
HAL Id: tel-01126944
https://theses.hal.science/tel-01126944v1

Submitted on 6 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reconciling performance and predictability on a
NoC-based MPSsoC using off-line scheduling techniques

Manel Djemal Fakhfakh

To cite this version:
Manel Djemal Fakhfakh. Reconciling performance and predictability on a NoC-based MPSsoC using
off-line scheduling techniques. Other [cs.OH]. Université Pierre et Marie Curie - Paris VI, 2014.
English. �NNT : 2014PA066145�. �tel-01126944�

https://theses.hal.science/tel-01126944v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE
L’UNIVERSITÉ PIERRE ET MARIE CURIE

Spécialité Informatique
(École Doctorale Informatique, Télécommunication et Électronique)

Présentée par MANEL DJEMAL

Pour obtenir le grade de
DOCTEUR DE L’UNIVERSITÉ PIERRE ET MARIE CURIE

RÉCONCILIER PERFORMANCE ET
PRÉDICTIBILITÉ SUR UN MANY-COEUR EN

UTILISANT DES TECHNIQUES
D’ORDONNANCEMENT HORS-LIGNE

Soutenue le 27 juin 2014, devant le jury composé de

Mme. FLORENCE MARANINCHI Verimag, Grenoble Rapporteur
M. RENAUD SIRDEY CEA, Saclay Rapporteur
M. BERTRAND GRANADO UPMC, LIP6, Paris Examinateur
M. FRANÇOIS IRIGOIN CRI - MINES ParisTech Examinateur
M. LOUIS MANDEL Collège de France, Paris Examinateur
M. FRANÇOIS PÊCHEUX UPMC, LIP6, Paris Examinateur
Mme. ALIX MUNIER-KORDON UPMC, LIP6, Paris Directeur de thèse
M. DUMITRU POTOP-BUTUCARU INRIA, Rocquencourt Encadrant de thèse

PH.D. THESIS OF THE UNIVERSITY
PIERRE AND MARIE CURIE

Department : COMPUTER SCIENCE AND

MICRO-ELECTRONICS

Presented by: MANEL DJEMAL

Thesis submitted to obtain the degree of
DOCTOR OF THE UNIVERSITY PIERRE AND MARIE CURIE

RECONCILING PERFORMANCE AND
PREDICTABILITY ON A NOC-BASED MPSOC
USING OFF-LINE SCHEDULING TECHNIQUES

Defence on 27 June 2014, Committee:

Mme. FLORENCE MARANINCHI Verimag, Grenoble Reviewer
M. RENAUD SIRDEY CEA, Saclay Reviewer
M. BERTRAND GRANADO UPMC, LIP6, Paris Examiner
M. FRANÇOIS IRIGOIN CRI - MINES ParisTech Examiner
M. LOUIS MANDEL Collège de France, Paris Examiner
M. FRANÇOIS PÊCHEUX UPMC, LIP6, Paris Examiner
Mme. ALIX MUNIER-KORDON UPMC, LIP6, Paris Advisor
M. DUMITRU POTOP-BUTUCARU INRIA, Rocquencourt Co-Advisor

Remerciements
Je tiens à remercier en premier lieu Alix Munier, ma directrice de thèse, qui a toujours été

à mon écoute et a veillé sur le bon déroulement de ma thèse.

Je remercie également Dumitru Potop-Butucaru, mon encadrant de thèse, pour m’avoir

proposé un sujet passionnant, pour avoir eu la patience de m’encadrer pendant tout ce

temps et pour les discussions fructueuses et les conseils avisés qil a su me prodiguer du-

rant tout ce travail.

Ensuite, toutes mes remerciments à Florence Maraninchi et Renaud Sirdey d’avoir

accepté la lourde tâche d’être rapporteurs de cette thèse, leurs commentaires ont augmenté

mon recul par rapport aux domaines traités. Je remercie de même Bertrand Granado,

François Irigoin, Louis Mandel et François Pêcheux de m’avoir fait l’honneur de faire

partie de mon jury.

Mes remerciments s’adressent plus particulièrement à François Pêcheux, Frank Wajs-

burt et Zhen Zhang avec qui j’ai eu le plaisir de travailler sur certains aspects de ma thèse.

Le temps n’aurait pas passé si vite s’il n’y avait pas eu Meriem Zidouni, Thomas Carle,

Cécile Stentzel sans oublier leur soutien pendant la rédaction du manuscrit.

Je voudrais remercier aussi ma famille et mes amis qui m’ont soutenu, pour tout ce

que je leur ai fait subir pendant tout ce temps, chacun à sa façon m’a aidé à traverser ces

trois ans de ma vie.

Enfin, je remercie mon mari qui m’a soutenu, encouragé et supporté. Sans lui, cette

thèse n’aurait été qu’une thèse et certainement la vie n’aurait pas été si belle. Sans oublier

biensur mon ange Nour.

Résumé
Les réseaux-sur-puces (NoCs) utilisés dans les architectures multiprocesseurs-sur-puces
posent des défis importants aux approches d’ordonnancement temps réel en ligne (dy-
namique) et hors-ligne (statique). Un NoC contient un grand nombre de points de con-
tention potentiels, a une capacité de bufferisation limitée et le contrôle réseau fonctionne à
l’échelle de petits paquets de données. Par conséquent, l’allocation efficace de ressources
nécessite l’utilisation des algorithmes da faible complexité sur des modèles de matériel
avec un niveau de détail sans précédent dans l’ordonnancement temps réel. Nous con-
sidérons dans cette thèse une approche d’ordonnancement statique sur des architectures
massivement parallèles (Massively parallel processor arrays ou MPPAs) caractérisées par
un grand nombre (quelques centaines) de coeurs de calculs. Nous identifions les mécan-
ismes materiels facilitant l’analyse temporelle et l’allocation efficace de ressources dans
les MPPAs existants. Nous déterminons que le NoC devrait permettre l’ordonnancement
hors-ligne de communications, d’une manière synchronisée avec l’ordonnancement de
calculs sur les processeurs. Au niveau logiciel, nous proposons une nouvelle méthode
d’allocation et d’ordonnancement capable de synthétiser des ordonnancements globaux
de calculs et de communications couvrants toutes les ressources d’exécution, de com-
munication et de la mémoire d’un MPPA. Afin de permettre une utilisation efficace de
ressources du matériel, notre méthode prend en compte les spécificités architecturales
d’un MPPA et implémente des techniques d’ordonnancement avancées comme la préemp-
tion pré-calculée de transmissions de données. Nous avons évalué notre technique de
mapping par l’implantation de deux applications de traitement du signal. Nous obtenons
dans les deux cas de bonnes performances du point de vue de la latence, du débit et de
l’utilisation des ressources.

Mots clés: Multiprocesseurs-sur-puce (many-coeur), réseau-sur-puce (NoC), ordonnance-
ment hors-ligne, ordonnancement temps réel

Titre en anglais: Reconciling performance and predictability on a NoC-based MPSoC
using off-line scheduling technique.

Abstract
On-chip networks (NoCs) used in multiprocessor systems-on-chips (MPSoCs) pose sig-
nificant challenges to both on-line (dynamic) and off-line (static) real-time scheduling
approaches. They have large numbers of potential contention points, have limited inter-
nal buffering capabilities, and network control operates at the scale of small data packets.
Therefore, efficient resource allocation requires scalable algorithms working on hardware
models with a level of detail that is unprecedented in real-time scheduling. We consider
in this thesis a static scheduling approach, and we target massively parallel processor ar-
rays (MPPAs), which are MPSoCs with large numbers (hundreds) of processing cores.
We first identify and compare the hardware mechanisms supporting precise timing anal-
ysis and efficient resource allocation in existing MPPA platforms. We determine that the
NoC should ideally provide the means of enforcing a global communications schedule
that is computed off-line (before execution) and which is synchronized with the schedul-
ing of computations on processors. On the software side, we propose a novel allocation
and scheduling method capable of synthesizing such global computation and communi-
cation schedules covering all the execution, communication, and memory resources in an
MPPA. To allow an efficient use of the hardware resources, our method takes into account
the specificities of MPPA hardware and implements advanced scheduling techniques such
as pre-computed preemption of data transmissions. We evaluate our technique by map-
ping two signal processing applications, for which we obtain good latency, throughput,
and resource use figures.

Keywords: Chip-multiprocessor (Many-core), On-chip network (NoC), Off-line schedul-
ing, Real-time scheduling

English Title: Reconciling performance and predictability on a NoC-based MPSoC us-
ing off-line scheduling technique.

Table of Contents

Remerciements 2

Résumé 3

Abstract 4

1 Introduction 8
1.1 Thesis motivation . 8

1.1.1 The advent of many-cores . 8
1.1.2 The advent of Networks-on-Chips 12
1.1.3 Many-cores for hard real-time applications 13
1.1.4 Mapping applications onto NoC-based many-cores 15

1.2 Thesis contributions . 16
1.2.1 The DSPINpro programmable Network-on-Chip 17
1.2.2 The Automatic real-time mapping and code generation 17
1.2.3 An environment for virtual prototyping of MPPA applications . . 19

1.3 Outline . 21

2 State of the art 22
2.1 Network-on-Chip design . 23

2.1.1 NoC building blocks . 23
2.1.2 NoC topology . 24
2.1.3 NoC switching . 24

2.1.3.1 Routing . 25
2.1.3.2 Switching method and buffering policy 26
2.1.3.3 Arbitration/Scheduling 29

2.1.4 Existing Network-on-Chip architectures 33
2.1.4.1 DSPIN . 33
2.1.4.2 Æthereal . 33
2.1.4.3 Nostrum . 35
2.1.4.4 Kalray MPPA NoC 36
2.1.4.5 The scalar interconnect of MIT RAW 38
2.1.4.6 Other NoC architectures 39
2.1.4.7 Comparison with our work 40

2.2 Massively parallel processor arrays . 40
2.2.1 Tilera TILEPro64 . 40
2.2.2 Kalray MPPA-256 . 42

5

2.2.3 Adapteva Epiphany . 43
2.2.4 Intel SCC . 45
2.2.5 ST Microelectronics STHORM 46
2.2.6 TSAR . 46
2.2.7 Academic MPSoC architectures with TDM-based NoC arbitration 47

2.3 Static application mapping . 47
2.3.1 Off-line real-time multi-processor scheduling 49

2.3.1.1 The AAA/SynDEx methodology 49
2.3.2 The StreamIt compiler for the MIT RAW architecture 52
2.3.3 Compilation of the ΣC language for the Kalray MPPA256 plat-

form . 54
2.3.4 Other mapping approaches . 55

3 Tiled MPPA architectures in SoCLib 57
3.1 MPPA structure . 57
3.2 Memory organization . 59

3.2.1 Distributed shared memory . 59
3.2.2 Address structure . 60
3.2.3 Global memory organization . 61
3.2.4 Tile memory organization . 62
3.2.5 Hardware/software interface . 63

3.3 Improving the timing predictability of the SoCLib tile 64
3.4 SystemC simulation and compilation support 68

4 Programmable NoC arbitration 70
4.1 The case for programmed arbitration . 71

4.1.1 The principle . 71
4.1.2 Target application classes . 72
4.1.3 The cost of programmability . 73

4.2 Programmable DSPIN . 74
4.2.1 NoC router extensions . 74
4.2.2 Area overhead . 77

4.3 A simple example in depth . 78
4.4 Case study: the FFT . 84

4.4.1 FFT algorithm description . 85
4.4.1.1 Mapping onto the MPPA architecture 86
4.4.1.2 Traffic injection configuration 87

4.4.2 Evaluation of the slow-down due to traffic injection 88
4.4.3 Removing the slow-down through NoC programming 89

5 Off-line mapping of real-time applications using LoPhT 94
5.1 Background: AAA using the Clocked Graphs formalism 95

5.1.1 The Clocked Graph formalism 95
5.1.1.1 Functional specification 95

Clocks . 96
Clocked graphs . 97
Example . 98

6

Support of a clock . 99
Well-formed properties 100

5.1.1.2 Non-functional specification 101
Platform model . 101
Non-functional properties 101

5.1.2 Off-line scheduling of CG specifications 102
5.1.2.1 Scheduled clocked graphs 102
5.1.2.2 Real-time scheduling problem 103
5.1.2.3 Consistency of a scheduled clocked graph 103

Notations . 103
Consistency properties 104

5.1.2.4 Makespan-optimizing scheduling algorithm 106
5.2 Static (off-line) mapping onto MPPA architectures 109

5.2.1 AAA for NoC-based MPPA: The problem 109
Limitations . 110

5.2.2 Extension of the CG format . 111
5.2.2.1 Modeling of MPPA resources 111

NoC ressources: . 112
Tile ressources: . 113

5.2.2.2 Memory footprint specification 113
5.2.2.3 Non-functional properties 113

Worst-case computation durations 113
Worst-case communication durations 114

5.2.3 Makespan-optimizing scheduling 115
5.2.3.1 Mapping NoC communications 117
5.2.3.2 Multiple reservations 119

5.3 Automatic code generation . 121
5.3.1 Tile code generation . 121

5.4 Experimental results . 124

Conclusion 127

List of Publications 129

Bibliography 130

7

Chapter 1

Introduction

Contents
1.1 Thesis motivation . 8

1.1.1 The advent of many-cores . 8

1.1.2 The advent of Networks-on-Chips 12

1.1.3 Many-cores for hard real-time applications 13

1.1.4 Mapping applications onto NoC-based many-cores 15

1.2 Thesis contributions . 16

1.2.1 The DSPINpro programmable Network-on-Chip 17

1.2.2 The Automatic real-time mapping and code generation 17

1.2.3 An environment for virtual prototyping of MPPA applications . 19

1.3 Outline . 21

1.1 Thesis motivation

1.1.1 The advent of many-cores

Due to advances in circuit technology and performance limitation in wide-issue, super-
speculative processors, Chip-Multiprocessor (CMP) or multi-core technology has become
the mainstream in CPU designs. [Peng et al., 2007]

The number of transistors in micro-processor chips upholds today its historic trend of
exponential growth, known as Moore’s law, which is expected to continue until at least
2020 [Gordon E. Moore, 1965, Gordon E. Moore, 2005], as pictured in Fig. 1.1.

Until the years 2000, this growth mostly translated into micro-architecture gains aimed
at improving mono-processor performance. Combined with a steady increase in operat-
ing frequencies, this allowed the continued use of a von Neumann computing paradigm
[John von Neumann, 1945] where a sequential processor offers the performance needed
by most general-purpose applications.

8

1.1. THESIS MOTIVATION 9

1970
1975

1980
2005

2010
2015

2020
2000

1985
1990

1995

1.000

10.000

100.000

1 Million

10 Million

100 Million

1 Billion

10 Billion

Transistors

4004

8008

8080

8085

286

Intel 386 Processor

Intel 486 Processor

Intel Pentium Processor

Intel Pentium II Processor

Intel Pentium III Processor

Intel Pentium 4 Processor

Intel Itanium Processor

Intel Itanium 2 Processor

Dual−Core Intel Itanium 2 Processor

Figure 1.1: Moore’s law (cf. [Held et al., 2006])

However, this is no longer possible. First of all, the last decade brought the end of
the fast operating frequency increases which were the dominant cause of processor per-
formance gains [J.Flynn, 2004]. Second, performance increase by micro-architectural ad-
vances alone follows the (empirical) Pollack’s rule [Pollack, 1999] which states that the
performance increase is roughly proportional to the square root of the increase in com-
plexity (complexity in this context means processor logic, i.e. transistor count). In other
words, doubling the logic in a processor core delivers only 40% more performance, while
doubling the number of processors can almost double the speed for many applications.

The end of fast performance scaling for sequential processors led to an industry-wide
shift towards parallel computing. While parallel architectures already existed, mainly in
the high-performance and embedded computing fields, parallelism now entered the main-
stream of general-purpose computing under the form of multi-core, and then many-core
architectures. This trend started in 2001, when the first general-purpose processor that
featured multiple processing cores on the same die was released by IBM: the POWER4
processor [IBM, 2001]. Since then, all major hardware vendors started shipping multi-
core processors. Today, most personal computers, workstations and servers are based on
multi-core chips.

Multi-core processors have clear benefits, such as scalable performance, improved
reliability, or an easier energy and thermal management. But these benefits come at the
price of as many challenges (we only list here a few):

• Scalable performance: Our computing environments offer more and more poten-
tial for parallelism, coming from either the nature of the applications (e.g. video

1.1. THESIS MOTIVATION 10

streaming) or the fact that multiple applications are run in parallel. But exploiting
this parallelism requires significant changes in the way systems are built, in both
software and hardware.

In software, the main difficulty is that of producing correct and efficient parallel
programs. These programs must expose parallelism at the good level, and also pro-
vide guarantees of correctness in the presence of concurrency. To facilitate multi-
core programming, a variety of languages and formalisms have been proposed in
the past years, and significant effort has been invested in the software engineering
of such applications [OpenMP, 2008, Khronos, 2011] and in the automatic paral-
lelization of previously-existing sequential code [Beletska et al., 2011, Cetus, 2004,
Irigoin et al., 2012].

In hardware, as the computing cores are counted in dozens and hundreds, the clas-
sical shared-bus communication approaches no longer scale. This leads to major
bottlenecks in the memory hierarchy, in the inter-core communication network, and
in the access to external data sources. Solving these issues requires a significant
improvement of the on-chip and the off-chip interconnects.

But the most challenging issues are the complex design decisions concerning both
hardware and software. Indeed, designing a complex hardware/software system
consists in solving a multi-criteria optimization problem having as parameters ef-
ficiency, facility of programming, predictability, hardware complexity, price, etc.
Solving such an optimization problem involves complex trade-offs. For instance,
choosing a multi-core architecture with support for cache coherency facilitates shared
memory programming, but leads to a poor temporal predictability and an increased
hardware complexity. On the contrary, having no hardware support for cache co-
herency improves predictability but requires software control of memory consis-
tency. Clearly, these architectural choices have a profond influence on both the
specification and mapping of parallel applications onto multi-core platforms.

• Energy efficiency and thermal management: As the number of transistors and the
computation power increase, power and temperature management becomes more
and more critical and difficult, and needs to be addressed in either hardware or a
combination of both hardware and software [Hanumaiah and Vrudhula, 2012].

Multi-core architectures usually provide at least one of two classical hardware mech-
anisms that facilitate power and temperature management: The possibility of turn-
ing off unused processor cores and the possibility of running cores at optimized
supply voltages and frequencies. Furthermore, load balancing among the processor
cores can be used to distribute thermal dissipation across the die.

• Fault-tolerance and reliability: The evolution of silicon technologies results in a
steady increase of transistor densities. At the same time, the increase in transistor
counts means that chip sizes do not decrease. The combination of the two results in
a significant increase of the probability of hardware defects per chip [Furber, 2006].

1.1. THESIS MOTIVATION 11

Coupled with the need for reasonable yields, the increase in transistor count will
bring an end to current design practices where only chips that are 100% functional
are accepted. However, tolerating defects in chips requires support in both hard-
ware and software, through redundancy and support for failure isolation and (re-
)configuration [Zhang, 2011].

Intense research and industrial developments have resulted in the definition of several
classes of multi-core processors corresponding to different contexts of use and program-
ming styles. Among them:

• General-purpose multi-cores, such as AMD Phenom or Intel Core.

• Application-specific System-on-Chip (SoC) platforms, such as TI OMAP or Qual-
comm SnapDragon [Texas Instruments, 2009, Qualcomm, 2011], which have emerged
from the embedded computing community.

• Graphics Processing Units (GPUs) [Nvidia, 1999], which have emerged from the
image processing and high-performance computing community, and which are op-
timized for Single Instruction Multiple Data (SIMD) execution.

But in the past few years, a clear and consistent convergence can be seen between the
historically isolated communities of general-purpose, embedded, and high-performance
computing. All three communities have moved towards so-called many-core platforms
characterized by:

• Large numbers of simpler cores. The number of cores ranges here from a few tens
to a few hundreds in production architectures, and to thousands of cores in research
platforms.

• Novel memory architectures that can deliver higher bandwidth access through the
use of multiple memory banks localized near the processors. Data localization often
requires that the memory hierarchy is exposed, at least in part, to the programmer.

• New interconnect types, like the Network-on-Chips (NoCs), that provide higher per-
formance and/or scalability than classical interconnects such as buses and crossbars.

As graphically illustrated in Fig. 1.2, this hardware-level convergence between the
general-purpose, embedded, and high-performance computing communities has several
causes:

• In the general-purpose computing community, the use of the massively parallel
processor array (MPPA) chips 1 such as Kalray MPPA [MPPA, 2012], Adapteva
Epiphany [Adapteva, 2012], Tilera TilePro [Tilera, 2008], or Intel SCC and MIC
[Howard and al., 2011, MIC, 2010] improves scalability and/or energy efficiency.

1We will come back with an in-depth description of MPPA architectures in the following chapters.

1.1. THESIS MOTIVATION 12

Computing clusters

Hardware accelerators
(Nvidia GPUs)

High Performance Computing
(HPC)

Real−Time
support

Kalray MPPA

TilePro

SCC/MIC

GPGPUPower−efficient

Epiphany

MPPA

(OMAP, SnapDragon ...)

Application−specific SoCs

Embedded computing

STHORM

Many−core
architectures

General−Purpose multi−cores
(Intel Core, AMD Phenom ...)

General−Purpose computing

Figure 1.2: The many-core convergence

• Embedded applications also benefit from improved scalability and energy efficiency,
like in the ST STHORM [Benini, 2010] platform. In addition, they often require
some support for real-time implementation, such as mechanisms for resource reser-
vation or spatial and temporal separation, as offered by the Kalray MPPA and Tilera
TilePro chips.

• In the high-performance computing community, hardware accelerators like the GPUs
evolved towards General-Purpose GPUs (GPGPUs) architectures whose more ex-
pressive instruction sets provide more flexibility to the programmer. Energy-efficient
architectures such as Adapteva Epiphany also position themselves as accelerator
chips. Finally, many-core chips, such as Intel SCC and MIC [Howard and al., 2011,
MIC, 2010], are the result of yet anothor tradition. Here energy efficiency is not
an objective per se, but appears as a by-product of the need to parallelize high-
performance applications through methods previously used on computing clusters.

1.1.2 The advent of Networks-on-Chips

The first multi-core architectures used bus-based interconnects such as ARM’s AMBA
[ARM, 1999] and IBM’s CoreConnect [PLB, 2001]. However, an on-chip bus can only
perform one communication at a time. As the number of cores increased, the buses be-
came major contention points and performance bottlenecks, and new interconnect paradigms
were investigated.

From a computation speed point of view, the ideal choice is that of crossbar inter-
connects where every two components are directly linked. A crossbar introduces no con-
tention point in addition to the ones associated with the resources connected to it (RAM

1.1. THESIS MOTIVATION 13

banks and other peripherals). But the hardware cost of a crossbar increases quadratically
with the number of resources connected to it. Thus, crossbars can only be used in systems
or sub-systems with a small number of components.

Finding a trade-off between performance (e.g. speed), scalability, and system cost
led to the development of the Network-on-Chip (NoC) paradigm, which takes inspiration
from classical computer networks [Benini and De Micheli, 2002, Sgroi et al., 2001]. Like
a classical computer network, a NoC is formed of standardized point-to-point links and
NoC routers that can be composed following simple rules to form complex interconnect
graphs (regular or not). The use of multiple links avoids the creation of global bottlenecks.
At the same time, the number of links is kept at a reasonable level (usually linear in the
number of computation and storage components) guaranteeing scalability in large designs.

1.1.3 Many-cores for hard real-time applications

The objective of this thesis is to investigate the use of many-core architectures using a NoC
interconnect in the implementation of complex real-time applications. We are targeting
two types of applications:

• Hard real-time applications, like those used in embedded control systems in the
avionics and automotive industries. In such applications, the non-respect of dead-
lines may lead to catastrophic results like the loss of life or serious damage to the
environment.

• Highly regular signal/image processing applications. In such applications, a tight
control of timing, like the one we propose, helps in improving computation speed.

In such applications, timing guarantees should be obtained before execution, ideally by
static analysis methods (as opposed to measurement-based ones). Furthermore, the timing
guarantees should be precise in order to avoid the waste of computing resources. But
determining precise timing guarantees is inherently difficult on many-core platforms due
to the large number of potential contention points. It is imperative to identify (and then
eliminate or control) the sources of timing impredictability at all levels of the many-core
architecture2 and the application software.

From existing work on WCET analysis for classical single-core and multi-core archi-
tectures, we know that certain microarchitectural features make timing analysis more dif-
ficult [Wilhelm and Reineke, 2012, Hardy and Puaut, 2008]. Such features are the shared
caches and the cache/memory coherency mechanisms. We shall assume that neither of
them is used in the many-core platforms considered in this thesis. One particular con-
sequence of this assumption is that all communications and synchronizations between
different processor cores are performed through one or more NoCs.3

2Comprising the processor cores, the memory sub-system, the communication network, and the I/O
devices.

3As opposed to using dedicated communication devices such as the complex memory hierarchies of
TSAR [TSAR, 2008].

1.1. THESIS MOTIVATION 14

But eliminating microarchitectural sources of impredictability is not enough, as the
NoCs themselves raise serious problems when the objective is to ensure efficiency and
predictibility. Indeed, a NoC has large numbers of potential contention points: Whenever
a NoC router is connected to at least 3 links, contentions are possible when data arriving
on 2 links must be sent onto the third. In common NoC architectures, this is the case of
all routers, and arbitration is needed to control the access to every NoC link.

Furthermore, one communication often traverses several NoC routers, and can be sub-
ject to contentions at the level of each one. This is why the use of fair arbitration policies
at the level of NoC routers is not good when the objective is to provide tight timing
guarantees for NoC communications. Previous work on NoC-based architectures for the
real-time subject have explored the use of arbitration policies similar to those used for
ensuring Quality-of-Service (QoS) in computer networks. Several approaches have been
proposed: circuit switching, bandwidth reservation, priority-based scheduling, and pro-
grammed arbitration.

In NoCs based on circuit switching [Hilton and Nelson, 2006], communications are
performed along a set of circuits. Each circuit is a sequence of point-to-point NoC links.
The fundamental constraint is that two circuits cannot share a link. The absence of re-
source sharing lowers utilization of NoC resources and increases costs. However, once a
connection has been established, it can use the full bandwidth of all its links and real-time
guarantees are easily computed.

Virtual circuit switching is an evolution of circuit switching which allows resource
sharing between circuits. Resource sharing requires the use of arbitration, and several
types of arbitration techniques have been proposed: TDM-based, bandwidth management-
based, and priority-based.

Most interesting from the point of view of timing predictability are NoCs where arbi-
tration is based on time division multiplexing (TDM). TDM-based NoCs [Goossens et al., 2005,
Millberg et al., 2004b] allow the computation of precise latency and throughput guaran-
tees. The same type of latency and throughput guarantees (albeit less precise) can be
obtained in NoCs relying on bandwidth management mechanisms, such as Kalray MPPA
[Harrand and Durand, 2011].

But NoCs using TDM arbitration or bandwidth management have certain limitations.
The most important is that they largely ignore the fact that the needs of an application may
change during execution, depending on the state of the application. One way of taking
into account the application state is by using NoCs with support for priority-based arbitra-
tion. But priority-based arbitration requires the use of costly virtual channel mechanisms
[Howard and al., 2011, Miro Panades et al., 2006], which limits applicability to systems
supporting only a few priority levels. The alternative to priority-based approaches is to use
a NoC allowing programmed NoC arbitration, such as MIT RAW [Waingold et al., 1997]
or the architecture proposed in this thesis. Programmed arbitration allows the enforce-
ment of static arbitration and routing patterns of data transmissions, as demanded by the
application.

1.1. THESIS MOTIVATION 15

1.1.4 Mapping applications onto NoC-based many-cores

The introduction of NoC-based architectures was accompanied by the definition of novel
mapping techniques targeting NoC-based MPSoCs. Indeed, if paralelism is recognized
as the only way of providing scalable performance, this scalability comes at the price
of increased complexity of both the software and the software mapping (allocation and
scheduling) process.

Part of this complexity can be attributed to the steady increase in the quantity of soft-
ware that is run by a single system. But there are also significant qualitative changes con-
cerning both the software and the hardware. In software, more and more applications in-
clude parallel versions of classical signal or image processing algorithms [Aubry et al., 2013,
Gerdes et al., 2012, Villalpando et al., 2010], involving potentially complex synchroniza-
tions between the sequential programs executed on the various cores. Such applications
are best modeled using data-flow models (as opposed to so-called independent tasks that
are common in classical real-time).

Designing parallel software is difficult in itself, relying on notoriously hard disciplines
such as parallel programming [Kwok and Ahmad, 1999] and multi-processor scheduling
[Ramamritham et al., 1993]. The picture is further complicated when considering real-
time aspects. Providing functional and real-time correctness guarantees requires an accu-
rate control of the functional and temporal interferences due to concurrent use of shared
resources. Depending on the hardware and software architecture, this can be very diffi-
cult [Wilhelm and Reineke, 2012]. In our case, there are two main reasons to this: The
first one concerns the NoCs: as the tasks are more tightly coupled and the number of
resources in the system increases, the on-chip networks become critical resources, which
need to be explicitly considered and managed during real-time scheduling. Recent work
[Shi and Burns, 2010, Kashif et al., 2013, Nikolic et al., 2013] has determined that NoCs
have distinctive traits requiring significant changes to classical multi-processor scheduling
theory [Goossens et al., 2003]. The second reason concerns automation: the complexity
of many-cores and of the (parallel) applications mapped on them is such that the alloca-
tion and scheduling must be largely automated.

Efficient and real-time implementation of applications onto NoC-based systems re-
mains largely an open problem, with the issue of best mapping of computation parts
(threads, tasks,...) onto processing resources amply recognized, while the issue of best
use of the interconnect NoC to route and transfer data still less commonly tackled.

In the most general case, dynamic allocation of applications and channel virtualiza-
tion can be guided by user-provided information under various forms as in OpenMP for
Open Multi-Processing [OpenMP, 2008], CUDA for Compute Unified Device Architec-
ture [Nvidia CUDA, 2006], and OpenCL for Open Computing Language [Khronos, 2011].
But there is no clear guarantee of optimality. Conversely there are consistent efforts, in the
domains of embedded and HPC computing, aiming at automatic parallelization, compile-
time mapping and scheduling optimization. They rely on the fact that applications are
often known in advance, and deployed without disturbance from foreign applications, and

1.2. THESIS CONTRIBUTIONS 16

without uncontrolled dynamic creation of tasks.
The results of this thesis fit in this “static application mapping” case. We focus on

mapping techniques where all allocation and scheduling decisions are taken off-line. In
theory, off-line algorithms allow the computation of scheduling tables specifying an opti-
mal allocation and real-time scheduling of the various computations and communications
onto the resources of the MPPA. In practice, this ability is severely limited by 3 factors:

1. The application may exhibit a high degree of dynamicity due to either environment
constraints or to execution time variability resulting from data-dependent condi-
tional control.4

2. The hardware may not allow the implementation of optimal scheduling tables. For
instance, most MPPA architectures provide only limited control over the scheduling
of communications inside the NoC.

3. The mapping problems we consider here are NP-hard. In practice, this means that
optimality cannot be attained, and that efficient heuristics are needed.

1.2 Thesis contributions

In our work, we are interested in a specific sub-class of many-core architectures: the
massively parallel processor arrays (MPPAs) characterized by:

• A large number of processing cores, ranging in current silicon implementations
from a few tens to a few hundreds. The cores are typically chosen for their area and
energy efficiency, instead of raw computing power.

• A regular internal structure where processor cores and internal storage (RAM banks)
are divided among a set of identical tiles, which are connected through one or more
NoCs with regular structure (e.g. mesh or torus topologies). In this thesis, we are
focussing on 2D-Mesh micro topologies.

• The capability of executing in parallel a different task on each core. Known as task
parallelism or multiple-instruction, multiple-data (MIMD), this parallel computing
paradigm is also that of classical distributed computing and multi-processor real-
time scheduling.

My contributions in this thesis concern the hardware and the mapping technique.
On the hardware design side, I extend an existing state-of-the-art NoC architecture to
allow programmed arbitration and thus provide the best support for off-line scheduling.
On the mapping side, I explain how low-level details of NoC-based MPPA architectures
can be taken into account in a scalable way to allow the synthesis of schedules with

4Implementing an optimal control scheme for such an application may require more resources than the
application itself, which is why on-line scheduling techniques are often preferred.

1.2. THESIS CONTRIBUTIONS 17

unprecedented timing precision. To evaluate our novel NoC architecture and mapping
technique we build a cycle-accurate model of a NoC-based MPPA and a new tool for the
automatic real-time mapping and code generation, called LoPhT.

1.2.1 The DSPINpro programmable Network-on-Chip

Our purpose is to investigate how the underlying architecture should offer the proper in-
frastructures to implement optimal computation and communication mappings and sched-
ules. We concretely support our proposed approach by extending the DSPIN 2D mesh
network-on-chip (NoC) [Panades, 2008] developed at UPMC-LIP6. In the DSPIN NoC,
we replace the fair arbitration modules of the NoC routers with static, micro-programmable
arbiters that can enforce a given packet routing sequence, as specified by small programs.
We advocate the desired level of expressiveness/complexity for such simple configuration
programs. The result is named Programmable DSPIN, or DSPINpro.

To improve the efficiency and predictability of our MPPA architecture, and thus facil-
itate real-time mapping, we also constrained and standardized the structure of the com-
puting tiles connected to the DSPINpro NoC, as well as the software architecture of our
implementations. On the hardware side, we constrain the type and number of tile com-
ponents (CPUs, RAM banks, DMA units ...).5 On the software architecture side, we
constrain the memory organization, we impose that all computations are performed on lo-
cal tile data, with specific “send” operations being in charge of all inter-tile data transfers
(along with a software lock mecanism), and we require the explicit placement of input
and output data of the tile on memory banks.

