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École doctorale : Physique et Astrophysique de Lyon

Présentée et soutenue publiquement le 5 novembre 2014
par

Monsieur Mickaël Melzani
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Abstract

English

The purpose of this thesis is to study magnetic reconnection in collision-
less and relativistic plasmas. Such plasmas can be encountered in various
astrophysical objects (microquasars, AGNs, GRBs...), where reconnection
could explain high-energy particle and photon production, plasma heating,
or transient large-scale outflows. However, a first principle understanding of
reconnection is still lacking, especially in relativistic ion-electron plasmas.
We first present the basis of reconnection physics. We derive results relevant
to relativistic plasma physics, including properties of the Maxwell-Jüttner
distribution. Then, we provide a detailed study of our numerical tool,
particle-in-cell simulations (PIC). The fact that the real plasma contains
far less particles than the PIC plasma has important consequences concern-
ing relaxation times or noise, that we describe. Finally, we study relativistic
reconnection in ion-electron plasmas with PIC simulations. We stress out-
standing properties: Ohm’s law (dominated by bulk inertia), structure of
the diffusion zone, energy content of the outflows (thermally dominated),
reconnection rate (and its relativistic normalization). Ions and electrons
produce power law distributions, with indexes that depend on the inflow
Alfvén speed and on the magnetization of the corresponding species. They
can be harder than those produced by collisionless shocks. Also, ions can
get more or less energy than the electrons, depending on the guide field
strength. These results provide a solid ground for astrophysical models
that, up to now, assumed with no prior justification the existence of such
distributions or of such ion/electron energy repartition.
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Français

L’objectif de cette thèse est l’étude de la reconnexion magnétique dans
les plasmas non-collisionels et relativistes. De tels plasmas sont présents
dans divers objets astrophysiques (MQs, AGNs, GRBs...), où la reconnex-
ion pourrait expliquer la production de particules et de radiation de haute
énergie, un chauffage, ou des jets. Une compréhension fondamentale de
la reconnexion n’est cependant toujours pas acquise, en particulier dans
les plasmas relativistes ion-électron. Nous présentons d’abord les bases de
la reconnexion magnétique. Nous démontrons des résultats particuliers à
la physique des plasmas relativistes, concernant par exemple la distribu-
tion de Maxwell-Jüttner. Ensuite, nous réalisons une étude détaillée de
l’outil numérique utilisé : les simulations particle-in-cell (PIC). Le fait que
le plasma réel contienne beaucoup plus de particules que le plasma PIC
a des conséquences importantes (collisionalité, relaxation, bruit) que nous
décrivons. Enfin, nous étudions la reconnexion magnétique dans les plas-
mas ion-électron et relativistes à l’aide de simulations PIC. Nous soulignons
des points spécifiques : loi d’Ohm (l’inertie de bulk dominante), zone de
diffusion, taux de reconnexion (et sa normalisation relativiste). Les ions et
les électrons produisent des lois de puissance, avec un index qui dépend de
la vitesse d’Alfvén et de la magnétisation, et qui peut être plus dur que
dans le cas des chocs non-collisionels. De plus, les ions peuvent avoir plus
ou moins d’énergie que les électrons selon la valeur du champ guide. Ces
résultats fournissent une base solide à des modèles d’objets astrophysiques
qui, jusque là, supposaient a priori ces résultats.
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Outline of the manuscript

The purpose of this thesis is to contribute to the understanding of magnetic
field reconnection in relativistic and collisionless plasmas, with applications
to relativistic outflow production, non-thermal particle acceleration, and
high-energy radiation in the context of various high-energy astrophysical
objects. The outline can be summarized as follows:

Chapter Content and aim

1 Introduction.

2 Fundamentals of reconnection and state of the art.
Introductory chapter to the field.

3 Elements of relativistic plasma physics.
Mostly technical, list of formula and tools.

4 and 5 Presentation, tests of the PIC code.
PIC against real plasma, effects of coarse-graining.
Include important results concerning PIC algorithms.
Mostly contain the article Melzani et al. (2013) (and its
shorter version Melzani et al. 2014a).

6 and 7 Ion-electron relativistic reconnection with PIC simulations.
Main results of the manuscript.
Mostly contain, for respectively Chapter 6 and 7, the articles
Melzani et al. (2014b,c).

8 Summary and perspectives.

In addition to the introduction (Chapter 1) and conclusion (Chapter 8),
the manuscript is divided in four main parts, that we detail below.

The second chapter exposes the principles of magnetic reconnection and
reviews the state of the art regarding this complex subject. Its first sections
(from 2.2 to 2.7) are a pedagogic introduction to reconnection physics. They
are mostly addressed to students or researchers new to the field. The re-
maining sections (from 2.8 to 2.14) are more advanced, and address the
latest (and often still ongoing) developments on the subject. The chapter
reviews many topics: large scale MHD motions, magnetic field geometries
and their perturbations in 3D allowing reconnection, magnetic separatri-
ces, dissipation zone and non-ideal microphysics, turbulence, and others.

ix



x Outline of the manuscript

It also invokes several examples in the Earth’s and Sun’s magnetospheres
or in astrophysical objects. One of the aim of this variety is to underline
that magnetic reconnection cannot be understood on the basis of one aspect
only (such as 2D kinetic studies, 3D MHD simulations, observations, ...),
but requires a knowledge of all of its facets. Indeed, large scale dynamics
sets the geometry where the reconnection will start, and these geometries
can be 2D-like or fully 3D and have to be known and understood. Only then
kinetic studies can explore the properties of the reconnection itself, with ki-
netic effects possibly occurring on rather large scales (e.g., along magnetic
separatrices). Energy conversion is then a key issue, and the heated plasma,
the launched outflows, or the non-thermal particle populations, feedback on
the large scale motions, sometimes in an essential way by providing the very
source of heating or of outflow production at large scales.

The third chapter introduces notions and derives results concerning rel-
ativistic plasma dynamics. The aim is to gather relations or methods useful
for relativistic plasma physics, that are often scattered in the literature. It
may be of interest for researchers to pick up some results here. Part of the
material presented is already known, part of it is new, including a relativistic
Harris equilibrium for arbitrary mass and temperature ratios, expressions
for the moments of Maxwell-Jüttner distribution, and a method to correctly
load this distribution in a particle-in-cell code.

The fourth and fifth chapters are devoted to numerics: we study the
tools – particle-in-cell (or PIC) algorithms – that we use to investigate
magnetic reconnection. In Chapter 4, we detail the algorithm. There are
several PIC methods available, and we believe that the interpretation of
numerical results justifies a precise knowledge of the method employed and
of its limits. We also conduct several validation tests, that will assert the
validity of our results. In Chapter 5 we discuss the limits of the PIC method
to describe a plasma, with an emphasis on the fact that the PIC plasma
contains only a few particles per Debye sphere, while for the real plasma
this number amounts to millions. This approximation has consequences on
the thermalization times, the slowing-down time of fast particles, or on the
level of fluctuations, that we explore quantitatively for the first time with a
3D electromagnetic PIC code. We underline that the artificially enhanced
collisional physics must be kept negligible toward the collisionless processes.
The conclusions help us to correctly conduct our numerical experiments.

The sixth and seventh chapters are the heart of this work, and represent
our contribution to the understanding of magnetic reconnection. Armed
with the previous parts, we explore reconnection in relativistic collision-
less plasmas with PIC simulations, for the first time in the literature in
an ion-electron plasma. Such plasmas are present in active galactic nuclei
and microquasar disk coronae, in extragalactic jets, or possibly in micro-
quasar jets and gamma-ray burst jets, where several key features remain
unexplained and possibly linked to reconnection. As previously underlined,
reconnection is a multi-scale subject for which each building block has to
be understood. Here we concentrate on a two-dimensional setup, simulated
around the central dissipation region (and not, e.g., along extended separa-
trices). This is motivated by the large values reached by the reconnection
electric field in relativistic reconnection, so that the central area is expected
to produce high-energy particle populations. Chapter 6 explores the spe-
cific aspects of relativistic reconnection. In particular, we show that at
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relativistic inflow magnetization, bulk inertia dominates in Ohm’s law, and
the outflows are thermally dominated. We also study the reconnection rate
and the diffusion region structure, with the evidence for sharp transitions
at low beta. Chapter 7 focuses on the energetics of the reconnection event.
We show that particles from the background plasma form power law distri-
butions as soon as the inflow plasma magnetization is larger than unity and
that the inflow Alfvén speed is mildly relativistic. These two parameters
also control the hardness of the distribution, that can be harder as com-
pared to collisionless shocks. This holds for ions and for electrons. We also
study the energy repartition between ions and electrons, and show that it is
mainly influenced by the guide field strength, with ions getting more energy
than electrons at low values, and vice versa at higher values. Finally, we
draw some conclusions regarding astrophysical applications, where power
law indexes and ion-electron energy repartition are key parameters.
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Chapter 1

Introduction

This reminds him of the way blood plasma carries around red
and white corpuscles and germs. So he proposed to call our
“uniform discharge” a “plasma”. Of course we all agreed.

Mott-Smith (1971), referring to Irving Langmuir coining the

word plasma in 1927

Contents

1.1 Motivation of the present study . . . . . . . . . . . . . . . . . 1
1.2 Basic principles . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 An (incomplete) account of magnetic reconnection applications 4
Appendix 1.A References for orders of magnitude . . . . . . . . . 11

In this introductory chapter, we first expose the reasons that led us to
study magnetic reconnection in relativistic ion-electron plasmas and to fo-
cus on the central non-ideal dissipation region (Sect. 1.1). We then briefly
explain the basic idea of reconnection, showing that particle-in-cell algo-
rithms are well suited in this case (Sect. 1.2). We next turn to an overview
of environments where reconnection is a key player (Sect. 1.3), and we de-
tail in Appendix 1.A the orders of magnitude of the plasma parameters
encountered in these objects.

1.1 Motivation of the present study

Magnetic reconnection occurs in man-made plasmas like those of tokamaks
or inertial fusion devices, in natural plasmas as close as our magnetosphere,
200 km above the surface of the Earth, and as far as in gamma-ray bursts
looming at the edge of the observable universe. It is a fundamental plasma
process, a key element to many plasma dynamical evolutions.

Intuitively, magnetic reconnection happens when two magnetic field lines
are pushed together, cut at their intersection point, and reconnected with
one another. Reconnection has been an active area of research since its
introduction by Giovanelli (1947, 1948) to explain the sudden release of
energy in solar flares. The change of field line connectivity involves magnetic
flux variations and induced electric fields, that convert magnetic energy
into particle kinetic energy, either heat, bulk motion, or high-energy non-
thermal particles. The amount of energy channeled in each of these three
components, the rate at which the transfer occurs, the spectrum of the

1



2 Chapter 1

possible non-thermal component, the velocity of the ejected bulk flows, the
conditions allowing reconnection to happen, especially in 3D geometries, or
the back-coupling of reconnection events to large scales, are all questions
that are still being actively investigated and to which, for a few of them and
for some regimes, we want to provide answers.

Magnetic field reconnection was first applied to space physics, i.e., to a
variety of phenomena taking place in the Earth’s magnetosphere and in the
Sun’s heliosphere: magnetic storms and substorms, coronal heating, solar
flares, coronal mass ejections, solar jets, and so on. It is also a key element
in man-made machines such as tokamaks, and is studied in dedicated exper-
iments. Inspired by its success in space and solar physics, reconnection was
later used in high-energy astrophysics because whenever magnetic energy is
present in large amounts, it is a way to quickly produce high-energy parti-
cles and radiation in flare-like events, as observed in pulsar wind nebulae,
extragalactic jets, microquasars or gamma-ray bursts, or to heat the corona
formed above dense objects such as the accretion disks of X-ray binaries
and of active galactic nuclei, or to launch transient large scale outflows like
possibly in microquasars and gamma-ray bursts.

The plasmas of these high-energy objects often feature a magnetization
larger than unity, which means that there is more energy in the magnetic
field than in the particles’ restmass. The transfer of magnetic energy can
consequently produce relativistic particles, and reconnection in such regimes
is termed relativistic reconnection. There is a lack of first principle studies
in these regimes. Questions such as whether reconnection exhibits specific
aspects when relativistic, or regarding the hardness of the particle distribu-
tions at high-energies, remain open. In addition, all the presently existing
studies of relativistic reconnection concern pair plasmas (see the references
of Sects. 6.2 and 7.2), but ion-electron relativistic plasmas are expected for
instance in microquasar coronae, or to some extent in microquasar jets, ex-
tragalactic jets, gamma-ray bursts, or radio galaxy lobes. In particular, the
questions of the energy distribution between ions and electrons, as well as
the possibility to produce high-energy ions, are very relevant. This is why
we mostly focus on such plasmas.

One of the most challenging issue regarding reconnection is its multi-
scale nature, both in time and space. In a given environment, large scale
dynamics set the stage for reconnection events to take place. How often
and with which magnetic geometry is a first question. Reconnection events
then take place locally. What is the outcome of these individual events, in
terms of energy distribution and timescale, is another question, which now
involves microphysical scales. In return, the small scale reconnection events
have a dramatic influence on the large scales, by changing the field line con-
nectivity, thus allowing the magnetic field to be rearranged to a different,
lower energy state. The result is global plasma heating, large scale motions
and outflows, or out-of-equilibrium particle populations significantly con-
tributing to the plasma dynamics. Even the small scale reconnection events
are expected to imply a large range of spatial and temporal scales, with
energy conversion occurring both around the central non-ideal region and
further downstream along the magnetic separatrices. All these questions
cannot be addressed at once, and should first be understood separately. In
the present work we choose to restrict ourselves to collisionless ion-electron
plasmas, to 2D setups, and to the physics at and around the central non-
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ideal region. The choice of this location is justified by the fact that the
reconnection electric field induced in the central non-ideal region, compared
to the magnetic field, is all the more strong than the inflow Alfvén speed is
large (Eq. 6.14). When the latter is relativistic, large electric to magnetic
field ratios are reached, which leads to extended non-ideal regions, and to
significant non-thermal high-energy particle production. Of course, energy
conversion at other locations, especially along the separatrices, should also
be investigated.

1.2 Basic principles

In order to better understand the whys and hows of the present work, it
is necessary to briefly expose the basic principles of magnetic reconnection
and of particle-in-cell algorithms.

The fundamental principle for the triggering of magnetic reconnection is
that magnetic field flux variations induce, via Faraday’s equation, electric
fields. These induced electric fields imply a response from the plasma, that
tries to screen it. An ideal plasma (where the electrons are massless, never
collide, ...) does so perfectly, and the currents arising from charges set
in motion by these electric fields produce magnetic fields that cancel the
former magnetic flux variations: reconnection cannot occur, magnetic field
lines cannot break apart. Non-ideal effects are thus needed for reconnection
to initiate. Once initiated, these same non-ideal processes sustain the finite
reconnection electric field and allow reconnection to go on. It is remarkable
that slow and large scale motions of the ideal plasma can move the magnetic
field to produce metastable configurations, where non-idealness becomes
important. The system then relaxes its energy during explosive reconnection
events where, due to field line breaking, the magnetic field can be rearranged
on large scales and can reach lower-energy states with a transfer of the
previously stored magnetic energy to the plasma (see Fig. 2.1).

The first non-ideal effect advocated in the pioneering works of Sweet
(1958) and Parker (1957, 1963) was ion-electron collisions, i.e., a finite re-
sistivity. It was however realized at the same time that collisional resistiv-
ity results in very slow reconnection events, much too slow to explain the
fast energy release seen in solar flares. Fast reconnection was thus sought.
Petschek (1964) model, and its extensions by Priest and Forbes (1986) (see
Priest 2011), provided faster rates, but were theories of the outer ideal zone
surrounding a very localized non-ideal zone with a non-ideal mechanism un-
specified. Whether they hold in real plasmas and under which conditions
was not clear.

Since the environments quoted above are nearly or completely collision-
less, the question of fast reconnection in collisionless plasmas was openeda.
Important advances were allowed by the rising computer power available
to conduct numerical simulations. Among the different numerical methods,
particle-in-cell simulations were maybe the ones that produced the most
interesting results. They are still actively in use today, and it is by means
of such simulations that we will investigate magnetic reconnection in Chap-
ters 6 and 7.

aThe question of fast reconnection in collisional environments, such as observed in the
solar chromosphere, is also not settled.
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Particle-in-cell (PIC) codes are in use since 1965, and consist in sim-
ulating the trajectories of particles subjected to the Lorentz force, with
electric and magnetic fields stored on a grid and computed from the parti-
cles themselves. As every model, it comes with approximations that have
to be well understood and controlled. The two main ones for PIC models
are field storage on a grid, which implies that particles have a finite size
equal to that of the grid, and coarse-graining. The latter stems from the
limited capabilities of computers that can handle only up to 1010 particles,
while real plasmas comprise up to 1020 real particles per Debye sphere: each
computer particle actually represents a large number of real particles. The
effects of coarse-graining and the differences between real, PIC and Vlasov
plasmas are explored in Chapter 5. We first present and test our own code
in Chapter 4.

The plasmas we are interested in are collisionless plasmas. What does
collisionless exactly means? In these plasmas, the mean distance traveled
by a particle between two collisions vastly exceeds the relevant lengths of
the system or of the physical process studied (system size, gradient scales,
wavelengths, instability scales, microphysical scales, ...). Particle interac-
tions then occur through the electric and magnetic fields in a collective
way: one particle interacts with the fields generated by many others. Cor-
relations between smaller numbers of particles can also happen, and compli-
cate things. Collisionless plasmas are complex systems, highly non-linear,
where a whole zoo of waves and instabilities have been discovered. It has
been found that shocks can form and live without collisions, that waves can
be damped by collisionless dissipation, and that reconnection can happen
without collisional resistivity.

The mean time between two collisions is given by the plasma period
times the plasma parameter Λb, where Λ is the number of particles per
Debye sphere, so that plasmas with large Λ are likely to be collisionlessc. A
large Λ also implies a small level of correlation between particles. Figure 1.1
summarizes the value of Λ for several objects, and gives an idea of which
objects hold collisionless plasmas. Magnetic reconnection is important in
almost all of them.

1.3 An (incomplete) account of magnetic recon-
nection applications

We now give an overview of the variety of environments filled by collisionless
plasmas and of the importance of magnetic reconnection. The discussion is
more general and historical than technical – orders of magnitude are drawn
in Fig. 1.1, and many details can be found in the references (including those
of the figure in Appendix 1.A).

bActually, it takes less time to deviate a particle by 90o by many grazing collisions,
than by a single large angle collision. The 90o collision time so defined is Λ/ log Λ times
the plasma period. However, we neglect the contribution of the Coulomb logarithm log Λ
for the present discussion.

cBut a large Λ does not guarantee the plasma to be collisionless. A large Λ is an in-
trinsic property of the plasma, while collisionless behavior is defined via comparison with
other time- and length-scales. For example, the collisionless nature of magnetic reconnec-
tion does not depend only on Λ, but on the thickness of the current sheet compared to
kinetic lengths (this is the subject of Sect. 2.11.3).
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Figure 1.1: Orders of magnitude in number density ne and temperature Te for
different environments. The colorbar represents the plasma parameter Λ, i.e., the
number of particles per Debye sphere. Also shown is the electron Debye length
λDe. References for these numbers are listed in Appendix 1.A. In Sect. 2.11.3,
and especially in Fig. 2.42, we discuss which of these environments are collisionless
with respect to magnetic reconnection. Table 7.5 also gives estimates specific to
high-energy objects.

Earth and solar physics

Ptolemy, who was maybe the most influential physicist of the western world
between 100 and 1500 A.D., described the Earth and its surroundings as
composed of four concentric spheres, made of four fundamental substances:
solid rock at the center of the Earth, liquid water on top of it, gaseous air
for the atmosphere, and fire surrounding it.

He was not far from some truth. Above 50 km, the atoms of the atmo-
sphere are partly ionized by ultraviolet and X-ray radiation from the Sun,
so that the Earth is indeed surrounded by matter in a fourth state, the
plasma state, consisting of neutral atoms, of charged ions and of their elec-
trons. The ionosphere is of great help to reflect radio waves and to allow
their transmission around the globe, and it was from the first successful
transatlantic radio transmission that its existence was inferred in 1902. It
was later confirmed in 1924 by the radio experiments of Edward Appleton
(see Appleton 1947).

Above the ionosphere space is filled by plasma expelled – both contin-
uously and in large bursts – from the Sun’s corona. The first documented
connection between solar activity and phenomena on Earth was made by
Carrington (1859) and Hodgson (1859), who reported an observation of a
solar flare – a bright flash at the Sun’s surface – associated, 18 hours later,
with large magnetic disturbances in the Earth magnetic field and large auro-
ral activity: something must have flown from the Sun to the Earth. Starting
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Figure 1.2: Reproduction of Birkeland’s terella at Tromsø museum. A potential
difference is applied between the cathode (the stick on the left) and the terella (the
sphere), so that a stream of electrons flows from the cathode to the terella. The
terella is an electromagnet representing the Earth and its dipolar magnetic field,
and vacuum is made in the chamber. The electrons follow the field lines and emit
radiation when encountering the surface of the terella.

from 1897, Birkeland made decisive steps by conducting extensive observa-
tions of aurorae and by reproducing them in the laboratory with his terella
experiments (Fig. 1.2), and explained them by charged particles, ions and
electrons, coming from the Sun and entering the Earth’s atmosphere.

These sporadic and violent eruptions of plasma coming from the Sun
are named coronal mass ejections (CMEs), and they are now explained by
large scale reconnection events (see Sect. 2.10.6). CMEs are one of the
manifestations of the complex dynamics of the coronal magnetized plasma.
Magnetic fields are generated by dynamo processes under the surface of the
Sun, up to a local equipartition with the thermal and convective energies.
They rise up to the surface, and form an entangled web of emerging magnetic
flux tubes that populate the solar corona and dominate the energy budget.
These flux tubes are anchored in the Sun’s surface at their footpoints, and
are thus entrained by motions of the Sun’s surface (as in Fig. 1.3). When
two flux tubes are brought together their magnetic fields reconnect, thus
transferring energy to the plasma, and providing a possible explanation for
the heating of the corona to millions of Kelvins. These reconnection events
also lead, depending on the geometry, to a large variety of phenomena at all
heights in the solar atmosphere: the bright solar flares, ejections of plasma
in space during solar jets or coronal mass ejections, etc (see Sect. 2.10.7
and 2.10.8).

It took some time to reach this picture of a Sun whose dynamics is,
starting from the chromosphere, dictated by magnetic field and magnetic
field reconnection. Hale (1908) described vortices around sunspots and, with
measurements using Zeeman’s effect, showed that sunspots are magnetized
(for a review see Harvey 2006). Giovanelli (1947, 1948) then explained solar
flares by a transfer of energy from magnetic to kinetic form, via electric fields
created at neutral points by induction when the magnetic field of sunspots
varies because of their growing. This was an electromagnetic description,
and magnetohydrodynamics (MHD) was just appearing from the works of
Alfvén (1942). The frozen-in flux concepts then appeared along with notions
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Figure 1.3: Active regions in the solar atmosphere (or sunspots). This is an
ultraviolet view by SDOd. Particles gyrating around the field lines as they travel
along them emit in this wavelength, so that what we see are indeed magnetic field
lines.

of topology, and a MHD description of flares was built by Dungey (e.g.,
Dungey 1958), who also coined the term “magnetic reconnection”.

In addition to these transient outbursts, the Sun also emits a continuous
stream of particles named the solar wind. It originates from the Sun’s hot
corona, as predicted by Parker in 1958. Reconnection events occur also in
the solar wind.

The Earth also has its own magnetosphere, generated by dynamo pro-
cesses in its conducting iron liquid outer core. The solar wind meets this
magnetosphere with a supersonic and superalfvénic velocity, so that a bow
shock forms around the Earth (Fig. 2.15). Several satellites have crossed
and studied this shock. It has a width of roughly 1000 km, while the mean
free path of particles between two collisions is of the order of 0.1 AUe, and
the shock is thus completely collisionless. Outbursts from the Sun, such as
CMEs, carry plasma and magnetic field. When they reach the Earth, the
magnetosphere is contracted and electric currents are induced, leading to
particles being accelerated and pushed inside the magnetosphere. It results
in a magnetic storm, with for visible consequences large auroral display,
and large perturbations in the magnetic field. Moreover, on the dayside the
magnetic field of the Earth is directed northward: if the magnetic field from
the solar disturbance is directed southward, then large reconnection events
can occur, allowing even more plasma from the Sun to enter the Earth’s
magnetosphere and particles to gain energy. The currents induced in man-
made electrical arrays can provoke important damages to electric power
infrastructures (Schrijver et al. 2014), and it is believed that a Carrington-
like event would have a severe impact. Another kind of event are geomag-
netic substorms, which are smaller in terms of timescale and amplitude,
and which occur more frequently (several can occur during a geomagnetic
storm). They are triggered when a reconnection event takes place in the

dFor more pictures and movies from SDO, see http://sdo.gsfc.nasa.gov/gallery/.
eOne Astronomical Unit is ∼ 150× 106 km.

http://sdo.gsfc.nasa.gov/gallery/


8 Chapter 1

tail of the Earth magnetic field, then producing particle outflows directed
toward the Earth and penetrating deeply into Van Allen belts. First steps
into the understanding of these phenomena were undertaken by Chapman
and Ferraro (1930) and Dungey (1961).

The solar wind ends its direct course at 120 AU from the Sun, where it
stalls through a termination shock with, on the other side, the interstellar
medium (ISM). The Voyager 1 spacecraft, launched in 1977, is currently
crossing this shock. The cause of the large scale solar magnetic field can be
approximated by a magnetic dipole, the axis of which is not aligned with
the rotation axis of the Sun. There is thus an area above and below the
ecliptic plane where the magnetic field reverses its polarity at every turnf.
When these reversals reach the termination shock, they are compressed, and
the opposite magnetic fields can be forced to reconnect. This scenario may
explain part of the high-energy particles that we receive on Earth (Drake
et al. 2010).

Of course, satellites are privileged tools to observe closely space plasmas.
They can be divided into two categories: those that observe the Sun’s or
the Earth’s atmosphere by collecting photons in various wavelengths, and
those that measure in-situ electromagnetic fields and particle velocities and
distributions. The solar atmosphere is observed by the first category, which
includes Soho, Trace, Hinode, SDO, or Stereo. The Earth’s magnetosphere
and the solar wind are mostly analyzed by satellites from the second cate-
gory, which includes Geotail, Wind, Cluster, or Themis (see Yamada et al.
2010, for a short description and references). The structure of a reconnec-
tion event is best studied by several probes, and the Cluster and Themis
missions actually consist in, respectively, four and five identical satellites
that flight in close formation. The upcoming MMS mission will also be
composed of four satellites.

Laboratory experiments

Magnetic reconnection also occurs on Earth, inside man-made machines
such as magnetic or inertial fusion devices. In particular in tokamaks, re-
connection events can disturb the overall equilibrium via the sawtooth insta-
bility, and lead to disruptions (Yamada et al. 2010). Reconnection in ITER
will be collisionless (Fig. 2.42), and it strongly motivates an understanding
of this process in tokamak geometries.

In addition, several experiments dedicated to the study of reconnection
have been built. They include TS-3, SSX, MRX, or VTF (see Yamada et al.
2010, for a short description and references). They often use geometries with
two parallel current coils that each produce a circular magnetic field, that
can be pushed against each other by moving the coils (as in Fig. 2.10). Typ-
ical parameters are shown in Fig. 1.1 (see also Appendix 1.A for magnetic
fields). Laser experiments are also emerging, in which two laser beams pro-
ducing circular magnetic fields are focused close together on a target (e.g.,
Ping et al. 2014). Interestingly, such devices may reach relativistic regimes.

fNote that the large scale magnetic field of the Sun is not simply a dipole, because it
is dragged by the Solar wind, resulting in the Parker spiral.



Chapter 1 9

Galactic and extragalactic objects

The realm of plasmas is not restricted to circumstellar environments, and
the interstellar medium that fills the space between the wind bubbles blown
up by starsg is also in a plasma state. Plasmas are produced by many
high-energy objects lying in our Galaxy and outside, objects that produce
highly magnetized outflows and/or magnetized coronae, where magnetic
reconnection can play an important role. Unlike for the Sun or the Earth’s
magnetosphere, these objects are not observed closely. The role of magnetic
reconnection to create flares, outflows, or heat, is thus harder to assert.
Studies must rely on knowledge acquired in space physics or in experiments,
and extrapolated to the conditions of high-energy objects (for example, to a
relativistic magnetization). Numerical simulations, kinetic for small scales
or fluid for large scales, are then a privileged tool.

High-energy objects are distant, and observed via telescopes. The dis-
covery of most of them was allowed by the opening of the observation spec-
trum to wavelengths other than optical, starting with radio waves in 1931-32
with the work of Karl Jansky. Pulsars were discovered in 1967 by radio as-
tronomy, and X-ray binaries, active galactic nuclei, and hence black holes,
by X-ray observations. Nowadays, satellites and Earth-based observatories
cover a large frequency range with, for example, the VLA at radio wave-
lengths, Spitzer in infrared, Hubble in optical, Chandra in X-rays, or Fermi
in γ-rays.

Microquasars are a particular class of X-ray binaries, where a black hole
orbits around a star. The black hole captures material from the star, either
by Roche lobe overflow for a low mass donor, or by wind accretion for a
high mass donor, or by both. The accreted material has a finite angular
momentum, that must be removed to allow a radial transport of matter to-
ward the black hole. This can be done via viscous transport, or by shocks,
and the accretion flow can be disk-like or more spherical. If it is a disk, then
a magnetized corona should form above it, very much like above the solar
chromosphere. Models often explain emission from microquasars by a ther-
mal component from the disk, that is inverse Comptonized by the corona
to higher energies. It requires electron coronal temperatures of 109 K, and
magnetic reconnection is a candidate to explain this heating. It could also
fuel the corona with a non-thermal particle population, as required by other
models (see Sect. 7.5.3). Our study of Chapters 6 and 7 applies to the condi-
tions encountered in these coronae, and we focus on the amount of magnetic
energy transferred to the plasma, on its repartition between ions and elec-
trons, and on the possible generation of non-thermal particles. Magnetic
reconnection can also have other dynamical consequences: if plasma ac-
creted inward carries a magnetic field with a polarity opposed to that of
the inner parts, then large reconnection events can be triggered and could
produce transient relativistic outflows from the pole of the black hole, as
observed during state transitions (see Sects. 6.6.2 and 7.5.3).

Another class of high-energy objects regroups active galactic nuclei (or
AGNs). These are galaxies whose centers emit large amounts of radiation
and particles (they are the most luminous objects known). The current
paradigm explaining active galactic nuclei and their various manifestations

gStars others than the Sun also blow their own stellar winds, with mechanisms that
depend on their mass: winds can be pressure driven, MHD driven, radiation driven, ...,
and by doing so they fill large expanding bubbles of plasma.
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(radio loud or quiet quasars, blazars, Seyfert, ...) is that these galaxies host
at their center a supermassive black hole that accretes large amounts of
matter, and in some cases ejects part of it via two relativistic jets at its
poles. The accretion proceeds through an accretion disk, and here again,
this disk is likely to be surrounded above and below by a magnetized corona
where reconnection events could explain the emission of short and energetic
flares, or the heating of the plasma. The relativistic jets expelled from the
black hole poles remain collimated well outside the galaxy, and this colli-
mation is a sign that they are magnetized. Hence, magnetic reconnection
events could occur inside these extragalactic jets. They are invoked in some
models to explain flare-like events observed in gamma-rays. Reconnection in
jets can also accelerate particles that then radiate synchrotron radiation in
radio wavelengths. Again, our study aims at covering the relativistic mag-
netizations encountered in these coronae and jets, where the same issues as
for microquasar coronae are explored.

The surroundings of pulsars also host magnetized plasmas. A pulsar
(a fast rotating neutron star) produces a wind of positrons and electrons
with relativistic energies, that propagates inside the remnant of the super-
nova explosion. The outflowing plasma from the pulsar is magnetized, the
rotation axis of the pulsar is not necessarily aligned with the axis of its
magnetic field: the situation is similar to that for the Sun, i.e., near the
equatorial plane there is an alternating succession of positive and negative
magnetic field. Again as for the Sun, the pulsar wind ends its course in a
termination shock where the stripes of alternating magnetic field are com-
pressed, and are likely to undergo reconnection. The magnetic energy of
the wind can thus be efficiently dissipated, and a non-thermal, power law-
like particle population can be injected into the rest of the nebula. Such a
population is required by observations (see Sect. 2.59 and Table 7.5 for ref-
erences). In addition, gamma-ray observations of the Crab nebula – a well
studied pulsar – show that very high energy photons are produced (with
energies reaching hundreds of GeV). They may be produced by electrons
with Lorentz factors above 109. A way to produce these electrons and the
conditions in which they can radiate is during relativistic magnetic recon-
nection events. We remark that conditions in pulsars are very relativistic,
and particle Lorentz factors are so high that radiative braking should be
taken into account (Sect. 7.5.4). This is not done in our work.

Of course, there are other objects where magnetic reconnection can be
important, with similar effects as mentioned above: γ-ray binaries, wind-
wind interaction zones, magnetars, gamma-ray bursts, and so on.

Another, very interesting subject, is related to dark matter. Dark mat-
ter models predict interactions that can produce various, model-dependent,
high-energy particles. Neutrino detectors such as IceCube, or cosmic ray de-
tectors such as Auger, now routinely detect such high-energy products. To
know whether they come from dark matter interactions, or from usual ac-
celeration processes in high-energy objects, thus requires the understanding
of particle acceleration in the previously listed environments. For example,
IceCube recently detected extraterrestrial PeV neutrinos, which could orig-
inate from photopion interactions of energetic protons with photonsh. Can

hHigh-energy protons can interact with photons. The most important chain of reaction
is p+γ → ∆+ → (n+π+) or (p+π0), and the π+ pion then decays to produce a neutrino.
There are other channels that produce neutrinos (see Winter 2012, for a review).
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magnetic reconnection produce these high-energy protons or ions? In what
quantity? It is to such questions that a first-principle study of relativistic
ion-electron reconnection aims at answering, and we do show in Chapter 7
that ions can form high-energy power law distributions.

Appendix 1.A References for orders of magnitude

We present here the references relevant to Fig. 1.1. They are more or less
sorted by category. Other references and orders of magnitude can be found
in Fig. 2.42, and also in Table 7.5.

Outside of galaxies

• IGM stands for inter-galactic medium. It is the space in the large
stretched filaments of matter (the largest large-scale structure of the
Universe), at the intersection of which one finds the galaxy clusters.
Outside of filaments the particle density is even lower (not shown in
Fig. 1.1). Source: http://en.wikipedia.org/wiki/Intergalactic_
medium#Intergalactic. We take ne ∼ 10−5 cm−3, Te ∼ 106 K.

• ICM stands for intra-cluster medium. It is the space inside a cluster of
galaxies, between the galaxies. Source: http://en.wikipedia.org/

wiki/Intracluster_medium and Ji and Daughton (2011). We take
ne ∼ 10−3 cm−3, Te ∼ 5× 107 K.

Inside galaxies, outside of star winds

• ISM stands for inter-stellar medium. It is the space inside a galaxy,
but outside the volume of influence of stars (i.e., outside the enve-
lope created by stellar winds). The ISM is far from homogeneous,
and can be very roughly thought as a volume composed of the hot
(ionized) and warm (ionized and neutral) ISM, locally patched by
cold clouds (giant molecular clouds, HI clouds, HII, ...). See Padman-
abhan (Chap. 9, 2000). We take, for the hot ISM ne ∼ 10−3 cm−3,
Te ∼ 106 K; for the warm ISM ne ∼ 10−1 cm−3, Te ∼ 103−104 K; for
cold clouds ne ∼ 10 cm−3, Te ∼ 102 K; and for giant molecular clouds
ne ∼ 102−105 cm−3, Te ∼ 50 K.

Earth magnetosphere
A representation of the Earth magnetosphere is shown in Fig. 2.15.

• Earth ionosphere: Bellan (p. 24, Tab. 1.2, 2006) or Fitzpatrick (Tab. 1,
2011). We take ne = 106 cm−3, Te = 103 K.

• Magnetotail and magnetopause, from the table of Ji and Daughton
(2011). For the magnetotail we take ne = 0.1-1 cm−3, Te = 6× 106 K;
for the magnetopause we take ne = 10 cm−3, Te = 2× 106 K.

Heliosphere
A detail of the structure of the solar atmosphere can be found page 59.
See also Fig. 2.39 for a picture of the lower parts.

• Chromosphere and solar tachocline are taken from the table of Ji and
Daughton (2011). Other solar values are taken elsewhere, but agree
with Ji and Daughton (2011).

http://en.wikipedia.org/wiki/Intergalactic_medium#Intergalactic
http://en.wikipedia.org/wiki/Intergalactic_medium#Intergalactic
http://en.wikipedia.org/wiki/Intracluster_medium
http://en.wikipedia.org/wiki/Intracluster_medium
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• Solar wind at L1 means at the Lagrange point between the Earth and
the Sun. We use Bellan (p. 24, Tab. 1.2, 2006), Fitzpatrick (Tab. 1,
2011), or real time measurements at L1 at http://www.swpc.noaa.

gov/ace/ace_rtsw_data.html. See also Ji and Daughton (2011). We
take ne ∼ 1 cm−3, Te ∼ 5× 105 K.

• Solar coronal loop: Bellan (p. 24, Tab. 1.2; p. 74, Tab. 2.1, 2006), or
for example in many articles of Drake and coworkers (e.g. Drake et
al. 2006, 2009a, 2010). See also Ji and Daughton (2011). We take
ne ∼ 109 cm−3, Te ∼ 106 K.

X-ray binaries

• X-ray binary disk coronae: large uncertainties exist. Analytical disk
and corona models include de Gouveia dal Pino and Lazarian (2005),
Di Matteo (1998), Merloni and Fabian (2001), and Reis and Miller
(2013). Close values are also given by matching observed spectra with
radiative models, e.g., Del Santo et al. (2013) or Romero et al. (2014).
See also Table 7.5 for values of the magnetic field. We take ne ' 1013-
1016 cm−3, Te ' 109 K, B ' 105-107 G.

• X-ray binary disk models. The disk models are simple analytical mod-
els computed here for a black hole of mass M = 10M�, which gives
a Schwarzschild radius rSch = 3× 106 cm = 30 km, and an Eddington
accretion rate ṀEdd = 1.4× 1019g/s = 2.2× 10−7M�/yr. The viscos-
ity parameter is α = 0.1. We try two accretion rates: Ṁ = 10−1ṀEdd

(plain lines or plain squares in Fig. 1.1), and Ṁ = 10−3ṀEdd (dashed
lines or dashed squares). In a disk model, heat generated by viscosity
is taken away either by advection toward the black hole or by efficient
radiation.

When advection dominates, we obtain the ADAF model (advection
dominated accretion flow). We take here the simple self-similar so-
lution of Narayan et al (Narayan and Yi 1994; Narayan et al. 1998;
Narayan and McClintock 2008), which among other things assumes a
plasma β = Pgas/PB of 0.5. The ions are assumed to be hotter than
the electrons, and it is the ion temperature that is shown in Fig. 1.1.
Electron temperatures are of the order of 109 K.

The other case is when radiative cooling dominates, in which case we
arrive at the Shakura and Sunyaev solution of optically thick and ge-
ometrically thin disk. For this model, since we are near the hole, elec-
tron scattering is assumed to dominate the opacity (compared mainly
to free-free absorption), and we consider the case where pressure is
dominated either by the radiation (represented in Fig. 1.1 by the red
square for AGNs and the blues squares for X-ray binaries) or by the
gas (represented by the blue lines labeled Pgas). The formula can be
found in Padmanabhan (p. 367, §7.5.3, 2001) (in this reference, see
also the graph p. 369, Fig. 7.3 and Fig. 1.7). Note that magnetic fields
are ignored in the thin disk models.

Active galactic nuclei

• AGN jets: two distinct parts are considered. The outer part, at kilo-
parsec scales, where the radio emission originates, is constrained by
observations (Schwartz et al. 2006). See also Romanova and Lovelace

http://www.swpc.noaa.gov/ace/ace_rtsw_data.html
http://www.swpc.noaa.gov/ace/ace_rtsw_data.html
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(1992), and Ji and Daughton (2011). At smaller scales (< 0.05 pc)
there is a gamma-ray emitting region, where direct measurements
are still lacking. We take values from an analytical model (Gian-
nios et al. 2009) assuming an ion magnetization σcold

i = 100 (defined
in Eq. 6.5). The temperature is not specified. See also Table 7.5 for
values of the magnetic field. For the radio region we take ne ' 1-
5× 10−8 cm−3, Te ' 108 K, B ' 10−5 G; for the gamma-ray region we
take ne ' 80 cm−3, B ' 10 G, and the temperature is not specified.

• AGN disks: see the discussion for X-ray binary disks. We take a
black hole mass of 108M�, and the same accretion rates as for X-ray
binaries.

• AGN coronae: analytical disk and corona models include those of
Di Matteo (1998), Merloni and Fabian (2001), and Reis and Miller
(2013). See also Table 7.5.

• Lobes of giant radio galaxies: observations from Kronberg et al. (2004).
See also Table 7.5 for values of the magnetic field. We take ne '
3× 10−6 cm−3, Te ' 106 K, B ' 10−6-10−5 G.

Experimental devices

• Tokamak core: for ITER, from Freidberg (2007). See also Bellan
(p. 24, Tab. 1.2; p. 74, Tab. 2.1, 2006) or Fitzpatrick (Tab. 1, 2011).

• Inertial fusion: Bellan (p. 24, Tab. 1.2, 2006) or Fitzpatrick (Tab. 1,
2011).

• TS-3: Todai Spheromak 3 facility. Standard parameters are ne ' 2-
5× 1014 cm−3, Te ' 105 K, B ' 0.5-1× 103 G (Yamada et al. 2010).

• MRX: Magnetic Reconnection Experiment device. Standard parame-
ters are ne ' 0.1-1× 1014 cm−3, Te ' 5-15× 104 K, B ' 0.2-1× 103 G
(Yamada et al. 2010).

• SSX: Swarthmore Spheromak Experiment facility. Standard parame-
ters are ne ' 1-10× 1014 cm−3, Te ' 4-8× 105 K, B ' 103 G (Yamada
et al. 2010).

• VTF: Versatile Toroidal Facility. Standard parameters are ne ' 1 ×
1012 cm−3, Te ' 105 K, B ' 103 G. From VTF websitei.

Others

• Twenty solar mass star: from a radial structure in Begelman and Rees
(p. 32, 2009)

• Gamma-ray burst (GRB) jet: analytical model of McKinney and Uz-
densky (2012). Values taken at the radius where fast reconnection
sets up. See also Table 7.5 for values of the magnetic field.

• Magnetar flare: from Ji and Daughton (2011).

• Pulsar wind nebula: the case of the Crab. Analytical models and
observations: Atoyan and Aharonian (1996), Meyer et al. (2010), Uz-
densky et al. (2011), and Cerutti et al. (2013). This is a pair plasma.
The plasma distribution function is actually a broken power law with
Lorentz factors γ in the range 10 to 108, so that there is no defined

ihttp://www.psfc.mit.edu/research/physics_research/vtf/machine.html

http://www.psfc.mit.edu/research/physics_research/vtf/machine.html
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temperature. Here we indicate Te such that the mean Lorentz factor
is in the range 10 to 108, i.e., 10 < Te/mec

2 < 108 (we recall that
mec

2 = 6× 109 K). See also Table 7.5 for values of the magnetic field.

Air and water (non-plasma)

• Air and water: for standard conditions on Earth. These values are
here for comparison purpose only. They are not in a plasma state.

Quantum limit

The quantum limit drawn on Fig. 1.1 represents the fact that quantum ef-
fects for the electrons are not important when the two following inequalities
are satisfied:

n−1/3
e �λDe Broglie ≡

h√
2πmeTe

, (1.1a)

T �TFermi ≡
~2

2me

(
3π2ne

)2/3
. (1.1b)

The first inequality states that particles are separated from each others by
a distance larger than their quantum extension (which is the typical size of
their wavefunction, of the order of the thermal De Broglie wavelength).

The second condition states that particles have a thermal kinetic energy
larger than the Fermi energy, so that the exclusion principle imposes no
constraint.

The two conditions can be rearranged to give

n1/3
e T 1/2

e > a× ~
√

2π

me
, (1.2)

with a = 1 for Eq. 1.1a and a = 31/3π1/6/2 = 0.87 for Eq. 1.1b.
The quantum limit for protons or ions is less constraining (replace me

by mi in Eqs. 1.1 or 1.2).

Relativistic limit

The relativistic limit drawn on Fig. 1.1 corresponds to Te = mec
2 = 6 ×

109 K, a temperature above which a significant fraction of the electrons in a
thermal distribution have relativistic velocities. Note that for protons, this
limit is Ti = mic

2 = 1.1× 1013 K. Relativistic plasma physics is discussed in
Chapter 3.
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Fundamentals of magnetic
reconnection and state of the
art

The effect of the discharge is to “reconnect” the lines of force at
a neutral point, and this happens quickly. The “reconnection”
upsets the mechanical equilibrium in the neighborhood in a way
that can be visualized, if the lines of force are seen as strings.
Then the mechanical disturbance will spread from the neutral
point and may have energy comparable to the energy of the spot
field in the solar atmosphere.

Dungey (1958), coining reconnection
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2.1 Outline

The aim of this chapter is to provide an introduction to magnetic recon-
nection in non-relativistic plasmas. We introduce the process itself from a
basic level, with an emphasis on flux variations and induced electric fields in
Sects. 2.2 to 2.7. These first sections are mostly designed for students new
to the field, and the reader familiar with plasma physics and reconnection
can skip them. Then in Sects. 2.8 to 2.14, we explore the landscape of re-
connection, starting from the large scale ideal magnetohydrodynamic view,
cascading down to the formation and localization of reconnection sites in 2D
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Figure 2.1: Two field lines pushed together reconnect. Before the reconnection
event, point A is connected to point B. After the event, it is connected to point
A′, which is far away from the original point B: the “connectivity” has changed
very quickly.
More precisely, if we build a function f that maps point A to a point at a fixed
distance from A along the field line where A is anchored, then on the first image
we have f(A) = B, with smooth variations as the field line moves, while during
the second image f(A) suddenly jumps to point A′. (Note that points A, A′, B
and B′ should be taken away from the reconnection region, in the ideal zone where
both the plasma and the magnetic field move together, so that the notion of field
line motion makes sense, see Sect. 2.4.2.)

and 3D with the involved geometry, to the local configuration of the sites,
to the microphysics of non-idealness, and to particle trajectories and accel-
eration. Nothing new is presented here, but this overview may be helpful to
new researchers and students. We illustrate the subject by examples from
solar or space physics and from high-energy astrophysics. With this large
overview, we want to underline that reconnection physics involves many
scales, each being important to predict the final outcome of reconnection
events.

Of course, magnetic reconnection is a wide and complex subject, that
cannot be covered in a few pages (nor can it be fully grasped in a three years
PhD!). Very instructive reviews have been written: the book of Birn and
Priest (2007) reviews large and small scale aspects, 3D, and space appli-
cations, Treumann and Baumjohann (2013) review collisionless small scale
physics, Yamada (2011) or Yamada et al. (2010) cover mainly experimental
and observational facts, Pontin (2011) is concerned with 3D reconnection,
Karimabadi et al. (2013) briefly review 3D microphysics and turbulence, and
several others exist. The field being quickly evolving, some are now slightly
out-of-date (e.g., Biskamp 2000). Indeed, we underline that the subject
of magnetic reconnection is still a research area, with several aspects that
remain misunderstood, or others for which no consensus is yet reached.

2.2 A first definition, and some motivations

The most intuitive definition of magnetic reconnection is that it occurs when
the connections of the magnetic field lines changea. This is what happens

aIt is actually difficult to give a precise definition, that in particular excludes field
line diffusion. But the intuitive definition remains satisfactory. And the explanations of
Sect. 2.4.2 (field lines have a defined identity and velocity and can be followed through
time only in an ideal plasma where E ·B/B = E‖ = 0), Sect. 2.5 (field lines stick to the
plasma motions in an ideal plasma), Sect. 2.6.3 (magnetic reconnection is not magnetic
diffusion), and Sect. 2.10.4 (magnetic reconnection in 3D domains), should give a precise
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Figure 2.2: Yellow arrows: plasma motion, and also motion of the field lines,
which are drawn in red and blue. Reconnection occurs at the center. Figure taken
from the Wikipedia article on magnetic reconnection.

on Fig. 2.1.
On Fig. 2.2, a convergent flow from above and below forces the field

lines to reconnect, and the flow is then ejected to the right and left sides
by magnetic tension (because the newly created red-and-blue field lines are
highly bent and, due to the MHD force j ∧B ∝ [∇∧B]∧B acting on the
plasma, they tend to straighten).

Even though magnetic reconnection is a local process, it has dramatic
consequences on the large scale dynamics. We can quote some important
effects.

• It changes the magnetic topology. Macroscopic regions initially not
connected by any field line can become connectedb. It consequently
affects the path of accelerated particles and of heat, that flow more
easily along the field lines than perpendicularly to them.

Another example of macroscopic topological change is the possible
growth of magnetic islands up to the system size, that concentrates
currents and drastically changes the overall dynamics. For instance,
a coronal mass ejection can be seen as a giant island of magnetic flux
and plasma detaching from the solar corona and expelled into space.

The change of topology also allows the magnetic field to relax to a
lower energy state, a change previously forbidden by the fact that an
ideal plasma is constrained to preserve the field lines identity (so that
they cannot break, Sect. 2.4.2). Newly reconnected field lines can
undergo a large tension force and drive plasma motions.

• It converts magnetic energy into kinetic energy. This kinetic energy
can be

– an increase of the bulk flow velocity: the flow is accelerated;

– thermal: the plasma is heated;

– non-thermal: high-energy particles are produced.

The kinetic energy of the particles can be partly converted into radi-
ation.

• It creates areas where the plasma is not ideal, either in the central
dissipation region where the field lines reconnect, or further away along

picture of what reconnection is.
bWe remark that this property is not general. There can be reconnection between field

lines originating from the same spatial domain, for example in Fig. 2.39 with braided
fields.
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1- the current I rises

2- B rises so that an electromotive
E field is created,
that brakes the current

d(flux of B)
dt = -(circulation of E)3-

Figure 2.3: Illustration of the fact that a rising current is braked by the inductive
fields that it creates.

the separatrices or in the exhausts. These are places where strong
electric fields, currents, waves and instabilities are present. They can
produce non-thermal high-energy particle populations.

• It can create turbulence (see Sects. 2.11.2 and 2.12.3 for details con-
cerning the interplay between reconnection and turbulence).

2.3 What is magnetic energy

Magnetic energy can be transfered to kinetic energy, and it is thus worth
reminding what magnetic energy actually means. To do so, we have to look
at the transient phase where the magnetic field is growing, i.e., the phase
where the particles transfer their energy to the magnetic field.

In order to create a magnetic field, charges have to be accelerated to
create currents. Charge acceleration creates an increasing magnetic field.
Since the flux of this field across a surface enclosing the current increases,
inductive electric fields are created (via ∇ ∧ E = −∂tB, which integrates
into d

dt

∫∫
SB ·d

2S = −
∮
C E ·dl), and these inductive electric fields tend to

slow down the accelerated charges (see Fig. 2.3). Consequently, the charges
have to do a work W = qE · v (v is the velocity of the charges). Once
the acceleration phase ends, a steady situation is reached, ∂tB = 0 and the
inductive electric fields vanish. The currents flow, and maintain a steady
magnetic field following Faraday’s law: ∇ ∧B = µ0j.

But where has the work done by the charge gone? Since there is no
dissipation in our problem, this work cannot have contributed to a temper-
ature increase. It is actually stored in the magnetic field energy. Indeed,
one can show that the energy of the magnetic field,

WB =

∫∫∫
V

d3r
B2(r)

2µ0
, (2.1)

is equal to the work done by inductive electric fields when the charges at
the origin of the magnetic field were accelerated (see for example Jackson
1998, §6.2)c.

How can the magnetic field restore this energy? If the magnetic config-
uration varies in a way where the flux is not preserved across some fixed
contour, then inductive fields will appear, that can accelerate particles. The
plasma thus gains energy from the magnetic field. This is exactly what hap-
pens during magnetic reconnectiond: the transfer of energy occurs through

cAnd concerning the electric field energy density, ε0E
2/2, §1.11 of the same reference.

dMagnetic reconnection is a non-ideal instability. On the other hand, in ideal plasmas
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the creation of an inductive electric fielde.

2.4 Why magnetic reconnection?

One may wonder why it is so special that magnetic field lines reconnect,
and why, despite 60 years of intense research, it is still not fully understood.
One may also wonder why nobody considers electric field reconnection. To
better grasp the problem, we first need to introduce the concepts of field
line and flux tube, and to describe some of their basic properties. Most
importantly, we precise the notion of magnetic field line motion: a given
field line preserves its identity through time as it moves in space only under
special circumstances, which can be imposed by the ideal response of the
plasma. When this is the case, the field line identity is preserved along all
its length, it cannot break, and reconnection cannot occur.

2.4.1 Field line

Definition

We recall that the magnetic field is described by a vector field in the whole
domain under consideration. That is, for a given time t, at each location x
is associated a vector B(x, t).

A field line is defined by starting from a point x, and by drawing a line,
the tangent of which is given by B(x, t0). The time t0 is held fixed. In
more mathematical terms, the field line is parametrized by a scalar s (for
example it can be the length of the field line from a starting point) and is
a curve x(s) = (x(s), y(s), z(s)), with

dx

ds
(s) = B(x(s), t0). (2.2)

Properties deduced from the rotational and divergence of the field

Some properties of the field lines can be deduced from the divergence and
rotational of the vector field (see Fig. 2.4):

• If the divergence of the vector field is positive (negative) at point x,
then there are field lines starting from (ending at) this point.

• If the rotational of the vector field is zero everywhere, then there are no
closed field linesf. This is the case of the gravitational field (∇∧g = 0
in Newtonian dynamic), of an electrostatic field (∇∧E = −∂tB = 0),
or of a steady magnetic field in the absence of currents (∇ ∧B = 0).

there can be no flux variations across plasma elements, so that it may seem that in this
case magnetic energy cannot be transferred to the plasma. This is not true: inductive
electric fields still arise in ideal plasmas, specifically to maintain the absence of flux
variation. From a microscopic point of view, it is these electric fields that transfer energy
from magnetic to kinetic (magnetic fields alone cannot work). From a fluid point of
view, e.g., ideal MHD, this transfer occurs via the Lorentz force, J ∧B, that can work
([J ∧B] · vcenter of mass 6= 0, with vcenter of mass ∼ vions in an ion-electron plasma).

eThe reality is slightly more complex: if a steady state is reached, there is no flux
variations, but the electric field remains and still allows the energy transfer (as explained
in Sect. 2.6.2).

fNote however that the opposite is not true: if the rotational is not zero, nothing can
be said (e.g., for helical fields ∇ ∧B 6= 0 and there are no closed lines; but for the field
created by a current, ∇ ∧B 6= 0 and all field lines are closed).
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Figure 2.4: Example of the divergence of a field. The lines are the electric field
lines created by two charges. At the location of the positive charge, the divergence
is positive (∇·E = ρ/ε0 > 0) and the field lines diverge, while at the location of the
negative charge the divergence is negative and the field lines converge. Elsewhere,
the divergence is zero and the field lines are neither ending nor starting.

Since there are no magnetic monopoles, ∇ ·B = 0, an important con-
sequence is that there are no magnetic field charges, and thus no points
where magnetic field lines end or start. Consequently, magnetic field lines
either form closed loops, extend to infinity, or intersect the domain boundary
(which can be the wall of a device, the surface of a star or of an accretion
disk, ...). This is what gives an interest to the concept of magnetic field
lines.

We remark that electric field lines can be considered, but in a plasma
every charged particle acts as a source (positive charge, ∇ · E = ρ/ε0) or
as a sink (negative charge), so that they do not form extended field lines or
flux tubes and are not really interesting to study.

2.4.2 Field line velocity, field line identity

Magnetic field lines are defined (via Eq. 2.2) at a fixed time t. If the magnetic
field varies, they will be different at a later time t + δt. An interesting
question is to know whether we can say that a given field line has moved
between these two times, i.e., whether we can define a velocity field vm such
that a field line C1 at time t is transformed, by moving all its points at vm,
into another single field line at time t + δt. The answer is yes only under
special circumstances: if B ∧ (∇ ∧ E‖) = 0 all along the field line, and in
particular if the parallel-to-B electric field E‖ vanishes everywhere along
the field line (i.e., if E ·B = 0). Then, the field line velocity is given by

vm =
E ∧B
B2

. (2.3)

We provide a demonstration below, but we first discuss this result. It
relies only on Maxwell’s equations, and is thus true independently of the
plasma behavior. It is however the plasma response that controls E‖, and
as we will see the plasma does tend to always impose E‖ = 0 as much as it
can.

When E‖ = 0, the field lines “move” at vm and preserve their identity.
An obvious consequence is that magnetic reconnection (in the topological
sense of the breaking of field lines, Sect. 2.2) is not allowed. Conversely,
magnetic reconnection requires the existence of an electric field parallel to
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Figure 2.5: Illustration of a field line motion at velocity vm: the two points P1

and P2 located on the same field line at time t are still on the same field line at
time t+ δt if they are moved from a vector vmδt.

B, E‖ = E · B/B 6= 0, with ∇ ∧ E‖ 6= 0g. When this is the case, field
lines between two different times cannot be related to each others, and in
particular they can break and reconnect. This is the case of Fig. 2.1, where
there is no smooth vector field v that can transform the field lines of panel
1 into those of panel 3h.

We will use again the notion of field line motion at velocity vm to discuss
the frozen-in theorems at the end of Sect. 2.5.1, and when discussing 3D
reconnection in Sect. 2.10.3. We make two final remarks.

First, the field line motion at vm when E‖ = 0 also holds in steady state
when ∂B/∂t = 0. It may seem counter-intuitive, but it is not a paradox.
Recall for example that in steady state there is also an energy flux associated
with the electromagnetic fields (E ∧B/µ0).

Second, we stress that the field line motion at vm is not a real motion.
Field lines do not move, they actually do not exist as physical objects. They
are concepts, sometimes very useful, sometimes misleading when considered
as real objects (the concept of flux tube is much more robust). For example,
the notion of field line motion at vm also holds when E > cB, even if in this
case the “motion” is supraluminal (|vm| = E/B).

Demonstration

We mostly follow the demonstration of Belmont et al. (2014, §1.3.1.3) (see
also Boozer 2013). We consider two points P1 and P2 located on the same

field line denoted by C1, and separated by an infinitesimal distance δl =
−−−→
P1P2

(Fig. 2.5). We have, by definition, δl∧B = 0. We move these points, during
a time interval δt, with the velocity vm of Eq. 2.3. We then obtain two new
points P ′1 and P ′2. If P ′1 and P ′2 are still located on the same field line, then it
means that all points initially located on C1 are again on the same field line,
and consequently that the field line C1 has “moved” with a velocity vm. P ′1
and P ′2 are on the same field line if and only if δl′ ‖ B′, i.e., if δl′ ∧B′ = 0.
If we note C = δl∧B and Dt = ∂t + vm ·∇, this is equivalent to DtC = 0.

The operator Dt is linear, so that DtC = (Dtδl) ∧B + δl ∧ DtB. We

gActually magnetic reconnection requires the existence of ∇∧E‖ 6= 0 only if B never
vanishes. If B = 0 at some point, then vm = +∞ is singular, and field lines can break
and reconnect without the need of E‖. This is the case for example in 2D magnetic
reconnection of antiparallel fields (see, e.g., Sect. 2.10.2). All in all, reconnection requires
either E‖ 6= 0, or B = 0. But in the latter case, the magnetic null point is often surrounded
by a non-ideal zone where B is finite and E‖ 6= 0.

hProvided that points A and B are in a zone where the field lines can be identified, so
that one cannot say that panel 1 has been rotated by 90o to obtain panel 3!
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first compute Dtδl. It is equal to

Dtδl =

−−→
OP ′2 −

−−→
OP ′1 −

−−→
OP2 +

−−→
OP1

δt
=

−−−→
P ′1P

′
2 −
−−−→
P1P2

δt
=

−−−→
P2P

′
2 −
−−−→
P1P

′
1

δt
, (2.4)

where O is any fixed point. The last expression is the derivative of the
vector vm along the direction δl, and is thus expressed as (δl ·∇)vm. We
thus have Dtδl = (δl ·∇)vm, and

(Dtδl) ∧B = [(δl ·∇)vm] ∧B. (2.5)

Concerning DtB, we first use ∂tB = −∇ ∧ E. We then decompose E
as the sum of its parallel component E‖ = (b · E)b, with b = B/B, and
of its perpendicular component E⊥ = E − E‖ = b ∧ (E ∧ b) = B ∧ vm.
We thus have ∂tB = −∇ ∧E‖ −∇ ∧ [B ∧ vm]. The next step is to use a
vector identity to develop the rotational of the cross-producti, and to write
the whole expression for δl ∧DtB, where cancellations lead to

δl ∧DtB = −δl ∧ (∇ ∧E‖) +B ∧ [(δl ·∇)vm]. (2.6)

All in all, we arrive at

DtC = −δl ∧ (∇ ∧E‖), (2.7)

which proves that whenever B ∧ (∇ ∧E‖) = 0, the field line “moves” with
velocity vm.

2.4.3 Flux tube

A flux tube is defined by drawing a closed contour in space, and by consid-
ering all the field lines that start from the points of this contour (Fig. 2.6).
The resulting surface can be quite intricate, but resembles a tube. The
divergence free character of B insures that the flux of the magnetic field
through each section of the tube is constant.

field lines
passing by the contour

flux tube

arbitrary contour

Figure 2.6: Example of the construction of a flux tube. Here, the geometry is
quite simple.

2.5 Lenz’s law, frozen-in laws, and reconnection

We have seen that the divergence free nature of B makes relevant the use
of field lines and flux tubes. There is, however, a second reason that makes
magnetic fields outstandingly interesting: Lenz’s law, or ∇ ∧E = −∂tB.

iFor any vector fields u and v: ∇∧ (u∧v) = (v ·∇)u− (u ·∇)v+(∇ ·v)u− (∇ ·u)v.
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Lenz’s law is a moderation law. Such laws are general and state that the
causes tend to suppress the effects that caused themj. Lenz’s law is specific
to electrodynamics, and states that “An induced electromotive force always
gives rise to a current whose magnetic field opposes the original change in
magnetic flux.”k

This law is of fundamental importance not only for magnetic recon-
nection, but also for plasma physics in general. It is at the heart of the
E + U ∧B = 0 relation of ideal MHD, of the E × B velocity, of particle
magnetization and adiabaticity, and of course of magnetic reconnection. All
these processes are different facets of the same fundamental law: magnetic
flux conservation via Lenz’s law. We will now explain why.

2.5.1 Frozen-in laws

Plasma at rest

Consider the situation of Fig. 2.7, where a bundle of field lines is localized in
space. Suppose that these field lines move upward. Then, the flux across the
surface delimited by the fixed (in time and in space) contour C of Fig. 2.7
decreases:

d

dt

∫∫
S

dS ·B < 0. (2.8)

But integrating ∇∧E = −∂tB along the closed contour C leads to the well
known result: ∮

C
dl ·E =

∫∫
S

dS ·∇ ∧E = − d

dt

∫∫
S

dS ·B. (2.9)

Consequently in our case, there is a positive circulation of E along the
contour. It means that somewhere along the contour, there is an electric
field.

If we are in vacuum, nothing more happens. The magnetic field can vary
freely, and the flux variations create an electric field as the consequence of
Maxwell’s equations.

If charged particles are present and able to move freely, such as in a
plasma, then they will be accelerated by the electric field and a current will
be created. This current, in turn, will produce a magnetic field. As shown
on the last panel of Fig. 2.7, this induced magnetic field is oriented in the
same direction as the original field. Consequently, just where the old field
was, a new field is created to compensate for this variation.

If we were to consider a closed line above the first one, at the place
where there was no magnetic field and where the old field was displaced, we
would see that here the flux across the closed line increases, and creates an
electric field and a current leading to a magnetic field opposed to the newly
brought magnetic field. Consequently, the new field is decreased here.

If the plasma is ideal, i.e., if it can respond perfectly to the electric field
to create the needed current, the consequence of what we just presented
is that the magnetic configuration does not change at all. We change the

jOtherwise, our world would be highly unstable!
kLenz’s law can also be seen as a kind of analog to Newton’s third law: to every action

there is an opposite reaction. We also note that Lenz’s law is the key of the reasoning
on magnetic energy of Sect. 2.3. This law specifies how energy is transferred between
mechanical and magnetic forms, via the creation of an electric field opposed to charge
motion.
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B-field

imaginary fixed
closed line

no B-field

no B-field

B-field

imaginary fixed
closed line

no B-field

no B-field

motion of B

E-field

if we are in a plasma,
a current is created

E-field and current J

magnetic field induced by the current

Figure 2.7: Illustration of Lenz’s law. Upper left: the initial situation, which is
a flux tube surrounded by a B = 0 environment.
Upper right: we move the field lines and consequently induce a current along the
red contour.
Lower part: the magnetic field generated by the induced current is in the same
direction as the original field, tending to restore the original configuration.

magnetic field in a way that do not conserve the magnetic flux: the plasma
responds and destroy our new arrangement of magnetic field.

Moving plasma

We have learned that in a perfect or ideal plasmal at rest, the magnetic
field cannot change in a non flux-conserving way, because of the response
of the charged particles to the induced electric fields. Since we assume that
the plasma is ideal, we can use the notion of field lines. We can thus say
that because of the response of the plasma, the field lines cannot move in
a way that do not preserve the magnetic flux (across any contour fixed in
the plasma rest frame). Of course, the field lines can actually move if the
whole plasma moves. Consider, for example, the case of a plasma at rest
embedded in a magnetic field, and suppose that we now see this plasma
from a frame moving with velocity −U with respect to the plasma: we see
the magnetic field lines and the plasma moving altogether at the same speed
(which is U).

In the non-relativistic limit, the magnetic field remains the same, but
the formula for the change of framesm also imply that in our moving frame,

lIdeal means no collisions between particles, no inertia so that the plasma response is
instantaneous, no interaction with collectively generated fields and other fluctuations, ...
We will detail this point in Sects. 2.7 and 2.11.

mThe expressions for a change of frame at velocity v, with ‖ (⊥) denoting the compo-
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there is an electric field given by E′ = −U ∧ Bn. So: when a plasma
moves and drags with it a magnetic field, there is an electric field given by
E = −U ∧B. (We will detail just afterward what “drags” means, and when
it occurs.)

This situation can be generalized. Consider a plasma, part of which
is moving with velocity U . If the plasma motion drags the magnetic field
(which is due, as we have seen, to the plasma creating induced currents),
then it creates an electric field E = −U ∧B. We have just demonstrated
that in an ideal plasma, plasma motion, electric and magnetic fields are
linked by the relation

E +U ∧B = 0. (2.12)

We remark that this relation can be inverted to give the perpendicular to
B velocity: U⊥ = E ∧B/B2, which indeed holds in ideal MHDo.

An easier (but less instructive) derivation of E +U ∧B = 0

This important relation is seldom introduced as we just did. Instead, we
often read that the plasma is a perfect conductor, so that the electric field
E′ in the plasma rest frame is zero (E′ = ηJ ′ with a vanishing resistivity
η) and, by a change of frame, 0 = E′ = E +U ∧B. Then, the variation of
the flux of B through a contour C(t) delimiting a surface S(t) and moving
with the plasma is derivedp:

d

dt

∫∫
S(t)

dS ·B =

∫∫
S(t)

dS ·
(
∂B

∂t
−∇ ∧ (U ∧B)

)
, (2.14)

and since E+U∧B = R (we introduce R for later purposes, it is zero here)
and ∂tB+∇∧E = 0 (Lenz’s law again), we have ∂tB+∇∧[R−U∧B] = 0

nent parallel (perpendicular) to v, are

E′
// = E//, B′

// = B//, (2.10)

E′
⊥ = γ(E⊥ + v ∧B⊥), B′

⊥ = γ

(
B⊥ −

v ∧E⊥
c2

)
. (2.11)

nWhere does this field comes from? In the plasma rest frame, ions and electrons
are flowing with different velocities to create a current, that in turn creates the magnetic
field. In the moving frame, the ion and the electron number density are Lorentz-contracted
differently, and it results in a net charge density. This charge density is at the origin of
the electric field.

One can check that this is indeed the case by considering a thin current flowing in
straight line, produced by counterstreaming ions and electrons of the same charge density
and opposed velocities. There is then no electric field. Boosting to another frame moving
parallel to the current, the number densities are contracted differently, and to lowest order
in the boost speed we do find a charge density producing the desired electric field.

oAs a side remark, we note that particle drifts other than E×B, derived from the fluid
picture (the diamagnetic and polarization drifts), or derived from the particle picture (the
gradient and curvature drifts), requires a finite particle mass to be non-zero. They are
consequently non-ideal effects, absent from our previous derivation.

p We copy here a note from Jackson (§6.1, 1998): for a general vector field B(x, t)
and a contour following the velocity field v(x, t) (which can be anything, not necessarily
a fluid velocity), we have

d

dt

∫∫
S(t)

dS ·B =

∫∫
S(t)

dS · ∂B
∂t

+

∫∫
S(t)

dS ·∇ ∧ (B ∧ v) +

∫∫
S(t)

dS · v(∇ ·B)

=

∫∫
S(t)

dS · ∂B
∂t

+

∮
C(t)

dl · (B ∧ v) +

∫∫
S(t)

dS · v(∇ ·B).

(2.13)
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and:
d

dt

∫∫
S(t)

dS ·B = −
∫∫

S(t)
dS · (∇ ∧R) = 0. (2.15)

It is thus deduced that the magnetic field flux through contours moving with
the plasma cannot vary. We also say that the magnetic field flux is frozen
into the plasma (or vice-versa, that the plasma is frozen into the field).

A consequence of E +U ∧B = 0: field line motion at U = vm

In Sect. 2.4.2, we showed that when ∇ ∧E‖ = 0 along any field line (with
E‖ the electric field parallel to B), then the field lines can be thought of as
moving with a velocity vm = E∧B/B2. But if E+U ∧B = 0, then E‖ = 0
and this field line motion holds. Moreover, it also implies that the plasma
velocity perpendicular to B, U⊥, is given by U⊥ = E ∧ B/B2, which is
precisely the field line velocity vm.

A consequence of the relation E + U ∧ B = 0 is thus that the plasma
moves with the field lines (and vice versa).

More elaborated thoughts

We think that it is worth keeping in mind that the relation E +U ∧B = 0
holds because charged particles move in response to induced electric fields
and create currents that act to cancel any magnetic field flux variation.
Several lessons can be drawn from this.

First, since it is the lightest particles that will respond faster, it is the
electrons that insure that the field is frozen-in. Consequently, U in Eq. 2.12
is the electron velocity. However, in MHD the U appearing in the equations
is the center-of-mass velocity, which is very close to the ion velocity (because
the ion and electron fluids have velocities of the order of the thermal speed
or higher, and the difference between them, proportional to the current, is
small in the MHD approximation, see, e.g., Fitzpatrick 2011, §3.9). Forcing
U to be the ion velocity leads to the apparition of the Hall term: E+Vi∧B =
E + Ve ∧B + (Vi − Ve) ∧B = 0 + (ne)−1J ∧B. Similarly, in a partially
ionized gas, forcing U to be the neutral component velocity will lead to a
term (Vn − Vi) ∧B, which is responsible for ambipolar diffusion.

Second, it is only magnetic field flux variations that induce electric fields
and a response of the plasma, and not motion across field lines. It helps
understanding the meaning of “the plasma drags a magnetic field”: when
does that happens?

It happens of course if the plasma itself is at the origin of the magnetic
field. Moving the plasma then moves B. It also happens if the magnetic
field is created by external sources: a plasma embedded in this external
magnetic field, or a plasma arriving into this field from outside, will modify
the field and possibly drag it if the motion of the plasma across the field
cannot be done in a manner that preserves the flux of B. The general way
to preserve the flux of B through plasma elements is that the flux of B
entering a plasma element equals the flux of B escaping from it. It is thus
not required that B and the plasma move together.

More precisely, the relevant equation is Eq. 2.14: preserving the flux of
the magnetic field through moving plasma contours requires that ∂tB =
∇ ∧ (U ∧B). This equation links the temporal variations of the magnetic
field implied by a transverse motion of the plasma in the magnetic field, if
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flux is to be preserved (if the plasma response is ideal). If the plasma motion
is such that ∇∧(U ∧B) = 0, then we also have ∂tB = 0, and no matter the
magnetic field spatial variations, B(r, t) will remain as it isq. On the other
hand, if the plasma motion is such that ∇ ∧ (U ∧B) 6= 0, then circulating
electric fields will be present (∇∧E = ∇∧ (U ∧B) 6= 0), and the magnetic
field will be modified and dragged by the plasma. In conclusion, there is a
whole class of motions that can occur in an ideal plasma without the need
to change the magnetic field. This is for example the case of the E×B drift
in a constant electric and magnetic field, or of motions parallel to B. See
Bellan (2006, §3.5.5) and Liang et al. (2011) for more examples.

2.5.2 Adiabatic invariant

The conservation of the first adiabatic invariant of a particle is also linked
to magnetic flux conservation. This invariant,

µ =
mv2
⊥/2

B
, (2.16)

where v⊥ is the particle velocity perpendicular to B, is conserved under the
assumption of an ideal plasma response (see below). This can be linked to
the fact that the flux of B through the circles described by the particle is
conserved, simply by writing this flux as

ΦB = B × πr2
L =

2mπ

q2
µ. (2.17)

(Here rL = v⊥/(qB/m) is the Larmor radius.) Conservation of µ then
implies conservation of ΦB.

electron

B (toward us)

electron

B (toward us)

B increases

Figure 2.8: Conservation of the first adiabatic invariant, and of the flux linked
by particles gyromotion, during an increase in magnetic field strength. On the left
and on the right, there is the same number of field lines inside the particle orbit,
and hence the same magnetic flux.

Physically, this also holds because of Lenz’s law: a variation of the
flux of B through the gyromotion generates an inductive electric field that
accelerates or decelerates the particle so as to conserve ΦB. This can be seen
in Fig. 2.8, where an electron circles in a constant magnetic field. When
the strength of B rises, the flux through the contour defined by the particle
orbit also increases, and it produces a circulating electric field along the

qWe thus have a moving plasma in a fixed magnetic field. Is there a motional electric
field −U ∧ B in this case? We have said (footnote n) that the origin of the motional
electric field is the motion of the sources of the magnetic field. Since here it is not the
moving plasma that creates B, there is no motional electric field. Of course, this holds
for the motional electric fields, i.e., for the ideal part of Ohm’s law only. If there are
non-ideal terms, there can be an electric field.
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trajectory, oriented so as to accelerate the charge. The net result is that
the gain in kinetic energy is proportional to the increase in B: (mv2

⊥/2)/B
remains constantr.

This holds as long as the particle trajectory in the plane normal to B
is quasi-periodic, i.e., as long as the particle indeed describes circles in the
magnetic field, or at least trajectories not far from circles. It is true under
two conditions:

• The scales of variation of B must be small toward the gyroradius:
B/∇B � rL.

• During one gyration, the particle should not be perturbed by, for
example, collisions or electromagnetic fluctuating fields. In terms of
frequencies it means ν � ωc, where ωc is the cyclotron period and
ν either the collision frequency or the frequency of the fluctuations,
whatever they are.

If these conditions hold, then the particle is said to be magnetized or adi-
abatic. This will be important in what follows, especially when discussing
non-ideal processes in Sect. 2.11.

2.5.3 Reconnection

We now come to magnetic reconnection. Let us consider the simple config-
uration of Fig. 2.9. In the initial state (a), the magnetic field is created by
a current sheet flowing normal to the paper plane.

The current layer can become unstable for various reasons (for example
through the collisionless or collisional tearing instability) and these instabil-
ities lead to the creation of a magnetic field pattern as shown in panel (b),
thus leading to magnetic flux variations. Another possibility is that the mag-
netic field and plasma from above and below the current sheet are pushed
toward the central current sheet by external large scale motions: then, the
magnetic flux also varies.

In either cases, this variation of magnetic flux induces an electric field
in panel (c), oriented so as to increase the initial current. This current
produces a new magnetic field that cancels the former variations.

If the plasma response is ideal, we come back to the initial state. If it
is not, then the non-ideal effects allow the magnetic field and the plasma
to decouple from each others. This happens in panel (d) in what we call a
non-ideal region, where non-ideal terms prevail over idealness (this region
is variously called the dissipation, or diffusion region).

This allows, in panel (e), the magnetic field to change its topology and
reconnect at the center. Note that since the magnetic field lines newly
reconnected are highly bent, the tension force expels the plasma out.

