¼

Z
M!B + ~!B + Y?

‘md ~n; (C9)

with

~!B ¼ i

2
½ !@ !@ðW + P2Þ ! @@ðW + P!2*: (C10)

The noise bias can therefore be expressed as a func-
tion of the correlation function of ~!B, denoted by
C!ð ~n; ~n0Þ ( h~!Bð ~nÞ~!Bð ~n0Þi, and inserting only the

noise in P#2 when computing such a correlation
function,

~NB
‘ ¼

ZZ
4#

M!B ð ~nÞ +M!Bð ~n0Þ + h~!Bð ~nÞ~!Bð ~n0Þi

+
X‘

m¼!‘

Y?
‘mð ~nÞY‘mð ~n0Þ
2‘þ 1

d ~nd ~n0: (C11)

By using the definition of ~!B as a convolution, i.e.,

~!Bð ~nÞ ¼
Z

Wð ~n0Þ½Fþð ~n; ~n0ÞP2ð ~n0Þ

! F!ð ~n; ~n0ÞP!2ð ~n0Þ*d ~n0;

and the fact that for noise

hP#2ð ~nÞP,2ð ~n0Þi ¼ ð&2
Qð ~nÞ þ &2

Uð ~nÞÞ"ð ~n! ~n0Þ;
hP#2ð ~nÞP#2ð ~n0Þi ¼ ð&2

Qð ~nÞ ! &2
Uð ~nÞÞ"ð ~n! ~n0Þ;

it is shown that9

C!ð ~n; ~n0Þ ¼
Z

Wð ~n00Þf½&2
Qð ~n00Þ þ &2

Uð ~n00Þ*Fþ
~n; ~n0ð ~n00Þ

þ ½&2
Qð ~n00Þ ! &2

Uð ~n00Þ*F!
~n; ~n0ð ~n00Þgd ~n00;

with

Fþ
~n; ~n0ð ~n00Þ ¼ 2Re½Fþð ~n; ~n00ÞF?

þð ~n0; ~n00Þ*; (C12)

F!
~n; ~n0ð ~n00Þ ¼ 2Re½Fþð ~n; ~n00ÞFþð ~n0; ~n00Þ*: (C13)

The above correlation function cannot be further
simplified unless we assume full-sky coverage and
that the noise is homogeneous. As a consequence,
computing the noise bias directly from the noise
properties of the Stokes-parameter maps is numeri-
cally prohibitive (at least in the not-so-general case
of inhomogeneous noise).

(ii) Second method: A possible way out—inspired
by the computation of the noise bias in the ZB
approach—is to start from Eqs. (C9) and (C10)
and subsequently perform two integrations by parts
in order to transfer the derivative operators from
M+ P#2 toM!B + Y?

‘m. Defining#!B and @#!B as

the portion of the sky and the contour of such a
portion defined by the binary maskM!B , we are lead

to evaluate one integral on #!B (denoted as the

domain integral) and two other integrals on @#!B

(denotedas contour integrals). The integranf of the
domain integral is
$
i

2

%
W½P2 + !@ !@ðM!BY?

‘mÞ ! P!2 + @@ðM!BY?
‘mÞ*:

9We recall that we fix the noise in the Q map to not be
correlated to the noise in the U maps, and that F! is the complex
conjugate of (!Fþ).
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Because M!B is constant-valued on the domain and

because M!B +W ¼ M!B—the domain covered by

M!B is at most the sub-part of the domain covered

by W, such as W ¼ const ¼ 1—the integrand is
simply given by

$
i

2

%
M!B½P2 + !@ !@ðY?

‘mÞ ! P!2 + @@ðY?
‘mÞ*:

However, the two integrands relative to the contour
integrals are of the forms

$
i

2

%
½ !@ðWP2Þ ! @ðWP!2Þ*M!BY?

‘m

and
$
i

2

%
W½P2 + !@ðM!BY?

‘mÞ ! P!2 + @ðM!BY?
‘mÞ*:

Because M!B ¼ 1 and W ¼ 1 on @#!B , the two

contour integrals are not vanishing. Although the
second contour integral can be expressed as a func-
tion of hnQð ~nÞnQð ~n0Þi and hnUð ~nÞnUð ~n0Þi, the first
contour integral is still a function of the derivative of
P#2, preventing us from computing the noise bias.

(iii) Third method: This issue of contour-integrals
can be naturally circumvented by replacing the
binary mask M!B with an apodized mask W!B

satisfying the Dirichlet and Neumann boundary
conditions. With such a trick and using the fact
that W ¼ 1 on #!B , the multipoles of ~!B are sub-

sequently given by

~!B
‘m ¼ i

2

Z
½P2 + !@ !@ðW!BY?

‘mÞ

! P!2 + @@ðW!BY?
‘mÞ*:

However, the above-defined pseudomultipoles are
no more than the definition of the pure pseudomul-
tipoles, but now computed on a reduced domain. In
other words, replacing M!B by an appropriately

apodized window function reduces the KN method
to the SZ and Zb techniques, but on a smaller
portion of the sky. With such an implementation
of the KN approach, part of the information is
inherently lost as compared to the two other
approaches, and there would be no reason to use
the KN method.
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Santos, Mon. Not. R. Astron. Soc. 358, 833 (2005).
[33] J. Bock et al., arXiv:0805.4207.
[34] B. Reichborn-Kjennerud et al., Proc. SPIE Int. Soc. Opt.

Eng. 7741, 77411C (2010).
[35] E. F. Bunn, M. Zaldarriaga, M. Tegmark, and A.

de Oliveira-Costa, Phys. Rev. D 67, 023501 (2003).
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Forecasts on the Physics of the

Primordial Universe
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Chapter 6

Forecasts on r Detection using B

modes

The gravitational waves are predicted by general relativity. Their observations would thus test

the theory of gravitation but they weakly interact with matter making their detection a current

major challenge. An indirect detection has been however made by noticing a diminution of the

Hulse Taylor pulsar time period (see Weisberg et al. (2010)). This progress in gravitational

physics has been rewarded by a Nobel Prize in 1993. Since then various experiments aiming at

detecting gravitational waves from astrophysical sources such as the VIRGO interferometer (see

Accadia et al. (2012)) are acquiring data. A space-based experiment called eLISA (described in

Amaro-Seoane et al. (2013)) has been recently chosen by ESA as the L3 mission of their Cosmic

Vision program. In parallel an e↵ort is being made in the gravitational waves background detec-

tion through the CMB polarisation as it would be a smoking gun for cosmic inflation. Until now,

two satellite missions aiming at its detection have been proposed in vain to ESA but meanwhile

numerous balloon-borne and ground-based experiments are currently giving substantial results.

The recent detections of the CMB B modes has revived the challenge of primordial B modes

detection. In particular, the current and nearly forthcoming CMB experiments are intending to

measure the tensor-to-scalar ratio r which scales the tensor perturbations. In this scope, the sky

coverage along with the noise and the beam have to be carefully selected. Forecasts are helpful

for the choice of experimental design and are in this case driven by the accessible values of the

tensor-to-scalar ratio r. Usually, the Fisher matrix is used together with a naive mode-counting

estimation of the uncertainties on the CMB power spectra to derive the expected attainable r for

a given experiment. However, such an analysis results in overestimated signal-to-noise ratios on

r. In the previous Chapter 5, the e�ciency of the pure method has been stated. It is therefore a

method of choice to reconstruct the B modes and thus can be used to forecast r detection. After

introducing the Fisher matrix formalism, the impact of the estimation of the variance on the

experimental specifications is explored in the scope of optimising the sky coverage of idealised

small scale surveys operating from ground or balloon. Furthermore, the expected tensor-to-scalar
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ratios r detected by a realistic on-going ground-based experiment along with potential telescope

array covering half of the sky (half sky survey) and a satellite mission covering the whole celestial

sphere (full sky survey) are investigated.

6.1 The Fisher Matrix Formalism

The Fisher matrix introduced by Fisher (1935) is widely used in parameter estimation as it

quantifies the information contains in a given observable on a parameter. This section qualita-

tively introduces the Fisher matrix in order to clarify the main ideas and does not pretend to be

complete.

In order to extract the relevant information, a set of data d provided by an experiment are

translated in observables depending on a set of parameters �i of a theory. The key issue is to

derive the values of the parameters �i and their uncertainties ��i corresponding to the data set

d in the frame of the considered theory. For this purpose, the likelihood function L is introduced.

It is the probability of having the data set d for the given theory. This probability function is

therefore at its maximum when the parameter �i is the closest from its true value �̄i. It can

be intuitively understood that if the likelihood function is highly peaked at its maximum, the

estimation of �̄i is expected to be precise. Conversely, if the curvature of the likelihood function

is small, the data are not very constrained. The curvature of the likelihood function thus gives

the error on the estimated parameter �i. By Taylor expanding the likelihood function L around

the set of parameters which maximise L, the quadratic terms indeed give the behaviour of L
around its maximum. The useful Fisher information matrix Fij is therefore defined as:

Fij = �
⌧
@2 lnL
@�i@�j

� ����
�̄
i

�̄
j

. (6.1)

It can be shown that any unbiased estimator �̂i of the parameter �i has a variance such as:

D
��̂i

E
>
p
(Fii)�1. (6.2)

This inequality is known as the Cramér-Rao inequality and indicates that the lowest uncertainties

on �̂i are given by the curvature of the likelihood function i.e. by the inverse of the Fisher matrix.

If di↵erent parameters are jointly estimated, the lowest attainable uncertainties by �̂i is given

by
p

(F�1)ii. In the case of a Gaussian likelihood function L, the Fisher matrix is explicitly

given by:

Fij =
1

2
Tr

"
@C

@�i

����
�̄
i

C�1 @C

@�j

����
�̄
i

C�1

#
. (6.3)

with C the covariance matrix of the data. This explicit equation is helpful as it enables to

compute the curvature of the likelihood function without performing its numerical sampling.

Moreover, if the likelihood is Gaussian, the Fisher matrix verifies:

Fij = [Cov(�i,�j)]
�1 . (6.4)
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As it quantifies the shape and the width of L around its maximum, the Fisher matrix gives an

estimate of the constraints set on model parameters by a data set. It is therefore a quantity of

choice to forecast parameter detectability depending on experimental specifications.

6.2 From B modes detection to r detection

Applied to the CMB and more specifically to the B modes, the Fisher formalism o↵ers a fast

and easy way to forecast the constraints set on r by an experiment dedicated to its detection.

As shown in Eq. (6.3), the covariance matrix is however the key quantity of the information

Fisher matrix. If not properly done, its estimation can lead to an incorrect estimation of the

signal-to-noise ratio (S/N)r on r. The conclusions on the required experimental specifications

may then not be optimal.

First of all, in the case of r detection through the CMB B modes, it can be shown starting

from Eq. (6.3) with r the only parameter and CBB
` the observable linearly related to r, that the

sub-part of the Fisher matrix corresponding to r is written as:

Frr =
X

``0

✓
@CBB

`

@r

◆�
⌃�1

�
``0

✓
@CBB

`0

@r

◆
, (6.5)

with
�
⌃�1

�
``0

= Cov(CBB
` , CBB

`0 ) the inverse of the covariance matrix of the B modes power

spectrum.Therefore the uncertainties �2
r on r are directly the inverse of the Fisher sub-matrix

Frr:

�2
r = F�1

rr . (6.6)

The B modes power spectrum, being the sum of a primordial and a lensing contribution, is

modelled as:

CBB
` (r) = r T BB,prim

` + T EE!BB,lens
` , (6.7)

with T BB,prim
` and T EE!BB,lens

` two fiducial power spectra not depending on r. The former

one is the primordial contribution to the B modes power spectrum sourced by inflationary

gravitational waves for a fiducial tensor-to-scalar ratio rfid = 1. The latter stands for the

lensing contribution from the E modes to the B modes power spectrum. Although it gives an

important piece of information on the late time universe, this contribution acts as an additional

noise to the primordial B modes as it does not depend on r. Both fiducial power spectra are

easily computed by the use of the Boltzmann code CLASS (Lesgourgues (2011)).

The covariance matrix can be derived in several ways. A first approach is the ideal case of naive

mode-counting variance as exposed in Chapter 4 which ignores the experimental issues such as

the E-to-B leakage. We recall the expression of the covariance matrix in the present case, for

an experiment with a noise power spectrum N`, a beam b` and an observed sky fraction fsky:

⌃``0 =
2�``0

(2`+ 1)fsky

✓
CBB

` +
N`(fsky)

b2`

◆2

(6.8)
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Such an approach is valuable for it sets a benchmark as it underestimates the uncertainties on

B modes regarding any numerical methods used to derive the covariance matrix.

A second approach consists in the reconstruction of the B modes power spectrum thanks to the

pure method. Its e�ciency in correcting for the E-to-B leakage and giving the lowest error bars

on the B modes has been stated in the previous Chapter 5. The covariance matrix is then the

covariance obtained from Monte Carlo simulations.

Both approaches can therefore be used to compute the power spectrum covariance matrix in-

volved in the Fisher matrix. In the end, the signal-to-noise ratio on r is given by:

(S/N)r =
r

�r
= r ⇥

r
1

Frr
. (6.9)

They thus will potentially give di↵erent results on the obtained (S/N)r, the naive mode-counting

approach being optimistic and the pure method realistic.

Considerations on the optimisation of experiments dedicated to CMB polarisation in the scope

of fundamental physics constraints (such as the neutrino mass or the energy scale of inflation)

has already been investigated as in Verde et al. (2006) and references herein, Wu et al. (2014)

or Caligiuri and Kosowsky (2014). However, the optimistic approach of the mode-counting

estimation of the variance is usually adopted. In the frame of the foregrounds contamination,

B modes detection has been explored in Stivoli et al. (2010) in a realistic estimation of the

covariance matrix including statistical errors from the pure estimation and from the foregrounds

subtraction, although only in the case of a small scale survey with homogeneous noise. The

here proposed investigation thus fits into the frame of realistic forecast for a set of current,

being deployed or potential experimental set-ups corresponding to Stage II, III (current and

upgraded) and IV (forthcoming) CMB experiments (see Abazajian et al. (2013) for a description

of the envisioned CMB experimental evolution). In this Chapter, peculiar attention is paid to

the statistical uncertainties coming from the pure estimation of the B modes power spectrum,

ensuring realistic forecasts.

6.3 Optimising the scanning strategy of small scale exper-

iments

A wide range of experiments are aiming at detecting r which accessible values depend on the

experimental design. If the tensor-to-scalar ratio r is thought to be as high as claimed by the

BICEP2 team in Ade et al. (2014), thus small scale surveys might be su�cient for a relevant

measurement. Their expected performances regarding the width of the survey has been already

deeply explored in Ja↵e et al. (2000).

The forecasts were however performed using the mode-counting variances which could potentially

lead to misleading results as they are idealised. The following analysis thus ensues from two main

questions. First of all, for a given sensitivity and time of observation, the instrumental noise

per pixel scales with the observed sky fraction. In the scope of deep survey, the sky fraction is
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chosen to be low therefore ensuring a low noise level. However the large angular scales, crucial

to set constraints on r, are inaccessible therefore damaging r detection. On the contrary, a

shallow survey favours a large sky coverage thus implying a predominant noise level which can

prevent from a r detection. Between this two extreme cases lie a sky coverage optimal for r

detection. The first enquiry is consequently the dependence of the forecasts on the optimal

sky fraction regarding the choice of variances computation (realistic or idealised). The second

investigation deals with the obtained signal-to-noise ratio on r for the considered sky fraction in

both approaches.

6.3.1 Experimental set-ups

A set of small scale experiments with a beam of 8 arcmin, a sky fraction ranging from 0.5% to

10% of the sky is considered in this analysis. For a given sensitivity, the noise level is scaling

with the observed sky fraction as (Ja↵e et al. (2000)):

�(fsky) =

s
fsky
f0
sky

�(f0
sky), (6.10)

with f0
sky a fiducial sky fraction. The chosen benchmark is �(f0

sky) = 5.75µK-arcmin for f0
sky =

1% which is typical of balloon-borne experiments such as EBEX (see Reichborn-Kjennerud et al.

(2010)) and similar for ACTPOL (Niemack et al. (2010)). For convenience, the sky coverage

is chosen to be a simple spherical cap with sky fraction fsky. As an example, the binary mask

corresponding to a sky fraction of fsky = 4% is displayed on the left panel of Fig. 6.1.

The pure B modes estimation requires a binning process as explained at the beginning of the

previous chapter. The used binning is the same as in Chapter 5 i.e. Nbin = 26 bins of band

power �` = 40 except for the first bin ` 2 [2; 20]. In the Chapter 5, the pure method e�ciency

has been shown to depend on the choice of the sky apodisation optimisation. The simple contour

of the patches however allows for the use of variance-optimised window function in the harmonic

domain. A set of harmonic window function for each bin, each fsky and each r has therefore

been computed, the obtained spin-0 window function for fsky = 4% and r = 0.2 in the multipole

range ` 2 [2; 20] is shown in the right panel of Fig. 6.1.

Figure 6.1: In the left panel figures the binary mask for an observed sky fraction of 4%. The
corresponding harmonic window function for r = 2 and ` 2 [2; 20] is displayed in the right

panel.
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6.3.2 Numerical results

The performance of the small scale surveys on r detection is expected to depend on r. The

BICEP2 team claims for a detection of a signal consistent with a tensor-to-scalar ratio of r = 0.2.

As this result has to be considered with cautious, an exploration of the detectability for r =

0.07, 0.1, 0.15 and 0.2 is relevant. The signal-to-noise ratio on r for the di↵erent experimental set-

ups is therefore derived following the aforementioned Fisher matrix formalism with the covariance

matrix computed in the mode-counting and the pure approaches.

Figure 6.2: The signal-to-noise ratio for r = 0.2, 0.15, 0.1, 0.07, from top left to bottom right,
using a naive mode-counting variance (in yellow), the pure estimation of the B modes (in

burgundy). The horizontal red line set the benchmark of 3�.

The (S/N)r obtained in the optimistic and realistic approaches are displayed as functions of the

observed sky fraction for each r in Fig. 6.2. The yellow crosses stand for the mode-counting

estimation of the B modes variance. For all r, the increase of (S/N)r with fsky for the low values

of the observed sky fraction is understood as the increase of the statistics. Being sampling

variance dominated, the (S/N)r indeed roughly behave as
p
(fsky). However, for larger fsky,

the (S/N)r decreases with respect to the observed sky fraction with a slope increasing when r

decreases. The slope is particularly significant for r = 0.7, the bottom right panel of Fig. 6.2.

For r = 0.2, the slope is so low that (S/N)r seems to reach a plateau. This behaviour is caused

by the increase of the instrumental noise projected on a larger fraction of the sky, which is no

longer compensated by the increase of the statistics.
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Besides, the (S/N)r obtained using the pure B modes estimation (red crosses) have a similar

behaviour. Indeed, it shows a steep increase at low fsky before reaching a maximum followed by

a decrease with a slope inversely proportional to r. Nonetheless, the (S/N)r computed thanks to

the pure estimation exhibits some fluctuations in the medium range of fsky, being less smooth as

the case of the mode-counting approach. It can be understood at the level of the power spectrum

reconstruction. Indeed, the behaviour of the variance in the medium bins, in particular around

` = 100, with respect to the observed sky fraction is not evident as the noise competes with the

sampling variance.

Furthermore, as expected, the (S/N)r using the mode-counting approach over-estimates the

signal-to-noise. At its maximum value, the (S/N)r in the pure estimation is indeed about a

factor 1.4 lower than the one derived in the mode-counting estimation. The use of a realistic

estimation of the covariance matrix is therefore mandatory for an exact estimation of the (S/N)r.

Nevertheless, the observed sky fraction at which the maximum is reached by the signal-to-noise

ratio is similar in both cases. For a tensor-to-scalar ratio r = 0.2, the optimal observed fraction

is reached around fsky = 6% while for r = 0.15, the optimal sky fraction is fsky ⇠ 5%. The

optimal sky fraction for r = 0.1 is 3% in the mode-counting and the pure approaches. In the

case of r = 0.07, the conclusions are di↵erent due to the aforementioned fluctuations of the

(S/N)r computed with the pure method. Indeed, the optimal sky fraction seems to be 2.5% in

the mode-counting approach while it reaches 3.5% for the pure method. The fluctuations are

thought to be due to the binning which is suitable for 1% of the sky and might be adapted for

higher fraction of the sky. It would however not imply major changes in the results.

The Fig. 6.3 shows the same results with all (S/N)r displayed in each panel corresponding to

the mode-counting approach and the pure estimation from left to right respectively. The signal-

to-noise ratio on the tensor-to-scalar ratio scales with r. For a mode-counting estimation, all

r varying from 0.07 to 0.2 are accessible for fsky 2 [0.5; 10%] as the (S/N)r always exceed 3�

(displayed as horizontal red line). However, the results are less evident in the pure method. If

r = 0.07, only an observed sky fraction included between 1.5% and 6% would ensure a detection.

