
HAL Id: tel-01126973
https://theses.hal.science/tel-01126973v1

Submitted on 6 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Numerical Quality and High Performance In Interval
Linear Algebra on Multi-Core Processors

Philippe Theveny

To cite this version:
Philippe Theveny. Numerical Quality and High Performance In Interval Linear Algebra on Multi-Core
Processors. Other [cs.OH]. Ecole normale supérieure de lyon - ENS LYON, 2014. English. �NNT :
2014ENSL0941�. �tel-01126973�

https://theses.hal.science/tel-01126973v1
https://hal.archives-ouvertes.fr

THÈSE

en vue de l’obtention du grade de

Docteur de l’Université de Lyon, délivré par l’École Normale Supérieure de Lyon

Discipline : Informatique

Laboratoire de l’Informatique du Parallélisme

École Doctorale InfoMaths (ED 512)

présentée et soutenue publiquement le 31 octobre 2014

par Monsieur Philippe Théveny

Numerical Quality and High Performance in
Interval Linear Algebra on Multi-Core Processors

Directeur de thèse : Gilles Villard
Co-Encadrante : Nathalie Revol

Devant la commision d’examen composée de :
M. Marc Baboulin, LRI, Examinateur
M. Laurent Granvilliers, Université de Nantes, Rapporteur
Mme Mariana Kolberg, Universidade Federal do Rio Grande do Sul, Invitée
M. Julien Langou, University of Colorado Denver, Rapporteur
Mme Sylvie Putot, CEA LIST, Examinatrice
Mme Nathalie Revol, LIP, Co-Encadrante
M. Gilles Villard, LIP, Directeur

Contents

Introduction 3

I Error Analysis 11

Measuring error in interval linear algebra 13

1 Metric on the set of real intervals 17

1.1 Midpoint-radius representation . 17

1.2 The choice of a metric . 19

1.3 Relations between metrics . 22

1.4 Conclusion . 23

2 Accuracy of interval inner products 25

2.1 Interval arithmetic variants . 25

2.2 Interval inner product and variants . 27

2.3 Arithmetic error of interval inner products . 29

2.4 Arithmetic error analysis . 31

2.5 A new approximate inner product . 35

2.6 Conclusion . 38

3 Accuracy of interval matrix products 39

3.1 Floating-point model . 39

3.2 Interval matrix product in three point matrix products 41

3.3 Interval matrix product in five point matrix products 44

3.4 A new algorithm in two point matrix products 47

3.5 Conclusion . 49

4 Global error analysis 51

4.1 Measuring the global error experimentally . 51

4.2 Global error for MMMul3 . 53

4.3 Global error for MMMul2 . 60

4.4 Global error for MMMul5 . 63

4.5 Conclusion . 66

i

II Parallel Implementation 71

Parallel interval linear algebra on multi-core processors 73

5 Implementation issues with regard to interval linear algebra 77
5.1 Rounding modes . 77
5.2 Execution order . 82
5.3 Conclusion . 83

6 Implementation methodology 85
6.1 Priority list of implementation goals . 85
6.2 Parallel linear algebra on multi-core processors 87
6.3 Experimental protocols . 96
6.4 Conclusion . 99

7 Hardware model and blocking for single core computations 101
7.1 Hardware model for single core performance prediction 101
7.2 Vector instruction set: Streaming SIMD Extensions 104
7.3 Block computations . 106
7.4 Execution time of block kernels . 116
7.5 Conclusion . 122

8 Multi-core and multi-threading 123
8.1 Multi-threaded implementations of block algorithms 123
8.2 Sequential execution time . 124
8.3 Measure of execution time for multi-threaded runs 126
8.4 Conclusion . 130

Conclusion 133

Bibliography 135

ii

List of Figures

1 Radius Overestimation – IIMul3 . 13
2 Global Error Decomposition . 14
3 Part I Synopsis . 15

1.1 Midpoint-Radius versus Infimum-Supremum Representation 18
1.2 Inclusion in Midpoint-Radius Representation . 19
1.3 Relative Accuracy versus Maximum Relative Error 21
1.4 Relative Accuracy of Positive Intervals . 22

2.1 Addition in Midpoint-Radius Representation . 25
2.2 Product in Midpoint-Radius Representation . 27
2.3 Exact and Approximate Inner Products . 29
2.4 Upper Bounds on the Relative Arithmetic Error for z1 and z2 (Isolines) 32
2.5 Upper Bounds on the Relative Arithmetic Error for z1 (e = f) 33
2.6 Upper Bounds on the Relative Arithmetic Error for z2 (e = f) 33
2.7 Radius Overestimation for z3 . 37
2.8 Upper Bounds on the Relative Arithmetic Error for z3 38

4.1 Global Error Measurement . 53
4.2 Bound on the Relative Radius Error for MMMul3 56
4.3 Random Dataset I – normal midpoints, fixed relative accuracy 56
4.4 Relative Hausdorff Error for MMMul3 – Dataset I 57
4.5 Random Dataset II – normal midpoints, bounded relative precision 59
4.6 Relative Hausdorff Error for MMMul3 – Dataset II 59
4.7 Bound on the Relative Radius Error for MMMul2 61
4.8 Bound on the Relative Hausdorff Error for MMMul2 62
4.9 Relative Hausdorff Error for MMMul2 – Dataset I 62
4.10 Relative Hausdorff Error for MMMul2 – Dataset II 63
4.11 Bound on the Relative Radius Error for MMMul5 65
4.12 Relative Hausdorff Error for MMul5 – Dataset I 65
4.13 Relative Hausdorff Error for MMul5 – Dataset II 66
4.14 Bounds on the Relative Radius Error for MMMul3 and MMMul5 67
4.15 Bounds on the Relative Hausdorff Error for MMMul3 and MMMul2 68
4.16 Decision Tree for Interval Matrix Multiplications 69
4.17 Part II Synopsis . 75

6.1 NUMA machine . 87
6.2 Multi-Core Multi-Processor Synopsis . 89
6.3 Matrix Formats . 93

iii

7.1 Out-of-Order Execution Engine Model (Intel Sandy Bridge Micro-architecture). . 102
7.2 m128d Variable . 104
7.3 mm unpackhi pd Intrinsics . 105
7.4 Arithmetic and Logic Intrinsics . 106
7.5 Row-Vector of Upper Bounds on Relative Accuracies 107
7.6 Column-Vector of Upper Bounds on Relative Accuracies 107

8.1 Execution time – Sequential. 125
8.2 Execution time – 8 threads. 127
8.3 Execution time – 32 threads. 128
8.4 MMMul2 – Scalability . 129

iv

List of Tables

4.1 Relative Hausdorff Error for MMMul3 – Bound and Measures 57
4.2 Relative Hausdorff Error of MMMul3 – Dataset I 58
4.3 Relative Hausdorff Error of MMMul3 – Dataset II 60
4.4 Relative Hausdorff Error for MMMul2 – Dataset I 62
4.5 Relative Hausdorff Error for MMMul2 – Dataset II 63
4.6 Relative Hausdorff Error for MMMul5 – Dataset I 66
4.7 Relative Hausdorff Error for MMMul5 – Dataset II 66
4.8 Error Bounds and Costs for Algorithms MMMul3 and MMMul5 67

6.1 Processor Description . 87
6.2 Correspondence between Hardware Structure, Data Structure, and Algorithmic

Structure. 94

7.1 Individual Use of Execution Units and Ports in mm dmidmul2 bb 110
7.2 Total Use of Execution Units in mm dmidmul2 bb 110
7.3 Individual Use of Execution Units and Ports in mm raccrow bb 112
7.4 Total Use of Execution Units and Ports in mm raccrow bb 112
7.5 Individual Use of Execution Units and Ports in mm racccol bb 115
7.6 Total Use of Execution Units and Ports in mm racccol bb 115
7.7 Individual Use of Execution Units and Ports in mm draddmul2 bb 116
7.8 Total Use of Execution Units and Ports in mm draddmul2 bb 116
7.9 GCC Optimizations and mm dmul2 bb . 117
7.10 ICC Floating-Point Model Option and mm dmul2 bb 117
7.11 Automatic versus Manual Unrolling . 118
7.12 Theoretical Minimum Execution Time for mm dmul2 bb – Sandy Bridge 118
7.13 Execution Times and Block Size – Sandy Bridge 119
7.14 Automatic and Manual Vectorization: Execution Times (in cycles). 121

8.1 Measured Times and Efficiency . 129

v

vi

List of Algorithms

1 Classical . 4
2 IIMul4 . 41
3 InfsupToMidrad . 42
4 MMMul3 . 42
5 IIMul3 . 43
6 MMMul3 with explicit temporaries. 44
7 MMMul5 . 45
8 MMMul5 with explicit temporaries. 46
9 MMMul2 . 48

vii

viii

Listings

5.1 Interval Division. 78
5.2 Rounding Mode Violation. 82
6.1 Data Structures for Interval Matrices. 95
7.1 The mm dmul2 bb Kernel. 108
7.2 The mm dmidmul2 bb Function with Intrinsics. 109
7.3 The mm raccrow bb Function with Intrinsics. 111
7.4 The mm racccol bb Function with Intrinsics. 112
7.5 The mm racccol bb Inner Loop. 114
7.6 The mm draddmul2 bb Function with Intrinsics. 115
7.7 The mm dmidmul2 bb Function in plain C. 120
8.1 The mul mmd 2000 Function with Outer Iterations on Rows. 123

ix

x

Notations

R field of real numbers
a ∈ R scalar (lower-case)
x ∈ Rn vector (lower-case)
A ∈ Rn×n matrix (upper-case)
dot algorithm (sansserif)
IR set of real closed intervals
a ∈ IR interval (bold)
x ∈ IRn interval vector (lower-case + bold)
A ∈ IRn×n interval matrix (upper-case + bold)
x = [x, x] infimum-supremum representation
x left endpoint
x right endpoint
x = 〈midx, radx〉 midpoint-radius representation
midx midpoint
radx radius
|x| = |midx|+ radx magnitude, absolute value
F set of floating-point numbers
t floating-point precision
u unit roundoff (monospace)
realmin smallest positive normal number (monospace)
ulp(x̃) unit in the last place
ã ∈ F floating-point scalar (lower-case + tilde)
x̃ ∈ Fn floating-point vector (lower-case + tilde)

M̃ ∈ Fn×n floating-point matrix (upper-case + tilde)
fl∆ evaluation with rounding toward +∞
fl∇ evaluation with rounding toward −∞
fl� evaluation with rounding to nearest
IF set of floating-point intervals
ã ∈ IF floating-point interval (lower-case + bold + tilde)
x̃ ∈ IFn floating-point interval vector (lower-case + bold + tilde)

M̃ ∈ IFn×n interval matrix (upper-case + bold + tilde)
♦ outward rounding
N nearest midpoint rounding

1

2

Introduction

The work presented in this document is a contribution to the questions: Is is possible to substitute
interval matrix computations to numerical matrix computations? and what will be the cost?

More precisely, we will focus on the case of interval matrix multiplication and we will provide
a proof of concept for a parallel implementation that is efficient on multi-core processors.

One of the advantages of interval computations over numerical computations is that the
former can handle data that are not precisely known. The imprecision may come from several
sources like the uncertainty of the measure, for experimental data, from the floating-point error
due to the representations of numbers that are used by computers, or from roundoff errors due
to the computation with an arithmetic in finite precision.

Another important advantage of interval computation is that the result computed with the
interval arithmetic is guaranteed to be an enclosure of the exact result, provided that the so-
called “inclusion property” is preserved all along the computation. This characteristic of interval
computation makes it possible to prove mathematical properties on a result that is computed
with the floating-point arithmetic.

However, interval computations also have drawbacks: more operations are needed for an
interval enclosure of the exact result than for a floating-point approximate. And, in particular
when the computation is performed with floating-point arithmetic, interval results tend to be
overestimated. These two concerns have to be taken into account when implementing an interval
algorithm.

Interval matrix multiplications

Numerical computations performed by computers produce only approximates of the mathemat-
ically exact values. This is due to the finite precision arithmetic and the finite precision repre-
sentation, which only approximate the real operations and real numbers.

Interval arithmetic gives an indication on the accuracy of the computed result, by returning,
not a mere value, but an interval that is guaranteed to contain the exact real value. The most
stringent requirement for this goal is that all interval operations verify the inclusion property1.

Definition (from [Neu90, p. 13]). Let f : Rn → Rp be a vector function and F : IRn → IRp be
an interval vector function.

The interval function F is said to be an interval enclosure of f if, and only if, we have
f(x) ∈ F (x) for any box x in IRn and any point x ∈ x.

This property is fundamental: it implies the range inclusion f(x) ⊆ F (x) and that the
composition F ◦G of two interval enclosures F of f and G of g is itself an interval enclosure of
f ◦ g.

1Interval quantities and functions are noted in bold font and IR is the set of real intervals. See the table of
notations page 1.

3

Definition. With the notations of the previous definition, the interval function F verifies the
inclusion property with respect to f if, and only if, F is an interval enclosure of f and F is
inclusion monotonic: x ⊆ y =⇒ F (x) ⊆ F (y).

Again, the composition F ◦G of two inclusion monotonic interval enclosures F and G of f
and g, respectively, verifies the inclusion property with respect to f ◦ g.

The addition and the multiplication have interval enclosures that are inclusion monotonic,
and it is therefore possible to define an interval matrix multiplication based on the interval
addition and multiplication that verifies the inclusion property. The simplest floating-point
implementation of such an interval matrix product is given below2 (Algorithm 1). The important
point here is that it suffices to replace numerical types (respectively arithmetic) by interval types
(respectively arithmetic) to transform the classical triple nested loops algorithm into a valid
algorithm for the interval matrix product: at line 5, the infimum bound (min{. . . }) of AikBkj

is accumulated in the infimum bound Cij of the result, and, at line 6, the supremum bound

(max{. . . }) is accumulated in the supremum bound Cij .

Algorithm 1 Classical

Input: A = [A,A] ∈ IFm×k,B = [B,B] ∈ IFk×n

Output: C ∈ IFm×n,C ⊇ AB

1: for i = 1 to m do

2: for j = 1 to n do

3: Cij ← 0; Cij ← 0

4: for l = 1 to k do

5: Cij ← fl∇
(
Cij + min

{
AilBlj , AilBlj , AilBlj , AilBlj

})
6: Cij ← fl∆

(
Cij + max

{
AilBlj , AilBlj , AilBlj , AilBlj

})
7: end for

8: end for

9: end for

10: return [C,C]

However, this algorithm requires eight times more floating-point operations that the corre-
sponding numerical matrix product. In 1999, Rump [Rum99a] proposed a more efficient but
less accurate algorithm. It is based on the midpoint-radius interval representation and per-
forms the interval matrix product by using several well-optimized floating-point matrix products.
More recently, other interval matrix multiplication algorithms, which use the same idea, have
been presented by several authors [OO05, OOO11, Ngu11, OORO12, Rum12]. The number of
floating-point matrix multiplications depends on the algorithm, varying from 4 in the original
paper to 7 in [Ngu11]. In 2012, Rump found how to reduce this number by using a clever error
bound [Rum12]. When this method is applied to the algorithm proposed in 1999, the number
of floating-point matrix multiplications drops from 4 to 3, and from 7 to 5, when applied to
Nguyen’s algorithm.

In this document, we focus on these two last improved algorithms, plus a new one designed
in the same spirit. The choice of interval matrix multiplication is motivated by the following
reasons:

2Floating-point notations are given in the table of notations page 1 and detailed in Section 3.1 page 39.

4

• First, it is commonly used for testing the regularity of an interval matrix A (are all floating-
point matrices in A invertible?) or for the verification of the solution of system of linear
equations with interval coefficients. In both cases, one may use a particular case of interval
matrix multiplication, like in the computation of RA − I, where A is an interval matrix,
R is an approximate floating-point inverse of the matrix of midpoints of A, and I is the
identity matrix (see [Rum10]).

• Second, it could be used as a substitute to the sgemm or dgemm functions, which compute
floating-point matrix products. Actually, the corresponding interval matrix product pro-
vides the same result as the classical floating-point matrix product plus componentwise
bounds on the computation errors. Such a substitute has to present a small overhead if we
want it to be adopted by users accustomed to highly optimized BLAS libraries.

• Third, algorithms for interval matrix multiplication are simple enough. In particular, the
computation of a single component of the result matrix can be performed in such a way
that a given input component is used exactly once. This removes from consideration the
so-called effect of variable dependency that tends to dramatically increase the width of the
computed intervals. Linear algebra operations at a higher level, like Gaussian elimination
or matrix factorizations, undergo the variable dependency problem.

• Finally, algorithms for interval matrix multiplication are complex enough. The algorithms
we have chosen use directed rounding modes, and this raises some constraints on the code
as the inclusion property has to be verified. Moreover, it allows one to use variants of
interval arithmetic operations that offer tradeoff between the accuracy of the result and
the number of floating-point operations.

Multi-core processors

Besides the accuracy of the computed result, our other main goal is to demonstrate, through an
actual implementation, that it is possible to perform an interval matrix multiplication in parallel
for a cost, in terms of execution time, that is comparable to the cost of a numerical matrix
product, for any matrix dimension and any number of threads. This implementation cannot
be tested on all kind of platforms, however, and we will target only the current multi-core x86
processors.

Many reasons lead to the selection of this target. From a general standpoint, multi-core
processors are the current direction taken by constructors to provide more computing power.
Increasing the clock frequency at which processors operate has long been the favorite way to
accelerate computing, but it has come to an end due to unsustainable power consumption and
heat dissipation. The multi-core approach, which consists in multiplying the number of processing
units, allows one to increase the computing power at a fixed clock frequency.

From the point of view of the usage of these processors, let us note that the current trend for
scientific computing is to use machines based on commodity multi-core processors. For instance, 5
out of the 10 top supercomputers in the 43th list (June 2014) of the TOP500 project, which ranks
some of the most powerful computers that are mainly used for academic research, are made up
of x86 processors, sometimes backed by accelerators. The low cost of individual units affords the
opportunity to assemble them by thousands in such supercomputers. In this document, we will
study the efficiency of our implementations for a platform equipped with only one or a handful
of such multi-core processors. This can be considered as the node level of the supercomputers
mentioned above.

5

In terms of hardware architecture, multi-core processors can be described as a set of general-
purpose processors, the cores, that share the same memory bus. This multiplication of processing
units allows of more task parallelism. Devising and evaluating novel ways of expressing, in terms
of tasks, the parallelism of internal operations in linear algebra algorithms is an ongoing work
and an active field of research. One may cite, for instance, the Plasma [KLY+13] or the Flame
[VCv+09] projects. One of our objectives is to determine how the ideas of this field can be
adapted to the interval case.

Document summary

This document is divided in two parts. The first part deals with the problem of the error analysis
of algorithms for interval matrix multiplication.

• Chapter 1 compares many ways of evaluating errors when computing with intervals.

Motivation. Different authors of interval algorithms use different metrics for measuring
the accuracy of their results. This makes it difficult to compare the results in different
articles. Moreover, in theoretical papers, the numerical experiment is often considered
as a simple verification step for the proposed algorithm, and the choice of the metric
for interval error is seldom discussed.

Our contribution. We settle a coherent framework for the measure and analysis of in-
terval error. The different metrics are related together and their relative merits are
made explicit. Finally, we motivate the choice of two of them, the Hausdorff distance
and the ratio of radii, for the subsequent analyses of relative errors in interval matrix
products. We also introduce the notion of relative accuracy for the quantification of
the intrinsic accuracy of a given interval.

• In Chapter 2, we focus on three different algorithms for the inner product of interval vectors,
which compute overestimates of the exact inner products with different accuracies and at
different computational costs, and we analyze their error when exact arithmetic is used.
For every instance, we check that these inner products verify the inclusion property.

Motivation. The forward error in interval matrix multiplication can be bounded com-
ponentwise. The componentwise error analysis then reduces to the analysis of inner
products of interval vectors.

Our contribution. In contrast to previous error analyses, which restrict themselves to
input interval with homogeneous accuracies, we show how the inhomogeneity of the
input relative accuracy affects the accuracy of the result. We also detail how the rela-
tive Hausdorff error of the result varies when the relative accuracies of the input vary.
Moreover, we introduce a new approximate inner product, which is computationally
lighter than the existing ones and we determine the conditions where it is as accurate
as some of them.

• Chapter 3 presents the algorithms for the interval matrix multiplication, including a new
one derived from our new inner product. Their roundoff errors are also analyzed.

Motivation. The arithmetic error presented in the previous chapter is not the only source
of error for the computation of a matrix product. Roundoff errors are present as
soon as the actual computation uses finite precision numbers and a finite precision
arithmetic. Indeed, the roundoff error may dominates the arithmetic error for very

6

thin or very thick input intervals. Nevertheless, the literature on interval matrix
products usually neglects the roundoff error analysis.

Our contribution. We establish upper bounds on the roundoff error for the floating-point
implementations of three interval matrix products. This work demonstrates that only
a few formulas are needed for bounding the roundoff error in interval matrix products.

• In Chapter 4, we conduct for each algorithm the analysis of the global error, which results
from the interaction of the arithmetic error and the roundoff error.

Motivation. When comparing algorithms for interval matrix multiplication, based on a
uniform upper bound on the sole arithmetic error, one may conclude that there is
a clear tradeoff between the accuracy of the result and the number of floating-point
operations. However, an algorithm that performs more floating-point operations is
likely to undergo a larger floating-point error.

Our contribution. We define the global error as the sum of the arithmetic error and the
roundoff error. Using the bounds that are established in the previous two chapters,
we determine the important factors that affect the behavior of this global error: the
value and homogeneity of relative accuracies of inputs, the matrix dimension, and the
working precision.

In addition, we also point out the limits of our analysis, which is based on error
bounds. These limits are obvious when comparing the value of the bound with the
actual error measured in numerical experiments. The difficulty of such a measurement
is that the actual error is not directly accessible, it requires a symbolic computation
to determine the exact interval result. Nevertheless, the symbolic computation of all
components would take too much time for matrices of large dimension. In order to
conduct the numerical experiments in a reasonable time, we introduce the notion of
nearest midpoint rounding of a real interval, we show how this representation can be
computed with an arbitrary precision library in the case of interval inner product,
and we determine the conditions under which the substitution of the exact value by
its nearest floating-point representation gives meaningful results. To the best of our
knowledge, it is the first time that such an experimental protocol is described and
implemented.

The conclusions of the experiment are also new. These experimental measures show
that the computed bound is a good estimate of the actual error when the relative
accuracies of the input are homogeneous and not too small. On the contrary, the
relative Hausdorff error for accurate inputs, that is intervals with small radii compared
to their midpoints, is usually far better than the value of the bound. The situation is
even worse when the input matrices have components with a large variety of relative
accuracies. In that case, the bound on the global error tends to infinity whereas the
observed behavior with the chosen random dataset stays close to its behavior in the
case of moderate inhomogeneity.

The outcome of this work is a clear understanding of the domains where each algorithm
may produce a more accurate enclosure than its competitors.

The second part deals with the parallel implementation of algorithms for interval matrix multi-
plication.

• Chapter 5 lists the technical problems one may encounter when implementing interval
algorithms.

7

Motivation. The interval algorithms we want to implement use intensively one of the
directed rounding modes in order to guarantee that the inclusion property is verified.
Nowadays, the directed rounding modes are supported by the commodity processors
we are targeting, and high level languages, like C or FORTRAN, also provide portable
means to switch between the different rounding modes. Unfortunately, several differ-
ent layers of software interact between the source code and the executed program
that actually computes the results. And most of them do not handle correctly or even
support other rounding modes than the default rounding to nearest.

Our contribution. Most of the implementation issues detailed in this chapter are already
mentioned in the literature. In many articles about interval matrix computation,
they are too hastily dismissed, however. To the best of our knowledge, it is the
first time that a violation of the directed rounding mode by an actual BLAS library is
exemplified. Moreover, the fact that the non-determinism of multi-threaded execution
may affect the correctness of implementation of interval matrix multiplication has
never been reported before.

We also make clear the fact that the language and compiler designers, on the one
hand, and interval algorithm implementers, on the other hand, do not have the same
interpretation of the switching to a directed rounding mode. The first ones simply
interpret it as a command for computing subsequent operations with the newly set
rounding mode whereas the others expect to compute under- or over-estimates.

Considering the obstacles listed in this chapter, we come to the conclusion that it is
not safe to implement the algorithms for interval matrix multiplication in the way
that was intended by their authors, that is, by calling an external BLAS library to
compute the numerical matrix products.

• We detail a formal approach to the efficient, and correct, parallel implementation of interval
matrix multiplications in Chapter 6.

Motivation. The previous chapter shows that an extreme care is needed if we want to
guarantee that the inclusion property is verified at each step of the computation.
Moreover, the underlying hardware has to be taken into account from the start of the
implementation if a high level of performance is expected.

Our contribution. We state the implementation goals we want to reach, motivate them
and prioritize them in a different order than other authors of algorithms for inter-
val matrix multiplication. Our most important objectives are the correctness, the
sequential efficiency and the strong scalability even at the expense of the ease of
implementation. Actually, the efficient implementation of numerical algorithms for
multi-core targets is an active field of research. Several possibilities are currently ex-
plored for dense linear algebra. We explain here how Gustavson’s ideas about block
matrix and blocking algorithms can be adapted to the case of interval matrices. We
also quantify the implementation goals, when possible, and describe the experimental
protocol that is used to determine whether our implementation reaches the prescribed
objectives.

• We exemplify the application of the methodology described in the previous chapter with
the implementation of the simple, yet complex enough, MMMul2 algorithm for matrix multi-
plication. Chapter 7 deals with the implementation of the computing kernels that process
block sub-matrices.

8

Motivation. When a numerical algorithm is given, the high performance of the program
that implements this algorithm comes from the efficient use of the processing units
and the efficient use of the memory. Current multi-core processors involve a complex
hierarchy of processing units built onto a complex hierarchy of memory units.

Our contribution. Having chosen to implement block algorithms, we can distinguish two
levels in the computation: the inner block level and the super-block level. Fortunately,
this distinction matches the inner and inter-core levels. So, we describe in this chapter
the implementation of the code performing the inner block computation on a single
core in a single execution thread. We show how to exploit the instruction parallelism
of the algorithm. To this end, we build a simple model of the core architecture, from
which we compute a lower bound on the execution time. The comparison of the mea-
sured execution times against this lower bound allows us to check that the implemen-
tation reaches our prescribed threshold of sequential efficiency. Our implementation
shows that common optimization techniques may be employed in our context, but
most of them cannot be automatically applied by current compilers. Additionally, we
guarantee the correctness of the implementation with respect to the rounding mode
by systematically setting the correct rounding mode at the beginning of each block
computation.

• Chapter 8 deals with the measure of the performance of the multi-threaded execution of
our implementation on a multi-core platform.

Motivation. The competition in the field of dense numerical linear algebra is intense,
and many processor vendors (for instance, Intel MKL, AMD ACML, or IBM ESSL)
or academic competitors propose highly optimized BLAS libraries. In the interval
field, however, interval linear algebra libraries are less common. One can cite the
discontinued Profil-BIAS [Knü94], as well as INTLAB [Rum99b]. The latter relying
on calls to numerical BLAS libraries for the matrix computations, it is thus subject to
the correctness concerns listed in Chapter 5. Implementing an interval matrix product
that does not use an external BLAS library and whose parallel performances are on
par with the performances of up-to-date numerical BLAS library is challenging.

Our contribution. We choose to implement the classical triple nested loop algorithm at
the super-block level and to control the multithreaded execution with OpenMP anno-
tations. This approach combines the simplicity of the algorithm with the portability
of OpenMP. The experimental measures show that the chosen approach provides se-
quential performance and scalability that are comparable with the ones of the dgemm

function from the Intel’s MKL library.

Finally, the main results of this work are recalled and some possible extensions and applica-
tions are detailed in the last chapter.

9

10

Part I

Error Analysis

11

Measuring error in interval linear
algebra

The first part of this document states the underlying principles that make possible midpoint-
radius algorithms for interval matrix multiplication. Two such algorithms are studied thoroughly.
The principles being clear, we exploit them and propose a new interval matrix product that
requires a smaller amount of computation.

At the same time, we address the problem of the accuracy of these algorithms. The error
analyses presented in the literature assume exact arithmetic and neglect floating-point error.
For example, Rump establishes in [Rum99a] that the radius of the product R̃3 computed by his
algorithm (IIMul3, presented page 43) is less than 1.5 times larger than the exact radius R.
This agrees with numerical experiments for sufficiently large intervals (see Figure 1). Rump also
notices that the bound no longer holds if the inputs are too tight (left part of the graph). As
detailed in depth in this part, this effect is due to roundoff errors.

2−50 20 250

1

2

3

input relative accuracy

ra
d
iu

s
ov

er
es

ti
m

a
ti

o
n

(
R̃

3
R

)

measured bound
theoretical bound

Figure 1: Radius Overestimation of the IIMul3 Algorithm.

Our main goal is to present a complete analysis of the forward error, taking into account
all sources of error. In fact, given an interval matrix multiplication algorithm and given its
floating-point implementation, we can decompose the global error on the computed result into
two distinct parts. One part represents the algorithmic overestimation of the product and the
second part is the roundoff error of the floating-point calculation. Both parts can be studied
separately, the global error being their mere sum. Figure 2 illustrates this idea. In the global
error analysis, we expose the relevant parameters, and we use them to define criteria for choosing
the best algorithm for a given input.

This part on error analysis is organized as follows. Since the error analysis depends on the
metric and since several ones are possible, Chapter 1 discusses the advantages of the metrics

13

Real Exact
C

Real Approximate
C3

Floating-point Fast

C̃3

arithmetic
error

roundoff error

global error

Figure 2: Let A and B be two interval matrices of compatible sizes. The exact product C = AB
is an interval matrix that is mathematically defined, C3 is an approximate product like those

defined in Chapter 3, and C̃3 is the approximate result computed with floating-point arithmetic.

The computation is such that C ⊆ C3 ⊆ C̃3. The global error between C and the computed

floating-point interval C̃3 is the sum of the arithmetic error between C and C3 and the roundoff

error between C3 and C̃3.

used in this document, and how they relate to each others. Next, the formulas for computing
an enclosure of an interval inner product are presented in Chapter 2, along with an analysis
of their arithmetic error. Chapter 3 contains a floating-point error analysis of interval matrix
products based on these approximate inner products. Taking advantage of the possibility to
return an interval enclosure of the result larger than the minimal enclosure, we also present a
new and computationally lighter algorithm for interval matrix product. Finally in Chapter 4,
we assemble the arithmetic and floating-point error analyses into a global error analysis, and we
conduct numerical experiments to assess the pertinence of the theoretical bounds with respect
to the actual error.

14

Part I
Accuracy

Approximate
arithmetic

accuratedot z1
§ 2.1
p. 25

MMMul5

§ 3.3
p. 44 fast

dot z2
§ 2.1
p. 25

MMMul3

§ 3.2
p. 41

faster

dot z3
§ 2.5
p. 35

MMMul2

§ 3.4
p. 47

Measure
relative

Hausdorff
error

definition
§ 1.2.1
p. 19

C5
§ 4.4
p. 63

C3
§ 4.2
p. 53

C2
§ 4.3
p. 60

relative
accuracy
§ 1.2.2
p. 20

Nearest
midpoint
rounding
§ 4.1 p. 51

experimental
measures

Dataset I
§ 4.2.3
p. 55

Dataset
II

§ 4.2.4
p. 58

C5
§ 4.4
p. 63

C3
§ 4.2
p. 53

C2
§ 4.3
p. 60

Figure 3: Synopsis of Part I.

15

16

Chapter 1

Metric on the set of real intervals

The correctness of algorithms that compute with intervals depends on the respect of the inclusion
property. So, for a given problem, different algorithms may give different results, and each output
is an acceptable solution as long as it contains the mathematically exact result. This raises the
problem of comparing the computed approximates. When the exact solution is a real point,
several measures of the distance to the exact result have been proposed: for instance, Kulpa
and Markov define relative extent [KM03], Rump defines relative precision [Rum99a]. Another
possibility is the relative approximation error proposed by Kreinovich [Kre13]. When the exact
solution itself is an interval, the ratio of radii is often used. In this chapter, we discuss the possible
choices for such metrics and we introduce the ones that will be used in the next chapters.

We advocate, for its precision and its mathematical properties, the use of the Hausdorff metric
when measuring absolute error as well as relative error between two intervals. We also show how
the much commonly used ratios of radii simplify the analysis with the Hausdorff distance in
the case of nested intervals. But as will be seen in the analysis of experimental global error
in Chapter 4, this simplicity may mask some interesting phenomena that the analysis with the
Hausdorff distance reveals.

We also introduce the notion of relative accuracy for quantifying the amount of information
that an interval conveys with respect to an unknown exact value it encloses. This measure is simi-
lar, yet not equivalent, to the relative precision, the relative extent, or the relative approximation
error.

The first section below presents the midpoint-radius representation of an interval as well as
useful relations in the case of inclusion. The next section defines and gives some characteristics of
the Hausdorff distance and relative accuracy. The third section expresses the relations between
the different possible alternatives.

1.1 Midpoint-radius representation

An interval x is traditionally represented by its infimum and supremum bounds x = [x, x].
Following the standardized notation1 for interval analysis [KNN+10], we note midx = (x+x)/2
the midpoint of x and radx = (x − x)/2 its radius. The midpoint-radius pair 〈midx, radx〉 is
an alternative representation for x.

While the infimum-supremum representation of an interval corresponds graphically to a mere
line segment, we may describe a interval in midpoint-radius representation by a point in a plane

1Notations are summed up in the table page 1.

17

frame, as in Figure 1.1. In such a display, midpoints are reported along the abscissa axis and
radii along the ordinate axis. So, intervals are represented by points lying in the upper half-plane.
Let us consider the isosceles triangle whose base is on the abscissa axis and whose vertex is the
point representing a given interval x. The base of this triangle is the segment corresponding to
the infimum-supremum representation of x. Moreover, any point in this triangle represents a
sub-interval of x. Similarly, if we extend the edges of this triangle above x, we obtain an infinite
triangular sector, whose points correspond to intervals that contain x (Proposition 1.1 below).

x
ra
d
x

midxx x

super-intervals

sub-intervals

0

Figure 1.1: Interval Representations: Midpoint-Radius versus Infimum-Supremum.

As for scalar intervals, a matrix X with interval coefficients can be represented by the pair
〈midX, radX〉 of the numerical matrices of the midpoints midX and radii radX of its coeffi-
cients. Let m, n, and k be three integers, we note A = 〈MA, RA〉 an m-by-k interval matrix,
B = 〈MB , RB〉 a k-by-n interval matrix and C = 〈M,R〉 the product AB = {AB : A ∈
Rm×k and A ∈ A, B ∈ Rk×n and B ∈ B}.

We will use the following characterizations throughout the text. These relations are well-
known; they appear, for instance, in [Neu90, Proposition 1.6.3].

Proposition 1.1. Let x be a real number and let x and y be real intervals.
The point x is in x if, and only if,

|x−midx| ≤ radx. (1.1)

The interval x is a sub-interval of y if, and only if,

|midy −midx| ≤ rady − radx. (1.2)

The situation x ⊆ y is represented in Figure 1.2.

Proof. Inequality (1.1) translates to |2x− (x+ x)| ≤ x− x, which is equivalent to x ≤ x ≤ x.
If x ⊆ y, then the points x = midx − radx and x = midx + radx are in y, and applying

(1.1), we have

|x−midy| ≤ rady

|x−midy| ≤ rady.

Moreover, max{|x−midy|, |x−midy|} = |midy −midx|+ radx, so (1.2) holds.
Conversely, for all x ∈ x, (1.1), (1.2), and a triangular inequality imply |x−midy| ≤ rady.

Thus, x ∈ y.

18

x

y

rady − radx

|midy −midx|0

Figure 1.2: Inclusion in Midpoint-Radius Representation.

1.2 The choice of a metric

In order to compare several algorithms and implementations for interval matrix multiplication,
we first have to choose a metric to quantify their numerical quality. No consensus has been
reached about this matter, and different authors employ different metrics. For example, in
[Knü94], Knüppel simply compares the width of the numerical results obtained with different
libraries. Similarly, tables of radius values are displayed in [OOO11]. However, such an absolute
quantification is relevant only when all midpoint components are of the same order of magnitude.
In [Rum99a, OO05, OORO12], the overestimation of the computed intervals is measured with
ratio of radii. Likewise, Nguyen uses equivalent ratios of width in [Ngu11]. As a last example,
Rump uses in [Rum12] both ratio of radii and ratio of relative precision (see Definition 1.3 below).
We will see that all these relative metrics are somewhat equivalent, but their diversity hinders
direct comparison.

1.2.1 Hausdorff distance

For a given problem that has an exact solution x in a given normed space X and a given numerical
algorithm that computes an approximate solution y ∈ X, the classical measure for the accuracy

of the computation is the relative forward error, defined as ||x−y||||x|| . Unfortunately, the set IR of

real intervals and the set IRn of rectangular boxes are not vector spaces2. For instance, only tight
intervals, that is intervals that contain a unique real number, have an inverse for the addition.
However, IR endowed with the Hausdorff distance is a metric space3 [Neu90, Proposition 1.7.2].
It is therefore possible to study convergence and limits of sequences of intervals. Moreover, the
Hausdorff distance has a very simple expression on intervals in midpoint-radius representation.

Definition 1.1. The Hausdorff distance between two intervals x and y is

d(x,y) = |midx−midy|+ |radx− rady|. (1.3)

The measure4 d(x, 0) associated with the Hausdorff distance is the absolute value |x| (named
also magnitude) of an interval. It is defined by |x| = |midx| + radx and is the maximum

2However, we still call interval vectors the elements of IRn and interval matrices those of IRm×n.
3This is the only occurrence of the term in its mathematical sense. In the rest of the document, metric simply

denotes a system of measurement.
4Here, in the mathematical sense. Everywhere else, measure means measurement.

19

of the absolute values of the points in x. For algorithms that compute with interval matrices
and interval vectors, we will analyze computational errors componentwise with the Hausdorff
distance.

In the case where y is a approximation of an interval value x, the absolute forward error
measured with the Hausdorff distance can be seen as the sum of the midpoint drift plus the
radius overestimation (see Figure 1.2). We also define the relative Hausdorff error for a computed
approximate interval y of an exact interval value x as the following relative forward error:

d(x,y)

d(x, 0)
=
|x− y|
|x| .

