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Abstract

In the recent years, the Web of Data has increased significantly, containing a huge number of
RDF triples. Integrating data described in different RDF datasets and creating semantic links
among them, has become one of the most important goals of RDF applications. These links
express semantic correspondences between ontology entities or data. Among the different
kinds of semantic links that can be established, identity links express that different resources
refer to the same real world entity. By comparing the number of resources published on the
Web with the number of identity links, one can observe that the goal of building a Web
of data is still not accomplished. Several data linking approaches infer identity links using
keys. Nevertheless, in most datasets published on the Web, the keys are not available and it
can be difficult, even for an expert, to declare them.

The aim of this thesis is to study the problem of automatic key discovery in RDF data
and to propose new efficient approaches to tackle this problem. Data published on the Web
are usually created automatically, thus may contain erroneous information, duplicates or
may be incomplete. Therefore, we focus on developing key discovery approaches that can
handle datasets with numerous, incomplete or erroneous information. Our objective is to
discover as many keys as possible, even ones that are valid in subparts of the data.

We first introduce KD2R, an approach that allows the automatic discovery of compos-
ite keys in RDF datasets that may conform to different schemas. KD2R is able to treat
datasets that may be incomplete and for which the Unique Name Assumption is fulfilled.
To deal with the incompleteness of data, KD2R proposes two heuristics that offer different
interpretations for the absence of data. KD2R uses pruning techniques to reduce the search
space. However, this approach is overwhelmed by the huge amount of data found on the
Web. Thus, we present our second approach, SAKey, which is able to scale in very large
datasets by using effective filtering and pruning techniques. Moreover, SAKey is capable of
discovering keys in datasets where erroneous data or duplicates may exist. More precisely,
the notion of almost keys is proposed to describe sets of properties that are not keys due to
few exceptions.
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Résumé

Dans les dernières années, le Web de données a connu une croissance fulgurante arrivant
à un grand nombre des triples RDF. Un des objectifs les plus importants des applications
RDF est l’intégration de données décrites dans les différents jeux de données RDF et la
création des liens sémantiques entre eux. Ces liens expriment des correspondances séman-
tiques entre les entités d’ontologies ou entre les données. Parmi les différents types de liens
sémantiques qui peuvent être établis, les liens d’identité expriment le fait que différentes
ressources réfèrent au même objet du monde réel. Le nombre de liens d’identité déclaré
reste souvent faible si on le compare au volume des données disponibles. Plusieurs ap-
proches de liage de données déduisent des liens d’identité en utilisant des clés. Une clé
représente un ensemble de propriétés qui identifie de façon unique chaque ressource décrite
par les données. Néanmoins, dans la plupart des jeux de données publiés sur le Web, les
clés ne sont pas disponibles et leur déclaration peut être difficile, même pour un expert.

L’objectif de cette thèse est d’étudier le problème de la découverte automatique de clés
dans des sources de données RDF et de proposer de nouvelles approches efficaces pour
résoudre ce problème. Les données publiées sur le Web sont général volumineuses, incom-
plètes, et peuvent contenir des informations erronées ou des doublons. Aussi, nous nous
sommes focalisés sur la définition d’approches capables de découvrir des clés dans de tels
jeux de données. Par conséquent, nous nous focalisons sur le développement d’approches
de découverte de clés capables de gérer des jeux de données contenant des informations
nombreuses, incomplètes ou erronées. Notre objectif est de découvrir autant de clés que
possible, même celles qui sont valides uniquement dans des sous-ensembles de données.

Nous introduisons tout d’abord KD2R, une approche qui permet la découverte automa-
tique de clés composites dans des jeux de données RDF pour lesquels l’hypothèse du nom
Unique est respectée. Ces données peuvent être conformées à des ontologies différentes.
Pour faire face a‘ l’incomplétude des données, KD2R propose deux heuristiques qui per-
mettent de faire des hypothèses différentes sur les informations éventuellement absentes.
Cependant, cette approche est difficilement applicable pour des sources de données de
grande taille. Aussi, nous avons développé une seconde approche, SAKey, qui exploite
différentes techniques de filtrage et d’élagage. De plus, SAKey permet à l’utilisateur de dé-
couvrir des clés dans des jeux de données qui contiennent des données erronées ou des dou-
blons. Plus précisément, SAKey découvre des clés, appelées ”almost keys”, pour lesquelles
un nombre d’exceptions est toléré.
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Résumé de la thèse en français

Introduction
Au cours des dernières années, le nombre de données RDF disponibles sur le Linked Open
Data cloud (LOD) a cru très rapidement. En Juillet 2014, le nombre de triplets dans le LOD
a dépassé les 61 milliards 1. Dans cet espace de données, le liage d’informations provenant
de différentes sources de données est un point crucial. Établir des liens sémantiques entre
des données décrites dans différents sources permet de transformer des données locales en
un espace global des données. En effet, une fois que les données sont liées, elles peuvent
être consommées pour des applications émergentes, tels que les navigateurs de données
liées, des moteurs de recherche, des crawlers ou des applications spécifiques à un domaine
particulier.

Les liens sémantiques peuvent être indépendants du domaine(en représentant, par exem-
ple, que deux éléments réfèrent au même objet du monde réel), ou dépendants du domaine
(en dénotant, par exemple, que la ville de "Paris" est située près de la ville de "Versailles").

En comparaison avec le grand nombre de triplets disponibles sur le Web, le nombre de
liens existants entre ces triplets est très faible. En effet, il existe environ 643 millions de
liens pour 61 milliards de triplets. La découverte et la publication de nouveaux liens dans le
LOD est, de nos jours, un sujet de recherche très actif.

Les liens sémantiques peuvent être déterminés manuellement par un expert. Cependant,
compte tenu de la grande quantité de données disponibles sur le Web, la création manuelle
de liens sémantiques n’est pas envisageable. Parmi les différents types de liens sémantiques
qui peuvent être établis, les liens d’identité, expriment le fait que différentes ressources se
réfèrent à la même entité du monde réel. Par exemple, un lien d’identité entre deux instances
de personnes indique que ces deux instances se réfèrent à la même personne. La plupart des
liens entre les différents jeux de données du LOD aujourd’hui sont essentiellement des liens
d’identité.

Dans la littérature, il existe un grand nombre des approches qui visent à détecter les liens

1http://stats.lod2.eu
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d’identité entre des données. De nombreuses approches utilisent des règles pour spécifier
les conditions que les deux données doivent remplir pour être liés. Ces règles peuvent être
très spécifiques et exprimées en utilisant différentes mesures de similarité, des pondérations
et des seuils.

D’autres approches sont fondées sur des règles logiques, comme la fonctionnalité (in-
verse) de propriétés. Quelle que sait le type d’approche, les règles s’appuient sur des pro-
priétés discriminatives ou clés. Une clé représente un ensemble de propriétés qui identifie
chaque ressource de manière unique. En d’autres termes, si deux ressources partagent des
valeurs pour toutes les propriétés d’une clé, alors ils se réfèrent à la même entité du monde
réel.

Néanmoins, lorsque les propriétés et les classes sont nombreuses, les clés ne peuvent pas
être facilement spécifiées par un expert humain. Il est difficile de supposer qu’un expert est
toujours disponible pour spécifier des clés pour chaque jeu de données et chaque domaine
d’application. En outre, cette tâche devient encore plus difficile quand un ensemble complet
de clés composites est nécessaire. En effet, lorsque les données sont incomplètes, plus les
clés sont nombreuses et impliquent des propriétés différentes, plus les décisions qui peuvent
être prises dans le processus de liage de données sont nombreuses. Le problème de découvrir
l’ensemble des clés automatiquement à partir de les données est #P-hard. Par conséquent,
des approches en mesure de découvrir des clés efficacement sont essentielles.

De plus, étant donné que les données disponibles sur le Web sont construites de façon
autonome et se conforment aux différents domaines d’applications, les jeux de données
sont, par construction, hétérogènes et peuvent contenir des erreurs et des doublons. Dans ce
cas, le problème de découverte de clés devient beaucoup plus complexe. En outre, dans le
contexte du Web sémantique, les données RDF peuvent être incomplètes, et l’affirmation du
Closed World Assumption (précisant que ce qui n’est pas indiqué comme étant vrai est faux)
peut ne pas être significative. Par conséquent, il est nécessaire de concevoir de nouvelles
stratégies qui découvrent des clés dans de grands jeux de données RDF qui peuvent être
corrompu et incomplets.

Dans cette thèse, nous étudions les aspects théoriques et pratiques de la découverte au-
tomatique de clés dans les données RDF. Plus précisément, nous avons pour objectif de
développer des approches de découverte de clés qui sont en mesure de traiter des jeux de
données où les données peuvent être nombreuses, incomplètes et erronées. Le but est de
découvrir autant de clés que possible, même celles qui ne s’appliquent pas à l’ensemble du
jeu de données.
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État de l’art & motivation
Les liens d’identité entre les ressources de différents jeux de données ajoutent une valeur
réelle pour les données liées existant sur le Web. En raison de l’énorme quantité de don-
nées disponibles et à son hétérogénéité, il est difficile de déclarer manuellement des liens
d’identité. Par conséquent, il existe de nombreuses approches qui mettent l’accent sur la
découverte automatique de liens d’identité.

Certaines approches sont numériques et utilisent des mesures de similarité complexes,
fonctions d’agrégation et seuils pour construire les règles. Ces approches sont souvent adap-
tées à quelques jeux de données. Dans certains cas, ce type de règles est automatiquement
découvert [IB12, NL12, NdM12, SAS11]. D’autres approches sont basées sur des règles
logiques [SPR09, HCQ11] qui sont générés automatiquement en utilisant la sémantique des
clés ou des propriétés (inverse) fonctionnelles. Ce type de connaissance peut également être
utilisé par un expert pour construire des fonctions de similarité plus complexes qui prennent
plus en compte les propriétés qui sont impliquées dans les clés [VBGK09, NA11]. Pour des
raisons d’évolutivité, les clés peuvent aussi être impliquées dans les méthodes permettant
d’identifier des blocs qui probablement référent au même objet du monde réel [SH11].

L’avantage d’utiliser des clés au lieu des fonctions de similarité complexes est que les
clés peuvent être valides pour un domaine et pas seulement pour une paire des jeux de don-
nées spécifique. Comme il peut être difficile, même pour un expert de définir l’ensemble des
clés et qu’une telle connaissance n’ est généralement pas déclarée dans une ontologie, des
approches qui découvrent automatiquement des clés à partir des données sont nécessaires.

Le problème de la découverte clé a déjà été étudié dans le cadre des bases de données
relationnelles. Comme indiqué précédemment, la découverte de clés minimales composites
(i.e., des clés minimales qui sont composées de plus d’un attribut) dans un jeu de données
est #P-hard [GKM+03]. En effet, pour vérifier si un ensemble de propriétés est une clé,
une approche naïve serait de numériser tous les tuples d’une table pour vérifier se il n’y a
pas au moins deux tuples partageant les même valeurs pour un sous ensemble d’attributs.
Même dans le cas où chaque clé est composée de quelques attributs, le nombre de clés can-
didates dépasse rapidement le million. Par exemple, considérons une relation décrite par 60
attributs le nombre de clés candidates serait de 260 -1. Même si nous savons que toutes les
clés existantes sont composées d’au plus cinq propriétés, le nombre de clés candidates est
de plus de six millions (

�60
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+
�60

2
�
+
�60

3
�
+
�60
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�
+
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�
). Ainsi, plusieurs méthodes pour élaguer

l’espace de recherche ont été proposées.
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Clés de bases de données relationnelles. Dans le cadre des bases de données rela-
tionnelles, les clés jouent un rôle très important car elles peuvent être utilisées dans des
tâches liées à l’intégration de données, la détection d’anomalies, la formulation de requêtes,
l’optimisation de requêtes, ou l’indexation. Identifier les clés dans une base de données re-
lationnelle peut également être considéré comme un processus de rétroingénierie des bases
de données qui vise à documenter, restructurer ou conserver les données. Par conséquent,
plusieurs approches ont proposé des techniques pour les découvrir de façon automatique.

Le problème de la découverte de clés dans une base de données relationnelle a été
adressé par diverses approches ([SBHR06], [AN11], [VLM12], [KLL13], [HJAQR+13]).
Ces approches peuvent être organisées en deux catégories, les approches fondées sur des
lignes et des approches fondées sur les colonnes. Les approches orientées lignes sont
basées sur une analyse ligne par ligne de la base de données pour toutes les combinaisons
de colonnes. Toutes approches fondées sur la recherche de colonnes pour la découverte de
clés procède colonne par colonne. Pour améliorer l’efficacité de la découverte de clé, des
approches hybrides utilisant les deux techniques ont également été introduites.

Clés dans le Web Sémantique. Même si le problème de la découverte de clés dans
les bases de données relationnelles est similaire à celui du Web Sémantique, différentes
caractéristiques des données RDF doivent être prises en compte. Par exemple, les données
RDF sont généralement composées de nombreux triplets et de nombreuses propriétés, de
nouvelles stratégies d’élagage et de stockage de données, tenant compte de la sémantique
de l’ontologie sont nécessaires.

La particularité des données RDF qui contiennent des propriétés à valeurs multiples,
rendent inapplicables les approches découvrant des clés dans les bases de données. En
outre, les données RDF sont généralement conformes à une ontologie où la connaissance
de la hiérarchie de classes existe. Très souvent, les jeux de données RDF contiennent des
données incomplètes. Pour faire face à cela, différentes hypothèses pour les informations
non déclarées dans les données sont considérées. La plupart des approches proposées, à la
fois dans les bases de données relationnelles et le Web Sémantique, considèrent que les don-
nées utilisées dans la découverte de clés sont localement complètes. Seulement l’approche
[KLL13], présentée dans le cadre des bases de données relationnelles, propose différentes
heuristiques de l’interprétation des valeurs NULL dans une table relationnelle.

Le problème de découvrir l’ensemble des clés composites minimales dans un jeu de
données RDF a été seulement abordé dans [ADS12]. Néanmoins, dans ce travail, les auteurs
fournissent une approche qui découvre des clés non conformes à la sémantique de clés telle
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qu’ elle est déclarée par OWL2 (voir [ACC+14] pour une étude comparative). Ce travail
ne prévoit pas de stratégies d’élagage qui peuvent améliorer l’évolutivité de la découverte.
Les autres approches se concentrent uniquement sur la découverte soit de clés simples ou
un petit sous-ensemble de clés composites. Toutes ces approches de découverte de clés
considèrent que toutes les données sont localement complètes.

Pour estimer la qualité des clés découvertes, différents paramètres tels que le support
et la discriminabilité de chaque clé sont utilisés. Aucune des approches existantes ne pro-
pose de stratégie pour fusionner les clés découvertes dans différents jeux de données. Une
stratégie de fusion peut permettre la découverte de clés avec une qualité supérieure. En
effet, des clés valides sur toutes les sources garantissent une meilleure qualité des résultats.

Ainsi, nous considérons que les approches qui découvrent efficacement un ensemble de
clés OWL2, en tenant compte des doublons et des données erronées, sont nécessaires. De
plus, les données RDF peuvent être incomplètes, différentes hypothèse permettant d’expliquer
les données manquantes sont aussi nécessaires.

KD2R: A Key Discovery approach for Data Linking
Nous allons tout d’abord présenter KD2R, une approche automatique de découverte de
clés composites pour des jeux de données RDF conformes aux ontologies OWL. Pour
découvrir les clés dans des jeux de données où l’hypothèse du Close World Assumption
(CWA) n’est pas assurée, nous avons théoriquement besoin de tous les liens owl:sameAs et
owl:differentFrom existants dans un jeu de données. Comme, en général des jeux de don-
nées RDF ne contiennent pas ces liens et que l’hypothèse de CWA ne peut pas être assurée,
KD2R découvre des clés dans des jeux de données où l’hypothèse de nom unique (UNA)
est satisfaite. En d’autres termes, il existe un lien owl:differentFrom implicite entre chaque
paire d’instances dans les données. En outre, la découverte de clés lorsque les données
peuvent être incomplets est également possible. KD2R utilise une heuristique pessimiste
ou optimiste afin d’interpréter l’absence d’informations dans les données. Pour être plus
efficace, KD2R découvre tout d’abord les non keys maximales (c’est à dire, un ensemble
de propriétés partageant des communes valeurs pour plusieurs instances distinctes) avant de
déduire les clés. De plus, à l’aide de l’ontologie, KD2R exploite l’héritage entre classes
afin de couper l’espace de recherche. Afin d’obtenir des clés valides dans différents jeux
de données, KD2R découvre en premier des clés valides dans chaque jeu de données, puis
applique une opération de fusion. Pour trouver les clés dans des ensembles de données se
conformant à des ontologies distinctes, des outils d’alignement d’ontologies sont utilisées.
Ces outils décrouvrent des correspondances entre éléments de l’ontologie (voir [PJ13] pour
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un état de l’art récent sur l’alignement d’ontologies). Ces correspondances sont exploitées
pour trouver les clés qui sont valides dans tous les ensembles de données.

Définitions. Dans cette approche, nous considérons un ensemble de propriétés comme
une clé pour une classe, si chaque instance de la classe est uniquement identifiée par cet
ensemble de propriétés. En d’autres termes, un ensemble de propriétés est une clé pour une
classe si, pour toutes les paires de instances distincts de cette classe, il existe au moins une
propriété dans cette ensemble pour lequel toutes les valeurs sont distinctes.

Definition 1. (Key). Un ensemble de propriétés P (P ✓P) est une clé pour la classe c
(c 2 C ) dans un jeu de données D si:

8X 8Y ((X 6= Y )^ c(X)^ c(Y )))

9p j (9U 9V p j(X ,U)^ p j(Y,V ))^ (8Z ¬(p j(X ,Z)^ p j(Y,Z)))

Afin de minimiser le nombre de calculs pour la découverte des clés, nous proposons une
méthode inspirée de [SBHR06], qui génère d’abord l’ensemble des non keys maximales
(c’est à dire, des ensembles de propriétés qui partagent les mêmes valeurs pour au moins
deux instances), puis l’ensemble des clés minimales à partir des non keys. Contrairement
aux clés, ayant seulement deux instances partageant des valeurs pour un ensemble de pro-
priétés sont suffit de considérer cet ensemble comme non key.

Nous considérons un ensemble de propriétés comme non key pour une classe c s’il existe
au moins deux instances distinctes de cette classe qui partagent des valeurs pour toutes les
propriétés de cet ensemble.

Definition 2. (Non key). Un ensemble de propriétés P (P ✓P) est une non key pour la
classe c (c 2 C ) dans un jeu de données D si:

9X 9Y (X 6= Y )^ c(X)^ c(Y )^ (
^

p2P
9U p(X ,U)^ p(Y,U))

KD2R propose différentes heuristiques pour interpréter l’absence d’informations. Puisque
quelques combinaisons de propriétés ne peuvent pas être considérées ni comme des clés ni
comme non keys en raison de l’absence éventuelle de données, KD2R introduit la notion
des undetermined keys qui représentent un ensemble de propriétés pour une classe c où: (i)
cet ensemble de propriétés n’est pas une non key et (ii) il existe au moins deux instances de
la classe qui partagent des valeurs pour un sous-ensemble de la clé indéterminée et (iii) les
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propriétés restantes ne sont pas instanciées pour au moins une des deux instances.

Definition 3. (Undetermined key). Un ensemble de propriétés P (P ✓P) est undeter-
mined key pour la classe c (c 2 C ) dans un jeu de données D si:

• (i) P /2 NKD.c et

• (ii) 9X 9Y (c(X)^ c(Y )^ (X 6= Y )^8p j

((9Z (p j(X ,Z)^ p j(Y,Z))_@W (p j(X ,W )_@W p j(Y,W ))))

Undetermined keys peuvent être considérées soit comme des clés ou comme des non
clés, en fonction de l’heuristique sélectionnée. En utilisant l’heuristique pessimiste, les clés
indéterminées sont considérés comme des non keys, en utilisant l’heuristique optimiste,
elles sont considérées comme des clés. Les clés indéterminées découvertes peuvent égale-
ment être validées par un expert humain qui peut les affecter à l’ensemble des clés ou des
clés non.

(a) KeyFinder pour un jeu de données (b) Fusion des keys pour deux jeux de données

Fig. 1 Decouverte des clés pour deux jeux de données
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Dans la Figure 1, nous montrons les étapes principales de l’approche KD2R. Notre méth-
ode découvre des clés indépendamment pour chaque jeu de données RDF. Dans chaque
jeu de données, KD2R est appliquée sur les classes qui sont déjà triées dans un ordre
topologique. De cette façon, les clés découvertes dans les super-classes peuvent être ex-
ploitées lorsque les clés sont découvertes dans leurs sous-classes. Pour un jeu de données
Di et une classe donnée c, nous appliquons KeyFinder, un algorithme qui trouve des clés
pour chaque classe d’un jeu de données. Les instances d’une classe donnée sont représentés
dans un préfix-tree (voir Figure 1(a)). Cette structure est utilisée pour découvrir l’ensemble
des clés indéterminées maximales et de non keys maximales. Une fois que toutes les clés
indéterminées et les non keys sont découvertes, elles sont utilisées pour dériver l’ensemble
des clés minimales. KeyFinder répète ce processus pour chaque classe de l’ontologie don-
née. Pour calculer les clés qui sont valides pour les classes de deux ontologies, KeyFinder
est appliqué dans chaque jeu de données indépendamment et une fois que toutes les clés
sont trouvées pour chaque classe, les clés obtenues sont ensuite fusionnées pour calculer
l’ensemble des clés qui sont valides dans plusieurs ensembles de données (voir Figure 1(b)).

Pour évaluer notre approche, nous avons exécuté KD2R dans différents ensembles de
données RDF. Les expérimentations ont montré que KD2R se comporte bien dans des jeux
de données où le nombre de propriétés dans les données est limité. Pour de grands jeux de
données, contenant de nombreuses propriétés, KD2R ne peut pas être appliqué. Dans tous
les cas, l’heuristique optimiste est plus rapide que l’heuristique pessimiste. Cependant, la
dérivation de clés à partir de non keys reste le goulot d’étranglement de KD2R.

Expérimentations. Pour évaluer l’intérêt des clés découvertes, nous avons lié des don-
nées en utilisant (i) des clés de KD2R (ii) des clés déclarées par des experts et (iii) aucune
clé. Les expérimentations ont montré que lorsque les clés de KD2R sont utilisées, les résul-
tats sont meilleurs que lorsque aucune clé n’est appliquée et sont semblables à ceux utilisant
les clés déclarées par des experts. En comparant les clés trouvées avec l’heuristique opti-
miste et l’heuristique pessimiste, nous avons montré que les clés optimistes conduisent à un
meilleur liage pour les jeux de données testés.

SAKey: Scalable Almost Key discovery
Les données publiées sur le Web sont généralement créés automatiquement, donc elles peu-
vent contenir des informations erronées. En outre, des URI distinctes qui se réfèrent au
même objet du monde réel, c’est à dire, des doublons, peuvent exister dans les sources.
Considérant qu’une clé unique identifie toutes les instances dans un jeu de données, si les
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données utilisées pour la découverte des clés contient des informations erronées ou des dou-
blons, des clés pertinentes peuvent être perdues. Ainsi, les algorithmes qui recherchent
uniquement des clés, ne sont pas capable de découvrir toutes les clés dans ces ensembles
de données. Pour cette raison, il est essentiel de développer une approche qui permet la
découverte de clés malgré la présence de certaines instances qui les violent. Les instances
qui mènent à ces violations sont appelées exceptions.

Une caractéristique importante de jeux de données RDF qui sont disponibles sur le Web
est leur grand volume. Pour faire face à cela, nous avons d’abord développé KD2R, une
approche qui découvre l’ensemble des non keys maximales avant de dériver l’ensemble des
clés minimales. Cette ordre rend la découverte des clés plus efficace. Néanmoins, KD2R est
submergé par l’énorme quantité de données disponibles sur le Web. Aussi, nous présentons
une nouvelle méthode appelée SAKey (Scalable Almost Key discovery), qui est capable
de découvrir des clés sur les grands jeux de données malgré la présence d’erreurs et/ou de
doublons. Nous appelons les clés découvertes par SAKey, almost keys. Une almost key
représente un ensemble de propriétés qui n’ est pas une clé à cause de quelques exceptions.
Comme dans KD2R, l’ensemble des almost keys est dérivé de l’ensemble des non keys
trouvé dans les données. SAKey est capable de s’exécuter sur de grands jeux de données.
Ce sont ses techniques de filtrage et ses stratégies d’élagage qui réduisent les exigences de
temps et espace de la découverte des non keys. Étant donné que la dérivation de clés à partir
de non keys est considérée comme le goulot d’étranglement de KD2R, dans SAKey nous
avons introduit un nouveau algorithme plus efficace pour la dérivation des clés. Enfin, nous
proposons une extension de SAKey pour la découverte de clés conditionnelles. Il s’agit de
clés qui sont valides dans des conditions spécifiques. Pour faire face à l’incomplétude des
données, SAKey considère que chaque valeur non déclarée dans les données est différente
de ce qui existe dans les données. Cette hypothèse correspond à l’heuristique optimiste,
introduite par KD2R. Dans nos expérimentations, cette heuristique s’est montrée beaucoup
plus rapide et a conduit à de meilleurs résultats que l’heuristique pessimiste.

Définitions. Dans SAKey, nous définissons une nouvelle notion de clés qui permet des
exceptions, appelées almost keys. Un ensemble de propriétés est une almost key si il existe
au plus n instances qui partagent les même valeurs pour un ensemble de propriétés dans le
jeu de données considéré.

Formellement, une exception représente une instance qui partages des values de ces
propriétés avec au moins une autre instance.

Definition 4. (Exception). Une instance X de la classe c (c 2 C ) est une exception pour un
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ensemble des propriétés P (P✓P) si:

9Y (X 6= Y )^ c(X)^ c(Y )^ (
^

p2P
9U p(X ,U)^ p(Y,U))

Un ensemble de propriétés est considéré comme une almost key, s’il existe de 1 à n
exceptions dans le jeu de données. En utilisant l’ensemble des exceptions EP, nous donnons
la définition suivante d’une almost key.

Definition 5. (n-almost key). Soit c une classe (c 2 C ), P un ensemble des propriétés
(P✓P) et n un entier. P est une n-almost key pour c si |EP| n.

Comme nous l’avons vu dans KD2R, un moyen efficace pour obtenir des clés est de
découvrir d’abord toutes les non keys et de les utiliser pour calculer les clés. En appliquant
cette idée initialement proposée dans [SBHR06], SAKey dérive l’ensemble des almost keys
à partir de l’ensemble des propriétés qui sont pas des almost keys. En effet, pour montrer
qu’un ensemble de propriétés n’est pas une n-almost key, c’est-à-dire, un ensemble de pro-
priétés avec au plus n exceptions, il suffit de trouver au moins (n + 1) instances qui partagent
des valeurs pour cet ensemble. Nous appelons les ensembles de propriétés qui ne sont pas
almost keys, (n+1)-non keys.

Definition 6. (n-non key). Soit c une classe (c2C ), P un ensemble des propriétés (P✓P)
et n un entier, P est un n-non key pour c si |EP|� n.

L’approche SAKey trouve des almost keys pour un jeu de données RDF et une classe
définie dans une ontologie. SAKey est composé de trois étapes principales: (1) les étapes
de prétraitement qui nous permettent de filtrer les données et d’éliminer des ensembles de
propriétés non pertinents (2) la découverte de (n+1)-non keys maximales en appliquant des
stratégies d’élagage et des heuristiques d’ordonnancement et enfin (3) un algorithme qui
dérive efficacement des almost keys à partir d’un ensemble de (n+1)-non keys.

Les deux approches [SBHR06, PSS13] dérivent l’ensemble des clés en itérant les deux
étapes suivantes: (1) le calcul du produit cartésien des ensembles de propriétés complémen-
taires aux non keys découvertes et (2) la sélection des ensembles minimaux. La dérivation
des clés en utilisant cet algorithme prend beaucoup de temps lorsque le nombre de propriétés
est grande. Pour éviter les calculs inutiles, nous proposons un nouvel algorithme, appelé
keyDerivation, qui dérive rapidement des almost keys minimales. Dans cet algorithme, les
propriétés sont ordonnées en utilisant leurs fréquence dans les ensembles de compléments.
A chaque itération, la propriété la plus fréquente est sélectionnée et toutes les almost keys
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impliquant cette propriété sont découvertes de manière récursive. Pour chaque propriété p
sélectionnée, nous combinons p avec les propriétés des ensembles de complément sélec-
tionnés qui ne contiennent pas p. En effet, seulement les ensembles de complément qui ne
contiennent pas cette propriété peut conduire à la construction des almost keys minimales.
Quand toutes les almost keys contenant p sont découvertes, cette propriété est éliminée de
chaque ensemble de complément. Lorsque au moins un ensemble de complément est vide,
toutes les almost keys ont été découvertes. Si chaque propriété a une fréquence différente
dans les ensembles de complément, toutes les almost keys trouvées sont des almost keys
minimales. Dans le cas où deux propriétés ont la même fréquence, des heuristiques supplé-
mentaires sont prises en compte pour éviter les calculs des almost keys non minimales.

Expérimentations. Nos expérimentations approfondies ont montré que SAKey peut
fonctionner sur des millions de triplets grâce à ses techniques de filtrage et ses stratégies
d’élagage. Le passage à l’échelle de l’approche a été évalué sur des jeux de données dif-
férents. Même si de nombreuses exceptions sont autorisées, SAKey peut encore découvrir
des n-non keys de manière très efficace. En outre, nous observons que SAKey est beaucoup
plus rapide que KD2R tant à la découverte des non keys et à la dérivation des keys à partir
des non keys. Enfin, les expérimentations sur l’utilisation des almost keys pour le liage des
données montrent que les résultats s’améliorent lorsque quelques exceptions sont autorisées.

C-SAKey. Afin d’enrichir, autant que possible, l’ensemble des keys qui peuvent être
déclarées pour un domaine spécifique, nous proposons également C-SAKey, une extension
de SAKey qui découvre des conditional keys. Un ensemble de propriétés est une conditional
key pour une classe, s’il s’agit d’une clé pour les instances de la classe qui satisfont une
condition spécifique. Ici, nous considérons des conditions qui impliquent une ou plusieurs
propriétés pour lequel une valeur est spécifiée. Plus précisément, étant donné une classe
c (c 2 C ), une instance X et l’ensemble des propriétés P = {p1, . . . ,PM} où P 2P , une
condition Cond(X) peut être exprimée comme:

p1(X ,v1)^ . . .^ pm(X ,vm)

Une expérimentation préliminaire pour l’évaluation de C-SAKey a été effectuée et a
démontré que les conditional keys peuvent être découvertes pour des ensembles de données
pour lesquels aucune clé n’avait pu être trouvée.
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Conclusion
Enrichir les connaissances dans le Web sémantique est aujourd’hui un point crucial.

Dans cette thèse, nous avons poursuivi cet objectif en étudiant la conception et la mise
en œuvre des approches capables de découvrir des clés OWL2 dans les données RDF. Ces
données RDF peuvent être nombreuses, incomplètes et contenir des erreurs ou des doublons.
Nous avons proposé deux approches, KD2R et SAKey, qui sont capables de découvrir l’
ensemble de clés OWL2 dans des jeux de données RDF se conformant à une ontologie
OWL. Ces deux approches ont été adoptées pour répondre à différents problèmes.

KD2R peut s’attaquer à des ensembles de données où l’hypothèse UNA est satisfaite.
Pour obtenir des clés valables pour différents jeux de données se conformant à des ontolo-
gies distinctes, nous découvrons des clés contenant des propriétés alignées trouvées dans
chaque jeu de données considéré. Une fois que toutes les clés sont découvertes, nous ap-
pliquons une étape de fusion pour trouver l’ensemble des clés minimales qui sont valides
dans chaque jeu de données. KD2R prend en compte les caractéristiques des données RDF
tels que l’incomplétude et la multi-valuation. KD2R propose deux heuristiques différentes
afin de travailler avec des données incomplètes, l’heuristique pessimiste et l’heuristique op-
timiste. Comme les données peuvent être nombreuses, une stratégie qui découvre d’abord
des non keys maximales est utilisée pour calculer les clés. En effet, pour découvrir qu’un
ensemble de propriétés est une non key, seulement un sous-ensemble des données est néces-
saire. Les expérimentations ont montré que KD2R est plus efficace dans de petits ensembles
de données où le nombre de propriétés est limité.

D’autre part, sachant que les erreurs ou des doublons peuvent conduire à la perte de clés,
Nous avons aussi introduit SAKey, une approche qui découvre des clés sur de grands ensem-
bles de données RDF contenant des erreurs et des doublons. SAKey découvre des almost
keys, c’est-à-dire des jeux de propriétés qui ne sont pas des clés dues à quelques exceptions
dans les données. Pour des raisons d’efficacité, SAKey découvre d’abord l’ensemble des (n-
1)-non keys maximales et les exploite pour obtenir l’ensemble des almost keys minimales
ensuite. Pour passer à l’échelle, SAKey applique une série de techniques de filtrage afin
d’écarter une partie des données qui ne peuvent pas conduire à des (n-1)-non keys maxi-
males. En outre, SAKey utilise un certain nombre de stratégies d’élagage qui permet de
découvrir rapidement toutes les (n-1)-non keys maximales. En utilisant des heuristiques
d’ordonnancement, SAKey parvient à découvrir n-non keys encore plus vite. Contraire-
ment à KD2R, SAKey est capable de traiter de grands jeux de données composés d’un
grand nombre de propriétés. Contrairement à l’algorithme de dérivation de clé utilisé dans
KD2R, SAKey introduit un nouvel algorithme de dérivation des clés qui est capable de cal-
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culer les ensembles des almost keys très efficacement. La dérivation des clés n’ est plus le
goulot d’étranglement d’approches qui découvrent d’abord des non keys.

Nos expérimentations approfondies ont montré que SAKey peut fonctionner sur des
millions de triplets grâce à ses techniques de filtrage et de ses stratégies d’élagage. La
validité de l’approche a été montrée validée sur différents jeux de données. Même quand de
nombreuses exceptions sont autorisées, SAKey peut encore découvrir efficacement des n-
non keys. Nous observons que SAKey est beaucoup plus rapide que KD2R, à la fois pour la
dérivation des clés et la découverte des non keys. Enfin, les expérimentations sur le liage de
données montrent que les résultats s’améliorent lorsque quelques exceptions sont autorisées.
Ainsi, les expérimentations démontrent globalement la validité et la pertinence des clés
découvertes. Une expérimentation préliminaire pour évaluer C-SAKey a été effectuée et a
démontré que des clés conditionnelles peuvent être découvertes dans des jeux de données
où des clés ne peuvent pas être trouvées.

