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Thèse de doctorat

Soutenue le 30/10/2014 par

Li CAI

Condensation et homogénéisation
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Résumé

Dans le cadre des études de neutronique menées pour les réacteurs de GEN-IV, les
nouveaux outils de calcul des cœurs de réacteur sont implémentés dans l’ensemble du
code APOLLO3r pour la partie déterministe. Ces méthodes de calculs s’appuient sur des
données nucléaires discrétisées en énergie (appelées multi-groupes et généralement pro-
duites par des codes déterministes eux aussi) et doivent être validées et qualifiées par rap-
port à des calculs basés sur la méthode de référence Monte-Carlo. L’objectif de cette thèse
est de mettre au point une technique alternative de production des propriétés nucléaires
multi-groupes par un code de Monte-Carlo (TRIPOLI-4r).

Dans un premier temps, après avoir réalisé des tests sur les fonctionnalités existantes de
l’homogénéisation et de la condensation avec des précisions accrues, accessibles aujourd’hui
sur les machines actuelles, des incohérences sont mises en évidence. De nouveaux estima-
teurs de paramètres multi-groupes ont été développés et validés pour le code TRIPOLI-4r

à l’aide de ce code lui-même, puisqu’il dispose de la possibilité d’utiliser ses propres pro-
ductions de données multi-groupes dans un calcul de cœur.

Ensuite, le problème de l’aujourd’hui, notamment introduite par la fuite des neutrons
a été étudié. Une technique de correction de la diagonale de la matrice de la section
efficace de transfert par diffusion à l’ordre P1 (nommée technique IGSC et basée sur
une évaluation du courant des neutrons par une technique introduite par Todorova) est
développée. Une amélioration de la technique IGSC dans la situation où les propriétés
matérielles du réacteur changent drastiquement en espace est apportée. La solution est
basée sur l’utilisation d’un nouveau courant qui est projeté sur l’axe X et plus représentatif
dans la nouvelle situation que celui utilisant les approximations de Todorova, mais valable
seulement en géométrie 1D.

A la fin, un modèle de fuite B1 homogène est implémenté dans le code TRIPOLI-
4r afin de produire des sections efficaces multi-groupes avec un spectre critique calculé
avec l’approximation du mode fondamental. Ce modèle de fuite est analysé et validé
rigoureusement en comparant avec les autres codes : Serpent et ECCO ; ainsi qu’avec un
cas analytique.

L’ensemble de ces développements dans TRIPOLI-4r permet de produire des sections
efficaces multi-groupes qui peuvent être utilisées dans le code de calcul de cœur SNATCH
de la plateforme PARIS ou dans d’autres codes de coeur. Ce dernier utilise la théorie du
transport qui est indispensable pour la nouvelle filière à neutrons rapides. Les principales
conclusions sont :

- Le code de réseau en Monte-Carlo est une voie intéressante (surtout pour éviter les
difficultés de l’autoprotection, de l’anisotropie limitée à un certain ordre du développement
en polynômes de Legendre, du traitement des géométries exactes 3D), pour valider les
codes déterministes comme ECCO ou APOLLO3r ou pour produire des données pour les
codes déterministes ou Monte-Carlo multi-groupes.

- Les résultats obtenus pour le moment avec les données produites par TRIPOLI-4r

sont comparables mais n’ont pas encore vraiment montré d’avantage par rapport à ceux
obtenus avec des données issues de codes déterministes tels qu’ECCO.

Mots-clés : Monte-Carlo, condensation, homogénéisation, anisotropie, RNR
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Abstract

In the framework of the Generation IV reactors neutronic research, new core calcu-
lation tools are implemented in the code system APOLLO3r for the deterministic part.
These calculation methods are based on the discretization concept of nuclear energy data
(named multi-group and are generally produced by deterministic codes) and should be val-
idated and qualified with respect to some Monte-Carlo reference calculations. This thesis
aims to develop an alternative technique of producing multi-group nuclear properties by
a Monte-Carlo code (TRIPOLI-4r).

At first, after having tested the existing homogenization and condensation functional-
ities with better precision obtained nowadays, some inconsistencies are revealed. Several
new multi-group parameters estimators are developed and validated for TRIPOLI-4r code
with the aid of itself, since it has the capability to use its multi-group constants in a core
calculation.

Secondly, the anisotropy effect which is necessary for handling neutron leakage case is
studied. A correction technique concerning the diagonal line of the first order moment of
the scattering matrix is proposed. This is named the IGSC technique and is based on the
usage of an approximate current which is introduced by Todorova. An improvement of
this IGSC technique is then presented for the geometries which hold an important hetero-
geneity property. This improvement uses a more accurate current quantity which is the
projection on the abscissa X. The later current can represent the real situation better but
is limited to 1D geometries.

Finally, a homogeneous B1 leakage model is implemented in the TRIPOLI-4r code for
generating multi-group cross sections with a fundamental mode based critical spectrum.
This leakage model is analyzed and validated rigorously by the comparison with other
codes: Serpent and ECCO; as well as with an analytical case. The whole development
work introduced in TRIPLI-4® code allows producing multi-group constants which can
then be used in the core calculation solver SNATCH in the PARIS code platform or
any other deterministic code in principle. The latter uses the transport theory which is
indispensable for the new generation fast reactors analysis. The principal conclusions are
as follows:

- The Monte-Carlo assembly calculation code is an interesting way (in the sense of
avoiding the difficulties in the self-shielding calculation, the limited development order
of anisotropy parameters, the exact 3D geometries) to validate the deterministic codes
like ECCO or APOLLO3r and to produce the multi-group constants for deterministic or
Monte-Carlo multi-group calculation codes.

- The results obtained for the moment with the multi-group constants calculated by
TRIPOLI-4r code are comparable with those produced from ECCO, but did not show
remarkable advantages.

Key words: Monte-Carlo, condensation, homogenization, anisotropy, multi-group,
cross section, transport calculation, RNR.
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MM. Alain Hébert et Alexis Nuttin d’avoir lu consciencieusement ma thèse et de l’avoir
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General Introduction

The prediction from the International Energy Agency (IEA) points out that the world-
wide energy consumption will increase by 63%[10] between 2002 and 2030 because of the
population growth and increase in the living standards. Meanwhile, the gradual dwindling
of the fossil resources and the socio-political problems associated with carbon emissions
force us to search for other cleaner and efficient energy sources. An important effort is
being made to determine and develop the future of energy production. Renewable energies
such as solar and wind power have still low efficiencies and require large surface areas for
setup. Moreover, their integration into electricity grid is quite challenging due to their
intermittent availability requiring high storage and backup capabilities as well as �smart�
grid operations. Otherwise, fusion power is theoretically a good choice but is still far from
being operational.

In this important energy transition period, nuclear fission energy holds an important
place with two main advantages as follows: negligible greenhouse gas emissions, large and
regular production of electricity. The international community is aware of the important
role played by the nuclear fission energy. Well a dozen countries decided to work together
for developing the new generation nuclear fission reactors aimed at providing sustainable,
safer and efficient energy. Under this background, the fourth generation forum, created in
2000, is the first significant step towards Generation IV (GEN-IV)[46].

GEN-IV reactors aim to exhibit at least the same safety standards as the previous
generation and also provide significant advances in future designs. Firstly, the uranium
resource, just as the classical energy resources oil or gas, has a limited stock. According
to some experts, it is limited to approximate hundreds years[8] consumption with current
nuclear reactor systems. So the fast neutron reactor technology, which falls under the
aegis of GEN-IV reactors, could extend the utilization of the uranium reserves till several
thousand years. Secondly, the nuclear waste management is an embarrassing issue and
provokes certain conflicts concerning the potential safety risk. Gen-IV reactors aim to
solve this issue by burning a large part of the long-live nuclear wastes, thereby reducing
their volume as well as their toxicity. The GEN-IV reactors continue to make efforts to im-
prove the safety of the installation facilities to reduce the risks and potential consequences
of an accident while remaining economically viable. Lastly, they provide an unattractive
and least desirable route for diversion and theft of weapon-usable materials and hence are
resistant to nuclear proliferation. Six types of reactors are proposed and being studied by
the researchers from different partner countries participating in the Gen-IV forum. France
has chosen to go on with sodium cooled fast reactors mainly because of the maturity of the
SFR concept, available know-how, prior experience in the country with reactors such as
HARMONIE, RAPSODIE, PHÉNIX[88], SUPERPHÉNIX, consistency with the strategic
national objectives of closed fuel cycles and long lived waste management. France, being

11



12 GENERAL INTRODUCTION

one of the leaders in the nuclear energy market, obtains more than 75% of the electric-
ity share from its nuclear power plants consisting of 58 Pressurized light Water Reactors
(PWR).

In order to closely supervise and monitor these industrial reactors, the nuclear core
modeling and calculations must be performed with high precision and efficiency. Within
the framework of industrial calculation, time cost is one of the most important criteria
to evaluate a calculation tool. For example, to figure out the optimal loading map, or
during the analysis of accidental situations where multi-physics disciplines are concerned,
thousands of calculations should be carried out in a limited interval of time (∼ 10 sec-
onds). At the same time, reducing the calculation bias is another long lasting mission for
the industrial calculation. The latter encourages the neutronic physicists to develop more
accurate and more sophisticated calculation codes which are indispensable for the reactor
safety analysis. On the other hand, the complexity of the input data library (continuously
dependent on the energy variable and even on the angular variable for some specific data
types) and the complication of the reactor geometry make it difficult to fulfil the industrial
calculation mission.

In order to reduce the number of unknowns (more than 1011) to be solved, two model-
ing steps are necessary to accomplish the whole core calculation, namely the sub-assembly
calculation step and the core calculation step. This two steps calculation strategy is based
on the fundamental mode1 calculation and implies the concept of �equivalence� specifying
the necessity to preserve the reactions rates from a realistic configuration to a simplified
configuration which is adapted in an industrial core calculation. It could be expressed by
Eq (1) where τ represents the reaction rate. The indices (m, g) correspond to the referential
configuration which is heterogeneous spatially as well as in energy. And (M,G) correspond
to the simplified homogeneous configuration. Therefore, Vm, Σm,g and φm,g are namely the
micro-region volume, micro-region homogenized fine-group cross section and flux. On the
other hand, VM , ΣM,G and φM,G represent the macro-region and macro-group parameters.
The fact of collapsing fine-group g into macro-group G is termed �energy condensation�
while merging micro-region m into macro-region M is termed �spatial homogenization�
[84]. Graceful to these macroscopic macro-group cross sections, it becomes feasible and
efficient to perform a 3D transport calculation on the homogenized whole core geometry.

τM,G =
∑
g∈G

∑
m∈M

VmΣm,gφm,g = VMΣM,GφM,G (1)

However, several difficulties are revealed in the above multi-scale calculation methodol-
ogy. In order to understand where these difficulties come from, a deterministic calculation
scheme is at first shown in Figure 1. It contains two parts: one is the illustrative pic-
ture stating the relationship between sub-assembly calculation and core calculation; the
other one describes precisely each processing step from the nuclear evaluated data towards
macro-group cross sections which could finally be used in a core simulation.

The first difficulty exists in the procedure of converting point-wise evaluated data into
fine-group cross sections. To obtain the appropriate fine-group cross sections which ensure
the preservation of reaction rates with respect to point-wise case, it is indispensable to

1The fundamental mode is used to represent a homogeneous infinite medium situation in the first step
sub-assembly calculation.
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Figure 1: Deterministic calculation scheme. NJOY[37] and CALENDF[91] are both data
processing tools

use an appropriate weighting function. Unfortunately, the latter is in fact the solution
demanded in the realistic heterogeneous problem and hardly available. Therefore, an ap-
proximate weighting function is used which will definitely induce some calculation bias.
Meanwhile, the energy collapsing procedure surely results into loss of information, espe-
cially in the resonant energy domain. This forms the second difficulty under the name of
self-shielding. The latter could be achieved by several methods, such as the method of
Livolant-Jeanpierre[36] or the method of sub-group[25, 67]. Although, these methods have
more or less some limitations which cause some bias for final results. The third difficulty
concerns the ability of handling the heterogeneous geometry. The solvers used to perform
the energy condensation and spatial homogenization procedures are usually limited to
treat 2D heterogeneous geometries. Recently, the solver method of characteristics (MOC)
is able to treat extruded 3D heterogeneous geometries. However, the latter method needs
to stock a large amount of neutron trajectories which demands a high memory usage and
a long calculation time.

Besides the above mentioned limitations of deterministic calculation scheme, a com-
pletely different method is becoming more and more popular in the nuclear reactor anal-
ysis field which is under the name of Monte-Carlo[72, 34]. The main characteristic of
the Monte-Carlo method is the ability to follow each neutron trajectory history and give
out a microscopic score. The ensemble of these microscopic scores could help to estimate
the macroscopic physical variables. Thanks to this feature, Monte-Carlo method is able
to avoid those approximations which are exploited in deterministic approach. Further-
more, it could be used to validate as well as analyze the deterministic calculation method.
Subsequently, it also inspires us to explore the field of sub-assembly calculation (energy
condensation and spatial homogenization) with Monte-Carlo method. The main advan-
tages of using Monte-Carlo method produced multi-group homogenized cross sections are
as follows:

- exact simulation of interaction between neutron and material,



14 GENERAL INTRODUCTION

- directly using point-wise library data and no necessity of self-shielding approxima-
tion, except in the unresolved energy domain,

- usage of exact anisotropy data rather than their approximate Polynomial develop-
ment form,

- calculations of exact three-dimensional geometries

Before deciding which type of the second step core calculations will make use of our
Monte-Carlo produced multi-group cross sections, it should recall that this work is initially
motivated for the conception and analysis of the ASTRID (Advanced Sodium Technolog-
ical Reactor for Industrial Demonstration). The latter is a sodium-cooled fast reactor
prototype which will be constructed in France around 2020. The main characteristics of
this reactor is the use of a new core concept CFV (low void effect core) to improve the
safety aspect. This concept implies a high geometrical heterogeneity due to the presence
of the sodium plenum in the upper side and a fertile plate in the middle of the fissile
sub-assembly. Moreover, different calculation concepts exist in the core calculation step
which necessitates different formats of the multi-group cross sections. Mostly, a diffusion
theory based core calculation code is sufficient for a PWR core simulation. However, it
is not the case for a fast neutron reactor calculation since the latter has usually more
heterogeneous geometrical and spectral distributions. This is the reason for that our work
aims to supply the produced multi-group cross sections in a transport core calculation
code. Additionally, the transport core calculation codes solve more or less the same type
of transport equation as in the previous sub-assembly calculation step. This forces us
to produce the conventional format multi-group cross sections which are adapted for the
existing transport core calculation codes.

The main objective of this work is to produce multi-group cross sections
with the Monte-Carlo code TRIPOLI-4r developed at CEA2 and use these gen-
erated multi-group constants in transport theory based core simulation codes.
Its principal application is for the fast neutron reactor type sub-assemblies.

Within this context, this document is divided into three parts. The first part summa-
rizes the necessary neutronics background. It starts with some conventional definitions
of neutronics parameters followed by an introduction of continuous-energy neutron trans-
port equation and the general problems related to sub-assembly homogenization. Previous
works using deterministic method for energy condensation and spatial homogenization are
separately presented. The theoretical background ends with a brief presentation about
the stochastic method and a listing of worldwide Monte-Carlo codes which are able to
produce multi-group cross sections.

The second part presents the improvements carried out on the existing routines of
homogenization and condensation procedures in TRIPOLI-4r. First of all, we make sure
that the sub-assembly calculation routine in TRIPOLI-4r is able to preserve the infinite
multiplicative factor K∞ as well as the neutronic balance for homogeneous infinite geome-
tries. This work is achieved by implementing three new Monte-Carlo multi-group constants
estimators, namely the group-wise energy transfer probabilities; the excess weight and the
fission spectrum. Secondly, we continue to enforce the capability of the sub-assembly
calculation routines in TRIPOLI-4r code for leakage involved finite geometry cases. For

2Commissariat à l’énergie atomique et aux énergies alternatives, France
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this, a new technique in charge of multi-group anisotropy construction work is developed.
However, this technique is quite efficient for homogeneous finite geometries but is not
validated for heterogeneous sub-assembly case. As for this residual problem, a solution is
proposed in the next chapter which could overcome the difficulty encountered in highly
different material properties geometry case.

The third part focuses on the development of a leakage model in TRIPOLI-4r code.
A brief history about the Monte-Carlo based leakage models is summarized after which
we choose B1 homogeneous equation based leakage model for this work. A detailed de-
scription is given for the implementation of this leakage model including the corresponding
rigorous validation work. The validation study is hardly found in other similar Monte-
Carlo codes.

This document ends with a conclusion reminding the principal results and several per-
spectives for future research.
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Chapter 1

Neutronics Background

This chapter is aimed to describe some related neutronics backgrounds which are divided
in three parts: interactions between neutrons and materials; physical definition of cross
section ; the definitions of neutron flux and reaction rate. These physical backgrounds are
particularly helpful to have a better comprehension of the neutron transport codes based
on the Monte Carlo method where each neutron trajectory is followed from its birth till
the end.

1.1 Neutrons-Materials Interactions

The interactions between neutrons and matter play an important role in nuclear fission
reactors. Their reactions mechanism ensures a self-sustained energy release process. In
the field of nuclear reactor physics, these interactions refer to those occurring between neu-
trons and the nuclei existing in the materials. Other reactions, such as neutron-electron
or neutron-neutron, are usually neglected by neutronics physicists.

The reasons why neutron-electron interactions can be ignored are the following: first,
their collision probability is rather low; secondly, even after colliding with an electron, the
neutron will hardly deviate because its mass (∼ 10−27 kg) is much greater in compari-
son to the electron one (∼ 10−31 kg). Neutron-neutron reactions are neglected because
of the low neutron density in the nuclear reactor medium compared to nuclei density.
This simplification leads to a linear neutron transport theory presented by the Boltzmann
equation. The linearity is based on the fact that the neutron density in the Boltzmann
equation is at order 1.

Return back to the main interactions occurring in a nuclear fission reactor i.e. the
neutron-nuclei reactions. They are classified into various reaction types according to the
different neutron incident energies. It should be pointed out that neutron-matter inter-
actions mentioned here are mediated by the strong nuclear force which is limited within
the range of 10−15 m (the same order of magnitude as the nuclei diameter). Therefore,
when the incident neutron energy is too low, its wave length is rather large compared with
the target nucleus one. Thus, the neutron represented principally by the wave property is
scattered by the target nuclear field . This phenomenon is called potential scattering which
is similar to the elastic collision between two hard bodies, with conservation of momentum
and kinetic energy. This reaction can be performed by all kinds of nuclei with neutron
with any incident energy. Beside of the potential scattering, all the other interaction types
follow the same pattern: firstly, formation of an excited compound-nucleus which includes
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the binding energy as well as the kinetic energy of the incident neutron; then, living life
of the created compound-nucleus on an excited state; finally, disintegration of the isotope
to a lower level. There exist several different mechanisms of disintegrations which define
thus different reaction types. In the field of neutron transport, they are divided specifically
into: capture reaction, fission reaction and scattering reaction.

To be marked that the excitation energy of the created compound isotope is rather
high. However, the binding energy alone (about 5 ∼ 10 MeV) is not sufficient to induce all
types of reactions. Thus, some kinetic energy has to be supplied by the incident neutron
to make the reaction possible. This is so-called threshold reactions which could be found
in all the three reaction types. In the following table, principal reaction types are listed
with their own characteristics. Detailed descriptions about each reaction type will be
subsequently presented in the following paragraphs.

Reaction Type Reaction Formula Formation of
Compound-
nucleus

Threshold Reac-
tion

Scattering

Potential elastic scattering n + A⇒ A + n no no
Elastic resonant scattering n + A⇒ A + n yes no

Inelastic resonant scattering n + A⇒ A∗ + n; A∗ ⇒ A + γ yes yes
Multiplication scattering n + A⇒ (A−X) +Xn yes yes

Fission n + A⇒ FP1 + FP2 + νn yes only odd num-
ber of neutrons in
thermal spectrum

Capture
Radiative capture n + A⇒ (A + 1) + γ yes no

Charged particle ejection reaction n + A⇒ B/C + p/α yes yes

Table 1.1: Principal reactions occurring in a nuclear fission reactor

1.1.1 Scattering

As shown in Table 1.1, there are mainly four different scattering modes in the nuclear
fission reactor domain. The two first of them: potential elastic scattering and elastic reso-
nant scattering are both elastic reactions. Their common feature is that they preserve the
total kinetic energy as well as the total momentum of the concerned particles (neutron and
target nuclei). In contrary, the two other reactions belong to inelastic scattering reactions
where there is a part of the energy which remains in the residual nucleus and finally taken
away by the emission of gamma.

In fact, the original difference of these four scattering reactions comes from the different
incident neutron energies. Low-energy neutrons usually induce elastic scattering reactions
with any kind of isotope. It is particularly the case for potential elastic scattering. When
the neutron incident energy increases, the particle begins to interact with the constituent
nucleons in the target nuclei. Thus the scattering reaction starts to become resonant. So if
the excited compound-nucleus can disintegrate directly to its ground state, this is named
elastic resonant scattering. Moreover, there are resolved resonance, unresolved resonance
in the resonant energy range and then followed by a continuum range.

When the compound-nucleus reaches the energy region where the excited levels are still
discrete and could be detected by experimental measurement, that is termed �resolved res-
onance scattering�. If the excited compound-nucleus is always in a distinguishable state
but no more measurable, it is called �un-resolved resonance range�. Special techniques, for
example, the probability tables are used to treat this energy domain. Beyond the resonant
range where the resonant peaks overlap, this is called the continuum region.
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Inelastic scattering occurs always with high incident energy neutron because of the
necessity of a threshold energy to make the compound-nucleus reach at least on its first
excited level. Then this compound-nucleus decays into an excited state after ejection of a
neutron. Finally, the excited nucleus gets down to its ground state via photon-emission.
This means that the total energy of the system is, at the end, shared among the emergent
neutrons, the target nucleus and also the emitted photons. The separation for the different
resonant regions is also available in the inelastic scattering case. However, with the energy
limit in the fission reactor physics (below 20 MeV), we may not be able to observe the
different resonant regions, particularly for some heavy even-nucleon nuclei.

If the incident neutron energy becomes still higher (∼ MeV), some multiplication
scattering reactions could occur where two or more neutrons are emitted. In the nuclear
fission reactor simulation codes, these reactions are usually considered as scattering rather
than neutron production reactions.

1.1.2 Fission

Nuclear fission of heavy elements was discovered in 1938 by Otto Hahn, Fritz Strassmann
and Lise Meitner. It refers to an exo-energetic process that split a heavy nucleus into two
fragments and several free neutrons as well as other particles (γ, β, ν). Thanks to its
characteristics (self-sustained chain reaction and important energy release), it plays a key
role in a nuclear fission reactor. There are two kinds of fission considered here: spontaneous
fission and fission induced by neutron. The difference between the two reactions is that for
some nuclei, an amount of energy needs to be added to initiate the nucleus deformation
process. This is illustrated in Figure 1.1. In the liquid drop model, the addition between
the surface energy term and the coulomb energy term gives out a mass change curve
versus the deformation of the compound-nucleus. It shows a hump at the beginning of
deformation which represents a fission barrier.

Deformation 

Change in mass 

Fission barrier 

Surface term 

Coulomb term 

Figure 1.1: Illustration of fission barrier
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The height of the fission barrier varies slightly among the different nucleus. Seaborg’s
formula [80] shows that the barrier for even(proton number Z)-even(neutron number N)
nuclei is the lowest. The energy demanded to overcome the fission barrier comes from the
binding energy of the absorbed neutron as well as from its kinetic energy. Sometimes, the
binding energy is high enough to cover the fission barrier, for example, in the case of 235U.
Otherwise, some kinetic energy is necessary for the incident neutron to induce the fission
reaction, for example, in the case of 238U. The property highlighted by the two different
cases is termed �parity� effect. That is to say if an even(Z)-even(N) compound-nucleus
is formed, its binding energy is much greater than an even(Z)-odd(N) one. The kind of
nuclei that can carry out a fission reaction with very low incident energy neutrons are
called fissile isotopes. The second type of nuclei which are only fissionable with high en-
ergy (∼ 1 MeV) neutrons are named fertile isotopes.

According to their birth process, neutrons emitted after a fission are classified into
two families: prompt neutrons (∼ 10−17 s) and delayed neutrons (about 1 s − 1 min).
The number of emitted prompt neutrons varies from 2 to 7. Their energy distribution
also called prompt fission spectrum is usually modeled as a Watt spectrum. An example
of 235U thermal prompt fission spectrum is showed in Figure 1.2. In contrary, the fission
spectrum for delayed neutrons is almost constant except in the high energy domain (∼ 4
MeV). The average prompt neutron energy per fission is about 2 MeV, while for the de-
layed neutrons, the average energy per fission is about 400 keV. Even though there is a
small proportion of delayed neutrons, they help to increase effectively the average life of
the emitted neutrons. The latter makes a fission reactor controllable.

Figure 1.2: 235U thermal fission prompt neutron spectrum

The total energy released during a fission reaction is about 200 MeV. An important
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portion of the entire energy is taken away by the two fragments and finally deposited in the
fuel composition. Around 3% of the energy is transferred to the kinetic energy of prompt
neutrons, and 0.004% for the delayed neutrons. The remaining energy is dispatched among
the γ-emissions, β-emissions and neutrino-emissions. There are about 7 MeV gone away
with delayed γ and about 7 MeV with delayed β. The two latter constitute the residual
power after the shut down of a reactor.

1.1.3 Capture

As shown by the capture formula in Table 1.1, we notify that there is no neutron emitted
from capture interactions. This makes it different from other interactions types. In the
nuclear reactor field, we name fission and capture together as absorption.

The most common capture mode is the radiative capture because it is a no-threshold
reaction, and noted as (n, γ) . The incident neutron is combined with the target nucleus,
the excited compound-nucleus decays to its ground state with emission of photons. Equa-
tion 1.1 gives an example for 238U. These gamma particles deposit their energy on the
nuclear reactor structure which is currently a problematic issue.

238U + n→239 U∗ →239 U + γ (1.1)

Other capture interaction modes refer to the ejection of a charge particle like (n, p),
(n, α) or (n, 3He). They are usually threshold reactions except for some light isotopes
as shown in Equation 1.2.

10B + n→11 B∗ →7 Li+4 He (1.2)

The resonance exists also in capture interaction as for scattering reaction. At low
energy, the resonance peaks are distinguishable. The unresolved resonance range begins
generally from several keV for heavy nuclei. It turns always into a continuum region at
the end. Detailed curves will be presented in the Section 1.2.

1.2 Definition of the Cross Section

In the previous section, we talked about the different interactions between neutron and
matter. To be able to quantify the interactions rates, another demanded essential infor-
mation concerns their different interactions probabilities. In the field of nuclear physics,
the reaction probability between neutron and a target nuclide is defined as a parameter
named cross section with the dimension of a surface ([cm2]). The simplest way to explain
a reaction probability by a cross section is illustrated in Figure 1.3. In order to have a
collision with the target nucleus, the mass center of the neutron has to enter the dashed
circle whose radius equals to the sum of those of the neutron and the target nucleus. Thus
the surface of this dashed circle represents the cross section noted as σ. Since the radius
of a nucleus is on the order of 10−14 m, it results that the order of magnitude of the cross
section is ∼ 10−28 m2. In addition, this classical concept agrees well with the experimental
measurement values for σ. By the way, cross section is conventionally expressed in unit
barns: 1 barn = 10−24 cm−2.
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neutron 

target 

Figure 1.3: Intuitive explanation of cross section

However, the surface area explanation for cross section may not always be available.
From the experimental measurements, we observe important discrepancies of σ between
different target nuclei as well as for different incident neutron energies. The variation
tendencies of cross sections depend on the reaction types. Firstly, if we focus on absorbing

kind interactions (fission and capture), a
1

v
decreasing law dominates generally the whole

energy domain, v represents the velocity of the incident neutron. This is confirmed by
both Figures 1.4 and 1.5 which are respectively the fission cross section for 235U and the

radiative capture cross section for 238U. The
1

v
tendency could be reasoned with a rather

intuitive physical way: to have been absorbed by any nucleus for a neutron, the probability
decreases if its velocity increases because it spends less time to pass through the nucleus’
nuclear field. Moreover, irregularities begin to appear when resonances are involved. As
presented in the previous section, each visible peak in the cross section curve corresponds
to a resolved resonance. Then, the resonant peaks are so crowded, which turns to the
unresolved resonance region. Finally, resonant peaks overlap completely where the cross
section enters the continuum domain.

Figure 1.6 and Figure 1.7 show the elastic scattering cross sections for 1H, 12C which are
usually used as moderator elements in thermal nuclear reactors. Their cross section curves
are almost constant, unlike the absorbing case. This constant domain results from elastic
potential scattering which is predominant at low energy scale. Resonance always exists for
elastic scattering (except for 1H) which can be observed from ∼ 2 MeV. The very begin-
ning part of the curve shows a decreasing tendency. This is an interesting research topic in
the nuclear data field. This non-constant shape comes from the thermal agitation effect[6].

All the cross sections mentioned above are microscopic cross sections which represent
the interactions between a single neutron and a single nucleus. Though, in a real nuclear
reactor, there are numerous neutrons and nuclei which can interact. To study the propa-
gation of neutrons in matter, it is useful to introduce the variable Σ which describes the
material interaction characteristic and is defined as macroscopic cross section calculated
by Equation 1.3:
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Figure 1.4: 235U fission cross section from JEFF3.1.1

Figure 1.5: 238U radiative capture cross section from JEFF3.1.1

Σ(r, E, t)[cm−1] = N(r, t)σ(E) (1.3)

with N(r, t): the atomic density of the target nucleus at a given moment t. The macro-
scopic cross section helps to deduce the neutron-matter interaction probability per length
unit.

The microscopic and macroscopic cross sections (σ; Σ) defined previously are related
to a specific interaction type. Thus, we use index i for marking every different cross sec-
tion (σi; Σi) where i could stand for fission, capture or scattering. The sum of the fission
cross section and the capture cross section is named the absorption cross section (Eq 1.4).
By addition to the scattering cross section, one obtains the total cross section (Eq 1.5).
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Figure 1.6: 1H elastic scattering cross section from JEFF3.1.1

Figure 1.7: 12C elastic scattering cross section from JEFF3.1.1

σa = σf + σc; Σa = Σf + Σc (1.4)

σt = σa + σs; Σt = Σa + Σs (1.5)

1.3 Definitions of the Neutron Flux and the reaction rate

From the above sections, we characterized the neutron-matter interaction modes as well
as their corresponding interactions cross sections σi(E) or Σi(r, E, t). As shown by its
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own definition in Eq 1.3, the macroscopic cross section Σi(r, E, t) contains not only the
information about the neutron-nucleus interaction probability but also the related material
characteristics. Beside of these, we need the information about the neutron population
existing in the medium. The neutron population is sufficiently large (∼ 108 cm−3) to use
the common statistical concept “density”to manipulate its variation. The neutron density
noted as n(r, E, Ω̂, t) represents the number of neutrons per volume of phase space (r, E,
Ω̂) [m−3 · eV −1 · Sr−1] at a certain moment t. For one neutron, the possibility to have a
collision with the matter within a distance dx is Σt(r, E, t)dx. Thus, the total collision
number occurred in this elemental volume of phase space is n(r, E, Ω̂, t)Σt(r, E, t)dx. The
distance dx could be considered as a path traveled by a neutron with the velocity v during
a time dt: dx = v(rdt). Finally, we obtain a useful quantity describing the number of
interactions occurred per unit volume and per unit time in Eq (1.6). This is named
reaction rate which is the only neutronic variable in a reactor experiment. Obviously,
the total macroscopic cross section Σt in the below equation could be replaced by other
reaction types, for example, fission or absorption.

R[cm−3.s−1] = Σt(r, E, t)n(r, E, Ω̂, t)v (1.6)

If we pay more attention to Eq (1.6), we notice that the reaction rate R is in fact a prod-
uct between the macroscopic cross section Σt and another production term n(r, E, Ω̂, t)v.
The later is defined as the neutron angular flux which depends on the neutron position r,

its velocity v or energy E (E =
1

2
mv2), its direction Ω̂ as well as the time t :

ϕ(r, E, Ω̂, t) = n(r, E, Ω̂, t)v (1.7)

If we perform an integration of the angular flux over the whole solid angle, we obtain
the expression of scalar flux as below:

φ(r, E, t) =

∫
4π
ϕ(r, E, Ω̂, t)d2Ω (1.8)

For interactions like fission in which the secondary neutrons are emitted isotropically,
the scalar flux is more often used to calculate the reaction rates. In contrary, for reactions
in which the cross section depends on the angular deviation, the angular flux is used to
calculate the reaction rate. These will be shown in the next chapter while talking about
the neutron transport equation.

It should be pointed out that both of the fluxes used in neutronic field are different from
their conventional definition which describes a quantity passing through a unit surface per
unit time. The conventional definition of flux is named as current by neutronic physicists
and is written as J. It is obtained from the angular flux weighted by the direction Ω̂.
Therefore, there always exist an angular current and a scalar current which are defined as
below. The scalar current is in fact a net current passing through an unit surface (specified
with its normal direction N) with a certain direction. This quantity vanishes when the
angular flux is isotropic.

J(r, E, Ω̂, t) = Ω̂ϕ(r, E, Ω̂, t) (1.9)

J(r, E) =

∫
4π

J(r, Ω̂, E) ·Nd2Ω (1.10)
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Chapter 2

Neutron Transport Theory and
General Problem of
Homogenization in Nuclear
Reactor Physics

This chapter will introduce at first the Boltzmann equation or more precisely the neutron
transport theory which governs the neutron propagation in the matter. Two different
forms of the transport equation will be presented as well as their own numerical ap-
proaches, namely the deterministic method and the Monte-Carlo method[66, 89, 90]. A
brief comparison between these two methods will be followed. Then, we shall introduce
the main issues on which this work is carried out: the energy condensation and spatial
homogenization. These two items together could be termed �sub-assembly homogeniza-
tion�. Finally, some general problems related to the sub-assembly homogenization will be
pointed out.

2.1 Neutron Transport Theory

Integral-differential transport equation

For nuclear reactor analysis, it is indispensable to be able to control the global neutron
population variation for both operation and safety issues. Neutron physicists have to pre-
dict neutron behavior which forms principally the neutron transport theory. Since the
neutrons in a reactor core have a rather large population, they are treated by the statis-
tical concept with a conventional density variable. As mentioned in the previous chapter,
this density function is the neutron angular flux ϕ(r, E, Ω̂, t).

In a nuclear reactor core, the neutron density is very low compared with atoms densi-
ties. This leads to consider the neutrons behaviors in a reactor core as a perfect low-density
mono-atomic gas. The later has originally been treated by Ludwig Boltzmann [14] with
a particle transport equation in 1872. Several approximations [12] are imposed to obtain
this Boltzmann transport equation:

- Neutron-neutron and neutron-electron interactions are neglected.

- The neutron trajectory between two collisions is a straight line.

29
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- All the relativistic effects are not considered because the neutron kinetic energy is
not high enough to use Lorentz correction law. In reactor physics, the maximal
energy for neutron is limited to 20 MeV.

- The neutron average life time is very short in the reactor core compared to its decay
constants, thus the neutron radioactivity is ignored.

The basic idea of the Boltzmann equation is in fact to follow up the neutron population
variation via accounting the arrival and the departure neutrons within an elemental unit
of phase space (d3r, d2Ω, dE). The whole perturbation is divided into five terms:

- The streaming term or leakage term: the part of neutrons that escape out of the
elemental volume of the phase space;

- The collision disappearance term: neutrons absorbed or scattered to another ele-
mental unit of phase space;

- The collision arrival term: neutrons scattered into the considered elemental volume
of the phase space;

- The fission production term: secondary neutrons created from fission reactions;

- The external source term: neutrons emitted from a fixed source.

Taking into consideration all the above terms, we obtain finally the time-dependent
integral-differential neutron transport equation (2.1):

1

v

∂ϕ(r, E, Ω̂, t)

∂t
= −div[Ω̂ϕ(r, E, Ω̂, t)]− Σt(r, E, t)ϕ(r, E, Ω̂, t)

+

∞∫
0

dE′
∫
4π

d2Ω′Σs(r, E
′ → E, Ω̂′ → Ω̂, t)ϕ(r, E′, Ω̂′, t)

+
1

4π

∞∫
0

dE′χ(E′ → E)νΣf (r, E′, t)φ(r, E′, t) + Sext(r, E, Ω̂, t)(2.1)

As shown in the fission creation term, we consider that the neutrons out-coming from
fission are isotropic in the laboratory reference. Moreover, the created fission neutrons
respect certain energy distribution spectra χ(E′ → E) which is associated to each fissile
isotope. For example, 235U thermal neutron induced prompt fission spectrum is illus-
trated in Fig 1.2. When the arrival terms and the departure terms hold the balance,
all the time-dependence disappears in Eq (2.1) and it yields a critical stationary state.
If this natural critical state is not attained, we need to introduce a parameter Keff help-
ing to balance the appearance and disappearance terms as shown in the following equation:
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div[Ω̂ϕ(r, E, Ω̂)] + Σt(r, E)ϕ(r, E, Ω̂)

=

∞∫
0

dE′
∫
4π

d2Ω′Σs(r, E
′ → E, Ω̂′ → Ω̂)ϕ(r, E′, Ω̂′)

+
1

4πKeff

∞∫
0

dE′χ(E′ → E)νΣf (r, E′)φ(r, E′) + Sext(r, E, Ω̂) (2.2)

The Keff, defined as the effective multiplication factor, is the eigenvalue of the above
equation. At the same time, it can characterize the reactor state, such as: if Keff = 1, the
reactor is in the critical state; if Keff > 1, the reactor is in a super-critical state; and if
Keff < 1, the reactor is in a sub-critical state.

Integral transport equations

Before going to the details which concern how to obtain an integral form transport equa-
tion, it is helpful to present two other density functions regularly used by neutronic physi-
cists. They are namely emission density χ and collision density Ψ. The emission density is
also called outgoing density representing the neutrons emitted by fission or other source as
well as those from scattering reaction. The collision density is, in contrary, called incoming
density which is the product of total macroscopic cross section and neutron flux:

Ψ(r, E, Ω̂) = Σt(r, E)ϕ(r, E, Ω̂) (2.3)

The relationship among these density functions are illustrated in Fig 2.1. The two con-
nection points are respectively the emission density χ (outgoing density) and the collision
density Ψ (incoming density). S represents the external source. They are related to each
other through transport operator T or collision operator C whose explicit expressions will
be presented later. Thus, two equations can be written to establish their relationship as
following:

χ = CΨ + S (2.4)

Ψ = Tχ (2.5)

After substituting one equation in the other one, we obtain two different forms of the
transport equation which are shown in Eq (2.6) and Eq (2.7). Each of them contains only
one density function. Furthermore, in the steady-state situation, the transport problem
could be divided into two different subjects depending on whether the external source S
exists or not. The first is the fixed source problem which is usually encountered in a non
fissionable medium and possess an unique solution. The second and also the much more
applicable case is named criticality problem where the external source is neglected. Thus,
both of Eq (2.6) and Eq (2.7) turn to homogeneous equations which implies that their
solutions exist only under critical condition.

Ψ = T(CΨ + S) (2.6)
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Figure 2.1: Neutron transport illustration scheme

χ = CTχ+ S (2.7)

From another point of view, the two different neutron transport balance equations offer
two different ways to solve the transport problem. In this part, we focus on the collision
density involved equation (2.6). Without consideration of the external source, Eq (2.6)
becomes:

Ψ(r, E, Ω̂) =

∫
V
d3r′T(r′ → r, E, Ω̂)

∫ ∞
0

dE′
∫

4π
d2Ω′C(r′, E′ → E, Ω̂′ → Ω̂)Ψ(r′, E′, Ω̂′)

(2.8)
It should be kept in mind that the two operators T(r′ → r, E, Ω̂) and C(r′, E′ →

E, Ω̂′ → Ω̂) in Eq (2.8) are different from T and C in Eq (2.6). However, they could be
related by an integral relationship as in Eq (2.9). The first one is indeed the kernel part
of the second one.

T =

∫
V

T(r′ → r, E, Ω̂)d3r′ (2.9)

Eq (2.8) is indeed the origin of the integral transport equation. In order to derive the
conventional integral form, it is necessary to present the explicit forms of the two operator
kernels. They are respectively expressed in Eq (2.10) and Eq (2.11).

T (r′ → r, E, Ω̂) = Σt(r, E) exp

(
−
∫ s

0
Σt(r− s′Ω̂, E)ds′

)
(2.10)

C(r′, E′ → E, Ω̂′ → Ω̂) =
Σs(r

′, E′ → E, Ω̂′ → Ω̂) + χ(E′→E)
4πKeff

νΣf (r′, E′)

Σt(r′, E′)
(2.11)

Within the transport operator, a physical variable termed �optical path� noted as τ
is implicitly used and its definition is given as follows:

τ =

s∫
0

Σt(r− s′Ω̂, E)ds′ (2.12)
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The above optical path helps to determine the probability to travel the distance s without
any collision as exp (−τ).

From Eq (2.11), we note that the collision operator is in fact composed of two parts:
one is related to the scattering reaction; the other one is related to the fission reaction.
However, different properties of the two cross sections result in different expressions in the
collision kernel. In fission neutron emission mechanism, the angular deviation is uniformly
distributed in the whole solid angle which makes the angular concerned term get out of

the production cross section and become a constant
1

4π
. And the Keff value in Eq (2.11)

helps to balance neutron disappearance and production rates.

Due to the above reasons, it is normal to distinguish the pure diffusion collision kernel
and the fission collision kernel as follows:

C(r′, E′ → E, Ω̂′ → Ω̂) = Cs(r
′, E′ → E, Ω̂′ → Ω̂) + Cf (r′, E′ → E) (2.13)

Cs(r
′, E′ → E, Ω̂′ → Ω̂) =

Σs(r
′, E′ → E, Ω̂′ → Ω̂)

Σt(r′, E′)
(2.14)

Cf (r′, E′ → E) =
1

4πKeff

χ(E′ → E)νΣf (r′, E′)

Σt(r′, E′)
(2.15)

Substituting the detailed expressions of the two operators in Eq (2.8), the conventional
integral transport equation could be deduced as in Eq (2.16).

ϕ(r, E, Ω̂) =

∫ ∞
0

ds exp

(
−
∫ s

0
Σt(r− s′Ω̂, E)ds′

)
·

[∫ ∞
0

dE′
∫

4π
d2Ω′Σs(r− sΩ̂, E′ → E, Ω̂′ → Ω̂)ϕ(r− sΩ̂, E′, Ω̂′)

+
1

4πKeff

∫ ∞
0

dE′χ(E′ → E)νΣf (r− sΩ̂, E′)φ(r− sΩ̂, E′)

]
(2.16)

This above integral form describes intuitively the accumulation of neutron flux in
the phase space (r, E, Ω̂) from other different ones (r′, E′, Ω̂′). Two consequent steps are
identified according to Eq (2.16): a collision operator C(r′, E′ → E, Ω̂′ → Ω̂) is at first used
to change the neutron energy as well as its direction; a transport operator T (r′ → r, E, Ω̂)
is then applied to shift the neutron from r′ to r keeping the same energy and the same
direction.

