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ABSTRACT  

This Ph. D. work addresses the problem of prediction within energy systems design and 

operation problems, and particularly the adequacy assessment of renewable power generation 

systems. The general aim is to develop an empirical modeling framework for providing 

predictions with the associated uncertainties. Along this research direction, a non-parametric, 

empirical approach to estimate neural network (NN)-based prediction intervals (PIs) has been 

developed, accounting for the uncertainty in the predictions due to the variability in the input 

data and the system behavior (e.g. due to the stochastic behavior of the renewable sources and 

of the energy demand by the loads), and to model approximation errors. A novel multi-

objective framework for estimating NN-based PIs, optimal in terms of both accuracy 

(coverage probability) and informativeness (interval width) is proposed. Ensemble of 

individual NNs via two novel approaches is proposed as a way to increase the performance of 

the models. Applications on real case studies demonstrate the power of the proposed 

framework. 

 

Keywords: Prediction intervals, multi-layer perceptron neural networks, multi-objective 

genetic algorithm, adequacy assessment, short-term wind speed prediction, wind power 

production, load forecasting, uncertainty. 
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RÉSUMÉ ÉTENDU   

La production et la fourniture d'énergie posent des enjeux aussi bien économiques, 

environnementaux, sociaux que politiques. Dans une optique de développement durable, il 

s'agit de tendre vers un meilleur équilibre dans la prise en compte de ces différents enjeux. La 

demande mondiale d'énergie va continuer de croître mais devra être satisfaite de manière 

efficiente et efficace. L’accroissement de la mobilité, de l'urbanisation et de 

l’industrialisation, en particulier dans les pays en développement, et l'intégration toujours plus 

importante de l'économie mondiale vont accélérer l'augmentation de la consommation 

mondiale d'énergie et la dépendance énergétique de nos sociétés. Aujourd'hui, le principal 

moyen de répondre à la demande d'énergie électrique est la combustion de combustibles 

fossiles (par exemple du pétrole, du charbon ou du gaz naturel). Bien que les carburants 

fossiles puissent produire une quantité importante d’énergie, les principaux inconvénients de 

ces sources d'énergie sont leurs réserves limitées et leurs effets négatifs sur l’environnement. 

En particulier, les changements climatiques induits constituent un défi supplémentaire pour 

les fournisseurs d’énergie, les consommateurs et les opérateurs du marché. Pour lutter contre 

le changement climatique, à savoir réduire les effets négatifs  des sources d'énergie 

traditionnelles (par exemple les émissions de gaz à effet de serre), les sources d'énergie 

fossiles doivent être remplacées par des sources d'énergie alternatives, c'est à dire les sources 

d'énergie renouvelables, plus propres et moins dommageables pour les individus et 

l'environnement. 

 

D'un point de vue général, l'objectif principal des systèmes de production d'énergie devrait 

être de répondre à tout moment à la demande d'énergie  tout en minimisant les impacts 

environnementaux associés. Ceci nécessite de développer des formes propres d'énergie, tout 

en s'assurant de la cohérence et de la fiabilité de leur approvisionnement et de leur utilisation. 

Cependant, les acteurs du marché de l'énergie (investisseurs,  producteurs d’électricité, les 

gestionnaires de réseau, les consommateurs, etc.) font face à des défis potentiels [1]-[5]: 

 

• la demande croissante d'énergie 

• de nouveaux défis dans les modes de consommation d'énergie 

• l'intégration des sources d'énergie intermittentes (stochastiques) renouvelables dans les 

réseaux électriques 

• l'extraction de combustibles fossiles dans des conditions extrêmes d'une manière plus 

économique et plus sûre 
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• le renforcement des capacités de raffinage 

• la réduction des déchets nucléaires 

• améliorer la fiabilité du transport de l'électricité 

 

Les énergies renouvelables sont produites à partir de ressources naturelles renouvelables 

comme le soleil, le vent, la pluie, les marées, la biomasse et la chaleur géothermique, c'est-à-

dire à partir de ressources qui se reconstituent naturellement avec l'écoulement du temps, soit 

par la reproduction biologique, soit par d'autres processus naturels récurrents [4], [6]. En tant 

que source d'énergie renouvelable non polluante et beaucoup moins chère que l'énergie 

nucléaire, l'énergie éolienne, parmi les différents candidats, a rencontré un succès grandissant 

partout dans le monde. L'utilisation de l'énergie éolienne a ainsi augmenté de façon 

spectaculaire au cours de la dernière décennie. Selon le rapport annuel de 2013 publié par 

l’Association Mondiale de l’Energie Eolienne (WWEA) [2], la capacité éolienne mondiale a 

atteint 296 GW à la fin du mois de juin 2013, dont 13980 MW de nouvelles capacités 

installées au cours du premier semestre 2013. Selon le rapport annuel de 2012 de 

l’Association Européenne de l’Energie Eolienne (EWEA) [7], la capacité installée dans 

l'Union européenne (UE) a augmenté d'environ 13 GW en 2000 mais de 107 GW en 2012. 

Cela répond aux besoins de puissance électrique de 57 millions de foyers et est équivalent à la 

fermeture de 39 centrales nucléaires [7]. Cette croissance continue et rapide indique que 

l'énergie éolienne représente une solution populaire, respectueuse de l'environnement et 

durable pour répondre au besoin croissant d’électricité. A titre d'exemple, la région 

occidentale du Danemark a l'un des taux de pénétration de l'énergie éolienne les plus élevés 

dans le monde, qui est resté stabilisé entre 25 et 30 % au cours des dernières années [5]. Selon 

le rapport statistique annuel de BP sur la consommation mondiale d'énergie, le pétrole reste la 

source d'énergie la plus utilisée dans le monde et représente 33,1% de la consommation 

mondiale d'énergie en 2012. Cependant, à l'échelle mondiale, il a eu le taux de croissance le 

plus faible parmi les combustibles fossiles, ce pour la troisième année consécutive [3]. 

 

L'évolution des réseaux électriques classiques vers des réseaux intégrant des sources 

distribuées d'énergies renouvelables induit des incertitudes supplémentaires concernant leur 

fonctionnement. En effet, les défis qui posent un fonctionnement fiable et sécurisé des 

systèmes électriques augmentent avec la proportion d'énergies renouvelables intermittentes 

(par exemple, éolienne, solaire, etc.) introduites dans les réseaux électriques. Du côté des 

fournisseurs, en particulier, l'intégration des sources d'énergie renouvelables (par exemple, 
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éolien et solaire) dans le réseau imposent des défis techniques et économiques, en raison de la 

difficulté de contrôle et de distribution de ces sources d'énergie due à leurs caractéristiques 

intermittentes. 

 

Il convient de souligner que le recours à l'énergie éolienne va continuer à augmenter: 

l’Association Mondiale de l’Energie Eolienne (WWEA) a prédit une capacité éolienne 

mondiale potentielle de plus de 700 000 MW en 2020 [8]. A titre d'exemple à l'échelle d'un 

pays, le Danemark a pour objectif de produire 50% de son  électricité à partir de sources 

d'énergies renouvelables en 2020. Ces objectifs montent ensuite à 100% de la production 

d'électricité et de chaleur en 2035, et 100% de la consommation d'énergie dans les transports 

en 2050. L'Ecosse a également pour objectif d'atteindre 100% d'énergies renouvelables dans 

sa production d'électricité à l'horizon 2020 [9]. Ces projections mettent en évidence 

l'importance de la maîtrise de l'intégration d'une grande quantité d'énergie éolienne au réseau 

électrique, c'est-à-dire en préservant la fiabilité du réseau. 

 

Dans le Tableau 1, nous présentons les principaux avantages et inconvénients de l'exploitation 

de l'énergie éoliene. La vitesse du vent est une variable météorologique très irrégulière, avec 

des variations instantanées, horaires, journalières et saisonnières qui induisent une production 

d'électricité volatile. La nature volatile du vent pose un problème de prévisibilité du 

fonctionnement des éoliennes et de la gestion du réseau électrique. Il est ainsi nécessaire 

d'utiliser un modèle de prédiction, qui doit être également capable de fournir des informations 

sur l'incertitude de cette prédiction, afin de prendre les meilleures décisions en connaissance 

de cause. 

 

Au long de cette thèse, nous fournissons donc un cadre utile pour la prédiction d'énergie 

éolienne qui permet, en outre, de quantifier l'incertitude de cette prédiction de manière 

pertinente. 
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Tableau 1. Les principaux avantages et inconvénients de l'exploitation de l'énergie éolienne. 

Avantages Inconvénients 

• Propre (impacts environnementaux 

réduits). 

• Source gratuite et illimitée. 

• Peut être facilement utilisée par les 

ménages individuels dans les petites 

villes et les villages. 

• Economique (une des technologies les 

moins chères d'énergies renouvelables 

aujourd'hui disponibles). 

• Des éoliennes peuvent être construites 

dans les fermes ou ranchs, ce qui permet 

de générer des bénéfices pour l'économie 

locale de zones rurales.  

• Technologie relativement simple. 

• Le vent est une source intermittente, la 

production d'énergie est donc variable. 

• Prévisibilité limitée en raison de ce 

caractère intermittent, variabilité et 

incertitude inhérentes au vent. 

• Les installations requièrent des 

investissements initiaux considérables. 

• La fabrication de turbines provoque des 

impacts environnementaux. 

• Les éoliennes sont bruyantes. 

 

L' évaluation de l'adéquation d'un réseau électrique à la production d' énergie renouvelable 

distribuée est difficile en raison de nombreuses incertitudes, comme les fluctuations de la 

demande d'énergie, la prévision des conditions météorologiques (par exemple la vitesse du 

vent, le rayonnement solaire, etc.), l’indisponibilité de certains équipements (par exemple, les 

générateurs, les lignes, etc.), les défaillances dans les transactions d'énergie électrique, des 

erreurs de fonctionnement (erreurs de manipulation, dysfonctionnements des répartiteurs et 

des relais), etc. En particulier, la variabilité inhérente aux sources d'énergie renouvelables et 

les incertitudes associées peuvent avoir un impact significatif sur le réseau électrique, et des 

prédictions précises et fiables de la puissance de sortie obtenue à partir de ces sources sont 

nécessaires sur différentes échelles de temps. Ainsi, la prédiction de la production d'énergie à 

partir des sources d'énergie renouvelables est un point critique si l'on veut les intégrer 

efficacement au réseau électrique. D'autre part, une prédiction précise de la demande 

d'électricité est également capitale pour l'évaluation de la pertinence du système : elle permet 

aux opérateurs de réseaux et aux fournisseurs de services énergétiques de planifier l'allocation 

des ressources, et de mettre en place des stratégies optimisées de contrôle (par exemple, le 

pilotage de certains équipements en fonction de la demande, la révision des tarifs de 

l'électricité, etc.) pour assurer l'équilibre entre l'offre et la demande d'électricité. Par 
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conséquent, la résolution de problèmes de prédiction dans ce contexte d'évolution et 

d'adaptation progressive des réseaux électriques a généré une quantité considérable de travaux 

de recherche depuis plusieurs décennies. 

 

En particulier, un axe de recherche important a consisté à développer des méthodes de 

prédiction précises et fiables de l'énergie éolienne et de la demande d'énergie électrique, et de 

nombreux systèmes de prédiction reposant sur des approches différentes ont été proposées. 

Une vue d'ensemble des méthodes de prédiction existantes qui ont été prises en compte dans 

cette thèse est donnée à la section 2.2. 

 

Motivation et Objectifs 

La prédiction joue un rôle clé dans de nombreux processus de décision et l'incertitude devrait 

être systématiquement prise en compte dans les résultats obtenus. L’incertitude de prédiction 

peut être due à des erreurs de mesure, à un manque de connaissances des données d'entrée, ou 

encore à des erreurs liées aux approximations faites pour  établir le modèle de prédiction 

(imperfections dans la formulation du modèle, processus d'estimation, etc.). 

 

Concernant les systèmes énergétiques, l'incertitude de prédiction des facteurs clés, due à la 

fois au caractère stochastique des données et aux approximations des modèles de prédiction, 

peut entraîner des coûts élevés pour les acteurs du marché (producteurs, clients, etc.) 

lorsqu'elle n'est pas correctement prise en compte. En particulier, dans les réseaux électriques 

intégrant de l'énergie éolienne, l'impact d'une telle source d'énergie très variable sur la fiabilité 

du système est un aspect important qui doit être évalué si le taux de pénétration de l'énergie 

éolienne (c'est-à-dire, le poids de l'énergie éolienne dans la réponse à la demande d'énergie 

électrique) est important. Par conséquent, compte tenu du fort taux de pénétration des sources 

d'énergie éolienne dans les nouveaux systèmes électriques en concurrence, les méthodes de 

prédiction fiables des vitesses de vent et de la puissance éolienne sont progressivement 

devenues des outils importants pour un management efficace et durable du marché de 

l'énergie: la combinaison des prédictions court-terme précises de la vitesse du vent et de la 

demande d’énergie permet aux opérateurs de réseaux d'ajuster, pour le jour suivant, 

l'étagement des différents moyens de production disponibles. Ceci permet de répondre à la 

demande en optimisant les coûts de fonctionnement du réseau tout en s'assurant d'une 

fourniture fiable et sécurisée. 
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La grande majorité des études existantes sur la prédiction de la vitesse du vent / puissance et 

la demande d’énergie ne fournissent que des prédictions  ponctuelles, i.e. une valeur unique à 

chaque pas de temps considéré, sans tenir compte des incertitudes dans la structure du modèle 

et des données d'entrée. 

 

Les intervalles de prédiction (PIs) constituent un moyen simple de communiquer une mesure 

de l'incertitude dans les prédictions. Un intervalle de prédiction est caractérisé par ses deux 

bornes dans lesquelles tombera vraisemblablement une nouvelle observation de   si elle fait 

partie de la même population statistique que l'échantillon. Plus de détails sur les PIs et leur 

application aux systèmes énergétiques sont donnés à la Section 2.3. Ici, il suffit de mentionner 

que deux éléments caractérisant les PIs sont leur probabilité de couverture (PICP) et leur 

largeur (PIW), qui doivent être respectivement maximisé et minimisé.  

 

Dans ce travail, nous appliquons donc les PIs à l'analyse de l'adéquation des réseaux 

électriques à l'énergie éolienne. Nous nous intéressons à des prédictions court-terme de la 

vitesse du vent, de la puissance éolienne produite et de la demande d'énergie, car le 

fonctionnement des systèmes électriques est étroitement lié à ces variations court-terme 

(gestion opérationnelle des unités de puissance, etc.). Plus précisément, nous nous intéressons 

à l'estimation les PIs via des réseaux de neurones artificiels (NNs), en améliorant une méthode 

existante dite “Lower Upper Bound Estimation Method for Construction of NN-based PIs 

(LUBE)”. Nous nous plaçons dans un cadre d'optimalité multi-objectifs de Pareto qui tient 

compte à la fois du PICP et du PIW. Ils s’expriment comme suit [36]: 

 

     
 

  
∑   

  

   
                   (1) 

 

où      si      (  )  (  ) , et      sinon.   

 

      
 

  
 ∑

( (  )  (  ))

         

  

   
                                   (2) 

 

où       est la largeur de l'intervalle de prédiction par Moyenne Normalisée , et      et 

     représentent respectivement les valeurs-cibles minimale et maximale dans le jeu 

d'apprentissage.  (  )  et  (  ) sont respectivement les limites inférieure et supérieure de la 

PI estimées pour la sortie  (  ) qui correspond à l'entrée   . 
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Concernant les questions présentées ci-dessus, les objectifs suivants ont guidé le travail 

effectué au cours de cette activité de recherche doctorale: 

 

1. Développer une méthode de prédiction capable de tenir compte de l'incertitude dans les 

paramètres du modèle qui affectent la prédiction; 

2. Représenter l’incertitude des données d'entrée et la propager par l'intermédiaire du modèle 

de prédiction afin d'en observer l'effet sur les résultats du modèle; 

3. Améliorer la performance d’une méthode de prédiction non-paramétrique basée sur des 

ensembles de réseaux de neurones  

4. Tester le modèle proposé sur des études de cas réels dans le cadre d'applications à des 

systèmes énergétiques (en particulier en ce qui concerne l'évaluation de l’adéquation des 

réseaux électrique). 

 

Organisation 

La thèse se compose de deux parties: la Partie I, composée de huit Chapitres, présente les 

enjeux et les défis d'importance pour les systèmes de production décentralisés. Elle décrit les 

objectifs de recherche entrepris, illustre les méthodes mises au point et appliquées dans ce 

travail de thèse, discute quelques-uns des résultats obtenus dans les études de cas réalisées et 

fournit des conclusions générales et des perspectives pour des travaux futurs. La deuxième 

partie est constituée d'un ensemble de sept articles sélectionnés, qui détaillent les travaux 

scientifiques effectués au cours de cette thèse et leurs résultats. 

 

Dans l’article I [38], nous avons implémenté NSGA-II pour l’apprentissage un 

perceptron multicouche (MLP NN) afin de fournir les PIs de dépôt de calcaire sur les 

équipements de pétrole et de gaz, dans un cadre multi-objectif visant à minimiser le PIW et à 

maximiser en même temps le PICP des intervalles de prédiction (PIs) estimés. Nous avons 

effectué k-validation croisée (CV) pour guider le choix de la structure NN (i.e. le nombre de 

neurones dans la couche cachée) avec une bonne performance de généralisation. Nous avons 

utilisé un indicateur métrique hypervolume pour comparer les fronts de Pareto obtenus dans 

chaque échantillon de CV. Les expériences ont été faites avec des entrées à valeur unique. 

 

L’article II présente une comparaison de l’algorithme génétique mono-objectif (SOGA) qui a 

été présenté dans l’article original LUBE avec l’algorithme du recuit simulé (SOSA) 

et la Moyenne Mobile Intégrée Autorégressive (ARIMA) pour la prédiction de la vitesse du 
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vent à court terme (l'heure suivante) sur une étude de cas réel qui se compose de quatre 

différents profils de jeux de données historiques.  

 

De manière similaire à l’article II, nous avons effectué dans l’article III une comparaison entre 

MOGA-NN méthode et l’Extreme Learning Machines (ELM) combiné avec la méthode du 

plus proche voisinage pour l’estimation des PIs. Les algorithmes sont utilisés pour la 

prédiction de la vitesse du vent à court terme (l'heure suivante) en utilisant une étude de cas 

réel qui se compose de trois différents profils de jeu de données historiques.  

 

L’article IV propose une approche basée sur l'analyse d'intervalle et généralise le cadre de 

l’estimation multi-objectif PI basée sur RN à la prévision des séries chronologiques en se 

basant sur la théorie de l'analyse d'intervalle, i.e. avec  intervalles de données. Dans cet article, 

nous cherchons à quantifier l'incertitude dans la prédiction en combinant les incertitudes 

associées à la fois aux données d'entrée et au modèle de prédiction. La démonstration de la 

méthode proposée est faite sur deux études de cas: (i) une étude de cas synthétique, avec 5 

minutes de données simulées; (ii) une étude de cas réel, impliquant des mesures de la vitesse 

du vent horaire. Dans les deux cas, la prévision à court terme (à 1 heure et à un jour, 

respectivement) est effectuée en prenant en compte à la fois de l'incertitude dans la structure 

du modèle, et la variabilité (intra-heure et intra-jour, respectivement) dans les données. 

 

L’article V présente un cadre de modélisation et de simulation pour la conduite de l'évaluation 

de l'adéquation d'un système de puissance intégrée à éolienne tenant compte des incertitudes 

associées. Notre approche de l'évaluation de l'adéquation permet l'évaluation de l’Expected 

Energy not Supplied (EENS) en considérant des données de la vitesse du vent et de la 

demande d’énergie sous forme d’intervalle. L'originalité du travail réside dans la proposition 

non seulement d’un indice de fiabilité d'une valeur unique, i.e. point, mais également de 

résultats de valeurs d’EENS sous forme d’intervalle permettant d’informer les décideurs 

(DMs) sur l'incertitude dans les prédictions. 

 

Dans l’article VI, une nouvelle approche pour la prévision de l'énergie éolienne, i.e. de la 

production de puissance électrique d’origine éolienne, avec la quantification des incertitudes 

est décrite. Cette approche peut être schématisée en deux étapes: d'abord, l'estimation des PIs 

de la vitesse du vent à court terme est réalisée dans le cadre de l'optimisation multi-objectif 

élaboré par NSGA-II. Ensuite, l'incertitude de la vitesse du vent et celle dans la courbe de 
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puissance sont combinées par une technique bootstrap, obtenant ainsi les PIs de l'énergie 

éolienne avec la même couverture que les PIs de la vitesse du vent. 

 

L’article VII présente une méthode d'ensemble de NNs pour estimation des intervalles de 

prédiction de la vitesse du vent et vise à proposer une version améliorée de la méthode 

MOGA-NN non-paramétrique proposée dans ce travail de thèse (voir les Chapitres 4 et 5, et 

les articles I-III). Nous proposons deux méthodes d'ensemble de NNs, différant par la 

séparation ou non de jeux de données, et intégrant l'algorithme des k-plus proches voisins (k-

nn)  à la phase d'agrégation pour l'identification des voisins d’une entrée dans un jeu de donné 

test. Sur les données réelles considérées comme étude de cas, les deux méthodes ont obtenu 

des résultats supérieurs à ceux donnés par les réseaux individuels sélectionnés choisis dans les 

ensembles respectifs. 

 

Estimation Intervalles de Prédiction (PIs) via Réseaux de Neurones (NNs) 

Les principales techniques utilisées pour estimer les PIs pour les sorties du modèle NN sont 

les méthodes Delta, Bayesienne, et de Bootstrap. Les méthodes de Bayes et Delta sont 

fondées sur des bases mathématiques solides. Une comparaison de ces trois méthodes a été 

effectuée  par Khosravi et al. sur différentes études de cas dans [35], et par (l'auteur) dans [94] 

dans lequel l’auteur considère le problème de prédiction des temps de trajet de bus par 

autoroute. 

 

La méthode Delta est basée sur un développement de Taylor de la fonction de régression non 

linéaire [95]. Cette méthode nous permet de générer des PI de haute qualité. Cependant, le 

calcul d’une matrice Jacobienne et l’estimation de la variance du bruit non biaisée nécessaires 

à l’application de cette méthode requière un grand temps de calcul lors de sa phase de 

développement. 

 

L'approche bayésienne utilise les méthodes statistiques Bayésiennes pour exprimer 

l'incertitude des paramètres du réseau de neurones en tant que distributions de probabilité, 

avant de les intégrer  afin d’obtenir la distribution de probabilité a posteriori de la cible 

conditionnelle sur l'ensemble de la formation observée [58], [96]. 

 

Les fondements mathématiques axiomatiques forts rendent cette méthode robuste et répétable. 

En fin de compte, NNs formées par une technique d'apprentissage en bayésienne ont le 
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pouvoir de généralisation supérieur [35]. Ainsi, les méthodes NNs utilisant une technique 

d’apprentissage bayésienne ont un meilleur pouvoir de généralisation. Le temps de calcul 

requis ici est également élevé, en raison du calcul d'une matrice Hessienne dans l'étape de 

développement. 

 

La méthode Bootstrap est fréquemment grâce à sa simplicité d’utilisation comparativement 

aux précédentes méthodes [35].  Il s'agit d'une technique de ré-échantillonnage qui permet 

d'assigner des mesures de précision des estimations statistiques sans nécessiter le calcul des 

matrices et des dérivés de [97] complexes, [98]. Le but du ré-échantillonnage est de produire 

des estimations moins biaisées de la véritable régression des objectifs, et d’améliorer les 

performances de généralisation du modèle [35]. Les principaux inconvénients de cette 

méthode sont les suivants: i) grand temps de calcul lorsque les ensembles de formation et des 

réseaux de neurones sont grandes; ii) avec un petit nombre de modèles d'entrée, les réseaux de 

neurones individuels ont tendance à être trop formés, conduisant à une performance de 

généralisation pauvre [35], [99]. 

 

La caractéristique commune des méthodes d'estimation PI mentionnés ci-dessus, est qu'ils ne 

prennent pas en compte les largeurs des intervalles dans le processus d'estimation [35]. En ce 

qui concerne ce point, Khosravi et al. [36] ont proposé le LUBE, dans lequel ils obtiennent 

des intervalles de prédiction basées sur NN en tenant compte à la fois CP et PIW dans la 

phase de construction de PI. Ces deux mesures quantitatives déterminent la qualité des PIs 

estimées. Le PICP représente la probabilité que le jeu des PIs estimées contiendra les vraies 

valeurs de sortie, calculée à travers la proportion de vraies valeurs de sortie se trouvant dans 

les PIs estimées; PIW mesure simplement la prolongation de l'intervalle comme la différence 

entre les valeurs liées limite inférieure et supérieure estimées. Ce sont des mesures 

contradictoires générales (intervalles plus larges donnent la plus grande couverture), et dans la 

pratique, il est important d'avoir des PIs étroites à haute probabilité de couverture. La 

définition mathématique des mesures PICP et PIW sont définies dans (1) et (2). 

 

Dans cette thèse, notre méthode basée sur les réseaux de neurones pour estimer les PIs ne 

nécessite aucune hypothèse sur la distribution de probabilités qui engendre les données. La 

seule hypothèse que nous faisons est que les données sont indépendantes et identiquement 

distribuées (i.i.d.), ainsi nous proposons une approche empirique et non-paramétrique pour 

l'estimation des PIs. Dans ce travail, nous étendons la méthode LUBE [36] pour la 
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formulation multi-objectif du problème d'estimation des PIs. Plus précisément, nous estimons 

les PIs en exploitant la propriété qu’ils constituent des optima de Pareto, ainsi nous utilisons 

Non-dominated Sorting Genetic Algorithm (NSGA-II) [44] pour optimiser le paramètre d’une 

MLP NN en minimisant la PIW et maximisant la PICP simultanément. Notez que l'approche 

proposée dans ce travail de recherche intègre l'estimation de la PI dans sa procédure 

d'apprentissage, tandis que toutes les autres méthodes (décrites plus haut) à l’exception de 

LUBE construisent les PIs en deux étapes (la première estimant le point prédiction et la 

seconde construisant le PI). Sur la Figure 1, la structure typique à trois couches (d’entrée, 

cachée et de sortie) MLP utilisée dans cette thèse pour construire les PIs est illustrée : le 

neurone de sortie ci-dessus donne la limite supérieure du PI et celui ci-dessous fournit la 

limite inférieure. Par ces deux neurones de sortie, la MLP génère un intervalle de prédiction 

pour chaque d'entrée. 

 

 

Figure 1. La structure le MLP utilisée dans cette thèse pour construire les PIs. 

 

 

Conclusions Générales et Perspectives  

L'objectif principal de toute installation d'électricité est de répondre à la demande d'énergie à 

tout moment au plus bas coût possible pour les clients tout en maintenant un niveau 

satisfaisant de qualité de service. Pour cet objectif, il est crucial de disposer d’une bonne 

information sur la production et la demande futures. Les prévisions de la demande d'énergie et 

de la production peuvent être incluses directement dans la gestion opérationnelle des unités de 

Lower 

Bound 

Target 

Input 

 Layer 
Hidden  

Layer 

𝑥2 
 

𝑥𝑛𝑓  

 

𝑥  

 

wij 

wjl 

Output  

Layer 

f (.) 

f (.) 

𝑈(𝑥) 

𝐿(𝑥) 

Upper 

Bound 

f (.) 

f (.) 

f (.) 

f (.) 



 

xiv 

 

puissance utilisée pour veiller à ce que suffisamment d’électricité soit générée pour répondre à 

la demande, et/ou elles constituent une information à court-terme aux opérateurs du réseau 

électrique. Pour ce faire, les méthodes et les modèles de prévision doivent fournir un moyen 

de mesurer le risque liés à l'utilisation des résultats estimés dans le processus de décision en 

raison des incertitudes associées. 

 

C'est dans ce contexte que, dans cette thèse de doctorat, nous avons développé une approche 

non paramétrique, empirique pour générer des PIs basés sur les réseaux de neurones pour 

tenir compte de l'incertitude dans la prédiction en raison de la variabilité des données d'entrée 

et des approximations du modèle. Comme application, nous avons considéré le problème 

général de l'évaluation de l'adéquation des réseaux électriques éoliens intégrés. Dans les 

études de cas, nous nous sommes concentrés en particulier sur les prévisions  de la 

vitesse/puissance du vent et de la demande d’énergie à court terme (à des horizons variant 

d’une heure à un jour), pour leur importance pour le fonctionnement du système à la fois du 

point de vue de l'engagement de l'unité et des phases d'expédition économiques. 

 

Les principales contributions de la thèse dans le domaine de l'évaluation de l'adéquation des 

réseaux d'énergie, en particulier dans les systèmes intégrés éoliens de production distribuée, 

présentées dans les articles I à VII de la Partie II sont formalisées comme des réponses aux 

objectifs de cette recherche. 

 

Les contributions au titre de l'objectif 1 : 

Objectif 1: Développer une méthode de prédiction capable de tenir compte de l'incertitude 

dans les paramètres du modèle qui affectent la prédiction. 

 

 Nous présentons un cadre d’analyse multi-objectif pour estimer des intervalles de 

prédiction, qui seront optimaux en termes de précision et de largeur d’intervalle. Plus 

précisément, nous proposons une méthode multi-objectif d’estimation des intervalles de 

prédiction basés sur les réseaux de neurones capable de quantifier les incertitudes 

associées à la prédiction. Avec cette méthode, nous sommes capables de générer la 

frontière de Pareto des solutions non-dominées. Chaque solution correspond à un réseau 

de neurones. Les décideurs peuvent choisir une solution sur cette frontière de Pareto selon 

leurs préférences (i.e. en termes d’arbitrage entre un PICP élevé et un NMPIW faible). 
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 La connaissance des intervalles de prédiction permet aux décideurs et aux opérateurs de 

réseaux de quantifier le niveau d’incertitude associé aux prédictions et d’envisager une 

variété de solutions/scénarios pour les meilleures et pires conditions 

 

 Nous utilisons NSGA-II qui est l'un des MOEAs les plus puissants, pour l’apprentissage 

du NN. Une comparaison avec un autre algorithme d'optimisation multi-objectif puissant, 

MO-CMA-ES, a été effectuée. Les résultats de la comparaison ont montré que les PIs 

produits par NSGA-II sont supérieurs à ceux obtenus avec MO-CMA-ES, et satisfaisants 

à la fois en termes de couverture élevée et de largeur faible. Il convient de souligner que 

c'est la première fois que NSGA-II est utilisé pour résoudre le problème de la 

détermination des bornes optimales (inférieure et supérieure) des PIs. 

 

 Afin de montrer la supériorité de la méthode multi-objectif proposée sur les méthodes 

mono-objectif, en particulier sur la méthode originale de LUBE [36], dans l’article II, 

nous avons effectué des comparaisons sur différents jeux de données. En outre, dans 

l’article II, nous avons également effectué une comparaison avec une méthode de 

régression des séries temporelles classique (i.e. ARIMA). Les résultats confirment la 

supériorité de notre approche MOGA-NN. 

 

Les contributions au titre de l’objectif 2: 

Objectif : Représenter l’incertitude des données d'entrée et la propager par l'intermédiaire du 

modèle de prédiction afin d'en observer l'effet sur les résultats du modèle; 

 

 Afin de représenter l'incertitude dans les données d'entrée et la propager à travers le 

modèle de prédiction sur ses résultats, nous présentons un modèle de prédiction des séries 

temporelles en formes d’intervalles, basé sur les NNs. Par la représentation par intervalles, 

nous pouvons traduire la variabilité dans les données d’entrée (ex: vitesses du vent 

extrêmes dans une zone donnée, pic de demande d’électricité durant le jour, températures 

minimale et maximale, etc.), ou les incertitudes qui leur sont associées (ex: distributions 

de la vitesse du vent fortement asymétriques, profil non-stationnaire de la demande, etc.). 

 

 Nous avons présenté deux approches qui peuvent être utilisées pour l’apprentissage des 

NNs par des entrées en formes d’intervalles, qui visent à fournir une quantification plus 

précise de l'incertitude d'entrée dans le problème de la prédiction. Les résultats de 

l'expérience montrent que l'approche par les données d’entrée sous forme d’intervalles est 
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capable de capturer la variabilité dans les données d'entrée avec une couverture 

satisfaisante. Les résultats nous permettent de planifier des stratégies différentes en 

fonction de l'éventail des résultats possibles au sein des intervalles de prédiction. 

 

 En ce qui concerne les résultats de la comparaison d'études de cas, nous pouvons conclure 

que notre méthode de prédiction de la vitesse du vent pour le jour à venir par intervalle est 

plus performante que la méthode des intrants à valeur unique. 

 

 De plus, les résultats de la comparaison effectuée entre les deux algorithmes 

d'apprentissage, i.e. SOSA et NSGA-II, montrent la supériorité de ce dernier dans 

l’apprentissage du MLP NN dans notre problème spécifique. 

 

Les contributions au titre de l’objectif 3: 

Objectif 3: Améliorer la performance d’une méthode de prédiction non-paramétrique basée 

sur des ensembles de réseaux de neurones  

 

 Cet objectif est abordé à travers deux méthodes pour estimer des PIs de la vitesse du vent 

à court terme dans le cadre d’une nouvelle approche de l’ensemble des NNs. Dans la 

phase d'agrégation des résultats NN individuels sélectionnés, nous avons utilisé l'approche 

de k-nn pour déterminer les échantillons-points similaires entre les données 

d’apprentissage et les données de tests. Cela nous permet d'obtenir des résultats plus 

précis également sur le jeu de test en utilisant les informations locales provenant des 

échantillons les plus proches des jeux d’apprentissage. 

 

 Les deux méthodes montrent des résultats cohérents et de haute précision par rapport aux 

NN individuels dans l’ensemble et aux méthodes conceptuellement similaires vues dans la 

littérature [150]. 

 Nous pouvons conclure que l’approche par l’ensemble des NNs proposée dans l’article 

VII peut apporter une amélioration significative de la qualité de la prédiction de la vitesse 

du vent à court-terme. 

 

Les contributions au titre de l’objectif 4: 

Objective 4: Tester le modèle proposé sur des études de cas réels dans le cadre d'applications 

à des systèmes énergétiques (en particulier en ce qui concerne l'évaluation de l’adéquation 

des réseaux électriques). 
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 Dans l’article I, les données ont été obtenues à partir d'expériences visant à observer le 

processus de dépôt de calcaire dans [117], [119]. 

 

 Dans les articles II et VII, le test de l'approche MOGA-NN proposé se fait sur plusieurs 

bases de données différentes concernant la prévision de la vitesse du vent à court terme et 

de la demande. Les jeux de données de vitesse de vent montrent des profils de vitesse du 

vent différents selon la saisonnalité, mesurée pour la région de Regina, en Saskatchewan, 

au Canada. 

 

 Les fluctuations de la demande horaire sont modélisées à l'aide de la courbe de charge 

annuelle chronologique de l’IEEE Reliability Test System (RTS) [10], avec le pic annuel 

de demande mesuré. 

 

 Les études de cas sur différents jeux de données nous ont permis de tester la performance 

de la méthode MOGA-NN sur divers jeux de données présentant divers degrés de 

variabilité. 

 

Comme toutes les méthodes d'apprentissage, les RN présentent certaines limites outre leurs 

avantages. En général, les RN ont une performance satisfaisante en prévision. Leur capacité à 

apprendre la relation non linéaire entre l'entrée et la sortie, ainsi que leur faculté à utiliser des 

fonctions arbitraires les rendent aptes et prometteur pour les tâches de prévision. D'autre part, 

les NNs sont guidés par les données et dépendent fortement de la représentativité du jeu de 

données d’apprentissage, i.e. les méthodes de prédiction par les données sont sujettes à donner 

des résultats moins précis lorsque la variabilité est forte dans le jeu de données test considéré. 

