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781 la théorie s’est fourvoyée, c’est parce que tres peu de théoriciens avaient vu la

querre”
Maréchal Ferdinand Foch.
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Abstract

In hot dense plasmas, the interaction of an ion with other ions and free electrons may
strongly affect the atomic structure. To account for such effects we have implemented a
potential correction based on the uniform electron gas model and on a Thomas-Fermi Ap-
proach in the Flexible Atomic Code (FAC). This code has been applied to obtain energies,
wave-functions and radiative rates modified by the plasma environment. In hydrogen-like
ions, these numerical results have been successfully compared to an analytical calculation
based on first-order perturbation theory. In the case of multi-electron ions, we observe
level crossings in agreement with another recent model calculation. Various methods for
the collision cross-section calculations are reviewed. The influence of plasma environment
on these cross-sections is analyzed in detail. Some analytical expressions are proposed for
hydrogen-like ions in the limit where Born or Lotz approximations apply and are com-
pared to the numerical results from the FAC code. Finally, we study the influence of the
plasma environment by including it in a new collisional-radiative model named -Foch-.
Because of this environment, the mean charge state of the ions increases. The line shift is
observed on the bound-bound emission spectra. A good agreement is found between our

work and experimental data on a Titanium plasma.

Keywords : Collisional-radiative model, Ion sphere, Plasma potential, Flexible Atomic

Code, Collisional cross sections
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Chapitre 1

Introduction

1.1 Context and motivations

This work tries to give a contribution to a better understanding of the fundamental nature
of plasma matter. Plasmas constitute the fourth state of matter in addition to the solid,
liquid and gas states. Few natural plasmas can be found on Earth, the most known
being the lightning and the auroras. The most interesting and studied plasmas remain in
space, the closest non-terrestrial plasma being the Sun. Stars make an excellent sample of
plasma diversity. Indeed, from the core of Sun to the corona, the temperature and density
are completely different. Three zones may be distinguished: the core, the radiative zone
and the convective zone. In the sun interior the density overcomes the solid state density,
with 102*-10%electron/cm®. Meanwhile, at the most external layer the density is very low,
around 10'%electron/ cm®. This diversity gives rise to different fields of plasma physics.
The plasma conditions related to our work are those prevailing from the core to the
radiative zone. The phenomenon which focuses the attention of an important part of the

plasma community takes place in the core of the Sun: the thermonuclear fusion reactions.

Gravitational fusion

The core of a star is governed by the equilibrium between two mechanisms, the radiation
pressure and the gravitational effect. The radiation pressure is the result of the emission
of photon stemming from the fusion reaction. At the beginning of their cycle stars are
made of light elements such as hydrogen and helium. Under the effect of the gravitation,
the density and the temperature (~ 107K) reach a critical value which initiate the first
reactions of fusion. Once stars run out of light combustible elements, the radiation cannot
counterbalance the gravitation. As a consequence, the star is compressed under its own
mass leading to an increase of temperature and density which makes possible the ther-
monuclear reactions of heavier elements. This cycle is repeated until the star runs out of
combustible elements leading to its end. Of course, depending on the mass of the star the

scenarios of its death differ. The fusion is possible in stars because of their mass and a
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long time confinement of the combustible elements.

Fusion for energy

The objective of a part of the plasma community is to be able to reproduce the conditions
occurring in the core of stars, in order to achieve the fusion reaction. In the stars, several
fusion reactions take place, mostly the proton-proton fusion. The most common reaction
that the plasma community intends to reproduce is the reaction of two hydrogen isotopes,

the deuterium (D ) and the tritium (T), following the process
DT 3T =) He*t +n . (1.1.1)

Many reasons justify the interest for this reaction. Both elements are light elements, there-
fore the energy required to permit the reaction is sustainable. Other reactions involving
light elements exist, however, the cross section of the D-T reaction is the highest, and
possible at reasonable temperatures in the range 107 — 108K. Furthermore, the deuterium
can be extracted from the oceans, which represent an inexhaustible supply, the tritium,
in quantities too small in nature, has to be produced artificially in the cover of a reactor
using a neutron flux on lithium, which is also abundant in the earth’s crust. The Lawson

criterion gives the condition to obtain a profitable energy (twice the invested energy)
N7 > 10" em™s, (1.1.2)

where N, represents the electronic density and 7 the time of confinement. On Earth, two
approaches have been retained to achieve this reaction of fusion, the magnetic and inertial

fusion.

Magnetic fusion [1]

This approach consists of confining the plasma for a long period of time (about seconds),
the plasma density is low around 10'“electron/ cm®. In order to confine the plasma, mag-
netic field is used. Different configurations or geometries can be used for that purpose.
The most famous and simple is the tokamak designed by the Russian physicists I.Tamm
and A.Sakharov. A tokamak has a shape of a torus and two magnetic fields are generated
to confine the plasma. One toroidal made by exterior coil which induced an helicoidal
trajectory of the plasma particles. To correct the transverse drift induces by the first
field, a poloidal field is added. This field is made by the toroidal current generated inside
the plasma. Other geometries exists such as the stellerators, in that case the magnetic
fields are both made by exterior coils. The community of magnetic fusion faces various
problems to achieve the project: plasma instabilities (link to the competition between the
magnetic field and the plasma drift), the plasma-wall interaction and turbulences (edge
and H mode).
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Inertial fusion [2]

For this approach, the plasma confinement time is very short ~ 10 s and the densities
are very high 102 — 10" electron/cm?®. The idea is to encapsulate in a nanometric pellet a
gas of deuterium and tritium. Then high power lasers are used to compress the pellet in
order to reach the requested densities. To compress the capsule, different schemes exist:
direct irradiation, indirect irradiation with the support or not the so-called method fast
ignition. The direct irradiation is a direct compression of the capsule by the lasers. A
good efficiency of this method requests an uniform compression. In the indirect scheme,
the capsule is set in a cavity made of a high Z element, usually gold. In that scenario
the cavity targeted by the laser beams re-emits of X-ray radiation leading to the capsule
heating. The higher is the atomic number, the more important is X-ray conversion and
then the heating efficiency. The efficiency of the energy conversion from the cavity to
the capsule constitutes the weakness of that approach. The plasma generated by the
process described above, presents the same diversity as the stellar plasmas. Indeed, three
domains can be distinguished, each one of them being characterized by a different range

of temperature and density. These are:

e Shock zone: The plasma is highly compressed leading to a density higher than the

solid state but the temperature is quite low ~eV.

e Conduction zone: In that region the density is between the solid state density and
the critical density. This latter density is defined by N.(cm™3) ~ 10%' /\?, where ) is
the laser wave-length in pm. When this density is reached the laser cannot propagate
any futher. For a laser with a wavelength A = 0.1um, N, = 10*electron/ cm®. The
temperature increases due to the heating of the target by the X-rays, its order of

magnitude being between 10 eV to 1 keV.

e Corona: The density of that region is below the critical density and the temperature

rises to one keV or more.

In order to make these technological innovations possible, the physicists have to be able
to predict and diagnose the evolution of the plasma. This present work mainly finds
its application in the inertial fusion and astrophysical plasmas such as stellar interiors.
However, this work may also be applicable to the analysis of radiative losses in the divertor
zone, and can be extended to industrial applications like nano-lithography, or X-ray and

XUV sources. To illustrate the diversity of plasma, we have set the diagram
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1.2 Plasma parameters

Several dimensionless parameters characterize the properties of plasmas under investiga-
tion. The density of the electrons N, and the ions N; are linked by the neutrality condition

N, = Z*N; (1.2.1)

Z*being to the mean charge of the plasma, starting from here the density is expressed
in cm™3 instead of electron/cmg. Even though our study is out of thermodynamical
equilibrium, we assume here that free electrons are thermalized, and therefore can be
described by a temperature k7,. The parameter k is the Boltzmann constant and 7,
the electron temperature, however for convenience kT, is used as the temperature. Two
mechanisms compete in plasmas: the thermal motion and the Coulombic interaction
between electrons. This competition is measured by the coupling parameter I'. This
quantity is defined [3] by
Z*Q
I —
RokT,

with the temperature and radius in atomic unit, where Ry is defined in this work by the

(1.2.2)

neutrality condition
s 347

0~ 4N,

In the case of an important thermal motion I' < 1, the plasma is weakly correlated

R (1.2.3)

(ideal plasmas), disorder dominates. Such plasmas are found in magnetic fusion or stellar
corona. On the other hand if I' > 1, the plasma is strongly correlated, the structure of
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the plasma is organized and close to a fluid. Stellar interior plasmas are a good example
of plasmas dominated by the Coulombic force.

The second parameter v determines whether if the free electrons have to be described
by a classical or a quantum approach. Defining the thermal de Broglie wave-length as
Min = h/(2mmkT,)'/?, where h is the Planck constant and m the electron mass. We
express vy by

v = NS, (1.2.4)

If v <« 1, a Maxwell-Boltzmann statistic is relevant to describe the free electrons but if
v > 1 a Fermi-Dirac statistic has to be used.

The present work focus on dense plasmas with densities from 10°cm =3 to 10%cm =3, i.e
which can be as high as solid density. Concerning the temperature we investigate plasma
above the eV, however, we will not study relativistic plasmas for which k7, > mc?.
Therefore, the plasmas considered in this work are moderately to strongly correlated

10 > ' > 1072, and usually non-degenerate v < 1.

4 aluminum
10~ T T T T T T

classical plasma  I'=1

—

o
(@3]

I

dense plasma

Temperature (eV)
o
N
I}

101 . 2l
" high density
 matter
0 ML
10
1074 102 1 102 104
Density (g/cm3)

FIGURE 1.2.1 : Temperature-density phase diagram for aluminium. The relevant regimes
are noted, as are the various values of the coupling parameter I".[4]

1.3 Etat de l'art

The main information that physicists have access to in hot and dense plasmas, is the
radiation emitted by the plasma. The goal of the theoretician is to build a theory able to
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retrieve or predict this information. The photons emitted by the plasma are the result of
transitions from one atomic state to another. Therefore, to describe the spectral properties
(emissivity, absorption), it is necessary to determine the atomic energy levels and their
occupations. It is a complex task to model such a problem because plasma is a N-body
problem. To circumvent this issue, two theoretical approaches have to be combined, the
statistical and the atomic approach. Atomic stucture theory is used to calculate energies
and wave-functions, while statistical physics characterizes the thermodynamics of the
plasma and obtain the atomic populations.

We focus our attention on two approaches to draw a picture of our theoretical field. The
first one involves the plasma environment and thermodynamics in a consistent way and
is classified under the generic term of average atom model. By environment we mean the
effect of the free electrons and neighbouring ions of the central ion. The second approach
solves the atomic structure and then obtains the level populations from statistics or kinetic

equations. These theories belong to what is called here the chemical picture.

Average atom models

Those models mostly rely on Density Functional Theory (DFT), founded by Hohenberg
[5] and Kohn [6]. In the DFT theory, the N-body problem is reduced to the determination
of a spatially dependent charge density. Instead of obtaining the N-electron wave function
of the system, the effort is made on the electronic density. In the AA model, the idea
is to model the plasma by a fictitious atom. This model allows to calculate an average
electronic structure. We may distinguish two groups of average-atom models depending
on the way they model the plasma environment.

In the first group, the plasma is divided into neutral cells named Weigner-Seitz cells;
each cell is centred around a nucleus of charge Z. Each cell also contains the exact number
of electrons to ensure the neutrality of the sphere. The first average-atom model with a
quantum treatment was proposed by Rozsnyai [7, 8]. In the original version of Rozsnyai
the Weigner-Seitz cell is spherical and periodic conditions are imposed on the sphere.
The boundary condition requires that the wave functions and their derivatives cancel on
the sphere. The last hypothesis is relevant in the case of condensed matter but not of
plasmas. In his work, the bound electrons are treated by the theories of bands, while
the free electrons are treated via the Fermi-Dirac statistics. In the INFERNO model
of Liberman [9], the bound and free electrons are treated via quantum mechanics. The
condition of periodicity [7] is replaced by a uniform density of electron gas (also named
jellium) beyond the ion sphere. This requires that the derivative of the potential to be
zero outside the Weigner-Seitz sphere but not that the wave functions are zero on the
sphere.

The second group of models is based on the atom in the jellium developed by Perrot [10]
and completed by Blenski and Piron [11, 12]. In their work, the atom is set in a jellium
as in the INFERNO model, but the condition of neutrality of the sphere is replaced by a
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global neutrality with the jellium. In that model [11] all electrons are treated via quantum
mechanics.

The strength of the average-atom theory lies in its description of the plasma environ-
ment. This environment plays a significant role for strongly correlated plasmas. This
type of approach is mainly used when plasma is in thermodynamical equilibrium. There-
fore, the atomic populations are determined by statistical laws (Saha-Boltzmann and
Boltzmann statistics). However, the weakness of the average-atom model lies in the de-
scription of the spectral properties. Indeed, the levels of the AA model are calculated
without taking into account explicitly the electrostatic interaction between electrons. In-
deed, most of the time in the AA model the problem is not purely described by a DFT
approach. The exchange-correlation potential is modeled by a local density approximation
(LDA); this type of approach is called DFT-LDA.

Chemical picture

In the following, approaches starting with isolated ion are classified under the generic term
of “chemical picture” though this term roughly regroups the corresponding theories. In
this type of approach, the plasma effects (statistics and plasma environment) are included
in a subsequent step. The objective of this approach is to provide the wave functions and
energies of all ions present in the plasma. To obtain those quantities, we have to solve the
Schrodinger or the Dirac[13] equations of each present charge state. In order to obtain
this atomic structure for isolated ions, many atomic codes have been developed over
the past decades such as the non-relativistic Cowan code [14] and SUPERSTRUCTURE
[15], relativistic codes such as HULLAC [16], MCDF [17], RATS [18], GRASP [19] and
the Flexible Atomic Code (FAC) [20]. The difference between these codes is mainly in
the potential used. The Chapter 2 will provide more details on the atomic structure
calculation.

This theory and codes can be called detailed because atomic states are calculated. Such
an approach prevails in the case of low Z elements and therefore provides accurate and
detailed atomic spectra. However, in the case of intermediate to high Z element, such
a method represents a prohibitive task due to the high number of levels and possible
transitions (in principle infinite but in practice limited to the computing capacities). To
circumvent this problem, an idea is to regroup the electronic levels into configurations [21]
or to regroup them into super-configurations|22]. This regrouping is relevant when energies
of levels are close enough (compared to temperature k7,) to be at thermal equilibrium.
Furthermore, in the case of high Z plasma, meaning a high number of bound states, the
atomic spectra of a detailed calculation are characterized by complex structures due to the
overlap of many lines. The approach proposed by C. Bauche-Arnoult et al. [23] reduces
that problem; this method is called Unresolved Transition Array (UTA) for intermediate Z
and Spin-Orbit-Split-Array (SOSA) for high Z values. They suggested to treat statistically

those unresolved transitions by representing them as a continuous envelope. UTAs or
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SOSAs are usually modeled by one or many Gaussian(s) whose amplitude and width are
evaluated through the moments of the energy distribution of the lines.

An other kind of approximation that we classify in this group (for conveniency), is the
screened-hydrogenic model [24]. This type of approach is used in the FLYCHK code [25],
in the work of Scott et al. [26] and in the reference of Faussurier et al. [27].

The main weakness of the detailed calculation compared to the average-atom approach
is the fact that the ions are considered to be isolated. When the density can be considered
low, the plasma is weakly coupled and the effect of the plasma environment on the ion can
be disregarded. However, in the dense to highly dense regime, the presence of free electrons
and neighbouring ions break the picture of an isolated ion. An important objective of this
thesis is the inclusion of the plasma environment in the atomic structure code. In the
chapter 5 we will discuss the several approaches to model the plasma environment in
detail.

1.4 Objectives

As mentioned before, in thermodynamical equilibrium the atomic populations are de-
termined by the Saha-Boltzmann equations and Boltzmann statistic. Out of local ther-
modynamical equilibrium regime, each atomic population depends on all atomic processes
which populate and depopulate the atomic level to the others. These atomic processes
are divided into two categories, collisional and radiative processes. To calculate these
quantities, atomic and scattering physics have to be considered. Therefore, to obtain the
atomic populations, kinetic equations have to be solved. Such approach leads to build the
so-called collisional-radiative models which amounts to solve a large set of kinetic equa-
tions. The Chapter 3 is devoted to the kinetic equations in plasmas, and in the chapter

4 a non-exhaustive review of atomic-process calculation is made.

The goal of the present thesis is to provide a detailed description of the plasma mostly
out of thermodynamical equilibrium. To achieve this task, a "Chemical picture” approach
based on the FAC code [20] was chosen to provide the atomic structure and the collisional
cross sections. An important effort was the inclusion of the plasma environment via an
ion sphere model. This approach led us to modify the physical and numerical content of
FAC. A collisional-radiative code named Foch has been developed to obtain the atomic
populations, the plasma emissivity and other plasma properties. This code is able to carry
out both detailed and UTA calculations. Our research had three objectives:

e Build a new kinetic code using the data from FAC in order to obtain the atomic

populations and emission spectra.

e Take into account the plasma environment while keeping an accurate atomic de-

scription.



1.5 Organization of the manuscript

e Investigate into details cross sections calculations. This point was motivated by the
inclusion of the plasma environment, but also by the need to reduce the calculations

time.

1.5 Organization of the manuscript

The manuscript is built in six parts to answer to those objectives. In the second chapter,
we describe the atomic physic used for plasmas. The aim of this chapter is to provide
basic knowledge of atomic physics and to introduce the necessary formalism for the study
of the plasma influence on the atomic structure (chapter 5 and 6) and the collisional
processes (chapter 4 and 6). The third chapter is dedicated to the general theory of
thermodynamical regime of plasma. Its interest is to set the collisional radiative model
and to give the main formulas relevant for the present work. In the fourth chapter, a
review of the method to calculate collisional cross section is done. While the main goal of
this thesis is to include density effects in plasma modeling, it was unclear for the present
author how the electron impact calculations should be considered in plasma modeling.
Therefore, we choose to do some investigation of electron impact excitation in order to
better understand the validity of the basic atomic theory as it applies to collisional-
radiative modeling. Furthermore, this part is necessary for understanding the influence of
the plasma environment on the collisional cross sections. The central part of this work is
the chapter 5 which is devoted to the model of the plasma environment. It presents the
existing ways to model the plasma environment; a review and discussion of the ion sphere
model is made. We explain our choice of plasma potential and the domain of validity of
our approach. An extensive investigation of the ion sphere plasma potential is done via
the development of analytical formulas for hydrogen-like ions. The latter developments
support the numerical results in the next chapter. After presenting the theory under our
plasma potential, we show in the chapter 6 the influence of the plasma environment on the
atomic parameters such as energies, wave functions and on cross sections. The chapters
5 and 6 follow closely two articles; one is published [28] and the other is submitted [29].
In the chapter 7, we analyze how the influence of the plasma environment affect the
collisional rates; and more generally the population kinetics. The different results of this
chapter are obtained through our new kinetic code Foch. In this part we will first validate
the kinetic code without plasma effect by comparing numerical results with an experiment
at low density on the krypton. Next, we investigate the density effect on an aluminium
plasma. To conclude this chapter, a comparison with a recently published experiment on
titanium which highlights the effect of the plasma environment, is shown. We end this

manuscript by summarizing results obtained and describe the perspectives of this work.






Chapter 2

Atomic Structure

2.1 Introduction

To accurately model the kinetics or radiative transfer in a plasma, we need a reliable
atomic structure model. When dealing with highly ionized plasmas, it may be preferable
to use a fully relativistic theory, i.e Dirac equation instead of Schrodinger equation. A
wide variety of codes is available in the literature, based on Hartree-Fock or parametric
potential formalism [14, 17, 16, 15].To provide these atomic data, we have chosen the
Flexible Atomic Code [20]. This fully relativistic code is widely used by the plasma
NLTE community. FAC has the advantage to be available without explicit restrictions of
use. FAC also allows to calculate the collisional cross section needed for the resolution of
the collisional-radiative model.

In this part we first present the Schrédinger and Dirac equations for one particle in a
central field. Some analytical formulas noted here for hydrogen-like ions will be confronted
to FAC results in the analysis of plasmas environment effects (chapter 5). Then, we discuss
how to describe multi-electron ion. A short review of different average potential is done.
This chapter ends with models which account for the thermodynamics of the plasma.

Atomic units are used throughout this chapter.

2.2 Schrodinger equation

The Hamiltonian for a single particle in a spherical potential V' (r) field writes [30]

p2
Hs =" +V(r), (2.2.1)

where p is the kinetic momentum of the particle. From the Hamiltonian (2.2.1), we can

write the Schrodinger equation

[A+2(E -V (r)]¥(r,0,¢) =0, (2.2.2)
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Chapter 2 Atomic Structure

where VU is the wave-function of the particle which respects the normalization condition,
for bound states (V|W) = 1, E' is the energy associated to that wave-function and A is
the Laplacian operator. The system (2.2.1) possesses three degrees of freedom (r, 6, ). It
requires three observables which commute to characterize the eigenfunctions. The above
Hamiltonian commutes with the z component of the orbital angular moment operator L.
This operator is defined by

L=rAp, (2.2.3)

where 7 is the position and p the momentum of the particle. The square of this operator
L? and its z component L, commutes with the Hamiltonian Hg. We obtain from these
observables the eigenvalues called quantum numbers which characterize the system. Op-
erators L? and L, only depend of the coordinates # and ¢, therefore their eigenfunctions
only depend on # and ¢. Their eigenfunctions Y;,, (0, ¢) are the spherical harmonics
with eigenvalues [ (I + 1) and m for L? and L, respectively; [ corresponds to the or-
bital quantum number and m to the magnetic quantum number. The structure of the
Hamiltonian suggests to decompose the wave-function in a product of a radial and spher-
ical function Wy, ; ,, (r,0p) = %anl (1)Yim (6, ) , where n is the principal quantum number.

By replacing the wave-function with this product, we obtain for the radial equation

O* R,
0%r

[(I+1)

272

+2 (E -V(r) - > R,;=0. (2.2.4)
The radial function R,,; has to respect the boundary condition R,,; (0) = 0 and R,,;(00) =
0 because ¥ has to be finite everywhere. We point out that in the case of fermions as in
our concern we have to take into account the spin of the particle. Taking into account

the electron spin, the wave-function ¥ includes a Pauli spinor i.e

1
\I[n,l,m,ms - ;Rn,l(r)yz,m (9, 90) Xms (Sz)a (225)

where . (s.) is the spin eigenfunction , s, is the component of the spin operator S and
m, the spin quantum number. At the non-relativistic approximation the Hamiltonian
does not depend on the spin of the particle. When dealing with relativistic effect at first
perturbation order additional terms are added to the Hamiltonian:

2 2 dv o 2dV
Hs=2 v - Em-vr+ 2 221 g, (2.2.6)

where « is the fine structure constant. In equation (2.2.6) in order of appearance, the
corrections are the mass-velocity effect, the Darwin term and the spin-orbit interaction.

These terms are derived from the Dirac equation that we will see in the next section (2.3).

12



2.3 Dirac equation

Hydrogen-like ions

The radial equation (2.2.4) can be solved analytically in a Coulomb field, which corres-

ponds to the case of hydrogen-like ions. The bound energies are
E=—-7%/2n* (2.2.7)
The corresponding radial wave-functions are

212 | (n—=1-=1)! B
Ry (r) = " ( (nH)!) pHle PP (), (2.2.8)

wherep = 2Zr/n and F27! | (p) stands for the Laguerre polynomials,

20+1 _rE Y (n+ 0!
FlL(h) = X m! 2l4+1+m)!l(n—1—1—m)!

m=0

P (2.2.9)

These results will be used in the analytical developments of the chapter 5.

2.3 Dirac equation

The detailed theory for relativistic atoms may be found in the books of Johnson [31] and

Grant [32].The Dirac Hamiltonian for a single particle in a central field V' (r) writes
hp(r) =co-p+cB+V(r), (2.3.1)

where ¢ is the speed of light, p the impulsion vector of the particle, ¢ and 3 are Dirac

matrices of dimension 4 x 4. They are defined by

0 o I 0
(27) a(10) s

where [ is the identity matrix and o = (0,, 0y, 0,) is the Pauli matrix of dimension 2 x 2.

The Pauli matrix is linked to the spin angular momentum operator S by
S =—-o. (2.3.3)

The system possesses four degrees of freedom, three of space (r,0,¢) and one for the
spin. We need four quantum numbers to fully describe the system. Contrary to the
non-relativistic case, the Hamiltonian hAp does not commute with the orbital angular

momentum L but with the total angular momentum J, defined as follows:

J=L+S. (2.3.4)

13



Chapter 2 Atomic Structure

The eigenvalues of the operator J? are j (j + 1), with [l — s| < j < |l + s|, where [ (I + 1)
and s (s + 1) are the eigenvalues of the operator L? and S?, respectively. For electrons the
spin value is s = £1/2 meaning j = [ + 1/2. As mentioned before the Hamiltonian does
not commute either with L or with S. Thus, the spherical harmonics Y}, (0, ¢) and the
two-component spinor x,, (x stands for the spin up or down) are no more eigenstates of
the system (2.3.1). However, by combining them we obtain the eigenstates of the Dirac
Hamiltonian, which are commonly named spherical spinors Q;, (6, ). The spherical

Pauli spinors write

Qjim (0,0) =>_C (1,1/2,5,m — i, g1, m) Yien—p, (6, ) Xps (2.3.5)

I

where C (1,1/2,j,m — p, u,m) is a Clebsch-Gordan coefficient [31], 4 = +1/2 due to the

spin value of electrons. The two component spinor Y, for electrons is

X1/2 = ( (1) ) X-1/2 = ( (1) ) . (2.3.6)

Spherical spinors are eigenfunctions of o - L. We define the operator K = —1 — o - L for

which eigenvalues are
Klem (97 @) = K‘lem (97 80) ) (237)

where k is the quantum relativistic angular number, defined by

l if j=1—1
K= o 2. (2.3.8)

—1-1 ifj=1+1

For the total angular momentum eigenvalues are
T*Qjin (0,0) = 5 (G + 1) Qi (6, ) (2.3.9)

and
Jszlm (67 @) = mlem ('97 S0> . (2310)

Through the new quantum number x we can write that €, (6, ¢) = Q. (0, ¢). Including

the explicit value of the Clebsch-Gordan coefficients, one has the spherical spinors

Ty, (6, ) ) (2:3.11)

Q—l—l,m (97 90) = ( ,i?rl
\/ %n,mJﬂ/Z (0,)
_ l—m+1/2Y
Qum (0, 0) = ( Y a1 Yimoiy2 (0, 0) ) (2.3.12)

I+m+1/2
2l+1/ Yl7m+1/2 (97 90)
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2.3 Dirac equation

An important property of the spherical spinors is that they fulfill the orthonormal condi-
tion as the spherical harmonics do for the Schrodinger equation.

To summarize, the system (2.3.1) is determined by four quantum numbers: the principal
quantum number n, the total angular momentum 7, the relativistic quantum number &
and the magnetic quantum number m. We solve now explicitly the Dirac equation with
a spherical potential

hpWa em = Enwm¥nms (2.3.13)

where VU, ,. ., is the wave-function of the system associated to the energy E, ., = E. We

try to find wave-functions under a factorized form in radial and angular parts

o = 2 [ P Bein (0:0) ) (2.3.14)
T\ iQn k(M) (0, 9)

The radial parts P, , and @, , are called large and small wave-function component, re-
spectively. Before applying the operator hp on the wave-function we have to express the
term o - p = —io, (&, + @) (32],

BV —io (04 51) [ Zela,(0,0)
~io (0 —have) )i 0.0) )

r

hD\IJn,n,m = (
(2.3.15)

where « is the fine structure constant. We then obtain a system of two coupled equations

for the radial part

L;lr + ﬂ Pon(r)=a {E - V(r)+ 52} Qn.k(T) (2.3.16)
and
P CRC R L WG] (2.317)

We have also set a variable change £ = E — 1/a?.The normalization condition writes

/0 h P2(r) + @2 (r)] dr = 1. (2.3.18)

For convenience, we rewrite those first order differential coupled equations in a single

second order differential equation, also known as Schrodinger-like form. We first define

M”ZVF_WM+;} (2.3.19)

and in order to cancel the first order derivative in equation (2.3.16) and (2.3.17) , we set

Pow(r) = Fux(r)A(r), (2.3.20)
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Chapter 2 Atomic Structure

from (2.3.16) we can express the @), ,.(r) in relation with F,, .(r)

1 d kK
Qn (1) = © ldr + T} Fow (). (2.3.21)

Then by introducing (2.3.19),(2.3.20) and (2.3.21) in equation (2.3.17), we obtain the

Schrodinger-like form

Frn)+ R {28 -2 0 - S w0 s
with . ,
W(r)=(E—-V(r)?— ZAl(T)Q C— ?j(;/)? + “1/ (2.3.23)

In the literature, we often find the equation (2.3.22) rewritten with an effective potential
labeled U(r)

Fl (1) + P (r) lg (E—U(r) - "(’jjl)] 0, (2.3.24)
where U(r) = V(r) — a*W (r). This equation is similar to the Schrédinger equation with
an additional term oW (r) which represents the relativistic effects valid even in the case
where these are not perturbative terms. This equation (2.3.24) can be analytically solved
in the case of an hydrogen-like ion, i.e for a potential V(r) = —Z/r. The procedure to
find the wave-functions and energies is the same as for the Schrédinger equation. The

solution for energies [31] is

2
« \/1 52 a2Z2+n |n|)}
If we expand this energy in powers of aZ we find
1 zZ* ozt (1 3
Ev=—-——-——¢—--—]. 2.3.26
a2 202 203 <|li| 4n) ( )

We obtain in order of appearance the energy at rest of electron, the non-relativistic energy

of the Schrédinger equation and the first order of relativistic corrections.

2.4 Spectroscopic notations

In a multi-electronic ion, we intend to build the global wave-function by adding products
of independent electron wave-functions. Each electron is assumed to be described by the
quantum numbers n, j,[,m. The quantum number n is a strictly positive integer which
identifies the shell of an electron. The orbital quantum number [ is also an integer and it

is related to n as follows: n > [ + 1, this number identifies sub-shells named orbitals. It
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2.4 Spectroscopic notations

is the Pauli principle which determines the number of electrons that a shell and sub-shell
can contain. For a shell we have 2n? electrons and for a sub-shell 4] + 2 electrons. Shells

and sub-shells are identified by letters, some examples are given in the Table 2.1.

Table 2.1 : Spectroscopic notation for shells and sub-shells

Shell
n 1 2 3 4 5
Notation K L M N O

Sub-shell
l 0o 1 2 3 4
Notation s p d f g

When all electrons of an atom or ion are defined by their sub-shells, they form a non-
relativistic electron configuration. As an example the ground state of the helium is 1s?
and for the krypton the configuration is 1522522p53523p°®4523d'%4p*. To each configuration
correspond several atomic micro-states (i.e., with a given magnetic quantum number).
The number of such states is called the degeneracy of a configuration. From the Pauli
principle, the calculation of the degeneracy G of a configuration is the product of the
degeneracies y; of sub-shells:

20 4 1)!
¢= Hy - H z! ((;z ¥ 1))— ) (24.1)

where z; corresponds to the number of electrons in the sub-shell i. If a sub-shell is full,
its degeneracy is equal to one. On Table 2.2, we show an example of an excited state of
a boron-like ion.

Table 2.2 : Example of degeneracy calculation on a boron-like ion

Configuration 1s5%2s'2p?

Sub-shell | Degeneracy
152 1
25! 2
2p? 15
G 30

In order to identify energy levels, spectral terms are used. Assuming L and S are
approximate good quantum numbers which occurs when relativistic effect are small (low
7 atoms), an ionic state is written 2°*!L ;. For an example, the ground state of carbon
15225%2p? is represented by the spectral term 3P,.

The degree of ionization of an atom is labelled d with d = Z — N, where Z is the charge
of the nucleus and N is the number of bound electrons. An lithium-like aluminium ion,
can be identify by Al XI or Al'%+,
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Chapter 2 Atomic Structure

2.5 N electron ions

Until now, we have considered the Dirac and Schrodinger equations for one particle in a
spherical field. However, our interest concerns multi-charged ions, with N bound electrons.
In this section, we show how to obtain eigenvalues and eigenfunctions for such an ion.