Also, a coverage of fsky = 0.5% would not be enough to constrain r = 0.1 while it can reach

4.3� for fsky = 3%. For higher r, significant constraints can be set on r for all the considered

observed sky fraction. However, the medium fsky range is favoured as for high sky coverage, the

(S/N)r decreases.

As a result, while the signal-to-noise ratio is overestimated in the mode-counting approach, the

optimal sky fraction is roughly the same in both methods. This analysis validates the use of the

mode-counting estimation of the covariance matrix in the perspective of sky optimisation, in the

case of small scale surveys with a simple contour. In general, the optimal observed sky fraction

is included between fsky = 2% (for lower r) and fsky = 6% (for higher r). It is worth noticing

that even for 2% of the sky, a high (S/N)r (about 6) is expected for r = 0.2. As the experiment

performance seems to depend on r, the detectability of r of a given experimental set-up should

now be investigated.
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Figure 6.3: Same results as Fig. 6.2 with the signal-to-noise ratio displayed in each panel for
all r. From left to right, (S/N)

r

is computed using the mode-counting approach, the minimal
variance quadratic estimator and the pure B modes estimation. The horizontal red line set

the benchmark of 3�.

6.4 Detecting the tensor-to-scalar ratio

In the scope of current status on primordial B modes and the competitive answers to space agency

calls for a satellite mission, the crucial question to be answered to is: what is possible from the

ground ? It is known that a space-based experiment is mandatory for the detection of large scales

polarised anisotropies and for high quality foregrounds understanding, thanks to electromagnetic

spectral coverage. However, regarding the time scale (around twenty years) necessary for the

design and construction of such an experiment, the ground based and balloon borne experiments

will meanwhile bring substantial constraints on B modes. Intermediate scale survey will also

intend to measure r. The following study thus consists in forecasting the performances on r

detection of three typical experimental set-ups. The first one corresponds to a current suborbital

experiment and will be referred to as a small scale survey. A satellite-like experiment (full sky

survey), typical of present proposals to space agency, is also considered. The performances of

an intermediate scale experiment, characteristic of an array of telescopes, covering only one

hemisphere is under scrutiny as well. The signal-to-noise ratio on r is computed using a naive

mode-counting estimation of the uncertainties for a first investigation and finally via the pure

estimation of B modes for a realistic forecast.

6.4.1 Experimental set-ups

Experimental specifications

The previously studied fiducial experiments covering a spherical cap were idealised regarding the

mask shape. A more realistic observed patch of the sky is considered in this investigation. The

small scale experiment is the one chosen in Chapter 5. The observed sky fraction is 1% with

a beam with a width of 8 arcmin. However the noise is chosen here to be inhomogeneous with

an average noise level of ⇠ 5.75µK-arcmin. Its distribution is taken from a simulation of the

EBEX scanning strategy. The noise distribution is displayed in the left panel of Fig. 6.4.
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The full sky experiment is the fiducial one used in Chapter 5 covering 71% of the celestial sphere

with a beam of 8 arcmin and an homogeneous noise of 2.2µK-arcmin. This experiment is typical

for proposed satellite mission dedicated to primordial B modes detection. The corresponding

binary mask is shown in the middle panel of Fig. 6.4.

Figure 6.4: The left panel shows the inhomogeneous noise distribution for an experiment
covering 1% of the sky. The binary masks corresponding to an half sky and a full sky survey

are displayed in the middle and right panel respectively.

The performance of an intermediate scale experiment is also studied in this analysis. This would

be the case of an array of ground-based telescopes covering a whole hemisphere. The noise level

is of 6.8µK-arcmin and the beam width of 3 arcmin (it corresponds to a Stage-III experiment).

For such a large survey, the galactic emission has to be masked reducing the observed sky fraction

to ⇠ 36%. The used binary mask is simply the southern hemisphere of the previous full sky

binary mask and is depicted in the right panel of Fig. 6.4

Window functions

In the scope of pure estimation of the B modes, the window function applied to the CMB map

have to be optimised in order to have the best B modes reconstruction. The need for a pixel-based

variance (PCG) optimised window function for small scale experiments with inhomogeneous

noise have been already shown in Grain et al. (2009). As stated in the previous Chapter 5, PCG

optimised window functions are also required in order to get the lowest uncertainties on B modes

in the case of large scale surveys, due to intricate contours. PCG optimised window functions

have thus been used in the present analysis for the three considered set-ups. The obtained spin-0

PCG window function optimised in the third bin ` 2 [60; 100] is displayed in Fig. 6.5, the binning

being the same than previously.

The computation of the PCG optimised window function is numerically heavy and scales as the

inverse of the noise level. The required number of iterations to compute the optimised window

functions of a full sky survey is around niter ⇠ 100 while niter ⇠ 10 are necessary for the small

scale survey. In addition, the window function should be optimised per bin (Nbin = 26) and

per r. However, we took advantage of the fact that the PCG optimised window function only

slightly depend on the B modes signal prior as shown in Grain et al. (2009). Therefore, the PCG

window functions optimised for r = 0.05 are used for the di↵erent r values making them slightly

suboptimal for r 6= 0.05.
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Figure 6.5: The spin-0 PCG window function optimised in the bin ` 2 [60; 100] for small,
intermediate and large scale experiments in the left, middle and right panel respectively.

6.4.2 Numerical results

The signal-to-noise ratio (S/N)r on r is obtained using the same reasoning as Sec. 6.3. The pure

estimation of the B modes power spectrum ensure realistic forecasts on r detection.

Figure 6.6: Variances reconstructed with the pure estimation on a theoretical CMB power
spectrum with r = 0.1 (in solid black line) in the case of a small scale survey (orange dashed
curve), an intermediate scale survey (red dashed curve) and a full sky survey (burgundy dashed

curve).

By way of illustration, the variances obtained on B modes power (with r = 0.1) estimated with

the pure estimation are shown in dashed lines in Fig. 6.6. The highest ones correspond to the

one obtained with a small scale survey while the lowest are obtained for a large scale survey. The

middle one results from the estimation on an intermediate sky survey. For each experimental

set-up, the forecast on the signal-to-noise ratio (S/N)r on r is investigated for 6 values of r:

r = 0.001, 0.01, 0.05, 0.1, 0.15 and 0.2.

The forecast for the fiducial ground-based experiment is shown in Fig.6.7 where the black (red)

crosses stand for the (S/N)r for a pure estimation (mode-counting) variance. The horizontal

red lines delineate a signal-to-noise ratio of 1�, 2� and 3�, the latter being the threshold for

an unambiguous detection. The Fisher matrix computed with mode-counting variance give

high (S/N)r so that a r detection at 3� is expected for r & 0.04. Nonetheless, the realistic

pure estimation of the variance ends in lower values for (S/N)r. The discrepancy between both

estimations of the variances increases for lower r. As an example, the signal-to-noise ratio on

r = 0.05 obtained using the naive estimation is a factor of 1.75 higher than the pure estimation.

In this way, a realistic forecast results in di↵erent conclusion: only the r values such as r & 0.1 are
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Figure 6.7: Signal-to-noise ratio on r with respect to r obtained for the fiducial small scale
survey. The red (black) crosses connected by red (black) line are the obtained (S/N)

r

using the
mode-counting (pure) estimation of the covariance matrix in the Fisher matrix. The horizontal

red lines stand for 1�, 2� and 3� thresholds.

achievable at a 3� level. An underestimation of the B modes uncertainties could thus deteriorate

a forecast, especially for r = 0.05 for which a clear detection is forecast in the former case and

not for the other case (lowered from 3� to 2�).

The results for the large scale survey are similar to the previous ones although the discrepancy

between the mode-counting and pure predictions is less marked. For r = 0.05, the signal-to-

noise ratio in the mode-counting approach is 1.5 greater than the one using the pure estimation.

Moreover, according to the latter estimation, a 3� detection of r = 0.001 is impossible while

it seems achievable at 3� using a mode-counting variance estimation. For r = 0.1, (S/N)r is

realistically predicted to be of 45�.

Figure 6.8: Signal-to-noise ratio on r with respect to r obtained for the fiducial large scale
survey. The red (black) crosses connected by red (black) line are the obtained (S/N)

r

using the
mode-counting (pure) estimation of the covariance matrix in the Fisher matrix. The horizontal

red lines stand for 3�.

The forecasts on r detection for an intermediate scale experiment are displayed in Fig. 6.9. The

main results are similar to the last ones. Owing to the use of a non optimal window function,

the disparity between the mode-counting variances and the pure estimation is more marked than

previously. The mode-counting estimation of the variance gives (S/N)r ⇠ 20� for r = 0.05 when

the pure estimation forecasts a signal-to-noise ratio on r of 10�. In this case also, the discrepancy

is higher for lower r. This issue is specially damaging for r = 0.01: an optimistic forecast gives

(S/N)r ⇠ 6� ensuring a detection. On the contrary, for a realistic estimation, the obtained

(S/N)r does not exceed 3� preventing setting any tight constraints on r. In the end, the pure

estimation of the variance predicts an unambiguous detection for r > 0.01.
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Figure 6.9: Signal-to-noise ratio on r with respect to r obtained for the fiducial intermediate
scale survey. The red (black) crosses connected by red (black) line are the obtained (S/N)

r

using the mode-counting (pure) estimation of the covariance matrix in the Fisher matrix. The
horizontal red line stand for the 3� threshold.

The array 7.2 summarises the forecast performances of the three experimental set-ups. The

range of r for which a net detection is ensured is shown in the case of the optimistic and realistic

estimation of the variance on B modes power spectrum. The mode-counting estimation is proved

to be unreliable to forecast r detectability as the realistic estimation forecasts access to a smallest

range of r.

Suborbital Experiment Telescopes Array Satellite-like Experiment

mode-counting r & 0.04 r & 0.0035 r & 0.0005
Pure estimation r & 0.11 r & 0.013 r & 0.0024

Table 6.1: The minimal accessible r at 3� regarding the experimental set-up and the esti-
mation of the variance on the B modes reconstruction by linearly interpolating between the

computed (S/N)
r

.

The di↵erent experimental set-ups give access to di↵erent order of magnitude of r. The small

scale survey is predicted to detect at least r ⇠ 10�1 at 3� while a full sky survey would have

access to at least r ⇠ 10�3 at 3�. An intermediate scale experiment could detect r ⇠ 10�2 at

3�. It would allow to discriminate between large and small field inflationary models. The Lyth

bound (Lyth (1997)) indeed tells that a large field models are required to produce r & 0.01.

Therefore, only satellite mission (stage IV) could ensure a detection of B modes in small field

while telescope array (stage III) is su�cient to discriminate between large and small field.

Conclusion

In the current context of experimental strategy for B modes detection, the performance forecasts

on r detection are crucial. The Fisher matrix allows for a simple translation of the uncertainties

on the B modes angular power spectrum on r error bars. However, the involved covariance ma-

trix can be estimated in di↵erent ways. The mode-counting variance estimation has the benefit

to allow for an utter and fast exploration of the performances. Nonetheless, it underestimates

the B modes uncertainties leading to overestimated signal-to-noise ratios on r. The pure pseu-

dospectrum B modes estimation, although numerically heavier, remains fast enough to explore



Chapter 6. Forecasts on r detection 139

realistic forecasts on r detection. In the scope of small scale surveys, the optimal sky coverage

has first been investigated in the two approaches. The optimal observed sky fraction is similar

regarding the chosen methods and scales with r. It is however noticeable that the optimal sky

coverage using the pure method is not as pronounced as in the case of mode-counting variance

estimation partly due to the binning process. The performance on r detection of three fiducial

experiments have then been explored. In this case, a realistic B modes estimation has to be

done in order to accurately predict the achievable r. With a proper estimation of (S/N)r, the

small scale experiment is expected to detect at least r ⇠ 10�1 at 3�. The intermediate sky

survey gives promising results and give access to a 3� detection of r & 10�2. A full sky survey

would ensure a clear detection of r in the order of 10�3. We have thus investigated the infor-

mation on the inflation that one would extract from data provided by current and forthcoming

experiments dedicated to B modes detection. Nonetheless, these results should be compared to

maximum likelihood methods. These methods are nevertheless more numerically costly than the

approaches used in this analysis. As a starting point, the assumption of azimuthal symmetry

of the patch and the noise can be done, simplifying the computation as shown in appendix of

Smith (2006). In this ideal case, the results are expected to be similar to the ones using the

mode-counting variances.

More generally, the CMB polarisation is a mine of information on the primordial physics. For

instance, a parity violation at the linear level of gravitation or due to a primordial magnetic field

could be constrained in particular through the CMB TB and EB correlations. Both possibilities

are investigating in the two following chapters.





Chapter 7

Primordial Physics through the

CMB Polarisation: Chiral

Gravity

In the standard model, the four fundamental interactions are the strong, weak interactions, the

electromagnetism and the gravitation. The first three are well described within the quantum mech-

anism framework by the quantum chromodynamics and the electroweak theory respectively. The

quantum formulation of gravitation is however still under scrutiny and su↵ers from di�culties

such as renormalisation issues. Various approaches have been proposed and are now intensively

studied, the main ones being the string theory and the loop quantum gravity (LQG). The main

di↵erence between both theories is that contrary to string theory, the LQG does not aim at uni-

fying the four fundamental forces as it treats the quantification of gravity independently of the

other forces. The seminal paper Ashtekar (1987) reformulating general relativity sets the found-

ing principles of LQG which now o↵ers physical applications such as the computation of black

hole entropy (Rovelli (1996)). In parallel, the principles of LQG have been applied to cosmology

resulting in the Loop Quantum Cosmology (LQC) (a review of which can be found in Ashtekar

and Singh (2011)). In this framework, the Universe would have known a Big Bounce followed

by a natural inflationary period.

According to some formulation of gravity (Kibble (1961), Ashtekar (1986)), a primordial parity

violation could occur at the linear level of general relativity: primordial gravitational waves are

then chiral which is manifested by left- and right-handed helicities with di↵erent power spectrum.

Such a parity breaking would lead to non-vanishing CMB TB and EB correlations (refered to

odd correlations hereafter). The left-(right-)handed primordial gravitational waves are scaled by

rL(R), the tensor-to-scalar ratio for each helicity state. The level of parity breaking � is quantified

by:

� =
rR � rL
rR + rL

=
r(�)

r(+)
6 1. (7.1)

141
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The goal of the present analysis is to realistically forecast the constrains that can be put on �

from forthcoming measurements of CMB polarised correlations.

Figure 7.1: The CMB B modes (in black) power spectrum along with the TB (in red shades)
and EB (in blue shades) correlations for r(+) = 0.05, including the primordial and lensing
contributions. The three red and blue shaded curve correspond to di↵erent values of �: � = 1
for a maximum parity breaking, � = 0.5 and � = 0.1. The dotted lines stand for negative

values of the odd correlations.

The CMB odd-correlations are sourced by the primordial tensor power spectra modulated by

the appropriate transfer function:

CBB
` =

Z
dk
⇥
�B

`,T(k, ⌘0)
⇤2 P(+)

T (k), (7.2)

CTB
` =

Z
dk�T

`,T(k, ⌘0)�
B
`,T(k, ⌘0)P

(�)
T (k), (7.3)

CEB
` =

Z
dk�E

`,T(k, ⌘0)�
B
`,T(k, ⌘0)P

(�)
T (k), (7.4)

with

P(±)
T (k) = PR

T (k)± PL
T(k). (7.5)

We have implemented the computation of the non-vanishing TB and EB correlations for a given

� in the Boltzmann code CLASS. Also, we have computed and implemented the impact of the

lensing on the odd-correlations due to gravitational potentials of large scale structures. In this

way, we have checked that its impact is small as it was expected, although only presumed in the

literature (as in Saito et al. (2007) or Xia (2012)). The figure 7.1 depicts the total BB, TB and

EB correlations for three values of � ranging from 1% to 100%, with r(+) = 0.05.

The forecasts are performed in the frame of two fiducial experiments, typical of a small scale

survey and a satellite-like experiment, which are both fully described in Chapter 5. In order

to rapidly explore the expected constraints on �, the power spectra uncertainties are firstly

estimated using the naive mode-counting approach. The conclusion is irrevocable for balloon-

borne or ground-based experiments: the obtained signal-to-noise ratios are smaller than 2 even

by underestimating the uncertainties. The signal-to-noise on r(�) are summarised in table 7.1

where r(�) and r(+) are ranging from 0.07 to 0.2. Therefore, a satellite-like experiment is required

for the detection of chiral gravity.
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r(+) 0.2 0.1 0.07 0.05 0.03 0.007
r(�)

0.2 1.22
0.1 0.43 0.64
0.07 0.29 0.4 0.487
0.05 0.2 0.28 0.326 0.38
0.03 0.12 0.16 0.188 0.216 0.27
0.007 0.03 0.037 0.043 0.049 0.06 0.1

Table 7.1: Signal-to-noise on r(�) for di↵erent values of r(+) in the case of small-scale (ballon-
borne or ground-based) experiments, and using a mode-counting expression for the error bars

on the angular power spectra reconstruction.

The case of the nearly-full sky survey is more intricate. As a preliminary work, the signal-to-noise

ratio on r(�) goes up to 10� for the most optimistic configuration with a naive mode-counting

estimation of the power spectra uncertainties. The pure power spectrum estimation of the CMB

polarised power spectra extended to EB and TB correlations (Grain et al. (2012)) is then used

to realistically estimate the uncertainties on their detection. The table 7.2 shows the resulting

realistic signal-to-noise ratio on r(�) (S/N)r(�)
for r(+) = 0.2, 0.1 and 0.05 with � = 100% and

50% (reminding that r(�) = �⇥ r(+)). A range of model is therefore accessible for such a nearly-

full sky experiment for high values of r(+) and �. Moreover, (S/N)r(�)
decreases from 10� for a

naive estimation of the variance to about 5.5�. A careful estimation of the CMB power spectra

uncertainties is consequently crucial to perform realistic forecasts, in the scope of chiral gravity

detection.

Nonetheless, the odd-correlations are usually set equal to zero to calibrate polarisation detectors

as these correlations do vanish in the standard model of cosmology. In particular, it enables the

estimation of a possible miscalibration angle � of the global orientation of the detectors. We

have therefore studied the impact of a joint reconstruction of � and � on (S/N)r(�)
. The r(�)

estimation is consequently biased with a level growing with � . Furthermore, we have shown

that (S/N)r(�)
is not degraded with respect to � if the variances are estimated via the naive

mode-counting approach: � and r+/� are not degenerate. However, the pure estimation of the

odd-correlations breaks this non degeneracy and the signal-to-noise ratio on r(�) is reduced by

a factor of ⇠ 2.4 for r(�) = r(+) = 0.2 and � = 1o. A proper estimation of the miscalibration

angle is subsequently crucial for constraints on chiral gravity.

� = 1 � = 0.5

r(+) = 0.2 5.46 2.5
r(+) = 0.1 3.67 1.51
r(+) = 0.05 2.35 1.11

Table 7.2: Signal-to-noise ratio on r(�), (S/N)
r(�)

, as derived from a pure estimation of the
angular power spectra. (For a given value of r(+) and �, the value of r(�) is r(�) = � ⇥ r(+).)

If TB and EB correlations detections are consistent with zero, upper bound can be put on �

owing to the noise and sampling variance. It can be translated in exclusion range for theoretical

parameters. In particular, a non detection of odd correlations for a satellite-like survey would
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translate in values of the Barbero-Immirzi parameter � (Magueijo and Benincasa (2011), Bethke

and Magueijo (2012)) such as the range: 0.2 6 |�| 6 4.9 is excluded at 3� for r(+) = 0.2. The

complete analysis and the consequences on the theoretically relevant parameters are detailed in

the following article Ferté and Grain (2014).

