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Abstract

In hot dense plasmas, the interaction of an ion with other ions and free electrons may

strongly affect the atomic structure. To account for such effects we have implemented a

potential correction based on the uniform electron gas model and on a Thomas-Fermi Ap-

proach in the Flexible Atomic Code (FAC). This code has been applied to obtain energies,

wave-functions and radiative rates modified by the plasma environment. In hydrogen-like

ions, these numerical results have been successfully compared to an analytical calculation

based on first-order perturbation theory. In the case of multi-electron ions, we observe

level crossings in agreement with another recent model calculation. Various methods for

the collision cross-section calculations are reviewed. The influence of plasma environment

on these cross-sections is analyzed in detail. Some analytical expressions are proposed for

hydrogen-like ions in the limit where Born or Lotz approximations apply and are com-

pared to the numerical results from the FAC code. Finally, we study the influence of the

plasma environment by including it in a new collisional-radiative model named -Foch-.

Because of this environment, the mean charge state of the ions increases. The line shift is

observed on the bound-bound emission spectra. A good agreement is found between our

work and experimental data on a Titanium plasma.

Keywords : Collisional-radiative model, Ion sphere, Plasma potential, Flexible Atomic

Code, Collisional cross sections
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Chapitre 1

Introduction

1.1 Context and motivations
This work tries to give a contribution to a better understanding of the fundamental nature

of plasma matter. Plasmas constitute the fourth state of matter in addition to the solid,

liquid and gas states. Few natural plasmas can be found on Earth, the most known

being the lightning and the auroras. The most interesting and studied plasmas remain in

space, the closest non-terrestrial plasma being the Sun. Stars make an excellent sample of

plasma diversity. Indeed, from the core of Sun to the corona, the temperature and density

are completely different. Three zones may be distinguished: the core, the radiative zone

and the convective zone. In the sun interior the density overcomes the solid state density,

with 1024-1026electron/cm3. Meanwhile, at the most external layer the density is very low,

around 1016electron/cm3. This diversity gives rise to different fields of plasma physics.

The plasma conditions related to our work are those prevailing from the core to the

radiative zone. The phenomenon which focuses the attention of an important part of the

plasma community takes place in the core of the Sun: the thermonuclear fusion reactions.

Gravitational fusion

The core of a star is governed by the equilibrium between two mechanisms, the radiation

pressure and the gravitational effect. The radiation pressure is the result of the emission

of photon stemming from the fusion reaction. At the beginning of their cycle stars are

made of light elements such as hydrogen and helium. Under the effect of the gravitation,

the density and the temperature (∼ 107K) reach a critical value which initiate the first

reactions of fusion. Once stars run out of light combustible elements, the radiation cannot

counterbalance the gravitation. As a consequence, the star is compressed under its own

mass leading to an increase of temperature and density which makes possible the ther-

monuclear reactions of heavier elements. This cycle is repeated until the star runs out of

combustible elements leading to its end. Of course, depending on the mass of the star the

scenarios of its death differ. The fusion is possible in stars because of their mass and a

1



Chapitre 1 Introduction

long time confinement of the combustible elements.

Fusion for energy

The objective of a part of the plasma community is to be able to reproduce the conditions

occurring in the core of stars, in order to achieve the fusion reaction. In the stars, several

fusion reactions take place, mostly the proton-proton fusion. The most common reaction

that the plasma community intends to reproduce is the reaction of two hydrogen isotopes,

the deuterium (D ) and the tritium (T), following the process

2
1D

+ +3
1 T

+ →4
2 He

2+ + n . (1.1.1)

Many reasons justify the interest for this reaction. Both elements are light elements, there-

fore the energy required to permit the reaction is sustainable. Other reactions involving

light elements exist, however, the cross section of the D-T reaction is the highest, and

possible at reasonable temperatures in the range 107−108K. Furthermore, the deuterium

can be extracted from the oceans, which represent an inexhaustible supply, the tritium,

in quantities too small in nature, has to be produced artificially in the cover of a reactor

using a neutron flux on lithium, which is also abundant in the earth’s crust. The Lawson

criterion gives the condition to obtain a profitable energy (twice the invested energy)

Neτ > 1014cm−3s, (1.1.2)

where Ne represents the electronic density and τ the time of confinement. On Earth, two

approaches have been retained to achieve this reaction of fusion, the magnetic and inertial

fusion.

Magnetic fusion [1]

This approach consists of confining the plasma for a long period of time (about seconds),

the plasma density is low around 1014electron/cm3. In order to confine the plasma, mag-

netic field is used. Different configurations or geometries can be used for that purpose.

The most famous and simple is the tokamak designed by the Russian physicists I.Tamm

and A.Sakharov. A tokamak has a shape of a torus and two magnetic fields are generated

to confine the plasma. One toroidal made by exterior coil which induced an helicoidal

trajectory of the plasma particles. To correct the transverse drift induces by the first

field, a poloidal field is added. This field is made by the toroidal current generated inside

the plasma. Other geometries exists such as the stellerators, in that case the magnetic

fields are both made by exterior coils. The community of magnetic fusion faces various

problems to achieve the project: plasma instabilities (link to the competition between the

magnetic field and the plasma drift), the plasma-wall interaction and turbulences (edge

and H mode).

2



1.1 Context and motivations

Inertial fusion [2]

For this approach, the plasma confinement time is very short ∼ 10−12
s−1 and the densities

are very high 1024−1026
electron/cm3. The idea is to encapsulate in a nanometric pellet a

gas of deuterium and tritium. Then high power lasers are used to compress the pellet in

order to reach the requested densities. To compress the capsule, different schemes exist:

direct irradiation, indirect irradiation with the support or not the so-called method fast

ignition. The direct irradiation is a direct compression of the capsule by the lasers. A

good efficiency of this method requests an uniform compression. In the indirect scheme,

the capsule is set in a cavity made of a high Z element, usually gold. In that scenario

the cavity targeted by the laser beams re-emits of X-ray radiation leading to the capsule

heating. The higher is the atomic number, the more important is X-ray conversion and

then the heating efficiency. The efficiency of the energy conversion from the cavity to

the capsule constitutes the weakness of that approach. The plasma generated by the

process described above, presents the same diversity as the stellar plasmas. Indeed, three

domains can be distinguished, each one of them being characterized by a different range

of temperature and density. These are:

• Shock zone: The plasma is highly compressed leading to a density higher than the

solid state but the temperature is quite low ∼eV.

• Conduction zone: In that region the density is between the solid state density and

the critical density. This latter density is defined by Nc(cm−3) ' 1021/λ2, where λ is

the laser wave-length in µm. When this density is reached the laser cannot propagate

any futher. For a laser with a wavelength λ = 0.1µm, Nc = 1023electron/cm3. The

temperature increases due to the heating of the target by the X-rays, its order of

magnitude being between 10 eV to 1 keV.

• Corona: The density of that region is below the critical density and the temperature

rises to one keV or more.

In order to make these technological innovations possible, the physicists have to be able

to predict and diagnose the evolution of the plasma. This present work mainly finds

its application in the inertial fusion and astrophysical plasmas such as stellar interiors.

However, this work may also be applicable to the analysis of radiative losses in the divertor

zone, and can be extended to industrial applications like nano-lithography, or X-ray and

XUV sources. To illustrate the diversity of plasma, we have set the diagram

3



Chapitre 1 Introduction

Figure 1.1.1 : Temperature-density phase diagram of plasmas

1.2 Plasma parameters
Several dimensionless parameters characterize the properties of plasmas under investiga-

tion. The density of the electrons Ne and the ions Ni are linked by the neutrality condition

Ne = Z∗Ni (1.2.1)

Z∗being to the mean charge of the plasma, starting from here the density is expressed

in cm−3 instead of electron/cm3. Even though our study is out of thermodynamical

equilibrium, we assume here that free electrons are thermalized, and therefore can be

described by a temperature kTe. The parameter k is the Boltzmann constant and Te

the electron temperature, however for convenience kTe is used as the temperature. Two

mechanisms compete in plasmas: the thermal motion and the Coulombic interaction

between electrons. This competition is measured by the coupling parameter Γ. This

quantity is defined [3] by

Γ = Z∗2

R0kTe
(1.2.2)

with the temperature and radius in atomic unit, where R0 is defined in this work by the

neutrality condition

R3
0 = 3Z∗

4πNe

. (1.2.3)

In the case of an important thermal motion Γ � 1, the plasma is weakly correlated

(ideal plasmas), disorder dominates. Such plasmas are found in magnetic fusion or stellar

corona. On the other hand if Γ � 1, the plasma is strongly correlated, the structure of
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the plasma is organized and close to a fluid. Stellar interior plasmas are a good example

of plasmas dominated by the Coulombic force.

The second parameter γ determines whether if the free electrons have to be described

by a classical or a quantum approach. Defining the thermal de Broglie wave-length as

λth = h/(2πmkTe)1/2, where h is the Planck constant and m the electron mass. We

express γ by

γ = Neλ
3
th (1.2.4)

If γ � 1, a Maxwell-Boltzmann statistic is relevant to describe the free electrons but if

γ � 1 a Fermi-Dirac statistic has to be used.

The present work focus on dense plasmas with densities from 1015cm−3 to 1025cm−3, i.e

which can be as high as solid density. Concerning the temperature we investigate plasma

above the eV, however, we will not study relativistic plasmas for which kTe ≥ mc2.

Therefore, the plasmas considered in this work are moderately to strongly correlated

10 > Γ > 10−2, and usually non-degenerate γ < 1.

Figure 1.2.1 : Temperature-density phase diagram for aluminium. The relevant regimes
are noted, as are the various values of the coupling parameter Γ.[4]

1.3 État de l’art
The main information that physicists have access to in hot and dense plasmas, is the

radiation emitted by the plasma. The goal of the theoretician is to build a theory able to
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Chapitre 1 Introduction

retrieve or predict this information. The photons emitted by the plasma are the result of

transitions from one atomic state to another. Therefore, to describe the spectral properties

(emissivity, absorption), it is necessary to determine the atomic energy levels and their

occupations. It is a complex task to model such a problem because plasma is a N-body

problem. To circumvent this issue, two theoretical approaches have to be combined, the

statistical and the atomic approach. Atomic stucture theory is used to calculate energies

and wave-functions, while statistical physics characterizes the thermodynamics of the

plasma and obtain the atomic populations.

We focus our attention on two approaches to draw a picture of our theoretical field. The

first one involves the plasma environment and thermodynamics in a consistent way and

is classified under the generic term of average atom model. By environment we mean the

effect of the free electrons and neighbouring ions of the central ion. The second approach

solves the atomic structure and then obtains the level populations from statistics or kinetic

equations. These theories belong to what is called here the chemical picture.

Average atom models

Those models mostly rely on Density Functional Theory (DFT), founded by Hohenberg

[5] and Kohn [6]. In the DFT theory, the N-body problem is reduced to the determination

of a spatially dependent charge density. Instead of obtaining the N-electron wave function

of the system, the effort is made on the electronic density. In the AA model, the idea

is to model the plasma by a fictitious atom. This model allows to calculate an average

electronic structure. We may distinguish two groups of average-atom models depending

on the way they model the plasma environment.

In the first group, the plasma is divided into neutral cells named Weigner-Seitz cells;

each cell is centred around a nucleus of charge Z. Each cell also contains the exact number

of electrons to ensure the neutrality of the sphere. The first average-atom model with a

quantum treatment was proposed by Rozsnyai [7, 8]. In the original version of Rozsnyai

the Weigner-Seitz cell is spherical and periodic conditions are imposed on the sphere.

The boundary condition requires that the wave functions and their derivatives cancel on

the sphere. The last hypothesis is relevant in the case of condensed matter but not of

plasmas. In his work, the bound electrons are treated by the theories of bands, while

the free electrons are treated via the Fermi-Dirac statistics. In the INFERNO model

of Liberman [9], the bound and free electrons are treated via quantum mechanics. The

condition of periodicity [7] is replaced by a uniform density of electron gas (also named

jellium) beyond the ion sphere. This requires that the derivative of the potential to be

zero outside the Weigner-Seitz sphere but not that the wave functions are zero on the

sphere.

The second group of models is based on the atom in the jellium developed by Perrot [10]

and completed by Blenski and Piron [11, 12]. In their work, the atom is set in a jellium

as in the INFERNO model, but the condition of neutrality of the sphere is replaced by a

6
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global neutrality with the jellium. In that model [11] all electrons are treated via quantum

mechanics.

The strength of the average-atom theory lies in its description of the plasma environ-

ment. This environment plays a significant role for strongly correlated plasmas. This

type of approach is mainly used when plasma is in thermodynamical equilibrium. There-

fore, the atomic populations are determined by statistical laws (Saha-Boltzmann and

Boltzmann statistics). However, the weakness of the average-atom model lies in the de-

scription of the spectral properties. Indeed, the levels of the AA model are calculated

without taking into account explicitly the electrostatic interaction between electrons. In-

deed, most of the time in the AA model the problem is not purely described by a DFT

approach. The exchange-correlation potential is modeled by a local density approximation

(LDA); this type of approach is called DFT-LDA.

Chemical picture

In the following, approaches starting with isolated ion are classified under the generic term

of ”chemical picture” though this term roughly regroups the corresponding theories. In

this type of approach, the plasma effects (statistics and plasma environment) are included

in a subsequent step. The objective of this approach is to provide the wave functions and

energies of all ions present in the plasma. To obtain those quantities, we have to solve the

Schrödinger or the Dirac[13] equations of each present charge state. In order to obtain

this atomic structure for isolated ions, many atomic codes have been developed over

the past decades such as the non-relativistic Cowan code [14] and SUPERSTRUCTURE

[15], relativistic codes such as HULLAC [16], MCDF [17], RATS [18], GRASP [19] and

the Flexible Atomic Code (FAC) [20]. The difference between these codes is mainly in

the potential used. The Chapter 2 will provide more details on the atomic structure

calculation.

This theory and codes can be called detailed because atomic states are calculated. Such

an approach prevails in the case of low Z elements and therefore provides accurate and

detailed atomic spectra. However, in the case of intermediate to high Z element, such

a method represents a prohibitive task due to the high number of levels and possible

transitions (in principle infinite but in practice limited to the computing capacities). To

circumvent this problem, an idea is to regroup the electronic levels into configurations [21]

or to regroup them into super-configurations[22]. This regrouping is relevant when energies

of levels are close enough (compared to temperature kTe) to be at thermal equilibrium.

Furthermore, in the case of high Z plasma, meaning a high number of bound states, the

atomic spectra of a detailed calculation are characterized by complex structures due to the

overlap of many lines. The approach proposed by C. Bauche-Arnoult et al. [23] reduces

that problem; this method is called Unresolved Transition Array (UTA) for intermediate Z

and Spin-Orbit-Split-Array (SOSA) for high Z values. They suggested to treat statistically

those unresolved transitions by representing them as a continuous envelope. UTAs or

7
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SOSAs are usually modeled by one or many Gaussian(s) whose amplitude and width are

evaluated through the moments of the energy distribution of the lines.

An other kind of approximation that we classify in this group (for conveniency), is the

screened-hydrogenic model [24]. This type of approach is used in the FLYCHK code [25],

in the work of Scott et al. [26] and in the reference of Faussurier et al. [27].

The main weakness of the detailed calculation compared to the average-atom approach

is the fact that the ions are considered to be isolated. When the density can be considered

low, the plasma is weakly coupled and the effect of the plasma environment on the ion can

be disregarded. However, in the dense to highly dense regime, the presence of free electrons

and neighbouring ions break the picture of an isolated ion. An important objective of this

thesis is the inclusion of the plasma environment in the atomic structure code. In the

chapter 5 we will discuss the several approaches to model the plasma environment in

detail.

1.4 Objectives
As mentioned before, in thermodynamical equilibrium the atomic populations are de-

termined by the Saha-Boltzmann equations and Boltzmann statistic. Out of local ther-

modynamical equilibrium regime, each atomic population depends on all atomic processes

which populate and depopulate the atomic level to the others. These atomic processes

are divided into two categories, collisional and radiative processes. To calculate these

quantities, atomic and scattering physics have to be considered. Therefore, to obtain the

atomic populations, kinetic equations have to be solved. Such approach leads to build the

so-called collisional-radiative models which amounts to solve a large set of kinetic equa-

tions. The Chapter 3 is devoted to the kinetic equations in plasmas, and in the chapter

4 a non-exhaustive review of atomic-process calculation is made.

The goal of the present thesis is to provide a detailed description of the plasma mostly

out of thermodynamical equilibrium. To achieve this task, a ”Chemical picture” approach

based on the FAC code [20] was chosen to provide the atomic structure and the collisional

cross sections. An important effort was the inclusion of the plasma environment via an

ion sphere model. This approach led us to modify the physical and numerical content of

FAC. A collisional-radiative code named Foch has been developed to obtain the atomic

populations, the plasma emissivity and other plasma properties. This code is able to carry

out both detailed and UTA calculations. Our research had three objectives:

• Build a new kinetic code using the data from FAC in order to obtain the atomic

populations and emission spectra.

• Take into account the plasma environment while keeping an accurate atomic de-

scription.
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• Investigate into details cross sections calculations. This point was motivated by the

inclusion of the plasma environment, but also by the need to reduce the calculations

time.

1.5 Organization of the manuscript
The manuscript is built in six parts to answer to those objectives. In the second chapter,

we describe the atomic physic used for plasmas. The aim of this chapter is to provide

basic knowledge of atomic physics and to introduce the necessary formalism for the study

of the plasma influence on the atomic structure (chapter 5 and 6) and the collisional

processes (chapter 4 and 6). The third chapter is dedicated to the general theory of

thermodynamical regime of plasma. Its interest is to set the collisional radiative model

and to give the main formulas relevant for the present work. In the fourth chapter, a

review of the method to calculate collisional cross section is done. While the main goal of

this thesis is to include density effects in plasma modeling, it was unclear for the present

author how the electron impact calculations should be considered in plasma modeling.

Therefore, we choose to do some investigation of electron impact excitation in order to

better understand the validity of the basic atomic theory as it applies to collisional-

radiative modeling. Furthermore, this part is necessary for understanding the influence of

the plasma environment on the collisional cross sections. The central part of this work is

the chapter 5 which is devoted to the model of the plasma environment. It presents the

existing ways to model the plasma environment; a review and discussion of the ion sphere

model is made. We explain our choice of plasma potential and the domain of validity of

our approach. An extensive investigation of the ion sphere plasma potential is done via

the development of analytical formulas for hydrogen-like ions. The latter developments

support the numerical results in the next chapter. After presenting the theory under our

plasma potential, we show in the chapter 6 the influence of the plasma environment on the

atomic parameters such as energies, wave functions and on cross sections. The chapters

5 and 6 follow closely two articles; one is published [28] and the other is submitted [29].

In the chapter 7, we analyze how the influence of the plasma environment affect the

collisional rates; and more generally the population kinetics. The different results of this

chapter are obtained through our new kinetic code Foch. In this part we will first validate

the kinetic code without plasma effect by comparing numerical results with an experiment

at low density on the krypton. Next, we investigate the density effect on an aluminium

plasma. To conclude this chapter, a comparison with a recently published experiment on

titanium which highlights the effect of the plasma environment, is shown. We end this

manuscript by summarizing results obtained and describe the perspectives of this work.
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Chapter 2

Atomic Structure

2.1 Introduction
To accurately model the kinetics or radiative transfer in a plasma, we need a reliable

atomic structure model. When dealing with highly ionized plasmas, it may be preferable

to use a fully relativistic theory, i.e Dirac equation instead of Schrödinger equation. A

wide variety of codes is available in the literature, based on Hartree-Fock or parametric

potential formalism [14, 17, 16, 15].To provide these atomic data, we have chosen the

Flexible Atomic Code [20]. This fully relativistic code is widely used by the plasma

NLTE community. FAC has the advantage to be available without explicit restrictions of

use. FAC also allows to calculate the collisional cross section needed for the resolution of

the collisional-radiative model.

In this part we first present the Schrödinger and Dirac equations for one particle in a

central field. Some analytical formulas noted here for hydrogen-like ions will be confronted

to FAC results in the analysis of plasmas environment effects (chapter 5). Then, we discuss

how to describe multi-electron ion. A short review of different average potential is done.

This chapter ends with models which account for the thermodynamics of the plasma.

Atomic units are used throughout this chapter.

2.2 Schrödinger equation
The Hamiltonian for a single particle in a spherical potential V (r) field writes [30]

HS = p2

2 + V (r) , (2.2.1)

where p is the kinetic momentum of the particle. From the Hamiltonian (2.2.1), we can

write the Schrödinger equation

[∆ + 2 (E − V (r))] Ψ (r, θ, ϕ) = 0, (2.2.2)

11
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where Ψ is the wave-function of the particle which respects the normalization condition,

for bound states 〈Ψ|Ψ〉 = 1, E is the energy associated to that wave-function and ∆ is

the Laplacian operator. The system (2.2.1) possesses three degrees of freedom (r, θ, ϕ). It

requires three observables which commute to characterize the eigenfunctions. The above

Hamiltonian commutes with the z component of the orbital angular moment operator L.

This operator is defined by

L = r ∧ p, (2.2.3)

where r is the position and p the momentum of the particle. The square of this operator

L2 and its z component Lz commutes with the Hamiltonian HS. We obtain from these

observables the eigenvalues called quantum numbers which characterize the system. Op-

erators L2 and Lz only depend of the coordinates θ and ϕ, therefore their eigenfunctions

only depend on θ and ϕ. Their eigenfunctions Yl,m (θ, ϕ) are the spherical harmonics

with eigenvalues l (l + 1) and m for L2 and Lz respectively; l corresponds to the or-

bital quantum number and m to the magnetic quantum number. The structure of the

Hamiltonian suggests to decompose the wave-function in a product of a radial and spher-

ical function Ψn,l,m (r, θϕ) = 1
r
Rn,l(r)Yl,m (θ, ϕ) , where n is the principal quantum number.

By replacing the wave-function with this product, we obtain for the radial equation

∂2Rn,l

∂2r
+ 2

(
E − V (r)− l (l + 1)

2r2

)
Rn,l = 0. (2.2.4)

The radial function Rn,l has to respect the boundary condition Rn,l (0) = 0 and Rn,l(∞) =
0 because Ψ has to be finite everywhere. We point out that in the case of fermions as in

our concern we have to take into account the spin of the particle. Taking into account

the electron spin, the wave-function Ψ includes a Pauli spinor i.e

Ψn,l,m,ms = 1
r
Rn,l(r)Yl,m (θ, ϕ)χms(sz), (2.2.5)

where χms(sz) is the spin eigenfunction , sz is the component of the spin operator S and

mz the spin quantum number. At the non-relativistic approximation the Hamiltonian

does not depend on the spin of the particle. When dealing with relativistic effect at first

perturbation order additional terms are added to the Hamiltonian:

HS = p2

2 + V (r)− α2

4

[
(E − V )2 + dV

dr

∂

∂r
− 2
r

dV

dr
L · S

]
. (2.2.6)

where α is the fine structure constant. In equation (2.2.6) in order of appearance, the

corrections are the mass-velocity effect, the Darwin term and the spin-orbit interaction.

These terms are derived from the Dirac equation that we will see in the next section (2.3).
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Hydrogen-like ions

The radial equation (2.2.4) can be solved analytically in a Coulomb field, which corres-

ponds to the case of hydrogen-like ions. The bound energies are

E = −Z2/2n2 (2.2.7)

The corresponding radial wave-functions are

Rn,l (r) = Z1/2

n

√√√√(n− l − 1)!
(n+ l)! ρl+1e−ρ/2F 2l+1

n−l−1 (ρ) ., (2.2.8)

whereρ = 2Zr/n and F 2l+1
n−l−1 (ρ) stands for the Laguerre polynomials,

F 2l+1
n−l−1 (ρ) =

n−l−1∑
m=0

(−1)m
m!

(n+ l)!
(2l + 1 +m)! (n− l − 1−m)!ρ

m. (2.2.9)

These results will be used in the analytical developments of the chapter 5.

2.3 Dirac equation
The detailed theory for relativistic atoms may be found in the books of Johnson [31] and

Grant [32].The Dirac Hamiltonian for a single particle in a central field V (r) writes

hD(r) = cα · p+ c2β + V (r) , (2.3.1)

where c is the speed of light, p the impulsion vector of the particle, α and β are Dirac

matrices of dimension 4× 4. They are defined by

α =
 0 σ

σ 0

 β =
 I 0

0 −I

 , (2.3.2)

where I is the identity matrix and σ = (σx, σy, σz) is the Pauli matrix of dimension 2× 2.

The Pauli matrix is linked to the spin angular momentum operator S by

S = 1
2σ. (2.3.3)

The system possesses four degrees of freedom, three of space (r, θ, ϕ) and one for the

spin. We need four quantum numbers to fully describe the system. Contrary to the

non-relativistic case, the Hamiltonian hD does not commute with the orbital angular

momentum L but with the total angular momentum J, defined as follows:

J = L + S. (2.3.4)
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The eigenvalues of the operator J2 are j (j + 1), with |l − s| ≤ j ≤ |l + s|, where l (l + 1)
and s (s+ 1) are the eigenvalues of the operator L2 and S2, respectively. For electrons the

spin value is s = ±1/2 meaning j = l ± 1/2. As mentioned before the Hamiltonian does

not commute either with L or with S. Thus, the spherical harmonics Ylm (θ, ϕ) and the

two-component spinor χµ (µ stands for the spin up or down) are no more eigenstates of

the system (2.3.1). However, by combining them we obtain the eigenstates of the Dirac

Hamiltonian, which are commonly named spherical spinors Ωjlm (θ, ϕ). The spherical

Pauli spinors write

Ωjlm (θ, ϕ) =
∑
µ

C (l, 1/2, j,m− µ, µ,m)Ylm−µ (θ, ϕ)χµ, (2.3.5)

where C (l, 1/2, j,m− µ, µ,m) is a Clebsch-Gordan coefficient [31], µ = ±1/2 due to the

spin value of electrons. The two component spinor χµ, for electrons is

χ1/2 =
 1

0

 χ−1/2 =
 0

1

 . (2.3.6)

Spherical spinors are eigenfunctions of σ ·L. We define the operator K = −1−σ ·L for

which eigenvalues are

KΩjlm (θ, ϕ) = κΩjlm (θ, ϕ) , (2.3.7)

where κ is the quantum relativistic angular number, defined by

κ =

l if j = l − 1
2

−l − 1 if j = l + 1
2

. (2.3.8)

For the total angular momentum eigenvalues are

J2Ωjlm (θ, ϕ) = j (j + 1) Ωjlm (θ, ϕ) (2.3.9)

and

JzΩjlm (θ, ϕ) = mΩjlm (θ, ϕ) . (2.3.10)

Through the new quantum number κ we can write that Ωjlm (θ, ϕ) = Ωκm (θ, ϕ). Including

the explicit value of the Clebsch-Gordan coefficients, one has the spherical spinors

Ω−l−1,m (θ, ϕ) =
 √

l+m+1/2
2l+1 Yl,m−1/2 (θ, ϕ)√

l−m+1/2
2l+1 Yl,m+1/2 (θ, ϕ)

 (2.3.11)

Ωl,m (θ, ϕ) =
 −√ l−m+1/2

2l+1 Yl,m−1/2 (θ, ϕ)√
l+m+1/2

2l+1 Yl,m+1/2 (θ, ϕ)

 (2.3.12)
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An important property of the spherical spinors is that they fulfill the orthonormal condi-

tion as the spherical harmonics do for the Schrödinger equation.

To summarize, the system (2.3.1) is determined by four quantum numbers: the principal

quantum number n, the total angular momentum j, the relativistic quantum number κ

and the magnetic quantum number m. We solve now explicitly the Dirac equation with

a spherical potential

hDΨn,κ,m = En,κ,mΨn,κ,m, (2.3.13)

where Ψn,κ,m is the wave-function of the system associated to the energy En,κ,m ≡ E. We

try to find wave-functions under a factorized form in radial and angular parts

Ψn,κ,m = 1
r

 Pn,κ(r)Ωκ,m (θ, ϕ)
iQn,κ(r)Ω−κ,m (θ, ϕ)

 . (2.3.14)

The radial parts Pn,κ and Qn,κ are called large and small wave-function component, re-

spectively. Before applying the operator hD on the wave-function we have to express the

term σ · p = −iσr
(
∂r + K+1

r

)
[32],

hDΨn,κ,m =
 1

α2 + V (r) − i
α
σr
(
∂r + K+1

r

)
− i
α
σr
(
∂r + K+1

r

)
− 1
α2 + V (r)

 Pn,κ(r)
r

Ωκ,m (θ, ϕ)
iQn,κ(r)

r
Ω−κ,m (θ, ϕ)

 ,
(2.3.15)

where α is the fine structure constant. We then obtain a system of two coupled equations

for the radial part [
d

dr
+ κ

r

]
Pn,κ (r) = α

[
E − V (r) + 2

α2

]
Qn,κ(r) (2.3.16)

and [
d

dr
− κ

r

]
Qn,κ (r) = α [V (r)− E]Pn,κ(r). (2.3.17)

We have also set a variable change E = E − 1/α2.The normalization condition writes

ˆ ∞
0

[
P 2
n,κ(r) +Q2

n,κ(r)
]
dr = 1. (2.3.18)

For convenience, we rewrite those first order differential coupled equations in a single

second order differential equation, also known as Schrödinger-like form. We first define

A(r) =
√[
E − V (r) + 2

α2

]
(2.3.19)

and in order to cancel the first order derivative in equation (2.3.16) and (2.3.17) , we set

Pn,κ(r) = Fn,κ(r)A(r), (2.3.20)
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from (2.3.16) we can express the Qn,κ(r) in relation with Fn,κ(r)

Qn,κ(r) = 1
A (r)

[
d

dr
+ κ

r

]
Fn,κ (r) . (2.3.21)

Then by introducing (2.3.19),(2.3.20) and (2.3.21) in equation (2.3.17), we obtain the

Schrödinger-like form

F ”
n,κ (r) + Fn,κ (r)

{
2E − 2V (r)− κ (κ+ 1)

r2 + α2W (r)
}

= 0, (2.3.22)

with

W (r) = (E − V (r))2 − 1
2A(r)2

V ′′ − 3α2V
′2

A (r)2 + κV
′

r

 . (2.3.23)

In the literature, we often find the equation (2.3.22) rewritten with an effective potential

labeled U(r)

F ”
n,κ (r) + Fn,κ (r)

[
2 (E − U (r))− κ (κ+ 1)

r2

]
= 0, (2.3.24)

where U(r) = V (r)− α2W (r). This equation is similar to the Schrödinger equation with

an additional term α2W (r) which represents the relativistic effects valid even in the case

where these are not perturbative terms. This equation (2.3.24) can be analytically solved

in the case of an hydrogen-like ion, i.e for a potential V (r) = −Z/r. The procedure to

find the wave-functions and energies is the same as for the Schrödinger equation. The

solution for energies [31] is

En,κ = 1

α2
√

1 +
[

αZ
(κ2−α2Z2+n−|κ|)

]2 . (2.3.25)

If we expand this energy in powers of αZ we find

En,κ = 1
α2 −

Z2

2n2 −
α2Z4

2n3

(
1
|κ|
− 3

4n

)
. (2.3.26)

We obtain in order of appearance the energy at rest of electron, the non-relativistic energy

of the Schrödinger equation and the first order of relativistic corrections.

2.4 Spectroscopic notations
In a multi-electronic ion, we intend to build the global wave-function by adding products

of independent electron wave-functions. Each electron is assumed to be described by the

quantum numbers n, j, l,m. The quantum number n is a strictly positive integer which

identifies the shell of an electron. The orbital quantum number l is also an integer and it

is related to n as follows: n ≥ l + 1, this number identifies sub-shells named orbitals. It
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is the Pauli principle which determines the number of electrons that a shell and sub-shell

can contain. For a shell we have 2n2 electrons and for a sub-shell 4l + 2 electrons. Shells

and sub-shells are identified by letters, some examples are given in the Table 2.1.

Table 2.1 : Spectroscopic notation for shells and sub-shells

Shell
n 1 2 3 4 5

Notation K L M N O

Sub-shell
l 0 1 2 3 4

Notation s p d f g

When all electrons of an atom or ion are defined by their sub-shells, they form a non-

relativistic electron configuration. As an example the ground state of the helium is 1s2

and for the krypton the configuration is 1s22s22p63s23p64s23d104p4. To each configuration

correspond several atomic micro-states (i.e., with a given magnetic quantum number).

The number of such states is called the degeneracy of a configuration. From the Pauli

principle, the calculation of the degeneracy G of a configuration is the product of the

degeneracies yi of sub-shells:

G =
∏
i

yi =
∏
i

(2l + 1)!
xi! ((2l + 1)− xi)!

, (2.4.1)

where xi corresponds to the number of electrons in the sub-shell i. If a sub-shell is full,

its degeneracy is equal to one. On Table 2.2, we show an example of an excited state of

a boron-like ion.

Table 2.2 : Example of degeneracy calculation on a boron-like ion

Configuration 1s22s12p2

Sub-shell Degeneracy
1s2 1
2s1 2
2p2 15
G 30

In order to identify energy levels, spectral terms are used. Assuming L and S are

approximate good quantum numbers which occurs when relativistic effect are small (low

Z atoms), an ionic state is written 2S+1LJ . For an example, the ground state of carbon

1s22s22p2 is represented by the spectral term 3P0.

The degree of ionization of an atom is labelled d with d = Z−N , where Z is the charge

of the nucleus and N is the number of bound electrons. An lithium-like aluminium ion,

can be identify by Al XI or Al10+.
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2.5 N electron ions
Until now, we have considered the Dirac and Schrödinger equations for one particle in a

spherical field. However, our interest concerns multi-charged ions, withN bound electrons.

In this section, we show how to obtain eigenvalues and eigenfunctions for such an ion.

The Dirac or Schrödinger equation writes

HionΨk = EkΨk, (2.5.1)

where Ek is the energy of the state k associated to the wave-function Ψk. Hion represents

the Hamiltonian of the system (nucleus+bound electrons), it includes the following terms:

• Kinetic energies of electrons and nucleus

• The attractive potential of the nucleus on bound electrons

• The repulsive potential between bound electrons

• Relativistic corrections (spin orbit, Darwin, mass velocity), the Dirac equation in-

trinsically accounts for such terms.

