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thèse.
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1
Résumé

Alors que les programmes informatiques jouent un rôle de plus en plus important
au sein de systèmes critiques, dans les avions ou les équipements médicaux, le besoin
de méthodes formelles pour s’assurer de leur correction devient inévitable. Parmi ces
méthodes formelles, les preuves mathématiques de correction de programmes donnent le
plus haut degrés de confiance que l’on peut espérer. Mais de telles preuves peuvent être
excessivement complexe, s’assurer qu’elles sont correctes requière donc une vérification
automatique. C’est le but des assistants de preuves, qui sont eux-mêmes des programmes
informatiques conçus pour vérifier si une preuve d’un théorème est correcte. Par ailleurs,
pour résonner sur des programmes, il est nécessaire de leur donner un sens précis, ce qui
peut être fait en définissant une sémantique pour le langage de programmation dans lequel
ils sont écrit. Dans cette thèse, à la fois le langage de l’assistant de preuve et le langage
de programmation proviennent de la même notion centrale: le λ-calcul.

Fonctions et Types

Le λ-calcul a été introduit par A. Church en tant que modèle de calcul dans lequel
“tout est fonction”, où par fonction on entend un objet syntaxique pour lequel la liaison de
variable est gérée explicitement. L’application d’une fonction à un argument est ensuite
mise en œuvre par la substitution de variables. De telles fonctions, appelées λ-abstractions,
peuvent être annotées par des types pour s’abstraire de leur calcul. Plus précisément, on
donne à une fonction un type A → B pour exprimer qu’elle prends en argument un
élément de type A et retourne un élément de type B. C’est ainsi qu’est défini le λ-calcul
simplement typé. Ce langage joue un rôle crucial à la fois dans le domaine de la théorie

9
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de la démonstration et des langage des programmation.

En effet, dans la théorie de la démonstration, ce langage est utilisé pour représenter
preuves et formules via la fameuse correspondance de Curry-Howard. L’idée de base est
qu’un terme de type A→ B représente une preuve de l’implication A⇒ B. Ainsi, vérifier
la correction d’une preuve revient à vérifier le type du terme correspondant. Suivant
cette idée, les travaux de P. Martin-Löf sont d’une importance capitale, en étendant
cette correspondance au calcul des prédicats. Ainsi, on représente une formule quantifiée
universellement ∀x ∈ A.P (x) par un type dépendant Πx : A.P . Pour définir de tels types
dépendants, on doit autoriser les termes à apparâıtre dans les types. Par exemple, on
peut définir le type Mm,n des matrices rectangulaires de taille m ∗ n, de telle manière
que la multiplication de matrices sera de typeMm,l →Ml,n →Mm,n. Ici, on utiles les
entiers l,m, n (qui sont des termes) pour affiner le type des matrices, leur donnant un un
pouvoir de spécification plus précis.

Ce système, appelé la théorie des types de Martin-Löf, est à la base d’assistants de
preuve comme Coq ou Agda. Ces systèmes satisfont le fameux critère de De Bruijn, c’est
à dire qu’elles génère un témoin de preuve, à savoir un λ-terme, qui peut être ensuite
vérifier indépendamment, sans avoir à se fier aveuglément à l’assistant de preuves.

Le λ-calcul est également à l’origine des langages fonctionnels. Ils reposent sur le
concept originel du λ-calcul, à savoir un modèle de calcul, pour obtenir un langage de
programmation. Ce fut tout d’abord fait dans une version non typé par J. McCarthy avec
LISP, puis ensuite des langages fonctionnels typés furent conçus, comme ML ou Haskell.
Les types sont particulièrement utiles pour spécifier les programmes, suivant le fameux
slogan de R. Milner:

“Les programmes bien typés ne peuvent pas se tromper.”

Il s’agit la de la fameuse propriété de sûreté de typage. Elle peut être prouvée de deux
manières différentes, soit de manière purement syntaxique, via la méthode de “progrès et
préservation”, ou alors en associant à chaque type τ un ensemble de termes JτK qui sont
sûrs, ce qui donne lieu à la méthode des types sémantiques, aussi appelée méthode de
réalisabilité.

Le λ-calcul sera ainsi utilisé pour construire l’objet d’étude de cette thèse—les pro-
grammes fonctionnels— mais également pour représenter les preuves, sur ces objets, via la
correspondance de Curry-Howard, en utilisant une théorie des types dépendants. Cepen-
dant, alors que les programmes que l’on considère sont impurs—c’est à dire qu’ils peuvent
effectuer des effets de bord tels la divergence ou l’utilisation d’une mémoire persistante—
les preuves sont elles représentées par des λ-termes purs, qui vérifient entre autres la
propriété de terminaison 1.

Comme expliqué précédemment, on peut spécifier un programme fonctionnel via son
type. Mais le système de types doit être suffisamment expressif pour permettre d’énoncer

1. Par terminaison, on veut dire qu’il n’existe pas de termes qui peuvent être réduits indéfiniment.
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une spécification précise. Cela peut par exemple être fait en utilisant des “refinement
types” [FP91] ou même des types dépendants [NMB08].

Dans cette thèse, on défendra plutôt l’idée que dans beaucoup de cas, le meilleur
langage pour écrire la spécification d’un programme est le langage de programmation en
lui-même. En effet, lorsque l’on écrit un programme, on a souvent tendance à d’abord
écrire une version näıve en laquelle on a toute confiance, que l’on va ensuite optimiser.
Dans ce cas, prouver que la version näıve est équivalente à la version optimisée nous
donnerait un résultat de correction pour la version optimisée.

Bien sûr, pour des programmes plus complexes, cette alternative n’est pas toujours
possible. Les compilateurs sont une classe d’exemples particulièrement intéressante. Leur
correction est cruciale, puisqu’ils produisent le code de bas-niveau qui sera exécuté en
pratique sur les ordinateurs. Ainsi, un bug dans un compilateur pourra anéantir tous les
efforts effectués pour prouver qu’un programme satisfait sa spécification, en générant un
code bas-niveau incorrect. Il ne s’agit pas la d’une vue de l’esprit, comme le montre les
travaux dans [YCER11], où des dizaines de bugs furent trouvés dans GCC ou LLVM.
Ainsi, de nombreux travaux sur la formalisation de la correction de compilateurs ont été
effectués. Parmi ceux-ci, les travaux de X. Leroy et al. avec CompCert [Ler09] sont
sûrement les plus impressionnants. Dans cette formalisation, la spécification du compila-
teur correspond à une simulation entre les sémantique des langages haut- et bas-niveau.
Cependant, on peut imaginer des spécifications de compilateurs plus “modulaires”, qui
permettraient l’interaction entre du code bas-niveau provenant de deux compilateurs dif-
férents, ou même écrit à la main. Suivant les travaux de N. Benton et al. [BT09, BH09],
il est possible de définir une telle spécification modulaire en utilisation la conservation de
l’équivalence de programmes vers le code bas-niveau. Cela est particulièrement intéres-
sant pour prouver la correction d’optimisations effectuées par les compilateurs. Tout en
travaillant sur cette idée [JT10, JT11], la nécessité d’un bon cadre logique pour formaliser
les preuves d’équivalences de programmes nous est paru évidente. Ce fut le point de
départ de cette thèse.

Équivalence Contextuelle

Nous avons choisi de nous concentrer sur la notion d’équivalence contextuelle, aussi ap-
pelée équivalence observationnelle, pour les langages fonctionnels impurs. Dans ce cadre,
deux programmes sont dit équivalents si aucun contexte ne peut les distinguer. Au delà de
son intérêt pratique, qui a été présenté précédemment, cette notion est fondamentale en
sémantique dénotationnelle qui a pour but de construire des modèles pleinement abstraits.
Dans de tels modèles, les dénotations de deux termes sont égales si et seulement si les
deux termes sont contextuellement équivalents.

Comme on peut l’imaginer, le pouvoir expressif des contextes, vu comme des pro-
grammes “à trous”, joue un rôle majeur dans l’étude de l’équivalence contextuelle. Dans
le cas dégénéré où les contextes peuvent inspecter le code source des programmes, comme
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c’est le cas pour les langages de programmation bas-niveau ou du code assembleur, cette
notion d’équivalence contextuelle s’effondre complètement vers l’égalité syntaxique: un
programme ne peut être équivalent qu’à lui-même.

Dans la direction opposée, lorsque les contextes sont supposés être “purs”, l’étude de
l’équivalence contextuelle devient rapidement indécidable (même sans aucune forme de
récursion ou de types de donnés infinis), comme l’a prouvé Loader dans [Loa01]. D’une
certaine manière, cela expliqué pourquoi la quête d’une sémantique dénotationnelle pleine-
ment abstraite pour PCF 2 fut beaucoup plus dur que pour PCF avec effets de bord.

Ici, nous nous intéressons à des contextes et des programme qui disposent d’une notion
de mémoire mutable. Plus précisément, nous considérons la notion de références, qui est
la manière standard d’implémenter les cellules mémoires dans des langages dérivés de ML,
comme OCaml. Une référence est définie via le constructeur ref v, pour stocker une valeur
v dans le tas (alors que les arguments fournis aux fonctions sont, de manière standard,
stockés dans la pile). Ces références sont ensuite réduites vers des locations, qui peuvent
être vues comme des adresses mémoires. Cependant, comparé aux langages bas-niveau
comme C, on ne peut effectuer aucune forme d’arithmétique de pointeurs sur les locations:
elles doivent être vues comme des noms abstraits pour les cellules mémoires. Les valeurs
stockées dans les références peuvent être d’ordre supérieur, c’est à dire des clôtures. Cela
permet d’encoder la récursion.

En utilisant les références pour disposer d’une mémoire globale (donc persistante),
une fonction peut alors compter combien de fois elle est appelée. Ainsi, lorsqu’elle est
appelée deux fois avec le même argument, elle peut potentiellement retourner deux ré-
sultats différents. Mais de la même manière les contextes peuvent utiliser les références,
ainsi deux termes sont équivalents s’ils effectuent des appels de fonctions, fournies par les
contextes, d’une manière équivalente, et avec des arguments équivalents. C’est l’idée de
la synchronisation des callbacks, qui est fausse lorsque les contextes sont purs.

Relations logiques à la Kripke

En général, il est difficile de raisonner sur l’équivalence contextuelle à cause de la
quantification sur tous les contextes présente dans sa définition. Certaines techniques ont
été introduites pour éviter cette quantification, et ainsi prouver l’équivalence contextuelle
d’une manière plus simple. Les relations logiques sont un des cadres de travail les plus
utilisés pour cela, qui sont également d’une importance fondamendale pour définir la
notion de paramétricité, suivant en cela les travaux fondateurs de J. Reynolds [Rey83].
Les relations logiques sont une généralisation des types sémantiques, utilisés pour prouver
la sûreté de typage, à un cadre relationnel (plutôt que prédicatif). Ce sont des relations
binaires V JτK et E JτK définies respectivement sur les valeurs et les termes de type τ . La
relation V JτK est définie par induction sur τ .

2. un λ-calcul simplement typé avec entiers naturels et récursion
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Sur les types de base, la relation impose directement l’égalité des valeurs. Sur les types
fonctionnels τ → σ, un couple de valeurs λx1.M1, λx2.M2 est dans V Jτ → σK lorsque :

∀(v1, v2) ∈ V JτK , ((λx1.M1)v1, (λx2.M2)v2) ∈ E JσK

Par ailleurs, deux termes sont dans E JτK lorsqu’ils se réduisent vers deux valeurs qui sont
dans V JτK. En utilisant ces définitions, on peut montrer que deux termes de type τ sont
contextuellement équivalents lorsqu’ils sont dans E JτK.

Cependant, on ne peut étendre directement cette définition à un langage avec références.
En effet, dans ce cas, la réduction d’un terme M dépend des valeurs stockées par les
références, c’est à dire dans le tas. Ainsi, A. Pitts et I. Stark [PS98] ont proposé de
paramétrer la définition de E JτK et de V JτK par des invariants sur les tas. De tels invari-
ants sont appelés mondes, suivant en cela l’intuition des modèles de Kripke. La notion de
mondes a ensuite été développé par A. Ahmed [ADR09], puis par D. Dreyer et al. [DNB12]
en utilisant des systèmes de transitions d’états, où chaque état représente les invariants
sur le tas, permettant ainsi de prouver des équivalences qui étaient hors de portées des
travaux de Pitts et Stark.

La Technique du Step-Indexing

Les relations logiques à la Kripke définies par Pitts et Stark le furent sur un langage
avec “références de base”, c’est à dire des références qui peuvent stocker uniquement des
valeurs de base mais pas des fonctions. Dans sa thèse [Ahm04], A. Ahmed a étendu ces
définitions aux types récursifs et aux références d’ordre supérieur. Pour cela, elle a du gérer
un problème de circularité dans la définition des mondes et des relations logiques. Appel
et McAllester [AM01] avaient déjà rencontré le même genre de problème de circularité
dans leurs travaux sur la sûreté de typage pour du code bas-niveau avec types récursifs.
Ainsi, la définition des types sémantiques TypeSem, qui sont des ensemble de valeurs“bien
élevées”, dépend de la définition des mondes World qui sont des invariants sémantiques
sur ce que les locations peuvent stocker. Écrites sous forme d’équations récursives, cela
donne

World
def
= Loc→ TypeSem et TypeSem

def
= World→ Value

Mais alors, en dépliant la définition de TypeSem, on obtient que TypeSem est égal
à (Loc → TypeSem) → Value. On souhaite donc définir TypeSem sous la forme d’un
point fixe µX.(Loc → X) → Value. Cependant, X se trouve en position négative dans
cette définition, donc en général un tel point fixe n’existe pas. En effet, on ne peut pas
appliquer le théorème de Knaster-Tarski.

Ce genre de définition récursive peut être résolu en passant d’un cadre ensembliste à un
cadre catégorique. C’est ce qui est usuellement fait en sémantique dénotationnelle [SS71].
Plus précisément, en théorie des domaines [Sco82], on travaille dans la catégorie des
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ordres partiels complets, où de tels équations peuvent être résolues. Ainsi, on peut traiter
l’équation D = D → D correspondant au λ-calcul pur.

Cependant, dans cette thèse on souhaite raisonner de manière operationelle sur les
programmes, alors que la sémantique dénotationnelle interprète les programmes sous la
forme d’objets mathématiques abstraits. Pour rester dans un monde opérationnel, Appel
et McAllester[AM01] ont introduit la notion de “step-index” pour résoudre ces problèmes
de circularité. L’idée de base est de stratifier la définition des types sémantiques avec
un entier naturel représentant, en première approche, le nombre d’étapes de réduction
pour lesquelles le programme en question se comporte correctement. Ainsi, la définition
de TypeSem et de World est maintenant indexée par un entier n, comme le montre la
définition suivante:

Worldn+1
def
= Loc→ TypeSemn et TypeSemn

def
= Worldn → Valuen

Cette idée a été utilisée par Ahmed pour définir les relations logiques, tout d’abord
pour les langages avec types récursifs [Ahm06] puis pour les langages avec références
d’ordre superieur, dans un travail fait en collaboration avec Dreyer et Rossberg [ADR09].
Dans tous ces travaux, la technique du step-indexing utilisée dans les définitions des
relations logiques représente le nombre d’étapes de réduction pour lesquelles les deux
programmes en question sont équivalents. De cette manière, il devient possible de prouver
l’équivalence de nombreux programmes qui utilise des traits récursifs, en effectuant une
simple induction sur les step-indexes.

Mais la gestion des step-indexes dans une preuve est en pratique —pour citer N.
Benton—“laide” (“ugly”). Dans leurs travaux sur un “modèle très modal” (a “very modal
model”) [AMRV07], Appel, Melliès, Richard et Vouillon ont proposé un cadre pour raison-
ner de manière abstraite sur les step-indexes en utilisant la logique de Gödel-Löb. Pour
cela, ils ont introduit une modalité “later”, notée ⊲, dont le sens, (défini à l’aide d’une sé-
mantique de Kripke) est “vrai dans le futur”. Ainsi donc, la règle de Löb (⊲P → P )→ P ,
qui peut être vue comme un principe d’induction, est valide dans cette logique. On peut
alors l’utiliser pour raisonner de manière aisée sur des programmes récursifs, comme on
l’aurait fait avec des step-indexes explicites.

Cette modalité fut en fait utilisée antérieurement par Nakano [Nak00, Nak01] pour
définir un λ-calcul avec des types récursifs généraux tout en étant fortement normalisant.
Pour garantir cette propriété de normalisation, la modalité ⊲ (qui est notée • dans ces
travaux) est utilisée pour “garder” les types récursifs.

Traduction de Forcing

Travaillant sur le step-indexing et sa reformulation via la logique de Gödel-Löb, il
nous a alors semblé clair que l’on pouvait voir ces techniques comme des instances de
forcing. Par forcing, on entend une méthode générale, introduite à l’origine par P. Cohen
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[CD66], pour prouver l’indépendance de l’hypothèse du continu. Cette méthode a ensuite
été reformulée sous de nombreuses autres formes. La présentation qui s’intègre le mieux
dans notre cadre de travail est celle utilisant les topos de faisceaux ou de prefaisceaux,
issue des travaux effectués par Lawvere et Tierney [Tie72].

Cette intuition d’un lien entre step-indexing et forcing fut ensuite confirmé par les
travaux de Birkedal et al. sur le topos des arbres [BMSS11], où ils construisent un modèle
d’une théorie des types avec types récursifs gardés en utilisant des prefaisceaux sur les
entiers naturels. Par ailleurs, la manière de définir les relations logiques à la Kripke comme
étant des relations logiques indexées par des mondes est aussi, comme on peut si attendre,
un exemple de forcing, en utilisant la sémantique de Kripke pour les logiques modales.
Cette idée a été explorée par Dreyer et al. in [DNRB10], où ils définissent une logique
modale pour raisonner sur les relations logiques à la Kripke.

Notre but fut donc d’être capable d’étendre une théorie des types de manière modulaire—
plus précisément la théorie des types sous-jacente à l’assistant de preuves Coq— en util-
isant cette notion de construction de forcing. Cela nous a conduit à construire une méth-
ode générale pour définir une traduction de forcing sur l’ensemble de la théorie des types
considérée, en utilisant une internalisation de la construction de préfaisceaux, paramétrée
par un ensemble de conditions de forcing. Une telle construction nous permet de définir
des couches de forcing, c’est à dire des extensions de la théorie de base avec de nouveaux
principes logiques, tout en conservant les propriétés cruciales suivantes:

— la consistance de la théorie,
— la decidabilité du type-checking,
— la propriété de canonicité, c’est à dire le fait que les termes clos se réduisent sur

des valeurs.

Une conservation des deux derniers résultats ne peut en général être obtenu via des méth-
odes sémantiques.

En instanciant l’ensemble des conditions de forcing par les entiers naturels, nous pou-
vons ainsi définir ce que nous appelons la couche de step-indexing, où la construction des
types récursifs gardés issus de [BMSS11] devient possible. En travaillant avec une théorie
des types munies d’univers, nous avons en outre pu définir un opérateur de point fixe sur
les types, qui permet de définir de manière interne de tels types récursifs gardés.

Définition directe et par biorthogonalité

Une autre technique essentielle dans la définition des relations logiques est la biorthog-
onalité, aussi appelé ⊤⊤-clôture. La biorthogonalité a une longue histoire en théorie de
la démonstration. Ainsi, elle a été utilisée par J.-Y. Girard pour prouver l’élimination des
coupures de la logique linéaire, et par J.-L. Krivine dans ses travaux sur la réalisabilité
classique, pour étendre la correspondance de Curry-Howard à la logique classique avec
l’axiome du choix.
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Dans le cadre des relations logiques, elle est utilisée pour définir E JτK non pas directe-
ment par rapport à V JτK, mais plutôt comme clôture de V JτK via une relation auxiliaire
K JτK sur les contextes d’évaluations.

Cette définition sous forme de clôture est utile pour trois différentes raisons:
— pour raisonner sur des langages disposant de primitives dont la réduction est dépen-

dante du contexte, comme call/cc ou l’instruction jump en assembleur,
— pour construire des modèles opérationnels de langages combinant polymorphisme

et récursion [Pit00], de manière à garantir l’admissibilité des relations logiques,
— pour obtenir la complétude des relations logiques, c’est à dire que deux termes de

type τ qui sont contextuellement équivalents sont dans E JτK.
Dans cette thèse, nous ne considérerons pas d’opérateurs de contrôle tel que call/cc,

ainsi le flot de contrôle sera supposé séquentiel. Pour gérer la présence de récursion dans le
langage, nous avons vu que le step-indexing est en pratique suffisant, ainsi nous n’aurons
pas besoin de la notion d’admissibilité. Ainsi, seul l’obtention de la complétude des
relations logiques par rapport à l’équivalence contextuelle pourrait justifier l’utilisation de
la biorthogonalité ici.

Cependant, lorsque l’on travaille avec des relations logiques définies par biorthogo-
nalité, on s’appuie sur le principe d’invariance locale [PS98] qui permet de déplier la
biorthogonalité vers une définition directe.

Mais la complétude obtenue par biorthogonalité est un peu trompeuse, puisqu’elle ne
signifie pas que l’on peut en pratique prouver n’importe quelle équivalence correcte en
utilisant ces relations logiques. C’est ce qu’illustre le fameux “awkward example” :

Mawk
1 = let x = ref 0 in λf.x := 1; f(); !x

Mawk
2 = λf.f(); 1

Pour prouver que ces deux termes sont équivalents, l’invariant qui contraint x à pointer
soit vers 0 ou vers 1 n’est pas suffisant pour déduire que le premier programme retourne
1. Ainsi, le modèle de Pitts et Stark, qui utilise des invariants comme mondes, ne peut
pas prouver cette équivalence, ce qui peut sembler étrange à première vue puisque ces
relations logiques sont complètes. Cela vient du fait qu’utiliser la clôture par biorthog-
onalité pour prouver une équivalence est aussi dur que de raisonner directement sur
l’équivalence contextuelle, lorsque l’on ne peut utiliser le principe d’invariance locale.
En fait, l’impossibilité de prouver cette équivalence avec les définitions de Pitts et Stark a
mené Ahmed à raffiner leur modèle, pour permettre aux invariants sur les tas d’évoluer du-
rant l’exécution [ADR09]. En utilisant les travaux ultérieurs de Dreyer et al. [DNB12], le
monde utilisé pour prouver cette équivalence est le système de transitions d’états suivant:

x →֒ 0 x →֒ 1
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qui s’assure que lorsque x pointe vers 1, il ne pointera plus jamais vers 0. En utilisant ce
principe plus précis, il devient ensuite possible de prouver queM1 est équivalent àM2. De
tels systèmes de transitions peuvent en pratique être vue sous la forme d’une abstraction
du flot de contrôle du programme, ne prenant en compte que la modification du tas.

Sémantique des jeux nominale opérationnelle

En absence de la biorthogonalité, prouver la complétude des relations logiques pour
un langage avec références est un problème ouvert. En effet, on doit alors raisonner
sur la forme des contextes, ce qui peut être très complexe. Pour traiter ce problème,
nous avons choisi d’établir un lien entre les relations logiques et le modèle dénotationnel
de notre langage. La sémantique des jeux est alors apparue comme étant le choix le plus
évident pour cela, plus précisément le modèle développé par A. Murawski et N. Tzevelekos
pour des “bonnes références générales” [MT11b] 3 qui est en effet pleinement abstrait pour
RefML. Ce modèle utilise des ensembles nominaux [Pit13] pour abstraire le raisonnement
sur les “noms” des locations. Nous utiliserons également cette idée tout au long de cette
thèse.

Ce modèle ne s’intègre cependant pas facilement avec les relations logiques, comme on
peut le voir sur l’exemple suivant, représenté par le terme M :

λ f.let x = ref0 in f(λ .x := 1) in M1

Ce terme conserve la référence x privée, et fournit au contexte la possibilité de la modifier
à 1 à l’aide d’une fonction “setter”. Mais ensuite, il n’est plus possible de relier M1 à M
pour deux raisons :

— x est gardée privée par le terme, mais la dénotation de M1 est défini comme si
toutes ses locations étaient divulguées au contexte,

— le contexte a accès au setter λ .x := 1 lorsque M1 est évalué, mais il n’y a pas de
manière facile de le spécifier avec la sémantique des jeux.

Pour dépasser ces limitations de la sémantique des jeux, nous avons choisi de définir
un nouveau modèle, inspiré par les travaux antérieurs de J. Laird [Lai07]. Cette séman-
tique dispose des propriétés dénotationnelles (ou catégoriques) de la sémantique des jeux,
tout en ayant des bonnes propriétés opérationnelles. L’idée de base de cette sémantique
est d’interpréter les termes comme des ensembles de traces, représentant les interaction
entre un terme et n’importe quel contexte, comme en sémantique des jeux, mais ici cette
interprétation peut être calculée opérationnellement grâce à une réduction interactive.

En raffinant ensuite ce modèle avec des mondes pour contraindre la forme des tas,
on peut définir une sémantique des traces à la Kripke. Cela nous permet d’établir un
lien forme avec les relations logiques à la Kripke et ainsi de prouver leur correction et
complétude.

3. “bonne” s’oppose ici aux “bad-variables” qui proviennent de la représentation sous forme d’objets
des références, inspirée par les travaux sur Idealized Algol par Reynolds.
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Une logique temporelle pour l’équivalence de programmes

Des logiques ont été conçues pour raisonner sur la corrections de programmes, four-
nissant des principes généraux pour prouver de tels résultats. La plus utilisée est certaine-
ment la logique de Hoare, qui fut ensuite étendue avec la logique de séparation [Rey02]
pour raisonner aisément sur les propriétés du tas.

Dans cette thèse, nous nous intéressons particulièrement à des logiques pour raison-
ner directement sur l’équivalence de programmes. La logique de Plotkin et Abadi pour
le polymorphisme paramétrique [PA93] fut la première logique introduite dans ce but,
pour le Système F. Puis Dreyer et al. ont introduit LSLR [DAB09] et LADR [DNRB10],
deux logiques pour des langages plus complexes, avec types récursifs et références d’ordre
supérieur. Cependant, toutes ces logiques utilisent le λ-calcul comme objet de base, ce
qui leur permet ensuite d’y définir les relations logiques. Si ces logiques conviennent par-
faitement pour formaliser des preuves d’équivalence, il semble très difficile de les utiliser
pour prouver automatiquement l’équivalence de programmes. Dans cette thèse, nous suiv-
ons une approche différente, en définissant une logique beaucoup plus simple qui satisfait
de bonnes propriétés de “model-checking” pour abstraite le raisonnement sur les mondes
utilisés dans notre définition des relations logiques à la Kripke. Cependant, comparé au
step-indexing, cette abstraction ne rentre pas aisément dans le cadre de la traduction de
préfaisceaux, car certaines des constructions utilisées pour définir les relations logiques à
la Kripke ne sont pas monotones par rapport aux mondes.

Ainsi, on définit plutôt une logique temporelle pour raisonner sur les systèmes de transi-
tions des mondes. La sémantique des différents connecteurs de cette logique temporelle est
alors définie de manière usuelle à l’aide d’une sémantique de Kripke. Comparé à [DNB12],
nous utilisons des systèmes de transition étiquetées (Labeled Transition Systems) plutôt
que des systèmes de transitions d’états. Les invariants sont alors spécifiés directement sur
les transitions, en utilisant une notion de pre- et post-condition dans l’esprit de la logique
de Hoare. Cella est particulièrement utile pour garder les systèmes de transitions finis.

Dans les travaux antérieurs [PS98, ADR09, DNB10], un monde futur w′ de w pou-
vait être étendu avec de nouveaux invariants (ou de nouveaux systèmes de transitions
d’invariants) sur la partie des tas qui sont disjoints de ceux spécifiés par w. Ainsi, les
mondes étaient partitionnés en ı̂les, chacune correspondant à une partie du tas disjointe
des autres. Cependant, cela nécessite une trop grande liberté pour être définissable dans
notre logique restreinte, où l’on ne peut quantifier sur des objets complexes comme des in-
variants. Ainsi; on interdit ici cet usage, le système de transitions étant fixé au départ, et
ne peut changer au fur et à mesure que le monde évolue. Cela veut dire qu’il doit prévoir
les création de locations futures effectuées par le terme: on appelle un tel comportement
omniscient.

Pour raisonner de manière abstraite sur les variables libres de base, on introduit une
exécution symbolique pour notre langage qui génère toutes les réductions possibles des
termes. Il génère également un ensemble de prédicats qui contraignent les valeurs des vari-
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ables de base, de telle manière que l’ensemble des prédicats est satisfiable si et seulement
si la réduction est effectivement possible. Ensuite, on définit les relations logiques tem-
porelles E JτK, qui sont des formules de notre logique temporelle. A partir de deux termes
M1,M2, la formule E JτK (M1,M2) est générée automatiquement en utilisant l’exécution
symbolique. On montre ensuite qu’il existe un monde qui valide cette formule si et seule-
ment si les deux termes appartiennent à la relation logique “concrète” vu précédemment.
De la correction et la complétude des relations logiques concrètes, on réduit le problème de
l’équivalence contextuelle de deux termes M1,M2 au model-checking de E JτK (M1,M2),
c’est à dire:

M1,M2 sont contextuellement équivalents si et seulement si il existe un monde w tel que
w |= E JτK (M1,M2)

Notre logique temporelle combine l’arithmétique de Presburger, utilisée pour énoncer
des contraintes arithmétiques sur les valeurs de base, avec des modalités temporelles
inspirées de la Computational Tree Logic pour contrôler l’évolution de ces contraintes.
Par conséquent, elle n’a pas de bonne propriétés de décidabilité du model-checking que
les logiques temporelles ont usuellement, à cause de l’interaction avec l’arithmétique.

Cependant, sous certaines hypothèses raisonnable sur la forme des mondes, on obtient
la décidabilité du model-checking, c’est à dire que l’on peut vérifier automatiquement si
un monde valide une formule temporelle. Pour ce faire, on traduit la formule temporelle
vers une formule plus simple, qui ne contient pas de modalité temporelle, et qui peut
ensuite être vérifiée par un solveur SMT.

Il semble être possible, sous une hypothèse de borne de la taille du tas, de constru-
ire automatiquement un monde qui valide la formule temporelle si et seulement si les
deux programmes sont effectivement contextuellement équivalent. Cela nous permettrait
d’obtenir un résultat de décidabilité 4 pour l’équivalence contextuelle pour des termes
satisfaisant cette hypothèse. Nous pensons que cela permettrait d’obtenir un fragment
décidable qui inclut celui de la sémantique des jeux algorithmique [MT11a], qui est lui
caractérisé par une restriction sur les types.

A la suite de ces résultats théoriques, une implémentation d’un prototype a été réalisée
en Haskell, qui permet de:

— générer la formule temporelle correspondant à l’équivalence de deux termes,
— traduire cette formule en une formule plus simple, qu’un solveur SMT peut valider,

une fois que le monde est fourni.
— générer, sous une hypothèse de borne de la taille du tas, un monde qui valide la

formule si et seulement si les deux termes sont équivalents.

4. Notons que, comme prouvée dans [Mur05, MT12], l’équivalence contextuelle est en général indécid-
able pour un langage avec références, même en absence de récursion ou de types de donnés infinis.
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Chapitre 3: Préliminaires

Dans ce chapitre, on introduit les prérequis utilisés tout au long de cette thèse.

Théorie des Types de Martin-Löf

Tout d’abord, nous introduisons dans la section 3.1 la théorie des types qui est utilisée
comme “métathéorie” pour représenter nos preuves: la théorie des types de Martin-Löf.

Suivant l’idée sous-jacente de la correspondance de Curry-Howard, les preuves peu-
vent être représentées comme des termes du λ-calcul, et les formules comme des types.
Cette idée fut développée par P. Martin-Löf pour construire un formalisme constructif
aux mathématiques. Comme nous l’avons expliqué précédemment, il a introduit les types
dépendants comme représentation des quantificateurs existentiels et universels.

Cette section introduit MLTTU , la théorie des types de Martin-Löf avec une hiérarchie
d’univers, inspirée par [Hof97] pour la théorie générale et par [Uni13] pour la présentation
des univers et du type identité.

La figure 3.1 de la section 3.1.1 définit les règles de typage de base de MLTTU , cor-
respondant à la bonne formation des contextes wf(Γ), aux univers U (à la Russell) et
aux produits dépendants Πx : T.U . L’égalité jugementale (aussi appelée conversion) est
introduite ensuite. Dans la section 3.1.2, on introduit le type identité M1 =T M2 dont les
termes sont les “preuves” d’égalité de M1 et M2. Ces règles de typage se trouvent dans la
figure 3.2. Ce type permet ensuite de formaliser la notion de d’“irrelevance” des preuves,
introduite dans la section 3.1.3. Les sections 3.1.4,3.1.5,3.1.6 étendent MLTTU avec de
nouveaux constructeurs, les sommes dépendantes et les types sous-ensemble, le type vide
et singleton, et les coproduits et les entiers naturels.

Enfin, la section 3.1.7 se concentre sur l’unicité des preuves de typage, en coerçant
explicitement l’utilisation de la règle de conversion. On compare alors dans la section 3.1.8
les différences entre le système de types présenté et celui derrière l’assistant de preuve Coq,
qui est utilisé pour implémenter les techniques du chapitre 4.

Langages en Appel par Valeur avec Références

On introduit ensuite dans la section 3.2 les langages de programmation qui sont les
objets d’études de cette thèse. Il s’agit de fragments de ML, c’est à dire des langages
fonctionnels typés avec une réduction en appel par valeur et des références nominales.

Dans sa forme la plus générale, le langage que l’on considère dispose de références
d’ordre supérieur, c’est à dire qu’il peut stocker des fonctions dans les références. On
appelle ce langage RefML. Sa syntaxe est introduite en section 3.2.1, avec notamment
la définition de sa sémantique opérationnelle dans la figure 3.8. Les règles de typage de
RefML sont introduite en section 3.2.2 dans la figure 3.9. L’équivalence contextuelle entre
deux programmes, qui est la notion centrale de cette thèse, est alors introduite dans la sec-
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tion 3.2.3. Finalement, GroundML, une restriction du langage où les références ne peuvent
stocker que des valeurs de types de base (Int ou ref τ) est introduite en section 3.2.4.

Raisonnement Nominal

Lorsque l’on formalise des preuves sur le λ-calcul, on a souvent à raisonner à α-
équivalence près. C’est à dire, deux termes qui ne diffèrent que par rapport au nom de
leurs variables liées sont considérés comme étant équivalents. La même idée s’applique au
locations, puisque l’arithmétique de pointeurs est interdite dans notre cadre. Pour for-
maliser cette situation, la logique nominale a été introduite par A. Pitts [Pit03]. L’idée de
base est de voir les objets dont la définition utilise des variables ou des locations unique-
ment à permutation près de ces éléments. Cela peut être formalisé en utilisant la notion
d’ensemble de Fraenkel-Mostowski, appelés ensembles nominaux dans la section 3.3.1, qui
sont des ensembles équipés d’une action de permutation sur un ensemble de noms (qui
sont l’ensemble des variables ou des locations ici).

On a parfois besoin de raisonner explicitement sur les permutations lorsqu’on consid-
ère deux éléments nominalement équivalents t, u d’un ensemble nominal X. Cependant,
lorsque c’est le cas, il est plus aisé de travailler avec une notion de span qui sont introduits
dans la section 3.3.2.
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Chapitre 4: Forcing en Théorie des Types

Le forcing est une méthode conçu à l’origine par P. Cohen pour prouver l’indépendance
de l’hypothèse du continu par rapport à la théorie des ensemble axiomatique (ZFC) [CD66].
L’intuition derrière cette méthode est d’ajouter de nouveaux objets à la théorie, qui peu-
vent être approximés dans le système de base, en utilisant ce qu’on appelle des conditions
de forcing. Plus précisément, un modèle de base M est étendu vers un nouveau modèle
M[G] en ajoutant un nouvel élément générique G à M. Alors que M[G] est en général très
complexe à étudier directement, P. Cohen a proposé de contrôler les propositions vraies
de M[G] en les traduisants vers M. Pour ce faire, il a donc utilisé les conditions de forcing,
qui peuvent être vues comme des approximations de l’ensemble G. Ces conditions sont des
éléments de M, ce qui n’est pas en général le cas de l’élément générique G. Ainsi, à par-
tir d’une formule ϕ de M[G], on peut construire syntaxiquement une formule p 
 ϕ̂—qui
s’exprime comme“p forces ϕ̂”—qui appartient à M, et qui est telle que ϕ est vraie lorsqu’il
existe une approximation “correcte” p de G telle que p 
 ϕ̂ dans M. Une des propriétés
essentielles de l’ensemble des conditions de forcing est d’être ordonnée. Intuitivement, on
a p ≤ q lorsque p est une approximation plus précise de G que q, c’est à dire qu’il contient
plus d’information, de telle manière que la relation 
 doit être monotone par rapport à
cette relation d’ordre.

Ces dernières années, le forcing a reçu une attention accrue, dans le but d’étendre la
correspondance de Curry-Howard à divers raisonnements classiques. Ainsi, le forcing a
été généralisé par Krivine dans ses travaux sur la réalisabilité classique [Kri09], où les
conditions de forcing deviennent des λ-termes. Il a ensuite combiné cette approche avec
la technique usuelle de forcing dans [Kri11] pour donner un contenu calculatoire à des
formes faibles de l’axiome du choix, tel l’existence d’un ultrafiltre sur N ou d’un bon ordre
sur R. À la suite de ces travaux, A. Miquel [Miq11] a étudiée la transformation de preuve
induite par le forcing, dans la théorie de l’arithmétique d’ordre supérieur vu comme une
extension de System Fω. C’est à dire, il a étudié comme une preuve d’une proposition P
est transformée en une preuve de p 
 P .

Dans un cadre constructif, nous avons utilisé le forcing, en collaboration avec T. Co-
quand [CJ10, CJ12], pour donner un contenu calculatoire à un résultat de continuité
uniforme à certaines fonctionnelles définissables dans la théorie des types de Martin-Löf.
Dans ces travaux, nous avons étendu MLTT avec un jugement de typage indexé par une
condition de forcing. Pour cela, nous avons développé un traduction simple de MLTT,
qui ne s’intègre bien qu’avec les termes que l’on souhaitait ajouter à notre théorie. Cela
laisse ouvert la question d’une traduction sur l’ensemble des termes de MLTT.

Pour adapter les idées “ensemblistes” du forcing et les adapter à une théorie des
types dépendante, nous avons utilisé sa reformulation catégorique que Lawvere et Tier-
ney [Tie72] ont développée en utilisant les topos de faisceaux. Dans ce cadre, le forcing
intuitionniste se définit à l’aide de la notion de préfaisceaux en théorie des catégories.

Le point de départ de ce chapitre est de connecter ces deux observations:
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“Le forcing intuitionniste pour la théorie des types est une internalisation de la
construction de préfaisceaux dans la théorie des types.”

Plus précisément, on cherche donc à étendre une théorie des types initiale—que l’on
appelle système de base—avec de nouveaux principes, pour obtenir une nouvelle théorie
des types—que l’on appelle la couche de forcing. Termes et types de cette couche de forcing
peuvent alors être traduits dans le système de base en utilisation la traduction de forcing.
De cette manière, on peut développer une nouvelle génération de logiques, qui peuvent
être définie de manière modulaire en utilisant des couches de forcing. La traduction de
forcing s’appuie sur l’internalisation dans MLTTU de la construction de préfaisceaux sur
un type particulier P—représentant les conditions de forcing. Il devient alors possible
d’exhiber de nouveaux principes de raisonnement dans la couche de forcing en utilisant
la structure du type des conditions de forcing choisi. Mais, quel que soit les nouveaux
principes logiques qui sont définis, leur consistance peut être déduite directement:

“La consistance de la logique définie dans une couche de forcing résulte de la consistance
de la logique de base.”

En effet, on est capable d’étendre la théorie des types avec de nouveaux principes de
raisonnement et de nouveaux objets, sans les définir comme axiomes. Au delà des prob-
lèmes de consistance, éviter l’approche axiomatique nous permet de donner un contenu
calculatoire à ces nouveaux principes: des programmes leurs sont associés.

Cette définition du forcing pour la théorie des types est liée aux travaux sur la sé-
mantique de Kripke qu’Appel, Melliès, Richards et Vouillon [AMRV07] ont proposé pour
voir le step-indexing— une technique pour gérer différentes formes de récursions dans la
sémantique des langages de programmation—comme forcing (à la Kripke) sur l’ensemble
des entiers naturels. Ces entiers peuvent être utilisés pour définir (ou forcer) une modal-
ité de la logique, une idée auparavant introduite par Nakano in [Nak00], avec un principe
d’induction obtenu directement des entiers naturels. Plus récemment, Birkedal, Møgel-
berg, Schwinghammer, et Støvring [BMSS11] ont montré que cette construction corre-
spond sémantiquement à travailler à l’intérieur du topos des arbres, qui fournit une méth-
ode générique pour définir des types récursifs généraux dans le modèle sémantique. De
manière similaire, on utilise le forcing sur l’ensemble des entiers naturels pour fournir des
types récursifs généraux dans MLTTU , sans s’appuyer sur un critère de positivité. Cette
construction permet de définir un type universel D pour les termes du λ-calcul pur qui
induit un plongement superficiel du λ-calcul pur dans MLTTU . Le fait que l’on peut
utiliser la règle de conversion qui est normalisante pour décrire la β-reduction du λ-calcul
pur n’est pas contradictoire. Le dépliage du type récursif D est géré par une égalité propo-
sitionnel et non pas par la règle de conversion, et doit donc être explicite dans le terme.
Pour illustrer l’utilisation du forcing dans notre cadre, nous proposons également une re-
formulation de la construction de Cohen d’un modèle validant la négation de l’hypothèse
du continu, en utilisant les sous-ensembles finis de P(P(Nat)) ×Nat comme ensemble
de conditions de forcing.
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Plan du Chapitre Dans la section 4.1, on explique les intuitions de la traduction de
forcing à l’aide de la construction de préfaisceaux. On la définit ensuite formellement
dans la section 4.2, en traitant les différents problèmes de cohérence posés par la règle
de conversion. La section 4.3 présente une manière systématique d’introduire de nou-
veaux principes de raisonnement dans une couche de forcing. On illustre ensuite dans
la section 4.4 cette traduction en choisissant comme ensemble de conditions de forcing
les entiers naturels, pour fournir un cadre aux types récursifs gardés. Cela fournit une
présentation syntaxique au topos des arbres [BMSS11]. Ensuite, en section 4.5, nous il-
lustrons la traduction de forcing avec un autre ensemble de conditions de forcing, dans le
le but de forcer la négation de l’hypothèse du continu. Finalement, les travaux reliés et
de possibles extensions sont présentés en section 4.6.
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Chapitre 5: Sémantique des Jeux Nominale Opéra-

tionnelle

Pour atteindre notre objectif de prouver la complétude de relations logiques à la
Kripke, définies de manière directe, pour RefML, nous devons les relier à un modèle
dénotationnel pleinement abstrait, pour lequel les dénotation de deux termes sont égales
si et seulement si ils sont contextuellement équivalents. La recherche de longue date d’un
tel modèle pleinement abstrait a abouti avec la sémantique des jeux.

La sémantique des jeux [HO00, AJM00] est une théorie puissante pour construire des
modèles dénotationnel pleinement abstrait de différents langages de programmation. La
dénotation d’un terme est représentée par une strategie, c’est à dire un ensemble de parties
entre un terme et n’importe quel contexte, qui se jouent dans une arène, qui définie les
règles que les parties doivent suivre. Une des contribution les plus importante de la
sémantique des jeux, le fameux “cube d’Abramsky”, est la caractérisation de l’absence de
divers effets dans le langage en termes de conditions supplémentaires sur la dénotation
des termes. Ainsi, le bon parenthésage correspond à l’absence d’opérateurs de contrôle,
la visibilité à l’absence de références d’ordre supérieur, l’innocence aux termes purs. Ces
dernières années, la sémantique des jeux a été étendue à des langages avec des aspects
nominaux, du ν-calcul [AGM+04], puis à une extension avec cellules mémoires [Lai08],
jusqu’à une variante de ML avec références nominales d’ordre supérieur [MT11b].

Le point de départ de cette section est la sémantique nominale des jeux de Murawski
et Tzevelekos [MT11b], présentée dans la section 5.1, qui est pleinement abstraite pour
RefML, mais aussi pour GroundML dès lors qu’on ajoute une condition de visibilité aux
stratégies [MT12]. Au contraire des précédents modèles de jeux pour des langages avec
mémoire, initiés par les travaux de Abramsky, Honda et McCusker [AHM98], ce modèle
utilise des techniques nominales [Pit03], auparavant présente dans [Tze07], pour éviter le
problème des “bad variables”. Dans un cadre plus opérationnel, Laird [Lai07] a introduit
une sémantique de trace pour une variante de RefML, et a prouvé sa pleine adéquation.
Son modèle marie une représentation sous forme de traces inspirées de la sémantique
des jeux avec une définition opérationnelle, c’est à dire que la dénotation des termes
est calculée à l’aide d’un système de réécriture plutôt que définie par induction sur leur
jugement de typage.

Dans cette section, nous introduisons une sémantique de trace pour RefML, dont la
définition est une variante typée de celle introduite par Laird. Les traces sont générée par
une réduction interactive, qui peut être vue comme une extension de la sémantique opéra-
tionnelle usuelle à des termes ouverts ayant des variables fonctionnelles libres. Ainsi, cette
réduction peut être utilisée sur des termes comme λx.M or K[f v]. Ainsi, la dénotations
des termes est définie via des stratégies de traces, c’est à dire des ensembles de traces que
les termes génèrent en utilisant cette réduction.

La sémantique de traces permet, par rapport à la sémantique des jeux, une étude plus
fine de l’interaction en suivant le processus de divulgation des valeurs (que ce soit des
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locations ou des fonctions) entre le terme et les contextes. En effet, en sémantique des
jeux, on ne peut en général décomposer les parties en “sous-parties”, puisque l’on obtient
alors une suite de coups où certains ne seraient plus justifiés, et ainsi laissés sans contrôle.
Avec la sémantique de traces, de tels coups non justifiés sont simplement vue comme
des valeurs divulguées, qui peuvent être prises en charge par la réduction interactive.
En utilisant cette décomposition plus fine, on peut prouver un résultat de décidabilité
de l’équivalence contextuelle pour des termes “purs” de RefML, c’est à dire des termes
qui n’utilisent pas de possibilité de stockage dans le tas (mais avec des contextes non
restreints). Ce résultat utilise de manière cruciale le contrôle des fonctions divulguées
pour effectuée une “chirurgie” sur les traces. Dans le prochain chapitre, nous verrons
comment effectuer cette chirurgie sur des termes “impurs”, en définissant de nouvelles
techniques pour raisonner sur la divulgation de locations.

Les traces peuvent en fait être vues comme une représentation des parties utilisée en
sémantique des jeux, où la structure de pointeurs, qui représente la relation de causalité
entre les différents coups, est encodé via des variables. De telles variables, qui sont de
type fonctionnel, sont appelées noms de pointers.

Suivant cette idée, nous prouvons une correspondance entre cette dénotation des ter-
mes, définie comme ensemble de traces, et la dénotation issue de la sémantique des jeux,
définie par des ensembles de parties. Pour ce faire, nous imposons sur les stratégies de
traces une structure catégorique qui correspond aux langages en appel par valeur, c’est à
dire une catégorie Freyd-fermée [PR97, PT99]. Elle consiste en:

— une catégorie symétrique prémonoidale (C, I,⊗),
— une catégorie “luff” C ′ de C, pour laquelle ⊗ est un produit cartésien,
— un foncteur prémonoidal strict (.)† entre C ′ et C, qui est l’idéntité sur les objets,

tel que pour tout objet A de C, le foncteur ( ⊗ A)† : C ′ → C dispose d’un adjoint à
droite. Pour construire une telle structures sur les traces, on reformule les définitions de
la sémantique des jeux de issues de [Lai08, MT11b] dans le cadre de la sémantique de
traces. La difficulté principale vient de l’absence d’une définition explicite de la structure
de pointeurs, qui doit être reconstruire à partir d’une étude de la fraicheur des noms de
pointeurs (i.e. c’est à dire des variables fonctionnelles).

On relie ensuite la notion usuelle de vue de la sémantique des jeux à des ensembles
de noms de pointeurs de joueur disponibles, de telle manière que l’on puisse importer la
condition de visibilité qui capture le comportement des termes de GroundML directement
sur les traces. En modifiant finalement la réduction interactive pour restreindre les ques-
tions d’Opposant à être effectuées sur de tels noms de pointeurs de joueur disponibles, on
peut capturer l’équivalence contextuelle de GroundML avec l’équivalence de traces.

Plan du Chapitre Les notions de base de la sémantique des jeux (dans un cadre en
appel par valeur) et sa structure catégorie sont introduite en section 5.1. La section 5.1.7
rappelle les principales caractéristiques de la sémantique des jeux nominale.

La notion de trace est définie formellement dans la section 5.2.1 et sa correspondance
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avec les parties de la sémantique des jeux est esquissée dans la section 5.2.2. La réduction
interactive est introduite en section 5.2.3 et l’interprétation des termes comme ensembles
de traces est définie en section 5.2.4. Une des principales contributions de ce chapitre,
présentée en section 5.3, est la comparaison de ce modèle de traces avec le modèle de jeux
de Murawski et Tzevelekos [MT11b], et la preuve que les deux sont en fait équivalents.
On répond également à une question posée par Laird à la fin de [Lai07] sur une possible
sémantique de traces pour un langage avec références restreintes aux types de base, en
reformulant la notion usuelle de visibilité dans le cadre de la sémantique de traces. Ceci
est fait en section 6.7.2. Finalement, en section 5.5, on montre l’utilité de la sémantique de
traces en prouvant que l’équivalence contextuelle de termes purs de RefML (et également
de GroundML) est décidable. Cela donne un premier exemple des idées introduites dans
les deux prochains chapitres pour raisonner sur l’équivalence contextuelle.
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Chapitre 6: Relations Logiques Concrètes

Dans le chapitre 5, nous avons introduit la sémantique de traces, un modèle pleinement
abstrait de RefML, comme variation du modèle standard de la sémantique des jeux.
Cependant, ces deux modèles sont difficilement utilisable directement pour raisonner sur
l’équivalence de termes de RefML. En effet, dans ces modèles la dénotations des termes—
c’est à dire les stratégies—sont des objets infinis pour lesquels raisonner sur l’égalité est
difficile.

D’autre part, il y a eu de très nombreux travaux pour développer des techniques
et modèles opérationnels pour prouver l’équivalence de programmes écrits dans des lan-
gages avec références. Deux des plus importantes techniques sont les bisimulations et
les relations logiques. Les bisimulations environnementales [SKS11, Sum09] étendent les
bisimulations définies pour les langages du premier ordre (tel les calculs de processus) à
des langages d’ordre supérieur. Elles sont pour cela définies comme des ensembles de re-
lations, de telle manière à représenter l’évolution de l’information divulguée par le terme
au contexte. La coinduction est ensuite utilisée pour raisonner sur l’équivalence résul-
tante. Cette utilisation de la coinduction est particulièrement utile pour raisonner sur la
récursion dans les termes, évitant ainsi l’utilisation du step-indexing.

Les relations logiques à la Kripke, qui ont été présentées dans l’introduction de cette
thèse, sont une autre approche pour prouver l’équivalence contextuelle de deux termes.
Dans un cadre en appel par valeur, elles sont définies par les relations V JτKw et E JτKw
respectivement sur les valeurs et les termes, via une induction mutuelle sur le type τ . Elles
utilisent une notion de monde w pour contraindre les tas utilisés pour réduire les termes
M1,M2 vers des valeurs dans la définition de E JτKw. Dans un article récent [HDNV12],
Hur et al. ont proposé de marier les relations logiques à la Kripke et les bisimulations
environnementales pour définir les bisimulations paramétriques.

Cependant, tous ces travaux sont soit incomplet par rapport à l’équivalence observa-
tionnelle, où alors ils nécessitent une forme de clôture qui introduit une quantification (in-
finie) sur les contextes. C’est notamment le cas des relations logiques, qui utilisent une déf-

inition par biorthogonalité pour obtenir la complétude: E JτK def
= {(M1,M2) | ∀(K1, K2) ∈

K JτK .(K1[M1], K2[M2]) ∈ O et K JτK def
= {(v1, v2) | ∀(v1, v2) ∈ V JτK .(K1[v1], K2[v2]) ∈ O}

où O est l’ensemble des couples de termes equi-divergents. On pourrait imaginer relier di-
rectement une définition direct à une définition par biorthogonalité d’une relation logique.
Mais cela semble hors de porté pour un langage comme RefML. Plus précisément, consid-
érons deux termes (M1,M2) ∈ E JτKw où E JτKw est défini par biorthogonalité, essayons
alors de déplier cette définition vers un style direct: soit h1, h2 deux tas satisfaisant les con-
traintes induites par w, supposons qu’à la fois (M1, h1) 7→ (v1, h

′
1) et (M2, h2) 7→ (v2, h

′
2).

Alors il est très dur de construire un monde w′ future de w tel que (v1, v2) ∈ E JτKw et
h′

1, h
′
2 satisfassent les contraintes induites par w

′. On repose en effet sur le pouvoir discrim-
inant des contextes dans K JτKw, mais en essayant cela, on arrive à étudier précisément
l’interaction entre termes et contextes, ce qui nous amène à utiliser la sémantiques des
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jeux et de traces.
Dans cette thèse, nous proposons la première preuve de complétude des relations

logiques à la Kripke, définies sans aucune forme de clôture, pour des termes sans divergence
de GroundML, avec des contextes dans RefML. Pour cela, nous nous appuyons de manière
cruciale sur la sémantique de traces introduite dans le chapitre précédent. En pratique,
nous raffinons ce modèle pour définir la sémantique de traces à la Kripke.

Pour aboutir à ce résultat, nous avons modifier la définition usuelle des relations
logiques à la Kripke, pour la rapprocher de la sémantique de traces. Tout d’abord, nos
relations logiques sont définies sur des termes ouverts, avec des variables libres fonc-
tionnelles 5 (c’est à dire des noms de pointeur d’Opposant), qui sont reliés à l’aide d’un
environnement relationnel e qui correspond à un span, comme introduit en section 3.3.
Ainsi, nos relations logiques E JτKe sont indexées par ce span, de telle manière que:

— deux λ-abstractions λx1.M1, λx2.M2 sont dans V Jτ → σKe, avec τ un type fonc-
tionnel, lorsque (M1,M2) ∈ E JσKe·(x1,x2,τ),

— deux variables (fonctionnelles) (x1, x2) sont dans V Jτ → σKe lorsqu’elles sont dans
e.

Cela est particulièrement utile pour raisonner de manière abstraite sur les callbacks. On
peut ensuite gérer globalement les contraintes sur les locations divulguées. En effet,
considérons les deux termes suivants:

M1 = let x = ref0 in λf.fx; x := 1

M2 = let x = ref0 in λf.fx; x := 2

Ils ne sont pas équivalents car la location liée à x, divulguée via le callback fx, ne stocke
pas la même valeur à la fin de l’exécution deM1 etM2. Habituellement, de tels invariants
sur les locations divulguées sont imposées par le monde w (de la même manière que les
invariants sur les locations privées) et la définition de V Jref τKw. Ici, on choisit une
approche différence, en imposant globalement ces invariants sur les valeurs stockées dans
le tas.

Pour ce faire, on doit suivre l’évolution de la divulgation des locations. On utilise
donc une notion de span D entre locations divulguées locations pour cela, suivant les
travaux de Stark [Sta98]. Ainsi, les mondes contiennent un tel span D, qui évolue au
cours de l’execution des termes, en étant étendu avec les nouvelles locations divulguées.
Par exemple, considérons maintenant les deux termes suivants:

M1 = let x = ref0 in let y = ref0 in λf.fx; fy

M2 = let x = ref0 in λf.fx; fx

Ils ne sont pas équivalents car M1 divulgue deux locations différentes via deux callbacks
à f, alors que M2 divulgue la même location. Si l’on essaye de prouver cette équivalence
en utilisant nos relations logiques, on se retrouve à construire un span qui contient à

5. À notre connaissance, les relations logiques sont toujours définies sur des termes clos. Cela aurait
pu justifier un choix de nom différent pour notre technique.
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la fois (lx, lx) et (lx, ly) (où lx, ly représentent les locations liées à x, y), ce qui n’est pas
possible de part la définition des spans comme bijections partielles. Cette idée d’utiliser
des spans pour relier les locations divulguées est déjà présent dans les travaux de Dreyer et
al. [DNB10] mais quelque peu caché. En effet, dans leur approche, chaque état du système
de transitions encode une bijection partielle entre les locations, qui peut alors être utilisée
dans le même but. Cependant, cette bijection partielle y est utilisée localement dans la
définition de V Jref τKw, plutôt que globalement dans la définition des contraintes déduites
de w sur les tas, notée (h1, h2) : w.

Pour obtenir des résultats de model-checking pour nos relations logiques, qui sont in-
troduites dans le chapitre 7, nous devons contraindre la notion de mondes futures induite
par le système de transitions. Dans les travaux précédents [PS98, ADR09, DNB10], un
monde futur w′ de w peut être étendu avec de nouveaux invariants (ou de nouveaux sys-
tèmes de transitions d’invariants) sur la partie des tas qui est disjointes des tas décrits par
w. Cela découle de l’idée que les mondes sont partitionnés en ı̂les, chacune correspondant
à une partie du tas disjointe des autres. Ici, nous interdisons cette possibilité. Ainsi, le
système de transitions doit rester fixe dès le départ. Cela suppose que l’on doit prévoir
la création des locations futures effectuée par le terme: on appelle de systèmes de tran-
sitions omniscient, qui sont donc entièrement défini dès le départ. Ainsi, on établit une
distinction claire entre les mondes w, qui sont de simples invariants, et le système de tran-
sitions A, qui contraint l’évolution de ces mondes. La définition de nos relations logiques
EA JτKw dépend alors à la fois du système de transitions A, qui est fixe de manière globale
dans la définition inductive des relations logiques, et le monde w qui évolue au sein de la
définition.

Par ailleurs, nous avons choisi pour représenter l’évolution des mondes de travailler
avec des systèmes de transitions étiquetées (Labeled Transition Systems, abrégé en LTS)
plutôt que des systèmes de transitions d’états. Cela permet de garder les systèmes de
transitions finis dans de nombreux exemples, ce qui sera explicité dans le chapitre 7. Ces
systèmes de transitions sont principalement utilisés pour représenter les contraintes sur
les tas a l’aide de couples de pair of pre- et post-conditions entre les tas pris en entrée et
les tas obtenus en sortie.

Comme nous allons le voir dans la définition de l’équivalence Σ; Γ ⊢ M1 ≃clog M2 : τ
induite par nos relations logiques, deux termes sont équivalents s’il existe un LTS A
contraignant les mondes tel que le couple (M1,M2) est dans EA JτKw pour w “initial”
(c’est à dire pour lequel toutes les locations apparaissant dans M1,M2 sont divulguées).
Dans le but de prouver la complétude, nous devons alors construire un tel LTS lorsque
deux termes M1,M2 ont leur dénotation, issue de la sémantique de traces, égale.

Ainsi, nous définissons une notion plus fine, la sémantique de traces à la Kripke, qui
utilise également les mondes pour contraindre les tas apparaissant dans les configurations
de la réduction interactive. Cela est particulièrement utile pour contrôler la divulgation
des locations, puisque la définition de [Σ; Γ ⊢M : τ ] présuppose que toutes les locations
sont divulgués initialement, ce qui n’est pas préservé par réduction. Cependant, cette
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utilisation de mondes pour affiner la sémantique de traces est indépendante des LTS. Cela
veut dire que nous devons caracteriser les mondes w et les LTSs A ayant les propriétés
suffisantes pour s’assurer, à partir du fait queM1,M2 ont des dénotations de traces équiva-
lentes pour le monde w, que (M1,M2) ∈ EA JτKw. Nous appelons de tels mondes adéquats,
dont la définition peut être vue, en première approximation, comme le dual des relations
logiques. Plus précisément, nous définissons l’ensemble des mondes adéquats pour deux
termes M1,M2 via un prédicat sur les mondes, noté EAJτK(M1,M2). Ce prédicat impose
essentiellement l’existence de tous les mondes futurs de w nécessaires (par rapport à A)
pour décrire les évolutions possibles des tas que l’on obtient au cours de la réduction inter-
active deM1,M2. Ainsi, à partir de deux termesM1,M2, on construit un LTS A, que l’on
appelle LTS exhaustif, pour lequel le monde initial est effectivement dans EAJτK(M1,M2).
Il est construit en utilisant l’ensemble des traces générées par la réduction interactive, en
ajoutant un nouvel état pour chaque action de ces traces.

Notons finalement que l’on appelle ici nos relations logiques concrètes pour les dis-
tinguer des relations logiques temporelle qui sont introduite dans le prochain chapitre.

Plan du Chapitre Nous commençons par introduire dans la section 6.1 la notion de
LTS et de mondes. Ensuite, les relations logiques concrètes pour le fragment formé des
termes sans divergence de GroundML, considéré avec l’équivalence contextuelle de RefML,
sont définies en section 6.2. Dans la section 6.3, nous introduisons la sémantique de
traces à la Kripke, un raffinement du chapitre précédent où les mondes sont utilisés pour
contraindre les tas dans la définition de la sémantique interactive. Cette notion est utilisée
en section 6.4 pour prouver la la correction des relations logiques concrètes par rapport à
la sémantique de traces.

Pour s’attaquer au problème de la complétude, nous introduisons la notion de mon-
des adéquats dans la section ??, définie de manière duale aux relations logiques, pour
contraindre la forme des LTSs à suivre le flot de contrôle des termes. Cette notion est
centrale dans la preuve de complétude de la section 6.6, où on utilise un LTS exhaustif,
défini en utilisant la réduction interactive, et qui est bien adéquat.

Dans la section 6.7.1, nous esquissons une définition possible des relations logiques
concrètes pour l’ensemble de RefML, en utilisant une définition coinductive qui peut être
formalisée en utilisant les types récursifs gardés. Il est intéressant de noté que, en travail-
lant avec une notion fixe de LTS, la circularité usuelle entre la définition des mondes et des
relations logiques disparâıt. Nous esquissons également dans la section 6.7.2 la définition
des relations logiques concrètes pour GroundML, où la notion de backtracking entre états
introduite dans [DNB10], pour relacher la définition des monde futurs, apparait.
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Chapitre 7: Relations Logiques Temporelles

Disposant de relations logiques complètes définies de manière directe, on peut imaginer
être maintenant capable de les utiliser pour prouver n’importe quelle équivalence. Cepen-
dant, en examinant avec attention la preuve de complétude, on peut se rendre compte
qu’elle nécessite une notion de LTS exhaustif qui n’est clairement pas calculable.

Cependant, il est souvent possible de définir soi-même des mondes en inspectant la
forme de mondes, cherchant ainsi à définir de judicieux invariants sur les tas. Cela ouvre
la possibilité de model-checker l’appartenance de deux termes M1,M2 de type τ à la
relation logique E JτK. Cela signifie que, une fois équipée d’un A representant l’évolution
des invariants sur les tas pourM1 etM2, on pourrait decider siM1,M2 sont effectivement
dans EA JτKw, avec w le monde initial.

En effet, de nombreux choix suivis dans le chapitre 6 pour définir EA JτKw étaient
faits dans ce but. Le plus important étant de travailler avec un LTS fixe A. Cela ouvre
effectivement la possibilité de travailler dans une logique simple dont la sémantique est
définie par un modèle de Kripke. L’utilisation d’une telle logique équipée d’un modèle de
Kripke a également été utilisé par Dreyer et al. dans [DNRB10], cependant, leur logique
est plutôt complexe, à la fois car elle permet de quantifier directement sur les λ-termes,
et car l’évolution des mondes y est peu contrainte.

Dans ce chapitre, nous travaillons plutôt dans une logique qui mélange l’arithmétique
de Presburger, pour définir les contraintes sur les tas, et la logique temporelle, pour raison-
ner sur l’évolution des LTS, c’est à dure sur le flot de contrôle. La logique temporelle est
d’une grande importance dans le domaine du model-checking, pour prouver des propriétés
de sûreté et de vivacité, suivant les travaux précurseurs de A. Pnuely [Pnu77]. À notre
connaissance, le cadre présenté dans ce chapitre est le le premier à utiliser la logique tem-
porelle pour raisonner sur le flot de contrôle d’un langage fonctionnel impur, dans le but
de prouver l’équivalence de programmes.

On définit ensuite les relations logiques temporelle dans cette logique. Pour ce faire,
nous commençons par introduire une notion d’exécution symbolique, qui est utilisée pour
réduire les termes ayant des variables libres de bases. En pratique, elle effectue simple-
ment une réduction exhaustive, en générant des prédicats qui contraignent les valeurs de
valeurs de bases, de telle manière que ces prédicats soient satisfiables tous ensembles si
et seulement la réduction est effectivement possible opérationnellement. Grâce à elle, on
peut définir les relations logiques temporelles, et établir une correspondance exacte avec
les relations logiques concrètes du chapitre précédent.

En toute généralité, le problème du model-checking reste indécidable pour notre logique,
et ce pour deux raisons:

— la présence de quantifications sur les tas, qui peuvent être vus comme des listes de
taille non bornée,

— le mélange entre arithmétique de Presburger et logique temporelle.

Cependant, sous des hypothèses réalistes sur l’arité des fonctions de transitions, qui per-
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mettent de contrôler la quantification sur les tas et les locations, et en supposant que la
cloture transitive du LTS est fournie et s’exprime dans l’arithmétique de Presburger, on
obtient un model-checking décidable.

Ce travail a donné lieu à une implémentation réalisée dans le langage Haskell. Ce
prototype calcule la relation logique temporelle E JτK (M1,M2) associée à deux termes,
mais est également capable, dans certains cas, de générer un LTS qui potentiellement
valide cette formule. Il effectue ensuite un traduction de la validité de la formule temporelle
par rapport à ce LTS vers SMT-LIB2, le langage commun aux SMT-solveurs. En utilisant
le solveur Z3 (http://z3.codeplex.com/), nous avons ainsi été capable de décider de
nombreux exemples issus de la littérature. Nous laissons ouvert la possibilité de résultats
théoriques sur la génération de LTS. Si nous réussissons à prouver que l’implémentation
génère un LTS qui, sous certaines hypothèses sur les termes, est adéquat (comme défini
en section 6.5), cela fournirait des résultats de décidabilité pour des fragments de RefML
et GroundML.

De tels résultats de décidabilité ont auparavant été obtenus en sémantique des jeux
algorithmique, qui se base sur les résultats de pleine adéquation des modèles de jeux. En
théorie n’importe quelle équivalence de programme peut être prouvée en regardant sim-
plement l’égalité des stratégies. Cependant, raisonner sur l’égalité des stratégies dans le
cadre fonctionnel est non trivial (voir même indécidable[Loa01]) car le modèle est quo-
tienté par une relation complexe. Pour un langage avec références, il existe une bonne
caractérisation du quotient, en utilisant les stratégies complètes, comme nous l’avons vu
au chapitre 5.

La sémantique des jeux algorithmique se base sur ce résultat, et utilise la théorie
des automates pour représenter les stratégies. Dans un cadre en appel par valeur, un
classification complète de la décidabilité de l’équivalence de programmes a été réalisée par
Ghica and McCusker [GM00] pour le langage Idealized Algol du premier order. En appel
par valeur, une étude récente d’un fragment de ML avec “bad variables” a été développé
en utilisant une variante des automates à piles [HMO11]. Et en utilisant des automates
à registres frais [Tze11], cette méthode a été étendue aux “bonnes” references [MT11a,
MT12]. La principale difficulté à laquelle la sémantique des jeux algorithmique fait face
est l’encodage de la structure de pointeurs, dont les parties disposent, vers un langage
reconnaissable par des automates. Pour ce faire, le type des termes considérés doit être
restreint pour obtenir des résultats de décidabilité. Il serait intéressant de comparer ces
résultats à ceux obtenus avec notre méthode, qui nécessite elle un contrôle sur la création
des locations plutôt qu’une restriction sur les types.