1.2.2 The Automatic real-time mapping and code generation

We propose a technique and tool for the automated mapping of real-time applications onto
MPPA architectures based on 2D mesh NoCs. Our tool is named LoPhT, for Logical to
Physical Time Compiler.

The global flow of our mapping technique, pictured in Fig. 1.3, is similar to that of the
AAA methodology and the SynDEx tool [Grandpierre and Sorel, 2003]. It takes as input
functional specifications provided under the form of data-flow synchronous specifications
à la Scade/Lustre [Caspi et al., 2003]. Our input formalism allows the specification of
conditional execution and execution modes, which are common features in complex em-
bedded control specifications.

To map such specifications onto MPPA architectures and provide hard real-time guar-
antees, we rely on off-line allocation and scheduling algorithms. These algorithms also
take as input a description of the MPPA platform, and non-functional constraints including
allocation constraints and conservative upper estimates for the:

5We have also developed a tool allowing the automatic synthesis of the corresponding SystemC models
and memory maps from simple architecture specifications defining the NoC size and the type and number
of tile components.

1.2. THESIS CONTRIBUTIONS 18

Hardware model

Automatic mapping
(allocation+scheduling)

L
oP

hT
to

ol

Code generation

Global scheduling table

CPU programs + NoC programs Timing guaranteesReal-time
application

CPUs, DMAs, RAMs
NoC resources

Allocation
Timing (WCETs,WCCTs)

Non-functional spec.
Specification

(Clocked Graph)
Data-flow specification

CPUs and Interconnect

Figure 1.3: Global flow of the proposed mapping technique

• Worst-case execution times (WCETs) of the data-flow blocks (seen as atomic com-
putations).

• The worst-case size of data transmitted through the data-flow arcs, needed to de-
termine the worst-case communication time (WCCT) of basic communication/syn-
chronization operations.

Starting from these inputs, our algorithms build reservation tables (also called schedul-
ing tables or simply time tables) specifying for each resource of the platform its use by
various computations or communications. Reservation tables are then converted into se-
quential code ensuring the correct ordering of operations on each resource and the respect
of the real-time guarantees.

Our main contribution was to provide new mapping algorithms that explicitly take into
account MPPA-specific features. The first problem here is that NoCs are very different
from the communication buses used in classical real-time scheduling work. NoCs are
composed of multiple communication resources that must be considered separately during
mapping. However, reservation of a communication path along the NoC requires the
synchronized reservation of resources along the path, due to the limited amount of buffer
memory inside the NoC. The second problem is that the large number of computation and
communication resources requires the use of scalable, yet precise mapping algorithms.

To provide tight real-time guarantees, our mapping heuristics seek to achieve a good
parallelization of the application while ensuring that concurrent computations and com-
munications do not interfere (functionally or temporally) with each other outside of functionally-
needed synchronization points. The absence of interferences reduces the pessimism of the
worst-case timing analysis, and limits resource over-allocation. Achieving such functional
and temporal isolation can be done with low overhead in MPPA architectures that provide
the programmer with good control over the memory hierarchy and the interconnect.

1.2. THESIS CONTRIBUTIONS 19

We evaluated our hardware extensions and mapping technique by automatically im-
plementing two signal processing applications: A model of an automotive embedded con-
trol application and an implementation of the Fast Fourier Transform (FFT). These two
examples provide a good illustration of how abstract data-flow communications between
compute operations have to be organized according to crossroad traffics at routers, once
computations have been mapped to processing elements. For both applications, NoC ar-
bitration programming reduces contentions, communication time, and therefore global
execution time. We obtain in both cases good latency, throughput, and resource use fig-
ures.

1.2.3 An environment for virtual prototyping of MPPA applications

Together, our extension of the DSPIN NoC and the development of a novel mapping tech-
nique and tool define a new environment for the virtual prototyping of real-time MPPA
applications. The expression “virtual prototyping” is used here to mark the fact that hard-
ware execution is simulated in software, as opposed to “emulated” on an FPGA target
after full hardware synthesis. The SoCLib library [LIP6, 2011] allows both. We preferred
the simulation-based approach because it facilitated both hardware design and the pre-
cise timing measures needed to evaluate our real-time mapping technique on the resulting
platform. Note that no difference exists between simulation and emulation from the point
of view of software or the real-time properties, given that simulation is of cycle-accurate,
bit-accurate (CABA) type.

Executables

Compilation
(gcc&nocc)

Application =
CPU and NoC programs

Libraries
(data−flow blocks
NoC, I/O, DMA)

other components
DSPINpro

SoCLib
library

Architecture
model

Clocked Graphs specification

Data−flow
graphallocations

Timing,

LoPhT
tool

(size, tile structure)
MPPA configuration

MPPA model
(CABA SystemC)

SystemC model
compilation

HW simulator

(CABA)

simulation
CABA

WCET
analysis

Real−time
guarantees

Figure 1.4: An environment for virtual prototyping of MPPA applications

In our environment, described in Fig. 1.4, objects with thick borders are artefacts or

1.2. THESIS CONTRIBUTIONS 20

transformations that were created or significantly modified as part of this thesis. In our
environment, we start by choosing the high-level configuration parameters of the MPPA
platform, which include the size (number of tiles) of the MPPA, the structure of the stan-
dard tile, and the positioning of I/O devices. Once configuration is fixed, we can instan-
tiate the MPPA SystemC model. This model uses standard components from the SoCLib
library, but also the DSPINpro network-on-chip and other hardware components devel-
oped on top of SoCLib as part of our effort to build an MPPA platform reconciling timing
predictability and efficiency. The model is then compiled to obtain the hardware simula-
tor.

The configuration parameters are also used to build the architecture model taken as in-
put by our mapping tool LoPhT. LoPhT also takes as input a functional specification pro-
vided under the form of a data-flow synchronous specification and a non-functional spec-
ification defining the worst-case durations of all data-flow blocks and communications,
and possible allocation constraints. Worst-case durations are obtained through WCET
analysis of the C code associated with the data-flow blocks and other library functions
(but this aspect will not be covered in this thesis, the interested reader is invited to read
[Puaut and Potop-Butucaru, 2013]). The LoPhT tool takes this input specification and
transforms it into statically scheduled code for the CPU cores and the NoC routers. This
code is compiled, separately for each sequential resources, using either gcc (the C code
of the CPUs) or with nocc (designed and implemented by us) for the NoC programs.
Resulting code is executed on the hardware simulator, which allows us to verify that the
real-time guarantees computed by LoPhT are respected.

Of course, this environment is the result of highly collaborative work started between
my team (INRIA AOSTE) and the SoC team of the UPMC/Lip6 laboratory (led at the time
by A.Munier). From the SoC team, the main participants were François Pêcheux, Franck
Wajsburt and Zhen Zhang, which have carried out most of the hardware design. From the
AOSTE team, in addition to myself, Thomas Carle helped in the implementation of the
scheduler, and Robert de Simone provided major insights on the high-level architectural
modeling. My personal contributions are the following:

• I participated in the definition of the DSPINpro NoC and the MPPA platform by
specifying what services the hardware should provide in order to allow efficient and
predictable real-time implementation. Actual definition of the hardware was carried
out by the Lip6 team and D. Potop.

• I defined the architecture model taken as input by LoPhT.

• Starting from off-line mapping algorithms originally defined by T. Carle and D.
Potop, I have extended them to cover the NoC-specific and MPPA-specific aspects,
such as the synchronized reservation of NoC resources.

• I have defined the code generation scheme which ensures that the real-time guar-
antees computed by LoPhT are respected in the running implementations. This

1.3. OUTLINE 21

scheme takes into account the low-level detail of the MPPA platform to allow for
low-overhead synchronization and for high precision in resource allocation.

1.3 Outline

My thesis is organized as follows:
Chapter 2 summarizes the state of the art in NoC design and in the mapping and

scheduling for multi-core and many-core platforms.
Chapter 3 presents the detail of the DSPIN NoC and the SoCLib-based MPPA archi-

tecture on which our work is based. It also presents the changes brought to the tiles of the
SoCLib-based MPPA to allow predictable and efficient implementation.

Chapter 4 presents the concept of programmed arbitration and its implementation in
the DSPINpro NoC. It also presents an evaluation of the gains obtained through semi-
automatic mapping of two applications onto the new platform.

Chapter 5 presents the LoPhT tool for automatic real-time mapping of embedded con-
trol specifications onto MPPAs.

Chapter 2

State of the art

Contents
2.1 Network-on-Chip design . 23

2.1.1 NoC building blocks . 23

2.1.2 NoC topology . 24

2.1.3 NoC switching . 24

2.1.4 Existing Network-on-Chip architectures 33

2.2 Massively parallel processor arrays 40
2.2.1 Tilera TILEPro64 . 40

2.2.2 Kalray MPPA-256 . 42

2.2.3 Adapteva Epiphany . 43

2.2.4 Intel SCC . 45

2.2.5 ST Microelectronics STHORM 46

2.2.6 TSAR . 46

2.2.7 Academic MPSoC architectures with TDM-based NoC arbitra-
tion . 47

2.3 Static application mapping . 47
2.3.1 Off-line real-time multi-processor scheduling 49

2.3.2 The StreamIt compiler for the MIT RAW architecture 52

2.3.3 Compilation of the ΣC language for the Kalray MPPA256 plat-
form . 54

2.3.4 Other mapping approaches . 55

Our work extends the state of the art in three fields: Network-on-Chip (NoC) de-
sign, Massively Parallel Processor Array (MPPA) design, and mapping techniques for
multi/many-cores. We start this section with a general introduction of NoC-related con-
cepts, and then we identify and compare the hardware mechanisms supporting precise
timing analysis and efficient resource allocation in existing NoC architectures. Most im-
portant, Section 2.1.3 reviews existing NoC switching paradigms and their support for

22

2.1. NETWORK-ON-CHIP DESIGN 23

real-time application mapping. Section 2.2 presents some examples of existing industrial
and academic MPPA platforms. Finally, we review related work on application mapping
for multi-core, distributed, and many-core architectures.

2.1 Network-on-Chip design

The Network-on-Chip (NoC) paradigm has been defined by its authors as a “layered-
stack” approach to the design of on-chip interconnect [Sgroi et al., 2001], inspired by the
classical layered models for computer networks [Zimmermann, 1988]. In this paradigm,
the communication functions of the NoC are organized in a set of logical layers, each
layer using the services of the lower layers in order to provide higher-level services.

At the highest abstraction level, a NoC can be viewed as a classical telecommunication
network offering lossless communication services with some QoS properties between a set
of computation and storage elements (CPU cores, RAM banks, I/O devices, etc). These
services rely on lower-level routing and switching algorithms controlling the behavior of
the NoC building blocks: links, routers, and interfaces. We briefly describe these elements
here. Our description insists on the traffic management mechanisms supporting real-time
implementation.

2.1.1 NoC building blocks

A Network-on-Chip (NoC) is formed of components of three types: links, routers, and
Network Interface Controllers (NICs).

• Links: The communication links are the central data transmission media. They
interconnect all the routers and the NICs. Links are unidirectional, point-to-point
media. Bidirectional point-to-point communication lines can be obtained by pairing
two links, one for each communication direction. One fundamental characteristic
of links is their buffering capability, which will be discussed later.

• Routers: They implement the flow control policies (routing, arbitration) and define
the overall strategy for moving data through the NoC. As shown in Fig. 2.1, each
NoC router is composed of buffers, which provide temporary storage for incoming
and outgoing data, routing components, which are essentially demultiplexers (la-
beled D) with some control logic, and scheduling/arbitration components, which
are essentially multiplexers (labeled M) with some control logic.

• Network Interface Controllers (NICs): Like in a classical computer network,
storage and computing components of a many-core are often grouped in a num-
ber of sub-systems, called Processing Elements (PEs). The NICs provide the logic

2.1. NETWORK-ON-CHIP DESIGN 24

D

D

D

D

M

M

M

M

arbitration control logic

Router

...

In
p

u
t

li
n

k
s

...
...

...

...

routing control logic

...

O
u

tp
u

t
li

n
k

s

...
...

...
...

Figure 2.1: Generic router model

connection between the PEs and the NoC. Its main task is protocol conversion be-
tween the one used locally within the PE and the one of the NoC. In particular, NICs
are responsible for building the data packets transferred through the NoC.

2.1.2 NoC topology

The topology of a NoC is usually modeled by an adjacency graph describing how the
routers, NICs, and PEs are interconnected using NoC links. NoC topologies can be either
regular or irregular. The most common regular topologies are presented in Fig. 2.2. In
this figure, the routers are represented with squares and the PEs with circles. Each PE
contains exactly one NIC. The arcs represent either unidirectional links, or bidirectional
pairs of links.

Various comparisons between various regular topologies (in terms of latency, through-
put, and energy dissipation) can be found in [Pande et al., 2005]. In this thesis we focus
on 2D-Mesh NoCs like the ones used in the Adapteva Epiphany [Adapteva, 2012], Tilera
Tilepro [Tilera, 2008], or DSPIN [Panades, 2008]. The structure of a router in a 2D mesh
NoC (which is a specialization of the general router structure of Fig. 2.1) is presented in
Fig. 2.3. It has five bidirectional connections (labeled North, South, East, West, and Lo-
cal) to the bidirectional links leading to the four routers next to it and the local PEs. Note
that mesh and torus NoCs are often used in so-called tiled many-core architectures, where
most PEs have a standard form (approximated with a rectangle) resulting in a regular, tiled
organization of the many-core chip. This is why in tiled many-cores the PEs are usually
called computing tiles or simply tiles.

2.1.3 NoC switching

The allocation of NoC resources to the various data transmissions is governed by a set of
design choices and algorithms commonly known as the switching policy of the NoC. This

2.1. NETWORK-ON-CHIP DESIGN 25

c) Multistage interconnect networks
(here, a butterfly topology)

e) 2D−Torusd) 2D−Mesh

a) Ring

b) Fat−tree

Figure 2.2: Some regular NoC topologies

very general notion covers all aspects of NoC data transmission: the organization of data
into transmission units, routing, buffering, and arbitration/scheduling. We briefly discuss
these aspects.

2.1.3.1 Routing

The routing algorithm, implemented by the NoC router demultiplexers, defines how data
is routed from its source towards its destination. It must decide at each intermediate router
which output link(s) are to be selected for each incoming data packet. Routing algorithms
can be classified according to various criteria. According to the number of destinations
of individual data transmission operations, routing algorithms can be unicast, when each
data transmission operation has a single destination, multicast, when a transmission can
have several destinations, or broadcast, when each data is transmitted to all PEs. In this
thesis, we use unicast routing. In unicast routing each data message arriving at a router
through an incoming link must be forwarded through only one of the output links.

Depending on where routing decisions are taken, routing algorithms can be divided
into source routing and non-source routing algorithms. In source routing, the whole path
is fixed by the sender of the data and explicitly encoded in the headers of the data packets.
The path information is read and used at each router traversed by the packet. In non-source
routing, each router makes its own decisions locally, depending on parameters such as the
final destination of the packet.

Non-source routing algorithms are either static (sometimes called deterministic) or
adaptive. When static routing is used, all traffic between given source and destination fol-

2.1. NETWORK-ON-CHIP DESIGN 26

Figure 2.3: Generic router for a 2D mesh NoC with X-first routing policy

NoC routing

source routing non−source routing

static adaptive

X−first

Figure 2.4: Classification of NoC routing algorithms

lows the same route (path). Adaptive algorithms can dynamically modify the routing path
depending on network conditions such as the presence of faulty or congested channels.
In an adaptive NoC, data packets sent from a given source towards a given destination
can follow different paths and arrive in an order different from the sending order. Adap-
tive routing can reduce congestion situations but the dynamic nature of adaptive routing
means that it makes timing analysis more difficult, and thus complicates implementation
when hard real-time guarantees are needed. Existing NoC architectures with support for
real-time scheduling do not employ adaptive routing, and we make the same choice. In
this thesis, we will use the classical X-first policy.

2.1.3.2 Switching method and buffering policy

All NoC switching methods belong to one of two basic switching paradigms: circuit
switching or packet switching. In circuit switching [Hilton and Nelson, 2006], commu-
nications are performed through dedicated communication channels (called circuits) that
connect the source and destination PEs. A circuit consists in a sequence of point-to-point

2.1. NETWORK-ON-CHIP DESIGN 27

physical links going all the way from the source PE to the destination PE. Two channels
cannot share a physical link. This is achieved by statically fixing the output direction
of each demultiplexer and the data source of each multiplexer along the channel path.
Timing interferences between circuits are imposible. Thus, throughput is guaranteed and
latency is predictible, but NoC use is usually low.

In packet switching, data is divided into small packets that are transmitted indepen-
dently. Each packet is formed of a sequence of flits, where a flit is the amount of data that
a link can transmit at the same time (in one clock cycle, for a synchronous NoC). Each
packet must contain, in its header flits all the information needed to perform its commu-
nication, such as destination, priority, etc. The packetization of data allows a link to be
used by multiple data transitions at the same time, by interleaving the transmission of the
packets coming from different sources. This is why NoC use figures are usually improved
when comparing to circuit switching approaches.

Packet switching Circuit switching

Store−and−Forward
Switching Switching

Virtual Cut Through Wormhole
Switching

Packet buffering policy

NoC switching methods

Figure 2.5: Classification of NoC switching techniques (part 1)

NoCs are complex communication networks where each data transmission traverses
at least 2 routers. Achieving a good transmission throughput over such a network requires
the use of some buffering in its routers and links. As pictured in Fig. 2.5, commonly-used
buffering policies are store-and-forward, virtual cut-through and wormhole.

Store-and-forward This is the simplest buffering policy, used in most telecommunica-
tion networks. It requires that a router receives and stores a full data packet before
forwarding it to the next router or NIC. To allow the storage of full packets, this
method requires a large amount of buffering space in each router. This is why it is
seldom used in NoCs [Kumar et al., 2002].

Wormhole In this buffering policy, a router makes its routing and arbitration decisions
as soon as the header flits of a packet arrive. These flits are needed because they

2.1. NETWORK-ON-CHIP DESIGN 28

may contain information such as the packet destination, or its priority, which are
required by the routing and arbitration algorithms. Once the decisions are made,
transmission can start as soon as the needed outgoing link allows transmission. This
policy reduces communication latency and only requires a small buffering capacity.
This is why it is the most common buffering policy in NoCs, used in all architectures
described in the remainder of this thesis.

Virtual cut-through This approach is intermediate between the store-and-forward and
wormhole buffering policies. Like in wormhole switching, forwarding can start as
soon as one flit has been received. But forwarding can only start when signalling en-
sures that the next router on the path can receive the full packet [Sadawarte et al., 2011].
Thus, if a packet is blocked waiting for a link to be freed, it will be stored en-
tirely on one router without blocking others. By comparison, in wormhole rout-
ing a blocked packet can stretch over several routers, blocking resources in all of
them. Virtual cut-through is used in the NoC of the Intel SCC many-core chip
[Howard and al., 2011].

A second classification criterion divides NoC switching techniques into connection-
oriented and connection-less ones (cf. Fig. 2.6): Connection-oriented techniques rely
on dedicated (logical) connection paths established prior to the actual transmission of
data. Connections can be created and destroyed using specific operations that typicaly
carry a large timing penalty, but once a connection is established, communication along
it is facilitated. In connectionless switching techniques, the communication occurs in a
dynamic manner with no prior connection-oriented resource allocation. By definition,
circuit switched communication is connection-oriented, wheras packet switched commu-
nication can be either connection-oriented (based on virtual circuit approaches detailed
below), or connection-less.

Connection−oriented

Virtual circuit switching Circuit switching

Packet switching

NoC switching methods

Connection−less

Figure 2.6: Classification of NoC switching techniques (part 2)

2.1. NETWORK-ON-CHIP DESIGN 29

2.1.3.3 Arbitration/Scheduling

In packet switching NoCs a link can be shared by several data transmissions, and ar-
bitration is needed to determine how packets belonging to multiple data transmissions
are interleaved. Arbitration is realized at the level of NoC multiplexers.1 As pictured in
Fig. 2.7, several arbitration mechanisms are used in practice, each offering different levels
of support for real-time implementation.

The simplest and most common arbitration technique is fair arbitration. In this ap-
proach, if two or more packets arriving from different sources request at the same time
to pass through a NoC multiplexer, a fair arbitration policy such as Round Robin is used
to decide which one passes first. The process is repeated whenever such a contention oc-
curs. Along with a limitation on NoC packet sizes, the use of fair arbitration ensures that
the NoC resources are evenly distributed among the data transmissions using them, with
good NoC utilization factors and guaranteed (albeit possibly low) transmission through-
puts for each transmission. Fair arbitration is used in the industrial NoC-based platforms
Adapteva Epiphany [Adapteva, 2012], Kalray MPPA256 [MPPA, 2012], and ST STHorm
[Benini, 2010]. In the Tilera TilePro64 [Tilera, 2008] chip, fair arbitration is used in 5 out
of the 6 NoCs. In research prototypes, fair arbitration can be found from the early NoC ar-
chitectures, such as SPIN [Guerrier and Greiner, 2000], to the more recent designs, where
it is used in conjunction with other types of arbitration, such as priority-based, time divi-
sion multiplexing-based, or programmed arbitration, as described below.

When designing real-time systems, the objective is to respect the real-time require-
ments. Achieving this goal on resource-constrained architectures usually amounts to
achieving the best possible predictable efficiency. Given the large number of potential
NoC contention points (router multiplexers), and the synchronizations induced by data
transmissions, providing tight static timing guarantees is only possible if some form of
system-level flow control mechanism is used. The tightest timing control is provided
by circuit switching approaches. As explained earlier in this section, in circuit switch-
ing NoCs all communications are performed through dedicated communication channels
formed of point-to-point physical links. Channels are set up so that they share no NoC
resource, which makes timing interferences impossible. Once a channel is set up, com-
munication latency and throughput are the best possible and timing analysis is easy. But
the absence of resource sharing is also the main drawback of circuit switching, resulting
in low utilization of the NoC resources. Even more important, the number of channels
that can be established is limited by the number of NoC links, which severely limits ap-
plication mapping choices.

This is why most NoCs use a packet switching approach. In this case, four types of

1Arbitration mechanisms will be presented in greater detail in Chapter 4

2.1. NETWORK-ON-CHIP DESIGN 30

NoC control mechanisms have been proposed to improve the real-time properties: Time
Divison Multiplexing (TDM), bandwidth reservation, priority-based arbitration, and pro-
grammed arbitration. As shown in Fig. 2.7, more than one arbitration scheme can be
supported in a NoC architecture, like in Æthereal (TDM-based, fair, and priority-based)
or DSPIN (fair and priority-based).

Fair arbitration

DSPIN(BE+GS)

Nostrum (GB)

Intel SCC

Latency/Throughput
guaranteeswithout QoS

TDM−based
Bandwidth
reservation

AEthereal (GT)

Nostrum (GB)

Kalray MPPA

AEthereal (GT+BE)

NoC resource
allocation

application state
Aware of the

Priority−based Programmed

DSPINpro

MIT RAW

TilePro64 (1 NoC)

SPIN

DSPIN

AEthereal (BE)

TilePro64 (5 NoCs)

Epiphany

STHorm

Figure 2.7: Classification of NoC resource allocation policies in packet-switched NoCs

TDM-based and bandwidth reservation resource allocation techniques are often used
in the context of virtual circuit switching communication protocols. Virtual circuit switch-
ing is an evolution of circuit switching which allows NoC link sharing between circuits,
but ensures that each circuit has configurable and guaranteed latency and throughput.

The most popular way of providing these guarantees is by relying on time division
multiplexing (TDM) arbitration in the NoC routers. Such NoCs relying on TDM arbi-
tration are Æthereal [Goossens et al., 2005], Nostrum [Millberg et al., 2004b], and oth-
ers [Sorensen et al., 2012]. In a TDM NoC, all routers share a common time base (the
hardware clock). The point-to-point links are reserved for the use of the virtual circuits
following a fixed cyclic schedule (a scheduling table). The reservations made on the vari-
ous links ensure that communications can follow their path without waiting. TDM-based
NoCs allow the computation of precise latency and throughput guarantees. They also
ensure a strong temporal isolation between virtual circuits, so that changes to a virtual
circuit do not modify the real-time characteristics of the other.

When no global time base exists, the same type of latency and throughput guarantees
can be obtained in NoCs relying on bandwidth management mechanisms such as Kalray
MPPA [MPPA, 2012, Harrand and Durand, 2011]. The idea here is to ensure that the
throughput of each virtual circuit is limited to a fraction of the transmission capacity of
a physical point-to-point link, by either the emitting tile2 or by the NoC routers. Two or

2In which case the actual NoC arbiters can be simple fair arbiters.

2.1. NETWORK-ON-CHIP DESIGN 31

more virtual circuits can share a point-to-point link if the sum of their transmission needs
is less than what the physical link provides.

But TDM and bandwidth management NoCs have certain limitations: One of them is
that latency and throughput are correlated [Shi and Burns, 2010], which may result in
a waste of resources. But the latency-throughput correlation is just one consequence
of a more profound limitation: TDM and bandwith management NoCs largely ignore
the fact that the needs of an application may change during execution, depending on its
state. For instance, when scheduling a dependent task system with the objective of reduc-
ing task graph makespan, it is often useful to allow some communications to use 100%
of the physical link, so that they complete faster, before allowing all other communica-
tions to be performed. One way of taking into account the application state is by using
NoCs with support for priority-based scheduling [Shi and Burns, 2010, Panades, 2008,
Howard and al., 2011]. In these NoCs, each data packet is assigned a priority level (a
small integer), and NoC routers allow higher-priority packets to pass before lower-priority
packets. To avoid priority inversion phenomenons, higher-priority packets have the right
to preempt the transmission of lower-priority ones. In turn, this requires the use of one
separate buffer for each priority level in each router multiplexer, a mechanism known as
virtual channels in the NoC community[Panades, 2008].

The need for virtual channels is the main limiting factor of priority-based arbitra-
tion in NoCs. Indeed, adding a virtual channel (VC) is as complex as adding a whole
new NoC[Yoon et al., 2010, Carara et al., 2007], and NoC resources (especially buffers)
are expensive in both power consumption and area [Moscibroda and Mutlu, 2009]. To
our best knowledge, among existing silicon implementations only the Intel SCC chip of-
fers a relatively large numbers of VCs (eight) [Howard and al., 2011], and it is targeted
at high-performance computing applications. Industrial MPPA chips targeting an em-
bedded market usually feature multiple, specialized NoCs [Tilera, 2008, Adapteva, 2012,
Harrand and Durand, 2011] without virtual channels. Other academic NoC architectures
feature low numbers of VCs. Two VCs is a popular choice, in which case the channels
are often labeled “guaranteed service”, for the high-priority one, and “best effort”, for
the low-priority one [Goossens et al., 2005, Panades, 2008]. Current research on priority-
based communication scheduling has already integrated this limitation, by investigating
the sharing of priority levels [Shi and Burns, 2010].

The second limiting factor related to priority-based NoCs is that the associated schedul-
ing theory mainly focuses on independent task systems. However, we have already ex-
plained that the large number of computing cores in an many-core architecture means
that applications are likely to include parallelized code which is best modeled by large
sets of relatively small dependent tasks with predictable functional and temporal be-
havior [Villalpando et al., 2010, Aubry et al., 2013, Gerdes et al., 2012]. Such timing-

2.1. NETWORK-ON-CHIP DESIGN 32

predictable dependent task systems are those that can a priori take advantage of an off-line
scheduling approach, as opposed to on-line priority-based scheduling. But efficient off-
line mapping requires NoCs with support for static communication scheduling [Tilera, 2008,
Djemal et al., 2012, Waingold et al., 1997]. The idea here is to determine an efficient
(possibly optimal) global computation and communication schedule, represented with a
scheduling table, and then enforce it through synchronized sequential computation and
communication programs. Computation programs run on processor cores to sequence
task executions and the initiation of communications. Communication programs run on
specially-designed micro-controllers that control each NoC multiplexer to fix the order in
which individual data packets are transmitted. Synchronization between the programs is
ensured by the data packet communications themselves.

Like in TDM NoCs, the use of global scheduling tables allows the computation of very
precise latency and throughput estimations. Unlike in TDM NoCs, static communication
scheduling allows NoC resource reservations dependent on the application state. Global
clock synchronization is not needed, and existing NoCs based on static communication
scheduling do not use it[Tilera, 2008, Waingold et al., 1997, Djemal et al., 2012]. Instead,
global synchronization is realized by the data transmissions themselves (which eliminates
some of the run-time pessimism of TDM-based approaches).

The microcontrollers that drive each NoC router multiplexer are similar in structure to
those used in TDM NoCs to enforce the TDM reservation pattern. The main difference
is that the communication programs are usually longer than the TDM configurations, be-
cause they must cover longer execution patterns. This requires the use of larger program
memory (which can be seen as part of the tile program memory[Djemal et al., 2012]).
But like in TDM NoCs, buffering needs are limited and no virtual channel mechanism is
needed.

From a mapping-oriented point of view, determining exact packet transmission orders
cannot be separated from the larger problem of building a global scheduling table com-
prising both computations and communications. By comparison, mapping onto MPPAs
with TDM-based or bandwith reservation-based NoCs usually separates task allocation
and scheduling from the synthesis of a NoC configuration independent from the applica-
tion state [Lu and Jantsch, 2007, Aubry et al., 2013] .

Under static communication scheduling, there is little run-time flexibility, as all schedul-
ing possibilities must be considered during the off-line construction of the global schedul-
ing table. For dynamic applications this can be difficult. This is why existing MPPA
architectures that allow static communication scheduling, including the one we propose
in this thesis, also allow communications with dynamic (Round Robin) arbitration.

2.1. NETWORK-ON-CHIP DESIGN 33

2.1.4 Existing Network-on-Chip architectures

To provide a better understanding of the NoC switching concepts introduced above, we
review several existing NoC architectures before explaining, in the next section, how they
are used in existing many-core architectures.

2.1.4.1 DSPIN

The DSPIN NoC (for Distributed Scalable Predictable Interconnect Network) [Panades, 2008]
was designed at the LIP6 laboratory by a team led by Alain Greiner. It is part of the So-
CLib virtual prototyping library [LIP6, 2011] and has been physically implemented by ST
Microelectronics [Miro Panades et al., 2006]. DSPIN extends concepts of the previously-
defined SPIN on-chip interconnect. The main objective of the extension were to facil-
itate the design of tiled MPSoC architectures through the use of a regular interconnect
topology, and to allow the design of globally asynchronous, localy synchronous (GALS)
MPSoCs where each tile can have its own local clock, different in frequency and/or phase
from the clocks of other tiles.

DSPIN has a regular 2D mesh topology. It uses a static X-first routing algorithm, and
follows a wormhole packet switching approach. Arbitration is based on a combination
of priority-based and fair algorithms. There are two priority levels, labeled guaranteed
service (GS) and best effort (BE). When GS traffic reaches a NoC router multiplexer it
interrupts ongoing BE traffic (if any). Interruption is done with flit granularity, meaning
that the transmission of a BE packet is stalled, to be continued only after all GS packets
have passed. Arbitration among packets of the same priority level is fair, using a Round
Robin algorithm.

The programmable NoC developed as part of this thesis is based on DSPIN. This is
why we provide an in-depth review of DSPIN in Chapter 3 (except for the priority-based
arbitration features which we do not use).

2.1.4.2 Æthereal

The Æthereal NoC was developed at Philips Research Laboratories by a team lead by
K. Goossens [Goossens et al., 2005]. Like DSPIN, Æthereal uses a mix of arbitration
policies to support two types of NoC traffic named guaranteed service (GS) and best
effort (BE). Like in DSPIN, fair arbitration is used when multiple BE traffic flows arrive
at a router multiplexer at the same time, and priority-based arbitration is used to let GS
traffic interrupt BE traffic. Unlike in DSPIN, GS traffic is subject here to TDM-based
arbitration, under a form dubbed contention-free routing.

We only detail here the TDM-based arbitration of GS traffic. To allow TDM-based
arbitration, Æthereal ensures that all NoC components share a global time basis (the NoC

2.1. NETWORK-ON-CHIP DESIGN 34

is globally synchronous). In this time basis, NoC time is divided into slots of equal dura-
tion. Slots of different NoC routers are aligned between different NoC components (there
is no phase shift).

Each NoC router multiplexer contains a slot table of fixed size. During execution,
this table is cyclically traversed from beginning to the end to determine which traffic will
be accepted at each time slot. More precisely, if T is the slot table associated with some
router multiplexer, and if its length is n, then during slot s the multiplexer accepts input
from the direction described by T [s mod n]. This direction is either one of the input links
of the local router, or a special value specifying that the slot is to be left unused by GS
traffic.

To allow contention-free routing, the slot tables of the NoC must satisfy a coherency
property. More precisely, Æthereal requires that if some data reaches a NoC router at slot
s (through one of the input links), then it leaves the router at slot s+1. This mechanism
is illustrated in Fig. 2.8, which is reproduced from [Goossens et al., 2005]. This figure
depicts 3 routers of a 2D mesh implementation of Æthereal. To simplify presentation,
links to the local tiles are not represented. Thus, each router is connected with the routers
next to it in the directions West, North, East, and South. In each of these directions, two
links are used (one in each sense). In each router, the 4 multiplexers controlling the output
links are labelled with o0 . . .o3, and the 4 input links with i0 . . . i3.

Figure 2.8: Æthereal contention-free routing (reproduced from [Goossens et al., 2005])

Fig. 2.8 only provides the slot tables of multiplexers o2 of router R1, o2 and o3 of
router R2 and o1 and o2 of router R3. The slot tables have all size 4, and encode transfers
along the 3 routes a, b, and c represented with light gray arrows. Slots in the slot tables
are numbered from 0 (top one) to 3 (bottom one). Execution is globally synchronous,
so all multiplexers move from one slot to the next at the same time. For instance, when
in slot s = 2, the multiplexer o2 (East) of router R1 will accept data that came in the
previous slot from i1 (North). Our figure pictures the case where all multiplexers are on

2.1. NETWORK-ON-CHIP DESIGN 35

slot 2. The labelled black bullets represent data that arrived during slot 1 and must be
transmitted during slot 2. For instance, during slot 1 the output o2 of R2 has transmitted
data belonging to c and coming from input i3. This data, which has arrived in R3 through
i0 will be transmitted through o1 in slot 2. Note that the link going from R2 to R3 is
multiplexed. In slot 1 it transmits data belonging to c, whereas in slot 2 it transmits data
belonging to a.