Finally in panel (f), the electric field spreads in the ideal region, and/or
plasma is brought toward the current sheet by the pressure gradient caused
by the expelled plasma, so that an inflow at the E × B velocity appears.
It is then possible to reach a steady state where new plasma arrives in the
dissipation region, to be expelled in the outflows. Alternatively, the final

rThe derivation is as follows: Integrating Lenz’s law across the contour leads to
2πrL(t)E(t) = B′(t)πr2

L(t), i.e., E(t) = 0.5B′(t)rL(t) = 0.5B′(t)/B(t) × (m/q)v(t). The
energy gain for the particle is m(v2(t))′/2 = qE(t)v(t), that can be written, after simple
manipulations, 2v′(t)/v(t) = B′(t)/B(t). This last equality integrates into v2/B = const.
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Figure 2.9: Illustration of the beginning of reconnection, in a simplified 2D ge-
ometry, from the initial state a to the possible final steady state f . See text for
comments.

state can be quasi-steady with the periodic formation of magnetic islands,
can be turbulent, or can end shortly if the current sheet undergoes another
kind of instability.

Once again, if the plasma is ideal, then it will perfectly respond and
forbid any magnetic field reconnection. This is what makes reconnection
hard to study: it is a non-ideal effect. Non-ideal effects are numerous, and
allow reconnection to occur in nature. They can be due to (see Sect. 2.11.2
for details):

• Collisions. Electrons can be hindered in their motions by collisions
with ions, with neutrals, or with themselves.

• Electron inertia. The electrons have a finite mass which prevents them
from responding instantaneously to the induced electric fields, thus
delaying the response. This is particularly important in collisionless
plasmas. Finite inertia allows collective effects: electromagnetic fields
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created by groups of particles can hinder the motion of electrons.

• Non-adiabaticity. When the magnetic field scale varies on a scale
smaller than the particles gyroradii, the plasma response cannot be
ideal.

• The Hall term (which reflects the different dynamics of electrons and
ions) is a non-ideal term, but it does not lead to reconnection. Its
presence implies that the magnetic field moves with the electrons, not
with the ions. It can however accelerate the reconnection rate (see
Sect. 2.12.1).

2.6 Instructive examples

We now develop several examples: a basic and illustrative case of reconnec-
tion between two current coils (Sect. 2.6.1), the well known Sweet-Parker
case that also shows that reconnection can be steady (Sect. 2.6.2), and
we stress that reconnection is neither field diffusion nor field annihilation
(Sect. 2.6.3).

2.6.1 The example of the coils

It is easy to follow misleading reasoning about reconnection and flux consid-
erations when working with a model that is not self-consistent. It is often
important to think on a situation which encompasses the plasma, the mag-
netic field, and its sources. A simple and instructive example is that of two
circular coils, mechanically fixed to an axis, in which flows an equal current
I0 (see Fig. 2.10). Besides its pedagogical interest, this setup is also the
one used in the TS-3 experimental device, which is devoted to the study of
magnetic reconnection (e.g., Ono et al. 2011, and Sect. 1.3).

The problem has an axis of symmetry z. The symmetries of the dis-
tribution of currents involve a magnetic field (Br(r, z), 0, Bz(r, z)). This,
and the fact that the magnetic field is divergence free, allow the use of a
stream-function Ψ such thats

B(r, z) =
1

2πr

∣∣∣∣∣∣∣
− ∂zΨ
0

∂rΨ

=
1

2π
∇Ψ ∧∇Φ. (2.18)

(Φ is the angle of cylindrical coordinates.) If we compute the evolution of
Ψ along a field line parametrized by s:

dΨ

ds
= ∂xΨ

dx

ds
+ ∂yΨ

dy

ds
= (∂xΨ)Bx + (∂yΨ)By, (2.19)

and with Eq. 2.18, we have that dΨ/ds = 0. It means that the curves
Ψ = const are field lines of B.

The stream-function is also a tracer of the magnetic flux. Consider the
flux of the magnetic field through a circle centered on the z axis (center
(0, z0)), of radius R0. It is:

F (R0, z0, t) =

∫ R0

r=0
2πrdrBz(r, z0, t) = Ψ(R0, z0, t)−Ψ(0, z0, t). (2.20)

sIn 2D, since ∂xBx + ∂yBy = 0, there exists a stream function such that Bx = −∂yΨ
and By = ∂xΨ. This result also applies to an axisymmetric case, adapted with a factor
2πr in the divergence as done here.
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Figure 2.10: Left: the setup is that of two current coils mechanically fixed to
an axis (z).
Right: magnetic field lines created by the two currents in a r-z plane.

From this, we can deduce that on Fig. 2.10, Ψ1 < Ψ2 < Ψ3 < Ψ4. This is
because a circle extending up to the Ψ1 = const contour obviously encom-
passes less flux than a circle extending to the Ψ2 = const contour, and so
on.

In vacuum

Now, we start from the situation in Fig. 2.10. We assume that we are
in vacuum. The two coils are maintained in place mechanically, and we
decide to bring them closer. (Actually, since their currents are in the same
direction, they attract each other like two magnets. Anyway, that their
motion is mechanical or natural is unimportant as long as they come closer.)
By doing so, the Ψ4 = const contour will move toward the X-point, the
Ψ3 = const contour will leave the X-point and resemble the Ψ2 = const
contour.

At the X-point, reconnection of field lines occurs, with field lines turning
around one coil only (the Ψ4-likes field lines) reconnecting two by two to
become field lines turning around the two coils: there is a topological change.

If we look at the flux through the circle passing by the X-point considered
just before, we see with Eq. 2.20 that it increases (it was Ψ3, and then Ψ4,
and so on). Visually, this is clear because there are more and more field
lines captured by the circle.

But now, Faraday’s law integrated along the circle gives∮
C

dl ·E = − d

dt

∫∫
S

dS ·B = −dF (R0, z0, t)

dt
< 0. (2.21)

There is an electric field directed along the circle, directed in the opposite
direction relative to the circle orientation of Fig. 2.10 (along −Φ).

Since we are in vacuum, nothing else happens.

In a plasma

Suppose now that the space between the coils is filled with a plasma. As
we bring the coils closer to one another, the electric field E(R0,Φ, z0) =
(2πR0)−1dF (R0, z0, t)/dt ∝ −Φ will act on the free charges, and drive a
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Figure 2.11: Current and magnetic field generated by the motion of the coils
(orange arrows) and the magnetic field induced at the X-point.

current along the circle, in the −Φ direction. In turn, this current will
induce a magnetic field as drawn in Fig. 2.11.

This magnetic field is in the same direction as the Ψ4-like field lines: it
will reinforce the field at the X-point where it was decreasing. But more
than that: the force exerted by this induced field on the coils, Jcoil∧Binduced,
is directed so that the coils are repelled from the X-point. The response of
the plasma is a force counter-acting our action to drive the coils closer,
simply because this action changes the magnetic flux through some closed
curve.

If the plasma is resistive, then Jinduced = σE with σ the conductivity,
and the force on the coil can be computed.

If the plasma is ideal, σ = +∞, the current is infinite and instantaneous.
It rebuilds the magnetic field as it reconnects, so that all in all, the magnetic
field does not reconnect. The Ψ4-like field lines are just compressed, and
the force on the coils is all the more strong.

In the non-ideal case, field lines reconnect at a rate that depends on
the forcing on the coils and on the plasma conditions, that will decide the
nature of the dominant non-ideal effects. The induced current and the force
on the coils will be less strong. This is then a situation of forced or driven
reconnection.

2.6.2 The example of the Sweet-Parker case: steady mag-
netic reconnection

We now turn to a well known textbook case: the Sweet-Parker configuration.
It is a situation where plasma from an outer ideal region flows toward a
dissipation region where the resistivity is finite, then decouples from the
magnetic field, and is expelled from this inner region by the tension force
to form outflows. It is illustrated in Fig. 2.12.

We underline that seen in this frame, it is a steady situation. It thus
happens at the end of an initial unstable phase, or because of an external
forcing. In a steady state there is no variation of anything, and in particular
no magnetic flux variation across a fixed contour. However, the rate at which
the inflow is conveyed into the non-ideal diffusion zone, and the ratio of the
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Figure 2.12: Sweet-Parker configuration.

inflowing kinetic energy to that in the outflow, are relevant quantities that
can be computed with the use of conservation laws and some hypotheses. In
particular, these quantities critically depend on the response of the plasma,
i.e, on the nature and effects of the dominant non-ideal terms as well as
other characteristic parameters.

We now derive these quantities by using a simple model, stressing that
one of the main assumption is that non-idealness comes from a resistive
term, Ey = ηjy. In Sect. 6.4.8 we will provide a similar analysis for the
relativistic and collisionless case.

Linking the current in the layer to the magnetic field via ∇ ∧B = µ0j
leads to

jy =
B0

µ0δ
, (2.22)

with δ the width of the layer. The electric field at the center of the sheet is
given by

Ey = ηjy =
ηB0

µ0δ
. (2.23)

The inflow velocity in the ideal part is an E ×B drift, so that

vin = Ey/B0 =
η

µ0δ
, (2.24)

where we have used Eq. 2.23 for Ey because it can be shown from ∇∧E =
−∂tB = 0 that, if ∂y = 0 (the 2D assumption), then ∂zEy = ∂xEy = 0 and
Ey is constant.

Conservation of the number of particles leads to

ninvinL = noutvoutδ. (2.25)

Conservation of energy, assuming that energy is dominated by the magnetic
and electric fields in the inflow, and by bulk kinetic energy in the outflow,
leads to (

E ∧B
µ0

)
in

L = nout
m

2
v2

out × δvout. (2.26)

Using Ey = vinB0, and combining the two previous equations, we obtain
the important result

vout =
√

2
B0√
µ0mnin

=
√

2VA,in, (2.27)
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i.e., the outflow velocity is given by the Alfvén speed in the inflow.
Assuming the flow incompressible (n = const) leads to Lvin = δvout, or

δ

L
=

vin

VA,in
= M0. (2.28)

Replacing vin by η/(µ0δ) (Eq. 2.24) then leads to another expression for this
ratio:

δ

L
=

vin

VA,in
=

√
η

µ0LVA,in
= SL

−1/2. (2.29)

These two last equations are important. The Lundquist number

SL ≡
µ0LVA,in

η
(2.30)

is generally very large: 104-108 in laboratory plasmas, 1010-1014 in solar
flares, 1015-1020 in the interstellar medium (Ji and Daughton 2011, and
Fig. 2.42). We thus see that δ � L, and vin � vout. The flow is thus
accelerated. But does this lead to an increase in kinetic energy of the flow?
In order to see this, we manipulate the equations to arrive at

incoming kinetic energy flux

outcoming kinetic energy flux
=

ninLvin × v2
in

ninδvout × v2
out

=
v2

in

v2
out

= SL
−1 � 1.

(2.31)

The kinetic energy of the flow thus increases. This new energy comes from
the magnetic field energy.

Concretely, how are the particles accelerated? When they are in the
incoming ideal zone, the electric field does not accelerate them because
they are in a magnetic field cB > E and simply E × B drift. However,
when they arrive in the dissipative zone, the magnetic field becomes too
weak, or electric fields parallel to B exist because of the non-idealness, and
the electric field can transfer energy to the particles. The particles then
escape in the exhausts because the magnetic field lines are oriented so as to
deviate them there via the Lorentz force.

Note that the magnetic field configuration is stationary. Note also that
the electric field is present in the non-ideal zone because E = ηj, i.e.,
because collisions prevent the particles to screen it. (However, the initial
transient phase where E rises is left unspecified here.)

This situation is somehow analogous to a MHD shock, where magnetic
energy can be converted into plasma kinetic energy when the flow crosses the
shock. The Rankine-Hugoniot relations, that use particle number density,
momentum, and energy conservation across the discontinuity, are similar to
the analysis that we performed. It is not surprising, as we will see, that
Petschek introduced slow shocks around the diffusion region to increase the
rate of magnetic energy conversion.

A final remark concerns the argument of magnetic flux variation. It is
harder to invoke this argument in a steady state, because the magnetic flux
across any fixed contour does not evolve in time. The reasoning that we ap-
plied for the two approaching current coils does not hold. Some researchers
are reluctant to talk about magnetic field-line reconnection in steady state
situations (Alfvén 1976), because the concept of moving field lines can lead
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to erroneous interpretations – especially when the magnetic field is steady.
Actually, there are no flux variation (flux variations matter only to trig-
ger reconnection, or for unsteady cases). Here, there is a balance between
inflow at the E × B speed and outflow, and a constant electric field that
transfer energy from the magnetic field to the particles, electric field that is
sustained (i.e., not screened) by the non-ideal effects.

2.6.3 Magnetic reconnection versus magnetic diffusion and
magnetic annihilation

The presence of non-ideal effects does not necessarily lead to reconnection.
Instead, the magnetic field can simply move at a velocity different from that
of the plasma: it diffuses, or slips across the plasma. It can also annihilate
when encountering a field of opposed sign, without any reconnection. In
this section, we precise these two mechanisms.

Generally, current sheet diffusion and magnetic annihilation is what hap-
pens to current sheets too large to trigger instabilities and too large to
undergo fast reconnection.

Magnetic diffusion

We have seen that the ideal Ohm’s law ∂tB = ∇∧ [V ∧B] means that the
magnetic field is advected at velocity V .

The non-ideal Ohm’s law,

E + V ∧B = R, (2.32)

or ∂tB = ∇ ∧ [V ∧B −R], (2.33)

can then allow either magnetic reconnection where the connections of the
field lines change, or magnetic diffusion where the field lines drift at a ve-
locity different from that of the fluid. In the case of reconnection, the
connections of the field lines change very abruptly (as shown and explained
in Fig. 2.1), while in the case of diffusion the connectivity changes, but in a
slow and continuous way.

We can deduce hints as to which case is allowed depending on the nature
of the non-ideal terms contained in R (for more details, see Birn and Priest
2007, Chap. 2):

• If there is a vector fieldw(x, t) and a scalar field Φ(x, t) such thatR =
∇Φ +w∧B, then Eq. 2.33 can be written ∂tB = ∇∧ [(V −w)∧B].
It means that the magnetic field is advected at velocity V −w.

– If w is continuous, then there is no reconnection, just diffu-
sion. This is for example the case of the Hall term, R ∝ j ∧
B ∝ (ve − vi) ∧B: the magnetic field is carried by the velocity
V − vi + ve = ve, that is, by the electrons.
This is also the case of ambipolar diffusion, when only the term
R ∝ (vn − vi) ∧ B is kept (with vn the velocity of the neu-
tral fluid): the magnetic field is carried by the ions, not by the
neutrals.

– Ifw is not continuous, vanishes, or infinite, then reconnection can
occur. It is, for example, the case of the magnetic field velocity
Eq. 2.3 at a magnetic null point.
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Figure 2.13: Diffusion of a 1D current sheet. Right: sketch of the configuration.
Left: Profiles of the y magnetic field at different times.

• If there is no vector field w or scalar Φ such that R = ∇Φ +w ∧B,
then reconnection can occur.

In the cases where reconnection can occur, whether it does occur or not
depends on the possible forcing, on the parameters of the current sheet
(thickness, density, ...), and of the asymptotic magnetic field (strength, di-
rection, ...), which have to be so that the initial situation is unstable.

Magnetic field annihilation

Field line diffusion can lead to field line annihilation or, without thinking
in terms of field lines, to a decay of the magnetic field. We illustrate this
case by an example.

We consider a one dimensional current sheet initially infinitely thin:
B = B0ŷ for x > 0, and B = −B0ŷ for x < 0. In the absence of plasma
motion (V = 0), and under the assumption that R = η0j = η0µ

−1
0 ∇ ∧B,

the induction equation reads:

∂tB = η∂2
xxB, (2.34)

with η = η0/µ0. This equation is a diffusion equation. Consequently, the
current sheet will diffuse away, as shown in Fig. 2.13. At time t, the width
of the sheet is given by 4

√
ηt.

The total magnetic flux through the x-z plane,
∫

dxBy, remains constant
(and null). The total current is given by I =

∫
dx jy =

∫
dx ∂xBy/µ0 =

2B0/µ0. It remains constant and is just spread away from the center. The
total magnetic energy,

∫
dxB2

y/(2µ0), decreases by Joule heating. This can
be seen by writing By∂tBy = By∂xEz = Byη0∂xjz, integrating by part to
arrive at −(∂xBy)η0jz, using (∂xBy) = µ0jz = µ0η

−1
0 Ez, to arrive at

d

dt

∫
dx

B2
y

2µ0
= −

∫
dx η0j

2
z . (2.35)

At a fixed location x, the magnetic field decreases. This can be seen as
if field lines were dragged toward the center at x = 0 by diffusion, where
they disappear or annihilate with their opposed counterpart. It is however
not necessary to think in terms of field lines.

There is no magnetic reconnection, but still a conversion of magnetic to
kinetic energy via Joule heating, i.e., by collisions between particles accel-
erated by the inductive electric field Ez. Again, this electric field is induced
by magnetic flux variations: ∂tBy = ∂xEz.
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2.7 Non-ideal Ohm’s laws

We are now ready to explore the subject of magnetic reconnection more
frankly. We first start by describing the generalization of Ohm’s law E +
U ∧B = 0, and introduce the magnetic Reynolds number.

As we have seen with Eq. 2.15, a consequence of the relationE+U∧B =
0, which holds in ideal MHD, is that ideal MHD does not allow for magnetic
flux variations across plasma elements: the flux tubes are frozen to the
plasma motion, topological changes of the magnetic field (such as those of
Fig. 2.1) are forbidden, and more generally, induced electric fields cannot
remain finite during a finite amount of time. A consequence is that the
configuration reached after an ideal MHD instability, when the plasma has
relaxed to an equilibrium state, is not necessarily the lowest magnetic energy
state, but only the lowest energy state allowed by the preserved topology of
the field.

Magnetic reconnection is a non-ideal process or instability that allows for
flux variations in small area, that in turn allow global topological changes,
and thus enables the possibility to relax to energy states lower than those
accessible without topological changest. Energy is taken from magnetic
energy, because the field reaches a lower energy state. As we explained, the
transfer of energy to the particles is realized via the electromotive electric
fields induced by magnetic flux variations and, in steady state, sustained by
the non-ideal plasma response.

2.7.1 Resistive Ohm’s law and magnetic Reynolds number

The simplest model to allow for magnetic reconnection is to consider a finite
resistivity η. In the rest frame of the plasma, Ohm’s law is simply E′ = ηJ ′.
In the lab frame, in which the plasma moves with a velocity U in a magnetic
field B, the electric field becomes E = E′−U ∧B and the current remains
unchanged (in the non-relativistic limit), so that we have:

E +U ∧B = ηJ . (2.36)

It is then important to know when the resistive term dominates.
A particular case is at stagnation points of the flow (for example at the

X-point in the center of Fig. 2.2) where the velocity vanishes, so that we
simply have E = ηJ .

But more generally, we can take the curl of Eq. 2.36, use ∇∧E = −∂tB,
assume the electric resistivity η independent of space, and use ∇ ∧ µ0J =
∇∧ (∇∧B) = −∇2B (we neglect the displacement current, not important
in non-relativistic situations) to obtain an advection-diffusion equation for
the magnetic field:

∂B

∂t
= ∇ ∧ (U ∧B) +

η

µ0
∇2B. (2.37)

In the absence of resistivity, we know that the magnetic field is carried by the
plasma, so that the equation ∂tB = ∇∧ (U ∧B) means that the magnetic
field is advected with a velocity U . In the absence of plasma motion, the

t Note however that the magnetic field topology cannot completely freely change. It is
constrained to preserve some quantities, such as the total helicity of the field lines (under
some boundary conditions, see Bellan (2006), and not completely for 3D reconnection,
see Priest (1987)).
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equation reduces to a diffusion equation ∂tB = α∇2B. Consequently, on
the right-hand side of Eq. 2.37, the first term describes advection of the
magnetic field by the fluid, while the second represents diffusion of the
magnetic field without the need of any fluid motion: the fluid and the
magnetic field decouple (here because collisions prevent particles to respond
correctly). If we introduce a characteristic length of variation L0 for B,
a typical field strength B0 and a typical velocity U0, these terms can be
evaluated as ∇ ∧ (U ∧ B) ∼ L−1

0 U0B0 and ηµ−1
0 ∇2B ∼ ηµ−1

0 L−2
0 B0, so

that their ratio is what defines the magnetic Reynolds number:

Rm =
advection of B

diffusion of B
=
U0L0

η/µ0
. (2.38)

We recall that η is the electric resistivity, and we define η/µ0 as the magnetic
diffusivityu.

If Rm is very high, then magnetic diffusion is negligible compared to
magnetic field advection by the flow: ideal MHD applies and reconnection
is not likely to occur. On the other hand, if Rm is small, non-ideal effects
allow the field to diffuse significantly, it decouples from the plasma, and it
can reconnect.

2.7.2 More general Ohm’s law

Finite resistivity as described by Eq. 2.36 is due to electron-ion collisions,
and is actually not always responsible for the reconnection observed in plas-
mas. Instead, in sufficiently collisionless plasmas, effects such as electron
finite inertia, or the Hall term, are expected to play the key role and to pro-
vide faster reconnection rates than predicted by the Sweet-Parker resistive
analysis. In more collisional plasmas, reconnection is believed to produce
small scales by a turbulent cascade via the tearing of the current sheet,
or to occur on small scales due to a pre-existing turbulence, or both (see
Sect. 2.11.4), and the large scale Sweet-Parker analysis also fails. Since it
is very complicated to consider the non-ideal effects or the turbulent cas-
cade, one often considers resistive MHD with an anomalous resistivity η
not linked to collisional resistivity. To illustrate this complexity, we derive
a generalized Ohm’s law including other terms.

Ohm’s law is derived from the fluid equation of motion for the particles
responsible for the frozen-in condition, i.e., the electrons. This equation of
motion can differ according to the hypotheses made, and in particular to the
fluid closure employed. We derive Ohm’s law in a collisionless relativistic
plasma in Sect. 6.4.3. Here we consider collisions and a non-relativistic
plasma, with the following form for the conservation of momentum:

neme
∂ve

∂t
+ nemeve ·∇ve = ne(−e)(E + ve ∧B)−∇ · Pe

+ χ(vi − ve) + χ2∇2ve,
(2.39)

where ne is the electron number density, me the electron mass, ve and vi

the electron and ion fluid velocities, Pe the electron pressure tensor (that
can be anisotropic and with off-diagonal terms), χ(ve − vi) accounts for

uWe also remind that in fluid dynamic, the Reynolds number is the ratio of momen-
tum advection by the bulk flow (ρ[∂tv + v ·∇v]) over momentum diffusion by collisions
(ρν∇2v), and is given by Re = U0L0/ν, with ν the kinematic viscosity.
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collisions between electrons and ions (note that the collisionality could be
anisotropic and depend on the magnetic field orientation), and χ2∇2ve

electron viscosity (due to electron-electron collisions). From this we obtain
Ohm’s law as

E + ve ∧B = −me

e

(
∂ve

∂t
+ ve ·∇ve

)
− 1

nee
∇ · Pe

+
1

nee
χ(vi − ve) +

1

nee
χ2∇2ve.

(2.40)

Moreover, in MHD the velocity of the fluid is the velocity of the center-of-
mass between electrons and ions, and is to a very good approximation given
by the ion fluid velocity (because mi � me). We can thus force the velocity
on the left-hand side to be that of the ions, by writing ve = vi + (ve−vi) =
vi − J/(ene), where we assume singly charged ions and quasi-neutrality
(ne = ni). Also, the ion-electron collision term can be rewritten by using
the current. We then obtain:

E + vi ∧B︸ ︷︷ ︸
E−field in the ion plasma frame

=
1

nee
J ∧B︸ ︷︷ ︸

Hall term

− me

e

(
∂ve

∂t
+ ve ·∇ve

)
︸ ︷︷ ︸

electron bulk inertia

− 1

nee
∇ · Pe︸ ︷︷ ︸

e− thermal inertia

+
χ

(nee)2
J︸ ︷︷ ︸

e−i collisions

+
χ2

nee
∇2ve︸ ︷︷ ︸

e−e collisions

.

(2.41)

In a collisionless plasma, χ = χ2 = 0 and the only source of non-idealness
is electron inertia: either bulk inertial or thermal inertiav. The latter is
due to bouncing electron motions into the non-ideal layer, which give a
high pressure, and is the main contributor in non-relativistic collisionless
magnetic reconnection.

We describe each of the non-ideal terms in Sect. 2.11.2, and discuss their
relative importance in Sect. 2.11.3. Also, we detail the contribution of each
term in Ohm’s law for relativistic reconnection in Sect. 6.4.3.

2.8 From large to small scales: Global dynamics

Magnetic reconnection is really a multi-scale process, with large scale mo-
tions setting the local parameters and geometry allowing for reconnection to
occur, and with reconnection acting back on the large scales by producing
outflows, high-energy particles, and by heating the plasma. This multi-scale
nature makes it very challenging to study, especially for numerical simula-
tions. In Sects. 2.8 to 2.13, we go for a journey through plasma scales, from
large ideal sizes to small non-ideal regions.

2.8.1 Large scale dynamics

On large scales, plasma flows usually exhibit large magnetic Reynolds num-
bers Rm = U0L0/(η/µ0) (Eq. 2.38), because their resistivity η is small, and

vThe Hall term remains present, but as we explain, it allows a slippage of the field
lines with respect to the ion fluid, and not reconnection.
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their characteristic size L0 very large. On these scales the magnetic field
thus remains to a very good approximation frozen to the plasma, and ideal
MHD provides a correct description. This is the case of many large-scale as-
trophysical environments, such as the solar magnetosphere, accretion flows
around compact objects, or various magnetized jets and winds.

2.8.2 Examples: shocked winds, large scale motions in the
solar corona

For example, the supersonic collision of two magnetized flows leads to a pair
of shocks separated by a contact discontinuityw, that the plasma cannot
cross: there is no mixing between the two flows. This is the case of the
boundary between the solar wind and the interstellar medium (Fig. 2.14),
and of the solar wind meeting the Earth magnetosphere (Fig. 2.15). The
ideal MHD large-scale world of stars and planets can be seen as isolated
bubbles of plasma separated by thin impermeable boundaries.

In the solar atmosphere, large scale magnetic flux tubes emerge from
under the surface of the Sun via Parker instabilityx and stay suspended in
the solar corona. These tubes remain anchored under the Sun’s surface at
the so called footpoints (Fig. 2.16 and Fig. 1.3). The large scale dynamics
of these tubes is governed by ideal MHD. A similar arrangement is believed
to exist above accretion disks in X-ray binaries or active galactic nuclei.

2.9 From large to small scales: Formation of re-
connection sites

In this ideal global dynamics, the magnetic flux is advected by the fluid and
compressed at some locations, which can be, for example, at the previously
mentioned thin boundaries, or between two flux tubes in the solar corona
that are pushed together, or between an emerging flux tube and a pre-
existing magnetic field. These compressions create zones of strong magnetic
shear (strong ∇ ∧B), and because of µ0j = ∇ ∧B, the plasma responds
by creating thin current sheets. Another way of seeing these current sheets
is to integrate µ0j = ∇ ∧B across the sheet to have the passage relation:

n12 ∧ (B2 −B1) = µ0js, (2.42)

where 1 and 2 refer to the two sides of the sheet and js to the surface
current flowing into the sheet. In particular, we see that it is the tangential
discontinuity, n12 ∧ (B2−B1), that matters. The thinning and subsequent
current sheet creation are illustrated by numerical simulations in Fig. 2.17
in 2D, and in Fig. 2.18 in 3D.

If the situation is not stationary because of a varying forcing or because
of growing instabilities, these sheets can become thinner, until the length
scales involved make the ideal hypothesis break down. Idealness may be lost

wIn MHD there are three wave modes: the slow and fast magnetosonic waves, and
the Alfvén wave. If the flows are super-fast, then there can actually be two shocks and
an Alfvén wave on each side of the contact discontinuity. But this does not change the
discussion.

xParker instability occurs to flux tubes immersed in a plasma in a gravity field. If the
central part of the tube rises (so that the tube is bent upward and forms a bump), then
by gravitation plasma will fall down. The bump is then less dense, and the buoyancy
force makes it rise even more. So that plasma falls down, and so on.



42 Chapter 2

Heliosphere
The bulk component
of the solar wind does not
escape from it,
and it in ates slowly  in space

Voyager 2

Voyager 1

Solar wind

Trajectory of
interstellar
plasma

Interstellar medium
meaning: between stars,
inside the galaxy

The Sun and its 
8 planets

Contact discontinuity

Ou
te

r s
ho

ck

Inner shock

Figure 2.14: Artist view of the heliosphere. The solar wind meets the interstellar
space and forms a shock. In ideal MHD, the two flows do not cross the contact
discontinuity. In the real world, magnetic reconnection or other instabilities (e.g.,
Kelvin-Helmholtz) allow some passage. High-energy particles can pass through as
well. Adapted from NASA Voyager website.
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Figure 2.15: The magnetosphere of the Earth. Adapted from Wikipedia. Red
arrows are magnetic field lines from the Earth.
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Figure 2.16: Left: picture of the solar surface, showing magnetic field lines.
Right: reconstruction of the field lines seen on the left picture assuming a force-free
MHD equilibrium. The white and black patches on the surface are the footpoints
of the field lines, where they are anchored. Footpoint motions move the field lines.
From Liu et al. (2013a).
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either because the magnetic Reynolds number Rm = U0L0/(η/µ0) becomes
lower and lower because L0 shrinks, so that collisions become important, or
alternatively because the other non-ideal terms (mainly, the ion and electron
inertia contributions) start being important at these length scales. Conse-
quently, current sheets, or equivalently zones of strong magnetic gradients,
are the loci of reconnection and of the subsequent field-to-plasma energy
transfer.

The locations where current sheets form and the mechanisms at stake are
relatively simple in 2D, less so and still not fully understood in 3D. Three-
dimensional setups indeed involve various geometries, where the topology
plays a key role and sets the reconnection rate or the amount of energy
conversion. We will discuss in more details in the next section (Sect. 2.10)
where and how reconnection takes place in 2D and in 3D.

2.10 From large to small scales: A closer look at
reconnection sites

We can now look closer at the current sheets. This section does not deal
with the smaller scales where magnetic reconnection does take place due
to non-ideal processes (this is the subject of the next sections, Sects. 2.11
and 2.12), but is concerned with the magnetic field configuration around
the area where reconnection takes place.

The large scale structure of the magnetic field is indeed important to
set up the conditions under which reconnection will happen at the kinetic
scale, by fixing the magnetic energy that is brought into the non-ideal region,
and that can be released, as well as the conditions at the boundary of the
non-ideal region. In this section, the plasma is thus mostly considered as
ideal, and we explore which magnetic field configuration can be unstable
and give easily rise to reconnection. Of course, once reconnection happens,
it can alter the structure of the plasma on large scales and make the ideal
hypothesis break down, even hundreds of kinetic lengths aways from the
reconnection site (along the magnetic separatrices for example). The physics
of such effects will be discussed in Sect. 2.12, and we presently regard the
plasma as ideal.

We first introduce some general vocabulary in Sect. 2.10.1. Then, in
Sect. 2.10.2 we review the possibilities in two-dimensions, that include X-
and O-points, and initial configurations such as Harris sheet, X-point col-
lapse, or force-free equilibrium. Next, we turn to cases that have no invari-
ant direction and that are thus fully 3D. In Sect. 2.10.3 we introduce the
required definitions, and in Sect. 2.10.4 we present the various possibilities
in 3D, with reconnection at a null point (and the kind of nulls or of per-
turbations), or away from null points (at separators and at quasi-separatrix
layers).

2.10.1 Geometry and vocabulary

A magnetic null is a location where the magnetic field vanishes. There
are several kinds of field line topology allowed around a null. In 2D, there
are two possibilities only: a X-point or a O-point (see Fig. 2.19). In 3D,
several cases are possible, that we will detail in Sect. 2.10.3.
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Figure 2.17: Two-dimensional resistive MHD simulation, from Biskamp (§3.2.1,
2000). The left panels represent magnetic field lines, and the right panels are
the out-of-plane currents. The initial configuration, which is out-of-equilibrium, is
that of line (a). Time increases in lines (b) and (c). We clearly see that the system
evolves by increasing magnetic shear, thus reinforcing and localizing the current
locations.

Figure 2.18: Three-dimensional resistive MHD simulation, from Parnell and Gals-
gaard (2004). The white lines are magnetic field lines. The initial configuration
(panel 1) consists in two flux tubes anchored in the bottom plane at the black and
white spots. The white spot is then brought to the right, and the black one to
the left. The flux tubes meet, and, since they have field lines of opposed direc-
tion, strong gradients of B are created, which drive strong currents. These strong
currents are represented by shadowed blue area, and are the places where re-
connection occurs. Such a configuration may happen at the solar surface, when
two flux tubes are brought into contact by the motion of their feet anchored in the
photosphere.
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Figure 2.19: X and O points. Arrows are the magnetic field. From a PIC
simulation.
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Figure 2.20: Separation of space into four domains by the separatrices (green
lines), where field lines (in red and blue) have different origins. (Figure from
Wikipedia.)

A separatrix (plural separatrices), is a surface (in 3D) or a curve (in
2D) that separates two regions where the field lines have distinct origins.
It means that a field line from one domain cannot be continually moved to
match a field line from another domain. Around the X-point of Fig. 2.20, the
separatrix curves are drawn as green lines. In an ideal plasma, the plasma
and the field lines never cross the separatrix surfaces. Flux exchange (or
field line motions) across separatrices is only allowed by non-ideal effects.
It involves a change of topology. For example in the case of Fig. 2.20, when
field lines from domains 3 and 1 reconnect, they create new field lines in
regions 4 and 2, increasing the flux there.

In 3D, the web formed by all separatrices surfaces can be very complex
and intricate.

2.10.2 Geometry in two-dimensions

2D magnetic null

By two-dimensions, we mean a configuration invariant along one axis. We
first consider the case where the magnetic field has only two components, in
the plane normal to the axis of invariance. In two dimensions, the magnetic
nulls allowed are the followings:
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• The X-point, where the field around the null is hyperbolic. If recon-
nection is allowed, field lines pass one by one across the X-point.

• The O-point, where the field around the null is elliptic. If reconnection
is allowed, there is destruction or creation of field lines as the O-point
contracts or expands.

• Lines where B = 0, such as for example in the section on magnetic
field annihilation (Sect. 2.6.3) and the corresponding Fig. 2.13. At the
end of such lines we can find Y-points.

In the case of the O-point, field lines appear or disappear one by one at a
point location. At a X-point, they reconnect two by two at a point location.
Of course, multiple X-points can be involved during a reconnection event.
In 3D the situation is more complex, and an infinite number of reconnecting
field lines is involved at each time in the reconnection process, which occurs
in a finite volume.

Structure of a linear 2D null

The structure of a linear 2D magnetic null can be made more explicit.
The expansion of the field around the null to first-order can be written
Bx = αx + βy, By = γx + δy (and by assumption Bz = 0). By linear we
mean that the Jacobian αδ − βγ is not zero. If this is not the case, then
other terms must be included in the expansion.

The zero divergence constraint reduces the four unknowns to three.
Among these three unknowns, one degree of freedom describes a rigid ro-
tation of space. The problem thus really has only two degrees of freedom,
which can be seen as the strength of the magnetic field and the angle be-
tween the asymptotic field lines. All in all, a linear null can always be
written in some coordinate system as (Priest 1987):

Bx = B0
y

r0
, By = B0 α

2 x

r0
. (2.43)

When α2 < 0, the field lines are elliptical and we have an O-point. The
case α2 = −1 produces circles.

When α2 > 0, the field lines are hyperbolic and we have a X-point. The
separatrices are given by y = ±αx and form an angle θ such that tan θ = α.

In both cases, the current is spatially constant and is given by

jz = µ−1
0 (∇ ∧B)z =

B0

µ0r0
(α2 − 1). (2.44)

For α2 = 1, there is no current.

Instability of a 2D X-point: X-point collapse

We consider the above linear null, and now show that it is an unstable
equilibrium, that naturally leads to the formation of strong magnetic field
gradients and, consequently, to localized current sheet formation.

We take the case where the separatrices form right angles (α = 1),
drawn on Fig. 2.21. At equilibrium, the magnetic pressure (given by the
density of field lines in the figure) balances the magnetic tension due to
field line curvature. Suppose now that we increase the angle between the
separatrices as on Fig. 2.21, right. On the left and right sides, the magnetic
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Figure 2.21: 2D linear X-point with α = 1 (Eq. 2.43), collapsing (from left
to right panels). On the left panel, the pressure and tension forces balance. If a
perturbation contracts the X-point as on the right panel, then the pressure force
exceeds the tension force and the collapse continues, which shows that it is unstable.

pressure increases and the magnetic tension decreases, so that they do not
balance any more, their sum being directed inward. On the top and bottom
sides, magnetic pressure decreases while magnetic tension increases, so that
their resultant is directed outward. As a result, the collapse of the X point
continues, and a X-point is indeed an unstable equilibrium.

A current is created as a function of the angle between the separatrices
because the magnetic flux varies. If the plasma is ideal, this current is given
by Eq. 2.44.

We remark that our reasoning is local and ignores the situation outside
of what is drawn in Fig. 2.21. Boundary conditions or the plasma outside
can either drive (by moving) or prevent (by staying still) the collapse.

Ultimately, a strong current sheet will be formed at the center, and if its
width is small enough, magnetic reconnection will start and greatly affect
the overall equilibrium by creating plasma inflows and outflows.

Particle-in-cell simulations of X-point collapse have been performed by
Graf von der Pahlen and Tsiklauri (2014), and are very similar to simula-
tions starting from a Harris configuration (described in Sect. 2.10.2).

Harris equilibrium as a starting point

The case of the X-point collapse is an example of initial conditions that are
unstable and lead to reconnection. Another example is that of a current
sheet such as in Fig. 2.22. The equilibrium configuration is called Harris
equilibrium, and it is one of the rare fully consistent solutions of the Vlasov-
Maxwell system in a non-homogeneous case.

It consists in a reversing magnetic field given by

B = ẑB0 tanh
(x
L

)
, (2.45)

sustained by a current. The current is built by a population of electrons
and ions (or positrons) of equal number density

ns(x) =
n0

cosh2(x/L)
(2.46)

flowing with opposite bulk velocities Ue = −Ui in the ±y directions. The
exact equilibrium relations for the relativistic case are derived in Sect. 3.7.
See also Biskamp (2000) for subtleties about particle orbits.
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Figure 2.22: Setup for the Harris equilibrium.

A guide magnetic field BG = αB0ŷ can be added, as well as a uniform
population of background ions and electrons. The presence of the guide field
implies that the magnetic field makes an angle θ with the z direction given
by tan θ = α. It then reverses, between x = +∞ and x = −∞, from an
angle φ = π− 2θ which is not π as in the no-guide-field case. In particular,
the magnetic field never vanishes, there are no null points.

Harris equilibrium is used in simulations and analytical works to study
instabilities that can arise in a current sheet without taking into account
the complexity added by driving inflows. The majority of PIC simulations
start from this setup. However, it should be stressed that this equilibrium is
very peculiar. For example, the velocities of the electrons and ions carrying
the current is uniform in space, so that the current is localized by local-
izing the particle density. In contrast, the background particle population
is at rest and of uniform particle density: the difference between these two
populations may seem artificial. Also, Harris equilibrium imposes a symetry
between the two sides of the current sheet, which is a strong constraint. Con-
sequently, conclusions drawn from a Harris startup should not been taken
as general, and other configurations should be explored in more depths, for
exemple asymetric layers (Belmont et al. 2012; Aunai et al. 2013), force-free
layers (Liu et al. 2014), X-point collapse (Graf von der Pahlen and Tsiklauri
2014), geometries adapted to laser experiments (Smets et al. 2014), and 3D
initializations (Baumann and Nordlund 2012; Olshevsky et al. 2013).

The tearing instability

When the current sheet width L is larger than the plasma kinetic scales
(inertial length and Larmor radii), resistivity is likely to prevail over kinetic
effects and resistive MHD or resistive two-fluid calculations can be used.
Harris equilibrium can then be shown to be unstable to the (resistive) tearing
mode. Its growth rate is a combination of the Alfvén timescale and resistive
timescale (see Biskamp (§3.2.2, 2000) or Fitzpatrick (2011)).

If the current sheet width is of the order of kinetic plasma scales, then
collisionless physics is likely to prevail, and the instabilities must be studied
with Vlasov-Maxwell equations. The current sheet is again unstable to the
(collisionless) tearing instability. The growth rate is now proportional to
the ion or electron cyclotron periods, which can be much faster than in the
collisional case.

As its name suggests, the tearing instability tears apart the current sheet
in the ẑ direction, forming magnetic islands. In the non-linear phase, the
islands contract because of the magnetic tension force. Each pair of island is
separated by a X-point where reconnection occurs, with outflowing particles
toward the islands. This is illustrated in Fig. 2.23. In Sect. 4.4.4, we study
the tearing instability in a relativistic pair plasma, and show that analytical
calculations and PIC simulations agree.
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Figure 2.23: Electron number density at two different times, illustrating the
tearing instability. The initial state is given by Harris equilibrium. From a PIC
simulation detailed in Chapter 6.

Cross-field instabilities in three dimensions

The tearing mode is an instability only in the x-z plane of Fig. 2.22. In
three dimensions, the current sheet can also be unstable in the y direction.
An unstable mode, the kink instability, indeed bends the sheet in the y
direction (Fig. 2.24). There are situations where it is faster than the tearing
mode, and disrupts the sheet, dissipating the magnetic energy in small scale
reconnection events and leading to a turbulent state. Oblique modes, which
are a combination of the tearing and kink modes, also exist and can be the
fastest growing ones (Daughton et al. 2011).

Force-free current sheet as a starting point

The Harris initial state with a guide magnetic field, B = ẑB0 tanh(x/L) +
ŷαB0, is a solution of the Vlasov-Maxwell system, but is not a force-free
solution, i.e., it does not satisfy j ∧B = µ−1

0 (∇ ∧B) ∧B = 0. There are,
however, cases where a force-free equilibrium may be privileged. For exam-
ple at low plasma β = Pgas/Pmag, the plasma dynamics is governed by the
magnetic forces and the plasma is likely to stay in a force-free equilibrium,
where the magnetic force j ∧B vanishes.

It is possible to build an equilibrium that satisfies the force-free require-
ment. For a field B = ẑBz(x) + ŷBy(x), one has

(∇ ∧B) ∧B = −1

2
∂x
(
B2
z +B2

y

)
x̂. (2.47)

Keeping the same dependence Bz(x) = B0 tanh(x/L), the choice By(x) =
B0[α2 + 1/ cosh2(x/L)]1/2 implies that B2

z +B2
y = B2

0(1 + α2) so that, with
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Figure 2.24: From Cerutti et al. (2014b). PIC simulation starting from a Harris
equilibrium. The reconnecting magnetic field is along ±x.
For the simulation on the left, the kink mode dominates and disrupts the
current sheet.
For the simulation on the right, the presence of a guide field along z stabilizes
the kink mode, and it is the tearing mode that dominates, producing a similar
physics than in 2D (as in Fig. 2.23).

Eq. 2.47, the magnetic field is force-free. With this expression, the guide
field is B0α at large distances from the current sheet (just as for the Harris
configuration), and increases up to B0

√
α2 + 1 at the current sheet center.

In particular, even for α = 0, the guide field does not vanish at the center
of the sheet

PIC simulations starting from a force-free current sheet are performed,
among others, by Liu et al. (2014). These studies suggest that there are no
significant differences between a force-free initial state and the Harris sheet
initial state, even if a full comparison has not been performed.

Analytical models with inflows and outflows

The previous analysis of the X-point collapse, or the stability analysis of
Harris current sheet, do not include magnetic reconnection, and neither in-
flowing or outflowing plasma from the reconnection zone. To do so requires
to make assumptions about the dissipative processes that fix the rate at
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which the reconnection proceeds (e.g., the resistivity). Some analytical so-
lutions are then possible. The simplest ones are steady and two-dimensional :

• The Sweet-Parker configuration (Sect. 2.6.2 and Fig. 2.12). Outer
region: ideal MHD. Inner region: collisional resistivity. This is the
regime in which reconnection occurs when the current sheet width
is larger than kinetic scales, and stable against instabilities (see the
discussion of Sect. 2.11.3).

• The Petschek configuration (Fig. 2.26). Outer region: ideal MHD
with irrotational flow and no current, plus the ad-hoc assumption of
the existence of four slow shocks. The conditions ∇∧ v = ∇∧B = 0
and the slow-shock jump conditions allow a determination of the flow.

In this configuration, most of the conversion of magnetic energy to ki-
netic energy occurs when the plasma crosses the shocks. It thus allows
for larger reconnection rates than the Sweet-Parker configuration, and
it can be shown that the reconnection rate is almost independent of
the resistivity (logarithmic dependence in SL).

The stability and existence of this configuration is still debated. Re-
cent works (simulations and analytical developments in ideal and resis-
tive MHD) show that it is stable if the resistivity is localized, or more
generally if it presents strong enough gradients. The Petschek solu-
tion then survives. It is however still not clear whether this happens
in real environments. We discuss further this issue in Sect. 2.12.4.

• The Petschek configuration can be generalized by allowing a finite
vorticity in the outer region (the non-uniform configurations of Priest
2011).

• More general configurations can be imagined, for example asymmetric
setups where the parameters above and below the dissipation zone are
different.

These approaches are often only approximate. A full self-consistent de-
scription must employ numerical simulations. Figure 2.25 illustrates the
structure of a current sheet with reconnection and outflows in a PIC simu-
lation.

Of course, unsteady reconnection can also occur. In particular, PIC
simulations have shown that in some cases, reconnection occurs in a non-
steady state by the irregular formation of magnetic islands at the X-point,
that are then advected out (the plasmoid instability of Sect. 2.11.3).

2.10.3 Geometry in three dimensions: definitions

We now discuss the geometries and the configurations encountered in three
dimensions. We start by 3D nulls, which show a larger variety than in two-
dimensions. We then introduce the definition of important topological ob-
jects. We will discuss reconnection in 3D in the next section (Sect. 2.10.4)y.

yGiven that visualizing 3D configurations is not easy, a well done cartoon can be
of great help. We warmly recommend to browse the website http://solarmuri.ssl.

berkeley.edu/~hhudson/cartoons/, where the best reconnection cartoons ever drawn
are archived.

http://solarmuri.ssl.berkeley.edu/~hhudson/cartoons/
http://solarmuri.ssl.berkeley.edu/~hhudson/cartoons/
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Figure 2.25: Zoom around a X-point showing various fluid quantities. The
magnetic field is directed along +ẑ above the current sheet, and along −ẑ below.
It reconnects at the X-point, and is expelled toward the islands. The islands are
magnetic O-points, i.e., close to their center the magnetic field forms closed loops.
From a PIC simulation (see Fig. 6.1 for the exact parameters).

3D nulls

An example of 3D null is drawn on Fig. 2.27. The fan surface is actually
a separatrix between the orange and blue domains. The null is said to be
positive if the field lines in the fan surface go away from the null, and
negative if they converge into the null. The spine is the only field line,
apart from those of the fan, that reaches the null.

The null of Fig. 2.27 satisfies ∇∧B = 0 and is current free. It is called
a potential null. But currents can be present (with effects illustrated in
Fig. 2.28):

• If there is a current J// parallel to the spine, the field lines in the
fan plane spiral as they extend from the null. The null is said to be
improper (and proper if field lines in the fan are straight lines).

• If there is a current J⊥ perpendicular to the spine, then the fan and
spine are not any more perpendicular.

• The two preceding effects can be combined.

For 3D linear nulls, a similar analysis than in 2D (Sect. 2.10.2) can be
done. Once again, the geometry around a null point is restricted by the
divergence free nature of the field, and Faraday’s law must also be fulfilled.
The linear expansion of the field around the null can be written in matrix
notation as B = Jx, where J is the Jacobian matrix and has 9 components.
∇ ·B = 0 reduces the number of degrees of freedom by one. Two degrees of
freedom are associated to a rigid rotation in space. There remains 6 degrees.

If the Jacobian is null, then the null point is non-linear and the expansion
must go to second-order.
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Figure 2.26: Petschek configuration. The magnetic field is shown as dotted lines.
The plasma flows (red arrows) across the magnetic separatrices (green), inside
which there are the standing slow-mode shocks. The shocks are switch-off shocks,
which means that the tangential component of the magnetic field vanishes after
the shock. The effect of the two shocks is thus a 180o rotation.

spine curve

fan surface

null point

Figure 2.27: Example of a positive 3D null without current. Blue and orange
lines are magnetic field lines.

Other topological structures

The intersection of two separatrix surfaces defines a curve called a separa-
tor. This is the case of Fig. 2.29.

In a global magnetic configuration, the web of separators is called the
skeleton.

In the case of the Sun, the field lines of the corona are anchored in the
solar photosphere. They form closed loops, where a field line starts from
the photosphere and ends in the photosphere, or can also be open. In a
2D view, the separatrices separate regions of different connectivity, that is,
regions where the field lines do not come from the same spot. An example
is given in Fig. 2.30. If the field lines intersect in a X-point, the separatrices
are then extensions of the fan surface of this null, or of the spine of this
null. In the particular case of no null point, the separatrix is said to be a
touching curve, and to form a bald patch.

Reconnection then consists in field lines from one region passing to an-
other region, either at the X-point in 2D, or at any location in 3D.
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Figure 2.28: Examples of the incidence of a current on the local geometry around
a null. Blue lines are magnetic field lines. From Parnell (2012).

Figure 2.29: Two magnetic nulls. The separator line is the black line joining the
two null points. From Parnell (2012).
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Figure 2.30: From Priest (1987). Magnetic field lines anchored in the Sun
photosphere. In each domains (1 to 4), field lines start or end in the same magnetic
domain. (a) With a X-point. There are four distinct topological regions. (b)
Without X-point. There are three regions. (c) In 3D, the situation is more complex:
the domains are now volumes (only a one field line is shown for each). Reconnection
can occur at the separatrices, and particularly at the separator because there field
lines from several domains (with different orientations) are close from each others.
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2.10.4 Reconnection in three dimensions

We now turn to how reconnection proceeds in 3D configurations. In 2D,
the only cases are at X-point-like configurations. In 3D, reconnection can
occur at the magnetic nulls described above, differently depending on how
the plasma around the null is perturbed. Reconnection can also occur away
from null points, for example at a separator line, or at any place with strong
magnetic field gradients.

There are still several open questions regarding 3D reconnection and the
implied geometry. First, for a given geometry and perturbation (a separator
or a null perturbed in a particular way), how does reconnection proceed?
This question must be studied with analytical works, with fluid or with
kinetic simulations when appropriate. Second, which of these geometries
and perturbations are actually taking place in a real given environment? In
other words, which configuration is dynamically accessible? This question
requires either direct space observations, laboratory experiments, or global
numerical simulations. These issues are obviously very relevant to know
how reconnection proceeds in an environment. In what follows we briefly
review answers to the first question.

The second question is partly answered in some particular cases. For
example, the large scale field geometry is known for coronal mass ejections
(or at least, we know some particular geometries that give rise to a CME,
see Sect. 2.10.6), for solar jets (Sect. 2.10.7), for other small scale events in
the Sun (Sect. 2.10.8), or at chromospheric levels where field line reconstruc-
tion revealed an intricate magnetic field (see p. 2.10.4). But even so, the
perturbations imposed by plasma motions are often not well constrained. A
short review and more references can be found in Pontin (2011) or in Birn
and Priest (2007, Chap. 2).

Conditions allowing for reconnection

We have shown in Sect. 2.4.2 that the magnetic field lines move with a
velocity

vm =
E ∧B
B2

, (2.48)

but only if E ·B = 0 everywhere along the field line. When it is so, field
lines preserve their identity and reconnection does not occur. In 3D, there
are consequently two possibilities to allow for reconnection: E ·B 6= 0 in
a finite volume (which is possible if the plasma response is not ideal); or
there is a null point where B = 0, where the transport velocity vm = +∞
becomes singular and allows for reconnection. But even in the latter case,
whenever B = 0 in a real plasma, it is very likely that a non-ideal zone
surrounds the null-pointz. Consequently, the condition E ·B 6= 0 in a finite
volume is generic of 3D reconnection.

Specificities of 3D reconnection

A specificity of 3D reconnection, when compared to 2D reconnection, is that
the magnetic field lines do not reconnect one by one. For instance, if points
A and B lie on the same field line, and points X and Y on another field

zAt least because particles’ Larmor radii reach infinity, and are thus larger than the
magnetic field gradient scale, so that particles behave non-ideally.
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Figure 2.31: 3D reconnection of two flux tubes. Shown are four field lines on
each tube. The reconnection does not occur pairwise, i.e., we do not have 1-6 and
6-1 connections on the two new flux tubes, but 1-6 and 1-8 connections, and so on.
There is a twist on each new flux tube, that does not vanish when summed over
the two tubes (it would be zero for pairwise reconnection, as the new tubes would
be twisted in opposite directions). Adapted from Birn and Priest (2007).

torsional fantorsional spine fan-spine

Figure 2.32: Plasma motion (red arrows) inducing a perturbation of a 3D null.
Each case gives rise to different current patterns, and to different properties for the
subsequent possible reconnection.

line, then after reconnection points A and X can be on the same line while
B and Y are on two separate field lines. This is illustrated in Fig. 2.31,
where the field lines of the two flux tubes do not reconnect two by two.
The result is that the two tubes are twisted in the same direction. Their
is a magnetic helicity associated with this twist, that has been produced
during the reconnection. This weak magnetic helicity non-conservation is
characteristic of 3D reconnection, and is linked to the non-pairwise field line
reconnection (Birn and Priest 2007, §2.2).

When two flux tubes reconnect, there is actually no reason why the
outcome should be again two distinct flux tubes. However, since the helicity
production remains weak, this is more or less the case (Birn and Priest 2007,
§2.2).

Reconnection at a 3D null

Reconnection at a 3D null can proceed in different ways. They essentially
depends on where the current concentrates, and this concentration is dic-
tated by flow motions around the null. We consider a simple symmetric null
point.

• If the span surface is rotated, this creates a current in the spine and we
have what is called torsional spine reconnection (Fig. 2.32, left).
Torsional spine reconnection
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Figure 2.33: Spine-fan reconnection. The field lines are colored according to their
origin.
Top: The configuration. The fan surface separates the field lines from the two
topological domains.
Bottom: A reconnection event. Several field lines are involved at the same time.
The “floating” field lines at the center actually do not exist (∇ · B = 0!): they
annihilate (the magnetic flux is not conserved, unlike in 2D at X-points). As a
result, the outflow production is affected. This is a 3D example where reconnection
and field annihilation occur not a point locations, but in a whole volume, and not
at a null point. We note that here we have drawn at most ten field lines, while in
the real world, field lines fill space in a continuum.

• If the field lines near the spine line are rotated, in opposite directions
above and below the fan surface, then a strong current is created in
the spine and we have what is called torsional fan reconnection
(Fig. 2.32, center).

• If we now consider shearing motions, another kind of reconnection
configuration is possible. When the spine of a null is sheared (Fig. 2.32,
right), we obtain spine-fan reconnection (Fig. 2.33).

• Other configurations are possible (Priest 2011; Pontin 2011). There
should be as many possibilities as there are ways of deforming a mag-
netic null.

As explained above, it is then essential to know which case does occur
in real situations. The cases of torsional reconnection require an ordered
plasma motion, and are thus less probable than the case of fan-spine recon-
nection.

The case of spine-fan reconnection is particularly interesting, because it
shows that in 3D reconnection does not involve field lines by pairs, but an
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Figure 2.34: From Priest (1987). A quadrupolar field with initially no X-point
in (a), or with a X-point in (d). Bringing the footpoints together in (b) forms a
X-point and a current sheet. In (c) and (e), the footpoints are sheared, and this
motion creates extended current sheets.

infinite number of volume filling field lines reconnecting and annihilating at
each time (Fig. 2.33).

Where can we find magnetic null points? They are observed in magnetic
structures involved in large scale events (e.g., in solar jets, Fig. 2.10.7), pos-
sibly in the Earth magnetosphere (Pontin 2011, §2 and references therein),
and in the solar atmosphere at low levels. For the solar case, magnetic field
measurements at the photospheric level allow to reconstruct the field lines
above, and a very intricate structure has been revealed in quiet Sun regions.
There, a high density of null points is found at chromospheric levels, with
a density decaying exponentially (Régnier et al. 2008).

Reconnection away from null points

Reconnection can also occur away from magnetic nulls. A privileged lo-
cation is along a separator line (Sect. 2.10.3), between two nulls. But
more generally, magnetic reconnection is likely to take place at any lo-
cation where strong magnetic field gradients are present. Such regions of
high magnetic shear can have no particular topological role. An example is
given in Fig. 2.34, where a shearing motion causes the creation of extended
current sheets, where magnetic reconnection can take place.

Regions of strong shear with no particular topological role are called
quasi-separatrix layers (QSL). As was said before, a separatrix is a sur-
face that separates two regions of distinct topology, where the field lines
originate from different area. The connectivity of the field lines is discon-
tinuous across a separatrix. In contrast, across a quasi-separatrix layer, the
connectivity strongly varies, but remains continuous. QSL are area of very
strong shear, with intense currents, where most of the magnetic reconnec-
tion takes place in some numerical simulations (for a more formal definition
and references, see Pontin 2011).

As an example of QSL, we can consider an initially vertical magnetic
field anchored in the photosphere of the sun. If we imagine that the fluid
where it is anchored rotates, the field lines will be twisted and strong current
sheets will be formed. This process is called braiding.

Shearing and braiding are only special motions of the footpoints. Any
motion can form current sheets and lead to reconnection at places with no
topological role.
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Figure 2.35: From Olshevsky et al. (2013). PIC simulation of a cluster of eight
null points. Panels (a), (b) and (c) show magnetic field lines at different times,
with gray contours as zones of low B. Panel (d) is the current density.

2.10.5 Example: PIC simulations of a 3D null

There are very few simulations of reconnection in geometries different from
a Harris-like or force-free current sheet. The only examples known to us are
Baumann and Nordlund (2012) and Olshevsky et al. (2013). The latter work
simulates a cluster of eight null points (eight because this is the smallest
number that allows to have periodic boundaries in the simulation), shown in
Fig. 2.35. Initially, the magnetic pressure is larger than the plasma pressure,
so that the configuration is unstable. There is a first phase where ions are
pushed into zones of low B, where they form current channels (panels b and
d). Later, the current channels are unstable and disappear. Reconnection
then occurs everywhere chaotically, heating the plasma. Within 26ω−1

ci (ion
cyclotron frequency), 86% of the initial magnetic energy is transfered to the
plasma. It is interesting to underline that no 2D local configurations are
found in this simulation.

2.10.6 Example: coronal mass ejections

The Sun builds large amounts of magnetic field in its interior by a dynamo,
and possesses a large scale dipolar magnetic field extending in all the solar
system. In addition, the small scale magnetic field present inside the Sun
rises toward the surface by buoyancy effects (see Parker instability p. 41),
and when it reaches the surface it forms arcades of magnetic fields anchored
in the solar surface by two footpoints. The solar coronaaa is thus populated

aaStructure of the Sun’s atmosphere and the layers above:
Photosphere (where the Sun becomes optically thin, 5 580 K),
temperature minimum area (500 km above, ∼ 4100 K),
chromosphere (2000 km thick, 20 000 K at the top, partially ionized at the top),
transition region (200 km thick, 106 K at the top),
corona (several ×106 K).
The corona then expands into the solar wind (100 to 750 km/s),
which ends at the heliopause (50 AU) in a shock with the ISM.
The whole region filled with solar wind is the heliosphere.



60 Chapter 2

filament of 
cool material

+

-
+

-
- -

+

+

+
+

-
-

Figure 2.36: Mechanism of a coronal mass ejection. From Moore and Sterling
(2006). The two top panels are the first phases. At the eruption onset, the blue
and red field lines reconnect, and expel plasma downward and upward. Then, two
outcomes are possibles: the ejection is retained by the covering magnetic field in the
lower left panel, but not in the lower right panel. In this latter case, reconnection
will occur at the red crosses, and the upper part will then be ejected in space.
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Figure 2.37: Reconstruction of the magnetic field from observations, using a
force-free equilibrium, during a pre-CME event. From Liu et al. (2013a).
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with a canopy of rising magnetic flux tubes. Obviously, when these tubes
are forced to meet by the footpoint motions, reconnection can occur. Given
the large number of possible geometries (involving two or more flux tubes),
this can lead to many outcomes.

One of them are solar flares, i.e., very intense (energy release up to
∼ 10% of the Sun quiet energy release) and brief (minute to several minutes)
flashes of light. The very idea of magnetic reconnection came in order to
explain these phenomena (Giovanelli 1947, 1948).

Solar flares are often accompanied by ejections of matter into space:
coronal mass ejections (CME). A possible mechanism at the origin of these
ejections is tether-cutting, described on Fig. 2.36. An observation illustrat-
ing this model is shown on Fig. 2.37. Note that other geometries can lead
to flares.

2.10.7 Example: coronal solar jets

Coronal solar jets are ejections of matter from the solar corona. They
occur on a smaller scale than coronal mass ejections, and involve a different
topology for the magnetic field.

This is illustrated in Fig. 2.38. Initially the magnetic field is that of
the quiet solar corona: uniform and directed upward as in domains 2 and 4
of Fig. 2.38 (domains 2 and 4 are actually the same domain, and we make
this distinction only to clarify the discussion). Then, a flux tube emerges
from under the solar surface, and forms the loops of the domain 1. This
flux tube rises upward. It will thus reconnect with field lines of domain
2. This reconnection produces a current sheet (in red in the two top-left
panels). Newly reconnected field lines are expelled on both sides of this
sheet: below, forming the field lines of domain 3, and above, adding new
field lines to domain 4. As shown in the temperature panel, the plasma
carried by the newly reconnected field lines is very hot, because it gained
energy from the magnetic field. In addition, the new field lines of domain
4 unbend rapidly and eject plasma upward along the magnetic field, thus
creating the jet. In the end, all the field lines of domain 1 (the emerging
flux tube) are transferred to domains 4 and 3.

It is worth noting that Baumann and Nordlund (2012) performed a PIC
simulation of such a configuration.

2.10.8 Example: small scale events in the Sun

In addition to large scale events such as bright solar flares or coronal mass
ejections, the Sun hosts a number of smaller scale events, that produce jets
or flares. They are classified in Fig. 2.40 according to the height at which
they occur above the Sun’s surface. This location can range from the lower
chromosphere to the corona (see p. 59 and Fig. 2.39 for the Sun’s structure).

Most of these events are explained by two different classes of geometrical
setup. The first is when a bundle of magnetic field rises or moves in an
ambient magnetic field, just as for coronal solar jets (Sect. 2.10.7). The
second is when two almost parallel flux tubes, possibly with internal kink,
are pushed one against the other by the surrounding dynamics or by a twist
in their footpoint motion (Fig. 2.39, right). These two geometrical setups
give rise to more than two kinds of events, because they can occur at different

See Fig. 2.39 for an illustration of the lower parts.
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Figure 2.38: From Moreno-Insertis et al. (2008). MHD simulation of a solar jet.
Left: Magnetic field lines in white. For the two upper panels, the colors are
the current density at two different times. In the lower panel colors trace the
temperature. In the upper panel, the current sheet is the most reddish part, and
field lines from domains 1 and 2 reconnect and are expelled in domains 3 and 4.
See Sect. 2.10.7 for details.
Right: 3D views from two angles, with magnetic field lines colored according to
the domains 1, 2, 3 or 4. The blue surface traces the current sheet, and the red
surface delimits a region of hot plasma (which is in the current sheet and in the
jet).

Figure 2.39: Structure of the lower solar atmosphere. The right panel illus-
trates reconnection between two vertical flux tubes. From a 2014 presentation of
K. Shibata, credited to T. Suda.



Chapter 2 63

Corona
(β~0.01)

Photosphere
(β>>1)

Chromosphere
(β~1)

height

Energy (ergs) 103010271024

Transition R.

Microflares
(ARTB, SXR jets)nanoflares

Sunspot
light

bridge
ejections

Ellerman
bombs

Surges
Spicules
RBEs
Tornedo

Sunspot
penumbral

μ-jets

o
Chroms.

anemone
jets

Collisionless,
fully ionized

Collisional,
weakly ionized

Explosive events
blinkers
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Figure 2.41: Adapted from de Gouveia dal Pino and Lazarian (2005). Sketch of
the magnetic field arrangement around an accreting black hole. Magnetic recon-
nection can occur in the dotted-blue ovals, either heating the magnetosphere, or
ejecting matter in the form of jets along open field lines.

scales and at different locations in the solar atmosphere, i.e., under different
plasma regimes (for example the chromosphere is only partly ionized and is
collisional, while the corona is ionized and collisionless).

2.10.9 Example: transient jet production in microquasars

Microquasars are binary systems in which a star and a black hole orbit
closely. The black hole captures matter from the star, either because the
star is massive and emits a strong wind, or because it is so close to the black
hole that its surface is partly beyond the inner Lagrange point, resulting in
matter flowing to the hole (Roche lobe overflow), or because of both. In
either case, matter is accreted by the black hole. Because of the rotation of
the star around the black hole, this matter has a net angular momentum,
and is likely to form an accretion disk around the black hole where angular
momentum is lost, either by viscosity, by oblique shocks, or by ejection in
jets and disk-winds.

We observe that most microquasars oscillate between two states, the
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hard state and the soft state (McClintock and Remillard 2006; Zhang 2013),
characterized by different spectral properties. Steady jets are observed in
the hard state, and more powerful, transient jets, are seen during the transi-
tion between the two states. The origin of these jets is still an open question.
It could be that the transient jets are produced by magnetic reconnection
events in the accretion disk magnetosphere (de Gouveia dal Pino and Lazar-
ian 2005; Dexter et al. 2014), as illustrated in Fig. 2.41.

We underline that this picture is uncertain and, unlike for the Sun or
the Earth magnetospheres, there is no resolved observations of accretion
disks and of black hole magnetospheres. The magnetic field geometry is
thus largely unknown.

2.11 From large to small scales: The non-ideal
processes

The previous section 2.10 deals with the large scale magnetic field arrange-
ments that lead to the formation of privileged sites with strong magnetic
field gradients and associated current sheets, where reconnection can take
place. The process of magnetic reconnection itself has microscopic origins,
that we explore in this section. It is inside the dissipation zone and at other
locations (such as along the separatrices or in the exhausts) that non-ideal
processes, such as those of the generalized Ohm’s law (Eq. 2.41), are impor-
tant and allow the plasma and the magnetic field to partly decouple. The
non-ideal processes and their physical origin are the focus of this section.

We first give, in Sect. 2.11.1, the definition of the reconnection rate, that
is needed to quantify the speed of the reconnection. Then, in Sect. 2.11.2
we list the non-ideal processes, and in Sect. 2.11.3 we discuss when such or
such non-ideal process dominates.

The next section 2.12 will more concretely explain how reconnection
proceeds at a kinetic level.

2.11.1 The reconnection rate

The nature of the non-ideal terms can dictate whether reconnection is fast
or slow, but these notions of fast and slow have to be characterized by mea-
surable quantities that we now discuss. In two dimensions, this is done
through the reconnection rate. In 3D configurations, the rate of reconnec-
tion is set by the parallel electric field E ·B/B, in a way that depends on
the exact geometry (see, e.g., Pontin 2011).

We only focus on the 2D case. For a planar situation such as in Fig. 2.20,
the relevant quantity is the rate of variation of magnetic field flux across
the X-point,

dΦBz

dt
=

d

dt

∫ X-point

x=0
Bzdx. (2.49)

We can use the relation ∂tB = −∇ ∧E and the simplified 2D geometry to
show that this flux variation is equal to the y component Ey of the electric
field at the X-point location, so that the reconnection electric field Ey allows
to measure the rate of the reconnection process.

One often considers a normalization of Ey to obtain an adimensional re-
connection rate. Since dΦBz/dt is in part determined by the outflow velocity,
because it sets the rate at which magnetic field is extracted from around
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the X-point (see e.g., in a resistive MHD context, Borovsky and Hesse 2007;
Cassak and Shay 2007), and since one expects vout ∝ VA (Eq. 2.27), the
relevant normalization (variously denoted by R or E∗) is

R = E∗ =
Ey

B0VA,in
, (2.50)

with B0 the strength of the asymptotic magnetic field that can reconnect
(Bz here, if there is a guide field it is ignored) and VA,in the associated
Alfvén speed with the asymptotic inflow density.

Because the inflowing plasma is ideal, we also have the relation vin =
Ey/B0, so that

R = E∗ =
vin

VA
(2.51)

can also be used. Another expression can be obtained by using mass con-
servation between the plasma inflowing into the dissipation region (across a
length L), and the plasma outflowing from it (through a width δ): Lninvin =
δnoutvout. This can be written as:

R ≡ vin

VA,in
=
δ

L
× nout

nin
× vout

VA,in
. (2.52)

We showed in Sect. 2.6.2, with energy conservation arguments (Eq. 2.29),
that the outflow speed is roughly given by the inflow Alfvén speed. Also, for
an incompressible plasma nout = nin, and in general the inflow and outflow
densities are not too different. The rate R is thus mostly controlled by the
geometrical ratio δ/L.

A particular and important case is that of the Sweet-Parker model,

where Eq. 2.29 shows that R = S
−1/2
L .

We investigate in detail the dependence of the reconnection rate in rel-
ativistic 2D reconnection in Sect. 6.4.6.

2.11.2 The non-ideal processes

The reasons to behave non-ideally can be (1) collisions, (2) inertia and
collective interactions, and (3) finite Larmor effects. Each one becomes
important whenever it occurs on a length scale d < rcs, where rcs is the
Larmor radius of the particles of species s, and d the scale of the process
(1), (2), or (3), which is specified below.

This is because in order to maintain the magnetic field lines frozen with
their motion, the particles of species s have to move over distances of the
order of their gyroradius rcs = v⊥/(qB/ms). When the scale of occurrence
of the impeding process is larger than rcs, d > rcs, the motion of the particles
in response to B variations is not perturbed, and the magnetic field remains
frozen. But when this scale shrinks below the particles’ gyroradius, then
a particle is perturbed several times during a single gyration around B,
so that particles cannot maintain the magnetic field lines frozen with their
motion / cannot respond properly to magnetic field flux variations.

Then, the particles are said to be unmagnetized or non-adiabatic, and
reconnection can occur. The link with adiabaticity is that the adiabatic
invariant of a particle is conserved only if the particle trajectory is periodic
or quasi-periodic (Sect. 2.5.2). Here, when a perturbation occurs with a
frequency larger than the cyclotron pulsation, ω > ωcs, disturbances occur
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too often and the quasi-periodicity is lost: the adiabatic invariant is not
conserved any more. Physically, we see from Fig. 2.8 that a particle remains
frozen to the field variations only if it performs Larmor gyrations with a
radius rcs given by the local magnetic field.

The scale d of the non-ideal processes is:

1. For collisions, the mean free path lmfp between collisions (either electron-
electron, electron-ion, or electron-neutral collisions);

2. for finite inertia and collective interactions, the oscillation length of
the particles due to fluctuating fields and finite inertia (which is the
Debye length λDs = vth,s/ωps = vth/c× ds for electrostatic Langmuir
oscillations, but the inertial length ds is often used instead);

3. for finite Larmor effects, the gradient scale of the magnetic field l∇B.

Since the Larmor radius and the inertial length vary with the particle mass,
we immediately see that there are two non-ideal regions, one for the ions and
one for the electrons. Since electrons are lighter than ions, they have smaller
Larmor radii and will remain frozen-in longer than ions. The structure of
the resulting two-scale dissipation region is detailed in Sect. 2.12.1. In the
remaining of this section, we review each non-ideal process, and discuss
which of them dominates depending on the plasma conditions in Sect. 2.11.3.

Collisions

Reconnection can be allowed by electron-ion collisions (the term χJ in
Ohm’s law 2.41), and also possibly by electron-electron collisions (the term
χ2∇2J in Ohm’s law 2.41) or electron-neutral collisions. This is easy to
understand: electrons are hindered in their motions by collisions, and do
not respond perfectly to the induced electric fields. The magnetic field can
then diffuse across the plasma.

Electron inertia

When an electron undergoes a force (electric for example), it is accelerated.
If its mass were null, it would instantly respond and stop when the force
ceases. However, its finite mass or inertia implies a delay for initiating
the motion, and implies that it continues moving when the force stops.
Electron inertia is thus the fundamental origin of several collisionless non-
ideal processes, by degrading the plasma response to induced electric fields.

As an introductory example, we can consider the Langmuir oscillation
of the electrons, which are primarily due to sub-Debye-length charge im-
balance and to finite inertia. These oscillations occur at pulsation ωpe =√
ne2/ε0me, and during one oscillation an electron of speed v moves across

a length v/ωpe, which is the Debye length if v is estimated by the ther-
mal speed. Qualitatively, electrons cannot respond correctly to magnetic
flux variations if their motion during a Langmuir oscillation is smaller than
their gyroradius rce = v/(eB/me), i.e., if v/ωpe < rce, as then an electron
undergoes several Langmuir oscillations during a single gyration. A more
quantitative analysis can be performed by writing Ohm’s law as

E + ve ∧B = −me

e

dve

dt
, (2.53)
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with the right-hand side being electron motion due to electrostatic pertur-
bations. These perturbations are Langmuir oscillations, so that it can be
evaluated as dve/dt ∼ ωpeve. Ohm’s law can then be written

eE

me
+ ve ∧ ωce = −ωpeve, (2.54)

with ωce = eB/me. The ideal nature of the plasma is lost when the right-
hand side is larger than the ve ∧ ωce advective term, i.e., when ωpe > ωce.
This is equivalent to rce > ve/ωpe.

Consequently, electrostatic oscillations allowed by electron inertia plays
a significant non-ideal effect when rce > vth,e/ωpe, or equivalently, when
ωpe > ωce. More generally for a species s, it is significant when ωps > ωcs.
But we have the relation (

ωcs

ωps

)2

=
B2/µ0

nmsc2
≡ σs. (2.55)

The quantity σs is the ratio of the electromagnetic energy fluxab to the
restmass energy flux of the plasmaac, and is called the magnetization (see
Sect. 6.3.2 for more details). Two cases emerge:

• There is an area of weak magnetic field (σs � 1) (for example around a
magnetic null in 2D or 3D): the condition ωps > ωcs is satisfied, and re-
connection can occur due to the inertial effects described above. More-
over, if we take the example of a magnetic null, and in addition assume
a linear variation for B close to the null, B = B0x/l∇B, we see that
the species s will be demagnetized at scales x < l∇B

√
msns/(B0

√
ε0).

Assuming a particle density ns ∼ const among the species s, we see
that the width δs of the non-ideal region for species s is (under these
hypotheses) x ∝ √ms from the center: the non-ideal zone for ions is

thus
√
mi/me larger than that for electrons. This is indeed seen in

PIC simulations (e.g., in Fig. 2.25 when comparing the large density
area for ions and for electrons), and discussed with more detailed in
Sect. 2.12.1 for the 2D case.

• The magnetic field is strong everywhere. This is the case in 2D situa-
tions if there is a large guide field (a component ofB normal to the 2D
plane), or in more general 3D configurations. In this case, the induced
non-ideal electric fields are parallel to the magnetic field, and the in-
duced currents also: particles are accelerated along the field lines.
Non-ideal processes then perturb particle motions along the field lines.
This can be seen with the non-ideal Ohm’s law: E + ve ∧B = R 6= 0
implies that E ·B 6= 0. The existence of finite parallel electric fields
is then the trace of ongoing reconnection.

Here too, electrostatic (or more generally electromagnetic) fluctua-
tions can provide the needed perturbation to maintain E ·B 6= 0.

We stress that the preceding approach focuses on electrostatic Langmuir
oscillations only, and is at best approximate. Other waves, instabilities,
or wave-particle resonant interactions, can disturb the electrons and allow

abWhich is E ∧B/µ0 = (B2/µ0)vE×B with vE×B = E ∧B/B2.
acWhich is, if the plasma is ideal and thus E ×B drift, nmsc

2 × vE×B .
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reconnection. Several such instabilities can arise in the context of recon-
nection. For example, there can be two-stream instabilities between the
electrons and ions of the current sheet, or between electrons of neighbor-
ing magnetic islands. Weibel instability can develop due to the intrinsic
anisotropies found in reconnection setups, and so on.

From the point of view of Ohm’s law (Eq. 2.41), inertial effects manifest
themselves in several terms:

• (1/nee)∇ · Pe is called thermal inertia. In a 2D setup invariant
along y the induced electric field E is along ŷ. The contribution of
the pressure in Ohm’s law then reads ∂xPxy + ∂zPzy (the y deriva-
tive vanishes), so that it is the divergence of the off-diagonal terms
that contribute. In collisionless and non-relativistic plasmas, 2D PIC
simulations have shown that this term dominates and sustains E at
the center of the dissipation region (see Sect. 6.4.3 for detailed ref-
erences). It corresponds to particles bouncing between the magnetic
field reversal.

Gradients in the diagonal components can also play an indirect role,
by creating diamagnetic drift currents that can enhance or dwindle
the reconnection rate (Biskamp 2000).

• (me/e)(∂tve +ve ·∇ve) is called bulk inertia, because it is associated
with global motions of the plasma (ve is the bulk velocity). For non-
relativistic reconnection, it is smaller than thermal inertia and almost
negligible at the very center of the non-ideal region. However, our
new findings (Sects. 6.4.3 and 6.4.8) indicate that it may contribute
or even dominate under relativistic setups where the bulk momentum
is large.