Plan du Chapitre Nous commençons par définir dans la section 7.1 notre logique
HeapTL, qui marie l’arithmétique de Presburger et la logique temporelle. Elle utilise les
LTS introduits dans le chapitre 6 pour définir la sémantique des modalités temporelles, et
les mondes pour la sémantique des prédicats sur le tas. L’exécution symbolique est intro-
duite en section 7.2, qui joue un rôle crucial dans la possibilité de générer automatiquement

http://z3.codeplex.com/
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les relations logiques temporelles, introduites dans la section 7.3. On étudie ensuite dans
la section 7.5 les propriétés de model-checking de ces relations logiques temporelles, qui
ont été esquissées dans l’introduction. Ces résultats reposent sur la correction et la com-
plétude des relations logiques temporelle (par rapport aux relations logiques concrètes),
qui sont prouvés respectivement dans les sections 7.6 et 7.7.



2
Introduction

While computer programs play an ever broader role in critical systems, from airplanes
to medical equipments, the need for formal methods to ensure their correctness becomes
unavoidable. Among all formal methods, mathematical proofs of correctness of programs
give the highest level of trust we can hope for. But such proofs can be really complex,
requiring an automatic check to be performed. This can be done using proof assistants,
which are themselves computer programs designed to automatically check if a proof of a
theorem is correct. But, to reason on programs, it is necessary to first give them a precise
meaning, which is achieved by defining the semantics of the programming language in
which they are written. In this thesis, both the language of the proof assistant and
the language of the programs to be analyzed come from the same central notion: the
λ-calculus.

2.1 Functions and Types

The λ-calculus has been introduced by Alonzo Church as a computational model in
which “everything is a function”, where by functions we mean a syntactical object where
the binding of a variable is handled explicitly. Application is then handled by substitution
of variables. Such functions, called λ-abstractions, can be annotated with types to abstract
over their computation. More precisely, a function is given a type A → B to say that
it takes as argument elements of type A and returns elements of type B. This is the so
called simply-typed λ-calculus. This language has taken a crucial importance in the field
of both proof theory and programming languages.

Indeed, in proof theory, this language is used to represent proofs and formulas via the

35
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famous Curry-Howard correspondence . The idea is that a term of type A→ B represents
a proof of the implication A⇒ B. Thus, checking the correctness of a proof amounts to
typechecking the corresponding term. Of particular importance is the work of P. Martin-
Löf, who has extended this correspondence to predicate logic. His idea was to represent
a universally quantified formula ∀x ∈ A.P (x) as a dependent type Πx : A.P . To define
such dependent types, we must allow terms to appear in types. For example, one can
define a type Mm,n of rectangular matrix of size m ∗ n, such that the multiplication of
matrices would be of typeMm,l →Ml,n →Mm,n. Here, we used numbers l,m, n (which
are terms) to refine the type of matrices.

This system, called Martin-Löf Type Theory, is the basis of proof assistants such as
Coq or Agda. These systems satisfy the so called De Bruijn criterion, i.e. they generate
a witness of the proof, namely a λ-term, which can be checked by others means, so that
we do not blindly rely on the proof assistant.

λ-calculus also had been at the origin of functional languages. The idea was to come
back to the original concept of λ-calculus as a computational model, in order to derive a
programming language. This was done firstly in its untyped version by J. McCarthy with
LISP and later typed functional languages were conceived, like ML or Haskell. Types are
particularly useful to specify programs, following the well-known slogan of R. Milner:

“Well-typed programs can’t go wrong.”

This is the so called type-safety property. It can be proven in two different ways, either
purely syntactically via the “progress and preservation”method, or by associating to each
types τ a set of terms JτK which are “safe”, the so called semantic types (or realizability)
approach.

The λ-calculus will thus be used to build the objects of study of this thesis—functional
programs—but also to represent proofs on these objects, via the Curry-Howard correspon-
dence, using a rich (dependent) type theory. However, while the programs we consider are
impure—in that they can perform side-effects like divergence or use a persistent memory—
the proofs are represented by pure λ-terms which are among others terminating 1.

As previoulsy explained, a way to specify a functional program is via its type. But the
type system must be rich enough if we want to be able to give a precise specification. For
instance, this can be achieved by using refinement types [FP91] or even dependent type
[NMB08].

Here, we argue that in many cases, the best language to write the specification of a
program is its programming language itself. Indeed, when writing a program, it is often
the case that we first design a simple version that we trust, then we optimize it. In this
case, proving that the simple version is equivalent to the optimized one would give a
correctness result for the optimized version.

Of course, for more complex programs, this alternative is not always possible. Partic-
ularly interesting examples are compilers. Their correctness is crucial, since they produce

1. By terminating, we mean that there are no terms which can be infinitly reduced.
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low-level code that will be actually run on computers. Indeed, a bug in a compiler could
unravel all the efforts done to prove that a program satisfies its specification, by gen-
erating incorrect low-level code. This is not a figment of the imagination, as shown in
[YCER11], where dozens of bugs have been found in GCC or LLVM. There have been
many works on formalization of correctness of compilers. One of the most impressive is
the work of X. Leroy et al. with CompCert [Ler09]. In this formalization, the specification
of the compiler corresponds to a simulation between the semantics of the high and the
low-level language. However, one can imagine more “modular” specifications for compil-
ers, which allow the interaction of low-level codes produced by two different compilers,
or even hand-written. Following ideas from N. Benton et al. [BT09, BH09], a possible
specification satisfying this modular property can be the conservation of the equivalence
of high-level programs into low-level code. This is particularly interesting in order to
prove correctness of optimization performed by compilers. While working on this idea
[JT10, JT11], it appeared clear to us that we need a good logical framework to formalize
proof of equivalence of programs. This was the starting point of this thesis.

2.2 Contextual Equivalence

We have chosen to focus on the notion of contextual equivalence, also called obser-
vational equivalence, for impure functional languages. In this setting, two programs are
said to be equivalent if no context can distinguish them. Besides its practical interest
presented before, this notion is fundamental in denotational semantics, where the goal is
to build fully-abstract models. In such models, the denotation of two terms are equal if
and only if the two terms are contextually equivalent.

As one can imagine, the expressive power of contexts, seen as programs with “holes”,
plays a major role in the study of contextual equivalence. In the degenerate case where
contexts can inspect the source code of programs, as with low-level programming languages
or assembly code, this notion of contextual equivalence completely collapses to syntactical
equality: a program can only be equivalent to itself.

In the opposite direction, when contexts are suppose to be “pure”, the study of con-
textual equivalence become quickly undecidable (even without any kind of recursion or
infinite types), as shown by Loader in [Loa01]. In a way, this explains why the quest for
a fully-abstract denotational model for PCF 2 was a lot harder than for PCF with some
side effects.

Here, we are interested in contexts and programs which have a notion of mutable
memory. More precisely, we consider the notion of references, which are the standard
way to implement memory cells in ML-derived languages such as OCaml. A reference is
defined via the constructor ref v, to store the value v in the heap (whereas the arguments
given to functions are, as usual, stored in the stack). These references are then reduced

2. a simply-type λ-calculus with natural numbers and recursion
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to locations, which can be seen as memory addresses. However, compared to low-level
languages like C, one cannot perform any pointer arithmetic on locations: they have to
be seen as abstract names for memory cells. Values stored in references can be of a
higher-order kind, i.e. closures. This allows the performance of recursion.

Using references as a global –persistent– memory, a function can track how many times
it is called. Hence, when calling it two times with the same argument, it can possibly
return two different results. But contexts can also use references, so that two terms are
equivalent only if they perform calls of functions, provided by contexts, in an equivalent
way, and with equivalent arguments. This is the idea of synchronization of callbacks,
which is false when contexts are pure.

2.3 Kripke Logical Relations

In general, contextual equivalence is hard to reason on due to the quantification over
all contexts. Some tools have been introduced to avoid this quantification and so to prove
contextual equivalence in a simpler way. One of the most used frameworks is that of
logical relations, which are of particular importance to define the notion of parametricity
following the seminal work of Reynolds [Rey83]. Logical Relations are a generalization of
semantic types, used to prove type safety, to a relational (as opposed to predicate) setting.
They are binary relations on values V JτK and on terms E JτK of type τ . The relation V JτK
is defined by induction over τ . On ground types, it simply imposes equality of value. On
functional types τ → σ, two values λx1.M1, λx2.M2 are in V Jτ → σK when :

∀(v1, v2) ∈ V JτK , ((λx1.M1)v1, (λx2.M2)v2) ∈ E JσK

Then, two terms are in E JτK when they reduce to two values which are in V JτK. Using
these definitions, one can show that two terms of type τ are contextually equivalent when
they are in E JτK.

However, one cannot extend this definition directly to a language with references.
Indeed, in this case, the reduction of a term M depends on the values stored by its refer-
ences, i.e. in the heap. Thus, A. Pitts and I. Stark [PS98] have proposed to parametrized
the definition of E JτK and V JτK by invariants on heaps. Such invariants are called worlds,
following the intuition of Kripke models. The notion of worlds has later been refined by
A. Ahmed [ADR09], and then by D. Dreyer et al. [DNB12] to state transition systems of
heap invariants, to be able to prove equivalences which was out of reach of the definitions
of Pitts and Stark.

2.4 The Step-Indexing Technique

Kripke Logical Relations given by Pitts and Stark were defined for a language with
“ground references”, that is references which can store ground values but not functions.
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In her PhD thesis [Ahm04], A. Ahmed extends these definitions to recursive types and
higher-order references. To do so, she had to deal with a circularity problem between the
definition of worlds and logical relations. Appel and McAllester [AM01] already ran into
this kind of circularity issue while working on type safety for low-level code with recursive
types. Semantic types TypeSem, which are sets of “well-behaved” values, depend on the
definition of worlds World which are semantic invariants on what locations can store.
Written as recursive equations, this gives

World
def
= Loc→ TypeSem and TypeSem

def
= World→ Value

Then, unwinding the definition of TypeSem, we get that it is equal to (Loc →
TypeSem) → Value. So we would like to define TypeSem as a fixpoint µX.(Loc →
X)→ Value. However, X appears in a negative occurence in this definition, so in general
such fixpoints does not exists. Indeed, one cannot apply the Knaster-Tarski theorem.

This kind of recursive equation can be solved while switching from set-definition to
categorical definition. This is what is usually done while working in denotational seman-
tics [SS71]. More precisely, in Domain theory [Sco82], we work in the category of complete
partial orders where such equations can be solved. One of the most famous one being
D = D → D for pure λ-calculus.

But in this thesis we want to reason operationally on programs, while denotational
semantics interprets programs as mathematical objects. So staying in the operational
world, Appel and McAllester[AM01] have introduced step-indexes to solve this circularity
issue. The idea is to stratify the definition of semantic types with a natural number
representing roughly the number of steps for which the programs in question behave
properly. Thus, the definition of TypeSem and World is now indexed by an integer n,
with the following definition :

Worldn+1
def
= Loc→ TypeSemn and TypeSemn

def
= Worldn → Valuen

This was then used by Ahmed to define logical relations first for languages with re-
cursive types [Ahm06] then for languages with higher-order references, in a work in col-
laboration with Dreyer and Rossberg [ADR09]. In these works, step-indexes used in the
definition of logical relations represent the number of steps for which the two programs
in question are equivalent. In this way, it becomes possible to prove the equivalence of
many programs that make use of recursive features by performing a simple induction on
step-indexes.

But the management of step indexes during a proof appears to be—borrowing a word
from Benton—“ugly”. In their work on a “very modal model” [AMRV07], Appel, Melliès,
Richard and Vouillon have proposed to reason abstractly on step-indexing using Gödel-
Löb logic. To do so, they introduce a modality “later”, written ⊲, whose meaning (defined
via a Kripke semantics) is roughly “true in the future”. Then, the so called Löb rule
(⊲P → P ) → P , which can be seen as an induction principle, is valid in this logic. It is
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then used to reason smoothly on recursive programs, as it would be done with explicit
step-indexes.

This modality was in fact already used by Nakano [Nak00, Nak01] to define a λ-calculus
with general recursive types which is strongly normalizing. To enforce this normalization
property, this modality ⊲ (which is written • in these works) is used to “guard” recursive
types.

2.5 Forcing Translation

While working on step-indexing and its rephrasing in terms of Gödel-Löb logic, it
appeared clear to us that this was a special instance of forcing. By forcing, we mean
a general method, originally introduce by P. Cohen [CD66], to prove the independence
of the continuum hypothesis. This technique has later been restated in many different
forms. The most interesting presentation for our purpose is in terms of topos of sheaves
or presheaves done by Lawvere and Tierney [Tie72].

This intuition was then confirmed by the work of Birkedal et al. on the topos of
tree [BMSS11], where they have built a model of a type theory with guarded recursive
types in terms of presheaves over natural numbers. The way to define Kripke Logical
Relations as Logical Relations indexed by a world is also, as we can expect, an example
of forcing, via the so called Kripke semantics of modal logic. This idea was explored by
Dreyer et al. in [DNRB10], where they define a modal logic to reason on Kripke Logical
Relations.

Our goal was then to be able to extend a type theory modularly—more precisely
the type theory behind the Coq proof assistant—using this kind of forcing constructions.
This has led us to build a general method to define a forcing translation of the whole
type theory using an internalization of the presheaf construction, parametrized by a set
of forcing conditions. Such a construction allows us to define forcing layers, that is an
extension of the ground theory with new logical principle, while keeping the following
important properties:

— the consistency of the theory,
— the decidability of the type-checking,
— the canonicity property, i.e. the fact that closed terms reduce to closed values.

Such conservation results are not in general available from semantics methods.

Instantiating the set of forcing conditions, we are then able to build what we call
the step-indexed layer, where the construction of guarded recursive types from [BMSS11]
can be defined. Working with a type theory with universes, we are additionally able to
define a fixpoint operator on functions over types, which allows an internal way of defining
guarded recursive types.
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2.6 Biorthogonal versus Direct Definitions

An other main technique to define logical relations is biorthogonality, or ⊤⊤-closure.
Biorthogonality has a long history in proof theory. Indeed, it has been used by J.-Y.
Girard to prove cut-elimination of linear logic, and by J.-L. Krivine in his work on classical
realizability, to extend the Curry-Howard correspondence to classical logic with the axiom
of choice.

It is used with logical relations to define E JτK not directly in terms of V JτK, but rather
as an indirect closure of V JτK via an auxilliary relation K JτK on contexts.

This definition as a closure is used for three different purposes:

— to reason on languages with context-dependent control-flow features, like the call/cc
or jump instructions in assembly code,

— to build operational models of both polymorphism and recursion [Pit00], enforcing
the admissibility of logical relations,

— to get completeness of logical relations, i.e. two terms of type τ which are contex-
tually equivalent are in E JτK.

In this thesis, we do not consider control operators like call/cc, so that control flow is
always sequential. To deal with recursive features of the language, we have seen that step-
indexing is in practice enough, so we do not need any admissible condition. So the only
remaining reason to use biorthogonality would be to get completeness of logical relations
with respect to contextual equivalence.

However, when working with biorthogonal logical relations, we rely in fact on a princi-
ple of local invariance [PS98] which amounts to unwinding the biorthogonality to a direct
definition. In fact, the completeness result obtained using biorthogonality is a bit spuri-
ous, since it does not mean that we are able to prove in practice any equivalence using
these logical relations. This is exemplified by the so called “awkward example” :

Mawk
1 = let x = ref 0 in λf.x := 1; f(); !x

Mawk
2 = λf.f(); 1

To prove that these two terms are equivalent, the state invariant which constrains x
to point either to 0 or to 1 is not enough to deduce that the first program returns 1.
Thus, the model of Pitts and Stark, which uses worlds as invariants, cannot prove this
equivalence, which can seem strange at first sight since it is complete. This is because
using the biorthogonality closure to prove equivalence is as hard as reasoning directly on
contextual equivalence, when one cannot use the principle of local invariance. Actually, the
impossibility to prove this equivalence with the definitions of Pitts and Stark led Ahmed to
refine their model, to allow heaps invariants to evolve during the execution [ADR09]. Using
the subsequent work of Dreyer et al. [DNB12], the world used to prove this equivalence
is the following state transition system:
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x →֒ 0 x →֒ 1

which states that once x points to 1, it will never points to 0 again. Using this refined
principle, it is then possible to show that M1 is equivalent to M2. Such STSs can in fact
be seen as an abstraction of the control flow of the program, only taking into account the
modification of the heap.

2.7 Operational Nominal Game Semantics

Without biorthogonality, proving completeness of logical relations for a language with
references is an open problem. Indeed, one has to reason on the shape of contexts,
which is a priori very hard. To tackle this problem, we choose to link logical relation
to a denotational model of our language. The obvious choice is game semantics, and
more precisely the model developed by A. Murawski and N. Tzevelekos for “good general
references” [MT11b] 3 which is indeed fully-abstract for RefML. This model uses nominal
sets [Pit13] to abstract reasoning on “names” of locations. This idea will also be used
throughout this thesis.

This game semantics model does not however fit well with logical relations, as we can
see with the following term M :

λ f.let x = ref0 in f(λ .x := 1) in M1

This term keeps the reference x private, and gives to the context the possibility to change
it to 1 via a setter function. But then, it is not possible to relateM1 toM for two reasons
:

— x is private to the term, but the denotation of M1 is defined as if all its locations
were disclosed to the context,

— the context has access to the setter λ .x := 1 when M1 is evaluated, but there is
no easy way to specify this with game semantics.

To solve these limitations of game semantics, we need to define a new model, following
previous work of J. Laird [Lai07]. It shares the good denotational (i.e. categorical)
properties of game semantics. with operational ones. The idea is to interpret terms as
sets of traces, which represent interactions between a term and any contexts, as in game
semantics, but which can be computed operationally via an interactive reduction.

Then, refining this model with worlds to constrain the shape of heaps, we define a
notion of Kripke trace semantics. This allows us to make a formal link with Kripke
logical relations and therefore to prove their soundness and completeness.

3. “good” as opposed to the so called “bad-variables” which arise from the “object”-representation of
references inspired by the work on Idealized Algol by Reynolds.
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2.8 A Temporal Logic to Reason on Equivalence of

Programs

To reason on correctness of programs, some logics have been designed, which provide
general principles to prove such correctness results. The most famous one is Hoare Logic,
which has then be refined with separation logic [Rey02].

Here, we are interested in program logics to reason directly on the equivalence of
programs. Plotkin and Abadi logic for parametric polymorphism [PA93] was the first
logic introduced to this end, for System F. Then, Dreyer et al. introduced LSLR [DAB09]
and LADR [DNRB10], two logics for richer languages with recursive types and higher-
order references. However, all of these logics used λ-calculus as built-in object, and then
defined logical relations inside it. If they are well-suited to formalize proof of equivalence,
it seems hard to use them to automatically prove equivalence of programs.

In this thesis, we follow a different approach, by defining a simpler logic with good
model-checking properties to abstract reasoning on worlds used in our definition of Kripke
logical relations. However, compared to step-indexing, this abstraction does not fit well
within the framework of the presheaf translation, because some of the constructions used
to define Kripke logical relations are not monotonic w.r.t. worlds.

So we define rather a temporal logic to reason on the transition system of worlds.
The meaning of the various connectives of this temporal logic are defined via a usual
Kripke modal semantics. Compared to [DNB12], we switch from state transition systems
to labeled transition systems, where invariants are specified on transitions using a notion
of pre- and post-condition in the spirit of Hoare logic. This is particularly useful to keep
transition systems finite.

In previous works [PS98, ADR09, DNB10], a future world w′ of w could have been
extended with new invariants (or new STSs of invariants) on the part of heaps which are
disjoint from the one w was specifying. This follows the idea that worlds were partitioned
into islands, each one corresponding to a part of the heap disjoint from the others. How-
ever, this gives too much freedom to be definable in our restricted logic, where we can
quantify only in simple objects. So here, we forbid this usage: the transition system stays
fixed from the beginning, which does not change while worlds are evolving. This means
that it must have foreseen the creation of future locations made by the term: we call such
behavior omniscient.

To reason abstractly on free ground variables, we introduce a symbolic execution for
our language which generates all the possible reductions of terms. It also generates a set
of predicates which constrain values of ground variables, such that this set of predicates
is satisfiable if and only if the reduction is indeed possible. Then, we define temporal
logical relations E JτK, which are formulas of our temporal logic. From two terms M1,M2,
E JτK (M1,M2) can be generated automatically using the symbolic execution. One then
shows that there exists a world which validate this formula if and only if the two terms
are in the usual, “concrete” logical relations. From the soundness and completeness of
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the concrete logical relation, we reduce the problem of the contextual equivalence of two
terms M1,M2 to the model checking of E JτK (M1,M2), that is:

M1,M2 are contextually equivalent if and only if there exists a world w such that
w |= E JτK (M1,M2)

Our temporal logic mixes Presburger arithmetic, used to write arithmetic constrains
on stored values, with temporal modalities inspired by the Computational Tree Logic to
control the evolution of these constrains. Therefore It does not have in general the good
properties of decidability of model checking that temporal logic usually has, due to the
interaction with arithmetic.

However, under some reasonable hypothesis on the shape of worlds, we get the decid-
ability of the model checking, that is we can automatically check if a world validates a
temporal formula. This is done via translating the formula to a simpler one, which does
not contain any temporal modality, which can then be checked by a SMT solver.

It seems possible, under a bounded heap hypothesis, to build automatically a world
which validates the temporal formula if and only if the two programs are indeed contextu-
ally equivalent. This would give a decidability result 4 for the contextual equivalence for
terms satisfying this hypothesis. We believe that this would encompass the decidability
fragment of algorithmic game semantics [MT11a], which is characterize by a restriction
on types.

Following these theoretical results, a prototype has been implemented in Haskell which:
— generate the temporal formula corresponding to the equivalence of two terms,
— translate this formula to a simpler one that a SMT-solver can validate, once a

world is provided
— under a bounded heap hypothesis, generates a world which validates the formula

if and only if the two terms are equivalent.

2.9 Overwiew of the Manuscript

In Chapter 3, we present the basic notions used throughout this thesis. We begin in
section 3.1 by definingMartin-Löf Type Theory with a hierarchy of universes. Section 3.1.2
introduces identity types following ideas from Homotopy Type Theory. Section 3.1.7 focus
on how to get uniqueness of proofs of typing judgments, by explicitly coercing uses of
the conversion rule. Section 3.1.8 presents the difference between the type system we
have presented and the one behind the proof assistant Coq, which has been used to
implement techniques from Chapter 4. Then, section 3.2 presents RefML, a call-by-
value language with higher-order references, which is our object of study. This Chapter
ends with section 3.3 which introduces nominal logic, that we use to study RefML, more
precisely to reason abstractly on names of variables and locations.

4. As proven in [Mur05, MT12], contextual equivalence is in general undecidable for a language with
references, even in absence of recursion or infinite types
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Chapter 4 introduces a new modular way to extend type theory using ideas from forcing,
while keeping the decidability of type checking and the consistency of the theory. It uses
a presheaf translation of type theory presented in section 4.1, whose formal study is
performed in section 4.2. The notion of forcing layer, where the theory can be extended
with new principles, is defined in section 4.3 Then section 4.4 introduces guarded recursive
types, which are built in the forcing layer using step-indexing.

Chapter 5 defines operational nominal game semantics, a semantics which marries the
good denotational properties of game semantics with an operational representation of
terms using traces, to be able to perform modular reasoning. In section 5.1, we briefly
recall notions of game semantics for RefML. Then, in section 5.2 we introduce trace
semantics, firstly with definitions imported from game semantics, then by introducing the
interactive reduction which allows us to generate traces from configurations. Section 5.3
provides a formal correspondence between trace semantics and game semantics, and show
that the two models gives the same denotation to terms of RefML. We show in section 5.4
that a tweaked version of the interactive reduction, with an explicit management of scopes,
captures exactly GroundML. This proof is again done via a correspondence with the game
model of RefML, i.e. visibility. Finally, we exemplify in section 5.5 the use of trace
semantics for operational reasoning by studying the equivalence of pure terms of RefML
(with contexts in RefML).

We introduce concrete logical relations in Chapter 6. They are parametrized over a
notion of worlds, whose evolution is governed by a notion of Labeled Transition Systems,
introduced in section 6.1. The definition of concrete logical relations is given in section 6.2.
To relate these concrete logical relations with trace semantics, we also parametrized traces
with world, via a notion of Kripke trace semantics defined in section 6.3. This notion is
crucial in section 6.4 to prove soundness of concrete logical relations. To prove complete-
ness we first introduce in section 6.5 a notion of adequate worlds, which are worlds which
respect the callback structure. Then, the proof of completeness is done in section 6.6.
Finally, we briefly sketch in section 6.7.1 how to extend this work to full RefML, i.e. with
higher-order references, and in section 6.7.2 how to restrict it to GroundML.

Finally in Chapter 7 we introduce a temporal logic in section 7.1 to build temporal logical
relations. Its definition relies on a symbolic execution for RefML, defined in section 7.2.
The definition of temporal logical relations is given in section 7.3, and we present some
examples in section 7.4. Its model-checking properties are studied in section 7.5. We
prove the soundness and the completeness of these relations with respect to concrete
logical relations respectively in section 7.6 and 7.7.
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In this chapter, we introduce the technical background used throughout this thesis.
Firstly, we introduce the type theory used as a metatheory to represent our proofs, namely
Martin-Löf Type Theory. Then, we present RefML, a call-by-value language with higher-
order references. This is the object of studies of this thesis. We also define a restriction
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of it, namely GroundML, where references can only store ground values, i.e. natural
numbers, booleans or locations. Finally, we introduce the basic ideas of Nominal Logic,
to abstract the reasoning on locations and variables of RefML.

3.1 Martin-Löf Type Theory

Following the idea of the Curry-Howard correspondence, proofs can be represented as
terms of λ-calculus, and formulas as types. This idea was pursue by Martin-Löf to give a
constructive formalism to mathematics. As we have explained in the introduction, he has
introduced dependent types to be able to represent existential and universal quantifiers.

This section introduces Martin-Löf Type Theory. Our presentation is highly inspired
by [Hof97] for the general theory and [Uni13] for the presentation of universes and identity
types.

3.1.1 Dependent Type Theory

The fragment of MLTTU restricted to dependent products is given by the following
grammar

T, U,M,N := Ui | Πx :: .T.U | x | λx : T.M | App(x:T )U(M,N)

with i ∈ N, x ∈ Var where Var is a fixed (infinite) set of variables. This set of terms will
be expanded as we introduce new type constructions in our theory.

In MLTTU , there is no syntactical distinction between terms and types, since terms
can be used in dependent types. The term App(x:T )U(M,N), which represent the usual
application, is usually written MN , omitting the typing informations (x:T )U . It is used to
keep the proof of a typing judgment unique.

A typing context Γ is an ordered list (x1 : T1), . . . , (xn : Tn) of pairs of distinct variables
and types. The empty context is written ⋄. Adding a new element (x : T ) to a context Γ
is written Γ, (x : T ), assuming implicitly that x is not already in Γ.

We introduce two judgments :
— Γ ⊢M : T , which states that M is of type T w.r.t. the typing context Γ of its free

variables.
— wf(Γ), the fact that Γ is well-founded, i.e. writing Γ as Γ1, (x : T ),Γ2, T is a type

in the context Γ.
They are defined using inference rules in Figure 3.1, by a mutual induction. The rules
for other constructors of MLTTU will be introduced in the next sections.

Even if there is no syntactic distinction between terms and types, when considering
the typing judgment Γ ⊢M : T , we say thatM is a term and T is a type. So types always
live in some universe Ui.

To stress the fact that contexts are ordered lists of pairs of terms and contexts, they
are sometimes called telescopes. Indeed, considering Γ = (x1 : T1) . . . (xn : Tn), we have
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WF-Empty
wf(⋄)

WF-Ctx
Γ ⊢ T : Ui

wf(Γ, (x : T ))
Var

wf(Γ) (x : T ) ∈ Γ

Γ ⊢ x : T

Univ
wf(Γ)

Γ ⊢ Ui : Ui+1

Univ-Cumul
Γ ⊢M : Ui j > i

Γ ⊢M : Uj

Π-Univ
Γ ⊢ T : Ui Γ, x : T ⊢ U : Uj

Γ ⊢ Πx : T.U : Umax(i,j)

Π-Intro
Γ, x : T ⊢M : U

Γ ⊢ λx : T.M : Πx : T.U
Π-Elim

Γ ⊢M : Πx : T.U Γ ⊢ N : T

Γ ⊢ App(x:T )U(M,N) : U {N/x}

Figure 3.1: MLTTU Type System: Contexts, Universes, Dependent Products

FV(Ti) ⊆ {x1, . . . , xi−1} for all i ∈ {2, . . . n}. This property is enforced by the inductive
definition of wf(Γ).

The usual presentation of MLTT is done with only two universes, U0 being written
as Set, and U1 as Type. Having no universe U such that Type : U , we cannot write any
types Πx : Type.U . This means that this theory is predicative.

As in [Uni13] (and contrary to [Hof97]), we used Russell-style universes, as opposed to
Tarski-style (using the terminology of [MLS84]) where from Γ ⊢ T : U , we cannot directly
consider terms M such that Γ ⊢M : T , but we rather have a new constructor ElemT so
that we can have Γ ⊢ M : ElemT . We can see ElemT as an explicit coercion, which is
left implicit when working with Russell-style universes.

Tarski-style universes are well-suited when working on categorical models of dependent
type theory, since it makes a distinction between the term T of type U , which is interpreted
as a morphism of the category, and the type ElemT which is interpreted as an object of
the category. However, in the following we are interested only in the syntactic approach,
so that Russell-style universes are convenient and more simple to work with.

The hierarchy of universes is cumulative, as shown by the rule Univ-Cumul which
states that a term M of type Ui can be seen as of type Uj for j > i.

There are three typing rules for the dependent product:

— Π-Univ, which states in which universe Πx : T.U lives.
— Π-Intro, which is the usual (dependent) rule for typing λ-abstraction. It is used

to introduce elements of type Πx : T.U .
— Π-Elim, which is the usual rule for typing applications. It is used to eliminate

elements of type Πx : T.U .
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This schemata with three kind of typing rules will be used when introducing new type
constructors to the type system.

As explained in the introduction, taking the Curry-Howard glasses, Πx : T.U can be
seen as the proposition ∀x : T.U(x). When U does not contains the variable x, the type
Πx : T.U corresponds to the usual functional type T → U .

Suppose that we are able to define the type List(n) of list of length n, which can
be done using inductive types (or W-types) as present in Coq (Section 3.1.8). Then,
List(1 + 2) and List(3) would not be equal. To solve this problem, we introduce a notion
of judgmental equality (also called conversion) between termsM,N sharing the same type
T , written Γ ⊢M ≡ N : T . Using it, we can state that if two types T, U are judgmentally
equal and M is of type T , then M can be considered as of type U :

Conv
Γ ⊢M : T : Γ ⊢ T ≡ U : U

Γ ⊢M : U

The judgmental equality identifies two β-equivalent terms, as stated with the following
rule:

Π-Conv
Γ, x : T ⊢M : U : Γ ⊢ N : U

Γ ⊢ App(x:T )U(λx.M,N) ≡M {N/x} : U {N/x}

where M {N/x} represent the capture-free substitution of x by N in M . Every new
construction introduced in our language comes with a new rule for judgmental equality
representing the computational content of the construction.

The judgmental equality is an equivalence relation, but we omit the typing rules which
enforce it (cf. [Hof97, Uni13]). It is also a congruence, meaning that from Γ, x : T ⊢M ≡
M ′ : U and Γ ⊢ T ≡ T ′ : U we get that λx : T.M ≡ λx : T ′.M ′ : U . Once again, we
omit these rules, which can also be found in [Hof97, Uni13]. Notice that each time we
add a new construction in the type system, we need to add a rule enforcing that ≡ stays
a congruence for this new construction. We will come back to this conversion rules in
section 3.1.7, since it allows different proofs of the same typing judgment.

Notice that we work here with a typed judgmental equality. An other possible presen-
tation is to used an untyped conversion T ≡ U with a rule

Γ ⊢M : T

Γ ⊢M : U
T ≡ U

where T ≡ U can be seen as a judgment at a meta-level. In practice, the two presentation
are essentially equivalent, as proven by Siles and Herbelin in [SH12].

One of the crucial property of MLTTU is the decidability of the typing checking.

Theorem 1 ([ML73, Hof95a]): It is decidable in MLTTU whether a judgment Γ ⊢M :
T is derivable.
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Id-Univ
Γ ⊢ T : Ui Γ ⊢M,N : T

Γ ⊢M =T N : Ui

Id-Intro
Γ ⊢ T : Ui Γ ⊢M : T

Γ ⊢ reflM : M =T M

Id-Elim

Γ, x, y : T, z : x =T y ⊢ V : Ui

Γ, w : T ⊢M : V {w/x} {w/y} {reflw/z} Γ ⊢ N1, N2 : T Γ ⊢ p : N1 =T N2

Γ ⊢ ind=((x,y:T,z:x=T y)V, (w:T )M,N1, N2, p) : V {N1/x} {N2/y} {p/z}

Id-Conv
Γ, x, y : T, z : x =T y ⊢ V : Ui Γ, w : T ⊢M : V {w/x} {w/y} {reflw/z} Γ ⊢ N : T

Γ ⊢ ind=((x,y:T,z:x=T y)V, (w:T )M,N,N, reflM) ≡M {N/z} : V {M/x} {M/y} {reflM/z}

Figure 3.2: MLTTU Type System: Identity Types

3.1.2 Identity Type

We now present the Identity Type, as introduced by Per Martin-Löf [ML73]. For every
pair of terms M1,M2 of type T , we introduce a new type M1 =T M2 whose terms are
“proofs” that M1 is equal to M2. When M1 =T M2 is inhabited, we say that they are
propositionally equal, as opposed to judgmentally equal.

This notion of propositional equality has been widely studied but it has gain recent
tractions through the advent of Homotopy Type Theory [Uni13]. In that setting, the
identity type has been shown to satisfy all the law of a groupoid (actually a weak ∞-
groupoid) [HS98, Lum09, GvdB11]. This new insight will be used in Chapter 4 in which
we need a careful management of equality.

The typing rules for the Identity Type are given in Figure 3.2. The introduction rule
Id-Intro says that two terms that are judgmentally equal are propositionally equal. The
elimination rule Id-Elim can be seen as a generalization of Leibniz’s principle which states
the indiscernability of identicals. Notice that V has x, y, z and T has w as free variables.
So ind=((x,y:T,z:x=T y)V, (w:T )M,N1, N2, p) has to bound x, y and z in V and w in M . This
is represented respectively by the notation (x,y:T,z:x=T y)V and (w:T )M .

The rule Id-Conv just state that we can reduce ind=((x,y:T,z:x=T y)V, (w:T )M,N1, N2, p)
when N1 and N2 are convertible (i.e. judgmentally equal) and p, their proof of equality,
is in fact reflM .

Notice that for closed terms M1,M2, propositional and judgment equality coincide.
We can impose that they coincide on any pair of terms with the following reflection rule

Ext
Γ ⊢ N : M1 =T M2

Γ ⊢M1 ≡M2 : T

Such a theory is called extensional [MLS84], as opposed to intentional. The problem with



52 CHAPTER 3. PRELIMINARIES

this rule is that checking the correctness of a judgment Γ ⊢M : T , i.e. the type-checking,
becomes undecidable. This is why, in the following, we only consider the intentional
version of MLTTU , i.e. without the reflection rule.

We now introduce some basic constructions on Identity types that are used in Chapter
4. First, as mentioned above, the Identity Type has the structure of an ∞-groupoid and
as such, their exists an inverse for p−1 of type N =T M for every equality proof p of type
M =T N , defined as ind=((x,y:T )y =T x, (w:T )reflw, N1, N2, p). Similarly, propositional
equalities can be composed, and satisfies various laws. We refer the reader to [Uni13] for
details.

Taking V : T → Ui a type family over T , we can build a function transportV
T of type

Πu, v : T.(u =T v)→ V u→ V v as

λu, v : T.λp : (u =T v).ind=((x,y:T )(V x→ V y), (w:T )λx : (V w).x, u, v, p)

This is useful to rewrite in V an element M into an element N as soon as we have a
element of M =T N .

An other interesting construction is apf which take a function f : T → U , two elements
u, v of T and an element of u =T v and return an element of fu =U fv. It is defined as

λu, v : T.λp : (u =T v).ind=((x,y:T ).(fx =U fy), (w:T ).reflfw, u, v, p)

3.1.3 Proof Irrelevance

Type Theory is used to formalize mathematics, by formalizing objects of a theory and
properties between those objects. Following the Curry-Howard correspondence, elements
which inhabit properties on objects represent proofs. However, in mathematics, the proof
of a property does not depend in general on the proof of others properties, but just on the
fact that they are true, i.e. inhabited. This idea is called proof-irrelevance. Thus, when
we have Γ ⊢ M : P where P represents a property (for example that the set of prime
numbers is infinite), the only important fact is that P seen as a type is inhabited. This
means that if we have an other term N such that Γ ⊢ N : P , we would like to get that
M and N are propositionally equal. To do so, we define the predicate isPropU as

λP : U .Πx, y : P. x =P y

so that when Γ ⊢ P : U , we have isPropU(P ) which represents exactly this idea. The
types P which satisfies isPropU(P ) are called mere propositions.

Using this predicate, we can define the notion of sets, as type whose equality on
elements is a proposition, i.e. which satisfies the so-called Uniqueness of Identity Proofs
(UIP). It is represented by the predicate isSetU defined as

λA : U .Πa, b : A. isPropU(a =A b).
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Σ-Univ
Γ ⊢ T : Ui Γ, x : T ⊢ U : Ui

Γ ⊢ Σx : T.U : Ui

Σ-Intro
Γ ⊢M : T Γ ⊢ N : U {M/x}

Γ ⊢ 〈M,N〉(x:T )U : Σx : T.U

Proj-1
Γ ⊢M : Σx : T.U

Γ ⊢ π1M : T
Proj-2

Γ ⊢M : Σx : T.U

Γ ⊢ π2M : U {π1M/x}

Conv-Proj1
Γ ⊢ 〈M,N〉(x:T )U : Σx : T.U

Γ ⊢ π1〈M,N〉(x:T )U ≡M : T

Γ ⊢ 〈M,N〉(x:T )U : Σx : T.U

Γ ⊢ π2〈M,N〉(x:T )U ≡ N : U {N/x}
Conv-Proj2

Figure 3.3: MLTTU Type System: Dependent Sums

Notice that isPropU(P ) and isSetU(A) are themselves mere propositions, as proven in
[Uni13].

Homotopy Type Theory [Uni13] is interested in studying higher-order generalization
of this idea, called n-Types. For example, we could consider the predicate is1-TypeU

defined as λA : U .Πa, b : A. isSetU(a =A b). The study of such higher types, and more
particularly the status of the axiom of univalence, goes beyond the scope of this thesis.

The goal of this work is to reason on Programming Language, for which the notion
of sets seems enough for the formalization. In particular, in Chapter 4, we work with
MLTTU + UIP and thus is incompatible with univalence and implies that all types can
be seen as sets. Nevertheless, we have tried to be as independent from UIP as possible,
so that the work could be generalized to MLTTU .

3.1.4 Dependent Sums and Subset Types

We now introduce the notion of product between two types, such that the second
component of the product can depend on the first component. Such a type is called a
Dependent Sum.

Taking a type T : Ui and a type family U : T → Ui, we can form a new type, called a
dependent sum and written Σx : T.U . The inhabitants of this types are pairs 〈M,N〉(x:T )U

with M : T and N : T {N/x}. Moreover, from a pair 〈M,N〉(x:T )U , we wish to retrieve M
and N . This is done using the usual projections π1, π2, such that if M : Σx : T.U then
π1M : T and π2M : U {π1M/x}. And since we want to compute with pairs, we need the
conversion rules π1〈M,N〉(x:T )U ≡T M and π2〈M,N〉(x:T )U ≡U{π1M/x} N . All of this is
summed up in Figure 3.1.4.

When the type family U : T → Ui is constant, i.e. it does not depend on T , the
dependent sum Σx : T.U correspond to the usual Cartesian product, and is written
T × U . Then, taking M : T × U we have π2M : U since there is no more dependency of



54 CHAPTER 3. PRELIMINARIES

U over T .
The projections π1 and π2 provide a too weak elimination form because M is not

convertible to 〈π1M,π2M〉(x:T )U in general. So the general elimination of a dependent
sum can not be deduced from π1 and π2. That is, we need to introduce a stronger rule
Elim-Σ for elimination of dependent sums:

Γ, z : Σx : T.U ⊢ V : U Γ, x : T ; y : U ⊢ N : V
{
〈x, y〉(x:T )U/z

}
Γ ⊢M : Σx : T.U

Γ ⊢ indΣ((z:Σx:T.U)V, (x:T,y:U)N,M) : V {M/z}

Notice that N has x and y as free variables, which do not appear in Γ, so we need to
bound them using the special notation (x:T,y:U). This means that indΣ actually binds z in
V and x, y in M . This rule is similar to the usual elimination of existential quantification
in Sequent Calculus. This is not a surprise since under the Curry-Howard correspondence,
Σx : T.P is seen as the usual quantification ∃x : T.P (x).

The conversion rule of indΣ is given by the following rule Conv-indΣ :

Γ, z : Σx : T.U ⊢ V : U

Γ, x : T ; y : U ⊢ N : V
{
〈x, y〉(x:T )U/z

}
Γ ⊢M1 : T Γ ⊢M2 : U {M1/x}

Γ ⊢ indΣ((z:Σx:T.U)V, (x:T,y:U)N, 〈M1,M2〉(x:T )U) ≡ N {M1/x} {M2/y} : V
{
〈M1,M2〉(x:T )U/z

}

The two projections can in fact be defined using indΣ as

π1 = indΣ((z:Σx:T.U)T, (x:T,y:U)x,M)

π2 = indΣ((z:Σx:T.U)U, (x:T,y:U)y,M)

We easily check that the rules Conv-Proj1 and Conv-Proj1 are then just special
instances of Conv-indΣ.

Taking M : T , it can exist different N : U {M/x} such that 〈M,N〉(x:T )U : Σx : T.U .
However, when U is a family of mere proposition, there is unicity of such N . So taking
Γ, x : T ⊢ P :→ U a family of types such that Γ, x : T ⊢ isPropU(P ) (i.e. for all x : T , P
is a mere proposition), the dependent sum Σx : T.P is called a subset type, and is written
{x : T | P}. By an abuse of notation, we write Γ ⊢ M : {x : T | P} when there exist N
such that Γ ⊢ 〈M,N〉(x:T )U : Σx : T.P . We call P a proof obligation of M , and we refer
to N as M.P . We also write Σx : T.P,Q for Σx : T.P ∧Q.

Using subset types, we can define types PropUi
and SetUi

as {P : Ui | isPropUi
P} and

{X : Ui | isSetUi
X}, since isProp and isSet are mere propositions.

3.1.5 Empty and Unit Types

We now introduce two new types:
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0-Univ
wf(Γ)

Γ ⊢ 0 : Ui

0-Elim
Γ, x : 0 ⊢ V : Ui Γ ⊢ N : 0

Γ ⊢ ind0((x:1)V,N) : V {N/x}

1-Univ
wf(Γ)

Γ ⊢ 1 : Ui

1-Intro
wf(Γ)

Γ ⊢ ⋆ : 1

1-Elim
Γ, x : 1 ⊢ V : Ui Γ ⊢M : V {⋆/x} Γ ⊢ N : 1

Γ ⊢ ind1((x:1)V,M,N) : V {N/x}

1-Conv
Γ, x : 1 ⊢ V : Ui Γ ⊢M : V {⋆/x}

Γ ⊢ ind1((x:1)V,M, ⋆) ≡M : V {⋆/x}

Figure 3.4: MLTTU Type System: Empty and Unit Types

— 0, a type inhabited by no terms, which correspond to the empty set,
— 1, a type inhabited by a unique term ⋆,

with their respective elimination terms ind0 and ind1. Their typing rules are given in
Figure 3.4.

Seen as propositions, they correspond respectively to True and False. A proof of the
non-existence of an inhabitant of 0 corresponds thus to the consistency of our system.
Indeed, for any type T : Ui, we can define the following term

λx : 0.ind0(T, x)

which is of type 0→ T . So if 0 is inhabited, then any type is!

3.1.6 Coproduct and Natural Number Type

We are still missing some important basic objects in our theory, like disjoint union
and natural numbers. We now introduce new types and type constructors to build them.

First, we construct coproduct types, which are a way to build a disjoint union of two
types. Its typing rules are defined in Figure 3.5. Taking two terms Ml : T1 → U1 and
Mr : T2 → U2, we define lift+

(T1+T2,U1+U2)(M1,M2) of type T1+T2 → U1+U2 as λz :

T1+T2.ind+(U1+U2, (x:T )(Mlx), (y:U)(Mry), z).
Using coproducts, we can define the type of Booleans, written Bool, simply as 1+1.

Then, defining true as inl(⋆) and false as inr(⋆), we can use the non-dependent version
of ind+ to perform case analysis (Figure 3.6).

Finally, we define the type Nat of natural numbers. It is inhabited by a term 0, and
a successor function S take a natural number as argument to build a new one. Thus the
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+-Univ
Γ ⊢ T : Ui Γ ⊢ U : Ui

Γ ⊢ T+U : Ui

+-IntroL
Γ ⊢ T : Ui Γ ⊢ U : Ui Γ ⊢M : T

Γ ⊢ inl(M) : T+U

+-IntroR
Γ ⊢ T : Ui Γ ⊢ U : Ui Γ ⊢M : U

Γ ⊢ inr(M) : T+U

+-Elim

Γ, z : T+U ⊢ V : Ui

Γ, x : T ⊢Ml : V {inl(x)/z} Γ, y : U ⊢Mr : V {inr(y)/z} Γ ⊢ N : T+U

Γ ⊢ ind+((z:T +U)V, (x:T )Ml, (y:U)Mr, N) : V {N/z}

+-ConvL

Γ, z : T+U ⊢ V : Ui

Γ, x : T ⊢Ml : V {inl(x)/z} Γ, y : U ⊢Mr : V {inr(y)/z} Γ ⊢ N : T

Γ ⊢ ind+((z:T +U)V, (x:T )Ml, (y:U)Mr, inl(N)) ≡Ml {N/x} : V {inl(N)/z}

+-ConvR

Γ, z : T+U ⊢ V : Ui

Γ, x : T ⊢Ml : V {inl(x)/z} Γ, y : U ⊢Mr : V {inr(y)/z} Γ ⊢ N : U

Γ ⊢ ind+((z:T +U)V, (x:T )Ml, (y:U)Mr, inr(N)) ≡Mr {N/y} : V {inr(N)/z}

Figure 3.5: MLTTU Type System: Coproducts

Bool-ConvL
Γ ⊢ V : Ui Γ ⊢M1 : V Γ ⊢M2 : V

Γ ⊢ ind+(V,M1,M2, true) ≡M1 : V

Bool-ConvR
Γ ⊢ V : Ui Γ ⊢M1 : V Γ ⊢M2 : V

Γ ⊢ ind+(V,M1,M2, false) ≡M2 : V

Figure 3.6: MLTTU Type System: Booleans
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Nat-Univ
wf(Γ)

Γ ⊢ Nat : Ui

Nat-Intro0
wf(Γ)

Γ ⊢ 0 : Nat

Nat-IntroS
Γ ⊢M : Nat

Γ ⊢ S(M) : Nat

Nat-Elim

Γ, x : Nat ⊢ V : Ui

Γ ⊢M0 : V {0/x} Γ, x : Nat, y : V ⊢MS : V {S(x)/x} Γ ⊢ N : Nat

Γ ⊢ indNat((x:Nat)V,M0, (x:Nat,y:V )MS, N) : V {N/x}

Nat-Conv0
Γ, x : Nat ⊢ V : Ui Γ ⊢M0 : V {0/x} Γ, x : Nat, y : V ⊢MS : V {S(x)/x}

Γ ⊢ indNat((x:Nat)V,M0, (x:Nat,y:V )MS, 0) ≡M0 : V {0/z}

Nat-ConvS

Γ, x : Nat ⊢ V : Ui

Γ ⊢M0 : V {0/x} Γ, x : Nat, y : V ⊢MS : V {0/x} Γ ⊢ N : Nat

Γ ⊢ indNat((x:Nat)V,M0, (x:Nat,y:V )MS,S(N)) ≡MS {S(N)/x} {M ′/y} : V {S(N)/x}

with M ′ = indNat((x:Nat)V,M0, (x:Nat,y:V )MS, N)

Figure 3.7: MLTTU Type System: Natural Numbers

natural number 1 is defined as S(0), as it is usually done in Peano Arithmetic. The typing
rules are given in Figure 3.7.

Compare to the eliminator for coproducts, the one for Nat has one main difference,
namely the fact that MS has en extra free variable y of type V . This variable allows the
induction hypothesis to build the term which inhabit V .

Using indNat, we can define the addition function plus of type Nat → Nat → Nat

as

λn : Nat.λm : Nat.indNat((x:Nat)Nat, n, (x:Nat,y:Nat)S(y),m).

In practice, it is often easier to define new functions via pattern-matching rather than
using indNat. For example, the addition function plus can be defined as

λn : Nat.λm : Nat.match n with

| 0 => m
| Sn′ => S(plus n′ m)
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Defining such recursive terms with pattern-matching instead of the eliminator on Nat is
not always possible. Here, it is possible because plus is recursively called on n′ which is
strictly smaller than n = Sn. However, when it is clear how to define such terms with
pattern-matching with indNat, we will allow us to use them.

3.1.7 Type Theory with Explicit Coercions

A proof of Γ ⊢ M : T is not unique in general, because the conversion rule can be
applied silently at various places. This is usually not problematic but in the forcing
translation defined in Chapter 4, we need to make explicit the conversion rule. This rises
two issues: (i) the translation may depend on the actual choice of the application of the
conversion rule, (ii) the existence of a typing judgment with explicit is not guarantee.

The problem of making the conversion explicit already has already been considered
by Curien et al. when defining a categorical interpretation of Martin-Löf Type Theory
[Cur93, CGH14]. It has also been studied by Geuvers et al. in [GW08, vDGW13], for
Martin-Löf Logical Framework and more generally for any Pure Type System.

They both propose to introduce a new typing judgment Γ ⊢e M : T , which is defined
in the same way than Γ ⊢ M : T but for the rule Conv, which uses an explicit coercion
cT,U(M):

Conv
Γ ⊢e M : T : Γ ⊢ T ≡ U : U

Γ ⊢e cT,U(M) : U

The introduction of this explicit coercion can be seen as a way to transform an extentional
theory to an intentional one, as presented in [Hof95a, Our05].

In [Cur93, CGH14], this explicit coercion is handled by adding new judgmental equal-
ities in the system. To be even more explicit, those new equalities should also appear
explicitly in a term. So a complete language for describing coercions should be developed,
as done for instance in a simpler setting in [CG94]. However, they have refrained to do
so, invoking “a heavy notational apparatus”.

In [GW08], the explicit coercion is handled using an heterogeneous notion of equality
(a.k.a. JMEq, as introduced by Conor McBride [McB00]). Using such an heterogeneous
equality only makes sense in presence of UIP.

In both work, it is possible to define a function | | which transforms a term of MLTTe
U

to a term of MLTTU by simply removing all the explicit conversion coercions, so that
cT,U(M) is transformed into M . This function is extended straightforwardly to contexts.
Their system satisfy the two following theorems.

Theorem 2: Suppose Γ ⊢e M : T , then |Γ| ⊢ |M | : |T |.

Theorem 3: Suppose Γ ⊢ M : T , then there exists Γe,Me, Te a context and two terms
of MLTTe

U such that
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— |Γe| = Γ, |Me| = M and |Te| = T ,
— Γe ⊢e Me : Te.

Unfortunately, we can not reuse the work of Curien et al. out of the box because
the type theory we consider is intentional and without explicit substitutions. However,
a formal study of this system goes beyond the scope of this thesis and we assume that
an operation | | satisfying Theorems 2 and 3 also exists for MLTTe

U . That is, we leave
the expression of judgmental equality on cT,U(M) and the proofs of the corresponding
theorems as future work.

Nevertheless, we will use in Chapter 4 the fact that those equalities correspond to
equality satisfies by transport

λT,T
U because cT,U(M) is a rewriting using the judgemental

equality on types in the same transport
λT,T
U is a rewriting using the propositional equality.

3.1.8 The Type System of Coq

A variant of the type system we have presented have been implemented in the proof
assistant Coq. It is based on the Calculus of Inductive Constructions (CIC), which differs
in some points to MLTTU . We briefly review the differences because Coq is the proof
assistant in which the forcing translation of Chapter 4 has been implemented.

First, CIC has a special universe, Prop, to represent propositions, rather than being
define internally in the theory using a predicate isProp as we have done in Section 3.1.3.
This universe is impredicative in the sense that the dependent product ΠP : Prop.Q is of
type Prop, when Q is of type Prop. Prop can in fact be identified with PropU as defined in
3.1.4, and impredicativity can be recovered from a propositional resizing axiom [Uni13],
which states that there exists an equivalence between PropUi+1

and PropUi
. In Coq,

propositions do not automatically satisfies proof-irrelevance, but we can suppose it using
an axiom. The other universe Ui are noted Typei, but for U0, which is noted Set.

CIC has inductive types as built-in features, which are used to define Dependent Sums,
Coproducts, Empty and Unit Type, Natural numbers and more importantly, the Identity
Type. The Identity Type is usually defined in Coq as going into the universe Prop, i.e.
taking T : Type andM,N : T we have T =N M : Prop. This is coherent with the fact that
T =N M is indeed seen as a proposition, however, when working with a proof-irrelevant
universe Prop, this imposes Uniqueness of Identity Proof, so that every type is a set.
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3.2 Call-By-Value Languages with References

We now introduce the programming languages which are the objects of study of this
thesis. They are fragments of ML, namely typed functional languages with a call-by-value
reduction and nominal references.

In its unrestricted form, the language that we consider has higher-order references i.e.
it can store functions into references. We call this language RefML.

3.2.1 Syntax and Operational Semantics of RefML

The grammar of types of RefML is

τ, σ
def
= Unit | Bool | Int | ref τ | τ → σ.

We write Types for the set of types generated by this grammar. A type is said to be
ground (or non-functional) if is not equal to τ → σ. So ref (τ → σ) is among others
ground.
The syntax of values, terms and applicative contexts of RefML is given by

v
def
= () | true | false | n̂ | x | l | λx : τ.M | Ωτ (where n ∈ Z, l ∈ Loc)

M,N
def
= v | MN | M +N | if M1 then M2 else M3 | M == N |

ref M | !M | M := N

C
def
= • | λx : τ.C | CM | MC | C +M | M + C | if C then M else M ′ |

ref C | !C | C := M | M := C | C == M | M == C

K
def
= • | KM | vK | K +M | v +K | if K then M else M ′ | ref K |

!K | K := M | v := K | K == M | v == K

where v denotes values, M denotes terms, C denotes contexts and K denotes applicative
contexts. Applicative contexts are particular kinds of contexts, the ones which reduce
directly terms that fill their hole •. We use special terms Ωτ for each type τ that always
diverge.

As usual, let x = N in M is defined as (λx.M)N and M ;N is defined as (λx.M)N
with x fresh in M .

Locations live in sets Locτ where τ is the type of values they are storing. We define
Loc as ∪τ Locτ and Locφ as ∪σ,τ Locσ→τ . There is no way to perform any arithmetic on
locations. That is, taking l ∈ Loc, l+ 1 is not a valid term (it is not well-typed as we will
see). However, it is possible to compare locations, i.e. taking l1, l2 ∈ Locτ , l1 == l2 is a
valid term.

Heaps h are defined as finite partial maps Loc ⇀ Val respecting types, i.e. h(l) is
a closed value of type τ when l ∈ Locτ . The empty heap is written ε. Adding a new
element to a partial map h is written h · [l →֒ v], and is defined only if l /∈ dom(h). We
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(K[(λx.M)v], h) 7→ (K[M {v/x}], h)

(K[n̂+ m̂], h) 7→ (K[n̂+m], h)
(K[n̂ == m̂], h) 7→ (K[true], h) (n = m)
(K[n̂ == m̂], h) 7→ (K[false], h) (n 6= m)
(K[Ωτ ], h) 7→ (K[Ωτ ], h)
(K[l == l], h) 7→ (K[true], h) (l = l′)
(K[l == l′], h) 7→ (K[false], h) (l 6= l′)
(K[!l], h) 7→ (K[v], h) (h(l) = v)
(K[ref v], h) 7→ (K[l], h · [l →֒ v]) (l /∈ dom(()h))
(K[l := v], h) 7→ (K[()], h[l →֒ v]) (l ∈ dom(h))

(K[if true then M1 else M2], h) 7→ (K[M1], h)
(K[if false then M1 else M2], h) 7→ (K[M2], h)

Figure 3.8: Operational Semantics of RefML

also define h[l →֒ v], for l ∈ dom(h), as the partial function h′ which satisfies h′(l′) = h(l′)
when l′ 6= l, and h′(l) = v. The restriction of a heap h to a set of locations L is written
h|L. A heap is said to be closed when, for all l ∈ dom(h), if h(l) is itself a location l′

then l′ ∈ dom(h). Taking a set L of locations and h a heap, we define the image of L

by h, written h∗(L) as h∗(L)
def
=

⋃

j≤0

hj(L) and h0(L) = L, hj+1(L) = h(hj(L)) ∩ Loc.

Using it, we define Cl(L), the set of minimal closed heaps whose domain contains L, as

Cl(L)
def
= {h | dom(h) = h∗(L),∀l ∈ dom(h), νL(h(l)) ⊆ dom(h)}.

The small step operational semantics of RefML, written (M,h) 7→ (M ′, h′), is defined
in Figure 3.8. We write M {v/x} to represent the (capture-free) substitution of x by v in
M.

This reduction is deterministic, so we suppose that the reduction (K[ref v], h) 7→
(K[l], h · [l →֒ v]) chooses a location l /∈ dom(h). We also consider the non-deterministic
reduction 7→nd, defined in the same way but for the rule of allocation, which is such that
(K[ref v], h) 7→nd (K[l], h · [l →֒ v]) for any l /∈ dom(h).

For example, the term ref 1 == ref 1 reduces to false. Note that, when working with
references which can only store integers (or booleans), the equality on locations can be
encoded using the following term (as shown for example in [PS98]):

λx : ref Int.λy : ref Int.let v =!x in ((x :=!y + 1); let b = (!x ==!y) in (x := v; b))

The idea is simply to test if x and y are aliased, by modifying x and checking if y has also
been modified. However, it seems impossible to encode the equality on locations of type
ref Unit, as we cannot use the modification x :=!y + 1 or any other modifications (since
() is the only inhabitant of Unit) to test if x, y are indeed aliased.

With higher-order references, usual fixpoints fix f(x).M of type τ → σ can be
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defined using the so-called Landin’s Knot :

let y = ref (λx.Ωτ→σ) in y := (λx.let f =!y in M); !y

where Ωτ→σ is a term of type τ → σ which always diverges (like undefined in Haskell or
Obj.Magic in OCaml).

One has (fix f(x).M, h)→ (λx.let f =!ly in M, h · [ly →֒ λx.let f =!y in M]). So tak-
ing a value of type τ , we get the following reduction

((fixf(x).M)v, h)→∗ (M {v/x} {ly/f}, h · [ly →֒ λx.let f =!y in M])

As we see, the term M accesses to the recursive call f via the heap.
In the following, we write E for terms which are either values or of the form K[f v]

with f a free variable and v a value. These last terms are called callbacks. One cannot
reduce these two kinds of terms.

3.2.2 Typing Rules

We now introduce the typing judgments of RefML. To deal with creation of locations,
we use a special context Σ which assign a type to the values a location can store. This
is because locations, in contrast to variables, can have only one fixed type. So typing
judgments are of the form Σ; Γ ⊢M : τ , where Γ is a variable context and Σ = (l1, . . . , ln)
is a location context. Notice that we do not need to indicate the types of locations of l in
Σ, since the membership l ∈ Locτ already gives its type. The typing rules of RefML are
given in Figure 3.9. When Σ is empty, we simply write Γ ⊢M : τ

We write FV(M) for the set of free variables appearing in M . In the following, we
make a clear distinction between variables of ground types and variables of functional
types. Indeed, we deal abstractly with variables of functional types in most of this thesis,
beginning with Chapter 5. So we are particularly interested in terms for which all its free
variables are of functional types. Such terms are called ground-closed. Abstract reasoning
on variables of ground types will be introduced in Chapter 7 by using symbolic execution.

In the following, we write Σ; Γg,Γf ⊢ M : τ to distinguish between typing contexts
Γg,Γf containing respectively ground type variables and functional type variables.

The relational environment associated to Γ, i.e. the set of (x, x, τ) such that (x, τ) ∈ Γ,
is written Γ̃. The relational environment Σ̃ is defined in the same way. From a typing
context Γ and a function γ : Var ⇀ Val, we say that γ is a substitution on Γ—written
γ : Γ—if γ is defined exactly on all the variables occurring in Γ, and γ(x) is a value of
type τ whenever (x, τ) ∈ Γ. Then, the action of the substitution γ on a term M , defined

as M
−−−−−−−→
{γ(xi)/xi} with xi ranging over Γ, is written γ(M).

3.2.3 Contextual Equivalence

We now define contextual (or observational) equivalence.
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Σ; Γ ⊢ Ωτ : τ Σ; Γ ⊢ () : Unit Σ; Γ ⊢ true : Bool Σ; Γ ⊢ false : Bool

Σ; Γ ⊢M1 : Bool Σ; Γ ⊢M2 : τ Σ; Γ ⊢M2 : τ

Σ; Γ ⊢ if M1 then M2 else M3 : τ

Σ; Γ ⊢ n̂ : Int

Σ; Γ ⊢M1 : Int Σ; Γ ⊢M2 : Int

Σ; Γ ⊢M1 == M2 : Bool

Σ; Γ ⊢M1 : Int Σ; Γ ⊢M2 : Int

Σ; Γ ⊢M1 +M2 : Int

(x : τ) ∈ Γ

Σ; Γ ⊢ x : τ

Σ; Γ, x : τ ⊢M : σ

Σ; Γ ⊢ λx.M : τ → σ

Σ; Γ ⊢M : τ → σ Σ; Γ ⊢ N : τ

Σ; Γ ⊢MN : σ

l ∈ Σ ∩ Locτ

Σ; Γ ⊢ l : ref τ

Σ; Γ ⊢M1 : ref τ Σ; Γ ⊢M2 : ref τ

Σ; Γ ⊢M1 == M2 : Bool

Σ; Γ ⊢M : ref τ

Σ; Γ ⊢!M : τ

Σ; Γ ⊢M : ref τ Σ; Γ ⊢ N : τ

Σ; Γ ⊢M := N : Unit

Figure 3.9: Typing Rules of RefML
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Definition 1. Two terms M1,M2 of the same type τ in a context Σ,Γ, are said to be
contextually equivalent, written Σ; Γ ⊢M1 ≃ctx M2 : τ , when

∀h ∈ Cl(Σ). ∀C s.t. Σ; · ⊢ C[Mi] : Unit.
(
(C[M1], h) ⇓⇔ (C[M2], h) ⇓).

where we write (C[M1], h) ⇓ for the fact that this term reduces to ().

Using closed heaps containing Σ enforce the reduction of (C[Mi], h) to not being stuck,
i.e. either to always reduce to () or to diverge. This is equivalent to the usual definition,
which quantifies over extended location context Σ′ ⊆ Σ and (closed) heaps h′ : Σ. We
prefer here to with Cl(Σ) since it allows us to remove the quantification over Σ′ ⊆ Σ.

When studying contextual equivalence of two terms, the notion of disclosure is central.
Let consider the term

M1 = let x1 = ref0 in let x2 = ref0 in λf : (ref Int→ Unit).f x1; x1 := 1)

then we say that M1 discloses the location associated to x1 to the context. Notice that
M1 is not equivalent to

M2 = let x1 = ref0 in let x2 = ref0 in λf : (ref Int→ Unit).f x2; x1 := 1)

even if the two terms reduces to Unit if the callback f does not diverge. This is because
M2 discloses the location associated to x2, and that the context can check if the location
disclosed via f stores 0 or 1. Such a context which discriminates the two terms is

let g = • in g (λy : ref Int.g (λ .if !y == 0 then ΩUnit else Unit))

One can also consider indirect disclosures, when terms provide functions to callbacks
which allows the context to modify the heap. For example, the following term

let x = ref0 in λf : ((Int→ Unit)→ Unit)ref Int→ Unit).f (λn : Int.x := n)

which disclose to the context the setter λn : Int.x := n. Using it, the context can modify
as it wants the location linked to x even if it has not been directly disclosed.

3.2.4 GroundML

In this thesis, we also consider GroundML, a restriction of RefML with only full ground
references, i.e. references which can store integers or other full ground references. It is
formally defined as the set of terms of RefML whose type do not contain any subtypes
ref (τ → σ), and which do not contain any subterms of the form ref M withM functional.
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In GroundML, we cannot define diverging terms anymore via higher-order references, so
we rely on the terms Ωτ for each type τ that always diverge. It is particularly important
to have such diverging terms when studying contextual equivalence. Indeed, without
it, one cannot define the contextual equivalence of M1,M2 as equi-termination of C[M1]
and C[M2] for all (well-type) contexts C, since contexts cannot diverge anymore. We
sometimes need to consider divergent-free terms of GroundML, i.e. terms where no Ωτ

appear, but their contextual equivalence is still defined with possibly diverging contexts.
The contextual equivalence for GroundML is coarser than the one for RefML. Indeed,

contexts of GroundML have less power than the one of GroundML. This is due to the
fact that contexts cannot store higher-order values, like setter or getter, disclosed by the
term. So they can only used such disclosed functions in their scope. This intuition is
formally expressed by the so-called “differed divergence” example, taken from [DNB12],
which exhibits two terms which are equivalent in GroundML, but not in RefML:





let y = ref false in λf.f(λ .y := true); if !y then ΩUnit else ()

λf.f(λ . ΩUnit).



66 CHAPTER 3. PRELIMINARIES

3.3 Nominal Reasoning

When formalizing proofs on λ-calculus, one always reasons up-to α-equivalence. That
is, two terms which differ only w.r.t. the name of their bound variables are considered to be
equivalent. The same is true for name of locations, since no pointer-arithmetic is allowed
on them. To formalize the logic behind this situation, Nominal Logic has been introduced
by A. Pitts [Pit03]. The idea is to see objects which are defined using variables or locations
only up-to permutation. This is formalized using the notion of Fraenkel-Mostowski sets,
called nominal sets here, which are sets equipped with a permutation actions over a set
of names (which will be the set of variables or locations here).

3.3.1 Nominal Sets

Let fix a set of names A and consider the group of finite permutation Perm(A) of A,
i.e. the bijections π of A such that the set {a ∈ A | π(a) 6= a} is finite. We write idA for
the unit of this group, i.e. the identity permutation.

Definition 2. A (A−)nominal set is a set X equipped with a group action of Perm(A),
that is an application ∗ : X × Perm(A)→ X which satisfies

∀t ∈ X,∀π1, π2 ∈ Perm(A), π1 ∗ (π2 ∗ t) = (π1 ◦ π2) ∗ t and idA ∗ t = t.

We omit to indicate A when it is clear from the context. A subset S of A is said to
support an element t of a nominal set X when

∀π ∈ Perm(A).(∀a ∈ S.π(a) = a)⇒ π ∗ t = t.