Par conséquent, la précision de la prédiction peut diminuer lorsque le jeu de données de test 

présente une grande variabilité par rapport au jeu de données d’apprentissage. En d'autres 

termes, la différence entre les jeux de données de test et d’apprentissage joue un rôle 

important dans le pouvoir de généralisation du modèle. Par conséquent, les méthodes de 

prédiction fondées sur les données ne garantissent pas toujours des prévisions de haute qualité 

sur les données invisibles. En outre, un modèle NN peut exiger une procédure intensive pour 

l’apprentissage, ce qui requiert de grands temps de calcul. La plupart du temps, le temps de 

calcul est en corrélation avec la taille du réseau, i.e. le nombre de paramètres qui doivent être 

optimisés et le nombre d’échantillons dans le jeu de données. 
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Il convient de souligner qu’aborder un problème de régression nécessite également 

prétraitement approprié des données d'entrée. La façon de sélectionner les variables d'entrée 

pertinentes pour la (les) variable(s) de sortie, i.e. la sélection des fonctionnalités, pour 

inclusion dans un modèle est un facteur important qui affecte à la fois la précision de la 

prédiction et le coût de calcul du modèle sous-jacent. Pour la prévision des séries 

chronologiques, il faut déterminer convenablement le nombre de retards à introduire. Dans 

cette thèse, nous abordons également ces questions dans nos études de cas, avec des 

techniques classiques. 

 

Perspectives 

Le travail entrepris dans cette thèse peut être développé selon plusieurs directions : 

 

 Combiner avec des méthodes de prévision différentes pour réduire l’erreur de prédiction. 

 Implémenter des algorithmes d'apprentissage en ligne en mesure d’ajuster leurs 

paramètres aux nouveaux échantillons sans réapprendre. L’utilisation complémentaire des 

données de mesure des vents en temps réel au potentiel d’améliorer les prévisions en 

particulier lorsque l'ensemble de données disponibles est trop courte pour couvrir tous les 

motifs possibles ou lorsque les conditions environnementales ou opérationnelles changent. 

 Les sous-ensembles flous de type 2 peuvent être intégrés dans le modèle proposé comme 

une alternative pour représenter l'incertitude d'entrée. 

 Une nouvelle formulation, en particulier pour la prévision de l'énergie éolienne offshore, 

peut être fournie en exploitant la corrélation spatio-temporelle. 

 La méthode proposée peut être intégrée dans un modèle de coûts pour estimer 

l’incertitude sur les prix de l’électricité. 

 Les domaines d'application peuvent être élargis. Par exemple, pour la prévision de la 

demande d'énergie, la consommation d'énergie dans les bâtiments peut être considérée 

comme une étude de cas prenant en compte les incertitudes potentielles pour la gestion de 

l’énergie. 
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1. INTRODUCTION 

The research presented in this Ph. D. concerns the development of regression and prediction 

methods for application to energy systems, and particularly the adequacy assessment of 

renewable power generation systems. Specific attention is given to uncertainties, in the 

system behavior (due to renewable sources stochasticty and system component failures) and 

in the prediction results themselves. The present introductory chapter of the thesis is 

structured as follows. Section 1.1 discusses some current main issues, challenges and needs 

in the energy sector. Section 1.2 describes an example of distributed power generation 

system with renewables and introduces the related adequacy assessment problem. Section 

1.3 reviews the prediction problem in general terms and its specific role in the adequacy 

assessment of distributed power generation systems. Section 1.4 provides a statement of the 

research motivations and objectives pertinent to this applicative context, and introduces the 

methods proposed in this thesis work. Finally, Section 1.5 presents the structure of the 

thesis.  

 

1.1 Energy Sector: issues, challenges and needs  

Energy is an economic, environmental, social and political issue, and a balance between 

energy management, economic interests, and the environment care is needed for sustainable 

development. The world energy demand continues to grow and must be satisfied in an 

efficient and effective way. The tendency towards increased mobility, urbanization and 

industrialization, especially in developing countries, and an integrated global economy will 

further accelerate the worldwide energy consumption and dependence. Today, the primary 

means to meet the electrical energy demand is combustion of the fossil fuels (e.g. oil, coal, 

and natural gas). Figure 1 indicates the world total primary energy supply by source [1].  

Although fossil fuels can produce a significant amount of energy, the main drawbacks of 

fossil fuel energy sources are their limited reserves and their negative effects on the 

environment. The climate changes induced by the impact on the environment, in particular, 

pose an additional challenge for energy suppliers, consumers and market operators. To fight 

climate change, i.e. to reduce the negative effects (e.g. greenhouse gases) of the traditional 

energy sources, the usage of the fossil energy sources should be replaced with alternative 

energy sources, i.e. renewable energy sources, which are cleaner and less harmful to the 

people and the environment.  
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In general, the main goal of the energy systems should be to meet the energy demand at any 

time by reducing the environmental impacts, by developing consistent, reliable and clean 

forms of energy. However, energy market participants (investors, power producers, system 

operators, consumers, etc.) face some potential challenges [1]-[5]: 

 growing energy demand 

 new challenges in the energy consumption patterns 

 integration of intermittent (stochastic) renewable energy sources into the electricity 

grids 

 extracting fossil fuels under extreme conditions in a more economical and safer 

manner 

 building up refining capacity 

 reducing nuclear waste  

 ensuring more reliable means for transporting electricity 

 

Renewable energy is generated from natural renewable resources such as sunlight, wind, 

rain, tides, biomass and geothermal heat, i.e. naturally replenished with the passage of time, 

either through biological reproduction or other naturally recurring processes [4], [6]. As a 

non-polluting renewable energy source considerably cheaper than nuclear energy, wind 

energy, among the various candidates, has received fast growing attention throughout the 

world, and the utilization of wind power has increased dramatically over the past decade. 

According to the Half-Year Report 2013 released by The World Wind Energy Association 

(WWEA) [2], the worldwide wind capacity reached 296 GW by the end of June 2013, out of 

which 13980 MW were added in the first half of 2013. According to the Annual Report 

2012 of the European Wind Energy Association (EWEA) [7], the installed capacity in the 

European Union (EU) has increased from around 13 GW in 2000 to 107 GW in 2012. This 

meets the power needs of 57 million households, and it is equivalent to the output of 39 

nuclear power plants [7]. This continuous and rapid growth indicates that wind energy 

represents a popular, respectful of the environment and sustainable solution for meeting the 

increasing need of electricity. For exemplification, the Western Denmark region has one of 

the highest wind power penetrations in the world, consistently between 25 and 30% over the 

last few years [5].   
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According to the BP Statistical Review of World Energy, oil remains the world’s leading 

fuel source representing 33.1% of global energy consumption by 2012. However, it had the 

weakest global growth rate among fossil fuels for the third consecutive year [3].  

 

The evolution from conventional power grids towards grids with integration of distributed 

renewable energy sources leads to additional uncertainty in the system. Indeed, the 

challenge of reliably and safely operating power systems increases with the proportion of 

intermittent renewable energy (e.g. wind, solar, etc.) which is fed into the energy grids. 

From the supplier side, particularly, the integration of renewable energy sources (e.g. wind 

and solar) into the grid imposes an engineering and economic challenge, because of the 

limited ability to control and dispatch these energy sources due to their intermittent 

characteristics.  

 

 

 

 

 

Figure 1. Total primary energy supply by source (source: World Energy Resources Survey 2013) 

[1]. 

 

It is worth pointing out that the use of wind energy will continue to increase: the World 

Wind Energy Association (WWEA) has predicted a possible wind capacity of more than 

700000 MW by 2020 [8]. As an exemplification to the country level, Denmark proposes to 
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meet more than 50% of its electricity supply with renewables by 2020, 100% of electricity 

and heat by 2035, and 100% of transport by 2050, whereas Scotland has a mandate to 

achieve 100% renewable power supply by 2020 [9]. These projections enhance the 

importance of the reliable integration of large amount of wind energy to the power grid 

without harming its reliability. 

 

In Table 1, we report the major advantages and drawbacks/challenges in the exploitation of 

wind energy [5], [10]. Wind speed is a highly variable meteorological variable with 

instantaneous, hourly, diurnal and seasonal variations, thus producing volatile power 

delivery. The volatile nature of wind poses a problem of predictability for wind turbine 

operation and energy system management. Then, a prediction model must be introduced, 

capable of providing also information on the uncertainty of the prediction, for informed 

decision-making. 

 

Along these lines, in this Ph. D. work, we provide a useful framework for prediction and 

pertinent uncertainty quantification. 

 

Table 1. Some advantages and challenges of wind energy. 

Advantages Challenges 

 Clean (no impact on the environment) 

 Free and unlimited source 

 Can be easily used by single households in 

small towns and villages  

 Economical (one of the lowest-priced 

renewable energy technologies available 

today) 

 Can be built on farms or ranches, thus 

benefiting the economy in rural areas 

 Relatively simple technology 

 Dependent on the availability of wind 

 Limited predictability owing to intermittent 

character, inherent variability and 

uncertainty of the wind 

 Requires high initial investment  

 Pollution deriving from turbines 

manufacturing 

 Wind turbines are noisy 

 

 

1.2 The Adequacy Assessment of Distributed Power Generation Systems 

Distributed generation (DG), also called decentralized generation, consists of a set of electric 

power units connected to the distribution network/grid [11], [12]. As DG power plants refer 

to a variety of small-scale power generators, DG plants produce power in capacities that 
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range from a fraction of a kilowatt (KW) to about 100 megawatts (MW) [13], [14]. Being 

“distributed”, they can be opportunistically placed at or near the points of energy 

consumption to reduce losses and to better meet the consumers demands, unlike traditional 

“centralized” systems, whereby electricity is generated at a remotely located, large-scale 

power plant and, then, transmitted down power lines to the consumer. The most common 

DG technologies include Combined Heat and Power (CHP) generators, micro-turbine gas 

generators, solar photovoltaic generators, wind generators, fuel cells, battery storages and 

micro-hydro schemes [15].  

 

Several benefits can be obtained when Distributed Energy Resources (DER) are correctly 

integrated to the power grid. First, the reliability of electric power systems can be increased 

by distributed generation [16]. A power system based on a large number of reliable small 

generators can operate with the same reliability and a lower capacity margin than a system 

of equally reliable large generators [17]. Moreover, DER are more economical: transmission 

costs can be reduced by allocating the generation closer to the load, and construction time 

and investment costs are lower for smaller power generation plants than for larger central 

power plants [18]. However, the main drawback of DER is that the uncertainties involved in 

system planning and operation become larger especially with the increasing use of 

renewable energy sources. 

 

The assessment of the reliability of these systems can be performed by considering two main 

aspects: adequacy and security [19]. Power system adequacy is an indicator of the 

availability of a sufficient power capacity installed within the system to satisfy the consumer 

load demand at any time without violating the system operational constraints. This requires 

the necessary facilities to generate sufficient energy, and the associated transmission and 

distribution facilities required to transport the energy to consumer load points [19], [20]. 

Then, the basic elements of generating capacity adequacy assessment are the system 

generating facilities and the system load demands.  

 

Considerable work has been done to develop mathematical models and techniques for the 

reliability evaluation of power systems, including wind energy integrated power grids. In 

this regard, some of the existing works have been solely devoted to adequacy evaluation of 

wind farms [21], whereas some handle the adequacy assessment problem of the power grids 

integrated to a renewable energy source (e.g. wind, solar, etc.) [22], [23]. In general, 

reliability indices calculation may be performed considering deterministic and probabilistic 
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approaches [24]. The main drawback of deterministic techniques is that they do not take into 

account the probabilistic or stochastic nature of system behavior (e.g. component failures, 

uncertainties of renewable energy sources and customer energy demands) [25]. The 

probabilistic approaches  used in power system reliability evaluation can be classified into 

two basic categories: analytical and Monte Carlo (MC) simulation methods [25], [26]. 

Sequential Monte Carlo Simulation (SMCS) is ideally suited to the analysis of intermittent 

generating sources such as wind power. An important advantage of using SMCS in bulk 

electric system reliability evaluation is its ability to incorporate the chronological 

characteristics of wind speed (diurnal and seasonal), the load profiles, and the chronological 

transition states of all the components within a system. Sequential simulation can, thus, 

provide realistic and more accurate results than other traditional methods when considering 

wind power [25]-[27]. 

 

Most existing adequacy assessment methods provide a point estimate of the reliability 

indices such as loss of load probability (LOLP), loss of load expectation (LOLE), loss of 

energy expectation (LOEE), Expected energy not supplied (EENS), frequency of loss of 

load (FLOL), etc. [21], [25], [28], [29]. In the context of this Ph. D. work, we propose an 

innovative approach to provide not only point-valued reliability indices, but also interval-

valued results to inform the decision makers (DMs) on the uncertainty in the predictions. 

Herein, the uncertainties considered in the system are due to load fluctuations, wind 

variability, and component failures. 

 

1.3 The Prediction Problem and Its Role in the Adequacy Assessment of Distributed 

Power Generation Systems 

The adequacy assessment of a power system with distributed renewable power generation is 

challenging due to the many uncertainties, like fluctuations in energy demand, future 

weather conditions (e.g. wind speed, solar irradiation, etc.), possible equipment (e.g. 

generators, lines, etc.) unavailability, failures in electric power transactions, errors in 

operation (operator errors, dispatcher and relay malfunctions) and others. In particular, the 

inherent variability and uncertainty affecting the renewable energy sources can have a 

significant impact on power supply, and accurate and reliable predictions of the power 

output obtainable from these sources are needed on different time scales. Thus, predicting 

the output of renewable energy sources is critical for integrating them efficiently in the 
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power grid.  On the other hand, accurate electricity demand forecasting is also critical for the 

system adequacy as it enables system operators and utility providers to plan resource 

allocation and take control actions (e.g. switching on/off demand response appliances, 

revising electricity tariffs, etc.) to ensure the balance between supply and demand of 

electricity. Therefore, solving prediction problems in the context of power system adequacy 

has been receiving considerable attention for several decades [5], [30]-[32]. 

 

In particular, a specific research has been directed towards the development of accurate and 

reliable wind power and load forecasts, and many different forecasting systems with 

different approaches have been proposed. An overview of the existing prediction methods 

considered along this research line is given in Section 2.2.  

 

1.4 The Research Problem and Motivation 

Prediction plays a key role in many decision-making processes and should take into the 

uncertainty in its outcome. Prediction uncertainty can arise due to measurement errors, lack 

of knowledge in input data, and model approximation errors (e.g. due to imperfections in the 

model formulation, to the estimation process, etc.) [33], [34].  

 

In energy systems, uncertainty in the prediction of the key factors, due both to the 

stochasticity in the data and the approximation of the prediction models, can cause high 

costs to the market participants (generators, customers, etc.) when not properly accounted 

for. Particularly, in wind-integrated power systems, the impact of such a highly variable 

energy source onto system reliability is an important aspect that must be assessed when the 

wind power penetration (that is, the share of wind power in meeting the electric energy 

demand) is significant. Therefore, considering the high penetration of wind power sources in 

the new competitive power systems, the necessity of having access to reliable prediction 

methods of wind speed/power predictions has become more evident for the sustainability 

and efficient management of the energy market: combining accurate short-term wind and 

load forecasts enables operators to commit the balance of the generation fleet to 

economically and securely serve load on the next day.  

 

The vast majority of the existing studies on wind speed/power and load predictions only 

provide point predictions, without considering the uncertainties in the network structure and 

input data [35]-[37].  
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Prediction Intervals (PIs) are a simple way to communicate a measure of the uncertainty in 

the predictions. Further details about PIs and their use in energy system applications are 

given in Section 2.3. Here, let it suffice to mention that two elements characterizing PIs are 

their coverage probability (PICP) and width (PIW), that the objective of their estimation is 

to maximize the former and minimize the latter.  

 

In this work, we consider PIs estimation within the adequacy assessment of wind-integrated 

power systems. We consider short-term wind speed/power and load forecasting because they 

are closely related to power system operations (unit commitment, real power scheduling, 

economic dispatch, etc.) More specifically, we consider PIs estimation via Neural Networks 

(NNs) [36], [38]-[43] extending a method proposed in the literature called “Lower Upper 

Bound Estimation Method for Construction of NN-based PIs (LUBE)” [36] within a multi-

objective Pareto optimality framework that consider both PICP and PIW.  

 

In Chapter 2, a review of existing methods and techniques for short-term wind speed/power 

prediction and load prediction is given.  

 

With reference to the issues presented above, the following objectives have guided the work 

performed during this Ph. D. research activity: 

 

1. to develop a prediction method capable of considering the uncertainty in the model 

parameters affecting the prediction;  

2. to represent the uncertainty in input data and propagate it through the prediction model 

onto its results; 

3. to enhance the performance of a NN-based, non-parametric prediction method by an 

ensemble approach; 

4. to test the proposed model on real case studies in the context of energy system 

applications (in particular adequacy assessment). 

 

In Chapters 4-7, all the above objectives are discussed, together with their relevance to each 

case study described in the papers (see Part II).  
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1.5 The Structure of the Thesis 

The thesis is composed of two parts: Part I, subdivided in eight Chapters, introduces the 

current issues and challenges pertinent to distributed power generation systems, describes 

the research objectives undertaken, illustrates the methods developed and applied in this Ph. 

D. work, discusses some of the results obtained in the case studies and provides general 

conclusions and some future work perspectives. Part II is a collection of seven selected 

papers, scientifically reporting on the outcomes of the research work performed during the 

thesis, to which the readers are referred for further details. Tables 2 and 3 summarize the 

thesis structure with respect to the topics considered in Part I and to the case studies 

considered during the Ph. D., respectively.  

 

For what concerns Part I, the Introduction Chapter presents the details of the background 

and motivation of our research work, its objectives and the organization of the thesis 

manuscript. Chapter 2 is devoted to the description of the prediction problem, and the 

traditional and recent methods in the context of wind speed/power and energy demand 

prediction. Chapter 3 focuses on the description of NNs and on the specific method of 

literature considered NN-based PIs estimation [35], [36] (objectives 1-3). Chapter 4 

describes the multi-objective optimization problem (MOP) of PIs estimation and gives the 

details of the training of a NN by a multi-objective genetic algorithm (MOGA), i.e. non-

dominated sorting genetic algorithm (NSGA-II) [44], for the prediction intervals estimation. 

In Chapter 5, applications of the method to provide estimated PIs for the scale deposition 

rate in oil & gas production equipment and for the short-term (1-h-ahead) wind speed 

prediction are detailed. In Chapter 6, relevant methods for the treatment of uncertainty in the 

input data are described, and the estimation of interval-inputs-based PIs and its applications 

in power system adequacy are explained (objective 2). Chapter 7 provides the details on 

existing NN ensemble methods, it presents the methods for ensemble-based NN PIs 

estimation in proposed this Ph. D. work (objective 3), and two applications of it. 

 

Part II includes the papers collection. In Paper I [38], we have implemented the NSGA-II to 

train a multi-layer perceptron neural network (MLP NN) to provide the PIs of the scale 

deposition rate in oil & gas equipment, within multi-objective framework aimed at 

concurrently minimizing the PIW and maximizing the PICP of the estimated PIs. We have 

performed k-fold cross-validation (CV) to guide the choice of the NN structure (i.e. the 

number of hidden neurons) with good generalization performance. We have used a 
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hypervolume indicator metric to compare the Pareto fronts obtained in each CV fold. The 

experiments have been done with single-valued inputs. 

 

Papers II [39] presents a comparison of the NN-based multi-objective approach for PI 

estimation to single-objective (SO) genetic algorithm (SOGA) and simulated annealing 

(SOSA) methods, and to a baseline Autoregressive Integrated Moving Average (ARIMA) 

method, for short-term wind speed prediction (1-h ahead). SOSA has been proposed in 

support of the original LUBE method in [36] with a case study concerning the analysis of 

four different wind speed datasets involving different wind speed profiles with seasonality.  

 

Similar to Paper II, in Paper III [40] we have proposed and compared two machine-learning 

approaches, MOGA-NN and Extreme Learning Machines (ELM) combined with the nearest 

neighbors approach, for estimating PIs. The algorithms have been applied on a case study of 

short-term wind speed prediction using a real dataset of hourly wind speed measurements.  

 

Paper IV [41] proposes an approach, based on interval analysis and generalizes the multi-

objective NN-based PI estimation framework to interval-valued time series prediction. In 

this paper, we aim at quantifying the uncertainty in the prediction by combining 

uncertainties arising from both the input data and the prediction model. Demonstration of 

the proposed method is given on two case studies: (i) a synthetic case study, with 5-minutes 

simulated data; (ii) a real case study, involving hourly wind speed measurements. In both 

cases, short-term prediction (1-hour and day-ahead, respectively) is performed taking into 

account both the uncertainty in the model structure, and the variability (within-hour and 

within-day, respectively) in the inputs.  

 

Paper V [42] presents a modeling and simulation framework for conducting the adequacy 

assessment of a wind-integrated power system accounting for the associated uncertainties. 

Our adequacy assessment framework leads to the evaluation of the EENS based on interval-

valued load and wind power input data. The originality of the work lies in proposing not 

only a point-valued reliability index, but also interval-valued EENS results to inform the 

decision makers (DMs) on the uncertainty in the predictions.  

 

In Paper VI [43], a novel approach for wind power forecasting with uncertainty 

quantification is described. The approach can be schematized in two steps: first, short-term 

estimation of wind speed PIs is performed within a multi-objective optimization framework 

worked out by NSGA-II. Then, the uncertainty in wind speed and the uncertainty in the 



Introduction 

11 

 

power curve are combined via a bootstrap sampling technique, thus obtaining wind power 

PIs with the same coverage as the wind speed PIs.  

 

Paper VII presents a NN ensemble framework for wind speed PIs estimation and aims at 

proposing an enhanced version of the non-parametric MOGA-NN method proposed in this 

thesis work (see Chapters 4 and 5, and Papers I-III). We propose two NN ensemble 

methods, differing in the partitioning or not of the training dataset, and embedding the k-

nearest neighbors (k-nn) approach in the aggregation phase for the identification of the 

neighborhoods of a test pattern. On the real data considered as case study, both methods 

have obtained superior results compared to those yielded from the selected individual 

networks selected in the respective ensembles. 

 

Figure 2 illustrates a pictorial view of the flow of the Ph. D. thesis: the research motivation, 

the focus and the methodological approaches considered in the present work on the 

prediction problem in the context of the adequacy assessment of distributed power 

generation systems. 

 

Table 2. Structure of the work with respect to the methodological topics considered. 

 PART I PART II 

Topic Section Paper 

The Prediction Problem and Its Role in the Adequacy 

Assessment of Distributed Power Generation Systems 1, 2 I-VII 

NNs for Prediction 3 I-VII 

The Multi-objective Optimization Problem of Training NN  

for Prediction Intervals Estimation 
4 I-VII 

Uncertainty Treatment: Interval-based Estimation  

of Prediction Intervals 
6 IV, V 

Uncertainty Treatment: NN Ensembles 7 VI, VII 
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Table 3. Structure of the work with respect to the case studies considered. 

 PART I PART II 

Case study Section Paper 

PIs Estimation for the Scale Deposition Rate in  

Oil & Gas Equipment 
5 I 

PIs Estimation for Short-Term Wind Speed Prediction  5-7 II-VII 

Estimation of a Point-valued and Interval-valued  

EENS Index for a Wind-Integrated Power System  
6 V 

Estimation of PIs for Short-Term Wind Power  

Prediction with Interval Wind Speed Inputs and  

with a Stochastic Wind Power Curve 

7 VI 
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Figure 2. Pictorial view of the flow (motivation, focus and methods) of the thesis work on the 

prediction problem in the context of adequacy assessment of wind-integrated distributed generation 

systems. 
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2. THE PREDICTION PROBLEM 

2.1 Problem Statement 

The goal of prediction is to predict an output variable (e.g. load, wind speed/power, etc.) from 

some known inputs. In other words, the aim is to predict a quantity of interest, the response 

variable,   given a set of explanatory (input) variables   and a sample of observations, i.e., 

input-target (output) pairs,    (     )            , where    is a scalar or vector of 

observations and    indicates the number of samples in the input dataset.  

 

The existing prediction methods may be broadly classified into qualitative and quantitative 

techniques. The quantitative techniques, which are based on mathematical or statistical 

models, include regression methods (e.g. linear and nonlinear regressions), time series 

forecasting methods, machine learning algorithms (e.g. NNs, support vector machines 

(SVMs), model trees, etc.). 

 

A prediction (forecasting) model can be linear or nonlinear depending on the relationship 

between input-output variables being linear or not. We can assume that the target vector   is 

related to the input vector   by an unknown deterministic function, i.e., [45]: 

  

   (   )   ( ),      ( )  (    
2( ))                            (1) 

 

where   represents the vector of values of the parameters of the model function  . The term 

 ( ) is the error associated with  , assumed normally distributed with zero mean and with the 

variance   
2( ). For the simplicity of illustration, in the following we assume   one-

dimensional. An estimate  ̂ of   can be obtained by minimizing the quadratic error (cost) 

function [45] on the set of input/output values  . 

 

 ( )  ∑ ( ̂    )
2  

   
                                           (2) 

 

where  ̂   (    ̂) represents the output estimated by the underlying model in 

correspondence to the input   . Note that a discrepancy between the model output  ̂  and the 

target    will be always present and it is due to various reasons including the presence of 

noise in the data, the limited number of data samples, the imperfect knowledge of the non-

linear relationship between the dependent and independent variables, and the errors in 
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estimating the model parameters [45]. This discrepancy between the model output  ̂  and the 

real target    is called prediction error. 

 

The goal of all prediction methods is to reduce the prediction error, i.e. to find the underlying 

unknown function  (    ̂), which describes the relationship between inputs and outputs with 

the smallest prediction errors. It is of prime interest for any type of prediction problem to 

avoid model over-fitting, i.e. to secure that the model will be able to perform well on unseen 

data, which have not been used in the process of constructing (training) the model. That is, the 

method should be able to generalize the new samples from the same data domain, hence, the 

generalization power of a model is a critical issue that should be taken into account.  

 

2.2 Methods 

2.2.1 Regressions  

As mentioned in the previous Section, there are many different statistical techniques proposed 

in the literature both for linear and nonlinear regressions. Linear regression is a model aim at 

determining a line that best fits the set of data points  . 

 

Given a vector of inputs    (    2      
) in   -dimensional input space, the single 

output   is thus predicted as follows [46]: 

 

 ̂   ̂  ∑    ̂ 
  

   
          (3)

          

where the term  ̂  is the intercept, also known as the bias in machine learning. We can write 

(3) in vector form as an inner product by including the constant variable 1 in  , and  ̂  in the 

vector of coefficients  ̂  ( ̂   ̂     ̂  
)  as follows: 

 

 ̂     ̂           (4) 

 

In order to estimate the unknown coefficients over the   -dimensional input space, we use the 

least square method which is the most popular estimation approach in linear regression. In 

this approach, we select the coefficients   to minimize the residual sum of squares (RSS), a 

quadratic function of the parameters [46]: 

 

    ( )  ∑ (  
     )

2  

   
          ̂        

    
       ( )   (5) 
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2.2.2 Time-series forecasting 

In addition, there exist several methods dedicated to time series forecasting. It is the use of a 

model to predict future values of a variable based on a previously observed series of values of 

the same variable [47], [48]. Analysis and forecasting of time series is of fundamental 

importance in many practical domains. Examples can be found in very different fields of 

application: the sales of a particular product in successive months, wind power generation and 

electricity consumption in a particular location for successive 1-hour periods, hourly 

observations made on the yield of a chemical process, etc. [49]. 

 

A time series is a sequential set of data points, measured typically over successive times. It is 

mathematically defined as a set of vectors  ( ), t = 0, 1, 2,... where   represents the time  

elapsed [48].  ( ) is a random vector and the measurements in a time series are arranged in a 

proper chronological order. The historical observations are carefully studied to build up a 

proper model that is then used to forecast unseen future values. 

 

Over the years, various stationary and non-stationary models have been developed and used in 

the literature for time series forecasting [47], [48], [50]. Traditional statistical models 

including exponential smoothing (ES), Moving Average (MA), Autoregressive Moving 

Average (ARMA) and ARIMA are defined as linear regression methods where the future 

values are constrained to be linear function of past observations [51]. ARMA models are 

successfully used to represent the behavior of stationary time series. However, for non-

stationary time series, differencing is necessary to resort to stationarity. To this aim, an 

ARIMA (p, d, q) model can be used, where parameters p, d, q are non-negative integers that 

refer to the order of the autoregressive, integrated and moving average parts of the model, 

respectively. More precisely, p is the order of the autoregressive process (highest number of 

significant lags); d is the order of differencing that is required to make the series stationary 

and q is the order of the moving average process [50], [52]. If the series is stationary, then d is 

equal to 0 and the ARIMA (p, 0, q) is equivalent to an ARMA (p, q) model. The interested 

readers can found a more extensive review of time series methods in [47], [48]. 

 

2.2.3 Machine learning methods 

Data-driven machine learning methods such as NNs [53], [54], SVM [55] and Extreme 

Learning Machines (ELM) [56], [57], have been successfully used in various prediction 
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problems including time series forecasting recently. The support vector machine method has 

been developed by Vapnik [55] and has gained popularity due to its many attractive analytic 

and computational features, and to the promising performances. SVM has its motivation in 

the geometric interpretation of maximizing the margin of discrimination, and it is 

characterized by the use of a kernel function. NNs have attracted increasing attention in the 

domain of forecasting, pattern recognition, clustering, diagnosis, etc., as they offer a very 

powerful and very general framework for representing non-linear mappings from multiple 

input variables to multiple output variables, where the form of the mapping is governed by a 

number of adjustable parameters [58]. NNs do not require any assumption about the statistical 

distribution followed by the observations. The appropriate model is adaptively formed based 

on the given data.  

 

2.2.4 Methods for wind speed/power and load forecasting 

Much research has been carried out on the modeling and forecasting of wind speed/power 

based on different time scales and horizons, e.g. very short-term (seconds to minutes), short-

term (hours up to two days), medium-term (days up to one week) and long-term (weeks to 

months or more ahead) [31]. General overviews of existing methodologies can be found in 

[31], [59]-[61]. The methods used in the literature can be classified as [31], [59]: i) physical 

approaches, e.g. numerical weather prediction (NWP); ii) statistical approaches, e.g. time 

series models such as ES, ARIMA; iii) artificial intelligence methods (heuristics), e.g. NNs, 

fuzzy logic systems, expert systems; iv) hybrid approaches, which combine physical and 

statistical methods, in particular using weather forecasts and time series analysis.  

 

For what concerns the problem of load forecasting, it has attracted the attention of researchers 

since 1990’s. Likewise, in wind speed/power forecasting problems, the various approaches 

involve different time scales and horizons (short, medium and long-term). It is critical to 

develop accurate short-term load forecasting (STLF) methods, since forecasted load values 

are used by market operators to determine day-ahead market prices, and by market 

participants to prepare bids. In addition, the accurate estimated loads are necessary 

information for the electric power price forecast on the electric power markets. There exist 

some works which make use of meteorological variables (e.g. temperature, humidity, cloud 

coverage, etc.) to forecast load, whereas some others treat the load pattern as a time series 

signal and predict the future load by using various time series analysis techniques [62]. In 
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addition, recent models consider also socio-demographic and economic characteristics of 

consumers (occupants), which substantially influence the energy consumption particularly in 

residential buildings [63], [64]. Likewise the case of wind speed/power forecast, artificial 

intelligence methods [65], time series models [66] and hybrid models combining both 

techniques have been also extensively used [67] for load forecasting. 

 

A drawback of traditional data-driven machine learning methods is that they do not associate 

their predictions with confidence information, but they only output simple (point) predictions. 

These methods providing only point predictions cannot properly handle both the uncertainty 

in the model parameters and the noise in the input data. To quantify potential uncertainties 

associated with forecasts, in recent years, several researches have been conducted to estimate 

the PIs for the target of interest. Among them, NN-based PI construction approaches have 

become popular, and this area of research has been established and well accepted due to the 

superiority of these approaches on classical regression models for complex prediction 

problems [35], [36], [38], [39], [68]. In addition to NN-based PI models, there exist 

probabilistic approaches (both parametric and non-parametric) based on quantile regression, 

which can perform forecasting taking into account the associated uncertainty [37], [69], [70]. 

It is worth mentioning that probabilistic forecasting is more informative and useful than point 

forecasting.  

 

In this thesis, a NN-based regression model for the construction of PIs is considered. 

Thorough details about NN regression models are not reported here for the sake of brevity: 

the interested readers may refer to the cited references, to the copious literature in the field 

and to Chapter 3 of this thesis (which is dedicated to the methodology of the multi-perceptron 

neural networks). Techniques for estimating PIs for NN model outputs are mentioned in 

Section 3.4 and Paper II of Part II. Moreover, the details of the comparison with some 

existing algorithms and methods are also given in Part II. 

  

2.3 PIs Definition 

An interval forecast is comprised of the upper and lower limits between which a future 

unknown value of the target,  ( ), is expected to lie with a prescribed probability, called 

confidence level and in general indicated with    . These limits are called prediction limits 

or bounds, while the interval is called the PI (see Figure 3).  
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PIs can be used to provide information on the confidence in the predictions accounting for 

both the uncertainty in the model parameters and the noise in the input data [35].  

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Exemplification of the terminology and concept of a prediction interval [45]. 

 

 

A PI should be distinguished from a Confidence Interval (CI). A PI corresponds to an interval 

estimation regarding the value of a new observation (unseen data); in other words, the PI 

deals with the accuracy of our estimate for a new observation.  In contrast, the CI quantifies 

the accuracy of our estimate of the true regression, or in other words it is an interval estimate 

of the expected value of the output [71]. It should be noted that the PI is wider than the CI 

[72], and it encloses the corresponding CI because the CI takes into account only the 

uncertainty in the model, while the PI accounts also the variability in the data. For a 

mathematical formulation of the CI and the PI estimation problem in statistical inference, we 

refer the readers to [71]. 

 

In real world applications, PIs are of more practical use than CIs because a PI is concerned 

with the accuracy with which we can predict the observed target value itself, and not just the 

accuracy of our estimate of the true regression [45], [72]. Although the point predictions are 

relatively easy to compute and easy to understand, the main motivation for the construction of 

PIs is to quantify the associated uncertainty in the point forecasts. Availability of PIs allows 

the DMs and operational planners to efficiently quantify the level of uncertainty associated 

with the point forecasts and to consider a multiple of solutions/scenarios for the best and 

P
re

d
ic

ti
o

n
 I

n
te

rv
al

 

Input, x 

U(x) 

Target 

L(x) 

O
u

tp
u

t,
  
𝒚
(𝒙

) 

Model output 



The Prediction Problem 

20 

 

worst conditions. Several applications of PIs are found in a number of areas including 

engineering problems, health care, finance, business, etc. 
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3. ARTIFICIAL NEURAL NETWORKS (NNs) FOR PREDICTION 

3.1 Basics of NNs modeling 

Originally inspired by the function of the nerve cells in the brain, NNs have been widely used 

for decades to solve a variety of problems in pattern recognition, prediction, optimization, 

associative memory, and control [53]. Various applications of NNs have been studied in 

physics, biology, psychology, engineering, and mathematics. NNs are generally used as a 

non-linear regression model capable of learning complex systems with incomplete or 

corrupted data.  

 

NNs are composed of computing units (called neurons or nodes) operating in parallel. These 

units are arranged in different layers and interconnected by weighted connections (called 

synapses). Here a layer refers to the usual term for a vertical row of neurons (see Figure 4). 

Each of these computing units performs a few simple operations and communicates the 

results to its neighboring units (see Figures 4 and 6). From a mathematical viewpoint, NNs 

consist of a set of nonlinear (e.g. sigmoidal) basis functions with free parameters w that are 

adjusted in a training process (on many different input/output data samples), by minimizing 

the error associated to regression in an iterative process.  