If the computation of y satisfies the inclusion principle, then x ⊆ y and Inequality (1.2)
allows us to simplify the error analysis with this metric by using the following upper bound:

d(x,y)

d(x, 0)
≤ 2

(
rady

radx
− 1

)
. (1.4)

1.2.2 Relative accuracy

Suppose now that x 6= 0 is an unknown exact real value and that we can compute two different
interval enclosures y and z of x. If y contains both positive and negative numbers, then we
cannot conclude about the sign of x. On the contrary, if z does not contain 0, it guarantees the
sign of x. In this case, we may say that z contains more information about x than y. The notion
of relative accuracy is a measure of (the lack of) this information.

Definition 1.2. The relative accuracy of an interval x is the quantity

racc(x) =
radx

|midx|

if midx 6= 0. If midx = 0, we note racc(x) = +∞.

The relative accuracy provides a means to characterize intervals that do or do not contain
zero. It can also be used to bound the absolute value of the ratio between any point of x and
midx. These assertions are made explicit by the next proposition.

Proposition 1.2. Let x be a real interval. The relative accuracy of x has the following proper-
ties.

1. 0 /∈ x if, and only if, racc(x) < 1.

2. If midx 6= 0, then d(x, 0) = (1 + racc(x))|midx|.

Proof. Property 1 is a consequence of (1.1). Property 2 is a consequence of (1.3).

The previous proposition implies that when racc(x) � 1, the elements of x do not differ
much from midx. Conversely, if 1 < racc(x), some elements in x have a sign opposite to the
sign of midx. However, even in that case, |x| ≤ (1 + racc(x))|midx| for all x ∈ x.

If x is an interval enclosure of a real point x, the following property holds.

Proposition 1.3. Let x be an interval such that 0 /∈ x. Let x be a point of x. We have, for all
x̃ in x

|x− x̃|
|x| ≤ 2 racc(x)

1− racc(x)
. (1.5)

20

Proof. Since x and x̃ are two points of x, their distance is bounded by the width of x, and we
have

|x− x̃|
|midx| ≤ 2 racc(x). (1.6)

Moreover, |x| ≥ |midx| − radx, so

|x|
|midx| ≥ 1− racc(x). (1.7)

Dividing (1.6) by (1.7) gives (1.5).

So when the relative accuracy of the enclosure is known, we can bound the relative error of an
interval enclosure with respect to the unknown real value being approximated. For instance, if

racc(x) ≤ 1
5 then |x−x̃||x| ≤ 1

2 , so the relative error between any element of x and the exact unknown

value x is less than 50% (see Figure 1.3). In that case, we have 2
3 |midx| ≤ |x| ≤ 2|midx|, which

2−5 2−4 2−3 2−2 2−1 20
0

0.5

1

1.5

2

0.5

racc(x)

2
ra

c
c
(x

)
1
−

ra
c
c
(x

)

Figure 1.3: Relative Accuracy versus Maximum Relative Error.

means that midx and x are of the same order of magnitude. Again, if racc(x) � 1, then x
determines the sign of the unknown value x and, according to (1.5), the relative error between x
and any element of x cannot be much greater than 2 racc(x).

When comparing nested intervals, we have the following property.

Proposition 1.4. Let x and y be two real intervals.

If x ⊆ y and racc(x) < 1, then racc(x) ≤ racc(y).

Proof. This is evident if 1 ≤ racc(y). Let assume that racc(y) < 1. As racc(〈mid z, rad z〉) =
racc(〈−mid z, rad z〉) for any interval z, we can assume that 0 < midy, and therefore 0 < y for
all y ∈ y, without loss of generality.

Then, x ⊆ y implies radx ≤ rady. Thus, the property is true if midy ≤ midx.

Let assume that midx < midy. Since x ⊆ y, we have y ≤ x, thus

radx + midy −midx ≤ rady. (1.8)

Moreover, we know that 0 /∈ x, so 0 < radx < midx, and, for all positive r

radx

midx
≤ radx + r

midx + r
. (1.9)

21

Setting r = midy −midx in (1.9) and using (1.8), we have

radx

midx
≤ rady

midy
,

which proves the proposition.

Proposition 1.4 shows that the relative accuracy is non-decreasing on intervals that do not
contain zero. Figure 1.4 illustrates this behavior for positive intervals, that is, intervals x such
that 0 < x for all x ∈ x. Consequently, for two computed intervals y and z not containing zero

ra
cc

(z
) =

1

y racc(
z) =

racc(
y)

x racc(z) = racc(x)

mid z

ra
d
z

0

Figure 1.4: Relative Accuracy is Non-Decreasing on Positive Intervals.

and such that their computations respect the inclusion monotonicity, we will consider z as a
better approximation of the exact unknown value than y if racc(z) < racc(y).

1.3 Relations between metrics

We now have two possibilities to quantify the numerical quality of an interval approximation. The
relative accuracy is a relative measure dedicated to interval enclosures of exact real values, and
the Hausdorff distance is an absolute measure for interval overestimation of interval quantities.
We examine below the relations of these two metrics with some other measures employed in the
literature.

The quantity racc(x) is closely related to what Rump calls the relative precision.

Definition 1.3 (from [Rum99a, Definition 2.3]). An interval x not containing 0 is said to be
of relative precision e, 0 ≤ e ∈ R, if radx ≤ e|midx|. An interval containing 0 is said to be of
relative precision 1.

The relative accuracy racc(x) is the minimum of such e when the interval does not contain
zero. However, the two notions differ in several ways. First, the relative accuracy is a definite
quantity, whereas to be of relative precision e is a property, as the number e is not unique. Second,
the relative precision is bounded from above by 1, while the relative accuracy distinguishes
between some intervals containing zero. In [Rum12], the above definition of the relative precision
property is used for an interval but, with some ambiguity, the relative precision of interval
matrices is implicitly defined as the quantity named here as the relative accuracy. So, the ratios
of relative precision displayed in numerical tables are ratios of relative accuracy. Moreover, we
will deal later with floating-point analysis, where the word precision is related to the number of
digits used for floating-point numbers. This is why we choose to employ the word accuracy when

22

denoting the relative width of an interval. In doing so, we follow Higham [Hig02, § 1.4 Precision
Versus Accuracy].

The fact that the relative accuracy becomes unbounded for symmetric intervals, that is
intervals centered in 0, may be annoying in the computation. The above definition of the relative
precision avoids this problem by bounding it from above by 1. Kreinovich proposes in [Kre13]
an alternative definition for the relative error that remains bounded if the interval is not reduced
to 0.

Definition 1.4. The relative approximation error r of an interval estimate [x, x] is defined as

r = min
x̃∈[x,x]

max
x∈[x,x]

|x− x̃|
|x̃|

The relation between this quantity and the relative accuracy is clearer if we distinguish two
cases.

Proposition 1.5. When x and x have the same sign, then

r =
x− x
|x+ x| .

When x and x are of different signs, i.e. when x < 0 < x, we have

r =
x− x

max(|x|, x)
.

The first case is equivalent to the relative accuracy, the second case is obviously finite.
Another related metric is the function χ : IR\0→ [−1, 1] defined by Ratschek [Rat72, RS82]

as follows:

χ(x) =

{
x/x, if |x| ≤ |x|,
x/x, otherwise.

The relative accuracy and Ratschek’s metric verify racc(x) = 1−χ(x)
1+χ(x) and χ(x) = 1−racc(x)

1+racc(x) .

However, we choose to have a single formula that applies to all cases. This simplifies the
analysis and allows for computations without conditional branches. Moreover, the fact that the
relative accuracy of an interval becomes unbounded when its midpoint tends to zero may be
an indication of catastrophic cancellation. Anyway, when a zero result is expected, an abso-
lute quantity such as the radius or the absolute value of the interval provides more relevant
information.

Finally, concerning the relative forward error measured with the Hausdorff distance, note
that the right-hand side of Inequality (1.4) is the ratio of radii, which is used in several papers,
translated from [1,+∞) to [0,+∞), then scaled by 2. So, the ratio of radii gives a simple
bound on the relative forward error and we will use it as such. However, such a simplification is
based upon Inequality (1.2), which may overestimate the error on the computed midpoint. As
exemplified in Chapter 4, this may lead to a pessimistic error bound.

1.4 Conclusion

In this chapter, we introduce two metrics for intervals. In the following, we use the relative
accuracy for quantifying the numerical precision of the input intervals and the relative Hausdorff
error as a measure of the error on the computed result.

23

24

Chapter 2

Accuracy of interval inner
products

The main constraint when defining interval algorithms is to preserve the inclusion property.
Besides this requirement, the accuracy of the computed result and a short computation time are
other goals. Those are indeed common to all numerical algorithms. Having set how to measure
the accuracy of the result in the previous chapter, we will now study how to trade accuracy for
efficiency by using some approximate arithmetic operators.

In this chapter, we will state relations for real quantities and exact arithmetic. Algorithms
dealing with floating-point quantities and their error analysis are not addressed until the next
chapter.

2.1 Interval arithmetic variants

Most of the formulas below are well-known: (2.1) and (2.2) are in [Neu90, § 1.6 Rules for midpoint,
radius, and absolute value], (2.4) is in [Rum99a, Definition 2.1], and (2.3) is Equation (2.12) with
dimension one in [Ngu11]. We collect and present them here for completeness and in a form that
will be useful for error analysis and further developments in Chapter 3.

In this section, x, y, and z are real intervals.
The addition of intervals is straightforward (see Figure 2.1) and not much can be done to

accelerate its computation.

x

y

z

0

Figure 2.1: Interval Addition z = x + y in Midpoint-Radius Representation.

25

Proposition 2.1. Let z = x + y, the midpoint and radius of the sum are computed with:

mid z = midx + midy, rad z = radx + rady. (2.1)

Proof. Let x ∈ x and y ∈ y. Using (1.1) for x and y and the triangular inequality, we have
|x+ y −midx−midy| ≤ radx + rady. Thus, x+ y ∈ z.

Conversely, suppose there is z ∈ z such that z 6= x + y for all x ∈ x and y ∈ y. In other
words, z − x /∈ y for all x ∈ x.

Suppose first that midx + midy ≤ z, then for x = x = midx + radx, we have z − x /∈ y.
Thus, using (1.1), radx + rady ≤ z −midx−midy.

Suppose now that z ≤ midx + midy, then for x = x = midx − radx, we have z − x /∈ y.
Thus, using (1.1), radx + rady ≤ midx + midy − z.

So, in both cases, rad z ≤ |z −mid z|, which contradicts the hypothesis that z is in z.

The interval multiplication is more complex, but it can be replaced by simpler operations
that compute an overestimated result.

Proposition 2.2. Let z = xy, the following formulas compute z, z1, and z2 such that z ⊆
z1 ⊆ z2

mid z = α+ µ, rad z = β + γ + δ − |µ|, (2.2)

mid z1 = α+ ν, rad z1 = β + γ + δ − |ν|, (2.3)

mid z2 = α, rad z2 = β + γ + δ, (2.4)

where

α = midx midy, α′ = |midx||midy|,
β = |midx|rady, γ = radx|midy|,
δ = radx rady,

µ = sign(α) min{β, γ, δ}, ν = sign(α) min{α′, β, γ, δ},

and

sign(α) =

 +1 if α > 0
0 if α = 0
−1 if α < 0

.

Proof. First, we prove that z = xy. Using (2.2), we have

z = α+ (sign(α) + 1)|µ| − β − γ − δ,
z = α+ (sign(α)− 1)|µ|+ β + γ + δ.

Let x ∈ x, we can write x = midx + σx λx radx with λx ∈ [−1, 1], σx = +1 if midx ≥ 0, and
σx = −1 if midx < 0. Similarly, if we set σy to +1 when 0 ≤ midy and to -1 otherwise, then
any y in y can be written y = midy + σy λy rady, with λy ∈ [−1, 1]. So, the product may be
written as follows

xy = α+ σxσy(λyβ + λxγ + λxλyδ).

If 0 ≤ α, then σxσy = +1. Choosing x and y such that λx = λy = +1, we have max{xy : x ∈
x, y ∈ y} = z. The right choice for (λx, λy) in {(1,−1), (−1, 1), (−1,−1)} gives the minimum
value min{xy : x ∈ x, y ∈ y} = z. So, xy = z when 0 ≤ α.

26

If α < 0, then σxσy = −1. Choosing λx = λy = +1, we have min{xy : x ∈ x, y ∈ y} = z.
Similarly, the right choice for (λx, λy) in {(1,−1), (−1, 1), (−1,−1)} leads to max{xy : x ∈ x, y ∈
y} = z. So, xy = z when α < 0.

Let us see now that z ⊆ z1 ⊆ z2. Using the formulas (2.2–2.4), we have

|mid z1 −mid z| = radz1 − rad z (2.5)

and

|mid z2 −mid z1| = radz2 − rad z1. (2.6)

These equalities prove the inclusions by (1.2).

In fact, a consequence of equalities (2.5) and (2.6) is that the three intervals share one of
their extremal points for the absolute value. Indeed, since mid z, midz1, midz2, and α have
the same sign, we have z = z1 = z2 = α − (β + γ + δ) if mid z ≤ 0 (see Figure 2.2), and
z = z1 = z2 = α+ (β + γ + δ) if 0 ≤ mid z.

0

x = 〈−1, 2〉
y = 〈1, 3〉

z = 〈−3, 9〉
z1 = 〈−2, 10〉

z2 = 〈−1, 11〉

z z z1 z2

Figure 2.2: Products in Midpoint-Radius Representation.

Note that if 0 /∈ z, then 0 /∈ z1 but 0 ∈ z2 is possible. If fact, if 0 /∈ z then neither x nor
y contains 0, so radx < |midx| and rady < |midy|. Then, α = α′ and z = z1. However, the
following example shows that the situation may be different for z2.

Example 2.1. Let x = y = 〈2, 1〉. Then z = z1 = 〈5, 4〉 and z2 = 〈4, 5〉. So 0 /∈ z and 0 /∈ z1,
while 0 ∈ z2.

In any case, the midpoints mid z, midz1, and midz2 have the same sign as the product
midx midy.

2.2 Interval inner product and variants

We define now exact and approximate inner products of interval vectors that reduce to (2.2–2.4)
when the dimension is 1.

27

Proposition 2.3. Let x and y be two interval vectors of dimension k. The following formulas
compute the inner product z = xTy, z1, and z2 such that z ⊆ z1 ⊆ z2:

mid z =
∑k

i=1
(αi + µi), rad z =

∑k

i=1
(βi + γi + δi − |µi|), (2.7)

mid z1 =
∑k

i=1
(αi + νi), rad z1 =

∑k

i=1
(βi + γi + δi − |νi|), (2.8)

mid z2 =
∑k

i=1
αi, rad z2 =

∑k

i=1
(βi + γi + δi), (2.9)

where

αi = midxi midyi, βi = |midxi|radyi,

γi = radxi|midyi|, δi = radxi radyi,

µi = sign(αi) min(βi, γi, δi), νi = sign(αi) min(|αi|, βi, γi, δi),

for all i = 1, . . . , k.

Proof. First, we prove z = xTy by induction on the dimension of the vectors. If x and y
are of dimension one, (2.7) reduces to (2.2). The induction step is true because, according to
Proposition 2.1, midpoints and radii sum separately to give the midpoint and the radius of the
sum.

Similarly, (2.8) and (2.9) extend (2.3) and (2.4), respectively, in higher dimension.
Let us see now that z ⊆ z1 ⊆ z2. Using the formulas (2.7–2.9), we have

|mid z1 −mid z| ≤ rad z1 − rad z (2.10)

and
|mid z2 −mid z1| ≤ rad z2 − rad z1. (2.11)

These equalities prove the inclusions by (1.2).

The definitions of the exact and approximate interval inner products in terms of components,
as in the previous proposition, are useful for the error analysis, which is done in Section 2.3. The
next corollary presents a formulation of the inner products defined in Proposition 2.3 in terms of
inner products of real vectors. These formulas extend naturally to formulas for interval matrix
products, which are presented in Chapter 3.

Corollary 2.4. Let x and y be two interval vectors of dimension k. The following formulas
compute the inner product z = xTy, z1, and z2 such that z ⊆ z1 ⊆ z2:

mid z = midxTmidy +

k∑
i=1

µi, rad z = |midx|T rady + radxT |midy|+ radxT rady (2.12)

−
k∑
i=1

|µi|,

mid z1 = midxTmidy + ρTxρy , rad z1 = |midx|T rady + radxT |midy|+ radxT rady (2.13)

− |ρx|T |ρy |,
mid z2 = midxTmidy, rad z2 = |midx|T rady + radxT |midy|+ radxT rady (2.14)

where µi are numbers defined by

|µi| = min{|midxi|radyi, radxi|midyi|, radxi radyi}, (2.15)

µi = sign(midxi midyi)|µi|, (2.16)

28

and ρx and ρy are interval vectors such that

ρxi = sign(midxi) min{|midxi|, radxi}, (2.17)

ρyi = sign(midyi) min{|midyi|, radyi}, (2.18)

for all i = 1, . . . , k.

Proof. Since midxTmidy =
∑k
i=1 αi, where the αi’s are defined as in Proposition 2.3, the

expression of mid z in (2.7) and (2.12) are equivalent. In the same way, the expression of radz
in (2.12) is equivalent to the corresponding one in (2.7), the components βi, γi, δi, and |µi| being
summed separately.

Similarly, the midpoint and radius formulas in (2.13) and (2.14) are trivial rewriting of their
expressions in (2.8) and (2.9), respectively.

Note that equations (2.14) are the simplest ones. In equations (2.13), the corrections to
mid z2 and radz2 are simpler to compute compared to the corresponding terms in the exact
formulas (2.12). Moreover, µi = ρxiρyi unless |midxi| < radxi and |midyi| < radyi. So, z1

computes the exact inner product z when interval coefficients of x and y do not contain zero,
when radx = 0, or when rady = 0.

However, mid z and mid z2 (or even mid z1 if some thick components contain zero) may have
different signs, as shown by the following example.

Example 2.2. Let x = (〈1, 4〉, 〈−1, 2〉)T and y = (〈1, 4〉, 〈2, 2〉)T . Applying Proposition 2.4, we
have z = 〈1, 28〉, z1 = 〈−2, 31〉, and z2 = 〈−1, 34〉 (see Figure 2.3). So, midxTmidy = −1 while
mid z = 1.

This means that midxTmidy is not always a good approximation of mid z.

0

z
z1

z2

Figure 2.3: Exact and Approximate Inner Products.

2.3 Arithmetic error of interval inner products

Let x and y be two k-vectors of interval components. Let e, f , and λ such that

e = max{racc(xi) : 1 ≤ i ≤ k},
f = max{racc(yi) : 1 ≤ i ≤ k},
λ = min {racc(xi)/e, racc(yi)/f : 1 ≤ i ≤ k} .

Then racc(xi) ∈ e[λ, 1] and racc(yi) ∈ f [λ, 1], for all i = 1, . . . , k.
In order to express the relative arithmetic error of inner products, we need to bound relations

between radii of exact and approximate inner products.

29

Proposition 2.5. The exact inner product z = xTy, defined by (2.12), the approximate inner
product z1 ⊇ xTy, defined by (2.13), and the approximate inner product z2 ⊇ xTy, defined by
(2.14) verify

a|midx|T |midy| ≤ rad z, (2.19)

rad z1 − rad z ≤ b|midx|T |midy|, (2.20)

rad z2 − rad z ≤ c|midx|T |midy|, (2.21)

where

a = λmax{e, f}+ λmax{min{e, f}, λef}
b = max{min{e, f, ef}, 1} − 1 c = min{e, f, ef}

Proof. We can rewrite the definition of rad z in (2.7) in the following way:

rad z =
∑k

i=1
(εi + ζi) (2.22)

where, with the definitions of Proposition 2.3, εi = max{βi, γi} and ζi = max{min{βi, γi}, δi}.
In fact, the quantities εi, ζi, and |µi| are the quantities βi, γi, and δi in another order. So,
εi + ζi = βi + γi + δi − |µi|.

Then, using the definitions of e, f , and λ, we have for any i = 1, . . . , k

max{λe, λf}|αi| ≤ εi,
max{min{λe, λf}, λ2ef}|αi| ≤ ζi.

Summing the previous inequalities for all i gives (2.19).

Let us prove (2.21). From (2.9) and (2.7), we derive rad z2 − rad z =
∑k
i=1 |µi|. From the

definitions of e, f , and µi, we have |µi| ≤ min{e, f, ef}|αi|. Summing the last inequality for all
i ≤ k gives (2.21).

From (2.8) and (2.7), we derive rad z1 − rad z =
∑k
i=1(|µi| − |νi|). First, note that, by

definition, c− 1 ≤ b. If νi 6= µi, then |νi| = |αi|. So, we have |µi| − |νi| < (c− 1)|αi|. If νi = µi,
then |µi| − |νi| = 0. In both cases, we have |µi| − |νi| ≤ b|αi|. Then, summing for i over 1, . . . , k
gives (2.20).

Note that the upper bounds are tight, in the sense that they can be reached by rad z1−rad z,
and rad z2 − rad z. Figure 2.2 illustrates such a case. The lower bound on rad z is also attained
when λ = 1. However, it cannot be reached when λ < 1. Actually, by definition of e and f , there
exists an index i0 such that max{βi0 , γi0} = max{e, f}|midxi0 ||midyi0 |. So, λmax{e, f}|αi0 | <
εi0 . According to (2.22), εi0 appears in the sum rad z, so a|midx|T |midy| is strictly less than
rad z.

It is now possible to exhibit an upper bound for the relative arithmetic error of both approx-
imate inner products.

Corollary 2.6. Let x and y be two nonzero k-vectors of interval components. The exact inner
product z = xTy, defined by (2.12), the approximate inner product z1 ⊇ xTy, defined by (2.13),
and the approximate inner product z2 ⊇ xTy, defined by (2.14) verify

d(z1, z)

d(z, 0)
≤ 2b

a
, (2.23)

d(z2, z)

d(z, 0)
≤ 2c

a
, (2.24)

30

where

a = λmax{e, f}+ λmax{min{e, f}, λef},
b = max{min{e, f, ef}, 1} − 1, c = min{e, f, ef}.
Proof. Since x and y are different from 0, so is z. Thus, d(z, 0) 6= 0.

Inequalities (1.4) and (2.20) imply radz1

radz −1 ≤ b
a . Inequalities (1.4) and (2.21) imply radz2

radz −
1 ≤ c

a . Remember that, according to (1.4), d(z1,z)
d(z,0) ≤ 2

(
radz1

radz − 1
)

and a similar inequality

holds for d(z2,z)
d(z,0) . Thus, the previous inequalities imply respectively (2.23) and (2.24).

2.4 Arithmetic error analysis

In this section, we analyze the arithmetic error of the approximate inner products z1 and z2.
Indeed, much knowledge can be extracted from the bounds (2.23) and (2.24) given by Corol-
lary 2.6. As it is apparent from the expression of the bounds, the arithmetic error is sensible to
the variation of several parameters: the upper bounds e and f on the relative accuracies of the
input vectors and the dispersion of these relative accuracies, measured by the λ parameter. We
show here that the worst cases are located on the line e = f and that it is possible to simplify
the upper bounds to different levels of detail, leading to more or less fine-grained analysis.

In the following analysis, we assume that λ 6= 0. The first two points deal with the variation of
the bounds with e and f , the next one analyzes the behavior with respect to λ and the following
ones relate to worst cases.

• First, if e ≤ 1 or f ≤ 1, then b = 0, so z1 = z. In other words, z1 computes the exact
inner product if one input vector, at least, does not intersect the axes, i.e. 0 does not
belong to any of its components. This phenomenon was already noticed in Section 2.2 and
is faithfully reflected by the bound (2.23). The situation is quite different for z2. The
numerator c of the bound is zero if, and only if, e = 0 or f = 0.

Therefore, for small relative accuracies, one can expect exact results when using inner
product z1 and some overestimation when using inner product z2.

• Second, as b ≤ c, the upper bound in (2.23) is always smaller than the upper bound in
(2.24). Their difference 2(c − b)/a tends to zero when e or f grows and λ is a non-zero
constant. Thus, for large relative accuracies, the bounds become indistinguishable.

• Third, notice that the parameter λ appears only in the denominator of the bounds. So, the
bounds are at least one order of magnitude larger when λ losses one order of magnitude.
For the limit case λ = 0, the upper bounds end up infinite, that is to say we have no upper
bound at all.

• Fourth, the quantities a = a(e, f, λ), b = b(e, f), and c = c(e, f) that appear in Corollary 2.6
depend on both parameters e and f . In Chapter 4, we will use the following simpler bounds
that depend only on one of them.

Proposition 2.7. Let a, b, and c be defined as in Corollary 2.6. Assume that f ≤ e and
λ 6= 0, we have

b(e, f)

a(e, f, λ)
≤ max{0, e− 1}
λe(1 + max{1, λe}) =

b(e, e)

a(e, e, λ)
, (2.25)

c(e, f)

a(e, f, λ)
≤ min{1, e}
λ(1 + max{1, λe}) =

c(e, e)

a(e, e, λ)
. (2.26)

31

Proof. If f ≤ 1, then b(e, f) = 0 and Inequality (2.25) holds. If 1 < f ≤ e, then b(e, f) =
f − 1 and a(e, f, λ) = λe+ λf max{1, λe}. So,

b(e, f) a(e, e, λ) = λef + λef max{1, λe} − λe− λemax{1, λe}

is less than

b(e, e) a(e, f, λ) = λe2 + λef max{1, λe} − λe− λf max{1, λe}.

All involved quantities being positive, this implies Inequality (2.25).

Likewise, if f = 0, then c(e, f) = 0 and Inequality (2.26) holds. Under the hypothesis
0 < f ≤ e, we have c(e, f) = f min{1, e}. So,

c(e, f) a(e, e, λ) = λef min{1, e}+ λef min{1, e}max{1, λe}

is less than

c(e, e) a(e, f, λ) = λe2 min{1, e}+ λef min{1, e}max{1, λe}).

All involved quantities being positive, this implies Inequality (2.26).

When e ≤ f , it suffices to exchange e and f in the above inequalities.

We can interpret this result as follows. Given two interval vectors x and y of rela-
tive accuracies bounded by e and f respectively, inequality (2.25) shows that the bound
2b(e, f)/a(e, f, λ) on the relative Hausdorff error of the approximate inner product z1 is
always less than the bound 2b(e, e)/a(e, e, λ) on the corresponding error if the maximum
relative accuracies of the two vectors were both equal to max{e, f}. The same is true for
the inner product z2. In other words, for a given E > 0, the maxima of b/a and c/a
under the constraints e ≤ f = E or f ≤ e = E are attained on the diagonal at the point
e = f = E. This conclusion is also apparent in the isoline graphs displayed in Figure 2.41.

0.
3

0.
30

.2

0.2

0
.1

0.1

0 1 2 3 4
0

1

2

3

4

e

f

0.
8

0.
6

0.
6

0.4

0.
4

0.4

0.
4

0
.4

0
.2

0.2
0.2

0 1 2 3 4
0

1

2

3

4

e

f

Figure 2.4: Upper Bounds on the Relative Arithmetic Error of Approximate Inner Products:
(2.23) for z1 (left) and (2.24) for z2 (right) with λ = 1.

1The graph for z2 already appears in [KM03].

32

• Fifth, we focus now on the special case where e = f , that is on the diagonals of Figure 2.4.
Rewriting (2.25) and (2.26), we have

d(z1, z)

d(z, 0)
= 0,

d(z2, z)

d(z, 0)
≤ e

λ
, if e ≤ 1. (2.27)

d(z1, z)

d(z, 0)
≤ e− 1

λe
,

d(z2, z)

d(z, 0)
≤ 1

λ
, if λe ≤ 1 ≤ e. (2.28)

d(z1, z)

d(z, 0)
≤ 2(e− 1)

λe(1 + λe)
,

d(z2, z)

d(z, 0)
≤ 2

λ(1 + λe)
, if 1 ≤ λe. (2.29)

2−53 2−24 20 224 253

2−53

2−24

20

224

input relative accuracy (e = f)

b
o
u
n
d

o
n

d
(z

,z
1
)

d
(z

,0
)

λ = 1

λ = 2−2

λ = 2−3

20 22 24

2−2

20

22

max (λ = 1)

Figure 2.5: Upper Bounds on the Relative Arithmetic Error for z1 Inner Product in Exact
Arithmetic (left) with a Close-up around Maximum (right).

2−53 2−24 20 224 253

2−53

2−24

20

224

input relative accuracy (e = f)

b
o
u
n
d

o
n

d
(z

,z
2
)

d
(z

,0
)

λ = 1

λ = 2−2

λ = 2−3

20 22 24
2−2

20

22

24

max (λ = 1)

Figure 2.6: Upper Bounds on the Relative Arithmetic Error for z2 Inner Product in Exact
Arithmetic (left) with a Close-up around Maximum (right).

The graphs of the corresponding upper bound are displayed in Figures 2.5 and 2.6. The
maximum relative accuracy racc(xi) = racc(yi) = e of all input components is displayed
along the abscissa axis in a logarithmic scale. The corresponding bound, namely 2b

a for
Figure 2.5 and 2c

a for Figure 2.6, is reported along the y-axis, also in a logarithmic scale.

33

The abscissa and ordinate ranges are chosen so that these figures are easily comparable
with those in the next chapters. The region around the global maximum that is represented
by a small frame is magnified in the right part of each figure. A horizontal line indicates
the maximum value reached by the bound when all components are of the same relative
accuracy (λ = 1).

From (2.27–2.29), we note that the bounds vary differently with respect to e in three
different areas.

1. In the first area defined by e ≤ 1, the bound for z1 is zero and the bound for z2

increases with e.

2. In the second area, where 1 ≤ e ≤ 1/λ, the bound for z1 increases with e, but is
bounded by 1/λ, and the bound for z2 is constant and equal to 1/λ.

3. In the third area, where 1/λ ≤ e, the bound for z2 decreases when e grows. The
situation is more complicated for the bound for z1. If λ is sufficiently close to 1, then
this bound first increases with e before decreasing for large e (see the graph for λ = 1
in Figure 2.5 and see Corollary 2.6 below). Otherwise, it decreases monotonically
when e increases.

Because the ratio of the bound e−1
e is less than 1, the bound on z1 is dominated by

the bound on z2.

So, in all cases, the bound on the relative arithmetic error is worse for z2 than for z1.

Moreover, according to (2.27), the relative arithmetic error for z1 is zero and the relative
arithmetic error for z2 tends to zero when e tends to 0. According to (2.29), the relative
arithmetic errors for z1 and z2 tend to zero when e tends to +∞.

• Finally, we can go one step further and bound from above uniformly, with respect to e and
f , the relative arithmetic errors of Corollary 2.6.

Corollary 2.8. With the hypotheses of Corollary 2.6,

d(z1, z)

d(z, 0)
≤ 2

√
λ2 + λ

λ(λ+
√
λ2 + λ)(1 + λ+

√
λ2 + λ)

. (2.30)

Proof. Note that the bounds on d(z1,z)
d(z,0) from (2.28) and (2.29) differ by a factor 2/(1+λe),

which is greater than 1 if λe ≤ 1. Consequently, the arithmetic error on z1 is bounded

by gλ(e) = 2(e−1)
λe(1+λe) when 1 ≤ e, regardless of the value of λe. Its derivative g′λ(e) =

−2(λe2 − 2λe − 1)/λe2(1 + λe)2 is positive when 0 < e < emax = 1 +
√

1 + 1/λ and
negative if emax < e. The maximum gλ(emax) is given by the right-hand side of (2.30).

Inequality (2.30) applies in all cases because gλ is a bound on the arithmetic error on
z1 when 1 ≤ e, according to the above proof, and the arithmetic error is zero if e ≤ 1.
Nonetheless, it can be improved for small λ. Actually, if λemax ≤ 1, that is if λ ≤ 1

3 , then,
according to Inequality (2.28), the relative arithmetic error of z1 is bounded by a smaller
quantity e−1

λe and the maximum of gλ is not reached.

Corollary 2.9. With the hypotheses of Corollary 2.6 and assuming λ ≤ 1
3 ,

d(z1, z)

d(z, 0)
≤ 1

λ
− 1. (2.31)

34

Proof. When λe ≤ 1, the relative arithmetic error is bounded by e−1
λe , which is mono-

tonically increasing. When 1 ≤ λe, it is bounded by 2(e−1)
λe(1+λe) , which is monotonically

decreasing if λ ≤ 1
3 , according to the proof of Corollary 2.8. These two quantities cross at

e = 1/λ, where they both equal the maximum value on their range, which is 1
λ − 1.

The following corollary gives a uniform upper bound on the relative arithmetic error for
z2.

Corollary 2.10. With the hypotheses of Corollary 2.6,

d(z2, z)

d(z, 0)
≤ 1

λ
. (2.32)

Proof. Inequality (2.32) is an immediate consequence of (2.27), (2.28), and (2.29).

Let us discuss now the extreme cases: λ = 0 and λ = 1.

When λ tends to 0, the bound for z1 in (2.31) and the bound for z2 in (2.32) are both
asymptotically equivalent to 1/λ.

When λ = 1, the bounds given by (2.30) and (2.32) are equal to 2(3− 2
√

2) and 1 respec-
tively. These values are compatible respectively with the one given by Nguyen in [Ngu11,
Theorem 2.4.3]:

rad z1

rad z
≤ 4− 2

√
2

and the one given by Rump [Rum99a, Theorem 2.4]:

rad z2

rad z
≤ 3

2
.

Indeed, according to the proof of Corollary 2.6, 2b/a and 2c/a are also upper bounds for
2
(

radz1

radz − 1
)

and 2
(

radz2

radz − 1
)
. Consequently, the bounds in (2.30) and (2.32), which are

derived from Corollary 2.6, verify

2

(
rad z1

rad z
− 1

)
≤ 2(3− 2

√
2)

and

2

(
rad z2

rad z
− 1

)
≤ 1.

However, these authors use another presentation and their analyses are restricted to the
case where λ = 1 in the documents cited above.

2.5 A new approximate inner product

The notion of relative accuracy introduced for the error analysis can be used to compute directly
an overestimated radius. This idea leads to the following approximate inner product, which
needs less computation than z1 and z2.

35

Proposition 2.11. Let x and y be two interval vectors of dimension k. Let e and f such that

e = max{racc(xi) : 1 ≤ i ≤ k}, f = max{racc(yi) : 1 ≤ i ≤ k}.

The following formulas compute the approximate inner product z3 ⊇ xTy

mid z3 = midxTmidy, rad z3 = (e+ f + ef)|midx|T |midy|. (2.33)

The approximate inner product z3 always encloses z2, as defined by Proposition 2.3.

Proof. Let us show that z3 ⊇ z2. From the definition (2.14), we have mid z3 = midz2. Using
αi, βi, γi, and δi defined in Proposition 2.3, we have βi ≤ f |αi|, γi ≤ e|αi|, and δi ≤ ef |αi|. So,

writing the radius expression as radz3 =
∑k
i=1(e|αi|+ f |αi|+ ef |αi|) and using (2.9), we have

0 ≤ rad z3 − rad z2. This last inequality proves that z3 ⊇ z2 by (1.2).
Since the approximate inner product z2 contains the exact inner product z, we have z3 ⊇

xTy.

As in Section 2.3, we study now the radius overestimation of the approximate product z3 in
exact arithmetic.

Proposition 2.12. Let x and y be two nonzero k-vectors of interval components. Let e, f , and
λ be the three real numbers that verify

e = max{racc(xi) : 1 ≤ i ≤ k},
f = max{racc(yi) : 1 ≤ i ≤ k},
λ = min {racc(xi)/e, racc(yi)/f : 1 ≤ i ≤ k} .

The approximate inner product z3 ⊇ xTy, defined by (2.33) verifies

rad z3 − rad z ≤ (c+ d)|midx|T |midy| (2.34)

where

c = min{e, f, ef}, d = (1− λ) (e+ f + (1 + λ)ef) .

Proof. By definition of αi, βi, γi, and δi given in Proposition 2.3, we have for any i ≤ k,

f |αi| − βi ≤ (1− λ)f |αi|,
e|αi| − γi ≤ (1− λ)e|αi|,
ef |αi| − δi ≤ (1− λ2)ef |αi|.

Summing the previous inequalities for i = 1, . . . , k gives (2.34).

In the special case where all interval components of x, on the one hand, and all interval
components of y, on the other hand, have the same fixed relative accuracy, respectively e for
x and f for y, we have λ = 1 and d = 0. In that case, Propositions 2.5 and 2.12 show
that the arithmetic error of the radius of z2 and z3 can be bounded by the same quantity
min{e, f, ef}|midx|T |midy|.

The following corollary establishes an upper bound on the relative arithmetic error for the
new approximate interval inner product.

36

Corollary 2.13. Let x and y be two nonzero k-vectors of interval components. Let e, f , and λ
the three real numbers that verify

e = max{racc(xi) : 1 ≤ i ≤ k},
f = max{racc(yi) : 1 ≤ i ≤ k},
λ = min {racc(xi)/e, racc(yi)/f : 1 ≤ i ≤ k} .

The approximate inner product z3 ⊇ xTy, defined by (2.33), verifies

d(z3, z)

d(z, 0)
≤ 2

c+ d

a
(2.35)

where

a = λmax{e, f}+ λmax{min{e, f}, λef},
c = min{e, f, ef}, d = (1− λ) (e+ f + (1 + λ)ef) .

Proof. Inequality (2.35) is a consequence of (1.4), (2.19), and (2.34).

Since d ≥ 0, it is clear that the upper bound c+d
a of (2.35) is greater than the upper bound

c
a of (2.24) for any λ < 1 and that they are equal when λ = 1.

Assume, without loss of generality, that f ≤ e. As for the bounds on the radius overestimation
of z1 and z2 given in Corollary 2.6, the maximum of (c+d)/a is reached for f = e (see Figure 2.7).
Thus in the following, we study the behavior of the bound on the diagonal e = f . In that case,

3

3

2

2

2

1

0 1 2 3 4
0

1

2

3

4

e

f

Figure 2.7: Radius Overestimation for z3 Inner Product (λ = 2−1).

the situation is noticeably different from those described in Section 2.3: the presence of a factor
1− λ in the numerator c+ d changes the bound trends for small and large e. When e = f , the
upper bound on the arithmetic error given by Corollary 2.13 is

2
c+ d

a
= 2

min{1, e}+ 2(1− λ) + (1− λ2)e

λ(1 + max{1, λe}) .