2.2 General Principle of Solving Transport Equation

The previous section presented the integral-differential and integral forms of neutron trans-
port equations. However, the real challenge is how to solve them since the neutronic flux
is complicatedly coupled among three different aspects, namely the energy variable E, the
angular variable Ω̂ and the spatial variable r. Most of time, analytical solutions are hardly
available for neither form of the transport equations. That is why a lot of efforts are paid
by neutronic physicists in the development of numerical methods. The following Figure
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2.2 summarizes the existing numerical methods which are capable of solving the transport
equation (integral-differential or differential forms).

Figure 2.2: Illustration of various numerical methods solving the neutron transport equa-
tion

It could be clearly found from Figure 2.2[20] that two different branches: deterministic
and stochastic approaches exist for solving the transport equation. Even though they do
not result in the same mathematical formula, the same physical justification is shared by
both. For the deterministic method, it is mostly used to handle the integral-differential
equation. The main idea of deterministic method is based on the discretization which
performs in the whole domain of space phase: the energy, the angle and the space. Usually,
the three variables are taken into consideration one after one. For example, the finite
difference or nodal or finite elements methods treat the spatial discretization. Then, PN

or SPN or SN methods treat the angular discretization. Some exceptions could be found in
the deterministic family. Certain methods, such as the method of characteristics (MOC)
or collision probabilities handle with the integral form transport equation. We will not
develop the exact formalism for each method because they are completely out of our
subject. Only some brief description will be listed for each of these methods as follows:

- SN: named also discrete ordinate method, aims to discretize the angular flux into a
set of directions within the whole solid angle 4π: {Ω̂i; i = 1, 2, · · · , I}. It should be
noted that the N associated to the method SN is not the total quantity of angular
division I;

- PN: named also spherical harmonics method, aims to develop the angular flux as
well as the scattering cross section with a real spherical harmonics basis till a certain
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order N which is an odd number;

- CP: the collision probability method works with the integral transport equation
within each multi-group and spatially discretized. The scalar flux to be solved is
supposed to be isotropic in each sub-region. A I × I (number of regions) matrix
whose elements are the collision probabilities connects the source terms and the
scalar flux per region.

- MOC: the method of characteristics solves the characteristic form of the transport
equation in each multi-group and piecewise homogeneous medium by following the
straight neutron path as the neutron moves across the complete domain. This
method is quite similar with the CP method but shows two main advantages com-
pared to the previous one. First, the MOC avoids to handle the full square matrix
of order equal to the number of sub-regions. Secondly, the CP method is limited
to solve the isotropic sources (in laboratory reference) problems. These advantages
make the MOC method suitable for the problems where the number of sub-regions
is more than a few hundred.

The technical details of the above solvers can be found from [6, 20]. It should just be
kept in mind that some approximations are surely used in deterministic approach which
could result in certain bias.

On the other hand, it is the stochastic method which works equivalently on the inte-
gral transport equation. Compared to the above mentioned deterministic approach, the
Monte-Carlo method owns the advantage of using continuous-energy cross sections and
exact anisotropy data as input library. Secondly, the Monte-Carlo method focuses to
simulate each neutron trajectory as closely as possible. This reduces importantly the ap-
proximations exploited in deterministic solvers. It should be marked that the Monte-Carlo
method could also use multi-group data library to perform a nuclear core calculation as
pointed out in Figure 2.2. More details about the Monte-Carlo method used in solving
the integral form neutron transport equation will be presented in Chapter 5.

2.3 General Problem in Sub-assembly Homogenization

After having obtained a global vision about the different methods to solve the trans-
port equation, we return back to the requirements demanded by an industrial calculation.
Readers could find detailed explanation in the general introduction part. Here, we empha-
size on the time cost criterion. Generally, in a full core (fast reactor type) calculation, the
order of magnitude of unknowns to be solved is about 105 × 108 × 102 which corresponds
respectively to the following aspects: energy, space and angle. Under this complicated sit-
uation and to economize the most possibly the calculation time, an industrial calculation
diagram is usually divided into two steps: the sub-assembly calculation[84] and the core
calculation. The first calculation step produces homogenized multi-group cross sections
for each sub-assembly which are then used in the second core calculation step.

The fundamental concept �equivalence� is implicitly exploited in the above two-step
calculation strategy and is illustrated in Figure 2.3. The point O represents the realistic
heterogeneous problem whose exact solution is hardly available in a limited time with
current computational technique. In contrary, it is possible to solve the reference solution
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for the simplified problem (point R). The latter is based on a 2D or 3D heterogeneous
sub-assembly geometry using fine-group microscopic cross sections. The next step is to
establish a homogenized simplified problem noted as point M using macroscopic few-group
cross sections. The �equivalence� concept is indeed affected on points R and M whose aim
is to preserve the global reaction rates as following relationship:

ΣM,GVMφM,G =
∑
m∈M

∑
g∈G

VmΣm,gφm,g (2.17)

This helps to yield the general formulation of the homogenized multi-group cross sec-
tions as expressed in Eq (2.18). Finally, these homogenized multi-group cross sections will
be used in a core calculation noted as point C in Figure 2.3.

ΣM,G =

∑
m∈M

∑
g∈G

VmΣm,gφm,g

VMφM,G

(2.18)

Figure 2.3: Equivalence fundamental conception illustration

However, from the point of view of a deterministic code, the energy condensation and
the spatial homogenization are clearly separated and carried out one after another. Each
of them will be explicitly presented in Chapter 3 and Chapter 4. Here, the author insists
to point out the most embarrassing problem related to the energy condensation aspect.

Retaking a look at the integral-differential transport equation as shown in Section
2.1, the expected solution is the angular flux ϕ(r, E, Ω̂). With use of this latter angular
dependent weighting function, the group-wise total cross section collapsed from point-wise
one depends also on the angular variable. This could be proved by Eq (2.19).
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Σt,g(r, Ω̂) =

∫
E∈g

Σt(r, E)ϕ(r, E, Ω̂)dE∫
E∈g

ϕ(r, E, Ω̂)dE
(2.19)

Unfortunately, in the second core calculation step, the transport equation to be solved
remains the same as Eq (2.2) which uses non-angular dependent multi-group total cross
sections. This enforces us to search a conventional form for total cross sections which
should always be able to preserve the neutronic balance. The latter is not a easy task
for neutronic physicists. Several solutions proposed from previous research work will be
presented in Chapter 3.
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Chapter 3

Energy Condensation theory

Introduction

For any reactor physics calculation code (Monte-Carlo or deterministic), the reliability of
the input cross sections is an dispensable factor in obtaining adequate results from the
complex transport equations as mentioned in the previous chapter. These input cross
sections are derived from evaluated nuclear data libraries which are based on experimental
measurements and theoretical nuclear models. However, they could not be used directly
in reactor simulation codes. A series of treatments is necessary to convert them into
continuous-energy cross section format which is usable by reactor physics codes. A very
widely used data processing system is named NJOY[37] and is being used developed at
the Los Alamos National Laboratory (USA).

The energy and angle point-wise data produced above could serve in two kinds of cal-
culation methodologies. An illustration scheme is plotted in Figure 3.1. The left branch
represents the deterministic method based calculation flow. Its main challenge in finding
the solution comes from the complex angular- and energy-dependent nuclear data. The
solution adopted by all the deterministic codes is to use the energy and spatial variable
discretization technique. The energy discretization is the main topic of this chapter which
is also under the name of energy condensation. The spatial variable discretization will be
presented in Chapter 4. These two discretization actions together make the whole core
one-through calculation divide into two steps, namely the sub-assembly calculation and
the core calculation. The first step is performed on each single sub-assembly in order to
obtain a set of homogenized multi-group constants which are representative of the whole
sub-assembly, especially in the next step core calculation.

To have a further look at the energy variable discretization, it is also done in two steps.
As shown in Figure 3.1, the module GROUPR from the NJOY code is at first in charge
of converting the point-wise nuclear data into fine group-wise format. Then, another
condensation module usually provided by the sub-assembly calculation codes collapses the
fine-group constants into coarse-group constants with consideration of self-shielding effect.
This step facilitates the next core calculation step.

The same procedure is applied to generate fine-group constants as well as coarse-group
constants for the purpose of preserving the physical consistency (in most cases, it refers
to different types of reaction rates). Thus, a fundamental problem is revealed by the two
energy condensation steps in deterministic transport calculation. It means that the flux

39
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Full core 
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Figure 3.1: Illustration of nuclear data treatment with different approaches

solution which is used to calculate the group-wise constant is indeed the solution expected
from the transport equation. To overcome the difficulty, an analytical energy spectrum is
used by GROUPR to produce the fine-group cross sections. This analytical spectrum
could consists of a fission spectrum for the high-energy range; a slowing-down spectrum
for the intermediate range and a Maxwellian thermal spectrum for the energy domain
where E is lower than 0.625 eV.

In contrast, the Monte-Carlo calculations which occupy the right-hand side of Figure
3.1, could avoid the above approximation in deterministic codes. They use the point-wise
nuclear data directly which is more accurate and much closer to the original evaluation. It
is thus reasonable to use Monte-Carlo codes as a reference in carrying out full-core calcu-
lation. Recently, the Monte-Carlo method was also used to produce multi-group constants
which are represented by the red arrow lines in Figure 3.1. This new approach maintains
the advantage of the general Monte-Carlo method which is supposed to obtain more ade-
quate multi-group constants. It is also the original motivation of this work. More explicit
developments and analysis about the new approach will be discussed in the following parts.
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In the present chapter, we focus on the coarse-group cross sections generation problem
in the deterministic branch. The energy condensation procedure results generally in a loss
of information about energy resolution as well as accuracy. Since this problem has been
investigated for a long time, several solutions were proposed. Rahnema et al. calculated
the orthogonal expansion moments of the coarse-group constants. The flux solution is
thus also represented by a series of moments within each coarse group which can then be
used to construct the fine-group energy spectrum in the core calculation exactly. This
method is named �the generalized energy condensation method� because the standard
condensation method is just a special case (expansion order limited to 0) in the general
theory. The standard few-group constants are calculated on the basis of preservation of the
global reaction rates. Readers are suggested to consult Rahnema’s papers [79, 83] which
give detailed explanations of the generalized energy condensation method. Additionally,
some methods intend to preserve the leakage rates, while some others make use of the
perturbation theory in order to conserve a reactivity effect (e.g. the Na voiding coefficient
or control rod cross sections). With the same idea as the generalized condensation method,
a conservative method tries to weight the fine-group cross sections with the flux moment
projected on the spherical harmonic basis. The originality of this way of doing things is to
find a conventional form of multi-group cross sections in order to minimize the deviation
from the exact one. In the following sections, these methods will be developed in detail
along with their computational implementations in different deterministic codes.

3.1 Generalized Energy Condensation method

In order to establish the fine-group energy spectrum from the coarse group information,
a generalized energy condensation theory is developed. This generalized method uses the
fine-group transport solution within each sub-assembly as a weighting function to produce
multi-group cross sections and reaction rates’ orthogonal expansion moments for each
region. With knowledge of the expansion moments of the cross sections as well as the
reaction rates, a coupled set of modified transport equations could be deduced for the
whole core. The solutions from these modified transport equations are the flux moments
within each coarse group which can be used finally to reconstruct the fine-group energy
spectrum in the whole core.

The deduction of the generalized method starts from a standard integral-differential
transport equation which deals with the angular-dependent scattering term with an ex-
pansion on the spherical harmonics basis. The energy integrals on the right-hand side of
Eq (3.1) are broken up into G groups.

Ω̂·∇φ(r, Ω̂, E)+Σt(r, E)φ(r, Ω̂, E) =
G−1∑
g=0

∞∑
l=0

m=l∑
m=−l

Ylm(Ω̂)

4π

∫
E′∈g

dE′Σs,l(r, E
′ → E)φml (r, E′)

+
G−1∑
g=0

χg(E)

4πKeff

∫
E′∈g

dE′νΣf (r, E′)φ(r, E′) (3.1)

Where

- g: index for energy groups;

- φml (r, E′) =
∫
4π

dΩ̂′Ylm(Ω̂′)φ(r, Ω̂′, E): the angular moment of the angular flux;
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- Σs,l(r, E
′ → E) =

1∫
−1

dµΣs(r, E
′ → E,µ)Pl(µ): the angular moment of the scattering

kernel;

- Ylm(Ω̂): normalized spherical harmonics;

- Pl(µ): lth order of Legendre Polynomials; with µ = Ω̂ · Ω̂′

Since the angular flux will be expanded according to an arbitrary set of orthogonal
basis functions, the group-wise energy intervals need to be adapted to the chosen basis
function. For the sake of place, the detailed mathematical formulations can be found in
[79]. After splitting Eq (3.1) into G coupled equations whose coarse group boundaries are
scaled to respect the orthogonal basis, the neutron balance within group h⊥ is written as
following. The index ⊥ is inherited from Rahnema’s notation and stands for the orthogonal
basis.

Ω̂ · ∇φ(r, Ω̂, Eh⊥) + Σt(r, Eh⊥)φ(r, Ω̂, Eh⊥) =

G−1∑
g⊥=0

∞∑
l=0

m=l∑
m=−l

Ylm(Ω̂)

4π

∫
E′g⊥
∈g⊥

dE′g⊥Σs,l(r, E
′
g⊥
→ Eh⊥)φml (r, E′g⊥)

+
G−1∑
g⊥=0

χ(Eh⊥)

4πKeff

∫
E′g⊥
∈g⊥

dE′g⊥νΣf (r, E′g⊥)φ(r, E′g⊥) (3.2)

An arbitrary set of energy orthogonal functions within coarse group h⊥ is defined as
ξi(Eh⊥). The latter respects the orthogonality relationship for any Eh⊥ ∈ h⊥:∫

Eh⊥∈h⊥

dEh⊥w(Eh⊥)ξi(Eh⊥)ξj(Eh⊥) =
δij
αj

(3.3)

Where

- w(Eh⊥): weighting function;

- δij : Kronecker Delta function;

- αj : normalization constant determined by the choice of ξi(Eh⊥) and w(Eh⊥).

Before projecting Eq (3.2) on the above orthogonal function basis, it is necessary to
introduce another important step: rewrite the total cross section within group h⊥ by two
terms.

Σt(r, Eh⊥) = Σh⊥
t,0 (r) + δ(r, Eh⊥) (3.4)

Where

- the standard scalar flux weighted total cross section in group h⊥:

Σh⊥
t,0 (r) =

∫
Eh⊥∈h⊥

dEh⊥Σt(r, Eh⊥)φ(r, Eh⊥)∫
Eh⊥∈h⊥

dEh⊥φ(r, Eh⊥)
(3.5)
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- the deviation of the cross section from the standard group-wise value which takes
account the variation with respect to the energy variable: δ(r, Eh⊥).

After preparing all the basic elements, the general condensed form of the transport
equation (3.6) is obtained by projecting Eq (3.2) on the orthogonal function ξi(Eh⊥) and
then integrating the product over the energy interval h⊥. However, there is a mathematical
processing difference between the left-hand side and the right-hand side terms of Eq (3.2).
Rather than condensing the cross sections directly as done for the left-hand side, the
expansion into orthogonal functions is performed to the reaction rates for the right-hand
side terms.

Ω̂ · ∇φi,h⊥(r, Ω̂) + Σh⊥
t,0 (r)φi,h⊥(r, Ω̂) + δi,h⊥(r, Ω̂)φ0,h⊥(r, Ω̂)

=

G−1∑
g⊥=0

∞∑
l=0

m=l∑
m=−l

∞∑
j=0

αj
4π
Ylm(Ω̂)φml,j,g⊥(r)Σs,l,i,j,g⊥→h⊥(r)

+
G−1∑
g⊥=0

∞∑
j=0

αj
χi,h⊥(r)

4πkeff
νΣf,j,g⊥(r)φj,g⊥(r) (3.6)

Where

- G: number of coarse groups into which the spectrum has been divided;

- i = 0, 1, 2, · · ·,∞: energy expansion order.

The definition of the standard total cross section Σh⊥
t,0 (r) is already given. The other

coarse group moment constants are defined as follows:

- the moment of flux in group g⊥:

φi,h⊥(r, Ω̂) =

∫
Eh⊥∈h⊥

dEh⊥φ(r, Eh⊥ , Ω̂)w(Eh⊥)ξi(Eh⊥) (3.7)

- the moment of the total cross section perturbation term of which denominator part
is dependent only on the 0th order of flux moment:

δi,h⊥(r, Ω̂) =

∫
Eh⊥∈h⊥

dEh⊥δ(r, Eh⊥)φ(r, Ω̂, Eh⊥)w(Eh⊥)ξi(Eh⊥)∫
Eh⊥∈h⊥

dEh⊥φ(r, Ω̂, Eh⊥)w(Eh⊥)ξ0(Eh⊥)
(3.8)

- the moment of the fission spectrum:

χi,h⊥(r) =

∫
Eh⊥∈h⊥

dEh⊥χ(r, Ω̂, Eh⊥)w(Eh⊥)ξi(Eh⊥) (3.9)

- the moment of fission production rate from group g⊥:

νΣf,j,g⊥(r)φj,g⊥(r) =

∫
E′g⊥
∈g⊥

dE′g⊥νΣf (r, E′g⊥)φ(r, E′g⊥)w(E′g⊥)ξj(E
′
g⊥

)×
∫

E′g⊥
∈g⊥

dE′g⊥ξj(E
′
g⊥

)

(3.10)
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- the moment of scattering rate from group g⊥ to h⊥:

φml,j,g⊥(r)Σs,l,i,j,g⊥→h⊥(r) =∫
Eh⊥∈h⊥

 ∫
E′g⊥
∈g⊥

dE′g⊥φ
m
l (r, E′g⊥)Σs,l(r, E

′
g⊥
→ Eh⊥)w(E′g⊥)ξj(E

′
g⊥

)×
∫

E′g⊥
∈g⊥

dE′g⊥ξj(E
′
g⊥

)

×
w(Eh⊥)ξi(Eh⊥)dEh⊥ (3.11)

The solutions of Eq (3.6) are a set of flux moments which could be used to construct
an approximation of the angular flux by Eq (3.12):

φ(Eh⊥) =
I∑
i=0

αiφiξi(Eh⊥) (3.12)

Theoretically, the above multi-group constant definitions are suitable for an arbitrary
orthogonal basis. However, for the practical issues, Legendre Polynomials are chosen as
the expansion basis because it helps to simplify the cross-section moment definitions and
also the condensed form of the transport equation.

The generalized condensation theory is verified by one-dimensional geometry with a
discrete ordinates solver. A better estimation of the fine-group flux spectrum within each
coarse group confirms its advantage in comparison with the standard condensation method.
However, because of the complex mathematical formulation and the non-applicability of
the obtained cross section moments in any core calculation code, this generalized conden-
sation method is not applied widely although we could always find its simplified form or
special case in other codes.

3.2 Energy Condensation Method in APOLLO2

APOLLO2[85], a French sub-assembly calculation code, developed at the CEA can solve
the multi-group transport equation. Its modularity property allows users to chain up the
calculations and also control the input parameters from one module to another. It can deal
with one-dimensional or two-dimensional geometries, such as cylindrical configurations or
lattice geometries based on square or hexagonal patterns.

Before doing any real geometry calculation, APOLLO2 has to convert the continuous-
energy cross sections based on the European evaluated data library, JEFF3.1.1[22] for
example to fine-group cross sections considering the self-shielding phenomena for resonant
nuclei. Then microscopic fine-group cross sections are used as input data to continue the
cell calculation.

Different choices for solving the multi-group flux in APOLLO2 exist: the collision
probabilities Pij , the discrete ordinates method Sn, and the method of characteristics
MOC. However, only one methodology is adopted for producing all the types of coarse-
group cross sections. It refers to the standard energy condensation method which means
the coarse-group constants are weighted by scalar flux. With this basis, the different
coarse-group constants are defined as follows:
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- the total cross section in macro-group G which is weighted by the scalar flux:

Σt,G(r) =

∑
g∈G

Σt,g(r)φg(r)∑
g∈G

φg(r)
(3.13)

- the scattering cross section (l = 0) and its moments from group G′ to G which are
all weighted by scalar flux:

Σs,l,G′→G(r) =

∑
g′∈G′

∑
g∈G

Σs,l,g′→g(r)φg′(r)∑
g′∈G′

φg′(r)
(3.14)

- the fission spectrum in macro-group G:

χG(r) =
∑
g∈G

χg(r) (3.15)

- the production fission cross section in macro-group G weighted by the scalar flux:

νΣf,G(r) =

∑
g∈G

νΣf,g(r)φg(r)∑
g∈G

φg(r)
(3.16)

This standard scalar flux weighting technique is in fact a special case of the above
generalized condensation method. If we limit the expansion order to 0 (i = 0) for the
generalized condensation method, their complex coarse-group constants are just simplified
as the above definitions. However, this mathematical simplification for the macro-group
constants results into macro-group fluxes φ̃G(r) which are not really the sum of the related
micro-group ones.

φ̃G(r) 6=
∑
g∈G

φg(r) (3.17)

Thus, the macro-group reaction rates are not properly conserved as shown in Eq (3.18)
where i represents any type of reaction.

Σi,G(r)φ̃G(r) 6=
∑
g∈G

Σi,g(r)φg(r) (3.18)

Therefore, to cover the inconsistency, APOLLO2 uses an equivalence procedure (SPH )
to correct the macro-group constants. This SPH method will be presented in Chapter 4.

3.3 Energy Condensation Method in JOINT

The Japanese prototype fast breeder reactor MONJU [1, 3, 4] is a sodium-cooled loop-type
MOX fuel reactor. Its analysis work[32, 59] was carried out by the core simulation code
NSHEX [51] which is a nodal hexagonal geometry 3D transport code. It can solve the
neutron transport problem by a discrete ordinate method. The coarse-group constants
(18-group or 7-group) used by NSHEX are produced by the code JOINT [74] which per-
forms an energy collapsing work from fine-group cross sections (70-group). Moreover, the
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70-group cross sections are prepared by another cell code, SLAROM [75] from the nuclear
data library JFS-3-J3.2R[21] based on the Japanese evaluation file JENDL3.2[92]. And
the 70-group weighting flux is calculated by the 2D RZ option of the diffusion code, CI-
TATION [40].

The MONJU core analysis work showed that non-consistent Keff values were obtained
by using different sets of multi-group cross sections. Furthermore, the discrepancies of
Keff compared to the Monte-Carlo reference value are more important from the transport
theory based calculations than from the diffusion theory based calculations. All the ob-
served results pointed out that the previous condensation method in JOINT is not able
to produce appropriate coarse-group cross sections for a core simulation code. A solution
is proposed by the Japanese researchers: rather than weighting the transport cross section
by the scalar flux, an approximate current-weighting function is used to do the condensa-
tion work. Detailed explanations will be given.

The multi-group transport equation solved by the NSHEX code is under the extended
P1 approximation1 related to the anisotropy scattering term. It results in a modified
transport equation (3.19) in macro group G:

Ω̂ · ~∇φG(r, Ω̂) + Σtr,G(r)φG(r, Ω̂) =
N−1∑
G′=0

Σ∗s,G′→G(r)φG′(r) +
χG(r)

4πkeff
Qf (r) (3.19)

where

- N : the total number of macro-group energy structure;

- the transport corrected cross section:

Σtr,G(r) = Σt,G(r)−
N−1∑
G′=0

Σs1,G→G′(r) (3.20)

- the transport corrected scattering cross sections which is implied only for the in-
group scattering:

Σ∗s,G′→G(r) = Σs,G′→G(r)− δG,G′Σs1,G′→G(r) (3.21)

- the fission source in all the energy domain:

Qf (r) =

N−1∑
G′=0

νΣf,G′(r)φG′(r) (3.22)

Initially, all the group constants in Eq (3.19) are calculated with the standard energy
condensation method. As it was presented in the previous section 3.2, this condensa-
tion concept does result in a non-conservative neutronic balance. More precisely, for the
present case, the problem arises from the fact that we are trying to preserve the �transport
reaction rate� just as it has been done for the other conventional reaction rates, e.g. the
total collision rate. The misunderstanding of collapsing the transport cross section by

1P1 approximation is the simplest case of PN method. The development of angular flux is limited to
order 1.
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the scalar flux over-estimated its value in certain groups and thereby under-estimated the
neutron leakage rate in these groups. This finally caused an over-estimated Keff value as
observed in the MONJU reactor.

The proposed solution is to weight the transport cross section by the absolute value
of current Jg as described in Eq (3.23) in order to preserve the mean neutron free path.
The explanation will be followed.

Σtr,G =

∑
g∈G

Σtr,gJg∑
g∈G

Jg
(3.23)

In addition, the current could be calculated with the Fick’s diffusion law.

J = D~∇φ(r) (3.24)

Where D is the diffusion coefficient and can be expressed as
1

3Σtr
under the P1 ap-

proximation.

In the case of energy condensation, we could use an hypothesis: the spectrum of the
gradient of flux is proportional to the spectrum of the flux ~∇φ(r) ∼ φ(r). With the
combination of the diffusion coefficient definition taken from the Fick’s law, we could
finally write the norm of the current as follows:

||J || = D||~∇φ(r)|| ∼ Dφ(r) ∼ φ(~r)

3Σtr
(3.25)

With knowledge of the approximate current spectrum, the new method enabling us to
collapse the transport cross section is:

Σtr,G =

∑
g∈G

φg(r)

∑
g∈G

φg(~r)

Σtr,g

(3.26)

If we replace the transport cross section by the neutron mean free path Σtr,g =
1

λg
,

Eq (3.26) could be rewritten as:

λG =

∑
g⊂G

λg × φg∑
g⊂G

φg
(3.27)

Eq (3.27) implies that we could weight the fine-group neutron mean free path by the
scalar flux. After introducing the new condensation method for the transport cross section
in JOINT, a better estimation of Keff is obtained. However, compared with the Monte-
Carlo reference value, the new Keff value showed an under-estimation tendency rather than
an over-estimation tendency with the standard condensation method. In order to continue
improving the multiplicative factor as well as the conservation of the neutronic balance,
Todorova suggested using a weighting function which is dependent on the exponent γ[94]

Fg(r) = (Σtr,g)
γφg(r) (3.28)
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- γ = 0: the standard energy condensation method, the weighting function is just the
scalar flux;

- γ = −1: is called the conservative method which is supposed to conserve the neutron
leakage rate better. It results in the approximative current weighting function given
in Eq (3.25).

- γ = −1

2
: is the combined collapsing method. It is a purely mathematical choice

between the above two cases. It helped yield a better result for the MONJU reactor
case. However, it could not promise its efficiency for any case.

3.4 Energy Condensation Method in ECCO

ECCO[44, 69] is a European sub-assembly calculation code from the codes system, ER-
ANOS [24, 30] which is specifically used for fast neutron reactor analysis. ECCO is in
charge of producing macro-group constants for the following calculation step: the core
simulation. The input data of ECCO is the 1968-group cross sections from the library,
JEFF-3.1. The energy condensation steps performed in ECCO are illustrated in Figure
3.2. At first, the 1968-group transport equation is solved under the fundamental mode
approximation for a homogeneous or heterogeneous cell geometry. Then, the obtained
1968-group flux is used as a weighting function to collapse the fine-group cross section
into certain coarse-group cross sections.

1968-group 
XS data from 

JEFF-3.1 

1968-group 
flux 

Cell calculation  

condensation 

Macro-group 
XS data 

Figure 3.2: Illustration of the energy condensation procedure in ECCO

Within the ECCO code, the angular flux and the scattering cross section are developed
with the Legendre Polynomial orthogonal functions until a certain order L. This action
could help to decouple the angular dependence from direction and energy ones. In most
cases, the development order is limited to L = 1. Therefore, the flux and the scattering
cross section are expressed as follows:

φg(r, Ω̂) =
1

2

[
φ0,g(r) + 3Ω̂φ1,g(r)

]
(3.29)

Σs,g→g′(r, Ω̂
′ · Ω̂) =

1

2

[
Σs0,g→g′(r) + 3(Ω̂′ · Ω̂)Σs1,g→g′(r)

]
(3.30)
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After substituting the simplified flux and scattering cross section into a multi-group
transport equation, we obtain the P1 approximate transport equation:

Ω̂ · ~∇
[

1

2
φ0,g(r) +

3

2
Ω̂φ1,g(r)

]
+ Σt,g(r)

[
1

2
φ0,g(r) +

3

2
Ω̂φ1,g(r)

]
=

Ng−1∑
g′=0

[
1

2
φ0,g′(r)Σs0,g′→g(r) +

3

2
Ω̂φ1,g(r)Σs1,g′→g(r)

]
+

χg
4πKeff

Qf (r) (3.31)

withNg: the total number of fine energy group structure; Qf (r) =
Ng−1∑
g=0

νΣf,g(r)φ0,g(r):

the total fission production rate.

Integrating over the whole solid angle of Eq (3.31) and Eq (3.31)×Ω̂, the flux-current
coupled equations system is obtained.

~∇φ1,g(r) + Σt,g(r)φ0,g(r) =

Ng−1∑
g′=0

φ0,g′(r)Σs0,g′→g(r) +
χg
Keff

Qf (r) (3.32)

1

3
~∇φ0,g(r) + Σt,g(r)φ1,g(r) =

Ng−1∑
g′=0

φ1,g′(r)Σs1,g′→g(r) (3.33)

The condensation work from the fine-group energy structure to coarse-group energy
structure is performed on the above Eq (3.32) and Eq (3.33). In fact, the energy collapsing
procedure consists in adding all the fine-group equations g which belong to the macro-
group G. Thus we obtain:

~∇φ1,G(r) + Σt0,G(r)φ0,G(r) =

NG−1∑
G′=0

φ0,G′(r)Σs0,G′→G(r) +
χG
Keff

Qf (r) (3.34)

1

3
~∇φ0,G(r) + Σt1,G(r)φ1,G(r) =

NG−1∑
G′=0

φ1,G′(r)Σs1,G′→G(r) (3.35)

Where

- the macro-group flux calculated from fine-group flux:

φ0,G(r) =
∑
g∈G

φ0,g(r) (3.36)

- the macro-group current which is also the first moment of flux:

φ1,G(r) =
∑
g∈G

φ1,g(r) (3.37)

- the macro-group fission spectrum:

χG =
∑
g∈G

χg (3.38)
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- the 0th order of scattering cross section from macro-group G′ to G, weighted by the
flux:

Σs0,G′→G(r) =

∑
g′∈G′

∑
g∈G

Σs0,g′→g(r)φg′(r)∑
g′∈G′

φg′(r)
(3.39)

- the 1th order of scattering cross section from macro-group G′ to G, weighted by the
current:

Σs1,G′→G(r) =

∑
g′∈G′

∑
g∈G
||Σs1,g′→g(r)φ1,g′(r)||∑

g′∈G′
||φ1,g′(r)||

(3.40)

- the flux weighted total cross section in macro-group G:

Σt0,G(r) =

∑
g∈G

Σt,g(r)φ0,g(r)∑
g∈G

φ0,g(r)
(3.41)

- the current weighted total cross section in macro-group G:

Σt1,G(r) =

∑
g∈G
||Σt,g(r)φ1,g(r)||∑
g∈G
||φ1,g(r)||

(3.42)

One precision should be made here, the current (φ1,g) used in ECCO is in fact an
approximate one which comes from the fundamental mode leakage model. Therefore, the
current used in the above Eq (3.40) and (3.42) is a scalar quantity which simplifies greatly
the energy condensation procedure.

The obtained macro-group constants will be used in a core simulation. However, the
total macro-group cross sections should keep in a consistent form in the transport equation
which will be resolved in a core calculation. Therefore, if we choose to use the flux weighted
total cross section as in Eq (3.34), the other one Eq (3.35) must be reformulated as:

1

3
~∇φ0,G(r) + Σt0,G(r)φ1,G(r) =

NG−1∑
G′=0;G′ 6=G

φ1,G′(r)Σs1,G′→G(r) + Σ̃s1,G→G(r)φ1,G (3.43)

Eq (3.43) implies that the in-group anisotropy law is modified in order to keep a
consistent relationship between the flux-current coupled equations. And the in-group
anisotropy law is redefined as:

Σ̃s1,G→G(r) = Σs1,G→G(r) + Σt0,G(r)− Σt1,G(r) (3.44)

Theoretically, the ECCO condensation method with use of the in-group scattering cor-
rection could preserve all the physical quantities from fine-group to macro-group, such as
the flux; the current as well as the reaction rates. However, a previous work [77] showed
that this method could not be appropriately applied for the case where a reflector in-
terface is involved. This phenomenon confirms the limitation of the ECCO code which
means the equation solved by ECCO is under the approximation of fundamental mode.
This approximation is well adapted for the center core region but not for the peripheral
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area, especially for the steel reflector, where the current behavior (its spectrum and its
direction) is completely different from the flux. In order to handle the reflector problem,
a new energy condensation method is proposed by Jacquet[77]. This will be detailed in
the next section.

Once again, we find that the condensation method used in ECCO is a special case from
the generalized condensation theory because it uses the Legendre Polynomial orthogonal
basis functions (L = 1) to develop the angular flux. This means that the method itself is
rather correct except the approximations used to get a mathematical solution. However,
this is an inevitable weakness for most deterministic codes.

3.5 Conservative Energy Condensation method

The energy condensation method which will be presented in this section was proposed to
deal with the reflector problem encountered in the previous section. The difficulties of
the reflector issue exist in the fact that the interface between the fuel and the reflector
separates two media with completely different properties. In the fuel, neutrons are mostly
absorbed; while in the reflector, the scattering reaction dominates. This provoked an im-
portant anisotropy of the angular flux spectrum. To be able to preserve the neutronic
balance during the condensation procedure, it is recommended to use the angular flux
spectrum as a weighting function for generating the multi-group total cross section as in
Eq (3.45). This kind of obtained total cross section is therefore dependent on the angular
direction. Here, the idea expressed in the generalized condensation method once again
confirms that the macro-group total cross section is coupled between the angular variable
and the energy one.

Σt,G(r, Ω̂) =

∑
g∈G

Σt,g(r)φg(r, Ω̂)∑
g∈G

φg(r, Ω̂)
(3.45)

However, the non-conventional definition of the total cross section as in Eq (3.45) is
not practical for use in a core simulation code. The solution proposed in the generalized
condensation method is to decouple the energy- and the angular-dependence by intro-
ducing a perturbation term in addition to the standard scalar flux weighted multi-group
total cross section. The conservative method suggests a different way of separating the
energy and angular dependence. That means developing the total collision term with the
spherical harmonic orthogonal functions. The same processing is done for the scattering
term. Thus, we obtain the transport equation in macro-group G:

Ω̂ · ~∇φG(r, Ω̂) +

∞∑
l=0

2l + 1

4π

l∑
m=−l

Σl,m
t,G(r)φl,mG (r)Rml (Ω̂) =

NG−1∑
G′=0

∞∑
l=0

2l + 1

4π

l∑
m=−l

Σl,m
s,G′→G(r)φl,mG′ (r)Rml (Ω̂) +

χG(r)

4πKeff
Qf (r) (3.46)

Where Rml is the real form of the sperical harmonics. The conventional macro-group

variables as φG(r, Ω̂), χG(r) and Qf (r) always keep the same definitions as in the previous
sections.On the other hand, the total cross section and the scattering cross section are
expressed by their own moments which are respectively defined as:
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Σl,m
t,G(r) =

∑
g∈G

Σt,g(r)φl,mg (r)∑
g∈G

φl,mg (r)
(3.47)

Σl,m
s,G′→G(r) =

∑
g′∈G′

∑
g∈G

Σl
s,g′→g(r)φl,mg′ (r)∑

g′∈G′
φl,mg′ (r)

(3.48)

With the above defined macro-group cross section moments, the neutronic balance is
actually preserved from the fine-group to macro-group passage. Unfortunately, the mo-
ments of the macro-group total cross sections are not practical for the core calculation.
To adapt the total cross section for the core simulation code, the 0th order moment of
flux φ0,0

g (r) (in fact the scalar flux) is chosen to weight the micro-group total cross sec-
tion. This makes the macro-group total cross section return to the standard expression

Σt,G(r) =

∑
g∈G

Σt,g(r)φ0,0
g (r)∑

g∈G
φ0,0
g (r)

.

On the right-hand side of Eq (3.46), a modification is applied to the scattering cross
section moments to keep the transport equation in balance. The modification rule is like
in the ECCO code which results in the new definition of Σl,m

s,G′→G(r):

Σ̃l,m
s,G′→G(r) =

∑
g′∈G′

∑
g∈G

Σl
s,g′→g(r)φl,mg′ (r)∑

g′∈G′
φl,mg′ (r)

+ δG,G′
(

Σt,G(r)− Σl,m
t,G(r)

)
(3.49)

Observing the macro-group scattering cross section in Eq (3.49), it always depends
on both the orbital and the azimuthal order (l,m). This is not conventional for the use
in the core simulation step. A simplified form of the scattering cross section depending
only on the orbital order l will be appreciated. Thus the challenge is to find this kind of
scattering cross section noted here as Σ̂l

s,G′→G(r) which is the closest to the exact value

of Σ̃l,m
s,G′→G(r). To attain this objective, a discrepancy function UG

′→G
l is defined as in Eq

(3.50):

UG
′→G

l =
l∑

m=−l

[(
Σ̃l,m
s,G′→G(r)− Σ̂l

s,G′→G(r)
)
φl,mG′ (r)

]2
(3.50)

The mathematical technique of minimizing the function UG
′→G

l for any orbital order

l which means doing
∂UG

′→G
l

∂Σ̃l,m
s,G′→G(r)

= 0 for ∀l could help to find the expected scattering

cross section Σ̂l
s,G′→G(r) . Finally, the conventional scattering cross section moments are:

Σ̂l
s,G′→G(r) =



Σ̃0,0
s,G′→G(r), if l = 0
l∑

m=−l
Σ̃l,m
s,G′→G(r)φl,mG′ (r)2

l∑
m=−l

φl,mG′ (r)2

, if l 6= 0
(3.51)
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This conservative condensation method requires the fine-group flux moments such
as the weighting function to calculate the non-0th order of scattering cross section mo-
ments. As for the other macro-group constants, they could be obtained by using the
standard method. However the flux moments, especially the high order ones, are not
accessible for most cell calculation codes. This method has not yet been implemented in
any sub-assembly deterministic codes. Vidal et al.[29] applied the conservative conden-
sation method for the fuel/reflector calculation in the Sn solver environment SNATCH.
The SNATCH solver system could calculate the fine-group flux moments which were then
used to obtain the macro-group constants. These calculated macro-group constants do
show their advantages in a core simulation compared with those obtained with the ECCO
method.

Intrinsically, the conservative energy condensation method maintains the same origin
with respect to the generalized method. Both of them assume that the anisotropy effect
of the macro-group total cross section plays an important role in preserving the neutronic
balance during the energy condensation procedure. Ensuring this common point, they
develop their own solutions which are different in the mathematical form.
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Chapter 4

Spatial Homogenization Theory

Introduction

In the previous chapter, we focused on the energy condensation method which is aimed at
reducing the continuous-energy dependent complexity of the cross section. However, this is
not sufficient to perform a whole core calculation even with a very coarse energy structure.
The reason comes from the fact that a very large amount of spatial regions exist in a reactor
core. Let us take the example of the sodium-cooled fast reactor SuperPhénix [48], which
contains about 350 fuel assemblies, with each fuel assembly made up of 271 fuel pins.
Hence, it requires hundreds of thousands of distinct regions to describe each axial layer
in the reactor core explicitly. It was impossible to manage such an amount of memory
storage in the past years and even nowadays, it remains a great challenge. Thus, an
intuitive solution to this problem is to consider an entire assembly in a certain radial
plane as a homogeneous region, as illustrated in Figure 4.1. This procedure is called
Spatial Homogenization which forms the main topic of this chapter. By virtue of the
spatial homogenization and the energy condensation,a more compact cross section library
is available for use in the whole core calculation.

Spatial 

Homogenization 

Figure 4.1: Illustration of a fuel assembly spatial homogenization

During a reactor physics calculation, especially in the deterministic field, the spatial
homogenization procedure is usually performed after the energy condensation step and
makes use of the previous step produced multi-group heterogeneous cross sections. In or-
der to distinguish their different effects on the final homogenized multi-group constants, it
is supposed that the used energy condensation method is exact and is capable of produc-
ing the appropriate multi-group heterogeneous cross sections which preserve the neutronic

55
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balance from fine-group calculation to macro-group calculation. Therefore, the homoge-
nization procedure starts with searching for the exact heterogeneous flux distribution in
a sub-assembly. It could be accomplished by solving the multi-group transport equation
containing the conventional multi-group cross sections as follows:

Ω̂ · ~∇φg(r, Ω̂) + Σt,g(r)φg(r, Ω̂) =
∑
g′

∑
l

2l + 1

4π

m=l∑
m=−l

Σs,l,g′→g(r)φml,g′(r)Rml (Ω̂)

+

∑
g′ χgνΣf,g′(r)φg′(r)

4πKeff
(4.1)

The final objective of the spatial homogenization is to preserve the measurable reaction
rates as well as the multiplicative factor Keff. Thus, an integral over the whole solid angle
is done to Eq (4.1) in order to highlight the different reaction rates. Meanwhile, the non
zero-th order scattering reaction rates are all eliminated. Finally, we obtain the reaction
rate balance equation (4.2):

~∇ · Jg(r) + Σt,g(r)φg(r) =
∑
g′

[
Σs,0,g′→g(r)φg′(r) +

χgνΣf,g′(r)φg′(r)

Keff

]
(4.2)

where

- Jg(r) =
∫

4π Jg(r, Ω̂)d2Ω: the angular-independent current vector;

- φg(r) =
∫

4π φg(r, Ω̂)d2Ω: the scalar flux.

Supposing that the cell calculation code has the technique to solve Eq (4.2) correctly,
we obtain the heterogeneous multi-group flux and current as well as the eigenvalue Keff

which will be used ultimately as a reference for the results from the homogenization step.
We now continue to integrate Eq (4.2) over the entire space which is intended to be ho-
mogenized. The integrated form is expressed in Eq (4.3).

∫
r∈V

d3r
(
~∇ · Jg(r) + Σt,g(r)φg(r)

)
=

∫
r∈V

d3r

∑
g′

[
Σs,0,g′→g(r)φg′(r) +

χgνΣf,g′(r)φg′(r)

Keff

]
(4.3)

If the scalar flux is always used here as the weighting function as in the standard energy
condensation procedure, we should obtain the direct flux-volume averaged homogenized
multi-group cross sections as follows:

- the homogenized total cross section in macro-group g and volume V :

Σ
V
t,g =

∫
r∈V

d3rΣt,g(r)φg(r)∫
r∈V

d3rφg(r)
(4.4)

- the homogenized 0th order scattering cross section averaged in the volume V from
group g′ to g:

Σ
V
s,0,g′→g =

∫
r∈V

d3rΣs,0,g′→g(r)φg′(r)∫
r∈V

d3rφg′(r)
(4.5)
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- the homogenized fission production cross section where the fission spectrum, the
multiplicity factor and the fission cross section are all mixed in both the energy and
the spatial phase. This more compact expression of the fission production term is
similar to the scattering cross section form. It could simplify the computational
treatment for a simulation code:

χνΣ
V
f,g′→g =

∫
r∈V

d3rχgνΣf,g′(r)φg′(r)∫
r∈V

d3rφg′(r)
(4.6)

So with the above defined homogenized multi-group parameters, Eq (4.3) becomes:

∫
r∈V

d3r~∇ · Jg(r) + Σ
V
t,gφ

V
g =

∑
g′

Σ
V
s,0,g′→gφ

V
g′ +

χνΣ
V
f,g′φ

V
g′

Keff

 (4.7)

where φVg =
∫

r∈V
d3rφg(r) represents for the total flux in macro-group g over the entire

space. The first term in Eq (4.7) is the overall leakage rate. Under the reflective boundary
condition, the leakage rate is canceled:

∫
r∈V

d3r~∇ · Jg(r) = 0. Thus the optimal case is

obtained where all of the reaction rates and Keff are preserved simply with the standard
scalar flux weighted method.