Diverses pistes de travail sont présentées dans cette thèse: (i) une évaluation expérimen-
tale approfondie de SAKey, (ii) un algorithme efficace pour C-SAKey, (iii) une interface
graphique pour les experts, (iv) un réglage automatique du nombre d’exceptions n à au-
toriser, (v) une stratégie pour la fusion des clés, (vi) une méthode pour la construction des
fonctions de similarité complexes en utilisant la valeur n, (vii) des métriques différentes
pour la qualité de clés, (viii) une approche pour la découverte des clés dans des données
RDF hétérogènes, (ix) une approche pour la découverte des clés contenant des chaînes de
propriétés, (x) une approche pour la découverte de dépendances sémantiques, (xi) une méth-
ode qui met à jour efficacement des clés lorsque les données évoluent.
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Chapter 1

Introduction

1.1 Context and objectives

Over the recent years, the number of RDF datasets available on the Linked Open Data cloud
(LOD) has led to an explosive growth of the Web of Data. In July 2014, the number of
triples in the LOD has surpassed 61 billions1.

In this data space, linking information from different data sources is a crucial point
for real innovation. Once data are connected with other data, by the use of typed links
(semantic links), they become available in different contexts and thus, more applications
and knowledge can be generated. Establishing semantic links between data items represents
the ability to transform local datasets into a global data space (the Web of Data). Semantic
links can be generic and they can state, for example, that two data items refer to the same
real world object or they can be more "domain dependent" and state, for example, that the
city "Paris" is located near the city "Versailles".

Comparing to the huge number of triples available on the Web, the number of exist-
ing links between these triples is very small. Indeed, in the statistic cited before, only 643
millions of links exist. Discovering and publishing new links in the LOD is, today, an inter-
esting research topic. In fact, once the data are correctly and significantly linked, they can
be consumed by emerging Linked Data-driven applications such as linked data browsers,
search engines, crawlers and domain specific linked data applications.

Semantic links can be set manually by a human expert. However, considering the large
amount of data available on the Web, the manual creation of semantic links is becoming a
not feasible option. Among the different kinds of semantic links that can be established,

1http://stats.lod2.eu
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identity links, called also sameAs statements, express that different resources refer to the
same world entity. For example, an identity link between two instances of people states that
these two instances refer to the same person. Today, most of the links between different
datasets in the LOD are basically identity links.

In the literature, there exist a lot of approaches that aim to detect identity links between
data items. Many approaches use rules to specify the conditions that two data items must
fulfill in order to be linked. These rules can be very specific and expressed using different
similarity measures, weights and thresholds. This knowledge can be either specified by a
human expert or learned from labeled datasets. Other approaches are based on logical rules
such as the (inverse) functionality of properties or keys. A key represents a set of properties
that uniquely identifies each resource. In other words, if two resources share values for all
the properties of a key, then they refer to the same real world entity. Nevertheless, when
properties and classes are numerous, keys cannot be easily specified by a human expert.
Indeed, it is difficult to assume that an expert is always available to specify keys for every
dataset and every application domain. Moreover, this task becomes even harder when a
complete set of composite keys is needed. When the data are incomplete, the more keys
are numerous and involve different properties, the more decisions can be taken in the data
linking process. The problem of discovering the complete set of keys automatically from
the data is #P-hard [GKM+03]. Therefore, approaches able to discover keys efficiently are
essential. Additionally, since the data available on the Web are built in an autonomous
way and conform to different application domains, the datasets are, by construction, het-
erogeneous and may contain errors and duplicates. In this case, the key discovery problem
becomes much more complex. Furthermore, in the Semantic Web context, RDF data may
be incomplete and asserting the Closed World Assumption (stating that what is not known
to be true is false) may not be meaningful. Hence, novel strategies that discover keys in big
RDF data that may be dirty and incomplete are required.

In this thesis, we study the theoretical and practical aspects of the automatic key dis-
covery in RDF data. More precisely, we aim at developing key discovery approaches that
are able to handle datasets where the data can be numerous, incomplete and erroneous. The
objective is to discover as many keys as possible, even ones that do not apply to the whole
data.
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1.2 Contributions

We have developed different approaches for the automatic discovery of keys in RDF data.
These approaches discover sets of composite keys in several datasets, each one conforming
to an OWL ontology. The discovered keys follow the semantics of the owl:HasKey construct
of OWL2. Two different approaches are proposed:

1. KD2R is an approach that discovers OWL2 keys from the data, using either a pes-
simistic or an optimistic heuristic to interpret the absence of information.

2. SAKey is an approach that discovers OWL2 keys from the data containing erroneous
information or duplicates by ensuring good scalability characteristics.

KD2R: Key Discovery approach for data linking.
Our first contribution is KD2R, an approach that discovers automatically the complete set
of composite keys in several RDF datasets. More precisely, since every superset of a key is
a key, KD2R is only interested in the discovery of minimal keys. KD2R finds first keys for
each class of a RDF dataset. The classes are exploited from the more generic to the most
specific ones. Once all the keys per class and per dataset are found, KD2R uses a merge
operation to obtain, for each equivalent class, keys that are valid in every dataset.

To avoid losing keys due to duplicates, KD2R considers that all the instances of a dataset
are distinct (Unique Name Assumption). Since RDF data are usually incomplete, KD2R
uses two different heuristics, the optimistic heuristic and the pessimistic heuristic, to inter-
pret the absence of information in a dataset. In the optimistic heuristic, the property values
that are not declared in a dataset, are assumed to be different from all the existing values in
this dataset. In the pessimistic heuristic, when a property is not used in the description of an
instance, this property can take any of values that appear in the dataset.

To ensure the efficiency of key discovery, KD2R discovers first all the sets of prop-
erties that are not keys, i.e., non keys. More precisely, KD2R discovers the complete set
of maximal non keys, representing sets of properties that by adding one property become
keys. In this way, all the sets of properties that are not included or equal to a non key re-
fer to keys. To improve even more the efficiency of key discovery, KD2R applies different
pruning strategies such as the key inheritance.

A extensive experimental evaluation of KD2R has been conducted to evaluate first
the scalability of the approach and second the impact of keys in the data linking task.
Pessimistic and optimistic heuristics are also compared. According to the experiments,
KD2R performs well in datasets containing classes described by few properties and that
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KD2R is more scalable when the optimistic heuristic is applied. Moreover, the optimistic
heuristic appears to have better results in the linking task than the pessimistic heuristic.
Finally, the data linking results have demonstrated that the use of KD2R keys gives (i)
better linking results than those obtained by applying no keys to link and (ii) similar results
to those obtained by applying expert keys to link.

SAKey: Scalable Almost Key discovery
Our second contribution is an approach that discovers efficiently keys in incomplete RDF
data that may contain erroneous information and duplicates. Thus, it is important to be able
to discover sets of properties that might not be keys due to few exceptions. An exception for
a given key represents a data item that shares values with another data item for this set of
properties. To allow the discovery of keys with exceptions we propose SAKey, an approach
that discovers keys that almost hold, called almost keys, in one dataset. The number of
allowed exceptions is parametrized by fixing a value n. Then, SAKey discovers n-almost
keys, i.e., sets of properties that share values for at most n instances. Each of these n
instances represents one exception. Apart from real keys that can be lost due to erroneous
data or duplicates, almost keys represent also sets of properties with a high linking power.

In SAKey, to discover keys under the Open World Assumption, we consider that a
heuristic to interpret the absence of information is applied. SAKey applies the optimistic
heuristic since better linking results have been obtained using it in KD2R.

Similarly to KD2R, SAKey discovers first maximal sets of properties that are not almost
keys, i.e., n-non keys, and then uses them to derive the complete set of minimal n-almost
keys. To be scalable in the settings of the Semantic Web where datasets can be composed
of millions of triples, SAKey applies a series of filtering techniques and pruning strategies
to discover efficiently the set of properties that are n-non keys. In particular, semantic
dependencies found during the n-non key discovery process are exploited to prune the search
space.

Once the sets of properties that are not almost keys are discovered, all the minimal
n-almost keys are derived using a new very efficient algorithm. This algorithm uses the
frequencies of properties to exploit first properties that can lead very fast to the derivation
of minimal n-almost keys. A merge operation similar to the one proposed in KD2R is
introduced in order to obtain valid n-almost keys discovered in different datasets.

In order to enrich, as much as possible, the sets of discovered keys, we propose also C-
SAKey, an extension of SAKey that discovers conditional keys. A conditional key is a key
that is valid only in a subpart of the data. This part of the data is defined using a condition
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in the form "property = value".
SAKey has been tested in several RDF datasets. The experimental evaluation is

threefold. First, to show the impact of filtering techniques and pruning strategies in the
scalability of the approach. Second, to compare the efficiency of the discovery of keys in
KD2R and SAKey both for the discovery of non keys and the derivation of keys. Finally, to
show the impact of n-almost keys in the data linking. The experiments have highlighted that
thanks to the filtering techniques SAKey filters out a significant number of data. Pruning
strategies allow SAKey to discover n-non keys very efficiently. Comparing to KD2R,
SAKey is always orders of magnitude faster, both in the discovery of n-non keys and
the derivation of n-almost keys. Finally, the experiments have shown that using n-almost
keys in the data linking can significantly improve the quality of the results. To evaluate
the interest of conditional keys, one preliminary experiment has been conducted. This
experiment shows conditional keys can be discovered in datasets where keys cannot be
found.

1.3 Thesis Outline

Below we provide an overview of how the thesis is organized, along with the main
contributions of each Chapter.

Chapter 2 provides the necessary background on the RDF data model, on OWL language
and on Linked data to follow the rest of the thesis. In the second part of this chapter,
the state-of-the-art approaches are described to position the work presented in this thesis.
Different approaches that can be used to link data are introduced. We show that some
of these approaches use keys to link. Then, we present related works that focus on the
discovery of keys or related constraints, in the areas of relational databases and Semantic
Web.

Chapter 3 presents KD2R, the first approach that we have developed, to discover OWL2
keys automatically from RDF data that may be incomplete. We first define formally the
problem that we tackle in KD2R. Then, we present the algorithms that are used to discover
non keys and derive keys from non keys. Finally, we provide an extensive experimental
evaluation of KD2R.
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Chapter 4 describes SAKey, the approach that discovers keys that almost hold, in incom-
plete data under the presence of errors and duplicates. First, we formally define the problem
of almost key discovery. Then, we provide a series of filtering techniques and pruning
strategies used to discover n-non keys. An efficient algorithm for the derivation of n-almost
keys from n-non keys is also provided. C-SAKey, the approach that discovers conditional
keys is then introduced. Finally, we present the experimentations that have been conducted
to evaluate the efficiency and effectiveness of SAKey. Comparative experimental results
between SAKey and KD2R are also provided.

Chapter 5 provides a conclusion and discusses various proposals for future work.



Chapter 2

Background and state-of-the-art

This chapter provides first some preliminaries that are needed in this thesis. Then, related
works that have studied the problems of data linking and key discovery are presented and
discussed.

2.1 Preliminaries

In this section, we present the background of this work. More precisely, Sections 2.1.1 and
2.1.2 introduce the RDF data model and the OWL language. Then, the notion of Linked
data is described in Section 2.1.3.

2.1.1 RDF data model

The Resource Description Framework (RDF) is a graph data model proposed by W3C for
standard model for data representation and interchange on the Web. A resource is anything
that can refer to a web page, a location a person a concept etc. A resource is described by a
set of triples in the form < s, p, o > where the subject s denotes a resource that has a value
o for the property p. For example, the triple < p1, f irstName, 00Martin00 > states that the
resource p1 has as first name 00Martin00. These triples can also be called RDF statements
and expressed logically as binary predicates p(s, o). In this case, p(s, o) is called an RDF
fact. Each resource is identified by a Uniform Resource Identifier (URI). The subject and the
property of a triple are URIs. The object can be either a URI or a literal value. For example,
in the triple < p1, lastName, 00Daglas00 > the object 00Daglas00 represents a literal while in
the triple < p1, bornIn, city1 > city1 is a URI.

Let U be a set of URIs, L be a set of literals (strings) and B be the set of blank nodes
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(anonymous resources).

Definition 1. (RDF dataset). An RDF dataset is a set of triples < s, p, o > where s 2
(U [B), p 2U and o 2U [B[L .

A collection of RDF triples can be represented as a labeled, directed multi-graph. In this
multi graph a node represents a resource, a literal or a blank node while an edge represents a
property. This graph structure can be easily extended by new knowledge about an identified
resource.

In Figure 2.1, we give an example of RDF data in the form of RDF facts.

Dataset D1:
FirstName(p1, 00Martin00), LastName(p1, 00Johnson00), BornIn(p1, City1),
DateO f Birth(p1, 0015/03/8300), FirstName(p2, 00John00),
LastName(p2, 00Daglas00), BornIn(p2, City2), DateO f Birth(p2, 0016/05/7400),
FirstName(p3, 00John00), LastName(p3, 00Smith00), BornIn(p3, City3),
FirstName(p4,00Vanessa00),LastName(p4, 00Green00), BornIn(p4, City3)

Fig. 2.1 An example of RDF data

2.1.2 OWL language

Given resources described in RDF, it is not easy to understand what these resources cor-
respond to and how they can be used. To solve this limitation, descriptions of resources
can be related to a vocabulary described in an ontology. An ontology is a formal descrip-
tion that provides users and applications a common understanding for a given domain. It
has been defined by Tom Gruber in 1993 [Gru93] as "a specification of a conceptualiza-
tion". Ontologies allow to organize the data, improve the search, enable reasoning on RDF
statements and facilitate data integration. The Web Ontology Language (OWL) is a W3C
standard for encoding ontologies. Using OWL, classes and properties can be declared in an
ontology in a hierarchy using the subsumption relation.

An ontology can be represented as a tuple O = (C , P , A ) where:

• C represents the set of classes,

• P the set of typed properties for which two kinds of properties are distinguished in
OWL2: datatype properties where the domain is a class and the range is a literal; and
object properties where both domain and range are classes.
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Fig. 2.2 Person Ontology

• A the set of axioms such as subsumption relations between classes or properties,
disjunction relations between classes or owl:HasKey axioms.

In the sequel, we will use the following notation: c(i) indicates that the resource i belongs
to a class c, meaning that i is an instance of c.

In Figure 2.2, we present an ontology concerning persons. Each Person is described
by the datatype properties FirstName, LastName, DateO f Birth and the object property
BornIn which represents the city where as person is born. This ontology contains also the
classes Artist and Musician, two subclasses of the class Person.

A wide variety of constructs are supported by OWL. We only present here constructs
that are exploited in related works or in the approaches that we propose in this thesis. First,
the construct owl:FunctionalProperty is defined by OWL to declare that a property can have
only one unique value for each instance. For example, the property BirthDate is functional
since a person cannot have more than one date of birth. Moreover, OWL uses the construct
owl:InverseFunctionalProperty that states that the object of a property uniquely identifies
every subject using this property. For example, if the property BirthDate is inverse func-
tional, this means that two persons that share the same date of birth are the same.

In OWL2, the new W3C standard for ontology representation which extends OWL, the
construct owl:HasKey is proposed. This construct is used in a OWL2 ontology to declare
that a set of properties {p1, . . . , pn} is a key for a given class. It is expressed as owl:HasKey
(CE(ope1, . . . ,opem) (d pe1, . . . ,d pen)) which states that each instance of the class expres-
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sion CE1 is uniquely identified by the object property expressions opei and the data property
expressions d pe j. This means that there is no couple of distinct instances of CE that shares
values for all the object property expressions opei and all the datatype property expressions
d pe j. An object property expression is either an object property or an inverse object prop-
erty. More formally,

8X ,8Y,8Z1, . . . ,Zn,8T1, . . . ,Tm^ ce(X)^ ce(Y )
n̂

i=1
(opei(X ,Zi)^opei(Y,Zi))

m̂

i=1
(d pei(X ,Ti)^d pei(Y,Ti))) X = Y

where ce(X) denotes that the X is an instance of the class expression ce. The only al-
lowed datatype property expression is a datatype property. For example, we can express
that the property expression {LastName, BirthDate} is a key for the class Person using
owl:HasKey(Person (() (LastName, BirthDate)).

Note that, a functional object property is a single key for all the resources that appear as
objects of this property while inverse functional (data type and object) properties are single
keys for all the resources that appear as subjects of this property.

2.1.3 Linked data

Typed links between resources described in different datasets can be declared to allow
users, crawlers or applications navigate along links and combine information from different
datasets. For example, an RDF triple can state that a person p1 described in one dataset is
the author of the article a1 found in another dataset. One of the most important links, the
identity link, states that two URIs refer to the same real world object. In OWL, an identity
link between two instances is declared using the construct owl:sameAs. Linked data [BL06]
has been introduced by Tim Berners-Lee in 2006 to refer to best practices for publishing
and interlinking such structured data on the Web. A significant number of organizations
use these practices to publish their data in the Web. The result is the Linked Open Data
Cloud (LOD) (see Figure 2.3), a global graph containing a big number of RDF triples. In
July 2014, LOD contained more than 61 billions of RDF triples while only 643 millions of
links2.

1We consider only the class expressions that represent OWL classes
2http://stats.lod2.eu
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Fig. 2.3 Linked Open Data Cloud Diagram - September 2011 3

2.2 State-of-the-art

In this section, we introduce first, approaches that focus on the data linking problem using
rules. Then we present approaches that have been proposed for the discovery of keys and
functional dependencies in the setting of relational databases and Semantic Web.

2.2.1 Data Linking

Considering the large amount of data available on the Web, only few links between datasets
exist. Many approaches propose methods that generate these links between RDF datasets
automatically. In Semantic Web, the task of generating links is usually referred as data
linking, instance matching, interlinking or reference reconciliation. Data linking can be seen
as an operation that takes as input two datasets, each one containing a set of descriptions of
instances and gives as output links between instances (i.e., owl:sameAs links).

The problem of data linking has been known for more than five decades. It has been
introduced by [NKAJ59] and first formalized by [FS69]. Many approaches have been pro-
posed in relational databases where the problem is referred as record linkage, data cleaning
or entity resolution (see [EIV07] for a survey). Many approaches have been also proposed

3http://en.wikipedia.org/wiki/Linked_data
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in order to link data in the setting of the Semantic Web. These approaches have been clas-
sified in different ways (see [FNS11] for a survey). First, an approach can be considered
as supervised or unsupervised. In some supervised approaches a user is needed to control
the process of linking. For instance, in [BLGS05], the tool D-Dupe allows a user to choose
similarity measures and to validate candidate links via a user interface. Other supervised
approaches exploit training data in order to "learn" how to match instances [NL12, IB12].
Unsupervised approaches usually use knowledge that is either declared in an ontology
[SPR09, HCQ11] or given by a domain expert [VBGK09, NA11]. Second, an approach
can be considered as local (instance-based) or global (graph-based). In local approaches
[VBGK09, NA11, IB12, NL12, NdM12], each pair of instances are explored independently
while in global approaches [SPR09, HCQ11], discovered links affect the discovery of other
links. Moreover, approaches use logical rules to discover high-quality links while other
approaches are numerical and compute similarity scores between pairs of instances. Addi-
tionally, there exist approaches that use external resources, such as WordNet4, to improve
the data linking [SLZ09, SPR09]. In the thesis, we are interested in approaches that use
either logical or numerical rules, manually defined or automatically discovered to link data.

2.2.1.1 Rules in data linking

Rule-based approaches use rules to match instances. A rule is of the form: If <con-
dition> Then <action>. A rule is usually composed of complex functions in both
condition and action. The rules can be logical. For example, the logical rule
SSN(p1,y) ^ SSN(p2,y) ) sameAs(p1, p2) states that if two people have exactly the
same Social Security Number (SSN), then they refer to the same real world person. A rule
can be much more complex and be expressed using similarity measures (for more details
see [CRF03]), aggregation functions and thresholds. For example, given the descriptions
of two museums having names n1 and n2 and located in cities c1 and c2 a numerical rule
states that if the average of the similarity of names sim(n1,n2) and cities sim(c1,c2) is
bigger than 0.9 out of 1, then the two museums are considered as equal.

Logical rules in data linking
Some approaches use knowledge provided by an expert or declared in an ontology to build
logical rules for data linking.

4http://wordnet.princeton.edu/
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The approach ObjectCoref [HCQ11] aims to discover owl:sameAs links for one real
world object. For example, this approach aims to find instances that refer to the city
of Beijing. Given a URI as input, ObjectCoref first builds a kernel that contains a set
of URIs for which a owl:sameAs link is inferred. To infer these links, ObjectCoref ex-
ploits semantic knowledge declared in the ontology such as owl:InverseFunctionalProperty
owl:FunctionalProperty, owl:cardinality and owl:maxCardinality. Then, a set of unlabeled
data is considered. The approach iteratively learns the most discriminative property-value
pairs, i.e., values that are commonly used in every description and rarely used in the set of
unlabeled data. These pairs are used to identify potential owl:sameAs links that can be added
to the kernel. After a finite number of repetitions, set by an expert, the process finishes.

LN2R is a data linking approach [SPR09] that aims to discover owl:sameAs and
owl:differentFrom links. More precisely LN2R proposes two different methods, L2R that
infers owl:sameAs and owl:differentFrom links using logical rules, and N2R that computes
similarity scores between pairs of instances in order to discover owl:sameAs links. Both
methods exploit functional properties, inverse functional properties, keys and disjunction
between classes declared in the ontology. They are exploited by the logical method (L2R)
to generate a set of logical inference rules and by the numerical method (N2R) to gener-
ate a set of similarity functions. L2R uses logical rules to infer exact decisions of both
owl:sameAs and owl:differentFrom links. Unlike L2R, N2R uses keys to create functions
that compute similarity scores for pairs of instances. These functions are expressed using a
non linear equation system that is resolved using an iterative method.

Some approaches that are called blocking approaches are based on rules to reduce the
number of instance pairs that have to be compared by data linking tools. In [SH11], the
authors propose a approach that learns discriminative sets of datatype properties and uses
them to create blocks of instances that possibly refer to the same real world entity. For
example, the set of properties { f irstName,LastName} can be used to create blocks of
instances of the class person. A pair of instances is selected if the similarities of the values
of discriminative properties are greater than a given threshold. This kind of approaches can
be exploited by data linking tools to pre-process the data. Indeed, more complex rules will
only be used on some pairs of instances.

Complex rules in data linking
Since the knowledge that is used to construct linking rules is rarely available in an ontology,
some approaches learn the matching rules directly from the data.

In [VBGK09], the authors propose Silk, a tool that discovers identity links between
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datasets found on the Web using rules defined by an expert. Silk provides a declarative lan-
guage for specifying which conditions data items must fulfill in order to be interlinked. Silk
uses different aggregation functions, such as MIN, MAX, (weighted) AVERAGE, combined
with elementary similarity measures between values to compute a similarity score between
two instances. An owl:sameAs link is set between two instances when the similarity score
of these two instances in the condition of a rule is higher than a given threshold. An example
of the specification file is given below.

<Silk
<Prefixes>...</Prefixes>
<DataSources>

<DataSource id="dbpedia">...</DataSource>
<DataSource id="geonames">...</DataSource>

</DataSources>
<Interlinks>

<Interlink id="cities">
<LinkType>owl:sameAs</LinkType>
<SourceDataset dataSource="dbpedia" var="a">...</SourceDataset>
<TargetDataset dataSource="geonames" var="b">...</TargetDataset>
<LinkageRule>

<Aggregate type="average">
<Compare metric="levenshteinDistance" threshold="1">

<Input path="?a/rdfs:label" />
<Input path="?b/gn:name" />

</Compare>
<Compare metric="num" threshold="1000" >

<Input path="?a/dbpedia:populationTotal" />
<Input path="?b/gn:population" />

</Compare>
</Aggregate>

</LinkageRule>
<Outputs>

<Output type="file" minConfidence="0.95">
<Param name="file" value="accepted_links.nt" />
<Param name="format" value="ntriples" />

</Output>
</Outputs>

</Interlink>
</Interlinks>

</Silk>
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In this example, instances of the class city coming from the sourceDataset DBpedia and
the targetDataset Geonames are compared to find owl:sameAs links. The expert declares in
this specification file that pairs of cities are compared using their names and their popula-
tions. Names are compared using levenshtein while population using a similarity measure
proposed by Silk for numerical values. Only cities for which the average similarity of these
two properties is greater than 0.95 are considered as the same.

For scalability reasons, an expert can also specify a declared pre-matching step to select
subsets of instances that can refer to owl:sameAs links. In this way, this approach manages
to prune the search space by avoiding comparing every pair of instances. Silk framework is
available on the Web at https://code.google.com/p/silk.

Like Silk, LIMES [NA11] is a tool that links data using rules declared by an expert in
a specification file. The allowed aggregation functions are MAX, MIN, (weighted) AVER-
AGE. The originality of LIMES is that this approach uses mathematical characteristics of
metric spaces to estimate the similarity between instances and filter out instance pairs. Be-
cause of this step, some of the elementary similarity measures like Jarowinkler cannot be
applied.

The GenLink algorithm introduced in [IB12], is a supervised algorithm that learns ex-
pressive linking rules from a set of existing identity links, using genetic programming. Ini-
tially, random linking rules involving two properties and randomly chosen similarity mea-
sures and aggregation functions are constructed. The results of the data linking using these
rules are validated against the identity links to improve the quality of linking rules.

In [NL12], the authors propose EAGLE, an approach based on LIMES [NA11], that
combines the use of genetic programming and active learning to discover linking rules in
order to link the data. These rules are complex and expressed using simple similarity mea-
sures and aggregation functions. The advantage of such approaches is that exploiting active
learning techniques they require only a small number of highly informative training data to
build the rules. In highly informative training data, each selected link leads to extraction
of different knowledge that is used to construct the rules. Thanks to the active learning,
EAGLE needs only a small number of training data to construct high quality identity links.

The approach proposed in [NdM12] discovers expressive linking rules which specify
the conditions that two data items must fulfill to be linked: data transformations, similarity
measures, thresholds and the aggregation function. These rules are learnt using datasets
where UNA is fulfilled and a strong degree of overlap exists, applying genetic programming
techniques. The data linking is done by applying to the data these linking rules.
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2.2.2 Discovering keys

The problem of key discovery has been previously studied in the relational databases. In this
setting, keys play a very significant role since they can be used in tasks related to data inte-
gration, anomaly detection, query formulation, query optimization, or indexing. Identifying
the keys holding in a relational database can be also seen as a part of a database reverse
engineering process that aims to document, restructure or maintain the data. Therefore, sev-
eral approaches have proposed techniques to discover them from the data in an automatic
way.

The problem of key discovery is a subproblem of the functional dependency discovery.
In the field of relational databases, an active research has been also conducted for the discov-
ery of functional dependencies. Therefore, in this state-of-the-art we present both functional
dependency and key discovery approaches.

In the Semantic Web, the interest of key discovery grows more and more thanks to the
linked data initiative and to the use of keys in the data linking process. In this state-of-the-art,
we present the few approaches that propose strategies for the discovery of keys in RDF data.
Furthermore, we also introduce an approach that aims to discover semantic dependencies, a
problem that is analogous to the functional dependency discovery in the setting of Semantic
Web.

2.2.2.1 Discovering keys and FDs in relational databases

We first introduce the background of relational databases. Then, we present approaches that
focus on the discovery of functional dependencies. Approaches that discover conditional
functional dependencies are also shown. Finally, key discovery approaches are described.

Preliminaries in relational databases
In this section we present the basic notions of relational databases that are needed in the
following sections.

Definition 2. (Relational database). A relation R is a finite set of attributes {A1, ..,An}. The
domain of an attribute A, denoted by Dom(A), is the set of all possible values of A. A tuple
is a member of the Cartesian product Dom(A1)⇥ ...⇥Dom(An). A relational database is a
set of relations R.

A functional dependency states that the value of an attribute is uniquely determined by
the values of some other attributes.
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Definition 3. (Functional dependency). A functional dependency (FD) over a relation R is
a statement X! A where X ✓ R and A 2 R. A FD X! A is satisfied if whenever two tuples
have equal values for X , they also have equal values for A. X corresponds to the left-hand
size of the FD while A to the right-hand size.

If X ! A holds also Z ! A will hold, for every X ⇢ Z. A functional dependency X ! A
can be defined as minimal when there does not exist Z ⇢ X for which Z ! A. The set
of minimal functional dependencies is a compressed representation of all the functional
dependencies that hold in a database.

Given a collection of tuples of a relation, a key is a set of attributes, whose values
uniquely identify each tuple in the relation.

Definition 4. (Key). A set of attributes K ✓ R is a key for R if K determines all other
attributes of the relation, i.e., K! R.

A key K is minimal if there does not exist a set of attributes K0 such that K0 ⇢ K and K0 is a
key.

Functional dependency discovery in relational databases
The problem of key discovery is a sub-problem of Functional Dependency (FD) discovery
in relational databases, since a key determines functionally the remaining attributes within a
table. FDs represent semantic constraints within data and can be applied in several domains
such as query optimization, normalization and data consistency. FDs were traditionally
considered to be given by a human expert. However, an expert may be able to define only a
part of the FDs. The discovery of functional dependencies from data has been extensively
studied ([SF93], [NC01], [FS99], [HKPT99], [LPL00], [WGR01], [YHB02], [WDS+09]).
Such approaches can be used to discover unknown FDs of high importance. For example,
in the case of medical data, it might be discovered that carcinogenicity depends functionally
from a set of attributes. Since the problem of discovering the complete set of FDs
for a given relation is #P-hard [MR94], each approach performs different strategies to
minimize, as much as possible, the necessary computations. The proposed approaches can
be grouped in two main categories, the top-down approaches and the bottom-up approaches.

Top-down approaches. In a top-down approach, candidate FDs are generated and then
tested against a given relation R. More precisely, the idea of top-down approaches is to
start from the set of the most general candidate FDs in the data and then proceed to more
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specific ones. A FD X ! A is more general than a FD Z ! A when X ⇢ Z. Top-down
approaches try to discover only the set of most general FDs, i.e., minimal FDs, since with
this set, all the other FDs can be inferred. For example, if the FD X ! A is discovered, then
every candidate Z! A with X ⇢ Z is , by definition, a FD. These approaches are also called
levelwise approaches.

In the following, we briefly present approaches proposed in [HKPT99], [NC01]
and [YHB02] that are considered as top-down approaches. Each one proposes different
pruning techniques to make the FD discovery more efficient.

Fig. 2.4 Containment lattice for the relation R1(A,B,C,D)

TANE [HKPT99] is an approach that discovers minimal FDs. All the possible sets of
attributes of a relation R1 can be represented in containment lattice. For example, Figure 2.4
represents the lattice of a relation R = {A,B,C,D}. Each node in the lattice represents a
distinct set of attributes and an edge exists between two nodes X and Y if Y ⇢ X and X has
exactly one more attribute than Y , i.e., X =Y [{A}. TANE uses a compact way to represent
the tuples of a relation that is called stripped partition database. For each attribute of a
relation, the tuples are partitioned according to their common values. Given a value, the set
of tuples having this value for an attribute A is called equivalent class. The set of equivalent
classes for an attribute A is called partition and is denoted as p{A}. A stripped partition
contains only equivalence classes of size bigger than 1. This means that all the values that
uniquely identify a tuple are eliminated since they cannot break any FD. Let us consider
the tuples of the relation R1, given in the Table 2.2. In this example the stripped partition
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database is given in the Table 2.1:

p{A} = {{t1, t2, t3}}
p{B} = {{t1, t3}}
p{C} = {{t2, t3}}
p{D} = {}

Table 2.1 Stripped equivalent database for the data of the relation R1 in Table 2.2

This filtering allows TANE to perform faster since it exploits only a subpart of the data in a
relation to discover the FDs. TANE searches for FDs of the form: X\{A}! A where A2 X ,
by examining attribute sets X of increasing sizes: initially sets of size 1, then sets of size
2 and so on. Each X represents a node of the lattice. For each candidate set of attributes
to be checked, TANE constructs a list with all the attributes that can lead to a minimal FD.
To check if a FD X\{A}! A is valid, TANE states that the number of equivalent classes
of X and Y = X [A should be equal (|pY (R)| = |pX(R)|). For example, given the relation
R1 of the Table 2.2, TANE will first level of the lattice that contains single attributes. Using
X\{A}! A, TANE explores first the FDs /0! A, /0! B, /0!C, and /0!D. When all these
FDs are explored, TANE continues with the next level, where the FDs to check are now the
following: A! B, A!C, A! D, B! A, B!C, B! D, C! A, C! B, C! D, D! A,
D! B and D!C.

TANE uses several prunings to improve the scalability of the FD discovery. Already
discovered FDs are exploited to prune the search space of candidate FDs. More precisely,
TANE states that if X ! A then X [ A! Z should not be checked since X [ A! Z is
not minimal. Moreover, starting from candidate FDs of the form /0! A, TANE is capable
to discover single keys, i.e., attributes that uniquely identify each tuple in a relation. An
attribute is a single key when every partition of this attribute has size one. Exploiting the
monotonic characteristic of keys, every superset of this attribute will be also a key, therefore,
none of these supersets will be explored.

In the previous example, starting from FDs of the first level, only /0! D is true since
D contains only partitions of size one, therefore it refers to a key. Applying the monotonic
pruning, TANE filters out D therefore in the next level TANE explores the FDs A! B,
A!C, B! A, B!C and C! B. In the case of B! A is true since |pB(R)|= |pAB(R)|=
{t1, t2}.

In addition, TANE discovers functional dependencies that almost hold, i.e., approxi-
mate FDs. An approximate functional dependency often represents a real functional depen-
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dency that cannot be discovered due to erroneous tuples in the data. For example, the FD
SSN! Name cannot be discovered if there exist typographical errors in some Social Secu-
rity Numbers. Moreover, some FDs are almost true, for example the first name of a person
determines the gender in most of the cases. TANE considers that X ! A is an approximate
dependency if the number of tuples that have to be removed from the relation R for X ! A
to hold in R is smaller than a given threshold e .