When λ = 1, the previous quantity tends to 0 when e tends to 0 or to +∞, which are the
same limits as for z1 and z2.

When λ < 1, the previous quantity tends to 2
(

1
λ − 1

)
when e tends to 0, and to 2

(
1
λ2 − 1

)
when e tends to +∞. Hence, (2.35) does not ensure that the relative arithmetic error is small
when e tends to zero or to infinity and λ 6= 1, in contrast with the cases of (2.23) and (2.24) (see
Figure 2.8).

37

2−53 2−24 20 224 253

2−53

2−24

20

224

input relative accuracy

b
o
u
n
d

o
n

d
(z

,z
3
)

d
(z

,0
)

λ = 1

λ = 2−2

λ = 2−4

Figure 2.8: Upper Bounds on the Relative Arithmetic Error for z3 Inner Product in Exact
Arithmetic.

2.6 Conclusion

In this chapter, we have seen that it is possible to use approximate arithmetic operators for the
definition of approximate inner products while preserving the inclusion property.

It has been shown that the relative arithmetic error of each inner product depends on the
bounds on relative accuracies of each input. In particular, we have shown that the worst cases oc-
cur when the input vectors have the same bound on their relative accuracies. This remark allows
us to focus further analyses on the case where e = f . It also depends on the homogeneity of the
relative accuracies in the interval components of each input vector. Homogeneous components,
that is when λ is close to 1, lead to a smaller bound on the relative arithmetic error.

Besides its utility for the arithmetic error analysis of the inner products, the relative accuracy
notion is also the source of inspiration for a new approximate inner product. The different inner
products provide different levels of tradeoff between accuracy and ease of computation and serve
in turn as building blocks for the interval matrix products of the following chapters.

38

Chapter 3

Accuracy of interval matrix
products

This chapter presents algorithms for the interval matrix product, that are based upon the inner
products detailed in the previous chapter. The framework for the computation is now the floating-
point arithmetic, we assume that the input matrices A and B below are matrices with interval
coefficients that are represented by floating-point numbers.

The main purpose here is to merely bound the roundoff error of the implementation of three
algorithms for interval matrix multiplication. The complete analysis and comparison between
the algorithms will be conducted in the next chapter.

The first section introduces the floating-point notions that are needed for the error analy-
sis. The next two sections deal with two algorithms for interval matrix multiplication that are
proposed by Rump in [Rum12]. We present the underlying ideas and establish a bound on the
roundoff error of these algorithms. The same principles that lead to the previous algorithms
guided us to the new algorithm introduced and analyzed in Section 3.4. As a conclusion, the last
section discusses the conditions and limits of our method for roundoff error analysis.

3.1 Floating-point model

We first introduce some notations specific to the floating-point error analysis (for a more formal
description of the corresponding notions see [MBdD+10, § 2.6 Tools for Manipulating Floating-
point Errors]). In the following, we assume that all floating-point numbers are written in radix 2
with precision t. The set of floating-point numbers is denoted by F. We assume that the working
precision for the computation is the same as for the representation of numbers, so as to avoid
double rounding. For simplicity, we use the term floating-point as an adjective to indicate that the
involved numbers have a floating-point representation. For instance, a floating-point midpoint-
radius interval designates an interval whose midpoint value and radius value are represented by
floating-point numbers. The set of floating-point intervals is denoted by IF. It will be clear from
the context if the intervals are in infimum-supremum or in midpoint-radius representation.

For any arithmetic expression E, we note fl�(E) the result of an evaluation of E in floating-
point arithmetic with all intermediate results rounded to nearest. Likewise, fl∆(E) denotes a
floating-point evaluation of E with all intermediate results rounded toward +∞ (fl∇(E) for
rounding toward −∞). In any case, we do not assume any particular evaluation order when
several orders are compatible with the priority of operations. For arithmetic operations, we

39

assume that we can employ the standard model of floating-point arithmetic as it is defined in
[Hig02, § 2.2 Model of arithmetic]: for any finite floating-point numbers x̃ and ỹ, we have

fl�(x̃ ∗ ỹ) = (x̃ ∗ ỹ)(1 + δ)

where ∗ is either the addition or the multiplication, |δ| ≤ u, and u = 2−t is the unit roundoff for
rounding to nearest. For directed rounding, the unit roundoff is 2u.

As we will deal principally with non-negative quantities, we can specialize the standard model
to the two following cases. Suppose 0 ≤ x̃+ ỹ, then

fl�(x̃+ ỹ) ≤ (1 + u)(x̃+ ỹ),

fl∆(x̃+ ỹ) ≤ (1 + 2u)(x̃+ ỹ).

Suppose 0 ≤ x̃ỹ, then

fl�(x̃ỹ) ≤ (1 + u)x̃ỹ,

fl∆(x̃ỹ) ≤ (1 + 2u)x̃ỹ.

Following [Rum12], we note realmin the least positive normal floating-point number. Finally,
ulp(x̃) denotes the unit in the last place of a nonzero floating-point number x̃ defined as ulp(x̃) =
2max(e,emin)−t+1 where e is the exponent in the floating-point representation of x̃ and emin is the
minimal possible exponent in the set of floating-point numbers. Note that ulp(x̃) ≤ u|x̃|.

We will use the following classical result for forward error analysis.

Theorem 3.1 (from [Hig02, § 3.5 Matrix Multiplication]). Let A ∈ Rm×k and B ∈ Rk×n

two matrices. Let C̃ the computed product AB with the classical triple loop algorithm and all
operations performed with rounding to nearest mode. The forward error is bounded as follows

|C̃ −AB| ≤ γk|A||B| (3.1)

where γk = ku/(1− ku).

Note that (3.1) is independent of the three-loop ordering. Furthermore, with the same al-

gorithm but with rounding toward +∞, the computed result D̃ is an overestimate of the real
product, and the forward error is obtained by substituting 2u for u. That is

0 ≤ D̃ −AB ≤ γ2k|A||B|.
The following presentation derives directly from the previous inequalities.

Corollary 3.2. Let A ∈ Rm×k and B ∈ Rk×n two matrices. Let C̃ the computed product AB
with the classical triple loop algorithm and rounding to nearest mode. Let D̃ the computed product
AB with the classical triple loop algorithm and rounding toward +∞ mode. Then,

|C̃| ≤ (1 + γk)|A||B|, (3.2)

|D̃| ≤ (1 + γ2k)|A||B|. (3.3)

Next, the following lemma will help us to simplify the error analysis.

Lemma 3.3. Let n, k, and p three positive integers such that (n+ kp)u < 1. Then

(1 + γn)(1 + pu)k ≤ 1 + γn+pk. (3.4)

Proof. Assume first that k = 1. From the hypothesis on n, p, and k, we know that pu < 1. Thus,
pu < γp. Then, (1 + γn)(1 + pu) ≤ 1 + γn + γp + γnγp. Since γn + γp + γnγp ≤ γn+p, according
to [Hig02, Lemma 3.3], we have (1 + γn)(1 + pu) ≤ 1 + γn+p.

Assume now that (1 + γn)(1 + pu)k−1 ≤ 1 + γn+p(k−1). Applying in turn the last two
inequalities proves (3.4) for any k.

40

3.2 Interval matrix product in three point matrix products

In this section, we present the evolution of the first midpoint-radius algorithm, originally proposed
by Rump in 1999, then improved by Rump himself in 2012. Actually, the formulas for the
approximate inner products presented in the previous chapter allow one to use directly Level-3
BLAS functions for the most computationally intensive part of the algorithm. As very efficient
implementations of the BLAS are widespread, the burden of the performance endeavor, like
memory access management or parallelization, is put on the BLAS library programmer. The
user simply reuses this work, with profit, for implementing the interval matrix operations.

Thus, this approach leads to an elegant and efficient way to perform interval matrix multipli-
cation, barring some implementation issues, which are addressed in Chapter 5. This algorithm
was a great progress compared to the classical matrix product with interval arithmetic (Algo-
rithm 1, page 4). Since 1999, many algorithms for interval matrix multiplication based on the
same approach have appeared [OO05, OOO11, Ngu11, OORO12].

We describe first the evolution from the algorithm in four point matrix products to the one
in three point matrix products. Then, we bound the roundoff error of the computed radius.

3.2.1 The algorithm: underlying ideas and historical background

From the inner product z2 of interval vectors defined by (2.14), Rump [Rum99a] derived the
following formulas for an overestimate C3 = 〈M3, R3〉 of the interval matrix product AB:

M3 = MAMB , (3.5)

R3 = RA(|MB |+RB) + |MA|RB . (3.6)

In Equation (3.6), factoring RA saves one costly matrix product. Thus, computing C3 with
(3.5) and (3.6) requires only three numerical matrix products in exact arithmetic.

To implement the previous formulas in floating-point arithmetic, we have to take the roundoff
errors into account. This can be achieved in two different ways.

The first possibility, which was initially proposed by Rump in 1999, is to compute the supre-
mum endpoint matrix of the product by adding an overestimate of its radius matrix to an
overestimate of its midpoint matrix. Symmetrically, the infimum endpoint is computed by sub-
tracting an overestimate of the radius to an underestimate of the midpoint. This can be done
easily with directed rounding modes and leads to Algorithm 2.

Algorithm 2 IIMul4

Input: A = [A,A],B = [B,B]

Output: C ⊇ AB

1: 〈MA, RA〉 ← InfsupToMidrad(A)

2: 〈MB , RB〉 ← InfsupToMidrad(B)

3: RC ← fl∆(|MA|RB +RA(|MB |+RB))

4: C ← fl∆(MAMB +RC)

5: C ← fl∇(MAMB −RC)

6: return [C,C]

The inputs being in infimum-supremum representation, we need to convert them into midpoint-
radius representation in order to apply formula (3.6). This is done at lines 1 and 2 of Algorithm 2

41

with the conversion function InfsupToMidrad defined by Algorithm 3.

Algorithm 3 InfsupToMidrad

Input: A = [A,A] ∈ IFm×k

Output: 〈MA, RA〉 ⊇ A

1: MA ← fl∆((A+A)/2)

2: RA ← fl∆(MA −A)

3: return 〈MA, RA〉

The main advantage of Algorithm 2 over Algorithm 1 is that the number of rounding mode
changes is limited to 2 and the main part of the computation is expressed as floating-point matrix
computations. The cost of Algorithm 2 is dominated by the cost of the four floating-point matrix-
matrix products, which can be performed by well-optimized numerical libraries that attain near
peak performance.

However, Algorithm 2 requires to compute twice the product MAMB , because of the need
of one overestimate and one underestimate of this quantity. Rump recently found a means to
remove this double computation by using a clever bound on the product error, as presented
below.

Indeed, the second possibility to allow for roundoff errors is to accumulate several error
bounds in the result radius. The first roundoff error occurs in the computation of MAMB .
The classical upper bound given by (3.1) is not a floating-point quantity, so Rump stated the
following bound, which is defined by floating-point operations.

Theorem 3.4 (from [Rum12, Theorem 2.1]). Let A ∈ Fm×k and B ∈ Fk×n with 2(k + 2)u ≤ 1
be given, and let C = fl�(AB) and Γ = fl�(|A||B|). Here C may be computed in any order, and
we assume that Γ is computed in the same order. Then

|fl�(AB)−AB| ≤ fl�

(
k + 2

2
ulp(Γ) + realmin

)
. (3.7)

Other roundoff errors may appear in the computation of (3.6), but they are automati-
cally taken into account when we evaluate this formula in rounding toward +∞. Of course,
fl∆

(
k+2

2 ulp(Γ) + realmin
)

is also a bound on |fl�(AB)−AB|.
This leads to the algorithm MMMul31 shown below (Algorithm 4).

Algorithm 4 MMMul3

Input: an m-by-k interval matrix A = 〈MA, RA〉,
a k-by-n interval matrix B = 〈MB , RB〉

Output: C̃3 ⊇ AB

1: M̃3 ← fl�
(
MAMB

)
2: R̃3 ← fl∆

(
RA(|MB |+RB) + |MA|(RB + k+2

2 ulp|MB |) + realmin
)

3: return C̃3 = 〈M̃3, R̃3〉

1We name the algorithms with the following convention: II refers to inputs in infimum-supremum represen-
tation and MM to midpoint-radius representation, Mul refers to matrix multiplication, and the last digit indicates
the number of numerical matrix multiplications involved in the algorithm.

42

Algorithm 4 requires one matrix product less than Algorithm 2. It computes an overestimate
of the interval matrix product in no more than the three products needed by formulas (3.5) and
(3.6).

Yet, contrary to Algorithm 2, MMMul3 (Algorithm 4) uses inputs in midpoint-radius represen-
tation. In general, such algorithms can be turned into algorithms that accept and return matrices
in infimum-supremum representation by converting to and fro this representation, as in Algo-
rithm 5. These conversions add some roundoff errors more and require twice the memory space,
but the overhead in execution time is negligible compared to the cost of the matrix products.
They are also subject to overflow, but alternative algorithms solve this problem [Gou14]. In the
following, we will study only midpoint-radius algorithms like MMMul3, setting aside conversions
between representations.

Algorithm 5 IIMul3

Input: A = [A,A],B = [B,B]

Output: C ⊇ AB

1: 〈MA, RA〉 ← InfsupToMidrad(A)

2: 〈MB , RB〉 ← InfsupToMidrad(B)

3: 〈MC , RC 〉 ← MMMul3(〈MA, RA〉, 〈MB , RB〉)
4: C ← fl∆

(
MC +RC

)
5: C ← fl∇

(
MC −RC

)
6: return [C,C]

3.2.2 Roundoff error bound

We can now analyze the roundoff errors in Algorithm 4. In this error analysis and in all the
following ones, we will assume that no underflow occurs during the computation. However, the
algorithms do allow for the occurrence of underflow, preserving the inclusion property even in
this exceptional case.

The roundoff error depends on the actual implementation. So, let us first rewrite MMMul3 in
a form where all temporary matrix results are explicit (see Algorithm 6).

The componentwise roundoff error of the computed midpoint matrix is given directly by
Theorem 3.4. For the computed radius matrix, we prove the following bound.

Proposition 3.5. Let A ∈ IFm×k and B ∈ IFk×n with (4k + 12)u ≤ 1.

The roundoff error of radius R̃3 computed by Algorithm 6 verifies

R̃3 −R3 ≤γ2k+6(|MA|RB +RA|MB |+RARB)+

(2k + 4)u|MA||MB |+
2realmin. (3.8)

Proof. Note that the Ti’s are non-negative, so they equal their absolute value. We apply (3.2)
to line 1, and (3.3) to lines 3 and 5, which gives, respectively,

|M̃3| ≤ (1 + γk)|MA||MB |,
T̃2 ≤ (1 + γ2k)RAT̃1,

T̃4 ≤ (1 + γ2k)|MA|T̃3.

43

Algorithm 6 MMMul3 with explicit temporaries.

Input: an m-by-k interval matrix A = 〈MA, RA〉,
a k-by-n interval matrix B = 〈MB , RB〉

Output: C̃3 ⊇ AB

1: M̃3 ← fl�
(
MAMB

)
2: T̃1 ← fl∆

(
|MB |+RB

)
3: T̃2 ← fl∆

(
RAT̃1

)
4: T̃3 ← fl∆

(
RB + (k + 2)ulp|MB |

)
5: T̃4 ← fl∆

(
|MA|T̃3

)
6: T̃5 ← fl∆

(
T̃2 + T̃4

)
7: R̃3 ← fl∆

(
T̃5 + realmin

)
8: return C̃3 = 〈M̃3, R̃3〉

For the additions in lines 2, 4, 6, and 7, we have, since ulp(MB) ≤ u|MB |:

T̃1 ≤ (1 + 2u)(|MB |+RB),

T̃3 ≤ (1 + 2u)(RB + (k + 2)u|MB |),
T̃5 ≤ (1 + 2u)(T̃2 + T̃4),

R̃3 ≤ (1 + 2u)(T̃5 + realmin).

Starting from the last inequality, substituting in turn T̃i by the corresponding upper bound
from the previous inequalities, and using (3.4) with the hypothesis (2k + 6)u ≤ 1, we get

R̃3 ≤(1 + γ2k+6)(|MA|RB +RA|MB |+RARB)+

(1 + γ2k+6)(k + 2)u|MA||MB |+
(1 + 2u)realmin.

If (2k + 6)u ≤ 1/2, then 1 + 2u ≤ 1 + γ2k+6 ≤ 2 and the previous inequality implies (3.8).

The previous proof demonstrates that the roundoff error analysis, which is always neglected in
articles about interval matrix multiplication that we are aware of, is indeed tractable. Actually, a
small number of technical results, namely the three inequalities of Corollary 3.2 and Lemma 3.3
and the classical inequalities of the standard model of floating-point arithmetic, are sufficient to
bound the roundoff error of Algorithm 6.

3.3 Interval matrix product in five point matrix products

We present below another algorithm for interval matrix multiplication. The version first intro-
duced by Nguyen has a cost dominated by seven point matrix products. Rump improved it the
same way he did for MMMul3, reducing the number of calls to point matrix products to five.

The next section details the steps of the Rump’s version, and the following one gives a bound
on its roundoff error.

44

3.3.1 Algorithm

With a reasoning analog to the one leading to (3.5) and (3.6), Nguyen [Ngu11] proposed the use
of the approximate inner product z1 defined by (2.13) for a simplified interval matrix product
C5 = 〈M5, R5〉, such that C5 ⊇ AB. The overestimate C5 is computed as follows

M5 = MAMB + PAPB , (3.9)

R′5 = RA(|MB |+RB) + |MA|RB − |PA||PB | (3.10)

with

PA = sign(MA). ∗min(|MA|, RA),

PB = sign(MB). ∗min(|MB |, RB),

where the operator .∗ denotes, as in Matlab, the componentwise product of matrices (also
known as Hadamard matrix product or Schur product).

In floating-point arithmetic, an approximate midpoint M̃5 can be computed with (3.9) and
rounding to nearest. Then, provided that 2(2k+ 2)u ≤ 1, Rump bounds the roundoff error using
Theorem 3.4 as follows (from [Rum12]). The row-block matrix (MAPA) is chosen for A and the
column-block matrix (MB PB)T for B. The common dimension of A and B is 2k, and, by (3.7),

the roundoff error of M̃5 = fl�
(
MAMB + PAPB

)
is bounded by fl�

(
2k+2

2 ulp(Γ̃) + realmin
)

,

where Γ̃ = fl�
(
|MA||MB |+ |PA||PB |

)
.

Next, note that the radius of C5 is also given by the following expression:

R5 = (|MA|+RA)(|MB |+RB)− Γ, (3.11)

where Γ = |MA||MB | + |PA||PB |. The formulas (3.10) and (3.11) are equivalent in exact
arithmetic. In floating-point arithmetic, (3.11) is subject to a more important cancellation than
(3.10). However, the former requires one matrix product less because it reuses Γ, which also
appears in the error bound of M5. So, an overestimate of R′5 is obtained by evaluating (3.11) in
rounding toward +∞.

This leads to the following implementation of MMMul5 (Algorithm 7), proposed by Rump
([Rum12, Algorithm 4.9]).

Algorithm 7 MMMul5

Input: an m-by-k interval matrix A = 〈MA, RA〉,
a k-by-n interval matrix B = 〈MB , RB〉

Output: C̃5 ⊇ AB

1: PA ← sign(MA). ∗min(|MA|, RA)

2: PB ← sign(MB). ∗min(|MB |, RB)

3: M̃5 ← fl�
(
MAMB + PAPB

)
4: Γ̃← fl�

(
|MA||MB |+ |PA||PB |

)
5: R̃5 ← fl∆

(
(|MA|+RA)(|MB |+RB)− Γ̃ + (2k + 2)ulp(Γ̃) + 2realmin

)
6: return C̃5 = 〈M̃5, R̃5〉

45

The cost of this algorithm is dominated by the cost of the five matrix products.
The last two terms in the computation of R̃5 (line 5) come from the sum of the two following

error bounds

|M̃5 −M5| ≤ (k + 1)ulp(Γ̃) + realmin (3.12)

and

|Γ̃− Γ| ≤ (k + 1)ulp(Γ̃) + realmin. (3.13)

Inequality (3.12) is proved above and the proof of (3.13) is similar. Indeed, an underestimate of
Γ has to be subtracted to (|MA|+ RA)(|MB |+ RB) in order to to get an overestimate of R5

and (3.13) implies that Γ̃− (k + 1)ulp(Γ̃)− realmin ≤ Γ.

3.3.2 Roundoff error bound

We rewrite MMMul5 (Algorithm 7) so as to make explicit the needed temporaries (Algorithm 8).

Algorithm 8 MMMul5 with explicit temporaries.

Input: an m-by-k interval matrix A = 〈MA, RA〉,
a k-by-n interval matrix B = 〈MB , RB〉

Output: C̃5 ⊇ AB

1: PA ← sign(MA). ∗min(|MA|, RA)

2: PB ← sign(MB). ∗min(|MB |, RB)

3: T̃1 ← fl�
(
MAMB

)
; T̃2 ← fl�

(
PAPB

)
4: M̃5 ← fl�

(
T̃1 + T̃2

)
5: T̃3 ← fl�

(
|MA||MB |

)
; T̃4 ← fl�

(
|PA||PB |

)
6: Γ̃← fl�

(
T̃3 + T̃4

)
7: T̃5 ← fl∆

(
|MA|+RA

)
; T̃6 ← fl∆

(
|MB |+RB

)
8: T̃7 ← fl∆

(
T̃5T̃6

)
9: T̃8 ← fl∆

(
2realmin + (2k + 2)uΓ̃

)
10: T̃9 ← fl∆

(
T̃7 + T̃8

)
11: R̃5 ← fl∆

(
T̃9 − Γ̃

)
12: return C̃5 = 〈M̃5, R̃5〉

A bound on the roundoff error for the computed midpoint is given by (3.12). The next
proposition states a bound on the radius roundoff error.

Proposition 3.6. Let A ∈ IFm×k and B ∈ IFk×n with 4(k + 1)u ≤ 1.

The roundoff error of radius R̃5 computed by Algorithm 8 verifies

R̃5 −R5 ≤γ2k+8(|MA|+RA)(|MB |+RB)+

(4k + 2)u(|MA||MB |+ |PA||PB |)+
4 realmin. (3.14)

46

Proof. First, we have simple upper bounds for the temporary sums and products T̃3, . . . , T̃9, and
Γ̃, which are are non-negative. The computation of PA and PB in lines 1 and 2 yields exact
results. Applying (3.2) and (3.3) to matrix products, we have

T̃3 ≤ (1 + γk)|MA||MB |, T̃4 ≤ (1 + γk)|PA||PB |,
T̃7 ≤ (1 + γ2k)T̃5T̃6.

The temporary sums are bounded as follows:

Γ̃ ≤ (1 + u)(T̃3 + T̃4),

T̃5 ≤ (1 + 2u)(|MA|+RA), T̃6 ≤ (1 + 2u)(|MB |+RB),

T̃8 ≤ (1 + 2u)(2realmin + (2k + 2)uΓ̃), T̃9 ≤ (1 + 2u)(T̃7 + T̃8).

Second, we need an upper bound for the last quantity R̃5. Let us show that R̃5 is non-negative
too. Note that R̃5 is computed with rounding toward +∞, so T̃9 − Γ̃ ≤ R̃5. Likewise, since the
computation of T̃5, T̃6, T̃7, T̃8, and T̃9 uses rounding toward +∞, we have (|MA|+RA)(|MB |+
RB) + (2k + 2)uΓ̃ + 2realmin ≤ T̃9. The last inequality and (3.11) imply

R5 + Γ− Γ̃ + (2k + 2)uΓ̃ + 2realmin ≤ T̃9 − Γ̃.

The left-hand side is non-negative because the exact radius R5 is non-negative and (3.13) implies

0 ≤ Γ− Γ̃ + (k + 1)uΓ̃ + realmin. Consequently, 0 ≤ R̃5 and we can write

R̃5 ≤ (1 + 2u)(T̃9 − Γ̃).

Third, in order to deal with the subtraction in the previous inequality, we bound Γ̃ from
below: (3.13) and 1− (k + 1)u ≤ 1/(1 + (k + 1)u) imply (1− (k + 1)u)Γ− realmin ≤ Γ̃. Using

the last inequality in the bound for R̃5, we have

R̃5 ≤ (1 + 2u)T̃9 − (1 + 2u) (1− (k + 1)u)
(
|MA||MB |+ |PA||PB |

)
+ (1 + 2u)realmin.

Finally, starting from the last inequality, we substitute in turn the T̃i’s and Γ̃ by the corre-
sponding upper bounds. The procedure leads to

R̃5 ≤ a(|MA|+RA)(|MB |+RB) + b(|MA||MB |+ |PA||PB |) + c realmin (3.15)

with a = (1 + 2u)4(1 + γ2k), b = 2(1 + u)(1 + 2u)3(1 + γk)(k + 1)u + (1 + 2u)(k + 1)u− 2u− 1,
and c = 2(1 + 2u)3 + (1 + 2u). Let us bound from above these coefficients.

Using (3.4), we have a ≤ 1 + γ2k+8.
Again, (1 + u)(1 + 2u)3(1 + γk) ≤ 1 + γk+7 by (3.4). With the hypothesis 4(k + 1)u ≤ 1 and

assuming 6 ≤ t, as it is the case with usual working precisions, we have 2(1 + γk+7) + 1 + 2u ≤ 4
and 1 + 2u ≤ (1 + u)(1 + 2u)3 ≤ 2. Then, b ≤ (4k + 2)u− 1 and c ≤ 4.

With the previous upper bounds, (3.11) and (3.15) imply (3.14).

3.4 A new algorithm in two point matrix products

In the spirit of the previous approximate inner products, it is possible to devise an interval
multiplication algorithm with a larger radius overestimation but with a cost of only two point
matrix product.

47

3.4.1 Algorithm

Using the approximate inner product (2.33), we define the following approximate interval matrix
product C2 = 〈M2, R2〉, such that C2 ⊇ AB:

M2 = MAMB , (3.16)

R2 = (e+ f + ef)|MA||MB |. (3.17)

The formulas (3.16) and (3.17) lead to the computation of an overestimated interval matrix
product (Algorithm 92) in two numerical matrix products.

Algorithm 9 MMMul2

Input: an m-by-k interval matrix A = 〈MA, RA〉,
a k-by-n interval matrix B = 〈MB , RB〉

Output: C̃2 ⊇ AB

1: ẽ← max{fl∆(RAij/|MAij |) : i = 1, . . . ,m and j = 1, . . . , k}
2: f̃ ← max{fl∆(RBij/|MBij |) : i = 1, . . . , k and j = 1, . . . , n}
3: M̃2 ← fl�

(
MAMB

)
4: Γ̃← fl�

(
|MA||MB |

)
5: R̃2 ← fl∆

(
(ẽ+ f̃ + ẽf̃ + k+2

2 u)Γ̃ + realmin
)

6: return C̃2 = 〈M̃2, R̃2〉

The cost of MMMul2 is dominated by the cost of the two matrix products.
The factor k+2

2 uΓ̃ that appears at line 5 comes from the roundoff error bound (3.7) for the

product of the midpoints M̃2 (line 3).

2 ERRATUM: The computation of an approximate interval matrix product C̃2 as in Algorithm 9 is incorrect.

Actually, the floating-point radius matrix R̃2, computed at line 5, is not less than the radius matrix R2 when
|MA||MB | ≤ Γ̃. Yet, since Γ̃ is |MA||MB | computed with rounding to nearest (line 4), we have no guaranty

that the previous relation holds, and the substitution of |MA||MB | by Γ̃ may be incorrect.

The correction is straightforward. A correct R̃2 may be computed as

R̃2 ← fl∆

(
(ẽ + f̃ + ẽf̃)((1 +

k + 2

2
u)Γ̃ + realmin) +

k + 2

2
uΓ̃ + realmin

)
Proof. Using Theorem 3.4 with A = MA and B = MB , we have

∣∣Γ− |MA||MB |
∣∣ ≤ fl�

(
k+2

2
ulp(Γ) + realmin

)
,

which implies, by triangular inequality, |MA||MB | ≤ Γ + fl�

(
k+2

2
ulp(Γ) + realmin

)
and the right-hand side

can be bounded from above by fl∆

(
(1 + k+2

2
u)Γ + realmin

)
.

So, when implementing (3.17) in floating-point arithmetic, we can compute an overestimate R̃2 that takes into

account the roundoff errors of M̃2 and Γ̃ with R̃2 ← fl∆

(
(ẽ + f̃ + ẽf̃)Γ̃ + +(ẽ + f̃ + ẽf̃ + 1)(k+2

2
uΓ̃ + realmin)

)
.

The proof of the roundoff error bound (Section 3.4.2), the global error analysis (Section 4.3), and the implemen-
tation of the radius computation (Section 7.3.3) have been performed with the incorrect version (Algorithm 9).

However, the small increase in the coefficient of ẽ + f̃ + ẽf̃ does not change much the roundoff error and the
global error. Similarly, the computation of this coefficient can be performed in such a way that the quantity
k+2

2
uΓ̃ + realmin is reused. So, the overhead of the correction should not change significantly the experimental

timings given in Chapter 8.

48

3.4.2 Roundoff error bound

We assume that no overflow occurs. The midpoint matrix computed by MMMul2 (Algorithm 9) is

identical to M̃3, so the roundoff error is the same. The roundoff error on the radius matrix can
be bounded as follows.

Proposition 3.7. Let A ∈ IFm×k and B ∈ IFk×n with (2k + 24)u ≤ 1.

The radius R̃2 computed by Algorithm 9 verifies

R̃2 −R2 ≤γk+12(e+ f + ef)|MA||MB |+
(k + 2)u|MA||MB |+
2realmin. (3.18)

Proof. The relative accuracies computed at line 1 and 2 verify ẽ ≤ (1 + 2u)e and f̃ ≤ (1 + 2u)f .
Noting g̃ = fl∆(e+f +ef + k+2

2 u), the previous relations imply g̃ ≤ (1+2u)4(e+f +ef + k+2
2 u).

Next, we apply (3.2) to line 4, which gives

Γ̃ ≤ (1 + γk)|MA||MB |.

Taking into account the last addition with realmin and using (3.4), we get

R̃2 ≤ (1 + γk+12)(e+ f + ef)|MA||MB |+ (1 + γk+12)
k + 2

2
u|MA||MB |+ (1 + 2u)realmin.

Under the hypothesis (k+ 12)u ≤ 1/2, we have 1 + 2u ≤ 1 + γk+12 ≤ 2 and the above inequality
implies (3.18).

3.4.3 Comparison with the Ogita-Oishi’s algorithm

In 2005, Ogita and Oishi proposed another algorithm with a cost also dominated by the cost of
two matrix products [OO05, Algorithm 6]. Compared to the algorithm proposed above, their
method is slightly more computationally expensive and requires more memory accesses, since it
needs four additional matrix-vector products. Moreover, the radius overestimation is difficult to
bound in general.

3.5 Conclusion

In this chapter, we link the algorithms for interval matrix multiplication to the approximate
inner products presented in the previous chapter. This allows us to use the arithmetic error
analysis for the inner product as a componentwise error analysis for the matrix products.

The floating-point implementations of interval matrix multiplication entail larger radius re-
sults than in real arithmetic. Our method to bound the radius overestimation, due to roundoff
error, can be summed up as follows.

1. Decompose the formula for the radius in elementary operations such as scalar multiplica-
tions, matrix additions, and matrix products.

2. Bound the temporary results of elementary operations taking their roundoff errors into ac-
count. A small list of formulas is sufficient: they are recalled on a single page (Section 3.1).

3. Substitute the temporaries by their bound so as to express the bound on the result as a
polynomial function of the inputs.

49

This approach is subject to the following remarks and limitations.
The first step raises the question of the order that is chosen for the decomposition. Indeed,

a complex mathematical formula can be computed in several ways that are mathematically
equivalent but that yield different roundoff errors. However, due to the multiplicative nature
of the bounds and to the simplicity of the formulas in the algorithms, the bounds given in this
chapter allow for any decomposition order.

The second step extensively uses the bounds (3.2) and (3.3) on the roundoff error for a matrix
product. These are valid under the hypothesis of computation with the classical three loop
algorithm. Note that there is no such restriction for the Rump’s bound used in the algorithms.

The formulas that we used to bound the temporary results assume non-negative quantities,
which is the case for radii. Nevertheless, substitutions in the third step can be troublesome in the
presence of cancellation, as in the computation of R̃5 defined by (3.11). This makes the process
more delicate and error-prone. Moreover, cancellations worsen the error bound: the difference
in the roundoff error bounds for R̃5 in (3.14) and for R̃3 in (3.8) is up to 4(k + 2)u|MA||MB |.
This difference may be important with large values of k or large values of |MA||MB |.

50

Chapter 4

Global error analysis

In this chapter, we study the global error of MMMul2, MMMul3, and MMMul5, the three interval
matrix product algorithms presented in the previous chapter. The relative Hausdorff error is
theoretically bounded from above by the sum of the bound for the arithmetic error that has
been established in Chapter 2 and the bound for the roundoff error, established in Chapter 3.
We analyze here the behavior of such bounds with respect to several parameters, namely: the
matrix dimensions, the input relative accuracies, and the working precision. We also compare
the value of the theoretical bound with the actual global error, which we measure on products
of random interval matrices.

The first section discusses the issues of measuring the global error. It presents our theoretical
and software solutions to these problems. Section 4.2 deals with the analysis of global error
for MMMul3 and it introduces the experimental protocols that are also used for the global error
analyses of the other algorithms. Global errors of MMMul2 and MMMul5 are analyzed in Section 4.3
and Section 4.4, respectively. The last section concludes by comparing the global errors of the
three algorithms and determines the domains where a given algorithm provides the best trade-off
between the accuracy of its results and its execution time.

4.1 Measuring the global error experimentally

The difficulty of measuring the actual global error for interval matrix computation lies in that,
in general, the exact result is not exactly representable as a matrix of floating-point intervals
with the same precision as for the inputs. Nonetheless, we circumvent both problems by using
two technical means.

First, as real numbers can be tightly approximated by floating-point numbers with the round-
ing to nearest operation, real intervals can be best approximated in infimum-supremum repre-
sentation by optimal outward rounding, defined as in [Neu90, § 1.3 Rounded interval arithmetic].

Definition 4.1. The optimal outward rounding x̃ = [ã, b̃] for a real interval x = [x,x] is the
floating-point interval defined by

• ã = fl∇(x),

• b̃ = fl∆(x).

The midpoint-radius representation is less common than the infimum-supremum representa-
tion, so there exists no corresponding notion for the best floating-point approximate. We propose
the following one.

51

Definition 4.2. The nearest midpoint interval x̃ of a real interval x is the floating-point interval
defined by

• mid x̃ = fl�(midx),

• rad x̃ = fl∆(radx + e),

where e = |midx−mid x̃| is the roundoff error for the midpoint. We note x̃ = N (x).

This notion extends naturally to interval vectors and interval matrices by applying the op-
erator N to each component. As expected, a real interval is included in its nearest midpoint
interval, save exceptional cases. Note that only the situations where fl�(midx) overflows are
troublesome. We will not try to define the meaning of the interval 〈+∞,+∞〉 that results in
those cases, and we assume that no overflow occurs in our computations.

Proposition 4.1. For all x ∈ IR, x ⊆ N (x) provided that no overflow occurs.

Proof. We have |midx−mid x̃| ≤ rad x̃− radx because of the rounding toward +∞ mode used
for the computation of rad x̃. This inequality proves the proposition by (1.2).

The nearest midpoint N (x) is one of the tightest floating-point midpoint-radius intervals that
include x. Such enclosure is not unique, as the exact midpoint may lies exactly half-way of two
consecutive floating-point numbers. In that case, two different floating-point intervals contain
x and have the minimal possible radius. But the tie rule for the rounding to nearest mode in
fl�(midx) completely determines the nearest midpoint interval N (x).

Second, we choose floating-point matrices in double precision (t = 53) as input matrices in
the experiments. The inputs are therefore representable, but, in general, the exact result cannot
be computed with double precision arithmetic, because of roundoff errors. And so is the nearest
midpoint of the exact result, because of the roundoff error e in Definition 4.2, which should
be computed exactly. However, given two floating-point interval vectors in double precision, the
nearest midpoint interval of their inner product is computable with arbitrary precision arithmetic.

More precisely, the arbitrary precision library MPFR [FHL+07] provides a mpfr sum function
that computes the correctly rounded value of a sum. Let x and y be two k−interval vectors.
With mpfr sum, a procedure based on equations (2.7) can compute the nearest midpoint rounding
N (z) of the exact interval inner product z = xT y. We proceed as follows.

1. The partial products αi, βi, γi, δi, and µi are computed exactly in 106-bit precision.

2. The sought midpoint mid x̃ is obtained with a call to mpfr sum. Its value is the correctly
rounded value mid x̃ = fl�(

∑
αi + µi) of the sum

∑n
i=1[αi + µi].

3. The roundoff error is e = σ(−mid x̃ +
∑
αi + µi), with σ = +1 if mid x̃ underestimates

the exact midpoint and σ = −1 otherwise. So, the roundoff error is included in the radius
with a second call to mpfr sum:

r̃ = fl∆

(
−σ mid x̃ +

∑
βi + γi + δi − |µi|+ σαi + σµi

)
.

The above procedure can also compute componentwise the nearest midpoint matrix of an
interval matrix product. Let us now explain how we will use it in the analysis of the relative
forward error. Let A = 〈MA, RA〉 ∈ IFm×k and B = 〈MB , RB〉 ∈ IFk×n be two floating-point
interval matrices in midpoint-radius representation. Let consider, for instance, the approximate

product C̃3 ⊇ AB, which is computed with MMMul3. In the global error analysis, we estimate

52

Real Exact

C

Real Approximate

C3

Floating-point Accurate

C̃ = N (C)

Floating-point Fast

C̃3

arithmetic
error

roundoff error

roundoff errors

global error measured
error

Figure 4.1: Global Error Measurement.

the relative Hausdorff error d(C, C̃3)/d(C, 0) with the quantity d(N (C), C̃3)/d(N (C), 0). That
is, we use the approximate matrix N (C), which is computable, in place of the exact product C.
The situation is summarized on Figure 4.1.