• Quantum electrodynamics corrections (Breit interaction, vacuum polarization, Lamb

shift) and the finite nuclear size; a subsection is dedicated to these corrections.

Considering the four first terms of the list, the relativistic Hamiltonian Hrel,ion writes

Hrel,ion =
N∑
i=1
hD(ri)−

N∑
i=1

Z

ri
+
∑
i<j

1
rij
, (2.5.2)

where hD(ri) is the single-electron Dirac Hamiltonian with no potential, the second term

corresponds to the attractive field between nucleus and bound electrons and the last term

is for the electrostatic repulsion between bound electrons.

In the non-relativistic case, the Hamiltonian expresses

Hnon−rel,ion = −1
2

N∑
i=1
∇2

i −
N∑
i=1

Z

ri
+
∑
i<j

1
rij
. (2.5.3)

For N ≥ 2 such an Hamiltonian is not separable and therefore no analytical solution is

possible. The only problem we can solve is that of a central field potential analyzed in

section 2.2 and 2.3. In that case the total energy of the ion is simply the sum of the

energies of all individual states. The main idea for solving the N electron ion problem is

to reduce the real potential to a central average potential and treat the difference with

the real one perturbatively.
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2.5.1 Average central field

To obtain the eigenvalues of equation (2.5.1), we replace the nucleus potential and electron-

electron interactions by an average central potential U(r) and take into account perturba-

tively the difference between the average potential and the real potential. The Hamiltonian

Hrel,ion is split into two parts

Hrel,ion = H0 +H1, (2.5.4)

where H0 stands for the zero order relativistic Hamiltonian and is defined as follows:

H0 =
N∑
i=1

[hD(ri) + U(ri)] . (2.5.5)

U is the average spherical potential replacing −Z/ri + 1/rij. The second part of the

Hamiltonian H1 is

H1 =
N∑
i=1

[
−Z
ri
− U(ri)

]
+
∑
i<j

1
rij
, (2.5.6)

where H1 is considered as a perturbation with respect to H0, therefore H1 � H0. If

we use a non-relativistic approach we have to add relativistic corrections (the spin-orbit

interaction, mass, Darwin term) as an additional term H2. Indeed, for elements with high

Z the spin-orbit interaction is stronger than the electrostatic repulsion. In this non-fully

relativistic approach, we write the Hamiltonian as

Hnon−rel,ion =
N∑
i=1

[
−1

2∇
2
i + U(ri)

]
︸ ︷︷ ︸

H0

+
N∑
i=1

[
−Z
ri
− U(ri)

]
+
∑
i<j

1
rij︸ ︷︷ ︸

H1

+ α2

2

N∑
i=1

1
ri
U
′(ri)li · si︸ ︷︷ ︸

H2

.

(2.5.7)

We have ignored here relativistic corrections other than spin-orbit. This Hamiltonian

can be divided into three parts H0, H1 and H2; the last two are considered as small

perturbation compared to H0. Depending on the importance of the H1 and H2, two

coupling can be defined:

• In the LS coupling we consider that H1 � H2, so we first add perturbatively H1

to H0 and then we apply H2 as a perturbation of H0 + H1. This approximation is

usually appropriate for low Z elements and also for weakly excited states of weakly

ionized high Z .

• In the jj coupling we consider that H2 � H1, thus we first add perturbatively H2

to H0 and then we apply H1 as a perturbation of H0 + H2. This approximation is

appropriate for high Z elements highly ionized.

An example in Table 2.3 illustrates the level structure for these two coupling. The jj

scheme is used with the Dirac equation because the individual electron wave-function are

constructed by coupling their orbital and spin momentum l and s first.
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Table 2.3 : Comparison of construction of levels with LS and jj coupling for a configuration
ns−mp

LS coupling
H0 H1 H2

ns−mp S L degeneracy J Level degeneracy

l1 = 0 and l2 = 1

0 1 3 1 1P1 3
0 3P0 1

1 1 9 1 3P1 3
2 3P2 5

jj coupling
H0 H2 H1

ns−mp j1 j2 degeneracy J Level degeneracy

l1 = 0 and l2 = 1

1/2 1/2 4 1 1P1 3
0 3P0 1

1/2 3/2 8 1 3P1 3
2 3P2 5

2.5.1.1 Choice of local potential

Many methods exist to model the real potential −Z/ri + 1/rij with an average field

U(r) among which the Hartree-Fock-Slater method [33], the Dirac-Fock-Slater and the

parametric potential [34, 35]. All these potentials have to fulfill two boundary conditions.

Close to the nucleus the active electron has to see only the charge of the nucleus and

at large distances the charge of the nucleus is screened by the N − 1 electrons. These

conditions write

U(r) =

−
Z
r

r → 0
−Z−N+1

r
r →∞

. (2.5.8)

Hartree-Fock-Slater

The potential is modelled by three terms in this approach. The first is the potential of

the nucleus −Z/r. The second term labelled here Vc, accounts for the potential generated

by the N − 1 electrons. This potential is calculated by the Poisson equation, where the

density distribution of an electron in a sub-shell nl is defined by

ρnl(r) = R2
nl(r)

4πr2 , (2.5.9)

where Rnl is the non-relativistic wave-function of the active electron. By using the Poisson

equation the potential is deduced

Vc(r) =
∑
nl

wnl

ˆ ∞
0

r
′2

r >
R2
nl(r

′)dr′ . (2.5.10)
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where wn,l is the occupation number of the sub-shell nl.This potential is directly obtained

through the Hartree-Fock equation and is called the classical potential. In the relativistic

version, the term R2
nl(r

′) has to be replaced by P 2
nκ(r

′) +Q2
nκ(r

′).
The third term is the exchange interaction labelled Vex(r)

Vex(r) = −
[24
π
ρ(r)

]1/3
. (2.5.11)

For the coefficient of this potential we use the Kohn-Sham [6] value. This term is deduced

from the hypothesis of a free electron gas (see for instance[14]). Finally the average

potential used (for one electron) in the Hartree-Fock-Slater approach is

U(r) = −Z
r

+ Vc(r) + Vex(r) (2.5.12)

Parametric potential

An analytical expression is assumed for the parametric potential. The potential is usually

taken as

U(r) = Z

r

m∑
n=0

anr
ne−bnr, (2.5.13)

where m is an integer , an and bn are parametric numbers which have to be optimized.

These parameters may be determined by two ways: comparison with experimental data

or variational principle. In practice such parametric potential codes try to find the pa-

rameters which minimize the average energy (Hartree-Fock criteria) of a configuration,

thus the method is iterative. It is worth noting that this approach takes into account the

exchange correlation term. Therefore, it is not necessary to add an extra term contrary to

the previous methods. In the Flexible Atomic Code this type of potential is used, under

the following form

UFAC(r) = −Z
r

+ N − 1
r

(
1− e−λr

1 + ar

)
, (2.5.14)

where λ and a are parameters to be determined. The first term stands for the nuclear

potential and the second term for the electrostatic interaction. These parameters are

determined via the energy minimization of a mean configuration specified by the user.

2.5.2 Average energy of a configuration

Independantly of any central potential used, we can evaluate the energy contribution of the

different terms of HamiltonianHrel,ion to a configuration C. Through the perturbation the-

ory the average energy Eavg of the configuration C is determined by
〈
Ψ(0)
k |Hrel,ion|Ψ(0)

k

〉
,

where Ψ(0)
k are the zero order wave-functions of the Hamiltonian H0. Using fully anti-

symmetrized N mono-electronic wave-functions as required by the Pauli principle, we
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obtain [31, 32]

Eavg =
N∑
i

〈
γi

∣∣∣∣∣ 1αα · p+ β

α2

∣∣∣∣∣ γi
〉

+
N∑
i

〈
γi

∣∣∣∣−Zr
∣∣∣∣ γi〉+

∑
i<j

[〈
γiγj

∣∣∣∣∣ 1
rij

∣∣∣∣∣ γiγj
〉
−
〈
γiγj

∣∣∣∣∣ 1
rij

∣∣∣∣∣ γjγi
〉]

,

(2.5.15)

where i and j stand for electrons in the configuration C and γ represents any quantum

number which characterize the state. We recognize the single particle Dirac Hamiltonian

in the two first terms. These terms arise from the separable (one-electron) part of the

Hamiltonian. The radial contribution for these two terms is directly obtained:

Ei
avg,single =

ˆ ∞
0

{ 1
α2

[
P 2
n,κ(r) +Q2

n,κ(r)
]

+ 1
α

[
Pn,κ(r)

(
d

dr
− κ

r

)
Qn,κ(r)−Qn,κ(r)

(
d

dr
+ κ

r

)
Pn,κ(r)

]

−Z
r

[
P 2
n,κ(r) +Q2

n,κ(r)
]}
dr. (2.5.16)

The quantum numbers are noted as n, κ for simplicity but depend on the electron i.The

last two terms of equation (2.5.15) correspond to the electron-electron interaction, they

are a two electrons operator. It is more complicated to calculate due to its dependency

on ri and rj. This term has to be rewritten through the Al-Kashi theorem r2
12 = r2

1 + r2
2−

2r1r2 cos θ, and when using the Taylor series expansion and the Legendre polynomials it

comes
1
r12

=
∞∑
n=0

rn<
rn+1
>

Pn(cos θ). (2.5.17)

Developing this term is too long and not of interest in the context of the present work,

especially the angular contribution. The radial contribution of the electrostatic term is

made of two integrals

F n(12, 12) =
ˆ ∞

0

ˆ ∞
0

[
P 2
n,κ(r1) +Q2

n,κ(r1)
] rn<
rn+1
>

[
P 2
n′ ,κ′ (r2) +Q2

n′κ′ ,(r2)
]
dr1dr2 (2.5.18)

Gn(12, 21) =
ˆ ∞

0

ˆ ∞
0

[
Pn,κ(r1)Pn′ ,κ′ (r1) +Qn,κ(r1)Qn′ ,κ′ (r1)

] rn<
rn+1
>

×
[
Pn′ ,κ′ (r2)Pn,κ(r2) +Qn,′κ′ (r2)Qn,κ(r2)

]
dr1dr2 (2.5.19)

where n, κ (resp n
′
, κ
′) are the quantum numbers of electron 1 and 2. The first integral is

called direct integral, it corresponds to the field generated by the N − 1 particles on the

active electron. Contrary to the nucleus attraction, it contributes positively to the energy.

The second integral is called exchange integral: it corresponds to the exchange interaction

between electrons which is a consequence of the Pauli principle. The contribution of this

term is negative.
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2.5.3 Resolution of the N electron problem

Indenpendent particle solution

Once the average potential is chosen, we can start the resolution of the N electron problem.

At zero order, we only have to consider the Hamiltonian H0. We solve N independent

Hamiltonians with a selected average potential. The resolved system of a mono-electron

state i is

H0ϕ
(0)
i = E

(0)
i ϕ

(0)
i . (2.5.20)

Through this resolution we obtain the uncorrelated energies and wave-functions of N

electrons forming a configuration C. The total energy of a level k in the configuration C

is the sum of energies of N electrons

E
(0)
k,C =

N∑
i=1

E
(0)
i (2.5.21)

and the total wave-function Ψk,C is the product of N electrons wave-functions labeled

(ϕ1, ..., ϕN). We also have to take into account the Pauli principle, which requests that

the wave-function is antisymmetric. Therefore the zero order wave-function writes

Ψ(0)
k,C = A

N∏
i=1

ϕ
(0)
n,l,j,m(ri), (2.5.22)

where A is the antisymmetric operator defined as

A = 1√
N !

∑
P

(−1)χ(P ) P (2.5.23)

where χ (P ) is the parity of the permutation and P is any permutation of electrons.

Matrix elements of the non-central interaction

Once the uncorrelated wave-functions Ψ(0)
k,C are obtained, we have to correct the results

accounting for H1, whose matrix elements in this basis are

〈
Ψ(0)
k,C |H1|Ψ(0)

k′ ,C′

〉
=
〈

Ψ(0)
k,C

∣∣∣∣∣
N∑
i=1
−Z
ri

∣∣∣∣∣Ψ(0)
k′ ,C′

〉
−
〈

Ψ(0)
k,C

∣∣∣∣∣
N∑
i=1
U(ri)

∣∣∣∣∣Ψ(0)
k′ ,C′

〉
+
〈

Ψ(0)
k,C

∣∣∣∣∣∣
∑
i<j

1
rij

∣∣∣∣∣∣Ψ(0)
k′ ,C′

〉
.

(2.5.24)

The computation of the two first terms of the equation above is not difficult because Ψ(0)
k,C

involves an antisymmetrized product of one electron wave-functions. However, the last

term as we have seen before, has to be rewritten because it is a two-electron operator.

To obtain the wave-function Ψ fully accounting for dielectronic interaction, we have to
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diagonalize the full Hamiltonian H0 +H1

Ψ =
∑
k,C=1

bkΨ(0)
k,C , (2.5.25)

where bk are the mixing coefficients determined by the diagonalization of the total Hamil-

tonian. The number of configuration Nc plays an important role in the quality of the

atomic data, because it allows to take into account the interaction of configuration. There

is no clear criteria to choose the set of relevant configurations. This set may be defined

by examining the convergence of the level energies when the number of configurations is

increased.

Diagonalizion of the full Hamiltonian

To illustrate the general procedure, we conisder the case where only two configurations

are included. The Hamiltonian which account for two configurations C1 and C2 has the

general form

Configuration C1 Configuration C2

E
(0)
i,C1δij + 〈C1i |H1|C1j〉 〈C1i |H1|C2j〉

〈C2i |H1|C1j〉 E
(0)
i,C2δij + 〈C2i |H1|C2j〉

On the block diagonal we find the Hamiltonian matrix of a single configuration. On

these blocks we identify on the diagonal the average energy with the correction due to

the direct contribution of the Hamiltonian H1 mentioned before. The off diagonal con-

tributions come from the electronic coupling between electrons i.e LS coupling and the

electrostatic interaction. The two non-diagonal blocks of the diagram correspond to the

interaction of configuration (H inte
C1−C2). This term is calculated in the same way as the

matrix element of a single configuration. Finally, from the diagonalization of this matrix,

in the given set of configurations we obtain energies and wave-functions of the considered

ion.

2.5.4 Quantum electrodynamic and nucleus size effects

In the Flexible Atomic Code and in many relativistic codes, quantum electrodynamic

(QED) corrections are added to the relativistic Hamiltonian. Some of these effects are

important enough to modify the order of energy levels. In the resolution of the N-electron

Hamiltonian, these effects are usually a second order effect.

Generalized Breit interaction

The Breit interaction is the most important QED correction for high Z elements. The first

effect corresponds to the exchange of a virtual photon between two electrons. The second
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effect is the retardation effect due to the interaction of a moving electron in a magnetic

field generated by another electron. The general Breit interaction writes [36]

B(i, j) = −2(αi ·αj)
eiωrij

rij
+ 2 (αi ·∇i) (αj ·∇j)

eiωrij − 1
ω2rij

, (2.5.26)

where ω is wave number of the exchanged virtual photon and αi is the Dirac matrix.

Lamb shift

This effect regroups two phenomena, the self-energy and the vacuum polarization. The

self-energy corresponds to the emission of an electron by a photon or an electron/positron

pair which is then reabsorbed. According to the QED, in the vacuum there is a constant

creation and annihilation of electron/positron pairs, which is considered as a vacuum

fluctuation. At the vicinity of an electron this pair is polarized leading to a small decrease

of the effective charge of this electron. The Lamb shift notably explains the energy

difference between levels 2s1/2 and 2p1/2 of H-like ions.

Nuclear finite size

This effect has an order of magnitude close to (but usually smaller than) the above dis-

cussed corrections.

The nucleus of ions possesses a finite size. To model this fact it is supposed that the

charge of the nucleus is uniformly distributed in a sphere with a radius Rnuc. The potential

is deduced from the Poisson equation

Vnuclear(r) =

−
Z

Rnuc

(
3
2 −

r2

2R2
nuc

)
for r ≤ Rnuc

−Z
r

for r ≥ Rnuc

. (2.5.27)

In FAC, the radius of the nucleus is determined by the empirical formula Rnuc = 2.2677×
10−5A1/3 in atomic units, where A is the atomic mass. Orbitals which are mostly affected

by this effect are the ones with a significant density probability close to the nucleus.

An example of the energy contribution of the QED correction is given in Table 2.4.

This data come from the article of Desiderio and Johnson [37].

2.6 Atomic models accounting for thermodynamics
The above discussion concerns an isolated ion, in this section we briefly present models

which account for thermodynamics.
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Table 2.4 : Contribution of the quantum electrodynamic term to the binding energy of a
K electron shell with Z = 74

Terms Energy contribution in Ry unit
Electrostatic energy −5135.99

Breit (magnetic) 18.53
Lamb shift (self-energy) 10.96

Lamb shift (vacuum polarization) −2.23
Breit (retardation) −1.39

Total 5110.02

2.6.1 Thomas-Fermi approach

In this approach, the treatment of electron lies on a semi-classical treatment. We suppose

in this model that bound and free electrons are classical particles. The electrons are

described by a charge density ne(r) and not by their wave-function. It is assumed that, at

a given position the density ne(r) is the one corresponding to a free electron gas obeying

to the Fermi-Dirac statistics at the temperature kTe with a kinetic energy

p2

2 = E − U (r) (2.6.1)

where E is the ion total energy which is chosen to be zero. The charge density is supposed

to be spherically symmetric

ne(r) =
√

2
π2 kT

3/2
e F1/2

(
U (r)− µ
kTe

)
, (2.6.2)

where µ is chemical potential and F1/2 is the Fermi integral of order 1/2 defined by

Fn(x) =
ˆ ∞

0

yn

1 + ey−x
dy. (2.6.3)

The potential is obtained by using the Poisson equation with the density (2.6.2)

U(r) =
ˆ ∞

0
4πr

′2

r>
ne(r

′)dr′ , (2.6.4)

where r> = max(r, r′). The main problem of the Thomas-Fermi model is that the ex-

change correlation term is neglected in the e-e interaction. This term is only present

through the Pauli principle in the Fermi distribution. An improvement of this model is

made by the Thomas-Fermi-Dirac model which takes into account this missing term.

2.6.2 Average Atom model

We present here a basic average atom model inspired by the work of Blenski et al.[38]

in a non-relativistic frame. This approach tries to model the plasma via an average cell
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named Wigner-Seitz cell. In that cell the nucleus, the bound and the free electrons are

present. On this sphere a neutrality condition is imposed. Under the hypothesis of an

average field, each electron satisfies a self-consistent Schrödinger or Dirac equation

∂2Rn,l

∂2r
+ 2

(
En,l − V (r)− l (l + 1)

2r2

)
Rn,l = 0, (2.6.5)

The difference with the previous models is that now V (r) is a function of temperature.

The same equation is solved for the free electrons. The average potential V (r) is divided

in two parts a direct and exchange term.

V = Vdir + Vexc. (2.6.6)

The exchange term is simply derived from a local density approximation (see equation

(2.5.11)).The direct term is calculated via the Poisson equation

4Vdir = 4π (−ρ (r) + Zδ (r)) (2.6.7)

ρ (r) is the electron density,ρ (r) = ρbound (r) + ρfree (r). The densities of bound electron

is evaluated by

ρbound = 1
4πr2

∑
n,l

2 (2l + 1)F (En,l, µ)Rn,l (r)2 (2.6.8)

where F (En,l, µ)is the Fermi distribution

F (Enl, µ) = 1
1 + exp [(En,l − µ) /kTe]

. (2.6.9)

The free electrons density obeys to a similar equation as (2.6.8) by replacing n, l by

ε, l. Finally, the chemical potential µ is obtained through the neutrality condition of the

Wigner-Seitz cell. In the case of a spherical sphere of radius R0, it comes

Z = 4π
ˆ R0

0
ρ (r) r2dr. (2.6.10)

2.7 Summary
We have discussed the ”Hartree-Fock type” approach to calculate the atomic structure

of an isolated ion. In the FAC code, the average potential is used under the form of a

parametric potential. The theoretical description of the ion is made via the Dirac equation

with quantum electrodynamic corrections. As we may notice such description does not

account for the free electrons. In the following chapter we show how in a subsequent step

we account for the thermodynamic of plasmas.
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Chapter 3

Basic properties of plasmas: kinetics
and spectroscopy

3.1 Introduction
In this chapter we detail how to obtain the atomic populations and radiative properties

of a plasma. We note that we only consider uniform plasmas. Three types of particles are

present in the plasmas: ions, free electrons and photons. Therefore, it is more accurate

to distinguish three temperatures, kTe as the temperature of free electrons, kTi as the

ionic temperature and kTr as the temperature of photons. Depending of the regime of

study, those quantities can be equal or different. Futhermore, one may find situations

where one or several types of particles are not thermalized. For instance, distribution

with suprathermal electrons may deserve some attention.

The thermodynamical regime of the plasma depends on the competition between col-

lisions and radiative processes. At least three regimes can be distinguished: non-local

thermodynamical equilibrium (NLTE), local thermodynamical equilibrium (LTE) and the

corona regime. First, in this chapter we define the elementary processes considered. Then

the basic equations to obtain the atomic populations for NLTE, LTE and corona regime

are given. A discussion of their domain of validity is made through semi-empirical formu-

las. This chapter ends with the calculation of atomic spectra and the line broadening.

3.2 Elementary processes
The elementary processes represent the interaction of ions with free electrons or photons

leading to a change in the ionic structure. This change may be an excitation or deex-

citation or a modification of the charge state of ions (ionization or recombination). We

distinguish two categories of processes: collision and radiative processes. For the colli-

sional processes, we only consider impact between an ion and a free electron, collisions

between ions is disregarded due to their strong inertia.
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Every elementary process corresponds to its inverse process. The relation between the

direct and the inverse process rate is obtained from the micro-reversibility or detailed

balance principle. We neglect elastic processes, which do not change the dynamics (rates)

but may be included in line profile analysis.

In what follows, the symbol X represents some atomic element of charge Z, ∗ corres-

ponds to an excited state, e stands for an electron and hν for a photon.

• Collisional excitation and deexcitation;

X (Z) + e
 X∗ (Z) + e. (3.2.1)

• Collisional ionization and three-body recombination. Because the recombin-

ation involves two free electrons, it will be important at high densities. Its density

dependence is in N2
e ;

X (Z) + e
 X (Z + 1) + 2e. (3.2.2)

• Auto-ionization ( or Auger effect) and dielectronic capture;

X∗∗ (Z)
 X (Z + 1) + e. (3.2.3)

• Photo-ionization and radiative recombination;

X (Z) + hν 
 X (Z + 1) + e. (3.2.4)

• Spontaneous emission and photo-absorption. We can add to the spontaneous

emission the induced emission due to an external field;

X∗ (Z)
 X (Z) + hν. (3.2.5)

The probability with which all those processes happen in the plasma determine the atomic

and thermodynamical properties. These probabilities are defined by rates which describe

the number of processes per unit of time

rate = number of processes

time
. (3.2.6)

For collisional processes involving electrons as projectiles, the rate Rij from a level i to a

level j writes

Rij = Ne 〈vσij(E)〉 , (3.2.7)

where σij(E) is the cross section of the considered process, Ne is the density of free

electrons and v their velocity. Nv represents the number of particles hitting a unit of

surface during a unit of time. Assuming that free electrons speed obeys a statistical
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distribution f(v), one has

Rij = Ne

ˆ ∞
vij

vf(v)σij(v)dv, (3.2.8)

where vij is the speed corresponding to the transition energy. The normalization is defined

by

ˆ ∞
0

f(v)dv = 1. (3.2.9)

The calculations of cross sections of elementary processes is a complex task, the chapter

4 is dedicated to that duty. Thanks to the detailed balance, we only have to calculate one

process to obtain its inverse process. The detailed balance equation writes:

niRij = njRji, (3.2.10)

where ni and nj are the populations of level i and j at local thermodynamical equilibrium.

In the case of suprathermal electron, this relation does not hold.

3.3 Non-local thermodynamical equilibrium (NLTE)
We consider here a regime where the free electron collisions do not ensure the thermaliz-

ation of the ionic level because the radiative processes are too important. We have

Ne

∑
j
j<i

Cij ∼
∑
j
j<i

Aij, (3.3.1)

where Cij is the rate coefficient of collisional excitation and Aij is the radiative rate. Un-

der this condition, the Boltzmann law is not verified, and neither the Saha-Boltzmann

equations (cf equation (3.4.5)). However, we consider that free electrons are thermalized

and, therefore follow the Maxwell distribution. This assumption does not hold in case of

supra-thermal electrons. In the NLTE regime, we have to take into account all the ele-

mentary processes. To obtain the atomic population, we have to write a kinetic equation.

We illustrate that purpose on figure (3.3.1) with a two-level ion;

Figure 3.3.1 : Elementary processes considered in a two-level ion

The evolution of the population n1 of level 1 depends on the population n0 of level 0
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and on the different process between them. We can write the equation

dn1

dt
= n0NeC01 − n1 (NeC10 + A10) . (3.3.2)

The generalization of this equation to all levels and ions present in the plasma, is called

kinetic equation or rate equation and is written

dnj(z)
dt

=
∑
z′

∑
k

nk(z)W z
′
z

kj − nj(z)
∑
z′

∑
i

W zz
′

ji , (3.3.3)

where W zz
′

ji is the matrix containing all the elementary process rates which contribute to

the depopulation of level j of the ion z to level i of an ion z
′
. On the other hand, W z

′
z

kj

corresponds to all elementary processes populating the level j of the ion z through level

k of ion z
′
. The atomic populations are constrained by the condition

∑
z′

∑
j

nj(z
′) = 1. (3.3.4)

The rate equation is difficult to solve for many reasons. First, to describe accurately an

ion, we have to deal with a large number of states (many millions in practical cases) and

also deal with many ions. Then we have to take into account all the possible transitions

between all those ion states which easily reach millions of transitions. To circumvent

those difficulties, assumptions are made; the most commonly used is the hypothesis of

stationarity dnj(z)
dt

= 0. This assumption holds when the macroscopic parameters such as

the temperature and density vary more slowly than the microscopic parameters (collisional

rates). Even in the stationary case, solving the kinetic system (3.3.3) is a difficult task.

Moreover, the computation of millions (or billions) of rates is very demanding. The

stationary assumption finds its application for the plasma-laser interaction, where the

interaction is of the order of the nanosecond.

Another assumption used to simplify equation (3.3.3) is to suppose that the plasma is

optically thin. It means that all emitted photons are supposed to escape from the plasma

without being absorbed. Therefore, the photo-ionization process is discarded as well as

the photo-absorption and the induced emission.

We point out that at a given temperature when the density increases, the collisional-

radiative model converges to the LTE regime and when the density decreases, it converges

to the corona regime.
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3.4 Local thermodynamical equilibrium (LTE)
In the LTE regime, the collisions dominate the radiative processes, resulting in a thermal-

ization of ions by the free electrons. The condition for a collisional LTE regime writes

Ne

∑
j
j<i

Cij �
∑
j
j<i

Aij. (3.4.1)

We have the equality between the temperature of ions and free electrons kTe = kTi,

because the micro-reversibility is ensured for collisional processes which are much more

probable than the (unbalanced) radiative processes. A LTE regime can also be reached

with a strong radiative field, this situation is named a LTE radiative regime. The ther-

modynamical equilibrium of an isolated system is defined by the maximum of entropy S

such as

∆S = ∆ (k lnP (n1, n2, ..., nN)) = 0, (3.4.2)

where P is the probability to distribute N particles with the respective populations

n1, n2, .., nN . From equation (3.4.2), we can obtain the four statistical laws which com-

pletely describe the plasma.

The free electrons velocity v distribution follows the Maxwell law

f(v) =
(

m

2πkTe

)3/2
ve−mv

2/2kTe . (3.4.3)

Conversely, if the free electrons are considered degenerate, they follow the Fermi-Dirac

distribution.

The populations of levels i and j from the same ion labelled ni and nj, respectively, are

distributed according to the Boltzmann law

nj
ni

= gj
gi
e−∆Eji/kTe , (3.4.4)

where ∆Eij = Ej − Ei is the transition energy between level i and j, gi and gj are the

statistical weights of level i and j, respectively.

The atomic population of levels of different ions obeys the Saha-Boltzmann equations

nZ+1
i

nZj
Ne = 2g

Z+1
i

gZj

(2πmkTe)3/2

h3 e−∆EZ,Z+1
ji /kTe , (3.4.5)

where ∆EZ,Z+1
ij is the transition energy between level i of the charge state Z + 1 and j of

the charge state Z, gZ+1
i and g

Z

j are their statistical weights.

Assuming a Planckian (thermal) radiation field at temperature kTr, the photon distri-
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bution is given by

ρ(ν) = 8πhν3

c3
1

e
hν
kTr − 1

. (3.4.6)

However, we have to point out that if the equilibrium is only local, photons will not follow

the Planck law. This occurs because photons easily escape from a particular zone of the

plasma, contrary to ions and electrons. This case concerns the optically thin plasma. The

difference between a Global and a Local equilibrium is due to the presence of gradients of

temperature and density. We remark, that to be at LTE, the stationarity is a necessary

but not sufficient condition.

3.5 Corona regime
In the corona regime, the collisions are dominated by the radiative processes;

Ne

∑
j
j<i

Cij �
∑
j
j<i

Aij. (3.5.1)

This regime concerns low density plasmas. Under this condition, we still have to solve

a kinetic equation similar to equation (3.3.3). The atomic populations mainly remain

in the ion ground state, meanwhile, the excited states have a population lower than the

one obtained at LTE. Many atomic processes can be neglected, such as the three-body

recombination which varies with the electron density as N2
e . For the ground state, the

atomic processes which dominate, are the radiative recombination R and the collisional

ionization I. From this we can write for a ground state g

dng
dt

=
∑
j

(
njR

Z+1,Z
j,g + njI

Z−1,Z
j,g − ngIZ,Z+1

g,j − ngRZ,Z−1
g,j

)
. (3.5.2)

We can also neglect all processes originating from an excited state. The excited states are

mostly populated by collisional excitation originating from the ground state and depopu-

lated by radiative decay. Usually excited states may also be populated by radiative decay

from higher auto-ionization states but such process is only important for heavy ions [39].

The kinetic equation for an excited state i is as follows:

nZi = nZgNe
Cg,i
Aig

. (3.5.3)

3.6 Validity of regime
To ensure the LTE regime, we have to justify the three statistical distributions for free

electrons, ions and levels in an ion described above.

The Maxwell distribution of free electrons is the easiest to justify. To obtain this
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distribution, free electrons need to thermalize. To estimate the equipartition time (unit

is in seconds) which ensures the thermalization, Spitzer [40] has proposed

tc = 3.3× 10−13
(
kTe
100

)
1021

Ni log Λ , (3.6.1)

where kTe is the temperature in eV, Ni is the ionic density in cm−3and log Λ is the

Coulomb logarithm defined by

Λ = 3
2Z∗2

(
(kTe)3

πe6Ne

)1/2

. (3.6.2)

One has 10 < Λ < 20 for plasma with a temperature higher than10 eV. The characteristic

time of thermalization is almost always less than the evolution time of the plasma. A

numerical application for a neon plasma with kTe = 100 eV and Ne = 1018cm−3 with

Z∗ ∼ 9.8, gives tc ≈ 10−10s. However, in the case of femtosecond laser this assumption

breaks.

For the Saha-Boltzmann equations, two mechanisms compete: the three-body recom-

bination which drives the system to equilibrium and the radiative recombination which

drives the system to NLTE. Salzmann [41] set the following criteria to ensure the validity

of Saha-Boltzmann equations:

Ne �
Rrr

Rr3b
≡ NSaha, (3.6.3)

where NeRrr is the radiative recombination rate and N2
eRr3b is the three-body recom-

bination rate. It is possible to give an analytical expression of those rates via empirical

formulas. The Lotz formula (6.3.8) and Ref. [42] is used to calculate the ionization rates

and Rr3b is determined by microreversibily. The radiative rate NeRrr is derived from the

Kramers formula (equation (6.3.12) and Ref.[43]). From these calculations, it comes

Ne � NSaha = 1013cm−3eV−3 (kTe)3

∆EZ,Z+1
ij

kTe

5/2

. (3.6.4)

A numerical application gives a density of NSaha = 1.3×1024cm−3 for the ionization of 1s
of the H-like aluminium at kTe = 500 eV. Griem [44, 45] has estimated that the density

Ne has to be higher by a factor 10 from NSaha to deviate from NLTE of 10%. The formulas

used in equation (3.6.4) to determine the rates are not the most accurate and have to be

used in particular conditions (cf chapter4). Especially the Kramers formula can only be

used for hydrogen-like ions. Hence, we only consider the criteria (3.6.4) for hydrogen-like

ions.

The last law to verify is the Boltzmann distribution which stands for the states in an
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ion, where

N e �
Aij
Cij

. (3.6.5)

This law is the most difficult to justify because no accurate analytical formula for excita-

tion cross section exists. However, using the Van Regemorter formula for the expression

of the deexcitation rate, which is again valid under particular condition (cf chapter4), Mc

Whirter[46] has proposed the condition

Ne ≥ 1.8× 1014kT 1/2
e ∆E3

ij (3.6.6)

in cm−3 and with kTe and ∆Eij in eV. Unfortunately, formula (3.6.6) is too strict condition

and this formula has only proved their utility for hydrogen-like ions. Due to the difficulty

to obtain an accurate analytical formula for the collisional excitation rate, we are not able

to give a clear limit between LTE and NLTE regimes.

3.7 Radiative spectra
Once the atomic populations of the different species present in the plasma are obtained,

the emission spectra of the plasma can be calculated. In validating theoretical models,

emission and absorption spectra are one of the most important sources of information

about the plasma status. Three different processes are considered: bound-bound, bound-

free and free-free. Historically, the free-free and bound-free processes were the first to be

considered for evaluating opacity in stellar atmospheres, notably by Eddington [47] who

based his research on the work of Kramers [43] on photo-absorption cross sections.