In our example the communications of a, b, and c are of unicast type, but the TDM
mechanism described above allows multicast communications.

Note that TDM arbitration is not work conserving, which means that slots may be
empty even through GS data is waiting to be transmitted over the NoC. Free slots are used
to transmit low-priority best-effort (BE) traffic.

2.1.4.3 Nostrum

The Nostrum NoC was developped by the Laboratory of Electronics and Computer Sci-
ence (LECS) at the Royal Institute of Technology in Sweden [Millberg et al., 2004b]. The
objective of Nostrum was to reduce the need for buffering resources through innovative
routing and arbitration mechanisms, not replicated elsewhere.

The first choice of Nostrum is the use of deflective routing [Feige and Raghavan, 1992],
which requires that all data arriving at a NoC router is immediately forwarded through
some output link, even if the output link normally required by the packet to reach its des-
tination is occupied. Deflective routing requires the use of an adaptive routing algorithm,
but NoC routers do not need to store packet data, as packets are constantly in flight. A
packet can be denied access to the NoC, but once accepted it is never blocked waiting for
some other transmission to complete. Each packet has exactly one flit (so that it can be
transmitted in one clock cycle).

The deflective routing mechanism alone provides no guarantees on the duration of a
data transfer, and data packets may arrive at their destination in an order different from
the one in which they were sent. This is why this basic service is dubbed “Best Effort”
(BE). On top of it Nostrum provides a “Guaranteed Bandwidth” (GB) service designed
to offer timing and packet ordering guarantees. To provide the GB service, NoC traffic is
prioritized. There are two priorities: The lower one is that of BE traffic, and the higher one
the GB traffic. GB traffic is organized in a set of virtual circuits. In each virtual circuit
so-called containers [Millberg et al., 2004a] loop on a periodic basis. A container is a
packet-size reservation. Once created, a container is looping arround its virtual circuit. At
each cycle, it can either be used (if data is available in the source PE for transmission), or it
can be left unused. The reservation made for an empty container is lost. The transmission
of containers along the virtual circuits is synchronized at NoC level, so that no contention
occurs between containers belonging to different circuits. The result is similar to that

2.1. NETWORK-ON-CHIP DESIGN 36

obtained in Æthereal through the use of slot tables. Like in Æthereal, the construction
of the virtual circuits and of their interleaving is a major problem, that must be solved
through global optimization approaches.

Figure 2.9: Nostrum looping container (reproduced from [Millberg et al., 2004a])

Fig. 2.9 depicts an example of container looping around a virtual circuit spanning
over 3 routers: one connected to the tile sending data, one connected to the destination
tile, and an intermediate one. This containter is tracked during four clock cycles. In the
first cycle, the empty container arrives to the switch 1 (the GB source). The container is
loaded with the GB traffic and sent off the east switch. In the second cycle, the container
and its load is routed along its predefined path. In the third cycle, the container reaches
its destination, the information is unloaded and the container is sent back empty, possibly,
with some new information loaded. In the fourth cycle the empty container traverses the
intermediate router.

2.1.4.4 Kalray MPPA NoC

The MPPA256 architecture of Kalray [Harrand and Durand, 2011, MPPA, 2012] is a tiled
many-core with a 2D torus NoC. The topology of the interconnect is detailed in Fig. 2.10.
This figure depicts the routers of the 16 computing tiles (the 4x4 central square) and the 16
routers connected to the various I/O devices. To facilitate description, our figure presents
only the (unidirectional) links along one vertical line of tiles. The full NoC is obtained by
repeating this pattern along each horizontal and vertical line of tiles.

NoC arbitration is done under a fair policy. Communications are performed along
virtual channels, each (unidirectional) channel connecting one source tile with one desti-
nation tile. Setting up a channel amounts to assigning it a route and a latency/throughput
budget. It is required that for each physical link of the NoC, the sum of the transmission
requirements of all the virtual channels using this link is less than the transmission ca-
pacity of the link. Under this condition, all channels will provide the latency/throughput
guarantees assigned to them. Ensuring that a virtual channel does not attempt to take more
resources than its budget allows is realized through bandwidth management mechanisms.
More precisely, each tile and I/O device in the chip contains a configurable bandwith
limiter device. For each virtual channel, the respect of its latency/throughput budget is
enforced by the bandwidth limiter of the source tile or I/O device.

2.1. NETWORK-ON-CHIP DESIGN 37

Figure 2.10: Kalray MPPA NoC architecture (reproduced from [MPPA, 2012])

To give an example of how bandwidth allocation is done, we consider the example
in Fig. 2.11 (the example is borrowed from [Harrand and Durand, 2011]). The complex
torus topology of the Kalray NoC complicates graphical representation. To simplify our
presentation, we use in Fig. 2.11 a 2D mesh NoC topology with bidirectional links, which
largely simplifies graphical representation.3 In our example, the NoC is traversed by 5
virtual channels, whose configuration information is listed in Table 2.1. For each channel,

R0 R3

R4 R5 R6 R7

R1 R2

(16)

(4)

(4)

(8)

i1

i1

o3

cb
N0 a N1 N2

d
N3

N4
e

(12)

N5 N6 N7

i1

o4i4
o1
i1

o2 i2

o3
i3 o3 i1

o2 o2

o3
o3 o1

i1 i1 o3

i4 i4

i0
o0

i0 i0 o0

i0 o0

Figure 2.11: Example of throughput allocation in meshed network

this table provides its full route, including source and destination tiles, as well as the al-

3The creators of the Kalray NoC do the same in their patent application [Harrand and Durand, 2011].

2.1. NETWORK-ON-CHIP DESIGN 38

Channel Source Dest. Route Bandwidth
name PE PE allocation

a T00 T03 00,01,02,03 16/16
b T01 T10 10,11,10 12/16
c T01 T13 01,11,12,13 4/16
d T02 T13 02,12,13 8/16
e T10 T13 10,11,12,13 4/16

Table 2.1: Virtual channels in the example of Fig. 2.11

located bandwidth, provided under the form of the transmission budget per time unit. For
instance, virtual channel a starts in tile T00, traverses the routers of processing elements
(tiles) 00, 01, 02, and 03, and transmits 16 data units per time unit. Bandwidth limiter
devices are implemented with counters that only allow transmission for a fixed amount of
time during each time unit. We assume that the transmission capacity of each NoC link is
of 16 data units per time unit.

2.1.4.5 The scalar interconnect of MIT RAW

The NoCs we already described in this section transfer data with packet granularity, and
reducing the cost of data transfers usually amounts to ensuring that data is grouped into
packets that are as large as the NoC architecture and the application allow.

In this respect, the interconnect of the RAW many-core chip is very different, as data
transfers are done with word granularity, hence the name scalar operand network given
to the resulting many-core architecture. Allowing communications with word granularity
enables the MPSoC-wide use of compilation techniques that exploit Instruction Level
Parallelism (ILP) [Taylor et al., 2004] and a very fine grain, very efficient scheduling of
computations and communications.4

The interconnect of RAW is also the only one among production NoCs to support
programmed arbitration.5 As pictured in Fig. 2.12, in the RAW architecture the router
of each tile (labeled “Switch”) contains a program memory (labeled “SMEM”) allowing
the storage of a single sequential communication program that enforces a pre-computed
static communication order concerning all 4 connections to the neighboring routers. This
program is executed by the switch processor, not figured here, which has a very simple in-
struction set allowing only data send operations, branching, and nops [Waingold et al., 1997].

In addition to static communication scheduling, RAW also provides a dynamic com-
munication mechanism that is used whenever the compiler is unable to determine a precise

4Such techniques were initially designed to exploit the parallelism between functional units of super-
scalar and VLIW microprocessors [Taylor, 2003].

5The tiled TilePro64 many-core chip from Tilera uses this interconnect as one of the 5 on-chip networks
[Tilera, 2008].

2.1. NETWORK-ON-CHIP DESIGN 39

Figure 2.12: Organization of the tiled RAW many-core processor, and structure of a tile
(reproduced from [Waingold et al., 1997])

static schedule of the application communications.

2.1.4.6 Other NoC architectures

This section already presented in detail a number of NoCs that were chosen to exemplify
the implementation of various arbitration mechanisms in architectures for which extensive
implementation documentation exists.

Of course, many other NoCs have been defined, each with its own originality points.
Under an arbitration-focused point of view we have already mentioned some of these
NoCs in Section 2.1.4. We briefly mention here three more NoCs whose originality does
not concern arbitration/scheduling:

The ACROSS many-core platform[Salloum et al., 2013] has been designed to support
the implementation of safety-critical systems, and its NoC provides mechanisms for en-
suring the isolation (non-interference) between applications running on it. The NoC uses
a classical TDM arbitration mechanism allowing the definition of virtual channels with
fixed transmission budgets. To ensure that no unprivileged application running on a tile
can alter the virtual channel communication of the NoC (and thus interfere with other ap-
plications), NoC access is controlled for each tile by a trusted hardware component, called
the TISS, for Trusted Interface SubSystem. The reconfiguration of the TISS components
can only be done by a secure Trusted Resource Manager (of which only one exists).

Another metric in the design of NoCs is the area footprint of the communication sub-
system, and significant work has been dedicated to reducing it. We mention here only
two approaches where area reduction was a key objective. First, in the design of the asyn-
chronous arrays of simple processors, the communication system is reduced to registers
shared between processors of neighboring tiles [Yu et al., 2008]. The result is not a NoC

2.2. MASSIVELY PARALLEL PROCESSOR ARRAYS 40

in a classical sense, being even simpler than the interconnect of RAW. The second ap-
proach is a full-fledged NoC providing high-level communication services and real-time
guarantees through the use of a TDM arbitration approach [Sørensen et al., 2012].

2.1.4.7 Comparison with our work

In RAW, the objective is to allow the MPSoC-wide use of compilation techniques that
exploit Instruction Level Parallelism [Taylor et al., 2004] and a very fine grain, very effi-
cient scheduling of computations and communications. The main difference in our case
is that we aim for a coarser level of control in both the NoC hardware (transmission of
packets instead of mere scalar values), and the software control of the NoC (which is per-
formed through components such as cache controllers and DMA units). While losing in
NoC routing flexibility and timing precision, our approach allows the use of a classical
programming model, general-purpose development tools, and existing applications (like
in DSPIN-based platforms). It also reduces the complexity of NoC programs.

Our intent of allowing NoC resource reservations to improve temporal (or other) prop-
erties parallels that of existing work on NoC architectures based on TDM arbitration or
bandwidth reservation mechanisms. The main difference we see here is that previous
work use TDM arbitration and bandwith reservation as just a way of providing quality
of service (QoS)-like guarantees such as fixed throughput and latency. Our NoC, based
on programmed communication, allows for allocating the NoC resources in a way that is
synchronized with the fine-grained application needs. We allow communications to start
as soon as the data to be sent is computed, and we can grant the transmission the exclusive
use of all communication resources along its path for a fixed time duration.

2.2 Massively parallel processor arrays

While the previous section reviewed existing NoC architectures, we focus now on the
structure of a full many-core, of which the NoC is only one component. We start by
reviewing existing industrial MPPA chips and MPPA-like platforms. Then, we present a
few research architectures that exhibit different compromises between performance and
predictability.

2.2.1 Tilera TILEPro64

The TILEPro64 TM [Tilera, 2008] is the second generation of many-core processors pro-
duced by Tilera, the company created by the conceptors of the RAW processors. As
pictured in Fig. 2.13, it contains 64 processing cores, organized into as many identical
computing tiles that are arranged in an 8× 8 two-dimensional (2D) array. The tiles are

2.2. MASSIVELY PARALLEL PROCESSOR ARRAYS 41

interconnected and connected to the I/O devices via 6 independent NoCs.

Figure 2.13: The 64-core TILEPro64TM Tile processor (reproduced from
[Tilera Corporation, 2013]).

Each tile is formed of three main components labeled processor engine, cache engine
and switch engine, which are interconnected through registers.

• The processor engine is a conventional very long instruction word (VLIW) pro-
cessor [Fisher, 1983] with three instructions per instruction word and full memory
management.

• The cache engine contains the tile’s translation lookaside buffers (TLBs), caches,
and cache sequencers. Each tile has 16KB of L1 instruction cache, 8KB of L1 data
cache, and a 64KB unified, 4-way set associative L2 cache. The L2 caches can be
coherently shared among tiles, and thus the set of L2 caches can be viewed as a large
L3 cache. A non-coherent and non-cached memory access mode is also supported.

The cache engine also contains a DMA engine that is responsible for orchestrating
memory data streaming between tiles and external memory, and among the tiles.

• The switch engine performs routing and arbitration for the 6 NoCs, as discussed
below.

On-chip communication is performed through 6 independent NoCs with 2D mesh topol-
ogy. Of these, 3 are exposed to the programmer through specific APIs that allow the
definition of application-level streaming and messaging:

2.2. MASSIVELY PARALLEL PROCESSOR ARRAYS 42

• The Static Network (STN) is an implementation of the programmable MIT RAW
interconnect presented above. It switches scalar data between tiles with very low
latency.

• The User Dynamic Network (UDN) uses a fair arbitration algorithm. Most user-
defined inter-tile data transfers are expected to use this NoC.

• The I/O Dynamic Network (IDN) is used primarily for transfers between I/O de-
vices and tiles, and between I/O devices and memory.

The remaining 3 NoCs are only used by specific hardware devices and cannot be accessed
otherwise.

• The Memory Dynamic Network (MDN) is used for memory data transfers between
the tiles and the 4 memory controllers of the chip. Only the Cache Engine has a
direct hardware connection to the MDN.

• The Tile Dynamic Network (TDN) is also dedicated to memory traffic. It is used
for transferring data between the caches of the tiles. Again, only the Cache Engine
has a direct hardware connection to the TDN.

• The Coherence Dynamic Network (CDN) is also dedicated to memory traffic. It
only carries cache-coherence invalidate messages between the tiles.

All NoCs with the exception of STN use wormhole packet switching, a static routing
policy (X-first or Y-first), and fair (round robin) arbitration [Tilera Corporation, 2013].

2.2.2 Kalray MPPA-256

The Kalray MPPA-256 [MPPA, 2012] chip addresses both the high performance and em-
bedded markets. As such it has good energy efficiency and provides support for hard
real-time implementation in both the NoC (through bandwidth reservation mechanisms)
and the computing tiles (described below).

The chip integrates 288 cores, of which 272 are grouped into 16 computing tiles ar-
ranged into a 4×4 2D array. The remaining 16 cores are evenly distributed among the 4
I/O sub-systems, placed on the 4 sides, like in the TILEPro64 architecture.

The tiles and the I/O sub-systems are inter-connected through two NoCs, one for data
(D-NoC), and the other for control (C-NoC). Both NoCs have the topology and arbitration
mechanisms presented in Section 2.1.4.4. The only differences between C-NoC and D-
NoC concern the amount of buffering in NoC routers and the way NoC traffic is generated
from the tiles. The D-NoC is dedicated to high bandwidth data transfers. It implements
the QoS mechanisms described in Section 2.1.4.4. The C-NoC is dedicated to peripheral

2.2. MASSIVELY PARALLEL PROCESSOR ARRAYS 43

D-NoC flow control, to power management, and to application software messages. Given
the relatively small amount of traffic, no QoS mechanism is used.

The structure of a computing tile is provided in Fig. 2.14. Each tile contains 17 CPU
cores. Of these, 16 are dedicated to data computations, and are labeled with C0 . . .C15.
The 17th processor is referred to as the system core and performs only resource man-
agement tasks, such as scheduling computations onto the other 16 cores and driving tile
I/O. Each computing core has its own separate instruction and data caches (2-way set
associative, 8kbytes each). Cache coherency is not enforced in hardware, and the cores
themselves are timing compositional in the sense of [Wilhelm et al., 2009].

In addition to the computing cores, the tile contains 2Mbytes of shared memory dis-
tributed in 16 banks of 128kbytes each. Memory access can be configured to be either
interleaved, or not. In interleaved access, successive memory addresses are placed onto
different memory banks. More precisely, the memory word of address nth will be placed
on memory bank n mod 16. Such a memory access technique ensures a good spread
of memory accesses over the memory banks in the absence of contention-minimizing
memory allocation techniques, thus reducing the worst-case cost of contentions. In non-
interleaved access, each memory bank is assigned a full range of addresses. This facil-
itates the explicit allocation of variables to memory banks, which can also be used to
minimize the number of memory access contentions.

The MPPA chip also features a DMA unit, a synchronization unit allowing the def-
inition of synchronization barriers, and network interfaces for connecting to the NoCs.
The processors, memory banks, DMAs, etc. are interconnected through a crossbar local
interconnect. To minimize the size of the crossbar, the processing CPU cores are grouped
by 2 using fair arbitration.

Each of the four I/O subsystems contains a traditional 4-core symmetric multi-processor
(SMP) with its own cache, static memory, and external DDR access. They operate con-
trollers for the PCIe, Ethernet, Interlaken, and other I/O devices, and are meant to execute
an operating system such as Linux or a real-time OS.

2.2.3 Adapteva Epiphany

The Epiphany many-core chip from Adapteva [Adapteva, 2012] makes the choice of sim-
plicity, power efficiency, and extensibility. It comes in two sizes, featuring either 16 or
64 microprocessor cores. The cores are distributed in as many computing tiles which are
arranged in a 4×4 or 8×8 2D array. In both cases, the interface of the chips allows the
tiling of multiple Epiphany chips into 2D meshes which provide the equivalent of larger
tile arrays.

In addition to its processor, each tile contains 4 memory banks for a total of 32kbytes
of program and data RAM, DMA and interrupt units, and the NoC interface. Memory is

2.2. MASSIVELY PARALLEL PROCESSOR ARRAYS 44

Figure 2.14: MPPA-256 computing tile (reproduced from [de Dinechin et al., 2013])

organized under a distributed shared memory paradigm where each processor can access
the RAM banks of all tiles. Processor cores are cacheless. Local tile interconnect is of
full crossbar type [Epiphany, 2012].

Figure 2.15: The Epiphany architecture (reproduced from [Epiphany, 2012])

The tiles are interconnected and connected with the chip I/O through 3 NoCs labeled
cMesh, rMesh, and xMesh. The cMesh and rMesh NoCs have a classical 2D mesh topol-
ogy and follow a static X-first or Y-first routing algorithm and fair (round robin) arbitra-
tion. The xMesh NoC only allows a packet to travel in one direction (up, down, left, or
right) without changing direction. The cMesh NoC has a high bandwidth and is used for
write transactions between computing tiles. The rMesh NoC has lower bandwidth is used
for read transactions between tiles or between one tile and the exterior of the Epiphany

2.2. MASSIVELY PARALLEL PROCESSOR ARRAYS 45

chip. The xMesh NoC is used for write transactions involving the exterior of the Epiphany
chip. The xMesh and rMesh NoCs allow an array of Epiphany chips to be connected in a
mesh structure without glue logic.

2.2.4 Intel SCC

The experimental Single-chip Cloud Computer (SCC) many-core chip [Howard and al., 2011]
from Intel was the result of a very different trade-off between power efficiency and com-
puting power. In this architecture, the processor cores are feature-rich Pentium core vari-
ants, with their IA-32 instruction set slightly enhanced to improve software control over
cache coherency. The difficulty is that of providing the interconnect (a NoC) and the
power management mechanisms (of dynamic voltage and frequency scaling type) allow-
ing a less power-hungry implementation.

Figure 2.16: The SCC full-chip and tile architecture (reproduced from
[Howard and al., 2011])

Each SCC chip intergrates 48 IA-32 cores and the innovations in power management
allow it to attain power consumptions 125W to as low as 25W. The 48 cores are arranged
in a 6× 4 on-die mesh of tiles with two cores per tile. L1 instruction and data caches of
each core have been upsized to 16KB, support 4-way set associativity, and both write-
through and write-back modes. As pictured in Fig. 2.16, each core also has a unified L2
cache of 256kbytes.

At the periphery of the SCC chip, four DDR3 memory channels connected to the NoC
provide access to up to 64 GB of system memory. Additionally, an 8-byte bidirectional
high speed I/O interface is used for all off-die communication.

2.2. MASSIVELY PARALLEL PROCESSOR ARRAYS 46

Communication between computing cores is realized through an approach that mixes
shared memory and message passing mechanisms. The basic communication mechanism
follows a traditional shared memory model where all communications are done through
reads and writes of the main memory. However, communications of less than 16 kbytes
can be transmitted directly from the L1 cache of the sender processor core to the L1 cache
of the destination processor.

To limit complexity and power consumption, the SCC removes hardware cache/mem-
ory coherency mechanisms, and in particular hardware-managed coherency traffic over
the NoC. Instead, the user must ensure coherency management using different synchro-
nization strategies.

The NoC has a 2D torus topology with bidirectional links between routers. It uses
static X-first routing and a virtual cut-through switching technique. The NoC routers
feature 8 virtual channels used to implement 8 priority levels among packets traversing the
NoC. However, these priority levels are not user-defined. Instead, their allocation follows
a scheme [Tamir and Chi, 1993] meant to improve communication fairness at chip level
with respect to the more traditional router-level round robin arbitration.

2.2.5 ST Microelectronics STHORM

STHORM [Melpignano et al., 2012], initially called “Platform 2012” or P2012, was not
designed as a many-core chip, but rather as a platform for the design of embedded many-
cores for multi-media applications. It features a tiled organization, but the contents and
size of each tile can be varied depending on the design needs. The platform was designed
by ST Microelectronics and the CEA.

To improve power efficiency and facilitate power management, tiles are connected via
a fully asynchronous NoC called ANoC, designed by the CEA-Léti [Thonnart et al., 2010].
The NoC uses a source routing algorithm and provides QoS control under the form of 2
packet priority levels.

A typical computing tile, as used in the test chip produced by ST Microelectronics,
consists in 17 processing cores (of which 1 is dedicated to resource allocation/schedul-
ing), several memory banks, power management, DMA, and synchronization units, and a
special unit with support for data-flow programming.

2.2.6 TSAR

TSAR (Tera Scale ARchitecture) [TSAR, 2008] is an academic MPPA architecture de-
signed by a team lead by A. Greiner. In its design, the main objectives were scalability,
efficiency, and facility of programming. By comparison with a chip like Kalray MPPA,
where the need for temporal predictability requires that memory hierarchy is simple and

2.3. STATIC APPLICATION MAPPING 47

exposed to the programmer and that no cache coherency is used, TSAR takes the oppo-
site choices. It uses a complex memory hierarchy, but hides it as much as possible and
implements in hardware the cache coherency protocols.

TSAR integrates up to 1024 computing tiles interconnected by the DSPIN NoC pre-
sented in the previous section. Each computing tile contains up to 4 processors cores,
each with its own program and data L1 caches. The tiles contain no local RAM banks.
Instead, each tile contains one memory cache unit that acts as an L2 cache with cache
coherency manager. The global address space is partitioned between the tiles, each tile
being associated a range in the global space. The memory cache of a tile will only cache
addresses in this range. Requests from the local processors for addresses not in this range
are routed through the NoCs towards the tile that owns the address. Requests for addresses
in the range of the tile pass through the memory cache and (in case of a miss) are routed
through another level of cache (L3) towards the main memory through a NoC, called the
RAM network, which has a specific tree topology. Inter-tile traffic are transferred through
2 other NoCs of DSPIN type, one dedicated to memory access traffic, and the other to
cache coherency traffic.

Application mapping onto TSAR is managed by an operating system that was devel-
oped especially for TSAR: ALMOS [Almaless and Wajsbürt, 2012], for Advanced Local-
ity Management Operating System. ALMOS aims at hiding as much architectural detail
as possible from user applications, but while preserving efficiency. To this end, it uses a
client/server scheduler design allowing the kernel to offer scalable inter-thread synchro-
nization mechanisms. Moreover, it implements a kernel-level affinity technique named
Auto-Next-Touch allowing the kernel to transparently and automatically migrate physical
memory pages in order to enforce the locality of thread’s memory accesses.

2.2.7 Academic MPSoC architectures with TDM-based NoC arbitra-
tion

Various research projects such as T-Crest, ACROSS, or CompSoC have recently proposed
NoC and many-core architectures with strong support for real-time embedded implemen-
tation. Most of them [Brandner and Schoeberl, 2012, Salloum et al., 2013, Goossens et al., 2012]
rely on time division multiplexing (TDM) NoC arbitration, as described in Section 2.1.4.2.

2.3 Static application mapping

In the previous sections we have provided a comprehensive classification of existing work
on NoC and MPPA design from a hardware architecture point of view. This was made
possible by the fact that relatively few teams have endeavored to fully define such hard-
ware architectures, and that among this set of architectures we could identify a smaller

2.3. STATIC APPLICATION MAPPING 48

representative subset. But such a comprehensive presentation is no longer possible for
mapping techniques. Indeed, in the past few years virtually every mapping (allocation
and scheduling) technique proposed in at least 3 research fields (compilation, real time
scheduling, parallel programming) has been adapted for multi-core or many-core archi-
tectural targets.

We therefore needed to limit the scope of our state of the art presentation. We chose
to include in it:

• A detailed presentation of works that have been direct inspiration sources in our
developments.

• A brief presentation of other mapping approaches where all the elements of the flow
are tailored to fit a given scheduling paradigm (just like we do).

We have already explained in Section 2.1.3.3 that our work aims at reaching the best
possible timing precision and predictability in the mapping of parallelized versions of
embedded control applications. Such applications are best described as dependent task
systems, and best modeled using deterministic data-flow specification languages. Two
large classes of such data-flow formalisms exist:

• The dataflow synchronous languages, such as Scade/Lustre/Heptagon [Heptagon, 2013,
Halbwachs et al., 1991], Signal [Guernic et al., 2003], or SynDEx
[Grandpierre and Sorel, 2003].

• The synchronous dataflow (SDF, CSDF) formalisms [Lee and Messerschmitt, 1987,
Parks et al., 1995].

For both classes, extensive previous work covers their mapping onto multi-processor ar-
chitectures [Grandpierre and Sorel, 2003, Fohler and Ramamritham, 1995], and much of
this work has concentrated on defining off-line mapping techniques. Indeed, these for-
malisms facilitate the programming of deterministic and regular applications, which in
turn facilitates the construction of potentially optimal scheduling tables defining the al-
location and real-time scheduling of the various computations and communications onto
the hardware resources.

This thesis has two objectives:

• To modify the hardware platform so that it provides better support to the implemen-
tation of static computation and communication schedules.

• To define novel algorithms for the construction of static computation and commu-
nication schedules for the new architectures.

In doing this, our work has drawn significant influence from two lines of existing work:

2.3. STATIC APPLICATION MAPPING 49

• Off-line distributed real-time mapping (allocation and scheduling) of data-flow ap-
plications, and in particular work on the AAA/SynDEx methodology [Caspi et al., 2003,
Grandpierre and Sorel, 2003, Potop-Butucaru et al., 2009].

• Compilation for MIMD microprocessor architectures such as the VLIW proces-
sors [Fisher, 1983] or the scalar operand networks presented in Section 2.1.4.5
[Lee et al., 1998, Amarasinghe et al., 2005].

2.3.1 Off-line real-time multi-processor scheduling

Our work is closely related to classical results on the off-line real-time mapping of de-
pendent task systems onto multiprocessor and distributed architectures [Eles et al., 2000,
Fohler and Ramamritham, 1995, Xu, 1993, Grandpierre and Sorel, 2003]. The objective
is the same as in our case: the synthesis of optimized scheduling tables defining time-
triggered execution patterns. But there are also significant differences. As explained in
the previous section, most NoCs rely on wormhole routing, which requires synchronized
reservation of the resources along the communication paths. By comparison, the cited
papers either use a store-and-forward routing paradigm [Fohler and Ramamritham, 1995,
Grandpierre and Sorel, 2003, Eles et al., 2000] that is inapplicable to NoCs, or simply do
not model the communication media [Xu, 1993].

A second difference concerns the complexity of the architecture description. MPPAs
have more computation and communication resources than typical distributed architec-
tures considered in classical real-time. Moreover, resource characterization has clock
cycle precision. To scale up without losing timing precision, we need to employ schedul-
ing heuristics of very low computational complexity, avoiding the use of backtracking
[Fohler and Ramamritham, 1995], but taking advantage of low-level architectural detail
concerning the NoC.

A third difference concerns fine-grain resource allocation and scheduling operations,
such as the allocation of data variables into memory banks or the scheduling of DMA
commands onto the processor cores. These operations are often overlooked in classical
distributed scheduling because they are usually delegated to operating systems. But an OS
introduces timing overheads that are significant at the precision level of our algorithms.
(hundreds or thousands of clock cycles), and which can have a major impact on execution
durations on an MPPA platform. This why we need to explicitly consider them at off-line
mapping time.

2.3.1.1 The AAA/SynDEx methodology

SynDEx [AOSTE-INRIA,] is a system level CAD software based on the algorithm archi-
tecture adequation (AAA) methodology [Sorel, 1994] for rapid prototyping and optimized

2.3. STATIC APPLICATION MAPPING 50

real-time implementation of embedded control applications onto architectures with mul-
tiple CPUs and communication lines (buses or shared RAMs). It has been designed and
developed in the INRIA Paris-Rocquencourt Research Center France, by a team led by
Yves Sorel.

Fig. 2.17 describes the flow of the AAA methodology and of the SynDEx tool. Syn-
DEx takes as input a functional specification, an architecture specification, and some non-
functional (allocation, timing) requirements. It performs two tasks:

• The off-line real-time scheduling of the functional specification on the architecture
under the given non-functional constraints.

• The generation of correct-by-construction C code implementing the computed off-
line schedule.

The functional specification is written in a high level synchronous data flow language sim-
ilar to Scade/Lustre [Halbwachs et al., 1991], and importers exist for other synchronous
languages such as Signal [Guernic et al., 2003] or Scicos [Campbell et al., 2006].6 The
specification of the architecture (hardware and basic software) is provided under the form
of a bipartite graph whose nodes are the processing elements (CPUs, accelerators) and
the communication media (buses, shared RAM banks). The arcs of the graph describe
the connections of processing elements to the communication media. The non-functional
constraints allow the specification of worst-case durations for the various computation
and communication operations over the various processors and communication media, as
well as allocation constraints.

Starting from these 3 inputs, SynDEx produce a reservation table describing the real-
time execution of one cycle of the synchronous functional specification. To do so, it
uses greedy heuristics that perform at the same time the allocation and scheduling of the
various computations and communications. The various computation and communication
operations are mapped one by one, and once a decision is taken for one operation it is
never changed (there is no backtracking).

For each computation and communication operations, the resulting reservation table
specifies the resource (processor or bus) that will perform it, the starting date, and the
time duration starting from the start date where the resource is (exclusively) dedicated to
the operation. To cover conditional behaviors, each reservation can also have an execu-
tion condition.7 The same resource can be allocated at the same date to operations with
exclusive execution conditions.

In a second phase, the reservation table is translated into executable code where the

6We do not cover in this document the multi-periodic extensions of SynDEx’s specification language.
7Also called clock in the jargon of synchronous languages.

2.3. STATIC APPLICATION MAPPING 51

Timing,
specification
Architecture

Static real−time distributed

scheduling

Static schedule
Conditional reservation table

Code generationLibraries Executable code

Non−functional specification

allocations

Functional

specification

Figure 2.17: The global flow of the AAA methodology and the SynDEx software

primitives of the execution platform are used to implement the needed timing and reser-
vation mechanisms.

The work on the AAA methodology and SynDEx has been extended in various ways.
Of particular interest for this thesis are previous works on improving the handling of ex-
ecution conditions. Indeed, SynDEx requires, at both specification and algorithmic level,
that all communications between a component and its environment to take place at the
same speed (each input and output is read or written at each activation of the component).
This may result in redundant communications slowing down an application.

To overcome this limitation, a new formal model, called Clocked Graphs (CG) has
been proposed in [Potop-Butucaru et al., 2009]. On one hand, this format allows the faith-
ful representation of specifications written in high-level synchronous languages such as
Scade/Lustre, Signal, or discrete Scicos (in particular, without the constraints imposed by
SynDEx). On the other hand, CG specifications are close enough to the target machine
code to allow fine manipulations such as scheduling, allocation, and optimization (e.g.
software pipelining [Carle and Potop-Butucaru, 2011]). We give a detailed description of
this formalism and the associated scheduling algorithms in Section 5.1.

Our work in this thesis is completely subsumed to the AAA methodology (and to the
closely-related platform-based design paradigm [Sangiovanni-vincentelli and Martin, 2001]).
It directly builds upon the toolset based on the Clocked Graphs formalism. Compared
with previous work on the AAA methodology [Grandpierre and Sorel, 2003], our work
shares the objective of real-time mapping of dataflow synchronous specifications onto
multi-processor platforms and the use of greedy heuristics without backtracking. The
originality of our approach is given by:

2.3. STATIC APPLICATION MAPPING 52

• The handling of complex architectural components, such as the NoC and the multi-
bank RAMs, which require complex manipulations on a large number of resources.
Scaling up to deal with large number of resources is only possible by exploiting the
homogeneity and regularity of MPPA architectures.

• The use of code optimizations, such as software pipelining, in the presence of con-
ditional execution, as explained in [Carle and Potop-Butucaru, 2011].

• The use of (pre-computed) preemption for NoC communications.