By construction, x and N (x) are close together and the difference can be quantified as in
the next proposition.

Proposition 4.2. Let x be a real interval. The nearest midpoint rounding x̃ = N (x) of x
verifies the following inequality for any interval y,

d(x̃,y)

d(x̃, 0)
− 3u ≤ d(x,y)

d(x, 0)
≤ (1 + 3u)

d(x̃,y)

d(x̃, 0)
+ 3u. (4.1)

Proof. Using the definition of x̃ and the standard model of floating-point arithmetic (see Sec-
tion 3.1), we have |mid x̃ −midx| ≤ u|midx| and rad x̃ − radx ≤ 2u radx + (1 + 2u)u|midx|.
The previous inequalities and the definition (1.3) show that the Hausdorff distance between the
exact solution x and its floating-point approximation x̃ is minute: d(x̃,x) ≤ 3u d(x, 0). The
previous bound and a triangular inequality imply d(x̃,y) ≤ d(x,y) + 3u d(x, 0) for any interval
y. Since d(x, 0) ≤ d(x̃, 0), we have the left-hand side inequality in (4.1).

Likewise, we have |mid x̃| ≤ (1+u)|midx| and rad x̃ ≤ (1+2u)radx+(1+2u)u|midx|. Since
1 + 2u + 2u2 ≤ 1 + 3u, the three last inequalities imply d(x̃, 0) ≤ (1 + 3u)d(x, 0). Moreover, the
bound on d(x̃,x) and a triangular inequality show that d(x,y) ≤ d(x̃,y) + 3u d(x, 0) for any
interval y. This inequality and the bound on d(x̃, 0) prove the upper bound.

The previous proposition implies that the measured relative error d(N (C), C̃3)/d(N (C), 0)

is a good estimate of the relative Hausdorff error d(C, C̃3)/d(C, 0), unless it is of the order of
magnitude of the unit roundoff u. All numerical results that are displayed in figures and tables
below are computed with double precision (u = 2−53).

4.2 Global error for MMMul3

4.2.1 Method of global error analysis

In the present section and in the next two ones, we conduct the global error analysis by following
the same three steps.

• First, a componentwise bound on the radius error is established. This allows us to use
the bounds on the arithmetic error that were established in Chapter 2 for the approximate

53

dot products. We add them to the bounds on the roundoff error from Chapter 3 and we
express the sum as a function of the midpoints and relative accuracies of the inputs.

Then, we form a bound on the relative error for the radius for the special case of inputs
with the same fixed relative accuracy. As noted in Section 2.4, this is a worst case for
the arithmetic error. We then describe how the bound varies when we change the matrix
dimensions, the input relative accuracies or the working precision.

• Second, according (1.4), the relative Hausdorff error, which we ultimately want to analyze,
is bounded by twice the value of the bound on the relative error for the radius. On a set
of random matrices with fixed relative accuracy, we examine the discrepancy between this

bound and the measured relative Hausdorff error d(N (C), C̃3)/d(N (C), 0).

• And finally, we examine the discrepancy between the previous bound and the measured
relative Hausdorff error on a set of random matrices whose relatives accuracies vary and
are bounded by a given value.

Let us focus now on the global error analysis for MMMul3 (Algorithm 6).

4.2.2 Upper bounds for the radius global error

The next proposition establishes a bound on the global error R̃3 −R.

Proposition 4.3. Let A ∈ IFm×k and B ∈ IFk×n two interval floating-point matrices with
(4k + 12)u ≤ 1. Let e and f such that

e = max{racc(Aij) : 1 ≤ i ≤ m, 1 ≤ j ≤ k},
f = max{racc(Bij) : 1 ≤ i ≤ k, 1 ≤ j ≤ n}.

The global error on the radius computed by Algorithm 6 is bounded as follows

R̃3 −R ≤ (min{e, f, ef}+ γ2k+6(e+ f + ef) + (2k + 4)u) |MA||MB |+
2 realmin. (4.2)

Proof. Proposition 2.5 gives a bound on the arithmetic error: R3−R ≤ min{e, f, ef}|MA||MB |.
By definition of the relative accuracies, RA ≤ e|MA| and RB ≤ f |MB |. So, (3.8) can be

rewritten as R̃3 − R3 ≤ (γ2k+6(e+ f + ef) + (2k + 4)u) |MA||MB | + 2 realmin. Summing the
bounds on the arithmetic error and the roundoff error implies (4.2).

The following proposition gives an upper bound on the relative radius error in the special
case e = f .

Proposition 4.4. Let A ∈ IFm×k and B ∈ IFk×n two interval floating-point matrices in
midpoint-radius representation with (4k + 12)u ≤ 1. Let e and λ two positive real numbers
such that

e = max
1≤i≤m
1≤l≤k

{racc(Ail)} = max
1≤l≤k
1≤j≤n

{racc(Blj)},

λ = max{C > 0 : Ce|midA| ≤ radA and Ce|midB| ≤ radB}.

54

The relative radius error of the approximate product C̃3 computed by Algorithm 6 is bounded
from above as follows:

R̃3 −R
R

≤ 1

λ

{
b+ c+ d+ ε(|MA||MB |)

}
(4.3)

where

b =
(2k + 4)u

emax{2, 1 + λe} , d = γ2k+6
2 + e

max{2, 1 + λe} ,

c =
min{1, e}

max{2, 1 + λe} , ε(|MA||MB |) =
2realmin

emax{2, 1 + λe}|MA||MB |
.

Proof. We know from (2.19) that R ≥ (λ(max{e, f}+ max{min{e, f}, λef}) |MA||MB |. In the
special case e = f , we have R ≥ λemax{2, 1 + λe}|MA||MB |. Moreover, min{e, f, ef} =
emin{1, e}. Then, the numerator of the relative radius error can be bounded using (4.2) and a
rewriting gives (4.3).

It is instructive to study the variation of the coefficients with respect to the relative accuracy
e and to notice their origin.

• The coefficient b comes from the roundoff error of the computation of the midpointMAMB .
It is monotonically decreasing, and it dominates the other coefficients when e is small.

• The coefficient c is related merely to the arithmetic error. Its behavior has been studied in
Section 2.3: it is negligible for both small and large relative accuracies.

• The coefficient d corresponds to the relative roundoff error for the radius computation. As
1 ≤ 2+e

max{2,1+λe} ≤ 3, it does not vary much and is of the order of magnitude of (2k + 6)u.

It is therefore negligible unless the input relative accuracy is extremely large.

• The last coefficient ε(|MA||MB |) originates from the value that is added to the radius so
as to guard against underflow in midpoint computation. It is the only one that depends on
the value of the product |MA||MB |. It is very small because of the factor realmin, which
represents the smallest normalized floating-point number, and does not intervene unless
|MA||MB | is close to 0.

Figure 4.2 illustrates the relative behavior of a, b and c as e varies.
Let e0 < 1 and e1 > 1 be the relative accuracy values defined by c(e0) = b(e0) and c(e1) =

d(e1). We have e0 =
√

(2k + 4)u and, in the case λ = 1, e1 = 1
(2k+6)u − 3. To sum up the

previous remarks, the roundoff error on M̃3 dominates when the relative accuracy is less than
e0 ≈

√
2ku. From e0 to e1 ≈ 1

2ku , the bound is dominated by the arithmetic error. Next, when
e1 ≤ e, the radius roundoff error bound prevails. With respect to the common dimension of
the input matrices, b is linear in k, c does not depends on k, and d is almost linear in k for
reasonable matrix dimensions since γn = nu/(1 − nu) ≈ nu when nu � 1. So the intersection
point e0 increases and e1 decreases as k grows.

4.2.3 Comparison with the measured relative Hausdorff error: fixed
relative accuracies

We now compare the behavior of the relative radius error studied above with the actual relative
Hausdorff error for two synthetic random sets. The experimental protocol will be the same for
all numerical experiments reported here: for a given relative accuracy,

55

2−53 2−24 20 224 253

2−53

2−24

20

224

input relative accuracy

b
o
u
n
d

o
n

R̃
3
−
R

R

b(k, e)

c(e)

d(k, e)

Figure 4.2: Decomposition of the Bound on the Relative Radius Error for MMMul3 (k = 128, λ =
1).

• 100 pairs of random matrices are generated as described below;

• as we are doing a componentwise analysis, each component of the 100 approximate products
is classified with respect to its relative Hausdorff error;

• we report the proportion of components in the result that have a given relative Hausdorff
error.

The first random dataset, thereafter denoted dataset I, is defined as follows. For a given
relative accuracy e, the midpoint m of each component of A or B is chosen following the standard
normal distribution N (m = 0, σ = 1); the midpoint being chosen, the component radius is set
to e|m|. The generated intervals are distributed as on Figure 4.3.

−4 −3 −2 −1 0 1 2 3 4

2 · 10−5

4 · 10−5

6 · 10−5

midpoint

ra
d
iu
s

Figure 4.3: Random Dataset I – normal midpoints, fixed relative accuracy (e = 2−17, λ = 1).

The results for the first dataset are displayed in Figure 4.4. The x-axis represents the common
relative accuracy of the random factors A and B, the y-axis indicates the value of the relative

Hausdorff error d(C̃, C̃3)/d(C̃, 0), where C̃ is the nearest-midpoint rounding of the exact prod-
uct, as explained above. Both axes are in logarithmic scale. The distribution of relative Hausdorff

56

error for each component of the product C̃3 is printed in gray scale: for a given relative accuracy
and relative Hausdorff error, the darker the plot, the higher the proportion of components with
this relative Hausdorff error in the computed product.

2−53 2−24 20 224 253

2−53

2−24

20

224

input relative accuracy

re
la

ti
v
e

H
a
u
sd

o
rff

er
ro

r
d
(C̃

,C̃
3
)

d
(C̃

,0
)

0%

20%

40%

60%

80%

100%

p
ro
p
o
rt
io
n
o
f
o
u
tp
u
t
in
te
rv
al
s

Figure 4.4: Measured Relative Hausdorff Error for MMMul3 with Random Dataset I (matrices of
size 128× 128).

An upper bound on the relative radius error is established in Proposition 4.4. We measure
here the relative Hausdorff error. Both errors are linked by inequality (1.4): d(C, C̃3)/d(C, 0) ≤
2(R̃3−R)/R. It is apparent on Figure 4.4 that the maximum for the measured relative Hausdorff
error behaves like the theoretical bound when the relative accuracies of input vary. The values
reported in Table 4.1 confirm that the relative Hausdorff error (second row) is actually bounded
from above by twice the bound on the relative radius error (last row, where the value of the
bound (4.3) is computed for λ = 1).

Input relative accuracy 2−60 2−53 2−24 20 224 253

max. relative Hausdorff error
Dataset I 213 26 2−23 2−1 2−24 2−47

Dataset II 214 27 2−23 2−2 2−23 2−47

2× Bound (4.3) (with λ = 1) 216 29 2−20 20 2−22 2−43

Table 4.1: Comparison between the Maximum Measured Relative Hausdorff Error and the Bound
for MMMul3 (k = 128).

Concerning the working precision, we see from Table 4.1 that the radius of the computed
product may be up to 65 times larger than the exact radius when the inputs in double precision
(u = 2−53) are accurate within one unit in the last place (e = 2−53). Likewise, the factor of the
relative error for the computed product radius is less than 2−23 when the inputs in single precision
(u = 2−24) are accurate within one unit in the last place (e = 2−24) while the computation is
performed in double precision arithmetic. The latter factor would equal 2−14 with the same
precision of inputs, but with calculation in single precision arithmetic.

Moreover, two different patterns are visible on Figure 4.4. On the one hand, for large relative
accuracies e > 1, the relative Hausdorff error of the computed product closely follows the bound
of the radius error. On the other hand, for small input relative accuracy e < 1, the relative
Hausdorff error distribution is divided in two branches, in the left-hand side of Figure 4.4. For

57

some instances, the product error is as large as the bound (upper branch), while for a great
majority, it is accurate within a few units in the last place (lower branch). Let us show that
the situation of a particular component of the result depends on the condition number of its
computation. Remember first that we are analyzing the global error componentwise. So, we
consider here the simplified case of an inner product between the 1-by-k matrix A with the

k-by-1 matrix B, without loss of generality. By definition, the relative radius error for C̃3 is

rre = R̃3−R
R and the relative Hausdorff error is rHe = d(C̃3,C)

d(C,0)
. Their ratio is therefore equal to

rre

rHe
=

R̃3 −R
d(C̃3,C)

× d(C, 0)

R
. (4.4)

The first factor is easy to bound: since C̃3 ⊇ C we have 1
2 ≤ R̃3−R

d(C̃3,C)
≤ 1 by (1.2). Let us

now define the quantities αi, βi, γi, δi, and µi as in Proposition 2.3, page 28. Note that in our
case, we have e < 1 and βi = δi = e|αi|, and |µi| = δi = e2|αi|. Then, the second factor in (4.4)

depends on the condition number for the inner product, defined as κ =
∑ |αi|
|∑αi| . Indeed, we have

R = 2e
∑ |αi| and d(C, 0) = (1 + e2)|∑αi|+ 2e

∑ |αi|. Thus,

d(C, 0)

R
= 1 +

1 + e2

2e

1

κ
. (4.5)

If the condition number is large, say when 1+e2

2e � κ, then the ratio in (4.5) is close to one, and
the ratio (4.4) is between 1

2 and 1. In that case the upper bound on relative radius error is an
accurate upper bound for the relative Hausdorff error. If the condition number is moderately
small, say κ� 1

2e , then the second summand in the right-hand side sum of (4.5) dominates. In
that case the relative radius error is several order of magnitude larger than the relative Hausdorff
error, around 1

2e times larger. In summary, the bound on the relative radius error is accurate for
huge condition numbers, and we are in the upper branch of Figure 4.4. Conversely, the bound
on the relative radius error greatly overestimates the bound on the relative Hausdorff error if the
condition number is moderate, which is likely to be the case with normally distributed midpoints.

The error distribution observed for input relative accuracy e = 2−53 is reported in Table 4.2.
These observations confirm that the lower branch on Figure 4.4 is much more representative of
the relative Hausdorff error behavior than the upper branch.

relative Hausdorff error [2−46, 2−40) [26, 27)
proportion of components 93% 7%

Table 4.2: Repartition of the Measured Relative Hausdorff Error of MMMul3 with Dataset I,
e = 2−53 and k = 128

4.2.4 Comparison with the measured relative Hausdorff error: bounded
relative accuracies

The second random dataset, denoted dataset II, tries out the relevance of the bound (4.3) when
some interval components of the input factors are thin (λ = 0). For a given relative accuracy e,
the midpoints are normally distributed, as for the previous dataset, but the radius correspond-
ing to the midpoint m is chosen uniformly at random in [0, e|m|]. Figure 4.5 illustrates the
distribution of the generated intervals.

58

−4 −3 −2 −1 0 1 2 3 4

1

2

midpoint

ra
d
iu
s

Figure 4.5: Random Dataset II – normal midpoints, bounded relative precision (e = 1 and
λ = 0).

2−53 2−24 20 224 253

2−53

2−24

20

224

input relative accuracy (upper bound)

re
la

ti
v
e

H
a
u
sd

o
rff

er
ro

r
d
(C̃

,C̃
3
)

d
(C̃

,0
)

0%

20%

40%

60%

80%

100%

p
ro
p
or
ti
on

of
ou

tp
u
t
in
te
rv
a
ls

Figure 4.6: Relative Hausdorff Error for MMMul3 with Random Dataset II (matrices of size
128× 128).

The relative Hausdorff error for the approximate product C̃3 is presented on Figure 4.6 in a
display analog to Figure 4.4.

The result values are quite similar to the fixed relative accuracy case, and the third row in
Table 4.1 confirms this observation. This behavior can be explained by the fact that quanti-
ties computed from small radii are small and therefore they are absorbed when added to their
counterparts derived from larger radii. So the overall behavior is dictated by intervals with large
radii. The midpoints being chosen according to a standard normal distribution, they tend to
have comparable orders of magnitude, and consequently, interval with large radius are likely to
be intervals with large relative accuracy.

Note that the bound given in (4.3) is not finite when λ = 0. However, the measured rela-
tive Hausdorff error seems to be as good as in the case λ = 1, as can be seen when comparing
Figures 4.4 and 4.6 and the second and third rows in Table 4.1. Further investigation would be
needed to determine if this is an artifact due to the random distribution. The fact that we do
not observe very large relative relative Hausdorff error may be due to the fact that the chosen

59

random distribution rarely generates catastrophic cancellations in the midpoint computation.
Nonetheless, two observations indicate that the λ−1 factor in the bound (4.3) grossly overes-
timates the actual maximum relative Hausdorff error. First, we noted in Section 2.3 that the
lower bound (λmax{e, f}+ max{min{e, f}, λef}) |midx|T |midy| on rad z in (2.19) is not tight,
and this is from where the λ−1 factor in the bound (4.3) originates. In addition, the relative
Hausdorff errors that we measured in our numerical experiments do not differ much between the
two cases λ = 1 and λ = 0. Therefore, it is not unrealistic to hope for a bound on the relative
error for MMMul3 that depends on e, k, and u, but no more on λ.

In addition, when e = 2−53, the repartition of the measured relative Hausdorff error is almost
the same as for dataset I (compare Tables 4.2 and 4.3). As a result, the conclusion is identical:
the dominant behavior is represented by the lower branch when e < 1.

relative Hausdorff error [2−46, 2−40) [26, 28)
proportion of components 93% 7%

Table 4.3: Repartition of the Measured Relative Hausdorff Error of MMMul3 with Dataset II,
e = 2−53 and k = 128

4.3 Global error for MMMul2

We perform here for MMMul2 (Algorithm 91) the analysis of the Hausdorff error with the protocol

presented in the previous section. The global error R̃2 −R may be bounded as follows.

Proposition 4.5. Let A ∈ IFm×k and B ∈ IFk×n two interval floating-point matrices with
(2k + 24)u ≤ 1. Let e, f , and λ three positive real numbers such that

e = max{racc(Aij) : 1 ≤ i ≤ m, 1 ≤ j ≤ k},
f = max{racc(Bij) : 1 ≤ i ≤ k, 1 ≤ j ≤ n},
λ = max{C > 0 : Ce|midA| ≤ radA and Ce|midB| ≤ radB}.

The global error on the radius computed by Algorithm 9 is bounded as follows

R̃2 −R ≤(k + 2)u|MA||MB |+
(min{e, f, ef}+ (1− λ)(e+ f + (1 + λ)ef)) |MA||MB |+
γk+12(e+ f + ef)|MA||MB |+
2 realmin, (4.6)

Proof. The bound in (4.6) is a combination of (2.34) and (3.18).

From the previous bound, we can derive a bound on the relative radius error. We will focus
on the case e = f .

Proposition 4.6. Let A ∈ IFm×k and B ∈ IFk×n two interval floating-point matrices with
(2k + 24)u < 1. Let e and λ two positive real numbers such that

e = max
1≤i≤m
1≤l≤k

{racc(Ail)} = max
1≤l≤k
1≤j≤n

{racc(Blj)},

λ = max{C > 0 : Ce|midA| ≤ radA and Ce|midB| ≤ radB}.
1See the erratum in the footnote page 48.

60

The relative radius error of the approximate product C̃2 computed by Algorithm 9 is bounded
from above as follows:

R̃2 −R
R

≤ 1

λ

{
b+ c+ d+ ε(|MA||MB |)

}
(4.7)

where

b =
(k + 2)u

emax{2, 1 + λe} , d = γk+12
2 + e

max{2, 1 + λe} ,

c =
min{1, e}

max{2, 1 + λe} + (1− λ)
2 + (1 + λ)e

max{2, 1 + λe} , ε(|MA||MB |) =
2 realmin

emax{2, 1 + λe}|MA||MB |
.

Proof. (4.7) is a consequence of (2.19) and (4.6) when e = f .

The same observations as in the MMMul3 case can be made on the coefficients b, c, and d. The
contributions of b, c, and d are shown on Figure 4.7. The value of λ does not change much the
values of b and d, so we display b and d for λ = 1 only.

2−53 2−24 20 224 253

2−53

2−24

20

224

input relative accuracy

b
o
u
n
d

o
n

R̃
2
−
R

R

b(λ = 1)

c(λ = 1)

c(λ = 2−1)

d(λ = 1)

Figure 4.7: Decomposition of the Bound on the Relative Radius Error for MMMul2 (k = 128).

As noted in Section 2.5, the value of λ determines two completely different behaviors for the
arithmetic error. When λ = 1, the observations on Figure 4.7 are similar to those made above
on Figure 4.2: the roundoff error on the midpoint computation, represented by the parameter
b, dominates until the arithmetic error (parameter c) crosses, increasing as long as e ≤ 1, then
decreases till the point where the radius roundoff error is dominant. When λ < 1, the roundoff
error on the midpoint computation b dominates for tight inputs until the arithmetic error c
becomes preponderant. Figure 4.8 illustrates the variation of the bound (b+ c+ d) × 2/λ in
both cases. Note that we neglect the coefficient ε(|MA||MB |)/λ for the same reasons as in
Section 4.2.

With the random dataset I, described above, the maximum relative Hausdorff error closely
follows the theoretical bound, except for very large relative accuracies (see Figure 4.9 and Ta-
ble 4.4).

The same behavior in two branches appears for inputs with small relative accuracies, the
branch of a particular component depending on whether its exact midpoint is computed with
catastrophic cancellations or not. The conclusions are similar to the ones for the previous algo-
rithm: the maximum measured relative Hausdorff error matches the bound given by Proposi-
tion 4.6 but this bound is usually pessimistic when the input relative accuracies are small (this

61

2−53 2−24 20 224 253

2−53

2−24

20

224

input relative accuracy

re
la

ti
v
e

H
a
u
sd

o
rff

er
ro

r
d
(C̃

,C̃
2
)

d
(C̃

,0
)

λ = 1

λ = 2−1

Figure 4.8: Bound on the Relative Hausdorff Error for MMMul2 (k = 128).

2−53 2−24 20 224 253

2−53

2−24

20

224

input relative accuracy

re
la

ti
v
e

H
a
u
sd

o
rff

er
ro

r
d
(C̃

,C̃
2
)

d
(C̃

,0
)

0%

20%

40%

60%

80%

100%

p
ro
p
or
ti
on

of
ou

tp
u
t
in
te
rv
a
ls

Figure 4.9: Relative Hausdorff Error for MMMul2 with Random Dataset I (matrices of size 128×
128).

Input relative accuracy 2−60 2−53 2−24 1 224 253

max. relative Hausdorff error
Dataset I 213 26 2−23 2−1 2−24 2−47

2× Bound (4.7) (with λ = 1) 213 26 2−23 20 2−23 2−43

Table 4.4: Bound and Actual Values of Relative Hausdorff Error for MMMul2 with Dataset I
(λ = 1, k = 128).

situation is represented by the lower branch in the left part of Figure 4.9). When the input
relative accuracies are large (e > 1, right-hand side of Figure 4.9), the bound is a good estimate
of the actual relative Hausdorff error.

The relative Hausdorff error with dataset II is presented in Figure 4.10.
Again, in that case, (4.7) does not yield a finite bound since λ = 0. Like MMMul3, MMMul2

produces results whose the relative Hausdorff error seems to be finite but, unlike the former
algorithm, the bound (4.7) with λ = 1 and the maximum measured value do not match. Instead,
the maximum relative Hausdorff error seems to follow the variation of the bound (4.7) with

62

2−53 2−24 20 224 253

2−53

2−24

20

224

input relative accuracy (upper bound)

re
la

ti
v
e

H
a
u
sd

o
rff

er
ro

r
d
(C̃

,C̃
2
)

d
(C̃

,0
)

0%

20%

40%

60%

80%

100%

p
ro
p
o
rt
io
n
o
f
o
u
tp
u
t
in
te
rv
al
s

Figure 4.10: Relative Hausdorff Error for MMMul2 with Random Dataset II (matrices of size
128× 128).

λ = 2−1, and the numerical results in Table 4.5 corroborate this hypothesis. As noted previously,
we would need a deeper analysis to prove this numerical evidence.

Input relative accuracy 2−60 2−53 2−24 1 224 253

max. relative Hausdorff error
Dataset II (λ = 0) 214 27 20 21 22 22

2× Bound (4.7) (with λ = 2−1) 216 29 22 23 23 23

Table 4.5: Bound and Actual Values of Relative Hausdorff Error for MMMul2 with Dataset II
(λ = 0, k = 128).

Moreover, two branches also appear in the case of inputs with small relative accuracy. As
can be observed on Figure 4.10, the majority of computed components have a smaller relative
Hausdorff error than predicted by the tentative bound (4.7) with λ = 2−3. In conclusion, the
situation contrasts with the case of fixed relative accuracy (dataset I), the bound is never less
than 4 and we should expect a worse result when the relative accuracy of input matrices varies.

4.4 Global error for MMMul5

We conduct in this section the analysis for the relative Hausdorff error corresponding to MMMul5.
First, the global error bound for the radius is given by the next proposition.

Proposition 4.7. Let A = 〈MA, RA〉 ∈ IFm×k and B = 〈MA, RA〉 ∈ IFk×n two interval
floating-point matrices with 4(k + 1)u ≤ 1. Let e, f , and λ such that

e = max{racc(Aij) : 1 ≤ i ≤ m, 1 ≤ j ≤ k},
f = max{racc(Bij) : 1 ≤ i ≤ k, 1 ≤ j ≤ n},
λ = max{C > 0 : Ce|midA| ≤ radA and Ce|midB| ≤ radB}.

63

The global error on the radius computed by Algorithm 8 is bounded as follows

R̃5 −R ≤γ2k+8(1 + e+ f + ef)|MA||MB |+
(4k + 2)u(1 + min{1, e}min{1, f})|MA||MB |+
(max{min{e, f, ef}, 1} − 1)|MA||MB |+
4 realmin. (4.8)

Proof. Note that |PA| ≤ min{1, e}|MA| and |PB | ≤ min{1, f}|MB |, by definition. Then, the
arithmetic error

R5 −R ≤ (max{min{e, f, ef}, 1} − 1)|MA||MB |
comes from (2.20). The roundoff error

R̃5 −R5 ≤γ2k+8(1 + e+ f + ef)|MA||MB |+
(4k + 2)u(1 + min{1, e}min{1, f})|MA||MB |+
4 realmin

is a consequence of (3.14).

The following proposition states the upper bound on the relative radius error in the special
case e = f .

Proposition 4.8. Let A ∈ IFm×k and B ∈ IFk×n two interval floating-point matrices with
4(k + 1)u < 1. Let e and λ two positive real numbers such that

e = max
1≤i≤m
1≤l≤k

{racc(Ail)} = max
1≤l≤k
1≤j≤n

{racc(Blj)},

λ = max{C > 0 : Ce|midA| ≤ radA and Ce|midB| ≤ radB}.

The relative radius error of the approximate product C̃5 computed by Algorithm 8 is bounded
from above as follows:

R̃5 −R
R

≤ 1

λ

{
b(k, e) + c(e) + d(k, e) + ε(e, |MA||MB |)

}
(4.9)

where

b = (4k + 2)u
1 + min{1, e2}
emax{2, 1 + λe} , d = γ2k+8

(1 + e)2

emax{2, 1 + λe} ,

c = max

{
0,

e− 1

emax{2, 1 + λe}

}
, ε(e, |MA||MB |) =

4realmin

emax{2, 1 + λe}|MA||MB |
.

Proof. (4.9) is a consequence of (2.19) and (4.8) when e = f .

As in Proposition 4.4, the coefficient b arises from the roundoff error in the computation
of the product midpoint. The coefficient c comes from the arithmetic error only, it behaves as
described in Section 2.3. Finally, the coefficient d is used to bound the remaining roundoff errors
in the radius computation.

Let us see how the bound in (4.9) varies as the input relative accuracy e grows. Both
coefficients b and d decrease monotonically with e until they reach small multiples of u at e =
1. From then on, their behaviors differ: d remains almost constant, while b ∼ 1/e2 becomes

64

negligible. The sum (b+d)/λ represents the whole bound when e < 1, since the arithmetic error
bound is zero (c = 0) for input intervals that do not contain zero. Next, the coefficient c/λ
dominates after a sudden increase around e = 1. Then, c and d cross at e = e1 ≈ 1

(2k+8)u . When

e1 ≤ e, the bound stays close to (2k + 8)u/λ, which is approximately equal to the value of the
bound d on the radius roundoff error (see Figure 4.11).

2−53 2−24 20 224 253

2−53

2−24

20

224

input relative accuracy

b
o
u
n
d

o
n

R̃
5
−
R

R

b
c
d

Figure 4.11: Decomposition of the Bound on the Relative Radius Error for MMMul5 (k = 128,
λ = 1).

Experimental measures of the relative Hausdorff error with dataset I (fixed input relative
accuracy, λ = 1) are shown in Figure 4.12.

2−53 2−24 20 224 253

2−53

2−24

20

224

input relative accuracy

re
la

ti
v
e

H
a
u
sd

o
rff

er
ro

r
d
(C̃

,C̃
5
)

d
(C̃

,0
)

0%

20%

40%

60%

80%

100%

p
ro
p
or
ti
on

of
ou

tp
u
t
in
te
rv
al
s

Figure 4.12: Relative Hausdorff Error for MMul5 with Random Dataset I (matrices of size 128×
128).

The conclusion is similar to that for MMMul3 and dataset I: the bound (4.9) is a good estimate of
the actual relative Hausdorff error when e > 1, while the main part of the computed coefficients
presents a tiny relative Hausdorff error, several order of magnitude smaller than the bound,
when e < 1. For small relative accuracy, however, a minority of product components still have a
measured relative Hausdorff error that is close to the theoretical bound. These observations are
confirmed by values displayed in Table 4.6.

Figure 4.13 presents the measured relative Hausdorff error with dataset II and the maximum

65

Input relative accuracy 2−60 2−53 2−24 1 2 224 253

max. relative Hausdorff error
Dataset I 215 28 2−21 2−44 2−3 2−24 2−47

2× Bound (4.9) (with λ = 1) 217 210 2−18 2−42 2−3 2−24 2−43

Table 4.6: Bound and Actual Values of Relative Hausdorff Error for MMMul5 with Dataset I
(k = 128, λ = 1).

relative Hausdorff errors measured for this dataset are reported in Table 4.7. As for MMMul2, we
observe that the actual relative Hausdorff error behaves as the λ = 2−1 case.

2−53 2−24 20 224 253

2−53

2−24

20

224

input relative accuracy (upper bound)

re
la

ti
v
e

H
a
u
sd

o
rff

er
ro

r
d
(C̃

,C̃
5
)

d
(C̃

,0
)

0%

20%

40%

60%

80%

100%

p
ro
p
or
ti
on

of
ou

tp
u
t
in
te
rv
al
s

Figure 4.13: Relative Hausdorff Error for MMul5 with Random Dataset II (matrices of size
128× 128).

Input relative accuracy 2−60 2−53 2−24 1 2 224 253

max. relative Hausdorff error
Dataset II 217 210 2−19 2−41 2−1 2−22 2−43

2× Bound (4.9) (with λ = 2−1) 218 211 2−18 2−40 20 2−20 2−41

Table 4.7: Bound and Actual Values of Relative Hausdorff Error for MMMul5 with Dataset II
(k = 128).

4.5 Conclusion

We conclude this chapter and the part on the error analysis by comparing the three algorithms
MMMul2, MMMul3, and MMMul5.

In previous articles [Rum12, Ngu11], error analyses for MMMul3, and MMMul5 were limited to
what we call here the arithmetic error. The results of such analyses are summarized in Table 4.8.

One may have the feeling, when considering these data, that some accuracy in the result can
be traded for a smaller computing cost with MMMul3, or, reciprocally, that a greater accuracy may
be reached at some computational cost with MMMul5. This is not always the case, as it can be

66

Algorithm Computed Radius Cost
MMMul3 at most 1.5× exact radius about 3 gemm

MMMul5 at most 1.18× exact radius about 5 gemm

Table 4.8: Bound on Errors and Cost Comparison for Algorithms MMMul3 and MMMul5. The
roundoff errors are neglected.

concluded from a global error analysis like the one performed in this part. In order to determine
the exact domains where the bound on the relative Hausdorff error with a given algorithm is less
than the one corresponding to the other algorithm, we compare below the results that have been
established in this chapter.

First, Figure 4.14 compares, for λ = 1, the bounds on the relative radius errors for MMMul3,
proved with Proposition 4.4, and for MMMul5, proved with Proposition 4.8. We can see three

2−53 2−24 20 224 253

2−53

2−24

20

224

input relative accuracy

b
o
u
n
d

o
n

R̃
n
−
R

R

MMMul3
MMMul5

Figure 4.14: Comparison of the Upper Bounds on the Relative Radius Error for MMMul3 and
MMMul5 (matrices of size 128× 128, λ = 1).

regions on Figure 4.14. Let e× be the point where the two graphs cross. When e ≤ e×, the
bound on the relative radius error of the product is less when computed by MMMul3 than when
computed by MMMul5. This phenomenon can be explained by the fact that roundoff errors
dominate and MMMul3 requires less computation than MMMul5. Solving symbolically the equality
of the bounds in (4.3) and (4.9), we can approximate the crossover point e× by

√
(4k + 2)u. In

the second region, where e× ≤ e ≤ 4, MMMul5 produces a better result than the ones produced
by MMMul3. Actually, in the third region, where 4 ≤ e, the results yielded by MMMul5 are also the
best, but the negligible gain in radius overestimation is not worth the computational overhead.
The starting value for this region is somewhat arbitrary, we choose here the first power of two
(namely, 4) after the local maximum for the MMMul5 bound.

Let us now compare the two algorithm with the smallest computational cost: MMMul2 and
MMMul3. The relevant parameter that distinguishes them is not the value of the relative accuracy
of the inputs, as in the previous comparison of MMMul3 and MMMul5. What have a strong effect
on the relative radius error is the homogeneity of the relative accuracies. This homogeneity is
measured by the λ parameter.

• When λ = 1, the relative accuracy is fixed and the bounds on R̃3−R
R in (4.3) and R̃2−R

R in
(4.7) are very close. With the random dataset I, MMMul2 yields results as accurate as the

67

ones of MMMul3. This is clearly apparent when comparing Figures 4.4 and 4.9, on the one
hand, and experimental values reported in Tables 4.1 and 4.4, on the other hand.

• When λ 6= 1, the numerical results show that the relative errors for MMMul2 grow, while it
does not have a strong impact on the results of MMMul3. Moreover, the global error bound
for MMMul2 is always greater than the one corresponding to MMMul3 (see Figure 4.15).

2−53 2−24 20 224 253

2−53

2−24

20

224

input relative accuracy

b
o
u
n
d

o
n

d
(C̃

n
,C

)
d
(C

,0
)

MMMul3
MMMul2

Figure 4.15: Comparison of the Upper Bounds on the Relative Hausdorff Error for MMMul3 and
MMMul2 (matrices of size 128× 128, λ = 2−3).

As a conclusion, based on the bound of the relative Hausdorff error, we can construct the
following decision tree (Figure 4.16) to select the best efficiency-accuracy tradeoff given the
relative accuracies for the components of the input matrices.

68

MMMul3 MMMul2MMMul5

homegeneous
raccA and

raccB?

max
{raccA, raccB}

in [e×, 4]?

Relative accuracies in A Relative accuracies in B

no

yes

no

yes

Figure 4.16: How to choose the most precise and less expensive algorithm for interval matrix
multiplication.

69

70

Part II

Parallel Implementation

71

Parallel interval linear algebra on
multi-core processors

Algorithms for the interval matrix multiplication, like those presented in Chapter 3, can be
implemented in two ways. One can either call numerical linear algebra routines to compute
the floating-point matrix products, as promoted by their authors, or one can use custom rou-
tines, merging two products for instance. Even though the former approach requires much less
programming effort, we will follow the latter, mainly because of correctness reasons.

On the one hand, the execution time of a program is highly dependent on the actual processor
that executes it. On the other hand, high-level programming languages use abstract models for
the memory and processing units in order to be portable across different architectures. Conse-
quently, an efficient implementation of a given algorithm has to take into account the relevant
characteristics of the processor and to be written in such a way that the executing program
makes use of these characteristics.

For the implementation of the interval matrix multiplication, we target current commodity
processors, specifically the family of x86 multi-core processors. Such processors are widespread
and cheap. They are used in general-purpose as well as high-performance computers. So, the
restriction to these processors is not a severe constraint. Moreover, x86 processors come with a
large choice of programming and computing tools. This lessens significantly the programming
effort for the implementation. In particular, two extensions to the C language, the intrinsics func-
tions and the OpenMP parallel constructs, will help us to express data and task parallelism in the
code, which will yield an efficient parallel implementation of the interval matrix multiplication.

Since the early 2000’s, x86 processors are composed of several identical cores that duplicate
the processing units and share the same memory bus. The individual computing power of the
cores is therefore multiplied by their number, while the individual memory throughput is divided
when memory is accessed concurrently. The change is relatively new and the design of numerical
algorithms for processor architectures with multiple cores is an active field of research. We show
here that it is possible to implement efficiently the interval matrix multiplication on multi-core
processors and we exhibit the similarities and differences between multiplication algorithms for
floating-point matrices, on the one hand, and for interval matrices, on the other hand.

The present part on parallel implementation is organized as follows. While algorithms for
the interval matrix multiplication that use the midpoint-radius representation promise efficiency,
ease of programming and portability, they rely on several implicit assumptions that complexify
their actual parallel implementation. Chapter 5 makes these assumptions more explicit and
show how they affect the implementation. The difficulty to actually fulfill those prerequisites
motivates the need for a different approach for implementing such algorithms. The method we
followed is defined and discussed in Chapter 6. The actual implementation of a simple and new
interval matrix multiplication (Algorithm 9, page 48) is detailed using two successive points of

73

view. Chapter 7 presents how we exploit the parallelism on one core at the instruction level,
and Chapter 8 deals with the multi-core multi-threaded part of the implementation. The last
chapter contains the conclusions of this study with possible improvements and applications.