 

 

  

 

 

 

 

 

 

 

 

 

Figure 4. Sketch of a three-layered feed-forward NN architecture with      neurons (or nodes) in 

the input layer (i), h = 2 neurons in the hidden layer (h) and no = 1 neuron in the output layer (o). 
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As activation function, i.e. the function used to convert the net input value to the neuron’s 

output value (signal) (see (7) and (8)), the sigmoid function is by far the most frequently used 

in NN. The standard sigmoid function is the logistic function, i.e. the logarithmic sigmoid 

function, and it ranges from 0 to 1. It is a convenient differentiable non-linear activation 

function   ( )    (   ) defined by 

 

  ( )  
 

(     (  ))
          (6) 

 

In Figure 5, a taxonomy of NN types is illustrated [73]. Feed-forward neural networks (FNNs) 

and recurrent neural networks (RNNs) are the two main types. A RNN  has neurons that 

transport a signal back through the network, whereas FNNs feed outputs from individual 

neurons forward to one or more neurons or layers in the network [54]. MLP NNs and Radial 

Basis Function Neural Networks (RBF NNs) are two of the most common types of FNNs 

used as empirical regression models especially for nonlinear regression. RBF networks use a 

radial basis function, i.e. a Gaussian kernel, as activation function. RBFs networks have 

similar universal approximation capabilities as MLP networks. For the theory and application 

of the RBF networks, we refer the readers to [74]. 

 

 

    

Figure 5. A taxonomy of neural network architectures [75]. 

 

MLP is a class of universal approximators [75], which are flexible statistical models used to 

model high dimensional and non-linear data. A MLP consists of multiple layers (an input and 

an output layer with one or more hidden layers) of nonlinearly-activating nodes in a directed 

graph, with each layer fully connected to the next one. Each node in one layer connects with a 
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certain weight     to every node in the following layer (see Figures 4 and 6). A three-layer 

MLP has been found in practice to generalize well, i.e. when trained on a relatively sparse set 

of data points, it will often provide a good estimate of the output for an input not in the 

training set. In other words, these networks have been shown to approximate any continuous 

function to any desired accuracy [75]. 

 

An illustration of two multiple-input neurons, and the information processing through them to 

generate an output, is shown in Figure 6. Multiple signals     2      
 are weighed and fed 

onto a non-linear sigmoid transfer (activation) function. The multi-layer structure of such 

neurons (nodes) defines the structure and functioning of the NN: input signals from a previous 

layer produce output signals that are distributed to the neurons of the subsequent layer. 

 

Precisely, the input (net input) and output signals    of node   of the hidden layer are given, 

respectively, by 

 

     ∑     
   

             (7) 

     (∑     
   

   )                                         (8) 

 

where   is the number of hidden neurons,    is the number of input neurons (equal to the 

dimension of the input features) and    the total number of training samples,   () is the 

activation function used in the hidden layer,      is a bias factor, and for           , 

   is the k-th input vector,    (  
   2

       
 ), and     is the synaptic weight. After each 

hidden neuron output has been computed, the signal is sent to each of the neurons    in the 

output layer. Each output neuron    computes its output signal    to form the response of the 

network [16], [19]: 

 

     (∑      
 
   )                 ,                    (9) 

 

where       is a bias factor in the hidden layer, ∑      
 
    is the net input (see (7)) to the 

output neuron   ,    is the number of output neurons and   () indicates the activation 

function used in the output layer. 

 

In this thesis work, we consider the most widely used architecture for prediction and 

classification: a MLP NN with a single hidden layer. In particular, we target a three-layer 
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(input, hidden and output) feed-forward network, with the hyperbolic tangent function in the 

hidden layer and the logarithmic sigmoid function in the output layer. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Scheme of artificial neurons with synaptic weights and corresponding transfer functions 

[56]. 

 

3.2 Training of NNs 

There are three major learning paradigms which apply in general to statistical data-based 

methodologies, each corresponding to a particular learning task:  supervised, reinforced and 

unsupervised learning. In the context of this thesis work, we focus on the supervised learning 

paradigm, i.e. learning from a set of observed cases (a training set of data). Supervised 

learning is analogous to a situation in which a student is guided by a teacher: the presence of 

the output (target) variable guides the learning process. Thus, the important principle is that 

supervised learning requires a training set of data in which the inputs and the corresponding 

outputs are both observed [46]. In supervised learning theory, the experiments can be roughly 

divided into two steps: training and testing.  The training step has the aim of properly defining 

and estimating the model components: the training process thus continues until the model 

achieves a desired level of accuracy on the training data. In the testing (predicting) step, the 

derived model is applied on the testing set to predict the target values with regard to new 

unseen samples/patterns. Thus, this step has the scope of assessing the model correct 

functioning, predictive and generalization power. It is worth mentioning that the input dataset 

can also be split into three parts as training, validation, and testing, and, then, validation set 

can be used to avoid over-fitting (see Section 3.3).  

 

wnj 

 

Output 

w0j 

 

w1j 

 

bias  

node x0 

 

x1 

 

𝑥𝑛𝑓  

 

𝑥 ≡   

 

∑    𝒇𝒉 

 

∑    𝒇𝒐 

 

w0l 

 

whl 

 

𝑂𝑙 
wjl 

 



The Artificial Neural Networks (NNs) for Prediction 

25 

 

In the context of machine learning strategies such as NNs, the process of learning through the 

training set, statistically regarded as an estimation process, is best viewed as an optimization 

process. During the training, the weights (parameters) of the network are gradually adjusted to 

reduce the prediction error between the network output and the corresponding target pattern 

[76]. The values of the weight vector w characterizing the network is, thus, optimized during 

the training. More precisely, the training procedure aims at minimizing the quadratic error 

function (see (10)) on a training set of input/output values    (     )             by 

adjusting the values of the connections (weights)   between elements [77]. Therefore, the 

training of the neural network can be formulated as a non-linear unconstrained optimization 

problem as follows: 

 

         (   )           

where            (10) 

     (   )   (   )  
 

2
∑ ( (  )    )

2  

   
                           

  

where   and   are the input and target vectors respectively,  (  ) is the output value 

estimated by the network for the i-th input sample   . 

          

The back-propagation, first introduced by Rumelhart et al. in 1985 [77], is a widely used 

method for performing supervised learning tasks, i.e. the training of FNNs. By means of this 

procedure, the network can learn to map a set of inputs to a set of outputs, by minimizing the 

criterion in (10). Indeed, the back-propagation algorithm looks for the minimum of the error 

function in weight space using the gradient descent method [78]. The combination of weights 

which minimizes the error function is considered to be a solution of the learning problem. 

Note that, since gradient descent tries to minimize the sum-squared error between the network 

output values and the given target values by computing the gradient of the error function (see 

(10)) at each iteration step, the error function in use must be continuous and differentiable 

[79]. The algorithm can be decomposed in the following four steps [78]: 

 

i. Feed-forward computation 

ii. Back-propagation to the output layer 

iii. Back-propagation to the hidden layer 

iv. Weight updates 
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The algorithm is stopped when the value of the error function has become sufficiently small. 

The best known drawback of the classical back-propagation algorithm is that it is prone to 

local minima under some circumstances. The implementation details of the back-propagation 

algorithm and its mathematical formulation can be found in [53], [77], [78]. 

 

In addition to gradient-based training algorithms, meta-heuristics approaches such as 

evolutionary algorithms (e.g. GAs, differential evaluation (DE), etc.) [80], [81], SA [36], and 

tabu search (TS) [82] have recently been proposed to solve this network training optimization 

problem. In this Ph. D. work, we train a MLP NN by a MOGA, i.e. NSGA-II. The training 

procedure is detailed in Section 4.3.  

 

3.3 Over-fitting and Cross-validation 

Assessing the generalization power of a prediction method is essential for reliable prediction. 

In this regard, NNs show superiority to other methods: after learning from the training dataset, 

NNs can often correctly infer the unseen data even if the sample data contain noisy 

information [83]. Nevertheless, a NN can face over-fitting (overtraining) under some 

circumstances. Over-fitting occurs when the network memorizes the training patterns, but it 

does not learn. In that case, even though the prediction error on the training set is small, it is 

high on the testing set. The number of input features (i.e. input neurons), the number of 

hidden neurons and the number of training samples are all important factors which can cause 

over-fitting [84].  

 

To prevent over-fitting, a validation set (a fixed set of samples not included in the training set) 

can be used to do “early stopping”. This means using the validation set to detect when over-

fitting starts during the training of a neural network; if this occurs, then the training is stopped 

(early stopping) before convergence to avoid over-fitting. Here, the validation error is used as 

an estimate of the model generalization error. To this aim, the basic early stopping technique 

proceeds as follows [85]: 

 

i. Split the input data into three parts: training, validation and testing sets; 

ii. Perform training on the training set, and periodically test the trained NN on validation 

set and compute the validation error rate during training;   

iii. Stop training as soon as the validation error starts to go up; 

iv. Use the weights the network had in that previous step as the result of training; 
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v. Perform testing on the testing set using the optimal weights yielded from training. 

 

The number of samples used for training purposes is an important factor needed to guarantee 

a valid generalization capability. Too few training samples can cause over-fitting, wherein the 

network performs well on the training data set, but poorly on independent test samples drawn 

from the same distribution as the training patterns. When the training samples are few, CV is 

an alternative to be used to avoid over-fitting. 

 

CV provides a simple and effective method for both performance evaluation and model 

selection, widely applied by the machine learning community. In the context of NN, it is used 

to evaluate the generalization performance of the NN, i.e., to estimate the prediction error 

[86]. It is also used for model selection [87] and for determining the optimal network 

architecture (i.e., the number of hidden neurons) [88]. 

 

For NN, the structure of the model influences the learning capability. In practice, the choices 

of the number of network layers and the number of neurons per layer often come down to a 

compromise between the generalization error and the learning time [89], [90]. Note that a 

suitable choice for the global architecture of the network is not a trivial task, if one wants to 

make a good prediction.  

 

CV is a statistical resampling method which uses multiple training and test subsamples. 

Different CV techniques such as k-fold CV, leave-one-out CV, bootstrap CV, etc., have been 

proposed in the statistical literature [86]. In the basic k-fold CV technique, the input data set is 

split into a partition of k equally (or nearly equally) sized segments or folds. At each round of 

cross-validation, one among the different folds is excluded from the training set, and only the 

remaining k-1 folds are used for training; the excluded subset is then used for validation. The 

procedure is repeated until all the k folds have been used once for validation and k-1 times for 

training. The prediction error obtained in the validation step is then averaged across all 

samples. Note that it is sensitive to the specific way in which the dataset has been split [91]. 

For small k values, the bias of k-fold CV may become a problem in real-data analysis. For the 

so called leave-one-out CV, obtained when    , where N is the number of samples, the CV 

estimator is approximately unbiased for the true prediction error, but it has high variance and 

it is very computationally intensive for use in NN [46].  

 

In this research line, in Paper I of Part II, a systematic process has been followed in order to 

identify the optimal NN structure (i.e. the number of hidden neurons) via CV. In this study, 
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we have used 20-fold CV in order to minimize the bias-variance trade-off while also attaining 

the required accuracy in feasible computation times [86].  

 

3.4 PIs Estimation by NNs 

As we have already mentioned in Section 2.3, the uncertainty in the output of the regression 

models is caused both by the uncertainty on the model structure, and by the inherent 

uncertainty in the input datasets, which is quite high for wind and energy demand predictions. 

In order to quantify and represent the uncertainty of predictions, the commonly applied 

statistical tools are CIs and PIs. 

 

The usefulness of PIs of various types has been discussed lately, and different methods have 

been proposed by a number of researchers for the determination of PIs [35]-[37], [72], [92]. 

Herein, we address the NN-based PIs, i.e. we give a synopsis of the related works using NNs 

to generate PIs for the target of interest.  

 

The primary techniques for estimating PIs for NN model outputs are the Delta, the Bayesian 

and the Bootstrap methods [35], [93]. The Bayesian and Delta methods are based on strong 

mathematical foundations. A comparison of these three methods was given by Khosravi et al. 

in [35] on different case studies, and by (the author) in [94] where the problem of bus and 

freeway travel time prediction is considered. 

 

The Delta method is based on a Taylor expansion of the non-linear regression function [95]. 

This method is capable of generating high quality PIs but at the cost of high computational 

time in the development stage, because it requires both the calculation of a Jacobian matrix 

and the unbiased estimation of noise variance.  

 

The Bayesian approach uses Bayesian statistics to express the uncertainty of the neural 

network parameters in terms of probability distributions, and integrates them to obtain the 

posterior probability distribution of the target conditional on the observed training set [58], 

[96]. The axiomatic, strong mathematical foundation makes this method robust and highly 

repeatable. In the end, NNs trained by a Bayesian-based learning technique have superior 

generalization power [35]. On the other hand, the computation time required is high, due to 

the calculation of a Hessian matrix in the development stage (a situation similar to the Delta 

technique).  
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The Bootstrap method is frequently used because it is the simplest method among the ones 

mentioned here [35]. It is a resampling technique that allows assigning measures of accuracy 

to statistical estimates without requiring the calculation of complex matrices and derivatives 

[97], [98]. The aim of the resampling is to produce less biased estimates of the true regression 

of the targets, and to improve the generalization performance of the model [35]. The main 

disadvantages of this method are: i) high computational time when the training sets and neural 

networks are large; ii) with small numbers of input patterns, the individual neural networks 

tend to be overly trained, leading to poor generalization performance  [35], [99].  

 

The common feature of the above mentioned PI estimation methods is that they do not take 

into account the widths of the intervals in the estimation process [35]. With respect to this 

point, Khosravi et al. [36] proposed the LUBE, in which they obtain NN-based PIs by 

considering both CP and PIW in the PI construction phase. These two quantitative measures 

determine the quality of the estimated PIs. The PICP represents the probability that the set of 

estimated PIs will contain the true output values, estimated as the proportion of true output 

values lying within the estimated PIs; PIW simply measures the extension of the interval as 

the difference of the estimated upper bound and lower bound values. These are in general 

conflicting measures (wider intervals give larger coverage), and in practice it is important to 

have narrow PIs with high coverage probability. The mathematical definition of the PICP and 

PIW measures used are [36]: 

 

      
 

  
∑   

  

   
                   (11) 

 

where      , if      (  )  (  )  and otherwise     , 
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where       is the Normalized Mean PIW , and      and      represent the true 

minimum and maximum values of the targets (i.e., the bounds of the range in which the true 

values fall) in the training set, respectively. Normalization of the PI width by the range of 

targets makes it possible to objectively compare the PIs, regardless of the techniques used for 

their estimation or the magnitudes of the true targets.  

 

In the context of the Ph. D. work, our proposed NN-based PIs method does not rely on 

assumptions of the data being drawn from a given probability distribution. The only 
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assumption that we make is that the data are independently and identically distributed (i.i.d.), 

since we perform an empirical and non-parametric approach to the estimation of PIs. In this 

Ph. D. work, we extend the LUBE method [36] to the multi-objective formulation of the PI 

estimation problem. More specifically, we use NSGA-II [44] to train MLP NN to 

concurrently minimize the IW and maximize the CP of the estimated PIs in Pareto optimality 

sense [100]. Note that the approach proposed in this research work integrates the estimation 

of the PIs in its learning procedure, while other methods except LUBE construct PIs in two 

steps (first doing point prediction and then constructing PIs). In Figure 7, the structure of a 

typical three layer (input, hidden and output) MLP used in this thesis to construct PIs is 

illustrated: the output neuron above provides the upper bound of the PI and the one below 

provides the lower bound. By these two output neurons, the NN generates a PI interval for 

each input pattern.  

 

 

Figure 7. Architecture of a MLP NN model for estimating the lower and upper bounds of PIs. 
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4. THE MULTI-OBJECTIVE OPTIMIZATION PROBLEM OF TRAINING A NN 

FOR PREDICTION INTERVALS ESTIMATION 

Optimization is the task of finding one or more solutions that minimize (or maximize) one or 

more specified objectives subjected to all constraints (if any). This Chapter is devoted to 

single-objective optimization problem, via GAs and SA, and to multi-objective optimization 

problem (MOP) via MOGA. In particular, we describe NSGA-II, one of the most powerful 

among evolutionary algorithms (EAs), and the use of NSGA-II to train our NN-based PI 

MOP with two objectives.  

 

4.1 Single-objective Optimization: Genetic Algorithms and Simulated Annealing  

A single-objective optimization problem (SOP) involves a single objective (cost) function and 

usually results in a single solution or in a set of solutions, called optimal. There exist several 

optimization methods (algorithms), which can be classified in exact solution techniques [101], 

[102] and meta-heuristic algorithms [82], [103], [104]. Because of the focus of this thesis 

work, we here consider on two meta-heuristic algorithms: GAs and SA, which have been used 

in our experiments for the purpose of comparison.  

 

GA is a directed random search technique, based on the principles of natural selection and 

genetics, originally proposed by Holland [105]. It can give a result close to the global optimal 

solution in complex multi-dimensional search spaces in a tractable time. It is one of the most 

popular evolutionary algorithms (EAs) in diverse research and application fields. The 

algorithm is first initialized with a population of individual solutions known as chromosomes, 

each encoded either in a string of binary digits (bits) in the case of binary-coded GAs or in a 

vector of real-valued variables in the case of real-coded GAs [103]. Each chromosome is 

associated with one fitness value, evaluated in terms of the objective/fitness function,  , 

representing the degree of fitness of this chromosome. All fitness values of the population are 

then used for evaluating the probability of acceptance of individual chromosomes in the next 

generation, i.e. the chance whether the chromosomes are eliminated or retained in the next 

generation [106].  

 

There are three major operators at each generation: selection, crossover and mutation. The 

selection operator is used to select the chromosomes for the next generation: the 

chromosomes with better fitness values have higher chances to be retained, and those with 
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poorer fitness values have higher chances to be weeded out. The crossover operator is used to 

generate the offspring by exchanging certain bits, i.e. information, of paired individuals 

(chromosomes) chosen from the population, with the expectation that good parents can 

generate better children [106]. Crossover occurs only with some probability    (namely the 

crossover probability, or crossover rate). When the chromosome pairs are not subject to 

crossover, they remain unmodified. Mutation is the modification of the value of each bit of a 

chromosome with some probability    (namely the mutation probability or mutation rate). 

The bits of a chromosome are modified independently, i.e. the mutation of one bit does not 

affect the mutation of the others. The crossover rate   , the mutation rate    and the 

population size    are user-specified parameters. Hence, determining the initial    and    

plays an important role for the algorithm to explore the search space. Some studies focused 

particularly on finding the optimal crossover and/or mutation rates [106], [107]. Note that    

and     might change values along the evolution. A scheme of the standard procedure of a 

basic GA for a maximization problem is given in Figure 8. 

 

SA, inspired by the physical process of annealing of molten metals, is one of the most popular 

meta-heuristics for combinatorial optimization problems. It has been established in the 1980s 

to deal with highly nonlinear problems [108]. One of its advantages is the ability to avoid 

trapping in local minima, by allowing an occasional uphill move. At each iteration, the SA 

algorithm reaches some neighboring state   of the current state  , and stochastically decides 

between moving to state    or remaining at state  . This is done by sampling a uniform 

random number r in the range (0, 1) and using a control parameter called the temperature. 

Then, the decision about acceptance or rejection of the new state is made according to the 

Boltzman Probability Factor (BPF), calculated by 

 

   (    ⁄ )            (13) 

 

where   represents the difference between the objective functions of the newly generated state 

   and the current state  ,  k  is the Boltzmann constant which is set to 1 in our experiments, 

and T is temperature. 

 

Suppose that S is the finite set of all solutions and the objective (cost) function,  f, is a real 

valued function defined on members of S.  The aim of SA is to find a state (or solution),    

 , which minimizes f over S [109]. Figure 9 gives a scheme of the standard procedure of a 

general SA algorithm for a minimization problem [110]. 
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Figure 8. A scheme of the standard procedure of a basic GA for a maximization problem. 

 

 

Initialization: Set the generation number 𝑛   . Initialize the first population 𝑃𝑛 

of size 𝑁𝑐, by randomly generating 𝑁𝑐 chromosomes (suitable solutions for the 

problem). Evaluate the fitness f(x) of each chromosome x in the population 𝑃𝑛. 

Selection: Select 𝑁𝑐 chromosomes from the population 𝑃𝑛 with 

replacement. 

Applying genetic operators: Perform crossover and mutation with 𝑝𝑐 and 𝑝𝑚 to 

generate new 𝑁𝑐 offspring to form the new population 𝑃𝑛
 . 

Evaluation: Evaluate the fitness 𝑓(𝑥) of each chromosome 𝑥 in the population 

𝑃𝑛
 . 

Is termination 

condition met? 

Yes 

Output the best solution and stop. 

𝑛  𝑛   . 

Elitist strategy: Preserve the best individuals of each generation: if    (𝑓(𝑥 )) 

of 𝑃𝑛
  <   x(𝑓(𝑥)) of 𝑃𝑛, then in population 𝑃𝑛

  replace the chromosome 𝑥  by 

the chromosome 𝑥. 

Replace 𝑃𝑛 by 𝑃𝑛
 . 



The Multi-objective Optimization Problem of Training a NN for PIs Estimation 

34 

 

 

Figure 9. A scheme of the standard procedure of a basic SA for a minimization problem. 

 

 

Different cooling schedules can be used for temperature reduction: constant thermodynamic 

speed, exponential, logarithmic, linear, etc. [111]. In our case studies, we have used 

exponential schedule defined as follows: 

Yes 

𝛿 <   
Generate a random number 

r between 0 and 1. 

Set  𝑇(𝑛)  𝛼(𝑇(𝑛   )) (decrease the temperature). 

 

Initialization: Select an initial state 𝑥  𝑆 and set an initial (high) temperature T > 0; 

Define a temperature reduction function (cooling schedule) 𝛼(∙); 

Set the maximum number of iterations Max; 

Set iteration number n = 0. 

 

    Generate state 𝑥 , a neighbor of 𝑥. 

 

Calculate 𝛿  𝑓(𝑥 )  𝑓(𝑥). 

 

Is termination 
condition met? 

Yes 

Return the final solution and stop. 

𝑛  𝑛   . 

𝑥  𝑥 . 𝑟 <  𝑒𝑥𝑝( 𝛿 𝑇⁄ )  
Yes 

No 

No 



The Multi-objective Optimization Problem of Training a NN for PIs Estimation 

35 

 

 ( ( ))    ( ) where   is a constant factor ( <  <  ).    (14) 

 

The commonly used termination criteria include the following: the maximum number of 

iterations is reached; no further improvement is achieved for a specific number of consecutive 

iterations; a very low temperature is reached; or a very small objective function value is 

found.  

 

Both GAs and SA have been successfully applied to NN. Considerable amount of works show 

the use of GAs and SA to train a NN, i.e. to obtain optimal NN parameters (weights and 

biases) [36], [39].  

 

Khosravi et al. [36] have used SOSA to train a NN for generating PIs. They used the 

weighting approach as shown in (21) to combine two separate objectives (see Section 3.4) 

PICP and NMPIW in a single-objective function (see (15)). The former objective, to be 

maximized, represents the probability that the set of estimated PIs will cover the true output 

values  ( ), while the latter, to be minimized, simply measures the extension of the intervals 

as the difference between the estimated upper bound and lower bound values. The objective 

function to be minimized is called coverage width-based criterion (CWC) [36], and it is given 

by 

 

          (   (    )    (      ))               (15)                 

 

where   and   are constants. The role of   is to magnify any small difference between   and 

PICP. The value of   gives the nominal confidence level, which is set to 90% in our 

experiments. Then,   and   are two parameters determining how much penalty is paid by the 

PIs with low coverage probability. The function   (    ) is equal to 1 during training, 

whereas in the testing of the NN it is given by the following step function: 

 

 (    )  {
                   
                <   

                (16) 

 

In this work, we have performed a comparison among our proposed MOGA framework, 

SOGA and SOSA. To perform the training via SOSA and SOGA, we have used the CWC, 

described in (15), as the single-objective cost function. The details and the results of the 

comparison are given in Paper II of Part II. The details about the implementation of SOSA 
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and SOGA in our NN-based prediction problem, i.e. of the training (optimization) procedure 

of a MLP to construct PIs, is given in Chapter 5.  

 

4.2 Multi-objective Optimization: Non-dominated Sorting Genetic Algorithm-II 

(NSGA-II) 

In generality, a MOP consists of more than one objective, and it is associated to a number of 

equality and inequality constraints, and bounds on the decision variables. In case of multiple 

objectives, there may not exist one solution, which is the best (global minimum or maximum) 

with respect to all objectives. In other words, unlike the traditional mathematical setting with 

a single-objective function, an optimal solution in the sense that one minimizes (or 

maximizes) all the objective functions simultaneously does not necessarily exist in the MOP. 

Thus, we encounter a conflict among objectives, which translates into a decision making 

problem with multi objectives [100]. Ultimately, we try to find good compromises (or “trade-

offs”) rather than a single solution as in global optimization. 

 

Mathematically, MOP can be written as follows [100]: 

 

Minimise/Maximise    ( )                                       (17) 

subject to     ( )                                             (18) 

  ( )                                                                (19) 

  
( )

       
( )

             .                                            (20) 

 

Given an  -dimensional decision variable vector solution,   (    2    )
  in the solution 

space   ,  the final goal is to find a vector       that minimizes a given set of M objective 

functions {  ( 
 )  2( 

 )     (  ) . The solution space is restricted by the constraints in 

(18) and (19), and the bounds on the decision variables in (20). The solutions satisfying the 

constraints and variable bounds constitute a feasible decision variable space      . In 

addition to the decision variable space, the objective functions constitute a multi-dimensional 

objective space,     . The   objective functions   ( ) must be evaluated in 

correspondence to   in the search space. Thus, for each solution   in the decision variable 

space, there exists a point        in the objective space, defined by the relation  ( )    

(    2     )  [103].  
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There are two general approaches to solve the MOPs [112], [113]: one way is to combine the 

individual objective functions into a single composite function. Determination of a single 

objective is possible with methods such as utility theory, or with more naïve approaches like 

the weighted sum method, i.e. by averaging the objectives with a weight vector (see (21)). 

However, the weighted sum approach relies on the correct selection of the weights or utility 

functions to characterize the DMs preferences with respect to the different objectives. Small 

perturbations in the weights can lead to different solutions, and a priori selection of weights 

does not necessarily guarantee that the final solution will be acceptable. One may have to 

restate the problem with new weights, and then find a new solution, thus, this increases the 

computational cost of the whole procedure. 

 

Mathematically the weighting method is described as [103]: 

 

         ∑     ( ) 
            (21) 

                 

 

where                       , and  ∑      
   .  

 

Although the main advantage of the weighted sum approach is its straightforward 

implementation, there exist some disadvantages: the selection of the appropriate weights is a 

challenge; it is impossible to obtain points on non-convex portions of the Pareto optimal set in 

the criterion space, i.e. this approach does not work correctly for non-convex problems, etc. 

For a more detailed description of this method, we refer the readers to [103], [112].  

 

The second general approach, which is the focus of this work, is to optimize all the objectives 

together, thus to determine an entire Pareto optimal solution set or a representative subset. In 

a typical MOP, there exists a set of solutions       which are superior to the rest of 

solutions in the search space, but in which no solution can be regarded superior to any other 

with respect to all the objective functions. These solutions are known as Pareto-optimal 

solutions or non-dominated solutions. Thus, a Pareto-optimal set is a set of solutions that are 

non-dominated with respect to each other when all objectives are considered. In case of a 

minimization problem, solution    is regarded to dominate solution    (     ) if both 

following conditions are satisfied [100]: 

 

                (  )    (  )                              (22) 
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                (  ) <   (  )                               (23)                 

 

If any of the above two conditions is violated, the solution    does not dominate the solution 

  , and    is said to be non-dominated by   . The solutions that are non-dominated within the 

entire search space are denoted as Pareto-optimal and constitute the Pareto-optimal set; the 

corresponding values of the objective functions form the so-called Pareto-optimal front in the 

objective functions space (see Figure 10).  

 

The majority of existing multi-objective evolutionary algorithms (MOEAs) are based on 

Pareto dominance [44], [104], [113], [114]. EAs seem particularly suitable to solve MOPs, 

because they deal simultaneously with a set of possible solutions (the so-called population). 

This allows us to find several members of the Pareto-optimal set in a single run of the 

algorithm, instead of having to perform a series of separate runs as in the case of the 

traditional mathematical programming techniques [104].  

 

To obtain a Pareto-front, another alternative could be to use the -constraint method [115], 

[116]. To perform this method, one has to reformulate the problem as a single-objective one 

by choosing one objective for optimization, and considering the others as constraints bounded 

by some allowable levels   . The constraint values,   , are then changed to generate the 

Pareto-optimal set. This approach requires multiple runs to form the Pareto front and can be 

time-consuming. In addition, the search is limited to few points in some predefined regions 

near the fixed constraint values. This may lead to missing some optimal solutions. On the 

contrary, MOEAs can find, multiple Pareto-optimal solutions in one single run, and the non-

dominated solutions in the obtained Pareto-optimal set are well distributed and diverse [112], 

[115], [116]. 

 

The goal of a multi-objective optimization algorithm is to guide the search for solutions in the 

Pareto-optimal set, while maintaining diversity so as to cover well the Pareto-optimal front 

and thus allow flexibility in the final decision on the solutions to be actually implemented. 

The Pareto-optimal set of solutions can provide the DMs the flexibility to select the 

appropriate solutions, trading-off different preferences on the objectives. The DMs also gain 

insights into the characteristics of the optimization problem before a final decision is made.  

Note that since none of the solutions in the non-dominated set is absolutely better than any 

other, any one of them can be chosen as a final solution to take decisions. The choice of one 

solution over the other requires problem knowledge and a number of problem-related 
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considerations. Thus, one solution chosen by a DM may not be acceptable to another one or in 

a different context. Therefore, in multi-objective optimization problems, it may be useful to 

have knowledge about alternative Pareto-optimal solutions, as it provides valuable 

information about the underlying problem [113]. 

 

 

 

Figure 10. An example of an optimal Pareto front of non-dominated solutions, for illustration 

purposes. 

 

 

4.3 Training of NNs by NSGA-II 

The NSGA was first proposed by Srinivas and Deb (1994) [113]. Then, they have proposed 

the improved version, NSGA-II [44], which is so far one of the most popular and powerful 

MOEAs attempting to find multiple Pareto-optimal solutions in a MOP. This updated version, 

NSGA-II, has less computational complexity compared to the NSGA. The characteristic 

feature of NSGA-II is its fast non-dominated sorting, ranking and elitism techniques to find 

the optimal solutions at each iteration. The pseudo code of the NSGA-II can be found in [44], 

[104]. 

 

The practical implementation of NSGA-II on our PIs construction problem involves two 

phases: initialization and evolution. These can be summarized as follows: 
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Initialization phase: 

Step 1) Partition the input data into training (Dtrain) and testing (Dtest) subsets. 

Step 2) Define the values of: the maximum number of generations, the number of 

chromosomes (individuals)    in each population, and the initial crossover and mutation 

probabilities.  

Step 3) Set the generation number    . Initialize the first population    of size   , by 

randomly generating    chromosomes. Each chromosome forms a candidate solution by   

real-valued genes, where   is the total number of parameters (weights) in the NN. Note that 

each solution corresponds to a NN. 

Step 4) For each input sample   in the training set, evaluate each of the    chromosomes in 

the initial population   , i.e. compute the lower and upper bound outputs of each    

chromosome with   parameters, by performing NN training. Return the values of two 

objectives 1-PICP and NMPIW for each of the    chromosomes. 

Step 5)  Rank the chromosomes (vectors of   values) in the population    by running the fast 

non-dominated sorting algorithm [44] with respect to the pairs of objective values, and 

identify the ranked non-dominated fronts     2      where    is the best front,  2 is the 

second best front and    is the least good front. 

Step 6) Apply to    a binary tournament selection based on the crowding distance [44], for 

generating an intermediate population    of size   . 

Step 7) Apply the crossover and mutation operators to   , to create the offspring population 

   of size   . Note that mutation probability    decreases at each iteration. 

Step 8) Apply Step 4 onto    and obtain the lower and upper bound outputs. Evaluate each of 

the    chromosomes in the population   . Return the values of the two objectives 

corresponding to the solutions in   . 

 

Evolution phase: 

Step 9) If the maximum number of generations is reached, stop and return   . Select the first 

Pareto front    as the optimal solution set. Otherwise, go to Step 10. 

Step 10) Combine    and    to obtain a union population         . 

Step 11) Apply Steps 4-5 onto    and obtain a sorted union population.  

Step 12) Select the    best solutions from the sorted union to create the next parent 

population     . 

Step 13) Apply Steps 6-8 onto      to obtain     . Set       ; and go to Step 9.  
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Finally, the best front in terms of ranking of non-dominance and diversity of the individual 

solutions is chosen. Once the best front is chosen, the testing step is performed on the trained 

NN with optimal weight values.  

 

The binary tournament selection, mentioned in Step 6, uses the crowded-comparison operator 

   as the selection criterion. For solution   in the population, it has two attributes: 

nondomination rank       and crowding distance          . The crowding distance is a 

measure of how close an individual is to its neighbors. Large average crowding distance will 

result in better diversity in the population. For a solution pair,   and  , we have        if        

<       or (       =        and                      ). That is, if there are two solutions under 

consideration with different nondomination ranks, we prefer the one with the lower (better) 

rank. Otherwise, if both solutions have the same rank, i.e. if they both belong to the same non-

dominated front, we select the solution which locates in a region with the smallest number of 

points. For further explanations, we refer the readers to [44]. 

 

Note that we have followed the original design of NSGA-II published by Deb et al [44]. In the 

initialization phase, the binary tournament selection, recombination, and mutation operators 

are used to build an offspring population    of size    to combine with its parent population 

in the later evolution phase. The union population is used in each cycle of the evolution phase.  

Thus, with respect to the original definition of the NSGA-II, we have performed binary 

tournament selection, mutation and crossover operators in the initialization phase.  

 

It is worth noting that the Step 1 can be modified according to the characteristics of the 

problem and of the experiment. For exemplification, in Papers IV and VII, a validation 

process has also been performed. Hence, the dataset has been divided into three parts: training 

(Dtrain), validation (Dvald) and testing (Dtest).  
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5. APPLICATIONS 

This Chapter is devoted to the description of the applications carried out in Papers I-III of Part 

II. Paper I considers the problem of scale rate prediction in oil & gas components, whereas the 

focus of Papers II and III is short-term wind speed prediction. In all three papers, we use the 

MOGA-NN approach defined in Chapter 4 to estimate PIs for the target of interest.  

 

5.1 Prediction of Scale Deposition Rate in Oil & Gas Equipment 

In paper I, we have tackled the prediction of the scale rate in oil & gas components. 

Degradation to failure of components may cause unplanned costs and production losses 

through downtime [117]. Prediction of component degradation to failure is important for 

production availability. In the context of oil & gas industry, scale deposition and corrosion 

continue to be serious and costly problems, because affecting the operation of the 

components. Formation of scale on downhole equipment due to produced mineral salts is a 

common occurrence which is mitigated with chemical treatments or surface modifications 

[118]. However, when chemical treatments are ineffective or undesirable, the scale buildup 

should be accounted for and predicted a priori for a given application. Accurate prediction of 

scale deposition and corrosion can give way to preventive maintenance [119]. In this paper, 

we focus on the former process. 

 

In oil & gas plant components, scale deposition is influenced by different factors, such as 

reservoir conditions (temperature, pressure), changes in pH, variation of flow rates, water cut, 

material structure, etc. [120]. A predictive model is needed to explain the linear or nonlinear 

mapping between these input (explanatory) variables and the output (the scale deposition rate, 

hereafter called scale rate). Unlike the classical analytical models based on thermodynamics 

kinetics and hydrodynamics, or on a combination of these for the prediction of scale 

deposition in components of production wells, we have here used a MLP NN as prediction 

method, since we aim at taking into account the variability/uncertainty caused in the output by 

the uncertain characteristics of the input variables. The originality of the approach is the 

multi-objective formulation of the problem, which is capable of achieving high coverage with 

intervals of small width. The multi-objective framework allows considering a set of optimal 

solutions to select from, according to preferences and to the application purposes. 
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The case study concerns the scale (deposition) rate on the metal surfaces of equipment used in 

offshore oil wells. The output variable   is the scale rate; the influencing input variables are 

temperature (T) and pressure (P), water composition (W) and fluid velocity (V) near the metal 

surfaces. 