2.3.2 The StreamIt compiler for the MIT RAW architecture

The second main source of inspiration in the definition of our mapping technique is pre-
vious work on mapping StreamIt programs onto the MIT RAW architecture presented
above [Waingold et al., 1997]. Like in AAA/SynDEx, StreamIt mapping is realized using
table-based static scheduling techniques. But there are also significant differences. First
of all, the StreamIt input language belongs to a different class of data-flow formalisms. Its
execution model is similar to that of synchronous data flow (SDF) [Goossens et al., 2012],
but:

• It includes features facilitating the programming of real-life streaming applications
(e.g. hierarchy, peek operations, etc.).

• The topology of the data-flow graphs is significantly restricted. More precisely, the
construction of the graph is done through hierarchic composition by employing the
3 elementary combinators pictured in Fig. 2.18: pipeline, splitjoin, feedbackloop.

Along with constraints on the form of elementary data-flow blocks (known as filters),
these restrictions allow the real-life programming of complex applications and at the same
time facilitate their compilation into executable code.

stream

stream

stream

stream

(a) A pipeline

splitter

stream stream......

joiner

(b) A splitjoin

stream

joiner

splitter

stream

(c) A feedbackloop

Figure 2.18: StreamIt data-flow combinators (cf. [Gordon, 2010]).

The flow of the StreamIt compiler is pictured in Fig. 2.19. It involves 3 separate steps:

2.3. STATIC APPLICATION MAPPING 53

• Coarsening the granularity of the data flow graph. To reduce the complexity of sub-
sequent transformations, state-less data-flow blocks are fused together into larger
blocks.

Figure 2.19: The flow of the StreamIt compiler (reproduced from the PhD presentation of
[Gordon, 2010])

• Data parallelization: In this phase, data-flow blocks are data parallelized using a
so-called judicious fission algorithm [Gordon et al., 2006] that uses load balancing
arguments in order to decide how much data parallelism is introduced.

• Coarse-Grained software pipelining: The actual mapping of the coarsened and
data-parallelized graph onto the RAW processor is done using classical software
pipelining techniques.

The compilation flow proposed in this thesis shares with the one of StreamIt the use of
scheduling tables as an internal compiler representation and the use of optimizations such
as software pipelining to improve resource use. There are, however, significant differ-
ences. First, our objective is to provide worst-case hard real-time guarantees, while com-
pilers usually aim for average-case performance. For instance, the StreamIt compiler uses
incomplete timing information coming from simulations to guide the mapping process,
not taking into account timing interferences due to the mapping itself. By comparison,
our tool uses safe WCET/WCCT bounds and maintains throughout the mapping process
a strict control of the timing interferences due to concurrent memory or NoC accesses.

The second difference is the optimization objective. Classical software pipelining
algorithms attempt to optimize computation throughput, thus maximizing the use of the
hardware resources. But for embedded control applications the objective is most often to
optimize not the shere speed, but the latency between input acquisition and corresponding
output production. Our algorithms are therefore tailored for optimizing both latency and
throughput, with latency being prioritary.

Finally, our mapping tool can exploit conditional execution to improve resource al-
location, whereas StreamIt cannot. Our mapping problem is therefore harder, the only
mitigating factor being the coarser grain of control of our MPPA architecture: In RAW,

2.3. STATIC APPLICATION MAPPING 54

all inter-processor communications are done with scalar granularity. When the statically-
scheduled NoC is used (to ensure temporal predictability) one routing statement must be
executed for each scalar value (word) traversing a tile. By comparison, our MPPA archi-
tecture uses packetized communications, and each tile contains multiple CPUs, function-
ing as a classical symmetric multiprocessor (SMP) machine (but with a memory subsystem
with better support for timing analysis).

2.3.3 Compilation of the ΣC language for the Kalray MPPA256 plat-
form

The ΣC [Goubier et al., 2011] programming language has been jointly developed by CEA
LIST and Kalray as a way to program Kalray’s MPPA256 manycore processor.

ΣC belongs to the same class of data-flow formalisms as StreamIt, but is far more
expressive:

• The formal model of ΣC is an extension of cyclo-static data-flow networks (CSDF),
which is more expressive than StreamIt’s SDF.

• ΣC imposes no constraint on the topology of the data-flow graph.

The authors of the language also mention some limited amount of data-dependent control,
but it is unclear from existing papers what can be expressed and if knowledge of the data-
dependent control conditions can be used to improve implementations. Nevertheless, ΣC
provides a very rich development formalism while retaining the decidability of problems
such as the absence of deadlocks and the implementability in bounded memory.

The compilation of a ΣC program starts, like the compilation of StreamIt, with a series
of transformations aimed at adapting the parallelism grain of the application to the one
of the execution platform (in this case the MPPA256 chip). This first phase is called
parallelism reduction. On the resulting CSDF specification a series of 4 scheduling and
allocation steps are then applied. The first one uses classical CSDF scheduling algorithms
to determine minimal buffer sizes (associated to the data-flow arcs) ensuring the absence
of deadlocks [Aubry et al., 2013]. The next step refines these buffer size bounds by taking
into account required throughput constraints. The third step performs the mapping of the
data-flow blocks to the computing tiles of MPPA256. Mapping is done using affinity-
driven algorithms in such a way as to ensure that no tile is assigned more computations
than it can perform. The final allocation step performs communication routing, ensuring
that no link is charged at more than 100%. This phase defines the virtual channels needed
to configure the MPPA256 NoC, and their bandwidth, needed to configure the bandwidth
limiters.

Note that the scheduling phases of the compilation process are not aimed at producing
static scheduling patterns, but more at dimensioning the memory allocation to provide

2.3. STATIC APPLICATION MAPPING 55

liveness guarantees and improve the throughput. It is important to note that mapping on
MPPA256 platforms is not fully static. More precisely, allocation is static (each task is
assigned its tile and each communication its route), but scheduling is not: Inside a tile,
a task instance can be placed on one processor or another, depending on its execution
context. Thus, the output of the scheduling process is the partial order of tasks that must
be cyclically executed on each tile.

The final compilation stage is the so-called link edition, which generates the exe-
cutable C code.

In conclusion, even though the MPPA256 architecture provides significant support
for real-time implementation, the compilation process does not take advantage of it to
compute or enforce application-level timing guarantees. The focus is less on scheduling
and more on allocation (tasks on tiles, communications on the NoC, I/O buffers on the
memory banks) in order to improve the throughput of the application.

2.3.4 Other mapping approaches

The idea of organizing a development environment and flow around a scheduling paradigm
is not new. We already saw that static table-based scheduling was the basis of the RAW/StreamIt
approach. We know of two other attempts.

The first one is the CompSoC platform [Goossens et al., 2012], which relies on a com-
positional scheduling and timing analysis approach where applications are assigned la-
tency and throughput budgets on the computation and communication resources (such
an approach can be generalized towards the use of full-fledged real-time calculus, like
in [Bacivarov et al., 2013]). The respect of these budgets is enforced using time division
multiplexing (TDM) mechanisms on the various resources, such as the NoC, but the fine-
grain synchronization between these TDM mechanisms is not required, nor used during
timing analysis (only the latency/throughput budgets are used). By comparison, the map-
ping approach proposed in this thesis allows the tight synchronization of computation and
communication schedules, which improves timing precision and guaranteed performance,
but requires a more static execution model than CompSoC.

The second one is based on the use of a priority-preemptive scheduling paradigm
[Shi and Burns, 2010]. However, its target application class is very different from ours.
Indeed, the cited paper considers the case of independent tasks, whereas our main focus
is on dependent task systems.

More generally, our work is related to all previous work on application mapping onto
many-core architectures, be it at application level [Bebelis et al., 2013, Genius et al., 2013,
Zhai et al., 2013, Bhattacharyya et al., 2013] or aiming just some detail such as the allo-
cation or the configuration of TDM tables [Lu and Jantsch, 2007] . In all these cases, the
main difference with respect to our approach is given by the integrated approach we use

2.3. STATIC APPLICATION MAPPING 56

and by the statically scheduled NoC communications which ensure high timing precision
and efficiency for the chosen class of applications.

Chapter 3

Tiled MPPA architectures in SoCLib

Contents
3.1 MPPA structure . 57

3.2 Memory organization . 59

3.2.1 Distributed shared memory . 59

3.2.2 Address structure . 60

3.2.3 Global memory organization 61

3.2.4 Tile memory organization . 62

3.2.5 Hardware/software interface 63

3.3 Improving the timing predictability of the SoCLib tile 64

3.4 SystemC simulation and compilation support 68

This chapter reviews the MPPA architecture we used as basis for the developments

of this thesis, as well as the modifications we brought to its computing tiles to improve

timing predictability. We provide here fine technical detail of the platform which will be

needed in the following sections. The complexity of the platform, apparent in this chapter,

explains in part why hardware design, hardware configuration, and software mapping

problems are so complex.

3.1 MPPA structure

We are using a tiled many-core architecture built using the components of the SoCLib

hardware library [LIP6, 2011]. The central element of this architecture is the DSPIN NoC

[Panades, 2008], which links together the computing tiles. In our MPPA, all inter-tile

communication and synchronization are realized through the DSPIN NoC. In particu-

lar, no complex memory hierarchy exists to allow communication and synchronization

57

3.1. MPPA STRUCTURE 58

through shared caches. Thus, we avoid the complex problem of ensuring timing pre-

dictability in the presence of such shared caches [Wilhelm and Reineke, 2012],

[Hardy and Puaut, 2008].

As pictured in Fig. 3.1, SoCLib allows the construction of many-core architectures

where the computing tiles are organized in a 2D array and interconnected by two DSPIN

NoCs. Like in all MPPA architectures, the tiles are largely identical. As pictured in

Fig. 3.2, each tile may contain:

• A set of processor cores with the associated instruction and data L1 caches. SoCLib

provides a variety of CPU cores, including MIPS32, PPC405, ARM7 and ARM9.

• RAM and ROM memory banks.

• DMA controllers.

• Programmable interrupt units which allow both the generation of interrupts upon

command, or the programming of timers.

• I/O units, hardware locks units, etc.

[1.0] [1.1] [1.2] [1.3]

[2.1]

[0.1]

[2.2]

[0.2]

[2.3]

[0.3][0.0]

[2.0]

Command
Router

DSPIN

Tile

Router
Response
DSPIN

Figure 3.1: A typical DSPIN NoC based MPPA architecture. Dark rectangles are the
routers of the command sub-network. Light rectangles are the routers of the response
network

All tile components are connected to a local interconnect, which is linked to the

DSPIN NoCs through a Network Interface Controller (NIC). SoCLib provides a choice of

several topologies for the local interconnect. Among them, full crossbar and ring.

3.2. MEMORY ORGANIZATION 59

In the original MPSoC architecture proposed by SoCLib each tile contains one RAM

bank and at most 4 CPU cores, as experimentations showed that placing more than 4

CPUs per tile results in no performance gain due to memory bandwidth saturation.

NICLocal Interconnect

I/
O

 (
o

p
ti

o
n

)

Command router

Response router

In
te

rr
u

p
t

u
n

it

D
M

A

R
A

M

(s
in

g
le

−
b
an

k
)

In
te

rr
u
p

ts

...

Prog.

(PLRU,
WB)

Data

(PLRU,
WB)

Tile

CPUn

cachen cachen

Figure 3.2: The computing tile structure in the original SoCLib many-core

3.2 Memory organization

3.2.1 Distributed shared memory

SoCLib-based tiled many-cores follow a distributed shared memory model where all

memory banks are assigned addresses in a single address space. To this shared mem-

ory space are also mapped the programming registers of all peripheral devices, allowing

a uniform programming paradigm and the use of general-purpose development tools (the

GNU compiler suite, in our case).

The implementation of the distributed shared memory is based on the VCI/OCP pro-

tocol [Alliance, 2001]. This protocol follows a master/slave model. Masters are called

VCI initiators, and slaves are called VCI targets. A CPU is a typical VCI initiator, while

a RAM is a typical VCI target. Some components act as both VCI initiators and VCI tar-

gets. For instance, a DMA acts as a target to let the CPU write its programming registers,

but acts as a master when reading data from one RAM bank and writing it to another.

The VCI/OCP protocol organizes on-chip communications into transactions. A trans-

action takes place between a VCI initiator and a VCI target, which exchange packets

through one or more layers of interconnect, according to the locations of the initiator and

3.2. MEMORY ORGANIZATION 60

target. A transaction consists of a command packet issued by the VCI initiator and go-

ing all the way to the target, followed by the corresponding response packet emitted by

the VCI target. The commands and the responses are transmitted through distinct input

and output ports and through two distinct physical networks (the command sub-network

and the response sub-network). This helps avoiding deadlock conditions between com-

mands and responses and allows transaction pipelining. This explains the presence of two

DSPIN NoCs in our architecture. The local interconnect of each tile is also formed of two

separate networks.

3.2.2 Address structure

Routing of commands along the two-level interconnect formed of the command DSPIN

NoC and the command local interconnect is done according to static routing mechanisms.

The same is true for the routing of responses along the response interconnect. To this

end, all VCI targets and initiators are assigned fixed addresses. One component may

have multiple VCI source and target addresses. For each address it must have a separate

interface with the other components.

To facilitate the definition of the static routing patterns and reduce the complexity

of the routing hardware, VCI target and initiator addresses used in the SoCLib-based

MPPA architecture have a particular structure, where the most significant bits identify the

destination tile inside the NoC (through its Y and X coordinates) and the least significant

bits form the so-called local address identifying the destination VCI target or initiator

inside the tile. The number of bits dedicated to the encoding of the Y, X, and local address

for both the command and response networks are parameters of the SoCLib platform

which must be fixed during configuration.

Global Index

ADDRESS := Y_INDEX | X_INDEX | LOCAL_INDEX | OFFSET

Figure 3.3: Memory address decoding

Each hardware component acting as a VCI target is assigned a contiguous block of

memory addresses of the global address space. All memory accesses targeting addresses

in this block will be routed to and handled by the associated VCI target component. To

simplify the association between VCI target addresses and memory addresses, it is re-

quired that the most significant bits of a memory address are the VCI address. Therefore,

memory addresses have the structure of Fig. 3.3.

3.2. MEMORY ORGANIZATION 61

Addresses are encoded on 32 bits. The most significant 8 bits are dedicated to the

encoding of the Y and X coordinates of the target tile (4 bits for each coordinate). This

should allow the construction of NoCs of at most 16x16 tiles, but in practice only 16x15

tiles can be used due to reserved address blocks (defined next). Both the address size and

the number of bits allocated to tile coordinates are set by configuration, but they will not

change throughout this thesis. The Y and X coordinates are known together as the global

index, and are decoded and used by the NoC routers and NICs.

The number of bits allocated to the local target address depends on the number of

VCI targets, and in particular memory banks, of each tile, which depends itself on con-

figuration, as explained below. The local target address, also known as the local index,

is decoded by the local interconnect of the target tile to route the command packet to the

proper target. If T is the number of target components in the tile, then the minimal number

of bits that must be assigned to the local index is dlog2(T)e.
The remaining bits of the address are used to encode the offset inside the memory

block associated to the VCI target. This limits the number of memory addresses inside a

VCI target to 2O, where O is the number of bits used in addresses to encode the offset.

3.2.3 Global memory organization

The structure of memory addresses, defined above, implies that the global address space

is divided into blocks of size 2N , where N is the number of bits allocated to the encoding

of the local address and offset. For each Y and X ranging over 0..F one such block exists

starting at address 0xYX000000 and terminating at address 0xYXFFFFFF.

As pictured in Fig. 3.4 (left), most address blocks are uniquely assigned to the tiles ac-

cording to their Y and X coordinates. Any of these address blocks can be freely accessed

from any tile on the MPPA. The only exception to this rule is the top-most memory block,

which starts at address 0xFF000000. Addresses in this block are used in each tile for

private addresses that are never accessed through the NoC. When an access to this mem-

ory range is issued in a tile, it never leaves the tile. Such addresses can be assigned to

the stack RAM banks, program RAM/ROM, DMA programming registers, etc. The use

of private addresses significantly reduces the number of unique VCI identifiers, and thus

the footprint of the VCI address encoding.1 It also helps in ensuring memory protection

between different tiles.

The drawback of reserving one address block to private VCI targets is that no tile can

1A similar problem exists in telecommunication networks, where it lead to the use of loopback network
interfaces.

3.2. MEMORY ORGANIZATION 62

.....

0x010

0x02

Tile(0.1)

Tile(0.0)

.....

.....

space

GLOCKS C

BASE_GLOBAL = 0x00

BASE_LOCAL = 0xFF

Platform address

Segments Tile(0.0)

SSEG_0_0_(p-1) C

Local segments

C

C

C

C

LLOCK_0

NOCCTR

TTY

DMA

STACKS

TEXT

EXCEP

RESET

NC

NC

NC

NC

SSEG_0_0_0 C

LLOCK_(n-1) NC

Figure 3.4: Memory organization in the modified MPPA platform (tile structure described
in Section 3.3). Global address space segmentation is on the left, tile address space seg-
mentation (public and private) on the right.

be assigned the Y/X coordinates 0xFF. This is why in this thesis we consider MPSoCs

of size 16x15, and not 16x16, and why the global address space of Fig. 3.4 contains an

unused space, which corresponds to unused Y/X coordinates of the form 0xFX, with X

ranging from 0x0 to 0xE.

3.2.4 Tile memory organization

The private and public memory blocks of each tile are allocated to the various VCI targets

of the tile. We pictured on the right side of Fig. 3.4 the tile memory allocation pattern we

employ throughout this thesis.

The public memory block is divided between the main data memory of the tile and

the public programming registers of the hardware lock unit (such a public programming

interface is needed on the lock device to allow inter-tile synchronization). To improve

both performance and predictability, the main data memory is divided into multiple banks,

3.2. MEMORY ORGANIZATION 63

each being assigned a separate VCI target. However, we require that the multiple banks

cover a contiguous memory address space, so that they can store data structures larger

than a single bank. In turn, this requires that each memory bank stores exactly 2O octets,

where O is the number of bits used in addresses to encode the offset. Thus, the desired

memory size constrains the construction of the memory and VCI target addresses. The

public programming registers of the lock unit are stored on a single VCI target.

The private memory block is divided between the private tile memory banks and the

private programming registers of the various tile devices. One memory bank (one VCI

target) stores the program and the static program data of all the CPU cores of the tile.

For each processor core, one separate memory bank (one VCI target) stores the execution

stack. The remaining VCI targets contain the programming registers of the various devices

described in the next section. Of particular interest is the lock unit, which uses N private

VCI targets, where N is the number of processors on the tile, in order to ensure that no

timing interference exists between CPU accesses to the lock unit (as explained in the next

section).

The MPPA processors allow both cached and uncached memory accesses. The type

of access is determined by the VCI target address. More precisely, a (configurable)

cacheability mask over the local index bits determines whether an access is cacheable

or not.

3.2.5 Hardware/software interface

The previous sections have discussed memory organization from a hardware point of view.

But the software has another view of memory organization, and the two views (hardware

and software) must be compatible.

Executable code for our platform is generated using the gcc compiler toolset, in the

ELF executable format [ELF, 1995]. An ELF file defines the memory segments of the

application. For specific segment types (program, read-only data, etc.) the ELF file also

provides the content of the segment. On our MPPA platform, the ELF file contains non-

relocatable code. Each segment of such a file is assigned a fixed memory address where

the segment must be placed at execution time. Before execution can start, each segment

that contains data must be loaded at the prescribed address.

Traditional compilation using gcc for an embedded single-processor platform will

place all executable code in 3 segments: .text for the program code, .excep for the

interrupt handling code, and .reset for the (re-)boot code. In our case, one set of

3.3. IMPROVING THE TIMING PREDICTABILITY OF THE SOCLIB TILE 64

executable code segments is generated for each tile of the MPPA. The processors of a tile

share the same program memory and program segments, but use CPU identifier tests to

determine which parts of the code to execute. All 3 executable code segments of a tile are

placed in the private program memory. The stack and heap of the program are set by the

boot code to point to the stack memory banks associated to the various processor cores.

The private data segments are also placed on these memory banks.

Enforcing the needed memory organization at compiler level is realized through the

use of custom ldscript loader configuration files which are synthesized by our plat-

form configuration scripts. This allows the platform, at execution/simulation time, to load

the segments of the ELF file into the prescribed memory banks before starting the exe-

cution on the processor cores (as specified by a mapping table included in the hardware

description).

3.3 Improving the timing predictability of the SoCLib tile

We have described in Section 3.1 the structure of the original MPPA computing tile, as

it was provided by SoCLib. To improve both timing predictability (needed in real-time

applications) and performance, we have modified the structure of the tile as described in

this section. Our modifications retain the global organization of the many-core, and in

particular its distributed shared memory model which allows programming using general-

purpose tools. The modified tile is pictured in Fig. 3.5.

NICLocal Interconnect (full crossbar)

I/
O

 (
o
p
ti

o
n
)

L
o

ck
 u

n
it

Command router

Response router

D
M

A

d
at

a
R

A
M

...

P
ro

g
ra

m
 R

A
M

/R
O

M

Tile

CPUn
(MIPS32)

L1 Cachen

Figure 3.5: Modified computing tile structure of our architecture (with fair arbitration)

3.3. IMPROVING THE TIMING PREDICTABILITY OF THE SOCLIB TILE 65

The memory sub-system: Our objective was to improve timing predictability by elim-

inating contentions. In our experiments with the original SoCLib-based many-core, the

second most important source of contentions (after the NoC) is the access to the unique

RAM bank of each tile. As a solution to this problem, we decided to follow the example

of existing industrial many-core architectures [Benini, 2010, Harrand and Durand, 2011],

and replace the single RAM bank of a tile with several (up to 32) memory banks that can

be accessed independently.

To facilitate timing analysis, we separate data (including stack) and program memory.

One RAM/ROM bank is used in each tile to store the program of all the CPUs of the

tile. As explained above, data and stack are stored on several RAM banks. Each bank of

the data RAM has a separate connection to the local interconnect. Explicit allocation of

data onto the memory banks, along with the use of lock-based synchronization and the

local interconnect presented below allow the elimination of contentions due to concurrent

access to memory banks.

Note that the use of a multi-bank data RAM also removes a significant performance

bottleneck of the original architecture. Indeed, a single RAM bank can only serve 4

CPUs (placing more than 4 CPUs per tile result in no performance gain because the RAM

access is saturated). Having multiple RAM banks per tile removes this limitation. Our

test configurations use a maximum of 16 CPU cores per tile and two data RAM banks per

CPU core, for a maximum of 4Mbytes of RAM per tile.

The local interconnect is chosen in our design so that it cannot introduce contentions

due to its internal organization. Contentions can still happen, for instance, when two CPUs

access concurrently the program memory. However, accesses from different sources to

different targets never introduce contentions. Interconnect types allowing this are the

full crossbars and the multi-stage interconnection network [Aydi et al., 2011] such as the

omega networks, the delta networks, or the related logarithmic interconnect [Kakoee, 2012].

The experiments of our work use a full crossbar interconnect.

The CPU core we use is a single-issue, in-order, pipelined implementation of the MIPS32

ISA with no speculative execution. We did not change this, as it simplifies timing analy-

sis and allows small-area hardware implementation. However, significant work has been

invested in designing a cycle-accurate model of this core inside a state-of-the art WCET

analysis tool [Puaut and Potop-Butucaru, 2013].

3.3. IMPROVING THE TIMING PREDICTABILITY OF THE SOCLIB TILE 66

The caches have been significantly modified. The original design featured caches with

a pseudo-LRU (PLRU) replacement policy and with a writing policy that is intermediate

between write-through and write-back.2 Furthermore, memory accesses from the data

and instruction caches of a single CPU were multiplexed over a single connection to

the local interconnect of the tile. Both these choices are known to complicate timing

analysis and/or to reduce its precision [R. Wilhelm et al., 2008, Hardy and Puaut, 2008],

and thus we revert to more conservative choices: We use the LRU replacement policy,

a fully write-through policy, and we let the instruction and data caches access the local

tile interconnect through separate connexions. Note that the use of a write-through policy

reduces the processing speed of each CPU. This is the only modification we made on the

MPPA architecture that decreases processing speed.

Synchronization: To improve temporal predictability, and also speed, we do not use

interrupt-based synchronization. Indeed, interrupt signaling by itself is fast, but handling

an interrupt usually requires accesses to program memory which take supplementary time.

Furthermore, imprecision related to interrupt arrival dates and modifications of the cache

state mean that it is difficult to accurately account for interrupt-based synchronization

overhead during execution time analysis.

To avoid these performance and predictability problems, we never use the interrupt

units, and therefore remove them from our hardware descriptions. Instead, we include in

each tile a hardware lock component which allows synchronization with very low over-

head (1 non-cached local RAM access) and without modifications of the cache state.

The lock unit follows a simple request/grant protocol. A lock unit can theoretically

implement 2O locks, where O is the number of bits assigned to offset encoding. Each lock

is visible under the form of a memory address, and lock operations are performed through

regular (uncached) memory access operations on this address. A lock grant operation

consists in writing a non-zero value at this address. A lock request operation consists in

reading the address. When the read command packet produced by the CPU cache arrives

at the lock unit, if the value of the lock is non-zero, then it is set to 0 and the response

packet is immediately sent back to the CPU. If the lock value is 0, then the response

packet is sent back only after the lock has been granted by some other CPU or DMA. This

effectively blocks execution on the CPU until the lock has been granted.

Multiple processors may be blocked waiting for locks at the same time, and each

read transaction that is blocked will block (in the SoCLib architecture) a VCI interface.
2Consecutive writes inside a single cache ligne were buffered.

3.3. IMPROVING THE TIMING PREDICTABILITY OF THE SOCLIB TILE 67

Therefore, each lock unit has multiple VCI interfaces. It has one interface for each CPU

core and one for the NIC. Thus, it allows contention-less simultaneous access from all

these directions. Given that VCI interfaces correspond to different address ranges, each

lock will have one address on each interface, but all these addresses share the same address

offset, which is known as the lockid, and which uniquely identifies the lock.

Buffered DMA: To minimize NoC usage during large data transfers, we perform them

using direct memory access (DMA) units controlled by the CPU of the sending tile. Trans-

ferring data directly through CPU operations would mean that the packet construction and

sending is controlled by the CPU cache, which generates one packet for each transmitted

word.

The traditional DMA unit used in the original MPPA architecture requires significant

software control to determine when a DMA operation is finished so that another can start.

This is either done using interrupt-based signaling, which has the inconvenients men-

tioned above, or through polling of the DMA registers, which requires significant CPU

time and imposes significant constraints on CPU scheduling.

To avoid these problems, we use DMA units allowing the buffering of transmission

commands. A CPU can send one or more DMA commands while the previous DMA op-

eration is not yet completed. Furthermore, the DMA unit can be programmed so that it not

only sends out data, but also signals the end of the transmission to the target tile by grant-

ing a lock. Thus, all inter-tile communication and synchronization can be performed by

the DMA units, in parallel with the data computations of the CPUs and without requiring

significant CPU time for control.

The high-level interface we use to program the new DMAs is the dma_send library

routine which has the following prototype:

void dma_send(SRC,DST,SIZE,LOCK_ADDR)

where:

• SRC is the address of the data to send (local tile address).

• DST is the address where data must be copied.

• SIZE is the amount of data to send (in octets).

• LOCK_ADDR is the address of a lock in the target tile. The DMA grants this

lock immediately after sending the last data packet. Setting the lock address to

0xFFFFFFFF means that no lock synchronization is needed.

3.4. SYSTEMC SIMULATION AND COMPILATION SUPPORT 68

3.4 SystemC simulation and compilation support

Executing code over our DSPIN-based many-core platform requires two distinct executa-

bles:

• The cycle-accurate hardware simulator itself, compiled and linked with the Sys-

temC and SoCLib libraries, using the soclib-cc command.

• The multi-threaded software that will run on the MPPA platform.

The hardware simulator is written in SystemC, and is of cycle-accurate bit-accurate (CABA)

type. The strict CABA modeling rules followed in the definition of the various architec-

ture components allow the use of the optimized simulation engine SystemCASS

[Buchmann et al., 2004].

Using a simulation-based approach, as opposed to using silicon hardware, had two

significant advantages: First, it facilitated our experimentation with various degrees of

control over the interconnect, which implied significant changes in the hardware. Second,

by instrumentation of our the cycle-accurate hardware simulator we were able to perform

precise timing measures.

*.C *.S
top.cpp

segmentation.h

ldscript

*.O

(elf format)

bin.soft

mipsel−soclib−elf−unknown−asmipsel−soclib−elf−unknown−gcc

mipsel−soclib−elf−unknown−ld

soclib−cc

simulator.x

librairies

SoCLib

Figure 3.6: Building the MPPA simulator and executable code

The code executed on top of our hardware simulator is built from C sources and some

assembly code for low-level device control and boot code. Compilation is done using a

3.4. SYSTEMC SIMULATION AND COMPILATION SUPPORT 69

gcc cross-compiler (for the MIPS32 architecture), unmodified, but with automatically

generated loader script files.

The output of the linker is a single ELF file that contains the code and data for all the

tiles of the MPPA.

We have developed a tool allowing the automatic synthesis of the corresponding sys-

temC models and memory mapping files from a high-level hardware specification defin-

ing:

• The number of rows and columns of tiles in the MPPA.

• The number of CPU cores in each tile.

• The amount of RAM per tile.

• The number of RAM memory banks in each tile.

• The configuration of I/O devices.

Chapter 4

Programmable NoC arbitration

Contents
4.1 The case for programmed arbitration 71

4.1.1 The principle . 71

4.1.2 Target application classes . 72

4.1.3 The cost of programmability 73

4.2 Programmable DSPIN . 74

4.2.1 NoC router extensions . 74

4.2.2 Area overhead . 77

4.3 A simple example in depth . 78

4.4 Case study: the FFT . 84

4.4.1 FFT algorithm description . 85

4.4.2 Evaluation of the slow-down due to traffic injection 88

4.4.3 Removing the slow-down through NoC programming 89

In the previous chapter we have presented the original SoCLib-based MPPA architec-

ture we use as base for our work, and then explained how we modified its computing tiles

to improve the overall timing predictability.

But the main originality of our work, on the hardware side, concerns the NoC. We

explore in this chapter how the NoC architecture should offer the proper infrastructure to

implement optimal communication schedules that are synchronized with the scheduling

of computations on processors. Our thesis is that optimal data transfer patterns should

be encoded using simple programs configuring the router nodes, each router being then

programmed to act its part in the globally concerted computation and communication

scheme.

70

4.1. THE CASE FOR PROGRAMMED ARBITRATION 71

We concretly support our thesis by extending the DSPIN 2D mesh NoC. We replace

the fair arbitration modules of the NoC routers with micro-programmable modules. We

justify our choice by its use in reducing communication time, and in reducing contentions

in two case studies: A simple embedded control application and an implementation of the

Fast Fourier Transform (FFT).

4.1 The case for programmed arbitration

4.1.1 The principle

In the original MPPA architecture proposed by SoCLib, the use of fair arbitration inside

the NoC routers ensures good utilization factors for the resources of the DSPIN NoC.

However, when implementing embedded control or consumer applications the objective

is usually not to improve NoC usage, but to improve application-level characteristics such

as speed, power consumption, predictability, etc.

The following example shows to what extent fair routing may slow down communica-

tions, and thus the overall application. Fig. 4.1 pictures the case where the “East” output

of a DSPIN router is concurrently traversed by two bursts of data, each formed of n pack-

ets of equal length m numbered from 1 to n. Each burst transmits a single piece of data,

and processing cannot start at the destination until all packets of a burst have arrived. In

the worst case, the first packets of the two bursts arrive at the router in the same clock

cycle, and we assume that the current state of the arbiter leads to “Local” passing first.

Then, the fair routing policy of DSPIN results in the interleaved transmission of the “Lo-

cal” burst and the “West” burst having respectively lengths (2 ∗ n− 1) ∗m and 2 ∗ n ∗m.

The passing order can be represented by the (WL)n regular expression.

3 2 1

n

n

3 2 13 2 1
West

Local

East
...

...

n 3 2 1

n
...

Figure 4.1: Round Robin communication interleaving:(WL)n

Our objective is to allow for the better packet interleaving of Fig. 4.2. We assume

there that the “West” burst is needed by a computation located on the critical path of the

application running on the NoC, so that accelerating the burst transfer will result in a faster

4.1. THE CASE FOR PROGRAMMED ARBITRATION 72

...
n 3 2 1

3 2 1n
...

...
n 3 2 1 3 2 1n

...
West

Local

East

Program : WnLn

Figure 4.2: Programmed communication interleaving:W nLn

application. Therefore, we let the entire “West” burst pass before the entire “Local” burst,

even when “Local” arrives first. The transmission durations will then be respectively

2∗n∗m and n∗m. The passing order is represented by the W nLn regular expression inside

the multiplexer. This expression is an abstract view of the router program specifying that

n packets from the “West” direction should pass before the n packets from the “Local”

direction of the NoC router.

4.1.2 Target application classes

We are therefore advocating for applying a static scheduling principle for the arbitration

of NoC communications. This should be done under a global optimization approach

in conjunction with static scheduling of the computations on the CPUs. Two types of

applications can benefit from from such an implementation approach:

• Signal and image processing algorithms, which often have a very regular control

structure, and for which static scheduling yields optimal results. Such algorithms,

like the FFT, form a significant part of embedded control software, in terms of

computational resource use.

• Applications with high functional and temporal determinism requirements, like

those used in safety- or mission-critical embedded systems, where predictability

is imposed using specific language or OS constructs[Henzinger and Kirsch, 2007,

Lickly et al., 2008, AUTOSAR, 2009, ARINC653, 2005].

The term “application” should be considered here in a large sense. Thus, a global opti-

mization principle can be applied at the level of a sub-system, localized in space and/or

time. Improving the properties of the sub-system indirectly improves in many cases the

properties of the global system.

4.1. THE CASE FOR PROGRAMMED ARBITRATION 73

Note that in our simple example, the optimal communication schedule (i.e. letting the

West burst pass before the Local one) can also be obtained using more classical priority-

based arbitration mechanisms. However, this is no longer true for more complex applica-

tions and architectures.1 Our focus on “regular” applications justifies our choice of static

scheduling and NoC programming mechanism. For larger classes of applications, other

types of arbitration mentioned in Chapter 2 may provide best results.