However, an infinite configuration could not represent any individual sub-assembly
under a critical operation condition. Thus, most of the cell calculation codes (especially the
deterministic ones) handle the neutron leakage problem with some types of physical leakage
models. The neutron leakage effect is also an interesting topic for this work. Detailed
descriptions and development will be given in Chapter 9. Presently, the neutron leakage
effect is indeed a perturbation term for the spatial homogenization procedure. It breaks the
homogeneity property in the transport equation (4.7). Therefore, the solutions of Eq (4.7)
φ̃Vg are no more the sum of the heterogeneous flux, as shown in Eq (4.8). Consequently, the
macroscopic reaction rates calculated with the flux-weighted homogenized cross sections
are no longer preserved.

φ̃Vg 6=
∫

r∈V
d3rφg(r) (4.8)

The non-preservation phenomenon was observed, for example, in the analysis of a Light
Water Reactor [58]. The use of the standard flux-weighted two-group constants showed
an over-estimation tendency for the sub-assembly power density. This non-consistent neu-
tronic balance problem revealed in the homogenization procedure, is similar to the one
observed in the energy condensation procedure in Chapter 3. The common reason is that
the use of homogenized parameters results in an inevitable loss of information compared
to the realistic heterogeneous case. Thus, the challenge of a spatial homogenization proce-
dure is to find such homogenized cross sections which could preserve the overall reaction
rates as well as the multiplicative factor Keff in a realistic leakage situation.

Since the homogenization problem has existed for a long time, a lot of research work
was carried out not only for the nuclear reactor analysis but also in a larger mathematical
range. Compared to the direct flux-weighted method, some more sophisticated methods
were proposed. For example, Worley and Henry used the response matrix technique [97]
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to calculate the heterogeneous reaction rates and succeeded in avoiding the difficulties
involved in determining the overall homogeneous flux. However, its primary drawbacks
are the complicated mathematical nature and its low computational efficiency.

Among all of the existing homogenization methods which could more or less preserve
the neutronic balance, there is one homogenization concept noted as Equivalence The-
ory [60] which is capable of reproducing the different types of reaction rates and the
multiplicative factor. The equivalence theory could be specified in different mathematical
forms adapting to the different types of core calculation codes. For example, to continue
a transport theory based core calculation, only the appropriate homogenized multi-group
cross sections are demanded from the equivalence method. However, if a diffusion core
simulation code is concerned, the homogenized multi-group diffusion coefficients are even-
tually required at the same time.

The homogenization problem is investigated more thoroughly in the thermal neutron
reactor domain than in the fast neutron reactor. This is because the heterogeneity effect is
more important in a thermal core. In the early 80’s, two Ph.D work were performed with
almost the same objective in view, namely to discover an efficient and precise method for
sub-assembly spatial homogenization procedure. Both of the two proposed solutions origi-
nated from the equivalence theory. The one performed by Hébert at the CEA was inspired
by the SuPerHomogenization method noted as SPH [49]. This SPH method , developed
by Kavenoky[7], introduces a set of correction factors for the flux-weighted homogenized
multi-group cross sections. Using these modified cross sections in the core calculation
could preserve the macro region-wise reaction rates and Keff. The other work done by
Smith led to the birth of the Generalized Equivalence Theory noted as GET [58]. The
GET method defines discontinuity factors for each lateral interface of the sub-assembly
to be homogenized. The use of these discontinuity factors helps to avoid the necessity
of iterating loop to evaluate the homogenized parameters. From the point of view of a
core calculation, the GET method is more suitable for the nodal diffusion core calculation,
while the SPH method does not show its preference between diffusion and transport codes.
In the following sections, we shall specify the two methods respectively: the SPH method
for a transport core calculation and the GET method for a diffusion core calculation.

4.1 SPH Method

The principal idea of the SPH method is to imply a set of correction factors { µVg } on
the flux-weighted homogenized multi-group cross sections in order to preserve the target
reaction rates. It should be pointed out that every correction factor µVg is shared among all
types of reaction rates in each macro energy group g as well as the homogenized medium
V . According to the functionality of the SPH method, it is located between the energy
condensation procedure and edition of the final cross sections. Focusing on the SPH
method, it is divided into three steps:

1. Determination of the target macroscopic reaction rates which will be used as refer-
ence;

2. Iteration procedure of correction factors { µVg } until obtaining exactly the reference
reaction rates;

3. Output of the corrected homogenized multi-group constants which will be used in
the next step core simulations.
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Starting with the first step in the SPH method, the reference reaction rates are pre-
viously included in Eq (4.3). They are defined respectively as it can be seen below. The
symbol, * indicates the reference value.

- T tot∗v,g =
∫

r∈V
d3rΣt,g(r)φg(r): the macroscopic total collision rate;

- T s∗v,g′→g =
∫

r∈V
d3rΣs,0,g′→g(r)φg′(r): the macro-group g′ to g scattering rate;

- T f∗v,g′→g =
∫

r∈V
d3rχgνΣf,g′(r)φg′(r): the macro-group g′ to g fission production rate.

As a reminder the readers, the multi-group cross sections (Σt,g(r), Σs,0,g′→g(r), χνΣf,g′→g(r)
) used here for calculating the reference macroscopic reaction rates are obtained from the
supposed exact condensation method. And the heterogeneous multi-group flux φg(r) are
in fact the solution of Eq (4.3). Thus, we get the full information about the targeted
macroscopic reaction rates.

With knowledge of the heterogeneous multi-group flux, we can calculate the direct
flux-weighted homogenized cross sections. Their definitions are already given previously.

Here, we simply repeat their notations: Σ
V
t,g; Σ

V
s,0,g′→g; χνΣ

V
f,g′→g where the subscript

V stands for the homogenized medium. With the newly calculated homogenized cross
sections, the balance equation is rewritten as:

~∇ · J̃g(r) + Σ
V
t,gφ̃g(r) =

∑
g′

[
Σ
V
s,0,g′→gφ̃g(r) +

χνΣ
V
f,g′→gφ̃g(r)

Keff

]
(4.9)

The solutions of Eq (4.9) J̃g(r) and φ̃g(r) deviate from the reference ones (Jg(r) and
φg(r))from Eq(4.3). Thus, the iteration procedure is necessary started. In the next para-
graphs, we note n as the iteration index.

For n = 1, we could calculate the corrective factors µVg,(n=1) =

∫
r∈V

d3rφg(r)∫
r∈V

d3rφ̃g
(n=1)

(r)
for

all the macro groups and macro regions. Then, the first set of correction factors {µVg,(n=1)

} are multiplied to the original homogenized multi-group cross sections.

For n = 2, the cross sections used to solve the transport equation are: µVg,(n=1)Σ
V
t,g;

µVg,(n=1)Σ
V
s,0,g′→g and µVg,(n=1)χνΣ

V
f,g′→g. They result in the second loop solutions noted as

J̃g
(n=2)

(r) and φ̃g
(n=2)

(r). Similar to the first iteration step, we can calculate the second
set of correction factors.

To be precise here, the normalization rule imposed to every iteration step for searching
the flux and current should be the same, for example, respecting the same fission produc-
tion or the same sources. The iteration procedures continue till the convergence criterion
is attained. By the way, this convergence criterion is usually decided by the users. For
example, the discrepancy between two consecutive correction factors is smaller to certain
tiny value, as following:
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|µVg,(n+1) − µ
V
g,(n)|

µVg,(n)

< 10−4 (4.10)

Once the convergence criterion has been reached for all the macro energy groups, the
SPH procedure is complete and produces the appropriate homogenized multi-group cross
section for the core simulation codes. The whole iteration process is summed up in Figure
4.2.

With the SPH method, the target macroscopic reaction rates and the Keff could be
perfectly reproduced. This method is applicable to any kind of reactor sub-assembly. For
example, the French lattice calculation code, APOLLO2 uses this method to cover up
the inconsistent neutronic balance due to the scalar flux weighted homogenized multi-
group cross sections. In the present section, the SPH method is shown as a tool used in
the transport-transport two-step calculation strategy. Moreover, it could be used for the
transport-diffusion calculation scheme. Detailed information could be found in [6]. The
only deficiency of this method concerns taking the risk of a long iteration procedure. For
this reason, another homogenization method will be presented in the next section which
could actually avoid this point.
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Figure 4.2: Illustration of the SPH iteration method

4.2 GET method

In this section, the Generalized Equivalence Technique (GET) will be presented as an effi-
cient tool in producing homogenized multi-group constants. This computational technique
is usually implemented in a Nodal diffusion whole core calculation environment. Thus, in
order to have a thorough understanding of this method, a basic knowledge of the Nodal
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diffusion theory [6] is necessary. In fact, in a Nodal diffusion calculation, each sub-assembly
is considered as a homogeneous node which is presented by a set of homogenized coarse-
group constants. These mentioned constants are different types of cross sections (total,
absorption, scattering, fission production and fission spectrum); the diffusion coefficients
and the discontinuity factors. The last ones exist only in the Nodal method. Explicit
demonstrations are followed to reveal how these discontinuity factors are involved.

The initial hypothesis and the final objective are shared between the GET method
and the SPH method. This means that the exact energy condensation method is always
supposed to be available. Thus we could obtain the �exact� heterogeneous coarse-group
constants in the related sub-assembly which will be homogenized in the next step. At
the same time, we always insist on preserving the macroscopic reaction rates, the leakage
rates and so the Keff value.

It should be pointed out that there is a new challenge in the GET method which
consists in conserving every surface current of the homogenized sub-assembly as shown in
Eq (4.11).

−
∫
SVi

Dg(r)~∇φg(~r) · ds =

∫
SVi

Jg(r) · ds (4.11)

where SVi refers to face i of the sub-assembly V . With consideration of the current
effect, our attention must be drawn back to Eq (4.7). Before doing the mathematical
deductions, it is necessary to fix some conventional notations which will ultimately be
used.

- (i, j, k) is used to represent the position of the sub-assembly in the normal Cartesian
coordinate. i, j, k are all integers which stand respectively for x, y, z directions.

- hxi , hyj h
z
k are used to represent the lengths for each direction of the node (i, j, k).

- V (i, j, k) is the volume of the node (i, j, k) which equals to hxi h
y
jh

z
k.

The above definitions are illustrated in Figure 4.3.

With the new notation rules, the Eq (4.7) could be rewritten as follows:

hyjh
z
k

[
Jxg (i+ 1, j, k)− Jxg (i, j, k)

]
+ hxi h

z
k

[
Jyg (i, j + 1, k)− Jyg (i, j, k)

]
+ hxi h

y
j

[
Jzg (i, j, k + 1)− Jzg (i, j, k)

]
+ Σt,g(i, j, k)φg(i, j, k)V (i, j, k)

=
∑
g′

[
Σs,0,g′→g(i, j, k)φg′(i, j, k)V (i, j, k) +

χνΣf,g′→g(i, j, k)φg′(i, j, k)V (i, j, k)

Keff

]
(4.12)

where all the over-lined macroscopic cross sections are weighted by the �exact� scalar
heterogeneous flux. The definitions of these cross sections are already given below in
Eq (4.3). As for the flux and the current, they are averaged over the volume and the
directional surface respectively, expressed mathematically as follows:

φg(i, j, k) =

∫ xi+1

xi
dx
∫ yj+1

yj
dy
∫ zk+1

zk
dzφg(x, y, z)

V (i, j, k)
(4.13)
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Figure 4.3: Illustration of nodal sub-assembly scheme

Jxg (i, j, k) =

∫ yj+1

yj
dy
∫ zk+1

zk
dzJxg (xi, y, z)

hyjh
z
k

(4.14)

Jyg (i, j, k) =

∫ xi+1

xi
dx
∫ zk+1

zk
dzJyg (x, yj , z)

hxi h
z
k

(4.15)

Jzg (i, j, k) =

∫ xi+1

xi
dx
∫ yj+1

yj
dyJzg (x, y, zk)

hxi h
y
j

(4.16)

If these flux weighted homogenized multi-group cross sections continue to be used in
the whole core calculation, it means that Eq (4.12) is also valid in representing the neu-
tronic balance for a homogenized node in the core calculation step. We use another set
of notations for the whole core calculation solutions: φ̂g(i, j, k); Ĵg(r); all the overlayed
cross sections become hat-wore cross sections without changing the values. By virtue of
the same transport equation and the same homogenized multi-group cross sections shared
between the core and the sub-assembly calculation, we have to preserve every single term
in Eq (4.12).

Thus, we could conclude, at first, that the homogeneous flux solutions (φ̂g(i, j, k)) from
the whole core calculation are identical to the averaged heterogeneous flux as expressed
in Eq (4.13) for every sub-assembly node: φg(i, j, k) = φ̂g(i, j, k). In addition, the macro-
scopic reaction rates, the leakage rates and the multiplicative factor are preserved.

The second conclusion is made for the surface current terms, the preservation relation
is only available for the overall leakage rates. In order to establish a relationship between
the homogeneous surface current and the heterogeneous surface-averaged current (Eq 4.14
to Eq 4.16), we need to write the homogeneous current (Ĵg(r)) as the gradient of the

homogeneous flux (φ̂g(r)) according to the principle of the Fick’s law. Here, to simplify the
mathematical expressions, the following deductions are performed for a one-dimensional
problem. Thus the x−directional current within node (i, j, k) is expressed as in Eq (4.17).
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Ĵg
x
(r)|(i,j,k) = −Dx

g |(i,j,k)
∂φ̂g(r)

∂x
|(i,j,k) (4.17)

where Dx
g |(i,j,k) corresponds to the x−directional diffusion coefficient in homogenized

node (i, j, k). The idea of using directional dependent diffusion coefficient is proposed
by Koebke [60] which is different from the classical Fick diffusion law. With the same
idea in mind, we could use a diffusion coefficient tensor Dg|(i,j,k) to specify the direction
dependence. After division by the node volume, the Eq (4.12) could be written as:

−∇ ·Dg|(i,j,k) · ∇φ̂g(x, y, z) + Σ̂t,g(i, j, k)φ̂g(i, j, k) =∑
g′

[
Σ̂s,0,g′→g(i, j, k)φ̂g′(i, j, k) +

ˆχνΣf,g′→g(i, j, k)φ̂g′(i, j, k)

Keff

]
(4.18)

In order to follow the x−directional surface averaged current variation tendency, an
integration is done to Eq (4.18) over the y− and z− directions of the node (i, j, k). Thus,
we obtain the surface averaged equation which is parallel to the plan y − z:

−Dx
g |(i,j,k)

∂2φ̂g
x
(x)|(i,j,k)

∂x2
+ Σ̂t,g(i, j, k)φ̂g

x
(x)|(i,j,k) + L̂g

x|(i,j,k) =∑
g′

[
Σ̂s,0,g′→g(i, j, k)φ̂g′

x
(x)|(i,j,k) +

ˆχνΣf,g′→g(i, j, k)φ̂g′
x
(x)|(i,j,k)

Keff

]
(4.19)

where the surface averaged flux and leakage terms are defined respectively as below:

- φ̂g
x
(x)|(i,j,k) =

∫
yj
dy
∫
zk
dzφ̂g(x, y, z)

hyjh
z
k

: a surface averaged flux which is dependent on

the position on the x axis within the node (i, j, k). The surface plan is perpendicular
to the x direction.

- L̂g
x|(i,j,k) =

−Dy
g(i, j, k)

∫
yj
dy
∫
zk
dz
∂2φ̂g(x, y, z)

∂y2
−Dz

g(i, j, k)
∫
yj
dy
∫
zk
dz
∂2φ̂g(x, y, z)

∂z2

hyjh
z
k

:

the sum of the two net leakages transverse to the direction x, per unit x, divided by
the surface hyjh

z
k.

In the above Eq (4.19), with the exception of the first boundary condition term, all the
rest are supposed to be known. And we have proved previously that the rest of the terms
are consistent between the heterogeneous cell calculation step and the homogenized core
calculation step. Thus, for the first boundary condition term, we could always preserve the
surface currents as shown in Eq (4.11) via choosing the appropriate diffusion coefficients.

As we know that the heterogeneous surface currents are continuous while passing
through an interface, thus the continuity property is inherited naturally by the homog-
enized surface current. This means that in a nodal core calculation, we could write an
equilibrium relationship as : Ĵg

x
(r)|(i+,j,k) = Ĵg

x
(r)|(i+1−,j,k), with i+ and i+ 1− indicate

respectively the positive and negative directions of the interface crossed by two adjacent
nodes (i, j, k) and (i+ 1, j, k).



64 CHAPTER 4. SPATIAL HOMOGENIZATION THEORY

Since the surface current could be expressed by the surface flux as follows:

Ĵg
x
(r)|(i+,j,k) = −Dx

g |(i,j,k)
∂φ̂g

x
(x)

∂x
|(i+,j,k) (4.20)

Thus a relationship could be established between two adjacent surface flux:

Dx
g |(i,j,k)

∂φ̂g
x
(x)

∂x
|(i+,j,k) = Dx

g |(i+1,j,k)
∂φ̂g

x
(x)

∂x
|(i+1−,j,k) (4.21)

Because the diffusion coefficients are not necessarily identical between the adjacent
nodes, we could not tell that the continuity effect is also respected by the surface flux.
To overcome this problem, Smith[58] proposed the discontinuity factors for each side of
the interface between two adjacent nodes. They are defined as the ratio of the surface
averaged flux to the volume-averaged flux:

fx
+

g (i, j, k) =
φ̂g

x
(i+)|(i,j,k)

φ̂g(i, j, k)
(4.22)

fx
−

g (i, j, k) =
φ̂g

x
(i−)|(i,j,k)

φ̂g(i, j, k)
(4.23)

With the additional freedom degree, we could eventually preserve the macroscopic re-
action rates, the multiplicative factor and the surface current at the same time.

Conclusion

Both of the methods presented in this chapter are involved in the deterministic simulation
domain. Eventually, in the Monte-Carlo codes, the energy condensation and the spatial
homogenization procedures could not really be clearly distinguished. As the collision
density is the a practical variable mastered in a Monte-Carlo simulation, thus the scalar
flux could be deduced directly. So the Monte-Carlo codes use this scalar flux as a weighting
function to produce homogenized multi-group cross sections. The first innovative scientific
contribution of this work is to propose a consistent method for energy condensation and
spatial homogenization which is heavily inspired by the above mentioned deterministic
methods. Detailed developments will be presented in Part II.



Chapter 5

Homogenized multi-group cross
section production with
Monte-Carlo codes

Introduction

The two previous chapters described respectively the energy condensation and spatial ho-
mogenization issues from a deterministic point of view. However, some inherent approxi-
mations and simplifications are involved which result in the limitations of the deterministic
energy condensation and spatial homogenization methods. For example, the determinis-
tic methods could not handle all kinds of geometries due to its solver limitation. Even
for methods of characteristics (MOC)[35], its capacity to handle 3D geometries is quite
restrained. A large amount of trajectories have to be stored which probably induce some
hardware problem. That is why the Monte-Carlo method is solicited to produce homoge-
nized multi-group constants. Additionally, the increase in computational capacity enables
us to actualize this interesting idea.

This chapter begins with a general introduction of the Monte-Carlo method: its general
principles; the related simulation Algorithm used for solving the integral form of neutron
transport equation. Then, some descriptions will be given about the Monte-Carlo estima-
tors. The four last sections are dedicated to four worldwide Monte-Carlo codes which are
capable of producing the homogenized multi-group constants (the multi-group cross sec-
tions as well as the multi-group energy transfer matrix and anisotropy parameters). They
are namely: the Finnish code Serpent [63, 64] developed at the VTT technical research
center; the Korean code McCARD [27, 28] developed at Seoul National University; the
American code MCNP [54, 65] developed at the Los Alamos Laboratory; the French code
TRIPOLI-4r [31, 23, 5] developed at the CEA. Of course, these codes can perform a lot
of various kinds of analysis work. Here, the author focuses on comparing their use in the
multi-group constants production. Concerning the French code TRIPOLI-4r, a summary
of the existing functionalities of multi-group constants production will be presented be-
fore starting the main part of this thesis work. The newly implemented methods will be
explained in the next two parts.

65
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5.1 General Principles of the Monte-Carlo Method

Since the nineteenth century, two different mathematical methods dealing with physical
phenomena have been developed. The problems with a few particles are usually treated
with conventional mechanics solving some differential equation systems, as described in
the previous section. In contrast, for a large amount of particle systems, another com-
pletely different methodology was developed from statistical mechanics. With this later
method, we are more interested in the whole set of particles properties rather than search-
ing for an exact solution for one particular particle. The set theory [57], the measurement
theory [13, 14] and then the probability theory [18] dated from the twentieth century com-
bined allow us to formalize the statistical method that is nowadays termed �Monte-Carlo
method�[72].

For a nuclear fission reactor containing about 1018 ∼ 1020 neutrons per cube centimeter
per second, it is impossible to treat them all with the classical deterministic method avoid-
ing certain approximations, such as discretization. Therefore, the Monte-Carlo method
naturally attracts our attention in the field of nuclear reactor physics calculations.

The basic question is how to calculate a physical quantity of interest with the proba-
bilistic method. The principal idea is to find an estimator e for the quantity to be mea-
sured. We suppose that there exists a unique solution u which is exactly the expectation
of the estimator.

E(e) = u (5.1)

The next step is how to obtain the expected value. For this, N independent events are
realized randomly. Each of them is sampled according to a certain probability distribution
L(u, σ) and gives out a score noted as en, n = 1, 2, · · ·N . This used distribution refers to
the probability density function (PDF1). All these scores {en} respect the above distribu-
tion law which is characterized by its expectation value u and its standard deviation σ.
At the same time, an averaged value is obtained from the set of scores {en} according to
Eq (5.2). By using the law of large numbers, we could predict that eN will converge to u
while N tends towards infinity as shown in Eq (5.3).

eN =
1

N
×

N∑
n=1

en (5.2)

lim
N→∞

eN = E(e) = u (5.3)

The above relationships indicate that eN is indeed an accessible estimator for the ex-
pected physical quantity. From now on, we consider the previous N independent events as
one sample with an estimated value eN . According to the central limit theorem[61, 62, 19],
the above estimated variable eN follows a Gaussian distribution law noted as G(u, σ√

N
).

Comparing the two distribution laws: G(u, σ√
N

) and R(u, σ), it is found that they share

the same expected value u but not the same standard deviation. The variance of the
Gaussian law is indeed reduced by N with respect to the first unknown distribution law.
Eq (5.4) shows the mathematical formula of Gaussian function.

1The probability density function describes the relative likelihood for a random variable to take on a
given value
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G(x) =
1

√
2π

σ√
N

e
− 1

2

(
x−u
σ√
N

)2

(5.4)

It is characterized by two parameters:

- u: the expected value of the unique solution ;

-
σ√
N

: the standard deviation of the Gaussian distribution.

Then, this work of sampling N independent events is repeated M times. Their results
form another set of scores {eNm}, m = 1, 2, · · ·M . Similarly, the new scores {eNm} con-

struct a Gaussian distribution function noted as G(u,
σ√

N ×M
). Till now, the expected

value u is always preserved and the standard variance is reduced by the total number of
sampled independent events N ×M .

It should be noted that both u and
σ√

N ×M
are the exact solutions what we expect

from a probabilistic approach. However they could never be obtained exactly because the
number of independent random samples is always limited. By the way, u corresponds to

the deterministic solution with
σ√

N ×M
= 0.

Finally, the estimation of the expected value u noted as û is obtained by performing
an algebraic average over all the M scores {eNm}. As for its standard variance noted as
S2
M , it is estimated from the estimated expectation value û as well as each single element

in the set {eNm}. The detailed formula are as follows:

û =
1

M
×

M∑
m=1

eN
m (5.5)

S2
M =

1

M(M − 1)

M∑
m=1

(eN
m − û)2 (5.6)

In the Monte-Carlo domain, the standard variance is a very important parameter
associated with its own distribution law. With its aid, a confidence interval can be defined
which is also named in mathematics the error function c(e). It provides a probability that
a random score eN

m enters in the desired interval { u− e ≤ eNm ≤ u+ e}.

c(e) =
1√

2πSM

u+e∫
u−e

e
(eN

m−u)2

2S2
M du = erf(

e√
2SM

) (5.7)

The most often used confidence intervals are respectively:

c(e) =


0.689 if e = SM
0.954 if e = 2SM
0.997 if e = 3SM

(5.8)
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5.2 Neutron Transport with Monte-Carlo method and its
Simulation Algorithm

In this section, we will specify the Monte-Carlo method for the neutron transport prob-
lem. The main idea extracted from Monte-Carlo method to treat the neutron transport
problem is trying to simulate as closely as possible every neutron traveling story. In order
to make the stochastic method applicable in our domain of interest, a principal hypothesis
is necessary: each of the neutron movements is considered to be a Markov process. This
means that the neutron reactions at any moment depend only on their present state and
are completely disconnected from previous situations. This hypothesis makes neutron in-
teractions independent events.

In order to obtain reliable results, numerous neutrons are launched into the nuclear
system in a certain kind of arrangement. At first, N neutrons are gathered to form one
batch. The batch concept corresponds to the first events set {en} in the previous section.
Then, M batches of neutrons are simulated independently which give out the final esti-
mated results and their standard variations. According to Eq (5.5) and (5.6), we notice
that the final estimated values depend on both the number of particles in each batch as
well as the number of batches.

Until now, only macroscopic steps have been mentioned concerning how to handle the
neutron transport process with the Monte-Carlo method. In the following paragraphs, we
shall enter into every single neutron life story.

Each neutron source is born randomly with associated initial characteristics: the energy
Eo, the direction Ω̂o, the position ro which are all chosen randomly according to certain
distribution rules. An optical path ρ is then selected for the neutron. The sampling of
an arbitrary variable relies on the knowledge of its probability density function. In the
case of optical path, it is noted as P (ρ) and shown in Eq (5.9). This probability density
is related to its existing homogeneous medium macroscopic total cross section.

P (ρ) = Σt(r, Eo)e
−
ρ∫
0

Σt(ro+sΩ̂,Eo)ds
(5.9)

Taking a random number ξ between [0; 1], the latter can help to decide an optical path
ρo according to an equality relationship:

ξ∫
0

1dξ′ = ξ =

ρo∫
0

Σt(r, Eo)e
−
ρ∫
0

Σt(ro+sΩ̂,Eo)ds
dρ (5.10)

Eq (5.10) results into:

ρo = − 1

Σt(r, Eo)
ln(1− ξ) (5.11)

The above sampling method is called inverse technique. There are some other tech-
niques, such as rejection technique and composition technique. The details about the
Monte-Carlo sampling technique could be found in [81, 70].

We check then if this selected distance ρo will cause the neutron to get out of its ho-
mogeneous medium. If such is the case, we continue to check if the interface crossed by
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the neutron is an internal one or a boundary one. If it is the first case, the neutron will
be repositioned at the crossed interface maintaining the same energy and direction. If
the interface crossed is a limit boundary which is linked to a vacuum space, the neutron
escapes from the reactor medium and will no longer be considered. If the boundary condi-
tion is reflective, the neutron will simply change its direction and returns to the first step
of selecting an optical path.

We must now look into the case further where the neutron remains in its original
homogeneous medium. After having been shifted by this optical path, a nuclide consti-
tuting the homogeneous medium will be chosen according to the atomic concentration
proportion and the microscopic total cross section to have a collision with the neutron.
By knowing the collided nuclide, we need to choose the interaction type. It depends on
the nuclide as well as the incident neutron energy. This information is supplied by the
cross section data library. So, if the chosen interaction is an absorption, the neutron will
be killed. If it is a scattering (elastic or inelastic), the neutron will continue its trajectory
with another energy and another direction selected with different rules depending on the
scattering types. For example, in the case of an elastic scattering, the deviation angle will
be first chosen according to its distribution probability. Then, the outgoing energy can be
calculated with the help of the kinetic energy and momentum conservation rules. As for
the inelastic interactions, it is much more complicated because of the separation between
discrete case and continuum case. In the former case, it is almost the same treatment
procedure as for elastic collision with the exception of an initial step involving the choice
of an excited level. However, for the latter case, i.e. the continuum inelastic case, we can
no longer decide the outgoing energy just with the deviation angle. The two variables are
selected independently or with a certain correlation rule between them.

In the absorption family, there is a special reaction type: fission reaction where sec-
ondary neutrons are created. These fission secondary neutrons are emitted isotropically
in the center of mass of fission fragments system. The kinetic energy of every neutron
is sampled according to the related nuclide fission spectrum. Their trajectories will be
followed but in the next neutron generation.

At the end of each batch simulation, the scores contributed by every neutron will be
averaged and stored. After all the batch calculations have been performed, we obtain the
final estimation values with their standard deviations. However, some exceptions exist,
for example, the estimation of group-wise energy transfer probability matrix. The latter
is obtained at the end of the whole simulation taking account all the simulated neutrons
scores. Therefore, it does not possess the statistical deviation. Details about this special
variable will be presented in Chapter 7. An illustration scheme is plotted to summarize a
neutron life history in Fig (5.1).
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Figure 5.1: Single neutron life history simulated using the Monte-Carlo method
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5.3 Monte-Carlo estimation

After assimilating the global idea of the Monte-Carlo method as well as its particular ap-
plication in the neutron transport problem, it is unavoidable to present the Monte-Carlo
simulation estimators which form the topic of the present section. It is divided into two
parts: the general Monte-Carlo estimators[11] and the specific ones in charge of estimating
the multi-group parameters which will be used in the core calculation step.

5.3.1 General estimators

The most important estimator during a Monte-Carlo simulation is the neutron simulation
weight noted as ω. Graceful to this, we are able to estimate directly the collision density
and then deduce other neutronic variables.

In a nuclear reactor calculation, the physical quantities such as flux, current and differ-
ent types of reaction rates are usually required. For that, each of them needs its appropriate
estimator. As for the types of estimators, there are three different families correspond-
ing to different spatial domains where the scores are registered. They are respectively:
volumetric estimators; surface estimators and point estimators. Table 5.1 summarizes
the different estimators and their applications formula associated with different physical
quantities. The definitions of the parameters used in the below table are respectively:

- ω: the simulation weight of neutron;

- l: the track length traveled by neutron between two collisions;

- Σt: the macroscopic total cross section of the medium where the neutron is propa-
gating;

- Σi: the macroscopic cross section of reaction type i for which the reaction rate is
desired, in the medium where the neutron is propagating;

- Ω̂: the neutron propagation direction;

- N: the positive normal direction of surface through which neutrons pass;

- Σ̃: optical path between the point of collision and the point where the flux is de-
manded:

Σ̃ =

s∫
0

Σt(r− s′Ω̂, E)ds′ (5.12)

From the above table, it is observed that not all the estimators could be applied to the
current nor to the reaction rate. From the neutronic definition of the current, it concerns
a quantity passing through a unit surface with a fixed direction per unit time. Thus it is
normal that we estimate it only with the surface estimator. As for the reaction rates, it
is complete non-sense to calculate them on a surface or at a point. Details about the flux
estimators will be followed in the following paragraphs.

The cord estimator also called track length estimator, and the collision estimator,
work both within a volumetric domain D. The cord estimator stores every track length
li of every neutron as well as its simulation weight ωi where i indicates the trajectories
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Flux Current Reaction rate

Volumetric estimators
Cord ω · l N.A. ω · l · Σi

Collision
ω

Σt
N.A. ω · Σi

Σt

Surface estimators
ω

Ω̂ ·N
ω N.A.

Point estimators ω · Σs

Σt
· exp(−Σ̃)

s2
N.A. N.A.

Table 5.1: Different estimators with the applications formula to different physical quanti-
ties. N.A. : no application

comprised in the volume VD. And finally all the stored track length data are averaged
over the whole volume as expressed in Eq (5.13). This estimator is particularly suitable
and efficient in low density media where collisions occur rather rarely.

φ̂ =
1

VD

∑
i

ωi · li (5.13)

The other volumetric estimator is called the collision estimator which is privileged for
its high density media. It could be obtained via the collision density accumulated in the
involved domain D. Its detailed definition is shown in Eq (5.14) where i indicates all the
collisions occurred in the concerned domain.

φ̂ =
∑
i

ωi
Σt

(5.14)

The surface estimator is mainly dedicated to current estimation, usually for the neutron
leakage case. The particle flux point estimator is not exactly performed at one point but
rather in a very tiny sphere which is around the calculation point . A divergence problem
could be encountered using this estimator if the collisions occurred at the calculation point
and/or very close to this point.

5.3.2 Multi-group constant estimators

The Monte-Carlo simulation features decide that producing the flux-weighted homogenized
multi-group constants is not a difficult task for any Monte-Carlo code. As the entrance
collision density Ψ expressed in Eq (5.15) could be estimated directly during a Monte-
Carlo simulation, the scores of Ψ could thus be easily recorded within a certain geometrical
volume and also within a specific energy interval.

Ψ = Σt(r, E)φ(r, E) (5.15)

One-dimensional macroscopic cross sections

Note here that, the energy condensation and the spatial homogenization procedures are
usually mixed together in a Monte-Carlo simulation, especially for a heterogeneous geom-
etry case. Therefore, the homogenized and collapsed cross section which depends only on
the incident energy could be defined according to Eq (5.16):
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Σ
V
i,g =

∫
r∈V

∫
E∈g

Σi(r, E)φ(r, E)dEd3r∫
r∈V

∫
E∈g

φ(r, E)dEd3r
=

∫
r∈V

∫
E∈g

Ψ(r, E)Σi(r,E)
Σt(r,E)dEd

3r∫
r∈V

∫
E∈g

Ψ(r,E)
Σt(r,E)dEd

3r
(5.16)

where i stands for the different reaction types, such as: total collision reaction, ab-
sorption reaction and fission production reaction. Meanwhile, the index g is the incident
energy group of the neutron and V is its macroscopic volume.

Energy transfer probability

To calculate the multi-group energy transfer probabilities that depend on both the incident
and the out-going energies, additional attention needs to be paid to classifying the out-
going energy into the associated energy group. This could always be obtained naturally
with all the existing Monte-Carlo codes. Its general estimation rule is given by Eq (5.17):

P (g → g′) =

∫
r∈V

∫
E∈g

∫
E′∈g′

Σs(r, E → E′)φ(r, E)dEdE′d3r∫
r∈V

∫
E∈g

Σs(r, E)φ(r, E)dEd3r
(5.17)

Anisotropy parameter

However, using the non-angular related homogenized multi-group constants is not suffi-
cient to continue a core calculation. The real challenge is to produce the multi-group
anisotropy parameters for the next step core calculation. In fact, the anisotropic effect
is shown in two different forms according to the core simulation properties. In the first
code family, which is based on the diffusion theory, the anisotropic effect is also related
to the neutron leakage effect which is characterized by the specific coefficient Dg under
the name of the multi-group diffusion coefficient or leakage coefficient. As for the second
code family, it relies on the transport theory and the anisotropic effect is expressed by the
high-order (> 0th) multi-group scattering matrix.

At present, most of the Monte-Carlo codes that have the capacity to produce the
anisotropy parameters aim to supply the diffusion codes with them. However, the diffusion
coefficient is not at all involved in a continuous-energy Monte-Carlo simulation. Thus, a
lot of studies about how to generate the multi-group diffusion coefficients appropriately
were carried out previously. A common feasible solution is deviated from Fick’s law
which suggests a simple relationship between the multi-group diffusion coefficients and
the transport cross sections shown in Eq (5.18).

Dg(r) =
1

3Σtr,g(r)
(5.18)

where Σtr,g(r) is the transport cross section and defined as:

Σtr,g(r) = Σt,g(r)− µgΣs,g(r) (5.19)

The above definition of transport cross section comes from the P1 approximation and
the usage of out-scatter property. The angular-dependent parameter µg is hidden in the
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expression of the transport cross section in Eq (5.19). It is actually the cosine of the average

scattering angle. Its continuous energy form could be obtained as µ(E) =
1∫
−1

µf(µ,E)dµ

where f(µ,E) is the angular deviation law which comes from the input data library and
it is usually coupled with the energy variable once the inelastic scattering reaction enters
into the continuum region.

Theoretically, the homogenized multi-group transport cross section should be weighted
by the current spectrum according to the linearly anisotropic multi-group diffusion equa-
tions [55]. Practically, the concept of using current spectrum as a weighting function is
not achievable in a Monte-Carlo simulation. The reason is due to the highly symmetrical
distribution of the angular flux in the core geometry which could result in a convergence
problem while integrating the current.

In his Ph.D thesis [55], Leppänen showed several existing solutions to avoiding the cur-
rent weighting problem which are implemented in different codes. There is a common idea
shared by Gast [45] and Tohjoh [95]: use of an empirical correction factor to adjust the
flux-weighted diffusion coefficient for the whole core calculation. This method works well
for certain cases, but is not effective for all reactor cores. Ilas & Rahnema [53] proposed
some different processing techniques while analyzing the spent LWR fuel lattice. Their
main goal is to preserve the multiplicative factor exactly. The reference value comes from
the continuous-energy Monte-Carlo simulation. To reach this objective, the multi-group
diffusion coefficients are considered as free variables which are calculated by a genetic
algorithm. According to the author’s opinion, this idea of intentionally adding degrees of
freedom is used similarly in the SPH or GET methods used in deterministic codes. They
are all robust mathematical techniques with a precise aim, such as preserving the Keff

and/or the macroscopic reaction rates.

Alongside the majority Monte-Carlo codes which serve later for a diffusion calculation,
there are always several exceptional ones aiming at producing non-zeroth order scattering
matrix which could indeed be used in a transport simulation. One example is the work
performed by Redmond II during his Ph.D. studies[50] on the American code MCNP.
The angular deviation probability distribution function is established at the same time as
calculating the group-transfer cross sections. With the above two multi-group constants,
the moments at any order of the scattering matrix could be deduced easily. Another
example of the scattering matrix production is the French Monte-Carlo code, TRIPOLI-
4r[31, 23, 5]. It is also the main platform where this thesis work is conducted.

Infinite and leakage-corrected spectra

Another concern involved in the homogenized multi-group constants production is the
kind of flux or current spectrum to be used. Under a normal operation, the reactor core
is in a critical state. Thus the flux spectrum is a �critical� spectrum which corresponds
to Keff = 1. However, in a sub-assembly calculation, the limit condition is usually set to
be reflective or periodic which presents an �infinite� spectrum. The in-consistency of the
spectra used to weight the multi-group constants yields theoretically inconsistent results,
especially when an important discrepancy is found between the two spectra. That’s the
reason why developing a leakage model seems necessary in the deterministic cell calcula-
tion.
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For a Monte-Carlo cell calculation, the need to have a leakage model in order to pro-
duce the multi-group constants weighted by a critical spectrum is also very important.
This thesis work is also very much interested in the Monte-Carlo based leakage model.
Detailed backgrounds of the neutron leakage effects and a development of a leakage model
in the TRIPOLI-4r code make up the main contents of Part III. Most of the existing
Monte-Carlo codes calculate the homogenized multi-group constants with an infinite flux
spectrum. The few exceptions will be mentioned separately in the following sections.

5.4 Serpent

Serpent is a three-dimensional continuous-energy Monte-Carlo reactor physics burn-up
calculation code. It is heavily based on the preliminary code PSG [55] which is the main
result of Leppänen’s Ph.D. work. The methods used to generate homogenized multi-group
constants in Serpent are naturally inherited from the PSG code whose initial motivation
is to produce these constants for deterministic whole core calculations. In addition, it was
focused to serve in few-group nodal diffusion codes. Thus, the output of the homogenized
multi-group constants from Serpent or PSG codes are mainly:

- The conventional homogenized multi-group reaction constants which could be ob-
tained from Eq (5.16) and Eq (5.17).

- The multi-group diffusion coefficients:

The method used in Serpent code to calculate Dg is totally different in comparison
to those presented in the above text. The diffusion coefficient is linked directly to the
diffusion area by the following relationship: Dg = Σr,gL

2
g, where Σr,g = Σt,g−Σs,g→g

is the removal cross section in group g. The diffusion area L2
g could be estimated

from the mean square area r2
g : L2

g =
r2
g

6
[55]. Moreover, the mean square area is

calculated by accumulating all the distances that neutrons have traveled from the
moment of entering in the group g till getting out from g. Finally, an almost exact
diffusion coefficient is obtained with the Serpent code. The only approximation in-
volved for obtaining the Dg is the diffusion approximation.

With knowledge of the multi-group diffusion coefficients, some other parameters
could be derived naturally, such as: the multi-group transport cross section, the
average scattering cosine, the migration area.

- The scattering cross section matrix :

This output capacity is up to Legendre order 7 in the Serpent code. However, it is
not the problem to get even higher-order of Legendre, because they could be eas-

ily obtained by the formula: Σs,l =
1∫
−1

Σs(µ)Pl(µ)dµ = Σs,0

1∫
−1

f(µ)Pl(µ)dµ. Pl(µ)

is the lth order of moment of the Polynomial Legendre where l could be any posi-
tive integer. And f(µ) is the multi-group angular deviation probability distribution
function. The embarrassing thing is that the PDF function f(µ) is weighted by the
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scalar flux spectrum which results in that the non zero-th order of the scattering
cross sections are indirectly weighted by the flux spectrum rather than the current
spectrum. This procedure is assumed to give out inconsistent results compared with
the continuous-energy Monte-Carlo simulation.

Even though the Serpent code could generate these non zero-th order scattering
matrix, it appears that they are not being used yet in any deterministic code. The
validation work is not yet extended to these output parameters since they will focus
on producing homogenized multi-group constants for diffusion codes.

Moreover, Serpent is able to calculate the homogenized multi-group constant with a
critical flux spectrum. The leakage model used in Serpent is based on the deterministic
solution of B1 equations [41]. A similar technique was developed in an experimental Monte-
Carlo code by Martin[71]. It was exploited by Fridman to perform a light water reactor
sub-assembly as well as a fast reactor sub-assembly calculation. There is not yet rigorous
validation work for the critical spectrum weighted multi-group constants produced by
Serpent. The author tried to compare the multi-group leakage model output parameters
between this work and the Serpent work. Readers are invited to have a further look in
Chapter 10.

5.5 McCARD

McCARD, developed at the Seoul National University, is a Monte-Carlo neutron-photon
transport simulation code which is designed for various nuclear reactor and fuel systems.
It possesses the capacity to produce the homogenized multi-group constants which are
then input into diffusion theory codes for the whole core neutronics analysis. The reason
for choosing this code to be presented here is because of the original way it uses the critical
spectrum for generating the homogenized multi-group constants.