The smallest subset of A which support t is called the support of t, written νA(t). Terms
of RefML can be seen as a nominal set over both Loc and Var. Then, the support of a
term is

— its set of locations if it is seen as nominal over Loc,
— its set of free variables if it is seen as nominal over Var.
Two elements t, u of a (A-) nominal set X are said to be nominally-equivalent , written

t ∼A u if there exists π ∈ Perm(A) such that t = π ∗ u holds. A subset Y of a nominal
set X is A-nominal closed if for all t ∈ Y and t′ ∼A t, t

′ ∈ Y .
The set of names we consider, like Loc or Var, are in fact decomposed with respect

to types. That is, we can write A as
⊎

τ Aτ . So, we restrict our attention to finite
permutations which conserve types. It means that taking π ∈ Perm(A) and a ∈ Aτ , we
impose that π(a) ∈ Aτ . We can easily check that type-preserving finite permutations still
form a group. Such type-preserving finite permutations can in fact be decomposed as
finite permutations over each Aτ , as done in the PhD thesis of Nikos Tzevelekos [Tze08].
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3.3.2 Spans

We sometimes need to be explicit in the permutation when working with two nominally
equivalent elements t, u of a nominal set X. However, when this is the case, it is more
convenient to work with (typed) spans rather than (typed) permutations because they
are easier to extend than permutations. Spans have indeed already been used by Stark to
reason on locations, when defining logical relations for the ν-calculus [Sta98].

Definition 3. A typed span S : A⇋ A is a collection of pairs of partial finite injections
Aτ ←֓ Sτ →֒ Aτ for each type τ .

Thus, a span is a particular kind of relation on names; it is a partial finite bijection
on A. As a set, one can see it in two ways:

— as a collection of sets Sτ ⊆ Aτ × Aτ s.t.
for all (a1, a2), (a

′
1, a

′
2) ∈ Sτ . ((a1 = a′

1)⇒ (a2 = a′
2)) and ((a2 = a′

2)⇒ (a1 = a′
1))

— or as a set S ⊆ A× A× Types s.t.
for all (a1, a2, τ), (a′

1, a
′
2, τ

′) ∈ Sτ . ((a1 = a′
1)⇒ ((a2 = a′

2) ∧ (τ = τ ′)) and
((a2 = a′

2)⇒ (a1 = a′
1) ∧ (τ = τ ′)).

We often naviguates between these two representations.
We write ε for the empty span (i.e. the empty set). The image of a span S by the left

(resp. right) injection is written S1 (resp. S2). Then, we write the extension of a span S
at type τ with (a1, a2) ∈ Aτ , as S · (a1, a2, τ) (the type τ could in fact be omitted in this
notation), when a1 /∈ S1,τ and a2 /∈ S2,τ . We say that S ′ extends S, written S ′ ⊒ S, when
S ′ is a span which includes S as a set.

A span S induces a finite permutation πS : A→ A, using the so-called “Homogeneity
Lemma”of [Pit03] (Lemma 1.14). Then, we define a restriction of the nominal equivalence
∼A with respect to a span S, written X ∼S Y , if there exists a permutation π extending
πS such that X = π ∗ Y .

Reciprocally; from a finite permutation πS : A→ A, one can define a span formed by
the (a, π(a), τ) for all τ and a ∈ A s.t. a 6= π(a).
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Forcing is a method originally designed by Cohen to prove the independence of the
Continuum Hypothesis from the axiomatic set theory ZFC [CD66]. The main idea is to
add new objects which can be approximated in the ground system, using what is called
forcing conditions. More precisely, a ground model M is extended to a new model M[G]
by adding a new generic element G to M. As M[G] is in general really complicated, P.
Cohen has proposed to control the true propositions in M[G] by translating them into
M. To do so, he has used forcing conditions, which have to be seen as approximations
of G. Such forcing conditions live in M while it is not the case for the generic element
G. Thus, from a formula ϕ of M[G], the idea is to build syntactically a formula p 
 ϕ̂—
pronounced “p forces ϕ̂”—that lives in M, and such that ϕ will be true when there is a
“correct” approximation p of G such that p 
 ϕ̂ in M. One key property of the set of
forcing conditions is that they are ordered. Intuitively, we have p ≤ q when p is a more
precise approximation of G than q, i.e. contains more information, so the relation 
 has
to be monotonic for this order.

During the past few years, forcing has received increasing attention as a way to ex-
tend the Curry-Howard correspondence to various classical reasoning. Indeed, forcing was
generalized by Krivine in his work on classical realizability [Kri09], where forcing condi-
tions where taken as λ-terms. He has then combined this approach with usual forcing
in [Kri11] to give a computational content of various weak form of the axiom of choice,
like the existence of an ultrafilter over N or of a well-order on R. Following this work, A.
Miquel [Miq11] has studied the proof transformation induced by the forcing, in the theory
of higher-order arithmetic seen as an extension of System Fω. That is, he has investigated
how a proof of a proposition P is transformed into a proof of p 
 P .

In a constructive setting, we have used forcing in collaboration with T. Coquand
[CJ10, CJ12], to give a computational content to a result of uniform continuity of definable
functionals in Martin-Löf Type Theory. In this work, we have extended MLTT with a
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typing judgment indexed by a forcing condition. To do so, we have developed a simple
forcing translation for MLTT, fitted only for the terms we wanted to add to our theory.
This leaves open the question of how to perform a complete translation for all the terms
of MLTT.

To adapt the “set-theoretic” ideas of forcing to a dependant type theory, we have use
its categorical restatement that Lawvere and Tierney [Tie72] have pursued using sheaves
topos. In this setting, intuitionistic forcing is defined using the notion presheaves in
category theory.

The starting point of this chapter is to connect these two observations:

“Intuitionistic forcing for type theory is an internalization of the presheaf construction in
type theory.”

The idea is to extend an initial type theory—called the ground system—with new princi-
ples, getting a new type theory—called the forcing layer. Terms and types of the forcing
layer can be translated to the ground system using the forcing translation. In this way,
we can develop a new generation of logics, that can be defined modularly using forcing
layers. The forcing translation relies on an internalization inside MLTTU of the presheaf
construction on a particular type P—representing forcing conditions. Then, it becomes
possible to exhibit new reasoning principles inside a forcing layer by using the structure
of the chosen forcing conditions. But, no matter what new logical principles have been
defined, their consistency can be deduced for free:

“The consistency of a logic defined in a forcing layer ensues from the consistency of the
ground logic.”

Indeed, we are able to extend a type theory with new reasoning principles and new objects,
without defining them as axioms. Besides consistency problems, avoiding the axiomatic
approach enables us to give a computational content to these new principles: programs
can be associated to them.

On a connected line of work on Kripke semantics, Appel, Melliès, Richards and Vouil-
lon [AMRV07] have proposed to understand step-indexing—a technique to handle general
recursion in programing language semantics—as (Kripke) forcing on the set of natural
numbers. Those natural numbers can be used to define (or force) a particular modality in
the logic, an idea already seen by Nakano in [Nak00], with an induction principle directly
lifted from natural numbers. More recently, Birkedal, Møgelberg, Schwinghammer, and
Støvring [BMSS11] have shown that this construction can be understood semantically as
a mean to work inside the topos of trees, which provide a generic way to define general
recursive types in a semantical model. Similarly, we use forcing on the set of natural
numbers to provide general recursive types in MLTTU , without relying on a positivity
condition. This construction makes it possible to define a universal type D for terms of
the pure λ-calculus that induces a shallow embedding of the pure λ-calculus into MLTTU .
The fact that we can use a conversion rule that is normalizing to describe the β-reduction
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of the pure λ-calculus should not appear as a contradiction. Unfolding of the recursive
type D is handled by a propositional equality and not by the conversion rule and so has
to be explicit in the term. As another example, we rephrase Cohen’s construction of a
model negating the continuum hypothesis in our framework, using the finite subsets of
P(P(Nat))×Nat as the set of forcing conditions.

Plan of the Chapter In Section 4.1, we explain the forcing translation in terms of the
presheaf construction. Then, we define it formally in Section 4.2, dealing with various
coherence problems caused by the conversion rule. In Section 4.3, we present a systematic
way to introduce new reasoning principles in a forcing layer. In Section 4.4, we illus-
trate this translation by choosing the natural numbers as the poset of forcing conditions,
providing a framework for guarded recursive types, which can be seen as a syntactic pre-
sentation of the topos of tree [BMSS11]. Then, in Section 4.5, we illustrate the forcing
translation with another poset of forcing conditions to force the negation of the continuum
hypothesis. Finally, we discuss related works and possible future works in Section 4.6.

4.1 Internalizing the Presheaf Construction in MLTT
e
U

In this section, we explain the intuitionistic forcing translation [−] of the forcing layer
for a poset (P ,4) of forcing conditions. The full definition is given in Section 4.2. This
translation can be seen as an internalization inside MLTTU of the presheaf construction
on P . We refer the reader to [MLM92] for the definition of the presheaf construction.

Actually, we do not interpret MLTTU , but rather the version with explicit coercions
MLTTe

U + UIP (Section 3.1.7). This is due to the fact that the forcing translation does
not preserve substitution on the nose but only up-to a propositional equality. The fact
that we use UIP is not crucial in our translation but it simplifies it a lot, for instance
enabling the use of subset types. A discussion on the points where UIP is used is given
in Section 4.2.6.

4.1.1 Forcing conditions

The forcing translation is defined on a poset P of forcing condition of type SetU

equipped with the preorder relation 4P .
More precisely, we first define a type PreOrderX as

{f : X → X → PropU | ReflBinRelX,f ,TransBinRelX,f}

where ReflBinRelX,f is defined as Πx : X.f x x and TransBinRelX,f is defined as
Πx, y, z : X.f x y ∧ f y z → f x z. So we can consider 〈P ,4P〉 of type ΣX :
Ui.PreOrderX . We refer to the proof of transitivity of 4P as (4P).TransBinRel. When
P is clear from the context, we write 4 for 4P .
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The structure of preorder enables us to define the poset Pp of forcing conditions that
are below p as

Pp = {q : P | q 4 p}

Because P is a poset, there is an injection ιp,q from Pq to Pp as soon as there is a proof
Mp,q : q 4 p. This injection is defined formally, when Pp and Pq are seen as depedent
sum, as

ιp,q = λr : Pq.〈π1 r, (4).TransBinRel p q r Mp,q (π2 r)〉.

This chain of preorders enables us to construct presheaves on P by approximation. For
the sake of simplicity, these injections are used implicitly in the rest of the chapter. They
can be made explicit but it complicates a lot the reading of the translation.

4.1.2 Presheaf approximations as dependent sums

In Category Theory, a presheaf P on P in Set is given by a family (Pp)p∈P of sets
together with restriction maps

Pq
θp,q
←−− Pp

for all q 4 p, satisfying the usual commutative diagrams ensuring the naturality of those
maps. In the special setting of a preorder, the naturality corresponds to the reflexivity
and transitivity of restriction maps.

This restriction maps can be formalized using a dependent sum and the naturality
conditions can be imposed using a subset type rejecting ill-formed restriction maps. Thus,
the type PSh(p,U) of a presheaf at level p on a universe U can be defined as

Σf : Pp → s.{θ : Πq : Pp.Πr : Pq.f q → f r | transθ(f, p), reflθ(f, p)}

where transθ(f, p) and reflθ(f, p) are defined as

reflθ(f, p)
def
= Πq : Pp.Πx : (fq).(θ q q x) =(T q) x

transθ(f, p)
def
= Πq : Pp.Πr : Pq.Πs : Pr.Πx : (fq).(θ r s)(θ q r x) =(fs) θ q s x

Given a (closed) type T : U , we introduce two notations to extract the support and
the restriction maps of the associated presheaf [T ]p:

JT Kp

def
= (π1[T ]p)p

θT
p→q

def
= (π2[T ]p)pq

4.1.3 Presheaf approximation of variables

As we internalize the presheaf construction directly in MLTTU , we have to translate
variables of the calculus, which is not the case for purely semantic definitions. The problem
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with variables is that they can be used for a presheaf approximation that is smaller than
the presheaf approximation for which they have been defined. For instance, this situation
typically amounts to derive the following judgment, for q 4 p,

[Γ], x : JT Kp ⊢ x : JT Kq

which differs from the usual Var rule. This means that the translation of a variable must
introduce the right restriction map to go from the presheaf approximation at level p to the
presheaf approximation at level q. For that purpose, we need to parametrize the transla-
tion of a term T with a forcing environment σ that associates the type and level of approx-
imation to every free variable occurring in T . More precisely, in what follow, σ denotes an
ordered list of triples (x1, T1, p1), . . . , (xn, Tn, pn) where xi is a variable of type Ti, whose
associate forcing condition is pi. We write σ1(x) (resp. σ2(x)) for the type (resp. forcing
condition) assigned to x by σ. Given a context Γ, we say that σ is a adequate environment
of Γ if it assigns the same variable to the same type, and all conditions appearing in σ
are either fresh, are equal to the previous one. The translation of Γ will then enforce that
the underlying set of forcing conditions is ordered. So taking Γ = (x1 : T1), . . . , (xn : Tn),
an adequate environment σ for Γ is defined as (x1, T1, p1), . . . , (xn, Tn, pn) such that pi is
fresh or pi = pi−1. This notion of forcing environment is formally defined in Section 4.2.1
Given a adequate environment σ, the translation of a variable is given by

[x]σp
def
= θ

σ,σ1(x)
σ2(x)→px

and the translation of rule Var becomes

[Γ]σ, x : JT Kσ
p ⊢ θ

σ,T
p→qx : JT Kσ

q

which is now derivable from the rulesVar andApp. Note that, inductively, the definitions
of the support and restriction maps of the presheaf approximation are also annotated with
the environment σ.

4.1.4 Presheaf approximation of dependent products

The category of presheaves is cartesian closed. This suggests that dependent products
can be translated as presheaf approximations. In category theory, the internal hom [−,−]
is described by

[T, U ]p ∼= HomPSh(y(p)× T, U)

where y denotes the Yoneda embedding. This means that [T, U ]p is itself a presheaf that
associates to any forcing condition q a morphism

fq : P(q, p)× Tq → Uq.

But in our case, P is a preorder so fq exists only when q 4 p. A dependent product
will thus be translated at level p as a family of dependent product indexed by forcing
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conditions that are below p. As it is the case for morphisms of presheaves, dependent
functions between presheaf approximations also have to commute with restriction maps
as given by the following categorical commutative diagram

JT Kσ
p

fp
//

θσ,T
p→q

��

JUKσ
p

θσ,U
p→q

��

JT Kσ
q fq

// JUKσ
q

(4.1)

To this end, the support of the presheaf approximation at level p is given by the following
subset type

JΠx : T.UKσ
p

def
= {f : Πq : Pp.Πx : JT Kσ

q .JUKσ·(x,T,q)
q | commσ

Π(T, U, p, f)}

where the first component is a family of dependent product indexed by a forcing condition
below p and where

commσ
Π(T, U, p, f)

def
= Πq : Pp.Πr : Pq.Πx : JT Kσ

q .(fr(θ
σ,T
q→rx)) = θσ·(x,T,q),U

q→r (fqx)

reflects the categorical commutative diagram (4.1).
The restriction maps are simply given by identity coercions

θσ,Πx:T.U
p→q

def
= λf : JΠx : T.UKσ

p .λr : Pq.fr

The translation of a function is given by

[λx : T.M ]σp
def
= λq : Pp.λx : JT Kσ

q .[M ]σ·(x,T,q)
q

The proof that [λx : T.M ]σp validates the commutation condition is deduced from the set
of equalities on restriction maps.

The translation of an application is more complicated. Because substitution does not
commute with the translation on the nose. That is, the following term

↓σ,p
x,N : JUKσ·(x,T,p)

p

{
[N ]σp/x

}
→ JU {N/x}Kσ

p

is not given by the identity function but by an explicit transport of a propositional equality.
Thus, the translation of an application is obtained by applying the translated argument
[N ]σp to the translated function [M ]σp taken at level p, and then applying ↓σ,p

x,N to get the
expected type:

[App(x:T )U(M,N)]σp
def
= ↓σ,p

x,N (App(x:JT Kσ
p )JUKσ

p
([M ]σp p, [N ]σp)).

Indeed, without ↓σ,p
x,N (which is defined in Section 4.2.2), the naive translation of the

application as App(x:JT Kσ
p )JUKσ

p
([M ]σp p, [N ]σp) would be of type JU {N/x}Kσ

p , which would
be problematic for the soundness of the forcing translation.

Note that the fact that we need an explicit rewriting in the definition of application
corresponds to the fact that, in MLTTe

U , the rule for application makes use of a coercion
in the type of the application, as shown in [CGH14]. Also this coercion can be considered
to be the identity in MLTTe

U , it is no longer the case in the forcing translation.
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4.1.5 Presheaf approximation of universes

MLTTU has a hierarchy of universes. This means that the Ui have to be them-
selves translated as presheaf approximation at level p. This is done by defining a term
PShC(p,Ui) that encodes the restriction map available on PSh(p,Ui).

[Ui]
σ
p

def
= (λq : Pp.PSh(q,Ui),PShC(p,Ui))

PShC(p,Ui)
def
= λq : Pp.λr : Pq.λf : PSh(q,Ui).

(λs : Pr.(π1f)s, λs : Pr.λt : Ps.λx : (π1f)s.(π2f)stx)

4.1.6 Presheaf approximation of dependent sums

The category of presheaves has products defined pointwise. This suggests that depen-
dent sums (whose categorical interpretations is a product) can be translated as presheaf
approximation pointwisely, and likely for the associated operators.

JΣx : T.UKσ
p

def
= Σx : JT Kσ

p .JUKσ·(x,T,p)
p

[〈M,N〉(x:T )U ]σp
def
= 〈[M ]σp , ↓

σ,p
x,M [N ]σp〉(x:JT Kσ

p )JUKσ
p

[π1M ]σp
def
= π1[M ]σp

[π2M ]σp
def
= ↑σ,p

x,π1M (π2[M ]σp)

Here, we need to use ↑σ,p
x,M , the inverse of ↓σ,p

x,M , of type JU {M/x}Kσ
p → JUKσ·(x,T,p)

p

{
[M ]σp/x

}

in the translation of 〈M,N〉(x:T )U to ensure that the translation of the second component
has the right type. This term is given by a transport of the inverse propositional equality
as the one used for ↓σ,p

x,M (again, all this is defined in Section 4.2.2). Note again that the
fact that we need an explicit rewriting corresponds to the fact in MLTTe

U , the rule for
dependent sums makes use of coercion in [CGH14].

To translate the strong elimination of dependent sum indΣ((z:Σx:T.U)V, (x:T,y:U)N,M),
we need to be careful about the bounded terms z in V and x, y inM . Thus, the translation
[indΣ((z:Σx:T.U)V, (x:T,y:U)N,M)]σp is defined as

↑σ,p
z,M

(
indΣ((z:JΣx:T.UKσ

p )[V ]σ·(z,Σx:T.U,p)
p , (b1) ↓σ2,p

z,〈x,y〉 [N ]σ
2

r , [M ]σp)
)

where σ1 = σ · (x, T, p), σ2 = σ1 · (y, U, p) and (b1) = (x:JT Kσ
p ,y:JUKσ1

p ).

4.2 The Forcing Translation

In this section, we present the formal definition of the forcing translation and prove
its soundness. But before that, let us see an example of the translation following the



4.2. THE FORCING TRANSLATION 77

presentation of the previous section. Let consider id the polymorphic identity function
λα : U .λx : α.x. Then taking p : P , we have

[id]εp = λq : Pp.λα : JUKε
q.λr : Pq.λx : JαK(α,U ,q)

q .[x](α,U ,q)·(x,α,r)
r

= λq : Pp.λα : JUKε
q.λr : Pq.λx : JαK(α,U ,q)

q .θα,(α,U ,q)·(x,α,r)
r→r x

= λq : Pp.λα : JUKε
q.λr : Pq.λx : ((π1(θ

U ,ε
p→qα))r).((π2(θ

U ,ε
q→rα))r r)x

Then, suppose we have a variable β of type JUKε
pβ
, the translation of id β is:

[id β]σp = [id]εp p [β]σp
= [id]εp p (θU ,σ

pβ→pβ)

= λr : Pp.λx : ((π1(θ
U ,ε
p→r(θ

U ,σ
pβ→pβ)))r).((π2(θ

U ,ε
p→r(θ

U ,σ
pβ→pβ)))r r)x

But β is convertible to λx : β.x, whose translation is :

[λx : β.x]σp = λr : Pp.λx : JβKσ
r .[x]σ·(x,β,r)

r

= λr : Pp.λx : ((π1[β]σr )r).θβ,σ
r→rx

= λr : Pp.λx : ((π1(θ
U ,ε
pβ→rβ)r).((π2[β]σr )r r)x

= λr : Pp.λx : ((π1(θ
U ,ε
pβ→rβ)r).((π2θ

U ,ε
pβ→rβ)r r)x

As we can see, the two are equal only up-to the transitivity of θU ,ε. This means that
in general, from M1 ≡ M2 : T , there is no reason that [M1]

σ
p ≡ [M2]

σ
p : JT Kσ

p , but rather
that we can define a term convEq

σ,p
T,U of type [M1]

σ
p =JT Kσ

p
[M2]

σ
p . Notice also that the

definition of the forcing translation presented before makes use of the coercions ↑σ,p
x,N and

↓σ,p
x,N which are, as we will see in Section 4.2.2, defined on proofs of typing judgment and

not only on the structure of terms. So even if the presentation of the translation could
give the feeling that it is defined on the structure of terms, this is a not actually the case.
It is rather defined on typing judgment derivations. All of this justifies the use of explicit
conversion coercions, as presented in Section 3.1.7.

4.2.1 Definition of the Translation

A forcing environment σ is defined as an ordered list of triples (x, T, p) formed by a
variable x, a type T and a variable forcing condition p. The empty environment is written
ε, and the addition of a triple (x, T, p) at the end of σ is written σ · (x, T, p). We say that
σ is valid if :

— σ = ε,
— or σ = σ′ · (x, T, p) s.t. σ′ is a valid environment, x does not appear in σ, the free

variables of T appears in σ and either p does not appear in σ or p is equal to the
last forcing condition of σ′.

Taking a context Γ = (x1 : T1), . . . , (xn : Tn), σ is said to be adequate for Γ if it is valid
and is equal to (x1, T1, p1) . . . (xn, Tn, pn), where the forcing condition variables p1, . . . , pn

can be possibly equal. When they are all distinct, we say that σ is canonical for Γ.
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JT Kσ
p

def
= (π1[T ]σp)p

θσ,T
p→q

def
= (π2[T ]σp)pq

[x]σp
def
= θ

σ,σ1(x)
σ2(x)→px

[cT,U(M)]σp
def
= transportλT.T

U convEq
σ,p
T,U [M ]σp

reflθ(T, p)
def
= Πq : Pp.Πx : (Tq).(θ q q x) =(T q) x

transθ(T, p)
def
= Πq : Pp.Πr : Pq.Πs : Pr.Πx : (Tq).(θ r s)(θ q r x) =(T s) θ q s x

PSh(p,Ui)
def
= Σf : Pp → Ui.{θ : Πq : Pp.Πr : Pq.fq → fr | transθ(f, p),

reflθ(f, p)}

PShC(p,Ui)
def
= λq : Pp.λr : Pq.λf : PSh(q,Ui).

(λs : Pr.(π1f)s, λs : Pr.λt : Ps.λx : (π1f)s.(π2f)stx)

[Ui]
σ
p

def
= (λq : Pp.PSh(q,Ui),PShC(p,Ui))

commσ
Π(T, U, p, f)

def
= Πq : Pp.Πr : Pq.Πa : JT Kσ

q .(fr)(θ
σ,T
q→ra) = θσ·(a,T,q),U{a/x}

q→r (fqa)

[Πx : T.U ]σp
def
= (λq : Pp.{f : Πr : Pq.Πx : JT Kσ

r .JUKσ·(x,T,r)
r | commσ

Π(T, U, q, f)},
λq : Pp.λr : Pq.λf : JΠx : T.UKσ

q .λs : Pr.fs)

[λx : T.M ]σp
def
= λq : Pp.λx : JT Kσ

q .[M ]σ·(x,T,q)
q

[App(x:T )U(M,N)]σp
def
= ↑σ,p

x,N (App(x:JT Kσ
p )JUKσ

p
([M ]σp p, [N ]σp))

[Σx : T.U ]σp
def
= (λq : Pp.Σx : JT Kσ

q .JUKσ·(x,T,q)
q ,

λq : Pp.λr : Pq.λf : Σx : JT Kσ
q .JUKσ·(x,T,q)

q .(θσ,T
q→r(π1f), θσ·(x,T,q),U

q→r (π2f)))

[〈M,N〉(x:T )U ]σp
def
= 〈[M ]σp , ↓

σ,p
x,M [N ]σp〉(x:JT Kσ

p )JUKσ
p

[π1M ]σp
def
= π1[M ]σp

[π2M ]σp
def
= ↑σ,p

x,(π1M) (π2[M ]σp)

[indΣ((z:Σx:T.U)V, (x:T,y:U)N,M)]σp
def
= ↑σ,p

z,M

(
indΣ((b1)[V ]σ·(z,Σx:T.U,p)

p , (b2) ↓σ2,p
z,〈x,y〉 [N ]σ

2

p , [M ]σp)
)

where (b1) = (z:Σx:JT Kσ
p .JUKσ1

p ), (b2) = (x:JT Kσ
p ,y:JUKσ1

p ) and σ1 = σ · (x, T, p), σ2 = σ1 · (y, U, p)

Figure 4.1: Definition of the Forcing Translation (I/II)
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[M =T N ]σp
def
=

(
λq : Pp.[M ]σq =JT Kσ

q
[N ]σq ,

λq : Pp.λr : Pq.λu : ([M ]σq =JT Kσ
q

[N ]σq ).apθσ,T
q→r

[M ]σq [N ]σq u
)

[reflM ]σp
def
= refl[M ]σp

[ind=((b)V, (w:T )M,N1, N2, u)]σp
def
=

↑σ,p
w,u↑

σ,p
y,N2
↑σ,p

x,N1
ind=((b′)[V ]σ

1

s , ↓
σ,p
w,u↓

σ,p
y,N2
↓σ,p

x,N1
(w:JT Kσ

p )[M ]σ·(w,T,p)
p , [N1]

σ
p , [N2]

σ
p , [u]σp)

where (b) = (x,y:T,z:x=T y), (b′) = (x:JT Kσ
p ,y:JT Kσ

p z:[x]σp =JT Kσ
s

[y]σp )

[0]σp
def
= (λq : Pp.0, λq : Pp.λr : Pq.λu : 0.u)

[ind0((z:0)V,N)]σp
def
= ↑σ,p

z,N

(
ind0((z:0)[V ]σ·(z,0,p)

p , [N ]σp)
)

[1]σp
def
= (λq : Pp.1, λq : Pp.λr : Pq.λu : 1.u)

[⋆]σp
def
= ⋆

[ind1((z:0)V,M,N)]σp
def
= ↑σ,p

z,N

(
ind1((z:1)[V ]σ·(z,1,p)

p , [N ]σp , [M ]σp)
)

[T+U ]σp
def
= (λq : Pp.[T ]σq +[U ]σq , λq : Pp.λr : Pq.lift

+
(JT Kσ

q ,JUKσ
q )(θ

σ,T
q→r, θ

σ,U
q→r))

[inl(M)]σp
def
= inl([M ]σp)

[inr(M)]σp
def
= inr([M ]σp)

[ind+((z:T +U)V, (x:T )Ml, (y:U)Mr, N)]σp
def
= ↑σ,p

z,N ind+((z:JT Kσ
p +JUKσ

p )[V ]σ
1

p ,M
′
l ,M

′
r, [N ]σp)

where M ′
l = (x:JT Kσ

p ) ↓σl,p
z,inl(x) [Ml]

σl

p and σl = σ · (x, T, p)

M ′
r = (y:JUKσ

p ) ↓σr,p
z,inl(y) [Mr]

σr

p and σr = σ · (y, U, p)

Figure 4.2: Definition of the Forcing Translation (II/II)
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Given an adequate environment σ for Γ, we define the translation of Γ at σ, written
[Γ]σ, as the context p : P ,Γ[σ]p, where Γ[σ]p is defined as

— ⋄[σ]p
def
= ⋄

— (x : T ),Γ[σ]p
def
= (q : Pp), (x : JT Kσ

q ), [Γ]σq if (x, T, q) is in σ and p 6= q,

— (x : T ),Γ[σ]p
def
= (x : JT Kσ

p), [Γ]σp if (x, T, p) is in σ.
Note that when (x, T, p) is in σ, we do not want to reassign p in the context, since it has
already been declared.

Figure 4.1 presents the forcing translation of MLTTe
U . This translation has largely

been explained in Section 4.1. The only remaining point concerns the special translation
of explicit coercions (see Section 4.2.2) and the management of rewriting for substitutions
(see Section 4.2.2).

Figure 4.2 presents the translation for the Identity Type, the Empty type, the Unit
type and coproducts. The translation is simply given by considering them as constant
presheaves. One only has to be careful in the use of explicit coercions in the translation
of elimination rules.

4.2.2 Substitution as a propositional equality

As we have seen in Section 4.1, we need some coercions ↑σ,p
x,N and ↓σ,p

x,N to make the
translation commute with substitutions. Those coercions are syntactic sugar for the fol-
lowing terms subst

σ,p
(x:T )U,N and subst

σ,p

(x:T )U,N . So for every terms N and types T, U s.t.
Γ, x : T ⊢e U : Ui and Γ ⊢e N : T , we have to define the two following terms :

— subst
σ,p
(x:T )U,N of type JU {N/x}Kσ

p → JUKσ·(x,T,p)
p

{
[N ]σp/x

}

— subst
σ,p

(x:T )U,N of type JUKσ·(x,T,p)
p

{
[N ]σp/x

}
→ JU {N/x}Kσ

p

Their definitions follows from the existence of a general term substEq
σ,p
(x:T )U,N,Ui

of
type

Πq : Pp.[U {N/x}]
σ
q =JUiKσ

p
[U ]σ·(x,T,p)

q

{
[N ]σp/x

}

We can then define them as rewriting with this equality:

— subst
σ,p
(x:T )U,N

def
= transportλT.T

U (apλT.(π1T )p substEq
σ,p
(x:T )U,N,Ui

),

— subst
σ,p
(x:T )U,N

def
= transportλT.T

U (apλT.(π1T )p (substEq
σ,p
(x:T )U,N,Ui

)−1),

Before defining them, we can first state the following lemma, which allows us to rewrite
↑σ,p

x,N↓
σ,p
x,N M into M .

Lemma 1: The identity type subst
σ,p
(x:T )U,N(subst

σ,p

(x:T )U,N [M ]σp) =JU{N/x}Kσ
p

[M ]σp is inhab-
ited.

The term substEq
σ,p
(x:T )U,N,Ui

is defined by induction on the two typing derivations
Γ, x : T ⊢e U : Ui and Γ ⊢e N : T . One of the most interesting case is when U = x, Then
the equality is [N ]σq = θσ,T

p→q[N ]σp , i.e. the monotonicity of the translation. As we have said
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before, this monotonicity comes from the transitivity of θσ,T
p→q when N is a variable, and

from the commutation property when N is a function.

Another, more problematic, case is when U = U ′M is an application such that Γ, x :
T ⊢e U

′ : T ′ → Ui and Γ, x : T ⊢e M : T ′. Then, we want to use the induction hypothesis
on Γ, x : T ⊢e M : T ′, however, a priori T ′ 6= U . This means that we have to generalize
the construction of subst to terms M whose type is not necessarily equal to an universe
U . A first try would be the following term substEq

σ,p
(x:T )M,N,U of type

Πq : Pp.[M {N/x}]
σ
q =JUKσ

p
[M ]σ·(x,T,p)

q

{
[N ]σp/x

}

with Γ, x : T ⊢e M : U, x /∈ FV(U) and Γ ⊢e N : T . The hypothesis x /∈ FV(U) is neces-

sary so that [M {N/x}]σq and [M ]σ·(x,T,p)
q

{
[N ]σp/x

}
have the same type JUKσ

p . However, here
again, when trying to build these terms by induction on the proof of Γ, x : T ⊢e M : U ,
when M is an application, we have again to generalize the construction to cases where
x ∈ FV(U).

To do so, the type of substEq
σ,p
(x:T )M,N,U uses substEq

σ,p
(x:T )U,N,Ui

via subst
σ,p
(x:T )U,N , i.e.

it is defined as

Πq : Pp.[M {N/x}]
σ
q =JU{N/x}Kσ

q
subst

σ,q
(x:T )U,N [M ]σ·(x,T,p)

q

{
[N ]σp/x

}

when Γ, x : T ⊢e U : Ui and Γ ⊢e N : T .

The definition of substEq
σ,p
(x:T )M,N,U is even more complicated as it involves properties on

the restriction maps that also need to be defined inductively on the typing derivation.
To formalize those mutually recursive definitions, we will proceed as in the Coq proof
assistant by first stating the type of the defined terms and the given the meaning of the
term by a proof, by induction on typing derivations.

Definition 4. Suppose that
— Γ, x : T ⊢e U : Ui,
— Γ, x : T ⊢e M : U ,
— Γ ⊢e N : T ,
— and σ is a adequate environment for Γ.

Then, we can define the following terms :
— monoTrad

σ,p
N,T of type

Πq : Pp.θ
σ,T
p→q[N ]σp =JT Kσ

q
[N ]σq

— substEq
σ,p
(x:T )Ui,U,N of type

Πq : Pp.[U {N/x}]
σ
q =JUiKσ

p
[U ]σ·(x,T,p)

q

{
[N ]σp/x

}
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— substEq
σ,p
(x:T )U,M,N of type

Πq : Pp.[M {N/x}]
σ
q =JU{N/x}Kσ

q
subst

σ,q
(x:T )U,N [M ]σ·(x,T,p)

q

{
[N ]σp/x

}

— commute
σ,p
(x:T )U,M,N of type

Πq : Pp. θσ,T
p→q(subst

σ,p
(x:T )U,N([M ]σ·(x,T,p)

p

{
[N ]σp/x

}
)) =JU{N/x}Kσ

q

subst
σ,q
(x:T )U,N([M ]σ·(x,T,q)

q

{
θσ,T

p→q[N ]σp/x
}
)

Proof We reason by induction on the proofs of Γ, x : T ⊢e U : Ui, Γ, x : T ⊢e M : U .
and Γ ⊢e N : T .

First, we build substEq
σ,p
(x:T )U,M,N and commute

σ,p
(x:T )U,M,N .

Univ: If M = Uk, then U = Uj and k < j < i.
Moreover, x /∈ FV(U) so substEq

σ,p
(x:T )Ui,U,N = λq : PP .refl[U ]σp . This means that:

— subst
σ,p
(x:T )U,N [M ]σ·(x,T,p)

q

{
[N ]σp/x

}
is convertible to [M ]σ·(x,T,p)

q

{
[N ]σp/x

}

— subst
σ,q
(x:T )U,N([M ]σ·(x,T,p)

q

{
θσ,T

p→q[N ]σp/x
}
) is convertible to [M ]σ·(x,T,p)

q

{
θσ,T

p→q[N ]σp/x
}

and since x /∈ FV(M), they are both convertible to [M ]σq . Then, we can define

— substEq
σ,p
(x:T )Uj ,Uk,N

def
= λq : PP .refl[U ]σp .

— commute
σ,p
(x:T )Uj ,Uk,N

def
= monoTrad

σ,p
Uk,Uj

0-Univ, 1-Univ, Nat-Univ: The same reasoning applies whenM is equal to the types
0,1 or Nat.

Π-Univ: If M = Πy : T1.T2, then U = Uj with j < i. Then again x /∈ FV(U) so
substEq

σ,p
(x:T )Ui,U,N = λq : PP .refl[U ]σp . so

— subst
σ,p
(x:T )U,N [M ]σ·(x,T,p)

q

{
[N ]σp/x

}
is convertible to [M ]σ·(x,T,p)

q

{
[N ]σp/x

}

— subst
σ,q
(x:T )U,N([M ]σ·(x,T,p)

q

{
θσ,T

p→q[N ]σp/x
}
) is convertible to [M ]σ·(x,T,p)

q

{
θσ,T

p→q[N ]σp/x
}

but now x is possibly free in M .
However, we have Γ, x : T ⊢e T1 : Uj1 and Γ, x : T, y : T1 ⊢e T2 : Uj2 with j =

max(j1, j2). Thus, by induction hypothesis, we get the existence of substEq
σ,p
(x:T )Uj1

,T1,N

and substEq
σ·(y,T1,p),p
(x:T )Uj2

,T2,N , such that, transporting these equalities, we can build

substEq
σ,p
(x:T )Uj ,Πy:T1.T2,N . The same reasoning applies for commute

σ,p
(x:T )Uj ,Πy:T1.T2,N .

Id-Univ,Σ-Univ, +-Univ: The same reasoning applies when M is equal to the types
M1 =T M2, Σy : T1.T2 or T1+T2.
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Π-Intro: If M is an abstraction λy : T1.M1 and U = Πy : T1.T2, then we first build
substEq

σ,p
(x:T )Πy:T1.T2,(λy:T1.M1),N of type

Πq : Pp.λr : Pq.λy : (JT1 {N/x}Kσ
r ).[M1 {N/x}]

σ
r =JUKσ

q

subst
σ,q
(x:T )Πy:T1.T2,Nλr : Pq.λy : (JT1Kσ

r {[N ]σr /x}).[M1]
σ′

r {[N ]σr /x}

Then, we have Γ, x : T ⊢e T1 : Uj and Γ, x : T, y : T1 ⊢e M1 : T2 so by induction hypothesis
we get

— substEq
σ,p
(x:T )Uj ,T1,N of type

Πq : Pp.[T1 {N/x}]
σ
q =JUjKσ

q
[T1]

σ·(x,T,p)
q

{
[N ]σp/x

}

— substEq
σ·(y,T1,p),p
(x:T )T2,M1,N of type

Πq : Pp.[M1 {N/x}]
σ
q =JT2{N/x}Kσ

q
subst

σ,q
(x:T )T2,N [M1]

σ′·(x,T,p)
q

{
[N ]σp/x

}

Π-Elim: If M is an application App(y:T1)T2
(M1,M2) with U = T2 {M2/y} then we first

build substEq
σ,p
(x:T )U,App(y:T1)T2

(M1,M2),N of type

Πq : Pp. [(App(y:T1)T2
(M1,M2)) {N/x}]

σ
q =JU{N/x}Kσ

q

subst
σ,q
(x:T )U,N [App(y:T1)T2

(M1,M2)]
σ′·(x,T,p)
q

{
[N ]σp/x

}

We have [(App(y:T1)T2
(M1,M2)) {N/x}]

σ
q equal to

subst
σ,q
(y:(T1{N/x}))(T2{N/x}),(M2{N/x})[(M1 {N/x})]

σ
q q [M2 {N/x}]

σ
q

and [App(y:T1)T2
(M1,M2)]

σ′·(x,T,p)
q

{
[N ]σp/x

}
equal to

(subst
σ·(x,T,p),q
(y:T1)T2,M2

)
{
[N ]σq /x

}
([M1]

σ·(y,T1,q)
q )

{
[N ]σq /x

}
q ([M2]

σ·(y,T1,q)
q )

{
[N ]σq /x

}

Using the induction hypothesis we get a proof of equality between:

— [(M1 {N/x})]
σ
q and [M1]

σ·(y,T1,q)
q )

{
[N ]σq /x

}
,

— [M2 {N/x}]
σ
q and [M2]

σ·(y,T1,q)
q )

{
[N ]σq /x

}
.

And using UIP, we have a proof of equality between

subst
σ,q
(y:(T1{N/x}))(T2{N/x}),(M2{N/x}) and

(
subst

σ·(x,T,p),q
(y:T1)T2,M2

) {
[N ]σq /x

}
.
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Var: If M is a variable y, then
— either y 6= x in which case substEq

σ,p
(x:T )U,y,N and commute

σ,p
(x:T )U,y,N are simply

defined as λq : PP .refl[y]σq ,
— or y = x and T = U , such that x /∈ FV(U). Then, subst

σ,p
(x:T )U,N disappears, so

substEq
σ,p
(x:T )U,x,N is of type

Πq : Pp.[N ]σq =JUKσ
q
θσ,T

p→q[N ]σp

which is exactly monoTrad
σ,p
N,T . Moreover, commute

σ,p
(x:T )U,x,N is of type

Πq : Pp.θ
σ,T
p→q(θ

σ,T
p→p[N ]σp) =JUKσ

q
θσ,T

q→q(θ
σ,T
p→q[N ]σp)

so we build it using reflexivity of θσ,T
q→q and θσ,T

p→p.

Second, we build monoTrad
σ,p
N,T by induction on Γ ⊢e N : T .

Var: If N is a variable x such that σ2(x) = px, then we have to prove

Πq : Pp.θ
σ,T
p→q(θ

σ,T
px→px) =JT Kσ

q
θσ,T

px→qx

which directly comes from transitivity of θσ,T .

Π-Intro: If N is a function λx : T ′.M and T = Πx : T ′.U , we have to prove

Πq : Pp.θ
σ,Πx:T ′.U
p→q (λr : Pp.λx : JT ′Kσ

r .M) =JΠx:T ′.UKσ
q

(λs : Pq.λx : JT ′Kσ
s .M).

But θσ,Πx:T ′.U
p→q is equal to λf : (Πr : Pp.Πx : JT Kσ

r .JUKσ·(x,T,r)
r ).λs : Pq.fs so these terms are

directly convertible.

Π-Elim: If N is an application App(y:T1)T2
(M1,M2) then we have Γ, x : T ⊢e M1 : Πy :

T1.T2 and Γ, x : T ⊢e M1 : T1 s.t. T = T2 {M2/y}. We have to prove

Πq : Pp.θ
σ,T
p→q(subst

σ,p
(y:T1)T2,M2

([M1]
σ
p p[M2]

σ
p)) =JT Kσ

q
subst

σ,q
(y:T1)T2,M2

([M1]
σ
q q[M2]

σ
q ).

Taking q : Pq, by induction, we have monoTrad
σ,p
M2,T1

of type Πq : Pp : θσ,T1
p→q[M2]

σ
p =JT1Kσ

q

[M2]
σ
q . so transporting this equality to the one we want to prove, we still have to show

that

θσ,T
p→q(subst

σ,p
(y:T1)T2,M2

([M1]
σ
p p [M2]

σ
p)) =JT Kσ

q
subst

σ,q
(y:T1)T2,M2

([M1]
σ
q q θ

σ,T1
p→q[M2]

σ
p).

Then, we reason by induction on Γ, x : T ⊢e M1 : Πy : T1.T2.
— If M1 = λy : T1.M

′
1, then we have to prove

θσ,T
p→q(subst

σ,p
(y:T1)T2,M2

([M ′
1]

σ
p

{
[M2]

σ
p/y

}
)) =JT Kσ

q
subst

σ,q
(y:T1)T2,M2

([M ′
1]

σ
q

{
θσ,T1

p→q[M2]
σ
p/y

}
).

which is exactly commute
σ,p
(x:T )U,M ′

1,N .
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— If M1 = z such that (z,Πy : T1.T2, pz) is in σ, we have to prove

θσ,T
p→q(subst

σ,p
(y:T1)T2,M2

((θσ,Πy:T1.T2
pz→p z) p [M2]

σ
p)) =JT Kσ

q

subst
σ,q
(y:T1)T2,M2

((θσ,Πy:T1.T2
pz→q z) q θσ,T1

p→q[M2]
σ
p).

Then, due to the definition of θσ,Πy:T1.T2 , we just have to prove

θσ,T
p→q(subst

σ,p
(y:T1)T2,M2

(z p [M2]
σ
p)) =JT Kσ

q

subst
σ,q
(y:T1)T2,M2

(z q θσ,T1
p→q[M2]

σ
p).

But this come from the fact that z is of type JΠy : T1.T2Kσ
pz
so that commσ

Π(T1, T2, pz, z)
is inhabited.

4.2.3 Translation of explicit coercions

Let M,N two terms such that Γ ⊢e M ≡ N : T , and σ the adequate environment for
Γ. Then in general, as we said before we cannot prove that [Γ]σ ⊢ [M ]σp ≡ [N ]σp : JT Kσ

p ,
that is that the translated term are judgmentally equal. However, we can build a term
convEq

σ,p
M,N that corresponds to the proof that they are propositionally equal. Using it,

we define [cT,U(M)]σp as transportλT.T
U convEq

σ,p
T,U [M ]σp (as defined in Figure 4.1).

As the definition is done by induction on the proof of conversion, we proceed as in
Section 4.2.2 and provide the explicit term as a proof.

Definition 5. Given M,N two terms such that Γ ⊢e M ≡ N : T , and σ the adequate
environment for Γ, we can define a term convEq

σ,p
M,N of type

[Γ]σ ⊢ convEq
σ,p
M,N : [M ]σp =JT Kσ

p
[N ]σp .

Proof It is build by induction on the proof of Γ ⊢e M ≡ N : T .

Π-Conv

Suppose that M = (λx : T.M1)M2 and N = M1 {M2/x}. Then, [(λx : T.M1)M2]
σ
p is

defined as
↑p,σ

x,M2
((λq : Pp.λx : JT Kσ

p .[M1]
σ·(x,T,p)
p )p [M2]

σ
p)

which is convertible to ↑p,σ
x,M2

([M1]
σ·(x,T,p)
p )

{
[M2]

σ
p/x

}

Then using substEq
p,σ
(x:T )U,M1,M2

one can prove that it is indeed equal to [M1 {M2/x}]
σ
p .

So convEq
σ,p
(λx:T.M1)N2,M1{M2/x} is defined as substEq

p,σ
(x:T )U,M1,M2

p.
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Conv-Proj1

Suppose that M = π1〈M1,M2〉 and N = M1. Then [π1〈M1,M2〉]
σ
p is equal to

π1〈[M1]
σ
p , ↓

σ,p
x,M1

[M2]
σ
p〉

which is indeed convertible to [M1]
σ
p . So convEq

σ,p
π1〈M1,M2〉,M1

is defined as reflM1 .

Conv-Proj2

Suppose that M = π2〈M1,M2〉 and N = M2 Then [π2〈M1,M2〉]
σ
p is equal to

↑σ,p
x,(π1〈M1,M2〉) (π2〈[M1]

σ
p , ↓

σ,p
x,M1

[M2]
σ
p〉)

which is convertible to ↑σ,p
x,(π1〈M1,M2〉) (↓σ,p

x,M1
[M2]

σ
p)

Then using UIP, we can prove that it is equal to ↑σ,p
x,M1

(↓σ,p
x,M1

[M2]
σ
p). And we conclude

the construction using lemma 1.

Conv-indΣ

[indΣ((z:Σx:T.U)V, (x:T,y:U)N, 〈M1,M2〉)]
σ
p is defined as

↑σ,p
z,〈M1,M2〉

(
indΣ((b1)[V ]σ·(z,Σx:T.U,p)

p , (b2) ↓σ2,p
z,〈x,y〉 [N ]σ

2

p , 〈[M1]
σ
p , ↓

σ,p
x,M1

[M2]
σ
p〉)
)

where (b1) = (z:Σx:JT Kσ
p .JUKσ1

p ), (b2) = (x:JT Kσ
p ,y:JUKσ1

p ) and σ1 = σ · (x, T, p), σ2 = σ1 · (y, U, p).

It converts to ↑σ,p
z,〈M1,M2〉

(
(↓σ2,p

z,〈x,y〉 [N ]σ
2

p )
{
[M1]

σ
p/x

}{
(↓σ,p

x,M1
[M2]

σ
p)/y

})

It has to be equal to [N {M1/x} {M2/y}]
σ
p

If it is equal to ↑σ,p
z,〈M1,M2〉 (↓σ,p

z,〈M1,M2〉 [N {M1/x} {M2/y}]
σ2

p )
)
.

4.2.4 Soundness of the Translation

Before stating the soundness of the translation, we need a weakening lemma for ade-
quate environments.

Lemma 2: If Γ ⊢ T : U and σ is a canonical environment of Γ, then for every forcing
condition p and every interpretation σ′ disjoint of σ, [T ]σ·σ′

p = [T ]σp .

Proof The proof is done by induction on T . The only interesting case is when T is a
variable x. Then from Γ ⊢ T : U we know that (x,U) ∈ Γ, and since σ is canonical for Γ,
there exists a forcing condition q such that (x, T, q) ∈ σ. So we just have to prove that
θσ·σ′,U

p→q = θσ,U
p→q, which follows from the definition of PSh(p,U).
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Lemma 3: Let Γ a context and σ a canonical environment of Γ. Suppose that

[Γ]σ, q : Pp, x1 : JT1Kσ1
q , . . . , xn : JTnKσn

q ⊢ [M ]σn

q : [T ]σn

q

with σ1 = σ, σi+1 = σi · (xi, Ti, q). Then

[Γ]σ, x1 : JT1Kσ′
1

p , . . . , xn : JTnKσ′
n

p ⊢ [M ]σ
′
n

p : JT Kσ′
n

p

where σ′
i = σi {p/q}.

Theorem 4 (Typing Soundness): If Γ ⊢e M : T and σ is a canonical environment of
Γ then

[Γ]σ ⊢e [M ]σp : JT Kσ
p

where p is the last forcing condition occurring in σ.

Proof The proof is done by induction on the proof of Γ ⊢e M : T .

Univ : To prove [Γ]σ ⊢ (λq : Pp.PSh(q,Ui),PShC(p,Ui)) : PSh(p,Ui+1) we use the
rule Σ-Intro with the two following proof trees :

Π-Intro

Σ-Univ

Π-Univ
[Γ]σ, q : Pp ⊢ Pq : U0 [Γ]σ, q : Pp ⊢ Ui : Ui+1

Univ

[Γ]σ, q : Pp ⊢ Pq → Ui : Ui+1

[Γ]σ, q : Pp ⊢ Σf : Pq → Ui.{θ : Πr : Pq.Πs : Pr.fr → fs | transθ(f, q) ∧ reflθ(f, q)} : Ui+1

[Γ]σ ⊢ λq : Pp.PSh(q,Ui)︸ ︷︷ ︸
M

: Pp → Ui+1

Σ-Intro

Conv

Π-Intro

Σ-Intro
Γ′ ⊢ (λs : Pr.(π1f)s, λs : Pr.λt : Ps.λx : (π1f)s.(π2f)stx) : PSh(r,Ui)

[Γ]σ ⊢ PShC(p,Ui) : Πq : Pp.Πr : Pq.PSh(q,Ui)→ PSh(r,Ui)

[Γ]σ ⊢ PShC(p,Ui) : Πq : Pp.Πr : Pq.Mq →Mr.

[Γ]σ ⊢ PShC(p,Ui) : {θ : Πq : Pp.Πr : Pq.Mq →Mr | transθ(M, p) ∧ reflθ(M, p)}

where Γ′ = [Γ]σ, q : Pp, r : Pq, f : PSh(q,Ui)
with proof obligations :
— transPShC(p,Ui)(M, p)
— reflPShC(p,Ui)(M, p)

Conv : We want to show that the following rule is derivable:

[Γ]σ ⊢ [M ]σp : JT Kσ
p T ⊢ U ≡ U :

[Γ]σ ⊢ [cT,U(M)]σp : JUKσ
p

which simply comes from

Π-Elim
[Γ]σ ⊢ [M ]σp : JT Kσ

p

[Γ]σ ⊢ transportλT.T
U convEq

σ,p
T,U [M ]σp : JUKσ

p
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Var :

Var
⊢ wf(x : JAKσ

σ2(x), [Γ]σ)

x : JAKσ
σ2(x), [Γ]σ ⊢e x : JAKσ

σ2(x)

x : JAKσ
σ2(x), [Γ]σ ⊢e θ

σ,A
σ2(x)→px : JAKσ

p

Π-Univ :
To prove [Γ]σ ⊢e [Πx : T.U ]σp : PSh(p,Umax(i,j)) we use the rule Σ-Intro :

Π-Intro

Σ-Univ

Π-Univ

Proj-1
q : Pp, r : Pq, JΓ, x : T Kσ·(x,T,r) ⊢e [U ]σ·(x,T,r)

r : PSh(r,Ui)

[Γ]σ, q : Pp, r : Pq, x : JT Kσ
r ⊢e JUKσ·(x,T,r)

r : Uj

[Γ]σ, q : Pp ⊢e Πr : Pq.Πx : JT Kσ
r .JUKσ·(x,T,r)

r Ui :

[Γ]σ, q : Pp ⊢e {f : Πr : Pq.Πx : JT Kσ
r .JUKσ·(x,T,r)

r | comm
f
Π(T, U, q, )} : Ui

[Γ]σ ⊢e λq : Pp. {f : Πr : Pq.Πx : JT Kσ
r .JUKσ·(x,T,r)

r | comm
f
Π(T, U, q, )}

︸ ︷︷ ︸
M

: Pp → Ui

Then, we have to prove that

[Γ]σ ⊢e λq : Pp.λr : Pq.λf : JΠx : T.UKσ
q .λs : Pr.f s : Πq : Pp.Πr : Pq.M q →M r

which is straightforward from the fact that M r is of type JΠx : T.UKσ
r :

Π-Intro

Π-Elim
Γ′ ⊢e f : Πs : Pr.JΠx : T.UKσ

q Γ′ ⊢e s : Pr

Γ′ ⊢e f s : Πx : JT Kσ
r .JUKσ·(x,T,r)

r

[Γ]σ ⊢e λq : Pp.λr : Pq.λf : JΠx : T.UKσ
q .λs : Pr.fs : Πq : Pp.Πr : Pq.M q →M r

where Γ′ = [Γ]σ, q : Pp, r : Pq, f : JΠx : T.UKσ
q , s : Pr with the proof obligations

transθ(λq : Pp.λr : Pq.λf : JΠx : T.UKσ
q .λs : Pr.f s, p)

and
reflθ(λq : Pp.λr : Pq.λf : JΠx : T.UKσ

q .λs : Pr.f s, p)

Π-Intro :

Σ-Intro

Π-Intro

Hyp. Ind.
[Γ, x : A]σ·(x,T,q) ⊢e [M ]σ·(x,T,q)

q : JUKσ·(x,T,q)
q

[Γ]σ ⊢e λq : Pp.λx : JT Kσ
q .[M ]σ·(x,T,q)

q : Πq : Pp.Πx : JT Kσ
q .JUKσ·(x,T,q)

q

[Γ]σ ⊢e λq : Pp.λx : JT Kσ
q .[M ]σ·(x,T,q)

q : {f : Πq : Pp.Πx : JT Kσ
q .JUKσ·(x,T,q)

q | comm
f
Π(T, U, q, })

with the proof obligation comm
λq:Pp.λx:JT Kσ

q .[M ]
σ·(x,T,q)
q

Π (T, U, q, ) which is proved using
commute

σ,p
(x:T )U,M,N .
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Π-Elim :

Π-Elim

Π-Elim
[Γ]σ ⊢ [M ]σpp : Πx : JT Kσ

p .JUKσ·(x,T,p)
p [Γ]σ ⊢ [N ]σp : JT Kσ

p

[Γ]σ ⊢ App
(x:JT Kσ

p )JUK
σ·(x,T,p)
p

([M ]σpp, [N ]σp) : JUKσ·(x,T,p)
p

{
[N ]σp/x

}

[Γ]σ ⊢ subst
σ,p
(x:T )U,N

(
App

(x:JT Kσ
p )JUK

σ·(x,T,p)
p

([M ]σpp, [N ]σp)
)

: JU {N/x}Kσ
p

Σ-Univ : We want to prove that the following rule is derivable :

[Γ]σ ⊢e [T ]σp : JUiKσ
p [Γ, x : T ]σ

′

⊢e [U ]σ
′

q : JUiKσ′

q

[Γ]⊢e [Σx : T.U ]σp : JUiKσ
p

where σ′ = σ ·(x, T, q). Since JUiKσ
p = PSh(p,U) which is a dependent sum, we decompose

the proof in two.

Π-Intro

Σ-Univ

Weak
[Γ]σ ⊢e JT Kσ

p : Ui

[Γ]σ, q : Pp ⊢e JT Kσ
q : Ui [Γ]σ, q : Pp, x : JT Kσ′

q ⊢e JUKσ′

q : Ui

[Γ]σ, q : Pp ⊢e Σx : JT Kσ
q .JUKσ·(x,T,q)

q : Ui

[Γ]σ ⊢e λq : Pp.Σx : JT Kσ
q .JUKσ·(x,T,q)

q︸ ︷︷ ︸
M

: Pp → Ui

Then, we prove that

[Γ]σ ⊢e λq : Pp.λr : Pq.λf : JΣx : T.UKσ
q .(θσ,T

q→r(π1f), θσ′,U
q→r(π2f)) : Πq : Pp.Πr : Pq.M q →M r

the proof is similar to the one done in Π-Univ. Finally, we deal with the proof obligations

transθ(λq : Pp.λr : Pq.λf : JΣx : T.UKσ
q .(θ

σ,T
q→r(π1f), θσ′,U

q→r(π2f)), p)

and
reflθ(λq : Pp.λr : Pq.λf : JΣx : T.UKσ

q .(θ
σ,T
q→r(π1f), θσ′,U

q→r(π2f)), p)

Σ-Intro : We want to prove that the following rule is derivable :

[Γ]σ ⊢e [M ]σp : JT Kσ
p [Γ]σ ⊢e [N ]σp : JU {M/x}Kσ

p

[Γ]σ ⊢e [〈M,N〉(x:T )U ]σp : JΣx : T.UKσ
p

Σ-Intro
[Γ]σ ⊢e [M ]σp : JT Kσ

p

[Γ]σ ⊢e [N ]σp : JU {M/x}Kσ
p

[Γ]σ ⊢e subst
σ,p

(x:T )U,M [N ]σp : JUKσ
p

{
[M ]σp/x

} Π-Elim

[Γ]σ ⊢e 〈[M ]σp ,subst
σ,p

(x:T )U,M [N ]σp〉(x:JT Kσ
p )JUKσ′

p
: Σx : JT Kσ

p .JUKσ′

p
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StrongElim-Σ : We want to prove that the following rule is derivable :

[Γ, z : Σx : T.U ]σ
1

⊢ [V ]σ
1

q : JUKσ1

q

[Γ, x : T, y : U ]σ
2

⊢ [N ]σ
2

r : JV {〈x, y〉/z}Kσ2

r [Γ]σ ⊢ [M ]σp : JΣx : T.UKσ
p

[Γ]σ ⊢ [indΣ((z:Σx:T.U)V, (x:T,y:U)N,M)]σp : JV {M/z}Kσ
p

where σ1 def
= σ · (z,Σx : T.U, q) and σ2 def

= σ · (x, T, q) · (y, U, r).
Then, using Lemma 3 we get the following hypothesis
— [Γ]σ, z : Σx : JT Kσ

p .JUKσ·(x,T,p)
p [V ]σ

1

p JUKσ1

p

— [Γ]σ, x : JT Kσ
p , y : JUKσ·(x,T,p

p ⊢ [N ]σ·(x,T,p)·(y,U,p)
p : JV {〈x, y〉/z}Kσ

p

Then, we get

[Γ]σ, x : JT Kσ
p , y : JUKσ·(x,T,p

p ⊢ subst
σ2,r
(z:Σx:U.)V,〈x,y〉[N ]σ·(x,T,p)·(y,U,p)

p︸ ︷︷ ︸
N ′

: JV Kσ1

q {[〈x, y〉]
σ2
r /z}

So, we can StrongElim-Σ to prove

[Γ]σ ⊢ indΣ((z:JΣx:T.UKσ
p )[V ]σ

1

p , (x:JT Kσ
p ,y:JUK

σ·(x,T,p)
p )N ′, [M ]σp) : JV Kσ

p

{
[M ]σp/z

}

Let consider P a mere proposition. Then, the translation JP Kσ
p can be seen as what is

usually written p 
 P in forcing. Then, using the previous theorem, a proof M of P (i.e..
M is of type P ) is translated into [M ]σp . This explain why our work can be seen as a study
of the forcing translation of proofs, i.e. as an extension of the work of Miquel [Miq11].

4.2.5 Extending the internalization to MLTTU

Up-to now, we have defined the translation in MLTTe
U because we need an explicit

management of coercions. This section discusses what need to be done to extend it to
MLTTU .

As we have explained in Section 3.1.7, we assume that a judgment Γ ⊢ M : T in
MLTTU can be annotated with explicit coercions Γe,Me, Te as given by Theorem 3. Thus,
the translation of a term ofM for an environment |σe|, where σe is a canonical environment
for Γe and p is its last forcing condition, could be defined as

[M ]|σe|
p

def
= |[Me]

σe

p |.

But as our translation—and in particular the terms substEq
σ,p
(x:T )U,M,N—is built by

induction on the proof of typing judgments, the definition may depend on the chosen
Γe,Me, Te. So to get a correct definition of the translation of derivation of MLTTU ,
we need to prove its independence with respect to the chosen corresponding derivation
in MLTTe

U . That is, given Γ1 ⊢e M1 : T1 and Γ2 ⊢e M2 : T2 such that |Γ1| = |Γ2|,
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|M1| = |M2|, |T1| = |T2|, and given σ1 (resp. σ2) a canonical environment for Γ1 (resp.
Γ2) s.t. |σ1| = |σ2|, we need to show that

[M1]
|σ1|
p = [M2]

|σ2|
p .

This property is related to the so-called coherence problems of categorical models of
dependent type theory [Cur93, Hof95b, CGH14], i.e. the fact that substitution, which is
interpreted as pullbacks in these models, is only “pseudo-functorial”, i.e. up-to isomor-
phism.

First, notice that when working in the extensional MLTTU , i.e. with the reflection
rule which identify judgmental and propositional equality, we get this uniqueness of the
translation. Indeed, in such case, we do not have to introduce the various coercions
↑σ,p

x,N , ↓
σ,p
x,N since we can directly use the proofs of substEq

σ,p
(x:T )U,M,N to convert them.

In the intentional case, it is a lot more difficult. First, notice that the fact that we
our working with UIP does not really help here, because we get the uniqueness of terms
substEq

σ,p
(x:T )U,M,N up to propositional equality, but one cannot conclude from that fact,

since the conversion rule can be used at different stage of the proof of the typing judgment.
To achieve the proof of uniqueness of the translation of this setting, it should be

possible to adapt the reasoning done in [Cur93, CGH14], by going to a setting with
explicit substitution.

4.2.6 About the use of UIP and the poset restriction

The use of UIP is made at two crucial points:

1. in the use of subset types in the definitions of PSh(p,Ui) and [Πx : T.U ]σp ,

2. to simply the definition of substEq
σ,p
(x:T )U,N,Ui

in Section 4.2.2 and convEq
σ,p
T,U in

Section 4.2.3.

While we think that the second use could be avoided by a more careful management
of equalities between equalities (as done in Homotopy Type Theory [Uni13]), the first
use seems more difficult to overcome. Indeed, if we remove the UIP axiom, then the
computational content of the proofs of transitivity and reflexivity of restriction maps
of a presheaf type can not be ignored. It is the same for the functoriality condition
in the translation of a dependent product. The consequence of that is that the terms
substEq

σ,p
(x:T )U,N,Ui

in Section 4.2.2 and convEq
σ,p
T,U will be more involved. We do not see

any theoretical reason why it should not be possible but we have left this investigation
for future work.

Regarding the poset restriction, we could have also consider categories instead of
just pre-orders. However, this implies that the set of forcing conditions below a forcing
condition p becomes couples (q, f) of type

Pp = Σq : P .q → p
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The explicit management of the morphism f hardens the definition, although, from cate-
gorical considerations, it should be feasible.

4.2.7 Implemeting the translation in Coq

So far, we have presented the translation for set elements of MLTTe
U . This translation

can also be implemented for CIC, the type system behind Coq, with proof irrelevance
and explicit coercions. To do so, we first have to introduce the translation PSh(p,Prop)
of the universe Prop. It is defined in the same way than U , with the simplication that,
because of Proof-Irrelevance, the restriction maps are in that case proofs of monotonicity
and thus, transitivity and reflexivity of restriction maps are automatic :

PSh(p,Prop)
def
= {f : Pp → Prop | θ : Πq : Pp.Πr : Pq.f q → f r}

We also have to translate Inductive Types, following the same idea as the translation
of Nat we have presented. Their constructor is simply translated as constant presheaves,
while their destructors, i.e. their induction principles, have first to be η-expanded before
being translated also as constant presheaves.

A prototype implementation of the translation as been implemented by Matthieu
Sozeau, available at https://github.com/mattam82/Forcing. It is built on top of (an
old version of) Coq, with a patch that introduces proof irrelevance in the conversion,
translating terms of a forcing layer so that they can be verified by the typechecker of Coq.
The fact that we need proof-irrelevance in the conversion and not only propositionally
is because we have not considered the coercions ιp,q from Pq to Pp when q ≤ p in the
translation. But using proof-irrelevance in the conversion makes all those coercions judg-
mentally equal to the identity. Using it, the Forcing Layer presented in Section 4.4 has
been defined in Coq allowing to use guarded recursive types in this proof assistant.

4.3 Reasoning in the Forcing Layer

The goal of this section is to show how to extend safely our type theory with new
elements, so that well-formed terms still typecheck and the layer stays consistent (i.e.
the empty type is not inhabited). To do so, we define the notion of Forcing Layers. To
simplify the presentation, we suppose that forcing has been defined not only on MLTTe

U

but also on MLTTU .

4.3.1 Defining new constructors in the Forcing Layer

To extend the logical power of the type theory of a forcing layer, we follow a general
mechanism. We first add new symbols corresponding to the objects we want to reason
on. For example, in the next section we will introduce a new fixpoint combinator. We
then define their translation, which is a way to give them a meaning in the original layer.

https://github.com/mattam82/Forcing
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Finally, we add properties about these new elements whose translations are proven in the
original layer.

More precisely, after adding a new symbol f of type T to the forcing layer, we define
its translation [f ]σp . Then, we can add a proof-term symbol π of a lemma P about f as
soon as we are able to define a proof [π]σp of JP Kσ

p in the ground logic.
This has to be compared to the axiomatic approach in Coq, which introduce a new

symbol using Parameter f:T and then properties about it using Axiom π:P. In this ap-
proach, f and π have no computational content.

So, we define a forcing layer F as a list of new symbols (C1, . . . , Cn). The terms of F
are generated by the grammar of MLTTU extended by the new symbols C1, . . . , Cn. We
suppose that each symbol Ci is typable in the empty context with the type Ti, which is
a term of F such that Ti does not contains any Cj for j < i. We define a new typing
judgment Γ ⊢F

e M : T for contexts, terms and types of F , defined with the same typing
rules of MLTTU plus the axioms ⊢F

e Ci : Ti. This forcing layer comes with a translation
F [Ci]

ε
p of each element Ci, which is defined in MLTTU . We can now state when a forcing

layer is well-defined.

Definition 6. A forcing layer is well defined when

p : Pp ⊢ F [Ci]
ε
p : FJTiKε

p

in the original layer and when Ti is a dependent product for every i.

Given a well defined forcing layer, it is possible to extend the definition of F [M ]σp for
terms of F by induction on the structure of M , using the standard translation [ ] for the
constructions of MLTTU .

The only subtle point is for the extension of the definition of terms dealing with
substitution, in particular the monotonicity of the translation, captured by the term
monoTrad

σ,p
N,T . Here, we use the fact that every new symbol Ci inhabits dependent

product Ti, which imposes by construction that the interpretation is monotone (because
of the presence of Πq : Pp. . . . at the beginning of the translation of a dependent product).
Note that it would not be the case on other types, for instance on Bool.

4.3.2 Soundness and Consistency of the Forcing Layer

We now want to extend the soundness of the translation to the forcing layer.

Theorem 5: Given a well-defined forcing layer F , if Γ ⊢F
e M : T , then

F [Γ]σ ⊢ F [M ]σp : FJT Kσ
p .
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Proof This is a straightforward consequence of the soundness for MLTTU , since we just
have extended it with new axioms which are sound by definition of the forcing layer.

We can also prove the consistency of the forcing layer.