 

We here use a systematic approach, rather than trial-and-error method, for the selection of the 

optimal number of hidden neurons in the hidden layer. Since the number of input samples 

(118 samples) in the training set was not enough for selecting the optimal NN structure 

without facing over-fitting, we have performed k-fold, i.e. 20-fold CV. The architecture of the 

NN consists of one input, one hidden and one output layers. The number of input neurons is 4, 

the number of hidden neurons is chosen via the CV process, the number of output neurons is 

2, one for the lower and one for the upper bound values of the PIs (see Figure 7). As 

activation functions, the hyperbolic tangent function is used in the hidden layer and the 

logarithmic sigmoid function is used at the output layer (these choices have been found to 

give the best results by trial and error, although the results do not show significant sensitivity 

to them). In order to obtain an optimal NN architecture, 11 different choices for the number of 

hidden neurons, 5, 7–11, 13, 15, 17, 18, 20, have been explored. As we have performed 20-

fold CV, a NN has been trained 20 times with the same number of hidden neurons. 

Ultimately, we have obtained 220 optimal Pareto fronts including several non-dominated 

solutions. Note that each solution on a Pareto front obtained by training corresponds to a NN. 

 

In order to evaluate different neural network structures and select the optimal one, the Pareto 

fronts have been compared in terms of their hypervolume indicators [121]. Note that, if a 

solution set A has a greater hypervolume than a solution set B, then A is taken to be a better 

set of solutions than B [122]. The number of hidden neurons providing a significantly larger 

hypervolume according to classical statistical tests has been evaluated as optimal, and 

selected for subsequent analyses. 

 

In conclusion, with respect to the statistical test results, we have chosen the optimal number 

of hidden neurons as 10 for our specific problem. Finally, a solution on the Pareto front 

obtained by training with 10 hidden neurons has been chosen subjectively, and, then, 

estimated PIs on the test set, corresponding to this solution, have been plotted for the scale 

rate values. The solution has been chosen as the one with smallest NMPIW among those with 

         .  
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5.2 Short-Term Wind Speed Prediction 

In Papers II and III, we have tackled the problem of short-term wind forecasting on real case 

studies including four and three datasets, respectively. The main contributions in Paper II can 

be summarized as follows: i) framing the PI estimation problem, i.e. finding optimal lower 

and upper bounds of PIs, in a multi-objective framework, and utilizing the powerful NSGA-II 

algorithm to solve the problem. To the knowledge of the authors, this is the first study 

proposing such multi-objective formulation for the estimation of NN-based PIs for wind 

speed prediction; ii) analyzing the Pareto front of optimal solutions, and offering several 

alternatives to the DMs for finally choosing a solution by taking into account the trade-off 

between risk and robustness; iii) showing the application of the method on four different 

datasets involving different wind speed profiles with seasonality; and iv) performing a 

thorough comparison with both single and multi-objective algorithms. 

 

The hourly wind speeds measured in four different periods in Regina, Saskatchewan have 

been downloaded from the website [123]. The first dataset comprises wind speeds for the 

period from 1st of February 2012 to 31st of March 2012 (winter dataset), the second from 1st 

of July 2012 to 29th of August 2012 (summer dataset), the third from 1st of February 2011 to 

30th of June 2011 (w2011 dataset) and the last one from 1st of May 2010 to 30th of 

September 2010 (w2010 dataset). The four periods have different seasonality and have been 

selected to represent different patterns and characteristics in the measured time series of wind 

speeds. 

 

In this study, the method for the estimation of PIs by NN has been applied for short-term wind 

speed prediction on the four different wind speed datasets (winter, summer, w2011, w2010). 

Although variability in the testing patterns of the winter and summer datasets are relatively 

higher compared to the training patterns, MOGA algorithm shows a good accuracy and 

generalization ability on all datasets. 

  

In order to demonstrate the superiority of the proposed MOGA-NN method if compared to 

SOGA and SOSA, we have performed a comparison with these methods. In SOSA and 

SOGA, the CWC (15) has been used as the objective (cost) function. Both the SOGA and 

SOSA procedures, defined in Section 4.1, have been adapted to our NN-based PI estimation 

problem. It is worth saying that in SOGA we have used the roulette wheel selection algorithm 
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[104], [124]. Note that for both SOGA and SOSA, the user specified parameters have been 

tuned to select the ones giving optimal performances. 

 

For the purpose of comparison, we have also calculated the CWC values of the optimal 

solutions on the Pareto front yielded by MOGA for both training and testing sets. We have 

run MOGA, SOSA and SOGA twenty times for each wind dataset. Then, we have used 

boxplots to analyze the experiment results.  From the inspection of boxplots, we can draw the 

following general conclusion: MOGA algorithm shows more consistent testing results, i.e. 

better generalization capability, with respect to the CWC value if compared to SOGA and 

SOSA. For further explanations of the comparisons, we refer the reader to Paper II of Part II. 

 

In addition to the comparisons explained above, we have also applied multi-objective 

covariance matrix adaptation evolution strategy (MO-CMA-ES) [125] as an alternative multi-

objective training algorithm. With respect to the case study results, we can conclude that the 

optimal Pareto front obtained by NSGA-II is slightly better than the one obtained by MO-

CMA-ES.  

 

Finally, a comparison with the ARIMA model has been also performed. Although ARIMA 

provides high accuracy in terms of CP, PIWs are quite large (around 50% of the target range). 

Hence, PIs obtained with ARIMA cannot provide useful information in practice, because the 

uncertainty level is too high to support a reliable and informed decision in typical application 

contexts. Indeed, for winter and summer datasets, where the test set variability is relatively 

higher than in w2011 and w2010 datasets, MOGA-NN results in tighter interval widths for 

the same PICP value.  

 

In conclusion, the tests and comparisons with other methods (SOGA, SOSA, MO-CMA-ES 

and ARIMA) prove and confirm the superiority of the proposed MOGA-NN method in our 

specific problem, i.e. short-term wind speed prediction. 

 

For each algorithm, the average CPU times over 20 runs for both training and testing have 

been recorded using MATLAB on a PC with 4 GB of RAM and a 2.53-GHz processor. Table 

5 reports the recorded training CPU times on the winter dataset. The SOSA PI construction 

time has been recorded for 15000 iterations. The average CPU time for the construction of 

testing PIs, i.e. for the online prediction of PIs, is very fast for all algorithms, being about 0.05 

s. It is needless to say that computational load is dependent on the complexity of the structure 
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of the model (e.g. number of input neurons, hidden layers, and hidden neurons), the size of 

the dataset and the performance of the learning algorithm.  

 

  

Table 4. Descriptive Statistics of CPU times (s) of twenty MOGA, SOSA and 

SOGA on winter training dataset. 
 

 

 

 

 

 

For what concerns Paper III, two different machine learning approaches to estimate PIs for 

time series predictions are considered and compared: MLP NN trained with NSGA-II and 

ELM combined with the nearest neighbors approach. The proposed approaches are applied 

for short-term wind speed prediction from a real dataset of hourly wind speed measurements 

for the region of Regina in Saskatchewan, Canada. It is worth mentioning that in this paper, 

we have used the same three wind speed datasets (winter, summer, w2011) also used in Paper 

II. The main contribution of this paper is the proposal of two different machine learning 

approaches for estimating PIs of time series of wind speed profiles and their comparison 

based on different criteria. The two approaches differ from each other and also from the 

approaches previously applied in other studies [35], [36], [92], [126], [127]. The MOGA-NN 

approach integrates the estimation of the PIs in the learning procedure of the algorithm. The 

algorithm itself is directly trained to balance the width of the interval and the coverage 

probability, concurrently optimizing the two quality assessment criteria of the PIs. The ELM 

algorithm combined with the nearest neighbor approach is trained to fit optimally the time 

series data (instead of estimating directly the PIs). Conceptually, the ELM algorithm extends 

the functionality of the standard feed-forward NNs by including different activation functions, 

and by overcoming computationally expensive learning algorithms, such as back-propagation. 

In the second step, the PIs are estimated on the basis of the performance of the algorithm on 

similar training samples in the input space. Both approaches are based on powerful learning 

algorithms and have proven to be capable of providing good generalization ability and 

accurate predictions, considering the uncertainties associated to the input data and the model 

parameters. According to the results of this study, they both look promising for time-series 

wind speed prediction.  

 

 Mean (s) Std (s) Min (s) Max (s) 

MOGA 258.84 9.40 245.49 285.96 

SOGA 199.36 12.42 186.42 231.32 

SOSA 163.29 6.98 154.52 184.28 
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The approaches are shown to yield a similar performance, with different strengths and 

limitations with respect to the criteria (prediction precision, generalization ability, variability, 

algorithm complexity, computational load, ease of parameter setting, etc.) used for the 

comparison. Both algorithms are data-driven and depend highly on the representativeness of 

the training dataset. Therefore, the quality of PIs can decrease on datasets with large 

variability and uncertainty in the data. 
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6. UNCERTAINTY TREATMENT: INTERVAL-BASED ESTIMATED 

PREDICTION INTERVALS 

6.1 Problem Statement 

Uncertainty representation and quantification play an important role in every decision making 

process. The need for an appropriate representation and quantification of uncertainty as part 

of any analysis that supports an important decision has been widely recognized in the 

engineering applications. [128].  

 

For practical purposes, uncertainties can be classified in two distinct types [34]: epistemic 

(state-of-knowledge) and aleatory. The former derives from imprecise model representation of 

the system behavior, in terms of uncertainty in both the hypotheses assumed (structural 

uncertainty) and the values of the model parameters (parameter uncertainty). Model 

uncertainty arises because mathematical models are simplified representations of real systems 

and, therefore, their results may be affected by error or bias. Aleatory uncertainty describes 

the inherent variability of the observed physical phenomenon. This type of uncertainty cannot 

be reduced by conducting exhaustive measurements or by defining a better model, and, thus, 

it is also named irreducible uncertainty or inherent uncertainty [129].  

 

Uncertainty quantification is the process of representing the uncertainty in the system inputs 

and parameters, propagating it through the model, and then revealing the resulting uncertainty 

in the model outcomes [130]. 

 

In the literature, methods such as probability theory [131], [132], possibility theory (e.g. fuzzy 

set theory and in particular type-2 fuzzy sets and interval type-2 fuzzy logic systems) [133], 

[134], evidence theory [135], interval analysis [136], [137], and MC simulation [138] have 

been widely used to efficiently represent, aggregate, and propagate different types of 

uncertainty through computational models.  

 

In this Ph. D. work, with respect to the growing interest in representing and quantifying the 

uncertainties in distributed power generation systems, we use interval-analysis to represent 

the uncertainty in input data, typically subject to aleatory uncertainty, particularly in wind-

integrated distributed power generation systems. In the framework of this thesis work, 

aleatory uncertainties concern for instance the time to failure of a component, and wind speed 
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and load variations, whereas the error associated to the NN regression model is an example of 

epistemic uncertainty.  

 

6.2 Interval Analysis 

Interval analysis is a promising technique for bounding solutions under uncertainty [137]. The 

uncertain model parameters are described by upper and lower bounds, and the corresponding 

bounds in the model output are computed using interval functions and interval arithmetic 

[136]. These bounds contain the true target value with a certain confidence level. The 

uncertainty in each element    of  , where   is a vector of inputs in the form   

     2      , is represented by an interval, and the goal of interval analysis is to construct 

the smallest interval that exactly contains the resultant possible values for  ( ) [128]. 

 

The interval-valued representation is typically used to reflect the variability in the inputs (e.g. 

extreme wind speeds in a given area, minimum and maximum of daily temperature, etc.), or 

their associated uncertainty (e.g. strongly skewed wind speed distributions, etc.), i.e. to 

express uncertain information associated to the input parameters [139], [140]. 

 

In the case study carried out in Paper IV, we use interval analysis to represent the uncertainty 

in the input, which is wind speed in our specific problem, and propagate it through the model 

outputs. In other words, uncertainty associated with an unknown input value is represented by 

a lower and upper bound without the assumption of distribution in-between. Section 6.3 

provides the details of this case study.  

 

6.3 Application to Wind speed Prediction Intervals Estimation with Interval Inputs 

In Paper IV, we aim at quantifying the uncertainty in the prediction arising from both the 

input data and the prediction model. We perform prediction with NNs on the basis of 

uncertain input data expressed in the form of intervals. A MLP NN has been trained to map 

interval-valued input data into interval outputs, representing the PIs of the real target values. 

The MLP NN training has been performed by NSGA-II, so that the PIs are optimized both in 

terms of accuracy (coverage probability) and dimension (width).  

 

Demonstration of the proposed method is given on two case studies: (i) a synthetic case study, 

with 5-minutes simulated data; (ii) a real case study, involving hourly wind speed 

measurements. In both cases, short-term prediction (1-hour and day-ahead, respectively) is 
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performed taking into account both the uncertainty in the model structure, and the variability 

(within-hour and within-day, respectively) in the inputs. An interval representation has been 

given to the hourly and daily inputs by using two different approaches, namely min-max and 

mean, which quantify in two different ways the within-hour and within-day variability. The 

NN maps interval-valued input data into an interval output, providing the estimated PIs for 

the real target. 

 

The originality of the work appears in two aspects: (i) while the existing papers on short-term 

wind speed/power prediction use single-valued data as inputs, obtained as a within-hour  [39], 

[141], or within-day average [142], we give an interval representation to hourly/daily inputs 

by using two approaches which properly account (in two different ways) for the within-

hour/day variability, and (ii) we perform a comparison between methods taking into account 

interval-valued and point-valued (crisp) inputs to demonstrate that the former are more 

reliable and powerful than the latter in our specific problem. 

 

The wind speed dataset, covering the period from January 1, 2010 till December 30, 2012, has 

been downloaded from the website [123]. Since hourly data have been collected, 24 wind 

speed values are available for each day. Fig. 5 in Paper IV shows the behavior of hourly wind 

speed values only in the first 20 days, for the sake of clarity: one can appreciate the within-

day variability in each individual day. The wind speed changes from 0 km/h to 72 km/h with 

an unstable behavior. From this raw hourly wind speed data, one can obtain daily interval 

wind speed data with the min-max and mean approach. The so obtained datasets include 1095 

intervals among which the first 60% is used for training, 20% for validation and the remaining 

20% for testing. The inputs are historical wind speed data     and    2 both for the method 

considering interval inputs and the one with crisp inputs; the optimal number of inputs has 

been chosen from an auto-correlation analysis [48]. 

 

The basis of our interval computations is interval arithmetic [136] and we have used 

MATLAB INTLAB Version 6 toolbox for all interval arithmetic calculations. Therefore, we 

have fed each neuron with an interval       instead of two single values. Note that we have 

not applied the “extremal values method” explained in [143] to convert the interval-valued 

inputs into two single values: we have used only one input neuron for each interval-valued 

input variable  ( ), which is 2 in the wind speed case study; each neuron receives interval-

valued inputs and produces interval-valued outputs. Each input variable, i.e. each interval 

input vector  ( ), is described by    intervals (as we have    samples), i.e., 
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(   
    

     2
   2

         
     

  ) [139]. The output neuron is also described as an interval 

      where a and b are real numbers. 

 

In order to show the strength of NSGA-II to train a MLP fed by interval-valued input, we 

have performed a comparison with SOSA. To perform a comparison between SOSA and the 

proposed MOGA method, we have run the SOSA by using the same interval-valued wind 

speed training data. For SOSA, the initial temperature has been determined after a trial and 

error procedure.  

 

For SOSA, the training process has been repeated five times. The cost function was CWC. 

According to the training and testing results of SOSA (see Paper IV, Section 4.3), it can be 

observed that the training and corresponding testing solutions do not show high consistency in 

terms of coverage probability and interval size among the five runs performed. In other 

words, there is a high variability among the results of the five runs, e.g. SOSA gives high CP 

values in one run whereas it generates less accurate PIs in another one: 3 out of 5 runs give 

CP values smaller than the predetermined nominal confidence level, i.e. 90% in our 

experiments. This shows a drawback in the SOSA method concerning its robustness on this 

specific problem. 

 

In conclusion, we have observed that the solutions obtained by MOGA dominate the best 

ones obtained by SOSA. It is worth pointing out that as both solutions give large interval sizes 

(around 50%) they cannot provide useful information in practice, because the uncertainty 

level is too high to support a reliable and informed decision in typical application contexts. 

However, with the MOGA approach one can select a solution from the Pareto front giving 

tight PIW with a high CP, which satisfies the predetermined nominal confidence level.  

 

Results of two case studies prove the superiority of the interval-valued input approach with 

respect to the single-valued one. The former case study turns out to provide higher PICP with 

lower NMPIW on synthetic data generated from an ARMA model with either Gaussian or 

Chi-squared innovation distribution. The synthetic data shows a stationary and periodic 

pattern whereas the wind speed data is highly volatile. 
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6.4 Application to Adequacy Assessment of a Wind-Integrated Distributed Power 

Generation System 

Paper V addresses the problem of accurate adequacy assessment with quantification of the 

associated uncertainties, which is crucial for the reliable operations and the sustainability of 

energy systems. We have presented a framework for conducting the adequacy assessment of a 

wind-integrated power system accounting for the associated uncertainties in the data (load 

fluctuations, wind variability, and component failures) and the prediction models. Our 

adequacy assessment framework leads to the evaluation of the EENS [28], [144], on the basis 

of interval-valued load and wind power input data. Wind power and load PIs have been 

estimated by NNs where the training of the network is performed by NSGA-II, so that the PIs 

are optimized in terms of both accuracy and dimension. Interval-valued EENS results are then 

obtained to allow informative decision making taking into account the uncertainty in the 

predictions. 

 

In order to conduct the adequacy assessment of the wind-integrated power system, we use a 

well-known adequacy index, EENS, which quantifies the capability of the system to meet the 

demand in the time horizon considered for the analysis. EENS measures the expected value of 

the energy not supplied due to the lack of available energy through the given time horizon 

(e.g. one year). It depends on the predicted values for both the system energy production and 

the power demand, and it is formulated as follow: 

 

     ∑    (  
 
      )  (     )       (24) 

 

where      is the realization of the energy not supplied for the entire horizon in the k-th 

simulation run;    is the equally sized time step (e.g. hour or day);   is the total number of 

time steps in the considered time horizon, in our case          for a one year time horizon; 

   is the total power generation available at time step  ;    is the load demand at time step  ; 

   (     ), which indicates the probability that the load demand exceeds the available 

power generation at time step  , is a generalized form of  (     ) to handle the interval 

values of    and   : when    and    are crisp values as in the classical adequacy assessment, 

   (     ) is reduced to  (     ) which equals to 1 if the condition is satisfied, 

otherwise equals to 0.  
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Thus, EENS value of the system, i.e. the average amount of the unsupplied energy per year, is 

estimated as follow: 

 

       
∑     

 
   

 
          (25) 

 

where K is the total number of simulations that has been set to 100 in our experiments. 

 

In the classical estimation of EENS (25), both the predicted value of the generation    and of 

the load    at each time step   are assumed to be point estimates, resulting in a point estimate 

of EENS. Our method is, instead, capable of providing PIs for both the power generation and 

the load at each time step, to take into account the possible uncertainties in the prediction 

arising from both the underlying physical processes (wind inherent uncertainty, variability in 

power demand, etc.) and in the system stochastic behavior (equipment failures, 

approximations of the system complexities, etc.). A proper adequacy assessment model 

should take these sources of uncertainty into account, since uncertainty quantification is 

crucial for a real understanding of the system behavior, and for obtaining reliable results 

useful for robust decision making. Hence, we aim at a generalization of the EENS in order to 

include interval estimates of both    and   .  

 

To this aim, two different strategies are considered for interval-based EENS estimation: a 

point estimation and an interval estimation. The objective is to know and dominate the impact 

of the uncertainty in wind and load on the uncertainty in EENS. Both strategies are interval-

based, in the sense that the inputs to the evaluation are the short-term PIs for load and for 

power generation, as obtained by the NN-based PI estimation procedure. The former is based 

on the probability density function of the continuous random variable         , where 

      and       are, respectively, two admissible values of the load demand and power 

generation at time  , thus               
    

     
    

   and it results in point estimation 

of ENNS considering interval-valued input variables,    and   . On the other hand, the latter 

takes into account load and power generation PIs in EENS estimation, and it consists in 

directly using (24) with interval-valued    and     thus obtaining as a result an interval 

evaluation of EENS by directly applying the principles of interval arithmetic [136]. Detailed 

explanations on the two proposed strategies are given in Paper V of Part II.  

 

The case study consists in the analysis of hourly wind speed data from the region of Regina, 

Saskatchewan, Canada, from a 9-year period (1 Jan. 2003 to 31 Dec. 2011). Hourly mean 
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wind speed data are used to determine the time-dependent wind power output of a wind 

turbine generator (WTG) using its power curve [145], [146]. For load demand, the hourly 

load fluctuations are modeled using the chronological annual load curve of the IEEE 

Reliability Test System (RTS) [147] with the scaled annual peak load value.  

 

For comparison purposes, we have considered 6 different scenarios, corresponding to the 

computation of EENS by taking into account different uncertainty levels in the input 

parameters, i.e. wind power, load and system state. These scenarios have been called PEENS, 

interval ENS, ENS LB, ENS mean, ENS UB and ENS actual. ENS LB and ENS UB have 

been calculated by considering only the LB and UB of the estimated load and wind power 

PIs, respectively, and by computing a single-valued inputs ENS index. Similarly, to estimate 

ENS mean, the central values (mean point) of the PIs have been used as input. For computing 

ENS actual, we have used the actual data sets: ENS actual is, thus, the unknown quantity we 

would like our estimates to be close to, and it cannot be computed in a real case study; we 

have calculated it here only for demonstration of the strength of our approach. Simulation 

results on different scenarios confirm that uncertainties in input data can be properly taken 

into account to obtain more reliable EENS estimations. 

 

As an alternative method to estimate PIs for wind power, we have used the histogram and 

empirical cumulative distribution function (CDF) of wind power at time t using the historical 

data. One can see that the PIs obtained by the empirical distribution, i.e. the histogram, do not 

give accurate and reliable coverage for the target of interest. NN-based PIs obtain the same 

coverage probability (95%) with lower interval size. One can appreciate that the PIs estimated 

by the histogram of wind power at time t cannot provide useful information in practice, since 

the uncertainty level in the outcome is too high, i.e. the interval size is too large. On the 

contrary, the training of the NN with wind speed historical data ensures accounting for the 

time dependency among successive observations, leading to more accurate predictions.
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7. UNCERTAINTY TREATMENT: NN ENSEMBLES 

7.1 Construction of an Ensemble of NNs  

In general terms, it is well known that an ensemble of different predictors can generate 

predictions that are more accurate than those obtained by individual predictors [148]. 

Specifically, a NN ensemble is a learning paradigm where a certain number of NNs are 

combined to estimate the desired output for the target of interest (see Figure 11) [148]. 

Typically, a NN ensemble is constructed in two steps: i) training a number of individual NNs 

and ii) combining the predictions yielded from these NNs. The aim of assembling a number of 

NNs into an ensemble is to improve the generalization ability and estimation accuracy of the 

prediction model.  

 

Considerable research has been carried out both on ensembles and, also, specifically on 

ensembles of NNs. Traditional NN ensemble techniques have been built via several strategies, 

such as randomly trying different topologies (different number of hidden layers and neurons) 

in each individual NN, setting different initial weights or parameters, using different training 

datasets (e.g. bagging, CV, etc.) or learning algorithms, etc. [148]-[151]. 

  

Bagging and boosting are the most prevailing approaches used to produce ensembles [148], 

[151]. Bagging is based on bootstrap sampling [152], since it produces replicate training sets 

by sampling with replacement from the training samples [149], [153], [154]. The method 

works by training the multiple (m) models on different data splits (generated by sampling with 

replacement from the original training dataset), and by averaging their outcomes to obtain the 

ultimate prediction results on the testing set [153]. The bootstrap method is one of the most 

widely used statistical methods for standard errors estimation and for construction of CIs and 

PIs  related to the response variable. This is due to its ease of use and to its robustness, and 

also to the advantages of not requiring assumptions about its probability distribution, and of 

being efficient even when a small data set is available [97], [154], [155]. The bootstrap is a 

computational procedure that uses resampling with replacement, in order to reduce 

uncertainty [97]. 

 

In boosting ensembles, the patterns that the earlier classifiers in the series recognized 

incorrectly are over-represented in the composition of a particular training set, i.e. training 

samples that are incorrectly predicted by previous classifiers in the series are more often 
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chosen than samples that were correctly predicted [149],  [151], [156]. Thus, boosting aims at 

producing new classifiers that are more capable to predict samples for which the current 

ensemble performance is poor [151]. 

 

Regarding the combination of the estimated predictions (outputs) of each individual NN, 

different techniques can be adopted, like a simple arithmetic mean, a weighted mean, a 

median, a linear combination, local fusion (LF), dynamic integration, etc. [149], [157]. As an 

exemplification, Baraldi et al. [157] have explored the LF strategies for the aggregation of the 

outcomes of different ensemble models, whereas Khosravi et al. [150] have combined 

individual PI forecasts through mean and median calculations.  

 

 

Figure 11. A basic scheme of NN ensemble. 

 

 

 

7.2 Application to Wind Power Prediction Intervals Estimation with Interval Wind 

Speed Inputs 

In Paper VI, we propose a novel approach to short-term (1-h ahead) wind power forecasting 

with uncertainty quantification. The approach can be schematized in two steps: first, short-

term estimation of wind speed PIs is performed within a multi-objective optimization 

framework worked out by NSGA-II; then, the uncertainty in wind speed and the uncertainty 

in the power curve are combined via a bootstrap sampling technique. 

 

 Input  

Training 

… 

𝑦̂  𝑦̂2 𝑦̂𝑚 

Combination of multiple individual model outputs 
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In the present work, we treat the power curve parameters as random variables and account for 

the epistemic uncertainty by bootstrapping [158], which allows combining also the aleatory 

uncertainty in the wind speed. The inherent stochasticity in the power curve is motivated by 

the fact that different wind turbines correspond to specific power curve parameters, which 

leads to an imprecise and imperfect knowledge of the power curve transformation. A plot of 

the power curve with parameters               , i.e. cut-in speed, rated speed, cut-off speed 

and rated power, is shown in Figure 12. 

 

In the case study, we consider     and    to be fixed (deterministic) values, and respectively 

equal to the values 30 m/s and 20 MW [159], [160] while     and    are random variables 

with distributions     and   , respectively. More precisely, we sample     and    from both a 

uniform and a Gaussian distributions centered around average values of 3.5 and 14.5 m/s, 

respectively, with a range of uncertainty of [3, 4] and [12, 17] m/s, respectively, defining the 

domain of the associated distribution (see Figure 12). The two parameters are sampled either 

from a uniform distribution (           and            ), or from a Gaussian one 

(     ( .  (   ) ) and     (  .  (   ) ). 

 

Estimation of the wind power PIs based on estimated wind speed PIs are performed as 

follows: 

 

i. Given the estimated hourly wind speed PIs   (  )  (  )      (  )  (  )  on the 

testing set, sample two values for the stochastic parameters     and    from the 

corresponding distributions, i.e.         and      , and transform all wind speed PIs 

  (  )  (  )      (  )  (  )  into wind power PIs [  (  )    (  )], … [  (  )  

  (  )], via the power curve transformation. In the case study, this procedure has been 

repeated 1000 times.  

ii. Aggregate the results of the bootstrap phase by computing, for each element of the testing 

set, the bootstrapped average wind power PI and the 5
th

 and 95
th

 percentiles of the wind 

power PI bootstrapped distribution. 
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Figure 12. Plot of the power curve    as a function of wind speed. Solid vertical lines 

correspond to the values of the two stochastic parameters     and   . Dashed vertical lines 

identify the domains of the distributions     and   , respectively. 

 

 

The user-specified parameters of NN and NSGA-II, and the plots of the resulting average 

bootstrapped PIs for 1-h ahead wind power prediction are given in the paper. 

 

In short, considering the fact that wind-integrated distributed power generation systems are 

subject to both epistemic and aleatory uncertainties, this paper presents a novel approach for 

an adequate treatment (quantification) of both types of uncertainties. The proposed approach 

quantifies aleatory uncertainty by estimating wind speed PIs, and then transforms them into 

wind power PIs by using a power curve. In doing so, epistemic uncertainty arising from the 

imperfect knowledge of the power curve parameters is also taken into account through 

bootstrap sampling. The procedure manages to effectively decouple aleatory and epistemic 

uncertainty, and shows a good robustness with respect to the parametric assumptions implicit 

in the bootstrap. The invariance of the coverage probability by passing from wind speed to 

wind power PIs has also been shown. 

 

7.3 Application to Short-term Wind Speed Prediction Intervals Estimation 

In paper VII, we address the problem of short-term wind speed prediction for wind power 

production. PIs are considered to account for the uncertainties in the predictions and two non-

parametric methods are proposed to construct ensemble models made by NNs to estimate PIs. 

The proposed method is the enhanced version of the non-parametric MOGA-NN method [38], 
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[39], here extended to build an ensemble of MLP NNs as base learners. We then apply this 

method to the problem of short-term wind speed prediction.  

 

We propose two strategies for the construction of the NN ensemble, differing in the 

partitioning or not of the training dataset, and embedding the k-nearest neighbors (k-nn) 

approach in the aggregation phase for the identification of the neighborhoods of a test pattern 

[157], [161]. The first strategy splits the training dataset into sub-sets with an equal number of 

samples and, then, each individual NN is trained on a different sub-training set; the second 

strategy, instead, uses the same training dataset (the entire dataset) for the training of each 

individual NN. The two methods differ also in the combination method of the individual NNs 

outputs. Note that in method 2, we obtain an overall Pareto front, hereafter called combined 

Pareto front, which is obtained by applying non-dominated sorting to the Pareto fronts 

obtained by the training of each network. 

 

Each individual NN in the ensemble is trained independently to minimize the prediction error 

with respect to the target. We have used the same architecture (i.e. number of hidden neurons) 

for each individual NN. The number of hidden neurons has been determined by a trial-and 

error method. In both methods, the validation set has been used to screen the NNs with 

respect to their performance in PIs estimation on the validation set 

 

On the real data considered as case study, both methods have obtained superior results 

compared to those yielded from the individual networks selected in the respective ensembles. 

Compared to literature methods conceptually and methodologically similar to the present 

ones, the results obtained show a significant improvement in terms of the quality of the 

predicted PIs. We can, then, conclude that both ensemble modeling frameworks proposed 

yield a reliable estimation of the PIs, characterized by a high coverage probability and a small 

interval size. The reported results demonstrate the practically efficient methods proposed for 

quantification of uncertainties associated with wind speed prediction. 
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8. CONCLUSIONS 

8.1 Methodological and applicative contributions 

The main objective of every electric utility is to meet the energy demand at any time with the 

lowest possible cost to customers while maintaining acceptable levels of service quality. To 

this aim, a good knowledge of the future electricity production and consumption stands as a 

central point. Forecasts of energy demand and production may be included directly in the unit 

commitment and economic dispatch scheduling process used to ensure that enough generation 

is available to meet energy demand, or they may simply provide situational awareness for the 

balancing authority. For this, forecasting methods and models must provide a way to measure 

of the risk of using the forecasted outcomes in the decision process due to the associated 

uncertainties. 

 

It is within this context that, in this Ph. D. thesis, we have developed a non-parametric, 

empirical approach to generate NN-based PIs to account for uncertainty in the prediction due 

to the variability in the input data and in model approximation errors. As application, we have 

considered the general problem of adequacy assessment of wind-integrated power systems. In 

the case studies, we have concentrated particularly on short-term (hour-ahead or day-ahead) 

wind speed/power and load forecasts, for their relevance to system operations in both the unit 

commitment and economic dispatch phases. 

 

With reference to the contents addressed in the previous Chapters, the main contributions of 

the thesis in the domain of adequacy assessment of power networks, particularly in wind-

integrated distributed generation systems, presented in Papers I-VII of Part II are formalized as 

responses to the each research objectives introduced in Section 1.4. 

 

Contributions with respect to the objective 1:  

Objective 1: To develop a prediction method capable of considering the uncertainty in the 

model parameters affecting the prediction. 

 

 We propose a multi-objective framework for estimating PIs, optimal in terms of both 

accuracy (coverage probability) and efficacy (width). More precisely, we propose a multi-

objective NN-based PI estimation method to quantify the uncertainties associated to the 

prediction problem. With the proposed multi-objective framework, we are able to generate 

a Pareto front of optimal non-dominated solutions. Each solution corresponds to a NN. 
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DMs can choose any of the solutions on the Pareto front according to his / her preferences 

as a good compromise in terms of high PICP and low NMPIW.  

 Knowledge of PIs allows the DMs and operational planners to quantify the level of 

uncertainty associated with the forecasts and to consider a multiplicity of 

solutions/scenarios for the best and worst conditions.  

 We use NSGA-II, which is one of the most powerful MOEAs, for NN training. A 

comparison with another powerful multi-objective optimization algorithm, MO-CMA-ES, 

has been performed. The comparison results have shown that the PIs produced by NSGA-

II are superior to those obtained with MO-CMA-ES, and satisfactory in both objectives of 

high coverage and small width. It is worth pointing out that it is the first time that NSGA-

II is used to solve the problem for finding optimal lower and upper bounds of PIs. 

 In order to show the superiority of the proposed multi-objective framework to the single-

objective frameworks, particularly to the original LUBE method [36], in Paper II, we have 

performed comparisons on different datasets. In addition, in Paper II, we have also 

performed a comparison with a classical time-series regression method, i.e. ARIMA. The 

results confirm the superiority of our MOGA-NN approach. 

 

Contributions with respect to the objective 2:  

Objective 2: To represent the uncertainty in input data and propagate it through the 

prediction model onto its results. 

 

 In order to represent the uncertainty in input data and propagate it through the prediction 

model onto its results, we present an interval-valued time series prediction modeling 

framework based on NNs [41]. With the interval-valued representation, one can reflect the 

variability in the inputs (e.g. extreme wind speeds in a given area, daily peak load, 

minimum and maximum of daily temperature, etc.), or their associated uncertainty (e.g. 

strongly skewed wind speed distributions, non-stationary load patterns, etc.). 

 We have presented two approaches that can be used to process interval-valued inputs to 

NNs, which aim at providing more accurate quantification of the input uncertainty in the 

prediction problem. The experiment results reveal that the interval-valued input approach 

is capable of capturing the variability in the input data with the required coverage. The 

results enable different strategies to be planned according to the range of possible 

outcomes within the interval forecast. 
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 With respect to the case study comparison results, we can conclude that our method for 

interval-valued day-ahead wind speed prediction performs better than the one with single-

valued inputs, in that we have obtained higher quality PIs. 

 Moreover, comparison results carried out between two learning algorithms, SOSA and 

MOGA (NSGA-II), show the superiority of the latter in training the NN in our specific 

problem. 

 

Contributions with respect to the objective 3:  

Objective 3: To enhance the performance of a NN-based, non-parametric prediction method 

by an ensemble approach. 

 

 This objective is addressed through the introduction of a novel NN ensemble-modelling 

framework, by two methods to estimate PIs for short-term wind speed prediction. In the 

aggregation phase of the selected individual NN results, we have used k-nn approach to 

determine the similar patterns between training and testing sets. This allows us to obtain 

high accurate results also on the testing set by using the local information coming from 

the closest patterns of the training sets. 

 Both methods demonstrate consistent results and high prediction precision compared to 

the individual NNs of the ensemble and to conceptually similar methods proposed in the 

literature [150]. 

 We can conclude that the NN ensemble approach proposed in Paper VII can provide a 

significant improvement in the quality of short-term wind speed prediction. 

 

Contributions with respect to the objective 4:  

Objective 4: To test the proposed model on real case studies in the context of energy system 

applications (in particular adequacy assessment). 

 

 In Paper I, data has been obtained from experiments aimed at observing the process of 

deposition of the scale layer in [117], [119]. 

 In Papers II and III, the test of the proposed MOGA-NN approach is done on several 

different datasets concerning short-term wind speed and load forecasting. Wind speed 

datasets show different wind speed profiles with seasonality measured for the region of 

Regina in Saskatchewan, Canada. The first dataset comprises wind speeds for the period 

from 1st of February 2012 to 31st of March 2012; the second from 1st of July 2012 to 
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29th of August 2012; the third from 1st of February 2011 to 30th of June 2011, and the 

last one from 1st of May 2010 to 30th of September 2010. 