The principle involved in calculating the conventional multi-group cross sections is
mostly the same for all the Monte-Carlo codes. The difficulties arise when non-conventional
multi-group constants are demanded, such as the multi-group diffusion coefficient. As the
McCARD code uses a critical spectrum from the homogeneous B1 fundamental equa-
tions [6], it naturally gets around the difficulty of the previously mentioned Monte-Carlo
studies producing the multi-group diffusion coefficients. The B1 critical spectrum utiliza-
tion is in fact a leakage model concept implemented in the McCARD code. This leakage
model is based on the deterministic homogeneous fundamental equations which will be de-
duced explicitly in Chapter 10. Here, in order to explain how the McCARD code calculates
the critical spectrum weighted homogenized multi-group constants, the final expression of
the B1 equations are simply given as follows:

Σt,gφg ± iBJg =
∑
g′

Σg′→g
s0 φg′ + χg (5.20)

±iBφg + 3γgΣt,gJg = 3
∑
g′

Σg′→g
s1 Jg′ (5.21)
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where γg is a critical buckling B dependent variable, defined as:

γg =



1

3

B
Σt

arctan B
Σt

1− Σt
B arctan B

Σt

if B2 > 0

B2

3Σt

ln Σt+Im(B)
Σt−Im(B)

Im(B)− Σt ln Σt+Im(B)
Σt−Im(B)

if B2 < 0

1 +
4

15
(
B

Σt
)
2

− 12

175
(
B

Σt
)
4

+ · · · if B2 ≈ 0

(5.22)

The procedure used to produce the critical spectrum homogenized multi-group con-
stants in McCARD is divided globally into three steps, without any iteration scheme:

1- Calculation of the fine-group cross sections. It is worthwhile to point out that the
first order scattering cross section should be weighted by the continuous current
spectrum. McCARD takes the approximation that the continuous current spectrum
is proportional to the flux. All the multi-group parameters at this step are obtained
for an infinite geometry.

2- Solving the above B1 Equations (5.20) and (5.21) with knowledge of the fine-group
cross sections. The detailed method used to solve these coupled equations is not the
topic of this section, readers are suggested to find more information in Chapter 10.
Thus, the critical fine-group flux and current spectra noted respectively as φBg and

JBg are obtained as solutions, as well as the critical buckling value B.

3- Collapsing the fine-group cross sections into few-group cross sections with the weight-
ing function which is the critical flux spectrum. The formula of the energy collapsing
for the conventional reaction cross sections is:

Σi,G =

∑
g∈G

Σi,gφ
B
g∑

g∈G
φBg

(5.23)

where i could stands for the total, absorption, or fission reactions.

As for the few-group diffusion coefficients DG, it could be calculated in two different
ways:

DG =

±i
∑
g∈G

JBg

B
∑
g∈G

φBg
(5.24)

or

DG =

∑
g∈G

Dgφ
B
g∑

g∈G
φBg

(5.25)

where the fine-group diffusion coefficient is defined as Dg =
±iJBg
BφBg

. We may note

that, the few-group diffusion coefficients are indeed weighted by the critical flux spec-
trum also. This way of doing things may induce some inconsistent results compared
to continuous-energy Monte-Carlo simulations.
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The critical spectrum weighted homogenized multi-group constants by the McCARD
code are validated by two specific cases: a PWR and a VHTR fuel blocks and cores
analysis[27]. Moreover, the calculation results clearly indicated that the critical spectrum
is necessary to produce the homogenized multi-group constants.

5.6 MCNP

MCNP, developed at the Los Alamos National Laboratory since the 1970s, is a multi-
particle (n, γ, e−) transport Monte-Carlo code. It is worldwide used as a reference code
because of its pioneering reputation. The homogenization and energy condensation prob-
lem was dealt with by Redmond II[50] as his Ph.D thesis topic in the late 1990s. He
completed the capabilities of MCNP by adding the routines for generating the group-to-
group scattering cross sections and the associated Legendre expansion of arbitrary order.

Different methods were implemented in MCNP to attain the above objectives. At first,
to calculate the group-to-group scattering cross sections, there are two methods which are:

1. The Monte-Carlo Approach: A single scattering event is simulated and based on the
incoming and out-going energies. A contribution is made to a single group-to-group
scattering bin. This method takes advantage of the standard MCNP scattering
routines.

2. The Explicit Approach: A scattering law is sampled and is manipulated to determine
the fraction of particles that could scatter into every possible group. A contribution
is made to each of these group-to-group scattering bins.

It should be noted that, the first method respects the same principle as expressed in Eq
(5.17) to establish an energy transfer matrix. As for calculating the Legendre Components,
there were also two methods:

1. f(µ) Estimation: The angular distribution is accumulated during the calculation by
making a contribution to an equiprobable-width cosine bin associated with a group-
to-group scattering bin. This distribution is weighted and integrated at the end of
the calculation to determine the Legendre components.

2. Direct Pn Estimation: The Pn components of the scattering rate are estimated
during the calculation by integrating the angular distribution for each scattering
cross section.

To be precise here, the high-order Legendre scattering cross sections were always
weighted by the flux spectrum which induced a potential problem. However, the cal-
culation methods were validated by three test problems and the results were found to be
consistent when compared to the reference MCNP results[50].

The homogenization work performed by Redmond II was based on the track length
estimation which results in low efficiency of calculation. For this reason, Van der Marck
et al.[82] from the Netherlands Nuclear Research and Consultancy Group created another
feature in MCNP: to use the collision estimator for generating homogenized multi-group
cross sections. They made MCNP print a record in a binary file for each interaction
simulated. The record contains all the necessary data for later post-processing, such as
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position, reaction type, energies and angle. A tool, ELNINJO[82], is used to continue the
processing task. This combinational technique is created on purpose for analyzing the
High Flux Reactor[82] in Petten, Netherlands. They could only produce the multi-group
cross sections under a reflective boundary condition.

Until 2009, Cho et al.[76] from the Korea Advanced Institute of Science and Technology
(KAIST) proposed using an albedo-corrected leakage spectrum to weight the multi-group
cross sections within the MCNP code. The simulation procedure is iterated between the
Monte-Carlo lattice calculation and the deterministic whole core calculation. The MCNP
code is in charge of producing the multi-group homogenized nodal parameters which are
later used in an arbitrary nodal diffusion code. The output of the nodal diffusion core cal-
culation is the expected albedo conditions on each assembly surface from the point of view
of MCNP. Thus, the new multi-group homogenized nodal parameters could be obtained
under the albedo condition from the MCNP simulation. The whole iteration procedure
ends up reaching the convergence criterion.

This processing method is in fact the concept of a leakage model adapted to a Monte-
Carlo lattice calculation. It is usually under the name of Albedo Leakage Model which has
the advantage of exactly preserving the surface current compared to other leakage models.
The different properties of various leakage models will be explicitly explained in Part III.

Finally, the albedo leakage-corrected critical spectrum weighted multi-group cross sec-
tions were tested on a small core mock-up containing a UO2 and a MOX fuel assembly[76].
And, the results using of the critical spectrum weighted multi-group cross sections match
better with the reference values compared to the use of the infinite spectrum weighted
parameters.

5.7 TRIPOLI-4r

At the end of this chapter, a brief summary will be given of the French Monte-Carlo code
TRIPOLI-4r, focusing on the existing calculation routines contributing to homogenized
multi-group cross section generation. This could also help reader(s) to have a clear vision
of the basis on which this thesis is carried out.

TRIPOLI-4r[31, 23, 5] is a reference Monte-Carlo code using point-wise cross sections
coming from standard evaluations such as ENDFB-VII[16] or JEFF-3.1.1[22]. Compared
with other continuous-energy Monte-Carlo codes, it has the capacity to produce and also
to use the multi-group cross sections. This means that the obtained homogenized multi-
group cross sections could be used by TRIPOLI-4r itself for the purpose of performing a
whole core calculation just as it is used in a deterministic core simulation code. In addition,
TRIPOLI-4r can take use of multi-group constants generated from APOLLO2[85] which
is a deterministic lattice code. Thus, TRIPOLI-4r could serve in both the multi-group
cross sections generation and validation works.

The first development work concerning the homogenization and energy condensation in
the TRIPOLI-4r code dates from the 1990s[56]. The initial motivation was to validate the
homogenized multi-group cross sections calculated by deterministic sub-assembly codes,
especially when examining the self-shielding techniques which are indispensable for deter-
ministic approach. Thus, during a continuous-energy Monte-Carlo simulation, TRIPOLI-
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4r could provide the necessary multi-group data for subsequently running a multi-group
core calculation code. The multi-group data are respectively the one-dimensional cross
sections and the multi-dimensional constants which are furthermore divided into: the
multi-group diffusion matrix, the multi-group anisotropy law and the fission spectrum.

The one-dimensional multi-group cross sections are calculated in the same way as
expressed in Eq (5.16). The directly estimated reaction types in the TRIPOLI-4r are
namely: the total collision, the absorption, the fission, and the fission production. As for
the scattering cross sections, they could be deduced from the total cross sections and the
absorption ones as following:

Σg
s = Σg

t − Σg
a (5.26)

The multi-dimensional multi-group constants estimation is in fact treated as a dis-
tribution function estimation problem in TRIPOLI-4r. The multi-group energy transfer
probability matrix is always calculated as in Eq (5.17). With combination of Σg

s, the
multi-group diffusion matrix could be obtained easily as in Eq (5.27).

Σg→g′
s = Σg

s × P (g → g′) (5.27)

The anisotropy problem is also treated with the natural approach in TRIPOLI-4r code:
establish a distribution function of the angular deviation for each energy transfer g → g′.
This distribution function is in fact discretized into 20 equal intervals Ii (i = 1, 2, · · · , 20)
between [−1; +1] which correspond to the entire range of the cosine of the angular deviation
µ. In fact, the weight of each scattering event is contributed to the energy transfer score
as well as to the angular deviation score. Thus, the probability distribution function of µ
in any interval Ii is obtained as follows:

P (µ ∈ Ii|g → g′) =

∫
E∈g

∫
E′∈g′

∫
µ∈Ii

Σs(µ,E → E′)φ(E)dµdE′dE∫
E∈g

∫
E′∈g′

∫
µ∈[−1,1]

Σs(µ,E → E′)φ(E)dµdE′dE
(5.28)

The obtained anisotropy distribution function could be directly used in a multi-group
TRIPOLI-4r simulation. Meanwhile, the moments of any order l of the scattering anisotropy
law could be derived from the above distribution function. With the high order scattering
matrix, a deterministic transport core calculation could also be continued.

The multi-group fission spectrum χ(g → g′) is estimated in the same way as for the
energy transfer matrix. Therefore, Eq (5.17) could be used again by replacing the diffusion
cross section by the fission section.

Until that time, the homogenization and energy condensation functionalities in TRIPOLI-
4r could only be performed under the condition of an infinite geometry. It did not have
any leakage model to estimate a critical spectrum weighted multi-group constants. The
existing functionalities were tested with a PWR MOX cell and a BWR assembly example.
Consistent results were observed in the TRIPOLI-4r simulations and APOLLO2 simula-
tions using the same input data library [56]. This preliminary work was indeed a pioneer in
the field of homogenized multi-group cross section production with Monte-Carlo method.
It did not include a complete verification and validation work to prove the reliability of the
produced multi-group constants. The author could not exactly reproduce the same results
as those published in the paper [56]. This comes probably from the different convergence
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criteria used in that period. Consequently, a thorough diagnosis work is performed on the
whole algorithm about homogenization and energy condensation routines which will be
detailed in Part II.
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Part II

Improvements of the existing
routines for homogenized

multi-group constant production
in TRIPOLI-4r
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Chapter 6

New multi-group constants
estimators applied to infinite
sub-assembly calculation

Introduction

Section 5.7 summarized the principle of the existing homogenization and energy conden-
sation functionalities in TRIPOLI-4r. The previous pioneer work did not include detailed
validation procedure nor further related development. Therefore, our objective is to con-
tinue the homogenization and energy condensation work in TRIPOLI-4r, especially for
the sake of reinforcing the reliability of the calculation routines and enlarging the appli-
cation range as well. However, it is impossible during this work to reproduce the same
results as shown in [56]. On the other hand, several tested cases point out that the ho-
mogenized multi-group cross sections produced by the existing version of TRIPOLI-4r

(4.7 with the input library JEFF3.1.1) cannot guarantee the preservation of the infinite
multiplicative factor K∞ between continuous-energy and multi-group TRIPOLI-4r sim-
ulations. A few examples which are all homogeneous infinite sub-assembly configurations
are listed in Table 6.1. They are calculated under both 6-group and 33-group energy
structures.

Sub-assembly K∞ reference ∆K∞(33gr) 3σ (33gr) ∆K∞(6gr) 3σ (6gr)

PWR 1.24425 ± 0.00020 -158 87 86 84

ZPPR-SCF 1.11709 ± 0.00013 15 55 97 55

MAS1B 1.52735 ± 0.00016 37 95 121 95

SPX2 1.34857 ± 0.00012 72 70 166 72

ZPPR-DCF 1.66286 ± 0.00005 324 95 371 98

ZONA2 1.67848 ± 0.00023 204 96 359 98

Table 6.1: First results obtained with the existing version of TRIPOLI-4r

In Table 6.1, the column K∞ presents the reference infinite multiplicative factors for all
the tested sub-assemblies. ∆K∞ is the discrepancy between continuous-energy TRIPOLI-
4r simulation and multi-group simulation using the self-obtained multi-group constants.
σ is the combined standard deviation only related to the Monte-Carlo statistics. Both
∆K∞ and σ values are in the units of pcm. To make clear that this French unit �pcm�
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(per hundred thousand translated in English) is usually used as a relative comparison
relationship. In this work, pcm will be considered simply as ×10−5. It is observed that
∆K∞ values generally exceed the associated 3σ. This result does not respect the theoret-
ical deduction given in Chapter 3 which states that for an infinite homogeneous geometry
case the flux weighted multi-group constants should preserve exactly the multiplicative
factor K∞ in a later multi-group calculation. This brings some doubt to the adequacy
of the reliability of the homogenization and energy condensation routines in the existing
TRIPOLI-4r.

In order to verify the calculation details, we need to assimilate how the multi-group
constants are estimated in a Monte-Carlo simulation. Therefore, it becomes necessary
to get familiar with the collision and transport operator kernels under the multi-group
forms. In the following sections, the multi-group Monte-Carlo transport formula will be
presented firstly. On the basis of the multi-group Monte-Carlo transport theory, some
new multi-group constant estimators will be introduced. The validation work will then
be performed on some example cases. A brief conclusion will be made at the end of this
chapter.

6.1 Multi-group non-leakage neutron balance

In Chapter 2, the neutron transport equation is presented as a balance relationship of the
continuous-energy dependent density quantities, whether in an integral-differential form
or in an integral form. The objective of this section is to broaden the neutron trans-
port theory from the continuous-energy domain towards the multi-group domain. Thus,
a multi-group neutron density balance equation is assumed to be established. It could be
obtained via performing an energy integration within the associated energy interval. We fo-
cus at first on the homogeneous non-leakage case which corresponds to a pre-homogenized
sub-assembly calculation with reflective or periodic boundary conditions. Since there is no
physical difference between the integral-differential and the integral transport equations,
here we use the integral-differential one for the following mathematical demonstration.

A simplified continuous-energy neutron balance equation is shown below as:

Σt(E)φ(E) =

∞∫
0

Σeff
s (E′ → E)φ(E′)dE′ +

1

K∞

∞∫
0

χf (E′ → E)νΣf (E′)φ(E′)dE′ (6.1)

where Σeff
s is noted as the effective scattering cross section including the pure scatter-

ing cross section and also the multiplication scattering sections: ((n, 2n), (n, 3n), (n, 4n)).
The intention to consider the multiplication scattering as part of the effective scattering
reaction is a choice of the TRIPOLI-4r code for processing the corresponding multi-group
parameters. Detailed explanation will follow.

Σeff
s (E′ → E) = Σs(E

′ → E) + 2Σ(n,2n)(E
′ → E) + 3Σ(n,3n)(E

′ → E) + 4Σ(n,4n)(E
′ → E)

(6.2)

We continue to integrate Eq (6.1) over a macro-energy group g = [Eg;Eg−1] which
leads to :
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Eg−1∫
Eg

Σt(E)φ(E)dE =

Eg−1∫
Eg

∞∫
0

Σeff
s (E′ → E)φ(E′)dE′dE

+
1

K∞

Eg−1∫
Eg

∞∫
0

χf (E′ → E)νΣf (E′)φ(E′)dE′dE (6.3)

By introducing the flux weighted multi-group parameters, the above Eq (6.3) could be
arranged into a well synthesized multi-group form:

Σt,gφg =
∑
g′

P (g′ → g)ξexces
g′ Σeff

s,g′φg′ +
1

K∞

∑
g′

χg
′→g
f νΣf,g′φg′ (6.4)

The multi-group parameters in Eq (6.4) are defined so as to preserve all the reaction
rates exactly. The simplest and the most direct treatment is for the total collision rate
which gives the multi-group total cross section as:

Σt,g =

Eg−1∫
Eg

Σt(E)φ(E)dE

Eg−1∫
Eg

φ(E)dE

(6.5)

During a real TRIPOLI-4r continuous-energy simulation procedure, the upper inte-
gration in Eq (6.5) is indeed a summation of all the entrance collision density (noted as
Ψ(E) = Σt(E)φ(E)) which occurs with a point-wise energy E belonging to the group g.
It should be mentioned that, the entrance collision density is represented by the neutron
simulation weight ω. Thus, the estimator for the multi-group total cross section could be
written as:

Σ̂t,g =

∑
i
ω(Ei, ri)∑

i

ω(Ei, ri)

Σt(Ei, ri)

(6.6)

where i indicates all the collisions whose incident energy and spatial position (Ei, ri) be-
long to the macro domain (g, V ).

The above estimator can be extended for other similar cross sections, such as absorp-
tion section, fission section and fission production section. By the way, a collision weight
based flux estimator is deduced from the above relation and it agrees well with the formula
listed in Table (5.1).

φ̂g =
∑
i

ω(Ei, ri)

Σt(Ei, ri)
(6.7)

The real challenge is to define the multi-group parameters appropriately at the right-
hand side of Eq (6.4). At this stage, inconsistent treatments were found in the existing
release of TRIPOLI-4r which resulted in the inconsistent results shown in Table (6.1).
The two terms at the right-hand side of Eq (6.4) are respectively the neutron production
from scattering and fission reactions. Each of them will be precisely developed in the
following sub-sections.
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6.1.1 Neutron production from scattering

Returning to the scattering term in the continuous-energy neutron balance equation (6.3),
it could be reformed as the product of a sequential terms expressed in Eq (6.8). Please note
that, the multiplication scattering reaction is generalized as (n,Xn) where X represents
the number of neutrons emitted from the scattering.

Eg−1∫
Eg

∞∫
0

Σeff
s (E′ → E)φ(E′)dE′dE =

∑
g′

Eg−1∫
Eg

Eg′−1∫
Eg′

Σeff
s (E′ → E)φ(E′)dE′dE

=
∑
g′

Eg−1∫
Eg

Eg′−1∫
Eg′

[
Σs(E

′ → E) +XΣ(n,Xn)(E
′ → E)

]
φ(E′)dE′dE

=
∑
g′

∫
E∈g

∫
E′∈g′

[
Σs(E

′ → E) +XΣ(n,Xn)(E
′ → E)

]
φ(E′)dE′dE∫

E′∈g′

[
Σs(E′) +XΣ(n,Xn)(E′)

]
φ(E′)dE′

×

∫
E′∈g′

[
Σs(E

′) +XΣ(n,Xn)(E
′)
]
φ(E′)dE′∫

E′∈g′

[
Σs(E′) + Σ(n,Xn)(E′)

]
φ(E′)dE′

×

∫
E′∈g′

[
Σs(E

′) + Σ(n,Xn)(E
′)
]
φ(E′)dE′∫

E′∈g′
φ(E′)dE′

×
∫

E′∈g′

φ(E′)dE′

=
∑
g′

P (g′ → g)× ξexces
g′ × Σeff

s,g′ × φg′ (6.8)

In fact, the sequential terms in Eq (6.8) correspond to those multi-group parameters
involved in the scattering production rate. They are listed respectively as follows:

- Multi-group transfer probability, P (g′ → g) from group g′ to g:

P (g′ → g) =

∫
E∈g

∫
E′∈g′

[
Σs(E

′ → E) +XΣ(n,Xn)(E
′ → E)

]
φ(E′)dE′dE∫

E′∈g′

[
Σs(E′) +XΣ(n,Xn)(E′)

]
φ(E′)dE′

(6.9)

- Excess weight, ξexces
g′ which takes into consideration the multiplication scattering

effect:

ξexces
g′ =

∫
E′∈g′

[
Σs(E

′) +XΣ(n,Xn)(E
′)
]
φ(E′)dE′∫

E′∈g′

[
Σs(E′) + Σ(n,Xn)(E′)

]
φ(E′)dE′

(6.10)

- Effective multi-group scattering cross section, Σeff
s,g′ departing from group g′:

Σeff
s,g′ =

∫
E′∈g′

[
Σs(E

′) + Σ(n,Xn)(E
′)
]
φ(E′)dE′∫

E′∈g′
φ(E′)dE′

(6.11)
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6.1.2 Neutron production from fission

The same method is inherited for processing the fission production rate. Eq (6.12) de-
scribes how to change the continuous-energy dependent fission production term into the
multi-group form.

Eg−1∫
Eg

∞∫
0

χf (E′ → E)νΣf (E′)φ(E′)dE′dE =
∑
g′

Eg−1∫
Eg

Eg′−1∫
Eg′

χf (E′ → E)νΣf (E′)φ(E′)dE′dE

=
∑
g′

∫
E∈g

∫
E′∈g′

χf (E′ → E)νΣf (E′)φ(E′)dE′dE∫
E′∈g′

νΣf (E′)φ(E′)dE′
×

∫
E′∈g′

νΣf (E′)φ(E′)dE′∫
E′∈g′

φ(E′)dE′
×
∫

E′∈g′

φ(E′)dE′

=
∑
g′

χg
′→g
f × νΣg′

f × φg′ (6.12)

The fission production concerned multi-group parameters are defined respectively:

- Two-dimensional multi-group fission spectrum:

χg
′→g
f =

∫
E∈g

∫
E′∈g′

χf (E′ → E)νΣf (E′)φ(E′)dE′dE∫
E′∈g′

νΣf (E′)φ(E′)dE′
(6.13)

- Fission production multi-group cross section:

νΣg′

f =

∫
E′∈g′

νΣf (E′)φ(E′)dE′∫
E′∈g′

φ(E′)dE′
(6.14)

Comparing Eq (6.13) with Eq (6.9), it is found that the fission spectrum is indeed
a matrix form of probabilities distribution. It is different from the deterministic sub-
assembly calculation code ECCO where the multi-group fission spectrum is treated as
a one-dimensional vector. As for the multi-group fission production cross section, it is
defined in the same way as the total cross section. Thus its estimator used in a TRIPOLI-
4r simulation will not be repeated here.

6.2 Implementation of new estimators

Previously, we introduced the multi-group parameters definitions to be used in the TRIPOLI-
4r code. Several of them were presented accompanied by their Monte-Carlo simulation
estimators, such as Σt,g. We kept other estimators to be developed in this section. They
are namely the multi-group transfer probability P (g′ → g); the excess weight ξexces

g and

the fission spectrum χg
′→g
f . In addition to this, the differences between the new estimators

and the old ones will be pointed out.
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6.2.1 Transfer Probability

The theoretical definition of the multi-group energy transfer probability matrix is given in
Eq (6.9). Estimating correctly this physical variable requires to calculate the scattering
reaction rate appropriately from group g′ to g. To accomplish this, it is necessary to
understand the principle of simulating a neutron life with associated probabilities. This
was qualitatively described in Section 2.3. Here we will do it again but in a quantitative
way. The scattering rate from group g′ to g is finally analyzed from the microscopic point
of view which is shown in Eq (6.15).

∫
E∈g

∫
E′∈g′

Σeff
s (E′ → E)φ(E′)dE′dE =

∫
E∈g

∫
E′∈g′

[
Σs(E

′ → E) +XΣ(n,Xn)(E
′ → E)

]
φ(E′)dE′dE

=

∫
E∈g

∫
E′∈g′

[
φ(E′)Σt(E

′)
]
×
∑
j

Njσ
j
t

Σt
×
σjs + σj(n,Xn)

σjt
×
σjsP

j
s (E′ → E) +Xσj(n,Xn)P

j
(n,Xn)(E

′ → E)

σjs + σj(n,Xn)

dE′dE

(6.15)

For the sake of space, the microscopic and macroscopic 1D cross sections are all related
to the certain energy E′. The definitions of different terms are listed as below:

- φ(E′)Σt(E
′): entrance collision density estimated by neutron weight ω(E′);

- Pj =
Njσ

j
t

Σt
: probability of choosing isotope j to be collided with the incident neu-

tron;

- P jnabs =
σjs + σj(n,Xn)

σjt
: non-absorption probability dedicated to the chosen isotope j;

-
σjsP

j
s (E′ → E) +Xσj(n,Xn)P

j
(n,Xn)(E

′ → E)

σjs + σj(n,Xn)

: the rule that with which we use to se-

lect a specific scattering type for the nuclide j. For example, if the sampled random

number is inferior to
σjs

σjs + σj(n,Xn)

, a pure scattering reaction is chosen. Then, 1 is

stored with the related probability
σjs

σjs + σj(n,Xn)

. If the sampled random number

is between
σjs

σjs + σj(n,Xn)

and 1, so a multiplication scattering (n,Xn) is selected.

Then, X will be stored with its probability
σ(n,Xn)

σjs + σj(n,Xn)

. Furthermore, in order to

distinguish the neutron outgoing energy, additional accumulators are set which are
in charge of every different outgoing energy group.

With the help of Eq (6.15), the estimator of the multi-group transfer probability matrix
could be defined as:
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P̂ (g′ → g) =

∑
i
w(E′i, ri)

∑
j
Pj(E

′
i, ri)× P

j
nabs(E

′
i, ri)

∑
k

P kj (E′i, ri)× {1, X} ×Π(Eki,j ∈ g)∑
i
w(E′i, ri)

∑
j
Pj(E′i, ri)× P

j
nabs(E

′
i, ri)

∑
k

P kj (E′i, ri)× {1, X}

(6.16)
Several declarations are necessary for a better understanding of the above equation:

- i: index for the collisions whose incident energy E′i belongs to group g′ and its spatial
position ri is comprised in the desired domain.

- {1, X}: an integer to be registered according to the selected scattering reaction type.
It could vary between 1 and 4 in the present code.

- Π(Eki,j ∈ g): the gate function which equals to 1 if the outgoing energy Eki,j belongs
to the group g and equals to 0 for other cases.

Moreover, it should be pointed out that the order for calculating each probability term
has to be strictly respected as listed in Eq (6.16). The problem in the old-version of the
TRIPOLI-4r code is hidden behind the non-absorption probability which was calculated
globally over the macroscopic region but not separately for each specific isotope.

6.2.2 Excess Weight

Returning to Eq (6.10) which mathematically represents for the multi-group excess weight,
we can tell that it is in fact a ratio between the realistic scattering produced quantity and
the scattered quantity. After reforming the definition formula of the multi-group excess
weight, more evident physical terms are found in Eq (6.17).

ξexcess
g =

∫
E∈g

φ(E)Σt(E)×
Σs(E) + Σ(n,Xn)

Σt(E)
×

Σs(E) +XΣ(n,Xn)(E)

Σs(E) + Σ(n,Xn)
dE

∫
E∈g

φ(E)Σt(E)×
Σs(E) + Σ(n,Xn)

Σt(E)
dE

(6.17)

where:

- φ(E)Σt(E)×
Σs(E) + Σ(n,Xn)

Σt(E)
= w(E)×Pnabs : the collision weight modified by the

macroscopic non-absorption probability.

-
Σs(E) +XΣ(n,Xn)(E)

Σs(E) + Σ(n,Xn)(E)
= ξexcess(E): the point-wise excess weight.

Therefore, the estimator of multi-group excess weight is expressed in Eq (6.18).

ξ̂excess
g =

∑
i
w(Ei, ri)× Pnabs(Ei, ri)× ξexcess(Ei, ri)∑

i
w(Ei, ri)× Pnabs(Ei, ri)

(6.18)

with index i always standing for the collision condition (Ei, ri) which belongs to the
macro domain (g, VD). Comparing Eq (6.17) with another one-dimensional multi-group
cross section calculation method, the difference is that here the weighting function used
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is no longer the scalar flux but its corrective form: φ(E) ×
(
Σs(E) + Σ(n,Xn)

)
. It is also

with this reason that the old version of the TRIPOLI-4r code made an error here while
insisting to weight the excess weight by the scalar flux. The previously corrected definition
for ξexcess

g is given below:

ξexcess
g =

∫
E∈g

Σs(E) +XΣ(n,Xn)(E)

Σs(E) + Σ(n,Xn)
φ(E)dE∫

E∈g
φ(E)dE

(6.19)

6.2.3 Fission Spectrum

The subsection 6.1.2 has given the definition of the multi-group fission spectrum matrix.
It must be emphasized that the fission production mentioned in Eq (6.13) should take
into account both the prompt and the delayed fission productions. Thus, the formula to
calculate fission spectrum is written as:

χg
′→g
f =

∫
E∈g

∫
E′∈g′

φ(E′)Σt(E
′)×

[
χpf (E′ → E)νp + χdf (E′ → E)νd

]
×

Σf (E′)

Σt(E′)
dE′dE

∫
E′∈g′

φ(E′)Σt(E′)× [νp + νd]×
Σf (E′)

Σt(E′)
dE′

(6.20)
Similarly, its Monte-Carlo estimator is shown as following:

χ̂g
′→g
f =

∑
i
ω(E′i, ri)×

∑
j

νjΣf (E′i, ri)

Σt(E′i, ri)
×Π(Ei ∈ g)

∑
i
ω(E′i, ri)×

∑
j

νjΣf (E′i, ri)

Σt(E′i, ri)

(6.21)

where i indicates the collisions of which incident energy and initial position (E′i, ri) are
in the desired macro domain (g′, VD). j is the fission type which could be prompt fission
or delayed fission. And Π(Ei ∈ g) is the gate function to select the outgoing energy Ei
which should be in the group g.

The problem with the old estimator of the fission spectrum is that the delayed neutron
contribution was not taken into consideration. The later part could result in a bias of
around 200 pcm in the estimated multiplicative factor.

6.3 Validation of new estimators

In order to evaluate the reliability of the newly implemented estimators, two comparison
tools will be used which are namely the validated lattice calculation code ECCO[44] and the
Monte-Carlo code TRIPOLI-4r. Several declarations should be made before performing
the comparison work:

- All the calculation codes have incorporated more or less approximative methods
which probably amount to some biases in their results.

- The same input data library should be used in different codes in order to compare
their output parameters.
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- Concerning the stochastic property of TRIPOLI-4r, the simulation results are al-
ways associated with some statistical deviations. Thus, the comparison work should
take this statistical feature into account.

The validation work is processed in two steps. The first one consists of multi-group
constants comparison between the continuous-energy TRIPOLI-4r and the deterministic
code ECCO[44] simulation results. The second step involves the group constants utilisation
in a transport theory core calculation code. Here, we have chosen to feed a multi-group
TRIPOLI-4r simulation with the obtained group constants. Detailed comparisons will be
presented in the following.

6.3.1 Group constants comparison between TRIPOLI-4r and ECCO

ECCO[44] is a two-dimensional deterministic lattice code developed by several R&D teams
working within the framework of the European fast reactor collaboration. The collision
probability method is used to solve the neutron transport problem in ECCO. It has the
capability of producing multi-group constants in both zero-buckling and fundamental cal-
culation modes. This chapter is focused on the infinite geometry problem, thus we will
only use the zero-buckling mode to generate multi-group constants with ECCO.

Since the original aim of this research is to serve in the sodium-cooled fast reactor
development, the tested fuel sub-assembly types are mostly in this range including:

- the fuel sub-assemblies from the inner and outer cores of the Superphénix[47] reactor
which are noted respectively as SPX1 and SPX2;

- the double-column and a single-column fuel sub-assemblies from the Zero Power
Physics Reactor[87, 86, 52], named as ZPPR-DCF and ZPPR-SCF;

- a fuel sub-assembly from the MASURCA-1B experiment noted as MAS1B[96];

- the fuel sub-assembly ZONA2 used in various configurations of the MASURCA
reactor[15].

Some illustration figures are given below. They stand for the SPX2, ZPPR-DCF and
ZONA2 sub-assemblies.

Figure 6.1: Fuel sub-assembly illustration for SPX2, ZPPR-DCF and ZONA2
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Please note that all the fuel sub-assemblies are tested in their homogeneous configu-
rations. Their detailed characteristics can be found in Appendix A. Among all the tested
cases, two examples will be presented here which are the homogeneous configuration of
SPX2 and the homogeneous configuration of ZPPR-DCF.

To make the comparison reliable, the same cross section library, JEFF3.1.1[22] in ad-
dition to the probability tables were used by both codes. There are two kinds of energy
structures used: 33-group and 6-group. Their detailed group structures are given in Ap-
pendix B. Both of them come from the codes system ERANOS[24, 30] and were used for
fast neutron reactor analysis in particular.

Table 6.2 shows the infinite multiplicative factors and selected multi-group cross sec-
tions using ECCO and TRIPOLI-4r for the SPX2 sub-assembly calculation. At first, let
us take a look at the K∞ values. Even though the estimated results from ECCO and
TRIPOLI-4r are not exactly the same, their discrepancy (66 pcm) is small enough for
two codes using completely different calculation methods.

Parameter ECCO TRIPOLI-4r Diff

K∞ 1.35298 1.35364 ± 0.00008 -66 pcm

units cm−1 cm−1(10−3%) %

Σt1 1.840E-01 1.841E-01 (1.7) 0.05
Σt2 2.233E-01 2.234E-01 (1.4) 0.05
Σt3 2.859E-01 2.858E-01 (1.1) -0.03
Σt4 3.977E-01 3.978E-01 (2.0) 0.03
Σt5 5.797E-01 5.797E-01 (4.2) 0.00
Σt6 5.350E-01 5.362E-01 (15) 0.22

Σa1 7.212E-03 7.213E-03 (6.3) 0.01
Σa2 3.608E-03 3.608E-03 (1.4) 0.00
Σa3 3.762E-03 3.762E-03 (1.8) 0.00
Σa4 7.158E-03 7.168E-03 (3.3) 0.14
Σa5 1.642E-02 1.641E-02 (12) -0.06
Σa6 4.217E-02 4.239E-02 (49) 0.52

νΣf1 1.885E-02 1.884E-02 (5.4) -0.05
νΣf2 7.509E-03 7.508E-03 (2.8) -0.01
νΣf3 5.710E-03 5.710E-03 (0.2) 0.00
νΣf4 6.368E-03 6.396E-03 (2.0) 0.44
νΣf5 1.389E-02 1.386E-02 (14) -0.22
νΣf6 4.407E-02 4.430E-02 (59) 0.52

Table 6.2: Comparison of group constants in the 6-group (its energy limits are given in
Appendix B) SPX2 homogeneous lattice calculations between ECCO and TRIPOLI-4r

codes

Then, comparison is continued on several types of one-dimensional cross sections which
are respectively: the total cross section Σt,g; the absorption cross section Σa,g and the fis-
sion production cross section νΣf,g. The reason to select them is that they are direct
output results from the TRIPOLI-4r simulation. This allows us to obtain their exact
statistical errors. As for the ECCO code, Σt,g and νΣf,g can be found directly in the out-
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put XML file. However, this is not the case for Σa,g. In order to deduce the multi-group
absorption values from the ECCO output file correctly, it should be kept in mind that the
absorption cross section estimated by TRIPOLI-4r does not take into account (n,Xn)
reactions and the scattering cross sections calculated by ECCO are in fact the effective
scattering cross sections including (n,Xn) reactions: ΣECCO

s,g = Σs,g + XΣ(n,Xn). Thus,
the formula to calculate the appropriate absorption cross sections which are comparable
to the ones estimated by TRIPOLI-4r is: ΣECCO

a,g = ΣECCO
t,g −ΣECCO

s,g + (X − 1)ΣECCO
(n,Xn),g.

Since the probability of having a high multiplication scattering reaction is remote, we
suppose here X = 2. So the final formula for calculating the absorption cross sections
with ECCO output parameters is: ΣECCO

a,g = ΣECCO
t,g − ΣECCO

s,g + ΣECCO
(n,Xn),g.

In Table 6.2, it is once again shown that the one-dimensional cross sections are in
satisfactory agreement between these two codes results. All the cross sections are in the
units of cm−1. The values in brackets within the TRIPOLI-4r column are the correspond-
ing relative statistical errors which are expressed in ×10−3%. The discrepancies between
TRIPOLI-4r and ECCO are limited to 0.52% which is even less important than what is
to be expected. According to the comparison shown in Leppänen’s thesis, the differences
between the PSG[55] and CASMO[68] simulations for a PWR MOX case are in the order
of magnitude of 2% even for the simplest 2-group cross sections such as Σa and νΣf .

If we have a further look into the different energy groups of a certain reaction type,
it can be seen that the differences are generally more relevant in the lower energy groups
than in the higher ones. For example, the greatest discrepancies are usually found in the
6th group covering the interval [0 keV; 45.4 eV]. This could be explained by the fact that
a rather low statistical quantity of events occur in this group which results in a relative
high uncertainty.

Figure 6.2: ECCO calculated group transfer cross sections (in units of cm−1) for SPX2
homogeneous sub-assembly

Another important multi-group parameter to be compared between TRIPOLI-4r and
the ECCO simulations is the scattering cross section matrix. The later involves the energy
transfer probability which is a two-dimensional multi-group parameter. Figure 6.2 and Fig-
ure 6.3 illustrate intuitively the scattering matrix calculated by ECCO and TRIPOLI-4r.
The index in the green row stands for the departure energy group g; while the vertical
pink column indicates the arrival energy group h. Thus, the crossed element corresponds
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Figure 6.3: TRIPOLI-4r calculated group transfer cross sections (in units of cm−1) for
SPX2 homogeneous sub-assembly

Figure 6.4: Relative differences of group transfer cross sections of SPX2 homogeneous
sub-assembly between ECCO and TRIPOLI-4r simulations

to Σg→h
s in units of cm−1. The right upper sides of the two matrix are all zero because in

the case of a fast neutron sub-assembly case, the up-scattering hardly ever occurs. It must
be mentioned here that we did not provide the statistical errors related to the TRIPOLI-
4r results. In fact, the scattering cross section matrix is not a direct product from the
TRIPOLI-4r simulation. It is obtained according the formula: Σg→h

s = Σs,g × P (g → h).
Σs,g could be calculated easily by doing a subtraction between Σt,g and Σa,g. Moreover,
P (g → h) is calculated directly from the TRIPOLI-4r continuous-energy simulation and
presented in the form of discrete probability density function. It should be pointed out
that this multi-group energy transfer probability is accounted once all the batches are
simulated. Therefore, there is not yet precise statistical errors associated to P (g → h).

Figure 6.4 represents the relative differences in percentage between the above scatter-
ing matrix from ECCO and TRIPOLI-4r. Most of the differences are rather slight and are
limited to 1%. This is an indication for that the two codes based on completely different
calculation methods can produce consistent scattering cross section matrices. However,
greater discrepancies (marked in red) are found in the lower rows of Figure 6.4. This
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could be explained by the fact that long-range neutron slowing-down rarely happens in a
fast neutron case. So the remarkable inconsistency comes from a lack of statistics. For
example, in the SPX2 case, there are only 971 scattering events from group 1 → 5 while
the total scattering events departing from group 1 is around 9.35× 107.

The ECCO-TRIPOLI-4r comparisons are performed again on homogeneous ZPPR-
DCF lattice calculations. The one-dimensional multi-group cross sections are compared
in Table 6.3. The scattering cross sections from ECCO and TRIPOLI-4r simulations
are shown in Figures 6.5 and Figure 6.6. Their units are the same as those used for the
above SPX2 case. At first, the consistency between ECCO and TRIPOLI-4r calculated
multi-group cross sections is confirmed in the ZPPR-DCF case. Moreover, the differences
found between the two codes are systematically in the same tendency and of the same
order of magnitude.

Parameter ECCO TRIPOLI-4r Diff

K∞ 1.66679 1.66832±0.00009 -153 pcm

units cm−1 cm−1(10−3%) %

Σt1 1.710E-01 1.710E-01 (1.1) 0.00
Σt2 1.962E-01 1.963E-01 (1.1) 0.05
Σt3 2.497E-01 2.495E-01 (1.0) -0.08
Σt4 3.352E-01 3.354E-01 (1.9) 0.06
Σt5 5.359E-01 5.358E-01 (4.4) -0.02
Σt6 4.907E-01 4.920E-01 (22) 0.26

Σa1 7.782E-03 7.783E-03 (3.5) 0.01
Σa2 4.450E-03 4.450E-03 (0.86) 0.00
Σa3 4.577E-03 4.577E-03 (1.3) 0.00
Σa4 8.087E-03 8.103E-03 (2.7) 0.20
Σa5 1.802E-02 1.801E-02 (1.2) -0.06
Σa6 4.649E-02 4.678E-02 (78) 0.62

νΣf1 2.150E-02 2.150E-02 (3.6) 0.00
νΣf2 1.003E-02 1.003E-02 (1.6) 0.00
νΣf3 8.110E-03 8.110E-03 (0.16) 0.00
νΣf4 8.756E-03 8.800E-03 (1.9) 0.50
νΣf5 1.735E-02 1.733E-02 (15) -0.12
νΣf6 5.375E-02 5.407E-02 (90) 0.60

Table 6.3: Comparison of group constants in the 6-groups ZPPR-DCF homogeneous lattice
calculations between ECCO and TRIPOLI-4r

The detailed comparison analysis for the other cases will not be presented here for
sake of space. However, all the tested cases confirm that TRIPOLI-4r and ECCO could
produce consistent multi-group cross sections for infinite lattice calculation. This is the
first step towards validating our newly implemented Monte-Carlo estimators. In the fol-
lowing section, we shall check the performance of these produced multi-group constants
in a transport core calculation.

6.3.2 Group constants use in TRIPOLI-4r

In this section, we shall use the produced multi-group constants in a transport core cal-
culation code to verify that these constants can preserve the main characteristics of a
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Figure 6.5: ECCO calculated group transfer cross sections (in units of cm−1) for a ZPPR-
DCF homogeneous sub-assembly

Figure 6.6: TRIPOLI-4r calculated group transfer cross sections (in units of cm−1) for
ZPPR-DCF homogeneous sub-assembly

Figure 6.7: Relative differences of group transfer cross sections of ZPPR-DCF homoge-
neous sub-assembly between ECCO and TRIPOLI-4r calculations
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reactor sub-assembly. The chosen core simulation code is TRIPOLI-4r itself but under
multi-group simulation mode. Figure 6.8 summarizes the validation procedure from the
point of view of a core calculation code. Firstly, the point-wise TRIPOLI-4r simulation
gives the conventional results which will be used as reference values (Keff; flux spectrum;
neutronic balance). Meanwhile, the multi-group constants can be produced if desired by
users. Then, these multi-group constants are fed to a multi-group TRIPOLI-4r simulation
performed in the same geometry as before. The second simulation will also give results
such as Keff, flux spectrum and neutronic balance. The final comparisons between these
two simulation results will be made in order to validate the above generated multi-group
cross sections since the multi-group TRIPOLI-4r solver is supposed to be accurate.