FUN [NC01] is an approach that exploits free sets to discover efficiently FDs. FUN
discovers the FDs level by level and exploits the already discovered FDs to obtain directly
only minimal ones. Free sets are used to create minimal left-hand sides of FDs. A free set
X is a set of attributes for which @Y ⇢ X such that |pY (R)|= |pX(R)|. A non free set cannot
lead to a minimal FD. For example, if for a relation R it is true that |pA(R)|= |pAB(R)|, this
means that no new minimal FD can be found having as left-hand side the attribute set AB.
Thus, the main pruning of this work is based on the anti-monotonic behavior of a free set
and the monotonic behavior of a non free set. More precisely, every subset of a free set is a
free set as well and every superset of a non free set is also a non free set. New FDs can be
produced only by free sets, thus once a non free set is found, all its supersets are discarded.
FUN selects and validates, step by step, free sets of increasing size. Like TANE [HKPT99],
FUN also discovers attributes that are single keys and removes them from the remaining
computations to prune the search space.

In [YHB02], the authors propose FD_Mine, a top-down approach inspired by
TANE [HKPT99], which discovers FDs by comparing the number of partitions found in
the data. To be scalable, FD_Mine combines new prunings with prunings already proposed
in TANE. In the first pruning, given two sets of attributes X and Y , if X $ Y is true, then
the sets of attributes are considered as equivalent and one of the sets is removed. As a
consequence to this pruning all the supersets of the eliminated set will not be checked.
Another pruning is based on the nontrivial closure of an attribute X , defined as Closure’(X)
= {Y |X!Y}�{X}. If Closure’(X) and Closure’(Y ) are the nontrivial closures of attributes
X and Y , respectively, then XY ! Closure’(X) [ Closure’(Y ) should not be checked. This
pruning represents the monotonic pruning of FDs. For example, if X ! A and Y ! B,
then XY ! A and XY ! B should not be checked. Applying prunings of TANE and new
prunings presented above, the authors of FD_Mine show that their approach outperforms
both TANE and FUN in the considered datasets.

Top-down approaches discover FDs of increasing size and exploit the monotonic
characteristic of discovered FDs to prune the search space. Moreover, attributes that refer
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to single keys are discovered and pruned, preventing the discovery of non minimal FDs.
Finally, given sets of attributes that are found to be mutually dependent, only one of them is
needed in the discovery of FDs. Finally, using a very compact way to represent the values of
a relation, this kind of approaches discover the complete set of minimal FDs using a part of
the initial data. Using this data representation and different pruning techniques, top-down
approaches manage to compute all the FDs without checking all the initial candidate FDs
represented in the lattice.

Bottom-up approaches. Bottom-up approaches rely on the fact that to ensure that a FD is
valid all the tuples have to be checked, while to discover that a FD is invalid, only two tuples
are needed. Thus, these approaches discover first, maximal invalid dependencies found in
the data and then derive minimal functional dependencies from the invalid ones. An invalid
functional dependency X! A is maximal when there does not exist X ⇢ Z for which Z! A
is invalid.

The set of minimal functional dependencies is called positive cover while the set of
maximal invalid dependencies is called negative cover. Given a pair of tuples of a relation, a
bottom-up approach returns the set of invalid FDs that are added to negative cover thanks to
this pair. This process is done for every pair of tuples in the relation and only the maximal
invalid FDs are kept in the negative cover. Once all the maximal invalid FDs are discov-
ered, all the minimal X ! A that are not subsets of a invalid FD correspond to a minimal
FD. Discovering the positive cover using the negative cover has been characterized as the
bottleneck of the bottom-up approaches.

For example, in the Table 2.2, the process starts from the tuples t1 and t2. In this couple,
the maximal invalid FDs found are A! B and A! C. Continuing with the tuples t1, t3
the maximal invalid FD is AB! C while in the t2, t3 the AC ! B. The final negative
cover is AB!C, AC! B. All the minimal valid FDs are more general than an invalid FD.
Therefore, in this example, the positive cover is /0! D, B! A, C! A.

R1 A B C D
t1 1 2 3 5
t2 1 3 4 6
t3 1 2 4 7

Table 2.2 Tuples of the relation R1(A,B,C,D)

In [SF93], the authors propose a bottom-up approach that discovers first the negative
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cover and then uses it to derive the positive cover. To discover the negative cover, [SF93]
searches for invalid FDs in every pair of tuples. In this work, the derivation of FDs from
the invalid FDs is done in a top-down way. The algorithm for the derivation of the positive
cover is composed of two parts. Starting from the most general candidate FDs, the algorithm
checks if a candidate FD refers to an invalid FD using the negative cover and if it is found
to be invalid, new attributes are added in its left-hand size until a valid FD is found. The
process continues until all the valid FDs are derived.

In [FS99], the same authors propose a bottom-up approach based on [SF93] using
a more efficient algorithm for deriving the positive cover from the negative cover. Un-
like [SF93], this new algorithm is driven by the negative cover and it finds for each
discovered invalid FD the valid FDs. Thus, it derives the positive cover from the negative
cover in a bottom-up way. Comparing with TANE, [FS99] appears to be more efficient
when the number of attributes is big.

In bottom-up approaches, the discovery of FDs is done in two steps, first the complete
set of maximal invalid FDs are discovered and second these invalid FDs are used to derive
the set of minimal FDs. Bottom-up approaches are based on the fact that an invalid FD can
be discovered using only two tuples, unlike valid FDs. Different strategies are proposed to
improve the efficiency of FD derivation.

Hybrid approaches. Hybrid approaches combine top-down and bottom-up strategies to
discover minimal FDs.

In [LPL00], the authors propose Dep-Miner, an approach that uses a bottom-up algo-
rithm to discover the negative cover and a top-down algorithm to derive the positive cover.
As TANE [HKPT99], Dep-Miner represents the data in a stripped partition database in order
to have a compact representation of the data. Unlike the previous approaches that compute
the negative cover by finding invalid FDs in each pair of tuples of the dataset, Dep-Miner
uses the stripped partition database to filter out tuples that do not share values. Indeed,
tuples that never share values cannot lead to an invalid FD, thus they are not explored.

To find the minimal FDs of the form X ! A, Dep-Miner selects a right-side part A and
using all the invalid FDs having A as right-side part, it adds attributes until all the minimal
FDs are found.

The authors of [WGR01] propose an extension of Dep-Miner [LPL00] called FastFDs.
Like Dep-Miner FastFDs stores the data in a stripped partition database in order to identify
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pairs of tuples that should not be explored. FastFDs discovers directly only the positive
cover in a relation. The experiments show that FastFDs can outperform Dep-Miner for the
considered relations.

Hybrid approaches take advantage of both bottom-up and top-down approaches to
reduce the number of computations needed to find the complete set of minimal FDs.

Approaches discovering valid FDs in several relations. In [WDS+09], the authors propose
a way of retrieving non composite probabilistic FDs from a set of sources, based on a
mediated schema and schema mappings between the sources. A probabilistic FD denoted
by X!p A, where p is the likelihood of X! A to be a valid FD. To obtain probabilistic FDs
for a number of sources, two different strategies are proposed: the first merges data coming
from relations of different sources before discovering FDs, while the second discovers FDs
in each relation of a source and then merges them. The first strategy is more useful for
sources containing relations with few tuples and incomplete information. Nevertheless, this
strategy may introduce noise since different representations may be used to describe same
real world objects. In sources containing relations with many tuples, the second strategy
seems more appropriate.

Conditional functional dependencies discovery in relational databases
Unlike a functional dependency that must hold for all the tuples of a relation, a conditional
functional dependency, expresses a functional dependency that is conditionally valid, only
in a subpart of the data. Conditional functional dependencies have received a lot of attention
the last years, having as main applications to summarize data semantics, to detect and repair
data inconsistencies.

Definition 5. (Conditional functional dependency). A conditional functional dependency
(CFD) j on R is a pair (R: X ! A, tp) where (1) X is a set of attributes in attr(R) and A a
single attribute, (2) X! A is a standard FD, referred to as the FD embedded in j; (3) and tp

is a pattern tuple with attributes in X and A where each B 2 X [A, tp[B] is either a constant
0a0 in the dom(B) or an unnamed variable 0_0 that draws values from dom(B).

For example in the Figure 2.5 some of the valid CFDs are:
j0 : ([CC,ZIP]! ST R,(44,_||_))
j1 : ([CC,AC]!CT,(01,908||MH))

j2 : ([CC,AC]! ST R,(01,212||EDI))
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The CFD j0 states that when two customers are in the country CC = 44, the ZIP uniquely
determines the street ST R. (44,_||_) refers to the pattern tuple that where this FD is valid.

As shown in [GKK+08], given a fixed FD X ! A, the problem of discovering pattern
tuples associated to this FD is NP-complete.

A CFD X ! A is minimal when A is functionally dependent on any subset of X .

Classification of CFDs. The CFDs can be classified in two categories, the constant CFDs
and the variable CFDs. A CFD (X ! A, tp) is called constant CFD if its pattern tuple tp

consists only of constants, i.e., tp[A] is a constant and for all B 2 X , tp[B] is a constant.
It is called variable CFD if tp[A] =0 _0, i.e., the right part side of its pattern tuple is the
unnamed variable 0_0. The CFD j0 is considered as variable while j1 and j2 are considered
as constant.

To measure the quality of a CFD, the notion of support can be used. The support Sj of
a CFD j represents the the number of tuples that satisfy the pattern tuple of j to the CFD
to the complete number of tuples in the relation.

A CFD is considered as f requent if its support is greater than a given threshold.

The CFDs were initially proposed by [Mah97]. Both [Mah97] and [BFG+07] assume
that the CFDs are known and propose SQL based techniques to clean the data using this
knowledge. In [GKK+08], the authors state that even if X ! Y is known to be a CFD,
the pattern tuples where this CFD is valid might be unknown. For this reason, the authors
of [GKK+08] propose an approach that computes close-to-optimal pattern tuples for a CFD
when the FD is given. However, [Mah97, BFG+07, GKK+08] assume that the FDs are
available which is not usually the case. Thus, several works focus on the automatic discov-
ery of CFDs.

The problem of CFDs discovery is first addressed in [CM08]. This approach is inspired
by TANE [HKPT99] and discovers minimal CFDs using an attribute lattice as seen in Fig-
ure 2.4. As in TANE, this approach traverses the lattice in a top-down way starting the
exploration from the most general candidate CFDs in order to obtain only minimal CFDs.
This work uses a stripped partition database to store a relation in a compact way. Once a
candidate CFD X!A is generated, to consider if it is valid, at least one equivalent class of X
should refine an equivalent class of A. This means a specific value of X determines a specific
value of A. Several prunings are applied to make the approach more scalable. As already
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seen in FD discovery, when for two attribute sets X and Y it is true that |pY (R)| = |pX(R)|
and Y = X [{A} where A is one attribute, then X ! A. Thus, to improve the efficiency of
CFD discovery, [CM08] searches first if a candidate corresponds to a FD and it filters it out
if the above condition is true. Moreover, if a candidate X ! A is a functional dependency
over R, no candidates having as left part supersets of X and as right side A will not be ex-
plored. The support of X is also used to avoid the search of some candidates in the lattice.
Considering that a set X is not large enough (given a threshold q ), since then the addition of
more properties will be equal or smaller, CFDs containing X as a left-hand side are avoided.

The authors of [FGLX11] propose three new algorithms for the discovery of CFDs,
CTANE, CFDMiner, and FastCFD, each one efficient in different cases. Like [CM08],
CTANE is based on TANE and discovers directly minimal variable CFDs in a top-down
way. CTANE extends the prunings of TANE to improve the scalability of CFD discovery.
FastCFD is a bottom up approach based on FastFD, an approach proposed in [WGR01] for
the discovery of FDs. Unlike the other two algorithms, CFDMiner discovers only constant
CFDS. The authors show through their experimental evaluation that top-down approaches
such as CTANE may not scale when the number of attributes increases. In addition, CFD-
Miner has been proved to be the most efficient since, discovering constant CFDs is faster
than discovering variable CFDs.

Finally, [LLTY13] proposes a top-down approach for the discovery of constant CFDs
applying more pruning techniques to reduce the search space. Unlike any other top-down
approach, the authors use a lattice to represent combinations of values. Each level of the
lattice corresponds to combinations of values of the same size. More precisely, the first level
represents every single value in the data, the second level represents combinations of two
values and so on. Additionally, for each combination of values, its support is also stored.
Given two nodes X and Y = X [A, the combination of values X determines the value A
(i.e., X ! A) if the support(X) = support(Y ). The scalability of this work are based on the
pruning of nodes in the lattice. A node is pruned when it and its descendants cannot lead to
new minimal CFDs. Thus, the monotonic characteristic of a CFD is exploited. Moreover,
this work considers as candidate CFDs sets of values that have a minimum support. Thus,
if the support of a combination is less than a given threshold, this combination and all its
supersets are eliminated.

Key discovery in relational databases
Keys are usually unknown. There exist approaches that aim to discover keys from the data.
In general, these approaches are interested in discovering minimal keys. Since the problem
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of key discovery is a subproblem of FD discovery, an approach can compute the set of
minimal keys considering that the complete set of FDs is given [SS96]. Nevertheless, the
complete set of FDs is rarely known and its discovery costs more than the discovery of keys.

The problem of discovering minimal composite keys (i.e., minimal keys that are com-
posed of more than one attribute) in a given dataset, when no FDs are known, is #P-
hard [GKM+03]. Indeed, to check if a set of properties is a key, a naive approach would
scan all the tuples of a table to verify if there are no tuples sharing values for these attributes.
Even in the case where every key is composed of few attributes, the number of candidate
keys can be millions. For example, considering a relation described by 60 attributes the
number of candidate keys would be 260 -1. Even if we know that all the existing keys are
composed of at most 5 properties, the number of candidate keys is more than six millions
(
�60
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�60
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�60
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�
). Thus, several methods to prune the search space have been

proposed.
Discovering keys in a relational database has been addressed by various approaches

([SBHR06], [AN11], [VLM12], [KLL13], [HJAQR+13]). These approaches can be
organized in two categories, the row-based approaches and the column-based approaches.

R2 CC AC PN NM ST R CT ZIP
t1 01 908 1111111 Rick Tree Ave. MH 07974
t2 01 908 2222222 Jim Elm Str. MH 07974
t3 01 212 2222222 Joe 5th Ave MH 01202
t4 44 131 3333333 Ben High St. EDI EH4 1DT
t5 44 131 4444444 Ian High St. EDI EH4 1DT
t6 44 908 4444444 Ian Port PI MH W1B 1JH

Fig. 2.5 Tuples of the relation R2(CC,AC,PN,NM,ST R,CT,ZIP)

Row-based approaches. A row-based approach is based on a row-by-row scan of the
database for all column combinations. This strategy is similar to bottom-up approaches
where the FDs are derived from the invalid FDs.

The authors of [SBHR06] propose Gordian, a row-based approach that applies several
pruning techniques to improve the scalability of the key discovery. Gordian avoids checking
all the values of all the candidate keys by discovering first all the sets of attributes that are
not keys, and then uses them to derive the keys. The main idea of Gordian is based on the
fact that to validate that a set of attributes is not a key, i.e., a non key, only two tuples sharing
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values on this set of attributes are needed.
The data are represented in a prefix tree where each level of the tree corresponds to an

attribute of the relation. Each node contains a variable number of cells. Each non-leaf cell
has a pointer to a child node. Each cell contains a value in the domain of the attribute corre-
sponding to the level of the node node’s level and (ii) an integer that represents the number
of tuples of the father node sharing this value. For example, Figure 2.6 shows the prefix tree
of the first four attributes CC,AC,PN,NM of the relation R(CC,AC,PN,NM,ST R,CT,ZIP)
presented in Figure 2.5. The cell 01 in the first level represents three people that share this
value for the attribute CC. From these three people, two of them share the value 908 for the
attribute AC while one of them has the value 212. Observing the prefix tree, it is easy to
deduce that the set of attributes {CC,AC} is a non key since two people share values for CC
and AC.

Fig. 2.6 A prefix tree of the attributes CC, AC, PN and NM in relation R2 of the Figure 2.5

To discover the complete set of maximal non keys, Gordian explores the prefix tree in a
depth-first way. Starting from a cell of the root node of the tree, Gordian continues with cells
that are in children nodes of the considered cell. When a cell of a leaf node is reached, Gor-
dian discovers that a selected set of attributes, corresponding to the traversed cells, refers
to a non key if there exist more than two objects sharing values for this set of attributes.
To compute all the possible combinations of attributes, Gordian "forgets" levels of the pre-
fix tree by merging the children nodes of the following levels and discovers non keys on
subparts of the prefix tree. For example, to discover the non key {CC,PN,NM}, Gordian
suppresses the level containing the attribute AC and merges the nodes of the attribute PN.
Figure 2.7 shows the new prefix tree.

To optimize the prefix tree exploration, Gordian applies different prunings. First, Gor-
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Fig. 2.7 A prefix tree of the attributes CC, PN and NM

dian exploits the anti-monotonic characteristic of a non key by avoiding exploring subparts
of already discovered non keys. Second, paths of the prefix tree describing values of only
one tuple are avoided since no non key can be discovered. This pruning exploits the mono-
tonic characteristic of a key.

Once the complete set of maximal non keys is discovered, to derive the set of minimal
keys from the set of maximal non keys, Gordian computes the Cartesian product of the
complement sets of maximal non keys. This derivation is considered as the bottleneck of
the approach when first the dataset is composed of many attributes and second the number
of maximal non keys is large.

The authors state that Gordian is much faster than a simple column-based approach in
all the experiments that have been done.

R1 A B C D
t1 1 2 3 5
t2 1 3 null 6
t3 1 2 4 7

Table 2.3 Tuples of the relation R1(A,B,C,D) containing a null value

In [KLL13], the authors introduce the notion of keys under the presence of null values.
In Table 2.3, one value of the tuple t2 in relation R1 has been replaced by a null value. Two
new types of keys are introduced to represent the effects of the null values on the attributes
composing a key, the possible key and the certain key. A key is considered as possible when
the replacement of a null value by a real value can turn this set of properties to a non key,
depending on the value. For example, if the null value of the Table 2.3 is replaced by the
value 3 or 4, then the attribute C is a non key while if it is replaces by any other value, it is a
key. A set of properties that is not affected by the replacement of null values with any value
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is called certain key. For example, the set of attribute {B,C} is a certain key since whatever
value is given to the null value, there do not exist two tuples sharing values for this set.

In the same way, the authors define the notion of weak non key and strong non key.
Given two tuples t, t 0, a weak non key refers to a set of attributes where for each attribute
A, t[A] = t 0[A] or t[A] = null or t 0[A] = null. For each attribute A in a strong non key,
t[A] = t 0[A] 6= null.

To discover the set of certain keys and possible keys, the authors propose a simple
row-based approach to discover the maximal weak non keys and strong non keys by
exploring all the pairs of tuples of a dataset. In our example, in the tuples t1, t2, the
maximal weak non key is the set {A,C} and the strong non key is the attribute A. In the
tuples t1, t3, both the maximal weak non key and maximal strong non key are the set
{A,B}. Finally, for the tuples t2, t3, the maximal weak non key is {A, C} and the maximal
strong non key is {A}. In the end, the set of maximal weak non keys is {A,B},{A,C} and
the set of strong non keys is {A,B}. Given the set of maximal (weak) strong non keys
the set of (certain) possible keys are derived using a key derivation method similar to the
one used by Gordian [SBHR06]. For example, given the set of maximal weak non keys
{A,B},{A,C}, the Cartesian product of the complement sets {C,D} and {B,D} gives the
sets {B,C} and {D} which refer to the certain minimal keys in R1.

Column-based approaches. A column-based approach searches for keys column-by-
column. More precisely, the idea is to check the uniqueness of every column combination
on all rows. This strategy is similar to top-down approaches used in FDs.

The column-based approach HCA proposed in [AN11] that discovers the set of minimal
keys. HCA uses several prunings to reduce the search space. It exploits first functional
dependencies found during the key discovery process, to deduce new keys without having
to validate them. For example, if the set of attributes {A,B} is a key and C! A, then the
set of attributes {B,C} is also a key. Moreover, HCA uses partitions of combinations of
attributes to prune the search path. For example, in the relation R2 of the Figure 2.5, the
set of attributes {CC,CT} cannot be a key since |pCC(R2)|⇥ |pCT (R2)| = 4 < # tuples.
The authors propose also a fusion of their initial approach HCA with [SBHR06] called
HCA-Gordian. This new approach runs Gordian in a sample of data and uses the discovered
non keys to prune the search of HCA.
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Hybrid approaches. To scale in big datasets, hybrid approaches use both column-based
and row-based pruning techniques to discover both keys and non keys at the same time.

In [HJAQR+13], the authors propose DUCC, a hybrid approach for the discovery of
minimal keys. As in TANE [HKPT99], all the possible combinations of attributes are rep-
resented in a lattice. A preprocessing step is applied to filter out all the single keys. DUCC
exploits the monotonic characteristic of keys and the anti-monotonic characteristic of non
keys to prune the search space of the lattice. This means that when a key (non key) is discov-
ered, no superset (subset) of this key will be explored since, by definition, it refers to a key
(non key). Pruning the lattice using keys and non keys might create unreachable nodes in the
lattice. To discover these nodes, DUCC checks if the set of discovered non keys leads to the
set of discovered keys, using the key derivation algorithm proposed by Gordian [SBHR06].
Finally, to improve the efficiency of the approach, DUCC uses parallelization techniques to
test different sets of attributes simultaneously.

In [VLM12], the authors propose two different approaches for discovering keys on a
sample of data provided by a domain expert. The first proposition is a row-based approach
that (i) discovers maximal non keys for a set of tuples and (ii) adds attributes to the sets of
non keys until they become keys. Only minimal keys are kept.

Their second proposition is an approach that discover non keys using a row-based way
to discover keys and a column-based way to derive keys from non keys. Similar to the
dep-Miner approach [LPL00], this approach discovers first the set of maximal non keys
using a row-based algorithm and then derives the set of minimal keys using a column-based
algorithm.

2.2.2.2 Discovering keys or semantic dependencies in Semantic Web

The problem of key discovery in RDF datasets, in the setting of the Semantic Web, is
similar to the key discovery problem in relational databases. Nevertheless, in database area
the approaches do not consider the semantics defined in the ontology. Unlike RDF data,
the properties of a relational table cannot be, by construction, multivalued. Moreover, RDF
data may be incomplete and may contain duplicates or erroneous data. For these reasons,
different approaches are needed to discover keys in RDF datasets. In this section, we
present first the few approaches that have faced the keys discovery in RDF data. Before
that, we present an approach that discovers semantic dependencies, a problem that is similar
to the key discovery problem.
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Semantic dependency discovery
Similar to FDs and CFDs in relational databases, semantic dependencies represent knowl-
edge of the data that is more general than keys. Considering that the data published on the
Web are usually incomplete, extracting semantic dependencies from the data can help to
make them more complete. Moreover, potential errors in an RDF dataset might be detected
using semantic dependencies. Finally, they can be also exploited by approaches that do
reasoning. Since this knowledge is usually unknown, the authors of [GTHS13] propose an
approach for their automatic discovery.

Definition 6. (Semantic dependency). A semantic dependency (SD) over an RDF dataset D
is B1 ^B2 ^ . . .^Bn ) p(x,y) where Bi corresponds to pi(xi,yi) where each xi and yi can
correspond to variables or constants. B1^B2^ . . .^Bn corresponds to the body of the SD
while p(x,y) to the head of the SD.

For example, the SD s1 : motherO f (m,c)^marriedTo(m, f )) f atherO f ( f ,c) states that
if m is the mother of c and she is married to f , then f is the father of c.

The authors of [GTHS13] propose AMIE, a top-down approach that discovers semantic
dependencies in RDF data. To be capable to discover SDs under the OWA, the authors
assume that if at least one property value is given for an instance, then all the property
values for this instance are given (local completeness). One of the main problems of such
approaches is to find an efficient way to discover all the possible SDs. To restrict the search
space, AMIE discovers only closed connected semantic dependencies. An SD is closed
if every variable in the SD appears at least twice and connected if every Bi is transitively
connected to every other atom of the rule. For example, the SD s1 seen before is both closed
and connected. AMIE starts from the most general candidate SDs, and it adds Bi until a
candidate SD becomes valid. Once a SD is discovered, more specific SDs are not explored.
To improve the execution time of the discovery, different candidates are tested in parallel.
Moreover, the authors use the measure of head coverage to reduce the search space. This
measure is computed using the support of a SD which represents the number of pairs x and
y for which the SD B1^B2^ . . .^Bn) p(x,y) is valid. The head coverage is:

hc(B1^B2^ . . .^Bn) p(x,y)) =
support(B1^B2^ . . .^Bn) p(x,y))

#(x0,y0) : p(x0,y0)

The authors are only interested in SDs having head coverage bigger than a given threshold.
In this way, SDs covering only few cases are not computed.
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Since there can exist SDs with few exceptions, the authors propose the PCA confidence
measure to compute the confidence of a SD in the setting of OWA. The PCA confidence is
computed as follows:

pcacon f (B1^B2^ . . .^Bn) p(x,y)) =
support(B1^B2^ . . .^Bn) p(x,y))

#(x,y) : 9z1, . . . ,zm,y0 : B1^B2^ . . .^Bn^ p(x,y0)

Key discovery in RDF data
Keys in RDF data are not usually specified. Discovering automatically keys from the data
is #P-hard [GKM+03]. The problem of key discovery in RDF data has been addressed by
few works. The presented approaches discover different kinds of keys. To evaluate the
quality of keys, different measures are proposed.

In PARIS [SAS11], the authors discover (inverse) functional properties from datasets
where the UNA is fulfilled. An (inverse) functional property is a single key applicable to
all the instances of the data. In this work, one ontology contains both the schema and the
instances. The aim is to link instances and schema entities (i.e.,classes and properties). To
link instances, PARIS discovers (inverse) functional properties in the datasets where the
UNA is fulfilled.

To avoid the loss of (inverse) functional properties due to erroneous data, the authors
compute the (inverse) functionality degree which represents the probability of a property to
be (inverse) functional. This measure is also used to capture properties that are not (inverse)
functional due to few exceptions. The functionality degree of one property is:

f un(p) =
#x 9y : p(x,y)
#x,y p(x,y)

The inverse functionality degree is defined analogously. The (inverse) functionality degree
of a property is low when there exist many distinct (instances) values referring to the same
(values) instances. Thus, only properties with high (inverse) functionality degree are useful.

As seen in the Section 2.2.1.1, [SH11] is a blocking approach that discovers discrimina-
tive properties. In this work, only datatype properties are considered. The discriminability
is similar to the inverse functionality degree defined in [SAS11]. The only difference is that
the discriminability is defined for instances that belong to a set of given classes. Indeed, a
property can be highly discriminative for a class and not for another. For example, the name
is a very discriminative property for a country but not for a person.
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The discriminability is:

dis(p, IC) =
#y p(x,y)^ x 2 IC

#x,y p(x,y)^ x 2 IC

where IC represents the set of instances of every selected class c 2C. The authors propose
also a new metric, to measure the proportion of instances where a property is instantiated
among the total number of instances. This measure is called coverage of a property p. A
low coverage represents a property that is not used to describe many instances, thus is not
useful.

The coverage is:

cov(p, IC) =
#x p(x,y)^ x 2 IC

|IC|

For example, even if the discriminability of a property is 1, i.e., there exists only unique
values for this property, if we consider that there exist 50 instances for the set of classes C
and that this property appears only in 5 instances (coverage=5/50 = 0.1), then the authors
do not consider this property as significant.

To take into account both metrics, the authors introduce the notion of F1-score (FL):

FL =
2⇤dis(p, IC)⇤ cov(key, IC)

dis(p, IC)+ cov(p, IC)

FL is computed for every property p. Given a threshold a , if there exist several properties
with FL > a , only the property with the highest FL is selected. If none of the properties sat-
isfy this condition, the algorithm combines the property that has the highest discriminability
with every other property in the dataset. The FL of the new combinations of properties is
computed and if no combination satisfies the condition, the process continues until one com-
bination of properties has FL higher than the threshold. Thus, the number of computations
depends on the defined threshold.

This approach discovers only a subpart of the keys that can be found in the data.

In [ADS12], the authors present an approach that discovers keys and pseudo-keys (keys
that hold in a part of the data) for data linking and data cleaning. The keys that are discov-
ered in this work use a definition, different from the one defined in OWL2. Considering a
property p and an instance i, p(i) denotes the set of values that the instance i has for the
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property p. In this approach, a key in one dataset is defined as follows:

Definition 7. (Key). A set of properties P is a key if for all the instances i1, i2, if p(i1) =
p(i2) for all p 2 P then i1 = i2 .

This type of keys is mainly significant for datasets where the data are locally complete,
i.e., for each instance and for each property, all the values are considered to be given.

For example, using the extract of an RDF dataset of the Figure 2.8, the property
FirstName is a key since, the sets of values for this property {Joan,Armando}, {Joan}
and {George} are distinct. Unlike this approach, the property FirstName would not be con-
sidered as a key using the semantics of OWL2 since there exist two different people that
have the same name.

FirstName(p1, 00Joan00), FirstName(p1, 00Armando00), LastName(p1, 00Robles00),
FirstName(p2, 00Joan00), LastName(p2, 00Galarraga00), FirstName(p3, 00Alex00),
LastName(p3, 00Galarraga00), owl:di f f erent(p1, p2), owl:di f f erent(p1, p3),
owl:di f f erent(p2, p3)

Fig. 2.8 Extract of an RDF dataset

The discovery of keys is done using a bottom-up approach based on TANE [HKPT99].
Similarly to TANE, the data are stored in a structure similar to a stripped partition database
with the only difference that partitions of size one are also kept. To consider a set of prop-
erties as a key, each partition should have size one (i.e., singleton partition). To validate
the importance of a discovered key, the authors use the support which is the same as the
coverage proposed by [SH11].

In order to discover sets of properties that are either keys under the presence of
erroneous data or not keys due to few exceptions, the authors introduce a new type of
keys called pseudo-keys. To measure the quality of such sets of properties a new notion of
discriminability different from the one proposed in [SH11] is given.

For a set of properties P, the discriminability is:

dis(P) =
# singleton partitions

# partitions

A set of properties P is considered as pseudo-key when the discriminability of P is bigger
than a given threshold.
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For example, if a set of properties is considered as pseudo-key if the discriminability
is bigger than 0.3 then the property LastName, in the Figure 2.8, will be a pseudo key
(dis(LastName) = 0.33).

2.3 Discussion

Identity links between resources of different datasets add a real value to the linked data
existing on the Web. Due to the huge amount of available data and to its heterogeneity, it
is difficult to set the identity links manually. Therefore, there exist many approaches that
focus on the automatic discovery of identity links.

Some data linking approaches are numerical and use complex similarity measures,
aggregation functions and thresholds to build the rules. These approaches are often
adapted to a given pair of datasets. This kind of rules in some cases is automatically
discovered [IB12, NL12, NdM12, SAS11]. Other approaches are based on logical rules
[SPR09, HCQ11] that are automatically generated using the semantics of keys or (inverse)
functional properties. This kind of knowledge can also be used by an expert to construct
more complex similarity functions that take more into account properties that are involved
in keys [VBGK09, NA11]. Moreover, for scalability reasons, keys can be involved in block-
ing methods to create blocks of instances that are possibly referring to the same real world
object [SH11].

The advantage of using keys instead of complex similarity functions is that keys can be
valid to a given domain and not only to a specific pair of datasets. Since it can be hard even
for an expert to define the complete set of keys and such knowledge is not usually declared
in an ontology, approaches that automatically discover keys from the data are needed.

The problem of key discovery has been previously studied in the setting of relational
databases. The key discovery approaches in relational databases are based on strategies
initially proposed for the discovery of FDs. Since the discovery of keys is an #P-hard
problem, different strategies to reduce the size of the search space are proposed. Key
discovery approaches apply pruning strategies such as the monotonicity of keys and the
anti-monotonicity of non keys that are inspired from FD discovery approaches. Moreover,
structures for storing the data in an efficient way like the stripped partition database or a pre-
fix tree are proposed to represent the data in a compact way. The key discovery approaches
can be grouped into two main categories, the column-based approaches and the row-based
approaches.

Column-based approaches, based on top-down approaches for FDs, focus on the dis-
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covery of the complete set of minimal keys. These approaches build candidate keys and
validate them against the data. Already discovered keys are used to prune the search space
(i.e., monotonic pruning). Unlike column-based approaches, row-based approaches, based
on bottom-up approaches for FDs, search the data to discover first all the maximal non keys
and then derive the minimal keys from the discovered non keys. The pruning of the search
space is based on the anti-monotonic characteristic of non keys. These approaches seem to
be more efficient than column-based approaches when many data should be explored and
the number of properties is big. Intuitively, discovering a non key from the data is much
more easy than discovering a key. The bottleneck of such approaches is the derivation of
minimal keys from the set of maximal non keys.

Even if the key discovery problem in the setting of relational databases is similar to
the one in the setting of Semantic Web, different characteristics of the RDF data should be
taken into account. Since RDF data are usually composed of many triples and properties,
new pruning strategies and structures for storing efficiently the data, taking into account the
semantics of the ontology, are required. Unlike RDF data that contain multivalued proper-
ties, approaches that discover keys in the setting of relational databases find keys that are
valid only in one relational table. Moreover, RDF data usually conform to an ontology where
knowledge such as hierarchies of classes exist. Very often, RDF datasets contain incomplete
data. To deal with this, different assumptions for the not declared information in the data
should be considered. Most of the approaches proposed both in relational databases and
the Semantic Web consider that the data used in the discovery are locally complete. Only
the approach [KLL13], introduced in the setting of relational databases, proposes different
heuristics of interpreting the null values in a relational table.

The problem of discovering the complete set of minimal composite keys in a given RDF
dataset has been addressed only in [ADS12]. Nevertheless, in this work, the authors provide
an approach that discovers keys that do not conform to the semantics of keys as it is provided
by OWL2 (see [ACC+14] for a comparative study). This work does not provide pruning
strategies that can improve the scalability of the discovery. The remaining approaches focus
only on the discovery of either single keys or a small subset of composite keys. All these
approaches discover keys considering that all the data are locally complete.