 In Paper IV, the proposed method has been applied on a synthetic case study and on a real 

case study, in which the data show a high (short-term) variability (within hour and within 

day) [41]. The real case study includes the wind speed dataset which covers the period 

from  1
st
 of January 2010 till 30

th
 of December 2012 [123].  

 In Paper V, hourly wind speed data from the region of Regina, Saskatchewan, Canada 

taken, from a 9-year period (1 Jan. 2003 to 31 Dec. 2011) is considered in the case study 

[123]. Then, hourly mean wind speed data are used to determine the time-dependent wind 

power output of a wind turbine generator (WTG) using its power curve. For load demand, 

the hourly load fluctuations are modeled using the chronological annual load curve of the 

IEEE Reliability Test System (RTS) [10] with the scaled annual peak load value. 

 In Paper VII, the hourly wind speeds measured from 1
st
 of February 2003 to 28

th
 of July 

2012 in Regina, Saskatchewan, 80000 samples in total [123]. 

 We can conclude that the case studies on different datasets have let us test the 

performance of the MOGA-NN method on various datasets having different variability. 

 

Like all the machine learning methods, NNs have some limitations besides their advantages. 

In general, NNs give high satisfactory performance in forecasting. Their capability to learn 

the non-linear relationship between input and output and arbitrary function mapping ability 

make them suitable and promising for forecasting tasks. On the other hand, NNs are data-

driven and depend highly on the representativeness of the training dataset, i.e. data driven 

prediction methods are prone to give less accurate results depending on the high level of 

variability in the test set, i.e. unseen data, under consideration. Therefore, the prediction 

accuracy can decrease on test dataset with large variability and uncertainty in the data, with 

respect to the training. In other words, the difference between training and testing dataset 

profiles plays an important role in the generalization power of the model. Hence, a data-

driven prediction method does not always guarantee to generate high quality predictions on 

unseen data. Moreover, a NN model can require a computationally intensive procedure for 

training that requires large computational times. Mostly, the computation time correlates with 

the network size (i.e. topology), thus the number of parameters to be optimized, and the 

number of training samples.  
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It is worth pointing out that tackling a regression problem requires also proper pre-treatment 

of the input data.  How best to select the input variables pertinent to the output variable(s), i.e. 

feature selection, for inclusion in a model is an important factor that affects both the 

prediction accuracy and computational cost of the underlying model. For time series 

forecasting, the number of the previous lags related to the output is also a key factor to be 

determined properly. In this thesis work, we also address these issues in our case studies, with 

classical techniques. 

 

8.2 Future Work 

To extend the work developed in this thesis, different research directions can be taken into 

account. Important aspects to investigate and further explore include the following 

perspectives: 

 

 Due to the critics recently raised in [162] on the limitations of the CWC proposed by 

Khosravi et al. [35], [36] for evaluating the quality of the estimated PIs, alternative proper 

scores [163], [164] might be considered. Proper scores, proven in theory and in practice, 

would allow drawing safe conclusions on the potential superiority of the proposed 

method. 

 Taking into account a combination, i.e. ensemble, of different forecasting methods would 

help further reducing forecasting errors, thus to improve the forecasting accuracy. 

 The implementation of online learning algorithms, which are able to adjust their 

parameters while novel patterns evolve without retraining the whole algorithm, would also 

improve forecasting accuracy and quality. The additional use of online wind measurement 

data has also the potential for improved forecasts, especially where the available dataset is 

too short to cover all possible patterns, or when the environmental or operational 

conditions change.  

 A novel formulation, particularly for the offshore wind power prediction, can be provided 

which takes into account both available spatial and temporal information/data, i.e. 

considering using spatio-temporal correlation. 

 Type-2 fuzzy sets can be integrated into the proposed model as an alternative way to 

represent the input uncertainty.  

 The proposed NN-based PIs method can be integrated into a cost model to estimate 

electricity prices uncertainties. 
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 Application areas can be extended. For exemplification, for energy demand prediction, 

energy consumption in buildings can be considered as a case study by considering the 

potential uncertainties in the context of a Building Energy Management System (BEMS). 
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ABSTRACT 

Scale deposition can damage equipment in the oil & gas production industry. Hence, the 

reliable and accurate prediction of the scale deposition rate is critical for production 

availability. In this study, we consider the problem of predicting the scale deposition rate, 

providing an indication of the associated prediction uncertainty. We tackle the problem using 

an empirical modeling approach, based on experimental data. Specifically, we implement a 

multi-objective genetic algorithm (namely, non-dominated sorting genetic algorithm–II 

(NSGA-II)) to train a neural network (NN) (i.e. to find its parameters, that is its weights and 

biases) to provide the prediction intervals (PIs) of the scale deposition rate. The PIs are 

optimized both in terms of accuracy (coverage probability) and dimension (width). We 

perform k-fold cross-validation to guide the choice of the NN structure (i.e. the number of 

hidden neurons). We use hypervolume indicator metric to evaluate the Pareto fronts in the 

validation step. A case study is considered, with regards to a set of experimental observations: 

the NSGA-II-trained neural network is shown capable of providing PIs with both high 

coverage and small width. 

 

Keywords: Prediction intervals, neural networks, multi-objective genetic algorithms, cross-

validation, hypervolume, scale deposition rate. 
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1. INTRODUCTION 

Degradation to failure of components may cause unplanned costs and production losses 

through downtime (Lins et. al., 2011). Then, prediction of component degradation to failure is 

important for production availability. In the context of oil & gas industry, scale deposition and 

corrosion continue to be serious and costly problems, because affecting the operation of the 

components (Moura et. al., 2011). Formation of scale on downhole equipment due to 

produced mineral salts is a common occurrence which is mitigated with chemical treatments 

or surface modifications. However, when chemical treatments are ineffective or undesirable, 

the scale buildup should be accounted for and predicted a priori for a given application. 

Accurate prediction of scale deposition and corrosion can give way to preventive 

maintenance. In this paper, we focus on the former process. 

 

In oil & gas plant components, scale deposition is influenced by different factors, such as 

reservoir conditions (temperature, pressure), changes in pH, variation of flow rates, water cut, 

material structure, etc. (Nyborg, 2002). A predictive model is needed to explain the linear or 

nonlinear mapping between these input (explanatory) variables and the output (the scale 

deposition rate, hereafter called scale rate). In the literature some analytical models based on 

thermodynamics (Yuan, Todd, & Heriot-Waft 1991), kinetics (Larsen et. al., 2008) and 

hydrodynamics, or a combination of these (Stamatakis, Stubos, & Muller, 2011) have been 

proposed for the prediction of scale deposition in components of production wells. The output 

of these models is typically deterministic, with no consideration given to the 

variability/uncertainty caused in the output by the uncertain characteristics of the input 

variables. To account for this, statistical prediction methods based on learning algorithms 

(neural networks, NNs, support vector machines, SVMs, etc.) have been proposed (Lins et. 

al., 2011; Moura et. al., 2011; Cottis, Owen, & Turega, 2000). 

 

Due to their capability of learning complex nonlinear relationships among variables from 

observed data, learning algorithms (e.g. NNs, SVMs, nonlinear regression models, etc.) have 

been successfully used in many fields of science and engineering. Lins et al. (2011) and 

Moura et al. (2011) proposed a SVM approach combined with particle swarm optimization 

(PSO) for reliability prediction in the context of oil production industry. The former work 

aimed at predicting scale deposition over time; the latter work aimed at predicting time 
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between failures (TBFs) with simultaneous input variable selection and SVM parameters’ 

tuning by PSO. Cottis, Owen, and Turega (2000) used a conventional multi-layer perceptron 

NN for the prediction of the corrosion rate of steel in seawater. 

 

In practice, the predictions provided by a learning algorithm like NNs or SVMs are affected 

by uncertainties (Khosravi et al., 2011a; Khosravi et al., 2011b; Khosravi, Nahavandi, & 

Creighton, 2010). For this reason, it is important to provide prediction intervals (PIs) of the 

output. A prediction interval (PI) is an interval estimate for an (unknown) future value of the 

target. PIs are comprised of lower and upper bounds within which the actual target is expected 

to lie with a predetermined probability (Khosravi et al., 2011a; Khosravi et al., 2011b; 

Khosravi, Nahavandi, & Creighton, 2010). There are two conflicting criteria for assessing the 

quality of the estimated PIs: coverage probability (CP) and prediction interval width (PIW) 

(Moura et. al., 2011). The prediction interval coverage probability (PICP) represents the 

probability that the set of estimated PI values will contain a certain percentage of the true 

output values. The prediction interval width (PIW) simply measures the extension of the 

interval as the difference of the estimated upper bound and lower bound values. To obtain 

representative PIs, one should aim at maximizing the CP and minimizing the PIW, 

simultaneously. 

 

In this paper, we propose the adoption of a multi-objective optimization approach to the 

construction of PIs for NN predictions of scale rate in oil & gas components.  A multi-

objective genetic algorithm (namely, non-dominated sorting genetic algorithm–II (NSGA-II)) 

(Sirinivas & Deb, 1994) is used to train a NN, i.e. optimize its parameters (weights and 

biases) with respect to accuracy (max) and width (min). A demonstration of the approach and 

a comparison with the Lower and Upper Bound Estimation (LUBE) method of (Khosravi et 

al., 2011b) on a synthetic case study of literature is given in (Ak, Li, & Zio, 2012) and testing 

of the method on a real case study of wind speed prediction is given in (Ak et al., 2012). 

 

Genetic Algorithms (GAs) have been successfully applied in a number of applications of 

engineering and related fields (Coello, Lamont, & Van Veldhuizen, 2007; Chatterjee & 

Bandopadhyay, 2012). The major motivation for using the GA search paradigm is due to the 

following three recognized advantages (Gosselin, Tye-Gingras, & Mathieu-Potvin, 2009): (i) 

ease of use; (ii) robustness and (iii) capability of exploring large portions of the search space 
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without falling into a local optimum. Further, GAs are capable of searching solutions from 

disjoint feasible domains and of operating on irregular functions (i.e. non-continuous and 

even non-differentiable); for proceeding in the search, GAs do not require the computation of 

gradients (Ozkol & Komurgoz, 2005).  

 

In order to choose the NN structure (number of hidden neurons) with good generalization 

performance, a k- fold cross-validation is performed. A hypervolume indicator metric is used 

to compare the Pareto fronts of each cross-validation fold. 

 

The paper is organized as follows: Section 2 briefly introduces the basic concepts of NN and 

PIs, and the use of NSGA-II for training a NN to estimate PIs. The complete methodology set 

up for scale rate PIs estimation is illustrated in Section 3.  Experimental results on the real 

case study of scale rate prediction are given in Section 4. Finally, Section 5 concludes the 

paper with a critical analysis of the results obtained and some ideas of future studies. 

 

2. MODELING FRAMEWORK 

In this Section, we describe NN-based PIs estimation in the theoretical framework of multi-

objective optimization, and we give the details of our implementation of NSGA-II for tackling 

the problem at hand. 

2.1. PIs 

We consider the following mathematical problem of nonlinearregression (Yang, Kavli, 

Carlin, Clausen, & de Groot, 2002; Zio, 2006): 

 

   (    )   ( ),      ( )  (    
 ( ))            (1) 

where  ,   are the input and output vectors of the regression, respectively, and     represents 

the vector of values of the parameters of the model function  , in general nonlinear. The term 

 ( ) is a random error with zero mean and variance   
 ( )   . For simplicity of illustration, 

in the following we assume   mono-dimensional. An estimate  ̂ of    is sought by 

minimizing the quadratic error function on a training set of input/output values    (     ) 

           ,     
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 ( )  ∑ ( ̂    )
   

   
                (2) 

where  ̂   (    ̂) represents the output provided by the model in correspondence of the 

input   , and    is the total number of training samples.  

 

We want to quantify the uncertainty associated to the model output estimates, in terms of PIs. 

A PI is comprised of upper and lower bounds in which a future unknown value of the target is 

expected to lie with a predetermined confidence level (   ).The formal definition of a PI is 

thus (Geisser, 1993): 

 

  ( ( )   ( )   ( ))                (3)

        

where  ( ) and  ( ) are respectively the lower and upper bounds of the PI of the output 

 ( ) corresponding to input  ;  the confidence level (   ) refers to the expected probability 

that the true value of  ( ) lies within the PI, ( ( )  ( ))  

 

The proposed approach is to train a NN to provide in output the two bounds of the PI 

corresponding to a given input  . The goodness of the PI estimate attained with the NN-based 

model is described by two measures of quality: the PI Coverage Probability (PICP) and the 

Normalized Mean PI Width (NMPIW) (Khosravi et al., 2011b). Their mathematical 

definitions are:  

     
 

  
∑   

  

   
                         (4) 

where     , if      (  )  (  )  and otherwise     ; 

      
 

  
 ∑

( (  )  (  ))

         

  

   
              (5) 

where      and       represent the true minimum and maximum values of the outputs (i.e., 

the bounds of the interval in which the true values fall), respectively.  
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2.2. Multi-objective Optimization 

The development of the NN-based model for PIs estimation implies the optimization of PICP 

(maximization) and NMPIW (minimization).In other words, the NN structure (number of 

hidden neurons) and parameters (weights and biases) must be determined so to have the 

desired PICP with minimum PIW.  

 

In all generality, a multi-objective optimization problem considers a number of objectives, 

equality and inequality constraints, and bounds on the decision variables. Mathematically the 

problem can be expressed as follows (Sawaragi, Nakayama, & Tanino, 1985): 

 

Minimise/Maximise    ( )                                         (6) 

subject to                  ( )                                        (7) 

  ( )                                               (8) 

  
( )

       
( )

                                     (9) 

 

A solution,               is an   dimensional decision variable vector in the solution 

space   . The solution space is restricted by the constraints in (7) and (8), and bounds on the 

decision variables in (9). The final goal is to identify a set of optimal decision variable vectors 

  
            such that each solution included in the set cannot be regarded as better than 

any other with respect to all the objective functions   ( )          . The concepts of 

Pareto optimality and dominance drive the comparison among solutions: in case of a 

minimization problem, solution    dominates solution    (     ) if both following 

conditions are satisfied (Sawaragi et al., 1985): 

 

               (  )    (  )                       (10) 

               (  )    (  )                         (11) 

 

If any of the above two conditions is violated, the solution    does not dominate the solution 

  , and    is said to be non-dominated by   . A solution is said to be Pareto optimal if it is 

not dominated by any other solution in the solution space. The set of all feasible non-

dominated solutions in    is referred to as the Pareto optimal set, and for a given Pareto 
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optimal set, the corresponding values of the objective functions form the so called Pareto 

optimal front in the objective functions space. 

 

2.3. NSGA-II optimization of a NN for PIs estimation 

NSGA-II is one of the most efficient multi-objective evolutionary algorithms (Deb, Agrawal, 

Pratap, & Meyarivan, 2002). It generates a Pareto optimal solution set, rather than a single 

solution, via comparison of the qualities of different solutions by using an elitist approach 

(i.e., a fast non-dominated sorting and crowding-distance estimation procedure Konak, Coit, 

& Smith, 2006). The practical implementation of NSGA-II on our specific problem involves 

two phases: initialization and evolution. These can be summarized as follows (Ak et al. 

2012b): 

2.3.1. Initialization phase 

Step 1: Split the input data set into training (Dtrain) and testing (Dtest) subsets. 

Step 2: Fix the maximum number of generations and the number of chromosomes 

(individuals)    in each population. Each chromosome codes a solution by   real-valued 

genes, where   is the total number of parameters (weights and biases) in the NN: thus, each 

chromosome represents a NN. Set the generation number    . Initialize the first population 

   of size   , by randomly generating    chromosomes (corresponding to NNs). 

Step 3: For each input vector   in the training set, compute the lower and upper bound outputs 

of the    NNs. 

Step 4: Evaluate the two objectives PICP and NMPIW for the    NNs; then, one pair of 

values 1-PICP (for minimization) and NMPIW is associated to each of the    chromosomes 

in the population   . 

Step 5: Rank the chromosomes (vectors of   values) in the population    by running the fast 

non-dominated sorting algorithm (Konak et al., 2006) with respect to the pairs of objective 

values, and identify the ranked non-dominated fronts            where    is the best front, 

   is the second best front and    is the least good front. 

Step 6: Apply to    a binary tournament selection based on the crowding distance (Konak et 

al., 2006), for generating an intermediate population    of size   . 

Step 7: Apply the crossover and mutation operators to   , to create the offspring population 

   of size   . 
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Step 8: Apply Step 3 onto    and obtain the lower and upper bound outputs. 

Step 9: Evaluate the two objectives in correspondence of the solutions in   , as in Step 4. 

 

2.3.2. Evolution phase 

Step 10: If the maximum number of generations is reached, stop and return   . Select the first 

Pareto front    as the optimal solution set. Otherwise, go to Step 11. 

Step 11: Combine    and    to obtain a union population         . 

Step 12: Apply Steps 3-5 onto    and obtain a sorted union population.  

Step 13: Select the    best solutions from the sorted union to create the next parent 

population     . 

Step 14: Apply Steps 6-9 onto      to obtain     . Set       ; and go to Step 10.  

 

Finally, the best front in terms of ranking of non-dominance and diversity of the individual 

solutions is chosen. Once the best front is chosen, testing of the trained NN with optimal 

weight values is performed using the data of the testing set. 

 

3. MODEL IDENTIFICATION 

In this study a systematic process is followed in order to identify the optimal NN structure 

(i.e., the number of hidden neurons) via cross-validation, taking into account both measures of 

PIs quality (i.e. coverage probability and width) and comparing the set of solutions obtained 

in each fold in terms of the hypervolume indicator introduced in Bringmann and Friedrich 

(2009). Fig. 1 shows a general scheme of this process. 

 

3.1. K-fold Cross-Validation (CV) 

Assessing the prediction accuracy, i.e. the generalization power, of a learning algorithm is 

essential for reliable prediction. In the case of NN, the structure of the model influences the 

learning capability. In practice, the choice of the number of network layers and neurons per 

layer often comes down to a compromise between the generalization error and the learning 

time (Ileana˘, Rotar, & Incze, 2004; Khosravi et al., 2010). Cross-validation (CV) is an 

approach to evaluate the generalization performance of the NN, and it can be used for 
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determining the optimal network architecture (i.e., the number of hidden neurons) (Setiono, 

2001). CV is a statistical re-sampling method which uses multiple training and test 

subsamples (Zhang, Hu, Patuwo, & Indro 1999). Different CV techniques such as k-fold CV, 

leave-one-out CV, bootstrap CV, etc., have been proposed in the statistical literature (Hastie, 

Tibshirani, & Friedman, 2008). In the basic k-fold cross-validation technique, the input data 

set is split into a partition of k equally (or nearly equally) sized segments or folds. At each 

round of cross-validation, one among the different folds is excluded from the dataset, and 

only the remaining k - 1 folds are used for training; the excluded subset is then used for 

validation. The procedure is repeated until all the k folds have been used once for validation 

and k - 1 times for training. Hence, the advantage of this technique is that, at least in 

successive rounds, all samples in the input data set are used for validation, while the 

dimension of the training set is kept high (Setiono, 2001). Fig. 1 demonstrates an example 

with k = 3. The entire data set is divided into 3 folds and in each CV iteration, for training we 

use a combination of two folds out of three that can be drawn from the whole data set: {2, 3}, 

{1,3} and {1, 2}. Then, subsets {1}, {2}, and {3} are used for validation, respectively.  

 

The prediction error obtained by using a CV strategy is sensitive to the specific way in which 

data have been split (Kwok, 1995). For small k values, the bias of k-fold cross-validation may 

become a problem in real-data analysis. If k = N, the so-called leave-one-out CV, the cross 

validation estimator is approximately unbiased for the true prediction error, but it has high 

variance and it is very computationally intensive for use in NN (Hastie et al., 2008). For this 

reason, as we shall see, in our case study we use 20-fold cross-validation in order to minimize 

the bias-variance trade-off while also attaining the required accuracy in feasible computation 

times (Fushiki, 2011; Refaeilzadeh, Tang, & Liu, 2008; Wada & Kawato, 1992). 

 

3.2. Comparison of Pareto fronts by the hypervolume indicator 

The hypervolume indicator has been widely used as a measure to compare Pareto solution sets 

(fronts) returned by multi-objective optimizers (Bringmann & Friedrich, 2009). Given a 

Pareto front, it measures the volume of the portion of the objective space dominated by the 

front. Therefore, different multi-objective algorithms’ performances can be compared in terms 

of the quality of the outcomes, by detecting the dominance between their different Pareto 
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solution sets (Bringmann & Friedrich, 2009; While, Bradstreet, & Barone, 2012; While, 

Hingston, Barone, & Huband, 2006). 

 

 

Fig. 1. Flowchart of the methodology. 

 

 

In our study, we calculate the hypervolume indicator by Monte Carlo simulation (Everson, 

Fieldsend, & Singh, 2002). A reference point, R, is selected as the “worst possible” point in 

 

Yes 

No 

Step B: Perform validation with the data in the selected fold by using optimal parameters of the corresponding trained network 

 

Set the number of hidden neurons = h 

Split  input data into two parts: training + validation and testing subsets 

 
Split training + validation data into k folds  

Step C: Perform fast non-dominated sorting of the validation solutions set and identify the non-dominated fronts 

 

Select one fold 

Step A: Train the NN (optimize the parameters of the network by NSGA-II) using all data associated to the selected fold 

Repeat Steps A-C for each fold 

Change number of hidden 

neurons 

Have all choices for 

the number of hidden 

neurons been tested? 

Calculate the hypervolume values of each Pareto front produced by each validated NN 

Compare Pareto fronts in terms of the hypervolume values by a statistical test 

Select the optimal number of hidden neurons, giving evidence of highest hypervolume 

 
Retrain the NN with the chosen number of hidden neurons 

Perform testing  
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the objective functions space. An estimate of the hypervolume (in percentage) is then 

obtained by sampling N uniformly distributed random points within the hyper-cuboids 

bounded by the reference point R in   . Then, the hypervolume indicator estimate is obtained 

as the percentage of the points dominated by the approximated Pareto front set P (composed 

by n points in   ), i.e. in a rejection sampling fashion (Cao, 2008). If a solution set A has a 

greater hypervolume than a solution set B, then A is taken to be a better set of solutions than 

B (While et al., 2006). 

 

For the minimization problem of our two (positive) objectives, 1-PICP and NMPIW (M = 2), 

we split the hypervolume computation by partitioning the objective functions space into three 

regions with three different reference points of same NMPIW value but different CP. A 

schematic representation of the objective functions space splitting into three regions and of 

the position of the three reference points is given in Fig. 3. We fix NMPIW and not CP, 

because the latter is more important than PIW for our scopes. The overall hypervolume 

measure is obtained as the weighted sum of the partial hypervolumes in the three regions. By 

the splitting into three regions, we have given the flexibility to weigh differently the 

hypervolume measure obtained on different ranges of CP, coherently with the relevance of the 

corresponding region of the objective functions space.  

 

 

 

 

 

 

 

 

 

Fig. 2. Scheme of the CV procedure (Refaeilzadeh, Tang, & Liu, 2008). 
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4. CASE STUDY 

The case study concerns the scale (deposition) rate on the metal surfaces of equipment used in 

offshore oil wells. The output variable y is the scale rate; the influencing input variables are: 

temperature (T) and pressure (P), water composition (W) and fluid velocity (V) near the metal 

surfaces. Data were obtained from experiments aimed at observing the process of deposition 

of the scale layer (Lins et al., 2011): if the scale layer achieves a predefined thickness, the 

equipment fails to properly perform its function. The total data set includes 131 observations; 

among these, the first 90% of the data (118 observations) are used for training and cross-

validation purposes, and the rest is used for testing. All data have been normalized within the 

range [0.1, 0.9]. In order to perform k-fold cross-validation, the 118 training data are 

randomly partitioned into 20 subsamples, two of which include 5 samples while the others 6 

samples. The architecture of the NN consists of one input, one hidden and one output layers. 

The number of input neurons is 4, one for each input variable; the number of hidden neurons 

is chosen via the cross-validation process described in Section 3.1; the number of output 

neurons is 2, one for the lower and one for the upper bound values of the PIs. As activation 

functions, the hyperbolic tangent function is used in the hidden layer and the logarithmic 

sigmoid function is used at the output layer (these choices have been found to give the best 

results by trial and error, although the results have not shown a strong sensitivity to them). In 

order to obtain an optimal NN architecture, 11 different choices for the number of hidden 

neurons, (5, 7–11, 13, 15, 17, 18, 20) have been explored. Hence, 220 NNs have been trained 

individually to obtain the results shown in Table 1.  

 

After performing 20-fold cross-validation, we obtain 220 Pareto fronts, one for each fold and 

choice of the number of hidden neurons. The fronts are obtained after NSGA-II training of a 

NN with the training data associated to the relevant fold. In order to evaluate different neural 

network structures and select the optimal one, the Pareto fronts are compared in terms of their 

hypervolume indicators, V1, V2, V3, on the partitioned objective functions space with 

reference points (1-PICP, NMPIW): R1 = (0.1, 0.9), R2 = (0.3, 0.9), R3 = (1, 0.9) (see Fig. 3). 

The hypervolume value V1 indicates the dominated space between (0, 0.9) and (0.1, 0.9), 

which represents the region of interest in terms of coverage probability; the hypervolume 

value V2 indicates the dominated space between (0.1, 0.9) and (0.3, 0.9); the hypervolume 

value V3 indicates the dominated space between (0.3, 0.9) and (1, 0.9). The reference value 

for NMPIW has been fixed to 0.9, because there is no NMPIW value greater than 0.9.  
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To compare the Pareto fronts, a total hypervolume score, Vscore, for each Pareto front is 

computed as weighted sum of the V1, V2 and V3 values. To give higher importance to the 

regions of higher PICP values, in our application we have arbitrarily chosen the weight vector 

[w1 w2 w3] to be [4/7 2/7 1/7]. Table 1 reports the total hypervolume scores computed on the 

validation data set, for each choice of the number of hidden neurons (different rows of the 

Table), and for each fold (different columns of the Table). For each fold and number of 

hidden neurons, the NN has been trained on the training data corresponding to the fold, and 

then used for prediction on the validation data included in the fold. Since the so obtained set 

of solutions does not necessarily form a Pareto front in the objective functions space, one step 

of non-dominated sorting of the solutions has been performed, before computing the 

corresponding total hypervolume score. The computation of Vscore has also been done using 

the Pareto front resulting from the training of each NN: for the sake of brevity, we do not 

report the Table of total hypervolume scores obtained from training data, but the results are 

synthetized in the boxplots in Fig. 4. 

 

 

Fig. 3. A schematic representation of the splitting of the objective functions space into three regions 

for hypervolume computation. The overall hypervolume measure is obtained as the weighted sum of 

the partial hypervolumes (V1, V2 and V3) computed in the three regions identified by the red lines. The 

three different reference points (R1, R2 and R3) used in each region for partial hypervolumes 

computations are also indicated in the figure. 

 

To fix the number of hidden neurons, it is natural to choose that number for which the 

trained NN leads to the highest total hypervolume score. However, for a given number of 
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hidden neurons there are 20 different NNs trained on the 20 folds, and hence 20 total 

hypervolume scores. Due to the variability of the data included in the folds, there is no 

number of hidden neurons leading to total hypervolume scores consistently superior across 

all folds. Figures 4 and 5 show the boxplots of the total hypervolume scores for the different 

numbers of hidden neurons considered, with reference to the training and validation dataset, 

respectively. From Fig. 4 it is evident that the choice of 10 hidden neurons is optimal, with 

reference to the training dataset. For confirmation, a pairwise comparison of the median of 

the 20 total hypevolume scores obtained by the NNs with 10 hidden neurons, with the 

medians obtained by the NNs with other number of hidden neurons has been performed. The 

pairwise comparison is conducted by a statistical test, whose aim is rejecting the null 

hypothesis (H0) of equality of the medians being compared; the test is based on asymptotic 

normality of the median and roughly equal sample sizes for the two medians being 

compared, and it is rather insensitive to the underlying distributions of the samples 

(Chambers et al., 1983; McGill, Tukey, & Larsen, 1978). By fixing the level of each test, i.e. 

the probability of rejecting a true H0, to 10%, nearly all comparisons allow concluding for 

the superiority of the total hypervolume score obtained with a choice of 10 hidden neurons.  

 

In Fig. 5, the boxplots of the total hypervolume scores with respect to the validation dataset 

are shown for all numbers of hidden neurons. The choice of 10 hidden neurons confirms to be 

one among the best, in terms of higher values of the median and of the lower whisker. Given 

also the superior performance on the training dataset, the choice of 10 hidden neurons is 

retained. 

 

After choosing the number of hidden neurons, the NN has been retrained using all data in the 

training and validation sets, for a total of 118 samples. The first (best) Pareto front found after 

training includes 50 non-dominated solutions and it is shown in Fig. 6. To verify a posteriori 

the selection of 10 hidden neurons, retraining has also been performed for other numbers of 

hidden neurons: the resulting V1, V2, V3 and Vscore hypervolume values are reported in Table 

2. Fig. 7 shows the trend of V1 (top) and Vscore (bottom) values with the number of hidden 

neurons. From inspection of Fig. 7, one can conclude that the choice of 10 hidden neurons 

corresponds to the highest hypervolume values V1 (referred to the region of interest) and 

Vscore. 
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Fig. 4. Boxplots of the total hypervolume scores for different numbers of hidden neurons with respect 

to the training dataset. Each box extends from Q1 to Q3, where Q1 and Q3 are the first and third 

quartile of the dataset, respectively; the position of the median is evidenced in each box by a solid 

horizontal line. The upper (lower) whisker of each boxplot extends to the highest (lowest) value in the 

dataset smaller (greater) than Q3 + 1.5*IQR (Q1 - 1.5*IQR), where IQR = Q3 – Q1. The boxplot 

corresponding to 10 hidden neurons is highlighted in dark grey. The horizontal dotted lines are the 

limits of the 90% confidence interval for the median total hypervolume score obtained with 10 hidden 

neurons: the medians falling outside these limits are statistically different from the one obtained with 

10 hidden neurons. 

 

 

 

Fig. 5. Boxplots of the total hypervolume scores for different numbers of hidden neurons with respect 

to the validation dataset. Each box extends from Q1 to Q3, where Q1 and Q3 are the first and third 

quartile of the dataset, respectively; the position of the median is evidenced in each box by a solid 

horizontal line. The upper (lower) whisker of each boxplot extends to the highest (lowest) value in the 

dataset smaller (greater) than Q3 + 1.5*IQR (Q1 - 1.5*IQR), where IQR = Q3 – Q1. The boxplot 

corresponding to 10 hidden neurons is highlighted in dark grey. The horizontal dotted lines are the 

limits of the 90% confidence interval for the median total hypervolume score obtained with 10 hidden 

neurons: the medians falling outside these limits are statistically different from the one obtained with 

10 hidden neurons. 
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Finally, Fig. 8 shows the prediction intervals for the scale rate values in the test dataset 

obtained by the trained NN with 10 hidden neurons and corresponding to a Pareto solution 

chosen subjectively. The solution has been chosen as the one with smallest NMPIW among 

those with PICP ≥ 0.9 in Fig. 6. The results on the test dataset give a coverage probability of 

100% and an interval width of 0.494. 

 

 

 
 

Fig. 6.  The best Pareto front obtained by retraining of the NN with the optimal choice of 10 hidden 

neurons. 

 

Fig. 7. Hypervolumes values V1 and Vscore of the fronts obtained after retraining versus the number of 

hidden neurons. 
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  Table 1. The hypervolume scores of the Pareto fronts produced after validation of the NN with cross-validation procedure. 

 
nh 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

5 0.34 0.24 0.24 0.32 0.35 0.20 0.39 0.33 0.25 0.25 0.35 0.33 0.24 0.12 0.35 0.22 0.11 0.28 0.24 0.36 

7 0.34 0.30 0.13 0.30 0.28 0.24 0.34 0.32 0.14 0.26 0.39 0.15 0.28 0.20 0.29 0.20 0.09 0.18 0.38 0.40 

8 0.32 0.25 0.13 0.29 0.29 0.25 0.34 0.33 0.07 0.22 0.34 0.35 0.24 0.22 0.27 0.21 0.07 0.28 0.39 0.38 

9 0.29 0.26 0.12 0.33 0.31 0.18 0.33 0.34 0.16 0.21 0.37 0.14 0.22 0.13 0.27 0.23 0.08 0.23 0.31 0.35 

10 0.29 0.29 0.23 0.31 0.31 0.25 0.35 0.31 0.12 0.26 0.37 0.32 0.27 0.13 0.34 0.19 0.07 0.24 0.32 0.37 

11 0.33 0.28 0.12 0.31 0.30 0.22 0.32 0.35 0.10 0.21 0.29 0.33 0.25 0.11 0.33 0.21 0.06 0.28 0.32 0.36 

13 0.30 0.27 0.12 0.37 0.27 0.17 0.34 0.33 0.13 0.23 0.33 0.35 0.26 0.12 0.30 0.22 0.24 0.30 0.35 0.35 

15 0.37 0.30 0.12 0.35 0.29 0.19 0.33 0.30 0.21 0.21 0.33 0.14 0.22 0.13 0.34 0.21 0.07 0.22 0.27 0.36 

17 0.33 0.26 0.13 0.33 0.39 0.21 0.32 0.34 0.28 0.24 0.31 0.29 0.24 0.12 0.25 0.18 0.11 0.24 0.31 0.37 

18 0.32 0.25 0.12 0.34 0.27 0.24 0.32 0.33 0.27 0.25 0.33 0.35 0.25 0.23 0.13 0.20 0.16 0.20 0.13 0.34 

20 0.32 0.31 0.24 0.34 0.27 0.32 0.32 0.31 0.16 0.17 0.39 0.38 0.31 0.12 0.29 0.18 0.11 0.24 0.29 0.34 
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Table 2. The hypervolume values of the Pareto fronts produced after retraining of the NN with different 

number of hidden neurons. 

 
5 7 8 9 10 11 13 15 

V1 0.28 0.26 0.27 0.33 0.33 0.32 0.32 0.28 

V2 0.17 0.15 0.14 0.12 0.14 0.13 0.12 0.14 

V3 0.28 0.31 0.30 0.28 0.27 0.28 0.28 0.29 

Vscore 0.25 0.24 0.24 0.26 0.27 0.26 0.26 0.24 

 

Fig. 8. The prediction intervals for scale rate on the test dataset. 

 

 

5. CONCLUSION AND FUTURE WORK 

A method for the estimation of PIs by NN has been proposed for scale rate prediction. The 

originality of the approach is the multi-objective formulation of the problem, to achieve high 

coverage with intervals of small width. The multi-objective framework allows considering a set 

of optimal solutions to select from, according to preferences and to the application purposes. 

Moreover, a systematic process for selecting the optimal NN structure (number of hidden 

neurons) for the problem at hand has been proposed, based on cross-validation analysis and on 

the comparison of hypervolume indicators. The approach is based on the quantitative evaluation 

of the superiority of performance attained with the chosen number of hidden neurons with respect 

to other possible choices, proved via statistical testing.  
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As future research, we aim at using ensemble methods to further increase the accuracy of the NN-

based predictions. Moreover, we aim at exploring different measures for comparing Pareto 

solutions set. 
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ABSTRACT 

In this work, the non-dominated sorting genetic algorithm–II (NSGA-II) is applied to 

determine the weights of a neural network trained for short-term forecasting of wind speed. 

More precisely, the neural network is trained to produce the lower and upper bounds of the 

prediction intervals of wind speed. The objectives driving the search for the optimal values of 

the neural network weights are the coverage of the prediction intervals (to be maximized) and 

the width (to be minimized). The method is proved on various wind datasets, involving also 

other meteorological measurements like air temperature, relative humidity and pressure.  

Correlation analysis is used to help variable selection for defining the most proper model 

inputs. The selected neural network model is, then, trained to provide in output the one-hour-

ahead prediction of wind speed. The originality of the work lies in proposing a multi-

objective framework for estimating wind speed prediction intervals (PIs), optimal both in 

terms of accuracy (coverage probability) and efficacy (width). A comparison with other 

single-objective optimization and prediction methods has been carried out, thus showing that 

the PIs produced by NSGA-II are superior to those obtained with other methods, and 

satisfactory in both objectives of high coverage and small width. 