74

Part II
Parallelism &

Interval
Linear Algebra

multicore

hardware
constraints
§ 6.2.1
p. 87

micro-
architecture
§ 7.1

p. 101

Compilation

rounding
support
§ 5.1.1
p. 78

vector in-
structions
§ 7.2

p. 104

OpenMP
§ 8.1

p. 123

optimiza-
tions
§ 7.4

p. 116

Instruction
Level

Parallelism
block

kernels
§ 7.3

p. 106

timings
§ 8.2

p. 124

Thread Level
Parallelism

with block
structure
§ 8.1

p. 123

timings
§ 8.3

p. 126

Figure 4.17: Synopsis of Part II.

75

76

Chapter 5

Implementation issues with
regard to interval linear algebra

The inclusion property is fundamental for the correctness of algebraic operations with interval
quantities. Ensuring this property all along the computation is therefore an uttermost require-
ment if the interval result is to be presented as a guaranteed enclosure of the exact result. While
arithmetic operations on floating-point intervals are easily implemented in floating-point arith-
metic, in such a way that the inclusion property is provably verified, many issues may well be
overlooked when dealing with more complex operations. In this chapter, we point out two major
sources of failure concerning interval matrix algorithms.

As seen above, the interval matrix multiplication can be done by means of floating-point
matrix products. In what follows, we detail the implementation issues of MMMul3 (Algorithm 4,
page 42), as a case study. Part of the following discussion has been published in [RT14].

5.1 Rounding modes

Several techniques may be used to take the roundoff error into account. A simple one is to
systematically enlarge the computed result by multiplying it with an appropriate coefficient,
whose value is usually one plus a small multiple of the unit roundoff u, and to add to the
result a small quantity as a guard for a possible underflow (see [RZBM], for example). This
straightforward approach has been used for a long time (for instance, in Profil/BIAS [Knü94]
for some platforms), until most processors support the directed rounding modes. Actually, it is
possible that floating-point computations output exact value when the result is representable as
a floating-point number. In such circumstances, systematic radius augmentation tends to induce
much larger intervals and requires anyway more floating-point operations than the corresponding
computation with directed rounding.

Indeed, the other way to automatically accumulate roundoff errors in the radius of the result
is to compute it with rounding toward +∞. The output is then an overestimate of the exact
value when the computation involves only a sequence of additions and multiplications. While this
seems to be also the case for matrix multiplications, this method may lead to incorrect results in
two ways: when the rounding mode is not taken into account and when the computation with
rounding toward +∞ does not produce an overestimated result. We examine both cases in turn
below.

77

5.1.1 Language and compiler support

The directed rounding modes are mandatory on an IEEE-754 compliant platform [IEE08]. For-
tunately, most recent processors respect this floating-point standard, whose first version was
published in 1985. As a consequence, we can encounter two kinds of instruction sets in such
processors. The first kind provides a low level instruction to change the rounding mode. It is
then represented as a state variable, which is global in a given process context, but specific to
each process. In the second kind, the instruction corresponding to each floating-point operation
exists in several versions, one for each rounding mode. The latter is true for graphic processor
units (GPU) and some general purpose processors (for instance, the Intel Xeon Phi processor
[Int]). In the following, we will discuss only the x86 processors, which are widespread and belong
to the first kind.

Rounding modes being accessible by the programmer at the assembly level, designers of
programming language were encouraged to provide support at a higher level. For instance,
the C99 standard revision [ISO99] of the C language provides two functions fegetround and
fesetround to access and set the current rounding mode at run-time. The point, for our concern,
is that these functions are not well supported even by up-to-date compilers, as illustrated by the
following example (Listing 5.1, excerpt of the GCC bug report #34678 [gcc08], still not fixed).

#include <fenv.h>

void xdiv (double x, double y, double* lo, double* hi)

{

#pragma STDC FENV_ACCESS ON

fesetround(FE_DOWNWARD);

*lo = x/y;

fesetround(FE_UPWARD);

*hi = x/y;

}

Listing 5.1: Interval Division.

The previous code snippet is meant to compute the interval enclosure [lo, hi] of a floating-
point quotient x/y. In fact, the GCC compiler produces a erroneous assembly code even though
correct options are set. Considering that the division is a costly operation, the optimization
phases simply copy the first computation result in the right endpoint variable, saving the cost of
the second division, and ignoring the in-between change of the rounding mode. The interval result
is therefore always reduced to a single point and may not contain the exact value. Admittedly, this
could be avoided by disabling all optimizations associated to floating-point arithmetic, but this
bug is an indication that the rounding mode in not well represented in the compiler intermediate
language. Thus, when using the fesetround function and a compiler based on GCC, bugs
related to rounding mode in a more subtle manner than in the previous example are susceptible
to appear fortuitously in interval computations.

5.1.2 Library support

The main advantage of MMMul3 is that it explicitly uses products of floating-point matrices.
Therefore, it can be implemented using optimized BLAS libraries, reducing the implementation
effort while getting good performance and portability. Yet, this algorithm changes the rounding
mode during the computation and depends on the fact that the numerical library in use respects
the given rounding mode. Many libraries do not so and assume that the default rounding mode

78

(rounding to nearest) is set. A first reason is that this behavior is explicitly permitted by the
C99 standard [ISO99, 7.6 Floating-point environment <fenv.h>]:

Certain programming conventions support the intended model of use for the floating-
point environment:175)

– [. . .]

– a function call is assumed to require default floating-point control modes, unless
its documentation promises otherwise;

– [. . .]

with the associated note:

175) With these conventions, a programmer can safely assume default floating-point
control modes (or be unaware of them). The responsibilities associated with access-
ing the floating-point environment fall on the programmer or program that does so
explicitly.

So, it is clear from the previous excerpt of the C99 standard that the directed rounding modes may
validly be ignored by libraries. Moreover, the definition of Basic Linear Algebra Subprograms
only distinguishes proper rounding, meaning correct rounding to nearest, and IEEE rounding,
meaning correct rounding to nearest with ties to even [BCD+01, 1.6 Numerical Accuracy and
Environmental Enquiry]. The notion of directed rounding mode does not appear anywhere in
the BLAS standard.

Similarly, parallel programming facilities often pay no attention to the rounding modes. For
instance, while it is not explicitly mentioned, we can deduce from the following excerpt of the
OpenMP specification [Ope13, 1.6 Normative References] that the generated threads do not
inherit the rounding mode set by their parent (the “Fortran 2003 Section 14” it refers to addresses
rounding modes):

This OpenMP API specification refers to ISO/IEC 1539-1:2004 as Fortran 2003.

The following features are not supported:

- IEEE Arithmetic issues covered in Fortran 2003 Section 14

- [. . .]

The OpenCL standard is more explicit (from [Khr11, 7.1 Rounding Modes]):

Round to nearest even is currently the only rounding mode required by the OpenCL
specification for single precision and double precision operations and is therefore
the default rounding mode. In addition, only static selection of rounding mode is
supported. Dynamically reconfiguring the rounding modes as specified by the IEEE
754 spec is unsupported.

Hence, parallel linear algebra libraries implemented with OpenMP or OpenCL are unlikely to
support rounding modes other than the rounding to nearest.

In some cases, it is even certain that computation with directed rounding modes will produce
incorrect results. This is the case with extended precision BLAS, described in [BCD+01, 4 Ex-
tended and Mixed Precision BLAS]. The reference implementation of these functions [LDB+02]
uses a double-double arithmetic to simulate a higher working precision in the computation. With

79

respect to our matter, it suffices to know that double-double arithmetic requires rounding to near-
est to be able to determine the error of the most significant part of the pair (see, for instance,
[MBdD+10, 14 Extending the precision]).

Besides, when computing R̃3 at line 2 in Algorithm 4 (page 42), we do want to sum overes-
timates of the matrix products RA(|MB |+ RB) and |MA|(RB + ku|MB |). In that case, the
notation fl∆(XY) is somewhat misleading: the fact that all intermediate computations are done
in rounding toward +∞ does not necessarily guarantee that the computed result overestimates
the exact one. In fact, matrix multiplications can be done in several manners. We illustrate here
two possible algorithms, and show how they differ with respect to a global rounding mode.

Let A, B, and C be three square matrices of dimension 2n with A ≥ 0 and B ≥ 0. The first
algorithm that we examine is the widespread recursive block multiplication. Given the following
decomposition of A, B, and C into sub-matrices of dimension 2n−1:(

A11 A12

A21 A22

)(
B11 B12

B21 B22

)
=

(
C11 C12

C21 C22,

)
,

the product C can be computed as follows

C11 = A11B11 +A12B21,

C12 = A11B12 +A12B22,

C21 = A21B11 +A22B21,

C22 = A21B12 +A22B22.

Each product AikBkj of sub-matrices in turn can be recursively computed by the previous formu-
las. Counting the matrix operations, we see that the classical recursive scheme needs 8 sub-matrix
products at each step of the recursion. From the point of view of the rounding mode used for the
computation, the current scheme is compatible with the rounding toward +∞ mode, yielding an
overestimate of the product (mutatis mutandis an underestimate with rounding toward −∞).

In fact, if C̃11 = fl∆(Ã11B̃11 + Ã12B̃21) is the floating-point computation of C11 with Ãij ≥ Aij
and B̃ij ≥ Bij , then the result verifies C̃11 ≥ C11.

Another way to perform the matrix multiplication is the Strassen’s algorithm [Str69]. Given
the same sub-matrix decomposition as above, we compute the following quantities:

T1 = (A11 +A22)(B11 +B22),

T2 = (A21 +A22)B11,

T3 = A11(B12 −B22),

T4 = A22(−B11 +B22),

T5 = (A11 +A12)B22,

T6 = (−A11 +A21)(B11 +B12),

T7 = (A12 −A22)(B21 +B22).

Then, we compute C’s sub-matrices with the following sums and differences

C11 = T1 + T4 − T5 + T6,

C12 = T2 + T4,

C21 = T3 + T5,

C22 = T1 + T3 − T2 + T6.

80

In exact arithmetic, this algorithm requires one sub-matrix product less than the classical re-
cursive scheme. However, the floating-point implementations of Strassen’s algorithm are not
compatible with directed rounding. They are able to deliver only approximate result, not guar-
anteed overestimate, nor underestimate. Let us see why it does not compute an overestimate
with rounding toward +∞. In order to have C̃11 ≥ C11 with C̃11 = fl∆(T̃1 + T̃4 − T̃5 + T̃6), we

need three overestimates T̃1 ≥ T1, T̃4 ≥ T4, and T̃6 ≥ T6, as well as one underestimate T̃5 ≤ T5.
For C̃21 ≥ C21 with C̃21 = fl∆(T̃3 + T̃5), we need overestimates T̃3 ≥ T3 and T̃5 ≥ T5. Actually,
T5 has to be computed twice: once for an overestimate and once for an underestimate. The same
double computation is also required for T2. Therefore, instead of 7 sub-matrix multiplications,
the computation of an overestimate of a matrix product with Strassen’s algorithm demands 9
floating-point sub-matrix products, more than the classic recursive block algorithm!

Other matrix multiplication algorithms that have a lesser count of arithmetic operations than
the recursive block product algorithm are based on such reordering of operations with cancel-
lations. No implementation of a fast matrix product algorithm would take directed rounding
modes as a means to indicate the expected direction of the overall error, because this would ruin
the advantage of doing less sub-matrix multiplications than the simple recursive algorithm.

In conclusion, a result computed with the MMMul3 algorithm verifies the inclusion principle
only if we can ensure that the computation of the matrix product complies with the correct
rounding mode and that the result is an actual overestimate of the exact product when the
rounding mode toward +∞ is set. And this very last point is possibly not verified, depending
on the internal, and possibly selected at run-time, algorithms used by the library. As far as we
know, the issue of the respect of the rounding mode by numerical and multi-threaded libraries
when computing with intervals was first raised by Lauter and Ménissier-Morain in [LMM12].

5.1.3 Example of rounding mode violation

The behavior exposed in the previous theoretical deduction is actually observable as shown by
the following example. Let A be the following n-by-n matrix

A =

1 0 · · · 0 u

0
. . .

. . .
...

...
...

. . .
. . . 0

...
...

. . . 1
...

0 · · · · · · 0 u

,

where u = 2−53 is the roundoff unit. The exact product AAT is

AAT =

1 + u2 u2 · · · u2

u2 . . .
. . .

...
...

. . . 1 + u2 u2

u2 · · · u2 u2

 .

The correctly rounded answers are therefore:

fl�(AAT) =

1 u2 · · · u2

u2 . . .
. . .

...
...

. . . 1 u2

u2 · · · u2 u2

 , fl∆(AAT) =

1 + 2u u2 · · · u2

u2 . . .
. . .

...
...

. . . 1 + 2u u2

u2 · · · u2 u2

 .

81

The above example computation can be implemented as in Listing 5.2. We checked the results

double *A;

double *C;

A = (double *) malloc (n * n * sizeof(double));

C = (double *) malloc (n * n * sizeof(double));

memset (A, 0, n * n * sizeof(double));

for (i = 0; i < n; i++) A[i * n + i] = 1.0;

for (i = 0; i < n; i++) A[i * n + n - 1] = 0x1p -53;

#pragma STDC FENV_ACCESS ON

fesetround (FE_UPWARD);

cblas_dgemm (CblasRowMajor , CblasnoTrans , CblasTrans ,

n, n, n, 1.0, A, n, A, n, 0.0, C, n);

Listing 5.2: Rounding Mode Violation.

of the previous program with several BLAS libraries on a Core2 machine for A and C of dimension
n = 2k, with k = 1, . . . , 15. When linked against the Intel BLAS library (MKL version 11.0.2) or
the ATLAS library (version 3.8.4), it computes the correctly rounded matrix fl∆(AAT) for both
sequential and multithreaded executions. When linked against the OpenBLAS library (version
0.1.0, based on GotoBLAS2 version 1.13), it computes the correct value in a sequential execution.
Correct results are also returned when n < 16. However, if n ≥ 16 and the thread number is not
limited to 1, then the OpenBLAS library computes wrong values for the last three quarters of
the diagonal components. For instance when n = 1024, components Cii are equal to 1 instead
of 1 + 2u for i = 256, . . . , 10221. This suggests that n = 16 is the threshold beyond which the
product computation is distributed among several threads. It also suggests that the rounding
mode is not inherited from the parent thread.

In conclusion, the previous discussion shows that we cannot expect that a BLAS library will
compute an overestimate of a matrix product by simply changing the mode to rounding toward
+∞.

5.2 Execution order

As recalled in Section 3.2.1, Rump saved one matrix multiplication in MMMul3 compared to his
original algorithm published in 1999. In the latter (see Algorithm 2, page 41), the roundoff error
in the product of midpoint matrices is taken into account as follows. The product of midpoint
matrices is computed twice, once with rounding toward −∞ and it is then added to the infimum
endpoint, and once with toward +∞, then added to the supremum endpoint. We have shown in
Section 5.1 that this method may not produce the expected results. Nevertheless, Rump proves
the following bound on the midpoint calculation error (Theorem 3.4 page 42, reproduced below
for ease of reading). It is important to note that this bound only requires computations with the
default rounding to nearest mode. Its flaw now resides in its assumptions.

Theorem (Theorem 2.1 in [Rum12]). Let A ∈ Fm×k and B ∈ Fk×n with 2(k+ 2)u ≤ 1 be given,
and let C = fl�(AB) and Γ = fl�(|A||B|). Here C may be computed in any order, and we assume

1Here, we use the C convention, array index starts from 0.

82

that Γ is computed in the same order. Then

|fl�(AB)−AB| ≤ fl�

(
k + 2

2
ulp(Γ) + realmin

)
. (5.1)

We can use the bound provided by Rump’s Theorem only if all its hypotheses are satisfied.
In particular, MMMul3 (Algorithm 4, page 42) requires that the product fl�

(
MAMB

)
(line 1)

and the product2 fl∆

(
|MA|(RB + (k + 2)ulp|MB |)

)
(line 2) are computed in the same order.

This last condition may be difficult to ensure, especially if the computation is parallel.
In that respect, let us note that some vendors decided to address the problem of the re-

producibility of numerical results between different processors or from run to run. Indeed, the
version 11.0 of MKL now provides special modes of execution [Tod12] where the user can control,
at some loss in performance, the scheduling of internal tasks and the type of computing kernels
in use. In these modes, identical numerical results are guaranteed on different processors when
they share the same architecture and run the same operating system. Moreover, reproducibility
from run to run is ensured under the condition that, in all executions, the matrices have identi-
cal memory alignment and the number of threads remains constant. Some users requested this
functionality because of their legal obligations or verification constraints.

We can use this kind of control to solve the problem of the computation order of AB and
|A||B|. As the processor and the operating system remain the same during the computation
of the two products computations, it suffices, first, to compute AB, second, to transform in
place matrix components into their absolute values ensuring the identity of memory alignments,
then third, to recompute the product on the new input with the same number of threads. The
drawback of this solution is its specificity to the Intel library as long as others do not adopt a
compatible means for controlling the numerical reproducibility.

5.3 Conclusion

The fact that directed rounding modes may be a problem when using BLAS libraries is well
known. For instance, when dealing with interval matrix multiplication in [OR02], Oishi and
Rump explicitly make the assumption that it is possible to “switch the rounding mode” and
they remark that this hypothesis is not sufficient when the matrix multiplication is realized with
a fast algorithm, like Strassen’s. However, the problem of respect of the rounding mode by
libraries, for which, as we have seen here, there is no guarantee, is completely overlooked. As the
BLAS libraries try to exploit all the available computing power, they are likely to be executed
in parallel on current multi-core processors. And the same parallel execution that provides short
execution times also questions the prerequisites of a guaranteed overestimation. One should
avoid such situations in certified computing.

In the next chapters, we present how to implement the algorithms for interval matrix products
without using any BLAS library and still avoiding the issues listed here.

2This value obviously overestimates the bound fl∆

(
|MA|RB

)
+ fl�

(
(k + 2)ulp|MB |)

)
that is derived from

the theorem.

83

84

Chapter 6

Implementation methodology

Because they rely on floating-point matrix-matrix multiplications, algorithms similar to MMMul3

(Algorithm 4, page 42) were thought as easy to implement efficiently. However, some care is
needed and the previous chapter discussed some implementation issues that are easily overlooked.
It follows from these observations that BLAS libraries cannot be directly used to implement
interval matrix multiplication algorithms. In the following, we focus on the implementation of
one particular algorithm: the MMMul2 interval matrix product (Algorithm 9, page 48), which is
simpler than MMMul3. All techniques for the implementation of MMMul2 that we describe below can
be applied for other algorithms based on the midpoint-radius representation of interval matrices.

From now on, we present a global methodology for the implementation of dense interval
matrix product algorithms (this chapter), going into deeper detail with a direct implementation
of a particular interval matrix multiplication algorithm (the next Chapters 7 and 8).

6.1 Priority list of implementation goals

This section addresses the question: what is an efficient parallel implementation of an algorithm
for interval matrix multiplication when the targeted platform is an x86 multi-core processor? We
give a list of desirable properties of the implementation, motivate their choice, propose criteria for
deciding on their accomplishment, when possible, and discuss their relative importance. These
properties will guide the choice of implementation techniques described in the next section.

We aim at the four objectives presented below in decreasing order of priority.

• Correctness. The output interval shall include the exact mathematical result.

• Sequential performance. The timings should be comparable with the execution time of a
floating-point matrix product (dgemm).

• Scalability. The speed-up of a multi-threaded execution should be as good as the corre-
sponding speed-up of dgemm in up-to-date BLAS libraries.

• Portability. The code should be as independent of the platform, compiler, and libraries as
possible.

Correctness is needed because we want to promote the interval computing as a means to
guarantee the output. The inclusion property allows one to do sound reasoning with the com-
puted results and this counterbalances the unavoidable overhead in execution time and memory
space.

85

The next goal is to obtain an efficient sequential implementation. The sequential efficiency
is a measurable goal and we aim at an implementation reaching at least 75% of the maximal
possible performance for the algorithm on the given platform. This has to be compared with the
90% peak performance level often reached by current implementations of dgemm. It is a lower
threshold, but, as will be seen below, the comparison with the peak performance may not be
relevant for algorithms other than the floating-point matrix multiplication.

The third aim is the scalability of the multi-threaded part of the computation. More pre-
cisely, the execution time shall decrease for a given matrix product as it is performed with
more processing units (strong scalability). In our case, the processing units are the multiple
cores of the processor. Scalability is also a measurable goal: we aim at a speed-up as good
as the one measured with the MKL implementation of dgemm. This goal does not clash with
the previous one because matrix product components can be computed independently. So, the
data dependence is limited to the computation of a given component, while the computations
of different components can be performed by different threads and in any order. This allows us
to map data and computation to the underlying architecture by distinguishing the in-core and
mono-threaded part of the computation from the multi-core multi-threaded part. Thanks to this
separation into levels, we can employ simple abstract models of the underlying hardware and
well-known implementation techniques of numerical linear algebra.

The last objective, portability, is the least quantifiable. It is also in conflict with sequen-
tial efficiency and scalability, which are very dependent on the platform. However, a portable
implementation may be useful in a great extent of contexts and this quality is an indication
that the techniques used to achieve the previous goals are not too specific. We have no definite
metric to measure the achievement of this goal. Instead, we shall list parameters that affect the
performance and the scalability with portability in mind.

First, the code should be independent of the platform, which we define here as the combination
of the hardware and operating system in use. The processors we are aiming at are already
defined: we restrict ourselves to the x86 multi-core processors. But, even limited to this family,
the set of such processors presents a diversity of micro-architectures that has an influence on the
performance.

Our implementation should not depend on the operating system. Numerical functions make
little use of system calls, so this may not be a strong constraint. Nonetheless, the application
binary interface may differ between different operating systems and even versions, i.e. 32-bit
versus 64-bit, of the same system. This has deep implications on the code if it is directly written
in assembly language. To avoid this issue, we shall use a higher level language and let the
compiler deal with such details.

That very last choice has to be balanced by the fact that we want an implementation with
performance characteristics that are as much independent of the compiler in use as possible.
This means that we cannot rely on specific optimization passes of a peculiar compiler version
and that we must employ only widespread language features, and common optimization tech-
niques. In spite of this restriction, the compiler continues to be an important factor of the overall
performance and variations in efficiency with respect to the compilation phase will be reported.

The last parameter that we have to withdraw from our performance analysis relates the
libraries that are used by the program. As seen in Chapter 5, BLAS libraries are troublesome
for interval linear algebra. We solve this issue by not using any BLAS function in our code.
Instead, we write an interval matrix multiplication function from scratch. The only library we
need is a system for the threads management. The chosen one shall be taken into account in the
scalability analysis of the program.

Lastly, note that the ease of coding is no more one of our goals, in contrast to the explicit
intention of other authors of midpoint-radius matrix algorithms. We rather put the correctness

86

in the first place. This choice has an obvious cost in terms of programming effort, but this
situation is usual in high-performance computing.

6.2 Parallel linear algebra on multi-core processors

This section deals with the question of the expression of the parallelism in a program that
performs linear algebra computation on a multicore platform. We first expose the details of the
architecture of a x86 multicore multiprocessor that have the most important effects on parallel
numerical computations. Next, we examine some possible ways to express parallelism at the
software level. Finally, we explain how our choice of data structure is adapted to the efficient
implementation of algorithms for interval matrix multiplications.

6.2.1 Hardware constraints

Parallelism at the hardware level means that several processing units can be used simultaneously.
Knowing how these processing units are organized is a necessary condition to their efficient
utilization. We present here a hierarchical view of the computing platform and we stress the
constraints of their use.

At the highest level, the platform is composed of one or several computing units, the pro-
cessors, linked to one or several memory units. Figure 6.1 shows the general structure of our
testing platform as an example. Each processor (P0, P1, P2, and P3, resp.) is linked to a mem-
ory module (M0, M1, M2, and M3, resp.). Each processor can access any memory module but
the access time is the lowest for the module that is attached to it. Otherwise, the access time
increases with the number of processors traversed for accessing the memory module where data
are stored. This is typical of NUMA1 architectures.

M0 P0 P1 M1

M3 P3 P2 M2

Figure 6.1: High Level View of the Testing Machine.

Our testing platform is composed of identical Intel Xeon E5-4620 processors. Table 6.1 below
gives some technical specifications. The general processor architecture is broadly described below

number of cores 8
architecture model Sandy Bridge
clock speed (max.) 2.20GHz
SIMD instruction set SSE4.2, AVX
L1 data caches 32KB per core
L2 caches 256KB per core
L3 cache 16MB shared

Table 6.1: Intel Xeon E5-4620 Processor.

and the characteristic of the Sandy Bridge model are more precisely discussed in Section 7.1. The
clock speed of the processor determines the rate at which instructions are executed. It may vary

1NUMA stands for Non-Uniform Memory Access.

87

under some circumstances and this point is addressed in Section 6.3 as it affects the measures of
execution times. Modern x86 processors can execute a single instruction on several data at each
clock cycle. Theses instructions are named SIMD2 instructions or vector instructions. The Sandy
Bridge model has two different SIMD instruction sets: SSE instructions can process vectors of
two floating-point components in double precision and AVX instructions process vectors twice
as large as SSE vectors. Finally, the external memory is backed by internal memory caches in
order to alleviate the cost of data access. The system of caches plays an important role in the
efficiency of parallel program and is detailed below. Let us note here from the data in Table 6.1
that the processor contains three different levels of caches with increasing sizes.

From the point of view of the parallelism supported by the hardware, the processor is not
the basic processing unit. In fact, a single processor is divided in multiple cores that can execute
in parallel different programs or different execution threads of the same program, as do multiple
processors. The main difference with the higher multi-processor level is that the cores in a
processor share the access bus to the memory, while different processors on a same platform may
have independent accesses to the memory, provided they address different memory modules (see
Figure 6.1).

In turn, the cores are composed of several functional units that can process different instruc-
tions. Each functional unit is dedicated to a certain kind of instruction, so the parallelism at
this level is more restricted than at the multi-core level. Constraints of this level are detailed in
depth in the next chapter.

In addition, each core is able to handle two execution threads at a time and tries to assign
to a given thread the resources that are not used by the other thread. This feature is called
Symmetric Multi-Threading (SMT), or hyperthreading in Intel processors. It can be beneficial
when the threads that are executed concurrently require different resources or when one of the
thread is frequently idle, waiting for data. We will not use this capability because of the great
regularity of the computation performed by each thread.

As an example of this hierarchy of processing units, our main platform for experimental
measures is depicted in Figure 6.2. The machine consists of four identical multi-core processors
(Socket P#0 to Socket P#3). Each node is an eight-core processor (namely, an Intel Xeon E5-
4620), the cores being labeled Core P#0 to Core P#7. Inner details of the cores are not shown.
Because the four processors share the same memory space, by default the operating system does
not distinguish the cores and treats them as equivalent processing units. Hence, the cores are
also globally numbered from PU#0 to PU#31.

So, from the processors to the functional units, we have a stack of processing components
with decreasing power and increasing constraints. Superimposed to this hierarchy of processing
units, the memory is also arranged in a hierarchical structure. Actually, the access to the main
memory is slow. To improve the latency of memory operations, a system of intermediate memory
areas takes place into the processor itself. It consists in several memory caches with a decreasing
access time but also a decreasing size, due to an increasing cost. Each core has a private area
(caches of levels 1 and 2 in Sandy Bridge processors) and all cores of a given processor share the
last level of cache (level 3 in our case). For the testing machine, Figure 6.2 shows the memory
hierarchy with three levels of cache denoted L1, L2, L3. The first two levels L1 and L2 are private
to the core, while the last level L3 is shared among the cores of a same socket.

In the following, we only describe the particular details of cache functioning that will deter-
mine our data structure for an interval matrix and our implementation of matrix products. In
particular, we omit here the set structure and associativity of cache, the mechanism of coherency
between caches in different cores, the page structure of the memory, and issues related to the
limitation of the translation look-aside buffer. For more information, one can refer to the thor-

2SIMD stands for Single Instruction Multiple Data.

88

Machine (384GB)

NUMANode P#0 (96GB)

Socket P#0

L3 (16MB)

L2 (256KB)

L1 (32KB)

Core P#0

PU P#0

L2 (256KB)

L1 (32KB)

Core P#1

PU P#4

L2 (256KB)

L1 (32KB)

Core P#2

PU P#8

L2 (256KB)

L1 (32KB)

Core P#3

PU P#12

L2 (256KB)

L1 (32KB)

Core P#4

PU P#16

L2 (256KB)

L1 (32KB)

Core P#5

PU P#20

L2 (256KB)

L1 (32KB)

Core P#6

PU P#24

L2 (256KB)

L1 (32KB)

Core P#7

PU P#28

NUMANode P#1 (96GB)

Socket P#1

L3 (16MB)

L2 (256KB)

L1 (32KB)

Core P#0

PU P#1

L2 (256KB)

L1 (32KB)

Core P#1

PU P#5

L2 (256KB)

L1 (32KB)

Core P#2

PU P#9

L2 (256KB)

L1 (32KB)

Core P#3

PU P#13

L2 (256KB)

L1 (32KB)

Core P#4

PU P#17

L2 (256KB)

L1 (32KB)

Core P#5

PU P#21

L2 (256KB)

L1 (32KB)

Core P#6

PU P#25

L2 (256KB)

L1 (32KB)

Core P#7

PU P#29

NUMANode P#2 (96GB)

Socket P#2

L3 (16MB)

L2 (256KB)

L1 (32KB)

Core P#0

PU P#2

L2 (256KB)

L1 (32KB)

Core P#1

PU P#6

L2 (256KB)

L1 (32KB)

Core P#2

PU P#10

L2 (256KB)

L1 (32KB)

Core P#3

PU P#14

L2 (256KB)

L1 (32KB)

Core P#4

PU P#18

L2 (256KB)

L1 (32KB)

Core P#5

PU P#22

L2 (256KB)

L1 (32KB)

Core P#6

PU P#26

L2 (256KB)

L1 (32KB)

Core P#7

PU P#30

NUMANode P#3 (96GB)

Socket P#3

L3 (16MB)

L2 (256KB)

L1 (32KB)

Core P#0

PU P#3

L2 (256KB)

L1 (32KB)

Core P#1

PU P#7

L2 (256KB)

L1 (32KB)

Core P#2

PU P#11

L2 (256KB)

L1 (32KB)

Core P#3

PU P#15

L2 (256KB)

L1 (32KB)

Core P#4

PU P#19

L2 (256KB)

L1 (32KB)

Core P#5

PU P#23

L2 (256KB)

L1 (32KB)

Core P#6

PU P#27

L2 (256KB)

L1 (32KB)

Core P#7

PU P#31

Figure 6.2: Multi-Core Multi-Processor Machine Synopsis. Output of the lstopo command of
the Portable Hardware Locality (hwloc) software package.

ough review of the memory cache mechanism in the famous book of Hennessy and Patterson
[HP07, § 5: Memory Hierarchy Design and Appendix C: Review of Memory Hierarchy].

Memory caches contain copies of pieces of information that reside in the main memory. Indi-
vidual pieces of information are identified and referred to by their address. When the processor
looks for a piece of information, it is first searched into the first levels of cache. If the sought
information is found there, what is called a cache hit, data is brought back to the core registers
in a handful of clock cycles. Otherwise (cache miss), the last level of cache is scanned for the
requested data. In the case data are present in this cache level, they are copied into the level 1
cache and into registers, and it takes a hundred of cycles for the memory operation to complete.
Otherwise, the processor has to issue a request for the data to external memory and it takes
thousands of cycles to fetch a data from the memory into the level 1 cache and the processor

89

registers. This is an important cost compared to the execution time of instructions other than
memory, which is typically under ten cycles.

Under normal circumstances, a write operation transfers data from the registers into the
level 1 cache. Since the size of caches increases with their level, caches of a higher level contain
more information than caches of lower levels. So, at some point it is necessary to “evict” data
from a cache to make room for another data. Data evicted from a given cache are written into
the cache of the immediately succeeding level and this cascading process eventually ends up into
a write into the external memory. A important characteristic of the cache management is that
it tries to maintain in the faster levels data that are likely to be reused in the near future, what
is called temporal locality. A common policy of cache eviction is to keep the most recently used
data in the cache when a choice is to be made.

Additionally, in the definition of our data structure, we will take into account the following
detail of the cache mechanism. Data are gathered into small groups when transferred to and
from memory, or between caches of different levels. Each group consists of a segment of several
memory words that have contiguous addresses. They are named cache lines or cache blocks. For
recent x86 processors, the cache line size is 64 bytes long. This means that a cache line contains
16 floating-point values in single precision or 8 floating-point values in double precision. The
important point to note here is that this mechanism implies that the average cost to access data
depends on the way they are accessed. In particular, successive accesses to contiguous data is
more efficient than accesses in a random order. As a matter of fact, if the first requested data is
not present in the first cache level, the cost of a cache miss is amortized by the cache hits of the
successive accesses to contiguous data, because the next data are in the cache line that has been
copied in level 1 cache. On the contrary, random access to data is likely to entail a cache miss for
each access. It is therefore very important to maximize data reuse of a cache line and this is the
basic principle of the blocking technique described in Section 6.2.3. Moreover, the hardware is
able to detect sequential memory access and to fill in advance level 1 cache with the next data as
soon as the memory bus is free. This feature is called hardware prefetching and reduces greatly
the latency of memory operations in favorable cases.

6.2.2 Tools for parallel programming

Linear algebra algorithms present many opportunities for exploiting parallelism: many compu-
tations are independent and the same operations are performed on a great amount of different
data. Let us see now how we can express and exploit the parallelism in the computation of
interval matrix products.

First, we can express the parallelism at the instruction level by producing an executable code
that contains vector instructions. This can be done either by the compiler or by the programmer.

Recent compilers have automatic vectorization capabilities and, in some cases, they can
transform a sequential code that is written in a high-level language, like C or Fortran, into
a vectorized executable code. Most of the time, this requires the programmer to write the
program with particular constructs that the compiler will recognize. It is also possible to give
some information to the compiler by annotating the code. These annotations have long been
specific to the compiler, but new versions of parallel extensions to C or Fortran, tend to adopt
and to standardize them: see, for instance, the pragma simd in the last version of the OpenMP
standard3 [Ope13, § 2.8 SIMD Constructs].

The other solution for a program that makes use of vector instructions is to call them explicitly
in the source code. This can be done by writing directly in the assembly language, but the
source code is not portable between systems since the application binary interface (ABI) and

3The OpenMP standard is otherwise more oriented to thread level parallelism.

90

the number of available registers, among other factors, varies greatly, even if the underlying
hardware remains the same. The vector instructions for the x86 platforms are however directly
available from higher language level as so-called intrinsic functions or intrinsics. These functions
are directly transformed by the compiler into the corresponding vector instruction. The set of
intrinsic functions is not normalized as an official extension of the C or Fortran language, but it
is a de facto standard. The support of intrinsic functions is actually widespread among compilers
for x86 targets.

The solution of writing code with intrinsics has two main advantages compared to an assembly
version. On the one hand, it gives the programmer a tight control on the vectorized part of the
executable code. On the other hand, the burden of the adaptation to the ABI of the target
system and the difficult and error-prone process of the register allocation is left to the compiler.
We use this technique for expressing parallelism at the instruction level and we show in Chapter 7
that the source code is readable while the execution time is often better than with the automatic
vectorization of a plain C code. The main drawbacks of this solution are that the produced source
code is limited to x86 compilers and to processors that support the corresponding instruction
set, and that the data have alignment constraints.

Second, the computation of interval matrix products can be split into several execution tasks
that compute different parts of the result matrix. This is possible because the computation of
each component of the result is independent of the computation of the other components.

The first possibility for the assignment of computational tasks to different threads of execution
is to use a low level library dedicated to thread management. The POSIX standard [IT13]
specifies an application programming interface for threads that is widespread on UNIX systems.
The main disadvantage is that the creation, synchronization, and destruction of the threads and
the task assignment have to be explicitly written in the source code. Another solution is to use
a library for parallel tasks that provides high level constructs for a parallel execution. Intel TBB
[Int14b], XKaapi [GFMR13], and Quark [YKD11] are such libraries, for different application
fields. These three libraries propose to express task parallelism instead of thread parallelism.
Thus, the program has to be decomposed as a collection of tasks that process the data and the
run-time library handles the distribution of the tasks to the available threads, taking into account
the various dependencies between tasks and trying to balance the workload of the processors.
This solution is suitable for high-level operations in linear algebra, like matrix factorizations or
solution of system of linear equations, where the computation can be expressed as a sequence of
different tasks. In our case, computations in matrix multiplication are very regular, each thread
executing the same operations on different data. So, it is easier and more efficient to balance the
workload statically.

The solution we chose for the implementation of interval matrix products is to express the
task parallelism with the OpenMP extension [Ope13] of the C language. The extension consists
principally of a set of annotations (pragma’s) in the sequential code that are interpreted by the
compiler as thread directives. The same code can be executed sequentially, that is with a unique
execution thread on a unique core, or in parallel on several cores. The number of execution
threads can be fixed in the code or determined at run-time with the value of special environment
variables. Likewise, it is also possible to specify at run-time the cores that can be used to
execute the code and the way the tasks are assigned to them. The choice of OpenMP for the
implementation is an intermediate solution between the low-level and the high-level libraries for
thread parallelism. It gives a tight control on the parallel execution, while thread management
and synchronization can be left to the compiler.

91

6.2.3 Data structures in dense linear algebra

We now describe the data structure chosen for the storage of the matrix components and we
motivate this choice.

The hardware constraints are clear: it is important to avoid cache misses, so the needed data
for a computation should fit in level 1 cache and they should be reused as much as possible before
they are evicted from the cache. It is also important to access memory consecutively, taking
advantage of hardware prefetching and to process contiguous data using vector instructions.

Several data structures are used in numerical linear algebra for dense unstructured matrices.
The traditional and most common structure, used for example by the BLAS libraries, consists
of a simple two dimensional array. In that case, the matrix components are stored in contiguous
cells of a Fortran or C array variable [BCD+01, § 2.2 Matrix Storage Scheme]. The order of
components storage may be the Row Major order, like the native array type in the C language,
or Column Major order, like the native array type in the Fortran language. Consecutive columns
of a single row, in the first case, and consecutive rows of a single column, in the second case, are
stored in contiguous cells in memory. Thus, when data of two consecutive rows are accessed with
the row major order, the data come from two different cache lines. And scanning a complete
column in a matrix in row major order creates a cache miss for each access. Moreover, when
the matrix dimension grows, the level 1 cache becomes too small to contain a single row. These
considerations explain the inefficiency of naive algorithms with the traditional 2D array structure.