The CMB odd correlations can thus be exploited to explore the primordial universe physics. The

presence of a primordial magnetic field can also be constrained through the B modes and CMB

EB and TB correlations as shown in the next Chapter 8.
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We consider the possible detection of parity violation at the linear level in gravity using polarized
anisotropies of the cosmic microwave background. Since such a parity violation would lead to nonzero
temperature-B modes (TB) and E modes-B modes (EB) correlations, this makes those odd-parity angular
power spectra a potential probe of parity violation in the gravitational sector. These spectra are modeled
incorporating the impact of lensing and we explore their possible detection in the context of small-scale
(balloon-borne or ground-based) experiments and a future satellite mission dedicated to B-mode detection.
We assess the statistical uncertainties on their reconstruction usingmode counting and a (more realistic) pure
pseudospectrum estimator approach. Those uncertainties are then translated into constraints on the level of
parity asymmetry.We found that detecting chiral gravity is impossible for ongoing small-scale experiments.
However, for a satellite-like mission, a parity asymmetry of 50% could be detected at 68% of confidence
level (C.L.) (at least, depending on the value of the tensor-to-scalar ratio), and a parity asymmetry of 100% is
measurable with at least a confidence level of 95%.We also assess the impact of a possible miscalibration of
the orientation of the polarized detectors, leading to spurious TB and EB cross correlations. We show that in
the context of pseudospectrum estimation of the angular power spectra, self calibration of this angle could
significantly reduce the statistical significance of the measured level of parity asymmetry (by e.g. a factor
∼2.4 for a miscalibration angle of 1 degree). For chiral gravity and assuming a satellite mission dedicated to
primordial B mode, a nondetection of the TB and EB correlation would translate into an upper bound on
parity violation of 39% at 95% confidence level for a tensor-to-scalar ratio of 0.2, excluding values of the
(imaginary) Barbero-Immirzi parameter comprised between 0.2 and 4.9 at 95% C.L.
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I. INTRODUCTION

The anisotropies of the cosmic microwave background
(CMB) are currently the most powerful probe of the
physics underlying the primordial Universe. Those anisot-
ropies arise into three flavors: total intensity and two
degrees of freedom describing its linear polarization.
Though CMB polarized anisotropies are measured using
two Stokes parameters, Q and U, they are most conven-
iently described using a gradient-like E mode and a curl-
like B mode [1,2].
Such a decomposition of the linearly polarized anisot-

ropies is meaningful at a physical level as it is directly
linked to the primordial cosmological perturbations sourc-
ing CMB anisotropies. For instance, on the linear level the
B-modes can be sourced by the primordial gravitational
waves [3,4] and not by the scalar fluctuations, thought to
be largely responsible for the observed total intensity and
E-mode anisotropies. Consequently, a detection of the
B-mode anisotropy at large angular scales (l≲ 100) in
excess of what is expected from the gravitational lensing
signal could be seen as a direct validation of inflationary

theories, as the latter are considered to be the most likely
source of the gravity waves, and could allow for discrimi-
nation between different inflationary models. It could also
set useful constraints on the reionization period [5]. At
smaller angular scales, B modes are expected to be mainly
due to gravitational lensing of CMB photons which
converts E modes into B modes [6] and therefore their
detection—a source of constraints on the matter perturba-
tion evolution at redshift z ∼ 1 when light massive neu-
trinos and elusive dark energy both play potentially visible
roles. Very recently, the direct detection of the lensing-
induced B mode and the primordial B mode has been
reported by the POLARBEAR experiment [7] and the BICEP2
experiment [8], respectively.
In the standard cosmological paradigm, the temperature-

B modes (TB) and E modes-B modes (EB) cross corre-
lations are vanishing. However, they remain important
quantities to be estimated from the data. This is because,
on the one hand, these odd-parity cross spectra are
comprehensive, end-to-end, null tests of the presence of
instrumental and/or astrophysical systematic effects still
present in the data (see e.g. [9,10]). On the other hand, as
some nonstandard cosmological mechanisms could pro-
duce nonvanishing odd-parity cross spectra, their detection
could become a smoking gun of such effects with
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potentially far-reaching consequences for our understand-
ing of the Universe. Examples of such mechanisms include
a primordial stochastic magnetic field, which generates TB
and EB correlations, if this magnetic field possesses a
helical component [11–13] or a pseudoscalar inflaton field
which naturally couples to the electromagnetic field in a
parity-dependant way [14–16]. Similar effects can be
obtained due to a rotation of the plane of linear polarization
of the CMB photons traveling from the last scattering
surface to our detectors. This could result from either the
Faraday rotation induced by interaction with background
magnetic fields [17–20] or interactions with pseudoscalar
fields on the trajectory of CMB photons [21].
In this paper, we consider the case of odd-parity angular

power spectra as probes of parity violation in the primordial
Universe as induced by gravity. The implication of chiral
gravity on CMB anisotropies was first explored in
Ref. [22,23] where it was shown that if parity is violated
by gravitation at the linear level, CMB polarized anisot-
ropies should exhibit nonvanishing EB and TB cross
correlations. This idea has been theoretically strengthened
in Refs. [24–26], and the idea that gravity could be parity
dependent can be traced back to its formulation by e.g.
Cartan and Kibble [27] or Ashtekar [28]. The possible
detection of such parity asymmetry using CMB data
coming from a satellite-like mission has been discussed
in Refs. [29,30] and in Ref. [31] (including the case of a
balloon-borne experiment in the latter).
We amend and elaborate on this proposal of

Refs. [23,29–31] in three directions. First, chiral gravity
leads to primary TB and EB cross correlations which are
later on deformed by the weak gravitational lensing by the
large scale structure. As this could potentially lead e.g. EE
correlations to leak into EB correlations (which would
partially mask the primary EB), we therefore include in the
predicted Cls the impact of lensing. Second, we make use
of a Fisher matrix formalism to assess the potential
detection of chiral gravity from the measurements of
CMB polarized anisotropies in two typical experimental
setups: small-scale experiments as motivated by operating
(or forthcoming) balloon-borne or ground-based experi-
ments such as POLARBEAR, SPTPOL, QUBIC or ACTPOL, for
ground-based experiments [32], SPIDER or EBEX for bal-
loon-borne experiments [33], and satellite-like missions as
motivated by e.g. LiteBIRD, PRISM or PIXiE proposals [34].
Estimation of the uncertainties on the reconstructed
CTBðEBÞ
l (subsequently used in the Fisher matrix) is based

first on a naïve mode counting (as a reference), and, second,
on Monte Carlo simulations coupled to realistic, statistical,
pure pseudospectrum based estimators of angular power
spectra. Third, we assess the impact of a miscalibration of
the orientation of the polarized detectors which creates
spurious TB and EB correlations coming from TE and
EE;BB, respectively.

The paper is organized as follows. Section II is devoted
to the theoretical prediction of the TB and EB angular
power spectra including the impact of weak gravitational
lensing by the large scale structure. We present the
statistical uncertainties on the reconstruction of CTBðEBÞ

l s
using pure pseudospectrum estimators in Sec. III. The
results of the application of such an approach to the two
above-defined typical cases of CMB experiments dedicated
to polarization, small-scale experiments and satellite-like
missions, are presented in Secs. IV B and IV C, respec-
tively. We finally conclude and discuss the potential
detection of chiral gravity within CMB anisotropies in
the last section, Sec. V, and discuss the relevance and
extension of those results to other possible sources of parity
violation in the primordial Universe.
The technical details are provided in Appendixes A

and B.

II. ANGULAR POWER SPECTRA IN CHIRAL
GRAVITY

A. Primary anisotropies

If parity invariance is broken by gravity, the amount of
gravitational waves produced during inflation differs from
one helicity state to another. As a consequence, the primary
CMB polarized anisotropies gain nonvanishing TB and EB
cross correlations. Using the line of sight solution of the
Boltzmann equation [35] and following Ref. [23], the
different angular power spectra are given by

CXZ
l ¼

Z
dkfΔX

l;Sðk; η0ÞΔZ
l;Sðk; η0ÞPSðkÞ

þ ΔX
l;Tðk; η0ÞΔZ

l;Tðk; η0Þ½PR
TðkÞ þ ε × PL

TðkÞ&g: (1)

In the above, X; Z ¼ T; E or B and ΔX;SðTÞ
l is the transfer

function for scalar (tensor) modes. The number ε is equal to
ðþ1Þ for the TT; EE; BB and TE angular power spectra,
and equal to ð−1Þ for the TB and EB angular power spectra.
Clearly, the TB and EB cross correlations are equal to zero
if PR

T ¼ PL
T at all k values, as expected in a parity invariant

primordial universe. However, if for any reason PR
TðkÞ ≠

PL
TðkÞ, then the primary CMB anisotropies would exhibit

nonvanishing TB and EB cross correlations. In the follow-
ing, the TT; EE; BB and TE correlations will be denoted
even power spectra and the TB and EB correlations will be
called odd power spectra.
The primary correlations of BB, TB and EB types are

only sourced by the tensor mode, and these angular power
spectra are given by

CBB
l ¼

Z
dkðΔB

l;;Tðk; η0ÞÞ2P
ðþÞ
T ðkÞ; (2)

CTB
l ¼

Z
dkΔT

l;Tðk; η0ÞΔB
l;Tðk; η0ÞP

ð−Þ
T ðkÞ; (3)
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CEB
l ¼

Z
dkΔE

l;Tðk; η0ÞΔB
l;Tðk; η0ÞP

ð−Þ
T ðkÞ; (4)

with

Pð'Þ
T ðkÞ ¼ PR

TðkÞ ' PL
TðkÞ: (5)

Following Ref. [23–26], the primordial power spectra of
the left-hand and right-hand gravitational waves differ by
two different effective Newton constants. As a conse-
quence, one expects a change in amplitude but identical
spectral indices for PR

T and PL
T, i.e. rR ≠ rL and nR ¼ nL.

The same modifications are also obtained in the framework
of pseudoscalar inflation [14–16]. We subsequently model
the primordial power spectra by

Pð'Þ
T ðkÞ ¼ rð'Þ ×AS ×

!
k
k0

"
nT
; (6)

with AS being the amplitude of the power spectrum for
scalar perturbations at the pivot scale, k0, (set equal to
0.002 Mpc−1 in our study) and nTð¼ nR ¼ nLÞ being the
tilt of the tensor modes. The parameters rð'Þ ¼ rR ' rL
stand for the tensor-to-scalar ratio quantifying the ampli-
tude of Pð'Þ

T . The parameter rðþÞ is positive valued while
rð−Þ can be either positive valued (rR > rL) or negative
valued (rR < rL). Since the BB correlations are only
generated by PðþÞ and the TB and EB correlations by
Pð−Þ, the amplitude of CBB

l measures the cosmological
parameter rðþÞ, while the amplitudes of CTB

l and CEB
l

measure the parameter rð−Þ. In a parity invariant universe,
rR ¼ rL and one easily obtains rðþÞ ¼ r, the standard
tensor-to-scalar ratio, and rð−Þ ¼ 0. We stress that there
is a priori no reason for rðþÞ to be equal to the tensor-to-
scalar ratio of the standard cosmology, r, except in the case
of a parity invariant universe. However, what is constrained
thanks to a measurement of CBB

l is rðþÞ and, from that
perspective, rðþÞ plays the same role as r.
Parity breaking is quantified by the parameter

δ ¼
rð−Þ
rðþÞ

¼ rR − rL
rR þ rL

; (7)

which varies from −1 ≤ δ ≤ 1 since both rR and rL are
greater than or equal to zero. Parity is not broken by gravity
if δ ¼ 0. The case of no production of left-hand (right-hand,
respectively) gravitational waves corresponds to δ ¼ 1 (−1,
respectively).
Moreover, the opposite convention of δ can be

adopted, as in [29]. It simply changes the sign of the
EB and TB correlations. Indeed, through parity trans-
formation, i.e.

rðþÞ → r0ðþÞ ¼ rðþÞ and δ → δ0 ¼ −δ; (8)

(corresponding to rR → r0R ¼ rL and rL → r0L ¼ rR), the
primary CMB anisotropies are changed to

CTB
l → C0TB

l ¼ −CTB
l ; (9)

CEB
l → C0EB

l ¼ −CEB
l ; (10)

leaving the four other power spectra unchanged.

B. Impact of lensing

During their propagation from recombination to today,
CMB photons travel through the potential well of large-
scale structures deforming their trajectories because of
gravitational lensing. This distorts the spatial distribution
of primary anisotropies and deforms their angular power
spectra. However, the gravitational lensing is usually
neglected as mentioned in Ref. [30]. We propose here to
derive the impact of lensing by large-scale structures and to
show the obtained lensed power spectra. To this end, we
adopt the harmonic formalism developed in Ref. [36],
extended here to account for the presence of primary
TB and EB correlations which are nonzero (see also
Ref. [37,38] for a real-space formalism). This computation
is explicitly given in Appendix A and here we only provide
the final results. For temperature, one obtains

~CTT
l ¼ ½1þ RT &CTT

l þ
X

l1;l2

FT
ll1l2

Cϕϕ
l1
CTT
l2
; (11)

with

RT ¼ −
1

2
lðlþ 1Þ

X

l3

l3ðl3 þ 1Þ 2l1 þ 1

4π
Cϕϕ
l3
; (12)

FT
ll1l2

¼ 1

4
½l1ðl1 þ 1Þ þ l2ðl2 þ 1Þ − lðlþ 1Þ&2

×
ð2l1 þ 1Þð2l2 þ 1Þ

4π

!
l l1 l2

0 0 0

"
2

: (13)

More interesting is the case of the cross correlation
between temperature and polarization fields including
primary TB correlations:

~CTE
l ¼ ½1þ RX&CTE

l þ
X

l1;l2

FX
ll1l2

Cϕϕ
l1
CTE
l2
; (14)

~CTB
l ¼ ½1þ RX&CTB

l þ
X

l1;l2

FX
ll1l2

Cϕϕ
l1
CTB
l2
; (15)

with
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FX
ll1l2

¼ 1

8
½l1ðl1 þ 1Þ þ l2ðl2 þ 1Þ − lðlþ 1Þ&2

×
ð2l1 þ 1Þð2l2 þ 1Þ

4π

!
l l1 l2

0 0 0

"

×
#!

l l1 l2

2 0 −2

"
'
!

l l1 l2

−2 0 2

"$
; (16)

and

RX ¼ −
1

2
½lðlþ 1Þ− 2&

X

l3

l3ðl3 þ 1Þ2l3 þ 1

4π
Cϕϕ
l3
: (17)

It is worth mentioning that the primary TE angular power
spectrum does not contribute to the lensed TB angular
power spectrum. If this were not the case, the former power
spectrum would have spoiled the lensed ~CTB

l (at least in
some range of angular scales). Indeed, primary TB corre-
lations are only sourced by tensor modes in chiral gravity
while primary TE are sourced by both scalar and tensor
modes. As a consequence, the polarized anisotropies are
such as jCTE

l j ≫ jCTB
l j. This means that any leakages of

primary CTE
l into ~CTB

l are non-negligible, if not dominant,
contaminants of the primary TB cross correlation. As
primary TE are not affected by parity breaking, this would
have significantly lowered the efficiency of using the
(necessarily lensed) TB angular power spectrum as a probe
of chiral gravity.
Finally, the lensed angular power spectra for polarized

anisotropies read

~CEE
l ¼ ½1þ RP&CEE

l þ
X

l1;l2

FðþÞ
ll1l2

Cϕϕ
l1
CEE
l2

þ
X

l1;l2

Fð−Þ
ll1l2

Cϕϕ
l1
CBB
l2

(18)

~CBB
l ¼ ½1þ RP&CBB

l þ
X

l1;l2

FðþÞ
ll1l2

Cϕϕ
l1
CBB
l2

þ
X

l1;l2

Fð−Þ
ll1l2

Cϕϕ
l1
CEE
l2

(19)

~CEB
l ¼ ½1þ RP&CEB

l

þ
X

l1;l2

ðFðþÞ
ll1l2

− Fð−Þ
ll1l2

ÞCϕϕ
l1
CEB
l2
; (20)

with

Fð'Þ
ll1l2

¼ 1

16
½l1ðl1 þ 1Þ þ l2ðl2 þ 1Þ − lðlþ 1Þ&2

×
ð2l1 þ 1Þð2l2 þ 1Þ

4π

×
#!

l l1 l2

2 0 −2

"
'
!

l l1 l2

−2 0 2

"$
2

; (21)

and

RP ¼ −
1

2
½lðlþ 1Þ − 4&

X

l3

l3ðl3 þ 1Þ 2l3 þ 1

4π
Cϕϕ
l3
:

(22)

As is the case for TB correlations, the lensed EB power
spectrum is not affected by the primary EE and BB power
spectra. This once again means that the potential observa-
tion of a (necessarily lensed) nonvanishing EB angular
power spectrum is a direct tracer of nonzero EB correla-
tions prior to lensing. In the more precise setting of this
study, this means that observing nonvanishing EB (as well
as nonvanishing TB) is a direct view of primary EB cross
correlations due to parity breaking, though l-modes are
reshuffled by lensing.

C. Numerical results

The explicit computation of the six angular power
spectra is done by numerically solving for the
Boltzmann equations. To this end, we modified the
CLASS algorithm [39], incorporating two different primor-
dial power spectra for the left-hand and right-hand tensor
modes, as well as the impact of lensing on primary
anisotropies using the above-derived formulas. Our main
interest is in the TB and EB angular power spectra and we
only show our results for such Cls (alongside the BB
spectrum used as a reference to evaluate the amplitude of
the odd power spectra). The case of TT, EE, BB and TE
power spectra is identical to standard, parity invariant
cosmology, setting r ¼ rðþÞ.
The CMB angular power spectra for BB (black curve),

TB (red-orange curves) and EB (blue curves) in the case of
primary anisotropies are depicted in the upper panel of
Fig. 1 for nR ¼ nL ¼ 0. The parameter rðþÞ is set equal to
0.05 and δ ¼ 0.1; 0.5 and 1, corresponding to rð−Þ ¼
0.005; 0.025 and 0.05. The specific case of δ ¼ 1 corre-
sponds to 100% of parity violation. As δ is positive valued,
this parity break is in the right-hand sector, meaning that
left-hand tensor modes are not produced at all. The shape of
the power spectrum for negative values of δ is easily
inferred from using the transformation rule of theCls under
parity transformation: changing from ðδÞ to ð−δÞ with rðþÞ
unchanged changes the sign of CTB

l and CEB
l and leaves

CBB
l unaffected. For δ > 0, the TB angular power spectrum

is negative at the largest scale, l ≤ 10, and theEB spectrum
is negative valued for l ¼ 2. From the transformation rule
under parity, this means that for negative values of δ, the TB
angular power spectrum is positive for multipoles smaller
than 10 while the EB quadrupole becomes positive. The
impact of lensing on the TB and EB power spectra is shown
in the lower panel of Fig. 1. As already underlined,
gravitational lensing has only a mild impact on the odd-
parity angular power spectra.
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III. UNCERTAINTIES ON ANGULAR POWER
SPECTRUM RECONSTRUCTION

A. Experimental setups

For numerical investigations, we define two fiducial
experimental setups. Though idealized, they are chosen to
reflect the general characteristics of forthcoming CMB
experiments dedicated to B-mode detection. Those char-
acteristics which crucially impact the angular power spec-
trum reconstruction are the noise level, the beam width and
a peculiar sky coverage.
First, we consider the case of a possible satellite experi-

ment aimed at primordial B-mode detection. For such an
experiment, we relied on the EPIC−2m [40] specifications
for the noise level and the beam width, setting these to

2.2 μKarc min for the noise level and 8arc min for the
beam width. For the peculiar sky coverage of such a “nearly
full-sky” experiment, we consider the galactic mask R9
used for polarized data in the WMAP seven-year release (see
[41]) adding the point-sources catalog mask. So we obtain a
∼71% sky coverage patch, shown in the upper panel
of Fig. 2.
Second, we consider the case of small-scale experiments

inspired by the EBEX, ballon-borne experiment [42]. The
noise level and the beam width are respectively set equal to
5.75 μKarc min and 8 arc min. The observed part of the
sky covers ∼1% of the total celestial sphere and its peculiar
shape is displayed in the lower panel of Fig. 2. It consists of
a square patch of an area of ∼400 square degrees including
holes to mimic polarized point-sources removal.

B. Analytical and numerical error bars

We use two approaches to derive the error bars and the
covariance matrix on the estimated angular power spectra,
denoted by Σ in the following. The first one is based on a
simple mode counting. This underestimates the uncertain-
ties as leakages due to cut-sky effects (and the full

FIG. 1 (color online). Upper panel: Angular power spectra for
primary CMB anisotropies for BB (black curve), TB (red curves)
and EB (blue curves) correlations. The parameters rðþÞ is set
equal to 0.05 and δ varies from 0.1 (meaning 10% of parity
violation) to 1 (100% of parity violation). Solid lines correspond
to positive values of the angular power spectra and dashed lines
correspond to negative values. Changing from ðδÞ to ð−δÞ with
rðþÞ unchanged changes the sign of CTB

l and CEB
l and leaves CBB

l
unaffected. We note that smaller jδj translates into smaller jrð−Þj.
Lower panel: Same as upper panel but taking into account the
impact of gravitational lensing.

FIG. 2 (color online). Upper panel: Sky area as observed by the
fiducial satellite-like experiment as considered in this work. The
sky coverage is ∼71% of the total celestial sphere. The mask is a
combination of the galactic mask R9 and the point-sources
catalog used for polarized data in the WMAP seven-year release.
Lower panel: Sky area as observed by the fiducial balloon-borne,
small-scale experiment as considered in this work. The sky
coverage is ∼1% of the total celestial sphere.

DETECTING CHIRAL GRAVITY WITH THE PURE … PHYSICAL REVIEW D 89, 103516 (2014)

103516-5

Chapter 7. Chiral Gravity 149



complexity of the mask) are not taken into account. Second,
we make use of Monte Carlo simulations using a pure
pseudospectrum code for reconstructing the angular power
spectra from the maps of the Stokes parameters [43].

1. Mode-counting expressions

The naïve mode-counting derivation of the covariance
matrix leads to

½Σ&XY;X0Y 0

l;l0 ¼ hCXX0

l CYY 0

l0 i − hCXX0

l ihCYY 0

l0 i

¼ δl;l0
!

1

ð2lþ 1Þfsky

"

×
#!