 

Keywords: wind energy, short-term wind speed forecasting, prediction intervals, neural 

networks, multi-objective genetic algorithm. 
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1. INTRODUCTION 

The world energy demand continues to grow and must be satisfied while reducing the 

environmental impact of energy production. Fossil fuels have been predominantly used for 

energy production, but they have limited reserves and negative effects on the 

environment. Then, renewable energy sources are considered and deployed as alternative, 

reliable and clean forms of energy. The widespread availability of such sources (e.g. wind, 

sun, etc.) and the sustainability of the production process with reduced negative impacts on 

the environment, make power production via renewable energy sources a hot topic of research 

and application. 

 

Among renewable energy sources, wind currently plays a key role in many countries. As a 

kind of non-polluting renewable energy, wind power has tremendous potential in 

commercialization and bulk power generation. According to the Half-Year Report 2011 

released by The World Wind Energy Association (WWEA) [1], the worldwide wind capacity 

reached 215000 MW at the end of June 2011 and the global wind capacity grew of 9.3% in 

the previous six months, and 22.9% on an annual basis (mid-2011 compared to mid-2010). 

According to the 2011 European Statistics Report of the European Wind Energy Association 

(EWEA) [2], annual wind power installations in the EU have increased steadily over the past 

17 years from 814 MW in 1996 to 9616 MW in 2011, an average annual growth rate of 

15.6%. This continuous and rapid growth indicates that wind energy represents a popular 

solution for meeting the increasing need of electricity, respectful of the environment and 

sustainable. 

 

In a power network, generated power should cover the power demand at any given time. The 

power output of a wind turbine is mainly dependent on the local wind speed, and the physical 

and operating characteristics of the turbine. Wind speed changes according to weather 

conditions, in time scales ranging from minutes to hours, days and years [3]; then, the wind 

power output also varies. Wind power variations in short-term time scales have significant 

effects on power system operations such as regulation, load following, balancing, unit 

commitment and scheduling [3-7]. Thus, accurate prediction of wind speed and its uncertainty 

is critical for the safe, reliable and economic operation of the power system.  
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Wind speed and power forecasting have been tackled in the literature by a variety of methods, 

including numerical weather prediction (NWP) and statistical models (these latter comprising 

also artificial intelligence methods like neural networks (NN) and fuzzy logic) [3-8]. Hybrid 

approaches combining physical and statistical models have also been proposed [9, 10]. While 

physical models are suited for long-term forecasting (predictions for days, weeks and months 

ahead), statistical and hybrid approaches are the most promising for short-term forecasting 

(predictions for seconds, minutes and few hours ahead) [3-10]. Among these, NN are 

attractive because of their capability of approximating non-linear relationships among 

multiple variables [4-8].  

 

The vast majority of the existing studies on the use of NN for wind speed prediction aim at 

providing only point predictions. On the other hand, in practice the accuracy of the point 

predictions can be significantly affected by the uncertainties in the network structure and 

input data [11-13], and this is relevant for the design and operation conditions which follow.  

 

Prediction intervals (PIs) can be estimated to provide a measure of the uncertainty in the 

prediction. PIs are comprised of lower and upper bounds within which the actual target is 

expected to lie with a predetermined probability [11-13]. There are two competing criteria for 

assessing the quality of the estimated PIs: coverage probability (CP) and prediction interval 

width (PIW) [12]. One seeks to simultaneously minimize PIW and maximize CP, which 

however are conflicting objectives.  

 

In this work, we tackle this problem by adopting a multi-objective genetic algorithm (MOGA) 

framework, i.e. non-dominated sorting genetic algorithm–II (NSGA-II) [14], to determine the 

values of the weights of a multi-layer perceptron neural network (MLP NN) trained to 

estimate the bounds defining the prediction intervals. The work extends the Lower and Upper 

Bound Estimation (LUBE) method of [12], which combines CP and PIW in one single quality 

measure for optimization.  

 

Demonstration of the approach is given on a synthetic case study, taken from literature [15] 

and concerning the short-term (1h ahead) wind speed prediction. Real data on wind and other 

meteorological parameters related to four different periods of time for the region of Regina, 

Saskatchewan, Canada, have been downloaded from [16]. The data are first analyzed to 



Paper II-R. Ak, Y. F. Li, V. Vitelli and E. Zio. (2014), submitted to Applied Soft Computing 

(under review). 

 

100 

 

identify correlations among variables and to help defining the structure of the predictive 

model.  

 

In the case study analyzed, a comparison has been made between the multi-objective method 

proposed in this paper, the single objective simulated annealing (SOSA) method of [12], a 

single objective genetic algorithm (SOGA) purposely developed, a baseline method based on 

autoregressive integrated moving average (ARIMA) and an alternative multi-objective 

algorithm, the Multi-objective Covariance Matrix Adaptation Evolution Strategy (MO-CMA-

ES). 

 

In short, the main contributions of the work can be summarized as: i) Framing the PI problem 

in a multi-objective setting of finding optimal lower and upper bounds of PIs and utilizing the 

powerful NSGA-II algorithm to solve the problem ii) Analyzing the Pareto front of optimal 

solutions, as offering several alternatives to the decision makers (DMs) for trade-off between 

risk and robustness iii) Showing application of the method on four different datasets involving 

different wind speed profiles with seasonality, and iv) Performing  a thorough comparison 

with both single and multi-objective algorithms. 

 

The paper is organized as follows. Section 2 briefly introduces the basic concepts of NN and 

PIs, and reviews some existing methods for the construction of PIs from NN outputs. In 

Section 3, some basic principles of multi-objective optimization and the NSGA-II method are 

briefly recalled. Section 4 illustrates the use of NSGA-II for training a NN to estimate PIs. 

Experimental results and comparisons with other methods on the real case study of wind 

speed prediction are given in Section 5. Finally, Section 6 concludes the paper with a critical 

analysis of the results obtained and some ideas for future studies. 

 

2. NNS AND PIS 

Neural networks (NNs) are a class of nonlinear statistical models inspired by brain 

architecture, capable of learning complex nonlinear relationships among variables from 

observed data. This is done by a process of parameter tuning called “training”. 

It is common to represent the task of a NN model as one of nonlinear regression of the kind 

[17, 18]: 
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   (    )   ( ),      ( )  (    
 ( ))                             (1) 

 

where  ,   are the input and output vectors of the regression, respectively, and      represents 

the vector of values of the parameters of the model function  , in general nonlinear. The term 

 ( ) is the error associated with  , and is assumed normally distributed with zero mean. For 

simplicity of illustration, in the following we assume   one-dimensional. An estimate  ̂ of    

can be obtained by a training procedure aimed at minimizing the quadratic error function on a 

training set of input/output values    (     )            ,  

 

 ( )  ∑ ( ̂    )
   

   
                (2)      

                               

where  ̂   (    ̂) represents the output provided by the NN in correspondence of the input 

   and    is the total number of training samples.  

 

A single multiple-input neuron and the information processing through it are illustrated in Fig. 

1. Multiple signals            
 are weighed and fed onto a non-linear, e.g. sigmoid, transfer 

(activation) function. The multi-layer structure of such neurons (nodes) makes a NN: input 

signals from a previous layer produce output signals that are distributed to the neurons of the 

subsequent layer. 

 
 

 

 

 

 

 

 

 

 

Figure 1.  Multiple-input neuron [21]. 
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The output signal   of node   of the hidden layer is given by [19-22]: 

 

     (      ∑      
  

   
)                        (3) 

 

where           and   indicates the number of hidden neurons,    is the input signal 

value,           ,    is the number of input signals,     is the synaptic weight,   () is the 

activation or transfer function and    is a bias factor taken as 1. After each hidden neuron 

computes its activation, it sends its signal to each of the neurons    in the output layer. Each 

output neuron    computes its output signal    to form the response of the NN for the input 

pattern received [23]: 

 

     (      ∑      
 
   )                               (4) 

            

where    is the number of output neurons and    indicates the activation function used in the 

output layer. 

 

A PI is defined by upper and lower bounds that include a future unknown value with a 

predetermined probability, called confidence level (   ). The formal definition of a PI is 

the following: 

 

  ( ( )   ( )   ( ))                    (5)      

     

where  ( ) and  ( ) are respectively the lower and upper bounds of the PI of the output 

 ( ) corresponding to input  ;  the confidence level (   ) refers to the expected 

probability that the true value of  ( ) lies within the PI (L(x), U(x)). 

 

The main reason for estimating the PI of the NN model output comes from the need of 

accounting for both the uncertainty in the model structure and the noise in the input data, 

which affect the point estimates. Two measures are used to evaluate the quality of the PIs: the 

coverage probability (CP) and the interval width (IW) [11-13]. The prediction interval 

coverage probability (PICP) represents the probability that the set of estimated PIs will 

contain the true output values, estimated as the proportion of true output values lying within 
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the estimated PIs; the prediction interval width (PIW) simply measures the extension of the 

interval as the difference of the estimated upper bound and lower bound values. These are in 

general conflicting measures (wider intervals give larger coverage), and in practice it is 

important to have narrow PIs with high coverage probability [12]. 

 

Techniques for estimating PIs for NN model outputs include the Delta, Bayesian, Mean-

variance estimation (MVE) and Bootstrap techniques [11]. The Delta method is based on a 

Taylor expansion of the regression function. This method is capable of generating high 

quality PIs but at the cost of high computational time in the development stage, because it 

requires the calculation of a Jacobian matrix and the unbiased estimation of the noise variance 

[11, 24]. 

 

The Bayesian approach uses a Bayesian statistics approach to express the uncertainty of the 

neural network parameters in terms of probability distributions, and integrates these to obtain 

the posterior probability distribution of the target conditional on the observed training set [24-

26]. The underpinning axiomatic mathematical foundation makes this method robust and 

highly repeatable. In the end, NN trained by a Bayesian-based learning technique have 

superior generalization power [11]. On the other hand, the computation time required is high, 

due to the calculation of a Hessian matrix in the development stage (a situation similar to the 

Delta technique).  

 

MVE estimates the mean and the variance of the probability distribution of the target as a 

function of the input, given an assumed target error distribution model [27]. The proposed 

model is based on the maximum-likelihood formulation of a feed-forward NN [27]. 

Compared to the aforementioned techniques, the computational burden of this method is 

negligible both in the development and PI estimation stages. However, the method 

underestimates the variance of the data, so that the quality and generalization power of the PIs 

obtained are low [11, 12].  

 

The Bootstrap method is frequently used because it is the simplest method among the ones 

mentioned here. It is a re-sampling technique that allows assigning measures of accuracy to 

statistical estimates and does not require the calculation of complex matrices and derivatives 

[24, 28]. The aim of the re-sampling is to produce less biased estimates of the true regression 
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of the targets and improve the generalization performance of the model [11]. Main 

disadvantages are: i) high computational time when the training sets and neural networks are 

large; ii) with small numbers of input patterns, the individual neural networks tend to be 

overly trained, leading to poor generalization performance  [11, 17].  

 

The common feature of the above PI estimation methods is that they do not take into account 

the widths of the intervals in the estimation process [11]. With respect to this point, Khosravi 

et al. [12] proposed a “Lower and Upper Bound Estimation Method (LUBE)” in which the 

cost function in Eq. (8) to be minimized combines two quantitative measures: PICP and PIW. 

The mathematical definition of the PICP and PIW measures used are [12]: 

 

      
 

  
∑   

  

   
                   (6) 

 

where      , if      (  )  (  )  and otherwise     , 

 

      
 

  
 ∑

( (  )  (  ))

         

  

   
                                   (7) 

 

where       is the Normalized Mean PIW , and      and      represent the true 

minimum and maximum values of the targets (i.e., the bounds of the range in which the true 

values fall) in the training set, respectively. Normalization of the PI width by the range of 

targets makes it possible to objectively compare the PIs, regardless of the techniques used for 

their estimation or the magnitudes of the true targets.  

 

The cost function proposed in [12] is called coverage width-based criterion (CWC): 

 

         (   (    )    (      ))               (8)                 

 

where   and   are constants. The role of   is to magnify any small difference between   and 

PICP. The value of   gives the nominal confidence level, which is set to 90% in our 

experiments. Then,   and   are two parameters determining how much penalty is paid by the 

PIs with low coverage probability. The function   (    ) is equal to 1 during training, 

whereas in the testing of the NN it is given by the following step function: 
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 (    )  {
                   
                   

                 (9) 

 

In Fig. 2, a symbolic sketch of the proposed three-layer (input, hidden and output) MLP NN 

model with two outputs is illustrated: the first output neuron provides the upper bound of the 

PI and the second the lower bound; by these two output neurons, the NN generates a PI 

interval for each input pattern.  

 

Figure 2.  Architecture of a MLP NN model for estimating the lower and upper bounds of PIs [12]. 

 

Notice that both the LUBE method and our proposed method directly provide the PIs in 

output, while the previously described Delta, Bayesian, MVE and Bootstrap methods do so in 

two steps (first, point estimates calculation and then, further manipulation to get the PIs). 

Notice also that, while in the LUBE method the PIs are obtained by minimizing the single-

objective CWC, our approach consists in estimating the PIs in a multi-objective optimization 

framework, as described in the following section. 

 

3. MULTI-OBJECTIVE OPTIMIZATION BY NSGA-II 

In all generality, a multi-objective optimization problem consists of a number of objectives 

and is associated with a number of equality and inequality constraints, and bounds on the 

decision variables. Mathematically the problem can be written as follows [29]: 

 

Minimise/Maximise    ( )                                       (10) 
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subject to     ( )                                           (11) 

 

   ( )                                                                (12) 

  

   
( )

       
( )

                                                          (13) 

 

A solution,               is an   dimensional decision variable vector in the solution 

space   . The solution space is restricted by the constraints in (11) and (12), and bounds on 

the decision variables in (13). 

 

The   objective functions     ( ) must be evaluated in correspondence of each decision 

variable vector   in the search space. The final goal is to identify a set of optimal solutions 

      in which no solution can be regarded superior to any other with respect to all the 

objective functions. The comparison of solutions may be performed in terms of the concepts 

of Pareto optimality and dominance: in case of a minimization problem, solution    is 

regarded to dominate solution    (     ) if both following conditions are satisfied [29]: 

 

                (  )    (  )                              (14) 

 

                (  )    (  )                               (15)                 

 

If any of the above two conditions is violated, the solution    does not dominate the solution 

  , and    is said to be non-dominated by   . The solutions that are non-dominated within the 

entire search space are denoted as Pareto-optimal and constitute the Pareto-optimal set; the 

corresponding values of the objective functions form the so called Pareto-optimal front in the 

objective functions space. The goal of a multi-objective optimization algorithm is to guide the 

search for solutions in the Pareto-optimal set, while maintaining diversity so as to cover well 

the Pareto-optimal front and thus allow flexibility in the final decision on the solutions to be 

actually implemented. The Pareto-optimal set of solutions can provide the decision makers 

(DMs) the flexibility to select the appropriate solutions, trading-off different preferences on 

the objectives. The decision makers also gain insights into the characteristics of the 

optimization problem before a final decision is made. 

 

Genetic algorithm (GA) is a popular meta-heuristic approach well-suited for multi-objective 

problems [30]. It is a population based-search technique inspired by the principles of genetics 
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and natural selection. Multi-objective GAs (MOGAs) are frequently applied for solving the 

multi-objective optimization problems, for their ability to find nearly global optima, the ease 

of use and the robustness [31-33].   

 

We resort to GA for setting the values of the weights of the NN for estimating PIs. This 

procedure of calibrating the NN model parameters, i.e. the weights, is called training or 

learning. As a classical learning (training) algorithm, back-propagation has been widely used 

for performing supervised learning tasks, e.g., the training of NNs [34]. However, finding the 

optimal weights that minimize the error requires calculating the gradient of the error function, 

whereas the GA does not require this calculation. The drawbacks of this algorithm have been 

already discussed in the literature [35, 36]. The most obvious drawback of the back-

propagation algorithm is that the performance of the method decreases rapidly as the problem 

complexity increases [35, 36].  Moreover, the back-propagation algorithm cannot easily be 

adapted to multi-objective optimization prediction problems. 

 

For the above reasons, we resort to GA for the training of the NN for PI estimation and 

among the several variations of MOGA in the literature, we adopt the non-dominated Sorting 

Genetic Algorithm-II (NSGA-II) which is one of the most efficient MOGAs as shown in 

various comparative studies [14, 30, 31]. 

 

4. IMPLEMENTATION OF NSGA-II FOR TRAINING A NN FOR ESTIMATING 

PIS 

In this work, we extend the LUBE method [12] to the multi-objective formulation of the PI 

estimation problem. More specifically, we use NSGA-II for finding the values of the 

parameters of the NN which minimize the two objective functions PICP (6) and NMPIW (7) 

simultaneously, in Pareto optimality sense (for ease of implementation, the maximization of 

PICP is converted to minimization by subtracting from one, i.e. the objective of the 

minimization is 1-PICP).   

 

The practical implementation of NSGA-II on our specific problem involves two phases: 

initialization and evolution. These can be summarized as follows: 
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Initialization phase: 

Step 1) Partition the input data into training (Dtrain) and testing (Dtest) subsets. 

Step 2) Define the values of: the maximum number of generations, the number of 

chromosomes (individuals)    in each population, and the initial crossover and mutation 

probabilities.  

Step 3) Set the generation number      . Initialize the first population    of size   , by 

randomly generating    chromosomes. Each chromosome forms a candidate solution by   

real-valued genes, where   is the total number of parameters (weights) in the NN. Note that 

each solution corresponds to a NN. 

Step 4) For each input sample   in the training set, evaluate each of the    chromosomes in 

the initial population   , i.e. compute the lower and upper bound outputs of each    

chromosome with   parameters, by performing NN training. Return the values of two 

objectives 1-PICP and NMPIW for each of the    chromosomes. 

Step 5)  Rank the chromosomes (vectors of   values) in the population    by running the fast 

non-dominated sorting algorithm [14] with respect to the pairs of objective values, and 

identify the ranked non-dominated fronts            where    is the best front,    is the 

second best front and    is the least good front. 

Step 6) Apply to    a binary tournament selection based on the crowding distance [14], for 

generating an intermediate population    of size   . 

Step 7) Apply the crossover and mutation operators to   , to create the offspring population 

   of size   . 

Step 8) Apply Step 4 onto    and obtain the lower and upper bound outputs. Evaluate each of 

the    chromosomes in the population   . Return the values of the two objectives 

corresponding to the solutions in   . 

 

Evolution phase: 

Step 9) If the maximum number of generations is reached, stop and return   . Select the first 

Pareto front    as the optimal solution set. Otherwise, go to Step 10. 

Step 10) Combine    and    to obtain a union population         . 

Step 11) Apply Steps 4-5 onto    and obtain a sorted union population.  

Step 12) Select the    best solutions from the sorted union to create the next parent 

population     . 
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Step 13) Apply Steps 6-8 onto      to obtain     . Set           ; and go to Step 9.  

 

Finally, the best front in terms of ranking of non-dominance and diversity of the individual 

solutions is chosen. Once the best front is chosen, then the testing step is performed on the 

trained NN with optimal weight values.  

 

The binary tournament selection, mentioned in Step 6, uses the crowded-comparison operator 

   as the selection criterion [14]. For solution   in the population, it has two attributes: 

nondomination rank       and crowding distance          . For a solution pair,   and  , we 

have         if        <       or (       =        and                      ). That is, if there 

are two solutions under consideration with different nondomination ranks, we prefer the one 

with the lower (better) rank. Otherwise, if both solutions have same ranking, i.e. belong to the 

same nondominated front, we select the solution which locates in a region with lesser number 

of points. For further explanations, we refer the readers to [14]. 

 

GA uses two operators to generate new solutions from existing ones: crossover 

(recombination) and mutation (see Step 7). Crossover is the key operator for the effectiveness 

of the GA, and it is used to create two new chromosomes, called offspring, from one selected 

pair of chromosomes called, parents. We have used the extended intermediate recombination 

method as a crossover operator [37]. Intermediate recombination can produce any point 

within a hypercube slightly larger than that defined by the parents [37] and it can only be 

applied to real-coded GAs [38]. Offspring are produced as follows: 

 Randomly select the crossover point (position)            . 

 Randomly select the parents    (  
      

 ) and    (  
      

 ) depending on the 

crossover probability. 

 Set       and      . Then, in order to create two offspring 

   (  
    

      
      

      
 ) and    (  

    
      

      
      

 ), change the genes from   

to   according to the following procedure: 

 

(  
      

      
 )  (  

      
      

 )      (  
      

      
 )  (  

      
      

 ) (16) 

(  
      

      
 )  (  

      
      

 )      (  
      

      
 )  (  

      
      

 )  (17)
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where   and    are  two values randomly (uniformly) chosen within the interval [-0.25, 1.25] 

[38].  

 

Mutation involves the modification of the value of each gene of a solution with a predefined 

probability    (the mutation rate) [39]. For performing mutation, we have used a heuristic 

method, similar to non-uniform mutation [40], where the mutation probability (rate)    

decreases at each generation. In our mutation method, the selected gene is replaced with a 

new real coded value generated by the following algorithm: 

 

  
    

  (        )                                     (18) 

 

where   and   indicate the chromosome and the gene within the chromosome to be mutated, 

respectively,    is the number of chromosomes, and      indicates a random number value 

drawn from the standard uniform distribution on the open interval (0,1). 

 

The total computational complexity of the proposed algorithm can be explained in terms of 

two time-demanding sub-operations: nondominated sorting and fitness evaluation. The time 

complexity of the nondominated sorting part is  (    ), where   is the number of 

objectives and    is the population size [14]. In the fitness evaluation phase, the NSGA-II is 

used to train a NN with    patterns of training; since for each individual of the population a 

fitness value is obtained, the process is repeated       times: hence, the time complexity of 

this phase is  (     ). In conclusion, the computational complexity of one generation is 

 (         ). 

 

5. EXPERIMENTS AND RESULTS 

In this Section, results of the application of the proposed method to short-term wind speed 

forecasting are detailed. The considered wind speed data have been measured in Regina, 

Saskatchewan, a region of central Canada. Wind farms in Canada are currently responsible for 

an energy production of 5403 MW, a capacity big enough to power over 1 million homes and 

equivalent to about 2% of the total electricity demand in Canada [41]. The actual situation in 

Saskatchewan is characterized by the presence of 4 large wind farms located throughout the 
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region, with a total capacity of approximately 198 MW. Aside from large wind farms, 

Saskatchewan residents have installed numerous smaller wind turbines (approximately 200), 

most of which are characterized by a power production of less than 10 KW [42]. 

 

5.1. Pre-Treatment of Input Data 

The hourly wind speeds measured in four different periods in Regina, Saskatchewan, (see Fig. 

4) have been downloaded from the website [16]. The first dataset comprises wind speeds for 

the period from 1
st
 of February 2012 to 31

st
 of March 2012 (winter dataset), the second from 

1
st
 of July 2012 to 29

th
 of August 2012 (summer dataset), the third from 1

st
 of February 2011 

to 30
th

 of June 2011 (w2011 dataset) and the last one from 1
st
 of May 2010 to 30

th
 of 

September 2010 (w2010 dataset). The four time periods have different seasonality and have 

been selected to represent different patterns and characteristics in the measured time series of 

wind speeds. 

 

In addition to the hourly wind speed data, for the winter and summer periods the hourly 

measurements concerning three meteorological variables (temperature, relative humidity and 

air pressure) are also available for the same area.  

 

In order to gain insights into the strength of the relationship between the input variables (the 

meteorological explanatory variables) and the output variable (wind speed), some statistical 

analyses of the data have been conducted. First, the correlation structure of the data matrix has 

been explored through various correlation indices and statistical tests [43]. The results 

obtained by computing Pearson’s correlation coefficient are reported in Table 1, and they 

show that wind speed has in fact weak (lower than 40%) dependences on the meteorological 

parameters considered, both during summer and during winter. We also performed two 

different non-parametric tests of no correlation, based on Kendall's  and Spearman's 

statistics [44]: both statistical tests give strong evidence of absence of correlation between 

wind speed and all other meteorological variables mentioned above, both during summer and 

winter (p-values all below 10%). Finally, also the correlations among meteorological 

variables have been explored by all these means, and they all resulted to be negligible. 
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  Table 1. Correlation matrix for the explanatory and output variables (winter/summer). 

 

Secondly, a Principal Component Analysis (PCA) of the meteorological variables was 

performed using the correlation matrix shown in Table 1 (without the output variable, wind 

speed). Indeed, when principal components loadings, i.e. the weights in the combinations 

defining the components, are interpretable and physically meaningful, a possibility is to use as 

explanatory variables in the model the projections of the original input variables on the 

principal component space [45]. In this way, the new input variables for the model are less 

correlated among each other, and possibly more correlated to the target. However, results of 

PCA (see Table 2) do not show such neat and interpretable loadings. Moreover, the new 

variables obtained by projection of the explanatory input variables on the first two principal 

components (which together explain more than 90% of the total variability in the dataset, see 

the last row of Table 2), do not show an increase in the correlation with the target: 

 (        )          in winter and 19.83% in summer;  (        )          in 

winter and 13.03% in summer. 

 

All previous considerations support the conclusion that the influence of meteorological 

variables on the observed wind speed and their mutual dependence, are not a sufficient 

motivation for including them in the model as explanatory variables. This is not surprising: 

many models for describing wind condition or wind speed proposed in the literature rely only 

on past wind speed data [46], or other information concerning wind (e.g. wind direction) [47]. 

Hence, only historical wind speed values are selected as input variables for the ANN model 

aimed at providing in output the one-hour-ahead prediction of wind speed. 

  

 Temp. Wind speed Relative hum. Air pres. 

Temp. 1    

Wind speed 0.362 / 0.140 1   

Relative hum. -0,506 / -0,758 -0.269 / -0.203 1  

Air pres. -0,591 / -0,098 -0.282 / -0.333 0.129 / -0,037 1 
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Table 2. Results of the PCA on meteorological variables (winter/summer). 

 

 

The last choice concerning the model inputs for the NN model is the number of the past wind 

speed values to consider. First, the analysis of the empirical Autocorrelation Function (ACF; 

Fig. 5, top, left for winter and right for summer) shows a non-negligible correlation of the 

wind speed time series, also for high values of the lag. Typically in time series analysis such a 

consideration leads to the fitting of an autoregressive model, which explains the current value 

of the target via a linear combination of past values of the target itself [48]. Even if NNs are 

nonlinear models, this fact can be taken as an indication of the relevance of the past values of 

the wind (           ) to explain the current wind speed (  ). The empirical Partial 

Autocorrelation Function (PACF; Fig. 5, bottom, left for winter and right for summer) is 

instead commonly used in time series analysis for model identification, i.e. for the choice of k 

[48]: specifically, PACF at lag j is the autocorrelation between    and      that is not 

accounted for by lags 1 through j-1, and in autoregressive models of order k the PACF is zero 

at lag k + 1 or greater. We thus look for the point on the plot where the PACF essentially 

becomes zero, and detect the lags at which PACF is not significantly different from zero by a 

95% Confidence Interval (CI), whose limits are at  
      

√ 
⁄ , where n is the dimension of 

the dataset. The CI limits correspond to the dotted lines in Fig. 5 (bottom): we can see that 

     and      are highly correlated to   , and hence should be used in the prediction, both 

for the winter and the summer season; indeed, for the winter time series, also      is 

significantly related to   , and should thus be used in the prediction model. In synthesis, 

 
1

st
 Principal component 

loadings 

2
nd

 Principal component 

loadings 

3
rd

 Principal 

component 

loadings 

Temp. 0.677/0.708 --/-- 0.735/-0.704 

Relative hum. -0.49/-0.703 -0.762/-0.128 0.423/-0.699 

Air pres. -0.549/-- 0.647/0.991 0.53/-0.124 

Proportion of 

explained variance 
0.615/0.587 0.291/0.336 0.094/0.076 

Cumulative 

proportion of 

explained variance 

0.615/0.587 0.906 /0.924 1/1 
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historical wind speed values     ,      and      are selected as input variables for 

predicting    in output for the winter season, while during summer only      and      are 

selected as inputs. Similar to winter and summer datasets, we have also performed ACF and 

PACF analysis for w2011 and w2010 datasets. In accordance to the results of these analyses, 

we have selected             and              previous time steps for w2011 and 

w2010 datasets, respectively, as inputs to NN. 

 

We underline that, given the relatively higher 36.21% value of Table 1 for the correlation 

between temperature and wind speed observed for the winter dataset, we have also carried out 

the NN PI estimation by considering also the temperature as an input variable. For the 

temperature inputs, we have used the same number of previous time steps as for the wind 

speed variable. The optimal Pareto front obtained is shown in Fig. 3, together with that 

obtained using the wind speed variable only. It is seen that adding the temperature as input 

variable did not improve the optimality of the training front, i.e. the Pareto front obtained with 

only wind speed and the one obtained with both wind speed and temperature are almost the 

same (see Fig. 3). On the contrary, adding temperature as an input increases the computation 

time as the number of input neurons increases.  

 

 

Figure 3. Pareto-fronts obtained by only wind speed input variable (marked as circle), and wind speed 

and temperature variables (marked as square) on winter dataset. 

 

5.2. NN Training and Testing Results 

The first dataset (winter period) includes 1437 samples. The second dataset (summer period) 

comprises 1438 samples. The third and fourth datasets, which are referred as w2011, w2010 
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include 3596 and 3667 samples, respectively. For all the datasets, the first 80% of the samples 

are used for training and the rest for testing. Fig. 4 shows the profile of the normalized four 

datasets used in this study. All data have been normalized within the range [0.1, 0.9]. The 

volatile character of the wind speed is clearly observable in all the wind speed profiles.  

 

The architecture of the NN consists of one input, one hidden and one output layers. The 

number of input neurons is set to 2, 3, 4 and 5 for winter, summer, w2011 and w2010 

datasets, respectively, depending on the inputs selected according to the correlation analysis. 

The number of hidden neurons is set to 10 after a trial-and-error process; the number of output 

neurons is 2, one for the lower and one for the upper bound values of the PIs. As activation 

functions, the hyperbolic tangent function is used in the hidden layer and the logarithmic 

sigmoid function is used at the output layer (these choices have been found to give the best 

results by trial and error, although the results have not shown a strong sensitivity to them).  

 

For the comparison with other training algorithms, e.g. SOSA, SOGA and MOGA, dedicated 

parameter tuning has been performed. For SOGA and MOGA, the initial crossover and 

mutation probabilities have been tuned: crossover probability has been changed from 0.4 to 1 

with step size of 0.2; for mutation probability, two alternative values, 0.06 and 1, have been 

considered. The results show that the performance with initial mutation probability of 1 is 

worse than with initial mutation probability of 0.06; on the contrary, tuning the crossover 

probability did not make significant difference in the obtained results. For SOSA, the initial 

temperature has been tried with values of 5, 200 and 500: it turns out that the SOSA with 

initial temperature of 200 gives better performance. 

 

Table 3 contains the parameters of the SOSA, SOGA and NSGA-II for the NN training. 

“MaxGen” indicates the maximum number of generations which is used as a termination 

condition, and    indicates the total number of individuals per population.    indicates the 

crossover probability and is fixed during the run.        is the initial mutation probability and 

it decreases at each iteration (generation) by the formula:  

 

        ( 
   

      
)
              (19) 

 

  



Paper II-R. Ak, Y. F. Li, V. Vitelli and E. Zio. (2014), submitted to Applied Soft Computing 

(under review). 

 

116 

 

           Table 3. NSGA-II, SOGA and SOSA parameters used in the experiments 

Parameter Numerical value 

MaxGen 300 

Nc 50 

Pm_int 

Pc 

0.06 

0.8 

μ 0.9 

η 50 

Tinit 200 

Tmin 10
-50

 

CWCint 10
80

 

Geometric cooling  

schedule of SA 
Tk+1 = Tk * 0.95 

 

 

To account for the inherent randomness of NSGA-II, twenty different runs have been 

performed and an overall best non-dominated Pareto front has been obtained from the twenty 

individual fronts. To construct such front, the first (best) front of each of twenty runs is 

collected and the resulting set of solutions is subjected to the fast non-dominated sorting 

algorithm [14] with respect to the two objective functions values. Then, the ranked non-

dominated fronts            are identified, where    is the best front,    is the second best 

front and    is the worst front. Solutions in the first (best) front    are then retained as overall 

best front solutions. Fig. 6 illustrates the overall best front solutions obtained with this 

procedure from the 20 NSGA-II runs both for winter and w2011 periods. 

 

Given the overall best Pareto set of optimal solutions (i.e. optimal NN weights) one has to 

pick one (i.e. one trained NN) for use. Two different selection procedures are here employed 

for choosing a solution, with reference to the Pareto-optimal front of Fig. 6. First, a solution 

which results in the smallest CWC (see [12] and Eq. 8) is chosen. As a second procedure, the 

“min-max” method has been used [49]. Min-max method is one of the quantitative criteria 

performed to select a single best compromise Pareto solution [50]. Let us consider a point   

with (     ) on the two dimensional Pareto front (see Fig. 3). For each point  , we calculate 

the relative deviations    (     
   )   

    and    (     
   )   

   , where   
    and 

  
    are the minimum values of the first and second objective functions on the Pareto front, 
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respectively. The min-max method amounts to finding the location of   where the maximum 

relative deviation is minimized. In other words, we seek for the best compromise solution    

corresponding to the                  [49, 50]. Note that this method gives a solution that is 

representative of the center of the Pareto front [49].  

 

Table 4 reports the PICP and NMPIW values of the Pareto front solutions both for the training 

and testing, selected according to those two different selection methods, i.e. min-max and 

smallest CWC. The solutions are also marked on the Pareto fronts of winter and w2011 

datasets in Fig. 6. 

 

It is observed that the min-max method selects a solution indeed located towards the center of 

the Pareto-front (see Fig. 6), whereas the smallest CWC selection method gives a solution 

which has coverage probability (CP) greater than 90%, i.e. the nominal confidence level, with 

larger interval size (see Table 4). Given the critical importance of the accuracy of the 

estimated PIs in decision making, interval size should be less influential than CP at least as 

long as the nominal confidence level is reached [12].  Ideally, solutions giving a CP equal or 

bigger than the nominal confidence level should have relatively higher credit. Hence, the 

smallest CWC selection procedure, which is meeting these requirements, is preferable for 

applied practice. 

 

The optimal values of the NN parameters (weights) obtained in training are used for testing 

on the last 287 and 719 measurements of the wind speed winter and w2011 datasets, 

respectively.  Figs. 7 and 8 show the prediction intervals for the testing sets of winter and 

w2011, respectively, estimated by the trained NN corresponding to the Pareto solution 

resulting in the smallest CWC value. For the sake of visibility, we have plotted first 300 

samples of the w2011 testing dataset and estimated PIs (see Fig. 8). The results give a 

coverage probability of 84% and an average interval width of 0.277 for the winter period, and 

a coverage probability of 91.4% and an average interval width of 0.265 for the w2011 period 

(see Table 4).  
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Table 4. Solutions chosen from the overall Pareto optimal fronts obtained after NN training. 

Dataset Winter Summer 

 Training Testing Training Testing 

Methods PICP (%) NMPIW PICP (%) NMPIW PICP (%) NMPIW PICP (%) NMPIW 

Smallest 

CWC 
93.6 0.276 84.0 0.277 94.8 0.323 91.7 0.326 

Min-Max 73.0 0.145 65.5 0.144 76.4 0.177 74.0 0.175 

Dataset w2011 w2010 

 Training Testing Training Testing 

Methods PICP (%) NMPIW PICP (%) NMPIW PICP (%) NMPIW PICP (%) NMPIW 

Smallest 

CWC 
94.2 0.270 91.4 0.265 94.3 0.252 95.2 0.253 

Min-Max 74.8 0.152 70.2 0.147 75.6 0.145 76.1 0.146 

 

 

 

Figure 4.  The four (normalized) wind speed datasets used in this study. 
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Figure 5. (up) ACF plot for the wind speed time series: winter (left) and summer (right). 