Finite Larmor effects and lost of electron adiabaticity

When
rce

B
× dB

dz
> 1, (2.56)

the hypothesis at the base of the drift motion theory breaks, the first adi-
abatic invariant is not conserved, magnetic flux through the electron cy-
clotron orbits is not either, electrons are not frozen any more, and recon-
nection is allowed.

This will necessarily be the case if there is a magnetic null. For a mag-
netized plasma without nulls, it happens if the field varies on length smaller
than rce.

The Hall term

The presence of the Hall term J ∧B in Ohm’s law (Eq. 2.41) simply means
that the field lines are convected with the electron fluid velocity, not by the
ions. Consequently, it does not give rise to reconnection, but to a slippage
of the field lines with respect to the ion fluid.

However, the Hall term may, or may not (it is still presently debated),
drastically enhance the reconnection mechanism. We discuss this point in
Sect. 2.12.1.
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Figure 2.42: Parameter space for reconnection regimes, from Daughton and
Roytershteyn (2012) and Ji and Daughton (2011), distinguishing between colli-
sionless and collisional regimes, with or without plasmoid instabilities.
Left: Here the red curve is computed for β = 0.2 and a reconnection rate R = 0.05.
S is the Lundquist number, Lsp the macroscopic system size, ρi = rci the ion Lar-
mor radius in the asymptotic magnetic field (including the guide field).
Right: Same picture, but with astrophysical objects placed according to order of
magnitude estimates.

Turbulence and effective turbulent (or anomalous) resistivity

Instabilities or pre-existing turbulence can provide fluctuations in the elec-
tromagnetic fields that can, in turn, allow the magnetic field and the plasma
to decouple, and reconnection to proceed at a fast rate.

Fluctuations then provide new effective non-ideal terms in Ohm’s law.
This can be seen by decomposing all quantities into a mean part plus a
fluctuating part, for example E = 〈E〉+δE, where the average can be taken
over a timescale larger than that of the fluctuations but smaller than the
reconnection timescale, or over a spatial direction that would be invariant
in a 2D setup, but dynamically released in a 3D setup (e.g., along y in
Fig. 2.49). We then take Ohm’s law (Eq. 2.39), which reads neE + neve ∧
B = (non-ideal terms), and take its average. The product of two or more
quantities will give rise to additional terms, for example 〈neE〉 = 〈ne〉〈E〉+
〈δneδE〉. Considering this term only, Ohm’s law for the mean electric field
then reads

〈ne〉〈E〉+ 〈neve ∧B〉 = 〈non-ideal terms〉+ 〈δneδE〉. (2.57)

The last term is seen as an “anomalous” resistivity, even if from a fun-
damental point of view, the fluctuations allow reconnection by enhancing
inertial or finite Larmor effects, so that there is nothing anomalous. The
importance of anomalous resistivity in collisionless 3D reconnection is still
debated (see Sect. 2.12.3 for a discussion).

2.11.3 When does each non-ideal process dominate?

Magnetic reconnection can proceed in the collisional regime (ηJ in Ohm’s
law, description by MHD), or in the collisionless regime (electron inertia,
finite Larmor effects, kinetic description). These two regimes feature very
different reconnection rates and properties, so that it is important to know
which occurs when.
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Figure 2.43: Evolution of a current sheet and formation of magnetic islands, from
Daughton and Roytershteyn (2012), PIC simulation with a Fokker-Planck collision
operator.

A simple criteria to decide between collisionless or collisional is the fol-
lowing. When a current sheet forms, it does so with a given width δ. If δ
is far larger than kinetic scales, then kinetic effects are unimportant, and
reconnection occurs due to resistivity. In particular, the Sweet-Parker anal-
ysis holds (Sect. 2.6.2), and gives the reconnection rate and the sheet width,
that we denote by δSP . This is possible only if δSP is larger than kinetic
scales, because otherwise kinetic effects are important and take over resis-
tivity before the sheet reaches the Sweet-Parker width. Consequently, in a
given plasma, reconnection is collisionless if

δSP < di or rci or ρsound (collisionless reconnection). (2.58)

Here, di is the ion inertial length, rci the ion thermal Larmor radius, and
ρsound the ion Larmor radius based on the ion acoustic speed (with the
electron temperature and ion mass). Which term is to be used depends
on the configuration and is not clearly established yet (see Daughton and
Roytershteyn 2012), but it appears that with no guide field the relevant
length is di, while with a guide field it is ρsound.

We recall the definition of the Lundquist number:

SL =
µ0LVA,in

η
(2.59)

with η = E/J the resistivity, VA,in the inflow Alfvén speed, and L the
current sheet length. Starting from a stable Sweet-Parker current sheet, the
limit between the collisional and collisionless behavior is δSP = rci (if we
take for example the ion Larmor radius as the relevant kinetic scale). We
showed that the Sweet-Parker width is given by δSP = L/

√
SL (Eq. 2.29),

so that the limit is equivalent to SL = (L/δSP)2 = (L/rci)
2. This is the blue

line in Fig. 2.42 (left), partly dashed and partly solid, that starts from the
origin. Reconnection is collisionless on the left side of this line, with rates

R ∼ 0.1, and is collisional on the right side, with rates R = S
−1/2
L .

The previous reasoning assumes that the Sweet-Parker current sheet
exists and remains stable. This is not always justified. When the length L
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of the current sheet is too large, it is seen in simulations to be unstable to the
generation of magnetic islands (also called plasmoids, see Fig. 2.43). These
islands separate the current sheet in several shorter and thinner current
sheets which can, in turn, again generate islands and smaller scale current
sheets, and so on. This has two major consequences:

• Even if the dominant non-ideal process remains MHD for the smaller
sheets, the rate of magnetic reconnection increases. This is because the
resistive Sweet-Parker rate is limited by the small width to length ratio
(the rate is in part fixed by the inflow velocity vin, see Eq. 2.51, and
from Eq. 2.29, vin/VA,in = δ/L, hence the importance of the aspect
ratio), but this ratio becomes larger for a sheet broken in smaller
sheets.

Simulations show that the current sheet generates islands above a crit-
ical Lundquist number Sc ∼ 104 (or lower if the initial conditions are
turbulent, but apparently higher for relativistic reconnection: Zanotti
and Dumbser (2011) find Sc ∼ 108). This is the green line of Fig. 2.42
(left). The rate of reconnection defined as R = vin/VA,in = δ/L is

then given by S
−1/2
c ∼ 0.01, whatever SL, which is fast (Shibata and

Tanuma 2001; Loureiro et al. 2007; Uzdensky et al. 2010; Loureiro
et al. 2012).

• The generation of small scale current sheets can lead to the creation of
sub-sheets with a width δ < di or rci or ρsound, so that kinetic processes
ultimately control the reconnection rate and the energy conversion.
The transition to the collisionless regime can thus occur sooner that
when assuming a stable Sweet-Parker current sheet. This is the lower
blue line of Fig. 2.42 (left). The reconnection rate is then given by the
collisionless rate, R ∼ 0.1.

Finally, reconnection cannot be collisional if the induced reconnection
electric field exceeds the Dreicer runaway electric fieldad. This is the red
line of Fig. 2.42 (left).

Daughton et al. (2009a,b) performed simulations of a Harris current
sheet with a PIC code that treats collisions with a Monte-Carlo treatment of
the Fokker-Planck collision term. They probed the collisional Sweet-Parker
regime, and the transition to collisionless reconnection for sheet thickness of
the order of kinetic scales, as well as the trigger of the plasmoid instability.

Finally, the right part of Fig. 2.42 places various environments in the
parameter space diagram. We see that magnetic reconnection is likely to
be collisional in environments such as the solar chromosphere, inside accre-
tion disks, or in molecular clouds, and collisionless in the solar corona, in
the corona of accretion disks, in extragalactic jets, in the magnetotail and
magnetosphere, or in the tokamak ITER.

adDreicer electric field: The concept of resistivity, and the relation E = ηJ , is based
on an equilibrium for the electron fluid between acceleration by E and drag force against
the ions: 0 = −eE + νeime(vi−ve), which gives E = ηJ with η = meνei/(nee

2). But the
frequency of Coulomb collisions of an electron of speed v with ions at rest is proportional
to v−3. It decreases with increasing velocity. If the electric field is too large, then the
acceleration of an electron between two collisions allows the electron to gain too much
energy, so that its collision frequency decreases dramatically, so that ultimately the force
balance between collision drag and electric field acceleration cannot be maintained. The
limiting electric field is called Dreicer electric field (see, e.g., Bellan 2006, §13.4). When
it is so, particles can be freely accelerated to large velocities, and collisional theory fails.
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Figure 2.44: Reconnection in the model of Lazarian and Vishniac (1999).

2.11.4 Fast reconnection in collisional plasmas

From kinetic simulations and observations, magnetic reconnection is known
to be fast in collisionless environments, with rates of the order of R =
Ey/(B0VA) = 0.1 (for reasons not completely clear, see Sect. 2.12.1). It also
appears that the localization of the resistivity allowed by the collisionless
Ohm’s law allows to form Petsheck-like structures along the separatrices at
large distances (Sect. 2.12.4).

The collisional case may be less clear. Fast reconnection is observed in
collisional environments, in the solar chromosphere for example, but which
mechanism allows fast rates remains debated. In addition, the lack of local-
ization of the resistivity in a current sheet of width δSP � (kinetic scales)
does not enable Petschek solution to set in. There are currently two main
paradigms to explain fast collisional reconnection.

The first is via turbulence and small scale fluctuations. In the model
of Lazarian and Vishniac (1999) (Fig. 2.44), the large scale field actually
reconnects on small scale Sweet-Parker patterns of length fixed by the size
between two significant deviations of the fluctuating field component (which
depends on the spectrum of the turbulence). Even if the local rate is taken to
be the Sweet-Parker collisional rate, the macroscopic rate for the mean field
is independent on the resistivity η, and is fast. It is because of the multipli-
cation of reconnecting sites and because of the increase of the Sweet-Parker
reconnection rate when the length of the sheet decreases. This model has
been tested numerically by Kowal et al. (2009, 2012), where the simulations
essentially confirm the analytical model.

The second is the plasmoid-induced reconnection invoked in Sect. 2.11.3.
The basic argument is similar to the turbulent model of Lazarian et al.:
a fast rate can be achieved because the current sheet breaks into several
shorter sheets, that in turn break again, and thus reconnection occurs at
smaller scales with small aspect ratios.

We remark that if scales where collisionless physics dominates are even-
tually reached, then the reconnection setup may very well switch to the
Petschek regime.

Finally, both paradigms can be linked (Lapenta and Lazarian 2012), and
it seems that reconnection is indeed fast in collisional plasmas.
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2.12 From large to small scales: The central non-
ideal zone and the magnetic separatrices

We now turn to the structure and properties of a reconnection event at
scales where kinetic non-ideal effects are important to decouple plasma and
magnetic field. It is at these scales that the transfer of energy between
the fields and the particles occur, and it is there that one can find the
processes that allow reconnection to be fast, or that fix the amount of energy
transfered to ions or to electrons, as well as the degree of thermalization of
the plasma. Two locations are of paramount importance. The first is the
central non-ideal region (also called the dissipation or the diffusion region),
for example located around the X-point, where non-ideal processes allow
the field lines to loose their connectivity and to reconnect. This region is
investigated in Sect. 2.12.1 at ion and electron scales, and then in Sect. 2.12.2
at electron scales. The same region is briefly studied for 3D reconnection in
configurations that are initially two-dimensional in Sect. 2.12.3, where we
also briefly review the role of turbulence. The second key location is where
the inflowing plasma, carrying unreconnected field lines, flows into the area
embedded by reconnected field lines. This transition happens across the
magnetic separatrices, where also non-ideal processes are important and
allow the plasma to be energized. We describe this area in Sect. 2.12.4.

2.12.1 Ion-electron two-scale structure of the collisionless
non-ideal region (in 2D)

We first detail the structure of the non-ideal region in the case of a colli-
sionless plasma, two-dimensional, with no guide field. The presence of a
guide field changes substantially the structure of the dissipation region, in a
way that also depends on the plasma β = Pgas/Pmag, and we do not detail
this here (see Sects. 6.4.2 and 6.5.1 and references therein). The passage to
three dimensions is still being investigated, and may in some cases challenge
what we now present.

The ion-electron two-scale structure

We explained in Sect. 2.11.2 that if the decoupling mechanism is particle
inertia, then it is expected that the species s decouples from the magnetic
field at a distance x < l∇B

√
msns/(B0

√
ε0) ∝ √ms from the current sheet

center. A consequence is that ions decouple over a wider area than electrons.

Results from a PIC simulations starting from a Harris current sheet
confirm this prediction. Examples are shown in Fig. 2.25 and, more quan-
titatively, in Fig. 2.45. In the latter, the electron and ion velocities are seen
to be roughly equal to the E × B velocity in the outer region. Ions then
decouple from the magnetic field, with a mean velocity dropping to zeroae.
Electrons do the same, but closer to the center. The scaling of the non-
ideal region for species s does scale as its inertial length ds. This is further
analyzed and discussed in Sect. 6.4.2.

aeThe fact that this transition is so abrupt is a particular case (due to the cold nature
of the inflow, as explained in Sect. 6.4.2), and should not be taken as general.
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Figure 2.45: Top: Schematic representation of the non-ideal region for an ion-
electron plasma, without guide field, in 2D. The curves on the right are a cut
through the X-point of a PIC simulation (shown in Fig. 2.25, see also Fig. 6.1 for
the exact parameters), where mi/me = 25.
Bottom: Again a cut along x through the X-point, showing different quantities.
Note in particular the difference between ion and electron number densities, that
will give rise to an electrostatic field.

Consequence: the Hall current and quadripolar magnetic field

A consequence of the different behavior of ions and electrons is the forma-
tion of the Hall currents, Hall electric and Hall magnetic fields. Consider
Fig. 2.46. Consider first the inflow of particles. In the ion non-ideal re-
gion, electrons are magnetized and follow the E × B drift with a velocity
ve = E ∧B/B2, while the ions are unmagnetized and freely bounce back
and forth within the ion non-ideal region, resulting in a zero average (or
fluid-) velocity (this is indeed seen in the PIC simulation of Fig. 2.45). Con-
sequently, there is a current flowing away from the inflow velocity, given
by the electron contribution: jHall = −neve = −neE ∧ B/B2, which is
precisely the usual expression of the Hall current.

This current must be closed somewhere. Consider now the outflow of
particles. The outflow of electrons is confined to a channel of width ∼ de,
while that of the ions to a larger channel of width di, and the electrons are
expected to reach a higher velocity. These differences lead to the estab-
lishment of a current, usually located along the magnetic separatrices for
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Figure 2.46: Hall quadrupolar magnetic field and currents, resulting from the
electron/ion separation of scales around the diffusion region.

reasons explained below, that continues the circuit of the preceding jHall.

These currents naturally result in a magnetic field with a quadripolar
structure (via ∇ ∧ B = µ0j), as drawn in Fig. 2.46. See also Fig. 2.51.
More details and properties can be found for example in Treumann et al.
(2006).

Consequence: the Hall electric field

Another effect of the ion and electron different dynamics is the presence
of a charge separation in the non-ideal region. Figure 2.45 shows that the
electron and ion particle number densities are different. It results in a
dipolar electric field, which in the case of Fig. 2.45 is along x (directed
along +x̂ in the x < 0 part and along −x̂ in the x > 0 part). We will later
see that this electrostatic field is also present far away from the dissipation
zone, along the magnetic separatrices.

Consequence: the existence of dispersive waves

Early simulations (the GEM challenge, Birn et al. 2001) have shown that all
models including the Hall term (PIC, EMHD, Hall-MHD, two-fluid with and
without electron inertia, hybrid simulations) lead to the same fast recon-
nection rateaf, while models based on magnetic diffusivity only (neglecting
the Hall term) lead to slow reconnection. These first studies were later con-
firmed by the large scale PIC simulations of Shay et al. (2007) or others,
where in particular it is checked that the size of the domain has no influence.

An explanation could thus be that the Hall term, even if it is not re-
sponsible for magnetic reconnection, enhances the reconnection rates. The
theoretical argument behind this idea is as follows. The different response of

afThe differences between these models being in the shape of the reconnection zone,
the fraction of accelerated particles, or of heating.



76 Chapter 2

inner electron

B0ut

outer ideal MHD solution

B0 field

E

outer ideal MHD solution

plasma velocity

B0 field

E

δe
J

L

non-ideal
region

vout

y

x

z

δi

outer electron
non-ideal
region

ion non-ideal region
vout

vin

vin

Figure 2.47: Schematic view of the ion non-ideal region, inner and outer electron
non-ideal regions.

ions and electrons, because of their different masses, allows for the propaga-
tion of some waves with interesting dispersion relations. The cold two-fluid
model for a magnetized plasma (or Vlasov-Maxwell system) shows that, for
propagation parallel to the magnetic field, the mode corresponding to the
MHD Alfvén wave at ω � ωci is prolonged at higher frequencies into a
branch called the whistler mode. In a portion of this branch, the dispersion
relation is ω ∝ k2. Another kind of wave with the same dispersion depen-
dence, that prevails in some parameter regimes (Rogers et al. 2001), is the
kinetic Alfvén wave. The idea is that the existence of these waves with a
quadratic dispersion relation below ion scales makes the electron outflow
velocity scale as the phase speed of the wavesag: vout,e ∝ ω/k ∝ k. The
wavenumber k is then assumed to scale as the width of the outflow region:
k ∼ 1/δe. Then, the mass flux δevout,e ∝ δek does not depend on the layer
width δe. It allows the reconnection rate to remain constant, and fast, even
if the width δe shrinks to small scales. The reconnection rate should con-
sequently be independent of the electron physics, and fixed only by the ion
physics or the large scale conditions.

However, later studies have challenged this view. Simulations of pair
plasmas (where the Hall term and quadratic dispersive waves are absent),
or simulations with ions and with a strong guide field where the quadratic
waves disappear, have produced reconnection rates as high as the previous
ones (Karimabadi et al. 2004; Bessho and Bhattacharjee 2005; Daughton et
al. 2006; Daughton and Karimabadi 2007; Liu et al. 2014), and controlled
only by the electron physics.

It could be that the Hall magnetic field and currents, and the quadratic
dispersive waves, are not of crucial importance for controlling the recon-
nection dynamics. But it then remains to explain why the reconnection
rates in these various situations (ion-electron, positron-electron, strong-no
guide field) are all fast and in a close range of values. Liu et al. (2014)

agNote that we are not invoking any kind of wave turbulence: the flow remains laminar.
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Figure 2.48: From Le et al. (2013). PIC simulations with mi/me = 1836, showing
the antiparallel case (magnetic field reversing from 180 degrees), a weak guide field
case, the intermediate case where unprecedented long electron jets are seen, and
the strong guide field case. Spatial units are in ion inertial lengths. The angle by
which the asymptotic field reverses is θ.

suggest that this is because the scale set by the tearing instability, given
by the most unstable mode, is kδ ∼ 0.5 independently of the guide field or
mass ratio (with δ the width of the magnetic field reversal). If this most
unstable k does constrain the dissipation zone length, then the aspect ratio
is δ/(2π/k) = 0.08 and is constant, thus allowing a constant reconnection
rate.

In any case, the debate on the reasons for fast collisionless magnetic
reconnection is still open.

2.12.2 The structure of the collisionless electron dissipation
region (in 2D)

Section 2.12.1 deals with the difference between ions and electrons, and
indicates important consequences. We now focus on the electron non-ideal
region, and especially on its structure along the the outflow direction (the
z direction in Fig. 2.45).

We showed in Sect. 2.11.1 that the reconnection rate is mostly controlled
by the aspect ratio δ/L of the central diffusion region. The same reasoning
actually applies to both species s, and the reconnection rate is controlled
by the smaller aspect ratio δs/Ls.

What sets the length of the non-ideal layer, Ls, is presently not fully
understood, and its extent is not clearly determined. According to Hall
physics (with the waves with quadratic dispersion relation, Sect. 2.12.1) the
length Le of the electron layer is limited to microscopic scales (some tens
of electron inertial lengths de). Since the width is typically of some de, it
implies a ratio δe/Le not so small, so that the electrons are not limiting
the reconnection process: instead, it is the ions, via a smaller δi/Li, that
controls the inflow speed.

However, kinetic simulations showed that the electron dissipation region
can extend to large lengths, of the order of ion scales (i.e., Le ∼ some
ion inertial lengths di). The ratio δe/Le is then small, and the electrons
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are limiting the inflow speed. They are said to form the bottleneck. For
example, the simulations of Daughton et al. (2006) show that the electrons
control the reconnection rate.

With these new simulations rejecting the Hall paradigm and its small
electron non-ideal zone length, a new picture of the electron region emerged.
First, in the antiparallel case (i.e., no guide field, Shay et al. 2007; Karimabadi
et al. 2007), the electron non-ideal region is composed of two areas (Fig. 2.47).
The inner non-ideal region is where reconnection occurs, i.e., where the mag-
netic field topology changes and where the out-of-plane (y here) currents
are present. It has a length of some ion inertial lengths, and it controls the
reconnection rate. The outer electron region consists in the electron jets,
or outflows, with a width of the order of an electron inertial length, and a
length that can extend with time to tens of ion inertial lengths. The inner
and outer parts can be distinguished by the sign of Ey + (v ∧B)y, which is
opposite in the two areas. It means that the electrons in the outer jet are
faster than the magnetic field. The length of the inner non-ideal region may
be shortened, and therefore reconnection be speed up, by the formation of
plasmoids (or magnetic islands) that break this layer into several shorter
layers. The exact condition of occurrence of these plasmoids is not yet fully
clear.

The addition of a guide magnetic field, normal to the simulation plane
(BGŷ), modifies the inner and outer structures in a way that depends on
the relative strength BG/B0 (with B0 the strength of the in-plane magnetic
field) and on the mass ratio mi/me. This is illustrated in Fig. 2.48, and
detailed now.

(i) At low guide field strength, the situation is similar to the antiparallel
case: electrons are unmagnetized in the inner and outer zones, and perform
meandering orbits, i.e., they oscillate between the magnetic field reversal.

(ii) For larger guide fields, the meandering motion of the electrons is not
allowed: the guide field deflects them, so that they quickly exit the magnetic
field reversal. The inner jet is thus deflected, shortened to ∼ 1di, and the
outer jet does not form. Note that the electrons remain unmagnetized.
The limiting guide field between regimes i and ii depends on the mass ratio
mi/me, and is lower for higher ratios. Goldman et al. (2011) have shown
that for the real proton to electron mass ratio, it is of the order of 0.02B0.

(iii) For higher guide fields, the electrons become magnetized every-
where. With a guide field, electron acceleration in the non-ideal zone oc-
curs via parallel electric fields, E‖ = E ·B/B, so that a pressure anisotropy
with P‖ > P⊥ develops. The pressure tensor should then be written as
P⊥I + (P‖ − P⊥)bb, with I the identity matrix and b = B/B a unit
vector along B. As we explained in Sect. 2.11.2, pressure anisotropy is
essential to break the electron frozen-in condition. Since the electrons
are magnetized, drift theory can be applied, and the pressure anisotropy
force F = −∇ · [(P‖ − P⊥)bb] also leads to an electron perpendicular drift
b ∧ F /(−eneB). This drift gives rise to a corresponding current

J⊥ =
b

B
∧∇ ·

[
(P‖ − P⊥)bb

]
'
P‖ − P⊥

B
b ∧∇ · (bb)

=
P‖ − P⊥

B
b ∧ κ,

(2.60)
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Figure 2.49: From Liu et al. (2013b). 3D PIC simulation with a guide field and
mi/me = 100. The two right panels are snapshots of the current density at two
different times. They show that the electron non-ideal region is composed of two
(top panel) or three (bottom panel) current sheets. The left panel is a 3D view.

where κ = (b · ∇)b is a curvature vector, pointing toward the center of
curvature of the field lines, with a norm given by the inverse of the local
curvature radiusah.

Consequently, the pressure anisotropy, plus a strong enough guide field
to magnetize the electrons, allow for the existence of a perpendicular current
given by Eq. 2.60, that can flow across the magnetic field. This is the current
layer shown in Fig. 2.48 (3rd panel). This layer is ∼ 10de wide and currently
limited in length only by the simulation size (15di).

Also, this regime does not exist at mass ratios smaller than ∼ 400 (Le
et al. 2013).

(iv) When the guide field is too strong, the term (P‖−P⊥)/B in Eq. 2.60
becomes small. The strong guide field then prevents the pressure anisotropy
to drive a current and a jet. The electron orbits remain magnetized, similar
to those of iii, but the current is localized along the separatrices.

Finally, we note that with large scale simulations, Le et al. (2014)
also find extended current layers for ions, which are again allowed by ion
anisotropic pressure.

2.12.3 The non-ideal region in three dimensions and the role
of turbulence

The results described so far concerned two-dimensional analyses and simu-
lations. The presence of the third dimension brings further complications
to the physics of the non-ideal region. First, instabilities along the third
direction can be faster than the reconnection instability, and can destroy
the current sheet without leading to the reconnection scenario described so
far (magnetic energy will still be dissipated, but rather in a turbulent way,
with no reconnection outflows). In the following, we thus assume that the

ahFor the second line of Eq. 2.60 we used the approximation P‖ − P⊥ ∼ const. For the
third line we used the identity ∇ · (bb) = b(b ·∇B) + (b ·∇)b.
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plasma parameters are so that the reconnection instability dominates the
dynamics.

Second, 3D allows much more initial conditions for reconnection to
start than the simple 2D cases considered above. As we have discussed
in Sect. 2.10.4, reconnection can occur at various 3D magnetic nulls, or
away from null points in the presence of strong magnetic field gradients
such as along separators or at other locations. However, the vast majority
of 3D kinetic studies start with a two-dimensional equilibrium, invariant in
the third dimension, such as a Harris equilibrium or a force-free analogue
(Sect. 2.10.2). In the following, we restrain ourselves to these cases.

Even with the above restrictions, the effect of the third dimension can
be important. A first relevant question is the role of anomalous resistivity
to sustain the reconnection electric field in Ohm’s law. Instabilities allowed
by the third dimension can indeed generate turbulence – large fluctuations
in the electromagnetic fields, particle densities, velocities, ... – which can
help decoupling particles from the magnetic field and provide an effective
way to sustain a large reconnection electric field (anomalous resistivity, see
Sect. 2.11.2). In collisional plasmas, turbulence is the only way to achieve
fast reconnection (Sect. 2.11.4). In the collisionless domain, however, re-
connection is already fast, mainly because of electron finite inertia, and
anomalous resistivity is not needed. It thus appears, from recent large scale
particle-in-cell simulations in 3D (Liu et al. 2013b; Karimabadi et al. 2013),
that anomalous resistivity does not play a key role in 3D collisionless recon-
nection, but rather slightly alters the way it happens. An interesting and
fully referenced review of these questions is provided by Karimabadi et al.
(2013).

A second issue is the structure of the dissipation region. Liu et al.
(2013b) show with 3D simulations in a force-free current sheet that, for
large enough guide fields (i.e., for a magnetic field reversing by less than 80
degree between above and below), the electron dissipation region consists
in several sublayers (between one and three, Fig. 2.49). They underline
that, perhaps surprisingly, the physics of each layer is close to that of a two-
dimensional layer: the dissipation is provided by electron bulk and thermal
inertia, and the reconnection rate is similar to the 2D simulations.

2.12.4 The magnetic separatrices

The non-ideal dissipation zone, where the magnetic field reconnects, has a
scale of the order of tens of kinetic scales (e.g., ion inertial lengths), and
thus represents only the central part of a reconnection event. Most of the
plasma does not flow across this region, but passes from upstream (the
domain of unreconnected field lines) to downstream (the domain embedded
by reconnected field lines) by flowing across the magnetic separatrices (e.g.,
as in Fig. 2.52). By doing so, it gets kinetic energy from the magnetic field,
and is accelerated and/or heated. Since it concerns most of the plasma flow,
the magnetic separatrices and what happens there are of crucial importance
for the reconnection process. This section describes some basic aspects of
the separatrices physics.
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Figure 2.50: Two-dimensional two-fluid simulation of magnetic reconnection,
from Zenitani et al. (2009b). The system is shown at two different times. Black
lines are magnetic field lines. Ux is the total plasma velocity. At t = 200, the two
lobes near the left and right boundaries are the dipolarization fronts (Sect. 2.12.5).

The slow shocks of the MHD view and their validity

In the MHD view, according to Petschek’s proposition, the upstream to
downstream transition is made by passing through slow-mode standing
shocks, as pictured in Fig. 2.26 and described by a fluid simulation in
Fig. 2.50, and the plasma gains kinetic energy from the magnetic field by
passing through these shocks.

However, it is now clear (e.g., Le et al. 2014) that at distances smaller
than ∼ 100di (ion inertial lengths) from the central diffusion region, the
magnetic field gradients in the exhausts and across the separatrices are too
small (compared to inertial lengths or to Larmor radii), and MHD does not
apply. A kinetic picture is then required.

What happens at larger distances (> 100di)? The pressure anisotropy,
naturally produced by the acceleration mechanisms, implies that the wave
modes of the plasma are modified (Gedalin 1993), and so also the shock
structure (Higashimori and Hoshino 2012; Liu et al. 2012). A too large
anisotropy actually suppresses the slow-mode shock. Still, the kinetic simu-
lations of Higashimori and Hoshino (2012) and Liu et al. (2012) have shown
that at more than a hundred di from the dissipation region, the pressure
anisotropy at the separatrices is small enough for shocks to form, and that
the distance between the separatrices is far larger than the kinetic scales, so
that anisotropic MHD-like shock analysis can be performed between inflow
and outflow. This shock analysis should be performed in an anisotropic
MHD framework, as done for example by Tenbarge et al. (2010). In colli-
sionless plasmas, the shock structure remains collisionless and is sustained
by kinetic processes, and the usual Rankine-Hugoniot jump conditions apply
only if the plasma stays in thermal equilibrium (no significant non-thermal
population). Slow-shocks have been crossed by satellites in the Earth’s
magnetotail (Eriksson et al. 2004).

At smaller distances (< 100di), the pressure anisotropy is too strong to
allow shocks to develop (Higashimori and Hoshino 2012), and the distance
between the separatrices and the field gradient scales are too short for the
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Figure 2.51: The electrons drag the magnetic field in the out of plane direction,
thus creating the quadrupolar Hall pattern.

downstream plasma to be described by MHD. However, such distances are
small enough (from a computational point of view) to allow numerical ki-
netic simulations, and a detailed investigation of the underlying processes
(e.g., Drake et al. 2009b; Liu et al. 2012; Le et al. 2014; Lapenta et al.
2014). In particular, the vicinity of the separatrices are places with strong
field gradients that prevent the particles to remain adiabatic, and are privi-
leged locations for various instabilities. The plasma response is thus largely
non-ideal at the separatrices (Lapenta et al. 2014).

We briefly review the small distance issue here (< 100di), noting that it
is under recent active investigations. Most recent studies include Lapenta et
al. (2014) (and references therein), or Le et al. (2014), and always concern
an initial current sheet (Harris or force-free) invariant along the current
direction, and ion-electron plasmas. We note that there is, to our knowledge,
no such kinetic studies for pair plasmas (where the Hall-related physics is
absent), or for relativistic plasmas (where the MHD waves have different
phase velocities than in the non-relativistic case), or with an initial setup
different from a Harris-like current sheet.

A final remark concerns collisional plasmas: there, the lack of localiza-
tion or of gradients in the resistivity does not allow the shock structure to
form. See Sect. 2.11.4.

Quadripolar magnetic field

As underlined in Sect. 2.12.1 (see Fig. 2.46), the ion-electron separation of
scales implies the creation of a current (the Hall current), and in turn, of a
quadripolar magnetic field. The total magnetic field is thus as in Fig. 2.51
and 2.53 (top), and it is as if the electrons were dragging the in-plane
magnetic field with them in their outward motion.

This produces a quadripolar magnetic field around the central diffusion
region, where reconnection takes place. However, as we explain next, the re-
sponse of the electrons produce parallel currents along the separatrices that
extend way downstream of the central diffusion region, and the quadripolar
magnetic field structure is thus created over a large area (possibly hundreds
of di).

Electron trajectories

How do the electrons cross the separatrices? Let us first consider the anti-
parallel case (no guide field). The electrons are accelerated by the reconnec-
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Figure 2.52: Flow lines crossing the separatrices. White lines are not-yet-
reconnected field lines, and green lines are newly reconnected ones. Top: for
electrons, bottom: for ions.
The central dissipation region is where the rightmost electron passes. From the im-
plicit PIC simulations of Lapenta et al. (2014), guide field of 10% the reconnecting
field, mi/me = 256. Scales are ion inertial lengths. The flow lines are obtained by
integrating the velocity field at a fixed time.

tion electric field Ey ∝ −ŷ. The creation of the out-of-plane Hall magnetic
field, By, means that there is now a parallel electric field E ·B/B = Ey 6= 0,
and it consequently provides a way for the electrons to be accelerated along
the field lines. This is easier than being accelerated across field lines, and
the electrons coming from the inflow region do so as soon as they reach the
By 6= 0 and Ey 6= 0 regions, i.e., at the separatrices. A consequence is that
there are parallel electron flows along the separatrices. Because of the di-
rection of By, these flows are always directed toward the X-point (Fig. 2.53,
middle). Electrons running toward the X-point and reaching the central
non-ideal region will then be expelled into the reconnection exhaust. But
far away from the X-point, electrons pass across the separatrix into the
exhaust before reaching the central region (as in Fig. 2.52, top). They do
so because the motion along the separatrices toward the X-point is allowed
by E‖ 6= 0, i.e., by a non-ideal plasma response, which holds only near the
separatrices. Further downstream, the electrons become magnetized again,
and the electric and magnetic fields are such that they E×B drift outward.

If there is a guide magnetic field along y, the particle trajectories are
significantly affected. Neglecting the Hall magnetic field, we now see that
the electrons accelerated by the reconnection electric field Ey ∝ −ŷ will
flow along the field lines, which means that their motion projected onto the
x-z plane is always to the right above the midplane, and to the left below
the midplane (see Fig. 2.54). The Hall component By only adds up to the
existent out of plane field, but if the guide field is strong enough, then the
sign of the total By is not affected, and particles do follow the trajectories
just described. This is also what we find with our own PIC simulations with
a guide field, for the same reasons, near the dissipation region and around
the magnetic islands (see Sect. 6.5.1, and in particular Fig. 6.12).
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Figure 2.53: Top: Out of plane magnetic field, showing the Hall quadripolar
structure.
Middle: Component x of the electron velocity. We see the strong and thin flows
toward the central region localized all along the separatrices.
Bottom: Out of plane component of the electron velocity. Strong velocities are
restricted to the central dissipation region and slightly outward along the separa-
trices.
From the implicit PIC simulations of Lapenta et al. (2014), guide field of 10% the
reconnecting field, mi/me = 256. Scales are ion inertial lengths.

Electrostatic in-plane field

The fast electron parallel motion along the separatrices naturally leads to
a depletion in electron density, and to a charge separation that the ions
cannot screen. The consequence is the existence of an electrostatic field,
perpendicular to the separatrices, as shown in Fig. 2.55 (bottom). This
electric field is the prolongation of the Hall electrostatic field already present
inside the central diffusion region (and described in Sect. 2.12.1).

Ion trajectories

Ions are heavier than electrons, and are less affected by the parallel electric
field present along the separatrices: they cross almost unperturbed into the
downstream (see Fig. 2.52, bottom). However, they are greatly affected
by the electrostatic in-plane field, that accelerates them. Most of the ions
bounce between the two separatrices, as shown in Fig. 2.55.



Chapter 2 85

E

B

y

x

z

electron streamlines
in the x− z plane

B

B

E

E

ion streamlines
in the x− z plane

Figure 2.54: Schematic representation of magnetic reconnection with the presence
of a guide field, here equal to the in plane field. Since electrons follow the field
lines and are accelerated toward −ŷ, they have a projected motion along +ẑ in the
x > 0 area, and along −ẑ in the x < 0 area.

Instabilities at the separatrices, subsequent electron heating

The separatrices are prone to several instabilities for several reasons. The
electron parallel motion is against the ion fluid, and also against other elec-
trons at rest, so that Buneman or two-stream instabilities can develop.
Moreover, the localization of these flows can trigger Kelvin-Helmoltz in-
stabilities. All these instabilities are indeed seen to develop in 3D simula-
tions (Lapenta et al. 2014). The Buneman or two-stream-like instabilities
result in electron holes: localized charge imbalance and associated dipolar
electrostatic field structure.

The effect of these instabilities is to significantly heat the electrons as
they cross the separatrices, mainly in the parallel direction (Buneman or
two-stream instabilities are electrostatic, parallel modes).

Electron and ion heating inside the exhausts

The ions are not much heated when crossing the separatrices, and most of
their heating occurs in the exhausts via instabilities, or further downstream
at the dipolarization fronts (see Sect. 2.12.5). Electrons are also heated by
the same mechanisms.

2.12.5 The dipolarization fronts

There is, at the end of the reconnection exhausts, a region where the first
reconnected field lines and the expelled plasma collide with the ambient
plasma (as in Fig. 2.50). This region is called the dipolarization front.
Various instabilities and particle-field energy exchange naturally occur in
this area (see, e.g., Vapirev et al. 2013).

This is a region where the newly reconnected field lines pile-up, which
leads to an increase in magnetic field strength. A systematic perpendicular
heating mechanism is thus betatron acceleration acting on magnetized ions
and electrons newly brought into this regionai (Lapenta et al. 2014). Also,
the magnetic field configuration involves two magnetic mirrors, between

aiSaid otherwise, the conservation of the first adiabatic invariant, µ = mv2
⊥/(2B),

implies an increase of T⊥ if B increases.
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ion velocityelectron velocity
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Hall electric field

Figure 2.55: Flow structure of the ions and of the electrons.
Top and middle: Fluid velocities from a PIC simulation of Pritchett (2001). The
red line shows a typical ion trajectory. Averaging over all such trajectories does
lead to the fluid flow represented by the arrows.
Bottom: Schematic view of the fluid flow across the separatrices and of the elec-
trostatic field. Ions are accelerated from inflow to outflow by the Hall electric field
(in green) at all locations (from close to far away of the central non-ideal region).
The black (gray) central part is the electron (ion) non-ideal region. The ion fluid
velocity shown here result from individual trajectories represented in red. There is
also an electric field normal to the paper plane, that drives the E ×B drift of the
particles in the outer ideal region, and that freely accelerates the particles in the
out-of-plane direction in the central non-ideal regions.
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Figure 2.56: Dots are the trajectory of an electron in a PIC simulation. The
color code is the particle energy, from red at low values to blue at high values.
Solid lines are projection of the trajectory onto the x-y, y-z, and z-x planes. A
similar picture in the presence of a guide field is shown in Fig. 6.13.

which the particles bounce, and as more magnetic field piles-up the mirrors
get closer, and the bouncing particles are Fermi accelerated (Lapenta et al.
2014).

2.13 From large to small scales: Ultimately, re-
connection of the field lines

When electrons decouple from the field lines because of inertia or of collisions
with waves or particles, the field lines are released and behave as if they
were in vacuum. The physics describing their relative attraction (for non-
aligned lines) or repulsion (for aligned lines) and merging is then quantum
mechanics. Treumann et al. (2012) describe these processes.

In this article, it is suggested that at the point where the gyroradius rce
becomes larger than the skin-depth de, the lattice of frozen magnetic field
lines explodes, field lines are freed, and approach one another via gauge
interactions. The presence of several field lines induces gradients in gauge
potential, which produce a cloud of pairs, which produce micro-currents,
which attract (or repel) anti-parallel (or parallel) field lines.

However, the scales involved are so small and fast that they are not of
interest for us.

2.14 Particle trajectories

So far, we have not discussed what particles precisely do during a reconnec-
tion event. This can be best learned from PIC simulations, where the indi-
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Figure 2.57: Projection, in the x-z plane, of the trajectories of a sample of
particles from a PIC simulation starting from Harris equilibrium with no guide
field. Ions are in blue-green, electrons in red-orange. The black arrows indicate the
magnetic field geometry. The full 3D trajectories are more like in Fig. 2.56.
On the right are the fluid velocities and current for a cut through the X-point.

vidual trajectories can be tracked. This is relevant at scales where kinetic
effects are important, and necessary for the fundamental understanding of
magnetic reconnection. Studying particle trajectories allows to grasp the
mechanisms at the origin of particle acceleration, that may form extended
high-energy tails, and allows to understand the structure of the pressure ten-
sor, and also the shape of measured particle distribution functions (Egedal
et al. 2008).

There are many kinds of particle trajectories, that depend on the mag-
netic field geometry. The situation is complex even for a simple Harris
initial state (e.g., Egedal et al. 2008; Zenitani et al. 2013)aj. Here, we only
describe what happens for most particles entering into a 2D dissipation re-
gion, as can be seen in Fig. 2.57, in the absence of guide magnetic field.
What happens with a guide field is discussed in Sect. 6.5.1.

The behavior of a typical particle from the background plasma is as
follows (consult Fig. 2.56 and 2.57):

• Before the onset of reconnection, the particle moves along the back-
ground magnetic field lines (along z here), performing Larmor gyra-
tions according to its velocity.

• When reconnection starts, the induced electric field Ey spreads away
from the current sheet, and the outflows from reconnection imply a
depletion of particles at the center, so that both of these effects set the
background particles into motion. The combined action of the electric
field Eyŷ and of the magnetic field ±B0ẑ forces the particles to E×B
drift toward the current sheet (along ±x̂).

• As the particle gets closer to the current sheet, B dwindles, so that
the velocity of the drift (which is Ey/B) increases, and the particle
accelerates.

ajSee http://th.nao.ac.jp/MEMBER/zenitani/research-e.html for movies of trajec-
tories.

http://th.nao.ac.jp/MEMBER/zenitani/research-e.html
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• When it reaches the area where Ey > B, the E × B drift ceases
and the particle is freely accelerated by Ey. It gains energy. The
particle is trapped between the magnetic field reversal, because on
either side it turns around B toward the center of the sheet. Small
oscillations can thus be seen. This part of the orbit is called a Speiser
trajectory (Speiser 1965). These bouncing trajectories also explain
the non-diagonal nature of the pressure tensor inside the dissipation
region.

• If the particle enters in the dissipation region just at the X-point,
then the magnetic field is null and it travels along y without turning.
But this ideal case never happens, and fluctuations necessarily shift
the particle away from the X-point. The newly reconnected magnetic
field has a component along x, and the particle slowly turns around
this field. Its y momentum is thus converted into a z component, and
the particle then travel along z along the exhaust.

This is how the reconnection outflows are built. This point of view
from the particles complements the MHD point of view, which invokes
outflows driven by the magnetic tension force of the newly reconnected
field lines.

• At the end of the exhausts, the particles encounter the dipolarization
front or a magnetic island. The islands are surrounded by a strong
magnetic field, and the particle spirals around it and around the island.

2.15 Acceleration mechanisms

Magnetic reconnection is, with shock acceleration and turbulent media, one
of the prime candidates to produce accelerated particles. These accelerated
particles can then explain a heating of the plasma (as in microquasar and
AGN disk coronae, or in the lobes of giant radio galaxies), or the pres-
ence of a non-thermal high-energy population (as in the Crab nebula or,
again, in microquasar and AGN disk coronae), or they can emit contin-
uous radiation (as for the radio emission from galactic nuclei, AGNs, and
extragalactic jets). In particular, because of its fast nature, magnetic recon-
nection is appealing to explain flare-like events, i.e., high-energy radiation
outbursts occurring on small timescales (compared to characteristic macro-
scopic timescales of the objects), as observed in the Crab nebula, in AGN
and microquasar disk coronae, or in extragalactic jets. References associ-
ated to these physical environments can be found in Sect. 7.2.

There are several acceleration mechanisms that have been identified
within a reconnection event. Which dominates depend on the magnetic field
geometry, and on the plasma parameters, and is still an open question. An-
other key issue is the efficiency of each process, and the produced particle
spectrum. Such questions are complicated by the fact that the accelera-
tion physics is highly non-linear and best explored with simulations, which
should be run over very long times and with large domains to really capture
the relaxed particle distributions, and possibly in three dimensions when
relevant. Also, as we show here, there are various acceleration locations
(central X-point, separatrices, dipolarization front, ...). In the Chapter 7,
we explore the acceleration mechanisms near the central dissipation zone for
relativistic plasmas. But in the remaining of this section, we briefly review
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the main known acceleration mechanisms. Other details and references, in
particular the particle distribution indexes produced by the mechanisms,
can be found in Sect. 7.2.

2.15.1 Acceleration by the reconnection electric field

The reconnection electric field, which is produced by magnetic flux varia-
tions and sustained in steady state by the non-ideal processes, is alone re-
sponsible for transfering energy between the magnetic field and the particles
around the central dissipation region. It thus obviously accelerates parti-
cles. However, it does not necessarily lead to a population of non-thermal
high-energy particles that can emit high-energy photons. We precise this
below.

Production of Alfvénic electron jets

For two-dimensional setups, we explained in Sect. 2.14 that the reconnec-
tion outflows exiting from the central dissipation region origin from particle
acceleration by the reconnection electric field and rotation around the re-
connected magnetic field (in the MHD view, this is the tension force of the
highly bent reconnected magnetic field).

The escape velocity of the fluid in this region is of the order of the
Alfvén speed in the inflow (this was deduced from particle number and
energy conservation, Eq. 2.27). Consequently, there are naturally Alfvénic
jets in situations of 2D reconnection. PIC simulations confirm this, even if
some show the intermittent production of magnetic islands at the X-point
that may disturb this simple view.

Such Alfvénic jets are invoked by Giannios et al. (2009) to produce fast
variability in the emission seen from extragalactic jets: small reconnection
events inside the jet can eject Alfvénic blobs of plasma that emit radiation.

High-energy tails

The Alfvénic outflows are mostly bulk flow acceleration. It is however pos-
sible, in some conditions, that acceleration by the reconnection electric field
produces high-energy tails in the particle distribution.

More specifically, this mechanism is inefficient for non-relativistic recon-
nection because the acceleration zone (where E > cB in the no-guide field
case, or where E ·B 6= 0 in the guide field case) has a too small length (along
z) (Drake et al. 2010; Kowal et al. 2011; Drury 2012) and affects too few
particles. But it is efficient under relativistic conditions, where the larger
reconnection electric field creates a wider acceleration zone (Zenitani and
Hoshino 2001, 2007). Various PIC simulation studies confirmed that power
law tails of high-energy electrons can be created with this mechanism. The
power law indexes found can be harder than for collisionless shocks, and the
acceleration times shorter (Cerutti et al. 2014a; Sironi and Spitkovsky 2014,
and Chapter 7 of the present manuscript). We also show, in Chapter 7, that
this mechanism can produce power laws for ions.

2.15.2 Acceleration by contracting magnetic islands

Magnetic islands are closed field lines, such as around O-points in 2D. When
two islands merge, there is contraction phase. Energetic particles inside
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the islands are trapped by the magnetic structure and, when the island
contracts, they bounce back and forth against the approaching sides of the
island. The first-order Fermi mechanism can then operate and accelerate
these particles. The particle energy gain is actually due to the electric field
induced by the island sides motions in the magnetic field (it can be seen as
a motional electric field, E = −v ∧B, and is always directed in the same
direction).

This mechanism can be efficient in collisionless plasmas (Drake et al.
(2006) for electrons in the solar corona; Drake et al. (2010) for ions at the
heliospheric termination shock) or in collisional plasmas (Kowal et al. (2011)
for pairs in microquasars). In non-relativistic plasmas, because of the small
particle velocities, the Larmor radii can be smaller than the island gradient
scales. If it is the case, then particle motions are adiabatic inside and around
the islands, and particle-in-cell simulations and analytical estimations agree
that this mechanism produces power law spectra. In plasmas with rela-
tivistic magnetizations, the Larmor radii of the accelerated particles likely
exceed the island scales, at least at early times, so that another analytical
approach has to be employed (Bessho and Bhattacharjee 2012), and there
is no analytical expression for the resulting spectra. PIC simulations in rel-
ativistic pair plasmas show that it significantly contributes to the building
of the high-energy populations (Bessho and Bhattacharjee 2012; Sironi and
Spitkovsky 2014). It saturates if the firehose instability threshold is reached
(see Sect. 2.A for the firehose instability).

We also find in Chapter 7 that this acceleration mechanism operates
significantly. It is efficient for the particles trapped inside the islands, and
also for the particles that swirl around the islands.

2.15.3 Acceleration by the motional electric field

As we have seen, in the ideal region around the dissipation region, there is
the presence of a motional electric field E = B ∧ V . A particle from the
bulk flow cannot be accelerated by this electric field, because it is this field
that allows the particle to have its velocity (the electric field in the frame of
the bulk flow vanishes). Such particles are said to be adiabatic. However,
a particle that is not from the bulk flow can be accelerated by the motional
electric field. This leads to at least two possibilities, described below.

Particle pick-up

In reconnection configurations, the exhausts naturally provide places where
particles can enter, be non-adiabatic, and be accelerated (see Fig. 2.58).
This is true for heavy ions, for which the large m/q ratio, and consequently
large Larmor radius, implies that they are easily non-adiabatic when en-
tering the exhaust. This mechanism is called “pick-up”ak. It is invoked
to explain heavy ion acceleration in solar flares, and also in the context of
anomalous cosmic rays produced at the termination shock of the solar wind
(Drake et al. 2009a; Knizhnik et al. 2011).

akThe name, introduced by J. Drake, refers to the standard pick-up mechanism of
neutrals that get ionized and suddenly have to E ×B drift.
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Figure 2.58: Ion pick-up. The particle in green is adiabatic in the upper part
of the figure, but becomes non-adiabatic as it enters the exhaust. It can then be
accelerated by the motional electric field during a transient phase, before becoming
adiabatic again and E×B drifting at its terminal speed. Being non-adiabatic may
require a large m/q ratio, and thus be valid only for heavier ions.

Acceleration between the two converging inflows

Another acceleration mechanism, also relying on the first-order Fermi pro-
cess and on stochasticity, is the bouncing motion of particles between the
two inflows converging from both sides of the current sheet. Energy is gained
when the particle turns around, and is transferred by the motional electric
field present in the inflow.

Drury (2012) derives the power law spectrum for non-relativistic par-
ticles: dn(v)/dv ∝ v−p with v the velocity, p = (r + 2)/(r + 1), where
r = nout/nin is the compression ratio that is not restricted to low values as
in the case of shocks. Giannios (2010) derives the maximal Lorentz factor
produced in the relativistic case, and Bosch-Ramon (2012) discusses condi-
tions for entering in this acceleration regime. This mechanism does not rely
on a direct acceleration by the reconnection electric field Erec when parti-
cles are demagnetized at the center of the dissipation region, but lies on the
motional electric field in the inflow. It is thus efficient in non-relativistic
or/and collisional plasmas (Kowal et al. 2011) where direct acceleration by
Erec is known to be negligible. See also Bosch-Ramon (2012).

We remark that it requires particles crossing the current sheet and
bouncing on the other side, i.e., having a Larmor radius in the asymp-
totic field that is larger than the sheet width (we discuss quantitatively this
issue in Sect. 7.5.2), which is generally true only for pre-accelerated parti-
cles or hot inflows, that may or may not be present in the medium under
consideration. Such pre-accelerated particles are generally absent from PIC
simulations, so that the mechanism was never seen in a PIC run. Simula-
tions with pre-accelerated populations remain to be done.

In addition, this Fermi mechanism implies that particles travel a length
larger than the width of the current sheet before being deviated back along
the opposite direction. Such trajectories may then be subject to significant
collisions, even when the reconnection process itself is collisionless. Whether
collisions restrain or cancel the energy gain remains an open question.

Acceleration in contracting current sheets

When current sheets contract (either because they are unstable or because
of the large scale dynamics), the first-order Fermi mechanism can operate
again. See for example Kowal et al. (2011) or Jaroschek et al. (2008).
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FIG. 1. This diagram sketches the classical (1D) model of
pulsar wind nebulae in which thepulsar inf ates a relativistic
and magnetized wind of e± pairs. The pulsar wind nebula
forms between the termination shock of the wind and the
contact discontinuity with theambient medium, herethema-
terial from the supernova remnant. As argued in this paper,
magnetic reconnection within the nebula could explain the
gamma-ray f ares observed in theCrab Nebula.

Figure 2.59: From Cerutti et al. (2014a). Schematic representation of the Crab
nebula. See also Table 7.5 for orders of magnitude.

2.15.4 Other mechanisms

Other acceleration mechanisms exist, especially far from the diffusion re-
gion. For example stochastic acceleration in the turbulence associated with
reconnection (Kowal et al. 2011). Also, acceleration at the magnetic sepa-
ratrices, or at the dipolarization front, remain largely unexplored. See also
Sect. 7.5.4.

2.15.5 Example: The Crab nebula

Magnetic reconnection could be a key element of two fundamental problems
concerning pulsars: one related to the termination shock of the pulsar wind,
one related to high-energy flare emission in the nebula (see Fig. 2.59).

Particle acceleration at the wind termination shock

The best observed pulsar is hosted at the center of the Crab nebula. The
pulsar emits a strong wind of electron-positron pairs, and it also has a
strong magnetic field, that the wind plasma carries as it expands. The
pulsar rotates quickly, and its rotation axis is not aligned with its magnetic
axis. Consequently, in the equatorial plane there is a succession of positive
and negative magnetic field regions, with current sheets in between (see
Fig 2.60). A favored model is that when these magnetic field reversals are
carried in the wind, the current sheets are too large and reconnection does
not occur. But the wind ends in a termination shock, where the current
sheets are compressed and unstable to magnetic reconnection.

There is, inside the nebula, a high-energy particle population (called the
wind population) that is inferred from observations (according to Sironi and
Spitkovsky (2011a), electron power law dn/dγ ∝ γ−1.5 over three decades
at least are needed to explain the radio to optical emission of the nebula).
Sironi and Spitkovsky (2011a) explore with PIC simulations the possibility
that the reconnection events at the termination shock can produce this
population.

High-energy flares from the pulsar nebula

The pulsar wind nebula is located between the first shock, where the free
expansion of the pulsar wind ends (0.1pc for the pulsar), and the contact dis-
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Figure 2.60: From Sironi and Spitkovsky (2011a). Top: The rotation axis of
the pulsar is along Ω, while its magnetic field axis is along µ. Only the toroidal
component of the field is shown (Bϕ). The rotation creates alternating signs for
Bϕ near the equator. Bottom: At the termination shock of the wind, the stripes
meet the shock and will be compressed, triggering reconnection events.

continuity with the external medium (which is here the supernova remnant
material).

Pairs emit synchrotron radiation from radio to a hundred MeV, and
upscatter photons to between 1 GeV to 100 TeV, thus producing a steady
emission. In addition, there is the emission of flares, that occurs continu-
ously for small flares up to once a year for very large ones, reaching energies
of hundreds of GeV. These flares are believed to come from synchrotron-
like emission, in fields of the order of B ∼ 1 mG (Uzdensky et al. 2011)
by PeV electrons (1015 eV, or Lorentz factor of 109). But the mechanism
accelerating the particles to these energies is still unclear. A possibility
is particle acceleration in reconnection events. Cerutti et al. (2012b) and
Cerutti et al. (2012a) have produced PIC simulations of magnetic recon-
nection, that include radiative braking of the electrons. They have found
that electrons can remain long enough at the X-point, where the magnetic
field is almost null, where they are accelerated directly by the reconnection
electric field. When they escape the X-point, they arrive in a region of signif-
icant magnetic field around the magnetic islands, and immediately radiate
high-energy photonsal.

Appendix 2.A Pressure anisotropy and implica-
tions for wave speeds, the tension
force, the firehose instability

The heating mechanisms implied in magnetic reconnection events often pro-
duce anisotropic particle distribution functions. A not so severe and natural
form of anisotropy is a gyrotropic distribution function, where there remains

alWe remark that these PIC simulations take into account only the wind population
(Lorentz factors 105 < γ < 109, Meyer et al. 2010), and not the so-called radio plasma
population (γ ∈ [20, 105]), even if in terms of particle number density one has nradio ∼
105nwind. The technical reason is that the low energy electrons have very small Larmor
radius, and would require a high resolution. Their impact on the dynamics is yet unclear.
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a cylindrical symmetry around the axis defined by the local magnetic field.
The pressure tensor can then be written

P = P⊥I + (P‖ − P⊥)bb, (2.61)

with I the identity matrix and b = B/B a unit vector along B. This holds
either for the pressure tensor of each species, or for the sum of both as used
in the MHD models.

An important consequence of pressure anisotropy is that it modifies the
magnetic tension force, and can ultimately lead to instabilities (the firehose
and the mirror instabilities). The reason is that particles traveling along
a curved field line exert a centrifugal force on the line, that tends to bend
the line even more. In an isotropic plasma, this force is balanced by the
perpendicular plasma pressure force and the net outcome vanishes. The only
contribution is then the magnetic tension and pressure forces associated to
the field lines. However, in an anisotropic plasma where P‖ > P⊥, particles
exert a net force that tends to bend even more the field lines (due to the
particles traveling along the field line, producing P‖), and that opposes the
magnetic tension force. There are two consequences:

• In an anisotropic plasma where P‖ > P⊥, the magnetic tension force
– which intuitively tends to unbend field lines – is reduced.

• At the point where the total force (anisotropic plasma pressure plus
magnetic tension) vanishes, the plasma becomes unstable to the fire-
hose instability.

To precise these facts, we can first write the total force in the MHD
model. The pressure force is minus the divergence of Eq. 2.61, while the
J ∧B = µ−1

0 (∇∧B)∧B term can be rewritten in a similar form, so as to
obtain:

−∇ ·P +J ∧B = −∇ ·
[(
P⊥ +

B2

2µ0

)
I −

(
B2

µ0
+ P⊥ − P‖

)
bb

]
. (2.62)

With this form, we clearly see that the effective magnetic tension force (the
term proportional to bb) is reduced by a non-vanishing P‖ − P⊥.

At the threshold where

P⊥ − P‖
B2/2µ0

= β‖ − β⊥ = 2, (2.63)

the force vanishes and the plasma then becomes unstable to the firehose
instability (Hau and Wang 2007). The reason is that a slightly bent field
line will tend to be even more bent, and so on, leading to an unstable
behavior.

Another important, and related, consequence of pressure anisotropy is
that it modifies the wave modes of the plasma. For example in a gyrotropic
plasma, the Alfvén speed becomes (Gedalin 1993)

V 2
A =

(
β⊥ − β‖

2
+ 1

)
B2

µ0ρ
, (2.64)

with ρ the plasma mass density. It vanishes at the firehose threshold, and
the square becomes negative for β‖ − β⊥ > 2, which means that the mode
change from a propagating mode to an instability. This is precisely the
origin of the firehose instabilityam, which excites Alfvén waves.

amThis is the origin of the MHD firehose instability. There are other firehose instabilities,
for example the electron firehose instability (Hau and Wang 2007).
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Chapter 3

Elements of relativistic
plasma physics

“Why,” he said, “is there a sofa in that field?”
“I told you!” shouted Ford, leaping to his feet. “Eddies in the
space-time continuum!”
“And this is his sofa, is it?”

Douglas Adams, Life, the Universe and Everything
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bution with arbitrary temperature and drift speed . . 123

Appendix 3.A More relations for Maxwell-Jüttner distribution . . 126
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3.1 Outline

The purpose of this chapter is to review or establish useful results for plasma
physics under relativistic conditions. Some of these results can be found
scattered in the literature, others are new. These various points have been
a necessary preliminary to our investigations on relativistic magnetic re-
connection, and we hope that gathering them here will be useful to other
relativistic plasma physicists.

By a relativistic plasma, we mean that the mean kinetic energy of the
particles exceeds their restmass energy. For a thermal plasma, this happens
when Te > mec

2 = 6×109 K for electrons, and when Ti > mic
2 = 1.1×1013 K

for protons. Such temperatures are reached for electrons in microquasar or
AGN disk coronae, in GRB jets, or in pulsar wind nebulae (see Fig. 1.1). The
Maxwell-Boltzmann distribution then fails to describe the plasma thermal
state, and it should be generalized to the Maxwell-Jüttner distribution. In
Sect. 3.2 we describe properties of this distribution. We provide a method
to compute various moments, such as the mean Lorentz factor, or mean
momentum, enthalpy, or Larmor radius. The results are summarized in
Table 3.1.

A plasma with a relativistic temperature has a non-trivial enthalpy, and
we discuss how and why in Sect. 3.3. It is an important quantity for the
adiabatic exponent and for wave velocities, that we also discuss.

Then, in Sect. 3.4 we rederive the relativistic fluid equations (conser-
vation of particle number, momentum, and energy) from the relativistic
Vlasov’s equation, in order to express them with quantities defined in the
laboratory frame. As opposed to the fluid equations usually found in the lit-
erature, the obtained equations do not involve the comoving enthalpy, which
is hard to evaluate for an out-of-equilibrium PIC plasma. These equations
will be used in Chapter 6 for interpreting PIC simulations and for building
analytical theories.
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In Sect. 3.5 we briefly review expressions for the MHD wave velocities in
a relativistic plasma (i.e., magnetic energy density exceeding the restmass
energy, and relativistic temperatures). This is a required preliminary to
the investigation of relativistic reconnection, where in particular the Alfvén
wave has a central role.

Section 3.6 is a reminder and summary concerning particle motions in
constant electric and magnetic fields. The case of relativistic motions is less
known than the non-relativistic counterpart, and leads to interesting results
that are worth having in mind when interpreting particle trajectories.

In Sect. 3.7, we give the general equilibrium relations for the relativistic
Harris configuration with arbitrary temperature and mass ratio between the
two species. This will be used to initialize our PIC simulations.

Finally, in Sect. 3.8 we describe a method for loading a Maxwell-Jüttner
momentum distribution with an arbitrary bulk velocity and temperature.
The naive method, which initializes the comoving distribution and then
boosts particles individually, is shown to be incorrect, mainly because space
contraction is absent from the PIC code. A correct implementation has not
been found elsewhere in the literature (except, after the publication of our
method, by Swisdak 2013).

3.2 Properties of the Maxwell-Jüttner distribu-
tion

This section discusses properties of the Maxwell-Jüttner particle distribu-
tion. We briefly review the non-relativistic case in Sect. 3.2.1, and then
turn to the relativistic generalization (Maxwell-Jüttner) in Sect. 3.2.2. We
compute the average of various quantities for this distribution, either when
the bulk velocity is zero (Sect. 3.2.3) or non-zero (Sect. 3.2.4).

3.2.1 The non-relativistic case

For a gas of non-relativistic classical particles at thermal equilibrium, the
distribution function is given by the Maxwell-Boltzmann statistics. In three
dimensionsa, it is defined by

g(v) =
( m

2πT

)3/2
exp

(
−1

2

mv2

T

)
. (3.1)

Here, m is the particle mass, T the temperature (in energy units), and
the distribution g is normalized to unity. Equation 3.1 holds for a gas
with no bulk velocity, i.e., in the gas comoving frame. It can be shown
to be the distribution that maximizes the entropy, so that this is the state
that will eventually be reached in a gas or plasma where some dissipative
processes exist. These processes can be collisions (hard sphere with neutrals,
Coulombic with charges), or particle-particle correlations mediated by the
fields. The Maxwell-Boltzmann distribution can be shown to be the only
stationary distribution of various kinetic equations, for example Boltzmann
equation for a neutral gas, or Landau equation for collisionless plasmas.

aFor N dimensions, replace the 3/2 exponent by N/2.
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We denote an average of a quantity M(v) taken over the distribution 3.1
by 〈M〉, or occasionally by M̄ . We have the following identities:

〈v〉 = 0 (3.2a)

〈v2
i 〉1/2 =

√
T/m, i = x, y, z, (3.2b)

〈v2〉1/2 =
(
〈v2
x〉+ 〈v2

y〉+ 〈v2
z〉
)1/2

=
√

3T/m, (3.2c)

d

dv
v2 exp

(
−1

2

mv2

T

)
= 0⇔ v =

√
2T

m
. (3.2d)

Several relevant velocities can thus be defined (see, e.g., Callen 2006, App. A):
the most probable speed (in 3D) vmost prob =

√
2T/m, the root mean square

velocity vrms = 〈v2〉1/2 =
√

3〈v2
x〉1/2 =

√
3T/m, or what we will denote the

thermal velocity vth = 〈v2
x〉1/2 =

√
T/m. The mean energy per particle is

m〈v2〉
2

=
mv2

rms

2
= 3× T

2
, (3.3)

i.e., T/2 by degree of freedom, while the pressure P is given byb

P = n

∫∫∫
d3v g(v)(mv2

i ) = n
v2

rms

3
= nT, (3.5)

with n the particle number density, and i = x, y or z. We thus find the
perfect gas law.

3.2.2 The relativistic generalization

The temperature becomes relativistic when a significant fraction of the par-
ticles reach a velocity close to the speed of light c. This happens when
the mean energy per particle becomes close to or passes above the restmass
energy of the particles, and occurs roughly when Θ ≡ µ−1 ≡ T/(mc2) > 1.

A Maxwell-Boltzmann distribution is then not valid, because it would
predict particles exceeding the speed of light. In the literature, there are
some agreements around the fact that the particle distribution of a relativis-
tic plasma in thermodynamic equilibrium is given by the Maxwell-Jüttner
distribution (Jüttner 1911; Cubero et al. 2007; Chacón-Acosta et al. 2010;
Dunkel and Hänggi 2009) and, even if some alternatives are also debated
(e.g., Treumann et al. 2011, argue that another normalization factor should
be used), this is the distribution used in PIC simulations (e.g., Pétri and
Lyubarsky 2007; Zenitani and Hoshino 2008; Jaroschek and Hoshino 2009)
or other analytical studies (e.g., Kirk and Skjæraasen 2003).

In the plasma rest frame

In the plasma rest frame (subscript 0), the Maxwell-Jüttner distribution is
given by f0|p̃(x0, p̃0) = n0g0|p̃(p̃0), with

g0|p̃(p̃0) =
µ

4πK2(µ)
exp

{
−µ
√

1 + p̃2
0

}
, p̃0 ∈ R3, (3.6)

bThe definition of the pressure comes from a derivation of the fluid equations from a
kinetic description (see Sect. 3.4), the pressure tensor Pij being the flux along the direction
i of j-directed momentum due to microscopic motions:

Pij =

∫
d3v δvi(mδvj)[n(x)g(v)] = mn

∫
d3v δviδvjg(v), (3.4)

with δvi = vi−vi. Because g(v) is isotropic, we have Pi6=j = 0 and Pxx = Pyy = Pzz ≡ P .
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with n0 =
∫∫∫

d3p̃0 f0|p̃(x0, p̃0) the uniform particle number density and g0|p̃
the momentum distribution, both in the rest frame, p̃0 = γ0v0/c, p̃ = γv/c,
K2 the modified Bessel function of the second kind, and µ−1 ≡ Θ ≡ T/(mc2)
the normalized temperature (which is always defined in the rest frame of
the plasma, by Eq. 3.6).

The distribution for the norm of p̃0 is g0|p̃(p̃0) = 4πp̃2
0g0|p̃(p̃0). Change

of variables can also lead to the expression of the distribution in terms of
velocities or of Lorentz factors. We provide these formula, along with their
derivations, in Appendix 3.A.

Drifting distributions

We want the equilibrium distribution, now called f , for a plasma moving
with a bulk velocity U0 (with associated Lorentz factor Γ0 = (1−U0)−1/2).
An easy way to obtain this distribution is to set up a Maxwell-Jüttner
plasma at rest in a frame R0, with distribution f0 = n0g0 given by Eq. 3.6,
and then to see it from a frame R moving with velocity −U0. The drifting
distribution f is then obtained by a Lorentz transformation of the distribu-
tion f0.

To do this, we use the invariance of the total (in position and in velocity)
distribution function f(x, p̃), i.e., fx,p̃(x, p̃) = f0|x,p̃(x0, p̃0). We prove this
relation in Sect. 3.8.1. Next, we assume that f and g are linked by

fx,p̃(x, p̃) = n(x)gp̃(p̃) and f0|x,p̃(x0, p̃0) = n0(x0)g0|p̃(p̃0), (3.7)

where n and n0 are the particle number densities in each frame. We note
that the usual contraction/dilatation of volumes directly yields n(x) =
Γ0n0(x0).

Using Eq. 3.6 for g0|p̃(p̃0), and the relation γ0 = Γ0(γ− p̃ ·U0/c) (which
is simply the Lorentz boost linking γ0 in R0 to γ and p̃ in R), we obtain:

gp̃(p̃) =
µ

4πK2(µ)Γ0
exp

{
−µΓ0

(√
1 + p̃2 − p̃ ·U0/c

)}
,

fx,p̃(x, p̃) = n(x)gp̃(p̃).
(3.8)

This distribution is normalized to unity:
∫∫∫

d3p̃ gp̃(p̃) = 1, so that also∫∫∫
d3p̃ fx,p̃(x, p̃) = n. We note that the factor Γ0 appears because gp̃(p̃) =

g0|p̃(p̃0) × n0(x0)/n(x) = g0|p̃(p̃0)/Γ0, and is not present in some articles
where the distribution function f is normalized to n0 (and not to n as here).

3.2.3 Averages over Maxwell-Jüttner distribution, comov-
ing frame

We provide the analytical expressions of various quantities averaged over the
Maxwell-Jüttner distribution, for example the mean velocity, mean Lorentz
factor, mean momentum, or the enthalpy. They are summarized in Ta-
ble 3.1, and a plot of the function κ32 is shown in Fig. 3.1. This section
concerns plasmas at rest, and Sect. 3.2.4 deals with drifting Maxwell-Jüttner
distributions. We present the method used to derive these expressions, and
comment some important points. We note that besides being of general
interest, these expressions served to further validate our method for loading
Maxwell-Jüttner distributions in PIC simulations (Sect. 3.8), by comparing



102 Chapter 3

Without drift velocity: U0 = 0

Parameter Value NR UR

〈γ〉 κ32(µ)− µ−1 1 + 3Θ/2 3Θ

〈(γβ)2〉 3Θκ32(µ) 3Θ 12Θ2

〈β2〉 3Θκ12(µ) 3Θ 3/2

〈γβ2〉 3Θ

Larmor radius (c/ωce)
√

2Θκ32(µ) (c/ωce)
√

2Θ (c/ωce)2
√

2Θ

Pressure P nT

Enthalpy h0 κ32(µ) 1 + 5Θ/2 4Θ

Adiabatic
exponent γ̂ 1 + (µκ32(µ)− µ− 1)−1 5/3 4/3

With a drift velocity U0 = U0ŷ

Parameter Value NR UR

〈v〉 U0

〈γv〉 κ32(µ)Γ0U0
a Γ0U0 4ΘΓ0U0

〈γ〉 Γ0κ32(µ)− 1
µΓ0

Γ0
4Γ0
µ −

1
µΓ0

〈pxvx〉 = 〈pzvz〉 Θc2/Γ0

〈pyvy〉 Θc2

Γ0
+ Γ0U

2
0κ32(µ)〈

(pi − 〈pi〉)(vj − 〈vj〉)
〉

δijc
2 Θ/Γ0

a Remains true for an isotropic comoving distribution function, not necessarily
Maxwell-Jüttner, with κ32 replaced by the enthalpy h0.

Table 3.1: Useful averages for the Maxwell-Jüttner distribution f(x,p) = ng(p)
(for example defined by Eq. 3.8 in terms of p̃), of temperature Θ = 1/µ = T/(mc2).
We define κij(µ) = Ki(µ)/Kj(µ), with Kn the modified Bessel function of the nth
kind (see Fig. 3.1 for a plot of κ32).
The Larmor radius is defined by 〈rce〉 = 〈(γv⊥)2〉1/2/ωce, ωce = qB/m,
the pressure by P = (1/3)n〈v · (γmv)〉,
the enthalpy by h0 = (n〈γmc2〉+ P )/(nmc2) (Sect. 3.3),
the adiabatic exponent by γ̂ − 1 = P/(n〈γ − 1〉mc2) (Sect. 3.3).
NR means non-relativistic limit (Θ → 0, κ32(µ) ∼ 1 + 5Θ/2), and UR ultrarela-
tivistic limit (Θ → +∞, κ32(µ) ∼ 4Θ), with in both cases no constraints on Γ0.
Asymptotic relations for the Bessel functions are given in Appendix 3.A.
Other averages can be found in Table. 3.2. The UR and NR limits for the adiabatic
exponent are generalized to N dimensions in Sect. 3.3.2.
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1

Figure 3.1: Plot of the function h0(Θ) = κ32(1/Θ) = K3(1/Θ)/K2(1/Θ) against
Θ. This is the normalized comoving enthalpy for a Maxwell-Jüttner distribution
of temperature Θ. We see that the ultrarelativistic approximation h0 ' 4Θ is
reasonable even starting from Θ = 1.

the analytical results of Table 3.1 with averages performed over particles
generated with our method.

We start by the calculation of averages over the distribution with zero
drift velocity (i.e., the distribution in the frame comoving with the plasma).
The calculations are easier when the distribution function is expressed in
terms of Lorentz factors γ0 (see Appendix 3.A):

g0|γ(γ0) =
µ

K2(µ)
γ0

√
γ2

0 − 1 exp {−µγ0} , γ0 ∈ [1,+∞[. (3.9)

We introduce two relationsc:

I(µ) ≡
∫ +∞

1
dγ0

√
γ2

0 − 1 exp {−µγ0} = µ−1K1(µ), (3.11)

and (NIST Digital Library of Mathematical Functions 2013, Eq. 10.29.4):

d

dµ

[
µ−νKν(µ)

]
= −µ−νKν+1(µ), (3.12)

where Kn is the modified Bessel function of the nth kind.

The method is then to derive Eq. 3.11 as many times as needed with
respect to µ, with the help of Eq. 3.12. We give details for the integral of
g0|γ , and then give the results for other averages with some comments.

Normalization of g0

We deduce the integral of g0|γ from dI/dµ:

dI

dµ
= −

∫ +∞

1
dγ
√
γ2 − 1 γ exp {−µγ} , (3.13)

cTo evaluate the right-hand side of Eq. 3.11, we use (NIST Digital Library of Mathe-
matical Functions 2013, Eq. 10.32.8):

Kν(z) =

√
π

Γ(ν + 1/2)
(z/2)ν

∫ +∞

1

dγ(γ2 − 1)ν−1/2 exp {−zγ} , (3.10)

with for Euler’s gamma function: Γ(1/2 + 1) =
√
π/2.
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and on the other hand:

dI

dµ
=

d

dµ
[µ−1K1(µ)] = −µ−1K2(µ). (3.14)

From this, we deduce that g0|γ is indeed normalized to unity:∫ +∞

1
dγ g0|γ(γ) =

µ

K2(µ)

∫ +∞

1
dγ
√
γ2 − 1 γ exp {−µγ} = 1. (3.15)

This also proves the normalization to unity of g0|p̃, g0|v/c, and g0|p.

Mean squared momentum

〈p̃2〉 = 〈(γβ)2〉 =

∫ +∞

1
dγ γ2(β2

x + β2
y + β2

z )g0|γ(γ) = 3µ−1κ32(µ). (3.16)

The non-relativistic limit, for µ→ +∞, is 〈(γβ)2〉 → 3/µ = 3T/(mc2), and
is coherent with the non-relativistic calculation with a Maxwell-Boltzmann
distribution, that gives 〈v2〉 = 3T/m.

We note that the mean square momentum is not where the function
4πp̃2g0|p̃(p̃) reaches its maximum (it occurs for p̃ = (2 +

√
4 + µ2)/µ2).

Thermal Larmor radius

The thermal Larmor radius is, independently of the distribution function:

〈rce〉 = ω−1
ce 〈(γv⊥)2〉1/2, (3.17)

with ωce = qB/m the non-relativistic cyclotron period, and ⊥ denoting
the component perpendicular to the local magnetic field. For the Maxwell-
Jüttner distribution with no drift velocities, we have (from Eq. 3.16) 〈p2

⊥〉 =
〈p2
x〉+ 〈p2

y〉 = 2c2µ−1κ32(µ), so that the thermal Larmor radius is

〈rce〉 = cω−1
ce

√
2Θκ32(µ). (3.18)

Mean squared velocity〈
v2

c2

〉
= 〈β2〉 =

∫ +∞

1
dγ (β2

x + β2
y + β2

z )g0|γ(γ) = 3µ−1κ12(µ). (3.19)

The non-relativistic limit, for µ → +∞, is 〈β2〉 → 3/µ = 3T/(mc2). This
is coherent with the non-relativistic calculation with a Maxwell-Boltzmann
distribution, that gives 〈v2〉 = 3T/m.

The ultrarelativistic limit, for µ → 0, is 〈β2〉 → 3 × 1/2. Since the
velocity is bounded by c, we expected the mean square velocity to saturate
to some finite value as T → ∞. The exact calculation shows that this is
c2/2 per component.

