
HAL Id: tel-01126920
https://theses.hal.science/tel-01126920

Submitted on 6 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Specification Platform for Library IP Development
Jung Kyu Chae

To cite this version:
Jung Kyu Chae. Specification Platform for Library IP Development. Other [cs.OH]. Université Pierre
et Marie Curie - Paris VI, 2014. English. �NNT : 2014PA066140�. �tel-01126920�

https://theses.hal.science/tel-01126920
https://hal.archives-ouvertes.fr

CHAE Jung Kyu – Doctoral thesis - 2014

Université Pierre et Marie Curie
Ecole doctorale informatique, télécommunications et électronique

Laboratoire d’informatique de Paris 6 / Equipe Circuits Intégrés Numériques et Analogiques

Plateforme de spécification pour le développement de

bibliothèques de cellules et d’IPs

Par Jung Kyu CHAE

Thèse de doctorat d’informatique

Dirigée par Habib MEHREZ et Roselyne CHOTIN-AVOT

Présentée et soutenue publiquement le 9 Juillet 2014

Le jury est composé de :

M. Philippe COUSSY Maître de conférence Rapporteur

M. Naohiko SHIMIZU Professeur Rapporteur

Mme. Emmanuelle ENCRENAZ Maître de conférence Examinateur

M. Habib MEHREZ Professeur Directeur de thèse

Mme. Roselyne CHOTIN-AVOT Maître de conférence Co-directrice de thèse

M. Jean-Arnaud FRANCOIS Manager de l’équipe HW/SW Co-directeur de thèse

CHAE Jung Kyu – Doctoral thesis - 2014

CHAE Jung Kyu – Doctoral thesis - 2014

i

Acknowledgements

I would like to express my gratitude, appreciation and sincere thanks to my

supervisors Prof. Habib MEHREZ and Assoc. Prof. Roselyne CHOTIN-AVOT for their

excellent guidance, helpful and useful discussions, and continuous encouragement.

I would like to express my thanks to my ST supervisor Dr. Jean-Arnaud François for

giving me the opportunity to carry out my thesis within Central CAD & Design Solutions

Department at STMicroelectronics. Moreover, I also sincerely thank him for his support,

guidance, encouragement and advice.

I am really grateful to Paul MOUGEAT, who provided valuable expertise, insightful

comments and constructive critiques. His cool personality and sense of humor always inspired

me. I have learnt a lot from him.

I wish to express my deepest gratitude to Dr. Marc QUAST for the helpful and

valuable discussions, constructive remarks and encouragement which helped me carry out the

PhD thesis work in an efficient manner.

I am especially grateful to my colleagues Severine BERTRAND, Sylvain

LANDELLE, Pierre-Francois OLLAGNONG, Syed Shahkar KAKAKHAIL, Brice

SERVAIS, Frederic ESTEBAN, Lahcen HAMOUCHE, Sophie RABADAN, Lionel

MAIAUX, Pierre MONNOT, Aymen ALBOUCHI, Christophe BOURELY, Sami ABBADI,

Mohamed Karim KSONTINI and Arnaud MAGRY for their support both in terms of

resources and encouragement.

My special thanks go to my family members who have been extremely understanding

and supportive of my studies. This thesis is dedicated to my parents.

CHAE Jung Kyu – Doctoral thesis - 2014

ii

CHAE Jung Kyu – Doctoral thesis - 2014

iii

Abstract

A design platform (DP) is a total solution to build a System-On-Chip (SOC). DP

consists of a set of libraries/IPs, CAD tools and design kits in conformity with the supported

design flows and methodologies. The DP specifications provide a wide range of information

from technology parameters like Process-Voltage-Temperature (PVT) corners to CAD tools’

information for library/IP development. However, the library/IP developers have difficulties

in obtaining the desired data from the existing specifications due to their informality and

complexity.

In this thesis, we propose methodologies, flows and tools to formalize the DP

specifications for their unification and to deal with it. The proposed description is targeting to

be used as a reference to generate and validate libraries (standard cells, I/O, memory) as well

as complex IPs (PLL, Serdes, etc.).

First, we build a data model to represent all required information for library/IP

development and then propose a specification language named Library Development

Specification based on XML (LDSpecX). Furthermore, we introduce a reference-based

method to create a reliable specification in LDSpecX and task-based keywords to efficiently

extract data from it. On the basis of the proposed solutions, we develop a specification

platform. This platform allows not only creating a complete and consistent specification with

a huge amount of data but also rapidly and precisely extracting data depending on the task.

We develop a standard cell library from the specification creation to library validation

by using the specification platform. We show that our approach enables to create a complete

and consistent specification with a considerable reduction in time. It also bridges the gap

between the specification and current automatic system for rapid library/IP development.

Keywords: Design Platform, Design Methodology, Unified specification, Library/IP

development, Specification creation, Data extraction

CHAE Jung Kyu – Doctoral thesis - 2014

iv

CHAE Jung Kyu – Doctoral thesis - 2014

v

Résumé

Une plateforme de conception est une solution totale qui permet à une équipe de

conception de développer un système sur puce. Une telle plateforme se compose d’un

ensemble de bibliothèques et de circuits réutilisables (IPs), d’outils de CAO et de kits de

conception en conformité avec les flots de conception et les méthodologies supportés. Les

spécifications de ce type de plateforme offrent un large éventail d’informations, depuis des

paramètres de technologie, jusqu’aux informations sur les outils de CAO pour le

développement des bibliothèques/IPs. En outre, les développeurs de bibliothèque/IP ont des

difficultés à obtenir les données nécessaires à partir des spécifications existantes en raison du

fait qu’elles ne soient pas formellement spécifiées et de leur complexité.

Dans cette thèse, nous proposons des méthodologies, des flots et des outils pour

formaliser les spécifications d’une plateforme de conception pour leurs unification et les

traiter. Cette description proposée vise à être utilisée comme une référence pour générer et

valider les bibliothèques (cellules standard, entrée/sortie et mémoire) ainsi que les IPs

complexes (PLL, Serdes, etc.).

Premièrement, nous construisons un modèle de données pour représenter toutes les

informations nécessaires pour le développement de bibliothèques et proposons un langage de

spécification pour le développement de bibliothèques basé sur XML (LDSpecX). De plus,

nous présentons une méthode basée sur des références pour créer une spécification fiable en

LDSpecX et des mots-clés basés sur des tâches pour en extraire les données. A l’aide des

solutions proposées, nous développons une plateforme de spécification qui fournit une

interface utilisateur graphique (GUI) et une interface de programmation (API). Cette

plateforme permet non seulement la création de la spécification, mais aussi l’extraction rapide

des données en fonction de la tâche.

Nous développons une bibliothèque de cellules standard depuis la création de la

spécification jusqu’à la validation de la bibliothèque en utilisant cette plateforme de

spécification. Nous montrons ainsi que notre approche permet de créer une spécification

complète et cohérente avec une réduction considérable du temps. Cette proposition comble

également l’écart entre les spécifications et le système automatique existant pour le

développement rapide de bibliothèques/IPs.

CHAE Jung Kyu – Doctoral thesis - 2014

vi

Mots-clés : Plateforme de conception, Méthodologie de conception, Spécification unifiée,

Développement des bibliothèques/IPs, Création de la spécification, Extraction des données

CHAE Jung Kyu – Doctoral thesis - 2014

vii

Table of Contents

1. Introduction .. 1

1.1 Motivation ... 3
1.2 Thesis Objectives ... 4
1.3 Structure of this Manuscript .. 5

2. Library Development from the Design Platform Specifications 7

2.1 Introduction ... 7
2.2 System-on-Chip Design Flow ... 8
2.3 Design Platform ... 11
2.4 Library Development Flow ... 12

2.4.1 Specification Phase .. 14

2.4.2 Design Phase .. 15
2.4.3 Derivation Phase .. 16
2.4.4 Validation Phase ... 17

2.5 Existing Automatic System for Library Development .. 17
2.5.1 Specification Creation Tools .. 19
2.5.2 Circuit Design Tools .. 19
2.5.3 View Derivation Tool ... 20
2.5.4 Library Verification Tool ... 22

2.6 Example of the Development of a Standard-cell Library .. 22
2.7 Problems .. 25
2.8 Conclusion ... 27

3. State-of-the-art .. 28

3.1 Introduction ... 28
3.2 Natural Language-based Specification .. 29

3.3 Table-based Specification .. 29
3.3.1 System Requirements Specification in SCR .. 30
3.3.2 ADeVA ... 32

3.4 UML-based Specification .. 34
3.5 XML-based Specification .. 36

3.5.1 IP-XACT for Digital IPs .. 37
3.5.2 ASDeX for Analog IPs ... 39

3.6 STMicroelectronics’ Design Platform Specifications ... 41
3.7 Discussion .. 42
3.8 Conclusion ... 43

4. Methodology for Library Development Specifications 44

4.1 Introduction ... 44
4.2 Formalism of the Specification .. 45

4.2.1 Requirements of the Specification ... 45
4.2.2 Specification Data Analysis ... 46
4.2.3 Specification Data Classification ... 50

4.2.4 Specification Data Modeling .. 54
4.3 Reliable Specification Creation Method .. 60

4.3.1 Reference Database .. 60
4.3.2 Specification Creation using a Reference Database ... 63

4.4 Efficient Method for Data Extraction from the Specification 63

CHAE Jung Kyu – Doctoral thesis - 2014

viii

4.4.1 Keyword for Precise Data Identification .. 64

4.4.2 Task-based Keywords for Efficient Data Extraction ... 65
4.5 Validation of the Specification .. 66
4.6 Validation of the Library against the Specification ... 68
4.7 Conclusion ... 69

5. Specification Platform .. 71

5.1 Introduction ... 71
5.2 LDSpecX: Library Development Specification based on XML 72
5.3 Specification Creation Tool ... 73

5.3.1 XML-based Reference Database .. 74
5.3.2 User-friendly GUI for Specification Creation .. 76

5.4 API for Specification Data Extraction ... 82
5.4.1 Library Development Task Definition ... 82
5.4.2 Specification Data API ... 84
5.4.3 Library Verification Tool using the API .. 86

5.5 Conclusion ... 87

6. Experiments .. 88

6.1 Introduction ... 88
6.2 Library Development from the Specification .. 88

6.2.1 Specification Creation .. 88
6.2.2 Library Development from the Specification ... 91

6.3 Evaluation .. 95
6.3.1 Specification Evaluation against Five Requirements ... 95
6.3.2 Specification Data Processing .. 96

6.4 Conclusion ... 97

7. Conclusion and Perspectives ... 98

7.1 Conclusion ... 98
7.2 Perspectives ... 101

Bibliography ... 103

Publications .. 110

Résumé.. 1

1. Introduction ... 1
2. Développement d’une bibliothèque de cellules et d’IPs à partir de la spécification de
la plateforme de conception ... 2
3. Etat de l’art .. 4
4. Méthodologies pour la spécification du développement de bibliothèques 6
5. Implémentation : Plateforme de spécification ... 12
6. Expérimentation... 19

7. Conclusion et perspectives .. 20

CHAE Jung Kyu – Doctoral thesis - 2014

ix

List of Figures

Figure 1.1 Product Technology Trends: MPU Product Functions/Chip and Industry Average
“Moore’s Law” and Chip Size Trends (source: ITRS) .. 1
Figure 1.2 ‘Moore’s law’ and ‘More than Moore’ trends in the semi-conductor industry
(source: ITRS) .. 2
Figure 2.1 Example of a SoC (source: ST) .. 9
Figure 2.2 Cell-based design flow .. 10
Figure 2.3 Design platform .. 11
Figure 2.4 Foundry’s library development flow (source: ST) ... 12
Figure 2.5 PVT corners for standard cell library (source: ST) ... 13
Figure 2.6 Design platform specifications vs. library development specification (source: ST)
 .. 14

Figure 2.7 Environmental considerations for library development [41] 14
Figure 2.8 Layout development flow with manual layout [42] .. 15
Figure 2.9 Overview of P2Lib [70] .. 18
Figure 2.10 Overview of an automatic library development system (source: ST) 18
Figure 2.11 Maximum capacitance (source: ST) ... 19
Figure 2.12 Cell characterization ... 20
Figure 2.13 LEF generation methods (source: ST) .. 21
Figure 2.14 Methodology of the transformation between Cadence OA and Synopsys MW
databases [59] ... 22
Figure 2.15 Schematic of a 4-bit Flip-Flop Bank ... 23
Figure 3.1 The cruise control system in SCR [88] ... 30
Figure 3.2 Mode transition table defining the mode class mcCruise [88] 31
Figure 3.3 Variable dictionary table for the CCS [88] ... 31

Figure 3.4 SpecEdit GUI [89] .. 32
Figure 3.5 Example of MTT [89] ... 33
Figure 3.6 Example of DTT [89] ... 33
Figure 3.7 Dependency graph tool for the CCS [88] ... 34
Figure 3.8 Taxonomy of structure and behavior diagrams [112] ... 34
Figure 3.9 Specification based verification process [93] ... 35

Figure 3.10 UML class diagram [94] ... 35
Figure 3.11 UML sequence diagram [94] .. 36
Figure 3.12 IP-XACT data object interactions [98] ... 37
Figure 3.13 IP-XACT design environment [98] .. 38
Figure 3.14 Schema of ASDeX [104] .. 39
Figure 3.15 ASDeX data object interactions [104] .. 40
Figure 3.16 Validation work flow based on ASDeX [104] .. 40
Figure 3.17 STMicroelectroincs’ design platform specifications (source : ST) 41

Figure 4.1 Automatic library development system (source: ST) ... 46
Figure 4.2 A task for library development (source: ST) .. 47

Figure 4.3 Timing characterization of a non-scan D flip-flop (source: ST) 48
Figure 4.4 Tool input data analysis results (source: ST) .. 49

Figure 4.5 Specification data taxonomy ... 50
Figure 4.6 Specification data objects and their reference relationship 54
Figure 4.7 Basic data model of the data object .. 55

CHAE Jung Kyu – Doctoral thesis - 2014

x

Figure 4.8 Examples of (a) non-subcategorized parameter set (b) sub-categorized parameter
set ... 55
Figure 4.9 Examples of (a) parameter without key attribute (b) parameter with key attribute 56
Figure 4.10 Data model of the specification .. 59
Figure 4.11 Dictionary ... 61
Figure 4.12 List reference .. 61
Figure 4.13 Tool list reference ... 62
Figure 4.14 Specification creation using a reference database .. 63
Figure 4.15 Data extraction with keyword ... 65
Figure 4.16 (a) simple tool versioning with numerical increment (b) simple tool versioning
with numerical and alphabetical increments (c) complex tool versioning 68
Figure 5.1 Schema of LDSpecX .. 72
Figure 5.2 Schema of GeneralTechParams element .. 73
Figure 5.3 Example of GeneralTechParams element ... 73
Figure 5.4 Schema of dictionary .. 74

Figure 5.5 Example of a dictionary .. 75
Figure 5.6 Schema of tool list reference .. 75
Figure 5.7 Example of a tool list reference .. 75
Figure 5.8 Reference-based specification creation flow .. 76
Figure 5.9 (a) Specification information entry window (b) Fragment selection window 78
Figure 5.10 Data entry page of GeneralTechParams fragment .. 79
Figure 5.11 Data entry page of Tool List fragment .. 80
Figure 5.12 Specification creation page ... 81
Figure 5.13 Dictionary edit page .. 82
Figure 5.14 (a) Library development flow (b) Task ... 83
Figure 5.15 Example of a library development flow for standard cell library 84
Figure 5.16 Overview of the API ... 84
Figure 5.17 Data extraction flow by using task-based keywords .. 85
Figure 6.1 Screenshot of specification check report .. 89

Figure 7.1 Overview of the specification platform .. 100

CHAE Jung Kyu – Doctoral thesis - 2014

xi

List of Tables

Table 3.1: Summary of the specifications .. 42
Table 4.1: Specification data .. 53
Table 4.2: Library checklist ... 68
Table 6.1: Comparison of LDSpecX-based specification and traditional specifications 91
Table 6.2: Summary of input and output for library development tasks 92

CHAE Jung Kyu – Doctoral thesis - 2014

xii

CHAE Jung Kyu – Doctoral thesis - 2014

1

1. Introduction
Contents

1.1 Motivation ... 3
1.2 Thesis Objectives ... 4
1.3 Structure of this Manuscript .. 5

Gordon E. Moore presented the well-known Moore’s law in an article published in

1965 [1]. This law describes a trend that the number of transistors on a chip doubles every 24

months. Until now, the development of new process technologies enables to follow Moore’s

law as shown in Figure 1.1 [2]. In addition to the increasing number of transistors on a chip,

the performance of System-on-Chip (SoC) (speed, functionality, etc.) considerably increases

but the cost decreases by 30% per year [3].

Figure 1.1 Product Technology Trends: MPU Product Functions/Chip and Industry Average
“Moore’s Law” and Chip Size Trends (source: ITRS)

CHAE Jung Kyu – Doctoral thesis - 2014

2

Recently, a new trend called “More than Moore” for the functional diversification of

semiconductor-based devices is also remarked. This “More than Moore” trend gives more

possibilities to diversify the applications of SoC by interacting with the outside world through

an appropriate transduction such as RF communication, passive component, sensor and

actuators [4]. The International Technology Roadmap for Semiconductors (ITRS) represents

the overview of these two trends toward the miniaturization and diversification as described

in Figure 1.2. These trends allow various applications of SoC such as automotive, set-top box

and telecommunication so that the market is growing rapidly [3].

Figure 1.2 ‘Moore’s law’ and ‘More than Moore’ trends in the semi-conductor industry
(source: ITRS)

However, there are more and more challenges with the new advanced technologies in

the manufacturing process, circuit design, system design, and CAD technology [5]. In the

manufacturing process, to achieve the downscaling of the devices, both front- and back-end

processing must overcome major technological challenges: lithography, device isolation, gate

stack, shallow junctions, device engineering, high- and low-k dielectrics, and interconnect

schemes [6], [7], [8]. For circuit design, technology scaling brings some advantages such as

high speed and density of integration. Nevertheless, circuit designers have to face significant

issues such as increased leakage, variability, reducing power supply voltage, signal integrity

problems, etc. Some of these issues were never encountered before. In addition, new types of

devices and new materials may increase the complexity of the circuit design [9], [10], [11],

CHAE Jung Kyu – Doctoral thesis - 2014

3

[12]. To illustrate an example, for sub-20nm IC technologies, Ultra-Thin Body Silicon on

Insulator (UTB-SOI) and FinFET were proposed in order to address the problems derived

from the short-channel effects of Metal-Oxide-Semiconductor Field-Effect Transistor

(MOSFET) like decreased sub-threshold voltage (Vt) and increased device variations by

eliminating the leakage paths far from the gate [13], [14]. Hence, more efforts are needed for

circuit design with such new types of devices. Likewise, system designers must deal with the

issues and challenges for system design in nanometer-scale technologies (inferior to 100nm).

Chang [15] remarked three challenges in system design: escalating cost, design complexity

and time to market. For example, one of the key challenges is to reduce the power dissipated

by the clock tree up to 40% of the total power consumption because of the increased number

of flip-flops in the system [16]. For that purpose, the clock gating method [17], [18] and flip-

flop banking method [19] were proposed to save power consumption of the clock tree. On the

other hand, the challenges for CAD technology are strictly related to the aforementioned

manufacturing and design challenges. Thus, CAD vendors endeavor to provide users with an

efficient tool to assist them in order to overcome their challenges as well as to improve the

productivity [20], [21], [22].

Foundries and Integrated Device Manufacturer (IDM) like STMicroelectronics

fabricate chips for their customers. They must therefore provide customers with a design

platform containing all necessary components such as libraries and Intellectual Property (IP)

for chip design. However, the aforementioned issues complicate the development of

components. In this thesis, such issues are considered from the perspective of the library

development.

1.1 Motivation

In order to rapidly and efficiently bridge increasing design productivity gap with

advanced technology, a new paradigm is highly required for system designers as well as

library providers.

In the system design, the top-down approach is recently more significant than the

bottom-up to efficiently improve the productivity. Thus, many recent researches focused on

this approach, for example, a new level of abstraction so-called Electronic System Level

(ESL) above the familiar Register-Transfer Level (RTL) and design verification based on the

formal specifications [23].

CHAE Jung Kyu – Doctoral thesis - 2014

4

From this aspect, we intend to improve the library development in a top-down

approach from the specification because it is the most important starting point for library

development. On the other hand, the specifications for library development consist of a cell-

dependent part and a cell-independent one. The former represents functional and structural

descriptions of the cell, whereas the latter represents all other information such as process

parameters. Especially, the design platform specifications, which we need to deal with, cover

only the cell-independent information such as Process-Voltage-Temperature (PVT) corners,

CAD tool information, etc. Since such information has an impact on the cell design, we need

to discuss it in order to efficiently provide this information for cell design.

However, the design platform specifications are usually written in natural language or

tabular form. Thus, they represent a collection of heterogeneous elements. Despite their

excessive complexity, library developers must extract the desired data from them either

manually or through their own scripts. On top of that, since the current specifications may

lack a part of the required information for library development, they should also complete

missing information. The lack of information for library development in the current

specifications can be caused by two reasons. The first reason is the difference of the view

points of the system designers and library developers. For example, the references for the cell

characterization such as time threshold and unit information are not defined in these

specifications because such information is required for library development but not for SoC

design. The second one is the current specification creation method. The specification

creation is a manual work. For this reason, it often results in missing information. For

example, the specification developer may omit to mention the version of CAD tools. Such

missing information leads to increase library development time because we must get it in

order to accomplish the library development. Thus, dealing with the specifications depends

highly on the expertise of the library developer and manual interventions. It becomes a

significant bottleneck in library/IP development.

1.2 Thesis Objectives

The main goal of this thesis is to precisely and rapidly provide library developers with

all required information for library development from the specification in order to improve

the productivity and quality of the library.

CHAE Jung Kyu – Doctoral thesis - 2014

5

Firstly, we propose a unified specification for library development. Secondly, this

thesis describes how to efficiently cope with it by developing new methods and tools which

provide library developers with a powerful way to smoothly accomplish their tasks for library

development.

1.3 Structure of this Manuscript

Chapter 2 introduces the system design flow as well as its corresponding design

platform. Since this design flow is based on predefined libraries/IPs, we explain how to develop

them. Then, an example of library development is described. With the help of these

observations and experiments, we present crucial issues related to the specification itself and

its current processing methods.