3.7.1 Free-free spectrum

The electric field of ions can decelerate a free electron, as a consequence the electron loses

energy and emits a photon. This phenomenon is called bremsstrahlung. The emissivity

(energy per unit of time, volume and per energy of photon) may be evaluated from the

semi-classical Kramers formula [40]

jff (E) = 32
√

6
9 π3/2 e

6

m3/2hc3
Z∗2NiNe√

kTe
exp

(
− E

kTe

)
gff , (3.7.1)

where gff is a corrective Gaunt factor, E is the photon energy and Z∗ the ionization

degree of the plasma. This radiation is important for fully ionized light elements. In most

cases its contribution decreases with energy and is a continuous background.
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3.7.2 Bound-free spectrum

This radiation originates from the recombination of free electrons with ions. Therefore,

the radiation depends on the photo-ionization cross section. This process also supposes

that the photon possesses an energy equal or superior to the ionization energy, otherwise

the radiation is zero. The bound-free emission (energy radiated per unit of time, per

energy of photon per ion) is given by

jbf (E) =


4π
h3c2λ

3
thn

z+1
j

gi
gj
NeNiE

3 exp
(
− (E−∆Eij)

kTe

)
σphotoij (E)gbf ifE ≥ ∆Eij

0 ifE < ∆Eij
, (3.7.2)

where ∆Eij = Ej − Ei is the transition energy, gbf is a corrective Gaunt factor which is

equal to 1 if a quantum calculation is done for the photo-ionization cross section,λth is

the electron thermal wavelength defined by

λth =
(

h2

2πmkTe

)1/2

(3.7.3)

and σphotoij is the photo-ionization cross section. The main difficulty lies in the evaluation of

the cross section because of its dependence on the photon energy. Obtaining cross section

on the all relevant range of energy is possible but the calculation is very cumbersome,

especially with the FAC suite that has been used in this work. To circumvent that

problem, interpolations can be done on the ”exact” quantum cross sections or by using

a semi-empirical expression such as the Kramers formula [43] with a corrective Gaunt

factor:

σphotoij (E) = 64
3
√

3

√
Ry

Z

(∆Eij)5/2

E3 a2
0, (3.7.4)

where Ry is the Rydberg constant and a0 the Bohr radius. The Gaunt factor can be

obtained trhought the ratio between the photo-ionization rate of an accurate method and

the photo-ionization rate calulated by the Kramers formula.

This radiation is important for intermediate temperatures, mostly for highly ionized

ions such as hydrogen-like, helium-like and lithium-like ions.

3.7.3 Bound-bound spectrum

The last radiation process is the most important for moderate and high Z elements which

are not fully ionized. The radiation originates from the spontaneous emission. The

emissivity per ion (energy radiated per unit of time, photon energy) of all excited levels

present in the plasma is

jbb(E) =
∑
i

∑
j

∆EijnjAjiϕij(E), (3.7.5)
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where Aji is the radiative rate from level j to i and ϕij(E) is the spectral profile, discussed

in the next section.

3.7.4 Line broadening

The spectral profile ϕij(E) originates from various physical processes.

Natural broadening

The natural broadening is the consequence of the Heisenberg principle and is present

whatever the plasma condition. Therefore, the excited states have a finite lifetime. The

profile corresponding to this broadening is a Lorentz function

ϕij(E) = Γnat
2π

1
(E −∆Eij)2 + (Γnat/2)2 , (3.7.6)

where Γnat is the width of the Lorentzian defined by

Γnat = ~
(∑

m

Aim +
∑
i

Ajn

)
, (3.7.7)

where Aij stands for the radiative decay. This natural broadening is the weaker broadening

in plasmas. Furthermore, it is almost impossible to measure this broadening. We may

include the auto-ionization to the natural broadening. In the case of auto-ionizing states,

the natural broadening may be of the same order of magnitude as the Stark broadening.

Doppler

Due to the motion of the ions in the plasma, the frequency of the emitted photon is

shifted. The emission profile associated to this process follows a Gaussian distribution

ϕij(E) = 1√
πσd

exp
−(E −∆Eij

σd

)2
 , (3.7.8)

where σd is the variance of the Gaussian. For the Doppler effect, the variance writes

σd = ∆Eij

√
2kTi
Mc2 , (3.7.9)

where M is the mass of the ion, kTi is the temperature of the ion related to its motion of

translation. We may write kTi = kTe, if we assume a thermalization of ions by the free

electrons. This process is important for small Z and high temperature.
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Stark effect

The Stark effect is a consequence of the interaction of local electric field with the emitter

ion. The local electric field is generated by electrons and ions. Due to the difference of

mobility of those particles, the Stark effet is in the standard approach decomposed into

two parts: the electron impact broadening and the quasi-static Stark effect. An accurate

description of this phenomenon is difficult and constitute a physics topic in itself. In

order to describe that effect, we use semi-empirical formulas. For more details on line

broadening topics we recommend the article of Baranger [48] and the book of Griem [49].

• The electron impact broadening

As its name indicates, this effect is induced by the collisions of free electrons which perturb

the radiation by shortening the lifetime of excited states. It is generally assumed that the

spectral profile is Lorentzian with a line width defined by [48], i.e equal to the collision

rate of electrons and ions

Γc = Ne 〈σve〉 , (3.7.10)

where σ stands for the total elastic and inelastic cross sections and ve for the speed of free

electrons. A rough estimation of the electron impact broadening gives Γc ∼ Ne/kT
1/2
e .

A semi-empirical formula of Dimitrijévic et al. [50] can also be used to evaluate the line

width such as the

~Γc = 4π
3

√
2π
3

~3

m3/2 (kTe)1/2Ne

(
0.9− 1.1

Z∗

) ∑
k=i,f

3nk
2Z∗

(
n2
k − l2k − lk − 1

)
, (3.7.11)

where ni (resp nf ) is the principal quantum number of the initial state (resp final state)

and Z∗the effective charge of the considered ion, the summation being done on the initial

and final state of the transition. Notice that such an expression lies on the hypothesis

that only one electron is involved in the transition.

• The quasi-static effect

It concerns the micro-field generated by neighbouring ions. This effect is named quasi-

static because the ions are supposed slow compare to the emission of radiation, thus the

generated electric field is almost static. In that case the interaction time between the

neighbouring ions and the emitter ion is longer than the time between two collisions. The

micro-field is in the simplest case calculated via the Holstmark theory [51].

Depending on the density and temperature of the plasma, one broadening can dominate

or two of them coexist. For low density plasma (Ne . 1015cm−3), the Doppler effect and

the natural line broadening dominate. For moderately dense plasmas, the Doppler effect is

the most important. For highly ionized plasma, the Stark effect dominates. We illustrate

our purpose on the table 3.1
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kTe = 500 eV Ne = 5× 1023 cm−3

Transitions ∆E (eV) Natural (eV) Doppler (eV) Stark (eV)
1s-2p1/2 1727.7 0.0118 0.573 0.537

kTe = 250 eV Ne = 1024 cm−3

Transitions ∆E (eV) Natural (eV) Doppler (eV) Stark (eV)
1s-2p1/2 1727.7 0.0118 0.406 1.518

Table 3.1 : Example of line broadening for Aluminium XIII. The Stark broadening only
accounts for the electron impact contribution

It is thus possible and sometimes necessary to take into account several causes of broad-

ening when none of them dominate. The line profile is in that case a convolution of profile

functions.

The convolution of two Lorentzian L1, L2 is a Lorentzian L whose line width is defined

by

Γ = Γ1 + Γ2. (3.7.12)

The convolution of two Gaussian G1, G2 is a Gaussian G with a variance defined by

σ =
√
σ2

1 + σ2
2. (3.7.13)

In the case of the convolution of a Gaussian and a Lorentzian, the result is a Voigt profile

defined by

V (ω,Γ, σ) = Γ
2π

ˆ ∞
−∞

exp (−t2)
(Γ/2)2 +

(
ω − ω0 +

√
2σt

)2dt.

Assuming independent broadening processes, the resulting profile is given by the convo-

lution product of individual processes.

3.8 Summary
In this work we assume that the active medium is optically thin, free electrons are thermal-

ized, regime is stationary and plasma is uniform. Therefore, the thermodynamics of the

plasma is entirely defined by the electronic temperature kTe and density Ne. Since we are

mainly interested in plasma out of thermodynamical equilibrium, the kinetic equations

have to be solved. Therefore, the rates of the listed atomic process have to be calculated.

In the following chapter we review the different methods used to evaluate the radiative

rates and collisional cross sections.
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Chapter 4

Radiative rates and electron-impact
cross sections

4.1 Introduction
As mentioned in the third chapter, in order to solve the collisional-radiative equations it

is necessary to obtain the radiative rates and collisional cross sections of the considered

transitions. In this chapter we propose a description for the calculation hypothesis and

methods which provide these cross sections. All these methods are presented in a non-

relativistic framework for the sake of simplicity, but numerical work has been performed

in a fully relativistic picture. This chapter also contributes to evaluate the convenient

methods to calculate these rates. We are concerned here with the calculation of transition

probabilities without consideration of the plasma influence, which will be analysed in the

next chapter, with a special emphasis put on excitation cross sections. In the first part

of this chapter we give the basic formula for radiative processes. Then in the second

part, we review perturbative methods used to calculate collisional cross sections. In order

to simplify the discussion we restrict the second part to the collisional excitation. The

chapter ends with the classical theory used to calculate the collisional ionization cross

section.

4.2 Radiative processes
Here, we describe transition processes induced by the radiation field in the discrete spec-

trum. To illustrate the Einstein coefficients, we consider a two-level ion, i corresponds to

the lower level and j to the upper level. The kinetic equation of the level i is

dni
dt

= −Bijuνni + (Bjiuν + Aij)nj (4.2.1)
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where Bij is the absorption coefficient, Bji the stimulated emission coefficient, Aij the

spontaneous emission and uν the spectral density of energy. The coefficients are related

by the Milne-Einstein relations

Aji = 8πhν3

c3 Bji (4.2.2)

and

Bji = gi
gj
Bij, (4.2.3)

where c is the speed of light, h is the Planck constant, ν is the frequency, gi and gj

correspond to the degeneracy of level i and j, respectively. It is more convenient to get

the coefficient of the spontaneous emission because it does not depend on external field.

To obtain the radiative decay rate, we have to calculate the probability of deexcitation of

an atom due to the interaction with a radiative field. For an accurate description of the

spontaneous emission Aji, the field has to be quantized; called second quantization. The

Hamiltonian of interaction between the particles and the field is

Hint = e

2mec

N∑
i=1

[Pi ·A(ri) + A(ri) ·Pi] , (4.2.4)

where ri is the position of the electron and Pi is its kinetic momentum and A(r) is the

potential vector in the Coulomb gauge. If a quantum description of the radiative field is

required, the potential vector A(r) may be expressed by

A(r) =
∑
k

∑
ρ=1,2

uk,ρ
(
ak,ρe

ik·r + a†k,ρe
−ik·r

)
, (4.2.5)

where uk,ρ is the polarization vector, k represents the wave vector, ρ is the polarization

of the field, a and a†are the creation and annihilation operators, respectively. To obtain

the probability of deexcitation from a state j to i, we use the Fermi golden rule

Wi→j = 2π
~
|〈i |Hint| j〉|2 ρ (Ei = Ej) . (4.2.6)

where ρ (Ei = Ej) is the state density.This equation (4.2.6) means that the transition from

a state j to i can only happen if the photon energy is equal to ∆Eij the transition energy

between level j and i.

4.2.1 Dipolar approximation

To lead the calculation of the spontaneous emission, the dipolar approximation is usually

set. Under this approximation, we suppose that the wavelength of the radiative field is

much larger than the dimension D of the atom λ � D. Therefore k · r � 1 and the
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exponential term of (4.2.5) can be expanded in series

eik·r = 1 + ik · r− 1
2(k · r)2 + ... (4.2.7)

In the dipolar approximation we only keep the first term of the series eik·r ∼ 1.

The atomic size D is approximately estimated by n2/Z, where n is the principal

quantum number and Z is the nuclear charge. Meanwhile the relevant wave-lengths

for our purpose are usually in the range 1 − 1000 in a0 unit. In the situation of hard

X-ray, the dipolar approximation λ� D breaks down . This will be the case in the future

installations which use X-ray electron laser radiation (XFEL or LCLS). In that case we

have to carry an exact calculations of the radiative rate.

By supposing the dipolar approximation true, the expression of the spontaneous emis-

sion is [14]

Aji = 4 (∆Eij)3

3~4c3gi

∣∣∣〈njljmj |D|nilimi〉2
∣∣∣ . (4.2.8)

between two mono-electronic states i and j , where D = −er stands for the dipolar

electric momentum of the atom. The squared matrix element
∣∣∣〈njlj |r|nili〉2∣∣∣is called the

line strength Sji. This line strength is related to the dimensionless oscillator strength (in

absorption) by

fij = 2me∆Eij
3~2gi

Sji. (4.2.9)

Finally, from the formulas (4.2.8) and (4.2.9) we obtain the spontaneous emission rates

Aji = 2e2

me~2c3
gi
gj

∆E2
ijfij. (4.2.10)

From this relation, we can deduce by using equations (4.2.2) and (4.2.3) the two other

coefficients Bij and Bji. The spontaneous emission is calculated directly by the FAC code.

4.2.2 Photo-ionization

The calculation of the Photo-ionization cross sections is similar to the one of the spon-

taneous emission rate. The difference lies in the fact that the final state is not a bound

orbital but an orbital of the continuum. By restricting the discussion to the dipolar

approximation and considering a mono-electronic transition, it comes [52]

σi,ε = 8π3e2ν

3cgi
(2li + 1) (2l + 1)

 li 1 l

0 0 0

2 [ˆ ∞
0

Rεl(r)rRni li
(r)dr

]2

. (4.2.11)

where i is the bound state with li its orbital quantum number momentum,ε identifies

the continuum state with l its orbital quantum number momentum, hν the energy of the

incident photon, gi the statistical weight of the initial state. The function Rnl(r) stands
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for the radial bound wave function and Rεl(r) for the radial continuum wave function. The

bound wave-functions are normalized to unity, while for the continuum wave-functions we

have

ˆ ∞
0

Rεl(r)r2Rε′ l′ (r)dr = δ
(
ε− ε′

)
. (4.2.12)

The main difficulty of this expression lies in the continuum wave function calculations.

In the expression of the spontaneous emission and the photo-ionization step in the

radial wave functions of the bound electron. In the chapter 2 we have seen how to

calculate these wave functions. But, in the photo-ionization, we also have to consider

the continuum orbital. In the Flexible Atomic Code the continuum wave functions are

obtained by solving the Dirac equation with the same central potential as for the bound

states. The difference is that at large distance the continuum electron experienced the

screening of an additional electron. By default in FAC the photo-ionization cross section

is calculated using the distorted wave approximation. This method is discussed in the

section (4.3.5).

4.3 Collisional excitation
In that part we consider the general problem of scattering of a particle by a spherical

potential. Two methods are mainly investigated and used: the plane wave Born approx-

imation (PWB) and the distorted wave method (DW). Both methods are implemented

in the Flexible Atomic Code. A more detailed discussion about these two methods can

be found in the references [53, 54, 55]. We also discuss methods which rely on the same

formalism as PWB or DW. Finally, a list of semi-empirical formulas is also provided here.

We point out that the discussion only concerns inelastic collisions.

4.3.1 General framework

At the moment, we only study potentials which decrease faster than 1/r. By doing that,

we exclude the Coulombian potential from this sub-section. Considering a particle of mass

µ scattered by a potential V (r), let the Hamiltonian H be defined as

H = p2

2µ + V (r), (4.3.1)

The corresponding Schrödinger equation can be written[
− ~2

2µ4+ V (r)
]

Ψ(r) = EΨ(r), (4.3.2)
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4.3 Collisional excitation

or under another form, by introducing E = ~2k2
i

2µ , with ki is the initial momentum of the

particle and V (r) = ~2

2µU(r) :

[
4+ k2

i − U(r)
]

Ψ(r) = 0. (4.3.3)

This equation possesses an infinite number of solution for each value of ki. However, we

know that physical conditions constrain us to only keep certain eigenstates. These eigen-

states are called stationary states of scattering, labelled Ψs(r). The physical condition is

that in a given direction Ω = (θ, ϕ) the radial dependency of an outgoing wave must be

in the form eikir/r, the same condition apply to the inward wave. The amplitude of the

outgoing wave depends on the considered direction Ωkf
because the scattering is usually

not isotropic, defining kf = kfΩ. These impose an asymptotic solution at infinity for the

outward wave function of the equation (4.3.3)

Ψs,ki
∼

r→∞
eiki·r + fki

(Ωkf )
eikir

r
, (4.3.4)

where the function fki
(Ωkf

) is called amplitude of diffusion. In the following we omit the

subscripts ki and kf for the amplitude of diffusion, in order to simplify the notations. This

function is linked to the differential cross section by

σ(Ω) = |f(Ω)|2 . (4.3.5)

The demonstration of this relation can be found in the reference [55]. The total cross

section is related to the differential cross section by

σtot =
ˆ
σ (Ω) dΩ (4.3.6)

where dΩ is the solid angle. The solution of the scattering equation (4.3.3) may be

rewritten in integral form

Ψ(r) = Φ0(r) +
ˆ
d3r

′
G
(
r − r′)

U
(
r
′)Ψ

(
r

′)
(4.3.7)

where G(r) is the Green function on the operator [4+ k2]:
[
4+ k2

]
G(r) = δ(r). (4.3.8)

Considering the asymptotic form (4.3.4), the solution of Φ0(r) is a plane wave and G(r) =
G+(r) = − 1

4π
e
ikf .r

r
, therefore equation (4.3.7) becomes

Ψs(r) = eiki·r +
ˆ
d3r

′
G+

(
r − r′)

U
(
r

′)Ψs

(
r

′)
, (4.3.9)
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for the scattering amplitude in the direction of the vector kf (4.3.4), we get

f(Ω) = − 1
4π

ˆ
d3r

′
e−ikf ·r

′

U(r′)Ψs(r
′). (4.3.10)

We, thus, deduce from formula (4.3.5) the differential cross section

σ(Ω) = µ2

4π2~4

∣∣∣∣∣
ˆ
d3r

′
e−ikf .r

′

V (r′)Ψs(r
′)
∣∣∣∣∣
2

. (4.3.11)

This expression is exact but in general the wave function Ψs is unknown. We can write

this equation under different forms:

dσa→b
dΩ = µ2

4π2~4 |〈Φ0,a |V |Ψs,b〉|2 (4.3.12)

where Φ0,a is the plane wave in the direction a ≡ ki, and Ψs,b the scattered wave-function

in the direction b ≡ kf . Another notation is

dσa→b
dΩ = µ2

4π2~4 |Ta→b|
2 , (4.3.13)

where Ta→b is the transition matrix for the scattering from a ≡ ki to b ≡ kf , but it is not

strictly the matrix element of the operator V because Φ0(r) and Ψs(r) do not belong to

the same basis. A discussion about the Born approximation is made by Seaton in Ref.[56].

4.3.2 Plane wave Born approximation

Usually the value of the scattered wave function Ψs(r) is unknown, nevertheless we can

build step by step a solution of the integral equation (4.3.9). The differential equation is

by consequence solved by iteration:

Ψs(r
′) = eiki·r

′

+
ˆ
d3r

′′
G+

(
r

′ − r′′)
U
(
r

′′)Ψs

(
r

′′)
. (4.3.14)

We replace (4.3.14) in equation (4.3.9), we can repeat this operation as much as necessary.

Thereby we obtain the Born development, where each term of the series involves an

increasing power of U . When we stop at the first order, it is commonly named the plane

wave Born approximation (PWB). We thus obtain at the first order:

Ψs(r) = eiki·r +
ˆ
d3r

′
G+

(
r − r′)

U
(
r

′)
eiki.r. (4.3.15)

By substituting G+ by its expression and using equation (4.3.3)we find the PWB differ-

ential cross section:

σborn(Ω) = µ2

4π2~4

∣∣∣∣∣
ˆ
d3re−iK·rV (r)

∣∣∣∣∣
2

, (4.3.16)
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4.3 Collisional excitation

where K = ki − kf . Finally we can sum up:

dσa→b
dΩ = µ2

4π2~4 |〈Φ0,a |V |Ψs,b〉|2 ∼
µ2

4π2~4 |〈Φ0,a |V |Φ0,b〉|2 . (4.3.17)

The obtained cross section is simply linked to the squared modulus of the Fourier trans-

form of the interaction potential. This approximation is valid if the orders superior to 1

are negligible. To fulfil this criteria the interaction potential has to be small enough so

that the wave Ψs(r) differs little from the plane wave Φ0. We point out that such result

(4.3.17) may be find using the Fermi golden rule (4.2.6). We recall that these formulas

are valid for all potentials decreasing faster than 1/r, otherwise the Fourier integral does

not converge.

4.3.3 Scattering by an atom/ion

The considered problem is the inelastic scattering of a charged particle by an atom or an

ion. The atomic units are use in this section. We apply to that problem the plane wave

Born approximation. Therefore, the incident and scattered particle are solutions of

[
4+ k2

]
φ(r) = 0. (4.3.18)

The outward and inward wave function write, respectively

Φf = eikf ·r

(2π) 3/2 Φi = eiki·r

(2π) 3/2 , (4.3.19)

where ki, kf are the initial and final electron momentum, respectively. The interaction

potential of the target has the form:

V (r) =
N∑
q=1

1
|r − rq|

− Z

r
. (4.3.20)

We only consider a mono-electronic transition. The matrix element Tai→af from a state

ai to af writes according to formula (4.3.17)

Tai→af =
ˆ

dre−iK.r

(2π)3

〈
nili

∣∣∣∣∣ 1
|r − rq|

− Z

r

∣∣∣∣∣nf lf
〉
, (4.3.21)

We integrate over r knowing that

ˆ
dr

e−iK.r

|r − rq|
= 4π

K2 e
−iK.rq . (4.3.22)
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Therefore, the square of the matrix element becomes

∣∣∣Tai→af ∣∣∣2 = 1
4π4K4

∣∣∣〈ai ∣∣∣e−iK.rq
∣∣∣ af〉∣∣∣2 . (4.3.23)

In equation (4.3.23), the contribution of the nucleus is zero due to the orthogonality of

the states ai ≡ nili and af ≡ nf lf (inelastic collision). To carry on the calculation, we

expand the exponential term [55], in order to separate the radial and angular coordinates

we also set K parallel to z,

eiK.rq = 4π
∞∑
δ=0
iδjδ (K.rq)

δ∑
m=−δ

(−1)mY ∗δm (K) · Yδm (rq) , (4.3.24)

where jδ(x) is the spherical Bessel function related to the Bessel function of the first kind

Jδ(x) [57] by

jδ(x) =
√
π

2xJδ+1/2(x). (4.3.25)

Introducing this expression in equation (4.3.23), we get

∣∣∣Tai→af ∣∣∣2 = 1
4π4K4∣∣∣∣∣∣

∞∑
δ=0

4πiδ
δ∑

m=−δ
(−1)m Yδ−m (K) (−1)li−mi

 li δ lf

−mi m mf

 〈li ‖jδ (K.rq)Yδ (rq)‖ lf〉

∣∣∣∣∣∣
2

;

(4.3.26)

by expanding the square element, we have

∣∣∣Tai→af ∣∣∣2 = 1
4π4K4

∞∑
δ=0

(2δ + 1) |〈li ‖jδ (K.rq)Yδm (rq)‖ lf〉|2 . (4.3.27)

The bound wave functions are expressed by Ψnili,mi = 1
r
Rnili (r)Yli,mi (θ, ϕ) (see chapter

2), then

∣∣∣Tai→af ∣∣∣2 = 1
4π4K4 (4.3.28)

∞∑
δ=0

(2δ + 1)
(−1)li [δlilf ]1/2

 li δ lf

0 0 0

ˆ ∞
0

Rli(r)jδ(Kr)Rlf (r)dr
2

,

where[δlilf ] = (2δ + 1) (2li + 1) (2lf + 1). The total excitation cross section from a state

ai to aj is related to the differential cross section by

σai,af = (2π)4 kf
ki

ˆ
dΩkf

∣∣∣Tai→af ∣∣∣2 , (4.3.29)
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4.3 Collisional excitation

where dΩ is the solid angle, K is related to Ω by the relation 2KdK = 2kikf sin (θf ) dθkf ,
therefore

σai,af = (2π)5 kf
ki

ˆ π

0
dθf sin (θf )

∣∣∣Tai→af ∣∣∣2 = (2π)5

k2
i

ˆ b

a

KdK
∣∣∣Tai→af ∣∣∣2 , (4.3.30)

where a = ki − kf , b = ki + kf . By using the expression (4.3.28), the total cross section

is

σδ (li, lf ) = 8π
k2
i (2li + 1)

ˆ b

a

|Rδ(K)|2 dK
K3 (4.3.31)

in atomic units, withδ = |li − lf | , ..., li + lf and with

Rδ(K) = (−1)li [δlilf ]1/2
 δ li lf

0 0 0

ˆ ∞
0

Rnf lf (r)Rni li
(r)jδ(Kr)dr. (4.3.32)

Discussion

The plane wave Born approximation is not supposed to hold for V decreasing as 1/r, as a

consequence PWB gives better results for neutral targets than ions. Accordingly, we can

verify that the PWB approximation gives a zero cross section at threshold. This point

is due to the presence of the 1/k2
i term in the formula (4.3.31). A zero cross section at

threshold is acceptable for a neutral but not for an ion, because the long range target-

projectile potential decreases faster than 1/r for a neutral target. The Born cross section

is in good agreement at high energy because it assumes that the wave function is weakly

perturbed, close to the nucleus; i.e that the kinetic energy is much greater than the

relevant transition energy.

However, the PWB overestimates the cross section at its peak by a factor of 1.5 to 2[53].

This weakness can be explained by the fact that plane wave Born approximation does not

take into account either the distortion of the incident and scattered wave function by the

field of the target or the exchange. The distorted wave theory has been developed to

circumvent this weakness. We also notice that the PWB does not take into account a

spin exchange, therefore PWB completely fails to reproduce forbidden transitions.

To take into account the exchange with the Born approximation, we can use the Born-

Oppenheimer theory. However, in that theory the initial and final wave functions are no

more orthogonal. In that frame Ockur [58] and Beigman [59] have proposed a tractable

formula of the Born approximation with exchange for neutral atom.

The advantage of the PWB is its computational efficiency, because only the radial

wave function of the initial and final bound state are needed. We mention an interesting

work by Kim [60] which improves the plane wave Born approximation and gives very

good agreement for neutral atom. However, as stated by the author himself no rigorous

justification of this scaling cross section has been found up to now. The scaled cross
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Chapter 4 Radiative rates and electron-impact cross sections

section proposed is

σBEij = σBorn
Ei

Ei + ∆Eij + Eioni
, (4.3.33)

where Ei is the energy of the incident particle, ∆Eij is the transition energy between the

initial and final state, Eioni is the ionization energy of the level i.

4.3.4 Generalised Born approximation

It is highly desirable to generalize the Born approximation to any potential, including

those behaving asymptotically as 1/r. Since the interaction potential V may be too

strong to be treated by a perturbative method, it is convenient to deal with a potential

U close to V and treat the difference as a perturbation. We know the exact solution for

the potential U . Therefore, we set

V (r) = U(r) +W (r). (4.3.34)

The total Hamiltonian H writes

H = H1 +W, (4.3.35)

with

H1 = p2

2m + U, (4.3.36)

where H1 is the Hamiltonian for which a solution is supposed to be known, W is the

rest of the interaction. The known eigenstates of H1 are labelled by η. In the case of a

Coulombic form potential, the asymptotic stationary state of H1 is [55]

ηs ∼ ei[ki.r+γ ln ki(r−z)] + f(θ, ϕ)e
i[kir−γ ln 2kir]

r
. (4.3.37)

where γ = z1z2e
2/hv, in which v = ~ki/µ.The evaluation of the scattering amplitude

f(θ, ϕ) has to be performed with a Green-Coulomb function. We recall that the expression

for the differential cross section between two states a and b for H1 is

dσa→b
dΩ = µ2

4π2~4

∣∣∣TH1
a→b

∣∣∣2 , (4.3.38)

where

TH1
a→b = 〈Φ0,a |U | ηs,b〉 . (4.3.39)

To obtain the total matrix transition of the Hamiltonian H, we only need to add the

perturbative contribution of W

THa→b = TH1
a→b +

〈
η−s,b |W |Ψs,a

〉
, (4.3.40)
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where Ψs,a is the exact scattered wave function, the sign - indicate an outward wave and

no sign an inward wave. The differential cross section is expressed as

dσa→b
dΩ = µ2

4π2~4

∣∣∣THa→b∣∣∣2 . (4.3.41)

If we apply the Born approximation at first order, we can write

〈
η−s,b |W |Ψs,a

〉
'
〈
η−s,b |W | ηs,a

〉
. (4.3.42)

Again the validity of the Born approximation at first order lies on the fact that the

stationary wave Ψs,a is supposed to be close to ηs,a.

4.3.5 Distorted wave method

The DW method has been first developed by Mott and Massey [55]. The purpose of DW

is to take into account the distortion of the incident and the scattered wave functions

by the field of the target. This two facts are not included in the PWB theory. In the

literature, the distorted wave method may have two different meanings

• Fano and Inokuti [61] consider it as a perturbative method. We present it in 4.3.5.1.

• Mott and Massey [55] consider it as an approximation of a two level close-coupling

approximation. We present it in 4.3.5.2.

Within these two approaches, various DW methods can be found. Most of the existing

methods have been reviewed by Henry [62] for positive ions and Itikawa [63] for ions and

atoms.

4.3.5.1 DW as a perturbative approach

In that approach the DW method may be seen as a generalization of the Born approxim-

ation, seen in 4.3.4. The eigenfunctions of the non-perturbed Hamiltonian H1 verify

[
4+ k2 − 2U(r)

]
Φ(r) = 0. (4.3.43)

The inward wave functions of the incident electron can be written as

Φi = 1√
2π
∑
limi

ili
F ki
li

(r)
r

Y ∗limi (K) · Ylimi (ri) , (4.3.44)

where the functions F k
l (r) are solutions of

[
d2

dr2 −
l (l + 1)
r2 − 2U(r) + k2

]
F k
l (r) = 0. (4.3.45)
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The scattered wave function is deduced from the same equation. It means that the same

potential is experienced by the incident and scattered wave function. By using the same

calculation as in equation (4.3.21), we get the differential cross section

dσDWai,af
dΩ = 4π

k3
i kf

∑
lf ,mf ,li,mi

∣∣∣∣∣∣
ˆ
dr
F ki
li

r
Y ∗limi 〈nilimi |W (r)|nf lfmf〉

F
kf
lf

r
Ylfmf

∣∣∣∣∣∣
2

. (4.3.46)

We clearly see that for U(r) = 0, we retrieve the plane wave Born approximation.

4.3.5.2 DW as an approximation to a two level close-coupling system

The close-coupling method (CC) [64, 65] is a non-perturbative approach. This method

proposes to treat N-integro differential equations of a given set of states. In the CC

method, different processes are taken into account: the interaction between the initial

and final state, the interaction between other present states and the exchange. The

DW method is derived by only considering the initial and final state. The two coupled

equations for the initial and final states are

[
4+ k2

i − 2Vi(r)
]

Φi(r) + 2Vif (r)Φf (r) = 0, (4.3.47)

[
4+ k2

f − 2Vf (r)
]

Φf (r) + 2Vfi(r)Φi(r) = 0, (4.3.48)

where potentials Vif and Vfi represent the interaction potential with the target. The

potentials Vi and Vf correpond to the distortion potential of the initial and final state,

respectively (usually the electrostatic potential of the target). In the DW approach seen

as a perturbation theory, they correspond to the potential U . The assumption is made to

neglect the influence of the initial state on the final state, therefore, Vif = 0. From this

we conclude that the differential cross section from state i to f is

dσDWi→f
dΩ = µ2

4π2~4 |〈Φf |Vfi|Φi〉|2 . (4.3.49)

Discussion

We note the first important point: if the DW is seen as a perturbative theory, the initial

and final potential are equal Vi = Vf . On the other hand, with the two level CC approx-

imation, the potentials are different Vi 6= Vf . The choice of initial and final potential has

been discussed by different authors [63] [66].

According to the literature [67, 68], the choice Vi = Vf gives the best results compared

to the experiment. However, this option could be considered as unatural due to the change

of the state of the ion. Furthermore, such an assumption breaks the micro-reversibility
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principles as stated by Winters [69]. Meanwhile, with a first order perturbation point of

view the wave functions have to be orthogonal, therefore, the potential has to be identical.

As pointed out by Fano[61], the difference between Vi = Vf and Vi 6= Vf is only

important at low energy where the DW method is not supposed to be accurate. The DW

method is valid as soon as the interaction with the target is small, therefore, as for the

PWB, we do not expect a good accuracy at low energy. However, the range of validity

of DW is broader than PWB thanks to the consideration of the distortion potential and

the exchange. It is generally assumed that the DW is reasonable for intermediate to high

energy.

Numerically, the DW method requires more intensive effort because the Schrödinger or

Dirac equations have to be solved for each incident particle, leading to a longer computing

time compared to PWB.

Neutral versus ion

A point of interest for this thesis is the case of neutral targets. Indeed, for neutral species

excitation cross section behaves differently than that of ions because of the absence of a

long range potential. If we consider the asymptotic boundary condition of the scattered

electron wave function, then for neutral target the PWB is better than DW. This is

because the potential has the asymptotic behavior compatible with the hypothesis made

in the PWB approximation. The long-range potential of a neutral atom is obviously not

Coulombic.

Solbeman [53] mentioned that the DW method may overestimate the cross section for

a neutral target. This is because at short distance the repulsion between the optical

electron and the outer electron overcome the attractive field of the atom. Furthermore,

DW method gives better results for highly ionized atoms [61], because the interaction

between the initial and final state become weaker than the distortion potential.

We point out that atomic package codes such as FAC and HULLAC have been built to

model moderately to highly ionized atoms. We conclude by asserting that DW is better

than PWB in most cases except for neutral targets. But this superiority is accidental

because PWB is only valid at high energy.