The Dirac or Schrodinger equation writes
H;,, W, = E,Vy, (2.5.1)

where E} is the energy of the state k associated to the wave-function ¥,. H;,, represents

the Hamiltonian of the system (nucleus+bound electrons), it includes the following terms:

e Kinetic energies of electrons and nucleus

The attractive potential of the nucleus on bound electrons

The repulsive potential between bound electrons

Relativistic corrections (spin orbit, Darwin, mass velocity), the Dirac equation in-

trinsically accounts for such terms.

Quantum electrodynamics corrections (Breit interaction, vacuum polarization, Lamb

shift) and the finite nuclear size; a subsection is dedicated to these corrections.

Considering the four first terms of the list, the relativistic Hamiltonian H,ej o, writes

N
A
T‘El Jgdon — ZhD rz Z + Z - (252)

i z<]

where hp(r;) is the single-electron Dirac Hamiltonian with no potential, the second term
corresponds to the attractive field between nucleus and bound electrons and the last term
is for the electrostatic repulsion between bound electrons.

In the non-relativistic case, the Hamiltonian expresses

1 N
Hnon—'rel,ion = _5 ;VZ Z Z - (253)

le 1<J Tij

For N > 2 such an Hamiltonian is not separable and therefore no analytical solution is
possible. The only problem we can solve is that of a central field potential analyzed in
section 2.2 and 2.3. In that case the total energy of the ion is simply the sum of the
energies of all individual states. The main idea for solving the N electron ion problem is
to reduce the real potential to a central average potential and treat the difference with

the real one perturbatively.
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2.5 N electron ions

2.5.1 Average central field

To obtain the eigenvalues of equation (2.5.1), we replace the nucleus potential and electron-
electron interactions by an average central potential U(r) and take into account perturba-
tively the difference between the average potential and the real potential. The Hamiltonian
Hie1ion 1s split into two parts

Hierion = Ho + Hi, (2.5.4)

where H, stands for the zero order relativistic Hamiltonian and is defined as follows:

N
i=1
U is the average spherical potential replacing —Z/r; + 1/r;;. The second part of the

Hamiltonian H; is

Nz

lez{_—UnFZ (2.5.6)

=1 T 1<J
where H; is considered as a perturbation with respect to Hy, therefore H; < Hy. If
we use a non-relativistic approach we have to add relativistic corrections (the spin-orbit
interaction, mass, Darwin term) as an additional term Hj. Indeed, for elements with high
7 the spin-orbit interaction is stronger than the electrostatic repulsion. In this non-fully

relativistic approach, we write the Hamiltonian as

N 1 N Z 2 N 1
Hnonfrel,ion = Z; |:—2Vl2 + U(T'l):| + Z; |:_ — U 7'1 :| + Z — + z; U rz i Si.
i= i= z<] i= i
Hy H,y Hy

(2.5.7)
We have ignored here relativistic corrections other than spin-orbit. This Hamiltonian
can be divided into three parts Hy,, H; and Hs; the last two are considered as small
perturbation compared to Hy. Depending on the importance of the H; and H,, two

coupling can be defined:

e In the LS coupling we consider that H; > H,, so we first add perturbatively H;
to Hy and then we apply Hs as a perturbation of Hy + H;. This approximation is
usually appropriate for low Z elements and also for weakly excited states of weakly
ionized high 7 .

e In the jj coupling we consider that Hy > H;, thus we first add perturbatively Ho
to Hy and then we apply H; as a perturbation of Hy + H,. This approximation is
appropriate for high 7 elements highly ionized.

An example in Table 2.3 illustrates the level structure for these two coupling. The jj
scheme is used with the Dirac equation because the individual electron wave-function are

constructed by coupling their orbital and spin momentum [ and s first.
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Table 2.3 : Comparison of construction of levels with LS and jj coupling for a configuration

ns —mp
LS coupling
HO H1 H2
ns —mp S L degeneracy | J Level degeneracy
0 1 3 1 ip 3
3
h=0andh=1| . ; 3% ;
2 3P, 5
jj coupling
HO H2 H1
ns — mp j1 j2 degeneracy | J Level degeneracy
1/2 1/2 4 1 P 3
0 3P 1
h=0andl =1 775—75 8 1 °h 3
2 3P, 5

2.5.1.1 Choice of local potential

Many methods exist to model the real potential —Z/r; + 1/r;; with an average field
U(r) among which the Hartree-Fock-Slater method [33], the Dirac-Fock-Slater and the
parametric potential [34, 35]. All these potentials have to fulfill two boundary conditions.
Close to the nucleus the active electron has to see only the charge of the nucleus and
at large distances the charge of the nucleus is screened by the N — 1 electrons. These

conditions write

—Z -0
Ur)y=14 " g . (2.5.8)
—Z=NEL e o

T

Hartree-Fock-Slater

The potential is modelled by three terms in this approach. The first is the potential of
the nucleus —Z/r. The second term labelled here V,, accounts for the potential generated
by the N — 1 electrons. This potential is calculated by the Poisson equation, where the

density distribution of an electron in a sub-shell nl is defined by

Ril (r)

Amr2

pr(r) = (2.5.9)

where R, is the non-relativistic wave-function of the active electron. By using the Poisson

equation the potential is deduced

oo /2
Ve(r) = anl/ :—Ril(r/)dr/. (2.5.10)
0
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2.5 N electron ions

where w,, ; is the occupation number of the sub-shell nl.This potential is directly obtained
through the Hartree-Fock equation and is called the classical potential. In the relativistic
version, the term RZ,(r') has to be replaced by P2 (r') + Q2.(r').

The third term is the exchange interaction labelled V., (r)

N e (25.11)

For the coefficient of this potential we use the Kohn-Sham [6] value. This term is deduced
from the hypothesis of a free electron gas (see for instance[14]). Finally the average

potential used (for one electron) in the Hartree-Fock-Slater approach is

U(r) = —f + Ve(r) + Veu(r) (2.5.12)

Parametric potential

An analytical expression is assumed for the parametric potential. The potential is usually

taken as

Z m
Ulr) = - > a,rte (2.5.13)
n=0

where m is an integer , a, and b, are parametric numbers which have to be optimized.
These parameters may be determined by two ways: comparison with experimental data
or variational principle. In practice such parametric potential codes try to find the pa-
rameters which minimize the average energy (Hartree-Fock criteria) of a configuration,
thus the method is iterative. It is worth noting that this approach takes into account the
exchange correlation term. Therefore, it is not necessary to add an extra term contrary to

the previous methods. In the Flexible Atomic Code this type of potential is used, under

Z  N-—-1 e A"
Urac(r) = -t <1 1T ar) ; (2.5.14)

the following form

where A and a are parameters to be determined. The first term stands for the nuclear
potential and the second term for the electrostatic interaction. These parameters are

determined via the energy minimization of a mean configuration specified by the user.

2.5.2 Average energy of a configuration

Independantly of any central potential used, we can evaluate the energy contribution of the
different terms of Hamiltonian H,.; o, to a configuration C'. Through the perturbation the-
ory the average energy E,,, of the configuration C is determined by <\If§€0) | H el ion| \IIECO)>,
where \I/,(CO) are the zero order wave-functions of the Hamiltonian Hy. Using fully anti-

symmetrized N mono-electronic wave-functions as required by the Pauli principle, we
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obtain [31, 32]

N 1 1
FEavg = Z <% —Qa-p+— %>+Z <sz %>+Z [<%% Iy %73> - <%"Yj — 'Yj7i>] )
7 1<j v
(2.5.15)

where ¢ and j stand for electrons in the configuration C' and v represents any quantum
number which characterize the state. We recognize the single particle Dirac Hamiltonian
in the two first terms. These terms arise from the separable (one-electron) part of the

Hamiltonian. The radial contribution for these two terms is directly obtained:

% > 1 2 2
Eavg,szngle = /Ov {Oﬂ [Pn,;q('r) + Qn,ﬁ(r)}

The quantum numbers are noted as n, x for simplicity but depend on the electron ¢.The
last two terms of equation (2.5.15) correspond to the electron-electron interaction, they
are a two electrons operator. It is more complicated to calculate due to its dependency
on r; and ;. This term has to be rewritten through the Al-Kashi theorem ri, = r? +r3 —
2r11r9 cos 6, and when using the Taylor series expansion and the Legendre polynomials it

comes

— = Z nilP (cos®). (2.5.17)
T2 =0T

Developing this term is too long and not of interest in the context of the present work,

especially the angular contribution. The radial contribution of the electrostatic term is

made of two integrals

12 12 / / 7”1 —|—an(7’1)] o n {PQ, ,(7”2) + Q o (TQ)} d’f‘ld’l“g (2518)

>

G"(12,21) :/OOO /OOO [Pn,ﬁ(rl)Pnfﬁ/(rl)+Qn,ﬁ(r1)QngK'(ﬁ)} 7];1

X {Pn' o (12) Poc(r2) + @,y /(rg)Qn,K(rQ)} dridry  (2.5.19)

where n, k (resp n, /1') are the quantum numbers of electron 1 and 2. The first integral is
called direct integral, it corresponds to the field generated by the N — 1 particles on the
active electron. Contrary to the nucleus attraction, it contributes positively to the energy.
The second integral is called exchange integral: it corresponds to the exchange interaction
between electrons which is a consequence of the Pauli principle. The contribution of this

term is negative.
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2.5 N electron ions

2.5.3 Resolution of the N electron problem
Indenpendent particle solution

Once the average potential is chosen, we can start the resolution of the N electron problem.
At zero order, we only have to consider the Hamiltonian Hy. We solve N independent
Hamiltonians with a selected average potential. The resolved system of a mono-electron
state 7 is

Hop!” = EOp), (2.5.20)

1 1 1

Through this resolution we obtain the uncorrelated energies and wave-functions of N
electrons forming a configuration C'. The total energy of a level k£ in the configuration C'

is the sum of energies of N electrons

N
ESL = E" (2.5.21)

=1

and the total wave-function Wy is the product of NV electrons wave-functions labeled
(p1, ..., o). We also have to take into account the Pauli principle, which requests that

the wave-function is antisymmetric. Therefore the zero order wave-function writes

v = 4 H o) (2.5.22)

7 n7l7.] m

where A is the antisymmetric operator defined as

_ \/iv_' (- (2.5.23)

where x (P) is the parity of the permutation and P is any permutation of electrons.

Matrix elements of the non-central interaction

Once the uncorrelated wave-functions \D,(CU)C are obtained, we have to correct the results

accounting for Hi, whose matrix elements in this basis are

N
0 0 Z 0 0 0 1 0
(W [H | W) = <qf,gg > = v ) - )0 N+l > v
i=1 ? i<j ' v
(2.5.24)

The computation of the two first terms of the equation above is not difficult because \IJ,(COEJ

involves an antisymmetrized product of one electron wave-functions. However, the last
term as we have seen before, has to be rewritten because it is a two-electron operator.

To obtain the wave-function ¥ fully accounting for dielectronic interaction, we have to
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Chapter 2 Atomic Structure

diagonalize the full Hamiltonian Hy + H,

U= Y b0, (2.5.25)

where by, are the mixing coefficients determined by the diagonalization of the total Hamil-
tonian. The number of configuration N, plays an important role in the quality of the
atomic data, because it allows to take into account the interaction of configuration. There
is no clear criteria to choose the set of relevant configurations. This set may be defined
by examining the convergence of the level energies when the number of configurations is

increased.

Diagonalizion of the full Hamiltonian

To illustrate the general procedure, we conisder the case where only two configurations
are included. The Hamiltonian which account for two configurations C; and Cs has the

general form

Configuration C'y Configuration Cy

EQ. 6 + (Cri |Hy| C1j) (Cyi |Hy| Cay)

(Coi | Hy| C1j) E} 0,01 + (Cai | Hy| Caj)

(2

On the block diagonal we find the Hamiltonian matrix of a single configuration. On
these blocks we identify on the diagonal the average energy with the correction due to
the direct contribution of the Hamiltonian H; mentioned before. The off diagonal con-
tributions come from the electronic coupling between electrons i.e LS coupling and the
electrostatic interaction. The two non-diagonal blocks of the diagram correspond to the
interaction of configuration (H@'. ). This term is calculated in the same way as the
matrix element of a single configuration. Finally, from the diagonalization of this matrix,
in the given set of configurations we obtain energies and wave-functions of the considered

ion.

2.5.4 Quantum electrodynamic and nucleus size effects

In the Flexible Atomic Code and in many relativistic codes, quantum electrodynamic
(QED) corrections are added to the relativistic Hamiltonian. Some of these effects are
important enough to modify the order of energy levels. In the resolution of the N-electron

Hamiltonian, these effects are usually a second order effect.

Generalized Breit interaction

The Breit interaction is the most important QED correction for high Z elements. The first

effect corresponds to the exchange of a virtual photon between two electrons. The second
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2.6 Atomic models accounting for thermodynamics

effect is the retardation effect due to the interaction of a moving electron in a magnetic

field generated by another electron. The general Breit interaction writes [36]

W45 eiwrij -1
+2 (Oﬁi . Vl) (ij : V])

Tz‘j w Tij

B(i,j) = —2(cv - o)

(2.5.26)
where w is wave number of the exchanged virtual photon and «; is the Dirac matrix.

Lamb shift

This effect regroups two phenomena, the self-energy and the vacuum polarization. The
self-energy corresponds to the emission of an electron by a photon or an electron/positron
pair which is then reabsorbed. According to the QED, in the vacuum there is a constant
creation and annihilation of electron/positron pairs, which is considered as a vacuum
fluctuation. At the vicinity of an electron this pair is polarized leading to a small decrease
of the effective charge of this electron. The Lamb shift notably explains the energy

difference between levels 25y, and 2p; /o of H-like ions.

Nuclear finite size

This effect has an order of magnitude close to (but usually smaller than) the above dis-
cussed corrections.

The nucleus of ions possesses a finite size. To model this fact it is supposed that the
charge of the nucleus is uniformly distributed in a sphere with a radius R,,,.. The potential

is deduced from the Poisson equation

z (3 r2 ) f

- S = orr <R
Rnuwe \2 ~ 2RZ = flnuc

Vnuclear (T) — L, nuc nuc f > R .

—_— Or T =2 IMipye

(2.5.27)

In FAC, the radius of the nucleus is determined by the empirical formula R,,,. = 2.2677 X
10~°A'/3 in atomic units, where A is the atomic mass. Orbitals which are mostly affected
by this effect are the ones with a significant density probability close to the nucleus.

An example of the energy contribution of the QED correction is given in Table 2.4.

This data come from the article of Desiderio and Johnson [37].

2.6 Atomic models accounting for thermodynamics

The above discussion concerns an isolated ion, in this section we briefly present models

which account for thermodynamics.
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Chapter 2 Atomic Structure

Table 2.4 : Contribution of the quantum electrodynamic term to the binding energy of a
K electron shell with Z = 74

Terms Energy contribution in Ry unit
Electrostatic energy —5135.99
Breit (magnetic) 18.53
Lamb shift (self-energy) 10.96
Lamb shift (vacuum polarization) —2.23
Breit (retardation) —1.39
Total 5110.02

2.6.1 Thomas-Fermi approach

In this approach, the treatment of electron lies on a semi-classical treatment. We suppose
in this model that bound and free electrons are classical particles. The electrons are
described by a charge density n.(r) and not by their wave-function. It is assumed that, at
a given position the density n.(r) is the one corresponding to a free electron gas obeying
to the Fermi-Dirac statistics at the temperature k7, with a kinetic energy
P?

5 = E—-U(r) (2.6.1)
where F is the ion total energy which is chosen to be zero. The charge density is supposed

to be spherically symmetric

_ V2 3/2 Ul(r)—p
ne(r) = Fk:Te/ Fij (kT> : (2.6.2)

where p is chemical potential and F/, is the Fermi integral of order 1/2 defined by

o0 yn
F = ——dy. 2.6.
o) = [ s (263)

The potential is obtained by using the Poisson equation with the density (2.6.2)

7J2 ’ ’

U(r) = /OOO A —ne(r )dr (2.6.4)

r>

where ro = max(r, 7’/). The main problem of the Thomas-Fermi model is that the ex-
change correlation term is neglected in the e-e interaction. This term is only present
through the Pauli principle in the Fermi distribution. An improvement of this model is

made by the Thomas-Fermi-Dirac model which takes into account this missing term.

2.6.2 Average Atom model

We present here a basic average atom model inspired by the work of Blenski et al.[38]

in a non-relativistic frame. This approach tries to model the plasma via an average cell
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named Wigner-Seitz cell. In that cell the nucleus, the bound and the free electrons are
present. On this sphere a neutrality condition is imposed. Under the hypothesis of an

average field, each electron satisfies a self-consistent Schrodinger or Dirac equation

O* Ry
0%r

L(1+1
+2 (En,l —V(r) - (%2 )> Ry, =0, (2.6.5)

The difference with the previous models is that now V (r) is a function of temperature.
The same equation is solved for the free electrons. The average potential V' (r) is divided

in two parts a direct and exchange term.
V = Viir + Vege (2.6.6)

The exchange term is simply derived from a local density approximation (see equation

(2.5.11)).The direct term is calculated via the Poisson equation
AV =4 (—p(r) + Z0 (1)) (2.6.7)

p (r) is the electron density,p (1) = pround (7) + pfree (r). The densities of bound electron

is evaluated by
1
Poound = r Z 2 (2[ + 1) F (En,lu :u) Rn,l (T)Q (268)
n,l

2
where F' (E,,;, pt)is the Fermi distribution

1

F 1) = o B = ) R

(2.6.9)

The free electrons density obeys to a similar equation as (2.6.8) by replacing n,l by
¢,l. Finally, the chemical potential i is obtained through the neutrality condition of the

Wigner-Seitz cell. In the case of a spherical sphere of radius Ry, it comes

Ro
Z = 47r/ p (r)rdr. (2.6.10)
0

2.7 Summary

We have discussed the "Hartree-Fock type” approach to calculate the atomic structure
of an isolated ion. In the FAC code, the average potential is used under the form of a
parametric potential. The theoretical description of the ion is made via the Dirac equation
with quantum electrodynamic corrections. As we may notice such description does not
account for the free electrons. In the following chapter we show how in a subsequent step

we account for the thermodynamic of plasmas.
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Chapter 3

Basic properties of plasmas: kinetics
and spectroscopy

3.1 Introduction

In this chapter we detail how to obtain the atomic populations and radiative properties
of a plasma. We note that we only consider uniform plasmas. Three types of particles are
present in the plasmas: ions, free electrons and photons. Therefore, it is more accurate
to distinguish three temperatures, kT, as the temperature of free electrons, k7T; as the
ionic temperature and k7T, as the temperature of photons. Depending of the regime of
study, those quantities can be equal or different. Futhermore, one may find situations
where one or several types of particles are not thermalized. For instance, distribution
with suprathermal electrons may deserve some attention.

The thermodynamical regime of the plasma depends on the competition between col-
lisions and radiative processes. At least three regimes can be distinguished: non-local
thermodynamical equilibrium (NLTE), local thermodynamical equilibrium (LTE) and the
corona regime. First, in this chapter we define the elementary processes considered. Then
the basic equations to obtain the atomic populations for NLTE, LTE and corona regime
are given. A discussion of their domain of validity is made through semi-empirical formu-

las. This chapter ends with the calculation of atomic spectra and the line broadening.

3.2 Elementary processes

The elementary processes represent the interaction of ions with free electrons or photons
leading to a change in the ionic structure. This change may be an excitation or deex-
citation or a modification of the charge state of ions (ionization or recombination). We
distinguish two categories of processes: collision and radiative processes. For the colli-
sional processes, we only consider impact between an ion and a free electron, collisions

between ions is disregarded due to their strong inertia.
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Chapter 3 Basic properties of plasmas: kinetics and spectroscopy

Every elementary process corresponds to its inverse process. The relation between the
direct and the inverse process rate is obtained from the micro-reversibility or detailed
balance principle. We neglect elastic processes, which do not change the dynamics (rates)
but may be included in line profile analysis.

In what follows, the symbol X represents some atomic element of charge Z, * corres-

ponds to an excited state, e stands for an electron and hv for a photon.

e Collisional excitation and deexcitation;

X(Z)+e=X"(Z)+e. (3.2.1)

e Collisional ionization and three-body recombination. Because the recombin-
ation involves two free electrons, it will be important at high densities. Its density
dependence is in NZ;

X(2Z)+e=X(Z+1)+2e. (3.2.2)

e Auto-ionization ( or Auger effect) and dielectronic capture;

X*(Z)=X(Z+1)+e. (3.2.3)

e Photo-ionization and radiative recombination;

X2Z2)+hw=X(Z+1)+e. (3.2.4)

e Spontaneous emission and photo-absorption. We can add to the spontaneous

emission the induced emission due to an external field;

X*(Z) = X (Z) + hv. (3.2.5)

The probability with which all those processes happen in the plasma determine the atomic
and thermodynamical properties. These probabilities are defined by rates which describe

the number of processes per unit of time

number of processes

rate =

3.2.6
time ( )
For collisional processes involving electrons as projectiles, the rate R;; from a level i to a
level j writes

Rij = Ne <UO'Z']‘(E>> s (327)

where 0,;(E) is the cross section of the considered process, N, is the density of free
electrons and v their velocity. Nwv represents the number of particles hitting a unit of

surface during a unit of time. Assuming that free electrons speed obeys a statistical
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3.3 Non-local thermodynamical equilibrium (NLTE)

distribution f(v), one has

R;j = N, /OO vf(v)o;(v)dv, (3.2.8)

where v;; is the speed corresponding to the transition energy. The normalization is defined
by

/OOO f(v)dv = 1. (3.2.9)

The calculations of cross sections of elementary processes is a complex task, the chapter
4 is dedicated to that duty. Thanks to the detailed balance, we only have to calculate one

process to obtain its inverse process. The detailed balance equation writes:
anzj = TLjRji, (3210)

where n; and n; are the populations of level ¢ and j at local thermodynamical equilibrium.

In the case of suprathermal electron, this relation does not hold.

3.3 Non-local thermodynamical equilibrium (NLTE)

We consider here a regime where the free electron collisions do not ensure the thermaliz-

ation of the ionic level because the radiative processes are too important. We have

NBZCij ~ ZA”" (3.3.1)
J J

j<i j<i

where Cj; is the rate coefficient of collisional excitation and A;; is the radiative rate. Un-
der this condition, the Boltzmann law is not verified, and neither the Saha-Boltzmann
equations (cf equation (3.4.5)). However, we consider that free electrons are thermalized
and, therefore follow the Maxwell distribution. This assumption does not hold in case of
supra-thermal electrons. In the NLTE regime, we have to take into account all the ele-
mentary processes. To obtain the atomic population, we have to write a kinetic equation.

We illustrate that purpose on figure (3.3.1) with a two-level ion;

Level 1 7}

ClO col A 10

Level 0 v v

Figure 3.3.1 : Elementary processes considered in a two-level ion

The evolution of the population n; of level 1 depends on the population ng of level 0
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and on the different process between them. We can write the equation

dn
ditl = ngNeCo1 — n1 (N.Cro + Aio) - (3.3.2)

The generalization of this equation to all levels and ions present in the plasma, is called

kinetic equation or rate equation and is written

) YUCITARIE) 3 i (3:3.3)

where V[/J:Zf/ is the matrix containing all the elementary process rates which contribute to
the depopulation of level j of the ion z to level 7 of an ion z’. On the other hand, W,j]/*"
corresponds to all elementary processes populating the level j of the ion z through level

k of ion z'. The atomic populations are constrained by the condition
S S i) = 1. (3.3.4)
2

The rate equation is difficult to solve for many reasons. First, to describe accurately an
ion, we have to deal with a large number of states (many millions in practical cases) and
also deal with many ions. Then we have to take into account all the possible transitions
between all those ion states which easily reach millions of transitions. To circumvent

those difficulties, assumptions are made; the most commonly used is the hypothesis of
dn;(z)
i
the temperature and density vary more slowly than the microscopic parameters (collisional

stationarity = 0. This assumption holds when the macroscopic parameters such as
rates). Even in the stationary case, solving the kinetic system (3.3.3) is a difficult task.
Moreover, the computation of millions (or billions) of rates is very demanding. The
stationary assumption finds its application for the plasma-laser interaction, where the
interaction is of the order of the nanosecond.

Another assumption used to simplify equation (3.3.3) is to suppose that the plasma is
optically thin. It means that all emitted photons are supposed to escape from the plasma
without being absorbed. Therefore, the photo-ionization process is discarded as well as
the photo-absorption and the induced emission.

We point out that at a given temperature when the density increases, the collisional-
radiative model converges to the LTE regime and when the density decreases, it converges

to the corona regime.
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3.4 Local thermodynamical equilibrium (LTE)

3.4 Local thermodynamical equilibrium (LTE)

In the LTE regime, the collisions dominate the radiative processes, resulting in a thermal-

ization of ions by the free electrons. The condition for a collisional LTE regime writes

N Ciy> > Ay (3.4.1)
j j

i<i j<i

We have the equality between the temperature of ions and free electrons k7T, = kT,
because the micro-reversibility is ensured for collisional processes which are much more
probable than the (unbalanced) radiative processes. A LTE regime can also be reached
with a strong radiative field, this situation is named a LTE radiative regime. The ther-
modynamical equilibrium of an isolated system is defined by the maximum of entropy S
such as

AS =A(kln P (ny,ng,....,ny)) =0, (3.4.2)

where P is the probability to distribute N particles with the respective populations
ni,ng,..,ny. From equation (3.4.2), we can obtain the four statistical laws which com-
pletely describe the plasma.

The free electrons velocity v distribution follows the Maxwell law

m 3/2 02

= —mv/2KTe 3.4.3

fv) (27rk:Te> e (3.43)

Conversely, if the free electrons are considered degenerate, they follow the Fermi-Dirac
distribution.

The populations of levels ¢ and j from the same ion labelled n; and n;, respectively, are

distributed according to the Boltzmann law
N _ 95 - AB /KT, (3.4.4)
1 9i

where AE;; = E; — E; is the transition energy between level 7 and j, g; and g; are the
statistical weights of level ¢ and j, respectively.

The atomic population of levels of different ions obeys the Saha-Boltzmann equations

Z4+1 Z+1 3/2
n; , N, = 29@ , (Qka?e) efAEjZi,ZH/kTe’ (3'4'5)
n; 9; h

where AE?Z+1 is the transition energy between level ¢ of the charge state Z + 1 and j of
the charge state Z, g7 and gf are their statistical weights.

Assuming a Planckian (thermal) radiation field at temperature k7., the photon distri-
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bution is given by

8rhi? 1
i (3.4.6)
erTy —

p(v)

However, we have to point out that if the equilibrium is only local, photons will not follow
the Planck law. This occurs because photons easily escape from a particular zone of the
plasma, contrary to ions and electrons. This case concerns the optically thin plasma. The
difference between a Global and a Local equilibrium is due to the presence of gradients of
temperature and density. We remark, that to be at LTE, the stationarity is a necessary

but not sufficient condition.

3.5 Corona regime

In the corona regime, the collisions are dominated by the radiative processes;

N Ciy <Ay (3.5.1)
J J

7<i 1<i

This regime concerns low density plasmas. Under this condition, we still have to solve
a kinetic equation similar to equation (3.3.3). The atomic populations mainly remain
in the ion ground state, meanwhile, the excited states have a population lower than the
one obtained at LTE. Many atomic processes can be neglected, such as the three-body
recombination which varies with the electron density as N2. For the ground state, the
atomic processes which dominate, are the radiative recombination R and the collisional
ionization I. From this we can write for a ground state g

d
ang _ Z (anZ+1,Z + nj]z—LZ _ o JAEH _ nng,z—1> . (3.5.2)

dt _ 3,9 3,9 9797 9.
J

We can also neglect all processes originating from an excited state. The excited states are
mostly populated by collisional excitation originating from the ground state and depopu-
lated by radiative decay. Usually excited states may also be populated by radiative decay
from higher auto-ionization states but such process is only important for heavy ions [39].

The kinetic equation for an excited state ¢ is as follows:

Cyi
Ay’

(3.5.3)

i =

n? ngZN6

3.6 Validity of regime

To ensure the LTE regime, we have to justify the three statistical distributions for free
electrons, ions and levels in an ion described above.

The Maxwell distribution of free electrons is the easiest to justify. To obtain this
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distribution, free electrons need to thermalize. To estimate the equipartition time (unit

is in seconds) which ensures the thermalization, Spitzer [40] has proposed

(3.6.1)

t.=33x10713 (kT> 10%

100 / NjlogA’

where kT, is the temperature in eV, N; is the ionic density in cm~3and log A is the
Coulomb logarithm defined by

1/2
3 [(KT.)?
A=oos (WeﬁN) . (3.6.2)

One has 10 < A < 20 for plasma with a temperature higher than10 eV. The characteristic
time of thermalization is almost always less than the evolution time of the plasma. A
numerical application for a neon plasma with k7, = 100 eV and N, = 10¥cm™3 with
Z* ~ 9.8, gives t, ~ 1071%. However, in the case of femtosecond laser this assumption
breaks.

For the Saha-Boltzmann equations, two mechanisms compete: the three-body recom-
bination which drives the system to equilibrium and the radiative recombination which
drives the system to NLTE. Salzmann [41] set the following criteria to ensure the validity

of Saha-Boltzmann equations:

Rrr
Rr3b

N, > = Nsahas (3.6.3)
where N_R,, is the radiative recombination rate and N2R,s, is the three-body recom-
bination rate. It is possible to give an analytical expression of those rates via empirical
formulas. The Lotz formula (6.3.8) and Ref. [42] is used to calculate the ionization rates
and R,3, is determined by microreversibily. The radiative rate N.R,.. is derived from the

Kramers formula (equation (6.3.12) and Ref.[43]). From these calculations, it comes

(3.6.4)

2,741\ 2/2
kT,

N, > Ngapa = 108em eV =3 (KT,)? (

A numerical application gives a density of Nggn, = 1.3 x 102*cm ™3 for the ionization of 1s
of the H-like aluminium at k7, = 500 eV. Griem [44, 45] has estimated that the density
N, has to be higher by a factor 10 from Nggup, to deviate from NLTE of 10%. The formulas
used in equation (3.6.4) to determine the rates are not the most accurate and have to be
used in particular conditions (cf chapterd). Especially the Kramers formula can only be
used for hydrogen-like ions. Hence, we only consider the criteria (3.6.4) for hydrogen-like
ions.

The last law to verify is the Boltzmann distribution which stands for the states in an
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ion, where

A
N, Y 3.6.5
> o (3.6.5)

This law is the most difficult to justify because no accurate analytical formula for excita-
tion cross section exists. However, using the Van Regemorter formula for the expression

of the deexcitation rate, which is again valid under particular condition (cf chapter4), Mc
Whirter[46] has proposed the condition

N, > 1.8 x 10"kT}*AE?, (3.6.6)

in em ™% and with kT, and AE;; in eV. Unfortunately, formula (3.6.6) is too strict condition
and this formula has only proved their utility for hydrogen-like ions. Due to the difficulty
to obtain an accurate analytical formula for the collisional excitation rate, we are not able

to give a clear limit between LTE and NLTE regimes.

3.7 Radiative spectra

Once the atomic populations of the different species present in the plasma are obtained,
the emission spectra of the plasma can be calculated. In validating theoretical models,
emission and absorption spectra are one of the most important sources of information
about the plasma status. Three different processes are considered: bound-bound, bound-
free and free-free. Historically, the free-free and bound-free processes were the first to be
considered for evaluating opacity in stellar atmospheres, notably by Eddington [47] who

based his research on the work of Kramers [43] on photo-absorption cross sections.