Chapter 3 reviews the state of the art with two traditional specifications in natural

language and tabular form. In addition, Unified Modeling Language (UML) and eXtensible

Markup Language (XML)-based specifications are presented as emerging ones in SoC design.

STMicroelectronics’ design platform specifications are also described. Finally, we evaluate

them with respect to their advantages and disadvantages.

Chapter 4 proposes the identification of all required data for library development and

their classification. This survey helps to propose a suitable data model to represent our

specification. To deal with it in an efficient way, we propose some methods to create a

reliable specification and to efficiently extract data from it. Furthermore, how to verify both

the specification and library is also explained at the end of this chapter.

Chapter 5 describes a specification language in XML named LDSpecX (Library

Development Specification based on XML) based on the data model proposed in the previous

chapter. Then, we present a specification platform that consists of two parts. The first one is a

user-friendly GUI to create a complete and consistent specification in LDSpecX. The second

one is an API to precisely and rapidly extract desired data from the LDSpecX-based

specification database.

Chapter 6 presents the evaluation of our solutions. We show the creation of

specification in LDSpecX and the development of a standard cell library from it on the

proposed platform.

CHAE Jung Kyu – Doctoral thesis - 2014

6

Chapter 7 gives the conclusion and proposes relevant directions for future work based

on the researches presented in this thesis.

CHAE Jung Kyu – Doctoral thesis - 2014

7

2. Library
Development from

the Design Platform
Specifications

Contents

2.1 Introduction ... 7
2.2 System-on-Chip Design Flow ... 8
2.3 Design Platform ... 11
2.4 Library Development Flow ... 12

2.4.1 Specification Phase .. 14
2.4.2 Design Phase .. 15
2.4.3 Derivation Phase .. 16

2.4.4 Validation Phase ... 17
2.5 Existing Automatic System for Library Development .. 17

2.5.1 Specification Creation Tools .. 19

2.5.2 Circuit Design Tools .. 19
2.5.3 View Derivation Tool ... 20

2.5.4 Library Verification Tool ... 22
2.6 Example of the Development of a Standard-cell Library .. 22
2.7 Problems .. 25

2.8 Conclusion ... 27

2.1 Introduction

The system design requires more and more predefined libraries/IPs due to the

increasing complexity of the system. Thus, foundries provide system designers with a design

platform containing all necessary libraries/IPs in order to support their system design.

CHAE Jung Kyu – Doctoral thesis - 2014

8

The library includes a collection of cells. Its main goal is to offer a wide range of

information about the cells to system designer for integrating them into his system. For

example, STMicroelectronics’s standard cell library for CMOS 28nm FD-SOI technology

contains several hundreds of basic cells like combinational and sequential cells. This library

package provides various library views to transmit the required cell information to all CAD

tools for system design. This library package is produced according to the given library

development flow with the help of an automatic system. This system permits to automatically

execute more and more tasks instead of the manual work in order to improve the productivity.

Consequently, to achieve the objectives of this thesis, a good understanding of such

library development flow and automatic system is indispensable. Additionally, the analysis of

the extremely complex relationship between the library development environment and the

specification is also required because it may give a key idea to address the issues that arise in

library development at the specification level.

In the following section, we present the design flow and design platform for SoC

design. Then, we introduce how to develop libraries from the design platform specifications.

In addition, an example of the development of a standard cell library is described. From these

observations, we discuss the issues related to the specification.

2.2 System-on-Chip Design Flow

As mentioned in the previous chapter, technology scaling brings not only attractive

advantages but also significant issues and challenges. Thus, many attempts were made to

address them from different angles. For system designers, the most crucial challenge is how to

rapidly and reliably design the complex system which meets the system requirements. For this

purpose, there are several major approaches: custom design, Field Programmable Gate Array

(FPGA), standard-cell based design and platform/structured design [24]. Among them, the

cell-based design technique is widely adopted to reduce the design cycle as well as to

guarantee the functionality and performance of the complex system although the full custom

design usually provides a high-performance system than the cell-based design [24], [25], [26],

[27], [28], [29], [116], [117]. The richness or optimization of cells in the library may have a

great influence on the improvement of the performance of system, for example, in terms of

area, delay, and power [60], [61]. Hence, it helps to reduce the performance gap. For instance,

CHAE Jung Kyu – Doctoral thesis - 2014

9

Hashimoto et al. [30] demonstrated that a rich library including various driving strength cells

improved circuit performance close to transistor-level optimized circuits.

The cell library now plays a central role in SoC design. Various library categories are

required, for example, standard-cell library and macro cells such as I/Os and memories. Like

these cell libraries, the macro-cell devoted to a specific function, also known as IP has

recently become very important. In other words, the library offers a set of cells of the same

category, whereas IP deals with only one block such as Pulse-Locked Loop (PLL). They have

the same goal: to provide pre-designed cells for system design. As shown in Figure 2.1, the

library cells and IPs account for a large part of the recent SoC up to almost 75% [82].

Figure 2.1 Example of a SoC (source: ST)

Figure 2.2 represents the cell-based design flow. This design flow splits into three

principal steps: Front-End (FE) design, Back-End (BE) design and Sign-Off phases [24], [31].

For the integration of cells, the given library and IP packages provide the required views by

CAD tools at all design steps to build a complete SoC.

CHAE Jung Kyu – Doctoral thesis - 2014

10

Figure 2.2 Cell-based design flow

Firstly, the FE design for logical creation can begin with RTL design. This step

describes the functionality of the system in Hardware Description Language (HDL) according

to its specification. After the RTL design, the logical synthesis must be executed for

translating an abstract form of desired circuit behavior (RTL model) into a design

implementation in terms of logic gates by using logical views provided by the library/IP

package.

After FE design, the Back-End (BE) design for physical creation must be performed to

create a physical view of the system so that the floor-planning and place-and-route activities

should be accomplished using physical views of the library/IP package. The floor planning

activity is the first step in physical design. The process of floor-planning allows analyzing the

die size, selecting the packaging, placing I/Os, placing the macro cells, planning the

distribution of power and clocks, and partitioning the hierarchy. Then, the placement process

determines where each individual cell is physically located on the chip and the routing

process permits to create the physical wire connections for the signal and power nets.

Finally, the Sign-Off phase should be carried out to check the final physical layout by

several criteria such as design rules and timing constraints. For this purpose, library views

such as Verilog view and timing/power models are needed. This phase is absolutely critical to

catch any remaining error before tape-out. The created and validated layout of a system can

be delivered to fab for manufacturing.

CHAE Jung Kyu – Doctoral thesis - 2014

11

2.3 Design Platform

Figure 2.3 Design platform

The design platform is a total solution to achieve the SoC design [32], [33], [34]. Since

the system designer needs a complete set of libraries and IPs, CAD tools and design kits in

conformity with his design flows and methodologies, the design platform consists of all such

elements as described in Figure 2.3.

In order to develop a design platform, its specification must first be defined. This

specification contains all information related to the target design platform. For each

manufacturing technology, a suitable design platform should be developed according to its

given specification. Except for commercial CAD tools, which are selected but not developed

by definition, all the other components have to be created: libraries, IPs, and design kits

including a collection of target manufacturing technology data files such as SPICE models,

tech files, and DRC/LVS rule files [35].

In this thesis, we concentrate on the library development from the design platform

specifications but this study can also cover IP development because both can be developed by

the same activities even if the used methods and tools are slightly different.

CHAE Jung Kyu – Doctoral thesis - 2014

12

2.4 Library Development Flow

Figure 2.4 Foundry’s library development flow (source: ST)

The traditional library development flow presented in the literature focus only on the

design phase including FE and BE designs [36], [37], [38], [39], [40]. However, as shown in

Figure 2.4, the library development flow in industry is more complex than that. In general, it

is composed of four major phases. The first phase is to define a specification for the target

technology. The second phase is to design all library cells. The third phase is to derive from

the fundamental library views (e.g. layout and schematic) developed during the design phase

to various CAD views for supporting various CAD flows. The last phase is to validate the

library package by several criteria before their delivery to customers.

The library development requires the specification which can be divided into the cell-

dependent part and cell-independent one. The cell-dependent part states the structural and

functional description of the cell such as its pin name and logical functionality. On the

contrary, the cell-independent part specifies all other information that are required for cell

design but independent of cell such as process parameters and CAD tools’ information. This

specification data become increasingly complex. To give an example, each library category

CHAE Jung Kyu – Doctoral thesis - 2014

13

needs a set of PVT corners for its cell design. The number of required PVT corners increases

with the evolution of manufacturing technology. Figure 2.5 shows the increasing number of

PVT corners for standard cell library according to the manufacturing technology. In addition,

the required PVT corners may be multiplied by the necessary library categories.

Figure 2.5 PVT corners for standard cell library (source: ST)

Where can the library developers obtain such cell-independent information?

Usually, they can get this information from the design platform specification because

it covers most of the cell-independent information. As depicted in Figure 2.6, its scope is

larger than that of the library development specification. In other words, some information of

the design platform specifications is not necessary to develop libraries. For example, a list of

approvers about the information may be required for specification definition but not for

library development. On the contrary, the complete list of library/IP packages can be given

after finishing their development. Therefore, in this thesis, we limited the scope of the

specification to cover only the required information for library development because there are

difficulties to deal with the entire design platform specifications under limited conditions.

Taking account of it, the following subsections present each phase of the library development

flow.

CHAE Jung Kyu – Doctoral thesis - 2014

14

Figure 2.6 Design platform specifications vs. library development specification (source: ST)

2.4.1 Specification Phase

The specification phase is significantly important for library development because it

aims at collecting all required information. Yuan [41] highlighted the interaction with various

functional groups such as process engineering, reliability engineering, CAD tool developers,

and the marketing group for gathering the environmental considerations for library

development as summarized in Figure 2.7.

Figure 2.7 Environmental considerations for library development [41]

CHAE Jung Kyu – Doctoral thesis - 2014

15

Baltus [42] remarked the essential relationship between the process parameters

obtained from the fabrication process development and the cell layout generation in library

development as shown in Figure 2.8

Figure 2.8 Layout development flow with manual layout [42]

As stated in these studies, the specification for library development must cover a wide

range of information. Moreover, the information must be collected from several information

owners. Thus, the specification phase is a collaborative work. It consists of collecting the

information and creating a specification with the collected information. For example, we need

a list of library views and CAD tools’ information for library development. The library

architect defines the contents of the library package for each library category. The design kit

developer determines necessary CAD tools in order to develop a design kit for supporting

them. Thus, the information relevant to library views and CAD tools can be obtained from

them respectively. Then, the gathered information is defined in the specification.

2.4.2 Design Phase

The design phase is to design all library cells. This phase permits to generate all

fundamental views for FE and BE designs of the system. Specifically, in accordance with the

cell specification, the cell is designed and then its physical view is created by using a layout

editor. However, much effort and time should be devoted to layout design because it

determines the performance of the cells. For example, Bittlestone [43] stated that cell height

must be considered for layout of standard cells because increasing track height allows

reducing total resistance and improving performance. Additionally, power rail also influences

the performance of the standard cells. Thus, layout design has to be done by taking into

consideration the physical architecture.

CHAE Jung Kyu – Doctoral thesis - 2014

16

After finishing physical design, library views such as behavioral model for FE design

must be produced. This design step involves generating behavioral model and timing model.

Behavioral model represents the structural description and the functionality of the cell in

Hardware Description Language (HDL) such as Verilog. On the contrary, the timing model

containing the timing characteristics of the cell can be generated by two steps. The first step is

to characterize the cell in order to extract its timing information such as delay and constraints.

The second step is to create a timing model by encapsulating the obtained timing information

in Liberty format which is an open source industry standard for library modeling [44]. Since it

is very important to provide an accurate timing model for verifying the functionality of the

system, various characterization and timing modeling methods were proposed in order to

create a more accurate timing model [45], [46], [47], [48], [49], [50]. Traditionally, the timing

characterization of the standard cells is based on SPICE simulations to obtain the most

accurate timing information by using manufacturer-provided SPICE models although the

simulations requires a lot of time. Furthermore, for timing model, Non-Linear Delay Model

(NLDM) based on Look Up Table (LUT) is widely used in industry. LUT aims at providing

corresponding timing information according to input slope and output load because the timing

characteristics rely on them. Thus, various input slope and output load values should be

applied to the simulation in order to create a LUT. Recently, for 90nm designs and below,

Synopsys’s Composite Current Source (CCS) timing model based on the current instead of

the voltage threshold for NLDM was proposed because it takes into account some physical

effects such as Miller effects, high interconnect impedance, and noise propagation. However,

it has several major inconveniences, high runtime being one of them [51], [52]. In addition,

power and noise models may also be provided for analyzing the system in terms of power and

noise [53], [54], [55], [56], [57]. Moreover, such characteristic models must be made for each

PVT corner. It means that they will be multiplied by the number of PVT corners.

2.4.3 Derivation Phase

The derivation phase allows generating various CAD views from the fundamental

views in order to completely support customers’ CAD flows because some of them require

their own semantics due to the lack of standardization efforts [58]. For instance, Cadence and

Synopsys tools are based on different database platform OpenAccess and MilkyWay

respectively [59]. For this reason, we must create these two physical databases for supporting

CHAE Jung Kyu – Doctoral thesis - 2014

17

both CAD implementation flows. Consequently, all required CAD views should be created by

the derivation phase to satisfy all customers’ design flows.

2.4.4 Validation Phase

The quality of the libraries and IPs is directly related to not only their reuse and

integration but also the design efficiency of SoC [62]. So they must be verified before their

delivery to customers. For that purpose, Lin [63] first discussed the requirements of the high-

quality cell library such as the correct functionality of the cell, its accurate timing

performance and its layout having no design rule violation. Then, he classified possible errors

into five types: incompleteness, inconsistency, functional errors, design rule violation and

inaccuracy. As he remarked, errors are easily made during library development process.

Therefore, this phase is greatly needed for generating high quality library.

2.5 Existing Automatic System for Library Development

The design automation is an inevitable trend in the SoC design due to the increased

complexity of systems [64], [65], [66]. Likewise, it is also indispensable for library

development [67] because it is almost impossible to manually perform all related activities.

Therefore, an automatic system is needed to facilitate the library development execution as

well as to reduce its development time. Indeed, many efforts were made to develop this kind

of system in industry but only some of them were presented in literature [68], [69] because all

know-how relevant to the library development is related to the competitiveness of the

company. In addition, several academic researches were introduced in literature [70], [71],

[72], [73] even if there were some limitations to entirely deal with the issues concerning

library development due to the restricted accessibility of information. For instance, Onodera

[70] developed an automatic generation system of process-portable library named P2Lib

which represents the fundamental process as shown in Figure 2.9. This system allows library

designers to generate process-portable libraries from a core library containing process-

independent information like functional and structural information and process-dependent

information. Specifically, the timing/power analyzer generates timing and power information

of each cell from process-independent and process-dependent information and then produces

an intermediate library containing them. From the intermediate library, the format converter

produces tool-specific library views. In addition, two other tools create data sheets and

CHAE Jung Kyu – Doctoral thesis - 2014

18

physical library views. Finally, the proposed automatic system produces a complete set of

libraries.

Figure 2.9 Overview of P2Lib [70]

The automatic library development system often consists of several in-house tools

developed in programming languages like TCL, Scheme and Perl. Figure 2.10 describes the

overview of STMicroelectronics’ automatic library development system with only principal

in-house tools. These tools which enable to perform the activities for generating library views

or verifying them cover most of the phases in Figure 2.4 except semi-automatic steps. In the

following sections, we introduce how to accomplish each phase by using these specific in-

house tools.

Figure 2.10 Overview of an automatic library development system (source: ST)

CHAE Jung Kyu – Doctoral thesis - 2014

19

2.5.1 Specification Creation Tools

Traditionally, the specifications for library development are based on natural language

and tables. Thus, according to the characteristics of the information, the specification

developer defines data in natural language or tabular form so that he can store them in a file

by using office tools like Word and Excel. To illustrate an example, the person in charge of

the information relevant to the cell characterization has to enter manually all process

parameters such as capacitive loads in the tables. Figure 2.11 shows an example of the

definition of maximum capacitance in table form by using Excel. In this manner, other

process parameters for cell characterization can also be defined. However, each group of

process parameters must be given in different tables or different spreadsheets.

Figure 2.11 Maximum capacitance (source: ST)

2.5.2 Circuit Design Tools

The library designer must design all involved cells in the library according to their

functional and structural description. For circuit design, he also needs the correct information

about CAD tools, design kit, and various technology-dependent parameters. All such

information should be obtained from the given design platform specifications. If all

fundamental information is prepared, the circuit design can be performed by using CAD tools.

Firstly, in order to create BE views such as schematic, symbol, and layout, a CAD tool suite

for physical creation is required. The cell design is often carried out manually with expertise

in designing the high performance cell in terms of area and delay. On the contrary, FE view

CHAE Jung Kyu – Doctoral thesis - 2014

20

generation can be accomplished automatically by using in-house tools such as

characterization and behavioral modeling tools depicted in Figure 2.10. As a result, logical

models in HDL and timing/power models can be produced for logical synthesis and timing

analysis [74], [75], [76], [77], [78], [79], [80]. The logical model can be derived from only

functional and structural information by using a behavioral modeling tool because it is

independent of technology. On the contrary, the timing/power modeling is highly dependent

of technology so that its generation requires lots of information related to the target

technology for cell characterization as shown in Figure 2.12. To make accurate timing/power

models, we must extract the timing/power data from the simulations under various conditions

which is made of PVT corners, input slopes and output loads. The characterization tool first

create SPICE input file (.cir) including a SPICE netlist, stimuli and statements for the data

extraction with the given characterization conditions. Then, the obtained characteristics of the

cells can usually be encapsulated in Liberty library file (.lib).

Figure 2.12 Cell characterization

2.5.3 View Derivation Tool

The library package must contain the appropriate CAD views for customers’ CAD

tools supported by the design platform. The required CAD view can be created by

transforming a reference view into a desired CAD view by using the view derivation tool. For

CHAE Jung Kyu – Doctoral thesis - 2014

21

example, Library Exchange Format (LEF) containing physical layout information of the cells

is required for place-and-route step in system design. This physical abstract view can be

derived from GDSII view depending on the type of library cells. There are two possible

methods to generate this view from GDSII view as described in Figure 2.13. The first method

is to use Cadence tool through several steps from GDSII view to LEF view. The second

method is to directly produce LEF view from GDSII view by using the design rule of Mentor

Calibre [118].

Figure 2.13 LEF generation methods (source: ST)

 [59] presents two principal programs named oa2mw and mw2oa to translate between

Cadence OpenAccess (OA) [119] and Synopsys Milkyway (MW) [120] databases. Figure

2.14 briefly describes the proposed method and tool for view transformation. The oa2mw

program permits to transform Cadence OpenAccess database into Synopsys Milkyway

database via the following files: Design Exchange Format (DEF), GDSII, LEF and Verilog

netlist. To give an example of generating a place and route abstract (FRAM) view (Synopsys

MW) from an abstract view (Cadence OA), an in-house tool first generates an abstract view.

By using oa2mw program, the abstract view is translated into LEF view and then, LEF view

can be translated into FRAM view.

As shown previously, the view derivation tool permits to generate the desired CAD

views from the reference views by applying appropriate methods for each CAD view.

CHAE Jung Kyu – Doctoral thesis - 2014

22

Figure 2.14 Methodology of the transformation between Cadence OA and Synopsys MW

databases [59]

2.5.4 Library Verification Tool

The current library verification tool provides several categories of check: library view

list, syntax, consistency, modelization, etc. It helps to verify the completeness and correctness

of the library for its high quality. For instance, the library should be verified in accordance

with a list of library views to make sure if the library contains all necessary views. For that,

the library verification tool reads a specification file containing this list, and then compares

the generated library views with the given list of library views. In addition, the correctness of

library view is also verified. For instance, an attempt to read Verilog model by synthesis tool

allows checking its correctness in terms of syntax. Consequently, if the library verification

tool provides more checks, the quality of the library would be more guaranteed.

2.6 Example of the Development of a Standard-cell Library

In this section, we describe how to develop this standard-cell library through the

library development process by using in-house tools because developing a library can be very

beneficial to effectively understand the library development process with its automatic

system. A standard-cell library including sequential circuits named ‘multi-bit flip-flop bank’

has been developed from BE views with the specification for 90nm CMOS technology. This

CHAE Jung Kyu – Doctoral thesis - 2014

23

library contains 2-, 4- and 8- bit flip-flop banks. The schematic of a 4-bit flip-flop bank is

given in Figure 2.15.

Figure 2.15 Schematic of a 4-bit Flip-Flop Bank

 Specification Data Preparation

As mentioned above, the library development requires a large number of data that

must first be gathered from the specifications. Firstly, we need a list of library views to

produce a complete library package. Secondly, a list of PVT corners and a set of process

parameters must be obtained from the characterization specification. Thirdly, the correct

design kit and tools’ information like tool version are needed to execute tasks for library view

generation and validation. Finally, for in-house tool use, the configuration of tool should be

correctly fitted by defining the specific tool configuration parameters. A large part of these

parameters can be obtained from the current specifications by human inspection or scripts of

the library developer. The extracted specification data have been stored in several machine-

readable files for in-house tools.

In this observation, we needed to accomplish the FE and CAD view generation and to

perform library validation. For these steps, all necessary data have been manually collected

from several scattered files containing specification data in natural language or tabular form.

 Front-End View Generation

FE view generation is divided into two major tasks: timing/power models and

behavioral model generations. For creating timing/power models, all library cells were

CHAE Jung Kyu – Doctoral thesis - 2014

24

characterized under three PVT corners (for best, typical and worst process corners) with

various process parameters such as input slope by using SPICE simulations. The

corresponding timing and power characteristics could be obtained from the simulation results

for each PVT corner. As multi-bit flip-flop bank is a sequential circuit, delay, setup, hold and

min pulse width must be extracted as timing information of the cell. In addition, the worst

value is used to make a timing model. In contrast, leakage power and internal energy must be

extracted to provide power information of the cell [107]. The obtained timing and power

information was built in LUT form according to the corresponding input slope and output

load values and then these characteristic information and the structural and functional

description of the cell were written in Liberty library format (.lib) [44]. Furthermore, 90nm

and below, CCS timing model is required so CCS timing models were also produced. Unlike

timing/power model, which aims at providing the characteristics of the cells, the behavioral

model gives the description of the circuit and its function. Such information could be

extracted from the cell specification and then written in Verilog by using behavioral modeling

tool.