To estimate the quality of the discovered keys, different metrics such as the support
and the discriminability of each key are used. None of the existing approaches propose a
strategy for merging keys discovered in different datasets. A merge strategy may allow the
discovery of keys with higher quality since keys globally valid may be more significant than
keys locally discovered in different datasets.
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Thus, we consider that approaches that discover efficiently the complete set of minimal
OWL2 keys, taking into account erroneous data duplicates, are needed. Since RDF data
can be incomplete, different heuristics are required. Also, strategies for merging keys
discovered in different datasets are necessary. To the best of our knowledge, there do not
exist approaches that discover conditional keys. A conditional key is a set of properties that
is a key for a subpart of the data. Similar to keys and FDs, conditional keys are similar to
CFDs. CFD approaches exploit strategies first proposed in the FD discovery to discover the
complete set of CFDs. Since conditional keys can be used to enrich the knowledge for a
given domain, their discovery can be interesting.

To summarize the contributions of all the key discovery approaches that have been stud-
ied in this thesis, we provide the comparison Table 2.4.

Semantic Web
Approach Composite Complete OWL2 Approximate Incomplete Strategy

keys set of keys keys keys data heuristics
[SAS11] X X -
[SH11] X X X Column-based
[ADS12] X X X Column-based

Relational databases
Composite Complete Approximate Incomplete Strategy

keys set of keys keys data heuristics
[SBHR06] X X Row-based
[AN11] X X Column-based

or Hybrid
[VLM12] X Row-based
[HJAQR+13] X X Hybrid
[KLL13] X X X Row-based

Table 2.4 Comparison of key discovery approaches





Chapter 3

KD2R: A Key Discovery approach for
Data Linking

In the recent years, keys play an increasingly important role in the Semantic Web, especially
thanks to the introduction of owl:HasHey construct in OWL2. This construct allows to
declare an axiom in an ontology stating that a set of properties is a key for a specific class.
Keys can be used for different purposes. They can be exploited as logical rules to deduce
identity links with a high precision rate. Moreover, keys can guide the construction of more
complex linking rules, including elementary similarity measures or aggregation functions
specified by user experts. Similarly to blocking methods for relational data, keys can also
help to detect instance pairs that do not need to be compared.

In most of the datasets published on the Web, keys are not available. Furthermore, when
ontologies are large, composed of many classes and properties, it can be very difficult even
for a human expert to determine keys. Single keys that are usually more easy to define,
such as the Social Security Number (SSN) for a person or the International Standard Book
Number (ISBN) for a book, are very rare. Thus, an expert might not be able to give the
complete set of complete keys and might even provide erroneous ones. Therefore, automatic
methods that discover composite keys from the data are necessary.

The problem of automatic key discovery has been already studied in the relational
database field. Even if the key discovery problem appears to be similar in RDF data, there
exist characteristics of the RDF data that should be taken into account. To begin with, since
the discovery of keys in the relational database field always concerns data found on a single
relational table, properties cannot be, by construction, multivalued. On the contrary, multi-
valued properties are very common in RDF data. Moreover, considering the information of
an RDF dataset as complete or not, i.e., Closed World Assumption (CWA) or Open World
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Assumption (OWA) should be studied. Finally, issues such as class inheritance exist only in
RDF. Thus, the need for tools that handle these RDF characteristics is obvious.

Since the quality of the keys depends on the data, it is evident that the more data are
exploited in key discovery, the more probable it is to obtain meaningful keys. Moreover,
we note that most of the datasets published on the Web contain classes described by a big
number of properties. This makes the discovery of keys even harder. Therefore, methods
that can deal with big data and discover keys efficiently are required.

In this chapter, we present KD2R, an automatic approach for composite key discovery in
RDF datasets that conform to OWL ontologies. To discover keys in datasets where the CWA
cannot been ensured, we theoritically need all the owl:sameAs and owl:differentFrom links
existing in a dataset. Since usually RDF datasets do not contain these links and the CWA
cannot be ensured, KD2R discovers keys in datasets where the Unique Name Assumption
(UNA) is fulfilled, i.e., there exists an implicit owl:differentFrom link for every pair of
instances in the data. Moreover, discovering keys when data might be incomplete is also
possible. KD2R uses either a pessimistic or an optimistic heuristic to interpret the absence
of information in the data. To be more efficient, KD2R discovers first maximal non keys (i.e.,
a set of properties having the same values for several distinct instances) before inferring the
keys. Furthermore, thanks to the addition of the ontology, KD2R exploits key inheritance
between classes in order to prune the non key search space. In order to obtain keys that
are valid in different datasets, KD2R discovers first keys in each dataset and then applies a
merge operation to compute them. To find keys in datasets conforming to distinct ontologies,
ontology alignment tools are used that create mappings between ontology elements (see
[PJ13] for a recent survey on ontology alignment). These mappings are exploited to find
keys that are valid in all the datasets.

The work described in this chapter has led to an early publication in the [SPS11]. The
final version of this work, which the present Chapter closely follows, appeared in [PSS13].
In [ACC+14, CCL+14], a theoretical and experimental comparison of KD2R with the key
discovery tool provided by [ADS12] is conducted.

In the following of this chapter, we present all the contributions of KD2R. The main
contributions are:

1. An algorithm for the efficient discovery of OWL2 keys from non keys applying dif-
ferent pruning strategies.

2. The introduction of a pessimistic heuristic and an optimistic heuristic to interpret the
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absence of information in incomplete data.

The remainder of this chapter is organized as follows. Section 3.1 provides the problem
statement of key discovery. Section 3.2 presents the general idea of KD2R while Section 3.3
gives the key discovery algorithms. In Section 3.4, we present the optimistic heuristic ap-
plied in the key discovery. The results of the experiments are described in Section 3.5. We
provide our concluding remarks in Section 3.6.

3.1 Problem Statement

OWL2 keys express sets of properties that uniquely identify each instance of a class. How-
ever, if a complete knowledge of owl:sameAs and owl:differentFrom is not provided in a
dataset, it is not possible to distinguish the two following cases:

1. common property values describing instances that refer to the same real world entity

2. common property values describing instances that refer to two distinct real world
entities.

Dataset D1:
Person(p1), f irstName(p1, 00Wendy00), lastName(p1, 00Johnson00), hasFriend(p1, p2),
hasFriend(p1, p3), bornIn(p1, 00USA00),

Person(p2), f irstName(p2, 00Wendy00), lastName(p2, 00Miller00), bornIn(p2, 00UK00),

Person(p3), f irstName(p3, 00Madalina00), lastName(p3, 00David00), hasFriend(p3, p2),
hasFriend(p3, p4),

Person(p4), f irstName(p4, 00Jane00), lastName(p4, 00Clark00), bornIn(p4, 00Ireland00)

Fig. 3.1 RDF dataset D1

The Figure 3.1 presents the dataset D1 that contains instances of the class Person. A per-
son is described by its first name, its last name, its friends and the country where he/she was
born. In D1, if we know that the persons p1 and p2 are the same, the property f irstName
can be considered as a key.

In the RDF datasets that are available on the Web, owl:sameAs and owl:differentFrom
links are rarely declared. If we consider the overall Linked Open Data cloud (LOD), there
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exist datasets containing duplicate instances. Nevertheless, datasets that fulfill the UNA, i.e.,
all the instances of a dataset are distinct, are not so uncommon. Indeed, datasets generated
from relational databases are in most of the cases under the UNA. Furthermore, in some
cases RDF datasets are created in a way to avoid duplicates, like the YAGO knowledge
base [SKW07]. Thus, we are interested in discovering keys in datasets where the UNA is
fulfilled. For example, considering that the dataset D1 of the Figure 3.1 is under the UNA,
the property f irstName cannot be a key since there exist two distinct persons having the
same name.

When literals are heterogeneously described, the key discovery problem becomes much
more complex. Indeed, syntactic variations or errors in literal values may lead to miss keys
or to discover erroneous ones. For example, in the dataset D1, if a person is born in “USA”
and another in “United States of America”, bornIn can be found as a key. In this work,
we assume that the data described in one dataset are either homogeneous or have been
normalized.

Furthermore, in the Semantic Web context, RDF data may be incomplete and asserting
the Closed World Assumption (CWA), i.e., what is not currently known to be true is false,
may not be meaningful. For example, the fact that in the dataset D1, the person p2 has
no friends does not mean that hasFriend(p2, p1) is false. Axioms such as functionality or
maximum cardinality of properties could be taken into account to exploit the completeness
of some properties. Since these axioms are rarely given, discovering keys in RDF data
requires the use of heuristics to interpret the possible absence of information. We consider
two different heuristics, the optimistic heuristic and the pessimistic heuristic:

• Pessimistic heuristic: when a property is not instantiated, all the values in the
dataset are possible while in the case of instantiated properties, we consider that
the information is complete. For example, hasFriend(p2, p1), hasFriend(p2, p3),
hasFriend(p2, p4) are possible while hasFriend(p1, p4) is not.

• Optimistic heuristic: only the values that are declared in the dataset are taken into
account in the discovery of keys. In other words, we consider that if there exist other
values that are not contained in the dataset, they are different from all the existing
ones. For example, hasFriend(p2, p3) is not possible.

The quality of the discovered keys improves when numerous data coming from different
datasets are exploited. Thus, we are interested in discovering keys that are valid in several
datasets. The datasets may not be described using the same ontology. Hence, we assume
that equivalence mappings between classes and properties are declared or computed by an
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ontology alignment tool. However, we do not consider that all the datasets are united in
a single dataset (under an integrated ontology). Indeed, in this case the UNA would no
longer be guaranteed. Therefore, keys are first discovered in each dataset and then merged
according to the given mapping set.

Let D1 and D2 be two RDF datasets that conform to two OWL ontologies O1, O2 respec-
tively. We assume that OWL entailment rules [PSHH04] are applied on both RDF datasets.
We consider in each dataset Di the set of instantiated properties Pi = {pi1, pi2, . . . , piN}. To
discover keys that involve property expressions, we assume that for each object property p,
an inverse property (inv-p) is created. Let Ci = {ci1,ci2, . . . ,ciL} be a set of classes of the
ontology Oi. Let M be the set of equivalence mappings between the elements (properties
or classes) of the ontologies O1 and O2. Let P1c (resp. P2c) be the set of properties of P1

(resp. of P2) such that there exists an equivalence mapping with a property of P2 (resp. of
P1). The problem of key discovery that we address in this chapter is defined as follows:

1. for each dataset Di and each class ci j 2 Ci of the ontology Oi, such that it exists a
mapping between a class ci j and a class cks of the other ontology Ok, discover the
parts of Pi that are keys in the dataset Di

2. find all the parts of Pic that are keys for equivalent classes in the two datasets D1 and
D2 with respect to the property mappings in M .

3.2 KD2R: Key Discovery approach for Data Linking

In this section, we introduce some preliminary definitions before presenting an overview of
KD2R approach. In the following, we consider that the dataset D1 of the Figure 3.1 is under
the UNA.

3.2.1 Keys, Non Keys and Undetermined Keys

We consider a set of properties as a key for a class, if every instance of the class is uniquely
identified by this set of properties. In other words, a set of properties is a key for a class if,
for all pairs of distinct instances of this class, there exists at least one property in this set for
which all the values are distinct.

Definition 7. (Key). A set of properties P (P ✓P) is a key for the class c (c 2 C ) in a
dataset D if:

8X 8Y ((X 6= Y )^ c(X)^ c(Y )))
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9p j (9U 9V p j(X ,U)^ p j(Y,V ))^ (8Z ¬(p j(X ,Z)^ p j(Y,Z)))

For example in D1 (see Figure 3.1), the property lastName is a key for the class Person
since every last name in the dataset is unique. The set of properties { f irstName, bornIn}
is also a key since (i) there do not exist two persons sharing values for the properties
f irstName and bornIn and (ii) whatever is the country that the person p3 is born in, this set
of properties will always be considered as a key.

We denote KD.c the set of keys of the class c w.r.t the dataset D.

Definition 8. (Minimal key). A set of properties P is a minimal key for the class c (c 2 C )
and a dataset D if P is a key and @ P0 a key s.t. P0 ⇢ P

We consider a set of properties as a non key for a class c if there exist at least two distinct
instances of this class that share values for all the properties of this set.

Definition 9. (Non key). A set of properties P (P✓P) is a non key for the class c (c 2 C )
and a dataset D if:

9X 9Y (X 6= Y )^ c(X)^ c(Y )^ (
^

p2P
9U p(X ,U)^ p(Y,U))

For example in D1, the property f irstName is a non key for the class Person since there
exist two people having as first name the name “Wendy”.

We denote NKD.c the set of non keys of the class c w.r.t the dataset D.

Definition 10. (Maximal non key). A set of properties P is a maximal non key for the class
c (c 2 C ) and a dataset D if P is a non key and @ P0 a non key s.t. P⇢ P0

To be able to apply the pessimistic and optimistic heuristics, some combinations of
properties cannot be considered neither as keys nor as non keys. More precisely, a set of
properties is called an undetermined key for a class c if (i) this set of properties is not a non
key and (ii) there exist at least two instances of the class that share values for a subset of the
undetermined key and (iii) the remaining properties are not instantiated for at least one of
the two instances.



3.2 KD2R: Key Discovery approach for Data Linking 45

Definition 11. (Undetermined key). A set of properties P (P✓P) is an undetermined key
for the class c (c 2 C ) in D if:

• (i) P /2 NKD.c and

• (ii) 9X 9Y (c(X)^ c(Y )^ (X 6= Y )^8p j

((9Z (p j(X ,Z)^ p j(Y,Z))_@W (p j(X ,W )_@W p j(Y,W ))))

For example in D1, the persons p1, p2 have the same first name, (“Wendy”), but
for person p2 no information about her friends is given. Thus, the set of properties
{ f irstName, hasFriend} is an undetermined key. If we consider that hasFriend(p2, p3) is
true in the dataset D1, then { f irstName, hasFriend} is a non key.

We denote UKD.c the set of undetermined keys of the class c for a dataset D.

Following the Definition 10, an undetermined key P is maximal if there does not exist
an undetermined key P0 such that P⇢ P0.

Undetermined keys can be considered either as keys or as non keys, depending on the
selected heuristic. Using the pessimistic heuristic, undetermined keys are considered as
non keys, while using the optimistic heuristic, they are considered as keys. The discovered
undetermined keys can be validated by a human expert who can assign them to the set of
keys or non keys.

3.2.2 KD2R overview

A naive automatic way to discover the complete set of keys in a class, is to check all the
possible combinations of properties that refer to this class. Let us consider a class described
by 60 properties. In this case, the number of candidate keys is 260�1. Even if we consider
that the size of each key will be small in terms of number of properties, the number of
candidate keys can be millions. In the previous example, if we consider that the maximum
number of properties for a key is 5, the number of candidate keys is more than six million.
For each candidate key, to ensure if it refers to a key or not, the values of all the instances
concerning this candidate key should be explored. In order to minimize the number of
computations, we propose a method inspired by [SBHR06] which first retrieves the set
of maximal non keys (i.e., sets of properties that share the same values for at least two
instances) and then derives the set of minimal keys from the non keys. Unlike keys, having
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(a) KeyFinder for one dataset (b) Key merge for two datasets

Fig. 3.2 Key Discovery for two datasets

only two instances sharing values for a set of properties are enough to consider this set as a
non key.

In Figure 3.2, we show the main steps of the KD2R approach. Our method discovers the
keys for each RDF dataset independently. In each dataset, KD2R is applied on the classes
that are previously sorted in a topological order. In this way, the keys that are discovered
in the superclasses can be exploited when keys are discovered in their subclasses. For a
given dataset Di and a given class c, we apply KeyFinder (see Algorithm 1), an algorithm
that finds keys for each class of a dataset. The instances of a given class are represented
in a prefix tree (see Figure 3.2(a)). This structure is used to discover the sets of maximal
undetermined keys and maximal non keys. Once all the undetermined keys and non keys
are found, they are used to derive the set of minimal keys. KeyFinder repeats this process
for every class of the given ontology. To compute keys that are valid for the classes of two
ontologies, KeyFinder is applied in each dataset independently and once all the keys for
every class are found, the obtained keys are then merged in order to compute the set of keys
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that are valid for both datasets (see Figure 3.2(b)).

3.3 KD2R general algorithm

KeyFinder (see Algorithm 1) is the main algorithm of the KD2R which retrieves for each
class of an RDF dataset that conforms to an OWL ontology, the set of minimal keys.
KeyFinder sorts the classes by computing their topological order (see Line 1).

For each class, KeyFinder builds an intermediate prefix tree (see Line 5) which is a com-
pact representation of the descriptions of instances of this class. Then, the final prefix tree
(see Line 6) is generated in order to take into account the possible unknown property values.
Using the final prefix tree and the set of inherited keys, if there exist any (see Line 11), UN-
KFinder (see Line 12) retrieves the maximal non keys and the maximal undetermined keys.
Finally, to compute the complete set of minimal keys of a class, KeyFinder calls the Key-
Derivation algorithm (see Line 13). In this section, KeyFinder exploits to the pessimistic
heuristic. Section 3.4 provides information about the discovery of keys using the optimistic
heuristic.

Algorithm 1: KeyFinder
Input : (in) RDF dataset D, Ontology O
Output: Keys: the set of minimal keys for each class c of O

1 classList topologicalSort(O)
2 while classList 6= /0 do
3 c getFirst(classList) //get and delete the first element

tripleList instanceDescriptions(c)
4 if tripleList 6= /0 then
5 IPT  createIntermediatePrefixTree(tripleList)
6 FPT  createFinalPrefixTree(IPT )
7 level 0
8 UKD.c /0
9 NKD.c /0

10 curUNKey /0
11 inheritedKeys getMinimalKeys(Keys, c.superClasses)
12 UNKFinder(FPT.root, level, inheritedKeys, UKD.c, NKD.c, curUNKey)
13 KD.c KeyDerivation(UKD.c, NKD.c)

KD.c getMinimalKeys(inheritedKeys.add(KD.c))
14 Keys.c KD.c

15 return Keys
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3.3.1 Illustrating example

We introduce an example that is going to be used throughout this chapter. In Figure 3.3,
we present a part of DBpedia ontology concerning restaurants (name space db1). The class
db:Restaurant is described by its name, its telephone number, its address and finally the
city and the country where it is located. The class db:Restaurant is a subclass of the class
db:Building. The Figure 3.4 contains RDF descriptions of four db:Restaurant instances.

Fig. 3.3 A small part of DBpedia ontology for the class db:Restaurant

Dataset D2:
db:Restaurant(r1), db:name(r1, 00Arzak00), db:city(r1, c1), db:country(r1, 00Spain00),
db:address(r1, 00800 Decatur Street 00),

db:Restaurant(r2), db:name(r2, 00Park Grill00), db:city(r2, c2), db:country(r2, 00USA00),
db:address(r2, 0011 North Michigan Avenue00),

db:Restaurant(r3), db:name(r3, 00Geno0s Steaks00), db:country(r3, 00USA00),
db:telephone(r3, 00884�408300), db:telephone(r3, 00884�408400),
db:address(r3, 0035 cedar Avenue00),

db:Restaurant(r4), db:name(r4, 00 joy Hing00), db:city(r4, c4), db:country(r4, 00China00),
db:address(r4, 00265 Hennessy Road00)

Fig. 3.4 RDF dataset D2

1
http://dbpedia.org/ontology/

http://dbpedia.org/ontology/
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3.3.2 Prefix Tree creation

We now describe the creation of the prefix tree which represents the descriptions of the
instances of a given class in one dataset. Each level of the prefix tree corresponds to a
property p and contains a set of nodes. Each node contains a set of cells. Each cell contains:

1. a cell value: (i) when p is a property, the cell value is one literal value, one URI
instantiating its range or a null value and (ii) when p is an inverse property, the cell
value is one URI instantiating its domain or an artificial null value.

2. IL: (i) when p is a property, the Instance List, called IL, is the set of URIs instantiating
its domain and having as range the cell value, and (ii) when p is an inverse property,
the Instance List is the set of URIs instantiating its range and having as domain the
cell value.

3. NIL: the Null Instance List, called NIL, is the list of URIs for which the property
value is unknown and for which we have assigned the cell value (null or not).

4. a pointer to a single child node.

Each prefix path corresponds to the set of instances that share cell values for all the
properties involved in the path.

In order to consider the cases where property values are not given in the dataset, we
create first an intermediate prefix tree, called IP-Tree. In IP-Tree, the absence of a value
for a given property is represented by an artificial null value. The final prefix tree, called
FP-Tree, is generated by assigning all the existing cell values of one node to the cell that
contains the artificial null value.

3.3.2.1 IP-Tree creation

In order to create the IP-Tree, we use all the properties that appear at least in one description
of an instance of the considered class. For each value of a property, if there does not exist
already a cell value with the same value, a new cell is created and the Instance List IL is
initialized with this instance. When a property does not appear in the description of an
instance, we create or update, in the same way, a cell with an artificial null value. The
creation of the IP-Tree is achieved by scanning the data only once.

Example 3.3.1. Example of CreateIntermediatePrefixTree algorithm.
Figure 3.5 shows the IP-Tree for the descriptions of instances of the class db:Restaurant in
the RDF dataset D2 presented in Figure 3.4. The creation of the IP-Tree starts with the first
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Algorithm 2: CreateIntermediatePrefixTree
Input : (in) RDF DataSet s , Class c
Output: root of the IP-Tree

1 root newNode()
2 P getProperties(c,s)
3 foreach c(i) 2 s do
4 node root
5 foreach pk 2 P do
6 pk(i) getValue(i)
7 if pk(i) == /0 then
8 if 9 cell1 2 node with null value then
9 node.cell1.IL.add(i)

10 else
11 cell1 newCell()
12 node.cell1.value null
13 node.cell1.IL.add(i)

14 else
15 foreach value v 2 pk(i) do
16 if 9 cell1 2 node with value v then
17 node.cell1.IL.add(i)
18 else
19 cell1 newCell()
20 node.cell.value v
21 node.cell.IL.add(i)

22 if pk is not the last property then
23 if hasChild(cell1) then
24 node cell.child.node()
25 else
26 node cell.child.newNode()

27 return root

instance which is the restaurant r1. A new cell is created in the root node containing the
name of the country in which the restaurant is located. The next information concerning this
restaurant is the city where it is located. To store this information a new node will be created
as a child node of the cell “Spain”. In this new node, a new cell is created to store the value
c1. The process continues until all the information about an instance are represented in the
tree. For each new instance, the insertion begins again from the root.
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Fig. 3.5 IP-Tree for the instances of the class db:Restaurant

Fig. 3.6 FP-Tree for the instances of the class db:Restaurant

3.3.2.2 Final Prefix Tree creation

Using the IP-Tree, we generate a FP-Tree (see Algorithm 3). This is done by assigning,
for each node, the set of possible values contained in its cells, to the artificial null value
of this node. If no null values exist in an IP-Tree, this tree is also the FP-Tree. We use
the Null Instance List NIL to store the instances for which the property value is unknown.
This information will be used by UNKFinder (Algorithm 5) to distinguish non keys from
undetermined keys.

Example 3.3.2. Example of CreateFinalPrefixTree algorithm.
In Figure 3.6, we give the FP-Tree of the RDF dataset D2. As we notice in Figure 3.5,
the restaurants r2 and r3 are both located in “USA”. The restaurant r2 is located in the
city c2 while there is no information about the location of the restaurant r3. This absence
is represented by a null cell in the IP-Tree. Therefore, to build the FP-Tree, we assign
the value c2 to null value of r3 for the property db:city. The NIL is now {r2,r3} and r3
is stored in NIL (see Figure 3.7(b)). This assignment is performed using the mergeCells
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operation. This process is applied recursively to the children of this node (see Figure 3.7(c))
in order to: (i) merge the cells of the child nodes that contain the same value and (ii) to
replace the null values by the remaining possible ones.

Algorithm 3: CreateFinalPrefixTree
Input : IPT : IP-Tree
Output: FPT : FP-Tree

1 FPT.root mergeCells(getCells(IPT.root))
2 foreach cell c 2 FPT.root do
3 nodeList getSelectedChildren(IPT.root,c.value)
4 nodeList.add(getSelectedChildren(IPT.root,null))
5 c.child MergeNodeOperation(nodeList)

6 return FPT

Algorithm 4: MergeNodeOperation
Input : (in) nodeList, a list of nodes to be merged
Output: mergedNode, the merged node and its descendants

1 cellList getCells(nodeList)
2 mergedNode mergeCells(cellList)
3 if nodeList contains non leaf nodes then
4 foreach cell c 2 mergedNode do
5 childrenNodeList.add(getSelectedChildren(nodeList,null))
6 childrenNodeList.add(getSelectedChildren(nodeList,c.value))
7 c.child MergeNodeOperation(childrenNodeList)

8 return mergedNode

3.3.3 Undetermined and non key discovery

The UNKFinder algorithm is used to discover the sets of undetermined keys and non keys.
UNKFinder aims at retrieving the set of maximal undetermined keys UKD.c and the set of
maximal non keys NKD.c from the FP-Tree. For this purpose, this algorithm searches the
biggest set of properties for which there exist at least two instances sharing values. To do so,
the FP-Tree is traversed in a depth-first way. When a set of properties is found, it represents
either a non key or an undetermined key.

A set of properties is added to NKD.c or to the UKD.c only when a leaf node (i.e., a node
found in the last level of a tree) is reached. More precisely, when a leaf node is reached, if
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Fig. 3.7 Example of MergeNodeOperation

one of its cells contains an IL with size bigger than 1, we are sure that the constructed set of
properties (curUNKey) is either a non key or an undetermined key. If one of the instances
found in the IL is obtained by a merge with a null value, then curUNKey is an undetermined
key, otherwise it is a non key.

Fig. 3.8 Set of properties {p1 . . . pm} representing an undetermined key

The set of properties {p1, . . . , pm} of the Figure 3.8 represents an undetermined key,
since the instances i1 and i2 share a value for each property in {p1, . . . , pm} and the cell of
pm comes from a merge with a null cell.

Additionally, when the size of the union of all the IL of the leaf node is greater than 1,
we know that the curUNKey, constructed before adding the leaf level, is a non key or an
undetermined key (same criteria as presented above to distinguish them).
For example, in Figure 3.9, we notice that the set of properties {p1, . . . , pm�1} is either a
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Fig. 3.9 Set of properties {p1 . . . pm�1} representing a non key or an undetermined key

non key or an undetermined key since there exists more than one cell in the leaf node n2,
i.e., | {i1}[{i2} |> 1.

In order to discover all the non keys and undetermined keys in the data, we should
generate all the possible combinations of properties. To do so, we need to ignore some
level(s) in the prefix tree. Therefore, the child nodes of the ignored level(s) have to be
merged using the MergeNodeOperation (see Algorithm 4).

Fig. 3.10 Prefix tree before the suppression of pm�1

Let us consider the prefix tree of the Figure 3.10. Once the set of properties
{p1, . . . , pm�1, pm} is tested successively on the leaf nodes n3, n4 and n5, the property
pm�1 is suppressed. Using the MergeNodeOperation (see Algorithm 4), applied on the chil-
dren of n2, the new prefix tree shown in the Figure 3.11 is constructed. In this tree, the new
node n6 represents the result of the MergeNodeOperation on n3, n4 and n5. When needed,
this operation is reapplied recursively on the new prefix trees obtained from the merge.
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Fig. 3.11 Result of the MergeNodeOperation applied on FP-Tree of the Figure 3.10

3.3.3.1 Pruning strategies

To ensure the scalability of the undetermined and non key discovery, UNKFinder performs
three kinds of pruning strategies.

Key pruning. The subsumption relation between classes is exploited to prune the prefix tree
traversal. Indeed, when a key is already discovered for a class using one dataset, then this
key is also valid for all the subclasses in this dataset. Thus, parts of the prefix tree are not
explored.

For example, we consider KD.c1 = {{p1, p3}, {p2, p4}} the set of keys of the class c1.
Let c2 be a subclass of c1 in the ontology. This means that all the keys of the class c1 will
be also valid keys for the class c2. Indeed, if a key is valid in a dataset (i.e., descriptions
of a superclass), it will be also valid in every subset of this dataset (i.e., descriptions of a
subclass). Let us now consider the prefix tree of the class c2 shown in Figure 3.12. When
the curUNKey = {p1, p2, p3}, the pruning is applied since the curUNKey includes one of
the keys of c1 (i.e., {p1, p3}). In this case, {p1, p2, p3} is a key as well. Therefore, the
subtree rooted at n3 will not explored.

Antimonotonic pruning. This strategy exploits the anti-monotonic characteristic of a non
key, i.e., if a set of properties is a non key, all its subsets are, by definition, non keys. Thus,
no subset of an already discovered non key will be explored. In other words, when all the
new combinations of properties in a given path cannot lead to new maximal non keys, then
the exploration of this path stops.

For example, let NKD.c = {{p1, p2, p3}} be the set of already discovered non keys.
Suppose that curNKey = {p1}. If the remaining levels of the prefix tree correspond only to
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Fig. 3.12 Pruning paths of a prefix tree when a key is known

the properties p2 and/or p3, then the children of the current node are not explored.

Monotonic pruning. This strategy exploits the monotonic characteristic of keys, i.e., if a set
of properties is a key then all the supersets of this key are also keys. Therefore, when a node
describes only one instance, i.e., it contains only one cell, we are sure that no non key can
be found using this node. Thus, if while traversing the prefix tree a node is only composed
of one cell, the current path will not be explored since it cannot lead to a non key.

3.3.3.2 UNKFinder algorithm

In order to discover all the maximal non keys, UNKFinder (see Algorithm 5) traverses the
prefix tree.

The algorithm takes the following inputs: (i) root a node of the prefix tree, (ii) level a
number assigned to the current property, (iii) inheritedKeys the set of keys inherited from
all the super-classes of the current class, (iv) UKD.c the set of undetermined keys, (v) NKD.c

the set of non keys and finally (vi) curUNKey the candidate non key or undetermined key.
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UNKFinder is called for the first time with the following parameters:
UNKFinder(root, 1, inheritedKeys, /0, /0, /0) where root is the node that corresponds
to the root of the prefix tree and inheritedKeys the set of already known keys, if any.

The algorithm begins from the root of the prefix tree and makes a depth-first traversal of
it in order to discover the maximal undetermined keys and non keys.

In each iteration of the algorithm, the variable curUNKey represents the current candi-
date undetermined key or non key. The curUNKey contains the identifiers of the properties
that are currently explored. Let us consider the case where the root node does not corre-
spond to a leaf (see Line 18). The size of the IL of each cell is checked only if the following
conditions are satisfied: (i) the cells of the root do not represent values of only one instance
(see Line 20), (ii) the curUNKey does not belong to an already known key (see Line 12) and
(iii) there exist new candidate maximal non keys. If the size of the IL is bigger than one, the
UNKFinder is called for the next level. When all the cells of the root have been explored,
the level of the root is removed from the curUNKey, the children of the node are merged
and the UNKFinder is executed on the new merged tree mergedTree.

When UNKFinder proceeds to a leaf, if the IL size of one cell is bigger than 1, this
means that there are more than one instances with the same cell values in the prefix path
and the curUNKey will be added to either the NKD.c or to the UKD.c. In order to be able
to separate the non keys from the undetermined keys, we have to check if one of the cells
that participates in the curUNKey has been obtained by a merge with a null value. If so,
the curUNKey will be added in the set UKD.c. The algorithm continues by removing the
current level from the curUNKey. If the current root has more than one cell and at least one
of these cells has IL bigger than 1, the curUNKey will be added to either NKD.c or UKD.c.

Example 3.3.3. Example of UNKFinder algorithm.
We illustrate UNKFinder algorithm on the FP-Tree shown in Figure 3.6. The algorithm is
called for the first time with the root node of the prefix tree. In this case, the level 1 is added
to the curUNKey. The first cell to be explored contains the value “Spain”. Since the IL
of this cell has size one (r1), the algorithm will not examine the children of this cell (see
Line 26). Indeed, when a cell has IL of size 1 this means that it describes only one instance.
Therefore, no undetermined key or non key can be found.

The algorithm moves to the next cell of the root node, containing the value “USA”.
Since the list IL has size 2, UNKFinder is called for the child node of this cell. Now the
curUNKey is {1,2} and the current cell is‘“c2”. The list IL of this cell has size bigger than
1 thus, UNKFinder is now called for the child node of the “c2”. The level of the property
db:telephone is added to the curUNKey, i.e., curUNKey = {1, 2, 3}. Starting from the
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Algorithm 5: UNKFinder
Input : (in) root: node of the prefix tree

(in) level: property number
(in) inheritedKeys: keys inherited from super-classes
(in/out) UKD.c: set of undetermined keys
(in/out) NKD.c: set of non keys
(in/out) curUNKeyD.c: candidate undetermined or non key

1 curUNKey.add(level)
2 if root is a leaf then
3 foreach cell c 2 root do
4 if c.IL.size()> 1 then
5 if one of the cells of the prefix path comes from a merge with null value (NIL.size()>1)

then UKD.c.add(curUNKey)
6

7 else
8 NKD.c.add(curUNKey)
9 UKD.c.delete(curUNKey)

10 break

11 curUNKey.remove(level)
12 if root has more than one cell and union(getIL(root.cells))).size()> 1 then
13 if one of the cells of the prefix path comes from a merge with null value (NIL.size()>1) then
14 UKD.c.add(curUNKey)

15 else
16 NKD.c.add(curUNKey)
17 z

18 else
19 //pruning: monotonic characteristic of keys (curUNKey is a key for the current path)
20 if IL of each cell of root contains the same instances then
21 return
22 //pruning: monotonic characteristic of inherited keys and anti-monotonic characteristic of non

keys
23 if @ k ✓ curUNKey s.t. k 2 inheritedKeys and new maximal non keys are achievable through the

current path then
24 foreach cell c 2 root do
25 //pruning: monotonic characteristic of keys
26 if c.IL.size()> 1 then
27 UNKFinder(c.getChild,level+1,inheritedKeys, UKD.c, NKD.c )

28 curUNKey.remove(level)
29 //pruning: anti-monotonic characteristic of non keys
30 if new maximal non keys are not achievable through the current path then
31 return
32 childNodeList getChildren(root)
33 mergedTree MergeNodeOperation(childNodeList)
34 UNKFinder(mergedTree,level+1, inheritedKeys, UKD.c, NKD.c)
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cell “88844083” we observe that the list IL has size bigger than 1. Thus, UNKFinder is
called for the child node of this cell. The curUNKey is now {1, 2, 3, 4}. We observe
that both cells “Park Grill” and “Geno’s Steaks” have IL of size 1. This means that the
UNKFinder will not be called with any of these cells at this step. Proceeding to the Line 11
of the algorithm, the curUNKey is now {1, 2, 3}. The children of this node are merged
and UNKFinder is called with the new merged node called mergedTree. The curUNKey
is equal to {1, 2, 3, 5}. As we can see, the node mergedTree corresponds to a leaf node.
Since none of the cells of this node have IL with size bigger than 1, the level 5 is removed
from the curUNKey. Now the curUNKey contains 1, 2 and 3 (see Line 1). Since (i) the
root node contains more than one cell, (ii) the cells refer to more than one instances (see
Line 12) and (iii) there exists at least one cell that comes from the merge with a null value
(see Line 13), the set {1, 2, 3} is added to the UKD.c.