3.7.1 Free-free spectrum

The electric field of ions can decelerate a free electron, as a consequence the electron loses
energy and emits a photon. This phenomenon is called bremsstrahlung. The emissivity
(energy per unit of time, volume and per energy of photon) may be evaluated from the

semi-classical Kramers formula [40]

6

326 5, €  ZZN,N, E
/2 itVe =
0 " m3Phe JkT eXp( l{:Te)gff’ (3.7.1)

where g¢r is a corrective Gaunt factor, F is the photon energy and Z* the ionization

Jrr(E) =

degree of the plasma. This radiation is important for fully ionized light elements. In most

cases its contribution decreases with energy and is a continuous background.
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3.7 Radiative spectra

3.7.2 Bound-free spectrum

This radiation originates from the recombination of free electrons with ions. Therefore,
the radiation depends on the photo-ionization cross section. This process also supposes
that the photon possesses an energy equal or superior to the ionization energy, otherwise
the radiation is zero. The bound-free emission (energy radiated per unit of time, per

energy of photon per ion) is given by

s z 3 E-AE;; hoto .
() = T NN B exp (5525 ) o1 °(E) gy i E > AE

. (3.72)
0 if B < AE;,

where AE;; = E; — E; is the transition energy, gy is a corrective Gaunt factor which is
equal to 1 if a quantum calculation is done for the photo-ionization cross section,);, is
the electron thermal wavelength defined by

B2 1/2

Photo i¢ the photo-ionization cross section. The main difficulty lies in the evaluation of

and o7
the cross section because of its dependence on the photon energy. Obtaining cross section
on the all relevant range of energy is possible but the calculation is very cumbersome,
especially with the FAC suite that has been used in this work. To circumvent that
problem, interpolations can be done on the "exact” quantum cross sections or by using
a semi-empirical expression such as the Kramers formula [43] with a corrective Gaunt

factor:

photo  pa 64 \/7 AEU 5/2 a2
1]()—%rz 710 (3.7.4)
where R, is the Rydberg constant and @y the Bohr radius. The Gaunt factor can be
obtained trhought the ratio between the photo-ionization rate of an accurate method and
the photo-ionization rate calulated by the Kramers formula.

This radiation is important for intermediate temperatures, mostly for highly ionized

ions such as hydrogen-like, helium-like and lithium-like ions.

3.7.3 Bound-bound spectrum

The last radiation process is the most important for moderate and high 7 elements which
are not fully ionized. The radiation originates from the spontaneous emission. The
emissivity per ion (energy radiated per unit of time, photon energy) of all excited levels
present in the plasma is

gn(E) = AEyn;Ajip;(E), (3.7.5)

i g
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where Aj; is the radiative rate from level j to ¢ and ¢;;(E) is the spectral profile, discussed

in the next section.

3.7.4 Line broadening

The spectral profile ¢;;(E) originates from various physical processes.

Natural broadening

The natural broadening is the consequence of the Heisenberg principle and is present
whatever the plasma condition. Therefore, the excited states have a finite lifetime. The

profile corresponding to this broadening is a Lorentz function

Fnat
2T (E — AEU)Q + (Fnat/2)2’

ei(E) = (3.7.6)

where I',,,; is the width of the Lorentzian defined by

Lpat = h (Z Aim + ZAjn> : (3.7.7)

where A;; stands for the radiative decay. This natural broadening is the weaker broadening
in plasmas. Furthermore, it is almost impossible to measure this broadening. We may
include the auto-ionization to the natural broadening. In the case of auto-ionizing states,
the natural broadening may be of the same order of magnitude as the Stark broadening.

Doppler

Due to the motion of the ions in the plasma, the frequency of the emitted photon is

shifted. The emission profile associated to this process follows a Gaussian distribution

(E-AE;\*
04

where o4 is the variance of the Gaussian. For the Doppler effect, the variance writes

©i;(E) exp , (3.7.8)

1
B ﬁO’d

2kT;
where M is the mass of the ion, kT; is the temperature of the ion related to its motion of
translation. We may write k7T; = kT, if we assume a thermalization of ions by the free

electrons. This process is important for small Z and high temperature.
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Stark effect

The Stark effect is a consequence of the interaction of local electric field with the emitter
ion. The local electric field is generated by electrons and ions. Due to the difference of
mobility of those particles, the Stark effet is in the standard approach decomposed into
two parts: the electron impact broadening and the quasi-static Stark effect. An accurate
description of this phenomenon is difficult and constitute a physics topic in itself. In
order to describe that effect, we use semi-empirical formulas. For more details on line

broadening topics we recommend the article of Baranger [48] and the book of Griem [49].
e The electron impact broadening

As its name indicates, this effect is induced by the collisions of free electrons which perturb
the radiation by shortening the lifetime of excited states. It is generally assumed that the
spectral profile is Lorentzian with a line width defined by [48], i.e equal to the collision
rate of electrons and ions

T, = N, {(ov.), (3.7.10)

where o stands for the total elastic and inelastic cross sections and v, for the speed of free
electrons. A rough estimation of the electron impact broadening gives T'. ~ N,/kT}/2.
A semi-empirical formula of Dimitrijévic et al. [50] can also be used to evaluate the line
width such as the

4w 27 % 1.1 3ny,
hl'e = —\| ——5N. (0.9 — 2_ 12, — 3.7.11

where n; (resp ny) is the principal quantum number of the initial state (resp final state)
and Z*the effective charge of the considered ion, the summation being done on the initial
and final state of the transition. Notice that such an expression lies on the hypothesis

that only one electron is involved in the transition.
e The quasi-static effect

It concerns the micro-field generated by neighbouring ions. This effect is named quasi-
static because the ions are supposed slow compare to the emission of radiation, thus the
generated electric field is almost static. In that case the interaction time between the
neighbouring ions and the emitter ion is longer than the time between two collisions. The

micro-field is in the simplest case calculated via the Holstmark theory [51].

Depending on the density and temperature of the plasma, one broadening can dominate
or two of them coexist. For low density plasma (N, < 10%¢m™3), the Doppler effect and
the natural line broadening dominate. For moderately dense plasmas, the Doppler effect is
the most important. For highly ionized plasma, the Stark effect dominates. We illustrate

our purpose on the table 3.1
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kT, =500 eV N, =5 x 10* ¢cm™3

Transitions | AE (eV) Natural (eV) Doppler (eV) Stark (eV)
1s2p,, | 17277 0.0118 0.573 0.537
kT. = 250 eV N, = 10** cm™
Transitions | AE (eV) Natural (eV) Doppler (eV) Stark (eV)
1s2p, ), | 1727.7 0.0118 0.406 1.518

Table 3.1 : Example of line broadening for Aluminium XIII. The Stark broadening only
accounts for the electron impact contribution

It is thus possible and sometimes necessary to take into account several causes of broad-
ening when none of them dominate. The line profile is in that case a convolution of profile
functions.

The convolution of two Lorentzian L, L, is a Lorentzian L whose line width is defined
by
=TI, +7T,. (3.7.12)

The convolution of two Gaussian G, G5 is a Gaussian G with a variance defined by

o =1/0?+ 03 (3.7.13)

In the case of the convolution of a Gaussian and a Lorentzian, the result is a Voigt profile

defined by b ,
V(w,T,o)= / exp (=) sdt.
2T J o0 (1/2)* + (w — wo + V201)

Assuming independent broadening processes, the resulting profile is given by the convo-

lution product of individual processes.

3.8 Summary

In this work we assume that the active medium is optically thin, free electrons are thermal-
ized, regime is stationary and plasma is uniform. Therefore, the thermodynamics of the
plasma is entirely defined by the electronic temperature k7, and density N,.. Since we are
mainly interested in plasma out of thermodynamical equilibrium, the kinetic equations
have to be solved. Therefore, the rates of the listed atomic process have to be calculated.
In the following chapter we review the different methods used to evaluate the radiative

rates and collisional cross sections.
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Chapter 4

Radiative rates and electron-impact
cross sections

4.1 Introduction

As mentioned in the third chapter, in order to solve the collisional-radiative equations it
is necessary to obtain the radiative rates and collisional cross sections of the considered
transitions. In this chapter we propose a description for the calculation hypothesis and
methods which provide these cross sections. All these methods are presented in a non-
relativistic framework for the sake of simplicity, but numerical work has been performed
in a fully relativistic picture. This chapter also contributes to evaluate the convenient
methods to calculate these rates. We are concerned here with the calculation of transition
probabilities without consideration of the plasma influence, which will be analysed in the
next chapter, with a special emphasis put on excitation cross sections. In the first part
of this chapter we give the basic formula for radiative processes. Then in the second
part, we review perturbative methods used to calculate collisional cross sections. In order
to simplify the discussion we restrict the second part to the collisional excitation. The
chapter ends with the classical theory used to calculate the collisional ionization cross

section.

4.2 Radiative processes

Here, we describe transition processes induced by the radiation field in the discrete spec-
trum. To illustrate the Einstein coefficients, we consider a two-level ion, ¢ corresponds to

the lower level and j to the upper level. The kinetic equation of the level i is

dni
dt

= —BZ']'UVTLZ' + (Bjiu,j —+ AlJ) nj (421)
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Chapter 4 Radiative rates and electron-impact cross sections

where B;; is the absorption coefficient, Bj; the stimulated emission coefficient, A;; the
spontaneous emission and w, the spectral density of energy. The coefficients are related
by the Milne-Einstein relations

S8thy?
and
B = LBy, (4.2.3)

j
where ¢ is the speed of light, h is the Planck constant, v is the frequency, ¢g; and g;
correspond to the degeneracy of level i and j, respectively. It is more convenient to get
the coefficient of the spontaneous emission because it does not depend on external field.
To obtain the radiative decay rate, we have to calculate the probability of deexcitation of
an atom due to the interaction with a radiative field. For an accurate description of the
spontaneous emission A;;, the field has to be quantized; called second quantization. The

Hamiltonian of interaction between the particles and the field is

> [P A(ri) + A(r) - Py, (4.2.4)

=1

e

Hint - Ym.c
e

where r; is the position of the electron and Pj; is its kinetic momentum and A(r) is the
potential vector in the Coulomb gauge. If a quantum description of the radiative field is

required, the potential vector A(r) may be expressed by

A) =YY we, (ar,e™ +af e ™), (4.2.5)

k p=1,2

where uy , is the polarization vector, k represents the wave vector, p is the polarization
of the field, a and a'are the creation and annihilation operators, respectively. To obtain

the probability of deexcitation from a state j to ¢, we use the Fermi golden rule

2

Wi ==K

i|Hot| )" p (B = E;). (4.2.6)

where p (E; = E;) is the state density. This equation (4.2.6) means that the transition from
a state j to 7 can only happen if the photon energy is equal to AE;; the transition energy

between level 7 and 1.

4.2.1 Dipolar approximation

To lead the calculation of the spontaneous emission, the dipolar approximation is usually
set. Under this approximation, we suppose that the wavelength of the radiative field is
much larger than the dimension D of the atom A\ > D. Therefore k-r < 1 and the
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4.2 Radiative processes

exponential term of (4.2.5) can be expanded in series
ik-r . 1 2
e :1—|—Zk~r—§(k~r) + ... (4.2.7)

In the dipolar approximation we only keep the first term of the series e** ~ 1.

The atomic size D is approximately estimated by n?/Z, where n is the principal
quantum number and Z is the nuclear charge. Meanwhile the relevant wave-lengths
for our purpose are usually in the range 1 — 1000 in @y unit. In the situation of hard
X-ray, the dipolar approximation A > D breaks down . This will be the case in the future
installations which use X-ray electron laser radiation (XFEL or LCLS). In that case we
have to carry an exact calculations of the radiative rate.

By supposing the dipolar approximation true, the expression of the spontaneous emis-

sion is [14]
4(AEy)® 2
between two mono-electronic states ¢ and j , where D = —er stands for the dipolar

electric momentum of the atom. The squared matrix element ‘(njlj |r| nili>2’is called the
line strength Sj;. This line strength is related to the dimensionless oscillator strength (in

absorption) by o AL
Me ©j
~%=‘§ﬁ;i%f (4.2.9)

Finally, from the formulas (4.2.8) and (4.2.9) we obtain the spontaneous emission rates

2e? g
Ay = ZAE? £ 4.2.10
J meh2c3 gj zjf] ( )

From this relation, we can deduce by using equations (4.2.2) and (4.2.3) the two other

coefficients B;; and Bj;. The spontaneous emission is calculated directly by the FAC code.

4.2.2 Photo-ionization

The calculation of the Photo-ionization cross sections is similar to the one of the spon-
taneous emission rate. The difference lies in the fact that the final state is not a bound
orbital but an orbital of the continuum. By restricting the discussion to the dipolar

approximation and considering a mono-electronic transition, it comes [52]

8mie’y
Oie =

3cg;

(20 + 1) (zz+1)(lg’ (1) é) [/OOORel(r)arili(r)dr S @2

where 4 is the bound state with [; its orbital quantum number momentum,e identifies
the continuum state with [ its orbital quantum number momentum, hv the energy of the

incident photon, g; the statistical weight of the initial state. The function R,;(r) stands
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Chapter 4 Radiative rates and electron-impact cross sections

for the radial bound wave function and R (r) for the radial continuum wave function. The
bound wave-functions are normalized to unity, while for the continuum wave-functions we

have

/000 Ra(r)r* Ry (r)dr =§ (e — e,) . (4.2.12)

The main difficulty of this expression lies in the continuum wave function calculations.

In the expression of the spontaneous emission and the photo-ionization step in the
radial wave functions of the bound electron. In the chapter 2 we have seen how to
calculate these wave functions. But, in the photo-ionization, we also have to consider
the continuum orbital. In the Flexible Atomic Code the continuum wave functions are
obtained by solving the Dirac equation with the same central potential as for the bound
states. The difference is that at large distance the continuum electron experienced the
screening of an additional electron. By default in FAC the photo-ionization cross section
is calculated using the distorted wave approximation. This method is discussed in the
section (4.3.5).

4.3 Collisional excitation

In that part we consider the general problem of scattering of a particle by a spherical
potential. Two methods are mainly investigated and used: the plane wave Born approx-
imation (PWB) and the distorted wave method (DW). Both methods are implemented
in the Flexible Atomic Code. A more detailed discussion about these two methods can
be found in the references [53, 54, 55]. We also discuss methods which rely on the same
formalism as PWB or DW. Finally, a list of semi-empirical formulas is also provided here.

We point out that the discussion only concerns inelastic collisions.

4.3.1 General framework

At the moment, we only study potentials which decrease faster than 1/r. By doing that,
we exclude the Coulombian potential from this sub-section. Considering a particle of mass
p scattered by a potential V' (r), let the Hamiltonian H be defined as

H=—+V(r), (4.3.1)
The corresponding Schrodinger equation can be written

=50 V)| wir) = i), (1.3.2)
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4.3 Collisional excitation

21.2
or under another form, by introducing F = Pk , with k; is the initial momentum of the

2p
particle and V(r) = %U(r) :

Ak =U@)|w(r) =0, (4.3.3)

This equation possesses an infinite number of solution for each value of k;. However, we
know that physical conditions constrain us to only keep certain eigenstates. These eigen-
states are called stationary states of scattering, labelled W¢(r). The physical condition is
that in a given direction 2 = (6, ) the radial dependency of an outgoing wave must be
in the form e /r, the same condition apply to the inward wave. The amplitude of the
outgoing wave depends on the considered direction {2, because the scattering is usually
not isotropic, defining ky = k2. These impose an asymptotic solution at infinity for the

outward wave function of the equation (4.3.3)

eiki'f‘

\Ijs,ki ~ eiki'r—i—fki(Qkf) (434)

700 r !

where the function fg, (%, ) is called amplitude of diffusion. In the following we omit the
subscripts k; and k¢ for the amplitude of diffusion, in order to simplify the notations. This

function is linked to the differential cross section by
o(Q) = | F(Q)P. (4.35)

The demonstration of this relation can be found in the reference [55]. The total cross

section is related to the differential cross section by
Otot — /U (Q) dQ (436)

where dfQ is the solid angle. The solution of the scattering equation (4.3.3) may be

rewritten in integral form
U(r) = dy(r) + /d3r/G (r — 'r') U (7’/) 4 (fr') (4.3.7)

where G(r) is the Green function on the operator [A + k?|:

A+ K] G(r) = d(r). (4.3.8)

Considering the asymptotic form (4.3.4), the solution of ®(r) is a plane wave and G(r) =
Gi(r) = —ﬁezk:m, therefore equation (4.3.7) becomes

U, (r) = e™ir + /d37“'G+ ('r - 'rl) U (’rl) U, ('rl) , (4.3.9)
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Chapter 4 Radiative rates and electron-impact cross sections

for the scattering amplitude in the direction of the vector ks (4.3.4), we get

1 ' ik
fQ)=-1 dPr'e”® T U(r

’ ’

Y, (). (4.3.10)

We, thus, deduce from formula (4.3.5) the differential cross section

2

)| (4.3.11)

2

’

a(Q) = -1

~ 4m2id /dgrle_ikfm/v(”“l)q’s("“
m

This expression is exact but in general the wave function W is unknown. We can write

this equation under different forms:

do_a—ﬂ) o ,U/2

dQ  4mr2ht

(o [VIep)|* (4.3.12)

where @, is the plane wave in the direction a = k;, and ¥ the scattered wave-function

in the direction b = ky. Another notation is

daa—>b o ﬂ2

o = T Tos|” (4.3.13)

where T,,_,; is the transition matrix for the scattering from a = k; to b = ky, but it is not
strictly the matrix element of the operator V' because ®y(r) and ¥,(r) do not belong to

the same basis. A discussion about the Born approximation is made by Seaton in Ref.[56].

4.3.2 Plane wave Born approximation

Usually the value of the scattered wave function Wy(r) is unknown, nevertheless we can
build step by step a solution of the integral equation (4.3.9). The differential equation is

by consequence solved by iteration:
U, (r') = ek | / G (r =" U (7)), (7). (4.3.14)

We replace (4.3.14) in equation (4.3.9), we can repeat this operation as much as necessary.
Thereby we obtain the Born development, where each term of the series involves an
increasing power of U. When we stop at the first order, it is commonly named the plane

wave Born approximation (PWB). We thus obtain at the first order:
y(r) =e™r 4 /d?’r/GJr (7‘ — r'> U (rl) kit (4.3.15)

By substituting Gy by its expression and using equation (4.3.3)we find the PWB differ-

ential cross section: )

, (4.3.16)

2

1
Uborn(Q) = W

/dgreiK'rV(r)
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where K = k; — k¢. Finally we can sum up:

2 2

do,
2 = e (@0 VW) ~ s

dQ  Am2hd [{(Po.a [V] Pos)l - (4.3.17)

The obtained cross section is simply linked to the squared modulus of the Fourier trans-
form of the interaction potential. This approximation is valid if the orders superior to 1
are negligible. To fulfil this criteria the interaction potential has to be small enough so
that the wave Wy(r) differs little from the plane wave ®y. We point out that such result
(4.3.17) may be find using the Fermi golden rule (4.2.6). We recall that these formulas
are valid for all potentials decreasing faster than 1/r, otherwise the Fourier integral does

not converge.

4.3.3 Scattering by an atom/ion

The considered problem is the inelastic scattering of a charged particle by an atom or an
ion. The atomic units are use in this section. We apply to that problem the plane wave

Born approximation. Therefore, the incident and scattered particle are solutions of
A+ k2] g(r) = 0. (4.3.18)

The outward and inward wave function write, respectively
ezkfr ikiT

(2m) %"

(&

o e

o, = (4.3.19)

where k;, k¢ are the initial and final electron momentum, respectively. The interaction

potential of the target has the form:

V(r):iv: L 7 (4.3.20)

q=1 ‘Ir—rq’ r

We only consider a mono-electronic transition. The matrix element T;,, ,, from a state

a; to ay writes according to formula (4.3.17)

drefiK.r
Taq',—ﬂlf :/(27{_)3 <nzlz

We integrate over r knowing that

—iK.r 4 ]
/ dr |:f — KWQ =K Ta, (4.3.22)
q

1 Z
— nflf> s (4321)

|"°_'rq|_ r

A7



Chapter 4 Radiative rates and electron-impact cross sections

Therefore, the square of the matrix element becomes

1
= o (o

e—iK.rq

ap)[ (4.3.23)

Tai —ayf

In equation (4.3.23), the contribution of the nucleus is zero due to the orthogonality of
the states a; = n;l; and ay = ngl; (inelastic collision). To carry on the calculation, we
expand the exponential term [55], in order to separate the radial and angular coordinates

we also set K parallel to z,

d

e = 4r Y G (Kory) Y (1) Y, (K) - Yim (1), (4.3.24)
6=0 m=—9§

where js(z) is the spherical Bessel function related to the Bessel function of the first kind
Js(x) [57] by

. i
Js(z) = \/%J(m/z(x). (4.3.25)
Introducing this expression in equation (4.3.23), we get

2 1

T AniKA

o0 1 . ?
Sr <—1>mmm<K><—1>”—mZ'( "0y )<ziuja<K.rqm<rq>Hzf> ;

Tai —af

m=—§ —m; Mmoo My
(4.3.26)
by expanding the square element, we have
2 1 = )
o[ = Graggn s (29 D1 s (K-r) Yo ()19 (4.3.27)

The bound wave functions are expressed by U, m, = LRy, (1) Yy, m, (6,¢) (see chapter
2), then

2 1

Tai_>af - m (4328)
- Lo\ [ i
S (@254 1) [(-1)" wm”z(z f)/ Ry, (r)js(Kr) Ry, (r)dr |
= 00 0)J

where[dl;lf] = (20 +1) (21; + 1) (2l; + 1). The total excitation cross section from a state
a; to a; is related to the differential cross section by

2

, (4.3.29)

k
Caja; = (27r)4 kf/dﬂkf

Taz‘—ﬂlf
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4.3 Collisional excitation

where df2 is the solid angle, K is related to €2 by the relation 2KdK = 2k;k; sin (05) dfy,,

therefore

L (4.3.30)

Tai—mf Tai—ﬂlf

ki [T om)® [*
Caray = (27r)5f/ do; sin (6;) 2 _ ”2) / KdK
’ kl 0 kz a
where a = k; — ky , b= k; + k; . By using the expression (4.3.28), the total cross section

1S
8 b dK
ags (ll,lf) = ]{3(2[1_’_1)/(1 ’R&(K) 2 ﬁ (4331)

in atomic units, witho = |l; — lf|,...,{; + [; and with

5l L

— (_1\ars7.7.11/2
Rs(K) = (—1)" [6l;lf] (O 0 0

) /0 " Rty (1) R (0)js(Kr)dr. (4.3.32)

Discussion

The plane wave Born approximation is not supposed to hold for V' decreasing as 1/r, as a
consequence PWB gives better results for neutral targets than ions. Accordingly, we can
verify that the PWB approximation gives a zero cross section at threshold. This point
is due to the presence of the 1/k? term in the formula (4.3.31). A zero cross section at
threshold is acceptable for a neutral but not for an ion, because the long range target-
projectile potential decreases faster than 1/r for a neutral target. The Born cross section
is in good agreement at high energy because it assumes that the wave function is weakly
perturbed, close to the nucleus; i.e that the kinetic energy is much greater than the
relevant transition energy:.

However, the PWB overestimates the cross section at its peak by a factor of 1.5 to 2[53].
This weakness can be explained by the fact that plane wave Born approximation does not
take into account either the distortion of the incident and scattered wave function by the
field of the target or the exchange. The distorted wave theory has been developed to
circumvent this weakness. We also notice that the PWB does not take into account a
spin exchange, therefore PWB completely fails to reproduce forbidden transitions.

To take into account the exchange with the Born approximation, we can use the Born-
Oppenheimer theory. However, in that theory the initial and final wave functions are no
more orthogonal. In that frame Ockur [58] and Beigman [59] have proposed a tractable
formula of the Born approximation with exchange for neutral atom.

The advantage of the PWB is its computational efficiency, because only the radial
wave function of the initial and final bound state are needed. We mention an interesting
work by Kim [60] which improves the plane wave Born approximation and gives very
good agreement for neutral atom. However, as stated by the author himself no rigorous

justification of this scaling cross section has been found up to now. The scaled cross
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section proposed is

E;

BE 7
oBE g , 4.3.33
E B EZ + AEZ] + Eiom' ( )

where E; is the energy of the incident particle, AE;; is the transition energy between the

initial and final state, Ej,,; is the ionization energy of the level i.

4.3.4 Generalised Born approximation

It is highly desirable to generalize the Born approximation to any potential, including
those behaving asymptotically as 1/r. Since the interaction potential V' may be too
strong to be treated by a perturbative method, it is convenient to deal with a potential
U close to V' and treat the difference as a perturbation. We know the exact solution for

the potential U. Therefore, we set

V(r)=U(r)+ W(r). (4.3.34)
The total Hamiltonian H writes
H=H +W, (4.3.35)
with
Py 4.3.36
H = — . .
1 m + ) ( )

where H; is the Hamiltonian for which a solution is supposed to be known, W is the
rest of the interaction. The known eigenstates of H; are labelled by n. In the case of a
Coulombic form potential, the asymptotic stationary state of Hy is [55]

' ei[kir—’y In 2k;7]
Ns ~ ez[ki.rJrfylnki(rfz)] + f((g, 90)—' (4337)

,
where v = 2120¢?/hv, in which v = hk;/p.The evaluation of the scattering amplitude
f(0, ) has to be performed with a Green-Coulomb function. We recall that the expression

for the differential cross section between two states ¢ and b for H; is

daaﬁb o NQ
dQ  4mr2ht

Hy |2
a—b

, (4.3.38)

where
T = (@0 U] 7s) - (4.3.39)

a

To obtain the total matrix transition of the Hamiltonian H, we only need to add the

perturbative contribution of W

Taly = Taby + (nsp W W) (4.3.40)
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4.3 Collisional excitation

where U, , is the exact scattered wave function, the sign - indicate an outward wave and

no sign an inward wave. The differential cross section is expressed as

do’a%b ,LL2 H 2
dQ  4m?ht ) (4.3.41)
If we apply the Born approximation at first order, we can write
(Mes W W) = (noy W nsa) (4.3.42)

Again the validity of the Born approximation at first order lies on the fact that the

stationary wave W , is supposed to be close to 7; 4.

4.3.5 Distorted wave method

The DW method has been first developed by Mott and Massey [55]. The purpose of DW
is to take into account the distortion of the incident and the scattered wave functions
by the field of the target. This two facts are not included in the PWB theory. In the

literature, the distorted wave method may have two different meanings
e Fano and Inokuti [61] consider it as a perturbative method. We present it in 4.3.5.1.

e Mott and Massey [55] consider it as an approximation of a two level close-coupling

approximation. We present it in 4.3.5.2.

Within these two approaches, various DW methods can be found. Most of the existing
methods have been reviewed by Henry [62] for positive ions and Itikawa [63] for ions and
atoms.

4.3.5.1 DW as a perturbative approach

In that approach the DW method may be seen as a generalization of the Born approxim-

ation, seen in 4.3.4. The eigenfunctions of the non-perturbed Hamiltonian H; verify
A+ kK = 2U(r)] &(r) = 0. (4.3.43)
The inward wave functions of the incident electron can be written as

1 Ef
o= Lt Oy ) Y ) (4.3.44)
2] r

Mg

where the functions Fj*(r) are solutions of

> 1(+1)

dr? r2

—2U(r) + k*| FF(r) = 0. (4.3.45)

o1
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The scattered wave function is deduced from the same equation. It means that the same
potential is experienced by the incident and scattered wave function. By using the same
calculation as in equation (4.3.21), we get the differential cross section

DW
aiay A7

do
aQ B >

g kf lymyg,lim;

p ol Lymy

k; kg 2
r— nibim; r)ingtym : e
[ Y o W) ) = (4.3.46)

We clearly see that for U(r) = 0, we retrieve the plane wave Born approximation.

4.3.5.2 DW as an approximation to a two level close-coupling system

The close-coupling method (CC) [64, 65] is a non-perturbative approach. This method
proposes to treat N-integro differential equations of a given set of states. In the CC
method, different processes are taken into account: the interaction between the initial
and final state, the interaction between other present states and the exchange. The
DW method is derived by only considering the initial and final state. The two coupled

equations for the initial and final states are
A+ B = 2Vi(r)] ®i(r) + 2Vip (r)@4(r) = 0, (4.3.47)

(A 4 kF = 2V5(r)] @4(r) + 2V3i(r)®i(r) = 0, (4.3.48)

where potentials V;¢ and V}; represent the interaction potential with the target. The
potentials V; and V} correpond to the distortion potential of the initial and final state,
respectively (usually the electrostatic potential of the target). In the DW approach seen
as a perturbation theory, they correspond to the potential U. The assumption is made to
neglect the influence of the initial state on the final state, therefore, V;; = 0. From this

we conclude that the differential cross section from state i to f is

dO‘iDW ,UQ

Discussion

We note the first important point: if the DW is seen as a perturbative theory, the initial
and final potential are equal V; = V;. On the other hand, with the two level CC approx-
imation, the potentials are different V; # V. The choice of initial and final potential has
been discussed by different authors [63] [66].

According to the literature [67, 68], the choice V; = V gives the best results compared
to the experiment. However, this option could be considered as unatural due to the change

of the state of the ion. Furthermore, such an assumption breaks the micro-reversibility
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principles as stated by Winters [69]. Meanwhile, with a first order perturbation point of
view the wave functions have to be orthogonal, therefore, the potential has to be identical.

As pointed out by Fano[61], the difference between V; = V; and V; # V; is only
important at low energy where the DW method is not supposed to be accurate. The DW
method is valid as soon as the interaction with the target is small, therefore, as for the
PWB, we do not expect a good accuracy at low energy. However, the range of validity
of DW is broader than PWB thanks to the consideration of the distortion potential and
the exchange. It is generally assumed that the DW is reasonable for intermediate to high
energy.

Numerically, the DW method requires more intensive effort because the Schrodinger or
Dirac equations have to be solved for each incident particle, leading to a longer computing

time compared to PWB.

Neutral versus ion

A point of interest for this thesis is the case of neutral targets. Indeed, for neutral species
excitation cross section behaves differently than that of ions because of the absence of a
long range potential. If we consider the asymptotic boundary condition of the scattered
electron wave function, then for neutral target the PWB is better than DW. This is
because the potential has the asymptotic behavior compatible with the hypothesis made
in the PWB approximation. The long-range potential of a neutral atom is obviously not
Coulombic.

Solbeman [53] mentioned that the DW method may overestimate the cross section for
a neutral target. This is because at short distance the repulsion between the optical
electron and the outer electron overcome the attractive field of the atom. Furthermore,
DW method gives better results for highly ionized atoms [61], because the interaction
between the initial and final state become weaker than the distortion potential.

We point out that atomic package codes such as FAC and HULLAC have been built to
model moderately to highly ionized atoms. We conclude by asserting that DW is better
than PWB in most cases except for neutral targets. But this superiority is accidental

because PWB is only valid at high energy.

4.3.6 Coulomb-Born approximation

This approximation is related to the generalised Born approximation. It lies between the
DW method and the PWB. The potential seen by the incident particle has a Coulombic
form with an asymptotic charge of the form Z — 1. The functions F}*(r) are then solutions

of the equation
2 1(l+1 Z -1
i ( 3 ) +2——+ E*| Ff(r) = 0. (4.3.50)
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Chapter 4 Radiative rates and electron-impact cross sections

The cross section section is deduced by the formula (4.3.46) as for DW and PWB. We
highlight that distorted wave and Coulomb-Born (CB) are different, indeed for Z = 1
this approximation coincide with the first Born approximation (4.3.31). Conversely, if
Z — 00, DW and CB match.

4.3.7 Bethe approximation

This approximation relies on the PWB approximation. The first assumption made is
to assume a small momentum transfer X' — 0 . It leads to an expansion of the Bessel
functions (4.3.25) present in the cross section expression (4.3.31):

2051 K9

jg(KT)K%Q = m?ﬂé, (4351)

The second hypothesis consists in only keeping the dipolar transition (6 =1). From
(4.3.51), (4.3.31) and (4.3.32), the cross section is

8 K
Bethe 0
[9) = fa.alll 4.3.52
auaf k'ZQAEZf ! <kl — kf) ( )

in atomic units, where fu,q, is the oscillator strength between states a; and ay Ky =
\/ALE;; and AE;; is the transition energy. Because of the small momentum transfer
hypothesis (K — 0) this formula is only reliable at high energy, where the PWB is
expected to be physically accurate.. A detailed discussion of the Bethe approximation is
made by Inokuti in Ref [70].