 CAD View Generation from the Fundamental Views

After generating fundamental views, supplementary CAD views must be produced for

the supported CAD flows. By using the view derivation tool, Liberty library files (.lib) were

first compiled by Library Compiler and then, LEF file was generated from GDSII by Method

2 presented in Figure 2.13. Additionally, OpenAccess and Milkyway databases were also

generated from the fundamental physical view for supporting Cadence and Synopsys CAD

flows respectively.

 Library View Validation

By using the library verification tool, the multi-bit flip-flop bank library obtained from

the previous phases has been verified according to the checklist below:

 Completeness check (library view list)

 Syntax check (Verilog, Liberty library)

 Consistency check of library views

Finally, multi-bit flip-flop bank library package was obtained through the

aforementioned library development process.

CHAE Jung Kyu – Doctoral thesis - 2014

25

2.7 Problems

In the context of this thesis, we focused on the cell-independent specification for

library development. Thanks to the aforementioned observations and experiments, we

remarked several crucial issues related to the specification from various view-points. These

issues can be divided into two parts depending on whether they relate to the specification

contents or specification processing. Many individuals like design platform developers,

library architects and library developers deal with our target specifications. They can be

regrouped into two groups according to their role: specification developer and specification

user. The specification developer is the person who participates in creating the specifications.

On the contrary, the specification user is the person who uses data obtained from the

specifications. According to these two roles, the specification processing can be divided into

two activities: specification creation and data extraction from the specification. Thus, the

issues regarding the specification processing are also classified by these activities.

All remarked issues are summarized as follows:

 Specification:

 Informality: No unified formalism is currently available to define a wide range of

information in the specification. As a consequence, information is often written in

different ways like natural language or table form and stored in different files

according to the characteristics of information and author’s ability.

 Inconsistency: The current specifications are created by several individuals and

stored in scattered files having duplicate data so that the specification may often

have consistency problems like mismatching CAD tool version and naming

convention.

 Missing information: The specification developer defines a specification from the

different point of view with the library developer. Thus, it is difficult to know

precisely which information is required to develop libraries. In other words, there

is always a gap between the information provided by specification developers and

the required information for specification users which results in missing

information.

 Increasing specification data volume: Technology scaling leads to continuously

increase the process variation which considerable influences the functionality of

CHAE Jung Kyu – Doctoral thesis - 2014

26

the system. For instance, PVT variability causes fluctuation in timing and power

for SoC designs, hence more and more PVT corners are required as shown in

Figure 2.5 [43], [81], [82], [83]. In addition to technology scaling, supported

library categories and new design flows also may increase the volume of

specification data like the number of the necessary library views.

 Ambiguity: The specification information is interpreted by specification

developers and specification users. In order to define obvious information in the

specification, the interaction between them is significantly important. However, it

is not sufficiently done and thus, some information may provoke ambiguity

problems.

 Specification creation:

 Lack of a unique reference database: To define a specification requires a set of

golden references such as library naming convention, tool list and library structure.

However, there is no unique repository containing all references. In addition, since

the existing references represent the documents in natural language and tabular

form, it is difficult to centralize them. For these reasons, their accessibility can be

low. It results in increasing specification creation time.

 Absence of a specification assistant tool: The specification developer enters all

specification data manually with the help of office tools. Furthermore, they prefer

to copy the old specification rather than refer to the references in order to create a

new specification. As a result, such tedious way may cause specification errors.

 Absence of specification checks: The verification of specification relies on the

specification developers so that the specification errors can be detected by human

inspection. It is not sufficient to ensure the high quality of the specification as well

as cover increasing specification data volume.

 Specification data extraction:

 Need for efficient methods and tools for the specification data extraction:

One of the important issues in library development is to extract necessary data

from the specification by human inspections and individual scripts. Thus, current

specification data extraction method can significantly degrade library development

time. The average time consumption for the data extraction from the current

CHAE Jung Kyu – Doctoral thesis - 2014

27

specifications is obtained from library developers. It is about 4 hours because most

of data should be extracted manually. For example, the cell characterization

requires a lot of process parameters but their extraction is now carried out

manually.

2.8 Conclusion

In this chapter, we have introduced the cell-based design flow and design platform for

supporting this design flow. In order to produce a design platform, all of the required

libraries/IPs must be developed. Firstly, the library development flow has been presented

phase by phase. Then, we explained how to perform each phase in the existing automatic

system. Additionally, we also developed a standard cell library containing several multi-bit

flip-flop banks throughout the development flow with the help of the existing automatic

system.

In summary, the library developers need to get an amount of required data from the

specification for successfully accomplishing the library development. It enables to build a

complete design platform. Furthermore, efficiently dealing with the specification data is one

of the most important challenges in library development. Thus, all crucial issues relevant to

the specification have been remarked in the previous section. By addressing these issues, we

may considerably improve the productivity of the library by quickly and precisely providing

all required data to the automatic library development system. For this purpose, the following

chapter first reviews various kinds of the specifications presented in the literature as well as

the current specifications employed by STMicroelectronics.

CHAE Jung Kyu – Doctoral thesis - 2014

CHAE Jung Kyu – Doctoral thesis - 2014

28

3. State-of-the-art
Contents

3.1 Introduction ... 28
3.2 Natural Language-based Specification .. 29
3.3 Table-based Specification .. 29

3.3.1 System Requirements Specification in SCR .. 30
3.3.2 ADeVA ... 32

3.4 UML-based Specification .. 34
3.5 XML-based Specification .. 36

3.5.1 IP-XACT for Digital IPs .. 37
3.5.2 ASDeX for Analog IPs ... 39

3.6 STMicroelectronics’ Design Platform Specifications ... 41
3.7 Discussion .. 42
3.8 Conclusion ... 43

3.1 Introduction

The specification represents a collection of information to carry out an activity and is

considered as its starting point. For instance, the component specification provides all the

information relevant to cells such as their functionality and structural description for cell

design. Likewise, the specification is required for library development as described in the

previous chapter. However, it is highly important to determine which information must be

defined in the specification and how to deal with it. We need a unified specification instead of

current ones because it may facilitate to deal with its information.

There are various kinds of specifications from the natural language-based specification

to the specification based on XML in order to represent the information. In this chapter, we

first discuss the traditional specifications in natural language and tabular form, and the

emerging specifications based on UML and XML. Furthermore, the current specifications

employed at STMicroelectronics are also introduced.

CHAE Jung Kyu – Doctoral thesis - 2014

29

3.2 Natural Language-based Specification

The specification has often been written in natural language until now although the

development of computer engineering enables to efficiently manage information. It is so

because the natural language is preferred as the initial and simple way to describe the desired

information. Furthermore, the component specification and system specification are also

defined by designers with the same method. Thus, in system design, some previous works

focused on translating the natural language-based specification into a formal description, e.g.

HDL or ESL by using a semantic analysis that allows extracting the information from the

given textual specifications. For example, [84] presents a translator named Semantic Parser,

which is based on a syntactic parser, the Natural Language ToolKit and a semantic grammar.

This parser enables to translate the natural language description of a component into a

simulatable Verilog model by extracting the key information from the given sentences and

rewriting it in Verilog. Similarly, [85] introduces the translation of informal textbook

specifications into a formal ESL implementation such as SystemC. For this purpose, Formal

Specification Level (FSL) has been proposed to bridge them. Specifically, this intermediate

level allows decomposing the sentences in terms of noun, verb, and adjective by syntactic and

grammatical analysis and then extracting the structure behavior and properties of the system

from the decomposed sentences. Finally, the obtained information is used to create a SystemC

model.

Despite these previous attempts of formalization, a more precise syntactic and

grammatical analysis is still highly required to obtain the desired information from the

complex textual specifications. If it is not available, the specification authors must use simple

sentences and restricted words as well as pay an attention to create a simple specification.

Nevertheless, since the natural language-based method offers authors a great freedom in

defining a specification, there are always possibilities to cause errors such as inconsistency

and misunderstanding. Furthermore, as is well known, dealing with this specification is a

tedious and time-consuming job.

3.3 Table-based Specification

The table-based method is as popular as the natural language-based method to

represent the specification thanks to the facility of entering data in a table and capturing

CHAE Jung Kyu – Doctoral thesis - 2014

30

desired data from that. However, by using tables, we must refine the information in

comparison of natural language. It means that only the necessary data should be stored in

tabular form after removing the redundant one. Hence, the table-based specification gradually

replaces a large part of the natural language-based specification to describe the specification

of a component or system as a more efficient method. The following subsections introduce

two table-based specifications.

3.3.1 System Requirements Specification in SCR

In the late 1970s, Software Cost Reduction (SCR) method, which is based on “user-

friendly” tabular notation, was applied to design software systems developed by David Parnas

and researchers of the U.S. Naval Research Laboratory (NRL) [86]. The requirements

specification in SCR tabular notation refers to a repository for all information required by

developers to construct the software for a computer system. During the 1980s and 1990s, it

has been used in many industrial organizations including Lockheed, Grumman, Bell

laboratory and so on thanks to its scalability and cost-effectiveness. On top of that, a complete

tool set for 1) creating, 2) debugging, 3) validating and 4) verifying this specification has been

developed over a decade or more. By using this tool set, constructing the requirements

specification for an automatic Cruise Control System (CCS) is introduced in [87], [88]. Figure

3.1 specifies this automatic system in SCR.

Figure 3.1 The cruise control system in SCR [88]

Creating the requirements specification in SCR notations for the system in Figure 3.1

requires two kinds of tables: function and dictionary. Function table gives the change of the

value of the mode by the event of variables. For example, Figure 3.2 gives a function table to

describe the mode transition of mcCruise depicted in Figure 3.1. This table represents a finite

CHAE Jung Kyu – Doctoral thesis - 2014

31

state machine to give the new mode (destination mode) of the system as a function of current

mode (source mode) and the monitored variables (events).

Figure 3.2 Mode transition table defining the mode class mcCruise [88]

On the contrary, dictionary table contains the fixed information such as variable

declarations, environmental assumptions, and type definitions. To give an example of the

dictionary table, Figure 3.3 shows a variable dictionary that defines the types, initial values

and accuracy requirements of all variables. The monitored variables like mIgnOn for the

CCS are also given in this table. These variables are used for the event in the above mode

transition table.

Figure 3.3 Variable dictionary table for the CCS [88]

CHAE Jung Kyu – Doctoral thesis - 2014

32

By using a specification editor, all necessary tables can be created. After the creation

of this specification, several checkers permit to check its well-formedness by detecting

various errors such as consistency, property, and dependency. Additionally, the checked

specification is also validated to ensure that it meets the customers’ needs and analyzed to

verify the properties of the application.

3.3.2 ADeVA

Instead of using large natural language documents to represent the specification of the

system, Advanced Design and Verification of Abstract Systems (ADeVA) has been

developed on the basis of the concept of SCR notation explained above. It also provides two

types of tables: Mode Transition Table (MTT) and Data Transformation Table (DTT) which

are function and dictionary tables respectively [89]. Some specification tools based on

ADeVA have been introduced in the literature. Alcatel-Lucent Technologies developed a

specification editor named SpecEdit using ADeVA for the specification of a complex

telecommunication system [90]. Figure 3.4 shows its Graphic User Interface (GUI) which

enables users to enter data in MTT and DTT to describe the behavior of the system.

Figure 3.4 SpecEdit GUI [89]

CHAE Jung Kyu – Doctoral thesis - 2014

33

Figure 3.5 shows a MTT that gives the symbol to indicate an event (T/F, @T, -, etc.)

under the given condition when a state transition occurs. Figure 3.6 illustrates a DTT defining

the event symbol under different conditions according to the given value of the signal.

Similarly, [91] also presents a specification platform based on ADeVA notations for

representing the requirements specification of the embedded system.

Figure 3.5 Example of MTT [89]

Figure 3.6 Example of DTT [89]

In summary, the table-based specification provides some important advantages. One of

the interesting advantages is to easily extend the specification by simply adding

supplementary columns or rows. Another is to rapidly get the desired data from the

corresponding table by matching each column with the given condition in comparison with

the natural language-based specification that mainly relies on the human inspection or

syntactic analysis. In addition, the specification creation and data extraction can be

accelerated by using the predefined form. However, this kind of specification also has several

important limitations. First, since a table represents a set of data of the same type, the

specification containing a variety of data should be defined by using many tables. For

instance, to cover the system requirements specification of CCS described previously, three

function tables and six dictionary tables are needed. Second, it is difficult to understand the

relationship between tables. For this reason, an additional specific tool must be developed to

visualize the dependency of data in different tables as shown in Figure 3.7 [88]. It means that

we need an additional work to identify the relationship of the tables.

CHAE Jung Kyu – Doctoral thesis - 2014

34

Figure 3.7 Dependency graph tool for the CCS [88]

3.4 UML-based Specification

UML is a modeling language using graphical notations for creating visual models of

the system in software domain [92]. This language provides a set of diagrams (e.g. class

diagram, sequence diagram, use case diagram, activity diagram, etc.). These diagrams can be

classified into two groups depending on the characteristic of the model: structure and

behavior diagrams as depicted in Figure 3.8 [112].

Figure 3.8 Taxonomy of structure and behavior diagrams [112]

CHAE Jung Kyu – Doctoral thesis - 2014

35

UML allows rich expressive capabilities by using diagrams so that it can be quickly

applied to various other domains including SoC. For instance, the authors of [93] proposed a

SoC validation method based on UML and Component Wrapper Languages (CWL) for

modeling the component specification and the interface protocol specification respectively.

Figure 3.9 describes the specification based verification process which consists of two steps:

specification validation and SoC verification. First, the specification in natural language is

validated by checking its completeness and consistency with the help of UML models and

CWL. Second, the functionality of the target system can be verified by using test scenarios

derived from the UML models of the system.

Figure 3.9 Specification based verification process [93]

[94] presents how to create SoC specification by using UML models and actor-

oriented modeling. The authors emphasized the efficiency of modeling the static and dynamic

nature of a system in SoC design by using a number of UML diagrams. For example, UML

class diagram provides a static view of the system by describing blocks of the system using

the class and the relationship among them by the connection lines as shown in Figure 3.10.

Figure 3.10 UML class diagram [94]

CHAE Jung Kyu – Doctoral thesis - 2014

36

On the contrary, UML sequence diagram represents the interaction among classes over

the time. Figure 3.11 shows the sequence of the communication between a sender and a

receiver to describe the behavior view of the system.

Figure 3.11 UML sequence diagram [94]

To summarize, the UML-based specification enables to describe the structural and

behavioral system specification more comprehensively by means of graphical notations than

the aforementioned traditional specifications. However, UML diagrams are considered as

conceptual models. Thus, extracting the desired information from the UML-based

specification requires the interpretation of the related diagram.

3.5 XML-based Specification

The XML is a subset of Standard Generalized Markup Language (SGML) [95]. It

becomes a W3C recommendation language to store many different kinds of data in textual

form with markup tags on Web [96]. The main contribution of this language is to represent

metadata in order to exchange information across different systems. Additionally, it provides

several important benefits such as extensibility, flexibility, availability of various data types,

portability, and machine-readability. Thanks to its advantages, XML is widely applied to

various areas. Recently, it is used as an emerging method in SoC design to represent the

specification. For example, IP-XACT has been proposed by SPIRIT consortium [98] as an

XML-based specification language to describe the specification of digital IPs. Similarly,

Analog Specification Description in XML (ASDeX) for analog IPs has been introduced in the

literature [106]. The following subsections present these XML-based specification languages

in detail.

CHAE Jung Kyu – Doctoral thesis - 2014

37

3.5.1 IP-XACT for Digital IPs

IP-XACT standard has been developed for packaging, integrating, and reusing IPs

provided by different vendors within tool flows [98]. This standard provides an efficient way

to describe and interpret metadata for IP integration and configuration requirements with the

help of its well-formed XML schema that describes the syntax and semantic rules [97].

Furthermore, the IP-XACT schema provides seven top-level schema definitions: bus

definition, abstraction definition, component, design, abstractor, generator chain, and design

configuration. Each schema definition can be used to encapsulate the object description. For

example, the bus definition object defines the information of a bus. Its schema contains a set

of elements and attributes to encapsulate the appropriate information. Figure 3.12 illustrates

all objects and their interactions. As described in this figure, the interaction between objects is

denoted by the arrow. This arrow (A → B) represents a reference relationship of one object to

another (e.g. reference of object B from object A).

Figure 3.12 IP-XACT data object interactions [98]

CHAE Jung Kyu – Doctoral thesis - 2014

38

Figure 3.13 IP-XACT design environment [98]

Figure 3.13 describes the IP-XACT design environment. This design environment

enables the system designer to create and manage the top-level meta-description of a system

by using IP-XACT design IP. For this purpose, it provides two types of services: design

capture and design build. The design capture is to capture the structure and configuration

information of imported IP by a system design tool. The design build is to achieve the

integration and configuration of required IP by using generators provided by a system design

tool. Indeed, IP-XACT specifications are being broadly adopted by IP and EDA vendors

through their own IP-XACT enabled design environment [99], [100], [101], [102], [103]. To

give an example, an environment named Kactus2 for embedded product development is

presented in [101]. This system uses IP-XACT to describe HW components. To search

component, the authors introduced the component capture method based on a tuple {Vendor,

Library, Name, Version} (VLNV) that is given as a unique identifier by the IP-XACT object

description. Furthermore, to improve this VLNV-based method, [102] and [103] introduce the

extended IP selection method and an unambiguous VLNV naming convention respectively.

The former paper highlights that nonfunctional information such as power dissipation should

also be considered to find and select functionally suitable ones among many different

predesigned components in IP libraries. The authors thus proposed to describe components by

CHAE Jung Kyu – Doctoral thesis - 2014

39

using an extended IP-XACT with important additional information and to filter them by

criteria based on keywords and nonfunctional information. As a result, the proposed method

aids to select the best-suited components. The latter paper introduces unambiguous VLNV

naming conventions by using keywords which are based on detailed taxonomy of

components. Hence, the VLNV name composed of keywords helps to find the appropriate

ones by removing its ambiguity.

3.5.2 ASDeX for Analog IPs

IP-XACT is a specification language for digital IPs but unfortunately it is not suitable

for analog IPs. For this reason, ASDeX has been proposed as a specification language in

XML to describe the specification of analog circuits in [104], [105], [106]. This language

covers all the required information for the automatic design validation with it. Figure 3.14

shows the schema of ASDeX which consists of the identifier block design, the main block

specification and the three optional blocks function, testbench and task. These blocks and

their interactions are described in Figure 3.15. As stated in the previous subsection, the arrow

represents the reference relationship between blocks. For instance, the specification

description is referenced by tasks and testbenches.

Figure 3.14 Schema of ASDeX [104]

CHAE Jung Kyu – Doctoral thesis - 2014

40

Figure 3.15 ASDeX data object interactions [104]

In addition, a validation work flow is introduced to validate analog circuits by using

ASDeX as described in Figure 3.16. This work flow is based on the Essence Framework and

the meta-simulator. Especially, the Essence Framework transforms ASDeX specification into

an execute task for validating circuits. To achieve this validation, all the required information

for building up a testbench, simulation setup and result calculation could be extracted from

ASDeX documents by using the templates derived from the template library. The same

authors also presented an Application Programming Interface (API) named AXEI (ASDeX

Engine Interface) to derive the desired information from the specification more easily than

using the templates in [106].

Figure 3.16 Validation work flow based on ASDeX [104]

As shown above, the XML-based specification represents a tree data structure that

allows encapsulating various data sets. As a consequence, it enables to store all necessary data

in an XML format file in accordance with the predesigned XML schema. The previous

CHAE Jung Kyu – Doctoral thesis - 2014

41

studies show well the facility of capturing data from the XML documents by using templates

thanks to its machine-readability. Furthermore, several software supports for XML and XML-

specific language like eXtensible Stylesheet Language Transformations (XSLT) [110] greatly

help to deal with XML documents. However, both IP-XACT and ASDeX propose an

appropriate data model for the component description.

3.6 STMicroelectronics’ Design Platform Specifications

As mentioned in the previous chapter, the current design platform specifications at

STMicroelectronics are a collection of heterogeneous information from technology-dependent

parameters to CAD tools’ information. Thus, these specifications are made by natural

language-based and table-based documents as given in Figure 3.17. From the perspective of

end-users like library developer, these types of the specifications become more and more

difficult to extract the desired data from them due to their increasing complexity with

technology scaling and different forms. In addition, the data extraction depends on human

inspection or scripts of the library developer. Thus, we need a unified form to cover all of the

specifications as well as novel methods to cope with it.

Figure 3.17 STMicroelectroincs’ design platform specifications (source : ST)

CHAE Jung Kyu – Doctoral thesis - 2014

42

3.7 Discussion

We have previously seen four kinds of the specification. Table 3.1 summarizes their

advantages and disadvantages. As given in this table, there are six and four criteria for data

modeling and data processing respectively. According to these criteria, each specification has

been estimated. In the table, the circle symbol represents “good” and the X symbol represents

“bad”. To give an example, for data modeling, the natural language-based specification

provides good extensibility, flexibility, expressiveness and availability of various data types

for data modeling, whereas it has bad formality and data relationship. In addition, for data

processing, it gives good facility of entering data and human readability but bad facility of

capturing data and machine-readability. Likewise, the advantages and disadvantages of other

specifications are also given. On the contrary, STMicroelectronics’ design platform

specifications have both the features of the natural language-based and table-based

specifications.

Table 3.1: Summary of the specifications

Criteria

Natural
language-

based
specification

Table-based
specification

UML-based
specification

XML-based
specification

Data

Modeling

Formality

Extensibility

Flexibility

Expressiveness

Availability of
various data types

Data relationship

Data

Processing

Facility of
entering data

Facility of
capturing data

Human
readability
Machine

readability

CHAE Jung Kyu – Doctoral thesis - 2014

43

3.8 Conclusion

In this chapter, we presented natural language-based and table-based specifications. In

addition, the UML-based and XML-based specifications were introduced. The current

specification used at STMicroelectronics was also discussed. The advantages and

disadvantages of these specifications were compared and then the comparison results were

given.