Theorem 6: There is no term M such that ⋄ ⊢F
e M : 0

Proof Suppose there exists such a term. Then, p : Pp ⊢e F [M ]εp : FJ0Kε
p. But FJ0Kε

p =
J0Kε

p which is equal to 0, so F [M ]εp, which is defined in MLTTU , is an inhabitant of 0,
which is not possible by consistency of MLTTU .

4.3.3 Iterating the forcing translation

For now, we have defined a forcing layer on top of MLTTU , but it is in fact possible
to define a forcing layer on top of another forcing layer:

MLTTU
[.]F1

←−− F1
[.]F2

←−− F2

As F1 contains MLTTU , the translation [.]F2 is well-defined. Then, the poset of forcing
conditions P2 used by F2 has to be defined in F1. This means in particular that we can
use terms of MLTTU but also new logical principles provided by F1.

This construction is reminiscent of the iterated forcing construction as presented for
example in [Jec03]. In terms of topos, this means to build the category of presheaves
valuated in another category of presheaves.

4.3.4 Sheaf construction and excluded middle

We have seen how to import a theorem proved in MLTTU in a forcing layer, simply by
using its proof-term. However, this method does not work with axioms, for good reasons:
there is no reason it stays true in the forcing layer, since we do not have a proof of it.

One simple example is the excluded-middle

EM
def
= ΠQ : Prop.Q+(Q→ 0)

Its translation [EM]σp is equal to

Πq : Pp.ΠQ : (Pq → Prop).Qq+(Πr : Pq.Qr → 0).

It is thus possible to build a set of forcing conditions which negate this formula, simply
adapting the construction of the usual Kripke model which negates EM.

If we want to keep this axiom true, a standard way is to add a negative translation
to the forcing translation. This is done in Topos theory by the sheafification process on
the dense topology (usually noted ¬¬). Indeed, it is well known [MLM92] that the topos
Sh(P¬¬, E) is a Boolean topos while this is not true for PSh(P , E).

Adapting the same technique to Type Theory is the subject of ongoing research. The
sheafification process is understood as the notion of left exact modalities recently defined
in homotopy type theory ([Uni13], §7.7).
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4.4 The Step-Indexed Layer

As a first illustration of the power of the forcing translation, we study the forcing layer
SI obtained when P is (Nat,≤), the set of natural numbers ordered as usual. This layer
(without universes) has already been semantically studied in [BMSS11] as it corresponds
to the topos of trees. We have then developed in [JTS12] a syntactic presentation of
it using our forcing translation. The main novelty of our approach is to define a later
modality ⊲U as an endofunction on the universe U , inside the forcing layer. This modality
is used to interpret guarded recursive types as guarded recursive functions on a universe.
Interestingly, when restricted to the universe of mere proposition PropU , we get the
Löb rule that provides a general inductive principle in the logic. As the Löb rule is
interpreted directly as a special instance of the fixpoint construction, our construction
gives a computational meaning to the Löb rule inside MLTTU . The semantic work of
[BMSS11] has later been extended to universes [BM13] using the same techniques.

It could seem surprising to allow such general recursive definitions, without endanger
the consistency of the logic. Indeed, the usual guard condition of fixpoints in type theory,
namely the strict positivity, is here to avoid to build terms which could inhabit the empty
type 0. However, such strict positivity condition is needed because fixpoints can be
unwound with the conversion, the so-called ι-rule. Here, our unwinding of fixpoints are
only defined propositionally rather than judgmentally. This is why the consistency result
of any forcing layer proved in Section 4.3.2 applied to SI is not contradictory with the
usual way inductive types are defined in MLTTU . Moreover, we keep the decidability of
the type-checking for the extended type theory of SI, while we are able to formalize for
example the pure λ-calculus in it.

4.4.1 Definition of SI

As explained in Section 4.3.1, a forcing layer is defined as a poset of forcing conditions,
a list of new symbols together with their types and their translation. Here, SI is defined
as the forcing layer whose forcing conditions is (Nat,≤) as defined in Section 3.1.6, with
the following new symbols :

— ⊲U : U → U , the later modality which is used as a guard on types,
— fixT : (⊲UT → T )→ T , the fixpoint combinator on guarded types,
— nextT : (T → ⊲UT )
— switchU : ⊲UU → U together with a proof of [switchU(nextUT )]σp = [⊲UT ]σp which

allows us to transfer the modality ⊲ from a universe to a type,
— comlater

T,U
Π : ⊲Uj

(Πx : T.U) → (Πx : ⊲Ui
T. ⊲Uj

U) and comlater
T,U
Σ : ⊲Uj

(Σx :
T.U)→ Σx : ⊲Ui

T. ⊲Uj
U which allows us to propagate the guard ⊲ into dependent

products and sums.
— recµU

: Πf : U → U .µUf =U f(⊲UµUf) a proof of equality between a term and its
unwinding, where µUf is a notation for fixUλx.f(switchUx).
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We now present the translation SI[ ] of these new symbols, defined as terms of
MLTTU .

The later modality We first introduce in the SI layer a later modality

⊲U : U → U

for any universe U . This modality amounts to shift a presheaf on U one step on the right.
Its translation SI[⊲U ]σp is defined by

λq : Natp.λT : JUKσ
q .

(λr : Natq.match r with

| 0 => 1

| Sr′ => (π1T )r′

, λr : Natq.λt : Natr.λx : Ur.match t with

| 0 => ⋆
| St′ => (π2T ) (Pred r) t′ x)

with Ur
def
= match r with | 0 => 1 | Sr′ => (π1T )r′. Recall the 1 is the unit type

presented in Section 3.1.5, and ⋆ is its unique element. Here, Natp stands for {q :
Nat | q ≤ p}. In the following, we write ⊲ for ⊲U when the universe can be inferred easily.

Unwinding the definition of ⊲U applied to a type T : U of MLTTU , we have
— SIJ⊲T Kσ

0 = 1 and SIJ⊲T Kσ
Sp = JT Kσ

p ,

— θσ,⊲T
0→0 = λx : 1.⋆, and θσ,⊲T

(Sp)→0 = λx : JT Kσ
p .⋆,

— θσ,⊲T
(Sp)→(Sq) = θσ,T

p→q.
So for example SIJ⊲BoolKσ

0 = 1 and SIJ⊲BoolKσ
Sp = Bool.

Notice that there are no monotonicity problems with θσ,⊲T
(Sp)→0 since so far we have not

define any term M such that ⋄ ⊢SI
e M : ⊲T

The fixpoint operator Then, we introduce a fixpoint operator

fixT : (⊲UT → T )→ T

for every term T of type U . The meaning of fixT is given by its approximation at level p,
computed by induction. At level 0, the fixpoint of f : ⊲UT → T is given by the value of
f on the unique inhabitant of ⊲UT at level 0. And at level p + 1, the value is given by f
applied to the approximation at level p. Formally, the translation SI[fixT ]σp is defined by

λq : Natp.λf : J⊲UT → T Kσ
q .nat rects,q(λr : Natq.JT Kσ

r )
(f 0 ⋆) (λr : Predq.λa : JT Kσ

r .f(Sr)a) q

where Predp
def
= {q : Nat | q < p} and nat rects,p is defined as a restriction of nat rectU

on the set Natp.
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The later modality and fixpoint operator on PropU When T is a proposition P ,
fixPM computes a proof of P from a proof M of ⊲PropP → P , This is exactly what the
Löb rule

Löb
⊲PropP ⊢ P

⊢ P

does, so fixP gives the computational content of this rule. Thus, applying the Löb rule
on a proof π of ⊲PropP → P simply amounts to consider the proof term fixP (π) : P .

The lifting of the later modality For every term T of type U , there exists a lifting

nextT : (T → ⊲UT )

that transports elements of the presheaf T into elements of the presheaf ⊲UT This mor-
phism simply amounts to use the retractions θσ,T

Sp→p to lift elements of the presheaf accord-
ingly. The translation [nextT ]σp is given by

λq : Natp.λu : JT Kσ
q .match q with

| 0 => ⋆

| Sq′ => θσ,T
q→q′u

Internalizing the later modality for universes For every universe U , we can inter-
nalize the shifting induced by the later modality directly in the presheaf. This is done by
introducing a morphism

switchU : (⊲UU → U)

whose translation [switchU ]σp is defined by

λq : Natp.λf : J⊲UsKσ
q .

(λr : Natq.match r with

| 0 => 1

| Sr′ => (π1f)r′

, λr : Natq.λs : Natr.λM : Tr.match s with

| 0 => ⋆
| Ss′ => (π2f)(Pred r)s′M)

with Tr
def
= match r with | 0 => 1 | Sr′ => (π1f)r′.

The lifting and switching of the later modality are connected by the following lemma.

Lemma 4: For every T : U and every forcing condition p, [switchU(nextUT )]σp = [⊲UT ]σp .
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4.4.2 Forcing equalities on the new constructors

To make the later modality, the lifting and the switching usable in practice, we in-
troduce proof-terms that make naturality and commutativity properties explicit in the SI
layer.

For for any T : Ui and U : Ui, we add two terms comlater
T,U
Π : ⊲Uj

(Πx : T.U) →

(Πx : ⊲Ui
T. ⊲Uj

U) and comlater
T,U
Σ : ⊲Uj

(Σx : T.U) → Σx : ⊲Ui
T. ⊲Uj

U in the SI layer.

Its translation Jcomlater
T,U
Π Kσ

p is given by

λq : Natp.λf : J⊲Πx : T.UKσ
q .

match q with | 0 => (λ .λ .⋆, . . .)
| Sq′ => (λr : Natq′λu : JUKσ

r .fru, . . .)

We also add proof-terms that state the naturality of nextT with respect to T .

4.4.3 General recursive types

Before providing a definition of recursive types for any general recursive definition, we
study the property of the translation of fix.

Theorem 7: For every f : ⊲U → U and every forcing condition p, [fixUf ]σp ≡ [f(nextU(fixUf))]σp .

The theorem above is induced by the following (conversion) equalities.

Lemma 5: For every natural number p, the following holds:

1. for every T : U , J⊲UT Kσ
Sp ≡ JT Kσ

p

2. for every M : T , [nextTM ]σSp ≡ [M ]σp
3. for every f : ⊲U → U , [fixUf ]σSp ≡ [f ]σSp(Sp)[fixUf ]σp

Now, given a recursive definition f : U → U for any universe U , we can define

µUf = fixUλx.f(switchUx).

Then, using Theorem 7 and Lemma 4, we can add a proof term

recµU
: µUf = f(⊲UµUf)

which is just translated in the original layer using refl :

SI[recµU
]σp = refl[µU f ]σp .

Finally, using eq rect, we can define two morphisms foldU : Πf : (U → U).µUf →
f(⊲UµUf) and unfoldU : Πf : (U → U).f(⊲UµUf)→ µUf together with two proof terms

πfold
U : Πf : .Πx : .unfoldUf(foldUfx) = x
πunfold

U : Πf : .Πx : ..foldUf(unfoldUfx) = x
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translated using refl.
Note that compared to [BMSS11], we do not require contractiveness of the recursive

definition to compute a recursive type. But the unfolding of a recursive type introduces
uniformly a later modality in front of any use of the recursive variable.

Our definition of recursive types introduces a later modality ⊲ on the recursive type at
each unfolding. But in the particular case of recursive types satisfying the strictly positive
condition, we can automatically erase the introduced ⊲.

4.4.4 Simple Examples

The Natural Numbers

Let first define a type NatSI of natural number in the forcing layer SI, without using
Nat. We first define NatSI as µU(λT : U .1+T ). Then, writing

0SI
def
= unfoldU(λT : U .1+T )(inl(⋆)),

we can check that 0SI : NatSI . Similarly, we can define the successor function as

SSI
def
= λn : NatSI . unfoldU(λT : U .1+T )(inr(n)).

Note that the translation of SSI (in the empty environment) provides a term of MLTTU

which is already quite complex.

Binary Trees

As another example, we define binary trees on natural numbers in the SI layer :

Tree = µU(λT : U .(ε : 1) + (node : Nat× T × T )).

The properties of µU gives an induction principle annotated with the ⊲ modality.

Treeind : ΠP : Tree→ Prop, P ε→
(Πn : Nat.Πt : ⊲Tree, switch((nextP )t)

→ Πt′ : ⊲Tree, switch((nextP )t′)
→ P (node n t t′))→ Πt : Tree, P t

But using the lifting nextTree, and the equality of Lemma 4, we can define a derived
induction principle.

Tree′
ind : ΠP : Tree→ Prop, P ε→

(Πn : Nat.Πt : Tree, ⊲(Pt)→ Πt′ : Tree, ⊲(Pt′)
→ P (node n t t′))→ Πt : Tree, P t
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The lifting nextP : P → ⊲P (which gives a computational content to the rule Mono
of Gödel-Löb logic) is now used on hypotheses to weaken the formula and get the usual
induction principle

Tree′′
ind : ΠP : Tree→ Prop, P ε→

(Πn : Nat.Πt : Tree, P t→ Πt′ : Tree, P t′

→ P (node n t t′))→ Πt : Tree, P t

4.4.5 A more complex example: the pure λ-calculus

Let us consider the generalized recursive type

D
def
= µU(λT : U .T → T ).

This amounts to add in MLTTU a type satisfying the usual domain equation for the pure
lambda calculus

D = D → D.

The idea is that, although this object does not exists in MLTTU , we can manipulate it
directly in the forcing layer, and only its approximations at level n will be considered by
MLTTU ’s type checker.

For simplicity, we suppose that the function nextT is declared as a coercion and thus
we do not write it explicitly in the rest of this section. We pose

funf
def
= unfoldU(λT : U .T → T )f

and
defunf

def
= foldU(λT : U .T → T )f.

We can introduce an analogous of switchU for D defined as

↓: ⊲D → D
def
= λt : ⊲D.fun(λ : ⊲D.t)

Thus, we can define application in D as

f@s
def
=↓ (funf)s

Intuitively, the operator ↓ tags each β-reduction in the term, thus we get a pure lambda
calculus where we can keep track of places where a reduction has occurred. For example,
we can construct the usual looping term

Ω
def
= fun(λx : ⊲D.x@x)

and prove that for all integers n,

Ω@Ω = ↓n (Ω@Ω)
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where ↓n denotes n applications of ↓. Note that even Ω@Ω reduces to itself (plus a lift),
there is no problem of termination because we have here an equality but the two terms
are not convertible. Indeed, each β-redex is “guarded” by defun ◦ fun that has to be
explicitly rewritten into id to enable MLTTU ’s conversion.

In the same way, we can define the Y fixpoint combinator as

Y
def
= fun(λf.(Y ′f)@(Y ′f))

with Y ′f
def
= fun(λx.f@(x@x))

Since β-reductions are tagged, we do not have the usual equation Y g = g(Y g). Indeed,
those terms are β-equivalent, but the places where β-reductions have to be done are
different. Thus, we only get a weaker version of the unfolding lemma.

Lemma 6: For all terms g : D,

Y@g = ↓2 (g@((Y ′g)@(Y ′g))).

4.5 Forcing the Negation of the Continuum Hypoth-

esis

We now build a forcing layer where we can prove the negation of the Continuum
Hypothesis, assuming the excluded middle in the original layer (notice that, as explained
in Section 4.3.4, the excluded middle is not preserved in the forcing layer). We adapt
the usual construction of Cohen, using its reformulation in terms of topos of sheaves,
as presented in [MLM92]. As we will see, the proof is much simpler than the usual
one in classical forcing. Indeed, we do not need any hypothesis like the countable chain
condition [Jec03] on the set of forcing conditions P . This is due to the fact that we
are working with constant presheaves to translate types like Nat, so that, as we will see,
conservation of cardinals is straightforward. This would not be the case if we were working
with constant sheaves (a constant presheaf is not a sheaf in general).

In the following, P(T ) denotes the type T → Prop corresponding to the “power set”
of T . We suppose to work with resizing axiom, as defined in Section 3.1.8, so that the
definition of Prop does not need to be indexed by a universe. We build a forcing layer
where we can add a type A with injections

Nat →֒i1 A →֒i1 P(Nat)

and such that there is no surjection from Nat to A and from A to P(Nat), thus negating
the Continuum Hypothesis. The set of forcing conditions is given by

P
def
= (P(P(Nat))×Nat)→fin Prop
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where →fin denotes the type of function with finite support. This type can be defined in
MLTTU using dependent sums. The order is the usual inclusion order on functions: q ⊆ p
if the domain of p is smaller than the domain of q and the two functions coincide on their
common domain.

For a closed type T : U , we write T̂ for the constant presheaf defined as

JT̂ Kσ
p = (λq : Pp.T, λq : Pp.λr : Pq.id).

The set A that will negate the continuum hypothesis is P̂(Nat). The idea is to collapse
̂P(P(Nat)) to P(Nat) in the forcing layer. Then, using the injection from P̂(Nat) to
̂P(P(Nat)), this gives us the wanted injection i2 : P̂(Nat) to P(Nat). To sum up, we

will build injection

Nat →֒i1 P̂(Nat) →֒i2 P(Nat)

with the proofs of non-existence of surjections

Nat֌ A֌ P(Nat)

We insist on the fact that P̂(Nat) is not equal to P(N̂at) = P(Nat) since JP(Nat)Kσ
p

def
=

Nat→ (Pp → Prop) while JP̂(Nat)Kσ
p

def
= Nat→ Prop.

4.5.1 Building the injection i2

We add a new symbol f of type ̂P(P(Nat)) → P(Nat) whose translation is defined
as

[f ]σp
def
= λq : Pp.λb : P(P(Nat)).λr : Pq.λn : Nat.λs : Pr.

(s 4 r ∧ s(b, n) = true)

Theorem 8: For every forcing condition p, [f ]σp is an injection, which means that the
proposition

JΠb1, b2 : P(P(Nat)).f(b1) = f(b2)⇒ b1 = b2Kp

is provable in MLTTU plus excluded middle.

Proof Since p is a partial map from (P(P(Nat))×Nat) to Prop whose domain is finite,
we can find an m such that p(b1,m) and p(b2,m) are undefined. If b1 6= b2, we can define
a new forcing condition q that extend p such that q(b1,m) = true and q(b2,m) = false.
But then we can easily check that

[f ]σp(p)(b1)(p)(m)(q) = true

and
[f ]σp(p)(b2)(p)(m)(q) = false

Using the excluded middle, we can conclude that b1 = b2.
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Finally, i2 is built from f as:

i2
def
= P̂(Nat) →֒ ̂P(P(Nat))

f
−→ P(Nat)

The injection i1 is just obtained as the lifting of the injection from Nat to P(Nat).

4.5.2 Absence of surjections

We now prove that if there is no surjection between S and T in the ground system,
then there is no surjection between Ŝ and T̂ in the forcing layer. This is usually called
the “conservation of cardinals”.

Assume the formula

NS(T, S)
def
= (ΣF : T → S.Πs : S.Σt : T.F (t) = s)→ false

We will prove in the forcing layer the formula NS(T̂ , Ŝ).
As the restriction map on T̂ and Ŝ are equal to the identity, JNS(T̂ , Ŝ)Kε

p just enforces
that there is no F : Pq → (T → S) such that F (q) is a surjection between T and S, which
is given by NS(T, S).

4.6 Discussion and Future Work

We have introduce a modular way to extend type theory while keeping its good prop-
erties. However, some theoretical problems remain, concerning the notion of explicit
coercions of conversions and the unicity of the translation.

Indeed, if we impose equations between explicit conversions they must be taken into
accounts when defining convEq

σ,p
M,N . But as explained in Section 3.1.7, all those equality

should be based on properties on transportλT.T
U . Therefore, as [cT,U(M)]σp is defined using

transportλT.T
U , all equations between explicit conversions would probably trivially hold

in the translation.

4.6.1 Topos of trees

In [BMSS11], Birkedal et al. have studied the internal logic of the topos of presheaves
on ω. They show that this logic admits general recursive types as soon as the consid-
ered recursive definitions are contractive. In Section 4.4, we have presented a syntactic
translation of this logical layer using forcing.

Our presentation presents several advantages:
— Since we have access to the universe U , we are able to define an automatic trans-

lation from any recursive definition to a contractive recursive definition.
— General recursive types are translated into MLTTU terms, and can thus be given

computational content.
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— The type-checking of the Step-Indexed forcing Layer is decidable.
This semantics model was later extended by Birkedal and Mogelberg to intentional

Martin-Löf Type Theory with one universe in [BM13]. It should be possible to show that
their model, a presheaf category Cωop

, where C is a model of Martin-Löf Type Theory
with one universe is a model of this forcing layer. Indeed, the main difference with our
work is that they are using Tarksi-style notion of universes.

Of particularly interest in their work is a result relating fixpoint on universes with
guarded recursive types. It should be possible to import it in our setting. This would
be particularly useful because guarded recursive types as defined in [BMSS11] are eas-
ier, in certain circumstances, to work with compared to fixpoints on universes. Indeed,
they satisfies a Banach fixpoint theorem which give unicity of fixpoints. These has to
be compared to usual fixpoints theorems, like Knaster-Tarski, where we have unicity of
lowest and greatest fixpoints. With Banach fixpoint theorem, this means that these two
notions coincide, so we can use guarded recursive types to define coinductive types. Such
coinductive definitions has recently been studied by McBride and Atkey [AM13], and
Mogelberg [Møg]

4.6.2 Higher-Order Abstract Syntax

In Section 4.4.5, we have sketched a formalization of the untyped λ-calculus with
guarded recursive types. It would be interesting to link this idea to the litterature on
Higher-Order Abstract Syntax [PE88] (HOAS). The basic idea of HOAS is to use the
binder of the theory to represent the binder of the formalized language 1. In general, there
are two problems for doing this in type theory. First, it requires to define an inductive
type for D, the domain of the language, which does not satisfy the usual strictly positive
condition. Second, there can be terms in D that do not correspond to “real” λ-terms.

Despeyroux, Felty and Hirschowitz [DFH95] have proposed a way to define a weaker
version of HOAS in Coq, where they use an auxiliary type Var of variables, so that
D is then defined as (Var → T ) → T . With this workaround, function abstraction is
still defined using the abstraction of the type theory, but this is no more the case for
substitution. Then, they define a predicate to restrict inhabitants of this types to the one
which are extensionally equal to effective λ-terms. It would be interesting to adapt their
work to the new possibility of using guarded recursive types to define a general type D
without any workaround.

Maybe more interestingly, various models of HOAS has been built using a presheaf
construction over categories. One can cite the work of Fiore, Plotkin and Turi [FPT99],
the work of Hofmann [Hof99] and the work of Gabbay and Pitts [GP99]. In fact, this last
article was the origin of nominal logic. It would be interesting to see if these constructions
could be imported in our setting, but this would necessitate first to extend our presheaf
translation with categories as forcing conditions.

1. This corresponds to the definition of a shallow embedding of the language in the theory.
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4.6.3 Presheaves models of HoTT

In recent works [Shu12, Shu13], Shulman has built presheaves model of Intentional
Type Theory which conserve the Univalence Axiom. That is, from a model of Type
Theory C which validates the univalence axiom (namely sSet, the category of simplicial
sets), he has shown that the category of presheaves CDop

over a category D still validates
the univalence axiom, when D has special property (Inverse diagrams, Elegant Reedy
Category). This was then used by Lars Birkedal and Rasmus Mogelberg [BM13] to show
that the category of presheaves Cωop

validates univalence when C already validates it.

It would be interesting, once extending our work to a presheaf translation over a
category (rather than a poset), to deduce from the work of Shulman what must imposed
on the set of forcing condition to preserve the univalence axiom.

4.6.4 Forcing as a program transformation

Krivine has been one of the first to study the computational content of the forcing
translation [Kri11]. This work has been rephrased by Miquel in [Miq11], where the forcing
translation of proofs is interpreted as a program transformation on λ-terms. They focus on
classical logic while we only study an intuitionistic translation. Moreover, since they are
working in a logical system with a syntactic stratification between proofs and propositions
(PAω in [Miq11]), proof-terms and formulas are not translated uniformly, contrary to our
work.

4.6.5 From presheaves to sheaves

As we have seen in 4.3.4, our forcing translation is intuitionistic. A solution to conserve
the excluded middle would be to use sheaves instead of presheaves, for a well suited
topology (the dense or double negation topology) [MLM92]. Sheaves restrict presheaves
with gluing conditions, so we need to introduce a notion of topology on P , formalized
inside MLTTU , to define them. The best way to do it seems to use the notion of Lawvere-
Tierney topology, which provides a categorical definition of sheaves where the topology is
induced by particular function j : Prop → Prop satisfying some commutative diagrams.
The idea is then to instantiate j by ¬¬ to get the dense topology.

4.6.6 Constructive Mathematics

As we said in the introduction, one of the starting point of this forcing translation was
our previous work with Thierry Coquand [CJ10, CJ12] to give a computational content to
a result of uniform continuity of definable functionals. It would be interested to recast it
using the translation presented in this chapter. However, the translation used in this work
was not purely intuitionistic, but it was rather inspired by Beth semantics [Bet59]. That
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is, a notion of covering on forcing conditions—similar to what is used in sheaves theory—
was used. Indeed, our work was even later generalized by Escardo and Xu [XE13, Esc13]
by using sheaves models. This means that the presheaf translation presented here would
not be enough to restate these works, and we would need a sheaf translation.

An other interesting example of forcing translation in constructive mathematics we
wish to adapt is the proof of Levin [Lev77] of conservativity of the existence of an ultra-
filter on N with respect to higher-order Peano Arithmetic with the axiom of dependent
choice. This proof uses partial functions from Nat to Bool (with an infinite domain) as
forcing conditions. Defining a forcing layer on this set could allow us to give a computa-
tional content to proofs which use an ultrafilter, like Gödel’s completeness theorem or the
Ramsey theorem. It would then be interesting to compare this interpretation with the
interpretation of Krivine [Kri11].
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To achieve our goal of proving the completeness of Kripke logical relations, defined
in a direct way, for RefML, we need to link them to a fully abstract denotational model
i.e. such that the denotations of two terms are equal iff they are contextually equivalent.
The long-standing quest of such fully abstract models has seen its achievement with game
semantics.

Game Semantics [HO00, AJM00] is a powerful theory to build fully abstract denota-
tional models of various programming languages. The denotation of a term is represented
as a strategy, a set of plays between that term and any context in a game arena, which sets
the rules the plays have to satisfy. One of its most important contributions, the so-called
“Abramsky Cube”, is the characterization of the absence of various impure effects in terms
of extra conditions on the denotation of terms, namely well-bracketing for the absence of
control operators, visibility for the absence of higher-order store, innocence for pure terms.
In recent years, game semantics has been developed to deal with languages with nominal
aspects, from the ν-calculus [AGM+04], an extension with storage cells [Lai08], to ML-like
languages with higher-order nominal references [MT11b].

The starting point of this section is the nominal game semantics of Murawski and
Tzevelekos [MT11b], presented in Section 5.1, which is fully abstract for RefML, but also
for GroundML as soon as one adds a visibility condition to strategies [MT12]. As opposed
to previous games models for languages with stores, initiated by Abramsky, Honda and
McCusker [AHM98], it uses nominal techniques [Pit03], already used in [Tze07], to avoid
the problem of bad variables. In a more operational setting, Laird [Lai07] has introduced
a trace semantics for a variant of RefML, and has proven its full abstraction. This model
marries a trace representation inspired by game semantics with an operational definition,
i.e. denotations of terms are computed via a rewriting system rather than defined by
induction on their typing judgment.

In this section, we introduce a trace semantics for RefML, whose definition is a typed
variant to the one introduced by Laird. Traces are generated by an interactive reduction,
which can be seen as an extension of the usual operational semantics to open terms with
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free functional variables. So this reduction can be performed on terms like λx.M or
K[f v]. Then, the denotation of terms is defined via trace-strategies, i.e. sets of traces
that terms generate using this reduction.

Trace semantics allows a finer study of the interaction compared to game semantics,
by keeping track of the disclosure process of values (either locations or functions) between
the term and contexts. Indeed, in game semantics, one cannot generally decompose
plays into “subplays”, since we get sequences of moves where some of these moves are
no more justified, and thus left uncontrolled. With trace semantics, such unjustified
moves are simply seen as disclosed values, which can be taken care of by the interactive
reduction. Using this finer decomposition, we can prove a decidability result for the
contextual equivalence of “pure” terms of RefML, that is terms which do not use any
storage possibilities (but with unrestricted contexts). It uses crucially the control of
disclosed functions to perform surgery on traces. In the next chapter, we will see how
to perform such surgery for “impure” terms, by defining new techniques to reason on
disclosure of locations.

In fact, traces can be seen as a representation of plays used in game semantics where
the usual pointer structure, which represents the causality between the different moves,
is encoded with variables. Such variables that are of functional type are called name
pointers.

Following this idea, we prove a correspondence between this denotation of terms,
defined as set of traces, and the denotation of game semantics defined using sets of plays.
To do so, we impose on trace-strategies a categorical apparatus that capture call-by-value
languages, namely a closed-Freyd category [PR97, PT99]. It consist in

— a symmetric premonoidal category (C, I,⊗),
— a luff category C ′ of C, for which ⊗ is a cartesian product,
— a strict premonoidal functor (.)† between C ′ and C, which is the identity on objects,

such that for every object A of C, the functor ( ⊗ A)† : C ′ → C has a right adjoint.
To build such a structure on traces, we recast the definitions of game semantics from
[Lai08, MT11b] in the setting of trace semantics. The main difficulty is that the pointer
structure of traces is no more defined explicitly, but need to be rebuilt from a study of
freshness of name pointers (i.e. functional variables).

Then, we relate the usual notion of view from game semantics to sets of available player
name pointers, so that we can import the visibility condition which capture the behavior
of terms of GroundML directly on traces. Finally, modifying the interactive reduction to
restrict the opponent questions to be performed on such available player name pointers,
we can capture the contextual equivalence of GroundML with trace equivalence.

Plan of the Chapter The basic notions of game semantics (in a call-by-value setting)
and its categorical structure are introduced in Section 5.1. Section 5.1.7 recall the basic
facts of nominal game semantics.

The notion of trace is formally defined in Section 5.2.1 and its correspondence with
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plays in game semantics is drawn in Section 5.2.2. The interactive reduction is introduced
in Section 5.2.3 and the interpretation of terms as sets of traces is defined in Section 5.2.4.
Then, one of the main contribution in this chapter, presented in Section 5.3, is the com-
parison of this trace model to the game semantics model of Murawski and Tzevelekos
[MT11b], and the proof that the two are in fact equivalent. We also answer a question
asked by Laird at the end of [Lai07] about a possible trace semantics for a language with
restricted references, rephrasing the usual notion of visibility in the setting of trace se-
mantics. This is done in Section 6.7.2. Finally, in Section 5.5, we exemplify the usefulness
of trace semantics by proving that contextual equivalence of pure terms in RefML (and
also GroundML) is decidable. This gives a first example of the ideas introduced in the
next two chapters to reason on contextual equivalence.

5.1 Call-By-Value Game Semantics

Let us begin by introducing standard definitions from game semantics. The main idea
is to interpret terms as strategies, which are well-behaved sets of plays, representing their
interactions between any possible contexts (also called environments) in terms of ques-
tions/answers. These plays are formed by moves, which are either ground values (integer,
booleans, locations), or a special move ⋆ representing a functional value. Such moves
also indicates in which arena they belong, using a notion of tag introduced subsequently,
which is useful to build disjoint union of arenas. Then, plays are defined as lists of moves
with a pointer structure.

Here, we focus on call-by-value game semantics. Its main difference, compared to the
usual call-by-name game semantics, is that it uses two different arenas, depending on
whether we represent terms or values. Then, initial moves of arenas used to represent val-
ues are player answers. Our presentation follows the work of Honda and Yoshida [HY99],
in that we give a direct presentation of the semantics of terms, using a structure of closed-
Freyd category [PR97, PT99] while Abramsky and McCusker [AM98] rather build a model
of call-by-value using the work of Moggi [Mog91], i.e. via a strong monad. The two pre-
sentations are equivalent, however, our trace semantics is defined in a direct way, being
more operational. This justifies the choice of closed-Freyd categories.

5.1.1 Arenas

Plays are formed by moves, which represent actions performed by the term or the
context. They are elements of arenas.

Definition 7 (Arena). An arena A is defined as a tuple (MA, IA, λA,⊢A) such that
— MA is the set of moves,
— IA ⊆MA is the set of initial moves,
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— λA : MA → {O,P}×{Q,A} is the labeling function which associates the polarity
{O,P} and the statute {Q,A} of a move,

— ⊢A is the justification relation between MA and MA\IA, which satisfies:
— If m ⊢A m′ then λOP

A (m) 6= λOP
A (m′) ( i.e. Player and Opponent alternate).

— If m ⊢A m′ and λQA
A (m′) = A then λQA

A (m) = Q ( i.e. an answer is necessarily
justified by a question).

In the following, we write i, a, q, o, p respectively for initial, answers, questions, oppo-
nent or player moves. Unusually, moves comes with a tag, which are words ξ from the
alphabet {l , r}, where the concatenation is written ξ · ξ′ and the empty tag (i.e. the
empty word) is written ε. Such tags are used to indicate to which arena a move belongs
to, which is useful when we build arenas from other ones. It avoids to use disjoint union
(seen as coproduct) with the usual injections inl, inr. So moves m are defined as pairs
(a, ξ) of an atom (which can be a ground value, a special symbol ⋆ or a tuple of moves),
and a tag ξ We extend the concatenation of tags ξ to act on moves m = (a, ξ), written
ξ′ · m, and defined as (a, ξ′ · ξ). Such concatenation operation is then extended to act
pointwisely on set and relations of moves.

In call-by-value game semantics, we have to introduce two kinds of arenas, depending
on whether we want to interpret terms or values. Such distinction is not present in usual
call-by-name game semantics.

Definition 8 (Term-Arena). A Term-Arena A is an arena (MA, λA,⊢A) which also
satisfies that for all iA ∈ IA, λA(m) = (O,Q).

Definition 9 (Value-Arena). A Value-Arena A is an arena (MA, λA,⊢A) which also
satisfies that for all iA ∈ IA, λA(m) = (P,A).

Notice that we have changed the names usually used in the literature on call-by-value
games, where a term-arena is called prearena and value-arena is simply called an arena.
We use this new terminology to insist on the fact that the interaction of a term with
a context will take place in a term-arena. Indeed, before reducing to a value, a (non-
closed) term can interact with its contexts. This is for example the case of the term
let x = f 3 in λg.g x, where f is a function of type Int → Int. In a call-by-value
setting, an interaction of this term can be seen as:

— Player ask the value of f to the context with the value 3,
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— Opponent answers a value n,
— Player answers λg.g x (we will see that it is represented by a move ⋆),
— then Opponent can interrogate this function.

Let us now illustrate those definitionsby introducing some Value-arenas and constructions
on Values-arenas.

Definition 10 (Ground-Type Value-Arenas). We associate to each ground type ι

the Value-arena JιK def
= (MJιK, IJιK, λJιK,⊢JιK) defined as

— MJιK
def
= {(v, ε | v a closed value of type ι} and IJιK

def
= MJιK,

— λJιK
def
= m 7→ (P,A),

— ⊢JιK= ∅.

So for example, the arena JIntK associated to the type Int is defined as the set of moves

MJIntK
def
= {n̂ | n ∈ Z}, IJIntK = MJIntK with the labeling function λJIntK

def
= n̂ 7→ (P,A) with

n ∈ Z.
Even if we do not consider type products in our language, we need to define the product

of two value-arenas to interpret contexts.

Definition 11 (Product Value-Arena). Let A,B two Value-Arenas, we define the
Value-arena A⊗B as the triple (MA⊗B, IA ⊗B, λA⊗B,⊢A⊗B) where

— IA⊗B
def
= ((l · IA × r · IB))

— MA⊗B
def
= IA⊗B ⊎ l · (MA\IA) ⊎ r · (MB\IB)

— λA⊗B
def
= [(l · iA, r · iB) 7→ OQ] ⊎ l · λA ⊎ r · λB

— ⊢A⊗B
def
= {((l · iA, r · iB), l ·m) | iA ⊢A m} ⊎ {((l · iA, r · iB), r ·m) | iB ⊢B m} ⊎

(l · ⊢A|(MA\IA)2) ⊎ (r · ⊢B|(MB\IB)2)

Definition 12 (Arrow Value-Arena). Let A,B two Value-Arenas, we define the
Value-arena A⇒ B as the triple (MA⇒B, IA⇒B, λA⇒B,⊢A⇒B) where

— IA⇒B
def
= {⋆}

— MA⇒B
def
= IA⇒B ⊎ (l ·MA) ⊎ (r ·MB)

— λA⇒B
def
= [⋆ 7→ PA] ⊎ l · (λA[iA 7→ OQ]) ⊎ r · λB

— ⊢A⇒B
def
= {(⋆, l · iA)} ⊎ {(l · iA, r · iB)} ⊎ (l · ⊢A) ⊎ (r · ⊢B)
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Definition 13 (Arrow Term-Arena). Let A,B two Value-Arenas, we define the
Term-arena A→ B as the triple (MA→B, IA→B, λA→B,⊢A→B) where

— IA→B = IA

— MA→B
def
= (l ·MA) ⊎ (r ·MB)

— λA→B
def
= l · (λA[iA 7→ OQ]) ⊎ r · λB

— ⊢A→B
def
= {(l · iA, r · iB)} ⊎ (l · ⊢A) ⊎ (r · ⊢B)

5.1.2 Plays

We now consider finite sequences of moves s = m1 . . .mn of an arena A equipped
with a pointer structure, that is, for every move mi (i ∈ {2, . . . , n}) which is not in IA,
a justification pointer to a move mj such that j < i and mj ⊢A mi. Such sequences of
moves are called justified sequences when additionally only m1 ∈ IA. When a move m of a
justified sequence s points to an other move m′, we say that m′ justifies m. If moreover m′

is a question and m an answer, we say that m answers m′. Taking a justified sequence s,
we write s′ ⊑ s when s′ is a prefix of s. If moreover s′ is of even-length (resp. odd-length),
we write s′ ⊑even s (resp. s′ ⊑odd s). When m is a move of s, we write s≤m for the prefix
of s whose last element is m. Considering a justified sequence of moves s on an arena
A→ B, we often need to consider the subsequences s|A (resp. s|B) on the arena A (resp.
B), defined as the subsequences of s formed by moves m = (a, ξ) such that (a, l · ξ) (resp.
(a, r · ξ)) is a move of s.

We now introduce the notion of plays, which are justified sequences satisfying the
constraints of alternation and well-bracketing.

Definition 14 (Play). A play s on an arena A is a justified sequence on A such that
— each answer a of s is justified ( i.e. answers) by the last unanswered question of

s≤a (Well-Bracketing),
— for every adjacent moves mn of s, λOP

A (m) 6= λOP
A (n) (Alternation).

The set of plays on an arena A is written PA. When working on GroundML, we need
to restrict plays with the usual notion of P-visibility and O-visibility, defined using the
view of a justified sequence.

Definition 15 (P-View). The view psq of an odd-length justified sequence s on A is
the subsequence of s defined by induction:
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— pεq = ε,
— piAq = iA
— ps′ ·m · s′′ · nq = ps′q ·m · n if n points to m.

Definition 16 (P-Visibility). A justified sequence s on A satisfies the P-visibility con-
dition iff for all s′p ⊑even s, p points to a move in ps′q.

P-visibility restricts the possibilities of interactions terms have, so that they correspond
to terms of GroundML. However, contexts can still use higher-order references in this
setting. To forbid it, we need to introduce the dual notion of O-visibility.

Definition 17 (O-Visibility). A justified sequence s on A satisfies the O-visibility
condition iff for all s′o ⊑odd s, o points to a move in ps′q.

Then a justified sequence is said to be visible when it is both P - and O-visible. This
characterization captures exactly GroundML.

5.1.3 Strategies

We now introduce the notion of strategies, which are sets of plays on an arena A which
represent the denotation of terms.

Definition 18 (Strategy). A strategy υ on an arena A, written υ : A is a set of even-
length plays on A which is downward-closed, i.e. for all sop ∈ υ, we have then s ∈ υ.

One of the most important strategy is the so-called copycat, which represents the
identity function. Taking an arena A, we define idA : A→ A as the set of plays

{s ∈ PA→A | s even ∧ s|Al
= s|Ar

}

where Al (resp. Ar) represents the left (resp. the right) occurence of A in the arena
A→ A. More generally, we can define the projections πi : A1 ⊗A2 → Ai for i ∈ {1, 2} in
the same way.



5.1. CALL-BY-VALUE GAME SEMANTICS 115

To get a denotational model, we still have to define a way to compose the denotation
of two terms of type A → B and B → C. This is done in two steps, called parallel
composition and hiding. More precisely, the parallel composition of a strategy υ : A→ B
and a strategy κ : B → C, written υ||κ is a set of legal sequence of moves ofMA,MB,MC .
Then, the hiding simply removes the moves of MB, and update the pointer structure, so
that to get a new strategy, written υ;κ : A→ C.

Let us first introduce the term-arena A → B → C associated to three value-arenas
A,B,C 1:

— IA→B→C
def
= (l · l ) · IA

— MA→B→C
def
= (l · l ) ·MA ⊎ (l · r ) ·MB ⊎ (r · r ) ·MC ,

— λA→B→C
def
= (l · l ) · (λA[iA 7→ OQ]) ⊎ (l · r ) · (λB[iB 7→ PQ] ⊎ (r · r ) · (λC)

— ⊢A→B→C
def
= {(l · l · iA, l ·r · iB)}⊎{(l ·r · iB, r ·r · iC)}⊎(l · l · ⊢A)⊎(l ·r · ⊢B)⊎(r ·r · ⊢C)

Then, taking a justified sequence s ∈ A→ B → C, we define the following restricted
justified sequences:

— s|AB is the justified subsequence of s formed by all moves (a, ξ) s.t. (a, l · ξ) is a
move of s,

— s|BC is the justified subsequence of s formed by all moves (a, l · ξ) s.t. (a, l · r · ξ)
is a move of s, and all moves (a, ξ) s.t. (a, r · ξ) is a moves of s

— s|AC is the justified subsequence of s formed by all moves (a, l · ξ) s.t. (a, l · l · ξ)
is a move of s, and all moves (a, ξ) s.t. (a, r · ξ) is a moves of s, and where we add
pointers from moves m ∈MC to m′ ∈MA if there exists a move n = (a, l · r · ξ) of
s s.t. r ·m points to n and n points to l ·m′ in s.

Notice that s|AB (resp. s|BC , s|AC) is a justified sequence of A → B (resp. B → C,
A → C), so that the labeling function of their moves are supposed to be taken in these
term-arenas, and not in A→ B → C.

We can now define the set of interaction sequences Interact(A,B,C) on A,B,C as
the justified sequences s over A → B → C which are well-bracketed and which satisfy
s|AB ∈ PA→B, s|BC ∈ PB→C and s|AC ∈ PA→C .

The parallel composition of two strategies is then simply defined as the set of interac-
tion sequences over Interact(A,B,C) whose respective restrictions on AB and BC are
in the corresponding strategies.

Definition 19 (Parallel Composition of strategies). Given two strategies υ and κ
respectively on the arenas A → B and B → C, we define their parallel composition
on the arena A → B → C, written υ||κ as the set {s ∈ Interact(A,B,C) | s|AB ∈
υ and s|BC ∈ κ}.

1. Notice that this arena cannot be defined neither as (A → B) → C nor as (A → B) → C because
→ transformed two value-arenas into a term-arena.
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Notice that the sequentiality between υ and κ in the definition of υ||κ is imposed by
the fact that only initial moves (that is player answers) of B can justify initial moves of
C in the definition of A → B → C. We can now define the composition of strategies by
simply hiding the moves occurring in the value-arena B.

Definition 20 (Composition of strategies). Given two strategies υ and κ respec-
tively on the arenas A → B and B → C, we define the composed strategy υ;κ on the
arena A→ C, as the set {s|AC | s ∈ υ||κ}.

This composition can be shown to be associative. This means that we can build a
category G, whose objects are value-arenas A,B and morphisms are strategies on A→ B.

5.1.4 Pairing

Taking an arena A and a strategy υ : B → C, we define the left identity pairing
(A ⊗ υ) : A ⊗ B → A ⊗ C as the strategy formed by the plays {s ∈ PA⊗B→A⊗C | s|BC ∈
υ and s|AA ∈ idA}. The right identity pairing (υ⊗A) : B ⊗A→ C ⊗A is defined dually.
Then, taking two strategies υ : A → B and κ : C → D, we define their left pairing,
written υ ⊗l κ : A⊗ C → B ⊗D as (υ ⊗ C); (B ⊗ κ).

However, a problem appears: the product ⊗ is not cartesian—it is not even monoidal.
This is due to the fact that we could have defined in the same way a right pairing, as
(A ⊗ κ); (υ ⊗ D), and there is no reason for left and right pairings to coincide. This is
related to the fact that to define an operational semantics for the pairing 〈M1,M2〉 in
RefML, one need to fix the order of evaluation: either we begin with evaluating M1, or
with evaluating M2. This problem does not appear in call-by-name languages. Notice
that ⊗ is still a premonoidal product, i.e. it is functorial in each of its component.

5.1.5 Single-Threaded Strategies

To solve this lack of a cartesian product, we now define a luff category 2 GST T of G,
formed by single-threaded strategies. This category GST T is better behaved, since it is a
cartesian closed category. Here, we follow the presentation of Laird [Lai08].

Definition 21. A strategy υ : A is said to be total if for all every initial move i ∈ MA,
there exists a player answer a such that ia ∈ υ.

2. a luff (as opposed to full) category is a subcategory which keeps the same objects.
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Definition 22. A strategy υ : A is said to be single-threaded if it is total and for all
ias ∈ υ, there exists at most one move of s which is justified by a.

Then, taking a play s = ias′, we define its current thread in the following way:
— thr(ias′m) = iam if m is justified by a,
— thr(ias′m) = thr(ias′)m if m is justified by i,
— thr(ias′m) = thr(ias′′)m if m is justified in s′. Then, s′′ is defined as the longest

prefix of s′ such that the move which justifies m is in thr(ias′′).
This definition extends to strategies: thr(υ) is the set of the current threads of plays
s ∈ υ. It is in fact the largest single-threaded strategy contained in υ.

A play s = ias′ over a term-arena is said to be thread-independent if for all s′′p ⊑even s,
thr(s′′p) = thr(s′′)p. The set of thread-independent plays on an arena A is written
P ti

A . Once again, the definition of thread-independent plays extends straightforwardly to
strategies.

Then, we can define a“shuffle”operation (·)† which transforms a single-threaded strat-
egy υ on A into a thread-independent strategy υ†, defined as {s ∈ υ | |s| ≤ 2} ∪ {s ∈
P ti

A | ∀s
′ ⊑even s.γ(thr(s′)) ∈ υ}. This operation satisfies the following equality:

Lemma 7: For any thread-independent strategy s, thr(s)† = s.

We can now formally define the category GST T whose objects are value-arenas and
whose morphisms are single-threaded strategies. The composition of two single threaded
strategies υ, κ is then defined as υ†;κ.

Then, one can easily see that ⊗ is a cartesian product in GST T . Indeed, taking two
single-threaded strategies υ : A → B and κ : A → C, one can define their pairing
υ⊗κ : A→ B⊗C as the set of single-threaded plays s such that s|A,B ∈ υ and s|A,C ∈ κ.
From s single-threaded, we can write it as iaos′, where a is a player answer and o and
opponent question. Then, o is either in the arena B or C, and there is no other opponent
questions justified by a in s. Thus υ ⊗ κ is indeed well-defined. Moreover, the operation
(·)† is indeed a premonoidal functor between GST T and G, as proven in [Lai08].

5.1.6 Interpretation of Terms

Let A,B,C three value-arenas. Then there exists a bijection ΛB
A,C between strategies

on (A⊗B)→ C and single-threaded strategies on A→ (B ⇒ C), defined as

υ 7→ {ε} ∪ {m ⋆ | m ∈ IA} ∪ {m ⋆ ns | 〈m,n〉 s ∈ υ}

Using it, we introduce the evaluation function, evA,B : ((A⇒ B)⊗ A)→ B defined as

evA,B
def
= (ΛA

A⇒B,B)−1(idA⇒B).
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One can check that for every strategies υ : (A⊗B)→ C, we have

((ΛB
A,C(υ))†⊗B); evB,C = υ. This justifies the use of evB,C to interpret applications of

terms. Taking a value-arena A, we thus have an adjunction (A⇒ ) and (·)†⊗A between
G and GST T . As explained in [Lai08], the categories G,GST T together with the premonoidal
functor (·)† is a closed-Freyd category [PT99]. We now have all the ingredients to define
the interpretation of basic terms of a call-by-value λ-calculus:

Jx1 : τ1 . . . xn : τn ⊢ xi : τiK def
= πi

JΓ ⊢ λx.M : σ → τK def
= Λ

JσK
JΓK,JτK(JΓ, x : σ ⊢M : τK)†

JΓ ⊢M N : τK def
= δ†

JΓK ; (JΓ ⊢M : σ → τK⊗l JΣ; Γ ⊢ N : σK) ; evJσK,JτK

where δA : A→ A⊗ A is the usual diagonal coming from the cartesian product of GST T .

5.1.7 Game Semantics for RefML

We now briefly sketch the game semantics model of RefML developed by Murawski
and Tzevelekos in [MT11b]. Previous works have studied references in game semantics,
however they generally represent them in an indirect way, using two methods to read and
write them. However, such presentations suffer from the problem of “bad variables”, a
problem first identified by Reynolds [Rey78]. Indeed, using this representation, there is
inhabitants of reference types which are not “real” locations of the heap. This forbid to
perform any test of equality of locations.

To build a model of“good”references only, nominal sets are used to represent strategies.
In their model, plays are formed by moves-with-heap 3, that is a pair formed by a move m
and a heap h, written mh. Elements stored in theses heaps are not standard values, but
rather moves. For ground types, this makes no difference, but for functional types τ , this
means they can only store initial moves ⋆ of MJτK. The domain of these heaps contain all
the locations that both the term and the context are aware of.

To define a play over an arena A, one must allow extra moves which are not from A,

but from the set of moves Mφ
def
=
⊎

τ,σ MJτ→σK. That is, plays over an arena A are formed
by moves inMA⊎ s ·Mφ, where s is a new tag used to distinguish these moves. Such moves
represent callbacks generated from higher-order references. This forces us to extend the
notion of justification pointers, such that a move-with-heap mh of a justification sequence
s can be justified by a location l which appears in the heap h′ of a previous move nh′

.
Such moves are said to be l-justified.

To control the domain of heaps which can appears in move-with-heaps of a play, we
define the set of available names of a justified sequence s, noted Av(s), in the following
way:

— Av(ε) = ∅

— Av(smh) = h∗(Av(s) ∪ ν(m))

3. Heaps are called stores in [MT11b].
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where h∗(S)
def
=

⋃

j≤0

hj(S) and h0(S) = S, hj+1(S) = h(hj(S)) ∩ Loc.

Every play must satisfy the frugality condition: for any prefix s′mh of s, dom(h) =
Av(s′mh). Then, we enforce the definition of strategies to be nominally closed:

Definition 23 (Strategy). A strategy υ on an arena A is a set of even-length plays on
A satisfying:

— if sohph′
∈ υ then s ∈ υ,

— if s1p
h1
1 , s2p

h2
2 ∈ υ and s1 ∼ s2 then s1p

h1
1 ∼ s2p

h2
2 ,

— if s1 ∈ υ and s1 ∼ s2 then s2 ∈ υ.

The definition of the composition of strategies has to be modified, to control the way
these extra moves from Mφ are used. This is done via the notion of copycat triple, that
will be directly introduced in the setting of trace semantics later.

Finally, an important fact to notice is that there is no circularity issue with the defini-
tion of this model, unlike what happened for other operational or denotational model of
higher-order references. For example, this was not the case of the previous nominal game
model developed by Tzevelekos [Tze07, Tze08], where the circularity was resolved using
tools from domain theory. Here, the circularity is avoided by cutting it, i.e. by repre-
senting strategies of higher-order functions stored in the heap just with their first moves,
namely ⋆. Then, global conditions are imposed when composing strategies to control the
way callbacks performed via these higher order references are done. The circularity would
have appeared if heaps had stored plays rather than initial moves.

5.1.8 Full Abstraction of Game Semantics

We now state that the game semantics model for RefML presented in [MT11b] is fully
abstract, namely that it captures exactly the contextual equivalence. Due to the presence
of divergence, one must restrict the strategies we consider so that only complete plays are
taking into account.

Definition 24. A play s is said to be complete if every questions of s are answered.
The set of complete plays of a strategy υ is written comp(υ).

Then, one can state the wanted theorem.

Theorem 9 (Full Abstraction of the Game Semantics): LetM1,M2 two terms such
that Σ; Γ ⊢ M1,M2 : τ . Then Σ; Γ ⊢ M1 ≃ctx M1 : τ iff comp(JΣ; Γ ⊢M1 : τK) =
comp(JΣ; Γ ⊢M2 : τK).
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5.2 Trace Semantics

We now introduce a semantics for RefML where denotations of terms are sets of traces.
It is a variant of the work of Laird [Lai07] more amenable to a comparison with game
semantics by taking track of type informations. Traces are used to represent all possible
interactions of terms with contexts, and are generated by an interactive reduction which
generalizes the small-step reduction of Figure 3.8 in two ways. First, it allows us to reduce
open terms, and more specifically terms with free functional variables. That is, it becomes
possible to reduce a term K[f u], where f is a free variable of type σ → τ , either to K[v]
for any value v of type τ , if τ is a ground type; or to K[f ′] for any variable f ′ free in K if
τ is a functional type. This is used to reduce λx.M when x is of functional type, so that
we can deal with x symbolically.

Second, to be able to generate all possible executions, we need to keep track of values
disclosed to contexts, namely location—so that a context can set arbitrary values in it—or
λ-abstraction—so that a context can call it at any time when it takes control back.

Notice that this reduction is history-independent, i.e. the reduction of a callback
K[f v] does not depend on the possible previous occurrences of K ′[f v] in the reduction.
This is due to the fact that our language has references, so that contexts can keep track of
the number of times their functional arguments provided to the term are called, and thus
give each time a different answer. This corresponds to the fact that strategies for RefML
are not innocent. Due to this last point, the definition of a similar interactive reduction
for a pure language would be definitely more tedious.

5.2.1 Game-like Definitions

We start introducing traces following the usual presentation of game semantics, mim-
icking the definitions of the previous section. The notion corresponding to a game move
is called here an action. Actions are formed over ground values and variables, used to
represent higher-order values. These variables, of functional type, are called opponent and
player name pointers. opponent name pointers represent higher-order values provided by
contexts (i.e. opponent) to terms (i.e. player), while it is the opposite for player name
pointers. The set of name pointers, which is a subset of Var is written P, and the set of
free name pointers (i.e. its supports) of an element X is written νP(X). There are four
kinds of basic actions:

— a question of the term (here named Player) via a name pointer x with argument
v, represented by the action x̄ 〈v〉,

— a question of the context (here named Opponent) via a name pointer x with argu-
ment v, represented by the action x 〈v〉,

— an answer by Player of the value v, represented by the action 〈v̄〉,
— an answer by Opponent of the value v, represented by the action 〈v〉.

A name pointer y appearing as an argument of a player question x̄ 〈y〉 or in a player
answer 〈ȳ〉 is called a player name pointer. In the same way, a name pointer y appearing
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as an argument of an opponent question x 〈y〉 or in an opponent answer 〈y〉 is thus called
an opponent name pointer. This means that being an opponent or a player name pointer
depends on the action, and is not inherent to the name pointer. The set of free player
and opponent name pointers (i.e. their supports) of an element X formed by actions is
respectively written νP

P (X) and νO
P (X). We also consider special opponent questions ? 〈v〉

where the name-pointer which is questioned is omitted, which represent initial moves.

Actions a are defined as pairs (a, ξ) of a basic action a and a tag ξ, which is a word
over the alphabet {l , r , s}, where the concatenation is written ξ · ξ′ and the empty word
is written ε. Such tags are used to indicate to which set (i.e. trace-arena) an basic
action belongs to. This is useful to avoid the use of disjoint unions (as coproduct) and
the corresponding injections inl, inr which are usually used in game semantics. In our
setting, such injections are represented respectively by tags beginning with l and r , while
s is used to represent actions corresponding to functions stored in heaps.

Player, Opponent and initial actions are respectively written p, o and i. The labeling
of actions (i.e. the fact they are player or opponent and question or answer actions) is
hard-wired, while labeling of moves in game semantics depends on the underlying arena
the moves belong to (via the function λ). As we will see, this complicates some definitions
(arrow arenas and restrictions of traces to a given arena) where we need to change the
labeling of actions.

We define the operation a⊥ as the operation which simply transform an opponent
action into the corresponding player action, and vice-versa (leaving the tag unchanged).
It is extended to sets and relations of actions. Then, we introduce the notion of trace
arenas, which are simply pairs (M, I,⊢) of a set of actions M, a set of initial actions
I ⊆ M and a justification relation ⊢⊆ M ×M\I. Following the correspondence with
game semantics, we define: value-arenas (resp. term-arenas) as arenas whose initial
actions are player answers (resp. opponent question).

From two trace value-arenas A,B we construct the value arenas A⊗B and A⇒ B and
the term arena A→ B in Figure 5.1. In the definition of A→ B, the symbol ? represent the
initial opponent question where no name pointer is present. To each type τ , we associate
a trace value-arena [τ ] as:

— [Unit]
def
= (MUnit,MUnit,∅) where MUnit

def
= {

〈
(̄)
〉
},

— [Int]
def
= (MInt,MInt,∅) where MInt

def
= {〈n̄〉 | n ∈ Z},

— [ref τ ]
def
= (Mref τ ,Mref τ ,∅) where Mref τ

def
= {

〈
l̄
〉
| l ∈ Locτ},

— [σ → τ ]
def
= [σ]⇒ [τ ].

To relate actions to the evolution of the heap, we introduce actions-with-heap on
a trace-arena A, i.e. pairs (a, h) of an action a ∈ MA and a functional-free heap h,
that is a heap where stored higher-order values are represented by name pointers. An
action-with-heap (a, ξ, h) is said to introduce the name pointer x if either a is of the form
ȳ 〈x〉 , y 〈x〉 , 〈x̄〉 or 〈x〉, or if x is in the co-domain of h (written codom(h)). In the latter
case, we say that x is l-introduced when h(l) = x.
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IA⊗B

def
= l · IA × r · IB

MA⊗B

def
= IA⊗B ⊎ l · (MA\IA) ⊎ r · (MB\IB)

⊢A⊗B

def
= {((l · iA, r · iB), l · a) | iA ⊢A a} ⊎ {((l · iA, r · iB), r · a) | iB ⊢B a}
⊎(l · ⊢A|(M

A
\I
A

)2) ⊎ (r · ⊢B|(M
B

\I
B

)2)

IA⇒B

def
= {〈x̄〉 | x ∈ P}

MA⇒B

def
= IA⇒B ⊎ l · (MA\IA)

⊥ ⊎ {(y 〈u〉 , l · ξ) | (〈ū〉 , ξ) ∈ IA, y ∈ P} ⊎ r ·MB

⊢A⇒B

def
= {(〈x̄〉 , (x 〈u〉 , l · ξ)) | x ∈ P, (〈ū〉 , ξ) ∈ IA}
⊎{((x 〈u〉 , l · ξ), l · a) | (〈ū〉 , ξ) ∈ IA, a ∈MA, (〈ū〉 , ξ) ⊢A a}

⊎{((x 〈u〉 , l · ξ), r · iB) | (〈ū〉 , ξ) ∈ IA} ⊎ (l · ⊢A|(M
A

\I
A

)2)⊥ ⊎ (r · ⊢B)

IA→B

def
= {(? 〈u〉 , l · ξ) | (〈ū〉 , ξ) ∈ IA}

MA→B

def
= IA→B ⊎ l · (MA\IA)

⊥ ⊎ r ·MB

⊢A→B

def
= {((? 〈u〉 , l · ξ), r · iB) | (〈ū〉 , ξ) ∈ IA, iB ∈ IB} ⊎ (l · ⊢A|(M

A
\I
A

)2)⊥ ⊎ (r · ⊢B)

⊎{((? 〈u〉 , l · ξ), l · a) | (〈ū〉 , ξ) ∈ IA, a ∈MA, (〈ū〉 , ξ) ⊢A a}

Figure 5.1: Definition of compound arenas

Such actions which l-introduce name pointers, called φ-actions, correspond to callbacks
coming from disclosed locations storing functions. They are living in the set Mφ defined
as
⋃

τ,τ ′ M[τ→τ ′]. Using it, we define the set TraceA over a trace-arena A as the set of
sequences T of actions-with-heap on MA ⊎ (s ·Mφ) such that for each name pointer x in
T , x is introduced by at most one action-with-heap in T . TraceA can be seen as a nominal
set over Loc and P. We write T ′ ⊑ T when T ′ is a prefix of T , and T ′ ⊑even T when
furthermore T ′ is of even length. Taking an action (a, h) of T , we define T≤(a,h) as the
prefix of T whose last action is (a, h).

We say that a trace T ∈ TraceA is justified if every name pointer x in T is introduced
in T . Then, we define the depth of an action (a, h) in a trace T , written depthT (a, h) as
the difference between the number of questions and the number of answers of T1, where
T = T1 · (a, h) · T2.

Definition 25. Let (a1, h1), (a2, h2) two actions-with-heap such that (a1, h1) appears
before (a2, h2) in a trace T . We say that (a1, h1) justifies (a2, h2) when:

— a2 is an answer and a1 is the latest question of T appearing before a1 s.t.
depthT (a2, h2) = depthT (a1, h1) + 1,

— or a2 is a question x̄ 〈u〉 or x 〈u〉, and (a1, h1) is the first action introducing x, so
a1 is either equal to 〈x̄〉 , 〈x〉 , ȳ 〈x〉 , y 〈x〉 or x ∈ codom(h1). In the latter case, we
say that x is l-justified when h1(l) = x.

A question of T which does not justify any answer is said to be pending.
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We define the set of available locations of a trace T , written Av(T ), as Av(ε)
def
=

∅ and Av(T · (a, h))
def
= h∗(Av(T ) ∪ νL(a)), where h∗(S)

def
=

⋃
j≤0 h

j(S) with h0(S)
def
=

S and hj+1(S)
def
= h(hj(S)) ∩ Loc.

A justified trace over A is said to be legal if only its first action-with-heap is in IA
and it alternates between player and opponent actions, and is said to be a play if it is
furthermore frugal, i.e. for all T ′ · (a, h) ⊑ T , dom(h) = Av(T ′ · (a, h)). The set of legal
traces (resp. plays) on A is written LA (resp. PA).Using all this definitions, we can finally
introduce the notion of trace-strategy used to define the denotation of terms.

Definition 26. A trace-strategy s over a trace arena A as a set of even-length plays on
A such that:

— If T · (o, h) · (p, h′) ∈ σ then T ∈ σ.
— If T ∈ σ and T ∼ T ′ then T ′ ∈ σ.
— If T1 · (p1, h1) and T2 · (p2, h2) are in σ and T1 ∼ T2, then T1 · (p1, h1) ∼ T2 · (p2, h2).

5.2.2 A correspondence between Traces and Plays

There is a direct correspondence between actions introduced in this section and moves
in game semantics as introduced before, where we suppose that injections coming from
coproducts are also represented by tags. It is obtained by transforming questions x̄ 〈v〉
and x 〈v〉 into v, transforming answers 〈v̄〉 and 〈v〉 into v, and then transforming every
remaining name pointers into ⋆, the initial move of game arenas for functional types 4.
The function which performs this two-step translation is written θ, which transforms
actions from a trace-arena A to moves to the corresponding game-arena A, leaving tags
unchanged. The labeling function is then defined straightforwardly.

Then, we extend this correspondence between justified traces and justified sequences
of game semantics, with the extra property that justified traces are always well-bracketed.
More precisely, we first extend straightforwardly the function θ from actions-with-heaps
to move-with-heaps, which transform name pointers stored in heaps into the move ⋆,
and then pointwisely from traces to sequences of moves. So we define a function Θ
which transforms a justified trace T on an arena A to a sequence of moves θ(T ) on the
corresponding arena A, and such that for two actions-with-heaps (a1, h1), (a2, h2) of T ,
there is a pointer from θ(a2, h2) to θ(a1, h1) when (a2, h2) is justified by (a1, h1). Notice
that two traces which are P-nominal equivalent give rise to the same sequence of moves.

Extending Θ to sets of traces, it is direct that Θ(s) is a game-strategy on an arena A
when s is a trace-strategy on the corresponding arena A.

4. We do not need to transform the symbol “?” since it is automatically removed, appearing only in
? 〈v〉.
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5.2.3 Interactive Reduction

We now introduce an interactive reduction which generates traces from terms, repre-
senting their interactions with any possible applicative contexts K[•τ,ξ], where the symbol
•, representing “hole” (i.e. a pending question), is tagged with a type τ and a tag ξ, rep-
resenting the type and the arena of the expected answer which will fill the hole. This

reduction is defined on “stacks” (M, τ, ξ) ·
−−−−−−→
(Ki, τi, ξi) formed by a term M and contexts

−→
Ki for player configurations, or on stacks

−−−−−−→
(Ki, τi, ξi) for opponent configurations. Such

elements of the stacks comes also with a type τ and a tag ξ. The empty stack is simply
written ♦, and we write F for the top element of a stack, which can either be a termM , a
context K[•] or the empty stack ♦. When Player provides a higher-order value to Oppo-
nent, either via a callback (i.e. a question) or directly when reducing to a λ-abstraction
(i.e. an answer), they are stored in environments γ, which are partial maps from P to
Val. Then Opponent can interrogate what is stored in γ, by asking a question. Opponent
only provides opponent name pointers to represent higher-order values. They are stored
in a set I ⊆ P. They can also be interrogated by player.

To represent disclosure of locations, we use a set D which grows as the term or the
context discloses new locations. To determine which locations are disclosed when a value
v is played with a heap h, we define a function discl(v, h,D) as

— h∗(D ∪ {l}) if v is a location l,
— h∗(D) otherwise.

We simply write discl(h,D) for h∗(D). The complement of the set D is written D.

Then, the interactive reduction is defined between player configurations 〈M ·
−→
Ki, γ, I, h,D〉

and opponent configurations 〈K[•] ·
−→
Ki, γ, I, h,D〉. It is defined in Figure 5.2.

Let us explain the different rules:

— The rule P-Intern allows us to perform the usual (operational) reduction of terms.
Notice that it uses the non-deterministic reduction 7→nd rather than the usual 7→,
in order to be exhaustive w.r.t. names of locations created.

— The rules P-AnsG and P-Ans represent player answers. If the answer is a ground
value, then if it is a location it is put in D′, otherwise it is simply forgotten by
Opponent since it has no meaning to interrogate it. Otherwise, it is a higher-order
value, which is thus stored in γ′. Player can also disclose indirectly either new
locations or new higher-order values via the already disclosed locations. The new
disclosed locations are caught via discl(v, h,D), while disclosed higher-order values
live in dom(hfn) ∩D′ (recall that hfn is the subheap of h which stores higher-order
values), so that they are replaced by fresh player name pointers in h′ and γ is
updated consequently.