4.1.3 The cost of programmability

As we shall see in the examples of the next sections, the static ordering of packets at router

multiplexers allows speed gains and a balanced use of NoC resources, by precisely allo-

cating free time slots on the NoC to in transit packets. It also allows for the construction

of applications with very good timing predictability and enhanced determinism.

However, these gains come at a price. One part of this price is the need for pro-

grammable NoC routers, described in the next section, which increase the silicon surface

of the NoC.

The second part is the need for temporal predictability. Indeed, the router programs

are computed based on the expected execution order of the various operations (computa-

tions and communications). In turn, the order depends on operation durations, and better

precision in computing these durations results in better routing programs. Therefore,

programming NoC packet orders should only be done on architectures where all other

architectural elements (i.e. the MPPA tiles) provide strong support for ensuring temporal

predictability, as described in the previous chapter.

The third and possibly most important part of this price is the need for automation:

the complexity of many-cores and of the applications running on them is such that allo-

cation and scheduling, including the construction of the router programs, must be largely

automated.
1Proof sketch: Optimal (static) scheduling of such applications may require scheduling algorithms that

are not of as-soon-as-possible (ASAP) type. However, priority-based scheduling is a form of ASAP schedul-
ing, hence not optimal in the general case.

4.2. PROGRAMMABLE DSPIN 74

4.2 Programmable DSPIN

To evaluate the costs and benefits of programmed arbitration, we have modified the DSPIN

NoC of the previously-defined MPPA architecture by allowing the programming of all

arbiters of the command NoC.

4.2.1 NoC router extensions

The purpose of DSPIN router programming is to fully control the arbitration between

incoming input packets at each of the router’s multiplexers. Adding programmability to

the NoC means adding program to each router multiplexer. This is done by introducing

new signals (wires) that control each multiplexer (Fig. 4.3), which are controlled by the

new hardware components called router controllers, as pictured in Fig. 4.4.

Figure 4.3: The programmable DSPIN router architecture

There are 3 new signals, named VAL, PORT and ACK, which use a classical FIFO

protocol to transmit the sequence of routing orders to the router multiplexer:

• The PORT signal is set by the router controller. It tells the router multiplexer from

which input direction to accept a packet for transmission. This signal is set while

the previous packet is still transmitted, but does not affect its transmission (we do

not allow packet transmission interruption).

4.2. PROGRAMMABLE DSPIN 75

• Signal VAL is set by the router controller to signal the presence of a valid value on

PORT. It is reset upon reception of ACK.

• Signal ACK is used by the router multiplexer to acknowledge that the current PORT

value has been taken into account. It is set for one clock cycle only when the first

flit of the corresponding packet passes.

Local Interconnect (full crossbar)

Program RAMP
ro

g
ra

m
 R

A
M

/R
O

M

...

NIC

Command
Router

Controllers

N S E W L

I/
O

(o
pt

io
n)

Response router

Command router

D
M

A

L
oc

k
un

it

da
ta

R
A

M
M

ul
ti-

ba
nk

B
uf

fe
re

d

Write-through)

CPUn
(MIPS32)

Cachen (LRU,

Figure 4.4: Tile structure in our architecture with programmable routers

One router controller is added to each of the router multiplexers of the command NoC.

We therefore use 5 independent micro-programmable router controllers per tile, grouped

together into a LocalRouterController component connected to the local interconnect of

the tile to allow programming, as shown in Fig. 4.4.

Each of the 5 router controllers contains:

• 8 16-bit local registers named R0 to R7, which allow a compact encoding of regular

expressions through the use of counters.

• 256 32-bitword (1kbyte) local memory for micro-programs.

• 2 memory-mapped registers that allow CPU control over the router controllers. One

of these registers allows for commuting between the programmed and fair (Round

Robin) arbitration policies. The other is the router controller program counter,

which can be read to determine the current execution point.

4.2. PROGRAMMABLE DSPIN 76

Instruction Function
loadimm reg imm Load a 16-bit immediate value (imm) to register reg
write port Send a new arbitration value (through port and val)

to the corresponding router output. The controller is
blocked until reception of ack.

dec reg Decrement the register
bnz reg label If the value of REG is not zero, jump to the target

instruction marked by the label
jump label Jumps to the target instruction marked by label

Table 4.1: The router controller micro-instruction set.

The controllers have 5 micro-instructions, whose assembly language representations

are presented in Table 4.1.

The interaction of the tile router controllers with the router multiplexers is realized

as pictured in Fig. 4.5. Each multiplexer of the command network is controlled by its

own controller running a separate program. Starting and stopping the router controller

is realized through the VCI interface of the router controller. When the controller is

stopped, the fair arbitration of DSPIN takes control. In Fig. 4.5, the arbitration program

will cyclically accept 26 packets from the Local direction, then 26 packets from the West

direction.

The North arbiter

M
U

X

S

E

W

L

Fair arbiter VAL

ACK

PORT(S/E/W/L/Fair)

}}

do 26 times grant(L);

do 26 times grant(W);

loop {

North router controller

Program RAM (1k)

Local interconnect (crossbar)

Figure 4.5: Programmed arbitration in a NoC router multiplexer

This specific architecture and instruction set allows an efficient (compact) encoding of

routing patterns such as the one of Fig. 4.2 through the use of counters. A full example of

router program for a simple application is provided in Section 4.3 and Listing 4.2. More

generally, the use of multiple registers and general decrement and test statements allows

4.2. PROGRAMMABLE DSPIN 77

a simple encoding of complex loop nests.

The instruction set proposed above has been chosen for its simplicity, and was suffi-

cient for our tests. However, it can be improved in a variety of ways, of which we mention

only 2:

• Given the way router controllers are used, instructions write, dec, and bnz can

be grouped together, thus reducing program sizes and decoding time.

• Using simple packet inspection techniques allows the use of data-dependent control

in router programs.

Note that we only modified the arbitration function of the DSPIN NoC, but not its

routing function. This means that NoC programming can introduce deadlocks, but cannot

change the function computed by the code executing on processors.

4.2.2 Area overhead

Adding programmability to the network-on-chip routers has its cost. In hardware, this

cost is measured in supplementary circuit area. Given the exploratory nature of this work,

we did not fully synthesize, place, and route our circuit,2 so that we were not able to

perform an exact evaluation of the area cost of programmability.

Instead, we relied on the observation that area increases are mostly due to added mem-

ory elements, meaning that the largest penalty in our case comes from the 5Kbytes of

micro-program memory added to each tile by the 5 router controllers. We have compared

this area with the global memory footprint of the tile, which is mainly due to the multi-

bank RAM. We let this RAM size range between values proposed in current industrial

many-core architectures: 256 Kbytes [Benini, 2010] and 2 Mbytes[Harrand and Durand, 2011].

We thus determined that the area overhead due to network-on-chip programmability is un-

der 2% of the total chip area.

A second remark here is that router program memory should be accounted for as

program memory, and considered in view of the application efficiency (speed, power)

optimizations it enables.

2Note that synthesizable VHDL versions exist for most components of our platform, as part of the
SoCLib library.

4.3. A SIMPLE EXAMPLE IN DEPTH 78

To limit the area overhead, we only add programmable multiplexers and their respec-

tive controllers on the command network part of the NoC, leaving unchanged the fair

arbiters on the response network. To avoid uncontrolled contentions on the response net-

work, all large transfers of data, represented by packet bursts, should be performed with

write operations. This way, the response network only transfers 2-flit acknowledge pack-

ets with negligible contention cost attached.

4.3 A simple example in depth

To showcase the previous developments, we consider a simplified and pipelined version

of the image processing part of the platooning application for the CyCab electric car

[Pradalier et al., 2005]. The CyCab application has a cyclic behavior represented by the

data-flow synchronous specification of the Fig. 4.6. At each cycle, the system acquires

an image. On this image is then applied an edge-detecting Sobel filter. The output of

the Sobel filter is used to detect the front car by using a histogram search. The position

of the front car is then used to correct the speed and steering of the CyCab electric car to

ensure that it follows the front car at the prescribed distance. The histogram, detection and

correction function may also change the parameters of image acquisition, which explains

the feedback loop of length 2.

Image
acquisition

Sobel
detection,
correctionfilter
Histogram,

∆ ∆

Figure 4.6: Data-flow specification of the CyCab

To allow parallel implementation on our MPPA platform, we start by putting in evi-

dence specification-level parallelism, which results in the data-flow specification of Fig. 4.7.

We give detailed description of this formalism in Section 5.1.1.1. The control of image

acquisition is performed here by function F (acquisition and data transfer is realized in

hardware, F only contains the code performing the configuration of the acquisition device

and the synchronization). Functions S1 and S2 each compute the Sobel filter on half of

the input image. On the output (s1 and s2) of the Sobel filters, functions H1 and H2 per-

4.3. A SIMPLE EXAMPLE IN DEPTH 79

form the histogram search, detection, and correction computation. The histogram search

is split in two to allow computations to start before the reception of S2’s result. The po-

sition of the delays is changed through retiming to facilitate allocation and scheduling by

putting in evidence the parallelism between the image capture of one cycle and the Sobel

computation of the previous cycle.

F
i1

i2

H1S1

H2

h1

s1

s2

i1

i2

∆

∆

∆

p

S2

p_delayed

Figure 4.7: Simple data-flow specification

Tile Tile
(0,1)(0,0)

Tile
(1,0) (1,1)

Tile

s1

i2

NoC contention

H1,H2

s2

p

F,S1 S2

Figure 4.8: Mapping of the example in Fig. 4.7

We implement this specification on an MPPA of size 2x2 as pictured in Fig. 4.8. To

simplify presentation, we assume that the durations of the 5 computation blocks are re-

spectively 200, 2100, 2100, 500 and 500 clock cycles. We also assume that the trans-

mission of either s1 or s2 uses NoC packets whose combined length is 500 flits. If we

also assume that the tiles and the NoC have the same clock speed (fully synchronous),

transmitting any of these data will consume only a little more than 500 cycles (with small

variations due to instruction cache state and issues related to the internal state of the DMA

unit). We also assume that the communication of other data requires only one packet

whose length is 10 flits.

4.3. A SIMPLE EXAMPLE IN DEPTH 80

We also assume that the data acquisition must be done by F on tile (0,0) and that

H1 and H2 must be executed on tile (1,1). Based on this specification, our automatic

allocation, scheduling and code generation tool Lopht, presented in Chapter 5, generates

for this example the allocation of Fig. 4.8 (F and S1 on (0,0), S2 on (0,1), and H1, H2 on

(1,1)), the static scheduling represented by the reservation table of Fig. 4.9 and the code

of Listing 4.1.3

CPU(0,0)Time

500

1000

1500

2000

p

CPU(0,1) CPU(1,1) DMA(0,0) DMA(0,1) DMA(1,1) E(0,0) N(0,1) W(1,1) S(1,0)

i2

ppp

2500

3000

3500

4000

s1 s1

s2

L(0,0) L(0,1) L(1,1)

s1

s2
i2 i2

S2

F

S1

H1

H2

s2

s1

Figure 4.9: Reservation table for our simple application. Only resources that are used are
pictured. CPU(x,y) is the unique CPU of tile (x,y), DMA(x,y) is its DMA unit, and the
remaining resources are the NoC router multiplexers

The reservation table of Fig. 4.9 represents the static scheduling of the operations

inside one execution cycle of the data-flow specification. The infinite execution of our

system is a succession of execution cycles, where one new cycle can start as soon as

the data dependencies between cycles and resource availability allow it. Pipelining is

possible. For instance, a new cycle can start with the execution of S1 and S2 as soon as F

has completed. Each data-flow block is assigned exactly one reservation on one CPU (the

reservations made for delays were not represented for simplicity). In our simple example,

each communication is assigned one reservation on each resource along its path. For

instance, the communication of s1 from tile (0,0) to tile (1,1) uses the DMA of tile (0,0)

and the NoC router outputs E(0,0), N(0,1), and L(1,1). Since NoC buffering resources are

very limited, reservations for one communication must be synchronized. For instance, the

reservation for s1 on DMA(0,0) starts at date 2100, the reservation on E(0,0) starts at date

2100+δ , the reservation on N(0,1) at date 2100+2∗δ , and the reservation on L(1,1) at

date 2100+3 ∗ δ , where δ is the number of cycles needed to traverse one NoC resource

3The reservation table and the code are slightly simplified for presentation reasons.

4.3. A SIMPLE EXAMPLE IN DEPTH 81

(in our case, δ = 3). The small increments corresponding to δ are not visible in Fig. 4.9.
void main() {
//Global addresses of all memory objects (data items and locks).
//Memory objects stored on Tile (1,1)
ImageType s1_in_1_1 =
(ImageType*)(build_address(1,1,ID_GRAM));

ImageType s2_in_1_1 =
(ImageType*)(build_address(1,1,ID_GRAM+1));

CorrectionType p_out =
(CorrectionType*)(build_address(1,1,ID_GRAM+2));

HistogramType h1_out =
(HistogramType*)(build_address(1,1,ID_GRAM+3));

lock_t s1_in_1_1_lock = build_lock_address(1,1,0);
lock_t s2_in_1_1_lock = build_lock_address(1,1,1);

//Memory objects stored on Tile (0,1)
ImageType i2_in_0_1 =
(ImageType*)(build_address(0,1,ID_GRAM));

ImageType i2_delayed_in_0_1 =
(ImageType*)(build_address(0,1,ID_GRAM+1));

ImageType s2_out =
(ImageType*)(build_address(0,1,ID_GRAM+2));

lock_t i2_in_0_1_lock = build_lock_address(0,1,0);
lock_t i2_delayed_in_0_1_lock = build_lock_address(0,1,1);

//Memory objects stored on Tile (0,0)
ImageType i1_delayed_in_0_0 =
(ImageType*) (build_address(0,0,ID_GRAM));

CorrectionType p_in_0_0 =
(CorrectionType*)(build_address(0,0,ID_GRAM+1));

CorrectionType p_delayed_in_0_0 =
(CorrectionType*)(build_address(0,0,ID_GRAM+2));

ImageType i2_out =
(ImageType*)(build_address(0,0,ID_GRAM+3));

ImageType i1_out =
(ImageType*)(build_address(0,0,ID_GRAM+4));

ImageType s1_out =
(ImageType*)(build_address(0,0,ID_GRAM+5));

lock_t i1_delayed_in_0_0_lock = build_lock_address(0,0,0);
lock_t p_in_0_0_lock = build_lock_address(0,0,1);
lock_t p_delayed_in_0_0_lock = build_lock_address(0,0,2);

switch (cpuid) {
case 0x00:// CODE FOR TILE (0,0)
i1_delayed_in_0_0 = i1_init;
lock_grant(i1_delayed_in_0_0_lock);
p_delayed_in_0_0 = p_init;
lock_grant(p_delayed_in_0_0_lock);
do {
if(TRUE) {
lock_request(i1_delayed_in_0_0_lock);
//execute S1
S1(i1_delayed_in_0_0,s1_out);

}
//send s1 to (1,1)

4.3. A SIMPLE EXAMPLE IN DEPTH 82

dma_send(s1_out,s1_in_1_1,s1_in_1_1_lock,sizeof(ImageType));
if(TRUE) {
lock_request(p_delayed_in_0_0_lock);
//execute F
F(p_delayed_in_0_0,i1_out,i2_out);

}
//send i2 to (0,1) (and signal it using the lock)
dma_send(i2_out,i2_in_0_1,i2_in_0_1_lock,sizeof(ImageType));

if(TRUE) {
i1_delayed_in_0_0 = i1_out;
lock_grant(i1_delayed_in_0_0_lock);

}
if(TRUE) {
lock_request(p_in_0_0_lock);
p_delayed_in_0_0 = p_in_0_0;
lock_grant(p_delayed_in_0_0_lock);

}
} while(1);
break;

case 0x01:// CODE FOR TILE (0,1)
i2_delayed_in_0_1 = i2_init;
lock_grant(i2_delayed_in_0_1_lock);
do {
if(TRUE) {
lock_request(i2_delayed_in_0_1_lock);
//execute S2
S2(i2_delayed_in_0_1,s2_out);

}
//send s2 to (1,1)
dma_send(s2_out,s2_in_1_1,s2_in_1_1_lock,sizeof(ImageType));
if(TRUE) {
lock_request(i2_in_0_1_lock);
i2_delayed_in_0_1 = i2_in_0_1;
lock_grant(i2_delayed_in_0_1_lock);

}
} while(1);
break;

case 0x11:// CODE FOR TILE (1,1)
do {
if(TRUE) {
lock_request(s1_in_1_1_lock);
//execute H1
H1(s1_in_1_1,h1_out);

}
if(TRUE) {
lock_request(s2_in_1_1_lock);
//execute H2
H2(s2_in_1_1,h1_out,p_out);

}
//send p to (0,0)
dma_send(p_out,p_in_0_0,p_in_0_0_lock,sizeof(CorrectionType));

} while(1);
break;

default: do {} while(1); break;

4.3. A SIMPLE EXAMPLE IN DEPTH 83

}
}

Listing 4.1: C code for our simple data-flow application.

In order to simplify code generation using gcc, the same program text is shared by

all the CPUs of the system. The main function is divided in two distinct sections. The

declaration section defines the addresses of all memory-mapped objects (variables and

locks). These addresses are fixed by the LoPhT tool. They could be hard-coded in the

function calls below under the form of numeric constants in order to minimize the memory

footprint. Here, we maintained them for clarity.

The second part of the main function consists in a switch statement that decides

which code is executed by each CPU depending on its identifier cpuid. By construction,

this identifier encodes the CPU tile coordinates (y and x) and the CPU identifier within the

tile. This last part is missing in our example because we only used one CPU per tile. The

default branch of the switch statement provides the code for CPUs without allocated

operations, such as the CPU of tile (1,0) in our example. This code is an infinite empty

loop.

As explained in Chapter 3, synchronization between tiles is realized using the lock

units through the lock_request and lock_grant primitives. In our example, most

lock_grant calls are performed by the dma_send routines that perform all inter-tile

data transfers using the DMA units. Note that unlike the scheduling table, the generated

code makes no reference to time, as all needed synchronizations are performed using the

locks.

The data s1 and s2, respectively produced by S1 and S2, become available for trans-

mission over the NoC at the same date (2100). Since they must both transit through the

North router of tile (0,1), they exhibit the phenomenon described in Section 4.1.1. In our

case, the theoretical slowdown of both transmission will amount to 480 clock cycles, a

value closely matched by simulations.
//
// Micro-code for the output North
// of Router 0,1
//

// 26 Packets from WEST to NORTH
LOOP: LOADIMM R1 26
W0: WRITE WEST

DEC R1

4.4. CASE STUDY: THE FFT 84

BNZ R1 W0

// 26 Packets from LOCAL to NORTH
LOADIMM R1 26

L0: WRITE LOCAL
DEC R1
BNZ R1 L0
JUMP LOOP

Listing 4.2: Assembly code for the North router of cluster (0,1) of our simple application.

This slowdown can be eliminated by choosing the order in which packets are trans-

mitted by the North router of tile (0,1) (also denoted N(0,1)). To determine the needed

program, we fix the maximal packet length for DMA data transmissions to 20 flits. As the

transmission of s1 is on the critical path of the application, and not s2, the best through-

put is ensured by the routing sequence (W26L26)*, which allows all the 26 packets from

the West input (the transmission of s1) to pass before all the packets from the Local in-

put (the transmission of s2). From each direction, the first 25 packets correspond to the

dma_send call, and the 26th corresponds to the lock update. The sequence of 52 packets

is repeated indefinitely, once for every computation cycle of the data-flow program. The

exact controller assembly program corresponding to this routing sequence is provided in

Listing 4.2. This program must be placed on the controller of the North output of the (0,1)

tile router. All the other router outputs of the NoC can be left unprogrammed (under fair

routing) because no contentions must be arbitrated.

Note that the optimization involved no changes to the C code, which can be executed

over a programmed or non-programmed NoC.

4.4 Case study: the FFT

The previous example showed the details of our platform and presented the form of the

code generated by our automatic allocation and scheduling tool LoPhT. Fully presenting

this tool here would be in Chapter 5.

Instead, we present here a different approach to code generation, where allocation and

scheduling are not fully automated. To illustrate this approach, we chose the Fast Fourier

Transform [Johnson and Frigo, 2008, Milder et al., 2007] because of its widespread use

in signal processing and embedded control and because its characteristics (at least in the

variant we considered) raise optimization questions that go beyond the classical speed

4.4. CASE STUDY: THE FFT 85

optimization criterion. We use the FFT algorithm proposed in [Bahn et al., 2008] for ex-

ecution on MPPA architectures with 2D mesh NoC interconnect. On the default DSPIN-

based MPPA, this algorithm features a strong domination of computation over communi-

cation, and a clear organization into successive computation phases separated by strongly

synchronizing communication phases.

As we show in Chapter 5, the FFT, considered alone or as part of a larger signal pro-

cessing application with regular structure, can be efficiently mapped onto our architecture

in a fully automatic fashion. However, a large MPPA usually executes several applications

which are often only loosely synchronized or even fully asynchronous. In such cases, the

LoPhT tool cannot be used at a global level. Each application such as the FFT is then

allocated and scheduled separately on a subset of the MPPA tiles. When doing this, it is

often necessary to allow that the MPPA area dedicated to one application such as the FFT

is traversed by NoC traffic belonging to other applications. As we shall see in the case

of the FFT, this external traffic may significantly slow down the application: up to 26%

under realistic architectural choices if the standard (non-programmable) fair routers are

used. We will also show in this section that the use of programmable routers allows us to

fully remove this slow-down.

4.4.1 FFT algorithm description

We work on the first FFT algorithm proposed in [Bahn et al., 2008]. It encodes a 1D

radix-2 decimation in time FFT. Recall that such an FFT is organized as a set of binary

“butterfly” operations, as shown in Fig. 4.10. Computing the FFT on a data vector of size

N = 2n,n≥ 1 takes n×2n−1 butterfly operations (complexity O(N ∗ log(N))).

We have evaluated the asymptotic cost of one “butterfly” operation by dividing the

global duration of the FFT transform on a single CPU by the number of butterfly opera-

tions, provided above. The result, for FFT data vectors ranging in size from 24 to 216, is

presented in Fig. 4.11a. The small increase (and stabilization) of the butterfly operation

duration corresponds to the moment where FFT data no longer fits inside the data cache

of the CPU.

4.4. CASE STUDY: THE FFT 86

Data out 0

Data out 1

Data out 2

Data out 3

Data out 4

Data out 5

Data out 6

Data out 7

Data in 0

Data in 1

Data in 2

Data in 3

Data in 4

Data in 5

Data in 6

Data in 7

an operation of "butterfly" exchange

Figure 4.10: A FFT of size 23

(a)

(b)

Figure 4.11: (a) Average duration of a butterfly exchange. (b) Average duration of com-
munications on the MPSoC platform

4.4.1.1 Mapping onto the MPPA architecture

For our parallelization work, we will assume that the FFT data vector has size N = 2n,

and that the number of tiles is M = 2m. The parallel FFT algorithm works by dividing the

data vector in M vectors of size 2n−m each. Data distribution is performed by one of the

tiles (detailed below). After reception of its data, each tile computes an FFT on its own

data vector of size 2n−m. Once this local FFT is computed, each tile engages in sequence

of m stages. During each stage, the tile exchanges its data (through DMA transfers) with

another tile and performs 2n−m butterfly operations. At the end, the partial FFT results of

all tiles are centralized.

We have performed our experimentations with FFTs of sizes N = 214,215,216 on an

MPPA architecture with 16 tiles organized in a 4x4 square. We made simulation for ar-

chitectures with 1, 2, 4, 8, and 16 CPUs per tile. Data distribution and data centralization

are realized by tile of coordinates x=0,y=0 (the bottom left tile). Thus, there are 6 com-

putation and communication stages, as pictured in the figure Fig. 4.12 (Stage 0 is data

distribution, Stage 5 is result centralization).

We have evaluated the duration of the data transmissions, as presented in Fig. 4.11b.

4.4. CASE STUDY: THE FFT 87

Asymptotically, this value is of approximately 2.69 cycles/data (we work on double word

data), but on smaller data sets the duration increases significantly (unlike the computation

time) due to the large DMA transfer initiation time. As mentioned before, communica-

tions between tiles are performed in bursts, meaning that the NoC resources remain largely

unused. However, the bursty nature of the communications lead to significant contentions,

even if the FFT is the only application running on the MPPA. These contentions occur in

stages 2, 4, and 5, in the places where communication routes in Fig. 4.12 intersect/join.

Stage2Stage0 Stage1

Stage3 Stage4 Stage5

Figure 4.12: The 6 FFT communication stages

4.4.1.2 Traffic injection configuration

The data provided in the previous section concerns the execution of the FFT, in isolation,

on a 4x4 tile MPPA. But our objective here is to allow the execution of several applications

(not just the FFT), at the same time, on a single, large MPPA like the one in Fig. 4.13.

Throughout this work, we assume that application mapping respects the following rules:

Each application is assigned a set of tiles that it can use during execution, and no tile is

assigned to more than one application. We assume that the FFT is assigned a 4x4 tile area

(the dark gray tiles in Fig. 4.13) on which its mapping is the one defined in the previous

section.

4.4. CASE STUDY: THE FFT 88

To evaluate the worst-case impact of traffic coming from outside the FFT-dedicated

area onto the FFT computation speed, we shall use traffic generators placed in the tiles

adjacent to the FFT-dedicated area. These tiles have a light gray color in Fig. 4.13. Traffic

is simulated through sustained data transmissions between the generator tiles, in the fixed

directions pictured with arrows in the figure. This form of traffic simulates the worst-case

effect of East-West and North-South transfers. We believe the approach is realistic due

to the bursty nature of the FFT communication, which means that the same slow-down,

described below, can be obtained with much less traffic (but occurring during peak NoC

use by the FFT).

Figure 4.13: Adding traffic not due to the FFT itself

4.4.2 Evaluation of the slow-down due to traffic injection

As expected, traffic injection in the absence of network router programming does slow

down the execution of the FFT. To evaluate this slowdown, we have measured the ex-

ecution time of the FFT with and without traffic injection in the various configurations

described above: FFT of size 214, 215, and 216, and MPPA configurations with 1, 2, 4 , 8

and 16 processors per tile. The results are pictured in Fig. 4.14.

The left side tables present here the raw figures (in CPU cycles), and the slowdown

induced by traffic injection to the execution time of the FFT. The slowdown is computed

using the formula:

Slowdown =
“FFT+Traffic”− “FFT alone”

“FFT alone”

4.4. CASE STUDY: THE FFT 89

The right side graphs plots the evolution of the speedup obtained through paralleliza-

tion while the number of processors per tile changes from 1 to 2, 4, 8, and 16. The formula

for computing the speedup is:

Speedup =
“FFT duration on one CPU”

“Parallel FFT duration”

where the parallel FFT duration is considered for the cases where the FFT is executed

alone (solid line), and with traffic injection (dashed line). For instance, a configuration

with 16 CPUs/tile (for a total of 256 CPU cores) computes the 216 size FFT 79.62 times

faster than a single processor. But the same configuration only results in a 63.22 times

speedup if external traffic is injected, which amounts to a significant 26% slowdown of

the FFT execution time.

The results without traffic injection show that the MPPA architecture we consider sup-

ports well the parallelization of the chosen FFT algorithm. Indeed, for large data sizes,

each doubling of the number of processors results in an acceleration close to the theo-

retical optimum (1.8 in our largest examples, asymptotically 2). When the processors are

allocated small data vectors, the slow-down of the communications identified in Fig. 4.11b

results in the plateau effect that can be observed in the graph associated with the 214 FFT

in Fig. 4.14.

Note that the 26% slowdown mentioned above happens while the FFT still uses only

a small part of the NoC bandwidth (as explained below). However, the fact that this use is

concentrated in short, highly synchronized bursts means that contentions at those points

in time have a very significant effect, and show the importance of reserving not only

bandwidth, but bandwidth at specific points in time, as our architecture allows.

4.4.3 Removing the slow-down through NoC programming

Our objective here is to show that NoC programming allows us to maintain FFT speed

while allowing the FFT-dedicated MPPA area to be traversed by NoC traffic originating

outside of it.

Like the LoPhT tool (Chapter 5), the approach we propose here relies on static schedul-

ing and the use of reservation tables. But the way reservation tables are used is different

from that of Lopht. The objective of Lopht is to build a reservation table “from scratch”,

and thus produce a static schedule for the application in isolation (in our case the FFT).

4.4. CASE STUDY: THE FFT 90

Figure 4.14: FFT slow-down due to traffic injection

Data Size of FFT (214)
(Single processor execution: 12809139 cycles)

FFT duration in 4×4 tiles
CPU FFT alone FFT+traffic Slowdown
/tile CPU cycles CPU cycles of Time
1 1040453 1057503 1.64%
2 564973 597043 5.68%
4 348246 389988 11.99%
8 263112 312042 18.60%
16 266411 326989 22.74%

Data Size of FFT (215)
(Single processor execution: 27435983 cycles)

FFT duration in 4×4 tiles
CPU FFT alone FFT+traffic Slowdown
/tile CPU cycles CPU cycles of Time
1 2189483 2222736 1.52%
2 1202232 1264318 5.16%
4 695706 780041 12.12%
8 484784 576635 18.95%
16 418092 527041 26.06%

Data Size of FFT (216)
(Single processor execution: 58507893 cycles)

FFT duration in 4×4 tiles
CPU FFT alone FFT+traffic Slowdown
/tile CPU cycles CPU cycles of Time
1 4598214 4663732 1.42%
2 2503537 2626790 4.92%
4 1448886 1608880 11.04%
8 945211 1115779 18.05%
16 734862 925365 25.92%

4.4. CASE STUDY: THE FFT 91

On the contrary, we shall assume here that the FFT application is already fully allocated

and scheduled on the MPPA area dedicated to it, and that the use of MPPA resources

by the FFT in isolation is represented using a reservation table covering all computation,

communication, and storage resources of the FFT-dedicated area. Such a reservation table

can be obtained in two ways:

• If the allocation and scheduling of the application is realized using the LoPhT tool,

then LoPhT automatically provides this table. This approach can be applied not

only on fully regular applications such as the FFT, but also on applications featuring

some data-dependent conditional control.

• If the application was allocated and scheduled by other means (e.g. manually) and

if it features no data-dependent conditional control, then a simulation of the appli-

cation in isolation on the MPPA simulation platform allows the recording of the

(worst-case) use of the various resources under the form of a trace. This trace can

be directly used as a reservation table.

Regardless of the way it was generated, the reservation table includes the routing opera-

tions performed by all the routers of the NoC, including their starting dates and durations.

We can then determine for each NoC route when it is free from FFT traffic. The free time

intervals of each route can then be used to schedule the transfer of NoC traffic originating

outside the FFT-dedicated MPPA area. The resulting scheduling table, when projected

on each router output, provides the program of the router. Collectively, these programs

ensure the preservation of the FFT speed while allowing the transfer of packets not be-

longing to the FFT.

Note that external traffic is statically scheduled. This scheduling fixes the maximum

amount of resources that can be dedicated to the transmission of external traffic along

every NoC route. Such an approach is best suited for cases where the external traffic is

either statically scheduled (like that of the FFT), or when it can be divided among a set of

fixed virtual circuits for which the maximal needs (throughput, latency) are known, like

in the TDM-based NoCs reviewed in Chapter 2.4

4In this latter case the router controller instruction set of Table 4.1 must be extended to allow the write
instruction to timeout while waiting for packets belonging to external traffic. This allows us to account for
the case where a virtual circuit does not use all its reservations.

4.4. CASE STUDY: THE FFT 92

Figure 4.15: The tables present the network use by packets not belonging to the FFT (in
% of all transiting packets). The figures show the FFT packet-ratio.

Data Size of FFT (214)
CPU/tile Non-programmed Programmed Loss
1 98.51% 97.47% 1.04%
2 97.36% 95.33% 2.02%
4 95.97% 92.45% 3.52%
8 94.94% 89.95% 4.98%
16 95.18% 90.10% 5.08%

Data Size of FFT (215)
CPU/tile Non-programmed Programmed Loss
1 98.58% 97.60% 0.99%
2 97.51% 95.62% 1.89%
4 95.97% 92.44% 3.53%
8 94.54% 89.14% 5.41%
16 94.01% 87.33% 6.69%

Data Size of FFT (216)
CPU/tile Non-programmed Programmed Loss
1 98.76% 97.91% 0.86%
2 97.80% 96.15% 1.65%
4 96.43% 93.38% 3.04%
8 94.81% 89.78% 5.03%
16 93.80% 86.97% 6.83%

4.4. CASE STUDY: THE FFT 93

We have written a tool that automatically allocates a maximal amount of statically

scheduled communications from outside the FFT-dedicated area. Our tool works in cases

where external traffic is done along virtual circuits that share no NoC component, so that

no arbitration is needed between the virtual circuits. This tool allowed us to schedule the

external traffic generated as described in Section 4.4.1.2, and to prove that our approach

preserves the FFT speed. The flow of our tool is presented in Fig. 4.16. A key point of

this flow is the optimization of the generated router programs by identification of repetitive

patterns in the routing orders provided by the previously-defined process.

The simulation of the FFT with external traffic injection allowed us to determine how

NoC programmation affects the amount of resources allocated to packets originating out-

side the FFT-dedicated area. Table 4.15 shows the number of FFT-generated packets tran-

siting the FFT-dedicated MPPA area, computed as a percentage of all transiting packets.

We can see that programming reduces permeability to external traffic, but not significantly.

In the worst case (bottom line), more than 86% of all transiting packets do not belong to

the FFT, and the loss of permeability due to programming is of less than 7%. In all cases,

the programmed NoC allows the FFT to run as if no external traffic existed.