Consequently, we first need a unified specification to represent all required

information independent of cells for library development instead of the current ones. The

above table shows that the best form of the specification is the XML-based specification over

all criteria. Thus, we aim at proposing an XML-based specification thanks to its attractive

benefits and software supports. However, we must propose a suitable one because of the

absence of the XML-based specification for our target information. On top of that, we also

need efficient methods to create a reliable specification and to extract desired data from the

target specification.

In the subsequent chapter, we try to provide answers to the following question:

- How can we propose an XML-based specification for the specifications of library

development?

- How can we create a reliable specification?

- How can we precisely and rapidly extract the required information from the

specification?

CHAE Jung Kyu – Doctoral thesis - 2014

44

4. Methodology
for Library

Development
Specifications

Contents
4.1 Introduction ... 44
4.2 Formalism of the Specification .. 45

4.2.1 Requirements of the Specification ... 45
4.2.2 Specification Data Analysis ... 46
4.2.3 Specification Data Classification ... 50
4.2.4 Specification Data Modeling .. 54

a) Data object .. 54

b) Relationship of data objects ... 57

4.3 Reliable Specification Creation Method .. 60
4.3.1 Reference Database .. 60

a) Dictionary ... 60

b) List reference .. 61

4.3.2 Specification Creation using a Reference Database ... 63

4.4 Efficient Method for Data Extraction from the Specification 63
4.4.1 Keyword for Precise Data Identification .. 64
4.4.2 Task-based Keywords for Efficient Data Extraction ... 65

4.5 Validation of the Specification .. 66
4.6 Validation of the Library against the Specification ... 68

4.7 Conclusion ... 69

4.1 Introduction

One of the most crucial issues for dealing with our target specifications is to create a

unified specification, which could contain a wide variety of information independent of cells.

CHAE Jung Kyu – Doctoral thesis - 2014

45

In addition, for efficient data processing, we also have two important challenges. The first is

how to create a reliable specification containing a huge amount of various data. The second is

how to precisely and rapidly extract the desired data from it in order to accomplish the library

development process.

In this chapter, we first introduce an appropriate data model to represent the

specification for library development. Furthermore, two key methods are presented for

specification creation and specification data extraction. Additionally, some approaches to

verify the specification and library are also discussed.

4.2 Formalism of the Specification

Before discussing the formalism of specification, we have to clarify its requirements.

Then, the identification and classification of specification data are required, i.e. we need to

collect all required information for library development and analyze it. These studies may

help to propose a suitable data model for our target information.

4.2.1 Requirements of the Specification

The objective of the specification is to provide the library developers with all required

information for successfully accomplishing their work. From this perspective, the most

important requirements of the specification were given as follows:

 Formality: The specification covers various categories of information. The data in

each category must be formalized by determining their essential elements to give

complete information. This formality enables to define all necessary specification

data in a unified way.

 Consistency: The information given in the specification should be consistent to

avoid mismatch errors which can greatly impact the quality of the library.

 Completeness: Since the current specifications do not provide complete

information for library development, library developers have difficulties in finding

missing information. Thus, if all required information is defined in the

specification, they are able to get all necessary information from a unique source

quickly.

CHAE Jung Kyu – Doctoral thesis - 2014

46

 Extensibility: The technology evolution leads to increase the volume of

specification data. For this reason, the specification data model has to address

increasing data volume.

 Unambiguousness: The information in the specification must be comprehensible

and unambiguous for all library developers. It aids to reduce specification errors

like misunderstanding.

4.2.2 Specification Data Analysis

Figure 4.1 Automatic library development system (source: ST)

At STMicroelectronics, the library development is carried out by using an automatic

library development system based on in-house and commercial CAD tools as described in

Figure 2.10. This automatic system covers aforementioned three main phases for library

development: FE view generation, CAD view derivation and validation phases. Figure 4.1

describes the hierarchical layers of the system and the interoperability between integrated

tools at different layers. At the top layer, a flow management tool controls the whole process

by using the specific in-house tools. These in-house tools at the intermediate layer execute all

tasks for generating, deriving, and validating the library views with the help of CAD tools and

a design kit.

CHAE Jung Kyu – Doctoral thesis - 2014

47

Figure 4.2 A task for library development (source: ST)

Definition

Task for library development

A task permits to generate more than one view or to verify it using the given

input data and the corresponding tool.

Figure 4.2 describes how the in-house tool executes a task for library development.

This tool requires a set of input data to produce output data. As shown in this figure, the input

data splits into three groups. The first group includes the view obtained from the previous

task. The second group represents the information concerning the cells such as their

functional and structural description. The third group represents all other information. A large

part of the other information can be extracted from the current design platform specifications,

whereas the remaining information may be gathered from several sources such as library

developer’s knowledge and individual documents.

The necessary input data for each task can be determined by the characteristics of the

target task. For example, the task to produce a behavioral view requires only cell information

because the behavioral view such as Verilog model mainly includes the structural and

functional description of cells which can be used for the RTL design of the system. On the

contrary, generating a timing model of the cell is highly dependent on technology and thus

this task needs not only a SPICE netlist file and cell information but also a number of

technology parameters as input data.

CHAE Jung Kyu – Doctoral thesis - 2014

48

In this thesis, we focus on input data of the third group, i.e. data that are not related to

the cell but to the design platform, library developer’s knowledge and individual documents.

Firstly, all input data for cell characterization, behavioral modeling, and CAD view

generation were identified and classified according to the data categories. For example, the

characterization tool for timing model generation performs the cell timing characterization

with various data. The required input data for the timing characterization of a non-scan D flip-

flop named DFPQX2 are given in Figure 4.3. First, Spice simulator performs the simulation.

Second, design kit provides Spice models. Third, Spice netlist of this flip-flop can be obtained

from the Spice file (.spi). Finally, the information about technology parameters such as PVT

corner, slopes of pin D and of pin Clock for the given PVT corner, and capacitive loads for

drive strength (X2) are needed. By using all these parameters, the characterization tool

generates a circuit file (.cir) including the condition of the simulation, the spice netlist, the

statements of data extraction and so on. The simulation can be accomplished with this circuit

file and the desired timing information can be measured. As a consequence of the timing

model generation, a Liberty file (.lib) containing the timing information of the cell can be

produced.

Figure 4.3 Timing characterization of a non-scan D flip-flop (source: ST)

CHAE Jung Kyu – Doctoral thesis - 2014

49

By the same method, the input data for other tools could be analyzed. All required data

for each tool are divided into three data groups: tool, technology and view. According to this,

the identified parameters could be classified and counted. Figure 4.4 gives the tool input data

analysis results. The results show that the dominant parameters rely upon the characteristics

of the activity of the tool. For instance, as depicted in this figure, the characterization tool

needs a set of technology-dependent parameters as well as a large amount of tool

configuration parameters that are employed in running the accurate simulation.

Figure 4.4 Tool input data analysis results (source: ST)

If all of these parameters collected from different sources are defined in a

specification, the library developer can easily get complete information from a unique source.

But a supplementary data group needs to be added to provide the information about the design

flows supported by the library. This is because the supported design flows determine which

library view must be produced and which tools are needed for system design and library

development. It can provide the bridge between tool and view information. Thus, we propose

four main data groups: technology, tools, views and design flows.

CHAE Jung Kyu – Doctoral thesis - 2014

50

4.2.3 Specification Data Classification

Classifying the specification data in detail is significantly important for data modeling.

In the previous subsection, we present four main data group. Further, we also propose

subgroups for each data group to present the detailed taxonomy of data as shown in Figure

4.5.

Figure 4.5 Specification data taxonomy

Now, we present which data can be included in each data group as follows:

 Technology

The technology data group must cover all technology-dependent parameters from

fundamental technology information to process parameters for characterization. The

concerned information was regrouped into four data subgroups by the characteristics of data

as described in Figure 4.5.

- General Technology Parameters: represents the fundamental technology information

independent of library category. For example, the target technology node can be

regarded as a general technology parameter.

- Specific Technology Parameters: represents the fundamental technology information

dependent of library category. For instance, the library architecture may be regarded

CHAE Jung Kyu – Doctoral thesis - 2014

51

as a specific technology parameter because there are several different library

architectures by the number of tracks for standard cell library and by the type of frame

for I/O library. The values of this parameter rely on the target technology.

- PVT corners: represents PVT corner lists. The PVT corner list should be given for

each library category because the required PVT corners or the essential elements of a

PVT corner can be different. For instance, for the operating condition, one supply

voltage is needed for standard cells, whereas memories may need two supply voltages.

- Characterization Parameters: provides all necessary process parameters for cell

characterization. Specifically, characterization references, slopes, and capacitive loads

can be included in this data subgroup.

 Tools

The main goal of this data group is to provide the user with a complete list of all necessary

tools and design kit. Additionally, this data group can contain tool configuration parameters.

- Tool: provides the underlying information about a tool such as tool name and tool

version.

- Tool Configuration Parameters: provide the specific configuration parameters

according to the purpose of the tool. These parameters are missing in the current

specifications in spite of their importance and needs. Moreover the tool configuration

is one of the most time-consuming steps in library development. Thus, this data

subgroup aims at automatically setting up the correct tool configuration.

 Views

The main goal of this data group is to give a list of library views to produce a complete

library package. In addition, this data group may also include view attributes.

- View: provides the underlying information about a view such as its view path that

specifies its physical location in the directory structure of the library. In addition, it

determines whether the view should be generated by the library category. For

example, IP-XACT library view is required for memories and IPs but not for standard

cell library.

- View Attributes: provide the specific attributes of a library view. Generally, the

definition of view attributes totally depends on the tool that generates the view.

Unfortunately, it does not ensure whether they are well defined in the view. For this

CHAE Jung Kyu – Doctoral thesis - 2014

52

reason, to provide these specific view attributes is proposed to correctly generate a

view with them. For example, Liberty library has its own specific attributes, for

example, direction attribute for specifying the direction of a pin [44]. The view

attributes must be defined at different levels such as library, cell and pin depending on

which level relates to the information given by it.

 Design Flows

- SoC Design Flow: provides the information about the supported design flows by the

library.

Finally, most of the identified data were classified according to the data taxonomy

mentioned above. Table 4.1 gives the classified specification data. For example, the general

technology parameters data subgroup contains all technology parameters independent of

library category: technology name, technology node, process, metal option, voltage option,

Resistor and Capacitor (RC) type, maximum temperature, minimum temperature, and Design

Rule Manual (DRM). Likewise, other parameters are also classified in the corresponding data

group. If there are new parameters, the specification developer can easily add them to one of

the related data group.

CHAE Jung Kyu – Doctoral thesis - 2014

53

Table 4.1: Specification data

Technology

General
Technology
Parameters

Specific
Technology
Parameters

PVTs Characterization Parameters

Technology name,

Technology node,

Process,

Voltage option,

Metal option,

Resistor and

Capacitance type,

Max. temperature,

Min. temperature,

Design rule manual

Library architecture,

Library type,

Multivolt supplies,

Multivolt grounds

Process,

Voltage,

GND,

Temperature,

Age

Character-
ization

Reference
Slope Capacitive

load
Time,

threshold,

Slope

threshold,

Cap threshold

Time unit,

Load unit,

Load unit,

Power unit,

Voltage unit,

Energy unit,

Glitch

tolerance,

Peak tolerance

Max transition(Clk),

Max transition (Data),

Max transition

(TestIn),

Last index (Clk),

Last index (Data),

Last index (TestIn),

Intermediate values

constraint (Clk),

Intermediate values

(Data),

Intermediate values

(TestIn)

Max capacitive

load

(worst corner),

Max capacitive

load

(best, typical

corners),

Index timing,

Index power

Tools Views Design Flows

Tool
Tool

Configuration
Parameters

View View
Attributes SoC Design Flow

Commercial CAD

tools

(Layout editor,

synthesis tool,

SPICE simulator,

etc.)

In-house tools

(Characterization

tool, Behavioral

modeling tool, CAD

derivation tool,

validation tool)

Design kit

Characterization

tool configuration

parameters,

Behavioral

modeling tool

configuration

parameters,

View derivation

tool configuration

parameters

Documents,

IP-XACT,

Verilog,

VHDL,

Symbol library,

Liberty library,

CCS library,

ECSM library,

LEF,

DEF,

CDL,

OpenAccess,

Milkyway,

ATPG

Liberty library

attributes

FrontEnd,

BackEnd,

SignOff

CHAE Jung Kyu – Doctoral thesis - 2014

54

4.2.4 Specification Data Modeling

Data model describes the data objects with their properties and the relationship

between objects in order to represent the real world. From this aspect, we created an

appropriate data model to describe the specification for library development on the basis of

the observations about the specification data presented previously.

The specification data model consists of seven main data objects encapsulating the

categorized data given in Table 4.1. Figure 4.6 represents all data objects as well as the

reference relationship between them.

Figure 4.6 Specification data objects and their reference relationship

a) Data object

Definition

Data object

A data object (indicated by a gray box) represents one or more parameter

sets.

One of the most important issues is to represent a variety of data objects in a unified

way. For this reason, we need a generic and simple data model that enables to represent the

parameter set. We propose a basic data model for the data object as shown in Figure 4.7 by

CHAE Jung Kyu – Doctoral thesis - 2014

55

using UML class diagram notation [112]. The parameter set may represent more than one

parameter. The parameter information can be given with its name and value elements. This

data model is used to create the specification data model over all data objects.

Figure 4.7 Basic data model of the data object

There are two types of data objects depending on whether their parameters are sub-

categorized or not. Figure 4.8 illustrates the example of these different types. As shown in

Figure 4.8 (a), since General Technology Parameters data object contains a set of general

technology parameters regardless of the library category, it may be referred as the first type.

In contrast, Specific Technology Parameters data object may be referred as the second type

because it may contain several subsets (so-called List) of technology parameters sub-

categorized by the library category as described in Figure 4.8 (b).

Figure 4.8 Examples of (a) non-subcategorized parameter set (b) sub-categorized parameter

set

As described in Figure 4.7, in order to define the parameter information, we propose a

simple unified way to give its name and values. In addition to these fundamental elements, the

key attribute is used as an identifier at STMicroelectronics to identify the tool and view

instead of its name. However, there is no common agreement for naming the key attribute.

For this reason, we propose a naming convention for the key attribute as follows:

key = <identifier>_<purpose>

CHAE Jung Kyu – Doctoral thesis - 2014

56

The key is composed of two fields: identifier and purpose. The first field identifier is a

mandatory field to give identification information. The second field purpose is an optional

field to give the specific purpose of the tool or view that may relate to the activity of the

system design or library development. In addition, this attribute can also be used to link its

parameter with other parameters. For instance, a tool and its suitable configuration parameters

are coupled by the tool key. As given in Table 4.1, both the characterization tool and its

configuration parameters may be identified by their same tool key. Likewise, a view and its

view attributes can be coupled via the view key.

Consequently, there are two kinds of parameter data model according to the presence

or absence of the key attribute.

Figure 4.9 Examples of (a) parameter without key attribute (b) parameter with key attribute

Figure 4.9 (a) represents the first kind of parameter. As shown in this figure, the

general technology parameter can be defined by a parameter name and values. For instance, a

technology node can be expressed as follows:

General Technology Parameter Name = “TechnoNode”

General Technology Parameter Value = “28”

Additionally, when the parameter has more than one value, we can assign a value

identifier attribute named id to each value. For instance, the information about process can be

given as below:

General Technology Parameter Name = “Process”

General Technology Parameter Value = “ff”, id = “best”

General Technology Parameter Value = “tt”, id = “typical”

General Technology Parameter Value = “ss”, id = “worst”

CHAE Jung Kyu – Doctoral thesis - 2014

57

Figure 4.9 (b) represents the second kind of parameter. As described in this figure, the

tool information consists of a tool name, version and key attribute. As explained previously,

the tool key attribute is used to identify the desired tool. Especially, in the case that CAD

vendor offers a tool suite containing several tools, this attribute is very useful to identify the

desired tool instead of the name of tool suite. For instance, since Synopsys provides a tool

suite named synthesis providing Design Compiler, Library Compiler, etc., we have to load

synthesis to use Design Compiler. Thus, the tool information for Design Compiler can be

given as follows:

Tool Key = “designcompiler_synthesis”

Tool Name = “synthesis”

Tool Version = “i-2013.12”

b) Relationship of data objects

We defined the data objects of the specification above. Now, we note the relationships

between them expressed by the arrow as shown in Figure 4.6. Even if the data objects are

structurally independent of each other, there are relationships between their information,

which can be identified by the common element of data objects.

Firstly, ‘Characterization Parameters’ data object depends on ‘PVTs’ ones because the

process parameters for cell characterization, like slopes, change by the PVT corner. For this

reason, the number of required slope values depends on the number of the given PVT corners.

The relationship of these data objects can be identified by PVT corner’s name.

Secondly, in order to perform design activities, we need CAD tools and library views

at each step. It means that the design flow has an important influence on determining which

tools and library views should be required so that ‘Tools’ and ‘Views’ data objects are related

to ‘Design Flows’ data object. We propose to use the key attribute in order to define the

relationship between these three data objects. As mentioned above, the key attribute contains

a purpose field. In order to link the design flow with tools and views, the purpose field of the

key attribute should be based on the supported design flow. For example, the information

about Front-End design flow can be defined in ‘Design Flows’ data object as follows:

SoC Design Flow Name = “FrontEnd”

SoC Design Flow Value = “synthesis”

CHAE Jung Kyu – Doctoral thesis - 2014

58

 As is well known, we need a synthesis tool like Design Compiler and a Verilog model

for the logical synthesis and thus the key attributes relevant to these elements can be

expressed as follows:

ToolKey = “designcompiler_synthesis”

 ViewKey = “verilog_synthesis”

Consequently, Figure 4.10 represents a complete data model of the specification which

is made up of basic data objects described in Figure 4.6. This data model covers the data

given in Table 4.1. As shown in this figure, the class name is simplified instead of a being

long name. For example, ‘General Technology Parameters’ data object is expressed by a class

element named GeneralTechParams. This class is able to define all general technology

parameters in Table 4.1 (Technology name, Technology node, Process, Voltage option, Metal

option, Resistor capacitance type, Maximum temperature, Minimum temperature, and Design

rule manual).

CHAE Jung Kyu – Doctoral thesis - 2014

59

Figure 4.10 Data model of the specification

CHAE Jung Kyu – Doctoral thesis - 2014

60

4.3 Reliable Specification Creation Method

The specification for library development is a collection of information obtained from

several information owners and existing references. This specification is traditionally created

depending only on the expertise of the specification developers. In addition, a sequence of

activities which gathers the information and defines it in the specification is a totally manual

work. Unfortunately, no efficient unified method is available to achieve this significantly

important work. Moreover, the share-ability and usability of the existing references are very

low due to the complex data acquisition from them. For these reasons, the specification

reliability highly depends on the attention the specification developers pay to remove

specification errors such as inconsistency and incompleteness.

Thus, we propose a reference-based method to create a reliable specification by

addressing the critical issues of the traditional manual methods for specification creation. Its

main ideas are to provide as much predefined information as possible from a centralized

reference database and to increase the share-ability and usability of the references. Generally,

the specification data can be divided into two parts: one is the information such as PVT

corners, slope and capacitive load values which must be given by its owner. Another is the

information that can be derived from the predefined documents. Our reference-based method

focuses mainly on the second one.

4.3.1 Reference Database

In Figure 4.9, two types of parameters were introduced. In order to cover them, we

propose a reference database that consists of two kinds of references: dictionary and list

reference. The dictionary provides the reference relevant to the first type of simple parameters

without a key attribute. The list reference provides the reference relevant to the second type of

parameters with a key attribute.

a) Dictionary

The dictionary is a collection of terms. Like a semantic dictionary providing all

meanings of a term, the proposed dictionary also aims at providing all possible values of the

predefined term. Figure 4.11 shows its data model. As shown in this figure, a term enables to

encapsulate any parameter information with a name and more than one value.

CHAE Jung Kyu – Doctoral thesis - 2014

61

Figure 4.11 Dictionary

By using this simple and formal representation, most of the shareable data for

specification creation can be predefined in the dictionary. Especially, this dictionary permits

to cover parameters corresponding to the data model in Figure 4.9 (a) thanks to its similarity.

In order to support such data, the list of parameters and all available values of each parameter

can be derived from this reference. For example, to define the general technology parameters,

their complete list and desired parameter values are required. First, GeneralTechParam term

having all parameter names as term values (TechnoNode, Process, VtOption, MetalOption,

and so on) may be defined in the dictionary to give a list of general technology parameters.

Second, all available values of each parameter may also be given by using this reference. To

give an example, TechnoNode term with all its possible values (130nm, 90nm, 65nm, 45nm,

32nm and 28nm) can be defined to provide the information about technology node. In

consequence, the specification developers are capable to obtain the complete parameter list

from the dictionary. Once having a parameter list, they may retrieve the information about

each parameter and then to select desired parameter values to finally define it in the

specification. Furthermore, if we need a new parameter or a new parameter value, it is

sufficient to add a new term or a new value to the corresponding term. Therefore, the updated

information can easily be shared with all users through the dictionary.

b) List reference

The list reference is proposed to provide a complete parameter set at a time unlike the

dictionary based on the repetitive retrieval of the term. This reference covers the tool and

view information having the key attribute which corresponds to the data model in Figure 4.9

(b). It offers a complete list of predefined keys with its identification information as described

in Figure 4.12.

Figure 4.12 List reference

CHAE Jung Kyu – Doctoral thesis - 2014

62

As shown previously, the tool information includes a tool name, version and key

attribute. Among them, a couple of tool identification information, which is tool key and its

corresponding tool name, is regarded as fixed information. In contrast, the tool version is no

fixed information because it must be given by the specification developer. For this reason, the

tool list reference must provide only the fixed information as shown in Figure 4.13. As a

result, to complete the information for all required tools, it is sufficient to give only the

correct tool version for each tool provided by the tool list reference.

To define the information about Design Compiler tool, its tool key

“designcompiler_synthesis” and tool name “synthesis” can be obtained from the tool list

reference, whereas the tool version (e.g. “i-2013.12”) must be given by the specification

developer.

Figure 4.13 Tool list reference

Using the same method as to update the dictionary, defining a new tool or a new

purpose of an existing tool can be simply added as a new tool element with its specific tool

key and corresponding tool name in this reference. Likewise, a view list reference can be

made. Finally, these references help to easily and rapidly define complete tool and view

information.