4.3.8 Empirical formula

Many empirical formulas have been developed to evaluate the excitation cross section.
Most of those developments are based on the plane wave Born approximation.Therefore
they are only reliable at relatively high energy. However, due to their simplicity those
formulas are extensively used in kinetic model to obtain the collisional rates. The main
motivation is linked to the large effort required by the computational time of the more
accurate method such as CC, R-matrix or DW. Moreover, those formulas provide at least

a rough approximation for the behaviour of the cross section.

4.3.8.1 Van Regemorter formula
The Bethe (4.3.52) cross section leads to

&

Oag,a = mfaiag(kia kf) (4353)

where g(k;, ky) is called the Gaunt factor. In the Bethe theory, this factor is g(k;, kf) =

In ( kIf kf). Alternate expressions for the Gaunt factor are available in the literature.
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4.3 Collisional excitation

Through experimental observations done on ions and atoms, Van Regemorter [71] has
tabulated the different values for the Gaunt factor. He recommends to use the Gaunt
factor equal to 0.2 for ions. In this thesis we have used the Gaunt factor proposed by
Mewe [72] listed in the Table 4.1, where e; corresponds to the incident energy and AE;;to

the transition energy.

Table 4.1 : Gaunt factor proposed by Mewe depending of the transition

Gaunt Factor Transition type
0.15 + 0.28log (5% ) An £ 0
0.6 +0.28log (5%-) An =0
0.1 x A%ij log (Aeéi) AS =0
0.15 forbidden transition

These empirical formula are not very accurate but offer a good evaluation of the beha-
viour of the cross section for dipolar electric transitions. Notably Sampson et al. [73] have
carried an extensive study of the Van Regemorter formula. They show that this formula

gives correct results for transition in the same shell.

4.3.9 Numerical test on cross sections calculations

We focus our attention on the quality of the excitation cross section of FAC, especially on
neutral. The reason is because our goal is to study the effects of the plasma environment
on collisional cross sections. When we will add the plasma potential in the FAC code,
we will modify the asymptotic behavior of the potential. With the plasma potential the
asymptotic behaviour is the one of a neutral atom and not the one of an ion. This point
will be discussed in the chapter 6.

In the FAC code two methods are mainly used: the PWB and DW, both fully relativ-
istic. Unfortunately neither the FAC documentation nor the article [20] give explicitly
the choice of DW method V; = V; or V; # V;. We do not have the possibility to assert
with no doubts which DW is implemented in FAC. However, as pointed out by Fano [61]
both choices will only differ at low energy, where DW is not expected to be accurate.

We study three situations: the hydrogen atom, the helium atom, the Ne-like iron. To
compare the numerical results of FAC, we plot the data from the DW of Mann [74], and
data of Hagelestein et al [75]. Both of those DW methods use the DW version of Mott
and Massey V; # V; , exchange is included. We also take as the reference the First Order
Many Body Theory (FOMBT) of Csanak et al. [76], this method has been successfully
compared on many neutral targets[77, 78, 79]. Rescigno et al. [80Jhave showed that
FOMBT pertained to the DW theories, where V; = V;. The DW of Mann and the
FOMBT is used by the ATOMIC package [18, 81, 82], both methods are available on the

Los Alamos national laboratory website.
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Figure 4.3.1 : Excitation cross section of Fe Neon-like, transition 1s?2s?2p°® to 1s22s22p°3s.
DW method of FAC , DW method of Mann [74], DW Hagelestein et al. [75].

In the case of the Ne-like iron, as presented in Figure 4.3.1, all DW methods agree quite
well. In that situation the target is highly ionized therefore the DW approximation is
relevant. The DW method of FAC is closer to the one of Hagelstein because the energy
of the considered transition is closer than the transition energy given by Mann. For
FAC we have AE = 725.52 eV, from Hagelestein AE = 725.82 ¢V and from Atomic
AFE =725.18eV.

In the Figure 4.3.2 and 4.3.3, we plot the excitation cross section of 1s to 2p, /2 transition
in hydrogen and of 1s? to 1s'2p! transition in helium atom. The FOMBT theory is taken
as the reference for both plots. We notice that the DW method of FAC does not have
the expected behaviour near threshold for the cross section. Its behaviour is closer to the
one of an ion rather than a neutral target. We point out that the PWB of FAC gives
a "better” results than DW, we shall not forget that PWB is only valid at high energy.
Indeed, as mentioned before the PWB considers a plane wave for the incident electron.
This corresponds to the case of a fully screened potential. We may therefore considered as
"accidental” the success of PWB. For many neutral cross sections the DW of FAC gives
an inaccurate behaviour at low energy, this point is mentioned by the author of FAC in
the user manual with no explanations. Finally, we also see that the DW of FAC and of

Mann are quite different at threshold.

4.4 Collisional ionization

As for the collisional excitation, the DW and the PWB approaches may be used to evaluate
the ionization cross section. However, in FAC by default another method is implemented:
the Binary Encounter Dipole theory (BED) of Kim [83]. The DW method is also present
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Figure 4.3.2 : Excitation cross section of Hydrogen atom, transition 1s to 2p;/,. DW
method of FAC (black curve), DW method of Mann [74](red curve with
stars), PWB of FAC (orange curve) and FOMBT of Csanak et al.[76].
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Figure 4.3.3 : Excitation cross section of Helium atom, transition 1s? to 1s2p;/,, J = 1.

DW method of FAC (black curve), PWB of FAC (red curve) and FOMBT
of Csanak et al.[76].

o7



Chapter 4 Radiative rates and electron-impact cross sections

in FAC for ionization cross section, but by default the BED is used. This is because the
BED theory is faster than DW. This theory belongs to the class of "classical scattering
theory”. By classical theory, we mean theories which do not describe the structure of the
atom. L.Vriens made a detail discussion of the Binary encounter theory in Ref.[84]. In

the classical theory, two assumptions are made:
e The incident particle interacts with only one target
e The interaction between the atomic electron (target) and the nucleus is neglected.

The first assumption can be regarded as the Born approximation (one scattering center),
the second assumption is only possible if the interaction between the “bound” electron
and the atom takes place in a region smaller than the dimension of the atom. This
means that binary theory should give good results for hard collision (large momentum
transfer compared to the momentum of the bound electron or close collision). Under
these hypotheses the considered system could be seen as scattering of two free electrons.
In the following sub-section we present the classical “Rutherford ” and the quantum “Mott”

calculations cross section for that system.

4.4.1 Rutherford and Mott scattering

We consider two particles with masses m; and my and charge z;e and 29e, respectively.

In the center of the mass applies the following Schrodinger equation:

——A
21 + r

l i leQeZ]W(r):E\P(T), (4.4.1)

where g is the reduced mass, E is the energy in the center of mass frame. Defining
v = z129€?/hv, where v = hk/p, we can write

<A + K — M) U(r) =0. (4.4.2)

r

This equation may be solved by using the parabolic coordinates, the detailed demonstra-

tion is made in [85]. The solution is
1
U(r) =T (1+iy) F1 (—iv; 14k (r — 2)) exp (-27T’}/ + zkz) ) (4.4.3)

F} is the confluent hyper geometric function[57].We only need the asymptotic behaviour
of that wave function to obtain the diffusion amplitude labelled f.(#) which is

£.(0) = —M exp (—m In (sin2 (Z)) + 2wo> , (4.4.4)
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4.4 Collisional ionization

where oy = arg ' (1 +i7y). For two non-identical particles we can write

a(0,¢) = |f-(0,9)*|, (4.4.5)
from which we obtain the cross section
2
2129€2 1
o(f,p) = : 4.4.6
0:¢) [ 202 ] sin’ (3) 0

This cross section coincides with the classical cross section found by Rutherford.
In the case of identical particles, the wave function has to be antisymmetric in the

exchange of these two particles. This leads to

a(0,0) = |f.(0,0) — fo(r — 0,0)[>. (4.4.7)

We finally obtain, by using equation 4.4.4, the Mott cross section[86]:

2120027 1 1 cos (’y In (tan2 (g)))
omott(0, ) = l 5 ] { — Tt T T . : (4.4.8)
2pw sin (g) cos (g) sin (g) coS (g)

The terms in the Mott formula correspond respectively to the direct collision (as in
Rutherford formula), the exchange collision between the two particles and the interfer-
ence between exchange and direct collision. The two last terms are the consequence of the
exclusion principle. In the first order Born approximation the hypothesis is to neglect the
exchange between particles. Through PWB we may retrieve the Rutherford cross section

but not the Mott cross section.

4.4.2 Binary encounter dipole theory

Here, we summarize the main method used in the Flexible Atomic Code to calculate
ionization cross sections. This theory[83] merges two approaches. The first one is binary
encounter theory valid for large momentum transfer. The second theory used is the Bethe
approximation valid for small momentum transfer (4.3.52). The Bethe formula shows that
the interaction between the target and the incident electron mainly takes place through
the dipole terms (explaining the name of the theory). In the Mott cross section (4.4.8)
the target electron is supposed to be at rest. This consideration is not realistic because
the atomic electron has an orbital velocity. Therefore in the Binary encounter theory [84]
a velocity distribution is given to the atomic electron. Kim et al. [83] proposed for the

differential cross section :

do 4waiNEY  [ngn—2T 4 ) wrymy A (W)
dW - B+T+U { T+B [W+B + T—W} + N(W+B) W (4.4.9)
1 1
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Chapter 4 Radiative rates and electron-impact cross sections

where T' is the kinetic energy of the incident particle, W is the energy of the scattered
electron, B is the binding energy, U is the average kinetic energy of the atomic electron,
N is the number of electrons and Ey is Rydberg constant. The term df /dW is bound-
free differential oscillator strength and N; = fooo dW df /dW. In that formula, the only
difficulty remains in the calculation of the bound-free oscillator strength df /dW. The
formula (4.4.9) can be applied for ions or neutral target as mentioned by its author.

The Binary encounter theory is not suitable for excitation cross section computation[84].
Indeed, two problems arise: we cannot define properly a quantization of the angular

momentum and we cannot distinguish between different azimuthal quantum numbers.

4.5 Summary

We have reviewed a large set of methods to calculate collisional cross sections and the
radiative rates. We highlight that the frame of this chapter was non-relativistic though,
in FAC a relativistic version is implemented. As we have seen in this this chapter, we
conclude that for neutral or near neutral atoms the DW option in FAC cannot be reas-
onably used, but is reliable for highly stripped ion. In the case of ions in a plasma, as in
chapter 5, the PWB will be used. In table 4.2, we summarize the methods used to obtain
the atomic cross sections. In FAC the auto-ionization is calculated via DW method with

no other option, explaining why we did not discuss auto-ionization in this chapter.

Table 4.2 : Cross section methods used to provide our atomic data
‘ DW PWB CB BED Empirical-formula Fit

Collisional Excitation | X X X X (Mewe)

Collisional ionization | X X x (Lotz)
Photo-ionization X x (Kramers) X
Auto-ionization X
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Chapter 5

Plasma potential

5.1 Introduction

The developments in the previous chapters concerned an isolated ion. However our work
is devoted to ions immersed in a plasma environment. Few atomic code take into account
the environment of ions. Most of the time the effect of the plasma are added in the atomic
code through perturbation theory or at the step of the kinetic code. This work represents
a first attempt to include the plasma effect in the Flexible Atomic Code. The environment
of ions plays a significant role at high density, leading to effects such as plasma polarization
shifts, pressure-induced ionization, changes on the absorption and emission spectra and
on the equation of state. Taking into account such effects in a consistent way is a serious
task since the number of involved particles is huge, which suggests to treat free electrons
statistically. As mentioned by Rosznay|[8] we may distinguish two types of approaches to
determine the plasma potential: the ion correlation and ion sphere theories.

In the ion correlation model, the ion is immersed into an infinite polarizable medium
(also called jellium). Asymptotically, the positive and negative charges cancel out each
other to form a neutral background. The mostly known and used ion-correlation model
is the Debye-Hiickel theory [87, 88, 89]. An other approach pertaining to the density of
the functional is the atom in the jellium of Perrot [10], Blenski and Piron [11, 12].

In the ion sphere model the ion is enclosed in a cell which contains the exact number of
electrons to ensure the neutrality of the sphere. The ion sphere model has been extensively
used [7, 9, 12, 90], in order to get energy levels and transition rates of ions in plasmas.
Such models assume a spherical symmetry and define an electron density distribution
that obeys self-consistency equations. Coupling the Poisson equation and the statistical
distribution of electrons, one may obtain Thomas-Fermi [91, 92] or relativistic Thomas-
Fermi [7].

All these theories pertain to the group of density functional theories [93]. One must
notice that they also assume thermodynamic equilibrium. Additionally some formalisms

only assume cylindrical symmetry and use a molecular approach describing the inter-
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action with the nearest ion [94]; this approach mainly concerns strongly correlated plas-
mas.When a realistic quantum description of bound electrons is required and when dealing
with non-local-thermal-equilibrium (non-LTE) plasmas, only free electrons will be treated
statistically. Under this assumptions (ion-sphere + statistical treatment of free electrons)
we have firstly used the uniform electron gas model (UEGM) and then a Thomas-Fermi
approach (TF). Both approaches are implemented in the FAC code [20]. We point out
that a very popular model for level shifts which make the connection between the Debye-
Hiickel and the ion-sphere model has been developed by Stewart and Pyatt [95]. However
this model assumes thermal equilibrium for ions as well as electrons.

In this chapter we briefly discuss the Debye-Hiickel theory. Then a detailed discussion
is carried on the ion sphere model for the UEGM and the TF approach. We extend
previous approaches based on UEGM assumptions by deriving analytical formulas in non
relativistic hydrogen-like ions. This analytical work is used to check the atomic data of
the modified FAC code.

Atomic units are used throughout this chapter.

5.2 Debye-Hiickel

One of the first attempt to model plasma effects was the Debye-Hiickel theory [87, 88, 89].
The first assumption of this theory is to assume a Boltzmann distribution of free electrons

and ions. The second hypothesis is to consider that

‘WT) <1 (5.2.1)

KT,

Owing to this hypothesis we can linearize the Boltzmann distribution of ions and electrons.
Then, the Poisson equation is solved to obtain the potential. It comes while keeping the
first order term of densities

Z _
V(r)= —e Ap (5.2.2)
with T
M = = (5.2.3)

D=

J
is the Debye length, f; is the fraction of ion with charge Z;and Z; the number of free elec-
trons. Of course, the assumption of linearization of the Boltzmann distribution induced

strong limitation on the range of application of the Debye-Hiickel potential. To fulfill the

criterion ‘% < 1, the temperature has to be high and the density low, or can only be

applied if the potential of the nucleus is weak which implies a large principal quantum
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number. Weisheit [96]proposed the validity condition
4 3
STADN, > 1 (5.2.4)

For plasmas out of thermodynamical equilibrium, the assumption of the Boltzmann dis-
tribution for ionic levels is not relevant. A last argument which has been pointed out by
Nguyen et al [97] is that the correlation time of the ion is much longer than the lifetime of
excited atomic states. So we have estimated that this model limited to weakly correlated

plasma is not relevant for our purpose.

5.3 lon sphere model

Under the ion sphere model pertain all models which assume a neutral cell containing a
central ion surrounded by its environment. Moreover, one assumes that the free electron
density exactly cancels the ion density beyond the Wigner-Seitz radius. In this approach
the potential is also calculated using the Poisson equation. The difference between the
various ion sphere models lie in the way the density of free electrons is determined. We
present two models of ion sphere type, the uniform electron gas model (UEGM) and the
Thomas-Fermi approach (TF).

5.3.1 Uniform electron gas model

The uniform electron gas model supposes a uniform distribution of free electrons N,. This
hypothesis means that we neglect the polarization of free electrons due to nucleus. It has
been checked [98] that theoretical estimates based on it agree with several experimental
data recorded in highly stripped ions. As in every ionic sphere model (see, for instance
[9]), we assume that outside the ionic sphere the free-electron density compensates the

ion density, and we have to ensure neutrality of the ionic sphere
4 s
Z — Ny — gwRONe =0, (5.3.1)

where Ry is the ionic sphere radius, Z the atomic number, N, the number of bound electron
and N, the free electron density.

Using the uniform electronic density hypothesis, we obtain the potential

A r )

Vpl(r) = TRfO (3 — R%) if r S RO (532)
Z

Via(r) = Tf if r > Ry. (5.3.3)
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in atomic unit and with Z; the number of free electron defined by
Zy =14 — N, (5.3.4)

Vpi is the potential energy, however we mention it in what follows by potential.

In this work, we have not imposed any cancellation property of the wave-function
at 7 = Ry, at variance with other authors [99, 100]. Since we are interested in dense
plasmas, Ry is rather large as detailed below. Furthermore, canceling the wave-function
on the sphere surface is equivalent to assume an infinitely repulsive potential beyond R,
leading to possible unphysical effects. Despite its simplicity, the UEGM was compared
to self-consistent approaches and turns out to be acceptable for moderate densities [101,
102, 103, 104]

5.3.1.1 Discussion

We point out that several authors [105, 106] have chosen a different condition for Z;:
Zy =7 —Ny+ 1 (5.3.5)

Massacrier et al. [101] choose this definition because they impose the sphere to be neutral
for every bound electrons. It means that the optical electron is not bound and therefore
a free electron is added to fill the hole. In that situation the optical electron experiences
a zero potential when it is far from the origin. Conversely, in our case the optical electron
is embedded in the potential of an hydrogen like atom. Our choice is justified by the

neutrality condition (5.3.1), while the condition of (5.3.5) lies on a ad-hoc choice.

5.3.2 Thomas-Fermi approach

The self-consistent equations defining the free-electron density and the plasma potential in
a semi-classical picture — Thomas-Fermi restricted to free electrons — has been discussed
in a series of papers [97, 104]. In the ion-sphere theory [9], neutrality is still assumed inside
the Wigner sphere with radius Ry defined by

ATRYN, /3 = Z; (5.3.6)

with the same notation as above. Free-electron and the other-ion background densities

are supposed to neutralize

ne(r) =0 for r > Ry. (5.3.7)

In order to comply with the definition of the average density N, one imposes

Ro
47r/ dr r’n.(r) = Z;. (5.3.8)
0
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Assuming Maxwell-Boltzmann statistics, the free-electron density follows in atomic unit

ne(r) o /OO dp p? exp <— (]92 -+ V(r))/kTe> (5.3.9)
po(r) 2
where kT, is the electron temperature and po(r) is the minimal momentum value making
the total electron energy positive, i.e., po(r) = (—2V(r))1/2 if V(r) <0,or0if V(r) > 0.
Here we assume thermal equilibrium for electrons, but not necessarily for ions which is
consistent with the assumption made in the collisional-radiative models. We note that in
the work of Blancard et al. [107], the density of free electrons is calculated via a quantum
description. Here, we prefer to treat the free electrons via a semi-classical description to
be consistent with the hypothesis of the collisional-radiative model (Maxwell distribution
of free electrons). The quantity V(r) is the energy associated with the electrostatic in-
teraction with all the charges included in the Wigner sphere, namely the nucleus, bound

electrons and free electrons

Z
—Z L Vy(r) + Vu(r). 7 <R
Vi = TR0 s (5.3.10)
0 r> Ry

The term V,,;(r) describing the interaction with free electrons is the so-called plasma poten-
tial. The use of Fermi-Dirac statistics is usually not necessary as discussed in subsection
5.3.5. We also assume that free electrons are not relativistic, which holds for temperatures
kgT., < 511 keV which is always fulfilled in the cases considered here.

The last equation required to obtain the plasma potential and the electron density is

the Poisson equation which can be written in integral form

r

Viu(r) = 4 (1 /0 ds 5P, (s) + / “s sne(s)> | (5.3.11)

This expression ensures that V(1) and its derivative are continuous at r = Ry, knowing
that Vi (r) = Z¢/r if r > Ry, according to the ion-sphere hypothesis.
Assuming an attractive potential V' (r) < 0, the Maxwell-Boltzmann equation (5.3.9)

leads to
K 3V
ne(r) = QeV“)/kTe(sze)?’/?r(z, _ kgf)) (5.3.12)
/2 1/2 1/2
K 3/2 V(r) ' m —V(r)/kpT: V(r)
=3 (2KT,) ( T + 5¢ erfc T (5.3.13)

the constant K being derived from the neutrality condition (5.3.8). We have introduced
the incomplete Gamma function I'(a,z) = fxoodt t*le~" and the complementary error
function erfc(x) = (2/m"/2) [*du e~ [57).
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5.3.3 Limit of weakly coupled plasmas

In order to simplify the discussion we define a radius connected to the electron temperature

(atomic are used to defined the radius)

Zy

= 3.14
Fa wkT,’ (5.3.14)
the ratio Ry/Ry is proportional to the plasma-coupling parameter
Zs r
Ri/Ry = = 5.3.15
1/ mkT.Ry  Zsm ( )

with a definition slightly different from the most usual one, which is based on ion-ion and
not electron-ion interaction [108].

In the limit of infinite temperature or zero density R;/Ro — 0, the electron density is
constant inside the Wigner sphere and the potential is obtained straightforwardly from
Poisson equation (5.3.11). This well-known Uniform Electron Gas Model (UEGM) so-
lution may however be usefully refined by considering the first correction in a R;/Ry
expansion. Here we consider hydrogen-like ions where the Vj, term is absent in the poten-
tial (5.3.10). Starting from the Maxwell-Boltzmann equation (5.3.12), and the expansion

of the incomplete Gamma function

X 2X3/2 X2
exp(X)r(3/2,X):\/;+\/§ - +ﬁ4 + O(X%/?) (5.3.16)

where the first 2 terms are kept, one gets

1 (2 z (3 »
— N1 Z_J D 3.1
ne(r) ht{ T [r 2R, (2 R%)H (5.3.17)

up to (R1/Ry)*? corrections. Here Ny, is a constant proportional to the electron density

and determined from the neutrality condition (5.3.6)

_ 32 1
Ry S (7-4z)

(5.3.18)

From Poisson integral equation (5.3.11), we write the high-temperature plasma potential

V() = 37/ R} Ry ZiRy (Z 5  Zr N e
el 140 (2_42) 2 6 kT. \Zy 8 2Z;Ry, 4R} 40R}
2kT, Ry 577
(5.3.19)
up to kT32R;™? terms. Letting
u=1-—7r/Ry (5.3.20)
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one gets, using the closest approach distance R; (5.3.14), the low-density form of the
plasma potential (5.3.19)

2 37R 57 u?
by /7 = b e (22 ) 2 3 = L 3/2) | (5.3.21
RoVii'(r)/ 2y = Vtu—gtqape | g7 =1 vl o’ = +0 ((R1/Ro)*?) . (5.3.21)
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Figure 5.3.1 : Variation of the reduced plasma potential divided by the coug)ling pa-
rameter R;/Ry in H-like helium. The scaled variation 5‘/;0[“)(:@ =
(Ro/Zge?)(Viu(r) — Voi"M(r)) /(R1/ Ro) is plotted versus = = r/Ry for var-
ious R,/ Ry and is compared to the analytical form y = (37/10)(1 — x)?[5 —
r — (1 —x)?/4] as given by (5.3.21).

The convergence of the numerical solution towards this analytical form when the cou-
pling parameter tends to zero is illustrated by Fig. 5.3.1 where we have plotted the radial
dependence of the potential variation (Ro/Z)(Vii(r) — Vi{"M(r))/(R1/Ry) for various
small values of Ry/Ry and its analytical limit (5.3.19). It turns out that the numerical
solution does converge towards this limit but rather slowly with the parameter R/ Ry, as
expected since the first omitted term is of order (R;/Ry)*?: for instance if Ry/Ry = 1073

the analyzed ratio is 3.70, i.e., 17% below the analytical result equal to 4.48.
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5.3.4 Scaling laws

From the neutrality, Maxwell-Boltzmann, and Poisson equations, one may easily assert

that the reduced potential and free-electron density obey the scaling laws

ne(Ro, Ry, Z,Zs,7) = Z; Ry f(R1/Ro, Z, Zs, 7/ Ro) (5.3.22)
Vpl(RQ, Rl, Z, Zf, 7“) = ZfRalg<R1/R0, Z, Zf, T/Ro). (5323)

If one further assumes that the potential is purely Coulombic —Z/r, these laws even

simplify into

ne(Ro, R1, Z, Z;,r) = Z;Ry> f(Ry/Ro, Z/Zs, 7/ Ro) (5.3.24)
V},](RU, Rl, Z, Zf, 7“) = ZfRalg(Rl/Ro, Z/Zf, T/Ro). (5325)

These laws may be useful when checking the calculation of the plasma potential and

free-electron density at various temperatures and densities.

5.3.5 lon sphere limitations

We discuss here the validity range of ion sphere model. First, if the spatial extension of
the bound electron wave-function is larger than the ionic sphere radius, the orbitals of two
neighboring ions overlap and molecular effects [109] must be accounted for. This condition
is also connected to the possibility of pressure ionization. The parameter describing this

overlap is

_ ()
b= (5.3.26)

where (r) is the size of the outermost orbital and Ry is a measure of the half distance
between two neighboring ions.

If 8 > 1 the wave-functions of two neighboring ions significantly overlap. The atomic
structure codes provide values for the size (r). Furthermore in hydrogen-like case, the
classical extension of the wave-function is bounded by the outer turning point position
(ry <2n?/Z, where n is the principal quantum number. For multi-electron ions, a rough
estimate of this dimension is obtained assuming total screening of the nucleus by N, — 1
bound electrons, and this atomic size becomes 2n?/(Z — N, + 1). Since the wave-function

decreases exponentially beyond the outer turning point, it is sufficient to impose the

condition o2
n
< R 5.3.27
Zi+1 Y (5.3.27)
which amounts to p ~ i
N, < 0.03(1*# ~2.10% = cm™® (5.3.28)
n n

A similar condition has been derived by various authors [101, 103].
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5.3 Ion sphere model

The preceding discussion does not take into account the dynamical response of free
electrons. Indeed, when the active electron moves far away from the nucleus, free electrons
neutralize the positive charge with a characteristic time equal to the inverse of plasma
frequency. In this case the net charge seen by an electron far from the nucleus is zero,
in contradiction with formula (5.3.3). The active electron is bounded by a potential
—(Z — Ny+1) /r — nucleus screened by the other bound electrons — which adds to
free-electron potential (Z — N,) /r and results in a nonzero —1/r Coulomb potential far
from nucleus. Therefore we must impose on the electron orbital frequency (or Bohr

frequency) worbital and on the plasma frequency wy. the adiabatic condition
Wpe = (47TN8)1/2 < Worbital (5329)

which, in the hydrogenic case or assuming complete screening by bound electrons, writes

(Zp+1)*

N, <«
¢ 47

Z4
~ 5.35 x 10% = cm >, (5.3.30)
n

This condition is closely related to the non-overlap hypothesis (5.3.28). An obvious conse-
quence of the relation (5.3.29) is that wopital is above the cut-off frequency when condition
(5.3.30) is fulfilled. We observe that both conditions (5.3.30) and (5.3.28) are very similar.
In any cases, it appears difficult to take into account the ionization by pressure without
the dynamic response.

The above discussion, mostly concerning UEGM does not involve the temperature k7,

which is indeed connected to Z; through the ionization balance — given by Saha equation

or any other ionization model —, we can also estimate the correlation parameter
ZQ
| E— 5.3.31
RokT, ( )

where kp is the Boltzmann constant. Numerically, one has I' ~ 1 with parameters
kpT. = 650 eV and N, = 10%cm ™ — which give (Z;.) ~ 12 according to Saha equation
in aluminum. Therefore, the present model applies to plasmas with a low or medium
correlation parameter.

In order to define whether Maxwell-Boltzmann or Fermi-Dirac statistics applies to free

electrons, one must estimate the degeneracy parameter

| Teemi (372N, 32371/ (N )2/3

TS 0 3 (5.3.32)

Using again N, = 10%%cm ™3 one gets kT ~ 8 eV. Therefore, the plasmas considered here

are usually non-degenerate. The non-degeneracy condition may also be written

v =N < 1. (5.3.33)
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The difference between Maxwell-Boltzmann and Fermi-Dirac statistics is illustrated by
Fig. 5.3.2 where we have plotted the numerical results for the free-electron density and
plasma potential in the case of H-like aluminum at 1 eV and 10** e/cm?. In this case the
degeneracy factor v is 331 and the plasma coupling parameter is I' = 1461.5 making the
free electrons degenerate. However one notices on this figure that the relative variation
between Maxwell-Boltzmann and Fermi-Dirac statistics is about 0.2 on density and 0.1
on the potential. If one considers the relative variation of the potential versus the UEGM
limit the modification due to quantum statistics is again 0.2. That is why we only consider

Maxwell-Boltzmann statistics in this work.
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Figure 5.3.2 : Influence of statistics on the self-consistent free-electron density and plasma
potential for H-like aluminum at 7, = 1eV and N, = 10* cm™3 or
0.148 ag®. The density is in units of the average free-electron density
N, = 3Z;/AwR3, the potential energy is in units of Z;e?/Ry, and the
electronic distance to nucleus r in units of the Wigner sphere radius
R(] = 2.684 ap.
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5.4 Atomic structure calculations including plasma

potential

We present the modifications that we made in the atomic code FAC which in its standard
version does not take into account the plasma environment. Using the modified form
of this code, we get energy levels, wave-functions, radiative rates, and cross sections
accounting for the plasma environment within the ionic sphere model. Furthermore we
have developed analytical formulas of energies and wave-functions valid for hydrogenic

ions, which will be compared to FAC results.

5.4.1 Numerical approach

The atomic code FAC is fully relativistic and therefore solves the Dirac equation. Elimi-
nating the small component as seen in chapter 3 (2.3.24), one obtains a Schrodinger-like

equation
k(k+1)
r2

F(r) + [2 [E—-U(r)] - ] F(r) =0, (5.4.1)

where k is the spin-orbit quantum number, equal to [ (resp. —l —1) for j =1 —1/2 (resp.

j =1+ 1/2). The effective potential U is given by
} : (5.4.2)

where A(r) = \/[E —V(r)+ %} and F'(r) is the large component. The total potential
acting on the electron is

a’ 1

U<7~>=v<r>—2{<E—v<r>>2—2z4 gL

(7“)2 o A(T)2 + T

Z
V(T) = _? + Vpl + Vveey (543)

where V. accounts for all interactions between bound electrons, including nucleus screen-
ing by bound electrons, exchange interaction described by a local potential, and quantum
electrodynamics corrections.

The original modification we brought to FAC code consists in including in V' the con-
tribution of the ionic sphere potential V,;. Because of the presence of the first and second

derivatives of the potential in (5.4.2) we need to account for Vril and Vp/i.

5.4.2 Numerical implementation of TF approach

The basic equations are those of section 5.3.2 . The plasma potential and free-electron

density are numerically obtained from an efficient iterative scheme. Starting from the
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UEGM solution

ne(r) == Ne (544)
Z r?
Vusam = ngo (3 - R%) (5.4.5)

for r < Ry, one obtains a first iteration for the density using Maxwell-Boltzmann equation
(5.3.12) — where the overall constant is determined by the neutrality condition — and
a first-order iterated potential using Poisson equation (5.3.11). One next obtains second-

order electron density and plasma potential. The iterative scheme obtained is

o) 2
n(r) = K / dp p* exp (— <p2 - V“‘”(T)) / kBT> : (5.4.6)
po(r)

, A i
VD) = =T+ V) + V), (5:47)
Ro )
Zy = 47r/ drr*n{ (r), (5.4.8)
0

. 1 T ) RO .
V00 =n (1 [Caseato s [T asnd0) (5.49)
0 r

r

The convergence is controlled by monitoring the variation of the density on the Wigner
sphere [nU+1)(Ry) — n(Ry)|, ending iteration when this difference falls below a given
e. We found that ¢ = 10~® in atomic units gave the self-consistent potential with a fair
accuracy, and that the procedure converged in most cases in less than 12 iterations.