— The rules O-AnsG and O-Ans represent opponent answers. When Opponent
answers a location, it cannot be one which is private to Player. This explain the
condition “v is ground and not in dom(h) ∩D” in the definition of O-AnsG. And
when it should be a higher-order value, it is simply represented by a fresh opponent
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P-Intern 〈(M, τ, ξ) ·
−→
Ki, γ, I, h,D〉 −−−−−−→ 〈(M ′, τ, ξ) ·

−→
Ki, γ, I, h

′, D〉

(when (M,h) 7→nd (M ′, h′))

P-AnsG 〈(v, ι, ξ) ·
−→
Ki, γ, I, h,D〉

(〈v̄〉,r ·ξ,h′
|D′ )

−−−−−−−→ 〈
−→
Ki, γ

′, I, h′, D′〉

(v of type ι, γ′ = γ ·
−−−−−−−−−−−−−→
[xi →֒ (h(li), τi, s)])

P-Ans 〈(v, τ, ξ) ·
−→
Ki, γ, I, h,D〉

(〈x̄〉,r ·ξ,h′
|D′ )

−−−−−−−→ 〈
−→
Ki, γ

′, I, h′, D′〉

(x fresh, γ′ = γ · [x →֒ (v, τ, r · ξ)] ·
−−−−−−−−−−−−−→
[xi →֒ (h(li), τi, s)])

P-QuestG 〈(K[x v], τ, ξ) ·
−→
Ki, γ, I, h,D〉

(x̄〈v〉,l ·ξ′,h′
|D′ )

−−−−−−−−→ 〈(K[•ι,ξ′ ], τ, ξ) ·
−→
Ki, γ

′, I, h′, D′〉

((x, ι→ σ, ξ′) ∈ I, v of type ι, the xi fresh, γ
′ = γ ·

−−−−−−−−−−−−−→
[xi →֒ (h(li), τi, s)])

P-Quest 〈(K[x v], τ, ξ) ·
−→
Ki, γ, I, h,D〉

(x̄〈y〉,l ·ξ′,h′
|D′ )

−−−−−−−−→ 〈(K[•σ′,ξ′ ], τ, ξ) ·
−→
Ki, γ

′, I, h′, D′〉

((x, σ → σ′, ξ′) ∈ I, y fresh, γ′ = γ · [y →֒ (v, σ, l · ξ′)] ·
−−−−−−−−−−−−−→
[xi →֒ (h(li), τi, s)])

in all P-rules: D′ = discl(v, h,D) and h′ = h
−−−−−→
[li →֒ xi] with the xi fresh

where li ranges over dom(hfn) ∩D′ with li ∈ Locτi
)

O-AnsG 〈(K[•ι,ξ′ ], τ, ξ) ·
−→
Ki, γ, I, h,D〉

(〈v〉,r ·ξ′,h′
|D′ )

−−−−−−−→ 〈(K[v], τ, ξ) ·
−→
Ki, γ, I

′, h′, D′〉

(v of type ι, v /∈ dom(h) ∩D, I ′ = I ·
−−−−−−−→
(h(li), τi, s))

O-Ans 〈(K[•σ,ξ′ ], τ, ξ) ·
−→
Ki, γ, I, h,D〉

(〈x〉,r ·ξ′,h′
|D′ )

−−−−−−−→ 〈(K[x], τ, ξ) ·
−→
Ki, γ, I

′, h′, D′〉

(x fresh, I ′ = I · (x, σ, r · ξ′) ·
−−−−−−−→
(h(li), τi, s))

O-QuestG 〈
−→
Ki, γ, I, h,D〉

(x〈v〉,l ·ξ,h′
|D′ )

−−−−−−−−→ 〈(u v, τ, ξ) ·
−→
Ki, γ, I

′, h′, D′〉

(γ(x) = (u, ι→ τ, ξ), v of type ι, v /∈ dom(h) ∩D, I ′ = I ·
−−−−−−−→
(h(li), τi, s))

O-Quest 〈
−→
Ki, γ, I, h,D〉

(x〈y〉,l ·ξ,h′
|D′ )

−−−−−−−−→ 〈(u y, τ, ξ) ·
−→
Ki, γ, I

′, h′, D′〉

(γ(x) = (u, σ → τ, ξ), y fresh, I ′ = I · (y, τ, l · ξ)) ·
−−−−−−−→
(h(li), τi, s))

in all O-Rules: D′ = discl(v, h′, D), li ranges over dom(h′
fn) ∩ D′ s.t. li ∈ Locτi

,
h′

|D′ = h|D and h′
|D′ is closed and functional-free)

Figure 5.2: Definitions of the interaction semantics
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name pointer. When answering, Opponent can also provide new name pointers via
the disclosed part of the heap. Those ones live in the disclosed part of h′

fn, i.e.
in codom(h′

fn|D′). An important point here is that the context can also disclose
indirectly new locations via the already disclosed ones. This explains the great
liberty Opponent has when it extends h to h′ with new disclosed locations. It must
however satisfy the equation D′ = discl(h′, D), so that it cannot add as many new
(necessarily disclosed) locations as it wants.

— The rules P-QuestG and P-Quest represent player questions. That is, player
interrogates an opponent name pointer of I with a value. We find here the same
behavior about indirect disclosure we have encountered for the Player answers.

— Finally, the rules O-QuestG and O-Quest represent opponent questions. In that
case, Opponent adds to the current execution stack a new thread, corresponding to
the higher-order values stored in γ. Here again, we find the same behavior about
indirect disclosure we have encountered for the Opponent answers.

This reduction is highly non-deterministic, since we consider the interactions with
all possible contexts. Moreover, the choice of name pointers and locations is also non-
deterministic (even in the rule P-Intern with the use of 7→nd) so that the reduction do not
perform arbitrary choice. One can easily check that the following properties are preserved
by the interactive reductions:

— the stack and the codomain of γ do not contain any player name pointer,
— the higher-order values stored in the disclosed part of the heap are name pointers

contained in I or dom(γ),
— the heap h and its disclosed part are both closed.
We say that a trace T is generated by a configuration C if it can be written as a

sequence (a1, h1) · · · (an, hn) of actions-with-heap such that C
a1,h1−−−→ C1

a2,h2−−−→ C2 . . .
an,hn−−−→

Cn, and we write C
T
−→ Cn. We can see that it is indeed a trace due to the freshness

conditions in the rules P-Ans, P-Quest, O-Ans and O-Quest. The set of traces generated
by C is written Tr(C). Notice that such traces are not in general justified. This is
due to the fact that name-pointers of C are not introduced. As we will see, the initial
(opponent question) action is missing. Moreover, Tr(C) is not nominally-closed: if π is a
permutation such that π(a) 6= a for a ∈ νA(C), then taking T ∈ Tr(C), π ∗ T is not in
general in Tr(C). This is useful to distinguish sets Tr〈x, γ, I, h,D〉 and Tr〈x′, γ, I, h,D〉
for different opponent name pointers x, x′ ∈ I, or to distinguish Tr〈l, γ, I, h,D〉 and
Tr〈l′, γ, I, h,D〉 for locations l, l′ ∈ dom(h).

Example 1: let us consider the term Minc defined as

let x = ref 0 in let f = ref (λ .x :=!x + 1) in λg.g f; !f(); !x

The reader can check that one possible trace of this term starting from the initial config-
uration 〈Minc, ε, ε, ε, ε〉 is

(〈ā〉 , ε) · (a 〈b〉 , ε) · (b̄ 〈l〉 , [l →֒ c]) · (c 〈()〉 , [l →֒ c]) · (
〈
(̄)
〉
, [l →֒ c])·

(〈()〉 , [l →֒ d]) · (c̄ 〈()〉 , [l →֒ d]) · (〈()〉 , [l →֒ d]) · (
〈
1̄
〉
, [l →֒ d]).
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Intuitively, this trace corresponds to the interaction with the context defined as
•(λc.!c(); c := λ .()). Notice that the value stored in x is incremented not by the call to
!f() in Minc, but by the call made by the context after the disclosure of f via g. Indeed,
the call to !f() corresponds to the call to λ .() since the context has modified the function
stored in f .

Traces generated by a configuration are not altered when the stack is extended, as
shown by the following lemma:

Lemma 8: Suppose that 〈F ·
−→
Ki, γ, I, h,D〉

T
−→ 〈F ′ ·

−→
K ′

j, γ
′, I ′, h′, D′〉 then 〈F ·

−→
Ki ·

−→
K ′′

l , γ, I, h,D〉
T
−→ 〈F ′ ·

−→
K ′

i ·
−→
K ′′

l , γ
′, I ′, h′, D′〉.

An important point to notice is that the tags of actions of traces generated by the
interactive reduction can be infer knowing just the tag of initial actions, as shown by the
following lemma:

Lemma 9: Let (a1, ξ1, h1), (a2, ξ2, h2) two actions of a trace T , such that (a2, ξ2, h2) is
justified by (a1, ξ1, h1). Then:

— If a2 is an answers, then ξ1 = l · ξ and ξ2 = r · ξ,
— If a2 is a question, then

— if a2 is l-justified by a1, ξ2 = l · s · ξ1,
— otherwise ξ2 = l · ξ1.

This justifies the fact that in the following, we often omit tags when considering actions
and traces.

5.2.4 Interpretation of Terms

Taking a term M s.t. Σ; Γg,Γf ⊢ M : τ , we now define a trace strategy associated to
this term, which is generated using the interactive reduction. To do so, we first define the

list of opponent name pointers I
Γf

ξ as I⋄
ξ = ε and I(x:τ),Γ

ξ

def
= (x, τ, l · ξ) · IΓ

r ·ξ.

Definition 27 (Trace Semantics). Let M a term such that Σ; Γg,Γf ⊢ M : τ . We
define [Σ; Γg,Γf ⊢M : τ ] as the set of even-length traces belonging to the nominal closure
over Loc and P of



(
?
〈

Σ,
−−−→
γg(xi), I

〉
, l , h

)
·Tr〈(γg(M), τ, ε), ε, I, h,D〉

∣∣∣∣
γg : Γg → Val
h ∈ Cl(Σ, codom(γg))
codom(hfn) ⊆ P





where −→xi ranges overs the variables of Γg, D = dom(h) and I = I
Γf

ξ ·
−−−−−−−→
(h(li), τi, s) s.t.

li ranges over dom(hfn) and li ∈ Locτi
.
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Recall that hfn is the subheap of h formed by higher-order references. We reason up to
nominal equivalence of νLoc(M) (i.e. Σ) and νP(M) (i.e. Γf ) so that [Σ; Γg,Γf ⊢M : τ ] is
nominally closed. Moreover, the substitution γg of ground variables of M introduce new
locations for variables of type ref τ , so we must consider them in h to have a closed heap.
Finally, h is functional-free (i.e. codom(hfn) ⊆ P), so that for any location l ∈ Locφ, if
h(l) or h′(l) is defined, it has to store an opponent name pointer.

Let us define [Γ] as [τ1]⊗ . . .⊗ [τm] when Γ = (x1 : τ1) . . . (xm : τm) and [Σ] is defined
as [ref τ1]⊗ . . .⊗ [ref τn] when Σ = (l1 : τ1) . . . (ln : τn).

Theorem 10: Let M a term s.t. Σ; Γg,Γf ⊢ M : τ , then [Σ; Γg,Γf ⊢M : τ ] is a trace-
strategy over the arena [Σ]⊗ [Γg,Γf ]→ [τ ].

A trace T ∈ Tr〈M ·
−→
Ki, γ, I, h,D〉 is said to be complete if the number of answers

occurring in the trace is greater than its number of questions plus the length of the

sequence
−→
Ki. The set of complete traces of a configuration C is written comp(Tr(C)).

This is useful to give a correspondence with contextual equivalence via game semantics,
as we will see in the next part.

Notice that we introduce [Σ; Γ ⊢M : τ ] to get an exact correspondence with the de-
notation of terms in game semantics. However, this notion has many drawbacks, since it
is not stable by reduction. More precisely, if Σ; Γ ⊢ M : τ and (M,h) 7→∗ (M ′, h′), then
h′ has possibly new locations which have not been disclosed to the context, so we cannot
relate [Σ′; Γ ⊢M ′ : τ ] to [Σ′; Γ ⊢M : τ ] since this semantics suppose that all the locations
have been disclosed. Moreover, the traces of [Σ′; Γ ⊢M : τ ] all begin with no (functional)
values disclosed to the context, i.e. the environment γ is empty in the starting configura-
tion. So when (M,h) 7→∗ (K[f v], h′) we cannot relate easily the denotation of M to the
denotation of K[•] and v. This problem will be solved in Section 6.3 where we introduce
Kripke trace semantics to distinguish between private and disclosed locations.

5.2.5 Nominal Equivalence of Traces

In practice, one does want to work with Σ; Γ ⊢ M : τ , which does not really use the
full possibilities of trace semantics, imposing disclosure of all locations and the absence
of disclosed higher-order values. We prefer to work directly on Tr〈M,γ, I, h,D〉. How-
ever, as we have said before, this set is not nominally closed, since the initial move is
missing. So to compare traces, we use spans over disclosed locations, as introduced in
Section 3.3.2. They are generally written D in the following. We also use spans on player
and opponent name pointers, written eP and eO which can be seen as binary environment
relating variables of functional types of two terms. The nominal equivalence on heaps
generated by the spans D, eP , eO, written h1 ∼

D
eP ,eO

h2, can then be characterized as:

∀(l1, l2) ∈ DInt. h1(l1) = h2(l2) ∧ ∀(l1, l2) ∈ Dτ→σ.(h1(l1), h2(l2)) ∈ eP ⊎ eO

∧∀(l1, l2) ∈ Dref ι. (h1(l1), h2(l2)) ∈ Dι
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Then, actions are compared using spans on locations and names pointers. Given a
span eP on player name pointers, a span eO on opponent name pointers and a span D
on disclosed locations, we define the equivalence (a1, h1) ∼

D
eP ,eO

(a2, h2) on actions when
h1 ∼

D
eP ,eO

h2 and:
— either both ai are player answers 〈v̄i〉 (resp. opponent answers 〈vi〉) such that

either both vi are name pointers xi with (x1, x2) in eP (resp. in eO), or both vi are
locations li with (l1, l2) ∈ D, or both vi are equal ground values,

— or both ai are player questions f̄i 〈vi〉 (resp. opponent questions fi 〈vi〉) such that
(f1, f2) is in eO (resp. in eP ) and either both vi are name pointers xi with (x1, x2)
in eP (resp. in eO), or both vi are locations li with (l1, l2) ∈ D, or both vi are equal
ground values.

This equivalence is extended pointwisely on traces T1, T2, written T1 ≃
D
eP ,eO

T2. Then,
taking two sets of traces Tr1,Tr2, we define Tr1 -

D
eP ,eO

Tr2 (resp. Tr1 %
D
eP ,eO

Tr2) when
for all T1 ∈ Tr1 (resp. T2 ∈ Tr2), there exists three spans e

′
P , e

′
O,D

′ extending respectively
eP , eO and D and T2 ∈ Tr2 (resp. T1 ∈ Tr1) such that T1 ≃

D′

e′
P

,e′
O
T2. We write Tr1 ≃

D
eP ,eO

Tr2 when Tr1 -
D
eP ,eO

Tr2 and Tr1 %
D
eP ,eO

Tr2.

Theorem 11: Let M1,M2 two terms such that Σ; Γg,Γf ⊢M1,M2 : τ . Then

[Σ; Γg,Γf ⊢M1 : τ ] = [Σ; Γg,Γf ⊢M2 : τ ]

iff for all γg : Γg → Val, for all h ∈ Cl(Σ), Tr〈γg(M1), ε, I, h,D〉 ≃
D

ε,Γ̃f

Tr〈γg(M2), ε, I, h,D〉

where I = νP(Γf ) ∪ codom(hfn), D = dom(h) and D = D̃.

Proof Suppose that

[Σ; Γg,Γf ⊢M1 : τ ] = [Σ; Γg,Γf ⊢M2 : τ ]

and let T1 ∈ Tr〈γ2(M2), ε, I, h,D〉. Then from the nominal-closure of [Σ; Γg,Γf ⊢M2 : τ ],
we get the existence of two (type-preserving) finite permutation πL on Loc and πP on P

such that there exists T2 ∈ [Σ; Γg,Γf ⊢M2 : τ ] with

(
?
〈

Σ,
−−−→
γg(xi), I

〉
, h
)
· T1 = πL ∗

(
πP ∗

((
?
〈

Σ,
−−−→
γ(xi), I

〉
, h
)
T2

))

Then, as explain in Section 3.3.2, there exists two spans D′ and e′
O corresponding to πL

and πP. And from the equality on the initial (opponent questions moves), we get that
D′ ⊒ D an e′

O ⊒ eO. Thus

Tr〈γ1(M1), ε, I, h,D〉 -
D

ε,Γ̃f
Tr〈γ2(M2), ε, I, h,D〉

and the reverse inclusion is proven in the same way.
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Reciprocally, suppose that Tr〈γ1(M1), ε, I, h,D〉 ≃
D

ε,Γ̃f

Tr〈γ2(M2), ε, I, h,D〉 and let
(

?
〈

Σ,
−−−→
γg(xi), I

〉
, h
)
· T1 ∈ [Σ; Γg,Γf ⊢M1 : τ ], then we want to prove that there exists

two (type-preserving) finite permutation πL on Loc and πP on P such that

πL ∗
(
πP ∗

((
?
〈

Σ,
−−−→
γ(xi), I

〉
, h
)
T1

))
∈ [Σ; Γg,Γf ⊢M2 : τ ] .

Using again what have been presented in Section 3.3.2, these permutations are simply the
extension of the two spans.

5.3 A Correspondence between Trace and Game Se-

mantics

We now prove a formal link between the denotation of a term in trace semantics and
in game semantics. The problem is that the definition of [Σ; Γ ⊢M : τ ] is done opera-
tionally, while JΣ; Γ ⊢M : τK—the game interpretation of terms defined in [MT11b]—is
given denotationally, by induction on the typing judgment Σ; Γ ⊢M : τ . To fill this gap,
we show in this section that [Σ; Γ ⊢M : τ ] can actually be decomposed by similar induc-
tion steps on the typing judgment. In Section 5.2.1 we have introduced the definition
of a function Θ which transforms any justified trace on a trace-arena A into a justified
sequence of the corresponding game arena A. This correspondence allows us to state the
following theorem.

Theorem 12 (Equivalence of the trace and the game semantics): Let M a term
of RefML such that Σ; Γ ⊢M : τ , then JΣ; Γ ⊢M : τK is equal to Θ([Σ; Γ ⊢M : τ ]).

5.3.1 Denotation of variables

Consider T ∈ [x : τ ⊢ x : τ ] with τ a functional type. We can write T as

(? 〈x〉 , ε) · (〈ȳ〉 , ε) · T ′

such that 〈x, ·, x, ε, ε〉
〈ȳ〉,ε
−−→ 〈♦, y →֒ x, x, ε, ε〉. Then, when opponent questioned y with

u in T ′, player directly interrogates x with either u if it is atomic, or with a fresh name
pointer that points to u.

Such behavior is called copycat. More precisely, following [MT11b], a pair of actions
(a1, h1), (a2, h2) are a copycat pair in a play-trace T if

— they are consecutive in T ,
— θ((a1, h1)) = θ((a2, h2)),
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— if (a1, h1) is justified by (a′
1, h

′
1) then (a2, h2) is justified by (a′

2, h
′
2) s.t. (a′

2, h
′
2), (a

′
1, h

′
1)

are consecutive in T , and moreover if (a1, h1) is l-justified with l ∈ dom(h′
1), then

(a2, h2) is l-justified so l ∈ dom(h′
2).

Notice that a copycat pair (〈u1〉 , h1) · (〈ū2〉 , h2)) will not satisfy u1 = u2 nor h1 = h2

when the ui are name pointers and when the hi store name pointers, due to the freshness
condition of name pointers in the rules of the interactive reduction. This justifies the use
of θ in the definition.

Then, taking a trace-arena A we define the identity trace-strategy on A→ A, written
idA as the set of play-traces T ∈ PA→A such that for all subtraces (o, h) · (p, h′) of length
two of T , ((o, h), (p, h′)) is a copycat pair of T . We can easily see that Θ(idA) is equal to
idA, the usual identity game-strategy over the corresponding game-arena A→ A.

We want to prove that [x : τ ⊢ x : τ ] is equal to id[τ ]. To do so, we first need the
following lemma, which generalize this equality when τ is functional.

Lemma 10: Let I a set of opponent name pointers, γ a substitution on player name
pointers such that codom(γ) ⊆ I, h a functional-free heap such that codom(hfn) ⊆ I and
D = dom(h). Then a trace T ∈ Tr〈• · . . . · •︸ ︷︷ ︸

n times

, γ, I, h,D〉 is formed by copycat pairs.

Proof By induction on the length of T . If T begins with an opponent question, then
T = (x 〈u〉 , h1) · (ȳ 〈ũ〉 , h2) · T

′ with

〈• · . . . · •, γ, I, h,D〉
x〈u〉,h1
−−−−→ 〈yu · • · . . . · •, γ, I1, h1, D1〉
ȳ〈ũ〉,h2

−−−−→ 〈• · • · . . . · •, γ1, I1, h2, D1〉
where y = γ(x) and if u is atomic then ũ = u, otherwise u ∈ I1, ũ is a player name
pointer and γ1(ũ) = u. Moreover, due to conditions of the rules O-Quest and P-Quest,
codom(h1,fn) ⊆ I1 and codom(h2,fn) ⊆ dom(γ1) with γ1(codom(h2,fn)) ⊆ I1. Thus,
codom(γ1) ⊆ I1, and we can apply the induction hypothesis on T ′ to conclude.

Otherwise, T begins with an opponent answer (so n > 0), so T = (〈u〉 , h1)·(
〈
¯̃u
〉
, h2)·T

′

with

〈• · • · . . . · •, γ, I, h,D〉
〈u〉,h1
−−−→ 〈u · • · . . . · •, γ, I1, h1, D1〉〈

¯̃u

〉
,h2

−−−−→ 〈• · . . . · •, γ1, I1, h2, D1〉
s.t. if u is atomic then ũ = u, otherwise u ∈ I1, ũ is a player name pointer and

γ1(ũ) = u. Then, using the same argument as before, codom(γ1) ⊆ I1, and we can apply
the induction hypothesis on T ′ to conclude.

We now prove the wanted theorem.

Theorem 13: The trace-strategy [x : τ ⊢ x : τ ] is equal to id[τ ].

Proof If τ is equal to Unit,Bool or Int, then the result is straightforward. If τ is
equal to ref σ, then taking T ∈ [x : ref σ ⊢ x : ref σ] there exists a location l ∈ Locσ
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such that T ∈ (? 〈l〉 , h) · Tr〈l, ε, I, h,D〉 with D = dom(h) and I = codom(hfn). Then,

〈l, ε, I, h,D〉
〈l̄〉h
−−→ 〈l, ε, I, h,D〉 and the previous lemma applied.

Finally, if τ is functional, the equality is also deduced from the previous theorem.

In the same way, taking n trace-arenas A1, . . . ,An we define the ith-projection trace-
strategy on A1 ⊗ . . .An → Ai, written pi as the set of play-traces T ∈ PA1⊗...An→Ai

such

that either T is empty, or the two first actions of T are (? 〈−→uj 〉 , h) · (
〈

¯̃ui

〉
, h′) with ũi = ui

if ui is a ground value, otherwise it is a pointer, and for all other subtraces (o, h) · (p, h′) of
length two of T , ((o, h), (p, h′)) is a copycat pair of T . Again, we can easily see that Θ(pi)
is equal to πi, the usual projection game-strategy over the corresponding game-arena A.

Theorem 14: Let i ∈ {1, . . . , n} then [x1 : τ1, . . . , xn : τn ⊢ xi : τi] = pi

5.3.2 Denotation of λ-abstractions

Next, we proceed by showing that [Γ ⊢ λx.M : σ → τ ] can be reconstructed from
[Γ, x : σ ⊢M : τ ] exactly in the same way as in game semantics.

Let T ∈ Tr〈λx.M, γ, I, h,D〉 then the first action of T is (〈ȳ〉 , h′
|D) such that

〈λx.M, γ, I, h,D〉
〈ȳ〉,h′

−−−→ 〈♦, γ′, I, h′, D〉

where dom(h′) = D, θ(h|D) = θ(h′
|D) and for all l ∈ D ∩ Locφ, h(l), h′(l) are two name

pointers which form a copycat pair in T when they are questioned. This justifies the
following two definitions, imported from [MT11b].

We first introduce the notion of copycat triple, which allows us to control the callbacks
performed indirectly with functions stored in the heap. Indeed, just as in nominal game
semantics, only name pointers are stored in disclosed functional part of heaps. And even
if what is stored in a location is not modified, the interaction rule refreshes this name
pointer. We use the following definition to control this refreshing.

Definition 28. Let T a legal trace and T ′ ⊑ T , with T ′ ending with (a1, h1) · (a2, h2)
and l ∈ dom(h1) ∩ dom(h2) ∩ Locφ a location of functional type, we say that (T, T ′, l)
is a copycat triple if for all φ-actions (a′

1, h
′
1) of T which have (a1, h1) or (a2, h2) as an

l-ancestor, there exists an action (a′
2, h

′
2) such that:

— if a′
1 has the same player as a1, then (a′

1, h
′
1) · (a

′
2, h

′
2) is a copycat pair of T ,

— if a′
1 has the same player as a2, then (a′

2, h
′
2) · (a

′
1, h

′
1) is a copycat pair of T .

Using it, we define the notion of total trace strategies.
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Definition 29. A trace-strategy s on the arena A is said to be total if
— for every initial opponent question (? 〈u1〉 , h1) ∈ PA, there exists a player answer

(〈ū2〉 , h2) such that θ(h1) = θ(h2) and (? 〈u1〉 , h1) · (〈ū2〉 , h2) ∈ s,

— for (? 〈u1〉 , h1) · (〈ū2〉 , h2) · T ∈ s, and l ∈ dom(h),
(
(? 〈u1〉 , h1) · (〈ū2〉 , h2) ·

T, (? 〈u1〉 , h1) · (〈ū2〉 , h2), l
)
is a copycat triple.

This means, among others, that traces of s begin with an opponent question (? 〈u1〉 , h1)
followed by a player answer (〈ū2〉 , h2), without modifying the heap. Then, we easily see
that the trace strategy [Σ; Γ ⊢ λx.M : σ → τ ] is a total trace strategy, due to the fact that
the interactive execution of λx.M will update the heap with fresh player name pointers
which point to the initial opponent name pointers, just generating copycat triples.

Then, for such total strategies, we define the notion of threads, which are subtraces
which are generated by the opponent questions of the player answer (〈ū1〉 , h1). So, taking
a total trace T = (〈u1〉 , h1) · (〈ū2〉 , h2) · T

′ · (a, h3), we define inductively Thread(T ) as:

— (〈u1〉 , h
′
1) · (〈ū2〉 , h

′
2) · (a, h3) if (a, h3) is justified by 〈ū2〉 where h

′
i is a heap whose

domain equal to h∗
3(νL(u1, u2)), h

′
i(l) = hi(l) for all l ∈ dom(h′

i)∩Locφ, h
′
i(l) = h3(l)

elsewhere (i.e. on location storing ground values),
— (〈u1〉 , h1) · (〈ū2〉 , h2) if (a, h3) is l-justified by 〈ū2〉,
— Thread((〈u1〉 , h1) · (〈ū2〉 , h2) · T

′) · (a, h3) if (a, h3) is justified by (〈u1〉 , h1),
— Thread((〈u1〉 , h1) · (〈ū2〉 , h2) · T

′′) · (a, h3) if (a, h3) is justified by an action in T ′,
where T ′′ is the longest prefix of T ′ such that the action which justified (a, h3) is
in Thread((〈u1〉 , h1) · (〈ū2〉 , h2) · T

′′).

This notion is extended straightforwardly to sets of traces, so to trace-strategies. In
general, Thread(T ) does not satisfy the frugality condition, so we define a function Frug

which removes part of the heap which has not been disclosed:

— Frug(ε) = ε

— Frug(T ·(a, h)) =





Frug(T ) if (a, h) is hereditarily l-justified by

(a′, h′) and l /∈ Av(T≤(a′,h′))

Frug(T ) · (a, h|Av(T ·(a,h))) otherwise.

Trace-strategies which are formed by such frugal threads can be characterized, they
are called strongly single-threaded trace-strategies 5

5. The case were an action could be l-justified by (〈ū2〉 , h2) was left unclear in this definition and
the following in [MT11b]. Nikos Tzevelekos has proposed (in a private communication) the solution
followed here to forbid them in the definition of strongly single-threaded strategies, and adding them in
the definition of (.)†.
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Definition 30. A trace-strategy s is said strongly single-threaded when it is total and
for all (? 〈u1〉 , h1) · (〈ū2〉 , h2) · T ∈ s,

— there is at most one move which is justified by 〈ū2〉 in T ,
— there is no move which is l-justified by (〈ū2〉 , h2),

and for all (? 〈u1〉 , h1) · (〈ū2〉 , h2) · T, (? 〈u1〉 , h
′
1) · (

〈
ū′

2

〉
, h′

2) · T
′ ∈ s, θ(u2) = θ(u′

2).

Then, we define a function LB
A,C

which maps trace-strategies of (A ⊗ B) → C into

trace-strategy of A→ (B⇒ C) as the transformation of the trace (? 〈u, v〉 , h · hB) · T into
the set of traces which can be written as (? 〈u〉 , h) · (〈ȳ〉 , h′) · (y 〈v〉 , h · hB) where

— dom(h) = Frug(? 〈u〉 , h) and dom(hB) = Frug(? 〈v〉 , hB),
— dom(h′) = dom(h) and h′

g = hg,
— y and codom(h′

fn) are fresh player name pointers.
So we get the following theorem:

Theorem 15: The set of traces Frug(Thread([Γ ⊢ λx.M : σ → τ ])) is equal to

L
[σ]
[Γ],[τ ]([Γ, x : σ ⊢M : τ ])

Proof The inclusion Frug(Thread([Γ ⊢ λx.M : σ → τ ])) into L
[σ]
[Γ],[τ ]([Γ, x : σ ⊢M : τ ])

comes from the fact that elements of L
[σ]
[Γ],[τ ]([Γ, x : σ ⊢M : τ ]) are strongly-single threaded

plays which are, by construction of L
[σ]
[Γ],[τ ], in [Γ ⊢ λx.M : σ → τ ].

We prove the reverse inclusion. Let us decompose Γ into Γg,Γf , and let γ : Γg → Val.

We write M̃ for γ(M). Let h a heap such that h∗(νL(codom(γg))) = dom(h). We define
D as dom(h). For sake of simplicity, we work with I equal to Γf rather than nominally
equivalent. Suppose that x is of functional type. We prove that

Frug

(
Thread((?

〈−−−→
γ(xi), I

〉
, h) ·Tr〈λx.M̃, ε, I, y, h,D〉)

)

is included in

{L[σ]
[Γ],[τ ]

(
(?
〈−−−→
γ(xi), I, y

〉
, h) ·Tr〈M̃ {y/x} , ε, I, y, h,D〉

)
| y ∼P x}

Let T ∈ Tr〈λx.M̃, ε, I, y, h,D〉. Then, T = (〈z̄〉 , h′) · T ′ with
— dom(h′) = dom(h),
— h′

g = hg,
— and z and codom(h′

fn) are fresh player name pointers.

We reason by induction on the size of T ′. If |T | = 0, then by definition of L
[σ]
[Γ],[τ ] we get

the wanted property. Otherwise, consider the last action a, h′′ of T . Then the crucial
property is that this action cannot be l-justified by a location in dom(h), by definition of
the current thread.
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From this, we can define the notion of thread-independent trace plays. They correspond
to plays where there is no interaction between their threads.

Definition 31. A trace-play T = (? 〈u1〉 , h1) · (〈ū2〉 , h2) ·T
′ is thread-independent if for

all T ′′ · (p, h) ⊑even T , we have:
— thr(T ′′ · (p, h)) = thr(T ′′) · (p, h),
— νL(γ(thr(T ′′ · (p, h))) ∩ νL(T ′′) ⊆ νL(γ(thr(T ′′))),
— if T ′′ ends in (o, h′) and l ∈ dom(h′)\νL(thr(T ′′)) then θ(h(l)) = θ(h′(l)), and if

l ∈ Locφ then (T, T ′′ · (p, h), l) is a copycat triple.
The set of thread-independent trace-play over A is written Pti

A
.

Thus, following [MT11b], we can define a “shuffle” operation (·)† which transforms a
strongly single-threaded strategy s on A into a thread-independent strategy s†, defined as

{T ∈ s | |T | ≤ 2} ∪ {T ∈ Pti
A
| ∀T ′ ⊑even T.γ(thr(T ′)) ∈ s

or T ′ = (? 〈u1〉 , h1) · (〈ū2〉 , h2) · (a, h) · T ′′ with (a, h) l-justified by some l ∈ dom(h2)
and (T ′, ? 〈u1〉 , h1) · (〈ū2〉 , h2), l) is a copycat triple.}

Notice that we cannot just enforce that γ(thr(T ′)) ∈ s otherwise actions which are l-
justified with l ∈ dom(h2) would not be in s† since the definition of the current thread
removes them. This shuffle operation satisfies the following equality:

Lemma 11: For any thread-independent trace strategy s, (γ(thr(s)))† = s.

Then, we can easily check that [Σ; Γ ⊢ λx.M : σ → τ ] is thread-independent. Using it, we
can decompose the denotation of λ-abstraction exactly as it is done in game semantics:

Corollary 1: [Σ; Γ ⊢ λx.M : σ → τ ] = (Λ([Σ; Γ, x : σ ⊢M : τ ]))†.

5.3.3 Composition of Trace Strategies

Let A,B,C three trace value-arenas, we define the term-arena A → B → C
def
=

(MA→B→C, IA→B→C,⊢A→B→C) where:

— IA→B→C

def
= (l · l ) · IA,

— MA→B→C

def
= l · (MA→B\IB) ⊎ {(?̄ 〈u〉 , l · r · ξ) | (〈ū〉 , ξ) ∈ IB} ⊎ (r · r ) ·MC

⊥,

— ⊢A→B→C

def
= {(l · l · iA, l ·r · iB)}⊎{(l ·r · iB, r ·r · iC)}⊎(l · l · ⊢A)⊎(l ·r · ⊢B)⊎(r ·r · ⊢C)

Taking a trace T on A→ B→ C, we define the following restricted traces:
— T|(A,B) is defined as the traces formed by the actions of T in MA→B\IB plus the

player answers (〈ū〉 , h) ∈ IB for every player question (?̄ 〈u〉 , h) of T ,
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— T|(B,C) is defined as the traces formed by the actions (a⊥, h) for every actions (a, h)
of T such that (a, h) ∈ MB\IB, the actions (. 〈u〉 , h) for every player questions
(?̄ 〈u〉 , h) of T with (〈ū〉 , h) ∈ IB, and the actions (a⊥, h) for every actions (a, h)
of T such that (a⊥, h) ∈MC,

— T|(A,C) is defined as the traces formed by the actions (a, h) of T such that (a⊥, h) ∈
MA\IA, the opponent questions (x 〈u〉 , h) of T such that (〈ū〉 , h) ∈ IA, and the
actions (a⊥, h) for every actions (a, h) of T such that (a⊥, h) ∈MC.

In the definition of T|(A,C), the case where an action of C is justified by an action coming
from B which itself is justified by an action coming from A is not problematic, contrary
to game semantics where we have to add a new pointer. Indeed, since the action from C
is an answer and the action from A is a question, the justification is automatic.

Then, for any X ∈ {(A,B), (B,C), (A,C)}, we define T|FX as Frug(T|X). Using this,
we can define the set of interaction traces. To do so, we first characterize the introduction
actions of locations of νL(T ).

Definition 32. An action (a, h) is said to introduce a location l if, writing T as T1 ·
(a, h) · T2, we have l ∈ νL(a, h)\νL(T1). A location is P -introduced (resp. O-introduced)
in T if the action which introduces it is a player action (resp. opponent action).The set
of P -introduced (resp. O-introduced) locations of νL(T ) is written P(T ) (resp. O(T )).

It is straightforward that νL(T ) = P(T ) ⊎O(T ). We can now define the interaction
traces, following the definition from game semantics.

Definition 33. A justified trace T on A→ B→ C is an interaction trace if
— it is frugal,
— T|(A,B), T|(B,C) and T|(A,C) are legal,
— P(T|F(A,B)) ∩P(T|F(B,C)) = ∅,
— O(T|F(A,C)) ∩ (P(T|F(A,B)) ∪P(T|F(B,C))) = ∅.

The set of interaction traces over the arenas A,B,C is written Interact(A,B,C).

So we define the parallel composition of two trace strategies s, t, written s||t as the set
of interaction traces T ∈ A→ B→ C s.t. T|F(A,B) ∈ s and T|F(B,C) ∈ t.

Lemma 12: Let T ∈ A→ B→ C, then T|F(A,B), T|F(B,C) and T|F(A,C) are play traces.

Then, taking s, t two trace-strategies defined respectively on A → B and B → C, we
define their composition, written s; t, as the trace-strategy on A → C formed by traces
T ∈ PA→C such that there exists T ′ ∈ s||t with T = T ′

|F(A,C)
.
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Lemma 13: [Γ ⊢ v : σ] ; [x : σ ⊢M : τ ] = [Γ ⊢M {v/x} : τ ].

Theorem 16: [Γ ⊢ N : σ] ; [x : σ ⊢M : τ ] = [Γ ⊢ let x = N in M : τ ].

5.3.4 Pairing

We now define the pairing of two strategies following the definition of game semantics.
Let A a trace-arena and s a trace strategy defined on B → C, we define the left identity
pairing strategy A⊗ s on the trace term-arena A⊗ B→ A⊗C as the set of legal traces T
in LA⊗B→A⊗C such that

— T|(B,C) ∈ s,
— T|(A,A) ∈ idA.
In a dual way, we can also define the right identity pairing strategy s⊗A on the trace

term-arena B⊗A→ C⊗A. Using the two, we can define the pairing of two trace strategies
s, t defined respectively on A→ B and C→ D, written s⊗ t. It is defined as s⊗ C;B⊗ t.
Then, we can characterize the pairing of two trace strategies when they represent the
denotation of terms.

Theorem 17: Let M1,M2 two terms such that Γ1,g,Γ1,f︸ ︷︷ ︸
Γ1

⊢M1 : σ and Γ2,g,Γ2,f︸ ︷︷ ︸
Γ2

⊢M2 : τ

with Γ1,Γ2 disjoints. Then ([Γ1 ⊢M1 : σ]⊗ [Γ2 ⊢M2 : τ ]) is equal to the nominal closure
of the set of even prefix of traces belonging to

(
?
〈−−−−→
γ1,g(xi), I1,

−−−−→
γ2,g(xi), I2

〉
, h1 · h2

)
· T1 · T2 · (〈u1, u2〉 , h

′
|D′) ·Tr〈♦, γ′, I ′, h′, D′〉

with γi,g : Γi,g → Val and hi ∈ Cl(νL(codom(γi,g))) with h1, h2 disjoint (so necessarily
νL(codom(γ1,g)), νL(codom(γ2,g)) disjoint too) and functional-free, Di defined as dom(hi)
and Ii as νP(Γf,i, codom(γg,i)), xi ranging over Γi,g and

— 〈γ1,g(M1), ε, I1, h1, D1〉
T1−→ 〈u′

1, γ1, I
′
1, h

′
1, D

′
1〉 with u′

1 a value, and h′
1 disjoint

of h2, I
′
1 disjoint of I2

— 〈γ2,g(M2), γ1, I
′
1 · I2, h

′
1 · h2, D

′
1 ∪D2〉

T2−→ 〈u′
2, γ2, I

′, h′
2, D

′
2〉 with u′

2 a value,

— D′ = discl({u1, u2}, h
′, D2),

— h′ = h′
2

−−−−−→
[li →֒ xi] with li ranging over h′

2,fn ∩ D
′ and the xi not in γ2 and distinct

from u1, u2,
— γ′ is the extension of γ2 with (ui 7→ u′

i) if u
′
i is of functional type (otherwise u

′
i = ui)

and with all the (xi 7→ h2(li)) for li ranging over h2,fn|D′ .

Proof Let T3 ∈ Tr〈♦, γ′, I ′, h′, D′〉, we first prove that

(
?
〈−−−−→
γ1,g(xi), I1,

−−−−→
γ2,g(xi), I2

〉
, h1 · h2

)
· T1 · T2 · (〈u1, u2〉 , h

′
|D′) · T3
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belongs to ([Γ1 ⊢M1 : σ] ⊗ [Γ2 ⊢M2 : τ ]), using the fact that this last set is nominally
closed to avoid to reason up-to nominal equivalence on the former trace. For each yj ∈ I2,

we associate a fresh player name pointer ỹj, which form a new set Ĩ2 nominally equivalent
to I2. Similarly, for each zk ∈ νP(codom(h2)), we associate a fresh name pointer z̃k, and

we define h′
2 as h2

−−−−−→
{zk/z̃k}. We consider the trace T̃2 ∈ Tr〈γ2,g(M2

−−−−→
{yj/ỹj}), γ̃1, I

′
1 · Ĩ2 ·

−→
z̃k , h

′
1 · h̃2, D

′
1 ∪D2〉 where γ̃1 = γ1 ·

−−−−−−→
[ỹj 7→ yj] ·

−−−−−−→
[z̃k 7→ zk]. In the same way, we define ũ1 as

u1 if it is a ground value, and as a fresh name pointer otherwise, in which case we define
γ̃′ as γ′ · [ũ1 →֒ u1]. Then, let T̃3 ∈ Tr〈♦, γ̃′, I ′, h′, D′〉
(

?
〈−−−−→
γ1,g(xi), I1,

−−−−→
γ2,g(xi), I2

〉
, h1 · h2

)
· T1 ·

(
?̄
〈
u′

1,
−−−−→
γ2,g(xi), Ĩ2

〉
, h′

1|D′
1
· h̃2

)
· T̃2

⊥
· (〈u1, u2〉 , h

′
|D′) · T̃3

︸ ︷︷ ︸
T

is in ([Γ1 ⊢M1 : σ]⊗ [Γ2])||([σ]⊗ [Γ2 ⊢M2 : τ ]). To do so, we prove that T it is indeed an
interaction trace over ([Γ1]⊗ [Γ2])→ ([σ]⊗ [Γ2])→ ([σ]⊗ [τ ]).

First, T|([Γ1]⊗[Γ2]),([σ]⊗[Γ2]) is legal, since it is formed from

—
(

?
〈−−−−→
γ1,g(xi), I1,

−−−−→
γ2,g(xi), I2

〉
, h1 · h2

)
,

— T1,

—

(〈
u′

1,
−−−−→
γ2,g(xi), I

′
2

〉
, h′

1|D′
1
· h̃2

)
(recall that the restriction of T changes the initial

action of the middle arena from player question to player answer),
— the actions of T̃2 which are the copycat pairs on the arena [Γ2]→ [Γ2],
— the actions of T̃3 which are the first elements of the copycat pairs on the arena

[σ]→ [σ]
Moreover, T|F([Γ1]⊗[Γ2]),([σ]⊗[Γ2]) removes part of the heaps of the actions coming from T̃2

and T̃3, such that this restriction is indeed in ([Γ1 ⊢M1 : σ] ⊗ [Γ2]) since all the actions
on [Γ2]→ [Γ2] are copycat pairs, thus in id[Γ2].

Then, T|F([Γ1]⊗[Γ2]),([σ]⊗[τ ]) is indeed equal to
(

?
〈−−−−→
γ1,g(xi), I1,

−−−−→
γ2,g(xi), I2

〉
, h1 · h2

)
· T1 ·

T2 · (〈u1, u2〉 , h
′
|D′) · T3, due to the construction of T̃2 and T̃3.

Finally, P(T|F([Γ1]⊗[Γ2]),([σ]⊗[Γ2])) ∩ P(T|F([σ]⊗[Γ2]),([σ]⊗[τ ])) is equal to ∅, since h′
1, h2 are

disjoint

We now prove the reverse inclusion. We take T an interaction trace over ([Γ1]⊗ [Γ2])→
([σ]⊗ [Γ2])→ ([σ]⊗ [τ ]) such that

— T|F([Γ1]⊗[Γ2]),([σ]⊗[Γ2]) is in ([Γ1 ⊢M1 : σ]⊗ [Γ2]),
— and T|F([σ]⊗[Γ2]),([σ]⊗[τ ]) is in ([σ]⊗ [Γ2 ⊢M2 : τ ]).

Suppose the T is not empty, so the first action a1 of T is necessarily of the form

(? 〈−→v1,j, I1,
−→v2,k, I2〉 , h1 · h2)

such that
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— we can define two functions γg,1 : Γg,1 → Val and γg,1 : Γg,1 → Val as γg,1(xj) = v1,j

and γg,2(xk) = v2,k.
— hi are in Cl(νL(codom(γg,i))) and are functional-free, and are disjoint,
— Ii = IΓ

i ∪ I
h
i with IΓ

i ∼P Γf,i and I
h
i = νP(codom(hi)).

We now consider the maximal prefix a1 · T1 of T|F([Γ1]⊗[Γ2]),([σ]⊗[Γ2]) until the player
answer to this first opponent question appears to this trace. Then,

T1 ∈ Tr〈γ1,g(M1), ε, I1 · I2, h1 · h2, D1 ∪D2〉

and a1 · T1 is also a prefix of T , since there could have been no actions in any other arena
before an answer to the first opponent question appears.

Then, if this player answer a2 exists, it can be written as
(〈
u1,
−→v2,k, Ĩ2

〉
, h′

1 · h̃2

)
with

h̃2 ∼P h2 and

〈γ1,g(M1), ε, I1, h1, D1〉
T1−→ 〈u′

1, γ1, I
′
1, h

′
1, D

′
1〉

Indeed, by definition of ([Γ1 ⊢M1 : σ]⊗ [Γ2]), it has to play copycat over [Γ2]. Moreover,
h′

1 is indeed disjoint from h2 since P(T|F([Γ1]⊗[Γ2]),([σ]⊗[Γ2])) ∩P(T|F([σ]⊗[Γ2]),([σ]⊗[τ ])) is equal
to ∅. The rest of the proof is done in the same way.

Then, since the product of strongly single-threaded trace strategies over a trace term-
arena A is cartesian, one can define the diagonal morphism dA : A→ A⊗ A. Using it, we
get the following corollary of the previous theorem, when M1,M2 share the same typing
context Γ.

Corollary 2: Let M1,M2 two terms such that Γf ,Γg︸ ︷︷ ︸
Γ

⊢ M1 : σ and Γf ,Γg ⊢ M2 : τ .

Then (d[Γ])
†; ([Γ ⊢M1 : σ] ⊗ [Γ ⊢M2 : τ ]) is equal to the nominal closure of the set of

even-length traces belonging to

T1 · T2 · ((〈ū1〉 , 〈ū2〉), h
′
|D′) ·Tr〈♦, γ′, I ′, h′, D′〉

s.t. there exists γg : Γg → Val and h ∈ Cl(νL(codom(γg))) with D defined as dom(h) and
I as dom(Γf ), and we have

— 〈γg(M1), ε, I, h,D〉
T1−→ 〈u′

1, γ1, I1, h1, D1〉 with u′
1 a value,

— 〈γg(M2), γ1, I1, h1, D1〉
T2−→ 〈u′

2, γ2, I
′, h2, D2〉 with u′

2 a value,

— D′ = discl({u1, u2}, h
′, D2),

— h′ = h2

−−−−−→
[li →֒ xi] with li ranging over h2,fn ∩ D

′ and the xi not in γ2 and distinct
from u1, u2,

— γ′ is the extension of γ2 with (ui 7→ u′
i) if u

′
i is of functional type–otherwise u

′
i = ui–

and with all the (xi 7→ h2(li)) for li ranging over h2,fn|D′ .



140 CHAPTER 5. OPERATIONAL NOMINAL GAME SEMANTICS

5.3.5 Denotation of Applications

Using this characterization of pairings of trace-strategies representing terms, we can
now decompose the trace semantics of application of two terms. To do so, we consider the
function evA,B which transforms a trace of ((A⇒ B)⊗ B)⇒ B into a trace of B, defined

as (LB
A⇒B,A

)−1(idA⇒B). The inverse of LB
A⇒B,A

is indeed defined here because idA⇒B is
strongly single-threaded.

Using the previous characterization of pairings, we can prove the following theorem
which decompose traces of applications of two terms.

Theorem 18: Let M1,M2 two terms such that Σ; Γ ⊢ M1 : σ → τ and Σ; Γ ⊢ M2 : σ.
Then [Σ; Γ ⊢M1M2 : τ ] = (d[Γ])

†; ([Σ; Γ ⊢M1 : σ → τ ]⊗ [Σ; Γ ⊢M2 : σ]); ev[σ],[τ ].

5.3.6 Full Abstraction of Trace Semantics

Using this correspondence with game semantics, we can import the full abstraction
result of [MT11b] (Theorem 36) to trace semantics. Notice that Laird has already proven
this result directly [Lai07], where he needed a complex proof of definability of trace strat-
egy to achieve it.

Theorem 19: For M1,M2 terms of RefML such that Σ; Γ ⊢ M1,M2 : τ , we have Σ; Γ ⊢
M1 ≃ctx M2 : τ iff comp([Σ; Γ ⊢M1 : τ ]) = comp([Σ; Γ ⊢M2 : τ ]).

5.4 Trace Semantics for GroundML

In this section, we refine our trace semantics to handle also GroundML. This is done
in two steps:

— we rephrase the notion of visibility defined in Section 5.1.2 for trace strategies in
order to characterize trace strategies coming from terms of GroundML.

— we refine the interactive reduction of Figure 5.2 to restrict the power of contexts,
since they cannot keep track of disclosed λ-abstractions during the whole execution
but only inside the current scope, because of the lack of higher-order references.

We adapt the characterizations of ground-refererences terms of RefML of [MT11a] into
trace semantics, namely the fact that they are represented by visible strategies, which
restrict the pointer structure of actions of a trace T to be in the view of T .

Definition 34 (View). The view pTq of a legal trace T on A is a subsequence of T
defined by induction:

— pεq = ε,
— p(a, h)q = (a, h),
— pT ′ · (a, h) · T ′′ · (a′, h′)q = pT ′q · (a, h) · (a′, h′) when (a′, h′) is justified by (a, h).
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Then, as in game semantics, we say that a trace T is P-visible (resp. O-visible) if
for all T ′ · (a, h) ⊑even T (resp. T ′ · (a, h) ⊑odd T with (a, h) a player (resp. opponent)
action-with-heap, the justifier of (a, h) is in pT ′q. A trace strategy is said to be X-visible
if all its traces are X-visible, for X ∈ {P,O}.

In our setting, justification is defined using freshness of name pointers in traces, so we
introduce the notion of available X-name pointers, for X ∈ {P,O}, to reason on the view:

Definition 35 (Available Name-Pointers). We define the set of available opponent
(resp. player) name pointers AvO(T ) (resp. AvO(T )) inductively as

— AvX(ε)
def
= ∅,

— AvX((a, h))
def
= νX

P (a),

— AvX(T · (a1, h1) · T
′ · (a2, h2))

def
= AvX(T ) ∪ νX

P (a2) when (a1, h1) is justified by
(a2, h2).

with X ∈ {P,O}.

Notice in the previous definition that we do not need to consider name pointers in
heaps, since we consider terms of GroundML, which do not store any functions in heaps,
and for which contexts cannot disclose higher-order references. Moreover, in the third
clause, we do not need to consider the name pointers of a1 since its polarity is opposed as
the one of a2.

We now link the definition of available name pointers to the notion of view:

Lemma 14: Let T a justified trace, then for all name pointers x ∈ AvX(T ) (X ∈ {P,O}),
x is introduced by an action (a, h) which appears in pTq.

5.4.1 Ground-refererences Terms of RefML and P-visible strate-
gies

The characterization of trace-strategies coming from terms of GroundML is given by
the following theorem.

Theorem 20: Let M a term of GroundML such that Σ; Γ ⊢ M : τ , then [Σ; Γ ⊢M : τ ]
is a P-visible trace strategy.

Even if the theorem is similar to the one stated in game semantics, the proof is radically
different because the definition of the denotation is operational and so the proof can
no longer be done by inductively showing that the visibility condition is preserved. To
conduct the proof in this operational setting, we need to analyze the structure of traces
more closely. We first notice a crucial property of the interactive reduction of such terms,
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namely the fact that the undisclosed part of the heap cannot store name pointers. Thus,
when reducing (M,h) to (M ′, h′), we know that the name pointers contained in M ′ are
also in M .

We now prove that a term M ′ appearing in the interactive reduction of M via a trace
T only contains name pointers from AvO(T ).

Lemma 15: Let M a term of GroundML such that Σ; Γ ⊢ M : τ , and ((a0, h0) · T ·

(a, h)) ∈ [Σ; Γ ⊢M : τ ] s.t. 〈M,γ, I, h0, D〉
T
−→ 〈M ′ ·

−→
Ki, γ

′, I ′, h′, D′〉 Then νO
P (M ′) ⊆

AvO((a0, h0) · T ).

Proof By induction on the length of T . If T = ε it is straightforward from the definition
of [Σ; Γ ⊢M : τ ]. Otherwise, let us write T as T1 ·(a1, h1|D1) ·T2 ·(a2, h2|D2) with (a2, h2|D2)

an opponent action and (a1, h1|D1) its (player) justifier. We have 〈M,γ, I, h0, D〉
T1·(a1,h1|D1

)
−−−−−−−→

〈
−→
K ′

j, γ1, I1, h1, D1〉
T2·(a2,h2|D2

)
−−−−−−−→ 〈M ′ ·

−→
Ki, γ

′, I ′, h2, D2〉. Let us reason by case analysis on
a2:

— Suppose a2 is an opponent answer 〈v〉, then we have M ′ = K[v]. We have
AvO((a0, h0) · T ) = AvO((a0, h0) · T1) ∪ ν

O
P (v), so from νO

P (M2) = νO
P (K[•]) ∪

νO
P (v) we just have to prove that νO

P (K[•]) ⊆ AvO((a0, h0) · T1). Then a1 is a

player question f̄ 〈v′〉 such that 〈M,γ, I, h,D〉
T1−→ 〈M1 ·

−→
Ki, γ1, I1, h

′
1, D

′
1〉 and

(M1, h
′
1) 7→ (K[f v′], h′′

1). Then the induction hypothesis on T1 gives us νO
P (M1) ⊆

AvO((a0, h0) · T1), and we conclude using νO
P (K[f v′]) ⊆ νO

P (M1).
— Suppose that a2 is an opponent question x 〈v〉 justified by the player action (a1, h1|D1),

with γ(x) = u andM2 = u v. From AvO((a0, h0)·T ) = AvO((a0, h0)·T1)∪ν
O
P (v), we

simply have to prove that νO
P (u) ⊆ AvO((a0, h0) ·T1). Suppose 〈M,γ, I, h0, D〉

T1−→

〈M ′
1 ·
−→
K ′

j, γ1, I, h
′
1, D

′
1〉 and (M ′

1, h
′
1) 7→

∗ (M ′′
1 , h

′′
1), then the induction hypothesis

gives us that νO
P (M ′

1) ⊆ AvO((a0, h0) · T1). We reason by case analysis on a1:
— If a1 = 〈x̄〉, then M ′′

1 = u. Since νO
P (u) ⊆ νO

P (M ′
1) we get that νO

P (u) ⊆
AvO((a0, h0) · T1).

— Otherwise a1 = f̄ 〈x〉, then M ′′
1 = K[f u]. Since νO

P (K[f u]) ⊆ νO
P (M ′

1) we get
that νO

P (u) ⊆ AvO((a0, h0) · T1).

From this lemma we get directly the following corollary:

Corollary 3: Let M a term of GroundML such that Σ; Γ ⊢ M : τ , and T · (x̄ 〈u〉 , h) ∈
[Σ; Γ ⊢M : τ ], then x ∈ AvO(T ).

We can finally prove Theorem 20 using the conjunction of lemma 14 and corollary 3.

5.4.2 Full Abstraction for GroundML

We have seen in Section 5.4.1 that terms of GroundML give rise to P-visible traces.
However, the trace semantics of Section 5.2.3 is not fully abstract, since there are still
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P-Intern 〈(M, τ, ξ,A) ·
−→
Ki, γ, I, h,D〉 −−−−−−→ 〈(M ′, τ, ξ,A) ·

−→
Ki, γ, I, h

′, D〉

(when (M,h) 7→nd (M ′, h′))

P-AnsG 〈(v, ι, ξ,A) ·
−→
Ki, γ, I, h,D〉

(〈v̄〉,r ·ξ,h′
|D

)

−−−−−−−→ 〈
−→
Ki, γ

′, I, h,D′,A〉

(v of type ι, D′ = discl(v, h,D))

P-Ans 〈(v, τ, ξ,A) ·
−→
Ki, γ, I, h,D〉

(〈x̄〉,r ·ξ,h|D)
−−−−−−−→ 〈

−→
Ki, γ

′, I, h,D, x · A〉

(x fresh, γ′ = γ · [x →֒ (v, τ, r · ξ)])

P-QuestG 〈(K[x v], τ, ξ,A) ·
−→
Ki, γ, I, h,D〉

(x̄〈v〉,l ·ξ′,h|D′ )
−−−−−−−−→ 〈(K[•ι,ξ′ ], τ, ξ,A) ·

−→
Ki, γ, I, h,D

′,A′〉

( (x, ι→ σ, ξ′,A′) ∈ I, v of type ι, D′ = discl(v, h,D))

P-Quest 〈(K[x v], τ, ξ,A) ·
−→
Ki, γ, I, h,D〉

(x̄〈y〉,l ·ξ′,h|D)
−−−−−−−−→ 〈(K[•σ′,ξ′ ], τ, ξ,A) ·

−→
Ki, γ

′, I, h,D, y · A′〉

((x, σ → σ′, ξ′,A′) ∈ I, y fresh, γ′ = γ · [y →֒ (v, σ, l · ξ′)])

O-AnsG 〈(K[•ι,ξ′ ], τ, ξ,A) ·
−→
Ki, γ, I, h,D,A

′〉
(〈v〉,r ·ξ′,h′

|D′ )

−−−−−−−→ 〈(K[v], τ, ξ,A) ·
−→
Ki, γ, I, h

′, D′〉

(v of type ι, v /∈ dom(h) ∩D)

O-Ans 〈(K[•σ,ξ′ ], τ, ξ,A) ·
−→
Ki, γ, I, h,D,A

′〉
(〈x〉,r ·ξ′,h′

|D′ )

−−−−−−−→ 〈(K[x], τ, ξ,A) ·
−→
Ki, γ, I

′, h′, D′〉

(x fresh, I ′ = I · (x, σ, r · ξ′,A′))

O-QuestG 〈
−→
Ki, γ, I, h,D,A〉

(x〈v〉,l ·ξ,h′
|D′ )

−−−−−−−−→ 〈(u v, τ, ξ,A) ·
−→
Ki, γ, I

′, h′, D′〉

(x ∈ A, γ(x) = (u, ι→ τ, ξ), v of type ι and not in dom(h) ∩D)

O-Quest 〈
−→
Ki, γ, I, h,D,A〉

(x〈y〉,l ·ξ,h′
|D′ )

−−−−−−−−→ 〈(u y, τ, ξ) ·
−→
Ki, γ, I

′, h′, D′〉

(x ∈ A, γ(x) = (u, σ → τ, ξ), y fresh, I ′ = I · (y, τ, l · ξ,A))

in all O-Rules: D′ = discl(v, h′, D), h′
|D′ = h|D and h′

|D′ is closed)

Figure 5.3: Definitions of the interaction semantics for GroundML
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traces which are not generated by an interaction between contexts and terms of GroundML.
To get full abstraction, we need to constrain traces to be O-visible by modifying the inter-
active reduction to control the scope of name pointers such that only pointers appearing
in the view of an action are available. We present the modified interactive reduction in
Figure 5.3. Firstly, notice that since we do not have higher-order references in our lan-
guage, we do not need to extend I and γ with pointers representing functions stored in
the disclosed part of the heap. Then, we keep track of available player name pointers,
represented by a set A, in different places of the configuration:

— in opponent configurations 〈
−→
Ki, γ, I, h,D,A〉, representing the current available

player name pointers,
— within each element (M, τ, ξ,A) or (K[•τ,ξ], σ, ξ

′,A) of the execution stack, repre-
senting the player name pointers available when opponent add this element to the
execution stack via a question.

— within each opponent name pointers x ∈ I, representing the player name pointers
available when x has been introduced by an opponent action.

Using this set of available player name pointers, we can control the questions Opponent
can ask, as shown by the condition x ∈ A in the rules O-QuestG and O-Quest. This
idea is formalized in the following lemma:

Lemma 16: Let (i, h0)·T ∈ [Σ; Γf ⊢M : τ ] such that 〈(M, τ, ξ,∅), γ, I, h,D〉
T
−→ 〈
−→
Ki, γ

′, I ′, h′,D′,A〉
then AvO(T ) = A.

Using our restricted interactive reduction, we define the ground interpretation of a
judgment [Σ; Γ ⊢M : τ ]G in the same way than in Definition 27, with the empty set of
pointers associate to M in the execution stack. From Lemma 16, we can deduce that the
ground interpretation always gives rise to visible strategy.

Theorem 21: Let M a term of GroundML such that Σ; Γ ⊢M : τ , then [Σ; Γ ⊢M : τ ]G
is a visible strategy ( i.e. both P-visible and O-visible).

Proof Let γg : Γg → Val a ground-variable substitution, h : Σ and T ·a ∈ Tr〈M, ·, Γ̃f , h, Σ̃〉.
If a is a player action, the P-visibility of T can be deduce from theorem 20, since we can
easily see that [Σ; Γ ⊢M : τ ]G ⊆ [Σ; Γ ⊢M : τ ].

If a is an opponent action (o, h), let us decompose T into T ′ · (p′, h′) · T ′′ such that
(o, h) is justified by (p, h′). Then we must prove that (p, h′) is in pTq.

— If o is an opponent answer, then due to the well-bracketing condition, (p, h′) is
indeed in pTq.

— If o is an opponent question f 〈x〉, then the depth associated to f is lower than the
depth of the last unanswered player question. Thus using lemma 16, we get that
(p, h′), the player action which introduces f , is in the view of pTq.

It is straightforward to see that the notion of visibility introduced here corresponds ex-
actly to the usual notion of visibility of game semantics. So importing the full abstraction
result of [MT12], we get the following theorem:
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SV JIntKI(u)
def
= 〈ū〉

SV JInt→ σKI(v)
def
=



〈
†̄
〉
·
⋃

n∈Z

((† 〈n〉) · SEJσKI(v n̂))




SV Jτ → σKI(v)
def
=



〈
†̄
〉
· († 〈y〉) · SEJσKI·(y,τ)(v y)

︸ ︷︷ ︸
S


 with y /∈ (I ∪ νO

P (S))

SKJInt, τKI(K)
def
=

⋃
n∈Z(〈n̂〉 · SEJτKI(K[n̂]))

SKJσ, τKI(K)
def
= (〈y〉 · SEJτKI·(y,σ)(K[y])

︸ ︷︷ ︸
S

) with y /∈ (I ∪ νO
P (S))

SEJτKI(M)
def
=





(f̄ 〈†〉 , SV JσKI(v)) · SKJσ′, τKI(K)

if M 7→∗ K[f v] and (f, σ → σ′) ∈ I

SV JτKI(v) if M 7→∗ v

Figure 5.4: Definitions of the callback structure

Theorem 22 (Full Abstraction for GroundML): LetM1,M2 two terms of GroundML
such that Σ; Γ ⊢ M1,M2 : τ . Then Σ; Γ ⊢ M1 ≃

G
ctx M1 : τ iff comp([Σ; Γ ⊢M1 : τ ]G) =

comp([Σ; Γ ⊢M2 : τ ]G).

WhenM1,M2 are divergent-free terms of GroundML, they cannot possibly diverge, so
we do not need the restriction to complete trace plays in the theorem.

5.5 Decidability of the Pure Fragment

In this last part, as a preview to the next chapters, we show how to perform surgery
on traces to get decidability properties. We consider the pure fragment of RefML, i.e.
diverging-free terms M such that Γ ⊢M : τ with τ not containing any subtype ref τ , and
M not containing any subterms ref M ′ (and consequently no subterms M1 := M2 and

!M1). Thus, in the sequel, configurations are simply written 〈E ·
−→
Ki, γ, I〉.

5.5.1 Callback Structure

To introspect a pure term, we introduce the notion of callback structure, depicted in
Figure 5.4. They are formed as list of trees of partial actions in pAction, where player
name pointers are omitted and replaced by a symbol †. Such structure is in fact really
closed to abstract Bohm trees [Cur98], which have been used to represent strategies in a
call-by-name setting [CH09]. SEJτKI and SV JτKI are elements of Structn where n is the

maximum of the order of τ and the types of I—with Struct0
def
= Val and Structn+1

def
=
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List(pAction ∪ (pAction × Structn) ∪ (P(Structn))). When Int is restricted to bounded
integers, SEJτKI(M) is clearly computable.

For example, consider the term M
def
= λf.λn.if n = 0 then f(λx.x) else f(λx.n) of

type τ
def
= ((Int → Int) → Unit) → Int → Unit. The reader can check that its callback

structure is

SV JτK∅(M) =
〈
†̄
〉
· † 〈f〉 ·

〈
†̄
〉
·
({
†
〈
0̂
〉
· (f̄ 〈†〉 ,

〈
†̄
〉
· † 〈n̂〉 ·

〈
¯̂n
〉
) | n ∈ Z

}
∪

{
† 〈m̂〉 · (f̄ 〈†〉 ,

〈
†̄
〉
· † 〈n̂〉 ·

〈
¯̂m
〉
) | m ∈ Z∗, n ∈ Z

})

To compare callback structures, we use a notion of nominal equivalence, indexed by a
span on (opponent) name pointers.

Definition 36. We say that two callback structures S1, S2 of Structn are equivalent for
a span eO, written S1 ≃

n
eO
S2, when

—
〈
k̄
〉
≃n

eO

〈
k̄
〉

—
〈
†̄
〉
· S ′

1 ≃
n
eO

〈
†̄
〉
· S ′

2 if S ′
1 ≃

n
eO
S ′

2

— ((f̄1 〈†〉 , S
′
1) ·S

′′
1 ) ≃n+1

eO
((f̄2 〈†〉 , S

′
2) ·S

′′
2 ) if (f1, f2) is in eO, S

′
1 ≃

n
eO
S ′

2 and S
′′
1 ≃

n+1
eO

S ′′
2 ,

— {(〈j〉 , Sj
1) | j ∈ Z} ≃n

eO
({(〈j〉 , Sj) | j ∈ Z} if Sj

1 ≃
n
eO
Sj

2 for all j ∈ Z.
— (〈x1〉 · S1) ≃

n
eO

(〈x2〉 · S2) if S1 ≃
n
eO·(x1,x2) S2.

When integers are bounded, this equivalence is again decidable since we reason on
finite objects. In the following, we omit the index n when it is clear from the context.
We also define an equivalence between two substitutions γ1, γ2, written γ1 ≃eP ,eO

γ2, as
SV JτKeO,1

(γ1(x2)) ≃eO
SV JτKeO,2

(γ1(x2)) for all (x1, x2, τ) ∈ eP .
Notice that callback structures are not closed by nominal equivalence on name pointers

(i.e. on variables). Indeed, in the definition of SV Jτ → σKI(v) and SKJσ, τKI(K), the
choice of the fresh opponent name pointer y is supposed to be deterministic. But we can
prove that the callback structure equivalence is preserved by nominal equivalence:

Lemma 17: Let M1,M2 two ground-closed pure terms and eO a span on their free
functional variables such that SEJτKeO,i

(M1) ≃eO
SEJτKeO,2

(M2). Let π1, π2 two finitely
supported permutations on name pointers, then writing e′

O for the span formed by the
π1(x1), π2(x2) with (x1, x2) ∈ eO ( i.e. the span which result from the action of π1 × π2

on eO seen as a nominal element on P × P), we have SEJτKπ1∗M1(e′
O,1)(π1 ∗M1) ≃e′

O

SEJτKπ1∗M1(e′
O,2)(π2 ∗M2).

The two following lemmas are used to show that equivalence of callback structures of
terms is preserved by reduction.
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Lemma 18: Let eP and eO two spans respectively on player and opponent name point-
ers, and γ1, γ2 two substitutions whose domains are equal respectively to eP,1, eP,2, with
γ1 ≃eP ,eO

γ2. Let M1,M2 two terms such that SEJτKeO,1
(M1) ≃eO

SEJτKeO,2
(M2) and

Ti ∈ Tr〈Mi, γi, eO,i〉 such that T1 ≃eP ,eO
T2 and 〈Mi, γi, eO,i〉

Ti−→ 〈vi, γ
′
i, e

′
Oi
〉.