Two techniques take advantage of the higher access speed of memory caches: recursive algo-
rithms and block algorithms. The classical recursive algorithm for matrix multiplication and the
Strassen’s algorithm have been presented in Section 5.1.2. The input matrices are recursively
subdivided up to the point where all input data needed for the product of the sub-matrices fit
into the level 1 of memory cache. At this point, the throughput of the memory is no more the
limiting factor on the speed of the computation. For the second kind of algorithms, matrices are
divided from the start and in a single step into small sub-matrices so that three of them can fit
into level 1 cache. Such sub-matrices are named blocks, and the corresponding algorithms block
algorithms. Block algorithms can be classified into two categories depending on the type of data
structure used for representing matrices.

• Algorithms of the first category handle matrices as two dimensional arrays, so they are
compatible with the BLAS format. So as to fit in the cache and to be stored in a con-
tiguous memory area, the sub-matrices have to be copied on the fly into temporary blocks.
There is an extensive literature about the problem of limiting these copies and reusing the
blocks best. Let us just cite two prominent articles that consider sequential algorithms for
matrix multiplication. From the point of view of the choice of the best block size for a
given machine, the cache size depending on the particular processor in use, Whaley pro-
poses a technique for determining automatically the best block size in [WD98]. From the
algorithmic point of view, Goto and van de Geijn describe how to deal with the constraints
of the memory structure and management and compare several matrix decompositions into
blocks of various shapes in [Gv08].

The parallelization of block algorithms for matrix multiplication stresses even more the
cost of data copies in cache. In distributed memory, data copies may involve network
communications and are therefore very costly. In shared memory, the memory bus is shared
between the processing units of the different hierarchical levels, and it may be a bottleneck
if the data transfer from memory to cache is too heavy. One can refer to [MZG+07] for a
discussion about the problem of the best decomposition for a multi-threaded program in
shared memory context.

92

• In the second category, the data structure reflects directly the block decomposition. In that
case, we give up the compatibility with BLAS and the matrix components are stored either
as a sequence of blocks or as a recursive structure of blocks. In the first case, advocated
for a long time by Gustavson, the matrices are two dimensional arrays in row-major or
column-major order, but instead of being bare matrix components, the elements of such
arrays are matrix blocks that are small enough to fit in cache (see [Gus06, Gus08, Gus12]).
In the second case, matrices are represented by a recursive structure of blocks. Recursive
blocks are themselves composed of sub-blocks, until the level of basic blocks, which are
simply two dimensional arrays that fit in cache. Such a recursive structure is used in the
FLAME project for multi-threaded linear algebra operations in a shared memory context
(see the SuperMatrix description in [QOQOG+09]).

Figure 6.3 below summarizes the situation.

Matrix

block format

2D array of blocks

recursive blocks

BLAS format

row-major 2D array

column-major 2D array

Figure 6.3: Matrix Storage Formats.

Let us now focus on the case of interval matrices. The BLAS Technical Forum Standard
proposes a storage format for interval matrices [BCD+01, Annex C.4 Interval BLAS]. In the
proposed format, a matrix A is stored as a two dimensional arrays of pairs (̃ı, s̃) of floating-point
numbers, the first element ı̃ of the pair representing the infimum value aij and the second ele-
ment s̃ the supremum value aij of the interval component Aij . Unfortunately, this format is not
well-suited for vector operations because the arithmetic operations are different or the round-
ing modes are different for the endpoints when one performs an interval arithmetic operation.
Lambov [Lam06] proposes to represent intervals with the pair (−ı̃, s̃), where the first element of
the pair represents the opposite of the left endpoint. This way, all arithmetic operations can be
executed with rounding towards +∞ only. However, the interval multiplication for this repre-
sentation involves conditional branches, which lower performance. Moreover, we are dealing here
with algorithms that process interval matrices in midpoint-radius representation and the BLAS
Technical Forum Standard does not specify any format for this representation.

6.2.4 Our data structure for interval matrix in midpoint-radius repre-
sentation

Since the midpoint-radius representation of interval matrices is not commonly used (yet), we can
choose any data structure that fulfills our needs without breaking any compatibility with existing
software. For the general disposal of an interval matrix, we will follow the ideas of Gustavson and
we represent the matrix as a sequence of contiguous blocks. The blocks themselves are composed
of two basic sub-blocks, one for the midrad sub-matrix components and one for the corresponding
radius sub-matrix. If we note s the size of a basic block, M the matrix of midpoints, and R the

93

matrix of radii, we may see a block as the pair:
m11 · · · m1s

...
...

ms1 · · · mss

 ,

r11 · · · r1s

...
...

rs1 · · · rss

 ,

which is stored contiguously in memory as follows (we choose a row-major order for the storage
of basic blocks)

m11 · · ·m1sm21 · · ·m2s · · ·ms1 · · ·mssr11 · · · r1sr21 · · · r2s · · · rs1 · · · rss. (6.1)

On the one hand, with our choice of general data structure, the data are stored in two
dimensional arrays of blocks, and, as noted by Gustavson, to any scalar algorithm corresponds
a block algorithm. Where the former performs arithmetic operations on scalar values, the latter
performs corresponding operations on matrix blocks. This is the key point of our algorithm
implementation as it clearly distinguishes a local part that processes local data, which we will
name the computation kernel, and a global part that delegates actual computation to kernels. In
the case of interval matrix multiplication, the local computation kernel need not to be unique,
and different kernels can be launched simultaneously in multiple execution threads as long as
they process different blocks. This distinction at the algorithmic level maps successfully to the
hierarchical hardware levels of the multiple cores and the enclosing processor. Table 6.2 illustrates
this idea.

Category Local level Global level
Hardware core multi-core processor
Data structure block matrix of blocks
Algorithm block kernel block algorithm
Implementation sequential & vectorized multi-threaded

Table 6.2: Correspondence between Hardware Structure, Data Structure, and Algorithmic Struc-
ture.

On the other hand, with this choice of the block structure, we can have in the cache at
the same time all data needed for interval matrix multiplications. Indeed, the midpoint-radius
algorithms presented in Part I involve computations on the midpoint and radii components of
both input matrices. Let us focus on the case of data in double precision, and let us assume that
the level 1 of cache can contains SL1D floating-point numbers in double precision. If we want
that b basic blocks of the two input matrices and the output matrix fit together into the level 1
of cache, then the block size s must verify

s2 ≤ SL1D

b
.

We examine the case of our testing platform as an example. The capacity of its level 1 caches is
32 KBytes (see Table 6.1), the size of a value in double precision is 8 Bytes, so a level 1 cache can
contain simultaneously no more than 4096 values in double precision. If the algorithm needs to
process at the same time all the midpoints and radii of the matrix blocks, then b = 6 blocks shall
fit in cache (2 basic blocks for the midpoint and radii of both input matrices plus 2 basic blocks
for the output matrix). The maximum block size in that case is s =

√
4096/6 ≈ 26. However,

in the MMMul2 algorithm implemented in the next chapters, we only need b = 4 basic blocks in
the cache at the same time: the two input midpoint blocks, the output midpoint block for their

94

product and a block for the product of the absolute value of the midpoints. In that case, the
maximum block size is s =

√
4096/4 = 32. Apart from this upper bound, other constraints

apply to the size of the block. They are listed below.

We can now give the details of the actual C implementation of the data structure. Listing 6.1
shows the definition of the corresponding types. The description focuses on matrices in double
precision. Similar types are defined for single precision components.

/* Blocks are contiguous arrays of square midpoints array followed

by square radii array in row major order.

Blocks addresses are assumed to be aligned on cache line start.

*/

typedef float * smr_block_ptr; /** @< single precision midrad block */

typedef double * dmr_block_ptr; /** @< double precision midrad block */

/** Double precision midrad block matrix. */

typedef struct {

unsigned int nrow;

unsigned int ncol;

dmr_block_ptr blocks;

} __dmr_struct_t;

typedef __dmr_struct_t *dmr_ptr;

Listing 6.1: Data Structures for Interval Matrices.

The dmr block ptr type4 represents a pointer to an array of double precision values. This val-
ues correspond to the elements of the basic blocks for midpoints and radii described above. The
size s of the basic blocks is not stored in the structure but it is a global parameter whose value is
represented by the symbol IBLAS BLOCK DIM DOUBLE (while the symbol IBLAS BLOCK SIZE DOUBLE

represents the number 2s2 of values in the pair of basic blocks). This allows one to experiment
several block sizes by changing a single value in the code. The memory area pointed by the
dmr block ptr is then interpreted by the program as the basic blocks stored in the order (6.1).

The dmr struct t type represents the data structure for the interval matrix. It contains
two fields for the dimension of the matrix and the last field blocks points to the memory area
where the blocks are stored contiguously in row-major order. The main drawback of the block
structure compared to the BLAS format is that the latter allows handling sub-matrices without
any copy. In fact, it suffices to provide a pointer in the enclosing matrix, the dimensions of the
sub-matrices along with the leading dimension, or stride, of the enclosing matrix, that is the
dimension of rows in row-major order or the dimension of columns in column-major order. This
is no more possible with our block format as sub-matrices may not overlap complete blocks. As a
consequence, computations on a sub-matrix implies the copy of its data from the original matrix
to a new memory area.

Another drawback is that some memory is wasted as the dimension of the matrix may not
be a multiple of the dimension of basic blocks. In that case, the value of block elements that do
not correspond to matrix components is set to zero (padding).

Finally, in order to maximize the data reuse, blocks have to fill complete cache lines. That
is, the block size must be a multiple of the cache line size. The processors we are targeting have
cache lines that can contain 8 values in double precision, so the block size should be a multiple
of eight. The start address of basic blocks also has to be aligned on the start address of cache
lines. Storing the sequence of blocks in a contiguous memory area has the fine property that, if

4Naming convention uses the following elements: d stands for double precision, mr for midpoint-radius repre-
sentation, ptr for pointer, and t for user-defined type.

95

the first block is correctly aligned with respect to cache lines and if the block size is a multiple
of cache line size, then the following blocks are also correctly aligned.

6.3 Experimental protocols

We describe here the choice of the performance metric and the experimental protocols for the
measures. In the next two chapters, we propose several implementations of the interval matrix
multiplication and we measure the actual execution times of the corresponding executable codes
on the same platform. The main purpose of these measures is to determine whether a given
implementation meets the criteria for sequential performance and scalability that are discussed
in Section 6.1. A secondary objective is to compare several optimization techniques and to select
the most efficient. These two objectives will guide our choice of performance metrics.

Two related metrics are commonly used for performance analysis of numerical computations.
The first is the ratio of the number of floating-point operations to the execution time measured
in seconds. The second is the ratio of the first metric to its maximum possible value on the
testing platform, that is to the peak performance of the platform. When using these metrics,
one does not distinguish different types of floating-point operations and it is assumed that two
different operations can be performed as soon as two floating-point units are free. This simplis-
tic model of the micro-architecture is sufficient for classical algorithms of floating-point matrix
multiplications on current x86 processors. Actually, the number of additions and of multiplica-
tions in such algorithms are almost equal, while such processors can process one addition and
one multiplication per cycle. But the situation is different for interval matrix products, where
additions outnumber multiplications. For the estimation of a lower bound on the execution time
of our algorithms, we need a finer model of the micro-architecture (see Section 7.1 below). This
model focusing on the processor pipeline of instructions, the natural unit for the execution time
is the processor clock cycle. So, we will estimate, measure, and compare execution times in clock
cycles rather than in seconds.

The actual measurement of the execution time of a given executable code can be realized
in several ways, but the technique is globally the same: the clock time before running the code
under test is noted, the code is executed, the clock time just after completion is noted, and the
difference between the dates of start and end of execution is reported. The various possibilities
differ in the accuracy of the measures. The simplest manner is to time the whole executable code
with an external program, like the time command under Linux. This solution does not need to
modify the executable code but its accuracy is low, about a millisecond. For a finer resolution,
we choose to instrument the code by adding instructions that read more accurate clock time. As
a matter of fact, x86 processors support hardware counters that measure various internal events,
and among them, a counter for the processor clock with a resolution of about one cycle. These
hardware counters are accessible to applications by several means, the most direct access for the
count of clock cycles being the RDTSC5 instruction. The counter read by this instruction is set to
zero when the processor starts up or is reset, then it is incremented at a constant rate. To quote
the relevant part of the Intel documentation [Int14a, § 17.13 Time-stamp counter]:

Time-stamp counter – Measures clock cycles in which the physical processor is not
in deep sleep.

This technique of time measurement comes with many difficulties (see [ZJH09] for an in-depth
discussion):

5The name RDTSC stands for ReaD Time-Stamp Counter.

96

1. The measured time in cycles may vary if the clock frequency of the processor varies. The
reference time for the time-stamp counter is fixed and refers to the frequency of the system
bus and not to the processor frequency. So, the measured values may differ for two runs of
the same program if, for instance, the processor operates at 2.20 GHz for the first run and
at 2.60 GHz for the second.

2. The counter is related to a given core, and counters of different cores are not synchronized.
So, if the execution thread is migrated to another core by the thread manager in the
course of an execution, the difference between the dates noted at the start and the end of
executions no more represents the execution time.

3. On the opposite, some processor models are able to execute two threads simultaneously.
Two hardware threads sharing the same execution units, the simultaneous execution of
two threads may increase the concurrency for the execution unit accesses. In particular,
the pressure on execution units is likely to be high when the threads perform at the same
time an identical sequence of operations for different iterations of the same loop. Thus,
depending on the scheduling of the threads, the availability of the execution units that are
requested for the computation may vary and so does the measured execution time.

4. The operating system may interrupt the code, then switches to another program, and later
resumes the code under test. In such a case, the reported measure includes the execution
time of the foreign program in addition to the expected one.

5. The number of possible cache misses may vary from run to run with the placement of
the data in memory. This means that the measures for the same executable on the same
platform may differ from one run to another if the data allocation is not identical in both
cases.

6. The process of measurement itself takes some time to complete and this adds some overhead
to the measured time.

In order to overcome these difficulties, we will follow the following experimental protocol:

1. We fix the frequency of the testing platform. The processor on the testing platform is
able to adjust its clock frequency in response to the workload. This allows several levels of
tradeoff between performance and power consumption. First, we turn off the TurboBoost
capability, which increases temporarily the clock frequency of a given core when other cores
of the same processor are idle. And second, we ask the Linux operating system to use a
policy for frequency scaling that favors performance: the clock frequency is set to 2.20 GHz,
the highest possible value when all cores are running, and CPUs never enter a sleep state.
This eliminates the variability of the clock frequency and ensures a constant ratio between
the measured clock cycles and the processor cycles.

2. We assign each thread to a single core. Actually, the migration of OpenMP threads can be
disabled by setting the environment variable OMP PROC BIND to true.

3. We disable the symmetric multi-threading capability (hyperthreading) of the processor
from the start. Without hyperthreading, a given core does not process more than one
thread at a given clock cycle, but it still can handle several threads in sequence and after
a context switch.

4. We experiment on a dedicated platform. Measurements are taken on a platform that
runs solely the interval matrix multiplication program. Note that the system activity may

97

randomly perturb the measure as many “background” programs, which perform system
tasks such as network or disk buffering management, are running at the same time as the
tested program. However, because of the low priority of these programs, the variation is of
minor importance. We compute an average value of several time measures so as to alleviate
these perturbations when needed.

5. The code is written so that the number of cache misses is minimized. Given the cost in
time of the management of a cache miss, limiting them to their bare minimum is a critical
objective for a fast program. This is one of the motivation of the block algorithms presented
above.

6. The execution times we are interested in are of order of magnitude of the hundreds of clock
cycles at least. Fortunately, the direct use of the rdtsc instruction causes an overhead
of only 7 cycles6, which is of the order of magnitude of the experimental variation of the
measure.

Lastly, the code that we want to time is structured in two levels. So, we have two categories
of measurement protocols.

Small computation kernels that operate on matrix blocks constitute the first group. In the
case of block kernels, we measure sequential execution times only. Emptying the cache between
successive measures (cold cache) or not (warm cache) does not change much the figures, as it
is expected if the cache line reuse is high. The reported measures in the next two chapters are
with warm caches. The execution times for this group are small, between hundreds of clock
cycles and hundred of thousands of clock cycles. They are therefore unlikely to be interrupted by
the operating system (point 4 above). Thus, the timings in Section 7.4 below are typical values
selected to have about 5% variation in a small group of experimental measures. These measures
do not represent a minimum for the execution time of the block kernels, but the outliers are
filtered out.

The second category is related to the measure of sequential and multi-threaded runs of the
whole matrix multiplication. In that case, the running time is long enough for operating system
to interrupt the computation. So, the measures of execution times contain overhead due to the
operating system. Moreover, in the case of a multi-threaded run, the measures also include
some extra clock cycles spent by the OpenMP run-time library for thread management. These
additions to the computation time are intended, as we want a measure of a typical execution time
that could be observed by a user. Alas, by including the costs of all operations that are performed
during the suspension of the execution thread, we might also add randomly the execution times
of processes not directly related with the computation, like, for instance, network management
or logging of system events. For the purpose of yielding representative measures, we use a more
elaborate protocol than for block kernel measures. We acquire measures of a single run until we
get a subset of measures that do not differ by more than 1%. The size of this subset depends
on the dimensions of the input matrices, so as to have a reasonable duration for the complete
experiment. For dimensions less than 2,048, the subset contains 11 measures, from 2,048 to
4,096, it contains 6 elements, and only 4 elements between 4,096 and 8,192. The least value of
the set is then reported as an average minimum for the execution time.

For multi-threaded runs, we measure, as indicated above, and report the execution time of
the master thread, that is the thread that executes the sequential part in addition to its own part
of the parallel computation. However, this sequential part is quite reduced in the implementation
of MMMul2 that is detailed in Chapters 7 and 8.

6The actual value for this overhead was evaluated by measuring the time of an empty loop.

98

6.4 Conclusion

In this chapter, we set the main objectives for an efficient parallel implementation of the algo-
rithms for interval matrix multiplications. We determined the main obstacles from the hardware
as well as from the software sides that we will face and exposed the solutions we have chosen.
We also discussed of the difficulties of a reproducible and representative measure of execution
times.

It will be shown in the next two chapters how the principles described here are implemented
and lead to the realization of an efficient parallel code for the interval matrix multiplication.

99

100

Chapter 7

Hardware model and blocking for
single core computations

In this chapter, we focus on the parallelism at the instruction level. We detail the implementation
of the computation of a block of the matrix product using the MMMul2 algorithm. Several classical
optimizations techniques are applied and we compare experimentally the benefits of manual and
automatic optimization in the case of interval matrix products.

The first section introduces a simple model of the micro-architecture in order to determine
a lower bound on the execution time. The second section explains how vector instructions can
be used in a high level language, like the C language. The code for the block computation of an
interval matrix product is discussed in the third section. In the fourth section, we exhibit the
limitations of compilers when processing code for interval computations by comparing several
automatic optimizations against a manually optimized version. Finally, the last section concludes
on the pertinence of our implementation choices, on current compiler limitations, and on the
limits of our model for predicting the performance.

7.1 Hardware model for single core performance predic-
tion

Most processors of the x86 family have pipelined, out-of-order superscalar cores with vector
computation capabilities. These qualifications mean:

• pipelined : a core can process at least one new instruction per clock cycle, regardless of the
latencies of previous instructions,

• out-of-order : a core can reorder the sequence of instructions, provided that the result is
the same as for the original program order, the purpose being to use an instruction order
that avoid execution stalls,

• superscalar, a core can execute several instructions simultaneously,

• vector computation: the same operation can be performed simultaneously on several nu-
merical data.

It is not surprising that the hardware in charge of the pipeline management, which we will name
the micro-architecture of the core, is very sophisticated. In this section, we focus on a small set

101

of elements in the core micro-architecture. Our goal is to determine the limiting factor in the
computation of interval matrix products by using a simplified model of the core. In addition, we
want to derive from the model some lower bounds for the execution times of the computation
kernels that are detailed in Section 7.3.

The core micro-architecture of out-of-order x86 processors can be divided in two parts (see
[Int13a] for a more complete description).

The first part is mainly in charge of the instruction decoding, branch prediction, and register
management. In this part, instructions are processed according to the program order. Hardware
elements that interact at this level of instruction processing, like the instruction cache, the
decoder, the branch predictor, or the register files are often limiting factors for the program
execution. However, as we are dealing here with very regular codes consisting principally in
loops that use a small number of instructions and a small number of registers, we will neglect
these limitations and we will not go into further details.

The second part consists of the out-of-order execution engine. It has the responsibility to
perform the actual computation by doing operations in parallel when possible. So, the concurrent
use of a limited number of execution units is likely to be the bottleneck of a numerical compu-
tation. In the remainder of this section, we describe the micro-architecture of a Sandy Bridge
core giving the minimum details that are useful for a simple performance prediction model.

Figure 7.1 depicts the out-of-order execution engine of a Sandy Bridge processor model,
focusing on vector execution units (from [Int13a, § 2.2 Intel Micro-architecture Code Name
Sandy Bridge]).

Scheduler

Port 0

Mul

Div

Port 1

ALU

Add

Port 5

ALU

Unpack

Port 2

Load
data

Store
address

Port 3

Load
data

Store
address

Port 4

Store
data

Memory control

Data cache L1

Figure 7.1: Out-of-Order Execution Engine Model (Intel Sandy Bridge Micro-architecture).

After being decoded by the first pipeline part, instructions are reordered by the scheduler
and dispatched to an execution unit that can process it. The dispatching is constrained by the
disposal of the execution units. Execution units are grouped and a given group is accessible
through a corresponding execution port. Execution ports are accessed concurrently and are
therefore a possible bottleneck for the program execution. More precisely, a given execution
port can accept only one instruction at given clock cycle, but different execution port can accept
different instructions at the same clock cycle.

Execution ports are of two kinds.

102

• Ports number 0, 1, and 5 are entry ports to computational units. We list here only execution
units that operate on vectors.

– Port 0 is linked to the multiplier unit (Mul) and the divider unit (Div).

– Port 1 is linked to the first arithmetic and logic unit (ALU) and to the adder (Add).

– Port 5 is linked to the second arithmetic and logic unit and to an execution unit that
can shuffle vector components (Unpack).

• Ports number 2, 3, and 4 are entry ports for memory operations.

– Ports 2 and 3 are identical. Both are linked to a read memory unit (Load data) and
an execution unit that performs memory address computations (Store address).

– Port 4 is linked to the unique write memory unit (Store Data).

In the following, we group the similar ports 1 and 5 into a group of ports, which will be
named Port 15, and the ports 2 and 3, which have identical functionality, into the group named
Port 23.

Finally, at the bottom of Figure 7.1, we can see that functional units in charge of memory
operations are linked to the memory controller. The purpose of this element is to supply, in time,
execution units with the data they need and to store their results. To this end, the controller
communicates with the first level of cache that contains data (bottom right), with level 2 of
cache (not shown), and with register files (not shown). In the following, we will assume that the
data needed for the computation of a matrix block of the result fit in the first level of the cache.
The validity of this assumption depends on the size of the block: the cache line reuse has to
be maximal and the number of computation sufficiently high to amortize the compulsory cache
misses needed for bringing data from the memory to the level 1 of the data cache.

We propose the following method to predict the execution time of numerical algorithms whose
data fit in the level 1 of the data cache. First, for a given algorithm implementation, we compute
the number of requests for a given execution unit or port by analyzing the individual demand of
each instruction in the source code. The most demanded execution unit or port is likely to be
the bottleneck for the computation. So, we compute a lower bound on the execution time from
the total count of requests for this bottleneck among execution units and execution ports. The
execution units and ports that are required for a specific instruction are specified in the following
section.

With the method described above, the prediction of the execution time is highly dependent
of the architecture of the execution units and ports. Since the time of Pentium Pro, processors
of the x86 family have an out-of-order engine with a design similar to that described above.
Unfortunately, and to the best of our knowledge, the detailed information about the way exe-
cution units are grouped is only available for recent processors (starting from the Sandy Bridge
architecture). In the Intel Architectures Optimization Reference Manual [Int13a] for example,
the description of the Core 2 micro-architecture, that is the model previous to Sandy Bridge,
is not sufficient to determine which unit can process comparison between floating-point vectors.
In such a case, the lack of detail prevents us to use the model described here for determining a
lower bound on the execution time. We could still establish an inferior bound by simply using
the throughput of the vector instructions on the given platform. This quantity represents the
maximal number of a given instruction that a core can process at each cycle. It is related to
the number of execution units that can perform the operation and it assumes that all needed
hardware is free. This last method ignores the fact that the execution units corresponding to the
instruction are accessible through a limited number of execution ports. So, a given instruction
may be delayed because a different instruction is demanding the same execution port at the same

103

time. As a consequence, the lower bound that is computed from the instruction throughput is
always underestimated with respect to the one derived from our architecture model.

For a better accuracy in the performance prediction, we will focus on the Sandy Bridge
architecture in the following sections.

7.2 Vector instruction set: Streaming SIMD Extensions

We give here a short summary about floating-point intrinsics for Streaming SIMD Extensions, see
[Int13b, § Intrinsics] for a complete description. We describe only the small subset of functions
we use in the implementation of MMMul2. The purpose of this description is twofold. First, it
helps the reader unfamiliar with this extension to the C language. Second, it is a systematic
review of how the listed functions use the execution units described in Section 7.1.

The intrinsic extension defines several new types corresponding to vectors of data. These
types differ in two respects. On the one hand, they are related to the native type of the vector
elements, which can be an integer or floating point type. On the other hand, they differ in the size
of the vectors, which can be either 64-, 128-, or 256-bit long. In the following, our code only uses
the m128d type. This type corresponds to two floating-point values in double precision packed
in a double quadword, that is a 128-bit memory location or register. Figure 7.2 illustrates the
composition of such a vector: the first floating-point value X1 is stored in the 64 most significant
bits of the vector and the second floating-point value X0 in the 64 least significant bits. We refer
below to X1 as the highest part of the m128d variable and to X0 as the lowest part. The variables
that are of an intrinsic type, like the m128d type, do not support the arithmetic operators +, -,
* and / of the C language. They can only be used as left-hand side values of an assignment and
as parameters of an intrinsic function.

X1 X0

128 64 0

Figure 7.2: m128d Variable.

The intrinsic extension defines a set of intrinsic functions, also named intrinsics. Most of them
correspond directly to vector instructions (either from the MMX, SSE, or AVX instruction set)
and such functions are translated into a single assembly instruction by the compiler. The other
intrinsic functions are helper functions, they are translated into only a few assembly instructions.
This gives a tight control on the vector instructions that appear in the assembly code generated
by the compiler. As a consequence, this eases the performance prediction of a given code written
with intrinsics. We list below the requirements in terms of execution units for every intrinsic
function that may be used in our implementation.

The intrinsic functions may be grouped as follows1:

• memory, assignment and move operations:

– mm load pd. This SSE2 instruction copies a pair of two adjacent floating-point values
from the memory to a m128d variable. The memory address must be aligned on a
16-bit boundary.

The execution of this instruction requires an available load unit and it has a latency
of 2 cycles on Core2 and 3 cycles on Sandy Bridge, if no cache miss occurs.

1Here, the prefix mm is reserved to the intrinsic functions, the suffix pd means packed double and refers to
the m128d type described above

104

– mm store pd. This SSE2 instruction copies the value of a m128d variable to memory.
The memory address must be aligned on a 16-bit boundary.

The execution of this instruction requires an available store unit and store address
unit and it has a latency of 3 cycles if no cache miss occurs.

– mm setzero pd. This SSE2 instruction sets the m128d variable to zero.

It requires no execution unit for its execution and has a latency of 1 cycle.

– mm loaddup pd. This SSE3 instruction copies a floating-point value from memory in
both elements of a m128d vector. The memory address may be unaligned on a 16-bit
boundary.

The execution of this instruction requires an available load unit and it has a latency
of 3 cycles on Sandy Bridge if no cache miss occurs.

– mm unpackhi pd. This SSE2 instruction copies the highest parts of two m128d values
to a third m128d value. Figure 7.3 illustrates this operation.

input X1 X0

input Y1 Y0

output Y1 X1

Figure 7.3: mm unpackhi pd Intrinsics.

It requires an available SSE shuffle unit for its execution and has a latency of 1 cycle.

– mm unpacklo pd. This SSE2 instruction copies the lowest parts of two m128d values
to a third m128d value.

It requires an available SSE shuffle unit for its execution and has a latency of 1 cycle.

– mm set1 pd. This helper function sets both elements of the m128d variable to a given
floating-point value.

The documentation [Int13b] indicates that it is a composite of SSE2 instructions,
without further detail. Disassembling a simple code using this intrinsic shows that
it amounts to a load followed by an unpack instruction. So, it requires one available
load unit and one available shuffle unit.

• arithmetic operations: Figure 7.4 illustrates how SSE intrinsics perform an arithmetic or
logical operation op on two m128d variables. Note that arithmetic operations take the
global rounding mode into account.

– mm add pd. This SSE2 instruction adds together the highest parts, resp. the lowest
parts, of two m128d values and stores the sum as the highest part, resp. the lowest
part, of a m128d variable.

It requires an available SSE adder unit for its execution and has a latency of 3 cycles.

– mm mul pd. This SSE2 instruction multiplies together the highest parts, resp. the
lowest parts, of two m128d values and stores the product as the highest part, resp.
the lowest part, of a m128d variable.

It requires an available SSE multiplier unit for its execution and has a latency of
5 cycles.

105

input X1 X0

input Y1 Y0

output X1 op Y1 X0 op Y0

op op

Figure 7.4: Arithmetic and Logic Intrinsics.

– mm div pd. This SSE2 instruction divides the highest parts, resp. the lowest parts,
of two m128d values and stores the quotient as the highest part, resp. the lowest part,
of a m128d variable.

It requires the SSE division unit for its execution and has a latency up to 20 cycles. In
contrast to other SSE execution units, the divider is not pipelined, so a new division
can be computed only after the previous one is completed.

• comparison and logical operation:

– mm cmpgt pd. This SSE2 instruction compares together the highest parts, resp. the
lowest parts, of two m128d values. If a part of the first parameter is greater than the
corresponding part of the second parameter then an all-one bit-mask is stored in the
corresponding part of the m128d result, else an all-zero bit-mask is stored.

It requires an available SSE arithmetic and logic unit (ALU) for its execution and has
a latency of 3 cycles.

– mm or pd. This SSE2 instruction performs a bitwise OR between the highest parts,
resp. the lowest parts, of two m128d values and stores the result as the highest part,
resp. the lowest part, of a m128d variable.

It requires an available SSE ALU for its execution and has a latency of 1 cycle.

– mm and pd. This SSE2 instruction performs a bitwise AND between the highest parts,
resp. the lowest parts, of two m128d values and stores the result as the highest part,
resp. the lowest part, of a m128d variable.

It requires an available SSE ALU for its execution and has a latency of 1 cycle.

– mm andnot pd. This SSE2 instruction performs a bitwise AND between the bitwise
negation of the highest part of its first m128d parameter and the highest part of its
second parameter. The result is stored in the highest part of a m128d variable. A
similar operation is performed between lowest parts.

It requires an available SSE ALU unit for its execution and has a latency of 1 cycle.

Finally, the intrinsic extension also defines the macro function MM SET ROUNDING MODE() for
changing the rounding mode. Its parameter may be one of the symbols MM ROUND NEAREST and
MM ROUND UP, among other possibilities, to set the rounding mode for subsequent SSE operations.

7.3 Block computations

Let us assume that we are given two pointers a and b to two different s-by-s blocks of interval
matrices. We want to compute their product in a third block pointed by c using a variant of

106

Algorithm 9.
The variant we use improves the tightness of the result for a negligible overhead. The differ-

ences are as follows. Instead of a single upper bound e on the relative accuracies of the whole
block pointed by a, we compute a row vector (e1 . . . es) composed of the maximum accuracies of
each column of the block. Figure 7.5 illustrates this idea. Similarly, for the relative accuracies

〈MA11, RA11〉 · · · 〈MA1s, RA1s〉
...

...

〈MAs1, RAs1〉 · · · 〈MAss, RAss〉

e1 · · · es
()max racc

Figure 7.5: Row-Vector of Upper Bounds on Relative Accuracies.

of the block pointed by b, we replace the upper bound f by a column vector of upper bounds on
each row of the block (see Figure 7.6). Lastly, in the computation of R̃2ij at line 5 of Algorithm 9,

〈MB11, RB11〉 · · · 〈MB1s, RB1s〉
...

...

〈MBs1, RBs1〉 · · · 〈MBss, RBss〉

f1

...

fs

max racc

Figure 7.6: Column-Vector of Upper Bounds on Relative Accuracies.

the multiplicative factor2 of Γ̃ij is replaced by the sum ej + fi + fiej + s+2
2 . All other operations

are the same as in Algorithm 9 and we will use the same function name MMMul2 for the original
algorithm and its variant.

Two different rounding modes are used in MMMul2:

• Rounding to nearest for the computation of M̃2 and Γ̃,

• Rounding toward +∞ for the computation of ẽ, f̃ , and R̃2.

Moreover, Theorem 3.4 gives a computable bound on the roundoff error for M̃2 under the hy-
pothesis that M̃2 and Γ̃ are computed in the same order (see Section 5.2). These constraints
lead us to divide MMMul2 in four subroutines3:

• mm dmidmul2 bb computes M̃2 and Γ̃ at the same time, in the same order, and with rounding
to nearest,

• mm raccrow bb computes an overestimate of the maximum relative accuracy for each row
of the block pointed by a,

2See the erratum in the footnote page 48.
3The naming of subroutines is as follows: the prefix mm stands for the midpoint-radius format of both ma-

trices and the suffix bb indicates block computations. The middle parts dmidmul2 and dradmul2 point to the
midpoint and radius computations, respectively, of the MMMul2 algorithm, and raccrow and racccol point to the
determination of maximum relative accuracy vectors.

107

• mm racccol bb computes an overestimate of the maximum relative accuracy for each col-
umn of the block pointed by b,

• mm dradmul2 bb computes an overestimate of the radius matrix.

Listing 7.1 shows how these subroutines are called to perform the product of interval block
matrices. Some temporary memory is needed: for the product of absolute values and for the two
vectors e and f . In the first case, the memory location for the floating-point matrix Γ̃ is pointed
by d. In the other cases, pointers e and f point to an array where the corresponding vector is
stored. The temporary memory is allocated so as to be aligned on a cache line boundary.

int

mm_dmul2_bb (const dmr_block_ptr a, const dmr_block_ptr b,

dmr_block_ptr c)

{

double def[_DEF_SIZE] __attribute__ ((aligned (64)));

/* pointer aliases to ease reading */

double * d = &def [0];

double * e = &def[_BLOCK_HALFSIZE];

double * f = &def[_BLOCK_HALFSIZE + IBLAS_BLOCK_DIM_DOUBLE];

mm_dmidmul2_bb (a, b, c, d);

mm_raccrow_bb (a, e);

mm_racccol_bb (b, f);

mm_dradmul2_bb (d, e, f, c);

return 0;

}

Listing 7.1: The mm dmul2 bb Kernel.

The following sections detail in turn the actual implementation of the mm dmidmul2 bb,
mm raccrow bb, mm racccol bb, and mm dradmul2 bb subroutines. The description focuses on
the optimization techniques that are manually applied to the code: loop fusion, vectorization,
elimination of conditional branches, and loop unrolling. For the sake of conciseness, some con-
stants and variables that appear in the code are not explained, but their meaning or value can
be inferred from their name.

Moreover, note that the code for mm raccrow bb and mm racccol bb functions studied below
accepts only full blocks. Padded blocks require a slightly modified version, not shown here.
Indeed, one has to stop the seek of the maximal relative accuracy before the padding zero
elements.

For each subroutine below, we first present the source code, then make some comments
about it, and finally we try to compute a lower bound on its execution time by considering the
bottleneck of the computation.

7.3.1 Combined products of matrices and of their absolute values

In this section, we describe the mm dmidmul2 bb function, which computes simultaneously the
product of two matrix-blocks MA and MB and the product of their absolute values |MA| and
|MB |. The corresponding code with SSE intrinsics is presented in Listing 7.2. The inputs are

108

two pointers a and b on the input blocks and the results are output in another block pointed by
c and a temporary half-block pointed by d. Because they are modified during the computation,
the output blocks are assumed to be different from the input ones.

1 static inline void

2 mm_dmidmul2_bb (const dmr_block_ptr restrict a,

3 const dmr_block_ptr restrict b,

4 dmr_block_ptr restrict c, double * restrict d)

5 {

6 unsigned int j, k;

7 unsigned int row_offset;

8
9 const uint64_t sign_mask [2] __attribute__ ((aligned (16)))

10 = {0 x7fffffffffffffff , 0x7fffffffffffffff };

11 __m128d smask = _mm_load_pd ((double *) sign_mask);

12
13 /* alias (ease reading) */

14 const unsigned int dim = IBLAS_BLOCK_DIM_DOUBLE;

15
16 _MM_SET_ROUNDING_MODE(_MM_ROUND_NEAREST);

17
18 for (row_offset = 0; row_offset < _BLOCK_HALFSIZE; row_offset += dim) {

19 for (j = 0; j < dim; j+=2) {

20 __m128d dot = _mm_load_pd (&c[row_offset + j]);

21 __m128d absdot = _mm_setzero_pd ();

22 for (k = 0; k < dim; k++) {

23 __m128d bk;

24 __m128d p1;

25
26 bk = _mm_load_pd (&b[k * _dim + j]);

27 p1 = _mm_mul_pd (bk,

28 _mm_loaddup_pd (&a[row_offset + k]));

29 dot = _mm_add_pd (dot , p1);

30 absdot = _mm_add_pd (absdot ,

31 _mm_and_pd (smask , p1));

32 }

33 _mm_store_pd (&c[row_offset + j], dot);

34 _mm_store_pd (&d[row_offset + j], absdot);

35 }

36 }

37 }

Listing 7.2: The mm dmidmul2 bb Function with Intrinsics.

The rounding mode is set at the beginning of the routine (line 16). This ensures that both
products are computed with the rounding to nearest mode, as assumed by Theorem 3.4.