Figure 6.8: The TRIPOLI-4r produced multi-group constants validation scheme in core
simulation code

The validation concept described is different from the one using multi-group constants
in a deterministic core calculation code. We could definitely replace the multi-group
TRIPOLI-4r simulation by another deterministic transport core simulation. As a re-
minder, it must be recalled that this chapter deals with the simplest case involving only
energy condensation within TRIPOLI-4r and does not deal with the neutron leakage effect
nor the anisotropy effect. In this situation, an exact conservation of the neutronic bal-
ance is expected from continuous-energy calculation to multi-group calculation. It could
be considered more an academical study rather than an industrial application. Therefore,
minimization of the approximations used in the transport core calculation code is the most
desired criterion for the moment. This is the reason why a multi-group Monte-Carlo code
is chosen here.

Moreover, the produced multi-group cross sections are not really used for a whole core
calculation. In the present chapter, the geometry used in the multi-group TRIPOLI-4r

simulation is the same as in the previous continuous-energy simulation step. The motiva-
tion of doing it this way is to check the preservation of neutronic balance as well as other
characteristic parameters of each single sub-assembly from continuous-energy simulation
to multi-group simulation. This validation step seems very important to the author even
it is hardly found in other validation procedure of Monte-Carlo codes that produce the
multi-group constants.

After having set the principal goal, the above-designed validation procedures will be
executed in all the cases tested in the previous section. For the same reason, we always
choose the SPX2 and ZPPR-DCF sub-assemblies to develop in detail here.
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First of all, the calculated K∞ values are respectively presented in Table 6.4 (SPX2
case) and Table 6.5 (ZPPR-DCF case). There are two kinds of evaluations used as input
data for point-wise simulations: NJOY and NJOY + TABP. NJOY option leads TRIPOLI-
4r to use NJOY code[37] processed cross sections. The resonances are reconstructed from
the resonance parameters and models at 0 K. The cross sections are broadened at desired
temperature. TABP option leads TRIPOLI-4r to use CALENDF code[91] produced prob-
abilities tables in the unresolved resonance range. Both of them are collapsed into 6-group
and 33-group cross sections. It results in a reactivity difference of around 300 pcm. The
values in brackets beside the K∞ values are their standard deviations in pcm. The last
rows (∆Keff) in these two tables are the discrepancies between multi-group and point-wise
K∞ as well as the standard deviations which are all in pcm units. To remind again that
the units �pcm� used in this work stands for ×10−5.

The comparisons in Table 6.4 and Table 6.5 show that a strict preservation of K∞ val-
ues is confirmed with use of NJOY or CALENDF data under both 6-group and 33-group
energy structures. A simple comparison of multiplication factors is not at all sufficient to
validate the produced cross sections. Thus detailed analysis will be continued on three
other important characteristics: flux spectrum; production rate and absorption rate. 33-
group calculation results will be presented in the following sections with using both the
NJOY and NJOY+TABP databases.

SPX2 6-GR NJOY 33-GR NJOY 6-GR TABP 33-GR TABP

K∞ point-wise 1.34857(12) 1.34857(12) 1.35364(8) 1.35364(8)

K∞ multi-group 1.34826(17) 1.34851(17) 1.35326(54) 1.35352(2)

∆K∞ (pcm) -31(21) -6(21) -38(55) -12 ( 8)

Table 6.4: Comparison of K∞ values from point-wise and multi-group TRIPOLI-4r sim-
ulations for SPX2 sub-assembly

ZPPR-DCF 6-GR NJOY 33-GR NJOY 6-GR TABP 33-GR TABP

K∞ point-wise 1.66284(9) 1.66281(9) 1.66832(9) 1.66832(9)

K∞ multi-group 1.66295(23) 1.66287(22) 1.66817(23) 1.66818(3)

∆K∞ 11(25) 6(24) -15(25) -14(9)

Table 6.5: Comparison of K∞ values from point-wise and multi-group TRIPOLI-4r sim-
ulations for ZPPR-DCF sub-assembly

Flux spectrum comparison

First of all, attention is paid to the results using the NJOY evaluation. Figure 6.9 shows
the continuous-energy TRIPOLI-4r calculated 33-group flux spectrum in red curve which
will be used as reference. The dashed blue curve is the multi-group TRIPOLI-4r simu-
lated flux spectrum using the self-produced 33-group cross sections. First of all, it could
be said that the multi-group calculation can reproduce the energy distribution form of the
neutron flux with respect to the reference one. The two curves clearly overlap and it is
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Figure 6.9: Flux spectra calculated by TRIPOLI-4r point-wise (NJOY) and multi-group
simulations for homogeneous SPX2 sub-assembly

hard to distinguish the discrepancies.

The left part of Figure 6.10 presents the relative difference in percentage between the
multi-group and point-wise spectra by the red curve. By the way, the standard deviations
of this relative difference are plotted with green lines. Both TRIPOLI-4r continuous-
energy and multi-group simulations can yield relative standard deviations for associated

scores. They are respectively noted as
δφpct

φpct
and

δφhmg

φhmg
. Then, a simple formula allows

us to obtain the statistical error of the relative difference between the two TRIPOLI-4r

simulations, cf Eq (6.22).

δ(
φhmg − φpct

φpct
) =

√
(
δφpct

φpct
)2 + (

δφhmg

φhmg
)2 ×

φhmg

φpct
(6.22)

The upper and lower green lines in Figure 6.10 correspond to ±3 × δ(
φhmg − φpct

φpct
)

which help to analyze the obtained relative difference (
φhmg − φpct

φpct
). It must be clearly

stated that both of them are in units of %. Above 100 eV, the relative differences are lower
than the associated deviation. This indicates that the calculated multi-group cross sec-
tions can reproduce the consistent neutron flux spectrum in a transport core calculation.
However, some great discrepancies are found in the lowest energy groups. Their absolute
values even exceed 3 times of the standard deviations. The inconsistent phenomenon ob-
served in the energy interval [13.7; 148] eV is not that much of a problem because for a
fast fuel sub-assembly, the importance weight of neutron in this energy interval is really
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negligible. Neutrons can hardly be scattered into the low energy groups which results into
high uncertainty. Moreover, the uncertainty induced by the energy transfer probability is
not taken into consideration by the statistical errors in Figure 6.10. On the other hand,
it is recommended that more attention be given to the gray zone where neutron plays a
much more important role. Thus, a zoom of this energy domain is given on the right side
of Figure 6.10.

Figure 6.10: Comparison of flux spectra calculated by TRIPOLI-4r point-wise (NJOY)
and multi-group simulations for homogeneous SPX2 sub-assembly

The right side of Figure 6.10 shows that the relative difference is limited to 0.5% and
completely covered by the estimated error. The same consistency applies to the ZPPR-
DCF sub-assembly case as well. Figure 6.11 represents the flux spectra calculated in
ZPPR-DCF homogeneous geometry by continuous-energy and multi-group TRIPOLI-4r

simulations. The two curves are very well overlapped. A closer analysis of their relative
difference is shown in Figure 6.12. The left part gives a global image covering the whole
energy domain; while the right one focuses only on the important energy range which
represents 99.9% of production rate.

Other tested sub-assemblies will not be presented with their detailed spectra analysis
here. All of them confirm that use of TRIPOLI-4r produced multi-group cross sections
enables us to reproduce the neutron spectrum as simulated by the referential continuous-
energy TRIPOLI-4r calculation. In the important energy range, the relative difference
is limited to 0.5%. The greater discrepancies observed in the low energy groups are
due to very few energy transfer events toward the low energy groups. Moreover, this
important statistical errors related with transfer probability has not yet been considered
in our simulated results. Fortunately, this has a very small impact on the whole neutronic
balance. To verify this, the following analysis is to be carried out on the production rate
and then on the absorption rate.

Production rate comparison

The production rate calculated as P = νΣfφ is an important characteristic parameter
indicating the neutron regeneration density distribution probability in the whole energy
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Figure 6.11: Flux spectra calculated by TRIPOLI-4r point-wise (NJOY) and multi-group
simulations for homogeneous ZPPR-DCF sub-assembly

Figure 6.12: Comparison of flux spectra calculated by TRIPOLI-4r point-wise (NJOY)
and multi-group simulations for homogeneous ZPPR-DCF sub-assembly

domain. In the TRIPOLI-4r simulation, whether under the continuous-energy or multi-
group modes, the relationship below (Eq 6.23) is always valid. It is based on the fact
that the neutron source is fixed to 1 in TRIPOLI-4r simulation. Apparently, different
combination ways between νΣf,g and φg could result in the right K (infinite or effective)
value. Therefore, to validate the produced multi-group cross sections, besides having the
appropriate estimation of K, a consistent production contribution from each group is also
important. Sometimes, a compensation effect could achieve the right K value although it
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could not really accomplish the requirements of an excellent homogenization and energy
condensation work. ∫

E∈∪

νΣf (E)φ(E)dE =
∑
g

νΣf,gφg = K (6.23)

With this strict examining criterion, we shall present the production rates from both
continuous-energy (NJOY) and multi-group TRIPOLI-4r simulations on SPX2 and ZPPR-
DCF sub-assemblies. They are plotted in Figure 6.13 and Figure 6.14 respectively.

The left sides of the two figures represent the detailed production rates (in pcm units)
distributed over the whole energy domain. The red curves are the point-wise results which
are obtained directly from TRIPOLI-4r continuous-energy simulations. The blue dashed
curves are the multi-group production rates which are the products between νΣf,g from
continuous-energy TRIPOLI-4r simulation and φg from multi-group TRIPOLI-4r simu-
lation. So, it is more complicated to obtain their statistical errors which will be explained
later. With the two left figures, it is clearly demonstrated that the multi-group production
rates agree well with the point-wise rates.

Figure 6.13: Production rate calculated by TRIPOLI-4r point-wise (NJOY) and multi-
group simulations for homogeneous SPX2 sub-assembly and their comparison

In order to visualize the discrepancies between multi-group and point-wise production
rates, their differences are plotted in red curves at the right side of Figure 6.13 and Figure
6.14. Moreover, three times the standard deviation (positive and negative) related to the
difference are also given in the two figures on the right. The up and down curves define
a closed confidential zone. The method used to calculate the standard deviation of the
production rate difference is as follows: δ(Phmg − Ppct) =

√
(δPhmg)2 + (δPpct)2, where

δPpct is estimated from a point-wise simulation. As for δPhmg, it is necessary to calculate

at first its relative deviation
δPhmg

Phmg
as in Eq (6.24). The absolute deviation δPhmg can

then be obtained easily by doing δPhmg =
δPhmg

Phmg
× Phmg.
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Figure 6.14: Production rate calculated by TRIPOLI-4r point-wise (NJOY) and multi-
group simulations for homogeneous ZPPR-DCF sub-assembly and their comparison

δPhmg

Phmg
=

√
(
δνΣf,g

νΣf,g
)2 + (

δφg
φg

)2 (6.24)

Several common points can be found from the right-sides of Figure 6.13 and Figure
6.14:

1- The production rate difference is less than 15 pcm for any energy group;

2- The production rate difference is completely covered by 3 times the standard devi-
ation in the important energy domain. This proves that our produced multi-group
cross sections are rather satisfactory;

3- For the low energy groups where there are barely neutrons, the production rate
differences are sometimes higher than the 3 times of standard deviations. This is
always due to a lack of statistics for energy transfer events in low energy domain.
And this potential statistical error is not considered in our results. This is a common
and inevitable problem for the Monte-Carlo codes. Anyway, the discrepancies found
in these low-energy groups are negligible for the whole production rate analysis.

Absorption rate comparison

The absorption rate also contributes an important part to the neutronic balance. So, the
ability to preserve the absorption rate from continuous-energy simulation to multi-group
simulation is another indispensable challenge for produced multi-group cross sections. We
continue to use the SPX2 and ZPPR-DCF homogeneous sub-assemblies as examples to
analyze their results. Figure 6.15 and Figure 6.16 present respectively the absorption
rates in SPX2 and ZPPR-DCF homogeneous geometry cases. The left parts of the fig-
ures contain the absolute absorption rates from point-wise simulation (the red line) and
multi-group simulation (the blue dashed line). On the right-hand sides, the differences of
absorption rates in units of pcm are plotted as well as three times the standard deviations.
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Figure 6.15: Absorption rate calculated by TRIPOLI-4r point-wise (NJOY) and multi-
group simulations for homogeneous SPX2 sub-assembly and their comparison

Figure 6.16: Absorption rate calculated by TRIPOLI-4r point-wise (NJOY) and multi-
group simulations for homogeneous ZPPR-DCF sub-assembly and their comparison

Both figures confirm that the produced multi-group cross sections can be used in a
multi-group transport calculation preserving the absorption rate compared to the point-
wise reference values. A closer analysis is performed on the differences between the multi-
group absorption rates and the point-wise rates. Their discrepancies (on an order of
magnitude of a few pcm) have been found to be even smaller than those of the production
rate. Additionally, they are well covered by the three times of standard deviations.



6.3. VALIDATION OF NEW ESTIMATORS 107

NJOY + TABP results

Until now, the neutronic balance and flux spectrum analysis have been accomplished using
the NJOY library. We shall continue to present the results obtained with NJOY library
and the probability tables. Unfortunately, the present release of TRIPOLI-4r code was
not able to take consideration of probabilities tables in the homogenization and energy
condensation routines. The first effort was to incorporate these unresolved resonant en-
ergy domain data into the multi-group constant production procedure. In addition, we
have to make sure that the collision density and the macroscopic total cross section used
to deduce our desired multi-group constants match well between themselves. Because in
our first test, inconsistent total cross sections were respectively used in numerator and
denominator parts of Eq (6.25) to calculate the weighting function, the scalar flux. Under
the NJOY+TABP option, when collision occurs in the unresolved resonant region, the
cross sections are sampled randomly from the possible sub-group values. However, the
next step updating the multi-group constants does not use the same total cross section
Σt(r, E) which is used to store the collision density ω(r, E). In contrary, new sample work
is carried out which could result in different point-wise total cross section Σ′t(r, E). This
bug impacted principally on heavy nuclei, such as 239Pu and 235U. Previous non-relevant
results showed that this inadequate usage of probabilities tables data induced around 100
pcm of over-estimation for K∞ values.

Σt,g =

∫
E∈g

ω(r, E)dE∫
E∈g

φ(r, E)dE
=

∫
E∈g

ω(r, E)dE

∫
E∈g

Σt(r, E)φ(r, E)

Σ′t(r, E)
dE

(6.25)

After having been assured that the NJOY+TABP option could work efficiently in ho-
mogenization and energy condensation routines, the same sub-assemblies are tested with
the NJOY+TABP option. Figure 6.17 to Figure 6.20 illustrate the flux spectra as well
as their relative differences with associated standard deviations. Figure 6.21 and Figure
6.22 represent the production rates as well as their comparisons for SPX2 and ZPPR-
DCF sub-assemblies. At the end, absorption rate analysis are given in Figure 6.23 and
Figure 6.24. In this part, no more detailed comments will be repeated for every single fig-
ure because they respect mostly the same tendency as the NJOY option calculation results.

It confirms that under the NJOY+TABP option, the homogenization and energy con-
densation routines in the corrected version of TRIPOLI-4r code are able to produce ap-
propriate multi-group constants for infinite geometry case. Usage of the above produced
multi-group constants in TRIPOLI-4r multi-group simulations guarantees consistent re-
sults compared with reference simulation results. Both flux spectrum and neutronic bal-
ance are well preserved in the important energy range which comprises more than 99.5%
of production rate. Below this energy range, discrepancies come out between multi-group
and point-wise TRIPOLI-4r simulations. It is owing to the fact that quite rare scattering
events occur at such low energy domain. Therefore, it induces high uncertainty of low en-
ergy group transfer probabilities. Unfortunately, this is a bias inevitable in Monte-Carlo
field. However, this bias is not very important for the final result because very low neutron
production rate (less than 0.5%) belongs to this low energy domain.
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Figure 6.17: Flux spectra calculated by TRIPOLI-4r point-wise (TABP) and multi-group
simulations for homogeneous SPX2 sub-assembly

Figure 6.18: Comparison of flux spectra calculated by TRIPOLI-4r point-wise (TABP)
and multi-group simulations for homogeneous SPX2 sub-assembly
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Figure 6.19: Flux spectra calculated by TRIPOLI-4r point-wise (TABP) and multi-group
simulations for homogeneous ZPPR-DCF sub-assembly

Figure 6.20: Comparison of flux spectra calculated by TRIPOLI-4r point-wise (TABP)
and multi-group simulations for homogeneous ZPPR-DCF sub-assembly
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Figure 6.21: Production rate calculated by TRIPOLI-4r point-wise (TABP) and multi-
group simulations for homogeneous SPX2 sub-assembly and their comparison

Figure 6.22: Production rate calculated by TRIPOLI-4r point-wise (TABP) and multi-
group simulations for homogeneous ZPPR-DCF sub-assembly and their comparison
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Figure 6.23: Absorption rate calculated by TRIPOLI-4r point-wise (TABP) and multi-
group simulations for homogeneous SPX2 sub-assembly and their comparison

Figure 6.24: Absorption rate calculated by TRIPOLI-4r point-wise (TABP) and multi-
group simulations for homogeneous ZPPR-DCF sub-assembly and their comparison
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Conclusion

In this chapter, we focused on the validation work of energy condensation routines in
TRIPOLI-4r in the simplest case which means no neutron-leakage effect is involved. The-
oretical formula demonstrated that under this simplest case the flux spectra and neutronic
balances should be preserved exactly between point-wise and multi-group simulations[49].
An initial examination work pointed out that several inconsistencies existed in the previ-
ous release of the code. To overcome these difficulties, three new Monte-Carlo estimators
and some other computing techniques have been implemented. The new Monte-Carlo es-
timators handle three different multi-group parameters respectively: transfer probability,
excess weight and fission spectrum.

Thanks to the use of the newly implemented estimators, the present version of TRIPOLI-
4r code can produce appropriate multi-group cross sections comparable to those calcu-
lated by ECCO. These produced multi-group constants are used in Monte-Carlo trans-
port multi-group simulations. Several important output characteristics are compared to
the reference results from continuous-energy simulation. The comparisons show that our
produced multi-group constants are able to preserve exactly the main features, such as
K∞, flux spectrum, production rate and absorption rate in case of using the NJOY or
NJOY+TABP evaluation data. Generally, the condensation routines in the present version
of the TRIPOLI-4r code are validated and proved to be capable of producing appropriate
multi-group constants in a homogeneous non-leakage involved lattice calculation.



Chapter 7

Multi-group Anisotropy
Treatment

Introduction

The previous chapter was limited to the treatment of infinite sub-assembly configurations
where the anisotropy effect could be ignored. In this chapter, we continue to verify the
multi-group constants production routines in TRIPOLI-4r, especially their capability to
take into consideration of the scattering anisotropy effect induced by neutron leakage. To
do this, the first step is to obtain a target geometry including neutron leakage phenomenon.
The geometry construction work can be achieved by repeating the sub-assembly one by
one until the multiplicative factor Keff of the compound approaches 1. We may note that
the boundary condition imposed on the geometry here is no more reflective nor periodic
for all the surfaces. The advantage in creating a critical core-like lattice geometry lies in
avoiding the approximations due to the leakage models incorporated in a sub-assembly
calculation. At the same time, the heterogeneous effects are ignored as well.

It was found that even with use of the newly implemented estimators, we could not
produce appropriate multi-group constants for a finite geometry to be used then in a trans-
port core calculation code. Several examples are given in Table 7.1. They are all finite
geometries constructed with the procedures described above. These geometries were at
first simulated by TRIPOLI-4r with a continuous energy input data library NJOY option
which gave reference Keff values. The produced multi-group constants were then used
in TRIPOLI-4r itself to run a multi-group transport Monte-Carlo simulation which gave
another set of results. The difference of the multiplicative factors between the continuous
energy simulation and the multi-group simulation noted as ∆Keff were shown in Table
7.1 along with three times of their related standard deviation 3σ. The simulations were
performed under 33-group and 6-group energy structures. All the results shown in Table
7.1 are in units of pcm.

We could tell from Table 7.1 that the discrepancies of the Keff values largely exceed
their statistical uncertainties. As we have already validated the infinite spectrum weighted
multi-group cross sections in the previous chapter, the inconsistent results shown in Table
7.1 probably come from the multi-group anisotropy production method which is indeed
related to the neutron leakage effect.

With this type of doubt, this chapter begins with a demonstrative analytical introduc-
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Sub-assembly ∆Keff(33gr) 3σ (33gr) ∆Keff(6gr) 3σ (6gr)

MAS1B 158 48 179 45

ZONA2 400 39 614 39

SPX2 529 36 731 39

SPX1 203 39 354 39

ZPPR-DCF 676 39 1031 39

ZPPR-SCF 171 33 326 36

Table 7.1: Finite lattice calculations with improved Monte-Carlo estimators in TRIPOLI-
4r

tion that points out the reason why we obtained inconsistent results. A theoretical deduc-
tion follows in order to find an appropriate method of handling the multi-group anisotropy
representation. Its computational implementation is then carried out in TRIPOLI-4r.
The method is finally validated through comparison with ECCO and continuous energy
TRIPOLI-4r simulations in several cases.

7.1 Problematic introduction

In this section, we shall take the external fuel assembly of SuperPhénix (noted as SPX2) to
construct an almost-critical lattice geometry to analyze the multi-group anisotropy calcu-
lation problem. Figure 7.1 shows the two principal steps for building up this almost-critical
core-like lattice configuration. At first, the sub-assembly SPX2 is homogenized spatially.
Then, the number of sub-assembly rings is increased one by one until the corresponding
Keff moves toward 1. The boundary condition used here is reflection for the axial direction
and void for others.

Figure 7.1: Illustration scheme for building up an almost-critical geometry

The obtained SPX2 based geometry is calculated by TRIPOLI-4r under both 33-group
and 6-group energy structures which are from the validated reference code, ECCO. Both of
them are specially used for fast reactor type lattice calculations. Inconsistent results from
TRIPOLI-4r multi-group simulations reappear for both energy structures. Comparisons
between the point-wise and multi-group TRIPOLI-4r results are shown in Table 7.2. The
values in brackets are their standard deviations σ expressed in unit pcm (1 pcm = 10−5).
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Case 33-group 6-group

Keff PCT 1.01570 (6) 1.01572 (9)

Keff HMG 1.02099 (10) 1.02303 (9)

∆Keff(pcm) 529 (12) 731 (13)

Table 7.2: SPX2 calculation results from TRIPOLI-4r point-wise (PCT) with NJOY
option & multi-group (HMG) simulations and their discrepancies

According to Table 7.2, the discrepancies of effective multiplicative factors ∆Keff be-
tween TRIPOLI-4r multi-group and point-wise simulations are 529 ± 12 pcm under the
33-group energy structure and 731± 13 pcm under the 6-group energy structures. Obvi-
ously, the neutronic balance is not preserved in either of these two cases. In order to figure
out where the problem revealed in TRIPOLI-4r comes from, the same geometry SPX2 is
calculated by ECCO under the 6-group energy structure. Then, ECCO calculated multi-
group cross sections are used by the deterministic core simulation code, BISTRO[43] which
also belongs to the ERANOS code system. The Keff results from BISTRO are compared
with the TRIPOLI-4r point-wise simulation results which are used as reference. To note
that in order to be comparable with ECCO simulation results, TRIPOLI-4r uses from
now on the NJOY + TBAPS as input data option. This will result in a different Keff

value as reference but do not change our analysis work. Different types of comparisons
are shown in Table 7.3. P1 TOTAL and P0 TOTAL correspond to two different energy
condensation options in ECCO which will be detailed in the following text.

Case Keff ∆Keff(pcm)

TRIPOLI-4r PCT 1.01796 (9) 0

P1 TOTAL/ERANOS 1.01557 -239 (9)

P0 TOTAL/ERANOS 1.01550 -246 (9)

TRIPOLI-4r HMG(6GR) 1.02642(12) +846(15)

Table 7.3: SPX2 geometry calculation results from TRIPOLI-4r (NJOY + TABP ) and
ECCO/ERANOS simulations.

To perform a lattice calculation with ECCO, it is necessary to understand that two
different options exist for multi-group constant generation. They are named here option
P0 TOTAL and option P1 TOTAL respectively. The differences between these two op-
tions originally come from the flux-current coupled P1 equations which are solved within
ECCO. The system of equations is obtained by using the fundamental mode approxima-
tion which means that the angular flux is a combination between a periodic fundamental
flux and a macroscopic flux shape e−ibx as expressed in Eq (7.1). Then, the non spatial-
dependent part of the flux is limited to a Polynomial development at first order, cf Eq
(7.2). Both of Eq (7.1) and Eq (7.2) are specific for one-dimensional case. And x is the
chosen direction; µ is the neutron direction projected on direction x; v is the neutron
velocity.

φ(x, v, µ) = φ(v, µ)× e−ibx (7.1)
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φ(v, µ) =
1

2
[φ0(v) + 3µφ1(v)] (7.2)

Substituting the decoupled form of flux as Eq (7.2) into a stationary one-dimensional
Boltzmann equation, the flux-current coupled equations system could be derived. They
are shown as follows:

ibφ1(v)− Σt(v)φ0(v) +
1

2
χ(v) +

∞∫
0

dv′Σs0(v′ → v)φ0(v′) = 0

ibφ0(v)− 3Σt(v)φ1(v) + 3
∞∫
0

dv′Σs1(v′ → v)φ1(v′) = 0

(7.3)

The energy condensation work is then performed on the equation system (7.3) which
results in another multi-group equation system (7.4):

ibφg1 − Σg
t0φ

g
0 +

1

2
χg +

∑
g′

Σg′→g
s0 φg

′

0 = 0

ibφg0 − 3Σg
t1φ

g
1 + 3

∑
g′

Σg′→g
s1 φg

′

1 = 0

(7.4)

If we pay attention to the above equations, we see that the multi-group total cross
sections Σg

t is defined in two different ways. One of them, Σg
t0, is weighted by the scalar

flux φ0(v). The other, Σg
t1, is weighted by the first moment of flux:φ1(v). The latter is

also known under the name of current. However, only one of them will be supplied to a
core calculation. Therefore, to maintain a consistent form of Σg

t in the above equation
system, two calculation modes are offered in ECCO. The first one, called P0 TOTAL
option, means that the scalar flux weighted total cross section is chosen. Thus, the second
equation in system (7.4) needs to be rewritten as follows:

ibφg0 − 3Σg
t0φ

g
1 + 3

∑
g′ 6=g

Σg′→g
s1 φg

′

1 + 3Σ̃g→g
s1 φg1 = 0 (7.5)

From the arranged Eq (7.5), it could be concluded that the in-group scattering cross
section first order moment Σg→g

s1 is corrected to preserve the neutron balance as shown in
Eq (7.6).

Σ̃g→g
s1 = Σg

t0 − Σg
t1 + Σg→g

s1 (7.6)

The same procedures could be applied to deduce the second option P1 TOTAL in
ECCO. By using the current weighted total cross section Σg

t1 in both equations from the
system (7.4), the first one must be demanded to be reformed as in Eq (7.7). Thus, the
in-group scattering cross section is modified similarly which is expressed in Eq (7.8).

ibφg1 − Σg
t1φ

g
0 +

1

2
χg +

∑
g′ 6=g

Σg′→g
s0 φg

′

0 + Σ̃g→g
s0 φg0 = 0 (7.7)

Σ̃g→g
s0 = Σg

t1 − Σg
t0 + Σg→g

s0 (7.8)

For both options of ECCO, the anisotropy (P0 TOTAL) or the within-group energy
transfer law (P1 TOTAL) is changed before being used in a core calculation whatever

through the form of Σ̃g→g
s1 or Σ̃g→g

s0 . From Tab 7.3 we could find that these two options
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remain in satisfactory agreement with respect to the TRIPOLI-4 r reference value.

In order to make sure that the consistent results of ECCO/ERANOS simulations come
from the fact that the anisotropy law in the ECCO simulation has been changed, a test
was carried out with the P0 TOTAL option but without changing of Σg→g

s1 . This special
test is marked as P0 TOTAL~ in Tab 7.4 and Tab 7.5. An over-estimated Keff value which
is similar to the one calculated in the TRIPOLI-4r multi-group simulation case is found
by P0 TOTAL~/ERANOS simulation and shown in Tab 7.4. The same tendency between
TRIPOLI-4r multi-group simulation and non-anisotropy-corrected ECCO simulation in-
spired us to review the multi-group anisotropy law in the TRIPOLI-4r code.

Case Keff ∆Keff

TRIPOLI-4r PCT 1.01796 (9) 0

P0 TOTAL/ERANOS 1.01550 -246 (9)

P0 TOTAL~ /ERANOS 1.02425 +629(9)

TRIPOLI-4r HMG(6GR) 1.02642(12) +846(15)

Table 7.4: SPX2 geometry calculation results from TRIPOLI-4r (NJOY + TABP) and
ECCO/ERANOS simulations. ~: without change of Σg→g

s1

First of all, a comparison of produced multi-group cross sections is done between
TRIPOLI-4r and ECCO. And a satisfactory agreement is shown between the two codes.
Before comparing their produced multi-group anisotropy parameters, precisions deserve
be given out on how these two codes calculate respectively the multi-group anisotropy
parameters. In the deterministic ECCO case, µg→h is calculated according to Eq (7.9)
where g could be the same as or different from h. In Monte-Carlo TRIPOLI-4r case, µg→h

is calculated as the first order moment of the anisotropy parameter µ which respects its
density distribution function f(µ|g → h). The explicit formula will be given out in Section
7.3. It should be pointed out that in TRIPOLI-4r case, the multi-group anisotropy den-
sity distribution function f(µ)g→h is weighted by flux. This is different from ECCO case

where µg→h is calculated via Eq (7.9) of which Σg→h
s1 is weighted by current instead of flux.

µg→h =
Σg→h
s1

Σg→h
s0

(7.9)

After being aware of the methodology difference between these two codes in the aspect
of calculating multi-group anisotropy parameters, we continue to compare their simula-
tion results of SPX2 geometry under 6-groups energy structure. Important discrepan-
cies are revealed for the in-group scattering anisotropy values from TRIPOLI-4r and
ECCO(P0 TOTAL) simulation results which could be found in Tab 7.5. It is found that
TRIPOLI-4r has globally under-estimated the µg→g compared with ECCO, especially for
the low energy groups. That is the reason why TRIPOLI-4r multi-group simulation has
over-estimated the Keff value. Secondly, if we continue to compare TRIPOLI-4r results
with non-anisotropy-corrected ECCO results, it is assured that they agree with each other
even though they are based on completely different methods.

The above SPX2 geometry analysis pointed out that the present release of the TRIPOLI-
4r code is not capable of handling the neutron leakage induced anisotropic lattice cal-
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µg→g 1→ 1 2→ 2 3→ 3 4→ 4 5→ 5 6→ 6

TRIPOLI-4r 0.432 0.261 0.087 0.034 0.019 0.014

ECCO(P0 TOTAL) 0.445 0.275 0.126 0.114 0.125 0.114

ECCO(P0 TOTAL)~ 0.436 0.258 0.087 0.032 0.017 0.014

Table 7.5: µg→g values obtained for SPX2 geometry under TRIPOLI-4r (NJOY + TABP)
& ECCO simulations with 6-group energy structure

culation while generating multi-group constants. The problem points especially to the
multi-group anisotropy law production method in TRIPOLI-4r. Moreover, the fact that
these two codes are based on completely different methods (one uses flux and the other
uses current as weighting function) is not the key reason for the µg→h discrepancies. The
detailed solution of this anisotropy issue will be developed in the following sections.

7.2 Multi-group Anisotropy Calculation Method

This section focuses on demonstrating the necessity of modifying the multi-group anisotropy
distribution law as well as its exact mathematical formulation. The principle to be used
here is inspired from the P1 consistent method[44]. The method, adopted in ECCO, is
based on the fundamental mode approximation. This approximation is made for the
purpose of facilitating deterministic calculation by separating spatial-dependence and
energy-dependence out of flux term. However, in the Monte-Carlo simulation domain,
this energy-space separating technique is not at all suitable. Therefore, exact formulation
is indispensable in order to conduct the multi-group anisotropy law production work.

For a continuous-energy TRIPOLI-4r simulation, the neutron population obeys the
steady-state Boltzmann transport equation which is recalled in Eq (7.10):

Ω̂·~∇φ(r, E, Ω̂)+Σt(r, E)φ(r, E, Ω̂) =

∞∫
0

4π∫
0

Σs(r, E
′ → E, Ω̂′ → Ω̂)φ(r, E′, Ω̂′)d2Ω̂′dE′+

χ(E)

4πKeff
Qf (r)

(7.10)
where Qf (r) stands for fission production term.

If we develop the angular flux and the double-differential scattering cross section with
the spherical harmonics orthogonal system (cf Eq (7.11) and Eq (7.12)), the angular-
dependent part could be omitted in the following homogenization and energy condensation
procedures.

φ(r, E, Ω̂) =
∞∑
l=0

2l + 1

4π

l∑
m=−l

φml (r, E)Rml (Ω̂) (7.11)

Σs(r, E
′ → E, Ω̂′ → Ω̂) =

∞∑
l=0

2l + 1

4π

l∑
m=−l

Σs,l(r, E
′ → E)Rml (Ω̂′)Rml (Ω̂) (7.12)

During a TRIPOLI-4r continuous-energy simulation, the input data library including
the anisotropy information is assumed to be exact. This means that the development limit
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L for angular flux φ(r, E, Ω̂) and point-wise scattering cross section Σs(r, E
′ → E, Ω̂′ → Ω̂)

is in fact L =∞. Here, in order to give an analytical deduction, L is limited to 1. Thus,
the angular flux and the scattering cross section are rewritten as in Eq (7.13) and Eq
(7.14).

φ(r, E, Ω̂) =
1

4π
φ0(r, E) +

3

4π
J · Ω̂ (7.13)

Σs(r, E
′ → E, Ω̂′ → Ω̂) =

1

4π
Σs,0(r, E′ → E) +

3

4π
Σs,1(r, E′ → E)Ω̂ · Ω̂′ (7.14)

After substituting the truncated angular flux and scattering cross section in the above
Boltzmann equation (7.10), and with help of the vectorial analysis formula given in Eq
(7.15), we obtain a 3D transport equation (7.16) projected on the spherical harmonics
basis (L = 1) without any other physical approximation.

~∇( ~A · ~B) = ( ~A · ~∇) ~B + ( ~B · ~∇) ~A+ ~A×(~∇× ~B) + ~B×(~∇× ~A) (7.15)

Ω̂ · ~∇φ0(r, E) + 3Ω̂(Ω̂ · ~∇)J(r, E) + Σt(r, E)φ0(r, E) + 3Σt(r, E)J(r, E) · Ω̂ =
∞∫

0

Σs,0(r, E′ → E)φ0(r, E′)dE′ + 3

∞∫
0

Σs,1(r, E′ → E)J(r, E) · Ω̂dE′ + χ(E)

Keff
Qf (r)

(7.16)

In order to eliminate angular impact on the above Boltzmann equation, the integral of
Eq (7.16) and Eq (7.16)×Ω̂ are done over the whole solid angle 4π. Therefore, we obtain
an ECCO-like flux-current coupled equation system (7.17).


~∇ · J(r, E) + Σt(~r,E)φ0(r, E) =

∞∫
0

Σs,0(r, E′ → E)φ0(r, E′)dE′ +
χ(E)

Keff
Qf (r)

~∇φ0(r, E) + 3Σt(r, E)J(r, E) = 3
∞∫
0

Σs,1(r, E′ → E)J(r, E′)dE′

(7.17)
The energy condensation work is then performed on the above equation system. The

main idea of energy condensation has already been presented previously in Chapter 3.
Here, we directly give the multi-group flux-current coupled equation system (7.18).

~∇ · Jg(r) + Σt0,g(r)φ0,g(r) =
∑
g′

Σg′→g
s,0 (r)φ0,g′(r) +

χg
Keff

Qf (r)

~∇φ0,g(r) + 3Σt1,g(r)Jg(r) = 3
∑
g′

Σg′→g
s,1 (r)Jg′(r)

(7.18)

One declaration is necessary while passing the second flux-current coupled equation
from continuous-energy form to multi-group form. There is an implicit rule to respect
which is the following one:∫

E∈g

Σt(r, E)J(r, E)dE = Σt1,g(r)Jg(r) (7.19)
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Mathematically, the above relationship is not always available. However, it is used in
our work to give out a consistent multi-group form equation system.

It should be pointed out that the index 0 beside the cross sections means that it is
weighted by the scalar flux φ0. On the other hand, the index 1 stands for current weighted
cross sections. So, there are two different definitions of total multi-group cross sections
Σt0,g(r) and Σt1,g(r) which appear in the above equations system. This is similar to
the ECCO case: one kind of total cross section is weighted by scalar flux; the other is
weighted by current. Since there is not yet an accurate estimation of volumetric current
in TRIPOLI-4r, we choose to continue the development with the scalar flux weighted
total cross section. Imposing the use of Σt0,g(r) in both equations in system (7.18), it is
necessary to modify the second equation containing Σt1,g(r) . This could be replaced as
follows:

~∇φ0,g(r) + 3Σt0,g(r)Jg(r) = 3
∑
g′ 6=g

Σg′→g
s,1 (r)Jg′(r) + 3Σ̃g→g

s,1 (r)Jg(r) (7.20)

From Eq (7.20) we find that the first order in-scattering multi-group cross section is

modified in comparison to its conventional form. An new definition of Σ̃g→g
s,1 (r) is given in

Eq (7.21).

Σ̃g→g
s,1 = Σg→g

s,1 + Σt0,g − Σt1,g (7.21)

where Σt1,g is obtained from Eq (7.19). The fact, modifying the first order of moment
in the in-group scattering cross sections is later referred to in the text as P1 in-group
anisotropy correction technique. It proves that from the continuous-energy anisotropy law
to multi-group domain, in order to preserve neutron balance adequately, delicate treatment
is indispensable even for the Monte-Carlo simulation code. This makes the production of
the high order scattering matrix different when compared to other conventional multi-
group constants.

In this section, the analytical deduction is limited to L = 1. Thus, the multi-group
anisotropy correction is also limited to the first order scattering cross section. However,
the development of the angular flux and the scattering production term could be extended
into a higher order. This implies that to have an exact neutron balance relationship
between point-wise calculation and multi-group calculation, the non-zeroth order of in-
group scattering cross sections all need to be corrected as:

Σ̃g→g
s,l = Σg→g

s,l + Σt0,g − Σtl,g (7.22)

where Σg→g
s,l and Σtl,g are both weighted by the lth order moment of angular flux

φl(~r,E); and l could be any integer. Obtaining these high order moments of flux is indeed
a challenge for Monte-Carlo simulation. For this reason, my work is limited to the P1 in-
group anisotropy correction technique. Furthermore, the computational implementation
in TRIPOLI-4r has also been carried out on it.

7.3 Algorithm Treatment in TRIPOLI-4r

From the previous section, we have demonstrated that the energy collapsing effect on
the in-group anisotropy distribution law is different compared to other conventional cross
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sections. It is concluded from the above demonstration that in order to preserve the
neutron balance relationship between an original point-wise calculation and a later multi-
group calculation, P1 in-group anisotropy correction technique should be incorporated in
TRIPOLI-4r. Detailed development and algorithm treatment will be presented in this
section. They are classified in four principal steps.

1. First of all, it is necessary to remind readers of the multi-group anisotropy rep-
resentation format produced by TRIPOLI-4r. In fact, the directly produced anisotropy
parameters by TRIPOLI-4r are not the scattering cross section moments Σg→h

s,l expected

by deterministic transport core calculation codes. TRIPOLI-4r generates an angular de-
viation probability distribution function for every multi-group energy transfer g → h. We
note this probability distribution function as f(µ|g → h). The variable µ stands for the
cosine of deviation angle which belongs to the interval [−1; 1]. Please note here that the
constructed distribution function by the point-wise TRIPOLI-4r simulation is in fact a
discrete function which is divided by 20 equal sub-intervals between [−1; 1]. With this
probability distribution function, we may derive any order moment of angular deviation
µl as follows:

µg→hl =

1∫
−1

µlf(µ|g → h)dµ (7.23)

In a point-wise TRIPOLI-4r simulation, it could yield directly the nice first orders of
moments which will be noted as < µl >g→h, l = 0, 1, 2, · · · , 8. Surely, when l = 1, it is the
conventional average value and usually marked as µ.

2. The next step is to figure out how to relate the previously mentioned P1 in-group
anisotropy correction technique to the probability distribution function f(µ|g → h). As
the anisotropy correction is involved only for the in-group scattering, this means that we
need to reform the function f(µ|g → h) only if g = h. For the sake of space, from now on,
we use the simplified notation f(µ) to specify the in-group anisotropy distribution function.

Another definition of the average scattering angle µ exists which is expressed in Eq
(7.24).

µg→g =

1∫
−1

µΣg→g
s (r, µ)dµ

1∫
−1

Σg→g
s (r, µ)dµ

=
Σg→g
s1 (r)

Σg→g
s0 (r)

(7.24)

With the above formula, we can establish a similar relationship between the corrected

first moment of scattering cross section Σ̃g→g
s,1 and the corrected average scattering angle

µ̃g→g. It is noted as follows:

µ̃g→g =
Σ̃g→g
s,1

Σg→g
s0

(7.25)

If we substitute Eq (7.22) for Eq (7.25), we obtain:

µ̃g→g = µg→g +
Σt0,g − Σt1,g

Σg→g
s0

(7.26)
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3. Until now, we have derived a correction term that can be used to modify the original
TRIPOLI-4r simulated average scattering angle cosine µg→g. Focusing on the correction

term ∆µg→g =
Σt0,g − Σt1,g

Σg→g
s0

, Σt0,g and Σg→g
s0 could be easily calculated by a continuous-

energy TRIPOLI-4r simulation. However, the problem is how to calculate the current
weighted total cross section with the TRIPOLI-4r simulation.

As it was mentioned previously, we encounter difficulties in estimating exact volu-
metric current due to the cancelation between positive and negative values during a
TRIPOLI-4r simulation. An approximation from Todorova is at first used. It sup-
poses that the spectrum of the flux gradient is proportional to the spectrum of flux:
~∇φ(r, E) ∝ φ(r, E). The second approximation used to estimate current with TRIPOLI-
4r simulation is the Fick’s law. Precisely stated, we use the following relationship:

D(r, E) =
1

3Σtr(r, E)
=

1

3 [Σt(r, E)− µ(E)Σs(r, E)]
. The third approximation is inherent

from Eq (7.19) with which we are able to replace the current vector by its normal value ||J||.

These three approximations allow us to estimate an approximate current weighted
multi-group total cross section Σt1,g according to Eq (7.27).