(down) PACF plot for the wind speed time series: winter (left) and summer (right). The X axis shows 

the hourly lag. 

 

 

Figure 6.  The overall best Pareto front obtained by training of the NN for 1h-ahead wind speed 

prediction: winter period (left) and w2011 period (right). 
 

 

Figure 7.  Estimated PIs for 1h ahead wind speed prediction on the testing set (dashed lines), and wind 

speed data included in the testing set (solid line) for winter dataset. 
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Figure 8.  Estimated PIs for 1h ahead wind speed prediction on the testing set (dashed lines), and wind 

speed data included in the testing set (solid line) for w2011 dataset. 

 

5.3. MOGA comparison with SOSA and SOGA 

The single objective genetic algorithm (SOGA) and the single objective simulated annealing 

(SOSA) procedures, described in [12], have been implemented for comparison. Table 3 

contains the parameters of the experiments run for SOSA and SOGA, together with the 

parameters for the NSGA-II implementation of the MOGA. The “Tinit”, “Tmin”, “Geometric 

cooling schedule” and “CWCint” are the parameters of the SA optimization technique. “Tinit” 

and “Tmin” represent the starting and finishing temperatures, respectively. The finishing 

temperature can be used as a termination condition. The geometric cooling schedule sets the 

decrease of the temperature at each search iteration [12], [51, 52]. Here, we have used a 

cooling factor of 0.95. CWCint represents the initial value of the CWC: as the temperature 

drops during the search, the CWC value decreases gradually but not monotonically [12]. 

 

In the MOGA and SOGA, the population size is set to 50 and the number of generations to 

300, for a total number of evaluations equal to 15000. For fair comparison, SOSA is 

configured to have equal number of evaluations: therefore, the maximum number of iterations 

is set to 15000 as termination condition.  

 

For each algorithm, the average CPU times over 20 runs for both training and testing have 

been recorded using MATLAB on a PC with 4 GB of RAM and a 2.53-GHz processor. Table 

5 reports the recorded training CPU times on the winter dataset. The SOSA PI construction 

time has been recorded for 15000 iterations. The average CPU time for the construction of 
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testing PIs, i.e. for the online prediction of PIs, is very fast for all algorithms, being about 0.05 

s. It is needless to say that computational load is dependent on the complexity of the structure 

of the model (e.g. number of input neurons, hidden layers, and hidden neurons), the size of 

the dataset and the performance of the learning algorithm.  

 

 Table 5. Descriptive Statistics of CPU times (s) of twenty MOGA, SOSA and SOGA  

 on winter training dataset. 

 

 

As mentioned before, to account for the intrinsic randomness present in the SOSA, SOGA 

and MOGA optimization procedures, all have been run twenty times. In SOSA and SOGA, 

the CWC has been used as a cost function. For each of the first (best) fronts found by twenty 

MOGA runs, a CWC value has been a posteriori calculated by combining the individual PICP 

and NMPIW values. Then, for each Pareto front, the solution with smallest (best) CWC value 

is selected among all solutions in the front. This allows obtaining twenty best CWC values, 

one selected from each Pareto front. After training, we perform the testing of the trained NNs 

with fixed optimal parameter values (weights and biases). For each solution obtained from 

training, corresponding CWC values have been also calculated for testing dataset by 

following the same procedure explained above.  

 

The boxplots of the testing results of the 20 runs of the three different procedures are shown 

in Fig. 9, where each panel corresponds to the results obtained for the winter, summer, 

w2011, and w2010 datasets, respectively. The aim of this Figure is to perform a comparison 

between the three algorithms. A boxplot is an exploratory graphic used to visualize key 

descriptive statistical measures of the data, such  as median and quartiles, and to have an idea 

of the distribution of the considered variable, i.e. its location, dispersion, and its symmetry or 

skewness, at a glance [53], [54]. It is also used to make comparisons of these features in two 

or more datasets. Moreover, in Table 6, the median, mean and standard deviation statistics of 

 Mean (s) Std (s) Min (s) Max (s) 

MOGA 258.84 9.40 245.49 285.96 

SOGA 199.36 12.42 186.42 231.32 

SOSA 163.29 6.98 154.52 184.28 
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these 20 testing results have also been reported. These statistics have been calculated by 

considering the outliers among the twenty runs. 

 

From the inspection of boxplots (see Fig. 9) and Table 6, we can draw the following 

conclusions:  

 

1. MOGA algorithm shows more consistent testing results, i.e. better generalization 

capability, with respect to the CWC value if compared to SOGA and SOSA.  

2. For winter and w2011 datasets, the MOGA boxplots are comparatively shorter (meaning 

narrower distributions) and have smaller medians than the boxplots of SOGA and SOSA. 

Also for the summer datasets, MOGA and SOGA seem comparable, but SOSA has higher 

variability. Indeed, SOSA gives highly variable CWC results, which can be interpreted as 

unreliable compared to the results of the two other methods. In other words, this fact indicates 

a higher variability for the estimates of CWC obtained using SOSA algorithm. For w2011 

dataset, although SOGA boxplot looks narrower than MOGA and SOSA, its median value is 

slightly bigger than the one obtained by MOGA.  

3. For the w2011 and w2010 datasets, all of the algorithms have quite small CWC values, 

with quite small standard deviations on testing set. This indicates a higher generalization 

power of the algorithms with respect to these datasets. However, standard deviations are 

relatively higher in winter datasets. This can be explained by the fact that w2010 and w2011 

datasets show a similar profile of the training and testing sets, and also by the fact that they 

have a larger training dataset available. Thus, the algorithms are obviously able to generalize 

the presented patterns well and to transfer them to new unseen data. On the contrary, the 

testing patterns of the winter and summer datasets show relatively higher variability compared 

to the training patterns (see Fig. 6). This leads to the fact that for these two datasets, training 

solutions with CP greater than 90% have CP values lower than 90% on the testing set.  

4. Although variability in the testing patterns of the winter and summer datasets are relatively 

higher compared to the training patterns, MOGA algorithm shows a good accuracy and 

generalization ability on these datasets. 

 

It is worth saying that, in the MOGA method, the overall best non-dominated Pareto front 

obtained from the twenty individual fronts is considered as the ultimate Pareto-optimal front 

(see Fig. 6). Fig. 10 shows the testing solutions corresponding to those on the overall best 
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non-dominated Pareto front, obtained by MOGA, and twenty individual run results of SOGA 

and SOSA. These solutions belong to the w2011 dataset. In this plot, the comparison is done 

in terms of 1-PICP and NMPIW. For the sake of clarity and visibility, the X axis (1-PICP) has 

been drawn from 0 to 0.15, i.e. for the CP values from 85% to 100%.  

 

 

Fig. 9. Boxplot results of twenty SOSA and SOGA runs and twenty best MOGA for NN testing: 

winter (left), summer (middle-left), w2011 (middle-right) and w2010 (right). 

 

 

Table 6. Descriptive Statistics of CWC testing results over twenty runs obtained by MOGA, SOSA 

and SOGA methods, respectively. 

 

From inspection of Fig. 10, it can be observed that both SOGA and SOSA methods never 

result in coverage probabilities greater than 93% with respect to the w2011 dataset. For PIs 

with higher CPs (>=95%), SOGA and SOSA do not provide appropriate solutions. Besides, 

most of the solutions are above the MOGA testing solutions front in the solution space under 

consideration, this meaning that SOGA and SOSA solutions have larger interval size for the 

same CP compared to the MOGA ones. For exemplification, a testing solution with 92.9% CP 

results in 0.283, 0.287, and 0.306 NMPIW values corresponding MOGA, SOGA and SOSA, 

respectively. One can appreciate that MOGA gives tighter interval size than SOGA and 

 Winter Summer w2011 w2010 

 Med Mean Std Med Mean Std Med Mean Std Med Mean Std 

MOGA 1.79 2.67 2.16 0.34 0.46 0.29 0.28 0.31 0.11 0.26 0.26 0.01 

SOGA 2.57 3.66 2.86 0.33 0.46 0.27 0.29 0.33 0.13 0.27 0.27 0.01 

SOSA 4.90 6.16 4.64 0.34 0.51 0.34 0.30 0.31 0.06 0.28 0.28 0.02 
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SOSA. Note that we obtained similar results for all datasets used in the experiments; due to 

space limitation, only w2011 dataset results have been shown in full.  

 

Finally, we have analyzed the convergence of CWC along the iterations of the NN training 

procedure. The behavior of CWC as a function of the iterations is shown in Figs. 11 and 12 

for SOSA and SOGA methods, respectively. Since the CWC takes extreme values in the first 

iterations of SOSA, the logarithm of CWC has been plotted in Fig.11. In the case of SOSA, 

the CWC decreases gradually but non-monotonically due to the structure of the simulated 

annealing algorithm. In order to show clearly the convergence and non-monotonicity of the 

SOSA method, a zoom on the behavior of CWC has been also plotted: the right plot in Fig. 11 

shows the values of CWC for the last 5000 iterations. It is observed that CWC continues to 

decreases until it reaches the maximum number of iterations. On the contrary, from inspection 

of Fig. 12 it is clear that CWC decreases gradually and monotonically in the case of SOGA. 

 

 

Fig. 10. 20 SOGA (marked as diamond) and SOSA results (marked as cross) versus overall best 

NSGA-II testing solutions (marked as circle). 

 

Fig. 13 shows the convergence behavior of PICP and NMPIW through the iterations of the 

MOGA for the winter dataset. Due to space limitation, the similar plots for summer, 

winter2011 and winter2010 datasets are omitted. To obtain this graph, we have considered the 

two objectives separately (as if they were two single objectives, even if our research does not 

really focus on the single-objective solutions), and we have selected the extreme solutions on 

the front obtained at each iteration. In other words, the solution giving maximum PICP and 

the one giving minimum NMPIW were selected separately. The motivation behind these last 
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convergence plots is to show the MOGA algorithm's ability to converge, after a certain 

number of iterations, to the true optimum, which means respectively 100% PICP and 0 

NMPIW. This happens for both the single objectives. 

 

5.4. Comparison with MO-CMA-ES  

In addition to the comparisons explained above, we have also applied multi-objective 

covariance matrix adaptation evolution strategy (MO-CMA-ES) as an alternative multi-

objective training algorithm [55, 56]. CMA-ES is a stochastic method for non-linear, non-

convex functions in continuous domain. It is regarded as one of the most powerful 

evolutionary algorithms for real-valued single optimization problems [56]. For details on the 

methodology and on the implementation procedure, we refer the readers to [55-57]. Here, we 

have extended the MATLAB source code of single objective CMA-ES published in [57] to 

the multi-objective framework. In order to have a fair counterpart algorithm to NSGA-II, we 

have set up the MO-CMA-ES algorithm by modifying the algorithm in Section 4 as follows: 

in step 3) we replace the random generation of initial population with the sampling from a 

multivariate normal distribution; in step 7) we replace the genetic operators by the CMA-ES 

updating schemes. The rest of the steps remain the same.  

 

The parameters used in MO-CMA-ES have been assigned by trial and error as follows: the 

maximum number of generation and population size has been set to 300 and to 50, same as 

NSGA-II; the number of parents/points for recombination, i.e. the mu value, has been set 

equal to the population size; the sigma value has been set to 0.3 and the initial values of the 

decision variables, i.e. xmean, have been determined with the same formula as we used in 

NSGA-II. The rest of the parameters are the same as in [57]. 

 

Fig. 14 shows a comparison of the optimal Pareto fronts obtained after training of the NN 

both by NSGA-II and MO-CMA-ES algorithms on the winter and w2011 datasets, 

respectively. It can be noticed that the optimal Pareto front obtained by NSGA-II is slightly 

better than the one obtained by MO-CMA-ES.  
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5.5. Comparison with ARIMA  

In order to have a comparison also with a baseline method, we have also generated point 

predictions and a posteriori calculated PIs by autoregressive integrated moving average 

(ARIMA) model [58]. The ARIMA prediction results have been obtained by the R statistical 

software package [58]. The best time series model for the winter, summer, w2011, and w2010 

datasets have been chosen as ARIMA (3, 0, 0), ARIMA (2, 0, 0), ARIMA (4, 0, 0), and 

ARIMA (5, 0, 0), respectively. Note that the parameters of the ARIMA model have been 

chosen not only by considering ACF and PACF results but by also complementing with a trial 

and error process. Eventually, we have chosen the one giving the smaller Akaike Information 

Criteria (AIC) value [58].  

 

First, we have calculated point predictions according to the regression functions obtained by 

R. Then, we have set the confidence level to 90% to obtain PIs. After that, we have calculated 

both the prediction interval empirical coverage (PICP) and interval width of the estimated PIs 

on the testing set. The empirical coverage probabilities of the prediction intervals obtained 

with a confidence level of 90% are reported in Table 7 for all datasets. One can observe that 

although the confidence level is 90%, the PICP values are quite big. This can be explained 

with the large interval widths (see Table 7). As the PIWs are quite large (around 50%), they 

cannot provide useful information in practice, because the uncertainty level is too high to 

support a reliable and informed decision in typical application contexts. Indeed, for winter 

and summer datasets, where the test set variability is relatively higher than in w2011 and 

w2010 datasets, MOGA NN results in tighter interval widths for the same PICP value.  

  

 

Fig. 11.  Evolution of CWC during the training of NN by SOSA algorithm for the winter dataset. 



Paper II-R. Ak, Y. F. Li, V. Vitelli and E. Zio. (2014), submitted to Applied Soft Computing 

(under review). 

 

127 

 

 

Fig. 12.  Evaluation of CWC during the training of NN by SOGA algorithm for winter (left) and 

summer (right) datasets. 

 

 

Figure 13.  Evaluation of PICP and NMPIW during the training of NN by MOGA algorithm for 

winter period: PICP (left) and NMPIW (right). 

 

Table 7. PICP and NMPIW values obtained by MOGA and ARIMA with respect to the four datasets. 

 

  

 Winter Summer w2011 w2010 

 PICP (%) NMPIW PICP (%) NMPIW PICP (%) NMPIW PICP (%) NMPIW 

MOGA 98.6 0.463 98.3 0.449 99.6 0.552 99.9 0.457 

ARIMA 98.6 0.514 98.3 0.525 99.6 0.500 99.9 0.447 
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Figure 14.  Pareto fronts obtained by training NN by NSGA-II and MO-CMA-ES on winter (left) and 

w2011 (right) datasets. 

 

6. CONCLUSION                                                                          

Wind speed prediction is a fundamental issue for wind power generation. The associated 

uncertainty needs to be properly quantified for reliable decision making in design and 

operation. 

 

In this study, a method for the estimation of PIs by NN has been applied for short-term wind 

speed prediction. The wind speed data from four different time periods and related to the 

region of Regina, Saskatchewan, have been used to demonstrate the capabilities of the 

proposed method. Within an original multi-objective optimization formulation of the problem 

of NN training, NSGA-II is capable of estimating NN weights which are optimal in Pareto 

sense. To the knowledge of the authors, this is the first study proposing such multi-objective 

formulation for the estimation of NN-based PIs for wind speed prediction. The results 

obtained confirm the validity of the proposed approach. Tests and comparisons with other 

methods (SOGA, SOSA, MO-CMA-ES and ARIMA) have also been performed to prove the 

superiority of our approach. 

 

As for future research, the use of an ensemble of different NNs will be considered to further 

increase the accuracy of the predictions, and the extension of the approach for prediction of 

wind power output will be pursued. 
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ABSTRACT 

The increasing liberalization of European electricity markets, the growing proportion of 

intermittent renewable energy being fed into the energy grids, but also new challenges in the 

patterns of energy consumption (such as electric mobility) require flexible and intelligent 

power grids capable of providing efficient, reliable, economical and sustainable energy 

production and distribution. From the supplier side, particularly, the integration of renewable 

energy sources (e.g. wind and solar) into the grid imposes an engineering and economic 

challenge because of the limited ability to control and dispatch these energy sources due to 

their intermittent characteristics. Time series prediction of wind speed for wind power 

production is a particularly important and challenging task, whereby Prediction Intervals (PIs) 

are preferable results of the prediction, rather than point estimates, because they provide 

information on the confidence in the prediction. 

 

In this paper, two different machine learning approaches to assess PIs of time series 

predictions are considered and compared: Multi-layer Perceptron Neural Networks (MLP 

NN) trained with a multi-objective genetic algorithm and Extreme Learning Machines (ELM) 

combined with the nearest neighbors approach. The proposed approaches are applied for 

short-term wind speed prediction from a real dataset of hourly wind speed measurements for 

the region of Regina in Saskatchewan, Canada. Both approaches demonstrate good prediction 

precision and provide complementary advantages with respect to different evaluation criteria.  

 

Keywords: Extreme learning machines, multilayer perceptron, multi-objective genetic 

algorithms, prediction intervals, short-term wind speed prediction, wind power production. 
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1. INTRODUCTION 

Smart grid technology induces intelligence in the conventional power grid and comprises 

many different elements, both at supplier and consumer sides, to provide efficient, reliable, 

economical and sustainable energy production and distribution. It can be defined as an 

interconnected network of microgrids with distributed control [1].  

 

On the other hand, the evolution from conventional power grids towards smart grids with 

integration of distributed renewable energy sources leads to additional uncertainty in the 

system. Indeed, the challenge of operating power systems reliably and safely increases with 

the growing proportion of intermittent renewable energy, such as wind and solar, being fed 

into the energy grids. The inherent variability and uncertainty affecting the renewable energy 

sources can have a significant impact on power supply, and accurate and reliable predictions 

of the power output obtainable from these sources are needed on different time scales. Thus, 

predicting the output of renewable energy sources is critical for integrating them efficiently in 

the power grid and for dealing with their uncertain and intermittent character. 

 

We consider wind power particularly, whose use has been growing over the last years: the 

worldwide wind capacity has reached 296 GW by the end of June 2013, out of which 13980 

MW have been added in that first half of 2013 [2].  

 

Wind power output mainly depends on the wind speed and on the physical characteristics of 

the wind turbines. Wind speeds have a very volatile character, which makes their prediction a 

particularly challenging task. Wind speeds depend on pressure conditions and have different 

hourly, daily and yearly profiles. Wind power variations in short-term time scales (from 

seconds to minutes, hours or several days) have significant effects on power system 

operations such as spot (daily and intraday) market, system management and scheduling of 

maintenance tasks [3]-[6]. Therefore, short-term prediction of wind speed for wind power 

production does not only affect system operators, but also electricity companies and wind 

farm promoters. 

 

Several approaches have been proposed for predicting wind speeds. These include approaches 

based on physical models for numerical weather prediction, but also statistical  and soft 
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computing approaches, including statistical regression, neural networks and  fuzzy logic 

systems [3]-[7]. Also hybrid approaches have been proposed, combining physical and 

statistical approaches [7]. The approaches have been developed and applied for predictions 

performed on different time-scales: short, medium and long term time scales.  

Neural networks have been increasingly applied to wind speed prediction tasks, due to their 

flexibility, self-adaptive learning abilities and the relaxation of the need of physical and 

phenomenological assumptions for the development of  the models [3]-[6], [8]-[10]. 

 

Most of the proposed approaches for wind speed predictions provide point estimates of future 

values. In practice, the accuracy of point estimates can be affected by the uncertainties in the 

model parameters and input data [11]-[13]. For practical applications, information on the 

uncertainty in the predictions is necessary to manage properly the energy system.  

 

Prediction intervals (PIs) can be used to provide information on the confidence in the 

predictions [11]-[13], accounting for both the uncertainty in the model parameters and the 

noise in the input data.  

 

The main requirement on the quality of the estimated PIs is a high coverage probability that 

the true values will be within the predicted intervals; on the other hand, to give useful 

practical information, the intervals need to have small widths. The two requirements are 

competing, as a small interval will induce a low probability that the true value be within the 

interval itself, whereas wide intervals may be required to obtain high coverage probability.  

 

In this paper, two different machine learning approaches for estimating PIs of time series 

predictions are considered and compared. As measures for the quality of predictions, we take 

the prediction interval coverage probability (PICP) and the prediction interval width (PIW) 

[12].  

 

In the first approach, a Multi-layer Perceptron Neural Network (MLP NN) is trained by a 

multi-objective genetic algorithm (MOGA), namely the non-dominated sorting genetic 

algorithm–II (NSGA-II) [14]. This approach integrates the estimation of the prediction 

intervals in its learning procedure, and the MLP NN is trained to concurrently minimize the 

width and maximize the coverage probability of the estimated PIs [15]. The approach is an 
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extension of the Lower and Upper Bound Estimation (LUBE) approach, proposed in [12].  

 

The second approach combines Extreme Learning Machines (ELM) with the nearest-neighbor 

approach. It is a newly developed two-step approach: in the first step, the ELM are trained to 

predict point estimates; in the second step, PIs are quantified based on the performance of the 

ELM on the nearest neighbors in the training dataset.  

 

These two methods have been selected for consideration because they are two different 

approaches to PIs estimation: a multi-objective optimization framework for identifying the 

Pareto front of solutions optimal in terms of PICP and PIW, and exploitation of the local input 

space performance of the regression algorithm.   

 

The two approaches differ from each other and also from the approaches previously applied in 

other studies [9]-[12]. The MOGA NN approach integrates the estimation of the PIs in the 

learning procedure of the algorithm. The algorithm itself is directly trained to balance the 

width of the interval and the coverage probability, concurrently optimizing the two quality 

assessment criteria of the PIs. The ELM algorithm combined with the nearest neighbor 

approach is trained to fit optimally the time series data (contrary to estimating directly the 

PIs). Conceptually, the ELM algorithm extends the functionality of the standard feed-forward 

NNs by including different activation functions and overcoming computationally expensive 

learning algorithms, such as back-propagation. In the second step, the prediction intervals are 

estimated based on the performance of the algorithm on similar training samples in the input 

space. Both approaches are based on powerful learning algorithms and have proven capable 

of providing good generalization ability and accurate predictions, considering the 

uncertainties associated to the input data and the model parameters. They look promising for 

time-series wind speed prediction as carried out in this study.  

 

The proposed approaches are applied for short-term wind speed prediction using a real dataset 

of hourly wind speed measurements for the region of Regina in Saskatchewan, Canada.  

 

The main contribution of this paper is the proposal of two different machine learning 

approaches for estimating prediction intervals of time series of wind speed profiles and their 

comparison based on different criteria. The approaches are shown to yield a similar 
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performance, with different strengths and limitations with respect to the  criteria used for the 

comparison.  

 

The paper extends previous studies, in which either only single machine learning approaches 

are applied [16] or only point estimates are predicted and compared with different types of 

neural networks [9], [10]. Apart from those studies, Khosravi et al. [11] reviews and compares 

different approaches for estimating prediction intervals in different benchmark studies. The 

main differences of the present work with Khosravi et al. [12] are, on the one hand the 

application case study, namely the wind speed time series, and on the other hand the 

approaches applied and compared in the work, which in our case are the novel MOGA NN 

and ELM combined with a nearest neighbor heuristic.  

 

The remainder of this paper is structured as follows. Section 2 briefly introduces the 

definition of PIs, the basic concepts of MLP NNs with multi-objective optimization, the basic 

concepts of Extreme Learning Machines (ELM) in combination with a nearest neighbor 

approach to estimate PIs. Experimental results on the real case study of wind speed prediction 

are given in Section 3. In Section 4, the proposed algorithms are compared based on selected 

criteria and the results are discussed. Finally, Section 5 presents the conclusions of the study. 

 

2. BASICS OF THE TWO MACHINE LEARNING APPROACHES 

2.1. Prediction Intervals  

Given an input-output process  ,  ( ), a PI is a statistical estimator composed by lower and 

upper bounds,  ( ) and  ( ), that include a future unknown value of the target  ( )  with a 

predetermined probability, called confidence level and in general indicated with     [12], 

[17]: 

 

  ( ( )   ( )   ( ))                          (1) 

 

The prediction interval coverage probability (PICP) represents the probability that the PIs 

estimated in correspondence of the different values of    will contain the true output values 

 ( ). This probability is estimated as the proportion of true output values lying within the 
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estimated PIs: 

 

     
 

  
∑   

  

   
                      (2) 

 

where    is the number of samples in the training or testing sets, and     if    

  (  )  (  )  and otherwise     . 

 

The prediction interval width (PIW) measures the extension of the interval as the difference of 

the estimated upper bound and lower bound values,  ( )   ( ). We consider the 

Normalized Mean PIW (     ). 

 

        
 

  
 ∑

( (  )  (  ))

         

  

   
                            (3) 

 

where      and      represent the true minimum and maximum values of the targets (i.e., the 

bounds of the range in which the true values fall) in the training set, respectively. 

Normalization of the PI width by the range of targets makes it possible to objectively compare 

the PIs, regardless of the techniques used for their estimation or the magnitudes of the true 

targets. 

 

In general, wider intervals give larger coverage, and in practice it is important to have narrow 

PIs with high coverage probability [11], [12]. 

 

2.2. Quantifying the Prediction Intervals by Multi-Layer Perceptron Neural Networks 

Trained by MOGA 

Multi-layer perceptron (MLP) is one of the most common types of feedforward neural 

networks proven to be a class of universal approximators [18]. To date, they have been widely 

used in many practical applications such as optimization [19], pattern recognition [20], 

clustering [21], prediction [9]-[12], [17], [23], diagnosis [22], etc. In the context of prediction, 

they have been used as empirical regression models especially for nonlinear regression. NNs 

are a machine learning algorithm that can theoretically learn the input-output relationship to 

any degree of precision [17], [18], [23]-[25]. A MLP NN consists of processing units, so 
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called neurons, ordered into layers: one input layer, one or several hidden layers and one 

output layer. Each layer comprises a defined number of neurons, which needs to be defined 

by the users. The neurons are connected by weights. Each layer receives input signals 

generated by the previous layer, produces output signals through an activation function (e.g. a 

sigmoid function) and distributes them to the subsequent layer through the neurons [18], [23]. 

 

Set   to be the number of hidden neurons,    the number of input neurons and    the total 

number of training samples. Then, the output signal    of node   of the hidden layer is given 

by [18], [23]-[25]: 

 

     (∑     
   

   )                                       (4) 

 

where     , and for           ,    is the k-th input vector,    (  
    

       
 ),     

is the synaptic weight and     is the activation function used in the hidden layer. 

After each hidden neuron output has been computed, the signal is sent to each of the neurons 

   in the output layer. Each output neuron    computes its output signal    to form the 

response of the network [18], [23]-[25]: 

 

      (∑      
 
   )                 ,                    (5) 

 

where    is the number of output neurons and    indicates the activation function used in the 

output layer. 

 

The values of the weight vector   of the network are optimized during training. Training 

procedure aims at minimizing the quadratic error function on a training set of input/output 

values    (     )             [17]: 

 

 ( )  ∑ ( (  )    )
   

   
                    (6) 

 

where  (  ) is the estimated output value of the network for the i-th input sample   . 
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2.3. Multi-objective Optimization by NSGA-II  

In all generality, a multi-objective optimization problem considers a number of objectives, 

            , inequality               and equality              constraints, 

and bounds on the decision variables             . Mathematically the problem can be 

written as follows [26]-[29]: 

 

Minimise/Maximise        ( )                                      (7) 

subject to            ( )                                               (8) 

   ( )                                    (9) 

   
( )

       
( )

                                 (10) 

 

A solution,               is an  -dimensional decision variable vector in the solution 

space   , restricted by the constraints (8), (9) and by the bounds on the decision variables 

(10). 

 

The search for optimality requires that the   objective functions   ( ),           be 

evaluated in correspondence of the decision variable vector   in the search space. The 

comparison of solutions during the search is performed in terms of the concept of dominance 

[26], [27]. Precisely, in case of a minimization problem, solution    is regarded to dominate 

solution    (     ) if the following conditions are satisfied [26]: 

 

                (  )    (  )                    (11) 

                  (  )    (  )                   (12) 

 

If any of the above two conditions is violated, the solution    does not dominate the solution 

   and    is said to be non-dominated by   . Eventually, the search aims at identifying a set 

of optimal solutions       which are superior to any of the optimal solutions with respect to 

all objective functions and do not dominate each other.  This set of optimal solutions is called 

Pareto optimal set; the corresponding values of the objective functions form the so called 

Pareto optimal front in the objective functions space. 

 

In this work, we use GA for the multi-objective optimization. GA is a population based meta-
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heuristics inspired by the principles of genetics and natural selection [27]-[29]. It can be used 

for solving multi-objective optimization problems. The major motivation for using the GA 

search paradigm is due to the following three recognized advantages [27]-[29]: (i) capability 

of exploring large portions of the search space without falling into a local optimum; (ii) ease 

of use; and (iii) robustness. Further, GAs are capable of searching solutions from disjoint 

feasible domains and of operating on irregular functions (i.e. non-continuous and even non-

differentiable); for proceeding in the search, GAs do not require the computation of gradients. 

 

Among the several variations of MOGA in the literature, we select non-dominated Sorting 

Genetic Algorithm-II (NSGA-II) [14] as the optimization algorithm, because comparative 

studies [14], [30] have shown that it is one of the most efficient MOGAs. 

 

More specifically, we use NSGA-II for finding the values of the parameters of the NN which 

minimize the two objective functions PICP (2) and NMPIW (3) simultaneously, in Pareto 

optimality sense (for ease of implementation, the maximization of PICP is converted to 

minimization by subtracting from unity, i.e. the objective of the minimization is 1-PICP). The 

practical implementation of NSGA-II on our specific problem involves two phases: 

initialization and evolution. These can be summarized as follows: 

 

Initialization phase: 

Step 1) Split the input data into training (Dtrain) and testing (Dtest) subsets. 

Step 2) Define the values of: the maximum number of generations, the number of 

chromosomes (individuals)    in each population, and the initial crossover and mutation 

probabilities.  

Step 3) Set the generation number      . Initialize the first population    of size    by 

randomly generating    chromosomes. Each chromosome forms a candidate solution by   

real-valued genes, where   is the total number of parameters (weights) in the NN. Note that 

each solution corresponds to a NN. 

Step 4) For each input sample   in the training set, evaluate each of the    chromosomes in 

the initial population   , i.e. compute the lower and upper bound outputs of each    

chromosome with   parameters by performing NN training. Return the values of two 

objectives 1-PICP and NMPIW for each of the    chromosomes. 

Step 5)  Rank the chromosomes (vectors of   values) in the population    by running the fast 
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non-dominated sorting algorithm [14] with respect to the pairs of objective values, and 

identify the ranked non-dominated fronts            where    is the best front,    is the 

second best front and    is the least good front. 

Step 6) Apply to    a binary tournament selection based on the crowding distance [14], for 

generating an intermediate population    of size   . 

Step 7) Apply the crossover and mutation operators to   , to create the offspring population 

   of size   . 

Step 8) Apply Step 4 onto    and obtain the lower and upper bound outputs. Evaluate each of 

the    chromosomes in the population   . Return the values of the two objectives 

corresponding to the solutions in   . 

 

Evolution phase: 

Step 9) If the maximum number of generations is reached, stop and return   . Select the first 

Pareto front    as the optimal solution set. Otherwise, go to Step 10. 

Step 10) Combine    and    to obtain a union population         . 

Step 11) Apply Steps 4-5 onto    and obtain a sorted union population.  

Step 12) Select the    best solutions from the sorted union to create the next parent 

population     . 

Step 13) Apply Steps 6-8 onto      to obtain     . Set           ; and go to Step 9.  

 

Finally, the best front in terms of ranking of non-dominance and diversity of the individual 

solutions is chosen. Once the best front is chosen, then the testing step is performed on the 

trained NN with optimal weight values.  

 

The binary tournament selection, mentioned in Step 6, uses the crowded-comparison operator 

   as the selection criterion [14]. For solution   in the population, it has two attributes: 

nondomination rank       and crowding distance          . For a solution pair,   and  , we 

have      if               or (             and                      ). That is, if there 

are two solutions under consideration with different nondomination ranks, we prefer the one 

with the lower (better) rank. Otherwise, if both solutions have same ranking, i.e. belong to the 

same nondominated front, we select the solution which locates in a region with least number 

of points. For further explanations, we refer the readers to [14]. 
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The total computational complexity of the proposed algorithm can be explained by two time 

demanding sub-operations: non-dominated sorting and fitness evaluation. The time 

complexity of non-dominated sorting part is  (    ) where   shows the number of 

objectives and    shows the population size [14]. In the fitness evaluation phase, the NSGA-

II has been used to train a NN which has    input samples.  Since for each individual of the 

population a fitness value is obtained, this process is repeated       times. Hence, time 

complexity of this phase is  (     ). In conclusion, the computation complexity of one 

generation is  (         ). 

 

2.4. Quantifying the Prediction Intervals with ELM Regression and the Nearest 

Neighbors Approach 

The approach proposed for quantifying prediction intervals combines a regression performed 

by ELM with a nearest neighbors approach. First, the ELM regression algorithm is trained to 

provide point estimates and, then, the nearest neighbors approach is applied to quantify the 

prediction intervals, as proposed in [31]. Actually, both steps of point estimate regression and 

prediction intervals quantification can be applied independently: therefore, the algorithm 

applied for the regression task can be selected freely by the user, independently from the 

approach applied for quantifying the prediction intervals. 

 

In this research, ELM have been applied for the regression task due to their flexibility, 

computational efficiency and their superior performance demonstrated on several benchmark 

studies [32], and the nearest neighbors approach has been used for the prediction intervals 

quantification relying on the k-d tree algorithm [33]. 

 

The nearest neighbors approach determines the prediction quantiles empirically, based on the 

assumption that the performance of the regression algorithm on data patterns in the same 

region of the input space is similar. This implies the assumption that the local characteristics 

of the input space determine the prediction performance of the regression algorithm. The 

similarity of data patterns is defined by the Euclidean distance between them in the input 

space. The approach is not dependent on any assumption about the distribution of the errors, 

e.g. that they are normally distributed. 
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Because the prediction intervals are determined based on the performance of the regression 

algorithm on the training dataset, prediction intervals can only be predicted for the testing 

dataset. For the training dataset, only point estimates can be computed. Therefore, the 

generalization ability of the approach, from training to testing, can only be assessed with 

respect to the point estimates. 

 

The general procedure of the proposed approach is presented in Fig. 1. In the first step, the 

regression algorithm is trained to generalize the patterns in the training dataset. After the 

training phase is finished and the weights are fixed, the algorithm is applied to perform the 

prediction task on the training dataset. Subsequently, the errors between the actual and the 

target output are calculated. In the next step, the regression algorithm is applied to the testing 

dataset. For each of the patterns in the testing dataset, the defined number of nearest 

neighbors is determined with the specified nearest neighbors algorithm. Subsequently, the 

errors of the neighboring patterns are sorted in ascending order                , where      is 

the smallest error in the set of neighbors nearest to the testing input    and    is the defined 

number of nearest neighbors.  

 

The prediction interval can, then, be estimated by adding the prediction error of the quantiles 

to the point estimate of the specific input pattern: 

 

   ̂        ̂                              (13) 

 

where      is the lower interval limit of the training error and      is the upper interval limit of 

the error.  

In the final step, the performance of the estimated prediction intervals can be assessed by 

calculating the coverage probability (PICP) and the widths of the prediction intervals (PIW).  

 

The described approach is applicable in a very flexible way because the regression algorithm 

can be selected depending on the requirements of the prediction task and the characteristics of 

the applied dataset. 
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Fig. 1. Procedure for determining prediction intervals. 

 

2.5. General Concepts of Extreme Learning Machines 

The extreme learning machines combine the strengths of several machine learning techniques, 

such as MLP, Radial-Basis-Function networks (RBF) and Support Vector Machines (SVM) 

thereby providing a uniform learning platform [34].  The ELM are layered feedforward 

network structures comprising a single hidden layer with flexible activation functions of the 

hidden nodes (including linear, sigmoidal, polynomial and radial-basis functions). ELM 

provide a computationally very efficient learning algorithm without iterative parameter 

adaptation, by integrating a random selection of the hidden nodes and analytic determination 

of the weights between the output and hidden layers [35].  