To summarize this subsection, the aforementioned reference database enables the

specification developer to create a complete and consistent specification by providing rich

predefined information relevant to parameter list, values and identification information. In

addition, it also provides several significant benefits. One of them is that enforcing and

centralizing the references leads to improve their share-ability and reusability. Another is to

provide a unified method to easily extend the specification data via the concerning reference

and rapidly apply the updated information to the specification creation. However, when

defining a reference, the author must not make an error because it may have a direct impact

on all specifications related with this error.

CHAE Jung Kyu – Doctoral thesis - 2014

63

4.3.2 Specification Creation using a Reference Database

As mentioned above, the specification data can be created from the dictionary or list

references according to the parameter type. Figure 4.14 shows how to gather specification

data from the reference database. As shown in this figure, the dictionary-based flow is carried

out by parameter list acquisition and parameter value selection based on the repetitive

retrieval. On the contrary, the list reference-based flow is accomplished by parameter list

acquisition and parameter value entry. The specification developers can easily define all

specification data to produce a final specification through these flows.

Figure 4.14 Specification creation using a reference database

4.4 Efficient Method for Data Extraction from the Specification

For library development, the library developers must extract the necessary data from

the specification. However, there is unfortunately no effective data extraction method to meet

their needs due to the absence of a complete specification. One of the most important needs is

to precisely get the desired data from the specification. Another is to obtain a complete set of

data for performing the library development task.

CHAE Jung Kyu – Doctoral thesis - 2014

64

To address these needs, we propose the keyword for precisely identifying the data and

task-based keywords for selectively extracting all necessary data for the target task. These

proposed methods are introduced in the following subsections.

4.4.1 Keyword for Precise Data Identification

As described in Figure 4.10, the specification represents a hierarchical structure to

cover a variety of data. To extract data from this specification, we must first find which

branch contains the desired data in the tree structure and then identify it. The library

developer usually needs a part or whole set of data from the corresponding data group. For

example, for the characterization of standard cells, we need a SPICE simulator, design kit and

characterization tool as a part of tools and a whole set of PVT corners for the standard cell

library. In order to satisfy such needs, we propose to use a keyword that consists of tuple of

elements given by:

 (4.1)

Where:

Parameter: identifies the target parameter.

Category: identifies the category of parameter such as library category. It is required only for

the categorized parameter set.

Name or Key: identifies one parameter. According to the kind of parameter, either name or

key should be given.

Id: identifies the parameter value. When the parameter has more than one value, each value

can have its specific id to differentiate one from another.

This keyword provides the key information to search data in the specification.

Specifically, Parameter and Category elements permit to select a set of parameters. In

addition, Name or Key element permits to identify one parameter from the selected parameter

set. If selecting one parameter with its specific value, Id element must also be given.

CHAE Jung Kyu – Doctoral thesis - 2014

65

Figure 4.15 Data extraction with keyword

For example, two keywords are given as follows:

1) Keyword1 = (Parameter = GeneralTechParams)

2) Keyword2 = (Parameter = Tools, Key = designcompiler_synthesis)

The first keywords give only GeneralTechParams as Parameter element value. It

means that the given element identifies the total set of general technology parameters as

described in Figure 4.15. The second keyword gives two elements’ values: Tools and

designcompiler_synthesis. The first one represents the Parameter element and the second

one the Key. These values indicate Design Compiler tool in the tool set as depicted in Figure

4.15. As a consequence, the keywords enable to know where the desired data are located in

the specification to selectively access them.

4.4.2 Task-based Keywords for Efficient Data Extraction

The tasks for library development necessitate various data from the specification. The

library developer must collect them before executing each task. However, this data

preparation is a bottleneck in library development because he has difficulties in collecting

only data relevant to the target task. To address these difficulties, we propose task-based

keywords that enable to get the required data for executing a task without having knowledge

about the relationship between the task and specification data. For this purpose, we must first

CHAE Jung Kyu – Doctoral thesis - 2014

66

explicitly define this relationship. However, no way is available to efficiently represent it so

far. The aforementioned keywords are therefore used for the relationship definition.

In order to identify all data related to a task, several keywords can be given by:

 (4.2)

Where: m is the number of necessary keywords

These keywords permit to link the task with specification data. For instance, to define

the relationship between the timing model generation for standard cells and a collection of

specification data including a set of PVT corners, design kit, etc., the keywords can be given

as follows:

The first keyword represents a set of PVT corners for standard cells. The second one

represents a design kit. These data are needed to perform the timing model generation. Unlike

these keywords, the four last keywords are also given to specify the views and design flows

related to the task. Specifically, the timing model generation task relates to the creation of the

Liberty library (.lib) and the compiled library (.db). In addition, these views are required for

Front-End and Sign Off stages in the SoC design flow. Consequently, we can easily define the

relationship between the tasks and specification data by using keywords.

4.5 Validation of the Specification

The reference-based method may help to reduce possible specification errors by

providing the predefined information such as parameter list and available parameter values

CHAE Jung Kyu – Doctoral thesis - 2014

67

during the creation of the specification. However, it is difficult to guarantee the correctness of

the information determined by specification developers. For this reason, after its creation, a

post-validation is highly required to ensure the reliability of the information. Thus, two

methods are discussed in this subsection.

1. Using the relationship of data objects

 Consistency check of specification data

As mentioned above, the relation between the independent data objects were created

by their common element so that the check can be carried out by verifing this element. For

instance, we can verify if the slopes are well defined for all PVT corners by comparing the

given PVT names in PVTs data object with those of Characterization Parameters data

object for the consistency check. To illustrate another important example, Design Flows data

object can be linked to Tools and Views data objects via ToolKey and ViewKey respectively

as described in Figure 4.6. Performing a design step requires at least one view and one tool.

Thus, more than one concerned ToolKey and ViewKey for each step must be defined. It

permits to check the consistency of the tool and view information from the point of view of

the design flow. In other words, we can verify if all tool and view information is well defined

in the specification to support all required design flows.

2. Using the rule

 Correctness check of identifier naming

We presented the name element and key attribute to identify a parameter. To assign

them in a unified way, the naming rule must be determined. For example, the PVT name is a

concatenation of all essential elements of PVT corner like

‘Process_Voltage_GND_Temperature_Age’. According to this naming rule, a PVT name

should be given for each PVT corner. After finishing the definition of all PVT corners, their

name must be verified according to this rule.

 Correctness check of the parameter value

CHAE Jung Kyu – Doctoral thesis - 2014

68

The parameter value verification is a delicate and complex task because it inevitably

requires the deep analysis on the characteristics of parameter value. Firstly, we should check

the data type of parameter value. For instance, the data type of slopes and capacitive loads

should be checked as a positive float. Secondly, the given parameter value can be verified by

using the rule to determine its value. For example, the tool version is differently assigned

according to the strategy of the tool developer as shown in Figure 4.16. Since the tool version

given by the specification developer may create compatibility problems due to wrong

versioning, we need to verify it to provide the correct one. One of the solutions is to compare

the tool version of the new specification with that of the previous one as a reference to detect

an error. It can be performed by checking if it is greater than or equal to the previous one

because the tool version tends to increase numerically or alphabetically when updating the

specification.

Figure 4.16 (a) simple tool versioning with numerical increment (b) simple tool versioning

with numerical and alphabetical increments (c) complex tool versioning

4.6 Validation of the Library against the Specification

The generated library package must be verified before its delivery to customers in

order to ensure its quality. The most efficient and effective way to validate the library is to

check it against the specification given for its production.

Table 4.2: Library checklist

CHAE Jung Kyu – Doctoral thesis - 2014

69

Library Check List Specification data Library view

Completeness
Technology

Views All library views

Compatibility Tools All library views

Correctness View attributes Liberty library view

As given in Table 4.2, the library checklist consists of three checks: completeness,

compatibility and correctness.

 Completeness of the library

The library views should be created according to the lists of library views and PVT

corners provided by the specification. Thus, the completeness of the library can be achieved

by simply verifying if all required library views exist on the given view path.

 Compatibility between the library view and CAD tool

The library package must provide system designers with a complete set of library

views to support their design flow. When using library files, they should not have

compatibility problems with CAD tools. It means that their syntax must be correct to be

readable by the tools. Such problems can be detected by reading each library file with CAD

tool given in the specification.

 Correctness of the library view

 The correctness check verifies the library view with respect to its syntax but not

contents. One of the ways to verify the correctness of the library view is to check if its

specific attributes provided by the specification are correctly defined. Now, there are only

view attributes for Liberty library.

4.7 Conclusion

In this chapter, we have proposed an appropriate data model to represent the

specification containing all target information from technology-dependent parameter to

design flow information. To efficiently cope with these specification data, we also introduced

CHAE Jung Kyu – Doctoral thesis - 2014

70

two approaches from two different perspectives: specification developers and library

developers. One is the reference-based method to create a complete and consistent

specification having a huge amount of data. Another is the task-based keywords to quickly

and precisely extract the desired data from the proposed specification according to the target

task. Finally, the validations for the specification and the library have also been discussed. In

the next chapter, we present an XML-based specification language to represent our target

specification as well as a specification platform to efficiently deal with it by the proposed

methods.

CHAE Jung Kyu – Doctoral thesis - 2014

CHAE Jung Kyu – Doctoral thesis - 2014

71

5. Specification
Platform

Contents
5.1 Introduction ... 71

5.2 LDSpecX: Library Development Specification based on XML 72
5.3 Specification Creation Tool ... 73

5.3.1 XML-based Reference Database .. 74
5.3.2 User-friendly GUI for Specification Creation .. 76

a) Specification creation flow ... 76

b) User-friendly GUI .. 78

5.4 API for Specification Data Extraction ... 82
5.4.1 Library Development Task Definition ... 82
5.4.2 Specification Data API ... 84
5.4.3 Library Verification Tool using the API .. 86

5.5 Conclusion ... 87

5.1 Introduction

The previous chapter was dedicated to analyze the specification data for library

development and then to propose a suitable data model for representing it. Additionally, two

methods were introduced to create a complete and consistent specification and to precisely

extract data from it according to the target task. In addition to these methods, the verifications

of the specification and library were also presented.

In this chapter, we first present an XML-based specification language to encapsulate

all required information for library development by using the proposed data model. Then, we

introduce a specification platform that consists of several tools for creating specifications,

extracting data and verifying the library.

CHAE Jung Kyu – Doctoral thesis - 2014

72

5.2 LDSpecX: Library Development Specification based on XML

In the previous chapter, we presented a hierarchical data model to encapsulate a

variety of data. By using it, we would like to propose an XML-based specification. One of the

most interesting features of XML is machine-readability. It enables to transmit data to the

library development system. In other words, the automation of data processing is easily

achievable. Furthermore, the specification language facilitates building a database and dealing

with it thanks to the unified format. From the conceptual data model in the previous chapter,

Library Development Specification based on XML (LDSpecX) was proposed [108]. This

specification language allows defining all necessary information in a unique XML file.

Figure 5.1 shows its schema which corresponds to that in Figure 4.10. This XML schema

represents the structure of our XML-based language and details the syntax and semantic rules.

Specifically, LDSpecX provides seven top level elements that correspond to the data objects

in Figure 4.6 respectively: GeneralTechParams, SpecificTechParams, PVTs,

CharacParams, Tools, Views and DesignFlows. In order to create a complete specification,

the specification developers must define all indispensable parameters of every top level

element using LDSpecX. Additionally, the identifier attributes of the specification namely

LDSpecXName and LDSpecXversion should also be given.

Figure 5.1 Schema of LDSpecX

CHAE Jung Kyu – Doctoral thesis - 2014

73

To illustrate an example of the top level elements, the schema of

GeneralTechParams element is described in Figure 5.2 This schema details the organization

of the sub-elements and attributes. In addition, it can define the data type and the number of

element.

Figure 5.2 Schema of GeneralTechParams element

Figure 5.3 shows an example of defining a technology node named TechnoNode in

the GeneralTechParams element. It should be in accordance with its syntax given in Figure

5.2.

Figure 5.3 Example of GeneralTechParams element

In the same way, the whole schema of LDSpecX was defined in detail. It becomes the

foundation of the proposed XML-based specification language. Furthermore, the well-defined

XML schema can be used to validate the resultant XML document with Document Object

Model (DOM) parser or Simple API for XML (SAX) parser with respect to the syntax. As a

result, it helps to verify the completeness and correctness of the specification in LDSpecX.

5.3 Specification Creation Tool

Now, the specifications for advanced technology such as 28nm Fully Depleted

Silicon-on-Insulator (FDSOI) CMOS contain several thousand parameters. Especially, the

development of manufacturing and design methodologies may lead to increase the number of

CHAE Jung Kyu – Doctoral thesis - 2014

74

such parameters. We have to define all these parameters using our XML-based specification

language. However, although there are some useful editors to create XML documents like

Oxygen XML editor [114], they are not suitable to enter a large amount of data because all

data should be entered manually. Thus, we highly need an appropriate tool support to

efficiently create an LDSpecX-based specification.

This section describes a specification creation tool based on the reference-based

approach to create a complete and consistent specification [115]. It splits into two parts:

XML-based reference database construction and user-friendly graphic user interface (GUI)

development. This GUI enables specification developers to create specifications in LDSpecX

with the help of the reference database.

5.3.1 XML-based Reference Database

In the previous chapter, we presented two types of references to provide as much

predefined information as possible for specification creation: dictionary and list reference.

First of all, the reference database containing these references should be constructed. In this

thesis, in order to deal with data in a unified way, this database is also created by using XML.

Firstly, the schema of dictionary was made from its data model described in Figure

4.11. The resultant schema is represented in Figure 5.4.

Figure 5.4 Schema of dictionary

To illustrate how to define terms in the dictionary, Figure 5.5 gives the definition of

two terms. The first one represents a list of general technology parameters. The second one

gives all available values of the technology node as a general technology parameter. As

explained previously, we can obtain the information about the parameter list as well as

parameter values from this reference.

CHAE Jung Kyu – Doctoral thesis - 2014

75

Figure 5.5 Example of a dictionary

Secondly, the schemas of two list references for the tool and view have been made

from their own data model. Figure 5.6 describes the schema of tool list reference. As depicted

in this figure, the tool list reference can have more than one tool element having a tool key

attribute and a tool name.

Figure 5.6 Schema of tool list reference

Figure 5.7 gives an example of the tool list reference. This example includes two tool

elements for Design Compiler and an in-house tool named alto for the cell characterization.

Figure 5.7 Example of a tool list reference

CHAE Jung Kyu – Doctoral thesis - 2014

76

Finally, all necessary references were created by using XML according to their

proposed syntax. As a consequence, the XML-based reference database could be made up of

these references.

5.3.2 User-friendly GUI for Specification Creation

As mentioned above, most of XML documents are created entirely manually with text

editors. However, in our case, it is very difficult to use such existing tools for creating our

XML-based specification due to its high complexity. Thus, we intend to develop an

appropriate tool to create an LDSpecX-based specification. For this purpose, a systematic and

unified flow has first been proposed by using the reference database and then a user-friendly

GUI was developed.

a) Specification creation flow

Figure 5.8 Reference-based specification creation flow

CHAE Jung Kyu – Doctoral thesis - 2014

77

To begin with, the reference-based specification creation flow is described in Figure

5.8. This flow is divided into two main steps: fragment creation and specification creation.

Definition

Fragment

A fragment represents a section of the specification. This fragment

corresponds to the top-level element containing parameters of the same

category.

 Fragment creation

The fragment creation step can be accomplished by four sub-steps: fragment selection,

data entry page creation, data entry and fragment check.

 Fragment selection: The specification must split into several fragments because

the specification data should be gathered from several persons according to the

data category or different schedules. In other words, the specification creation is

a collaborative work. Thus, the specification developers should select one or

more concerning fragments to define the desired parameters.

 Data entry page creation: If the fragment is selected, the specification tool

acquires its parameter list from the reference database and then the data entry

page is dynamically created by the obtained parameter list.

 Data entry: The specification developer enters data on the data entry page with

the help of the reference database.

 Fragment check: The entered data are stored in a split XML file for each

fragment. The fragment file must be checked for the syntax and completeness.

The syntax check validates the created XML file against the schema of the

corresponding fragment by using DOM parser. The completeness check verifies

if all parameters have at least one value.

 Specification creation

To start the specification creation step, the fragment creation step should be repeated

until all required fragments are created. Then, this step can be carried out by fragment

combination and specification check.

CHAE Jung Kyu – Doctoral thesis - 2014

78

 Fragment combination: In this step, all created fragment files are merged into

an LDSpecX-based specification file by using an XSLT template and XSLT

processor [110].

 Specification check: After the fragment combination, we need to verify the

created specification. The specification check covers not only the syntax and

completeness but also the consistency and correctness. The syntax check can be

performed by validating the specification against the schema of LDSpecX with

DOM parser. The completeness check verifies if all fragments are given in the

specification. On top of that, the consistency and correctness check are also

added to verify the information in the specification as proposed in the previous

chapter. Finally, the LDSpecX-based specification can be validated thanks to

these checks. It significantly aids to guarantee the specification reliability by

comparison with its verification dependent only on the specification developers.

b) User-friendly GUI

In order to support the aforementioned flow, a user-friendly GUI was developed in

Python [109]. The GUI facilitates the creation of the LDSpecX-based specification.

Figure 5.9 (a) Specification information entry window (b) Fragment selection window

 Firstly, it can start with its name and version definition on the specification information

window in Figure 5.9 (a). Then, the proposed GUI provides a fragment selection window as

CHAE Jung Kyu – Doctoral thesis - 2014

79

shown in Figure 5.9 (b). Each specification developer is able to choose the desired section of

the specification by simply selecting one or more target fragments. According to the selected

fragments, the corresponding data entry pages having its parameter list obtained from the

reference database will be created. The data entry pages provide facilities to access the

references and to enter data. As we introduced the aforementioned specification creation

flows based on the dictionary and list references in Figure 4.14, there are two types of

fragments according to these flows. The data page of each type of fragment can be built by

using its related reference.

Figure 5.10 Data entry page of GeneralTechParams fragment

 To illustrate an example of the first type of fragment, the data entry page of General

Technology Parameters fragment is shown in Figure 5.10. The list of general technology

parameters can be obatined from the dictionary and then given on the data page. To define

each parameter, there are two ways. First, the find button allows accessing the dictionary to

get all possible parameter values from it by retrieval. The specification developer can select

CHAE Jung Kyu – Doctoral thesis - 2014

80

the desired values among them. For instance, all possible technology nodes can be displyed

on the dictionary window by clicking the find button as described in this figure. Then, we can

select one of them to give a technology node. Second, if the dictionary does not contain the

desired parameter value, a new value must directly be entered in the entry. If all paramters are

defined with these methods, the create&check button permits to create the fragment file and

to check it with respect to the syntax and completeness.

Figure 5.11 Data entry page of Tool List fragment

Figure 5.11 shows the data entry page of tool list fragment as the second type. This

fragment requires a complete list of tools. Thus, this list must be derived from the tool list

reference in order to construct its data entry page. Unfortuantely, due to its limited space, only

tool keys are displayed. However, clicking each tool key button allows showing its

identification information such as tool name. To complete this fragment, the appropriate tool

version for all tool keys must be given. Likewise, the create&check button creates the XML

file and verifies the resultant fragment file.

CHAE Jung Kyu – Doctoral thesis - 2014

81

Figure 5.12 Specification creation page

Figure 5.12 descirbes the specification creation page. The create button at the bottom

allows finding all created fragment files and creating an LDSpecX-based specification by

merging them. After the specification creation, the check button permits to check the

specification file for its syntax, completeness, consistency and correctness.

As described above, the parameters to define in the specification rely greatly on the

references because the data entry page provided by the GUI is flexibly established depending

on which parameters are derived from the reference database. In other words, the proposed

GUI can be customized by the specification developers by simply updating the references. For

this purpose, it also offers the end-users the ability to access the reference and to update it.

For instance, Figure 5.13 shows the dictionary edit page. As shown in this figure, all terms of

the dictionary are listed in the left box. After selecting the desired term name, all possible

term values will be displayed in the right box by clicking the Get Value button. The entry

CHAE Jung Kyu – Doctoral thesis - 2014

82

boxes at the bottom of the page are provided to add a new term or a new term value to the

dictionary. It enables to enrich the dictionary.

Figure 5.13 Dictionary edit page

5.4 API for Specification Data Extraction

This section introduces a simple API for data extraction from the LDSpecX-based

specification. It depends on the keywords to identify specification data as proposed in the

previous chapter.

5.4.1 Library Development Task Definition

The specification creation was presented previously by using GUI. It corresponds to

the specification phase in the library development process. Since the specification is now

available, the library developers are able to perform the subsequent phases from design to

validation. Each phase can be divided into several steps that represent a sequence of tasks. For

CHAE Jung Kyu – Doctoral thesis - 2014

83

example, the design phase contains Front-End (FE) and Back-End (BE) view generation

steps. The FE view generation step contains a timing model generation task. This task can be

performed by timing characterization and timing modeling. However, the granularity of the

task may be different according to the library category because the methods to perform the

task depend on the features of the library cell. For instance, the cell characterization method is

not the same for standard cells as that for memories. As a result, the required specification

data depends on the library category. Thus, we need to define the library development tasks

for each library category separately. Figure 5.14 (a) visualizes the schema of the library

development flow. As shown in this schema, we can differentiate a set of steps by the library

category. Furthermore, as mentioned earlier, a wide range of specification data is required for

executing the task and thus, the task-based keywords were proposed in the previous chapter.

Figure 5.14 (b) shows how to define the relationship between task and data by using these

keywords. This element may have more than one selector element, which permits to

encapsulate task-based keywords.

Figure 5.14 (a) Library development flow (b) Task

To give an example of the task definition, Figure 5.15 represents how to define a

timing model generation task for standard cell library by using selectors to identify the

specification data. In this example, the first selector gives keywords to identify a set of PVT

CHAE Jung Kyu – Doctoral thesis - 2014

84

corners for standard cell library. The second and third selectors give keywords to identify a

characterization tool and tool configuration parameters for timing characterization

respectively. In the same way, all library development tasks over library categories can be

predefined as a function of keywords and stored in an XML file.

Figure 5.15 Example of a library development flow for standard cell library

5.4.2 Specification Data API

The specification data API was developed in Perl [111]. This API allows accessing the

LDSpecX-based specification database to obtain data from it as described in Figure 5.16. In

order to apply the proposed method, the aforementioned library development flow was

written in an XML file.