We now proceed to the cell “88844084”. Since the list IL has size bigger than 1, the
UNKFinder is called for the child node of this cell. The curUNKey is again {1, 2, 3, 4}. We
observe that both cells have a IL of size 1, thus UNKFinder will not be called. As before,
the children of this node are merged and the UNKFinder is called for the new merged node.
The curUNKey is {1, 2, 3, 5}. Since all the cells have ILs of size 1, the curUNKey is
now {1, 2, 3}. We notice that the uk {1, 2, 3} is already contained in the UKD.c. Now the
level 3 is removed from the curUNKey and the children of the two cells “88844083” and
“88844084” are merged. Calling UNKFinder with the new merged node, the curUNKey
is now {1, 2, 4}. Since both cells have ILs of size 1, the level 4 is removed from the
curUNKey. The children of this node are now merged and curUNKey is {1, 2, 5}. The
current node corresponds to a leaf node. Both cells “11 Michigan Avenue” and “35 Cedar
Avenue” have ILs of size 1. Thus, the level 5 is removed from the curUNKey.

Since this node is composed of more than one cells and there exists at least one cell that
comes from the merge with a null value, the set {1, 2} is added to the UKD.c.

Continuing these steps, we obtain the following sets of maximal undetermined keys and
maximal non keys for the class db:Restaurant:
UKD2.db:Restaurant = {{db:telephone, db:city, db:country}}

NKD2.db:Restaurant = {{db:country}}.

3.3.3.3 Key derivation

Once the sets of maximal undetermined keys and maximal non keys of one class are dis-
covered for a given dataset, we are able to derive the set of minimal keys. The main idea
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is that a key is a set of properties that is not included or is not equal to any maximal non
key or undetermined key. To build all these sets of properties, for each maximal non key
and undetermined key, we retain the properties that do not belong to this non key or unde-
termined key. Then, the Cartesian product of the obtained properties is computed and only
the minimal sets are kept.

More precisely, as shown in the Algorithm 6 inspired from [SBHR06], to derive the
minimal keys KD.c, we first compute the union of NKD.c and UKD.c and select only the
maximal sets of properties (see Line 2). For each selected set of properties, we compute
the complement set with respect to the whole set of instantiated properties. The Cartesian
product of all the complement sets gives all the combinations of properties that are not non
keys, thus that are keys. Once all the keys are found, the function getMinimalKeys is applied
to remove all non-minimal keys from the obtained set KD.c.

Algorithm 6: KeyDerivation
Input : UKD.c: set of maximal undetermined keys

NKD.c: set of maximal non keys
Output: KD.c: set of minimal keys

1 KD.c /0
2 UNKD.c getMaximalUNKeys(UKD.c[NKD.c)
3 foreach unk 2UNKD.c do
4 complementSet complement(unk)
5 if KD.c == /0 then
6 KD.c complementSet

7 else
8 newSet /0
9 foreach pk 2 complementSet do

10 foreach k 2 KD.c do
11 newSet.insert(k.add(pk))

12 newSet getMinimalKeys(newSet)
13 KD.c newSet

14 return KD.c

For example, in the class db:Restaurant we have discovered the set of undetermined
keys UKD2.db:Restaurant = {{db:telephone, db:city, db:country}} and the set of non keys
NKD2.db:Restaurant = {{db:country}}.
In this case, there exists only one maximal set of properties:
{{db:telephone,db:city, db:country}}.
The complement set of {db:telephone,db:city, db:country} is:
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{db:address, db:name}.
Since there is only one set of properties, we obtain the following minimal keys:
KD2.db:Restaurant = {{db:address}, {db:name}}.

3.3.3.4 Valid keys in different datasets

Given two datasets that conform to different ontologies, and the sets of discovered keys in
each one of them, we propose a strategy that computes keys that are valid in both datasets.
We consider that all the mappings between the two ontologies are available. The keys
are expressed using common vocabulary. The process starts by deleting from KD.c all the
keys that contain properties that do not belong to the set of mapped properties called Peic.
Indeed, if a key contains properties that are not used by the other ontology, this key can never
be valid for both ontologies. Considering two equivalent classes and their sets of keys, the
objective is to find the smallest sets of properties that are valid keys in both datasets. For
this purpose, we compute the Cartesian product of their minimal keys. As a final step, we
select only the minimal ones. Following these steps, we guarantee that the obtained keys
are valid in both datasets.

For example, consider two datasets D = {D2,D3}. If the sets of minimal keys in the
dataset D2 and in the dataset D3 are:
KD2.db:Restaurant = {{db:address}, {db:name}} and
KD3.db:Restaurant = {{db:telephone, db:city}, {db:name}}
then the valid keys will be:
KD:Restaurant = {{db:telephone, db:address, db:city}, {db:name}}.

3.4 Key Discovery applying the Optimistic heuristic

To consider the optimistic heuristic, it suffices to call the KeyDerivation (see Algorithm 6)
only with the set of non keys NKD.c instead of calling it with the union of the sets of non
keys and undetermined keys (NKD.c [ UKD.c).

In the case where the undetermined keys are not necessary and their computation can be
avoided, a more efficient key discovery method can be performed. Indeed, considering that
each null value can be one of the already existing ones, means that we have to assign all the
values to each not given one. This makes the approach based on the pessimistic heuristic
not scalable when the data are incomplete. As we have already mentioned, the pessimistic
heuristic considers that missing values can be any of the already existing values appearing
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in the data. Using this approach many keys can be lost due to data incompleteness. For
example, let us consider a dataset describing 1000 people and one of its properties, the
property mobilePhone, which is given for 999 people in this dataset. Even when all the 999
values of the property mobilePhone are pairwise distinct for each person, mobilePhone will
not be discovered when the pessimistic heuristic is applied. on the contrary, applying the
optimistic heuristic, the property mobilePhone will be discovered as key since the absence
of the values is not taken into account.

The keys discovered applying the optimistic heuristic, i.e., optimistic keys, correspond
to the union of the keys (see Definition 7) and the undetermined keys (see Definition 11).

Definition 12. (Optimistic Key). A set of properties P = {p1, . . . , pn} (P✓P) is an opti-
mistic key for the class c (c 2 C ) in D if:

8X 8Y ((X 6= Y )^ c(X)^ c(Y )))

(8Z ¬(p j(X ,Z)^ p j(Y,Z)))

For example, the property db:address is an optimistic key for the class db:Restaurant since
the addresses of all the restaurants appearing in the dataset D2 are distinct.

We denote KD.c the set of optimistic keys of the class c w.r.t the dataset D.

From now on, we will refer to what has been presented in the Section 3.3 as KD2R
pessimistic and what we presented in this section as KD2R optimistic. Using the optimistic
heuristic, there is no more need for a IP-Tree (see Algorithm 2). Using Algorithm 7, we
can build directly the FP-Tree, since no null values have to be merged. To discover only
the optimistic keys using the general Algorithm 1, we just replace the steps of creation of
the IP-Tree and the creation of the FP-Tree by the creation of the optimistic prefix tree.

3.5 Experiments

In this section, we present the results of the experiments obtained applying KD2R in differ-
ent datasets. The experiments are grouped in three categories. In Section 3.5.1, we provide
the obtained keys for each dataset. Section 3.5.2 shows the scalability of KD2R when the
optimistic heuristic is applied. Finally, the evaluation of the quality of the discovered keys is
performed in Section 3.5.3, using the data linking tool N2R. The quality of the data linking
is measured using the recall, the precision and the F-measure.
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Algorithm 7: createOptimisticPrefixTree
Input : RDF DataSet s ,

Class c
Output: root of the optimistic prefix tree

1 root newNode()
2 P getProperties(c,s)
3 foreach c(i) 2 s do
4 node root
5 for each pk 2 P do
6 pk(i) getValue(i)
7 foreach value v 2 pk(i) do
8 if there exists a cell cell1with value v then
9 node.cell1.IL.add(i)

10 else
11 cell1 newCell()
12 node.cell.value v
13 node.cell.IL.add(i)

14 if pk is not the last property then
15 if hasChild(cell1) then
16 node cell.child.node()
17 else
18 node cell.child.newNode()

19 return root

The experiments have been executed on a single machine with 4GB of RAM, processor
Intel(R) Core(TM) i5 CPU 650@3.20GHz running Windows 7 (64-bit).

3.5.1 Discovered keys in different datasets

We have evaluated KD2R on thirteen RDF datasets2. Four datasets have been used in OAEI
2010 (Ontology Alignment Evaluation Initiative)3, in the Instance Matching track. Two
more datasets have been taken from the OAEI 20114. Four datasets have been collected
from the Web of data. In the context of the Qualinca project 5, three additional datasets have
been used for the experimental evaluation. Each dataset conforms to an OWL ontology.

2
http://www.lri.fr/~sais/KD2R-DataSets

3
http://oaei.ontologymatching.org/2010/

4
http://oaei.ontologymatching.org/2011/

5
http://www.lirmm.fr/qualinca/?q=en/en/home

http://www.lri.fr/~sais/KD2R-DataSets
http://oaei.ontologymatching.org/2010/
http://oaei.ontologymatching.org/2011/
http://www.lirmm.fr/qualinca/?q=en/en/home
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UNA is declared for some of these datasets. For each dataset, we discover the keys applying
both the optimistic and pessimistic heuristics.

Table 3.1 displays some statistics of the used datasets. The table contains the number
of triples, the number of instances per class and the number of properties per class. In the
following, we describe each dataset and present the set of keys that are discovered by KD2R.

Dataset #triples #instances #properties
(per class) (per class)

OAEI:Person1 - D1 5801 Person: 500 Person: 7
Address: 500 Address: 6

OAEI:Person2 - D2 6230 Person: 500 Person: 7
Address: 500 Address: 6

OAEI:Restaurant1 - D3 891 Restaurant: 113 Restaurant: 4
Address: 113 Address: 3

OAEI:Restaurant2 - D4 3347 Restaurant: 752 Restaurant: 4
Address: 752 Address: 3

GFT - D5 4494 Restaurant: 1349 Restaurant: 4
ChefMoz - D6 153300 Restaurant: 32686 Restaurant: 4

OAEI:Film1 - D7 117076 Film: 1288 Film: 8
Creature: 8401 Creature: 9
Location: 2471 Location: 8
Language: 67 Language: 4
Budget: 101 Budget: 2

OAEI:Film2 - D8 129429 Film: 1288 Film: 8
Creature: 8401 Creature: 9
Location: 2471 Location: 8
Language: 67 Language: 4
Budget: 101 Budget: 2

DB:Person - D9 (T=20%) 2952706 740689 7
DB:Person - D9 (T=10%) 3332207 742233 10

DB:NaturalPlace - D10 (T=20%) 836960 49887 11
INA - D11 (T=30%) 596415 Contenu: 44779 Contenu: 82

Personne: 7444 Personne: 44
ABES1 - D12 59839 Person: 5671 Person: 9
ABES2 - D13 8738 Person: 573 Person: 13

Table 3.1 Statistics on the used datasets
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3.5.1.1 KD2R results on OAEI 2010 datasets

Datasets D1, D2. Both datasets D1 and D2, provided by the Instance Matching track of
OAEI 2010, contain 1000 instances of the classes Person and Address (see Table 3.1). In
their common ontology:

• a Person instance is described by the datatype properties givenName, state, surname,
dateO f Birth, socSecurityId, phoneNumber, age and the object property hasAddress.

• an Address instance is described by the datatype properties street, houseNumber,
postCode, isInSuburb6 and the object property hasAddress.

Both RDF datasets D1 and D2 contain each 500 instances of the class Person and 500
instances of the class Address.

KD2R has discovered the following four keys that are valid in both D1 and D2 for the
classes Person and Address, using the pessimistic heuristic:
KD1D2.Person = {{socSecurityId}, {hasAddress}}
KD1D2.Address = {{isInSuburb, postcode, houseNumber}, {inv-hasAddress}}.

Applying the optimistic heuristic, KD2R has discovered the following thirteen keys that are
valid in D1 and D2, for the classes Person and Address:
KD1D2.Person = {{socSecurityId}, {hasPhone}, {hasAddress}, {dateO f Birth, givenName},
{dateO f Birth, age}, {surname,dateO f Birth}, {surname,givenName}}
KD1D2.Address = {{street, houseNumber}, {street, isInSuburb}, {houseNumber, isInSuburb},
{postCode, isInSuburb}, {street, postCode}, {inv-hasAddress}}.

Using the optimistic heuristic, all the undetermined keys are considered as keys. Both
datasets D1 and D2 contain a lot of not instantiated properties for the class Person. Thus,
we have obtained a significant number of undetermined keys. This has led to a set of keys
that is much bigger than the one obtained using the pessimistic heuristic.

Datasets D3, D4. The datasets D3 and D4 contain descriptions of the classes Restaurant
and Address (see Table 3.1). Both datasets correspond to the first version of the OAEI 2010
restaurant dataset that contains bugs. In the provided ontology:

6in the ontology of the second dataset isInSuburb is declared as an object property. Since it was the unique
difference between the two ontologies, we have chosen to rewrite the second dataset using the first ontology.
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• a Restaurant instance is described using the datatype properties properties name,
phoneNumber, hasCategory and the object property hasAddress.

• an Address instance is described using the datatype properties street, city and the
object property hasAddress.

The dataset D3 contains 113 Address instances and 113 Restaurant instances while the
dataset D4 contains 752 Restaurant instances and 752 Address instances.

The five valid keys in D3 and D4 obtained under the pessimistic heuristic, are as follows:
KD3D4.Restaurant = {{phoneNumber, name}, {phoneNumber, hasCategory},{hasAddress},
{name, hasCategory}}
KD3D4.Address = {{inv-hasAddress}}.

Since D3 and D4 do not contain any undetermined key, the obtained results are the same for
both optimistic and pessimistic heuristics.

3.5.1.2 KD2R results on GFT-ChefMoz datasets

Datasets D5, D6. The dataset D5 contains data extracted from the ChefMoz repository
published on the LOD, while the dataset D6 contains data found in Google Fusion tables
service [GHJ+10], by [QSSR12]. Each dataset conforms to a distinct OWL ontology.
The GFT dataset D5 contains 1349 instances of the class Restaurant (see Table 3.1). In
the ontology, a restaurant is described by the datatype properties title, address, cuisine and
city.
The Che f Moz dataset D6 contains 32686 instances of the class Restaurant (see Table 3.1).
This dataset has been cleaned to remove duplicate instances. To do so, instances with similar
names have been linked and manually checked in order to suppress duplicates. In this
ontology, restaurants are described using more properties than in ontology of the dataset
D5. Equivalence mappings have been set for the properties of GFT D5 and Che f Moz D6.
KD2R has discovered the following keys for the class Restaurant in the dataset D5, using
the pessimistic heuristic:
KD5.Restaurant = {{address}, {city, title}}.

The key that is obtained for Restaurant in the dataset D6 is the following composite key,
using the pessimistic heuristic:
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KD6.Restaurant= {{title, address}}.

After the merge, the obtained key is:
KD5D6.Restaurant = {{title, address}}.

Using the optimistic heuristic, the keys obtained on each dataset are different but the key
obtained after their merge is the same as the one obtained using the pessimistic heuristic.

3.5.1.3 KD2R results on OAEI 2011 datasets

Datasets D7, D8. We now present the results of KD2R in IIMB (ISLab Instance Matching
Benchmark) datasets D7 and D8. This benchmark is used in the instance matching track
of the Ontology Alignment Evaluation Initiative (OAEI 2011 & 2012). An initial dataset
D7 describing movies (films, actors, directors, etc.) is extracted from the Web (file 0). The
classes of this dataset are Film, Creature, Language, Budget and finally Location. In their
common ontology:

1. A Film instance is described by the datatype properties name and
estimatedBudgetUsed and the object properties f ilmedIn, directedBy, starringIn,
shotIn, article and f eaturing.

2. A Creature is described by the datatype properties bornIn, name, gender, article,
dateO f Birth and religion and the object properties f eaturing, createdBy and
actedBy.

3. A Language is described by the datatype property iso639Code and the object proper-
ties spokenIn, mainlySpokenIn and dialect.

4. A Budget is described by the datatype properties currency and amount.

5. A Location is described by the datatype properties name, f ormO f Government,
callingCode, article, currency and size and the object properties hasCity and
hasCapital.

Various kinds of transformations, including structural, logical and value transformations,
were applied to this initial dataset to generate a set of 80 different test cases. For each test
case, the complete set of owl:sameAs links between individuals of the generated test case
and the ones of the initial dataset, is given. We evaluate the discovered keys using the first
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test case D8 in which the modifications only concern datatype property values (typograph-
ical errors, lexical variations). Each of the two datasets contain 1228 descriptions of films,
8401 descriptions of creatures, 2471 descriptions of locations, 67 descriptions of languages
and finally 101 different descriptions of budgets concerning the movies.

In this experiment we present only the results of the optimistic heuristic, since the pes-
simistic heuristic cannot scale. The keys found for each class are presented in Table 3.2.
Note that no key has been found for the class Budget.

Creature Location
{{actedBy, religion}, {{currency, hasCity, callingCode},
{name, actedBy, gender}, {hasCity, f ormO f Government, callingCode},
{dateO f Birth, name, religion}, {currency, f ormO f Government, callingCode},
{name, f eaturing, gender}, {name, hasCapital},
{createdBy, f eaturing}, {currency, callingCode, hasCapital},
{name, createdBy}, {currency, name},
{article}, {hasCity, size},
{dateO f Birth, bornIn, religion}, {name, callingCode},
{dateO f Birth, gender, religion}, {callingCode, size},
{dateO f Birth, f eaturing}, {currency, size},
{ f eaturing, bornIn}, {hasCapital, size},
{bornIn, actedBy}, { f ormO f Government, size},
{createdBy, actedBy}, {article},
{createdBy, religion}, {name, f ormO f Government},
{ f eaturing, religion}, {name, hasCity},
{dateO f Birth, actedBy}, { f ormO f Government, callingCode, hasCapital}}
{createdBy, bornIn},
{name, gender, religion},
{dateO f Birth, createdBy}}

Film Language
{{article}, {{dialect},
{estimatedBudgetUsed}, {iso639Code}}
{ f ilmedIn, directedBy, name}}

Table 3.2 Discovered keys for the datasets D7, D8

3.5.1.4 KD2R results on DBpedia datasets

In the case of the DBpedia dataset we provide only results found using the optimistic heuris-
tic, since the pessimistic heuristic does not scale.
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Dataset DB:Person (D9) DB:Person (D9) DB:NaturalPlace (D10)
20% 10% 10%

Selected team, team, lat,
properties name, name, long,

position, position, name,
birthPlace, birthPlace, point,
datedeNaissance, datedeNaissance, country,
squadNumber, squadNumber, district,
currentMember currentMember, location,

occupation, elevation,
dernierePubli, rivermouth,
birthYear locatedinarea,

sourceCountry

Table 3.3 Selected properties for the classes of DBpedia

In order to show the scalability of our method applying the optimistic heuristic, we have
applied KD2R on two datasets extracted from DBpedia7: the first dataset contains descrip-
tions of persons and the second one of natural places (see Table 3.1). One of the charac-
teristics of DBpedia is that the UNA is not fulfilled. All the keys that can be discovered on
such a dataset would still remain valid even if the duplicates are removed. However, some
of the possible minimal keys can be lost. In DBpedia, we observe that some people are rep-
resented several times using distinct instances, but in different contexts. For example, one
soccer-player is represented using several instances, but for each instance the description
concerns its transfer into an new club. In such cases, keys can be discovered.

On small datasets such as OAEI datasets or GFT (less than 10 000 triples), KD2R can
be applied using both the pessimistic and the optimistic heuristics. Nevertheless, on large
datasets such as DBpedia persons (more than 5.6 million of triples) or DBpedia natural
places (more than 1.6 million of triples), the approach based on the pessimistic heuristic
cannot be used. Indeed, such datasets contain a lot of properties that are rarely instantiated
which leads to a FP-Tree that contains too many nodes due to the assignation of all the
possible values to the artificial “null” values in the prefix tree. Hence, in such cases only
the optimistic heuristic can be applied. Moreover, in our experiments we have considered
only the properties that are instantiated for at least T distinct instances of DB:Person and
DB:NaturalPlace since KD2R cannot scale when the number of properties is big. Table 3.3
depicts the selected properties of the classes of DBpedia.

7http://dbpedia.org/Downloads37
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The first dataset D9 contains 763644 instances of the class DB:Person which cor-
responds to 5639680 RDF triples. The second dataset D10 contains 49887 instances
of the class DB:NaturalPlace, or 1604347 RDF triples. To show how the inherited
keys are exploited, KD2R has been applied on the class DB:NaturalPlace, its subclass
DB:BodyO fWater and on the class DB:Lake which is a subclass of DB:BodyO fWater.
For the class DB:Person of D9, when T is equal to 20%, the set of obtained keys is
given in Table 3.4. When T is equal to 10%, KD2R obtains 17 additional composite
keys, such as {name, occupation, birthdate, activeyearstartyear, birthplace}} and
{name, position, deathdate}. For the class DB:NaturalPlace of D10, when T is equal to
20%, the set of obtained keys is given in the table Table 3.5.

DB:Person (T=20%)
{{squadnumber, birthplace}
{squadnumber, birthdate}
{currentmember, birthplace}
{currentmember, name}
{squadnumber, name}
{currentmember, birthdate}}

Table 3.4 Keys for the class DB:Person.
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Fig. 3.13 UNKeyFinder runtime for the class DB:NaturalPlace

For the 33993 instances of the class DB:BodyO fWater, we have found 13 keys, four of
which are subsets of some minimal keys that are inherited from DB:NaturalPlace like {lat,
district}. The rest of the minimal keys belong to the set of minimal keys inherited from
DB:NaturalPlace.
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DB:NaturalPlace (T=20%)
{{name, district, elevation},
{sourcecountry, location},
{country, district, long},
{district, sourcecountry, elevation},
{sourcecountry, long},
{district, location},
{name, lat, district},
{country, locatedinarea},
{lat, district, elevation},
{lat, sourcecountry},
{location, locatedinarea},
{sourcecountry,locatedinarea},
{district, locatedinarea},
{name,district, point},
{country, lat, district},
{name, district, long},
{district, elevation, long},
{country, sourcecountry, elevation},
{country, district, point},
{district, point, elevation},
{sourcecountry, point}}

Table 3.5 Keys for the class DB:NaturalPlace.

For the 9438 instances of the class DB:Lake, we have found 7 minimal keys, three
of them are subsets of some minimal keys that are inherited from DB:BodyO fWater like
{sourceCountry}. The other minimal keys belong to the set of minimal keys inherited from
DB:BodyO fWater.

To measure the resistance of KD2R to the size of properties, we have run KD2R on
sets of properties of different sizes. In Figure 3.13, we observe that the time increases
exponentially to the size of properties and after a certain number the algorithm runs out of
memory.

3.5.1.5 KD2R results on INA and ABES datasets

In the context of the Qualinca project, two additional datasets have been tested by KD2R.
Qualinca (“Qualité et interopérabilité de grands catalogues documentaires”) is a research
project funded by the National Research Agency of France (ANR). The objective of this
project is to develop mechanisms allowing to quantify the quality level of a bibliographical
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knowledge base. Moreover, the improvement of the mentioned quality level, the mainte-
nance of the quality when updating the knowledge base and finally, the use of the knowledge
bases taking into account their quality level are also very important goals of this project. The
project started in April 2012 and ends in March 2016.

The first dataset D11 comes from the “QNational Audiovisual Institute” (INA) of
France while the second D12, contains data from the Bibliographic Agency for Higher
Education (ABES). Both datasets, contain metadata extracted from large catalogs.

INA dataset. The dataset coming from INA contains RDF descriptions of audiovisual con-
tents (class Contenu) and people that are involved in these contents (class Personne). More
precisely, 44779 instances of the class Contenu are described by 82 properties (25 single
valued properties, 57 multivalued properties) and 7444 instances of the class Personne are
described by 44 properties (21 single valued properties and 23 multivalued properties). A
class named PrecisionNode is used to link contents to persons. Many properties are used to
describe only a few number of instances (52 properties appear in less than 1% of the Contenu
instances, and 30 of the properties appear in less than 1% of the Personne instances). Thus,
we set T at 30% in order to discover keys that are meaningful and applicable to a large
number of instances. A pre-selection of the data is also necessary since KD2R cannot scale
when the data contain the whole set of properties.

For the class Contenu, the selected properties are the following:
ina:aPourTitrePropreIntegrale, ina:aPourDateDi f f usion, ina:aPourFonds,
ina:aPourTypeNotice, ina:aPourTitreCollection, ina:aPourGenre, ina:aPourDuree,
ina:aPourT heme, ina:aPourDateCreationNotice, ina:aPourParticipant.

The property ina:aPourTitreCollection represents the general title of a show
while ina:aPourTitrePropreIntegrale the title of a particular episode. The property
ina:aPourGenre contains the category of a content, the properties ina:aPourDuree and
ina:aPourDateDi f f usion, the duration and the date that this content took place while
ina:aPourT heme the subject of the show. The property ina:aPourDateCreationNotice cor-
responds to the date where this description was added to the database. Moreover, the prop-
erty ina:aPourParticipant describes the people that participated in this content while the
property ina:aPourFonds the corpus from where the information come from. Finally, the
property ina:aPourTypeNotice groups the contents in categories such as extract or tv show.

When setting T at 30%, the number of treated triples for the class Contenu is 470452.
KD2R has found no keys for the class Contenu since the UNA is not fulfilled in this part of
the dataset. Indeed, as shown in Table 3.6, there exist two descriptions sharing values for
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Properties Instance Instance
LM00001239918 LM00001239919

ina:PourTitrePropreIntegrale Soirée élections régionales Soirée élections régionales
et cantonales 1er tour et cantonales 1er tour

ina:aPourGenre Débat Débat
ina:aPourT heme concept10236135 concept10236135
ina:aPourDuree 2400 2400
ina:aPourTypeNotice Notice sujet Notice sujet
ina:aPourDateCreationNotice 3/16/98 3/16/98
ina:aPourParticipant Moulinard Christian Moulinard Christian
ina:aPourFonds Actualités Actualités
ina:aPourDateDi f f usion 3/15/98 3/15/98
ina:aPourTitreCollection Spécial élections Spécial élections

Table 3.6 Duplicate instances for the class Contenu

every selected property.

With the same threshold, the number of treated triples for the class Personne is
125963. For the class Personne, the selected properties are the following: ina:pre f Label,
ina:hiddenLabel, ina:aPourNoteQualite, ina:aPourStatut, inv-ina:aPourParticipant, inv-
ina:aPourConcept, ina:aPourSexe, inv-ina:imageContient.

The properties ina:pre f Label and ina:hiddenLabel represent both the name of a person,
in lowercase and uppercase respectively, while the property ina:aPourSexe represents the
gender of a person. The property ina:aPourNoteQualite describes the status of a person
related to the contents. For example, journalist, camera man etc. The origin of a value is
given in the property ina:aPourStatut. For example, a value can be found in a thesaurus
or a dictionary. The properties inv-ina:aPourParticipant, inv-ina:aPourConcept and inv-
ina:imageContient represent the inverse properties of the properties ina:aPourParticipant,
ina:aPourConcept and ina:imageContient of the class Contenu.

Applying the optimistic heuristic, KD2R discovers three keys:
KD11.Personne= {{inv-ina:aPourConcept}, {ina:HiddenLabel}, {ina:pre f Label}}

These keys have been validated by INA experts but they are not considered as useful
for an interlinking task or a task that aims to validate existing links. Indeed, by construc-
tion, the label that describes a person is created by an INA member for each new person.
Thus, this property has, by default, distinct values. In the same way, the property inv-
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ina:aPourConcept links PrecisionNodes to persons and is a functional property by con-
struction.

Applying the pessimistic heuristic to this class, KD2R discovers two keys:
KD11.Personne= {{ina:HiddenLabel}, {ina:pre f Label}}.

ABES dataset. The ontology FRBR00, coming from the ABES dataset, contains a large
amount of bibliographic notices. The data contain more than 11 million of bibliographic
notices and 2.5 million of authority notices.

KD2R has been applied on two different datasets containing subparts of the data pro-
vided by ABES. The first extract of ABES, D12, contains a set of authority notices that rep-
resent 5671 persons, described by 9 properties, and contains 59839 RDF triples. The prop-
erties used to describe a person are the domain of a publication domainPubli, the date of the
first publication premierePubli, the date of the last publication dernierePubli, the language
in which the publication is written langue, the author’s first name apourprenom, last name
apournom, first name and last name apourappellation, date of birth datedeNaissance and
finally his death date dernierePubli, if it exists. These notices are obtained from an original
dataset conforming to the FRBR00 ontology.

Since KD2R cannot discover keys involving chains of properties, the dataset has been
transformed, by another partner of the project, LIRMM (Laboratoire d’Informatique, de
Robotique et de Microélectronique de Montpellier), to a compact representation where a
chain of properties is transformed into a single property. The keys found by KD2R applying
the optimistic heuristic are presented in Table 3.7. The pessimistic heuristic of KD2R cannot
be applied in this dataset.

The second extract D13, contains 573 descriptions of contextual entities, generated using
the bibliographic notices that conform to the ontology FRBR00. This extract contains 8738
triples. 13 different properties are used to describe these contextual entities. For example, a
contextual entity that represents an instance of a person, contains a person’s first name, last
name and the domain of a bibliographic notice correlated to that person such as computer
science or biology. Moreover, the data are enriched with other information such as the role
of a person that can be, for example author or editor.

The keys discovered by KD2R in D13, are presented in Table 3.8. An ABES expert
has evaluated the discovered keys. The value 0 is assigned to sets of properties that are not
actual keys, the value 1 to sets of properties that contain usually few exceptions and the
value 2 to real keys. Finally, the symbol ? is used to state that the expert cannot distinguish
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{{domainPubli, premierePubli, dernierePubli, apournom, datedeNaissance},
{dernierePubli, apourprenom, datedeNaissance, dernierePubli},
{premierePubli, apourprenom, datedeNaissance, dernierePubli},
{domainPubli, dernierePubli, datedeNaissance, dernierePubli},
{domainPubli, premierePubli, apourprenom, dernierePubli},
{dernierePubli, apourprenom, apournom, dernierePubli},
{domainPubli, dernierePubli, apournom, dernierePubli},
{premierePubli, apourappellation, datedeNaissance},
{premierePubli, apourappellation, dernierePubli},
{dernierePubli,apourappellation, dernierePubli},
{premierePubli, dernierePubli, dernierePubli},
{premierePubli, apournom, dernierePubli}}.

Table 3.7 Keys found by KD2R in D12 applying the optimistic heuristic

{apourcollectivite, apourprenom, apourcoauteur}, 0
{apourcollectivite, apournom, apourdatepubli}, 1
{apourdomaine, apourprenom, apourcoauteur}, 0
{apourcollectivite, apourdomaine, apournom}, 1
{apourcollectivite, apourprenom, apournom}, 0
{apourrole, apourprenom, apourcoauteur}, 0
{apourcollectivite, apourrole, apournom}, 0
{apourcollectivite, apourappellation}, 0
{{apourcoauteur, apourappellation}, 1
{apourcoauteur, apourdatepubli}, 0
{apourappellation, apourtitre}, 1
{apourcollectivite, apourtitre}, 0
{apourmani f estationassociee}, 0
{apourcoauteur, apourtitre}, 0
{apourcoauteur, apournom}, 1
{apourprenom, apourtitre}, 0
{apournom, apourtitre}, 0
{apourautoriteassociee}}. ?

Table 3.8 Keys found by KD2R in D13 applying the optimistic heuristic

between the cases. Notice that none of the discovered keys is considered as a real key by
the expert while in most of the cases these sets are considered as keys with exceptions or
not actual keys.
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dataset pruning category #not-
visited-
nodes

not-
visited
rate

#nodes
without
pruning

time with
pruning
(s)

time with-
out prun-
ing (s)

OAEI:Person1 - D1 Monotonicity 764478 60% 1252994 4 8
OAEI:Person2 - D2 Monotonicity 1679956 75% 2234738 8 10

OAEI:Restaurant1 - D3 Monotonicity 228 81% 280 1 2
OAEI:Restaurant2 - D4 Monotonicity 103 71% 146 1 2

GFT - D5 Monotonicity 84 10% 827 1 3
Che f Moz - D6 Monotonicity 71754 55% 129569 570 625

Table 3.9 Pessimistic heuristic: search space pruning and runtime results

3.5.2 Scalability of KD2R

The complexity of the prefix tree exploration is exponential in terms of the number of the
property values. In order to test the scalability of our method we have checked experimen-
tally on the seven datasets the benefits of the different kinds of pruning that are used during
the prefix tree exploration. More specifically, as it is already mentioned, KD2R exploits
three following pruning strategies (see Section 3.3.3.1): the key pruning, the anti-monotonic
pruning and the mononotonic pruning.

Table 3.9 shows the results of KD2R in terms of runtime and search space pruning for
every dataset when the pessimistic heuristic is applied. Similarly, Table 3.10 presents the
results when the optimistic heuristic is used. In both tables, the results correspond to the
sum of obtained results for each class in the dataset. For example, the results given for the
dataset D1 represent the results for both Person and Address classes.

The pruning strategies enable KD2R to be more efficient and scalable in big datasets.
Both Tables 3.9 and 3.10 show that on the five smallest datasets, the execution time of
keyFinder (using pessimistic or optimistic) is less than 8 seconds. For the two DBpedia
datasets, the execution time is less than 441 seconds when a subset of the properties is
selected. Thanks to different kinds of pruning presented in Section 3.3.3.1, less than 50%
of the nodes of the prefix tree are explored for all datasets. It should be mentioned that
for the instances of the class DBpedia DB:Person and the class DBpedia DB:NaturalPlace,
less than 5% and 1% of the nodes are explored respectively. The sumbsumption relations
between the classes of the dataset D5 are used to show the importance of the key pruning
strategy. 13% of all the prunings that take place in this dataset are obtained thanks to the
key pruning (See Table 3.10).