CXX0

l þ NXX0

l

B2
l

"!
CYY 0

l þ NYY 0

l

B2
l

"

þ
!
CXY 0

l þ NXY 0

l

B2
l

"!
CYX0

l þ NYX0

l

B2
l

"$
; (23)

with X;X0 and Y; Y 0 taking the values of T; E and B. In the
above formulas, the quantities fsky, Bl and NXX0

l described
the impact of the instrumental strategy on the CMB
anisotropies reconstruction: fsky stands for the observed
(or kept in the analysis) fraction of the sky, Bl is the
multipolar decomposition of the beam of the telescope and
NXX0

l describes the instrumental noise power spectrum
entering in the estimation of ~CXY

l . As explained in
Appendix C of Ref. [43], this noise power spectrum
vanishes for TE, TB and EB cross correlations as long
as the noise in the I; Q and U maps is not correlated
between two different Stokes parameters. We will assume
here that this is indeed the case.
It is worth mentioning that because none of the angular

power spectra are vanishing in this setting, the six angular
power spectra show cross correlations. As an example,
the correlations between the BB and TB estimators are
given by

½Σ&BB;TBll0 ¼ 2δl;l0

ð2lþ 1Þfsky
~CTB
l

#
~CBB
l þ NBB

l

B2
l

$
; (24)

which is nonzero for nonvanishing CTB
l .

2. Error bars from pure pseudospectrum

We also estimate the statistical uncertainties on the
reconstructed Cls using a more elaborate approach based
on Monte Carlo simulations. Though the above-mentioned
formulas are easy to handle, they underestimate the error
bars expected using realistic statistical tools to reconstruct
the angular power spectra from maps of the CMB sky. In
particular, they neglect the impact of leakages due to cut-
sky effects in the case of pseudospectrum based estimation
of the Cls. Those leakages between multipoles and
between polarization modes (see e.g. [44]) increase the

sampling variance of angular power spectra estimations.
For the more specific case of B modes, such an increase
could be dramatic as the much higher Emode leaks into the
much weaker B mode. Those leakages can be corrected on
average [45,46], but, if not corrected at the level of the
variances of the estimators, the much higher CEE

l and CTE
l

will inevitably contribute to the sampling variance of CBB
l ,

CTB
l and CEB

l , thus significantly increasing it. We therefore
rely on the X

2
PURE code [43] which implements the so-

called pure pseudospectrum estimators, correcting for E=B
mixing on average and at the level of variances [47]. The
pure decomposition of the polarization field introduced in
Ref. [48] allows E and Bmodes to be exactly separated on a
partial sky and for any single realization of the CMB
polarized anisotropies, a sufficient condition for removing
any E modes leaking into B for all the statistical moments
of the angular power spectra estimators. A prescription
based on the pure decomposition has been introduced in
Ref. [47] (and later elaborated on in Refs. [49,50]) to build
a pseudospectrum estimator for CBB

l free of any E=B
mixing. This approach has finally been extended to
incorporate odd power spectra in Ref. [43] (see also
Ref. [51] for a flat sky implementation of the pure
pseudospectrum estimator).
It was shown that the so-called hybrid computation1 is

the most accurate for estimating BB, TB and EB angular
power spectra for the case of small-scale experiments
covering ∼1% of the celestial sphere, and assuming a
parity invariant universe, i.e. CTB

l ¼ CEB
l ¼ 0 [43]. More

recently, the need for such a pure approach in the context of
satellite experiments, allowing for an estimation of the Cls
over ∼71% of the celestial sphere, has been proved for the
specific case of the BB angular power spectrum [52]. Such
a pseudospectrum approach is therefore a method of choice
for analyzing forthcoming data currently taken by small-
scale experiments as well as a potential, long-term, satellite
mission dedicated to the B mode.
We use the X

2
PURE code in a Monte Carlo setting to

derive realistic estimates of the statistical uncertainties
(including sampling variance and noise variance) for the
two above-defined different experimental configurations.
The angular power spectra are estimated within bandpower
with the first bin ranging from l ¼ 2 to l ¼ 20 and the
following bins having a width of Δb ¼ 40.

C. Results for the two experimental configurations

Our numerical results for the uncertainties on the
reconstruction of the odd power spectra are depicted in
Fig. 3 for the two above-described experimental configu-
rations, and the two approaches to compute the error
bars. Black curves are the input angular power spectra.

1The so-called hybrid computation means that angular power
spectra are estimated using pure pseudomultipoles of B types and
standard pseudomultipoles of E types.
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Solid-orange curves stand for the error bars using an l-by-l
mode counting derivation, Eq. (23). Dashed-red curves are
the error bars obtained from 500 Monte Carlo simulations
using the pure pseudospectrum reconstruction of the
angular power spectra. This has to be compared to the
binned mode-counting computation of those error bars
given by the dashed-orange curves, i.e.

½Σ&A;Ab;b ¼
X

l∈b

#
lðlþ 1Þ
2πΔb

$
2

½Σ&A;All ; (25)

where we used the fact that the mode-counting covariance
is diagonal in the l-space.
We consider here the case of rðþÞ ¼ 0.1 and δ ¼ 1 (i.e.

rð−Þ ¼ 0.1), in line with the latest constraints on the tensor-
to-scalar ratio [8,53].

1. Analytical error bars

As shown in Sec. II, the TB angular power spectra is
higher in amplitude than the BB spectrum, and one could

be tempted to deduce that detecting TB cross correlations
would be easier than detecting BB correlations. However,
one can expect rather high error bars on the reconstructed
~CTBðEBÞ
l at large angular scales simply because of the

sampling variance. Indeed, the sampling variance for the
TB correlations reads

½Σ&TB;TBll ¼ 1

ð2lþ 1Þfsky
½ð ~CTB

l Þ2 þ ~CTT
l

~CBB
l &:

The TB and BB spectra are sourced by tensor perturbations
only. However, the TT spectrum is generated by both scalar
and tensor perturbations. We therefore expect thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~CTT
l

~CBB
l

q
≫ ~CTB

l and the signal-to-noise ratio for TB
roughly scales as

~CTB
lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½Σ&TB;TBll

q ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þfsky

q
0

B@
~CTB
lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~CTT
l

~CBB
l

q

1

CA;

- -

FIG. 3 (color online). Uncertainties on the reconstructed CTB
l (left panels) and CEB

l (right panels) angular power spectra for two
experimental configurations: a satellite mission covering ∼71% of the sky (upper panels) and a small-scale experiment covering ∼1% of
the sky (lower panels). Black curves are the input angular power spectra. Solid-orange curves stand for the error bars using an l-by-l
mode-counting derivation. Dashed-red curves are the error bars obtained from 500 Monte Carlo simulations using the pure
pseudospectrum reconstruction of the angular power spectra. This has to be compared to the binned mode-counting computation of
those error bars given by the dashed-orange curves.
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which is much smaller than unity because CTT
l is sourced

by scalar perturbations.2 The same argument applies to the
case of the EB cross correlations as scalar perturbations
contribute via ~CEE

l .
This is clearly highlighted in Fig. 3, focusing on the

orange curve. For the noise levels considered here, the
uncertainties are completely dominated by the sampling
variance from l ¼ 2 to l ¼ 1000 and, more precisely, by

the term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~CTTðEEÞ
l

~CBB
l

q
for ~CTBðEBÞ

l . Detecting the TB and
EB angular power spectra multipole by multipole is
impossible even in this rather optimistic case (δ ¼ 1 and
rðþÞ ¼ 0.1) and one should rely on binning for a positive
detection of such Cls in this framework.

2. Error bars from pure pseudospectrum

The error bars on the CTBðEBÞ
l s using the pure pseudo-

spectrum estimation is depicted by the dashed-red curves.
For the case of the satellite-like mission, the TB angular
power spectrum can be detected in the three first bins while
the detection of EB is not possible without a drastic
increase of the width of the bandpowers. For the case of
small-scale experiments, neither the TB spectrum nor the
EB one can be measured, at least with the size of the
bandpower adopted here.
We note here that the expected uncertainties shown

in Fig. 3 are very high so that one could be tempted
to conclude that a detection of rð−Þ is impossible.
Nevertheless, the fact that detecting ~CTBðEBÞ

l multipole
by multipole (or bin by bin) is not possible does not
necessarily imply that detecting rð−Þ is impossible, for the
detection of such a parameter is done by resumming the
angular power spectrum over bandpowers. Since those
bandpowers are assumed to be uncorrelated, this will
inevitably decrease the uncertainty on rð−Þ by a factor
∼

ffiffiffiffi
N

p
, with N being the total number of resummed bins.

IV. FORECASTS ON CHIRAL GRAVITY

A. Fisher matrix formalism

1. Fisher matrix

Detecting chiral gravity using CMB polarized anisotro-
pies translates into the possible detection of nonvanishing
CMB angular power spectra of the odd type, and sub-
sequently into the possible measurement of rð−Þ from those
odd power spectra. To this end, we will rely on a simple
Fisher analysis [54] to translate the uncertainties on the odd
power spectrum reconstruction into errors on the recovery
of rð−Þ (see also Ref. [55] for a more elaborated approach).

Such an approach has already been proved to be useful in
such a context for e.g. forecasting constraints on bouncing
cosmology in loop quantum cosmology [56].
As explained in Sec. III, the six estimated CMB angular

power spectra are cross correlated and this additional source
of information should be kept in the Fisher analysis. We
therefore use the six angular power spectra as our “input”
data and define the Fisher information matrix as follows:

½F&ij ¼
X

A;A0

X

b;b0

∂CA
b

∂θi

&&&&
θ̄i

× ½Σ−1&A;A
0

b;b0 ×
∂CA0

b0

∂θj

&&&&
θ̄j

; (26)

where the A and A0 superscripts runs over
TT; EE;BB; TE; TB and EB, and b; b0 denote the band-
powers. Our set of parameters is θi ≡ ðrðþÞ; rð−ÞÞ and the
above Fisher information matrix is just the inverse of
the covariance matrix for θi assuming the likelihood
to be Gaussian. The marginalized signal-to-noise ratio
ðS=NÞθi for a given parameter θi is finally given by

ðS=NÞθi ¼ θ̄i=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
½F−1&ii

p
.

It is worth mentioning that though only CTB
l and CEB

l do
depend on rð−Þ, the constraints that can be set on that
parameter using the six angular power spectra will be
different than the constraint obtained by using solely the
two odd-parity angular power spectra. In the latter case, the
covariance matrix entering the Fisher information matrix
would be a sub-block of the full covariance matrix.
However, the inverse of that sub-block is not equal to
the sub-block of the inverse of the full covariance as long
as the estimated TB and EB power spectra are correlated
to the other spectra, which is indeed the case here.

2. Parametrizing the input angular power spectra

Information about rðþÞ is in principle contained in the six
angular power spectra. However, the TT; EE and TE
correlations are mainly generated by the scalar inhomoge-
neities and we can safely set those angular power spectrum
to their best-fit shape and consider them as independent of
rðþÞ. This approximation is valid as in this study we will
consider values of rðþÞ smaller than 0.2. Information about
rð−Þ is solely contained in the TB and EB cross correlations.
We therefore modeled the CMB anisotropies as ~CBB

l ¼
fðrðþÞÞ as a function of rðþÞ and ~CTBðEBÞ

l ¼ fðrð−ÞÞ as
functions of rð−Þ. The parameters rð'Þ provide the global
amplitude of the B-related angular power spectra. Those
power spectra can therefore be parametrized as an ampli-
tude, given by rðþÞ for ~CBB

l and given by rð−Þ for ~CTBðEBÞ
l ,

multiplied by a template (plus a constant term coming from
lensing for the specific case of the BB spectrum). The
different templates will be denoted using calligraphic
font, T .
As a function of rðþÞ, the lensed BB angular power

spectrum reads

2For BB, the signal-to-noise ratio is given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 1=2Þfsky

p

for such an ideal case dominated by the sampling variance.
Clearly, detecting ~CBB

l is easier than detecting ~CTB
l , though the

later is higher in amplitude than the former.
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~CBB
l ½rðþÞ& ¼ rðþÞ × T BB

l þ T EE→BB
l;lens ; (27)

with T BB
l and T EE→BB

l;lens being two fiducial angular power
spectra, independent of rðþÞ, and given by

T BB
l ¼ ½1þ RP&CBB

l ½rðþÞ ¼ 1&

þ
X

l1;l2

FðþÞ
ll1l2

Cϕϕ
l1
CBB
l2
½rðþÞ ¼ 1&; (28)

and

T EE→BB
l;lens ¼

X

l1;l2

Fð−Þ
ll1l2

Cϕϕ
l1
CEE
l2
: (29)

The fiducial CBB
l ½rðþÞ ¼ 1& is easily computed using the

line of sight solution and setting rðþÞ ¼ 1. The EE angular
power spectra involved in CBBl;lens is obtained using the
Planck best fit.
The two odd angular power spectra are similarly

expressed using two fiducial power spectra which do not
depend on rð−Þ, i.e.

~CTBðEBÞ
l ½rð−Þ& ¼ rð−Þ × T TBðEBÞ

l ; (30)

with

T TB
l ¼ ½1þ RTB&CTB

l ½rð−Þ ¼ 1&

þ
X

l1;l2

FTB
ll1l2

Cϕϕ
l1
CTB
l2
½rð−Þ ¼ 1&; (31)

and

T EB
l ¼ ½1þ RP&CEB

l ½rð−Þ ¼ 1&

þ
X

l1;l2

ðFðþÞ
ll1l2

− Fð−Þ
ll1l2

ÞCϕϕ
l1
CEB
l2
½rð−Þ ¼ 1&: (32)

As is the case for the BB angular power spectrum, the
two fiducial power spectra CTBðEBÞ

l ½rð−Þ ¼ 1& are easily
computed using the line of sight solution and setting rð−Þ
equal to 1.
The parameter rðþÞ plays the same role as r in standard

cosmology. As a consequence, any observational constraint
on r can be directly translated into a constraint on rðþÞ. We
remind the reader that from the temperature as measured by
the Planck satellite, the tensor-to-scalar ratio is bounded
from above: r < 0.11 at 95% confidence level (C.L.) [53],
while the latest measurement of polarization by the BICEP2
experiment constrains r ¼ 0.2þ0.07

−0.05 [8]. This latest con-
straint on the tensor-to-scalar ratio probably needs some
confirmation. As a consequence, we will explore values of
rðþÞ ranging from 0.007 to 0.2 with a specific focus on the
rðþÞ ¼ 0.05; 0.1 and 0.2

B. Detection of rð−Þ: Satellite mission

1. Results with mode-counting covariance

We first consider the case of the signal-to-noise ratio on
the parameter rð−Þ. A preliminary study is to inquire the
values of the signal-to-noise ratio obtained on the above-
mentioned parameters relying on a simple mode-counting
error bars estimation. This warrants an efficient exploration
of the measurable range of rð−Þ and δ using the X

2
PURE code

for a correct estimation of the uncertainties.
Let us first briefly mention that taking into account the

TT; EE;BB and TE power spectra brings an additional
amount of information, thus increasing the signal-to-noise
ratio on rð−Þ. This additional piece of information simply
consists in the fact that those angular power spectra do not
depend on rð−Þ and it is finally transferred into the ending
values of ½F&rð−Þ;rð−Þ since the TB and EB spectra are
correlated to the four other ones. Without such correla-
tions, adding TT; EE; BB and TE would not have changed
the signal-to-noise ratio. Considering the case of
rðþÞ ¼ rð−Þ ¼ 0.1, the derived signal-to-noise ratio on
rð−Þ using solely TB and EB would be ∼5, compared to
5.6 using the full set of angular power spectra (see Table I).
Table I summarizes our results on ðS=NÞrð−Þ for different

values of rðþÞ and rð−Þ (keeping in mind that rð−Þ ≤ rðþÞ)
using the mode-counting expressions for the covariance of
the Cl and marginalized over rðþÞ. We note that the
correlations between rð−Þ and rðþÞ are small for the ranges
of values explored here, i.e.

FrðþÞ;rð−Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FrðþÞ;rðþÞFrð−Þ;rð−Þ

q ∼ 10−3:

However, the signal-to-noise ratio for a fixed value of rð−Þ
decreases for higher values of rðþÞ. Indeed, the higher the
value of rðþÞ, the higher ~CBB

l and the higher the uncer-

tainties on ~CTBðEBÞ
l . This translates inevitably into higher

uncertainties on rð−Þ.

TABLE I. Signal-to-noise ratios on rð−Þ for different values of
rðþÞ in the case of the satellite mission and using a mode-counting
expression for the error bars on the angular power spectra
reconstruction. The underlined values correspond to a detection
at 2σ of parity violation.

rþ
r−

0.2 0.1 0.07 0.05 0.03 0.007

0.2 10.6
0.1 3.8 5.66
0.07 2.57 3.6 4.3
0.05 1.8 2.46 2.91 3.4
0.03 1.07 1.44 1.68 1.95 2.44
0.007 0.25 0.33 0.39 0.44 0.54 0.94
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A 2σ detection of parity violation is guaranteed if rðþÞ ≥
0.05 and rð−Þ ≥ 0.05. The values of rð−Þ ¼ 0.03 appears as
a threshold value since for rð−Þ < 0.03 the signal-to-noise
ratio is systematically below unity. For this precise value of
rð−Þ ¼ 0.03, the signal-to-noise ratio on rð−Þ varies from
1.44 to 2.44, for rðþÞ ¼ 0.1 (a parity violation of 30%) and
rðþÞ ¼ 0.03 (a parity violation of 100%), respectively.
Moreover, for a tensor-to-scalar ratio r ¼ 0.2 as favored

by the BICEP2 experiment [57], a detection of chiral gravity
with at least 2σ is expected for parity violation greater than
or equal to 35%.
Figure 4 shows the ðS=NÞrðþÞ

(black crosses) and
ðS=NÞrð−Þ (colored lines) as a function of rðþÞ and for
different levels of parity violation, δ ranging from 10% to
100%. (We remind the reader that for a fixed value of δ, the
value of rð−Þ increases for higher values of rðþÞ.) For rðþÞ ≤
0.11 (as favored by the Planck results on temperature
anisotropies), a 3σ detection of parity violation can be
achieved for δ ≥ 70% and a 2σ detection is possible for a
parity violation greater than 50%, and a minimal value of
rðþÞ ∼ 0.05 appears as mandatory for such a detection. For
rðþÞ ¼ 0.2 (as favored by polarization measurements of
BICEP2), δ ¼ 40% could be detected at 3σ.

2. Results with pure pseudo-Cl covariance

Based on this optimistic exploration of the detectable
range of parity violation, we then estimate realistic stat-
istical error bars on the reconstructed angular power spectra
in the context of the pure pseudospectrum estimators. Our
results are summarized in Table II, considering rðþÞ ¼
0.05; 0.1 and 0.2 and δ ¼ 0.5 and 1.
For the most optimistic case, i.e. rðþÞ ¼ 0.2 and δ ¼ 1,

and the obtained signal-to-noise ratio on the rð−Þ parameter
is ðS=NÞrð−Þ ¼ 5.46, then a detection at 5σ would be
possible. This has to be compared to a 10σ detection
assuming the (underestimated) mode-counting derivation

of the statistical uncertainties. If for that same value of
rðþÞ ¼ 0.2, parity violation is reduced to δ ¼ 0.5 (corre-
sponding to rð−Þ ¼ 0.1), its detection is reduced by more
than a factor 2, the signal-to-noise ratio on rð−Þ being ∼2.5.
The same conclusions are drawn for the case of rþ ¼ 0.1,
the signal-to-noise ratio ranging from 3.67 for δ ¼ 1 down
to 1.51 for δ ¼ 0.5, using the pure reconstruction of B
modes. We finally look at the case of δ ¼ 1 and
rðþÞ ¼ 0.05. The obtained result is ðS=NÞrð−Þ ¼ 2.35, mean-
ing a detection of chiral gravity of at least 2σ for δ ¼ 1. (For
the same situation and assuming the mode-counting esti-
mation of the error bars, a 3σ detection would have been
inferred.) Similarly, if the level of parity violation is only of
50% (corresponding to rð−Þ ¼ 0.025), the signal-to-noise
ratio is reduced by a factor ∼2.
We also consider the extreme case where parity is not

violated, δ ¼ 0, and setting rðþÞ ¼ 0.05 and rðþÞ ¼ 0.2. In
the first case, the computed value of the uncertainty on the
value of rð−Þ is σrð−Þ ¼ 0.023. This fixes a minimal
detectable value of rð−Þ ∼ 0.046 at 95% C.L. for such a
possible satellite mission dedicated to B mode, assuming
rðþÞ ¼ 0.05. In that case, detecting EB and TB power
spectra compatible with zero corresponds to an upper
bound on the level of parity violation of δ ≤ 0.92 at
95% C.L. For rðþÞ ¼ 0.2, this upper bound becomes
δ ≤ 0.39 at 95% C.L.