Σt1,g(r) =

∫
E∈g

Σt(r, E)
φ(r, E)

Σt(r, E)− µΣs(r, E)
dE

∫
E∈g

φ(r, E)

Σt(r, E)− µΣs(r, E)
dE

(7.27)

Please note that Σt(r, E)φ(r, E) represents the physical parameter �collision density�
which can be estimated by the simulation weight of the concerned neutron ω(r, E). The
latter is exactly the same as that used for estimating conventional multi-group param-
eters in TRIPOLI-4r. As for Σt(r, E) and Σs(r, E), they are both calculated from the
continuous-energy input library which is related to the incident neutron and its existing
medium. By the way, the point-wise scattering cross section is obtained indirectly through
the relationship: Σs(r, E) = Σt(r, E)− Σa(r, E).

More attention should be paid on calculating the average cosine of scattering angle in
the laboratory reference. The continuous-energy dependent average values of scattering
angles for each medium (which is defined to be homogenized) must be known in Eq (7.27).
They are calculated at the beginning of each continuous-energy TRIPOLI-4r simulation
as follows:

µ(E) =

∑
i

∑
j
Niσ

s
i,j(E)µi,j(E)∑

i
Niσsi (E)

(7.28)

with

- Ni: the atomic concentration of isotope i;

- σsi,j(E): the microscopic cross section of scattering type j with nuclide i at energy
E;

- σsi (E): the microscopic scattering cross section of nuclide i at energy E;
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- µi,j(E): the average value of all the possible scattering angles for scattering reaction

type j with isotope i at energy E. It is obtained as follows: µi,j(E) =
1∫
−1

µ×fi,j(µ)dµ

where fi,j(µ) is the point-wise angular distribution law from the data library. For
the moment, accounted reaction types include: the elastic scattering and the discrete
inelastic scattering. For other scattering reactions, µ = 0.

With the elements described above, an estimator for Σt1,g(r) could be deduced as:

Σt1,g(r) =

∑
i
ω(ri, Ei)×

1

Σt(ri, Ei)− µΣs(r, E)∑
i
ω(ri, Ei)×

1

Σt(ri, Ei)× [Σt(ri, Ei)− µΣs(ri, Ei)]

(7.29)

where i indicates the collisions whose initial position and incident energy (ri, Ei) be-
long to the macro region (V, g).

After having presented the method of calculating multi-group first order moment of
total cross section, it is natural to extend the energy condensation work toward the spa-
tial homogenization step. If several different macro regions must be homogenized, it is
sufficient to distinguish each different medium while registering scores. Therefore, the
homogenized multi-group first order moment of total cross section is weighted by the ap-
proximate scalar current spatially as well as energetically.

4. With knowledge of Σt1,g at the end of the TRIPOLI-4r continuous-energy simula-

tion, we finally obtain the expected new anisotropy parameter µ̃g→g or its correction term
∆µg→g. As shown in Eq (7.23), this first order moment of scattering angular cosine is in
fact the expectation value of µ respecting its distribution law f(µ). Unfortunately, this
value could not be used directly in a multi-group TRIPOLI-4r simulation nor a determin-
istic core simulation. Therefore, the final implementation step is to adapt the output file
containing (homogenized) multi-group constants from the TRIPOLI-4r point-wise simu-
lation for a transport core simulation code, whether dealing with a Monte-Carlo domain
or a deterministic domain.

Different output formats of the in-group anisotropy law will be presented in the fol-
lowing according to the demands of the multi-group TRIPOLI-4r simulation or Sn solver
platform PARIS. They correspond respectively to discrete in-group angular scattering
distribution probability or the non-zeroth order in-group scattering cross section matrix.

7.3.1 Consistent discrete in-group angular scattering distribution prob-
ability

After having simulated all the batches desired by users, the conventional multi-group
parameters, such as Σt,g and Σg→g

s0 can be correctly estimated. Otherwise, Σt1,g could
also be estimated by the approximate scalar current. With Eq (7.26), we could deduce
a corrective term for the average scattering angle cosine ∆µg→g. The problem to be
solved in this part consists in determining how to allocate this single correction value
among the 20-equal intervals between [−1; 1]. Two different distribution methods have
been implemented in TRIPOLI-4r. One is named linear correction; the other is named
Dirac correction. The common goal of these two correction methods is to figure out a
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corrected distribution function f̃(µ) = f(µ) + ∆f(µ) which could answer the requests:

1∫
−1

[f(µ) + ∆f(µ)] dµ = 1

1∫
−1

µ [f(µ) + ∆f(µ)] dµ = µg→g + ∆µg→g

(7.30)

Linear correction

The linear correction is based on the hypothesis that the correction function ∆f(µ) is a
linear function of µ which could be expressed as Eq (7.31).

∆f(µ) = αµ+ β (7.31)

After substituting ∆f(µ) for Eq (7.31) into requested conditions Eq (7.30), α and β

are solved which result in: ∆f(µ) =
3

2
∆µg→gµ. Thus, the new distribution probability in

each sub-interval Ii with i = 1; 2; 3; · · · 20 could be obtained as follows:

P̃ (µ ∈ Ii) =

∫
µ∈Ii

f̃(µ)dµ = P (µ ∈ Ii) +
3

4
∆µg→g × (µ2

i+1 − µ2
i ) (7.32)

We could find that with this linear correction method, the corrective term ∆µg→g im-
pacts on all the sub-intervals but with different weights (µ2

i+1 − µ2
i ). A hidden risk with

this linear correction method is that the value of (µ2
i+1−µ2

i ) is negative for the lower-half
range [−1; 0]. If the correction term ∆µg→g is important enough, it could result in a non-
physical phenomenon: P̃ (µ ∈ Ii) < 0. If this case happens, the negative probability will
be imposed to be zero.

In terms of physics, the correction term biases the high-energy neutrons toward the
forward escaping direction. It is thus reasonable and possible to reduce the over-estimated
Keff value as in Tab 7.2. However, the same effect could perform on low-energy neutrons
which are also biased toward the forward escaping direction. The problem is that the
forward biasing effect on low-energy neutrons does not represent the real case for a nuclear
reactor. In order to overcome the negative probability shortcoming, another anisotropy
correction method will be presented just below.

Dirac-like correction

The Dirac-like correction is inspired from the single peak form of Dirac function. Instead of
imposing the positive correction effects on all the half of sub-intervals [0; 1], the Dirac-like
correction focuses only on the last bin [0.9; 1] which represents the best chance to escape
for neutrons. Based on this idea, the corrected anisotropy distribution function take the
form as in Eq (7.33).

f̃(µ) = αf(µ) + βδµ0(µ) (7.33)

where µ0 indicates the peak position of the Dirac function and could be any value in
the last interval [0.9; 1]. For the following deduction, we use µ0 = 1.
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The above Dirac correction function must always satisfy the two conditions in Eq

(7.30). This helps us to obtain: α = 1 − β =
1− µ̃g→g
1− µg→g

. Thus, the corrected function is

found to be:

f̃(µ) =
1− µ̃g→g
1− µg→g

f(µ) +
∆µg→g

1− µg→g
δµ0(µ) (7.34)

The same procedure is then performed again as in the case of the linear correction
case. We can calculate the new distribution probability for each sub-interval according to
Eq (7.34):

P̃ (µ ∈ Ii) =

∫
µ∈Ii

f̃(µ)dµ =



1− µ̃g→g
1− µg→g

P (µ ∈ Ii); for i = 1; 2; · · · ; 19

1− µ̃g→g
1− µg→g

P (µ ∈ Ii) +
∆µg→g

1− µg→g
; for i = 20

(7.35)
In a normal case, the corrected average cosine value of scattering angle is more impor-

tant than the original µ̃g→g > µg→g. The latter relationship ensures that
1− µ̃g→g
1− µg→g

< 1.

It could tell that the Dirac-like correction tries to overbalance a certain portion of prob-
ability from the first 19 sub-intervals [−1; 0.9] into the last one [0.9; 1]. This processing
technique shares the same objective as the previous linear correction method. Its advan-
tage is that it reduces to a great extent the risk of getting a negative probability value for
any sub-interval.

There is one possible situation where the negative probability problem persists. This
happens when µ̃g→g > 1. Even though it is non-sense to use an averaged cosine value
higher to 1, this embarrassing case might be encountered, for example, when the current
weighted multi-group total cross section is inferior to the flux weighted multi-group ab-
sorption cross section Σt1,g < Σa,g. There is no specific condensation rule declaring that
the relationship Σt1,g > Σa,g should be necessarily reached. That is why even for the
validated lattice calculation code ECCO, it could happen to have the below relationship:
|Σg→g
s1 | > |Σ

g→g
s0 |.

7.3.2 Consistent high-order in-group scattering cross section matrix

The original motivation of this work is to supply appropriate homogenized multi-group
constants to deterministic calculation codes. In addition, we focus on feeding transport
core calculation codes, such as PARIS. In order to be able to run a deterministic transport
core simulation taking the anisotropy effect into consideration, we need the non-zeroth or-
der group scattering cross sections. Generally, the higher-order scattering matrix elements
could be obtained via the 0th order ones as shown in Eq (7.36)

Σg→h
sl = Σg→h

s0 ×
1∫
−1

Pl(µ)× f(µ)g→hdµ (7.36)

where Pl(µ) is the lth order moment of Legendre Polynomial and could be expressed as
follows:
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Pl(µ) =

l∑
i=0

αiµ
i (7.37)

with αi, each order associated normalization factor. The values used in this work are
from Reuss’s book[17].

Note that group h could be different or the same as group g in Eq (7.36). Actually,
for in-group scattering g = h, the anisotropy distribution law is corrected according to
Section 7.3.1. Therefore, we specify this in-group transfer case as follows:

Σg→g
sl = Σg→g

s0 ×
1∫
−1

Pl(µ)× f̃(µ)g→gdµ (7.38)

Substituting Eq (7.37) in Eq (7.38), and with knowledge of the nine first orders of
moments of µ which are directly simulated by point-wise TRIPOLI-4r, we finally obtain:

Σg→g
sl = Σg→g

s0 ×
l∑

i=0

αi<̃ µ >i
g→g

(7.39)

with <̃ µ >i
g→g

: the corrected ith order of moment for group g to itself.

Finally, a new multi-group anisotropy distribution law could be calculated by TRIPOLI-
4r and its necessary routines are also implemented. Therefore, new calculations are
performed on the previous almost-critical SPX2 geometry illustrated in Figure 7.1. Im-
provement (emphasized in red) could be observed on both Keff value (Table 7.6) and
multi-group anisotropy parameters (Table 7.7). The next step is to validate it with other
geometries which forms the topic of the next section.

Case Keff ∆Keff

TRIPOLI-4r PCT 1.01796 (9) 0

P0 TOTAL/ERANOS 1.01550 -246 (9)

TRIPOLI-4r HMG(6GR) 1.02642(12) +846(15)

TRIPOLI-4r corr HMG(6GR) 1.01771(12) −25(15)

Table 7.6: SPX2 geometry calculation results from TRIPOLI-4r (before/after anisotropy
correction) and ECCO/ERANOS simulations.

µg→g 1→ 1 2→ 2 3→ 3 4→ 4 5→ 5 6→ 6

TRIPOLI-4r 0.432 0.261 0.087 0.034 0.019 0.014

ECCO(P0 TOTAL)~ 0.436 0.258 0.087 0.032 0.017 0.014

TRIPOLI-4r corr 0.441 0.277 0.127 0.110 0.126 0.109

ECCO(P0 TOTAL) 0.445 0.275 0.126 0.114 0.125 0.114

Table 7.7: µg→g values obtained for SPX2 geometry under TRIPOLI-4r & ECCO simu-
lations with 6-groups energy structure. ~: without change of Σg→g

s1
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7.4 Validation of In-Group Scattering Anisotropy Treatment

In this section, the In-group Scattering Anisotropy Treatment method is applied to various
types of reactor cores or criticality experiments in order to validate its performance. The
selected configurations are namely: three 1D homogeneous ISCBEP[2] benchmarks HMF-
001, HMF-004, PMF-001; four 2D homogeneous configurations SNEAK7A-RZ, ZONA2A-
RZ[38], ZONA2B-RZ[38], SuperPhénix-Pipaud-RZ; two 3D heterogeneous reactor cores
MASURCA-1B[15] and SuperPhenix[39]. More descriptions are given in the following list:

- HMF-001: A highly uranium enriched bare sphere, also called GODIVA; criticality
experiment

- HMF-004: A highly uranium enriched sphere reflected by H2O

- PMF-001: A plutonium bare sphere, also named JEZEBEL

- SNEAK7A-RZ (IRPHE)[9]: A critical fast reactor type mock-up without sodium;
composed of the MOX and graphite

- ZONA2A-RZ: A simplified RZ model with radial and axial blankets from CIRANO
program in the mock-up of MASURCA

- ZONA2B-RZ: A simplified RZ model with steel-reflector and without blanket from
the CIRANO program in the mock-up of MASURCA

- SuperPhénix-Pipaud-RZ: A simplified RZ model of sodium-cooled fast reactor Su-
perPhénix, with inserted control rods

- MASURCA-1B: A mock-up in the core of MASURCA with 30% of 235U, FeO and
graphite.

- SuperPhenix[39]: A 3D sodium-cooled fast reactor whose geometry description will
be given out in Appendix C.

The validation procedure is the same as illustrated in Figure 6.8. For each configu-
ration, a continuous-energy TRIPOLI-4r simulation is at first done to obtain In-Group
Anisotropy Corrected homogenized multi-group constants as well as the reference results
(Keff, flux spectrum, neutronic balance). It should be noted here that the homogenization
weighting function is naturally the same as the one used for energy condensation. This
means that for the first moment of multi-group total cross section, the approximative cur-
rent is used for both homogenization and energy condensation; while the flux is used for
other multi-group constants. Then, the produced homogenized multi-group constants are
used in the multi-group TRIPOLI-4r simulations. Comparisons between the two calcula-
tion steps above could help us to validate the In-Group Scattering corrected multi-group
constants.

As for the number of regions to be homogenized, it varies according to each different
case. For the three ISCBEP one-dimensional critical spheres and the four two-dimensional
simplified RZ models, they are naturally homogeneous in each distinguished region, thus
TRIPOLI-4r only needs to perform energy condensation work. For the two heterogeneous
3D cores, homogenization work is carried out at the same time as energy collapsing.
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The same TRIPOLI-4r point-wise to multi-group calculation procedures are repeated
but without use of the new anisotropy treatment method. Thus, a comparison between
these two types of calculations will show the effects of the In-Group Scattering Correc-
tion method which will be noted as IGSC for the following text. Table 7.8 and Table 7.9
show respectively the Keff results of all the tested cases under 6-group and 33-group. In
each table, the column �Keff PCT� contains the reference values with their own standard
deviation in units of pcm. The column �Keff HMG� stands for multi-group TRIPOLI-4r

simulation without use of IGSC technique. On the other hand, �Keff HMG IGSC� means
multi-group simulation with the use of IGSC. The two last columns are respectively their
discrepancies compared to the point-wise value.

case Keff PCT Keff HMG Keff HMG IGSC ∆Keff(pcm) ∆Keff IGSC(pcm)
HMF001 0.99678(0.4) 0.99974(6) 0.99689(6) +296(6) +11(6)
HMF004 0.99530(1.8) 0.99979(10) 0.99351(12) +449(10) -192(11)
PMF001 1.00020(0.4) 1.00189(2) 1.00010(2) +169(2) -10(2)

SNEAK7A 1.00665(4) 1.01312(9) 1.00617(9) +647(10) -49(10)
ZONA2A 1.00832(4) 1.01556(9) 1.00625(6) +724(10) -207(10)
ZONA2B 1.00941(5) 1.02824(9) 0.99049(9) +1883(10) -1892(10)

SPX Pipaud 1.05965(6) 1.06383(9) 1.05935(9) +418(11) -60(11)
MAS1B 1.00333(5) 1.03246(10) 1.00707(10) +2913(11) +374(11)

SPX 1.00424(5) 1.00798(8) 0.94989(8) +374(9) -5435(9)

Table 7.8: Keff values from 6-group TRIPOLI-4r simulations with and without IGSC cor-
rection method compared to continuous energy TRIPOLI-4r simulation (NJOY option)

case Keff PCT Keff HMG Keff HMG IGSC ∆Keff(pcm) ∆Keff IGSC(pcm)
HMF001 0.99678(0.4) 0.99777(6) 0.99736(6) +99(6) +58(6)
HMF004 0.99530(1.8) 0.99338(11) 0.99127(9) -192(11) -403(9)
PMF001 1.00020(0.4) 1.00093(3) 1.00067(2) +73(2) +47(2)

SNEAK7A 1.00665(4) 1.01018(9) 1.00511(9) +353(10) -155(10)
ZONA2A 1.00832(4) 1.01331(9) 1.00577(9) +499(10) -255(10)
ZONA2B 1.00941(5) 1.02244(9) 0.99022(9) +1303(10) -1919(10)

SPX Pipaud 1.05965(6) 1.06279(9) 1.05939(9) +314(11) -26(11)
MAS1B 1.00333(5) 1.02864(10) 1.00784(10) +2531(11) +451(11)

SPX 1.00424(5) 1.00646(8) 0.95941(8) +222(9) -4483(9)

Table 7.9: Keff values from 33-group TRIPOLI-4r simulations with and without IGSC
correction method compared to continuous energy TRIPOLI-4r simulation (NJOY op-
tion)

At first, the results under 6-groups show that flux-weighted anisotropy law results into
an over-estimation of Keff. However, the IGSC method helps decrease efficiently the dis-
crepancies of Keff between multi-group and continuous-energy TRIPOLI-4r simulations
in most cases. Two exceptions exist in the ZONA2B and SPX configurations which are
marked in red. In ZONA2B core simulation, the IGSC method has under-estimated the
multiplicative factor by about 2000 pcm instead of an over-estimation of 1883 pcm with-
out use of the IGSC method. This means that the IGSC method is not at all suitable for
the ZONA2B case. The problem is related to its steel-reflective boundary[77]. Because
of its important heterogeneities located on the two sides of the steel boundary, more deli-
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cate treatment is necessary for the sub-assembly homogenization around the fuel-reflector
interface. It was investigated by Jacquet in his Ph.D. thesis [77]. Another exception is
found in the SuperPhénix case. This important discrepancy (-5483 pcm) will be analyzed
in the next chapter.

Our attention now moved now to the 33-groups results. It is confirmed that the flux-
weighted energy condensation method has always over-estimated Keff values except for
one case of HMF-004. However, the quantities over-estimated under the 33-group are less
important than under the 6-group. This was predicted by Rhanema[79] who pointed out
that a more refined energy structure could yield a better core calculation result. An illusion
is found while comparing the 6-groups and 33-groups multi-group simulation results using
the IGSC method: the results from 6-groups are closer to reference values than the 33-
groups results. This abnormal phenomenon will be explained by a further analysis on the
neutronic balance. In the following paragraph, we shall take SNEAK7A-RZ as an example
to carry out a detailed analysis on its flux spectrum and neutron balance.

7.4.1 Flux spectrum analysis

Figure 7.2 is a vertical cutting cross section of a simplified RZ model of the SNEAK7A
reactor. It is divided into three homogeneous media: inner-core (yellow part); outer-
core (purple part) and blanket (red part). Multi-group constants are generated for each
medium. Thus, only energy condensation work is involved in this case.

Figure 7.2: Illustration scheme for SNEAK7A-RZ core

As the core is composed of three parts, the flux spectrum analysis is naturally carried
out within each medium. The results are given in Figure 7.3 to Figure 7.8. The first
three figures correspond to 6-group calculation results while the others correspond to the
33-group flux analysis. For all of them, the left parts in the figures noted as a) are the
reference flux spectra calculated by point-wise TRIPOLI-4r simulations with the NJOY
data library. And the right parts noted as b) are the relative differences of flux expressed
in percentages between multi-group and point-wise simulations.

It should be pointed out that there are two kinds of comparisons in our analysis. First
of all, a discrepancy between a multi-group simulation calculated flux spectrum and a
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Figure 7.3: a): 6-groups flux spectrum reference in innercore of SNEAK7A from
continuous-energy TRIPOLI-4r simulation (NJOY) b): Relative differences of flux spec-
tra between multi-group TRIPOLI-4r simulation results (with use and without use of
IGSC method) and the reference spectrum (left figure)

point-wise simulation calculated spectrum could indicate whether or not the produced
multi-group constants are able to reproduce the consistent flux spectrum in a transport
core simulation. The second comparison consists in analyzing the different discrepan-
cies while using different multi-group constants calculated by different methods (IGSC
or non-IGSC). The latter could help us to select the method which is more appropriate
for producing multi-group constants from the point of view of a core simulation. By the
way, the In-Group Scattering Correction method used in this chapter to produce corrected
multi-group anisotropy parameters makes use of the linear correction technique presented
in Section 7.3.1. In fact, for most of cases, there is no difference between the linear cor-
rection and Dirac correction techniques.

It must be mentioned here that, we do not give the standard deviations associated to
flux spectra because the simulation results are well converged. For example, in the energy
groups where there is an important neutron population, the relative standard deviation
of neutron flux is less than 0.1%. Let us start with the 6-group flux analysis. Within
all three media, the neutron energy distributions are similar owing to the fact that the
majority of neutrons are found in the 3rd group between [41; 498] keV. So, attention is
moved to their relative differences plotted in Figure b). They show that the IGSC method
brings the relative discrepancies closer to 0 compared to the situation where no correction
is done for the multi-group anisotropy law. This is especially true in the energy domain
where there is an important neutron population. Otherwise, in the 6th energy group, the
relative differences whether the IGSC method is used or not significantly greater compared
to high energy groups. This phenomenon is normal because in the lowest energy group
the statistical error is rather important.

As for the 33-group results, a more accurate flux spectrum is formed in each medium
which could be found from Figure 7.6 to Figure 7.8. The three reference spectra look
like a Maxwellian distribution function with the peak situated at around 0.2 MeV. In the
inner-core and outer-core regions, we find a self-shielding phenomenon at 400 keV which
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Figure 7.4: a): 6-groups flux spectrum reference in outercore of SNEAK7A from
continuous-energy TRIPOLI-4r simulation (NJOY) b): Relative differences of flux spec-
tra between multi-group TRIPOLI-4r simulation results (with use and without use of
IGSC method) and the reference spectrum (left figure)

Figure 7.5: a): 6-groups flux spectrum reference in blanket of SNEAK7A from continuous-
energy TRIPOLI-4r simulation (NJOY) b): Relative differences of flux spectra between
multi-group TRIPOLI-4r simulation results (with use and without use of IGSC method)
and the reference spectrum (left figure)

results from the resonance of oxygen. If we have a look at Figures b), compared to the
6-group cases, even more important discrepancies are found at the low energy domain.
This could always be explained by the reason of lack of neutron statistics in low energy
transfers. The more the energy structure is refined, the greater the statistical errors show
up in the low energy groups.

Thus, more attention needs to be paid to the gray energy intervals as marked in figures
a). 95% of neutron production occurs in this selected energy zone. The relative difference
within this energy domain is zoomed specially in the comparison of Figures b). From the
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Figure 7.6: a): 33-groups flux spectrum reference in innercore of SNEAK7A from
continuous-energy TRIPOLI-4r simulation (NJOY) b): Relative differences of flux spec-
tra between multi-group TRIPOLI-4r simulation results (with use and without use of
IGSC method) and the reference spectrum (left figure)

Figure 7.7: a): 33-groups flux spectrum reference in outer-core of SNEAK7A from
continuous-energy TRIPOLI-4r simulation (NJOY) b): Relative differences of flux spec-
tra between multi-group TRIPOLI-4r simulation results (with use and without use of
IGSC method) and the reference spectrum (left figure)

zoom windows (covering the range of [2.49 keV; 6 MeV]), it is confirmed that the IGSC
method efficiently reduces the discrepancies of flux spectra in a core calculation. However,
an exception stands out in the 7th group representing the energy interval of [500; 800]
keV. For this energy group, the relative difference from the IGSC method has significantly
exceeded the result without use of any correction. This occasional inconsistency comes
probably from the approximative estimation of the current weighted total multi-group
cross section described in Eq (7.29).
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Figure 7.8: a): 33-groups flux spectrum reference in blanket of SNEAK7A from
continuous-energy TRIPOLI-4r simulation (NJOY) b): Relative differences of flux spec-
tra between multi-group TRIPOLI-4r simulation results (with use and without use of
IGSC method) and the reference spectrum (left figure)

7.4.2 Neutronic balance analysis

In this section, neutronic balance is to be compared between the multi-group and point-
wise TRIPOLI-4r simulations. Let us bear in mind that two kinds of multi-group calcu-
lations are performed in our tests. One makes use of the multi-group constants produced
by the IGSC method which corrects the multi-group anisotropy law. The other one simply
uses the non-corrected multi-group constants which are weighted by scalar flux.

Figure 7.9 shows the 33-group production rate discrepancies in two different situations.
Part a) corresponds to use the IGSC method, while Part b) stands for non-use of any
correction method. Both parts of Figure 7.9 contain the comparison associated with every
medium as well as the whole core. If we at first pay attention to the inner-core (black
line) and outer-core (blue dashed line) parts, it can be seen that the non-corrected multi-
group constants have a tendency to over-estimate the production rate in a multi-group
simulation. Moreover, the over-estimated production rates cover a rather large energy
range from [750 eV; 3.68 MeV]. With the use of the IGSC method, the discrepancies
in the two fissile media decrease, in particular in the inner-core part. In the outer-core
region, the improvement of the production rate balance from the IGSC method seems less
important compared to the inner-core region. However, the energy range of the residual
discrepancies is limited to [454 eV; 9 keV]. As for the blanket fertile medium, using the
non-corrected multi-group constants results in an under-estimation peak at around 2.5
MeV. This negative peak (∼ 16 pcm) is lifted up by the IGSC method into a shaper and
lower positive one. Finally, in the whole core, the over-estimation tendency of production
rate difference with the use of the non-corrected multi-group constants has been more or
less balanced with the help of the IGSC method. An over-corrected effect is found in the
7th group. This negative difference ∼ 20 pcm results from the under-estimation of flux in
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the same group. All in all, the IGSC method decreases the total discrepancy of production
rate from +351 pcm to −157 pcm.

Figure 7.9: a): Production rate comparisons between 33-groups (with use of IGSC
method) and point-wise (NJOY) TRIPOLI-4r simulations in each medium of core
SNEAK7A-RZ b): Production rate comparisons between 33-groups (without use of
IGSC method) and point-wise (NJOY) TRIPOLI-4r simulations in each medium of core
SNEAK7A-RZ

We continue to analyze the absorption rate in the SNEAK7A simplified core. The
differences between multi-group and point-wise simulations are plotted in Figure 7.10 in
two different cases. Part a) represents the improved results with the aid of the IGSC
method compared to Part b) using non-corrected anisotropy parameters in multi-group
simulation. Efficient positive impact from the IGSC method is confirmed in the inner-core
domain where we could tell that the absorption rate differences are very close to 0 with use
of IGSC produced multi-group constants. A less efficient effect is revealed in the outer-
core. Especially in low energy range [750 eV; 15 keV], the IGSC method seems to reverse
the positive differences into negative ones. Globally, the discrepancies calculated with the
IGSC method are much closer to zero line. This means that the IGSC method produced
multi-group constants are better adapted in a multi-group simulation and preserve the
absorption rate better compared to point-wise results.

In the SNEAK7A-RZ simplified core model, surely the neutron escapes from the most
external boundary side. Thus the leakage rate will only be accounted for in the blanket.
Figure 7.11 illustrates the leakage rate comparisons under conditions of use (green line)
and non-use (yellow line) of the IGSC method. It could be clearly seen that the usage of
IGSC method help to reduce the leakage discrepancies compared to non-use of the IGSC
method. It is proved again that IGSC method could produce the anisotropy corrected
multi-group constants which preserve the neutron balance better.

At the end of this section, we shall answer the question asked earlier: why do the
6-group calculated multiplicative factor results (∆Keff = −49 ± 10 pcm) seem better
than the 33-group results (∆Keff = −155 ± 10 pcm)? The answer is indeed hidden in
Figure 7.12. The red curve representing the 6-group leakage rate discrepancy shows an
important compensation effect between the 4th and 5th energy groups. It is also with this
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Figure 7.10: a): Absorption rate comparisons between 33-group (with use of IGSC
method) and point-wise (NJOY) TRIPOLI-4r simulations in each medium of core
SNEAK7A-RZ b): Absorption rate comparisons between 33-group (without use of
IGSC method) and point-wise (NJOY) TRIPOLI-4r simulations in each medium of core
SNEAK7A-RZ

Figure 7.11: Leakage rate comparisons between 33-group (with/without use of IGSC
method) and point-wise (NJOY) TRIPOLI-4r simulations in blanket medium

compensation effect that the 6-group calculation gives the illusion of estimating a better
Keff value.



136 CHAPTER 7. MULTI-GROUP ANISOTROPY TREATMENT

Figure 7.12: Total production rate differences between multi-group (with use of IGSC)
and point-wise (NJOY) TRIPOLI-4r simulations

Conclusion

In this chapter, the lattice calculation ability is extended to account for the neutron leakage
effect. This is a big step toward a more realistic representation of a reactor core compared
to the lattice calculation used in Chapter 6. It should be noted that the concept of han-
dling the leakage effect here is totally different from the conventional way, for example,
using the B1 homogeneous leakage model. We tried to construct an almost-critical ge-
ometry to be tested by the TRIPOLI-4r code. This naturally critical lattice calculation
could avoid the approximations used by a theoretical leakage model and takes advantage
of the good precision of the Monte-Carlo simulation.

This work proves that in order to preserve exactly neutron balance from point-wise
to multi-group calculations, an indispensable treatment (IGSC) should be performed to
build up an appropriate multi-group anisotropy representation. Two different processing
techniques are proposed by the author to adapt the IGSC method in the TRIPOLI-4r

code.

The multi-group constants produced by the IGSC method are validated in two different
ways. The first one is to compare them directly with the ECCO calculated multi-group
constants. The second one is to use them in a multi-group transport simulation and then
compare the key reactor features (Keff; flux spectrum and neutronic balance) between the
multi-group simulation and the reference results. Results of the comparison show that the
IGSC method is generally able to produce appropriate multi-group constants for a core
transport calculation. However, some exceptions happen when we treat a heterogeneous
lattice which contains a diffusive nucleus, such as sodium in the SuperPhénix heterogeneous
core. This highly diffusive problem will be diagnosed in the following chapter.



Chapter 8

Heterogeneous problem in lattice
calculation

The previous chapter has shown that the scalar flux weighted multi-group constants could
not guarantee the preservation of the effective multiplication factor from continuous-energy
to multi-group Monte-Carlo calculations. Then, it has been demonstrated that this incon-
sistency originates from the neutron anisotropy phenomenon which is finally induced by the
neutron leakage effect. A solution is proposed which aims to reconstruct the multi-group
anisotropy distribution law. It is named by the author as the In-Group Scattering Correc-
tion (IGSC) method, and is tested by various configurations including one-dimensional,
two-dimensional homogeneous geometries and three-dimensional heterogeneous geome-
tries. Most of the tested cases prove that the IGSC method is able to produce appropriate
multi-group constants which are then used in a transport core calculation code and give
consistent results compared to the point-wise TRIPOLI-4r simulation results. However,
two exceptions were encountered in the 2D ZONA2A-RZ reactor core model and the 3D
realistic Superphénix core. The present chapter focuses on understanding and solving this
problem.

8.1 Problem introduction

Table 8.1 helps us recall the difficulties we are confronted with in the two special cases
using the IGSC method produced multi-group constants. The brackets in the below table
contain the standard deviations in units of pcm. And ∆Keff stands for the differences (in
pcm) between multi-group TRIPOLI-4r simulations and their reference values.

case Keff reference NJOY ∆Keff IGSC(pcm) ∆Keff no corr (pcm)

SuperPhenix
6-GR 1.00748 (5) -5483 (22) +377 (13)
33-GR 1.00739 (4) -4459 (6) +331 (6)

ZONA2B-RZ
6-GR 1.00941 (5) -1892 (10) +1883 (10)
33-GR 1.00941 (5) -1919 (10) +1303 (10)

Table 8.1: Keff comparisons between multi-group (with/without use of the IGSC method)
and point-wise (NJOY) TRIPOLI-4r simulations of SuperPhénix and ZONA2B-RZ cores

The noticeable multiplicative factor discrepancies which are emphasized in red claim
that the IGSC method is not at all adapted for the SuperPhénix reactor nor is it suitable

137
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for ZONA2B-RZ model either. In order to explain why the IGSC method behaves differ-
ently in these two cases, several questions come to the mind: 1) Are there some common
points (geometry or isotope composition) between the SuperPhénix core and the ZONA2B
simplified model? If so, could these common points induce the inconsistent results? 2)
What are the approximations used in the IGSC method which could potentially make
mistakes for these two cases? 3) How can these problems be identified?

Figure 8.1: a): Radial cutting plan of the SuperPhénix core; b): Axial cutting plan
of the SuperPhénix core; c): A zoom of the sub-assemblies of SuperPhénix; d): After
homogenization illustration of the SuperPhénix core

The first question could be answered with Figure 8.1 and Figure 8.2 which are the geo-
metrical descriptions of the SuperPhénix core and the ZONA2B-RZ simplification model.
Apparently, the two configurations do not share the same geometrical construction con-
cept since one is a hexagonal sub-assembly based on a heterogeneous core while the other
is a cylindrical pre-homogenized RZ model. From the point of view of compositions, they
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Figure 8.2: Vertical cutting view of the ZONA2B-RZ core model

both use oxide fuels mixed with plutonium which are surrounded by sodium. Up until
now, it seemed that there was no visible common point between the two cores that could
induce our inconsistency results.

As for the second question, there are indeed three approximations used in the IGSC
method since TRIPOLI-4r, being a Monte-Carlo code, is limited to estimating a highly
precise volumetric current. It is a common shortcoming of the Monte-Carlo family due
to the cancelation between positive and negative values while performing a mathematical
integration. Therefore, it probably induces high uncertainty associated to the estimated
parameter. Here, the approximative current used in the IGSC method is recalled in Eq
(8.1).

||J|| ≈ ||D∇φ(r, E, Ω̂)|| ≈ Dφ(r, E, Ω̂) ≈ φ(r, E, Ω̂)

3 [Σt(r, E)− µΣs(r, E)]
(8.1)

The approximations involved are respectively:

1. Fick’s diffusion theory to establish a relationship between current and the gradient
of flux.

2. Transport corrected Boltzmann equation.

3. The spectrum of neutron flux is similar to the spectrum of the gradient of neutron
flux.

Several remarks should be made. Firstly, Fick’s law is founded to deal with a mono-
energy problem and is supposed to be used in an isotropic medium. Then, when the
mono-energy assumption is broken, an additional hypothesis is necessary to hold bal-
ance for the Boltzmann equation. That is to say the in-coming first order moment of
the scattering rate equals the out-going quantity which is shown in Eq (8.2). This could
help in obtaining the transport corrected Boltzmann equation. The third approximation
is mostly available because the operator gradient will not impact on the dependence of
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the energy variable especially in a homogeneous case. If the spatial heterogeneity be-
comes an outstanding feature, the flux spectrum could no longer represent the spectrum
of its gradient within the whole heterogeneous domain, particularly near certain interfaces.

∞∫
0

Σs(E
′ → E)J(E′)dE′ = Σs(E)J(E) (8.2)

All in all, the approximative current used in the IGSC method could be unsuitable
to represent the accurate current in the two reactor cores. In the SuperPhénix core, the
coolant sodium is a highly diffusive material compared to the heavy isotopes from the
surrounding fuel. Thus, the favorite neutron propagation directions vary a lot according
to their position. A similar situation is encountered again in the ZONA2B-RZ simplified
core. As it is a pre-homogenized core model, there is no more heterogeneity in each macro
region. However, the interface between these macro regions, such as the interface between
the fuel and steel reflector, is always a big challenge for neutronic physicists. Some similar
research was carried out by Jacquet with the deterministic code, ECCO during his Ph.D
work [77].

The above clues seem to indicate that the current used in the IGSC method is not
representative of the heterogeneous region where the material properties radically change.
In order to verify this, a simple one-dimensional geometry which contains alternatively
239Pu and 23Na is designed and illustrated in Figure 8.3. The atomic concentrations for
239Pu and 23Na come from the realistic SuperPhénix outercore sub-assembly. And their
volumetric proportion also respects the one used in the same sub-assembly. The boundary
conditions imposed on this geometry are all reflections except for one side whose normal
direction is just the direction of X. The thickness of this slab geometry is chosen in order
to have it approach the criticality.

Figure 8.3: Pu-Na critical 1D geometry
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Finally, the point-wise TRIPOLI-4r simulation with NJOY library gives the multi-
plicative factor for this designed configuration as follows: Keff = 1.00547±0.00011. Mean-
while, 33-groups constants are produced with use of the IGSC method which exploits the
approximate current as shown in Eq (8.1). Providing these multi-group constants into
the multi-group TRIPOLI-4r simulation gives: Keff = 0.92770 ± 0.00008. An important
discrepancy (−7777±14 pcm) between multi-group and point-wise simulations is observed
again with the above configuration. This great reproduced discrepancy helps confirm our
previous guess: that the current used in the IGSC method is not representative of a het-
erogeneous case where the material properties change radically. This approximate current
will be named the Todorova current in the following paragraph. Until now, the third
question has been answered. The next step is to find a solution for this kind of problem.

8.2 Solution & Analysis

In the previous section, a 1D almost-critical geometry is designed in Figure 8.3. Its
configuration property implies that the global current direction in this geometry follows
the direction X. Therefore, its inspiration is to use an X-direction projected current instead
of a Todorova current in the IGSC method. From the definition of current (cf Eq (8.3)),
it is obvious to obtain its projection quantity on direction X which is written in Eq (8.4).

J(r, Ω̂, E) = Ω̂φ(r, Ω̂, E) (8.3)

Jx(r, Ω̂, E) = Ωxφ(r, Ω̂, E) (8.4)

In a point-wise TRIPOLI-4r simulation, the information about neutron directions is
always available at any moment during its trajectory history. And it is stored in a vectorial
form noted as (Ω[0]; Ω[1]; Ω[2]). The three components stand for the projection on direction
X; Y and Z respectively. Therefore, an X-direction current weighted homogenized multi-
group total cross sections could be expressed as follows:

ΣV
t1,g =

∫
r∈V

∫
E∈g

∫̂
Ω

Σt(r, E)Ωxφ(r, Ω̂, E)d2ΩdEd3r∫
r∈V

∫
E∈g

∫̂
Ω

Ωxφ(r, Ω̂, E)d2ΩdEd3r
(8.5)

where V indicates the macro-regions to be homogenized. Naturally, the new current
weighted total cross sections could replace the previous ones weighted by a Todorova cur-
rent in the IGSC method. For the sake of clarity, from now on we distinguish the new
current as direction-X from the Todorova current.

Table 8.2 shows various Keff values from point-wise and 6-group TRIPOLI-4r sim-
ulations on the previously described Pu-Na slab geometry. Three kinds of multi-group
simulations are performed using different sets of constants produced respectively from
the Todorova current and the direction-X current involving the IGSC method as well
as the non anisotropy correction method. Their comparisons with respect to the refer-
ence point-wise value are also given in units of pcm with associated standard errors. It
is observed from Table 8.2 that the direction-X current weighted multi-group constants
improve the Keff estimation importantly. The same improvement is also found with the
use of no anisotropy corrected parameters. The later improvement of the Keff value is
pretty confusing because in Chapter 7 we have demonstrated that, for a leakage involved
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geometry case, that multi-group anisotropy parameters need to be modified according to
the IGSC method in order to preserve the neutron balance from point-wise simulation to
multi-group simulation. However, this �good result� without anisotropy correction agrees
well with what we found for the heterogeneous SuperPhénix core. The same result ten-
dency confirms that the designed Pu-Na slab geometry can indeed represent the problem
of SuperPhénix core. Thorough analysis is indispensable to understand why and how
these three sets of multi-group constants behave differently in multi-group simulations.
The analysis work is divided into three steps: multi-group constants comparison, current
comparison and neutron balance comparison. They will be developed individually in the
following parts.

Keff PCT NJOY 1.00547(11)

Keff HMG IGSC-Todorova 0.92770(8)
∆Keff - 7777(14)

Keff HMG IGSC-X 1.00072(10)
∆Keff - 475(15)

Keff HMG no-corr 1.00189(10)
∆Keff - 358(15)

Table 8.2: Keff comparisons between 6-groups (using the Todorova current & the direction-
X current IGSC method as well as no correction) and point-wise (NJOY) TRIPOLI-4r

simulations on critical Pu-Na slab geometry

8.2.1 Multi-group constant comparison

First of all, it should be stated that the three different methods in charge of multi-group
constants production share exactly the same simulation algorithm to calculate the flux
weighted multi-group parameters. So, there is no necessity to compare these multi-
group constants which are namely total, absorption, fission cross sections as well as the
group energy transfer probability matrix. The only difference exists in the production
of the anisotropy distribution law. The non-correction method leaves the naturally pro-
duced anisotropy distribution probability in its original form, while the IGSC method
re-calculates the anisotropy distribution probability according to Eq (7.32). The cor-
rection term ∆µg→g involved in Eq (7.32) could be calculated via two different current
weighted total cross sections. The first one which is used in chapter 7 is the Todorova
current. The second is recently proposed in this chapter under the name of direction-X
current.

The differently calculated µg→g which are homogenized over the whole region and
collapsed into 6-groups are listed in Table 8.3. Meanwhile, the results are also plotted in
Figure 8.4 to provide a clearer vision. From both Table 8.3 and Figure 8.4, it is obvious that
important discrepancies exist between the Todorova results and the others. Moreover, the
direction-X current estimated µg→g values are close to those without anisotropy correction
in the first three groups.

The anisotropy correction effect revealed in Table 8.3 could potentially be impacted by
both spatial homogenization and energy condensation. In order to distinguish the energy
condensation effect on the anisotropy correction term, results of µg→g are also given out
for only the plutonium medium (Table 8.4) and only the Na medium (Table 8.5).
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µg→g 1→ 1 2→ 2 3→ 3 4→ 4 5→ 5 6→ 6

IGSC-Todorova 0.8036 0.8210 0.4228 0.2384 0.5611 0.1783

IGSC-X 0.4477 0.2862 0.1304 0.0192 -0.4423 0.0741

no correction 0.4519 0.2741 0.1202 0.0348 0.0243 0.0383

Table 8.3: Averaged cosine values of in-group deviated angles calculated with different
methods on the whole critical Pu-Na slab geometry

Figure 8.4: Illustration of averaged cosine values of in-group deviated angles calculated
with different methods on the critical Pu-Na slab geometry

Several conclusions could be drawn out from the two above tables which are concerned
mostly with energy condensation work. Firstly, in the Pu region, the corrected µg→g

values are quite similar between the use of the Todorova current and direction-X current
although, remarkable discrepancies are observed in the last two groups. This is due to poor
statistics in the low energy groups. Secondly, if we compare the Todorova current results
with no correction results from Table 8.3 with Table 8.5, we clearly see that the anisotropy
correction effect is greater when treating heterogeneous medium in comparison to the ho-
mogeneous medium. Thirdly, if we compare the direction-X current results with those that
use no correction in the three tables, it seems that the anisotropy correction from the Na
region has a greater impact on the whole heterogeneous geometry than from the Pu region.