4.3.6 Coulomb-Born approximation

This approximation is related to the generalised Born approximation. It lies between the

DW method and the PWB. The potential seen by the incident particle has a Coulombic

form with an asymptotic charge of the form Z−1. The functions F k
l (r) are then solutions

of the equation [
d2

dr2 −
l (l + 1)
r2 + 2Z − 1

r
+ k2

]
F k
l (r) = 0. (4.3.50)
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The cross section section is deduced by the formula (4.3.46) as for DW and PWB. We

highlight that distorted wave and Coulomb-Born (CB) are different, indeed for Z = 1
this approximation coincide with the first Born approximation (4.3.31). Conversely, if

Z →∞, DW and CB match.

4.3.7 Bethe approximation

This approximation relies on the PWB approximation. The first assumption made is

to assume a small momentum transfer K → 0 . It leads to an expansion of the Bessel

functions (4.3.25) present in the cross section expression (4.3.31):

jδ(Kr)K→0 = 2δδ!Kδ

(2δ + 1)!r
δ, (4.3.51)

The second hypothesis consists in only keeping the dipolar transition (δ = 1). From

(4.3.51), (4.3.31) and (4.3.32), the cross section is

σBetheai,af
= 8π
k2
i ∆Eif

faia ln
(

K0

ki − kf

)
(4.3.52)

in atomic units, where faiaf is the oscillator strength between states ai and af ,K0 =√
∆Eif and ∆Eif is the transition energy. Because of the small momentum transfer

hypothesis (K → 0) this formula is only reliable at high energy, where the PWB is

expected to be physically accurate.. A detailed discussion of the Bethe approximation is

made by Inokuti in Ref [70].

4.3.8 Empirical formula

Many empirical formulas have been developed to evaluate the excitation cross section.

Most of those developments are based on the plane wave Born approximation.Therefore

they are only reliable at relatively high energy. However, due to their simplicity those

formulas are extensively used in kinetic model to obtain the collisional rates. The main

motivation is linked to the large effort required by the computational time of the more

accurate method such as CC, R-matrix or DW. Moreover, those formulas provide at least

a rough approximation for the behaviour of the cross section.

4.3.8.1 Van Regemorter formula

The Bethe (4.3.52) cross section leads to

σa0,a = 8π
k2
i ∆E

faiag(ki, kf ) (4.3.53)

where g(ki, kf ) is called the Gaunt factor. In the Bethe theory, this factor is g(ki, kf ) =
ln
(

K0
ki−kf

)
. Alternate expressions for the Gaunt factor are available in the literature.
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Through experimental observations done on ions and atoms, Van Regemorter [71] has

tabulated the different values for the Gaunt factor. He recommends to use the Gaunt

factor equal to 0.2 for ions. In this thesis we have used the Gaunt factor proposed by

Mewe [72] listed in the Table 4.1, where ei corresponds to the incident energy and ∆Eijto
the transition energy.

Table 4.1 : Gaunt factor proposed by Mewe depending of the transition

Gaunt Factor Transition type

0.15 + 0.28 log
(

ei
∆Eij

)
∆n 6= 0

0.6 + 0.28 log
(

ei
∆Eij

)
∆n = 0

0.1× ei
∆Eij log

(
ei

∆Eij

)
∆S = 0

0.15 forbidden transition

These empirical formula are not very accurate but offer a good evaluation of the beha-

viour of the cross section for dipolar electric transitions. Notably Sampson et al. [73] have

carried an extensive study of the Van Regemorter formula. They show that this formula

gives correct results for transition in the same shell.

4.3.9 Numerical test on cross sections calculations

We focus our attention on the quality of the excitation cross section of FAC, especially on

neutral. The reason is because our goal is to study the effects of the plasma environment

on collisional cross sections. When we will add the plasma potential in the FAC code,

we will modify the asymptotic behavior of the potential. With the plasma potential the

asymptotic behaviour is the one of a neutral atom and not the one of an ion. This point

will be discussed in the chapter 6.

In the FAC code two methods are mainly used: the PWB and DW, both fully relativ-

istic. Unfortunately neither the FAC documentation nor the article [20] give explicitly

the choice of DW method Vi = Vf or Vi 6= Vf . We do not have the possibility to assert

with no doubts which DW is implemented in FAC. However, as pointed out by Fano [61]

both choices will only differ at low energy, where DW is not expected to be accurate.

We study three situations: the hydrogen atom, the helium atom, the Ne-like iron. To

compare the numerical results of FAC, we plot the data from the DW of Mann [74], and

data of Hagelestein et al [75]. Both of those DW methods use the DW version of Mott

and Massey Vi 6= Vf , exchange is included. We also take as the reference the First Order

Many Body Theory (FOMBT) of Csanak et al. [76], this method has been successfully

compared on many neutral targets[77, 78, 79]. Rescigno et al. [80]have showed that

FOMBT pertained to the DW theories, where Vi = Vf . The DW of Mann and the

FOMBT is used by the ATOMIC package [18, 81, 82], both methods are available on the

Los Alamos national laboratory website.
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Figure 4.3.1 : Excitation cross section of Fe Neon-like, transition 1s22s22p6 to 1s22s22p53s.
DW method of FAC , DW method of Mann [74], DW Hagelestein et al. [75].

In the case of the Ne-like iron, as presented in Figure 4.3.1, all DW methods agree quite

well. In that situation the target is highly ionized therefore the DW approximation is

relevant. The DW method of FAC is closer to the one of Hagelstein because the energy

of the considered transition is closer than the transition energy given by Mann. For

FAC we have ∆E = 725.52 eV, from Hagelestein ∆E = 725.82 eV and from Atomic

∆E = 725.18eV.

In the Figure 4.3.2 and 4.3.3, we plot the excitation cross section of 1s to 2p1/2 transition

in hydrogen and of 1s2 to 1s12p1 transition in helium atom. The FOMBT theory is taken

as the reference for both plots. We notice that the DW method of FAC does not have

the expected behaviour near threshold for the cross section. Its behaviour is closer to the

one of an ion rather than a neutral target. We point out that the PWB of FAC gives

a ”better” results than DW, we shall not forget that PWB is only valid at high energy.

Indeed, as mentioned before the PWB considers a plane wave for the incident electron.

This corresponds to the case of a fully screened potential.We may therefore considered as

”accidental” the success of PWB. For many neutral cross sections the DW of FAC gives

an inaccurate behaviour at low energy, this point is mentioned by the author of FAC in

the user manual with no explanations. Finally, we also see that the DW of FAC and of

Mann are quite different at threshold.

4.4 Collisional ionization
As for the collisional excitation, the DW and the PWB approaches may be used to evaluate

the ionization cross section. However, in FAC by default another method is implemented:

the Binary Encounter Dipole theory (BED) of Kim [83]. The DW method is also present
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Figure 4.3.2 : Excitation cross section of Hydrogen atom, transition 1s to 2p1/2. DW
method of FAC (black curve), DW method of Mann [74](red curve with
stars), PWB of FAC (orange curve) and FOMBT of Csanak et al.[76].
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Figure 4.3.3 : Excitation cross section of Helium atom, transition 1s2 to 1s2p1/2 J = 1.
DW method of FAC (black curve), PWB of FAC (red curve) and FOMBT
of Csanak et al.[76].
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Chapter 4 Radiative rates and electron-impact cross sections

in FAC for ionization cross section, but by default the BED is used. This is because the

BED theory is faster than DW. This theory belongs to the class of ”classical scattering

theory”. By classical theory, we mean theories which do not describe the structure of the

atom. L.Vriens made a detail discussion of the Binary encounter theory in Ref.[84]. In

the classical theory, two assumptions are made:

• The incident particle interacts with only one target

• The interaction between the atomic electron (target) and the nucleus is neglected.

The first assumption can be regarded as the Born approximation (one scattering center),

the second assumption is only possible if the interaction between the “bound” electron

and the atom takes place in a region smaller than the dimension of the atom. This

means that binary theory should give good results for hard collision (large momentum

transfer compared to the momentum of the bound electron or close collision). Under

these hypotheses the considered system could be seen as scattering of two free electrons.

In the following sub-section we present the classical“Rutherford ”and the quantum“Mott”

calculations cross section for that system.

4.4.1 Rutherford and Mott scattering

We consider two particles with masses m1 and m2 and charge z1e and z2e, respectively.

In the center of the mass applies the following Schrödinger equation:[
− ~2

2µ4+ z1z2e
2

r

]
Ψ(r) = EΨ(r), (4.4.1)

where µ is the reduced mass, E is the energy in the center of mass frame. Defining

γ = z1z2e
2/hv, where v = ~k/µ, we can write

(
4+ k2 − 2γk

r

)
Ψ(r) = 0. (4.4.2)

This equation may be solved by using the parabolic coordinates, the detailed demonstra-

tion is made in [85]. The solution is

Ψ(r) = Γ (1 + iγ)F1 (−iγ; 1; ik (r − z)) exp
(
−1

2πγ + ikz
)
. (4.4.3)

F1 is the confluent hyper geometric function[57].We only need the asymptotic behaviour

of that wave function to obtain the diffusion amplitude labelled fc(θ) which is

fc(θ) = − γ

2k sin2
(
θ
2

) exp
(
−iγ ln

(
sin2

(
θ

2

))
+ 2iσ0

)
, (4.4.4)
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4.4 Collisional ionization

where σ0 = arg Γ (1 + iγ). For two non-identical particles we can write

σ(θ, ϕ) =
∣∣∣fc(θ, ϕ)2

∣∣∣ , (4.4.5)

from which we obtain the cross section

σ(θ, ϕ) =
[
z1z2e²
2µv2

]2 1
sin4

(
θ
2

) . (4.4.6)

This cross section coincides with the classical cross section found by Rutherford.

In the case of identical particles, the wave function has to be antisymmetric in the

exchange of these two particles. This leads to

σ(θ, ϕ) = |fc(θ, ϕ)− fc(π − θ, ϕ)|2 . (4.4.7)

We finally obtain, by using equation 4.4.4, the Mott cross section[86]:

σMott(θ, ϕ) =
[
z1z2e²
2µv2

]2
 1

sin4
(
θ
2

) + 1
cos4

(
θ
2

) − cos
(
γ ln

(
tan2

(
θ
2

)))
sin2

(
θ
2

)
cos2

(
θ
2

)
 . (4.4.8)

The terms in the Mott formula correspond respectively to the direct collision (as in

Rutherford formula), the exchange collision between the two particles and the interfer-

ence between exchange and direct collision. The two last terms are the consequence of the

exclusion principle. In the first order Born approximation the hypothesis is to neglect the

exchange between particles. Through PWB we may retrieve the Rutherford cross section

but not the Mott cross section.

4.4.2 Binary encounter dipole theory

Here, we summarize the main method used in the Flexible Atomic Code to calculate

ionization cross sections. This theory[83] merges two approaches. The first one is binary

encounter theory valid for large momentum transfer. The second theory used is the Bethe

approximation valid for small momentum transfer (4.3.52). The Bethe formula shows that

the interaction between the target and the incident electron mainly takes place through

the dipole terms (explaining the name of the theory). In the Mott cross section (4.4.8)

the target electron is supposed to be at rest. This consideration is not realistic because

the atomic electron has an orbital velocity. Therefore in the Binary encounter theory [84]

a velocity distribution is given to the atomic electron. Kim et al. [83] proposed for the

differential cross section :

dσ

dW
= 4πa2

0NE
2
H

B + T + U

[
Ni/N−2
T+B

[
1

W+B + 1
T−W

]
+ ln(T/B)

N(W+B)
df (W )
dW

(4.4.9)

+ (2−Ni/N)
[

1
(W+B)2 + 1

(T−W )2

]]
.
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Chapter 4 Radiative rates and electron-impact cross sections

where T is the kinetic energy of the incident particle, W is the energy of the scattered

electron, B is the binding energy, U is the average kinetic energy of the atomic electron,

N is the number of electrons and EH is Rydberg constant. The term df/dW is bound-

free differential oscillator strength and Ni =
´∞

0 dW df/dW . In that formula, the only

difficulty remains in the calculation of the bound-free oscillator strength df/dW . The

formula (4.4.9) can be applied for ions or neutral target as mentioned by its author.

The Binary encounter theory is not suitable for excitation cross section computation[84].

Indeed, two problems arise: we cannot define properly a quantization of the angular

momentum and we cannot distinguish between different azimuthal quantum numbers.

4.5 Summary
We have reviewed a large set of methods to calculate collisional cross sections and the

radiative rates. We highlight that the frame of this chapter was non-relativistic though,

in FAC a relativistic version is implemented. As we have seen in this this chapter, we

conclude that for neutral or near neutral atoms the DW option in FAC cannot be reas-

onably used, but is reliable for highly stripped ion. In the case of ions in a plasma, as in

chapter 5, the PWB will be used. In table 4.2, we summarize the methods used to obtain

the atomic cross sections. In FAC the auto-ionization is calculated via DW method with

no other option, explaining why we did not discuss auto-ionization in this chapter.

Table 4.2 : Cross section methods used to provide our atomic data

DW PWB CB BED Empirical-formula Fit

Collisional Excitation × × × ×(Mewe)
Collisional ionization × × ×(Lotz)

Photo-ionization × ×(Kramers) ×
Auto-ionization ×
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Chapter 5

Plasma potential

5.1 Introduction
The developments in the previous chapters concerned an isolated ion. However our work

is devoted to ions immersed in a plasma environment. Few atomic code take into account

the environment of ions. Most of the time the effect of the plasma are added in the atomic

code through perturbation theory or at the step of the kinetic code. This work represents

a first attempt to include the plasma effect in the Flexible Atomic Code. The environment

of ions plays a significant role at high density, leading to effects such as plasma polarization

shifts, pressure-induced ionization, changes on the absorption and emission spectra and

on the equation of state. Taking into account such effects in a consistent way is a serious

task since the number of involved particles is huge, which suggests to treat free electrons

statistically. As mentioned by Rosznay[8] we may distinguish two types of approaches to

determine the plasma potential: the ion correlation and ion sphere theories.

In the ion correlation model, the ion is immersed into an infinite polarizable medium

(also called jellium). Asymptotically, the positive and negative charges cancel out each

other to form a neutral background. The mostly known and used ion-correlation model

is the Debye-Hückel theory [87, 88, 89]. An other approach pertaining to the density of

the functional is the atom in the jellium of Perrot [10], Blenski and Piron [11, 12].

In the ion sphere model the ion is enclosed in a cell which contains the exact number of

electrons to ensure the neutrality of the sphere. The ion sphere model has been extensively

used [7, 9, 12, 90], in order to get energy levels and transition rates of ions in plasmas.

Such models assume a spherical symmetry and define an electron density distribution

that obeys self-consistency equations. Coupling the Poisson equation and the statistical

distribution of electrons, one may obtain Thomas-Fermi [91, 92] or relativistic Thomas-

Fermi [7].

All these theories pertain to the group of density functional theories [93]. One must

notice that they also assume thermodynamic equilibrium. Additionally some formalisms

only assume cylindrical symmetry and use a molecular approach describing the inter-
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Chapter 5 Plasma potential

action with the nearest ion [94]; this approach mainly concerns strongly correlated plas-

mas.When a realistic quantum description of bound electrons is required and when dealing

with non-local-thermal-equilibrium (non-LTE) plasmas, only free electrons will be treated

statistically. Under this assumptions (ion-sphere + statistical treatment of free electrons)

we have firstly used the uniform electron gas model (UEGM) and then a Thomas-Fermi

approach (TF). Both approaches are implemented in the FAC code [20]. We point out

that a very popular model for level shifts which make the connection between the Debye-

Hückel and the ion-sphere model has been developed by Stewart and Pyatt [95]. However

this model assumes thermal equilibrium for ions as well as electrons.

In this chapter we briefly discuss the Debye-Hückel theory. Then a detailed discussion

is carried on the ion sphere model for the UEGM and the TF approach. We extend

previous approaches based on UEGM assumptions by deriving analytical formulas in non

relativistic hydrogen-like ions. This analytical work is used to check the atomic data of

the modified FAC code.

Atomic units are used throughout this chapter.

5.2 Debye-Hückel
One of the first attempt to model plasma effects was the Debye-Hückel theory [87, 88, 89].

The first assumption of this theory is to assume a Boltzmann distribution of free electrons

and ions. The second hypothesis is to consider that∣∣∣∣∣V (r)
kTe

∣∣∣∣∣� 1 (5.2.1)

Owing to this hypothesis we can linearize the Boltzmann distribution of ions and electrons.

Then, the Poisson equation is solved to obtain the potential. It comes while keeping the

first order term of densities

V (r) = −Z
r
e
− r
λD (5.2.2)

with

λ2
D = kTe

4πNi

∑
j

Z2
j fj + Zf

 (5.2.3)

is the Debye length, fj is the fraction of ion with charge Zjand Zf the number of free elec-

trons. Of course, the assumption of linearization of the Boltzmann distribution induced

strong limitation on the range of application of the Debye-Hückel potential. To fulfill the

criterion
∣∣∣V (r)
kTe

∣∣∣ � 1, the temperature has to be high and the density low, or can only be

applied if the potential of the nucleus is weak which implies a large principal quantum
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number. Weisheit [96]proposed the validity condition

4
3πλ

3
DNe � 1 (5.2.4)

For plasmas out of thermodynamical equilibrium, the assumption of the Boltzmann dis-

tribution for ionic levels is not relevant. A last argument which has been pointed out by

Nguyen et al [97] is that the correlation time of the ion is much longer than the lifetime of

excited atomic states. So we have estimated that this model limited to weakly correlated

plasma is not relevant for our purpose.

5.3 Ion sphere model
Under the ion sphere model pertain all models which assume a neutral cell containing a

central ion surrounded by its environment. Moreover, one assumes that the free electron

density exactly cancels the ion density beyond the Wigner-Seitz radius. In this approach

the potential is also calculated using the Poisson equation. The difference between the

various ion sphere models lie in the way the density of free electrons is determined. We

present two models of ion sphere type, the uniform electron gas model (UEGM) and the

Thomas-Fermi approach (TF).

5.3.1 Uniform electron gas model

The uniform electron gas model supposes a uniform distribution of free electrons Ne. This

hypothesis means that we neglect the polarization of free electrons due to nucleus. It has

been checked [98] that theoretical estimates based on it agree with several experimental

data recorded in highly stripped ions. As in every ionic sphere model (see, for instance

[9]), we assume that outside the ionic sphere the free-electron density compensates the

ion density, and we have to ensure neutrality of the ionic sphere

Z −Nb −
4
3πR

3
0Ne = 0, (5.3.1)

where R0 is the ionic sphere radius, Z the atomic number, Nb the number of bound electron

and Ne the free electron density.

Using the uniform electronic density hypothesis, we obtain the potential

Vpl(r) = Zf
2R0

(
3− r

2

R2
0

)
if r ≤ R0 (5.3.2)

Vpl(r) = Zf
r

if r ≥ R0. (5.3.3)
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in atomic unit and with Zf the number of free electron defined by

Zf = Z −Nb (5.3.4)

Vpl is the potential energy, however we mention it in what follows by potential.

In this work, we have not imposed any cancellation property of the wave-function

at r = R0, at variance with other authors [99, 100]. Since we are interested in dense

plasmas, R0 is rather large as detailed below. Furthermore, canceling the wave-function

on the sphere surface is equivalent to assume an infinitely repulsive potential beyond R0

leading to possible unphysical effects. Despite its simplicity, the UEGM was compared

to self-consistent approaches and turns out to be acceptable for moderate densities [101,

102, 103, 104]

5.3.1.1 Discussion

We point out that several authors [105, 106] have chosen a different condition for Zf :

Zf = Z −Nb + 1. (5.3.5)

Massacrier et al. [101] choose this definition because they impose the sphere to be neutral

for every bound electrons. It means that the optical electron is not bound and therefore

a free electron is added to fill the hole. In that situation the optical electron experiences

a zero potential when it is far from the origin. Conversely, in our case the optical electron

is embedded in the potential of an hydrogen like atom. Our choice is justified by the

neutrality condition (5.3.1), while the condition of (5.3.5) lies on a ad-hoc choice.

5.3.2 Thomas-Fermi approach

The self-consistent equations defining the free-electron density and the plasma potential in

a semi-classical picture — Thomas-Fermi restricted to free electrons — has been discussed

in a series of papers [97, 104]. In the ion-sphere theory [9], neutrality is still assumed inside

the Wigner sphere with radius R0 defined by

4πR3
0Ne/3 = Zf (5.3.6)

with the same notation as above. Free-electron and the other-ion background densities

are supposed to neutralize

ne(r) = 0 for r ≥ R0. (5.3.7)

In order to comply with the definition of the average density Ne, one imposes

4π
ˆ R0

0
dr r2ne(r) = Zf . (5.3.8)
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Assuming Maxwell-Boltzmann statistics, the free-electron density follows in atomic unit

ne(r) ∝
ˆ ∞
p0(r)

dp p2 exp
(
−
(
p2

2 + V (r)
)
/kTe

)
(5.3.9)

where kTe is the electron temperature and p0(r) is the minimal momentum value making

the total electron energy positive, i.e., p0(r) = (−2V (r))1/2 if V (r) ≤ 0, or 0 if V (r) > 0.

Here we assume thermal equilibrium for electrons, but not necessarily for ions which is

consistent with the assumption made in the collisional-radiative models. We note that in

the work of Blancard et al. [107], the density of free electrons is calculated via a quantum

description. Here, we prefer to treat the free electrons via a semi-classical description to

be consistent with the hypothesis of the collisional-radiative model (Maxwell distribution

of free electrons). The quantity V (r) is the energy associated with the electrostatic in-

teraction with all the charges included in the Wigner sphere, namely the nucleus, bound

electrons and free electrons

V (r) =

−
Z
r

+ Vb(r) + Vpl(r). r ≤ R0

0 r > R0
(5.3.10)

The term Vpl(r) describing the interaction with free electrons is the so-called plasma poten-

tial. The use of Fermi-Dirac statistics is usually not necessary as discussed in subsection

5.3.5. We also assume that free electrons are not relativistic, which holds for temperatures

kBTe � 511 keV which is always fulfilled in the cases considered here.

The last equation required to obtain the plasma potential and the electron density is

the Poisson equation which can be written in integral form

Vpl(r) = 4π
(

1
r

ˆ r

0
ds s2ne(s) +

ˆ R0

r

ds sne(s)
)
. (5.3.11)

This expression ensures that Vpl(r) and its derivative are continuous at r = R0, knowing

that Vpl(r) = Zf/r if r ≥ R0, according to the ion-sphere hypothesis.

Assuming an attractive potential V (r) < 0, the Maxwell-Boltzmann equation (5.3.9)

leads to

ne(r) = K

2 e
−V (r)/kTe(2kTe)3/2Γ

(3
2 ,−

V (r)
kTe

)
(5.3.12)

= K

2 (2kTe)3/2

(−V (r)
kTe

)1/2

+ π1/2

2 e−V (r)/kBTeerfc

(−V (r)
kTe

)1/2
 (5.3.13)

the constant K being derived from the neutrality condition (5.3.8). We have introduced

the incomplete Gamma function Γ(a, x) =
´∞
x
dt ta−1e−t and the complementary error

function erfc(x) = (2/π1/2)
´∞
x
du e−u

2
[57].
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5.3.3 Limit of weakly coupled plasmas

In order to simplify the discussion we define a radius connected to the electron temperature

(atomic are used to defined the radius)

R1 = Zf
πkTe

, (5.3.14)

the ratio R1/R0 is proportional to the plasma-coupling parameter

R1/R0 = Zf
πkTeR0

= Γ
Zfπ

(5.3.15)

with a definition slightly different from the most usual one, which is based on ion-ion and

not electron-ion interaction [108].

In the limit of infinite temperature or zero density R1/R0 → 0, the electron density is

constant inside the Wigner sphere and the potential is obtained straightforwardly from

Poisson equation (5.3.11). This well-known Uniform Electron Gas Model (UEGM) so-

lution may however be usefully refined by considering the first correction in a R1/R0

expansion. Here we consider hydrogen-like ions where the Vb term is absent in the poten-

tial (5.3.10). Starting from the Maxwell-Boltzmann equation (5.3.12), and the expansion

of the incomplete Gamma function

exp(X)Γ(3/2, X) =
√
π

2 +
√
πX

2 − 2X3/2

3 +
√
πX2

4 +O(X5/2) (5.3.16)

where the first 2 terms are kept, one gets

ne(r) = Nht

{
1 + 1

kTe

[
Z

r
− Zf

2R0

(
3
2 −

r2

R2
0

)]}
(5.3.17)

up to (R1/R0)3/2 corrections. Here Nht is a constant proportional to the electron density

and determined from the neutrality condition (5.3.6)

Nht = 3Zf
4πR3

0

1

1 + 3
2kTeR0

(
Z − 4

5Zf
) . (5.3.18)

From Poisson integral equation (5.3.11), we write the high-temperature plasma potential

V ht
pl (r) = 3Zf/R3

0

1 + 3
2kTeR0

(
Z − 4

5Zf
) [R2

0
2 −

r2

6 + ZfR0

kTe

(
Z

Zf
− 5

8 −
Zr

2ZfR0
+ r2

4R2
0
− r4

40R4
0

)]

(5.3.19)

up to kT−3/2
e R

−5/2
0 terms. Letting

u = 1− r/R0 (5.3.20)
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one gets, using the closest approach distance R1 (5.3.14), the low-density form of the

plasma potential (5.3.19)

R0V
ht
pl (r)/Zf = 1+u− u

2

2 + 3πR1

10R0

[(
5Z
2Zf
− 1

)
u2 + u3 − u4

4

]
+O

(
(R1/R0)3/2

)
. (5.3.21)
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Figure 5.3.1 : Variation of the reduced plasma potential divided by the coupling pa-
rameter R1/R0 in H-like helium. The scaled variation δV

(sc)
pl (x) =

(R0/Zfe
2)(Vpl(r)− V UEGM

pl (r))/(R1/R0) is plotted versus x = r/R0 for var-
ious R1/R0 and is compared to the analytical form y = (3π/10)(1−x)2[5−
x− (1− x)2/4] as given by (5.3.21).

The convergence of the numerical solution towards this analytical form when the cou-

pling parameter tends to zero is illustrated by Fig. 5.3.1 where we have plotted the radial

dependence of the potential variation (R0/Zf )(Vpl(r) − V UEGM
pl (r))/(R1/R0) for various

small values of R1/R0 and its analytical limit (5.3.19). It turns out that the numerical

solution does converge towards this limit but rather slowly with the parameter R1/R0, as

expected since the first omitted term is of order (R1/R0)3/2: for instance if R1/R0 = 10−3

the analyzed ratio is 3.70, i.e., 17% below the analytical result equal to 4.48.
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5.3.4 Scaling laws

From the neutrality, Maxwell-Boltzmann, and Poisson equations, one may easily assert

that the reduced potential and free-electron density obey the scaling laws

ne(R0, R1, Z, Zf , r) = ZfR
−3
0 f(R1/R0, Z, Zf , r/R0) (5.3.22)

Vpl(R0, R1, Z, Zf , r) = ZfR
−1
0 g(R1/R0, Z, Zf , r/R0). (5.3.23)

If one further assumes that the potential is purely Coulombic −Z/r, these laws even

simplify into

ne(R0, R1, Z, Zf , r) = ZfR
−3
0 f(R1/R0, Z/Zf , r/R0) (5.3.24)

Vpl(R0, R1, Z, Zf , r) = ZfR
−1
0 g(R1/R0, Z/Zf , r/R0). (5.3.25)

These laws may be useful when checking the calculation of the plasma potential and

free-electron density at various temperatures and densities.

5.3.5 Ion sphere limitations

We discuss here the validity range of ion sphere model. First, if the spatial extension of

the bound electron wave-function is larger than the ionic sphere radius, the orbitals of two

neighboring ions overlap and molecular effects [109] must be accounted for. This condition

is also connected to the possibility of pressure ionization. The parameter describing this

overlap is

β = 〈r〉
R0

, (5.3.26)

where 〈r〉 is the size of the outermost orbital and R0 is a measure of the half distance

between two neighboring ions.

If β > 1 the wave-functions of two neighboring ions significantly overlap. The atomic

structure codes provide values for the size 〈r〉. Furthermore in hydrogen-like case, the

classical extension of the wave-function is bounded by the outer turning point position

〈r〉 . 2n2/Z, where n is the principal quantum number. For multi-electron ions, a rough

estimate of this dimension is obtained assuming total screening of the nucleus by Nb − 1
bound electrons, and this atomic size becomes 2n2/(Z−Nb + 1). Since the wave-function

decreases exponentially beyond the outer turning point, it is sufficient to impose the

condition
2n2

Zf + 1 < R0 (5.3.27)

which amounts to

Ne . 0.03(Zf + 1)3Zf
n6 ∼ 2.1023Z

4

n6 cm−3 (5.3.28)

A similar condition has been derived by various authors [101, 103].
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The preceding discussion does not take into account the dynamical response of free

electrons. Indeed, when the active electron moves far away from the nucleus, free electrons

neutralize the positive charge with a characteristic time equal to the inverse of plasma

frequency. In this case the net charge seen by an electron far from the nucleus is zero,

in contradiction with formula (5.3.3). The active electron is bounded by a potential

− (Z −Nb + 1) /r — nucleus screened by the other bound electrons — which adds to

free-electron potential (Z −Nb) /r and results in a nonzero −1/r Coulomb potential far

from nucleus. Therefore we must impose on the electron orbital frequency (or Bohr

frequency) ωorbital and on the plasma frequency ωpe the adiabatic condition

ωpe = (4πNe)1/2 � ωorbital (5.3.29)

which, in the hydrogenic case or assuming complete screening by bound electrons, writes

Ne �
(Zf + 1)4

4πn6 ∼ 5.35× 1023Z
4

n6 cm−3. (5.3.30)

This condition is closely related to the non-overlap hypothesis (5.3.28). An obvious conse-

quence of the relation (5.3.29) is that ωorbital is above the cut-off frequency when condition

(5.3.30) is fulfilled. We observe that both conditions (5.3.30) and (5.3.28) are very similar.

In any cases, it appears difficult to take into account the ionization by pressure without

the dynamic response.

The above discussion, mostly concerning UEGM does not involve the temperature kTe

which is indeed connected to Zf through the ionization balance — given by Saha equation

or any other ionization model —, we can also estimate the correlation parameter

Γ =
Z2
f

R0kTe
(5.3.31)

where kB is the Boltzmann constant. Numerically, one has Γ ∼ 1 with parameters

kBTe = 650 eV and Ne = 1023cm−3 — which give 〈Zf .〉 ∼ 12 according to Saha equation

in aluminum. Therefore, the present model applies to plasmas with a low or medium

correlation parameter.

In order to define whether Maxwell-Boltzmann or Fermi-Dirac statistics applies to free

electrons, one must estimate the degeneracy parameter

γ = TFermi

Te
= (3π2Ne)2/3

2kTe
= 32/3π1/3

4
(
Neλ

3
th

)2/3
. (5.3.32)

Using again Ne = 1023cm−3,one gets kTF ' 8 eV. Therefore, the plasmas considered here

are usually non-degenerate. The non-degeneracy condition may also be written

γ = Neλ
3
th � 1. (5.3.33)
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The difference between Maxwell-Boltzmann and Fermi-Dirac statistics is illustrated by

Fig. 5.3.2 where we have plotted the numerical results for the free-electron density and

plasma potential in the case of H-like aluminum at 1 eV and 1024 e/cm3. In this case the

degeneracy factor γ is 331 and the plasma coupling parameter is Γ = 1461.5 making the

free electrons degenerate. However one notices on this figure that the relative variation

between Maxwell-Boltzmann and Fermi-Dirac statistics is about 0.2 on density and 0.1
on the potential. If one considers the relative variation of the potential versus the UEGM

limit the modification due to quantum statistics is again 0.2. That is why we only consider

Maxwell-Boltzmann statistics in this work.

1
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N
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Figure 5.3.2 : Influence of statistics on the self-consistent free-electron density and plasma
potential for H-like aluminum at Te = 1 eV and Ne = 1024 cm−3 or
0.148 a−3

0 . The density is in units of the average free-electron density
Ne = 3Zf/4πR3

0, the potential energy is in units of Zfe
2/R0, and the

electronic distance to nucleus r in units of the Wigner sphere radius
R0 = 2.684 a0.
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5.4 Atomic structure calculations including plasma
potential

We present the modifications that we made in the atomic code FAC which in its standard

version does not take into account the plasma environment. Using the modified form

of this code, we get energy levels, wave-functions, radiative rates, and cross sections

accounting for the plasma environment within the ionic sphere model. Furthermore we

have developed analytical formulas of energies and wave-functions valid for hydrogenic

ions, which will be compared to FAC results.

5.4.1 Numerical approach

The atomic code FAC is fully relativistic and therefore solves the Dirac equation. Elimi-

nating the small component as seen in chapter 3 (2.3.24), one obtains a Schrödinger-like

equation

F (r)
′′

+
[
2 [E − U(r)]− κ (κ+ 1)

r2

]
F (r) = 0, (5.4.1)

where κ is the spin-orbit quantum number, equal to l (resp. −l− 1) for j = l− 1/2 (resp.

j = l + 1/2). The effective potential U is given by

U(r) = V (r)− α
2

2

(E − V (r))2 − 1
2A(r)2

V ′′ − 3α2V
′2

A (r)2 + κV
′

r

 , (5.4.2)

where A(r) =
√[
E − V (r) + 2

α2

]
and F (r) is the large component. The total potential

acting on the electron is

V (r) = −Z
r

+ Vpl + Vee, (5.4.3)

where Vee accounts for all interactions between bound electrons, including nucleus screen-

ing by bound electrons, exchange interaction described by a local potential, and quantum

electrodynamics corrections.

The original modification we brought to FAC code consists in including in V the con-

tribution of the ionic sphere potential Vpl. Because of the presence of the first and second

derivatives of the potential in (5.4.2) we need to account for V
′
pl and V

′′
pl.