Nevertheless, even if the prunings clearly improve the execution time, KD2R cannot
deal with big datasets containing a big number of properties.
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dataset pruning category # not not # nodes time time
visited visited without with without
nodes rate pruning prunings prunings

OAEI:Person1 - D1 Monotonicity 12156 88% 13750 3 7
OAEI:Person2 - D2 Monotonicity 16225 89% 18276 3 5

OAEI:Restaurant1 - D3 Monotonicity 228 81% 280 1 2
OAEI:Restaurant2 - D4 Monotonicity 103 71% 146 1 2

GFT - D5 Monotonicity 108 22% 499 1 3
Che f Moz - D6 Monotonicity 27026 55% 49351 5 8
DB:Person - D9 Monotonicity 27302986 95% 28803153 441 634

(T=20%)
DB:NaturalPlace - D10 Monotonicity 40907348 99% 47716771 42 222

(T=20%) Antimonotonicity 159538
Key Inheritance 6153252

OAEI:Film1 - D7 Monotonicity 223436 99 % 12836301 30 75
Antimonotonicity 10492012

OAEI:Film2 - D8 Monotonicity 2313411 98% 9135607 40 82
Antimonotonicity 6701456

Table 3.10 Optimistic heuristic: search space pruning and runtime results

3.5.3 Data linking with keys

To evaluate the quality of the discovered keys we use them to link data. We consider datasets
where the complete set of links between them, i.e., gold standard, is available. Once the data
are linked, we compare the linked instances to the correct links existing in the gold standard.
The recall, precision and F-measure are used to evaluate the quality of the results.

The recall in our case corresponds to the ratio of retrieved links that are relevant to the total
number of relevant links.

recall =
|{relevant links}\{retrieved links}|

|{relevant links}|

The precision corresponds to the ratio of retrieved links that are relevant to the total number
of retrieved links.

precision =
|{relevant links}\{retrieved links}|

|{retrieved links}|

Finally, the F-measure is the harmonic mean of precision and recall.

F-measure = 2 · precision · recall
precision+ recall

As it will be shown in the following sections, in the first experiment (see Section 3.5.3.1)
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no similarity measures are used to compare the values of keys. Two values are considered
as the same only when they are strictly equal. Additionally, no decision propagation is used.
In the second experiment presented in Section 3.5.3.2, the recall, precision and F-measure
of the results are computed when the keys are applied all together using similarity measures
between values and where the linking decisions are propagated thanks to N2R tool (see
section 3.5.3.2).

3.5.3.1 Key quality without similarity measures and without propagation

In this experiment, we compute the recall, the precision and the F-measure obtained on
datasets OAEI:Film1 and OAEI:Film2 when keys are applied using equality between values
(instead of using similarity scores). Moreover, linking decisions are not propagated (e.g.
“same restaurants, then same addresses, then same cities, then, ...”).

Due to the data heterogeneity of the datasets, we have obtained a low value for the recall
(5.03%). Discovering keys that are valid for both datasets allows to guarantee a very high
value for the precision. This is shown by the obtained precision which is of 100%. This
leads to an F-measure of about 10%. These results show that the obtained keys have a good
quality in terms of correctness. However, due to the heterogeneity of the data and to the fact
that the decision propagation is not applied, the recall is very low. Hence, in order to ensure
the good quality results, in terms of recall and precision, more complex linking tools that
take similarity measures into account become necessary.

3.5.3.2 Key quality by using similarity measures and decision propagation

In this section, we evaluate the quality of keys when they participate in more complex
data linking rules. An real data linking tool has been used to show the benefits of using
discovered keys in the data linking process. This experiment consists of three different
scenarios. In the first scenario, the owl:sameAs links are computed considering that no keys
are available. As a second scenario, the links are computed using keys manually defined by
an expert in the ontology, for the OAEI 2010 contest. Finally, in the third scenario, the keys
are discovered by KD2R and declared in the ontology. We compute the precision, recall
and F-measure for the three scenarios and we compare the results.

Brief presentation of N2R. N2R is a knowledge based approach exploiting the keys de-
clared in the ontology to infer owl:sameAs links between class instances. It exploits keys
in order to generate a function that computes similarity scores for pairs of instances. This
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numerical approach is based on equations that model the influence between similarities.
In the equations, each variable represents the (unknown) similarity between two instances
while the similarities between values of datatype properties are constants (obtained using
standard similarity measures on strings or on sets of strings). Furthermore, ontology and
data knowledge (disjunction, UNA) is exploited by N2R in a filtering step to reduce the
number of reference pairs considered in the equation system. More precisely, for each ref-
erence pair, the similarity score is modeled by a variable xi and the way it depends on other
similarity scores is modeled by an equation: xi = fi(X). In this equation i 2 [1..n], n is the
number of reference pairs for which we apply N2R, and X = (x1,x2, . . . ,xn) is the set of
their corresponding variables. Each equation xi = fi(X) is of the form:

fi(X) = max( fi�d f (X), fi�nd f (X))

The function fi�d f (X) represents the maximum similarity score obtained for the in-
stances of the datatype properties and the object properties that belong to a key describing
the i-th reference pair. In case of a composite key we compute first the average of the
similarity scores of the property instances involved in that combined key. The maximum
function allows to propagate the similarity scores of the values and the instances having a
strong impact. The function fi�nd f (X) is defined by a weighted average of the similarity
scores of the literal value pairs (and sets) and the instance pairs (and sets) of datatype prop-
erties and object properties describing the i-th instance pair and not belonging to a key. See
[SPR09] for the detailed definition of fi�d f (X) and fi�nd f (X). Solving this equation system
is performed by an iterative method inspired by the Jacobi method [GL96], which is quickly
converging on linear equation systems.

The instance pairs for which the similarity is greater than a given threshold T Rec are
linked, i.e, an owl:sameAs link is created between the two instances.

Obtained results on OAEI 2010 datasets. Tables 3.11 and 3.12 show the results obtained by
N2R in terms of recall, precision and F-measure when: (i) no keys are used, (ii) all KD2R
keys are used and (iii) keys defined by experts are used (details can be found in [SNPR10]).
Since the domains concerning persons and restaurants are rather common, the expert keys
have been declared manually by one of the participants of the OAEI 2010, for N2R tool.
If several experts are involved, a kappa coefficient [Coh68] can be computed to measure
their agreement. Since D1 contains properties that are not instantiated, both the optimistic
and pessimistic heuristics have been performed. In Table 3.11, we define as KD2R-O the
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results obtained using keys discovered with the optimistic heuristic and KD2R-P the results
obtained using keys discovered with the pessimistic heuristic. It should be mentioned that
for the datasets D2 and D3 the results given for KD2R are both the results of KD2R-O and
KD2R-P, since there are no undetermined keys. We show the results when the threshold
T Rec varies from 1 to 0.8. Since the F-measure expresses the trade-off between the recall
and the precision, we first discuss the obtained results according to this measure. Across all
datasets and values of T Rec, the F-measure obtained using KD2R keys is greater than the
F-measure obtained when keys are not available. We can notice that, the results obtained for
the Person dataset D1 are better when we use keys obtained by either KD2R-O or KD2R-P
than when the keys are not used. When the threshold is bigger than 0.95 the F-measure of
N2R using KD2R-O keys is 100%. This is an example that shows that the results using keys
found with the optimistic heuristic can be better than the ones found with the pessimistic
heuristic. In the restaurant dataset D2, when T Rec � 0.9, the F-measure is almost three
times higher than the F-measure obtained when keys are not declared. This big difference is
due to the fact that the recall is much higher when KD2R keys are added. Indeed, even when
some property values are syntactically different, it suffices that it exists one key for which
the property values are similar, to infer any identity link. For example, when T Rec = 1, the
KD2R recall is 95% for the persons dataset while without the keys the recall is 0%. Hence,
the more numerous the keys are, the more identity links can be inferred.

Furthermore, our results are very close to the ones obtained applying expert keys. For
both datasets, the largest difference between KD2R F-measure and the expert’s one is 6%.
We should also mention that KD2R precision is always higher than the expert precision.
Indeed, some expert keys are not verified in the dataset. For example, while the expert has
declared phoneNumber as a key for the Restaurant class, in this dataset some restaurants
share the same phone number, i.e., they are managed by the same organization.

These results show that the data linking results are significantly improved, especially in
terms of recall, when we compare them to results that can be obtained when the keys are
not defined.

In Table 3.13, we give a comparison between the results obtained by N2R using
KD2R keys, with other tools that have used the datasets OAEI:Person1, OAEI:Person1,
OAEI:Restaurant1, OAEI:Restaurant2 of OAEI 2010–Instance Matching track. We notice
that the obtained results, in terms of F-measure, are comparable to those obtained by
semi-supervised approaches like ObjectCoref [HCQ11]. It is, however, less efficient than
approaches that learn linking rules that are specific to the dataset like KoFuss+GA.
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TRec Keys Recall Precision F-measure
1 without 0% - % - %

KD2R-O 100% 100% 100%
KD2R-P 95.00% 100% 97.44%

expert 98.40% 100% 99.19%
0.95 without 61.20% 100% 75.93%

KD2R-O 100% 100% 100%
KD2R-P 95.00% 100% 97.44%

expert 98.60% 100% 99.30%
0.9 without 64.2% 100% 78.20%

KD2R-O 100% 98.04% 99.01%
KD2R-P 95.00% 100% 97.44%

expert 98.60% 100% 99.30%
0.85 without 65.20% 100% 78.93%

KD2R-O 100% 81.30% 89.68%
KD2R-P 99.80% 100% 99.90%

expert 99.80% 100% 99.90%
0.8 without 90.20% 100% 94.85%

KD2R-O 100% 35.71% 52.63%
KD2R-P 99.80% 100% 99.90%

expert 100% 100% 100%
Table 3.11 Recall, Precision and F-measure of data linking for D1 and D2

Obtained results for GFT-ChefMoz dataset. Table 3.14 shows the results obtained by N2R
in terms of recall, precision and F-measure when: (i) no keys are used and (ii) KD2R keys
are used. We show the results when the threshold T Rec takes values in the interval [0.7,1].
For both datasets and for every T Rec value, the F-measure found using KD2R keys is greater
than the F-measure when keys are missing.

This difference is due to the fact that the recall is always higher when KD2R keys are
added. Indeed, even when some property values are syntactically different, it suffices that
there exists one key for which the property values are similar, to infer the identity links. For
example, when T Rec = 1, the KD2R recall is 60% for the persons dataset while without the
keys the recall is 45%. Hence, the more numerous the keys are, the more identity links can
be inferred.

As in D1 and D2, the above results show that the data linking results are significantly
improved, in particular in terms of recall, when we compare them to results obtained when
the keys are not defined.
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TRec Keys Recall Precision F-measure
1 without 0% - % - %

KD2R 62.50% 80.46% 70.35%
expert 76.79% 74.78% 75.77%

0.95 without 14.29% 80.00% 24.24%
KD2R 62.50% 80.46% 70.35%
expert 77.68% 75.00% 76.32%

0.9 without 14.29% 80.00% 24.24%
KD2R 62.50% 80.46% 70.35%
expert 77.68% 75.00% 76.32%

0.85 without 14.29% 80.00% 24.24%
KD2R 65.17% 80.22% 71.92%
expert 77.68% 75.00% 76.32%

0.8 without 37.5% 80.76% 51.21%
KD2R 66.96% 79.78% 72.81%
expert 77.68% 75.00% 76.32%

Table 3.12 Recall, Precision and F-measure of data linking for D3 and D4

Dataset N2R N2R ASMOV N2R CODI ObjectCoref RIMOM KnoFuss
+ + +

KD2R-P KD2R-O GA
D1-D2 0.99 1.00 1.00 1.00 0.91 1.00 1.00 1.00
D3-D4 0.728 – 0.70 0.75 0.72 0.73 0.81 0.78

Table 3.13 Comparison of data linking F-measure with other tools on person datasets D1
and D2 of OAEI 2010 benchmark

3.5.3.3 KD2R keys vs. SF keys

Different definitions of keys can be considered in the Semantic Web. Unlike KD2R where
two instances are the same when they share at least one value for each property of a
key, in [ADS12] they should share all the values (see Section 2.2.1). In the following, to
distinguish the two types of keys we refer to the keys discovered by KD2R as KD2R keys
and the keys discovered by [ADS12] as SF keys.

Quantative evaluation. To compare these approaches, we discover both KD2R keys and
SF keys in the dataset D7 and they are used to link the datasets D7 and D8. To link the
datasets a string equality after stop words elimination for datatype properties and equality
for object properties have been applied.
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TRec Keys Recall Precision F-measure
1 without 45.67% 100% 62.71%

KD2R 60.49% 100% 75.38%
0.95 without 50.61% 100% 67.21%

KD2R 60.49% 100% 75.38%
0.9 without 50.61% 100% 67.21%

KD2R 60.49% 100% 75.38%
0.85 without 50.61% 100% 67.21%

KD2R 60.49% 100% 75.38%
0.8 without 54.32% 100% 70.39%

KD2R 60.49% 100% 75.38%
0.75 without 54.32% 100% 70.39%

KD2R 60.49% 100% 75.38%
0.7 without 60.49% 100% 75.38%

KD2R 61.72% 100% 76.33%
Table 3.14 Recall, Precision and F-measure for D5 and D6

We remind that the KD2R keys discovered in the dataset D7 (see Section 3.5.1.3) are:
{{name, directedBy, f ilmedIn}, {article}, {estimatedBudget}}.

The SF keys that are discovered in the dataset D7 are:
{{name, directedBy, f ilmedIn},{article}, {estimatedBudget}, {name, f eaturing},
{name, starringIn}}.

To evaluate the quality of the discovered keys, they have been applied to compute iden-
tity links between film instances of the datasets D7 and D8. More precisely, we have mea-
sured the quality of each set of keys independently from the quality of the possible links that
can be found for other class instances. Having this goal, we have exploited the correct links
appearing in the gold standard to compare object property values. In table 3.15, we present
recall, precision and F-measure for each type of keys.

keys Recall Precision F-Measure
KD2R keys 27.86% 100% 43.57%

SF keys 27.86% 100% 43.57%

Table 3.15 Recall, Precision and F-measure for the class Film

We notice that the results of KD2R keys and SF keys are the same. Indeed, all the
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links that are found by the two additional SF keys are included in the set of links obtained
using the three shared keys. Furthermore, the shared keys generate the same links either
because the involved properties are mono-valued (estimatedBudget, article), or because
the involved multi-valued object properties have the same values in both files for the same
film.

Some SF keys cannot be KD2R keys and may have a higher recall. For example, it
is not sufficient to know that two films share one main actor to link them. On the other
hand, when the whole sets of actors are the same, two films can be linked with a good
precision. Moreover, if we consider only instances having at least two values for the
property starringIn (98% of the instances), this property is discovered as an SF key and
allows to find links with a precision of 96.3% and a recall of 97.7%.

Growth resistance evaluation. We have evaluated how the quality of each type of keys
evolve when they are discovered in smaller parts of the dataset. Thus, we have randomly
split the dataset D7 in four parts. Each part contains the complete description of a subset
of the Film instances. We have then discovered the keys in a file that contains only 25% of
the data, 50% of the data,and finally 75% of the data. Then we have computed the recall,
precision and F-measure that are obtained for each type of keys. The larger the dataset,
the more specific are the keys. Also, for all types of keys, precision increases and recall
decreases with dataset’ size. To obtain a good precision, KD2R keys need to be discovered
in at least 50% of this dataset, while SF keys obtain a rather good precision when the keys
are learnt using only 25% of the dataset. Furthermore, some SF keys have also a very high
recall when they are learnt on a subpart of the dataset even if the precision is not 100%.
Indeed, new RDF descriptions are introduced that prevent the system from discovering keys
that can be very relevant.

KD2R keys Recall Precision F-Measure
25% 27.85% 77.55% 40.98%
50% 27.85% 99.42% 43.51%
75% 27.85% 99.42% 43.51%
100% 27.85% 100% 43.56%

SF keys Recall Precision F-Measure
25% 100% 94.1% 96.96%
50% 100% 99.03% 99.51%
75% 27.85% 99.42% 43.51%
100% 27.85% 100% 43.56%

Table 3.16 Recall, Precision and F-measure for KD2R keys and SF keys



3.6 Conclusion 85

3.6 Conclusion

In this chapter, we have presented KD2R, an approach that discovers keys in RDF datasets.
KD2R can tackle datasets where UNA is known. To obtain keys that are valid for different
datasets that may conform to distinct ontologies, we discover keys containing aligned prop-
erties found in every explored dataset. Once all the keys are discovered, we apply a merge
step to find the set of minimal keys that are valid in every dataset.

KD2R takes into account characteristics of RDF data such as incompleteness and mul-
tivaluation. KD2R proposes two different heuristics in order to work with incomplete data,
the pessimistic heuristic and the optimist heuristic. Since the data may be numerous, a strat-
egy that discovers first maximal non keys that are used to compute keys is adopted. Indeed,
to discover that a set of properties is a non keys only a subpart of the data are required.

KD2R applies different pruning strategies, some of which were initially introduced in
the setting of relational databases. A novel pruning that exploits the key inheritance to
prune the key search for a given class is also proposed. This pruning is only applicable in
the setting of the Semantic Web.

The experiments have been conducted on thirteen datasets. Among them, six datasets
have been used in the instance matching track of OAEI evaluation initiative, four datasets
have been collected from the Web of data and finally, three datasets have been tested in
the context of the Qualinca project. The experiments showed that KD2R can perform well
in small datasets where the number of properties found in the data is limited. When large
datasets, containing many properties, are applied, KD2R cannot scale. In every case, the
optimistic heuristic is faster than the pessimistic heuristic. However, the derivation of keys
from non keys remains the bottleneck of KD2R.

To evaluate the linking power of the discovered keys, we have linked data using (i)
KD2R keys (ii) expert keys and (iii) no keys. The experiments have shown that when KD2R
keys are used, the data linking results are better than applying no keys and similar to the ones
using expert keys. Comparing keys found with the optimistic heuristic and the pessimistic
heuristic, the optimistic keys lead to better linking results in the tested datasets. Finally,
the experiment conducted to compare KD2R keys with SF keys has not led to significant
conclusions due to the particular characteristics of the selected dataset.





Chapter 4

SAKey: Scalable Almost Key discovery
in RDF data

Over the last years, the Web of data has received a tremendous increase, containing a huge
number of RDF triples. Data published on the Web are usually created automatically, there-
fore they may contain erroneous information. Moreover, distinct URIs that refer to the same
real world object, i.e., duplicates, may exist in the data. Considering that a key uniquely
identifies every instance in a dataset, if data containing erroneous information or duplicates
are used in the key discovery, relevant keys can be lost. Thus, algorithms that search only
for keys, are not able to discover all the keys in such datasets. For this reason, it becomes es-
sential to develop approaches that allow the discovery of keys despite the presence of some
instances that violate them. Instances that lead to these violations are called exceptions.

Let us consider a “dirty” dataset where two different people share the same Social Secu-
rity Number (SSN). In this case, SSN will not be considered as a key, since there exist two
people sharing the same SSN. Allowing few exceptions can prevent the loss of keys. It is
important to mention that for approaches like N2R [SPR09] that are based on keys to link
data, the more keys they take into account, the more significant results they can produce.
Furthermore, sets of properties that are not exact keys due to few exceptions can lead to
many identity links with a reasonable error rate. For example, the telephone number of a
restaurant can be used as a key in data linking process, even if there may exist few restau-
rants located in the same place sharing phone numbers. In this case, even if this property is
not a real key, it can be useful in the linking process.

An important characteristic of RDF datasets that are available on the Web is their big
volume. To deal with this, we have first developed KD2R (see Chapter 3), that discovers first
the complete set of maximal non keys and then derives the set of minimal keys from them.
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This makes the discovery of keys more efficient. Nevertheless, as shown in the Section 3.5,
KD2R is overwhelmed by the huge amount of data found on the Web. To improve the
scalability of the key discovery approach we present in this chapter a new method called
SAKey (Scalable Almost Key discovery), that is able to discover keys on big datasets in the
presence of errors and/or duplicates. We call the keys discovered by SAKey, almost keys.
An almost key represents a set of properties that is not a key due to few exceptions. As in
KD2R, the set of almost keys is derived from the set of non keys found in the data. SAKey
can scale on large datasets by applying filtering techniques and pruning strategies that reduce
the requirements of time and space of the non key discovery. Since the derivation of keys
from non keys is considered as the bottleneck of KD2R, SAKey introduces a new efficient
key derivation algorithm. Finally, an extension of SAKey for the discovery of conditional
keys, i.e., keys that are valid under a specific condition, is proposed.

To deal with the incompleteness of data, SAKey considers that every value missing
from the data is different from what exists in the data. This assumption corresponds to the
optimistic heuristic, first introduced by KD2R, that has been shown (see Section 3.5) to be
much faster and leading to better data linking results than the pessimistic heuristic.

The work described in this chapter appears in [SAPS14].

In what follows we present our contributions concerning SAKey approach. The main
contributions are:

1. The introduction of a heuristic to discover keys, that prevents us from losing keys in
data that contain erroneous information and/or duplicates.

2. An algorithm that efficiently discovers non keys applying a series of filtering steps and
pruning strategies.

3. A new algorithm for an efficient derivation of almost keys from non keys which until
now was considered as the bottleneck of the approaches that discover non keys first.

This Chapter is organized as follows. Section 4.1 contains an example that will be used
throughout this chapter. Section 4.2 formalizes the problem we consider. Section 4.3 is the
main part of the Chapter, presenting the almost keys and their discovery using SAKey. Sec-
tion 4.4 explains the computation of valid almost keys coming from different datasets while
Section 4.5 introduces C-SAKey, an extension of SAKey for the discovery of conditional
keys. Finally, Section 4.6 describes our experiments before Section 4.7 concludes.
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o1:Film(f10), o1:director( f 10,00O.Nakache00),o1:director( f 10,00E.Toledano00),
o1:hasActor( f 10,00F.Cluzet 00),o1:hasActor( f 10,00O.Sy00),o1:releaseDate( f 10,00 2/11/1100),
o1:name( f 10,00T he Intouchables00),

o1:Film(f11), o1:director( f 11,00O.Nakache00),o1:director( f 11,00E.Toledano00),
o1:hasActor( f 11,00F.Cluzet 00),o1:hasActor( f 11,00O.Sy00),o1:releaseDate( f 11,00 2/11/1100),
o1:name( f 11,00T he Intouchables00),

Fig. 4.1 Example of duplicates

o1:Film(f12), o1:director( f 12,00 S.Jonze00),o1:hasActor( f 12,00 J.Phoenix00),
o1:hasActor( f 12,00 S.Johansson00),o1:releaseDate( f 12,00 10/1/1400),o1:name( f 12,00Her00),

o1:Film(f13), o1:director( f 13,00 S.Jonze00),o1:director( f 13,00D.Russell00),
o1:hasActor( f 13,00 J.Lawrence00),o1:hasActor( f 13,00B.Cooper00),
o1:releaseDate( f 13,00 25/12/1200),o1:name( f 13,00Her00)

Fig. 4.2 Example containing erroneous data

4.1 Motivating example

Discovering keys in RDF datasets without taking into account possible errors or unknown
duplicates may lead to lose keys. Furthermore, there may exist sets of properties, that even
if they are not keys, due to a small number of shared values, can be useful for data linking
or data cleaning. These sets of properties are particularly needed when a class has no keys.

In Figure 4.3, we provide the OWL2 ontology o1 that represents the film domain. Each
film can be described by its name, the release date, the language in which it was filmed, the
actors and the directors involved. An expert could say that the set of properties {o1:name,
o1:releaseDate} is a key for the class Film. When two films have the same name and
the same release date, these films refer to the same film. Indeed, films sharing names are
usually released in different years. Moreover, a film can be distinguished using its name
and its directors. This means that even if two films have the same name, they are filmed
by a different directors. Thus, the set of properties {o1:name, o1:director} could also be
declared as a key by an expert.

Let us consider an approach that discovers keys automatically. A set of properties is
considered as key when it uniquely identifies every distinct instance in the data. Figure 4.1
gives the RDF descriptions of two instances of the class Film. Note that the instances f 10
and f 11 refer to the same instance but no sameAs link between them has been declared.
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Fig. 4.3 Ontology o1

In this case, no key will be found. In Figure 4.2, descriptions of two films containing
erroneous data are given. The film f 13 contains two actors that do not participate in the
movie while the release date provided does not correspond to the one of this film. Moreover,
the director “D.Russell” is not directing this movie. Thus, the second description contains
many erroneous values. We notice that the key {o1:name, o1:director} cannot be discovered
since both instances have the same name and share the director “S.Jonze”. Thus, with
the presence of duplicates and errors in the data, algorithms that discover keys without
exceptions might lose keys or even find no keys.

In Figure 4.4, we introduce an example containing duplicates and erroneous data, that
will be used throughout this chapter, to illustrate SAKey approach. In this example, none
of the two set of properties {o1:name, o1:releaseDate} and {o1:name, o1:director} would
have been found as keys. Observing the data, we notice that there exist two films called
00Ocean0s 1200 and both released in the same date. In this case, we can deduce that the films
f 1 and f 6 are either duplicates or there is an error in the name or the release date of the
film.
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Dataset D1:
o1:Film(f1), o1:director( f 1,00 S.Soderbergh00),o1:hasActor( f 1,00B.Pitt 00),
o1:hasActor( f 1,00 J.Roberts00),o1:releaseDate( f 1,00 3/4/0100),o1:name( f 1,00Ocean0s 1100),
o1:webSite( f 1,www.oceans11.com)

o1:Film(f2), o1:director( f 2,00 S.Soderbergh00),
o1:director( f 2,00R.Howard00),o1:hasActor( f 2,00G.Clooney00),o1:hasActor( f 2,00B.Pitt 00),
o1:hasActor( f 2,00 J.Roberts00),o1:releaseDate( f 2,00 2/5/0400),o1:name( f 2,00Ocean0s 1200)
o1:webSite( f 1,00www.oceans12.com00)

o1:Film(f3), o1:director( f 3,00 S.Soderbergh00),
o1:director( f 3,00R.Howard00),o1:hasActor( f 3,00G.Clooney00),o1:hasActor( f 3,00B.Pitt 00)
o1:releaseDate( f 3,00 30/6/0700),o1:name( f 3,00Ocean0s 1300),
o1:webSite( f 1,www.oceans13.com)

o1:Film(f4), o1:director( f 4,00A.Payne00),o1:hasActor( f 4,00G.Clooney00),
o1:hasActor( f 4,00N.Krause00),o1:releaseDate( f 4,00 15/9/1100),
o1:name( f 4,00T he descendants00),o1:language( f 4,00 english00)
o1:webSite( f 1,www.descendants.com)

o1:Film(f5), o1:hasActor( f 5,00D.Liman00),
o1:releaseDate( f 5,00 200200),o1:name( f 5,00T he bourne Identity00),
o1:language( f 5,00 english00)
o1:webSite( f 1,www.bourneIdentity.com)

o1:Film(f6),o1:director( f 6,00R.Howard00),o1:releaseDate( f 6,00 2/5/0400),
o1:name( f 6,00Ocean0s 1200)

Fig. 4.4 RDF dataset D1
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4.2 Main definitions

In this section, we provide the definitions of the main notions used in SAKey.

4.2.1 Keys with exceptions

In this chapter, we define a new notion of keys that allows exceptions, called n-almost keys.
A set of properties is a n-almost key if there exist at most n instances that share values for
this set of properties in the considered dataset.

In the dataset D1 of the Figure 4.4, one can notice that the property o1:hasActor is not a
key for the class Film since there exists at least one actor that plays in several films. Indeed,
“G.Clooney” plays in films f 2, f 3 and f 4 while “M.Daemon” in f 1, f 2 and f 3. Thus, there
exist in total four films sharing actors. Considering each film that shares actors with other
films as an exception, there exist four exceptions for the property o1:hasActor. We consider
the property o1:hasActor as a 4-almost key since it contains at most four exceptions.

Formally, an exception represents an instance that share values with at least another
instance, for a given set of properties P.

Definition 13. (Exception). An instance X of the class c (c 2 C ) is an exception for a set
of properties P (P✓P) if:

9Y (X 6= Y )^ c(X)^ c(Y )^ (
^

p2P
9U p(X ,U)^ p(Y,U))

For example, the film f 2 is an exception for the property o1:hasActor since “G. Clooney”
plays also in other films.

For a class c and a set of properties P, EP is the set of exceptions that is defined as
follows:

Definition 14. (Exception set EP). Let c be a class (c 2 C ) and P be a set of properties
(P✓P). The exception set EP is defined as:

EP = {X | X 2 c and X is an exception for P}

For example, in D1 of Figure 4.4, we have:
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E{o1:hasActor} = { f 1, f 2, f 3, f 4},
E{o1:hasActor, o1:director} = { f 1, f 2, f 3}.

A set of properties is considered as a n-almost key, if there exist from 1 to n exceptions
in the dataset. Using the exception set EP we give the following definition of a n-almost key.

Definition 15. (n-almost key). Let c be a class (c 2 C ), P be a set of properties (P ✓P)
and n an integer. P is a n-almost key for c if |EP| n.

For example, in D1 the set of properties {o1:hasActor, o1:director} is a 3-almost key.

By definition, a m-almost key is also a n-almost key for every n� m.

If a set of properties P is a n-almost key, every superset of P will also involve at most
n exceptions, i.e., is also a n-almost key. We are interested in discovering only minimal
n-almost keys, i.e., n-almost keys that do not contain subsets of properties that are n-almost
keys for a fixed n.

Definition 16. (Minimal n-almost key). A set of properties P is a minimal n-almost key
for the class c if P is a n-almost key and @ P0, a n-almost key s.t. P0 ⇢ P.

4.2.2 Discovery of n-almost keys from n-non keys

As we have already shown in the previous Chapter, an efficient way to obtain keys, is to
discover first all the non keys and use them to derive the keys. Applying this idea, initially
proposed in [SBHR06], SAKey derives the set of n-almost keys from the sets of properties
that are not n-almost keys. Indeed, to show that a set of properties is not a n-almost key, i.e.,
a set of properties with at most n exceptions, it is sufficient to find at least (n+1) instances
that share values for this set. We call the sets that are not n-almost keys, (n+1)-non keys.

Definition 17. (n-non key). Let c be a class (c 2 C ), P be a set of properties (P✓P) and
n an integer, P is a n-non key for c if |EP|� n.

4.3 SAKey Approach

The SAKey approach finds n-almost keys given an RDF dataset and a class defined in an
ontology. SAKey is composed of three main steps: (1) the preprocessing steps that allow
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00J.Roberts00 00B.Pitt 00 00G.Clooney00 00N.Krause00 00D.Liman00

o1:hasActor {{ f 1, f 2}, { f 1, f 2, f 3}, { f 2, f 3, f 4}, { f 4}, { f 5}}
o1:director {{ f 1, f 2, f 3}, { f 2, f 3, f 6}, { f 4}}
o1:releaseDate {{ f 1}, { f 2, f 6}, { f 3}, { f 4}, { f 5}}
o1:name {{ f 1}, { f 2, f 6}, { f 3}, { f 4}, { f 5}}
o1:language {{ f 4, f 5}}
o1:website {{ f 1}, { f 2}, { f 3}, { f 4}, { f 5}, { f 6}}

Table 4.1 Initial map of D1 where values are given only for the first property

us avoid to filter the data and eliminate irrelevant sets of properties (2) the discovery of
maximal (n+1)-non keys by applying pruning strategies and ordering heuristics and finally
(3) an algorithm that allows the efficient derivation of n-almost keys from the set of (n+1)-
non keys.

To apply this approach in every class of an ontology, SAKey can apply the strategy
proposed in KD2R (see Chapter 3).

4.3.1 Preprocessing steps

Initially, we represent the descriptions of the instances of one class in a hash-map called ini-
tial map (see Table 4.1). Every level of the map corresponds to a property that is associated
to sets of instances. Each set represents instances that share a value for this property.

We assign a unique integer to identify each instance and property of the class. The
encoding of the properties is not applied in the examples of this chapter for readability
reasons.

Table 4.1 shows the initial map of the dataset D1 presented in Figure 4.4. For example,
the set { f 2, f 3, f 4} of the property o1:hasActor represents the films that “G.Clooney”
played.

The initial map is constructed traversing the data only once.

4.3.1.1 Data filtering

To improve the scalability of our approach, we introduce two techniques to filter the data
represented in the initial map, the Singleton sets filtering. and the v-exception sets filtering.

Singleton sets filtering. In the initial map, sets of size 1 represent instances that do not share
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values with other instances for a given property and a given value. These sets cannot lead to
the discovery of a n-non key. Thus, only non singleton sets called v-exception sets are kept.

Definition 18. (v-exception set Ev
p). A set of instances {i1, . . . , ik} of the class c (c 2 C ) is

a Ev
p for the property p 2P and the value v iff {p(i1,v), . . . , p(ik,v)}✓ D and

|{i1, . . . , ik}|> 1.

For example, in D1, the v-exception set of the property o1:director for the value
00Soderbergh00 (E

00S.Soderbergh00
o1:director ) is equal to { f 1, f 2, f 3}.

Definition 19. (collection of v-exception sets Ep). The collection of v-exception sets Ep

for a property p 2P is:
Ep = {Ev

p}

For example, Eo1:director = {{ f 1, f 2, f 3}, { f 2, f 3, f 6}}.
Given a property p, if Ep = /0, i.e., all the sets of p were of size 1 and have been sup-

pressed, this property is a 1-almost key (i.e., key with no exceptions). Thus, singleton sets
filtering allows the discovery of single 1-almost keys (i.e., keys composed only from one
property). All these 1-almost keys are removed from the initial map and will not be consid-
ered in the n-non key discovery.

For example, in Table 4.1, we observe that there do not exist two films that share the
same website. Thus, o1:website is a 1-almost key and is removed from the initial map.

v-exception sets filtering. Comparing the n-non keys that can be found thanks to two v-
exception sets Evz

p and Evm
p , where Evz

p ✓ Evm
p , we can ensure that the set of n-non keys that

can be found using Evz
p , can also be found using Evm

p . Indeed, Evz
p ✓ Evm

p means that 8i
p(i,vz) ) p(i,vm). To compute all the maximal n-non keys of a dataset, only the maximal
v-exception sets are necessary. Thus, all the non maximal v-exception sets are removed.