Then there exists e′
P ⊒ eP and e′

O ⊒ eO such that γ′
1 ≃e′

P
,e′

O
γ′

2 and SV JτKe′
O,1

(v1) ≃e′
O

SV JτKe′
O,2

(v2).

Lemma 19: Let eP and eO two spans respectively on player and opponent name point-
ers, and γ1, γ2 two substitutions whose domains are equal respectively to eP,1, eP,2, with

γ1 ≃eP ,eO
γ2. Let Ti ∈ Tr〈♦, γi, eO,i〉 such that T1 ≃eP ,eO

T2 and 〈♦, γi, eO,i〉
Ti−→ 〈♦, γ′

i, e
′
O,i〉.

Then there exists e′
P ⊒ eP and e′

O ⊒ eO such that γ′
1 ≃e′

P
,e′

O
γ′

2.

Proof The two lemmas are proved by a mutual induction on the length of the callback
structure of γi.

Proof (Proof of Lemma 18) From SEJτKeO,1
(M1) ≃eO

SEJτKeO,2
(M2), there is two

possibilities:
— Both Mi 7→ vi with SV JτKeO,1

(v1) ≃eO
SV JτKeO,2

(v2). Then we get directly the
wanted property.

— Or both Mi 7→ Ki[fi u
1
i ] such that there exists two types σ, σ′ with (f1, f2) ∈

eO,σ→σ′ and SV JσKeO,1
(u1

1) ≃eO
SV JσKeO,2

(u1
2). Then we can decompose Ti into

f̄i

〈
û1

i

〉
· U1

i · 〈u
2
i 〉 · U

2
i with

〈Mi, γi, eO,i〉
f̄i

〈
û1

i

〉

−−−−→ 〈Ki[•], γ
1
i , eO,i〉

U1
i−→ 〈Ki[•], γ

2
i , e

1
O,i〉

u2
i−→ 〈Ki[u

2
i ], γ

2
i , e

2
O,i〉

such that û1
i = u1

i , γ
1
i = γi and e

1
P = eP if σ is equal to Int, otherwise û1

i is equal
to some fresh name xi, γ

1
i = γi · (xi 7→ u1

i ) and e1
P = eP · (x1, x2, σ). Using the

induction hypothesis from the second lemma, we get the existence of e2
P ⊒ e1

P and
e1

O ⊒ eO such that γ1
1 ≃e2

P
,e1

O
γ1

2 . Then, we conclude using the induction hypothesis

on the first lemma, since SEJτKe2
O,1

(K1[u
2
1]) ≃e2

O
SEJτKe2

O,2
(K2[u

2
2])

Proof (Proof of Lemma 19) We can suppose than Ti = (fi 〈ui〉) · U
1
i · U

2
i with

(f1, f2) ∈ eO,σ→σ′ , γi(fi) = vi and

〈♦, γi, eO,i〉
fi〈u1

i 〉
−−−−→ 〈vi ui, γi, e

1
O,i〉

U1
i−→ 〈♦, γ1

i , e
2
O,i〉

U2
i−→ 〈♦, γ′

i, e
3
O,i〉

such that and e1
O = eO if σ is equal to Int, otherwise e1

O = eO · (y1, y2, σ) for some fresh
opponent name pointers yi, . Using the induction hypothesis on the first lemma, we get
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the existence of e1
P ⊒ eP and e2

O ⊒ e1
O such that γ1

1 ≃e1
P

,e2
O
γ1

2 . Then using the induction

hypothesis on the second lemma, we can conclude, since we get the existence of e2
P ⊒ e1

P

and e3
O ⊒ e1

O such that γ′
1 ≃e2

P
,e3

O
γ′

2.

Those two lemmas are used to prove that two equivalent substitution functions gen-
erates two sets of equivalent traces.

Lemma 20: Let eP , eO two spans respectively on player and opponent name pointers,
and γi : eP,i → Val two substitutions such that γ1 ≃eP ,eO

γ2. Then Tr〈♦, γ1, eO,1〉 ≃eP ,eO

Tr〈♦, γ2, eO,2〉

This lemma is proven via a mutual induction with the following three theorems which
state that the callback structure gives a sound and complete model of the pure fragment of
RefML. Lemma 20 is used for the soundness of callback structures, while the completeness
is rather straightforward due to the fact that the callback structure of a term M can be
seen as a set of subtraces of M .

Theorem 23: Let v1, v2 a pair of pure ground-closed values of RefML, eO a span on their
name pointers, eP a span on player name pointers and γi : eP,i → Val two substitutions
such that γ1 ≃eP ,eO

γ2. Then SV JτKeO,1
(v1) ≃eO

SEJτKeO,2
(v2) iff Tr〈v1, γ1, eO,1〉 ≃eP ,eO

Tr〈v2, γ2, eO,2〉.

Theorem 24: Let K1, K2 a pair of pure ground-closed contexts of RefML, eO a span
on their name pointers, eP a span on player name pointers and γi : eP,i → Val two
substitutions such that γ1 ≃eP ,eO

γ2. Then SKJσ, τKeO,1
(K1) ≃eO

SKJσ, τKeO,2
(K2) iff

Tr〈K1, γ1, eO,1〉 ≃eP ,eO
Tr〈K2, γ2, eO,2〉.

Theorem 25: Let M1,M2 a pair of pure ground-closed terms of RefML, eO a span on
their name pointers, eP a span on player name pointers and γi : eP,i → Val two substitu-
tions such that γ1 ≃eP ,eO

γ2. Then SEJτKeO,1
(M1) ≃eO

SEJτKeO,2
(M2) iff [〈M1, γ1, eO,1〉] ≃eP ,eO

[〈M2, γ2, eO,2〉].

Proof The three theorems and the lemmas are proved by a mutual induction on types
and on the length of the callback structures.

Proof (Lemma 20) let T1 ∈ Tr〈♦, γ1, eO,1〉, we want to build T2 ∈ Tr〈♦, γ2, eO,2〉 such

that T1 ≃eP ,eO
T2. We can decompose T1 into (f1 〈u

1
1〉) · U

1
1 ·
〈
ū2

1

〉
· U2

1 with γ1(f1) = v1,

U1
1 ·
〈
ū2

1

〉
∈ Tr〈v1 u

1
1, γ

1
1 , e

1
O,1〉, U

2
1 ∈ Tr〈♦, γ2

1 , e
2
O,1〉 and

〈♦, γ1, eO,1〉
f1〈u1

1〉
−−−−→ 〈v1u

1
1, γ1, e

1
O,1〉

U1
1−→ 〈ũ2

1, γ
1
1 , e

2
O,1〉

〈ū2
1〉

−−→ 〈♦, γ2
1 , e

2
O,1〉

Let f2 such that (f1, f2) ∈ eP , i.e. there exists σ, σ such that (f1, f2) ∈ eP,σ→σ′ . We
reason by case analysis on σ:
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— If σ is equal to Int, then e1
O,1 = eO,1 so we define u1

2 as u1
1 and e1

O as eO,
— Otherwise, u1

1 is equal to some opponent name pointer y1 and e
1
O,1 = eO,1 ·y1. So we

define u1
2 as y2, a fresh opponent name pointer not in eO,2, and e

1
O = eO · (y1, y2, σ)

Then, from γ1 ≃eP ,eO
γ2 we get SV Jσ → σ′KeO,1

(v1) ≃eO
SV Jσ → σ′KeO,2

(v2), so
SEJσ′Ke1

O,1
(v1 u

1
1) ≃e1

O
SEJσ′Ke1

O,2
(v2 u

1
2). Then by induction hypothesis on Terms, we get

the existence of U1
2 ·
〈
ū2

2

〉
∈ Tr〈v1 u

1
2, γ1, e

1
O,1〉 such that U1

1 ·
〈
ū2

1

〉
≃eP ,e1

O
U1

2 ·
〈
ū2

2

〉
.

Finally, using lemma 19, we get the existence of two spans e2
P and e2

O extending eP and
e1

O such that γ2
1 ≃e2

P
,e2

O
γ2

2 . So applying the induction hypothesis, we get the existence of

U2
2 ∈ Tr〈♦, γ2

2 , e
2
O,2〉 such that U2

1 ≃e2
P

,e2
O
U2

2 . Thus, defining T2 as (f2 〈u
1
2〉) ·U

1
2 ·
〈
ū2

2

〉
·U2

2

we get that T1 ≃eP ,eO
T2.

Proof (Full Abstraction on Values) We have Tr〈vi, γi, eO,i〉 =
〈

¯̃vi

〉
·Tr〈♦, γ1

1 , eO,1〉

with ṽi = vi and γ
1
i = γi if τ is equal to Int, otherwise ṽi is equal to a player name pointer

fi not in eP,i and γ
1
i = γi ·(fi 7→ vi). Then we get the direct implication using the induction

hypothesis on lemma 20. To prove the reverse implication, we reason by case analysis on
τ :

— If τ is equal to Int, then Tr〈v1, γ1, eO,1〉 ≃eP ,eO
Tr〈v2, γ2, eO,2〉 gives us that v1 = v2.

— Otherwise, defining e1
P = eP ·(f1, f2, τ), we have Tr〈♦, γ1

1 , eO,1〉 ≃e1
P

,eO
Tr〈♦, γ1

2 , eO,2〉.

If τ = Int → σ, then let n ∈ Z, we have Tr〈v1 n̂, γ
1
1 , eO,1〉 ≃e1

P
,eO

Tr〈v2 n̂, γ
1
2 , eO,2〉

so we conclude using the induction hypothesis on terms. Otherwise, we have
τ = σ → σ′, and defining e1

O = eO · (y1, y2, σ) we get

Tr〈v1 y1, γ
1
1 , e

1
O,1〉 ≃e1

P
,e1

O
Tr〈v2 y2, γ

1
2 , e

1
O,2〉

and we conclude using again the induction hypothesis on terms.

Proof (Full Abstraction on Context) We first prove the direct implication. Sup-
pose that

SKJσ, τKeO,1
(K1) ≃eO

SKJσ, τKeO,2
(K2)

then taking T1 ∈ Tr〈K1, γ1, eO,1〉, we have T1 = U1
1 · 〈u1〉 · U

2
1 with

〈K1, γ1, eO,1〉
U1

1−→ 〈K1, γ
1
1 , e

1
O,1〉

u1−→ 〈K1[u1], γ
2
1 , e

2
O,1〉

We want to build T2 ∈ Tr〈K2, γ2, eO,2〉 such that T1 ≃eP ,eO
T2. Using the induc-

tion hypothesis on the first lemma, we get the existence of U1
2 ∈ 〈♦, γ1, eO,1〉 such that

U1
1 ≃eP ,eO

U1
2 and 〈K2, γ2, eO,2〉

U1
2−→ 〈K2, γ

1
2 , e

1
O,2〉. Then, we reason by case analysis on σ

— If σ = Int, then e2
O,1 = e1

O,1 and we define u2 as u1 and e2
O as e1

O.
— If σ is of functional type, then u1 is an opponent name pointer x1 and e2

O,1 =
e1

O,1 · (x1, σ). Then, taking x2 an opponent name pointer not in e1
O,2, we define e2

O

as e1
O · (x1, x2, σ).
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So from SKJσ, τKe1
O,1

(K1) ≃e1
O

SKJσ, τKe1
O,2

(K2) we get that

SEJτKe2
O,1

(K1[u1]) ≃e2
O

SEJτKe2
O,2

(K2[u2])

and the induction hypothesis on terms gives us the existence of

U2
2 ∈ Tr〈K2[u2], γ

1
2 , e

2
O,2〉

such that U2
1 ≃e1

P
,e2

O
U2

2 . Then defining T2 as U1
2 · 〈u2〉 · U

2
2 , we get T1 ≃eP ,eO

T2.

Let us prove now the reverse implication. If Tr〈K1, γ1, eO,1〉 ≃eP ,eO
Tr〈K2, γ2, eO,2〉 we

reason by case analysis on σ:

— If σ is of type Int, then for all n ∈ Z and T1 ∈ Tr〈K1[n̂], γ1, eO,1〉, we have
〈n̂〉 · T1 ∈ Tr〈Ki, γi, eO,i〉. Thus there exists T2 ∈ Tr〈K2[n̂], γ2, eO,2〉 such that
T1 ≃eP ,eO

T2. Using a symmetric reasoning, we get that Tr〈K1[n̂], γ1, eO,1〉 ≃eP ,eO

Tr〈K2[n̂], γ2, eO,2〉. So using the induction hypothesis on terms, we get that

SEJτKeO,1
(K1[n̂]) ≃eO

SEJτKeO,2
(K2[n̂])

and since this is true for all n ∈ Z, we get SKJσ, τKeO,1
(K1) ≃eO

SKJσ, τKeO,2
(K2).

— If σ is functional, then taking xi a fresh player name pointer not in eP,i, we define
e1

P = eP · (x1, x2, σ). Then taking T1 ∈ Tr〈K1[x1], γ
1
1 , eO,1〉 we have 〈x̄1〉 · T1 ∈

Tr〈Ki, γi, eO,i〉. Thus there exists T2 ∈ Tr〈K2[x2], γ
1
2 , eO,2〉 such that T1 ≃e1

P
,eO

T2.

Using a symmetric reasoning, we get that Tr〈K1[x1], γ
1
1 , eO,1〉 ≃e1

P
,eO

Tr〈K2[x2], γ
1
2 , eO,2〉.

So using the induction hypothesis on terms, we get that SEJτKe1
O,1

(K1[x2]) ≃e1
O

SEJτKeO,2
(K2[x2]), i.e. SKJσ, τKeO,1

(K1) ≃eO
SKJσ, τKeO,2

(K2).

Proof (Full Abstraction on Terms) Suppose that bothMi 7→ vi, then Tr〈Mi, γi, eO,i〉 =
Tr〈vi, γi, eO,i〉 and SEJτKeO,1

(Mi) = SV JτKeO,1
(vi) and we conclude using the induction hy-

pothesis on values.

If both Mi 7→ Ki[fi ui], then Tr〈Mi, γi, eO,i〉 = (f̄i 〈ũi〉) · Tr〈Ki, γ
1
i , eO,i〉 with ũi = ui

and γ1
i = γi if σ = Int, otherwise ũi is equal to some fresh player name pointer xi and

γ1
i = γi · (xi →֒ ui). Moreover SEJτKeO,i

(Mi) = (fi, SV JτKeO,i
(u1)) · SKJσ′, τKeO,i

(Ki) And
we conclude easily using the induction hypothesis on contexts.

Finally, using the full abstraction of trace semantics, we get a complete characterization
of contextual equivalence in term of equivalence of the callback structure of terms.

Corollary 4: Let (M1,M2) a pair of pure terms of RefML such that Γg,Γf ⊢ M1,M2 :
τ . Then ·; Γg,Γf ⊢ M1 ≃ctx M2 : τ iff SEJτKΓf

(γ(M1)) ≃Γ̃f
SEJτKΓf

(γ(M2)) for all

substitutions γ : Γg → Val.
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(K[M ],C) 7→s (K[M ′],C) when (M,∅) 7→ (M ′,∅)
(K[x == x′],C) 7→s (K[true],C ∧ (x = x′)) or (K[false],C ∧ (x 6= x′))
(K[x == n̂],C) 7→s (K[true],C ∧ (x = n)) or (K[false],C ∧ (x 6= n))
(K[n̂ == x],C) 7→s (K[true],C ∧ (x = n)) or (K[false],C ∧ (x 6= n))
(K[x+ n̂],C) 7→s (K[z],C ∧ (z = x+ n)) with z fresh in C

(K[n̂+ x],C) 7→s (K[z],C ∧ (z = x+ n)) with z fresh in C

(K[x+ x′],C) 7→s (K[z],C ∧ (z = x+ x′)) with z fresh in C

(K[if b then M1 7→s (K[M1],C ∧ (b = 0)) or (K[M2],C ∧ (b = 1))
else M2],C)

Figure 5.5: Definition of Symbolic Execution

Notice that the same definition of SEJτK(M) can be used to deal with pure terms of
GroundML, and the same proof of full abstraction goes through. This means that the
notion of contextual equivalence of RefML and GroundML is the same on pure terms,
which is to our knowledge a new result.

Finally, to decide the equivalence of two pure terms, we simply have to compute their
callback structures and then check if they are equivalent—which is always possible when
the type Int is bounded.

5.5.2 Symbolic Execution and Decidability of the unbounded
fragment

SEJτK(M) is in general an infinite object when we do not bound the type Int. However,
due to the fact that terms cannot have infinite branching, it is possible to represent
SEJτK(M) in a finite way.

To do so, we introduce a symbolic execution in Figure 5.5, which reason logically on
integer variables with arithmetic constraints. Those constraints are collected in a set C,
so that the reduction is defined on pairs (M,C). A more general symbolic execution,
defined for GroundML, will be presented in Chapter 7.

Then, this symbolic execution is used to define the symbolic callback structure of terms
in Figure 5.6. Notice that SEJτKI(M) is now defined as a set.

The equivalence of two symbolic callback structures is then defined as a logical formula
of Presburger Arithmetic.

Definition 37. Two symbolic callback structures S1, S2 of Structn are symbolically
equivalent for a span eO, written S1 ≃

n
eO
S2, as

—
〈
t̄1
〉
≃n

eO

〈
t̄2
〉

def
= t1 = t2,

— ((f̄1 〈†〉 , S1) · S ′
1) ≃n+1

eO
((f̄2 〈†〉 , S2) · S ′

2)
def
=




(S ′
1 ≃

n
eO
S ′

2 ∧ S
′′
1 ≃

n
e′

O
S ′′

2 ) if (f1, f2) ∈ eO,

False otherwise.
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SV JIntKI(t)
def
=

〈
t̄
〉

SV JInt→ σKI(v)
def
= (

〈
†̄
〉
, † 〈z〉 , SEJσKI(v z))

SV Jτ → σKI(v)
def
= (

〈
†̄
〉
, † 〈y〉 , SEJσKI·(y,τ)(v y)) with y /∈ I

SKJInt, τKI(K)
def
= (〈z〉 , SEJτKI(K[z]))

SKJσ, τKI(K)
def
= (〈x〉 , SEJτKI·(x,σ)(K[x]))

SEJτKI(M)
def
= {((f̄ 〈†〉 , SV JσKI(v)),C) · SKJσ′, τKI(K) | (M,∅) 7→∗

s (K[f v],C)
and (f, σ → σ′) ∈ I} ∪ {(SV JτKI(v),C) | (M,∅) 7→∗

s (v,C)}

Figure 5.6: Definitions of the symbolic callback structure

— {(Sj1 ,Cj1) | j1 ∈ J1} ≃
n+1
eO
{(Sj2 ,Cj2) | j2 ∈ J2}

def
=

∧

(j1,j2)∈J1×J2

(Cj1 ∧ Cj2) ⇒

(Sj1 ≃
n
eO
Sj2)

— (〈x1〉 , S1) ≃
n
eO

(〈x2〉 , S1)
def
= ∀x1, x2.(x1 = x2) =⇒ S1 ≃

n
eO
S2

— († 〈x1〉 · S1) ≃
n
eO

(† 〈x2〉 · S2) if S1 ≃
n
eO·(x1,x2) S2.

To get the decidability result, we have to prove that this symbolic equivalence coincide
with the equivalence on callback structures introduce in the previous section.

Theorem 26: Let M1,M2 two ground-closed terms of type τ and eO a span on their
free functional variables. Then SEJτKeO,1

(M1) ≃eO
SEJτKeO,2

(M2) iff SEJτKeO,1
(M1) ≃eO

SEJτKeO,2
(M2).

To prove this theorem, we must relate the symbolic execution of Figure 5.5 with the
operational reduction of Figure 3.8.

Lemma 21: Let M a term such that M 7→∗ M ′. Then there exists a set of Presburger
constraint C and a substitution α : FV(C)→ Int such that

— α(C) is true,
— (M,∅) 7→∗

s (M ′′,C),
— α(M ′′) = M ′.

Lemma 22: Let M a term such that (M,∅) 7→∗
s (M ′′,C) and there exists a substitution

α : FV(C) → Int such that α(C) is true. Then there exists M ′ such that M 7→∗
s M

′ and
α(M ′′) = M ′.
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Then, it is clear that free logical variables of the formula SEJτKeO,1
(M1) ≃eO

SEJτKeO,2
(M2)

are the free logical variables of M1 and M2. So we can show that substitutions of logical
variables go throught the symbolic equivalence, via the following three lemmas.

Lemma 23: α(SV JτKeO,1
(v1) ≃eO

SV JτKeO,2
(v2)) iff SV JσKeO,1

(α(v1)) ≃eO
SV JτKeO,2

(α(v2))

Lemma 24: α(SKJσ, τKeO,1
(K1) ≃eO

SKJσ, τKeO,2
(K2))

iff SKJσ, τKeO,1
(α(K1)) ≃eO

SKJσ, τKeO,2
(α(K2))

Lemma 25: α(SEJτKeO,1
(M1) ≃eO

SEJτKeO,2
(M2)) iff SEJτKeO,1

(α(M1)) ≃eO
SEJτKeO,2

(α(M2))

Finally, using these lemmas (which will be proved in a more general setting in Chap-
ter 7), we can prove Theorem 26 and the two following theorems on contexts and values,
by mutual induction.

Theorem 27: Let v1, v2 two ground-closed terms of type τ and eO a span on their
free functional variables. Then SV JτKeO,1

(v1) ≃eO
SV JτKeO,2

(v2) iff SEJτKeO,1
(v1) ≃eO

SEJτKeO,2
(v2).

Theorem 28: Let K1, K2 two ground-closed contexts of type τ and eO a span on their
free functional variables. Then SKJσ, τKeO,1

(K1) ≃eO
SEJτKeO,2

(K2) iff SEJτKeO,1
(K1) ≃eO

SKJσ, τKeO,2
(K2).

Proof (Theorem 26) Let M1,M2 such that SEJτKeO,1
(M1) ≃eO

SEJτKeO,2
(M2). Let

M ′′
i ,Ci such that (Mi,∅) 7→∗

s (M ′′
i ,Ci). and α1, α2 two substitutions such that αi(Ci) is

valid. From Lemma 22, we get the existence ofM ′
i such thatMi 7→

∗ M ′
i andM

′
i = αi(M

′′
i ).

So from SEJτKeO,1
(M1) ≃eO

SEJτKeO,2
(M2) we get that

— either both M ′
i = Ki[fi vi] with (f1, f2) ∈ eO, SV JσKeO,1

(v1) ≃eO
SEJσKeO,2

(v2) and
SKJσ′, τKeO,1

(K1) ≃eO
SKJσ′, τKeO,2

(K2). Then, M ′′
i = K ′

i[fiv
′
i] with Ki = αi(K

′
i)

and vi = αi(v
′
i). Thus, using lemmas 24 and 23 and the induction hypothe-

sis, we get that α(SV JσKeO,1
(v1) ≃eO

SEJσKeO,2
(v2)) and α(SKJσ′, τKeO,1

(K1) ≃eO

SKJσ′, τKeO,2
(K2)).

— Or both M ′
i = vi with SV JσKeO,1

(v1) ≃eO
SEJσKeO,2

(v2). Then, M ′′
i = v′

i with
vi = αi(v

′
i). Thus, using lemma 23 and the induction hypothesis, we get that

α(SV JσKeO,1
(v1) ≃eO

SEJσKeO,2
(v2)).

Reciprocally, suppose that SEJτKeO,1
(M1) ≃eO

SEJτKeO,2
(M2) and that Mi 7→

∗ M ′
i .

Then using Lemma 21, we get the existence of two sets of Presburger constraint Ci and
two substitution αi : FV(Ci)→ Int such that

— αi(Ci) is true,
— (Mi,∅) 7→∗

s (M ′′
i ,C),

— α(M ′′
i ) = M ′

i .
Then from the fact that both αi(Ci) are true, we get that
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— either bothM ′′
i = Ki[fi vi], there exists σ, σ

′ s.t. (f1, f2) ∈ eO,σ→σ′ and α(SV JσKeO,1
(v1) ≃eO

SEJσKeO,2
(v2)) and α(SKJσ′, τKeO,1

(K1) ≃eO
SKJσ′, τKeO,2

(K2)). Then using lem-
mas 24 and 23 and the induction hypothesis, we get that SV JσKeO,1

(α1(v1)) ≃eO

SEJσKeO,2
(α2(v2)) and SKJσ′, τKeO,1

(α1(K1)) ≃eO
SKJσ′, τKeO,2

(α2(K2)). We con-
clude using the fact that M ′

i = αi(Ki)[fi αi(vi)].
— Or both M ′′

i = vi and α(SV JσKeO,1
(v1) ≃eO

SEJσKeO,2
(v2)). Then using lemma 23,

we get that SV JσKeO,1
(α1(v1)) ≃eO

SEJσKeO,2
(α2(v2)) and we conclude using the fact

that M ′
i = αi(vi).

5.6 Discussion and Future Works

In this chapter, we have introduced a fully-abstract trace semantics for both RefML
and GroundML. We have shown a precise correspondence with the game model of Mu-
rawski and Tzevelekos [MT11b]. As a preview of the next two chapters, we have study the
pure fragment of RefML to get a simple decidability result on the contextual equivalence.
In the following, we are going to study the structure of traces to perform more precise
surgery.

Via the relation between trace and games semantics, we have seen that we can equip
the trace semantics with a categorical structure, namely a closed-Freyd category. It
would be interesting to extend this trace semantics to a polymorphic language, where the
mechanism to represent the arenas an action belongs to in terms of tags would become
crucial, as in [Lai10].

In a recent work [LS14], Levy and Staton have proposed a general framework to prove
such a correspondence between a game and a trace model. It would be intersting to see
if we could adapt our correspondence proof in their setting.

5.6.1 Integer References

It would be interesting to extend the characterization of fragments of RefML in trace
semantics by dealing with the restriction to integer references, namely RedML, as in
[MT13]. We believe that our interactive reduction defined for GroundML can be restricted
to give a fully abstract model of RedML, using similar restrictions on the use of name
pointers in locations.

5.6.2 Control Operators

As we have said, the well-bracketing condition is hard-wired in the definition of justified
traces. To remove it, we would need to specify which question an answer is answering.
One possibility to do that would be to use the recent work of Gabbay and Ghica [GG12],
which uses nominal sets to represent strategies. In fact, our work is halfway to them: the
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way they name questions, and the freshness condition they impose, seems similar to our
use of name-pointers and the nominal reasoning we perform on them. It should thus be
possible to use their work to also give fresh name to answers actions.

This would allow the study of languages where we need semantically to remove the well-
bracketing condition, namely languages with control operators like call/cc or exceptions.

5.6.3 Algorithmic Game Semantics

Algorithmic Game Semantics [GM00, HMO11, MT12] is a way to give characterization
of contextual equivalence in term of equality of languages recognizable by various forms
of automaton. However, those techniques rely on restrictions on types to be able to
encode the pointer structure of plays inside the considered languages, so that they are
still recognizable. Thus, our result, even if it concerns only the pure fragment, seems out
of reach of algorithmic game semantics, since we do not have any restriction on the type of
terms. Moreover, we have worked inside RefML, where the absence of visibility condition
on strategies makes the encoding of the pointer structure harder.
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In the Chapter 5, we have introduced trace semantics, a fully abstract model of RefML,
as a variation of the standard game semantics model. However, these two models are
hardly usable as such to reason on the equivalence of terms of RefML. The main reason is
that, in these models, denotations of terms—i.e. strategies—are infinite objects for which
reasoning on equality is hard.

From an other side, there have been a large amount of works to develop operational
techniques and model to prove equivalence of programs written in languages with ref-
erences. Two of the mains ones are bisimulations and logical relations. Environmental
bisimulations [SKS11, Sum09] extend the usual bisimulations defined for first-order lan-
guages to higher order languages. To do so, they are defined as set of relations to represent
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the evolution of the information disclosed by the term to the context. Coinduction is then
used to reason on the resulting equivalence. This use of coinduction is particularly useful
to reason on recursion in terms, avoiding any use of step-indexed methods.

Kripke logical relations, which has been presented in the introduction of this thesis,
are an other approach to prove contextual equivalence of terms. In a call-by-value setting,
they are defined as relations V JτKw and E JτKw on values and terms, defined by a mutual
induction on the type τ . They use a notion of world w to constrain the heaps used to
reduce terms M1,M2 to values in the definition of E JτKw. In a recent work [HDNV12],
Hur et al. have proposed a way to marry Kripke logical relations and environmental
bisimulations into parametric bisimulations.

However, all these works are either not complete w.r.t. contextual equivalence, or
rely on a kind of closure which introduces an infinite quantification over contexts. This
is especially the case of logical relations, which usually use a biorthogonal definition to

achieve completeness: E JτK def
= {(M1,M2) | ∀(K1, K2) ∈ K JτK .(K1[M1], K2[M2]) ∈ O

and K JτK def
= {(v1, v2) | ∀(v1, v2) ∈ V JτK .(K1[v1], K2[v2]) ∈ O} where O is the set of

pairs of equi-diverging terms. One could imagine relate directly a direct and a birthog-
onal definition of a logical relation. However, this seems out of reach for languages like
RefML. More precisely, consider two terms (M1,M2) ∈ E JτKw where E JτKw is defined
by biorthogonality, and let try to unwind this definition to a direct-style: let h1, h2 two
heaps satisfying the constraints induced by w, and suppose that both (M1, h1) 7→ (v1, h

′
1)

and (M2, h2) 7→ (v2, h
′
2). Then it is really hard to build a world w′ future of w s.t.

(v1, v2) ∈ E JτKw and h′
1, h

′
2 satisfying constraints induced by w′. One need to rely on the

discriminating power of contexts in K JτKw, but trying to do that, one comes to study
the precise interaction between terms and contexts, which lead to study game and trace
semantics.

Here, we propose the first proof of completeness of Kripke logical relations, defined
without any kind of closure, for divergent-free terms of GroundML with contexts in
RefML. To do so, we heavily rely on the trace semantics introduce in the previous chapter.
In fact, we refine this model into Kripke trace semantics.

To achieve this result, we have tweaked the usual definition of Kripke logical relations
in multiple ways, to bring it forward to trace semantics. Firstly, our logical relations are
defined on terms with free functional variables 1 (i.e. opponent name pointers), which
are related with a relational environment e which corresponds to a span, as introduced in
Section 3.3. So our logical relations E JτKe are indexed by this span, such that

— two λ-abstractions λx1.M1, λx2.M2 are in V Jτ → σKe, where τ is not a ground
type, when (M1,M2) ∈ E JσKe·(x1,x2,τ),

— two (functional) variables (x1, x2) are in V Jτ → σKe when they are in e.

This is particularly useful to reason abstractly on callbacks.

1. To our knowledge, logical relations are always defined on closed terms. This could have maybe
justified to choose a different name for our technique.
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Then, we deal globally on the constraints on disclosed locations. Indeed, let consider
the two following terms:

M1 = let x = ref0 in λf.fx; x := 1

M2 = let x = ref0 in λf.fx; x := 2

They are not equivalent because the location linked to x, which is disclosed via the callback
fx, does not store the same value at the end of the execution of M1 and M2. Usually,
such invariants on disclosed locations are imposed via the world w (just like invariants on
private locations) and the definition of V Jref τKw. Here, we choose a different approach,
and impose globally these equivalences of stored values.

To do so, we need to keep track of disclosed locations. This is done using a notion of
span D between disclosed locations, as in the work of Stark [Sta98]. So worlds contain
such a span D, which evolves during the execution of a term, being extended with new
disclosed locations. For example, let consider the following two terms:

M1 = let x = ref0 in let y = ref0 in λf.fx; fy

M2 = let x = ref0 in λf.fx; fx

They are not equivalent becauseM1 discloses two different locations via the two callbacks
of f, while M2 disclosed the same. Trying to prove this equivalence using our logical
relations, this would amount to build a span which contain both (lx, lx) and (lx, ly) (where
lx, ly represent locations linked to x, y) which is not possible by definition of spans as
partial bijections. This idea of using spans to relate disclosed locations is already present
in the work of Dreyer et al. [DNB10] but somehow hidden. Indeed, in their approach,
every state of their STSs encodes a partial bijection on locations, which can be used for
the same purpose. However, it is used locally in the definition of V Jref τKw, rather than
imposed globally in the definition of the constraints deduced from w on heaps, written
(h1, h2) : w.

To achieve model-checking results for our logical relations, which are explained in
Chapter 7, we have to constrain the notion of future worlds induces by the transition
system. In previous works [PS98, ADR09, DNB10], a future world w′ of w can be extended
with new invariants (or new STSs of invariants) on the part of heaps which is disjoint
from the heaps described by w. This follows the idea that worlds were partitioned into
islands, each one corresponding to a part of the heap disjoint from the others. Here,
we forbid this usage. So the transition system stays fixed from the beginning. This
means that it has to foreseen the creation of future locations made by the term: we call
omniscient such transitions systems which are entirely defined from the beginning. So we
make a clear distinction between worlds w, which are simple invariants, and the transition
system A, which constraints the evolution of those worlds. Then, the definition of our
logical relations EA JτKw depends on both a transition system A, which is fixed in the
whole inductive definition of the logical relations, and a world w which evolve inside the
definition.
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We choose to work with Labeled Transition Systems (LTSs), rather than State Tran-
sition Systems, to represent the evolution of worlds. This allows transition systems to be
kept finite in many examples, as justified in Chapter 7. They are mainly used to represent
a constraint on the heaps as a pair of pre- and post-conditions between the heaps taken
as input and the heaps we get as output.

As we will see in the definition of the equivalence Σ; Γ ⊢ M1 ≃clog M2 : τ defined
using our logical relations, two terms are equivalent if there exists an LTS A constraining
worlds such that (M1,M2) is in EA JτKw for w “initial” (i.e. for which all the locations
appearing in M1,M2 are disclosed). In order to prove completeness, we must be able to
build such a LTS when two terms M1,M2 have equal denotations from trace semantics.

So we define a finer notion, Kripke trace semantics, which uses worlds to constraint
heaps which are used to generate traces. This is particularly useful to control the disclosure
of locations, since the definition of [Σ; Γ ⊢M : τ ] suppose that all locations are disclosed,
which is not preserved by reduction. However, this use of worlds to refine trace semantics
is independent of any LTS. This means that we have to characterize worlds w and LTS A
which have the adequate properties to enforce, from the fact that M1,M2 have their trace
denotations equal in w, that (M1,M2) ∈ EA JτKw. Such worlds are called adequate, which
definition can be seen in a first approximation as the “dual” of logical relations. More
precisely, we define the set of adequate worlds for two terms M1,M2 via a predicate on
worlds, written EAJτK(M1,M2). Basically, this predicate imposes that there exists exactly
all the necessarily future worlds for w (w.r.t. A) to describe the possible evolutions of the
heaps we get from the interactive reduction of M1,M2. Then, from two terms M1,M2,
we build a special LTS A, called the exhaustive LTS, for which the initial world is indeed
in EAJτK(M1,M2). It is build by following all the traces generated by the interactive
reduction, adding a new state for each action of such traces.

Finally, we call our logical relations concrete, to make a clear distinction with the
temporal logical relations defined in the next chapter.

Plan of the Chapter In Section 6.1, we introduce the notion of LTS and worlds.
Then, concrete logical relations for the fragment of divergent-free terms of GroundML in
RefML are defined in Section 6.2. In Section 6.3, we introduce Kripke trace semantics,
a refinement of the previous chapter where worlds are used to constrain heaps in the
definition of interactive reduction. This is used in Section 6.4 to prove the soundness of
concrete logical relations w.r.t. trace semantics.

To tackle the problem of completeness, we introduce the notion of adequate worlds in
Section 6.5, which is defined dually to logical relations to constrain the shape of LTSs to
follow the control flow of terms. This notion is central in the proof of completeness of
Section 6.6, where we use an exhaustive LTS, defined using interactive reduction, which
is indeed adequate.

In Section 6.7.1, we briefly sketch how to define concrete logical relations for full
RefML, using a coinductive definition which can be formalized via guarded recursive
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TransS
def
= S2 → P(Heap4 × Span2) (δ)

LTSS
def
= {(δpriv, δpub) | δpriv, δpub ∈ TransS, δpub ⊆ δpriv} (A)

WorldS
def
= S × Heap2 × Span (w)

Figure 6.1: Definition of Worlds

types. Interestingly, working with a fixed notion of LTS, the usual circularity between the
definition of worlds and logical relations disappears. We also sketch in Section 6.7.2 the
definition of concrete logical relations for GroundML, where the notion of backtracking
between states introduced in [DNB10], used to relax the notion of future world, appears.

6.1 LTSs and Worlds

As explained in the introduction, we use a fixed notion of transition system, which
cannot be extended, to control the evolution of worlds. By evolution, we mean the notion
of future world, written w′ ⊒ w, which represents the evolution of heap-invariants. So
in our settings worlds are just simple invariants on heaps. We use labels over transitions
rather than states. Such labels control the evolution between two invariants.

6.1.1 First Definitions

The definitions of LTSs and worlds is given in Figure 6.1. We write P(X) for the
powerset of X. Labeled-Transition Systems are defined abstractly over a subset S of a
set of states State. This set of states can simply be taken as natural numbers. They are
formed by two functions respectively for private and public transitions. Private transitions
represent transitions that only terms can take, while public ones can be taken by both
terms and contexts. This explains the condition δpub ⊆ δpriv.

A (public or private) transition associates to a pair of states a predicate on the two
heaps and a span taken as input, and the two heaps and the span produced as output,
so that, as we said, it can define pre- and post-conditions on them. We do not specify
what is the representation of states (i.e. elements of State) are, because it does not really
matter. In the model checking implementation in the next chapter (Section 7.5), we take
it to be the set of integers.

Worlds are simply triples formed by two heaps and a span on locations. The two
heaps are the invariants on the private part of the heap, while the span defines the partial
bijection between the disclosed part of the heap.
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6.1.2 Constraining heaps with worlds

Worlds specify heaps really precisely, since there is no freedom on the private part of
the heap, while on the public part, the span is used to induce a nominal equivalence, as
shown in the following definition.

Definition 38. A triple (h1, h2,D) satisfies the constraints of a world w = (hw
1 , h

w
2 ,D

w),
written (h1, h2,D) : w, when D = Dw, hi = hpriv

i · hdiscl
i with dom(hdiscl

i ) = Di and
hpriv

i ⊆ hw
i , and h

discl
1 ∼D hdiscl

2 .

As we have seen in the previous chapter, one can characterize the nominal the equiv-
alence h1 ∼D h2 induced by a span on two heaps as:

h1 ∼D h2
def
= ∀(l1, l2) ∈ DInt. h1(l1) = h2(l2) ∧ ∀(l1, l2) ∈ Dref ι. (h1(l1), h2(l2)) ∈ Dι

From a triple (h1, h2,D) satisfying the constraints of a world w, one can build new
heaps h′

1, h
′
2 which also satisfies the constraints of w by changing the values stored in the

disclosed part in a related way:

Lemma 26: Let (h1, h2,D) : w, then for all pair of closed heaps hpub
1 , hpub

2 such that
dom(hpub

i ) = Di and h
pub
1 ∼D hpub

2 , we have (h1|D1
· hpub

1 , h2|D2
· hpub

2 ,D2) : w.

6.1.3 Evolution of Worlds

Transitions of an LTS A are used to define private and public notions of future worlds.

Definition 39. Let A a LTS and w1 = (s′, h′
1, h

′
2,S

′), w2 = (s, h1, h2,S) two worlds.
We say that w2 is a future (w.r.t. A) of w1, written w2 (A.⊒) w1 if either w1 = w2 or
(h1, h2, h

′
1, h

′
2,S,S

′) ∈ δpriv(s, s′). Public futures (noted with ⊒pub) are defined similarly
using δpub, and transitive closure of these two relations are noted ⊒∗ and ⊒∗

pub.

We often omit the prefix A when it is clear from context. It is important to remark
that the current heaps h1, h2 of a world specified only the private part of the heap. This
is because it is not possible to expect any property on public parts of the heaps, except
that they are equivalent (a property that is imposed by the definition of future worlds).
Moreover, it is possible for worlds to “garbage collect” part of the private heaps, i.e. h′

i
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do not necessarily extend hi. These properties are useful to build finite LTSs for terms
which create locations under a λ-abstraction.

Because contexts may create fresh disclosed locations during the execution, we also
introduce another notion of (public) future ⊒F

pub which forces the existence of a public
state creating, for each pair of disclosed locations in the current world storing values of
type ref ι, of fresh disclosed locations of Locι′ for each strict subtype of ref ι. One need
this special notion of future because the LTS A is fixed, so that it is normally not possible
to extend the world with these new locations coming from the context, that A has not
foreseen.

This is used to model the indirect disclosure (i.e. via the heap) of locations by the
context. For example, if the span w.S of the current world contains a pair of locations
(l1, l2) ∈ Loc2

ref ref ι, then the context can store in hi(li) some fresh locations l′i ∈ Locref ι

that themselves store in hi(l
′
i) some fresh locations l′′i ∈ Locι. These locations will be

automatically disclosed when the control flow returns to the term.
We index this notion of public future with a type τ , written ⊒Fτ

pub, to force as well
the existence of a public state creating fresh disclosed locations of type τ (together with
locations on which it may point to in the case of references of references), when τ is equal
to some ref ι. This is used to represent the direct disclosure of locations by contexts (i.e.
via a callback or a reduction to a value).

To formalize it, we define the set NewLoc(ι) of set of pairs of locations for all subtypes

of ι : NewLoc(ι)
def
= {{(lι1

1 , l
ι1
2 ), . . . , (lιn

1 , l
ιn
2 )} | l

ιj

i ∈ Locιj
, ιj ranges over subtype(ι)}.

We define subtype(ι) as
— subtype(Unit) = ∅, subtype(Bool) = ∅, subtype(Int) = ∅,
— and subtype(ref ι) = {ref ι} ∪ subtype(ι).

Definition 40. (s′, h′
1, h

′
2,S

′) ⊒F
pub (s, h1, h2,S) when h′

i = hi and there exists a span
S ′′ such that S ′ = S ⊎ S ′′, and S ′′ =

⊎
(l1,l2)∈Sι

Dι, with Dι ∈ NewLoc(ι). We refine this
definition as ⊒Fι

pub when S ′ = S ⊎ S ′′ ⊎ D′
ι with D

′
ι ∈ NewLoc(ι).

Notice that ⊒Fτ
pub is equivalent to ⊒F

pub when τ is not equal to some ref ι.

6.2 Concrete Logical Relations on Traces

Trace semantics, just like usual game semantics, generates infinite objects which are
hard to reason on. This is due to the fact that, in presence of references, we cannot
check the equivalence of two terms by simply executing them only one time, as we have
done in the section 5.5 of the previous chapter, since their executions depend on a heap
that evolves. Kripke logical relations allow such a “one shot” reasoning by checking the
equivalence of terms on every possible pair of heaps, using worlds to get this information.
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Operational semantics defined in Section 3.2.1 does not take into account disclosure of
locations, so we refine it into elementary interactive reduction→ on simple configurations
〈M,h,D〉 given by: if (M,h) 7→ (M ′, h′) with M ′ = v or M ′ = K[f v] then 〈M,h,D〉 →
〈M ′, h′, discl(v, h′, D)〉.

The definition of concrete logical relations is given in Figure 6.2.

Its main features is to guarantee that:

— resulting values (i.e. player answers) are related,
— callbacks (i.e. player questions) of the two terms are synchronized— they interro-

gate equivalent pointers,
— values given to those callbacks are related,
— there exists a future world such that the heaps given in the entry of those callbacks

satisfies its invariant.

Notice the use of injection ρi in the definition of EA JτKe (w,w0) to change name of
locations created during the reduction, so that they correspond to the ones in w. Indeed,
worlds we have defined in Section 6.1 have fixed names for every locations upfront, fixed
by the LTS A. Unfortunately, those names may not correspond to the one created during
the operational reduction. To circumvent this problem, we use the injections ρi to perform
the reallocation.

In the definition, a relational environment e is used to keep track of the arguments
given by the contexts to the terms, via a λ-abstraction or via the returned value of a
callback. Indeed, compared to usual logical relations, when τ is of functional type, the
definition of VA Jτ → σKe w do not quantify over logically related values v1, v2 of type τ ,
but rather use fresh variables y1, y2 (i.e. name pointers), remembering in e that they are
related. This relational environment is in fact a span on variable of functional types, or
equivalently on opponent name pointers. This way to reason relationally on open terms is
in fact really close to normal form (or open) bisimulation [LL07, LL08], where the same
variable is given as arguments to the values we want to relate.

We treat λ-abstractions and variables of functional types in an uniform way. This is
necessary to deal with η-equivalence. Indeed, one can prove that
(f, λx.fx) ∈ VA Jσ → τK(f, f, σ → τ)

︸ ︷︷ ︸
e

w:

— if σ is atomic, then we simply have to prove that ∀w1 ⊒
∗ w.∃w2 ⊒

Fσ
pub w1, for all

(v1, v2) ∈ VA JσKe w2 (fv1, (λx.fx)v2) ∈ EA JτKe w2, which is straightforward from
the fact that ((λx.fx)v2, h) 7→ (fv2, h) with any w2 ⊒

Fσ
pub w1,

— if σ is functional, we have to prove that ∀w1 ⊒
∗ w.∃w2 ⊒

Fσ
pub w1, (fy1, (λx.fx)y2) ∈

EA JτKe·(y1,y2,σ) w2, which amounts to prove that (y1, y2) ∈ VA JσKe·(y1,y2,σ) w2, which
is proved in the following lemma.

Lemma 27: Let e a span on name pointers, and (x1, x2, σ → τ) ∈ e. Then (x1, x2) ∈
VA Jσ → τKe w for any world w.
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VA JUnitKe w
def
= {((), ())}

VA JBoolKe w
def
= {(true, true), (false, false)}

VA JIntKe w
def
= {(n, n) | n ∈ Int}

VA Jref τKe w
def
= {(l1, l2) | (l1, l2) ∈ w.Sτ}

VA Jι→ σKe w
def
= {(u1, u2) | ∀w

′ ⊒∗ w.∃w′′ ⊒Fι
pub w

′.∀(v1, v2) ∈ VA JιKe w
′′.

(u1 v1, u2 v2) ∈ EA JσKe (w′′, w′′)}

VA Jτ → σKe w
def
= {((u1, u2) | ∀w

′ ⊒∗ w.∃w′′ ⊒Fτ
pub w

′.
(u1 y1, u2 y2) ∈ EA JσKe·(y1,y2,τ) (w′′, w′′)}

(y1, y2 fresh, τ not ground)

KA Jι, σKe (w,w0)
def
= {(K1, K2) | ∃w

′ ⊒Fι
pub w.∀(v1, v2) ∈ VA JιKe w

′.
(K1[v1], K2[v2]) ∈ EA JσKe (w′, w0)}

KA Jτ, σKe (w,w0)
def
= {(K1, K2) | ∃w

′ ⊒Fτ
pub w.(K1[x1], K2[x2]) ∈ EA JσKe·(x1,x2,τ) (w′, w0)}

(x2, x2 fresh, τ not ground)

EA JτKe (w,w0)
def
=

{
(M1,M2) | ∀(h1, h2,D) ∈ (h1, h2,D) : w.hi ∈ Cl(νL(Mi) ∪ Di)⇒(
∃w′ ⊒ w.∃(h′

1, h
′
2,D

′) : w′.∃ρi : (νL(h′
i)\νL(hi)) →֒ (Loc\νL(hi)).

〈Mi, hi,Di〉 →
∗ ρi · 〈Ei, h

′
i,D

′
i〉 ∧(

Ei = vi ∧ (v1, v2) ∈ VA JτKe w
′ ∧ w′ ⊒∗

pub w0

)

∨
(
Ei = Ki[fi vi] ∧ (f1, f2) ∈ eσ→σ

′ ∧ (v1, v2) ∈ VA JσKe w
′

∧∀w′′ ⊒∗
pub w

′.(K1, K2) ∈ KA Jσ′, τKe (w′′, w0)
))}

GA J(x1, x2, τ) · eP Ke w
def
= {((x1 7→ v1) · γ1, (x2 7→ v2) · γ2) | (v1, v2) ∈ VA JτKe w

∧(γ1, γ2) ∈ GA JeP Ke w}

Σ; Γg,Γf ⊢M1 ≃clog M2 : τ
def
= ∃S ⊆ Int,∃A ∈ LTSS,∃s ∈ S,∀h ∈ Cl(Σ, νL(codom(γg))),

∀γg : Γg → Val.(γg(M1), γg(M2)) ∈ EA JτK
Γ̃f

(w,w)

where w = (s, h, h, ν̃L(h)) and Γf (resp. Γg) contains only variables of functional
(resp. ground) types.

Figure 6.2: Definition of Concrete Logical Relations for RefML
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Proof By induction on σ. Let w1 ⊒
∗
pub w, we can consider any w2 ⊒

Fσ
pub w (there is

always such w2). Then:
— if σ is of atomic type, we must prove that for all (v1, v2) ∈ VA JσKe w2, (x1 v1, x2 v2) ∈
EA JτKe w2, which is direct.

— Otherwise, we must prove that (x1 y1, x2 y2) ∈ EA JτKe·(y1,y2,σ) w2. To do so, we just
have to prove that (y1, y2) ∈ VA JσKe·(y1,y2,σ) w2, which comes from the induction
hypothesis.

Notice that even if we use a logical relation KA Jσ, τK on context, our definition do
not use any biorthogonal technique.

Then, concrete logical relations allow us to consider only ground callbacks of the in-
teractive reduction, that is player questions which appears at depth zero. In fact, they
are defined by an induction on types and on the number of ground callbacks of the terms
considered. This is well-defined because only divergent-free terms of GroundML are con-
sidered here.

The relation GA JeP Ke w on substitutions will be particularly useful to relate player
environments in trace semantics.

Finally, we define the “full” logical relation Σ; Γf ,Γg ⊢ M1 ≃clog M2 : τ for terms

with open ground variables. Notice that we could have used (γg,1, γg,2) ∈ GA

r
Γ̃g

z
ε
w

in this definition rather than a single substitution γg : Γg → Val since for such world

w = (s, h, h, ν̃L(h)), we would have necessarily γg,1 = γg,2.

6.3 Kripke Trace Semantics

In order to relate our concrete logical relations to trace semantics, we introduce Kripke
trace semantics, that is a refinement of trace semantics where worlds are used to constrain
the heaps used, so that there is a distinction between private and disclosed locations. As
we said in the previous chapter, trace semantics does not allow for compositional reasoning
because the starting heap in the definition is unconstrained—all the locations are disclosed.
This suggests that trace semantics could also benefit from a refinement using worlds.

Worlds are used to parametrize the notion of equality induced by trace semantics on
two terms, by constraining the heaps appearing in traces. Moreover, we want to keep track
of functions values the terms have disclosed to contexts. This is particularly important
when these functional values can modify the heap, like setters.

So we refine the equivalence ≃D
eP ,eO

on set of traces using worlds. This refined equiva-
lence keeps track in γ1, γ2 of the functions the terms have disclosed to contexts.

Definition 41. Given two termsM1 andM2, a world w, two spans eP , eO on player and
opponent name pointers and two substitutions γi : eP,i → Val, we define [M1] ≃

γ,w
eP ,eO
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[M2], if for all (h1, h2,D) : w s.t. hi ∈ Cl(νL(Mi, codom(γi)) ∪ Di),

[〈M1, γ1, eO,1, h1,D1〉] ≃
D
eP ,eO

[〈M2, γ2, eO,2, h2,D2〉] .

Notice that the definition of [M1] ≃
γ,w
eP ,eO

[M2] does not depend on any LTS A, a
fortiori not on the current state of w. Indeed, it just uses the current heaps and spans of
w, but not its transition structure induces by A. Then, when working with terms where
all locations have been disclosed, one can relate this definition to the usual equivalence
on trace.

Theorem 29: Let M1,M2 two terms such that Σ; Γg,Γf ⊢M1,M2 : τ . Then

[Σ; Γg,Γf ⊢M1 : τ ] = [Σ; Γg,Γf ⊢M2 : τ ]

iff for all γg : Γg → Val, for all h ∈ Cl(Σ ∪ νL(codom(γg))), [γg(M1)] ≃
ε,w

ε,Γ̃
[γg(M2)] where

w = ( , h, h, ν̃L(h)).

Proof Straightforward from Theorem 11.

We now show basic facts about the equivalence between Kripke trace semantics and
concrete logical relations. Firstly, we can prove that two ground values logically related
in w have their trace semantics equivalent in w.

Theorem 30: Let v1, v2 two closed values of ground type ι, eO a span on opponent name
pointers and w a world. If (v1, v2) ∈ VA JιKeO

w then [v1] ≃
ε,w
ε,ε [v2].

Proof Unwinding the definition of [v1] ≃
ε,w
ε,eO

[v2], we have to prove that for all (h1, h2,D) :

w s.t. hi ∈ Cl(νL(vi)), (〈v̄1〉 , h1|D′
1
) ∼D′

·,eO
(〈v̄1〉 , h2|D′

2
) where D′ ⊒ D with D′

i =
discl(vi, hi,Di).

If ι = Int, then D′ = D and to prove the equivalence of actions amounts to prove
v1 = v2 which is direct from (v1, v2) ∈ VA JIntKeO

w.

If ι = ref ι′, then from (v1, v2) ∈ VA Jref ι′KeO
w, (v1, v2) ∈ Dw, the span on locations of

w. And from (h1, h2,D) : w D ⊆ Dw, and hi ∈ Cl(νL(vi)) gives us that indeed vi ∈ D. So
D′

i = Di, i.e. v1 ∼D′ v2 and the definition of (h1, h2,D) : w gives us that h1|D1 ∼D h2|D2 .

Notice that the reciprocal property,

if [v1] ≃
ε,w
ε,ε [v2] then (v1, v2) ∈ VA JιKeO

w
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is in general false for ι = ref ι′. Indeed, there is no reason for (v1, v2) to be in Dw in
such a case. This is one of the reason to justify the introduction of adequate worlds in
Section 6.5. Then, under the hypothesis of w is adequate, one can prove the wanted
property (cf. Theorem 38).

We now want to relate the equivalence of terms M1,M2 to the equivalence of their
(elementary interactive) reductions E1, E2, which are either values v1, v2 or callbacks
K1[f1 v1], K2[f2 v2]. To do so, we first relate the semantics of Mi to Ei.

Lemma 28: Let M a term, such that 〈M,h,D〉 →∗ 〈E, h′, D′〉, then [〈M,γ, I, h,D〉] =
[〈E, γ, I, h′, D′〉]

Proof E is either equal to v or K[f v]. The proof is done by case analysis on τ , the
type of v.

— If τ is of ground type, then [〈M,γ, I, h,D〉] is equal to (a, h′
|D′) · [〈♦, γ, I, h′, D′〉],

where a is either 〈v̄〉 or f̄ 〈v〉. But [〈E, γ, I, h′, D′〉] is also equal to (a, h′
|D′) ·

[〈♦, γ, I, h′, D′〉] since the disclosure of locations has already happened.
— Otherwise, we have [〈M,γ, I, h,D〉] equal to

⋃

a

{(a, h′
|D′) · [〈♦, γ · (x →֒ v), I, h′, D′〉]}

where a ranges either over 〈x̄〉 with x ∈ P\dom(γ) if E = v, or over f̄ 〈x〉 with
x ∈ P\dom(γ) if E = K[f v]. And again [〈v, γ, I, h′, D′〉] is also equal to

⋃

a

{(a, h′
|D′) · [〈♦, γ(x →֒ v), I, h′, D′〉]}.

Then, we state two lemmas to reason on equivalence of trace semantics. The first one
is about renaming of locations.

Lemma 29 (Renaming of locations): Let eP , eO,D three spans respectively on player
and opponent name pointers and on locations, and γ1, γ2 two value substitutions defined

respectively on eP,1 and eP,2. Suppose
[
〈E1 ·

−→
K1, γ1, eO,1, h1,D1〉

]
≃D

eP ,eO

[
〈E2 ·

−→
K2, γ2, eO,2, h2,D2〉

]

and let two injections ρi : dom(hi) →֒ Loc, then, writing D′ for (ρ1 × ρ2) · D, we have[
ρ1 · 〈E1 ·

−→
K1, γ1, I1, h

′
1,D1〉

]
≃D′

eP ,eO

[
ρ2 · 〈E2 ·

−→
K2, γ2, I2, h

′
2,D2〉

]

Proof Straightforward using Lemma 31.

The second one is about garbage-collecting unused location. It is particularly useful
because the definition of [M1] ≃

γ,w
eP ,eO

[M2] works only with heaps in Cl(νL(Mi, γi)) while
the usual equivalence on trace semantics is defined on any heaps.
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Lemma 30 (Garbage Collect): Let eP , eO,D three spans respectively on player and
opponent name pointers and on locations, and γ1, γ2 two value substitutions defined re-
spectively on eP,1 and eP,2. Suppose h1, h2 are two heaps such that we can decompose hi

into h′
i · h

g
i with h′

i ∈ Cl(νL(Ei,
−→
K1, codom(γi)) ∪ Di), Then

[
〈E1 ·

−→
K1, γ1, eO,1, h1,D1〉

]
≃D

eP ,eO

[
〈E2 ·

−→
K2, γ2, eO,2, h2,D2〉

]

if and only if

[
〈E1 ·

−→
K1 ·
−→
K1, γ1, I1, h

′
1,D1〉

]
≃D

eP ,eO

[
〈E2 ·

−→
K2, γ2, I2, h

′
2,D2〉

]
.

Proof Straightforward from the fact that the locations from hg
i are never disclosed, so

cannot appear in traces.

Now, we prove the wanted theorem

Theorem 31: Let (M1,M2) a pair of terms, eO a span on their name pointers and w a
world. Let also consider eP a span on player name pointers and γi : eP,i → Val two substi-
tutions on its projections. Suppose that for all (h1, h2,D) : w s.t. hi ∈ Cl(νL(Mi, γi)∪Di),
there exists E1, E2, a world w′ ⊒ w, two heaps and a span (h′

1, h
′
2,D

′) : w′ and two injec-
tions ρi : dom(h′

i)\dom(hi) →֒ Loc such that

— 〈Mi, hi,Di〉 →
∗ ρi · 〈Ei, h

′
i,D

′
i〉,

— either both Ei = vi and [v1] ≃
γ,w′

eP ,eO
[v2],

— or both Ei = Ki[fi vi] and (f1, f2) ∈ eO, [v1] ≃
γ′,w′

e′
P

,eO
[v2] and [K1] ≃

γ′,w′

e′
P

,eO
[K2], where

γ′
i = γ and e′

P = eP if σ, the type of vi, is atomic, otherwise γ′
i = γi · (xi →֒ vi) and

e′
P = eP · (x1, x2, σ) for x1, x2 fresh in eP .

Then [M1] ≃
γ,w
eP ,eO

[M2].

Proof Suppose both Ei = vi, from lemma 28, we get that

[〈Mi, γi, eO,i, hi,Di〉] = [ρi · 〈Ei, γi, eO,i, h
′
i,D

′
i〉] .

Let us decompose h′
i into h′′

i · h
g
i with h′′

i ∈ Cl(νL(Ei, codom(γi)) ∪ Di) Then, from
[v1] ≃

γ,w′

eP ,eO
[v2] we get that

[〈v1, γ1, eO,1, h
′
1,D

′
1〉] ≃

D′

eP ,eO
[〈v2, γ2, eO,2, h

′
2,D

′
2〉]

and we conclude using lemmas on garbage collections (lemma 30) and on renaming of
locations (lemma 29).
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Otherwise, both Ei = Ki[fi vi] and we reason by case analysis of σ.
— If σ is of ground type, then [〈Ki[fi vi], γi, eO,i, h

′
i,D

′
i〉] is equal to

(ρi · (f̄i 〈vi〉 , h
′
i|D′

i
)) · [ρi · 〈Ki[•], γi, eO,i, h

′
i,D

′
i〉]

and from [v1] ≃
γ,w
eP ,eO

[v2] and (f1, f2) ∈ eO we get that (ρ1 · (f̄1 〈v1〉 , h
′
1|D′

1
)) ∼D′′

eP ,eO

(ρ1 ·(f̄2 〈v1〉 , h
′
2|D′

2
)) where D′′ = (ρ1×ρ2)(D

′). Then we conclude using [K1] ≃
γ,w′

eP ,eO

[K2] with both lemma 30 and 29.
— Otherwise, [〈Mi, γi, eO,i, hi,Di〉] is equal to

⋃

xi

(f̄i 〈xi〉 , ρi · h
′
i|D′

i
· [ρi · 〈Ki[•], γ

′
i, eO,i, h

′
i,D

′
i〉]

with xi ranges over P\dom(γi). Then writing D′′ for (ρ1 × ρ2)(D
′), we have

(f̄1 〈x1〉 , ρi·h
′
1|D′

1
) ∼D′′

e′
P

,eO
(f̄2 〈x1〉 , ρ2(h

′
2|D′

2
)). Then we conclude again using [K1] ≃

γ,w′

e′
P

,eO

[K2] with both lemma 30 and 29.

Finally, we state two lemmas on trace semantics.

Lemma 31: Let C,C ′ two configurations and U a trace s.t. C
U
−→ C ′ and ρ : X →֒ Loc

with X ⊆ νL(C) an injection. Then there exists ρ′ which extends ρ s.t. ρ · C
ρ′·U
−−→ ρ′ · C ′

Lemma 32 (Disclosed Equivalence): Let eP , eO,D three spans respectively on player
and opponent name pointers and on locations, and γ1, γ2 two value substitutions defined
respectively on eP,1 and eP,2. Suppose

[
〈K1[•] ·

−→
K1, γ1, eO,1, h1,D1〉

]
≃D

eP ,eO

[
〈K2[•] ·

−→
K2, γ2, eO,2, h2,D2〉

]

and let h′
1, h

′
2 such that h′

i|Di
= hi|Di

and h′
1|D1
∼D

eP ,eO
h′

2|D2
. Then

[
〈K1[•] ·

−→
K1, γ1, I1, h

′
1,D1〉

]
≃D

eP ,eO

[
〈K2[•] ·

−→
K2, γ2, I2, h

′
2,D2〉

]
.

Proof Straightforward from the fact that the interactive reduction on opponent config-
urations choose arbitrary values on the disclosed part of the heap.

6.4 From Concrete Logical Relations to Trace Se-

mantics

Soundness of logical relations w.r.t. contextual equivalence is usually proved via the
so-called fundamental property, which states that from for a term M s.t. Σ; Γ ⊢ M : τ ,
we have Σ; Γ ⊢ M ≃clog M : τ (i.e. (M,M) ∈ E JτK). This property is proved via an
induction on the typing judgment of M , using compatibility lemmas which show that
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the logical relations follow the structure of the typing proof. However, such approach
cannot work here, because of the existential quantification over LTS in the definition of
Σ; Γ ⊢ M1 ≃clog M2 : τ . Indeed, performing the induction on the typing proof, the
application rule M1M2 : τ is problematic, since we get two LTS A1,A2 which are a priori
not related.

To get around this problem, we rather link the logical relation to Kripke trace se-
mantics, and use its soundness to conclude. So the goal of this section is to prove the
soundness of our concrete logical relations w.r.t. Kripke trace semantics, that is:

if (M1,M2) ∈ EA JτKeO
(w,w0) then [M1] ≃

(γ1,γ2),w
eP ,eO

[M2].

for a span eP on player name pointers and γ1, γ2 logically related (see Theorem 34 for
the exact statement). In the previous section, we have seen that Kripke trace semantics
follows the same reduction properties than the definition of E JτK. But this is the “easy”
part, since we have only consider “internal” reduction without any actions. It is the
soundness for values and contexts which are the hardest one to prove, since they induce
actions in trace semantics.

To prove them, we perform some “surgery” on traces to show that Kripke trace se-
mantics follows the inductive structure of logical relations. It is similar to the proof done
in Section 5.5, but complicated by the presence of heaps.

Firstly, we prove that the disclosure process performed by opponent actions, namely
the “creation” of disclosed locations, corresponds to the notion of future world w1 ⊒

Fτ
pub w.

Lemma 33: Let eP , eO two spans on name pointers, w a world, γi two environments on
eP,i and K1, K2 two applicative contexts. Taking (h1, h2,D) : w with hi ∈ Cl(νL(Ki, γi)),
suppose that

〈Ki[•], γi, eO,i, hi,Di〉
〈ui〉,h

′
i|D′

i−−−−−→ 〈Ki[ui], γi, e
′
O,i, h

′
i, D

′
i〉

s.t. there exists a span D′ extending D with D′
i = Di and h

′
1 ∼D′ h′

1, u1 ∼D′ u2 if u1, u2

are locations. then there exists w1 ⊒
Fτ
pub w, where τ is the type of ui, s.t. (h′

1, h
′
2,D

′) : w1.

Proof From the rules O-AnsG and O-Ans, simplified due to the absence of higher-
order references in h1, h2, we get that h

′
i|D′

i

= hi|Di
and D′

i = discl(ui, h
′
i,Di). Let consider

the subheap hn
i of h′

i whose domain is disjoint from hi. Then, from h′
i|D′

i

= hi|Di
we get

that dom(hn
i ) = D′

i\Di. So let (l1, l2, ι) ∈ D
′\D, from D′

i = discl(ui, h
′
i,Di) we get that

there exists an n > 0 such that li ∈ h
n({ui} ∪ Di). Suppose this n is maximal, i.e. either

h′
i(li) ∈ {ui} ∪ Di or h

′
i(li) is equal to (), a boolean or an integer. This means that there

exists l0i ∈ {ui}∪Di and l
k+1
i = hn(lki ) for all k ∈ {1, . . . , n−1}, with lni = li. Then, l

0
i is of

type ι′ = ref . . . ref︸ ︷︷ ︸
n times

ι (with ι the type of li). But then, ι is in subtype(ι′), so there exists

D1 ∈ NewLoc(ι′) disjoint from D with (lk1 , l
k
2) ∈ D1 for all k ∈ {1, . . . , n}. Iterating the

process over D′
i\(Di ∪ {(l

k
1 , l

k
2) | k ∈ {1, . . . , n}}), we get the existence of such disjoints

spans D1, . . . ,Dm. Thus, one can write (D′
i\Di) as a subset of

⊎
j∈{1,...,m}D

j.
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Finally, from (h1, h2,D) : w, we get that w = (hw
1 , h

w
2 ,D

w) with hi|Di
⊆ hw

i and

D = Dw. So one can define w1 as (hw
1 , h

w
2 ,D

w ⊎ (
⊎

j∈{1,...,m}D
j)).

Lemma 34: Let eP , eO two spans on name pointers, w a world, γi two environments on
eP,i and Ki two applicative contexts. Taking (h1, h2,D) : w with hi ∈ Cl(νL(Ki, γi)),
suppose that

〈♦, γi, eO,i, hi, Di〉
fi〈ui〉,h

′
i|D′

i−−−−−−→ 〈vi ui, γ1, e
′
O,1, h

′
1, D

′
1〉

where γi(fi) = vi of type τ → σ s.t. there exists a span D′ extending D with D′
i = Di

and h′
1 ∼D′ h′

1, u1 ∼D′ u2 if u1, u2 are locations. Then there exists w1 ⊒
Fτ
pub w, s.t.

(h′
1, h

′
2,D

′) : w1.

Proof The proof is similar to the previous lemma.

Then, from an opponent action a1,we show how to build an equivalent opponent action
a2, in the two following lemmas.

Lemma 35: Let e0, eO,D three spans respectively on player, opponent name pointers
and locations. Let γ1, γ2 two functional substitutions s.t. dom(γi) = eP,i. Let f1 ∈ eP,1

with γ(f1) = v1, s.t.