5.4.2 Numerical implementation of TF approach

The basic equations are those of section 5.3.2 . The plasma potential and free-electron

density are numerically obtained from an efficient iterative scheme. Starting from the
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UEGM solution

ne(r) = Ne (5.4.4)

VUEGM = Zf
2R0

(
3− r2

R2
0

)
(5.4.5)

for r ≤ R0, one obtains a first iteration for the density using Maxwell-Boltzmann equation

(5.3.12) — where the overall constant is determined by the neutrality condition — and

a first-order iterated potential using Poisson equation (5.3.11). One next obtains second-

order electron density and plasma potential. The iterative scheme obtained is

n(i)
e (r) = K

ˆ ∞
p0(r)

dp p2 exp
(
−
(
p2

2 + V (i−1)(r)
)
/kBT

)
, (5.4.6)

V (i−1)(r) = −Z
r

+ Vb(r) + V
(i−1)
pl (r), (5.4.7)

Zf = 4π
ˆ R0

0
dr r2n(i)

e (r), (5.4.8)

V
(i)
pl (r) = 4π

(
1
r

ˆ r

0
ds s2n(i)

e (s) +
ˆ R0

r

ds sn(i)
e (s)

)
, (5.4.9)

The convergence is controlled by monitoring the variation of the density on the Wigner

sphere |n(i+1)
e (R0) − n(i)

e (R0)|, ending iteration when this difference falls below a given

ε. We found that ε = 10−8 in atomic units gave the self-consistent potential with a fair

accuracy, and that the procedure converged in most cases in less than 12 iterations.

On Fig. 5.4.1 is plotted the free-electron density in units of the average value Ne using

Maxwell-Boltzmann statistics in H-like helium Z = 2, Zf = 1. From bottom to top the

curves correspond to Te = 500, 5000, 5, 0.005 and 5.10−4 eV, and densities 1012, 1021,

1021, 1021, and 1024 per cm3 respectively. On this figure, the parameter R1/R0 is equal

to 1.48 × 10−6, 1.48 × 10−4, 1.48 × 10−1, 1.48 × 102 and 1.48 × 104 respectively. One

notes that for R1/R0 � 1 density varies as r−1/2 for small r and stays almost constant for

r ≤ R0. This is close to the behavior predicted by Rosmej et al [104]. For R1/R0 = 0.148,

electron density varies as r−1/2 on almost all 0–R0 region, though one observes a small

upward deviation for r ' R0. For R1/R0 = 1.48× 102 and 1.48× 104 the reduced density

is identical at the drawing accuracy. Its dependence is again r−1/2 on most of the 0–R0

interval, but for r ' R0 there is now a downward deviation.

ForR1/R0 as large as 1.48×104 one may criticize the applicability of Maxwell-Boltzmann

statistics. However the criterion (5.3.32) may still be compatible with the non-degeneracy

of electrons provided that R0 and R1 are both very large. For instance, R0 = 106a0 and

R1 = 1.48 × 1010a0 give γ = 0.086. Of course this correspond to extremely low density

and temperature, but this is simply to illustrate the high R1/R0 limit on figure 5.4.1.

The radial dependence of the free-electron density is qualitatively similar for higher Z,
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Figure 5.4.1 : Self-consistent free-electron density in H-like helium for various densities
and temperatures. The local free-electron density ne(r) in units of the
average density Ne = 3Zf/4πR3

0 is plotted versus r in units of the Wigner
radius R0 for various plasma-coupling parameters. See text for details.
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the main difference being a stronger variation of ne(r) in the r = R0 region.

5.4.3 Analytical development in hydrogen-like ions

Several papers [97, 102, 103] have pointed out that with the UEGM potential (5.3.2)an

analytical expression can be derived for energy at first-order perturbation. Here we will

extend this approach by giving also explicit expressions of wave-functions, dipolar and

quadrupolar transition rates at first perturbation order, and energies at second perturba-

tion order. To keep the approach rather tractable, relativistic effects are not considered

but it will be shown later that their effect is small as long as Z . 10. The present work

relies on standard Rayleigh-Schrödinger perturbation theory completed by Dalgarno and

Lewis summation technique [110, 111]. In brief, noting H0 the unperturbed Hamiltonian

with eigen energies E
(0)
i and eigenfunctions Φ(0)

i , and V the perturbing potential, this

technique consists in trying to get the first order eigenfunction Φ(1)
i by direct solution of

the equation in r representation

〈
r
∣∣∣H0 − E(0)

i

∣∣∣Φ(1)
i

〉
=
〈
r
∣∣∣E(1)

i − V
∣∣∣Φ(0)

i

〉
, (5.4.10)

where the first-order energy is obtained as usual from

E
(1)
i =

〈
Φ(0)
i

∣∣∣V ∣∣∣Φ(0)
i

〉
. (5.4.11)

The method can even be generalized at any perturbation order. Writing the hydrogen-like

perturbed radial wave-function as Rnl(r) + vnl(r) where Rnl is the unperturbed wave-

function at first order, n and l being the principal and orbital quantum numbers respec-

tively, vnl obeys(
d2

dρ2 + 2
ρ

d

dρ
− l(l + 1)

ρ2 + 2
ρ
− 1
n2

)
vnl = Zf

Z4R3
0
(
〈
ρ2
〉
− ρ2)Rnl(r), (5.4.12)

where ρ = Zr is the scaled radius. To ensure neutrality, on must have Z = Zf +1. In this

radial equation, the large-r dependence of the plasma potential (5.3.3) has been ignored.

As studied in appendix A.1 this substitution is acceptable as soon as R0 > 2n2/Z. The

average square radius is given by

〈
ρ2
〉

= 1
2n

2(5n2 − 3l(l + 1) + 1). (5.4.13)

The trial resolution we have made of (5.4.12) in various cases suggests that a particular

solution may be found as a sum of terms cjρ
j exp(−ρ/n) with j varying from l to n.

The general solution is given by such a solution plus the homogeneous equation regular

solution Rnl multiplied by a constant to be determined. To obtain the properly normalized
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first-order correction, we must ensure the orthogonality condition

ˆ ∞
0

dρρ2Rnlvnl = 0. (5.4.14)

Though we have been able to get analytical expressions for any n, l they are too cumber-

some to be explicitly given here and we will restrain to some simple though demonstrative

enough cases to show general tendencies, namely n = l + 1 and n = l + 2.

If n = l+1, the general solution of the radial equation (5.4.12) with proper normalization

is given by

vnn−1 = 〈r ˜|n n− 1〉 = Zf
Z5/2R3

0

(2/n)n+1/2

(2n)!1/2

(
n

6ρ
3 + n2

4 (n+ 1)ρ2

−n
4

24(n+ 1)(2n+ 1)(5n+ 6)
)
ρn−1e−ρ/n.

(5.4.15)

A comparison between such analytical expression and numerical calculations will be given

in the next chapter. While the first order energy shift is simply given by

E
(1)
nn−1 = Zf

2R0

(
3− n2

Z2R2
0
(n+ 1)

(
n+ 1

2
))

, (5.4.16)

the equation (5.4.15) allows one to write the second order energy shift

E
(2)
nn−1 = Zf

2Z3R0

ˆ ∞
0
dρ ρ2Rnn−1

(
3− ρ2

Z2R2
0

)
vnn−1, (5.4.17)

which is after performing the integration

E
(2)
nn−1 = −

Z2
f

Z6R6
0

n6

32(n+ 1)(2n+ 1)(8n2 + 21n+ 14). (5.4.18)

The ratio of the above correction to the first-order n-dependent term (5.4.16) gives a

quantitative indication of the perturbation development validity

E
(2)
nn−1/E

(1)
nn−1(n-dependent) = Zf

Z4R3
0
n4(n2 + 21n/8 + 7/4). (5.4.19)

This shows that, for large n, the characteristic parameter of the perturbation series is

Zfn
6/Z4R3

0 = 4πNen
6/3Z4. Comparing this to the validity conditions (5.3.28), (5.3.30),

one verifies that the non-overlap and the adiabatic conditions imply a second order much

less than first order in the perturbation series.

The radiative rate depends on the perturbed matrix element ˜〈nl| r |n′l′〉 given, up to

first order, by
˜〈nl| r |n′l′〉 = 〈nl| r |n′l′〉+ 〈̃nl|r |n′l′〉+ 〈nl| r|̃n′l′〉. (5.4.20)
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we provide explicit expressions of this element for adjacent quantum numbers n′ = n+ 1,

l′ = l + 1. With the additional condition l = n − 1, the first-order perturbation involves

two integrals. The first one is

˜〈n n− 1|r |n+ 1 n〉 = Zf
Z5R3

0

nn+13/2(n+ 1)n+3

263(n+ 1/2)2n+11/2 (288n4 +1140n3 +1720n2 +1175n+306).

(5.4.21)

The second integral is

〈n n− 1| r ˜|n+ 1 n〉 = − Zf
Z5R3

0

nn+5/2(n+ 1)n+6

192(n+ 1/2)2n+11/2 (n+2)(2n+3)(48n3+138n2+71n+11).

(5.4.22)

For the complete matrix element defined above (5.4.20) one gets

˜〈n n− 1| r |n+ 1 n〉 = nn+5/2(n+ 1)n+2

Z(n+ 1/2)2n+5/2

[
1 + Zf

Z4R3
0

(n+ 1)D1(n)
96(n+ 1/2)2

]
(5.4.23)

with

D1(n) = 96n7 + 72n6 − 936n5 − 2678n4 − 3180n3 − 1916n2 − 569n− 66. (5.4.24)

The polynomial D1(n) is negative for n < 5 and positive above 5.

The derivation is similar for the n = l + 2 case, though the result involves more terms.

The perturbed wave-function obtained from radial differential equation (5.4.12) is

vnn−2 = Zf
Z5/2R3

0

(
n− 1

2

)1/2 (2/n)n
(2n− 3)!1/2

(
− ρ4

6(n− 1) −
n(n+ 5)
12(n− 1)ρ

3 + n2

4 (n+ 5)ρ2

−n
4

24(2n− 1)(5n2 + n+ 60)
(

1− ρ

n(n− 1)

))
ρn−2e−ρ/n.

(5.4.25)

The energy shift is at first order from 5.4.13

E
(1)
nn−2 = Zf

2R0

(
3− n2

Z2R2
0
(n+ 5)

(
n− 1

2

))
(5.4.26)

and at second order, a formula analogous to (5.4.16) gives after integration

E
(2)
nn−2 = −

Z2
f

Z6R6
0

n6

32(2n− 1)(8n3 + 103n2 − 7n+ 154). (5.4.27)

The above expressions show once again that the ratio of the second-order correction to the

n-dependent first-order correction is Zfn
6/Z4R3

0, which is small as soon as the conditions

(5.3.28) or (5.3.30) are fulfilled.

Using the wave-function (5.4.25) one may also evaluate the perturbed matrix element
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(5.4.20) for l = n− 2. The perturbation by the plasma potential is here obtained for the

first part as

˜〈n n− 2|r |n+ 1 n− 1〉 = Zf
Z5R3

0

22n−1
(
n(n− 1/2)

)1/2
nn+6(n+ 1)n+1

3(2n+ 1)2n+5

(672n5 + 2652n4 + 6628n3 + 7617n2 + 3905n+ 744) (5.4.28)

which is always positive. The second part is

〈n n− 2| r ˜|n+ 1 n− 1〉 = − Zf
Z5R3

0

22n−1
(
n(n− 1/2)

)1/2
nn+2(n+ 1)n+5

3(2n+ 1)2n+5

(480n5 + 1164n4 + 1948n3 + 1605n2 + 539n+ 66) (5.4.29)

and turns out to be negative. Finally one gets the perturbed radial element (5.4.20) for

n = l + 2

˜〈n n− 2| r |n+ 1 n− 1〉 = (n(n− 1/2))1/2nn+2(n+ 1)n+1

Z(n+ 1/2)2n+2

[
1 + Zf

Z4R3
0

D2(n)
96(n+ 1/2)2

]
(5.4.30)

with

D2(n) = 96n8−264n7−1296n6−4694n5−7592n4−6236n3−2815n2−671n−66. (5.4.31)

The first-order correction to the dipolar matrix element is negative for n ≤ 6, positive

above 6.

The corresponding effect on quadrupolar matrix elements is studied on the na = n +
2, la = n+ 1→ nb = n, lb = n− 1 transition in A.2. The radiative rates corresponding to

these dipolar and quadrupolar electric transitions are detailed in A.3.

5.5 Summary
We have reviewed the ion sphere model and discussed its range of application. In the

following we apply the TF and the UEGM assuming the adiabatic condition (5.3.28) and

the non-overlapping condition (5.3.27). Both approaches have been implemented in the

Flexible Atomic Code. Moreover, using a uniform electron gas model, analytical formulas

have been developed in the case of non-relativistic hydrogen-like ions, Allowing use to

obtain energies and wave-functions till the second order of perturbative theory. Thanks

to this developments we are able to check the atomic data of our modified version of FAC.
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Chapter 6

Influence of the plasma on atomic
structure and collisional cross sections

6.1 Introduction
In the previous chapter, we have discussed the ion sphere approach for describing the

plasma environment effect under the UEGM hypothesis and the Thomas-Fermi formal-

ism. In this chapter, we present the influence of such potential on the atomic structure

(energies, wave-functions and radiatives rates) and collisional cross sections (excitation,

ionization, photo-ionization). In the framework of the Ion sphere, other approaches avail-

able in the literature use a Multi-configurational Dirac Fock Formalism [112], a Hartree-

Fock formalism [102] or, in simpler cases, a hydrogen-like framework [97, 98]. We devote a

significant part of this chapter to the calculation of collisional cross sections. They deserve

a special interest for at least two reasons. First, in order to describe plasmas out of local

thermodynamical equilibrium, it is necessary to solve kinetic equations which involve the

radiative and collisional transition rates. Second, the line shape determination, particu-

larly important for spectral opacity calculation, requires a detailed analysis of collisional

rates (see, e.g., [113]).

In addition, most of the available literature about plasma effects on excitation cross

sections relies on Debye-Hückel potential [114, 115, 116, 117, 118] or for the ion sphere

the UEGM [117] and a Thomas-Fermi approach [107]. Ionization impact cross sections are

also dealt with in a series of papers, based on Debye-Hückel hypothesis [119, 116, 118] or

Thomas-Fermi approach [120]. Concerning, the photo-ionization cross sections, a series of

papers [121, 100, 122] has investigated this process with a Debye-Hückel potential and [100]

with an ion sphere potential through the uniform electron gas model. To our knowledge

such analysis has not been performed yet using a relativistic parametric potential code

such as FAC.

The following results have been obtained thanks to the modification of the FAC code as

explained in chapter 5. In that chapter we firstly focus on the effect of plasma environment
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on atomic structure within the UEGM. To support this numerical calculation we use the

analytical development done on hydrogen-like ions. In the same section we compare the

Thomas-Fermi approach and the UEGM. To investigate the effect on collisional cross sec-

tion, we only use the more realistic Thomas-Fermi approach. Some analytical expressions

are proposed for hydrogen-like ions in the limit where Born or Lotz approximation apply

and are compared to the numerical results from the FAC code. Concluding remarks are

finally given.

6.2 Effect of density on atomic structure
This section is devoted to calculation of energies, wave functions and radiative rates

with FAC code modified as explained in the previous chapter. Some comparisons with

analytical formula are also provided. We choose to study some representative cases H-like,

He-like, and Li-like aluminum. Here and in all what follows we consider a specific charge

state without consideration of the real ionization degree that would be reached under

these thermodynamic conditions.

6.2.1 Energies

UEGM

The first plasma effect is the energy shift due to the screening of nucleus by free electrons

leading to a reduction of the −Z/r potential. According to the formula (5.4.16) when the

average squared radius 〈r2〉 is much smaller than the ionic sphere radius R2
0 all levels move

uniformly upward by a constant proportional to N1/3
e . When the ratio 〈r2〉 /R2

0 increases,

the shift involves a level-dependency contribution. This behavior is clearly observed on

Figure 6.2.1 .

On this figure we have restricted the study of binding energies on the figure 6.2.1 due

to the non overlapping condition: < r > /R0 � 1 (cf discussion in chapter 5). On the

Figure 6.2.2, we have plotted the evolution of the average radius < r > for some orbitals

present in the Figure 6.2.1 versus the electron density. The average radius is calculated

as follows

〈r〉 =
ˆ ∞

0

[
P 2(r) +Q2(r)

]
rdr (6.2.1)

where P (r) and Q(r) are the large and the small component of the wave function, respec-

tively. Via this plot we may define when the non-overlapping condition is respected. We

point out that when < r > is greater than R0 we observe jumps in the average radius of

the orbitals. This is because when < r > /R0 � 1, the effective nucleus charge seen by

the active electron is equal to 1 (as mentioned in 5.3). Therefore outside the sphere the

wavefunctions are similar to those of the hydrogen atom.. For example the configuration

3p1/2 have two thresholds around 5 a.u and 12 a.u, which correspond to the orbital of 2p
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Figure 6.2.1 : Binding energy of Al XIII,XII,XI versus the average electron density Ne,
calculation are realized with the UEGM
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Chapter 6 Influence of the plasma on atomic structure and collisional cross sections

and 3p of an hydrogen atom.We will assume the non-overlapping condition.

In the hydrogen-like case, Table 6.1 compares detailed results from FAC and analytical

formula (5.4.16), (5.4.18) for the energy shift.

Ne (cm−3) FAC shift (eV) Analytical shift (eV) Relative error %
1s 1023 84.69351 84.69342 1.06× 10−4

1024 182.34969 182.348811 4.82× 10−4

J = 1/2 J = 3/2 J = 1/2 J = 3/2
2p 1023 84.559455 84.55872 84.55845 1.12× 10−3 3.19× 10−4

1024 181.00462 180.99635 180.99386 5.91× 10−3 1.37× 10−3

J = 3/2 J = 5/2 J = 3/2 J = 5/2
3d 1023 84.07811 84.07723 84.07671 1.6× 10−3 6.1× 10−4

1024 175.98192 175.97250 175.995850 7.9× 10−3 0.013

Table 6.1 : Comparison of energy shifts obtained via FAC (UEGM) and analytical formu-
lae for Al XIII

We notice that analytical and numerical values are very close when the density is not

too high. This was expected since we have a large ionic sphere so the contribution to the

energy shift is mainly due to the constant term 3Zf/(2R0) of expression (5.4.16). When

the ionic sphere radius becomes smaller, the agreement between analytical expressions

(5.4.16), (5.4.18) and FAC results deteriorates. Two reasons might explain this. First,

the present analytical formalism is not relativistic and the expected correction is of order of

Z2α2 (∼ 1/100 for Al ion). Second, when density increases, higher orders in perturbation

theory should be taken into account. To illustrate the behavior of the first contributions to

the level shifts, the energy terms up to second order are detailed in Table 6.2. Nevertheless,

when higher-order effects are important, we have shown that the ion-sphere model validity

becomes questionable.

Ne (cm−3) 3Zf/2R0 (eV) −Zf 〈r2〉 /2R3
0 (eV) E(2) (eV)

1s 1023 84.707795 −0.014992 −1.751230.10−7

1024 182.49740 −0.149915 −1.75123.10−5

2p 1023 −0.149915 −5.73426.10−5

1024 −1.499155 −0.0057343
3d 1023 −0.629645 −0.002064

1024 −6.29645 −0.206441

Table 6.2 : Comparison of the different terms in the analytical formulae for the energy
shift of Al XIII

To illustrate density effects in multi-electron ions, we have plotted in Figure 6.2.3 the en-

ergy difference E(1s4l2S+1LJ)−E(1s4s3S1). In this quantity the constant term 3Zf/2R0

eliminates, and its linear dependence versus density indicates that higher order pertur-

bation effects are small. As discussed above, this means that the non-overlap condition

(5.3.28) is fulfilled. As observed by Li and Rosmej [123], level crossings occur between
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Figure 6.2.3 : Energy of helium-like Al relative to the level 1s4s 3S1 versus density for
various levels of the configurations 1s4l, made with the UEGM potential

triplet and singlet states, for instance 1s4p3P and 1s4s1S, or 1s4d3D and 1s4p1P . This

effect is due to the screening of the nucleus by free electrons and, as shown in [123], results

in strong variation in the radiative rates.

Thomas-Fermi

The TF model and the UEGM differ in the way to consider the temperature. The tem-

perature is directly present for the TF via the Maxwell distribution and for the UEGM

implicitly present via the assumed Zf . In Figure 6.2.4, the evolution of the binding energy

of Al XIII for 1s1/2 level is plotted versus the temperature with those two potentials. We

clearly see that the binding energy increases with the temperature in the TF case. We also

verify that, as expected, at high temperature, the TF approach converges to the UEGM.

As the analysis of the plasma potential has shown in chapter 5, the TF potential is

always greater than the UEGM potential. Therefore one expects that the binding energy

will be lower with TF than with UEGM. Indeed, Fig. 6.2.5 confirms this prediction. An

important point to highlight on figures 6.2.4 and 6.2.5 is that the most important effect

on level shift originates from density and not temperature. Our results are at variance

with Salzmann and Szichman’s [102] who obtained in some cases a UEGM shift greater

than TF.

6.2.2 Wave functions

Including the plasma potential results in a screening by free electrons of the nucleus at-

traction and in a spreading of the wave function. This effect can be observed in Figure

6.2.6 for the 3p1/2 orbital of H-like aluminum. In order to check the numerical computa-
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tions, we present in Figure 6.2.7 a comparison of FAC and analytical wave functions given

by formula (5.4.15). We notice a good agreement especially when the density is not too

high as for the energy shift. As previously noticed, when the density becomes high the

two computations diverge because of the perturbation theory breakdown. The effects of

plasma density on wave functions observed here are moderate but visible, underlining the

necessity of taking them into account, for instance when computing atomic spectra.

6.2.3 Radiative rates

With the above-analyzed perturbed wave functions, we may compute radiative rates.

In the FAC code, we have computed the multipole integrals with the non-relativistic

approximation. Hydrogen-like aluminum 1s-2p dipolar rate and 1s-3d quadrupolar rate

are detailed in Table 6.3.

In all the listed cases FAC results are in good agreement with the analytical formulae,

even though the largest considered density Ne = 1024cm−3 only marginally allows one to

use first-order perturbation theory. The agreement is less fair for the quadrupolar rate

because i) this rate depends on the transition energy as E5 instead of E3 for dipolar

rates, ii) the involved matrix element is more sensitive to the radial spreading of the wave

function.

On Figure 6.2.8 we have plotted dipolar radiative rates of Li-like Al ion for two 3d→ 2p
fine-structure transitions. The rates decrease almost linearly with the free-electron density.

Nevertheless a small departure from this linear variation is visible at the higher densities.

This indicates that second-order effects in the electron density are then present, and

that the non-overlap hypothesis may become questionable. A similar variation has been
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observed for a series of dipolar and quadrupolar rates in multi-electron ions.

However, we cannot assert that all rates are decreasing or increasing with the increase

of density. Such behavior has been previously mentioned by Li and Rosmej [123]. This

is because such rates depend on transition energies and dipolar matrix elements, and as

may be seen for instance on Fig. 6.2.9 the transition energy may increase or decrease with

the density. Specifically, the transition energy decreases with density between the triplet
3P0,1 and the singlet 1S0 and increases between the triplet 3P0,1 and the triplet 3S1. Thus

radiative rates may exhibit a different behavior with respect to the density. In a similar

way, Fig. 6.2.10 shows that radiative rates between the triplet 3P0,1 and the singlet 1S0

of Al XII increase with density. However as seen on Fig. 6.2.11 the 1s–2pj rates decrease

in the case of hydrogen-like Al. In both cases the UEGM leads to a qualitatively similar

behavior but a smaller change in the radiative rates. As a rule most of radiative rates

decrease due to plasma effect, because of the decreasing of ∆E3
ij in the probability. The

case of figure 6.2.10 is specific because ∆Eij is then very small.

6.3 Influence of the plasma environment on cross
sections

6.3.1 Excitation cross sections

As mentioned in the introduction, there exists a wide literature about density effects on

collisional cross-sections. However, a series of papers use the Debye-Hückel theory, which,

as stated in the chapter 5, is not well suited for strongly coupled plasmas.

85



Chapter 6 Influence of the plasma on atomic structure and collisional cross sections

0 0.5 1 1.5 2 2.5 3 3.5 4
r (a.u)

-2

-1

0

1

2

3

4

L
a
rg

e 
co

m
p

o
n

en
t

No density effect

Density effect with UEGM N
e
=2.10

24
cm

-3

Density effect with TF at kTe=100 eV and N
e
=2.10

24
cm

-3

R
0
= 2.13 (u.a)

Figure 6.2.6 : Comparison of perturbed and unperturbed (solid line) large component of
the wave function 3p1/2 in H-like Al obtained with FAC. The perturbed wave
function has been computed assuming a Ne = 2 × 1024 cm−3 free-electron
density. For the UEGM (red curve)〈r〉 = 1.06 a.u , Thomas-Fermi (green
curve) 〈r〉 = 1.14 a.u and for the unperturbed situation 〈r〉 = 0.96 a.u. The
ion-sphere radius at this density is 2.13 atomic units.

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0 0.5 1 1.5 2 2.5 3 3.5 4

W
a
v
e
-f

u
n

c
ti

o
n

 v
a
r
ia

ti
o

n
 

(a)

 FAC 
 Analytical

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0 0.5 1 1.5 2 2.5 3 3.5 4

W
a
v
e
-f

u
n

c
ti

o
n

 v
a
r
ia

ti
o
n

 

r (a.u)

(b)

 FAC 
 Analytical

Figure 6.2.7 : Density effect on the 3d3/2 wave function of H-like aluminum. The large-
component variation P (Ne) − P (Ne = 0) calculated with FAC (with the
UEGM) and the first-order perturbed wave function (5.4.15) are plotted as a
function of the radius. The upper subfigure corresponds to Ne = 1023 cm−3

and the lower subfigure to Ne = 1024 cm−3.

86



6.3 Influence of the plasma environment on cross sections

0 2 4 6 8

6.5

7

7.5

8

8.5
A

 (
1
0

1
1
s-1

)

Electron density (10
23

cm
-3

)

1s
2
3d

3/2

1s
2
3d

5/2

1s
2
2p

1/2

1s
2
2p

3/2

Figure 6.2.8 : Dipolar radiative rates of Li-like Al as a function of electron density.

0 20 40 60 80 100

Average electron density (10
21

cm
-3

)

0

1

2

3

4

R
el

a
ti

v
e 

en
er

g
y
 t

o
 1

s4
s 

3
S

1
 (

eV
)

3
S

1

1
S

0

3
P

0,1

3
P

2

1
P

13
D

1,2,3

1
D

2

Figure 6.2.9 : Energy of helium-like Al relative to the level 1s4s 3S1versus density for
various levels of the configuration 1s4l with Thomas-Fermi potential at
kTe = 100 eV.

87



Chapter 6 Influence of the plasma on atomic structure and collisional cross sections

0 2 4 6 8 10

Average electron density (10
21

cm
-3

)

4.4

4.5

4.6

4.7

4.8

4.9

5

T
ra

n
si

ti
o
n

 r
a
te

s 
(1

0
6
s-1

)

Transition 
3
P

0
--

3
S

1
 with TF kTe=100 eV

Transition 
3
P

1
--

3
S

1
 with TF kTe=100 eV

Transition 
3
P

0
--

3
S

1
 with UEGM

Transition 
3
P

1
--

3
S

1
 with UEGM

Figure 6.2.10 : Dipolar radiative rates 1s4p3PJ–1s4s3S1 in Al XII versus average electron
density at kTe = 100 eV.

10
22

10
23

10
24

10
25

Average electron density (cm
-3

)

1.6

1.65

1.7

1.75

1.8

T
ra

n
si

ti
o
n

 r
a
te

 (
1
0

1
3
s-1

)

2p
1/2

--1s UEGM

2p
3/2

--1s UEGM

2p
1/2

--1s Thomas-Fermi kTe=500 eV

2p
3/2

--1s Thomas-Fermi kTe=500 eV

Figure 6.2.11 : Dipolar radiative rates in Al XIII versus average electron density at kTe =
500 eV.

88



6.3 Influence of the plasma environment on cross sections

Density (cm−3) FAC Analytical
j = 1/2 j = 3/2

A2pj−1s 0 1.7889× 1013 1.7924× 1013 1.7903× 1013

1024 1.7781× 1013 1.7815× 1013 1.7795× 1013

dA2pj−1s

dNe

−1.077× 10−13 −1.090× 10−13 −1.081× 10−13

j = 3/2 j = 5/2
A3dj−1s 0 2.8624× 109 2.8685× 109 2.8675× 109

1024 2.6137× 109 2.6187× 109 2.6317× 109

dA3dj−1s

dNe

−2.487× 10−16 −2.498× 10−16 −2.358× 10−16

Table 6.3 : Comparison of radiative rates between FAC (with UEGM) and analytical for-
mulae (A.3) (A.3.11) for Al XIII. Rates are in s−1 and rate variations in cm3/s.

We use two methods to study excitation cross sections: plane wave Born approximation

(PWB) and the distorted waves approximation (DW) (see Chap. 3 of [53] and chapter 4

of this manuscript). We notify that on the plots the PWB is identified as Born.

The choice between them requires to consider which asymptotic behavior those for-

malisms assume for the long-range potential. Both of them are perturbative theories

and valid only in the case of weak interaction potential between the target and the in-

cident electrons. The differences, however,are important. Distorted waves method takes

into account the long range form of the potential contrary to PWB approximation. The

asymptotic form of the incident particle wave function is a plane wave for Born approx-

imation and Coulombic for distorted waves. Therefore the distorted wave model is not

relevant when density effects in the ion-sphere model are considered, because the asymp-

totic potential is not Coulombic. At the most, one might use DW approximation when

the density is so low that the radius is greater than the zone where the collisional process

takes place. Besides, We point out that the DW method implemented in FAC is not reli-

able for neutral and near neutral ions, as mentioned by the author of FAC and observed

in chapter 4. As a consequence, the plane wave Born approximation is used in this work

when the density effect is included.

We must emphasize a difficulty met when one tries to observe the influence of the plasma

on cross sections. Indeed, the effect of plasma will change the long-range behavior of the

potential. However, at high energies distorted wave and PWB approximation converge,

meaning that we can then isolate the influence of plasma.

In order to compare PWB approximation to distorted-wave (DW) results we have plot-

ted on Fig. 6.3.1 the e-impact excitation cross sections for 1s–2p1/2 transition in Al XIII.

Since as mentioned above the DW theory is not adapted when density effects are accounted

for, such effects have been included in PWB theory only.

The behavior of the cross-sections from both methods is different near threshold due

to the way they treat long-range interaction. At high energy, cross sections show the
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Figure 6.3.1 : Comparison of excitation cross section for transition 1s–2p1/2 for Al XIII at
several densities and kTe = 100 eV

same behavior. On Fig. 6.3.1 we notice that the plasma effect lowers this excitation

cross section,though this variation is minor. To observe a significant change, we have

to reach a high density such as Ne = 1025 cm−3. Then one has for the Wigner radius

R0 = 1.25 a0, which is much greater than the wave function extension, and the plasma

coupling parameter Z2
f/kTeR0 is close to 1. This means that our formalism assuming

non-overlap condition of ion wave functions [28] is applicable while non negligible density

effects occur.

As seen in section 6.2.1, the radiative rates may increase or decrease depending of the

studied transition, and the same behavior applies to excitation cross sections. Indeed

excitation cross sections may increase as seen in the Al XII case presented on Fig. 6.3.2.

In that case the transition energy from 1s4p 1P1 to 1s4d 1D2 first decreases with density

and at the density Ne ' 1.2× 1022 cm−3 those levels cross. We observe on that plot that

the cross section increases until this critical density is reached. After the crossing the

emission occurs from 1D2 to 1P1 and the cross-section decreases with the density. The

increase of the cross section is stronger around the peak, but we have to keep in mind that

PWB calculation overestimates the cross section in this area. Thus we must only rely on

the high energy results where the cross-section shift is small. A possible explanation to

this level crossing is that the electronic interaction is weak. Therefore in that situation

the plasma potential has a stronger effect, which means that the bound electron interacts

more with the continuum than the bound electrons.

We use Van Regemorter formula [71] to confirm our observations. This formula is valid

under Born approximation and Bethe assumption (high energy and dipolar transition, see
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for instance chapter 4)

σij = 8π√
3
R2
y

ei

fij
∆Eij

ḡ (ei/∆Eij) πa
2

0, (6.3.1)

where ∆Eij is the transition energy from level i to j, a0 is the Bohr radius, Ry the Rydberg

energy, ei is the energy of the incident electron, ḡ is the Gaunt factor determined through

empirical observations and fij is the oscillator strength. We choose the Gaunt factor as

suggested by Mewe [72]

ḡ = 0.15 + 0.28 log
(

ei
∆Eij

)
. (6.3.2)

We compare numerical cross sections and the Van Regemorter formula on Fig. 6.3.3. We

note that the shift of cross sections is similar. In order to provide analytical expressions

for the cross sections in the simplest case, we use a development based on equation (6.3.1).

In that equation , the density effects modify the transition energy ∆Eij and the oscillator

strength fij. The Gaunt factor is also modified but we neglect it because of its slow

variation with ∆Eij. Thus the magnitude of the cross section mainly depends on the

ratio fij/∆Eij. Up to numerical constants this ratio is the square of a dipolar matrix

element
fij

∆Eij
∝ 〈nili |r|njlj〉2 . (6.3.3)

We now use the analytical formulas (chapter 5) for hydrogen-like ion in the UEGM

framework. Thanks to this, we are able to isolate the contribution of the plasma potential

by decomposing the matrix element at 0 order and first order of perturbation

〈nili |r|njlj〉 = 〈nili |r|njlj〉0 + ˜〈nili |r|njlj〉. (6.3.4)
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∆σ/σ (Ne = 0)
Ef TF kTe = 100 eV TF kTe = 500 eV TF kTe = 2000 eV UEGM
500 0.085 0.060 0.0489 0.0426
2000 0.086 0.061 0.0494 0.0430

Table 6.4 : Relative variation of excitation cross section for 1s−2p1/2 with Thomas-Fermi
and UEGM at a density of 1025 cm−3.∆σ = σ (Ne = 0)− σ (Ne)

We calculate the matrix element under UEGM for the non-relativistic transition 1s–2p
and obtain for an hydrogen-like ion, in atomic units

〈1s |r| 2p〉 = 128
243

√
6
Z

(
1− 3059

36
Zf
Z4R3

0

)
. (6.3.5)

In the case of hydrogen-like Al, we get

〈1s |r| 2p〉0 = 9.925× 10−2 (6.3.6)

and for an average free-electron density Ne = 1024 cm−3

˜〈1s |r| 2p〉 = −1.8329× 10−4. (6.3.7)

At such density the matrix-element perturbation is very small. Equations (6.3.6) and

(6.3.7) confirm that the excitation cross section is not notably modified. In the table 6.4

we give some relative variation of the transition 1s− 2p1/2.