For example, the v-exception set E“J. Roberts00
o1:hasActor { f 1, f 2} in the property o1:hasActor rep-

resents the set of films in which the actress “J. Roberts” has played. Since there exists
another actor having participated in more than these two films (i.e., “B, Pitt” in films f 1, f 2
and f 3), the v-exception set { f 1, f 2} can be suppressed without affecting the discovery of
n-non keys. Indeed, we discover that every time “J. Roberts” appears in a film also “B, Pitt”
appears in the same film.

In this map each set of instances is sorted in an ascending order. Moreover, the sets of
instances of one level are sorted as well. The set with the smallest instance identifier will
be first. For example, given the sets {{i4, i7}, {i3, i5}, {i3, i4, i5} and {i3, i5}} the sorted
sets will follow the order:{{i3, i4, i5}, {i3, i5}, {i4, i7}}.
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o1:hasActor {{ f 1, f 2, f 3}, { f 2, f 3, f 4}}
o1:director {{ f 1, f 2, f 3}, { f 2, f 3, f 6}}
o1:releaseDate {{ f 2, f 6}}
o1:name {{ f 2, f 6}}
o1:language {{ f 4, f 5}}

Table 4.2 Final map of D1

Table 4.2 presents the data after applying the two filtering techniques on the data of the
Table 4.1. This structure is called final map and each level represents the collection Ep of
the v-exception sets of a property p.

4.3.1.2 Elimination of irrelevant sets of properties

When the properties are numerous, the number of candidate n-non keys is huge. However, in
some cases, some combinations of properties are irrelevant. Indeed, there may exist sets of
properties that are never instantiated together for n common instances for different reasons.
First, even if a combination of properties can theoretically be used together to describe
some instances, it might never happen in a given dataset, due to the incompleteness of data.
Second, there may exist distinct sets of properties that can never be used together to describe
instances. For example, in the DBpedia dataset, the properties depth and mountainRange
are never used to describe the same instances of the class NaturalPlace. Indeed, depth is
used to describe natural places that are lakes while mountainRange natural places that are
mountains. Therefore, depth and mountainRange cannot participate together in a n-non
key.

The frequency of a set of properties P is the number of instances described by this set
of properties. If the frequency of a set of properties is less than n, this means that, less that
n instances are described by P, consequently P cannot be a n-non key. Thus, these sets of
properties are irrelevant. All the relevant sets of properties can be represented by the set of
maximal frequent properties. A maximal frequent set of properties is a set of properties for
which none of its supersets are frequent. The problem of discovering maximal frequent sets
of properties is similar than the discovery of maximal frequent itemsets in the data mining
area. The complexity of this discovery is NP-hard [Yan04]. So, we aim to discover sets
of properties sharing two by two, at least n instances. These sets of properties are called
potential n-non keys (pnk).

Definition 20. (Potential n-non key). A set of properties pnkn = {p1, ..., pm} is a potential
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Fig. 4.5 PNKGraph of the dataset D1 when n=2

n-non key for a class c iff:

8{pi, p j} 2 (pnkn⇥ pnkn) | I(pi)\ I(p j)|� n

where I(p) is the set of instances that are subject of p.

We build a graph, called PNKGraph, where each node represents a property and each
edge between two nodes denotes the existence of at least n instances where these properties
are instantiated. Figure 4.5 represents the PNKGraph of the data presented in the final map
of the Table 4.2 when n is set to 2.

A set of properties can be a potential n-non key when for every property in this set,
there is an edge to all the remaining properties. These sets are cliques i.e., sets of nodes
where each pair of nodes is connected. To discover all the maximal n-non keys in a given
dataset it suffices to find the n-non keys contained in the set of maximal potential n-non keys
(PNK), i.e., maximal cliques. Since the problem of finding all maximal cliques of a graph
is NP-Complete [Kar72], we use a greedy algorithm, inspired by the min-fill elimination
order [Dec03], that discovers supersets of the maximal cliques (see Algorithm 8).

Initially, PNKFinder computes a weight for each node of a given PNKGraph. Given
a node, the weight represents the number of edges missing between this node and all the
remaining nodes in the graph. Starting from the node with the smallest weight called nd
(see line 3), PNKFinder computes an approximate pnk that contains the node nd and all
the nodes connected to this node. When the pnk is computed, nd is removed from the
PNKGraph and the weights of its neighbors are reduced by 1. The same process is applied
for all the nodes of the graph until the graph is empty.
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(a) Approximate pnk when o1:director (b) Approximate pnk when o1:name

(c) Approximate pnk when o1:releaseDate (d) Approximate pnk when o1:hasActor

(e) Approximate pnk when o1:language

Fig. 4.6 Execution of PNKFinder for the PNKGraph 4.5
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Algorithm 8: PNKFinder
Input: PNKGraph
Output: PNK: the set of potential n-non keys

1 weightedNodes  weightNodes(PNKGraph)
2 while PNKGraph 6= /0 do
3 nd minimumWeight(weightedNodes)
4 set {nd}
5 set set [ connectedNodes(nd)
6 PNK = PNK [ {pnk}
7 remove(nd, PNKGraph)
8 weightedNodes  updateWeight(weightedNodes, nd)

9 PNK maximalSets(PNK)

If a clique is contained in the graph, the first time that one of this clique is chosen, all the
nodes that belong to this clique will be selected. Thus, we can guarantee that each maximal
clique will be included in at least one approximate pnk. Once all the approximate pnk are
found, we keep only the maximal approximate pnk.

Example 4.3.1. Given the PNKGraph of the Figure 4.5, we compute the
PNK using the algorithm PNKFinder. The weight of the node appears next
to each node. Starting from the node o1:director the constructed pnk is
{o1:director, o1:hasActor, o1:releaseDate, o1:name} (see Figure 4.6(a)). o1:director
is removed from the graph and the weights are updated. Since both o1:releaseDate and
o1:name have the same weight, the node containing o1:name is chosen using a lexicograph-
ical order. The pnk {o1:name, o1:releaseDate} is constructed (see Figure 4.6(b)). Now the
node o1:name is removed and the weights are again updated. Continuing this process, the
set of all pnk found is: {{o1:director, o1:hasActor, o1:releaseDate, o1:name}, {o1:name,
o1:releaseDate}, {o1:releaseDate}, {o1:hasActor}, {o1:language}} as shown in the
Figure 4.6.

4.3.2 n-non key discovery

This section is dedicated to the description of the n-non key discovery method. We first
present the basic principles of the n-non keys discovery. Then, we introduce the pruning
strategies that are used by the nNonKey f inder algorithm. After that, we provide an algo-
rithm and give an illustrative example. Finally, we introduce some property ordering and
instance ordering heuristics.
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4.3.2.1 Basic principles

To compute the set of maximal n-non keys, the nNonKeyFinder algorithm exploits the ob-
tained set PNKn of maximal potential n-non keys and the data represented in the final map.

Let us consider the property p1 that has at least n exceptions. This property is considered
as a n-non key. Intuitively, a set of properties {p1, p2} is a n-non key iff there exist at least
n distinct instances, such that each of them has the same value for p1 and p2 with another
instance. In our framework, the sets of instances sharing the same value for a property p1 is
represented by the collection of v-exception sets Ep1 , while the sets of instances sharing the
same director is represented by the collection of v-exception sets Ep2 . Intersecting each set
of instances of Ep1 with each set of instances of Ep2 builds a new collection in which each
set share values for p1 and p2.

More formally we introduce the intersect operator ⌦ that intersects collections of ex-
ception sets only keeping sets greater than one.

Definition 21. (Intersect operator ⌦). Given two collections of v-exception sets Ep and
Ep0 , we define the intersect ⌦ as follow:

Epi⌦Ep j = {Ev
pi
\Ev

p j
| Ev

pi
2 Epi , Ev

p j
2 Ep j and |Ev

pi
\Ev

p j
|> 1}

Given a set properties P, the set of exceptions EP can be computed by applying the intersect
operator to all the collections Ep such that p 2 P.

EP =
[
⌦

p2P
Ep

For example, for the set of properties P = {o1:hasActor, o1:hasDirector}, when
EP={{ f1, f2, f3}, { f2, f3}} the set of exceptions is EP = { f1, f2, f3} [ { f2, f3} = { f1, f2, f3}

4.3.2.2 Pruning strategies

Computing the intersection of all the collections of v-exception sets represents the worst
case scenario of finding maximal n-non keys for a set of properties. We have defined several
strategies to avoid useless computations.

We will illustrate the pruning strategies in the figures Figure 4.7, Figure 4.8, Figure 4.9,
and Figure 4.10. In these graphical representations each level corresponds to the collection
Ep of a property p and the lines express the intersections that should be computed in the
worst case scenario. Thanks to the prunings, only the intersections appearing as highlighted
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Fig. 4.7 Antimonotonic Pruning when n = 2

lines are computed.

Antimonotonic pruning. SAKey exploits the antimonotic characteristic of n-non keys. This
pruning strategy is first introduced in KD2R in the Section 3.3.3.1. We recall that the anti-
monotonic pruning is based on the fact that if a set of properties is a n-non key, all its subsets
are also n-non keys.

Let us consider the example of the Figure 4.7 where n is set to 2. We notice that the set
of properties {p1, p2, p3} is a 2-non key since the instances i2 and i3 share values for this
set of properties. Since all the subsets of {p1, p2, p3} are by definition also 2-non keys, no
additional computation should be done.

Inclusion pruning. This strategy exploits sets inclusion to avoid computing useless in-
tersections of v-exception sets. Given a set of properties P = {p1, . . . , p j�1, p j, . . . , pn},
when the intersection of v-exception sets of p1, . . . , p j�1 is included in any v-exception
set of p j only this subpath is explored (i.e., Ev1

p1 \ . . .\ Ev j�1
p j�1 ✓ Evi

p j). This means that
p1(i,vi) ^ . . .^ p j�1(i,v j�1)) p j(i,v j) for every instance i.

For example, in Figure 4.8, we notice that the only v-exception set of p1 is included
in one of the v-exception sets of the property p2. This means that the biggest intersection
between p1 and p2 is {i3, i4}. Thus, the other intersections of v-exception sets of these
two properties will not be computed and only the subpath starting from the v-exception set
{i3, i4, i5} of p2 will be explored. In this example, we discover that 8i p1(i,v1)) p2(i,v2).

Seen intersection pruning. When a new intersection is included in an already computed
intersection, the exploration using the new intersection cannot lead to new n-non keys. Thus,
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Fig. 4.8 Inclusion Pruning

Fig. 4.9 Seen Intersection Pruning

this exploration should not continue.

In Figure 4.9, we observe that starting from the v-exception set of the property p1

{i2, i3, i4}, the intersection between this v-exception set and {i1, i2, i3} or {i2, i3, i5} of the
property p2, will be in both cases {i2, i3}. Thus, the discovery using the one or the other
v-exception set of p2 will lead to the same n-almost keys.

Irrelevant intersection pruning. Assigning a unique integer to each instance of the final
map and sorting the v-exception sets of each collection allows us to avoid useless intersec-
tions. The instances of a v-exception set are sorted in ascending order, from the smallest to
the biggest. The v-exception sets of a collection are sorted as well. We sort two v-exception
sets by comparing instances in the same position. This comparison is done instance by in-
stance until one v-exception set to be found as smaller than another. The first position where
two v-exception sets have different integers will determine their order. The v-exception set
with the smallest integer will be first. For example, given the v-exception sets {{i4, i7},
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(a) (b) Irrelevant intersections

Fig. 4.10 nNonKeyFinder prunings and execution

{i3, i5}, {i3, i4, i5} and {i3, i5}} the sorted v-exception sets will follow the order:
{{i3, i4, i5}, {i3, i5}, {i4, i7}}.

The intersection between a current intersection k and each v-exception set of a collection
Ep of a property p can stop when the last element of k is smaller or equal to the first element
of a v-exception set m of Ep. Indeed, when the last element of k is smaller than the first
element of m, all the v-exception sets of the property p appearing after the v-exception set
m will contain instances with bigger identifiers. Thus, their intersection with k will be by
definition empty.

In Figure 4.10, we notice that the intersections of the v-exception set {i3, i4} of the
property p1 with the v-exception sets of the property p2 will stop when the v-exception
set {i10, i15} is found since we can guarantee that all the v-exception sets found after the
v-exception set {i10, i15} will contain instances that are not included in the selected v-
exception set.

4.3.2.3 nNonKeyFinder algorithm

To discover the maximal n-non keys, the v-exception sets of the final map are explored in a
depth-first way. Since the condition for a set of properties P to be a n-non key is EP � n this
exploration stops as soon as n exceptions are found.

The nNonKeyFinder algorithm (see Algorithm9) takes as input a property pi, curInter
the current intersection, curNKey the set of already explored properties, seenInter the set
of already computed intersections, nonKeySet the set of discovered n-non keys, E the set of
exceptions EP for each explored set of properties P, n the defined number of exceptions and
PNK the set of maximal potential n-non keys.

The first call of nNonKeyFinder is: nNonKeyFinder(pi, I, /0, /0, /0, /0, n, PNK) where pi
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is the first property that belongs to at least one potential n-non key and curInter the complete
set of instances I of one class.

Given the union of a property pi and the curNKey, which corresponds to the set of
already explored properties, the function uncheckedNonKeys ensures that this set of proper-
ties should be explored. More precisely, this function returns the potential n-non keys that
(1) contain this set of properties and (2) are not included in an already discovered n-non key
in the nonKeySet. If the result is not empty, this set of properties is explored. In Line 3, the
Inclusion pruning is applied i.e., if the current intersection, curInter, is included in one of
the v-exception sets of the property pi, the selectedEv

p will contain only the curInter. Oth-
erwise, all the v-exception sets of the property pi are selected. For each selected v-exception
set of the property pi, all the maximal n-non keys using this v-exception set are discovered.
To do so, the current intersection, curInter, is intersected with the selected v-exception sets
of the property pi. If the new intersection, newInter, is bigger than 1 and has not been seen
before (Seen intersection pruning), then pi[ curNonKey is stored in nvNkey. The instances
of newInter are added in E for nvNkey using the update function. If the number of excep-
tions for a given set of properties is bigger than n, then this set is added to the nonKeySet.
The algorithm is called with the next property pi+1 (Line 18). When the exploration of an
intersection newInter is done, this intersection is added to SeenInter. Once, all the n-non
keys for the property pi have been found, nNonKeyFinder is called for the property pi+1

with curInter and curNKey (Line 21), forgetting the property pi in order to explore all the
possible combinations of properties.

The data of the final map presented in Table 4.2 appear in the Figure 4.11. Ta-
ble 4.3 shows the execution of nNonKeyFinder for the example of the Figure 4.11 where
PNK = {{o1:hasActor, o1:director, o1:releaseDate}, {o1:language}}. For clarity rea-
son, we rename the properties as it follows : p1 = o1:hasActor, p2 = o1:director, p3 =

o1:releaseDate, p4 = o1:name, p5 = o1:language.

4.3.2.4 Ordering heuristics

We present two additional ordering heuristics that can be applied to improve the scalability
of th n-non key discovery. The first heuristic concern the order with which the properties
are explored. Furthermore, we present the ordering of instances in the final map.

Properties ordering. The order in which the properties are explored by the nNonKeyFinder
algorithm, affects the number of computations needed to discover all the maximal n-non
keys. The goal is to eliminate as fast as possible, combinations of properties that cannot
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pi selectedEv
p Ev

p curInter curNkey seenInter nonKeySet E
p1 {1, 2} 1 { f 1, . . . , f 6} {} {} {{p1}} {(p1) : ( f1, f2, f3)}
p2 {3} 3 { f 1, f 2, f 3} {p1} {} {{p1},{p1, p2}} {(p1) : ( f1, f2, f3)

(p1, p2) : ( f1, f2, f3)}
p3 {5} 5 { f 1, f 2, f 3} {p1, p2} {} {{p1},{p1, p2}} {(p1) : ( f1, f2, f3)

(p1, p2) : ( f1, f2, f3)}
p4 {6} 6 { f 1, f 2, f 3} {p1, p2} {} {{p1},{p1, p2}} {(p1) : ( f1, f2, f3)

(p1, p2) : ( f1, f2, f3)}
p5 - - { f 1, f 2, f 3} {p1, p2} {} {{p1},{p1, p2}} {(p1) : ( f1, f2, f3)

(p1, p2) : ( f1, f2, f3)}
p1 {1,2} 2 { f 1, . . . , f 6} {} {{ f1, f2, f3}} {{p1},{p1, p2}} {(p1) : ( f1, f2, f3)

(p1, p2) : ( f1, f2, f3)}
p2 {3,4} 3 { f2, f3, f4} {p1} {{ f1, f2, f3}} {{p1},{p1, p2}} {(p1) : ( f1, f2, f3)

(p1, p2) : ( f1, f2, f3)}
p3 {5} 5 { f2, f3, f4} {p1} {{ f1, f2, f3}} {{p1},{p1, p2}} {(p1) : ( f1, f2, f3)

(p1, p2) : ( f1, f2, f3)}
p4 {6} 6 { f2, f3, f4} {p1} {{ f1, f2, f3}} {{p1},{p1, p2}} {(p1) : ( f1, f2, f3)

(p1, p2) : ( f1, f2, f3)}
p5 - - { f2, f3, f4} {p1} {{ f1, f2, f3}} {{p1},{p1, p2}} {(p1) : ( f1, f2, f3)

(p1, p2) : ( f1, f2, f3)}
p2 {3,4} 3 { f 1, . . . , f 6} {} {{ f1, f2, f3},{ f2, f3, f4}} {{p1},{p1, p2}} {(p1) : ( f1, f2, f3)

(p1, p2) : ( f1, f2, f3)
(p2) : ( f1, f2, f3)}

p2 {3,4} 4 { f 1, . . . , f 6} {} {{ f1, f2, f3},{ f2, f3, f4}} {{p1},{p1, p2}} {(p1) : ( f1, f2, f3)
(p1, p2) : ( f1, f2, f3)
(p2) : ( f1, f2, f3, f6)}

p3 {5} 5 { f 2, f 3, f 6} {p2} {{ f1, f2, f3},{ f2, f3, f4}} {{p1},{p1, p2}, {(p1) : ( f1, f2, f3)
{p2, p3} (p1, p2) : ( f1, f2, f3)

(p2) : ( f1, f2, f3, f6)
(p2, p3) : ( f2, f6)}

p4 {6} 6 { f 2, f 6} {p2} {{ f1, f2, f3},{ f2, f3, f4}} {{p1},{p1, p2}, {(p1) : ( f1, f2, f3)
{p2, p3} (p1, p2) : ( f1, f2, f3)

,{p2, p3, p4}} (p2) : ( f1, f2, f3, f6)
(p2, p3) : ( f2, f6)
(p2, p3, p4) : ( f2, f6)}

p5 - - { f 2, f 6} {p2} {{ f1, f2, f3},{ f2, f3, f4}} {{p1},{p1, p2}, {(p1) : ( f1, f2, f3)
{p2, p3} (p1, p2) : ( f1, f2, f3)

,{p2, p3, p4}} (p2) : ( f1, f2, f3, f6)
(p2, p3) : ( f2, f6)
(p2, p3, p4) : ( f2, f6)}

p3 - - { f 2, f 6} {p2} {{ f1, f2, f3},{ f2, f3, f4}, {{p1},{p1, p2}, {(p1) : ( f1, f2, f3)
{ f2, f3, f6}} {p2, p3} (p1, p2) : ( f1, f2, f3)

,{p2, p3, p4}} (p2) : ( f1, f2, f3, f6)
(p2, p3) : ( f2, f6)
(p2, p3, p4) : ( f2, f6)}

p4 - - { f 2, f 6} {p2} {{ f1, f2, f3},{ f2, f3, f4}} {{p1},{p1, p2}, {(p1) : ( f1, f2, f3)
{ f2, f3, f6}} {p2, p3} (p1, p2) : ( f1, f2, f3)

,{p2, p3, p4}} (p2) : ( f1, f2, f3, f6)
(p2, p3) : ( f2, f6)
(p2, p3, p4) : ( f2, f6)}

p5 {7} 7 { f 1, . . . , f 6} {} {{ f1, f2, f3},{ f2, f3, f4}} {{p1},{p1, p2}, {(p1) : ( f1, f2, f3)
{ f2, f3, f6}} {p2, p3} (p1, p2) : ( f1, f2, f3)

{p2, p3, p4},{p5}} (p2) : ( f1, f2, f3, f6)
(p2, p3) : ( f2, f6)
(p2, p3, p4) : ( f2, f6)
(p5) : ( f4, f5)}

Table 4.3 nNonKeyFinder execution on the example of Figure 4.11
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Fig. 4.11 example of nNonKeyFinder

lead to n-non keys. The intuition is that properties containing small v-exception sets (i.e.,
v-exception sets composed of few instances) will be less intersected with other properties
since they can arrive faster to intersections with size 0 or 1. Since this is the stopping
condition of the algorithm, starting from the properties containing small v-exception sets
we manage to eliminate many useless intersections. Indeed, ordering the properties prevent
us from intersecting properties that do not shared by many instances. Properties having
values that are shared by many instances are left for the end.

Each property is assigned with a value that corresponds to the size of its biggest v-
exception set in terms of number of instances. For example, if a property p contains
the following v-exception sets, Ep = {{i1, i2, i4}, {i3, i5, i6, i7, i8}, {i10, i15}}, the
property p is assigned with the value 5 which represents the size of the v-exception set
{i3, i5, i6, i7, i8}.

Thus, the properties are sorted in ascending order (i.e., from the smallest to the biggest).

Instances ordering. Exploring instances that appear more in the v-exception sets first, en-
sures that n-non keys might be discovered more efficiently. We call these instances frequent.
To find n-non keys fast, we assign small identifiers to frequent instances. This allows us to
check first the frequent instances.
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Algorithm 9: nNonKeyFinder
Input : pi: a current property

curInter: a current intersection
curNKey: already explored set of properties
seenInter: computed intersections
nonKeySet: set of discovered n-non keys
E: the set of exceptions
n: number of exceptions

Output: nonKeySet: set of discovered n-non keys
1 uncheckedNonKeys unchecked({pi}[ curNKey,nonKeySet,PNK)
2 if uncheckedNonKeys 6= /0 //PNK and Antimonotonic Pruning then
3 if (curInter ✓ Ev

pi
s.t. Ev

pi
2 Epi) //Inclusion Pruning then

4 selectedEv
pi
 {{curInter}}

5 else
6 selectedEv

pi
 Epi

7 foreach Ev
pi
2 selectedEv

pi
do

8 if (last(curInter) f irst(Ev
pi
)) //Irrelevant Intersection Pruning then

9 break
10 newInter Ev

pi
\ curInter

11 if (|newInter|> 1) then
12 if (newInter * k s.t. k 2 seenInter) //Seen Intersection Pruning then
13 nvNKey {pi}[ curNKey
14 update(E,nvNKey,newInter)
15 if (|EnvNkey|> n) then
16 nonKeySet nonKeySet [{nvNKey}
17 if ((i+1)< # properties) then
18 nNonKeyFinder(pi+1,newInter,nvNKey,seenInter,nonKeySet,E,n)

19 seenInter seenInter[{newInter}

20 if ((i+1)< # properties) then
21 nNonKeyFinder(pi+1,curInter,curNKey,seenInter,nonKeySet,E,n)

Instances are sorted by their occurrence globally in the final map. The more an instance
appears in v-exception sets, the smaller value it will be assigned with.

4.3.3 Ordered key derivation

Following the idea of key derivation presented in Section 3.3.3.3, the set of minimal n-
almost keys can be obtained using the sets of all the sets of properties that are not n-almost
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Fig. 4.12 Minimum computations to obtain the minimal keys

keys. A set of properties is a n-almost key if it contains at most n exceptions. Thus, a set of
properties is considered as not a n-almost key when it contains more than n exceptions, i.e.,
(n+1)-non key.

As we have seen in the previous chapter (see Section 3.3.3.3), both KD2R and
[SBHR06] derive the set of keys using the set of maximal non keys by iterating two steps:
(1) computing the Cartesian product of complement sets of the discovered non keys and (2)
selecting only the minimal sets. The same algorithm can be applied in our case. Neverthe-
less, the complexity of computing the Cartesian product is W(km) where k is the number of
maximum elements of a complement set and m, the number of complement sets. Deriving
keys using this algorithm is very time consuming when the number of properties is big.

For example, let us consider the set of properties {p1, p2, p3, p4} for a given class and
its maximal (n+1)-non keys {{p3}, {p4}}. The complement sets of the two (n+1)-non keys
are {p1, p2, p3}, {p1, p2, p4} respectively. The Cartesian product of the complement
sets is:

{p1, p2, p3}⇥{p1, p2, p4} = {{p1, p1}, {p1, p2}, {p1, p3}, {p2, p1}, {p2, p2},
{p2, p4}, {p3, p1}, {p1, p2}, {p3, p4}}.

Once the Cartesian product is computed, the simplification step is applied and the following
minimal n-almost keys are obtained:

n-almost keys = {{p1}, {p2}, {p3, p4}}.

First, we can observe that keys do not contain duplicate properties. In the previous example,
the set {p1, p1} should not be constructed. Moreover, the order of properties is not relevant.
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Thus, if the set {p1, p2} is constructed, {p2, p1} is not necessary. Finally, let us consider a
set of properties {p1, . . . , pi} that corresponds to a part of a n-almost key constructed from
properties found belonging in different complement sets. If pi and p j (or any other property
in the current set) belong to a not already considered complement set, if p j is added to
{p1, . . . , pi} , we are sure that this new set of properties will never lead to a minimal n-
almost key. For example, considering the property p1 of the complement set {p1, p2, p3},
the set {p1, p2} should be not be constructed since p1 is contained also in {p1, p2, p4}.In
Figure 4.12, the only highlighted edge corresponds to the only necessary combination of
properties in order to compute the n-almost key {p3, p4}.

To avoid useless computations, we propose a new algorithm that derives fast minimal
keys, called OrderedKeyDerivation (see Algorithm 10) from the set of complement sets. The
properties are sorted according to their frequency in the complement sets. The frequency
of one property corresponds to the number of complement sets containing this property. At
each iteration, the most frequent property is selected and all the keys involving this property
are discovered recursively. To avoid constructing non-minimal keys, we combine the most
frequent property p only with properties found in the complement sets not containing p.
Once all the keys including this property are found, the selected property is eliminated from
every complement set. In this way, the size of complement sets decreases in each iteration,
thus less computations will be made. The process continues for every property until one
complement set becomes empty. Since the condition for producing a valid key is to contain
at least one property from each complement set, when the deletion of a property leads to an
empty complement set, all the n-almost keys have been discovered and no new keys can be
produced. When all the n-almost keys are found a minimization step has to be applied to
ensure that only minimal keys will be kept.

Example 4.3.2. Let the set of P be {p1, p2, p3, p4, p5}. If the set of maximal n-non keys
is {{p1, p2, p3},{p1, p2, p4},{p2, p5},{p3, p5}}, the set of minimal n-almost keys will be
{{p1, p5},{p2, p3, p5},{p3, p4},{p4, p5}}. The process is shown in the Figure 4.13 and is
explained in details in the following.
Initially the algorithm takes as input the following complement sets: {{p1, p2, p4},
{p1, p3, p4}, {p3, p5}, {p4, p5}}. At this point the keySet is empty. The properties are
explored in the order {p4, p1, p3, p5, p2}. Starting from the most frequent property, p4,
we calculate all the keys containing this property. selectedCompSets corresponds to the
complement sets not containing this property. In this case, {p3, p5} is the only comple-
ment set that that does not contain the property p4. The property p4 is combined with every
property of this set. To do so, the OrderedKeyDerivation is now called with {{p3, p5}}.
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(a) Step 1 - when property is p4 (b) Step 2 - when property is p1

(c) Step 3 - when property is p5 (d) Step 4 - Stopping condition

Fig. 4.13 OrderedKeyDerivation of the Example 4.3.2

The properties p3 and p5 are now lexicographically ordered since they both have frequency
1. Starting from the property p3, there is no complement set that does not contain this
property. Thus, selectedCompSets is empty. In this case, the set {p3} is added to the
keySet. The property p3 is removed from the selectedCompSets which is now {{p5}}.
Continuing with the property p5, the selectedCompSets is again empty. The keySet is
now {{p3}, {p5}}. By removing p5 from the compSets, compSets becomes {{}}. At
this point, the Cartesian product of p4 with p3 and p5 is computed. Now the keySet
is {{p3, p4},{p4, p5}}. After that, the property p4 is eliminated and the compSets are:
{{p1, p2},{p1, p3},{p5},{p3, p5}}. The most frequent properties now are p1, p3 and p5,
having all a frequency of 2. In this case, we order lexicographically the properties, thus
we select the property p1. OrderedKeyDerivation is now called with the selectedCompSets
which are are now {{p3, p5},{p5}}. In this case, the property p5 is more frequent, thus
we start with this. There is no complement set not containing p5, so the keySet = {p5}.
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Removing this property, the compSets is now {{p3},{}}. We observe that one of the sets
is empty, so the for loop stops. In this case, the Cartesian product of {p1} with {p5} is
computed and added to the keySet. The keySet is now {{p3, p4},{p4, p5}, {p1, p5}}. The
compSets after removing the property p1 are: {{p2},{p3},{p5},{p3, p5}}. We continue
with the property p3. The selectedCompSets is {{p2},{p5}}. The OrderedKeyDerivation is
now called with p2 and since the selectedCompSets is {{p5}} the OrderedKeyDerivation is
recursively called for p5. In this case, the keySet is initially {{p5}}, it becomes {{p2, p5}}
and finally {{p2, p3, p5}}. When the property p3 is removed from the compSets, one of
the sets becomes empty. Thus, at this point all the n-almost keys have been discovered.
Finally, the discovered keySet is {{p1, p5},{p2, p3, p5},{p3, p4},{p4, p5}}. In this exam-
ple, we we observe that all the discovered n-almost keys correspond to minimal ones, thus
the minimization step will not change the result found so far.

To conclude, if every property has a different frequency in the complement sets, this
algorithm discovers directly only minimal n-almost keys. In the case where there exist
properties having the same frequency, non minimal keys might be derived. When all the
keys are found, an extra step is required in order to simplify the set of keys and have in
the end only non minimal n-almost keys. The worst case complexity of OrderedKeyDeriva-
tion is O(km) only when every property in the complement sets is contained in only one
complement set.

Algorithm 10: OrderedKeyDerivation
Input: compSets: set of complement sets
Output: keySet: set of n-almost keys

1 keySet /0
2 orderedProperties = getOrderedProperties(compSets)
3 foreach pi 2 orderedProperties do
4 selectedCompSets selectSets(pi, compSets) //compSets not containing pi
5 if selectedCompSets == /0 then
6 keySet = keySet [{{pi}}
7 else
8 foreach curKey 2 OrderedKeyDerivation(selectedCompSets) do
9 keySet = KeySet [{{pi}⇥ curKey}

10 compSets = remove(compSets, pi)
11 if 9 set 2 compSet | set == /0 then
12 break

13 return keySet
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4.4 Valid almost keys in different datasets

Let us consider two datasets conforming to distinct ontologies. In the case of n-almost keys
is also interesting to find valid n-almost keys for several datasets. We present the merge of
n-almost keys in two different scenarios. In the first scenario the number of exceptions is
equal in both datasets. In this case n-almost keys will be found in both datasets and will be
merged in the same way as presented in Section 3.3.3.4. This means that the merged almost
keys will correspond to the n-almost keys valid in both datasets.

In the second scenario where almost keys are found for different n in each dataset, the
merged results as presented in Section 3.3.3.4 will correspond to the biggest number of
exceptions used in this datasets.

4.5 C-SAKey: Conditional key discovery

In order to enrich, as much as possible, the set of keys that can be declared for a specific
domain, we propose C-SAKey, an extension of SAKey that discovers conditional keys. A
set of properties is a conditional key for a class, when it is a key for the instances of the
class that satisfy a given condition. Here, we consider conditions that involve one or several
datatype properties for which a value is specified. More precisely, given a class c (c 2 C ),
an instance X and the set of properties P= {p1, . . . , pm} where P2P , a condition Cond(X)

can be expressed as:
p1(X ,v1)^ . . .^ pm(X ,vm)

For example, let us consider the RDF dataset D1 presented in the Figure 4.14. This
dataset contains descriptions of researchers. We observe that there exist two researchers
that have the last name 00Sais00 therefore the property lastName is not a key for the
class Researcher. In a bigger dataset many researchers can share last names. Moreover,
{lastName,worksIn} is not a key since there can exist people that work in the same lab
and share last names. However, there may exist research labs where every researcher can
be identified by its last name. Therefore, it is interesting to discover keys that are valid in
subparts of the data that are selected using a specific condition. In this example, we observe
that the property lastName is a key for the researchers that work in 00LRI00, while it is not
for the researchers in 00CRIL00.

In the previous chapters, we focus on the discovery of keys for a given class. OWL2
allows the declaration of conditional keys using a class expression CE. As already seen in
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Dataset D1:
Researcher(r1), f irstName(r1, 00Fatiha00), lastName(r1, 00Sais00), worksIn(r1, 00LRI00),
position(r1,00Assist.pro f essor00)

Researcher(r2), f irstName(r2, 00Nathalie00), lastName(r2, 00Pernelle00), worksIn(r2, 00LRI00),
position(r1,00Assist.pro f essor00),

Researcher(r3), f irstName(r3, 00Chantal00), lastName(r3, 00Reynaud00), worksIn(r3, 00LRI00),
position(r3, 00Pro f essor00),

Researcher(r4), f irstName(r4, 00Lakhdar00), lastName(r4, 00Sais00), worksIn(r4, 00CRIL00),
position(r4,00Pro f essor00)

Researcher(r5), f irstName(r5, 00Olivier00), lastName(r5, 00Roussel00), worksIn(r5, 00CRIL00),
position(r5, 00Assist.pro f essor00)

Researcher(r6), f irstName(r6, 00Michel00), lastName(r6, 00Roussel00), worksIn(r6, 00CRIL00),
position(r6, 00Engineer00)

Fig. 4.14 RDF dataset D1

Section 2.1.2, a OWL2 key can be represented as (CE(ope1, . . . ,opem) (d pe1, . . . ,d pen))

where ope represent the object properties and d pe the datatype properties. A class
expression represents instances of a class that fulfill a set of specific constraints that can be
declared using various OWL2 constructs 1. To build the conditions that we consider, the
construct owl:DataHasValue can be used.