Figure 5.16 Overview of the API

CHAE Jung Kyu – Doctoral thesis - 2014

85

The API provides two fundamental functions as follows:

1) getSpecData (specification, keyword): returns data (list of strings) derived from

the selected LDSpecX-based specification (XML file) by using the given keyword

(string).

2) getFlowInfo (library category, task): returns keywords (list of string) from the

library development flow according to the given library category (string) and task

(string).

Additionally, by using these functions, a function to extract data depending on the

desired task is also provided as below:

3) getSpecDataViaFlow (specification, library category, task): returns all necessary

data (list of string) from the LDSpecX-based specification (XML file) for the

target task (string).

Figure 5.17 describes the data extraction flow by using the task-based keywords. First,

the keywords are gathered from the flow file. Second, by using these keywords, the data are

derived from the specification database.

Figure 5.17 Data extraction flow by using task-based keywords

CHAE Jung Kyu – Doctoral thesis - 2014

86

To give an example of using the task-based keywords, the library developer needs the

tool information for executing a task. At STMicroelectronics, tools’ name and version should

be written in a specific file named .ucdprod that is employed to load them. However, when

such information is collected manually without knowing the required tools for a target task,

redundant tools can be given in this file. As a result, it may cause a compatibility problem

when loading them at the same time. On the contrary, by using the proposed method, we can

get only minimal necessary tools. Thus, it not only gets tool information in an efficient way

but also addresses the compatibility problems.

In summary, the API offers efficient functions for data extraction according to the

needs of library developers. Fundamentally, it permits any user to selectively extract the

desired data by giving a keyword. In addition, the task-based keywords permit to precisely

identify only the data needed for executing the chosen task and quickly get them. Therefore, it

is very useful for library developer to accomplish his tasks without having a good

understanding of the relationship between the specification data and library development task.

Furthermore, the data extracted from the given specification for task execution often

need to be rewritten in accordance with the specific syntax of the tool. In order to automate

this process, we also developed specific generators in Perl integrating the functions provided

by the API into them. These generators facilitate to produce the machine-readable files where

specification data are given. Thus, they enable library developer to accomplish his target task

more smoothly. For example, in order to automatically generate the aforementioned file

(.ucdprod), a generator named genucdprod was developed. It allows extracting the tool

information by using the API according to the selected target and rewriting it by following its

syntax.

5.4.3 Library Verification Tool using the API

As stated in the previous chapter, three basic checks against the specification were

remarked: completeness, compatibility and correctness.

The compatibility check can be performed using the existing library verification tool

and the tool information obtained by the API. On the contrary, for completeness and

correctness checks, we have to develop a verification tool because the existing one is not able

to cover them. Thus, a supplementary verification tool was developed in Perl. It aims at

CHAE Jung Kyu – Doctoral thesis - 2014

87

verifying the resultant library against the specification with respect to the completeness and

correctness. The verification can be achieved by deriving the specification data related to each

check as given in Table 4.2 via the API. The completeness check needs a library view list and

PVT corners for the related library category. The correctness check requires attributes of the

generated library view. Finally, this tool may improve the quality of the library by enforcing

the library check against the specification. Additionally, this tool also shows how to apply the

capabilities provided by the API.

5.5 Conclusion

In this chapter, we have presented an XML-based specification language named

LDSpecX to represent the specification for library development. Furthermore, an LDSpecX-

based specification platform was introduced by using the methods proposed in the previous

chapter. This prototype consists of two main components: a specification creation tool with

user-friendly GUI and a specification data API. In the next chapter, we demonstrate the

development of a standard cell library from an LDSpecX-based specification by using the

developed specification platform.

CHAE Jung Kyu – Doctoral thesis - 2014

CHAE Jung Kyu – Doctoral thesis - 2014

88

6. Experiments

Contents
6.1 Introduction ... 88
6.2 Library Development from the Specification .. 88

6.2.1 Specification Creation .. 88
6.2.2 Library Development from the Specification ... 91

6.3 Evaluation .. 95

6.3.1 Specification Evaluation against Five Requirements ... 95
6.3.2 Specification Data Processing .. 96

6.4 Conclusion ... 97

6.1 Introduction

We have presented in the previous chapter a XML-based specification language

named LDSpecX. This specification language enables specification developers to define all

necessary information for library development. Furthermore, a specification platform was

developed to collaboratively create a complete and consistent specification as well as to

efficiently extract specification data from it.

This chapter introduces the development of a standard cell library by using the

proposed specification platform. Experimentally, a specification with 28nm FDSOI CMOS

technology is first created in LDSpecX through the GUI. Then, we show the development of a

standard cell library from this specification by using the API. Thus, a standard cell library is

developed according to the library development process from the specification creation to the

library validation presented in the chapter 2.

6.2 Library Development from the Specification

6.2.1 Specification Creation

The specification must provide every library developer with complete information to

develop his target libraries or IPs. The specification data may increase by the supported

CHAE Jung Kyu – Doctoral thesis - 2014

89

library categories. For example, we need a set of PVT corners for each supported library

category such as standard cell library and I/O library. In these experiments, we focus only on

the standard cell library to reduce the quantity of data. The specification for developing a

standard cell library with 28nm FDSOI CMOS technology was created by using LDSpecX

with the help of the GUI of the specification platform according to its process presented

earlier.

The specification creation phase can be achieved by the fragment creation and

fragment combination. Firstly, we create all fragments of the specification. To create each

fragment, the information about its parameters is gathered from the reference database as well

as information owners. After consecutively creating all necessary fragments, they are merged

into a specification in LDSpecX. Then, the created specification is verified.

Figure 6.1 Screenshot of specification check report

CHAE Jung Kyu – Doctoral thesis - 2014

90

In conclusion, the target specification was created and checked via the GUI. Figure 6.1

shows the obtained check report for five checks: specification creation, completeness, syntax,

consistency and correctness. The first check has verified the existence of the specification file.

The completeness check has identified all included fragments. The syntax check has validated

the LDSpecX file against its schema by using DOM parser. The consistency check has

verified the consistency between PVTs fragment and CharacParams fragment via PVT

name and that between Tools, Views and DesignFlows fragments via key attributes. Finally,

the correctness check has verified the PVT name and tool version by using their rule.

The resultant specification is compared with the traditional specifications that were

indeed written in natural language and tabular form by design platform developers. The

comparison results are given in Table 6.1. These results show the effectiveness of the

proposed GUI.

First, the total time consumed by the proposed method for the specification creation is

around 42 minutes. It is about 3 times faster than by traditional manual method even if much

more specification data were dealt with. This is the reason why the traditional methods to

define specifications depends entirely on human intervention. On the contrary, our user-

friendly GUI allows a high reduction of human interventions by providing many facilities to

enter data and to get the information from the reference database.

Second, these results also show that LDSpecX permits to provide richer information

than the traditional methods having missing parameters that are individually stored outside the

specification or are in the knowledge of library developers. These missing parameters such as

tool configuration parameters may provide abilities to allow the automatic tool configuration

without the help of tool developers.

Finally, even if it is difficult to quantitatively estimate the human-errors, the reduction

of potential errors may also be expected thanks to a unified specification instead of several

scattered ones and a centralized reference database. In addition, the specification verification

tool support also aids to reduce error like inconsistency.

CHAE Jung Kyu – Doctoral thesis - 2014

91

Table 6.1: Comparison of LDSpecX-based specification and traditional specifications

Information
Category Parameter

Number of parameters

Traditional
specifications LDSpecX

Technology

General Technology Parameter 6 9

Specific Technology Parameter 6 6

PVT 20 20

Characterization
Parameters

Characterization
reference - 13

Slope 240 240

Capacitive load 1136 1136

Tools
Tool 73 76

Tool Configuration Parameter - 449

Views
View 154 154

View Attribute 10 10
Design
Flows SoC Design Flow 3 3

Total number of parameters 1648 2116

Number of files
2 excel files

(5 spreadsheets),
3 word files

1 xml file

Creation time 2 hours 42 minutes

6.2.2 Library Development from the Specification

With the created specification, we can perform the next steps for library development.

We develop a standard cell library by using the developed API. In addition, as mentioned at

the beginning of the thesis, we focus only on the cell-independent information so that the

number of cells is not meaningful. For this reason, even though a standard cell library

generally contains several hundreds of cells, we used a small set of cells that consist of 11

combinational and sequential ones for our experiment. Likewise, only three of the twenty

PVT corners in the given specification are used to minimize the repetition of tasks.

Furthermore, we aim at generating all required library views to support the entire design flow

for Cadence and Synopsys. In these experiments, the library development starts with FE view

generation by using BE database of the library including layout, Spice netlist and so on. Table

6.2 summarizes the target tasks with the specification data as input and the library views as

CHAE Jung Kyu – Doctoral thesis - 2014

92

output for developing our test library. In consequence, it can be considered as a scenario of

these experiments.

Table 6.2: Summary of input and output for library development tasks

Library
development

flow
Task

Input Output
(library views) Data group Specification data

Design
phase

NLDM
timing/power

model
generation

Technology

 General technology
parameters

 Specific technology
parameters

 PVT corner list
 Characterization

references
 Slopes
 Capacitive loads .lib files

Tools

 Characterization tool
 Spice simulator
 Design kit
 Tool configuration

parameters for
timing/power
characterization

Views Liberty view attributes

CCS timing
model

generation

Technology

 General technology
parameters

 Specific technology
parameters

 PVT corner list
 Characterization

References
 Slopes
 Capacitive loads .lib.gz files

Tools

 Characterization tool
 Spice simulator
 Design kit
 Tool configuration

parameters for CCS
timing/power
characterization

Views Liberty view attributes

CHAE Jung Kyu – Doctoral thesis - 2014

93

Verilog model
generation Tools

 Behavioral modeling tool
 Tool configuration

parameters for Verilog
modeling

.v file

Derivation
phase

Library
compilation

Technology PVT corner list

.db files
Tools

 View derivation tool
 Library compiler
 Design kit
 Tool configuration

parameters for library
compilation

LEF
generation Tools

 View derivation tool
 Calibre
 Design kit
 Tool configuration

parameter for lef
generation

.lef file

Cadence CAD
view

generation
Tools

 View derivation tool
 Calibre
 EDI
 ETS
 Virtuoso
 Conformal
 Incisive
 Design kit
 Tool configuration

parameter for Cadence
view generation

OA layout,
symbol,
abstract,

schematic

Synopsys
CAD view
generation

Tools

 View derivation tool
 Milkyway
 IC compiler
 Design compiler
 Design kit

Cell view,
FRAM view

files

Library
verification

phase

Completeness
check

Technology PVT corner list

reports1

Tools Library verification tool

Views View list

Correctness
check

Tools Library verification tool

Views Liberty view attributes

1 These reports give the check results of the library but are not included in the library package.

CHAE Jung Kyu – Doctoral thesis - 2014

94

According to the flow described in Table 6.2, all tasks were executed to produce the

rest of the contents of the library. All necessary specification data for each task are given in

this table. By using the aforementioned generators, the necessary input data were derived

from the given specification and the tool input files could be produced with obtained data. For

example, NLDM timing/power model generation requires technology parameters, tool

parameters and view attributes as shown in Table 6.2. To execute this task, two tool input

files are required. The first file (.ucdprod) gives a characterization tool, Spice simulator and a

design kit with their proper version to load them correctly. The second file includes all

technology parameters, tool configuration parameters and view attributes so as to provide

process parameters for cell characterization and to set up the configuration of the

characterization tool. These input files could be generated by using their specific generator.

During design and derivation phases, 86 library views were obtained to produce a

complete library package. This library package must be verified. Thus, the library verification

tool based on the functions of the API is used to achieve this objective. This verification

phase consists of the following:

 Firstly, the library package is checked if it contains all mandatory library views. Using

PVT corner list and view list derived from the specification, the complete view list

could be reestablished. The library is checked by comparison with this view list. For

instance, Liberty library containing both timing and power models has to be made for

each PVT corners. As mentioned above, we use three PVT corners

(ff28_1.30V_0.00V_125C, tt28_0.92V_0.00V_25C, ss28_0.80V_0.00V_125C). As a

result, the final library package must be checked if it includes as many views as the

number of PVT corners as described below:

a) C28SOI_SC_12_CORE_LR_ff28_1.30V_0.00V_125C.lib

b) C28SOI_SC_12_CORE_LR_tt28_0.92V_0.00V_25C.lib

c) C28SOI_SC_12_CORE_LR_ss28_0.80V_0.00V_125C.lib

 Likewise, the correctness check is carried out by using the view attributes obtained

from the given specification. In these experiments, only Liberty view attributes were

dealt with. However, according to the availability of the view attributes in the

specification, this check may be extended to cover other views.

CHAE Jung Kyu – Doctoral thesis - 2014

95

Finally, the standard cell library including a complete set of views is developed and

checked with the LDSpecX-based specification. By using our method, the total time

consumption to extract data for all tasks is approximately inferior to 3 minutes compared to 4

hours by using the traditional (semi-manual) method. In addition to the time saving, the

proposed method allows to interactively extract the desired data whereas the traditional one

does not permit it.

6.3 Evaluation

A standard cell library was experimentally developed to evaluate the LDSpecX-based

specification and its platform.

6.3.1 Specification Evaluation against Five Requirements

In the chapter 4, the requirements of the specification for library development were

discussed to propose a novel specification instead of the current ones. Now, we need to verify

whether the LDSpecX-based specification coincides with them.

 Formality: LDSpecX as an XML-based language allows to unify forms of the current

specifications that represent the combination of natural language and tabular forms. In

addition, this data model enables to represent the specification encapsulating a large

variety of data in a unified way. We are thus able to define more than two thousands

parameters by using LDSpecX.

 Consistency: In the data model of LDSpecX, the duplication of data is minimized

except for the common elements like PVT name to represent the relationship between

data. At the end of the specification creation, we have also checked the consistency of

these common elements by the help of the checks provided by the platform. In

addition, since the specification platform provides every specification developer with

the same information from a unique reference database, it may help to ensure the

consistency of the specifications.

 Completeness: The completeness can be evaluated from two points of view: missing

parameter and missing parameter value. Firstly, since we get a complete list of

parameters from the reference database, there are few possibilities to have missing

parameters. Secondly, the prototype provides the completeness check at the end of

CHAE Jung Kyu – Doctoral thesis - 2014

96

each step (fragment creation and specification creation) while creating a specification.

Fundamentally, this check verifies whether each parameter has at least one parameter

value. Consequently, a standard cell library has been successfully developed with the

given specification. It shows that the created specification in LDSpecX is complete to

provide all information for library development.

 Extensibility: The extensibility must be guaranteed because it is one of the most

important requirements for increasing data of the specification. The prototype

proposes two ways to extend specification data. One is to enrich the references so that

we can get more parameter information from them. Another is to provide possibilities

to define as many parameters as you need. In the case of PVT corner, it tends to

increase with the evolution of manufacturing technology as shown in the chapter 2.

Thus, these parameters can be totally given by the specification developer.

 Unambiguousness: The information defined in the traditional specification may be

ambiguous for library developers because each part can be made by different person

with his own method and knowledge. For this reason, different users could interpret it

differently. To address this issue, all references are centralized in a unique repository

shared with all specification developers. In addition, XML language encapsulates data

in tags which can also help to easily comprehend the contained information.

6.3.2 Specification Data Processing

The main goal of the prototype is to improve the existing automatic system for library

development by the top-down approach that smoothly translates data from the specification to

the system throughout the entire process. Indeed, a complete and consistent specification for

standard cell library with 28nm FDSOI CMOS technology was created using LDSpecX via

the GUI of the prototype. Then, a sequence of all necessary tasks for library development was

successfully accomplished with the help of the generators based on the API. These tools

allowed us to quickly and automatically generate tool input files containing necessary

specification data for the target task. Consequently, the experiments show that the API can

significantly help library developers to achieve their goal.

CHAE Jung Kyu – Doctoral thesis - 2014

97

6.4 Conclusion

In this chapter, we have introduced the library development process by using the

LDSpecX-based specification platform. A specification with 28nm FDSOI CMOS technology

was defined for a standard cell library development. Even if these experiments dealt with only

standard cell library, LDSpecX can cover other library categories by supplementing data for

each library category. In the afore-described experiments, we saw how to rapidly develop a

standard cell library from the LDSpecX-based specification with minimal human

interventions in comparison with the traditional manual methods. As a consequence, the main

contributions of the proposed prototype are not only to bridge the gap between the

specification and the system, but also to improve the productivity of the library. In the next

chapter, we conclude this thesis and give some perspectives for future work.

CHAE Jung Kyu – Doctoral thesis - 2014

98

7. Conclusion
and Perspectives

Contents
7.1 Conclusion ... 98

7.2 Perspectives ... 101

7.1 Conclusion

In this thesis, we presented a first attempt to deal with these inevitable problems

relevant to the specification representing the cell-independent information because it becomes

a significant bottleneck in library/IP development due to various factors; increasing needs of

system designers, technology scaling, developing design methodology, and so on. Especially,

the quantity of cell-independent information like PVT corners continuously increases with

technology scaling. It can be a pressing problem for library/IP providers to produce their

libraries with such information. Furthermore, the current specifications have some limitations

such as informality and inconsistency to use their information. Thus, the formalism of the

specification is firstly required because the well-formalized specification can enable end-users

to explicitly identify the desired information and to manage it.

Before formalizing the specification, several existing specifications have been

discussed with respect to the advantages of each form and the effectiveness of its data

extraction method. Two well-known traditional specifications in natural language and tabular

form were presented. Indeed, the current specifications of STMicroelectronics are also made

up of these forms. However, these specifications are not an adapted form to allow to cover

extending data because they require frequent modifications. For this reason, a novel approach

is greatly required. Two rising methods based on UML and XML that are employed

representing the system specification were introduced. The UML-based specification

represents visual models by using various graphical notations. On the contrary, the XML-

CHAE Jung Kyu – Doctoral thesis - 2014

99

based specifications like IP-XACT represents physical data model for modeling their

information by using an XML language. However, they deal only with the description of

systems or components until now so that it is difficult to apply them directly to our target

information. Thus, we need a novel specification to address the issues of the current ones.

In order to clarify the issues to address in this thesis, three key points needed to be

fully addressed. The first one relates to the formality and contents of the specification. The

remaining two are related to the management of the specification from the perspectives of

specification developer and library developer: specification creation and specification data

extraction. These questions were addressed and the main contributions were oriented towards

them:

 Unified specification for library development

We intended to propose an XML-based specification representing our target

information. Thus, we conducted the analysis of data that are required by library development

tools. That was the reason why it was necessary to identify all required data and to classify

them for constructing a complete unified specification. An appropriate data model behind

these observations was presented. By using this data model, a specification language based on

XML named LDSpecX was proposed. This language allows encapsulating complete

information for library development in a specification file.

 Efficient management of the specification

We introduced a reference-based method and task-based keywords to collaboratively

and rapidly create reliable specifications as well as to precisely and rapidly obtain the

specification data. Then, LDSpecX-based specification platform was built to implement the

proposed methods for dealing with the specifications. This platform provides a user-friendly

GUI and an API for creating specification and extracting data respectively. Figure 7.1

describes the developed specification platform. Additionally, a library verification tool based

on the API was developed for verifying the library.

CHAE Jung Kyu – Doctoral thesis - 2014

100

Figure 7.1 Overview of the specification platform

Finally, we detailed the experiments to show the entire development process by using

the developed prototype. An appropriate specification for standard cell library with 28nm

FDSOI CMOS technology was first created using LDSpecX through the GUI. Then, we

presented the development of a standard cell library including 11 combinational and

sequential cells using this specification. This library package contains 86 library views to

support all required design flows. These experiments show that the prototype significantly

facilitates the entire library development process. As a result, we can reduce time and effort

for library development. In addition, the proposed specification platform helps to remove

potential errors by providing a unique reference database and facilities for dealing with

specification data. Although only a standard cell library was dealt with experimentally, we

can use our proposal for all library categories to support all required libraries and IPs for the

design platform.

CHAE Jung Kyu – Doctoral thesis - 2014

101

7.2 Perspectives

First, one of the imminent tasks to be done is the specification-driven automatic tool

configuration. Even if we showed with a simple example, the automatic generation of tool

input files by using the API, it is highly required to extend this automation because the

library/IP developer often faces obstacles in adjusting the configuration of the system without

the awareness of the tool configuration parameters. Specifically, since the tool often has more

than one hundred parameters, it is very difficult for every end-user to perfectly take account

of them in order to execute his tasks. The specification-driven automatic configuration may

therefore ensure that the end-users are able to successfully attain their goals. Moreover it leads

to efficiently improve the productivity of the library/IP.

Second, we need to allow the traceability of the specification. After producing the first

version of the specification, it can usually be updated when receiving additional requests of

customers, releasing a new version of tool, and so on. The changed information must be given

in the new version of the specification. As a result of the update of the specification, the

contents of all related libraries and IPs should be reproduced completely or partially

depending on the impact of the changed information. In this case, generating only the

impacted library views helps to save time and effort. We can obtain the information about the

tasks to be executed in order to reproduce only the related views by reversely capturing the

task information with the help of the task-based keywords. This future work would allow

increasing the reusability of the existing library/IP package.

Third, we also presented our prototype to design platform developers, library

developers and in-house tool developers. They gave us some important feedbacks concerning

this prototype in order to improve it. The most important one is to reuse the existing

traditional specifications in natural language or tabular form. It can be very useful to create a

specification reusing the existing one. However, we need an efficient method that allows

capturing the information from these traditional documents to translate them into the

LDSpecX-based specification.

Finally, in this thesis, we focused on the specification for library/IP development. The

proposed specification and its platform can further be extended for SoC design by covering

the additional information such as library/IP package list that is only required to design a SoC.

For this purpose, we need to add a new branch corresponding to the added data category in

CHAE Jung Kyu – Doctoral thesis - 2014

102

the data structure of the specification without the modification of the existing one. The

specification platform can be supported to the extended specification by enriching the

reference and flow databases. This future work may greatly facilitate both library/IP

developers as well as system designers to get the desired data from the specification.

CHAE Jung Kyu – Doctoral thesis - 2014

CHAE Jung Kyu – Doctoral thesis - 2014

103

Bibliography

[1] G. E. Moore, "Cramming more components onto integrated circuit," Electronics, pp.

114-117, Apr. 1965.
[2] "International Technology Roadmap for Semiconductors, Executive summary," 2011.