The product computation is performed with the classical 3-loop algorithm, where the inner
loop correspond to the calculation of two pairs of dot products between a pair of rows of MA,
resp. |MA|, and a pair of columns of MB , resp. |MB |.

The combination of the computation of MAMB and |MA||MB | saves two memory reads
and one multiplication per iteration. More precisely, since |MAikMBkj | = |MAik||MBkj |, we

can use the partial product p1 = MAikMBkj (lines 27–28) for accumulation in both dot (line

29) and absdot (lines 30–31).

109

Moreover, the computation of an absolute value can be computed with a bitwise logical
operation with a mask. A floating-point value in double precision is stored in memory as a
quadword. We use the fact the most significant bit represents the sign of that floating-point
value. A logic AND between the floating-point value and a 0x7fffffffffffffff bit-mask clears the
sign bit (line 31) and does not change other bits, yielding the absolute value of the input. From
the point of view of efficiency, this bitwise operation for computing an absolute value has the
great advantage to avoid conditional branches in the inner loop. As the sign of the midpoints are
random, such conditional branches will be often incorrectly predicted by the hardware, leading
to poor performance.

We can now determine which execution unit is a bottleneck in the mm dmidmul2 bb compu-
tation. By counting each kind of SSE operation, we estimate the occupancy of the execution
units and execution ports per iteration in the inner loop (iteration on k, lines 22–32) and in the
middle loop (iteration on j, lines 19–35). The result count is displayed in Table 7.1.

execution unit mul add logic load store execution port 0 1 5 23 4
inner loop 1 2 1 2 1 2 1 2

middle loop 1 2 3 2

Table 7.1: Use of Execution Units and Execution Ports per Iteration in mm dmidmul2 bb.

Note that, since there is one ALU on each of the ports 1 and 5, the unique AND operation
in an iteration can use port 5, which is not used by the ADD operations.

The total usage count of execution units and ports in the whole mm dmidmul2 bb computation
is the product of the enumerations in Table 7.1 by the number of iterations. For square blocks
of dimension s, the outer loop is executed s times, the middle loop s2/2 times and the inner
loop s3/2 times. Table 7.2 gives the total count of use requests by type of execution unit in
mm dmidmul2 bb.

mul add logic load store ports 0 1 5 23 4
s3

2 s3 s3

2 s3 + s2

2 s2 s3

2 s3 s3

2 s3 + 3
2s

2 s2

Table 7.2: Total Number of Use of Execution Units in mm dmidmul2 bb.

The highest number of requests is for the load unit and the group of ports 23. However, Sandy
Bridge cores contain two load units that are accessible through two different ports. Consequently,
the core can execute two loads per cycle. On the contrary, there is only one addition unit per
core. Since s ≥ 2, the addition unit is the bottleneck among execution units. And each run of
mm dmidmul2 bb needs at least s3 cycles to complete, if we assume that the processor can start
an SSE operation each clock cycle, provided that one corresponding execution unit and the port
that is attached to it are free.

7.3.2 Determination of the maximum relative accuracy

The computation of the relative accuracies from the midpoint-radius components of an interval
matrix requires several divisions. However, floating-point divisions are slow operations on x86:
a single division may require 20 cycles on Sandy Bridge architecture and, moreover, the divi-
sion unit is not pipelined. Reducing the number of division when seeking the maximal relative
accuracy is therefore a profitable operation. The following proposition shows how to use this
optimization and give valid results.

110

Proposition 7.1. Let m, r, m1 and r1 be four non-negative numbers.
If fl∆(mr1) ≤ fl∆(m1r), then fl∆(m/r) ≤ fl∆ ((1 + 2u)m1/r1).

Proof. By definition of rounding toward +∞, we have mr1 ≤ fl∆(mr1). Using the bound of
Section 3.1, fl∆(m1r) ≤ (1 + 2u)m1r. So, if fl∆(mr1) ≤ fl∆(m1r), then mr1 ≤ (1 + 2u)m1r and
the proposition is true because rounding toward +∞ is non-decreasing.

The following example shows that fl∆(mr1) ≤ fl∆(m1r) does not imply fl∆(m/r) ≤ fl∆(m1/r1).

Example 7.1. In decimal arithmetic with 1-digit precision, the roundoff unit for rounding
toward +∞ is 2u = 1. Let m = r = 3, m1 = 7, and r1 = 10. Then, mr1 = fl∆(mr1) = 30 and
m1r = 21 rounded to fl∆(m1r) = 30. While m/r = fl∆(m/r) = 1 and m1/r1 = fl∆(m1/r1) = 0.7.

So, Proposition 7.1 allows us to compare products instead of quotients in mm raccrow bb.
The code, shown in Listing 7.3 below, uses this idea.

1 static inline void

2 mm_raccrow_bb (const dmr_block_ptr a, double * restrict e)

3 {

4 unsigned int i, j;

5 const uint64_t sign_mask [2] __attribute__ ((aligned (16)))

6 = {0 x7fffffffffffffff , 0x7fffffffffffffff };

7 __m128d smask = _mm_load_pd ((double *) sign_mask);

8 const __m128d rnd_bound =

9 _mm_set1_pd (1 + 2 * IBLAS_UNIT_ROUNDOFF_DOUBLE);

10
11 /* alias (ease reading) */

12 const unsigned int dim = IBLAS_BLOCK_DIM_DOUBLE;

13
14 _MM_SET_ROUNDING_MODE(_MM_ROUND_UP);

15
16 for (j = 0; j < dim; j += 2) {

17 __m128d mid = _mm_and_pd (smask , _mm_load_pd (&a[j]));

18 __m128d rad = _mm_load_pd (&a[_BLOCK_HALFSIZE + j]);

19 for (i = 1; i < dim; i++) {

20 /* compute absolute value.

21 WARNING: change sNaN into qNAN and vice -versa */

22 const __m128d mida = _mm_and_pd (smask , _mm_load_pd (&a[i*dim+j]));

23 const __m128d rada = _mm_load_pd (&a[_BLOCK_HALFSIZE + i*dim+j]);

24 const __m128d cmp_mask = _mm_cmpgt_pd (_mm_mul_pd (rad , mida),

25 _mm_mul_pd (mid , rada));

26 rad = _mm_or_pd (_mm_and_pd (cmp_mask , rad),

27 _mm_andnot_pd (cmp_mask , rada));

28 mid = _mm_or_pd (_mm_and_pd (cmp_mask , mid),

29 _mm_andnot_pd (cmp_mask , mida));

30 }

31 _mm_store_pd (&e[j],

32 _mm_mul_pd (rnd_bound , _mm_div_pd (rad , mid));

33 }

34 }

Listing 7.3: The mm raccrow bb Function with Intrinsics.

Let us make some comments about the code of Listing 7.3. First, note that the rounding
mode for vector operation is set to rounding toward +∞ at line 14, regardless of the rounding

111

mode in use before the call. At line 22, we compute the absolute value of the midpoint by a
logic AND with a bit-mask. This branch-free technique is explained above in Section 7.3.1. In
order to avoid another conditional branching, we also use a bitwise logical operation to select
the component of the row that has the maximal relative accuracy. At lines 24–25, we compare
two products in application of Proposition 7.1. The result cmp mask of the comparison is a pair
of masks, which can be either all-zeros or all-ones values. At lines 26–29, we select with the
value of cmp mask the pair of midpoints and radii that maximizes the relative accuracies, up to
a 1 + 2u factor. The correction to this possible underestimation is performed at line 32, where
the relative accuracies are actually computed, then multiplied by a 1 + 2u factor according to
Proposition 7.1. Note that 1 + 2u can be computed exactly in floating-point number. So, the
rounding mode does not play any role and the corresponding constant can be set at lines 8–9,
before the change of rounding mode at line 14.

We now determine the bottleneck among processor units. The usage of execution ports and
units is reported in Table 7.3. Note that we have put ports 1 and 5, in a single group, named
15, as they are used indifferently by logical operations.

execution unit mul div logic load store execution port 0 15 23 4
inner loop 2 8 2 2 8 2
outer loop 1 1 1 2 1 2 1 3 1

Table 7.3: Use of Execution Units and Execution Ports per Iteration in mm raccrow bb.

We remark in Table 7.3 a high count of logical operations, and consequently a strong pressure
on the ALUs. However, the ALU is duplicated on Sandy Bridge. So, if we ignore the long chain
of data dependence in the inner loop, two logical operations could be started at each clock cycle.
For square blocks of dimension s, the outer loop is executed s/2 times and, at each iteration of
the outer loop, the inner loop is executed s times. Table 7.4 gives the total count of use requests
by type of execution unit and execution port when mm raccrow bb is called.

mul div logic load store ports 0 15 23 4
s2 + s

2
s
2 4s2 + s

2 s2 + s s
2 s2 + s 4s2 + s

2 s2 + 3
2s

s
2

Table 7.4: Total Number of Use of Execution Units and Execution Ports in mm raccrow bb.

If we assume that, at each clock cycle, two logical operations can be started and that the
group of execution ports 15 can accept two logical operations, then the counts in Table 7.4 shows
that logical units and the group of execution ports 15 are bottlenecks. With the above figures,
mm raccrow bb requires at least 2s2 + 1

4s clock cycles per call.
Let us turn now to the computation of a column vector of maximum relative accuracies. For

clarity, the code of mm racccol bb is split in two listings. Listing 7.4 below shows the general
structure.

1 static inline void

2 mm_racccol_bb (const dmr_block_ptr b, double * restrict f)

3 {

4 unsigned int i, j;

5 const uint64_t sign_mask [2] __attribute__ ((aligned (16)))

6 = {0 x7fffffffffffffff , 0x7fffffffffffffff };

7 __m128d smask = _mm_load_pd ((double *) sign_mask);

8 const __m128d rnd_bound =

9 _mm_set1_pd (1 + 2 * IBLAS_UNIT_ROUNDOFF_DOUBLE);

112

10
11 /* aliases (ease reading) */

12 const unsigned int dim = IBLAS_BLOCK_DIM_DOUBLE;

13 double * midb = &b[0];

14 double * radb = &b[_BLOCK_HALFSIZE];

15
16 _MM_SET_ROUNDING_MODE(_MM_ROUND_UP);

17
18 for (i = 0; i < dim; i += 2) {

19 __m128d cmp_mask;

20 __m128d mid0 = _mm_and_pd (smask , _mm_load_pd (midb));

21 __m128d rad0 = _mm_load_pd (radb);

22 __m128d mid1 = _mm_and_pd (smask , _mm_load_pd (midb + dim));

23 __m128d rad1 = _mm_load_pd (radb + dim);

24
25 /*

26 select pairs of midpoint -radius components with the maximum

27 relative accuracies in their row for two consecutive rows.

28 */

29 ... see code below ...

30
31 /*

32 reorder

33 mid0=(m[i,j],m[i,j+1]), mid1=(m[i+1,j],m[i+1, j+1]) ->

34 mid0=(m[i,j],m[i+1,j]),mid1=(m[i,j+1],m[i+1, j+1])

35 idem rad0 , rad1

36 */

37 __m128d tmp = mid0;

38 mid0 = _mm_unpackhi_pd (tmp , mid1);

39 mid1 = _mm_unpacklo_pd (tmp , mid1);

40 tmp = rad0;

41 rad0 = _mm_unpackhi_pd (tmp , rad1);

42 rad1 = _mm_unpacklo_pd (tmp , rad1);

43
44 /* max relative accuracies of one even row and one odd row */

45 cmp_mask = _mm_cmpgt_pd (_mm_mul_pd (rad0 , mid1),

46 _mm_mul_pd (mid0 , rad1));

47 rad0 = _mm_or_pd (_mm_and_pd (cmp_mask , rad0),

48 _mm_andnot_pd (cmp_mask , rad1));

49 mid0 = _mm_or_pd (_mm_and_pd (cmp_mask , mid0),

50 _mm_andnot_pd (cmp_mask , mid1));

51 _mm_store_pd (&f[i],

52 _mm_mul_pd (rnd_bound , _mm_div_pd (rad0 , mid0)));

53 midb += 2 * dim;

54 radb += 2 * dim;

55 }

56 }

Listing 7.4: The mm racccol bb Function with Intrinsics.

The functions mm raccrow bb and mm racccol bb differ in the relative order of the two loops.
Function mm racccol bb computes a column-vector whose components are the maximum relative
accuracies of the corresponding matrix row (see Figure 7.6). The inner loop scans two successive
rows in the input matrix. After execution of the inner loop, a post-process operation is needed

113

in order to compute a pair of adjacent components of the output vector. It is done by the code
at lines 37–50, which reorders interval components so that midpoint and radius of the sought
interval in the even4 row are in the highest parts of m128d vectors and the midpoint and radius
of the sought interval in the odd row is in the lowest parts. Then, the pair of corresponding
relative accuracies is computed and stored at lines 51–52.

Listing 7.5 shows the code of the inner loop. The code is similar to the inner loop in Listing 7.3
except the row-wise reading of the matrix components. This similitude gives us the opportunity
to show an example of the loop unrolling technique and to compare the complexity of the resulting
code (Listing 7.5) with an non-unrolled equivalent (inner loop in Listing 7.3).

for (j = 2; j < dim; j += 2) {

const __m128d midb_even =

_mm_and_pd (smask , _mm_load_pd (midb + j));

const __m128d radb_even =

_mm_load_pd (radb + j);

const __m128d midb_odd =

_mm_and_pd (smask , _mm_load_pd (midb + dim + j));

const __m128d radb_odd =

_mm_load_pd (radb + dim + j);

cmp_mask = _mm_cmpgt_pd (_mm_mul_pd (rad0 , midb_even),

_mm_mul_pd (mid0 , radb_even));

rad0 = _mm_or_pd (_mm_and_pd (cmp_mask , rad0),

_mm_andnot_pd (cmp_mask , radb_even));

mid0 = _mm_or_pd (_mm_and_pd (cmp_mask , mid0),

_mm_andnot_pd (cmp_mask , midb_even));

cmp_mask = _mm_cmpgt_pd (_mm_mul_pd (rad1 , midb_odd),

_mm_mul_pd (mid1 , radb_odd));

rad1 = _mm_or_pd (_mm_and_pd (cmp_mask , rad1),

_mm_andnot_pd (cmp_mask , radb_odd));

mid1 = _mm_or_pd (_mm_and_pd (cmp_mask , mid1),

_mm_andnot_pd (cmp_mask , midb_odd));

}

Listing 7.5: The mm racccol bb Inner Loop.

Let us comment the code in Listing 7.5. The loop is unrolled, which means that it scans
two consecutive rows in the same time. In both rows, it selects the interval components with
the highest relative accuracy among even columns and store them in mid0 and rad0. Likewise,
interval components with the highest relative accuracy among odd columns are stored in mid1

and rad1. After the loop completes, the actual maximum relative accuracies for both rows are
computed by selecting the best component from the odd and even columns candidates (what is
done by the code at lines 37–52 of Listing 7.4). Compared to a similar non-unrolled loop (for
instance, the inner loop in Listing 7.3), the length of the code doubles. This is the reason why,
apart from this example, the listings given in Section 7.3 only present non-unrolled loops.

Nowadays, the loop unrolling is a common optimization phase that is supported by most
compilers. Yet, manual unrolling of the inner loop may be beneficial to the execution time, as
shown by experimental measures in Section 7.4.2 below.

Table 7.5 shows the execution units and execution ports usage of the code of mm racccol bb

under the same hypotheses as for mm raccrow bb.
For square blocks of dimension s, the outer loop is executed s/2 times and, at each iteration

of the outer loop, the inner loop is executed s/2 times. The total number of requests for each

4Here, array indices start from 0, as in the C language.

114

execution unit mul div logic unpack load store execution port 0 15 23 4
inner loop 4 16 4 4 16 4
outer loop 3 1 9 4 4 1 4 13 5 1

Table 7.5: Use of Execution Units and Execution Ports per Iteration in mm racccol bb.

execution unit and for execution ports is given in Table 7.6.

mul div logic unpack load store ports 0 15 23 4
s2 + 3

2s
s
2 4s2 + 9

2s 2s s2 + 2s s
2 s2 + 2s 4s2 + 13

2 s s2 + 5
2s

s
2

Table 7.6: Total Number of Use of Execution Units and Execution Ports in mm racccol bb.

It is apparent in Table 7.6 that the group 15 of execution ports is the bottleneck among
execution units and ports. If we assume that the instructions are scheduled in such a manner
that the group of ports 15 handles 2 instructions per cycle, then the minimum execution time of
mm racccol bb cannot be lower than 2s2 + 13

4 s clock cycles.

7.3.3 Computation of the radius

After the computation of the product of the absolute value matrices and the determination of
the vectors e and f , the function mm draddmul2 bb (see Listing 7.6) computes an overestimate5

for the radius of the product.

static inline void

mm_dradmul2_bb (const double * abs , const double * e, const double * f,

dmr_block_ptr c)

{

unsigned int i, j;

__m128d tmp;

const __m128d rnd_bound =

_mm_set1_pd ((IBLAS_BLOCK_DIM_DOUBLE + 2) / 2 * IBLAS_UNIT_ROUNDOFF_DOUBLE);

const __m128d underflow_guard =

_mm_set1_pd (IBLAS_REALMIN_DOUBLE);

const unsigned int dim = IBLAS_BLOCK_DIM_DOUBLE;

double * restrict radc = &c[_BLOCK_HALFSIZE];

_MM_SET_ROUNDING_MODE(_MM_ROUND_UP);

for (i = 0; i < dim; i++) {

__m128d fi = _mm_loaddup_pd (&f[i]);

__m128d fi_plus_rnd_bound = _mm_add_pd (fi, rnd_bound);

for (j = 0; j < dim; j += 2) {

__m128d ej = _mm_load_pd (&e[j]);

tmp = _mm_mul_pd (_mm_load_pd (abs),

_mm_add_pd (_mm_mul_pd (ej , fi),

_mm_add_pd (ej , fi_plus_rnd_bound))));

tmp = _mm_add_pd (_mm_add_pd (underflow_guard , tmp),

_mm_load_pd (radc));

5See the erratum in the footnote page 48.

115

_mm_store_pd (radc , tmp);

abs += 2;

radc += 2;

}

}

}

Listing 7.6: The mm draddmul2 bb Function with Intrinsics.

Like for the previous functions, we can count the requests for any execution unit in the inner
and outer loops of mm draddmul2 bb. The results are displayed in Table 7.7.

execution unit mul add load store execution ports 0 15 23 4
inner loop 2 4 3 1 2 4 4 1
outer loop 1 1 1 1

Table 7.7: Use of Execution Units and Execution Ports per Iteration in mm draddmul2 bb.

For square blocks of dimension s, the outer loop is executed s times and, at each iteration of
the outer loop, the inner loop is executed s/2 times. The total number of requests for execution
units and execution ports is given in Table 7.8.

mul add load store ports 0 15 23 4

s2 2s2 + s 3
2s

2 + s s2

2 s2 2s2 + s 2s2 + s s2

2

Table 7.8: Total Number of Use of Execution Units and Execution Ports in mm draddmul2 bb.

If we assume that the processor can perform two loads per cycle, then the adder unit is the
bottleneck. At least 2s2 + s cycles are needed to complete a mm draddmul2 bb computation.

7.4 Execution time of block kernels

In this section, we analyze experimental execution times for the functions presented above. Our
main goal is to study, on the one hand, the effects of the compiler optimizations and, on the
other hand, the criteria of choice for the block size parameter. All execution times are measured
on the Sandy Bridge platform described in Section 6.3.

7.4.1 Compiler optimizations and correctness

First, we discuss the behaviors of the GCC and Intel compilers from the point of view of the
respect of the rounding mode.

As explained in Section 5.1.1, optimization phases of GCC, even with the latest 4.9 version,
do not take into account changes of the rounding mode. The bug is due to a defective internal
representation, thus codes written with intrinsics are also affected, see [gcc11]. Let us see if it is
possible to prevent this situation. GCC optimizations are controlled by a large set of compilation
options that enable or disable a particular phase and by six global options:

• “-O0”, which turns off the optimizer. Even if individual optimization options are set in
addition to this option, the compiler performs no optimization at all.

• “-O1” or its alias “-O”, “-O2”, “-O3”, and “-Ofast”, which enable increasing levels of
optimizations.

116

• “-Os”, which asks to optimize the size of the executable code.

With this setup, one may envisage two different strategies to prevent GCC from violating the
rounding mode change.

A first strategy could be to selectively disable the optimization phases that may incorrectly
transform the code, with respect to rounding mode. This would require an intimate knowledge of
the GCC’s optimization phases. In addition, the solution would be specific to a given version of
the compiler, because optimizers are subject to continuous improvement, which may change the
situation. Besides, this strategy is unfeasible since it is not possible to turn off some optimization.
For instance, if we compile the code of Listing 5.1 with the “-O1” option and all possible options
that disable individual optimization, the produced assembly code is still subject to the bug
described in Section 5.1.1.

In a second possible approach, one may wonder if it is relevant to compile without optimiza-
tion. Indeed, the code that is detailed in Section 7.3 is already vectorized. Table 7.9 below
presents the measure of execution times, in cycles, for optimized but unsafe codes and for the
safe unoptimized code (compiled with “-O0”). Both are compiled with the version 4.6.3 of the
GCC compiler.

compilation option -O3 -O2 -O1 -O0
execution time 47639 48227 49794 519151

Table 7.9: Function mm dmul2 bb compiled by GCC with and without optimization – Execution
Times (in cycles).

Not optimizing the code leads to a dramatic performance drop, the time is more than ten
times larger. The conclusion is clear: as long as the bug described in Section 5.1.1 is not fixed,
GCC should be excluded when optimizing codes that modify the rounding mode.

The case of the Intel compiler (ICC) is simpler. The Intel documentation specifies that the
compiler can correctly handle code where the rounding mode changes if the “-fp-model strict”
option is set. Actually, we verified that ICC compiles code in Listing 5.1 in a correct assembly
code. We examine below the cost of the “-fp-model strict” option in terms of the performance
of the executable code. Table 7.10 shows the execution times for the code compiled with the
“-O3” option, which turns on the highest global level of optimization, with “-xSSE3 -vec”, which
enables the use of SSE instructions, and with and without the “-fp-model strict” option. The
version of the compiler is 13.1.0.

compilation option execution time
-O3 -xSSE3 -vec 47428

-O3 -xSSE3 -vec -fp-model strict 49675

Table 7.10: Function mm dmul2 bb optimized by ICC with and without safe option – Execution
Times (in cycles).

Here, the slowdown is tolerable: the execution time is increased by about 5%. Thus, re-
stricting the floating-point optimization to transformations compliant with the C standard is an
acceptable solution.

7.4.2 Automatic and manual unrolling

Unrolling loop is a common optimization technique that is supported by most compilers. The
unrolling operation consists in computing several iterations of a loop in the same time. This

117

gives the compiler more opportunities to find an effective scheduling of operations. Listing 7.5
shows an example of a 2-fold unrolling in the inner loop of mm racccol bb.

In this section, we compare the execution times of two versions of the subroutines in the
mm dmul2 bb kernel. The first version corresponds to the code given in the previous section
compiled with the Intel compiler and the compilation options “-O3 -fp-model strict”, where
the “-O3” option turns on loop unrolling. Manually unrolled subroutines make up the second
version: a 4-fold unrolling for the inner loop of mm dmidmul2 bb, a 2-fold unrolling for the inner
loops of mm raccrow bb and mm dradmul2 bb. In both cases, the code of mm racccol bb is the
same, with the inner loop being unrolled twice as in Listing 7.5. The measured execution times
corresponding to both versions are displayed in Table 7.11.

unrolling
automatic manual

mm dmidmul2 bb 52517 37477
mm raccrow bb 7749 5457
mm racccol bb 5913 5909
mm dradmul2 bb 2785 2561
mm dmul2 bb 69673 49719

Table 7.11: Automatic versus Manual Unrolling – Execution Times (in cycles).

As can been seen in the measured timings given in Table 7.11, the automatically unrolled
version is 40% slower than the manually unrolled version. So, from the point of view of efficiency,
manual unrolling is a valuable transformation of the code. In the following sections, the code for
mm dmul2 bb is the manually unrolled version that is described above.

7.4.3 Block size

We now analyze the effect of the block size on the performance. In Section 7.3, we stated lower
bounds on the execution times for the subroutines of mm dmul2 bb, using a model of occupancy
of execution units. We compare here these lower bounds with actual measures of execution time.

Table 7.12 gathers the lower bounds determined in Section 7.3.

routine theoretical minimum bottleneck
mm dmidmul2 bb s3 addition unit
mm raccrow bb 2s2 + 1

4s ports 15
mm racccol bb 2s2 + 13

4 s ports 15
mm dradmul2 bb 2s2 + s addition unit
mm dmul2 bb s3 + 6s2 + 9

2s

Table 7.12: Minimum Execution Times (in Cycles) for Blocks of Size s According to Model –
Sandy Bridge.

In Table 7.13, we compare the theoretical lower bounds with the experimental measures of
execution times for increasing sizes of blocks: 16× 16 blocks (left), 32× 32 blocks (middle), and
64 × 64 blocks (right). We chose multiples of a cache line size for the value of the block size s
so that all data in the cache line are used in the computation. For each block size, the left-hand
side column contains the value Tmodel predicted by the model with the formulas in Table 7.12,
and the right-hand side column includes executions times Tmeasured measured on a Sandy Bridge

118

core. In all cases, the code was compiled with ICC version 13.1.0 with compilation options set
to “-O3 -fp-model strict -xSSE3 -vec”. The number in parentheses is the ratio Tmodel/Tmeasured.

block size
s = 16 s = 32 s = 64

routine model measured model measured model measured
mm dmidmul2 bb 4096 4997 (82%) 32768 37589 (88%) 262144 299785 (88%)
raccrow bb 516 1505 (35%) 2056 5461 (38%) 8208 21085 (39%)
mm racccol bb 564 1653 (35%) 2152 5909 (37%) 8400 23397 (36%)
mm dradmul2 bb 528 825 (64%) 2080 2589 (81%) 8256 10293 (81%)
mm dmul2 bb 5704 8116 (71%) 39056 49700 (79%) 287008 346755 (83%)

Table 7.13: Theoretical and Experimental Execution Times (in cycles) – Sandy Bridge.

We will consider Tmodel/Tmeasured as a performance ratio. Effectively, if N is the number
of instructions in mm mul2 bb and T its execution time in clock cycles, then IPC = N/T is the
average number of instructions executed in a clock cycle, which is a measure of performance. The
ratio IPCmeasured/IPCmodel indicates the relative performance of the implementation compared
to the theoretical one and corresponds to numbers in parentheses in Table 7.13.

We can observe the following phenomena. First, the ratio of performance varies greatly be-
tween different routines. The routines mm dmidmul2 bb and mm dradmul2 bb tend to have execu-
tion times close to the minimum predicted by the model. On the contrary, the measured execution
times for raccrow bb and mm racccol bb are about three times larger than the predicted min-
imum. Two explanations are possible: either these two routines are poorly implemented or the
model is not adapted to this kind of computation. The latter reason is more plausible because the
model does not take into account data dependence and latencies of operations. Yet, raccrow bb

and mm racccol bb contain long chains of dependent computations and divisions, which have
large latency. However, the experimental measures show that is possible to get more than 75%
of the maximal performance that is theoretically possible for the whole function mm dmul2 bb

(last row in Table 7.13). As we have reached our goal regarding the sequential performance for
a block computation, we will not try to improve neither the model nor the implementation.

The second observation from the data of Table 7.13 is that the performance increases with the
block size s. The only exception is the mm racccol bb routine with s = 64, which is a little bit
less efficient than with s = 32. Nonetheless, the theoretical minimum seems underestimated for
the routines that compute minimal relative accuracies, as we have seen above. What improves
the most the overall performance of mm dmul2 bb when s grows is the conjunction of two factors.
First, the individual performance of mm dmidmul2 bb is high, above 80% regardless the value of
s. Second, the cost of mm dmidmul2 bb becomes more and more dominant in the computation as
s grows, since it is cubic in s while the cost of other subroutines is only quadratic in s, according
to the model.

Processors prior to Sandy Bridge, like Core 2 processors or some AMD contemporaries, have
a level 1 data cache with a capacity of at least 32 KBytes, but their level 2 cache is shared
among cores. So, despite the fact that the efficiency is higher for Sandy Bridge when s = 64,
the performance may be more portable across processors with a smaller size and we will chose
s = 32 as the value of the block size in further experimental measures. Effectively, the latter
value is such that the four blocks read or written by mm dmidmul2 bb just fit into the first level
of data cache: 4 blocks × 32 rows × 32 columns × 8 bytes per double = 32.768 bytes. At the
same time, our requirement of a performance above 75% of a theoretical maximum is fulfilled
with s = 32.

119

7.4.4 Automatic and manual vectorization

Current compilers for x86 platforms are able to vectorize simple loops. With the appropriate
compiler options, some optimization phases transform a code acting on scalar values into an
executable code using vector instructions, whenever the transformation is possible. What deters
automatic vectorization, among other factors, is the presence of complicated data dependencies
between iterations, conditional branches in the loop, possibility of aliased pointers (two pointers
that reference the same location in memory) or uncountable loops (for instance, a while loop
whose exit condition cannot be predicted from the value of the loop index).

Listing 7.7 presents an excerpt of the implementation of mm dmul2 bb in plain C, without the
use of intrinsics. In the code of the mm dmidmul2 bb subroutine presented here, the number of
iterations of each loop is constant and known at compile-time. Different pointers always reference
different regions in memory, and the restrict keyword informs the compiler of this fact. There
are simple data dependencies between iterations in the inner loop, and none in the outer loop. In
this example, the inner loop contains a conditional branch for the absolute value computation.
The absolute value in the inner loop (line 26) could be computed by a logic operation with a
bit-mask and a second version of the implementation of mm dmidmul2 bb has been written in
plain C without conditional branch (not shown here).

1 static inline void

2 mm_dmidmul2_bb (const dmr_block_ptr a, const dmr_block_ptr b,

3 dmr_block_ptr c, double * restrict d)

4 {

5 #pragma STDC FENV_ACCESS ON

6 unsigned int i, j, k;

7
8 /* aliases (ease reading) */

9 const unsigned int dim = IBLAS_BLOCK_DIM_DOUBLE;

10 const double * restrict mida = (double *) &a[0];

11 const double * restrict midb = (double *) &b[0];

12 double * restrict midc = (double *) &c[0];

13
14 fesetround (FE_TONEAREST);

15 for (i = 0; i < dim * dim; i++) {

16 d[i] = 0.0;

17 }

18 for (i = 0; i < dim; i++) {

19 for (j = 0; j < dim; j++) {

20 double dot = 0;

21 double absdot = 0;

22 for (k = 0; k < dim; k++) {

23 double p;

24 p = mida[i * dim + k] * midb[k * dim + j];

25 dot += p;

26 absdot += p < 0 ? -p : p;

27 }

28 midc[i * dim + j] += dot;

29 d[i * dim + j] += absdot;

30 }

31 }

32 }

Listing 7.7: The mm dmidmul2 bb Function in plain C.

120

The other subroutines mm raccrow bb, mm racccol bb, and mm dradmul2 bb of the mm dmul2 bb

function have been also written without the use of intrinsics. We then have three implementation
versions of mm dmul2 bb: in plain C with conditional branches, in plain C with bitwise logical
operations, and with intrinsics. Next, the three versions have been compiled with different com-
pilers or different versions of a compiler, asking to vectorize the code.

As discussed in Section 7.4.1, the code produced with GCC is not safe because the rounding
mode is changed. However, the measures of Table 7.10 demonstrate that a compiler can produce
a correct code for a small performance loss. This inspires us with hope that GCC could be fixed
so that the efficiency of the correct code would be similar to the current optimized, and unsafe,
code. Keeping in mind that the produced executable code is not safe, we will use GCC in the
following measures in order to compare the vectorization capability of ICC and GCC.

Table 7.14 shows the execution times on the Sandy Bridge platform. The second column
presents the execution times when the code is compiled with the Intel compiler, specifically
the version 13.1.0 with compiling options “-std=c99 -O3 -xSSE3”. The timings for the same
code compiled with two versions of GCC and executed on the same platform are in the last
two columns. The third column relates to version 4.7.2 and the fourth to version 4.6.3. The
compiling options “-std=c99 -O3 -msse3 -mfpmath=sse -frounding-math” are used in both cases.
The fourth line, labeled manual vectorization, refers to the version written with intrinsics.

mm dmul2 bb icc 13.1.0 GCC 4.7.2 GCC 4.6.3
plain C with branches 117447 317723 267867
plain C with bit-masks 117345 155581 154574
manual vectorization 47433 47608 47627

Table 7.14: Automatic and Manual Vectorization: Execution Times (in cycles).

The experimental measures displayed in Table 7.14 are instructive. Firstly, compiler opti-
mizers show a large variability in efficiency. A newest version of a compiler being sometimes less
efficient than an older one, as it is the case for the compilation of the plain C version with condi-
tional branches by GCC 4.7.2 and GCC 4.6.3. Secondly, concerning the automatic vectorization
of the different plain C versions, the presence of conditional branches has no measurable effect on
the Intel compiler, while it perturbs GCC compilers, which produce a code that is about twice
less efficient than in the case of bit-masks. Lastly, and more importantly, the code that has been
manually vectorized shows the best execution times and the timings are independent from the
compiler.

As a conclusion, these measures confirm the validity of our choice to write the computing
kernels using SSE intrinsics. Actually, the manual vectorization fulfills two of our implementation
objectives that are not satisfied by the auto-vectorized versions:

• Sequential performance. As it is apparent in Table 7.14, compilers have some difficulty to
vectorize code for interval arithmetic and the most efficient executable code comes from
the version written with intrinsics.

• Portability. Execution times for the code that is manually vectorized are small and re-
markably constant across compilers.

In addition, the performance is predictable because the source code is close to the executable
code, as shown in Section 7.4.3.

Unfortunately, the goal of the utmost importance, namely correctness, rules out the use of
the GCC compiler for codes that modify the rounding mode.

121

7.5 Conclusion

This chapter demonstrates the advantages of implementing block kernels directly with intrinsic
functions and with an explicit level of loop unrolling. This strategy avoids compiler limitations
in auto-vectorization and loop unrolling.

As an interesting by-product, implementing algorithms with a low level language reflects
more closely the executable code and allows one to better predict performance. The simple
model presented in this chapter gives accurate predictions of execution times, within 30%, for
the whole block kernel function. One limitation of the model comes from the fact that it requires
a detailed knowledge of the micro-architecture. The relevant information is easily available for
recent processors, starting from the Sandy Bridge model, but harder to find for previous cores
with out-of-order engine. Besides, the model also emphasizes the effect of the size of the block on
the overall performance. The criteria for our choice have been given, but, admittedly, the chosen
value is only relevant to the underlying architecture we had considered. As an improvement
towards more portability of the performance across hardware platforms, the block size could be
determined at compile-time by testing several block sizes and selecting the one with the best
performance, in the spirit of the ATLAS library [WPD00].

Finally, note that the block kernel mm dmidmul2 bb, described in Section 7.3.1, can be reused
for the other interval matrix multiplications. Indeed, both MMMul3 and MMMul5 involve the
computation of products of matrices and products of their absolutes values.

122

Chapter 8

Multi-core and multi-threading

The previous chapter describes an implementation of the computation kernels used in the al-
gorithm for interval matrix multiplication MMMul2. It is shown there that this implementation
reaches the first two goals that were assigned in Chapter 6: correctness and sequential perfor-
mance. The main purpose of this chapter is to study the behavior of the implementation of the
whole MMMul2 in a multi-threaded execution and to check that scalability, the last measurable
goal, is attained.

The chapter is organized as follows. Section 8.1 details how the data parallelism in the loops
of MMMul2 is exploited at the thread level. The variations of the measured execution times
when the matrix dimension increases are analyzed in Section 8.2 for sequential executions and in
Section 8.3 for multi-threaded runs on a multi-core multi-processor platform. We give in the last
section our general conclusions for the second part of this document, which deals with parallel
implementation of interval matrix multiplications.

8.1 Multi-threaded implementations of block algorithms

Listing 8.1 shows the implementation of the matrix product algorithm. The parameters are
pointers to the input block matrices for a and b and a pointer to the product matrix for c. We
choose to implement the classical triple nested loops algorithm for the matrix multiplication.
Instead of iterating over matrix components, we iterate over matrix blocks. The outer loop
iterates over the rows of the left factor, the middle loop over the columns of the right factor, and
the inner loop over the common dimension. This order has the advantage that the written block
of c does not change in the inner loop, increasing the probability that this block remains in the
first levels of cache. The functions iblas dmr get block at lines 9, 11, and 12 return a pointer
to the start of a matrix block. The returned block is the one that contains the element of the
matrix pointed by the first parameter and whose row index and column index are given by the
second and third parameter, respectively.

1 int

2 mul_mmd_2000 (const dmr_ptr a, const dmr_ptr b, dmr_ptr c)

3 {

4 unsigned int i, j, k;

5
6 #pragma omp parallel for private(i, j, k) schedule(static)

7 for (i = 0; i < a->nrow; i += IBLAS_BLOCK_DIM_DOUBLE) {

8 for (j = 0; j < b->ncol; j += IBLAS_BLOCK_DIM_DOUBLE) {

123

9 const dmr_block_ptr cij = iblas_dmr_get_block (c, i, j);

10 for (k = 0; k < a->ncol; k += IBLAS_BLOCK_DIM_DOUBLE) {

11 dmr_block_ptr aik = iblas_dmr_get_block (a, i, k);

12 dmr_block_ptr bkj = iblas_dmr_get_block (b, k, j);

13 mm_dmul2_bb (aik , bkj , cij);

14 }

15 }

16 }

17
18 return 0;

19 }

Listing 8.1: The mul mmd 2000 Function with Outer Iterations on Rows.

Let us explain now how the outer loop is parallelized with OpenMP (for more details, see
[Ope13]).

The annotation #pragma omp parallel for at line 6 indicates that the initial execution
thread is entering a new parallel region, that it should create a new team of threads (what is
named a fork), and that the iterations of the following loop should be executed by the threads
of the team. This execution is parallel if the team is not reduced to the single initial thread.
The number of threads that belong to the new team may be controlled by several means. In the
following, we will simply use the OMP NUM THREADS environment variable to set the number of
threads in a team.