〈♦, γ1, eO,1, h1,D1〉
f1〈u1〉,h1

1|D1
1−−−−−−−→ 〈v1 u1, γ1, e

1
O,1, h

1
1,D

1
1〉

Then there exists:
— a span on opponent name pointers e1

O ⊒ eO,
— a span on locations D1 ⊒ D,
— an action (f2 〈u2〉 , h

1
2|D1

2
),

s.t. (f1 〈u1〉 , h
1
1|D1

1
) ∼D1

eP ,e1
O

(f2 〈u2〉 , h
1
2|D1

2
) and

〈♦, γ2, eO,2, h2,D2〉
f2〈u2〉,h1

2|D1
2−−−−−−−→ 〈v2 u2, γ1, e

1
O,2, h

1
2,D

1
2〉.

Proof Firstly, there exists σ, τ and f2 s.t. (f1, f2) ∈ eO,σ→τ . Then, we reason by case
analysis on σ to build u2.

— If σ is equal to Unit,Bool or Int, we simply take u2 = u1.
— If σ = ref ι, then if u1 ∈ D1, we take as u2 the corresponding location u2 s.t.

(u1, u2, ι) ∈ D. Otherwise, we take as l2 any locations not in h2.
— If σ is of functional type, then we take as u2 any fresh opponent name pointer not

in eO,2.

Lemma 36: Let e0, eO,D three spans respectively on player, opponent name pointers
and locations. Let γ1, γ2 two functional substitutions s.t. dom(γi) = eP,i. Suppose that

〈K1[•], γ1, eO,1, h1,D1〉
〈u1〉,h1

1|D1
1−−−−−−→ 〈K1[u1], γ1, e

1
O,1, h

1
1,D

1
1〉

Then there exists:
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— a span on opponent name pointers e1
O ⊒ eO,

— a span on locations D1 ⊒ D,
— an action (〈x2〉u2, h

1
2|D1

2
),

s.t. (〈u1〉 , h
1
1|D1

1
) ∼D1

eP ,e1
O

(〈u2〉 , h
1
2|D1

2
) and

〈K2[•], γ2, eO,2, h2,D2〉
〈u2〉,h1

2|D1
2−−−−−−→ 〈K2[u2], γ1, e

1
O,2, h

1
2,D

1
2〉.

Proof It follows the same pattern of the proof of the previous lemma.

Then we state a technical unwinding lemma, proving that for two terms and two heaps
logically-related at w, there exists a future world w′ s.t. they interactively reduce to two
values related in w′ and two heaps validating w′. This result is non-trivial since the
interactive reduction can perform nested calls of terms, which is not directly taken into
account with logical relations.

Lemma 37: Let M1,M2 two ground-closed terms and eO a span on its (opponent) name
pointers. Suppose that (M1,M2) ∈ EA JτKeO

(w,w0), and let eP a span on player name
pointers with (γ1, γ2) ∈ GA JeP KeO

w and (h1, h2,D) : w s.t. hi ∈ Cl(νL(Mi, γi) ∪ Di).

Consider Ti ∈ [〈Mi, γi, eO,i, hi,Di〉] such that T1 ≃
D
eP ,eO

T2 with Ti = Ui · (〈v̄i〉 , h
f

i|Df
i

) and

〈Mi, γi, eO,i, hi,Di〉
Ui−→ 〈vi, γ

′
i, e

f
O,i, h

′
i,D

′
i〉

〈v̄i〉,h
f

i|D
f
i−−−−−→ 〈♦, γf

i , e
f
O,i, h

f
i ,D

f
i 〉

with γf
i = γ′

i · (xi →֒ vi) if vi is of functional type, otherwise γ
f
i = γ′

i. Then there exists
— two injections ρf

i : (νL(hf
i ) \ νL(hi)) →֒ (Loc \ νL(hi)),

— a world wf s.t. wf ⊒ w and wf ⊒pub w0,

— a span on player name pointers ef
P which extends eP and whose projection are

equal to dom(γf
i ),

— a span on opponent name pointers ef
O which extends eO and whose projection are

equal to ef
O,i,

such that (ρf
1 ·h

f
1 , ρ

f
2 ·h

f
2 , ρ

f
1×ρ

f
2 ·D

f ) : wf , (ρf
1 ·v1, ρ

f
2 ·v2) ∈ VA JτKef

O

wf and (ρf
1 ·γ

f
1 , ρ

f
2 ·γ

f
2 ) ∈

GA

r
ef

P

z
ef

O

wf .

Proof From (M1,M2) ∈ EA JτKeO
(w,w0), we get the existence of

— two terms Ei,
— a world w1 ⊒ w,
— two heaps and a span (h1

1, h
1
2,D

1) : w1 ,
— two injections ρi : (νL(h1

i ) \ νL(hi)) →֒ (Loc \ νL(hi)),
such that 〈Mi, hi,Di〉 →

∗ 〈Ei, ρi · h
1
i , ρi · D

1
i 〉.
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Either both Ei = vi, i.e. Ui = ε, ρi · h
1
i = hf

i , e
f
O,i = eO,i. Then w1 ⊒pub w0 and

(ρ−1
1 · v1, ρ

−1
2 · v2) ∈ VA JτKe w1. So we directly get the wanted properties taking wf as w1,

ρf
i as ρ−1

i , ef
P = eP and ef

O = eO.

Otherwise Ei = Ki[fi u
1
i ] s.t.

— (f1, f2) ∈ eO,σ→σ′ for two types σ, σ′,
— (ρ−1

1 · u
1
1, ρ

−1
2 · u

1
2) ∈ VA JσKeO

w1,

— for all w2 ⊒
∗
pub w1, (ρ−1

1 ·K1, ρ
−1
2 ·K2) ∈ KA Jσ′, τKeO

(w2, w0).

Then, we can decompose Ui into (f̄i

〈
û1

i

〉
, ρ1

i · h
1
i|D1

i
) · U1

i · U
2
i with

〈Ki[fi u
1
i ], γi, eO,i, ρ

1
i · h

1
i , ρ

1
i · D

1
i 〉

f̄i

〈
û1

i

〉
,ρ1

i ·(h1

i|D1
i

)

−−−−−−−−−−→ 〈Ki[•], γ
1
i , eO,i, ρ

1
i · h

1
i , ρ

1
i · D

1
i 〉

U1
i−→ 〈Ki[•], γ

2
i , e

1
O,i, h

2
i ,D

2
i 〉

because discl(u1
i , h

1
i ,D

1
i ) = D1

i since u1
i ∈ D

1
i if u1

i is a location. Then, using lemma
31, we get the existence of ρ1

i extending ρ−1
i such that

〈ρ−1
i ·Ki[fi u

1
i ], γi, eO,i, h

1
i|D1

i
, 〉

f̄i

〈
ρ−1

i
·û1

i

〉
,h̃1

i|D̃1
i−−−−−−−−−−→ 〈ρ−1

i ·Ki[•], ρ
−1
i · γ

1
i , eO,i, h

1
i ,D

1
i 〉

ρ1
i ·U1

i−−−→ 〈ρ1
i ·Ki[•], ρ

1
i · γ

2
i , e

1
O,i, ρ

1
i · h

2
i , ρ

1
i · D

2
i 〉

If σ is atomic, then û1
i = u1

i and ρ−1
i · γ

1
i = γi. Otherwise, û1

i is equal to some fresh
player name pointer yi and ρ

−1
i ·γ

1
i = γi · (yi →֒ ρ−1

i ·u
1
i ), and defining e1

P = eP · (y1, y2), we
have (ρ−1

1 · γ
1
1 , ρ

−1
2 · γ

1
2) ∈ GA Je1

P KeO
w1 using world monotonicity of functional values. In

both cases, we have (ρ1
i · U

1
i ) ∈ [〈♦, ρ1

i · γ
1
i , eO,i, h

1
i ,D

1
i 〉] and (ρ1

i · U
1
1 ) ≃D1

e1
P

,eO
(ρ1

i · U
1
2 ). So

using the induction hypothesis of the second lemma on the pair of traces (ρ1
i ·U

1
1 , ρ

1
i ·U

1
2 )

we get the existence of
— two injections ρ2

i : (νL(ρ−1
i · h

2
i ) \ νL(h1

i )) →֒ (Loc \ νL(h1
i )),

— a world w2 ⊒
∗
pub w1 such that (ρ2

1 · h
2
1, ρ

2
2 · h

2
2, (ρ

2
1 × ρ

2
2) · D

2) : w2

— a span on player name pointers e2
P which extends e1

P and whose projection are
equal to dom(γ2

i ),
— a span on opponent name pointers e1

O which extends eO and whose projection are
equal to e1

O,i,
such that, defining ρ̃i as the injection ρ

2
i ◦ ρ

1
i : (νL(h2

i ) \ νL(hi)) →֒ (Loc \ νL(hi)), we have
(ρ̃1 · γ

2
1 , ρ̃2 · γ

2
2) ∈ GA Je2

P Ke1
O
w2. Moreover, (ρ̃1 · h

2
1, ρ̃2 · h

2
2, (ρ̃1 × ρ̃2) · D

2) : w2.

Then, we can decompose ρ̃i · U
2
i into (〈u2

i 〉 , h
3
i|D3

i
) · U3

i such that

〈ρ̃i ·Ki[•], ρ̃i · γ
2
i , e

1
O,i, ρ̃i · h

2
i , ρ̃i · D

2
i 〉
〈u2

i 〉,h3

i|D3
i−−−−−−→ 〈(ρ̃i ·Ki)[u

2
i ], ρ̃i · γ

2
i , e

2
O,i, h

3
i ,D

3
i 〉

And from the fact that ρ̃1 ·U
2
1 ≃

D′
3

e2
P

,e1
O

ρ̃2 ·U
2
2 , we get the existence of e

2
O ⊒ e1

O and D3 ⊒ D2

such that (〈u2
1〉 , h

3
1|D3

1
) ∼D3

e2
P

,e2
O

(〈u2
2〉 , h

3
2|D3

2
). So using lemma 33, we get the existence of
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w3 ⊒
Fσ′

pub w2 such that (ρ̃1 · h
3
1, ρ̃2 · h

3
2, (ρ̃1 × ρ̃2) · D

3) : w3.

Then, ρ̃i ·Ki = ρ−1
i ·Ki and from the world motononicity of contexts, (ρ̃1 ·K1, ρ̃2 ·K2) ∈

KA Jσ′, τKe1
O

(w3, w0). And we can conclude using the induction hypothesis on the first

lemma.

Lemma 38: Let eP , eO two spans respectively on player and opponent name pointers,
(γ1, γ2) ∈ GA JeP KeO

w and (h1, h2,D) : w s.t. hi ∈ Cl(νL(Mi, γi) ∪ Di). Then for all Ti ∈

[〈♦, γi, eO,i, hi,Di〉] such that T1 ≃
D
eP ,eO

T2 and 〈♦, γi, eO,i, hi,Di〉
Ti−→ 〈♦, γf

i , e
f
O,i, h

f
i ,D

f
i 〉

there exists
— two injections ρi : (νL(h′

i)\νL(hi)) →֒ Loc,
— a world wf ⊒

∗
pub w such that (ρ1(h

f
1), ρ2(h

f
2), (ρ1 × ρ2)(D

f )) : wf ,

— a span ef
O which extends eO and whose projections are ef

O,i,

— and a span ef
P which extends eP such that (ρ1(γ

f
1 ), ρ2(γ

f
2 )) ∈ GA

r
ef

P

z
ef

O

wf ,

Proof If Ti is non-empty, then we have Ti = (fi 〈ui〉 , h
1
i|D1

i
) · U1

i · U
2
i and

〈♦, γi, eO,i, hi,Di〉
fi〈ui〉,h

1

i|D1
i−−−−−−→ 〈vi ui, γi, e

1
O,i, h

1
i ,D

1
i 〉

U1
i−→ 〈♦, γ2

i , e
2
O,i, h

2
i ,D

2
i 〉

U2
i−→ 〈♦, γf

i , e
f
O,i, h

f
i ,D

f
i 〉

where γi(fi) = vi, with U1
i ∈

[
〈vi ui, γ

1
i , e

1
O,i, h

1
i ,D

1
i 〉
]
and U2

i ∈
[
〈♦, γ2

i , e
2
O,i, h

2
i ,D

2
i 〉
]
.

Then, from the equivalence of T1 and T2, (f1, f2) ∈ eP,σ→τ , so (γ1(f1), γ2(f2)) ∈ VA Jσ → τKeO
w.

Using lemma 33, we get the existence of w1 ⊒
Fσ
pub w such that (h1

1, h
1
2,D

1) : w1, and
moreover (v1 u1, v2 u2) ∈ EA JτKe1

O
(w1, w1). So using the induction hypothesis on the first

lemma, we get the existence of
— two injections ρ2

i : (νL(h2
i )\νL(h1

i )) →֒ Loc,

— a world w2 ⊒pub w1 such that (ρ2
1(h

2
1), ρ

2
2(h

2
2), D̃

2) : w2,
— a span on opponent name pointers e2

O which extends e1
O and whose projections are

e2
O,i,

— a span on opponent name pointers e2
P which extends e1

P such that (ρ2
1(γ

2
1), ρ2

2(γ
2
2)) ∈

GA Je2
P Ke2

O
w2.

Then, from lemma 31,there exists two injections ρ3
i extending ρ2

i s.t.

〈♦, ρ2
i (γ

2
i ), e2

O,i, ρ
2
i (h

2
i ), ρ

2
i (D

f
i )〉

U2
i−→ 〈♦, ρ3

i (γ
f
i ), ef

O,i, ρ
3
i (h

f
i ), ρ3

i (D
f
i )〉

Then using the induction hypothesis on the second lemma, we get the existence
of two injections ρ′

i : (ρ3
i (νL(hf

i ))\ρ2
i (νL(h2

i ))) →֒ Loc so defining the injection ρf
i :

(νL(hf
i )\νL(hi))) →֒ Loc as ρ′

i ◦ ρ
3
i on νL(hf

i )\νL(h2
i ) and as ρ2

i on νL(h2
i )\νL(h1

i ) and
as the identity on νL(h1

i )\νL(hi), we get the existence of
— a world wf ⊒pub w2 such that (ρf

1(hf
1), ρf

2(hf
2), (ρf

1 × ρ
f
2)(Df )) : wf ,
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— a span on opponent name pointers ef
O which extends e2

O and whose projections are
ef

O,i,

— a span on opponent name pointers ef
P which extends e2

P such that (ρf
1(γf

1 ), ρf
2(γf

2 )) ∈

GA

r
ef

P

z
ef

O

wf .

and we conclude using the fact that wf ⊒
∗
pub w2 ⊒pub w1 ⊒pub w.

Finally, using this unwinding of the logical relation, we can show the wanted theorems
for values, terms and contexts. One also need an other lemma which show the adequacy
of the equivalence of substitutions (γ1, γ2) ∈ GA JeP KeO

w.

Lemma 39: Let ep, eO two spans respectively on player and opponent name pointers.
and (γ1, γ2) ∈ GA JeP KeO

w. Then [·] ≃(γ1,γ2),w
eP ,eO

[·].

Theorem 32: Let v1, v2 two values, eO a span on its opponent names pointers, and w a
worlds such that (v1, v2) ∈ VA JτKeO

w. Then taking eP a span on player name pointers,

for all (γ1, γ2) ∈ GA JeP KeO
w, [v1] ≃

(γ1,γ2),w
eP ,eO

[v2].

Theorem 33: Let K1, K2 two contexts, eO a span on its opponent names pointers, and
w,w0 two worlds such that (M1,M2) ∈ KA Jσ, τKτ eO(w,w0). Then taking eP a span on
player name pointers, for all (γ1, γ2) ∈ GA JeP KeO

w, [K1] ≃
(γ1,γ2),w
eP ,eO

[K2].

Theorem 34: Let M1,M2 two terms, eO a span on its opponent names pointers, and
w,w0 two worlds such that (M1,M2) ∈ EA JτKeO

(w,w0). Then taking eP a span on player

name pointers, for all (γ1, γ2) ∈ GA JeP KeO
w, [M1] ≃

(γ1,γ2),w
eP ,eO

[M2].

Proof The lemma and the three theorems are proved by a mutual induction on types
and on the length of ground callbacks.

Proof ((Lemma 39)) Let (h1, h2,D) : w s.t. hi ∈ Cl(νL(γi)∪Di), and T1 ∈ [〈♦, γ1, eO,1, h1,D1〉].
We must build T2 ∈ [〈♦, γ2, eO,2, h2,D2〉] such that T1 ≃

D
eP ,eO

T2. We can write T1 as

(f1

〈
u1

1

〉
, h1

1|D1
1
) · U1

1 · (
〈
ū2

1

〉
, h3

1|D3
1
) · U2

1

with f1 ∈ dom(γ1) and

〈♦, γ1, eO,1, h1,D1〉
f1〈u1

1〉,h1

1|D1
1−−−−−−−→ 〈v1 u

1
1, γ1, e

1
O,1, h

1
1,D

1
1〉

U1
1−→ 〈ũ2

1, γ
1
1 , e

2
O,1, h

2
1,D

2
1〉

〈ū2
1〉,h3

i|D3
i−−−−−−→ 〈♦, γ2

1 , e
2
O,1, h

3
1,D

3
1〉

Let f2 such that (f1, f2) ∈ eP , i.e. there exists two types σ, σ′ s.t. (f1, f2) ∈ eP,σ→σ′ .
From lemma 35, we get the existence of:

— a span on opponent name pointers e1
O ⊒ eO,
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— a span on locations D1 ⊒ D,
— an action (f2 〈u

1
2〉 , h

1
2|D1

2
),

such that (f1 〈u
1
1〉 , h

1
1|D1

1
) ∼D1

eP ,e1
O

(f2 〈u
1
2〉 , h

1
2|D1

2
). Then, using lemma 34, we get a world

w1 ⊒
Fσ
pub w such that (h1

1, h
1
2,D

1) : w1. Then, the first move of T2 is defined as (f2 〈u
1
2〉 , h

1
2|D1

2
).

From (f1 〈u
1
1〉 , h

1
1|D1

1
) ∼D1

eP ,e1
O

(f2 〈u
1
2〉 , h

1
2|D1

2
), we get that (u1

1, u
1
2) ∈ VA JσKe1

O
w1, so

(v1 u
1
1, v2 u

1
2) ∈ EA Jσ′Ke1

O
(w1, w1).

Applying the induction hypothesis of Theorem 34 (i.e. on terms) with lemma 30, we first
get the existence of

U1
2 ·
(〈
ū2

2

〉
, h3

1|D3
2

)
∈
[
〈v2 u

1
2, γ2, e

1
O,2, h

1
2,D

1
2〉
]

such that U1
2 ≃

D2

eP ,e2
O
U1

2 and (
〈
ū2

1

〉
, h3

1|D3
1
) ∼D3

e2
P

,e2
O

(
〈
ū2

2

〉
, h3

2|D3
2
). Then, applying lemma 37,

we get the existence of
— two injections ρi : (νL(h3

i )\νL(h1
i )) →֒ (Loc\νL(h1

i )),
— a world w3 ⊒ w1

— a span e2
P which extends eP and whose projections are equal to dom(γ2

i ),
— a span e2

O which extends eO and whose projections are equal to e2
O,i,

such that (ρ1(h
3
1), ρ2(h

3
2), (ρ1 × ρ2)(D

3)) : w3, (ρ1(γ
2
1), ρ2(γ

2
2)) ∈ GA Je2

P Ke2
O
w3

and (ρ1(u
2
1), ρ2(u

2
2)) ∈ VA Jσ′Ke2

O
w3.

Thus, we can use the induction hypothesis to get U2
2 ∈

[
〈♦, γ2

2 , e
2
O,2, h

3
2,D

3
2〉
]
such that

ρ1(U
2
1 ) ≃D̃3

e1
P

,e2
O
ρ2(U

2
2 ) where D̃3 = (ρ1 × ρ2)(D

3). So, using the renaming of locations

(lemma 29), we get that U2
1 ≃

D3

e1
P

,e2
O
U2

2 . And we conclude taking T2 as (f2 〈u
1
2〉 , h

1
2|D1

2
) ·

U1
2 ·
〈
ū2

2

〉
h3

1|D3
2
, ·U2

2

Proof (Soundness on Values) If τ is of atomic type, then the result has already
been proven in Theorem 30. Otherwise, taking (h1, h2,D) : w s.t. hi ∈ Cl(νL(vi) ∪ Di),
we have [〈vi, γi, ei, hi,Di〉] equal to (〈x̄i〉 , hi|Di

) · [〈♦, γ′
i, ei, hi,Di〉] where γ

′
i = γi ·(xi →֒ vi).

And we conclude using lemma 39.

Proof (Soundness on Contexts) Let (h1, h2,D) : w with hi ∈ Cl(νL(Ki, γi) ∪ Di),
and T1 ∈ [〈K1, γ1, eO,1, h1,D1〉], we must build T2 ∈ [〈K2, γ2, eO,2, h2,D2〉] such that
T1 ≃

D
eP ,eO

T2. We have T1 = U1
1 · (〈u1〉 , h

2
1|D2

1
) · U2

1 with U1
1 ∈ [〈♦, γ1, eO,1, h1,D1〉] and

〈K1, γ1, eO,1, h1,D1〉
U1

1−→ 〈K1, γ
1
1 , e

1
O,1, h

1
1,D

1
1〉

〈u1〉,h2

1|D2
1−−−−−−→ 〈K1[u1], γ

1
1 , e

2
O,1, h

2
1,D

2
1〉

Using lemma 39, we get the existence of U1
2 ∈ [〈♦, γ2, eO,2, h2,D2〉] s.t. U1

1 ≃
D
eP ,eO

U1
2 and 〈K2, γ2, e2, h2,D2〉

U1
2−→ 〈K2, γ

1
2 , e

1
O,2, h

1
2,D

1
2〉. Then using lemma 38, we get the

existence of
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— two injections ρi : (νL(h3
i )\νL(h1

i )) →֒ (Loc\νL(h1
i )),

— a world w1 ⊒ w
— a span e1

P which extends eP and whose projections are equal to dom(γ1
i ),

— a span e1
O which extends eO and whose projections are equal to e1

O,i,
such that (ρ1(h

1
1), ρ2(h

1
2), (ρ1 × ρ2)(D

1)) : w1, and (ρ1(γ
1
1), ρ2(γ

1
2)) ∈ GA Je1

P Ke1
O
w1.

From lemma 36, we get the existence of:
— a span on opponent name pointers e2

O ⊒ e1
O,

— a span on locations D2 ⊒ D,
— an action (〈u2〉 , h

2
2|D1

2
),

such that (〈u1〉 , h
2
1|D1

1
) ∼D2

eP ,e2
O

(〈u2〉 , h
2
2|D1

2
). Then, using lemma 34, we get a world w2 ⊒

Fσ
pub

w1 such that (h2
1, h

2
2,D

2) : w2. Then, from the equivalence between the two opponent
actions, we get that (u1, u2) ∈ VA JσKe2

O
w2.

Thus using the monotonicity of contexts, we have (K1[u1], K2[u2]) ∈ KA Jσ, τKe2
O

(w2, w2),

so using the induction hypothesis on terms, we get the existence of U2
2 such that ρ′

1(U
2
1 ) ≃

D′
3

e1
P

,e2
O

ρ′
1(U

2
2 ). And we conclude using the renaming of locations (lemma 29).

Proof (Soundness on Terms) Straightforward using the main theorem on Kripke
trace semantics (theorem 31).

Then, we can deduce the soundness of concrete logical relations w.r.t. trace semantics

Corollary 5: Let M1,M2 two terms such that Σ; Γg,Γf ⊢ M1,M2 : τ . Then Σ; Γg,Γf ⊢
M1 ≃clog M2 : τ implies [Σ; Γg,Γf ⊢M1 : τ ] = [Σ; Γg,Γf ⊢M2 : τ ].

Proof From Σ; Γ ⊢ M1 ≃clog M2 : τ we get the existence of an LTS A and a state
s of A such that for all γg : Γg → Val and h ∈ Cl(Σ, νL(codom(γg))), defining w as

(s, h, h, ν̃L(h)), we get (γg,1(M1), γg,2(M2)) ∈ EA JτK
Γ̃f

(w,w). So Theorem 34 gives us

that [M1] ≃
(ε,ε),w

ε,Γ̃f

[M2]. We conclude using Theorem 29.

6.5 Adequate Worlds

Completeness can no longer be proven abstractly using biorthogonality. That is, for
any two terms that are contextually equivalent, we need to construct explicitly a LTS for
which they are logically related. To make the proof more abstract and less dependent on
the LTS construction, we define a notion of adequate world w.r.t. an LTS A that expresses
all we need to know about evolution of worlds to prove that two terms are related. The
definition, given in Figure 6.3, is a dual version of concrete logical relations. Indeed,
instead of characterizing terms that are in relation for a given world, it characterizes
worlds that respects the execution of two given terms M1,M2. Namely, it imposes:
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VAJUnitKγ
eP ,eO

(u1, u2)
def
= World

VAJBoolKγ
eP ,eO

(u1, u2)
def
= World

VAJIntKγ
eP ,eO

(u1, u2)
def
= World

VAJref ιKγ
eP ,eO

(u1, u2)
def
= {w | (u1, u2) ∈ w.Sι}

VAJι→ τKγ
eP ,eO

(v1, v2)
def
=

{w | ∀w1 ⊒
∗ w.∀(h1

1, h
1
2,D

1) : w1.∃(h1, h2,D) : w.∃e1
P ⊒ eP .∃e

1
O ⊒ eO.∃T1, T2.

T1 ≃
D1

e1
P

,e1
O
T2 ∧ 〈♦, γi, eO,i, hi,Di〉

Ti−→ 〈
−→
Ki, γ

1
i , e

1
O,i, h

1
i ,D

1
i 〉

∧∃w2 ⊒
Fι
pub w1.∀(u1, u2) ∈ VA JιKeO

w2.(w2, w2) ∈ EAJτKγ1

e1
P

,e1
O

(γ1(v1) u1, γ2(v2) u2)}

VAJσ → τKγ
eP ,eO

(v1, v2)
def
=

{w | ∀w1 ⊒
∗ w.∀(h1

1, h
1
2,D

1) : w1.∃(h1, h2,D) : w.∃e1
P ⊒ eP .∃e

1
O ⊒ eO.∃T1, T2.

T1 ≃
D1

eP ,e1
O
T2 ∧ 〈♦, γi, eO,i, hi,Di〉

Ti−→ 〈
−→
Ki, γ

1
i , e

1
O,i, h

1
i ,D

1
i 〉

∧∃w2 ⊒
Fσ
pub w1.(w2, w2) ∈ EAJτKγ1

e1
P

,e1
O

·(y1,y2)
(γ1(v1) y1, γ2(v2) y2)}

KAJι, τKγ
eP ,eO

(K1, K2)
def
=

{(w,w0) | ∀w1 ⊒
∗
pub w.∀(h

1
1, h

1
2,D

1) : w1.∃(h1, h2,D) : w.∃e1
P ⊒ eP .∃e

1
O ⊒ eO.

∃T1, T2.T1 ≃
D1

e1
P

,e1
O
T2 ∧ 〈Ki[•], γi, ei, hi,Di〉

Ti−→ 〈Ki[•], γ
1
i , e

1
i , h

1
i ,D

1
i 〉

∧∃w2 ⊒
Fσ
pub w1.∀(v1, v2) ∈ VA JιKeO

w2.(w2, w0) ∈ EAJτKγ1

e1
p,e1

O

(K1[v1], K2[v2])}

KAJσ, τKγ
eP ,eO

(K1, K2)
def
=

{(w,w0) | ∀w1 ⊒
∗
pub w.∀(h

1
1, h

1
2,D

1) : w1.∃(h1, h2,D) : w.∃e1
P ⊒ eP .∃e

1
O ⊒ eO.

∃T1, T2.T1 ≃
D
eP ,eO

T2 ∧ 〈Ki[•], γi, ei, hi,Di〉
Ti−→ 〈Ki[•], γ

1
i , e

1
O,i, h

1
i ,D

1
i 〉

∧∃w2 ⊒
Fσ
pub w1.(w2, w0) ∈ EAJτKγ1

e1
p,e1

O
·(y1,y2)

(K1[y1], K2[y2])}

EAJτKγ
eP ,eO

(M1,M2)
def
={

(w,w0) | ∀(h1, h2,D) : w.∀e1
P ⊒ eP .∀D

1 ⊒ D.∀c1 ∼
D1

e1
P

,eO
c2.

〈Mi, γi, ei, hi,Di〉
ci−→ 〈Ei, γ

1
i , eO,i, h

1
i ,D

1
i 〉 ⇒

(
∃w1 ⊒ w.(h1

1, h
1
2,D

1) : w1∧
(
(ci = (〈v̄i〉 , h

1
i|D1

i
)) ∧ w1 ∈VAJτKγ1

e1
P

,eO
(v1, v2) ∧ w1 ⊒pub w0

)
or

(
(ci = (f̄i 〈vi〉 , h

1
i|D1

i
)) ∧ (f1, f2) ∈ eO,σ→σ′ ∧ w1 ∈VAJσKγ1

e1
P

,eO
(v1, v2)

∧(w1, w0) ∈KAJσ′, τKγ1

e1
P

,eO
(E1, E2)

))}

Figure 6.3: Definition of adequate worlds
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— the existence of future worlds for all possible heaps that can be obtained by reducing
M1,M2 from two heaps in the current world (see the definition ofEAJτKγ

eP ,eO
(M1,M2)).

— that every future world corresponds to a reduction, either public in the definition
ofKAJτ, σKγ

eP ,eO
(K1, K2), or private in the definition of VAJτ → σKγ

eP ,eO
(v1, v2).

Its definition is parametrized by two spans eP , eO on player and opponent name point-
ers, and by a couple of substitutions, written γ, whose two components are written γ1 and
γ2 and are of domain respectively eP,1 and eP2 . They are used to control the functional
values disclosed by the term.

Notice that, from (M1,M2) ∈ EA JτKe w, it is not true that w ∈ EAJτKε
ε,e(M1,M2).

Indeed, one do not need w to be adequate to prove that (M1,M2) ∈ EA JτKe w. This
notion is only necessary when working on completeness. It is also not true that w ∈
EAJτKε

ε,e(M1,M2) implies (M1,M2) ∈ EA JτKe w, because we do not impose equality on
ground values, since it is not needed: when working with contextually equivalent terms,
this is automatic.

To show that, for any pair of contextually equivalent terms M1,M2”
there exists an

LTS A and an adequate world w.r.t. A, we build coinductively an exhaustive LTS, i.e. an
infinite transition system where each state represents a configuration which can appear
in the interactive reduction of the terms, and where transitions constraint heaps to be
in accordance with the reduction. To build it, we first define some basic operations on
transition system:

— Add a private transition r to an transition system A = (δpriv, δpub) :

A
priv

⊕ r
def
= (δpriv ∪ {r}, δpub)

— Add a set R of public transition to an transition system A = (δpriv, δpub) :

A
pub

⊕ R
def
= (δpriv ∪R, δpub ∪R)

— Union of two transition systems A1,A2 where Ai = (δi,priv, δi,pub) :

A1 ⊔ A2
def
= (δ1,priv · δ2,priv, δ1,pub · δ2,pub)

Then, we define operations to construct transitions :
— TransPriv(s, s′, h1, h2, h

′
1, h

′
2,D,D

′) is defined as the private transition

(s, s′) →֒ {(h1|D1 , h2|D2 , h
′
1|D′

1
, h′

2|D′
2
,D,D′)}

— TransPub(c1, c2)(s, s
′, h1, h2, h

′
1, h

′
2,D,D

′) is defined as the singleton formed by
the public transition

(s, s′) →֒ {(h1|D1 , h2|D2 , h
′
1|D′

1
, h′

2|D′
2
,D,D′)}

if the ai are either player or opponent answers or opponent questions, otherwise,
it is defined as the empty set.
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Then, we define the exhaustive LTS LtsE
L,s
eP ,eO,D(C1, C2) and LtsK

L,s
eP ,eO,D(C1, C2) as-

sociated respectively to two opponent and player configurations C1, C2. They use a list L
of worlds corresponding to the public transitions that must be added to the LTS once a
value is reached in the interactive reduction.

— LtsE
L,s
eP ,eO,D(C1, C2) is defined as

⊔

j

(
LtsK

Lj ,sj

ej
P

,eO,D′
(Cj

1 , C
j
2)

priv

⊕ TransPriv(s, sj, h1, h2, h
j
1, h

j
2,D,D

j)

pub

⊕ TransPub(c1, c2)(s0, s
j, h0

1, h
0
2, h

j
1, h

j
2,D

0,Dj)
)

for all pair of players actions (cj
1, c

j
2) s.t. the exists a span on player name pointers

ej
P ⊒ eP and a span on locations Dj ⊒ D with cj

1 ∼
Dj

ej
P

,eO
cj

2 and there exists C̃i

with h̃1|D1 ∼D h̃2|D2 , h̃i|Di
= hi|Di

and C̃i

cj
i−→ Cj

i , where we write hi (resp. h̃i) for

the heap of Ci (resp. C̃i). If the ci are (player) questions, then we suppose that
Lj = L (and by definition of TransPub we do not add any public transition).
Otherwise, we suppose that Lj = (s0, h0

1, h
0
2,D

0) · L′.
— LtsK

L,s
eP ,eO,D(C1, C2) is defined as

⊔

j

(
LtsE

Lj ,sj

eP ,ej
O

,Dj
(Cj

1 , C
j
2)

pub

⊕ TransPub(cj
1, c

j
2)(s, s

j, h1, h2, h
′
1, h

′
2,D,D

j)
)

for all pair of opponent actions (cj
1, c

j
2) s.t. the exists a span on opponent name

pointers ej
O ⊒ eO and a span on locations Dj ⊒ D with cj

1 ∼
Dj

eP ,ej
O

cj
2 and Ci

cj
i−→ Cj

i .

We suppose that the sj are fresh and write hi (resp. h
j
i ) for the heap of Ci (resp.

Cj
i ). If the cj

i are (opponent) questions, then Lj = (s, hj
1, h

j
2,D

j) · L. Otherwise,
Lj = L.

The definition of LtsE
L,s
eP ,eO,D(C1, C2) needs to be generalized to consider any configu-

rations C̃1, C̃2 whose private part of the heaps are equal to the one of h1, h2, but whose
disclosed part can be changed, as soon as they are still nominally equivalent. This is
due to the fact that the definition of EAJτKγ

eP ,eO
(M1,M2) quantifies over (h1, h2,D) : w,

which do not constraint the disclosed part of h1, h2 beside being nominally equivalent.
An other solution would have been to merge in the definition of LtsK

L,s
eP ,eO,D(C1, C2) the

states sj for all the configurations Cj
i whose heaps only differ on the disclosed part (but

whose Dj
i are equal). However, doing so, the definition of LtsK

L,s
eP ,eO,D(C1, C2) become in

a way primitive over the definition of LtsE
L,s
eP ,eO,D(C1, C2), which would complicate the

reasoning.
The exhaustive LTS A = (δpriv, δpub) has a tree-structure, i.e. there does not exist

two states s, s′ s.t. s′ ≥A s and s ≥A s′, where we define s′ ≥A s as δ∗
priv(s, s′) non empty.

Thus, for any state s of A we can define the sub-LTS A≥s whose transition functions are
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restricted to states s′ ≥A s. Then, one can relate the properties of two LTS A,A′ about
worlds w, when A≥s = A′

≥s and the state of w is greater than s.

Lemma 40: Let w = (s, h1, h2,D) a world s.t. w ∈ VAJτKγ
eP ,eO

(v1, v2). Let A′ an LTS

s.t. A≥s = A′
≥s, then w ∈VA′JτKγ

eP ,eO
(v1, v2).

Lemma 41: Let w = (s, h1, h2,D) and w0 = (s0, h
0
1, h

0
2,D

0) two worlds s.t. (w,w0) ∈
EAJτKγ

eP ,eO
(M1,M2). Let A

′ an LTS extending A s.t. A≥s = A′
≥s and {s

′ | A.δpub(s0, s
′)∧

s′ ≥A s} = {s′ | A′.δpub(s0, s
′) ∧ s′ ≥A′ s}, then (w,w0) ∈ EA′JτKγ

eP ,eO
(M1,M2).

Proof Straightforward from the fact that A and A′ impose the same futures for w.

Before proving that the exhaustive LTS is adequate, we need some lemmas which
ensure the existence of equivalent traces from the existence of a succession of (public for
the first lemma, private for the second) transitions in an LTS.

Lemma 42: Let C1, C2 two interactive configurations such that Ci = 〈♦, γi, eO,i, hi,Di〉.

We consider the exhaustive LTS A = LtsK
L,s
eP ,eO,D(C1, C2) and s′, h′

1, h
′
2,D

′ s.t.

(h1, h2, h
′
1, h

′
2,D,D

′) ∈ A.δ∗
pub(s, s′)

Then there exists two traces T1, T2, two spans e′
P ⊒ eP , e

′
O ⊒ eO s.t. T1 ≃

D′

e′
P

,e′
O
T2 and

Ci
Ti−→ 〈♦, γ′

i, e
′
O, h

′
i,D

′
i〉︸ ︷︷ ︸

C′
i

, and A′
≥s′ = A≥s′ , where A′ = LtsK

L,s′

e′
P

,e′
O

,D′(C ′
1, C

′
2).

Lemma 43: Let C1, C2 two interactive configurations such that Ci = 〈♦, γi, eO,i, hi,Di〉.

We consider the exhaustive LTS A = LtsK
L,s
eP ,eO,D(C1, C2) and s′, h′

1, h
′
2,D

′ s.t.

(h1|D1
, h2|D2

, h′

1|D1
1

, h′

2|D1
2

,D,D′) ∈ A.δ∗
priv(s, s′)

Then there exists two traces T1, T2 s.t. T1 ≃
D′

e′
P

,e′
O
T2 and Ci

Ti−→ C ′
i where C

′
i = 〈

−→
Ki, γ

′
i, e

′
O, h

′
i,D

′
i〉,

and A′
≥s′ = A≥s′ , where A′ = LtsK

L1,s′

e′
P

,e′
O

,D′(C ′
1, C

′
2).

Finally, we can prove that the exhaustive LTS is adequate.

Theorem 35 (Adequacy on Values): Let C1, C2 two opponent interactive configura-
tions such that Ci = 〈♦, γi, eO,i, hi,Di〉. Then defining A as LtsK

L,s
eP ,eO,D(C1, C2) and w

as (s, h1|D1
, h2|D2

,D), for all (f1, f2) ∈ eP,σ→τ , w ∈VAJσ → τKγ
eP ,eO

(f1, f2).

Theorem 36 (Adequacy on Contexts): Let K1, K2 two contexts of type σ  τ and
C1, C2 two interactive configurations such that Ci = 〈Ki, γi, eO,i, hi,Di〉. Then defining

A as LtsK
L,s
eP ,eO,D(C1, C2) where L = (s0, h

0
1, h

0
2,D

0) · L′, w = (s, h1|D1
, h2|D2

,D) and

w0 = (s0, h
0
1|D0

1
, h0

2|D0
2
,D0), we have (w,w0) ∈KAJσ, τKγ

eP ,eO
(K1, K2).
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Theorem 37 (Adequacy on Terms): Let M1,M2 two terms of type τ and C1, C2 two
interactive configurations with Ci = 〈Mi, γi, ei, hi,Di〉. Then definingA as LtsE

L,s
eP ,eO,D(C1, C2)

where L = (s0, h
0
1, h

0
2,D

0) · L′, w = (s, h1|D1
, h2|D2

,D) and w0 = (s0, h
0
1|D0

1
, h0

2|D0
2
,D0), we

have (w,w0) ∈ EAJτKγ
eP ,eO

(M1,M2).

Proof The three theorem are proved by a mutual coinduction.

Proof (Adequacy on Values) Let w1 ⊒
∗ w with s1 the state of w1 and and (h1

1, h
1
2,D

1) :

w1. From lemma 43, there exists two traces T1, T2 s.t. T1 ≃
D1

e1
P

,e1
O
T2, with Ci

Ti−→ C1
i

where C1
i = 〈

−→
Ki, γ

1
i , e

1
O, h

1
i ,D

1
i 〉. Moreover, defining A1 as LtsK

L,s1

e1
P

,e1
O

,D1(C1
1 , C

1
2), we have

A1
≥s1

= A≥s1 .

Then, C1
i

fi〈ui〉,h
2

i|D2
i−−−−−−→ C2

i where C2
i = 〈(vi ui) ·

−→
Ki, γ

1
i , e

2
O, h

2
i ,D

2
i 〉 with γ(fi) = vi.

So by definition of A1, there exists a state s2 s.t. (h1

1|D1
1

, h1

2|D1
2

, h2

1|D2
1

, h2

2|D2
2

,D1,D2) ∈

A1.δpub(s1, s2). Moreover, defining A2 as LtsE
L,s2

e1
P

,e2
O

,D2(C2
1 , C

2
2), we have A1

≥s2
= A2

≥s2
.

Then, defining w2 as (s2, h
2
1|D2

1
, h2

2|D2
2
,D2), the coinduction hypothesis gives us that

(w2, w2) ∈ EA2JτKγ
eP ,eO

(v1 u1, v2 u2)

So using lemma 41, we get that (w2, w2) ∈ EAJτKγ
eP ,eO

(v1 u1, v2 u2).

Proof (Adequacy on Terms) Let (h̃1, h̃2,D) : w s.t. h̃1 ∈ Cl(νL(Mi, γi)), then

h̃1|D1 ∼D h̃2|D2 and h̃i|Di
= hi|Di

so we define C̃i as 〈Mi, γi, eO,i, h̃i,Di〉. Suppose that

there exists two player actions ci, a span on player name pointers e1
P ⊒ eP and a span on

locations D1 ⊒ D s.t. c1 ∼
D1

e1
P

,eO
c2, and there exists two opponent configurations C1

i s.t.

C̃i
ci−→ C1

i . Let write C
1
i as 〈Ei, γ

1
i , e

1
O,i, h

1
i ,D

1
i 〉. Then by definition of LtsE

L,s
eP ,eO,D(C1, C2),

there exists a fresh state s1 such that, writing A1 for LtsK
L′,s1

e1
P

,eO,D1(C1
1 , C

1
2), we have

(h1|D1
, h2|D2

, h1

1|D1
1

, h1

2|D1
2

,D,D1) ∈ δpriv(s, s1) and A1
≥s1

= A≥s1 . Let write w1 for

(s1, h
1

1|D1
1

, h1

2|D1
2

,D1), so w1 ⊒ w. And from c1 ∼
D1

e1
P

,eO
c2, we get that h1

1|D1
∼D1 h1

2|D2
, so

(h1
1, h

1
2,D

1) : w1.
— If both ci are player answers, i.e. ci = (〈v̄i〉 , h

1
i|D1

i
), then C1

i = 〈♦, γ1
i , eO,i, h

1
i ,D

1
i 〉.

If the vi are ground values, then γ1
i = γi and either they are of type Unit,Bool

or Int, in which case we directly have w1 ∈VA1JτKγ1

e1
P

,eO
(v1, v2), or they are of type

ref ι. In such case, (v1, v2) ∈ D
1 so we also get w1 ∈VA1JτKγ1

e1
P

,eO
(v1, v2). Otherwise,

they are name pointers, and the coinduction hypothesis on Values applied to v1, v2

gives us that w1 ∈ VA1JτKγ1

e1
P

,eO
(γ(v1), γ(v2)). So using new lemma 40, we get that

w1 ∈ VAJτKγ1

e1
P

,eO
(v1, v2). Moreover, the definition of LtsE

L,s
eP ,eO,D(C1, C2) gives us

that (h0

1|D0
1

, h0

2|D0
2

, h1

1|D1
1

, h1

2|D1
2

,D0,D1) ∈ δpub(s0, s1). Thus we have w1 ⊒pub w0.
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— If both ci are player questions, i.e. ci = (f̄i 〈vi〉 , h
1
i|D1

i
), then C1

i = 〈Ki[•], γ
1
i , eO,i, h

1
i ,D

1
i 〉.

Then there exists σ, σ′ such that (f1, f2) ∈ eO,σ→σ′ . The coinduction hypothesis on

Contexts gives us that (w1, w0) ∈KAJσ′, τKγ1

e1
P

,eO
(K1, K2). So, we just have to prove

that w1 ∈ VAJσKγ1

e1
P

,eO
(v1, v2), which is done in the same way than when the ci are

answers.

Proof (Adequacy on Contexts) Let w1 ⊒
∗
pub w and (h1, h2,D) : w1 s.t. hi ∈

Cl(νL(Ki)), with s1 the state of w1. Then, from lemma 42, there exists two traces T1, T2,

three spans e1
P ⊒ eP , e

1
O ⊒ eO, and D

1 ⊒ D, s.t. T1 ≃
D1

e1
P

,e1
O
T2 and Ci

Ti−→ C1
i where C1

i =

〈Ki, γ
1
i , e

1
O, h

1
i ,D

1
i 〉 with dom(γ1

i ) = e1
P,i. Moreover, writing A1 for LtsK

L,s
e1

P
,e1

O
,D1(C1

1 , C
1
2),

we have A1
≥s1

= A≥s1 . Then, we reason by case analysis on σ.
If σ is functional, then, by construction of A1, there exists a state s2 and a span D2

s.t. (h1
1, h

1
2, h

1
1, h

1
2,D

1,D2) ∈ A1.δpub(s1, s2), and

C1
i

〈xi〉,h
2

i|D2
i−−−−−→ 〈Ki[xi], γ

1
i , e

2
O, h

2
i ,D

2
i 〉︸ ︷︷ ︸

C2
i

where e2
O = e1

O · (x1, x2). Moreover, defining A2 as LtsE
L,s
e1

P
,e2

O
,D2(C2

1 , C
2
2), we have A2

≥s2
=

A1
≥s2

. Then, defining w2 as (s2, h
2
1|D2

1
, h2

2|D2
2
,D2), the coinduction hypothesis gives us

that (w2, w0) ∈ EA2JτKγ1

e2
P

,e2
O

(K1[x1], K2[x2]) Finally, w2 ⊒
F
pub w and, using lemma 41,

(w2, w0) ∈ EAJτKγ1

e1
P

,e2
O

(K1[x1], K2[x2]).

The case where σ is ground is done in the same way.

6.6 From Trace Semantics to Concrete Logical Rela-

tions

Using this construction of an exhaustive LTS which is adequate, we can now prove the
completeness of our concrete logical relations. We first prove it for ground values

Theorem 38: Let v1, v2 two closed values of ground type ι, eO a span on opponent name
pointers and w a world s.t. w ∈ VAJιKγ

eP ,eO
(v1, v2). Then if [v1] ≃

γ,w
eP ,eO

[v2] we get that
(v1, v2) ∈ VA JιKeO

w.

Proof If ι = Int, the theorem is direct since in both cases we have v1 = v2. If ι = ref ι′,
then from w ∈VAJιKγ

eP ,eO
(v1, v2) we get that (v1, v2) ∈ (w.S)ι.
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To prove the completeness of concrete logical relations at higher types, we decompose
traces to show that they respect the inductive structure induced by Kripke logical rela-
tions. To do so, we need invariants on heaps provided by adequate worlds. Indeed, the
equivalence of Kripke trace semantics ≃γ,w

eP ,eO
depends only on the current state of w, so it

does not constraint the shape of any LTS, contrary to the definition of EA JτKeO
w which

depends on A.
The proof of completeness relies on the following lemmas which state that if two

functions are related at a given adequate world, then for any future, applying those
functions to related values gives rise to related values. Note that this lemma is wrong
when the world is not adequate.

Lemma 44: Let (v1, v2) a pair of ground-closed values of type σ → τ , eO a span on
their name pointers and eP a span on player name pointers with γi : eP,i → Val two

substitutions. Taking w ∈VAJσ → τKγ
eP ,eO

(v1, v2), suppose that [v1] ≃
γ,w
eP ,eO

[v2]. Then for
all w1 ⊒

∗ w there exists two spans e1
P ⊒ eP and e1

O ⊒ eO, and two substitutions γ1
i whose

domain is e1
P,i and which extend γi such that

— if σ is atomic, there exists w2 ⊒
Fσ
pub w1 such that for all (u1, u2) ∈ VA JσKe1

O
w2,

[v1 u1] ≃
γ1,w2

e1
P

,e1
O

[v2 u2] and (w2, w2) ∈ EAJτKγ1

e1
P

,e1
O

(v1 u1, v2 u2).

— otherwise, there exists w2 ⊒
F
pub w1 such that [v1 y1] ≃

γ1,w1

e1
P

,e2
O

[v2 y2] and (w1, w1) ∈

EAJτKγ1

e1
P

,e2
O

(v1 y1, v2 y2), where e
2
O = e1

O · (y1, y2).

Proof Let w1 ⊒ w and (h1
1, h

1
2,D

1) : w1, then from w ∈ VAJσ → τKγ
eP ,eO

(v1, v2), we get
that there exists (h1, h2,D) : w, two spans on name pointers e1

P ⊒ eP ,e
1
O ⊒ eO and a pair

of (incomplete) equivalent traces U1
1 ≃

D1

e1
P

,e1
O
U1

2 such that

〈vi, γi, eO,i, hi,Di〉
〈z̄i〉,hi|Di−−−−−→ 〈♦, γ′

i, eO,i, hi,Di〉
U1

i−→ 〈
−→
Ki, γ

1
i , e

1
O,i, h

1
i ,D

1
i 〉

(since hi|Di
is closed, with γ′

i = γi · (zi →֒ yi). Then,
— If σ is of ground type, then there exists w2 ⊒

Fσ
pub w1 such that for all (u1, u2) ∈

VA JσKe1
O
w2 (w2, w2) ∈ EAJσKγ1

e1
P

,e1
O

(v1 u1, v2 u2). Moreover, for all (h2
1, h

2
2,D

2) : w2

there exists a reduction

〈
−→
Ki, γ

1
i , e

1
O,i, h

1
i ,D

1
i 〉

zi〈ui〉,h
2

i|D2
i−−−−−−→ 〈(vi ui) ·

−→
Ki, γ

1
i , e

1
O,i, h

2
i ,D

2
i 〉.

Then, we take U2
1 ∈

[
〈v1 u1, γ

1
1 , e

1
O,1, h

2
1,D

2
1〉
]
s.t.

〈v1 u1 ·
−→
K1, γ

1
1 , e

1
O,1, h

2
1,D

2
1〉

U2
1−→ 〈
−→
K1, γ

2
1 , e

2
O,1, h

3
1,D

3
1〉

and taking U3
1 ∈

[
〈
−→
K1, γ

2
1 , e

2
O,1, h

3
1,D

3
1〉
]
we have

(〈z̄1〉 , h1|D1) · U1
1 · (z1 〈u1〉 , h

2
1|D2

1
) · U2

1 · U
3
1

︸ ︷︷ ︸
T1

∈ [〈v1, γ1, eO,1, h1,D1〉] .
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So from [v1] ≃
γ,w
eO,eP

[v2], we get the existence of U2 such that, defining T2 as
(〈z̄2〉 , h2|D2) · U1

2 · (z2 〈u2〉 , h
2
2|D2

2
) · U2, we have

— T1 ≃
D
eP ,eO

T2

— T2 ∈ [〈v2, γ2, eO,2, h2,D2〉].

But then, U2 ∈
[
〈(v2 u2) ·

−→
K2, γ

1
2 , e

1
O,2, h

2
2,D

2
2〉
]
, so we can decompose it in U2

2 · U
3
2

such that

— 〈(v2 u2) ·
−→
K2, γ

1
2 , e

1
O,2, h

2
2,D

2
2〉

U2
2−→ 〈
−→
K2, γ

2
2 , e

2
2, h

3
2,D

3
1〉

— U2
2 ∈

[
〈v2 u2, γ

1
2 , e

1
O,2, h

2
2,D

2
2〉
]

— U3
2 ∈

[
〈
−→
K2, γ

2
2 , e

2
2, h

3
2,D

3
2〉
]

Thus, U2
1 ≃

D2

e1
P

,e1
O
U2

2 , so

[
〈v1 u1, γ

1
1 , e

1
O,1, h

2
1,D

2
1〉
]
-D2

e1
P

,e1
O

[
〈v2 u2, γ

1
2 , e

1
O,2, h

2
2,D

2
2〉
]
.

Using a symmetric reasoning, we prove the reverse inclusion, so
[
〈v1 u1, γ

1
1 , e

1
O,1, h

2
1,D

2
1〉
]
≃D2

e1
P

,e1
O

[
〈v2 u2, γ

1
2 , e

1
O,2, h

2
2,D

2
2〉
]
.

And we have prove this property for all (h2
1, h

2
2,D

2) : w2, so [v1 u1] ≃
γ1,w2

e1
P

,e1
O

[v2 u2].

— Otherwise, there exists w2 ⊒
F
pub w1 such that, defining e2

O = e1
O · (y1, y2),

(w2, w2) ∈ EAJσKγ1

e1
P

,e2
O

(v1 y1, v2 y2). Moreover, for all (h2
1, h

2
2,D

2) : w2 there exists a

reduction 〈
−→
Ki, γ

1
i , e

1
O,i, h

1
i ,D

1
i 〉

zi〈yi〉,h
2

i|D2
i−−−−−−→ 〈(vi yi) ·

−→
Ki, γ

1
i , e

2
O,i, h

2
i ,D

2
i 〉.

Then, using the same reasoning as in the ground type case, we get that [v1 y1] ≃
γ1,w2

e1
P

,e2
O

[v2 y2].

Lemma 45: Let (K1, K2) a pair of ground-closed contexts, eO a span on their name
pointers, eP a span on player name pointers and γi : eP,i → Val two substitutions. We

consider a world w ∈KAJσ, τKγ
eP ,eO

(K1, K2). Suppose that [K1] ≃
w,γ
eP ,eO

[K2]. Then for all
w1 ⊒

∗
pub w there exists two spans e1

P ⊒ eP and e1
O ⊒ eO, and two substitutions γ1

i whose
domain is e1

P,i and which extend γi such that
— if σ is atomic, then there exists w2 ⊒

Fσ
pub w1 such that for all (v1, v2) ∈ VA JσKe1

O
w2,

[K1[v1]] ≃
γ1,w2

e1
P

,e1
O

[K2[v2]] and (w2, w2) ∈ EAJτKγ1

e1
P

,e1
O

(K1[v1], K2[v2]).

— otherwise, there exists w2 ⊒
Fσ
pub w1 such that [K1[x1]] ≃

γ1,w2

e1
P

,e2
O

[K2[x2]] where e
2
O =

e1
O · (x1, x2), and (w2, w2) ∈ EAJτKγ1

e1
P

,e2
O

(K1[x1], K2[x2]).

Proof Let w1 ⊒ w and (h1
1, h

1
2,D

1) : w1, then from w ∈ KAJσ, τKγ
eP ,eO

(K1, K2), we

get that there exists (h1, h2,D) : w and a pair of equivalent traces U1
1 ≃

D1

e1
P

,e1
O
U1

2 in

[〈Ki[•], γi, eO,i, hi,Di〉], such that 〈Ki[•], γi, eO,i, hi,Di〉
U1

i−→ 〈Ki[•], γ
1
i , e

1
O,i, h

1
i ,D

1
i 〉.

Then we reason by case analysis on σ.
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— If σ is of ground type, then there exists w2 ⊒pub σw1 s.t. for all (v1, v2) ∈

VA JσKe1
O
w2, (w2, w2) ∈ EAJτKK1[v1]

e1
O

,γ1 (K2[v2],).

Moreover, for all (h2
1, h

2
2,D

2) : w2, there exists a reduction

〈Ki[•], γ
1
i , e

1
O,i, h

1
i ,D

1
i 〉

〈vi〉,h
2

i|D2
i−−−−−→ 〈Ki[vi], γ

1
i , e

1
O,i, h

2
i ,D

2
i 〉

So we take U2
1 ∈

[
〈Ki[v1], γ

1
i , e

1
O,1, h

2
1,D

2
1〉
]
, then

U1
1 · (〈v1〉 , h

2
1|D2

1
) · U2

1
︸ ︷︷ ︸

T1

∈ [〈K1[•], γ1, eO,1, h1,D1〉]

so from [K1] ≃
γ,w
eP ,eO

[K2], we get the existence of T2 ∈ [〈Ki[•], γ2, eO,2, h2,D2〉] s.t.
T1 ≃

D
eP ,eO

T2. Then, due to the determinism of interactive reduction w.r.t. a trace,

we can write T2 as U1
2 · (〈v2〉 , h

2
2|D2

2
) · U2

2 with U2
2 ∈

[
〈K2[v2], γ

1
2 , e

2
O,2, h

2
2,D

2
2〉
]
and

U2
1 ≃

D2

e1
P

,e1
O
U2

2 . Thus
[
〈K1[v1], γ

1
1 , e

1
O,1, h

2
1,D

2
1〉
]
-D2

e1
O

,e1
P

[
〈K2[v2], γ

1
2 , e

1
O,2, h

2
2,D

2
2〉
]
.

Using a symmetric reasoning, we get that
[
〈K1[v1], γ

1
1 , e

1
O,1, h

2
1,D

2
1〉
]
≃D2

e1
O

,e1
P

[
〈K2[v2], γ

1
2 , e

1
O,2, h

2
2,D

2
2〉
]

Since this equivalence is true for all (h2
1, h

2
2,D

2) : w2, we get that [K1[v1]] ≃
γ1,w2

e1
P

,e1
O

[K2[v2]].

— Otherwise, there exists w2 ⊒pub σw1 s.t. (w2, w2) ∈ EAJτKK1[x1]

e2
O

,γ1 (K2[x2],), where

e2
O = e1

O · (x1, x2). Moreover, for all (h2
1, h

2
2,D

2) : w2, there exists a transition

〈Ki[•], γ
1
i , e

1
O,i, h

1
i ,D

1
i 〉

〈xi〉,h
1

i|D2
i−−−−−→ 〈Ki[xi], γ

1
i , e

2
O,i, h

2
i ,D

2
i 〉

Then, following the same reasoning as in the ground case, we get that [K1[x1]] ≃
γ1,w2

e1
P

,e2
O

[K2[x2]].

Lemma 46: Let eP , eO,D three spans respectively on player and opponent name pointers
and on locations, and γ1, γ2 two value substitutions defined respectively on eP,1 and eP,2.
Suppose [〈♦, γ1, eO,1, h1,D1〉] ≃

D
eP ,eO

[〈♦, γ2, eO,2, h2,D2〉]. Then, for all (f1, f2) ∈ eP we
get that

[〈γ1(f1), γ1, I1, h1,D1〉] ≃
D
eP ,eO

[〈γ2(f2), γ2, eO,2, h2,D2〉]

Proof We simply use the fact that [〈γi(fi), γi, eO,i, hi,Di〉] = (〈x̄i〉 , hi|Di
)·[〈♦, γ′

i, eO,i, hi,Di〉]
with γ′

i = γi·(xi →֒ γi(fi)) and the equivalence [〈♦, γ′
i, eO,i, hi,Di〉] ≃

D
e′

P
,eO

[〈♦, γi, eO,i, hi,Di〉]

where e′
P = eP · (x1, x2), due to the fact that γi(fi) is by definition already in γi.
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Lemma 47: Let (M1,M2) a pair of ground-closed terms, eO a span on their name pointers
eP a span on player name pointers and γi : eP,i → Val two substitutions. We consider a

world (w,w0) ∈ EAJτKγ
eP ,eO

(M1,M2) such that [M1] ≃
γ,w
eP ,eO

[M2]. Taking (h1, h2,D) : w
with hi ∈ Cl(νL(Mi)), suppose that 〈Mi, hi,Di〉 →

∗ 〈Ei, h
1
i ,D

1
i 〉. Then there exists w1 ⊒

w with (h1
1, h

1
2,D

1) : w1 such that
— either both Ei = vi with [v1] ≃

γ,w1
eP ,eO

[v2] and w1 ∈VAJτKγ
eP ,eO

(v1, v2),

— or both Ei = Ki[fi vi] with (f1, f2) ∈ eO,σ→σ′ and [v1] ≃
γ,w1
eP ,eO

[v2], [K1] ≃
γ1,w1

e1
P

,eO
[K2]

with γ1 = γ and e1
P = eP if σ is atomic, γ1

i = γi ·(xi →֒ vi) and e
1
P = eP ·(x1, x2) oth-

erwise. Moreover, w1 ∈VAJσKγ
eP ,eO

(v1, v2) and (w1, w0) ∈KAJσ′, τKγ1

e1
P

,eO
(K1, K2),

Proof The adequacy of w gives us the existence of w1 such that w1 ⊒ w and (h1
1, h

1
2,D

1) :
w1. If both Ei = vi, the adequacy also gives us that w1 ⊒pub w0 and w1 ∈VAJτKeO

γ,eP
(v1, v2).

Using lemma 28, we get that [〈Mi, γi, eO,i, hi,Di〉] = [〈vi, γi, eO,i, h
1
i ,D

1
i 〉], so from [M1] ≃

γ,w
eP ,eO

[M2] we get that [〈v1, γ1, eO,1, h
1
1, 〉] ≃

D2

eP ,eO
[〈v2, γ2, eO,2, h

1
2, 〉].

Then, taking any (h2
1, h

2
2,D

2) : w1 s.t. h2
i ∈ Cl(νL(vi, γi)), we have h2

i|D2
i

= h1

i|D2
i

and

h2
1|D2

1
∼D2 h2

2|D2
2
, so applying Lemma 32, we get that [v1] ≃

γ,w1
eP ,eO

[v2].

Otherwise, if both Ei = Ki[fi vi], the adequacy of w gives us w1 ∈ VAJσKγ′

eP ,eO
(v1, v2)

and w1 ∈KAJσ′, τKγ1

e′
P

,eO
(K1, K2). Moreover, [〈Mi, γi, eO,i, hi,Di〉] is equal to

(f̄i 〈ui〉 , h
1
i|D1

i
) ·
[
〈Ki[•], γ

1
i , eO,i, h

1
i ,D

1
i 〉
]

so from [M1] ≃
γ,w
eP ,eO

[M2] we get that

[
〈K1[•], γ

1
1 , eO,1, h

1
1,D

1
1〉
]
≃D1

eP ,eO

[
〈K2[•], γ

1
2 , eO,2, h

1
2,D

1
2〉
]

We also get that (f̄1 〈u1〉 , h
1
1|D1

1
) ∼D1

e1
P

,eO
(f̄2 〈u2〉 , h

1
2|D1

2
) so (f1, f2) ∈ eσ→σ′ for some type

σ, σ′.
Then, if σ is of ground type, we have ui = vi, e

1
P = eP and γ1

i = γi. So from
(f̄1 〈v1〉 , h

1
1|D1

1
) ∼D1

eP ,eO
(f̄2 〈v2〉 , h

1
2|D1

2
) we get that

[
〈v1, γ1, eO,1, h

1
1,D

1
1〉
]
≃D1

eP ,eO

[
〈v2, γ2, eO,2, h

1
2,D

1
2〉
]

Otherwise, ui is equal to some fresh pointer name xi, e
1
P = eP · (x1, x2) and γ

1
i = γi · (xi →֒

vi). So using lemma 46, we also get that [〈v1, γ1, eO,1, h
1
1,D

1
1〉] ≃

D1

eP ,eO
[〈v2, γ2, eO,2, h

1
2,D

1
2〉].

Finally, using the same reasoning as for the value case, we get that [v1] ≃
γ,w1
eP ,eO

[v2] and

[K1] ≃
γ1,w1

e1
P

,eO
[K2].

Then, we can deduce that terms that are equivalent for a given adequate world are in
concrete logical relations for that world.
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Theorem 39 (Completeness for Values): Let v1, v2 two ground-closed values, eO a
span on their name pointers, eP a span on player name pointers and γi : eP,i → Val

two substitutions. We consider a world w ∈ VAJτKγ
eP ,eO

(v1, v2). If [v1] ≃
γ,w
eP ,eO

[v2] then
(v1, v2) ∈ VA JτKeO

w.

Theorem 40 (Completeness for Contexts): Let K1, K2 two ground-closed contexts,
eO a span on their name pointers, eP a span on player name pointers and γi : eP,i → Val

two substitutions. We consider (w,w0) ∈KAJσ, τKγ
eP ,eO

(K1, K2). If [K1] ≃
γ,w
eP ,eO

[K2] then
(K1, K2) ∈ KA Jσ, τKeO

(w,w0).

Theorem 41 (Completeness for Terms): Let M1,M2 two ground-closed terms, eO a
span on their name pointers, eP a span on player name pointers and γi : eP,i → Val

two substitutions. We consider (w,w0) ∈ EAJτK·
eP ,eO

(M1,M2). If [M1] ≃
γ,w
eP ,eO

[M2] then
(M1,M2) ∈ EA JτKeO

(w,w0).

Proof The proof of the three theorem is done by a mutual induction on types and on
the number of ground callbacks of terms considered. It follows directly from Lemma 44
for values, Lemma 45 for contexts and Lemma 47 for terms.

Using the conjunction of this last theorem with the adequacy of exhaustive LTS, we
get the completeness of concrete logical relations w.r.t. trace semantics.

Corollary 6 (Completeness of Concrete Logical Relations): LetM1,M2 two terms
such that Σ; Γ ⊢ M1,M2 : τ . Then [Σ; Γg,Γf ⊢M1 : τ ] = [Σ; Γg,Γf ⊢M2 : τ ] implies
Σ; Γ ⊢M1 ≃clog M2 : τ .

Proof Let γg : Γg → Val and h ∈ Cl(Σ, νL(codom(γg)))}. Then using Theorem 29, we

get that [γg(M1)] ≃
(ε,ε),w

ε,Γ̃f

[γg(M2)].

Moreover, defining Ci as 〈γg(M1), ε, dom(Γf ), h,D〉 where D = dom(h), we build

a LTS A = LtsE
L,s
eP ,eO,D(C1, C2) with L = w. Then using Theorem 37, we get that

(w,w) ∈ EAJτK(ε,ε)

ε,Γ̃f

(M1,M2). Finally we conclude from Theorem 41.

6.7 Possible extensions

We have succeeded in building a concrete logical relation defined in a direct way which
is sound and complete w.r.t. trace semantics. Thus using the correspondence between
trace semantics and game semantics, and the fact that game semantics is fully abstract, we
get the soundness and completeness of our logical relations w.r.t. contextual equivalence,
which is the wanted result. This work has been performed for divergent-free terms of
GroundML with contexts in RefML. But it seems possible to extend this work to two
directions: to terms in RefML, or to contexts in GroundML.
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6.7.1 Concrete Logical Relations for full RefML

Trying to define our concrete logical relations for the whole RefML, we would expect
to encounter the usual circularity between the definition of worlds and logical relations
that we have talked about in the introduction, and which was one of the motivations of
our work in Chapter 4 in order to solve it.

But quite unexpectedly, this circularity disappears, since we use a fixed notion of
LTS which does not evolve. Moreover, we represent higher-order functions stored in
the disclosed part of heaps just with variables, as it is done in trace semantics or game
semantics (cf. the end of Section 5.1.7), so that a posteriori it seems fair not to encounter
the circularity since it does not appear neither in the game nor the trace model.

However, when working with term of RefML, one cannot reason anymore by induction
on the number of ground callbacks of terms, since diverging terms like

λf : (Unit→ Unit). fix g(x) : (Unit→ Unit).(f(); g())

can perform an infinity of such callbacks.
Thus we would need a coinductive definition, which would probably be really closed

to the work of Hur et al. in [HDNV12]. But we can also use guarded recursive types to
define our logical relations in a coinductive way on the number of ground callback terms
can perform, which can possibly be infinite. Let see briefly how to do it.