We consider that a conditional key is valid in a considered dataset if the following defi-
nition is satisfied:

Definition 22. (Conditional key). A set of properties P (P ✓P) is a conditional key for
the class c and the condition Cond in a dataset D if:

8X 8Y ((X 6= Y )^ c(X)^ c(Y )^Cond(X)^Cond(Y )))

(8Z ¬(p j(X ,Z)^ p j(X ,Z)))

Discovering conditional keys for all the possible conditions that can be expressed for
a given dataset would be very time consuming. Moreover, conditional keys that are true

1See http://www.w3.org/TR/owl2-syntax/#Class_Expressions for more details
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only in small subparts of the data may not be significant. We consider that an expert selects
sets of properties that are going to be used in the condition. For each set of properties, all
the combinations of values are used to generate the set of conditions to be explored. A
preprocessing step is applied to extract all the descriptions of instances that contain values
involved in the condition. A naive way to discover conditional keys, is then, to apply the
Algorithm 9, used in SAKey to discover n-non keys, to these extracted descriptions. Note
that, the value of n is set to 1 since we are interested in the discovery of exact conditional
keys, i.e., conditional keys with no exceptions.

4.6 Experiments

We evaluated SAKey using three groups of experiments. In the first group, we demonstrate
the scalability of SAKey thanks to its filtering and pruning techniques. In the second group,
we compare SAKey to KD2R, the only approach that discovers composite OWL2 keys.
The two approaches are compared in two steps. First, we compare the runtimes of their
non key discovery algorithms and second, the runtimes of their key derivation algorithms.
Finally, we show how the use of n-almost keys can improve the quality of data linking.
The experiments are executed on three different datasets, DBpedia2, YAGO3 (knowledge
base presented in [SKW07]), OAEI 20104 and OAEI 20135. The execution time of each
experiment corresponds to the average execution time of 10 executions.

In all experiments, the data are stored in a dictionary-encoded map, where each distinct
string appearing in a triple is represented by an integer. The experiments have been executed
on a single machine with 12GB RAM and processor 2x2.4Ghz, 6-Core Intel Xeon running
Mac OS X 10.8.

4.6.1 Scalability of SAKey when n = 1

SAKey has been executed on the set of instances of every top class of DBpedia ('400
classes). Here we provide details about the scalability of SAKey only on the classes
DB:NaturalPlace, DB:BodyO fWater and DB:Lake of DBpedia (see Figure 4.7) when n =
1. We first compare the size of the considered data before and after the filtering steps. Then
we give the results of SAKey when it is run on filtered data with and without the prunings.

2http://wiki.dbpedia.org/Downloads39
3http://www.mpi-inf.mpg.de/yago-naga/yago/downloads.html
4http://oaei.ontologymatching.org/2010/im/index.html
5http://oaei.ontologymatching.org/2013
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class # Initial sets # Final sets
DB:Lake 57964 4856 (8.3%)
DB:BodyO fWater 139944 14833 (10.5%)
DB:NaturalPlace 206323 22584 (11%)

class # filtered singleton sets # filtered Ev
p # filtered 1-Almost keys

DB:Lake 50807 2301 78 (54%)
DB:BodyO fWater 120949 4162 120 (60%)
DB:NaturalPlace 177278 6461 131 (60%)

Table 4.4 Data filtering in different classes of DBpedia

In the rest of this section, we provide the execution time for the biggest class of DBpedia,
DB:Person.

Data filtering experiment. To validate the importance of our filtering steps, we compare
the number of sets of instances before and after the filtering steps. In Table 4.4, the initial
sets correspond to the sets of instances represented in the initial map while the final sets
correspond to the sets remained after (i) the singleton sets filtering and (ii) the v-exception
sets filtering, presented in Section 4.3.1.1. The singleton sets refer to the sets of size 1
removed from the final map, thanks to the singleton sets filtering. We observe that in all the
three datasets more than 88% of the sets of instances of the initial map are filtered applying
both the singleton filtering and the v-exception set filtering. The suppressed properties
represent the properties that contain only sets of size 1, thus they cannot be considered as
n-non keys. SAKey is able to discover directly single 1-almost keys, i.e., keys with no
exceptions composed of one property. More than 50% of the properties of each class are
suppressed since they are single 1-almost keys (Ep = /0 after the singleton sets filtering).
For example, the property mouthPosition is a 1-almost key for the class DB:Lake.

Pruning Experiment. To validate the importance of the pruning strategies, we run
nNonKeyFinder on different datasets with and without applying the pruning strategies. In
Table 4.5, we compare the number of calls of nNonKeyFinder along with the time, when the
algorithm exploits the following pruning strategies (see Section 4.3.2.2): the anti-monotonic
pruning, the inclusion pruning, the seen intersection pruning and the irrelevant intersection
pruning. As we observe, the number of calls of nNonKeyFinder decreases significantly
using the prunings. The percentages represent ratio of the number of calls when prun-
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ings are used, to the number of calls when no pruning is used. In the class DB:Lake, the
number of calls of SAKey decreases to half when prunings are used, while in the class
DB:NaturalPlace only 20% of the calls without prunings are done when prunings are
used. Consequently, the runtime of SAKey improves significantly. For example, in the
class DB:NaturalPlace the time decreases by 76%.

We observe that thanks to the use of filtering techniques and the pruning strategies,
SAKey manages to scale, avoiding many useless computations.

class without prunings with prunings
Calls Runtime Calls Runtime

DB:Lake 52337 13s 25289 (48%) 9s
DB:BodyO fWater 443263 4min28s 153348 (34%) 40s
DB:NaturalPlace 1286558 5min29s 257056 (20%) 1min15s

Table 4.5 Prunings and execution time of nnonKeyFinder on classes of DBpedia

4.6.2 Scalability of SAKey when n > 1

To evaluate the scalability of the n-non key discovery, we run SAKey for different val-
ues of n. In Table. 4.6, we notice that the execution time of nNonKeyFinder for the class
DB:NaturalPlace is not strongly affected by the increase of n. Additionally, we notice that
the number of nNonKeyFinder calls increases very slowly. For example, comparing the
number of calls of nNonKeyFinder when n = 1 and n = 300, only 57 extra calls are nec-
essary to obtain all the 300-non keys, i.e., non keys containing at least 300 exceptions. Of
course, setting the n up to 300 will not lead to the discovery of significant keys. The values
of n have been set so high only to prove the ability of SAKey to scale, even when the number
of allowed exceptions is big.

4.6.3 KD2R vs. SAKey

In this section, we compare SAKey to KD2R in two steps. The first experiment compares
the efficiency of SAKey against KD2R in the non key discovery process. Since KD2R
cannot discover keys with exceptions, the value of n is set to 1. Given the same set of non
keys, the second experiment compares the runtime of the key derivation approach of KD2R
to our novel algorithm.
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n # of nNonKeyFinder nNonKeyFinder # n-non keys
Calls Runtime

1 257150 61s 298
50 257207 55s 118

100 257207 58s 78
200 257207 56s 53
300 257207 59s 45
400 257260 56s 41

Table 4.6 nNonKeyFinder applying different n values on DB:NaturalPlace

Non key discovery results. In Figure 4.15, we compare the runtimes of the non key discov-
ery of both KD2R and SAKey for the class DB:NaturalPlace. In this experiment, we want
to compare the resistance of both algorithms to the number of properties. Starting from
the 10 most frequent properties, properties are added until the whole set of properties is
explored. We observe that KD2R is not resistant to the number of properties and its runtime
increases exponentially. For example, when the 50 most frequent properties are selected,
KD2R takes more than five hours to discover the non keys while SAKey takes only two
minutes. Additionally, KD2R cannot discover the non keys when the complete set of prop-
erties is selected since the algorithm demands a big memory space. Note that when only 10
properties are selected, KD2R is faster than SAKey by few seconds. Indeed, this happens
since SAKey applies many preprocessing steps to avoid useless computations.

In Figure 4.15, we notice that SAKey is linear in the beginning and almost constant af-
ter a certain number of properties. This happens since the class DB:NaturalPlace contains
many properties which appear only in few instances. Since the properties are added accord-
ing to their frequency, the properties added in the last tests contain few exception sets. It
occurs also that many of the properties added in the end are single keys and unlike KD2R,
SAKey is able to discover them directly using the singleton sets pruning.

To show that SAKey outperforms KD2R, we run both algorithms in several classes of
DBpedia and YAGO. Table. 4.7 provides information for each class such as the number of
triples, the number of instances and the number of properties. In this table, we observe that
SAKey is orders of magnitude faster than KD2R in every exploited class. For example,
SAKey needs only 11 seconds to discover the set of non keys for the class DB:Mountain,
while KD2R needs more than 119 minutes. Moreover, KD2R runs out of memory in classes
containing many properties and triples.
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Fig. 4.15 KD2R vs. SAKey: Non key discovery runtime on DB:NaturalPlace

# # # KD2R SAKey
class triples instances properties Runtime Runtime
DB:Website 8506 2870 66 13min 1s
YA:SportsSeason 83944 17839 35 2min 9s
YA:Building 114783 54384 17 26s 9s
DB:Mountain 115796 12912 124 119min 11s
DB:Lake 409016 9438 111 outOfMem. 8s
DB:BodyO fWater 1068428 34000 200 outOfMem. 37s
DB:NaturalPlace 1604348 49913 243 outOfMem. 1min10s

Table 4.7 Runtime of nNonKeyFinder in different classes of DBpedia and YAGO

In the biggest class of DBpedia, DB:Person (more than 8.000.000 triples, 900.000
instances and 508 properties), SAKey takes 19 hours to compute the n-non keys while
KD2R cannot even be applied. Indeed, unlike KD2R, SAKey uses a very compressed
representation of the data and applies new pruning strategies that allow it to scale even on
big datasets.

Key derivation results. Given different sets of non keys, we compare the runtimes of the
key derivation algorithms of KD2R and SAKey for the class DB:BodyO fWater. Given
the complete set of non keys of the class DB:BodyO fWater, we run both algorithms in
different subsets of the non keys set. Starting from 20 non keys, we randomly add non keys
and extract keys with both algorithms. The Figure 4.16 shows how the time evolves when
the number of non keys of the class DB:BodyO fWater increases. We observe that SAKey
outperforms KD2R in every case. For example, when the number of non keys is 190, KD2R
needs more than 1 day to compute the set of minimal keys, while SAKey takes less than 1



4.6 Experiments 119

Fig. 4.16 KD2R vs. SAKey: Key derivation on DB:BodyO fWater

minute.

Additionally, to prove the efficiency of SAKey over KD2R, we compare their runtimes
on seven classes of YAGO and DBpedia. In Table 4.8, we observe that SAKey outperforms
KD2R in every case since it discovers fast the set of minimal keys. For example, in the case
of the class DB:NaturalPlace, KD2R takes more than 2 days, while SAKey only 5 minutes.

As we notice in Table 4.8, there can exist thousands of keys for each class. In Ta-
ble 4.9, we present some of the 1-almost keys discovered by SAKey for the classes
DB:NaturalPlace, DB:BodyO fWater and DB:Lake.

Class # non keys # keys KD2R SAKey
DB:Website 9 99 1s 1s
YA:Building 15 40 1s 1s
YA:SportsSeason 22 188 2s 1s
DB:Lake 58 589 1min10s 1s
DB:Mountain 49 901 8min 1s
DB:BodyO fWater 220 3966 > 1 day 66s
DB:NaturalPlace 302 7142 > 2 days 5min

Table 4.8 Key derivation on different classes

We notice that both algorithms provided by SAKey to discover non keys and derive keys
from non keys outperform the algorithms of KD2R in every dataset used in the experiments.
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DB:Lake DB:BodyOfWater DB:NaturalPlace
{{point, state}, {region, width}, {{range, f low},
{volume, point}, {originalStartPoint}, {river, length, city},
{mouthPosition}, {depth, region}, {volume, highestPlace},
{region, areaTotal}, {city, riverBranchO f}, {out f low, geology},
{riverMouth, in f low}, {district, inv-regionServed}, {locatedInArea, watershed},
{riverMouth, elevation}, {startPoint, geology}, {long, depth, name},
. . . } . . . } . . . }

Table 4.9 1-almost keys for the classes DB:NaturalPlace, DB:BodyO fWater and DB:Lake

4.6.4 Data linking with n-almost keys

In this section, we evaluate the quality of identity links that can be found using n-almost
keys. We have exploited two different datasets provided by the OAEI 2010 and OAEI 2013
for the instance matching track.
OAEI 2010. In the first experiment, we evaluate the quality of identity links, found between
the datasets D3, D4 provided by OAEI 2010, first introduced in the Section 3.5.1.1. For
clarity reasons, we remind that both datasets contain instances of the classes Restaurant and
Address. Each restaurant is described using the datatype properties name, phoneNumber,
hasCategory and the object property hasAddress. An address is described using the datatype
properties street, city and the object property hasAddress. As we observe in Table 4.10,
when 2 exceptions are allowed, SAKey discovers phoneNumber while when no exceptions
are allowed, the 1-almost key {phoneNumber,category} is found. Note that the set of n-
almost keys remains the same even when the n reaches up to 100. Thus, we link the instances
of the class Restaurant using the 1-almost keys and the 2-almost keys. In order to use the
key hasAddress, found in both cases, we link the addresses using the 1-almost key of D3
{street, city}. As we notice in Table 4.11, when the 2-almost keys are applied, the recall
increases by 12% and reaches up to 99.1% while the precision stays also the same. We
notice though that even if the property phoneNumber is not a key, it has a high linking
power. Indeed, in this dataset, there exist two distinct restaurants, found in the same place,
sharing phone numbers. In Table 4.12, we see that comparing the linking power of the
1-almost key {phoneNumber,category} and the 2-almost key {phoneNumber}, the use of
phone number as a key increases the recall by 74% and it reaches up to 94.6% while the
precision is reduced only by 1.4%.
OAEI 2013. In the first experiment, the benchmark contains one original file and five test
cases. Each test case contains a file that should be linked with the original one. This ex-
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n n-almost keys
0, 1 {{name}, {hasAddress}, {phoneNumber,category}}
2,. . . 100 {{name}, {hasAddress}, {phoneNumber}}

Table 4.10 n-almost keys for the class Restaurant of OAEI 2010

# exceptions Recall Precision F-measure
0, 1 87.5% 85.9% 86.7%
2,. . . 100 99.1% 86% 92.11%

Table 4.11 Data linking for the class Restaurant of OAEI 2010 using equality

Almost keys Recall Precision F-measure
{name} 75.8% 94.4% 84.1%
{address} 34.8% 75% 47.5%
{phoneNumber, category} 20.5% 95.8% 33.8%
{phoneNumber} 94.6% 94.6% 94.6%

Table 4.12 Linking power of almost keys found in D3

periment is conducted using the file from the first case. The original file contains DB-
pedia descriptions of persons and locations, while the test case file contains the same in-
stances but with descriptions that have been modified. More precisely, values of 5 prop-
erties have been changed by randomly deleting/adding characters, by changing the date
format, and/or by randomly changing integer values. Each file contains 1744 triples de-
scribing 430 instances. Each person can be described by the datatype properties birthName,
birthDate, comment, label and the object properties almaMater, award, birthPlace and
doctoralAdvisor. The property almaMater is used to describe a high school or a university
from which an individual has graduated. Each location can be described by the datatype
properties populationTotal, label, motto and the object property isPartO f . The property
motto represents a short sentence that encapsulates the ideals of a location.

Each file contains 1744 triples describing 430 instances, using 11 properties. The second
file is taken from the first test case. We have applied SAKey to discover n-almost keys in the
test case file, where stop words have been eliminated. For example, words like 00o f 00, 00the00,
00at 00, 00restaurant 00 have been removed. The discovered n-almost keys have been used to
link the data described in the two files. Two different scenarios have been executed. In the
first scenario, only the string equality has been used by the linking tool in order to evaluate
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# exceptions Recall Precision F-measure
0, 1 25.6% 100% 41%
2, 3 47.6% 98.1% 64.2%
4, 5 47.9% 96.3% 63.9%

6, . . . , 16 48.1% 96.3% 64.1%
17 49.3% 82.8% 61.8%

Table 4.13 Data Linking in OAEI 2013 using equality

# exceptions Recall Precision F-measure
0, 1 64.4% 92.3% 75.8%
2, 3 73.7% 90.8% 81.3%
4, 5 73.7% 90.8% 81.3%

6, . . . , 16 73.7% 90.8% 81.3%
17 74.4% 82.4% 78.2%

Table 4.14 Data Linking in OAEI 2013 using similarity measures

the quality of keys without considering the data heterogeneity. Thus, in this scenario, two
resources are linked when they have common values for all the n-almost key properties.
The recall, precision and F-measure of our linking results has been computed using the gold
standard provided by OAEI.

Table 4.13 shows the evaluation of the linking process, in terms of recall, precision and
F-measure, when all the discovered n-almost keys are applied and when n varies from 0
to 18. Unsurprisingly, the more exceptions are allowed, the more the recall increases and
the precision decreases. Nevertheless, we observe that when two exceptions are allowed
(i.e., 2-almost keys), the recall increases by 22%, while the precision decreases only by
1.9%. Moreover, we notice that in this case, the highest F-measure is obtained (62.4%).
Indeed, by allowing two exceptions, SAKey discovers the properties motto and birthDate
as 2-almost keys. Both properties have a high precision even if they are not keys in every
case (they have few exceptions). Although the F-measure is increasing significantly when
n-almost keys are applied, we notice that even in the best case the recall is not very high (less
than 50%). For this reason, in the second scenario, the linking tool uses similarity measures
to link the data. Table 4.14 presents the results of data linking in terms of recall, precision
and F-measure when similarity measures are applied. In this case, the recall reaches up to
75%. We notice that the precision is, in general, lower when similarity measures are used
than when only equality is used, since two instances are more easily considered as equal.
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1-almost keys 3-almost keys 5-almost keys
{label}, {label} {label},
{birthName}, {birthName}, {birthName},
{populationTotal}, {populationTotal}, {doctoralAdvisor},
{award,doctoralAdvisor}, {award,doctoralAdvisor}, {motto},
{doctoralAdvisor,birthPlace}, {doctoralAdvisor,birthPlace}, {BirthDate}
{motto, isPartO f}, {motto},
{award,birthDate}, {BirthDate}
{almaMater,birthDate},
{doctoralAdvisor,birthDate}

16-almost keys 17-almost keys
{label}, {label},
{birthName}, {birthName},
{populationTotal}, {populationTotal},
{doctoralAdvisor}, {doctoralAdvisor},
{motto}, {motto},
{BirthDate}, {BirthDate},
{award,almaMater,birthPlace} {award,birthPlace},

{award,almaMater}

Table 4.15 Set of n-almost keys when n varies from 1 to 17

Table 4.15 presents the sets of n-almost keys discovered when different values of n
are applied. When the same set of n-almost keys is obtained with different n values, the
table contains only the n-almost keys for the biggest n. We observe that the number of
minimal n-almost keys varies according to the n value for two reasons. First, the more the n
increases the more the n-almost keys become general, since sets of properties considered as
n-non keys may be considered as n-almost keys afterwards. For example, the 1-almost key
{award, birthDate} becomes {birthDate} when 3 exceptions are allowed. Moreover, new
n-almost keys can be added. For example, {award,almaMater,birthPlace} is introduced
when the n is set to 16.

The linking power of each n-almost key is presented in Table 4.16, in terms of recall,
precision and F-measure. We observe that, the 1-almost key {birthName} has 0% recall.
This means that no link can be found using this key. This occurs since there exist only 8
descriptions in the dataset having this property. Comparing the two keys with no exceptions
{award, birthDate} and {almaMater, birthDate} with the 4-almost key {birthDate}, we
notice that the recall of birthDate alone reaches up to 32% while in the both keys it was less
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that 15%. The precision of {birthDate} remains high (98.6%). Respectively, comparing
{motto, isPartO f} that is a key with no exceptions with the 4-almost key {motto}, we
notice that the recall using the motto alone increases almost 10%, while the precision falls
to less than 5%.

Almost keys Recall Precision F-measure
{label} 8.3% 100% 15.4%
{birthName} 0% - -
{populationTotal} 0.2% 100% 0.4%
{award, doctoralAdvisor} 0.4% 100% 0.9%
{doctoralAdvisor, birthPlace} 5.1% 100% 9.7%
{doctoralAdvisor} 5.3% 85.1% 10%
{motto, isPartO f} 1.1% 100% 2.2%
{motto} 10.4% 95.7% 18.8%
{award, birthDate} 9.3% 100% 17%
{almaMater, birthDate} 15.3% 100% 26.6%
{doctoralAdvisor, birthDate} 4.8% 100% 9.3%
{BirthDate} 32.5% 98.6% 49%
{award, almaMater, birthPlace} 48.1% 96.3% 64.2%
{award, birthPlace} 0.5% 100% 0.9%
{award, almaMater} 8.1% 49.3% 13.97%

Table 4.16 Linking power of almost keys for the OAEI 2013

4.6.5 Conditional keys

In this experiment, we present the conditional keys that are discovered in the dataset D11
(see Section 3.5.1.5). In this dataset, no keys were discovered since two duplicate in-
stances exist. We have chosen to construct conditions using the property ina:aPourGenre.
This property describes the different categories of contents that exist in the dataset. Thus,
the conditions are of the form ina:aPourGenre =00 Documentaire00, ina:aPourGenre =00

Reportage00, etc. In this dataset, the contents are grouped in 42 different categories.
The main idea of this experiment is to discover the conditional keys that can be found for

every given category in the data. The results show that conditional keys can be discovered
for all the categories except “Débat” which is the value of the duplicates for the property
aPourGenre. The keys are shown in Table 4.17.

We observe that different conditional keys are discovered depending on the value
of the property ina:aPourGenre. Different categories lead, in some cases, to the same



4.7 Conclusion 125

Condition Discovered conditional keys
Sketch {{ina:TitreCollection, ina:Participant,
Magazine ina:TitrePropreIntegrale, ina:DateDi f f usion}}
. . .
Interview {{ina:TitreCollection, ina:Participant, ina:TitrePropreIntegrale,
Serie ina:Duree, ina:DateCreationNotice, ina:DateDi f f usion}}
. . .
Chronique {{ina:TitreCollection, ina:Participant, ina:TitrePropreIntegrale,
Extrait ina:Duree, ina:DateCreationNotice, ina:DateDi f f usion},
. . . {ina:TitreCollection, ina:Participant, ina:T heme,

ina:TitrePropreIntegrale, ina:Duree, ina:DateCreationNotice}}
Reportage {{ina:TitreCollection, ina:Participant, ina:TitrePropreIntegrale,

ina:Duree, ina:DateCreationNotice}}
Table 4.17 Conditional keys for the dataset D10

set of keys. In this table, we provide only (at most) two categories that can lead
to the same set of keys. The rest are omitted. For example, when the conditions
aPourGenre =00 Sketch00 or aPourGenre =00 Magazine00 are given, the conditional key
{{ina:TitreCollection, ina:Participant, ina:TitrePropreIntegrale, ina:DateDi f f usion}} is
found. Note that, some conditions lead to more specific conditional keys as in the case of
the condition aPourGenre =00 Interview00. A qualitative analysis of the discovered condi-
tional keys is necessary. To do so, an expert evaluation or a data linking evaluation should
be conducted.

4.7 Conclusion

In this chapter, we have presented SAKey, an approach for discovering keys on large RDF
data under the presence of errors and duplicates. Knowing that errors or duplicates may lead
to the loss of keys, we have proposed SAKey, an approach that is capable of dealing with
this kind of data. SAKey discovers n-almost keys, sets of properties that are not keys due
to few exceptions in the data. For reasons of efficiency, SAKey discovers first the complete
set of maximal (n-1)-non keys and then exploits them to derive the complete set of minimal
n-almost keys. To be even more scalable, SAKey applies a series of filtering techniques in
order to discard a part of the data that cannot lead to (n-1)-non keys. Moreover, SAKey uses
a number of pruning strategies that allows to discover fast all the maximal (n-1)-non keys.
Using property ordering and instance ordering heuristics, SAKey manages to discover n-non
keys even faster. In contrast to KD2R, SAKey is able to scale in large datasets composed
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of a big number of properties. Unlike the key derivation algorithm used in KD2R, SAKey
introduces a new key derivation algorithm that is able to compute the sets of n-almost keys
very efficiently. The key derivation is no longer the bottleneck of approaches that discover
non keys first.

Our extensive experiments have showed that SAKey can run on millions of triples thanks
to its filtering techniques and its pruning strategies. The scalability of the approach is val-
idated on different datasets. Even when many exceptions are allowed, SAKey can still
discover n-non keys very efficiently. Moreover, we observe that SAKey is much faster
than KD2R both in discovering non keys and in deriving keys from non keys. Finally, the
data linking experiment shows that the data linking results improve when few exceptions
are allowed. Thus, the experiments demonstrate globally the validity and relevance of the
discovered keys. A preliminary experiment to evaluate C-SAKey has been conducted and
has demonstrated that conditional keys can be discovered in datasets where keys cannot be
found.



Chapter 5

Conclusion and Perspectives

Enriching the knowledge in the Semantic Web is today a crucial point. In this thesis, we
pursued this goal by studying, designing and implementing approaches capable of discov-
ering OWL2 keys in RDF data. These RDF data can be numerous, incomplete and they can
contain errors or duplicates. In the following, we first summarize the main achievements
and then we discuss about future perspectives.

5.1 Thesis Summary

We have proposed two approaches, KD2R and SAKey, that are able to discover the
complete set of OWL2 keys from RDF datasets, each conforming to an OWL ontology.
These two approaches have been introduced to answer to the following problems:

How to discover keys in RDF data when the CWA cannot be asserted?
Theoretically, a key discovery approach cannot obtain meaningful results when the com-
plete set of sameAs statements is not declared in the explored dataset. Therefore, in KD2R,
we have exploited datasets for which the UNA is fulfilled. Moreover, in the setting of
OWA, since not all the property instances are known, we have proposed two heuristics (see
Chapter 3) to interpret the potential absence of information. More precisely, the pessimistic
and optimistic heuristics have been introduced. In the pessimistic heuristic, when a property
is not instantiated for one instance, all the values that exist in the dataset for this property
are considered as possible values while, in the case of instantiated properties, we assume
that the information is complete. In the optimistic heuristic, we assume that, if there exist
values that are not known, they are different from all the values that already exist in the
dataset. KD2R implements both the heuristics while SAKey only considers the optimistic
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heuristic. The experiments have shown that the optimistic heuristic gives better linking
results than the pessimistic heuristic.

How to discover keys in different datasets that conform to distinct ontologies?
In this situation, we have chosen to use a strategy in which keys are learned separately in
each dataset. Then, mappings between classes and properties are considered in order to
merge the discovered keys. The proposed merging operation computes keys that are valid
in every dataset. The reason why we treat each dataset separately, is that UNA cannot be
ensured when the datasets are seen as a single dataset. Both KD2R and SAKey apply this
merging strategy. As seen in the experiments, keys obtained after this operation can be
useful in the data linking process. However, we have not yet tested other strategies that
could be applied to merge keys.

How to deal with duplicates or erroneous data in the key discovery process?
KD2R is not able to deal with data containing duplicates and errors. Therefore, we have
proposed SAKey, an approach for key discovery when data are dirty. SAKey can discover
sets of properties that are not keys due to few exceptions. To specify the number of allowed
exceptions, a value n is fixed. This value represents the biggest number of exceptions al-
lowed for this n-almost key. The experiments of SAKey have been conducted to compare
SAKey to KD2R and to evaluate the effects of using almost keys in the data linking task.
The experiments have proved that almost keys can have a very positive effect in the data
linking, since sets of properties with high linking power are discovered and exploited. In
this work, we have supposed that the value of n is fixed by an expert. Assigning an appro-
priate value for n is very important since, as shown in the experiments, when n is too high,
poor quality keys can be discovered. However, it can be difficult for an expert to fix this
value since it is related to the quality of the data.

We have also proposed an extension of SAKey, C-SAKey, an approach that discovers
conditional keys. A conditional key is a key that is valid in subparts of the data that fulfill
a specific condition. This condition is defined by specifying constant values for a set of
properties. A preliminary experiment has shown that conditional keys can be discovered in
datasets where no keys can be found. Indeed, when different values for the same condition
are used, keys vary largely. Nevertheless, this extension does not include any additional
pruning strategies and should be improved.
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How to define a key discovery process that can scale?
To ensure the scalability of the key discovery process, we discover first maximal non keys
and use them to derive minimal keys. Indeed, to decide that a set of properties is a non
key, only a subpart of the data should be explored. Furthermore, prunings have been de-
fined to speed up the discovery of non keys. In KD2R, an extended version of the prefix
tree, proposed in [SBHR06], has been used to represent the data. This prefix tree can take
into account both single valued and multivalued properties. KD2R applies several standard
pruning strategies. Moreover, KD2R exploits class hierarchies, by using keys found in su-
perclasses to prune the search space in subclasses. The experiments have demonstrated that
KD2R can scale in datasets where the number of properties for each class is relatively small.
In cases of large datasets, the structure used to store the data cannot be constructed. Note
that, the optimistic heuristic can scale in bigger datasets than the pessimistic one.

To scale in large RDF datasets published on the Web, such as DBpedia and YAGO, a very
compact data structure, called final map, has been proposed and used in SAKey. Moreover,
we have introduced a series of filtering and pruning strategies to discover more efficiently
the complete set of non keys. Some of these prunings are based on semantic dependencies
that are discovered during the non key discovery process. Once the set of n-almost keys
is discovered, a key derivation approach is needed. The process of deriving keys from non
keys has been proven as the bottleneck of approaches that compute non keys first. Thus, in
SAKey, we have introduced a new algorithm for deriving very efficiently, minimal n-almost
keys by using the frequencies of properties in the complement sets. The experiments have
highlighted that SAKey is orders of magnitude faster than KD2R in all the datasets used
in the experiments and that it scales in large datasets that KD2R is not able to tackle. Fur-
thermore, the efficiency of SAKey is not affected by the number of allowed exceptions. As
demonstrated in the experiments, the new key derivation algorithm, introduced by SAKey,
is much more efficient.

5.2 Future works

In this section, we outline various avenues for future work. We start by giving short-term
future works and continue with more long-term future works.

Experimental evaluation of SAKey. To begin, we plan to conduct more experiments to
evaluate more deeply the benefits of n-almost keys in the data linking problem.
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Efficient algorithm for C-SAKey. An algorithm that discovers in an efficient way the
complete set of conditional keys should be proposed. New pruning techniques should be
also applied in this setting.

Graphical inteface for experts. Since n-almost keys represent probable keys, it would
be interesting to create a graphical interface where an expert can see all the discovered
n-almost keys and their exceptions, in order to decide whether these keys can be used or
not to enrich the ontology.

Setting automatically the value of n. In the setting of n-almost keys, several extensions
can be considered. In the current version of SAKey, the value n, representing the number
of allowed exceptions in a n-almost key, is defined by an expert. Assigning a significant
number to n can be very difficult for an expert, since it depends on the quality of the data.
However, we have shown that, unsurprisingly, the quality of the discovered keys depends
on this value. Allowing no exceptions might be very strict in RDF data, while allowing a
huge number of exceptions might lead to many false negatives. Therefore, we are interested
in proposing ways to automatically set the value of n, applying a preprocessing step on
the data. Statistics on the data can be exploited, since measures such as the distribution of
values can be used to discover an appropriate n.

Merging key strategies. Different strategies of merging sets of keys found in different
datasets could be used. One strategy could be to define a "voting system" that prevents the
loss of important keys that are valid in many datasets but not in all of them. For example,
consider that the property telephone is a minimal key for the class Restaurant in eight
datasets, while in two other datasets the set of properties {telephone,name} is a minimal
key. In this case, the key telephone can be seen as more probable to be correct since it is
found in many datasets. Thus, "voting" can lead to avoid losing important keys. Similar
strategies can be also applied in almost keys and conditional keys.

Construction of complex similarity functions using the value n. Considering that n rep-
resents a confidence about a discovered n-almost key, this value could be used to construct
weighted similarity functions that can be exploited in the data linking process. Intuitively,
almost keys with smaller n should have bigger impact in the linking process. For example,
if the 3-almost key {DateO f Birth,LastName} and 10-almost key {FirstName,LastName}
are discovered, a bigger weight should be assigned to the 3-almost key since it is more
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probable to construct correct links.

Metric for the quality of keys. KD2R does not use any metrics to automatically evaluate
the quality of the discovered keys. In SAKey, the value n allows to measure the number
of exceptions for a given set of properties. The quality of both keys and n-almost keys
could be measured using simple measures such as the support. Even if the support is a very
simple measure, it appears to be very useful, since it allows avoiding keys that are valid
only for few instances in the data.

Keys in heterogeneous RDF data. Both KD2R and SAKey consider that either the
literal values are homogeneously represented or that a simple normalization step is applied
before the discovery. In the future, we plan to extend both approaches in order to be
able to discover keys, almost keys and conditional keys even when the data are hetero-
geneous. To do so, different similarity measures should be applied during the key discovery.

Keys involving chains of properties. In this thesis, the considered keys involve only prop-
erties related to one class and not chains of properties i.e., properties that are used in dif-
ferent classes. For example, in the Figure 5.1 that presents two distinct museums and their
addresses, the set of properties {hasName, hasAddress/isInCity} can be a key containing
the property hasName, used for the class Museum, and the property isInCity of the class
Address. Thus, keys, almost keys and conditional keys involving chains of properties could
be discovered.

hasName(museum1, 00Louvre Museum00), hasAddress(museum1, address1),
hasName(museum2, 00Louvre Museum00), hasAddress(museum2, address2),
isInCoutry(address1, 00France00), isInCoutry(address2, 00France00)
isInCity(address1, 00Paris00), isInCity(address2, 00Lille00)

Fig. 5.1 RDF data for keys with chains

Discovery of semantic dependencies. It would be interesting to extract the semantic
dependencies that are discovered during the n-non key discovery of SAKey. These semantic
dependencies could be stored for example, to complete RDF descriptions of incomplete
data.
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Efficient update of keys when data evolve. Finally, we plan to study strategies that allow
the update of keys when data change, without having to recompute the set of keys.

⇤⇤⇤
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