The above analyzed tendency can be demonstrated mathematically. Returning to the
original anisotropy correction formula introduced by Eq (7.26), the specific form adapted
to this Pu-Na slab geometry could be written as follows:

µ̃g→ga+b = µg→ga+b +
Σa+b
t0,g − Σa+b

t1,g

Σa+b
s0,g→g

(8.6)
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µg→g Pu 1→ 1 2→ 2 3→ 3 4→ 4 5→ 5 6→ 6

IGSC-Todorova 0.6394 0.4264 0.2474 0.0347 0.0766 0.1988

IGSC-X 0.6379 0.4178 0.2259 0.0345 -0.067 1.0223

no correction 0.6393 0.2734 0.0971 0.0379 0.1321 0.0247

Table 8.4: Averaged cosine values of in-group deviated angles calculated with different
methods on the region of Pu in the critical Pu-Na slab geometry

µg→g Na 1→ 1 2→ 2 3→ 3 4→ 4 5→ 5 6→ 6

IGSC-Todorova 0.4466 0.3441 0.1306 0.0413 0.3499 0.0255

IGSC-X 0.3925 0.2734 0.0971 0.0379 0.1321 0.0247

no correction 0.3788 0.2364 0.0723 0.0357 0.0286 0.0255

Table 8.5: Averaged cosine values of in-group deviated angles calculated with different
methods on the region of Na in the critical Pu-Na slab geometry

where a and b stand for Pu region and Na region respectively. The homogenized multi-
group total cross section Σa+b

t0,g and its first moment Σa+b
t1,g could indeed be decoupled into

two parts. Each of them depends only on one single region property. They are shown in
Eq (8.7) and Eq (8.8).

Σa+b
t0,g =

∫
r∈a

∫
E∈g

Σt(r, E)φ(r, Ω̂, E)dEd3r∫
r∈a

∫
E∈g

φ(r, Ω̂, E)dEd3r
·

∫
r∈a

∫
E∈g

φ(r, Ω̂, E)dEd3r∫
r∈a+b

∫
E∈g

φ(r, Ω̂, E)dEd3r

+

∫
r∈b

∫
E∈g

Σt(r, E)φ(r, Ω̂, E)dEd3r∫
r∈b

∫
E∈g

φ(r, Ω̂, E)dEd3r
·

∫
r∈b

∫
E∈g

φ(r, Ω̂, E)dEd3r∫
r∈a+b

∫
E∈g

φ(r, Ω̂, E)dEd3r

= Σa
t0,g · P aφ + Σb

t0,g · P bφ (8.7)

Σa+b
t1,g =

∫
r∈a

∫
E∈g

Σt(r, E)J(r, Ω̂, E)dEd3r∫
r∈a

∫
E∈g

J(r, Ω̂, E)dEd3r
·

∫
r∈a

∫
E∈g

J(r, Ω̂, E)dEd3r∫
r∈a+b

∫
E∈g

J(r, Ω̂, E)dEd3r

+

∫
r∈b

∫
E∈g

Σt(r, E)J(r, Ω̂, E)dEd3r∫
r∈b

∫
E∈g

J(r, Ω̂, E)dEd3r
·

∫
r∈b

∫
E∈g

J(r, Ω̂, E)dEd3r∫
r∈a+b

∫
E∈g

J(r, Ω̂, E)dEd3r

= Σa
t1,g · P aJ + Σb

t1,g · P bJ (8.8)

with definitions as follows:

- Σa
t0,g: flux weighted multi-group total cross section for region a (plutonium);

- Σb
t0,g: flux weighted multi-group total cross section for region b (sodium);

- Σa
t1,g: current weighted multi-group total cross section for region a (plutonium);
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- Σb
t1,g: current weighted multi-group total cross section for region b (sodium);

- P aφ : proportion of integrated flux in region a (plutonium);

- P bφ: proportion of integrated flux in region b (sodium);

- P aJ : proportion of integrated current in region a (plutonium);

- P bJ : proportion of integrated current in region b (sodium).

To note that the current used in Eq (8.8) is a scalar quantity which could be the norm
of the vectorial current or simply one part of the vectorial current, such as, Jx which is
the projection on direction X.

Substituting Eq (8.7) and Eq (8.8) into Eq (8.6), a relationship could be established
that links the whole geometry anisotropy correction quantity with each single medium
anisotropy correction quantity, cf Eq (8.9).

∆µg→ga+b = µ̃g→ga+b − µ
g→g
a+b

=
Σa
t0,g − Σa

t1,g

Σa
s0,g→g

·
Σa
s0,g→g

Σa+b
s0,g→g

· P aJ −
Σa
t0,g

Σa+b
s0,g→g

· (P aJ − P aφ )

+
Σb
t0,g − Σb

t1,g

Σb
s0,g→g

·
Σb
s0,g→g

Σa+b
s0,g→g

· P bJ −
Σb
t0,g

Σa+b
s0,g→g

· (P bJ − P bφ)

= ∆µg→ga ·
Σa
s0,g→g

Σa+b
s0,g→g

· P aJ −
Σa
t0,g

Σa+b
s0,g→g

· (P aJ − P aφ )

+ ∆µg→gb ·
Σb
s0,g→g

Σa+b
s0,g→g

· P bJ −
Σb
t0,g

Σa+b
s0,g→g

· (P bJ − P bφ)

(8.9)

From the above equation, it is found that the anisotropy correction effect on a hetero-
geneous domain is not simply a linear combination of the anisotropy corrections from
each homogeneous sub-domain. There are some other attached correction constants
which are greatly influenced by the spatial distribution of current and flux. There-
fore, the whole anisotropy correction comprises an energy condensation correction part

(∆µg→ga ·
Σa
s0,g→g

Σa+b
s0,g→g

· P aJ + ∆µg→gb ·
Σb
s0,g→g

Σa+b
s0,g→g

· P bJ) and a spatial homogenization correction

part (−
Σa
t0,g

Σa+b
s0,g→g

· (P aJ − P aφ )−
Σb
t0,g

Σa+b
s0,g→g

· (P bJ − P bφ)).

With the help of Eq (8.9), a numerical application is performed to this Pu-Na case.
∆µg→ga and ∆µg→gb are easily obtained from Table 8.4 and Table 8.5 through a subtraction

operation. The multi-group cross sections (like Σa
t0,g ; Σa+b

s0,g→g · · · ) are available in the

cross section output file from TRIPOLI-4r point-wise simulation. Estimation of flux in
the desired medium as well as within desired energy group is not difficult for the code. The
only difficulty lies in how to calculate a volumetric current with TRIPOLI-4r since there
is not yet an estimator enabling us to do this task. Details about how to estimate current
quantity and the estimation results will be developed in next section. With knowledge
of all the necessary elements, analytical calculation results are summarized in Table 8.6
(Todorova current case) and Table 8.7 (direction-X current case). The total analytical
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correction values are decomposed into the energy condensation (E.C.) contribution term
and the spatial homogenization (S.H.) contribution term which are both listed in the fol-
lowing tables.

Todorova ∆µ E.C. ∆µ S.H. ∆µa+b analytical ∆µa+b simulation Re.diff %

1→ 1 0.0210 0.3307 0.3516 0.3517 -0.02%

2→ 2 0.0256 0.5212 0.5468 0.5469 -0.01%

3→ 3 0.0292 0.2735 0.3027 0.3026 0.02%

4→ 4 0.0024 0.2013 0.2038 0.2036 0.09%

5→ 5 0.1098 0.4270 0.5369 0.5368 0.01%

6→ 6 0.0930 -0.1153 -0.0233 0.1400 727.98%

Table 8.6: Anisotropy correction analysis with use of Todorova current

direction-X ∆µ E.C. ∆µ S.H. ∆µa+b analytical ∆µa+b simulation Re.diff %

1→ 1 0.0097 -0.0137 -0.0040 -0.0042 4.26%

2→ 2 0.0299 -0.0169 0.0130 0.0121 6.71%

3→ 3 0.0200 -0.0093 0.0107 0.0102 4.42%

4→ 4 0.0019 -0.0083 -0.0064 -0.0156 142.45%

5→ 5 0.0715 -0.0183 0.0532 -0.4666 976.79%

6→ 6 0.5244 -0.0701 0.4543 0.0358 92.12%

Table 8.7: Anisotropy correction analysis with use of direction-X current

A good agreement between analytically calculated ∆µa+b values and TRIPOLI-4r es-
timated values is observed for the first 5 groups according to Table 8.6. Their relative
differences are limited to 0.10%. As for the last group where the statistic is very poor,
the relative difference is much more important. Globally, the decoupling between the
energy condensation effect and the spatial homogenization effect on the anisotropy correc-
tion phenomenon is mathematically proved by the Todorova current used IGSC method.
Moreover, it can be found that the homogenization effect is more important on the whole
anisotropy correction term than energy condensation effect.

If attention is now directed to the direction-X current corrected anisotropy case, the
agreement between analytically obtained anisotropy correction values and TRIPOLI-4r

simulated values is confirmed again in the first three groups but with larger discrepancies.
It is normal that the relative differences are greater when using the direction-X current
because the projection of neutron direction on abscissa X could be positive and negative.
Thus, this positive-negative cancelation phenomenon will amplify the standard deviation.
As for the last three groups, their relative differences are much more important. However,
it is not so serious either. An error propagation tested could eventually explain the dis-
crepancy. For example, in the case of group transfer 4→ 4, if we want to obtain the same
value as that from the TRIPOLI-4r simulation result: ∆µ4→4

a+b = −0.0156, the deduced

current proportion in Pu medium is P̃ aJ,4 = 0.628. Comparing this value to the originally

estimated one by TRIPOLI-4r P aJ,4 = 0.638, their relative difference is 1.6% which is
well covered by the standard deviation of this variable itself. Moreover, the direction-X
current correction has no visible privilege between energy condensation and spatial ho-
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mogenization. It is observed that the energy condensation work has a tendency to increase
µg→g values while homogenization work tries to decrease the values. This compensation
behavior seems more reasonable than in the Todorova current case where both the energy
condensation and spatial homogenization help increase the anisotropy effect. The latter
finally results in under-estimated Keff values.

8.2.2 Current comparison

From the previous section, it seems that an appropriate estimation of current quantity
in each region of the Pu-Na slab geometry is considerably important and influences the
anisotropy correction level. Thus, this section focuses on comparing the different estima-
tions of current by the TRIPOLI-4r simulations. Moreover, from Eq (8.9), we could tell
that the difference between flux spectrum and current spectrum is also quite significant
for the heterogeneous medium anisotropy correction term. Therefore, the flux distribution
spectrum will also be presented.

Please note that the current discussed here is not in the conventional sense where it
accounts for the number of neutrons passing through a certain surface in a given direction.
Both the Todorova current and the direction-X current used in Chapter 7 and Chapter 8
are volumetric variables as flux quantity. Thus, the estimators for these two currents are
inspired from the collision estimator for flux which are respectively shown as follows:

JTodorova =
∑
i

ω(ri, Ei)

Σt(ri, Ei) [Σt(ri, Ei)− µ(Ei)Σs(ri, Ei)]
(8.10)

JX =
∑
i

ω(ri, Ei)

Σt(ri, Ei)
Ωx (8.11)

where i is the index for the collisions whose incident energy Ei and position ri belong
to the desired energy group g and desired region(regions) V . 6-groups simulation results
will be presented in the figures below for each of the regions. Figure 8.5 and Figure 8.6
correspond to the Todorova and the direction-X current spectra; while Figure 8.7 shows
the flux spectrum.

At first, almost the same distribution form in the Pu region (red curve) and Na re-
gion (blue curve) could be observed from both the Todorova current (Figure 8.5) and the
direction-X current (Figure 8.6) spectra as well as flux spectrum (Figure 8.7). Around
99% of the estimated scores are occupied by the first three groups from 20 MeV to 41 keV.
Then, we find that the absolute amplitude of the Todorova current is several hundreds
higher than from the direction-X current. Moreover, the whole estimated flux quantity
is situated between the two current ones. This can be easily explained by comparing Eq
(8.10) with Eq (8.11). The scores for the Todorova current are in fact amplified with
respect to the flux scores; while the scores for the direction-X current are lower when
compared to the flux scores.

Another important piece of information should be drawn from the three spectra figures:
the spatial occupation ratio for flux or current between the Pu and Na regions. The ratio
noted as ρ could be expressed by variables defined in Eq (8.12) and Eq (8.13) as follows:

ρJ =
P aJ
P bJ

(8.12)
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Figure 8.5: Todorova current spectrum in each single region of the almost-critical Pu-Na
slab geometry

Figure 8.6: Direction-X current spectrum in each single region of the almost-critical Pu-Na
slab geometry

ρφ =
P aφ

P bφ
(8.13)



8.2. SOLUTION & ANALYSIS 149

Figure 8.7: Flux spectrum in each single region of the almost-critical Pu-Na slab geometry

These ratio quantities are plotted in Figure 8.8. As we had previously pointed out
that, since the important energy range runs from 20 MeV to 41 keV, attention should also
be focused on these groups. According to Figure 8.8, the spatial ratio values are quite
close between the direction-X current and the neutron flux spectra. This means that for
JX and φ, the quantity occupied in the Pu region is mostly twice that of the quantity
occupied in the Na region. However, the ratio values are dramatically enhanced in the
Todorova current case (blue curve). For the 1st and 3rd groups, the Pu region contains 5
times more of current quantity than the Na region. Furthermore, this ratio climbs up to
9.5 for the 2nd group. This important difference between the Todorova current and the
direction-X current is the origin that leads to different Keff values. From another point
of view, the similar spatial distribution proportion from the direction-X current and flux
spectra make it easier to understand why the direction-X current corrected anisotropy
parameters yield a similar Keff result as from the no correction case.

Anyway, in the designed slab geometry case, the real current is indeed similar to the
direction-X current. Therefore, we could use the latter to analyze the Todorova current.
After making the comparison with Figure 8.8, it can be concluded that the approximations
used to estimate the Todorova current are not at all adapted to this highly heterogeneous
geometry case in which one region is very absorptive and the other is very diffusive. The
consequence on the neutron balance will be analyzed in the next part.

8.2.3 Neutron balance comparison

In this part, we shall compare the reaction rates calculated with multi-group constants to
those from the point-wise simulation. Three different sets of 6-group constants were used
which came from the Todorova current involved IGSC method, the direction-X current in-
volved IGSC method and the no correction method. Two reaction rates will be presented:
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Figure 8.8: Spatial occupation ratio between the Pu and Na regions for current and flux
spectra

the fission production and the neutron leakage. Their discrepancies expressed in units of
pcm are respectively plotted in Figure 8.9 and Figure 8.10.

Figure 8.9: Production rate comparisons between multi-group (using the direction-X
current, the Todorova current and the flux weighted 6-group constants) and point-wise
TRIPOLI-4 simulations
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Figure 8.10: Leakage rate comparisons between multi-group (using the direction-X current,
the Todorova current and the flux weighted 6-group constants) and point-wise TRIPOLI-4
simulations

Having a look at the blue curves which stand for the Todorova current correction
case, the production differences in the three principal groups are greater than 1500 pcm.
The sum of all the six groups results in the final under-estimation of the Keff value by
7777 pcm. The same situation is found again for leakage rates. In the first two groups,
the discrepancies of leakage rates are around 1300 pcm. These over-estimated leakage
rates originate from the over-corrected µ̃g→g values for g = 1; 2. The Todorova current
anisotropy correction effect too strongly enforces the high energy neutrons traveling for-
ward until escaping from the geometry.

As for the direction-X current involved results (red curves), both production rate and
leakage rate are greatly improved. The discrepancies of these two reaction types are lim-
ited to 200 pcm for each group. The improvement in the preservation of neutronic balance
confirms that the direction-X current represents more correctly the real situation in the
1D slab configuration.

The unexpected point is that the non-corrected multi-group constants show mostly
the same capacity as the direction-X current corrected multi-group constants in the multi-
group TRIPOLI-4r simulation. The discrepancies of production rate or leakage rate are
also less than 200 pcm for each group. The similar behavior to what we observed for the
direction-X current estimated results is very confusing. One potential explanation is from
the compensation effect between the energy condensation and the spatial homogenization.
This means that the non-corrected multi-group constants over-estimate the fission pro-
duction rate when only the energy condensation work is concerned. On the other hand,
from spatial homogenization aspect, the non-correction anisotropy parameters will under-
estimate the fission production rate. The two opposite effects make the final results seem
better.
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After having compared the multi-group constants (µg→g), the estimated current/flux
spectra and the neutronic balance, the problem associated with highly diffusive medium
becomes comprehensible. The Todorova current is not adapted to the heterogeneous me-
dia where the material property varies a lot. The anisotropy correction imposed by the
IGSC method could be distinguished by a homogenization aspect and energy condensa-
tion aspect. Using an inappropriate Todorova current extensively amplifies the correction
effect from spatial homogenization aspect which finally results into an under-estimated
Keff value and fission production rates.

The proposed solution is to replace the Todorova current by a direction-X current in
the IGSC method. The idea of using current projected on the X direction is feasible in
slab geometry. The tested Pu-Na configuration showed that this direction-X current does
indeed represent the good current existing in the geometry. Thus, it is able to correct
the anisotropy parameters properly and yields better estimations for the Keff value and
reaction rates. This direction-X current will be applied to the fuel/reflector configuration
which has been mentioned previously as a challenging topic for neutronic physicists.

8.3 Application to fuel-reflector calculation

Within the framework of the CIRANO program[38] which was carried out in the nuclear
experimental facility, MASURCA, there was a core configuration named ZONA2B. This
one is a typical fuel-reflector core example. Its fuel sub-assembly is composed of MOX
and sodium rodlet, while its reflector sub-assembly consists of steel and sodium rodlet.
Previous analysis on ZONA2B core revealed remarkable discrepancies between the deter-
ministic calculation results and the Monte-Carlo reference results. In order to figure out
this problem, a preliminary research was conducted during Jacquet’s Ph.D. work[77]. A
simplified core geometry, made up of a homogeneous fuel medium and a homogeneous
reflector medium, was used by Jacquet. In this section,we shall apply the direction-X cur-
rent involved IGSC method on the same geometry to verify the applicability of our method.

Figure 8.11 illustrates the fuel-reflector geometry, especially the spatial refinement
required in deterministic calculations, in particular for ECCO code. The boundary con-
ditions are reflective for the fuel side and void for the reflector side. And homogenized
multi-group constants are produced for each distinguished medium as shown in Figure
8.11. It was pointed out in Jacquet’s thesis that this explicit geometry modeling should
be able to account for the fuel-reflector interface effect. However, unsatisfactory results
persisted in the ECCO/BISTRO calculations which are quoted in Table 8.8. A brief re-
sumé Jacquet’s analysis procedure follows.

The reference Keff value came from the TRIPOLI-4r point-wise simulation using the
input library JEFF3.1 with probability tables. As for the ECCO calculation steps, a fine-
group (1968 groups) calculation is at first performed with P1 approximation. Then, these
1968-groups cross sections were collapsed into 328-groups or 33-groups after a self-shielding
treatment. It should be pointed out that the collapsed multi-group cross sections were
produced for each individual mesh in Figure 8.11. Finally, these macroscopic multi-group
cross sections were used in the core calculation code BISTRO.

Besides Keff values, one-group flux and current were also compared. However, all the
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Figure 8.11: Illustration of a simplified core with steel reflector geometry

cases Keff ∆Keff pcm

TRIPOLI-4r reference 1.48707± 0.00023 —

ECCO/BISTRO 33GR 1.47055 −1652± 23

ECCO/BISTRO 328GR 1.48087 −620± 23

Table 8.8: Keff comparisons between the ECCO-BISTRO calculations and TRIPOLI-4r

reference simulation (all the values in this table are quoted from Jacquet’s thesis)

comparisons concluded that the energy condensation functionalities used in ECCO could
not treat the fuel-reflector case. It was proven that the current used in ECCO for en-
ergy collapsing deviated from the current calculated by the BISTRO code. According
to the author’s opinion, it seems reasonable to find this inconsistent current between the
ECCO and BISTRO codes. The current calculated by ECCO is from the solution of B1
homogeneous fundamental equations; whereas the current solved by BISTRO is from a
real leakage involved Boltzmann transport equation. It should be kept in mind that the
fundamental mode approximation is mostly available for the central part of a reactor core
where the neutron current can be regarded as the gradient of neutron flux. Apparently,
if we always impose the same approximation for the fuel-reflector region where neutron
anisotropy takes dominant place, there is no doubt that certain biases are introduced into
calculation results.

Finally, new energy condensation methods were proposed by Jacquet which take con-
sideration the neutron directional properties. Detailed information can be found in Section
3.5. However, the proposed methods are based on a deterministic solver. It is then quite
easy to gain access to higher order moments (l > 1) of flux which is, in contrary, rather
difficult for Monte-Carlo codes. That is why we did not adopt the conservative energy
condensation method in this work.

After a short presentation on the history of the fuel-reflector problem, the recently
introduced direction-X current seems a feasible solution suggested by the Monte-Carlo
method since it is proven to be representative of the accurate volumetric current in a 1D
geometry. Therefore, the same geometry in Figure 8.11 is calculated by the continuous-
energy TRIPOLI-4r simulation. In the meantime, 33-group cross sections are produced
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by the IGSC method using the direction-X current. In order to be assured that different
types of behaviors will occur between the direction-X current and the Todorova current,
another set of 33-group cross sections is generated by using the Todorova current. Both of
them are then used in a multi-group TRIPOLI-4r simulation. Let us underline the fact
that the produced multi-group cross sections are simply distinguished between the fuel
part and reflector part. It is not divided into refined meshes as in Jacquet’s case. Table
8.9 shows different Keff values and their discrepancies ∆Keff in pcm.

cases Keff ± σ ∆Keff ± σ (pcm)
TRIPOLI-4r point-wise 1.48576± 0.00014 —

TRIPOLI-4r multi-group
direction-X 1.48298± 0.00014 −278± 20

Todorova current 1.47014± 0.00016 −1562± 21

Table 8.9: Keff comparisons between multi-group and point-wise TRIPOLI-4r simulations
on a simplified fuel-reflector geometry

Before comparing the results shown in Table 8.9 with those from Table 8.8, it should be
pointed out the two TRIPOLI-4r reference calculations do not use the same input data.
Jacquet used library JEFF3.1 with probability tables and here we use library JEFF3.1.1
without probability tables. That is the reason why the point-wise simulated Keff values
are not the same. However, we shall not compare the Keff values directly but the discrep-
ancies between the multi-group and its associated point-wise values. Thus, the different
input libraries will not impact our conclusions.

At first, it is shown that the direction-X involved IGSC method is much more suit-
able for handling the fuel-reflector problem than the ECCO energy condensation method.
With the same energy mesh and worse spatial refinement, the TRIPOLI-4r code with the
direction-X current used IGSC method has successfully decreased the Keff discrepancy by
more than 1000 pcm. Moreover, even with better energy refinement (328 groups), the
ECCO calculated multi-group cross sections are not as good as those from the TRIPOLI-
4r simulation. The last comparison is done between the direction-X current and the
Todorova current results. It confirms that the direction-X current could handle better
the heterogeneous medium containing an interface surrounded by two completely different
materials.

Apart from comparing multiplication factors between point-wise and multi-group sim-
ulations, another important indicator also attracts our attention and that is the current
crossing the interface between the fuel and reflector regions. Two opposite directions are
respectively plotted in part a) and b) of Figure 8.12 below. The red curves stand for
reference current estimated from the point-wise TRIPOLI-4r simulation. The blue curves
come from the multi-group TRIPOLI-4r simulation using the direction-X current pro-
duced 33-group constants while the green curves indicate the Todorova current produced
33-group constants. For both positive and negative directions, it can be demonstrated
that, the multi-group surface current spectra calculated by using the direction-X current
produced multi-group constants are much closer to the reference spectra.

Their relative differences between multi-group simulated current quantities and the
reference currents are respectively plotted in Figure 8.13 a) (positive direction) and b)
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Figure 8.12: a): Positive directional current across the interface between fuel and reflector;
b): Negative directional current across the interface between fuel and reflector

Figure 8.13: a): Relative differences of positive directional current across the interface
between fuel and reflector; b): Relative differences of negative directional current across
the interface between fuel and reflector

(negative direction). To note that the energy domain is limited between [500 eV; 20 MeV]
in Figure 8.13 where there are more than 98% of total current quantity. It confirms that
the relative discrepancies obtained with direction-X current are globally closer to zero line
than those obtained with the Todorova current. This means that with the use of the
direction-X involved IGSC method the produced multi-group constants almost enable us
to preserve the current spectra information on the special surface which was a difficult
problem for other cell calculation codes, such as ECCO.
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Conclusion

The residual problem encountered in the SuperPhénix core and ZONA2B simplified model
from Chapter 7 was thoroughly analyzed. The diagnosis results show that the Todorova
current corrected anisotropy parameters are not suitable for heterogeneous geometries in
which the partial material properties change dramatically. A new current under the name
of the direction-X is proposed to improve this situation. Compared to the Todorova cur-
rent, it avoids the diffusion theory based approximations and seems to be an appropriate
representation of the realistic current, especially in a slab geometry.

An initial test using the direction-X current was performed on a Pu-Na slab geometry.
Encouraging results (Keff, current/flux spectra, neutronic balance) were obtained by using
the direction-X current corrected multi-group constants. Therefore, its application was
pursued to an historical problem for a deterministic cell calculation code: fuel-reflector
interface problem. Improvements were again found with the multi-group constants gener-
ated by the direction-X current involved IGSC method in TRIPOLI-4r. The new method
can reduce the reactivity bias by an order of magnitude of 1000 pcm compared with de-
terministic results.

Finally, the direction-X current involved IGSC method appropriately met the highly
various heterogeneous media requirements but it is limited to a one-dimensional applica-
tion for the moment. The constraint comes from a common shortcoming of the Monte-
Carlo family as it was mentioned previously. Prospective studies about 2D current imple-
mentation work could be carried out in TRIPOLI-4r.



Part III

Leakage Model Development in
TRIPOLI-4r
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Chapter 9

History on neutron leakage model

Previous studies were focused to generate multi-group constants either with an infinite
flux spectrum or with naturally almost-critical flux-current spectra. A sub-assembly cal-
culation under a reflective or periodic boundary condition (cf. Chapter 6) is the primary
and simplest step of multi-group constants production work. This imposed approximation
on boundary conditions is more or less adequate for a thermal neutron reactor in which
the sub-assembly geometry size is much larger than the neutron mean free path length,
λ. Though, the same approximation is less available for fast neutron reactors which has
a sub-assembly size comparable with respect to λ of neutrons. In this case, the adjacent
sub-assemblies are more efficiently coupled among themselves. Thus, the neutron leakage
effect should be considered especially when dealing with fast neutron type sub-assemblies.

Two different approaches are investigated in this work to account for the neutron
leakage effect for each single assembly. The first one is a direct way which uses an almost-
critical geometry to ensure the included sub-assemblies criticality property. So natural
neutron leakage exists through the boundaries the neighbors of which are simply void.
This doing way has been explicitly developed in Chapter 7 and Chapter 8. Its most
remarkable advantage is the exploitation of intrinsic critical spectra without any approx-
imation. On the other hand, the critical geometry construction for every special case
is rather complicated and delicate. The second approach is to incorporate some leakage
model within sub-assembly calculation under reflective or periodic boundary conditions.
An artificial leakage rate is simulated mathematically to bring the sub-assembly from an
infinite state towards a critical state. The advantage of the leakage model is that it is
able to determine a critical state for the sub-assembly without knowledge of the exact
operating conditions and materials surrounding it.

Three different leakage models have been developed in the Monte-Carlo environment
thus far. The first one is based on the fundamental mode approximation which expresses
the angular flux distributed in a whole core by a product of two terms. One is the fun-
damental flux which could be repeated in each single sub-assembly. The other is the
macroscopic distribution form. This leakage model originates from deterministic lattice
calculation codes. It was introduced into the Korean Monte-Carlo code McCard at KAERI.
It was also used in the Finland Monte-Carlo code Serpent developed at VTT. An exper-
imental multi-group Monte-Carlo algorithm implemented in module MC: of lattice code
DRAGON5[71] has also exploited this fundamental mode approximation based leakage
model.
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The second leakage model is proposed by another Korean research team from KAIST[73].
The main idea of this method is to establish a critical spectrum via varying the reflection
probability noted as albedo for neutrons which hit the boundary limits. The albedo value
is solved as an eigenvalue problem by the MCNP5 simulation code. The critical flux even-
tually found in the related sub-assembly could be used to produce multi-group constants
or in a Monte-Carlo depletion code, such as MONTEBURNS[78].

The third leakage model is proposed by Yamamoto from Kyoto University[93]. This
method initially introduces complex-values as neutron simulation weights during continuous-
energy Monte-Carlo procedure. The leakage correction term used by Yamamoto is the
same as in the B1 method but solved as an eigenvalue problem. Compared with the first
two methods, the last idea of interpreting the neutron leakage rate is more appropriate
because every neutron has its own leakage probability during its random walk. On the
other hand, the two first leakage models assume that all the neutrons or the neutrons
in each macro energy group share the same escaping probability. Even though the last
leakage model has its own physical advantage, it is limited due to the application issue.
For example, it demands a symmetrical geometry in order to cancel the imaginary part of
the fission source.

A common point of the above Monte-Carlo codes that have certain leakage models
is that they aim to produce few-group constants to be then used in a diffusion theory
based core calculation code. So even if they succeed in obtaining a critical flux spectrum
thanks to their own leakage model as a weighting function to generate isotropic multi-group
cross sections, the challenging problem of appropriately producing multi-group diffusion
coefficients remains. The author would like to point out once again that the motivation of
this work is to produce multi-group constants for transport theory based core calculation
codes. Leakage model development is also within this framework. Since incorporating
a leakage model into TRIPOLI-4r is a totally unexplored field, the first methodology
chosen to be implemented in the TRIPOLI-4r code is the basic B1 leakage model. As
this method is popularly used in several continuous-energy Monte-Carlo codes, it could
be of help for the validation work. Even though the basic idea is the same as that used
in other codes (Serpent or McCard), some innovative techniques are adapted in our code.
In addition, an intensive validation work is proposed. Detailed development will follow in
Chapter 10.



Chapter 10

The B1 leakage model in
TRIPOLI-4r

This chapter focuses on the leakage model implemented in the TRIPOLI-4r code which
is based on B1 fundamental equations. In formulating this first part, all the necessary
information will be found in [6]. Thus, only a quick theory description will be provided.
It is followed by the section which shows the implemented algorithm. The greatest effort
is expended on the validation part.

10.1 Reviewing the B1 homogeneous equations

The solution of the transport equation applied to a homogeneous infinite multiplicative
geometry is defined as fundamental mode. The sub-assembly calculation is usually per-
formed under reflective or periodic boundary conditions. As a result, a leakage model
needs be introduced in the sub-assembly to enforce Keff = 1. In this context, the funda-
mental mode approximation is showing up which aims to represent the angular flux by a
combination of two terms. One is a fundamental flux ϕ(r, E, Ω̂) which is available within
every single assembly wherever its position. The other one noted as f(r) is contributed to
describe the spatial distribution in a whole core. Furthermore, f(r) is assumed to be the
solution of a Laplace equation which is characterized by the geometrical buckling value
B2:

∇2f(r) +B2f(r) = 0 (10.1)

A generic solution of the above equation is: f(r) = αeiB·r. In addition, the spatial
dependence in each sub-assembly is eliminated in the homogeneous situation. And finally,
the angular flux is expressed as:

φ(r, E, Ω̂) = ϕ(E, Ω̂)eiB·r (10.2)

where B: the buckling vector which satisfies that B ·B = B2.

After substituting this factorized flux into the continuous-energy Boltzmann equation
and with use of a linearly anisotropic collision approximation, the homogeneous B1 equa-
tion is obtained as seen below:

161
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[iΩ̂ ·B + Σt(E)]ϕ(E, Ω̂) =

∞∫
0

1

4π
{Σs0(E′ → E)ϕ(E′) + 3Σs1(E′ → E)Ω̂ · J(E′)}dE′

+
1

4πKeff

∞∫
0

χ(E′ → E)νΣf (E′)ϕ(E′)dE′ (10.3)

where J(E): the fundamental current which is based on the fundamental angular flux
as in Eq (10.4).

J(E) =

∫
4π

Ω̂ϕ(E, Ω̂)d2Ω (10.4)

In order to remove the direction dependence of both B and J, it is supposed to be true
that the current vector has the same direction as the buckling vector: BJ(E) = B · J(E).

From the point of view of the sub-assembly code, it is better to have direct access to
scalar flux for manipulation. Thus, two integration operations are proposed to Eq (10.3).
The first one is a simple integration over the whole solid angle. The second is the same

integration but after being weighted by a factor:
1

iΩ̂ ·B + Σt(E)
. Therefore, the two

scalar quantities involved B1 equations are listed as:

iBJ(E) + Σt(E)ϕ(E) =

∞∫
0

Σs0(E′ → E)ϕ(E′)dE′ +
1

Keff

∞∫
0

χ(E′ → E)νΣf (E′)ϕ(E′)dE′

(10.5)

iJ(E)

B
=

1

γ [B,Σt(E)] Σt(E)

1

3
ϕ(E) +

∞∫
0

Σs1(E′ → E)
iJ(E′)

B
dE′

 (10.6)

where γ [B,Σt(E)] is a newly introduced variable and defined as follows:

γ [B,Σt(E)] =



1

3

B
Σt(E) arctan B

Σt(E)

1− Σt(E)
B arctan B

Σt(E)

if B2 > 0

B2

3Σt(E)

ln Σt(E)+Im(B)
Σt(E)−Im(B)

2Im(B)− Σt(E) ln Σt(E)+Im(B)
Σt(E)−Im(B)

if B2 < 0

1 +
4

15
(

B

Σt(E)
)
2

− 12

175
(

B

Σt(E)
)
4

+ · · · if B2 ≈ 0

(10.7)

One remark should be made in order to ensure that iJ(E)/B always remains real and
finite when the buckling value approaches zero. In fact, J(E) could be a real or imaginary
number which depends on the homogeneous medium. If it is in super-critical state, J(E)
is imaginary and B is a positive number. If the medium is in sub-critical state, J(E) is
real and B is an imaginary number.
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Then, the diffusion coefficient according to Fick’s law is introduced as in Eq (10.8).

d(B,E) =
1

B

iJ(E)

ϕ(E)
(10.8)

Replacing the above diffusion coefficient in Eq (10.5) and Eq (10.6), another set of B1

equations could be rewritten as Eq (10.9) and Eq (10.10).

[
Σt(E) + d(B,E)B2

]
ϕ(E) =

∞∫
0

Σs0(E′ → E)ϕ(E′)dE′+
1

Keff

∞∫
0

χ(E′ → E)νΣf (E′)ϕ(E′)dE′

(10.9)

d(B,E) =
1

γ [B,Σt(E)] Σt(E)

1

3
+

∞∫
0

Σs1(E′ → E)d(B,E′)
ϕ(E′)

ϕ(E)
dE′

 (10.10)

With knowledge of the continuous-energy B1 homogeneous equations, their multi-
group forms could be easily obtained via energy collapsing. They are given in Eq (10.11)
and Eq (10.12) respectively.

Σt,gϕg + dgB
2ϕg =

G∑
g′=1

Σg′→g
s0 φg′ +

1

Keff

G∑
g′=1

χ(g′ → g)νΣf,g′ϕg′ (10.11)

dg =
1

Σt,gγg

1

3
+

G∑
g′=1

Σg′→g
s1

ϕg′

ϕg
dg′

 (10.12)

The definitions of multi-group constants are listed as below:

- ϕg: multi-group flux in group g

ϕg =

∫
E∈g

ϕ(E)dE (10.13)

- dg: multi-group diffusion coefficients in group g:

dg =
1

ϕg

∫
E∈g

d(B,E)ϕ(E)dE (10.14)

- γg: one approximation is used here to simplify the energy collapsing on γ which
supposes that:

γg ≈ γ(B,Σt,g) (10.15)

- Σi,g: one-dimensional multi-group cross section, for example: total collision, absorp-
tion, fission production.

Σi,g =

∫
E∈g

Σi(E)ϕ(E)∫
E∈g

ϕ(E)dE
(10.16)
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- Σg′→g
s0 : the 0th order moment of the multi-group scattering cross section

Σg′→g
s0 = (Σt,g′ − Σa,g′)× P (g′ → g) (10.17)

where P (g′ → g) is multi-group energy transfer probability.

- Σg′→g
s1 : the 1st order moment of multi-group scattering cross section

Σg′→g
s1 = Σg′→g

s0 × µg′→g (10.18)

where µg
′→g stands for the averaged scattering angle cosine value from group g′ to

g.

Please note that ϕg, dg, γg are the unknowns while other multi-group cross sections
are known which could be obtained from the TRIPOLI-4r point-wise simulation. The
detailed B1 equations resolving methodology will follow in the next section.

10.2 Algorithm implemented in TRIPOLI-4r

This section is specified to introduce the algorithm implemented in TRIPOLI-4r for solv-
ing the coupled B1 homogeneous equations (10.11) and (10.12). The fission power iteration
procedure is necessary to obtain the multi-group solutions. The iteration loops are sepa-
rated into two levels: the inner loop which is executed with a fixed B2 value in order to
get the converged multi-group flux ϕg and Keff; the outer loop which is designed to vary
the buckling value B2 according to the rule expressed in Eq (10.19) until Keff = 1.

B2
(n+1) = B2

(n) +

(
1

Kexp
eff

− 1

K
(n)
eff

)
νΣf

(n)

d
(n)

(10.19)

- (n): the index for the outer iteration loop;

- Kexp
eff : the expected multiplicative factor given by users;

- νΣf
(n)

: the nth loop converged flux weighted average production cross section, cal-
culated as in Eq (10.20).

νΣf
(n)

=

G∑
g=1

νΣf,gϕ
(n)
g

G∑
g=1

ϕ
(n)
g

(10.20)

- d
(n)

: the nth loop converged flux weighted average diffusion coefficient, calculated
as in Eq (10.21).

d
(n)

=

G∑
g=1

d
(n)
g ϕ

(n)
g

G∑
g=1

ϕ
(n)
g

(10.21)

In fact, Eq (10.19) is deduced from the one-group multiplicative factors relationship:

Keff =
K∞

1 +M2B2
(10.22)

where
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- K∞: the infinite multiplicative factor which can be obtained via mono-energy macro-
scopic cross sections:

K∞ =
νΣf

Σa
(10.23)

- M2: the migration area which is expressed as follows in one-group diffusion theory:

M2 =
D

Σa
(10.24)

After having inverted Eq (10.22), a linear relationship is obtained as in Eq (10.25).
Thanks to the latter, the rule according to which B2 is varied until the critical state is
reached.

δB2 =
νΣf

D
δ(

1

Keff
) (10.25)

A detailed calculation scheme is plotted in Figure 10.1. The left part represents the
point-wise TRIPOLI-4r simulation; while the right part stands for the routine in charge
of solving B1 homogeneous equations. Two bridges connect the left and right parts in the
algorithm scheme. The first one is the converged multi-group cross sections produced by
the point-wise TRIPOLI-4r simulation and will be used as known variables for solving B1

equations. The other is the solved leakage coefficients dgB
2 from B1 equations and will

be used in the point-wise TRIPOLI-4r simulation as a fictive cross section.

Some specific details need to be provided for the three criteria involved in the above
algorithm scheme. The first criterion is used to judge if the multi-group cross sections cal-
culated by the point-wise TRIPOLI-4r simulation are well converged. In order to avoid
the convergence problem for certain groups, defined batch numbers can be imposed by
users. For example, the cycle length used to obtain the results in section 10.3 are 4000
batches (10000 particles per batch) which explains the statistical deviations of the multi-
group total cross sections at the order of magnitude of 10−3% for the important energy
groups.

The second criterion is selected for the solution of B1 homogeneous equations. Since
the right half routine in Figure 10.1 is based on a deterministic method, the chosen con-
vergence criterion of the Keff value is rather strict. This means that |Keff − 1| < 0.00001.

The third criterion involves determining when the whole simulation procedure will be
ended. It depends on the point-wise TRIPOLI-4r simulated Keff value. The latter should
satisfy the condition as follows:∣∣Keff −Kexp

eff

∣∣ < 0.001 + 3σ (10.26)

where σ is related to the TRIPOLI-4r estimated Keff value and should be lower than 20
pcm. And 0.001 (100 pcm) stands for our convergence tolerance. This is a compromise
between simulation time and the precision of the calculated B2 value, because the routine
in charge of solving B1 equations has not yet been parallelized.

As presented in the previous section, buckling value B2 could be positive (super-critical
medium) or negative (sub-critical medium). Thus, different treatments should be provided
for each case.
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Figure 10.1: Leakage model algorithm in the TRIPOLI-4r code

1- if B2 > 0, the leakage coefficients dgB
2 are considered as multi-group fictive absorp-

tion cross sections. It could be treated by changing the neutron simulation weight
as in Eq (10.27). In this work, the correction factor is applied to each neutron sim-
ulation weight before doing the collision in the transport procedure. So for the first
cycle calculation where the leakage coefficients dgB

2 = 0, the corrective factor is
equal to 1.

ω′ = ω × Σt(r, E)

Σt(r, E) + dgB2
(10.27)

Doing things this-way is equivalent to the one proposed by Martin in his thesis
work[71]. Within the framework of the multi-group Monte-Carlo code DRAGON[42],
there is also a B1 leakage model which uses the calculated leakage coefficients dgB

2 to
estimate a leakage probability Pleak expressed in Eq (10.28). This leakage probability
will be used to determine whether the neutron will escape or stay in the geometry.

Pleak =
dgB

2

dgB2 + Σt,g
(10.28)
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Another point should be underlined is that as DRAGON is a multi-group Monte-
Carlo code, it is natural to match every group leakage coefficient dgB

2 with the
corresponding group total cross section Σt,g. However, it is different in the TRIPOLI-
4r case because the latter is a continuous-energy Monte-Carlo code. Therefore the
same multi-group leakage coefficient dgB

2 is used for all the neutrons whose incident
energy belongs to group g.

2- if B2 < 0, the leakage coefficient dgB
2 could be moved from the left disappear-

ance side to the right production side of the Boltzmann equation. Thus, it will be
considered as a multi-group fictive production cross section. For the moment, this
sub-critical case is not yet considered in the TRIPOLI-4r code because according
to the author’s opinion this negative situation is not really physically justified.

There is one deficiency associated with this algorithm which is not able to estimate
the statistical error for the critical buckling value B2. For each single simulation, only
one value of B2 is obtained. A prospective exists in parallelizing the routine of solving B1

equations.

10.3 Validation of the B1 leakage model

This section is devoted to validating the implemented leakage model in the TRIPOLI-4r

code. The validation for a Monte-Carlo concerned method is always difficult because the
method itself is usually assumed to be the reference compared to other deterministic codes.
There has not been a clear validation procedure so far. Here, we propose an analytical
case which will be ultimately termed as �numerical experiment� and is calculated with a
continuous-energy TRIPOLI-4r simulation. The latter consists of a one-dimensional ho-
mogeneous critical geometry. Thanks to its natural criticality, its flux spectrum, reaction
rates and produced multi-group cross sections will be used as references for those artificial
leakage models implemented in different codes namely, TRIPOLI-4r; Serpent and ECCO.