Forbidden and allowed transitions are differently affected by the plasma potential. This
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comparison is illustrated by Fig. 6.3.4, where cross sections are calculated via the PWB

approximation. The plot clearly shows that the allowed transition 1s − 2p1/2 is more

sensitive to the plasma potential than the forbidden transition 1s − 2s. This result has

been first observed and explained by Hatton et al [115] who used a different plasma

potential (Debye potential).
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imation. When density effects are included, the temperature is 500 eV.
The upper figure represents the cross sections while on the lower figure are
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To be complete on the excitation cross section, we point out that articles of Whitten

et al. [117] and Blancard et al.[107] mention resonances near threshold. We made the

same observations, this resonances are only visible with the DW formalism and with an

important amount of points (around hundreds). This resonances are explained in article

[117]: this resonances correspond to the embed of a low energy outgoing electron inside the

centrifugal barrier. We have chosen to not show this observation because the DW method

is not supposed to be accurate in this range of energy. Moreover, the number of points

used is so large that it appears cumbersome to make any computational calculations for

a large set of configurations.

6.3.2 Ionization cross sections

Several works have considered the influence of plasma environment on electron-impact ion-

ization cross-sections. Some use the Debye-Hückel theory (e.g., [116]), other the Thomas-

Fermi (TF) approach [120]. Both the cited works use Hartree-Fock-Slater theory with

cross-sections computed using distorted waves (DW). Here we have adopted the TF for-

malism for the plasma effect, but the collision formalism used, instead of DW, is the more
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Chapter 6 Influence of the plasma on atomic structure and collisional cross sections

relevant binary encounter dipole theory (BED) [83] implemented in FAC. This method

combines the Mott semi-classical calculation of cross section [86] for the scattering of two

free electrons (valid for close collisions, i.e., at large momentum transfer), and the Bethe

theory [124] which is the Born plane-wave approximation (valid at high energy and small

momentum transfer) with only the dipolar term kept. This theory is of great interest due

to its applicability both for ions and neutral atoms. Contrary to the case of excitation,

we do not need to change our calculation approach when the plasma effect is included.

We plot the impact ionization cross section from state 1s2 to 1s in Al, at several densities

on figure 6.3.5. A comparison is done with the empirical formula of Lotz [42]

σij = Cπa
2

0Ry
2 wn
ei∆Eij

log
(

ei
∆Eij

)
, (6.3.8)

where C = 2.77, wn is the initial number of electrons concerned by the ionization process

in the shell.

Our purpose is not to discuss the accuracy of Lotz formula compared to BED, but to

characterize the plasma effect.

The cross section increases with density, as seen on figure 6.3.5. We can explain this

increase by the decrease of the transition energy which in turn leads to larger collisional

ionization. If we compare the cross-section variation due to the plasma effect at 1023 cm−3

and kTe = 200 eV for BED and Lotz formula on Fig. 6.3.6, we notice that they are quite

similar. We also see on this plot that the cross-section variation increases with the energy

of scattered electrons and then slowly decreases after the peak. The temperature has an

effect opposite to density, when it increases the cross section decreases.
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Figure 6.3.5 : Comparison of ionization cross section for the transition 1s2 to 1s for AlXII
and XIII. The free-electron density is obtained from Thomas-Fermi model,
and for the scattering process BED and Lotz formalisms are compared.
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We may support these results using a formalism based on Lotz formula and a perturba-

tive approach within the UEGM. As mentioned above, in UEGM, the first-order energy

correction for a hydrogen-like ion is

E
(1)
plasma = Zf

R0

(
3
2 −
〈r2〉nl
2R2

0

)
, (6.3.9)

with 〈
r2
〉
nl

= n2

2Z2

(
5n2 − 3l (l + 1) + 1

)
. (6.3.10)

For example, for the ionization of a hydrogen-like ion in nl state to a fully stripped ion,

the transition energy is

∆E = Z2

2n2 −
Zf
R0

(
3
2 −
〈r2〉nl
2R2

0

)
, (6.3.11)

which shows that the energy decreases with density. The cross section increases with

density due to its dependency on the energy transition 1/∆Eij, as observed on Fig. 6.3.5.

The study on other elements leads to same results.

Our results agree with Wu et al [120] in the increase of the ionization cross-section with

density, though their work rely on DW theory. As mentioned by Pindzola et al [116],

we checked that their cross-sections in Ge-like gold are underestimated by a factor of 2.

But the cross-sections from [116] decrease with density. These authors explain that this

behavior is linked to the Debye screening of inter-electronic interaction. However their

work since it is based on Debye theory is applicable only at low coupling parameter while

we do not believe the same restriction applies to the present work. Additional results

from theory and experiment would be useful to clarify this point.
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Figure 6.3.6 : Comparison of ionization cross section for transition 1s2 to 1s for AlXII
and XIII at Ne = 1023 cm−3at kTe = 200 eV. ∆σ is the cross section at
Ne = 1023cm−3minus the cross section at Ne = 0
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6.3.3 Photo-ionization cross section

The influence of the plasma environment on photo-ionization has been investigated by

different authors. Chang et al.[121] in case of Hydrogen-like ion and by Sahoo et al. [122]

for alkali elements have used the Debye-Hückel theory. The ion sphere model has been

used by Das[100] under the UEGM with the condition of cancellation of the wave function

on the ion sphere. Here we have adopted the supposedly more realistic TF formalism for

the plasma effect. The evaluation of the bound-free oscillator strength is similar to the

bound-bound oscillator strength. In the FAC code the continuum wave function for the

photo-ionization is calculated by the DW method.

We plot the impact ionization cross section from state 1s2 to 1s in Al, at several densities

on Figure 6.3.7. The cross section increases with density, as seen on figure 6.3.7. This

increase is more significant at low energy. At high energy the cross section fall rapidly to

zero, therefore the plasma potential has almost no impact on the photo-ionization. This

increase of the the cross section is linked to continuum lowering which lead to a decrease

of the transition energy as for the ionization.

A comparison is done on Figure 6.3.8 with the empirical formula of Kramers [43]

σij = 64π
3
√

3
αa

2

0Ry
wi
ni

∆E2
ij

(hν)3 , (6.3.12)

where ∆Eijis the threshold energy for photo-ionization, wn is the initial number of elec-

trons concerned by the ionization process in the shell, ni is the principal quantum number

of the initial state and hν is the energy of the incident photon.On Fig. 6.3.8 we compare

at different densities 1023 cm−3and 1024 cm−3with a temperature kTe = 500 eV the DW

method of FAC and the Kramers formula. Here we notice that in both cases the cross

section increase at low energy. However the upward shift of the photo-ionization is smaller

with the empirical approach. We explain this by the fact that the Kramers formula only

takes into account the transition energy but not the wave functions perturbation. At

higher energy the agreement about the cross section behavior is worst. Indeed, with the

density effect the Kramers cross section decrease faster than the DW cross section.

The increase of the cross section agrees with the observation Sahoo et al. [122] Das

[100]and Chang et al [121].

The most important change in the photo-ionization cross section appear near threshold.

In this range of energy and in absence of plasma effect the cross section behavior is

monotonous. However with the plasma effect the shape of the cross section completely

change. A minimum is present next to the threshold followed by a peak, with the increase

of the density this minimum is more pronounced. This minimum is called in the litterature

a Cooper minimum. The Cooper minimum has been explained by J.C Cooper [125] in

case of alkali element. This minimum appears when the the amplitude of the bound and

free wave function exactly canceled. Many authors [121, 100, 122] have seen the Copper
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Figure 6.3.7 : Comparison of photo-ionization cross section for the transition 1s2 to 1s for
AlXII and XIII at kTe = 500 eV. The free-electron density is obtained from
Thomas-Fermi model, and for the scattering process are calculated with the
DW formalisms.
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from Thomas-Fermi model, and for the scattering process DW and Kramers
formalisms are compared
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minimum for different element than aluminum and with different plasma potential Debye-

Hückel or ion sphere. In every cases the Cooper minimum is shifted to higher energy with

the increase of the density.

As for the electron impact excitation, we have chosen to not show this observation on

a plot, because of the presence of resonances in the same region as the Cooper minimum.

We point out that in the article of Das [100] which use an ion sphere potential, additional

resonances are observed. These oscillations are the consequence of the choice of the

cancellation of the wave function on the Wigner-Seitz sphere. We recall that this choice

has been rejected for this present work.

6.4 Summary and conclusions
Using a Thomas-Fermi (TF) approach for free electrons, we have investigated the effect of

the plasma environment on the atomic structure. It has been shown that this formalism

valid at finite temperature leads to a larger plasma potential than the Uniform Electron

Gas Model (UEGM) previously used. In most cases the inclusion of density effects results

in level shifts and change in rates which are stronger with TF model than with UEGM.

This self-consistent plasma potential has been included in the FAC code allowing us

to obtain an accurate atomic description for opacity calculations or collisional-radiative

models. The results obtained here show that no general behavior for the perturbation of

bound-bound processes can be predicted. As a spectroscopic analysis by Li and Rosmej

[123] has shown, transition energies may increase or decrease with electron density. Using

FAC we have been able to confirm this observation and generalized it to radiative rates

and e-impact excitation rates. The situation is usually simpler for H-like ions, as stated

previously [28]. Furthermore we obtained ionization cross sections increasing with density,

a fact which we explained by the decrease of the transition energy. A similarly observation

is made on the photo-ionization. However the cross section are less impacted by the plasma

potential.

This work represent a first important step in the investigation of density effects in a

collisional-radiative code. Indeed, a previous study [126] using a plasma potential based

on quasi-particle energies and effective interaction claims that the plasma environment

has a minor impact on rates, the main effect on population distribution coming from the

allowed number of bound levels. Accordingly this work clearly shows that atomic processes

are perturbed in a non-negligible way. Therefore it is highly desirable to investigate

environment effects on plasma kinetics, as well as on absorption and emission spectra.
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Chapter 7

Description and application of a new
kinetic code

7.1 Introduction
In this last chapter we introduce a new collisional radiative code and develop several

applications. One of our purposes will be to show the effect of the plasma potential

within ion-sphere hypothesis on the collisional radiative model (cf chapter 3). To achieve

this goal, we use a new collisional radiative code which we have named Foch. This code

had been developed during the thesis in order to treat the atomic data from FAC. This

chapter begins with features of the Foch kinetic code. To check the quality of the Foch

code we first give an example without plasma density effect in krypton for which Bastiani

et al. [127] have provided experimental data. Then we carry on with the plasma density

effect on the aluminium. This case will serve to understand the impact of the ion sphere

potential on a tractable situation. The last case concerns a comparison between our work

and a recently published [128] experiment on Titanium.

7.2 Inclusion of density effect
First we have to recall that our plasma potential is only static, no dynamical response is in-

cluded in our model. The main plasma effect present is the continuum lowering. With the

static potential we have shown the shift of energy levels and spreading of wave-functions.

Another effect which may be considered is the pressure ionization. This phenomenon cor-

responds to the transition of a bound electron into the continuum due to the screening.

Of course one possible way to model this effect is to suppress the concerned configurations

which pass in the continuum. This approach does not appear physically correct because

a discontinuity appears in the observable [38]. This method leads to a strong increase

of the ionization degree. Another approach consists of keeping all the configurations and

modelling the pressure ionization by a new rate added to the kinetic equations. Such
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Chapter 7 Description and application of a new kinetic code

an approach has been modelled by Vallotton et al [106][129]. The plasma potential used

in his work is the ion sphere only under the UEGM form. We point out that a different

choice on the neutrality condition has been made. Indeed, following Massacrier work [101]

a free electron is added to the neutrality condition Z −Nb + 1 + 4
3πR

3
0Ne = 0. However,

the results of the work shows that the inclusion of the pressure ionization reduces the

ionization degree compared to the withdrawal of the configurations. In our work we have

made the choice to keep the same configurations with and without plasma density effect.

Unlike Vallotton, we have not implemented a pressure ionization rate .

7.3 The kinetic code Foch

7.3.1 Transition rates

This section is devoted to the method of calculating the rates included in the Foch code.

By default the rates are calculated through the atomic data of FAC, but it is possible to

lead the calculation with semi-empirical rates (Mewe, Lotz, Kramers). These formulas

have been implemented to obtain a first idea of the plasma properties before leading a

more accurate calculation of the collisional cross section. For instance, the excitation

cross section computation time becomes prohibitive. Therefore the electron impact cross

section for doubly excited states is often calculated by the Mewe formula (4.3.53). In

what follows we will provide the calculation specificities with respect to the studied case.

We only consider inelastic collisions. The influence of the elastic collisions is included in

a phenomenological way via the line broadening [50].

The collisional rate from the level i to j for an incident electron is given by

Rij = Ne

ˆ ∞
∆Eij

√
2E
me

σij (E) f (E) dE (7.3.1)

in cgs unit. Ne is the electron density, me the mass of the electron, E the energy of the

incident electron, ∆Eij the transition energy and σij (E) the inelastic cross section. The

function f(E) is the kinetic energy distribution of the free electrons which we assume here

to follow the Maxwell law

f (E) = 2√
π

√
E

kT
3/2
e

e−E/kTe , (7.3.2)

where kTe corresponds to the electronic temperature. The normalization condition is

ˆ ∞
0

f (E) dE = 1. (7.3.3)

The collision strength labeled Ωij(E) is linked to the cross section σij (E)by the relation

in atomic units

σij (E) = π

gik2
i

Ωij (E) (7.3.4)
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where gi the degeneracy of the level i and ki the momentum of the incident electron

(k2
i = 2E in a.u). The equation (7.3.1) can be expressed in term of the scattered electron

energy Ef

Rij =
√

2π ~2

m
3/2
e

Ne

kT
3/2
e gi

e−∆Eij/kTe
ˆ ∞

0
Ωij (Ef ) e−Ef/kTedEf , (7.3.5)

with E − Ef = ∆Eij. The FAC code gives by default the cross sections and the collision

strength with respect to the scattered electron energy.

In the case of an incident photon the photo-ionization rate is obtained by

Rij = c

ˆ ∞
∆Eij

σij (ε) U (ε)
ε

dε (7.3.6)

with c the speed of light and ε = Ef + ∆Eij is the photon energy. The function U(ε)
corresponds to the spectral energy density. If we assume a Planck distribution of the

radiative field, it comes

U (ε) = ε3

π²~3c³
1

eε/kTr − 1 , (7.3.7)

where kTr stands for the radiative temperature.

To calculate these rates, different approaches can be used. The rates can be calculated

via semi-empirical expressions for the cross section as the ones given in chapter 4. This

leads to analytical expressions for the rates, such an approach is used in the ABAKO

code [130]. Of course the overall accuracy of the code relies on the accuracy of those

empirical formulas. Another method consists of using fit formula for the cross section

such as the Goett formula [131] for excitation cross section. In the HULLAC code [16]

the photo-ionization cross section is also evaluated via a fit formula. The last way to get

the rates is to compute integrals involving an ”accurate” cross sections obtained from one

of the methods mentioned in chapter 4 (DW, Born, classical theory or R-matrix, Close

coupling...). The problem relies on the computation time, which compels us to compute

only a few cross sections to get the transition rate. For the Foch code, by default, all

the rates are calculated via the atomic data of FAC by performing a Gauss-Laguerre

integration. Because of this method the grid depends on the electronic temperature. The

Gauss-Laguerre method approximates that

ˆ ∞
0

f(x)e−xdx '
N∑
i

f(xi)wi (7.3.8)

where xi represents the root of the Laguerre polynomial of degree N and the wi the

statistical weights of the roots. For our calculations, we usually take 16 points to carry

the integration.
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Collisional excitation and deexcitation rates

The excitation rate is directly obtained from equation (7.3.5) . A semi-empirical rate can

be obtained via the Van Regemorter cross section (6.3.1) with a Gaunt factor g(∆Eij/kTe)

Rij =
16
√

2R2
yπ²a²0√

3πme

Nefij

∆Eij (kTe)1/2 g(∆Eij/kTe)e−∆Eij/kTe (7.3.9)

where Ry represents the Rydberg constant, a0 the Bohr radius and fij the oscillator

strength from i to j. Finally, by calculating the constants, assuming Ne is in cm−3 and

all energies in eV,

Rij(s−1) = 1.58× 10−5 Nefij

∆Eij (kTe)1/2 g(∆Eij/kTe)e−∆Eij/kTe . (7.3.10)

The inverse process, the deexcitation is evaluated through the detailed balance

Rdex
ji = gi

gj
e∆Eij/kTeRex

ij . (7.3.11)

Ionization and three bodies recombination rates

The collisional ionization is exactly calculated in the same way as the excitation rates

formula (7.3.5). Through the formula (6.3.8) proposed by Lotz the ionization rate is

RLotz
ij = C

√
8π
me

R2
ya

2
0

Newn

∆Eij (kTe)1/2E1 (∆Eij/kTe) , (7.3.12)

where E1 stands for the exponential integral function, defined by

E1 (x) =
ˆ ∞
x

e−y

y
dy.

Finally, by calculating the constants

RLotz
ij

(
s−1

)
= 3.02× 10−6 Newn

∆Eij (kTe)1/2E1 (∆Eij/kTe) . (7.3.13)

The inverse process, the three body recombination which concerns two electrons is calcu-

lated via the Saha equation

R3rc
ji = 1

2λ
3
thNe

gi
gj
e∆Eij/kTeRci

ij, (7.3.14)
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where λth is the thermal wave-length

λth =
(

h2

2πmekTe

)1/2

. (7.3.15)

Auto-ionization and dielectronic capture rates

The auto-ionization rate RA
ij is directly calculated in cgs units by the FAC code. The

dielectronic capture is given by the detailed balance

RDC
ji = 1

2λ
3
thNe

gi
gj
e∆Eij/kTeRA

ij. (7.3.16)

A semi-empirical formula can be found for the dielectronic capture [130] or [132], however

its accuracy is not satisfactory in our opinion.

Photo-ionization and radiative recombination rates

We first recall the Milne relation [14] between the photo-ionization and the radiative

recombination cross section

σphotij = 2gj
gi

mec
2 (E −∆Eij)

E2 σrrji , (7.3.17)

where E the photon energy. In the presence of a radiative field, the photo-ionization

have to be taken into account. In that case, assuming a Planck distribution (cf. equation

(7.3.7)) applies for the radiative field, the photo-ionization rate is given by

Rphoto
ij = 8π

h3c²

ˆ ∞
∆Eij

E2 σ
photo
ij (E)

eE/kTr − 1dE, (7.3.18)

with kTr the radiative temperature. Furthermore, it is necessary to take into account the

stimulated radiative recombination in addition to the spontaneous radiative recombina-

tion. This rate expresses

Rrrs
ij = 4π

h3c²
gi
gj
λ3
thNe

ˆ ∞
∆Eij

E2 e
−(E−∆Eij)/kTe

eE/kTr − 1 σphotoij (E) dE (7.3.19)

In all the cases presented the plasma conditions are such that we do not have to take into

account the radiative field. However, these formulas are implemented in the Foch code.

In absence of an external field, the spontaneous radiative recombination is

Rrr
ji = 4π

h3c²
gi
gj
λ3
th

ˆ ∞
0

(Ef + ∆Eij)2 σphotoij (Ef ) e−Ef/kTedEf (7.3.20)

An analytical formula is obtained thanks to the Kramers formula. The radiative recom-
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bination cross section writes

Rrr
ji =

64
√
πα²a2

0R
1/2
y

3
√

3mec

gi
gj

wj
nj

Ne

(kTe)3/2 ∆E2
ijE1 (∆Eij/kTe) e∆Eij/kTe , (7.3.21)

with wj the number of electrons in the initial shell and nj the principal quantum number

of the initial level. Finally by calculating the constants, it comes

Rrr
ji = 7.05× 10−15 gi

gj

wj
vj

Ne

(kTe)3/2 ∆E2
ijE1 (∆Eij/kTe) e∆Eij/kTe . (7.3.22)

Once the rates are calculated, the kinetic equations can be solved. To achieve that

objective the code possesses three solvers: a classical Gaussian elimination (gaussj from

Numerical Recipe [133]), a LU method (LU from Numerical Recipe) and a LU method for

band matrix (dgbsvx from lapack [134]). This latter is the fastest of them. Our computing

capacity can treat a maximum of 40 000 levels. Concerning the collisional radiative code,

it is able to work in Detailed Configuration Accounting (DCA) or detailed calculations.

For the free electrons we assume a Maxwell distribution consistent with the Thomas-Fermi

approach used for the plasma potential. In all the following situations, no radiative field

is taken into consideration. However, an option is included in the Foch code.

7.3.2 Spectra

Concerning the spectra, the code only computes the emissivity for the bound-bound,

bound-free and free-free processes. The line profile chosen for the bound-bound spectra

is a Voigt profile (method from Drayson [135]). A Gaussian or Lorentzian profile can also

be used. For the detailed, calculation we use the natural and the Doppler broadening. To

deal with the electron impact broadening, the semi-empirical formula of Dimitriejic [50]

is used see equation (3.7.11). If the UTA option is used, the line profile is Gaussian and

the broadening is statistical and Doppler.

To calculate the bound-free emission, the photo-ionization is evaluated via the Kramers

formula (6.3.12). The Gaunt factor used, corresponds to the ratio between the photo-

ionization rate calculated via the DW method of FAC and the photo-ionization rate

evaluated from the Kramers formula. The free-free contribution is calculated via the

semi-empirical formula (3.7.5).

7.4 Applications

7.4.1 Krypton

Here, we present a NLTE case of krypton which has been treated in the NLTE7 work-

shop [136]. Before treating the effect of the plasma environment, this case allows us to
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evaluate the quality of the kinetic code Foch. Here, we do not include the plasma environ-

ment in our calculations.This case originates from an experiment performed at LULI2000

[127]. This experiment uses krypton gas jet and provides resolved time-integrated spectra

between 6 to 8 Angströms. The plasma is diagnosed by X-ray and time-resolved XUV

emission spectroscopy. The plasma temperature and density are determined by a Thom-

son scattering method. The range of density obtained is about Ne = 0.2−1.2×1019 cm−3

and the temperature kTe = 160 − 500 eV. In the article several spectra are proposed as

functions of the jet pressure and the energy of the laser.

For our numerical simulations, we have used around 40 000 levels in configurations

(UTA mode of FAC), the total statistical weight of our simulation is 1.8×107. To compute

the spectra, a Gaussian profile is used with the statistical and Doppler broadening. The

excitation cross sections are computed via the plane wave Born approximation and binary

encounter dipole theory for the collisional ionization. The plasma parameters used are

Ne = 1019 cm−3 and kTe = 500 eV. The calculated mean charge is ∼ 24.8. On the figure

7.4.1 the result from the Foch code and the experiment are plotted. The data of the

experiment correspond to the case of a jet pressure of 4 bar and laser energy of 365 J. We

notice that the comparison is quite acceptable, the positions of the peaks are close to the

experiment peaks. Still, for certain lines our broadening is too weak. The line broadening

calculation is the major weakness of the Foch code, no refined theory is used (no opacity

effects or sophisticated broadening). However, the density and temperature used in our

code fit in the range of the density and temperature mentioned by the experiment. We

point out that the data of the experiment has been rescaled for clarity.
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Figure 7.4.1 : Comparison of bound bound spectra for krypton between experiment [127]
and Foch code for Ne = 1019 cm−3 and kTe = 500 eV

In Figure 7.4.2 we compare, the Foch bound-bound spectra with others collisional-

radiative codes. The red colour corresponds to the code ATOMIC [18, 82] used by the Los
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Alamos National Laboratory. This code uses a fully relativistic description of the atomic

structure. To produce the spectra fine structure line (Doppler+natural broadening) and

UTA are used. Their chosen temperature is kTe = 500 eV and density is Ne = 5 ×
1019 cm−3. The mean charge is about ∼ 24.15. The number of levels considered is

above 40 000 with a total statistical weight of ∼ 6× 108. The second simulated spectra is

provided by the AVERROES code [22]. This code is based on the mixing of configurations

and super-configurations. The atomic structure of the code is not relativistic but include

relativistic corrections. This code treats the krypton case for a density of Ne = 1019 cm−3

and a temperature of kTe = 600 eV. The mean charge is ∼ 24.6 The number of level is

around 15 000 and the total statistical weight is ∼ 6 × 109. We observe that the Foch

code behaves in a similar way as the two others.
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Figure 7.4.2 : Comparison of bound bound spectra for krypton between different sim-
ulations Foch code for Ne = 1019 cm−3 and kTe = 500 eV, ATOMIC
Ne = 5 × 1019 cm−3 and kTe = 500 eV, AVERROES Ne = 6 × 1019 cm−3

and kTe = 600 eV.

7.4.2 Aluminum

In this section we investigate the effect of the plasma environment. The plasma potential

considered is the Thomas-Fermi potential restricted to the free electrons. The temperature

considered is kTe = 500 eV and density is Ne = 5×1023 cm−3.This case of study is simple,

only 1929 detailed levels are considered with a maximum principal quantum number of

nmax = 3. This allows us to respect the validity criteria of our static potential. Therefore

no dynamical response has to be taken into account. Moreover, under these conditions

the DW and PWB approximation for excitation cross sections give very similar results.

On figure 7.4.3, the ion populations are plotted as functions of the ionic charge. We
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observe that the DW and the Born calculation are very close. Under the thermodynamical

conditions mentioned above, the plasma is mainly dominated by hydrogen and helium like

species. The plasma coupling parameter is about Γ ∼ 2.2 with an average Wigner-Seitz

radius of R0 = 3.33 a0. On the plot we can see that the effect of the plasma potential

increases the ionization degree. Moreover this lead us to situation closer the LTE regime

(turquoise curve).
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Figure 7.4.3 : Ion populations for aluminium element at Ne = 5.1023cm−3and kTe =
500 eV with and without screening and with DW method (solid lines) and
Born method (dashed lines).

This observation was expected because of the behaviour of collisional ionization seen in

the previous chapter.

Rates

In chapter 6, we have studied the impact of the plasma environment on collisional cross

sections. From those cross sections, we calculate the collisional rates involved in the

claculation of atomic populations. Here, we propose to analyse the influence of the plasma

environment on the collisional excitation rates. The collisional rates are proportional to

Rij ∝ e−∆Eij/kTe
ˆ ∞

0
Ωij (Ef ) e−Ef/kTedEf . (7.4.1)

In the expression above, two terms are modified by the inclusion of the plasma environ-

ment: the transition energy ∆Eij and the collision strength Ωij (Ef ). In most cases ∆Eij
decreases with the density. As seen in the section6.3.1, the collision strengh Ωij (Ef ) may

decrease or increase with the density. This fact is explained by the behavior of the matrix

element.

We recall that for isolated ions the distorted wave method (DW) gives good results.
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However when dealing with the plasma environment we only use the plane wave Born

approximation (PWB). On the Figure 7.4.4, we have plotted the ratio of PWB to DW

collisional excitation rate as a function of the temperature. On the same graph we have

plotted a curve showing the density effect with PWB. The considered collisional rate

concerns the transition 1s − 2p1/2 for Al XIII at Ne = 5 × 1023cm−3. This plot shows

that the difference between the rates mainly lies between the two methods rather than the

plasma effect. The departure of the green curve to the unit value is explained the different

behaviour of the DW and the PWB at low energy. Meanwhile, at high temperature the

difference shades off because both methods converge.
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Figure 7.4.4 : Ratio of collisional excitation rates. The transition chosen is 1s− 2p1/2 for

Al XIII. The considered density is Ne = 5× 1023cm−3.

Simple approximations can be used to analyze the plasma environment effect on these

rates. For low kTe, the integral over Ef in the rate (7.3.5) tends to kTeΩij(0), simply

proportional to the collision strength at threshold. Therefore, the ratio of the excitation

rates with and without plasma effect is

Rpl
ij

/
R

(0)
ij = exp

−∆Epl
ij −∆E(0)

ij

kTe

Ωpl
ij(0)

/
Ω(0)
ij (0) if kTe � ∆Eij. (7.4.2)

where the superscript (0) stands for the case with not density effect accounted for. Since,

as we have seen, the difference ∆Epl
ij −∆E(0)

ij is in most cases negative, the first factor in

the ratio (7.4.2) is greater than 1 and increases with 1/kTe while the ratio of the collision

strengths at threshold, though less than 1, does not depend on kTe if the UEGM is used,

or weakly depends of the Temperature in the TF model. Therefore for low enough kTe the

collisional excitation rate increases when the plasma effect is accounted for. One should

notice that the above analysis does not rely on any approximation on atomic structure or
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scattering theory but on the general behavior of the plasma effect on transition energies

and collision strengths. The opposite case of large kTe can be investigated using the Van

Regemorter formula (7.3.9). Since the variation of the Gaunt factor with the plasma effect

can usually be neglected, the effect of the plasma environment for large kTe is measured

by the ratio

Rpl
ij

/
R

(0)
ij

∣∣∣
VR

= exp
−∆Epl

ij −∆E(0)
ij

kTe

 fplij /∆E
pl
ij

f
(0)
ij /∆E

(0)
ij

if kTe � ∆Eij. (7.4.3)

The ratio fij/∆Eij is proportional to a squared dipolar matrix element and usually de-

creases when the plasma effect is accounted for — though the opposite may be true as seen

in the figure 6.3.2 for an He-like ion or in equation (5.4.23) for H-like ions. Conversely,

as mentioned when discussing Eq. (7.4.2), the ratio of the Boltzmann factors increases

when plasma effect is accounted for. Therefore the ratio (7.4.3) may be below or above

1, and usually increases with 1/kTe. These considerations are illustrated by the last row

of Table 7.1 where we may verify that for the 1s − 2p transition in H-like aluminum the

plasma environment effect increases the collisional excitation rates at low temperature

while it lowers these rates at high temperatures. In the considered case this behavior is

at variance with the plasma effect on the radiative rate.

Thomas-Fermi
Te = 100 eV Te = 2000 eV UEGM

∆A/A −0.147 −0.080 −0.066
∆R/R +0.324 −0.045 +0.095

Table 7.1 : Relative variation X(Ne)/X(Ne = 0)− 1 of the radiative (A) and collisional-
excitation rates (R) for the 1s − 2p1/2 transition in Al XIII. Collisional
rates are computed using Born approximation. The electronic density is
Ne = 1025 cm−3. The collisional-excitation rate variation within UEGM is
computed at Te = 100 eV

On the Figure 7.4.5, we have selected situations where the cross sections can increase

(1s−2p1/2 and 2p3/2−3d1/2) or decrease (3p1/2−3d3/2) with the electron density. We notice

that changes in the rate appear at low temperature but as observed on the collisional cross

section, this change of rates is below 15%. Of course, with the increase of the density the

modification of the rates will be more important.

In the case of collisional ionization the rates increase when density effect is included.

For example, at the density of Ne = 5×1023cm−3 and a temperature of kTe = 500 eV, the

transition rate of 1s2 − 1s increases by 47% because of the plasma effect. This is because

∆Eij decreases and the oscillator strength Ωij (Ef ) increases.

In order to investigate the density effects on the various ionization processes, we plot
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Figure 7.4.5 : Ratio of collisional excitation rates between PWB method with plasma
density effect (RPWB(Ne)) and PWB without plasma density effect
(RPWB(Ne = 0)) versus the temperature. The transitions plotted belong
to Al XIII. The considered density is Ne = 5× 1023cm−3.

on Figure 7.4.6 the fractional rates per ion. The fractional ionization rate is defined by

fic = Γic
Γic + Γai

(7.4.4)

where Γic is the collisional ionization rate and Γai is the auto-ionization rate. We clearly

see that the fractional collisional ionization increases when density effect is accounted

for, of course the fractional auto-ionization rate decreases by the same amount. On

Figure 7.4.7, we consider the recombination processes. On this graph the three body

recombination increases, while the radiative recombination and the dielectronic capture

decrease. These two plots indicate that the mechanism responsible for the increase of Z∗ is

the competition between the radiative recombination and the three body recombination.

Indeed, the three body recombination is more sensitive to the density due to its dependence

on N2
e . We can notice that such result could have been found by leading a calculation

without plasma potential, but with a higher density. This observation means that the

plasma potential moves the system closer to LTE, because it increases the importance of

collisional ionization.

Spectra

An important point to study is the impact of the plasma potential on the atomic spectra.

This effect can be observed on Figure 7.4.8, where the bound-bound emission spectra

with and without plasma potential are plotted. To calculate the spectra, a Voigt profile

is used. On the upper part of the figure, the line broadening is natural and Doppler. We
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Figure 7.4.6 : Comparison of fractional rates of collisional ionization (green curves) and
auto-ionization (yellow curves) with respect to the ion charge. One case in
absence of screening effect (cross symbol) and second case with the plasma
effect (square symbol).

observe lines shift in many cases, a red shift for example at 2020 eV which correspond

to the transition from state 3p to 1s. Blue shifts are also visible around 1440 eV which

corresponds to the transition of the doubly excited state 2s12p1 to the state 1s13d1. The

intensity of the lines is also modified by the plasma effect, because of the modification

of the atomic population. Finally on the lower part of Figure 7.4.8, we add a Stark

broadening (the electron impact) through the semi-empirical formula of Dimitrjevic [50].

In that case the difference between the case with and without plasma is less visible but

still present. This point supports the idea that the plasma effect is mostly hidden by the

line broadening.

A bound-free spectrum is represented in Figure 7.4.9. As mentioned in the previous

chapter, the binding energies decrease because of the plasma the screening. Therefore, as

observed on the spectra the ionization threshold are shifted toward lower energies.