Mean momentum flux (and the relativistic equation of state)

〈γβ2〉 =

∫ +∞

1
dγ γ(β2

x + β2
y + β2

z )g0|γ(γ) =
3

µ
= 3

T

mc2
. (3.20)

This is a very important quantity, as it enters in the definition of the pres-
sure (appearing in the fluid equations derived from the kinetic level, see
Sect. 3.4). It shows that just as in the non-relativistic case, we have:

P ≡ n1

3
〈v · (γmv)〉 = nmc2〈γβ2〉/3 = nT. (3.21)
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3.2.4 Averages over Maxwell-Jüttner distribution, drifting
distribution

We now consider the distribution with a drift velocity U0/c ŷ = β0ŷ. Sup-
pose that we want the average of a quantity M(p̃):

〈M〉 =

∫∫∫
R3

d3p̃ gp̃(p̃)M(p̃), (3.22)

with gp̃ given by Eq. 3.8. We use the change of variables

p̃0x = p̃x,

p̃0y = Γ0(p̃y − β0

√
1 + p̃2),

p̃0z = p̃z,

(3.23)

which amounts to pass back into the comoving frame. It involves
√

1 + p̃2
0 =

γ0 = Γ0(
√

1 + p̃2 − β0p̃y). The elements of integration d3p̃ and d3p̃0 are
linked by the Jacobian of the transformation, and it can be shown (see
e.g., Mihalas and Mihalas 1984; Pomraning 1973) that d3p̃/γ = d3p̃0/γ0.
We show in Sect. 3.8.1 that the distribution function f(x,p) is a Lorentz
invariant, so that f0|p̃(x0, p̃0) = fp̃(x, p̃), and, given the definitions of
Eq. 3.7 (f = ng and f0 = n0g0) and the relation n = Γ0n0, it implies
g0|p̃(p̃0) = Γ0gp̃(p̃). Consequently, we arrive at

〈M〉 = Γ−1
0

∫∫∫
R3

d3p̃0

γ0
g0|p̃(p̃0)γM(p̃) = Γ−1

0

〈
γM(p̃)

γ0

〉
0

, (3.24)

where 〈·〉0 means that the average is taken with g0|p̃ (Eq. 3.6), and where
γ and p̃ are to be expressed with comoving quantities (subscript 0). With
this last formula, one is left with averages in the comoving frame and can
use the previous method.

Several averages are given in Table 3.1, and we comment some of them
here.

Normalization of the relativistic drifting distribution

In Sect. 3.2.2, we derived the expression of fp̃ using a change of frames,
starting from f0|p̃ in the comoving frame. In Eq. 3.7, we decided that n and
n0 are the spatial number densities in each frames, linked by n/n0 = Γ0.
The normalization of g0|p̃ to unity, previously demonstrated, thus implies
the normalization of gp̃:∫∫∫

R3

d3p̃ gp̃(p̃)

=

∫∫∫
R3

d3p̃
µ

4πK2(µ)Γ0
exp

{
−µΓ0

(√
1 + p̃2 − β0p̃y

)}
= 1.

(3.25)

Mean momentum

〈p〉 = κ32(µ)Γ0U0 ŷ, (3.26)

or, written otherwise:

〈γv〉 = κ32(µ)(1− 〈v〉2)−1/2〈v〉. (3.27)
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It is instructive to detail the demonstration for this case. We use Eq. 3.24
for M = py = γvy: 〈py〉 = Γ−1

0 〈γpy/γ0〉0. From the Lorentz transforma-
tion 3.23, we have γpy = Γ2

0(p0y + U0γ0)(γ0 + U0p0y/c
2), and after some

manipulations we obtain:

〈γv〉 = Γ0U0

(
〈γ0〉0 + 〈γ0v0yv0y/c

2〉0
)
ŷ. (3.28)

But the second term is the definition of the pressure (Eq. 3.21), P =
(1/3)nm〈γ0v0 · v0〉0 = nm〈γ0v0yv0y〉0 (if the distribution g0 is isotropic),
so that

〈γ0〉0 + 〈γ0v0yv0y/c
2〉0 = (〈γ0mc

2〉0 + P )/(nmc2) = h0, (3.29)

which is defined in Sect. 3.3 as the normalized comoving enthalpy.

All in all, when the distribution function in the comoving frame g0 is
isotropic, and independently of its expression (Maxwell-Jüttner or not), we
have the interesting result

〈γv〉 = h0Γ0〈v〉. (3.30)

Mean Lorentz factor

The derivation reads:

〈γ〉 = Γ−1
0 〈γ

2/γ0〉0 (3.31a)

= Γ0

〈
(γ0 + β0p̃y0)(1 + β0vy0/c)

〉
0

(3.31b)

= Γ0〈γ0〉0 + Γ0β
2
0〈p̃y0vy0/c〉0 (3.31c)

= Γ0〈γ0〉0 + Γ0β
2
0Θ (3.31d)

= Γ0h0 −
1

µΓ0
(3.31e)

= Γ0κ32(µ)− 1

µΓ0
. (3.31f)

The derivation is general up to Eq. 3.31c. Passing to Eq. 3.31d requires an
isotropic temperature: 〈p̃y0vy0/c〉0 ≡ Θyy = Θ, and passing to Eq. 3.31e
requires the definition of the enthalpy (Eq. 3.43), h0 = 〈γ0〉0 + P/(n0mc

2),
with the law P = n0T . Equation 3.31f then uses the Maxwell-Jüttner
relation h0 = κ32(µ).

We stress that 〈γ〉 6= Γ0. The Lorentz factor Γ0 appearing in relativistic
hydrodynamics is thus not the mean Lorentz factor of the particles. The
non-relativistic limit (in terms of temperature, Θ→ 0), is 〈γ〉 → Γ0 .

Quadratic velocity spread

The velocity spread 〈v2
i 〉 does not seem exprimable with Bessel functions.

We can instead compute 〈γ(v − 〈v〉)2〉 = Θ(3c2 − U2
0 )/Γ0, where the

Bessel functions disappear.

Pressure tensor (fluctuating velocity times momentum)

〈
(pi − p̄i〉)(vj − v̄j)

〉
= δijc

2 Θ

Γ0
, (3.32)
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with δij Kronecker’s delta. This is a very important quantity, as it directly
enters into the fluid equation of motion. We note that 〈(pi− p̄i)(vj − v̄j)〉 =
〈(pi− p̄i)vj〉, so that it represents the flux of i-directed microscopic momen-
tum along j.

In order to derive expression 3.32, we first note that

〈pivj〉 = 〈pi〉〈vj〉+ 〈(pi − p̄i〉)(vj − v̄j)〉. (3.33)

We first compute 〈pivj〉. We use Eq. 3.24:

〈pivj〉 = Γ−1
0 〈γpivj/γ0〉0 = Γ−1

0 〈pipj/γ0〉0. (3.34)

We then express pi and pj as a function of the comoving quantities: pi = p0i

for i = x or z, and py = Γ0(p0y + U0γ0) (with U0 the bulk velocity of the
plasma, and Γ0 the associated Lorentz factor). We trivially have 〈pivj〉 =
〈p0iv0j〉0/Γ0 when (i, j) = (x, x), (x, z), or (z, z). For i = x or z, we also
have 〈pivy〉 = 〈p0iv0y〉0/Γ0, because the excess term implies 〈p0y〉0 = 0. We
remark that all the cross-terms vanish. Given the definition of the comoving
pressure, P ≡ n0m〈p0iv0i〉0 for either i = x, y, or z (Eq. 3.21), we have that
〈pivj〉 = δijP/(Γ0n0m) whenever (i, j) 6= (y, y). The case (i, j) = (y, y)
yields:

〈pyvy〉 = Γ−1
0

〈
Γ2

0(p0y + U0γ0)2

γ0

〉
0

= Γ0

〈
p2

0y

γ0

〉
0

+ Γ0〈2U0p0y〉0 + Γ0U
2
0 〈γ0〉0

= Γ0
P

n0m
+ 0 + Γ0U

2
0

(
h0 −

P

n0mc2

)
.

(3.35)

In the last line we used the definition of the plasma comoving enthalpy
(Eq. 3.43), i.e., h0 ≡ 〈γ〉0 + P/(n0mc

2). We then arrive at:

〈pyvy〉 = Γ−1
0

P

n0m
+ Γ0U

2
0h0. (3.36)

All in all, we have for any (i, j):

〈pivj〉 = Γ−1
0

δijP

n0m
+ δiyδjyΓ0U

2
0h0. (3.37)

The only assumption used to derive this result is that the comoving distribu-
tion function is isotropicd. If, in addition, we assume that the distribution
is given by the Maxwell-Jüttner formula, we have:

〈pivj〉 = δijc
2 Θ

Γ0
+ δiyδjyΓ0U

2
0κ32(µ). (3.38)

The derivation of Eq. 3.32 ends by identifying the second term in the right-
hand of Eq. 3.38 as 〈pi〉〈vj〉.

dIt is particularly crucial when we define the comoving enthalpy. Also, terms such as
δijP could be replaced by the comoving pressure tensor Pij ≡ n0m〈p0iv0j〉 to slightly
generalize the result.
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3.2.5 Debye length

A plasma tends to screen any charge imbalance, and it does so perfectly in
the absence of thermal fluctuations. But for a finite temperature, thermal
motions forbid this perfect screening, and potentials of the order of T/e can
leak out of the screening cloud over a finite distance ∼ λD, resulting in a
finite Debye length λD below which the plasma is not neutral (see Belmont
et al. 2014, §4.1.3, for a non-conventional presentation). In a non-relativistic
plasma, the Debye length is given by

λD =

(∑
s

λ−2
Ds

)−1/2

, (3.39)

where λDs is defined for species s:

λDs =

√
Ts/ms

ωps
=

√
ε0Ts
nsq2

s

. (3.40)

Debye screening can be derived by finding the linear modes of the two-fluid
model, plus Poisson’s equation for the electric field, with a polytropic closure
P/nΓ = const (Bellan 2006). It then appears as a spatial damping of all
modes of phase-speed ω/k � vth,e, vth,i, where vth,s is the thermal speed.

We naturally expect this length to change for a relativistic plasma (i.e.,
for a relativistic temperature, in which case the plasma enthalpy h0 becomes
non-trivial). The two-fluid equations now use both the momentum and the
velocity (Eqs. 3.71 and 3.72), that can be linked by the plasma enthalpy
via Eq. 3.30, and linearizing this model appears more complex than in the
non-relativistic casee.

Instead, Laing and Diver (2013) follow a simpler and qualitative ap-
proach. Classically, the Debye length can be estimated in a 1D electrostatic
model, by equating the mean kinetic energy of a particle, Ts/2 in one direc-
tion, to the potential energy created by a charge imbalance over a length
l, nsq

2
s l

2/(2ε0). When the kinetic energy dominates, the screening cannot
occur, while when the potential energy dominates, charge imbalance does
act on the particles and the screening is effective. The Debye length is thus
the length l at which the two terms are equal. For a plasma with a relativis-
tic temperature, the potential energy remains unchanged, while the mean
kinetic energy is to be taken as one third of 〈γ − 1〉smsc

2. In the ultra-
relativistic limit, this is given by (1/3)〈γ − 1〉smsc

2 = Ts (see Table 3.1).
Consequently, there is only a factor 2 of difference with the non-relativistic
case, and with this argument the ultrarelativistic Debye length can be esti-
mated as

λUR
Ds ∼

√
ε02Ts
nsq2

s

. (3.41)

This is
√

2 larger than the non-relativistic expression. We can thus reason-
ably assume that the expression for the Debye length is not much affected
by a relativistic plasma temperature.

eThe Langmuir oscillation and Langmuir waves can also be derived from this model, so
that we expect them to change also. In particular, it is not clear whether the oscillation
at the plasma pulsation will be modified, as it is a cold mode (in the sense that it is valid
for phase speeds ω/k � vth,e, vth,i). The Langmuir wave, however, has a group velocity
given by the thermal velocity, which is inconsistently larger than c in the non-relativistic
treatment.
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3.3 Enthalpy

The enthalpy of a non-relativistic gas is dominated by the restmass contribu-
tion, and is thus equivalent to the mass density of the gas. It consequently
never appears in the equations of conservation of momentum or energy.
However, for relativistic temperatures the kinetic energy of the particles
starts contributing significantly, and makes the enthalpy a central quantity
for momentum and energy conservation relations. This section poses defi-
nitions and derives expressions in the Maxwell-Jüttner case for the internal
energy, the adiabatic exponent, and the enthalpy. Just as in Sect. 3.2, we
adopt a kinetic point of view.

3.3.1 Definition

We consider an ensemble of particles, uniform in space, with a zero bulk
velocity (or equivalently, all quantities are expressed in the comoving frame).
The individual particle masses are denoted by m, their number density by
n0, and the distribution function in momentum space by g0|p(p) (normalized
to unity).

The enthalpy of these particles is the particle energy (kinetic and rest-
mass), plus the pressure:

w0 = n0mc
2 + n0me0 + P = n0〈γmc2〉0 + P, (3.42)

where P is the scalar pressure and e0 the internal energy. Just as in Sect. 3.2,
〈·〉0 denotes an average taken over the distribution function g0|p, so that
〈γmc2〉0 is the mean energy per particle (including kinetic and restmass
energies). The normalized enthalpy is

h0 =
w0

n0mc2
= 〈γ〉0 +

P

n0mc2
. (3.43)

For a Maxwell-Jüttner distribution at temperature Θ = 1/µ, we can use
the expression for 〈γ〉0 (Eq. 3.31f or Table 3.1), to find:

h0 =
w0

n0mc2
= κ32(µ). (3.44)

The function κ32 is plotted in Fig. 3.1. The non-relativistic limit is h0 =
1 + 5Θ/2 +O(Θ2), while the ultrarelativistic limit is h0 = 4Θ.

3.3.2 Internal energy and adiabatic exponent

For a plasma of point-like particles, and neglecting the interactions between
charges, the internal energy ê0 is the kinetic energy of the particles. We
have:

ê0 ≡ n0me0 = n0

∫∫∫
R3

d3p g0|p(p)(γ − 1)mc2

= n0〈γmc2〉0 − n0mc
2.

(3.45)

The adiabatic exponent γ̂ is defined by writing the pressure P = (γ̂ − 1)ê0.
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Non-relativistic case

In the non-relativistic case, the particle Lorentz factor is γ − 1 ∼ v2/(2c2),
so that the expression 3.45 for the internal energy simplifies. In addition,
we use Eq. 3.2c to evaluate 〈v2〉. We then have the well known relation

ê0 = n0m
1

2
〈v2〉 =

3

2
n0T. (3.46)

It follows that

P = n0T =
2

3
ê0 = (γ̂ − 1)ê0, γ̂ =

5

3
. (3.47)

At N dimensions, we have ê0 = (N/2)n0T , so that P = (2/N)ê0, and

γ̂ =
2

N
+ 1. (3.48)

General case

In the general case, we use the expression for 〈γ〉0 for a Maxwell-Jüttner
distribution (Eq. 3.31f or Table 3.1) to find from the expression 3.45:

ê0 =

(
κ32(µ)− 1− 1

µ

)
n0mc

2. (3.49)

In the non-relativistic limit (T � mc2), with the asymptotic development
of κ32 (Eq. 3.111), we indeed have ê0 = (3/2)n0T .

To find the adiabatic exponent, we adjust γ̂ so that P = n0T and P =
(γ̂ − 1)ê0:

γ̂ = 1 +
1

µκ32(µ)− µ− 1
. (3.50)

We remark that this is not easily to generalize to N dimensions, because
the computation of 〈γ〉0 is here specific to Maxwell-Jüttner distribution,
where all dimensions are coupled through the Lorentz factor. In particular,
〈γ〉0 depends on the normalization of the distribution function, which may
or may not be computable with Bessel functions for N 6= 3.

Ultrarelativistic limit

In the ultrarelativistic limit (T � mc2), Eq. 3.49 and the asymptotic for-
mula 3.112 lead to ê0 = 3T n0mc

2, which gives

P = n0T =
1

3
ê0 = (γ̂ − 1)ê0, γ̂ =

4

3
. (3.51)

This is a well known result, derived here on a kinetic basis.

It can be extended to N dimensions in the following way. For ultra-
relativistic particles, γ ' p/mc = p̃. Consequently, 〈γ〉0 = 〈p̃〉0. Since
ê0 = n0〈γmc2〉0 − n0mc

2 ' n0〈γmc2〉0, we also have ê0 = n0mc
2〈p̃〉0.

On the other hand, the pressure is given by P = n0〈vip̃imc〉0, where i
is any direction, so that it can actually be written P = n0mc〈(v · l)(p̃ · l)〉0
for any unit vector l. We approximate v ' cn, with n a unit vector giving
the particle’s direction. Also, p̃ = p̃n. Then, P = n0mc

2〈p̃(n · l)2〉0. Since
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p̃ depends only on the norm of p̃, and (n · l)2 only on its direction, the last
expression can be factorized into P = n0mc

2〈p̃〉0〈(n · l)2〉ΩN /〈1〉ΩN , where

αN =
〈(n · l)2〉ΩN
〈1〉ΩN

=

∫
ΩNdΩ (n · l)2∫

ΩNdΩ
(3.52)

an average over all solid angles in N dimensions. For N = 3, we have
αN = 1/3, and for N = 2 we have αN = 1/2. We thus have P = αN ê0.

Finally, writing P = (γ̂ − 1)ê0 leads to

P = αN ê0, γ̂ = αN + 1. (3.53)

At 3D we find again γ̂ = 4/3, while at 2D γ̂ = 3/2.

3.3.3 Laplace’s law for a relativistic gas and the sound speed

In this section, we make comments about the relation between the polytropic
index and the adiabatic index, and we show that there is no simple Laplace’s
lawf for a relativistic gas or plasma, because its adiabatic exponent then
depends on the temperature. We conclude by the impossibility to obtain a
simple expression for the sound speed in a relativistic gas.

A gas is polytropic if for any evolution between states 1 and 2, its tem-
perature T and number density n verify T2/T1 = (n2/n1)Γ−1, where Γ is a
free parameter called the polytropic indexg. This is an assumption, that can
hold or not depending on the nature of the gas and on the transformation
that it undergoes. The value of Γ depends on where energy is deposited
during the transformation (e.g., Lamers and Cassinelli 1999, p. 102). If no
energy is deposited into the internal energy of the gas (an adiabatic trans-
formation), then Γ = γ̂ = cp/cv coincides with the ratio of specific heats
(the adiabatic exponent γ̂) that we computed in Sect. 3.3.2. In the limit of
an isothermal transformation, T = const and thus Γ = 1. In an isothermal
expansion, energy must be supplied to the gas to maintain its temperature
constant.

However, we point out that a perfect gas undergoing an adiabatic trans-
formation follows Laplace’s law PV γ̂ = const only if it is a non-relativistic
gas (γ̂ = 5/3) or an ultrarelativistic gas (γ̂ = 4/3), but not in intermediary
cases. This can be seen by writing the demonstration. The gas is assumed
to be in a volume V , and to consist of N particles. Its internal energy is
U = V ê0. For an adiabatic transformation involving a change of internal
energy dU , and a work done on the gas δW = −PdV , the heat transfer to
the gas is δQ = 0, so that we have:

dU − δW = δQ = 0. (3.54)

Because P = n0T = (γ̂ − 1)ê0, we have ê0 = n0T/(γ̂ − 1) = αn0T , with
α ≡ 1/(γ̂ − 1). We also have U = V ê0 = αn0V T = αNT . The ideal gas
law reads PV = NT . With this we easily arrive at[

α+ α′(T )T
]
V dP = −

[
1 + α+ α′(T )T

]
PdV, (3.55)

with α′(T ) = dα/dT . If α = const, then it integrates into the Laplace’s
law:

PV 1+1/α = const, (3.56)

fThe PV γ̂ = const law.
gOr equivalently, PV Γ = const for a perfect gas, or P/ρΓ = const.
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which also reads PV γ̂ = const because γ̂ = 1 + 1/α.
But the constant nature of α holds only in the non-relativistic limit

(α = 3/2, Eq. 3.46), and in the ultrarelativistic limit (α = 3, Eq. 3.51).
Equation 3.49 shows that α = α(T ) in the general case. The derivation of
the PV γ̂ = const law then stops at Eq. 3.55, and leads to nothing obvious.

A consequence is that there is no simple expression for the sound speed
of a relativistic gas. Indeed, the sound speed derived from linearized fluid
equations is (Gedalin 1993)

c2
s =

P

ρh0

∂ logP

∂ log ρ
, (3.57)

and it has a simple expression only if the Laplace relation P/ργ̂ holds. When
this is the case, we obtain

c2
s =

γ̂P

ρh0
, (3.58)

which gives for the non-relativistic case (γ̂ = 5/3, h0 = 1):

c2
s =

5

3

T

m
, (3.59)

and for a ultrarelativistic gas (γ̂ = 4/3, h0 = 4T/mc2, Eq. 3.51 and Ta-
ble 3.1):

c2
s =

c2

3
. (3.60)

3.4 From the Vlasov to the fluid picture

Fluid equations employed in numerical codes are usually expressed in terms
of comoving quantities (i.e., defined in the rest frame of the plasma), such
as, for species s, the comoving particle number density n0s, the comoving
enthalpy h0s, the comoving pressure P0s, and in terms of the fluid velocity
v̄s and its associated Lorentz factor Γs = (1− v̄2

s/c
2)−1/2. The conservation

of particle number and of momentum for each species, and of total energy,
then read (see e.g., Mihalas and Mihalas 1984; Barkov et al. 2014)h:

∂

∂t
(Γsn0s) +

∂

∂x
· (Γsn0sv̄s) = 0, (3.62a)

∂

∂t
(Γ2
sn0sh0sv̄s) +

∂

∂x
· (n0sh0sΓsv̄sΓsv̄s)

= − 1

ms

∂P0s

∂x
+

qs
ms

Γsn0s(E + v̄s ∧B),
(3.62b)

∂

∂t

{∑
s

(Γ2
sn0sh0smsc

2 − P0s) +
E2

2µ0c2
+
B2

2µ0

}

+
∂

∂x
·

{∑
s

(Γ2
sn0sh0smsc

2v̄s) +
E ∧B
µ0

}
= 0.

(3.62c)

These equations are, however, not well suited for the analysis of particle
simulations. First, because accessible quantities are those defined in the

hWith the help of Eq. 3.62a, Eq. 3.62b can also be written:

Γsn0s

(
∂

∂t
+ v̄s ·

∂

∂x

)
(h0sΓsv̄s) = − 1

ms

∂P0s

∂x
+

qs
ms

Γsn0s(E + v̄s ∧B). (3.61)
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simulation (or lab) frame, while those in the comoving frame of the plasma
must be obtained by a boost at the local mean speed v̄s. Second, because
they assume a comoving particle distribution that is isotropic in momentum
space in order to use a scalar pressure P0s instead of the full pressure tensor
and, as we show below, to write relations such as p̄s = 〈γv〉s = h0sΓsv̄s
for the mean momentum that are necessary to their derivation. Rest frame
distributions are, however, not isotropic in the out-of-equilibrium plasmas
that we study.

Instead, in the remaining of this section, we derive the fluid equations di-
rectly from the collisionless Vlasov’s equation expressed in the lab frame. We
also show that the obtained equations are equivalent to the set of Eqs. 3.62,
and under which hypotheses. We will use them in Chapter 6 to derive
analytical models.

3.4.1 Pressure, stress, and temperature tensors

We first define the pressure, temperature, and stress tensors.

Measure of the temperature tensor

The kinetic temperature is a second-order moment of the particle distribu-
tion function and is, as such, not always suited to characterizing the velocity
distribution of a population strongly out-of-equilibrium. We will neverthe-
less use it as an indication of the thermal energy content of the population,
and of the momentum flux transfers, the latter being especially relevant to
Ohm’s law. We consider a species s. We first recall that the pressure tensor,
which appears in the equation of conservation of momentum, Eq. 3.72, is
defined as

Ps = nlab,sms〈δpsδvs〉s, (3.63)

with nlab,s the particle number density in the laboratory frame, 〈·〉s an
average over the distribution function in the laboratory frame, and δps =
ps− p̄s the momentum difference with the bulk momentum p̄ = 〈γv〉s, and
similarly for δvs.

We define the temperature tensor as the ratio of the pressure tensor
to the comoving particle number density n0s. Since nlab,s = Γsn0,s, the
temperature tensor is

Ts,ij
msc2

= Γs
〈δpiδvj〉s

c2
, (3.64)

with i, j = x, y or z.
For the special case of a Maxwell-Jüttner distribution function of tem-

perature Θs = 1/µs = Ts/(msc
2), of drift velocity β0,s and associated

Lorentz factor Γ0,s, given in the simulation or lab frame by fs(x, p̃) =
nlab,s(x)gs(p̃), p̃ = γv/c, and

gs(p̃) =
µs

4πK2(µs)Γ0,s
exp

{
−µΓ0,s

(√
1 + p̃2 − β0,s · p̃

)}
, (3.65)

we do have (see Eq. 3.32 and its derivation):

Γs
〈δpiδvj〉s

c2
= Θsδij , (3.66)

where δij is Kronecker’s delta. Based upon these considerations, we measure
the temperatures in the particle-in-cell simulations with expression 3.64.
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Stress tensor

The fluid stress tensor for species s is defined, in the lab frame, as

Πs,ij =

∫
d3pmspivjfs(x,p) = nlab,sms〈pivj〉s. (3.67)

Note that nlab,s is the laboratory density, not the comoving density, and that
p = γv. The stress tensor can be expressed with comoving quantities by
using Eq. 3.37 (that holds for an isotropic comoving distribution function)
and nlab,s = Γ0n0,s:

Πs,ij = δijPs + δiyδjyΓ
2
0sU

2
0smsn0sh0s. (3.68)

Non symmetric tensors

We remark that the tensors p̄v̄ and 〈(p − p̄)(v − v̄)〉 are not symmetric
for arbitrary distributions. There is then two conventions to compute their
divergence, for example for the component i: [∇ · (p̄v̄)]i = ∂j(p̄j v̄i), or =
∂j(p̄iv̄j) (we sum over repeated subscripts). One should thus be careful. The
tensor that originally enters into the equation of conservation of momentum,
when derived from Vlasov’s equation, is 〈pv〉, which is also 〈γvv〉, and is
thus symmetric. The non-symmetric tensors arrive when splitting 〈pv〉 =
p̄v̄ + 〈(p − p̄)(v − v̄)〉. Consequently, no matter the convention used, the
result will be coherent if the same is applied to both non-symmetric tensors.
We will see that the convention [∇ · (p̄v̄)]i = ∂j(p̄iv̄j) is to be preferred
(footnote i, p. 115).

3.4.2 Fluid equations

We now turn to the derivation of fluid equations from moments of Vlasov’s
equation. Vlasov’s equation reads

∂fs(x,p, t)

∂t
+ v · ∂fs

∂x
+

qs
ms

(E + v ∧B) · ∂fs
∂p

= 0, (3.69)

where p = γv, and fs is the distribution function in the simulation or lab
frame. We denote its counterpart in the comoving frame by f0s. Since the
p-divergence of F = (qs/ms)(E+v∧B) is zero, Vlasov’s equation can also
be written in conservation form as:

∂fs(x,p, t)

∂t
+

∂

∂x
· vfs +

∂

∂p
· F fs = 0. (3.70)

Conservation of particle number

The first moment (with 1) of Eq. 3.69 gives the equation of conservation of
the number of particles:

∂

∂t
nlab,s +

∂

∂x
· (nlab,sv̄s) = 0. (3.71)

Here nlab,s =
∫

d3p fs(p) is the lab-frame particle number density, and 〈·〉s
or an overbar again denote an average over the distribution function fs, i.e.,
〈M〉s = n−1

lab,s

∫
d3p fs(p)M(p). We have the relation nlab,s = Γsn0s, so that

we indeed recover Eq. 3.62a.
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Conservation of momentum

The second moment (with p) gives the equation of conservation of momen-
tum:

∂

∂t
(nlab,sp̄s) +

∂

∂x
· (nlab,sp̄sv̄s)

= − ∂

∂x
· (nlab,s〈δpsδvs〉s) +

qs
ms

nlab,s(E + v̄s ∧B).
(3.72)

We used the definitions δv = v − v̄s and δp = p − p̄s, where p = γv
is the momentumi. We now show how to recover Eq. 3.62b. First, we
use the relation p̄s = h0sΓsv̄s for the mean momentum p̄s ≡ 〈γv〉s. The
demonstration preceding Eq. 3.30 shows that this relation is valid whenever
the comoving distribution function f0s(p0) is isotropic with respect to p0.
Second, we note that the stress tensor is defined as Πij = nlab,sms〈pivj〉s =
nlab,sms(p̄iv̄j+〈δpiδvj〉s), and is also equal (again if f0s is isotropic) to Πij =
P0sδij + Γ2

v̄sh0sn0smsv̄s,iv̄s,j (see Eq. 3.38). Inserting these new expressions
into Eq. 3.72 does lead to Eq. 3.62b.

We also note that Eq. 3.72 can be put into a conservative form by using
the conservation of momentum for the electromagnetic field, which reads

∂

∂t
ε0(E ∧B)− ∂

∂x
· T = −[ρE + j ∧B], (3.74)

where Tij = ε0(EiEj − E2δij/2) + µ−1
0 (BiBj − B2δij/2) is Maxwell stress

tensor, ρ =
∑

s qsnlab,s is the charge density, and j =
∑

s qsnlab,sv̄s is the
current density. One thus has to sum Eq. 3.72 over all species and then use
Eq. 3.74, to obtainj:

∂

∂t

(
ε0E ∧B +

∑
s

msnlab,sp̄s

)

+
∂

∂x
·

(
−T +

∑
s

msnlab,s [p̄sv̄s + 〈δpsδvs〉s]

)
= 0.

(3.76)

iWe note that an alternative form of Eq. 3.72 is

nlab,s

(
∂

∂t
+ v̄s ·

∂

∂x

)
p̄s = − ∂

∂x
· (nlab,s〈δpsδvs〉s) +

qs
ms

nlab,s(E + v̄s ∧B). (3.73)

It is obtained by using the equation of conservation of particle number, Eq. 3.71. Note
that it makes use of the relation [∇ · (nlab,sp̄sv̄s)]i = ∂j [nlab,sp̄siv̄sj ] = p̄si∂j [nlab,sv̄sj ] +
nlab,sv̄sj∂j p̄si, which fixes the convention to use to compute the divergence of the non-
symmetric tensors (see Sect. 3.4.1).

jExpressed with comoving quantities, just as in Eq. 3.62b, Eq. 3.76 reads:

∂

∂t

(
ε0E ∧B +

∑
s

msΓ
2
sn0sh0sv̄s

)

+
∂

∂x
·

(
−T +

∑
s

msn0sh0sΓsv̄sΓsv̄s +
∑
s

P0sI

)
= 0.

(3.75)



116 Chapter 3

Conservation of energy

Finally, multiplying Vlasov’s equation Eq. 3.69 by γmsc
2 and integrating

over p gives the equation of conservation of energy:

∂

∂t
(nlab,s〈γmsc

2〉s) +
∂

∂x
· (nlab,s〈vγmsc

2〉s)

= qsnlab,s〈E · v〉s.
(3.77)

The right-hand side accounts for the coupling between the species and the
electromagnetic fields, and thus possibly with other species via collective
interactions.

The non-relativistic limit of this equation is easily obtained by making
the difference between Eqs. 3.77 and 3.71.

Also, Eq. 3.77 can be put into a useful conservative form by expressing
its right-hand side through the energy conservation equation for the fields,
which is:

∂

∂t

(
E2

2µ0c2
+
B2

2µ0

)
+

∂

∂x
· E ∧B

µ0
= −E · j

= −E ·
∑
s

∫
d3pfs(x,p)qsv

= −
∑
s

nlab,sqs〈v ·E〉s.

(3.78)

We thus have to sum Eq. 3.77 for all species, to obtain:

∂

∂t

{∑
s

(nlab,s〈γmsc
2〉s) +

E2

2µ0c2
+
B2

2µ0

}

+
∂

∂x
·

{∑
s

(nlab,s〈vγmsc
2〉s) +

E ∧B
µ0

}
= 0.

(3.79)

To recover Eq. 3.62c, we use the relation nlab,s〈γmsc
2〉s = Γ2

sn0sh0smsc
2 −

P0s. According to the derivation of Eq. 3.31e, it holds only for an isotropic
comoving distribution function. We also have to use the previous relations
for p̄s and nlab,s.

3.5 Relativistic MHD waves

Waves are the building blocks of many plasma processes. A magnetized
plasma can host a large number of wave modes, that depend on the model
used (e.g., cold or hot, magnetized or not, low-frequency range or not, out-
of-equilibrium or not). A plasma with relativistic temperatures and mag-
netic fields complicates even more the matter.

In the hot, magnetized, and low-frequency limit of MHD, the relativistic
case can be treated rather easily. Gedalin (1993) does so in the gyrotropic
case (pressure parallel to the magnetic field different from the perpendicular
pressure)k. The method is to linearize the relativistic MHD equations to
find the modes of propagation. The phase velocities obtained are then valid
in the frame where the plasma is at restl.

kSee also McKinney et al. (2012) in the general relativistic MHD framework.
lThe waves can then be studied in any frame by doing the proper Lorentz transfor-

mation for the four-vector (ω/c,k).
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We do not repeat the expressions of Gedalin (1993) here. We just under-
line that in his notations, ε = n0〈γmc2〉0, where the right-hand side contains
our quantities as in Eq. 3.42. Our manuscript contains some of its results.
In particular:

• The sound speed (in the absence of magnetic field) is given by Eq. 3.57,
and specified in Eq. 3.59 for a non-relativistic gas and in Eq. 3.60 for
the ultrarelativistic limit (there is no simple expression is the inter-
mediate cases).

• The Alfvén speed is given by Eq. 6.7b.

3.6 Relativistic particle motion in E and B fields

Understanding the motion of individual particles into prescribed magnetic
and electric fields is of paramount importance to understand and interpret
PIC simulations. For magnetic reconnection setups, the particles from the
background plasma first E × B drift toward the current sheet in orthogo-
nal E and B fields, and then accelerate in an area where E > cB, with
either E ·B = 0 or 6= 0. Relativistic particle motion in such fields is not
trivial, and deserves a detailed description. This section summarizes the
essential results, while more details and analytical expressions can be found
in Appendix 3.B.

We concentrate on motions in constant fields. We consider a particle of
mass m, charge q, velocity v, Lorentz factor γ, and momentum p = γmv
(note that contrary to what is done in the rest of the manuscript, here p is
not γv). We denote its initial velocity by v0.

3.6.1 Constant electric field

See Appendix 3.B.1. This case is encountered in magnetic reconnection
configurations with no guide field, at the center of the dissipation zone,
where the reconnection electric field freely accelerates particles.

The motion takes place in the plane containing E and v0. The particle
is accelerated along E, and the Lorentz factor asymptotically increases as
γ ∝ t. We stress that even if there is no force perpendicular to E (so that
p⊥ = const), the velocity perpendicular to E (v⊥ = p⊥/γm) is affected
through the coupling by the Lorentz factor, and shrinks toward zero as the
parallel velocity reaches the speed of light.

3.6.2 Constant magnetic field

See Appendix 3.B.2. Let B = Bẑ. The energy is conserved: γ = const.
Nothing happens along z: vz = const, and so also v⊥ = const. The motion
in the x-y plane is a circle, traveled with a pulsation

ωR
c =

qB

γm
(3.80)

and radius rc = v⊥/ω
R
c . It is interesting to notice that the Larmor radius

of relativistic particles increases proportionally to their perpendicular ve-
locity times their Lorentz factor, rc ∝ mγv⊥, where the Lorentz factor also
includes the velocity parallel to the magnetic field. This is, again, due to
coupling via the Lorentz factor.
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E � cB

E reaching cB

E > cBE

tan θ = γ∗v∗/c

E � cB

θ

E = 0

E

B toward us, positive charge

Figure 3.2: Trajectory of a charged particle in orthogonal magnetic and electric
fields, depending on the ratio E/B. Except for the circle, the initial particle velocity
is 0.

3.6.3 Constant electric and magnetic fields, non-relativistic
case

See Appendix 3.B.3. We assume B = Bẑ and E = Ezẑ + Eyŷ, and we
neglect relativistic effects. This situation is encountered in the upstream
of magnetic reconnection dissipation zones, where particles evolve in the
asymptotic magnetic field and in the motional reconnection electric field,
with in addition Ez = 0.

The particle is freely accelerated in the direction parallel to B: vz =
qEzt/m. The motion in the plane perpendicular to B is the well known
E ×B drift, with a mean velocity given by vE×B = E ∧B/B2 (illustrated
for different initial conditions in Fig. 3.5).

In the non-relativistic case, there is no coupling between the parallel
and perpendicular motions. This is valid as long as v0 � c, vz(t)� c, and
vE×B � c. The last condition is equivalent to E⊥ � cB (with E⊥ the
component perpendicular to B). Note that when E > cB, then vE×B > c,
and the motion is completely different (see below).

3.6.4 Constant and parallel electric and magnetic fields

See Appendix 3.B.4. The situation with a magnetic field parallel to the
electric field occurs at the center of the dissipation region in magnetic re-
connection with a guide field.

Let B, E ∝ ẑ. The motion is accelerated along z, while in the x-y plane
it consists in circles with pulsation ω = |q|B/(γm) and of radius rc = v⊥/ω.
Since γ → +∞, the pulsation decreases to 0. It follows that as in the case
with an electric field alone, coupling through the Lorentz factor freezes the
motion in the directions perpendicular to E.

Another important remark is that since there is no force perpendic-
ular to B, the perpendicular momentum p⊥ is constant. It follows that
rc = p⊥/(|q|B/m) = const. Consequently, in the reconnection acceleration
zone with a guide field, where E ‖ B, the particle Larmor radius remains
constant.
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3.6.5 Constant and orthogonal electric and magnetic fields
of arbitrary magnitude

See Appendix 3.B.6. The non-relativistic description of the motion of a
particle in orthogonal magnetic and electric fields leads to a mean velocity
equal to vE×B = E/B, and is obviously valid only if E/B � c. We now
describe the general case. This is of interest in magnetic reconnection with
no guide field, where the asymptotic magnetic field decreases to 0 when
particles approach the center of the dissipation zone, and thus evolves from
cB > E to cB < E. More generally, around any magnetic null there is an
area where cB < E.

We assume that E · B = 0. Because of the Lorentz invariants, when
E < cB there is no boost allowing to cancel the magnetic field, but a boost at
v∗ = E/B allows to cancel the electric field; while when E > cB, there is no
boost allowing to cancel the electric field, but a boost at v∗ = c2B/E allows
to cancel the magnetic field. Two cases should thus be distinguished: E <
cB and E > cB (the special case E = cB is detailed in Appendix 3.B.5).
The different outcomes are illustrated in Fig. 3.2.

When E < cB, the motion can be decomposed as the sum of a transla-
tion at the E ∧B/B2 velocity (identical to the non-relativistic case), plus
an elliptical (and not circular) motion in the x-y plane, plus a translation
along B ∝ ẑ due to the initial velocity along z. The ellipses are described
with a non-uniform velocity, and the motion along z is not constant, despite
the absence of force in this direction, because of the coupling with γ.

When Ey increases toward cBz, the velocity v∗ = Ey/Bz reaches c. The
ellipse deforms in the direction of the electric field. Physically, the magnetic
field has more and more difficulties in containing the electric acceleration
along y, so that the ellipse is wider and wider in the direction of E. When
Ey reaches cBz, the ellipse extends to infinity along the direction of E, and
the motion is not confined any more in the y direction. When E = cB, the
motion is indeed open, and the particle is freely accelerated by the electric
field and endlessly gains energy.

We now turn to the E > cB case. There is no gyration around B
because the magnetic field is not strong enough to transform the trajectory
into loops. The long term motion is a straight line (see Fig. 3.2), with
γ → +∞, and with an angle θ with respect to the electric field direction
given by

tan θ = γ∗v∗/c, (3.81)

with v∗ = c2|E ∧B/E2| and γ∗ the associated Lorentz factor. The velocity
actually reaches a steady state where the magnetic force v∧B compensates
the electric force.

3.7 Relativistic kinetic Harris equilibrium

Harris configuration is one of the rare fully consistent solutions of the
Vlasov-Maxwell system in a non-homogeneous case. Particle trajectories
in a Harris current sheet are discussed by Biskamp (2000). We note that
all particles of a given species drift at the same velocity, so that it is a very
particular case. Other equilibriums, such as the force-free case, also exist
(see Sect. 2.10.2). Also, Harris equilibrium in an asymmetric current sheet
is more complex, and has been given by Aunai et al. (2013).



120 Chapter 3

Figure 3.3: Setup for the Harris equilibrium.

Here, we are interested by the generalization of Harris equilibrium to the
relativistic case. It is not difficult, and was partly done by Hoh (1966) for a
Maxwell-Jüttner distribution and non-relativistic current speeds. The fully
relativistic case appeared later for pair plasmas with the same temperature
for both species, for example in Kirk and Skjæraasen (2003) or Pétri and
Kirk (2007). We now propose a formulation for the relativistic case with an
arbitrary temperature and mass ratios for ions (singly ionized) and electrons.
We use these initial conditions to start our simulations in Chapters 6 and 7.

Derivation of the equilibrium equations

We define a frame R0, where the magnetic field is assumed to be

B = ẑB0 tanh
(x
L

)
, (3.82)

and the particles sustaining this field are assumed to have a Maxwell-Jüttner
distribution function given in R0 by

f(x, p̃) =
µs n

′
s(x)

4πK2(µs)
exp

{
−µsΓs

(√
1 + p̃2 − βsp̃y

)}
, (3.83)

with s = i for ions or e for electrons, µs = 1/Θs = msc
2/Ts, p̃ = γv/c,

and K2 the modified Bessel function of the second kind. Us is the bulk
velocity of species s, and Γs the associated Lorentz factor. We note that
fs is normalized with respect to p̃ to Γsn

′
s(x), so that n′s is the density of

species s in its comoving frame, and Γsn
′
s its density in R0. We will denote

quantities defined in the comoving frame with a prime.
Inserting Eq. 3.83 into Vlasov’s equation expressed in R0:

v · ∂fs
∂x

+
qs
msc

v ∧B(x) · ∂fs
∂p̃

= 0, (3.84)

leads to the relation for the comoving number density

n′s(x) =
n′0,s

cosh2(x/L)
(3.85)

with

ΓsUs
c

= − 2Ts
qsB0Lc

= −2Θs
d′e
L

ω′pe

ωcs
sgn(qs), (3.86)

with sgn(qs) the sign of the charge, ωcs = |qs|B0/ms, ω
′
pe =

√
n′0e

2/(ε0me),
and d′e = c/ω′pe.

The absence of electric field in Eq. 3.84 implicitly assumes that the
plasma is quasi neutral in R0, which is true only if the overall charge density
in this frame vanishes:

Γin
′
0,i = Γen

′
0,e. (3.87)
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We now use Maxwell-Ampère equation in R0: ∇∧B = µ0e[Γin
′
i(x)Ui−

Γen
′
e(x)Ue]. Insertion of n′(x) and B(x) leads – not surprisingly – to a

pressure balance between the unmagnetized center of the sheet and the
magnetically dominated outer domain:

B2
0

2µ0
= n′0,eTe + n′0,iTi. (3.88)

Manipulating Eq. 3.88 and defining χ = (1 + Ti/Te)/2, we obtain

Θe =
1

4χ

(
ωce

ω′pe

)2

. (3.89)

How to use them: from parameters in the comoving frames

Given a temperature ratio χ, the four variables L/d′e, Θe, ωce/ω
′
pe, and

ΓeUe/c, are constrained by the two equations 3.86 (for s = e) and 3.89.
Consequently, one needs to specify two of these four variables. Then, the
ion velocity and temperature are easily deduced with Eq. 3.86 for s = i and
with the chosen value of χ. L and ωce expressed in units of de and ωpe, that
are useful for a setup in a simulation, are then deduced with Γe through
ω′pe = ωpe/

√
Γe and d′e = de ×

√
Γe.

A special case is when the temperatures are equal: then ΓiUi = −ΓeUe,
n′e = n′i, and Θe = (1/4)(ωce/ω

′
pe)

2.

How to use them: from parameters in the laboratory frame

We now assume that we know ωce/ωpe, L/de and χ in the laboratory frame.
We have to derive the counterparts of the two firsts in the primed frame.
We recall that n′s = ns/Γs and ωps =

√
Γsω

′
ps. From Eq. 3.89 we have

Θe =
Γe

4χ

(
ωce

ωpe

)2

. (3.90)

We insert this relation into Eq. 3.86 for electrons, and also note that ω′ped
′
e =

c = ωpede, so that we have

Ue

c
=

1

2χ

de

L

ωce

ωpe
. (3.91)

Equations 3.90 and 3.91 allow to specify the electron parameters. Those for
ions then follow from the value of χ.

We remark from Eq. 3.91 that we have the condition ωce/ωpe < 2χL/de.
If this is not the case, the equilibrium cannot be achieved. Why it is so can
be seen by rewriting Eq. 3.86 as Θe = (L/2de)(ωce/ωpe)ΓeUe/c: satisfying
Vlasov’s equation is possible only if Θe < (L/2de)(ωce/ωpe)Γe, but this is
not possible if the pressure balance condition (which is Eq. 3.90) requires a
temperature exceeding this limit to balance the magnetic field pressure.

Particles Larmor radii

As a final note, we express the thermal Larmor radius of the particles,
defined as 〈(γv⊥)2〉1/2/ωce, at the current sheet center:

〈rce〉
de

=
ωpe

ωce

√
Θe

√
κ32(µe) =

√
Γeκ32(µe)/2, (3.92)
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where the first part of the equality is general (Table 3.1 and Sect. 3.2.3), and
the second is obtained for the Harris equilibrium using Eq. 3.90 for the ratio
ωce/ωpe. The function κ32 is the plasma comoving enthalpy and is plotted
in Fig. 3.1. The thermal Larmor radius is consequently temperature depen-
dent via κ32(1/Θe). This is negligible for non-relativistic temperatures, but
significant when Θe ≥ 1.

3.8 Loading a relativistic particle distribution in
a PIC simulation

This section is concerned with the general problem of loading particles with
momenta that reproduce a given distribution function, and gives a method
for the Maxwell-Jüttner distribution.

Very common cases are waterbag and Maxwell-Boltzmann distributions
with a mean bulk velocity U0. A simple method is then to load the particles
in the frame comoving with the plasma, which is fairly easy because in this
frame the distributions are isotropic, and then to add to every particle the
velocity U0 or, if U0 is close to c, to boost every particle with the Lorentz
boost corresponding to U0. We will see, however, that this method is no
longer correct when both U0 and the rest frame distribution are relativistic,
mainly because boosting particles in a PIC code does not boost space. We
present here another method applicable to Maxwell-Jüttner distribution,
correct for any temperature and bulk velocitym. We need such a method
for the simulations of Chapters 6 and 7.

3.8.1 Transformation of the distribution function

We start by explaining how the particle distribution changes from one frame
to another (see e.g. Mihalas and Mihalas 1984; Pomraning 1973).

In this section 3.8, we note p = γv/c. We consider a frame R where the
plasma has a mean velocity U0 and follows the distribution f(x,p). In the
comoving frame or plasma rest frame R0, the plasma mean velocity is zero
and follows the distribution f0(x,p). We follow a group of particles. Seen
from R, they are in a volume d3x around x and have momentum p with a
scatter d3p; seen from R0 these quantities change respectively to d3x0, x0,
p0, and d3p0. The number of particles in our group is

f0(x0,p0)d3x0d3p0 = f(x,p)d3xd3p, (3.93)

so that to find the link between f and f0 we have to find a relation between
d3x0d3p0 and d3xd3p.

We start with the momentum. In the rest frame, our group of particles
have momenta spanning a range d3p0. Seen in the boosted frame, their
momenta transform according to the Lorentz transformation, and span a
new range d3p. These two volumes are thus linked by the Jacobian of the
Lorentz transformation, and it can be shown that

d3p/γ = d3p0/γ0 (3.94)

where γ and γ0 are the Lorentz factors associated to p and p0.

mWe note Swisdak (2013) independently proposed a similar method.
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We now consider the space volumes. Because of space contraction or
dilatation, the group of particles will occupy a different volume in different
frames. We consider the frame R′ comoving with the group of particles.
This is possible because the particles all move at nearly the same velocity
v0 = p0/γ0. We denote by a prime all quantities seen from this frame. InR′,
the particles occupy a volume d3x′. Since only one direction is contracted,
and since R′ moves relative to R0 with Lorentz factor γ0 =

√
1 + p2

0, we
have the relation d3x0 = d3x′/γ0. Similarly, R′ moves relative to R with
Lorentz factor γ =

√
1 + p2, and we have d3x = d3x′/γ. All in all:

γ d3x = γ0 d3x0. (3.95)

From this, we deduce that

f(x,p) = f0(x0,p0). (3.96)

3.8.2 Why boosting particles from the rest frame is incorrect
for relativistic distributions

We now come back to PIC simulations. We assume that we load parti-
cles uniformly in space, with momenta following f0(x0,p0), and that we
boost each particle with a velocity U0. The momentum volume elements
are then transformed according to Eq. 3.94, but positions are not changed.
Equation 3.95 does not hold, and we obtain a particle distribution

fPIC(x,p) = f0(x,p0)d3p0/d
3p = f0(x,p0)γ0/γ. (3.97)

The volume contraction/dilatation is not performed, and the factor γ0/γ
does not cancel.

Consequently, boosting each particle from the rest frame leads to the
expected distribution only if γ0/γ is independent of the particle. We can
write this ratio as

γ0

γ
=

γ0

Γ0(γ0 + p0,y U0/c)
, (3.98)

with p0,y the y component of p0 and Γ0 = (1 − U2
0 /c

2)−1/2, so that this is
the case only if p0,y � 1 (or if the boost is non-relativistic, U0 � c). If
p0,y � 1, then γ0/γ ∼ 1/Γ0 and when it is inserted back into Eq. 3.97, we
find the usual result of density contraction.

However, when the particle distribution is relativistic in the rest frame
of the plasma, γ0/γ is not a constant factor and Eq. 3.97 does not have the
expected dependence on momentum p.

3.8.3 A method to load a drifting Maxwell-Jüttner distribu-
tion with arbitrary temperature and drift speed

Introduction

We now present a method to load the superparticle momenta directly in
the frame where the distribution has a bulk velocity. Since the particle
distribution of a relativistic plasma in thermodynamic equilibrium is given
by the Maxwell-Jüttner distribution (see Sect. 3.2.2 for a discussion and
references), we choose to load this particular case in the simulations. We
recall that it is given, in the plasma rest frame, by

f0(x0,p0) = n0g0(p0) = n0
µ

4πK2(µ)
exp

{
−µ
√

1 + p2
0

}
, (3.99)
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Figure 3.4: Maxwell-Jüttner distribution for T = mc2 and Γ0β0 =
√
2.

Upper plot: Contours are drawn from the exact expression 2πrg(r, 0, py), with g
from Eq. 3.100 and (r, 0, py) defined in Appendix 3.8.3. The background color map
is the 2D histogram of ((p2x + p2z)

1/2, py) for 106 particles generated according to
our method.
Middle plot: Normalized histogram of py for the particles (red dotted), to be
compared to the exact expression in Eq. 3.102 (blue line), and for comparison (black
dots) the histogram of py for particles generated the wrong way (initialization in
the rest frame and boost of Γ0).
Bottom plot: Difference between the red points and the blue curve.

with n0 =
∫∫∫

d3p f0(x0,p0) the uniform particle number density and g0
the momentum distribution, both in the rest frame, μ = mc2/T , p = γv/c,
and K2 the modified Bessel function of the second kind. We note again that
Treumann et al. (2011) argue that another normalization factor should be
used, but this is of no importance for this section because we use probability
distributions normalized to 1. We also recall Eq. 3.8: in the frame where the
plasma moves with a bulk velocity cβ0 (and associated Lorentz factor Γ0),
and where it has a particle density n = Γ0n0 and a momentum distribution
g, we have

g(p) =
μ

4πK2(μ)Γ0
exp

{
−μΓ0

(√
1 + p2 − β0py

)}
. (3.100)

This distribution is normalized to unity:
∫∫∫

d3p g(p) = 1.

The main difficulty with Eq. 3.100 is that the variables px, py and pz are
coupled and cannot be chosen independently. The solution is to compute
the marginal distribution for the variable py. With this, one can choose the
y-component of p independently of the others, and then use the distribution
g(p⊥, py) knowing py to choose the component normal to y.
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Details

Starting from the distribution 3.100, we make a first change of variables

(px, py, pz) → (x, y, z) = (px/γy, py, pz/γy), where γy =
√

1 + p2
y, and we

then change to cylindrical coordinates (r, θ, y) with the axis along y. We
integrate along θ. Finally, a last change of variables (r, y) → (u, y) =
(
√

1 + r2, y) leads to the distribution for the random variables (U, Y ) ∈
[1,+∞[× ]−∞,+∞[ :

jU,Y (u, y) =
µ

2K2(µ)Γ0
γ2
y exp {µΓ0β0 y}

× u exp {−µΓ0γy u} .
(3.101)

It is then easy to obtain the marginal distribution for Y :

jY (y) =

∫ ∞
1

du jU,Y (u, y)

=
1 + µΓ0γy
2µΓ3

0K2(µ)
exp {−µΓ0 (γy − β0y)} .

(3.102)

From this, we deduce the conditional probability distribution of U given the
value y of Y :

jU |y(u) =
jU,Y (u, y)

jY (y)
=

a2
ye
ay

1 + ay
u exp {−ayu} , (3.103)

with ay = µΓ0

√
1 + y2.

Then, for each particle, one has to generate y = py according to distri-
bution 3.102, compute ay, and generate u according to distribution 3.103.

For the first step, we use the method of the inversion of the cumulative
distribution. This method is based on the fact that if W is a uniform random
variable on [0, 1], if F (s) =

∫ s
−∞f(x) dx is the cumulative distribution of the

distribution f and F−1 its inverse, then F−1(W ) follows the distribution
f . In practice, one has to choose random numbers wi in [0, 1], and the
yi = F−1(wi) will be distributed according to f .

There is however no analytic expression for the cumulative distribution
J(y) =

∫ y
−∞jY (z) d z. We compute numerically J−1(t) on a grid of points

ti = i/N , i = 1..(N − 1). For each index i, we want to find yi such that∫ yi
−∞jY (z) d z = ti. We thus compute numerically the integral

∫ y
−∞jY (z) d z

up to the point where it reaches ti, and then attribute the value of y to yi.
We use the following algorithm:

1. Choose a maximal integration step δymax, and set δy = δymax. Choose
a tolerance tol.

2. Start from a low enough value y0 such that jY (y0)� 1, and set y = y0.
Also set i = 1.

3. Set J = 0, or if possible J =
∫ y0

−∞jY (z)dz.

4. Compute J = J + δy jY (y).

5. J is now an estimation of
∫ y
−∞jY (z) dz.

If |J − ti| < tol, then the desired yi = J−1(ti) is y. Set i = i+ 1, and
go back to 4.

If J < ti, set y = y + δy, and go back to 4.

If J > ti, set δy = δy/2 and go back to 4.
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We run this algorithm once for the needed µ and Γ0β0 and store the yi in
a file. Then, during the particle initialization, we choose random integers i
between 1 and N − 1 and set py = yi.

Once y is known, we have to pick a u according to Eq. 3.103. Since ay
can be anything between µΓ0 and +∞, we cannot generate a file before the
program run, and we have to invert F on the flight. It turns out that we
can integrate jU |y. After some basic manipulations, we arrive at

v =

∫ u

1
dt jU |y(t) ⇔ l(x) = w l(ay), (3.104)

where x = ayu, l(x) = (1+x) exp(−x), and v and w are two random numbers
between 0 and 1. Inversion of the right side of Eq. 3.104 is easily done with
a Newton method due to the smoothness of the function l. Starting from
x = ay is a good idea, and one must enforce a minimum number of iterations.

Tests

Figure 3.4 shows an example of the distribution generated with this method
for T = mc2 and Γ0β0 = 1.41, and compares it to the theoretical expectation
and to the the distribution obtained by boosting individually the superpar-
ticles from the rest frame. We clearly see the accuracy of our algorithm,
and the mismatch between the simpler boosting method and the expected
result. We note that this mismatch can have significant consequences. For
example, when used for the tearing instability of Sect. 4.4.4 it leads to large
adjustments in the initial conditions, and for the most extreme temperatures
to a complete disruption of the current sheet.

Appendix 3.A More relations for Maxwell-Jüttner
distribution

3.A.1 Change of variables for Maxwell-Jüttner distributions

We derive the expression of the Maxwell-Jüttner distribution with respect
to the momentum p̂ = γmv, the Lorentz factor γ0, and the velocity v0/c.

For the momentum p̂ = γmv, we have:

gp̂(p̂) =
(
4πm3c3Γ0ΘK2(µ)

)−1
exp

{
−Γ0(γmc2 −U0 · p̂)

Θmc2

}
, (3.105)

which becomes for a plasma at rest:

g0|p̂(p̂0) =
(
4πm3c3ΘK2(µ)

)−1
exp

{
−γ0mc

2

T

}
, (3.106)

with again µ ≡ 1/Θ ≡ mc2/T the inverse of the temperature, always defined
in the rest frame of the plasma through the definition of g0|p. For the
momentum amplitude p̂0 = |p̂0|, we simply have g0|p̂(p̂0) = 4πp̂2

0g0|p̂(p̂0).
The comoving distributions for the normalized momentum p̃0 and its

norm p̃0 were given with Eq. 3.6. From these, we can then express the
comoving distribution in terms of Lorentz factors γ. Using γ2

0 = 1 + p̃2
0, we

have γ0dγ0 = p̃0dp̃0. Since g0|γ(γ0)dγ0 = g0|p̃(p̃0)dp̃0, we obtain:

g0|γ(γ0) =
µ

K2(µ)
γ0

√
γ2

0 − 1 exp {−µγ0} , γ0 ∈ [1,+∞[. (3.107)
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Parameter Value

No drift velocity

〈γ2〉 1 + 3κ32(µ)/µ

〈γ3〉 15κ32(µ)/µ2 + 2/µ+ κ32(µ)

〈γ|β|〉 2
(

2
π

)1/2 K5/2(µ)

µ1/2K2(µ)

〈γ(γβ)2〉 3/µ+ 15κ32(µ)/µ2

With a drift velocity U0 = U0ŷ〈
(p− 〈p〉)2

〉
Γ2

0U
2
0 + 3(2Γ2

0 − 1)c2κ32(µ)/µ− (Γ0U0κ32(µ))2

〈p̃2
x〉 = 〈p̃2

z〉 κ32(µ)/µ

〈p̃2
y〉 (Γ0β0)2 + (6Γ2

0 − 5)κ32(µ)/µ

Table 3.2: Less useful averages for the Maxwell-Jüttner distribution. We use
κ32(µ) = K3(µ)/K2(µ).

Another way to express g0 is with respect to the velocity v0/c. We start
from Eq. 3.6 and use dp̃0/dv0 = d(γ0v0)/dv0 = γ3

0 , to obtain:

g0|v/c

(v0

c

)
=

µ

K2(µ)
γ5

0

(v0

c

)2
exp {−µγ0} ,

v0

c
∈ [0, 1[. (3.108)

Coming back to the distribution for v0 is then straightforward:

g0|v/c

(v0

c

)
=

µ

4πK2(µ)
γ5

0 exp {−µγ0} ,
v0

c
∈]− 1, 1[3. (3.109)

3.A.2 Asymptotic expressions for Bessel functions

We report the asymptotic relations that can be used to derive the non-
relativistic and ultrarelativistic limits of the averages over Maxwell-Jüttner
distributions:

Kν(x) ∼
x→+∞

√
π

2x
e−x

(
1 +

4ν2 − 1

8x
+O(1/x2)

)
, (3.110)

with for example

K3(µ)

K2(µ)
=

µ→+∞

[
1 +

35

8µ
+O

(
1

µ2

)][
1− 15

8µ
+O

(
1

µ2

)]
= 1 +

5

2µ
+O

(
1

µ2

)
;

(3.111)

and:

Kν(x) ∼
x→0

1

2
Γ(ν)

(
2

x

)ν
. (3.112)

They can be found in NIST Digital Library of Mathematical Functions
(2013, §10.30).

Also useful is the recurrence relation (NIST Digital Library of Mathe-
matical Functions 2013, §10.29), valid whatever u:

Kν+1(u) =
2ν

u
Kν(u) +Kν−1(u). (3.113)

Particular cases are K3/K2 = 4/u+K1/K2 and K4/K2 = 1 + 6K3/(uK2).
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Appendix 3.B Relativistic particle motion in E and
B fields

This appendix provides derivations of the facts stated in Sect. 3.6, i.e.,
explores the motion of a charged particle in constant electric and magnetic
fields. We consider a particle of mass m, charge q, velocity v, Lorentz factor
γ, and momentum p = γmv.

3.B.1 Constant electric field

We assume that the particle moves in a constant electric field E = Eŷ. The
equations of motion are:

dp

dt
= qE = qEŷ,

dγmc2

dt
= v · (qE).

(3.114)

The motion takes place in the plane containing E and the initial velocity
v0. We suppose that this plane is the x-y plane. Then, vz = 0 at all times.
It is easy to solve for the momentum:

px = p0x,

py = p0y + qEt.
(3.115)

The Lorentz factor follows as

γmc2 =
√
m2c4 + c2p2

0x + c2(p0y + qEt)2, (3.116)

and the velocity as

vx
c

=
p0xc√

m2c4 + c2p2
0x + c2(p0y + qEt)2

,

vy
c

=
(p0y + qEt)c√

m2c4 + c2p2
0x + c2(p0y + qEt)2

.
(3.117)

We stress that even if there is no force along x, the x-component of the
velocity is affected through the coupling by the Lorentz factor, and shrinks
toward zero as vy reaches the speed of lightn.

The position can be obtained as

x =
p0xc

qE
argsh

{
c(p0y + qEt)√
m2c4 + c2p2

0x

}
,

y =
1

qE

√
m2c4 + c2p2

0x + c2(p0y + qEt)2,

(3.119)

and the trajectory is given by

y =

√
m2c4 + c2p2

0x

qE
cosh

{
qE

p0xc
x

}
. (3.120)

nAnd indeed, the equations of motion can be rearranged to give (in the general case):

dv

dt
=

q

m

√
1− v2

c2

[
E + v ∧B − 1

c2
(v ·E)v

]
. (3.118)
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3.B.2 Constant magnetic field

We assume that the particle moves in a constant magnetic field B = Bẑ.
The equations of motion are:

dp

dt
= qv ∧B,

dγmc2

dt
= v · [qv ∧B] = 0.

(3.121)

The discussion of Sect. 3.6 then easily follows.

3.B.3 Constant electric and magnetic fields, non-relativistic
case

We assume that the particle moves in a constant magnetic field B = Bẑ
and a constant electric field E = Ezẑ + Eyŷ, and we neglect relativistic
effects.

In the non-relativistic case, the velocity components are not coupled via
the Lorentz factor. It follows that the motion along B is not affected by
the magnetic field, and consists in a constant acceleration:

vz = (qEz/m)t. (3.122)

The motion in the plane normal to B is obtained with simple algebra.
If we choose the x-axis to be directed along the initial velocity vector, we
have (Landau and Lifshitz 1975): vx = a cosωt+

Ey
B
,

vy = −a sinωt,
(3.123)


x =

a

ω
sinωt+

Ey
B
t,

y =
a

ω
(cosωt− 1).

(3.124)

Here ω = |q|B/m, and a is linked to the initial x-velocity by vx0 = a +
Ey/B = a[1 + Ey/(aB)]. These equations can be normalized to

x̃ =
ω

|a|
x = sgn(a) sin t̃+ αt̃,

ỹ =
ω

|a|
y = sgn(a)(cos t̃− 1),

(3.125)

where we defined t̃ = ωt and α = Ey/(|a|B). We further define f = sgn(a)α,
with sgn(a) the sign of a. We have:

f =
Ey
aB

=
vE×B

vx0 − vE×B
, (3.126)

with vE×B = |Ey/B|. f , or equivalently the ratio v0x/vE×B, is the only
parameter controlling the problem. There are two families of motion: with
closed loops (i.e., vx changes sign), or without closed loops. They are de-
limited by three limiting cases: the straight line where the Lorentz force
always vanishes, the circle, and the trajectory with angular points. These
cases, as well as the ranges in which they occur, are drawn in Fig. 3.5.
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Figure 3.5: Different kind of motions for a non-relativistic particle in constants
E and B fields. We have B ∝ +ẑ, E ∝ +ŷ, v0 ∝ ±x, and the motion is drawn in
the plane perpendicular to B.
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3.B.4 Constant and parallel electric and magnetic fields

Let B, E ∝ ẑ. The equations of motion are

dp

dt
= q(Eẑ + v ∧ [Bẑ]),

dγmc2

dt
= v · qEẑ = qEvz.

(3.127)

The momentum equation can be decomposed into parallel and perpendicular
components: dpz/dt = qE and dp⊥/dt = qBv⊥ ∧ ẑ. We thus have p⊥ ·
dp⊥/dt = 0, and:

pz(t) = qEt+ pz0,

|p⊥| = const.
(3.128)

The Lorentz factor follows as

γmc2 =
√
m2c4 + |p0c|2 + (qEct)2. (3.129)

The motion is thus accelerated along z. In the plane perpendicular to B,
we can expect the particle to follow circles with a pulsation

ω =
qB

γm
=

qBc√
m2c2 + |p0|2 + (qEt)2

, (3.130)

that decreases toward 0o, and with a radius

rc =
v⊥
ω

=
p⊥

qB/m
= const (3.131)

that is constant. Landau and Lifshitz (problem 1, §22, 1975) show that this
is indeed the case.

3.B.5 Constant and orthogonal electric and magnetic fields
of equal magnitude

The motion of a charged particle in orthogonal magnetic and electric fields
is treated in the general case (relativistic or not) in Sect. 3.B.6, but the
special situation where E = cB has to be considered separately.

Let us assume that B = Bẑ and E = Eŷ, with E = cB. We obviously
have pz = const. The energy equation, d(γmc2)/dt = qEvy, and the x-
momentum equation, dpx/dt = qEvy, can be combined to yield γmc2 −
cpx = const ≡ α. We also define ε2 = m2c4 + c2p2

z = const. Skipping details
(see Landau and Lifshitz 1975, problem 2, §22) we arrive at the following
set of parametric equations (the parameter is py):

2qEt =

(
1 +

ε2

α2

)
py +

c2

3α2
p3
y, (3.132a)

γmc2 =
α

2
+
c2p2

y + ε2

2α
, (3.132b)

x =
c

2qE

(
−1 +

ε2

α2

)
py +

c3

6α2qE
p3
y, (3.132c)

y =
c2

2αqE
p2
y, (3.132d)

z =
pzc

2

αqE
py. (3.132e)

oAs in the case with an electric field alone, coupling through the Lorentz factor freezes
the motion in the directions perpendicular to E.
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From the first equation, we see that the parameter py always increases with
time. There is no E×B (∝ x) drift here: y increases indefinitely, and there
is no constant mean velocity for x (there is not even a period to average
over). We note however that the velocity increases more along x than along
y.

3.B.6 Constant and orthogonal electric and magnetic fields
of arbitrary magnitude

The non-relativistic description of the motion of a particle in orthogonal
magnetic and electric fields leads to a mean velocity equal to vE×B = E/B,
and is obviously valid only if E/B � c. We now describe the general case.

We start from a frame R where the fields are given by B = Bẑ and
E = Eŷ. We want to move to a frame R′ where either E or B vanishes.
But the Lorentz invariants of the electromagnetic field are:

E ·B = inv, (3.133a)

c2B2 −E2 = inv. (3.133b)

From Eq. 3.133a, we see that this is possible only if E ·B = 0 in the original
frame, while from Eq. 3.133b we see that this is possible only if E 6= cB in
the original frame. Consequently, we assume that E 6= cB and E ·B = 0.
The special case E = cB and E ·B = 0 is dealt with in section 3.B.5.

We note all quantities in R′ with a prime. For a boost along x, with
a velocity v∗ and associated Lorentz factor γ∗, the transformation formula
read:

E′x = Ex, E′y = γ∗(Ey − v∗Bz), E′z = γ∗(Ez + v∗By),

B′x = Bx, B′y = γ∗(By + v∗Ez/c
2), B′z = γ∗(Bz − v∗Ey/c2),

(3.134)

and in our case:

E′x = 0, E′y = γ∗(Ey − v∗Bz), E′z = 0,

B′x = 0, B′y = 0, B′z = γ∗(Bz − v∗Ey/c2).
(3.135)

There are clearly two situations: when E < cB, there is no boost allowing
to cancel the magnetic field, but v∗ = E/B allows to cancel the electric
field; while when E > cB, there is no boost allowing to cancel the electric
field, but v∗ = c2B/E allows to cancel the magnetic field. The different
outcomes are illustrated in Fig. 3.2.

Electric field smaller than the magnetic field, E < cB

If E < cB, then we can choose v∗ = Ey/Bzx̂ = E ∧B/B2. In this frame,
the electric field vanishes:

E′ = 0, B′ = ẑ
Bz
γ∗
. (3.136)

The motion inR′ thus occurs in a constant magnetic field and was treated in
Sect. 3.B.2. The particle energy is constant, γ′mc2 = const, the impulsion
along z′ is constant, and so is the z′-velocity. In the x′-y′ plane, the particle
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gyrates in circles with a pulsation ω′c = |q|B′z/(γ′m):
x′ =

v′⊥
ω′c

sinω′ct
′,

y′ =
v′⊥
ω′c

(cosω′ct
′ − 1),

z′ = v′z(0)t′,



dx′

dt′
= v′⊥ cosω′ct

′,

dy′

dt′
= −v′⊥ sinω′ct

′,

dz′

dt′
= v′z(0).

(3.137)

In order to obtain the motion in the initial frameR, we have to transform
the trajectory back to R. It is easier to perform the Lorentz transformation
on the four velocity, which is (with τ = t′/γ′ the proper time of the particle):

c
dt′

dτ
= γ′c

dx′

dτ
= γ′v′⊥ cosω′cγ

′τ,

dy′

dτ
= −γ′v′⊥ sinω′cγ

′τ,

dz′

dτ
= γ′v′z(0),

(3.138)

and that transforms into (boost at −v∗ along x):

γc = γ∗
(
γ′c+

v∗

c

dx′

dτ

)
,

dx

dτ
= γ∗

(
dx′

dτ
+ v∗γ′

)
,

dy

dτ
=

dy′

dτ
,

dz

dτ
=

dz′

dτ
,

(3.139)

or equally: 

γc = c
dt

dτ
= γ∗

(
γ′c+

v∗

c
γ′v′⊥ cos(ω′cγ

′τ)

)
,

dx

dτ
= γ∗

(
γ′v′⊥ cos(ω′cγ

′τ) + v∗γ′
)
,

dy

dτ
= −γ′v′⊥ sin(ω′cγ

′τ),

dz

dτ
= γ′v′z(0).

(3.140)

The position of the particle as a function of proper time is easily deduced:
x(τ) =

γ∗v′⊥
ω′c

sin(ω′cγ
′τ) + (γ∗γ′v∗)τ,

y(τ) =
v′⊥
ω′c

(
cos(ω′cγ

′τ)− 1
)
,

z(τ) = γ′v′z(0) τ.

(3.141)

Written like this, we see that the motion can be decomposed as the sum of

• a translation with respect to proper time in the x direction, which
corresponds to the E ∧B direction,
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• an elliptical gyration in the x-y plane (and not circular as in the non-
relativistic case),

• a constant motion with respect to proper time in the z direction if the
particle has an initial velocity in this direction.

However, the proper time is linked to the time t in a non-trivial way by the
upper line in Eq. 3.140, that integrates into

t = (γ∗γ′)τ +
γ∗v∗v′⊥
ω′cc

2
sin(ω′cγ

′τ). (3.142)

The motion is thus more complex, and reads:

x(t) =
v′⊥
γ∗ω′c

sin[ω′cγ
′τ(t)] + v∗t,

y(t) =
v′⊥
ω′c

(
cos[ω′cγ

′τ(t)]− 1
)
,

z(t) =
v′z(0)

γ∗
t−

v′z(0)v∗v′⊥
ω′cc

2
sin[ω′cγ

′τ(t)].

(3.143)

It is interesting to see that the drift velocity in the E ∧B direction is given
by v∗ = Ey/Bz, just as in the non-relativistic case.

If we neglect for a moment the term proportional to sinus in the proper
time expression 3.142, and use simply t = (γ∗γ′)τ (and equivalently γ =
γ′γ∗), we have: 

x(t) =
v′⊥
γ∗ω′c

sin

(
qB′

γmc
t

)
+ v∗t,

y(t) =
v′⊥
ω′c

[
cos

(
qB′

γmc
t

)
− 1

]
,

z(t) =
v′z(0)

γ∗
t,

(3.144)

and we conclude in the same way as after Eq. 3.141: translation at the
E ∧B/B2 velocity, plus elliptical motion in the x-y plane, plus translation
alongB ∝ ẑ due to the initial velocity. But in general there is the sinusoidal
term appearing in the expression for τ . We thus expect the particle to
describe the ellipses in the x-y plane with a non-uniform velocity, and the
motion along z to be not constant, despite the absence of force in this
direction, because of the coupling with γ.

When Ey increases toward cBz, the velocity v∗ = Ey/Bz reaches c and
γ∗ reaches infinity. What happens can be visualized by studying the minor
and major axes of the ellipse:

• Along x, it is v′⊥/(γ
∗ω′c) = v′⊥/ωc (because B′z = Bz/γ

∗). As Ey
increases toward cBz, nothing happens.

• Along y, it is v′⊥/ω
′
c = γ∗v′⊥/ωc. As Ey increases toward cBz, γ

∗ →
+∞, and the axis length also reaches infinity. Physically, the magnetic
field has more and more difficulties to contain the electric acceleration
along y, so that the ellipse is wider and wider in the direction of E.

When Ey reaches cBz, the magnetic field B′z = Bz/γ
∗ vanishes, and as

we said the ellipse extends to infinity along the direction of E (which is
y): the motion is not confined any more in the y direction. We showed in
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Sect. 3.B.5 that when E = B, the motion is indeed open, and the particle is
freely accelerated by the electric field and endlessly gains energy. The case
Ey > cBz is discussed just after. Trajectories for E < cB and E > cB are
shown in Fig. 3.2.

Electric field larger than the magnetic field, E > cB

We now assume that Ey > cBz. The situation is different because there is
no frame in which Ey vanishes. However, in a frame R′ moving at velocity
v∗ = c2Bz/Ey x̂ = c2E ∧B/E2, we have (from Eq. 3.135):

E′ = ŷ
Ey
γ∗
, B′ = 0. (3.145)

In the new frame, the motion is that of a particle in a constant electric field,
treated in Sect. 3.B.1. We have:

p′x = p′0x,

p′y = p′0y + qE′yt
′,

p′z = p′0z.

(3.146)

The Lorentz factor follows as

γ′(t′)mc2 =
√
ε20 + c2(p′0y + qE′yt

′)2, (3.147)

with ε20 = m2c4 + c2p′0x
2 + c2p′0z

2, and the velocity as v′ = p′/(γ′m). The
position can then be deduced, and the trajectory is found to be of the kind
y′ ∝ coshx′⊥, as in Eq. 3.120, with x⊥ =

√
x2 + z2.

We now transform the four momentum back to the initial frame, with a
boost at −v∗: 

γmc = γ∗[γ′mc+ (v∗/c)p′x],

px = γ∗[p′x + (v∗/c)γ′mc],

py = p′y,

pz = p′z.

(3.148)

Replacing by the values for primed quantities, this gives:
γ = γ∗γ′ + γ∗(v∗/c)p′0x/(mc),

px = γ∗[p′0x + (v∗/c)γ′mc],

py = p′0y + qE′yt
′,

pz = p′0z.

(3.149)

The velocity is then deduced as:

vx
c

=
p′0x + (v∗/c)γ′mc

(v∗/c)p′0x + γ′mc
,

vy
c

=
p′0y + qE′yt

′

γ∗[(v∗/c)p′0x + γ′mc]
,

vz
c

=
p′0z

γ∗[(v∗/c)p′0x + γ′mc]
.

(3.150)

For the time we have dt/dτ = γ, dt′/dτ = γ′, so that

dt

dt′
=
γ

γ′
= γ∗ + γ∗

v∗

c

p′0x
mc

1

γ′
. (3.151)
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This integrates to

t = γ∗t′ +
γ∗v∗p′0x
cqE′y

argsh

(
c[p′0y + qE′yt

′]

ε0

)
. (3.152)

The fact that γ′ is not constant complicates the arithmetic. In particular,
we cannot express simply dx/dτ and perform an integration, because γ′

depends on τ . Some remarks are of interest:

• t is a monotonic increasing function of t′, so that t′ also is a monotonic
increasing function of t.

• Consequently, γ′ is increasing toward infinity (as a function of t or of
t′).

• So does γ.

• There is no gyration around B, both vx and vy never change sign (no
turn around as in the E < cB case).

• As t′ or t→ +∞ , 

vx
c

t→+∞−−−−→ v∗

c
,

vy
c

t→+∞−−−−→ 1

γ∗
,

vz
c

t→+∞−−−−→ 0.

(3.153)

In the limit of Bz = 0, we have v∗ = 0 and γ∗ = 1, so that at long
times v = cŷ, which is what we found for a particle in a constant
electric field (Sect. 3.B.1). When Bz 6= 0, the norm of the asymptotic
velocity is still v∗2 + c/γ∗2 = c, but its direction is not that of the
electric field. The particle velocity reaches a steady state where the
magnetic force v ∧B compensates the electric force, and travel with
an angle with respect to the electric field given by arctan vy/vx.