On Fig. 5.4.1 is plotted the free-electron density in units of the average value N, using
Maxwell-Boltzmann statistics in H-like helium Z = 2,7y = 1. From bottom to top the
curves correspond to T, = 500, 5000, 5, 0.005 and 5.10~* eV, and densities 102, 10%',
1021, 10!, and 10%* per cm? respectively. On this figure, the parameter R;/R, is equal
to 1.48 x 1076, 1.48 x 1074, 1.48 x 107!, 1.48 x 10% and 1.48 x 10* respectively. One
notes that for R, /Ry < 1 density varies as 7~'/2 for small r and stays almost constant for
r < Ry. This is close to the behavior predicted by Rosmej et al [104]. For R;/R, = 0.148,
electron density varies as r—'/2 on almost all 0-R, region, though one observes a small
upward deviation for r ~ Ry. For R;/Ry = 1.48 x 10% and 1.48 x 10* the reduced density
is identical at the drawing accuracy. Its dependence is again r~'/2 on most of the 0-R,
interval, but for r ~ R there is now a downward deviation.

For R,/ Ry as large as 1.48x 10 one may criticize the applicability of Maxwell-Boltzmann
statistics. However the criterion (5.3.32) may still be compatible with the non-degeneracy
of electrons provided that Ry and R; are both very large. For instance, Ry = 10%ay and
Ry = 1.48 x 10%%, give v = 0.086. Of course this correspond to extremely low density
and temperature, but this is simply to illustrate the high R;/Ry limit on figure 5.4.1.

The radial dependence of the free-electron density is qualitatively similar for higher Z,
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Figure 5.4.1 : Self-consistent free-electron density in H-like helium for various densities
and temperatures. The local free-electron density n.(r) in units of the
average density N, = 3Z;/4mw R} is plotted versus r in units of the Wigner
radius R, for various plasma-coupling parameters. See text for details.
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the main difference being a stronger variation of n.(r) in the r = Ry region.

5.4.3 Analytical development in hydrogen-like ions

Several papers [97, 102, 103] have pointed out that with the UEGM potential (5.3.2)an
analytical expression can be derived for energy at first-order perturbation. Here we will
extend this approach by giving also explicit expressions of wave-functions, dipolar and
quadrupolar transition rates at first perturbation order, and energies at second perturba-
tion order. To keep the approach rather tractable, relativistic effects are not considered
but it will be shown later that their effect is small as long as Z < 10. The present work
relies on standard Rayleigh-Schrodinger perturbation theory completed by Dalgarno and
Lewis summation technique [110, 111]. In brief, noting Hy the unperturbed Hamiltonian

(0) (0)

with eigen energies F; and eigenfunctions @, ",

and V' the perturbing potential, this
technique consists in trying to get the first order eigenfunction (132(1) by direct solution of

the equation in r representation
(x| Hy — BO|80) = (x |[ED - v|a®) (5.4.10)
where the first-order energy is obtained as usual from
EY = (20| Vo). (5.4.11)

The method can even be generalized at any perturbation order. Writing the hydrogen-like
perturbed radial wave-function as R, (r) 4+ v, (r) where R,; is the unperturbed wave-
function at first order, n and [ being the principal and orbital quantum numbers respec-
tively, v,; obeys

<d L2d Ui+ 2 1>vnz=Z4Z§3(<p2>—Pz)Rm(”7 (5.4.12)

dp> " pdp P2 p n?

where p = Zr is the scaled radius. To ensure neutrality, on must have Z = Z;+1. In this
radial equation, the large-r dependence of the plasma potential (5.3.3) has been ignored.
As studied in appendix A.1 this substitution is acceptable as soon as Ry > 2n?/Z. The

average square radius is given by
1
<p2> = §n2(5n2 =3l +1)+1). (5.4.13)

The trial resolution we have made of (5.4.12) in various cases suggests that a particular
solution may be found as a sum of terms c¢;p’ exp(—p/n) with j varying from [ to n.
The general solution is given by such a solution plus the homogeneous equation regular

solution R,; multiplied by a constant to be determined. To obtain the properly normalized
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first-order correction, we must ensure the orthogonality condition

/ dpp® Rpvp = 0. (5.4.14)
0

Though we have been able to get analytical expressions for any n, [ they are too cumber-
some to be explicitly given here and we will restrain to some simple though demonstrative
enough cases to show general tendencies, namely n =1+ 1 and n =1+ 2.

If n = 41, the general solution of the radial equation (5.4.12) with proper normalization

is given by

Upn—1 = (r|nn—1) (n+1)p?

7 2 n+1/2 2
r (2/n) (”p:s I n-
6 4

~ Z5PR3 (2n)2 \6
4

—3—4(71 +1)2n+1)(5n + 6)) P remPm,

(5.4.15)

A comparison between such analytical expression and numerical calculations will be given

in the next chapter. While the first order energy shift is simply given by

[ P " (n+ 1)(n+1) (5.4.16)
"=l 9R, Z2R? 2/ )"

the equation (5.4.15) allows one to write the second order energy shift

7 00 p2
D — | / dp 0*Ron—1 (3 = =55 | Vnm— 5.4.17

which is after performing the integration

6

Z2
E® = —26;;6 %(n +1)(2n + 1)(8n? + 21n + 14). (5.4.18)
0

The ratio of the above correction to the first-order n-dependent term (5.4.16) gives a

quantitative indication of the perturbation development validity

Z
E® /EW  (n-dependent) = ZT;z?’”4(”2 +21n/8 + 7/4). (5.4.19)
0
This shows that, for large n, the characteristic parameter of the perturbation series is
Zmb/Z*R3 = 4w N.n®/3Z*. Comparing this to the validity conditions (5.3.28), (5.3.30),
one verifies that the non-overlap and the adiabatic conditions imply a second order much
less than first order in the perturbation series.

The radiative rate depends on the perturbed matrix element (nl|r|n’l’) given, up to

first order, by

(nl| 7 [y = (nd| 7 |0'0) + (nllr [0/V) + (nl| r|n'l). (5.4.20)
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we provide explicit expressions of this element for adjacent quantum numbers n’ =n +1,
I =1+ 1. With the additional condition [ = n — 1, the first-order perturbation involves
two integrals. The first one is

nn—1rn+1n)= 75K 253(n 1/2)2n+11/2(288n4—|—114On3+1720n2—|—1175n—|—306).
0
(5.4.21)

The second integral is

(n+2)(2n+3)(48n°+138n>+71n+11).

(5.4.22)
For the complete matrix element defined above (5.4.20) one gets
-1t 1ny= oD 4, 2y (et DDin) (5.4.23)

Z(n + 1/2)2n+5/2 ZAR3 96(n + 1/2)2

with
Di(n) = 96n" + 72n° — 936n° — 2678n* — 3180n® — 1916n* — 569n — 66.  (5.4.24)

The polynomial D;(n) is negative for n < 5 and positive above 5.
The derivation is similar for the n = [ + 2 case, though the result involves more terms.

The perturbed wave-function obtained from radial differential equation (5.4.12) is

Vnn—2 =

7 -1 1/2 2) n 4 2
f3<” > (2/n) P _”(”+5)p3+”7(n+5>p2
Z3RR3 N\ 2 @n—3172\ 6(n—-1) 12(n—1)" "4
4

n

24

2 P n—2_—p/n
(2n — 1)(5n +n—|—60)(1—n(n_1)>>p e=P/m,

(5.4.25)

The energy shift is at first order from 5.4.13

2
a Zf n ( 1>
E = — — - = 4.2
m-2 = 5 <3 7R (n+5)(n 5 (5.4.26)

and at second order, a formula analogous to (5.4.16) gives after integration

72 nS
2  _ f 3 2
E; 5= —ZTR(6)3—2(271 —1)(8n° + 103n" — Tn + 154). (5.4.27)
The above expressions show once again that the ratio of the second-order correction to the
n-dependent first-order correction is Z;n®/Z*R3, which is small as soon as the conditions
(5.3.28) or (5.3.30) are fulfilled.

Using the wave-function (5.4.25) one may also evaluate the perturbed matrix element
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(5.4.20) for | = n — 2. The perturbation by the plasma potential is here obtained for the
first part as

2, 227 (n(n — 1/2)) 06 4 1y
<nn—2|r\n+1n—l):Z5R8 30+ 1)
(672n° + 2652n* + 6628n° + 7617n* + 3905n 4 744) (5.4.28)

which is always positive. The second part is

. 2, 227 (n(n —1/2)) 02 (n 4 1)
(nn—2|r]n—|—1n—1>:_ZBR8 30 1 )BT

(480n° + 1164n* + 1948n° + 1605n* + 539n + 66) (5.4.29)

and turns out to be negative. Finally one gets the perturbed radial element (5.4.20) for
n=1+2

(n(n = 1/2) 202 (n + )™ [ Z;  Dy(n)
Z(n + 1/2)2n+2 ZAR396(n + 1/2)2
(5.4.30)

nn—=2lrn+1n-1)=

with
Dy(n) = 96n® —264n" —1296n° —4694n° — 7592n* —6236n° — 2815n> —671n—66. (5.4.31)

The first-order correction to the dipolar matrix element is negative for n < 6, positive
above 6.

The corresponding effect on quadrupolar matrix elements is studied on the n, = n +
2,l,=n+1—n,=n,l, =n—1 transition in A.2. The radiative rates corresponding to

these dipolar and quadrupolar electric transitions are detailed in A.3.

5.5 Summary

We have reviewed the ion sphere model and discussed its range of application. In the
following we apply the TF and the UEGM assuming the adiabatic condition (5.3.28) and
the non-overlapping condition (5.3.27). Both approaches have been implemented in the
Flexible Atomic Code. Moreover, using a uniform electron gas model, analytical formulas
have been developed in the case of non-relativistic hydrogen-like ions, Allowing use to
obtain energies and wave-functions till the second order of perturbative theory. Thanks

to this developments we are able to check the atomic data of our modified version of FAC.
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Chapter 6

Influence of the plasma on atomic
structure and collisional cross sections

6.1 Introduction

In the previous chapter, we have discussed the ion sphere approach for describing the
plasma environment effect under the UEGM hypothesis and the Thomas-Fermi formal-
ism. In this chapter, we present the influence of such potential on the atomic structure
(energies, wave-functions and radiatives rates) and collisional cross sections (excitation,
ionization, photo-ionization). In the framework of the Ion sphere, other approaches avail-
able in the literature use a Multi-configurational Dirac Fock Formalism [112], a Hartree-
Fock formalism [102] or, in simpler cases, a hydrogen-like framework [97, 98]. We devote a
significant part of this chapter to the calculation of collisional cross sections. They deserve
a special interest for at least two reasons. First, in order to describe plasmas out of local
thermodynamical equilibrium, it is necessary to solve kinetic equations which involve the
radiative and collisional transition rates. Second, the line shape determination, particu-
larly important for spectral opacity calculation, requires a detailed analysis of collisional
rates (see, e.g., [113]).

In addition, most of the available literature about plasma effects on excitation cross
sections relies on Debye-Hiickel potential [114, 115, 116, 117, 118] or for the ion sphere
the UEGM [117] and a Thomas-Fermi approach [107]. Ionization impact cross sections are
also dealt with in a series of papers, based on Debye-Hiickel hypothesis [119, 116, 118] or
Thomas-Fermi approach [120]. Concerning, the photo-ionization cross sections, a series of
papers [121, 100, 122] has investigated this process with a Debye-Hiickel potential and [100)]
with an ion sphere potential through the uniform electron gas model. To our knowledge
such analysis has not been performed yet using a relativistic parametric potential code
such as FAC.

The following results have been obtained thanks to the modification of the FAC code as

explained in chapter 5. In that chapter we firstly focus on the effect of plasma environment
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on atomic structure within the UEGM. To support this numerical calculation we use the
analytical development done on hydrogen-like ions. In the same section we compare the
Thomas-Fermi approach and the UEGM. To investigate the effect on collisional cross sec-
tion, we only use the more realistic Thomas-Fermi approach. Some analytical expressions
are proposed for hydrogen-like ions in the limit where Born or Lotz approximation apply
and are compared to the numerical results from the FAC code. Concluding remarks are

finally given.

6.2 Effect of density on atomic structure

This section is devoted to calculation of energies, wave functions and radiative rates
with FAC code modified as explained in the previous chapter. Some comparisons with
analytical formula are also provided. We choose to study some representative cases H-like,
He-like, and Li-like aluminum. Here and in all what follows we consider a specific charge
state without consideration of the real ionization degree that would be reached under

these thermodynamic conditions.

6.2.1 Energies
UEGM

The first plasma effect is the energy shift due to the screening of nucleus by free electrons
leading to a reduction of the —Z/r potential. According to the formula (5.4.16) when the
average squared radius (r?) is much smaller than the ionic sphere radius RZ all levels move
uniformly upward by a constant proportional to N/®. When the ratio (r?) /R? increases,
the shift involves a level-dependency contribution. This behavior is clearly observed on
Figure 6.2.1 .

On this figure we have restricted the study of binding energies on the figure 6.2.1 due
to the non overlapping condition: < r > /Ry < 1 (cf discussion in chapter 5). On the
Figure 6.2.2, we have plotted the evolution of the average radius < r > for some orbitals
present in the Figure 6.2.1 versus the electron density. The average radius is calculated

as follows

(ry = /OOO [PQ(r) + Q2(r)] rdr (6.2.1)

where P(r) and Q(r) are the large and the small component of the wave function, respec-
tively. Via this plot we may define when the non-overlapping condition is respected. We
point out that when < r > is greater than Ry we observe jumps in the average radius of
the orbitals. This is because when < r > /Ry > 1, the effective nucleus charge seen by
the active electron is equal to 1 (as mentioned in 5.3). Therefore outside the sphere the
wavefunctions are similar to those of the hydrogen atom.. For example the configuration

3p1/2 have two thresholds around 5 a.u and 12 a.u, which correspond to the orbital of 2p
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Figure 6.2.1 : Binding energy of Al XIII,XII,XI versus the average electron density N,
calculation are realized with the UEGM

T

100

LB

10

T T

T

T

T

T

T T TTTIT

L L L B R L B L |

_ R0

— 1s
2py),

— 3Py,

|

<r> in atomic unit

T T T

0.1

T T

|

|

|

|

| x/xﬂ MR |

TEEERTIT] EENETEETIT] BETETEETITE AR ETITE A ERTT

0.01
10

10

19

10

20

10

21 10

22

23 24 25 26

102 10 10 2

10

Electron density (cm'3)

Figure 6.2.2 : Average radius of several Al XIII orbital versus the average electron density
N,., within the UEGM. The black curve represent the ion sphere radius

81



Chapter 6 Influence of the plasma on atomic structure and collisional cross sections

and 3p of an hydrogen atom.We will assume the non-overlapping condition.
In the hydrogen-like case, Table 6.1 compares detailed results from FAC and analytical
formula (5.4.16), (5.4.18) for the energy shift.

N, (cm™) FAC shift (eV) Analytical shift (eV) Relative error %
1s 10% 84.69351 84.69342 1.06 x 10~*
10 182.34969 182.348811 4.82 x 1074
T=1/2 J=3/2 T=1/2  J=3/2
2p 10% 84.559455  84.55872 84.55845 1.12x 1073 3.19 x 1074
10 181.00462 180.99635 180.99386 591 x 1073 1.37 x 1073
J=3/2 J=5/2 T=3/2  J=5/2
3d 10% 84.07811  84.07723 84.07671 1.6 x10™3 6.1 x10™*
10%4 175.98192 175.97250 175.995850 7.9 x 1073 0.013

Table 6.1 : Comparison of energy shifts obtained via FAC (UEGM) and analytical formu-
lae for Al XIII

We notice that analytical and numerical values are very close when the density is not
too high. This was expected since we have a large ionic sphere so the contribution to the
energy shift is mainly due to the constant term 3Z;/(2Ry) of expression (5.4.16). When
the ionic sphere radius becomes smaller, the agreement between analytical expressions
(5.4.16), (5.4.18) and FAC results deteriorates. Two reasons might explain this. First,
the present analytical formalism is not relativistic and the expected correction is of order of
Z%a* (~ 1/100 for Al ion). Second, when density increases, higher orders in perturbation
theory should be taken into account. To illustrate the behavior of the first contributions to
the level shifts, the energy terms up to second order are detailed in Table 6.2. Nevertheless,
when higher-order effects are important, we have shown that the ion-sphere model validity

becomes questionable.

N, (em™) 3Z;/2Ry (eV) —Z;(r?) /2R3 (eV) E® (eV)

1s 10% 84.707795 —0.014992 —1.751230.107
10%4 182.49740 —0.149915 —1.75123.107°

2p 10 —0.149915 —5.73426.107°
10%4 —1.499155 —0.0057343

3d 10% —0.629645 —0.002064
10%4 —6.29645 —0.206441

Table 6.2 : Comparison of the different terms in the analytical formulae for the energy
shift of Al XIII

To illustrate density effects in multi-electron ions, we have plotted in Figure 6.2.3 the en-
ergy difference E(1s41*T1L;) — F(1s4s35;). In this quantity the constant term 3Z; /2R,
eliminates, and its linear dependence versus density indicates that higher order pertur-
bation effects are small. As discussed above, this means that the non-overlap condition

(5.3.28) is fulfilled. As observed by Li and Rosmej [123], level crossings occur between
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Figure 6.2.3 : Energy of helium-like Al relative to the level 1sds 3S; versus density for
various levels of the configurations 1s4l, made with the UEGM potential

triplet and singlet states, for instance 1s4p3P and 1s4s'S, or 1s4d®D and 1s4p'P. This
effect is due to the screening of the nucleus by free electrons and, as shown in [123], results

in strong variation in the radiative rates.

Thomas-Fermi

The TF model and the UEGM differ in the way to consider the temperature. The tem-
perature is directly present for the TF via the Maxwell distribution and for the UEGM
implicitly present via the assumed Z;. In Figure 6.2.4, the evolution of the binding energy
of Al XIII for 1s; /5 level is plotted versus the temperature with those two potentials. We
clearly see that the binding energy increases with the temperature in the TF case. We also
verify that, as expected, at high temperature, the TF approach converges to the UEGM.

As the analysis of the plasma potential has shown in chapter 5, the TF potential is
always greater than the UEGM potential. Therefore one expects that the binding energy
will be lower with TF than with UEGM. Indeed, Fig. 6.2.5 confirms this prediction. An
important point to highlight on figures 6.2.4 and 6.2.5 is that the most important effect
on level shift originates from density and not temperature. Our results are at variance

with Salzmann and Szichman’s [102] who obtained in some cases a UEGM shift greater
than TF.

6.2.2 Wave functions

Including the plasma potential results in a screening by free electrons of the nucleus at-
traction and in a spreading of the wave function. This effect can be observed in Figure

6.2.6 for the 3p;/, orbital of H-like aluminum. In order to check the numerical computa-
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Figure 6.2.4 : Influence of temperature on binding energy of Al XIII for 1s;/5 level with
an average density N, = 10 cm ™

tions, we present in Figure 6.2.7 a comparison of FAC and analytical wave functions given
by formula (5.4.15). We notice a good agreement especially when the density is not too
high as for the energy shift. As previously noticed, when the density becomes high the
two computations diverge because of the perturbation theory breakdown. The effects of
plasma density on wave functions observed here are moderate but visible, underlining the

necessity of taking them into account, for instance when computing atomic spectra.

6.2.3 Radiative rates

With the above-analyzed perturbed wave functions, we may compute radiative rates.
In the FAC code, we have computed the multipole integrals with the non-relativistic
approximation. Hydrogen-like aluminum 1s-2p dipolar rate and 1s-3d quadrupolar rate
are detailed in Table 6.3.

In all the listed cases FAC results are in good agreement with the analytical formulae,
even though the largest considered density N, = 10**cm ™3 only marginally allows one to
use first-order perturbation theory. The agreement is less fair for the quadrupolar rate
because i) this rate depends on the transition energy as E° instead of E® for dipolar
rates, ii) the involved matrix element is more sensitive to the radial spreading of the wave
function.

On Figure 6.2.8 we have plotted dipolar radiative rates of Li-like Al ion for two 3d — 2p
fine-structure transitions. The rates decrease almost linearly with the free-electron density.
Nevertheless a small departure from this linear variation is visible at the higher densities.
This indicates that second-order effects in the electron density are then present, and

that the non-overlap hypothesis may become questionable. A similar variation has been
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Figure 6.2.5 : Influence of density on binding energy of Al XIII and XII for 1s;/, and
15218, levels.

observed for a series of dipolar and quadrupolar rates in multi-electron ions.

However, we cannot assert that all rates are decreasing or increasing with the increase
of density. Such behavior has been previously mentioned by Li and Rosmej [123]. This
is because such rates depend on transition energies and dipolar matrix elements, and as
may be seen for instance on Fig. 6.2.9 the transition energy may increase or decrease with
the density. Specifically, the transition energy decreases with density between the triplet
3Py1 and the singlet 1Sy and increases between the triplet 3Py, and the triplet S;. Thus
radiative rates may exhibit a different behavior with respect to the density. In a similar
way, Fig. 6.2.10 shows that radiative rates between the triplet ®Fy; and the singlet 'Sy
of Al XII increase with density. However as seen on Fig. 6.2.11 the 1s-2p; rates decrease
in the case of hydrogen-like Al. In both cases the UEGM leads to a qualitatively similar
behavior but a smaller change in the radiative rates. As a rule most of radiative rates
decrease due to plasma effect, because of the decreasing of AE% in the probability. The

case of figure 6.2.10 is specific because AF;; is then very small.

6.3 Influence of the plasma environment on cross

sections

6.3.1 Excitation cross sections

As mentioned in the introduction, there exists a wide literature about density effects on
collisional cross-sections. However, a series of papers use the Debye-Hiickel theory, which,

as stated in the chapter 5, is not well suited for strongly coupled plasmas.
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Figure 6.2.8 : Dipolar radiative rates of Li-like Al as a function of electron density.
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Figure 6.2.9 : Energy of helium-like Al relative to the level 1s4s 3S;versus density for
various levels of the configuration 1s4/ with Thomas-Fermi potential at

kT, = 100 eV.
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Density (cm™?) FAC Analytical
j=1/2 j=3/2
Agy 1 0 1.7889 x 1013 1.7924 x 1013 1.7903 x 10'3
1024 17781 x 103 1.7815 x 103 1.7795 x 10'3
Ay 1s
% —1.077x 10713 —1.090 x 10~13  —1.081 x 10~13
j=3/2 j=5/2
Asa,—1s 0 2.8624 x 10° 2.8685 x 10° 2.8675 x 10°
1024 2.6137 x 10° 2.6187 x 10° 2.6317 x 10°
dAsq 15
# 92487 x 10716 —2.498 x 10~ —2.358 x 10~16

Table 6.3 : Comparison of radiative rates between FAC (with UEGM) and analytical for-
mulae (A.3) (A.3.11) for Al XIII. Rates are in s~! and rate variations in cm3/s.

We use two methods to study excitation cross sections: plane wave Born approximation
(PWB) and the distorted waves approximation (DW) (see Chap. 3 of [53] and chapter 4
of this manuscript). We notify that on the plots the PWB is identified as Born.

The choice between them requires to consider which asymptotic behavior those for-
malisms assume for the long-range potential. Both of them are perturbative theories
and valid only in the case of weak interaction potential between the target and the in-
cident electrons. The differences, however,are important. Distorted waves method takes
into account the long range form of the potential contrary to PWB approximation. The
asymptotic form of the incident particle wave function is a plane wave for Born approx-
imation and Coulombic for distorted waves. Therefore the distorted wave model is not
relevant when density effects in the ion-sphere model are considered, because the asymp-
totic potential is not Coulombic. At the most, one might use DW approximation when
the density is so low that the radius is greater than the zone where the collisional process
takes place. Besides, We point out that the DW method implemented in FAC is not reli-
able for neutral and near neutral ions, as mentioned by the author of FAC and observed
in chapter 4. As a consequence, the plane wave Born approximation is used in this work
when the density effect is included.

We must emphasize a difficulty met when one tries to observe the influence of the plasma
on cross sections. Indeed, the effect of plasma will change the long-range behavior of the
potential. However, at high energies distorted wave and PWB approximation converge,
meaning that we can then isolate the influence of plasma.

In order to compare PWB approximation to distorted-wave (DW) results we have plot-
ted on Fig. 6.3.1 the e-impact excitation cross sections for 1s-2p;, transition in Al XIIL
Since as mentioned above the DW theory is not adapted when density effects are accounted
for, such effects have been included in PWB theory only.

The behavior of the cross-sections from both methods is different near threshold due

to the way they treat long-range interaction. At high energy, cross sections show the
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Figure 6.3.1 : Comparison of excitation cross section for transition 1s-2p; o for Al XIII at
several densities and k7. = 100 eV

same behavior. On Fig. 6.3.1 we notice that the plasma effect lowers this excitation
cross section,though this variation is minor. To observe a significant change, we have
to reach a high density such as N, = 10* em™. Then one has for the Wigner radius
Ry = 1.25 ag, which is much greater than the wave function extension, and the plasma
coupling parameter Z]% JkT. Ry is close to 1. This means that our formalism assuming
non-overlap condition of ion wave functions [28] is applicable while non negligible density
effects occur.

As seen in section 6.2.1, the radiative rates may increase or decrease depending of the
studied transition, and the same behavior applies to excitation cross sections. Indeed
excitation cross sections may increase as seen in the Al XII case presented on Fig. 6.3.2.
In that case the transition energy from 1sdp 'P; to 1s4d D, first decreases with density
and at the density N, ~ 1.2 x 10*2 cm ™2 those levels cross. We observe on that plot that
the cross section increases until this critical density is reached. After the crossing the
emission occurs from Dy to ' P, and the cross-section decreases with the density. The
increase of the cross section is stronger around the peak, but we have to keep in mind that
PWB calculation overestimates the cross section in this area. Thus we must only rely on
the high energy results where the cross-section shift is small. A possible explanation to
this level crossing is that the electronic interaction is weak. Therefore in that situation
the plasma potential has a stronger effect, which means that the bound electron interacts
more with the continuum than the bound electrons.

We use Van Regemorter formula [71] to confirm our observations. This formula is valid

under Born approximation and Bethe assumption (high energy and dipolar transition, see

90



6.3 Influence of the plasma environment on cross sections

8 T T T T T

— DW no density effect

— Born no density effect

6 — Born Ne=10"'em”  kTe=100 eV |

-~ Born Ne=5.10cm™ kTe=100 eV

Cross section (10'14cm2)

Energy of the scattered electron (eV)

Figure 6.3.2 : Comparison of excitation cross sections for transition between 1s4d ! D, and
1s4p ' P, for Al XII at several densities

for instance chapter 4)
8T R2 fw

7T e AE@J
where AE}; is the transition energy from level i to j, ag is the Bohr radius, R, the Rydberg
energy, e; is the energy of the incident electron, g is the Gaunt factor determined through

empirical observations and f;; is the oscillator strength. We choose the Gaunt factor as
suggested by Mewe [72]

g (el/AEZ])mLO, (6.3.1)

e
g=20.1 281 3.2
g=0.15+0. 8Og<AE> (6.3.2)

We compare numerical cross sections and the Van Regemorter formula on Fig. 6.3.3. We
note that the shift of cross sections is similar. In order to provide analytical expressions
for the cross sections in the simplest case, we use a development based on equation (6.3.1).
In that equation , the density effects modify the transition energy AFE;; and the oscillator
strength f;;. The Gaunt factor is also modified but we neglect it because of its slow
variation with AE;;. Thus the magnitude of the cross section mainly depends on the

ratio f;;/AE;;. Up to numerical constants this ratio is the square of a dipolar matrix
element
ij

We now use the analytical formulas (chapter 5) for hydrogen-like ion in the UEGM
framework. Thanks to this, we are able to isolate the contribution of the plasma potential

by decomposing the matrix element at 0 order and first order of perturbation

—_——
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Figure 6.3.3 : Excitation cross sections for the transition 1s;/5-2p; /o in Al XIII: compari-
son between plane wave Born approximation and Van Regemorter formula.

The upper figure represents the cross sections while on the lower figure are
plotted the variations o(N, = 0) — (N, > 0) for both approximations.

Ao/o (N, =0)
E; | TF kT, =100 eV TF kT, =500 eV TF kT, = 2000 eV UEGM
500 0.085 0.060 0.0489 0.0426
2000 0.086 0.061 0.0494 0.0430

Table 6.4 : Relative variation of excitation cross section for 1s —2p; , with Thomas-Fermi
and UEGM at a density of 10*® cm™.Ac = o (N, =0) — o (N,)

We calculate the matrix element under UEGM for the non-relativistic transition 1s—2p

and obtain for an hydrogen-like ion, in atomic units

(1s|r|2p) = ;Zi\f <1 - 32?2@3) . (6.3.5)
In the case of hydrogen-like Al, we get
(1s |r| 2p)° = 9.925 x 1072 (6.3.6)
and for an average free-electron density N, = 10?* cm™3
(s |r 2p) = —1.8329 x 10~%. (6.3.7)

At such density the matrix-element perturbation is very small. Equations (6.3.6) and
(6.3.7) confirm that the excitation cross section is not notably modified. In the table 6.4
we give some relative variation of the transition 1s — 2p; /.

Forbidden and allowed transitions are differently affected by the plasma potential. This

92



6.3 Influence of the plasma environment on cross sections

comparison is illustrated by Fig. 6.3.4, where cross sections are calculated via the PWB
approximation. The plot clearly shows that the allowed transition 1s — 2p;/5 is more
sensitive to the plasma potential than the forbidden transition 1s — 2s. This result has
been first observed and explained by Hatton et al [115] who used a different plasma
potential (Debye potential).
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Figure 6.3.4 : Comparison of excitation cross sections for transition 1s-2p, o (dashed lines)
and 1s;/9-251/5 (solid line) for Al XIIT using the plane wave Born approx-
imation. When density effects are included, the temperature is 500 eV.
The upper figure represents the cross sections while on the lower figure are
plotted the variations o(N, = 0) — o(N, > 0) for both transitions.

To be complete on the excitation cross section, we point out that articles of Whitten
et al. [117] and Blancard et al.[107] mention resonances near threshold. We made the
same observations, this resonances are only visible with the DW formalism and with an
important amount of points (around hundreds). This resonances are explained in article
[117]: this resonances correspond to the embed of a low energy outgoing electron inside the
centrifugal barrier. We have chosen to not show this observation because the DW method
is not supposed to be accurate in this range of energy. Moreover, the number of points
used is so large that it appears cumbersome to make any computational calculations for

a large set of configurations.

6.3.2 lonization cross sections

Several works have considered the influence of plasma environment on electron-impact ion-
ization cross-sections. Some use the Debye-Hiickel theory (e.g., [116]), other the Thomas-
Fermi (TF) approach [120]. Both the cited works use Hartree-Fock-Slater theory with
cross-sections computed using distorted waves (DW). Here we have adopted the TF for-

malism for the plasma effect, but the collision formalism used, instead of DW is the more
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relevant binary encounter dipole theory (BED) [83] implemented in FAC. This method
combines the Mott semi-classical calculation of cross section [86] for the scattering of two
free electrons (valid for close collisions, i.e., at large momentum transfer), and the Bethe
theory [124] which is the Born plane-wave approximation (valid at high energy and small
momentum transfer) with only the dipolar term kept. This theory is of great interest due
to its applicability both for ions and neutral atoms. Contrary to the case of excitation,
we do not need to change our calculation approach when the plasma effect is included.
We plot the impact ionization cross section from state 152 to 1s in Al, at several densities

on figure 6.3.5. A comparison is done with the empirical formula of Lotz [42]

oij = CﬂagRgf eiZnEij log (Aeéi) : (6.3.8)
where C' = 2.77, w, is the initial number of electrons concerned by the ionization process
in the shell.

Our purpose is not to discuss the accuracy of Lotz formula compared to BED, but to
characterize the plasma effect.