3. Impact of the miscalibration angle

There are many systematic effects affecting the
reconstruction of the Stokes parameter starting from the
time stream data. Among them, a miscalibration of
the projection on the sky of the polarization orientation
of the detectors will turn into a rotation of the Stokes
parameter, P' → PðobsÞ

' ¼ e'2iΔψ × P' [9,10,58]. Away to
estimate Δψ is to put the detecting TB and EB correlation
equal to zero as they are expected to vanish in standard
cosmology [59]. In the context of cosmological parity
violation parametrized by e.g. rð−Þ, the miscalibration angle
has to be estimated from TB and EB jointly to rð−Þ. We
propose to quantify how the miscalibration of the polari-
zation angle can deteriorate the previous obtained con-
straints on chiral gravity.
As a consequence of this systematic effect, the observed

angular power spectra are a linear combination of the

FIG. 4 (color online). Signal-to-noise ratio on the rþ (black
cross) and r− (colored lines) parameters is here depicted for four
values of δ. The black dashed lines figure the 1σ and 3σ level of
detection.

TABLE II. Signal-to-noise ratio on rð−Þ, ðS=NÞrð−Þ , as derived
from a pure pseudospectrum reconstruction of the angular power
spectra. We remind the reader that for a given value of rðþÞ and δ,
the value of rð−Þ is rð−Þ ¼ δ × rðþÞ.

δ ¼ 1 δ ¼ 0.5

rðþÞ ¼ 0.2 5.46 2.5
rðþÞ ¼ 0.1 3.67 1.51
rðþÞ ¼ 0.05 2.35 1.11
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real CMB angular power spectra. With nonvanishing TB
and EB crosscorrelations, the observed angular power
spectra are

~CTTðrotÞ
l ¼ ~CTT

l (33)

~CTEðrotÞ
l ¼ cosð2ΔψÞ ~CTE

l − sinð2ΔψÞ ~CTB
l ; (34)

~CTBðrotÞ
l ¼ sinð2ΔψÞ ~CTE

l þ cosð2ΔψÞ ~CTB
l ; (35)

~CEEðrotÞ
l ¼ cos2ð2ΔψÞ ~CEE

l þ sin2ð2ΔψÞ ~CBB
l

þ sinð4ΔψÞ ~CEB
l ; (36)

~CBBðrotÞ
l ¼ sin2ð2ΔψÞ ~CEE

l þ cos2ð2ΔψÞ ~CBB
l

− sinð4ΔψÞ ~CEB
l ; (37)

~CEBðrotÞ
l ¼ 1

2
sinð4ΔψÞð ~CEE

l − ~CBB
l Þ þ cosð4ΔψÞ ~CEB

l : (38)

As compared to the results shown in e.g. Ref. [59], one
can notice the additional contribution of ~CTB

l and ~CEB
l .

However, even in the case of vanishing TB and EB spectra,
such a miscalibration leads to spurious nonvanishing odd-
parity angular power spectra. In Fig. 5, the intrinsic CMB
angular power spectra (solid-black curves), ~Cl and the
leaked power due to rotation (dashed-colored curves),
ΔCl ¼ ð ~CðrotÞ

l − ~ClÞ, are displayed for the BB, TB and
EB correlations and Δψ ¼ 0.1; 0.5 and 1 degree.
We note that the above modeling of the impact of

miscalibrating the orientation of the detectors implicitly
assumes that such an angle is identical over the entire
observed patch. If some variations are allowed, the result-
ing angular power spectra would be a convolution of the
intrinsic CMB spectra with the angular power spectra of the
rotation angle. This would significantly increase the com-
plexity of the problem as this convolution mixes different
multipoles. We also remind the reader that the impact of a
homogeneous cosmic birefringence is exactly identical to

the impact of a miscalibration of the polarizers’ orientation;
then the forthcoming results and conclusions could also be
applied to the case of a homogeneous cosmic birefringence.

Bias on parity violation.—Following the approach of
Ref. [59], the miscalibration angle can be fitted by
minimizing the following χ2 (here generalized to the six
angular power spectra):

χ2 ¼
X

A;A0

X

b;b0
ðCAðthÞ

b − CAðobsÞ
b Þ† × ½Σ−1&A;A0

b;b0

×
'
CA0ðthÞ
b0 − CA0ðobsÞ

b0

(
; (39)

with CAðthÞ
b being the theoretically predicted angular power

spectra, considered as functions of the set of parameters
enlarged to θi ¼ ðrðþÞ; rð−Þ;ΔψÞ, and CAðobsÞ

b being the
reconstructed angular power spectra. The error bar on the
reconstructed values of the parameters is the Fisher
information matrix at the peak of the likelihood and is
given by Eq. (26), assuming that the estimated power
spectra CAðobsÞ

b are unbiased.
The first effect of a miscalibration on the detection of

parity violation would be to bias the measurement of rð−Þ if
such rotation is not taken into account in the modelized
Cls. Assuming that CA ðthÞ

b is not rotated by the miscali-
bration angle though the observed spectra are, the recov-
ered, and therefore biased, value of rð−Þ, noted rðbiasÞð−Þ , is
obtained by minimizing the χ2:

0 ¼
X

A;A0

X

b;b0

!∂CAðthÞ
b

∂rð−Þ

"†

× ½Σ−1&A;A
0

b;b0 ðC
A0ðthÞ
b0 − CA0ðobsÞ

b0 Þ: (40)

In the above, CAðobsÞ
b is fixed by the targeted values θ̄i ¼

ðr̄ðþÞ; r̄ð−Þ; Δ̄ψÞ while CAðthÞ
b is a function of rð'Þ only,

i.e. CAðthÞ
b ¼ ~CA

b . The uncertainties on the reconstructed
value of rð−Þ are derived from the Fisher matrix

where ð∂CAðthÞ
b =∂rð−ÞÞ ¼ ð∂ ~CA

b=∂rð−ÞÞ.

FIG. 5 (color online). A miscalibration of the polarization angle impacting the amplitude and shape of the power spectra.
The unrotated power spectra of the B modes and the TB and EB cross correlations are depicted in the black solid curves from the left to
right panels. The difference between the rotated power spectra and the unrotated is represented in blue shaded lines for different values
of the miscalibration angle ΔΨ.
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The biases, Δrð−Þ ¼ ðrðbiasÞð−Þ − r̄ð−ÞÞ, and their associated
error bars are depicted in Fig. 6 as a function of Δψ and
for different input values of rð−Þ. It shows that for
Δψ ≲ 0.1 degree, the measured rð−Þ is compatible with
the input value, r̄ð−Þ, within the 1σ uncertainty. For higher
values of Δψ , the bias would translate into a false detection
of parity violation. We mention that most of the bias comes
from the EB spectrum since its intrinsic CMB contribution
is rapidly dominated by spurious power spectra due to the
miscalibration, i.e. ΔCEB

l ≥ ~CEB
l for Δψ ≥ 0.1 degree. The

main contribution for small angles to the EB power
spectrum is ~CEBðrotÞ

l ≃ ~CEB
l þ 2ðΔψÞ ~CEE

l with the first term
being the intrinsic EB correlations and the second term the
spurious EB correlation as induced by miscalibration of the
orientation of the polarizers. This means that positive-
valued Δψ leads to a positive bias while negative values of
Δψ leads to a negative bias.

Statistical uncertainties with mode counting.—The proper
approach consists in fitting for the three parameters
θi ¼ ðrðþÞ; rð−Þ;ΔψÞ by minimizing the χ2. The final
estimate will be unbiased and the uncertainties are given
by the Fisher information matrix assuming that the theo-
retical power spectra are appropriately modeled, i.e.
CA ðthÞ
b ¼ ~CA ðrotÞ

b . As rð−Þ and Δψ could be degenerated,
one should expect the marginalized error bars on rð−Þ to be
enlarged.
Using the mode counting for estimating the covariance

on the reconstructed angular power spectra, our numerical
investigations show that the signal-to-noise ratio on rð−Þ,
for rð'Þ ranging from 0.004 to 0.2 and Δψ varying from 0.1
to 1 degree, is only degraded by a factor ∼10−5 as
compared to the case without such a miscalibration angle,
meaning that the joined reconstruction ofΔψ with rð−Þ only
marginally affects the detection of parity violation. This is

in perfect agreement with the results obtained in e.g.
Ref. [31] where they consider both parity violation in
the primordial Universe and homogeneous cosmic bire-
fringence. However, this conclusion is only valid assuming
the mode-counting expressions for the covariance on the
estimated angular power spectra. In Appendix B, we prove
the following statement: assuming that (i) the covariance
matrix on the estimated angular power spectra, Σ, is given
by the mode-counting expression, (ii) the entire set of
correlations between the six estimated angular power
spectra is taken into account, and (iii) the covariance
matrix Σ is dominated by the sampling variance, then it
is shown that the sub-block ðrð'Þ; rð'ÞÞ of the Fisher
information matrix is equal to the Fisher matrix as derived
without any miscalibration angle, and that the correlations
between rð'Þ and Δψ does not depend on the values of Δψ .
Theoretically speaking, the hypothesis of the sampling
variance dominated regime is not met at small angular
scales. However, most of the constraints on rð'Þ come from
the largest angular scales where noise variance is negli-
gible. As a consequence, supposing that uncertainties are
dominated by sampling variance is a valid assumption in
practice. Moreover, our numerical results shows that the
parameters rð'Þ are poorly degenerated with Δψ for the
range of values of Δψ considered here, i.e.

Frð'Þ;Δψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Frð'Þ;rð'ÞFΔψ ;Δψ

q ∼ 10−6–10−5:

This means that, in practice, the (symmetric) Fisher
information matrix is well approximated by

F≃

0

B@

FrðþÞ;rðþÞ FrðþÞ;rð−Þ ϵðþÞfðþÞðrðþÞÞ
· Frð−Þ;rð−Þ ϵð−Þfð−Þðrð−ÞÞ
· · FΔψ ;Δψ

1

CA;

with Frð'Þ;rð'Þ derived without a miscalibration error, as
in Sec. IV B 1, and ϵð'Þ ∼ 10−5. As a consequence, the
signal-to-noise ratio as derived in the previous section,
Sec. IV B 1, remains relevant even with a nonvanishing
miscalibration angle.
We have further checked the above argument by two

numerical experiments. On the one hand, we significantly
increased the noise level which breaks the hypothesis of
being sampling-variance dominated. On the other hand, we
only take the diagonal of the covariance matrix Σ, which
break the hypothesis of using all the information through
the correlations between different angular power spectra. In
both cases, we do observe that the signal-to-noise ratio on
e.g. rð−Þ indeed decreases for higher values of Δψ . We have
also checked numerically that Frð'Þ;Δψ does not depend on
the value of Δψ .

FIG. 6 (color online). Bias on the reconstruction of rð−Þ if the
miscalibration angle, Δψ , is not taken into account in the
parameters estimation. For Δψ ≥ 0.1 degree, the bias is suffi-
ciently high to lead to a false detection of parity violation.
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Statistical uncertainties with the pure pseudospectrum
approach.—We have finally investigated the effect of a
joint reconstruction of the miscalibration angle, Δψ , and
rð−Þ in the context of the pure pseudospectrum estimation of
the Cls. We consider the two cases rðþÞ ¼ rð−Þ ¼ 0.1 and
0.2 and subsequently derive the signal-to-noise ratio on rð−Þ
marginalized over both rðþÞ and Δψ . If Δψ is indeed equal
to zero, the detection of rð−Þ is only marginally affected
since the signal-to-ratio ratio is degraded by a relative factor
of 10−4. However, this signal-to-noise ratio is reduced for
higher values of Δψ . For Δψ ¼ 0.1 degree, ðS=NÞrð−Þ is
reduced to 5 for rðþÞ ¼ rð−Þ ¼ 0.2 (to be compared to 5.46
without miscalibration) and to 2.96 for rðþÞ ¼ rð−Þ ¼ 0.1
(to be compared to 3.67). This corresponds to a decrease by
a factor ∼1.09. For Δψ ¼ 1 degree, the reduction factor is
∼2.4, obtaining ðS=NÞrð−Þ ¼ 2.23 for rðþÞ ¼ rð−Þ ¼ 0.2 and
ðS=NÞrð−Þ ¼ 1.58 for rðþÞ ¼ rð−Þ ¼ 0.1. This shows that the
nondegeneracy between rðþÞ and Δψ (as mentioned in
Ref. [31]) is only valid in the context of the mode-counting
expression for the covariance.
We believe the fundamental reason for such a result is

that pseudospectrum based estimators do not allow for
accessing to the whole set of correlations between the six
estimated angular power spectra, due to the joint effect of
mode mixing and binning. Since keeping track of all the
correlations was one of the mandatory assumptions used
in Appendix B, this probably explains why in the more
realistic case of pure pseudospectrum reconstruction of
the Cls nonvanishing Δψ then impacts the significance of
the estimation of rð−Þ.

Inhomogeneous cosmic birefringence.—As previously
underlined, the impact of miscalibrating the orientation
of the polarized detectors is identical to the cosmological
effect of homogeneous cosmic birefringence. However,
such cosmic birefringerence can also have an inhomo-
geneous contribution. This could be the case if e.g. a scalar
field coupled to the fermion current [therefore generating
charge conjugation-parity-time reversal (CPT) symmetry
violation] also exhibits some inhomogeneities in its energy
density, as it should be since such a scalar field inevitably
evolves in a perturbed Friedmann-Lemaître-Robertson-
Walker space-time [60,61]. In that case the rotation angle
due to cosmic birefringence splits into an homogeneous
part, α, and an inhomogeneous part, δαð~nÞ, with δα ≪ 1.
This allows for performing a Taylor expansion to infer the
impact of that inhomogeneous sector on the CMB angular
power spectra.
Considering thisadditionalcontributionandthepresenceof

aprimaryEBandTBcontribution, theobservedangularpower
for e.g.TB correlationswill receive newcontributions propor-
tional to ðsinð2αÞCTE

l0 þ cosð2αÞCTB
l0 Þ × hδα2i. Similar terms

arise for theEB spectrumwhereðsinð2αÞCTE
l0 þ cosð2αÞCTB

l0 Þ
is replaced by ðsinð4αÞð ~CEE

l0 − ~CBB
l0 Þ=2þ cosð4αÞ ~CEB

l0 Þ. (We

refer the interested reader to Refs. [60,61] for a more detailed
computation andwe only focus here on orders of magnitude.)
Those corrections are of second order, being proportional to
hδα2i. Following Ref. [60], the amplitude of hδα2i has been
estimatedtobeoftheorderof∼10−3.Thismeansthatthebiases
derivedbyassumingapurelyhomogeneousbirefringencemay
change by a factor ∼10−3 which is well within the statistical
uncertainties, making our previously derived results still
relevant for an inhomogeneous cosmic birefingence.

C. Detection of rð−Þ: Small-scale experiment

Our results on the signal-to-noise ratio for rð−Þ in the case
of a small-scale experiment are summarized in Table III,
assuming the mode counting for the derivation of the
covariance matrix. Clearly, in this case, the measurement of
such a parameter is unfeasible as ðS=NÞrð−Þ < 1.5, even in
the most optimistic case of rðþÞ ¼ rð−Þ ¼ 0.2. This is
because most of the constraints on rð−Þ come from the
largest angular scale, which are unachievable for an experi-
ment covering 1% of the celestial sphere.
Using the covariance as obtained from a pure pseudo-

spectrum estimation of the angular power spectra only
degrades the signal-to-noise ratio. For example, in the case
of rðþÞ ¼ rð−Þ ¼ 0.1 (i.e. δ ¼ 1), we obtain ðS=NÞrð−Þ ¼ 0.2,
as compared to 0.64 by using the mode-counting approach.
For a parity invariant primordial universe, i.e. rð−Þ ¼ 0,

the marginalized uncertainty on rð−Þ for rðþÞ ¼ 0.05 is
σrð−Þ ¼ 0.36. Therefore, the δ parameter is greater than
unity, which is theoretically irrelevant, meaning that no
significant upper bound on the level of parity violation can
be established using data from ongoing or forthcoming
small-scale experiments.

V. CONCLUSION AND DISCUSSION

In this paper, we investigate the constraints that could be
set on chiral gravity from the detection of the CMB TB and
EB correlations, taking into account statistical uncertainties
as incurred by pure pseudospectrum reconstruction of the
CMB angular power spectra and considering the impact of
miscalibrating the orientation of the polarized detectors.

TABLE III. Signal-to-noise on rð−Þ for different values of rðþÞ
in the case of small-scale (balloon-borne or ground-based)
experiments, and using a mode-counting expression for the error
bars on the angular power spectra reconstruction.

rðþÞ
rð−Þ

0.2 0.1 0.07 0.05 0.03 0.007

0.2 1.22
0.1 0.43 0.64
0.07 0.29 0.4 0.487
0.05 0.2 0.28 0.326 0.38
0.03 0.12 0.16 0.188 0.216 0.27
0.007 0.03 0.037 0.043 0.049 0.06 0.1
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(We stress that all the constraints we have set are for
positive-valued rð−Þ. They, however, equally apply to
negative values of rð−Þ as, in practice, the derived con-
straints are for jrð−Þj.)
We have shown that such a detection of parity violation

leading to nonzero CTBðEBÞ
l is beyond the scope of forth-

coming small-scale measurements of CMB polarized anisot-
ropies. Even in the most optimistic case of 100% of parity
violation and a tensor-to-scalar ratio of 0.2, and under-
estimating the uncertainties by using a mode-counting
approach, the signal-to-noise ratio on the amplitude of parity
asymmetric tensor mode is only of ∼1.2, and it rapidly
diminishes to values smaller than unity for smaller values of
the tensor-to-scalar ratio, rðþÞ, or a smaller percentage of
parity violation. This is because most of the constraints come
from the largest angular scales which cannot be measured
with enough significance by those experiments. Moreover,
even in the case of vanishing TB and EB cross correlations,
the statistical uncertainties on their reconstruction via pure
pseudospectrumestimators lead to anupper boundof the level
of parity violation of more than 100% at 95%C.L. Since this
level is theoretically bounded fromabove at 100%, thismeans
that no significant constraint can be set on this type of parity
violation using data fromongoing or forthcoming small-scale
experiments.
In the case of a potential satellite mission dedicated to the

primordial B mode, we have shown that a detection with at
least 2σ is possible for 100% of parity violation and a tensor-
to-scalar ratio of at least 0.05. A 1σ detection is still achieved
for 50% of parity violation and a tensor-to-scalar ratio of at
least 0.05 and a 2.5σ detection would be possible for
rðþÞ ¼ 0.2. We found that by a measurement of vanishing
TB andEB angular power spectra usingpurepseudospectrum
estimators, the level of parity violation is bounded from
above: jδj ≤ 0.92 at 95% C.L. We have also shown that, for
such an experimental configuration where sampling variance
is dominating at the largest scales—precisely those scales
which allow for constraining parity violation—, the impact of
self-calibrating the miscalibration angle could have a signifi-
cant impact on the final estimation of the level of parity
violation, the reported signal-to-noise ratio being degraded by
a factor of∼1.09 for a miscalibration angle of 0.1 degree and,
more significantly, by a factor∼2.4 for an angle of1 degree. In
this very last case, a 2σ detection of parity violation becomes
possible only for δ ¼ 1 and rðþÞ ¼ 0.2.We stress that such an
impact is revealed in the context of the pseudospectrum
estimation of the angular power spectra. Bymaking use of the
naïve mode-counting expression for the covariance of the
reconstructedCls, it is formally shown that self calibration of
the orientation of the polarizers does not impact the signifi-
cance of the reconstruction of rð−Þ assuming that the
covariance is dominated by sampling variance and that one
has access to the entire set of cross correlations between the
six estimated angular power spectra. Nevertheless, this last
assumption is broken by pseudospectrumestimators (because

of mode mixing and binning) leading to degeneracies
between rð−Þ and Δψ .
In the context of chiral gravity from the Ashtekar

formulation of general relativity, the parameter δ quantify-
ing the level of parity breaking is related to the imaginary
Barbero-Immirzi parameter via δ ¼ 2iγ=ð1 − γ2Þ [25].
(We will restrict to the case of purely imaginary values
of γ though the formalism can be extended to the case of
any arbitrary complex values of γ [26].) The (absolute)
level of parity breaking is encoded in jδj leading to
jγj ¼ ð1'

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − δ2

p
Þ=jδj. Considering the statistical error

bars from a pseudospectrum reconstruction of the Cls,
detecting jγj ¼ 1 is possible using data from a satellite
mission with a statistical significance ranging from 2.3σ to
5.4σ for a tensor-to-scalar ratio ranging from 0.05 to 0.2,
respectively; assuming that a detection of jδj ¼ 0.5 trans-
lates into a detectable value of γ ¼ 0.26 or γ ¼ 3.73,
meaning that such a form of chiral gravity is detectable
with CMB polarized anisotropies if 0.26 ≤ jγj ≤ 3.75. The
significance of that detection for a future satellite mission
ranges from 1.1σ to 2.5σ for a tensor-to-scalar ratio of 0.05
and 0.2. Detecting TB and EB angular power spectra which
are consistant with zero leads to an upper bound on the
parity violation level jδj ≤ 0.92 at 95% C.L. for rðþÞ ¼
0.05 and δ ≤ 0.39 at 95% C.L. for rðþÞ ¼ 0.2. This would
mean that 0.66 ≤ jγj ≤ 1.5 is excluded at 95% C.L. for
rðþÞ ¼ 0.05 (the exclusion range at 68% C.L. would be
0.24 ≤ jγj ≤ 4.1), and that 0.2 ≤ jγj ≤ 4.9 is excluded at
95% C.L. for rðþÞ ¼ 0.2 (the exclusion range at 68% C.L.
would be 0.098 ≤ jγj ≤ 10.1).
In the context of a pseudoscalar inflaton, the amount of

parity violation is given by [16]

jδj ¼
8.6 × 10−7

'
H2

2M2
Pl

e4πξ
ξ6

(

1þ 8.6 × 10−7
'