The validation work will be performed by using a homogeneous assembly from the Zero
Power Plutonium Reactor Double Column Fuel (ZPPRDCF)[87, 86, 52]. This configura-
tion represents an important leakage probability (42%) with its infinite multiplicative
factor Keff = 1.67. This feature makes the leakage treatment work more complicated.
Several parameters (B2, Dg, φg) calculated with the four methods mentioned above will
be compared respectively. To make sure the results are comparable with each other, the
same JEFF3.1.1 library with probability tables is used in different codes. At the end, the
multi-group cross sections produced by the leakage model in TRIPOLI-4r will be used
in core calculation codes: the TRIPOLI-4r multi-group simulation and PARIS/SNATCH
code system[33]. Their simulation results (Keff, neutronic balance) will also be compared
to the reference values from the numerical experiment.

10.3.1 Critical buckling value comparison

Calculating a critical buckling value is not difficult for the sub-assembly codes including
leakage models. However, the real challenge is to find out the reference value from a criti-
cal experiment. This question turns to figuring out the macroscopic distribution function
f(r) in Eq (10.1).
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Figure 10.2 illustrates the geometry of the above described critical experiment which
is numerically simulated. It is indeed an 1D homogeneous slab with a critical height H∗c .
With this 1D configuration, the macroscopic distribution function is simplified to f(z)
depending only on the direction of its height. Moreover, besides these two extremities,
there are two identical extrapolation distances d. Normally, the sum of these three parts
Hc = H∗c + 2d could help to deduce the critical buckling value according to Eq (10.29).
As a matter of fact, we have no information about calculating this extrapolation distance
exactly. However, it is certain that the macroscopic distribution form (the red curve in
Figure 10.2) respects a cosine function α cos(Bcz). This offers a possibility to obtain the
critical buckling Bc via doing a fit for the distribution function. Consequently, the last
point to verify is which physical variable is well presented by the macroscopic distribution
function f(z).

Bc =
π

Hc
(10.29)

Figure 10.2: Illustration of the geometry of the analytical case

Mostly, f(z) is considered as the scalar flux φ(z) integrated over the whole energy do-
main. This is perfectly valid only in the context of the fundamental mode approximation
applied over a global reactor featuring a periodic lattice of unit cell or sub-assemblies. As
for the nuclear reactor experimenters, they always use the macroscopic reaction rate (for
example: fission rate of 239Pu) to deduce the buckling value. The method is equal to using
the global energy scalar flux φ(z) as f(z).

Here, we seek a more precise expression of the distribution function in a real critical
homogeneous configuration as shown in Figure 10.2. The detailed formulation is given
in Appendix D. The deduction result shows that f(z) is in fact an inner product of two
fluxes described in Eq (10.30).

f(z) =

∞∫
0

ϕ+(E)φ(z, E)dE (10.30)

The definitions of these two fluxes are respectively:

- ϕ+(E): the adjoint fundamental flux in a critical homogeneous sub-assembly which
is independent of space.
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- φ(z, E): the direct flux in a critical core which is dependent on space and energy.

In our test, ϕ+(E) is calculated under 1968-groups by two different methods. One is the
newly developed functionality in the TRIPOLI-4r code which enables users to calculate
continuous energy adjoint flux with the Monte-Carlo method and then collapses them into
multi-group flux[26]. This could be considered as a reference method to calculate adjoint
flux although this new functionality cannot be used under the leakage model calculation
mode. So the only approximation used here is that we neglect the difference between
an infinite adjoint flux spectrum and a critical one. The other method of obtaining the
1968-groups adjoint flux is performed in two steps within the ERANOS code system. The
ECCO code is at first used to generate 1968-groups leakage-corrected cross sections as well
as the critical buckling value. A reflective homogeneous core is then calculated taking into
consideration the above critical buckling by BISTRO[43]. The latter is able to provide
the 1968-groups adjoint flux. As for the direct flux φ(z, E), it is easy to get it via the
continuous-energy TRIPOLI-4r simulation.

The two sets of adjoint fluxes are then used as microscopic cross sections in a contin-
uous energy TRIPOLI-4r simulation. The fictitious reaction rates representing f(z) are
scored in different position along the direction z. Finally, with knowledge of the distribu-
tion curve, we can deduce the corresponding buckling value with the help of a cosine fit.

Figure 10.3: a) Axial distribution of the TRIPOLI-4r calculated adjoint flux weighted
reaction rates b) Axial distribution of the ERANOS calculated adjoint flux weighted
reaction rates

The two curves obtained with the TRIPOLI-4r (left) and ERANOS (right) adjoint
flux are shown in Figure 10.3. The dots are the measured scores and the lines correspond
to their fitting curves. In the above figures, the statistical deviations are not plotted be-
cause the obtained results are quite well converged. Their relative deviations are limited
in the order of magnitude of 10−1%. The critical height of the homogeneous sub-assembly
ZPPR-DCF is at 51.4 cm. In order to ignore the edge impact, the cosine fit is done within
the region [−20; 20] cm. The results are presented in Table 10.1 which also contains the
critical buckling values calculated with the artificial leakage models in TRIPOLI-4r, Ser-
pent2.1.16 and the ECCO codes under 33-group energy structure.
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Numerical Experiment TRIPOLI-4r Serpent ECCO
curve a) curve b) ref

B2 (10−3 · cm−2) 2.854 2.869 2.812 2.807 2.747

Rel. diff (%) -0.52 —– -2.0 -2.2 -4.3

Table 10.1: Critical buckling comparisons among different leakage model codes and nu-
merical experiments.

In Table 10.1, the value extracted from curve b) is used as the reference one because the
1968-group adjoint flux calculated by TRIPOLI-4r is performed under infinite spectrum
conditions. A tiny difference of 0.52% is observed between the results of the two curves.
As for the results from the three leakage model codes, TRIPOLI-4r gave the closest value
with respect to the reference one. This is thanks to our iteration algorithm between
the point-wise Monte-Carlo simulation and the routine for solving the B1 homogeneous
equations. This procedure ensures a final critical state from the point of view of the
point-wise TRIPOLI-4r simulation. This means that in the TRIPOLI-4r leakage model,
critical flux weighted multi-group constants are used to solve the B1 equations; whereas
in Serpent, the multi-group constants are weighted by infinite flux spectrum. Another
reason explaining the difference between TRIPOLI-4r and Serpent results is their standard
deviations associated with the produced multi-group cross sections. In this fast spectrum
sub-assembly case, important uncertainties show up in the thermal groups which produce
some unreliable cross sections. Therefore, the discrepancies between low energy group cross
sections impact the deterministic solution of B1 equations. However in any case, these two
Monte-Carlo codes including the leakage models agree quite well for the calculated buckling
values. Otherwise, greater discrepancy (4.3%) is found between the ECCO calculation and
the reference value.

10.3.2 Comparisons of critical flux spectrum, Dg and leakage rate

Critical flux spectrum comparison

In Figure 10.4 ,we compare the critical flux spectra calculated with different leakage model
codes as well as the one extracted from the numerical experiment. No error bars are given
for the numerical experiment result because it is well converged and the standard devia-
tions are around 0.01%. These flux spectra are all normalized to achieve the condition:
G∑
g=1

φg = 1 where G = 33.

According to Figure 10.4 a), all the four curves overall have the same tendency which
proves that the leakage models in TRIPOLI-4r, Serpent and ECCO are able to reproduce
the form of a realistic critical flux spectrum. The gray zone plotted in Figure 10.4 b)
indicates the energy domain of interest, containing more than 95% of neutron production.

The relative differences between each leakage model result and the reference one within
the interesting energy domain are plotted in Figure 10.5. It can be seen that on the high
energy half part, the three leakage models have under-estimated the flux. And on the
left half part, the leakage models have on the contrary over-estimated the critical flux
compared with the numerical experiment result.
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Figure 10.4: Normalized critical flux spectra comparison

Figure 10.5: Relative difference between leakage model simulated critical flux spectra with
the reference one from numerical experiment

Diffusion coefficient comparison

Obtaining the diffusion coefficient is not our original goal because transport core calcu-
lations will be fed with our produced multi-group cross sections, rather than a diffusion
core calculation. However, we could always compare the obtained diffusion coefficients
from different codes in order to evaluate the artificial leakage rates with respect to the real
leakage terms from the numerical experiment.

Figure 10.6 a) shows the 33-group diffusion coefficients obtained respectively with
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the TRIPOLI-4r continuous-energy calculation (TRIPOLI PCT trans), the TRIPOLI-
4r leakage model (TRIPOLI MF), the Serpent and ECCO calculations. Please note that
the TRIPOLI PCT trans result is obtained by using the P1 approximation formula:

Dg =
1

3Σtr,g
=

1

3
(
Σt,g − µgΣs,g

) (10.31)

with Σt,g, Σs,g, and µg obtained with the Monte-Carlo simulation. The three leakage
models make use of the B1 approximation. Therefore, it is normal that the red curve differ
a bit from the others.

Figure 10.6: Diffusion coefficient comparison

From Figure 10.6 a), a similar tendency is shown by the three leakage model curves.
However, there are some important discrepancies in the epithermal energy domain (1eV
∼ 100 eV) which come from poor statistical scores and do not retain our interest.

The gray zone attracts more attention for the same reason as for the above critical
flux spectrum and so it is specially plotted in Figure 10.6 b). We can see that the leakage
model curves agree rather well among themselves even with the P1 transport approxima-
tion calculation. The relative difference between the Serpent/ECCO and TRIPOLI-4r

calculated diffusion coefficients are shown in Figure 10.7. It proves that a very satisfac-
tory agreement is found between the Serpent and TRIPOLI-4r leakage models. Larger
discrepancies are revealed between ECCO and TRIPOLI-4r results.

Leakage rate comparison

Previously, we focused on comparing every single parameter calculated from leakage mod-
els. However, the physical motivation of leakage models consist in trying to simulate
artificially the approximated leakage rates (dgB

2φg) in an appropriate manner. In order
to verify the reliability of our implemented leakage model, we shall compare the simulated
leakage rates to the real one which is the score of neutrons traveling through the boundary
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Figure 10.7: Relative difference of diffusion coefficients between Serpent/ECCO and the
TRIPOLI-4 leakage model calculations

surface in the numerical experiment.

In Figure 10.8, the discrepancies of leakage rates between the three leakage models
and the numerical experiment are plotted versus energy groups. It could be observed that
for all 3 leakage model codes, there is a compensation effect between the higher energy
part (over-estimated leakage) and the lower energy part (under-estimated leakage). The
absolute discrepancies in each group are less than 0.005. This effect comes from the
intrinsic approximation of the B1 fundamental mode which assumes that the neutron
spectrum is not dependent on spatial position within the sub-assembly. This is not the
case in a real sub-assembly where the neutron spectrum is harder on the edge than in the
center where the fundamental mode approximation is more suitable. Thus, there are less
fast neutrons escaping on the edge of a real geometry. This explanation matches well with
the over-estimation peak around 2 MeV.

10.3.3 Application of leakage-corrected cross sections in core calculation

In this section, we return back to the original motivation of this work: performing core
calculations with the leakage-corrected multi-group cross sections. These constants can be
used directly in a Monte-Carlo based TRIPOLI-4r multi-group calculation or converted
to a compatible format and then used in an Sn method based PARIS[33] calculation.
The obtained multiplicative factors and their discrepancies compared with the numerical
experimental reference value are shown in Table 10.2. Through ∆Keff values and their
corresponding standard deviations, consistent results are found between the two transport
core calculation codes by using the same TRIPOLI-4r leakage model produced multi-
group constants. Compared to the reference Keff, they both under-estimated about 300
pcm using these multi-group constants produced from the TRIPOLI-4r leakage model.
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Figure 10.8: Leakage rates comparison

Meanwhile, another set of multi-group cross sections are directly produced with the
critical experiment geometry and they are considered as reference multi-group constants
and used in the same core codes. Their Keff results are shown in Table 10.3. So if we
compare the Keff values in Table 10.2 and Table 10.3 vertically, a good agreement is
deduced between our leakage model produced multi-group constants and those directly
generated from critical geometry. It can be observed that both sets of multi-group con-
stants show the same order of magnitude of discrepancies compared to the reference Keff

value. This assures us that the newly implemented leakage model in TRIPOLI-4r is per-
tinent. It must be emphasized that all the multi-group constants used in core calculations
are always treated with the IGSC method (using the Todorova current) to guarantee their
adequate performance in core calculations. Moreover, the multi-group scattering matrix
used in PARIS calculations (both Table 10.2 and Table 10.3) are limited to the fifth order
(P5

1)

Numerical Experiment TRIPOLI-4r MG PARIS (P5)

Keff 0.99923± 0.00005 0.99657± 0.00012 0.99574

∆Keff —– −0.00266± 0.00013 −0.00349± 0.00005

Table 10.2: Comparison of Keff values in multi-group TRIPOLI-4r and PARIS calcula-
tions with use of 33-group cross sections produced by the TRIPOLI4r leakage model

Furthermore, detailed analysis is done for the flux spectrum and neutronic balance.
Figure 10.9 a) shows the normalized flux spectra from the multi-group TRIPOLI-4r

(T4 LM HMG) and PARIS (T4 LM PARIS) simulations. Both of them use the multi-

1In TRIPOLI-4r calculation of anisotropy moments which will be used to construct the scattering cross
sections for PARIS simulation, the IGSC method is only applied to first order moment.
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Numerical Experiment TRIPOLI-4r MG PARIS (P5)

Keff 0.99923± 0.00005 0.99685± 0.00012 0.99581

∆Keff —– −0.00238± 0.00013 −0.00342± 0.00005

Table 10.3: Comparison of Keff values in multi-group TRIPOLI-4r and PARIS calcula-
tions with use of 33-group cross sections produced with critical experiment geometry

group constants produced by the leakage model in TRIPOLI-4r. The reference numerical
experiment flux spectrum (point-wise reference) is shown as well. Overall, these three
spectra are well superimposed.

Figure 10.9: Critical flux spectra comparisons

In addition to this, the relative differences between multi-group TRIPOLI-4r or PARIS
calculated flux spectra and the reference spectrum are plotted in Figure 10.9 b). It must
be pointed out that Figure 10.9 b) covers partially the energy domain which contains 98%
of the fission production rate. It has been seen that their relative differences are quite tiny
which are less than 0.5%. This satisfying result confirms that the multi-group constants
produced by the TRIPOLI-4r leakage model are suitable to be used in core simulation
codes to reproduce consistent flux spectra.

Figure 10.10 shows the reaction rate discrepancies. Part a) illustrates the differences
of production rates, absorption rates and leakage rates between multi-group and point-
wise TRIPOLI-4r simulations. Part b) presents the differences of production rates and
absorption rates between PARIS (using TRIPOLI-4r leakage model produced 33-group
constants) and point-wise TRIPOLI-4r simulations. Both of them show that the 33-group
constants produced by the TRIPOLI-4r leakage model have mostly under-estimated the
production rate as well as the absorption rate. The oxygen resonance peak located at
400 keV induced about -50 pcm of production. Another resonance peak situated around
130 keV is probably from the structure isotope (56Fe; 52Cr). There is a deficiency in the
PARIS calculation that does not offer us the possibility of obtaining exact neutron leakage
rate. Therefore, the leakage rate comparison is only available in Figure 10.10 a). It is
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Figure 10.10: a): Reaction rates comparisons between multi-group and point-wise
TRIPOLI-4r simulations; b): Reaction rates comparisons between the PARIS and point-
wise TRIPOLI-4r simulations

normal to find a under-estimation tendency for production rate since the leakage rate is on
the contrary over-estimated. However, the discrepancies compared to reference reaction
rates are less than 60 pcm in any group.

In addition to this, we would like to compare our produced leakage-corrected multi-
group constants with those from the ECCO code. The basic idea is using them in the
PARIS calculation. In Table 10.4, results from the ECCO-PARIS and TRIPOLI-4r-
PARIS calculations are respectively compared with the reference one. Here, the scattering
matrix produced by both TRIPOLI-4r and ECCO are limited to l = 1. It could be con-
cluded from Table 10.4 that similar estimations of Keff are obtained between using the
TRIPOLI-4r and ECCO leakage models produced multi-group constants.

Numerical Experiment TRIPOLI-4r-PARIS (P1) ECCO-PARIS (P1)

Keff 0.99923± 0.00005 0.99440 0.99447

∆Keff —– −0.00483± 0.00005 −0.00476± 0.00005

Table 10.4: Comparison of Keff values with use of the ECCO and TRIPOLI-4r leakage
model produced 33-group cross sections in PARIS calculations

In order to better understand where the difference of Keff comes from, we compare
respectively the production rates from TRIPOLI-4r-PARIS and ECCO-PARIS simula-
tions to the reference one from the numerical experiment in Figure 10.11. Generally, the
two simulations have both under-estimated the production rate which is consistent with
the multi-group TRIPOLI-4r simulation. However, the ECCO-PARIS calculation showed
more discrepancies than the TRIPOLI-4r-PARIS simulation in the high energy domain
and behaved similarly in lower energy domain.

At the end of this subsection, analysis work is carried out on the fission rate distribution
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Figure 10.11: Production rate comparison between PARIS (using respectively TRIPOLI-
4r leakage model and ECCO produced 33-groups constants) and referential point-wise
TRIPOLI-4r simulations

in the 1D critical geometry. The point-wise TRIPOLI-4r simulation provides the reference
values which are plotted in Figure 10.12a). It shows clearly that the central part of
the core contributes the most important fission reactions. Comparisons are then made
between the PARIS simulations results and the previous reference result. It should be
noted that three different sets of multi-group constants are used which are namely: the
33-group constants produced by TRIPOLI-4r for the critical geometry (Figure 10.12b));
the 33-group constants produced by the TRIPOLI-4r leakage model (Figure 10.12c));
the 33-group constants produced by ECCO (Figure 10.12d)). All the discrepancy values
are expressed in units of pcm. If we take a vertical look at these three figures, it can
be seen that their discrepancies are gradually enforced from the natural leakage case to
the TRIPOLI-4r leakage model and then to the ECCO leakage model. However, the
discrepancies using these three sets of multi-group constants in the PARIS calculation
compared to the reference case are quite small and no more than 10 pcm per cm in the
whole region.

10.3.4 Impact of leakage model

Before ending the leakage model validation work, it is of interest to show its impact on a
core calculation, especially when considering the calculations using infinite flux spectrum
weighted multi-group constants. This subsection focuses on comparing three important
physical parameters: flux spectrum, effective multiplicative factor and fission production
rate.
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Figure 10.12: a): Reference fission rate spatial distribution; b): Discrepancy of fission rate
spatial distribution between PARIS (using 33-group constants produced by TRIPOLI-4r

for the critical geometry) and reference calculations; c): Discrepancy of fission rate spa-
tial distribution between PARIS(P5) (using 33-group constants produced by TRIPOLI-4r

leakage model) and reference calculations; d): Discrepancy of fission rate spatial distribu-
tion between PARIS(P1) (using 33-groups constants produced by ECCO) and reference
calculations

Flux spectrum comparison

First, we shall compare the difference between the infinite flux spectrum and critical one.
They are plotted in Figure 10.13a) with red and blue curves respectively. We must specify
that both of them come from point-wise TRIPOLI-4r simulations. The infinite spectrum
is obtained under reflective boundary conditions while the critical spectrum is obtained
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via the leakage model in the TRIPOLI-4r code. No statistical errors are shown in figures
because they are well converged. In the important energy groups, the relative deviations
are in the order of magnitude of 10−2%. It can be observed that the critical flux spectrum
is harder than the infinite one. This is totally reasonable because, in infinite geometry,
neutrons could be more easily slowed-down rather than directly escape from the geometry
as in the critical case. Their relative difference is plotted in Figure 10.13b). It again shows
the visible discrepancies between infinite and critical flux spectra.

Figure 10.13: a): Comparison between infinite flux spectrum and critical flux spectrum of
ZPPR-DCF homogeneous sub-assembly from the TRIPOLI-4r simulations; b): Relative
difference between infinite and critical flux spectra

Keff & Production rate comparisons

Previously, it was shown that the leakage model produced multi-group constants are able
to preserve the Keff value quite well and also the neutronic balance. Here, we shall use
the multi-group constants produced without using any leakage model and verify their be-
havior in core simulation code. With this aim, multi-group constants are generated by
TRIPOLI-4r (no leakage model option) with and without use of the IGSC method. The
two sets of cross sections are then used in multi-group TRIPOLI-4r simulations. The Keff

values are given in Table 10.5.

Reference multi-group TRIPOLI-4r ∆Keff (pcm)

infinite spectrum
IGSC

0.99921± 0.00005
0.99092± 0.00013 −831± 13

no-IGSC 1.00197± 0.00012 276± 13
critical spectrum IGSC 0.99687± 0.00012 −266± 13

Table 10.5: Comparison of Keff values between with and without use of TRIPOLI-4r

leakage model produced 33-group cross sections in multi-group TRIPOLI-4r calculations

According to Table 10.5, we can tell that the multi-group constants produced by
TRIPOLI-4r with infinite spectrum but always with IGSC method results in an under-
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estimated Keff. Its discrepancy compared to the reference value has been degraded. Oth-
erwise, if neither the leakage model nor the IGSC technique are exploited for multi-group
constant production work, the multi-group TRIPOLI-4r calculated Keff value is quite
satisfactory. This �good� result is unexpected and surprising. In order to make sure that
there is no hidden effect, we continue to analyze the neutronic balance. Figure 10.14 shows
the production rate discrepancies between multi-group and point-wise TRIPOLI-4r sim-
ulations respectively under 33-group and 6-group energy structures.

Figure 10.14: a): Production rate discrepancies between 33-groups and point-wise
TRIPOLI-4r simulations; b): Production rate discrepancies between 6-groups and point-
wise TRIPOLI-4r simulations

From both 33-group and 6-group case, it can be seen with infinite spectrum weighted
multi-group constants, that an important compensation effect between higher energy and
lower energy groups (red curves) exists. This means that even the rather �good� mul-
tiplicative factor is obtained with core simulation but we could not really trust these
multi-group constants. On the contrary, the production rate discrepancies calculated with
critical spectrum (with the IGSC method) are much more reasonable and there is no vis-
ible compensation effect between energy groups. Finally, it proves that critical spectrum
is necessary for multi-group constants production work, especially for fast neutron reactor
type sub-assembly calculations. Incidentally, the IGSC method is indispensable in order
to take the anisotropy effect into account.
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Conclusion

A B1 homogeneous equation based leakage model has been implemented in the continuous-
energy Monte-Carlo code TRIPOLI-4r. This leakage model makes use of the Monte-Carlo
method generated multi-group cross sections to solve B1 equations in order to get few-
group leakage coefficients. The innovative point of our method is that these few-group
leakage coefficients are re-used in a continuous-energy Monte-Carlo simulation iteratively
with coupling of the solving of B1 equations until reaching a critical state according to
the Monte-Carlo point-wise simulation. Meanwhile, the multi-group constants produced
can be used in the transport theory based core calculation code PARIS.

An intensive validation work is performed using a critical geometry based numeri-
cal experiment as a reference case. In particular, a high leakage probability (∼ 42%)
sub-assembly geometry is tested. Various leakage characteristic parameters are compared
between our leakage model calculations and those from Serpent2.1.16 and ECCO. Overall,
there is a good agreement among the three leakage model codes as well as the numerical
experiment case. However, a methodology flaw is revealed while comparing the leak-
age model simulated multi-group leakage rates with the realistic referential ones. This
non-completely consistent phenomenon is related to the intrinsic approximation from the
fundamental mode. In order to be able to answer this question, a more physically represen-
tative leakage model needs be investigated and this will be introduced in the perspective
chapter.
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General Conclusion

The objective of this work was to produce multi-group cross sections with the Monte-
Carlo code TRIPOLI-4r and use these generated multi-group constants in transport the-
ory based deterministic core simulation codes. This document summarizes the work which
has been performed to develop and validate the associated functionalities in the TRIPOLI-
4r code.

At the beginning of this document, existing work is presented recalling the energy
condensation and spatial homogenization methods used in different deterministic codes.
In addition, a summary is given on the existing Monte-Carlo codes having the capacity
to produce homogenized multi-group cross sections. The intrinsic differences between de-
terministic and Monte-Carlo approaches (e.g. easy access to the moments of flux or cross
sections in deterministic method but hardly available in Monte-Carlo method) determine
that we cannot easily adopt the deterministic way in TRIPOLI-4r code. As for other
Monte-Carlo codes which can generate homogenized multi-group cross sections, they are
mostly focused on supplying their produced multi-group constants to some diffusion the-
ory based deterministic codes. However, we aim to use here these produced multi-group
constants in transport theory based calculation codes. The fact that we have different
objective leaves us in a situation where some new and undiscovered difficulties would come
up. Thereby, it should be reminded that the goal is not to directly copy these deterministic
or Monte-Carlo methods in our development work but rather use them in comparison of
results and validation work.

As pointed out by Hébert in his Ph.D. work[49], the neutronic balance should be ex-
actly preserved in a homogeneous infinite lattice calculation, especially during the passage
from fine-group to few-group energy collapsing. The latter inspires us to verify whether
the existing homogenization and condensation routines in TRIPOLI-4r code are capable
to answer this criterion. It was found irrelevant to preserve the neutronic balance while
performing a homogeneous infinite lattice calculation. The latter required a thorough
and rigorous verification of the whole algorithm concerning the homogenization and con-
densation functionalities. Graceful to this work, it was proved that the problems lay in
the estimations of the following multi-group parameters: the energy transfer probability
matrix, the excess weight and the fission spectrum. Therefore, new Monte-Carlo estima-
tors of the above variables were developed and implemented in TRIPOLI-4r code. Their
validation work was at first done by comparing the produced multi-group constants re-
spectively from ECCO and the updated TRIPOLI-4r code. Secondly, the TRIPOLI-4r

produced multi-group constants were used in Monte-Carlo multi-group simulations which
give several important outputs: the flux spectrum, the K∞ values and the reaction rates.
These multi-group calculation results were then compared with those from continuous-
energy simulations and confirmed the conservation theory mentioned previously.
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After having been assured of the good performance of the TRIPOLI-4r code in homo-
geneous infinite lattice calculation, the research work was continued towards some finite
lattice geometries. For the latter case, special attention should be paid on the anisotropy
effect which is induced by the leakage of neutrons. This multi-group anisotropy represen-
tation is always a challenging issue for neutronic physicists. In this work, a new technique,
in-group scattering correction (IGSC), was developed to modify the naturally TRIPOLI-
4r produced in-group scattering anisotropy matrix in order to better preserve the neu-
tronic balance. For doing this, a volumetric current quantity is required as a weighting
function which makes the remarkable difference compared to the conventional scalar flux.
Being a Monte-Carlo code, TRIPOLI-4r is limited to calculate an exact volumetric current
owing to the cancelation of negative and positive quantities. The first current developed in
Chapter 7 is termed �Todorova’s current� which is strongly based on the approximation:
the flux gradient spectrum is proportional to the flux spectrum. With use of Todorova’s
current corrected in-group scattering anisotropy matrix, consistent results (flux spectra,
neutronic balance, Keff) were obtained between multi-group and point-wise TRIPOLI-4r

simulations for homogeneous finite and even for several heterogeneous finite geometries.
However, great discrepancies showed up while handling highly heterogeneous geometry
case. This made us to look deeply inside the heterogeneity problem and finally figured
out a solution which proposes a new calculation method of the volumetric current for one-
dimensional geometries. The second current developed in Chapter 8 is termed �direction-X
current� which represents an accurate one-dimensional current adapted to our hand-made
1D highly heterogeneous geometry. The results calculated by using direction-X current
showed important improvement compared to the previous Todorova’s current calculation
results. And it proves that the IGSC technique, in addition with an exact current esti-
mation, plays a key factor in the energy condensation and spatial homogenization work,
especially for a highly heterogeneous geometry. This methodology is finally applied to a
fuel-reflector case and it confirms again that it can improve greatly the estimation of the
Keff value as well as the associated current and flux quantities.

The direction-X current seems very powerful and reliable to treat highly heterogeneous
geometries, and is even capable of handling the fuel-reflector issue. However, this current
is limited to a one-dimensional geometry. In future work, it could be extended to two-
dimensions. To achieve this, at first, a favorite escaping direction should be decided for
each neutron at any position. This direction could be chosen by linking the central point
of the geometry and the actual position of the neutron. This way of doing things helps
to find the most probable direction for neutrons to escape from the system. Then, the
current quantity associated to this neutron could be projected on this direction in order
to obtain the desired 2D current quantity.

Another approach to account the neutron leakage effect is through an artificial leak-
age model. The latter constitutes the last part of this document. After comparing the
leakage models existing in various Monte-Carlo codes, it was the one based on the B1

homogeneous equations which was chosen to be implemented in TRIPOLI-4r code. The
innovative points revealed from our leakage model are that: 1), it takes use of critical
spectrum weighted cross sections to solve the B1 homogeneous equations; 2), the solved
multi-group leakage coefficients are then taken account in the continuous-energy Monte-
Carlo simulation which helps to establish a critical state from the Monte-Carlo point of
view; 3), the continuous-energy TRIPOLI-4r simulation is coupled with the routine in
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charge of solving the B1 homogeneous equations until reaching the expected criticality. To
be mentioned that, the leakage model produced multi-group constants are always treated
with the IGSC techniques developed previously. A rigorous validation work of this leakage
model is performed with use of a critical geometry based numerical experiment as refer-
ence case. A particularly high leakage probability (∼ 42%) sub-assembly geometry, ZPPR-
DCF, is used. First of all, various characteristic leakage parameters (Dg, B

2, leakage rate)
were compared between our leakage model to those from Serpent2.1.16 and ECCO codes.
Globally, there is a very good agreement among these three leakage model codes as well as
with the numerical experiment case. Moreover, the TRIPOLI-4r leakage model produced
multi-group constants were used in multi-group TRIPOLI-4r and PARIS[33] calculations
which corresponded to the initial motivation of this work. Both Monte-Carlo and deter-
ministic transport core calculations produced consistent results compared to those of the
numerical experiment simulated under continuous-energy TRIPOLI-4r condition. It was
shown that using TRIPOLI-4r leakage model produced multi-group constants in PARIS
simulation could have better estimations of Keff and neutronic balance than using ECCO
produced multi-group constants. Finally, the impact of a leakage model in a fast reac-
tor type sub-assembly calculation was revealed originally by this work. With help of the
same geometry as previously used, we prove that critical spectra weighted multi-group
constants are indispensable to preserve exactly the neutronic balance. Without use of
leakage model nor the IGSC technique produced multi-group constants could also esti-
mate a �satisfactory but trapping� Keff value since the neutronic balance was not at all
preserved with this latter way of doing things.

Even though our implemented B1 homogeneous equation based leakage model is effi-
cient to produce appropriate multi-group constants for transport core simulation codes,
there exist still some limitations related to the fundamental mode approximation. As
shown in Figure 10.8, the leakage rates estimated by the B1 leakage model are only pre-
served in the total quantity but not in every energy group quantity. This is because that
the fundamental mode approximation is suitable especially in an homogeneous and infinite
geometry. But in a realistic finite core geometry, the spectrum of flux is harder at the
edge than in the center. Thus, more fast neutrons escape from the geometry than lower
energy neutrons. This is why we observed a compensation effect between high energy
groups and lower ones (Figure 10.8). To improve this fundamental mode approximation,
some other leakage models could be continued to be investigated in the future. A possible
way is to combine the fundamental mode approximation leakage model with the albedo
leakage model. That is to say, the group-wise leakage quantity per volume dgB

2φg could
be converted to the neutron quantity per surface hitting on the boundary of the geome-
try (1 − αg)J+. The relationship could help to determine the group-wise albedo leakage
parameter which respects the physical aspect better.

This document comes to an end with some general comments. First of all, the Monte-
Carlo methodology shows clearly the advantages in the sub-assembly calculation step com-
pared to the conventional deterministic way, principally for the problems of self-shielding,
anisotropy data and complex geometry. This makes the Monte-Carlo method produced
multi-group cross sections to be used as a robust tool contributing to validate and analyze
the deterministic sub-assembly calculation codes. The calculation routines developed dur-
ing this thesis could serve in the French fast reactor prototype ASTRID analysis. However,
the Monte-Carlo method is a computing-intensive technique which is not really compati-
ble with the industrial calculation criteria. Therefore, future development concerning the
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parallelization remains an interesting mission for Monte-Carlo method based multi-group
cross section production work.



Appendix A

Atomic Concentration of Tested
Homogeneous Sub-assemblies

nuclide ×10
-24
.cm

-3 nuclide ×10
-24
.cm

-3

C12 1.065E-03 C12 1.048E-03
SI28 1.651E-04 SI28 1.526E-04
SI29 8.380E-06 SI29 7.750E-06
SI30 5.530E-06 SI30 5.110E-06
CR50 1.361E-04 CR50 1.240E-04
CR52 2.625E-03 CR52 2.391E-03
CR53 2.977E-04 CR53 2.711E-04
CR54 7.409E-05 CR54 6.749E-05
MN55 2.658E-04 MN55 2.417E-04
FE54 8.490E-04 FE54 6.971E-04
FE56 1.333E-02 FE56 1.094E-02
FE57 3.078E-04 FE57 2.527E-04
FE58 4.096E-05 FE58 3.363E-05
NI58 9.527E-04 NI58 8.570E-04
NI60 3.670E-04 NI60 3.301E-04
NI61 1.595E-05 NI61 1.435E-05
NI62 5.086E-05 NI62 4.575E-05
NI64 1.295E-05 NI64 1.165E-05
MO92 6.917E-05 MO92 3.566E-05
MO94 4.312E-05 MO94 2.223E-05
MO95 7.421E-05 MO95 3.825E-05
MO96 7.775E-05 MO96 4.008E-05
MO97 4.451E-05 MO97 2.295E-05
MO98 1.125E-04 MO98 5.798E-05
MO100 4.489E-05 MO100 2.314E-05
CU63 3.072E-05 CU63 2.957E-05
CU65 1.369E-05 CU65 1.318E-05
N14 1.700E-06 N14 1.700E-06
O16 7.568E-03 O16 1.446E-02
U235 1.482E-05 U235 1.819E-05
U238 6.669E-03 U238 8.252E-03
PU239 1.772E-03 H1 9.310E-06
PU240 2.347E-04 NA23 8.715E-03
PU241 2.074E-05 PU239 8.880E-04
PU242 4.580E-06 PU240 1.176E-04
AM241 1.434E-05 PU241 1.090E-05
NA23 8.805E-03 PU242 2.480E-06
H1 9.540E-06 AM241 7.210E-06
AL27 5.820E-06 AL27 4.600E-06

ZPPRDCF ZPPRSCF
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nuclide ×10
-24
.cm

-3 nuclide ×10
-24
.cm

-3

U234 6.860E-08 O16 1.683E-02
O16 1.656E-02 U235 3.767E-05
U235 3.552E-05 U238 7.115E-03
U236 6.802E-08 NP237 2.665E-08
U238 6.709E-03 PU238 5.210E-06
NP237 3.229E-08 PU239 9.184E-04
PU238 7.346E-06 PU240 3.069E-04
PU239 1.127E-03 PU241 5.837E-05
PU240 3.600E-04 PU242 2.262E-05
PU241 7.445E-05 AM241 2.088E-05
PU242 2.837E-05 NA23 8.732E-03
AM241 1.782E-05 SI28 2.122E-04
SI28 2.122E-04 SI29 1.077E-05
SI29 1.077E-05 SI30 7.101E-06
SI30 7.102E-06 TI46 8.098E-06
TI46 8.099E-06 TI47 7.303E-06
TI47 7.304E-06 TI48 7.236E-05
TI48 7.237E-05 TI49 5.310E-06
TI49 5.311E-06 TI50 5.085E-06
TI50 5.085E-06 CR50 1.669E-04
CR50 1.669E-04 CR52 3.218E-03
CR52 3.218E-03 CR53 3.649E-04
CR53 3.649E-04 CR54 9.083E-05
CR54 9.084E-05 MN55 3.207E-04
MN55 3.208E-04 FE54 7.801E-04
FE54 7.802E-04 FE56 1.225E-02
FE56 1.225E-02 FE57 2.828E-04
FE57 2.828E-04 FE58 3.764E-05
FE58 3.764E-05 NI58 1.907E-03
NI58 1.908E-03 NI60 7.347E-04
NI60 7.348E-04 NI61 3.194E-05
NI61 3.194E-05 NI62 1.018E-04
NI62 1.018E-04 NI64 2.593E-05
NI64 2.594E-05 MO92 4.997E-05
MO92 4.998E-05 MO94 3.115E-05
MO94 3.115E-05 MO95 5.361E-05
MO95 5.361E-05 MO96 5.617E-05
MO96 5.617E-05 MO97 3.216E-05
MO97 3.216E-05 MO98 8.125E-05
MO98 8.126E-05 MO100 3.243E-05
MO100 3.243E-05 CU63 4.475E-05
CU63 4.476E-05 CU65 1.995E-05
CU65 1.995E-05
NA23 8.409E-03

SPX2 SPX1
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nuclide ×10
-24
.cm

-3 nuclide ×10
-24
.cm

-3 nuclide ×10
-24
.cm

-3

C12 5.646E-02 O16 1.432E-02 MO95 2.560E-06
FE54 2.248E-04 U235 1.745E-05 MO96 2.680E-06
FE58 1.085E-05 U236 6.300E-07 MO97 1.540E-06
CR53 1.029E-04 U238 5.237E-03 MO98 3.880E-06
NI60 2.179E-04 PU238 3.440E-06 MO100 1.550E-06
NI64 7.707E-06 PU239 1.522E-03 NA23 9.326E-03
CU63 4.150E-07 PU240 3.689E-04 CO59 8.080E-06
SI29 1.786E-06 PU241 2.581E-05 W182 3.700E-07
CO59 5.427E-06 PU242 1.329E-05 W183 2.000E-07
FE56 3.529E-03 AM241 5.175E-05 W184 4.400E-07
CR50 4.704E-05 K39 4.800E-07 W186 4.100E-07
CR54 2.560E-05 FE54 4.198E-04 NB93 8.400E-07
NI61 9.470E-06 FE56 4.634E-03 TI46 5.500E-07
CU65 1.850E-07 FE57 1.494E-04 H1 1.240E-06
SI30 1.177E-06 FE58 1.992E-05
FE57 8.224E-05 CR50 8.476E-05
CR52 9.070E-04 CR52 1.635E-03
NI58 5.656E-04 CR53 1.853E-04
NI62 3.020E-05 CR54 4.614E-05
SI28 3.537E-05 NI58 6.565E-04
MN55 4.748E-05 NI60 2.529E-04
B11 1.010E-07 NI61 1.099E-05
H1 6.335E-06 NI62 3.504E-05
MO100 1.495E-06 NI64 8.930E-06
MO92 2.304E-06 AL27 4.300E-07
MO94 1.436E-06 C12 2.755E-05
MO95 2.472E-06 N14 3.130E-06
MO96 2.590E-06 CU63 2.140E-06
MO97 1.483E-06 CU65 9.500E-07
MO98 3.746E-06 SI28 9.379E-05
NB93 8.440E-07 SI29 4.760E-06
TI46 1.494E-06 SI30 3.120E-06
W182 3.770E-07 CA40 2.730E-06
W183 2.040E-07 MN55 1.252E-04
W184 4.360E-07 P31 1.140E-06
W186 4.050E-07 S32 1.820E-06
U235 2.514E-03 MO92 2.390E-06
U238 5.792E-03 MO94 1.490E-06

MAS1B ZONA2
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Appendix B

Energy Structures Used in
TRIPOLI-4r

1.96E+01 1.00E+01 6.07E+00 3.68E+00 2.23E+00 1.35E+00 8.21E-01
4.98E-01 3.02E-01 1.83E-01 1.11E-01 6.74E-02 4.09E-02 2.48E-02
1.50E-02 9.12E-03 5.53E-03 3.35E-03 2.03E-03 1.23E-03 7.49E-04
4.54E-04 3.04E-04 1.49E-04 9.17E-05 6.79E-05 4.02E-05 2.26E-05
1.37E-05 8.32E-06 4.00E-06 5.40E-07 1.00E-07 1.00E-11

1.96E+01 2.23E+00 4.98E-01 4.09E-02 9.12E-03 4.54E-04 1.00E-11

33-group energy structure limits

6-group energy structure limits
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Appendix C

Spatial homogenization
illustration of SuperPhénix core
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Appendix D

Fundamental Mode in the Center
of a Homogeneous Core

In the central part of a homogeneous assembly geometry, the diffusion equation are written
in both direct and adjoint forms:

D(E)∇2Φ(r, E)−Σt(E)Φ(r, E)+

∫ ∞
0

dE′Σs(E
′ → E)Φ(r, E′)+χ(E)

∫ ∞
0

dE′νΣf (E′)Φ(r, E′) = 0

(D.1)

D(E)∇2Φ+(r, E)−Σt(E)Φ+(r, E)+

∫ ∞
0

dE′Σs(E → E′)Φ+(r, E′)+νΣf (E)

∫ ∞
0

dE′χ(E′)Φ+(r, E′) = 0

(D.2)
The two above equations can be simplified with the diffusion operator M and its adjoint

operator M+ as following:

∇2Φ(r, E) +MΦ(r, E) = 0 (D.3)

∇2Φ+(r, E) +M+Φ+(r, E) = 0 (D.4)

The eigenvalues and the corresponding vectors of M and M+ are:

Mϕi(E) = λiϕi(E) (D.5)

M+ϕ+
i (E) = λiϕ

+
i (E) (D.6)

with i = 0, 1, 2 · · · ;
∫∞

0 dEϕ+
i (E)ϕj(E) =< ϕ+

i , ϕj >= αiδij .
If we develop Φ(r, E) and Φ+(r, E) respectively with their eigenvectors:

Φ(r, E) =
∑
i

fi(r)ϕi(E) (D.7)

Φ+(r, E) =
∑
i

f+
i (r)ϕ+

i (E) (D.8)

with fi(r) =
<ϕ+

i ,Φ>

ϕ+
i ,ϕi

; f+
i (r) = Φ+,ϕi

ϕ+
i ,ϕi

.

After substituting Eq(19) and Eq(20) into the first two diffusion equations, we obtain:∑
i

[∇2fi(r) + λifi(r)]ϕi(E) = 0 (D.9)

∑
i

[∇2f+
i (r) + λif

+
i (r)]ϕ+

i (E) = 0 (D.10)
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It means that: fi(r) ∝ f+
i (r), and ∇2fi(r) + λifi(r) = 0 where λ0 = B2.

So for i = 0, we get:
∇2f0(r) +B2f0(r) = 0 (D.11)

with f0 =
∫∞

0 dEϕ+(E)Φ(r, E) =
∫∞

0 dEϕ(E)Φ+(r, E). The detailed definitions of the
different flux are given below:

� ϕ+(E) : the adjoint flux in a critical homogeneous assembly;

� ϕ(E): the direct flux in a critical homogeneous assembly;

� Φ(r, E): the direct flux in a critical core;

� Φ+(r, E): the adjoint flux in a critical core.
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