7.4.3 Titanium

In that last case, we compare our work with an experiment published by Khattak et

al. [128] on titanium. This experiment has been performed at the Rutherford Appleton

Laboratory using the terawatt short pulse laser facility ASTRA. This work reports a red

shift of the Ti He − α line which is the highest charge state Z∗ ∼ 20 measured. In that

paper the titanium foil is irradiated at on optimum focus and at an offset of 100 µm from

the best focus. Therefore two He− α line shifts are reported. The unshifted line He− α
is taken at 4749.73 eV, this value is provided by Beiersdorfer et al [137]. We point out

that the FAC code provides a value of 4749.34 eV.
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Figure 7.4.7 : Comparison of fractional rates of three bodies recombination (green curves,
3BR), radiative recombination (yellow curves, RR) and dielectronic cap-
ture (red curves, DC) with respect of the ion charge. One case in absence
of screening effect (cross symbol) and second case with the plasma effect
(square symbol) .

In the case of the optimum focus the reported line shift is of 3.4 eV with a Full Width

at Half Maximum (FWHM) of 12.1 eV. Meanwhile in the second focus the measured

line shift is of 1.8eVwith a FWHM of 5.8eV. In order to evaluate the density and the

temperature, two simulations were carried out in the article. The first simulation was

realized by the hydrodynamic code HYADES [138] and post processed with the Colli-

sional radiative code SOBOLEV [139]. This simulation concludes that the plasma density

exceeds 1024cm−3with a temperature above 3000 eV in the case of the optimum focus. In

the second focus a temperature is well below 1000 eV and density lower than 1024 cm−3.

The second simulation is performed through the spectral simulation code MARIA [140].

For the optimum focus the prediction of MARIA is close to the first simulation. For the

second focus, the estimate range of temperature is 500− 1000 eV and a density closer to

1023 cm−3 than 1024 cm−3.

From our numerical simulation (FAC+Foch), a line shift of 3.4 eV for the He − α is

obtained for a density of 3.7 × 1024 cm−3 with an electronic temperature of 3000 eV. In

the Figure 7.4.10, we represent the ion population as a function of the charge state with

and without plasma effect. In that case the plasma coupling parameter is about 1.94 with

an average Wigner-Seitz radius of 2.098a0 (Z∗ ∼ 21.21). The configurations are restricted

to a maximum quantum number of 3 to comply with the condition ωpe � ωorbital and the

non-overlap condition 5.3.28.

On the Figure 7.4.11, we plot the bound-bound spectra calculated with the Foch code

(Voigt profile and natural+Doppler broadening). The blue curves is the bound-bound
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Figure 7.4.8 : Bound bound spectra of aluminium at Ne = 5.1023cm−3and kTe = 500 eV
with (yellow curves) and without (green curves) screening. Figure a is
made with natural and Doppler broadening. Figure b is made with natural,
Doppler and Stark broadening (electron impact).

spectra with the plasma effect calculated with Ne = 3.7× 1024 cm−3 and kTe = 3000 eV.

This shift can be compared to the measured one [128]. But we notice that our ratio

between the Li-like lines and the He − α line is higher than the one measured in [128].

However, the density and temperature used are in good agreement with those mentioned

in the paper.

Using natural and Doppler boroadening is obviously not enough to obtain the same

FWHM as in the article. Therefore, we have included a Stark broadening still with the

semi-empirical formula of Dimitriejic[50]. We obtain a FWHM∼ 6.03 eV which is twice

less than the expected FWHM. We explain with the the absence of refined treatment of

broadening by our kinetic code.

In the case of an offset of 100 µm, we reproduce the line shift for density of Ne =
1 × 1024 cm−3 and a temperature of kTe = 587 eV. On the Figure 7.4.13, the He − α

peak is at 4747.93 eV which exactly corresponds to a shift of 1.8 eV. The temperature

falls in the range predicted by the code MARIA, however our density is higher than the

one from code MARIA [140]. Concerning the FWHM see for instance figure (7.4.12), we

find while adding the Stark broadening, a value of 2.35 eV which is a bit more than twice

smaller than the experimental measurement.
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Figure 7.4.9 : Bound free spectra of Aluminium at Ne = 5.1023cm−3and kTe = 500 eV
with (yellow curves) and without (green curves) screening.

7.5 Summary
In this chapter we have described the major features of the Foch code. A detailed or

a UTA calculation is possible, a Gauss-Laguerre quadrature with 16 points is used to

calculate the rates and the kinetic equations are solved by the band diagonal Lu type

routine. The bound bound spectra are computed via a Voigt profile including natural,

Doppler and a Stark effect via a semi-empirical formula. An application of this kinetic code

on a low density case of kyrpton show a good agreement between experiment and other

kinetic codes. To emphasize the effect of the ion sphere potential, a benchmark model

on aluminum has shown that the CR model is dominated by the collisional ionization.

Finally, a comparison with an experiment which exhibits the density effect on spectra,

shows the agreement with an alternate collisional-radiative and hydrodynamic code.
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Figure 7.4.10 : Ion populations for titanium element at Ne = 3.7 × 1024cm−3and kTe =
3000 eV with (blue curves and star symbol) and without (red curves and
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Figure 7.4.11 : Bound bound spectra of Titanium element at Ne = 3.7 × 1024cm−3and
kTe = 3000 eV with (blue curves) and without (red curves) screening.
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dashed line represent the unshifted He− α line .
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Figure 7.4.12 : Bound bound spectra of titanium element at Ne = 3.7 × 1024cm−3and
kTe = 3000 eV for the He − α line. With (blue curves) and without
(red curves) screening. Here spectra are calculated with natural Doppler
and Stark broadening(electron impact). Black dashed line represent the
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Figure 7.4.13 : Bound bound spectra of titanium element at Ne = 1024cm−3and kTe =
587 eV with (blue curves) and without (red curves) screening. Black
dashed line represent the unshifted He− α line
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Conclusion

8.1 Resume
In this work we have made a theoretical study of dense plasmas out of local thermodynam-

ical equilibrium. To complete this work, a new kinetic code has been built which allows

us to carry out NLTE and LTE calculations. In this work we have made the assump-

tions: the free electrons obey the Maxwell distribution, the plasma is optically thin and

uniform. The atomic data is provided by the Flexible Atomic Code which is based on a

parametric potential. This code belongs to the category of ”chemical picture” description

of ions, where the plasma environment is not included. We recall that this the generic

term corresponds to approaches starting with isolated ion.Therefore, an important effort

has been done on the inclusion of the plasma environment while keeping accurate atomic

physics. The plasma environment has been modeled via the ion sphere model, under an

uniform electron gas model and a Thomas-Fermi approach. This has lead us to modify the

physical content of the Flexible Atomic Code. In order to support the numerical results,

an analytical approach has been developed for hydrogen-like ions. An extensive study

of the influence of the plasma environment has been made on the atomic structure. We

have observed a non-negligible decrease of binding energies and a spreading of the wave

functions. The impact of the plasma potential is also observable on the collisional cross

sections. Our study highlights that it is the ionization cross section which is the most

impacted. This is because of the continuum lowering. A remarkable agreement has been

shown between the numerical results of FAC and the analytical formulas on hydrogen-like

ions. Finally, we have investigated the density effect on the collisional radiative model.

We have observed that the atomic populations are modified by the plasma effect. This

fact is a logical consequence of the modification of the collisional cross section and radia-

tive rates. This investigation reveals that the mean ion charge states increases, mainly

because of the continuum lowering. On the atomic spectra, the impact is visible but not

as important as on the atomic structure. This observation is mainly due to the line broad-

ening. A successful comparison of this work has been made with other codes [139, 140]
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at density where the plasma environment plays a non-significant role. This work is also

in good agreement with experimental data [128].

8.2 Perspectives
• Beyond the ion sphere potential

The validity of the ion sphere model is limited by the non-overlap and the adiabatic

conditions. To overcome the adiabatic condition, the dynamical response of the plasma

has to be included in the plasma potential. Such an inclusion will only be necessary at

high density. This type of development might find its application in stellar interior where

the density is beyond the solid state density. Concerning the non-overlap condition, the

pressure ionization must be modeled. A model based on Valloton et al.[129, 106] seems

suitable, but we do believe that the dynamical response has to be taken into account at

the same time. One may also consider a different symmetry for the Wigner-Seitz sphere

for highly excited states. Finally, the implementation of an atom in the Jellium could be

done in the Flexible Atomic Code based on the model developed by F.Perrot [10, 11] or

the self-consistent approach of Blancard et al.[141].

• Cross sections

We have seen that because of the ion sphere neutrality, the long range behavior of the

potential is modified. Moreover, resonances appear around the energy threshold. The

DW method of FAC does not seem relevant in calculations of the collisional excitation

cross section, especially at low energy. Furthermore, the PWB used in our work is only

relevant by default. Therefore, it seems necessary to use different methods to investigate

the influence of the plasma effect on collisional cross section.

• Kinetic code

To be totally relevant, the Foch code should be extended to time-dependent problem. It

also appears desirable to include a more elaborate broadening in the spectra calculation

in order to estimate the real impact of the static screening on the line broadening.

We will intend to carry out the first and second points of these perspectives during the

post-doctoral activity of the present author.
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Vous êtes tous les deux ténébreux et discrets :

Homme, nul n’a sondé le fond de tes ab̂ımes ;

Ô mer, nul ne connâıt tes richesses intimes,

Tant vous êtes jaloux de garder vos secrets !

Et cependant voilà des siècles innombrables

Que vous vous combattez sans pitié ni remord,

Tellement vous aimez le carnage et la mort,

Ô lutteurs éternels, ô frères implacables !

Charles Baudelaire.

extrait de l’homme et la mer dans -les fleurs du mal-
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Résumé

Dans les plasmas chauds denses, l’interaction d’un ion avec les autres ions et les électrons

libres peut affecter fortement la structure atomique. Pour tenir compte de ces effets, nous

avons implémenté un potentiel plasma fondé sur le modèle d’un gaz d’électron uniforme

et sur une approche de type Thomas-Fermi dans le Flexible Atomic Code (FAC). Ce code

a été utilisé pour obtenir les énergies, les fonctions d’onde, et les taux radiatifs modi-

fiés par l’environnement plasma. Dans des ions hydrogénöıdes, les résultats numériques

ont été comparés avec succès à un calcul analytique basé sur la théorie des perturba-

tions du premier ordre. Dans le cas les ions multi-électroniques, on observe un décalage

des niveaux, en accord avec d’autres calculs récents. Diverses méthodes pour les calculs

de section efficace de collision sont examinées. L’influence de la densité du plasma sur

ces sections est analysée en détail. Certaines expressions analytiques sont proposées pour

les ions hydrogénöıdes dans la limite où l’approximation de Born ou Lotz s’applique et

sont comparés aux résultats numériques du code de FAC. Enfin, à partir de ce travail,

nous étudions l’influence de l’environnement de plasma dans le cadre d’un nouveau mo-

dèle collisionnel-radiatif nommé Foch que nous avons élaboré au cours de cette thèse. En

raison de cet environnement, la charge moyenne du plasma augmente, ce qui est principa-

lement dû à l’abaissement du continuum. Nous observons également un décalage des raies

sur les spectres d’émission. Un bon accord est trouvé entre notre travail et les données

expérimentales sur un plasma de titane.

Keywords : Modèle collisionel-radiatif, sphère ionique, potentiel plasma, Flexible Atomic

Code, Section efficace collisionnelles
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Chapitre 9

Synthèse

9.1 Introduction
La principale information à laquelle les physiciens ont accès, est le rayonnement émis par

le plasma. L’objectif du théoricien est de construire une théorie capable de retrouver ou

de prédire ces informations. Les photons émis par un plasma sont le résultat de transi-

tions d’un état atomique à un autre. Par conséquent, pour décrire les propriétés spectrales

(émissivité, absorption), il est nécessaire de déterminer les niveaux d’énergie atomiques et

leurs occupations. La modélisation d’un tel problème est une tâche complexe car le plasma

est un problème à N-corps. Pour contourner cette difficulté, deux descriptions physiques

doivent être combinées, l’approche statistique et l’approche atomique. La physique ato-

mique est utilisée pour calculer les populations atomiques, les énergies et les fonctions

d’onde, tandis que la physique statistique permet de caractériser la thermodynamique du

plasma.

Deux approches se dégagent pour modéliser les plasmas. La première approche tient

d’abord compte de l’environnement et de la thermodynamique d’une manière cohérente et

est classé sous le terme générique de modèle de l’atome moyen. Par environnement nous

entendons l’ensemble des effets des électrons libres et des ions voisins sur l’ion central.

La seconde approche cherche tout d’abord à déterminer la structure atomique d’un ion

isolé, puis dans un second temps détermine les populations des niveaux atomique par des

lois statistiques ou des équations cinétiques. Ces théories sont nommées ici ”Hartree-Fock-

type” même si une autre description atomique pourrait être utilisée.

A l’équilibre thermodynamique les populations atomiques sont déterminées par les équa-

tions de Saha-Boltzmann. Dans le régime hors de l’équilibre thermodynamique aucune loi

statistique ne peut plus être déduite. En conséquence chaque état atomique dépend de tous

les processus atomiques qui le peuplent et le dépeuplent. Ces processus atomiques sont

divisés en deux catégories, les processus de collision et radiatifs. Pour calculer ces quanti-

tés, la physique atomique associée aux théories de la diffusion doivent être considérés. Par

conséquent, pour obtenir les populations atomiques, il faut rèsoudre des équations ciné-
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tiques. Cette approche conduit à construire un modèle appelé modèle collisionnel-radiatif

.

Le but de ce travail de thèse est de fournir une description détaillé des plasma, le plus

souvent hors équilibre thermodynamique local. Pour réaliser cette tâche, une approche de

type Hartree-Fock basé sur le code atomique FAC [20] a été choisie. Ce dernier fournit

la structure atomique ainsi que les sections efficaces collisionnelles. Un code collisionnel-

radiatif nommé Foch a été développé pour obtenir les populations atomique, l’émissivité

du plasma et d’autre propriétés. Ce code est capable de réaliser des calculs détaillés ou

en Unresolved Transition Array (UTA). Dans ce travail, un important effort a été fait

pour inclure l’environnement plasma dans le calcul de structure atomique. En effet, dans

les approches de notre domaine, les ions du plasma sont considérés comme isolés. Pour

modéliser cet environnement plasma nous avons choisis le modèle dit de la sphère ionique.

La thèse s’articule ainsi autour de trois objectifs :

• Construire un code cinétique utilisant les données de FAC pour obtenir les popula-

tions atomique, ainsi que les spectres d’émission.

• Prendre en compte l’environnement plasma tout en conservant une description ato-

mique précise.

• Étudier les sections efficaces collisionnelles. Ce point a été motivé par l’inclusion

de l’environnement plasma, mais également par la nécessité de réduire le temps de

calcul

9.2 Définition des plasmas étudiés
Plusieurs paramètres sans dimensions caractérisent les propriétés des plasmas que nous

étudions. La densité électronique Ne et ionique Ni sont liées par la condition de neutralité

Ne = Z∗Ni

Z∗étant la charge moyenne du plasma, nous exprimons dans ce travail la densité en cm−3.

Même si nous étude est principalement hors de l’équilibre thermodynamique, nous sup-

posons les électrons libre thermalisés, et ainsi nous pouvons donc les décrire par une

température kTe. Le paramètre k est la constante de Boltzmann et Te la température

des électrons. Cependant par convenance kTe désigne la température. Deux mécanismes

sont en compétition dans les plasmas : l’agitation thermique et l’interaction Coulombienne

entre électrons. Cette compétition est mesuré par le paramètre de couplage Γ. Cette quan-

tité est définie [3] par

Γ = Z∗2

R0kTe
(9.2.1)
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en unité atomique, R0 est défini par la condition de neutralité

R3
0 = 3Z∗

4πNe

. (9.2.2)

Dans le cas d’une agitation thermique importante on aΓ� 1, le plasma est dit faiblement

corrélé (plasmas idéaux) et le désordre domine. De tels plasmas se rencontrent en fusion

magnétique et dans la couronne solaire. Au contraire pour Γ� 1, le plasma est fortement

corrélé et il possède une structure organisée proche d’un fluide. Les intérieurs stellaires

constituent un bon exemple de plasma dominé par les force Coulombienne.

Le second paramètre γ détermine si les électrons libres doivent être décrits par une

approche classique ou quantique. Définissant la longueur d’onde thermique comme λth =
h/(2πmkTe)1/2, où h est la constante de Planck et m la masse de l’électron. Nous expri-

mons γ par

γ = Neλ
3
th (9.2.3)

Si γ � 1, une statistique de Maxwell-Boltzmann peut s’appliquer pour décrire les électrons

libres mais si γ � 1 la statistique de Fermi-Dirac s’impose.

Ce travail se concentre sur les plasmas denses avec une densité comprises entre 1015cm−3

et 1025cm−3, c’est à dire des densités proche de l’état solide. Concernant la température,

elle se situe au-dessus de l’électron-volt, cependant, nous n’étudions pas les plasmas re-

lativistes pour lesquels kTe ≥ mc2. Ainsi, les plasmas considérés dans ce travail sont

modérément à fortement corrélés 10 > Γ > 10−2, et la plupart du temps non-dégénérés

γ < 1.

9.3 Cadre théorique
Dans le régime hors équilibre thermodynamique local (NLTE), les collisions par les élec-

trons libres ne permettent pas d’assurer la thermalisation des niveaux ioniques à cause

de l’importance des processus radiatifs. Sous cette hypothèse l’équation de Boltzmann

n’est pas vérifiée, de même pour l’équation de Saha-Boltzmann. Dans le régime NLTE,

nous devons tenir compte de tous les processus élémentaires qui peuplent et dépeuplent

les niveaux atomiques. Ainsi pour obtenir les populations atomiques nous devons poser

l’équation cinétique suivante

dnj(z)
dt

=
∑
z′

∑
k

nk(z)W z
′
,z

kj − nj(z)
∑
z′

∑
i

W z,z
′

ji (9.3.1)

où W z,z
′

ji est la matrice contenant tous les processus élémentaire qui contribuent à la

dépopulation du niveau j de l’ion z vers le niveau i de l’ion z
′
. La matrice W z

′
z

kj représente

tous les processus élémentaires qui peuplent le niveau j de l’ion z vers le niveau i de l’ion
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z
′
. Les populations atomiques sont contraintes par la condition :

∑
z′

∑
j

nj(z
′) = 1. (9.3.2)

Ces équations de taux sont difficiles à résoudre pour plusieurs raisons. Premièrement

pour décrire de manière précise un ion, nous devons décrire un très grand nombre d’états

(plusieurs milliers en pratique), mais également étudier plusieurs ions. Ensuite, il faut

prendre en compte toutes les transitions possibles entre ces ions, ce qui atteint aisément

le million de transitions. Pour simplifier notre tâche, nous effectuons les hypothèses sui-

vantes : un environnement optiquement fin, une thermalisation des électrons libres, une

étude en régime stationnaire et un plasma uniforme. Ainsi, la thermodynamique du plasma

est entièrement décrite par la température électronique kTe et la densité électronique Ne.

9.4 Modélisation de l’environnement plasma
La plupart des développements présents dans littérature, via une approche de type Hartree-

Fock modélisent un ion isolé. Cependant, notre travail est consacré à des ions immergés

dans un environnement plasma. Peu de codes atomiques prennent en compte cet environ-

nement. La plupart du temps l’effet du plasma est ajouté dans le code atomique à travers

la théorie de perturbation ou bien à l’étape du code cinétique. Notre travail, constitue

une première tentative d’inclusion de l’effet du plasma dans le code FAC. L’environne-

ment des ions joue un rôle important à haute densité, conduisant à des effets tels que des

changements de polarisation de plasma, une ionisation induite par la pression, des chan-

gements sur les spectres d’absorption et d’émission ainsi que sur l’équation d’état. Tenir

compte de ces effets de manière cohérente est une tâche difficile puisque le nombre de

particules impliquées est très élevé, ce qui suggère de traiter statistiquement les électrons

libres. Comme mentionné par Rosznay[8] nous distinguons deux types d’approches pour

modéliser l’environnement plasma : le modéle d’ion corrélation et le modéle de sphère

ionique.

Dans le modèle d’ion corrélation, l’ion est immergé dans un médium polarisé infini

(aussi nommé jellium). Asymptotiquement, les charges positives et négatives s’annulent

mutuellement pour former un fond neutre. Le modèle d’ions corrélation est surtout connu

et utilisé par la théorie de Debye-Hückel [87, 88, 89]. Une autre approche liée à la densité

de la fonctionnelle est l’atome dans le jellium de Perrot [10] et Piron [11].

Dans le modèle de la sphère ionique, l’ion est enfermé dans une cellule qui contient le

nombre exact d’électrons pour assurer la neutralité de la sphère. Le modèle de la sphère

d’ionique a été largement utilisé [7, 9, 12, 90], afin d’obtenir des niveaux d’énergie et

les taux de transition des ions dans les plasmas. Ces modèles supposent une symétrie

sphérique et définissent une répartition de densité d’électrons qui obéit à des équations

d’auto-cohérence. En couplant l’équation de Poisson et la distribution statistique des
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électrons, on peut obtenir le modèle de Thomas-Fermi [91, 92] ou Thomas-Fermi rela-

tiviste [7], ou hypernetted-chain [3]. Toutes ces théories appartiennent à la théorie de

la fonctionnelle de la densité [93]. Il faut remarquer qu’elles supposent toutes l’équilibre

thermodynamique. En outre, certains formalismes supposent une symétrie cylindrique et

utilisent une approche moléculaire décrivant l’interaction avec l’ion le plus proche [94] ;

cette approche concerne principalement les plasmas fortement corrélés .Lorsque qu’une

description quantique réaliste des électrons liés est nécessaire et lorsqu’il s’agit de traiter

des plasmas hors équilibre thermodynamique local (non-LTE), il est nécessaire de limiter

le traitement statistique aux électrons libres. En vertu de cette hypothèses (ion-sphère +

traitement statistique des électrons libres), nous avons tout d’abord utilisé le modèle d’un

gaz uniforme d’électrons (UEGM), puis une approche de type Thomas-Fermi (TF). Les

deux approches sont mises en œuvre dans le code FAC [20]. Nous rappelons qu’un modèle

très populaire pour les décalage des niveaux qui effectue la connexion entre le Debye-

Hückel et le modèle d’ions sphère a été développé par Stewart et Pyatt [95]. Toutefois ce

modèle suppose un équilibre thermique pour les ions et les électrons, ce qui n’est donc

pas directement utilisable dans l’analyse de plasmas hors de l’équilibre thermodynamique

local.

Dans ce chapitre, nous abordons brièvement la théorie de Debye-Hückel. Ensuite, une

discussion approfondie est effectuée sur le modèle de la sphère d’ions pour la UEGM et

l’approche de type TF. Nous étendons les approches antérieures basées sur des hypothèses

UEGM en dérivant des formules analytiques pour des ions hydrogènoides non relativistes.

Ce travail d’analyse est utilisée pour vérifier les données atomiques du code FAC modifié.

9.5 Modèle de la sphère ionique
Tous les modèles rattachés à l’approche de la sphère ionique supposent une cellule neutre

contenant un ion central plongé dans son environnement. De plus, il est supposé que la

densité d’électrons libres annule exactement la densité ionique au delà de la sphère de

Wigner-Seitz. Dans cette théorie le potentiel généré par cette densité de charge est calculé

par l’équation de Poisson. Les différents modèles de sphère ionique se départagent sur

la façon de déterminer la densité d’électrons libres. Nous présentons ici deux modèles de

sphère ionique, le modèle du gaz d’électron uniforme et l’approche de type Thomas-Fermi.

9.5.1 Modèle du gaz d’électron uniforme

Le modèle du gaz d’électron uniforme (UEGM) suppose une distribution uniforme des

électrons libre Ne. Cette hypothèse signifie que nous pouvons négliger la polarisation

des électrons libres par le noyau. Cette hypothèse a été validé dans la référence [98],

en comparant les valeurs théorique du modèle et des mesures expérimental dans le cas

d’ions très chargés. Comme pour tout modèle de sphère ionique (par exemple [9]), nous
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supposons qu’en dehors de la sphère, la densité d’électron libre compense la densité de

l’ion. Ceci assume la condition de neutralité

Z −Nb −
4
3πR

3
0Ne = 0, (9.5.1)

où R0 est le rayon de la sphère, Z le numéro atomique, Nb le nombre d’électron lié et Ne

la densité d’électron libre.

Sous l’hypothèse d’un gaz d’électron uniforme, nous obtenons le potentiel

Vplasma(r) = Zf
2R0

(
3− r

2

R2
0

)
si r ≤ R0 (9.5.2)

Vplasma(r) = Zf
r

si r ≥ R0. (9.5.3)

avec Zf le nombre d’électrons libres défini par

Zf = Z −Nb (9.5.4)

Dans ce travail, nous n’avons pas imposé l’annulation des fonctions d’ondes à r =
R0, contrairement à d’autre auteurs[99, 100]. Sachant que nous nous intéressons à des

plasma dense, le rayon de la sphère R0 peut être assez large comme détaillé plus bas. De

plus, l’annulation de la fonction d’onde sur la surface de la sphère implique un potentiel

infiniment répulsif au-delà de la sphére, ce qui conduit à des effets non-physiques. Enfin,

malgré sa simplicité le modèle UEGM a été validé contre des approches auto-consistante

et s’est ainsi révélé tout à fait acceptable pour des densités modérées [101, 102, 103, 104].

9.5.2 Approche de type Thomas-Fermi

Les équations auto-consistantes définissant la densité d’électrons libres et le potentiel

plasma dans une approche semi-classique — Thomas-Fermi restreint aux électrons libres

— a été discutée dans une série d’articles [97, 104]. La condition de neutralité est toujours

supposée dans la sphère de Wigner-Seitz de rayon R0 définie par

4πR3
0Ne/3 = Zf , (9.5.5)

avec les même notations que précédemment. Les électrons libres et les autres ions sont

supposés se neutraliser, ainsi

ne(r) = 0 for r ≥ R0. (9.5.6)

Afin de se conformer à la définition de la densité moyenne Ne, nous devons imposer

4π
ˆ R0

0
dr r2ne(r) = Zf . (9.5.7)
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Nous supposons que les électrons libres se thermalisent, mais pas nécessairement les ions

ce qui est consistant avec les hypothèses du modèle collisionel-radiatif. Ainsi la densité

des électrons libres suit

ne(r) ∝
ˆ ∞
p0(r)

dp p2 exp
(
−
(
p2

2 + V (r)
)
/kBTe

)
(9.5.8)

où kTe est la température des électrons libres et p0(r) est la valeur minimale de l’impulsion

permettant à l’électron d’avoir une énergie positive i.e., p0(r) = (−2V (r))1/2 if V (r) ≤ 0,

or 0 if V (r) > 0. Le paramètre V (r) est l’énergie associée à l’interaction électrostatique

avec toute les charges incluse dans la sphère de Wigner-Seitz, c’est à dire le noyau, les

électrons liés et libres

V (r) =

−
Z
r

+ Vb(r) + Vpl(r). r ≤ R0

0 r > R0
(9.5.9)

Le terme Vpl(r) décrit l’interaction avec les électrons libres, que nous avons nommé po-

tentiel plasma. L’utilisation de la statistique de Fermi-Dirac n’est pas toujours nécessaire

comme discuté dans la section 9.5.3. Nous avons également supposé que les électrons sont

non relativistes, ce qui est vrai tant que kBTe � 511 keV.

La dernière équation, requise pour obtenir le potentiel plasma, est l’équation de Poisson.

Sous forme intégrale cette dernière s’écrit

Vpl(r) = 4π
(

1
r

ˆ r

0
ds s2ne(s) +

ˆ R0

r

ds sne(s)
)
. (9.5.10)

Cette expression assure que Vpl(r) ainsi que ses dérivées soient continue en r = R0, sachant

que Vpl(r) = Zf/r si r ≥ R0, d’après les hypothèses du modèle de sphère ionique.

En supposant le potentiel attractif V (r) < 0, l’équation de Maxwell-Boltzmann (9.5.8)

conduit à

ne(r) = K

2 e
−V (r)/kBTe(2kBTe)3/2Γ

(3
2 ,−

V (r)
kBTe

)
(9.5.11)

= K

2 (2kBTe)3/2

(−V (r)
kBTe

)1/2

+ π1/2

2 e−V (r)/kBTeerfc

(−V (r)
kBTe

)1/2
 (9.5.12)

la constante K provient de la condition de neutralité (9.5.7). Dans l’expression de la

densité, nous avons introduit la fonction Gamma incomplète

Γ(a, x) =
ˆ ∞
x

dt ta−1e−t

ainsi que la fonction d’erreur complémentaire erfc(x) = (2/π1/2)
´∞
x
du e−u

2
[57].

Pour l’implémentation numérique du modèle, nous initialisons avec le modèle UEGM
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puis itérons avec l’équation (9.5.12) pour déterminer le potentiel plasma (9.5.10). La

convergence du schéma numérique est contrôlée par la variation de densité sur la sphère

de Wigner-Seitz |n(i+1)
e (R0) − n(i)

e (R0)|, l’itération prend fin lorsque cette valeur devient

inférieur à ε. Nous trouvons qu’une valeur de ε = 10−8 en unité atomique donne un schéma

auto-consistant de bonne précision et avec une convergence couramment atteinte en moins

de 12 itérations.

9.5.3 limitations du modèle

Nous discutons ici du domaine de validité du modèle de la sphère d’ions. Tout d’abord,

si l’extension spatiale de la fonction d’onde de l’électron lié est plus grande que le rayon

de la sphère ionique, les orbitales de deux ions voisins se chevauchent et des effets quasi-

moléculaires doivent être pris en compte. Cette condition est également reliée à la possi-

bilité d’ionisation à la pression. Le paramètre décrivant ce recouvrement est

β = 〈r〉
R0

, (9.5.13)

où 〈r〉 est la taille moyenne de l’orbital la plus extérieur et R0 la moitié de la distance

entre deux ions voisins. Si β > 1, les fonctions d’ondes de deux ions voisins se chevauchent

significativement. Le code de structure atomique permet de calculer 〈r〉. Dans le cas d’un

ion hydrogénoide, l’extension classique de la fonction d’onde est liée à la position du

point tournant extérieur 〈r〉 . 2n2/Z, où n est le nombre quantique principal. Pour les

ions multi-électronique, une estimation grossière du rayon moyen peut être obtenue en

supposant un écrantage complet par Nb − 1 électrons liés, ainsi la taille de l’orbitale est

2n2/(Z−Nb+1). Sachant que la fonction d’onde décroit de manière exponentielle au-delà

du point tournant, il est suffisant d’imposer la condition

2n2

Zf + 1 < R0 (9.5.14)

ce qui revient à

Ne . 0.03(Zf + 1)3Zf
n6 ∼ 2.1023Z

4

n6 cm−3 (9.5.15)

Une condition similaire a été dérivée par d’autres auteurs [101, 103].

La discussion qui précède ne tient pas compte de la réponse dynamique des électrons

libres. En effet, lorsque l’électron actif se déplace loin du noyau, les électrons libres neu-

tralisent la charge positive avec un temps caractéristique égal à l’inverse de la fréquence

de plasma. Dans ce cas, la charge nette vu par un électron situé loin du noyau est égal

à zéro, en contradiction avec la formule (9.5.3). L’électron actif est lié par un potentiel

− (Z −Nb + 1) /r — le noyau étant écrantè par les autres électrons liés — ce qui ajoute

à électrons libres (Z −Nb) /r et se traduit par une valeur non nulle -1 / r d’un potentiel

de Coulomb loin de noyau. C’est pourquoi nous devons imposer à la fréquence orbitale
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d’électrons (ou fréquence de Bohr) ωorbital et à la fréquence du plasma ωpe la condition

adiabatique

ωpe = (4πNe)1/2 � ωorbital (9.5.16)

ce qui dans le cas hydrogénoide ou en supposant un écrantage complet par les électrons

liés s’écrit

Ne �
(Zf + 1)4

4πn4 ∼ 5.35× 1023Z
4

n6 cm−3. (9.5.17)

Cette condition est reliée à l’hypothèse de non-recouvrement (9.5.15).Une condition évi-

dente est que ωorbital est au dessus de la fréquence de coupure lorsque la condition (9.5.17)

est remplie. Constatant que les conditions (9.5.17) et (9.5.15) sont très proche. Il parait

donc difficile de tenir compte de l’ionisation par la pression sans la réponse dynamique.

Le modèle UEGM, n’inclut pas directement la température kTe , cependant celle-ci

est relié à la quantité Zf par l’intermédiaire de la balance d’ionisation — donnée par

l’équation de Saha ou tout autre modèle d’ionisation—. On peut également estimer le

paramètre de corrélation reliant kTe et Zf

Γ =
Z2
f

R0kTe
(9.5.18)

Numériquement, nous avons Γ ∼ 1 pour les paramètres kTe = 650 eV et Ne = 1023cm−3

— ce qui donne 〈Zf .〉 ∼ 12 selon la loi de Saha pour l’aluminium. Ainsi, le modèle présenté

s’applique pour les plasmas avec un faible ou moyen paramètre de couplage.