H2

2M2
Pl

e4πξ
ξ6

(

and

rðþÞ ¼ 8.1 × 107
!
H2

M2
Pl

"#
1þ 8.6 × 10−7

!
H2

2M2
Pl

e4πξ

ξ6

"$
:

For a given value of rðþÞ, one can express H2

2M2
Pl
as a function

of e4πξ
ξ6

and plug it into jδj. Following Ref. [16], one

introduces the parameter ~X ¼ e2πξ=ξ3, which is related
to rðþÞ and δ via

~X ¼
!
1.37 × 107

ffiffiffiffiffiffiffiffirðþÞ
p

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi!
jδj

1 − jδj

"!
1þ jδj

1 − jδj

"s

:

As compared to Ref. [16], ~X is related to their X parameter
via X ¼ ϵ × ~X with ϵ being the first slow-roll parameter.
For rðþÞ ¼ 0.05, one obtains the following upper bound on
~X: ~X ≤ 73 × 107 at 95% C.L. For rðþÞ ¼ 0.2, this upper
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bound is strengthened to ~X ≤ 3 × 107 at 95% C.L. This has
to be compared to the upper bound reported in Ref. [16]:
~X ≤ 6 × 107 at 95% C.L., using the upper bound set by
Planck on primordial non-Gaussianities; fNL < 150 [62].
This means that constraining such models with TB and EB
is on par with the constraints that can be set with
measurements of non-Gaussianities assuming a rather high
value of rðþÞ.
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APPENDIX A: LENSED ANGULAR POWER
SPECTRA WITH PRIMARY TB AND EB

CORRELATIONS

Weak lensing of the primary anisotropies remaps the
primary anisotropies by a displacement field δ~n ¼ ~∇ϕ with
∇ being the covariant derivative on the sphere and ϕ being
the projected potential of the large-scale structures. By
denoting ~X as the lensed CMB anisotropies (we keep
untilted notations for the primary CMB anisotropies),
this translates into Tð~nÞ → ~Tð~nÞ ¼ Tð~nþ δ~nÞ and
P'ð~nÞ → ~P'ð~nÞ ¼ P'ð~nþ δ~nÞ. This displacement field
is supposed to be small in amplitude and one can therefore
perform a Taylor expansion up to the second order of the
lensed CMB anisotropies around their unlensed value. With
such a Taylor expansion, it is shown that the remapping of
CMB primary fluctuations appears as a reshuffling of the
multipoles Xlm according to some convolution kernel
involving the harmonic decomposition of the projected
potential, ϕlm [36]. This reshuffling acts between different
l-multipoles but also between different polarization modes
as lensed B modes receive contribution from primary E
modes and vice versa. For temperature, it reads

~Tlm ¼ Tlm þ
X

l1;m1

X

l2;m2

ϕl1m1
Tl2m2

× Ill1l2
mm1m2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Tð1Þ
lm

þ 1

2

X

l1;m1

X

l2;m2

X

l3;m3

ϕl1m1
Tl2m2

ϕ⋆
l3m3

× Jll1l2l3
mm1m2m3

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Tð2Þ
lm

; (A1)

with
Ill1l2mm1m2

¼
Z

4π
Y⋆
lmð∇aYl1m1

Þð∇aYl2m2
Þd~n; (A2)

Jll1l2l3
mm1m2m3

¼
Z

4π
Y⋆
lmð∇aYl1m1

Þð∇bY⋆
l3m3

Þð∇a∇bYl2m2
Þd~n: (A3)

Similarly for polarization, one obtains

~Elm ¼ Elm þ 1

2

X

l1;m1

X

l2;m2

ϕl1m1
½El2m2

× ðþÞI
ll1l2
mm1m2

þ iBl2m2
× ð−ÞI

ll1l2
mm1m2

&

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Eð1Þ
lm

þ 1

4

X

l1;m1

X

l2;m2

X

l3;m3

ϕl1m1
ϕ⋆
l3m3

½El2m2
× ðþÞJ

ll1l2l3
mm1m2m3

þ iBl2m2
× ð−ÞJ

ll1l2l3
mm1m2m3

&

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Eð2Þ
lm

; (A4)

~Blm ¼ Blm þ 1

2

X

l1;m1

X

l2;m2

ϕl1m1
½Bl2m2

× ðþÞI
ll1l2
mm1m2

− iEl2m2
× ð−ÞI

ll1l2
mm1m2

&

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Bð1Þ
lm

þ 1

4

X

l1;m1

X

l2;m2

X

l3;m3

ϕl1m1
ϕ⋆
l3m3

½Bl2m2
× ðþÞJ

ll1l2l3
mm1m2m3

− iEl2m2
× ðþÞJ

ll1l2l3
mm1m2m3

&

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Bð2Þ
lm

; (A5)
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with

ð'ÞI
ll1l2
mm1m2

¼
Z

4π
½2Y⋆

lmð∇aYl1m1
Þð∇a

2Yl2m2
Þ ' −2Y

⋆
lmð∇aYl1m1

Þð∇a
−2Yl2m2

Þ&d~n;

ð'ÞJ
ll1l2l3
mm1m2m3

¼
Z

4π
½2Y⋆

lmð∇aYl1m1
Þð∇bY⋆

l3m3
Þð∇a∇b

2Yl2m2
Þ ' −2Y

⋆
lmð∇aYl1m1

Þð∇bY⋆
l3m3

Þð∇a∇b
−2Yl2m2

Þ&d~n: (A6)

The kernels Ill1l2mm1m2
and Jll1l2l3

mm1m2m3
have properties which

greatly simplify the forthcoming computations.
The final derivation of the lensed angular power spec-

trum is obtained by considering the correlators ~CXZ
l ¼

½h ~Xlm ~Z⋆
lmiþ h ~X⋆

lm
~Zlmi&=2, and making use of the stat-

istical isotropy of the primary fluctuations, i.e.
hXlmZ⋆

l0m0 i¼CXZ
l δll0δmm0 and hϕlmϕ⋆

l0m0 i¼Cϕϕ
l δll0δmm0 ;

following Ref. [36], we also consider that the projected
potential causing the deflection of CMB photons is not
correlated to the primary anisotropies of CMB and we
neglect any curl-like contribution to the deflection field.

1. Properties of Ill1l2
mm1m2 and Jll1l2l3mm1m2m3

a. First property

The first important property is that Ill1l2
mm1m2

is an “even”
quantity:

(
Ill1l2mm1m2

¼ 0 for ðlþ l1 þ l2Þ ¼ 2nþ 1;

Ill1l2mm1m2
≠ 0 for ðlþ l1 þ l2Þ ¼ 2n:

(A7)

As shown in Refs. [36,68], Ill1l2mm1m2
is rewritten as a function

of the Gaunt integral:

Ill1l2mm1m2
¼ 1

2
½l1ðl1 þ 1Þ þ l2ðl2 þ 1Þ − lðlþ 1Þ&

×
Z

4π
Y⋆
lmð~nÞYl1m1

ð~nÞYl2m2
ð~nÞd~n: (A8)

The second line of the above is precisely the Gaunt
integral, G, which is re-expressed as a function of the
Wigner-3js, i.e.

G ¼ ð−1Þm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2l1 þ 1Þð2l2 þ 1Þ

4π

r

×
!

l l1 l2

−m m1 m2

"!
l l1 l2

0 0 0

"
: (A9)

Since

!
l l1 l2

m m1 m2

"
¼ ð−1Þlþl1þl2

!
l l1 l2

−m −m1 −m2

"
;

(A10)

it is obvious that the Wigner-3j is vanishing for
m ¼ m1 ¼ m2 ¼ 0 for lþ l1 þ l2 ¼ 2nþ 1. As a

consequence, Ill1l2mm1m2
is also equal to zero for odd values

of lþ l1 þ l2.

b. Second and third properties

The second and third important properties are that

ðþÞI
ll1l2
mm1m2

is an even quantity and ð−ÞI
ll1l2
mm1m2

is an “odd”

quantity, i.e.
(

ðþÞI
ll1l2
mm1m2

¼ 0 for ðlþ l1 þ l2Þ ¼ 2nþ 1;

ðþÞI
ll1l2
mm1m2

≠ 0 for ðlþ l1 þ l2Þ ¼ 2n
(A11)

and
(

ð−ÞI
ll1l2
mm1m2

≠ 0 for ðlþ l1 þ l2Þ ¼ 2nþ 1;

ð−ÞI
ll1l2
mm1m2

¼ 0 for ðlþ l1 þ l2Þ ¼ 2n:
(A12)

Those two properties are simply proved by noticing
that [36]
Z

4π
2Y

⋆
lmð∇aYl1m1

Þð∇a
2Yl2m2

Þd~n

¼ ð−1Þlþl1þl2

Z

4π
−2Y

⋆
lmð∇aYl1m1

Þð∇a
−2Yl2m2

Þd~n:

(A13)

From that, it is obvious that ðþÞI
ll1l2

mm1m2

¼ 0 for odd values

of lþ l1 þ l2 while ð−ÞI
ll1l2
mm1m2

¼ 0 for even values

of lþ l1 þ l2.
This can also be seen from the explicit expressions of

ð'ÞI
ll1l2
mm1m2

as functions of the Wigner-3j since

ð'ÞI
ll1l2
mm1m2

¼ 1

2
½l1ðl1 þ 1Þ þ l2ðl2 þ 1Þ − lðlþ 1Þ&

× ð−1Þmþ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2l1 þ 1Þð2l2 þ 1Þ

4π

r

×
!

l l1 l2

−m m1 m2

"

×
#!

l l1 l2

−2 0 2

"
'
!
l l1 l2

2 0 −2

"$
:

(A14)

From the symmetry of the Wigner-3js involved in the last
line, it is clear that ðþ=−ÞI

ll1l2
mm1m2

¼ 0 for odd (even) values
of lþ l1 þ l2.
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c. Fourth property

The last useful property is
X

m1

ð−ÞJ
ll1ll1
mm1mm1

¼ 0: (A15)

To prove it, one should first notice that [see Eqs. (59) and
(60) of [36]]

X

m1

∇aYl1m1
∇bY⋆

l1m1
¼ l1ðl1 þ 1Þ

2

2l1 þ 1

4π
½ð ~mþÞað ~m−Þb

þ ð ~m−Það ~mþÞb&; (A16)

and

½ð ~mþÞað ~m−Þb þ ð ~m−Það ~mþÞb&∇a∇b
'sYlm

¼ −½lðlþ 1Þ − s2&'2Ylm; (A17)

with ~m' ¼ ð~eθ∓i~eφÞ=
ffiffiffi
2

p
. From those two expressions,

one can easily derive that

X

m1

ð−ÞJ
ll1ll1
mm1mm1

¼ Fðl;l1Þ
Z

4π
½2Y⋆

lm2Ylm

− −2Y
⋆
lm−2Ylm&d~n; (A18)

with Fðl;l1Þ being a numerical factor depending on l and
l1. The integral in the right-hand side of the above
expression is vanishing since the '2Ylms forms an ortho-
normal basis on the celestial sphere.

2. Temperature power spectrum

The case of TT correlation is rather straighforward: it
only consists of reshuffling l-multipoles without any
contribution from primary power spectra but CTT

l . The
lensed power spectrum is therefore not affected by non-
vanishing TB and EB and reads

~CTT
l ¼

#
1þ

X

l3

Cϕϕ
l3

X

m3

Re½Jll3ll3
mm3mm3

&
$
CTT
l

þ
X

l1;l2

CTT
l2
Cϕϕ
l1

X

m1;m2

jIll1l2mm1m2
j2: (A19)

From the expression of Ill1l2mmm1m2
as a function of the

Wigner-3js and using that

X

m1;m2

!
l l1 l2

m m1 m2

"!
l0 l1 l2

m0 m1 m2

"
¼ δll0δmm0

2lþ 1
;

(A20)

it is easily shown that

FT
ll1l2

¼
X

m1;m2

jIll1l2mmm1m2
j2

¼ 1

4
½l1ðl1 þ 1Þ þ l2ðl2 þ 1Þ − lðlþ 1Þ&2

×
ð2l1 þ 1Þð2l2 þ 1Þ

4π

!
l l1 l2

0 0 0

"
2

: (A21)

For the second term, one makes use of Eqs. (A16) and
(A17) to show that

X

m3

Jll3ll3mm3mm3
¼ −

1

2
l3ðl3 þ 1Þlðlþ 1Þ 2l3 þ 1

4π

×
Z

4π
Y⋆
lmYlmd~n

¼ −
1

2
l3ðl3 þ 1Þlðlþ 1Þ 2l3 þ 1

4π
; (A22)

where the orthonormality of spherical harmonics has been
used to derive the second line of the above equation. This
leads to

RT ¼
X

l3

Cϕϕ
l3

X

m3

Re½Jll3ll3mm3mm3
&

¼ −
1

2
lðlþ 1Þ

X

l3

l3ðl3 þ 1Þ 2l3 þ 1

4π
Cϕϕ
l3
: (A23)

3. Temperature-polarization power spectrum

We focus on the case of the TB cross correlation. This
calculation is then easily adapted to the case of TE by, first,
replacing ðCTB

l Þ by ðCTE
l Þ and, second, replacing ðCTE

l Þ by
ð−CTB

l Þ. Let us first notice that

~CTB
l ¼ hTlmB⋆

lmiþ hTð1Þ
lmB

ð1Þ⋆
lm iþhTlmB

ð2Þ⋆
lm iþ hTð2Þ

lmB
⋆
lmi:
(A24)

Each of these terms is given by

hTlmB⋆
lmi ¼ CTB

l ; (A25)

hTð1Þ
lmB

ð1Þ⋆
lm i ¼ 1

2

X

l1;l2

Cϕϕ
l1

*
CTB
l2

X

m1m2

Re
h
Ill1l2mm1m2 ðþÞI

ll1l2⋆
mm1m2

i
− CTE

l2

X

m1m2

Im
h
Ill1l2mm1m2 ð−ÞI

ll1l2⋆
mm1m2

i+
(A26)
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hTlmB
ð2Þ⋆
lm i ¼ 1

4
CTB
l

X

l3

Cϕϕ
l3

X

m3

Re
h
ðþÞJ

ll3ll3
mm3mm3

i
þ 1

4
CTE
l

X

l3

Cϕϕ
l3

X

m3

Im
h
ð−ÞJ

ll3ll3
mm3mm3

i
(A27)

hTð2Þ
lmB

⋆
lmi ¼

1

2
CTB
l

X

l3

Cϕϕ
l3

X

m3

Re½Jll3ll3mm3mm3
&: (A28)

The above expressions can be simplified using the proper-
ties of the I; ð'ÞI and J; ð'ÞJ kernels. First, the second line
of Eq. (A26) proportional to CTE

l is zero. This is a
consequence of the first and the third properties: for any
triplet ðl;l1;l2Þ, either I

ll1l2
mm1m2

or ð−ÞI
ll1l2
mm1m2

is zero and the

product of the two is always vanishing. In other words,
primary TE does not contribute to hTð1Þ

lmB
ð1Þ⋆
lm i, in perfect

agreement with the analogous case of pseudospectrum
estimators. (This is for that very same reason that TE is not
leaking into TB in the pseudospectrum estimator.) Second,
the second line of Eq. (A27) proportionnal to CTE

l is also
vanishing as a result of the fourth property. This means that
even at the second order, the primary TE correlations do
not contribute to the lensed TB correlations.
The same strategy is adopted for the TE angular power

spectrum, and, similarly to TB, it appears that the primary
CTB
l does not contribute to the lensed ~CTE

l . Gathering all the
terms, one finally obtains

~CTE
l ¼ ½1þ RX&CTE

l þ
X

l1;l2

FX
ll1l2

Cϕϕ
l1
CTE
l2
; (A29)

~CTB
l ¼ ½1þ RX&CTB

l þ
X

l1;l2

FX
ll1l2

Cϕϕ
l1
CTB
l2
; (A30)

with

FX
ll1l2

¼ 1

2

X

m1;m2

Re½Ill1l2
mmm1m2 ðþÞI

ll1l2⋆
mmm1m2

&; (A31)

RX ¼ 1

4

X

l3

Cϕϕ
l3

X

m3

f2Re½Jll3ll3
mm3mm3

&

þ Re½ðþÞJ
ll3ll3
mm3mm3

&g: (A32)

The first quantity is easily computed starting from the
expressions of Ill1l2mmm1m2

and ðþÞI
ll1l2
mmm1m2

as functions of the
Wigner-3j and using Eq. (A20) to get

FX
ll1l2

¼ 1

8
½l1ðl1 þ 1Þ þ l2ðl2 þ 1Þ − lðlþ 1Þ&2

×
ð2l1 þ 1Þð2l2 þ 1Þ

4π

!
l l1 l2

0 0 0

"

×
#!

l l1 l2

2 0 −2

"
'
!

l l1 l2

−2 0 2

"$
: (A33)

Using Eqs. (A16) and (A17) and the orthonormality of
spin-ð'2Þ spherical harmonics, it is proved that

X

m3

ðþÞJ
ll3ll3
mm3mm3

¼ −l3ðl3 þ 1Þ½lðlþ 1Þ − 4& 2l3 þ 1

4π
:

(A34)

This finally leads to

RX ¼ −
1

2
½lðlþ 1Þ − 2&

X

l3

l3ðl3 þ 1Þ 2l3 þ 1

4π
Cϕϕ
l3
:

(A35)

4. Polarization power spectra

For the case of polarized angular power spectra, we
detailed our derivation of the lensed EB cross correlation
which can then easily be adapted to the case of EE and BB
angular power spectra. Following the same steps as the
ones used for ~CTB

l , we first note that

~CEB
l ¼ Re½hElmB⋆

lmi& þ Re½hEð1Þ
lmB

ð1Þ⋆
lm i&

þ Re½hElmB
ð2Þ⋆
lm i& þ Re½hEð2Þ

lmB
⋆
lmi&: (A36)

Each of these terms is given by

Re½hElmB⋆
lmi& ¼ CEB

l ; (A37)

Re½hEð1Þ
lmB

ð1Þ⋆
lm i& ¼ 1

4

X

l1;l2

CEB
l2
Cϕϕ
l1

X

m1m2

ðjðþÞI
ll1l2⋆
mm1m2

j2 − jð−ÞIll1l2⋆mm1m2

j2Þ − 1

4

X

l1;l2

ðCEE
l2

− CBB
l ÞCϕϕ

l1

X

m1m2

Im½ðþÞI
ll1l2

mm1m2
ð−ÞI

ll1l2⋆
mm1m2

&

(A38)
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Re½hElmB
ð2Þ⋆
lm i& ¼ 1

4
CEB
l

X

l3

Cϕϕ
l3

X

m3

Re½ðþÞJ
ll3ll3
mm3mm3

& þ 1

4
CEE
l

X

l3

Cϕϕ
l3

X

m3

Im½ð−ÞJ
ll3ll3
mm3mm3

& (A39)

Re½hEð2Þ
lmB

⋆
lmi& ¼

1

4
CEB
l

X

l3

Cϕϕ
l3

X

m3

Re½ðþÞJ
ll3ll3
mm3mm3

& − 1

4
CBB
l

X

l3

Cϕϕ
l3

X

m3

Im½ð−ÞJ
ll3ll3
mm3mm3

&: (A40)

From the fourth property, the second term in the right-hand
side of Eqs. (A39) and (A40) is vanishing. Similarly, the
second term in the right-hand side of Eq. (A38) is equl to
zero as a result of the second and third properties. There-
fore, both the primary EE spectrum and the primary BB
spectrum does not contirbute to the lensed EB angular
power spectrum.
An identical conclusion is easily derived for the case of

the lensed EE and BB spectrum as the primary EB power
spectrum does not contribute to the lensed EE and BB
spectra, since any contribution of CEB

l to ~CEEðBBÞ
l arises as

either proportional to ðþÞI
ll1l2
mm1m2

ð−ÞI
ll1l2⋆
mm1m2

or proportional to
P

m3 ð−ÞJ
ll3ll3

mm3mm3

, which are both vanishing. One finally

obtains the following expressions for the lensed angular
power spectra:

~CEE
l ¼ ½1þ RP&CEE

l þ
X

l1;l2

FðþÞ
ll1l2

Cϕϕ
l1
CEE
l2

þ
X

l1;l2

Fð−Þ
ll1l2

Cϕϕ
l1
CBB
l2

(A41)