The cross section increases with density, as seen on figure 6.3.5. We can explain this
increase by the decrease of the transition energy which in turn leads to larger collisional
ionization. If we compare the cross-section variation due to the plasma effect at 10 cm™3
and kT, = 200 eV for BED and Lotz formula on Fig. 6.3.6, we notice that they are quite
similar. We also see on this plot that the cross-section variation increases with the energy
of scattered electrons and then slowly decreases after the peak. The temperature has an

effect opposite to density, when it increases the cross section decreases.
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Figure 6.3.5 : Comparison of ionization cross section for the transition 1s? to 1s for AIXII
and XIII. The free-electron density is obtained from Thomas-Fermi model,
and for the scattering process BED and Lotz formalisms are compared.
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We may support these results using a formalism based on Lotz formula and a perturba-
tive approach within the UEGM. As mentioned above, in UEGM, the first-order energy

correction for a hydrogen-like ion is

B0 _Zs (3 _ <7“2>n1> | (6.3.9)

plasma RO 2 2Ra
with )
2\ _ " (5,2
(r*) = 7 (5% =31(1+1)+1). (6.3.10)
For example, for the ionization of a hydrogen-like ion in nl state to a fully stripped ion,
the transition energy is
Z2 Zf 3 <T2>
AE=_— -1 1d 6.3.11
2n? RO <2 2R% 7 ( )

which shows that the energy decreases with density. The cross section increases with
density due to its dependency on the energy transition 1/AE;;, as observed on Fig. 6.3.5.
The study on other elements leads to same results.

Our results agree with Wu et al [120] in the increase of the ionization cross-section with
density, though their work rely on DW theory. As mentioned by Pindzola et al [116],
we checked that their cross-sections in Ge-like gold are underestimated by a factor of 2.
But the cross-sections from [116] decrease with density. These authors explain that this
behavior is linked to the Debye screening of inter-electronic interaction. However their
work since it is based on Debye theory is applicable only at low coupling parameter while
we do not believe the same restriction applies to the present work. Additional results

from theory and experiment would be useful to clarify this point.
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Figure 6.3.6 : Comparison of ionization cross section for transition 1s? to 1s for AIXII
and XIII at N, = 10%® cm3at kT, = 200 eV. Ao is the cross section at
N, = 102cm~?minus the cross section at N, = 0
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6.3.3 Photo-ionization cross section

The influence of the plasma environment on photo-ionization has been investigated by
different authors. Chang et al.[121] in case of Hydrogen-like ion and by Sahoo et al. [122]
for alkali elements have used the Debye-Hiickel theory. The ion sphere model has been
used by Das[100] under the UEGM with the condition of cancellation of the wave function
on the ion sphere. Here we have adopted the supposedly more realistic TF formalism for
the plasma effect. The evaluation of the bound-free oscillator strength is similar to the
bound-bound oscillator strength. In the FAC code the continuum wave function for the
photo-ionization is calculated by the DW method.

We plot the impact ionization cross section from state 1s to 1s in Al, at several densities
on Figure 6.3.7. The cross section increases with density, as seen on figure 6.3.7. This
increase is more significant at low energy. At high energy the cross section fall rapidly to
zero, therefore the plasma potential has almost no impact on the photo-ionization. This
increase of the the cross section is linked to continuum lowering which lead to a decrease
of the transition energy as for the ionization.

A comparison is done on Figure 6.3.8 with the empirical formula of Kramers [43]

64 2 Ww; AE,LQJ

o Wi 25 6.3.12
3\/§aa0 yni (hv)? ( )

gij =
where AFE);is the threshold energy for photo-ionization, w,, is the initial number of elec-
trons concerned by the ionization process in the shell, n; is the principal quantum number
of the initial state and hv is the energy of the incident photon.On Fig. 6.3.8 we compare
at different densities 10 cm~3and 10%* cm~3with a temperature k7, = 500 eV the DW
method of FAC and the Kramers formula. Here we notice that in both cases the cross
section increase at low energy. However the upward shift of the photo-ionization is smaller
with the empirical approach. We explain this by the fact that the Kramers formula only
takes into account the transition energy but not the wave functions perturbation. At
higher energy the agreement about the cross section behavior is worst. Indeed, with the
density effect the Kramers cross section decrease faster than the DW cross section.

The increase of the cross section agrees with the observation Sahoo et al. [122] Das
[100]and Chang et al [121].

The most important change in the photo-ionization cross section appear near threshold.
In this range of energy and in absence of plasma effect the cross section behavior is
monotonous. However with the plasma effect the shape of the cross section completely
change. A minimum is present next to the threshold followed by a peak, with the increase
of the density this minimum is more pronounced. This minimum is called in the litterature
a Cooper minimum. The Cooper minimum has been explained by J.C Cooper [125] in
case of alkali element. This minimum appears when the the amplitude of the bound and

free wave function exactly canceled. Many authors [121, 100, 122] have seen the Copper
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Figure 6.3.7 : Comparison of photo-ionization cross section for the transition 1s? to 1s for
AIXII and XIII at kT, = 500 eV. The free-electron density is obtained from

Thomas-Fermi model, and for the scattering process are calculated with the
DW formalisms.
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Figure 6.3.8 : Comparison of photo-ionization cross section for the transition 1s? to 1s
for AIXII and XIII at kT, = 500 eV. The free-electron density is obtained
from Thomas-Fermi model, and for the scattering process DW and Kramers
formalisms are compared
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Chapter 6 Influence of the plasma on atomic structure and collisional cross sections

minimum for different element than aluminum and with different plasma potential Debye-
Hiickel or ion sphere. In every cases the Cooper minimum is shifted to higher energy with
the increase of the density.

As for the electron impact excitation, we have chosen to not show this observation on
a plot, because of the presence of resonances in the same region as the Cooper minimum.
We point out that in the article of Das [100] which use an ion sphere potential, additional
resonances are observed. These oscillations are the consequence of the choice of the
cancellation of the wave function on the Wigner-Seitz sphere. We recall that this choice

has been rejected for this present work.

6.4 Summary and conclusions

Using a Thomas-Fermi (TF) approach for free electrons, we have investigated the effect of
the plasma environment on the atomic structure. It has been shown that this formalism
valid at finite temperature leads to a larger plasma potential than the Uniform Electron
Gas Model (UEGM) previously used. In most cases the inclusion of density effects results
in level shifts and change in rates which are stronger with TF model than with UEGM.
This self-consistent plasma potential has been included in the FAC code allowing us
to obtain an accurate atomic description for opacity calculations or collisional-radiative
models. The results obtained here show that no general behavior for the perturbation of
bound-bound processes can be predicted. As a spectroscopic analysis by Li and Rosme]
[123] has shown, transition energies may increase or decrease with electron density. Using
FAC we have been able to confirm this observation and generalized it to radiative rates
and e-impact excitation rates. The situation is usually simpler for H-like ions, as stated
previously [28]. Furthermore we obtained ionization cross sections increasing with density,
a fact which we explained by the decrease of the transition energy. A similarly observation
is made on the photo-ionization. However the cross section are less impacted by the plasma
potential.

This work represent a first important step in the investigation of density effects in a
collisional-radiative code. Indeed, a previous study [126] using a plasma potential based
on quasi-particle energies and effective interaction claims that the plasma environment
has a minor impact on rates, the main effect on population distribution coming from the
allowed number of bound levels. Accordingly this work clearly shows that atomic processes
are perturbed in a non-negligible way. Therefore it is highly desirable to investigate

environment effects on plasma kinetics, as well as on absorption and emission spectra.
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Chapter 7

Description and application of a new
kinetic code

7.1 Introduction

In this last chapter we introduce a new collisional radiative code and develop several
applications. One of our purposes will be to show the effect of the plasma potential
within ion-sphere hypothesis on the collisional radiative model (cf chapter 3). To achieve
this goal, we use a new collisional radiative code which we have named Foch. This code
had been developed during the thesis in order to treat the atomic data from FAC. This
chapter begins with features of the Foch kinetic code. To check the quality of the Foch
code we first give an example without plasma density effect in krypton for which Bastiani
et al. [127] have provided experimental data. Then we carry on with the plasma density
effect on the aluminium. This case will serve to understand the impact of the ion sphere
potential on a tractable situation. The last case concerns a comparison between our work

and a recently published [128] experiment on Titanium.

7.2 Inclusion of density effect

First we have to recall that our plasma potential is only static, no dynamical response is in-
cluded in our model. The main plasma effect present is the continuum lowering. With the
static potential we have shown the shift of energy levels and spreading of wave-functions.
Another effect which may be considered is the pressure ionization. This phenomenon cor-
responds to the transition of a bound electron into the continuum due to the screening.
Of course one possible way to model this effect is to suppress the concerned configurations
which pass in the continuum. This approach does not appear physically correct because
a discontinuity appears in the observable [38]. This method leads to a strong increase
of the ionization degree. Another approach consists of keeping all the configurations and

modelling the pressure ionization by a new rate added to the kinetic equations. Such
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an approach has been modelled by Vallotton et al [106][129]. The plasma potential used
in his work is the ion sphere only under the UEGM form. We point out that a different
choice on the neutrality condition has been made. Indeed, following Massacrier work [101]
a free electron is added to the neutrality condition Z — N, + 1 + %WR%Ne = (. However,
the results of the work shows that the inclusion of the pressure ionization reduces the
ionization degree compared to the withdrawal of the configurations. In our work we have
made the choice to keep the same configurations with and without plasma density effect.

Unlike Vallotton, we have not implemented a pressure ionization rate .

7.3 The kinetic code Foch

7.3.1 Transition rates

This section is devoted to the method of calculating the rates included in the Foch code.
By default the rates are calculated through the atomic data of FAC, but it is possible to
lead the calculation with semi-empirical rates (Mewe, Lotz, Kramers). These formulas
have been implemented to obtain a first idea of the plasma properties before leading a
more accurate calculation of the collisional cross section. For instance, the excitation
cross section computation time becomes prohibitive. Therefore the electron impact cross
section for doubly excited states is often calculated by the Mewe formula (4.3.53). In
what follows we will provide the calculation specificities with respect to the studied case.
We only consider inelastic collisions. The influence of the elastic collisions is included in
a phenomenological way via the line broadening [50].

The collisional rate from the level ¢ to j for an incident electron is given by

SbY5
R; = N. /A N \/;%- (E) f (E)dE (7.3.1)

in cgs unit. N, is the electron density, m,. the mass of the electron, F the energy of the
incident electron, AE;; the transition energy and o;; (E£) the inelastic cross section. The
function f(F) is the kinetic energy distribution of the free electrons which we assume here

to follow the Maxwell law

F(E) = 2 YE o
VT ETS? ’

where kT, corresponds to the electronic temperature. The normalization condition is

(7.3.2)

/Oo F(E)dE = 1. (7.3.3)

The collision strength labeled €2;;(E) is linked to the cross section o;; (E)by the relation

in atomic units
T

Oij (E) = g?

i, (E) (7.3.4)
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where ¢; the degeneracy of the level ¢ and k; the momentum of the incident electron
(k? = 2F in a.u). The equation (7.3.1) can be expressed in term of the scattered electron

energy Fy

h? N, >
Ry =\V2m e~ AEi/KTe / Qi (By) e Bri¥eqp,. (7.3.5)
0

mg/Q L 63/2

with £ — Ey = AE;;. The FAC code gives by default the cross sections and the collision
strength with respect to the scattered electron energy.

In the case of an incident photon the photo-ionization rate is obtained by

o U

Ry =c / ois (6) D ge (7.3.6)
AE; €

with ¢ the speed of light and € = Ey + AE;; is the photon energy. The function U (e)

corresponds to the spectral energy density. If we assume a Planck distribution of the

radiative field, it comes

3

€ 1
T2R3¢8 ee/KTr _ 17

U (e) = (7.3.7)

where kT, stands for the radiative temperature.

To calculate these rates, different approaches can be used. The rates can be calculated
via semi-empirical expressions for the cross section as the ones given in chapter 4. This
leads to analytical expressions for the rates, such an approach is used in the ABAKO
code [130]. Of course the overall accuracy of the code relies on the accuracy of those
empirical formulas. Another method consists of using fit formula for the cross section
such as the Goett formula [131] for excitation cross section. In the HULLAC code [16]
the photo-ionization cross section is also evaluated via a fit formula. The last way to get
the rates is to compute integrals involving an ”accurate” cross sections obtained from one
of the methods mentioned in chapter 4 (DW, Born, classical theory or R-matrix, Close
coupling...). The problem relies on the computation time, which compels us to compute
only a few cross sections to get the transition rate. For the Foch code, by default, all
the rates are calculated via the atomic data of FAC by performing a Gauss-Laguerre
integration. Because of this method the grid depends on the electronic temperature. The

Gauss-Laguerre method approximates that

/000 flz)e ®dx ~ Zf(xz)wl (7.3.8)

where x; represents the root of the Laguerre polynomial of degree N and the w; the
statistical weights of the roots. For our calculations, we usually take 16 points to carry

the integration.
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Collisional excitation and deexcitation rates

The excitation rate is directly obtained from equation (7.3.5) . A semi-empirical rate can
be obtained via the Van Regemorter cross section (6.3.1) with a Gaunt factor g(AE;;/kT,)

. 16\/§R§7r2a20 Nefij

= AE,;; |kT,)e AFu/FTe 7.3.9
7 V3rm, AEU(/@TQ)WQ( /M) (7:3.9)

where R, represents the Rydberg constant, ay the Bohr radius and f;; the oscillator

strength from i to j. Finally, by calculating the constants, assuming N, is in cm ™2 and
all energies in eV,
Rij(s7") = 1.58 x 10*5Ne—fij1/2g(AEU VKT, )e~ABu/kTe (7.3.10)
AE;; (KT,)
The inverse process, the deexcitation is evaluated through the detailed balance
dex __ gi AE;; [kTe pex

9j

lonization and three bodies recombination rates

The collisional ionization is exactly calculated in the same way as the excitation rates

formula (7.3.5). Through the formula (6.3.8) proposed by Lotz the ionization rate is

8
RE" = C\| " Ra

2 9 Nowy,
y 0

—F, (AE;; /kT,) , 7.3.12
Me AEij (kTe)1/2 1< j/ ) ( )

where F; stands for the exponential integral function, defined by

Finally, by calculating the constants

Newn

RE' (s71) =3.02x 1070 ———"
76 A (kT.)"?

By (AEy;/KT). (7.3.13)

The inverse process, the three body recombination which concerns two electrons is calcu-

lated via the Saha equation

(YR
J

(7.3.14)
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where Ay, is the thermal wave-length

h2 1/2
Sy 3.1
Adh <27rmekTe) (7:3.15)

Auto-ionization and dielectronic capture rates
The auto-ionization rate R{; is directly calculated in cgs units by the FAC code. The

dielectronic capture is given by the detailed balance

1 D Ap
RDC = §AthegeAElﬂ/kT€Rf}. (7.3.16)

J
A semi-empirical formula can be found for the dielectronic capture [130] or [132], however
its accuracy is not satisfactory in our opinion.
Photo-ionization and radiative recombination rates

We first recall the Milne relation [14] between the photo-ionization and the radiative

recombination cross section

O'fjh()t _ 2& mec? (E — AEZ]) o
9i E? !

(7.3.17)

where E the photon energy. In the presence of a radiative field, the photo-ionization
have to be taken into account. In that case, assuming a Planck distribution (cf. equation

(7.3.7)) applies for the radiative field, the photo-ionization rate is given by

87 /°° 2 ot (E)

hoto
RPhoto _ iy =)
] eE/kTT —1

= 3 dE, (7.3.18)

AE;;
with kT, the radiative temperature. Furthermore, it is necessary to take into account the
stimulated radiative recombination in addition to the spontaneous radiative recombina-
tion. This rate expresses

—(E—AE;;) /KT

rrs 4 Ji \3 > 2 € hoto
RZ] = h3c2%AthNeA E eE/kT—r_lo-Z (E) dE (7319)

ij

In all the cases presented the plasma conditions are such that we do not have to take into

account the radiative field. However, these formulas are implemented in the Foch code.
In absence of an external field, the spontaneous radiative recombination is

A g,

T 3 OO 2 hoto —FE¢/kTe
ﬂ:h3c2ngth/0 (E; + AEy)? o7 (Ef) e P1/M e d B, (7.3.20)

An analytical formula is obtained thanks to the Kramers formula. The radiative recom-
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bination cross section writes

R 64\/E042a%R;/2 gi w; N,

2 AE;;/kTe
" W g (T )3/2AEZ-]E1 (AE;;/kT,) eAPilkTe (7.3.21)

with w; the number of electrons in the initial shell and n; the principal quantum number

of the initial level. Finally by calculating the constants, it comes

159 W5 Ne

R =17.05x 10"
’ 95 vj (KT.)*?

AE}Ey (AE;/kT,) /e, (7.3.22)

Once the rates are calculated, the kinetic equations can be solved. To achieve that
objective the code possesses three solvers: a classical Gaussian elimination (gaussj from
Numerical Recipe [133]), a LU method (LU from Numerical Recipe) and a LU method for
band matrix (dgbsvx from lapack [134]). This latter is the fastest of them. Our computing
capacity can treat a maximum of 40 000 levels. Concerning the collisional radiative code,
it is able to work in Detailed Configuration Accounting (DCA) or detailed calculations.
For the free electrons we assume a Maxwell distribution consistent with the Thomas-Fermi
approach used for the plasma potential. In all the following situations, no radiative field

is taken into consideration. However, an option is included in the Foch code.

7.3.2 Spectra

Concerning the spectra, the code only computes the emissivity for the bound-bound,
bound-free and free-free processes. The line profile chosen for the bound-bound spectra
is a Voigt profile (method from Drayson [135]). A Gaussian or Lorentzian profile can also
be used. For the detailed, calculation we use the natural and the Doppler broadening. To
deal with the electron impact broadening, the semi-empirical formula of Dimitriejic [50]
is used see equation (3.7.11). If the UTA option is used, the line profile is Gaussian and
the broadening is statistical and Doppler.

To calculate the bound-free emission, the photo-ionization is evaluated via the Kramers
formula (6.3.12). The Gaunt factor used, corresponds to the ratio between the photo-
ionization rate calculated via the DW method of FAC and the photo-ionization rate
evaluated from the Kramers formula. The free-free contribution is calculated via the

semi-empirical formula (3.7.5).

7.4 Applications

7.4.1 Krypton

Here, we present a NLTE case of krypton which has been treated in the NLTE7 work-

shop [136]. Before treating the effect of the plasma environment, this case allows us to
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evaluate the quality of the kinetic code Foch. Here, we do not include the plasma environ-
ment in our calculations.This case originates from an experiment performed at LULI2000
[127]. This experiment uses krypton gas jet and provides resolved time-integrated spectra
between 6 to 8 Angstroms. The plasma is diagnosed by X-ray and time-resolved XUV
emission spectroscopy. The plasma temperature and density are determined by a Thom-
son scattering method. The range of density obtained is about N, = 0.2 —1.2 x 10*® ¢cm™3
and the temperature k7, = 160 — 500 eV. In the article several spectra are proposed as
functions of the jet pressure and the energy of the laser.

For our numerical simulations, we have used around 40 000 levels in configurations
(UTA mode of FAC), the total statistical weight of our simulation is 1.8 x 107. To compute
the spectra, a Gaussian profile is used with the statistical and Doppler broadening. The
excitation cross sections are computed via the plane wave Born approximation and binary
encounter dipole theory for the collisional ionization. The plasma parameters used are
N, = 10" em™2 and kT, = 500 eV. The calculated mean charge is ~ 24.8. On the figure
7.4.1 the result from the Foch code and the experiment are plotted. The data of the
experiment correspond to the case of a jet pressure of 4 bar and laser energy of 365 J. We
notice that the comparison is quite acceptable, the positions of the peaks are close to the
experiment peaks. Still, for certain lines our broadening is too weak. The line broadening
calculation is the major weakness of the Foch code, no refined theory is used (no opacity
effects or sophisticated broadening). However, the density and temperature used in our
code fit in the range of the density and temperature mentioned by the experiment. We

point out that the data of the experiment has been rescaled for clarity.
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Figure 7.4.1 : Comparison of bound bound spectra for krypton between experiment [127]
and Foch code for N, = 10" ecm ™ and k7. = 500 eV

In Figure 7.4.2 we compare, the Foch bound-bound spectra with others collisional-
radiative codes. The red colour corresponds to the code ATOMIC [18, 82] used by the Los
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Alamos National Laboratory. This code uses a fully relativistic description of the atomic
structure. To produce the spectra fine structure line (Doppler+natural broadening) and
UTA are used. Their chosen temperature is k7, = 500 eV and density is N, = 5 X
10 ecm™3. The mean charge is about ~ 24.15. The number of levels considered is
above 40 000 with a total statistical weight of ~ 6 x 108. The second simulated spectra is
provided by the AVERROES code [22]. This code is based on the mixing of configurations
and super-configurations. The atomic structure of the code is not relativistic but include
relativistic corrections. This code treats the krypton case for a density of N, = 10 cm ™3
and a temperature of k7, = 600 eV. The mean charge is ~ 24.6 The number of level is
around 15 000 and the total statistical weight is ~ 6 x 10°. We observe that the Foch

code behaves in a similar way as the two others.
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Figure 7.4.2 : Comparison of bound bound spectra for krypton between different sim-
ulations Foch code for N, = 10 ecm™® and k7, = 500 eV, ATOMIC
N, =5 x 10" cm™3 and k7T, = 500 ¢V, AVERROES N, = 6 x 10 cm™3
and k7T, = 600 eV.

7.4.2 Aluminum

In this section we investigate the effect of the plasma environment. The plasma potential
considered is the Thomas-Fermi potential restricted to the free electrons. The temperature
considered is k7T, = 500 eV and density is N, = 5 x 10** cm 3. This case of study is simple,
only 1929 detailed levels are considered with a maximum principal quantum number of
Nmaez = 3. This allows us to respect the validity criteria of our static potential. Therefore
no dynamical response has to be taken into account. Moreover, under these conditions
the DW and PWB approximation for excitation cross sections give very similar results.

On figure 7.4.3, the ion populations are plotted as functions of the ionic charge. We
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observe that the DW and the Born calculation are very close. Under the thermodynamical
conditions mentioned above, the plasma is mainly dominated by hydrogen and helium like
species. The plasma coupling parameter is about I' ~ 2.2 with an average Wigner-Seitz
radius of Ry = 3.33 ag. On the plot we can see that the effect of the plasma potential
increases the ionization degree. Moreover this lead us to situation closer the LTE regime

(turquoise curve).
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Figure 7.4.3 : Ton populations for aluminium element at N, = 5.10%3cmand kT, =
500 eV with and without screening and with DW method (solid lines) and
Born method (dashed lines).

This observation was expected because of the behaviour of collisional ionization seen in
the previous chapter.

Rates

In chapter 6, we have studied the impact of the plasma environment on collisional cross
sections. From those cross sections, we calculate the collisional rates involved in the
claculation of atomic populations. Here, we propose to analyse the influence of the plasma

environment on the collisional excitation rates. The collisional rates are proportional to

Ryj oc e AFu/Me / Qij (Ef) e Pr/Feq R, (7.4.1)
0

In the expression above, two terms are modified by the inclusion of the plasma environ-
ment: the transition energy AE;; and the collision strength €2;; (Ey). In most cases AE;;
decreases with the density. As seen in the section6.3.1, the collision strengh €;; (E;) may
decrease or increase with the density. This fact is explained by the behavior of the matrix
element.

We recall that for isolated ions the distorted wave method (DW) gives good results.
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However when dealing with the plasma environment we only use the plane wave Born
approximation (PWB). On the Figure 7.4.4, we have plotted the ratio of PWB to DW
collisional excitation rate as a function of the temperature. On the same graph we have
plotted a curve showing the density effect with PWB. The considered collisional rate
concerns the transition 1s — 2p, , for Al XIII at N, = 5 x 10¥cm—3. This plot shows
that the difference between the rates mainly lies between the two methods rather than the
plasma effect. The departure of the green curve to the unit value is explained the different
behaviour of the DW and the PWB at low energy. Meanwhile, at high temperature the

difference shades off because both methods converge.
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Figure 7.4.4 : Ratio of collisional excitation rates. The transition chosen is 1s — 2p, , for
Al XIII. The considered density is N, = 5 x 10%3cm 3.

Simple approximations can be used to analyze the plasma environment effect on these
rates. For low kT¢, the integral over E in the rate (7.3.5) tends to k7,.€2;;(0), simply
proportional to the collision strength at threshold. Therefore, the ratio of the excitation
rates with and without plasma effect is

AEY — AEY
Ry /RY =exp (— L Q(0) /Q(0) i kT, < AEy;. (7.4.2)

where the superscript (0) stands for the case with not density effect accounted for. Since,
as we have seen, the difference AE%I — AES) ) is in most cases negative, the first factor in
the ratio (7.4.2) is greater than 1 and increases with 1/kT, while the ratio of the collision
strengths at threshold, though less than 1, does not depend on kT, if the UEGM is used,
or weakly depends of the Temperature in the TF model. Therefore for low enough kT, the
collisional excitation rate increases when the plasma effect is accounted for. One should

notice that the above analysis does not rely on any approximation on atomic structure or
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scattering theory but on the general behavior of the plasma effect on transition energies
and collision strengths. The opposite case of large kT, can be investigated using the Van
Regemorter formula (7.3.9). Since the variation of the Gaunt factor with the plasma effect
can usually be neglected, the effect of the plasma environment for large k7T, is measured

by the ratio

AEP" — AED\ AR
2 | SulBE s AE;;. (7.4.3)

Rpl /R(O) = exp (—
ij ij (0) (0)

The ratio f;;/AE;; is proportional to a squared dipolar matrix element and usually de-
creases when the plasma effect is accounted for — though the opposite may be true as seen
in the figure 6.3.2 for an He-like ion or in equation (5.4.23) for H-like ions. Conversely,
as mentioned when discussing Eq. (7.4.2), the ratio of the Boltzmann factors increases
when plasma effect is accounted for. Therefore the ratio (7.4.3) may be below or above
1, and usually increases with 1/kT,. These considerations are illustrated by the last row
of Table 7.1 where we may verify that for the 1s — 2p transition in H-like aluminum the
plasma environment effect increases the collisional excitation rates at low temperature
while it lowers these rates at high temperatures. In the considered case this behavior is

at variance with the plasma effect on the radiative rate.

Thomas-Fermi
T, =100eV T,=2000eV UEGM
AA/A —0.147 —0.080 —0.066
AR/R +0.324 —0.045 +0.095

Table 7.1 : Relative variation X (N.)/X (N, = 0) — 1 of the radiative (A) and collisional-
excitation rates (R) for the 1s — 2p;/, transition in Al XIII. Collisional
rates are computed using Born approximation. The electronic density is
N, = 10%® cm™3. The collisional-excitation rate variation within UEGM is
computed at T, = 100 eV

On the Figure 7.4.5, we have selected situations where the cross sections can increase
(1s—2p, s and 2p; ,—3dy j2) or decrease (3p; ;o —3d3/2) with the electron density. We notice
that changes in the rate appear at low temperature but as observed on the collisional cross
section, this change of rates is below 15%. Of course, with the increase of the density the
modification of the rates will be more important.

In the case of collisional ionization the rates increase when density effect is included.
For example, at the density of N, = 5 x 10?3cm ™3 and a temperature of k7, = 500 eV, the
transition rate of 1s?> — 1s increases by 47% because of the plasma effect. This is because
AE;; decreases and the oscillator strength €2;; (Ef) increases.

In order to investigate the density effects on the various ionization processes, we plot
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Figure 7.4.5 : Ratio of collisional excitation rates between PWB method with plasma
density effect (Rpwp(N.)) and PWB without plasma density effect
(Rpws(Ne = 0)) versus the temperature. The transitions plotted belong
to Al XIII. The considered density is N, = 5 x 10%3cm 3.

on Figure 7.4.6 the fractional rates per ion. The fractional ionization rate is defined by

Lic

fic = T, + 1., (7.4.4)
where I';. is the collisional ionization rate and I'y; is the auto-ionization rate. We clearly
see that the fractional collisional ionization increases when density effect is accounted
for, of course the fractional auto-ionization rate decreases by the same amount. On
Figure 7.4.7, we consider the recombination processes. On this graph the three body
recombination increases, while the radiative recombination and the dielectronic capture
decrease. These two plots indicate that the mechanism responsible for the increase of Z* is
the competition between the radiative recombination and the three body recombination.
Indeed, the three body recombination is more sensitive to the density due to its dependence
on N2. We can notice that such result could have been found by leading a calculation
without plasma potential, but with a higher density. This observation means that the
plasma potential moves the system closer to LTE, because it increases the importance of

collisional ionization.

Spectra

An important point to study is the impact of the plasma potential on the atomic spectra.
This effect can be observed on Figure 7.4.8, where the bound-bound emission spectra
with and without plasma potential are plotted. To calculate the spectra, a Voigt profile
is used. On the upper part of the figure, the line broadening is natural and Doppler. We
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Figure 7.4.6 : Comparison of fractional rates of collisional ionization (green curves) and
auto-ionization (yellow curves) with respect to the ion charge. One case in
absence of screening effect (cross symbol) and second case with the plasma
effect (square symbol).

observe lines shift in many cases, a red shift for example at 2020 eV which correspond
to the transition from state 3p to 1s. Blue shifts are also visible around 1440 eV which
corresponds to the transition of the doubly excited state 2s'2p' to the state 1s'3d*. The
intensity of the lines is also modified by the plasma effect, because of the modification
of the atomic population. Finally on the lower part of Figure 7.4.8, we add a Stark
broadening (the electron impact) through the semi-empirical formula of Dimitrjevic [50].
In that case the difference between the case with and without plasma is less visible but
still present. This point supports the idea that the plasma effect is mostly hidden by the
line broadening.

A bound-free spectrum is represented in Figure 7.4.9. As mentioned in the previous
chapter, the binding energies decrease because of the plasma the screening. Therefore, as

observed on the spectra the ionization threshold are shifted toward lower energies.

7.4.3 Titanium

In that last case, we compare our work with an experiment published by Khattak et
al. [128] on titanium. This experiment has been performed at the Rutherford Appleton
Laboratory using the terawatt short pulse laser facility ASTRA. This work reports a red
shift of the Ti He — « line which is the highest charge state Z* ~ 20 measured. In that
paper the titanium foil is irradiated at on optimum focus and at an offset of 100 um from
the best focus. Therefore two He — « line shifts are reported. The unshifted line He — «
is taken at 4749.73 eV, this value is provided by Beiersdorfer et al [137]. We point out
that the FAC code provides a value of 4749.34 eV.
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Figure 7.4.7 : Comparison of fractional rates of three bodies recombination (green curves,
3BR), radiative recombination (yellow curves, RR) and dielectronic cap-
ture (red curves, DC) with respect of the ion charge. One case in absence
of screening effect (cross symbol) and second case with the plasma effect
(square symbol) .

In the case of the optimum focus the reported line shift is of 3.4 eV with a Full Width
at Half Maximum (FWHM) of 12.1 eV. Meanwhile in the second focus the measured
line shift is of 1.8eVwith a FWHM of 5.8eV. In order to evaluate the density and the
temperature, two simulations were carried out in the article. The first simulation was
realized by the hydrodynamic code HYADES [138] and post processed with the Colli-
sional radiative code SOBOLEV [139]. This simulation concludes that the plasma density
exceeds 10**cm3with a temperature above 3000 eV in the case of the optimum focus. In
the second focus a temperature is well below 1000 eV and density lower than 10?4 cm=3.
The second simulation is performed through the spectral simulation code MARIA [140].
For the optimum focus the prediction of MARIA is close to the first simulation. For the
second focus, the estimate range of temperature is 500 — 1000 eV and a density closer to
10% ecm ™2 than 10%* cm 3.

From our numerical simulation (FAC+Foch), a line shift of 3.4 eV for the He — « is
obtained for a density of 3.7 x 10** cm™ with an electronic temperature of 3000 eV. In
the Figure 7.4.10, we represent the ion population as a function of the charge state with
and without plasma effect. In that case the plasma coupling parameter is about 1.94 with
an average Wigner-Seitz radius of 2.098ay (Z* ~ 21.21). The configurations are restricted
to a maximum quantum number of 3 to comply with the condition wy. < Worpitar and the
non-overlap condition 5.3.28.

On the Figure 7.4.11, we plot the bound-bound spectra calculated with the Foch code
(Voigt profile and natural4+Doppler broadening). The blue curves is the bound-bound
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Figure 7.4.8 : Bound bound spectra of aluminium at N, = 5.10%cm~3and k7, = 500 eV
with (yellow curves) and without (green curves) screening. Figure a is
made with natural and Doppler broadening. Figure b is made with natural,
Doppler and Stark broadening (electron impact).

spectra with the plasma effect calculated with N, = 3.7 x 10** em~2 and kT, = 3000 eV.
This shift can be compared to the measured one [128]. But we notice that our ratio
between the Li-like lines and the He — « line is higher than the one measured in [128].
However, the density and temperature used are in good agreement with those mentioned
in the paper.