All in all, the magnetic field is not strong enough to transform the trajectory
into loops, and the long term motion is a straight line (see Fig. 3.2) at the
speed of light, with an angle θ with respect to the electric field direction
given by

tan θ = γ∗v∗/c. (3.154)
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Presentation and tests of the
particle-in-cell code Apar-T

Mais cette petite lacune, cette petite brèche, suffit pour que toute
cette infinie unité de lois de l’univers soit détruite et remise en
question.

Hermann Hesse, Siddhartha
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4.1 Outline

This chapter documents and tests the particle-in-cell code, Apar-T, that is
used in Chapters 6 and 7 to study magnetic reconnection. It contains part of
the article Melzani et al. (2013) (the other part being in the next chapter).
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The first version of Apar-T, Tristan, was written by O. Buneman in
1990 (Matsumoto and Omura 1993). It was then made parallel by Mess-
mer (2001), and used in Messmer (2002) or Paesold et al. (2005). We
largely modified its structure, that now uses Fortran modules and allows for
more flexibility, including the possibility of switching between different ini-
tial conditions or boundaries by changing entries in a configuration textfile.
We adapted outputs and diagnostics to be efficient on large scale runs, the
main novelties being parallel outputs in HDF5 format readable by the visu-
alization software VisIt, and the possibility to track a sample of particle
trajectories. The code has been run on several machines, using up to 2000
cores.

In this chapter, we first provide a detailed description of Apar-T in
Sect. 4.3 and Appendix 4.A. This description is motivated by the need for
a deep understanding of simulation methods to interpret their results, as is
the case for the test problems shown here, and also by the large number of
different PIC implementations available.

Then in Sect. 4.4, we present a set of test problems and the results ob-
tained with Apar-T. The first test is the study of the fluctuation spectra of
a thermal plasma. The second and third tests explore the linear and non-
linear stages of the filamentation instability. A last test is the computation
of the linear growth rates of the relativistic tearing instability. Further dis-
cussion of the results are presented in Chapter 5, where differences between
real, Vlasov, and PIC plasmas are stressed and investigated.

The introduction first puts PIC codes in a historical perspective, and
evoke alternatives to the PIC method for kinetic simulations.

4.2 Introduction

4.2.1 A historical perspective on particle-in-cell codes

Full particle codes are now used by a large number of groups worldwide
to study plasmas out-of-equilibrium in a large variety of environments, in-
cluding electronic devices, inertial fusion (Dieckmann et al. 2006; Bret et
al. 2010), tokamaks, Earth and solar magnetospheres (Hesse et al. 2001;
Daughton et al. 2006; Drake et al. 2006; Klimas et al. 2008; Markidis et al.
2012; Baumann and Nordlund 2012), or high-energy astrophysics (Silva et
al. 2003; Pétri and Lyubarsky 2007; Zenitani and Hoshino 2008; Cerutti et
al. 2012a; Jaroschek et al. 2005; Nishikawa et al. 2008; Sironi and Spitkovsky
2011b).

Particle simulations actually appeared along with the first computers
at universities and in industry around 1950. They first concerned electron
beams in vacuum tubes, a device extensively used in the computers them-
selves. The simulated beams were cold (Hartree 1950) or later hot (Tien
and Moshman 1956), and consisted of roughly 300 electron slabs moving in
one dimension.

The step to plasma simulations was taken by Buneman (1959). He
simulated an electrostatic plasma of 512 ions and electrons in one dimension,
and showed that particle codes could be used to study the linear, non-
linear, and saturation phases of instabilities. At the time, the relevance
of simulations with so few particles per Debye sphere was not clear and
in 1962 Dawson (1962) and Eldridge and Feix (1962) made an important
contribution by showing that correct thermal behavior was produced.
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All these algorithms used particle-particle interactions, and the first
particle-mesh codes to introduce a grid appeared only later (Burger 1965;
Hockney 1966; Yu et al. 1965). A great deal of literature on the drawbacks
and benefits of the grid then appeared, and is now mostly concentrated in
the two reference books of Birsdall and Langdon (1985) and Hockney and
Eastwood (1988). Refinements of the algorithms quickly appeared (higher
order grid interpolation, quiet codes, etc.), as well as code optimizations,
at a time when programs were written in assembly language and depended
heavily on machine architecture. Fully electromagnetic, relativistic, and 3D
codes appeared with the studies of laser induced fusion (Buneman 1976),
and closely resemble today’s codes.

In 1967, it was possible for Birdsall (1967) to list the papers concerning
simulations, and he noticed that they had grown exponentially since 1956.
In 1956, “many particles” meant 300; in 1985, 106; in 2008, 109; and in
2012, 1012. For more historical details on PIC simulations, one may con-
sult Birdsall (1967, 1999), Hockney and Eastwood (Sect. 9.1, 1988), or the
introduction of Birsdall and Langdon (1985).

Today, the latest generation of PIC algorithms consists of large versatile
codes, featuring high order integration schemes and efficient parallelization.
We can quote codes such as TRISTAN-MP (Spitkovsky 2005), OSIRIS (Fon-
seca et al. 2002, 2008), VORPAL (Nieter and Cary 2004), WARP (Grote
et al. 2005), ALaDyn (Benedetti et al. 2008), iPIC3D (Markidis et al. 2010),
Photon-Plasma (Haugboelle et al. 2012), or Zeltron (Cerutti et al. 2013).
They employ various simulation methods. The equations solved can differ:
electrostatic codes, electromagnetic codes, Darwin approximation (Huang
and Ma 2008). The integration scheme can also vary: integration directly on
the fields staggered on a grid, either with a charge conserving scheme or via
solution of Poisson equation (Cerutti et al. 2012a); or integration of the po-
tential and correction of the discrepancies to charge conservation (Daughton
et al. 2006). The time integration can be explicit or implicit (Markidis et al.
2012). Special parts of the numerical scheme can also differ; for example,
the order of the field integration or the use of Fourier transforms. The
interpolation of particle quantities to grid points and reciprocally can be
done by a nearest grid point method (NGP), by a linear weighting (cloud in
cell (CIC), or the PIC algorithm in the old terminology), or by a smoother
shape (spline interpolation, Esirkepov 2001).

4.2.2 Numerical methods to simulate a kinetic plasma

The particle-in-cell method is not the only method to simulate a plasma at
the kinetic level. We now briefly outline others.

Vlasov codes

Vlasov codes directly integrate numerically Vlasov’s equation, along with
the required Maxwell’s equations. Space and velocities are both discretized
on a grid, where the distribution function of each species s, denoted by
fs(xijk,plmn, tq), is stored and evolved. The electromagnetic fields are
stored on the space grid only. There is also the possibility to add a col-
lision operator to the right-hand side of Vlasov’s equation.

Various numerical scheme exist, and can employ usual finite volume or
finite element methods. Another possibility is to write Vlasov’s equation in
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a conservation forma:

∂fs
∂t

+
∂

∂x
· (vfs) +

∂

∂p
· (F fs) = 0, (4.1)

which implies that along trajectories satisfying ẋ(t) = v(t) and ṗ(t) =
(qs/ms)(E(x, t) + v(t) ∧ B(x, t)), one has fs(x(t),v(t), t) = const. The
method is then, at each timestep and for each grid point, to compute where
the position xijk and momentum plmn will be after δt according to the
equation of motion. This generally gives new values x and p, that are
interpolated on the grid. The former value fs(xijk,plmn) is then attributed
with a weight function to these new grid points.

Unlike PIC simulations, Vlasov solvers present a very low level of noise,
and are thus efficient for the study of linear phases of instabilities or of
low-amplitude effects. They are also suited for cases where a small number
of particles in the tail of the distribution plays an important role, where a
PIC code would require huge amounts of particles to correctly sample such
a distribution function.

Their main drawback is the ressources they demand. Three-dimensional
simulations require the description of a six-dimensional phase space: assum-
ing for example 100 points for each direction, this makes 1012 grid points!
Even two-dimensional simulations are very demanding.

There are a number of Vlasov simulations of magnetic reconnection.
For example Schmitz and Grauer (2006) study the same configuration as
Pritchett (2001, GEM configuration with a PIC code) with a Darwin Vlasov
code, and Umeda et al. (2009) present a fully electromagnetic Vlasov code
with a comparison with the two preceding papers.

Gyrokinetic codes

Gyrokinetic codes are a variant of Vlasov codes, applicable when the mag-
netic field is strong everywhere, when the dynamics is slow compared to
cyclotron motion (ionic and electronic), and when fluctuation amplitudes
are small. When it is so, Vlasov’s equation is averaged over the cyclotron
orbits of the particles. It then describes the evolution of a distribution func-
tion with one variable less than for fs. The variables can be for example
the position, the kinetic energy, and the pitch angle (the angle between the
velocity vector and the magnetic field).

The advantage over Vlasov codes is that the averaging reduces the phase
space from one dimension. The advantage over PIC codes is that the latters
need to resolve the Larmor orbits, a constraint that can be very demanding
at high magnetizations. For example, kinetic simulations of magnetic re-
connection in environments such as pulsar wind nebulae, where the electron
magnetization reaches 105, are not possible with PIC codes. Note that at
such magnetizations, relativistic effects are present and a relativistic gyroki-
netic code should be used.

There exists several studies of collisionless magnetic reconnection with
gyrokinetic codes. An instructive comparison with PIC simulations can be
found in TenBarge et al. (2014).

aWe note p = γv, and define F ≡ (qs/ms)(E + v ∧B). Equation 4.1 is equivalent to
Vlasov’s equation because ∇p · (E + v ∧B) = 0, even in the relativistic case.
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Particle-particle codes

In a particle-particle code, the plasma is described by an ensemble of par-
ticles, of positions xi and velocities vi. At each timestep, the electrostatic
force acting on a particle is obtained by summation over all the other par-
ticles. For example, for the electric potential at the position of particle
i:

Vi =
∑
j 6=i

qiqj
4πε0|xi − xj |

, (4.2)

and the equation of motion of each particle is thus integrated. The fields
are not directly present in the simulation, the Lorentz force being directly
computed from the other particles.

The main drawback of this method is that the above sum involves N
terms, if N is the total number of particles, and thus N2 terms must be
considered when repeating this procedure for each particle. This is way too
much when considering numbers as large as N = 109 or more. Better scal-
ings than N2 are now obtained by lumping together neighboring particles
when computing the force on a particle far away, and such algorithms are
still in use to compute gravitational systems. They are, however, not any
more in use today in the plasma community, and have been replaced by
the particle-in-cell method. Moreover, the absence of cut-off at low inter-
particle distances do not allow to artificially reduce the collisionality as is
the case for the PIC method. This is an advantage to accurately describe
particle-particle collisions, but a disadvantage when considering that the
number of particles in the simulation is by far smaller than the particle
number in real plasmas, thus implying a biased description of collisional
phenomena (see Chapter 5).

PIC codes (particle-mesh codes)

Particle-in-cell codes are the focus of this study. Here, the plasma is repre-
sented by a collection of particles with continuous positions and velocities,
but the electromagnetic fields are discretized on a grid. The charge and
current densities are computed from the particles’ positions and velocities,
by an interpolation onto the grid points. Reciprocally, the Lorentz force
acting on the particles is computed by an interpolation from the fields at
grid points to the particle exact position. As stated in Sect. 4.2.1, there
are several simulation methods (implicit, explicit, staggered grid, and even
adaptive grid with dynamical particle splitting).

These codes are the kinetic codes the most used in the astrophysical
community. They are efficient because unlike particle-particle codes they
involve only local interactions (with the grid), and unlike Vlasov codes they
use a 3D grid (and not 6D). Moreover, an explicit PIC code is simple to
program, easy to parallelize, and can offer deep physical insights. The main
drawbacks are a large noise level because of the small number of particles
per cell, and for the same reason, a physics of collisions and correlations
enhanced when compared to the real plasma (this is the subject of Chap-
ter 5).

PIC codes can also include radiative braking or collisions. For example
Daughton et al. (2009a,b) perform simulations of a Harris current sheet
with a PIC code that treats collisions with a Monte-Carlo treatment of the
Fokker-Planck collision term. They can probe the collisional Sweet-Parker
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regime, and the transition to collisionless reconnection for sheet thickness
of the order of kinetic scales.

δf-PIC codes

δf -PIC codes are a variant of PIC codes where the distribution function
is split into an equilibrium and a perturbation part: f = f0 + δf . The
equilibrium part is associated with fields E0 and B0. The evolution of
these fields and of f0 are not computed. The particles are advanced via
the Lorentz force with E0 and B0, and they are then advanced into the
perturbations E1 and B1, which are themselves computed from the particle
motions deviating from equilibrium.

These codes present low noise levels and allow studies of the linear
and weakly non-linear phase of instabilities, of Landau damping, echoes,
or plasma waves and modes. They can be used in the non-linear stage, but
loose their advantages when δf/f0 becomes large.

Hybrid PIC codes

A hybrid code uses a kinetic description for one species, and a fluid descrip-
tion for the other. The electrons are most often the fluid species, which is
justified when their kinetic effects are negligible. It implies the choice of a
fluid closure for the fluid species, and of a numerical integration scheme.

The advantage is most stringent when electrons and ions behave on
very different time and space scales. The disadvantage is that a possible
high-energy electron population cannot be taken into account, and cannot
provide a back-reaction. This is an issue in relativistic reconnection where
the study of the high-energy electron tails is of high interest.

Aunai et al. (2013) provide a comparison between PIC and hybrid simu-
lations of non-relativistic magnetic reconnection in asymmetric Harris cur-
rent sheets.

4.3 Physical model and numerical implementation

This section presents the numerical scheme used in Apar-T. Broadly speak-
ing, Apar-T is a parallel electromagnetic relativistic 3D PIC code with a
staggered grid, where the fields are integrated via Faraday and Maxwell-
Ampère equations, currents are computed by charge conserving volume
weighting (CIC), and fields are interpolated with the same CIC volume
weighting method.

4.3.1 The PIC plasma

The code simulates the time-evolution of charged particles under the action
of the electromagnetic fields that they generate, and the evolution of these
fields.

Plasmas in nature contain millions to tens of billions of particles per
Debye sphere, and relevant microphysical phenomena spread over numer-
ous Debye lengths. It is impossible to track these particles one by one.
Rather, the numerical particles represent numerous real particles, and are
consequently called superparticles.
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A superparticle represents either p real ions (having then a restmass
msp = p×mi and a charge qsp = p× qi), or p real electrons (having then a
restmass msp = p×me and a charge qsp = p×qe). The ratio of ion to electron
charge is always qi/qe = −1, while that of their restmasses mi/me can be
freely specified. Pair plasmas can thus be simulated. In Apar-T the number
of real particles per superparticles p is the same for all superparticles at all
times, but other codes can introduce superparticle splitting (Fujimoto and
Machida 2006; Haugboelle et al. 2012; Cerutti et al. 2013).

We denote the physical size of a grid cell by X0, a reference number of
superparticles per cell by ρ0

sp (including both ion superparticles and elec-
tron superparticles), and its associated number density of electrons by n0

e .
Initially, the plasma is assumed to be quasi-neutral, in the sense that we
load the same number of ion superparticles and electron superparticles in
each cell. We have the relation

2n0
e ×X3

0 = number of real particles in one cell = p× ρ0
sp. (4.3)

The equations governing the superparticle plasma are the equation of
motion with the Lorentz force for each superparticle, and Maxwell equations
coupled to the superparticle motions by the current:

d

dt
(γspvsp) =

qsp

msp

(
e+

vsp

c
∧ b
)
, (4.4a)

d

dt
xsp = vsp, (4.4b)

∂b

∂t
= −c∇ ∧ e, (4.4c)

∂e

∂t
= c∇ ∧ b− 1

ε0
j, (4.4d)

j =
∑
sp

qspvspS(x− xsp). (4.4e)

Here, c is the speed of light, e the electric field, b = cB is c times the
magnetic field; qsp, msp, γsp, vsp, and xsp are the charge, mass, Lorentz
factor, velocity, and position of the superparticle number sp. The fields are
stored on a grid, and a consequence is that the superparticles are seen by
the grid as having a finite shape S, linked to the interpolation scheme used
in the code.

In Apar-T we do not integrate the two other Maxwell equations because
if they hold initially, then fulfilling the equation of conservation of charge
and Eqs. 4.4c and 4.4d at all times insures that they remain correct to round-
off errorsb. That the current is indeed computed in a charge conserving way
is detailed in Appendix 4.A.1. Initially, the fields and the charge density
are correctly built by setting a magnetic field satisfying ∇ ∧ b = µ0j, a
null electric field, and by placing the superparticles by pairs with one ion
superparticle and one electron superparticle on top of each other so that
the charge density is zero.

bThe proof is as follows. Using Eq. 4.4c, we have ∂t∇·B = ∇·∂tB = −∇·(∇∧E) = 0.
Using Eq. 4.4d, we have ∂t∇ · E = ∇ · ∂tE = ∇ · (c2∇ ∧B − ε−1

0 J) = −ε−1
0 ∇ · J , so

that if the conservation of charge ∂tρ+ ∇ · J = 0 holds, then ∂t(∇ ·E − ρ/ε0) = 0.
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4.3.2 Numerical implementation of Apar-T

The need for a deep understanding of simulation methods to interpret their
results, as is the case for the test problems of Sect. 4.4, motivated a de-
tailed description of Apar-T. This section presents important points. More
details (numerical scheme and parallelization efficiency) can be found in
Appendix 4.A.

Briefly, the global integration scheme of Eqs. 4.4a-4.4e is a time-centered
and time-reversible leap-frog scheme, and is second-order accurate in time
and space. The electric and magnetic fields are stored on a staggered Yee
lattice, which allows for a simple integration explicit in time of Eqs. 4.4c
and 4.4d (without the current). The current is computed with the volume
change of the superparticles in the grid cells, and added in a time explicit
way to the integration of the electric field (Eq. 4.4d).

Temporal and spatial discretization, normalization

The spatial discretization of the code is X0 = d0
e/nx, a fraction nx of the

electron skin depth d0
e = c/ω0

pe, where the electron plasma pulsation is

ω0
pe =

√
n0

ee
2/(ε0me), with −e and me the electron charge and restmass.

The timestep ∆t is a fraction nt of the electron plasma period: ∆t = T 0
pe/nt,

with T 0
pe = 2π/ω0

pe. We stress that the superscript 0 is used for quantities
based on the reference density n0

e .

Spatial quantities are normalized by the cell length X0, and normalized
quantities are then denoted with a tilde. For example, the electron Debye
length λ0

De =
√
ε0Te/(n0

ee
2) = vth,e/ω

0
pe (with vth,e =

√
Te/me) has for

normalized counterpart λ̃0
De = λ0

De/X0 = nxvth,e/c.

Superparticle volume

The use of a grid for PIC algorithms implies that the fields are known
at grid nodes, and that information relative to the superparticles (charge
and current) need to be interpolated on the grid. This interpolation is
equivalent to considering the superparticles as clouds of charge of finite
extension (Langdon 1970). The shape of the cloud then determines the
interpolation formula.

In our case, a superparticle is assumed to be a cube of volume Vsp = X3
0 ,

and the current it produces is calculated by the change of the volume of the
superparticle in the cell containing its center. This interpolation scheme
is equivalent to linear weighting (CIC) and is exactly charge conserving.
Details of the numerical implementation of the current computation can be
found in Appendix 4.A. We discuss the implications of the superparticle
finite sizes in Chapter 5.

Particle initialization in momentum space

Several momentum distributions can be loaded: Maxwell-Boltzmann distri-
bution with anisotropic temperature, boosted Maxwell-Boltzmann distribu-
tion, waterbag distribution, or Maxwell-Jüttner distribution. We have not
found in the literature a method for initializing the Maxwell-Jüttner distri-
bution when both the bulk velocity and the temperature are relativistic, so
that we present one in Sect. 3.8.
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Input, output, and data analysis

Data output and data analysis can be very time consuming for large scale
simulations. To reduce data storage and writing time, we implemented
parallel output in HDF5 formatc. Files are written according to the .h5part
format, and can be read by the advanced visualization and data-analysis
software VisIt (Childs et al. 2012), which is fully parallel, but also by a
reader in Python. The .h5part files can either contain the whole simulation
data, and then be used to restart the simulation, or be lighter with only
a fraction of the particles. These lighter files then include cell-averaged
quantities related to the particles, such as the mean particle velocity or
number, temperature, highest energy, etc.

We implemented the VisIt Libsim in situ library (Whitlock et al. 2011)
into Apar-T. In this way, VisIt is able to connect to the simulation while
it is running and to access the solver’s data at the current timestep. It
can then perform data visualization and data analysis without the need to
write data on the hard drive. This feature is fully parallelized, by exploiting
the data-distribution model of the code, and as such is not restricted to
the current parallelization model. It allows the data-IO from memory to
hard drive – which is a major reason for slow-down of simulations using big
data-sets – to be significantly reduced. For example, a volume-rendering of
3D data performed in situ takes less time than dumping 10 GB of data to
the disk. VisIt in situ is also well suited to monitor ongoing simulations
and to single-step through the execution and is, in this way, of great help
for debugging.

Finally, a set of test problems has been implemented. Based on a Python
script, these problems can be automatically run to check code sanity after
modifications.

4.4 Examples and code validation

4.4.1 Cold plasma modes

A first test is to simulate a thermal plasma at rest and to observe its modes
of oscillation. It is an easy test if we focus on the pulsations for modes
of zero wavevector, k = 0. To do so, we compute at each timestep tj the
sum of the momentum of the particles along a given direction, for example
the x-direction,

∑
sp γsp(tj) vsp,x(tj), where the summation runs over all the

electron superparticles in the simulation (of Lorentz factor γsp and velocity
vsp). This sum is equivalent to the volume integral of the momentum, and
is thus equal to the k = 0 Fourier mode of the electron momentum, with
a spectral resolution of 2π/[box size in units of electron skin depth]. We then
perform a Fourier transform in time to extract the pulsations of oscillation,

Fx(ω) =
∑
j

exp(iωtj)×
∑
sp

γsp(tj) vsp,x(tj), (4.5)

and similarly along y and z.

For all the simulations of this section, the initial state consists of a ho-
mogeneous plasma at rest, with superparticles loaded according to a classi-
cal Maxwell-Boltzmann distribution. A uniform background magnetic field

chttp://www.hdfgroup.org/hdf5/

http://www.hdfgroup.org/hdf5/
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ωce nt nx ρsp vth,e/c λ̃De r̃ce ωce∆t ωsimu
// ωsimu

⊥ ωtheory
P ωtheory

L ωtheory
R

0.5 4000 32 4 0.04 1.28 2.56 7.9× 10−4 1.01 0.79, 1.28 1.010 0.78 1.28
˝ ˝ ˝ 16 ˝ ˝ ˝ ˝ 1.01 0.79, 1.28 ˝ ˝ ˝

1 1000 25 16 ˝ 1 1 6.3× 10−3 1.01 0.64, 1.62 1.010 0.62 1.62 Fig. 4.2
˝ 4000 32 4 ˝ 1.28 1.28 1.6× 10−3 1.01 0.64, 1.62 ˝ ˝ ˝

2 1000 16 4 ˝ 0.64 0.32 1.3× 10−2 1.01 0.43, 2.64 1.010 0.41 2.41
˝ 1000 25 16 ˝ 1 0.5 ˝ 1.01 0.46, 2.40 ˝ ˝ ˝
˝ 4000 43 4 ˝ 1.72 0.86 3.1× 10−3 1.01 0.46, 2.40 ˝ ˝ ˝
˝ 4000 64 4 ˝ 2.56 1.28 ˝ 1.01 0.46, 2.40 ˝ ˝ ˝

4 1000 25 4 ˝ 1 0.25 2.5× 10−2 1.01 0.32, 4.22 1.010 0.24 4.24
˝ 2000 128 4 ˝ 5.12 1.28 1.3× 10−2 1.01 0.32, 4.21 ˝ ˝ ˝

Table 4.1: Theoretical versus experimental pulsations for a magnetized cold
plasma. ωsimu

⊥ and ωsimu
// are the peak in the spectra of the parallel and perpen-

dicular total particle momentum from the simulations. The right columns give the
theoretical pulsations for a cold plasma. See the main text for the formula. Here
mi/me = 49, for the expression of the plasma pulsation ωP, and mi/me = ∞ for
the expressions of the right and left cut-off pulsations (ωR and ωL). The duration
of each simulation is 100Tpe, implying a spectral precision of ∆ω = 0.01ωpe. Ion

and electron temperatures are equal. λ̃De and r̃ce are the electron Debye length
and Larmor radius in units of cell number. All pulsations are in units of ωpe.

along z is set up for the magnetized plasma case. Periodic boundaries are
used.

When the background magnetic field B0 is strong (electron cyclotron
pulsation larger than electron plasma pulsation, ωce � ωpe), the particle
trajectories are Larmor gyrations in B0, unperturbed by collective effects
such as Langmuir oscillations. This example then probes the accuracy of
the particle motion integrator. When the background magnetic field is
weaker (ωce . ωpe), the dynamics is set by Langmuir oscillations possibly
modified by B0. These oscillations involve the creation of electric fields by
local charge imbalance. The fields set the particles into motion, and the
particles then oscillate because of their finite inertia. Several parts of the
algorithm are thus involved: electric field production and propagation, as
well as particle motion.

No background magnetic field

With no background magnetic field, the only cold modes are the electro-
magnetic transverse wave of dispersion relation ω2

Tr = ω2
P[1 + (kc/ωP)2]

and the electrostatic Langmuir oscillation at the plasma frequency ωP =
ωpe(1 + me/mi)

1/2. The latter is modified by thermal effects to a wave of
dispersion relation ω2

La = ω2
P(1 + 3k2λ2

D). Consequently, we expect Fa(ω)
to peak at ωLa(k = 0) = ωTr(k = 0) = ωP.

Our simulations span a large range of parameters: nx and nt (spatial
and temporal resolution, see Sect. 4.3.2) vary between 5 and 50 and between
300 and 2000, respectively; ρsp (the number of superparticles per cell) varies
between 4 and 32; and the thermal velocity vth,e =

√
Te/me of the electrons

between 0.04c and 0.1c (the ions have the same temperature as the elec-
trons). This results in Debye lengths between 0.2 and 2 cells. We checked
that the simulation box size, comprised between 10 and 30 Debye lengths,
does not influence the results.

We use a mass ratio mi/me = 49, which results in ωP = 1.010ωpe.
Our simulations last 100Tpe, so that the frequency resolution is ∆ω =
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Figure 4.1: Power spectra of the total momentum of the electrons |Fa|2 (Eq. 4.5)
with a = x, y, or z in the unmagnetized case. The inset is a zoom around the peak.
Here nx = 25, nt = 500, ρsp = 16, vth,e = 0.04c, Ti = Te, box size of 25 × 25 × 25
cells, duration of 100Tpe.

2π/(100Tpe) = 0.01ωpe.

For all these parameters, we find that the position and width of the
frequency peak are always the same as in Fig. 4.1. It coincides with the
theoretical plasma pulsation, which is expected because our temporal spec-
tra are for the wavenumber k = 0, and because ω(k = 0) = ωP for the two
modes present in this situation.

This is the case even for simulations where the Debye length is not re-
solved. However, an under-resolved Debye length leads to more numerical
heating and can trigger instabilities in situations less trivial than a ther-
mal plasma at rest (see Appendix 5.A), so that we have not pushed our
investigations too far in this direction.

The main difference between the simulations is that less resolved ones
present noisier spectra, and thus more fluctuations. The increase of fluctua-
tion level with decreasing resolution is a universal feature of PIC simulations
and is explored in more detail in Sect. 5.2.

With a background magnetic field

In a uniform and cold magnetized plasma, the plasma modes depend solely
on the ratio of the electron cyclotron pulsation ωce = eB/me to the electron
plasma pulsation ωpe (for a fixed mi/me). This ratio sets the relative im-
portance of individual particle motion (ωce) against collective effects (ωpe).
In addition, the background magnetic field favors a direction, thus making
the mode spectrum anisotropic (however, the mode pulsations for k = 0
remain independent of the direction of the wavevector).

For wavevectors parallel to the magnetic field, the Langmuir oscillation
remains unchanged because the oscillations of the particles are longitudinal,
and thus along B0 and unaffected by the magnetic field. On the other hand,
the electromagnetic wave with k along B0 separates into two branches, one
starting at ωk=0 = ωL = 0.5[(ω2

ce + 4ω2
pe)

1/2 − ωce] and the other at ωk=0 =
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Figure 4.2: Power spectra of the total momentum of the electrons |Fa|2 (Eq. 4.5)
with a = x, y, or z in the magnetized case. Parameters are given in Table 4.1 (case

labeled Fig. 4.2). The purple lines are the pulsations ωtheory
L , ωtheory

P , and ωtheory
R .

ωR = 0.5[(ω2
ce +4ω2

pe)
1/2 +ωce] (see, e.g., Fitzpatrick 2011, Chap. 4), in both

cases with particles oscillating in the transverse plane, i.e., perpendicular to
B0. Two other branches appear, but they start at ωk=0 = 0 and will thus
not appear in Fa(ω).

For wavevectors perpendicular to the magnetic field, the presence of the
background magnetic field deforms the Langmuir oscillation ω(k) = ωP into
a branch starting from ωk=0 = ωL, with particle oscillations in the plane
perpendicular to B0. The transverse electromagnetic wave still exists with
particle oscillations along B0, unaffected by the magnetic field. Another
branch appears, which is a deformation of the transverse electromagnetic
wave for particle oscillations not along B0, and starts at ωk=0 = ωR with
oscillations in the plane perpendicular to B0. Another branch appears,
starting at ωk=0 = 0.

All in all, we expect to find a peak at ω = ωP for the component of the
momentum parallel to B0, and two peaks at ω = ωL and ωR for the compo-
nent of the momentum perpendicular to B0. We ran the set of simulations
described in Table 4.1, with a ratio ωce/ωpe ranging from 0.5 to 4, nx from
16 to 128, nt from 1000 to 4000, and ρsp from 4 to 16, and we did find
the required pulsation peaks for Fa(ω) (see Fig. 4.2 for a sample spectrum).
The positions and widths of these three peaks are almost constant within
our parameter range.

We note that the peak positions and widths are not changed even for
cases where the thermal Larmor radius r̃ce = rce/X0 = vth,e/(X0ωce) =
λ̃De/(ωce/ωpe) is not resolved. It is expected that the resolution of the Lar-
mor radius by the grid is of no importance to describe particle trajectories
in constant fields, because the interpolation of these fields from grid points
to superparticle position gives the same result regardless of the grid size if
the fields are constant. The relevant constraint is instead that rce should
be resolved along the trajectory, vsp∆t < rce, with vsp the superparticle
velocity. This relation is equivalent to ∆t < ω−1

ce .

However, for simulations with under-resolved Larmor radii the electric
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nt nx ρsp vth,e/c λ̃De Tpe
d
dt
Etot(t)
Etot(0)

500 to 2000 10 16 0.04 0.4 1.6× 10−4

˝ 10 16 0.10 1 5.8× 10−5

˝ 14 16 0.07 1 3.5× 10−5

˝ 18 16 0.04 0.7 5.3× 10−5

300 to 2000 25 4 0.04 1 1.0× 10−4

˝ 25 16 0.04 1 2.5× 10−5

˝ 25 32 0.04 1 1.3× 10−5

Table 4.2: Energy conservation for simulations of a thermal plasma with no
background magnetic field. The energy increase rate is measured on the total
energy normalized by the total initial energy, while time is again normalized with
the electron plasma pulsation Tpe. Here, mi/me = 49 and Ti = Te.

field energy starts to behave abnormally after some tens of plasma pulsa-
tions, and energy conservation curves present an exponential heating (see
Sect. 4.4.1) that can lead to dramatic consequences. This parameter range
must be avoided.

Energy conservation

Independent of the strength of the background magnetic field, we observe
a linear increase of the total energy with time that is due to interactions of
particles with the grid (see Appendix 5.A.2). The growth rate is indepen-
dent of the size of the timestep (from nt = 2000 down to Courant condition
∆t ∼ X0/c, equivalent to nt = 2πnx). Its dependence on the number of
superparticles per cell is quite precisely given by 1/ρsp. However, its depen-
dence on the spatial resolution nx and thermal spread vth,e is less clear. In
particular, it does not depend only on the product nxvth,e/c = λ̃De. The
rate increases with increasing vth,e, and decreases with increasing nx. Some
examples are given for reference in Table 4.2.

Simulations with under-resolved Larmor radii r̃ce < 1 show an exponen-
tial (instead of linear) increase of the total energy starting after roughly
40Tpe. This numerical instability is believed to arise because field pertur-
bation at wavelength λ = 2rce and their aliases (±λ + n × 2π/X0, with n
an integer and X0 the grid size) are allowed to couple when 2X0 > λ (see
Appendix 5.A.2). An inspection of the energy curves shows that the energy
gain is for the kinetic energy. We note that it did not disturbed the spec-
tra of Sect. 4.4.1 because they were computed before the heating reached a
significant level. It is interesting to note that this numerical instability is
develops slowly, so that particles with under-resolved Larmor radii in con-
stant fields can be included in simulations if they spend a small amount
of time before being heated or before reaching areas with smaller magnetic
fields.

4.4.2 Linear growth rates of the counter-streaming instabil-
ity

Another standard test is to study the linear phase of the counter-streaming
instability. We use relativistic streaming velocities to validate the behavior
of the algorithm for relativistic particle motions. Moreover, since magnetic
fields are generated for this range of parameters, this test also probes the
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β0 nt nx ρsp vth/c Box size in de Λp τ simu
tot en/Tpe τ simu

fast mode/Tpe τ theory
max /Tpe

0.95 1000 20 16 0.1 3× 3× 30 0.29 (38%) 0.21
˝ ˝ ˝ 100 ˝ ˝ 0.27 (29%) ˝
˝ 250 20 16 0.1 9× 9× 30 0.27 (29%) 0.24 (14%) ˝

0.995 1000 20 4 0.1 3× 3× 30 32 0.52 (44%) 0.36
˝ ˝ ˝ 16 ˝ ˝ 128 0.45 (25%) ˝
˝ ˝ ˝ 80 ˝ ˝ 640 0.43 (19%) ˝
˝ ˝ ˝ 160 ˝ ˝ 1280 0.43 (19%) ˝
˝ ˝ ˝ 400 ˝ ˝ 3200 0.41 (14%) ˝
˝ ˝ ˝ 560 ˝ ˝ 4480 0.42 (17%) ˝
˝ 500 20 4 0.1 ˝ 32 0.51 (42%) ˝
˝ ˝ ˝ 80 ˝ ˝ 640 0.41 (14%) ˝
˝ ˝ ˝ 128 ˝ ˝ 1024 0.43 (19%) ˝
˝ ˝ ˝ 200 ˝ ˝ 1600 0.42 (17%) ˝
˝ ˝ ˝ 280 ˝ ˝ 2240 0.42 (17%) ˝
˝ 250 20 4 0.1 ˝ 32 0.51 (42%) ˝
˝ ˝ ˝ 80 ˝ ˝ 640 0.41 (14%) ˝
˝ ˝ ˝ 128 ˝ ˝ 1024 0.43 (19%) ˝
˝ ˝ ˝ 200 ˝ ˝ 1600 0.42 (17%) ˝
˝ ˝ ˝ 280 ˝ ˝ 2240 0.42 (17%) ˝
˝ 1000 40 80 0.1 ˝ 5120 0.46 (27%) ˝
˝ 2000 40 4 0.1 ˝ 256 0.60 (67%) ˝
˝ ˝ ˝ 16 ˝ ˝ 1024 0.50 (39%) ˝
˝ ˝ ˝ 48 ˝ ˝ 3072 0.46 (27%) ˝
˝ ˝ ˝ 74 ˝ ˝ 4736 0.47 (31%) ˝
˝ ˝ ˝ 160 ˝ ˝ 10024 0.43 (19%) ˝
˝ 2000 40 16 0.075 ˝ 432 0.52 (44%) ˝
˝ 2000 40 16 0.05 ˝ 128 0.58 (61%) ˝
˝ 250 20 80 0.1 4.5× 4.5× 15 128 0.41 (14%) 0.38 (6%) ˝
˝ 250 20 4 0.1 9× 9× 30 32 0.50 (39%) 0.38 (6%) ˝
˝ ˝ ˝ 16 ˝ ˝ 128 0.48 (33%) 0.38 (6%) ˝ a

˝ ˝ ˝ 80 ˝ ˝ 640 0.43 (19%) 0.39 (8%) ˝
˝ 125 10 128 0.1 ˝ 128 0.42 (17%) 0.39 (8%) ˝
˝ 1000 20 16 0.1 ˝ 128 0.46 (27%) 0.38 (6%) ˝
˝ 500 20 16 0.1 ˝ 128 0.46 (27%) 0.38 (6%) ˝

0.999 1000 20 100 0.1 3× 3× 30 0.61 (15%) 0.53
˝ 250 20 16 0.1 9× 9× 30 0.70 (32%) 0.56 (6%) ˝

a Simulation reported in Figs. 4.4, 4.5, 4.7.

Table 4.3: Theoretical versus experimental values of the filamentation growth
rate τ . Numbers in parenthesis are the discrepancy with respect to τ theorymax , i.e.,
[τ simu

tot en − τ theorymax ]/τ theorymax and [τ simu
fastmode − τ theorymax ]/τ theorymax . Tpe is the plasma period

comprising all electrons, and de the plasma skin depth based on this period. We
recall that de corresponds to nx cells. We also give the PIC plasma parameter
Λp = ne,spλ

3
De = ρsp(nxvth/c)

3 (see Sect. 5.2.1).
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Figure 4.3: Wavenumber dependence of the growth rate τ theory(k⊥), represented
here as the deviation [τ theory(k⊥) − τ theorymax ]/τ theorymax . We recall that τ theorymax =
τ theory(k⊥ = +∞). From Eq. 69 of Michno and Schlickeiser (2010). The squares
are the resolution in k⊥ for a box of transverse size 9, 4.5, and 3 de.

integration of b.

The initial setup consists of two unmagnetized and cold counter-streaming
electron-positron beams, with velocity ±β0ẑ and associated Lorentz factor
Γ0. There is no background magnetic field, and the particles are loaded
according to a drifting Maxwell-Boltzmann distribution. This situation is
unstable, and the kinetic energy of the beam is converted into particle ther-
mal kinetic energy and electromagnetic field energy, the initial perturbation
coming from fluctuations due to the finite superparticle number. The linear
instability spectrum is described by a branch comprising an electrostatic
longitudinal two-stream mode and a transverse electromagnetic filamenta-
tion mode, the general case being an oblique mixed mode (Bret et al. 2010).

Theoretical model

We take the growth rates derived analytically by Michno and Schlickeiser
(2010) on the basis of a cold two-fluid model and denote this result as theo-
retical. Our thermal velocity vth, identical for both species, is low enough to
insure that thermal effects are negligible (Bret et al. 2010, Eq. 28), but high
enough to have a resolved Debye length and to avoid numerical instabilities
(Appendix 5.A). Our parameters are chosen such that the transverse fila-
mentation mode always dominates. The fastest growing modes are those at

large wavenumbers perpendicular to the beams, i.e., k⊥de �
√

2/Γ
3/2
0 (with

de = c/ωpe), and that grow according to bx, by ∝ exp{t/τ theory
max } with

τ theory
max =

1

2π

√
Γ0

2
β−1

0 Tpe. (4.6)

The k⊥-dependence of the growth rate is plotted in Fig. 4.3. We see that all
modes above a few d−1

e quickly reach the maximum growth rate τ theory
max =

τ theory(k⊥ = +∞).
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Figure 4.4: Top: Energy curves for the filamentation instability (case la-
beled Fig. 4.4 in Table 4.3). They are normalized by the total initial en-
ergy E0

tot, which is mostly the kinetic energy of the particles. For example
ε(bx) =

∫
dV Bx(t)2/(2µ0)/E0

tot. The curve “energy conservation” is (E0
tot −

total energy(t))/E0
tot. After 8Tpe, the situation is more or less steady.

Bottom: Autocorrelation scale of the current amplitude, which traces the scale of
the current filaments.

Method of measurement

We measure the growth rates of the magnetic fields bx and by with two
methods. The first is a direct measure on the total energy curve, e.g.,∫

dV b2x ∝ exp(2t/τ) (see Fig. 4.4, top, for an illustration). It gives an
effective growth rate that we denote by τ simu

tot en, equal to 0.48Tpe in this case.

The second consists in following the time evolution of the Fourier modes
of the fields. At a fixed time t0, we compute the 2D Fourier transform of the
fields in a plane (x, z) with a fixed y, that we denote by FTy=y0(t0, kx, kz).
We then average the power spectrum over all the planes y = const to ob-
tain the power spectrum PS(t0, kx, kz) =

∑
y0
|FTy=y0(t0, kx, kz)|2. We then

repeat this procedure for several t0. The discrete mode spectrum is sam-
pled with (kzde, kxde) = 2πnx(i/Nz, j/Nx), where Nz and Nx are the total
number of cells in the z and x directions, and i = 0..Nz/2, j = 0..Nx/2.
The spectral resolution in the direction perpendicular to the beam is thus
∆k⊥de = 2πnx/Nx = 2π/(box width in de). The squares in Fig. 4.3 repre-
sent this spectral resolution for the different box sizes that we use.
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Figure 4.5: Top: Growth of individual Fourier modes for bx (for the run labeled
Fig. 4.4 in Table 4.3). The modes shown are those for i = 0, 1, 2, and j = 0, 1, ..., 25,
and one mode every 100 modes for the remaining. We note that the graphic has
been cut and that the weak modes actually fill a continuum down to an energy of
10−7. The sum of all 320×90 modes is shown in orange. We recall that mode (i, j)
corresponds to (kzde, kxde) = 2π × 20(i/640, j/180).
Bottom: Growth map of the Fourier modes, in units of Tpe.

Results

Figure 4.5 is an example of the temporal evolution of the modes of bx for
the same simulation as in Fig. 4.4. The sum of all modes grows at the same
effective growth rate as the total energy in bx (to within ±1%), τ simu

tot en =
0.48Tpe. However, the fastest growing modes are those for kz = 0 and
0 ≤ kxde ≤ 5, with τ simu

fastmode = 0.38Tpe, which is close to the cold-fluid

result τ theorymax = 0.36Tpe. It is seen from Fig. 4.5 that the large difference
between the effective growth rate τ simu

tot en and the growth rate of the fastest
modes τ simu

fastmode is due to a significant contribution of all the modes during
the whole linear phase. The fastest mode thus never dominates the total
energy in the linear phase. We suspect that this is due to the large noise
level present in PIC simulations.

These results hold for all the test simulations that we conducted, which
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Figure 4.6: Difference between the growth rate measured on the total energy
curve τ simu

tot en and the theoretical growth rate of the fastest modes τ theorymax . Except
when labeled otherwise, vth = 0.1c. Each symbol corresponds to a transverse box
size, and each color to fixed (nx, nt).

are summarized in Table 4.3. The effective growth rates τ simu
tot en measured on

the total energy present various levels of discrepancies with τ theory
max , between

14% and 67%. Figure 4.6 shows the dependence of these discrepancies.
There is a small sensitivity with respect to the timestep (nt) and the box
size, and an important influence of the spatial resolution (nx). There is a
systematic decrease in the difference when the superparticle number per cell
ρsp is increased (all other parameters are kept constant). Since the fluctu-
ation level in the PIC plasma decreases with increasing ρsp, this indicates
that the high fluctuation level excites all the modes and prevents the fastest
ones from dominating the energy.

On the other hand, the growth rates τ simu
fast mode measured on the fastest

modes differ from τ theory
max by a more systematic factor, 14% for β0 = 0.95,

7± 1% for β0 = 0.995, and 6% for β0 = 0.999. These systematic differences
can be explained by looking at the mode spectrum. In all the simulations,
the fastest modes are for kz = 0 and 0 ≤ kxde ≤ 5− 15 (see, e.g., Fig. 4.5,
bottom). Given the spectral resolution ∆k⊥de = 2π/(box length in de),
these modes actually cover a portion of k⊥de where the curves τ theory(k⊥)

of Fig. 4.3 vary significantly and do not yet reach τ theory
max . It explains the

sign and order of magnitude of the difference τ simu
fast mode − τ theory

max . It also
explains the increasingly better agreement when β0 increases.

We note that e and bz are zero in the linear two-fluid theory, and the
fact that they are not zero in our simulation (see Fig. 4.4) reflects an early
non-linear evolution or the effects of fluctuations and correlations absent
from the linear model but present in PIC simulations. These differences are
discussed further in Chapter 5.
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Figure 4.7: Three snapshots of the filamentation instability, at times 2.5, 4, and
5.5Tpe (from left to right) for the simulation of Fig. 4.4. Colors represent the
current magnitude per cell (units are number of superparticles per cell times their
mean velocity), while arrows are the magnetic field. Lengths are in cell number.

4.4.3 Non-linear evolution of the filamentation instability:
filament merging

We now consider the non-linear phase of the filamentation instability. We
study the same counter-streaming configuration as in Sect. 4.4.2, with the
setup labeled by Fig. 4.4 in Table 4.3. The energy curves are shown in
Fig. 4.4.

As a diagnostic, we focus on the filament growing and merging pro-
cesses. The linear phase of the filamentation instability produces current
filaments. Since they are threaded by parallel currents, they attract each
other and, starting from the end of the linear phase, start to merge to pro-
duce larger and larger filaments (Medvedev et al. 2005). This is clearly
visible in Fig. 4.7.

We measure the size of the filaments by computing the two-dimensional
autocorrelation function, in the x− y plane, of the z-averaged current am-
plitude (z is the direction of the beams). This autocorrelation function
is azimuthally averaged to obtain a radial function corr(r). We normalize
corr(0) to 1. The scale of the filaments is then taken to be five times the
radius where corr(r) = 0.8d.

The results are shown in Fig. 4.4 (bottom). We clearly see two regimes:
one during the linear growth of the filamentation instability (from t = 2.2
to 3.6Tpe) where the filament correlation length is set by the wavelength
of the fastest growing mode and remains constant, and one in the non-
linear regime (after t = 3.6Tpe) where the filaments merge and thus quickly
increase their size. In the second case, the growth is roughly linear with
time, which agrees with the PIC simulation results of Dieckmann (2009) for
a similar setup. After t = 6.5Tpe, the filament growth stops. However, we
suspect that the periodic boundaries start influencing the dynamics at this
point.

4.4.4 Linear growth rates of the relativistic tearing instabil-
ity

We also study the linear phase of the tearing mode for a relativistic Har-
ris sheet in a pair plasma. Contrary to the preceding case, this example
provides a test of the algorithm in a situation where thermal effects are
essential.

dTaking this scale as the radius at which corr(r) first vanishes yields the same results.
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Θ ωce/ωpe ΓeUe/c L/de nt nx ρsp Box size in de
τ simu

Tpe

τ theory

Tpe

τ simu − τ theory

τ simu

0.01 0.2 0.14 0.72 250 15 1000 53× 0.3× 42 5.4 5 8%
˝ ˝ ˝ ˝ ˝ ˝ ˝ 80× 0.3× 42 5.4 ˝ 8%

0.1 0.61 0.40 0.83 250 15 1000 53× 0.3× 42 2.1 2 5% Fig. 4.8

1 1.82 0.68 1.62 250 15 1000 53× 0.3× 42 2.5 2.7 7%

Table 4.4: Theoretical versus experimental values of the tearing growth rate τ .
Tpe is the plasma period comprising all electrons, and de the plasma skin depth
based on this period. We recall that de corresponds to nx cells. Other simulations
were performed in the case Θ = 0.01, but with an initial setup slightly out-of-
equilibrium, and they presented variations in the growth rates of less than 3%
when nx, nt, and ρsp were doubled, or when ρsp was divided by two.

The equilibrium consists of a magnetic field

B = ẑB0 tanh
(x
L

)
, (4.7)

sustained by a population of electrons and positrons of equal number den-
sity ∝ 1/ cosh2(x/L) flowing with opposite bulk velocities Ue = −Ui in the
±y directions. We denote the associated Lorentz factor by Γe, and the tem-
perature of the two species by Θ = T/(mec

2). The exact relations between
the different parameters to satisfy the equilibrium are given in Sect. 3.7. In
particular, one should be careful to distinguish between quantities in the
frame moving with one species (denoted with a prime) and quantities in the
simulation frame. For example, contraction of the electron density leads to
ωpe =

√
Γeω

′
pe.

The superparticles are loaded according to a drifting Maxwell-Jüttner.
There is no initial perturbation, and the instability grows out of the fluctu-
ations produced by the finite number of superparticles.

As can be seen in Table 4.4, the bulk velocities and the temperatures of
electrons and positrons are both relativistic. Loading these distributions in
a PIC code is a non-trivial task, and we have developed a special method
for this, that is presented in Sect. 3.8.

The simulation domain is periodic along z and y. Reflecting boundaries
for particles and fields are present along the x direction. There are no
background particles, only that of the current sheet.

An example of the energy evolution is presented in Fig. 4.8. After some
time, the system becomes unstable and the magnetic field starts recon-
necting. As expected, bz dwindles while bx rises, which corresponds to the
formation of magnetic islands. We measure the linear growth rate on bx
as
∫

dV b2x ∝ exp(2t/τ). For comparison, we use the linear growth rates
derived by Pétri and Kirk (2007) by linearizing the Vlasov-Maxwell system
around the drifting Maxwell-Jüttner distribution 3.8 and the magnetic field
of Eq. 4.7.

The results are summarized in Table 4.4. Discrepancies with Pétri and
Kirk (2007) range between 5% and 8%. These growth rates vary by less than
3% when the numerical resolution is doubled (i.e., when ρsp, nx, and nt are
doubled all together). We restrict our analysis to total energy curves because
contrary to the case of the filamentation instability, the linear growth of the
field energy spans several orders of magnitude and the fastest modes have
enough time to dominate the total energy.
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Figure 4.8: Energy curves for the tearing instability (labeled Fig. 4.8 in Table 4.4).
Shown are the energy curves, for example

∫
dV Bx(t)2/(2µ0). They are normalized

by the total initial energy E0
tot (which is mostly the energy in bz). The curve

labeled “energy conservation” is (E0
tot − total energy(t))/E0

tot.

We note that when the simulation is launched, an electromagnetic wave
is seen to propagate from the sheet in the ±x directions. This wave is a
necessary consequence of the fact that at t = 0 we load the superparticles
by pairs of electron-positron at the same location, and we set a zero elec-
tric field everywhere (see Sect. 4.3.1). The system then has to relax from
this very peculiar state: in less than one plasma period, charge screening is
established and an electric field appears. It is this field that partly prop-
agates outside of the sheet. It is then reflected on the ±x boundaries and
propagates back to the sheet, causing the oscillations in ey seen in Fig. 4.8.
We have checked that their incidence does not influence the linear growth
by using different domain sizes.

It is more puzzling that the sheet contracts slightly just after the be-
ginning of the simulation and the current magnitude at its center rises by
. 10%. This may be related to the fact that our algorithm does not solve
the Vlasov-Maxwell system in a strict sense (see also Sects. 5.2 and 5.5.2).

4.5 Conclusion and discussion

We have presented our particle-in-cell code Apar-T, and studied several
validation tests.

Computation of the spectra from a magnetized or unmagnetized thermal
plasma at rest (Sect. 4.4.1) has proven very accurate, with the plasma pul-
sation and the right and left cutoff pulsations precisely recovered (Figs. 4.1
and 4.2), even in cases where the Debye length and the Larmor radius are
not resolved. This proves that the description of individual particle mo-
tions in a constant magnetic field and of collective particle dynamics is
accurate, and robust with respect to numerical resolution. In particular, we
showed that Larmor orbits in a constant magnetic field are well described
provided that the cyclotron pulsation is well resolved, independently of the
grid size. We found, however, a numerical instability with abnormal be-
havior in the energy curves and high noise levels for under-resolved Debye
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length or under-resolved Larmor radius, so that this parameter range should
be avoided.

Simulations of the filamentation instability (Sect. 4.4.2) showed a good
agreement with linear cold theories, provided that the growth rates are com-
puted from the temporal evolution of the Fourier modes. Discrepancies with
theory then range from 5% to 13%, and can be explained by the wavenum-
ber dependence of the growth rates. On the other hand, the linear growth
rates derived from the total energy curves, or equivalently from the sum of
all Fourier modes, present larger discrepancies with linear theory, ranging
between 12% to 61%. This is explained by the high level of fluctuations
in PIC codes that prevent the fastest growing modes to dominate the total
energy before the end of the linear phase of the instability.

Simulations of the tearing instability in a relativistic pair plasma gave
linear growth rates within 8% of those found by Pétri and Kirk (2007) with
an analytical linear Vlasov-Maxwell solution, a result not varying signifi-
cantly when changing the numerical resolution (Sect. 4.4.4, Fig. 4.8, and
Table 4.4). This example, where the shape of the velocity distribution is a
key feature, is thus in agreement with the Vlasov-Maxwell description. It
also validates the new method used to load the relativistic (in both tem-
perature and bulk velocity) Maxwell-Jüttner distribution that we present
in Sect. 3.8, as well as the general relations used for the relativistic Harris
equilibrium derived in Sect. 3.7. We note that in this case the total energy
curves can be used for evaluation of the linear growth rates because the
linear phase spans several orders of magnitude in field intensity, so that the
fastest growing modes have enough time to dominate the energy.

All in all, these tests show that our code Apar-T is a sound basis for
future explorations. They also serve as a base to explore important questions
regarding the nature of a PIC plasma, that we discuss in the next chapter.

Appendix 4.A Numerical implementation

This Appendix is the direct continuation of Sect. 4.3. It gives details on the
numerical scheme used in Apar-T.

4.A.1 Computation of the current

Before going through the normalization of Eqs. 4.4a-4.4e, we have to under-
stand how the current is computed. As said in Sect. 4.3.2, interpolation of
particle quantities to grid nodes is done by attributing to the superparticles
a finite volume Vsp = X3

0 . We consider a superparticle, and the cell that
contains its center. At time t, the superparticle occupies a volume Vt of the
cell. The charge in the cell is given by Qcell(t) = qsp× (Vt/Vsp). The charge
continuity equation then gives∫

cell

∫
© j · dS = −dQcell

dt
=
Vt+dt − Vt

Vsp

qsp

dt
. (4.8)

The superparticle volume necessarily intersects three faces of the cell
that contains its center: one of perpendicular along x, one along y, and one
along z. Consequently, the motion of this superparticle will create a current
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through these three faces, and we can write∫
cell

∫
© j · dS = jxX

2
0 + jyX

2
0 + jzX

2
0 . (4.9)

We have to know which part of the volume variation Vt+dt − Vt is at-
tributed to each part of the current. The displacement of the superparticle
between t and t+dt is denoted (∆x,∆y,∆z). The volume variation depends
on this displacement, and the part of it proportional to ∆x is attributed
to jx, and similarly for the y and z components. More specifically, we can
write Vt+dt − Vt = Ax∆x + Ay∆y + Az∆z. The areas Ai can be evaluated
with some geometry (see Sect. 4.A.3). Then (and similarly for y and z):

jx = − 1

X2
0

qsp

dt

Ax∆x

Vsp
. (4.10)

This way of computing the current ensures that the discrete charge con-
servation equation is fulfilled, and justifies the advection of the divergence
of the fields.

4.A.2 Normalization

The problem is formulated with as many equations as variables (Eqs. 4.4a-
4.4e, variables e, b, j, xsp, and vsp for each superparticle), and it is possible
to normalize the equations in a way independent of any physical quantity.
We denote normalized quantities with a tilde.

We choose to normalize lengths by X0. Consequently, the normalized
step-size is unity. Times are normalized by T0 = X0/c, and velocities are
then naturally normalized to X0/T0 = c. For the fields E and B, we
use e = E and b = cB. These last two quantities are normalized by
e0 = b0 = mec

2/(eX0). With this, Eqs. 4.4a, 4.4b, and 4.4c transform into

dx̃

dt̃
= ṽ, (4.11a)

dγṽ

dt̃
=

[
me

ms

qs
e

]
(ẽ+ ṽ ∧ b̃), (4.11b)

∂b̃

∂t̃
= −∇̃ ∧ ẽ, (4.11c)

with ms = me or mi and qs = −e or e (e is positive).

For the current j, the algorithm computes the quantity Ax∆x/Vsp. Writ-
ing for example the x component of Eq. 4.4d gives

∂ẽx

∂t̃
= (∇̃ ∧ b̃)x +

[
1

ε0

e2

mec2X0
p
qs
e

]
︸ ︷︷ ︸

α

[
Ãx∆x̃

Ṽsp

]
1

d̃t
. (4.12)

Using Eq. 4.3, we can write

α =
2 sgn(qs)

n2
xρ

0
sp

, (4.13)

where sgn is the sign of the charge.
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With this, all the equations are completely independent of any physical
quantity related to the simulated problem, and depend only on space dis-
cretization (nx) and particle coarse-graining (ρ0

sp). Time discretization (nt)
will play a role in time integration.

As a final comment, we note that ρ0
sp is a priori unrelated to the ac-

tual number of superparticles per cell during the simulation. One should,
however, make these two values not too far apart, because the size and
timesteps are a fraction nx and nt of the skin depth and plasma period of
a n0

e-density plasma. If, for example, the superparticle density in the simu-
lation is twice ρ0

sp, then nx cells will now represent two skin depths of the
2n0

e-density plasma, and the resolution will decrease. This must be kept in
mind in simulations where high density contrasts appear.

4.A.3 Discrete version of the equations

In this section we drop the tilde over normalized quantities. We denote the
time at which they are considered by a superscript and their spatial location
on the grid by a subscript.

The main loop

The strategy is to use a leap-frog scheme. It has the advantages of being
time-centered and reversible, and second-order in time and space.

Before the loop, b and v are known at time t − dt/2, and e and x are
known at time t. This should also be true for the initial conditions, so
that initially we integrate backward the velocities and the b-field by −dt/2.
Injected particles (if any) should also be correctly staggered.

The structure of the main loop is the following:

1. Half advance of bt−dt/2 with ∇ ∧ et; b is now at time t.

2. Update of vt−dt/2 with bt and et; v is now at time t+ dt/2.

3. Update of xt with vt+dt/2; x is now at time t+ dt.

4. Half advance of bt with ∇ ∧ et; b is now at time t+ dt/2.

5. Boundary for b.

6. Full advance of et with ∇ ∧ bt+dt/2; e is now at time t+ dt.

7. Boundary for e.

8. Boundary for particles.

9. Computation of the currents from vt+dt and xt+dt/2.

10. Filtering of the currents.

11. Boundary for the currents.

12. Add currents to et+dt.

Integration of the fields

The fields are stored on the grid in a staggered way, with e at the center
of the grid edges and b at the center of the grid faces (Fig. 4.9). This is
the so-called Yee lattice. It allows an easy integration of the fields, and
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Figure 4.9: Grid and fields locations.

is second-order accurate in time and space (Birsdall and Langdon 1985,
Sect. 15),

b
t+dt/2
x | i,j,k = b

t−dt/2
x | i,j,k + dt

(
ety | i,j,k+1 − e

t
y | i,j,k − e

t
z | i,j+1,k + etz | i,j,k

)
, (4.14)

and similarly for the other components of b and for e.
To reduce the effects of Čerenkov emission (see Appendix 5.A.1), we

have also implemented a fourth order solver (Greenwood et al. 2004).

Moving the particles

Integration of the equation of motion for the superparticles is done with
the algorithm described by Birsdall and Langdon (1985, Sect. 15.4). It
is a relativistic generalization of the leap-frog scheme, time centered, time
reversible, and second-order accurate. We note however that, as pointed
out by Vay (2008), it can have shortcomings for ultrarelativistic particles.
In short, Eqs. 4.11a and 4.11b are discretized as(

ut+dt/2 − ut−dt/2
)
/dt =

me

m

q

e

{
et +

ut+dt/2 + ut−dt/2

2γt
∧ bt

}
,

(4.15a)

xt+dt − ut

dt
=

ut+dt/2√
1 + (ut+dt/2)2

, (4.15b)

with u = γv and γ the Lorentz factor. Defining

u− = ut−dt/2 + qme/(em) etdt/2, (4.16a)

u+ = ut+dt/2 − qme/(em) etdt/2, (4.16b)

and substituting into 4.15a leads to

u+ − u−

dt
=
qme/(em)

2γt
(u+ + u−) ∧ bt. (4.17)

This equation is the classical rotation around a b field (Birsdall and Langdon
(1985, Sect. 4.4), Hockney and Eastwood (1988, Sect. 4.7.1)), and is solved
via

u+ = u− +
2

1 +
(

Ωdt
2

)2 (u− + u−
Ωdt

2

)
∧ Ω, (4.18)
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with the rotation vector Ω = qme/(2emγ
t)bt. Finally, we use

γt =
√

1 + (u−)2 =
√

1 + (u+)2. (4.19)

In Eq. 4.15a, the fields have to be known at time t. It explains the need for
the half advances of b in the general scheme.

The interpolation of the fields at particle positions is done via a trilinear
interpolation. We denote by (i, j, k) the nodes of the main grid A (Fig. 4.9),
and we introduce a second grid B whose cell centers are on (i, j, k). Consider
a superparticle at position x = i + δx, y = j + δy, z = k + δz. The
superparticle is actually a charge cloud of volume equal to a cell, and this
volume intersects the cell of the second grid with center (i, j, k) in a volume
Vi,j,k = (1 − δx)(1 − δy)(1 − δz), the cell of the second grid with center
(i + 1, j, k) in a volume Vi+1,j,k = δx(1 − δy)(1 − δz), and so on. For a
quantity f defined at grid points (i, j, k), the weight associated to fi,j,k is
Vi,j,k, the one associated to fi+1,j,k is Vi+1,j,k, and so on for a total of 8
points.

However, neither e nor b are defined at grid points (i, j, k) (Fig. 4.9),
and they must be first interpolated at grid points before applying the above
procedure. This is done for example with fi,j,k = 0.5(ex,i−1,j,k + ex,i,j,k) or
fi,j,k = 0.25(bz,i,j,k + bz,i−1,j,k + bz,i−1,j−1,k + bz,i,j−1,k). Details can be found
in Matsumoto and Omura (1993) and Messmer (2001).

We note that the superparticle shape used for interpolation of fields
to particle position and for interpolation of the current to grid nodes is
the same. This is required to avoid the existence of a self-force on the
superparticles and to conserve the total momentum (Birsdall and Langdon
1985, Sect. 8.6).

Computation of the current

The current ji,j,k is defined at the same locations as ei,j,k. For current
deposition, we again consider the volumes occupied by the superparticle in
the grid B cells. As the superparticle moves, these volumes vary. We denote
by (i+ δx, j + δy, k+ δz) the position of the superparticle at t− dt, and we
assume that it moves from (∆x,∆y,∆z) between t− dt and t.

Consider, for example, the volume of the superparticle in the cell of
center (i, j, k). Its variation is given by dV = (1 − δx − ∆x)(1 − δy −
∆y)(1 − δz − ∆z) − (1 − δx)(1 − δy)(1 − δz). Defining dx = δx + ∆x/2,
cx = 1− dx, and similarly for y and z, one finds

dV = ∆x [−cycz −∆y∆z/12] → jx|i,j,k

+ ∆y [−czcx −∆z∆x/12] → jy|i,j,k

+ ∆z [−cxcy −∆x∆y/12] → jz|i,j,k.

(4.20)

As explained in Appendix 4.A.1, the part of 4.20 proportional to the dis-
placement along x is attributed to jx|i,j,k, and so on.

A similar treatment is done with the cells that intersect the superparticle
volume. These are cells centered in (i+ ε, j+η, k+ ξ), with ε, η and ξ equal
either to 0 or 1 (8 cells). For each of these cells, only the faces intersecting
the superparticle volume are concerned, so that in total there are only 12
currents to update.

Currents can be smoothed before being added to e. This has the effect
of reducing electromagnetic noise (see Appendix 5.A.2). This is done in the
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following way for the current of cell (i, j, k): attribute a weight of 1 to cell
(i, j, k); of 0.5 to cells (i ± 1, j, k), (i, j ± 1, k), and (i, j, k ± 1); of 0.25 to
cells (i ± 1, j ± 1, k), (i ± 1, j, k ± 1), and (i, j ± 1, k ± 1); of 0.125 to cells
(i± 1, j ± 1, k ± 1); and normalize the sum of the weights to 1.

4.A.4 Boundaries

Periodic and reflective boundaries are available. The latter simulate a
perfect conductor at the domain boundary by imposing the correct val-
ues for the electric and magnetic fields (b = e = 0 inside the conductor,
bnormal = etangential = 0 at the conductor surface), and by reflecting the
particles.

4.A.5 Parallel efficiency

The code parallelization was performed and tested previously by Messmer
(2001, Chap. 4). It uses Fortran 90 and MPI. The simulation domain is
decomposed in sub-domains of equal length along the z direction, and all
the cells and particles of each sub-domain are assigned to a processor. To
minimize communications between processors, ghost cells for the fields are
added to each sub-domain. Communication between neighboring processors
occurs at each step involving the boundaries: for particles leaving or entering
the domain, for the fields, and for the currents.

The domain is currently decomposed along one direction only. This is
relevant for simulations of collisionless shocks where the domain is elongated
along the flow direction, or for 2D magnetic reconnection simulations where
the presence of the over-dense current sheet at the domain center would
lead to load balancing issues if a 2D domain decomposition were used.

We have tested the efficiency of this implementation with simulations
using 16 superparticles per cell and a domain size of 60 × 60 × (16nproc),
where the number of cores varied from nproc = 16 to 256. The corresponding
(weak) scaling results, shown in Fig. 4.10, are satisfactory. Simulation times
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scatter with a standard deviation of 4% around a constant value. The scatter
is probably due to the uncontrolled node geometry.
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Particle-in-cell algorithms:
how do they model plasmas?

Indeed, we [numericians] are accused of tomfoolery more than
we deserve. We then simply admit to being in good company
with the rest of plasma physics, with theorists and experimen-
talists who also have their kit bags of approximate (and occa-
sionally inaccurate) tools.

C. Birsdall and A. Langdon,

Plasma Physics via Computer Simulations, 1985
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5.1 Outline

The aim of this chapter is to highlight the approximations involved by the
particle-in-cell modeling. It is of interest not only for us and our simulations,
but also for any group using PIC algorithms. Birsdall and Langdon (1985)
and Hockney and Eastwood (1988) considered such questions. Here we
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extend their work, in particular by considering 3D electromagnetic PIC
codes. This chapter essentially contains half of the paper Melzani et al.
(2013) (and its shorter version Melzani et al. 2014a).

The discretization of the physical equations inevitably leads to numerical
precision and instability issues which are, however, not the focus of this
chapter. They have been extensively studied, for example by Birsdall and
Langdon (1985) and Hockney and Eastwood (1988) (see Appendix 5.A for
a short review).

Instead, we explore the consequences of the two building blocks at the
base of the PIC model. The first stems from the capability of computers
to handle only up to ∼ 1010 particles, while real plasmas contain from
104 to 1020 particles per Debye sphere: a coarse-graining step must be
used, whereby of the order of p ∼ 1010 real particles are represented by a
single computer superparticle. The second is field storage on a grid with
its subsequent finite superparticle size. We introduce the notion of coarse-
graining dependent quantities, i.e., physical quantities depending on the
number p. They all derive from the plasma parameter Λ, which we show to
be proportional to 1/p.

We explore the consequences of these approximations through two exam-
ples in Sect. 5.2: the rapid collision- and fluctuation-induced thermalization
of plasmas with different temperatures, that scale with the number of super-
particles per grid cell and are a factor p ∼ 1010 faster than in real plasmas;
and the high level of electrostatic fluctuations in a thermal plasma, with
corrections due to the finite superparticle sizes. A third important example
was already presented in Sect. 4.4.2: the blurring of the linear spectrum of
the filamentation instability, where the fastest growing modes do not dom-
inate the total energy because of a high level of fluctuations. The main
conclusion arising from these tests is that the collisions and correlations
are artificially enhanced in a PIC plasma, but they must be kept negligible
toward kinetic physics in order to obtain meaningful results.

In Sect. 5.3, we point out more generally that a PIC code simulates a
microstate constituted by a restricted number of finite-sized particles, each
representing up to 1010 real plasma particles, while the Vlasov-Maxwell
system models a plasma macrostate described by a continuous fluid in six-
dimensional phase-space. These two descriptions are not equivalent and in
particular PIC systems, with their small numbers of particles per Debye
sphere, suffer from abnormally high noise levels and include to an unknown
degree particle correlations absent from Vlasov-Maxwell equations.

We come back to coarse-graining in Sect. 5.4, where we stress higher-
order effects than the simple variation of the coarse-graining dependent
quantities.

5.2 Coarse-graining dependent quantities

Particle-in-cell simulations have brought tremendous new insights into astro-
physical plasmas, for example through studies of kinetic instabilities in their
non-linear phase, kinetic turbulence, particle acceleration via the Fermi-
process, or 3D magnetic reconnection and the associated particle acceler-
ation. However, as we will detail in this section, there remain a number
of questions with respect to the degree to which PIC models are able to
completely mirror real plasmas.
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The modeling of a real plasma by a PIC plasma implies two steps (see
the right branch of Fig. 5.3): the grouping of many real particles into a
single superparticle, known as coarse-graining, and the discretization of the
equations with the presence of a grid. Each of these steps raises questions:

1. Coarse-graining: Is plasma behavior still expected with so few super-
particles per Debye sphere? Is the noise level too large? With this,
do non-linearities appear sooner than in real plasmas? Does the PIC
plasma remain collisionless? And what are we losing when we gather
the particles into the superparticles?

2. Discretization and grid: At least for explicit schemes, they bring with
them numerical stability problems, reviewed in Appendix 5.A. More-
over, the interpolation of superparticle quantities to grid points implies
a finite volume for the superparticles, which in turn implies a vanish-
ing two-point force at short distances and thus reduces drastically the
influence of collisions; it helps the PIC plasma to be collisionless, but
is it enough? And what are the consequences of having superparticles
whose sizes reach a significant fraction of the Debye length?

We discuss some of these questions in Sects 5.2.1 to 5.2.4.

The distinguishing feature of the Vlasov-Maxwell description of a plasma
is the absence of collisions and of correlations between particles. Given the
two preceding points, we can wonder if a PIC plasma can be described by
the Vlasov-Maxwell system, or if it has too few superparticles per cell and
thus correlation levels that are too high for this description to be accurate.
The differences between PIC and Vlasov-Maxwell descriptions are examined
in Sect. 5.3.

5.2.1 The plasma parameter Λ

As said earlier and expressed in Eq. 4.3, a real plasma is represented in
the computer by grouping many particles into superparticles. This is what
is called coarse-graining. Unlike fluid equationsa, Eqs 4.4a-4.4e are not
invariant under coarse-graining (because of the definition of the current,
Eq. 4.4e). The prototype of p-dependent quantities is the plasma parameterb

Λ = nλ3
D, which is close to the number of particles per Debye sphere (we

recall that p is the number of particles per superparticles, λD the Debye
length and n the real particle number density).

The plasma parameter Λ also expresses the ratio of the particles’ kinetic
energy to their electrostatic potential energy of interaction and, as such,
varies as 1/p because kinetic energy is proportional to the superparticles’
mass msp ∝ p while charge interaction energy involves their charge q2

sp ∝
p2. This can be seen directly by writing Λp = nspλ

3
D for the superparticle

plasma, with nsp the number density of superparticles. The Debye length,
being derived from fluid theory, is invariant under coarse-graining, and since

aBy a fluid model we mean any set of equations where the individual nature of the
particles has been smoothed. This is the case of the MHD family, two-fluid models, or
the Vlasov-Maxwell system.

bIn a fully ionized plasma, all coarse-graining dependent quantities can be expressed
as the product of a fluid quantity (which is coarse-graining independent) and a parameter
expressing a number of particles per fluid volume. Examples of these parameters include
Λ = nλ3

D, n(c/ωpe)3, n(c/ωpi)
3, ...
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n = p× nsp, one has that

Λp =
Λ

p
, (5.1)

with Λ = Λp=1 the real plasma parameter.
In a real plasma Λ ranges from 104 to 1020 (for example Λ ∼ 106 in solar

coronal loops; 1012 in the magnetotail, magnetopause, or in typical Crab
flares; 1017 in AGN jets), while in computer experiments where we have
to simulate thousands to millions of Debye spheres, Λ reaches hardly a few
tens (for a discussion see, e.g., Bykov and Treumann 2011, Sect. 4). The
corresponding number of particles per superparticles then reaches p ∼ 103

to 1019. The question of the relevance of PIC simulations for describing
collisionless plasmas has thus been asked from the beginning, and concerns
both terms, collisionless and plasma, that we now discuss.

Plasma behavior

A weakly coupled plasma is characterized by the predominance of collective
effects over individual effects. The ratio of these effects is contained in the
plasma parameter Λp, which can be seen as the ratio of collective behavior
(the interaction of one particle with the electromagnetic fields collectively
generated by all others, which is coarse-graining independent) to binary
effects (which are proportional to q2

sp/msp ∝ p).
Since plasma behavior, with Debye screening and local charge neutrality,

requires a high plasma parameter, it is wise to ask how large it should be
in a PIC plasma. Birsdall and Langdon (Chap. 1, 1985) and Hockney and
Eastwood (1988) have shown that it is not necessary for this ratio to be as
high as in real plasmas, and that a Λp of about a few suffices for correct
plasma behavior.

Collisionless behavior

A plasma behaves collisionlessly if the time and length scales of interest are
negligible toward the collision time and the mean-free path, respectively.
Since the collision time scales as Λp times the plasma period, it is not clear
whether a PIC computer plasma with a plasma parameter on the order of
unity will be collisionless.

Particle-in-cell plasmas are helped by the superparticle finite sizes, which
imply that the two-point force decreases to zero for separations smaller
than this size. This fact, albeit degrading the accuracy of single particle
dynamics, greatly reduces the relative importance of binary collisions so
that in order to correctly simulate a collisionless plasma for scales accessible
in simulations, one has to insure that (Chap. 1 Birsdall and Langdon 1985;
Hockney and Eastwood 1988)

Λp = nspλ
3
D = ρspλ̃

3
D > a few. (5.2)

(Here, λ̃D = λD/X0 is the normalized Debye length. It can be expressed as
λ̃D = nxvth/c with vth =

√
T/m.)

This is all the more true if rc < X0, where X0 is the grid size and
rc is the effective collision radius for Coulomb encounters, expressed by
equating the kinetic energy of the meeting particles to their potential energy
of interaction: rc = q2

sp/(4πε0 T ) = λD/Λp (rc is also p-dependent). The
Debye length must be resolved for reasons of numerical stability (Sect. 4.4.1
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and Appendix 5.A), so that we arrive at an optimal ordering rc < X0 < λD,
which is allowed only if, again, λD/rc = Λp > 1.

However, because the PIC model is a description of a plasma of cloud
charges, grazing collisions will still be present and will lead to thermalization
(Birsdall and Langdon (Chap. 1, 1985), Hockney and Eastwood (chaps. 1
and 9, 1988)), a point discussed in the next section.

5.2.2 The thermalization time

In a PIC plasma, the behavior of plasma quantities depending on Λ can
be guessed by replacing Λ by Λp. This is the case for the thermalization
time of a plasma by grazing Coulomb collisions (Spitzer 1965) or by electric
field fluctuations (p. 282 Birsdall and Langdon 1985), which is on the order
of tth ∼ TP × Λ (with TP the plasma period). This has two important
consequences:

• We expect tth to depend on resolution and coarse-graining, roughly as

tth
TP
∝ Λp = ρspλ̃

3
D. (5.3)

• Since Λp = Λ/p is several orders of magnitude smaller than the real
plasma parameter Λ, we expect the thermalization by grazing colli-
sions and fluctuations to be vastly more efficient in PIC codes than in
reality.

This can have important consequences in simulations where thermalization
plays a key role. For example in real collisionless shocks, the mean free
path for collisions lmean free path is far larger than the shock thickness ∆shock

and the thermalization processes are collisionless kinetic instabilities. Since
the mean free path lPIC

mean free path ∝ Λp in a PIC plasma is smaller by a fac-

tor of p ∼ 1010 than in a real plasma, it is not obvious that the ordering
lPIC
mean free path � ∆shock still holds. To truly describe a collisionless shock

with a PIC algorithm, one has to be careful that the unphysically fast ther-
malization by collisions or fluctuations remains slower than thermalization
by kinetic instabilities.

To illustrate the dependence of the collision and fluctuation induced
thermalization time, we present simulations that initially have two ther-
mal ion-electron plasmas. The first is cold, with a temperature T1,e(0) =
T1,i(0) = 1.6× 10−3mec

2 for its electrons and ions, while the second is hot,
with T2,e(0) = T2,i(0) = 1.8×10−2mec

2. The mass ratio is mi/me = 25. The
four species interact via collisions and correlations (no sign of plasma kinetic
instabilities were found) and tend to reach the same final temperature

T∞ =
T1,e(0) + T2,e(0)

2
. (5.4)

Particle-in-cell results are shown in Fig. 5.1 (top) for the electrons, for
four simulations with a number of superparticles per cell (including all
species) ρsp = 4, 16, 64, or 128. The other parameters are kept fixed,
with nx = 25, nt = 500, and a box size of 253 cells. It results in Λ∞ =
0.25ρsp(nx

√
T∞/mec2)3 = 15, 61, 243, or 485. The temperatures are mea-

sured with T = m
∑

sp v
2
sp/3, where the sum runs over all the superparticles
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Figure 5.1: Top: Electron temperatures for the hot (2) and cold (1) plasmas,
from four simulations with different ρsp. The curves for ion temperatures are sim-
ilar, except for an overall time dilatation by a factor ∼ (mi/me)

1/2 = 5. In this
figure we use T∞(t) = (T1(t) + T2(t))/2. Except for ρsp = 4 where there is signifi-
cant numerical heating, T∞(t) is constant in time.
Bottom: Half-thermalization time for ions and electrons, versus number of super-
particles per cell. For ions, we have plotted tth/(mi/me)

1/2. The times reported
are measured as the initial slope of the temperature curves in a log-lin plot, and
thus correspond to tth/2. We see the scaling tth ∝ ρsp.
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of a given species. In Fig. 5.1 (top) we clearly see a slower thermalization
as ρsp increases.