~CBB
l ¼ ½1þ RP&CBB

l þ
X

l1;l2

FðþÞ
ll1l2

Cϕϕ
l1
CBB
l2

þ
X

l1;l2

Fð−Þ
ll1l2

Cϕϕ
l1
CEE
l2

(A42)

~CEB
l ¼ ½1þ RP&CEB

l

þ
X

l1;l2

ðFðþÞ
ll1l2

− Fð−Þ
ll1l2

ÞCϕϕ
l1
CEB
l2
; (A43)

with

Fð'Þ
ll1l2

¼ 1

4

X

m1;m2

jð'ÞI
ll1l2
mm1m2

j2; (A44)

RP ¼ 1

2

X

l3

Cϕϕ
l3

X

m3

Re½ðþÞJ
ll3ll3

mm3mm3

&: (A45)

The computation of RP directly follows from the compu-
tation of RTB and gives

RP ¼ −
1

2
½lðlþ 1Þ − 4&

X

l3

l3ðl3 þ 1Þ 2l3 þ 1

4π
Cϕϕ
l3
:

(A46)

Using the expressions of ð'ÞI
ll1l2

mm1m2

as functions of the

Wigner-3js and the summation rule for the product of two
such symbols, one can easily derive that

Fð'Þ
ll1l2

¼ 1

16
½l1ðl1 þ 1Þ þ l2ðl2 þ 1Þ− lðlþ 1Þ&2

×
ð2l1 þ 1Þð2l2 þ 1Þ

4π

×
#!

l l1 l2

2 0 −2

"
'
!

l l1 l2

−2 0 2

"$
2

: (A47)

APPENDIX B: FISHER MATRIX AND
MISCALIBRATION ANGLE

Let us consider the simple situation where the mode-
counting derivation of the covariance matrix on the angular
power spectra is used. In that case, the Fisher information
matrix can be re-expressed as

½F&ij ¼
fsky
2

X

l;m

Tr
#∂CðobsÞ

lm

∂θi CðobsÞ
lm

−1∂CðobsÞ
lm

∂θj CðobsÞ
lm

−1
$
; (B1)

with CðobsÞ
lm ¼ haðobsÞlm aðobsÞ †lm i the covariance matrix of the

T; E and B multipoles of the observed CMB maps. (We
remind the reader that, in the mode-counting approxima-
tion, those covariance matrices are supposed to be block
diagonal in ðl; mÞ-space.) If those multipoles are affected
by a global miscalibration, they are related to the CMB
multipoles by a rotation matrix:

aðobsÞlm ¼ Rð2ΔψÞ × alm þ nlm; (B2)

with

aðobsÞlm ¼

0

BBB@

aTðobsÞlm

aEðobsÞlm

aBðobsÞlm

1

CCCA (B3)

being the observed (systematically rotated and noisy)
multipoles,

alm ¼

0

BB@

aTlm
aElm
aBlm

1

CCA (B4)
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being the intrinsic (noiseless and unrotated) CMB
multipoles,

nlm ¼

0

B@
nTlm
nElm
nBlm

1

CA (B5)

being the instrumental noise, and

Rð2ΔψÞ ¼

0

BB@

1 0 0

0 cosð2ΔψÞ − sinð2ΔψÞ
0 sinð2ΔψÞ cosð2ΔψÞ

1

CCA (B6)

being a rotation matrix modeling the impact of miscalibra-
tion. Being a rotation matrix, it satisfies R†ð2ΔψÞ ¼
Rð−2ΔψÞ ¼ R−1ð2ΔψÞ.
On defining Clm ¼ halma†lmi and Nlm ¼ hnlmn

†
lmi,

both assumed to be block diagonal— which is only true
for homogeneous noise—, it is easily shown that

CðobsÞ
lm ¼ Rð2ΔψÞClmR−1ð2ΔψÞ þ Nlm: (B7)

Assuming finally that we are in such an experimental
setup where sampling variance is dominating, one
can neglect noise leading to CðobsÞ

lm ¼ RClmR−1 and
CðobsÞ

lm
−1 ¼ RC−1

lmR
−1.

It is straightforward to show that the Fisher matrix for
rð'Þ reduces to

½F&rð'Þrð'Þ
¼

fsky
2

X

l;m

Tr
#∂Clm

∂rð'Þ
C−1

lm
∂Clm

∂rð'Þ
C−1

lm

$
: (B8)

This simply means that for an experiment only limited by
cosmic variance, the block rð'Þ of the Fisher information
matrix is exactly the same as if there were no rotation.
Let us now consider the off-diagonal terms amounting

for the correlations between rð'Þ and Δψ , i.e.

½F&rð'ÞΔψ ¼
fsky
2

X

l;m

Tr
#! ∂R

∂Δψ ClmR−1 þRClm
∂R−1

∂Δψ
"

×RC−1
lm

∂Clm

∂rð'Þ
C−1

lmR
−1
$
: (B9)

Using the fact we are considering the trace and
M−1ð∂MÞ þ ð∂M−1ÞM ¼ 0, the above expression gives

½F&rð'ÞΔψ ¼
fsky
2

X

l;m

Tr
#
R−1 ∂R

∂Δψ

×
!∂Clm

∂rð'Þ
C−1

lm −C−1
lm

∂Clm

∂rð'Þ

"$
; (B10)

with

R−1 ∂R
∂Δψ ¼

 
0 0 0
0 0 −2
0 2 0

!
: (B11)

Because ð∂Clm
∂rð'Þ

C−1
lm −C−1

lm
∂Clm
∂rð'Þ

Þ does not depend on Δψ ,
this means that the correlations between parameters rð'Þ
and Δψ are independent of the value of Δψ .

[1] M. Zaldarriaga and U. Seljak, Phys. Rev. D 55, 1830
(1997).

[2] M. Kamionkowski, A. Kosowsky, and A. Stebbins, Phys.
Rev. Lett. 78, 2058 (1997).

[3] U. Seljak and M. Zaldarriaga, Phys. Rev. Lett. 78, 2054
(1997).

[4] D. N. Spergel and M. Zaldarriaga, Phys. Rev. Lett. 79, 2180
(1997).

[5] M. Zaldarriaga, Phys. Rev. D 55, 1822 (1997).
[6] M. Zaldarriaga and U. Seljak, Phys. Rev. D 58, 023003

(1998).
[7] P. A. R. Ade, Y. Akiba et al. (POLARBEAR Collaboration),

arXiv:1403.2369.
[8] P. A. R. Ade, R. W. Aikin et al. (BICEP2 Collaboration),

arXiv:1403.4302.
[9] W. Hu, M. N. Hedman, and M. Zaldarriaga, Phys. Rev. D

67, 043004 (2003).

[10] A. P. S. Yadav, M. Su, and M. Zaldarriaga, Phys. Rev. D 81,
063512 (2010).

[11] L. Pogosian, T. Vachaspati, and S. Winitzki, Phys. Rev. D
65, 083502 (2002).

[12] C. Caprini, R. Durrer, and T. Kahniasvili, Phys. Rev. D 69,
063006 (2004).

[13] T. Kahniashvili and B. Ratra, Phys. Rev. D 71, 103006
(2005).

[14] L. Sorbo, J. Cosmol. Astropart. Phys. 6 (2011) 003.
[15] M. H. Anber and L. Sorbo, Phys. Rev. D 85, 123537 (2012).
[16] J. L. Cook and L. Sorbo, J. Cosmol. Astropart. Phys. 11

(2013) 047.
[17] A. Kosowsky and A. Loeb, Astrophys. J. 469, 1 (1996).
[18] A. Kosowsky, T. Kahniashvili, G. Lavrelashvili, and B.

Ratra, Phys. Rev. D 71, 043006 (2005).
[19] L. Campanelli, A. D. Dolgov, M. Giannotti, and F. L.

Vilante, Astrophys. J. 616, 1 (2004).

A. FERTÉ AND J. GRAIN PHYSICAL REVIEW D 89, 103516 (2014)

103516-20

Chapter 7. Chiral Gravity 164



[20] C. Scóccola, D. Harari, and S. Mollerach, Phys. Rev. D 70,
063003 (2004).

[21] S. M. Carroll, Phys. Rev. Lett. 81, 3067 (1998).
[22] A. Lue, L. Wang, and M. Kamionkowski, Phys. Rev. Lett.

83, 1506 (1999).
[23] C. R. Contaldi, J. Magueijo, and L. Smolin, Phys. Rev. Lett.

101, 141101 (2008).
[24] J. Magueijo and D. M. T. Benincasa, Phys. Rev. Lett. 106,

121302 (2011).
[25] L. Bethke and J. Magueijo, Phys. Rev. D 84, 024014 (2011).
[26] L. Bethke and J. Magueijo, Classical Quantum Gravity 29,

052001 (2012).
[27] T. Kibble, J. Math. Phys. (N.Y.) 2, 212 (1961).
[28] A. Ashtekar, Phys. Rev. Lett. 57, 2244 (1986).
[29] J. -Q. Xia, J. Cosmol. Astropart. Phys. 01 (2012) 046.
[30] S. Saito, K. Ichiki, and A. Taruya, J. Cosmol. Astropart.

Phys. 09 (2007) 002.
[31] V. Gluscevic and M. Kamionkowski, Phys. Rev. D 81,

123529 (2010).
[32] POLARBEAR experiment website, http://bolo.berkeley.edu/

polarbear/?q=science; SPTPOL experiment website, http://
pole.uchicago.edu/; QUBIC experiment website, http://www
.qubic-experiment.org/; ACTPOL experiment website, http://
www.princeton.edu/act/.

[33] EBEX experiment website, http://groups.physics.umn.edu/
cosmology/ebex/; SPIDER experiment website, http://
cmb.phys.cwru.edu/ruhl_lab/spider.html.

[34] LiteBIRD experiment website, http://cmbpol.kek.jp/litebird/;
PRISM experiment website, http://www.prism-mission.org/
index.php; A. Kogut et al. (PIXiE), J. Cosmol. Astropart.
Phys. 07 (2011) 025.

[35] M. Zaldarriaga and D. Harari, Phys. Rev. D 52, 3276 (1995).
[36] W. Hu, Phys. Rev. D 62, 043007 (2000).
[37] A. Challinor and A. Lewis, Phys. Rev. D 71, 103010 (2005).
[38] G. Fabbian and R. Stompor, Astron. Astrophys. 556, A109

(2013).
[39] D. Blas, J. Lesgourgues, and T. Tram, J. Cosmol. Astropart.

Phys. 07 (2011) 034.
[40] J. Bock et al., http://www.cooray.org/EPICReport.pdf.
[41] WMAP experiment website, http://lambda.gsfc.nasa.gov/

product/map/current.
[42] B. Reichborn-Kjennerud et al., in Proceedings of SPIE.

EBEX: a balloon-borne CMB polarization experiment, San
Diego, California Vol. 7741 (2010), pp. 77411C.

[43] J. Grain, M. Tristram, and R. Stompor, Phys. Rev. D 86,
076005 (2012).

[44] E. F. Bunn, Phys. Rev. D 65, 043003 (2002).

[45] M. G. Hauser and P. J. E. Peebles, Astrophys. J. 185, 757
(1973).

[46] G. Hinshaw et al., Astrophys. J. Suppl. Ser. 148, 135 (2003).
[47] K. M. Smith, Phys. Rev. D 74, 083002 (2006).
[48] E. F. Bunn, M. Zaldarriaga, M. Tegmark, and A. de Oliveira-

Costa, Phys. Rev. D 67, 023501 (2003).
[49] K. M. Smith and M. Zaldarriaga, Phys. Rev. D 76, 043001

(2007).
[50] J. Grain, M. Tristram, and R. Stompor, Phys. Rev. D 79,

123515 (2009).
[51] T. Louis, S. Næss, S. Das, J. Dunkley, and B. Sherwin,

arXiv:1306.6692.
[52] A. Ferté, J. Grain, M. Tristram, and R. Stompor, Phys. Rev.

D 88, 023524 (2013).
[53] P. A. R. Ade, N. Aghanim et al. (Planck Collaboration),

arXiv:1303.5076.
[54] L. Verde, H. Peiris, and R. Jimenez, J. Cosmol. Astropart.

Phys. 01 (2006) 019; D. Baumann et al., AIP Conf. Proc.
1141, 10 (2009).

[55] F. Stivoli, J. Grain, S. Leach, M. Tristram, C. Baccigalupi,
and R. Stompor, Mon. Not. R. Astron. Soc. 408, 2319 (2010).

[56] J. Grain, A. Barrau, T. Cailleteau, and J. Mielczarek, Phys.
Rev. D 82, 123520 (2010).

[57] BICEP2 Collaboration, arXiv:1403.3985.
[58] M. Shimon, B. Keating, N. Ponthieu, and E. Hivon, Phys.

Rev. D 77, 083003 (2008).
[59] B. Keating, M. Shimon, and A. Yadav, Astrophys. J. Lett.

762, L23 (2013).
[60] M. Li and X. Zhang, Phys. Rev. D 78, 103516 (2008).
[61] W. Zhao and M. Li, arXiv:1403.3997.
[62] P. A. R. Ade, N. Aghanim et al. (Planck Collaboration),

arXiv:1303.5084.
[63] S

2
HAT, Scalable Spherical Harmonic Transform package in

http://www.apc.univ‑paris7.fr/APC_CS/Recherche/Adamis/
MIDAS09/software/s2hat/s2hat.html.

[64] PURES2HAT website: http://www.apc.univ‑paris7.fr/
APC_CS/Recherche/Adamis/MIDAS09/software/pures2hat/
pureS2HAT.html.

[65] I. O. Hupca, J. Falcou, L. Grigori, and R. Stompor, Lect.
Notes Comput. Sci. 7155, 355 (2012).

[66] M. Szydlarski, P. Esterie, J. Falcou, L. Grigori, and R.
Stompor, arXiv:1106.0159.

[67] K. M. Górski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K.
Hansen, M. Reinecke, and M. Bartelmann, Astrophys. J.
622, 759 (2005).

[68] D. M. Goldberg and D. N. Spergel, Phys. Rev. D 59, 103002
(1999).

DETECTING CHIRAL GRAVITY WITH THE PURE … PHYSICAL REVIEW D 89, 103516 (2014)

103516-21

Chapter 7. Chiral Gravity 165





Chapter 8

Primordial Physics through the

CMB Polarisation: Primordial

Magnetic Field

Lodestone is a mineral which is naturally magnetised. Its ability to attract iron has been no-

ticed since thousands of years and was used to built compasses for instance. The origin of this

phenomenon was however a mystery that, during Antiquity, Thales of Miletus or Lucretius had

attempted to elucidate. In the 13th Century, Pierre de Maricourt gave a first description of the

magnet properties in de Maricourt (1269), introducing the magnetic poles. The magnetic field

was explicitly introduced much later by Faraday in the 19th century, setting the foundation for

the Maxwell’s theory of electromagnetism in Maxwell (1865). Since then magnetic fields are ob-

served at di↵erent scales and strengths. The Earth indeed possesses a magnetic field of ⇠ 50µT

while the highest ones are produced by a type of neutron stars with an intensity of 1011T (Spruit

(2008)).While the origin of such fields is more and more understood, the origin of the ones

present on the largest scales of the Universe remains a mystery that the study of the primordial

Universe might help solving.

The origin of the cosmic magnetic field is unsettled. One possibility is that it has been produced

in the early Universe. Though potentially requiring exotic physics, such a primordial generation

would explain the coherence of the magnetic field on cosmological scales. However, an inverse-

cascade phenomenon transferring power from small scales to large scales is required to reach the

observed magnetic field intensity at large scales. This is possible if the magnetic field has an

helical component, which is predicted according to some mechanisms that could occur during the

primordial universe. The produced magnetic field would therefore be a source of temperature and

polarised CMB anisotropies and in particular would give TB and EB correlations. The CMB

polarisation is thus a probe of choice to set constraints on a potential helical primordial magnetic
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field. We propose a preliminary study, which is still in progress, to estimate the constraints set

by current experiments.

8.1 Primordial Magnetic Field

Magnetic fields are observed at large scales in the Universe with an amplitude of the microGauss

in galaxies clusters (Clarke et al. (2001),Bonafede et al. (2010)) and of at least the femtoGauss in

intergalactic medium (Tavecchio et al. (2010),Neronov and Vovk (2010)). Their origin remains an

open issue although various scenarios for their creation and evolution have been proposed taking

place either in the late time or in the primordial Universe. In the latter case, the production

of the magnetic field precedes the structure formation, occurring during the inflationary period

(Turner and Widrow (1988),Ratra (1992)) or during a phase transition (Vachaspati (1991)).

Such fields generated during the early universe are called primordial magnetic field (PMF).

Usually, a magnetic field ~B is said to be helical if the magnetic helicity does not vanish:

~B.
⇣
~r⇥ ~B

⌘
6= 0. (8.1)

In particular, it has been shown that a PMF can be generated with helicity (Cornwall (1997),Vachas-

pati (2001) or very recently in Caprini and Sorbo (2014)). A non vanishing helicity ensures the

amplification of the magnetic field via inverse cascade: the small scales power the largest scales.

The helical PMF therefore constitutes a potential origin for the cosmic magnetic field.

In the present study, the generation of a PMF taking place before the radiation-matter equality

by a given process is assumed. We consider the produced PMF to be a Gaussian random field

with an helical component. Thus all its statistical information is contained in its two point

correlation function which, following Caprini et al. (2004), can be written as:

D
Bi(~k)Bj(~k0)

E
=

(2⇡)3

2
�(~k � ~k0)

"✓
�ij �

kikj
|k|2

◆
S(k) + i✏ijk

kk

|~k|
H(k)

#
, (8.2)

with ✏ijk is the totally antisymmetric tensor and Bi(k) the Fourier transform of the magnetic

field. S and H are the symmetric and helical term respectively of the PMF power spectrum and

are assumed to follow a power law:

S(k) =

(
S0knS ifk < kD,

0 otherwise,
(8.3)

and,

H(k) =

(
H0knH ifk < kD,

0 otherwise,
(8.4)

with S0(H0) and nS(H) the amplitude and spectral index of the (anti)symmetric term of the

magnetic field power spectrum respectively. The wavenumber kD stands for the damping of the

magnetic field at small scales (Durrer et al. (2000)) and is assumed here to equal to 104Gpc�1.
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As shown in Caprini et al. (2004), the spectral indices nH/S have to verify some conditions.

Firstly, in order to avoid divergence of the magnetic field amplitude at large scales, they have

to be such as: nS > �3 and nH > �4. Secondly, as the symmetric term has to be larger than

the absolute value of the helical term, the condition: nH > nS. Thirdly, if the considered PMF

is generated by a mechanism taking place after the inflationary period, this mechanism has to

be causal boiling down to a suppression of the power spectrum on very large scales.This leads

to the following conditions on the spectral indices:

(
nS > 2, and even integer,

nH > 3, and odd integer.
(8.5)

An helical PMF would therefore be a promising source of the magnetic fields observed on cos-

mological scales today. Being primordial, it could have left its imprints in the CMB allowing us

to set constraints on such a field.

8.2 Impact on the CMB and Forecasts

The presence of a stochastic magnetic field in the early universe would have perturbed the

scalar, vector and tensor parts of the metric (see reference within Durrer and Neronov (2013)).

A PMF would have thus contribute to the CMB temperature and polarisation power spectra.

In particular, an helical PMF induces a symmetry breaking which is translated in non-vanishing

TB and EB correlations. In the following, we recap all the resulting computations regarding

the kind of perturbations and the reader is referred to the mentioned articles for the details. As

in Caprini et al. (2004), the CMB XY correlations CXY
` (with X,Y the T , E and B modes) are

split in contributions from the symmetric CXY
(S)` and helical CXY

(H)` parts:

CXY
` = CXY

(S)` � CXY
(H)`. (8.6)

Also, we have introduced an exponential damping of the CMB power spectra above a certain

multipole `cut:

CXY,cut
` = CXY

` ⇥ exp

✓
� `

`cut

◆
. (8.7)

Furthermore, di↵erent quantities and notations are introduces. The helicity density parameter

⌦H is defined as:

⌦H =
B�

8⇡⇢c
(kD�)nH+3 (8.8)

and its analogue quantity for the magnetic field energy density:

⌦S =
B�

8⇡⇢c
(kD�)nS+3 (8.9)

with B� the averaged magnetic field energy density smoothed over a sphere of comoving radius

� and B� is the same for the helicity of the magnetic field. Besides, we introduce the following
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quantities in order to simplify the expressions of the CMB power spectra:

C(S)0 =
A(S)0

(2nS + 3)�2(nS+3
2 )

, (8.10)

C(H)0 =
A(H)0

(2nH + 3)�2(nH+4
2 )

, (8.11)

with:

A(S)0 =


⌦S

⌦r
ln(

zin
zeq

)

�2
, (8.12)

A(H)0 =


⌦H

⌦r
ln(

zin
zeq

)

�2
, (8.13)

A(⇥)0 =
⌦H⌦S

⌦2
r(nH + nS + 2)�

�
nH+4

2

�
�
�
nS+3

2

�

ln(

zin
zeq

)

�2
, (8.14)

where ⌦r is radiation density parameter today, zin/eq is the redshift of the production of the

magnetic field and the matter radiation equality respectively. We also denote ⌘0 the distance to

the last scattering surface.