[Online]. Available: http://www.itrs.net.
[3] J. P. Kent and J. Prasad, "Microelectronics for the real world: "Moore" versus "More

than Moore"," in IEEE Custom Integrated Circuit Conference, 2008.
[4] W. Arden, M. Brillouet, P. Cogez, M. Graef, B. Huizing and R. Mahnkopf, "More-than-

Moore," 2010. [Online]. Available: http://www.itrs.net.
[5] S. Borkar, "Design perspectives on 22nm CMOS and beyond," in Design Automation

Conference, 2009.
[6] C. Claeys, "Technological challenges of advanced CMOS processing and their impact

on design aspects," in International Conference on VLSI Design, 2004.
[7] S. Kawanaka, A. Hokazono, N. Yashutake, K. Tatsumura, M. Koyama and Y.

Toyoshima, "Advanced CMOS technology beyond 45nm node," in International
Symposium on VLSI Technology, 2007.

[8] S. H. Yang and et al., "28nm Metal-gate High-K CMOS SoC technology for high-
performance mobile applications," in IEEE Custome Integrated Circuits Conference,
2011.

[9] D. Sylvester and H. Kaul, "Future performance challenges in nanometer design," in
Design Automation Conference, 2001.

[10] B. Grundamann, R. Galivanche and S. Kundu, "Circuit and platform design challenges
in technologies beyond 90nm," in Design, Automation and Test in Europe Conference
and Exhibition, 2003.

[11] G. G. Gielen and W. Dehaene, "Analog and digital circuit design in 65nm CMOS: end
of the road?," in Design, Automation and Test in Europe Conference and Exhibition,
2005.

[12] G. E. Gielen, "Design methodologies and tools for circuit design in CMOS nanometer
technologies," in European Solid-State Circuits Conference, 2006.

[13] C. Hu, "New sub-20nm transistors - Why and How," in Design Automation Conference,
2011.

[14] J. Warnock, "Circuit design challenges at the 14nm technology node," in Design
Automation Conference, 2011.

[15] A. Chang, "Case study of a 65-nm SoC design," IEEE Design & Test of Computers, vol.
56, no. 2, pp. 14-19, Apr. 2009.

[16] P. E. Grnonowski, W. J. Bowhill, R. P. Preston, M. K. Gowan and R. L. Allmon,
"High-performance microprocessor design," IEEE Journal of Solid-State Circuits, vol.
33, no. 5, pp. 676-686, May 1998.

[17] T. Kitahara, "A clock-gating method for low-power LSI design," in Asia and South
Pacific Design Automation Conference, 1998.

[18] M. O. Sharker and M. A. Bayoumi, "A clock gated flip-fop for low power applications
in 90nm cmos," in IEEE International Symposium on Circuits and Systems, 2011.

CHAE Jung Kyu – Doctoral thesis - 2014

104

[19] M. H. Lin, C. C. Hsu and Y. T. Chang, "Recent research in clock power saving with
multi-bit flip-flops," in IEEE International Midwest Symposium on Circuits and
Systems, 2011.

[20] T. Karnik, S. Borkar and V. De, "Sub-90nm technologies-challenges and opportunities
for CAD," in IEEE International Conference on Computer Aided Design, 2002.

[21] D. J. Frank, R. Puri and D. Toma, "Design and CAD challenges in 45nm CMOS and
beyond," in IEEE International Conference on Computer Aided Design, 2006.

[22] T. Kam, S. Rawat, D. Kirkpatrick, R. Roy, G. S. Spirakis, N. Sherwani and C. Peterson,
"EDA challenges facing future microprocessor design," IEEE Transaction of Computer
Aided Design of Integrated Circuits and Systems, vol. 19, no. 12, pp. 1498-1506, Dec.
2000.

[23] "International Technology Roadmap for Semiconductors, Design," 2009. [Online].
Available: http://www.itrs.net.

[24] L. Xiu, VLSI Circuit Design Methodology Demystified: A Conceptual Taxonomy,
Willey, 2007.

[25] J. Borel, "System on a Chip (SoC) and design methodology challenges,"
Microelectronic Engineering, vol. 54, no. 1-2, pp. 15-22, Dec. 2000.

[26] H. Onodera, M. Hashimoto and T. Hashimoto, "ASIC design methodology with on-
demand library generation," in Symposium on VLSI Circuits Digest of Technical
Papers, 2001.

[27] H. Eriksson and P. Larsson-Edefors, "Full-custom vs. standard-cell design flow - an
adder case study," in Asia and South Pacific Design Automation Conference, 2003.

[28] R. Saleh, G. Lim, T. Kadowaki and K. Uchiyama, "Trends in low power digital system-
on-chip designs," in IEEE International Symposium on Quality Electronic Design,
2002.

[29] P. Magarshack and P. G. Paulin, "System-on-Chip beyond the nanometer wall," in
Design Automation Conference, 2003.

[30] M. Hashimoto, K. Fujimori and H. Onodera, "Standard cell libraries with various
driving strengh cells for 0.13, 0.18 and 0.35 µm technologies," in Asia and South
Pacific Design Automation Conference, 2003.

[31] B. Ren, A. Wang, J. Bakshi, K. Liu, W. Li and W. Dai, "A domain-specific cell based
ASIC design methodology for digital signal processing applications," in Design,
Automation and Test in Europe Conference and Exhibition, 2004.

[32] S. Wu, F. Wang and L. S. Juang, "Foundry's perspective of system integration: quality
design and time-to-volume," in IEEE International Symposium on Quality Electronic
Design, 2001.

[33] P. Royannez and et al., "A design platform for 90-nm leakage reduction techniques," in
Design Automation Conference, 2005.

[34] K. Kranen, "Electronic Design Automation (EDA) flow for development of an ARM
processor-based silicon-on-insulator (SOI) SoC," in IEEE International SOI
Conference, 2009.

[35] A. Chenouf, A. Slimane, M. L. Berrandjia, A. K. Oudjida, A. Smatti and L. Akak,
"Design-kit development based upon ISIT's CMOS 1µm process technology," in
International Multi-Conference on Systems, Signal, Devices, 2010.

[36] J. Dreesen, "Standard cell development flow," in Euro ASIC, 1990.
[37] J. W. Chong and R. G. Forbes, "Design of basic CMOS cell library," IEE Processings-

CHAE Jung Kyu – Doctoral thesis - 2014

105

G Circuits, Devices and Systems, vol. 139, no. 2, pp. 256-260, Apr. 1992.
[38] A. B. Jambeck, A. R. Mohd Noor Beg and M. R. Ahmad, "Standard cell library

development," in International Conference on Microelectronics, 1999.
[39] J. D. Djigbenou, T. V. Nguyen, C. W. Ren and D. S. Ha, "Development of TSMC

0.25µm standard cell library," in IEEE SoutheastCon, 2007.
[40] D. Bekiaris, A. Papanikolaou, G. Stamelos, D. Soudris, G. Economakos and K.

Pekmestzi, "A standard-cell library suite for deep-deep sub-micron CMOS
technologies," in International Conference on Design & Technology of Integrated
Systems in Nanoscale Era, 2011.

[41] J. K. Yuan, "Key to a successful cell library development: design methodology," in
IEEE ASIC Seminar and Exhibit, 1989.

[42] D. G. Baltus, T. Varga, R. C. Armstrong, J. Duh and T. G. Matheson, "Developing a
concurrent methodology for standard-cell library generation," in Design Automation
Conference, 1997.

[43] C. Bittlestone, A. Hill, V. Singhal and A. N.V., "Architecting ASIC libraries and flows
in nanometer era," in Design Automation Conference, 2003.

[44] "Liberty User Guides and Reference Manual Suite Version 2012.06," [Online].
Available: http://www.opensourceliberty.org.

[45] M. A. Cirit, "Characterizing a VLSI standard cell library," in Custom Integrated
Circuits Conference, 1991.

[46] B. Ackalloor and D. Gaitonde, "An overview of library characterization in semi-custom
design," in Custom Integrated Circuits Conference, 1998.

[47] J. B. Sulistyo and D. S. Ha, "A new characterization method for delay and power
dissipation of standard library cell," VLSI Design, vol. 15, no. 3, pp. 667-678, 2002.

[48] S. Sundareswaran, J. A. Abraham, R. Panda, Y. Zhang and A. Mittal, "Characterizing of
sequential cells for constraint sensitivities," in IEEE International Symposium on
Quality Electronic Design, 2009.

[49] U. Doddannagari, S. Hu and W. Shi, "Fast characterization of parameterized cell
library," in IEEE International Symposium on Quality Electronic Design, 2009.

[50] S. Miryala, B. Kaur, B. Anand and S. Manhas, "Efficient nanoscale VLSI standard cell
library characterization using a novel delay model," in IEEE International Symposium
on Quality Electronic Design, 2011.

[51] "CCS Timing Version 2.0 Technical White Paper," 2006. [Online]. Available:
http://www.opensourceliberty.org.

[52] T. E. Motassadeq, "CCS vs NLDM comparison based on a complete automated
correlation flow between primetime and hspice," in Saudi International Electronics,
Communications and Photonics Conference, 2011.

[53] J. Y. Lin, W. Z. Shen and J. Y. Jou, "A power modeling and characterization method
for the CMOS standard cell library," in International Conference on Computer-Aided
Design, 1996.

[54] R. Ramanarayanan, N. Vijaykrishnan and M. J. Irwin, "Characterizing dynamic and
leakage power behavior in flip-flops," in Annual IEEE International ASIC/SOC
Conference, 2002.

[55] W. Roethig, "Library characterization and modeling for 130nm and 90nm SoC design,"
in International SOC Conference, 2003.

[56] S. Chandrasekar and G. K. Varshney, "A comprehensive methodology for noise

CHAE Jung Kyu – Doctoral thesis - 2014

106

characterization of ASIC cell libraries," in IEEE International Symposium on Quality
Electronic Design, 2005.

[57] A. Wielgus and W. A. Pleskacz, "Characterization of CMOS sequential standard cells
for defect based voltage testing," in East-West Design & Test Symposium, 2008.

[58] J. P. Moreau, J. Borel and D. Samani, "European trends in library development," IEEE
Mirco, vol. 12, no. 4, pp. 43-53, Aug. 1992.

[59] Y. H. Poh, C. Y. Chew, K. L. Hoi and W. P. Soo, "Interoperable physical design
database between OpenAccess and Milkyway," in IEEE Asia Pacific Conference on
Circuits and Systems, 2010.

[60] B. Guan and C. Sechen, "Large standad cell libraries and their impact on layout area
and circuit performance," in IEEE International Conference on Computer Design: VLSI
in Computers and Processors, 1996.

[61] M. Rahman, R. Afonso, H. Tennakoon and C. Sechen, "Design automation tools and
libraries for low power digital design," in IEEE Dallas Circuits and Systems Workshop,
2010.

[62] L. W. Wang and H. W. Luo, "Automated IP quality qualification for efficient system-
on-chip design," in International Conference on Electronic Packaging Technology &
High Density Packaging, 2012.

[63] R. B. Lin, I. H. Chou and C. M. Tsai, "Benchmark circuits improve the quality of a
standard cell library," in Asia and South Pacific Design Automation Conference, 1999.

[64] J. Darringer and et al., "EDA in IBM: past, present and future," IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 19, no. 12, pp. 1476-
1497, Dec. 2000.

[65] A. Sangiovanni-Vincentelli, "The tides of EDA," IEEE Design & Test of Computers,
vol. 20, no. 6, pp. 59-75, 2003.

[66] A. Hemani, "Charting the EDA roadmap," IEEE Circuits and Devices Magazine, vol.
20, no. 6, pp. 5-10, 2004.

[67] D. MacMillen, M. Butts, R. Camposano, D. Hill and T. W. Williams, "An industrial
view of electronic design automation," IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 19, no. 12, pp. 1428-1448, Dec. 2000.

[68] R. D. Kilmoyer, D. J. Hathaway and A. M. Chu, "A reduced circuit library design
system," in IEEE Custom Integrated Circuits Conference, 1988.

[69] R. N. Rao, "An open environment for standard cell and gate array library development,"
in Euro ASIC, 1992.

[70] H. Onodera, A. Hirata, T. Kitamura and K. Tamaru, "P2Lib: process-portable library
and its generation system," in IEEE Custom Integrated Circuits Conference, 1997.

[71] J. Togni, F. R. Shneider, V. P. Correia, R. P. Ribas and A. I. Reis, "Automatic
generation of digital cell libraries," in Symposium on Integrated Circuits and Systems
Design, 2002.

[72] M. Hashimoto, K. Fujimori and H. Onodera, "Automatic generation of standard cell
library in VDSM technologies," in IEEE International Symposium on Quality
Electronic Design, 2004.

[73] Y. Jung, "Automated standard cell library generation & study of cell library functional
content," [Online]. Available: http://vlsicad.eecs.umich.edu.

[74] T. H. McFaul and K. Perrey, "Characterizing a cell library using ICCS," in IEEE ASIC
Seminar and Exhibit, 1990.

CHAE Jung Kyu – Doctoral thesis - 2014

107

[75] D. Patel, "CHARMS: characterization and modeling system for accurate delay
prediction of ASIC design," in IEEE Custom Integrated Circuits Conference, 1990.

[76] J. C. Herbert, "An integrated design and characterization environment for the
development of a standard cell library," in IEEE Custom Integrated Circuits
Conference, 1991.

[77] K. Anshumali, "ACC: automatic cell characterization," in Euro ASIC, 1991.
[78] C. S. Wu, L. C. Lin, D. Chou and K. C. Ting, "An automatic cell characterization

environment for cell-based design methodology," in IEEE International ASIC
Conference and Exhibit, 1993.

[79] A. J. Daga, L. Mize, S. Sripada, C. Wolff and Q. Wu, "Automated timing model
generation," in Design Automation Conference, 2002.

[80] R. I. K. and M. S. Bhat, "AutoLibGen: an open source tool for standard cell library
characterization at 65nm technology," in International Conference Electronic Design,
2008.

[81] S. Borkar, T. Karnik and V. De, "Design and reliability challenges in nanometer
technologies," in Design Automation Conference, 2004.

[82] S. Basu, P. Thakore and R. Vemuri, "Process variation tolerant standard cell lbirary
development using reduced dimension statistical modeling and optimization
techniques," in IEEE International Symposium on Quality Electronic Design, 2007.

[83] S. Pasricha, Y. H. Park, F. J. Kurdahi and N. Dutt, "Incorporating PVT variation in
system-level power exploration of on-chip communication architectures," in
International Conference on VLSI Design, 2008.

[84] I. G. Harris, "Extracting design information from natural language specifications," in
Design Automation Conference, 2012.

[85] R. Drechsler, M. Soeken and R. Wille, "Formal specification level: towards
verification-driven based on natural language processing," in Forum on Specification
and Design Language, 2012.

[86] K. Heninger, D. L. Parnas, J. E. Shore and J. W. Kallander, "Software requirements for
the A-7E aircraft," Naval Research Lab, 1978.

[87] C. Heitmeyer, J. Kirby and B. Labaw, "Tools for formal specification, verification, and
validation of requirements," in Conference on Computer Assurance, 1997.

[88] C. Heitmeyer, M. Archer, R. Bharadwaj and R. Jeffords, "Tools for constructing
requirements specifications: the SCR toolset at the age of ten," International Journal of
Computer Systems Science & Engineering, vol. 20, no. 1, pp. 19-35, 2005.

[89] W. Haas, S. Gossens and U. Heinkel, "Integration of formal specification into the
standard ASIC design flow," in International Symposium on High Assurance Systems
Engineering, 2002.

[90] A. Schneider, T. Bluhm and T. Renner, "Formal verification of abstract system and
protocol specifications," in IEEE/NASA Software Engineering Workshop, 2006.

[91] U. Pross, E. Markert, J. Langer, A. Richter, C. Drechsler and U. Heinkel, "A platform
for requirement based fomal specification," in Forum on Specification and Design
Languages, 2008.

[92] J. Rumbaugh, I. Jacobson and G. Booch, The Unified Modeling Language Reference
2nd ed., Addison Wesley, 2004.

[93] Q. Zhu, R. Oishi, T. Hasegawa and T. Nakata, "System-on-Chip validation using UML
and CWL," in International Conference on Hardware/Software Codesign and System

CHAE Jung Kyu – Doctoral thesis - 2014

108

Synthesis, 2004.
[94] L. S. Indrusiak and M. Glesner, "SoC specification using UML and actor-oriented

modeling," in International Baltic Electronics Conference, 2006.
[95] "ISO 8879:1986 Information processing - Text and office systems - Standard

Generalized Markup Language (SGML)," [Online]. Available: http://www.iso.org.
[96] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F. Yergeau and J. Cowan,

"Extensible Markup Language (XML) 1.1 2nd ed.," W3C Consortium, 2006.
[97] "XML Schema 1.0," W3 Consortium, [Online]. Available:

http://www.w3.org/XML/Schema.
[98] "IEEE Standard for IP-XACT, Standard Structure for Packaging, Integration, and

Reusing IP within Tool Flow," 2009. [Online]. Available: http://standards.ieee.org.
[99] C. K. Lennard and et al., "Industrially proving the SPIRIT consortium specifications for

design chain integration," in Design, Automation and Test in Europe Conference and
Exhibition, 2006.

[100] M. Zys, E. Vaumorin and I. Sobanski, "Straightforward IP integration with IP-XACT
RTL-TLM switching," 2008.

[101] A. Kamppi and et al., "Kactus2: environment for embedded product development using
IP-XACT and MCAPI," in Euromicro Conference on Digital System Design, 2011.

[102] C. Trummer and et al., "Searching extended IP-XACT components for SoC design
based on requirements similarity," IEEE System Journal, vol. 5, no. 1, pp. 70-79, 2011.

[103] E. Salminen, T. D. Hamalainen and M. Hannikainen, "Applying IP-XACT in product
data management," in International Symposium on System-on-Chip, 2011.

[104] M. Ma, L. Hedrich and C. Sporrer, "A machine-readable specification of analog circuits
for integration into a validation flow," in Forum on Specification and Design Language,
2011.

[105] M. Ma, M. Meissner and L. Hedrich, "A case study: automatic topology synthesis for
analog circuit from an ASDeX specification," in International Conference on Synthesis,
Modeling, Analysis and Simulation Methods and Applications to Circuit Design, 2012.

[106] M. Ma, L. Hedrich and C. Sporrer, "ASDeX: a formal specification for analog circuit
enabling a full automated design validation," Design Automation for Embedded
Systems, Jun. 2012.

[107] J. K. Chae, S. Bertrand, P.-. F. Ollagnon, P. Mougeat, J.-. A. François, R. Chotin-Avot
and H. Mehrez, "Efficient State-Dependent Power Model for Multi-bit Flip-Flop
Banks," in IEEE International Midwest Circuits and Systems Conference, 2013.

[108] J. K. Chae, P. Mougeat, J.-. A. Francois, R. Chotin-Avot and H. Mehrez, "A formalism
of the specifications for library development," in IEEE International System-on-Chip,
2013.

[109] "Python," [Online]. Available: http://www.python.org.
[110] "XSLT Version 1.0," W3 Consortium, [Online]. Available: http://www.w3.org/TR/xslt.
[111] L. Wall, T. Christiansen and J. Orwant, Programming Perl, 3nd ed., O'reilly, 2009.
[112] "OMG Unified Modeling Language (OMG UML) Superstructure Version 2.4.1,"

[Online]. Available: http://www.omg.org/spec/UML/2.4.1/Superstructure.
[113] W. Kruijtzer and et al., "Industrial IP Integration Flows based on IP-XACT Standards,"

in Design, Automation and Test in Europe Conference and Exhibition, 2008.
[114] "Oxygen XML Editor," [Online]. Available: http://www.oxygenxml.com.

CHAE Jung Kyu – Doctoral thesis - 2014

109

[115] J. K. Chae, P. Mougeat, J.-A. Francois, R. Chotin-Avot and H. Mehrez, "A reference-
based specification tool for creating reliable library development specifications," in
IEEE International New Circuits and Systems Conference, 2014.

[116] X. D. Xie, P. Li., A. W. Ruan, W. C. Li and W. Li, "Design and implementation of a
standard cell based programmable logic core," in International Conference on
Communications, Circuits, and Systems, 2009.

[117] P. Meinerzhagen, S. Y. Sherazi, A. Burg and J. N. Rodrigues, "Benchmarking of
standard-cell based memories in the sub-Vt domain in 65-nm CMOS technology," IEEE
Transactions on Emerging and Selected Topics in Circuits and Systems, vol. 1, no. 2,
pp. 173-182, June 2011.

[118] "Mentor Calibre," [Online]. Available: http://www.mentor.com.
[119] "Cadence OpenAccess," [Online]. Available: http://www.cadence.com.
[120] "Synopsys Milkyway," [Online]. Available: http://www.synopsys.com.

CHAE Jung Kyu – Doctoral thesis - 2014

110

Publications

 INTERNATIONAL CONFERENCES

[C1] J.K. CHAE, S. BERTRAND, P.-F. OLLAGNON , P. MOUGEAT, J.-A. FRANCOIS, R.
CHOTIN-AVOT and H. MEHREZ, "Efficient state-dependent power model for multi-bit flip-
flop banks," IEEE International Midwest Symposium on Circuits and Systems, Columbus,
USA, Aug. 2013.

[C2] J.K. CHAE, P. MOUGEAT, J.-A. FRANCOIS, R. CHOTIN-AVOT and H. MEHREZ,
"A formalism of the specifications for library development," IEEE International System-on-
Chip Conference, Erlangen, Germany, Sept. 2013.

[C3] J.K. CHAE, P. MOUGEAT, J.-A. FRANCOIS, R. CHOTIN-AVOT and H. MEHREZ,
"A reference-based specification tool for creating reliable library development specifications,
" IEEE International New Circuits and Systems Conference, Trois-Rivieres, Canada, Jun.
2014. (accepted)

 NATIONAL CONFERENCE

[C4] J.K. CHAE, P. MOUGEAT, J.-A. FRANCOIS, R. CHOTIN-AVOT and H. MEHREZ,
"Formalisme de la spécification de la plateforme de conception pour le développement de la
bibliothèque," 15ème Journées Nationales du Réseau Doctoral en Micro-nanoélectronique,
Grenoble, France, Jun. 2013.