To evaluate the thermalization times, we use the result of Spitzer (1965):
for two species at temperature T1 and T2, thermalization occurs according
to

dT1

dt
= −dT2

dt
=
T2 − T1

tth
,

tth =
3π

2
√

2π

nω−2
p1 ω

−2
p2

ln Λc

(
T1

m1
+
T2

m2

)3/2

,

(5.5)

with n = n1 = n2 the particle number density, ωpi =
√
ne2/(ε0mi), and

ln Λc the Coulomb logarithm, or the logarithm of the ratio of the largest
to closest distances used in the collision integral. In a PIC code, ln Λc =
lnλD/X0. Clearly, (T1(t) + T2(t))/2 is constant and equal to T∞. It follows
that if mass m1 and m2 are equal, the thermalization time is also constant
and can be written

tth =
3

2
√
π

2π

ωp1

Λ∞
ln Λc

, (5.6)

with Λ∞ = n [ε0T∞/(ne
2)]3/2 the plasma parameter based on the tem-

perature T∞. It also follows that the temperatures vary exponentially as
T1 = T∞ − 0.5[T2(0)− T1(0)] exp{−2t/tth}, and similarly for T2.

Here we do not find the temperature curves to be strictly exponential,
mainly because there are four species. The cold electrons interact with the
hot electrons on a timescale t0, but also with the hot ions on a timescale
mi/met0 = 25t0. The cold ions are heated by interactions with the hot
ions on a timescale (mi/me)

1/2t0 = 5t0, and by interactions with the hot
electrons on a timescale mi/met0 = 25t0. Since the cold ions are heated
more slowly than the cold electrons, a temperature difference between these
two components appears and they also start heating or cooling each other.
Nevertheless, given the separation of scales we expect a measure of the slope
around t = 0 to reflect the electron-electron or ion-electron thermalization
times when measured on the electron or ion temperature curves, respec-
tively.

Results are shown in Fig. 5.1 (bottom). We see that the relation tth ∝
ρsp is roughly correct for both electrons and ions. We also underline the
difference with a real plasma, where tth/Tpe ∼ Λ reaches 1010 or more, while
it is on the order of Λp ≤ 104 in PIC simulations.

5.2.3 The slowing-down time of high-energy particles

The previous section shows that plasmas thermalize faster if the number of
superparticles per cell is small. Not surprisingly, the same effect arise for
fast particles: they are slowed down faster if the number of superparticles
per cell is small. Two papers study this particular issue: Kato (2013) and
May et al. (2014). We briefly review their findings.

Kato (2013) shows that for suprathermal fast particles (i.e., v � vth,e),
the energy loss rate of the particle does not depend on the plasma thermal
velocity vth,e, and consequently not on the number of particles per Debye
sphere. Instead, it depends on the number of superparticles per electron
inertial length sphere, Nde = ned

3
e . He proves and verifies with simulations
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that the energy loss rate is
dE

dt
∝ 1

Nde

. (5.7)

He also verifies that it does not depend on the temperature, and that it is
independent on the shape factor of the superparticles.

May et al. (2014) propose a similar study. They show that the collision-
and fluctuation-induced energy loss rate of suprathermal particles is ∝
q2/m ∝ ∆2/ρsp in 2D, with q, m, the charge and mass of the particle, and ∆
the cell width. This expression indicates that minimizing these losses can be
done either by increasing the number of superparticle per cell, as previously
explained, or by increasing the cell size. In particular, when ∆ > de, the
particle wake field is not well resolved and thus has less effectsc. However,
in this case other electron inertial length physics may be missed.

May et al. (2014) illustrate the importance of the artificially enhanced
energy loss for fast ignition simulations. This is also of special interest
for simulations of magnetic reconnection under relativistic magnetizations,
where one focus point is the creation of high-energy particle distributions.
Again, the key point is that the number of superparticles per cell should
be large enough so that the artificially enhanced collisional effects, here the
energy loss rate of fast particles, remain unimportant for the simulation
duration, or when compared to collisionless physics. The best way to check
this is to run the same simulation with different numbers of superparticles
per cell, and to compare the results.

5.2.4 The field fluctuation level

The previous section showed that the behavior of PIC plasma quantities
can be guessed by the substitution Λ → Λp. While it is true for orders of
magnitude estimates, this recipe is, however, not exact, and coarse-graining
dependent quantities generally follow other relations than their real coun-
terparts with respect to physical parameters (temperature, Debye length,
plasma parameter, etc.). The main reason for this is that the finite volume
of the superparticles implies a cutoff of the physical processes at smaller
scales, an effect that becomes even more important when the superparticle
size is close to the Debye length: λD/X0 = λ̃D typically ranges between one
(or less) and ten in simulations.

This section illustrates this double dependence (Λ → Λp and superpar-
ticle size) with a detailed study of the level of electric field fluctuations ε in
a PIC thermal plasma.

In a real plasma in thermal equilibrium, it is given by (Sect. 1.1 Callen
2006)

ε =
〈ε0E2/2〉

3nT/2
∼ 1

Λ
, (5.8)

where the symbol 〈·〉 denotes an average over space.

Dieckmann et al. (2004) studied the spectrum of thermal fluctuations
in a PIC plasma, but without investigating their levels. Hockney (1971)
(see also Hockney and Eastwood (1988)) measured ratios like ε in a series
of 2D simulations of thermal plasmas, and found a good agreement with

cThe slowing down of a suprathermal particle in a real plasma is due to the creation
of a wake field produced by the particle that excites the medium, and this wake field acts
back on the particle to slow it down.



Chapter 5 173

f = ρspλ̃
3
D/(λ̃D − arctan(λ̃D))

Λp = ρspλ̃
3
D

log10 λ̃D

1/(55Λp)
numerical experiments

1.0

0.8

0.6

0.4

0.2

0

−0.2

101 102 103

100 101 103102 104
10−6

10−5

10−4

10−3

10−5

10−4

10−3

1/(71f)
numerical experiments

electric energy normalized to kinetic energy

electric energy normalized to kinetic energy

Figure 5.2: Top: Field energy levels as a function of f = ρspλ̃
3
D/(λ̃D−arctan λ̃D).

The colorbar is log10(λ̃D). Blue points at low f have an under-resolved Debye
length that could explain the mismatch with 1/f .
Bottom: Field energy levels versus Λp = ρspλ̃

3
D. We clearly see the mismatch

between 1/Λp and the results, even if the trend is correct. The large scatter is a
hint that Λ is not a relevant parameter to describe field fluctuations.
Top and bottom: Each point is the result from a simulation. The field energy
levels are measured as the energy in the x electric field, α−1

∫
dV e2x/2 (with α from

Eq. 4.13), divided by the kinetic energy of the superparticles,
∑

sp(γsp − 1).



174 Chapter 5

the empirical formula ε ∝ (W̃ 2 + ρspλ̃
2
D)−1, where W̃ is the superparticle

geometrical size in number of cells. Its algorithm was two dimensional,
electrostatic, and based on the integration of the Poisson equation.

We perform these simulations with our 3D electromagnetic code and
measure the level of energy in the electric field. We use thermal velocities
from 0.04c to 0.10c, ρsp from 2 to 500, and nx from 10 to 128. It results
in λ̃D = λD/X0 from 0.4 to 12.8, and in Λp = nspλ

3
D = ρspλ̃

3
D from 0.1 to

75000. The fluctuation levels do not depend on the timestep (which varies
from nt = 2000 down to close to the Courant limit ∆t ∼ X0/c) nor on box
size (which is always bigger than nx). We use a pair plasma, but increasing
the mass of the ions would only multiply the fluctuation levels by a constant
factor.

The results are summarized in Fig. 5.2: ε is found to be proportional
to (λ̃D − arctan λ̃D)/ρspλ̃

3
D, and not exactly to 1/Λp. To explain this, we

generalize the computation of Hockney to three dimensions.

For a plasma in thermal equilibrium, the energy in the electric field at
location (x, t) can be evaluated by adding the electric field produced at x
by charges at location x0 and having a velocity v0, Ex0,v0(x, t),

ε0〈E2(x, t)〉
2

=

∫
d3v0d3x0

ε0E
2
x0,v0

(x, t)

2
f0(x0,v0), (5.9)

where 〈·〉 means an ensemble average (which coincides with a spatial av-
erage); Ex0,v0(x, t) is a generalization of the Debye electric field for mov-
ing particles (Chap. 9 Nicholson 1983); and Eq. 5.9 can be evaluated for
a plasma of finite-sized particles as (Hockney 1971; Birsdall and Langdon
1985)

〈ε0E2/2〉
3nT/2

=
1

3n

∫
4πk2dk

(2π)3

1

1 + k2λ2
D/S

2(ka)
, (5.10)

where S(ka) is the Fourier transform of the shape of the superparticles and
a the characteristic size of the superparticles (in our case a ∼ X0); S(ka)
tends to 1 as k−1 � a.

Equation 5.10 cannot be used as such for a real plasma of point parti-
cles (S(ka) = 1) because it includes the electric field at arbitrarily small dis-
tances from the charge, which has an infinite energy. It leads to Eq. 5.8 only
if a truncation at small distances is performed, for example k < (αλD)−1

with α any constant: 〈ε0E2/2〉 in Eq. 5.8 is then the energy in the electric
field for wavelengths larger than αλD. Alternatively and to avoid a cutting
procedure, we note that the electric field in Eq. 5.8 can be taken as the total
field produced by the particles to maintain the screening Debye clouds (the
polarization electric field; see Callen (Sect. 1.1, 2006) d).

In the case of a PIC plasma all processes at scales below the grid size
a = X0 are ignored, so that the upper bound of the integral is kmax = a−1

and there is no small scale divergence. Since S(ka) ∼ 1 for k � a−1, and
given that the integration stops at k = a−1, we will assume that S(ka) = 1.

dAs a side note, we remark that simply taking the ratio of the particles’ energy of in-
teraction to their kinetic energies, respectively evaluated for each charge as e2/(2ε0n

−1/3)
and 3T/2, gives 1/(3Λ)2/3, and not 1/Λ. This is because the electric energy of interaction
was taken as the unscreened potential at a distance n−1/3. If we take it as e2/(2ε0λD),
we indeed find 1/Λ.
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Changing to spherical coordinates, using u = λDk and 〈E2
x〉 = 〈E2〉/3,

we arrive at

〈ε0E2
x/2〉

3nT/2
=

1

18π2

1

nλ3
D

∫ umax

umin

du
u2

1 + u2
. (5.11)

A primitive of the integral is u− arctan(u). We use kmax = 1/X0 or umax =
λD/X0 = λ̃D, while the largest wavelength is given by the simulation domain
size and verifies umin � umax. Consequently, we obtain

〈ε0E2
x/2〉

3nT/2
=

1

18π2

λ̃D − arctan λ̃D

ρspλ̃3
D

, (5.12)

in good agreement with the simulations (Fig. 5.2, top panel), except for the
constant factors 18π2 ∼ 178 (which can be attributed to an approximate
choice of umax).

The two limits are interesting. For a very high resolution, λ̃D � 1, the
field energy decreases as 1/(ρspλ̃

2
D), which is non-trivial and different from

what is expected in a real plasma where it decreases as 1/Λ = 1/(nλ3
D). The

empirical formula of Hockney (1971), generalized to 3D, would also predict
ε ∝ 1/(ρspλ̃

3
D) in the high resolution limit. However, our experiments clearly

preclude this dependence, and are compatible with Eq. 5.12 (see Fig. 5.2).
The presence of a finite superparticle volume and of the grid is retained in
our calculation only in the upper bound of the integral: physically speaking,
physical processes with k−1 < X0 are smoothed out. This explains the
difference between Eq. 5.12 and that of a real plasma.

For low resolutions, λ̃D . 1, an expansion of the arctangent shows that
the field energy behaves as 1/(54π ρsp), which is finite and independent of
λ̃D. In a real plasma, ε would go to zero as the screening distance vanishes.
That this is not the case here indicates that the screening distance does not
vanish, because the finite size of the superparticles also plays the role of the
screening mechanism.

5.3 Comparing the PIC and Vlasov-Maxwell
models

We now highlight some differences between PIC models and kinetic models
based on Liouville or Klimontovich equations. To do so, we recall how the
Vlasov-Maxwell system is derived from these formalisms. The footnotes of
this section are technical points, and do not require to be read at the first
lecture.

A plasma is constituted of many charged particles in mutual electromag-
netic interaction. Under relativistic conditions, a plasma microstate is fully
characterized by the positions and velocities of the N particles and by the
value of the fields at all space points (the fields must be treated as indepen-
dent from the particles because of retarded interactions), plus the necessary
boundary conditions. Within the frame of classical electrodynamics, the
time evolution of a microstate is described by Maxwell equations and by
the equations of motion for the particles under the action of the Lorentz
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real plasma
microstate
N particles

superparticle plasma
microstate

N/p superparticles
averaged Klimontovich,

Liouville or BBGKY
macrostate
N particles,

ensemble average,
smooth distributions

Vlasov+Maxwell for mean fields
macrostate

one point distribution function,
phase-space fluid

no correlations

ensemble average

no correlations

coarse
graining

discretization
grid

PIC plasma
microstate

N/p finite-sized
superparticles

Figure 5.3: Different plasma models. Dashed arrows are transitions showing
non-trivial effects. Coarse-graining and discretization are discussed in Sects 5.2.1
to 5.2.4.

force:
d

dt
(γjvj) =

qj
mj

(
em +

vj
c
∧ bm

)
,

d

dt
xj = vj ,

∂bm
∂t

= −c∇ ∧ em,

∂em
∂t

= c∇ ∧ bm −
1

ε0

N∑
j=1

qjvjδ(x− xj),

∇ · em =
1

ε0

N∑
j=1

qjδ(x− xj),

∇ · bm = 0.

(5.13)

Here, c is the speed of light, em the microscopic electric field, bm = cBm

is c times the microscopic magnetic field, qj , mj , γj , vj , and xj the charge,
mass, Lorentz factor, velocity, and position of the particle number j. We
also define its momentum pj = mjγjvj .

At a given time t, a microstate is represented by a point {xj ,pj}j=1..N

in the 6N -dimensional phase-space, and by the fields. One can then con-
sider the collection of microstates having the same macroscopic properties
(which can depend on what one is looking for), place them as points in the
6N -dimensional phase-space, and define the N -particle distribution func-
tion fN (t, {xj ,pj}j=1..N ) as the number density, at a given time, of these
microstates in the 6N -dimensional phase-space. Given that the number of
microstates in phase-space is chosen as a continuum, fN is a smooth func-
tion (Klimontovich 1982; Nicholson 1983). It defines a macrostate, i.e., an
ensemble average of a collection of compatible microstatese. The dynamic
evolution is then obtained by the Liouville equation, which states that the

eLiouville equation for fN (Eq. 5.15) is true whatever the distribution of microstates,
be they compatible with a single macrostate, completely random, or arbitrarily chosen.
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number of microstates is conservedf

∂fN
∂t

+
N∑
i=1

vi ·
∂fN
∂xi

+
N∑
i=1

ṗi ·
∂fN
∂pi

= 0, (5.15)

supplemented by Maxwell equations for the microscopic fields em and bm
g

with for sources the particles of the corresponding microstate.
When there is no background magnetic field, and when the particles

are non-relativistic, the magnetic field remains negligible toward the elec-
tric field. The latter can be computed directly from the particle positions
at time t with the use of the electrostatic potential V (r) = q2/(4πε0r)
(the Coulomb model). The Liouville equation can then be transformed
to the infinite BBGKY hierarchy. The first BBGKY level involves the
one-particle distribution function f1(t,w) (with w = (x,p)), and the two-
point distribution function f2 via the correlation function g2(t,w1,w2) =
f2(t,w1,w2)− f1(t,w1)f1(t,w2):

∂f1

∂t
+ v1 ·

∂f1

∂x
− ∂

∂x1
V t,x1 [f1] · ∂f1

∂p
= C[g2], (5.16a)

V t,x1 [f1] =

∫
d6w2V (|x1 − x2|)f1(t,w2). (5.16b)

Here C is an integral operator, vanishing with g2. The quantity V t,x1 [f1] is
the mean potential due to the particle distribution f1. Since f1(w) is the
probability of finding a particle near w independently of the positions of
all others, this potential does not include short-range correlations, but only
long-range collective effects. It is a macroscopic quantity, just as the fields
entering into the Vlasov-Maxwell system (Eq. 5.17)h.

Approximations can then be made to truncate the BBGKY hierarchy.
Evaluations of the right-hand side of Eq. 5.16a can lead, depending on the
hypothesis made, to Boltzmann, Landau, Lenard-Balescu, or more refined
kinetic equations. For a fully ionized plasma, the relevant approximation
parameter is the number of particles per Debye sphere, or plasma param-
eter Λ. For large Λ, collisions and correlations between small numbers of

But the microstates must be compatible with a single macrostate if one wants to consider
fN as the probability distribution of the microstates for this macrostate. Also in the
following, when one writes f1 as the integral of fN over all other particles, it has a sense
only if fN is the density of microstates not randomly chosen. See also the footnote with
〈fK〉 = f1.

fThat it conserves the number of microstates can be seen by writing Liouville equation
in a conservation form:

∂fN
∂t

+

N∑
i=1

∂

∂xi
(vifN ) +

N∑
i=1

∂

∂pi
(ṗifN ) = 0. (5.14)

It is equivalent to Eq. 5.15 because ∇p · ṗ = (q/m)∇p · (E + v ∧B) = 0.
gThey are still the microscopic fields (compare with the non-relativistic case where

bm = 0 and em is computed from the exact potential V ∝
∑
qiqj/|ri − rj |). They

are also microscopic in the BBGKY hierarchy. They become macroscopic only when we
truncate BBGKY, neglecting correlations in their computation.

hA note on the scales involved in these macroscopic quantities : according to Nicholson
(1983), the small element d6w in f1(w)d6w = 〈fK〉(w)d6w is to be taken as large toward
inter-particle spacing, so that a large number of particles contribute and the quantity do
not fluctuate a lot, and small toward the Debye length because at larger scales there are
spatial variations (while f(w) is a local density). n−1/3 ≤ r ≤ λD is of course possible in
a plasma.
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particles are negligible toward interactions of particles with the fields col-
lectively generated by all others. Keeping only these collective interactions
is equivalent to a truncation of BBGKY hierarchy at its lowest level, i.e.,
g2 = 0, and leads to the Vlasov-Maxwell system. Generalized to relativistic
plasmasi and to two species, it reads

∂f1,s

∂t
+ v · ∂f1,s

∂x
+ qs (e+ v ∧ b) · ∂f1,s

∂p
= 0, s = i, e,

∂b

∂t
= −c∇ ∧ e,

∂e

∂t
= c∇ ∧ b− 1

ε0

∑
s=i,e

∫∫∫
d3p qsvf1,s(t,x,p)

∇ · e =
1

ε0

∑
s=i,e

∫∫∫
d3p qsf1,s(t,x,p),

∇ · b = 0,

(5.17)

with f1,s(t,x,p) the one-particle distribution function, for electrons (s = e)
or ions (s = i), defined from fN . It is also a smooth function, and the
Vlasov-Maxwell system describes the evolution of a continuous fluid in the
six-dimensional phase-space, where information on the individual nature of
the particles has been smoothed out. In particular within this description,
the plasma parameter Λ is infinite, the fluctuation- and collision-induced
thermalization time is infinite, and the level of electric field fluctuations ε
is zero. We note that these are analytical properties. Numerical solutions
of the Vlasov-Maxwell-system will also not strictly recover the collisionless
behavior of the plasma. For instance, numerical diffusion arising necessarily
from the discretization of Eqs. 5.17 will also lead to a finite thermalization
time. We are, however, not aware of a comprehensive study of such effects
for algorithms solving the discretized Vlasov-Maxwell system.

In contrast, the models underlying PIC simulations follow a different
path, illustrated in Fig. 5.3. It consists in following the time evolution of
the microstate constituted by N/p superparticles and the fields, Eqs. 4.4a-
4.4e, with p reaching 1010 or more. One of the consequences is that the PIC
plasma has a plasma parameter Λp = Λ/p (from Eq. 5.1) far smaller than
that of the real plasma, so that it includes relatively large correlation and
noise levels.

iThe relativistic Vlasov-Maxwell system is usually derived by using the Klimontovich
formalism, not the Liouville formalism (see, e.g., Nicholson 1983; Klimontovich 1982).
The reason is that writing BBGKY hierarchy from Liouville equation makes use of the
fact that the force acting on the particles is the instantaneous Coulomb force, which is
not the case in the relativistic case. It seems very hard to derive BBGKY with a retarded
force, and we are not aware of such a work.

It is, however, possible to derive Vlasov-Maxwell system or a BBGKY hierarchy in the
relativistic case with Klimontovich formalism (see, e.g., Nicholson (1983) p. 59, and also
Callen (1990) where it is shown that Klimontovich formalism and BBGKY-from-Liouville
both lead to the very same Lenard-Balescu equation). Klimontovich distribution function
fK is not a density of microstates, but contains the positions and velocities of all the
individual particles. It is then ensemble averaged, 〈fK〉, as well as the fields, to obtain
the desired equations. In the non-relativistic case, the identification 〈fK〉 = f1 is valid
(see Nicholson (Chap. 3, p. 50-54, 1983) for a simple explanation, or Klimontovich (1982)).

Because of the ensemble-averaging procedure, the formalism again describes a smooth
distribution function, and the points of the present discussion remain the same.
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5.4 Higher-order effects of coarse-graining

We have highlighted that the coarse-graining step, the description of a real
plasma of N particles by a PIC plasma of N/p superparticles, each con-
taining p real particles, involves a reduction of the plasma parameter Λ by
a factor p. This is the main effect of coarse-graining. Higher-order effects
arise because after coarse-graining, the model ignores the internal dynamics
and correlations of the particles contained within a superparticle.

This can be seen by writing explicitly the grouping: we label the particles
either by wn, n = 1..N (with w = (x,p)), or by wij with i = 1..N/p
representing the group number, and j = 1..p the particle number within
this group. We denote by wsp,i the position and velocity of the center-of-
mass of the group number i. The N -particle distribution function fN of the
real plasma can then be written formally as

fN (t, w1, ..., wN ) = gcorr(t, w1, ..., wN )

+ fN/p(t, wsp,1, ..., wsp,N/p)×
N/p∏
i=1

fsp,i(t, wi1, ..., wip).
(5.18)

This equation introduces fN/p(t, wsp,1, ..., wsp,N/p), the analog of fN but
for the center-of-mass of the particle groups (i.e., of the superparticles);
fsp,i(t, wi1, ..., wip), the distribution function of the particles contained within
a group, which represents the dynamics and correlations between particles
of the same group; and gcorr(t, w1, ..., wN ), the correlations ignored by writ-
ing fN = fN/p × fsp,1..fsp,N/p, i.e., the correlations between particles of
different groups. The PIC approximation then consists in setting gcorr = 0
and fsp,i(t, wi1, ..., wip) = constant.

A complete understanding of these approximations would require devel-
oping a BBGKY hierarchy from Eq. 5.18 and making explicit the electric
and magnetic field contributions from the particle groups. This is a complex
task. We can, however, stress important consequences of the assumption
fsp,i(t, wi1, ..., wip) = constant:

• The superparticles are assumed incompressible. The compressibility
due to particle motion within a particle group is thus absent from the
coarse-grained plasma.

• The velocity dispersion of the particles within a group is ignored in
the coarse-grained plasma. The kinetic pressure resulting from this
dispersion is thus also absent.

• The electric fields present in the PIC plasma are computed from the
superparticles. This is equivalent to saying that they are computed
by taking into account only the monopole distribution of charge cre-
ated by the internal arrangement of the particles within a group, with
higher-order multipole terms neglected. The same holds for the mag-
netic field.

5.5 Discussion and conclusion

5.5.1 PIC and real plasmas

The widespread use of PIC codes for studying plasmas out-of-equilibrium
calls for a deep understanding of the PIC model, and of its relation with a
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real plasma and with the Vlasov-Maxwell description. Section 5.2 attempted
to provide some explanations.

We have seen that the PIC model lies on two building blocks. The
first stems from the capability of computers to handle only up to ∼ 1010

particles, while real plasmas contain from 104 to 1020 particles per Debye
sphere. This means that a coarse-graining step must be used, whereby of
the order of p ∼ 1010 real particles are represented by a single computer
superparticle. The second step is field storage on a grid with its subsequent
finite superparticle size.

We have introduced the notion of coarse-graining dependent quantities,
i.e., physical quantities depending on p. The prototype of such quantities is
the plasma parameter Λ, that behaves as Λp ∝ 1/p. This vast reduction of
Λ induces higher noise levels and correlations, but we have again seen that
it does not threaten plasma and collisionless behavior as long as Λp remains
above unity. All coarse-graining dependent quantities can be expressed as
the product of a fluid quantity (which is coarse-graining independent) and
a parameter expressing a number of particles per fluid volume. Examples of
such parameters include Λ = nλ3

D, n(c/ωpe)
3, n(c/ωpi)

3, ... Their behavior
in the PIC plasma can be guessed by taking into account the reduction by a
factor p of the number of particles, leading for example to the substitution
Λ → Λp = Λ/p in the relevant analytical expressions. We checked this
for the collision and fluctuation induced thermalization time (Sect. 5.2.2),
which is indeed proportional to the number of computer superparticles per
cell; the lower the number the shorter the thermalization time. Bret et al.
(2013) similarly reduce the parameter n(c/ωpe)

3 by a factor p when applying
their theory for the magnetic fluctuation level in a drifting plasma to their
PIC simulations. However, the substitution Λ → Λp is strictly valid only
for point-size particles, and the large finite size of the superparticles, which
reaches a fraction of a Debye length, suppresses interactions and fluctuations
at shorter wavelengths and modifies these scalings. We have detailed how
this works for the electric field fluctuation level in a thermal plasma in
Sect. 5.2.4.

We stress that the reduction of the collision and fluctuation induced
thermalization time and of other related timescales (e.g., the slowing-down
time of fast particles), by 10 or more orders of magnitude, can have impor-
tant consequences for the relevance of simulations: one has to insure that
collisionless kinetic processes remain more efficient than the artificially en-
hanced collisional and fluctuation induced PIC effects. Similarly, we have
seen in Sect 4.4.2 that the high level of fluctuations alter the linear spec-
trum of instabilities by preventing the fastest growing modes to dominate
the total energy.

A more subtle effect of coarse-graining is due to the loss of the dynamics
of the p particles represented by each superparticle. We intuitively expect
that it will lead to the overall loss of compressibility due to superparticle
incompressibility, of the contribution to kinetic pressure of the particle ve-
locity spreading within a superparticle, and of the multipole contribution
to the electric and magnetic fields created by the distribution of particles
within a superparticle (see Sect. 5.4). The relevance of these missing effects
remains unclear.
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5.5.2 PIC and Vlasov-Maxwell plasmas

We have highlighted in Sect. 5.3 that a PIC algorithm simulates a plasma of
finite-sized charges in their self-fields, and does not strictly solve the Vlasov-
Maxwell system. Using the Vlasov’s equation assumes that the plasma is
represented in phase space by a continuous fluid. In this limit of an infinite
number of particles, the plasma parameter Λ and the thermalization time
are infinite, and the collision frequency and the thermal field fluctuation
levels are zero. Using a PIC algorithm amounts to dividing the continuous
phase space fluid into discrete elements, and to following their orbits. In this
sense, one can say that we integrate the characteristics of the Vlasov’s equa-
tion. However, the newly introduced graininess (which is far higher than
that of the original plasma) implies the presence of binary collisions and
of correlations between superparticles that is not easy to evaluate, in part
because they are reduced by the finite size of the superparticles and the sub-
sequent vanishing of the two-point force at short distances (see Sect. 5.2.1).
The intricate dependence of Eq. 5.12 is a hint to this complexity. We note
that Birsdall and Langdon (Chap. 12, 1985) have derived a generalization
of the Balescu-Guernsey-Lenard kinetic equation that includes the use of
a grid (and thus of finite sized superparticles), and of the discretization in
space and time of the equations. The correlations just mentioned are partly
present in this equation, but difficult to extract.

These differences between PIC and Vlasov-Maxwell plasmas are espe-
cially enhanced in the linear phase of instabilities. We see two main points.
The first is that nonlinear effects absent from the linear theory, and pos-
sibly enhanced by the high noise level of the simulation (Sect. 5.2.4), may
have visible consequences (Birsdall and Langdon (Sect. 13.6, 1985), Dieck-
mann et al. (2006)). This example is reported by Daughton (2002) in the
context of the drift kink instability of a current sheet: the instability is
found to grow faster than predicted by the linear Vlasov theory because the
early development of another instability quickly produces non-linear effects.
Bret et al. (Fig. 23, 2010) also report significant early non-linear behavior
in counter-streaming situations. We have also reported the presence of field
components due to non-linear effects in Fig. 4.4.

The second point is that the high level of fluctuations delays the dom-
inance of the fastest growing Fourier modes over the sum of other modes.
The consequence is that effective linear growth rates measured from total
energy curves appear slower than the growth rates of the fastest modes.
This is even more important in instabilities where the linear phase is short,
and explains the differences between the effective growth rates and the lin-
ear cold theory of the counter-streaming instability measured in Sect. 4.4.2,
with discrepancies reaching 60% or more. It may also explain the differences
between theory and measured growth rates of Cottrill et al. (2008), Dieck-
mann et al. (2006), and Haugboelle et al. (2012) for the counter-streaming
instability. On the other hand, the differences can be small if the linear
phase lasts long enough for the fastest mode to dominate the energy, as is
the case for the relativistic tearing instability in Sect. 4.4.4 or for the Weibel
instability of Markidis et al. (2010).
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5.5.3 Modeling astrophysical plasmas

In the light of what has been said so far one may wonder what this all im-
plies for the modeling of astrophysical plasmas. We attempt to give some
answers in the following. We have shown that the PIC description of an
astrophysical plasma bears some risk because the plasma parameter Λ is
always underestimated, leading to systematic errors in the evaluation of
important parameters of the plasma such as the collision and fluctuation
induced thermalization time. We stress that this does not lessen the im-
portant role of PIC algorithms for deepening our understanding of plasma
physics. In particular they also have their virtues, for instance the consid-
eration of certain correlations and of direct particle encounters (with the
restrictions discussed in Sect. 5.2). They provide an accurate description
of collisionless kinetic processes such as instabilities, and of the induced
turbulence and eventual associated thermalization relevant to collisionless
environments.

The Vlasov-Maxwell equations perfectly describe a plasma free of col-
lisions and fluctuations. However, their discretization will again introduce
different plasma characteristics. A thorough discussion of these effects is
still missing. On the other hand, a collisionless description of astrophysical
plasmas is not always correct. On larger spatial and temporal scales, the de-
scription of flows and the propagation of non-thermal particles must include
collisions to a certain degree. In this regime other models, and in particular
Fokker-Planck models, have been shown to give a good description of the
plasma and have provided significant results. However, Fokker-Planck mod-
els have their own drawbacks, notably that they are local and use dragging
and diffusion coefficients not self-consistently derived.

These discrepancies between real, PIC, and Vlasov-Maxwell plasmas are
complex, and it needs to be discussed in further details under what circum-
stances which model and which numerical realization comes closest to a
real plasma. In the long term, it may be justified to use models includ-
ing correlations in a more systematic way, for example the Landau or the
Lenard-Balescu equation on the theoretical side, and P3M algorithms on
the numerical side (that include short-range particle-particle interactions
(Hockney and Eastwood 1988)). Both approaches should then be faced
with results from well-controlled collisionless plasma experiments, which
are presently in their infancy (see, e.g., Grosskopf et al. 2013).

Appendix 5.A Numerical effects

We have said in Sect. 5.2 that passing from a real plasma to a PIC model
implies a discretization of the equations. This step comes with numerical
issues that have been largely studied by Birsdall and Langdon (1985) and
Hockney and Eastwood (1988). We highlight part of their work here.

5.A.1 Local numerical effects

• Stability of the electric part of the superparticle motion integrator
used here requires that Ω∆t < 2, with Ω the pulsation of oscillation of
the superparticles (usually the plasma pulsation). The magnetic part
is unconditionally stable.
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• Courant condition for the stability of the field integrator in vacuum is
c∆t < X0/

√
2.

• The dispersion relation of electromagnetic waves in vacuum is modified
by the grid. This modification depends on the angle of propagation
with respect to the grid, and waves can have a phase velocity smaller
than c (Greenwood et al. 2004). If superparticles with velocity close
to c are present, they can overtake light waves and emit Čerenkov
radiation. This results in the production of non-physical fields. The
situation can be improved with a higher order interpolation scheme
for the fields.

5.A.2 Global numerical effects

By considering the algorithm as a whole, Birsdall and Langdon were able
to identify numerical effects not predicted by the consideration of subparts
alone.

For example, the discrete space representation of the continuous quanti-
ties introduces a periodicity in Fourier space of period k0 = 2π/X0 (with X0

the grid spacing). A physical mode of wavenumber k = 2π/λ will then have,
in the numerical plasma, aliases of wavenumbers k+nk0, and −k+nk0, with
n an integer. Instabilities can arise if the physical mode couples resonantly
with one of the aliases. This coupling cannot occur if k < −k + k0, i.e.,
if λ > 2X0 (we note that it is Nyquist-Shannon criterion to avoid spectral
aliasing). Just as in signal processing, the strength of the aliases can be
reduced by low-pass filtering the time-series, and this is what is done by at-
tributing a cloud shape to the superparticles. Aliases are even more reduced
when the superparticle shapes have a fast decaying Fourier transform, that
is, when they are smoother.

We mention in particular the following effects due to grid aliasing:

• A cold beam of velocity vbeam becomes unstable if the Doppler shifted
frequency of Langmuir oscillations is near the grid-crossing frequency
kgrid vbeam. The beam is then heated. It is not the case if λD/X0 >
0.046.

• λD/X0 > 1/π is needed to avoid an artificial numerical heating of a
Maxwellian plasma. Otherwise, the plasma is heated up to the point
where λD reaches X0/π.

• The rate of passage of the superparticles through the cell faces pro-
duces a high-frequency noise; the rougher the superparticle shapes,
the more important is the noise.

Similarly to grid effects, a finite timestep implies that harmonics differing
from a multiple of 2π/∆t are not differentiated by the algorithm, and there
are time aliases as well.

• This implies no other instabilities in the case of a non-magnetized
Maxwellian plasma.

• In a magnetized plasma, artificial coupling of cyclotron harmonics can
lead to instabilities.



184 Chapter 5

A last point is that the effects of the grid, as well as other errors, act
as a random force F (t) on the superparticles. Consequently, the velocity
of a superparticle undergoes a random walk, dv/dt ∝ F (t), and the kinetic
energy 〈v2〉 increases linearly with time. Hockney and Eastwood (1988,
Sect. 9.2) shows that this is indeed the cause of plasma self-heating in su-
perparticle simulations. This is also what we find in our thermal simulations
(see Sect. 4.4.1).

5.A.3 Qualitative constraints on timestep and sizestep

• The step-size X0 of the grid (which is also roughly the superparticle
size), and the time-step ∆t, must be smaller than the scales of the
phenomena studied. This scale can be an instability wavelength or
growth rate, the cyclotron radius or pulsation, gradient scales, etc.

• The same is true for the mean distance between superparticles: n
−1/3
sp <

λrelevant. This is equivalent to having a high enough number of super-
particles per volume λ3

relevant. The case λrelevant = λD applies to the
description of plasma behavior.

• If thermal effects are important, then one should insure that the distri-
bution function g(p) is well represented on scales where these effects
are important. It requires a high enough number of superparticles
per relevant volume. Birsdall and Langdon (1985, Sect. 15.19) men-
tion that it is sufficient to have a good representation of the relevant
projections of g.

• The plasma should remain collisionless: the collision time should be
greater than relevant timescales (instability growth rates, etc.).

5.A.4 Limitations for the computation of photon spectra

• The highest frequency represented is 2πc/X0 = 2πnxωpe, so that high
energy radiation is absent from the code and must be computed sepa-
rately to extract photon spectra. This is done for example by Hededal
(2005), Trier Frederiksen et al. (2010), and Nishikawa et al. (2011);
and Cerutti et al. (2012a) from superparticle motions, with the inclu-
sion of radiative energy losses. However, even in these cases, effects
such as plasma frequency cutoff, Raizin effect, or transition radiation
are not described because they are due to the back-reaction of the
plasma particles on the electromagnetic waves, waves that are absent
from the PIC code and are only computed afterward.
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Relativistic ion-electron
magnetic reconnection
explored with PIC
simulations

It has to be noted that the main reconnection mechanism in
Astrophysics is NOT Petschek reconnection, nor is it Hall re-
connection, nor anomalous-resistivity reconnection. No, the
most important reconnection mechanism in Astrophysics in-
vokes waves, a certain type of waves, in fact. Called handwaves.

Dmitri Uzdensky (Uzdensky 2006)
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6.1 Outline

This chapter explores magnetic reconnection in relativistic ion-electron plas-
mas with PIC simulations. It contains the article Melzani et al. (2014b).
With the next chapter, it constitutes the main achievement of this thesis.

It is organized as follows. Section 6.2 provides the motivations and
the context of the study. Section 6.3 describes the simulation setup and
parameters.

Section 6.4 presents the results of simulations with antiparallel asymp-
totic magnetic fields. We investigate the structure of the two-scale diffusion
region in Sect. 6.4.2, and explain why we see sharp transitions at the en-
trance of this region. Next, we turn to the relativistic Ohm’s law. In
non-relativistic reconnection, non-ideal terms are dominated by thermal in-
ertia, i.e., by the divergence of off-diagonal elements of the pressure tensor.
However, in Sect. 6.4.3 we show that at large inflow magnetization, thermal
inertia is dominated by bulk inertia. We demonstrate in Sect. 6.4.8 that
this is to be expected on the basis of an analytical model. Concerning the
reconnection outflows, mass and energy conservation imply that relativistic
inflow magnetization results in relativistic temperatures and/or relativistic
bulk velocities in the outflows, but say nothing about the balance between
the two. In Sect. 6.4.4 we show that in our simulations, thermal energy
largely dominates over bulk kinetic energy. We demonstrate analytically in
Sect. 6.4.8 that this is to be expected for large inflow magnetization, un-
der the assumption that thermal inertia significantly contributes in Ohm’s
law. This is an important question that has observational consequences.
In Sect. 6.4.5, we detail the structure of the magnetic islands and of their
central density dips and isolated centers. Section 6.4.6 studies the reconnec-
tion electric field. The relevant normalization is non-trivial for relativistic
setups, and we propose to use the relativistic Alfvén speed in the inflow,
which leads to rates in a close range, slightly faster than for non-relativistic
reconnection.

Section 6.5 highlights differences resulting from the presence of a guide
magnetic field.

We summarize and conclude our work in Sect. 6.6, where we also discuss
applications to astrophysical objects.

6.2 Introduction

Magnetic reconnection has been the focus of extended studies since its first
introduction by Giovanelli (1947, 1948) to explain the sudden release of
energy in solar flares. The term itself was coined by Dungey (1958). It is
now the key ingredient for theories of coronal heating, solar flares and jets,
and coronal mass ejections in the Sun (Priest 1987, and Sect. 2.10.6), of
magnetic storms and substorms in the Earth’s magnetosphere (Paschmann
et al. 2013), and for the behavior of fusion plasmas with, for instance, the
sawtooth oscillation in tokamaks (Biskamp 2000). Space physics proves
that magnetic reconnection can quickly convert magnetic energy into kinetic
energies (bulk flow, heat, non-thermal particles) with fast variability and
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high efficiency. Such attributes made it most attractive for high-energy
astrophysics to explain, for example,

• transient outflow production in microquasars and quasars (de Gouveia
dal Pino and Lazarian 2005; de Gouveia Dal Pino et al. 2010; Kowal
et al. 2011; McKinney et al. 2012; Dexter et al. 2014),

• gamma-ray burst outflows and non-thermal emissions (Drenkhahn
and Spruit 2002; Giannios and Spruit 2007; McKinney and Uzden-
sky 2012),

• GeV flares from the Crab nebula (Bednarek and Idec 2011; Uzdensky
et al. 2011; Cerutti et al. 2012b,a, 2013),

• flares in AGN jets (Giannios et al. 2009),

• flares in gamma-ray bursts (Lyutikov 2006a; Lazar et al. 2009),

• X-ray flashes (Drenkhahn and Spruit 2002),

• soft gamma-ray repeaters (Lyutikov 2006b; Uzdensky 2011),

• flares in double pulsar systems (Lyutikov and Lazarian 2013),

• the flat radio spectra from galactic nuclei and AGNs (Birk et al. 2001),

• the flat radio spectra from extragalactic jets (Romanova and Lovelace
1992),

• the σ-paradox and particle acceleration at pulsar wind termination
shocks (Kirk and Skjæraasen 2003; Pétri and Lyubarsky 2007; Sironi
and Spitkovsky 2011a),

• the heating of the lobes of giant radio galaxies (Kronberg et al. 2004),

• the heating of AGN and microquasar coronae and associated flares
(Di Matteo 1998; Merloni and Fabian 2001; Goodman and Uzdensky
2008; Reis and Miller 2013; Romero et al. 2014; Zdziarski et al. 2014),

• or energy extraction in the ergosphere of black holes (Koide and Arai
2008).

As pointed out by Uzdensky (2006), magnetic reconnection is of dynam-
ical importance in any environment where magnetic fields dominate the en-
ergy budget, so that the energy transfer can have dynamical and observable
consequences, and where the rates of reconnection are fast. The latter is
known to hold both in collisionless plasmas (Birn et al. 2001) and in colli-
sional plasmas, either via turbulence (Lazarian and Vishniac 1999; Lapenta
and Lazarian 2012; Lazarian et al. 2012), or via plasmoid induced recon-
nection (Loureiro et al. 2007; Uzdensky et al. 2010; Zanotti and Dumbser
2011; Loureiro et al. 2012) (see the discussion of Sects. 2.11.3 and 2.11.4).

Many of these environments are collisionless (Ji and Daughton 2011,
and Fig. 2.42), so that fast reconnection must be triggered and sustained by
non-ideal terms other than collisional ones, which implies kinetic processes
on scales close to the electron inertial length or Larmor radius, with par-
ticles largely out-of-equilibrium and possibly comprising high-energy tails.
As reviewed in Sect. 2.11.2, these non-ideal terms can be linked to particle
inertia and wave-particle resonant interactions or to finite Larmor radius ef-
fects in magnetic field gradients. Simulation studies thus require full kinetic
codes, such as Vlasov solvers or particle-in-cell algorithms.

Most of the above environments are also relativistic, either because of
relativistic velocities (bulk flows or currents) or because the thermal kinetic
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energy and/or the magnetic energy density exceeds the restmass energy of
the particles. The latter translates into an inflow magnetization greater
than unity, σin,s = B2

in/(µ0ninmsc
2) > 1, with s denoting ions or electrons.

This magnetic energy can be transferred to the particles, and because it is
greater than the particles’ restmass, relativistic particles are expected. The
relation h0,out,sΓout,s = 1 + σin,s, with h0,out,s the enthalpy and Γout,s the
bulk Lorentz factor of the reconnection outflow (see Sect. 6.4.4, Eq. 6.12),
indeed shows that either relativistic temperatures (h0,out,s > 1) or relativis-
tic bulk velocities (Γout,s > 1) are obtained for the outflows. The relevant
magnetization is thus not that of the plasma, which is low because of the
ion mass, but that of each species taken individually.

Studies of relativistic reconnection are scarcer than their non-relativistic
counterparts (for the latter, see for example the reviews by Birn and Priest
2007; Treumann and Baumjohann 2013), and they mainly deal with pair
plasmas. For relativistic pair plasmas, they include:

• analytical works (Kirk 2004; Tenbarge et al. 2010; Kojima et al. 2011)
and Sweet-Parker-like analysis (Blackman and Field 1994; Lyutikov
and Uzdensky 2003; Lyubarsky 2005),

• 2D MHD simulations (Watanabe and Yokoyama 2006; Zenitani et al.
2011a; Takahashi et al. 2011; Zanotti and Dumbser 2011; Takamoto
2013; Baty et al. 2013),

• two-fluid simulations (Zenitani et al. 2009a,b),

• test particle simulations (Bulanov and Sasorov 1976; Romanova and
Lovelace 1992; Larrabee et al. 2003; Cerutti et al. 2012b) (Larrabee et
al. include a retroaction of the particles on the fields, in an iterative
way),

• 1D PIC simulations (Pétri and Lyubarsky 2007),

• 2D PIC simulations (Jaroschek et al. 2004, 2008; Lyubarsky and Liv-
erts 2008; Sironi and Spitkovsky 2011a; Bessho and Bhattacharjee
2012; Cerutti et al. 2012a, 2013; Zenitani and Hoshino 2001, 2005a,
2007, 2008; Zenitani and Hesse 2008),

• and 3D PIC simulations (Jaroschek et al. 2004; Zenitani and Hoshino
2005b, 2008; Liu et al. 2011; Sironi and Spitkovsky 2011a; Kagan et al.
2013; Cerutti et al. 2014b; Sironi and Spitkovsky 2014).

Relativistic reconnection in ion-electron plasmas has been studied less. We
find a test particle simulation (Romanova and Lovelace 1992), a resolution
of the diffusion equation (Birk et al. 2001), and a discussion by Sakai et al.
(2002) in a 2D PIC simulation of laser fusion beams where reconnection
occurs when the filaments of the filamentation instability merge.

The focus of the present work is on relativistic reconnection – as com-
pared to non-relativistic studies – and on ion-electron plasmas – as compared
to pair plasmas. Our goals are to carve out aspects that are particular to
this regime, to shed light on the underlying physical causes, and to ulti-
mately put our findings in the, admittedly speculative, larger astrophysical
context of microquasar and AGN disk coronae and magnetospheres, and of
other possible environments with ion-electron relativistic plasmas. Part of
our results are also of interest for pair plasmas and for non-relativistic cases.



Chapter 6 189

ωce/ωpe L/di ΓeUe Θe Θi rce/de L/rce

1 0.5 0.20 0.25 0.01 0.7 3.8

3 0.5 0.53 2.40 0.096 1.6 1.6

6 1 0.70 10 0.4 3.3 1.5

Table 6.1: Parameters of the current sheet. They hold for a mass ratio of 25,
and are independent of the background plasma parameters. The free variables are
ωce/ωpe and L/di. The electron and ion temperatures are the same, normalized
as Θs = Ts/(msc

2). The ions and electrons counterstream with opposite velocities
±Ueŷ (given here in units of c) and associated Lorentz factors Γe. The sheet
halfwidth in units of ion inertial lengths is L/di, while in units of the thermal
Larmor radii (at current sheet center) it is L/rce.

6.3 Problem setup

6.3.1 Description of the relativistic Harris equilibrium

We use the explicit particle-in-cell code Apar-T, presented and tested in
Chapter 4. Broadly speaking, it is a parallel electromagnetic relativistic
three-dimensional PIC code with a staggered grid, where the fields are inte-
grated via Faraday and Maxwell-Ampère equations, currents computed by
a charge conserving volume weighting (CIC), and fields interpolated accord-
ingly.

The simulations start from a Harris equilibrium, which is a solution of
the Vlasov-Maxwell system. The magnetic field is

Brec = ẑB0 tanh (x/L) , (6.1)

(see Figs. 6.1 or 6.2 for axis orientation), and is sustained by a population of
electrons and ions of equal number density ncs(x) = ncs(0)/cosh2(x/L) (cs
stands for current sheet), flowing with bulk velocities Ue and Ui = −Ue in
the ±y directions. We denote the associated Lorentz factors by Γe and Γi.
Each species follows a Maxwell-Jüttner distribution (Eq. 3.83) of normalized
temperature Θs = 1/µs = Ts/msc

2.
We derived the equilibrium relations for relativistic temperatures and

current drift speeds, as well as for arbitrary ion to electron mass ratios
and temperature ratios, in Sect. 3.7. The equilibrium depends on the ratio
ωce/ωpe, with ωpe = (ncs(0)e2/(ε0me))

1/2 the electron plasma pulsation de-
fined with the lab-frame number density ncs(0) (not including background
particles), and ωce = eB0/me the electron cyclotron pulsation in the asymp-
totic magnetic field (not including the guide field, e > 0). Our simulations
are, however, not loaded exactly with the equilibrium values, but with a
temperature and current speed uniformly in excess of ∼ 10% in order to
shorten the otherwise rather long stable phase.

We also set a background plasma of number density (for electrons or for
ions) nbg and of temperature Tbg,e for electrons and Tbg,i for ions. Finally,
a guide magnetic field is sometimes considered, i.e., a uniform component
BG = BGŷ. Adding the background plasma or the guide field does not
change the Harris equilibrium.

6.3.2 Magnetization and energy fluxes

There are several ways to characterize the magnetization of the configura-
tion. The ratio ωce/ωpe has no direct physical meaning and is mostly used
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ωce

ωpe

nbg

ncs(0)

BG

B0
Tbg,s (K) βs h0,bg,s σcold

s (Brec) σhot
s (Brec) σi+e(Brec) V NR

A,in, V R
A,in

1 0.1 0 ion 1.5× 107 5× 10−4 1 0.4 0.4 0.38 0.63, 0.53

lec ˝ ˝ 1.006 10 9.94

3 0.31 0 ion 2× 108 2.5× 10−3 1 1.16 1.16 1.11 1.08, 0.73

lec ˝ ˝ 1.086 29 27

3 0.1 0 ion 2× 108 7.5× 10−4 1 3.6 3.6 3.26 1.90, 0.88

lec 3× 109 1.1× 10−2 2.57 90 35

3 0.1 0 ion 1.5× 107 5.6× 10−5 1 3.6 3.6 3.46 1.90, 0.88

lec ˝ ˝ 1.006 90 89

3 0.1 0 ion 2× 108 7.5× 10−4 1 3.6 3.6 3.45 1.90, 0.88

lec ˝ ˝ 1.086 90 83

3 0.1 0.5 ion 1.5× 107 4.5× 10−5 1 3.6 3.6 3.46 1.90, 0.81

lec ˝ ˝ 1.006 90 89

3 0.1 1 ion 1.5× 107 2.8× 10−5 1 3.6 3.6 3.46 1.90, 0.66

lec ˝ ˝ 1.006 90 89

6 0.1 0 ion 8× 108 7.5× 10−4 1.014 14.4 14.2 13.5 3.80, 0.97

lec ˝ ˝ 1.37 360 260

Table 6.2: Physical input parameters of the simulations and resulting magne-
tizations of the background plasma. The enthalpy of the background plasma is
h0,bg,s. Its cold magnetization σcold

s (B) is defined by Eq. 6.5, σhot
s by Eq. 6.4,

and σi+e(B) by Eq. 6.6. In all cases, we assume Γin ∼ 1. The background
plasma βs = nsTs/(B

2/2µ0) = 2Θs/σ
cold
s (B) includes the guide field (σcold

s (Btot) =
σcold
s (B0) + σcold

s (BG)). The Alfvén speeds, defined in Sect. 6.3.3, do not take the
temperature into account, and are given in units of c. For the relativistic Alfvén
speed, when there is a guide field we display the ẑ-projection: V R

A,in cos θ, with
θ = arctanBG/B0.

as a simulation label.

The magnetization σhot
s of the background plasma species s is the ratio

of the energy flux in the reconnecting magnetic field to that in the particles
(restmass, thermal, bulk). The electromagnetic energy flux is the Poynting
flux. Far from the current sheet, it reads as

E ∧B
µ0

=
E ∧Brec

µ0
+
E ∧BG

µ0
=
B2

rec

µ0
vEy×Brecx̂+

B2
G

µ0
vEy×Brecx̂, (6.2)

where B = Brecẑ + BGŷ and vEy×Brec = Ey/Brec. This splitting of the
energy flux into two contributions, one from the magnetic field that will
reconnect, the other from the guide field that will mostly be compressed, is
possible only if the electric field is normal to B, which is indeed the case in
the ideal outer area because of the tendency of the plasma to screen parallel
electric fields. For the particles, the energy flux of species s is (Eq. 3.79)

nlab,s〈vγmsc
2〉s = nlab,sΓsh0,sv̄smsc

2, (6.3)

with nlab,s the particle number density in the lab frame (= Γs times that
in the comoving frame), 〈·〉s denoting an average over momentum of the
distribution function, ms the particle mass, v̄s their bulk velocity, Γs the as-
sociated Lorentz factor, and h0,s their comoving enthalpy (drawn in Fig. 3.1
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for a thermal distribution). All in all, the magnetization of species s is

σhot
s (Brec) =

E ×Brec/µ0

nlab,s〈vγmsc2〉s
=

B2
rec/µ0

nlab,smsc2Γsh0,s

=
σcold
s (Brec)

Γsh0,s
,

(6.4)

with σcold
s the magnetization of the plasma without taking temperature

effects and relativistic bulk motion into account:

σcold
s (B) =

B2

µ0nlab,smsc2
. (6.5)

If σcold
s (Brec) exceeds unity, then it is possible to transfer to the particles an

amount of energy from the reconnecting field that exceeds their restmass,
i.e., it is possible to obtain relativistic particles. We do not include the
guide field BGŷ in the definition of the magnetization because it is mostly
compressed and does not transfer energy to the particles.

Finally, the total magnetization of the plasma is

σi+e(Brec) =
B2

rec/µ0∑
s nlab,smsc2Γsh0,s

=
σcold

i (Brec)∑
s Γsh0,s(ms/mi)

. (6.6)

In the inflow part of our simulations, we have h0,i ∼ 1, h0,e < 2.6, and
mi = 25me for the range of background temperatures considered here, so
that the particle energy flux is largely dominated by the restmass energy flux
of the ions, which is nlab,iv̄imic

2, and has no temperature dependence. We
thus have σi+e ∼ σcold

i , and σi+e is not a good representative of the electron
physics and of the possibility that they are relativistically magnetized. The
inflow magnetizations in our simulations are presented in Table 6.2.

6.3.3 Alfvén velocities

We give the definitions of the Alfvén speeds that will be used to discuss
the normalization of the reconnection electric field in Sect. 6.4.6. They are
reported in Table 6.2.

The Alfvén velocity in the inflow plasma, far from the current sheet,
is expressed in the comoving plasma frame and is, respectively in the non-
relativistic and relativistic cases,

V NR
A,in =

Btot√
µ0n0,bg(me +mi)

, (6.7a)

V R
A,in = c

(
σi+e(Btot)

1 + σi+e(Btot)

)1/2

'
V NR

A,in√(
V NR

A,in

)2
/c2 + 1

, (6.7b)

where σi+e(Btot) is to be expressed in the comoving frame (Eq. 6.6 with
nlab,s = n0,bg the comoving density and Γs = 1), and where Btot = (B2

0 +
B2

G)1/2. For the relativistic expression 6.7b, the first equality is general
and derived from the relativistic ideal MHD description (Gedalin 1993),
while the second holds only because mi � me and the total enthalpy is
dominated by the ion contribution. When there is a guide magnetic field,
we show in Sect. 6.5.3 that it is relevant to project the Alfvén speed into the
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direction of the reconnecting magnetic field (ẑ), i.e., to consider V R
A,in cos θ

with tan θ = BG/B0.

A hybrid Alfvén speed is often defined in the literature as depending on
the asymptotic magnetic field (without the guide field) and on the comoving
density at the center of the current sheet:

V NR
A,0 =

B0√
µ0n0,cs(0)(me +mi)

=

(
me

me +mi

)1/2 ωce

ω0,pe
c, (6.8)

where a subscript 0 indicates a comoving quantity. Its relativistic generaliza-
tion is denoted by V R

A,0, and is obtained with Eq. 6.7b but with parameters
of the plasma at the center of the current sheet in the magnetization.

6.3.4 Simulation parameters and resolution tests

The physical parameters of the main simulations are given in Tables 6.1
and 6.2. We consider a mass ratio mi/me = 25, except for one simulation
with pairs. The background plasma number density is nbg = 0.1ncs(0)
or 0.3ncs(0). Its temperature is varied between Tbg = 1.5 × 107 K (2.5 ×
10−3mec

2) and 3 × 109 K (0.5mec
2). The magnetization depends on the

ratio ωce/ωpe = 1, 3, or 6, leading to inflow magnetizations σhot
s between 10

and 260 for electrons, or 0.4 and 14 for ions. The current sheet is either of
initial halfwidth L = 0.5di = 2.5de, or L = 1di in the ωce/ωpe = 6 case, with
de, di the inertial lengths defined at current sheet center. We stress that for
relativistic temperatures the sheet width in terms of Larmor radii will not
be the same for simulations with different ωce/ωpe (Eq. 3.92); see L/rce in
Table 6.1.

The numerical resolution is set by the number of cells nx per electron
inertial length de, by the number of timesteps nt per electron plasma period
2π/ωpe, and by the number of computer particles (the so-called superpar-
ticles) per cell ρsp. The quantities de, ωpe, and ρsp are defined at t = 0
at the center of the current sheet, where the particle density is highest.
For the simulations of Table 6.2, we take nx = 9 and nt = 150 (250 for
ωce/ωpe = 6). We checked with a simulation with twice this resolution
(ωce/ωpe = 3, nx = 18, nt = 250) that all of the presented results are not
affecteda.

Concerning the number of superparticles per cell, the simulations of Ta-
ble 6.2 use ρsp = 1820 (1090 for nbg/ncs(0) = 0.3). For the case nbg/ncs(0) =
0.1, this corresponds to 1650 electron and ion superparticles per cell for the
plasma of the current sheet and to 170 for the background plasma. The
density profile of the current sheet plasma is set by changing the number
of superparticles per cell when going away from the center. We stressed in
Chapter 5 that because of their low numbers of superparticles per cell when
compared to real plasmas, PIC simulations present high levels of collisional-
ity. One should thus ensure that collisionless kinetic processes remain faster
than collisional effects (e.g., for thermalization), essentially by taking a large
enough number ΛPIC of superparticles per Debye sphere. For example, with
Θe = 2.4 the electron Debye length is 20 cells large, and we have initially at

aThroughout this section, “all the results” means the time evolution of the reconnection
rate and of the width of the diffusion zone for electrons and ions, the distribution functions
of high-energy particles, the temperature curves in the diffusion zone, the energy content
in the outflows, as well as the relative weight of the terms in Ohm’s law.
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the center of the current sheet: ΛPIC ∼ 364×20×20 = 7.3×105 superparti-
cles. For a background plasma with Tbg = 2× 108 K: ΛPIC = 133. We per-
formed a simulation identical to the one with ωce/ωpe = 3, nbg/ncs(0) = 0.1,
Tbg = 2 × 108 K, but with half the superparticles, and found no change in
the results. It shows that the main simulations use a large enough ρsp.

Boundaries are periodic along z and y. At the top and bottom x bound-
aries we use reflective boundaries, i.e., we place a perfectly conducting wall
that reflects waves and particles. The number of cells for the standard
simulations is 4100 × 6144. The length along y is of no dynamical impor-
tance, and the dimensions correspond to a 2D simulation with 455 initial
electron inertial lengths along x and 683 along z, typically with 4× 109 su-
perparticles. It takes 70Tpe for light waves to start from the current sheet,
reflect at the ±x boundaries, and come back to the sheet. This corresponds
to (18, 52, 106)ω−1

ci , or (450, 1300, 2650)ω−1
ce for, respectively, simulations

with ωce/ωpe = 1, 3, 6. The light travel time in the z direction is longer.
Except for run ωce/ωpe = 1, all the analyses presented here are for shorter
times and are thus not affected by boundaries. To check this, we performed
a larger simulation with 8000× 10240 cells (i.e., 888× 1138 initial electron
inertial length) for the case ωce/ωpe = 3, nbg/ncs(0) = 0.1, Tbg = 2× 108 K,
with the same nt, nx, ρsp. The corresponding light-crossing time is now
136Tpe = 101ω−1

ci = 2535ω−1
ce . All the results are the same, which shows

that we do not suffer from boundary effects.

6.4 Results with no guide field

This section explores results for simulations with no guide field, where the
magnetic field above and below the current sheet is antiparallel.

6.4.1 Overall structure and evolution

We first summarize the general picture, raising important points that are
detailed in the next subsections. The initial kinetic equilibrium is unstable
to the collisionless tearing mode, which in all presented simulations is trig-
gered by the noise level and by the slightly out-of-equilibrium initial state.
We have studied in detail the linear phase of this instability with PIC sim-
ulations for pair plasmas (Sect. 4.4.4) and found growth rates within 5%
of the analytical derivations of Pétri and Kirk (2007) made on the basis of
a linearization of the Vlasov-Maxwell system. Physically, the instability is
driven by the particles freely bouncing in the layer of magnetic field reversal
(Coppi et al. 1966), with a mechanism similar to a filamentation instability:
perturbations in Bx and Bz lead to a bunching of the particles, which in
turn increase the magnetic field perturbation. It leads to the formation of
alternating X- and O-points, here with no privileged location because we
impose no localized initial perturbation (Fig. 6.1).

With the appearance of X- and O-points, the magnetic flux variations
across fixed contours induce an out-of-plane electric field Eyŷ ∝ −ŷ, which
amplifies the initial current along −y, which in turn increases the magnetic
field in order to cancel out the former magnetic flux variations and prevent
reconnection. However, non-ideal processes forbid an ideal plasma response,
and allow the triggering of reconnection and the existence of a finite electric
field at the current sheet center, where ideal Ohm’s law would otherwise read
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Figure 6.1: Electron number density in the whole simulation domain, at two
different times. From run ωce/ωpe = 3, σhot

e = 89, Tbg = 1.5 × 107 K. Units are
the number of electron superparticles per cell, lengths are in cell numbers. Here
40Tpe = 30ω−1ci = 750ω−1ce .

Ey = 0. This electric field Ey is at the heart of the reconnection process,
because it is responsible for transfering energy from the magnetic field to
particles in the diffusion region. We detail Ohm’s law and the contribution
of each non-ideal term in Sect. 6.4.3.

Plasma and magnetic fields decouple in the non-ideal region, and flux
tubes can “reconnect”, producing new flux tubes strongly bent that accel-
erate the plasma outward in the ±ẑ directions, thus producing the exhaust
outflows. This depletion of particles and/or the spreading of the electric field
Ey outside the current sheet create an inflow from the ideal zone toward the
current sheet: particles E×B drift at a speed vin = E×B/B2 = Ey/Bzx̂.
The incoming particles are then accelerated along ŷ by Ey once they enter
the non-ideal region where they are unmagnetized (because there E > cB).
The structure of this central region is investigated in Sect. 6.4.2.

The exhaust outflows, which in the MHD view are driven by the mag-
netic field tension force, are produced by particles accelerated by Ey along ŷ
and then slowly rotating owing to the increasingly strong magnetic field Bx
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Figure 6.2: Zoom around a X-point showing various fluid quantities. From run
ωce/ωpe = 3, σhot

e = 89, Tbg = 1.5 × 107 K, at t = 40Tpe = 30ω−1ci = 750ω−1ce and
z ∼ 3024 cells. Units for particle densities are particle numbers per cell. The
temperatures at the same time are shown in Fig. 6.10, and cuts along x and z in
Figs. 6.4 (upper-right), 6.7, 6.8, and 6.9 (right).

as one goes away from the X-point (Fig. 6.3). As they do so, particles still
gain energy as long as qsEyŷ · v > 0. The energy content of these outflows
comprises a Poynting flux, bulk kinetic energy, and thermal energy, with
respective weights that depend on the background plasma parameters, as
studied in Sect. 6.4.4. The balance between inflow and outflow can lead,
depending on the conditions, to a steady state Sweet-Parker-like configura-
tion.

In the configuration of the simulations the initial perturbation is not
localized in space, so that several X-points appear, with islands inbetween
that collect the flux of particles and of the reconnected magnetic field. The
islands are trapped between two exhausts, and the bulk energy of the out-
flows is converted into heat by random scatterings in the complex elec-
tric and magnetic structures at the island entrance and inside the islands
(Fig. 6.10), however with particle distributions that are not necessarily ther-
mal (see Sect. 6.4.5). The islands grow and, since they are threaded by
parallel currents (along −ŷ), attract each other via the Lorentz force and
merge, thus growing even more. As time goes on, the island number dwin-
dles and the space inbetween them increases, forming elongated current
sheets composed of a X-point surrounded by two elongated exhausts (see
Fig. 6.2). We stop the simulations when only two or three islands remain.
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Figure 6.3: Typical trajectory for a particle, here an electron. Note the Speiser-
like oscillatory motion inside the current sheet. Axis scales are given in cell num-
bers, with 9 cells representing one initial electron inertial length de. Dot colors
are the particle Lorentz factor. Solid lines are projections onto the x-y, y-z, and
z-x planes. The y direction is not described in the simulations, and is here recon-
structed on the basis of an invariance of the electromagnetic fields along y.

6.4.2 Inflow: two-scale diffusion region and sharp transitions

We now examine the inflow of plasma into the diffusion region. In the
literature, for antiparallel reconnection (i.e., no guide field), its width is
found to scale with the particles inertial length, a result that we show to
also hold for relativistic reconnection in Sect. 6.4.2. The originality of the
following results is the formation of a very sharp transition at the entrance
of the diffusion regions, which we explore in Sect. 6.4.2.

Width of the diffusion region

The diffusion region is, by definition, the area where impeding mechanisms
(which can be collisions, inertia and collective interactions, or finite Larmor
effects) prevent the particles from responding in an ideal way to the electric
fields induced by magnetic flux variations. The magnetic field and the
plasma are then not coupled any more, the former can freely diffuse, and
reconnection can start or be sustained. Defining the diffusion region is thus
a matter of finding the area where the non-ideal processes dominate over
ideal behavior.

Defining unambiguous criteria to identify this region is a complex subject
(Ishizawa and Horiuchi 2005; Klimas et al. 2010), especially in the presence
of a guide field (Hesse et al. 2002, 2004; Liu et al. 2014), in 3D simulations
(Pritchett 2013), or in asymmetric configurations (Zenitani et al. 2011b).
In our case, as we show in Sect. 6.4.2, there is a sharp increase in particle
density when the inflow plasma reaches the central part, where particles
are retained by bouncing motions around the reversing magnetic field. It is
associated with a sharp drop in inflow velocity, a rise in temperature, and a
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Figure 6.4: Cut along x through the X-point for four simulations, as indicated in
the insets. The times are t = 40Tpe = 30ω−1ci = 750ω−1ce for the cases ωce/ωpe = 3,
and t = 142Tpe = 35ω−1ci = 875ω−1ce for the case ωce/ωpe = 1.

violation of the frozen-in relation E+ v̄s ∧B = 0. We identify the diffusion
region with this area of increased density.

Because of their lighter mass and fastest response, electrons remain
frozen to the magnetic field longer than ions. The ion diffusion region is
thus larger than the electron one. In all the antiparallel simulations, we
find the expected two-scale (ion and electron) diffusion region. It can be
seen in Fig. 6.4, where we present a cut along x through a X-point at a
given time for different simulations. The width δs of the diffusion region is
roughly given by the inertial length ds of the corresponding species, defined
with the particle density at the center of the diffusion region, i.e., δs ∼ ds =
c/
√
ns(x = 0, t)q2

s/ε0ms, with throughout all simulations 0.5 ≤ δi/di ≤ 1
and 1 ≤ δe/de ≤ 1.5 (Fig. 6.5). This scaling is expected from the basic
arguments exposed in Sect. 2.12.1, and is also found in PIC simulations
of non-relativistic ion-electron magnetic reconnection (e.g., Pritchett 2001;
Klimas et al. 2010).

In the case of hot background electrons (Tbg,e = 3× 109 K, with a corre-
sponding background plasma βe = 1.1× 10−2), the transition is less sharp,
and the width is larger than the inertial length. The sharpness is discussed
in Sect. 6.4.2, and the larger extent is expected because inflowing particles
have faster speeds, and thus larger Larmor radii and larger bouncing mo-
tions. The width δs should thus also depend on the βs parameter of the
inflow.
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Figure 6.5: Width of the diffusion region δs, and inertial length ds measured
at the center of the diffusion region, for ions and electrons. Panels a are for the
simulation with ωce/ωpe = 3, σhot

e = 89, Tbg = 1.5 × 107 K and BG = 0; panels b
for ωce/ωpe = 6, σhot

e = 260. The phase between 0 and 18Tpe for panels a (0 and
33Tpe for panels b) corresponds to times where the tearing instability has not yet
started. The decrease in δe between 18 and 20Tpe for a (33 and 37Tpe for b) is the
linear and non-linear growth phase of the instability.

Sharpness of the inflow boundaries

We see from Fig. 6.4 that the boundary of the diffusion region, defined by the
increase in particle number density, is very sharp in some cases (especially
for the case ωce/ωpe = 3 with a cold background plasma). These sharp
transitions are not the trace of a shock between the incoming plasma and
the over-dense diffusion region. First, because the inflow bulk velocity is not
supersonic, in the sense that we have v̄in,s < Cfms, with Cfms the phase speed
of waves propagating perpendicular to the magnetic field B0, i.e., the fast
magnetosonic velocity in relativistic MHD (Alfvén and slow waves do not
propagate perpendicularly toB0, also, see Sect. 3.5 for references concerning
relativistic MHD). Second, because the width of the transition between
inflow plasma and diffusion region plasma is, in the sharpest case, less than
an electron inertial length, while we know that the thermalization of a cold
inflow by collisionless kinetic processes occurs on a width of some inertial
length, also with the formation of a precursor upstream (e.g., Plotnikov et
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Figure 6.6: Trajectories of a sample of particles, and on the right fluid velocities
and current for a cut through the X-point.

al. 2013) that is not seen here. Third, because there is no variations in the
magnetic field across the sharp particle density variation.

Instead, we explain these sharp transitions by quasi-ballistic motions of
the particles entering the diffusion region. Figure 6.6 shows some particle
trajectories: they travel toward the diffusion region because of the electric
field E with a guiding center velocity given by vE×B = E × B/B2, they
reach the magnetic field reversal, overshoot to the other side because of
their inertia, turn around the increasingly strong magnetic field, and then
oscillate around the B = 0 line before being ejected toward the islands
(because they have a large vy in the Bx field, see Sect. 6.4.1 and Fig. 6.3 for
a trajectory in 3D). This well explains the fluid point of view of Fig. 6.4:
averaging over particles to obtain the fluid particle number density or fluid
velocity, the sharpness of the transitions comes from all particles of the same
species turning around at roughly the same location.

It also explains the M shape of the particle densities of Fig. 6.4: particles
spend more time at the edge of the diffusion region, when turning back, than
at the center, hence the peaks at the edges and the depletion at the center.
The fluid velocity profiles are also well explained by the particle view. We
note that an M shape is also reported in the context of the inversion electric
field layer (Chen et al. 2011, and references therein). Here we do not find
any trace of the inversion layer in the electric field. A possible explanation
may be that our electrons are relativistic.

Concerning the sharp transitions, the question is thus to know why and
under which conditions all the particles of a species turn back at the same
location. They will do so if they all enter the diffusion region with the
same velocity, i.e., if their thermal velocity is lower than their bulk velocity:
vth

in,s � v̄in,s ∼ vE×B. Table 6.3 presents the ratio vth
in,s/v̄in,s for the different

simulations of Fig. 6.4. For a given magnetization, here ωce/ωpe = 3, we
clearly see a correlation between a small vth

in,s/v̄in,s and a sharp transition.

In particular, in the case with very hot electrons (vth
in,e/v̄th,e = 1.8) and rela-

tively cold ions (vth
in,i/v̄in,i = 0.1), the electron particle number and velocities
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ωce

ωpe
Tbg,e (K) Tbg,i (K) Θbg,e Θbg,i

vth
in,e

v̄in,e

vth
in,i

v̄in,i
Sharpness: elecs. and ions r̃ci,in r̃ce,in

1 1.5× 107 1.5× 107 2.5× 10−3 10−4 0.1 0.02 sharp sharp 0.6 3.18

3 1.5× 107 1.5× 107 2.5× 10−3 10−4 0.1 0.02 very sharp very sharp 0.2 1.1

3 2× 108 2× 108 3× 10−2 10−3 0.3 0.1 sharp sharp 0.7 3.7

3 3× 109 2× 108 5× 10−1 10−3 1.8 0.1 smooth sharp 3 3.7

Table 6.3: Values related to the sharpness of the edge of the diffusion region. Here
Θs = Ts/(msc

2), vthin,s =
√
Ts/ms, and v̄in,s the fluid velocity at the entrance of the

diffusion region of species s, measured in Fig. 6.4. Also, r̃cs is the thermal Larmor
radius in number of cells with rcs = 〈(γv⊥)2〉1/2/ωcs, estimated with the formula
for a Maxwell-Jüttner plasma at rest as rcs = (c/ωce)

√
2Θsκ32(1/Θs) (Eq. 3.18 or

Table 3.1). The indication of sharpness is qualitative, see Fig. 6.4 for details.

present smooth variations, while the same curves for ions do exhibit sharp
transitions. This is in accordance with the explanation of sharp transitions
by the cold nature, in terms of the ratio vth

in /vE×B, of the inflowing plasma.

The influence of the magnetization on the sharpness of the transitions is
seen by comparing the two first simulations of Table 6.3, with ωce/ωpe = 1
and 3 and same ratio vth

in,s/v̄in,s (plotted in the top part of Fig. 6.4). A
smaller magnetization implies a smoother shape. We understand this as a
consequence of particles turning back on a scale given by their Larmor radii
in the magnetic field at the sheet entrance, which is smaller when ωce/ωpe

is higher.

As a final remark concerning resolution, we note that in the coldest
cases, the thermal Larmor radius of the electrons is smaller than a cell
length. The resolution of the Larmor radius on the grid is, however, not
important for integrating particle trajectories in constant fields, because
interpolation of field quantities to particle position then provides the same
(constant) values, regardless of the cell size. What matters is the temporal
resolution, ωcs∆t < 1 (see Sect. 4.4.1). Here, we have ωcs∆t = 0.04 and
0.12 for ωce/ωpe = 1 or 3. Also, a test run with a spatial and temporal
resolution increased by a factor two leads to the same structures.

In summary, the sharp transitions are explained by collective bounc-
ing motions allowed by the cold nature of the inflow: vth

in,s � v̄in,s. Such
transitions may also occur in non-relativistic reconnection, but then the in-
flow speed v̄in,s ∼ E/B is low and the background plasma should be very
cold. They are likely to be more common in relativistic reconnection, where
v̄in,s ∼ E/B is larger. This may be why, to our knowledge, they have never
been reported in other simulations.

6.4.3 The relativistic Ohm’s law

We explore the balance of terms in Ohm’s law. The literature concerning
2D non-relativistic reconnection largely shows that for antiparallel recon-
nection, the dominant term is thermal inertia either in ion-electron (Klimas
et al. 2010; Shay et al. 2007; Fujimoto 2009) or pair (Bessho and Bhattachar-
jee 2005) plasmas, and this is the key element of various analytical models
(e.g., Hesse et al. 2011). On the other hand, reconnection with a guide
field is sustained by electron bulk inertia on skin-depth scales, and thermal
inertia on Larmor radius scales (Hesse et al. 2002, 2004; Liu et al. 2014).
Existing studies with relativistic pair plasmas confirm the non-relativistic
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Figure 6.7: Different components of Ohm’s law (Eq. 6.9) for a cut along x through
a X-point (the same as in Figs. 6.2, 6.4 upper-right, 6.8, 6.9 right, and 6.10). Run
ωce/ωpe = 3, σhot

e = 89, Tbg = 1.5× 107 K, BG = 0, t = 40Tpe = 30ω−1ci = 750ω−1ce .

trend: with no guide field, Hesse and Zenitani (2007), Bessho and Bhat-
tacharjee (2012), and Zenitani et al. (2009a) find a dominating contribution
of thermal inertia, while with a guide field Hesse and Zenitani (2007) find a
significant contribution of the time derivative of bulk momentum ∂t(nep̄y).
Here we explore the situation in ion-electron relativistic plasmas for an-
tiparallel reconnection. We show for the first time in the antiparallel case
that bulk inertia contributes at least as much as thermal inertia for high
inflow magnetizations. We explain that this is due to a relativistic inflow
magnetization in Sect. 6.4.8.

Ohm’s law is presented in the non-relativistic case in Sect. 2.7. It is the
fluid equation of motion for the lighter particles (the electrons), and is a
means to evaluating the relative weight of the different non-ideal terms, al-
lowing reconnection with a simple fluid picture. Understanding the weight
and localization of each term is a first step toward building an effective
resistivity for fluid models (resistive MHD, two-fluid codes, hybrid codes),
where concrete resistive parametrizations can lead to very different behav-
iors, for instance changing from steady to unsteady states in Zenitani et al.
(2009b), or triggering (or not) a Petsheck-like configuration depending on
the localization and gradients of the resistivity (Baty et al. 2006).