Simulation in Mapping by
isolation LoPhT

and optimization

N
e
w

 t
o

o
l

Reservation
table

to external traffic

Allocation of free NoC time

NoC program synthesis

NoC programs

Figure 4.16: NoC program generation flow

Chapter 5

Off-line mapping of real-time
applications using LoPhT

Contents
5.1 Background: AAA using the Clocked Graphs formalism 95

5.1.1 The Clocked Graph formalism 95

5.1.2 Off-line scheduling of CG specifications 102

5.2 Static (off-line) mapping onto MPPA architectures 109

5.2.1 AAA for NoC-based MPPA: The problem 109

5.2.2 Extension of the CG format 111

5.2.3 Makespan-optimizing scheduling 115

5.3 Automatic code generation . 121

5.3.1 Tile code generation . 121

5.4 Experimental results . 124

In this chapter, we define our technique and tool, called LoPhT, for automatic off-line

real-time mapping of synchronous data-flow specifications onto MPPA architectures such

as the previously-defined one, where the NoC supports static communications scheduling.

Our off-line mapping and code generation technique drew significant inspiration from

previous work on the AAA methodology [Grandpierre and Sorel, 2003], whose principles

have been defined in Section 5.1. More precisely, we defined our techniques as an exten-

sion of a particular implementation of the AAA methodology, namely the one built around

the Clocked Graphs (CG) intermediate representation formalism [Potop-Butucaru et al., 2009].

This is why we fully dedicate the first section of this chapter to a detailed technical

description of the existing CG formalism and CG-based mapping algorithms. This sec-

tion borrows material from [Potop-Butucaru et al., 2009]. Sections 2 and 3 of this chapter

94

5.1. BACKGROUND: AAA USING THE CLOCKED GRAPHS FORMALISM 95

provide our original contribution. They first explain why the CG formalism and exist-

ing mapping techniques are not fully adapted to our many-core implementation problem

(mainly due to issues related to NoC communication mapping). Then, they define our off-

line scheduling algorithms and the code generation technique. The last section provides

some quantitative evaluation.

5.1 Background: AAA using the Clocked Graphs for-
malism

5.1.1 The Clocked Graph formalism

The CG formalism has been introduced in [Potop-Butucaru et al., 2009] as an interme-

diate representation to be used during the (multi-processor, real-time) implementation

of synchronous specifications. This format allows the faithful representation of specifica-

tions written in high-level synchronous languages like Scade/Lustre [Halbwachs et al., 1991],

Signal [Guernic et al., 2003], or discrete-time Scicos [Campbell et al., 2006], including

some structural information that can be used for efficient code generation purposes. At

the same time, the CG format is close enough to the target machine code to allow fine

grain manipulations such as scheduling, allocation, and optimization.

Following classical industrial design practices, a CG specification is formed of a func-

tional specification and a non-functional specification. The functional specification is

provided under data-flow synchronous program with a cyclic execution model. The non-

functional specification includes a description of the multi-processor architecture (topol-

ogy and component types) plus the real-time characteristics of the data-flow nodes and

the allocation constraints.

5.1.1.1 Functional specification

Synchronous languages [Halbwachs, 1993, Benveniste et al., 2003, Potop-Butucaru et al., 2005]

are modeling and programming formalisms used in the specification and analysis of safety-

critical embedded systems. They comprise (synchronous) concurrency features, and are

based on the Mealy machine paradigm: Input signals can occur from the environment,

possibly simultaneously, at the pace of a given global clock. Output signals and state

changes are then computed before the next clock tick, grouped as one atomic reaction,

5.1. BACKGROUND: AAA USING THE CLOCKED GRAPHS FORMALISM 96

also called execution instant.

Among synchronous languages, the CG representation is characterized by a strict sep-

aration of computations, under the form of a data-flow graph, from control, represented

with clocks which identify the synchronous execution instants where the data-flow ele-

ments are executed. The two parts are interconnected as all computations and communi-

cations are associated a clock defining their execution condition, while clocks depend on

values computed by the data-flow.

Clocks Clocks are logical activation conditions defining the sequence of synchronous

execution instants where some computation or communication is performed, or when

some data is available to be used in computations. To each execution instant a clock as-

sociates a value of 1 (true, active) or 0 (false, inactive). A computation or communication

whose clock is clk will be executed in execution instants t with clk(t) = true.

The CG formalism defines two types of clocks: elementary clocks and composed

clocks. Elementary clocks are:

• The constant clocks True and False defined by True(t) = true and False(t) = false

for all instant t.

• The Test clocks are Boolean predicates over the output ports of data-flow nodes

(defined below). For example, if o an integer output port of data-flow node n, o = 2

is the clock defining the execution instants where the value of o is 2. Similary,

o1 = o2 is the clock defining execution instants where o1 equals o2.

Composed clocks are obtained from the elementary ones by composing them using:

• The Boolean combinators ∧, ∨, and ¬: For example, clk1∧clk2 is true at execution

instants where both clk1 and clk2 are true. We also denote c1\c2 = c1 ∧¬c2 the

difference operators on Booleans and clocks.

• The sub-clock operator clk1.clk2, which evaluates clk2 only on instants where clk1

is true.

Clocks are partially ordered by ≤, where clk1 ≤ clk2 if at each execution instant t clk2(t)

is true whenever clk1(t) is true.

5.1. BACKGROUND: AAA USING THE CLOCKED GRAPHS FORMALISM 97

instant 1 2 3 4 5 6 7 8 9 10 11
output port x 5 4 3 2 1 0 -1 -2 -3 -4 -5

True 1 1 1 1 1 1 1 1 1 1 1
x > 0 1 1 1 1 1 0 0 0 0 0 0

¬(x > 0) 0 0 0 0 0 1 1 1 1 1 1
(x > 0)∧ (x≤ 3) 0 0 1 1 1 0 0 0 0 0 0

Figure 5.1: Examples of clocks.

Fig. 5.1 shows examples of clocks. The first line of the table indexes execution in-

stants, and the second provides the value of output port x.

Clocked graphs A clocked graph is a pair G=(N ,A) formed of a set of data-flow nodes

N and a set of arcs A. Each node n ∈ N has a set of named input ports I(n), a set of

named output ports O(n), and a clock clk(n). The name of a port p is denoted name(p)

and the ports of a node have all different names. The port of name name of node n is

denoted with n.name. Each input and output port p is assigned a data type (domain)

denoted Dp.

Each data-flow arc a ∈ A connects one output port denoted src(a) to one input port

denoted dest(a). Each arc has a communication condition (a clock) denoted clk(a), which

determines at which instants the data transfer takes place. Formally:

A⊆
(⋃

n∈N
O
(
n
))
×
(⋃

n∈N
I
(
n
))
×C

where C denotes the set of all clocks that can be defined using the previously-defined

syntax. Each arc a ∈ A is assigned a data type (domain) denoted Da and for each a ∈ A:

Da =Dsrc(a) =Ddest(a)

The Clocked Graph formalism defines two types of data-flow nodes: function nodes

and delay nodes. Function nodes represent atomic stateless computations. They perform

computations following a simple, cyclic read-compute-write semantics where all input

ports are read and all ouput ports are computed at each cycle where they are activated.

The state of the system is maintained by the delays. A delay δ ∈ N ∆ allows data to

be propagated between the successive execution instants (i.e. from one global execution

cycle to the next), where clk(δ) is active. Each delay δ has a data domain denotedDδ , one

input port i of typeDδ , one output port o of typeDδ , a depth denoted depth(δ) which is a

5.1. BACKGROUND: AAA USING THE CLOCKED GRAPHS FORMALISM 98

strictly positive integer, and a list of initial values of length depth(δ): δ0, . . . ,δdepth(δ)−1 ∈

Dδ . The function computed by a delay block is (t indexes here execution instants):

δ .o(t) =
{

δt if t < depth(δ)
δ .i(t−depth(δ)) if t ≥ depth(δ)

The set of function nodes is denoted NF , and the set of delay nodes is denoted N ∆, and

we have N =NF ∪N ∆.

FS_IN
FS

not HS

F2

HS

F3

G

V ID

C2

ID

ID
N

FS

M
SHS_IN

HS

F1

C1

not FS

ID

∆

Figure 5.2: Graphical model of a SynDEx synchronous specification

F1

G

FS_IN

HS_IN

FS

HS

¬HS

HS

¬HS

true

true

N

M

FS

¬FS

F3

¬HS

¬HS
F2

¬HS

ID

ID

ID

¬HS∧¬FS

HS∧¬FS
ID

¬FS

∆
¬FS

S

¬FS

S

V V

Figure 5.3: Clocked Graph representation of the example in Fig. 5.2

Example We provide in Fig. 5.3 the intermediate representation corresponding to the

simple SynDEx synchronous specification of Fig. 5.2. The specification represents a sys-

tem with two switches (Boolean inputs) controlling its execution: high-speed (HS) vs.

low-speed (¬HS), and fail-safe (FS) vs. normal operation (¬FS). In the low-speed mode,

more operations can be executed, whereas in the fail-safe mode the operation that gets

5.1. BACKGROUND: AAA USING THE CLOCKED GRAPHS FORMALISM 99

executed (N) does not use any of the inputs, because the sensors or treatment chain are

assumed to be faulty (control is done using default values).

The clocked graph has 9 data-flow nodes (8 function nodes and 1 delay node) and 6

arcs. Clocked Graphs is a textual language, for which we use here an intuitive graphical

representation. The predicate on top of each data-flow node and arc is its clock.

The behavior of this CG representation is: Nodes FS_IN and HS_IN have clock true,

so they are executed at each execution cycle to read FS and HS. If HS =false then clock

¬HS is true for the instant, which triggers the execution of F1, followed by F2 and

F3. Otherwise, G is executed (on clock HS). Clock dependencies, such as clock HS

depending on the output port HS_IN.HS, are not explicit. Both F1 and G are computing

through their output ports named ID the SynDEx-level output value ID of the hierarchical

conditional node C1. The execution of N can start as soon as we can determine that FS is

true for the instant. The execution of M (on clock ¬FS) can start after ID is received from

either F1 or G. It also uses the value S produced by M in the previous execution cycle

(we assume that depth(M) = 1).

Data-flow blocks having no dependency between them can be executed in parallel.

For instance, if FS =true then N can be executed as soon as FS is read, independently of

the execution of F1, F2, F3, or G. On the contrary, the computation of M must wait until

both FS and ID have arrived.

Support of a clock We have previously defined clocks as predicates over the output

ports of data-flow blocks, or Boolean combinations thereof. However, this definition is

not sufficient to allow a precise treatment of causality. We extend it here with the notion

of support of a clock, which defines the set of all the output ports used in its computation,

along with the clocks defining the instants where these output ports are needed for the

computation. In the CG specifications considered in this thesis, a support is specified for

the clocks of all nodes and arcs.

Formally, the support of a clock c is a list of pairs o@co, where o is an output port

of some node n, and co is a clock defining the instants where the value of o is used in

the computation of c. Intuitively, the support of a clock gives sufficient data for some

algorithm to compute the clock. For instance, a correct support for the clock c = (o1 =

3)∧(o2 = 5) is {o1@true,o2@(o1 = 3)}which corresponds to the following computation

5.1. BACKGROUND: AAA USING THE CLOCKED GRAPHS FORMALISM100

of c:

c = false ;

read(o1) ;

if(o1 == 3){

read(o2) ;

if(o2 == 5) c = true

}

The notion of correct support is formally defined in [Potop-Butucaru et al., 2009], under

the name of endochrony. Intuitively, endochrony requires that the clock c of an element

o@c of a support list can be computed using the previous elements of the support list.

Note that a given clock can have several supports. For instance, the clock c defined

above also accepts the support {o2@true,o1@(o2 = 5)}.

Well-formed properties To ensure compliance with the synchronous hypothesis and

the atomicity assumption for node executions, we require CG specification to satisfy the

following properties:

• No causality cycle: All cycles in the data-flow graph contain a delay node. More-

over, acyclicity must be preserved when the dependencies related to clock compu-

tation (through the supports) are taken into account.

• No uninitialized data: All the input ports of a node n receive a value in instants

where n is activated. Formally:

– For all n ∈N and for all i ∈ I(n) we have:

clk(n)≤
∨

a∈A,dest(a)=i

clk(a)

– For all a ∈ A we have clk(a)≤ clk(src(a)).

• Single assignment: An input port of a node n receives at most one value at each

execution cycle (no write conflict is possible). Formally, we require that for all

a1,a2 ∈ A with dest(a1) = dest(a2) we have clk(a1)∧ clk(a2) = f alse.

5.1. BACKGROUND: AAA USING THE CLOCKED GRAPHS FORMALISM101

5.1.1.2 Non-functional specification

Platform model Formally, in the original CG formalism, a piece of architecture is a

pair Arch = (Comm(Arch),Procs(Arch)) formed of a communication medium connecting

a finite set of sequential processors Procs(Arch)) = {P1,P2, ...,Pn}.

M=3

F1=3

HS_IN=1
FS_IN=1

G=3

N=3
F3=2

F3=3

V_type=2
ID_type=5

boolean=2Asynchronous
broadcast bus

P1

P3

P2

F2=8

Figure 5.4: Example of a hardware architecture [Potop-Butucaru et al., 2009].

The hardware architecture on which our example is implemented is pictured in Fig. 5.4.

This architecture has 3 processors (P1, P2, and P3) connected to a asynchronous broadcast

bus. The architecture model is decorated with some timing and allocation information

presented below and collectively referred to as non-functional properties.

Non-functional properties In the CG formalism used in this thesis, non-functional

properties describe duration of the various computation and communication operations

and the allocation constraints. For each function node n ∈ N F and each processor P ∈

Procs(Arch) we provide the duration of n on P. We assume this value is obtained through

a worst-case execution time (WCET) analysis, and denote it WCET (n,P). This value is

set to ∞ when execution of n on P is not possible. Similary, for each data type we provide

the worst-case communication time needed to transmit one such value over the bus. This

value is denoted WCCT (D). We assume that this value is always finite.

Note that the WCET information may implicitly define allocation constraints, as

WCET (n,P) = ∞ prevents n from being allocated on P. Such allocation constraints are

meant to represent hardware platform constraints, such as designer-imposed placement

constraints. For instance, in Fig. 5.4, while the function HS_IN can only be executed on

P1, function F3 can be executed (with different costs) on both P2 and P3. We assume that

5.1. BACKGROUND: AAA USING THE CLOCKED GRAPHS FORMALISM102

local communications (that do not use the bus) take no time.

Variations of our mapping algorithms can also handle other non-functional constraints,

such as periodicity, start date, and deadline requirements [Carle et al., 2012], but we do

cover these aspects here.

5.1.2 Off-line scheduling of CG specifications

Given a CG specification, the off-line real-time scheduling problem we consider is that of

synthesizing a scheduling table (also known as reservation table) that assigns real-time

dates and execution resources (computation or communication resources) to each element

of the CG. The scheduling table describes the real-time scheduling of one execution in-

stant of the synchronous specification (possibly pipelined). A full execution is obtained

by indefinitely repeating the pattern provided by the scheduling table.

5.1.2.1 Scheduled clocked graphs

The scheduling tables output by our algorithms are represented using scheduled clocked

graphs, which are an extension of the CG formalism. Given a CG specification, a sched-

uled clocked graph S over it defines the following supplementary structures:

• An allocation of the delays to processors determining on which processor the de-

lay value is stored between execution cycles, and at which date the bookkeeping

operations associated with the delay are performed: S∆ :N ∆→P×N

• A set of scheduled functions assigning a processor and a real-time date (an integer)

to each computation node of the data-flow: SF :NF →P×N

• A set of scheduled communications assigning to each arc of the data-flow the sender

processor, a real-time date, and an effective communication clock (recall that in this

section architectures have a single broadcast bus):

SA :A→P×N×C

• For each clock c of a data-flow element (node or arc), a set of scheduled commu-

nications assigning to each element of its support supp(c) a sender processor, a

real-time date, and an effective communication clock:

Sx : supp(x)→P×N×C

5.1. BACKGROUND: AAA USING THE CLOCKED GRAPHS FORMALISM103

We say that the scheduled CG S is partial when any of its defining functions is partial. This

may be the case during scheduling, when all data-flow elements have not been mapped.

5.1.2.2 Real-time scheduling problem

The real-time mapping problem we consider is a bi-criteria optimization problem: Given

a correct CG specification consisting of a functional specification and a non-functional

specification, synthesize a scheduling table (a scheduled clocked graph) that minimizes

the makespan and maximizes throughput with priority given to makespan

[Carle and Potop-Butucaru, 2011]. Makespan in this context means the time difference

between the start of the first scheduled operation and the end of the last scheduled op-

eration in one execution cycle, while throughput means the number of execution cycles

started per time unit. It can be different from the inverse of the makespan because we

allow one cycle to start before the end of previous ones, provided that operation depen-

dencies are satisfied.

The allocation and scheduling problem being NP-complete, we do not aim for optimal-

ity. Instead, we rely on low-complexity heuristics that allow us to handle large numbers

of resources with high temporal precision.

Mapping and code generation is realized in three steps: The first step produces a

makespan-optimizing scheduling table using the algorithms described in Section 5.2.3.

The second step uses the software pipelining algorithms of [Carle and Potop-Butucaru, 2011]

(not detailed here) to improve the throughput while not changing the makespan. Finally,

once a scheduling table is computed, it can be implemented in a way that preserves its

real-time properties.

5.1.2.3 Consistency of a scheduled clocked graph

Notations Given a scheduled clocked graph S, we denote with:

• tx the real-time date associated by S to any computation node, arc, or element of a

support list x.

• Res(x) the processor associated to each node, arc, or element of a support list x (the

execution processor for data-flow functions, the storage processor for delays, and

the sender processor for arcs and support elements).

5.1. BACKGROUND: AAA USING THE CLOCKED GRAPHS FORMALISM104

• e_clk(x) the effective communication clock associated with an arc or element of a

support list x.

• WCCT (x) the duration of the scheduled communication of an arc or element of a

support list x. Note that WCCT (x) =WCCT (Dx).

The execution condition defining the execution cycles where the value of an output

port o is sent on the communication media before date t is denoted clkS(o, t,Comm(Arch)),

and is formally defined as the union of all the clocks e_clk(x), where e ranges over:

• the arcs a∈Awith src(a)= o that have been scheduled such that ta+WCCT (Da)≤ t.

• the elements o@c of supp(y) (for some arc or node y) that have been scheduled

(Sx(o@c)) such that to@c +WCCT (o@c)≤ t.

Obviously, clkS(o, t,Comm(Arch)) is the execution condition giving the cycles where o

is available system-wide at all dates t ′ ≥ t.

Assuming o is a port of node n, we also define the execution condition clkS(o, t,P)

defining the cycles where o is available on P at date t:

• If n is not allocated on P (Res(n) 6= P), then clkS(o, t,P) = clkS(o, t,Comm(Arch))

• If n is a delay node allocated on P (Res(n)=P), then clkS(o, t,P)= clk(n), meaning

that the value is available from the beginning of all execution instants of n.

• If n is a computation node allocated on P at date tn, then clkS(o, t,P) is clk(n) if

t ≥ tn +WCET (n,P), and false if not.

If c is a clock with c≤ clk(n), then we denote with ready_date(P,o,c) the minimum

t such that clkS(o, t,P)≥ c, and with ready_date(Comm(Arch),o,c) the minimum date t

such that clkS(o, t,Comm(Arch))≥ c.

Note that clkS(o,∞,R) is the clock giving the instants where o becomes available at

some point on resource R.

Consistency properties The scheduling tables we build satisfy a number of properties

ensuring that executable code can be generated for them that is both functionally and

temporally correct:

5.1. BACKGROUND: AAA USING THE CLOCKED GRAPHS FORMALISM105

• Causality: To ensure causal correctness the schedule must ensure in a static fashion

that when an operation (computation or communication) is using the value of an

output port o at time t on execution condition (clock) c, the port value has been

either computed locally or transmitted on the communication media at a previous

date, and on a greater clock. Formally:

– If SF(n) = (P, t) is defined for a function node n, then:

∗ clkS(o, t,P)≥ c for all o@c ∈ supp(n)

∗ clkS(o, t,P)≥ c for all o@c ∈ supp(a) if dest(a) is an input port of n

∗ clkS(src(a), t,P)≥ clk(a) for all a with dest(a) being an input port of n

– To derive the rule ensuring that a delay has enough input at the end of an

instant, we simply set in the previous rules the date to ∞. More precisely, if

S∆(n) = P is defined for a delay node δ , then:

∗ clkS(o,∞,P)≥ c for all o@c ∈ supp(δ)

∗ clkS(o,∞,P)≥ c for all o@c ∈ supp(a) if dest(a) is an input port of δ

∗ clkS(src(a),∞,P) ≥ clk(a) for all arc a with dest(a) being an input port

of δ

– If SA(a) = (P, ta,ca) is defined for an arc a with ca 6= false and if na is the

source node of a, then:

∗ clkS(o, t,Comm(Arch))≥ c for all o@c ∈ supp(a)

∗ SF(na) is defined and Res(na) = P and tna +WCET (na,P)≤ ta

• Sequential use of resources: Two reservations of the same resource must not over-

lap in time, unless their corresponding computations or communications have ex-

clusive execution conditions. Formally:

– On processors: if n1 and n2 are different scheduled function nodes with clk(n1)∧

clk(n2) 6= f alse, then either tn1≥ (tn2+WCET (n2,P)) or tn2≥ (tn1+WCET (n1,P)).

– On communication media: if x1 and x2 are different scheduled arcs or el-

ements of support lists with e_clk(x1) ∧ e_clk(x2) 6= f alse, then either tx1 ≥

(tx2 +WCCT (x2)) or tx2 ≥ (tx1 +WCCT (x1)).

5.1. BACKGROUND: AAA USING THE CLOCKED GRAPHS FORMALISM106

• Worst-case reservations: We reserve for each data-flow node a time interval hav-

ing a length equal to its WCET (provided in the non-functional specification), plus

the worst-case time needed to compute its execution condition. Similarly, we re-

serve for every communication, on each resource along the communication path, a

time interval having a length equal to the worst-case communication time (WCCT)

of the communication.

5.1.2.4 Makespan-optimizing scheduling algorithm

The algorithms of this section are used to transform a CG specification into a scheduled

CG specification. This basically consists in building a scheduling table. For instance,

Fig. 5.5 provides the graphical representation of the scheduling table produced for the

example in Figures 5.3 and 5.4. Our tools can further improve the throughput of this table

through software pipelining methods [Carle and Potop-Butucaru, 2011].

The scheduling algorithm, whose top-level routine is Procedure 1, follows a classical

list scheduling approach. The nodes of the data-flow graph are considered one by one,

in an order consistent with the partial order determined by the data dependency arcs not

originating in an output of a delay node. When a node is considered it is scheduled,

along with the communication operations needed to bring its input data on the processor

where it is executed. The allocation and scheduling decisions taken for a node and for the

associated communications are never changed during the scheduling of subsequent nodes

(there is no backtracking).

The body of the while loop allocates and schedules a single node n, along with the

communications needed to gather the input data of n. Scheduling follows a classical

ASAP (as soon as possible) policy by mapping each operation at the earliest possible date.

Allocation is performed automatically by attempting to schedule n on each of the proces-

sors that can execute it. Among all the possible allocations of n, Procedure 1 chooses

the one minimizing the date at which n terminates. The length of the final scheduling

table gives the worst-case duration of one cycle (i.e. the makespan). Function MapDe-

layCommunications maps the communications of the outputs of delay blocks.

Scheduling a node n on a given processor P is realised by Procedure 2. The first call to

function ScheduleSupport (whose pseudocode is provided in [Potop-Butucaru et al., 2009])

schedules the bus communications of the data needed for the computation of clk(n) (i.e.

5.1. BACKGROUND: AAA USING THE CLOCKED GRAPHS FORMALISM107

Procedure 1 SchedulingDriver
Input: G : Clocked Graph (N ,A)

Arch : Architecture description
Output: S : Scheduled CG (full schedule of the application)

1: S← /0
2: while there exists n ∈N not yet scheduled do
3: choose n ∈N unscheduled whose predecesors have already been scheduled
4: for all P ∈ Procs(Arch) with WCET (n,P) 6= ∞ do
5: (SP,EndP) := ScheduleNodeOnProcessor(S,n,P);
6: end for
7: Assign to S the SP with minimal EndP
8: end while
9: S := MapDelayCommunications(S);

its support supp(clk(n)), as defined in Section 5.1.1.1) and which is not yet present

on P. The forall loop schedules the communications related to the acquisition of the

data-flow inputs of n (the clock governing its transmission and the data itself). Once

communications are scheduled, we schedule the node n at the earliest date after the

date where all needed data is available using function ReserveFirstAvailable. Function

ReserveFirstAvailable(S,R, t,clk,d) reserves the first slot of duration d (time interval)

available on resource R after date t and on the condition clk. To allow an efficient search

of the first available interval to reserve, the data structure storing the partial schedules also

stores the set of free intervals of each resource R.

Procedure 2 ScheduleNodeOnProcessor
Input: S : Scheduled CG (partial schedule)

P : Target processor
n : Data-flow node to schedule

Output: S: Scheduled CG (partial or not)
EndDate: The date on P where n completes its execution

1: (S,EndDate) := ScheduleSupport(S,P,supp(n));
2: for all incoming arc a of n do
3: (S, t) := ScheduleSupport(S,P,supp(a)∪ src(a)@clk(a));
4: EndDate := max(EndDate, t);
5: end for
6: (S,EndDate) := ReserveFirstAvailable(S,P,EndDate,clk(n),WCET (n,P));
7: EndDate := EndDate+WCET (n,P);

The data structure used by the actual scheduling algorithms not only deal with real-

time scheduling, but also associate software variables to the data-flow output ports and

delay nodes, so as to help with code generation. For instance, for each output port of a

node, and for each processor where the value of this port is used, one variable is allocated

during scheduling. This is why the algorithms defined in the following sections structure

5.1. BACKGROUND: AAA USING THE CLOCKED GRAPHS FORMALISM108

FS_IN@true

HS_IN@true

F1@(HS=false)

P1time

G@HS=true

P2

3

2

1

0

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Send(P2,ID)

Send(P1,ID)
@(HS=false
∧FS=false)

∧ HS=true)
@(FS=false

N
@(FS=true)

M
@(FS=false)

F3@(HS=false)

@(HS=false)
Send(P1,V)

Send(P1,HS)@true

Send(P1,FS)@true

P3 Bus

F2@(HS=false)

Figure 5.5: Real-time schedule table generated by these algorithms for the example in
Figures 5.3 and 5.4

a Scheduled CG specification S as a tuple formed of 7 data structures:

S =< ScheduleLength,VariableAllocations,ProcessorSchedules,

ProcessorsFreeIntervals,CommunicationSchedule,CommunicationFreeIntervals >

where:

• ScheduleLength is the current length of the scheduling table. Scheduling starts

with an empty scheduling table of length 0, which is incrementally filled as the

computations and the associated communications are reserved time intervals on the

various resources. There is no limit on the length of the scheduling table, so the

mapping process cannot fail.

• VariableAllocations associates to each output port of a node the set of processors

on which a variable corresponding to the port must be allocated.

5.2. STATIC (OFF-LINE) MAPPING ONTO MPPA ARCHITECTURES 109

• ProcessorSchedules is the set of reservations made on each processor P∈Procs(Arch),

i.e. the set of data-flow nodes that were already scheduled on each processor.

• ProcessorsFreeIntervals is the set of free (not yet allocated) time intervals on each

processor schedule. The intervals of this set can be used to schedule other data-flow

nodes.

• CommunicationSchedule is the set of reservations made on the communication bus

Comm(Arch).

• CommunicationFreeIntervals is the set of free (not yet allocated) time intervals on

Comm(Arch), that can be used to schedule other communications.

5.2 Static (off-line) mapping onto MPPA architectures

5.2.1 AAA for NoC-based MPPA: The problem

Existing implementations of the AAA methodology – SynDEx and the CG-based schedul-

ing algorithms described above – do not allow the efficient allocation and scheduling of

applications onto NoC-based many-cores, regardless of the type of NoC arbitration and

routing. This is mainly due to limitations in the modeling and handling of the complex

communication media. In particular:

• Existing implementations of the AAA methodology only consider sequential com-

munication media, which can be modeled as classical sequential resources for schedul-

ing purposes. Meanwhile, a NoC is formed of a large number of resources working

in parallel and allowing multiple communication flows to traverse the NoC at the

same time.

• SynDEx allows the modeling of architectures with multiple communication re-

sources, where a piece of data may need to be routed along several communica-

tion resources in order to reach its destination. However, it assumes that proces-

sors possess unlimited local storage capabilities, which allows the use of a store-

and-forward buffering policy along multi-hop routes, which simplifies scheduling.

Meanwhile, NoCs have limited internal buffering, and usually rely on wormhole

5.2. STATIC (OFF-LINE) MAPPING ONTO MPPA ARCHITECTURES 110

buffering policies which, as explained in Section 2.1.3.2, result in significant syn-

chronization between resource reservations on different NoC resources.

• Both SynDEx and the existing CG toolset consider the mapping of coarse-grain

parallel applications onto classical multiprocessor/distributed architectures. But we

already explained in Section 1.1.4 that when mapping onto MPPAs, both appli-

cation and architecture usually feature a finer-grain parallelism (specification- and

architecture-level). This requires a tighter control of timing, concerning both NoC

control and the execution inside a computing tile. In turn, this requires precise con-

trol over the contention points, such as NoC routers, memory banks, etc. and a

fine-grain allocation of these resources.

The remainder of this thesis is dedicated to extending the CG formalism and CG-

based implementation of the AAA methodology to allow the efficient off-line real-time

scheduling and code generation onto the MPPA architecture presented in Chapter 4. In

doing so, we face 2 main difficulties:

• The definition of a hardware specification model that takes into account the speci-

ficities of the target architecture, including the timing model by determining the

cost (in clock cycles) of the various NoC operations.

• Extending the existing scheduling and code generation algorithms to take into ac-

count the new hardware description. These algorithms must have very low complex-

ity, so that they scale up to the large numbers of resources of a typical NoC, while

at the same time retaining a high timing precision (and guaranteeing functional and

temporal correction).

The resulting AAA flow is pictured in Fig. 1.3.

Limitations This PhD thesis focuses on the modeling and handling of NoC resources

for real-time scheduling. Our main objective was to show that table-based off-line schedul-

ing heuristics have the potential to scale up, allowing the use of architecture models ex-

posing all possible contention points of the NoC.

To achieve this objective in only 3 years, we have made some simplifications to the

scheduling problem: The main simplification is that we do not take into account data-

5.2. STATIC (OFF-LINE) MAPPING ONTO MPPA ARCHITECTURES 111

dependent conditional control. Its implementation in hardware is not completed, as ex-

plained in Section 4.2.1. Also, given the absence of hardware support, we have also

preferred not to include conditional execution treatment in the scheduling algorithms de-

fined later in this chapter. This has the advantage of simplifying the presentation of the

algorithms.

The second limitation of our work concerns the modeling of the computing tiles,

which detailed in the next section.

5.2.2 Extension of the CG format
5.2.2.1 Modeling of MPPA resources

To allow off-line mapping onto our architectures, we need to identify the set of ab-

stract computation and communication resources that are considered during allocation

and scheduling. The choice of resources must allow a precise timing characterization

while preserving tractability of the scheduling problem.

Formally, we represent an MPPA architecture with a pair Arch=(NoC(Arch),Tiles(Arch)).

The set NoC(Arch) contains the communication resources of the NoC, and Tiles(Arch)

contains the computation resources associated with tiles. We picture in Fig. 5.6 the re-

sources of a 3x3 MPPA.

In(0,0)

DMA(1,0)

DMA(0,1)DMA(0,0)

N(0,1)(0,0)

N(0,0)(0,1)

N
(1
,0
)(
0
,0
)

In(0,1)

In(1,1)In(1,0)

DMA(1,1)

N(1,1)(1,0)

N
(0
,1
)(
1
,1
)

N
(1
,1
)(
0
,1
)

N(1,0)(1,1)

DMA(0,2)

DMA(1,2)

DMA(2,2)DMA(2,1)DMA(2,0)

In(2,0) In(2,1) In(2,2)

In(1,2)

N(2,0)(2,1)

N(2,1)(2,0)

N(2,1)(2,2)

N(2,2)(2,1)

N
(1
,0
)(
2
,0
)

N
(2
,0
)(
1
,0
)

N
(1
,1
)(
2
,1
)

N
(2
,1
)(
1
,1
)

N
(1
,2
)(
2
,2
)

N
(2
,2
)(
1
,2
)

N(1,1)(1,2)

N(1,2)(1,1)

N
(0
,2
)(
1
,2
)

N
(1
,2
)(
0
,2
)

N(0,2)(0,1)

N(0,1)(0,2)

In(0,2)

N
(0
,0
)(
0
,1
)

Tile

(2,0)

Tile

(2,1)

Tile

(2,2)

Tile

(1,2)

Tile

(0,2)

Tile

(0,1)

Tile

(1,1)

Tile

(1,0)

Tile

(0,0)

Figure 5.6: Hardware resource modeling for our architecture

5.2. STATIC (OFF-LINE) MAPPING ONTO MPPA ARCHITECTURES 112

NoC ressources: Classical communication media (e.g. buses, shared RAMs) consid-

ered in previous work [Grandpierre and Sorel, 2003, Potop-Butucaru et al., 2009] have

two properties facilitating mapping:

• Each media can be seen as a sequential communication resource.

• When a communication follows a route involving multiple buses, data can be tem-

porarily stored between two routing steps (store-and-forward buffering policy).

These two hypotheses are not true in NoCs. First, the transmission time for a given amount

of data depends on the distance between the source and destination tiles, which in turn

depends on the number of multiplexers that are crossed during transmission. For this

reason, we need to associate one communication resource to each of the multiplexers of

NoC routers, and to each DMA unit allowing command queuing. We use the term segment

to refer to these communication resources. As pictured in Fig. 5.6, our architecture model

contains 3 types of segments:

• Inter-router segments correspond to the links between NoC routers and their com-

mand multiplexers. We denote with N(i, j)(k, l) the segment going from tile (i, j)

to tile (k, l).