Firstly, we would need to generalize the definition of (h1, h2,D) : w in two different
ways to deal with higher order references. The first one, Pe(w) only works on functional
free heaps:

Pe(w)
def
=
{
(h1, h2,D, e

′) | D ⊆ Dw, hi = hpriv
i · hdiscl

i s.t. dom(hdiscl
i ) = Di and h

priv
i ⊆

hw
i , h

discl
1 ∼D

e′ hdiscl
2 and e′

i = ei ∪ ν
O
P (hdiscl

i )
}

where w = (hw
1 , h

w
2 ,D

w). It takes as a parameter a span on name pointers, that is extended
to relate those name pointers stored in heaps. In this setting, the usual equivalence on
the disclosed part of the heap is easily defined:

h1 ∼S,e h2
def
= ∀(l1, l2) ∈ SInt. h1(l1) = h2(l2) ∧ ∀(l1, l2) ∈ Sref ι. (h1(l1), h2(l2)) ∈ Sι

∀(l1, l2) ∈ Sτ→ι.(h1(l1), h2(l2)) ∈ e

The second one works on any kinds of heaps, so that it is in fact defined recursively
with the logical relation:

Qe(w)
def
=
{
(h1, h2,D) | D ⊆ Dw, hi = hpriv

i · hdiscl
i s.t. dom(hdiscl

i ) = Di and h
priv
i ⊆

hw
i ,∀(l1, l2, τ) ∈ D. ⊲

(
(h1(l1), h2(l2)) ∈ VA JτKe w

)}

Notice the use of ⊲ to ensure the well-foundness of the definition.
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Then, we keep the same definition for logical relations, but for two differences. Firstly,
we insert a modality ⊲ in front of every occurrence of E JτK in the definition of V Jτ → σK
and K Jτ, σK.

Then, one change the definition of E JτK so that it uses the two predicates Pe(w) and
Qe(w) rather than (h1, h2,D) : w.

EA JτKe (w,w0)
def
=

{
(M1,M2) | ∀(h1, h2,D, e

′) ∈ Pe(w).hi ∈ Cl(νL(Mi))⇒

((M1, h1) ⇑ ∧(M2, h2) ⇑)∨(
∃w′ ⊒ w.∃(h′

1, h
′
2,D

′) ∈ Q′
e(w

′).∃ρi : (νL(h′
i)\νL(hi)) →֒ (Loc\νL(hi)).

〈Mi, hi,Di〉 →
∗ ρi · 〈Ei, h

′
i,D

′
i〉 ∧(

Ei = vi ∧ (v1, v2) ∈ VA JτKe′ w′ ∧ w′ ⊒∗
pub w0

)

∨
(
Ei = Ki[fi vi] ∧ (f1, f2) ∈ e

′
σ→σ

′ ∧ (v1, v2) ∈ VA JσKe′ w′

∧∀w′′ ⊒∗
pub w

′.(K1, K2) ∈ KA Jσ′, τKe′ (w′′, w0)
))}

The idea is that, in input, we get heaps from contexts (i.e. Opponent), whose disclosed
part is necessarily functional free. So we can simply use Pe(w). However, while terms are
executed, they can modify the disclosed part and store functions in it, or simply create an
higher-order reference which is then disclosed. So in exit, the disclosed part of the heap
has no reason to be functional free. This means that we have to use Qe(w).

Then, the logical relation is defined coinductively on the number of ground callbacks
of terms. And this definition is justified by the presence of ⊲ exactly where such ground
callbacks are performed.

However, this definition is not complete. Indeed, it does not handle examples like a
version of the “deferred divergence” presented in [DNB10], where terms are related while
diverging at two different moment of the execution (i.e. the synchronization of callbacks
has to be weaken). This weakness was already present in our definition of concrete logical
relations for terms of GroundML, this explains why it is complete only for divergence-free
terms.

A way to solve it is to use the idea of inconsistent worlds, as introduced in the same
article to solve such equivalences. We left this idea for future work.

6.7.2 Concrete Logical Relations for GroundML

The other direction would be to restrict the power of contexts we have considered.
Following this idea, Dreyer et al. [DNB12] give a characterization of such restriction via
constraints on the shape of worlds and on the way we can reason on them. Restriction to
GroundML then correspond to the possibility to backtrack in the world.

In Chapter 5, we have presented a fully-abstract trace semantics for GroundML, which
uses the usual notion of visibility to restrict strategies, as defined in the “semantic cube”
by Abramsky.
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Then, one can imagine using it to define sound and complete concrete logical relations
for GroundML which relates both notions. The idea is to slightly modify the definition of
our concrete logical relations so that the way worlds evolve respects the scoped structure
of the trace semantics for GroundML.

More precisely, let consider a term M = λf.let x = ref 0 in fv1; fv2 with v1, v2

two functions which perform effects on x. In GroundML, the callbacks fv1 and fv2 are
considered in the same way, that is the fact that fv1 has been performed first does not
give him a special status. To integrate this idea, one would simply modify the definition
of K JτK (w,w0) so that it can backtrack to the initial world w0.

One could then go further, and consider a language with only integer references, that is
without the power of storing locations. Then, location disclosure is not monotonic. This
is because the scope of disclosed locations is not global anymore. This should correspond
to the availability restriction of names [MT13].
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Having complete direct-style logical relations, one can imagine being able to prove any
equivalence with it. However, inspecting its proof of completeness, we see that it relies
on a notion of exhaustive LTS which is clearly not computable.

However, it is in often possible to define worlds by inspecting terms, trying to find
“smart” invariants on heaps. This opens the possibility to model-check the membership
of two terms M1,M2 of type τ to the logical relation E JτK. This means that, providing a

193
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LTS A representing the evolution of invariants on heaps for M1 and M2, we could decide
if M1,M2 are indeed in EA JτKw, for w the initial world.

In fact, many choices in the machinery used in Chapter 6 to define EA JτKw were chosen
for this purpose, the most important one being to work with a fixed LTS A. Indeed, this
opens the possibility to work in a simple logic whose semantics is defined via a Kripke
model. This idea was already followed by Dreyer et al. in [DNRB10], however their logic
was quite complex, both because quantification over λ-terms is allowed, ans because of
the low constraints on the variation of worlds in their setting.

Here, we choose to work in a logic which mixes Presburger Arithmetic, to define con-
straints on heaps, and Temporal Logic, to reason on the evolution in the LTS, i.e. on
the control flow. Temporal Logic is of great importance in the field of model checking, to
prove safety and liveness properties, after the seminal work of A. Pnuely [Pnu77]. To our
knowledge, our framework presented in this chapter is the first one that uses temporal
logic to reason on the control flow of an impure functional language, in order to prove
equivalence of programs.

We then define temporal logical relations in this logic. To do so, we first introduce a
notion of symbolic execution used to reduce terms with open ground variables. In practice,
it simply perform an exhaustive reduction, generating predicates which constrain values
of ground variables, such that these predicates are altogether satisfiable if and only if
the reduction is indeed operationally possible. Using it, we can define temporal logical
relations which correspond exactly to concrete logical relations.

In full generality, the problem of model-checking stays undecidable for our logic, be-
cause of two reasons:

— the quantifications over heaps, which can be seen as unbounded size lists,
— the mix between Presburger arithmetic and Temporal Logic.

However, under some reasonable hypothesis on the arity of the transition functions, which
allow us to control the quantification over heaps and locations, and supposing that the
transitive closure of the LTS is provided and can be stated in Presburger arithmetic, we
get a decidable model-checking.

This work has given rise to an implementation in Haskell. This prototype computes
the temporal logical relation E JτK (M1,M2) associated to two terms, but is also able to
automatically generate an LTS which can possibly validate this formula. Then, it performs
a translation of the validity of the temporal formula w.r.t. to this LTS to SMT-LIB2, the
common language of smt-solver. Using the Z3 solver (http://z3.codeplex.com/), we
have thus been able to decide various examples from the literature. We left open the
possibilities of theoretical results on this LTS generation. If we succeed in proving that
the implementation generates an LTS which, under some hypothesis on terms, is adequate
(as defined in Section 6.5), this would lead to decidability results for fragments of RefML
and GroundML.

Such decidability results have already been obtained with algorithmic game semantics ,
which rely on the full abstraction results of game models. In theory, all program equiv-

http://z3.codeplex.com/


7.1. TEMPORAL LOGIC FOR HEAPS 195

alences could be proven by simply looking at equality of strategies. However, reasoning
on equality of strategies in the pure functional setting is non-trivial (or even undecid-
able [Loa01]) because models are quotiented with a complex relation. For language with
references, there is a good characterization of the quotient, using complete strategies, as
we have seen in Chapter 5.

Algorithmic game semantics is based on these results, and uses automata theory to
represent strategies. In the call-by-name setting, a full classification of the decidability
of program equivalence has been given by Ghica and McCusker [GM00] on first-order
Idealized Algol. For call-by-value, recent study of a (finitary) ML fragment with bad
variables have been developed using variants of pushdown automata [HMO11]. And using
variants of fresh register automata [Tze11], this method has been extended to “good”
references [MT11a, MT12]. The main difficulty in algorithmic game semantics is to encode
the pointer structure, that plays carry, ro languages recognizable by automata. To do so,
types of considered terms have to be restricted, in order to get decidability results. It
would then be interesting to compare these results to the one one could obtained with
our method, which would rely on the control of the creation of locations rather than a
restriction on types.

Plan of the Chapter In Section 7.1, we define our logic HeapTL, a mix between
Presburger arithmetic and temporal logic. It uses LTS introduced in Chapter 6 to define
the semantics of temporal connectives, and worlds for the semantics of the predicates on
heaps. Symbolic Execution is introduced in Section 7.2, which is crucial in the possibility
of automatically generated the temporal logical relation associated to two terms, as defined
in Section 7.3. Then, we study in Section 7.5 model checking properties of the temporal
logical relations, which has been sketched in the introduction. These results rely on
the soundness and completeness of the temporal logical relations (w.r.t. concrete logical
relations), which are proven respectively in Section 7.6 and 7.7.

7.1 Temporal Logic for Heaps

We first begin by defining our temporal logic for heaps, named HeapTL, used to
afterwards to define our temporal logical relations. HeapTL is a first-order sorted logic
with ground sorts θ ranging over Int, Loc and Heap. Unusually for a temporal logic, it is
based on top of Presburger arithmetic. It contains basic arithmetic propositions, defined
as:

— Arithmetic terms: t, t′
def
= x | n | t+ t′ | − t with x ∈ Var and n ∈ Int

— Arithmetic propositions: P
def
= t = t′ | t < t′

We also consider heap terms u, u′, which are either locations or variables.
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(w, κ, n) |=A u →֒i u
′ def

= hi(u) = u′ ∨ u ∈ Si

(w, κ, n) |=A Xψ
def
= ∃w′ ⊒ w.(w′, κ′, n+ 1) |=A ψ

(w, κ, n) |=A XFι
pubψ

def
= ∃w′ ⊒Fι

pub w.(w
′, κ′, n+ 1) |=A ψ

(w, κ, n) |=A �ψ
def
= ∀w′ ⊒∗ w.(w′, κ′, n+ 1) |=A ψ

(w, κ, n) |=A �pubψ
def
= ∀w′ ⊒∗

pub w.(w
′, κ′, n+ 1) |=A ψ

(w, κ, n) |=A Ppub(n)
def
= w ⊒pub κ(n)

(w, κ, n) |=A Disclτ (l1, l2)
def
= (l1, l2) ∈ Sτ

(w, κ, n) |=A h1
D
∼ h2

def
= h1 ∼S h2

(w, κ, n) |=A H x.ϕ
def
= (w, κ, n) |=A ϕ {n/x}

(w, κ, n) |=A Ni x.ϕ
def
= ∃y ∈ Loc \ (FHTi(ϕ) ∪ Si).(w, κ, n) |=A ϕ {y/x}

where w = (s, h1, h2,S) and κ′ = κ · (n →֒ (s, h1, h2))

Figure 7.1: Kripke Semantics of the Temporal Symbols

HeapTL follows the design of Computational Tree Logic (CTL) with the additional pos-
sibility to talk about histories of paths. The grammar of temporal formulas is given by

ψ, ψ′ def
= P | ¬ψ | ψ ∧ ψ′ | ψ ⇒ ψ′ | ∀x ∈ θ.ψ | u →֒i u

′Xψ | XFι
pubψ | �ψ | �pubψ |

Ppub(n) | Disclτ (u1, u2) | h1
D
∼ h2 | H x.ϕ | Ni x.ϕ

A world with history W is then defined as a triple (w, κ, n) where w is a world, κ is a
function from integers to World and n is an integer representing a counter to the current
history. This history is used to force the existence of public transition between states that
represent initial calls (opponent answers) and states where a value is returned.

The meaning of HeapTL is given in Figure 7.1 via a Kripke semantics, defined as a
validity relation W |=A ψ, indexed by a LTS A that translates formulas of HeapTL to
second-order logic.

The validity of logical connectives is standard and not detailed. When the sort of a
variable is clear from the context, we omit its type.

The definition of W |=A u →֒i u
′ says that u points to u′ in the current heap hi of the

world. Note that it is possible that u does not belong to the domain of hi as long as it is
a disclosed location.

HeapTL is composed of four temporal modalities:
— Xψ which forces the existence a private future of the current state and which

satisfies ψ.
— XFι

pubψ, which forces the existence of a public future of the current state, that
satisfies ψ, and that extends the set of disclosed locations with fresh ones with
respect to a ground type ι.
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— �ψ (resp. �pubψ) which forces ψ to be true in all private (resp. public) future
states of the current one.

The predicate Ppub(n) forces the existence of a public transition between the current state
and the state appearing at position n in the history.

To specify the disclosed part of the heap, the predicate Disclτ (u1, u2) imposes u1 and

u2 to be related by using the span on locations of the world. In the same way, h1
D
∼ h2

expresses the equivalence between the disclosed part of heaps h1 and h2 by simply using
the equivalence of the current span.

Finally, HeapTL contains three specific binder:
— H x.ϕ, which substitute x with the current history counter in ϕ,
— N1 y.ϕ (resp. N2 y.ϕ) that provides a fresh existential quantification on locations,

that is on locations that do not appear free in ϕ. We define FHTi(ψ) to be the
free heap terms of ψ appearing in predicates u →֒i u

′ of ψ, as
— FHTi(u →֒i u

′) = {u} and FHTi(u →֒j u
′) = ∅ when i 6= j,

— FHTi(Ni x.ψ) = FHTi(ψ)\{x},
— FHTi(ψ ∧ ψ

′) = FHTi(ψ) ∧ FHTi(ψ
′),

the rest of the definition going through the structure of ψ. Notice that (w, κ, n) |=A

Ni x.ϕ could have been defined as ∃y ∈ Loc \ (νL(hi) ∪ Si), but this would have
forbidden the possibility for worlds to reuse an undisclosed location which are no
more present in the term.

7.2 Symbolic Execution

The definition of temporal logical relations will not be based on the operational se-
mantics of the language but rather on a symbolic version of it. Symbolic execution uses
a symbolic heap H, defined as a partial function from heap terms u (i.e. locations or
variables) to heap terms or arithmetic terms. Arithmetic is used to force conditions
on (symbolic) variables used to represent values pointed to by locations and variables.
For example, the heap defined as [x →֒ l] · [l →֒ 3] can be represented symbolically as
[x →֒ x1] · [x1 →֒ x2] plus the arithmetic constraints x1 = l ∧ x2 = 3.

Figure 7.2 defines the one-step symbolic execution of a triple (M,H,C) where M is a
term, H a symbolic heap and C a list of arithmetic and heap constraints. This execution
is non-deterministic and generates all possible terms and symbolic heaps that can be
obtained from M with a heap satisfying (H,C). We also use the notation (M,H,C) 7→s

(M ′,H′,C′) to represent the fact that (M ′,H′,C′) is in the list of the redexes of (M,H,C).
When the set of constraints is empty, we simply write (M,H) rather than (M,H,∅).

The symbolic reduction of (K[u := v],H,C) is the more evolved rule as it deals with
aliasing of locations. That is, it generates all executions for each possible aliasing of u to
a location occurring in the set L.

Finally, we define ⇓ (M,H,C) as the set of irreducible (M ′,H′,C′) such that (M,H,C) 7→∗
s

(M ′,H′,C′). We will only consider such configurations for H closed for M , that is:
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(K[M ],H,C) 7→s (K[M ′],H,C) when (M,H) 7→ (M ′,H)
(K[x == x′],H,C) 7→s (K[true],H,C ∧ (x = x′)) or (K[false],H,C ∧ (x 6= x′))
(K[x == n̂],H,C) 7→s (K[true],H,C ∧ (x = n))⊙ (K[false],H,C ∧ (x 6= n)
(K[n̂ == x],H,C) 7→s (K[true],H,C ∧ (x = n))⊙ (K[false],H,C ∧ (x 6= n)
(K[x == l],H,C) 7→s (K[true],H,C ∧ (x = l))⊙ (K[false],H,C ∧ (x 6= l)
(K[l == x],H,C) 7→s (K[true],H,C ∧ (x = l))⊙ (K[false],H,C ∧ (x 6= l)
(K[x+ n̂],H,C) 7→s (K[z],H,C ∧ (z = x+ n)) with z fresh in C

(K[n̂+ x],H,C) 7→s (K[z],H,C ∧ (z = x+ n)) with z fresh in C

(K[x+ x′],H,C) 7→s (K[z],H,C ∧ (z = x+ x′)) with z fresh in C

(K[if b then M1 else M2],H,C) 7→s (K[M1],H,C ∧ (b = true))
or (K[M2],H,C ∧ (b = false))

(K[!u],H,C) 7→s (K[H(u)],H,C) if H(u) is defined

(K[u := v],H,C) 7→s (K[()],H|dom(H)\dom(L) ·
−−−−→ui →֒ v,C ∧ −−−−→ui = u ∧

−−−−→
u′

j 6= u)
with L ⊆ dom(H), u ∈ L and −→ui range over L,−→uj

′ range over dom(H) \ dom(L).
(K[ref v],H,C) 7→s (K[y],H · (y →֒ v),C) with y fresh

Figure 7.2: Definition of Symbolic Execution

— for all u a free location or a free location variable of M , H(l) is defined,
— for all u ∈ dom(H), if H(u) = u′ is a heap term, then H(u′) is defined.
We now state various lemmas on the symbolic reduction which will be useful to relate

it to the operational reduction.
Let A ⊆ Var, we say that a substitution α : A→ Val is not aliased on a subset B ⊆ A

of locations variables iff for all b ∈ B, a ∈ A s.t. a 6= b, α(a) 6= α(b).

Lemma 48: Let M a ground closed term, and H a closed symbolic heap for M . Then if
(M,Hpre,C) 7→∗

s (M ′,Hpost,C), Hpost is closed for M ′.

Proof By induction on the length of (M,Hpre,C) 7→∗
s (M ′,Hpost,C), analyzing the re-

duction taken. If M = K[ref v], then (M,Hpre,C) 7→s (K[y],H · [y →֒ v]), thus H′(y) is
defined, and if v is a heap term, H′(v) = H(v) is also defined since H is closed.

If M = K[u := v] then the resulting heap H′ is closed because if v is a heap term,
then H′(v) = H(v) is defined since H is closed.

Lemma 49: Let M a ground closed term, and H a closed symbolic heap for M . Then
for all (M ′,Hpost,C′) ∈⇓ (M,Hpre,C), M ′ is either a value v or a callback K[f v] with f
a free functional variable of f .

Proof (M ′,Hpost,C′) is irreducible, so if it is neither a value or a callback, it is equal
to K[!u] with H(u) undefined. But this case is impossible since, by the previous lemma,
Hpost is closed for M ′ so H(u) is defined.



7.2. SYMBOLIC EXECUTION 199

Lemma 50: Let M a ground closed term and Hpre a symbolic heap for it. Suppose that
(M,Hpre) 7→s (M ′,Hpost,C), and αpre : FV(Hpre)→ Val a substitution. Then there exists
a substitution αpost : (FV(Hpost,C)\FV(Hpre)) → Val s.t. αpre · αpost is not aliased on
dom(Hpost)\dom(Hpre) and α(C) is valid.

Finally, we state the two following lemmas which make the link between operational
and symbolic reductions.

Lemma 51: Let (M,H,C) a symbolic configuration, and α : FGV(M,H,C) → Val a
substitution on its free ground variables and α(C) is valid. Consider h : α(dom(H))→ Val
a heap s.t. α(H(x)) = h(α(x)) for all x ∈ dom(H). Then if (α(M), h) 7→ (N, h′), there
exists a symbolic configuration (M ′,H′,C′) and α′ : FGV(M ′,H′,C′) a substitution on its
free ground variables such that

— (M,H,C) 7→s (M ′,H′,C′),
— α′

|FGV(M,H,C) = α,
— α′ is not aliased on dom(H′)\dom(H),
— α′(C ′) is valid,
— α′(M ′) = N ,
— α′(H′(u)) = h′(α′(u)) for all u ∈ dom(H′).

Proof By case analysis on (α(M), h) 7→ (N, h′).
— If (M,h) 7→ (N, h) then we simply take H′ = H, C′ = C and α′ = α.

— IfM = K[x+y] then N = α(K)[ ̂α(x) + α(y)] and (M,H,C) 7→s (K[z],H,C∧(z =
x + y)) with z fresh. Thus, defining α′ as the extension of α with z →֒ x̂ + ŷ, we
have the wanted properties.

— If M = K[!u], then N = α(K)[h(α(u))] and (M,H,C) 7→s (K[H(u)],H,C) and we
conclude using the equality α(H(u)) = h(α(u)).

— If M = K[ref v] then N = α(K)[l] and h′ = h · (l →֒ α(v)) with l /∈ dom(h).
We have (M,H,C) 7→s (K[y],H · (y →֒ v),C), so taking α′ = α · (y →֒ l), we get
that α′(H′(y)) = α(v) so using the fact that h(α(y)) = α(v) we get α′(H′(y)) =
h′(α′(y)). Moreover, since l /∈ dom(h) = α(dom(H)), we get that α′ is not aliased
on dom(H′)\dom(H).

— If M = K[u := v], then N = α(K)[()] and h′ = h[α(u) →֒ α(v)]. Let consider
L = {u′ | α(u′) = α(u)}. Then (K[u := v],H,C) 7→s (K[()],H′,C′) with H′ =

H|dom(H)\dom(L) ·
−−−−→ui →֒ v and C′ = C ∧ −−−−→ui = u ∧

−−−−→
u′

j 6= u) with −→ui ranges over L and
−→uj

′ ranges over dom(H) \ dom(L). By definition of L, α(u) = α(u′) for all u′ ∈ L
and that α(u) 6= α(u′) for all u′ /∈ L. Thus, α(C′) is valid. Moreover, taking
u′ ∈ L, we have h′(α(u′)) = h′(α(u)) = α(v) and α(H′(u′)) = α(v), so the wanted
property on heaps is true.

Lemma 52: Let (M,H,C) a symbolic configuration s.t. (M,H,C) 7→s (M ′,H′,C′), and
α : FGV(M,M ′,H′,C′) → Val a substitution on its free ground variables s.t. α is not
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aliased on dom(H′)\dom(H) and α(C′) is valid. Consider h : α(dom(H)) → Val a heap
s.t. α(H(α(u))) = h(α(u)) for all u ∈ dom(H). Then there exists an injection ρ :
α(dom(Hpost)\dom(Hpre)) →֒ Loc such that :

— (α(M), h) 7→ (ρ(α(M ′)), h′)
— α((H′(u))) = h′(ρ(α(u))) for all u ∈ dom(H′).

Proof By case analysis on (M,H,C) 7→s (M ′,H′,C′) :
— If (M,H) 7→ (M,H), then (α(M ′),H) 7→ (α(M),H).
— If M = K[x+ y] then (M,H,C) 7→s (K[z],H,C ∧ z = x+ y]) with z fresh. Then,

from the fact that α(z) = α(x) + α(y) is valid, we have (α(M), h) 7→ (α(M ′), h).
— IfM = K[!u], (M,H,C) 7→s (K[H(u)],H,C]). Then (α(M), h) 7→ (α(K)[h(α(u)], h),

and we conclude using the equality α(H(α(u))) = h(α(u)).
— If M = K[ref v] then (M,H,C) 7→s (K[y],H · (y →֒ v),C) with y fresh. Moreover,

(α(M), h) 7→ (α(K)[l], h · [l →֒ α(v)]) with l /∈ dom(h). Then, defining ρ as
α(y) →֒ l, we get that ρ(α(K[y])) = α(K)[ρ(α(y))] since α is not aliased on
FLV(H′), so α(y) /∈ νL(K) since y is fresh in K. Then, α(K)[ρ(α(y)] is indeed
equal to α(K)[l]. Moreover, α(H′(y)) = α(v) and h′(ρ(α(y))) = h′(l) = α(v).

— If M = K[u := v], from the fact that α(C) is valid, we get that the only set
containing all the locations aliased to u is L = {u′ | α(u) = α(u′)}. Then
(K[u := v],H,C) 7→s (K[()],H′,C′) with H′ = H|dom(H)\dom(L) ·

−−−−→ui →֒ v and C′ =

C∧−−−−→ui = u∧
−−−−→
u′

j 6= u) with −→ui ranges over L and −→uj
′ ranges over dom(H) \ dom(L).

Thus, (α(M), h) 7→ (α(K)[()], h[α(u) 7→ α(v)]) and for all u′ ∈ L, h′(α(u)) = α(v)
and α(H′(u)) = α(v).

7.3 Temporal Logical Relations

Using the symbolic execution, we define in Figure 7.3 temporal logical relations as
formulas over HeapTL. The reader can check that it follows the very same pattern as
the definition of concrete logical relations, where interactive reduction has been replaced
by the symbolic execution, where concrete reasoning on location becomes abstract, and
where constraints on the structure of public transitions are now explicit.

More precisely, the universal quantifications over worlds are replaced by modalities �
and �pub, while the existential ones are replaced by X and XFτ

pub. Thus, the definition of
the temporal logical relation is abstract over both LTS and worlds.

As usual for logical relations, the construction is given by a mutual induction between
formulas for terms, values, and contexts. The well-foundedness of the construction is
guarantee in our case by an analysis on types and on the number of “ground-callbacks”,
which are the configurations on which, with the values, the symbolic execution stopped.

The definition of E JτKn
e uses an auxiliary predicate Rele,τ , in which we check that

C1 ∧ C2 to ensure that the two symbolic reductions are consistent, i.e. they correspond
to concrete feasible reductions.
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Relne,τ ((v1,H
post
1 ,C1), (v2,H

post
2 ,C2))

def
= N1

−→y1 .N2
−→y2 .∀
−→
x′ . X

(
(C1 ∧ C2)⇒↑1 (Hpost

1 )∧ ↑2 (Hpost
2 )

∧(Hpost
1

D
∼ H

post
2 ∧ V JτKe (v1, v2) ∧Ppub(n))

)

Relne,τ ((K1[f1 v1],H
post
1 ,C1),

def
= N1

−→y1 .N2
−→y2 .∀
−→
x′ X

(
(C1 ∧ C2)⇒ (↑1 (Hpost

1 )∧ ↑2 (Hpost
2 )

(K2[f2 v2],H
post
2 ,C2)) ∧Hpost

1
D
∼ H

post
2 ∧ V JσKe (v1, v2) ∧ �pubK Jσ′, τKn

e (K1, K2))
(when (f1, f2) ∈ eσ→σ′)

Relne,τ (( , ,C1), ( , ,C2))
def
= N1

−→y1 .N2
−→y2 .∀
−→
x′ ¬(C1 ∧ C2) (otherwise)

V JUnitKe (v1, v2)
def
= v1 = v2

V JBoolKe (v1, v2)
def
= v1 = v2

V JIntKe (v1, v2)
def
= v1 = v2

V Jref ιKe (l1, l2)
def
= Disclι(l1, l2)

V Jι→ τKe (v1, v2)
def
= �XFι

pub(∀u1, u2 : ι.V JιKe (u1, u2)⇒

H y.E JτKy
e (v1 u1, v2 u2))

V Jτ → σKe (v1, v2)
def
= �XFτ

pub(H y.E JσKy
e·(y1,y2,τ) (v1 y1, v2 y2))

(τ not ground , y1 /∈ e1, y2 /∈ e2)

K Jι, σKn
e (K1, K2)

def
= XFι

pub(∀v1, v2 : ι.V JιKe (v1, v2)⇒ E JσKn
e (K1[v1], K2[v2]))

K Jτ, σKn
e (K1, K2)

def
= XFτ

pub(E JσKn
e·(x1,x2,τ) (K1[x1], K2[x2]))

(τ not ground , x1 /∈ e1, x2 /∈ e2)

E JτKn
e (M1,M2)

def
= ∀~x.

∧

Si∈⇓(Mi,H
pre
i

)

(↑1 (Hpre
1 )∧ ↑2 (Hpre

2 ) ∧H
pre
1

D
∼ H

pre
2 ) =⇒

(
Relne,τ (S1, S2)

)

Σ; Γf ,Γg ⊢M1 ≃llog M2 : τ
def
= ∃S ⊆ Int,∃A ∈ LTSS,∃s ∈ S,∀h ∈ Cl(Σ),∀−−−→xi : ιi,

(w, ε, 1) |=A E JτK1

Γ̃f
(M1,M2)

where w = (s, h, h, ν̃L(h)), Γf (resp. Γg) only contains variables of functional (resp.
ground) types and (xi : ιi) cover all Γg.

Figure 7.3: Definition of Temporal Logical Relations
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The operation ↑i (for i ∈ {1, 2}) transforms a symbolic heap
−−−−−→
uk →֒ u′

k into the formula∧
k uk →֒i u

′
k.

The definition of E JτKn
e uses the parameter n to keep track of the time when the

execution of the two terms started. Then, the predicate Ppub(n) in the definition of
Relne,τ ensures the existence of a public transition between the initial state of the symbolic
reduction of M1,M2 and the final state once values have been obtained.

In the definition of Relne,τ , the fresh existential quantifications are on locations −→y1

and −→y2 introduced during symbolic execution, i.e. in dom(Hpost
i )\dom(Hpre

i ), while the

universal quantification
−→
x′ is on all the other variables of FV(Hpost

1 ,Hpost
2 )\FV(Hpre

1 ,Hpre
2 ).

In the definition of E JτKn
e , the universal quantification is on logical variables −→x introduced

in H
pre
1 ,Hpre

2 , i.e. during the symbolic execution to impose constraint on the heap.
It is straightforward that concrete and logical relations correspond on ground values.

Theorem 42: Let v1, v2 two closed values of ground type ι, w a world and (κ, n) an
history for w. Then (w, κ, n) |=A V JιK (v1, v2) iff (v1, v2) ∈ VA JιKε w.

Proof If ι = Int, the theorem is direct since in both cases we have v1 = v2. If ι = ref ι′,
then the equivalence comes from the fact that (w, κ, n) |=A Disclι(v1, v2) iff (v1, v2) ∈
(w.S)′

ι and that (v1, v2) ∈ VA JιKε w iff (v1, v2) ∈ (w.S)′
ι.

The goal of Sections 7.6 and 7.7 will be to prove that they corresponds on all types.

7.4 Some Examples

We now detail some examples of E JτK (M1,M2).

7.4.1 Awkward example

Let us first consider the so-called “awkward example”:

Mawk
1 = let x = ref 0 in λf.x := 1; f(); !x

Mawk
2 = λf.f(); 1

Its name come from the fact that the first notion of Kripke logical relations introduced
by Pitts and Stark[PS98] could not handle it, why their relations were complete. Indeed,
they used worlds as fixed invariants on heaps, which couldn’t evolve. But here, the state
invariant which constrains x to point either to 0 or to 1 is not enough to deduce that the
first program returns 1.

The formula E J(Unit→ Unit)→ IntKn
e (Mawk

1 ,Mawk
2 ), once simplified with uninterest-

ingly clauses, is equal to:
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H n0.N1 l1.X
(

(l1 →֒1 0) ∧Ppub(n0) ∧�
(
H n2.X((l1 →֒1 1)∧

�pub(∀x4.((l1 →֒1 x4)⇒ X((l1 →֒1 x4) ∧ (x4 = 1)) ∧Ppub(n2))))
))

The formula imposes that there is a transition from the initial state to state with
l1 →֒ 0 and Ppub(n0) forces the transition to be public. In the same way, it forces to have
a public transition to another state where l1 →֒ 0. Finally, one need to check that for
every public future, one can reach a state where l1 →֒ 0. This is easily satisfied by the
world

h′
i(l1) = 0 h′

i(l1) = 1

Note that here, we do not really use Hoare-style transitions, because the example already
works with an STS.

7.4.2 Hoare-style Worlds

We now consider callback with lock example (taken from [ADR09]) that compares two
encoding of a counter object:

M cbl
1 = C [f(); x :=!x + 1]

M cbl
2 = C [let n =!x in f(); x := n + 1] where

C = let b = ref true in let x = ref 0 in

(λf.if !b then b := false; • ; b := true else (), λ .!x)

Using an STS approach, two states are needed for each natural number stores in the
location x, to keep track of the increment of the counter [DNB12]. To solve this issue, we
use a label transition system (LTS) approach in order to use Hoare-style description of
the heap—relating heaps before the transition (noted h1, h2) to heaps after the transition
(noted h′

1, h
′
2):

h′
i(x) = 0

h′
i(b) = false

h′
i(x) = hi(x) + 1
h′

i(b) = true

h′
i(x) = hi(x)
h′

i(b) = false

h′
i(x) = hi(x) + 1
h′

i(b) = true



204 CHAPTER 7. TEMPORAL LOGICAL RELATIONS

7.4.3 Name Disclosure

We now consider the following example adapted from the ν-calculus.

Mnd
1 = λc. let x = ref c in λy. x == y

Mnd
2 = λc. let x = ref c in λy. false

Both terms are returning functions that always return false. But to know that, the world
must explicitly know that x is private and thus can not be bound by the context to the
variable y.

The formula E Jref Int→ ref (ref Int)→ IntKn
e (Mnd

1 ,Mnd
2 ) is equal to:

�XFref Int
pub

(
∀l1, l2.DisclInt(l1, l2)⇒ (N1 l3.X((l3 →֒1 l1)∧

�XFref ref Int
pub (∀l4, l5.(Disclref Int(l4, l5)⇒ (∀x1.(l3 →֒1 x1)⇒

X(l3 6= l4) ∧X((l3 6= l4)⇒ (l3 →֒1 x1)))))))
)

To simplify the formula, all mentions to public transition have been omitted because it
simply forces every transition to be public. The locations l1 and l2 represent the location
c passed by the context. The location l3 is the location x and the locations l4 and l5
represents the location y passed by the context. This formula is satisfiable because we
cannot have l3 = l4 since we have Disclref Int(l4, l5) and l3 is not disclosed. Here, the world
has to be explicit on spans to validate the formula

P1

P2

P1

P1 P3

with

P1
def
= S ′ \ S = {(l1, l2, Int)} (l1, l2 fresh)

P2
def
= S ′ \ S = ∅ ∧ h′

i = Hlxi

P3
def
= (S ′ \ S = ∅ ∧ hi = Hlxi

∧ h′
i = Hl′xi

)

∨(S ′ \ S = ∅ ∧ hi = Hl′xi
∧ h′

i = Hlxi
)

where Hlxi

def
= [lxi

→֒ li] ∧ [li →֒ xi]

Note that the transition P3 allows us to rebind the location lxi
, thus performing some

kind of local garbage collect to keep the world finite.

Checking that the formula is true is tedious. This leads us to the next section devoted
to model checking.
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7.5 Model Checking Contextual Equivalence

The definition of W |=A ϕ introduces quantification over heaps and set of locations.
Thus, a general decidability result of the model checking problem is out of reach. More-
over, we need a representation of the transitive closures ⊒∗ and ⊒∗

pub, which are in general
not computable. However, in some cases, the decidability of model checking and even
sometimes the decidability of the satisfiability of M1 ≃llog M2 : τ can be obtained.

In this section, we first present a setting in which model checking can be reduced to
Presburger arithmetic. Then we show how worlds can be automatically computed in some
cases and briefly describe our implementation of those techniques.

7.5.1 Model Checking as Presburger Arithmetic

Suppose that for two terms ⊢M1 and M2 of type τ :

1. the LTS A and its transitive closure is expressed in Presburger Arithmetic,

2. heaps are bounded by a constant k,

3. the type τ does not contain ref ι,

4. M1 and M2 only use references on integers.

In that situation, the decidability of the model checking is decidable since W |=A

M1 ≃llog M2 : τ is simply a Presburger formula. Using (2), we can represent heaps as
vector of couple (l, v) (with l ∈ Loc and v ∈ Val) of size k. Then, the only second
order quantifications are introduced by the quantification on S, but using (3), there is
no disclosed reference, so quantification can be removed. Using (4), we know that heaps
have a flat structure so we can replace Heap directly by Intk in the definition of HeapTL.

We can handle creations of location under functions by performing garbage collect as
in the name disclosure example. However, as soon as a location is passed by the context
through a λ-abstraction or a callback, heaps cannot been bounded. Nevertheless, if there
are no private locations introduced before a λ-abstraction expecting a location, we can still
work in the bounded-heap setting, using the extensionality principle Σ; Γ ⊢ λx.M1 ≃ctx

λx.M2 : τ → σ iff Σ; Γ, x : τ ⊢M1 ≃ctx M2 : τ → σ.
Notice that working with pure terms (i.e. terms which do not create references and

whose type does not contain any ref ι occurrences), we can use the single-state world.
Thus, using the model checking above with this world, we get the decidability of the
contextual equivalence for this fragment—which has already been proved in section 5.5.

7.5.2 An Implementation using SMT-solvers

We have written a program in Haskell that computes the temporal formula M1 ≃llog

M2 : τ for any terms M1 and M2. We then verify that heaps can be bounded, by checking
that there is no fresh existential quantification on locations under a � modality in the
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resulting formula. In that case, the program produces a Presburger formula which uses
two abstract predicates to represent the transition functions (and their transitive closures)
of the world. More precisely, it gives as output a formula written in SMT-LIB2, so that it
can be checked, once a world is defined, by an SMT solver. In practice, we have performed
our test with Z3. 1.

The program is also able, in some case, to build a world in Presburger arithmetic
to check the validity of the formula. The algorithm is based on symbolic execution to
compute the shape of the world. Using some heuristic, our program is also able to give the
transitive closures of the transition functions for simple cases. Note that the correctness
of the transitive closure is checked by a Presburger formula, so the correctness of our
heuristics is not critical. It is also possible, as done in Algorithmic Game Semantics,
to suppose that integers are bounded, so that the computation of the transitive closure
becomes simpler.

The Haskell implementation is available at http://guilhem.jaber.fr/tlr/. Taking two
terms, it outputs:

— the formula corresponding to the temporal logical relations, written in HeapTL,
— the Presburger translation written in SMT-LIB2,
— the world generated,
— a definition of the world in SMT-LIB2.

In some cases, as expected since the problem is undecidable in general, the world generated
do not model-checked the formula. However, we have been able to prove many examples
from the literature. In the Section 7.9 we give as an example the code generated for the
awkward example, both for the world and the translation of the temporal formula. More
examples can also be found on http://guilhem.jaber.fr/tlr/.

7.6 From Temporal to Concrete Logical Relations

We now prove the soundness of temporal logical relations w.r.t. contextual equivalence.
To do so, we simply relate it to concrete logical relations, to import the soundness proved
in the previous chapter.

First, we state that every possible operational reduction can be simulated with a
symbolic execution.

Lemma 53: Let M a ground-closed term, h a heap such that νL(M) ⊆ dom(h) and
(M,h) 7→∗ (M ′, h′) with M ′ irreducible. Then taking Hpre a fresh symbolic heap closed
for h, there exists a symbolic execution (M ′′,Hpost,C) ∈⇓ (M,Hpre) and a substitution α
on FV(Hpre,C,Hpost) such that α is not aliased on dom(Hpost)\dom(Hpre), α(C) is valid,
h = α(Hpre) and h′ = α(Hpost). Moreover, if M ′ is equal to K[f v] then M ′′ = K ′[f v′]
with K = α(K ′) and v = α(v′). Otherwise,M ′ is equal to v, thenM ′′ = v′ with v = α(v′).

1. Note that a recent version is needed, since a bug in quantifier elimination in previous versions gives
unsatisfiability results for true equivalence.

http://guilhem.jaber.fr/tlr/
http://guilhem.jaber.fr/tlr/
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In the definition above, a substitution α : A → Val is said to be not aliased on a subset
B ⊆ A of locations variables iff for all b ∈ B, a ∈ A s.t. a 6= b, α(a) 6= α(b).

Proof The proof is done by induction on the length of (M,h) 7→∗ (M ′, h′). When this
length is 0, i.e. (M,h) = (M ′, h′), we simply define α as α(h(l)) = h(l) for all l ∈ dom(h).
The induction step is simply done using Lemma 51.

Lemma 54: Suppose that (M ′,Hpost,C) ∈⇓ (M,Hpre) such that there exists a sub-
stitution α on FV(Hpre,C,Hpost) such that α(C) is valid. Then for all injection ρ on
νL(α(Hpost))\νL(α(Hpre)), ρ(α(C)) is valid.

Proof The only constraints on locations generated by the symbolic reduction are equal-
ities and inequalities, whose validity is conserved by injections.

Lemma 55: Let (h1, h2,D) : w and H1,H2 two symbolic heaps with α a substitution on

FV(H1,H2). Then if hi = α(Hi), we have W |=A α(↑1 (H1)∧ ↑2 (H2) ∧ H1
D
∼ H2) where

W = (w, κ, n).

Proof We first decompose hi into hpriv
i · hpub

i with hpriv
i = w.hi and dom(hpub

i ) = Di.
Then, for all l 7→i v in α(↑i (Hi)), if l ∈ dom(hpriv

i ), we have w.hi(l) = h(l) = v so
W |=A l 7→i v. Otherwise, W |=A l 7→i v is trivial. Finally, by definition of (h1, h2,D) : w,

hpub
1 ∼ hpub

2 so W |=A H1
D
∼ H2.

Lemma 56: Let H1,H2 two symbolic heaps with α a substitution on FV(H1,H2). If

(w, κ, n) |=A α(↑1 (H1)∧ ↑2 (H2) ∧ H1
D
∼ H2) then there exists a span D on location such

that (α(H1), (α(H2),D) : w.

Proof We first decompose α(Hi) into h
priv
i ·hpub

i with hpub
i closed and dom(hpub

i ) = Di ⊆
(w.S)i. From (w, κ, n) |=A α(↑i (Hi)) we get that hpriv

i = w.hi. And from (w, κ, n) |=A

α(H1
D
∼ H2) we get that hpub

1 ∼w.S h
pub
2 . Thus, (α(H1), α(H2),D) : w.

Lemma 57: Suppose W |=A α(V JτKe (v1, v2)) with α a substitution on FGV(v1, v2).
Then W |=A V JτKe (α(v1), α(v2)).

Lemma 58: SupposeW |=A α(K Jσ, τKn
e (K1, K2)) with α a substitution on FGV(K1, K2).

Then W |=A E JτKn
e (α(K1), α(K2)).

Lemma 59: SupposeW |=A α(E JτKn
e (M1,M2)) with α a substitution on FGV(M1,M2).

Then W |=A E JτKn
e (α(M1), α(M2)).

Proof The three lemmas are proved by a mutual induction on type and on the number of
ground callbacks of terms considered. It is straightforward using the fact that substitutions
go through logical connectives. The only case which is not direct is the generation of all
the Si ∈⇓ (Mi,Hi) in the definition of E JτKn

e (M1,M2). In this case, we simply use the
fact that ⇓ (α(Mi), α(Hi)) is included in α(⇓ (Mi,Hi)), since some rules which where
non-deterministic because of the variables become deterministic.
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Lemma 60: Let h1, h2 two closed heaps, D,D′ two spans and v1, v2 two values s.t. D′
i =

discl(vi, hi,Di). Let (w, κ, n) a world with history s.t. (w, κ, n) |=A h1
D
∼ h2. Moreover,

suppose that (w, κ, n) |=A v1
D
∼ v2ι if v1, v2 ∈ Locι. Then D

′ ⊆ w.S.

Then, using an induction on types and on the number of ground callbacks, we can
prove that when two terms are in temporal logical relation for a given world then they
are in concrete logical relation for class of worlds obtained by permuting location of the
initial world. A similar result holds for values and contexts.

Theorem 43 (Soundness for Values): Let v1, v2 two ground-closed values with e a
relational environment for them, and (w, κ, n) a world with history. If (w, κ, n) |=A

V JτKe (v1, v2), then (v1, v2) ∈ VA JτKe w.

Theorem 44 (Soundness for Contexts): Let K1, K2 two ground-closed contexts and
e a relational environment for them, and (w, κ, n) a world with history. suppose that
(w, κ, n) |=A K Jτ, σKm

e (K1, K2), then, writing w0 for (w.A, κ(m)), we have (K1, K2) ∈
KA Jτ, σKe (w,w0).

Theorem 45 (Soundness for Terms): LetM1,M2 two ground-closed terms and e a re-
lational environment for them, and (w, κ, n) a world with history. suppose that (w, κ, n) |=A

E JτKm
e (M1,M2), then, writing w0 for (w.A, κ(m)), we have (M1,M2) is in EA JτKe (w,w0).

Proof The three theorems are proved by a mutual induction on types and on the number
of ground callbacks of the considered terms.

Proof (Soundness for Values) By case analysis on τ :
— When τ is ground, we get the result from theorem 42.
— When τ = ι → σ, suppose (w, κ, n) |=A V Jι→ σKe (v1, v2). Let w1 ⊒

∗ w,
κ1 = κ · (n →֒ (w.s, w.h1, w.h2, w.S)) and W1 = (w1, κ1, n + 1), so from the hy-
pothesis we get the existence of w2 ⊒

Fι
pub w1. Then, taking (u1, u2) ∈ VA JιKe w2,

from theorem 42, we get that W2 |=A V JιKe (u1, u2) where W2 = (w2, κ2, n +
2), κ2 = κ1 · (n + 1 →֒ (w1.s, w1.h1, w1.h2, w1.S)). So from the hypothesis, we
know that W2 |=A E JσKn+2

e (v1 u1, v2 u2). Then, using the induction hypothesis
(v1 u1, v2 u2) ∈ EA JσKe (w2, w2).

— When τ = σ → σ′, suppose (w, κ, n) |=A V Jσ → σ′Ke (v1, v2). Let w1 ⊒
∗ w, κ1 =

κ · (n →֒ (w.s, w.h1, w.h2, w.S)) and W1 = (w1, κ1, n + 1), so from the hypothesis
we get the existence of w2 ⊒

F
pub w1 s.t.

W2 |=A E Jσ′Kn+1
e·(y1,y2,σ) (v1 y1, v2 y2)

with y1, y2 fresh in e. Using the induction hypothesis we get that

(v1 y1, v2 y2) ∈ EA Jσ′Ke·(y1,y2,σ) (w2, w2).
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Proof (Soundness for Contexts) By case analysis on τ
— When τ = ι, suppose (w, κ, n) |=A K Jι, σKm

e (K1, K2). Let w1 ⊒
∗ w, κ1 = κ · (n →֒

(w.s, w.h1, w.h2, w.S)) and W1 = (w1, κ1, n + 1), so from the hypothesis we get
the existence of w2 ⊒

Fι
pub w1. Then, taking (u1, u2) ∈ VA JιKe w2, from theorem

42, we get that W2 |=A V JιKe (u1, u2) where W2 = (w2, κ2, n + 2), κ2 = κ1 · (n +
1 →֒ (w1.s, w1.h1, w1.h2, w1.S)). So from the hypothesis, we know that W2 |=A

E JσKn+2
e (K1[u1], K2[u2]). Then, using the induction hypothesis (K1[u1], K2[u2]) ∈

EA JσKe (w2, w2).
— When τ is of functional type

”
suppose (w, κ, n) |=A K Jτ, σKm

e (K1, K2). Let w1 ⊒
∗

w, κ1 = κ · (n →֒ (w.s, w.h1, w.h2, w.S)) and W1 = (w1, κ1, n + 1), so from the
hypothesis we get the existence of w2 ⊒

F
pub w1 s.t.

W2 |=A E JσKn+1
e·(x1,x2,σ) (K1[x1], K2[x2])

Using the induction hypothesis we get that (K1[x1], K2[x2]) ∈ EA JσKe·(x1,x2,τ) (w2, w2).

Proof (Soundness for Terms) Let (h1, h2,D) : w s.t. hi ∈ Cl(νL(Mi)) and sup-
pose 〈Mi, hi,Di〉 → 〈M

′
i , h

′
i,D

′
i〉. Then from Lemma 53, we get two symbolic execution

(Mi,H
pre
i ) 7→∗

s (M ′′
i ,H

post
i ,Ci) and two substitution αi on FV(Hpre

i ,Ci,H
post
i ) which are not

aliased on dom(Hpost
i )\dom(Hpre

i ) Writing Li for dom(Hpost
i )\dom(Hpre

i ), we can decom-
pose αi into three substitutions α

pre
i on FV(Hpre

i ), αL
i on Li and α

post
i on FV(C)\(FV(Hpre

i )∪
L. Then, hi = αpre

i (Hpre
i ), so writing αpre for αpre

1 · αpre
1 (we can suppose that FV(Hpre

1 )
and FV(Hpre

2 ) are disjoint), we get from lemma 55 that

(w, κ, n) |=A αpre(↑1 (Hpre
1 )∧ ↑2 (Hpre

2 ) ∧H1
D
∼ H2)

Using this with the hypothesis W |=A E JτKn
e (M1,M2) we get two substitution βL

i :
Li → Loc such that αpost

i · βL
i is not aliased on Li. Define an injection

ρi : dom(αi(H
post))\dom(αi(H

pre)) →֒ Loc

as βi ◦ (αL
i )−1. Then, from the fact that αi(Ci) is valid and lemma 54, we get that

ρi(αi(Ci)) is valid, i.e. (αpre
i · βi · α

post
i︸ ︷︷ ︸

α′
i

)(Ci) is valid (indeed ρi ◦ αi = α′
i).

Thus, using again the hypothesis W |=A E JτKn
e (M1,M2), we get the existence of a

world w1 ⊒ w s.t. defining κ1 = κ · (n →֒ (w.s, w.h1, w.h2, w.S)) and W1 = (w1, κ1, n+ 1),

we have W1 |=A α′(↑1 (Hpost
1 )∧ ↑2 (Hpost

2 ) ∧ H
post
1

D
∼ H

post
2 ). Moreover, ρi(h

′
i) = α′

i(H
post
i )

and ρi(M
′
i) = α′

i(M
′′
i ).

— If both M ′
i = Ki[fi vi], we have M ′′

i = K ′
i[fi v

′
i] with Ki = αi(K

′
i) and vi = αi(v

′
i).

Then, from (w, κ, n) |=A E JτKn
e (M1,M2) we get that

— there exists a functional type σ → σ′ such that (f1, f2) ∈ eσ→σ′
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— w1 |=A α′(V JσKe (v′
1, v

′
2)), so using lemma 59 and the induction hypothesis on

values, we get that (ρ1(v1), ρ2(v2)) ∈ VA JσKe w1.
— w1 |=A �pubα

′(K Jσ′, τKm
e (K ′

1, K
′
2)), so using again lemma 59 and the induction

hypothesis on contexts, we get that (ρ1(K1), ρ1(K2)) ∈ KA Jσ′, τKe (w1, w0).
So we still have to prove that (ρ1(h

′
1), ρ2(h

′
2),D

′′) : w1 where D
′′ = (ρ1×ρ2)(D

′). To
do so, we first prove thatD′′ ⊆ (w1.S)i using lemma 60, sinceD′′

i = discl(ρi(vi), ρi(h
′
i), ρi(Di)).

And we conclude using lemma 56.
— Otherwise, if both M ′

i = vi, we have M ′′
i = v′

i with vi = α(v′
i). Then, us-

ing the same reasoning as before, we get that (ρ1(v1), ρ2(v2)) ∈ VA JσKe w1 and
(ρ1(h

′
1, ρ1(h

′
2,D

′′) : w1. Moreover, W1 |=A Ppub(m) gives us that w1 ⊒
∗
pub w0. So

(M1,M2) ∈ EA JτKe (w,w0)

Corollary 7: Let M1,M2 two terms such that Σ; Γ ⊢ M1,M2 : τ . Then Σ; Γ ⊢ M1 ≃llog

M2 : τ implies Σ; Γ ⊢M1 ≃clog M2 : τ .

7.7 From Concrete to Temporal Logical Relations

Finally, we prove the completeness of temporal logical relations w.r.t. contextual
equivalence. To do so, we simply relate it to concrete logical relations, to import the
soundness proved in the previous chapter.

Similarly to Lemma 53, we state that every possible symbolic execution of a term can
be simulated with an operational reduction leading to a normal form.

Lemma 61: Let M a ground-closed term, Hpre a fresh closed symbolic heap for M and
αpre a substitution FV(Hpre) → Val. Let (M ′,Hpost,C) ∈⇓ (M,Hpre), then defining h as
αpre(Hpre), there exists

— a reduction (M,h) 7→∗ (M ′′, h′) with (M ′′, h′) irreducible,
— a substitution αpost : (FV(Hpost,C)\FV(Hpre))→ Val

such that, writing α for αpre · αpost,
— α(C) is valid,
— α is not aliased on dom(Hpost)\dom(Hpre),
— if M ′ is equal to K[f v] then M ′′ = K ′[f v′] with K ′ = α(K) and v′ = α(v),
— otherwise, M ′ is equal to v, and M ′′ = v′ with v′ = α(v).

Theorem 46 (Completeness for Values): Let v1, v2 two ground-closed values, e a
relational environment for them andW = (w, κ, n) a world with history, If (v1, v2) ∈
VA JτKe w, then W |=A V JτKe (v1, v2).

Theorem 47 (Completeness for Contexts): Let W = (w, κ, n) a world with history,
K1, K2 two ground-closed terms, e an environment for them. Suppose w0 = (w.A, κ(m)),
then if (K1, K2) ∈ KA Jσ, τKe w,w0 then W |=A K Jσ, τKm

e (K1, K2).
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Theorem 48 (Completeness for Terms): Let W = (w, κ, n) a world with history,
M1,M2 two ground-closed terms, e an environment forM1,M2. Suppose w0 = (w.A, κ(m)),
if (M1,M2) ∈ EA JτKe (w,w0) then W |=A E JτKm

e (M1,M2).

Proof Proof (Completeness for Values) By case analysis on τ
— When τ is ground, we get the result from theorem 42.
— When τ = ι → τ ′, from the hypothesis we get that for all w1 ⊒ w there exists

w2 ⊒
Fι
pub w1 s.t. for all (u1, u2) ∈ VA JιKe w2, (v1 u1, v2 u2) ∈ EA Jτ ′Ke (w2, w2).

We define W1 = (w1, κ1, n + 1) and W2 = (w2, κ2, n + 2), where κ1 = κ · (n →֒
(w.s, w.h1, w.h2, w.S)) and κ2 = κ1 · (n+ 1 →֒ (w1.s, w1.h1, w1.h2, w1.S)).
Then, taking u1, u2 two values of type ι s.t. W2 |=A V JιKe (u1, u2), from theorem
42, we get that (u1, u2) ∈ VA JιKe w2. So from the theorem hypothesis, we know
that (v1 u1, v2 u2) ∈ EA Jτ ′Ke (w2, w2), and from the induction hypothesis on terms,
we get that W2 |=A E Jτ ′Kn+2

e (v1 u1, v2 u2).
— When τ = σ → τ ′ with σ not ground, from the hypothesis we get that for all

w1 ⊒ w there exists w2 ⊒
F
pub w1 s.t. (v1 y1, v2 y2) ∈ EA Jτ ′Ke·(y1,y2,σ) (w2, w2).

We define W1 = (w1, κ1, n + 1) and W2 = (w2, κ2, n + 2), where κ1 = κ · (n →֒
(w.s, w.h1, w.h2, w.S)) and κ2 = κ1 · (n+ 1 →֒ (w1.s, w1.h1, w1.h2, w1.S)).
Then from the induction hypothesis on terms, we get that

W2 |=A E Jτ ′Kn+2
e·(y1,y2,σ) (v1 y1, v2 y2).

Proof (Completeness for Terms) Let H
pre
1 ,Hpre

2 two fresh symbolic heaps for re-
spectivelyM1,M2, and (M ′

i ,H
post
i ,Ci) ∈⇓ (Mi,H

pre
i ). Let αpre

i a substitution on FV(Hpre
i ),

and suppose that, writing αpre for αpre
1 · αpre

2 , we have W |=A αpre((↑1 (Hpre
1 )∧ ↑2 (Hpre

2 ) ∧

H
pre
1

D
∼ H

pre
2 )). Then defining hi as α

pre
i (Hpre

i ) and writing Di for (w.S)i∩dom(hi), we get
using lemma 56 that (h1, h2,D) : w. So, from lemma 61, we get that there exists

— a substitution αpost
i a substitution on FV(Hpre

1 ,Hpre
2 )

— an interactive reduction 〈Mi, hi,Di〉 → 〈M
′′
i , h

′
i,D

′
i〉

such that, writing αi for α
pre
i ·α

post
i , h′

i = αi(H
post
i ) and αi(Ci) is valid and αi is not aliased

on νL(Hpost
i )\νL(Hpre

i ).
Let consider two heaps hpub

i of domain (w.S)i\dom(hi) s.t. hpub
1 ∼w.S hpub

2 . Then,

writing h̃i for hi · h
pub
i and D̃ for D ∪ dom(hpub

i ) (i.e. D̃ = (w.S)i, we have (h1 · h
pub
1 , h2 ·

hpub
2 , w.S) : w and

〈
Mi, h̃i, D̃i

〉
→

〈
M ′′

i , h̃
′
i, D̃

′
i

〉
where h̃′

i = h′
i · h

pub
i and D̃′

i = D′
i ∪

dom(hpub
i ).

So from the hypothesis (M1,M2) ∈ EA JτKe (w,w0), we get the existence of two injec-

tions ρi : (dom(h′
i)\dom(h̃i)) ∈ Loc (since dom(h̃′

i)\dom(h̃i) = dom(h′
i)\dom(h̃i), and a

world w1 ⊒ w such that (ρ−1
1 · h

′
1, ρ

−1
2 · h

′
2, (ρ

−1
1 × ρ

−1
2 ) · D′) : w1.

Then, defining α′
i as ρ

−1
i ◦αi, we get from lemma 54 that α′

i(Ci) is also valid. Thus, we
instantiate the fresh names quantifiers with the locations in α′(dom(Hpost

i )\dom(Hpre
i )),

which are fresh since α is not aliased on on dom(Hpost
i )\dom(Hpre

i ) and ρ−1
i is a bijection.
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So, using using lemma 55, W1 |=A α′(↑1 (Hpost
1 )∧ ↑2 (Hpost

2 ) ∧ H
post
1

D
∼ H

post
2 ) where

W1 = (w1, κ · n →֒ (w.s, w.h1, w.h2), n+ 1). Then,
— If both M ′′

i are equal to some K ′
i[fi v

′
i], then K ′

i = α(K) and v′
i = α(v). So

using the fact that (M1,M2) ∈ EA JτKe w,w0, we get that (f1, f2) ∈ eσ→σ′ with
(ρ−1

1 ·v
′
1, ρ

−1
2 ·v

′
2) ∈ VA JσKe w1 and (ρ−1

1 (K ′
1), ρ

−1
2 (K ′

2)) ∈ KA Jσ′, τKe (w2, w0). Thus,
the induction hypothesis gives us that

W1 |=A V JσKe (α′(v1), α
′(v2)) ∧K Jσ′, τKn

e (α′(K1), α
′(K2))

and using lemma 59 we get that W1 |=A α′(V JσKe n(v1, v2) ∧K Jσ′, τKn
e (K1, K2).

— If both M ′′
i are to equal to some v′

i, then v
′
i = α(vi), and with the same reasoning

we prove that W1 |=A α′(V JσKe (v1, v2). And from (M1,M2) ∈ EA JτKe (w,w0) we
get that w1 ⊒pub w0, so W1 |=A Ppub(m) since κ(m) = w0.

Corollary 8: Let M1,M2 two terms such that Σ; Γ ⊢ M1,M2 : τ . Then Σ; Γ ⊢ M1 ≃clog

M2 : τ implies Σ; Γ ⊢M1 ≃llog M2 : τ .

7.8 Discussion

Finally, we can state the soundness and completeness of temporal logical relations
w.r.t. contextual equivalence:

Theorem 49: Let M1,M2 two terms such that Σ; Γ ⊢ M1,M2 : τ . Then Σ; Γ ⊢ M1 ≃ctx

M2 : τ iff Σ; Γ ⊢M1 ≃llog M2 : τ .

To achieve this result, we have used four intermediate layers:
— Nominal Game Semantics, via the work of Murawski and Tzevelekos [MT11b],
— Trace Semantics, presented in Chapter 5,
— Kripke Trace Semantics, presented in Section 6.3,
— Concrete Logical Relations, presented in Chapter 6.
It would have been possible to avoid the use of nominal game semantics, since Laird

had already proved [Lai07] the full abstraction for a similar model of our trace semantics.
However, we have preferred to establish a link between trace and game semantics since
there is now an important literature on game models for various languages, that we can
import following our approach. It would be particularly interesting to extend this work
to universal and existential types. This would allow us to apply standard methods to
derive parametricity and representation independance from logical relations, following
the seminal work of Reynolds[Rey83].

An other possibility is to reason on terms with recursion, via a marriage between
guarded recursive types and temporal logic. Indeed, the Löb rule is particularly appropiate
to reason on recursion. However, to achieve some model-checking or decidability results
in this setting seems uncertain.
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7.9 Appendix: SMTLIB Code for the “Awkward Ex-

ample”

We provide in a file awkward.l the following pair of term:
(let x1 = ref 0 in \f1:Unit-> Unit.x1:=1;f1 unit;!x1,

\f2:Unit->Unit.f2 unit;1)

We generate the world using

./world -flat -compact Test-Suite/Awkward/awkward.l

which generate the following code:

(define-fun TransPriv ((s1 Int) (s2 Int) (_x6 Int) (_x7 Int) ) Bool

(ite (and (= s1 4) (= s2 4)) (or (and (= _x6 _x7) ) (= _x7 1) )

(ite (and (= s1 2) (= s2 2)) (and (= _x6 _x7) )

(ite (and (= s1 0) (= s2 0)) (and (= _x6 _x7) )

(ite (and (= s1 2) (= s2 4)) (= _x7 1)

(ite (and (= s1 0) (= s2 2)) (= _x7 0)

false ))))))

(define-fun TransPrivT ((s1 Int) (s2 Int) (_x6 Int) (_x7 Int) ) Bool

(ite (and (= s1 4) (= s2 4)) (or (and (= _x6 _x7) ) (= _x7 1) )

(ite (and (= s1 0) (= s2 0)) (and (= _x6 _x7) )

(ite (and (= s1 2) (= s2 2)) (and (= _x6 _x7) )

(ite (and (= s1 0) (= s2 2)) (= _x7 0)

(ite (and (= s1 2) (= s2 4)) (= _x7 1)

false ))))))

(define-fun TransPub ((s1 Int) (s2 Int) (_x6 Int) (_x7 Int) ) Bool

(ite (and (= s1 4) (= s2 4)) (or (and (= _x6 _x7) ) (= _x7 1) )

(ite (and (= s1 2) (= s2 2)) (and (= _x6 _x7) )

(ite (and (= s1 0) (= s2 0)) (and (= _x6 _x7) )

(ite (and (= s1 2) (= s2 4)) (= _x7 1)

(ite (and (= s1 0) (= s2 2)) (= _x7 0)

false ))))))

(define-fun TransPubT ((s1 Int) (s2 Int) (_x6 Int) (_x7 Int) ) Bool

(ite (and (= s1 4) (= s2 4)) (or (and (= _x6 _x7) ) (= _x7 1) )

(ite (and (= s1 0) (= s2 0)) (and (= _x6 _x7) )

(ite (and (= s1 2) (= s2 2)) (and (= _x6 _x7) )

(ite (and (= s1 0) (= s2 2)) (= _x7 0)
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(ite (and (= s1 2) (= s2 4)) (= _x7 1)

false ))))))

We generate the formula using

./equiv -flat -smt Test-Suite/Awkward Example/awkward.l,

which generates the following code:

(assert (exists ((_s5 Int)(_x6 Int)(_s7 Int)(_x8 Int))

(and (TransPriv _s5 _s7 _x6 _x8) (and (= _x8 0)

(forall ((_s9 Int)(_x10 Int)) (=> (TransPrivT _s7 _s9 _x8 _x10)

(forall ((_x3 Int))

(=> (= _x10 _x3) (exists ((_s11 Int)(_x12 Int))

(and (TransPriv _s9 _s11 _x10 _x12)

(and (= _x12 1) (forall ((_s13 Int)(_x14 Int))

(=> (TransPubT _s11 _s13 _x12 _x14) (forall ((_x4 Int))

(=> (= _x14 _x4) (exists ((_s15 Int)(_x16 Int))

(and (TransPriv _s13 _s15 _x14 _x16)

(and (= _x16 _x4) (= _x4 1)

(TransPub _s9 _s15 _x10 _x16)))))))))))))))

(TransPub _s5 _s7 _x6 _x8) ) )))

(check-sat)

Checking the two codes together with z3, we get that it is indeed satisfiable.
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Une étude logique de l’équivalence de programmes

A Logical Study of Program Equivalence

Résumé
Prouver l’équivalence de programmes écrits dans un langage
fonctionnel avec références est un problème notoirement difficile.
L’objectif de cette thèse est de proposer un système logique dans
lequel de telles preuves peuvent être formalisées, et dans certains
cas inférées automatiquement.
Dans la première partie, une méthode générique d’extension de la
théorie des types dépendants est proposée, basée sur une
interprétation du forcing vu comme une traduction de préfaisceaux
de la théorie des types. Cette extension dote la théorie des types de
constructions récursives gardées, qui sont utilisées ensuite pour
raisonner sur les références d’ordre supérieure.
Dans une deuxième partie, nous définissons une sémantique des
jeux nominale opérationnelle pour un langage avec références
d’ordre supérieur. Elle marie la structure catégorique de la
sémantique des jeux avec une représentation sous forme de traces
de la dénotation des programmes, qui se calcule de manière
opérationnelle et dispose donc de bonnes propriétés de modularité.
Cette sémantique nous permet ensuite de prouver la complétude de
relations logiques à la Kripke définit de manière directe, via
l’utilisation de types récursifs gardés, sans utilisation de la
biorthogonalité. Une telle définition directe nécessite l’utilisation de
mondes omniscient et un contrôle fin des locations divulguées.
Finalement, nous introduisons une logique temporelle qui donne un
cadre pour définir ces relations logiques à la Kripke. Nous ramenons
alors le problème de l’équivalence contextuelle à la satisfiabilité
d’une formule de cette logique générée automatique, c’est à dire à
l’existence d’un monde validant cette formule. Sous certaines
conditions, cette satisfiabilité peut être décidée via l’utilisation d’un
solveur SMT. La complétude de notre méthode devrait permettre
d’obtenir des résultats de décidabilité pour l’équivalence
contextuelle de certains fragment du langage considéré, en
fournissant un algorithme pour construire de tels mondes.

Abstract
Proving program equivalence for a functional language with
references is a notoriously difficult problem. The goal of this thesis
is to propose a logical system in which such proofs can be
formalized, and in some cases inferred automatically.
In the first part, a generic extension method of dependent type
theory is proposed, based on a forcing interpretation seen as a
presheaf translation of type theory. This extension equips type
theory with guarded recursive constructions, which are
subsequently used to reason on higher-order references.
In the second part, we define a nominal game semantics for a
language with higher-order references. It marries the categorical
structure of game semantics with a trace representation of
denotations of programs, which can be computed operationally and
thus have good modularity properties.
Using this semantics, we can prove the completeness of Kripke
logical relations defined in a direct way, using guarded recursive
types, without using biorthogonality. Such a direct definition requires
omniscient worlds and a fine control of disclosed locations.
Finally, we introduce a temporal logic which gives a framework to
define these Kripke logical relations. The problem of contextual
equivalence is then reduced to the satisfiability of an automatically
generated formula defined in this logic, i.e. to the existence of a
world validating this formula. Under some conditions, this
satisfiability can be decided using a SMT solver. Completeness of
our methods opens the possibility of getting decidability results of
contextual equivalence for some fragments of the language, by
giving an algorithm to build such worlds.
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Jeux, Logique Temporelle.
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