The relativistic Ohm’s law for electrons is directly derived from the
equation of conservation of momentum for the electron fluid, Eq. 3.72, which
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is itself obtained from Vlasov’s equation in Sect. 3.4. It reads as

qe

me
(E + v̄e ∧B) =

1

ne

∂

∂t
(nep̄e) +

1

ne

∂

∂x
· (ne〈peve〉)

=
1

ne

∂

∂t
(nep̄e) +

1

ne

∂

∂x
· (nep̄ev̄e)︸ ︷︷ ︸

bulk inertia

+
1

ne

∂

∂x
· (ne〈δpeδve〉)︸ ︷︷ ︸

thermal inertia

.

(6.9)

Here we use for simplicity quantities computed in the simulation (or lab)
frame; e.g., ne is the electron number density in the lab-frame (denoted
by nlab,e in Sect. 3.4). Brackets 〈·〉s or an overbar denote an average in
momentum space over the particles distribution function. We also used the
definition δp = p− p̄ where p = γv is the momentum. The left-hand side of
Eq. 6.9 is the ideal part, and is set equal to 0 in ideal MHD. On the right-
hand side are terms linked to finite inertia (i.e., particles do not respond
perfectly to the electric field variations because of their inertia):

• The first term is a part of bulk inertia. However, it vanishes in steady
state so we neglect it (this is validated a posteriori).

• The second term is inertia linked to the bulk flow and is denoted as
bulk inertia. It comes from the overall structure of the flow around
the sheet (the profiles of the mean quantities: increase in v̄, p̄).

• The third term is inertia linked to microscopic thermal motion and
is denoted as thermal inertia. It comes from the divergence of the
off-diagonal terms of the pressure tensor, and can be anticipated by a
study of the temperature curves.

We analyze Ohm’s law in the direction of the reconnection electric field
(ŷ here). Given the invariance along y, the divergence terms have two
contributions:

∑
k ∂k(pkvy) = ∂x(pxvy) + ∂z(pzvy). A computation of the

divergence requires a smoothing of the quantities, especially for the thermal
inertia term, which is very noisy.

We show in Fig. 6.7 the results for a cut through the X-point for the
simulation with ωce/ωpe = 3 and Tbg = 1.5× 107 K (σhot

e = 89). Ohm’s law
is satisfied everywhere, except at the sharp transitions at the entrance of
the electron diffusion region, where the derivatives diverge. Different areas
emerge:

• The electrons are ideal outside of the ion diffusion region.

• In the ion diffusion region, |v̄e ∧B| decreases linearly.

The bulk inertia term
∑

k ∂k(nep̄kv̄y) rises linearly to compensate.
The term ∂x(nep̄xv̄y) wins out over ∂z(nep̄z v̄y). The contribution of
the former is understandable when looking at p̄x and v̄y, which increase
when we get closer to the sheet in this region (see Fig. 6.4 for v̄y).

The thermal inertia term
∑

k ∂k(neδpkδvy) is slightly positive, and
partly cancels the contribution of bulk inertia. This cancellation is
also reported in Fujimoto (2009) and Klimas et al. (2010) for non-
relativistic ion-electron plasmas, and in Bessho and Bhattacharjee
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shows that Ti > Te.

(2012) for relativistic pairs. Only ∂x(neδpxδvy) contributes and is
negative, which is easily seen when looking at the temperature curves
Txy,e and Tzy,e (Fig. 6.8).

• In the electron diffusion region, the v̄e ∧B term vanishes (because B
is very weak and v̄x = 0).

The bulk inertia term is constant and due only to the term ∂z(nep̄z v̄y),
which is expected to contribute given that v̄y ∼ const and p̄z ∝ z −
zX−point in this region (Fig. 6.9). The other term, ∂x(nep̄xv̄y), vanishes
because p̄x = const = 0 in this area.

The thermal inertia term
∑

k ∂k(neδpkδvy) contributes as much as the
bulk inertia term. Only ∂x(neδpxδvy) contributes, and it is negative,
which is easily seen when looking at the temperature curves Txy,e and
Tzy,e in Fig. 6.8.

A cut along x through other X-points in the simulation leads to the same
results. Also, a cut along z through the X-point reveals that the results of
the electron region hold throughout the center of the current sheet, with a
slow increase in the v̄e ∧B term as we get near the islands.

In summary, non-ideal terms in the ion regions are due to bulk inertia
and, in the electron diffusion region, to an interestingly equal contribution
of bulk and thermal inertia. For other runs with ωce/ωpe = 3 (σhot

e = 27
to 89), we also find an equal contribution from thermal and bulk inertia.
For the most magnetized run, ωce/ωpe = 6 (σhot

e = 260), the contribution of
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Figure 6.9: Cut along z through the X-point.
Left: Run ωce/ωpe = 1, σhot

e = 9.9, same X-point as in Fig. 6.4, t = 142Tpe =
35ω−1ci = 875ω−1ce .
Right: Run ωce/ωpe = 3, σhot

e = 89, Tbg = 1.5 × 107 K, BG = 0, same X-point
and time as in Figs. 6.2, 6.4 upper-right, 6.7, 6.8, and 6.10 (t = 40Tpe = 30ω−1ci =
750ω−1ce ).
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ωce

ωpe

nbg
n0

Tbg,e, Tbg,i (K) σcold
in,e σcold

in,i electrons ions

1 0.1 1.5× 107, idem 10 0.4 Γout,s − 1 0.49 31% 0.02 20%

Γout,s(h0,out,s − 1) 1.07 69% 0.08 80%

3 0.31 2.0× 108, idem 29 1.2 Γout,s − 1 0.71 14% 0.065 22%

Γout,s(h0,out,s − 1) 4.34 86% 0.24 78%

3 0.1 3× 109, 2× 108 90 3.6 Γout,s − 1 0.089 1% 0.056 9%

Γout,s(h0,out,s − 1) 15 99% 0.54 91%

3 0.1 1.5× 107, idem 90 3.6 Γout,s − 1 0.63 5% 0.13 20%

Γout,s(h0,out,s − 1) 11 95% 0.5 80%

3 0.1 2.0× 108, idem 90 3.6 Γout,s − 1 0.38 4% 0.091 14%

Γout,s(h0,out,s − 1) 9.7 96% 0.56 86%

6 0.1 8.0× 108, idem 360 14 Γout,s − 1 0.42 1% 0.19 8%

Γout,s(h0,out,s − 1) 51 99% 2.2 92%

Table 6.4: Energy content of the outflows. The energy flux due to the bulk flow
mean velocity is proportional to Γout,s−1, and the energy flux due to kinetic particle
motions and pressure work is proportional to Γout,s(h0,out,s−1) (see Eq. 6.13). Here
BG/B0 = 0. Quantities are measured at their maximum value, which is reached at
the end of the exhausts along z.

bulk inertia exceeds that of thermal inertia by a factor 1.5 to 3. We show in
Sect. 6.4.8 with analytical estimations that the high magnetization for elec-
trons indeed allows bulk inertia to overreach thermal inertia, with the former

scaling as σcold
in,e and the latter as

(
σcold

in,e

)1/2
. This effect is present in our

simulations and not in the references previously mentioned with antiparallel
fields, because our background electron magnetization is greater. It is thus
a new regime that challenges the thermal inertia paradigm at high electron
magnetizations. We discuss the possible consequences in Sect. 6.6.2.

6.4.4 Outflow: energy content of the exhaust jets

It can easily be shown (Sect. 6.4.4) from analytical considerations that the
outflows from the diffusion region should have relativistic bulk velocities
and/or relativistic temperatures. In our simulation data, the thermal part
always clearly dominates the bulk kinetic energy part, more strongly for
more relativistic cases (Sect. 6.4.4). A refined analytical estimate explains
why in Sect. 6.4.8.

A simple analytical estimation

As explained in Sect. 6.4.1, bipolar outflow jets are naturally produced from
each side of the X-points. They are clearly visible in Fig. 6.2. An estimation
of the energy content of these outflows can be easily obtained in steady state
by using the conservation of particle number and of energy. To do so, we
consider that the diffusion region for species s has a length Ds (along z)
and a width δs (along x). We generalize the situation to cases where there
is a guide field BG. We denote quantities entering (leaving) this region by
a subscript “in” (“out”, respectively).

Conservation of particle number (Eq. 3.71) between inflow and out-
flow gives the relation nin,svin,sDs = nout,svout,sδs. The inflow velocity
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is estimated by the E × B velocity as vin,s = Ey/B0. Regarding en-
ergy conservation (Eq. 3.79), the inflow energy flux includes the particle
energies, and the reconnecting and guide field Poynting fluxes (Eqs. 6.2
and 6.3): Dsnin,smsc

2p̄in,s + Dsvin,s · B2
0/µ0 + Dsvin,s · B2

G,in/µ0. We as-
sume that in the outflow the energy in the reconnected magnetic field
B0 is negligible compared to particle energy, so that the energy flux is
δsnout,smsc

2p̄out,s + δsvout,s · B2
G,out/µ0. Equating the two fluxes and com-

bining this with the conservation of particle number, we obtain

p̄out,s

v̄out,s
=
p̄in,s

v̄in,s
+ σcold

in,s (B0) + σcold
in,s (BG,in)(1− α), (6.10)

with (1 − α) =

(
1− nin,sB

2
G,out

nout,sB2
G,in

)
. The guide field is usually merely com-

pressed, so that 1− α ' 0.
Equation 6.10 is independent of the p dependence of the distribution

function fs. However, some insight can be gained by considering a distri-
bution that is isotropic in the comoving frame, for which we have the result
p̄ = h0(T )Γv̄, with h0 the comoving enthalpy (as defined and pictured for
a Maxwell-Jüttner distribution in Fig. 3.1), and Γ = (1 − v̄2/c2)−1/2. If,
in addition, we neglect the contribution of the guide field and assume an
inflow plasma with non-relativistic temperatures and non-relativistic veloc-
ities, Eq. 6.10 becomesb

h0,out,sΓout,s = 1 + σcold
in,s (B0). (6.12)

We underline that the magnetization σcold
in,s (B0) is to be taken at the entrance

of the diffusion region of species s, where it can differ from its asymptotic
value because of a decrease in magnetic field and particle number density
(as in Fig. 6.4).

We clearly see that for a relativistic inflow plasma where B2/µ0 > nmc2

and hence σcold
in,s (B0) > 1, magnetic reconnection is expected to produce

outflows with either relativistic bulk velocities (Γout,s > 1) or relativis-
tic temperatures (h0,out,s > 1), or both. We also see that since σcold

s ∝
1/ms, electrons will be more accelerated/heated than ions and that rela-
tivistic electrons (σcold

e > 1) can be expected even at low ion magnetizations
(σcold

i = σcold
e ×me/mi � 1).

Results from simulations

We first check whether the energy estimate of Eqs. 6.10 and 6.12 holds in
all simulations. This is the case up to a factor . 2. An only approximate
correspondence is to be expected because this relation assumes a simple
geometry with, in particular, a constant inflow velocity along the diffusion
region and no energy exchange between the species. For example, in Fig. 6.4,
for ωce/ωpe = 3 and Tbg = 1.5×107 K, we measure 1+σcold

in,s (B0) = 1.8 in the
inflow for ions and 6.2 for electrons, while at the outflow maximal velocity

bWe note that the non-relativistic limit of Eq. 6.12, with h0,out,s ∼ 1 and v̄out,s � c,
is

v̄out,s =
√

2σcold
in,s (B0) =

√
2V in

s,A(B0), (6.11)

where V in
s,A(B0) is the non-relativistic inflow Alfvén speed with only the mass of species s.

It only comprises the component B0, so that if there is a guide field, this is the projection
of the total Alfvén speed onto the outflow direction ẑ.
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(Fig. 6.9) we have p̄out,s/v̄out,s = 1.7 for ions and 13 for electrons. These
orders of magnitude hold for all cases.

A more refined analysis of the energy content of the outflow, split into its
thermal and bulk contributions, can be performed. To do so, we decompose
the particle energy flux as (see Sect. 3.4)

ns〈γmsc
2v〉s = nsmsc

2h0,out,sΓout,sv̄out,s

= nsmsc
2v̄out,s [1 + (Γout,s − 1) + Γout,s(h0,out,s − 1)] .

(6.13)

On the right-hand side, the first term is the restmass energy flux, and is
the same as that from the inflow. The second is the kinetic energy of a cold
bulk flow of velocity v̄out,s. The third is the energy transported by thermal
motions in the plasma rest frame and by pressure work, and we denote it as
the enthalpy flux. We note that these definitions match those of Zenitani
et al. (2009a), who performed a similar analysis with two-fluid simulations
of relativistic reconnection in pair plasmas.

We measure the maximum outflow velocity v̄out,s, deduce the Lorentz
factor Γout,s, measure the maximum in momentum p̄out,s, and compute the
enthalpy h0,out,s = p̄out,s/(Γout,sv̄out,s). From these values, we estimate
in Table 6.4 the balance of particle energy between each of the terms of
Eq. 6.13.

In all cases, a large fraction of the particle energy flux is in thermal
kinetic energy, not in bulk flow kinetic energy. For electrons, we see that the
thermal part clearly dominates more as one increases the relativistic nature
of the inflow (e.g., 69% in the thermal part for the less relativistic case, 99%
for the most relativistic). This is also the case for ions: from 80% to 92% in
the thermal part as the ion magnetization increases. The Tbg,i = 2× 108 K
case is exceptional with 91% in the thermal energy, but this large percentage
is likely explained by interactions with the hot electrons Tbg,e = 3× 109 K.
We explain why thermally dominated outflows are expected at high inflow
magnetization with a refined analytical model in Sect. 6.4.8.

6.4.5 Islands structure

Turning to the magnetic islands, we emphasize that they are magneti-
cally isolated, have an M-shaped density distribution, and are hot with
anisotropic temperatures.

After being expelled along ±z in the outflow, the particles meet the
magnetic islands that separate each pair of X-points. The islands are ini-
tially formed by the tearing of the current sheet. They then consist only
of particles of the current sheet, plus those of the background plasma that
were inside the current sheet location. Small at the beginning, they grow
by collecting particles from the outflows at their periphery and by merg-
ing with other islands. A remarkable property is that particles from the
background plasma cannot enter inside the islands, but are scattered by the
strong magnetic field structure surrounding the island and circle around it.
Consequently, the particles at the island centers remain the same throughout
the whole simulation, even after many island-merging events. This matter
is explored in more detail in Chapter 7 (consult Fig. 7.6 for an illustration).
We stress here two main points.

First, the trapped particles are heated by the island contraction (which
occurs when two islands merge), so that the central temperatures are very
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Figure 6.10: Temperatures for same simulation and time as in Figs. 6.2, 6.4
upper-right, 6.8, and 6.9 right. Note the different units for ions and electrons.
Since mic

2 = 25mec
2, the ions are actually hotter than the electrons.

high for both species, highly anisotropic (Figs. 6.9 and 6.10), with a dom-
inance of Tzz. The island centers are also where the currents are the
strongest.

Second, as said above, most of the inflowing background particles popu-
late a region around the center, while the central part of the island mainly
consists of particles originally from the current sheet. As a result, after
some time the surrounding part becomes denser than the isolated central
part. A cut along z through an island center indeed (Fig. 6.9) reveals,
for the particle density, an M shape with a central dip and two shoulders.
This may explain observed density dips at the center of magnetic islands
during magnetotail reconnection events (Khotyaintsev et al. 2010), without
invoking island merging or particle escape along the flux tube.

6.4.6 Reconnection electric field and reconnection rate

As shown in Sect. 2.11.1, the rate of variation of magnetic field flux across a
X-point, dΦBz/dt = (d/dt)

∫ X-point
x=0 Bzdx, is equal in two-dimensional con-

figurations to the y component Ey of the electric field at the X-point loca-
tion. In addition, dΦBz/dt is in part determined by the outflow velocity,
because the latter sets the rate at which magnetic field is extracted from
around the X-point (see e.g., in a resistive MHD context, Borovsky and
Hesse 2007; Cassak and Shay 2007). Since one expects v̄out ∝ VA in non-
relativistic setups, the reconnection rate Ey is usually normalized either to
B0V

NR
A,0 , with V NR

A,0 the hybrid Alfvén speed of Eq. 6.8, or to B0V
NR

A,in, with

V NR
A,in the Alfvén speed in the inflow of Eq. 6.7a. These normalizations are

chosen so that the normalized rate, E∗ = Ey/B0VA, stays close to the same
set of values. For example, it has been shown that it gives identical results
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Figure 6.11: Time evolution of the normalized reconnection electric field
Ey/(B0V

R
A,in), measured at the X-point of various simulations. The velocity V R

A,in

is given in Table 6.2, and B0 = 0.11, 0.33, or 0.66 for ωce/ωpe = 1, 3, or 6, respec-
tively. Time is normalized by the ion cyclotron pulsation, but the growth rate of
the collisionless relativistic tearing mode is not proportional to ωci (Pétri and Kirk
2007), hence the different time lags and shapes. In particular, for ωce/ωpe = 6, the
timescale of the plot is divided by 3. For pairs, the timescale is tωce/25.

when varying the mass ratio (e.g., Hesse et al. (1999), or Ricci et al. (2002,
2003) for mi/me = 25, 180, 1836 with an implicit PIC code)c.

In the following we turn to our relativistic case and ask whether a nor-
malization can be found that confines the range of values for E∗ in a narrow
range and relaxes to the above normalization in the non-relativistic case.
We argue here that the normalization by the hybrid Alfvén speed is not
relevant, because it does not depend on the particle number density of the
inflow, while the ratio Ey/B0 clearly does. This is seen for the simulation
with nbg = 0.3ncs(0), for which Ey/B0 peaks at 0.13c, compared to the
otherwise identical simulation with nbg = 0.1ncs(0), where Ey/B0 peaks at
0.20c. On the other hand, the inflow Alfvén speed V NR

A,in ∝ 1/
√
nbg, and thus

leads to closer normalized rates. We consequently exclude hybrid quantities
for normalization.

In a relativistic configuration, the non-relativistic Alfvén speed can in-
crease to infinity. However, the ratio Ey/B0 is also the E × B velocity of
the incoming plasma and cannot exceed the speed of light. The normalizing
Alfvén velocity should thus also saturate to some value, which is why we
choose to normalize the electric field by

E∗ =
Ey

B0V R
A,in

, (6.14)

with V R
A,in the relativistic Alfvén speed in the inflow (Eq. 6.7b), which cannot

cHowever, going down to mi/me = 1 leads to less systematic results. For example,
Fujimoto (2009) reports E∗ = 0.15 for mi/me = 100 and 0.08 for pairs. Liu et al. (2014)
report close rates for mi/me = 1 and 25. Here we performed a simulation with mi/me = 1
and find a peak reconnection rate E∗ = 0.30, which is greater than for mi/me = 25
(Fig. 6.11).
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exceed c. The time evolution of E∗ is shown in Fig. 6.11. Several comments
can be made.

First, the rate E∗ is not sensitive to the background plasma tempera-
tures, as can be seen for the simulations ωce/ωpe = 3, nbg = 0.1ncs(0), no
guide field, and Tbg = 1.5×107, 2×108 and 3×109 K. This contrasts with the
interpretation of Hesse and Zenitani (2007), who attribute a lower rate to a
higher inflow temperature. In addition to the temperatures, the magnetiza-
tion of their simulation also changes and may also affect the rates. Coming
back to our simulations, we note that we use very low background plasma β
(< 10−2, Table 6.2), and that a weak plasma β dependence is expected for
higher values (e.g., TenBarge et al. 2014, have rates E∗ multiplied by ∼ 2
when β passes from 0.01 to 1).

Second, the reconnection rate for the simulation with a higher back-
ground particle density (nbg = 0.3ncs(0), E∗ = 0.18) remains lower than its
counterpart with nbg = 0.1ncs(0) (E∗ = 0.23). This is in line with the pair
plasma simulations of Bessho and Bhattacharjee (2012) who found a similar
rate for nbg = 0.1ncs(0) (E∗ = 0.19) and a higher rate for nbg = 0.01ncs(0)
(E∗ = 0.36). The reconnection rate thus increases with decreasing back-
ground plasma density, which is also coherent with the β dependence men-
tioned above.

Finally, the normalization leads to very similar values of E∗ for the
relativistic cases (ωce/ωpe = 3 or 6), with E∗ = 0.17-0.24, but to a signifi-
cantly lower rate for the less relativistic case (ωce/ωpe = 1), with E∗ = 0.14.
More generally, the values for the relativistic cases are higher than those
reported in the literature for undriven, symmetric reconnection with zero
guide field in non-relativistic ion-electron plasmas. For the peak values of
E∗ (once normalized in the same way as here) we can cite: Birn et al. (2001)
and Pritchett (2001): 0.09, Fujimoto (2006, 2009): 0.15, Daughton et al.
(2006): 0.08, Klimas et al. (2010): 0.07–0.09, and the theoretical work of
Hesse et al. (2009a,b) predicting a maximum rate of 0.28. Our results thus
suggest higher rates for relativistic reconnection, a fact already seen in rela-
tivistic simulations of pair plasmas with, e.g., Zenitani and Hoshino (2007)
(E∗ = 0.2), Cerutti et al. (2012a) (E∗ = 0.17), or Bessho and Bhattacharjee
(2012) (E∗ = 0.19 and 0.36).

In conclusion, the relativistic Alfvén speed of the inflow provides the
best normalization for the reconnection electric field, in that it is robust
from non-relativistic to relativistic flows. Corresponding rates are in a close
range (0.14–0.25), which is higher than the rates found in non-relativistic
simulations with the same normalization (0.07–0.15). The rate does not
depend on the inflow temperature at low β, but is nevertheless not uni-
versal: it decreases with increasing background particle number density.
Generalization to the presence of a guide field is discussed in Sect. 6.5.3.

6.4.7 Hall field and dispersive waves

We can see in Fig. 6.4 that inside the ion diffusion region, but outside of
the electron diffusion region, ions have a low fluid velocity, while electrons
still E × B drift toward their diffusion region. This results in a net cur-
rent roughly given by qenev̄e = qeneE ∧B/B2, which is the Hall current.
As explained in Sects. 2.12.1 and 2.12.4, this current continues along the
magnetic separatrices in the outflow direction, and is at the origin of a
quadripolar magnetic field directed along ±ŷ. This Hall magnetic field,
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with the quadripolar structure, is present in our simulations. It has a weak
intensity (between 1% and 10% of B0). The charge separation between elec-
trons and ions (Fig. 6.4) also leads to the creation of a Hall electric field
directed along +x̂ in the x < 0 region and −x̂ in the x < 0 region. Both
the magnetic and electric Hall fields are absent in a simulation with pairs.

The difference in the dynamical response of ions and electrons also allows
the existence of waves with a quadratic dispersion relation, ω ∝ k2, below
ion scales (either whistler waves or kinetic Alfvén waves, see Rogers et al.
2001). Observations of the same reconnection rate for any simulation model
allowing these waves (PIC, electron-MHD, Hall-MHD, two-fluid with and
without electron inertia, hybrid simulations, see Birn et al. 2001; Shay
et al. 2007; Rogers et al. 2001), as well as theoretical considerations (see
Sect. 2.12.1), have led to the thesis that these waves are essential to allow
for fast reconnection rates. However, this view is questioned by a number of
simulations that do not support quadratic dispersive waves, but still support
fast rates (hybrid simulations with no Hall term, pair plasmas, or strong
guide field regime, see Karimabadi et al. 2004; Bessho and Bhattacharjee
2005; Daughton et al. 2006; Daughton and Karimabadi 2007; Liu et al.
2014). It is thus interesting to see whether our simulation data can provide
any further insight into the matter.

A prediction of the dispersive wave physics is that the reconnection rate
is controlled solely by the ion physics and not by the electrons. According
to Daughton et al. (2006), it should be independent of the electron diffusion
region length. We could, however, not reproduce their analysis because the
electron diffusion zone length is, in our case, limited by the standing islands.
It cannot stretch to high values, so we are unable to conclude for or against
of the dispersive wave paradigm.

However, we underline that the simulation with mi/me = 1 that we
performed features an identical (and even slightly greater, Fig. 6.11) re-
connection rate than simulations with mi/me = 25. It thus points toward
a negligible influence of the dispersive waves on the rates, or to another
mechanism that allows fast rates in pair plasmas.

6.4.8 Simulation-based scaling analysis

The energy content of the outflows and the balance between thermal and
bulk inertia in Ohm’s law were explored with the simulations in Sects. 6.4.3
and 6.4.4. The aim of the present section is to investigate these points
with a simple analytical model in order to gain physical insight into these
phenomena and to extrapolate our simulation results to a larger parameter
space.

We extend the analytical results of Sect. 6.4.4, where particle number
and energy conservation allowed an estimation of the quantity h0,out,sΓout,s

(Eqs. 6.10 or 6.12) by now also using the equation of conservation of mo-
mentum (Eq. 3.72).

Thermal versus bulk electron inertia

We first investigate the relative weight of thermal and bulk electron inertia.
At the center of the electron diffusion region, we learn from Sect. 6.4.3 that
the reconnection electric field is sustained by electron thermal and bulk
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inertia, with only the terms ∂x(ne〈δpxδvy〉) and ∂z(nep̄z v̄y) contributing to
either one of them, respectively.

• Concerning thermal inertia, the temperature tensor is defined via
Eq. 3.64, so that 〈δpxδvy〉 = c2Θxy,e/Γe. We see in Fig. 6.8 that
Θxy,e is linear in the electron diffusion region. It vanishes at the
center because there the distribution function fe is symmetric with
respect to vx. It is maximal at the diffusion region edge with a value
Θedge
xy,e . Consequently, we approximate the thermal inertia contribution

by (c2Θedge
xy,e/Γin

e )/δe, where δe is the width of the electron diffusion re-
gion.

• For the bulk inertia term, we use the fact that p̄z rises linearly from
the center to its maximum value denoted by p̄out

z over a distance De/2
and that v̄y has a vanishing derivative at the center (Fig. 6.9). Con-
sequently, it can be estimated as v̄center

y p̄out
z /De.

All in all, from Ohm’s law (Eq. 6.9), the electric field at the center of the
diffusion region is

Ecenter
y =

me

qene

(
∂

∂x
· (ne〈δpeδve〉) +

∂

∂x
· (nep̄ev̄e)

)
y

∼ me

qe

(
c2Θedge

xy,e

δeΓin
e

+
v̄center
y p̄out

z

De

)
.

(6.15)

The next step is to use the constancy of Ey, which is respected well in
the simulations: Ecenter

y = Ein
y = v̄inB0. We note, however, that at the

entrance of the diffusion regions B is different than the asymptotic value
B0, and that the E × B drift does not strictly hold (see Fig. 6.4). If we
introduce the inertial length in the inflow, din

e = c
√
ε0me/(nin

e e
2), and the

inflow magnetization σcold
in,e = B2

0/(µ0men
in
e c

2), we ultimately obtain

δe

din
e

(
σcold

in,e

)1/2 v̄in

c
=

Θedge
xy,e

Γin
e

+
δe

De

v̄center
y p̄out

z

c2
. (6.16)

We now proceed to derive approximate scaling relations for cases where
either thermal or bulk inertia dominate the reconnection electric field.

• First, if thermal inertia dominates over bulk inertia, then Eq. 6.16
gives

Θedge
xy,e

Γin
e

=
δe

din
e

(
σcold

in,e

)1/2 v̄in,e

c
∝
(
σcold

in,e

)1/2
. (6.17)

There are thus several factors contributing to Θedge
xy,e . The diffusion

zone width δe is dynamically set during the reconnection process. It
can be close to the particles’ gyroradius at the center of the current
sheet, or to the plasma inertial length at the center of the current
sheet. In all our simulations, we find that the latter assumption holds
throughout time to within a factor 2 (Sect. 6.4.2), and in any case,
δe/d

in
e is expected to be of order unity.

The inflow speed is set by the reconnection electric field, v̄in = Ey/B0 =
E∗V R

A,in with E∗ the normalized reconnection rate (which lies in the

range 0.1-0.25, Sect. 6.4.6) and V R
A,in the relativistic Alfvén speed in

the inflow. For relativistic setups we thus have v̄in ∼ E∗c.
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The inflow magnetization can be arbitrarily large. It is thus the main
actor in producing relativistic temperatures, and thermal inertia scales

as Θedge
xy,e ∝

(
σcold

in,e

)1/2
.

• Second, the term corresponding to bulk inertia in Eq. 6.16 can be
estimated with the help of Eq. 6.10 (with p̄out,s = p̄out

z , v̄out,s = v̄out
z ,

and neglecting the guide field):

δe

De

v̄center
y p̄out

z

c2
=

δe

De

v̄center
y v̄out

z

c2

(
p̄in

v̄in
+ σcold

in,e

)
. (6.18)

The ratio δe/De is of order 1/10 in our simulations. If we neglect
the term p̄in/v̄in, which is of order unity for non-relativistic inflow
temperatures, we see that bulk inertia scales with σcold

in,e .

In conclusion, thermal inertia scales at most as
(
σcold

in,e

)1/2
, and bulk inertia

as σcold
in,e . Consequently, regarding the non-ideal terms in Ohm’s law in the

electron diffusion region, we expect bulk inertia to outweigh thermal inertia
at high inflow electron magnetization.

Energy content of the outflows

We now turn to the energy content of the outflows to see whether we can
explain their thermally dominated character for relativistic runs. The tem-
perature in the outflows is dominated by Θxx,e or Θyy,e, which we denote

by Θout
e . We first have to link Θout

e to Θedge
xy,e . The outflow temperature at

the center of the diffusion region is roughly constant along z throughout
the area of linear increase of v̄z (Fig. 6.9), because particles on their way
from the X-point to the exhaust mainly turn into the reconnected magnetic
field and thus do not really gain thermal agitation, but convert it from one
component of Θ to another. We can thus assume Θout

e = Θcenter
e . We now

would like to assume Θedge
xy,e ∼ Θcenter

xx,e . This indeed holds for electrons in the

case of Fig. 6.8. However, this does not hold in all simulations, and Θedge
xy,e

is between 1/10 to 10 times Θcenter
xx,e . This is due to the different origin of

these components: Θcenter
xx,e reflects particles in Speiser orbits going up and

down along x with a zero bulk x-velocity, while Θedge
xy,e reflects the asymme-

try of the distribution function with respect to vx due to the newly entering
particles at the edge of the diffusion zone.

With the previous remark in mind, we still make the hypothesis Θedge
xy,e ∼

Θcenter
xx,e . Next, if we assume that thermal inertia contributes significantly in

Ohm’s law, we obtain, with the scaling of Eq. 6.17,

Θout
e ∝

(
σcold

in,e

)1/2
. (6.19)

For relativistic temperatures we have h0,out,e ' 4Θout
e (Fig. 3.1), so that with

Eq. 6.19 we see that a relativistic inflow magnetization implies h0,out,e ∝(
σcold

in,e

)1/2
. On the other hand, energy conservation gives, in its simplest

form (Eq. 6.12 with σcold
e (B0)� 1):

h0,out,eΓout,e ∼ σcold
in,e . (6.20)
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Thus,

Γout,e ∝
(
σcold

in,e

)1/2
. (6.21)

We finally turn to the ratio of energy fluxes in the outflow. We see with
Eq. 6.13 that the flux associated with kinetic bulk energy is Γout,e−1. With

Eq. 6.21 (and for Γout,e � 1), this flux is Γout,e ∝
(
σcold

in,e

)1/2
. The flux as-

sociated with thermal kinetic energy and pressure work is h0,out,eΓout,e − 1,
and with Eq. 6.20 we have h0,out,eΓout,e − 1 ∼ σcold

in,e . The ratio of thermal-

to-bulk energy fluxes is thus ∝
(
σcold

in,e

)1/2
, meaning that relativistic inflow

magnetization inevitably implies reconnection exhausts dominated by ther-
mal energy, which is what we see in our simulations (Table 6.4), even if the
scalings derived here do not hold exactly because of the many assumptions
involved.

In conclusion, we have shown that under the hypothesis of non-ideal ef-
fects sustained by thermal inertia, relativistic inflow magnetizations produce
thermally dominated outflows. The physical reason is that the reconnection
electric field Ey is large in the inflow region, so that thermal inertia must
be high in order to sustain Ey in the central region, which implies high
temperatures.

However, we also demonstrated that thermal inertia is not expected to
dominate for very relativistic inflows. When this is the case, there is no
constraints from Ohm’s law on the temperature, and we cannot decide on
the ratio of thermal to bulk energy fluxes. Since this ratio is (h0,out,eΓout,e−
1)/(Γout,e − 1) ∼ h0,out,e, a relativistic outflow temperature on the order of
mec

2 suffices to give thermally dominated outflows.

For our simulations, thermal inertia contributes equally or less than bulk
inertia (Sect. 6.4.3), but still significantly, so that the outflows are thermally
dominated.

6.5 Effects of a guide field

Except in special configurations, the generic reconnection geometry involves
asymptotic fields that are not antiparallel. An angle different from 180o can
be described by the addition of a uniform guide magnetic field BG = BGŷ
to the antiparallel configuration. Such configurations have been largely
studied in the non-relativistic case (e.g., Pritchett and Coroniti 2004; Drake
et al. 2005; Goldman et al. 2011; Le et al. 2013; Graf von der Pahlen and
Tsiklauri 2014), and feature significant differences with the antiparallel case.
Here we only focus on the reconnection rates and on the island structure,
and postpone a study of other points to a future publication. We present
results from two simulations, with BG = 0.5B0 and BG = B0.

6.5.1 Overall structure

We first stress that because of the presence of the guide field, in both cases
BG = 0.5B0 and B0, the relation cB > E holds everywhere through time
and space, hence also the relation cB > E⊥ (with E⊥ the component per-
pendicular to B). Consequently, particle acceleration is not possible in
directions perpendicular to B, and is only allowed along the field lines at
places where E · B 6= 0. Such parallel electric fields are allowed by the
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Figure 6.12: Top: Simulation with BG = B0ŷ, time t = 37ω−1ci = 935ω−1ce .
Bottom: Simulation with BG = 0.5B0ŷ, time t = 37ω−1ci = 935ω−1ce , same scale
as for BG = B0ŷ.
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Figure 6.13: Typical trajectory for a particle, here an electron, for simulation
with BG = B0ŷ. Axis scales are given in cell numbers, with 9 cells representing
one initial electron inertial length. Dot colors are the particle Lorentz factor, from
1 to 60 here. Solid lines are projections onto the x-y, y-z, and z-x planes.

non-idealness of the plasma response, E+ v̄s∧B 	= 0, and are indeed found
at and around the X-points.

Just as in the zero guide field case, the plasma accelerated by Ey is
slowly deviated by the reconnected Bx component, which produces outflows
directed along ±z. However, particles from these outflows feel the Lorentz
force from the guide field, and their trajectories are tilted against the z axis,
as is evident in Fig. 6.12. Reversing the guide field from +ŷ to −ŷ tilts them
in the opposite direction. We underline that while the tilt angle is indeed
smaller for a smaller guide field, it also depends on the background plasma
pressure, as shown by TenBarge et al. (2014).

In the present case, Ey ∝ −ŷ. Electrons are thus accelerated along the
field lines in the +ŷ direction. Their motion along the field lines results in
a projected (x-z plane) motion directed toward positive z where B · ẑ > 0
(i.e., in the x > 0 area), or toward negative z where B · ẑ < 0 (i.e., in the
x < 0 area). It results in large and fast electron flows above and below the
current sheet, and to a rotation around the islands in a direction opposed
to cyclotron gyration. Ions are accelerated toward −ŷ and counterstream
with respect to the electrons.

Particles reaching the central part are accelerated along y by Ey and,
because they always feel a magnetic field cB > E, they are guided by the
magnetic field and spend more time in the acceleration region for strong
BG (Fig. 6.13). Consequently, v̄y is greater than with no guide field under
similar conditions, and reaches high values on a larger area (compare v̄y in
Figs. 6.2 and 6.12).
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Figure 6.14: Time evolution of the normalized reconnection electric field
Ey/(B0V

R
A,in cos θ), measured at the X-point of various simulations. The velocity

V R
A,in cos θ is given in Table 6.2. Time is normalized by the ion cyclotron pulsation.

Here B0 = 0.33, V R
A,in = 0.88c, cos θ = (1 +B2

G/B
2
0)−1/2 = 1, 0.89, 0.71.

6.5.2 Islands’ structure

The structure of the islands resembles the no-guide field case: their centers
are composed of particles initially in the current sheet, with background
particles only circling at the periphery. They are the hottest and strongest
current-carrying part of the simulations. There are, however, important
differences.

First, the inclination of the outflows makes the island asymmetric, with
electrons rotating around in a direction opposite to that of ions (when look-
ing at the motion projection in the x-z plane). Second, as islands form and
contract, the guide magnetic field is compressed and increases in strength.
In the simulation with BG = 0.5B0, it passes from 0.5B0 initially to 1.8-
2.1B0 in the islands, while in the simulation with BG = B0, it passes from
B0 initially to 2.1-2.4B0 in the islands. Third, because of the strong mag-
netic field along y, temperatures are isotropized along x and z (in the no-
guide field case we had Θzz ∼ 2Θxx). Here Θzz ' Θyy ' Θxx equal to
up to 4 for electrons and 0.2 for ions. This is a value close to the average
(Θzz + Θyy + Θxx)/3 of the zero guide field case. Off-diagonal terms are an
order of magnitude smaller.

6.5.3 Reconnection electric field and reconnection rate

In the normalization of Sect. 6.4.6, E∗ = Ey/(B0V
R

A,in), the Alfvén velocity
includes the total magnetic field B = B0(ẑ+αŷ). In the presence of a guide
field (α 6= 0), Alfvén waves propagating along the magnetic field do so in a
direction that makes an angle θ = arctanα with the outflow direction ẑ. As
we explained in Sect. 6.4.6, the reconnection electric field is in part set by
the velocity at which the field lines are extracted from the X-point, i.e., by
the outflow velocity. This outflow velocity is mostly set by the projection of
the Alfvén speed onto the outflow direction (Eq. 6.11 in the non-relativistic
limit, Eq. 6.10 in the general case). Consequently, it seems justified to
normalize the electric field with the projection of the Alfvén speed onto the
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ẑ direction, i.e., to use

E∗ =
Ey

B0V R
A,in cos θ

. (6.22)

Figure 6.14 shows the time evolution of E∗ for three simulations with
BG/B0 = 0, 0.5, 1, with otherwise identical parameters. The peak recon-
nection rate decreases when the guide field increases: 0.24, 0.22, and 0.20.
This is also the kind of dependence found in PIC simulations of ion-electron
non-relativistic reconnection (Ricci et al. 2003; Huba 2005; TenBarge et
al. 2014; Liu et al. 2014), relativistic pair reconnection (Hesse and Zeni-
tani 2007), or two-fluid simulations of relativistic reconnection (Zenitani et
al. 2009a)d. Consequently, relativistic reconnection in ion-electron plasmas
does not bring new effects in this respect. However, we underline that the
normalization used here allows minimizing the scatter in E∗ for the various
simulations.

6.6 Summary and discussion

6.6.1 Summary

We investigate magnetic reconnection in low β ion-electron plasmas (mass
ratio of 25) with 2D PIC simulations, under relativistic conditions, i.e.,
the magnetic energy of the inflowing plasma exceeds its restmass energy.
The simulations start from a Harris kinetic equilibrium with no localized
perturbation. For diagnostics and analytical models, we use momentum and
energy fluid equations based on lab-frame quantities (Sect. 3.4). They have
the advantage of being valid regardless of the particle distribution function,
while the usual relativistic fluid equations using comoving quantities are
restricted to isotropic comoving distribution functions.

For antiparallel reconnection, the structure of the diffusion region has
a width (in the inflow direction) δs given by the respective inertial length
ds of the species s, measured at the center of the diffusion region. A high
inflow temperature increases this width. At the entrance of the diffusion
regions for simulations at low background β ≤ 2.5 × 10−3, we find sharp
transitions in the fluid quantities that were not reported elsewhere. We
argue that they are not shocks. Instead, they occur when the inflowing
particles have a thermal velocity that is far lower than their bulk E × B
velocity, so that they enter the diffusion region with the same velocity and
bounce back at the same location. We stress that these sharp transitions
are not a feature of relativistic reconnection, because they depend only on
the cold nature of the inflow. However, the phenomenon should be more
common in relativistic reconnection because then the inflow bulk velocity
vE×B ∼ E/B is large.

We detail the balance of terms in the relativistic Ohm’s law for an-
tiparallel reconnection. The ion diffusion region is dominated by bulk
inertia (as defined in Eq. 6.9). In the electron diffusion region, bulk in-
ertia contributes equally or more than thermal inertia. The latter re-
sult challenges the thermal-inertia-dominated paradigm that holds for non-
relativistic or mildly relativistic antiparallel reconnection. We show ana-
lytically that a significant contribution of bulk inertia is to be expected

dWe note, however, that in asymmetric reconnection the rate increases with the guide
field strength, see Aunai et al. (2013), Hesse et al. (2013).
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whenever the inflow magnetization σcold
e (cold, meaning that the tempera-

ture is not taken into account, see Eq. 6.5) of the electrons is high, because
then bulk inertia ∂z(p̄z v̄y) ∼ p̄zc/D ∝ σcold

e /D can exceed thermal inertia
∂x(δpxδvy) ∝ (σcold

e )1/2/δ. This is a new result that should hold for any
large electron magnetization.

For the reconnection outflows we analytically show from mass and energy
conservation that reconnection is expected to produce relativistic outflow
temperatures and/or relativistic outflow bulk velocities. From simulations
we find that outflow thermal energy dominates over bulk kinetic energy
(from 70% to 99%, for simulations with increasing background magnetiza-
tion). A more refined analytical analysis shows that this is expected if the
reconnection electric field is sustained by thermal inertia. If bulk inertia
dominates the thermal inertia, as expected at very high inflow magnetiza-
tion, then our simple analytical model does not allow a conclusion about
the cold or hot nature of the outflows. Also, our simulations do not probe
high enough electron magnetizations to reach this regime: at σcold

e = 90,
thermal inertia contributes 50% of the reconnection electric field, and this
fraction goes down to 25-40% at σcold

e = 360, which is significant enough for
the hypothesis of Erec sustained by thermal inertia to hold.

For the islands we show that, with or without a guide field, their centers
consist mainly of particles initially in the current sheet that were gathered
inside the island during the tearing instability, that do not mix with the
background plasma even after many island merging events. Particles of the
background plasma cannot reach the inner parts because of the strong mag-
netic field surrounding the islands, and thus circle around the central part.
As a result, the central part is less dense than its immediate surrounding.
This may explain observed density dips at the center of magnetic islands
during magnetotail reconnection events (Khotyaintsev et al. 2010), without
invoking island merging or particle escape along the flux tube. Islands are
also the hottest parts of the flow, with fully anisotropic temperatures in the
antiparallel case, and distributions close to gyrotropic with a guide field.

We argue that the reconnection rates are to be normalized by the asymp-
totic magnetic field and relativistic Alfvén speed in the inflow, projected
onto the outflow direction if there is a guide field: E∗ = Ey/(B0V

R
A,in cos θ).

This leads to rates in a narrow range: E∗ peaks between 0.14–0.25. How-
ever, we stress that there is no universal value for E∗ as defined here or
elsewhere. First, because other studies show that it depends on the inflow
plasma β (increasing with decreasing β). Here we find no dependence on
the background plasma temperature, but smaller rates for larger particle
number densities. Second, we find larger rates for the relativistic setups
(0.18–0.25) than for the mildly relativistic case (0.15). These rates are also
larger than those reported in the literature for ion-electron non-relativistic
reconnection (0.07–0.15 for Birn et al. 2001; Pritchett 2001; Fujimoto 2006,
2009; Daughton et al. 2006; Klimas et al. 2010). This points toward rela-
tivistic reconnection being slightly faster than non-relativistic reconnection.
This trend is reinforced by simulations in relativistic pair plasmas (E∗ = 0.3
in our case or, e.g., 0.17–0.36 for Zenitani and Hoshino 2007; Bessho and
Bhattacharjee 2012; Cerutti et al. 2012a). We note that this is against
the interpretation of Hesse and Zenitani (2007) of a smaller rate for more
relativistic setups. Third, we confirm that a guide field leads to a smaller
normalized rate.
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We explore the consequences of adding a guide magnetic field. The flow
structure is strongly disturbed for two reasons: the Lorentz force associated
with the guide field, and the relation E < cB everywhere. The acceleration
region is now defined by the condition E ·B 6= 0. Inflowing ion and electron
Larmor radii are smaller than the island scales or magnetic gradient scales,
and remain so even after the acceleration phase by Erec, because this phase
conserves the perpendicular-to-B momentum. Particles thus remain tied to
the field lines everywhere, including in the acceleration region where they
spend more time before being deviated in the outflows.

6.6.2 Astrophysical outlook, objects and orders of magni-
tude

This study may serve as micro-physics input for analyses on larger scales
concerning magnetic energy conversion in relativistic ion-electron plasmas,
as should be encountered in the coronae of AGN and microquasar accretion
flows, in the lobe of radio galaxies, or inside relativistic jets from AGNs
or GRBs. We now discuss such applications and give estimates for key
parameters in these objects: magnetic field B, electron number density ne,
magnetizations σcold

s (where cold means that only the restmass energy is
taken into account, not the temperature, Eq. 6.5), with s = i, e for ions or
electrons, and Alfvén speeds V R

A . The properties of magnetic reconnection
as studied here only depend on the inflow magnetization and temperatures,
regardless of the real values of B and ne. This is true at least as long as
effects such as pair creation and annihilation, radiative braking, or Compton
drag on the electrons, can be neglected. These effects are discussed in
Sects. 7.5.4 and 7.A.

The next chapter will also lead to astrophysical implications, that will
be discussed in its own conclusive section 7.5.3. For clarity, we use the same
subsection titles here in Sect. 6.6.2 and in Sect. 7.5.3. The organization
of these two sections follows from the realization that magnetic reconnec-
tion can play a major role for four particular purposes: large scale outflow
launching, high-energy flare production, steady emission of radiation, and
plasma heating or non-thermal particle production. We discuss in which ob-
jects these phenomena are observed, give orders of magnitude for the main
parameters, and point out where our work is applicable. Also, Table 7.5
summarizes the physical conditions encountered in the objects mentioned
here.

Toward a new regime: non-dissipative reconnection?

Our finding of a reconnection electric field sustained equally or more by
bulk inertia than by thermal inertia for large inflow electron magnetization
(σcold

e ≥ 90), and the extrapolation of Sect. 6.4.8, indicate that bulk iner-
tia might end up dominating at even higher inflow electron magnetizations.
This was also envisioned by Hesse and Zenitani (2007), and reconnection in
such a regime would bear significant differences with the standard picture.
However, we nuance the assertion of Hesse and Zenitani (2007) that recon-
nection would then be a reversible process: as underlined in Sect. 6.4.8, the
reconnection outflows may be thermally dominated even when bulk inertia
dominates Ohm’s law. A definite answer to these questions requires very
high magnetizations, which we can hardly reach with a PIC code and which
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may require relativistic gyrokinetic codes.

Highly magnetized environments, such as pulsar winds near the termi-
nation shock (σcold

e = 1013, Bucciantini et al. 2011; Sironi and Spitkovsky
2011a), or other objects with σcold

e ≫ 1 discussed in what follows, are likely
to support this reconnection regimee

Large scale transient outflow production, the example of micro-
quasars

Large scale magnetic reconnection events may be at the origin of large scale
transient jets in microquasar systems (de Gouveia dal Pino and Lazarian
2005; de Gouveia Dal Pino et al. 2010; Kowal et al. 2011; McKinney et al.
2012; Dexter et al. 2014). For example, a magnetically arrested disk can
form around the black hole, and a reconnection event can be triggered by
an incoming accreted magnetic field reversal. Reconnection then occurs in
the accretion disk corona, near the black hole, where particle densities and
magnetic fields are high.

Here, we have shown that the reconnection outflows are thermally dom-
inated, with a bulk Lorentz factor not necessarily increasing with the inflow
magnetization and featuring low values (Γ ∼ 1.6 at most, Table 6.4). How-
ever, applications to large scale outflows triggered by reconnection events
require some care. The outflows studied in the present manuscript origi-
nate in the electron diffusion region, and feature ion/electron decoupling.
At larger distances, if not bounded by the islands and by our periodic setup,
electrons and ions are expected to couple and to follow the ideal MHD dy-
namic. The scale on which they can propagate is fixed by larger scales than
simulated here.

On the other hand, it is expected and observed (Khotyaintsev et al.
2006) that magnetic energy conversion also takes place along the magnetic
separatrices far away from the dissipation region, on length scales of hun-
dreds of ion inertial lengths (see Sect. 2.12.4 for an overview of the physics
of the separatrices). This conversion occurs through instabilities that pro-
duce thermal and non-thermal electrons (Drake et al. 2005; Egedal et al.
2009, 2012; Lapenta et al. 2014), and through the complex structure of col-
lisionless non-linear waves (slow shock, compound wave, rotational wave)
by which the magnetized inflowing plasma transits to the hot and unmag-
netized outflow on MHD scales (Liu et al. 2012; Higashimori and Hoshino
2012). It is this large scale outflow that should be identified as the transient
reconnection-driven jets in microquasar models. In the magnetosphere close
to the black hole, de Gouveia dal Pino and Lazarian (2005) estimate on the
basis of an analytical model, ne ∼ 5×1015 cm−3, B ∼ 7×107 G, which gives
electron and ion magnetizations σcold

e ∼ 105 and σcold
i ∼ 60, and an Alfvén

speed V R
A ∼ c (see Table 7.5, line a, for wider estimates). This is clearly

in the relativistic regime. The energy content of the large scale outflows
in this case has not been studied, but we can expect from the collisionless
slow shocks, or rotational discontinuities at the separatrices, to produce a
thermally dominated outflow. It may not be so for other jet production
mechanisms, and could help distinguishing in favor or against reconnection
scenarios.

eWe note that magnetar magnetospheres, even if they feature magnetizations exceeding
σcold

e = 1013 (Lyutikov and Lazarian 2013), support a very different reconnection regime
due to pair and photon creations (Uzdensky 2011).
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Another unknown is what becomes of the ambient plasma that is ex-
pelled by the first reconnected field lines ahead of the dipolarization front.
In our study, it would correspond to half of a magnetic island, ejected out
of the simulation box. The ambient plasma would be the plasma from the
current sheet trapped in the island. As we demonstrate, this plasma does
not mix with the reconnected plasma and is simply compressed and heated
(see Vapirev et al. 2013, for a 3D case where instabilities imply magnetic
to kinetic energy conversion). In an open configuration, it would be at the
head of the large scale outflow.

Flares in extragalactic jets

Flare-like activity in the GeV-TeV range is observed from extragalactic jets,
and may possibly be explained by local reconnection events inside the jet,
which produce smaller jets (the reconnection exhausts) which in turn radiate
the expected photons (Giannios et al. 2009). This γ-ray emission region
may be located close to the black hole (< 0.05 pc, Giroletti et al. 2004),
where B ∼ 0.02-0.2 G and the plasma magnetization is high. For example,
Giannios et al. (2009) take σcold

i = 100, which leads to σcold
e = 2× 105 and

VA ∼ c. This is in the regime where bulk inertia should dominate in Ohm’s
law. Also, Giannios et al. (2009) use energy considerations to estimate that
the blobs emitted from the reconnection exhausts should be ∼ 1014 cm, i.e.,
based on its estimated particle density, 1010 ion inertial lengths. Here again,
the physics far from the dissipation region should play an important role in
producing such large scale structures.

Steady radio emission from extragalactic jets

Another case for relativistic magnetic reconnection is inside jets from AGNs
on scales of 10-100 kpc. Radio spectra may be explained by radiation linked
to reconnection events (Romanova and Lovelace 1992). Observations of
AGN jets indicate B ∼ 10-30µG, n ∼ 0.8-5×10−8cm−3, and electron magne-
tizations in the range σcold

e ∼ 500-2500 (Schwartz et al. 2006), which implies
ion magnetizations σcold

i ∼ 0.3-1.3 and Alfvén speeds ∼ 0.5-0.8c. Again, our
results apply in these cases, and in particular the electron magnetizations
are in the very relativistic range where bulk inertia should dominate in
Ohm’s law.

Plasma heating in AGN and microquasar coronae and in radio
galaxy lobes

Observations and models suggest that AGN and microquasar coronae, and
the lobes of radio galaxies, contain hot plasmas. A possible heating mech-
anism is by magnetic reconnection events. We address the issue of mag-
netic energy conversion and distribution in these relativistic environments
in Sect. 7.5.3.

6.6.3 Astrophysical outlook, further discussion

High-energy particle production

The proposed normalization of the reconnection rate with the relativistic
inflow Alfvén speed V R

A,in, E∗ = Erec/(B0V
R

A,in cos θ), leads to E∗ in a close
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range (0.14-0.25), and because it only relies on inflow quantities, it allows for
an easy prediction of the reconnection electric field. In particular, the ratio
Erec/B0 is a key quantity for estimating the timescale of energy dissipation
or the maximum energy gain for particles. It is interesting to notice that for
very relativistic plasmas, V R

A,in saturates at c, so that Erec/B0 saturates at
∼ 0.2c. It may imply that the hardness of the high-energy tails saturates.
We explore these matters in Chapter 7. Briefly, we find for a given species a
power law tail whenever its background magnetization is relativistic (above
a few), with an index depending both on the inflow magnetization and
inflow Alfvén speed. The reason for the latter is precisely because of the
link between V R

A,in and Ey/B0.

Other complications

We finally point out that the present study is oversimplified in many re-
spects. Magnetic reconnection in magnetized coronae and jets probably
often implies asymmetric plasmas from each side of the current sheet, guide
fields (Aunai et al. 2013; Hesse et al. 2013; Eastwood et al. 2013), and
also normal fields (along x̂ here) reminiscent of the ambient magnetic field.
The last point has been studied in the context of the Earth’s magnetotail
(Pritchett 2005a, 2010; Sitnov and Swisdak 2011). Also, the initial condi-
tions chosen in the simulations are arbitrary and do not necessarily reflect
the real environments. Explored alternatives to the Harris sheet include
X-point collapse (e.g., Graf von der Pahlen and Tsiklauri 2014) or force-
free equilibrium (e.g., Liu et al. 2014) and show little differences with the
Harris case. However, three-dimensional initial configurations should also
be considered, because in a real environment most of the energy dissipation
may occur at 3D nulls, involving for example spine-fan reconnection, or at
quasi-separatrix layers (Birn and Priest 2007; Pontin 2011). Few kinetic
simulations exist for such setups (Baumann and Nordlund 2012; Olshevsky
et al. 2013). A related point is the external forcing, i.e., the large scale
plasma flow that can increase the magnetic field gradients and trigger re-
connection. Studies (Pei et al. 2001; Pritchett 2005b; Ohtani and Horiuchi
2009; Klimas et al. 2010) show that the reconnection rate E∗ is then fixed by
the boundary conditions, and is thus larger than the spontaneous rate. The
timescale of the forcing also proves to be important (Pei et al. 2001). These
considerations, as well as some of the points made earlier on, highlight the
multi-scale nature of reconnection in the context of concrete astrophysical
objects – and demonstrate the need for corresponding multi-scale simula-
tion studies, a field still in its infancy (e.g., Horiuchi et al. 2010; Innocenti
et al. 2013; Daldorff et al. 2014)

Another central question is the validity of the 2D findings in three di-
mensions. Magnetic islands then become extended filaments, modulated or
broken by instabilities in the third dimension or by a lack of coherence of
the tearing instability (Jaroschek et al. 2004; Zenitani and Hoshino 2008;
Daughton et al. 2011; Liu et al. 2011; Kagan et al. 2013; Markidis et al.
2013). It may imply more mixing of the current sheet particles with those of
the background plasma. Concerning the validity of our claims on Ohm’s law,
3D PIC simulations in non-relativistic plasmas have shown that anomalous
resistivity due to microinstabilities remains a negligible dissipation mecha-
nism in the diffusion region (Liu et al. 2013b; Karimabadi et al. 2013), where
the reconnection electric field is still sustained by thermal electron inertia.
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The scaling analysis of Sect. 6.4.8 should thus remain valid, as should the
conclusion that bulk inertia dominates at high inflow magnetization.
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The energetics of relativistic
reconnection: ion-electron
repartition and particle
distribution hardness

“John? Do you remember that paper on extra-solar activity I
published?”
“Yeah, sure.”
“I found evidence of a series of super-flares from a star in the
outer-Pleiades region.”
“Right.”
“The numbers are a warning, but not just to me or any ran-
dom group. They’re a warning to everyone.” (He takes his
computer) “The super-flare, in our own solar system.” (He
shows a simulation) “A hundred microtesla wave of radiation
that would destroy our ozone layer, killing every living organ-
ism on the planet.”
(Both ponder for a moment)
“We have to let everyone know.”

Knowing, a 2009 Hollywood movie

Contents

7.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
7.3 Simulation setups . . . . . . . . . . . . . . . . . . . . . . . . . 229

7.3.1 The simulations . . . . . . . . . . . . . . . . . . . . . . 229
7.3.2 Resolution and domain size . . . . . . . . . . . . . . . 229
7.3.3 Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . 231

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
7.4.1 Main case . . . . . . . . . . . . . . . . . . . . . . . . . 232
7.4.2 Case studies, no guide field . . . . . . . . . . . . . . . 235
7.4.3 Case study, guide field . . . . . . . . . . . . . . . . . . 237

7.5 Summary and discussion . . . . . . . . . . . . . . . . . . . . . 238
7.5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 238
7.5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 242
7.5.3 Astrophysical outlook, objects and orders of magnitude244
7.5.4 Astrophysical outlook, further discussion . . . . . . . . 248

225



226 Chapter 7

Appendix 7.A The importance of radiative braking, Compton
drag, and pair creations . . . . . . . . . . . . . . . . . . . . . 251

7.1 Outline

This chapter mostly contains the article Melzani et al. (2014c). It is the
continuation of the previous Chapter 6. We use the same simulations (plus
some news), and now look at the fate of the magnetic energy: how much
is transferred to the particles? with which ion-electron repartition? what
is the hardness of the particle distributions? and what are the acceleration
mechanisms? We try to provide answers to these questions, and we discuss
astrophysical implications.

Section 7.2 introduces the context of the study, and Sect. 7.3 describes
the simulation setups and the diagnostics used. In particular, we study sepa-
rately the particles that are initially inside the current sheet, and those that
are initially outside. This separation between current sheet and background
particles is essential because, as we show, these two populations remain sep-
arated and undergo very different acceleration mechanisms, resulting in very
different distributions.

Section 7.4 describes the results, first for a reference case (Sect. 7.4.1),
then for several cases with no guide field (Sect. 7.4.2) and with a guide field
(Sect. 7.4.3). We find that 45 to 75% of the total initial magnetic energy ends
up in kinetic energy, this fraction increasing with the inflow magnetization.
Depending on the guide field strength, ions get from 30 to 60% of the total
kinetic energy. The background population forms power law distributions,
both for electrons and ions, with indexes that depend both on the inflow
magnetization of the considered species and on the inflow Alfvén speed, and
that can be harder than for the case of collisionless shocks. A criteria for a
hard tail is a magnetization far larger than unity, and an Alfvén speed close
to c. For electrons, the latter condition implies an electron magnetization
larger than the mass ratio. The presence of a guide field deforms the power
law shape.

We draw astrophysical consequences in Sect. 7.5. Our demonstration
that magnetic reconnection can furnish power law distributed high-energy
particles, either ions or electrons, if the above criteria is fulfilled, has im-
portant applications for various models that assume the existence of such
particle populations.

7.2 Introduction

Magnetic reconnection is a prime mechanism invoked to launch large scale
outflows, to produce high-energy particles, radiation and high-energy flares,
or to efficiently heat plasmas, in a variety of astrophysical objects. It is a
candidate to explain, for example (we give the same list as in Sect. 6.2):
transient outflow production in microquasars and quasars (de Gouveia dal
Pino and Lazarian 2005; de Gouveia Dal Pino et al. 2010; Kowal et al. 2011;
McKinney et al. 2012; Dexter et al. 2014), gamma-ray burst outflows and
non-thermal emissions (Drenkhahn and Spruit 2002; Giannios and Spruit
2007; McKinney and Uzdensky 2012), GeV flares from the Crab nebula
(Bednarek and Idec 2011; Uzdensky et al. 2011; Cerutti et al. 2012b,a,



Chapter 7 227

2013), flares in AGN jets (Giannios et al. 2009), flares in gamma-ray bursts
(Lyutikov 2006a; Lazar et al. 2009), X-ray flashes (Drenkhahn and Spruit
2002), soft gamma-ray repeaters (Lyutikov 2006b; Uzdensky 2011), flares in
double pulsar systems (Lyutikov and Lazarian 2013), the flat radio spectra
from galactic nuclei and AGNs (Birk et al. 2001), the flat radio spectra from
extragalactic jets (Romanova and Lovelace 1992), the σ-paradox and par-
ticle acceleration at pulsar wind termination shocks (Kirk and Skjæraasen
2003; Pétri and Lyubarsky 2007; Sironi and Spitkovsky 2011a), the heat-
ing of the lobes of giant radio galaxies (Kronberg et al. 2004), the heating
of AGN and microquasar coronae and associated flares (Di Matteo 1998;
Merloni and Fabian 2001; Goodman and Uzdensky 2008; Reis and Miller
2013; Romero et al. 2014; Zdziarski et al. 2014), or energy extraction in the
ergosphere of black holes (Koide and Arai 2008).

In all these cases, it is crucial to know the amount of magnetic energy
transferred to the particles during a reconnection event, the relative fraction
distributed to ions and electrons, as well as the distribution in momentum
space of the accelerated particles. The aim of this manuscript is to shed light
on these questions. In the literature, several acceleration mechanisms by
magnetic reconnection have been identified, that we reviewed in Sect. 2.15.
We describe again those that are of interest for the present study in the
remaining of this introduction. Their relative importance depends on the
plasma parameters and on the magnetic field geometry.

One acceleration mechanism occurs when particles are trapped in con-
tracting magnetic islands, and thus accelerated by the induced electric field
when they are reflected on the two approaching sides. It can be efficient
in collisionless plasmas (Drake et al. 2006, 2010; Bessho and Bhattacharjee
2012) or in collisional plasmas (Kowal et al. 2011) where reconnection is
fast because of turbulence. In non-relativistic plasmas, because of the small
particle velocities, the Larmor radii can be smaller than the island gradi-
ent scales. If it is the case, then particle motions are adiabatic inside and
around the islands, and particle-in-cell simulations and analytical estima-
tions agree that this mechanism produces power law spectra, with indexes
p = −d log ne(γ)/d log γ = 1.3 or softer depending on the plasma β and
island aspect ratio (Drake et al. 2006). In plasmas with relativistic mag-
netizations, the Larmor radii of the accelerated particles likely exceed the
island scales, at least at early times, so that another analytical approach has
to be employed (Bessho and Bhattacharjee 2012), and there is no analyti-
cal expression for the resulting spectra. PIC simulations in relativistic pair
plasmas show that this mechanism contributes significantly to the building
of the high-energy population (Bessho and Bhattacharjee 2012; Sironi and
Spitkovsky 2014), a result that we confirm to also hold for relativistic ion-
electron reconnection. In addition, since the island edges are the place
of strong motional electric fields, particles can gain energy there without
necessarily turning around the whole island. Liu et al. (2011) report that
in their relativistic pair plasma simulations, most particles are energized in
this way. Jaroschek et al. (2004) also find that this scenario is important.

Another acceleration mechanism, also relying on the first-order Fermi
process and on stochasticity, is the bouncing motion of particles between
the two inflows converging from both sides of the current sheet. Energy is
gained when the particle turns around, and is transferred by the motional
electric field E = −v ∧B present in the inflow. Drury (2012) derives the
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power law spectrum for non-relativistic particles: dn(v)/dv ∝ v−p with v
the velocity, p = (r + 2)/(r + 1), where r = nout/nin is the compression
ratio that is not restricted to low values as in the case of shocks. Giannios
(2010) derives the maximal Lorentz factor produced in the relativistic case,
and Bosch-Ramon (2012) discusses conditions for entering in this acceler-
ation regime. This mechanism does not rely on a direct acceleration by
the reconnection electric field Erec when particles are demagnetized at the
center of the diffusion region, but makes use of the motional electric field
in the inflow. It is thus efficient in non-relativistic and/or collisional plas-
mas (Kowal et al. 2011) where direct acceleration by Erec is known to be
negligible. It requires particles crossing the current sheet and bouncing on
the other side, i.e., having a Larmor radius in the asymptotic field that is
larger than the sheet width, which is generally true only for pre-accelerated
particles or hot inflows. We show here that for cold inflows and relativistic
setups, electrons and ions do not cross the current sheet, and so do not
undergo this acceleration mechanism.

A third acceleration mechanism is by the reconnection electric field Erec,
which is initially induced by magnetic field flux variations, and sustained
in steady or quasi-steady state by the non-ideal response of the plasma. In
the diffusion region, the condition E > cB for antiparallel reconnection,
or E ·B 6= 0 if there is a guide field, defines an acceleration region where
particles can be freely accelerated and directly gain energy. In any case,
the reconnection electric field is alone responsible for transferring energy
between the magnetic field and the particles, and thus obviously for ac-
celerating particles. But to what extent this kinetic energy is distributed
between the bulk flow velocity of the outflows, their thermal energy, and a
possible high-energy tail, as well as the properties of the high-energy tail,
are open questions. This mechanism is inefficient for non-relativistic re-
connection because the acceleration zone has a too small length (along z
here) (Drake et al. 2010; Kowal et al. 2011; Drury 2012) and affects too
few particles, but is efficient under relativistic conditions where the larger
reconnection electric field creates a wider acceleration zone (Zenitani and
Hoshino 2001, 2007). It has indeed been found, with PIC simulations of
relativistic reconnection, that power law tails are produced through particle
acceleration by Erec. Several indexes are found, for example, measuring the
index p as dne/dγ ∝ γ−p and retaining only relativistic particle-in-cell sim-
ulations that all concern pair plasmas: Zenitani and Hoshino (2001) (2D):
p = 1 for particles around the X-point and for the total spectra; Zenitani and
Hoshino (2007) (2D): p = 3.2 and 2.4 at late times; Jaroschek et al. (2004)
(2D): p = 1 for particles around the X-point, modified to p = 3 by island
acceleration in the whole domain; Jaroschek et al. (2008) (2D, two colliding
current sheets): power law; Sironi and Spitkovsky (2011a) (2D, stripped
pulsar wind): p = 1.4 after the shock; Cerutti et al. (2013) (2D): p = 3.8;
Sironi and Spitkovsky (2014) (2D without guide field): p = 4, 3, 2, 1.5 for
inflow magnetizations σ = 1, 3, 10, 30, 50 and a saturation above 50, and
p = 2.3 in 3D with σ = 10. On the other hand, Kagan et al. (2013) (3D) find
a high-energy tail but interpret it as not having a power law shape. On the
analytical side, Zenitani and Hoshino (2001) present a toy model predicting
power laws, and Bessho and Bhattacharjee (2012) derive the spectrum of
particles escaping from an antiparallel X-point (see Sect. 7.5.4). Also, it is
noticeable that the ultrarelativistic test particle simulations of Cerutti et al.
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(2012b) produce very hard power laws (p ∼ −0.5), with electrons acceler-
ated along Speiser orbits without any stochasticity. This diversity of results
calls for a unified analysis of simulations with various initial configurations,
which we aim to provide here.

Other acceleration mechanisms exist, especially far from the diffusion
region. A first example is stochastic acceleration in the turbulence asso-
ciated with reconnection (Kowal et al. 2011; Hoshino 2012). A second,
important example, is at the magnetic separatrices that separate the non-
reconnected/reconnected regions (Sect. 2.12.4), where plasma flows through
a non-linear wave structure (see also Sect. 7.5.4). Particle acceleration
should also occur at the dipolarization front (Sect. 2.12.5). Our simula-
tion setup, with no localized initial perturbation, precludes the existence
of these other mechanisms, and instead we focus on acceleration close to
the diffusion region and inside islands, which is likely to be important in
relativistic setups.

This chapter is dedicated to relativistic ion-electron plasmas, for which
no such study exists yet. These plasmas are likely present in AGN and mi-
croquasar coronae, in microquasar jets (Kotani et al. 1994; Dı́az et al. 2013),
or possibly in GRB and AGN jets. Physical parameters and applications
are discussed in Sect. 7.5.3.

7.3 Simulation setups

7.3.1 The simulations

We perform 2D PIC simulations of magnetic reconnection, mainly in an ion-
electron plasma of mass ratio mi/me = 25. We also present one simulation
for each value mi/me = 1, 12, and 50. The simulations are the same as
those of Chapter 6, with some new runs. We refer to Sect. 6.3 for the
description of the initial state. We briefly recall that it consists in a Harris
equilibrium with no localized perturbation, so that islands and X-points
form everywhere. The asymptotic field along x is denoted by B0, the guide
field along y by BG, the particle number density at the center of the current
sheet by ncs(0), that in the background plasma by nbg, and the background
plasma temperatures by Tbg,i and Tbg,e.

The free parameters are the characteristics of the background plasma
(nbg/ncs(0), Tbg,i and Tbg,e); the strength of the guide field BG/B0; the
width of the magnetic field reversal in electron inertial lengths L/de; and the
magnetization of the current sheet plasma with respect to the asymptotic
magnetic field, here expressed via ωce/ωpe (ωce is the electron cyclotron
pulsation in the asymptotic magnetic field B0, ωpe is the electron plasma
pulsation at the current sheet center at t = 0). The background plasma
magnetization results from the above variables. The simulations, and the
background plasma parameters and magnetizations, are listed in Table 7.1.
The parameters of the current sheet are given in Table 7.2.

We recall that the magnetizations and the Alfvén speeds are defined in
Sects. 6.3.2 and 6.3.3.

7.3.2 Resolution and domain size

The numerical resolution is set by the number of cells nx per electron in-
ertial length de, by the number of timesteps nt per electron plasma period
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ωce

ωpe

nbg

ncs(0)

BG

B0
σi+e

V R
A,in

c
Tbg,s (K) βs σhot

s (Brec) p = −d logn(γ)

d log γ

1 0.1 0 0.38 0.53 ion 1.5× 107 5× 10−4 0.4 no power law

(mi = 25me) elec. ˝ ˝ 9.9 4-5

3 0.31 0 1.11 0.73 ion 2× 108 2.5× 10−3 1.2 8

(mi = 25me) elec. ˝ ˝ 27 2.2-2.6

3 0.1 0 3.26 0.88 ion 2× 108 7.5× 10−4 3.6 6.5

(mi = 25me) elec. 3× 109 1.1× 10−2 35 2.8

3 0.1 0 3.46 0.88 ion 1.5× 107 5.6× 10−5 3.6 not investigated

(mi = 25me) elec. ˝ ˝ 89 ˝
3 0.1 0 3.45 0.88 ion 2× 108 7.5× 10−4 3.6 5.8

(mi = 25me) elec. ˝ ˝ 83 1.5-2

Identical as above, but larger box (888× 1138 de instead of 455× 683 de) 4.8

and longer duration 1.8

3 0.1 0.5 3.46 0.81 ion 1.5× 107 4.5× 10−5 3.6 8

(mi = 25me) elec. ˝ ˝ 89 no power law

3 0.1 1 3.46 0.66 ion 1.5× 107 2.8× 10−5 3.6 8

(mi = 25me) elec. ˝ ˝ 89 1.5

6 0.1 0 13.5 0.97 ion 8× 108 7.5× 10−4 14 3.6

(mi = 25me) elec. ˝ ˝ 260 1.2

3 0.1 0 41.4 0.988 ion 2× 108 7.5× 10−4 83 1.5

(pairs) elec. ˝ ˝ ˝ ˝
3 0.1 0 6.9 0.93 ion 2× 108 7.5× 10−4 7.5 3.6

(mi = 12me) elec. ˝ ˝ 83 1.5

6 0.1 0 6.9 0.93 ion 8× 108 7.5× 10−4 7.1 5

(mi = 50me) elec. ˝ ˝ 260 1.5

Table 7.1: Parameters of the inflow (or background) plasma, and resulting power
law index p, sorted in order of increasing magnetization (except for the last line).
The parameters of the current sheet, for each value (ωce/ωpe, mi/me), are listed in
Table 7.2. The background plasma βs = nsTs/(B

2/2µ0) = 2Θs/σ
cold
s (B) includes

the guide field. The magnetization σhot
s is defined by Eq. 6.4, and σi+e is the total

magnetization (Eq. 6.7b). The Alfvén speed V R
A,in is defined by Eq. 6.6. When

there is a guide field, the value displayed is V R
A,in cos θ (Sect. 7.3.1). The index of

the power law component of the background population (when there is one) is p.

mi/me ωce/ωpe L/di Γeβe Θe Θi L/rce

1 3 2.5 0.53 2.40 2.40 1.6
12 3 0.5 0.53 2.40 0.2 1.1
25 1 0.5 0.20 0.25 1.0× 10−2 3.8
25 3 0.5 0.53 2.40 9.6× 10−2 1.6
25 6 1 0.70 10 0.4 1.5
50 6 0.7 0.60 10 0.2 1.5

Table 7.2: Parameters of the current sheet. To each row in the table can cor-
respond different background plasma parameters, and hence different simulations.
The full simulation list is presented in Table 7.1. Here, the electron and ion temper-
atures are the same, denoted by Θe = Te/(mec

2) and Θi = Ti/(mic
2). The electrons

and ions counterstream with opposite velocities ±βec and associated Lorentz fac-
tors Γe. The sheet halfwidth in units of ion inertial lengths is L/di, while in units
of electron thermal Larmor radii it is L/rce.
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2π/ωpe, and by the number of computer particles (the so-called superpar-
ticles) per cell ρsp. The quantities de, ωpe, and ρsp are defined at t = 0 at
the center of the current sheet. Here we take nx = 9 and nt = 150 (except
for ωpe/ωce = 6 where nt = 250). We checked by doubling nx and nt that
the particle distributions, the energy repartition, particle mixing, or the
maximal Lorentz factors, are not affected by the resolution.

Concerning the number of superparticles per cell at the center of the
current sheet, we use ρsp = 1090 for nbg/ncs(0) = 0.3, and ρsp = 1820
for nbg/ncs(0) = 0.1, except for mi/me = 50 where ρsp = 910. This
corresponds, for the case nbg/ncs(0) = 0.1, to 1650 electron and ion su-
perparticles per cell for the plasma of the current sheet, and to 170 for
the background plasma. We stress in Chapter 5 that because of their low
numbers of superparticles per cell when compared to real plasmas, PIC
simulations present high levels of correlations and collisionality, and thus
thermalize faster. In the same line of thought, Kato (2013) and May et al.
(2014) show that because of these enhanced correlations, high-energy parti-
cles are slowed down quickly in PIC plasmas. One should thus ensure that
collisionless kinetic processes remain faster than collisional effects, essen-
tially by taking a large enough number ΛPIC of superparticles per Debye
sphere and per inertial length sphere, the former constraint being more re-
strictive. For example, with Θe = 2.4 = 1.4 × 1010 K/(mec

2) the electron
Debye length is 20 cells large, and initially at the center of the current
sheet we have ΛPIC ∼ 1820 × 20 × 20 = 7.3 × 105 superparticles. For a
background plasma with Tbg = 2 × 108 K, we have ΛPIC = 133. We per-
formed a simulation with half as many superparticles per cell, and saw no
difference, especially concerning particle distributions, energy repartition,
particle mixing, or maximal Lorentz factor. It indicates that we are not
affected by ρsp.

Boundaries are periodic along z and y, reflective along x. The simula-
tion with mi/me = 50 uses a domain size of 8000×10240 cells. The number
of cells of the simulations with other mass ratios is 4100×6144, correspond-
ing to 455 × 683 initial electron inertial lengths de, typically with 4 × 109

superparticles. We performed a simulation with twice as small a domain
along z: particle distributions are identical as long as there is a significant
number of islands and X-points in the domain (≥ 4), but differ afterward: in
the smaller simulation, the distribution cutoff is at lower energies, and the
power laws are steeper (softer). Consequently, we do not consider the data
when the island number shrinks below 4. We also performed a simulation
with a larger domain (8000 × 10240 cells, i.e., 888 × 1138 inertial lengths
de, this is the main simulation of Sect. 7.4.1) and otherwise identical pa-
rameters: the electron distribution saturates identically to the 4100× 6144
case, but the ion distribution reaches a harder final state. It indicates that
our domain size and simulation duration are large enough for electrons, but
possibly not for ions. The latter may build harder spectra and reach higher
energies in real systems.

7.3.3 Diagnostics

We initially select roughly 200 000 particles (out of the 4 to 14 billions in
total) uniformly in space and write their positions, velocities, as well as
the magnetic and electric fields they undergo, once every few timesteps.
The visualization of these data is performed with the visualization software
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VisIt (Childs et al. 2012). We divide the followed particles into two popu-
lations: those that are initially located inside the current sheet (colored in
red and denoted by “current sheet” or by a subscript cs), and those initially
outside (marked in green and denoted by “background particles” or by a
subscript bg). In other words, red particles are thosea satisfying

distance from middle plane at t = 0 < 2L, (7.1)

while green particles satisfy

distance from middle plane at t = 0 > 2L. (7.2)

Changing the limiting length from 2L to between 1.5L and 3L has been
confirmed has not influencing the presented results. An example is shown
in Fig. 7.1. As we will show, these two populations almost do not mix
spatially, and undergo very different acceleration mechanisms, resulting in
completely different particle energy distributions. Particles from the back-
ground plasma, accelerated by the reconnection, are expected to dominate
in number and energy for very large systems. This is why we focus more on
the green population.