• Tile input segments correspond to the links going from routers to their local tiles

(and their command multiplexers). We denote with In(i, j) the tile input segment of

tile (i, j).

• Tile output segments correspond to the links going from tiles to local routers. These

links are not controlled by multiplexers, but by the DMA of the local tile. The tile

output segment of tile (i, j) is denoted DMA(i, j).

Under this resource model, a data transfer between two tiles is performed by a set of seg-

ments called the communication path. All communication paths are formed according to

the X-first routing policy. Recall that modeling is done only for command NoC resources.

No resource modeling, nor scheduling analysis, is needed for the response NoC. Each

NoC segment has a buffering capability of only 3 flits.

The set NoC(Arch) is formed of all the segments of the NoC. In Fig. 5.6, the NoC

description consists in 42 segments.

5.2. STATIC (OFF-LINE) MAPPING ONTO MPPA ARCHITECTURES 113

Tile ressources: This PhD thesis focuses on the modeling and handling of NoC re-

sources. To this end, we consider a resource model that simplifies as much as possible the

representation of the computing tiles.

The main simplification is to consider each tile as a single computing resource. All the

CPUs of the tile (1 upto 16 in our evaluations) are seen as a very fast computing resource.

This means that computation operations (data-flow nodes) will be allocated to the tile as

if it were a sequential processor, but each operation is in fact parallel code running on all

the processors of a tile. In Fig. 5.6 there are just 9 tile resources representing 144 CPUs.

This simplification largely reduces the complexity of our presentation, and also satisfies

our evaluation needs, given that the 2 applications used as examples can be organized into

operations that are easily parallelized.

While not explicitly represented in the CG hardware model, memory organization is

considered for code generation.

Thus, in our model, Tiles(Arch) = {T0, ...,TY×X−1}where X and Y are the dimensions

of the MPPA.

5.2.2.2 Memory footprint specification

Our MPPA architecture features a complex memory organization including multi-bank

RAMs, which we must take into account through explicit allocations of data and code

onto the RAM banks.

To allow this, we extend the existing CG functional specification as follows:

• To each data typeD a CG specification associates a worst-case size sizeo f (D). This

value will be used in Section 5.2.2.3 to compute the worst-case communication time

for a piece of data of that type.

• To each data-flow function we associate the number of RAM banks it needs in order

to allow parallel execution while respecting the provided WCET figure.

5.2.2.3 Non-functional properties

Worst-case computation durations For each data-flow node n and each MPPA tile

T the CG specification defines WCET (n,T), which must be a safe upper bound for the

5.2. STATIC (OFF-LINE) MAPPING ONTO MPPA ARCHITECTURES 114

WCET of n on T . Note that the WCET values we require are for parallel code run-

ning on all the 16 processors of a tile, which can be computed using the technique of

[Puaut and Potop-Butucaru, 2013].

Even though the tiles of our MPPA architecture are largely identical, we made the

choice of defining one WCET value per tile. This allows a simple expression of allocation

constraints which specify on which tiles a given data-flow block can be executed. Allo-

cation constraints can be used to confine an application to part of the MPPA, leaving the

other tiles free to execute other applications. Furthermore, using one WCET value per tile

allows our algorithms to handle heterogenous many-cores (but we did not investigate this

issue).

Worst-case communication durations The previous section explained that a worst-

case size sizeo f (D) is provided by the CG specfication for each data type D.

All inter-tile data transmissions are performed using the DMA units. If a transmission

is not blocked on the NoC, then its duration at the sender side only depends on the size of

the transmitted data. The exact formula is

d = sizeo f (D)+ dsizeo f (D)/MaxPayloade∗PacketHeaderSize

where d is the duration in clock cycles of the DMA transfer from the start of the transmis-

sion to the moment where a new transmission can start, D is the type of the transmitted

data, MaxPayload is the maximum payload of a NoC packet produced by the DMA (in

32-bit words), and PacketHeaderSize is the number of cycles that are lost for each packet

in the chosen NoC. These values are architecture constants. For instance, the architecture

used in this thesis has MaxPayload=16 flits=64 bytes and PacketHeaderSize=4 flits=16

bytes.

In addition to this transmission duration, we must also account in our computations

for:

• The DMA transfer initiation, which consists in 3 uncached RAM accesses plus the

duration of the DMA reading the payload of the first packet from the data RAM.

This cost is over-approximated as 30 cycles.

• The latency of the NoC, which is the time needed for one flit to traverse the path

from source to destination. This latency is of 3 ∗ n, where n is the number of NoC

5.2. STATIC (OFF-LINE) MAPPING ONTO MPPA ARCHITECTURES 115

segments on the route of the transmission. The constant 3 corresponds here to

the number of clock cycles needed to traverse a NoC segment in the absence of

contentions.

5.2.3 Makespan-optimizing scheduling

The makespan-optimizing scheduling routine we use on the MPPA is a variant of the one

described in Section 5.1.2, extended with support for scheduling NoC communications,

but without support for conditional control.

Like its predecessor, it works by building a global scheduling table covering all MPPA

resources (NoC segments and tiles). It uses a non-preemptive scheduling model for the

data-flow nodes, because preemptions would introduce important temporal imprecision

(through the use of interrupts). At the same time, it uses a preemptive scheduling model

for NoC communications, because data communications over the NoC are naturally di-

vided into packets that are individually scheduled by the NoC multiplexer programs, al-

lowing a form of pre-computed preemption.

For each data-flow node our scheduling routine reserves exactly one time interval on

one of the tiles. For every communication between two tiles, it reserves one or more time

intervals on each segment along the communication path between the two tiles, starting

with the DMA of the source tile, and continuing with the NoC multiplexers (recall that

the route is fixed under the X-first routing policy). Scheduling is done under an ASAP (as

soon as possible) policy.

The top-level scheduling routine is Procedure 3. It is very similar with the original

routine Procedure 1 of page 107. The single difference is that the choice between possible

allocations of a given data-flow node depends not only on the end date of the node, but on

a more elaborate cost function. This cost function, which we seek to minimize, should be

chosen so that the final length of the scheduling table is minimized (this length gives the

execution cycle makespan). Our choice of cost function combines the end date of the node

in the schedule (with 95% weight) and the maximum occupation of a CPU in the current

scheduling table (with 5% weight). We found it to produce shorter scheduling tables

than the cost function based on end date alone (as used in [Grandpierre and Sorel, 2003,

Potop-Butucaru et al., 2009]). This is due to the fact that our cost function discourages the

scattering of computations onto a large number of processors, which ultimately reduces

5.2. STATIC (OFF-LINE) MAPPING ONTO MPPA ARCHITECTURES 116

synchronization cost.

Procedure 3 SchedulingDriverMPPA
Input: G : Clocked Graph (N ,A)

Arch : Architecture description
Output: S : Scheduled CG (full schedule of the application)

1: S← /0
2: while there exists n ∈N not yet scheduled do
3: choose n ∈N unscheduled whose predecesors have already been scheduled
4: for all T ∈ TilesArch with WCET (n,T) 6= ∞ do
5: (ST ,EndT) := ScheduleNodeOnTile(S,n,T);
6: CostT := 95

100 ∗EndT + 5
100 ∗MaxTileOccupation(ST) ;

7: end for
8: Assign to S the ST with minimal CostT
9: end while

10: S := MapDelayCommunications(S);

Similarly, Procedure 4 has the same global structure as Procedure 2, page 107, but

adapted to our needs through the handling of NoC communications and through the sim-

plification concerning the absence of data-dependent control. Indeed, no reference is

made here to the scheduling of clock supports. Instead, we need to determine for each

piece of data that needs to be transmitted on the NoC which path the transmission must

take (following the X-first routing policy), and then schedule the communication over the

resources of this route. Once all needed data is present on the tile, the node is scheduled

at the earliest possible date.

Procedure 4 ScheduleNodeOnTile
Input: S : Scheduled CG (partial schedule)

T : Target tile
n : Data-flow node to schedule

Output: S: Scheduled CG (partial or not)
t: The date on T where n completes its execution

1: t← 0
2: for all incoming arc a of n do
3: let n′ be the (already mapped) data-flow node producing src(a)
4: let T ′ be the tile on which n′ has been allocated
5: let t ′ be the end date of n′ on T ′

6: if T ′ 6= T then
7: Path←GetXFirstPath(P′,P)
8: (S, t ′) := MapCommunicationOnPath(S,Path, t ′,sizeo f (Da))
9: end if

10: t := max(t, t ′)
11: end for
12: (S, t) := ReserveFirstAvailable(S,T, t, true,WCET (n,T));
13: t := t +WCET (n,T);

5.2. STATIC (OFF-LINE) MAPPING ONTO MPPA ARCHITECTURES 117

5.2.3.1 Mapping NoC communications

The most delicate part of our scheduling routine is the communication mapping function

MapCommunicationOnPath. When a node is mapped on a tile, this function is called

once for each of the input dependencies of the node, if the dependency source is on another

tile and if the associated data has not already been transmitted.

Procedure 5 MapCommunicationOnPath
Input: S : Scheduled CG (partial schedule)

Path : list of NoC segments (the communication path)
StartDate : date after which the data can be sent
DataSize : worst-case data size (in 32-bit words)

Output: S: Scheduled CG (partial or not)
EndComm : the end date of the communication

1: for i := 1 to length(Path) do
2: /*Identify the unreserved time intervals on segment i and
3: compensate for the delays induced by segment buffers. */
4: ShiftSize[i] := (i−1)∗SegmentBufferSize;
5: FreeIntervalList[i] := GetIntervalList(S, Path[i], StartDate);
6: FreeIntervalList[i] := ShiftLeftIntervals(FreeIntervalList[i],ShiftSize[i]);
7: end for
8: /* Determine time intervals that are free along the path. */
9: PathFreeIntervalList :=IntersectIntervals(FreeIntervalList);

10: /* Reserve intervals for the transmission of data and lock. */
11: (IntervalsForData,NewFreeIntervalList,NewScheduleLength) :=

ReserveIntervals(DataSize,PathFreeIntervalList, length(S));
12: (IntervalForLock,NewIntervalList,NewScheduleLength) :=

ReserveIntervals(1,NewFreeIntervalList, NewScheduleLength);
13: ReservedIntervals := AppendToList(IntervalsForData,IntervalForLock);
14: for i := 1 to length(Path) do
15: /*Remove the compensation added in the beginning of the algorithm.
16: Separately for each segment. */
17: SegmentReservedIntervals[i] := ShiftRightIntervals(ReservedIntervals,ShiftSize[i]);
18: end for
19: /*If reservations go past the current end of the scheduling table,
20: update the scheduling table with the new length. */
21: if NewScheduleLength > length(S) then
22: S := IncreaseLength(S,NewScheduleLength);
23: end if
24: EndComm := NewScheduleLength;
25: /*Update the lists of reservations and the lists of free intervals
26: for all segments along the path. */
27: S := UpdateSchedulingTable(S,Path,SegmentReservedIntervals);

Fig. 5.7 presents a (partial) scheduling table produced by our mapping routine. We

shall use this example to give a better intuition on the functioning of our algorithms. We

assume here that the execution of operation f produces data x which will be used by g.

Our scheduling table shows the result of mapping operation g onto Tile(2,2) (which also

5.2. STATIC (OFF-LINE) MAPPING ONTO MPPA ARCHITECTURES 118

requires the mapping of the transmission of x) under the assumption that all other com-

putation operations (f , h) and data transmissions (y, z, u) were already mapped. Fig. 5.7

uses a lighter color to identify reservations made as part of the mapping of g.

Tile DMA TileIn

(1,1) (1,1)

N(1,1)

(1,2)

N(1,2)

(2,2) (2,2) (2,2)

f

y

x x x x

y

u

g

h

z

x
x

x
x

0

tim
e

500

1000

1500

2000

2500

Figure 5.7: Scheduling table covering one communication path on our NoC. Only the 6
resources of interest are represented (out of 70)

As part of the mapping of g onto Tile(2,2), function MapCommunicationOnPath is

called to perform the mapping of the communication of x from Tile(1,1) to Tile(2,2). The

parameters of its call are the schedule itself, Path, StartDate, and DataSize. Parameter

Path is the list formed of resources DMA(1,1), N(1,1)(1,2), N(1,2)(2,2), and In(2,2)

(the transmission route of x under the X-first routing protocol). Parameter StartDate is

set to be the end date of node f (in our case 500), and DataSize is the worst-case size

of the data associated with the data dependency (in our case 500 32-bit words). Time is

measured in clock cycles.

To minimize the overall time reserved for a data transmission, we shall require that

it is never blocked waiting for a NoC resource. For instance, if the communication of x

starts on segment N(1,1)(1,2) at date t, then on segment N(1,2)(2,2) it must start at date

t +SegmentBufferSize, where SegmentBufferSize is a platform constant defining the time

needed for a flit to traverse one NoC segment. In our NoC this constant is 3 clock cycles

(in Fig. 5.7 we use a far larger value of 100 cycles, for clarity).

Building such synchronized reservation patterns along the communication routes is

what function MapCommunicationOnPath does. It starts by obtaining the lists of free

time intervals of each NoC segment along the communication path, and realigning them

by subtracting (i− 1) ∗ SegmentBufferSize from the start dates of all the free intervals of

5.2. STATIC (OFF-LINE) MAPPING ONTO MPPA ARCHITECTURES 119

the ith resource, for all i. Once this realignment is done on each segment by function

ShiftLeftIntervals, finding a reservation along the communication path amounts to find-

ing time intervals that are unused on all resources. To do this, we start by performing (in

line 9 of function MapCommunicationOnPath) an intersection operation returning all

realigned time intervals that are free on all resources. In Fig. 5.7, this intersection opera-

tion produces (prior to the mapping of x) the intervals [800,1100) and [1400,2100]. The

value 2100 corresponds to the length of the scheduling table prior to the mapping of g.

We then call function ReserveIntervals twice, to make reservations for the data trans-

mission and for the lock command packet associated with each communication. These

two functions produce a list of reserved intervals, which then need to be realigned on

each resource. In Fig. 5.7, these 2 calls reserve the intervals [800,1100), [1400,1700), and

[1700,1704). The first 2 intervals are needed for the data transmission, and the third is

used for the lock command packet.

5.2.3.2 Multiple reservations

Communications are reserved at the earliest possible date, and function ReserveIntervals

allows the fragmentation of a data transmission to allow a better use of NoC resources.

In our example, fragmentation allows us to transmit part of x before the reservation for

u. If fragmentation were not possible, the transmission of x should be started later, thus

delaying the start of g, potentially lengthening the reservation table.

Fragmentation is subject to restrictions arising from the fact that communications are

packetized. More precisely, an interval cannot be reserved unless it has a minimal size,

allowing the transmission of at least a packet containing some payload data.

Function ReserveIntervals performs the complex translation from data sizes to pack-

ets and interval reservations. We present here an unoptimized version that facilitates un-

derstanding. This version reserves one packet at a time, using a free interval as soon as it

has the needed minimal size. Packets are reserved until the required DataSize is covered.

Like for tasks, reservations are made as early as possible. For each packet reservation the

cost of NoC control (under the form of the PacketHeaderSize) must be taken into account.

If the current scheduling table does not allow the mapping of a data communication,

function ReserveIntervals may lengthen it.

5.2. STATIC (OFF-LINE) MAPPING ONTO MPPA ARCHITECTURES 120

Procedure 6 ReserveIntervals
Input: DataSize : worst-case size of data to transmit

FreeIntervalList : list of free intervals before reservation
ScheduleLength : schedule length before reservation

Output: ReservedIntervalList : reserved intervals
NewIntervalList : list of free intervals after reservation
NewScheduleLength : schedule length after reservation

1: NewIntervalList := FreeIntervalList
2: ReservedIntervalList := /0
3: /* Consider the free intervals one by one and reserve as much as
4: possible of each until there is no more space or the
5: communication need has been covered. */
6: while DataSize > 0 and NewIntervalList 6= /0 do
7: ival := GetFirstInterval(NewIntervalList);
8: NewIntervalList := RemoveFirstInterval(NewIntervalList);
9: if IntervalEnd(ival)==ScheduleLength then

10: /* ival can be extended indefinitely along with the schedule length. */
11: RemainingIvalLength := ∞;
12: else
13: RemainingIvalLength := length(ival);
14: end if
15: ReservedLength := 0;
16: while RemainingIvalLength > MinPacketSize and DataSize > 0 do
17: /*Reserve place for data packets, one at a time
18: (clear, but suboptimal code).*/
19: PacketLength := min(DataSize + PacketHeaderSize, RemainingIvalLength,MaxPacketSize);
20: RemainingIvalLength -= PacketLength;
21: DataSize -= PacketLength - PacketHeaderSize;
22: ReservedLength += PacketLength
23: end while
24: ReservedInterval := CreateInterval(start(ival), ReservedLength);
25: ReservedIntervalList := AppendToList(ReservedIntervalList,ReservedInterval);
26: if length(ival) - ReservedLength > MinPacketLength then
27: NewIntervalList := InsertInList(NewIntervalList,

CreateInterval(start(ival)+ReservedLength, length(ival)-ReservedLength));
28: end if
29: NewScheduleLength := max(ScheduleLength,end(ival));
30: end while

5.3. AUTOMATIC CODE GENERATION 121

5.3 Automatic code generation

The final step in our CG-based flow is code generation, which transforms the scheduling

table, where synchronization is time-based, into multi-threaded C code with lock-based

synchronization, plus the communication programs that control the behavior of the NoC.

Executable code is generated as follows: One sequential execution thread is generated

for each tile and for each NoC segment corresponding to a NoC multiplexer (resources

N(i, j)(k, l) and In(i, j) in the architecture model of Section 5.2.2.1).

The resulting programs strictly enforce the operation ordering computed for each re-

source in the reservation table, but allow for some start date elasticity at execution time

to take advantage of execution/communication times shorter than the WCETs/WCCTs.

This elasticity does not compromise the timing guarantees computed by the mapping

tool. Indeed, if inputs are acquired periodically, with a period equal to the length of the

reservation table (to model the periodic acquisition of an input), then the computed cycle

times are fully respected.

Listings 4.1 and 4.2 provide the full application code synthesized by our tool for the

example of Figures 4.7 and 4.9 on an architecture with 1 CPU per tile. Tile code is plain C

code, whereas NoC router code is written in the assembly language defined in the previous

chapter.

In the absence of conditional execution, the generation of assembly code for the NoC

router controllers is straightforward, and we do not present it here. Instead, the genera-

tion of tile code involves complex issues related to the multiplexing of CPU and DMA

commands in a single sequential thread.

5.3.1 Tile code generation

Each tile thread is an infinite loop that executes the (computation or communication) oper-

ations scheduled on the associated resource in the order prescribed by their reservations.

The tile thread code is generated by the GenerateTileThread procedure of page 122.

Recall that each tile may contain up to 16 CPUs, but is reserved as a single sequential

resource, parallelism being hidden inside the data-flow blocks. The sequential thread of

a tile runs on CPU 0 of the tile, but the code of each data-flow block can use all the

processors.

5.3. AUTOMATIC CODE GENERATION 122

Procedure 7 GenerateTileThread
Input: ProcSchedule : The scheduling table of processor (y,x)

DMASchedule : The scheduling table of the DMA segment of tile (y,x)
VariableAllocations : The set of variable allocations

1: CurrDMAOp := 0 ;
2: for i:=0 to length(ProcSchedule)-1 do
3: NodeEndDate := GetEndDate(ProcSchedule[i]);
4: while (CurrDMAOp<length(DMASchedule)) and (GetStartDate(DMASchedule[CurrDMAOp])<

NodeEndDate) do
5: /* Make sure that writing is allowed. */
6: PrintWriteLockRequest(DMASchedule[CurrDMAOp],VariableAllocations);
7: /* DMASend also grants the read lock. */
8: PrintDMASend(DMASchedule[CurrDMAOp],VariableAllocations);
9: CurrDMAOp := CurrDMAOp+1 ;

10: end while
11: /* Make sure that input data has arrived. */
12: PrintReadLockRequests(ProcSchedule[i],VariableAllocations) ;
13: if IsFunctionNode(ProcSchedule[i]) then
14: PrintFunctionCall(ProcSchedule[i],VariableAllocations);
15: else
16: PrintDelayCode(ProcSchedule[i],VariableAllocations);
17: end if
18: /* Node completion is the end of lifetime for some variables. */
19: PrintWriteLockGrants(ProcSchedule[i],VariableAllocations);
20: end for
21: /* Remaining DMA commands. */
22: while CurrDMAOp <length(DMASchedule) do
23: PrintWriteLockRequest(DMASchedule[CurrDMAOp],VariableAllocations);
24: /* DMASend also grants the read lock. */
25: PrintDMASend(DMASchedule[CurrDMAOp],VariableAllocations);
26: CurrDMAOp := CurrDMAOp+1 ;
27: end while

5.3. AUTOMATIC CODE GENERATION 123

No separate thread is generated for the DMA resource of a tile. Its operations are

instead initiated by the tile thread. This is possible because the DMA allows the queuing

of DMA commands. Code generation is done as follows: It is assumed that the scheduling

table is sorted by reservation starting date. Each iteration of the top-level for loop of

Procedure 7 generates code for one scheduled data-flow node. Code generation (lines

13-17 of the procedure) depends on the type of node (function or delay). The statements

immediately before and after this code are synchronization code ensuring that:

• Needed input data has already been transmitted (line 12).

• Variables that have reached the end of their lifetime can be written again by DMA

transfers (line 19).

The remaining code (lines 3-10) generated the DMA initiation code. The initiation of all

DMA operations starting during the execution of a computation node is realized before

the node starts execution. Lines 22-26 will generate the DMA initiation code for the

DMA operations starting after all computations of the tile have completed. The example

of Fig. 5.7 emphasizes the two cases where DMA code generation applies. First of all,

DMA initiation for the sending of z and the first part of x is performed before the execution

of k. The code initiating the sending of the second part of x is executed after k.

As explained in Section 5.2.2.3, DMA initiation code has very low duration. However,

it is not accounted for during the scheduling phase, so the real-time guarantees provided

by the scheduling table must be amended by taking this cost into account.

Tile DMA TileIn

(1,1) (1,1)

N(1,1)

(1,2)

N(1,2)

(2,2) (2,2)

k

f

y

x x x x

y

u

g

h

(2,2)

x
x

x
x

0

tim
e

500

1000

1500

2000

2500

z

Figure 5.8: Scheduling table example for DMA code generation

5.4. EXPERIMENTAL RESULTS 124

5.4 Experimental results

We have evaluated our mapping and code generation method on two applications featur-

ing no conditional execution but using classical signal processing filters: The platooning

application described in Fig. 5.9, and a parallel Cooley-Tukey implementation of the in-

teger 1D radix 2 FFT over 214 samples [Bahn et al., 2008]. We chose these two applica-

tions because they allow the computation of tight lower bounds on the execution cycle

makespan and because (for the FFT) an MPPA mapping already exists. This allows for

meaningful comparisons, while no tool equivalent to ours exists to provide another basis

for evaluation.

sobel_H_3

sobel_V_2

sobel_H_2

sobel_V_3

sobel_H_1

sobel_V_1

sobel_H_4

sobel_V_4

sobel_H_5

sobel_V_5

sobel_H_6

sobel_V_6

histo_H_3

histo_V_2

histo_H_2

histo_V_3

histo_H_1

histo_V_1

histo_H_4

histo_V_4

histo_H_5

histo_V_5

histo_H_6

histo_V_6

DisplayCapture
Image

2

Detection
Correction

Figure 5.9: Dependent task system of a platooning application

The two applications were described using our data-flow formalism. This (manual)

data-flow modeling phase chooses the degree of parallelism that can be exploited by our

algorithms. In the platooning application, each block is a computation node, solid arcs are

simple dependencies, and the dashed arc is a delayed dependency of depth 2. The appli-

cation is run by a car to determine the position (distance and angle) of another car moving

in front of it. It works by cyclically capturing an input image of fixed size. This image is

5.4. EXPERIMENTAL RESULTS 125

passed through an edge-detecting Sobel filter and then through a histogram search to de-

tect dominant edges. This information is used by the detection and correction function to

determine the position of the front car. The whole process is monitored on a display. The

delayed dependency represents a feedback from the detection and correction function that

allows the adjustment of image capture parameters. The Sobel filter and the histogram

search are parallelized. Each of the Sobel_H and Sobel_V functions receives one sixth of

the whole image (a horizontal slice).

For the FFT, we followed the parallelization scheme used in [Bahn et al., 2008], with

a block size of 211, resulting in a total of 32 computation nodes. Evaluation is done on

the 3x4 MPPA, where we assume that input data arrives on Tile(0,0) and the results are

output by Tile(2,3).

For both applications, after computing the WCET of the tasks and the WCCT of the

data transmissions, the mapping tool was applied to build a running implementation and

to compute execution cycle makespan and throughput guarantees. Then, the code was run,

and its performances measured. This allowed us to check the functional correctness of the

code and to determine that our tool produces very precise timing guarantees. Indeed, the

difference between predicted and observed makespan and throughput figures is less than

1% for both examples, which is due to the precision of our mapping algorithms and to the

choice of a very predictable execution platform.

The generated off-line schedule (and the resulting code) has good real-time properties.

For both the CyCab and the FFT, we have manually computed lower bounds on the execu-

tion cycle makespan.1 The lower bounds computed for the CyCab and FFT examples were

lower than the makespan values computed by our algorithms by respectively 8.9% and

3.4%. For the FFT example, we have also compared the measured makespan of our code

with that of a classical NoC-based parallel implementation of the FFT [Bahn et al., 2008]

running on our architecture. For our code, the NoC was statically scheduled, while for the

classical implementation it was not. Execution results show that our code had a latency

that was 3.82% shorter than the one of the classical parallel FFT code. In other words,

our tool produced code that not only has statically-computed hard real-time bounds
1To compute these lower bounds we simplify the hardware model by assuming that the resources

N(i, j)(k, l) generate no contention (i.e. they allow the simultaneous transmission of all packets that demand
it). We only take into account the sequencing of operations on processors and DMAs and the contentions
on resources In(i, j).

5.4. EXPERIMENTAL RESULTS 126

(which the hand-written code has not) but is also faster.

Our mapping heuristics favor the concentration of all computations and communica-

tions in a few tiles, leaving the others free to execute other applications (as opposed to

evenly spreading the application tasks over the tiles). The code generated for Cycab has a

tile load of 85%-99% for 6 of the 12 tiles of the architecture, while the other tiles are either

unused or with very small loads (less than 7%). Using more computing tiles would bring

no latency or throughput gains because our application is limited by the input acquisition

speed. In the FFT application the synchronization barriers reduce average tile use to 47%

on 8 of the 12 MPPA tiles. Note that the remaining free processor and NoC time can be

used by other applications.

Finally, we have measured the influence of static scheduling of NoC communications

on the application latency, by executing the code generated for Cycab and the FFT with

and without NoC programming. For Cycab, not programming the NoC results in a speed

loss of 7.41%. For the FFT the figure is 4.62%.

We conclude that our tool produces global static schedules of good quality, which

provide timing guarantees close to the optimum.

Conclusion

The thesis we defend in this manuscript is that efficient parallel execution on a NoC-

based MPPA requires better synchronization between computations and NoC data traffic,

which could be obtained by compile-time static (off-line) real-time scheduling of both

computations and communications. In turn, this means that global compiling processes

should target together the processing elements and the programmable NoC routers.

Optimal NoC usage should result from a global optimization principle, as opposed to a

collection of local optimization of individual connections. Indeed, various data flows with

distinct sources and targets need to be highly concerted, both in time and space, like in a

classical pipelined CPU, where the use of registers (replaced in our case with a complex

NoC-based interconnect) is strongly synchronized with that of the functional units.

One main problem in applying such a global optimization approach is to provide the

proper hardware infrastructures allowing the implementation of optimal computation and

communication mappings and schedules. Our thesis is that optimal data transfer patterns

should be encoded using simple programs configuring the router nodes (each router being

then programmed to act its part in the globally concerted computation and communication

scheme).

On the hardware design side, we concretely supported our proposed approach by ex-

tending a state-of-the-art NoC to allow programmed arbitration and offer the best support

for off-line scheduling. In this NoC we have replaced the fair arbitration modules with

static, micro-programmable modules. This allows us to establish effective static schedul-

ing and routing of data transmissions as required by the application. Router programs

are the result of a global compilation process which targets the NoC and the individual

cores altogether. We have advocated the desired level of expressiveness for such configu-

ration programs, and provide experimental data (coming from cycle-accurate simulations)

supporting our choices. We also wrote an architecture synthesis tool that allows simple

127

CONCLUSION 128

architectural exploration of MPPAs using the new programmable NoC.

On the software side, we have proposed a novel allocation and scheduling method

capable of synthesizing such global computation and communication schedules covering

all the execution, communication, and memory resources in an MPPA. Our method al-

lows static (table-based) scheduling of synchronous data-flow specifications. To allow an

efficient use of the hardware resources, our method takes into account the specificities

of the MPPA hardware and implements advanced scheduling techniques such as software

pipelining and pre-computed preemption of data transmissions. Our tool synthesizes code

for processing elements and NoC routers with static real-time guarantees that runs faster

than (simple) hand-written parallel code.

Future work

The first point we wish to address in the future is the extension of both hardware and

mapping technique so that they support data-dependent conditional control, and thus are

able to consider a larger class of applications.

The main hardware-related question is that of finding a good balance between NoC

router complexity and efficiency gain, seen in a broad sense. Solutions here range between

a solution where the routers incorporate more and more features such as software-defined

routes or multicast/broadcast, and the minimalist solution presented here, where these

features must be implemented through software protocols.

On the software side, the mapping technique should be extended so that it directly

takes into account the internal architecture of each tile (CPUs, memory banks, etc.), in-

stead of seeing them as single resources. Our first objective here is to perform memory

resource allocation at scheduling time (and not during code generation). More generally,

our mapping technique could benefit from/to previous work on the scheduling of data-

flow specifications and on compilation, but complex evaluation is needed to determine

which algorithms scale up to take into account the low-level architectural detail.

Finally, it is important to explore the integration of on-line and off-line mapping tech-

niques for efficient mapping of complex applications onto NoC-based MPPAs.

List of Publications

1. Djemal, M., Pêcheux, F., Potop-Butucaru, D., de Simone, R.,Wajsbürt, F., and

Zhang, Z. Programmable routers for efficient mapping of applications onto

NoC-based MPSoCs. In Proceedings of the IEEE international conference on

Design and Architectures for Signal and Image Processing (DASIP’12), Karlsruhe,

Germany

2. Carle,T., Djemal,M., Potop Butucaru,D., de Simone,R.,Zhang,Z. Static mapping

of real-time applications onto massively parallel processor arrays. In Proceed-

ings of the IEEE international conference on Application of Concurrency to System

Design (ACSD’14), Tunis, Tunisia

3. Carle,T., Djemal,M., Potop Butucaru,D., de Simone,R.,Zhang,Z., Pechêux,F., and

Wajsbürt, F. Reconciling performance and predictability on a many-core through

off-line mapping. In Reconciling Performance and Predictability Workshop (REPP’14),

Grenoble, France

4. Carle,T., Djemal,M., Genius,D., Pechêux,F., Potop Butucaru,D., de Simone,R., Wa-

jsbürt,F., and Zhang,Z. Reconciling performance and predictability on a many-

core through off-line mapping. In Reconciling Performance and Predictability

Workshop (ReCoSoC’14), Montpellier, France

5. Djemal, M., Pêcheux, F., Potop-Butucaru, D., de Simone, R.,Wajsbürt, F., and

Zhang, Z. Programmable routers for efficient mapping of applications onto

NoC-based MPSoCs. Poster In Colloque GDR SOC-SIP 2012, Paris, France

129

Bibliography

[Adapteva, 2012] Adapteva (2012). The Epiphany many-core architecture.

Online http://www.adapteva.com/products/epiphany-ip/

epiphany-architecture-ip/. 11, 24, 29, 31, 43

[Alliance, 2001] Alliance, V. (2001). VCI: Virtual Component Interface Standard (OCB

2 2.0). Online at: http://www.vsi.org. 59

[Almaless and Wajsbürt, 2012] Almaless, G. and Wajsbürt, F. (2012). On the scalability

of image and signal processing parallel applications on emerging cc-NUMA many-

cores. In Proceedings DASIP’12, Karlsruhe, Germany. 47

[Amarasinghe et al., 2005] Amarasinghe, S., Gordon, M. I., Karczmarek, M., Lin, J.,

Maze, D., Rabbah, R., and Thies, W. (2005). Language and compiler design for stream-

ing applications. Int. J. Parallel Program., 33(2). 49

[AOSTE-INRIA,] AOSTE-INRIA. SynDEx:System-Level CAD Software for Dis-

tributed Real-Time Embedded Systems. Online at: http://www.syndex.org/. 49

[ARINC653, 2005] ARINC653 (2005). ARINC 653: Avionics application software stan-

dard interface. www.arinc.org. 72

[ARM, 1999] ARM (1999). Amba specification rev 2.0. ARM Limited. 12

[Aubry et al., 2013] Aubry, P., Beaucamps, P.-E., Blanc, F., Bodin, B., Carpov, S., Cu-

dennec, L., David, V., Dore, P., Dubrulle, P., de Dinechin, B. D., Galea, F., Goubier,

T., Harrand, M., Jones, S., Lesage, J.-D., Louise, S., Chaisemartin, N. M., Nguyen,

T. H., Raynaud, X., and Sirdey, R. (2013). Extended cyclostatic dataflow program

compilation and execution for an integrated manycore processor. In Proceedings of the

First International Workshop on Architecture, Languages, Compilation and Hardware

support for Emerging ManYcore systems (ALCHEMY 2013), Barcelona, Spain. 15, 31,

32, 54

130

http://www.adapteva.com/products/epiphany-ip/epiphany-architecture-ip/
http://www.adapteva.com/products/epiphany-ip/epiphany-architecture-ip/
www.arinc.org

BIBLIOGRAPHY 131

[AUTOSAR, 2009] AUTOSAR (2009). Autosar (automotive open system architecture),

release 4. http://www.autosar.org/. 72

[Aydi et al., 2011] Aydi, Y., Baklouti, M., Abid, M., and Dekeyser, J.-L. (2011). A multi-

level design methodology of multistage interconnection network for mpsocs. IJCAT,

42(2/3):191–203. 65

[Bacivarov et al., 2013] Bacivarov, I., Haid, W., Huang, K., and Thiele, L. (2013). Meth-

ods and tools for mapping process networks onto multi-processor systems-on-chip. In

Handbook of Signal Processing Systems. Springer. 55

[Bahn et al., 2008] Bahn, J. H., Yang, J., and Bagherzadeh, N. (2008). Parallel fft al-

gorithms on network-on-chips. In Information Technology: New Generations, 2008.