The clause private(i, j, k) specifies that the variables i, j, and k correspond to different
variables in different threads. The other variables are either shared by the threads of the team
if they are declared before the parallel region, so are a, b, and c, or private to each thread if
they are declared into the parallel region, so are cij, aik, and bkj. Threads may modify the
same memory location concurrently if they access it through shared variables. On the contrary,
private variables allow the programmer to use the same name for different variables, each thread
having a different interpretation of this name. For the code displayed in Listing 8.1 in particular,
the threads iterate over different blocks, so they do not actually modify the same memory cells,
but they write into the block assigned to them through the same pointer name, here cij. This
simplifies the code and, in addition, avoids unnecessary copies.

The clause schedule(static) determines how the iterations are distributed across threads.
With this instruction, successive iterations are gathered in groups that have approximately the
same size. Then, one iteration group is assigned to each thread. Other schedules are possible,
but this particular one is appropriate when loops perform the same amount of work.

Finally, there is an implicit barrier at the end of an OpenMP parallel construct, in this case
at the end of the outer loop line 16. This means that the threads of a team have to wait for the
completion of the parallel tasks before the initial thread can proceed (what is named a join).

Note that no change of the rounding mode occurs at this level. The rounding mode manage-
ment is entirely delegated to the block level. This solves the possible problem of rounding mode
violation by the run-time library for thread management, as was discussed in Section 5.1.2.

8.2 Sequential execution time

The previous chapter demonstrates that block kernels respect our implementations goals. Let us
see now that the multiplication of complete matrices reaches an acceptable level of performance.

Figure 8.1 presents the measures of the sequential execution times for products of square ma-
trices of increasing dimensions. The measured implementation of MMMul2 is the mul mmd 2000

124

function presented in Listing 8.1. At the top of the figure, the execution times of our implemen-
tation compiled with ICC 13.1.0 are compared to the ones of the dgemm function of the MKL,
version 11.0.2. The dimension of square interval matrices for MMMul2 or square floating-point
matrices for dgemm is displayed along the x-axis. All matrix components are in double precision,
and so is the working precision of the computation. The execution times in processor clock cycles
are displayed in logarithmic scale along the y-axis. For a fair comparison, we set the environment
variable MKL CBWR to SSE3, so that dgemm uses SSE instructions. The measured times for the
dgemm version using AVX instructions are not presented here, they show a two-fold speed-up
compared to the SSE version, as expected. The ratio of the two execution times for the same
matrix dimension is displayed at the bottom of Figure 8.1.

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500

107

108

109

1010

1011

ti
m

e
(c

y
cl

es
)

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500
0

1

2

3

matrix size

ti
m

e
ra

ti
o
M
M
M
u
l
2
/d
g
e
m
m

S
S

E

MMMul2 dgemm SSE

Figure 8.1: Execution time – Sequential.

Apart from very small matrices, the behaviors of the two products are remarkably similar.
The timings for MMMul2 tend to be about 2.8 times larger than the dgemm timings. We could
have been expecting an overhead of roughly 100% since interval matrix multiplication processes
twice the amount of data of a floating-point matrix product. Actually, this last estimation is
too optimistic. The simple model presented in the previous chapter can help us analyze more

125

precisely the minimum overhead, as shown in the following paragraph.

Let us consider blocks of size s. On the one hand, the computation of a product of non
interval blocks involves approximately s3 additions and s3 multiplications. Thus, it needs a total
of N = 2s3 floating-point operations. The Sandy Bridge architecture being able to issue one sum
and one product of SIMD vectors per cycle and the SSE vector being made of 2 floating-point
values in double precision, the execution time in cycles for the block product is

Tdgemm =
s3

2
.

On the other hand, the model for MMMul2 (see Table 7.12) gives a minimum time of

TMMMul2 = s3 + 6s2 +
9

2
s.

Then, the ratio of theoretical execution times is at least 2 + 12
s + 9

s2 . Therefore, for a block size
s = 32, the minimal execution time for MMMul2 is at least 2.34 Tdgemm. Considering the limits
of the model, which have been discussed in Section 7.4.3, the measured factor of 2.8 for large
matrices seems acceptable.

8.3 Measure of execution time for multi-threaded runs

In this section, we present the timings for the multi-threaded executions of mul mmd 2000 when
the dimension of the square matrices increases. As said in Section 6.3, the migration of threads
between cores is disabled by setting the environment variable OMP PROC BIND to true. So, in our
experiments, each thread is “pinned” to a single core and a given core executes no more than
one thread.

Moreover, the experiments are conducted in such a way that the measured times reflect the
use of the cores of a machine with an increasing number of octo-core processors. Precisely, the
first eight threads are assigned to the cores of the first processor (Socket P#0 in Figure 6.2).
Then, for experiments with more than eight threads, the next eight ones are assigned to the cores
of the second processor (Socket P#1), the seventeenth to twenty-fourth threads are assigned to
the cores of the third processor (Socket P#2), and the last eight ones to the cores of the fourth
processor (Socket P#3). We perform this assignment of threads by using the Intel OpenMP
library and by setting the environment variable KMP AFFINITY to “compact”.

On the contrary, no attempt is made to control the memory allocation for the matrices.
Indeed, each processor is linked to a memory module with a capacity of 96 GBytes. This means
that a single memory module may contain three square interval matrices in double precision that
have a dimension up to 44721, because 6 floating-point matrices × 8 Bytes per double ×447212

is less than 96 · 230. In our experiments, we restrict ourselves to much smaller dimensions, so
as to keep execution times in the limit of one half day for the whole set of measures. As a
consequence, components of all matrices are likely to be stored together in the same memory
module, presumably in the first memory module (M0 in Figure 6.1). This disposition favors the
threads that are executed on some core of the first processor and is less favorable to the threads
running on processor P#2 (see discussion on non-uniform memory access in Section 6.2.1).

As for sequential measures, the measured times for the dgemm function are related to the SSE
version.

126

8.3.1 Timings for 8 threads

The first set of measures aims at characterizing the behavior of the code when the execution
threads are dispatched to all cores of a single processor. Figure 8.2 summarizes the measures of
execution times with eight threads in a presentation similar to Figure 8.1.

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500

106

107

108

109

1010

ti
m

e
(c

y
cl

es
)

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500
0

1

2

3

4

matrix size

ti
m

e
ra

ti
o
M
M
M
u
l
2
/d
g
e
m
m

S
S

E

MMMul2 dgemm SSE

Figure 8.2: Execution time – 8 threads.

The variations of the execution time with the dimension of the matrices are alike for MMMul2
and dgemm. The ratio of the execution times of MMMul2 and dgemm is always between 2 and a
little bit more than 4, the maximum ratio in this set of measures being 4.05. It clearly tends to
a value around 2.9 when the matrix dimension grows.

8.3.2 Timings for 32 threads

The second set of measures exposes the behavior of the MKL dgemm and of our implementation of
interval matrix product when all the processing power of the test machine is used. The measured
execution times for MMMul2 and dgemm with 32 threads are displayed in Figure 8.3.

127

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500

106

107

108

109

1010

ti
m

e
(c

y
cl

es
)

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500
0

2

4

6

matrix size

ti
m

e
ra

ti
o
M
M
M
u
l
2
/d
g
e
m
m

S
S

E

MMMul2 dgemm SSE

Figure 8.3: Execution time – 32 threads.

Here, the behaviors of dgemm and of MMMul2 are less regular than in the sequential execution
or with 8 execution threads. Their ratio varies with a greater amplitude, between 1.75 and 6.07
in this experiment. Moreover, the trend seems to be an increase in the ratio with increasing
matrix dimension.

Note that some of the 32 threads are idle if the matrix dimension is too small. Precisely, the
execution times for matrix dimensions less than 1,024 do not correspond to parallel executions
of mul mmd 2000 with 32 threads. In fact, the code assigns the computation of rows of block
matrices to the threads (see line 7 in Listing 8.1). So, we need at least 32 block rows for being
able to assign an iteration over the block rows to each thread. The block dimension being 32,
the row matrix dimension should be greater than 32×32 = 1, 024. With smaller dimensions, the
work is distributed to a smaller number of threads in the team. However, when the dimension of
the square matrices is greater than or equal to 1,024, each thread processes a substantial amount
of computation: it has to compute at least 32768 interval components1 in the result matrix.

132 blocks of size 32× 32.

128

8.3.3 Scalability

We now analyze the strong scalability of dgemm and MMMul2, that is, their behavior when the
number of threads rises while the matrix dimension remains constant. The relevant metric in
this context is the measure of efficiency. By definition, the efficiency of a parallel implementation
executed with p threads is the ratio T1/(p× Tp), where T1 is the sequential execution time, and
Tp is the execution time using p execution threads. It equals one when the parallelism is perfect.

Figure 8.4 represents the variation of the measured execution times when the matrix dimen-
sion2 is fixed to 1024× 1024 and the number of threads increases.

1 2 4 8 16 24 32

108

109

number of threads

time (cycles)

1 2 4 8 16 24 32
0

0.2

0.4

0.6

0.8

1

number of threads

efficiency

dgemm SSE MMMul2

Figure 8.4: Scalability of MMMul2 and dgemm – 1024-by-1024 Matrices.

The measured times and ratios corresponding to Figure 8.4 are also displayed in Table 8.1
below.

thread dgemm MMMul2 time ratio
number time efficiency time efficiency MMMul2 / dgemm

1 6.4 · 108 1.00 1.7 · 109 1.00 2.7
2 3.2 · 108 0.99 8.5 · 108 1.00 2.7
4 1.6 · 108 0.98 4.3 · 108 0.99 2.5
8 8.6 · 107 0.93 2.2 · 108 0.98 2.6

16 4.7 · 107 0.86 1.2 · 108 0.91 2.6
24 4.1 · 107 0.65 1.1 · 108 0.63 2.7
32 2.6 · 107 0.76 6.7 · 107 0.80 2.5

Table 8.1: Measured Times (in cycles) and Efficiency of MMMul2 and dgemm – 1024-by-1024
Matrices.

The middling efficiency with 24 threads can be easily explained. With 1024-by-1024 matrices,

2The behavior of the matrix multiplication with square matrices of dimension up to 5,000 is similar to the one
with 1024× 1024 matrices, which is described here as a representative example.

129

we have 32 block rows to distribute among threads. If the thread team comprises 8, 16, or 32
threads, then each thread processes 4, 2, or 1 block row(s) respectively. If the thread team
comprises 24 threads, then the first 8 ones process 2 block rows and others process only 1 block
row. This explains why the computing times for 16 and 24 threads are comparable: some threads
have the same amount of work in both cases.

As it can be seen from this data, the efficiency of our MMMul2 implementation is close to the
efficiency of the dgemm implementation of the MKL, sometimes even superior.

8.3.4 The goal of strong scalability is reached

The experimental measures presented in this section show that the MMMul2 implementation
reaches the scalability goal as defined in Section 6.1. In particular, the efficiency is very high,
more than 90%, with 8 threads, that is, when the number of threads is equal to the number
of cores of a processor. This high percentage is an indication that the implementation takes
advantage of the multi-core architecture, ending up as an interval matrix multiplication that
costs no more than 3 times the cost of a well-optimized floating-point matrix product.

With more than 8 threads, the timings show a worrisome increasing trend when matrix
dimension grows. More investigation would be needed to determine the cause of this increase.
Nevertheless, the ratio of execution times still remains less than 6 for matrix dimensions less
than 5,000.

8.4 Conclusion

We conclude this part on the parallel implementation by comparing our implementation of the
interval matrix product, on the one hand, with the implementation where a multi-threaded
BLAS library is called, what was intended by previous authors, and, on the other hand, with
the implementations techniques of numerical, i.e. non-interval, matrix products.

As shown in Chapter 5, the use of external libraries is problematic because the rounding
mode may not be taken into account. The use of a parallel BLAS library makes the problem even
worse: the underlying multi-thread library may not respect the rounding mode. These concerns
about the correctness of the corresponding executable code exclude such an implementation
for a computation that one claims to be certified. Moreover, implementing the interval matrix
multiplications with the parallel BLAS also reduces the scalability of the program. In [RT13],
we compared the implementation of MMMul5, where some of the numerical matrix products are
combined in the same loop, with the one where each product is performed with a call to a parallel
BLAS function. The conclusion was that the former implementation is more scalable than the
latter. The reason is that the latter case imposes five global synchronization points, one after
each call to a BLAS function, whereas the version where a custom parallel function computes in
the same loop the four numerical matrix products of the lines 3 and 4 of Algorithm 7 page 45
only requires two global synchronization points: one after this custom function and one after the
last numerical matrix multiplication (line 5 of Algorithm 7). This lack of strong scalability of
the parallelization of a linear algebra operation through calls of some parallel BLAS functions is
well-known and is discussed in the case of matrix factorization in [BLKD09] or [BDK+07], for
example.

On the contrary, correctness and acceptable levels of sequential performance and of strong
scalability may be obtained by classical implementation techniques for numerical matrix multi-
plications. The key idea is the use of a specific data structure, where small square sub-matrices
of the interval matrix are stored in contiguous arrays. First, it improves the spatial and temporal
locality of memory accesses without needing to copy data. As a result, the performance is better.

130

Second, such block structures can be processed by small and efficient block kernels, while the
overall computation is spread over the several cores with multiple threads. This distinction of
two levels in the computation matches the distinction of the inter- and intra-core levels in the
hardware. It also affords opportunity to use classical algorithms at the higher level with slight
modifications, the difference being that the algorithm operates on blocks instead of components.
At the multi-thread level, the parallelization is done with OpenMP threads, by simply the adding
an OpenMP annotation. At the single thread level, the result block is computed in a sequential
way, setting the correct rounding mode systematically, without making any assumption on the
current rounding status. So, the correctness of the interval computation also depends on this
distinction of two levels, provided that it is correctly handled by the compiler. And finally, it
is possible to use loop fusion, loop unrolling, vectorization and removal of conditional branches
for the implementation of block kernels. Due to the higher level of complexity of interval com-
putation, current compilers may be unable to exploit these optimizations automatically and,
unfortunately, it is sometimes necessary to apply them manually. The resulting implementation
of the MMMUl2 algorithm then shows guaranty on the computed product, a small three-fold in-
crease in computation time and a comparable strong scalability, with respect to a product of
mere numerical matrices of the same size.

131

132

Conclusion

Our contributions

First, we quantified the numerical quality. Former error analyses of interval matrix products
establish bounds on the radius overestimation by neglecting the roundoff error. We discussed
several possible measures for interval approximations. We then bounded the roundoff error
and compared experimentally this bound with the global error distribution on several random
data sets. This approach enlightens the relative importance of the roundoff and arithmetic
errors depending on the value and homogeneity of relative accuracies of inputs, on the matrix
dimension, and on the working precision. This also leads to a new algorithm that is cheaper yet
as accurate as previous ones under well-identified conditions.

Second, we exploited the parallelism of linear algebra. Previous implementations use calls to
BLAS routines on numerical matrices. We showed that this may lead to wrong interval results
and also restrict the scalability of the performance when the core count increases. To overcome
these problems, we implemented a blocking version with OpenMP threads executing block kernels
with vector instructions. The timings on a 4-octo-core machine show that this implementation
is more scalable than the BLAS one and that the cost of numerical and interval matrix products
are comparable.

Perspectives and applications

The work presented here could be extended in several directions.

Interval BLAS library

The efficient implementation of interval matrix multiplication is the first step toward an interval
BLAS library that would provide the set of matrix operations that is defined in the BLAS
standard. The same approach of block algorithms and the same optimization techniques may be
employed to implement other arithmetic operations on interval matrices with the guaranty that
the inclusion property is verified.

It would be much more difficult to implement, with our approach, parallel interval matrix
factorizations or a certified parallel solution of triangular system of linear equations. Actually, the
corresponding floating-point algorithms involve subtractions and divisions that are detrimental
to the accuracy of interval computations.

Other targets – Sparse Matrices

The data structure we have chosen use a decomposition of interval matrices into small blocks.
By choosing a block size adapted to the characteristics of the underlying platform, our approach

133

should give good results on other targets like GPUs and other many-core accelerators. Another
favorable aspect of our interval matrix multiplication is that it uses only a static scheduling of
the threads. This is particularly important for the execution on current GPUs that do not have
enough capabilities to handle complex conditional code.

The structure in small blocks is also suitable to sparse matrices that contains a high percentage
of zero values. By storing only the block that contains non-zeroes in a compressed row (or
column) storage structure, one could adapt the sparse algorithms into block algorithms in the
same manner that dense matrix product has been adapted here to interval block matrix product.

Adaptive algorithm for interval matrix multiplication

At last, let us envisage an interesting improvement of numerical matrix computations in the light
of the conclusions of our accuracy analysis.

Starting from the point of view that the users may know the accuracy of a matrix product
that would fit their needs, it could be possible to express the wanted accuracy as an upper bound
on the relative accuracies of the result. If this bound is passed as a parameter to an interval
matrix multiplication function, an adaptive algorithm could try to compute a result within the
given accuracy bound. Let us sketch such an adaptive algorithm:

1. Let A and B be the input interval matrices, maybe reduced to thin matrices or matrices
with a uniform relative accuracy of one ulp if the initial problem is to compute floating-point
matrix products. Let E be the wanted maximum relative accuracy for the result.

2. In a first step, an approximate product C2 ⊇ AB is computed using the MMMul2 algorithm.

3. If all maximum relative accuracies for components of C2 are less than E, then the problem
is solved and C2 is an acceptable solution.

4. Otherwise, the components that satisfy the requirement are filtered out and the other one
are recomputed as follows. The maximum relative accuracies in A and B being already
computed, one can use the decision tree of Figure 4.16 and the program chooses the best
algorithm between MMMul3 and MMMul5 to compute a tighter enclosure for the remaining
components.

The choice between MMMul2, MMMul3, and MMMul5 could also be made at the block kernel level,
after the vector of maximum relative accuracies are computed.

134

Bibliography

[BCD+01] S. Blackford, G. Corliss, J. Demmel, J. Dongarra, I. Duff, S. Hammarling,
G. Henry, M. Heroux, C. Hu, W. Kahan, L. Kaufmann, B. Kearfott, F. Krogh,
X. Li, Z. Maany, A. Petitet, R. Pozo, K. Remington, W. Walster, C. Wha-
ley, J. Wolff von Gudenberg, and A. Lumsdaine. Basic Linear Algebra Sub-
programs Technical (BLAST) Forum Standard, 2001. http://www.netlib.org/

blas/blast-forum/.

[BDK+07] Alfredo Buttari, Jack J. Dongarra, Jakub Kurzak, Julien Langou, Piotr Luszczek,
and Stanimire Tomov. The impact of multicore on math software. In
Bo Kragström, Erik Elmroth, Jack J. Dongarra, and Jerzy Waśniewski, editors,
Proceedings of the 8th international conference on Applied parallel computing:
state of the art in scientific computing, volume 4699 of Lecture Notes in Com-
puter Science, pages 1–10. Springer Berlin Heidelberg, 2007.

[BLKD09] Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack J. Dongarra. A class
of parallel tiled linear algebra algorithms for multicore architectures. Parallel
Computing, 35(1):38–53, January 2009.

[FHL+07] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, and Paul
Zimmermann. MPFR: A multiple-precision binary floating-point library with
correct rounding. ACM Trans. Math. Softw., 33(2), June 2007.

[gcc08] GCC bug 34678 – optimization generates incorrect code with -frounding-math op-
tion. http://gcc.gnu.org/bugzilla/show_bug.cgi?id=34678, January 2008.

[gcc11] GCC bug 47617 – sse rounding mode works -g, not -o3. http://gcc.gnu.org/

bugzilla/show_bug.cgi?id=47617, February 2011.

[GFMR13] Thierry Gautier, Joao Vicente Ferreira Lima, Nicolas Maillard, and Bruno Raf-
fin. XKaapi: A runtime system for data-flow task programming on heteroge-
neous architectures. In 27th IEEE International Parallel & Distributed Pro-
cessing Symposium (IPDPS), Boston, Massachusetts, USA, May 2013. http:

//hal.inria.fr/hal-00799904/PDF/ipdps2013.pdf.

[Gou14] Frédéric Goualard. How do you compute the midpoint of an interval? ACM
Transactions on Mathematical Software, 40(2):11:1–11:25, March 2014.

[Gus06] Fred G. Gustavson. New generalized data structures for matrices lead to a va-
riety of high performance dense linear algebra algorithms. In Proceedings of the
7th international conference on Applied Parallel Computing: state of the Art in
Scientific Computing, PARA’04, pages 11–20. Springer-Verlag, 2006.

135

http://www.netlib.org/blas/blast-forum/
http://www.netlib.org/blas/blast-forum/
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=34678
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47617
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47617
http://hal.inria.fr/hal-00799904/PDF/ipdps2013.pdf
http://hal.inria.fr/hal-00799904/PDF/ipdps2013.pdf

[Gus08] Fred G. Gustavson. The relevance of new data structure approaches for dense
linear algebra in the new multi-core/many core environments. In Proceedings of
the 7th international conference on Parallel processing and applied mathematics,
PPAM’07, pages 618–621. Springer-Verlag, 2008.

[Gus12] Fred G. Gustavson. Cache blocking for linear algebra algorithms. In Roman
Wyrzykowski, Jack Dongarra, Konrad Karczewski, and Jerzy Wasniewski, edi-
tors, Proceedings of the 9th International Conference On Parallel Processing And
Applied Mathematics, volume 7203 of Lecture Notes in Computer Science, pages
122–132. Springer, 11–14 September 2012.

[Gv08] Kazushige Goto and Robert A. van. de Geijn. Anatomy of high-performance
matrix multiplication. ACM Transactions on Mathematical Software, 34(3):12:1–
12:25, May 2008.

[Hig02] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Society for
Industrial and Applied Mathematics, second edition, 2002.

[HP07] John L. Hennessy and David A. Patterson. Computer Architecture - A Quanti-
tative Approach. Morgan Kaufmann, 4th edition, 2007.

[IEE08] IEEE Standard for Floating-Point Arithmetic, Aug 2008.

[Int] Intel. Intel Xeon Phi Coprocessor Developer’s Quick Start Guide. http:

//software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-

developers-quick-start-guide.

[Int13a] Intel. Intel 64 and IA-32 Architectures Optimization Reference Manual,
2013. http://www.intel.com/content/dam/www/public/us/en/documents/

manuals/64-ia-32-architectures-optimization-manual.pdf.

[Int13b] Intel. Intel C++ Compiler XE 13.1 User and Reference Guide, 2013.
https://software.intel.com/sites/products/documentation/doclib/

stdxe/2013/composerxe/compiler/cpp-lin/index.htm.

[Int14a] Intel. Intel 64 and IA-32 Architectures Software Developers Manuals, 2014. http:
//www.intel.com/content/dam/www/public/us/en/documents/manuals/64-

ia-32-architectures-software-developer-manual-325462.pdf.

[Int14b] Intel Corporation. Intel Threading Building Blocks Reference Manual, 2014.
https://software.intel.com/en-us/node/506130.

[ISO99] ISO. The ANSI C standard (C99). Technical report, ISO/IEC, 1999. http:

//www.open-std.org/JTC1/SC22/WG14/www/docs/n1124.pdf.

[IT13] IEEE and The Open Group. The Open Group Base Specifications, 7 edition,
2013. http://pubs.opengroup.org/onlinepubs/9699919799/.

[Khr11] Khronos OpenCL Working Group. The OpenCL Specification. Khronos Group,
November 2011. http://www.khronos.org/registry/cl/specs/opencl-1.2.

pdf.

136

http://software.intel.com/en-us/articles/ intel-xeon-phi-coprocessor-developers-quick-start-guide
http://software.intel.com/en-us/articles/ intel-xeon-phi-coprocessor-developers-quick-start-guide
http://software.intel.com/en-us/articles/ intel-xeon-phi-coprocessor-developers-quick-start-guide
http://www.intel.com/content/dam/ www/public/us/en/documents/manuals/ 64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/ www/public/us/en/documents/manuals/ 64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/products/documentation/ doclib/stdxe/2013/composerxe/compiler/cpp-lin/index.htm
https://software.intel.com/sites/products/documentation/ doclib/stdxe/2013/composerxe/compiler/cpp-lin/index.htm
http://www.intel.com/content/dam/ www/public/us/en/documents/manuals/ 64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/ www/public/us/en/documents/manuals/ 64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/ www/public/us/en/documents/manuals/ 64-ia-32-architectures-software-developer-manual-325462.pdf
https://software.intel.com/en-us/node/506130
http://www.open-std.org/JTC1/SC22/WG14/www/ docs/n1124.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/ docs/n1124.pdf
http://pubs.opengroup.org/onlinepubs/9699919799/
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf

[KLY+13] Jakub Kurzak, Piotr Luszczek, Asim YarKhan, Mathieu Faverge, Julien Langou,
Henricus Bouwmeester, and Jack Dongarra. Multithreading in the PLASMA Li-
brary, chapter Multicore Computing, pages 119–141. Computer & Information
Science Series. Chapman & Hall/CRC, 2013.

[KM03] Zenon Kulpa and Svetoslav Markov. On the inclusion properties of interval mul-
tiplication: A diagrammatic study. BIT Numerical Mathematics, 43:791–810,
2003.

[KNN+10] R. Baker Kearfott, Mitsuhiro T. Nakao, Arnold Neumaier, Siegfried M. Rump,
Sergey P. Shary, and Pascal van Hentenryck. Standardized notation in interval
analysis. Computational Technologies, 15(1):7–13, 2010.

[Knü94] Olaf Knüppel. PROFIL/BIAS–a fast interval library. Computing, 53(3-4):277–
287, 1994.

[Kre13] Vladik Kreinovich. How to define relative approximation error of an interval
estimate: A proposal. Applied Mathematical Sciences, 7(5):211–216, 2013.

[Lam06] Branimir Lambov. Interval arithmetic using sse-2. In Peter Hertling, Christoph M.
Hoffmann, Wolfram Luther, and Nathalie Revol, editors, Reliable Implementation
of Real Number Algorithms: Theory and Practice, volume 5045 of Lecture Notes
in Computer Science, pages 102–113. Springer-Verlag, 2006.

[LDB+02] Xiaoye S. Li, James W. Demmel, David H. Bailey, Greg Henry, Yozo Hida, Jimmy
Iskandar, William Kahan, Suh Y. Kang, Anil Kapur, Michael C. Martin, Bran-
don J. Thompson, Teresa Tung, and Daniel J. Yoo. Design, implementation and
testing of extended and mixed precision BLAS. ACM Transactions on Mathe-
matical Software, 28(2):152–205, June 2002.

[LMM12] Christoph Lauter and Valérie Ménissier-Morain. There’s no reliable computing
without reliable access to rounding modes. In Institute of Computational Tech-
nologies, editor, SCAN 2012 Symposium on Scientific Computing, Computer
Arithmetics and Verified Numerics, pages 99–100, 2012.

[MBdD+10] Jean-Michel Muller, Nicolas Brisebarre, Florent de Dinechin, Claude-Pierre Jean-
nerod, Vincent Lefèvre, Guillaume Melquiond, Nathalie Revol, Damien Stehlé,
and Serge Torres. Handbook of Floating-Point Arithmetic. Birkhäuser Boston,
2010.

[MZG+07] Bryan Marker, Field Van Zee, Kazushige Goto, Gregorio Quintana-Orti, and
Robert van de Geijn. Toward scalable matrix multiply on multithreaded archi-
tectures. Euro-Par 2007 Parallel Processing, pages 748–757, 2007.

[Neu90] Arnold Neumaier. Interval methods for systems of equations. Cambridge Univer-
sity Press, Cambridge, 1990.

[Ngu11] Hong Diep Nguyen. Efficient algorithms for verified scientific computing: nu-
merical linear algebra using interval arithmetic. PhD thesis, École Normale
Supérieure de Lyon – Université de Lyon, 2011. http://hal-ens-lyon.

archives-ouvertes.fr/ensl-00560188.

[OO05] Takeshi Ogita and Shin’ichi Oishi. Fast inclusion of interval matrix multiplication.
Reliable Computing, 11(3):191–205, 2005.

137

http://hal-ens-lyon.archives-ouvertes.fr/ ensl-00560188
http://hal-ens-lyon.archives-ouvertes.fr/ ensl-00560188

[OOO11] Katsuhisa Ozaki, Takeshi Ogita, and Shin’ichi Oishi. Tight and efficient enclosure
of matrix multiplication by using optimized BLAS. Numerical Linear Algebra with
Applications, 18(2):237–248, 2011.

[OORO12] Katsuhisa Ozaki, Takeshi Ogita, Siegfried M. Rump, and Shin’ichi Oishi. Fast
algorithms for floating-point interval matrix multiplication. Journal of Compu-
tational and Applied Mathematics, 236:1795–1814, 2012.

[Ope13] OpenMP Architecture Review Board. OpenMP Application Program Interface.
OpenMP Architecture Review Board, July 2013. http://www.openmp.org/mp-

documents/OpenMP4.0.0.pdf.

[OR02] Shin’ichi Oishi and Siegfried M. Rump. Fast verification of solutions of matrix
equations. Numerische Mathematik, 90(4):755–773, 2002.

[QOQOG+09] Gregorio Quintana-Ort́ı, Enrique S. Quintana-Ort́ı, Robert A. Van De Geijn,
Field G. Van Zee, and Ernie Chan. Programming matrix algorithms-by-blocks
for thread-level parallelism. ACM Transactions on Mathematical Software,
36(3):14:1–14:26, July 2009.

[Rat72] H. Ratschek. Teilbarkeitskriterien der intervallarithmetik. Journal für die reine
und angewandte Mathematik, 252:128–138, 1972.

[RS82] H. Ratschek and W. Sauer. Linear interval equations. Computing, 28(2):105–115,
1982.

[RT13] Nathalie Revol and Philippe Théveny. Parallel implementation of interval matrix
multiplication. Reliable Computing, 19(1):91–106, 2013.

[RT14] Nathalie Revol and Philippe Théveny. Numerical reproducibility and parallel
computations: Issues for interval algorithms. IEEE Transactions on Computers,
2014. (to appear).

[Rum99a] Siegfried M. Rump. Fast and parallel interval arithmetic. BIT Numerical Math-
ematics, 39:534–554, 1999.

[Rum99b] Siegfried M. Rump. INTLAB - INTerval LABoratory. In Tibor Csendes, editor,
Developments in Reliable Computing, pages 77–104. Kluwer Academic Publishers,
Dordrecht, 1999. http://www.ti3.tuhh.de/rump/.

[Rum10] Siegfried M. Rump. Verification methods: Rigorous results using floating-point
arithmetic. Acta Numerica, 19:287–449, 2010.

[Rum12] Siegfried M. Rump. Fast interval matrix multiplication. Numerical Algorithms,
61(1):1–34, 2012.

[RZBM] Siegfried M. Rump, Paul Zimmermann, Sylvie Boldo, and Guillaume Melquion.
Interval operations in rounding to nearest. http://www.ti3.tu-harburg.de/

paper/rump/RuZiBoMe09.pdf.

[Str69] Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik,
13:354–356, 1969.

138

http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.ti3.tuhh.de/rump/
http://www.ti3.tu-harburg.de/paper/rump/ RuZiBoMe09.pdf
http://www.ti3.tu-harburg.de/paper/rump/ RuZiBoMe09.pdf

[Tod12] R. Todd. Introduction to conditional numerical reproducibility (CNR).
http://software.intel.com/en-us/articles/introduction-to-the-

conditional-numerical-reproducibility-cnr, 2012.

[VCv+09] Field G. Van Zee, Ernie Chan, Robert A. van. de Geijn, Enrique S. Quintana-Orti,
and Gregorio Quintana-Orti. The libflame library for dense matrix computations.
IEEE Computing in Science & Engineering, 11(6):56–63, November 2009.

[WD98] R. Clint Whaley and Jack J. Dongarra. Automatically tuned linear algebra soft-
ware. In Proceedings of the ACM/IEEE Conference on Supercomputing (SC
1998), pages 1–27. IEEE, 7–13 November 1998. www.cs.utsa.edu/~whaley/

papers/atlas_sc98.ps.

[WPD00] R. Clint Whaley, Antoine P. Petitet, and Jack J. Dongarra. Automated empirical
optimization of software and the ATLAS project. Technical Report 147, LAPACK
Working Note, September 2000. http://www.netlib.org/lapack/lawnspdf/

lawn147.pdf.

[YKD11] Asim YarKhan, Jakub Kurzak, and Jack J. Dongarra. QUARK users’ guide:
QUeueing And Runtime for Kernels. Technical report, University of Ten-
nessee Innovative Computing Laboratory, 2011. http://icl.cs.utk.edu/

projectsfiles/plasma/pubs/56-quark_users_guide.pdf.

[ZJH09] Dmitrijs Zaparanuks, Milan Jovic, and Matthias Hauswirth. Accuracy of per-
formance counter measurements. In Proceedings of the IEEE International Sym-
posium on Performance Analysis of Systems and Software, pages 23–32. IEEE,
26–28April 2009.

139

http://software.intel.com/en-us/articles/ introduction-to-the-conditional-numerical-reproducibility-cnr
http://software.intel.com/en-us/articles/ introduction-to-the-conditional-numerical-reproducibility-cnr
www.cs.utsa.edu/~whaley/papers/atlas_sc98.ps
www.cs.utsa.edu/~whaley/papers/atlas_sc98.ps
http://www.netlib.org/lapack/lawnspdf/lawn147.pdf
http://www.netlib.org/lapack/lawnspdf/lawn147.pdf
http://icl.cs.utk.edu/projectsfiles/plasma/pubs/ 56-quark_users_guide.pdf
http://icl.cs.utk.edu/projectsfiles/plasma/pubs/ 56-quark_users_guide.pdf

Résumé
Algèbre Linéaire d’Intervalles : Qualité Numérique et Haute Performance sur Pro-
cesseurs Multi-Cœurs

L’objet de la thèse est de comparer des algorithmes de multiplication de matrices à coefficients
intervalles et leurs implémentations.

Le premier axe est la mesure de la précision numérique. Les précédentes analyses d’erreur se
limitent à établir une borne sur la surestimation du rayon du résultat en négligeant les erreurs
dues au calcul en virgule flottante. Après examen des différentes possibilités pour quantifier
l’erreur d’approximation entre deux intervalles, l’erreur d’arrondi est intégrée dans l’erreur glo-
bale. À partir de jeux de données aléatoires, la dispersion expérimentale de l’erreur globale
permet d’éclairer l’importance des différentes erreurs (de méthode et d’arrondi) en fonction de
plusieurs facteurs : valeur et homogénéité des précisions relatives des entrées, dimensions des
matrices, précision de travail. Cette demarche conduit à un nouvel algorithme moins coûteux et
tout aussi précis dans certains cas déterminés.

Le deuxième axe est d’exploiter le parallélisme des opérations. Les implémentations précédentes
se ramènent à des produits de matrices de nombres flottants. Pour contourner les limitations
d’une telle approche sur la validité du résultat et sur la capacité à monter en charge, je propose
une implémentation par blocs réalisée avec des threads OpenMP qui exécutent des noyaux de
calcul utilisant des instructions vectorielles. L’analyse des temps d’exécution sur une machine de
4 octo-coeurs montre que les coûts de calcul sont du même ordre de grandeur sur des matrices
intervalles et numériques de même dimension et que l’implémentation par blocs passe mieux à
l’échelle que l’implémentation avec plusieurs appels aux routines BLAS.

Mots-Clés : algèbre linéaire numérique, multiplication de matrices, implémentation par-
allèle, processeurs multi-cœurs, memoire partagée, virgule flottante, analyse d’erreur, arithmétique
d’intervalles.

Abstract
Numerical Quality and High Performance in Interval Linear Algebra on Multi-Core
Processors

This work aims at determining suitable scopes for several algorithms of interval matrices
multiplication.

First, we quantify the numerical quality. Former error analyses of interval matrix products
establish bounds on the radius overestimation by neglecting the roundoff error. We discuss here
several possible measures for interval approximations. We then bound the roundoff error and
compare experimentally this bound with the global error distribution on several random data sets.
This approach enlightens the relative importance of the roundoff and arithmetic errors depending
on the value and homogeneity of relative accuracies of inputs, on the matrix dimension, and on
the working precision. This also leads to a new algorithm that is cheaper yet as accurate as
previous ones under well-identified conditions.

Second, we exploit the parallelism of linear algebra. Previous implementations use calls to
BLAS routines on numerical matrices. We show that this may lead to wrong interval results
and also restrict the scalability of the performance when the core count increases. To overcome
these problems, we implement a blocking version with OpenMP threads executing block kernels
with vector instructions. The timings on a 4-octo-core machine show that this implementation
is more scalable than the BLAS one and that the cost of numerical and interval matrix products
are comparable.

Keywords: Numerical linear algebra, matrix multiplication, parallel implementation, multi-
core processors, shared memory, floating-point number, error analysis, interval arithmetic.

	Introduction
	I Error Analysis
	Measuring error in interval linear algebra
	Metric on the set of real intervals
	Midpoint-radius representation
	The choice of a metric
	Relations between metrics
	Conclusion

	Accuracy of interval inner products
	Interval arithmetic variants
	Interval inner product and variants
	Arithmetic error of interval inner products
	Arithmetic error analysis
	A new approximate inner product
	Conclusion

	Accuracy of interval matrix products
	Floating-point model
	Interval matrix product in three point matrix products
	Interval matrix product in five point matrix products
	A new algorithm in two point matrix products
	Conclusion

	Global error analysis
	Measuring the global error experimentally
	Global error for MMMul3
	Global error for MMMul2
	Global error for MMMul5
	Conclusion

	II Parallel Implementation
	Parallel interval linear algebra on multi-core processors
	Implementation issues with regard to interval linear algebra
	Rounding modes
	Execution order
	Conclusion

	Implementation methodology
	Priority list of implementation goals
	Parallel linear algebra on multi-core processors
	Experimental protocols
	Conclusion

	Hardware model and blocking for single core computations
	Hardware model for single core performance prediction
	Vector instruction set: Streaming SIMD Extensions
	Block computations
	Execution time of block kernels
	Conclusion

	Multi-core and multi-threading
	Multi-threaded implementations of block algorithms
	Sequential execution time
	Measure of execution time for multi-threaded runs
	Conclusion

	Conclusion
	Bibliography