Afin d’estimer si la statistique de Maxwell-Boltzmann ou de Fermi-Dirac s’applique

pour les électrons libre, nous devons estimer le paramètre de dégénérescence définit par

γ = TFermi

Te
= (3π2Ne)2/3

2kTe
= 32/3π1/3

2
(
Neλ

3
th

)2/3
. (9.5.19)

En utilisant Ne = 1023cm−3, nous obtenons kT ' 8 eV. Ainsi, les plasmas considérés ici

seront généralement non-dégenerés. La condition de non-dégenerescence s’écrit

Neλ
3
th � 1 (9.5.20)

9.5.4 Développement analytique pour les ions hydrogénoides

Différent articles [97, 102, 103] ont montré qu’à partir du potentiel UEGM (9.5.2) une

expression analytique peut être dérivée pour l’énergie au premier ordre de la théorie des

perturbations. Nous étendons ici cette approche en donnant l’expression explicite des

fonctions d’ondes, des taux radiatifs dipolaires et quadrupolaires au premier ordre des

perturbations, mais également les énergies et les fonctions d’ondes au second ordre. Pour

une approche simple, nous ne prenons pas en compte les effets relativistes. Ce travail

repose sur la théorie perturbative standard de Rayleigh-Schrödinger et complété par la
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technique de sommation de Dalgarno et Lewis [110, 111]. Nous notons, H0 l’hamiltonien

non perturbé avec les énergies propres E
(0)
i et fonction propres Φ(0)

i , et V le potentiel

perturbateur, Cette technique consiste à essayer de d’obtenir au premier ordre la fonction

propre Φ(1)
i par la résolution directe de l’équation en représentation r

〈
r
∣∣∣H0 − E(0)

i

∣∣∣Φ(1)
i

〉
=
〈
r
∣∣∣E(1)

i − V
∣∣∣Φ(0)

i

〉
, (9.5.21)

où l’énergie au premier ordre obtenue est

E
(1)
i =

〈
Φ(0)
i

∣∣∣V ∣∣∣Φ(0)
i

〉
. (9.5.22)

Cette méthode peut être généralisée à tous les ordres des perturbations. L’équation radiale

de la fonction d’onde hydrogénoide perturbée s’écrit Rnl(r) + vnl(r) où Rnl est la fonction

non perturbé au premier ordre, n et l étant respectivement le nombre quantique principal

et orbital, vnl est solution de(
d2

dρ2 + 2
ρ

d

dρ
− l(l + 1)

ρ2 + 2
ρ
− 1
n2

)
vnl = Zf

Z4R3
0
(
〈
ρ2
〉
− ρ2)Rnl(r), (9.5.23)

où ρ = Zr est le rayon mis à l’échelle. Pour assurer la neutralité, il faut que Z = Zf + 1.

Dans cette équation radiale, la dépendance à grand r (9.5.3) du potentiel plasma a été

ignorée . Comme étudié dans l’appendice A.1 cette oubli est acceptable tant que R0 >

2n2/Z. Le carré du rayon moyen est donné par

〈
ρ2
〉

= 1
2n

2(5n2 − 3l(l + 1) + 1). (9.5.24)

L’essai de résolution que nous avons éffectué (9.5.23) dans de nombreux cas suggère qu’une

solution particulière peut être trouvée comme une somme du terme cjρ
j exp(−ρ/n) avec

j variant de l à n. La solution générale est donnée par une telle équation plus la solution

homogène habituelle Rnl multipliée par une constante à déterminer. Pour obtenir une

correction au premier ordre convenablement normalisée, nous devons suivre la condition

d’orthogonalité ˆ ∞
0

dρρ2Rnlvnl = 0. (9.5.25)

Nous avons été capable d’obtenir une expression analytique pour n’importe quelle valeurs

de n, l , cependant leur écriture est trop lourde pour être donnée explicitement. Nous

restreignons donc à des cas simples mais représentatifs, comme n = l + 1

134



9.6 Effet de l’environnement plasma

Si n = l + 1, la solution générale de l’équation (9.5.23) avec normalisation s’écrit

vnn−1 = 〈r ˜|n n− 1〉 = Zf
Z5/2R3

0

(2/n)n+1/2

(2n)!1/2

(
n

6ρ
3 + n2

4 (n+ 1)ρ2

−n
4

24(n+ 1)(2n+ 1)(5n+ 6)
)
ρn−1e−ρ/n.

(9.5.26)

Pour l’énergie correspondante, l’expression est

E
(1)
nn−1 = Zf

2R0

(
3− n2

Z2R2
0
(n+ 1)

(
n+ 1

2
))

, (9.5.27)

Ces développements nous permettent de contrôler la qualité des résultats numériques

obtenue par la version de FAC modifiée.

9.6 Effet de l’environnement plasma
Dans cette partie nous étudions l’effet du potentiel plasma sur la structure atomique, sur

les sections efficaces et sur le modèle collissionel-radiatif.

9.6.1 Structure atomique

9.6.1.1 Énergies

La différence entre les modèles de TF et UEGM réside dans la façon de considérer la

température. La température est directement présente pour l’approche TF à travers la

distribution de Maxwell. Alors que dans UEGM la température est implicitement présente

via la valeur supposée Z∗. Sur la figure 9.6.1, nous traçons l’évolution de l’énergie de

liaison de Al XIII pour le niveau 1s1/2 en fonction de la température, et ceci pour les deux

potentiels (TF et UEGM). Nous voyons clairement que l’énergie de liaison croit avec la

température dans le cas de TF. Nous vérifions aussi qu’à haute température l’approche

TF converge vers le UEGM.

Le potentiel plasma de TF est toujours plus important que celui de UEGM. Ainsi, nous

pouvons attendre à ce que l’énergie de liaison soit plus basse avec TF qu’avec UEGM. La

figure. 9.6.2 confirme cette prédiction. Un point important est souligné par les figures 9.6.1

et 9.6.2 . L’effet le plus important sur le décalage des niveaux provient de la densité et

non pas de la température. Ce résultat est contraire à l’observation faite par Salzmann et

Szichman’s [102] qui obtiennent dans certain cas un décalage du à l’UEGM est supérieur

à celui du à TF.
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Figure 9.6.1 – Influence of temperature on binding energy of Al XIII for 1s1/2 level with
an average density Ne = 1023 cm−3

9.6.1.2 Fonction d’ondes

L’inclusion du potentiel plasma conduit à un écrantage par les électrons libre du champ

du noyau, ce qui conduit à un étalement des fonctions d’ondes. Cet effet peut s’observer

sur la Figure 9.6.3 pour l’orbital 3p1/2 de l’aluminium hydrogénoide. Afin de vérifier les

calculs numériques, nous présentons sur la Figure 9.6.4 une comparaison entre les fonctions

d’onde obtenues par FAC et et les fonctions d’onde obtenues analytiquement via la formule

(5.4.15). L’accord entre les deux approche est très bon lorsque la densité n’est pas trop

forte, tout comme pour le décalage en énergie. Comme mentionné précédemment, lorsque

la densité est trop élevée les deux calculs divergent car l’approche perturbative n’est plus

valable. L’effet du plasma observé sur les fonctions d’onde est modéré mais visible, ce

qui souligne la nécessité de les prendre en compte, comme par exemple pour les spectres

atomique.

9.6.1.3 Taux radiatifs

Avec l’analyse des fonctions d’ondes perturbées par l’effet du plasma, nous pouvons cal-

culer les taux radiatifs. Ces taux ont été calculés par le code FAC dans une approximation

non-relativiste.

Nous ne pouvons pas affirmer catégoriquement que tous les taux radiatifs décroissent ou

croissent avec l’augmentation de la densité. Un tel comportement a été mentionné par Li

et Rosmej [123]. Ceci à cause de la dépendance des éléments de matrice dipolaire vis-à-vis

de l’énergie de transition. Ce fait s’observe sur la Figure. 9.6.5, nous y voyons l’énergie de

transition croitre ou décroitre en fonction de la densité.

Plus spécifiquement, la transition d’énergie entre le triplet 3P0,1 et le singulet 1S0 décroit
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Figure 9.6.2 – Influence of density on binding energy of Al XIII and XII for 1s1/2 and
1s21S0 levels.

avec la densité, dans le même temps elle croit avec la densité entre le triplet 3P0,1 et le

triplet 3S1. Ainsi les taux radiatifs peuvent avoir différent comportement en fonction de

la densité. Comme règle, la plupart des taux radiatifs décroissent à cause de l’effet du

plasma, ceci est dû à la diminution de ∆E3
ij dans la probabilité de transition. Le cas de

la figure 9.6.6 est spécifique car ∆Eij est très petit.

9.6.2 Sections efficaces

9.6.2.1 Excitation collisionnelle

Nous utilisons deux méthodes pour étudier les sections efficaces d’excitation collision-

nelles : l’approximation en onde plane de Born (PWB) et la méthode des ondes distordues

(DW) (voir chapitre 3 de [Sobelman1995] et le chapitre 4 de ce manuscrit.).

Le choix entre les deux méthodes nécessite de considérer le comportement asymptotique

supposé pour le potentiel à longue portée. Toutes les deux sont des théories perturbatives

et valables uniquement dans le cas d’un faible potentiel d’interaction entre la cible et

les électrons incidents. Les différences sont cependant importantes. DW tient compte

de la forme du potentiel à longue portée contrairement à l’approximation de Born. La

forme asymptotique de la fonction d’onde pour la particule incidente est une onde plane

pour PWB et de type Coulombien pour DW. Par conséquent, le modèle DW n’est pas

pertinent lorsque les effets de densité sont inclus dans le cadre du modéle de sphère

ionique, car le potentiel asymptotique n’est pas Coulombien. Tout au plus, on peut utiliser

l’approximation DW lorsque la densité est si faible que le rayon est plus grand que la zone

où le processus de collision a lieu. En outre, nous rappelons que la méthode DW mise en
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Figure 9.6.4 – Density effect on the 3d3/2 wave-function of H-like aluminum. The large-
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œuvre dans FAC n’est pas fiable pour les neutres et quasi-neutres comme mentionné par

l’auteur de FAC et observé au chapitre 4 de cette thèse. En conséquence, l’approximation

en ondes planes de Born est utilisé dans ce travail lorsque l’effet de la densité est pris en

compte.

Nous devons souligner que rencontrons une difficulté pour observer l’influence du plasma

sur les sections efficaces d’excitation. En effet, le potentiel plasma change le comporte-

ment à longue portée du potentiel. Cependant, à haute énergie le méthodes DW et PWB

convergent, ce qui signifie que nous pouvons isoler l’influence de plasma.

Afin de comparer les résultats obtenus par PWB et DW, nous traçons sur la Figure.9.6.7

la section efficace d’excitation de la transition 1s–2p1/2 de Al XIII.
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Figure 9.6.7 – Comparison of excitation cross section for transition 1s–2p1/2 for Al XIII
at several densities and T = 100 eV

Le comportement des sections efficaces donné par les deux méthodes est différent près

du seuil en raison de la façon dont elles traitent l’interaction à longue portée. A haute

énergie, les sections efficaces montrent le même comportement. Sur la Figure. 9.6.7 on

remarque que l’effet du plasma contribue à diminuer la section efficace, même si cela est

modéré. Pour observer un changement significatif, nous devons atteindre des densité de

l’ordre de Ne = 1025 cm−3. A cette densité le rayon de la sphère de Wigner-Seitz est

R0 = 1.25 a0, ce qui est plus grand que l’extension de la fonction d’onde, dans ce cas le

paramètre de couplage Z2
f/kTeR0 est proche de 1. Ceci signifie que notre formalisme vérifie

la condition de non-recouvrement [28] , et est applicable lorsque des effets de densité non

négligeables se produisent.

Nous avons vu que les taux radiatifs peuvent croitre ou décroitre selon la transition

étudiée. Le même raisonnement s’applique aux section efficace d’excitation collisionelle.

Par exemple dans le cas de la transition de 1s4p 1P1 vers 1s4d 1D2 , l’énergie diminue
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avec la densité, puis à partir de Ne ' 1.2× 1022 cm−3 ces deux niveaux se croissent. Pour

cette transition, nous avons observons une augmentation de la section efficace jusqu’à la

densité critique Ne ' 1.2 × 1022 cm−3. Par la suite l’émission s’effectue de 1D2 vers 1P1

, et ainsi la section efficace décroit avec la densité. Une possible explication du croise-

ment de niveaux est que l’interaction électronique est faible. En conséquence, dans cette

situation le potentiel plasma a un effet plus fort, ce qui signifie que l’électron lié interagit

préferentiellement avec le continuum plutôt qu’avec les électrons liés.

Nous utilisons la formule de Van Regemorter [71] pour confirmer nos observations. Cette

formule est valable dans le cadre de l’approximation de Born et de Bethe (haute énergie

et transition dipolaire)

σij = 8π√
3
R2
y

ei

fij
∆Eij

ḡ (ei/∆Eij) πa
2

0, (9.6.1)

où ∆Eij est la transition d’énergie du niveau i vers j, a0 est le rayon de Bohr, Ry la

constante de Rydberg, ei l’énergie de l’électron incident, ḡ le facteur de Gaunt déterminé

par des observations empiriques et fij la force d’oscillateur. Nous choisissons le facteur de

Gaunt suggérer par Mewe [72]

ḡ = 0.15 + 0.28 log
(

ei
∆Eij

)
. (9.6.2)
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Figure 9.6.8 – Excitation cross sections for the transition 1s1/2–2p1/2 in Al XIII: com-
parison between Born approximation and Van Regemorter formula. The
upper figure represents the cross sections while on the lower figure are
plotted the variations σ(Ne = 0)− σ(Ne > 0) for both approximations.

Nous comparons les sections efficaces numériques et la formule de Van Regemorter sur

la Figure. 9.6.8. Nous notons que le décalage de la section efficace est similaire. Afin de

fournir une expression analytique nous utilisons un développement basé sur l’équation
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(9.6.1). Dans cette équation, l’effet de densité modifie la transition d’énergie ∆Eij et la

force d’oscillateur fij. Le facteur de Gaunt est aussi modifié mais nous le négligeons car il

varie lentement avec ∆Eij. Ainsi l’amplitude de la section efficace dépend principalement

du rappor fij/∆Eij. A une constante numérique près ce ratio corresponds au carré de

l’élément de matrice dipolaire :

fij
∆Eij

∝ 〈nili |r|njlj〉2 . (9.6.3)

En utilisant les formules analytiques (chapitre 5) pour les ions hydrogènoide dans le

cadre du potentiel UEGM, nous sommes en mesure d’isoler la contribution du potentiel

du plasma par la décomposition de l’élément de matrice à l’ordre 0 et au premier ordre

de la théorie des perturbations.

〈nili |r|njlj〉 = 〈nili |r|njlj〉0 + ˜〈nili |r|njlj〉. (9.6.4)

Nous calculons l’élément de matrice avec le potentiel UEGM dans un cadre non relativiste

et obtenons donc, en unité atomique

〈1s |r| 2p〉 = 128
243

√
6
Z

(
1− 3059

36
Zf
Z4R3

0

)
. (9.6.5)

Dans le case d’un ion aluminium hydrogénoide, nous obtenons

〈1s |r| 2p〉0 = 9.925× 10−2 (9.6.6)

et pour une densité électronique moyenne Ne = 1024 cm−3

˜〈1s |r| 2p〉 = −1.8329× 10−4. (9.6.7)

A cette densité l’élément de matrice perturbé est très petit. Les équations (9.6.6) et

(9.6.7) confirment que les sections efficaces d’excitations collisionelles ne changent pas

notablement.

Nous avons également constaté que les transitions interdites et permises sont affectées

différemment par l’environnement plasma. Ce fait a été observé par Hatton et al [115] qui

ont utilisé le formalisme de Debye Hückel.

9.6.2.2 Ionisation collisionelle

Ici, nous avons adopté le formalisme de TF pour inclure l’effet du plasma, pour les sections

efficaces d’ionisation, à la place de DW. C’est la méthode Binary encounter dipole theory

(BED) [83] qui est utilisé par FAC. Cette méthode combine le calcul des sections efficaces

semi-classique de Mott [86] pour la diffusion de deux électrons libres (valable pour les

grands transfert d’impulsion), et la théorie de Bethe [124] qui est fondé sur l’approxi-
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mation en onde plane de Born (valable à haute énergie et petit transfert de quantité de

mouvement) avec seulement le terme dipolaire retenu. Cette théorie est d’un grand intérêt

en raison de son applicabilité à la fois pour les ions et les neutres. Contrairement au cas

de l’excitation, nous n’avons pas besoin de changer notre approche de calcul lorsque l’effet

de plasma est inclus.

Nous traçons sur la figure 9.6.9. la section efficace d’ionisation collisionnelle de l’état

1s2 à 1s pour l’aluminium, et ceci pour diverses densités. Nous y effectuons aussi une

comparaison avec la formule de Lotz [42]

σij = Cπa
2

0Ry
2 wn
ei∆Eij

log
(

ei
∆Eij

)
, (9.6.8)

où C = 2.77, wn est le nombre initial d’électron dans la couche concernée par l’ionisation.

Notre but n’est pas de discuter la précision de la formule de Lotz par rapport à BED,

mais de caractériser l’effet du plasma.

La section efficace croit avec la densité, comme observé sur la figure 9.6.9. Nous expli-

quons cette augmentation par la diminution de l’énergie de transition qui ainsi conduit à

faciliter l’ionisation. La variation de la section efficace due à l’effet du plasma à 1023 cm−3

et T = 200 eV est la quasi similaire avec BED et la formule de Lotz. L’effet de la tempé-

rature est opposé à celui de la densité, quand la température augmente la section efficace

diminue.
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Figure 9.6.9 – Comparison of ionization cross section for the transition 1s2 to 1s for
AlXII and XIII at T = 200 eV. The free-electron density is obtained
from Thomas-Fermi model, and for the scattering process BED and Lotz
formalisms are compared.

Nous pouvons soutenir ces résultats en utilisant un formalisme fondé sur la formule de

Lotz et une approche perturbative avec le potentiel UEGM. Comme mentionné ci-dessus,
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dans UEGM, la correction de l’énergie du premier ordre pour un ion hydrogénoide est

E
(1)
plasma = Zf

R0

(
3
2 −
〈r2〉nl
2R2

0

)
, (9.6.9)

avec 〈
r2
〉
nl

= n2

2Z2

(
5n2 − 3l (l + 1) + 1

)
. (9.6.10)

Par exemple, pour l’ionisation d’un ion hydrogénoide dans un état nl vers un ion épluché,

nous obtenons l’énergie de transition

∆E = Z2

2n2 −
Zf
R0

(
3
2 −
〈r2〉nl
2R2

0

)
, (9.6.11)

ce qui montre que l’énergie diminue avec la densité. La section efficace augmente à cause

de sa dépendance en énergie en 1/∆Eij, comme observé sur la Figure. 9.6.9. L’étude sur

d’autres éléments a montré les même résultats.

Nos résultats sont en accord avec ceux de Wu et al [120] quant à l’augmentation des

sections efficaces d’ionisation avec la densité, bien que leur travaux utilisent l’approxima-

tion des ondes distordues. Comme mentionné par Pindzola et al [116], nous avons vérifié

que leur section efficace pour l’or germaniumoide est sous-estimée d’un facteur 2. Cepen-

dant pour Pindzola et al. [116] les sections efficaces diminuent avec la densité. Les auteurs

expliquent que ce comportement est lié à l’écrantage de l’interaction inter-électronique

par leur modèle fondé sur Debye-Hückel. Nous notons que leur travail étant basé sur

Debye-Hückel, il n’est pas applicable pour les plasmas faiblement corrélés, alors que cette

restriction ne s’applique pas à notre travail.

9.6.3 Modèle collisionnel-radiatif

Nous étudions ici, l’effet de l’environnement plasma sur le code collisionel-radiatif. Le code

cinétique que nous avons développé se nomme Foch. Il est fondé sur les hypothèses faites

dans la section 9.3. Pour le code Foch, par défaut, tous les taux sont calculés par l’inter-

médiaire des données atomiques de FAC en effectuant une intégration de Gauss-Laguerre.

En raison de ce procédé, la grille dépend de la température électronique. Pour nos cal-

culs nous prenons 16 points pour réaliser l’intégration. Pour la résolution des équation

cinétiques, nous utilisons un solveur fonctionnant sur le principe d’une méthode LU pour

matrice à bande (dgbsvx de lapack [134]).

En ce qui concerne les spectres, le code calcule l’émissivité pour les processus, lié-

libre, libre-libre et lié-lié. Le profil de raie choisi pour les spectres lié-lié est un profil de

Voigt (méthode de Drayson [135]). Un profil Gaussien ou Lorentzien peut également être

utilisé. Pour les calculs détaillés, nous utilisons un élargissement le naturel et Doppler.

Pour inclure l’élargissement de Stark due aux collisions électroniques, nous utilisons la

formule semi-empirique de Dimitriejic [50].
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9.6 Effet de l’environnement plasma

Pour établir l’effet de l’environnement plasma sur le code cinétique, nous nous compa-

rons à une expérience récemment publiée par Khattak et al. [128] sur le Titane. Cette

expérience a été effectueé au laboratoire Rutherford Appleton sur l’installation lasers te-

rawatt ASTRA. Dans l’article un décalage de la raie He−α est rapporté. La raie He−α
non-décalée est prise à 4749.73eV, cette valeur provient de Beiersdorfer et al [137]. Nous

notons que le code FAC fournit une valeur de 4749.34eV.

Les mesures expérimentales [128] font état d’un décalage de la raie de 3.4eV avec d’une

largeur à mi hauteur (FWHM) de 12.1eV. Afin d’évaluer la densité et la température,

deux simulations ont été réalisées dans l’article. La première simulation a été menée par

le code hydrodynamique HYADES [138] et post-traité avec le code collisionnel-radiatif

SOBOLEV [139]. Cette simulation conclut que la densité du plasma excède 1024cm−3 avec

une température de 3000 eV. La seconde simulation a été faite avec le code de simulation

spectrale MARIA [140]. Ce dernier fournit une densité et une température proche du

premier calcul.

Pour notre simulation numérique (FAC+Foch), un décalage de la raie He−α de 3.4 eV

est obtenu pour une densité de 3.7×1024cm−3avec un température électronique de 3000 eV.

Dans ce cas le paramètre de couplage est environ 1.94 avec une sphère de Wigner-Seitz

moyenne de 2.098a0(Z∗ ∼ 21.21). Le nombre quantique principal utilisé est de 3 afin de

satisfaire la condition ωpe � ωorbital et la condition de non-recouvrement.

Sur la figure 9.6.10, nous avons tracé le spectre lié-lié calculé avec la code Foch (pro-

fil de Voigt avec élargissement naturel et Doppler). Sur le graphique, la ligne verticale

en pointillé représente la raie He − α non décalée, la courbe rouge représente le spectre

lié-lié sans effet du plasma. La courbe bleue correspond au spectre lié-lié avec l’effet du

plasma et Ne = 3.7×1024cm−3 et kTe = 3000 eV. Ce graphique peut être comparé à celui

mesuré[128]. Cependant, nous observons que le ratio entre la raie Li-likes et He − α est

supérieur à celui mesuré par [128]. Malgré tout, la densité et la température sont en bon

accord avec ceux mentionnés dans l’article. L’utilisation d’un élargissement naturel et Dop-

pler n’est pas suffisant pour retrouver la largeur à mi hauteur mesuré expérimentalement.

En conséquence nous avons ajouté un élargissement Stark via la formule semi-empirique

de Dimitriejic[50]. Nous obtenons une largeur à mi hauteur de∼ 6.03eV ce qui est deux

fois plus petit que la valeur attendue. Nous expliquons ceci par l’absence de méthode

sophistiquée dans notre code pour la prise en compte l’élargissement des raies.
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Chapitre 9 Synthèse
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Figure 9.6.10 – Bound bound spectra of Titanium element at Ne = 3.7 × 1024cm−3and
kTe = 3000 eV with (blue curves) and without (red curves) screening.
Both spectra are calculated with natural and Doppler broadening. Black
dashed line represent the unshifted He− α line .
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Annexe A

Chapter 5 appendix

This appendix follows closely the appendix of our first article [28]

A.1 Effect of the plasma potential out of the sphere on
the hydrogen-like ion energies

In the present perturbative development, we have substituted to the ion-sphere potential

(5.3.1) its inner form (5.3.2). We wish to evaluate here the influence of the correction

Z∗(r2/2R2
0− 3/2 +R0/r)/R0 for r > R0. Since we require that the wave-functions do not

significantly extend beyond R0, it is reasonable to use their large-r form [111]

Rnl(r) ∼ (−1)n−l−1 2Z3/2

n2
(2Zr/n)n−1e−Zr/n

[(n+ l)!(n− l − 1)!]1/2
. (A.1.1)

The correction to the energy at first perturbation order is

δE =
ˆ ∞
R0

dr r2Z
∗

R0

(
r2

2R2
0
− 3

2 + R0

r

)
R2
nl(r). (A.1.2)

Using the above asymptotic form of the radial wave-function we obtain

δE = Z∗

2nR0(n+ l)!(n− l − 1)!

[ 1
2a2 Γ(2n+ 3, a)− 3

2Γ(2n+ 1, a) + aΓ(2n, a)
]

(A.1.3)

where a = 2ZR0/n and Γ(ν, a) is the incomplete Gamma function [57]. Using the large-a

limit of this function, one obtains the correction to the energy

δE ' 3Z∗(2ZR0/n)2n−2

2nR0(n+ l)!(n− l − 1)!e
−2ZR0/n (A.1.4)
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which must be compared to both parts of the first-order energy shift

δ0 = 3Z∗
2R0

, δ1 = − Z∗

2R3
0

n2

2Z2

(
5n2 − 3l(l + 1) + 1

)
. (A.1.5)

Since we must ensure the non-overlap condition (5.3.27), we have estimated the ratios

ρ0 = δE/δ0 and ρ1 = δE/δ1 assuming R0 = 2n2/Z. With such a choice, both ratios

are small. For instance, if n = l + 1, ρ0 is approximately 0.02 for n = 1, 0.002 for

n = 2, and decreases exponentially with n; ρ1 ' −0.07,−0.01,−0.0008 for n = 1, 2, and 3
respectively. For n = l + 2, ρ0 ' 0.005, 0.0002, 0.0007, and ρ1 ' −0.025,−0.01,−0.004
for n = 2, 3, and 4 respectively. These ratios are even much smaller and more rapidly

decreasing with n for the larger ion-sphere radius R0 = 3n2/Z.

A.2 Quadrupolar matrix elements for hydrogenic ions
including ion-sphere perturbation

Quadrupolar radial matrix elements because of the r2 ponderation are more sensitive

than dipoles to the outer region and therefore to the −Z∗r2/2R3
0 part of the ion-sphere

potential. We will thus give here the first-order perturbed matrix elements.

Considering the n = l + 1 case, the plasma-density induced first-order perturbation to

the quadrupole 〈n n− 1| r2 |n+ 2 n+ 1〉 is the sum of two contributions, one for each

wave-function. The first one is

˜〈n n− 1|r2 |n+ 2 n+ 1〉 = Z∗

Z6R3
0

nn+17/2(n+ 2)n+3

48(n+ 1)2n+15/2 ((2n+ 1)(2n+ 3))1/2

(72n5 + 558n4 + 1816n3 + 3093n2 + 2747n+ 1014). (A.2.1)

and the second

〈n n− 1| r2 ˜|n+ 2 n+ 1〉 = − Z∗

Z6R3
0

nn+9/2(n+ 2)n+7

48(n+ 1)2n+15/2 (n+3)(2n+5)((2n+1)(2n+3))1/2

(12n3 + 54n2 + 53n+ 16). (A.2.2)

From this one gets the quadrupolar element up to first order

˜〈n n− 1| r2 |n+ 2 n+ 1〉 = nn+9/2(n+ 2)n+3

Z2(n+ 1)2n+9/2

(
(n+1/2)(n+3/2)

)1/2
[
1 + Zf

Z4R3
0

Q1(n)
12(n+ 1)2

]
(A.2.3)

with

Q1(n) = 24n8 + 39n7 − 819n6 − 5131n5 − 14273n4 − 22324n3 − 20128n2 − 9688n− 1920.
(A.2.4)

150
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This polynomial and therefore the correction in factor of Z∗/Z4R3
0 is negative for n up to

7.

In the same way, the perturbation to the quadrupolar matrix elements 〈n n− 2| r2 |n+ 2 n〉
has be obtained. The first contribution is

˜〈n n− 2|r2 |n+ 2 n〉 = − Z∗

Z6R3
0

nn+15/2(n+ 2)n+2

48(n+ 1)2n+15/2 ((2n− 1)(2n+ 1))1/2

(168n7 + 1194n6 + 4492n5 + 9055n4 + 7957n3 − 634n2 − 5612n− 2640). (A.2.5)

The second one is

〈n n− 2| r2 ˜|n+ 2 n〉 = − Z∗

Z6R3
0

nn+7/2(n+ 2)n+6

48(n+ 1)2n+15/2 (2n+ 3)((2n− 1)(2n+ 1))1/2

(60n6 + 318n5 + 515n4 − 265n3 − 1456n2 − 1232n− 328). (A.2.6)

From which the quadrupolar matrix elements up to first perturbation order writes

˜〈n n− 2| r2 |n+ 2 n〉 = nn+7/2(n+ 2)n+2

Z2(n+ 1)2n+9/2 (n2 − 1/4)1/2(n2 − 2n− 4)[
1 + Zf

Z4R3
0

Q2(n)
12(n+ 1)2(n2 − 2n− 4)

]
(A.2.7)

with

Q2(n) = 24n10 − 315n9 − 3135n8 − 12493n7 − 23559n6 − 8966n5

+ 48036n4 + 101720n3 + 93408n2 + 42688n+ 7872. (A.2.8)

The corrective factor Q2(n)/(n2 − 2n − 4) is negative for 4 ≤ n ≤ 20 and positive for

n = 2, 3, or n > 20.

A.3 Dipolar and Quadrupolar electric radiative rates for
hydrogenic ions

The radiative rate for dipolar electric transition nala → nblb is, in atomic units (me4/~3 '
4.13× 1016 s−1), for a spinless electron

Aab = 4α3

3
l>

2la + 1E
3
ab 〈nala| r |nblb〉

2 (A.3.1)

where α is the fine-structure constant and l> = max(la, lb).
Concerning the case na = n+ 1, la = n, nb = n, lb = n−1, using the obtained transition

energy (5.4.16) and radial matrix element (5.4.23) one gets the transition rate at zeroth

151



Annexe A Chapter 5 appendix

and first order

A
(0)
ab = 2α3

3 Z4n
2n(n+ 1)2n−2

(n+ 1/2)4n+3 (A.3.2)

A
(1)
ab = A

(0)
ab

[
1− Z∗

Z4R3
0

(n+ 1)A1(n)
48(n+ 1/2)2

]
. (A.3.3)

with

A1(n) = 192n7 + 1116n6 + 2898n5 + 4298n4 + 3846n3 + 2024n2 + 569n+ 66. (A.3.4)

This shows that the ion-sphere potential lowers the radiative rate n + 1 n → n n − 1,

whatever n. By inspection of corrections (5.4.16) and (5.4.23), it can be checked that both

have the same order of magnitude, but that the energy shift dominates the radial matrix

element perturbation. More precisely, for large n the dependence on the transition energy

is fE = 3∆Eab/Eab ∼ −6Z∗n6/(Z4R3
0), while the dependence on the matrix element d =

〈nala| r |nblb〉 is fd = 2∆d/d ∼ 2Z∗n6/(Z4R3
0). However for n = 1, one has fE/fd ' 0.64;

for higher n the ratio fE/fd is greater than 1 in absolute value.

Concerning the case na = n + 1, la = n − 1, nb = n, lb = n − 2, using the perturbed

transition energy (5.4.16) and radial matrix element (5.4.30), one gets the zeroth- and

first-order rates

A
(0)
ab = 2Z4α3

3
n2n−1(n+ 1)2n−4

(n+ 1/2)4n+1 (n− 1) (A.3.5)

A
(1)
ab = A

(0)
ab

[
1− Z∗

Z4R3
0

A2(n)
48(n+ 1/2)2

]
(A.3.6)

with

A2(n) = 288n8+2028n7+4914n6+6354n5+5720n4+4062n3+2024n2+569n+66, (A.3.7)

which shows that in the n = l + 2 case, the ion-sphere potential also lowers the dipolar

electric rate.

The quadrupolar electric radiative rate for the transition from level a with quantum

numbers nala to level b with quantum numbers nblb in a spinless one-electron ion is given

in atomic units by ([30])

Aab = α5

15E
5
ab 〈nala| r2 |nblb〉2 (2lb + 1)

la 2 lb

0 0 0

2

(A.3.8)

where Eab is the transition energy and the 3j symbol relevant for the present purpose can
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be expressed as  l 2 l + 2
0 0 0

 = (−1)l
[

3(l + 1)(l + 2)
2(2l + 1)(2l + 3)(2l + 5)

]1/2

. (A.3.9)

For na = n + 2, la = n + 1, nb = n, lb = n − 1 the quadrupolar electric rate is given at

zeroth and first order by

A
(0)
ab = 4α5

5 Z6n
2n(n+ 2)2n−4

(n+ 1)4n+3 (A.3.10)

A
(1)
ab = A

(0)
ab

[
1− Z∗

Z4R3
0

R1(n)
12(n+ 1)2

]
. (A.3.11)

with

R1(n) = 72n8 +1017n7 +5853n6 +19052n5 +39016n4 +51368n3 +42056n2 +19376n+3840.
(A.3.12)

Though for large n, the density correction to the matrix element (A.2.3) is positive,

the density correction to the above rate is always negative. As in the dipolar-electric

transition case, on notices that density corrections from energy shift as well as from matrix

element variation scale as Z∗n6/(Z4R3
0). More precisely, for large n the dependence on the

transition energy is fE = 5∆Eab/Eab ∼ −10Z∗n6/(Z4R3
0), while the dependence on the

matrix element q = 〈nala| r2 |nblb〉 is fq = 2∆q/q ∼ 4Z∗n6/(Z4R3
0). However for n = 1,

one has fE/fq ' 0.22 and for n = 2, fE/fq ' 0.67; for higher n the ratio |fE/fq| is greater

than 1.

As a last example, using the above quadrupole (A.2.7), if na = n+2, la = n, nb = n, lb =
n− 2 the quadrupolar electric rate at the two lowest orders is

A
(0)
ab = 4α5

5 Z6n
2n−2(n+ 2)2n−6

(n+ 1)4n+4 (n− 1)(n2 − 2n− 4)2 (A.3.13)

A
(1)
ab = A

(0)
ab

[
1− Z∗

Z4R3
0

R2(n)
12(n+ 1)2(n2 − 2n− 4)

]
. (A.3.14)

with

R2(n) = 72n10 + 1755n9 + 8985n8 + 20606n7 + 12888n6 − 54848n5

− 174072n4 − 246880n3 − 196896n2 − 85376n− 15744. (A.3.15)

The scaling properties of the various corrections for large n are identical as in the above

case (A.3.11). However for n = 3 the density-dependent corrective factor in the rate

(A.3.14) is positive.
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