Using natural and Doppler boroadening is obviously not enough to obtain the same
FWHM as in the article. Therefore, we have included a Stark broadening still with the
semi-empirical formula of Dimitriejic[50]. We obtain a FWHM~ 6.03 eV which is twice
less than the expected FWHM. We explain with the the absence of refined treatment of
broadening by our kinetic code.

In the case of an offset of 100 ym, we reproduce the line shift for density of N, =
1 x 10%* cm ™2 and a temperature of kT, = 587 ¢V. On the Figure 7.4.13, the He — o
peak is at 4747.93 eV which exactly corresponds to a shift of 1.8 eV. The temperature
falls in the range predicted by the code MARIA, however our density is higher than the
one from code MARIA [140]. Concerning the FWHM see for instance figure (7.4.12), we
find while adding the Stark broadening, a value of 2.35 eV which is a bit more than twice

smaller than the experimental measurement.
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Figure 7.4.9 : Bound free spectra of Aluminium at N, = 5.1023cm3and k7, = 500 eV
with (yellow curves) and without (green curves) screening.

7.5 Summary

In this chapter we have described the major features of the Foch code. A detailed or
a UTA calculation is possible, a Gauss-Laguerre quadrature with 16 points is used to
calculate the rates and the kinetic equations are solved by the band diagonal Lu type
routine. The bound bound spectra are computed via a Voigt profile including natural,
Doppler and a Stark effect via a semi-empirical formula. An application of this kinetic code
on a low density case of kyrpton show a good agreement between experiment and other
kinetic codes. To emphasize the effect of the ion sphere potential, a benchmark model
on aluminum has shown that the CR model is dominated by the collisional ionization.
Finally, a comparison with an experiment which exhibits the density effect on spectra,

shows the agreement with an alternate collisional-radiative and hydrodynamic code.
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Figure 7.4.10 : Ton populations for titanium element at N, = 3.7 x 10**cm—%and kT, =
3000 eV with (blue curves and star symbol) and without (red curves and
diamond symbol) screening .
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Figure 7.4.11 : Bound bound spectra of Titanium element at N, = 3.7 x 10**cm~3and
kT, = 3000 eV with (blue curves) and without (red curves) screening.
Both spectra are calculated with natural and Doppler broadening. Black

dashed line represent the unshifted He — « line .
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Figure 7.4.12 : Bound bound spectra of titanium element at N, = 3.7 x 10**cm~3and
kT, = 3000 eV for the He — « line. With (blue curves) and without
(red curves) screening. Here spectra are calculated with natural Doppler
and Stark broadening(electron impact). Black dashed line represent the
unshifted He — « line.
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Figure 7.4.13 : Bound bound spectra of titanium element at N, = 10**cm3and k7T, =
587 eV with (blue curves) and without (red curves) screening. Black
dashed line represent the unshifted He — « line
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Chapter 8

Conclusion

8.1 Resume

In this work we have made a theoretical study of dense plasmas out of local thermodynam-
ical equilibrium. To complete this work, a new kinetic code has been built which allows
us to carry out NLTE and LTE calculations. In this work we have made the assump-
tions: the free electrons obey the Maxwell distribution, the plasma is optically thin and
uniform. The atomic data is provided by the Flexible Atomic Code which is based on a
parametric potential. This code belongs to the category of "chemical picture” description
of ions, where the plasma environment is not included. We recall that this the generic
term corresponds to approaches starting with isolated ion.Therefore, an important effort
has been done on the inclusion of the plasma environment while keeping accurate atomic
physics. The plasma environment has been modeled via the ion sphere model, under an
uniform electron gas model and a Thomas-Fermi approach. This has lead us to modify the
physical content of the Flexible Atomic Code. In order to support the numerical results,
an analytical approach has been developed for hydrogen-like ions. An extensive study
of the influence of the plasma environment has been made on the atomic structure. We
have observed a non-negligible decrease of binding energies and a spreading of the wave
functions. The impact of the plasma potential is also observable on the collisional cross
sections. Our study highlights that it is the ionization cross section which is the most
impacted. This is because of the continuum lowering. A remarkable agreement has been
shown between the numerical results of FAC and the analytical formulas on hydrogen-like
ions. Finally, we have investigated the density effect on the collisional radiative model.
We have observed that the atomic populations are modified by the plasma effect. This
fact is a logical consequence of the modification of the collisional cross section and radia-
tive rates. This investigation reveals that the mean ion charge states increases, mainly
because of the continuum lowering. On the atomic spectra, the impact is visible but not
as important as on the atomic structure. This observation is mainly due to the line broad-

ening. A successful comparison of this work has been made with other codes [139, 140]
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at density where the plasma environment plays a non-significant role. This work is also

in good agreement with experimental data [128].

8.2 Perspectives
¢ Beyond the ion sphere potential

The validity of the ion sphere model is limited by the non-overlap and the adiabatic
conditions. To overcome the adiabatic condition, the dynamical response of the plasma
has to be included in the plasma potential. Such an inclusion will only be necessary at
high density. This type of development might find its application in stellar interior where
the density is beyond the solid state density. Concerning the non-overlap condition, the
pressure ionization must be modeled. A model based on Valloton et al.[129, 106] seems
suitable, but we do believe that the dynamical response has to be taken into account at
the same time. One may also consider a different symmetry for the Wigner-Seitz sphere
for highly excited states. Finally, the implementation of an atom in the Jellium could be
done in the Flexible Atomic Code based on the model developed by F.Perrot [10, 11] or
the self-consistent approach of Blancard et al.[141].

e Cross sections

We have seen that because of the ion sphere neutrality, the long range behavior of the
potential is modified. Moreover, resonances appear around the energy threshold. The
DW method of FAC does not seem relevant in calculations of the collisional excitation
cross section, especially at low energy. Furthermore, the PWB used in our work is only
relevant by default. Therefore, it seems necessary to use different methods to investigate

the influence of the plasma effect on collisional cross section.
¢ Kinetic code

To be totally relevant, the Foch code should be extended to time-dependent problem. It
also appears desirable to include a more elaborate broadening in the spectra calculation
in order to estimate the real impact of the static screening on the line broadening.

We will intend to carry out the first and second points of these perspectives during the

post-doctoral activity of the present author.
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Vous étes tous les deux ténébreux et discrets :
Homme, nul n’a sondé le fond de tes abimes ;
O mer, nul ne connait tes richesses intimes,

Tant vous étes jaloux de garder vos secrets !

Et cependant voila des siecles innombrables
Que vous vous combattez sans pitié ni remord,
Tellement vous aimez le carnage et la mort,
O lutteurs éternels, o freres implacables !
Charles Baudelaire.

extrait de I’homme et la mer dans -les fleurs du mal-
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Résumé

Dans les plasmas chauds denses, I'interaction d’un ion avec les autres ions et les électrons
libres peut affecter fortement la structure atomique. Pour tenir compte de ces effets, nous
avons implémenté un potentiel plasma fondé sur le modele d'un gaz d’électron uniforme
et sur une approche de type Thomas-Fermi dans le Flexible Atomic Code (FAC). Ce code
a été utilisé pour obtenir les énergies, les fonctions d’onde, et les taux radiatifs modi-
fiés par I'environnement plasma. Dans des ions hydrogénoides, les résultats numériques
ont été comparés avec succes a un calcul analytique basé sur la théorie des perturba-
tions du premier ordre. Dans le cas les ions multi-électroniques, on observe un décalage
des niveaux, en accord avec d’autres calculs récents. Diverses méthodes pour les calculs
de section efficace de collision sont examinées. L’influence de la densité du plasma sur
ces sections est analysée en détail. Certaines expressions analytiques sont proposées pour
les ions hydrogénoides dans la limite ou 'approximation de Born ou Lotz s’applique et
sont comparés aux résultats numériques du code de FAC. Enfin, a partir de ce travail,
nous étudions l'influence de I'environnement de plasma dans le cadre d’un nouveau mo-
dele collisionnel-radiatif nommé Foch que nous avons élaboré au cours de cette these. En
raison de cet environnement, la charge moyenne du plasma augmente, ce qui est principa-
lement di a 'abaissement du continuum. Nous observons également un décalage des raies
sur les spectres d’émission. Un bon accord est trouvé entre notre travail et les données

expérimentales sur un plasma de titane.

Keywords : Modele collisionel-radiatif, sphere ionique, potentiel plasma, Flexible Atomic

Code, Section efficace collisionnelles
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Chapitre 9

Synthese

0.1 Introduction

La principale information a laquelle les physiciens ont acces, est le rayonnement émis par
le plasma. L’objectif du théoricien est de construire une théorie capable de retrouver ou
de prédire ces informations. Les photons émis par un plasma sont le résultat de transi-
tions d'un état atomique a un autre. Par conséquent, pour décrire les propriétés spectrales
(émissivité, absorption), il est nécessaire de déterminer les niveaux d’énergie atomiques et
leurs occupations. La modélisation d'un tel probleme est une tache complexe car le plasma
est un probleme a N-corps. Pour contourner cette difficulté, deux descriptions physiques
doivent étre combinées, I'approche statistique et I’approche atomique. La physique ato-
mique est utilisée pour calculer les populations atomiques, les énergies et les fonctions
d’onde, tandis que la physique statistique permet de caractériser la thermodynamique du
plasma.

Deux approches se dégagent pour modéliser les plasmas. La premiere approche tient
d’abord compte de ’environnement et de la thermodynamique d’une maniere cohérente et
est classé sous le terme générique de modele de I’atome moyen. Par environnement nous
entendons l’ensemble des effets des électrons libres et des ions voisins sur l'ion central.
La seconde approche cherche tout d’abord a déterminer la structure atomique d’un ion
isolé, puis dans un second temps détermine les populations des niveaux atomique par des
lois statistiques ou des équations cinétiques. Ces théories sont nommées ici "Hartree-Fock-
type” méme si une autre description atomique pourrait étre utilisée.

A T’équilibre thermodynamique les populations atomiques sont déterminées par les équa-
tions de Saha-Boltzmann. Dans le régime hors de 1’équilibre thermodynamique aucune loi
statistique ne peut plus étre déduite. En conséquence chaque état atomique dépend de tous
les processus atomiques qui le peuplent et le dépeuplent. Ces processus atomiques sont
divisés en deux catégories, les processus de collision et radiatifs. Pour calculer ces quanti-
tés, la physique atomique associée aux théories de la diffusion doivent étre considérés. Par

conséquent, pour obtenir les populations atomiques, il faut resoudre des équations ciné-
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tiques. Cette approche conduit a construire un modele appelé modele collisionnel-radiatif

Le but de ce travail de these est de fournir une description détaillé des plasma, le plus
souvent hors équilibre thermodynamique local. Pour réaliser cette tache, une approche de
type Hartree-Fock basé sur le code atomique FAC [20] a été choisie. Ce dernier fournit
la structure atomique ainsi que les sections efficaces collisionnelles. Un code collisionnel-
radiatif nommé Foch a été développé pour obtenir les populations atomique, I’émissivité
du plasma et d’autre propriétés. Ce code est capable de réaliser des calculs détaillés ou
en Unresolved Transition Array (UTA). Dans ce travail, un important effort a été fait
pour inclure 'environnement plasma dans le calcul de structure atomique. En effet, dans
les approches de notre domaine, les ions du plasma sont considérés comme isolés. Pour
modéliser cet environnement plasma nous avons choisis le modele dit de la sphere ionique.

La these s’articule ainsi autour de trois objectifs :

e Construire un code cinétique utilisant les données de FAC pour obtenir les popula-

tions atomique, ainsi que les spectres d’émission.

e Prendre en compte I'environnement plasma tout en conservant une description ato-

mique précise.

e Etudier les sections efficaces collisionnelles. Ce point a été motivé par l'inclusion
de I'environnement plasma, mais également par la nécessité de réduire le temps de

calcul

9.2 Définition des plasmas étudiés

Plusieurs parametres sans dimensions caractérisent les propriétés des plasmas que nous
étudions. La densité électronique N, et ionique /NV; sont liées par la condition de neutralité
N, = Z*N;

Z*étant la charge moyenne du plasma, nous exprimons dans ce travail la densité en cm™3.
Meéme si nous étude est principalement hors de 1’équilibre thermodynamique, nous sup-
posons les électrons libre thermalisés, et ainsi nous pouvons donc les décrire par une
température kT,. Le parametre k£ est la constante de Boltzmann et 7T, la température
des électrons. Cependant par convenance k7. désigne la température. Deux mécanismes
sont en compétition dans les plasmas : 'agitation thermique et 'interaction Coulombienne
entre électrons. Cette compétition est mesuré par le parametre de couplage I'. Cette quan-

tité est définie [3] par
Z*Q
I' =
RokT,

(9.2.1)
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en unité atomique, Ry est défini par la condition de neutralité

, 3z

%:mm'

(9.2.2)

Dans le cas d'une agitation thermique importante on al” < 1, le plasma est dit faiblement
corrélé (plasmas idéaux) et le désordre domine. De tels plasmas se rencontrent en fusion
magnétique et dans la couronne solaire. Au contraire pour I' > 1, le plasma est fortement
corrélé et il possede une structure organisée proche d’un fluide. Les intérieurs stellaires
constituent un bon exemple de plasma dominé par les force Coulombienne.

Le second parametre v détermine si les électrons libres doivent étre décrits par une
approche classique ou quantique. Définissant la longueur d’onde thermique comme A\, =
h/(2rmkT,)'/?, ou h est la constante de Planck et m la masse de I’dlectron. Nous expri-
mons y par

v = N2, (9.2.3)

Siy < 1, une statistique de Maxwell-Boltzmann peut s’appliquer pour décrire les électrons
libres mais si v > 1 la statistique de Fermi-Dirac s’impose.

Ce travail se concentre sur les plasmas denses avec une densité comprises entre 10°cm =3
et 10%cm ™3, c’est a dire des densités proche de 1'état solide. Concernant la température,
elle se situe au-dessus de 1’électron-volt, cependant, nous n’étudions pas les plasmas re-
lativistes pour lesquels k7, > mc?. Ainsi, les plasmas considérés dans ce travail sont
modérément & fortement corrélés 10 > I' > 1072, et la plupart du temps non-dégénérés

v <1

9.3 Cadre théorique

Dans le régime hors équilibre thermodynamique local (NLTE), les collisions par les élec-
trons libres ne permettent pas d’assurer la thermalisation des niveaux ioniques a cause
de I'importance des processus radiatifs. Sous cette hypothese 'équation de Boltzmann
n’est pas vérifiée, de méme pour I’équation de Saha-Boltzmann. Dans le régime NLTE,
nous devons tenir compte de tous les processus élémentaires qui peuplent et dépeuplent
les niveaux atomiques. Ainsi pour obtenir les populations atomiques nous devons poser
I’équation cinétique suivante

dnc;iZ) =2 Xk:nk(z)wg}z —n;(2)2 S Wi (9.3.1)

/
o W3* est la matrice contenant tous les processus élémentaire qui contribuent a la
, . . . . . . . ’ . ! ,
dépopulation du niveau j de I'ion z vers le niveau ¢ de I'ion z . La matrice W},* représente

tous les processus élémentaires qui peuplent le niveau j de I'ion z vers le niveau ¢ de I'ion
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. Les populations atomiques sont contraintes par la condition :
S ¥ i) = 1. (9.3.2)
Z

Ces équations de taux sont difficiles a résoudre pour plusieurs raisons. Premierement
pour décrire de maniere précise un ion, nous devons décrire un tres grand nombre d’états
(plusieurs milliers en pratique), mais également étudier plusieurs ions. Ensuite, il faut
prendre en compte toutes les transitions possibles entre ces ions, ce qui atteint aisément
le million de transitions. Pour simplifier notre tache, nous effectuons les hypotheses sui-
vantes : un environnement optiquement fin, une thermalisation des électrons libres, une
étude en régime stationnaire et un plasma uniforme. Ainsi, la thermodynamique du plasma

est entierement décrite par la température électronique k7T, et la densité électronique N,.

9.4 Modélisation de I'’environnement plasma

La plupart des développements présents dans littérature, via une approche de type Hartree-
Fock modélisent un ion isolé. Cependant, notre travail est consacré a des ions immergés
dans un environnement plasma. Peu de codes atomiques prennent en compte cet environ-
nement. La plupart du temps l'effet du plasma est ajouté dans le code atomique a travers
la théorie de perturbation ou bien a I’étape du code cinétique. Notre travail, constitue
une premiere tentative d’inclusion de l'effet du plasma dans le code FAC. L’environne-
ment des ions joue un role important a haute densité, conduisant a des effets tels que des
changements de polarisation de plasma, une ionisation induite par la pression, des chan-
gements sur les spectres d’absorption et d’émission ainsi que sur I’équation d’état. Tenir
compte de ces effets de maniere cohérente est une tache difficile puisque le nombre de
particules impliquées est tres élevé, ce qui suggere de traiter statistiquement les électrons
libres. Comme mentionné par Rosznay[8| nous distinguons deux types d’approches pour
modéliser I'environnement plasma : le modéle d’ion corrélation et le modéle de sphere
ionique.

Dans le modele d’ion corrélation, I'ion est immergé dans un médium polarisé infini
(aussi nommé jellium). Asymptotiquement, les charges positives et négatives s’annulent
mutuellement pour former un fond neutre. Le modele d’ions corrélation est surtout connu
et utilisé par la théorie de Debye-Hiickel [87, 88, 89]. Une autre approche liée a la densité
de la fonctionnelle est 'atome dans le jellium de Perrot [10] et Piron [11].

Dans le modele de la sphere ionique, I'ion est enfermé dans une cellule qui contient le
nombre exact d’électrons pour assurer la neutralité de la sphere. Le modele de la sphere
d’ionique a été largement utilisé [7, 9, 12, 90|, afin d’obtenir des niveaux d’énergie et
les taux de transition des ions dans les plasmas. Ces modeles supposent une symétrie
sphérique et définissent une répartition de densité d’électrons qui obéit a des équations

d’auto-cohérence. En couplant I’équation de Poisson et la distribution statistique des
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électrons, on peut obtenir le modele de Thomas-Fermi [91, 92] ou Thomas-Fermi rela-
tiviste [7], ou hypernetted-chain [3]. Toutes ces théories appartiennent a la théorie de
la fonctionnelle de la densité [93]. Il faut remarquer qu’elles supposent toutes 1’équilibre
thermodynamique. En outre, certains formalismes supposent une symétrie cylindrique et
utilisent une approche moléculaire décrivant I'interaction avec l'ion le plus proche [94];
cette approche concerne principalement les plasmas fortement corrélés .Lorsque qu’une
description quantique réaliste des électrons liés est nécessaire et lorsqu’il s’agit de traiter
des plasmas hors équilibre thermodynamique local (non-LTE), il est nécessaire de limiter
le traitement statistique aux électrons libres. En vertu de cette hypotheses (ion-sphere +
traitement statistique des électrons libres), nous avons tout d’abord utilisé le modele d'un
gaz uniforme d’électrons (UEGM), puis une approche de type Thomas-Fermi (TF). Les
deux approches sont mises en ceuvre dans le code FAC [20]. Nous rappelons qu’un modele
tres populaire pour les décalage des niveaux qui effectue la connexion entre le Debye-
Hiickel et le modele d’ions sphere a été développé par Stewart et Pyatt [95]. Toutefois ce
modele suppose un équilibre thermique pour les ions et les électrons, ce qui n’est donc
pas directement utilisable dans I'analyse de plasmas hors de 1’équilibre thermodynamique
local.

Dans ce chapitre, nous abordons brievement la théorie de Debye-Hiickel. Ensuite, une
discussion approfondie est effectuée sur le modele de la sphere d’ions pour la UEGM et
I’approche de type TF. Nous étendons les approches antérieures basées sur des hypotheses
UEGM en dérivant des formules analytiques pour des ions hydrogenoides non relativistes.

Ce travail d’analyse est utilisée pour vérifier les données atomiques du code FAC modifié.

9.5 Modeéle de la sphére ionique

Tous les modeles rattachés a I’approche de la sphere ionique supposent une cellule neutre
contenant un ion central plongé dans son environnement. De plus, il est supposé que la
densité d’électrons libres annule exactement la densité ionique au dela de la sphere de
Wigner-Seitz. Dans cette théorie le potentiel généré par cette densité de charge est calculé
par I'équation de Poisson. Les différents modeles de sphere ionique se départagent sur
la facon de déterminer la densité d’électrons libres. Nous présentons ici deux modeles de

sphere ionique, le modele du gaz d’électron uniforme et I’approche de type Thomas-Fermi.

9.5.1 Modéele du gaz d’électron uniforme

Le modele du gaz d’électron uniforme (UEGM) suppose une distribution uniforme des
électrons libre N,. Cette hypothese signifie que nous pouvons négliger la polarisation
des électrons libres par le noyau. Cette hypothese a été validé dans la référence [98],
en comparant les valeurs théorique du modele et des mesures expérimental dans le cas

d’ions tres chargés. Comme pour tout modele de sphere ionique (par exemple [9]), nous
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supposons qu’en dehors de la sphere, la densité d’électron libre compense la densité de

I'ion. Ceci assume la condition de neutralité

4
Z — Ny — gmgNe =0, (9.5.1)

ou Ry est le rayon de la sphere, Z le numéro atomique, N, le nombre d’électron lié et N,
la densité d’électron libre.

Sous I'hypothese d'un gaz d’électron uniforme, nous obtenons le potentiel

Zf 7’2 .
‘/plasma(r) = TRO (3 — R%) S1 7 S R() (952)
Zy .
‘/plasma(r) = 7 S17r 2 Ro. (953)
avec Zs le nombre d’électrons libres défini par
Zy =4 —N, (9.5.4)

Dans ce travail, nous n’avons pas imposé ’annulation des fonctions d’ondes a r =
Ry, contrairement a d’autre auteurs[99, 100]. Sachant que nous nous intéressons a des
plasma dense, le rayon de la sphere Ry peut étre assez large comme détaillé plus bas. De
plus, I'annulation de la fonction d’onde sur la surface de la sphere implique un potentiel
infiniment répulsif au-dela de la sphére, ce qui conduit a des effets non-physiques. Enfin,
malgré sa simplicité le modele UEGM a été validé contre des approches auto-consistante

et s’est ainsi révélé tout a fait acceptable pour des densités modérées [101, 102, 103, 104].

9.5.2 Approche de type Thomas-Fermi

Les équations auto-consistantes définissant la densité d’électrons libres et le potentiel
plasma dans une approche semi-classique — Thomas-Fermi restreint aux électrons libres
— a été discutée dans une série d’articles [97, 104]. La condition de neutralité est toujours

supposée dans la sphere de Wigner-Seitz de rayon Ry définie par
AT RN, /3 = Z;, (9.5.5)

avec les méme notations que précédemment. Les électrons libres et les autres ions sont
supposés se neutraliser, ainsi
ne(r) =0 for r > Ry. (9.5.6)

Afin de se conformer a la définition de la densité moyenne N,, nous devons imposer

Ro
47r/ dr r’n.(r) = Z;. (9.5.7)
0
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Nous supposons que les électrons libres se thermalisent, mais pas nécessairement les ions
ce qui est consistant avec les hypotheses du modele collisionel-radiatif. Ainsi la densité
des électrons libres suit

ne(r) o /OO dp p? exp <_ <pQ + V(r)) /kBT€> (9.5.8)
po(r) 2

ou kT, est la température des électrons libres et py(r) est la valeur minimale de 'impulsion
permettant a I'électron d’avoir une énergie positive i.c., po(r) = (=2V (r))"? if V(r) <0,
or 0 if V(r) > 0. Le parametre V (r) est I’énergie associée a I'interaction électrostatique
avec toute les charges incluse dans la sphere de Wigner-Seitz, c’est a dire le noyau, les
électrons liés et libres

—Z 4+ Vi(r) + Viu(r). r<R
vy = TR s R (9.5.9)
0 r > Ry

Le terme V(1) décrit 'interaction avec les électrons libres, que nous avons nommé po-
tentiel plasma. L’utilisation de la statistique de Fermi-Dirac n’est pas toujours nécessaire
comme discuté dans la section 9.5.3. Nous avons également supposé que les électrons sont
non relativistes, ce qui est vrai tant que kg7, < 511 keV.

La derniere équation, requise pour obtenir le potentiel plasma, est ’équation de Poisson.

Sous forme intégrale cette derniere s’écrit

1 T Ro
Vo(r) = 4w < / ds s*n.(s) +/ ds sne(s)> : (9.5.10)
™ Jo T
Cette expression assure que V;,(r) ainsi que ses dérivées soient continue en r = Ry, sachant

que V() = Zg/r sir > Ry, d’apres les hypotheses du modele de sphére ionique.
En supposant le potentiel attractif V(r) < 0, '’équation de Maxwell-Boltzmann (9.5.8)

conduit a
K v 3 V()
— V() kBT siep(2
ne(r) = e (2kpT) F<2, kBT) (9.5.11)
K V(r) 1/2 iz V(r) 1/2
= —(2kpT.)** || - —— e VO ksTeepfe | | — 512
5 (2kpT.) ( k:BTe> + e erfc T, (9.5.12)

la constante K provient de la condition de neutralité (9.5.7). Dans I'expression de la

densité, nous avons introduit la fonction Gamma incomplete
o0
I'(a, z) :/ dt t* e
x

ainsi que la fonction d’erreur complémentaire erfe(z) = (2/7/2) [*du e [57).

Pour I'implémentation numérique du modele, nous initialisons avec le modele UEGM
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puis itérons avec I’équation (9.5.12) pour déterminer le potentiel plasma (9.5.10). La
convergence du schéma numérique est controlée par la variation de densité sur la sphere
de Wigner-Seitz [n0V(Ry) — nlY(Ry)|, l'itération prend fin lorsque cette valeur devient
inférieur & e. Nous trouvons qu'une valeur de e = 10~% en unité atomique donne un schéma
auto-consistant de bonne précision et avec une convergence couramment atteinte en moins

de 12 itérations.

0.5.3 limitations du modéle

Nous discutons ici du domaine de validité du modele de la sphere d’ions. Tout d’abord,
si 'extension spatiale de la fonction d’onde de I’électron lié est plus grande que le rayon
de la sphere ionique, les orbitales de deux ions voisins se chevauchent et des effets quasi-
moléculaires doivent étre pris en compte. Cette condition est également reliée a la possi-

bilité d’ionisation a la pression. Le parametre décrivant ce recouvrement est
_ ()
Ry’

ou (r) est la taille moyenne de 'orbital la plus extérieur et R, la moitié de la distance

g (9.5.13)

entre deux ions voisins. Si 5 > 1, les fonctions d’ondes de deux ions voisins se chevauchent
significativement. Le code de structure atomique permet de calculer (r). Dans le cas d'un
ion hydrogénoide, I'extension classique de la fonction d’onde est liée a la position du
point tournant extérieur (r) < 2n?/Z, ou n est le nombre quantique principal. Pour les
ions multi-électronique, une estimation grossiere du rayon moyen peut étre obtenue en
supposant un écrantage complet par N, — 1 électrons liés, ainsi la taille de I'orbitale est
2n%/(Z — N, +1). Sachant que la fonction d’onde décroit de maniere exponentielle au-dela

du point tournant, il est suffisant d’imposer la condition

2 2
Zf’jrl < Ry (9.5.14)
ce qui revient a
Zp+1)32 74
N, < 0.03% ~2.10% = cm™® (9.5.15)
n n

Une condition similaire a été dérivée par d’autres auteurs [101, 103].

La discussion qui précede ne tient pas compte de la réponse dynamique des électrons
libres. En effet, lorsque 1’électron actif se déplace loin du noyau, les électrons libres neu-
tralisent la charge positive avec un temps caractéristique égal a I'inverse de la fréquence
de plasma. Dans ce cas, la charge nette vu par un électron situé loin du noyau est égal
a zéro, en contradiction avec la formule (9.5.3). L’électron actif est lié par un potentiel
—(Z — Ny + 1) /r — le noyau étant écrante par les autres électrons liés — ce qui ajoute
a électrons libres (Z — N,) /r et se traduit par une valeur non nulle -1 / r d’'un potentiel

de Coulomb loin de noyau. C’est pourquoi nous devons imposer a la fréquence orbitale
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d’électrons (ou fréquence de Bohr) womitar €t & la fréquence du plasma wype la condition
adiabatique
wpe - (47TN8)1/2 < Worbital (9516)

ce qui dans le cas hydrogénoide ou en supposant un écrantage complet par les électrons
liés s’écrit A
(Z; +1)

N, K
4mni

Z4
~ 5.35 x 10% = cm >, (9.5.17)
n

Cette condition est reliée a I'hypothese de non-recouvrement (9.5.15).Une condition évi-
dente est que wymitar est au dessus de la fréquence de coupure lorsque la condition (9.5.17)
est remplie. Constatant que les conditions (9.5.17) et (9.5.15) sont tres proche. Il parait
donc difficile de tenir compte de l'ionisation par la pression sans la réponse dynamique.
Le modele UEGM, n’inclut pas directement la température k7T, , cependant celle-ci
est relié¢ a la quantité Z; par l'intermédiaire de la balance d’ionisation — donnée par
I’équation de Saha ou tout autre modele d’ionisation—. On peut également estimer le

parametre de corrélation reliant k7, et Zy

ZQ
 —
RokT,

(9.5.18)
Numériquement, nous avons I' ~ 1 pour les parametres k7. = 650 eV et N, = 10%3cm ™3
— ce qui donne (Z;.) ~ 12 selon la loi de Saha pour I'aluminium. Ainsi, le modele présenté
s’applique pour les plasmas avec un faible ou moyen parametre de couplage.

Afin d’estimer si la statistique de Maxwell-Boltzmann ou de Fermi-Dirac s’applique

pour les électrons libre, nous devons estimer le parametre de dégénérescence définit par

o TFermi o (37T2Ne>2/3 . 32/37T1/3 ( 3 )2/3

v= T~ T 5 eArn (9.5.19)

En utilisant N, = 10%cm~2, nous obtenons kT ~ 8 eV. Ainsi, les plasmas considérés ici

seront généralement non-dégenerés. La condition de non-dégenerescence s’écrit

N, < 1 (9.5.20)

9.5.4 Développement analytique pour les ions hydrogénoides

Différent articles [97, 102, 103] ont montré qu’a partir du potentiel UEGM (9.5.2) une
expression analytique peut étre dérivée pour I’énergie au premier ordre de la théorie des
perturbations. Nous étendons ici cette approche en donnant ’expression explicite des
fonctions d’ondes, des taux radiatifs dipolaires et quadrupolaires au premier ordre des
perturbations, mais également les énergies et les fonctions d’ondes au second ordre. Pour
une approche simple, nous ne prenons pas en compte les effets relativistes. Ce travail

repose sur la théorie perturbative standard de Rayleigh-Schrodinger et complété par la
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technique de sommation de Dalgarno et Lewis [110, 111]. Nous notons, Hy ’hamiltonien

non perturbé avec les énergies propres Ei(o) et fonction propres @50)

, et V' le potentiel
perturbateur, Cette technique consiste a essayer de d’obtenir au premier ordre la fonction
)

propre @Z(»l par la résolution directe de I’équation en représentation r
(v|Hy— BV} = (x| - V[2), (9.5.21)
ou 'énergie au premier ordre obtenue est

EY = (o v]al”). (9.5.22)

Cette méthode peut étre généralisée a tous les ordres des perturbations. L’équation radiale
de la fonction d’onde hydrogénoide perturbée s’écrit R, (1) + v (r) ou R, est la fonction
non perturbé au premier ordre, n et [ étant respectivement le nombre quantique principal

et orbital, v,,; est solution de

# o 2d l(1+1) 2 1 Z
<+ (+1) ) /

pdp Yl = g

2 2
- .5.2
dp?  pdp 2 b n? <P> p°) Ru(r), (9.5.23)

ou p = Zr est le rayon mis a I’échelle. Pour assurer la neutralité, il faut que Z = Z; + 1.
Dans cette équation radiale, la dépendance a grand r (9.5.3) du potentiel plasma a été
ignorée . Comme étudié dans 'appendice A.1 cette oubli est acceptable tant que Ry >

2n?/7Z. Le carré du rayon moyen est donné par

() = ;n2(5n2 —3I(l+1)+1). (9.5.24)

L’essai de résolution que nous avons éffectué (9.5.23) dans de nombreux cas suggere qu’une
solution particuliere peut étre trouvée comme une somme du terme c¢;p’ exp(—p/n) avec
j variant de [ a n. La solution générale est donnée par une telle équation plus la solution
homogene habituelle R,; multipliée par une constante a déterminer. Pour obtenir une
correction au premier ordre convenablement normalisée, nous devons suivre la condition

d’orthogonalité
/ dpp*Rpvp = 0. (9.5.25)
0

Nous avons été capable d’obtenir une expression analytique pour n’importe quelle valeurs
de n,l , cependant leur écriture est trop lourde pour étre donnée explicitement. Nous

restreignons donc a des cas simples mais représentatifs, comme n =1+ 1
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Sin =1+ 1, la solution générale de 1'équation (9.5.23) avec normalisation s’écrit

7 9 /) +1/2 2
Vamo1 = (rfnn—1) = =4 2/n) (np3 + (0 + 1)

~ Z52R} (2n)11/2 \ 6 4
4
—n—(n +1)2n+1)(5n + 6)) P rePm,

24
(9.5.26)
Pour I’énergie correspondante, ’expression est
Z n? 1
n  _ 4 _ -
Eon1 = 5 (3 e (n+1)(n+ 2)) , (9.5.27)

Ces développements nous permettent de controler la qualité des résultats numériques
obtenue par la version de FAC modifiée.