7.4 Results

We first present results from a reference simulation in Sect. 7.4.1, and then
study modifications due to varying the background particle number den-
sity, magnetic field, or temperature without considering a guide field in
Sect. 7.4.2. The consequences of a guide field are explored in Sect. 7.4.3.

7.4.1 Main case

We start by presenting the results of the simulation with ωce/ωpe = 3,
nbg = 0.1ncs(0), Tbg,i = Tbg,e = 2 × 108 K, resulting in a magnetization in
the background plasma σhot

i, e = 3.6, 83 for ions and electrons, respectively
(defined by Eq. 6.4, see also Tables 7.1 and 7.2), and in an inflow Alfvén
speed V R

A,in = 0.88c.

The background electron distribution (the green curves in Fig. 7.1) starts
rising and taking a power law shape around t = 500ω−1

ce , which corresponds
to the starting of the reconnection instability. What happens is that the
reconnection electric field Erec spreads in the background plasma and sets
the particles into motion in an E×B drift directed toward the current sheet.
More and more background particles thus pass in the current sheet, where
they are demagnetized and able to gain energy via Erec. The power law
component thus comprises more and more particles. After gaining energy
in the acceleration zone, particles accumulate around the magnetic islands
and swirl around them. They are subsequently accelerated when islands
merge and contract. The power law index passes from a soft initial value of
p = −d log n(γ)/d log γ = 3 to a harder final value that converges to p ∼ 1.8.
We stopped the simulation at t = 3750ω−1

ce , when there were still enough
islands and X-points so that we are not affected by boundaries (Sect. 7.3.2).

aNote that the current sheet population defined here comprises most of the particles
that initially carry the current, plus the particles from the plasma at rest that are initially
satisfying Eq. 7.1.
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p
=
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y
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z

ωce/ωpe = 3, nbg = 0.1ncs(0), Tbg,e = Tbg,i = 2× 108 K

Figure 7.1: Data from the main simulation (Sect. 7.4.1), with a background
magnetization respectively for ions and electrons σhot

i, e = 3.6, 83.
Top: snapshots of a random selection of electrons in the whole simulation domain.
Red particles are inside the current sheet at t = 0, green ones are outside.
Bottom: Lorentz factor distributions. Red (green) curves concern the red (green)
population. For the green curves, times are ordered as dark to light green, with
values 0, 750, 1500, 2250, 3000, 3750ω−1ce , i.e., one curve every 750ω−1ce = 250ω−1pe =

50ω−1pi = 30ω−1ci . The blue dashed line indicates the final power law slope of the
background-accelerated particles.

Concerning the current sheet electrons, their distribution is shown at
t = 0 by a red dashed line in Fig. 7.1, and consists then in a thermal hot
plasma. When the reconnection instability starts, this population is heated
by the formation and contraction of islands. This heating slowly progresses
at later times as islands merge, to result in the solid red curve of Fig. 7.1.

Concerning ions, their background magnetization is only slightly rela-
tivistic (σhot

i = 3.6). The current sheet population is heated, while the
background population distribution is power law like, with a final index
p ∼ 4.8. This is similar to non-relativistic simulations where all species
form steep spectra.

It is evident from the top panels of Fig. 7.1 that the green electrons from
the background plasma do not penetrate deep inside the islands and, on the
other hand, that the red electrons initially from the current sheet do not
escape from the islands, even when they merge. The two populations thus
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Figure 7.2: Energy distribution for the main simulation (Sect. 7.4.1), with a
background magnetization for ions and electrons σhot

i, e = 3.6, 83, respectively.
Top: Energy in the total electric field Etot, in the x component of the magnetic
field, and in the particles (also decomposed into the ion and electron contributions).
These energies are computed on a fixed area, that corresponds to the location of
the background particles, or field lines, that reach the current sheet before the end
of the simulation. The total initial energy in this area is E0. We note that the
energy in Etot is mostly the energy in the y component Ey. Also, the energy of By

is 0.5% of that of Bx.
Bottom: Orange and blue curves are the energy repartition between ions and
electrons for the current sheet particles (dashed), and for the background particles
that have been accelerated (solid). They are normalized so that their sum is 1. The
red and green curve show the energy repartition between current sheet particles
and background-accelerated particles.
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remain almost separated. This is because particles from the background
plasma are scattered by the strong magnetic field structure surrounding the
islands, and thus swirl around these field lines, performing circles around
the islands but not reaching the inside. On their side, red particles from
the islands cannot escape because of the very same magnetic field structure.
This remains true for ions, but less so because of their larger Larmor radius.
Figure 7.6 illustrates this population separation for several simulations.

The energy repartition between fields and particles is shown in Fig. 7.2
(top). This energy is computed over a fixed rectangle in space, defined to
include all particles that will reach the center of the current sheet before
the end of the simulation. It thus excludes regions that, because of the
finite simulation length, are never in contact with the current sheet. En-
ergies are normalized by E0, the total initial energy in this area, which is
to ∼ 90% the energy in the magnetic field. The energy in the magnetic
field is transferred to the kinetic energy of the particles (0.6E0 in the final
state), to the reconnected magnetic field Bx (0.2E0), and to the reconnec-
tion electric field Ey (0.03E0). The components By, Ex, and Ez get a far
smaller amount of energy (∼ 0.005E0). A first conclusion is that the portion
of dissipated magnetic energy is large. Table 7.3 presents this analysis for
several simulations. It shows that the amount of dissipated magnetic energy
is even larger at larger inflow magnetization. A second important aspect is
the energy repartition between ions and electrons. In Fig. 7.2 (bottom), we
show this repartition for the background particles that have been acceler-
ated, i.e., for the particles of the tails in Fig. 7.1 (green curves). The ions
weight as 60% of this kinetic energy, the electrons 40%, and this ratio re-
mains constant with time. The same repartition roughly holds for particles
in the current sheet (red population). Table 7.3 shows that this repartition
holds for various simulations with different magnetizations and mass ratios,
provided that there is no guide magnetic field. We note that the percent-
ages given in Table 7.3 are not sensitive to the specific time when they are
determined. We obtain essentially the same percentages if we repeat the
analysis but consider only those particles (and their associated rectangular
region and energy E0) that reach the current sheet before half of the total
simulation time.

7.4.2 Case studies, no guide field

Influence of the background plasma density

We now compare the main case with a simulation with identical parameters
except for the background plasma number density: nbg = 0.3ncs(0) instead
of 0.1, resulting in a smaller magnetization σhot

i, e = 1.2, 27 in the background.

The corresponding inflow Alfvén speed is V R
A,in = 0.73c. The evolution is

similar: weak mixing of the two populations, heating of the particles from
the current sheet, and acceleration of the particles from the background to
form a power law. The power law for electrons has a final index p between
2.2 and 2.6 (Fig. 7.3), and for ions around p ∼ 8. This is softer than in the
nbg = 0.1ncs(0) case, which is expected because a higher background plasma
density implies a lower background plasma magnetization, and as we show
here (see also Sironi and Spitkovsky 2014), softer power laws. It is, however,
noticeable that more magnetic energy is transferred to the particles: the
kinetic energy is 74% of the total energy, while it is only 62% for the case
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Figure 7.3: Lorentz factor distributions for background electrons (green pop-
ulation), for various simulations with mi/me = 25 or 1, in the final state.
Times are t = 600ω−1pe = 1800ω−1ce for all simulations, except for ωce/ωpe = 1
(t = 1350ω−1pe = 1350ω−1ce ), and for ωce/ωpe = 6 (t = 600ω−1pe = 3600ω−1ce ). Nota-

tions are abbreviated: ω̃ce = ωce/ωpe, ñbg = nbg/ncs(0), σe stands for σhot
e (Brec),

and VA for V R
A,in cos θ/c (with θ = arctanBG/B0). Unless specified, ñbg = 0.1. The

power law indexes are p. The precise setups are reported in Table 7.1 for each σe.
The light-green curve (σe = 83, VA = 0.9) is the same on the left and right panel,
and is the final state of the simulation of Fig. 7.1.

with nbg = 0.1ncs(0).

Influence of the inflow magnetization

We vary the asymptotic magnetic field strength by varying the parame-
ter ωce/ωpe of the Harris equilibrium. Increasing this parameter results
in a higher magnetic field, and in a hotter current sheet plasma in order
to maintain the pressure balance. It allows probing different background
plasma magnetizations. Our results indicate harder power laws at higher
magnetizations (Fig. 7.3 for the simulations with ωce/ωpe = 1, 6, to also
be compared with the simulation ωce/ωpe = 3, Tbg,e = 2 × 108 K). The
comparison is as follows:

• The case at low inflow magnetization (ωce/ωpe = 1, σhot
i, e = 0.4, 9.9,

V R
A,in = 0.53c) presents a power law-like spectrum for background-

accelerated electrons (green population) with a large index, between 3
and 4, thus decreasing fast and reaching γmax ∼ 10. The ion distribu-
tion is not power law like and is very steep. The final kinetic energy
is 48% of the total initial energy.

• The intermediate case (ωce/ωpe = 3, σhot
i, e = 3.6, 90, V R

A,in = 0.88c)
presents a power law-like spectrum for the background particles with,
for electrons p ∼ 1.5-2 and γmax ∼ 100, for ions p ∼ 5.8. The final
kinetic energy is 62% of the total initial energy.
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• The most magnetized and relativistic case (ωce/ωpe = 6, σhot
i, e =

14, 260, V R
A,in = 0.97c) exhibits a very flat spectrum for background-

accelerated electrons, with an index around 1.2, and reaches γmax ∼
300. Background accelerated ions have a power law distribution with
index p ∼ 3.6, which is interestingly close to the index for electrons
at the same magnetization (the simulation with ωce/ωpe = 1, where
σhot

e = 9.9 and p ∼ 4.5), and highlights the relevance of σs of each
species to characterize the power law. The final kinetic energy is 73%
of the total initial energy.

For both electrons and ions, this emphasizes that only relativistic reconnec-
tion setups (i.e., σhot

s > 1 for each species s) can produce power laws, with
harder indexes for higher magnetizations.

Influence of the inflow temperature

Coming back to the main simulation with ωce/ωpe = 3, nbg = 0.1ncs(0),
Tbg,e = Tbg,i = 2 × 108 K, we now increase the background temperature of
the electrons to reach Tbg,e = 3×109 K (giving σhot

i, e = 3.6, 35, V R
A,in = 0.88c),

which is almost the temperature of the current sheet electrons (Θe = 2.4 =
1.4×1010 K/(mec

2)). Electrons from the background plasma already have a
high energy when reaching the acceleration region, and their initial energy
is then a significant fraction of the energy gain furnished by Erec. As a
consequence, the power law is less visible (Fig 7.3, gray curve). However,
as time goes by and as more and more particles from the hot background
are accelerated, we expect it to dominate the particle distribution more and
more. Its index is p = 2.8, softer than the colder case. This is expected
because a relativistic temperature decreases the plasma magnetization from
89 to 35 here, and we do have an index close to the one for nbg = 0.3ncs(0),
which had a similar magnetization (σhot

e = 27, p ∼ 2.5).
Background accelerated ions have a power law distribution with index

p ∼ 6.5. This is close to their index in the simulation with ωce/ωpe = 3,
Tbg,e = Tbg,i = 2 × 108 K, which is identical except for the initial electron
temperature (p ∼ 5.8). It shows that electrons have a weak influence on
ions.

7.4.3 Case study, guide field

We now analyze simulations with a guide magnetic field BG = BGŷ.
Figure 7.3 (right) presents the final electron distributions from simula-

tions with BG = 0, 0.5B0, and B0. In the intermediate case (BG = 0.5B0),
the spectrum of the background-accelerated electrons shows no clear power
law, but extends over a range similar to the no-guide field case. In the strong
guide field case (BG = B0), the spectrum of the same electron population
seems flatter, with a power law index of ∼ 1.5 (over a narrow range). The
background plasma magnetization in the three simulations is similar (the
guide field is not included in this magnetization parameter, and should not
be, because it is not converted into particle energy). The harder particle
distribution should thus be explained by other means. We recall that quite
generally, the particles accelerated at the X-point are slowly deflected to-
ward the reconnection exhausts by the x component of B. But Bx vanishes
at the X-point and increases when going away from it, so that the farther
from the X-point a particle enters the diffusion region, the faster it will be
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Figure 7.4: Lorentz factor distributions for ions. Simulation with ωce/ωpe = 6,
σhot
i,e = 14, 260 in the background.

deflected and the less it will be accelerated. The area where an efficient
acceleration occurs is thus limited along z by the increase in Bx. But with
a guide field, this efficient acceleration region is extended along z (as shown
in Sect. 6.5), because accelerated particles are guided by the guide field
and prevented from being deviated by Bx. Background particles are more
accelerated, and a flatter spectrum is indeed expected.

Because of their larger Larmor radii, background-accelerated ions are
less affected by the guide field. They present a power law distribution with
index p = 8 for both guide field strengths.

Table 7.4 shows the energy repartition for the guide field simulations.
In both cases, the final kinetic energy is ∼ 44% of the total initial energy
(we do not include the guide field By in this initial energy because it cannot
be transferred to the particles, and indeed varies by less than a few percent
during the simulation). This is less than in the BG = 0 case, where this
percentage is 62%. The kinetic energy repartition between accelerated ions
and electrons is 46%/54% (ions/electrons) for BG = 0.5B0, and 33%/67%
for BG = B0. This contrasts with the 60%/40% ratio at BG = 0, since here
electrons get more energy than do ions.

7.5 Summary and discussion

7.5.1 Summary

We study the production of high-energy particles by magnetic reconnection
in relativistic ion-electron plasmas based on the same 2D PIC simulation
data presented in Chapter 6. The variety of parameters employed (particle
density, temperature, or magnetic field in the background plasma, guide
field, mass ratio) allows important aspects of this problem to be grasped.
In all cases particles can be divided into two populations that only weakly
mix: (i) Particles initially inside the current sheet are trapped inside the
magnetic islands as soon as they form during the tearing instability, and
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Figure 7.5: Maximum Lorentz factor of the background particles for various
simulations with mi/me = 25 or 1. Solid lines are for electrons, dashed lines for
ions and represent mi/me× γi,max. Also, ω̃ce = ωce/ωpe. A log-log plot shows that
the Lorentz factors grow as ts, with the index s shown in the figure.

remain trapped by the strong circling magnetic structure, even after many
island merging events. They are heated by the contraction of the islands.
(ii) Particles from the background plasma E ×B drift toward the diffusion
region, where either E < cB in the no-guide field case, or E ·B 6= 0 in the
guide field case, allows them to be accelerated directly. As they escape along
the reconnection exhaust, they cannot penetrate inside the island because
of the strong magnetic structure surrounding them, so they circle at the
periphery, where they can gain more energy.

Particles of population (ii) tend to form a power law whenever their
magnetization is greater than unity and the inflow Alfvén speed is not too
small (Figs. 7.1 and 7.3), though sometimes not with a clear and unique
slope. The indexes depend on the temperature, particle density, and mag-
netic field in the background plasma, as well as on the guide field strength.
With no guide field, results suggest that the power law index for species s
depends mainly on the background plasma Alfvén speed V R

A,in, and on the
background plasma magnetization for species s, independent of whether it is
due to the magnetic field strength, a lower particle density, or a relativistic
temperature. A higher magnetization leads to a harder power law: for the
electrons, p = −d log n(γ)/d log γ = 4.5, 2.4, 2.8, 1.7, 1.2 respectively for
magnetizations σhot

e = 10, 27, 35, 89, 260 (see Table 7.1). This is expected
for reasons exposed in Sect. 7.5.2. These indexes are harder than for colli-
sionless shock acceleration, where p > 2 (Bell 1978; Sironi and Spitkovsky
2011b). Ions have a magnetization that is mi/me times less than electrons
(for identical or non-relativistic temperatures). As expected, they behave
non-relativistically for low magnetizations σhot

i : no power law at σhot
i = 0.4;

steep ones for σhot
i = 1.2, 3.6 (p = 8, 5.5); and beginning of formation of

significant power laws at higher magnetization: p = 3.6 for σhot
i = 14,

mimicking the values reached for electrons at the same σe.

The presence of a weak guide field deforms the power law, and the pres-
ence of a strong guide field allows for a slightly harder spectrum (Fig. 7.3,
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right) because it allows particles to stay longer in the acceleration region by
guiding them in the direction of the reconnection electric field.

The degree of mixing between the two populations (i) and (ii) essentially
depends on the ratio of the Larmor radii of the particles in the magnetic
field surrounding the islands, to the island radius. A hotter background
temperature implies more mixing, and so does a weaker guide field. Also,
ions have larger Larmor radii and penetrate the islands more easily. This
is illustrated in Fig. 7.6. We stress that even for high background electron
temperatures (bottom right panel), the two electron populations remain
clearly separated.

The total particle distribution is the sum of populations (i) and (ii), and
it depends on their relative importance. We underline that our simulations
are limited in time by the box size. In reality, longer times can be reached
and more background particles can be accelerated, so that the background-
accelerated population, and its power law nature, will dominate in the end.
It calls for care when interpreting PIC particle distributions: either very long
simulations (also demanding large domains) or the proposed decomposition
should be used.

The percentage of magnetic energy converted into kinetic energy is larger
at larger inflow magnetization: the final kinetic energy rises to 48%, 62%,
73% of the total initial energy, for respective inflow magnetizations σhot

e =
9.9, 83, 260 (see Table 7.3) at mi/me = 25. This fraction is lower with a
guide magnetic field (∼ 44%, Table 7.4).

The energy repartition between accelerated ions and electrons from the
background plasma depends mainly on the strength of the guide magnetic
field. With no guide field, it is roughly 60% for ions and 40% for elec-
trons, with variations within 3% when varying the background tempera-
ture, magnetization and Alfvén speed. With a guide field of 0.5B0 and B0,
the ion/electron repartition becomes 46%/54% and 33%/67%, respectively,
with electrons getting more energy than ions. Our conclusion is thus that
overall, ions and electrons are almost equally energized. It is, however, es-
sential to know whether this remains true at realistic mass ratios. With
no guide field, our simulations with mi/me = 12 and mi/me = 50 show a
variation of ∼ 3%, which cannot be distinguished from the variation due
to the different background magnetizations of these simulations. Conse-
quently, and even if higher mass ratios should be tested, it seems that the
∼ 60%/40% repartition will hold at higher mi/me. The case with a guide
magnetic field will be explored in more depth in a future work.

The maximum Lorentz factor of the background particles (ii) is shown
in Fig. 7.5. A larger guide field leads to lower the highest Lorentz factors,
and this is expected because the reconnection electric field becomes weaker
with increasing guide field (Sect. 6.5.3). A log-log plot shows that the rate
of increase is roughly γmax ∝ ts, with s ranging from 0.7 to 1.1 as the
magnetization rises, with identical values for ions and electrons. Particles
inside the islands follow the same trend. We stress that this is faster than in
collisionless shock acceleration where γmax ∝ t0.5 (Bell 1978). We also note
that the maximal Lorentz factor does not saturate. It should saturate in
very large systems when the inter-island distance becomes greater than the
particle Larmor radii in the reconnected field Bx, and when island merging
ceases.
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simulation parameters final energy in % of E0 ion/electron energy repartition

ωce

ωpe

nbg
ncs(0)

σhot
i σhot

e

V R
A,in

c
Bx Etot kinetic energy cs ions cs elec bg ions bg elec

mi/me = 50

6 0.1 7.1 260 0.93 21% 5% 74% 54% 46% 63% 37%

mi/me = 25

1 0.1 0.4 9.9 0.53 11% 1% 48% 67% 33% 60% 40%

3 0.1 3.6 83 0.88 20% 3% 62% 56% 44% 63% 37%

3 0.3 1.2 27 0.73 17% 4% 74% 61% 39% 62% 38%

6 0.1 14 260 0.97 18% 4% 73% 53% 47% 60% 40%

mi/me = 12

3 0.1 7.5 83 0.93 21% 2% 72% 55% 45% 60% 40%

mi/me = 1

3 0.1 83 83 0.99 34% 8% 87% 50% 50% 50% 50%

Table 7.3: Energy distribution between fields and particles at the end of different
simulations. cs stands for the current sheet population, bg for the background
population. The final energy in the electric field is Etot, and is dominated by the
energy in Ey. The energy in Bx is denoted by Bx. As explained in Fig. 7.2, E0 is the
total (mostly magnetic) initial energy in the “reconnection area”, which is the area
from where the particles reach the current sheet before the end of the simulation.
Because of the difficulty of precisely measuring this area, the percentage has to be
taken with a ±5% relative uncertainty. The energy repartition between ions and
electrons is not affected by this.

simulation parameters final energy in % of E0 ion/electron energy repartition

ωce

ωpe

nbg
ncs(0)

σhot
i σhot

e

V R
A,in

c
Bx Etot kinetic energy cs ions cs elec bg ions bg elec

BG/B0 = 0.5

3 0.1 3.6 89 0.81 16% 4% 43% 60% 40% 46% 54%

BG/B0 = 1

3 0.1 3.6 89 0.66 18% 5% 45% 57% 43% 33% 67%

Table 7.4: Same as Table 7.3, but for cases where there is a guide field. Here
mi/me = 25. In this case E0 does not include the guide magnetic field By, be-
cause this component is not transferred to the particles (the energy in By remains
constant to within 5% throughout the simulation).
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Figure 7.6: Particle mixing in the islands. Each panel is a zoom around a
magnetic island and shows particles initially outside of the current sheet in green,
and particles initially located inside the current sheet in red and shifted below for
clarity. Each snapshot is taken at the end of the simulations, and these islands
result from the merging of many small and then larger islands (from around 20
islands at the end of the linear phase of the tearing instability, to 3 big islands at
the end), and yet the two particle populations remain separated. The mass ratio
is 25 in all cases.

7.5.2 Discussion

Acceleration mechanisms

The main acceleration mechanism for the background population (ii) is
direct acceleration by the reconnection electric field. However, other ac-
celeration mechanisms are present. It can be seen by dividing the back-
ground population into several subgroups, each comprising particles in a
slab xmin < x < xmax at t = 0. We can then follow the spatial evolution
of these slabs, along with the evolution of their momentum distribution
function. After gaining energy in the acceleration region by Erec, back-
ground particles escape along the reconnection exhausts, and circle at the
island periphery following the strong magnetic field structure. Contrac-
tion of the islands (when they merge) creates strong motional electric fields
E = −v∧B that accelerate these particles. Also, two merging islands create
a reconnection event with a reconnection electric field along +ŷ, that can
transfer energy to particles. The combination of these three mechanisms is
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also reported for pairs by Bessho and Bhattacharjee (2012) and Sironi and
Spitkovsky (2014).

We find no trace of Fermi acceleration between the converging inflows,
as studied analytically or with test particles by Giannios (2010), Kowal et
al. (2011), Drury (2012), or Bosch-Ramon (2012), because particles cannot
cross the current sheet (see Fig. 6.6), but bounce back and forth only inside
the diffusion region where they are constantly accelerated by the reconnec-
tion electric field. Fermi acceleration is possible only if inflowing particles
of species s are energetic enough to cross the diffusion region, i.e., have a
Larmor radius γmsv/eB0 that is larger than the diffusion zone width δs.
The latter is roughly one inertial length measured at its center (Sect. 6.4.2),
so that the crossing condition can be written γv/c > (σcold

s nbg/ncs)
1/2 (with

σcold
s the background magnetization defined by Eq. 6.5, and nbg and ncs the

background and current sheet density). The right-hand side is greater than
unity for a relativistic inflow magnetization. This mechanism thus requires
already accelerated particles in the inflow, which is possible for very high
temperatures, or for an out-of-equilibrium component pre-accelerated by
other mechanisms outside of the diffusion region such as neighboring re-
connection sites, or large scale flow turbulence (see Sect. 7.5.4). We have
neither of these in our simulations, and their presence in real situations
should be addressed.

We now turn to the building of the power law spectrum in our sim-
ulations. The basic idea is that particles enter the acceleration region at
all distances from the central X-point, with those entering near the center
being deviated toward the exhausts by Bx more slowly than those entering
at the edges. They thus gain more energy, and a monoenergetic inflow is
transformed into a broader distribution. The ingredient to build a power
law, underlined by Zenitani and Hoshino (2001), is that relativistic particles
have a Larmor radius that increases with their Lorentz factor: high-energy
particles rotate slowly in Bx and are held in the acceleration region even
longer as they are accelerated, thus facilitating the creation of hard tails.
With this argument alone, Zenitani and Hoshino (2001) predict a power law
with index p ∝ cBx/Erec, but their model is very simple. Bessho and Bhat-
tacharjee (2012) analytically derive the spectra of particles accelerated by
Erec and escaping from the X-point, and find dn/dγ ∝ γ−1/4 exp{−aγ1/2}.
It is a power law with an exponential cutoff, occurring at higher energies for
relativistic X-points because a ∝ cBx/Erec. In the end, the X-point acceler-
ated particles gain more energy around the contracting islands and during
reconnection events between merging islands, to result in the distribution
that we show in this paper.

Condition for hard high-energy tails

It appears from our data that the hardness of the energy distribution for
species s is controlled by its background magnetization σhot

s and by the
Alfvén speed V R

A,in. The power law is harder for higher magnetizations

(Table 7.2). For a fixed magnetization σhot
e = 83, the simulations with

mi/me = 1, 12, and 25 feature different inflow Alfvén speeds V R
A,in = 0.988,

0.93, and 0.88, and also different power law indexes for electrons: p = 1.5,
1.6, 1.8, respectively. Similarly, when compared to our work at a given
electron magnetization, the PIC simulations of Sironi and Spitkovsky (2014)
for pair plasmas present harder distributions, simply because with pairs and
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a given σe, the Alfvén speed is higher. A higher inflow Alfvén speed thus
leads to harder distributions.

This can be interpreted as follows. The building of a high-energy tail
for species s requires two ingredients: an inflow magnetization σs > 1 so
that the transfer of magnetic energy can exceed the particles’ restmass,
and thus accelerate them to relativistic energies; and a large enough ra-
tio Erec/(cB0) in order to have a hard distribution. The latter condition
roughly states that the residence time γms/(qsBx) of a particle in the accel-
eration region must be longer than its acceleration time γmsc/(qsErec) by
Erec. This is supported by the analytical models of Zenitani and Hoshino
(2001) and Bessho and Bhattacharjee (2012) cited above. Given that the
reconnection rateb E∗ = Erec/(B0V

R
A,in cos θ) lies in a narrow range for var-

ious simulations (E∗ ∼ 0.14-0.30, Sects. 6.4.6 and 6.5.3), the condition of
a large ratio Erec/(cB0) = E∗V R

A,in cos θ/c consequently translates into a

relativistic inflow Alfvén speed V R
A,in and into a not too strong guide field

(cos θ = (1 +B2
G/B

2
0)−1/2).

For the ions, a hard distribution requires σhot
i � 1 and V R

A,in ∼ c. But

the condition V R
A,in ∼ c is equivalent to a total magnetization σi+e(Btot) > 1

(Eq. 6.7b), which is already fulfilled if σhot
i � 1. For the electrons, a

hard distribution requires σhot
e � 1 and V R

A,in ∼ c. The latter translates
to σi+e(Btot) > 1, so that we have (if we neglect temperature effects):
σcold

e ∼ (1 + mi/me)σi+e > 1 + mi/me ∼ 2000. Here the condition on
the Alfvén speed is consequently more stringent than the condition on the
magnetization. We conclude that hard ion distributions are obtained when
σhot

i � 1, and hard electron distributions when V R
A,in ∼ c.

We finally point out that the Alfvén speed, and thus also the ratio
Erec/B0, saturates at c for strong magnetizations. We consequently expect
the particle distribution hardness to also saturate to some value with, as
indicated by our simulations, a power law index p slightly below 1.2. Recon-
nection in environments with σhot

i � 1 should thus produce ion and electron
distributions with power law index p . 1.

7.5.3 Astrophysical outlook, objects and orders of magni-
tude

We now turn to astrophysical applications of the work presented in this
chapter. Just as in Sect. 6.6.2, we are interested in four major domains
where magnetic reconnection can play a key role: large scale outflow launch-
ing, high-energy flare production, steady emission of radiation, and plasma
heating or non-thermal particle production. We discuss which objects these
phenomena are observed in, give orders of magnitude for the main parame-
ters, and point out where our work is applicable. Table 7.5 summarizes the
physical conditions encountered in the objects mentioned here.

Large scale transient outflow production, the example of micro-
quasars

Large scale magnetic reconnection events may be at the origin of large scale
transient jets in microquasar systems, for example via a magnetic field re-

bThe residence time γms/(qsBx) implies the reconnected field Bx, and not the inflow-
ing component B0 as in the reconnection rate. However, the ratio B0/Bx is roughly the
same for all magnetizations and all simulations.
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Objects with ion-electron plasmas (with also pairs) B (G) ne (cm−3) Te (K) σcold
e V R

A,in/c

Microquasar coronae, X-ray emitting regiona 105-107 1013-1016 109 10−1-105 0.003-1

AGN coronae, X-ray emitting regionb 109 1.7-180 0.03-0.3

Giant radio galaxy lobesc 10−6-10−5 3× 10−6 106 0.8-80 0.02-0.2

Extragalactic jet, γ-ray emitting region (< 0.05 pc)d 12 80 2× 105 ∼ 1

Extragalactic jet, radio emitting region (kpc scales)e 1-3× 10−5 0.8-5× 10−8 500-2500 ∼ 1

GRB jet, at radius of fast reconnectionf 7× 108 1010 108 5× 1012 0.9

Objects with pair plasmas B (G) ne (cm−3) Te (K) σcold
e V R

A,in/c

At the termination shock of pulsar windsg 104 0.1-10 1013 ∼ 1

In pulsar wind nebulah 5× 10−3 5 to 103 γ ∼ 10-109 < 0.5 0.6

a Analytical disk and corona models, de Gouveia dal Pino and Lazarian (2005), Di Matteo (1998), Merloni and Fabian (2001),
and Reis and Miller (2013); matching observed spectra with radiation models, Del Santo et al. (2013) and Romero et al. (2014).
b Analytical disk and corona models, Di Matteo (1998), Merloni and Fabian (2001), and Reis and Miller (2013).
c Observations, Kronberg et al. (2004).
d Analytical model assuming σcold

i = 100, Giannios et al. (2009). See also Giroletti et al. (2004) for magnetic field measure-
ments (0.2 G, but on larger scales).
e Observations, Schwartz et al. (2006). See also Romanova and Lovelace (1992).
f Analytical model, McKinney and Uzdensky (2012). Pairs are also present, with npair ∼ 10ne.
g Analytical model and observations, Bucciantini et al. (2011) and Sironi and Spitkovsky (2011a).
h Analytical model and observations, Atoyan and Aharonian (1996), Meyer et al. (2010), Uzdensky et al. (2011), and Cerutti
et al. (2013). The plasma distribution function is a broken power law with Lorentz factors γ in the indicated range. We note
that Cerutti et al. (2013) considers only the high-energy electron population, and hence has larger magnetizations.

Table 7.5: Order of magnitude for physical parameters in astrophysical environ-
ments. Other orders of magnitude can be found in Figs. 1.1 and 2.42.
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versal accreted onto a magnetically arrested disk. We refer to Sect. 6.6.2
for a discussion concerning such events.

Flares in AGN and microquasar coronae and in extragalactic jets

Flare-like emission of high-energy photons is observed, for example, in the
γ-ray region of AGN jets (Giannios 2010), or in microquasar and AGN
coronae (Di Matteo 1998; Merloni and Fabian 2001; Reis and Miller 2013).
Concerning AGN jets, flares in the GeV-TeV range are observed, and may
come from close to the AGN (< 0.05 pc, Giroletti et al. 2004). There,
Giannios et al. (2009) assume an ion magnetization σcold

i ∼ 100, which gives
an Alfvén speed ∼ c (Table 7.5, line d). Concerning the coronae of AGNs
and microquasars, various models constrained by observations predict ion
magnetizations in the range σcold

i ∼ 10−5-102 (Table 7.5, lines a and b). In
the most magnetized case, the Alfvén speed is ∼ c. According to our results,
reconnection in such environments should produce electron distributions
with hard tails (p ∼ 1), and if we apply our results for electrons to the ions,
the latter should also form hard tails (p ∼ 2).

Quite generally, high-energy flares can be explained by reconnecting
events under three conditions: the large scale magnetic field must possess
enough energy and the large scale flow or the flow turbulence must lead to
enough reconnection events; the reconnection process must produce high-
energy particles with hard distributions; these high-energy particles must
be able to radiate. The first point is linked to the large scale properties of
the object and can be investigated with simulations on large scales, while
the last two points concern microphysics and must be addressed with first
principle simulations. We believe to have answered the second point: mag-
netic reconnection does produce hard high-energy distributions whenever
the ion magnetization is above unity, which can indeed be the case in the
environments mentioned above. Concerning photon emission, we expect
particles trapped inside the islands (population i) to produce mostly ther-
mal synchrotron-Bremsstrahlung. On the other hand, particles accelerated
at the X-point (population ii) are likely to radiate collimated beams when
suddenly encountering the strong magnetic field structure at the end of the
exhausts, at the island entrance. This was demonstrated in the no-guide
field case by Cerutti et al. (2012a) in pair plasmas, and should also hold for
ion-electron plasmas because the overall magnetic structure is not too differ-
ent. The radiation spectrum is then anisotropic and reaches energies on the
order of γ2ωce with γ the particles Lorentz factor and ωce = eB/me. With
a guide field, radiation should occur together with particle acceleration in
the E ·B 6= 0 area, because particles then swirl around the guide field. It
should consequently be more regular and less flare-like (Cerutti et al. 2013).
Since reconnection with a guide field is more generic in the complex mag-
netic field structures of coronae or jets than antiparallel reconnection, the
question of photon emission in such a case is very relevant.

Steady radio emission from extragalactic jets

Magnetic reconnection can produce radiation in a wide range of frequencies,
which for the synchrotron component depends on the strength of the recon-
necting magnetic field. An example is the radio emission, on kilo-parsec
scales, of extragalactic jets. Explanation of these spectra can invoke mag-
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netic reconnection events, in particular to explain the hard photon indexes
(Romanova and Lovelace 1992). Observations indicate electron magnetiza-
tions in the range σcold

e ∼ 500-2500 (Table 7.5, line e), which corresponds
to ion magnetizations σcold

i ∼ 0.3-1.3 and to Alfvén speeds ∼ 0.5-0.8c. This
is between the two cases ωce/ωpe = 1 and ωce/ωpe = 3 of our study, for
which the kinetic energy takes a large amount of the magnetic energy (be-
tween 45% and 60%, Tables 7.3 and 7.4), and is distributed as 60/40% to
30/70% between ions and electrons, respectively, depending on the guide
field strength. Most importantly, for these parameters the background-
accelerated electrons form power laws with indexes between 4.5 and 1.5
(Table 7.2 and Fig. 7.3), which can then indeed emit hard spectra.

Plasma heating in AGN and microquasar coronae and in radio
galaxy lobes

Magnetic reconnection can also efficiently heat the plasma by converting
the magnetic field energy.

Photon emission in the hard state of microquasars and AGNs is believed
to come from inverse-Compton scattering of seed photons by the electrons
of a corona. To achieve this, these electrons must reach temperatures of
the order of 109 K, i.e., Θe = Te/mec

2 ∼ 0.2. In microquasars, a coro-
nal population of non-thermal high-energy electrons is also required by the
observation of MeV photons (Poutanen and Veledina 2014). A proposed
mechanism for plasma heating and non-thermal particle production is by
magnetic reconnection (Di Matteo 1998; Merloni and Fabian 2001; Reis and
Miller 2013). Alfvén speeds in these coronae are estimated to be of the or-
der of 0.003c-c (Table 7.5, line a). In our corresponding simulations, the
final kinetic energy is a large fraction of the initial magnetic energy (48% at
VA = 0.5c, up to 75% at VA = 0.88c, Table 7.3), thus allowing an efficient
energy transfer to the plasma. For this range of Alfvén speeds, accelerated
electron distributions can be steep (p > 4 for VA = 0.5c) or hard (p ∼ 1.2
for VA = 0.97c), and in the latter case reconnection can indeed produce a
non-thermal population.

An important point is the question of the energy repartition between ions
and electrons: if most of the magnetic energy goes to ions, and because of the
low collisionality of these dilute environments, a large temperature difference
can be sustained (Di Matteo et al. 1997). Our results show that energy is
almost equally distributed between ions (60% to 30%) and electrons (40%
to 70%), so that we do not expect large temperature differences (as studied
in some models, Di Matteo et al. 1997) from this heating mechanism.

Other models of the MeV component from microquasars invoke the emis-
sion of electrons in the jet, and require hard electron distributions with in-
dexes p ∼ 1.5 (Zdziarski et al. 2014). The ion magnetization in these models
needs to be larger than unity. Our work demonstrates that magnetic recon-
nection in these conditions can provide such hard electron spectra.

Similar questions arise concerning the heating of the lobes of radio galax-
ies (Kronberg et al. 2004). There, n ∼ 3× 10−6 cm−3 for the number densi-
ties, and B ∼ 5µG for the equipartition magnetic field with values that can
be locally ten times higher, which gives magnetizations σcold

e ∼ 0.8-80 and
Alfvén speeds ∼ 0.02c-0.2c. Our conclusions also apply there, especially for
the ion/electron energy repartition.
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Finally, we underline that the energy distribution by acceleration pro-
cesses far downstream of the diffusion region requires another study.

Very high energy particle production

A final application concerns the extraterrestrial PeV neutrinos detected by
IceCube (IceCube Collaboration 2013). They can come from the photopion
(pγ) interaction of high-energy protons or ions produced by high-energy
machines (such as, e.g., GRBs, Petropoulou et al. 2014). The ability of
magnetic reconnection to accelerate ions in highly magnetized environments
is then very relevant. We find that the highest Lorentz factor for ions
follows the same trend as for electrons (γ ∝ ts, s ∼ 0.7-1.1), and for ion
magnetization σi � 1 we expect ions to feature the same power law spectra
as electrons, with a slope p . 1.2.

7.5.4 Astrophysical outlook, further discussion

Scaling of the results, importance of radiative braking, Compton
drag and pairs

The reconnection physics with the Harris geometry described in this paper
only depends on the inflow plasma magnetization and temperature, and not
on the absolute values of magnetic field and particle number density. For
example, reconnection in a microquasar corona close to the hole, and in
the γ-ray emitting region of an extragalactic jet, takes place with the same
magnetizations (Table 7.5) and thus features the same reconnection rate,
particle spectra or energy repartition, even if magnetic field strengths differ
by six orders of magnitude (provided, however, that the geometry is the
same). This is true as long as reconnection occurs in the collisionless regime,
an issue discussed, for example, by Goodman and Uzdensky (2008) and Ji
and Daughton (2011) (see Sect. 2.11.3 for an overview). Also, it requires
that effects such as radiative braking by emission or Compton drag, or pair
annihilations, do not perturb the reconnection physics. Such effects imply
the actual values of magnetic field and particle number densities and can
lead to a very different physics for the same magnetization. To evaluate this,
we estimate in Appendix 7.A when an electron loses a significant fraction of
its energy during any given time or over a length scale that is dynamically
important for the magnetic reconnection physics. These time and length
scales are taken as a cyclotron or plasma period, or as an inertial scale.
Particles will eventually radiate and cool farther away, but with no influence
on the reconnection physics. We summarize the main points of this appendix
here.

Radiative braking due to synchrotron radiation remains negligible on
cyclotron scales as long as (from Eq. 7.6):

( γ

100

)2 B

1011 G
< 1, (7.3)

where γ is the Lorentz factor of an electron. This is negligible for all objects
of Table 7.5, except in the pulsar wind nebulae where γ can reach 109 (Meyer
et al. 2010). Radiative braking due to Coulomb collisions can be estimated
by assuming a thermal Bremsstrahlung, and remains negligible on inertial
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length scales as long as (from Eq. 7.7):(
Te

mec2

)1/2( ne

5× 1012cm−3

)3/2

< 1. (7.4)

This is the case for objects of Table 7.5, except in microquasar coronae close
to the black hole where ne is high.

Compton drag does not affect the electron dynamics on inertial length
scales as long as

γ

100

(
1cm−3

ne

)1/2
Uph

1010erg/cm3
< 1, (7.5)

with Uph the radiation field energy density (Eq. 7.8). For a blackbody
spectrum, this remains true for photon temperatures Tph < 106 K. Con-
sequently, objects with electron temperatures Te > 106 K on scales large
enough so that the optical depth is important and photons are thermalized,
are in the range where Compton drag is efficient. It should be noted that
the electrons locally heated by the magnetic reconnection cannot thermalize
the radiation, because the reconnection region is optically thin (Eq. 7.9).
Alternatively, the photon energy density Uph produced by the magnetic re-
connection can be computed from the synchrotron or Bremsstrahlung emis-
sivity, assuming that the emission takes place over a volume (ade)

3 with
de the electron inertial length and a a geometrical factor. Compton drag
against the synchrotron photons is negligible as long as a(B/1G)2(γ/100)3 <
1036 (from Eq. 7.11), and that due to Bremsstrahlung photons as long as
a(Te/108K)1/2 (ne/1cm−3) (γ/100) < 1038 (from Eq. 7.13). Compton drag
by these photon fields is thus negligible for all objects of Table 7.5. The
radiation field can also originate from outside of the reconnection region.
For example, at a distance R from an object emitting at a fraction α of
the Eddington luminosity, the photon energy density can be estimated as
Uph = α(RS/R)2(10 km/RS) × 1015 erg/cm3, with RS the Schwarzschild
radius of the object. The threshold where Compton drag against these pho-
tons is significant can be reached in the inner parts of microquasar coronae
if ne is not too high (as given by Eq. 7.15) (see also Goodman and Uzdensky
2008).

Finally, photons of energy above m2
ec

4/ε0 can annihilate with ambient
photons (of typical energy ε0) to produce pairs. This can be the case if
B(γ/100)2 > 2×109 G for high-energy synchrotron photons, or if Te > 109 K
for Bremsstrahlung (Eqs. 7.16 and 7.17). Inverse Compton events can also
produce such photons if the electron Lorentz factors are γ > mec

2/ε0 (see
Appendix 7.A).

In any case, pair creation will disturb the reconnection dynamic only if
the creation occurs inside or close to the reconnection region. The mean-
free-path lγγ of high-energy photons should thus be compared to an inertial
length de. For a blackbody gas of photons at temperature Tph, we have
lγγ,BB/de = (ne/1cm−3)1/2(106K/Tph)3 (Eq. 7.19). However, as underlined
previously, a blackbody spectrum of photons is not easy to achieve. If pho-
tons cannot be thermalized, then the γγ opacity must be computed from
the rate of production of photons by synchrotron and Bremsstrahlung radi-
ation in the reconnection region. Concerning Bremsstrahlung emission, we
find with Eq. 7.24 that pairs form far away from the reconnection region
for all objects of Table 7.5. Concerning synchrotron emission, we find with
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Eq. 7.22 that for radio lobes, radio emitting regions of extragalactic jets,
or pulsar wind nebulae, lγγ,sync � de holds, so that pairs form far away
from the reconnection site. For microquasar coronae close to the hole, for
extragalactic jet γ-ray regions, for GRB jets, or for pulsar wind termination
shocks, however, we have lγγ,sync � de, and pairs form inside the reconnec-
tion region. For microquasars, the photon field can also be deduced from
the energy density at a distance R from an object emitting at a fraction of
the Eddington luminosity. We find with Eq. 7.26 that pair production can
be significant for high luminosities, small radii, and not too high particle
densities. Such a regime is studied by Uzdensky (2011).

Other acceleration sites during reconnection

In this manuscript, we investigate particle acceleration in or close to the
diffusion region. Other energy conversion locations exist around reconnec-
tion sites. One is along the magnetic separatrices far downstream of the
diffusion region (observed, e.g., at the magnetopause: Khotyaintsev et al.
2006), on length scales of hundreds of ion inertial lengths. There, magnetic
energy conversion occurs as the plasma flows through the complex structure
of collisionless non-linear waves (slow shock(s), compound wave, rotational
wave). Instabilities and parallel electric fields in these regions can produce
thermal and non-thermal electrons (Drake et al. 2005; Egedal et al. 2009,
2012). This shock structure has been investigated in the non-relativistic case
(Liu et al. 2012; Higashimori and Hoshino 2012). In a relativistic situation,
the different phase speeds of the waves may lead to different results. Of par-
ticular interest is the energy distribution between bulk, thermal, ion, and
electron components, and its importance relative to the locations discussed
here.

Another site for particle acceleration is at the dipolarization front (Va-
pirev et al. 2013), where the first reconnected field lines are swept away
and drag the ambient plasma. Such a situation is prone to instabilities and
particle acceleration.

Also, turbulence associated with magnetic reconnection can lead to par-
ticle acceleration via a second-order Fermi process.

We emphasize, however, that high-energy particle production in and
near the diffusion zone, directly by the reconnection electric field as dis-
cussed in the present manuscript, should be of great importance for relativis-
tic inflow magnetizations because the electric field is very large (Erec/B0 ∼
0.2V R

A,in ∼ 0.2c, Sects. 6.4.6 and 6.5.3).

Open questions

The present study offers useful insights into the properties of magnetic re-
connection, but remains simplified in many respects. Reconnection configu-
rations in real environments are likely to often involve guide fields, but also
asymmetric plasmas and fields from each side of the current sheet (Aunai
et al. 2013; Eastwood et al. 2013), or normal magnetic fields (i.e., along x̂
here) owing to the ambient field (e.g., for the magnetotail, Pritchett 2005a).
Magnetic reconnection is also likely to be forced by external plasma and
field line motions (Lyubarsky and Liverts 2008). The reconnection elec-
tric field is then imposed by the forcing (Pei et al. 2001; Pritchett 2005b;
Ohtani and Horiuchi 2009; Klimas et al. 2010), and can be larger than in
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the spontaneous case. Particle acceleration can consequently be enhanced.
The initial equilibrium can also have an impact on the late evolution and
particle distributions. Study of 2D situations such as X-point collapse or
force-free equilibrium (e.g., Graf von der Pahlen and Tsiklauri 2014; Liu
et al. 2014) shows few differences with the Harris case, and we expect them
to produce the same kind of distributions. However, full 3D initial configu-
rations can lead to very different outcomes, as suggested by the few existing
kinetic studies (Baumann and Nordlund 2012; Olshevsky et al. 2013). Re-
connection and particle acceleration at 3D nulls or at quasi separatrix layers
(Pontin 2011) deserves further research.

A crucial question concerns the validity of our results in a real 3D recon-
nection event. Magnetic islands then become extended filaments, modulated
or broken by instabilities in the third dimension or by a lack of coherence
of the tearing instability (Jaroschek et al. 2004; Zenitani and Hoshino 2008;
Daughton et al. 2011; Liu et al. 2011; Kagan et al. 2013; Markidis et al.
2013). For this reason we may expect more particle mixing, but current
sheet particles may also still be trapped in the strong magnetic structure
surrounding the filaments. Particle acceleration at X-points may also be
disturbed. However, 3D results in pair plasmas by Sironi and Spitkovsky
(2014) are encouraging since they show that energization is still efficient,
and leads to power law tails with similar indexes, essentially because the
small scale physics around the X-point and during filament mergings is the
same as in 2D.

There is also a strong need to understand the interplay between large
and small scales better. Coronal heating by reconnection, or large scale
outflow launching, are cases where the large scale flow sets the conditions
for the occurrence of reconnection, which in turn largely modifies the large
scale flow conditions. For example, Jiang et al. (2014) show that global sim-
ulations of the formation of an accretion disk corona requires understanding
the role of reconnection in the MRI turbulence. Shocks, possibly collision-
less, are also fundamental microphysical processes that shape the flow on
all scales of accreting black holes (Walder et al. 2014). Daldorff et al. (2014)
illustrate the power of a coupled MHD/PIC approach with a simulation of
the Earth’s magnetosphere.

Finally, we emphasize that the ability of magnetic reconnection to accel-
erate protons or heavier ions is a key question, first because they can produce
mesons and then pairs, which can lead to a different photon spectrum and
second because this channel can produce neutrinos, and characterizing the
neutrino spectrum from high-energy objects is compulsory for distinguishing
it from those predicted by dark matter models. With high-energy extrater-
restrial neutrinos now being detected (IceCube Collaboration 2013), this is
a very exciting perspective.

Appendix 7.A The importance of radiative brak-
ing, Compton drag,
and pair creations

Two relevant issues are the importance of radiative braking and of pair
creation. We first investigate radiative braking of electrons, and then study
the opacity of high energy photons to γγ annihilations.
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Electron braking by emission of radiation or by Compton drag

Electrons lose energy by emitting photons when being scattered by magnetic
fields (synchrotron-like radiation) or by Coulomb collisions (Bremsstrahlung-
like radiation), or when colliding with photons (inverse-Compton events).
For the synchrotron component, the energy δEsync lost by an electron of
Lorentz factor γ and velocity βc, gyrating in a magnetic field B, averaged
over pitch angles, and during one cyclotron orbit, is (Rybicki and Lightman
1979):

δEsync

γmec2
=

8π

9
β2γ2 r0ωce

c
=

B

1.4× 1011G

( γ

100

)2
, (7.6)

with r0 the classical electron radius and ωce = eB/me. On the other hand,
electron cooling by Coulomb collisions can be evaluated via the thermal
Bremsstrahlung emission formula, giving an energy δEBrem lost during one
plasma period ω−1

pe :

δEBrem

mec2
=

(
Te

mec2

)1/2 ( ne

5× 1012 cm−3

)3/2

. (7.7)

It shows that synchrotron braking is not relevant for the objects of Table 7.5,
except for pulsar wind nebulae and very high Lorentz factor electrons, while
braking by Bremsstrahlung emission is significant for reconnection in mi-
croquasar magnetospheres close to the black hole.

The last braking mechanism is inverse-Compton scattering of ambient
photons by electrons. The energy δE lost by an electron during one plasma
period ω−1

pe is at mostc

δEIC

γmec2
=

4

3

σTcβ
2γ

ωpe

Uph

mec2

=
γβ2

100

(
1 cm−3

ne

)1/2
Uph

1.7× 1010erg/cm3
,

(7.8)

where Uph is the photon energy density and σT is Thomson cross sec-
tion. For a blackbody radiation, the energy density is given by Uph =
(π2/15)T 4

ph/(~c)3. It reaches the density 1.7 × 1010erg/cm3 for Tph =

1.2 × 106K. Below this temperature, electrons do not significantly lose
energy by Compton drag, while above they do.

However, it should be noted that a blackbody radiation at Tph requires
the thermalization of the photons produced by the hot electrons, a fact
impossible to achieve on an inertial length scale de given that the mean-
free-path to Compton scattering is

lCompt

de
=

1

deσTne
=

(
9× 1036 cm−3

ne

)1/2

, (7.9)

and would thus imply densities ne ∼ 1036 cm−3. The radiation produced
by the hot electrons in the reconnection region consequently escapes from
this region before being thermalized. If we assume that the photons are
produced over an optically thin volume (ade)

3, with a a geometrical factor,
and that the emissivity is dWph/dtdV , then the energy density of the gas

cAt most, because Klein-Nishina effects can only reduce the energy loss.
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of photons is Uph ∼ ade/c × dWph/dtdV . Expressions for Uph should thus
be obtained for synchrotron and Bremsstrahlung radiations.

Concerning synchrotron radiation, the total power emitted by an elec-
tron is Pemit,sync = (4/9)r2

0cβ
2γ2B2, and the emissivity is ∼ nePemit,sync, so

that
Uph,sync =9× 10−26 erg/cm3

× a
(
B

1 G

)2 ( ne

1 cm−3

)1/2
(
γβ

100

)2

.
(7.10)

This expression can be inserted into Eq. 7.8, to yield:

δEIC,sync

γmec2
= 5.3× 10−36 × a

(
B

1 G

)2

β

(
γβ

100

)3

, (7.11)

which is always well below unity for the objects of Table 7.5.
As for Bremsstrahlung radiation, we use the emissivity for a thermalized

plasma at temperature Te, to find

Uph,Brem =2.5× 10−28 erg/cm3

× a
(

Te

108 K

)1/2 ( ne

1 cm−3

)3/2
.

(7.12)

Once inserted into Eq. 7.8, it yields:

δEIC,Brem

γmec2
= 1.5× 10−38 × a

(
Te

108 K

)1/2 ( ne

1 cm−3

) γβ2

100
, (7.13)

which is again always well below unity for objects of Table 7.5.
The photon field can also originate from outside of the reconnection

region. For example, Uph can be evaluated at a distance R from an object
of mass M emitting at a fraction α of the Eddington luminosity LEdd =
4πGMmic/σT:

Uph =
αLEdd

4πR2c
= α

(
RS

R

)2 mic
2

2σTRS

= α

(
RS

R

)2 10 km

RS
× 1015 erg/cm3,

(7.14)

with RS the Schwarzschild radius of the object. With Eq. 7.8, it gives a loss
per ω−1

pe given by

δEIC,Edd

γmec2
= 6× 104 ×

(
1 cm−3

ne

)1/2
γβ2

100
α

(
RS

R

)2 10 km

RS
. (7.15)

High-energy photons and opacity to γγ-annihilation

The photons emitted by the accelerated electrons (of Lorentz factor γ, ve-
locity βc) can be due either to synchrotron or to Bremsstrahlung radiation.
In the synchrotron case, photon energies can reach

hνsync =
3γ2ωce

2πβ

= 3.5× 10−4 eV
B

1 G

( γ

100

)2

= 6.8× 10−10mec
2 B

1 G

( γ

100

)2
.

(7.16)
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Also, a thermal Bremsstrahlung spectra from electrons at temperature Te

cuts-off above hνtherm ' Te, i.e., above

hνtherm = mec
2 Te

6× 109 K
. (7.17)

High-energy photons can annihilate with lower energy photons of energy
ε0 only if they have an energy above m2

ec
4/ε0 (Gould and Schréder 1967),

which requires at least a high-energy photon above 0.5MeV. Synchrotron
radiation can produce such photons in pulsar wind nebulae, and thermal
Bremsstrahlung can do so in microquasars and GRBs.

Also, high-energy photons can be produced by inverse-Compton colli-
sions between ambient photons of energy ε0 and high-energy electrons of
Lorentz factor γ. The outcome of such a collision is a high-energy photon
of energy up to γ2ε0, so that γ > mec

2/ε0 is needed to produce pairs.
It is then interesting to compute the mean-free-path lγγ of such high-

energy photons. Their annihilation creates pairs, which will affect the re-
connection dynamics only if they are created near the reconnection site.
The relevant quantity is thus lγγ/de, with de the electron inertial length.
We only seek an order-of-magnitude estimate. From Gould and Schréder
(1967), we can approximate the optical depth τγγ for a high-energy photon
(energy E) traveling a length l through a gas of lower energy photons (with
a typical energy ε0, of number density nph) as

τγγ ∼ l πr2
0 nph f(m2

ec
4/{Eε0}), (7.18)

where r0 is the classical electron radius, and f is a function depending on
the exact gas photon distribution. Generally, f is maximal and equal to ∼ 1
for E = ε0. For example, if the gas of photons is a blackbody at temperature
Tph, then ε0 = Tph, nph = 2ζ(3)/π2 (Tph/(~c))3, with ζ(3) ∼ 1.202, and f is
at its maximum for E = Tph with a value 1/2ζ(3). The mean-free-path is
defined such that τγγ = 1. In the blackbody case, we have

lγγ,BB

de
∼ 1

πr2
0denph

=
( ne

1 cm−3

)1/2
(

106 K

Tph

)3

. (7.19)

Consequently, if Tph < 106 K, then the γγ annihilations occur well out-
side the reconnection region and do not affect the process; while for higher
photon temperatures the annihilation occurs after a free flight of less than
an inertial length, i.e., inside the reconnection region. For an unspecified
photon number density, Eq. 7.19 can be written

lγγ
de
∼ 1

πr2
0denph

=
( ne

1 cm−3

)1/2 2× 1019 cm−3

nph
. (7.20)

However, as previously noted, a blackbody radiation at Tph requires the
thermalization of the photons by the hot electrons, which is impossible to
achieve if these electrons are confined to the reconnection region on inertial
length scales (Eq. 7.9). Again, in the optically thin case the radiation num-
ber density should be estimated as nph ∼ ade/c×dnph/dt, with dnph/dt the
production rate of photons and (ade)

3 the volume of the emission region.
We then evaluate nph for synchrotron and Bremsstrahlung radiation, and
for the vicinity of an object emitting at a given luminosity.

For synchrotron radiation, this can be roughly estimated by dividing
the total power emitted by an electron by the characteristic energy hνsync
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(Eq. 7.16), and then multiplying by the electron number density. After some
manipulations, one arrives at dnph/dt = Pemit/(hνsync) = 0.1ωce, so that

nph,sync = 0.1a
ωce

ωpe
ne, (7.21)

with ωpe the non-relativistic plasma pulsation associated to de. We can
rewrite ωce/ωpe = (σcold

e )1/2 with σcold
e = B2/(µ0nemec

2). Inserting nph,sync

into Eq. 7.20, we have

lγγ,sync

de
∼ a−1

(
1 cm−3

ne

)1/2 (
1010

σcold
e

)1/2

. (7.22)

For radio lobes, radio-emitting regions of extragalactic jets or pulsar wind
nebulae, lγγ,sync � de holds, so that pairs form far away from the reconnec-
tion site. For microquasar coronae close to the hole, for extragalactic jet
γ-ray region, for GRB jets, or for pulsar wind termination shocks, we have
lγγ,sync � de and pairs form inside the reconnection region.

For Bremsstrahlung radiation, one can estimate the photon number den-
sity by dividing the Bremsstrahlung emissivity Pemit by the typical energy
Te, and multiplying by a photon escape length ade. We find

nph,Brem = 1.8× 10−20 cm−3 a

(
108 K

Te

)1/2 ( ne

1 cm−3

)3/2
. (7.23)

Inserting into Eq. 7.20, we have

lγγ,Brem

de
∼ 1039 × a−1

(
1 cm−3

ne

) (
Te

108 K

)1/2

. (7.24)

We have lγγ,Brem � de for all objects of Table 7.5.
For microquasars, the photon field number density can also be evaluated

at a distance R from a source emitting at αLEdd. To do so, we divide the
energy density of Eq. 7.14 by a typical frequency hνtyp, to obtain:

nph = α

(
RS

R

)2 10 km

RS

1 keV

hνtyp
× 1024 cm−3. (7.25)

Inserting into Eq. 7.20, we obtain

lγγ,Edd

de
∼ 2× 10−5 ×

( ne

1 cm−3

)1/2
α−1

(
R

RS

)2 RS

10 km

hνtyp

1 keV
. (7.26)

Consequently, close to the central object, for high luminosities and electron
number densities that are not too high, pair creation will be very significant.
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Chapter 8

Summary and perspectives

Est-il rien de plus surprenant
Qu’un rêveur qui demande au mystère tonnant,
À ces bleus firmaments où se croisent les sphères,
De lui conter à lui curieux leurs affaires,
Et qui veut avec l’ombre et le gouffre profond
Entrer en pourparlers pour savoir ce qu’ils font ?

Victor Hugo, La Légende des siècles, XLVI

The starting point of this thesis was the study of wind-accreting mi-
croquasar systems, such as Cygnus X-1, from large to small scales. The
large scale dynamics is studied by our group with hydrodynamic or MHD
simulations (Walder et al. 2014) that use an adaptive mesh to encompass
scales from the circum-binary environment down to a few gravitational radii
of the black hole. These simulations have shown a rich dynamics, with the
wind accreted onto the black hole via a network of shocks, and with the
intermittent formation of disk-like structures at smaller scales. However,
a large fraction of the flow is collisionless with respect to reconnection or
to shocks, and fluid simulations do not describe these phenomena at a fun-
damental level. For example, they do not include a non-thermal particle
population produced at shocks or by reconnection, that can carry a sig-
nificant fraction of the total energy, neither do they describe correctly the
efficiency of reconnection to convert magnetic energy, or the way this energy
is distributed between ions and electrons. Such effects are of paramount im-
portance for the overall dynamics, for example to determine the heating of
the disk corona, or to produce observable signatures via high-energy particle
production and the subsequent radiation.

It was thus necessary to explore also the microphysics side. Magnetic
reconnection in microquasar accretion flows is collisionless, relativistic, and
occurs in ion-electron plasmas, but such a regime has never been studied
so far. It naturally became the focus point of this thesis. Of course, it also
has applications for the fundamental understanding of reconnection, and
to several other astrophysical objects, like AGN coronae, extragalactic jets,
radio galaxy lobes, and so on.

Now in this last short chapter, we summarize our main achievements,
that concern both PIC algorithms and magnetic reconnection. We also
mention outstanding perspectives.
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8.1 Summary

The physics of reconnection and of relativistic plasmas

Before fully studying relativistic reconnection, we had to understand stan-
dard reconnection. It is a rich and passionating field, and our learnings led
to the review Chapter 2.

We also had to understand specific aspects of relativistic plasmas, which
are now gathered in Chapter 3. They include new material: properties of
the relativistic thermal momentum distribution (the Maxwell-Jüttner dis-
tribution), how to correctly load this distribution in a PIC code, and the full
relativistic Harris equilibrium. They also include known subjects, such as
relativistic MHD waves, a derivation of the relativistic two-fluid equations
from Vlasov’s equation, or relativistic particle motion in constant fields.

Particle-in-cell algorithms: how do they model real plasmas?

The study of collisionless reconnection at a fundamental level requires the
use of a kinetic code, and we chose the particle-in-cell method. Using a PIC
code raises questions regarding the way by which it approximates the real
plasma, and the first part of this thesis was dedicated to analyzing these
discrepancies. This is the work exposed in Chapters 4 and 5.

The main approximations of the PIC model are the discretization of the
fields on a grid, which implies that particles have a finite size, and the fact
that the PIC plasma generally contains several billions less particles than
the real plasma. We mainly focus on this last point, that we see as a coarse-
graining step. Each PIC particle is a superparticle that represents p � 1
real particles. Any physics described by fluid equations does not depend
on p: this is the case of MHD, two-fluid models, or of the Vlasov-Maxwell
system. This last example indicates that physics described by Vlasov’s
equation, i.e, with no collisions and no correlations, can be well approached
by a PIC code. There are, however, coarse-graining dependent quantities.
This is the case of the plasma parameter – the number of particles per Debye
sphere – and of any number of particles per fluid volume, which will be p
times smaller in the PIC code. A major consequence is that collisions and
fluctuations are artificially enhanced, by a factor p � 1, as compared to
real plasmas.

We study this effect on specific examples. The thermalization time of two
Maxwellian plasmas initially at two different temperatures scales linearly
with the number of superparticles per cell, and is a factor p� 1 faster than
for a real plasma. The level of electrostatic fluctuations in a thermal plasma
decreases with the number of superparticles per Debye sphere, in a non-
trivial way because of finite superparticle size, that we specify. This larger
level of fluctuations, or noise, by a factor of the order of p as compared to a
real plasma, has an impact on the linear phase of instabilities. In particular,
for the filamentation instability, the fastest growing mode does not dominate
the total energy, and the overall growth rate thus depends on the number
of superparticles and on the resolution, with discrepancies reaching 50%.
We underline that contrary to thermalization times, which are abnormally
small or not compared to a given timescale, the level of fluctuation is an
instantaneous property, that holds at any time.

All in all, a correct physical description by a PIC algorithm requires
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enhanced collisional effects to be kept negligible compared to collisionless
physics, and fluctuation levels to be kept at a low enough level. For exam-
ple, thermalization should occur via collisionless instabilities, not via the
enhanced level of collisions and fluctuations; or fast particles should not be
significantly slowed down by the enhanced collisions throughout the dura-
tion of the simulation; or the competition between instabilities should not
be biased by a large level of fluctuations. The best way to insure that col-
lisionless physics dominates and that fluctuations are negligible remains to
run the same simulation with different values for p, for example by varying
the number of superparticles per cell.

Relativistic ion-electron magnetic reconnection

After a good understanding of the PIC algorithms as our method of study,
came the study of magnetic reconnection. It is the work exposed in Chap-
ters 6 and 7. We perform 2D PIC simulations of reconnection in ion-electron
plasmas, that start from a Harris current sheet with no localized initial
perturbation. We use relativistic inflow magnetizations, σhot

i = 0.4 to 14
and σhot

e = 10 to 260 for ions and electrons, respectively, with mass ratios
mi/me = 1 to 50.

In Chapter 6, we investigate the specificities of reconnection in the rel-
ativistic regime. We identify outstanding properties: (i) For relativistic
inflow magnetizations (here 10 ≤ σe ≤ 360), the reconnection outflows
are dominated by thermal agitation instead of bulk kinetic energy. (ii) At
large inflow electron magnetization (σe ≥ 80), the reconnection electric field
is sustained more by bulk inertia than by thermal inertia. It challenges
the thermal-inertia paradigm and its implications. (iii) The inflows feature
sharp transitions at the entrance of the diffusion zones. These are not shocks
but result from particle ballistic motions, all bouncing at the same location,
provided that the thermal velocity in the inflow is far lower than the inflow
E × B bulk velocity. (iv) Island centers are magnetically isolated from the
rest of the flow, and can present a density depletion at their center. (v) The
reconnection rates are slightly larger than in non-relativistic studies. They
are best normalized by the inflow relativistic Alfvén speed, projected in the
outflow direction if there is a guide field, which then leads to rates in a close
range (0.14–0.25), thus allowing for an easy estimation of the reconnection
electric field.

In Chapter 7, we turn to the energetics of reconnection. We find that
45 to 75% of the total initial magnetic energy ends up in kinetic energy,
this fraction increasing with the inflow magnetization. Depending on the
guide field strength, ions get from 30 to 60% of the total kinetic energy (at
BG/B0 = 0 and 1, respectively). We show that it is essential to study sepa-
rately the particles that are initially inside the current sheet, and those that
are initially outside, because these two populations only weakly mix, un-
dergo different acceleration mechanisms, and present very different particle
distributions. The background population, formed by particles initially out-
side of the sheet that are continuously brought toward the current sheet, is
expected to dominate the spectrum for long times. We find that this popula-
tion forms power law distributions, both for electrons and ions, with indexes
that depend both on the inflow magnetization of the considered species and
on the inflow Alfvén speed. These indexes can be harder than for the case
of collisionless shocks: for the electrons, p = −d log ne(γ)/d log γ = 1.2 at



260 Chapter 8

σhot
e = 260. A criteria for a hard tail is a magnetization above 10, and an

Alfvén speed close to c. For electrons, the latter condition implies an ion
magnetization & 1, and thus an electron magnetization larger than the mass
ratio. The presence of a guide field deforms the power law shape.

We draw astrophysical consequences in Sects. 6.6.2 and 7.5.4. Our
demonstration that magnetic reconnection can furnish power law distributed
high-energy particles, either ions or electrons, has important applications for
various models that assume with no prior justification the existence of such
particle populations. In particular, the above criteria concerning magneti-
zation and Alfvén speed must be fulfilled. Also, if plasma heating occurs
via reconnection, then the almost equal energy repartition between ions
and electrons that we found precludes the existence of large temperature
differences.

8.2 Perspectives

The understanding of magnetic reconnection, of high-energy processes, and
of large scale machines such as microquasars, remains partial. We will not
review the many fundamental questions still to be addressed in the field of
reconnection – why is it fast, what is the link with turbulence, how is it
triggered... – but rather we list interrogations closely linked to our specific
work which, as every contribution, answered and raised questions.

One of these questions regards the energy repartition between ions and
electrons during reconnection events. Observations in the Earth’s magne-
tosphere, in experimental devices, or non-relativistic kinetic simulations,
suggest that ions are more heated than electrons. But for relativistic mag-
netizations, we find that this fact holds only in the absence of guide field,
while with a guide field ions get less energy than electrons. Our results, if
confirmed at realistic mass ratios, may help understanding why.

Another question concerns magnetic reconnection at extremely large
magnetizations. We have probed regimes with electron magnetizations of
several hundreds, and shown that the reconnection electric field is sustained
more by bulk inertia than by thermal inertia. At even larger magnetizations,
as can be encountered in pulsar nebulae, we predicted that bulk inertia
should totally dominate. Reconnection in these regimes may bring surprises,
and must be explored with relativistic gyrokinetic simulations. An even less
clear regime is reached when pair production is important enough to alter
the reconnection dynamics. This is a largely unexplored physical domain.

Another issue regards the formation of hard particle distributions. Our
work agrees with that of Sironi and Spitkovsky (2014), which concerns pair
plasmas: we equally find that the final power law index depends on the in-
flow magnetization (and Alfvén speed if we have ions instead of positrons),
ranging in steady state from ∼ 1 to very steep, with steady state meaning
that a larger simulation gives the same result. However, the recent work of
Guo et al. (2014) claims that a slope of 1 is reached whatever the initial
magnetization, provided that the system is large enough and that parti-
cles cannot escape. The only difference between our simulations is that
we and Sironi and Spitkovsky use a Harris initial state, while Guo et al.
use a force-free initial state. The small guide field present in a force-free
state may change the particle trajectories, and allow different acceleration
mechanisms. In any case, these three works have clearly demonstrated that



Chapter 8 261

relativistic reconnection efficiently produces hard particle distributions with
slopes saturating at p ∼ 1, in our own work also for ions, but the dependence
of the hardness p on the external parameters and initial state (including also
for asymmetric or 3D initializations) remains to be further explored.

It is also unclear whether the first-order Fermi mechanism can operate
for particles bouncing between the convergent reconnection inflows. As
we underlined, it requires pre-accelerated particles, that may or may not
be present in a given environment. Dedicated kinetic simulations, with
a background plasma containing such populations, should help to clarify
the efficiency and the outcome of this process. In particular, the distance
traveled by particles before being scattered back may be far larger than
kinetic scales, so that collisions and drag could slow them down.

The fact that the three first large scale kinetic simulations addressing
particle acceleration in relativistic reconnection – Sironi and Spitkovsky
(2014), Melzani et al. (2014c), Guo et al. (2014) – were published within
a few months by three independent groups, underlines the growing interest
for these questions. The last decade has brought the realization that colli-
sionless shocks are very common and are efficient particle accelerators. The
same realization for collisionless magnetic reconnection is now becoming
clear: collisionless reconnection is ubiquitous, and is very efficient in con-
verting magnetic energy into non-thermal high-energy particles with hard
distributions. Discovering how precisely, especially in 3D configurations,
and at locations away from the central non-ideal region, are the next chal-
lenges to overtake. We may be helped in this task by the recent advent of
laser experiments, which could allow an experimental study of relativistic
reconnection (e.g., Ping et al. 2014).

This recent interest in collisionless reconnection is certainly motivated
by the need of various models to find an efficient plasma heating mechanism
and a non-thermal particle injector in relativistic magnetized environments,
and by the recent discovery of high-energy flares: GeV from the Crab nebula,
GeV-TeV from the base of extragalactic jets, and flares again in microquasar
coronae. Understanding these systems where microphysics and large scale
fluid dynamics are intimately coupled is another grand challenge. In partic-
ular, we must know which reconnection geometries are actually realized in a
given system, and what is the reconnection feedback on the large scales. It
may require the development of multi-scale multi-physics simulation tools, a
path that several groups are starting to explore (e.g., Horiuchi et al. 2010;
Innocenti et al. 2013; Daldorff et al. 2014). These high-energy systems
may also be the progenitors of the very high-energy cosmic rays received on
Earth, and also of the very high-energy extraterrestrial neutrinos recently
detected by IceCube, whose origin is presently unknown. Solving the dark
matter problem will require to know whether these high-energy particles
originate from high-energy machines or not. What is the high-energy cut-
off for ions, electrons, neutrinos or photons, and the corresponding flux,
produced by microquasars, gamma-ray bursts, active galactic nuclei, ex-
tragalactic jets, magnetars, pulsar nebulae..., constitutes a cornerstone for
answering one of this century’s great enigma, in which reconnection will
undoubtedly play a key role.
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List of symbols

B, b Magnetic field B and unit vector b = B/B
β Ratio v/c; or plasma β, i.e., ratio of kinetic to magnetic

pressures: nsTs/(B
2/2µ0)

c Speed of light
ds Inertial length, or skin depth, of species s, c/ωps

D, Ds Length of the diffusion region (of species s)
δs Width of the diffusion region of species s
δp p− p̄
δv v − v̄
e Absolute value of the electron charge
ê0 Comoving gas internal energy per unit volume, n0〈(γ −

1)mc2〉0
E∗, R Normalized reconnection rate, E/(B0V

R
A,in cos θ), see

Eqs. 6.14 and 6.22
ε0 Vacuum permittivity
E0 Total initial energy in the area where particles reach the

current sheet before the end of the simulation
f , fs Distribution function (for species s), in momentum and

space
g, gs Distribution function (for species s), in momentum only,

normalized to unity
G Gravitational constant
Γs Lorentz factor associated with the bulk velocity, (1 −

v̄2
s/c

2)−1/2

γ Lorentz factor of an individual particle
γ̂ Adiabatic exponent
h, ~ Planck constant, reduced Planck constant

h0, h0s, hs Comoving enthalpy of the plasma (of species s)
Kn Modified Bessel function of the nth kind
κij(x) Ratio Ki(x)/Kj(x)
lmfp Mean free path for collisions
l∇B Gradient scale of the magnetic field
L Length of the current sheet in Harris equilibrium

LEdd Eddington luminosity, 4πGMmic/σT

λDe Electron Debye length,
√
ε0Te/(nee2) = vth,e/ωpe

Λ Plasma parameter, neλ
3
De

Λp, ΛPIC Plasma parameter of the PIC plasma with p real particles
per superparticles, ρsp(nxvth/c)

3 = Λ/p
M� Solar mass, 1.989× 1030 kg

ms, me, mi Mass of species s, with s = i for ions, s = e for electrons
µ0 Vacuum permeability
µs Inverse of the normalized temperature, 1/Θs = msc

2/Ts
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nt Number of timesteps per plasma period Tpe, defined with
the initial electron density

nx Number of cells per initial electron inertial length
ncs(0) Plasma number density at the center of the current sheet,

at t = 0, for electrons or ions
nbg Plasma number density in the background plasma, of elec-

trons or of ions
ωP Total plasma pulsation, (ω2

pe + ω2
pi)

1/2

ωps Plasma pulsation of species s,
√
nsq2

s/(ε0ms)
ωcs Cyclotron pulsation (non-relativistic) of a particle of species

s, |qs|B/ms

ωR
c Cyclotron pulsation (relativistic expression), |q|B/(γm)
p Number of particles of the real plasma represented by a

single superparticle; or power law index of the particle dis-
tribution, p = −d log n(γ)/d log γ

p Momentum of a particle without the mass, γv, except in
Sects. 3.6 and 3.B where it denotes γmv, and except in
Sect. 3.8 where it denotes γv/c

p̃ Normalized momentum of a particle, γv/c
p̂ Momentum of a particle, γmv

p̄s, 〈p〉s Fluid momentum for species s, average of p = γv over the
distribution function fs

P , Ps Comoving pressure (for species s)
qs Charge of particle of species s
r0 Classical electron radius, e2/(4πε0mec

2) = 2.8× 10−15 m
rcs Larmor radius of particle of species s, γv⊥/(|qs|B/ms) for

one particle, while a thermal velocity has to be chosen if it
is the thermal Larmor radius

RS Schwarzschild radius, 2GM/c2

ρsp, ρ0
sp Number of superparticles per cell, including electron super-

particles and ion superparticles
SL Lundquist number, µ0LVA/η

σcold
s (B) Magnetization of species s, without taking into account the

temperature or bulk motion, see Eq. 6.5
σhot
s (B) Magnetization of species s, taking into account the temper-

ature and the bulk motion, see Eq. 6.4
σi+e(B) Magnetization of the plasma (including ions and electrons),

taking into account temperature and bulk motion, see
Eq. 6.6

σT Thomson cross section, (8π/3)r2
0 = 0.67× 10−24 cm2

Ts Temperature of species s, in energy unit, kB× temperature
in Kelvin

Tbg, Tbg,s Temperature of species s in the background plasma, in en-
ergy units

Θ, Θs Normalized temperature, Ts/(msc
2)

Us Fluid velocity for species s, average of v over the distribu-
tion function gs

vth,s Thermal velocity of species s,
√
Ts/ms

vE×B E cross B velocity, E ∧B/B2

v̄s, 〈v〉s Fluid velocity for species s, average of v over the distribu-
tion function gs

V NR
A,in Alfvén velocity, non-relativistic expression, defined in the

asymptotic inflow, see Eq. 6.7a
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V R
A,in Alfvén velocity, relativistic expression, defined in the

asymptotic inflow, see Eq. 6.7b
V NR

A,0 Alfvén velocity, non-relativistic expression, defined with the
asymptotic magnetic field and the density at the center of
the current sheet, see Eq. 6.8

V R
A,0 Alfvén velocity, relativistic expression, counterpart of V NR

A,0

w0 Comoving gas enthalpy, h0n0mc
2
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