Scalar contribution

The scalar perturbations generated by an helical PMF are smaller than the tensor and vector

ones. They are therefore not considered in our analysis (Mack et al. (2002)).

Vector contribution

An helical PMF acts as a source of vector perturbations giving a non negligible vectorial con-

tribution to the CMB power spectra, explicitly computed in Kahniashvili and Ratra (2005).

We recap their expression in the following. For convenience, the CMB power spectra can be

expressed in the form:

CXY
` = CXY

(S)`

 
1� 2 (2nS + 3)

3 (2nH + 3)

H2
��
�
nS

2 + 3
2

�
knH�nS

D

B��
�
nS

2 + 2
�

!
RXY (8.15)

with X,Y , the T , E or B modes. Besides, we introduce:

C(V )
(S)0 = ↵decv

4
A� (8.16)

C(V )
(⇥)0 = �dec

v2A�v
2
H�

27(nH + nS + 2)�
�
nS

2 + 3
2

�
�
�
nH

2 + 2
� (8.17)

with ↵dec and �dec pre-factors depending on the cosmology, explicitly expressed in ?, vA� and

vH� the Alvén and helicity velocity respectively.

The symmetric and RBB contributions to the BB, and equivalently to EE, power spectre are

written as:

`2CBB
` =

8
<

:

(2⇡)2nS+10

54 C(V )
S0

`4

�(nS+3

2 )(2nS+3)

(k
D

⌘0)2nS+3

(k
�

⌘0)2nS+6

⇥
(kS⌘0)3 � `3

⇤
for nS > �3

2 ,

(2⇡)2nS+10

36 C(V )
S0

nS`
4

�(nS+3

2 )(2nS+3)(nS+3)2(k
�

⌘0)2nS+6

⇥
(kS⌘0)2nS+6 � `2nS++6

⇤
for � 3 < nS < �3

2 ,
(8.18)
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and, for nH > �3/2:

RBB '

8
<

:
1 for nH > �3

2 ,

2(nH+3)2

nS

⇣
k
D

kS

⌘2nS+3

for � 3 < nH < �3
2 ,

(8.19)

and, for �3 < nS 6 nH < � 3
2 :

REE ' (nH � 1)(nS + 3)2

nS(nH + 4)(nH + 3)

✓
kS
kD

◆2(nH�nS)

, (8.20)

with kS = 2⇡
LS

where LS is Silk scale.

The TB correlation is written as:

CTB
` =

8
>>><

>>>:

�`2 (2⇡)nS+nH+82nS+nH+4

27 C(V )
(⇥)0

(k
D

⌘0)
nS+nH+2

(k
�

⌘0)nS+nH+6 (kS⌘0)3 for nS + nH > �2,

�`nS+nH+7 (2⇡)nS+nH+72nS+nH+4

9 C(V )
(⇥)0

1
(k

�

⌘0)nS+nH+6
nH�1
nS+3

�(�nS�nH�5)

�(�nS
2 �nH

2 �2)2
for � 6 < nS + nH < �5,

�`2 (2⇡)nS+nH+7

9(nS+nH+5)C
(V )
(⇥)0

(kS⌘0)
nS+nH+5

(k
�

⌘0)nS+nH+6
nH�1
nS+3 for � 5 < nS + nH < �2.

(8.21)

The vector contribution to the EB correlation is negligible with respect to the TB correlation

and is therefore set to zero in our analysis.

Tensor contribution

In the case of the tensor contributions, Caprini et al. (2004), extending the work presented in

Pogosian et al. (2002), has derived all the CMB power spectra for a stochastic helical PMF. The

computations of the symmetric part of the power spectra are given in Mack et al. (2002).

The symmetric and helical contributions to the TT power spectrum are written as:

`2CTT
(S)` '

(
32(4⇡)2

27 C(S)0(
`

k
D

⌘0
)3 for nS > �3/2,

2(4⇡)4

9
p
⇡
C(S)0

�( 1
2�nS)

�(1�nS)
nS

nS+3 (
`

k
D

⌘0
)2nS+6 for� 3 < nS < �3/2,

(8.22)

`2CTT
(H)` '

(
32(4⇡)2

27 C(H)0(
`

k
D

⌘0
)3 for nH > �3/2,

(16
p
⇡)3

9 C(H)0
�( 1

2�nH)

�(1�nH)
nH�1
nH+4 (

`
k
D

⌘0
)2nH+6 for � 3 < nH < �3/2.

(8.23)

The symmetric and helical contributions to the EE power spectrum are written as:

`2CEE
(S)` '

8
>>>>><

>>>>>:

(4⇡)3

9 C(S)0(
`

k
D

⌘0
)2 for nS > �3/2,
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(nS+3)(2nS+4) (
`
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D

⌘0
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3
2 ln(
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D

⌘0
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9
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(8.24)

`2CEE
(H)` '
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>>>>><
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9
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k
D
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(8.25)
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The symmetric and helical contributions to the BB power spectrum are similar to the ones

contributing to the EE power spectrum:

`2CBB
(S)` '

8
>>>>><
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9 C(S)0(
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k
D

⌘0
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(8.26)
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The symmetric and helical contributions to the TE power spectrum are written as:
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The TB and EB correlations do not vanish in the presence of an helical PMF and their complete

expressions are:
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and
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(8.31)

In order to produce potential CMB power spectra which include the e↵ect of an helical PMF, we

have implemented the above analytic formulas with realistic values of the di↵erent parameters.

As an example, the figures 8.1,8.2 show the resulting BB and EB power spectra respectively for

the spectral indices: nS = 2.99 and nH = 2.5. The contribution to the BB power spectrum by an

helical PMF is shown along with the one from the standard model with r = 0.05. Up to ` = 40,

it exceeds the signal from the standard BB power spectrum: the largest angular scales are thus

of interest. Similarly, the contribution the helical PMF to the EB correlation is dominant at

low ` and then damped by the introduced cut-o↵ (`cut = 100 in this case).

The polarised power spectra and in particular the TB and EB correlations o↵er a promising

probe of primordial magnetic field. They can indeed help to set constraints on the amplitudes S0,

H0 and the spectral indices nS, nH of the PMF. In the same way as in the previous chapter, we
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Figure 8.1: The CMB BB power spectrum expected in the standard model with r = 0.05 in
black and the contribution from an helical PMF in dashed blue with nS = 2.99 and nH = 2.5.

Figure 8.2: The CMB EB correlation from an helical PMF with nS = 2.99 and nH = 2.5.

have thus performed a Fisher analysis to state on the detection of an helical PMF with current

experimental set up. We have studied the case of a CMB polarisation detection by a small scale

experiment such as the one described in Chapter 5. Also, as the PMF a↵ects the BB, TB and

EB correlations, we have considered the Fisher matrix given by these three correlators. Further-

more, we have considered the estimation of the PMF parameters jointly with the cosmological

parameter r. Our preliminary results were obtained using a mode counting estimation of the

uncertainties on the power spectra. The results show that, in this optimistic case, the magnetic

field parameters (apart from the amplitude of the helical part) can be detectable at 3� with a

suborbital experiments. This study needs now to be continued in the light of the results from the

previous chapters and especially to be performed using the pure estimation of the CMB power

spectra.
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Conclusion

The origin of the magnetic field on cosmological scales remains a mystery. In the recent years,

various mechanisms giving an explanation for its creation have been proposed. A promising

scenario is the generation of an helical magnetic field during the primordial universe, before

the radiation-matter equality. Such a magnetic field would have left its imprints in the CMB,

mainly leading to non vanishing TB and EB correlators due to the symmetry breaking induced

by the helical component of the PMF. We have forecast the constraints that one could set on an

helical PMF in the case of current ground based or balloon borne experiments thanks to analytic

expressions of the CMB power spectra induced by an helical PMF, found in the literature. The

results show that valuable constraints might be set on such a PMF. This work has been made as

part of my master 2 internship at IAS in 2011 and will be updated and continued in the coming

months, taking lessons from the results obtained during my PhD. In particular, the uncertainties

on the CMB power spectra must be realistically estimated to state on PMF detectability. As

shown in Chapter 5, the pure method would have therefore to be used along with variance

optimised window function. Also a satellite-like survey might be necessary to give constraints

on the magnetic field parameters as its contribution in the CMB anisotropies mainly dominates

at large angular scales. Furthermore, an additional source of vector and tensor perturbations

could be add in the CLASS code and thus could be used to simulate CMB power spectra in the

presence of a PMF.
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Chapter 9

Conclusion & Perspectives

The CMB B modes at large angular scales, when correctly estimated, are a unique probe to

explore the physics of the primordial Universe. They indeed are a smoking gun of the tensor

perturbations which are thought to be generated during the cosmic inflation. Owing to their low

amplitude, the CMB B modes detection is an instrumental and data analysis challenge. This year

2014 has however started a new era for the CMB B modes exploration. Thanks to instrumental

improvements, two experiments have recently announced having succeed in detecting the CMB

B modes. Firstly, the POLARBEAR experiment has directly detected the lensed B modes,

thus corroborating the standard model of cosmology. Later, the BICEP2 experiment claimed

that they had achieved a direct detection of the primordial B modes. Although controversial,

this discovery augurs outstanding performances of forthcoming experiments to set constraints

on the primordial universe.

Unfortunately, both space-based or suborbital experiments dedicated to CMB polarisation detec-

tion have only access to an incomplete part of the sky. A statistical issue arises when constructing

the B modes power spectrum on a masked sky: the E-to-B leakage. The E modes signal indeed

pollutes the amplitude and the variance of the B modes. This e↵ect can compromise B modes

detection due to the high level of the E modes with respect to the B modes. It could thus dam-

age the instrumental and data analysis e↵orts. Pseudospectrum methods, the so-called pure,

zb and kn methods, constructing B modes free from any leakage have therefore been proposed.

By construction, they theoretically exactly correct for the E-to-B leakage. The reconstructed

pseudospectra however show that, in practice, the leakage does not vanish when applied to pix-

elised CMB maps. Moreover, although the three considered pseudospectrum approaches rely on

the same concept – the reconstruction of the masked �B field –, they have distinct numerical

implementations. It thus leads to di↵erent e�ciency on B modes reconstruction in terms of sta-

tistical uncertainties. I have consequently performed an analysis, at the power spectrum level,

to state on their respective performances.

In the case of a small scale survey typical of current suborbital experiments, the sampling variance

does not allow a detection of the reionisation bump at ` ⇠ 2 � 10. A pure estimation of the

B modes power spectrum is however the most e�cient approach as it, at least, gives access to

the recombination bump at ` ⇠ 90 while the kn method fails at reconstructing the primordial
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B modes. The zb approach provides a moderate detection of the recombination bump with a

lower signal-to-noise ratio than using a pure estimation.

The case of a large scale survey characteristics of potential satellite experiment dedicated to

B modes detection is more striking. The zb and kn approaches only ensure a detection of

the recombination bump. The pure method provides remarkable results as the B modes power

spectrum is accurately reconstructed in all bins including the reionisation bump, the obtained

variances closely following the ideal ones. This performance originates from the use of the

pixel-based variance-optimised (PCG) window functions which are adapted to the pure method.

Although the sky coverage is high (⇠ 70%), an observed region with intricate shape (high ratio

between the perimeter and the area covered by the mask) indeed leads to an amount of leakage

comparable to the case of a small scale survey. I have therefore stated that in the case of a large

scale survey the use of PCG window functions o↵ers the flexibility required to optimise such

intricate mask thus allowing for an optimal B modes reconstruction. This statement is a key

issue that arises during my PhD work for it was not expected.

Figure 9.1: The signal-to-noise ratio of B modes detection for a satellite-like experiment. The
solid black line stands for the one using the ideal mode-counting estimation of the variance.
The red solid line is the one obtained from a pure B modes estimation along with pixel-based
variance optimised window function. The yellow line displays the signal-to-noise ratio using
the standard method to etimate B modes. The grey shaded areas set the 1�, 2� and 3� limits.
The B modes have to be carefully estimated to ensure at least a 3� detection. (Taken from

Ferté et al. (2013)).

As a consequence, the pure estimation using PCG optimised window functions results in an

e�cient B modes detection. As an illustration, the figure 9.1 displays the signal-to-noise ratio

CBB
` /

p
⌃`` on the `-by-` B modes reconstruction using the ideal mode-counting variances (in

black), the pure estimation (in red) and the standard method (in yellow). A standard pseu-

dospectrum reconstruction of the CMB polarised power spectra, thus not correcting for the

E-to-B leakage, prevent from a detection of the primordial B modes as the signal-to-noise ratio

is below 1 for ` . 100. It is therefore necessary to use the pure estimation with PCG window

functions for a primordial B modes detection. It results in a 3� detection for ` > 40. As a

result, the estimation of CMB B modes power has to be carefully done for an optimal primordial

B mode detection, the window function computation is consequently crucial particularly in the

case of large scale survey.
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The physics of the primordial Universe – such as the energy scale of inflation or the presence of

a magnetic field – can be probed by the CMB polarisation and in particular the B modes. I was

interested in the constraints that will be set by forthcoming or under development experiments

dedicated to the B modes detection. The adopted strategy is to estimate the CMB polarised

power spectra along with their statistical uncertainties and propagate them on relevant theo-

retical parameters thanks to the Fisher information matrix. The mode-counting estimation of

the uncertainties enable a first exploration of the parameters to be measured and is commonly

used to make forecast. It however underestimates the power spectrum uncertainties implying

the production of misleading forecasts. I therefore proposed to use the pure method for B modes

reconstruction, which e�ciency has been previously stated, to perform realistic forecasts.

I have first focused on the detection of the tensor-to-scalar ratio r, providing the amplitude of

the primordial gravitational waves and thus giving the energy scale of inflation. In the scope of

small scale surveys with a given sensitivity, an optimal observed sky fraction will provide the

highest signal-to-noise ratio on a given r. I have shown that the mode counting estimation of

the variances on B modes is reliable to find the optimal observed sky fraction. However, the

resulting signal-to-noise ratio on r is overestimated and the pure estimation is mandatory to

obtain realistic forecasts.

Moreover, I have performed forecast on r detection by three fiducial experiments corresponding

to a current suborbital experiment, a forthcoming telescopes array and a potential satellite

mission. The mode-counting results are spurious as it overestimates the forecasts by a factor of

3 to 5. A pure estimation of the B modes predicts that a large scale survey would have access

to r ⇠ 10�3, a half sky survey to r ⇠ 10�2 and a small scale survey to r ⇠ 10�1, at 3�. A half

sky survey would therefore be tolerable to discriminate between large and small field inflation

while a satellite experiment would be able detect small field inflation.

A parity violation in the primordial Universe would leave its imprints in the CMB TB and

EB correlations, vanishing in the standard model of cosmology. Following the same strategy as

previously, I have investigated the detectability of a parity breaking amount by the parameter �

in the case of a small scale and a full sky survey. The results are unequivocal: no constraints can

be set on � using a small scale experiment alone. Nevertheless, as it gives access to the largest

angular scales, a satellite experiment would provide a detection of a range of �. A 2� detection

is expected for a maximum of parity violation � = 100% for at least r = 0.05. Also, I have shown

that the miscalibration angle of the detectors has to be well estimated for an accurate estimation

of � in the case of a pseudospectrum approach. Such a parity breaking can be due to a parity

violation at the linear level of gravitation: � is thus related to the Barbero-Immirzi parameter

�. A detection of TB and EB correlations consistent with zero would exclude: 0.2 6 |�| 6 4.9

at 3� for r = 0.2. The presence of a magnetic field with an helical component in the primordial

universe would also induce TB and EB correlations. The amplitude and the spectral index of its

power spectrum are proved to be poorly constrained, even in the scope of a satellite experiment.

All this work has been done focusing on the pseudospectrum approaches to reconstruct

the B modes in order to set constraints on the primordial universe. This study can be extended
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to data analysis aspect or to the establishment of a model for the CMB polarised anisotropies.

The pseudospectrum methods are a method of choice for they are fast and reliable. Although

they are close to be optimal, we have shown that they nonetheless are not optimal specially

for the lowest multipoles which are precisely of interest to constrain the primordial Universe. A

maximum likelihood (ML) approach or a minimum variance quadratic estimator would ensure an

optimal reconstruction of the CMB polarised power spectra. A comparison with these optimal

approaches would therefore validate the use of pseudospectrum method. Also, the strategy

chosen to constrain the relevant parameters such as r or � involves the Fisher information matrix.

This implies to assume that the likelihood is Gaussian which is thought to be a fair approximation

for ` > few dozens. The constraints set on the parameters could therefore be non optimal and

potentially slightly overestimated. A ML or minimum variance quadratic estimator approaches

to estimate the parameters would assert the results of our analysis. As such optimal approaches

are numerically costly, the analysis can first be simplified under the assumption of azimuthal

symmetry of the noise and observed sky fraction. It has been implemented by J. Peloton and we

are now comparing the performances on r detection in order to validate the use of the B modes

pure estimation. In the end, this assumption is obviously not verified but the implementation

of optimal methods is numerically heavy avoiding to perform simulations. If validate, the pure

method would thus be a valuable tool for data analysis.

Moreover, the current implementation of the pure method only allows an estimation of the

variance using Monte Carlo simulations. In the scope of the data analysis, it can be misleading

as it implicitly assumes that the power spectrum is already well estimated or su�ciently a priori

known. An analytical expression has therefore to be found to allow an estimation of the variance

directly from the data and not from the simulations. This would potentially be done using the

same approach as the Xspect method in Tristram (2005).

More generally, the x2pure code, along with the window functions computation, are currently

used daily for data analysis, tests or forecasts. In the scope of proposals for satellite mission

and of all the current or forthcoming experiments dedicated to the CMB B modes, a robust and

reliable algorithm for CMB power spectra estimation is necessary. Several possible extents to

the x2pure code are relevant as it would allow its application to di↵erent experimental contexts.

Firstly, the current version of the x2pure code allows for a cross-spectrum estimation only on

the common region of the cross-correlated maps. Most current experiments are however based

on array of detectors, each of them reconstructing di↵erent maps which are thus not exactly

completely recovering. Also, the estimation of the CMB power spectra over two disjoint regions

of the sky would be of interest. The x2pure code could therefore be adapted for a cross-

spectrum estimation over not completely covering or totally disjoint sky patches. Secondly,

future experiments (foreseen for the years ⇠ 2020) are expected to lower their instrumental noise

down to 1µK-arcmin. In the low noise limit, the computation of the PCG window functions

appear to be very long: about 1000 iterations are required versus only dozens for typical current

experiments. The algorithm of the PCG window function computation have thus to be optimised

in the limit of low noise.

The auto- or cross-correlations of the CMB B modes with the temperature or E modes are used

to calibrate the polarisation detectors but above all are an important probe of the primordial
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universe. As shown in the present study, it can indeed test a parity violation at the level of

the gravitational waves or the presence of a magnetic field in the primordial universe. The TB

and EB correlations are however also a precious probe of the late time Universe. Induced by

Faraday rotation in clusters, they could indeed probe the large scales magnetic field structure.

Besides, these correlations can be used to test extensions of the standard model such as the

cosmic birefringence.

In summary, I have validated the use of e�cient statistical tools to estimate the CMB

polarised power spectra, a crucial preliminary step to constrain fundamental physics in the

primordial or late time Universe. The CMB polarised anisotropies containing a lot of information,

I have studied various cosmological e↵ects in order to distinguish their di↵erent features in the

CMB.





Appendix A

The Mixing kernels K``0

This appendix is dedicated to the expression of the mixing kernels in each considered pseudospec-

trum approaches. Their exact calculations can be found in the relevant articles.

The linear system relating the temperature and polarised pseudospectra to the true angular

power spectra is:
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We introduce the following notation:

WXY
` =

X

m

wX
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`m , (A.2)

with wX/Y
`m the multipoles of the window function W corresponding to the X/Y polarisation

modes: T , E or B. We denote:  
` `0 `00

s s0 s00

!
, (A.3)

the Wigner 3� j symbol, s being the spin. For convenience, we also define:

J±
s (`, `0, `00) =

 
` `0 `00

�2 + s 2 �s

!
±
 

` `0 `00

2� s �2 s

!
.

Standard Method

The calculations of the mixing kernels in the standard approach can be found in Appendix of

Tristram (2005). Their expressions are such as:
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with
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with X/Y standing for E or B modes.

Pure Method

The explicit calculations of the mixing kernels in the pure method can be found in Grain et al.

(2009).

If the spin window function are not independent, they write:
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If the spin-weighted window functions are independent, they write:
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where w(X)
s,`m are the multipoles of the spin-weighted window functions using the E and B de-

composition:

w(E)
0,`m = �w0,`m, (A.10)
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2
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zb and kn Method

The mixing kernels in the scope of the zb and kn method are written taking advantage of the

fact that �B is a scalar field. The mixing kernel therefore writes:
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The Kkn/zb,�
``0 mixing kernels are set equal to zero by construction.
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