9.6 Effet de I'’environnement plasma

Dans cette partie nous étudions 'effet du potentiel plasma sur la structure atomique, sur

les sections efficaces et sur le modele collissionel-radiatif.

9.6.1 Structure atomique

9.6.1.1 Energies

La différence entre les modeles de TF et UEGM réside dans la facon de considérer la
température. La température est directement présente pour 'approche TF a travers la
distribution de Maxwell. Alors que dans UEGM la température est implicitement présente
via la valeur supposée Z*. Sur la figure 9.6.1, nous tragons l’évolution de l'énergie de
liaison de Al XIII pour le niveau 1s; /5 en fonction de la température, et ceci pour les deux
potentiels (TF et UEGM). Nous voyons clairement que I’énergie de liaison croit avec la
température dans le cas de TF. Nous vérifions aussi qu’a haute température I’approche
TF converge vers le UEGM.

Le potentiel plasma de TF est toujours plus important que celui de UEGM. Ainsi, nous
pouvons attendre a ce que I’énergie de liaison soit plus basse avec TF qu’avec UEGM. La
figure. 9.6.2 confirme cette prédiction. Un point important est souligné par les figures 9.6.1
et 9.6.2 . L’effet le plus important sur le décalage des niveaux provient de la densité et
non pas de la température. Ce résultat est contraire a 1’observation faite par Salzmann et
Szichman’s [102] qui obtiennent dans certain cas un décalage du a 'UEGM est supérieur
a celui du a TF.
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FIGURE 9.6.1 — Influence of temperature on binding energy of Al XIII for 15/, level with
an average density N, = 10% cm 3

0.6.1.2 Fonction d’ondes

L’inclusion du potentiel plasma conduit a un écrantage par les électrons libre du champ
du noyau, ce qui conduit a un étalement des fonctions d’ondes. Cet effet peut s’observer
sur la Figure 9.6.3 pour 'orbital 3p;/» de I'aluminium hydrogénoide. Afin de vérifier les
calculs numériques, nous présentons sur la Figure 9.6.4 une comparaison entre les fonctions
d’onde obtenues par FAC et et les fonctions d’onde obtenues analytiquement via la formule
(5.4.15). L’accord entre les deux approche est tres bon lorsque la densité n’est pas trop
forte, tout comme pour le décalage en énergie. Comme mentionné précédemment, lorsque
la densité est trop élevée les deux calculs divergent car ’approche perturbative n’est plus
valable. L’effet du plasma observé sur les fonctions d’onde est modéré mais visible, ce
qui souligne la nécessité de les prendre en compte, comme par exemple pour les spectres

atomique.

9.6.1.3 Taux radiatifs

Avec I'analyse des fonctions d’ondes perturbées par l'effet du plasma, nous pouvons cal-
culer les taux radiatifs. Ces taux ont été calculés par le code FAC dans une approximation
non-relativiste.

Nous ne pouvons pas affirmer catégoriquement que tous les taux radiatifs décroissent ou
croissent avec I’augmentation de la densité. Un tel comportement a été mentionné par Li
et Rosmej [123]. Ceci a cause de la dépendance des éléments de matrice dipolaire vis-a-vis
de I’énergie de transition. Ce fait s’observe sur la Figure. 9.6.5, nous y voyons I’énergie de
transition croitre ou décroitre en fonction de la densité.

Plus spécifiquement, la transition d’énergie entre le triplet ® Py ; et le singulet 1Sy décroit
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FIGURE 9.6.2 — Influence of density on binding energy of Al XIII and XII for 1s;/, and
15215, levels.

avec la densité, dans le méme temps elle croit avec la densité entre le triplet Py et le
triplet 3S;. Ainsi les taux radiatifs peuvent avoir différent comportement en fonction de
la densité. Comme regle, la plupart des taux radiatifs décroissent a cause de l'effet du
plasma, ceci est dii a la diminution de AEf’j dans la probabilité de transition. Le cas de

la figure 9.6.6 est spécifique car AE;; est tres petit.

0.6.2 Sections efficaces

0.6.2.1 Excitation collisionnelle

Nous utilisons deux méthodes pour étudier les sections efficaces d’excitation collision-
nelles : 'approximation en onde plane de Born (PWB) et la méthode des ondes distordues
(DW) (voir chapitre 3 de [Sobelman1995] et le chapitre 4 de ce manuscrit.).

Le choix entre les deux méthodes nécessite de considérer le comportement asymptotique
supposé pour le potentiel a longue portée. Toutes les deux sont des théories perturbatives
et valables uniquement dans le cas d’un faible potentiel d’interaction entre la cible et
les électrons incidents. Les différences sont cependant importantes. DW tient compte
de la forme du potentiel a longue portée contrairement a ’approximation de Born. La
forme asymptotique de la fonction d’onde pour la particule incidente est une onde plane
pour PWB et de type Coulombien pour DW. Par conséquent, le modele DW n’est pas
pertinent lorsque les effets de densité sont inclus dans le cadre du modéle de sphere
ionique, car le potentiel asymptotique n’est pas Coulombien. Tout au plus, on peut utiliser
I’approximation DW lorsque la densité est si faible que le rayon est plus grand que la zone

ol le processus de collision a lieu. En outre, nous rappelons que la méthode DW mise en
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FIGURE 9.6.3 — Comparison of perturbed and unperturbed (solid line) large component
of the wave-function 3p; / in H-like Al obtained with FAC. The perturbed
wave-function has been computed assuming a N, = 2 x 10%* cm ™ free-
electron density. For the UEGM (red curve)(r) = 1.09 a.u , Thomas-
Fermi (green curve) (r) = 1.13 a.u and for the unperturbed situation
(r) = 0.98 a.u. The ion-sphere radius at this density is 2.13 atomic units.
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FIGURE 9.6.4 — Density effect on the 3d3/, wave-function of H-like aluminum. The large-
component variation P(N,) — P(N, = 0) calculated with FAC and the
first-order perturbed wave-function (5.4.15) are plotted as a function of
the radius. The upper subfigure corresponds to N, = 10?3 cm ™ and the
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FIGURE 9.6.5 — Energy of helium-like Al relative to the level 1sds 3S;versus density for
various levels of the configuration 1s4/ with Thomas-Fermi potential at

100 eV.
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FIGURE 9.6.6 — Dipolar radiative rates 1s4p®P;—1s453S; in Al XII versus average electron
density at T, = 100 eV.
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ceuvre dans FAC n’est pas fiable pour les neutres et quasi-neutres comme mentionné par
l'auteur de FAC et observé au chapitre 4 de cette these. En conséquence, I'approximation
en ondes planes de Born est utilisé dans ce travail lorsque 'effet de la densité est pris en
compte.

Nous devons souligner que rencontrons une difficulté pour observer I'influence du plasma
sur les sections efficaces d’excitation. En effet, le potentiel plasma change le comporte-
ment a longue portée du potentiel. Cependant, a haute énergie le méthodes DW et PWB
convergent, ce qui signifie que nous pouvons isoler I'influence de plasma.

Afin de comparer les résultats obtenus par PWB et DW, nous tragons sur la Figure.9.6.7

la section efficace d’excitation de la transition 1s-2p;/, de Al XIIL

e
o

e
—
wn

e
=

— DW with no density effect
— Born with no density effect
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>

T
I

|

i — Born with TF Ne=10"’cm™ and T=100 eV
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Energy of the scattered electron (eV)

FIGURE 9.6.7 — Comparison of excitation cross section for transition 1s-2p;/, for Al XIII
at several densities and 7' = 100 eV

Le comportement des sections efficaces donné par les deux méthodes est différent pres
du seuil en raison de la fagon dont elles traitent 'interaction a longue portée. A haute
énergie, les sections efficaces montrent le méme comportement. Sur la Figure. 9.6.7 on
remarque que 'effet du plasma contribue a diminuer la section efficace, méme si cela est
modéré. Pour observer un changement significatif, nous devons atteindre des densité de
l'ordre de N, = 10%° cm™3. A cette densité le rayon de la sphere de Wigner-Seitz est
Ry = 1.25 ag, ce qui est plus grand que 'extension de la fonction d’onde, dans ce cas le
parametre de couplage ZJ% /ET. Ry est proche de 1. Ceci signifie que notre formalisme vérifie
la condition de non-recouvrement [28] , et est applicable lorsque des effets de densité non
négligeables se produisent.

Nous avons vu que les taux radiatifs peuvent croitre ou décroitre selon la transition
étudiée. Le méme raisonnement s’applique aux section efficace d’excitation collisionelle.

Par exemple dans le cas de la transition de 1sdp 'P; vers 1s4d 'D, , 1'énergie diminue
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9.6 Effet de I’environnement plasma

3 ces deux niveaux se croissent. Pour

avec la densité, puis a partir de N, ~ 1.2 x 10?2 cm™
cette transition, nous avons observons une augmentation de la section efficace jusqu’a la
densité critique N, ~ 1.2 x 10?2 cm~3. Par la suite 1’émission s’effectue de 'D, vers ' P,
, et ainsi la section efficace décroit avec la densité. Une possible explication du croise-
ment de niveaux est que l'interaction électronique est faible. En conséquence, dans cette
situation le potentiel plasma a un effet plus fort, ce qui signifie que 1’électron lié interagit
préferentiellement avec le continuum plutot qu’avec les électrons liés.

Nous utilisons la formule de Van Regemorter [71] pour confirmer nos observations. Cette
formule est valable dans le cadre de I'approximation de Born et de Bethe (haute énergie

et transition dipolaire)
_ 8t Ry fy

70T /B e AR

ou AE;; est la transition d’énergie du niveau ¢ vers j, ag est le rayon de Bohr, R, la

g (ei/AEij)W&z, (9.6.1)

constante de Rydberg, e; I’énergie de 1’électron incident, g le facteur de Gaunt déterminé
par des observations empiriques et f;; la force d’oscillateur. Nous choisissons le facteur de
Gaunt suggérer par Mewe [72]

§=0.15+0.28log ( G ) . (9.6.2)
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FIGURE 9.6.8 — Excitation cross sections for the transition 1s;/9-2p;/, in Al XIII: com-
parison between Born approximation and Van Regemorter formula. The
upper figure represents the cross sections while on the lower figure are
plotted the variations o(N, = 0) — o(N, > 0) for both approximations.

Nous comparons les sections efficaces numériques et la formule de Van Regemorter sur
la Figure. 9.6.8. Nous notons que le décalage de la section efficace est similaire. Afin de

fournir une expression analytique nous utilisons un développement basé sur I'équation

141



Chapitre 9 Synthese

(9.6.1). Dans cette équation, l'effet de densité modifie la transition d’énergie AE;; et la
force d’oscillateur f;;. Le facteur de Gaunt est aussi modifié mais nous le négligeons car il
varie lentement avec AF;;. Ainsi I'amplitude de la section efficace dépend principalement
du rappor f;;/AE;;. A une constante numérique pres ce ratio corresponds au carré de

I’élément de matrice dipolaire :

fij
AEij

En utilisant les formules analytiques (chapitre 5) pour les ions hydrogenoide dans le
cadre du potentiel UEGM, nous sommes en mesure d’isoler la contribution du potentiel
du plasma par la décomposition de 1’élément de matrice a I'ordre 0 et au premier ordre

de la théorie des perturbations.

Nous calculons I’élément de matrice avec le potentiel UEGM dans un cadre non relativiste

et obtenons donc, en unité atomique

(1s|r|2p) = ;Zi\f <1 - 3229;};9 . (9.6.5)
Dans le case d’un ion aluminium hydrogénoide, nous obtenons
(1s |r| 2p)° = 9.925 x 1072 (9.6.6)
et pour une densité électronique moyenne N, = 10?4 cm ™3
<1s/|7|§p> = —1.8329 x 1074 (9.6.7)

A cette densité I’élément de matrice perturbé est tres petit. Les équations (9.6.6) et
(9.6.7) confirment que les sections efficaces d’excitations collisionelles ne changent pas
notablement.

Nous avons également constaté que les transitions interdites et permises sont affectées
différemment par ’environnement plasma. Ce fait a été observé par Hatton et al [115] qui

ont utilisé le formalisme de Debye Hiickel.

0.6.2.2 lonisation collisionelle

Ici, nous avons adopté le formalisme de TF pour inclure 'effet du plasma, pour les sections
efficaces d’ionisation, a la place de DW. C’est la méthode Binary encounter dipole theory
(BED) [83] qui est utilisé par FAC. Cette méthode combine le calcul des sections efficaces
semi-classique de Mott [86] pour la diffusion de deux électrons libres (valable pour les

grands transfert d’impulsion), et la théorie de Bethe [124] qui est fondé sur 'approxi-
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9.6 Effet de I’environnement plasma

mation en onde plane de Born (valable a haute énergie et petit transfert de quantité de
mouvement) avec seulement le terme dipolaire retenu. Cette théorie est d’un grand intérét
en raison de son applicabilité a la fois pour les ions et les neutres. Contrairement au cas
de 'excitation, nous n’avons pas besoin de changer notre approche de calcul lorsque 1'effet
de plasma est inclus.

Nous tragons sur la figure 9.6.9. la section efficace d’ionisation collisionnelle de 1’état
1s% & 1s pour l'aluminium, et ceci pour diverses densités. Nous y effectuons aussi une
comparaison avec la formule de Lotz [42]

Wy, €;
oy = CﬁaéRyZAE” log (AE) : (9.6.8)
7 3] 17

ou C' = 2.77, w, est le nombre initial d’électron dans la couche concernée par l'ionisation.

Notre but n’est pas de discuter la précision de la formule de Lotz par rapport a BED,
mais de caractériser l'effet du plasma.

La section efficace croit avec la densité, comme observé sur la figure 9.6.9. Nous expli-
quons cette augmentation par la diminution de ’énergie de transition qui ainsi conduit a
faciliter I'ionisation. La variation de la section efficace due a l'effet du plasma a 10* cm =3
et T'= 200 eV est la quasi similaire avec BED et la formule de Lotz. L’effet de la tempé-

rature est opposé a celui de la densité, quand la température augmente la section efficace
diminue.

S
%
I

— BED no density effect

— BED Ne=10"cm” kTe=200 eV
BED Ne=10"cm” kTe=200 eV 7]
— BED Ne=10"cm" kTe=50 eV :

02 BED Ne=10"'cm” kTe=200 eV
: Lotz no density effect

-~ Lotz Ne=10"cm” kTe=200 eV 1

=
=
|
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Cross section (10 " cm")
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Energy of the scattered electron (eV)

FIGURE 9.6.9 — Comparison of ionization cross section for the transition 1s? to 1s for
AIXII and XIIT at T = 200 eV. The free-electron density is obtained
from Thomas-Fermi model, and for the scattering process BED and Lotz
formalisms are compared.

Nous pouvons soutenir ces résultats en utilisant un formalisme fondé sur la formule de

Lotz et une approche perturbative avec le potentiel UEGM. Comme mentionné ci-dessus,
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dans UEGM, la correction de I’énergie du premier ordre pour un ion hydrogénoide est

Zy (3 (r?)
g0 _Zi ( _ m) | 9.6.9
plasma RO 2 2R(% ( )

avec

(r*) = 2”222 (5n* =31(1+1)+1). (9.6.10)

Par exemple, pour l'ionisation d’un ion hydrogénoide dans un état nl vers un ion épluché,

nous obtenons 'énergie de transition

7z Zy (3 (r?)
AE=—— - L= /nl 6.11

ce qui montre que I’énergie diminue avec la densité. La section efficace augmente a cause
de sa dépendance en énergie en 1/AE;;, comme observé sur la Figure. 9.6.9. L’étude sur
d’autres éléments a montré les meéme résultats.

Nos résultats sont en accord avec ceux de Wu et al [120] quant & 'augmentation des
sections efficaces d’ionisation avec la densité, bien que leur travaux utilisent I'approxima-
tion des ondes distordues. Comme mentionné par Pindzola et al [116], nous avons vérifié
que leur section efficace pour I'or germaniumoide est sous-estimée d’un facteur 2. Cepen-
dant pour Pindzola et al. [116] les sections efficaces diminuent avec la densité. Les auteurs
expliquent que ce comportement est lié a ’écrantage de l'interaction inter-électronique
par leur modele fondé sur Debye-Hiickel. Nous notons que leur travail étant basé sur
Debye-Hiickel, il n’est pas applicable pour les plasmas faiblement corrélés, alors que cette

restriction ne s’applique pas a notre travail.

0.6.3 Modeéle collisionnel-radiatif

Nous étudions ici, I'effet de I’'environnement plasma sur le code collisionel-radiatif. Le code
cinétique que nous avons développé se nomme Foch. Il est fondé sur les hypotheses faites
dans la section 9.3. Pour le code Foch, par défaut, tous les taux sont calculés par l'inter-
médiaire des données atomiques de FAC en effectuant une intégration de Gauss-Laguerre.
En raison de ce procédé, la grille dépend de la température électronique. Pour nos cal-
culs nous prenons 16 points pour réaliser I'intégration. Pour la résolution des équation
cinétiques, nous utilisons un solveur fonctionnant sur le principe d’une méthode LU pour
matrice a bande (dgbsvx de lapack [134]).

En ce qui concerne les spectres, le code calcule I’émissivité pour les processus, lié-
libre, libre-libre et lié-lié. Le profil de raie choisi pour les spectres lié-lié est un profil de
Voigt (méthode de Drayson [135]). Un profil Gaussien ou Lorentzien peut également étre
utilisé. Pour les calculs détaillés, nous utilisons un élargissement le naturel et Doppler.
Pour inclure 1’élargissement de Stark due aux collisions électroniques, nous utilisons la

formule semi-empirique de Dimitriejic [50].
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9.6 Effet de I’environnement plasma

Pour établir l'effet de ’environnement plasma sur le code cinétique, nous nous compa-
rons a une expérience récemment publiée par Khattak et al. [128] sur le Titane. Cette
expérience a été effectueé au laboratoire Rutherford Appleton sur 'installation lasers te-
rawatt ASTRA. Dans I'article un décalage de la raie He — « est rapporté. La raie He — «
non-décalée est prise a 4749.73eV, cette valeur provient de Beiersdorfer et al [137]. Nous
notons que le code FAC fournit une valeur de 4749.34eV.

Les mesures expérimentales [128] font état d'un décalage de la raie de 3.4eV avec d’une
largeur & mi hauteur (FWHM) de 12.1eV. Afin d’évaluer la densité et la température,
deux simulations ont été réalisées dans 'article. La premiere simulation a été menée par
le code hydrodynamique HYADES [138] et post-traité avec le code collisionnel-radiatif
SOBOLEV [139]. Cette simulation conclut que la densité du plasma excede 10**em™ avec
une température de 3000 eV. La seconde simulation a été faite avec le code de simulation
spectrale MARIA [140]. Ce dernier fournit une densité et une température proche du
premier calcul.

Pour notre simulation numérique (FAC+Foch), un décalage de la raie He — « de 3.4 eV

est obtenu pour une densité de 3.7 x10**cm 3

avec un température électronique de 3000 eV.
Dans ce cas le parametre de couplage est environ 1.94 avec une sphere de Wigner-Seitz
moyenne de 2.098a(Z* ~ 21.21). Le nombre quantique principal utilisé est de 3 afin de
satisfaire la condition wpe < Worpitar €t la condition de non-recouvrement.

Sur la figure 9.6.10, nous avons tracé le spectre lié-lié calculé avec la code Foch (pro-
fil de Voigt avec élargissement naturel et Doppler). Sur le graphique, la ligne verticale
en pointillé représente la raie He — « non décalée, la courbe rouge représente le spectre
lié-lié sans effet du plasma. La courbe bleue correspond au spectre lié-lié avec l'effet du
plasma et N, = 3.7 x 10?4cm =2 et kT, = 3000 eV. Ce graphique peut étre comparé a celui
mesuré[128]. Cependant, nous observons que le ratio entre la raie Li-likes et He — o est
supérieur a celui mesuré par [128]. Malgré tout, la densité et la température sont en bon
accord avec ceux mentionnés dans l'article. L’utilisation d’un élargissement naturel et Dop-
pler n’est pas suffisant pour retrouver la largeur a mi hauteur mesuré expérimentalement.
En conséquence nous avons ajouté un élargissement Stark via la formule semi-empirique
de Dimitriejic[50]. Nous obtenons une largeur & mi hauteur de~ 6.03eV ce qui est deux
fois plus petit que la valeur attendue. Nous expliquons ceci par I'absence de méthode

sophistiquée dans notre code pour la prise en compte I'élargissement des raies.
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FIGURE 9.6.10 — Bound bound spectra of Titanium element at N, = 3.7 x 10**cm~3and
kT. = 3000 eV with (blue curves) and without (red curves) screening.
Both spectra are calculated with natural and Doppler broadening. Black
dashed line represent the unshifted He — « line .
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Annexe A

Chapter 5 appendix

This appendix follows closely the appendix of our first article [2§]

A.1 Effect of the plasma potential out of the sphere on

the hydrogen-like ion energies

In the present perturbative development, we have substituted to the ion-sphere potential
(5.3.1) its inner form (5.3.2). We wish to evaluate here the influence of the correction
Z*(r*/2R: —3/2+ Ro/r)/ Ry for r > Ry. Since we require that the wave-functions do not

significantly extend beyond Ry, it is reasonable to use their large-r form [111]

. 223/2 (QZT/nnyleer/n

Ru(r) ~ (-1 ) Al1l
The correction to the energy at first perturbation order is
o z* 7”2 3 Ro

OE = drr*=— [ — — =+ —= | R%,(r). A12

[t (g5 ) R (A12)

Using the above asymptotic form of the radial wave-function we obtain

7z 1 3
E = — T(2n+3,a) — T(2n + 1 (2 A13
2nRo(n+ )l(n — 1 —1)! [2(12 (2n+3,a) = 5T (@n+1,a) +al(2n,a)]  (A-13)

where a = 2ZRy/n and I'(v, a) is the incomplete Gamma function [57]. Using the large-a
limit of this function, one obtains the correction to the energy
3Z*(2ZRy/n)* 2

0F =~ ~2ZRo/n Al4
2nR0(n+l)!(n—l—1)!e ( )
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which must be compared to both parts of the first-order energy shift

37* 7% n?

Sp="0 =
T 2R, ' 2R3222

(5n% = 31(1 +1) +1). (A.1.5)
Since we must ensure the non-overlap condition (5.3.27), we have estimated the ratios
po = 0E /3y and p; = 0E /6, assuming Ry = 2n?/Z. With such a choice, both ratios
are small. For instance, if n = [ 4+ 1, py is approximately 0.02 for n = 1, 0.002 for
n = 2, and decreases exponentially with n; p; ~ —0.07, —0.01, —0.0008 for n = 1,2, and 3
respectively. For n = [ 4+ 2, py ~ 0.005,0.0002,0.0007, and p; ~ —0.025, —0.01, —0.004
for n = 2,3, and 4 respectively. These ratios are even much smaller and more rapidly

decreasing with n for the larger ion-sphere radius Ry = 3n?/Z.

A.2 Quadrupolar matrix elements for hydrogenic ions

including ion-sphere perturbation

Quadrupolar radial matrix elements because of the r? ponderation are more sensitive
than dipoles to the outer region and therefore to the —Z*r?/2R3 part of the ion-sphere
potential. We will thus give here the first-order perturbed matrix elements.

Considering the n = [ + 1 case, the plasma-density induced first-order perturbation to
the quadrupole (n n — 1|7%|n+2 n+ 1) is the sum of two contributions, one for each

wave-function. The first one is

7% nn+17/2(n+2)n+3
(nn—1r*n+2n+1) = 7R 480§ 1) ((2n 4 1)(2n 4 3))Y/?

(72n° + 558n* + 1816n° + 3093n* + 2747n + 1014). (A.2.1)

and the second

70 R (n 4 2T

- Z5R3 48(n + 1)1/ (n+3)(2n+5)((2n+1)(2n+3))"/?

(nn—l\rQ\n+2n+1):

(12n® 4 54n* + 53n + 16). (A.2.2)

From this one gets the quadrupolar element up to first order

n+9/2 2)n+3 7
(nn—l\r2]n+2n—|—1>:n (n+2) 1 ()

1/2
Z%(n + 1)2n+9/2 ((n+1/2)(n+3/2)> [1 * ZAR312(n + 1)2
(A.2.3)
with

Q1(n) = 24n® + 390" — 819n°® — 5131n° — 14273n* — 22324n° — 20128n* — 9688n — 1920.
(A.2.4)
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This polynomial and therefore the correction in factor of Z*/Z*R3 is negative for n up to
7.
In the same way, the perturbation to the quadrupolar matrix elements (n n — 2| r? |n + 2 n)

has be obtained. The first contribution is

— T nn+15/2(n + 2)n+2
—_ 2 g
(nn—2r"[n+2n) Z6R3 48(n + 1)2n+15/2

(168n" 4+ 1194n° + 4492n° + 9055n* + 7957n” — 634n* — 5612n — 2640). (A.2.5)

((2n — 1)(2n + 1))2

The second one is
7% nn+7/2 (n + 2)n+6
ZGRg 48(n + 1)2n+15/2
(60n° + 318n° + 515n* — 265n> — 14561 — 1232n — 328). (A.2.6)

(n n—2|r2|n:2vn> = (2n 4 3)((2n — 1)(2n + 1)) /2

From which the quadrupolar matrix elements up to first perturbation order writes

nn+7/2(n 4 2)n+2
Z2(n + 1)2n+9/2

(n? — 1/4)"%(n* — 2n — 4)

Zy Qa(n)
ZA*R312(n+ 1)2(n? — 2n — 4)

(nn—=2[r2n+2n)=

1+ (A.2.7)

with

Q(n) = 24n' — 315n° — 3135n° — 12493n" — 23559n° — 8966n°
4 48036n* + 1017201 4 93408n? + 42688n 4 7872. (A.2.8)

The corrective factor Qo(n)/(n? — 2n — 4) is negative for 4 < n < 20 and positive for
n = 2,3, or n > 20.

A.3 Dipolar and Quadrupolar electric radiative rates for
hydrogenic ions

The radiative rate for dipolar electric transition n,l, — nlp is, in atomic units (me/h3 ~

4.13 x 10'% s71), for a spinless electron

Agp = @ l>

T 1E§b (Nala| 7 [nply)° (A.3.1)

where « is the fine-structure constant and I~ = max(l, ).
Concerning the case n, =n+1,l, = n,n, = n,l, = n— 1, using the obtained transition

energy (5.4.16) and radial matrix element (5.4.23) one gets the transition rate at zeroth
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and first order

20° 0" (n + 1)

0) _
Aab - 3 <n+ 1/2>4n+3 (A32)
* DA
4D = a® 1 - L lnt Ddin) (A.3.3)

 ZAR348(n+1/2)2]"

with
Aq(n) = 192n" + 1116n° + 2898n° + 4298n* + 3846n° 4 2024n* + 569n + 66. (A.3.4)

This shows that the ion-sphere potential lowers the radiative rate n +1 n — n n — 1,
whatever n. By inspection of corrections (5.4.16) and (5.4.23), it can be checked that both
have the same order of magnitude, but that the energy shift dominates the radial matrix
element perturbation. More precisely, for large n the dependence on the transition energy
is fg = 3AEu,/Ey ~ —62*n°/(Z*R3), while the dependence on the matrix element d =
(nala| T |naly) is fa = 2Ad/d ~ 2Z*n®/(Z*R3). However for n = 1, one has fg/fs ~ 0.64;
for higher n the ratio fg/f4 is greater than 1 in absolute value.

Concerning the case n, = n+ 1,l, = n —1,n, = n,l, = n — 2, using the perturbed
transition energy (5.4.16) and radial matrix element (5.4.30), one gets the zeroth- and

first-order rates

2743 n* " (n + 1)
3 (n+41/2)int!
Z* Ay(n)
ZAR3 48(n + 1/2)2

A — (n—1) (A.3.5)

A = A0 |1 — (A.3.6)
with

Ay(n) = 288n°+2028n" +4914n° +6354n° +5720n* +-4062n° +2024n>+-569n4-66, (A.3.7)

which shows that in the n = [ 4+ 2 case, the ion-sphere potential also lowers the dipolar
electric rate.

The quadrupolar electric radiative rate for the transition from level a with quantum
numbers n,l, to level b with quantum numbers nyl, in a spinless one-electron ion is given

in atomic units by ([30])

045 5 2 2 la 2 lb ’
Aab:ﬁEabmulaW Inaly)” (20, + 1) 0 0 0 (A.3.8)

where E,;, is the transition energy and the 3j symbol relevant for the present purpose can
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be expressed as

[ 2 1+2) 3(1+1)(1+2) 1/2
(0 0 0 )_(_Dl l2(2l+1)(2z+3)(2z+5) | (4.3.9)

For n, =n+2,l, =n+ 1,n, = n,l, = n — 1 the quadrupolar electric rate is given at
zeroth and first order by

40(5 6n2n(n + 2)21174
5) (n + 1)4n+3
z* Ri(n)
O Z'R312(n+1)2|°

0
A((zb) =

(A.3.10)

AD = A9 19 (A.3.11)

with

Ry(n) = 72n®+1017n" 4-5853n° +19052n° +39016n" + 51368n° +42056n° + 19376 + 3840.
(A.3.12)
Though for large n, the density correction to the matrix element (A.2.3) is positive,
the density correction to the above rate is always negative. As in the dipolar-electric
transition case, on notices that density corrections from energy shift as well as from matrix
element variation scale as Z*n%/(Z4R3). More precisely, for large n the dependence on the
transition energy is fp = 5AE,/Ey ~ —10Z*n5/(Z*R3), while the dependence on the
matrix element ¢ = (nyl,|r? |nyly) is f, = 2Aq/q ~ 4Z*n°/(Z*R3). However for n = 1,
one has fg/f, ~ 0.22 and for n = 2, fg/f, ~ 0.67; for higher n the ratio |fg/f,| is greater
than 1.
As a last example, using the above quadrupole (A.2.7),if n, = n+2,l, =n,n, =n,l, =

n — 2 the quadrupolar electric rate at the two lowest orders is

4o’ _sn* % (n + 2)*0
5 (n + 1)+
zZ* Ry(n)
C ZAR312(n + 1)2(n? — 2n — 4)

A — (n—1)(n? — 2n — 4)? (A.3.13)

A = A9 1 (A.3.14)
with

Ra(n) = 72n" + 17550 + 8985n® + 20606n" + 12888n° — 54848n°
— 174072n* — 246880n° — 196896n* — 85376n — 15744. (A.3.15)

The scaling properties of the various corrections for large n are identical as in the above
case (A.3.11). However for n = 3 the density-dependent corrective factor in the rate
(A.3.14) is positive.
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