ITNG 2008. Fifth International Conference on. 85, 124, 125

[Bebelis et al., 2013] Bebelis, V., Fradet, P., Girault, A., and Lavigueur, B. (2013). A

framework to schedule parametric dataflow applications on many-core platforms. In

Proceedings CPC’13, Lyon, France. 55

[Beletska et al., 2011] Beletska, A., Bielecki, W., Cohen, A., Palkowski, M., and

Siedlecki, K. (2011). Coarse-grained loop parallelization: Iteration space slicing vs

affine transformations. Parallel Computing, 37(8):479 – 497. 10

[Benini, 2010] Benini, L. (2010). Programming heterogeneous many-core plat-

forms in nanometer technology: the p2012 experience. Presentation in the

ARTIST Summer School, Autrans, France. Online at: http://www.artist-

embedded.org/artist/Videos.html. 12, 29, 65, 77

[Benini and De Micheli, 2002] Benini, L. and De Micheli, G. (2002). Networks on chips:

A new soc paradigm. Computer, 35(1):70–78. 13

[Benveniste et al., 2003] Benveniste, A., Caspi, P., Edwards, S. A., Halbwachs, N., Guer-

nic, P. L., and de Simone, R. (2003). The synchronous languages 12 years later. Pro-

ceedings of the IEEE, 91(1):64–83. 95

[Bhattacharyya et al., 2013] Bhattacharyya, S., Deprettere, E., Leupers, R., and Takala,

J., editors (2013). Handbook of Signal Processing Systems. Springer. 2nd edition, in

particular chapter. 55

http://www.autosar.org/

BIBLIOGRAPHY 132

[Brandner and Schoeberl, 2012] Brandner, F. and Schoeberl, M. (2012). Static routing

in symmetric real-time network-on-chips. In Proceedings of the 20th International

Conference on Real-Time and Network Systems, RTNS ’12. 47

[Buchmann et al., 2004] Buchmann, R., Pétrot, F., and Greiner, A. (2004). Fast cycle ac-

curate simulator to simulate event-driven behavior. In Proceedings of the International

Conference on Electrical, Electronic and Computer Engineering, pages 35–38. 68

[Campbell et al., 2006] Campbell, S., Chancelier, J.-P., and Nikoukhah, R. (2006). Mod-

eling and Simulation in Scilab/Scicos. Springer. 50, 95

[Carara et al., 2007] Carara, E., Calazans, N., and Moraes, F. (2007). Router architecture

for high-performance nocs. In Proceedings SBCCI, Rio de Janeio, Brazil. 31

[Carle and Potop-Butucaru, 2011] Carle, T. and Potop-Butucaru, D. (2011). Throughput

Optimization by Software Pipelining of Conditional Reservation tables. Rapport de

recherche RR-7606, INRIA. 51, 52, 103, 106

[Carle et al., 2012] Carle, T., Potop-Butucaru, D., Sorel, Y., and Lesens, D. (2012). From

dataflow specification to multiprocessor partitioned time-triggered real-time imple-

mentation. Research report RR-8109, INRIA. 102

[Caspi et al., 2003] Caspi, P., Curic, A., Magnan, A., Sofronis, C., Tripakis, S., and

Niebert, P. (2003). From Simulink to SCADE/Lustre to TTA: a layered approach for

distributed embedded applications. In Proceedings LCTES, San Diego, CA, USA. 17,

49

[Cetus, 2004] Cetus (2004). Cetus: A source-to-source compiler infrastructure for c pro-

grams. Online http://cetus.ecn.purdue.edu/. 10

[de Dinechin et al., 2013] de Dinechin, B. D., de Massas, P. G., Lager, G., Léger, C., Or-

gogozo, B., Reybert, J., and Strudel, T. (2013). A distributed run-time environment for

the kalray mppa R©-256 integrated manycore processor. Procedia Computer Science,

18(0):1654 – 1663. International Conference on Computational Science. 44

[Djemal et al., 2012] Djemal, M., Pêcheux, F., Potop-Butucaru, D., de Simone, R., Wajs-

bürt, F., and Zhang, Z. (2012). Programmable routers for efficient mapping of applica-

tions onto NoC-based MPSoCs. In Proceedings of the IEEE international conference

on Design and Architectures for Signal and Image Processing (DASIP). 32

http://cetus.ecn.purdue.edu/

BIBLIOGRAPHY 133

[Eles et al., 2000] Eles, P., Doboli, A., Pop, P., and Peng, Z. (2000). Scheduling with bus

access optimization for distributed embedded systems. IEEE Transactions on VLSI

Systems, 8(5):472–491. 49

[ELF, 1995] ELF (1995). Tool interface standard (tis) committee: Executable and linking

format (elf) specification. version 1.2. Online http://refspecs.linuxbase.

org/elf/elf.pdf. 63

[Epiphany, 2012] Epiphany (2012). Epiphany architecture reference man-

ual. Online http://www.adapteva.com/uncategorized/

e3-reference-manual/. 44

[Feige and Raghavan, 1992] Feige, U. and Raghavan, P. (1992). Exact analysis of hot-

potato routing. In Proceedings of the 33rd Annual Symposium on Foundations of Com-

puter Science, SFCS ’92, pages 553–562, Washington, DC, USA. IEEE Computer

Society. 35

[Fisher, 1983] Fisher, J. (1983). Very long instruction word architectures and the eli-512.

In Proceedings ISCA. 41, 49

[Fohler and Ramamritham, 1995] Fohler, G. and Ramamritham, K. (1995). Static

scheduling of pipelined periodic tasks in distributed real-time systems. In In Procs.

of EUROMICRO-RTS97, pages 128–135. 48, 49

[Furber, 2006] Furber, S. (2006). Living with failure : Lessons from nature ? In Pro-

ceedings of the 11th IEEE European Test Symposium (ETS), pages 4–8. 10

[Genius et al., 2013] Genius, D., Kordon, A. M., and el Abidine, K. Z. (2013). Space

optimal solution for data reordering in streaming applications on noc based mpsoc.

Journal of System Architecture. 55

[Gerdes et al., 2012] Gerdes, M., Kluge, F., Ungerer, T., Rochange, C., and Sainrat, P.

(2012). Time analysable synchronisation techniques for parallelised hard real-time

applications. In Proceedings DATE’12, Dresden, Germany. 15, 31

[Goossens et al., 2003] Goossens, J., Funk, S., and Baruah, S. (2003). Priority-driven

scheduling of periodic task systems on multiprocessors. Real-Time Syst., 25(2-3):187–

205. 15

http://refspecs.linuxbase.org/elf/elf.pdf
http://refspecs.linuxbase.org/elf/elf.pdf
http://www.adapteva.com/uncategorized/e3-reference-manual/
http://www.adapteva.com/uncategorized/e3-reference-manual/

BIBLIOGRAPHY 134

[Goossens et al., 2012] Goossens, K., Azevedo, A., Chandrasekar, K., Gomony, M.,

Goossens, S., Koedam, M., Li, Y., Mirzoyan, D., Molnos, A., Nejad, A. B., Nelson, A.,

and Sinha, S. (2012). Virtual execution platforms for mixed-time-criticality applica-

tions : the CompSoC architecture and design flow. In Proceedings of the 5th Workshop

on Compositional Theory and Technology for Real-Time Embedded Systems, pages

23–30, San Juan, Puerto Rico. 47, 52, 55

[Goossens et al., 2005] Goossens, K., Dielissen, J., and Radulescu, A. (2005). Æthereal

network on chip: Concepts, architectures, and implementations. IEEE Design & Test

of Computers, 22(5). 14, 30, 31, 33, 34

[Gordon, 2010] Gordon, M. (2010). Compiler Techniques for Scalable Performance of

Stream Programs on Multicore Architectures. PhD thesis, Massachusetts Institute of

Technology. 52, 53

[Gordon et al., 2006] Gordon, M. I., Thies, W., and Amarasinghe, S. (2006). Exploiting

coarse-grained task, data, and pipeline parallelism in stream programs. SIGARCH

Comput. Archit. News, 34(5):151–162. 53

[Gordon E. Moore, 1965] Gordon E. Moore (1965). Moore’s law. Online http://en.

wikipedia.org/wiki/Moore’s_law. 8

[Gordon E. Moore, 2005] Gordon E. Moore (2005). Excerpts from a conversation with

gordon moore: Moore’s law. Online http://download.intel.com/museum/

Moores_law/Video-transcripts/excepts_a_Conversation_with_

gordon_Moore.pdf. 8

[Goubier et al., 2011] Goubier, T., Sirdey, R., Louise, S., and David, V. (2011). σc:

A programming model and language for embedded manycores. In Proceedings

ICA3PP’11 (LNCS 7016), Melbourne, Australia. 54

[Grandpierre and Sorel, 2003] Grandpierre, T. and Sorel, Y. (2003). From algorithm and

architecture specification to automatic generation of distributed real-time executives: a

seamless flow of graphs transformations. In Proceedings MEMOCODE, Mont Saint-

Michel, France. 17, 48, 49, 51, 94, 112, 115

[Guernic et al., 2003] Guernic, P. L., Talpin, J.-P., and Lann, J.-C. L. (2003). Polychrony

for system design. Journal for Circuits, Systems and Computers. Special Issue on

Application Specific Hardware Design. 48, 50, 95

http://en.wikipedia.org/wiki/Moore's_law
http://en.wikipedia.org/wiki/Moore's_law
http://download.intel.com/museum/Moores_law/Video-transcripts/excepts_a_Conversation_with_gordon_Moore.pdf
http://download.intel.com/museum/Moores_law/Video-transcripts/excepts_a_Conversation_with_gordon_Moore.pdf
http://download.intel.com/museum/Moores_law/Video-transcripts/excepts_a_Conversation_with_gordon_Moore.pdf

BIBLIOGRAPHY 135

[Guerrier and Greiner, 2000] Guerrier, P. and Greiner, A. (2000). A generic architecture

for on-chip packet-switched interconnections. In Proceedings of the conference on

Design, automation and test in Europe, DATE ’00, pages 250–256, New York, NY,

USA. ACM. 29

[Halbwachs, 1993] Halbwachs, N. (1993). Synchronous Programming of Reactive Sys-

tems. Kluwer academic Publishers. 95

[Halbwachs et al., 1991] Halbwachs, N., Caspi, P., Raymond, P., and Pilaud, D. (1991).

The synchronous dataflow programming language Lustre. Proceedings of the IEEE,

79(9):1305–1320. 48, 50, 95

[Hanumaiah and Vrudhula, 2012] Hanumaiah, V. and Vrudhula, S. (2012). Temperature-

aware dvfs for hard real-time applications on multicore processors. IEEE Trans. Com-

put., 61(10):1484–1494. 10

[Hardy and Puaut, 2008] Hardy, D. and Puaut, I. (2008). Wcet analysis of multi-level

non-inclusive set-associative instruction caches. In RTSS. 13, 58, 66

[Harrand and Durand, 2011] Harrand, M. and Durand, Y. (2011). Network on chip with

quality of service. United States patent application publication US 2011/026400A1.

14, 30, 31, 36, 37, 65, 77

[Held et al., 2006] Held, J., Bautista, J., and Koehl, S. (2006). From a Few Cores to

Many: A Tera-scale Computing Research Overview. Technical report. 9

[Henzinger and Kirsch, 2007] Henzinger, T. and Kirsch, C. (2007). The embedded ma-

chine: Predictable, portable real-time code. ACM Transactions on Programming Lan-

guages and Systems, 29(6). 72

[Heptagon, 2013] Heptagon (2013). Heptagon/bzr manual. Online http:http://

bzr.inria.fr/pub/bzr-manual.pdf. 48

[Hilton and Nelson, 2006] Hilton, C. and Nelson, B. (2006). Pnoc: a flexible circuit-

switched noc for fpga-based systems. Computers and Digital Techniques, IEE Pro-

ceedings -, 153(3):181 – 188. 14, 26

[Howard and al., 2011] Howard, J. and al. (2011). A 48-core ia-32 processor in 45nm

cmos using on-die message-passing and dvfs for performance and power scaling. IEEE

Journal of Solid-State Circuits, 46(1). 11, 12, 14, 28, 31, 45

http:http://bzr.inria.fr/pub/bzr-manual.pdf
http:http://bzr.inria.fr/pub/bzr-manual.pdf

BIBLIOGRAPHY 136

[IBM, 2001] IBM (2001). The POWER4 processor introduction and tuning guide. Online

http://www.redbooks.ibm.com/redbooks/pdfs/sg247041.pdf. 9

[Irigoin et al., 2012] Irigoin, F., Amini, M., Ancourt, C., Coelho, F., Creusillet, B., and

Keryell, R. (2012). Polyèdres et compilation. Technique et Science Informatiques,

31(8-10):987–1019. 10

[J.Flynn, 2004] J.Flynn, L. (2004). Intel halts development of 2 new microprocessors.

New York Times. 9

[John von Neumann, 1945] John von Neumann (1945). Von neumann architecture. On-

line http://en.wikipedia.org/wiki/Von_Neumann_architecture.

8

[Johnson and Frigo, 2008] Johnson, S. G. and Frigo, M. (2008). Implementing FFTs in

practice. In Burrus, C. S., editor, Fast Fourier Transforms, chapter 11. Connexions,

Rice University, Houston TX. 84

[Kakoee, 2012] Kakoee, M. R. (2012). Reliable and Variation-tolerant Interconnection

Network for Low Power MPSoCs. PhD thesis, Universitá di Bologna. Online at http:

//amsdottorato.unibo.it/4407/1/phdthesis.pdf. 65

[Kashif et al., 2013] Kashif, H., Gholamian, S., Pellizzoni, R., Patel, H., and Fischmeis-

ter, S. (2013). Ortap: An offset-based response time analysis for a pipelined commu-

nication resource model. In Proceedings RTAS. 15

[Khronos, 2011] Khronos (2011). The open standard for parallel programming of het-

erogeneous systems. Online https://www.khronos.org/opencl. 10, 15

[Kumar et al., 2002] Kumar, S., antsch, A., Soininen, J.-P., Forsell, M., Millberg, M.,

Oberg, J., Tiensyrja, K., and Hemani, A. (2002). A network on chip architecture and

design methodology. In Proceedings of the IEEE Computer Society Annual Symposium

on VLSI, ISVLSI ’02, pages 117–124, Washington, DC, USA. IEEE Computer Society.

27

[Kwok and Ahmad, 1999] Kwok, Y.-K. and Ahmad, I. (1999). Static scheduling algo-

rithms for allocating directed task graphs to multiprocessors. ACM Computing Surveys,

31(4):406–471. 15

http://www.redbooks.ibm.com/redbooks/pdfs/sg247041.pdf
http://en.wikipedia.org/wiki/Von_Neumann_architecture
http://amsdottorato.unibo.it/4407/1/phdthesis.pdf
http://amsdottorato.unibo.it/4407/1/phdthesis.pdf
https://www.khronos.org/opencl

BIBLIOGRAPHY 137

[Lee and Messerschmitt, 1987] Lee, E. A. and Messerschmitt, D. G. (1987). Syn-

chronous data flow. In Proceedings of the IEEE, pages 1235–1245. 48

[Lee et al., 1998] Lee, W., Barua, R., Frank, M., Srikrishna, D., Babb, J., Sarkar, V., and

Amarasinghe, S. (1998). Space-time scheduling of instruction-level parallelism on a

raw machine. SIGOPS Oper. Syst. Rev., 32(5):46–57. 49

[Lickly et al., 2008] Lickly, B., Liu, I., Kim, S., Patel, H., Edwards, S., and Lee, E.

(2008). Predictable programming on a precision timed architecture. In Proceedings

CASES’08. 72

[LIP6, 2011] LIP6 (2011). SoClib: an open platform for virtual prototyping of multi-

processors system on chip. Online at: http://www.soclib.fr. 19, 33, 57

[Lu and Jantsch, 2007] Lu, Z. and Jantsch, A. (2007). Tdm virtual-circuit configuration

for network-on-chip. IEEE Trans. VLSI. 32, 55

[Melpignano et al., 2012] Melpignano, D., Benini, L., Flamand, E., Jego, B., Lepley, T.,

Haugou, G., Clermidy, F., and Dutoit, D. (2012). Platform 2012, a many-core comput-

ing accelerator for embedded socs: performance evaluation of visual analytics appli-

cations. In Proceedings of the 49th Annual Design Automation Conference, DAC ’12,

pages 1137–1142, New York, NY, USA. ACM. 46

[MIC, 2010] MIC (2010). Intel Many Integrated Core Architecture. On-

line at: http://www.intel.com/content/www/us/en/architecture-and-technology/many-

integrated-core/intel-many-integrated-core-architecture.html. 11, 12

[Milder et al., 2007] Milder, P., Franchetti, F., Hoe, J., and Püschel, M. (2007). FFT

compiler: From math to efficient hardware. In IEEE International High Level Design

Validation and Test Workshop (HLDVT). 84

[Millberg et al., 2004a] Millberg, M., Nilsson, E., Thid, R., and Jantsch, A. (2004a).

Guaranteed bandwidth using looped containers in temporally disjoint networks within

the nostrum network on chip. In Proceedings of the conference on Design, automation

and test in Europe - Volume 2, DATE ’04, Washington, DC, USA. IEEE Computer

Society. 35, 36

[Millberg et al., 2004b] Millberg, M., Nilsson, E., Thid, R., Kumar, S., and Jantsch, A.

(2004b). The nostrum backbone - a communication protocol stack for networks on

BIBLIOGRAPHY 138

chip. In Proceedings of the 17th International Conference on VLSI Design, VLSID

’04, Washington, DC, USA. IEEE Computer Society. 14, 30, 35

[Miro Panades et al., 2006] Miro Panades, I., Greiner, A., and Sheibanyrad, A. (2006). A

Low Cost Network-on-Chip with Guaranteed Service Well Suited to the GALS Ap-

proach. In NanoNet International Conference on Nano-Networks, pages 1–5. 14, 33

[Moscibroda and Mutlu, 2009] Moscibroda, T. and Mutlu, O. (2009). A case for buffer-

less routing in on-chip networks. In Proceedings ISCA-36. 31

[MPPA, 2012] MPPA (2012). The MPPA256 many-core architecture. www.kalray.

eu. 11, 29, 30, 36, 37, 42

[Nikolic et al., 2013] Nikolic, B., Ali, H., Petters, S., and Pinho, L. (2013). Are virtual

channels the bottleneck of priority-aware wormhole-switched noc-based many-cores?

In Proceedings RTNS, 2013. 15

[Nvidia, 1999] Nvidia (1999). Geforce 256: The world’s first gpu. Online http://

www.nvidia.co.uk/page/geforce256.html. 11

[Nvidia CUDA, 2006] Nvidia CUDA (2006). Cuda. Online http://www.nvidia.

com/object/cuda_home_new. 15

[OpenMP, 2008] OpenMP (2008). The openmp api specification for parallel program-

ming. Online www.openmp.org. 10, 15

[Panades, 2008] Panades, I. (2008). Conception et implantation d’un micro-réseau sur

puce avec garante de service. PhD thesis, Université Pierre et Marie Curie. 17, 24, 31,

33, 57

[Pande et al., 2005] Pande, P. P., Grecu, C., Jones, M., Ivanov, A., and Saleh, R. (2005).

Performance evaluation and design trade-offs for network-on-chip interconnect archi-

tectures. IEEE Transactions on Computers, 54(8):1025–1040. 24

[Parks et al., 1995] Parks, T. M., Pino, J. L., and Lee, E. A. (1995). A comparison of

synchronous and cycle-static dataflow. In Proceedings of the 29th Asilomar Conference

on Signals, Systems and Computers (2-Volume Set), ASILOMAR ’95, pages 204–,

Washington, DC, USA. IEEE Computer Society. 48

www.kalray.eu
www.kalray.eu
http://www.nvidia.co.uk/page/geforce256.html
http://www.nvidia.co.uk/page/geforce256.html
http://www.nvidia.com/object/cuda_home_new
http://www.nvidia.com/object/cuda_home_new
www.openmp.org

BIBLIOGRAPHY 139

[Peng et al., 2007] Peng, L., Peir, J.-K., Prakash, T. K., Chen, Y.-K., and Koppelman,

D. M. (2007). Memory performance and scalability of intel’s and amd’s dual-core

processors: A case study. In IPCCC’07, pages 55–64. 8

[PLB, 2001] PLB (2001). 32-bit processor local bus architecture specification version

2.9. IBM Corporation. 12

[Pollack, 1999] Pollack, F. J. (1999). New microarchitecture challenges in the com-

ing generations of CMOS process technologies. In Proceedings of the 32nd annual

ACM/IEEE international symposium on Microarchitecture, MICRO 32, Washington,

DC, USA. IEEE Computer Society. 9

[Potop-Butucaru et al., 2009] Potop-Butucaru, D., de Simone, R., Sorel, Y., and Talpin,

J.-P. (2009). Clock-driven distributed real-time implementation of endochronous syn-

chronous programs. In Proceedings EMSOFT, Grenoble, France. 49, 51, 94, 95, 100,

101, 106, 112, 115

[Potop-Butucaru et al., 2005] Potop-Butucaru, D., Simone, R. D., and pierre Talpin, J.

(2005). The synchronous hypothesis and synchronous languages. In Embedded Sys-

tems Handbook. 95

[Pradalier et al., 2005] Pradalier, C., Hermosillo, J., Koike, C., Braillon, C., Bessière, P.,

and Laugier, C. (2005). The CyCab: a car-like robot navigating autonomously and

safely among pedestrians. Robotics and Autonomous Systems, 50(1). 78

[Puaut and Potop-Butucaru, 2013] Puaut, I. and Potop-Butucaru, D. (2013). Integrated

worst-case execution time estimation of multicore applications. In Proceedings

WCET’13, Paris, France. to appear. 20, 65, 114

[Qualcomm, 2011] Qualcomm (2011). Snapdragon S4 Processors: System on a Chip

Solution for a New Mobile Age. Technical report. 11

[R. Wilhelm et al., 2008] R. Wilhelm et al. (2008). The worst-case execution-time prob-

lem overview of methods and survey of tools. ACM TECS, 7(3). 66

[Ramamritham et al., 1993] Ramamritham, K., Fohler, G., and Adan, J. M. (1993). Issues

in the static allocation and scheduling of complex periodic tasks. In In Proc. 10th IEEE

Workshop on Real-Time Operating Systems and Software. 15

BIBLIOGRAPHY 140

[Sadawarte et al., 2011] Sadawarte, Y. A., A.Gaikwad, M., and M.Patrikar, R. (2011).

Implementation of virtual cut-through algorithm for network on chip architecture. IJCA

Proceedings on International Symposium on Devices MEMS, Intelligent Systems and

Communication (ISDMISC), (1):5–8. Published by Foundation of Computer Science,

New York, USA. 28

[Salloum et al., 2013] Salloum, C. E., Elshuber, M., Höftberger, O., Isakovic, H., and

Wasicek, A. (2013). The {ACROSS} {MPSoC} – a new generation of multi-core

processors designed for safety–critical embedded systems. Microprocessors and Mi-

crosystems, 37(8, Part C):1020 – 1032. Special Issue on European Projects in Embed-

ded System Design: {EPESD2012}. 39, 47

[Sangiovanni-vincentelli and Martin, 2001] Sangiovanni-vincentelli, A. and Martin, G.

(2001). Platform-based design and software design methodology for embedded sys-

tems. IEEE Design & Test of Computers, 18(6):23–33. 51

[Sgroi et al., 2001] Sgroi, M., Sheets, M., Mihal, A., Keutzer, K., Malik, S., Rabaey, J.,

and Sangiovanni-Vencentelli, A. (2001). Addressing the system-on-a-chip interconnect

woes through communication-based design. In Proceedings of the 38th annual Design

Automation Conference, DAC ’01, pages 667–672, New York, NY, USA. ACM. 13,

23

[Shi and Burns, 2010] Shi, Z. and Burns, A. (2010). Schedulability analysis and task

mapping for real-time on-chip communication. Real-Time Systems, 46(3):360–385.

15, 31, 55

[Sorel, 1994] Sorel, Y. (1994). Massively parallel systems with real time constraints,

the algorithm architecture adequation methodology. In Proceedings of Conference on

Massively Parallel Computing Systems, MPCS’94, Ischia, Italy. 49

[Sorensen et al., 2012] Sorensen, R., Schoeberl, M., and Sparso, J. (2012). A light-

weight statically scheduled network-on-chip. In Proceedings NORCHIP. 30

[Sørensen et al., 2012] Sørensen, R. B., Schoeberl, M., and Sparsø, J. (2012). A light-

weight statically scheduled network-on-chip. In Proceedings of the 29th Norchip Con-

ference, Copenhagen. 40

BIBLIOGRAPHY 141

[Tamir and Chi, 1993] Tamir, Y. and Chi, H.-C. (1993). Symmetric crossbar arbiters for

vlsi communication switches. Parallel and Distributed Systems, IEEE Transactions

on, 4(1):13–27. 46

[Taylor, 2003] Taylor, M. B. (2003). The Raw Processor Specification. MIT.

Available online http://groups.csail.mit.edu/cag/raw/documents/

RawSpec99.pdf. 38

[Taylor et al., 2004] Taylor, M. B., Psota, J., Saraf, A., Shnidman, N., Strumpen, V.,

Frank, M., Amarasinghe, S., Agarwal, A., Lee, W., Miller, J., Wentzlaff, D., Bratt, I.,

Greenwald, B., Hoffmann, H., Johnson, P., and Kim, J. (2004). Evaluation of the raw

microprocessor: An exposed-wire-delay architecture for ilp and streams. SIGARCH

Comput. Archit. News, 32(2). 38, 40

[Texas Instruments, 2009] Texas Instruments (2009). Omap 4: Mobile applications plat-

form. Online http://focus.ti.com/lit/ml/swpt034/swpt034.pdf. 11

[Thonnart et al., 2010] Thonnart, Y., Vivet, P., and Clermidy, F. (2010). A fully-

asynchronous low-power framework for gals noc integration. In Proceedings

DATE’10, pages 33–38, Dresden, Germany. 46

[Tilera, 2008] Tilera (2008). The TilePro64 many-core architecture. Online

http://www.tilera.com/sites/default/files/productbriefs/

TILEPro64_Processor_PB019_v4.pdf. 11, 24, 29, 31, 32, 38, 40

[Tilera Corporation, 2013] Tilera Corporation (2013). Tile processor architecture-

overview for the tilepro series. Online http://www.tilera.com/scm/docs/

UG120-Architecture-Overview-TILEPro.pdf. 41, 42

[TSAR, 2008] TSAR (2008). Tera-scale architecture. Online https://www-asim.

lip6.fr/trac/tsar/wiki. 13, 46

[Villalpando et al., 2010] Villalpando, C., Johnson, A., Some, R., Oberlin, J., and Gold-

berg, S. (2010). Investigation of the tilera processor for real time hazard detection and

avoidance on the altair lunar lander. In Proceedings of the IEEE Aerospace Conference.

15, 31

[Waingold et al., 1997] Waingold, E., Taylor, M., Srikrishna, D., Sarkar, V., Lee, W., Lee,

V., Kim, J., Frank, M., Finch, P., Barua, R., Babb, J., Amarasinghe, S., and Agarwal,

http://groups.csail.mit.edu/cag/raw/documents/RawSpec99.pdf
http://groups.csail.mit.edu/cag/raw/documents/RawSpec99.pdf
http://focus.ti.com/lit/ml/swpt034/swpt034.pdf
http://www.tilera.com/sites/default/files/productbriefs/TILEPro64_Processor_PB019_v4.pdf
http://www.tilera.com/sites/default/files/productbriefs/TILEPro64_Processor_PB019_v4.pdf
http://www.tilera.com/scm/docs/UG120-Architecture-Overview-TILEPro.pdf
http://www.tilera.com/scm/docs/UG120-Architecture-Overview-TILEPro.pdf
https://www-asim.lip6.fr/trac/tsar/wiki
https://www-asim.lip6.fr/trac/tsar/wiki

BIBLIOGRAPHY 142

A. (1997). Baring it all to software: Raw machines. IEEE Computer, 30(9):86 –93.

14, 32, 38, 39, 52

[Wilhelm et al., 2009] Wilhelm, R., Grund, D., Reineke, J., Schlickling, M., Pister, M.,

and Ferdinand, C. (2009). Memory hierarchies, pipelines, and buses for future archi-

tectures in time-critical embedded systems. Trans. Comp.-Aided Des. Integ. Cir. Sys.,

28(7):966–978. 43

[Wilhelm and Reineke, 2012] Wilhelm, R. and Reineke, J. (2012). Embedded systems:

Many cores – many problems (invited paper). In Proceedings SIES’12, Karlsruhe,

Germany. 13, 15, 58

[Xu, 1993] Xu, J. (1993). Multiprocessor scheduling of processes with release times,

deadlines, precedence, and exclusion relations. Software Engineering, IEEE Transac-

tions on, 19(2):139–154. 49

[Yoon et al., 2010] Yoon, Y., Concer, N., Petracca, M., and Carloni, L. (2010). Virtual

channels vs. multiple physical networks: a comparative analysis. In Proceedings DAC,

Anaheim, CA, USA. 31

[Yu et al., 2008] Yu, Z., Meeuwsen, M. J., Sattari, O., Lai, M., Webb, J. W., Work, E. W.,

Truong, D., Mohsenin, T., and Baas, B. M. (2008). Asap: An asynchronous array of

simple processors. IEEE Journal of Solid-State Circuits. 39

[Zhai et al., 2013] Zhai, J. T., Bamakhrama, M., and Stefanov, T. (2013). Exploiting just-

enough parallelism when mapping streaming applications in hard real-time systems. In

Proceedings DAC. 55

[Zhang, 2011] Zhang, Z. (2011). On the field Detection, De-activation and Reconfigu-

ration (ODDR) mechanism for Permanent Fault-Tolerance of Network-on-Chip. PhD

thesis, Université Pierre et Marie Curie. 11

[Zimmermann, 1988] Zimmermann, H. (1988). Innovations in internetworking. chap-

ter OSI Reference Model&Mdash;The ISO Model of Architecture for Open Systems

Interconnection, pages 2–9. Artech House, Inc., Norwood, MA, USA. 23

BIBLIOGRAPHY 143

	Remerciements
	Résumé
	Abstract
	Table of Contents
	Introduction
	Thesis motivation
	The advent of many-cores
	The advent of Networks-on-Chips
	Many-cores for hard real-time applications
	Mapping applications onto NoC-based many-cores

	Thesis contributions
	The DSPINpro programmable Network-on-Chip
	The Automatic real-time mapping and code generation
	An environment for virtual prototyping of MPPA applications

	Outline

	State of the art
	Network-on-Chip design
	NoC building blocks
	NoC topology
	NoC switching
	Routing
	Arbitration/Scheduling

	Existing Network-on-Chip architectures
	DSPIN
	Æthereal
	Nostrum
	The scalar interconnect of MIT RAW
	Other NoC architectures
	Comparison with our work

	Massively parallel processor arrays
	Tilera TILEPro64
	Kalray MPPA-256
	Adapteva Epiphany
	Intel SCC
	ST Microelectronics STHORM
	TSAR
	Academic MPSoC architectures with TDM-based NoC arbitration

	Static application mapping
	Off-line real-time multi-processor scheduling
	The AAA/SynDEx methodology

	The StreamIt compiler for the MIT RAW architecture
	Compilation of the C language for the Kalray MPPA256 platform
	Other mapping approaches

	Tiled MPPA architectures in SoCLib
	MPPA structure
	Memory organization
	Distributed shared memory
	Address structure
	Global memory organization
	Tile memory organization
	Hardware/software interface

	Improving the timing predictability of the SoCLib tile
	SystemC simulation and compilation support

	Programmable NoC arbitration
	The case for programmed arbitration
	The principle
	Target application classes
	The cost of programmability

	Programmable DSPIN
	Area overhead

	A simple example in depth
	Case study: the FFT
	FFT algorithm description
	Mapping onto the MPPA architecture
	Traffic injection configuration

	Evaluation of the slow-down due to traffic injection
	Removing the slow-down through NoC programming

	Off-line mapping of real-time applications using LoPhT
	Background: AAA using the Clocked Graphs formalism
	The Clocked Graph formalism
	Functional specification
	Clocks
	Clocked graphs
	Example
	Support of a clock
	Well-formed properties

	Non-functional specification
	Platform model
	Non-functional properties

	Off-line scheduling of CG specifications
	Scheduled clocked graphs
	Real-time scheduling problem
	Consistency of a scheduled clocked graph
	Notations
	Consistency properties

	Makespan-optimizing scheduling algorithm

	Static (off-line) mapping onto MPPA architectures
	AAA for NoC-based MPPA: The problem
	Limitations

	Extension of the CG format
	Modeling of MPPA resources
	NoC ressources:
	Tile ressources:

	Memory footprint specification
	Non-functional properties
	Worst-case computation durations
	Worst-case communication durations

	Makespan-optimizing scheduling
	Mapping NoC communications
	Multiple reservations

	Automatic code generation
	Tile code generation

	Experimental results

	Conclusion
	List of Publications
	Bibliography