CHAE Jung Kyu – Doctoral thesis - 2014

1

Résumé

1. Introduction
Gordon E. Moore a présenté la fameuse loi de Moore dans un article publié en

1965[1]. Cette loi prédit que le nombre de transistors des processeurs doublerait à coût

constant tous les deux ans. De nos jours, une autre tendance nommée ‘More than Moore’ pour

une diversification fonctionnelle, s’applique également. La figure 1.1 présente les diverses

applications des systèmes sur puce (System-on-Chip SoC) vis-à-vis de ces différentes

tendances.

Figure 1.1 ‘Moore’s law’ et ‘More than Moore’ dans l’industrie des semi-conducteurs

(source : ITRS)

Pour la conception de systèmes complexes, les fabricants de semi-conducteurs comme

STMicroelectronics, fournissent à leurs clients une plateforme de conception (Design

Platform DP) contenant tous les composants nécessaires comme des bibliothèques de cellules

et des blocs plus complexes (Intellectual Property IP). Afin d’améliorer la productivité, en

automatisant et sécurisant les processus de conception, de nouvelles approches sont

CHAE Jung Kyu – Doctoral thesis - 2014

2

nécessaires pour les concepteurs de systèmes et également pour les fournisseurs de

bibliothèques.

Dans cette thèse, nous proposons d’améliorer le développement de bibliothèques par

une meilleure formalisation des spécifications.

2. Développement d’une bibliothèque de cellules et
d’IPs à partir de la spécification de la plateforme
de conception

 La DP est une solution totale qui permet à une équipe de conception de produire un

système sur puce. La spécification de DP doit définir une large gamme d’informations depuis

les paramètres technologiques comme la nature du process, jusqu’aux conditions d’utilisation

telles que la tension et la température, en passant par l’information sur les outils de conception

(CAO) pour le développement de bibliothèques de cellules et d’IPs.

Le développement d’une bibliothèque est effectué en quatre phases comme l’illustre la

figure 2.1 : spécification, conception, dérivation et validation.

Figure 2.1 Flot de développement de bibliothèques (source : ST)

CHAE Jung Kyu – Doctoral thesis - 2014

3

 Pour automatiser ce flot, STMicroelectronics a un système automatique qui est

composé d’outils internes comme le montre la figure 2.2. Ces outils permettent d’exécuter

des tâches de générer des vues nécessaires et de les vérifier avec des données extraites des

spécifications.

Figure 2.2 Système automatique de développement de bibliothèques (source: ST)

D’autre part, les développeurs de bibliothèques/IPs ont de plus en plus de difficultés à

obtenir les données désirées à partir des spécifications existantes en raison de leur manque de

formalisme et leur complexité. Nous avons d’abord identifié les problèmes concernant le

contenu de la spécification et le traitement des spécifications par :

 Spécification

 Manque de formalisme

 Inconsistance

 Ambiguïté

 Information manquante

 Augmentation du volume de données

 Création de la spécification

 Manque d’une base de données de référence

 Manque d’un outil assistant de la spécification

 Manque de vérification de la spécification

CHAE Jung Kyu – Doctoral thesis - 2014

4

 Extraction des données de spécification

 Nécessité de méthodes efficaces et d’un outil pour l’extraction des données de

spécification

3. Etat de l’art

La spécification représente une collection d’informations pour effectuer une activité.

Plusieurs formes peuvent être utilisées pour définir cette spécification. Traditionnellement, les

spécifications sont écrites en langage naturel ou sous forme de tableaux. La méthode basée

sur le langage naturel est une méthode très courante pour définir l’information mais pour

avoir une forme non-ambiguë, il faut utiliser des phrases très simples et un vocabulaire limité.

D’ailleurs, pour effectuer l’extraction de l’information à partir de ce type de spécification, il

faut une bonne analyse sémantique [84], [85]. Par contre, la méthode basée sur des tableaux

permet de facilement étendre l’information et de rapidement l’extraire en identifiant les

colonnes et les lignes ou en utilisant des modèles. Cependant, ce type de spécification a

également quelques limitations comme l’indépendance des données [87], [88], [89], [90],

[91]. Récemment, deux spécifications basées sur le langage de modélisation unifié (Unified

Modeling Language UML) et le langage de balisage extensible (eXtensible Markup Language

XML) ont aussi été utilisées dans le domaine du système. L’UML basé sur les notations

graphiques fournit beaucoup d’expressions pour décrire la spécification d’un système mais il

représente un modèle conceptuel [94], [95]. L’XML permet d’enregistrer de nombreux types

de données en forme textuelle avec des balises. Donc, il est largement appliqué à divers

domaines grâce à ses nombreux avantages comme l’extensibilité, la portabilité et la lisibilité

par une machine. Par exemple, IP-XACT [98] et ASDeX [106] sont proposés pour représenter

la spécification d’IPs numériques et celle d’IP analogique respectivement à l’aide de XML.

Malheureusement, ces spécifications existantes ne peuvent représenter l’ensemble de nos

informations. Enfin, les spécifications actuelles de STMicroelectronics font appel au langage

naturel et aux tableaux selon les caractéristiques des données comme le montre la figure 3.1.

CHAE Jung Kyu – Doctoral thesis - 2014

5

Figure 3.1 Extrait des spécifications de plateforme de conception (source: ST)

En résumé, les avantages et les inconvénients de tous les types de spécifications sont

donnés dans le tableau 3.1 du point de vue de la modélisation des données et du traitement de

ces données. Dans ce tableau, un cercle vert indique que le type de spécification est adapté au

critère au contraire d’une croix rouge. D’après ce tableau, les spécifications de

STMicroelectronics basées sur le langage naturel et des tableaux, ont des avantages comme

l’extensibilité et la flexibilité pour la modélisation des données, ainsi que la facilité pour les

entrer et la lisibilité humaine pour les traiter. En revanche, elles ont des inconvénients comme

la manque de formalisme pour la modélisation et la difficulté d’extraire des données pour leur

traitement. C’est pourquoi nous proposons une spécification basée sur XML pour le

développement de bibliothèques car XML fournit le plus d’avantages pour encapsuler une

large gamme d’informations et facilement traiter des données.

CHAE Jung Kyu – Doctoral thesis - 2014

6

Table 3.1: Résumé des spécifications

Critères

Spécification
basée sur le

langage
naturel

Spécification
basée sur les

tableaux

Spécification
basée sur
l’UML

Spécification
basée sur
l’XML

Modélisation
des données

Formalisme

Extensibilité

Flexibilité

Expressivité

Disponibilité
de divers types

de données

Relation entre
les données

Traitement
des données

Facilité
d’entrer des

données
Facilité

d’extraire des
données

Lisibilité
humaine

Lisibilité par
machine

4. Méthodologies pour la spécification du

développement de bibliothèques

Nous proposons un formalisme de la spécification pour le développement de

bibliothèques. De plus, nous présentons deux méthodes pour la création de la spécification et

l’extraction des données.

 Formalisme de spécification

Pour formaliser les spécifications pour le développement de bibliothèques, il faut

d’abord établir un modèle de données approprié. C’est pour cette raison que nous avons

identifié et classifié toutes les données utilisées par les outils internes pour le développement

CHAE Jung Kyu – Doctoral thesis - 2014

7

d’une bibliothèque. La figure 4.1 représente les résultats d’analyse des données d’entrée des

outils. D’après ces résultats, toutes les données identifiées peuvent être classifiées en trois

groupes : paramètres d’outil, paramètres de vue et paramètres de technologie.

Figure 4.1 Résultats d’analyse des données d’entrée des outils (source : ST)

 En conséquence, nous avons proposé une taxonomie des données de la spécification

comme le montre la figure 4.2. Cette taxonomie est une fondation du modèle de données.

Figure 4.2 Taxonomie des données de la spécification

CHAE Jung Kyu – Doctoral thesis - 2014

8

A l’aide de cette taxonomie, nous avons établi un modèle de donnée approprié. Ce

modèle nous permet de représenter toutes les informations nécessaires pour le développement

de bibliothèques. La figure 4.6 donne tous les objets modélisant les données et leurs relations.

Figure 4.3 Données de la spécification et leurs relations

L’objet modélisant la donnée représente un ensemble de paramètres explicité dans la

figure 4.4 en utilisant un diagramme de classe UML. L’information sur un paramètre est

donnée par un nom et au moins une valeur. Ce modèle de donnée basique est utilisé pour

construire le modèle de donnée pour la spécification.

Figure 4.4 Objet de donnée

Il y a deux sortes d’ensembles de paramètres selon qu’ils soient sous-catégorisés ou

non. La figure 4.5 donne un exemple de ces deux sortes d’ensembles de paramètres. Le

CHAE Jung Kyu – Doctoral thesis - 2014

9

premier est un ensemble de paramètres généraux de technologie. Le deuxième représente un

sous-ensemble de paramètres spécifiques de technologie en fonction de la catégorie de

bibliothèque.

Figure 4.5 Exemples de (a) ensemble de paramètres non sous-catégorisé

(b) ensemble de paramètres sous-catégorisé

 D’autre part, pour définir un paramètre, nous proposons une méthode simple et unifiée

pour donner un nom et des valeurs. Il y a aussi deux sortes de paramètre selon qu’il a un

attribut clé ou non. Cet attribut est utilisé chez STMicroelectronics pour identifier un

paramètre au lieu du nom. La figure 4.6 donne des exemples de ces deux sortes de paramètres.

Le premier permet de donner un nom et au moins une valeur pour définir un paramètre

général de technologie. Le deuxième permet de donner un nom, une version comme valeur et

un attribut clé pour définir l’information d’un outil.

Figure 4.6 Exemples de (a) paramètre sans attribut clé (b) paramètre avec attribut clé

CHAE Jung Kyu – Doctoral thesis - 2014

10

 Méthode basée sur les références pour la création de la spécification

L’objectif de cette méthode est de créer une spécification consistante et complète en

fournissant autant d’informations prédéfinies que possible à partir d’une base de données de

références centralisée. Nous proposons deux modèles pour ces références : le dictionnaire et

la liste.

Premièrement, le dictionnaire contient une collection de termes contenant un nom et

des valeurs comme le montre dans la figure 4.7. Cette référence couvre le premier type de

paramètre en offrant la liste de paramètres et des valeurs possibles du paramètre.

Figure 4.7 Dictionnaire

 Deuxièmement, la liste vise à fournir une liste complète des paramètres avec leurs

attributs clés pour aider à définir le deuxième type de paramètres comme le montre dans la

figure 4.8.

Figure 4.8 Référence de liste

 La figure 4.9 illustre le flot de création des spécifications basées sur ces deux types de

références. Le premier flot à droite consiste à obtenir une liste de paramètres et leurs valeurs

possibles par recherche à partir du dictionnaire. Le deuxième flot à gauche consiste à obtenir

une liste complète de paramètres avec leur information d’identification à partir de la liste et

d’entrer la valeur du paramètre par le développeur de spécification. A la fin, toutes les

données obtenues sont définies dans une spécification.

CHAE Jung Kyu – Doctoral thesis - 2014

11

Figure 4.9 Création de la spécification basée sur les références

 Mots-clés basés sur les tâches pour l’extraction de données

Le développeur de bibliothèque doit exécuter des tâches pour développer une

bibliothèque. Une des difficultés les plus importantes est d’obtenir des données de la

spécification pour effectuer chaque tâche. Pour l’extraction de données à partir de la

spécification proposée, nous proposons d’abord d’utiliser des mots-clés. Ils peuvent se

représenter par un ensemble de quatre éléments : paramètre, catégorie, nom ou clé, et

identificateur (id).

Cet ensemble d’éléments permet d’identifier un paramètre ou un ensemble de

paramètres de la spécification selon les besoins de l’utilisateur. De plus, pour extraire les

données nécessaires pour une tâche à accomplir, nous proposons de définir la relation entre

les tâches et les données de la spécification en utilisant ces mots-clés. L’ensemble des mots-

clés pour une tâche peut être exprimé par :

CHAE Jung Kyu – Doctoral thesis - 2014

12

5. Implémentation : Plateforme de spécification

En utilisant le modèle de données présenté précédemment, nous avons développé un

langage de spécification basé sur XML nommé LDSpecX [108] ainsi que la plateforme de

spécification. Cette plateforme vise non seulement à créer une spécification consistante et

complète avec une grande quantité de données mais également à rapidement et précisément

extraire ces données selon la tâche à accomplir.

 Spécification basée sur XML pour le développement de bibliothèque (LDSpecX)

 Le langage de spécification LDSpecX est développé en proposant un schéma XML qui

représente sa syntaxe. Ce schéma est montré dans la figure 5.1. En utilisant ce langage, nous

pouvons définir toutes les données nécessaires pour le développement de bibliothèques.

Figure 5.1 Schéma de LDSpecX

 Création de la spécification

Nous avons proposé une base de données de références auparavant. Cette base de

données est construite en créant un dictionnaire et deux listes de référence pour les outils et

les vues. A l’aide de cette base de données, nous avons développé un outil pour la création de

la spécification [115]. En utilisant cet outil, une spécification en LDSpecX peut être créée en

suivant le flot donné dans la figure 5.2. D’abord, la spécification est divisée en plusieurs

CHAE Jung Kyu – Doctoral thesis - 2014

13

morceaux nommés fragments pour que les données d’une même catégorie soient collectées

indépendamment. Le flot est divisé en deux étapes. La première étape est de créer un

fragment de la spécification et de vérifier qu’il contient tous les paramètres. Cette étape doit

être répétée jusqu’à ce que tous les fragments soient créés. Après la création des fragments,

nous pouvons passer à la deuxième étape consistent à les combiner afin de produire une

spécification finale. A la fin de cette étape, nous vérifions que le résultat est complet,

consistant et correct. De plus, la syntaxe de la spécification est également vérifiée.

Figure 5.2 Flot de création de spécification basée sur les références

 Nous avons développé une interface graphique (Graphic User Interface GUI) en

Python qui permet d’accéder à la base de données de références pour obtenir les informations

prédéfinies. La figure 5.3 montre la page de saisie des données pour créer un fragment sur des

paramètres généraux de technologie à l’aide du dictionnaire. Premièrement, une liste de

paramètres est obtenue à partir du dictionnaire pour la faire apparaître sur la page de saisie des

CHAE Jung Kyu – Doctoral thesis - 2014

14

données. Deuxièmement, les valeurs de paramètres doivent être définies soit en les obtenant

directement à partir du dictionnaire, soit en les entrant manuellement.

Figure 5.3 Page de saisie des données pour des paramètres généraux de technologie

 La figure 5.4 montre la page de saisie des données pour définir l’information liée aux

outils à l’aide d’une liste de référence pour les outils. Ceci fournit une liste complète des

outils nécessaires avec leur clé et nom. C’est pour cela que le développeur de spécification

peut facilement définir toute l’information liée aux outils.

CHAE Jung Kyu – Doctoral thesis - 2014

15

Figure 5.4 Page de saisie de données pour l’information des outils

La figure 5.5 montre la page de création de la spécification en LDSpecX. Tous les

fragments obtenus à partir des étapes précédentes doivent être combinés pour générer une

spécification en LDSpecX.

Comme décrit précédemment, cette plateforme fournit aux développeurs de

spécification une base de données unique de références ainsi qu’un flot unifié. En

conséquence, elle peut aider à créer une spécification complète et consistante.

CHAE Jung Kyu – Doctoral thesis - 2014

16

Figure 5.5 Page de création de spécification en LDSpecX

 Extraction des données de la spécification

Nous avons développé une interface de programmation d’applications (Application

Programming Interface API) en Perl basée sur la méthode d’extraction de données vue

précédemment. D’abord, nous devons définir la relation entre les tâches et les données de

spécification en utilisant des mots-clés. Cependant, les données de spécification nécessaires

dépendent de la catégorie de bibliothèque. Pour cette raison, il faut définir les tâches pour le

développement de bibliothèques pour chaque catégorie de bibliothèque séparément comme le

montre dans la figure 5.6 (a). Chaque tâche peut avoir plus d’un sélecteur qui contient un mot-

clé pour faire le lien avec les paramètres de spécification comme l’illustre la figure 5.6 (b). En

utilisant ce schéma, des mots-clés pour toutes les tâches du flot de développement de

bibliothèques ont été prédéfinis et stockés dans un fichier XML.

CHAE Jung Kyu – Doctoral thesis - 2014

17

Figure 5.6 (a) Flot de développement de bibliothèques (b) Tâche

Après la création du flot, nous avons développé une API qui permet d’accéder à la base de

données de LDSpecX comme l’illustre la figure 5.7.

Figure 5.7 API

CHAE Jung Kyu – Doctoral thesis - 2014

18

Cette API fournit aux utilisateurs des fonctions pour extraire des données. Les deux

fonctions fondamentales sont :

1) getSpecData (spécification, mot-clé): renvoie les données obtenues à partir de la

spécification basée sur LDSpecX (fichier XML) utilisant un mot-clé donné (chaîne

de caractères).

2) getFlowInfo (catégorie de bibliothèque, tâche): renvoie les mots-clés à partir du

flot de développement de bibliothèques (fichier XML) selon la catégorie de

bibliothèque et la tâche (chaînes de caractères).

De plus, en utilisant ces fonctions, une fonction permettant d’extraire des données

selon la tâche désirée est également fournie :

3) getSpecDataViaFlow (spécification, catégorie de bibliothèque, tâche): renvoie

toutes les données nécessaires à partir de la spécification basée sur LDSpecX

(fichier XML) pour une tâche désirée (chaîne de caractères).

La figure 5.8 montre un flot pour l’extraction de données en utilisant des mots-clés

basés sur les tâches. Premièrement, les mots-clés sont collectés à partir du fichier de flot.

Deuxièmement, en utilisant ces mots-clés, les données peuvent être obtenues à partir de la

base de données de spécifications.

Figure 5.8 Extraction de données en utilisant des mots-clés basés sur les tâches

CHAE Jung Kyu – Doctoral thesis - 2014

19

 En utilisant les fonctions de l’API, nous avons développé des outils pour extraire des

données automatiquement et un outil de vérification de la bibliothèque par rapport à la

spécification.

6. Expérimentation

Expérimentalement, nous avons effectué le développement d’une bibliothèque de

cellules standard (portes logiques) à partir de la création d’une spécification jusqu’à la

validation de la bibliothèque en utilisant la plateforme de spécification présenté

précédemment.

Premièrement, nous avons créé, à l’aide du GUI, une spécification en technologie

28nm CMOS FDSOI pour la bibliothèque de cellules standard avec une réduction

considérable du temps de développement. Le tableau 6.1 donne un comparatif de la de

spécification basée sur LDSpecX avec les spécifications traditionnelles.

Table 6.1: Comparatif de la spécification basée sur LDSpecX avec les spécifications

traditionnelles

Catégorie
d’information Paramètre

Nombre de paramètres

Spécifications
traditionnelles LDSpecX

Technologie

Paramètre général de technologie 6 9

Paramètre spécifique de
technologie 6 6

PVT 20 20

Paramètres de
caractérisation

Référence de
caractérisation - 13

Pente 240 240
Charge

capacitive 1136 1136

Outils
Outil 73 76

Paramètre de configuration de
l’outil - 449

Vues
Vue 154 154

Attribut de la vue 10 10
Flots de

conception Flot de conception du SoC 3 3

CHAE Jung Kyu – Doctoral thesis - 2014

20

Nombre total de paramètres 1648 2116

Nombre de fichiers
2 excel fichiers
(5 feuilles), 3
word fichiers

1 xml fichier

Temps de création 2 heures 42 minutes

Deuxièmement, à partir de cette spécification, nous avons développé une bibliothèque

contenant 11 cellules combinatoires et séquentielles. Les tâches nécessaires ont été exécutées

en utilisant les outils internes et l’API. Cette API permet d’extraire les données nécessaires

beaucoup plus rapidement qu’avec la méthode traditionnelle (semi-manuelle). En

conséquence, 86 vues ont été produites. Finalement, la bibliothèque obtenue a été vérifiée par

l’outil de vérification développé à l’aide de l’API.

Enfin, cette plateforme aide à réduire le gap entre la spécification et le système

automatique actuel pour le développement rapide de bibliothèques.

7. Conclusion et perspectives

Dans cette thèse, nous avons proposé des méthodologies, des flots et des outils pour

formaliser les spécifications pour le développement de bibliothèques et la traiter efficacement.

Cette spécification vise à être utilisée comme une référence pour générer et valider des

bibliothèques (e.g. cellules standard, cellules d’entrée/sortie, mémoires, etc.) ainsi que des IPs

complexes (PLL, etc.)

Nous avons proposé une spécification unifié basée sur XML nommée LDSpecX. Ce

langage de spécification permet d’encapsuler toutes les informations nécessaires pour le

développement de bibliothèques de cellules et d’IPs. En utilisant LDSpecX, nous avons

également développé une plateforme de spécification. Cette plateforme nous permet de créer

une spécification consistante et complète en LDSpecX par un flot unifié et de précisément et

rapidement extraire les données nécessaires à partir de la spécification selon une tâche désirée

à l’aide des GUI et API respectivement. La figure 7.1 illustre la vue d’ensemble de la

plateforme de spécification.

CHAE Jung Kyu – Doctoral thesis - 2014

21

Figure 7.1 Plateforme de spécification

 Une principale perspective de recherche qui apparait à l’issue de cette thèse concerne

l’extension à la configuration automatique des outils pour couvrir le développement de toutes

les catégories de bibliothèques en plus des bibliothèques de cellules standard. En outre, la

traçabilité de la spécification serait efficace pour donner l’information détaillée sur le

changement des données. En utilisant les mots-clés basés sur les tâches qui définissent la

relation entre les tâches et les données de la spécification, nous pouvons facilement

reconnaître des tâches liées au changement de données. Cela permettrait d’effectuer

uniquement les tâches concernées pour produire une bibliothèque avec une nouvelle version

de la spécification. Par conséquence, ces perspectives de recherches pourraient

considérablement aider à améliorer la productivité du développement de bibliothèques. De

plus, la transformation des spécifications traditionnelles existantes en spécification basée sur

LDSpecX serait nécessaire du point de vue du développeur de spécification pour les réutiliser.

La spécification proposée et sa plateforme peuvent aussi être étendues pour la conception de

systèmes en couvrant les informations additionnelles comme, par exemple, la liste de

bibliothèques et d’IPs. Ce travail futur peut faciliter les développeurs de bibliothèque/IP ainsi

que les concepteurs de systèmes pour obtenir les données nécessaires à partir de la

spécification.