 

1. Train the regression algorithm with the training dataset; fix the weights 

2. Perform predictions on the training dataset and calculate the error of the 

algorithm on the training dataset 

3. Perform the prediction on the testing dataset 

4. Determine for each of the patterns in the testing dataset the nearest 

neighbors from the training dataset 

5. Sort the errors of the nearest neighbors for each of the patterns in the 

testing dataset 

6. Determine the errors of the nearest neighbors for the upper and lower 

bounds based on the defined confidence level 

7. Calculate the prediction interval based on the predicted value and the 

errors for the upper and lower bounds of the nearest neighbors 

8. Evaluate the performance of the prediction intervals 
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This learning procedure is not only computationally very efficient, particularly compared to 

back-propagation learning or other learning procedures of MLP, but also avoids local minima, 

which is one of the main drawbacks of gradient descent learning approaches [34]. 

 

More details on the theoretical concepts and computational algorithms of ELM can be found 

in [32], [34]-[39].  

 

ELM have been successfully applied to many different applications [40], [41]. Additionally, 

several extensions and further developments have been introduced to ELM [42], [43].  

 

The major advantages of ELM are that they are computationally efficient and very flexible, 

achieve good generalization ability, are not prone to local minima, and do not require expert 

knowledge on algorithm parameter setting and fine-tuning [34]. These are also the reasons for 

studying the performance of ELM for the prediction of wind speed time series PIs. 

 

3. CASE STUDY AND RESULTS 

3.1. Applied Datasets 

The proposed prediction algorithms have been applied on three different datasets of hourly 

wind speeds. The considered wind speed data have been measured in different periods of the 

year in Regina, Saskatchewan, a region of central Canada [44]. The first dataset comprises 

wind speeds for the period from 1
st
 of February 2012 to 31

st
 of March 2012, the second from 

1
st
 of July 2012 to 29

th
 of August 2012 and the third from 1

st
 of February 2011 to 30

th
 of June 

2011.  

 

The first two datasets contain data on a two-month period, whereas the third time period is 

five months long. The first dataset (winter period) includes 1437 samples; the second dataset 

(summer period) comprises 1438 samples and the third dataset, referred to as w2011, includes 

3596 samples. The three time periods have different seasonality and have been selected to 

represent different patterns and characteristics in the measured time series of wind speeds. 

 

For the development of the prediction algorithms, in all the three datasets, the first 80% of the 
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time series data are used for training and the rest 20% are left for testing. For all three 

datasets, the inputs were normalized to be in the value range between 0.1 and 0.9. Fig. 2 

shows the profiles of the three datasets used: the volatile character of the wind speed variable 

is clearly observable. 

 

 

Fig. 2.  The wind speed datasets used in this study: winter (left), summer (middle) and w2011 (right). 

 

3.2. Pre-analysis of input data for MOGA MLP NN 

In order to select the relevant lagged values of the wind speed (           ) to be included 

as input variables in the prediction model for estimating (  ), empirical Autocorrelation 

Function (ACF) and Partial Autocorrelation Function (PACF) analyses have been done. In 

time series analysis, this way of selection allows a most effective fitting of an autoregressive 

model to estimate the value of the output as a linear combination of its past values [45]. Even 

though NNs are nonlinear models, this indication of the relevance of the past values to 

estimate the wind speed target of the prediction is useful for the construction of the model. 

Indeed, various studies [47], [48] have used ACF and PACF to determine the input values of 

NN that are most related to the prediction values.  

 

In our case, the ACF and PACF results indicate that for predicting    in output, wind speed 

values at previous time steps     ,      and     ,      and     ,     ,     ,      and 

     are appropriate input variables for the winter, summer and w2011 datasets, respectively. 
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3.3. Prediction Results with MOGA MLP NN 

The architecture chosen for the NN is the classical one consisting of one input, one hidden 

and one output layers. The number of input neurons is set to 2 for summer data, to 3 for 

winter data and to 4 for w2011 data. The number of hidden neurons is set to 10 after a trial-

and-error process; the number of output neurons is 2, one for the lower and one for the upper 

bound values of the PIs. As activation functions, the hyperbolic tangent function is used in the 

hidden layer and the logarithmic sigmoid function is used at the output layer (these choices 

have been found to give the best results by trial and error, although the results have not shown 

a strong sensitivity to them).  

 

Table 1 contains the parameters of the NSGA-II for training the NN. “MaxGen” indicates the 

maximum number of generations which is used as a termination condition and    indicates 

the total number of individuals per population.        indicates the initial crossover probability 

and is fixed during the run.        is the initial mutation probability and it decreases at each 

iteration (generation) by the formula:  

 

        ( 
   

      
)
          (14) 

 

Before selecting the ultimate initial crossover and mutation probabilities reported in Table 1, a 

parameter tuning has been performed. Crossover probability has been changed from 0.4 to 1 

with step size of 0.2. For mutation probability, 0.06 and 1 values have been set, respectively. 

The results show that the performance of NSGA-II with the initial mutation probability of 1 is 

worse than that with the initial mutation probability of 0.06. However, tuning the initial 

crossover probability did not make any significant difference in the results obtained. 

 

Table 1. NSGA-II Parameters Used in the Experiments. 

Parameter Numerical value 

MaxGen 300 

Nc 50 

Pm_int 0.06 

Pc_int 0.8 
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To account for the inherent randomness of NSGA-II, twenty different runs have been 

performed for each dataset and an overall best non-dominated Pareto front has been obtained 

from the twenty individual fronts. To construct such front, the first (best) front of each of 

twenty runs is collected and the resulting set of solutions is subjected to the fast non-

dominated sorting algorithm [14] with respect to the two objective functions values. Then, the 

ranked non-dominated fronts            are identified, where   is the best front,    is the 

second best front and    is the worst of the k fronts. Solutions in the first (best) front   are 

then retained as overall best front solutions. This procedure gives us the overall best non-

dominated Pareto front for the training set. After we have obtained this overall best front, we 

perform testing using each solution included in it. 

 

While the computational load for the training phase is significant due to the genetic learning 

algorithm and the iterative back-propagation learning, the computing time for the testing 

phase is negligible.  

 

Fig. 3 illustrates the overall best Pareto front solutions, obtained with the procedure explained 

above from the 20 NSGA-II runs for w2011 dataset. Note that in Fig. 3 the X axis indicates 

“1-PICP”. The corresponding testing solutions have been also shown on the plot. It can be 

observed that the training front (marked in diamonds) and corresponding testing solutions 

(marked in circles) show high consistency in terms of coverage probability and interval size. 

Due to space limitation, the similar plots for winter and summer datasets are omitted. 

 

Fig. 3.  The overall Pareto front obtained by training of the NN and the corresponding testing solutions 

for 1h-ahead wind speed prediction using w2011 dataset. 
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For NSGA-II algorithm, the average CPU times over 20 runs for both training and testing 

have been registered using MATLAB on a PC with 4 GB of RAM and a 2.53-GHz based 

processor. For exemplification, the average required CPU times for the MOGA NN method to 

construct PIs for winter training and test samples are 258.84 s and 0.05 s, respectively.  It is 

seen that the testing phase, i.e. the online prediction of PIs, is very fast. 

 

3.4. Prediction Results with ELM and Nearest Neighbors Approach 

The selection of the number of lagged time series inputs for the ELM algorithm can be 

directly based on the considerations relevant for estimating the PIs. The estimation approach 

is based on the nearest neighbors approach, whereby the nearest neighbors of a specific 

pattern are determined by the Euclidean distance calculated on the input values of the specific 

pattern and its neighboring patterns. For the wind speed datasets considered, the possible 

value range is comparably small, particularly the maximum value. Hence, the Euclidean 

distance values for several different patterns will be similar. By addition of more lagged input 

values, the degree of similarity between the patterns can be decreased. 

 

On this basis, the number of lagged time series values to consider for the wind speed 

prediction was determined by a wrapping trial and error approach, in which the performance 

of the algorithm on determining the prediction intervals for the testing dataset was taken as 

evaluation criterion. For the evaluation, the number of neighbors was varied in the interval [3, 

20]. As a result, the number of lagged input values was set to 16. Note that this does not imply 

a dependence of the output value on 16 lagged time series steps; rather, such a large number 

of lagged values is required to increase the distance among the patterns, evaluated on a large 

dimensional space so as to distinguish the neighboring ones. Considering the prediction 

performance of the algorithm for the point estimates as the selection criterion, a smaller 

number of lagged input variables could be used, providing better prediction accuracy for point 

estimates. 

 

Eventually, the number of nearest neighbors was set to 150 by trial and error, searching in the 

interval [50, 200]. Kd-tree nearest neighbors search [33] has been applied for determining the 

nearest neighbors of a specific pattern. 
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Ridge regression was applied within the ELM algorithm [46]. Different regularization factors 

were applied for the different datasets (0.001 both for the winter and the w2011 datasets and 

0.2 for the summer dataset). The reason for different performances of the algorithm with the 

different regularization factors is due to the different characteristics of the datasets. The 

regularization factors were determined by trial and error, selecting the best performing 

parameter values. 

To evaluate the prediction results, in the first step, the generalization ability of the ELM 

algorithm is assessed based on point estimates for training and testing data. For evaluating the 

prediction accuracy of point estimates, the normalized root mean squared error (NRMSE) is 

used: 

       
 

         

√
∑ (    ̂ ) 

  
   

  
                                   (15) 

 

The normalization of the NRMSE is performed over the value range of the entire dataset 

(total normalized value range of 0.8). 

 

Table 2 shows the NRMSE for the three datasets, for training and testing. The results show a 

good generalization ability of the ELM algorithm. For the summer dataset, the NRMSE value 

even decreases for the testing dataset. This can be explained by a higher variability of the 

wind speeds in the training dataset, compared to the testing dataset. The best training results 

are obtained on the w2011 dataset and the best testing results on the summer dataset.  

 

As described in the introduction of the methodology, the estimation of the prediction intervals 

is based on the performance of the algorithm on similar data patterns to those used for 

training. Therefore, PIs cannot be estimated for the training dataset but only for the testing 

dataset. Consequently, it is assumed that if the algorithm shows a good generalization ability 

and does not overfit the training data, this will also induce a good quality of PIs, estimated 

based on the training dataset prediction accuracy. 

 

Due to the computational efficiency of the ELM, the computing times for the training and also 

for the testing are negligible.  

 

For evaluating the performance of the proposed approach for estimating the PIs on the testing 
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dataset, PICP and NMPIW have been generated similarly to the performance evaluation of the 

MOGA NN approach. The obtained results are presented in Table 3.  

 

Generally, the flexibility of the approach increases with the size and representativeness of the 

training dataset for the entire dataset. 

 

4. COMPARISON OF THE ALGORITHM PERFORMANCE  

4.1. Assessment of the performance of the applied algorithms  

There are different criteria that need to be assessed when comparing the performance of 

machine learning algorithms in the context of a prediction problem. Prediction precision is 

one of the pivotal criteria when selecting the best performing algorithm.  

 

Several research studies on wind speed prediction used mainly error criteria for assessing and 

comparing the performance of the applied algorithm. The error criteria included the mean 

absolute error (MAE), mean absolute percentage error (MAPE), mean square error (MSE) and 

the root mean square error (RMSE) [7]-[10].  

 

Even though these metrics are mainly suitable for pure point estimates, the NRMSE was also 

used in this research. Although PIs provide more information on the uncertainty of the 

prediction to the user, the operator nevertheless requires one operating point and needs to 

select the most probable value in the interval. Because ELM are trained to provide point 

estimates, these values are taken for the calculation of the NRMSE.  

 

For the MOGA NN approach, which provides directly the bounds of the PIs, first, the mean 

values of the estimated intervals corresponding to each solution on the Pareto front have been 

taken as point predictions.  Then, the NRMSE (15) value has been calculated for those point 

predictions. Note that, for each solution on the Pareto front, we have calculated an NRMSE 

value. Finally, the median value of these NRMSEs has been considered as the ultimate 

representative error of the MOGA NN approach with respect to the point predictions a 

posteriori obtained. The same procedure has been applied for the intervals estimated on the 

testing set to obtain NRMSE values for the testing set. Another way to convert PIs to point 
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predictions can be to consider only either the upper bound or the lower bound of the estimated 

interval, for a more or less robust/conservative prediction. Then, NRMSE values can be 

similarly calculated for each solution on the front.  

 

The NRMSE results are reported in Table 2 and indicate the good generalization ability: low 

error values both in training and testing sets indicate the good generalization performance of 

the MOGA NN approach. Furthermore, the results show that for both algorithms, the NRMSE 

are in the same value range and do not show significant differences. 

 

NRMSE provides only an incomplete picture on the performance of the algorithms. Because 

the main focus of the research is on estimating the prediction intervals and not point 

estimates, the pivotal criterion for assessing the performance of the proposed algorithms is the 

quality of the estimated PIs. The quality can be assessed by the accuracy and reliability of the 

prediction [11], [12]. Accuracy can be measured with the coverage probability and reliability 

is associated with the tightness of the obtained prediction intervals. These two criteria can be 

assessed by the measures introduced in Section 2, namely the PICP (2) and the NMPIW (3).  

 

The results of these two assessment criteria for both algorithms are displayed in Tables III and 

IV. Both methods give high coverage probabilities with small interval sizes on the testing 

sets. This confirms the high prediction performance of the methods. 

 

As these two assessment criteria, i.e. CP and PIW, are competing, in some studies [11], [12], 

[47], [48] an additional criterion, so-called CWC is introduced.  In other words, CWC is a 

cost function to be minimized combining and weighting the two quantitative measures: PICP 

and NMPIW. However, CWC is only required if the solutions are clearly not dominated by 

each other. As demonstrated in the Tables III and IV, for the winter and the summer datasets, 

the solutions provided by ELM are superior to those provided by MOGA NN and for the 

w2011 dataset MOGA NN provides dominant solutions. Therefore, a combined criterion, 

such as CWC is not required in this case. 

 

A further assessment criterion is the generalization ability of the machine learning algorithm. 

The generalization ability of an algorithm assesses the capability of an algorithm to extract 

patterns from data and to transfer them to data unseen in the training phase. In this research, 
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NRMSE of the training and testing data was used to assess this criterion. If an algorithm 

generalizes well, the performance drop from training to testing data will be small. This 

behavior can be observed in the NRMSE values obtained with both algorithms (Table 2). 

Both algorithms were able to extract the typical patterns in the time series and project the 

extracted pattern to unseen values in the testing datasets.   

 

A further comparison criterion of machine learning algorithms is the computational load, i.e. 

the efficiency of an algorithm. The efficiency is relevant for both the training phase and in 

practical applications, particularly for online predictions of a new data sample. From the user 

point of view, the computational burden of the training phase is relatively less important [12], 

[47], [48] since the training phase is, usually, only performed once. In cases, where online 

learning is implemented, the algorithms are usually not retrained, but their parameters are 

updated. This is, usually, computationally less expensive than a new training phase. Note that 

computational load is dependent on the type of the selected algorithm, the complexity of the 

structure of the model (e.g. number of input neurons, hidden layers, and hidden neurons), the 

size of the dataset and the performance of the learning algorithm.  

 

Compared to ELM, MOGA NN is computationally more expensive with respect to offline 

computational time. For the application phase, when performing one-step ahead predictions, 

the online computational time is negligible for both algorithms.  

 

Case study results reported in Tables III and IV indicate that both methods show, in general, a 

better performance on the w2011 dataset. This can be explained with a similar profile of the 

training and testing sets in w2011 dataset and a larger training dataset available. The 

algorithms are obviously able to generalize the presented patterns well and to transfer them to 

new unseen data. On the contrary, the testing patterns of the winter and summer datasets show 

relatively higher variability compared to the training patterns (see Fig. 2).  

 

4.2. Discussion of the strengths and limitations of the selected approaches 

One of the major advantages of the approach combining a machine learning regression 

algorithm (done by ELM, in our case) and the nearest neighbors approach (done by kd-tree, in 

our case) is that for the regression task, the best performing algorithm can be selected. This 
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makes the approach very flexible because the prediction intervals are determined 

independently of the applied regression algorithm. Additionally, because prediction quantiles 

are determined empirically, the approach is not dependent on any assumption about the 

distribution of the errors, such as the assumption of normally distributed errors. 

The applied approach for estimating the prediction intervals is based on the assumption that 

the performance of the regression algorithm on data patterns in the same region of the input 

space is similar. This assumption imposes one limitation to the approach: if for a selected 

system and the pertinent dataset the operating conditions change and the data patterns become 

dissimilar to those applied for the training data, the distance to the nearest neighbors will 

increase. However, the novelty of the new pattern will not be reflected in the width of the 

predicted interval. The challenge of novel or anomalous patterns is common for most of the 

machine learning techniques. However, for the proposed approach, not only the accuracy of 

the point estimate will decrease with the degree of novelty of the presented pattern, but also 

the coverage probability of the prediction interval will decrease. For the wind speed 

prediction task, the potential of patterns with a very high degree of novelty is limited. 

Therefore, the described limitation was not witnessed in the case study. However, a similar 

behavior may be observed in cases where the variability of the testing dataset increases, 

compared to training dataset. In these cases, the approach may not be very flexible to adapt to 

the increased variability. This would result in a low flexibility of the approach for high 

coverage probabilities. This behavior could be observed on the winter dataset. 

 

A further limitation of the approach was observed in the case study because of the 

comparably small possible value range for wind speeds. This resulted in a high degree of 

similarity of the Euclidean distance for many patterns. This characteristic of the dataset 

imposed limitations on the flexibility and accuracy of the applied approach. A possibility to 

overcome this limitation would be to determine the nearest neighbors based on their similarity 

in the variability of the input patterns, contrary to the approach applied in this case study 

based on the Euclidean distance of the patterns in the input space itself. Furthermore, the 

errors of the training dataset could be weighted, according to the distance of the patterns in 

the input space. 

 

ELM overcome some of the major limitations and drawbacks of alternative machine learning 

algorithms. They provide a powerful and efficient learning algorithm and do not require 
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manual or a computationally very expensive parameter setting, because the parameters of the 

ELM hidden nodes are not dependent on the target function or the training dataset [34].  

 

Furthermore, the applied approach demonstrates that even though the ELM are not trained to 

optimize both objectives (PICP and NMPIW) concurrently but only to minimize the error 

between the target and the prediction, the PIs estimated based on the performance of the 

algorithm in the local input space provide predictions which are well balanced between both 

objectives. For some datasets, they even provide better results than the algorithms that were 

specifically trained based on both objectives. 

 

On the other hand, the MOGA NN approach handles the PI problem in a multi-objective 

framework. This approach provides a Pareto set of optimal solutions with respect to two 

objective functions, PICP and NMPIW. This is the main contribution of this method. 

Knowledge about Pareto optimal set is helpful and provides valuable information about the 

underlying problem. It gives several optimal solutions and allows the decision makers (DMs) 

to be aware of the potential risks with respect to the different solutions. The selection of the 

solution mainly depends on the preferences of the DMs. In other words, the Pareto optimal set 

of solutions can provide the DMs the flexibility to select the appropriate solutions with 

different preferences on the objectives. The decision makers also gain insights into the 

characteristics of the optimization problem before a final decision is made. Obviously, as a 

final decision, DMs should select one solution from the front to be used in practice. 

 

Moreover, we have used a powerful algorithm, NSGA-II, to train the NN weights. In the 

literature, the back-propagation has been widely used for performing supervised learning 

tasks, i.e. the training of NNs [24]. However, this requires calculating the gradient of the error 

function to find the optimal weights that minimize the estimation error [24], [49], whereas the 

NSGA-II does not require these derivative calculations. Moreover, existing techniques for 

estimating PIs for NN algorithm outputs such as Delta and Bayesian methods require the 

calculation of Jacobian and Hessian matrixes, respectively, and although they are capable of 

generating high quality PIs, they demand high computational time in the development stage 

[11]. Compared to Delta and Bayesian methods, NSGA-II is less demanding at the training 

phase. 
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The MLP NN algorithm might be prone to give less accurate results, i.e. lower CP values with 

the same interval size, on the testing set depending on the high level of variability in the test 

set under consideration. In other words, NNs do not always guarantee to generate high quality 

PIs on the unseen data. In order to strengthen the generalization ability of the MOGA NN 

algorithm, a further improvement can be done using ensemble of NNs with different 

structures by performing also a nearest neighbors approach, similar to the one defined in 

Section 2.4, to select the neighbors of the test pattern from the set of training patterns. In 

addition, using a validation set for deciding the actual coverage probability of each solution 

would result in well-calibrated PIs on the testing set. For the sake of clarity, Table 5 reports a 

synthesis of the comparison aspects addressed above. 

 

5. CONCLUSION 

Effective management of smart grids includes several elements of distributed intelligent 

control on the supplier and the consumer sides. On the supplier side, a successful integration 

of renewable power sources and handling of the associated uncertainties are pivotal for the 

reliability of the power network.  

 

For wind power in particular, a crucial element is to have accurate and stable predictions of 

wind speeds, concurrently quantifying the associated uncertainties of the predictions. .  

 

In this paper, we have proposed and compared two machine learning approaches, MOGA NN 

and ELM combined with the nearest neighbors approach for estimating prediction intervals. 

The algorithms have been applied on a case study of short-term wind speed prediction using a 

real dataset of hourly wind speed measurements.  

 

Contrary to classical time-series prediction approaches, both proposed approaches generate 

prediction intervals for the target of interest. Knowledge of PIs allows the decision makers 

and operational planners to efficiently quantify the level of uncertainty associated with the 

forecasts and to consider a multiplicity of solutions/scenarios for the best and worst 

conditions. 

 

Both algorithms show a good accuracy and generalization ability on the conducted case study. 
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The results do not show significant differences in terms of the quality of the predicted PIs. We 

can conclude that both methods yield a reliable estimation of the PIs with a high coverage and 

a relatively small interval size.  

 

The approaches to estimate the PIs are based on very different concepts and can be selected 

depending on the specific requirements of the user, including quality of the results, 

generalization ability, computational efficiency, flexibility and ease of use.  

 

Generally, if an algorithm is specifically trained to optimize two objectives, it is expected to 

be superior to an algorithm that was trained to optimize a simple error criterion. However, this 

could not be observed in this research. The presented results indicate that the generalization 

ability of the ELM on the training dataset is representative of the performance on new data 

patterns and multi-objective optimization is, therefore, not required in this case. 

Both applied algorithms are data-driven and depend highly on the representativeness of the 

training dataset. Therefore, the quality of PIs can decrease on datasets with large variability 

and uncertainty in the data. 

 

A possible direction of future research is to implement online learning algorithms that are able 

to adjust their parameters while novel patterns evolve, without retraining the whole algorithm. 

This would be particularly useful for applications, in which the available dataset is too short 

to cover all possible patterns or in which the environmental or operational conditions change.  
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ABSTRACT 

We consider the task of performing prediction with neural networks on the basis of uncertain 

input data expressed in the form of intervals. We aim at quantifying the uncertainty in the 

prediction arising from both the input data and the prediction model. A multi-layer perceptron 

neural network (NN) is trained to map interval-valued input data into interval outputs, 

representing the prediction intervals (PIs) of the real target values. The NN training is 

performed by non-dominated sorting genetic algorithm–II (NSGA-II), so that the PIs are 

optimized both in terms of accuracy (coverage probability) and dimension (width). 

Demonstration of the proposed method is given on two case studies: (i) a synthetic case study, 

in which the data have been generated with a 5-min time frequency from an Auto-Regressive 

Moving Average (ARMA) model with either Gaussian or Chi-squared innovation 

distribution; (ii) a real case study, in which experimental data consist in wind speed 

measurements with a time-step of 1-hour. Comparisons are given with a crisp (single-valued) 

approach. The results show that the crisp approach is less reliable than the interval-valued 

input approach in terms of capturing the variability in input. 

 

Keywords: Interval-valued neural networks, multi-objective genetic-algorithm, prediction 

intervals, short-term wind speed forecasting, uncertainty. 
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1. INTRODUCTION 

Prediction plays a crucial role in every decision-making process, and for this reason it should 

take into account any source of uncertainty that may affect its outcome. Prediction uncertainty 

can arise due to measurement errors, lack of knowledge in input data, and model 

approximation errors (e.g. due to imperfections in the model formulation) [1]-[3]. For 

practical purposes, uncertainties can be classified in two distinct types [3]: epistemic and 

aleatory. The former derives from imprecise model representation of the system behavior, in 

terms of uncertainty in both the hypotheses assumed (structural uncertainty) and the values of 

the model parameters (parameter uncertainty) [4].The latter describes the inherent variability 

of the observed physical phenomenon, and  it is therefore also named stochastic uncertainty, 

irreducible uncertainty, or inherent uncertainty [5].  

 

Uncertainty quantification is the process of representing the uncertainty in the system inputs 

and parameters, propagating it through the model, and then revealing the resulting uncertainty 

in the model outcomes [2].  

 

 In the literature, methods such as probability modeling [6], Neural Networks-based 

prediction intervals estimation [7]-[11], conformal prediction [12], [13], interval analysis 

[14]-[16], fuzzy set theory [17], and in particular type-2 fuzzy sets [18] and interval type-2 

fuzzy logic systems [19], as well as L-fuzzy mathematical morphology [20] and extensions of 

fuzzy mathematical morphology [21], Monte Carlo simulation [22], and Latin hypercube 

sampling [23] have been used to efficiently represent, aggregate, and propagate different 

types of uncertainty through computational models. Interval analysis is a powerful technique 

for bounding solutions under uncertainty. The uncertain model parameters are described by 

upper and lower bounds, and the corresponding bounds in the model output are computed 

using interval functions and interval arithmetic [24]. These bounds contain the true target 

value with a certain confidence level. The interval-valued representation can also be used to 

reflect the variability in the inputs (e.g. extreme wind speeds in a given area, minimum and 

maximum of daily temperature, etc.), or their associated uncertainty (e.g. strongly skewed 

wind speed distributions, etc.), i.e. to express the uncertain information associated to the input 

parameters [14]-[16], [25].  
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In this paper, we present an interval-valued time series prediction modeling framework based 

on a data-driven learning approach, more specifically a multi-layer perceptron neural network 

(NN).  Demonstration of the proposed method is given on two case studies: (i) a synthetic 

case study, with 5-minutes simulated data; (ii) a real case study, involving hourly wind speed 

measurements. In both cases, short-term prediction (1-hour and day-ahead, respectively) is 

performed taking into account both the uncertainty in the model structure, and the variability 

(within-hour and within-day, respectively) in the inputs.  

 

The wind speed prediction case study has been chosen because of its relevance for wind 

power production. Wind power variations in short-term time scales have significant effects on 

power system operations such as regulation, load following, balancing, unit commitment and 

scheduling [8], [26], [27]. Thus, accurate prediction of wind speed and its uncertainty is 

critical for the safe, reliable and economic operation of power systems [26], [27]. Prediction 

Intervals (PIs) are preferable results of the prediction, rather than point estimates, because 

they provide information on the confidence in the prediction [7]-[11]. 

 

An interval representation has been given to the hourly and daily inputs by using two different 

approaches (see Section 4), which quantify in two different ways the within-hour and within-

day variability. The network maps interval-valued input data into an interval output, providing 

the estimated prediction intervals (PIs) for the real target. PIs are comprised of lower and 

upper bounds within which the actual target is expected to lie with a predetermined 

probability [7]-[11]. The NN prediction model is trained by a multi-objective genetic 

algorithm (MOGA) (the powerful non-dominated sorting genetic algorithm-II, NSGA-II), so 

that the PIs are optimal both in terms of accuracy (coverage probability) and dimension 

(width). 

 

The prediction interval coverage probability (PICP) represents the probability that the set of 

estimated PI values will contain a certain percentage of the true output values. Prediction 

interval width (PIW) simply measures the extension of the interval as the difference of the 

estimated upper and lower bound values. The network uses interval-valued data but its 

weights and biases are crisp (i.e. single-valued). The NSGA-II training procedure generates 

Pareto-optimal solution sets, which include non-dominated solutions for the two objectives 

(PICP and PIW). 
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The originality of the work appears in two aspects: (i) while the existing papers on short-term 

wind speed/power prediction use single-valued data as inputs, obtained as a within-hour  [11], 

[26] or within-day average [28], [29], we give an interval representation to hourly/daily inputs 

by using two approaches (see Section 4), which properly account (in two different ways) for 

the within-hour/day variability; (ii) we handle the PIs problem in a multi-objective framework 

[11], [30], whereas the existing relevant methods for wind speed/power prediction consider 

only one objective for optimization. It is worth recalling that in [11], we have performed a 

comparison with single-objective genetic algorithm (SOGA) and single-objective simulated 

annealing (SOSA) methods. SOSA has been proposed in support of the LUBE method in [7]. 

The comparison results show that the PIs produced by NSGA-II compare well with those 

obtained by LUBE and are satisfactory in both objectives of high coverage and small width. 

In [30], we have implemented the NSGA-II to train a NN to provide the PIs of the scale 

deposition rate. We have performed k-fold cross-validation to guide the choice of the NN 

structure (i.e. the number of hidden neurons) with good generalization performance. We have 

used a hypervolume indicator metric to compare the Pareto fronts obtained in each cross-

validation fold. All these analyses have been done with single-valued inputs in both works. 

 

The paper is organized as follows. Section 2 introduces the basic concepts of interval-valued 

NNs for PIs estimation. In Section 3, basic principles of multi-objective optimization are 

briefly recalled and the use of NSGA-II for training a NN to estimate PIs is illustrated. 

Experimental results on the synthetic case study and on the real case study concerning wind 

speed prediction are given in Section 4. Finally, Section 5 concludes the paper with a critical 

analysis of the results and some ideas for future studies. 

 

2. NEURAL NETWORKS AND PREDICTION INTERVALS 

Neural networks (NNs) are a class of nonlinear statistical models inspired by brain 

architecture, capable of learning complex nonlinear relationships among variables from 

observed data. This is done by a process of parameter tuning called “training”. It is common 

to think of a NN model as a way of solving a nonlinear regression problem of the kind [31], 

[32]: 

   (    )   ( ),      ( )  (    
 ( ))                           (1) 
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where  ,   are the input and output vectors of the regression, respectively, and     represents 

the vector of values of the parameters of the model function  , in general nonlinear. The term 

 ( ) is the error associated with the regression model  , and it is assumed normally 

distributed with zero mean. For simplicity of illustration, in the following we assume   one-

dimensional. An estimate  ̂ of    can be obtained by a training procedure aimed at 

minimizing the quadratic error function on a training set of input/output values    (     ) 

           ,  

 

 ( )  ∑ ( ̂    )
   

   
                                   (2) 

 

where  ̂   (    ̂) represents the output provided by the NN in correspondence of the input 

   and    is the total number of training samples.  

 

A PI is a statistical estimator composed by upper and lower bounds that include a future 

unknown value of the target  ( )  with a predetermined probability, called confidence level 

in literature [7]-[11].  

 

To evaluate the quality of the PIs, we take the prediction interval coverage probability (PICP) 

and the prediction interval width (PIW) [7], [10] as measures: the former represents the 

probability that the set of estimated PIs will contain the true output values  ( ) (to be 

maximized), and the latter simply measures the extension of the interval as the difference of 

the estimated upper bound and lower bound values (to be minimized). In general, these two 

measures are conflicting (i.e., wider intervals give larger coverage), but in practice it is 

important to have narrow PIs with high coverage probability [7]. 

 

When interval-valued data [24] are used as input, each input pattern    is represented as an 

interval       
    

   where   
    

  are the lower and upper bounds (real values) of the 

input interval, respectively. Each estimated output value  ̂  corresponding to the      

sample    is, then, described by an interval as well,  ̂    ̂ 
   ̂ 

  , where  ̂ 
   ̂ 

  are the 

estimated lower and upper bounds of the PI in output, respectively.  

 

The mathematical formulation of the PICP and PIW measures given by [7] is modified for 
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interval-valued input and output data:  

 

     
 

  
∑   

  

   
                  (3) 

where    is the number of training samples in the considered input dataset, and  

 

   {

      ̂ 
   ̂ 

  
    (    ̂ )

    (  )
     ̂ 

   ̂ 
         ̂   

            

         (4)  

 

where       
    

  ,   
    

  are the lower and upper bounds (true values) of the output 

interval, respectively, and     () indicates the width of the interval. More precisely, (4) 

means that if the interval-valued real target is covered by the estimated PI, i.e. if the target is a 

subinterval of the estimated PI, then    is equal to 1. If the estimated PI does not cover the 

entire real target, but the intersection of the two is not empty, then    is equal to the ratio 

between     (    ̂ ) and the width of the interval   , and in that case    takes a values 

smaller than 1. Finally, if the estimated PI does not cover the entire real target and the 

intersection of the two is empty, then the coverage    of the      sample is 0. This 

calculation corresponds to the probabilistic assumption that the target    can take any value in 

   
    

   with uniform probability, i.e. that each point in    
    

   is equally likely to be a 

possible value of y. 

 

For PIW, we consider the normalized quantity: 

 

      
 

  

∑ ( ̂ 
   ̂ 

 )
  
   

         
                            (5) 

 

where NMPIW stands for Normalized Mean PIW, and      and      represent the minimum 

and maximum values of the true targets (i.e., the bounds of the range in which the true values 

fall). Normalization of the PI width by the range of targets makes it possible to objectively 

compare the PIs, regardless of the techniques used for their estimation or the magnitudes of 

the true targets. 
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3. NON-DOMINATED SORTING GENETIC ALGORITHM-II (NSGA-II) MULTI-

OBJECTIVE OPTIMIZATION FOR NEURAL NETWORK TRAINING 

The problem of finding PIs optimal both in terms of coverage probability and width can be 

formulated in a multi-objective optimization framework considering the two conflicting 

objectives PICP and NMPIW. 

 

3.1. Multi-objective Optimization by NSGA-II 

In all generality, a multi-objective optimization problem considers a number of objectives, 

            , inequality              and equality              constraints, 

and bounds on the decision variables             . Mathematically the problem can be 

written as follows [33]: 

 

Minimise/Maximise        ( )                                       (6) 

subject to          ( )                                    (7) 

                                   ( )                                  (8) 

                             
( )

       
( )

                             (9) 

 

A solution,               is an  -dimensional decision variable vector in the solution 

space   , restricted by the constraints (7), (8) and by the bounds on the decision variables (9). 

The search for optimality requires that the   objective functions   ( ),           be 

evaluated in correspondence of the decision variable vector   in the search space. The 

comparison of solutions during the search is performed in terms of the concept of dominance 

[33]. Precisely, in case of a minimization problem, solution    is regarded to dominate 

solution    (     ) if the following conditions are satisfied: 

 

               (  )    (  )                                   (10) 

                (  )    (  )                                       (11) 

 

If any of the above two conditions is violated, the solution    does not dominate the solution 

  , and    is said to be non-dominated by   . Eventually, the search aims at identifying a set 

of optimal solutions       which are superior to any other solution in the search space with 
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respect to all objective functions, and which do not dominate each other.  This set of optimal 

solutions is called Pareto optimal set; the corresponding values of the objective functions 

form the so called Pareto-optimal front in the objective functions space. 

 

In this work, we use GA for the multi-objective optimization. GA is a population based meta-

heuristics inspired by the principles of genetics and natural selection [34]. It can be used for 

solving multi-objective optimization problems [35], [36]. Among the several options for 

MOGA, we adopt NSGA-II, as comparative studies show that it is very efficient [34], [37]. 

 

3.2. Implementation of NSGA-II for training a NN for Estimating PIs 

In this work, we extend the method described in [7] to a multi-objective framework for 

estimating output PIs from interval-valued inputs.  More specifically, we use NSGA-II for 

finding the values of the parameters of the NN which optimize two objective functions PICP 

(3) and NMPIW (5) in a Pareto optimality sense (for ease of implementation, the 

maximization of PICP is converted to minimization by subtracting from one, i.e. the objective 

of the minimization is 1-PICP).  

 

The practical implementation of NSGA-II on our specific problem involves two phases: 

initialization and evolution. These can be summarized as follows (for more details on the 

NSGA-II implementation see [30]): 

 

Initialization phase: 

Step 1: Split the input data into training (Dtrain) and testing (Dtest) subsets. 

Step 2: Fix the maximum number of generations and the number of chromosomes 

(individuals)    in each population; each chromosome codes a solution by   real-valued 

genes, where   is the total number of parameters (weights) in the NN. Set the generation 

number    . Initialize the first population    of size   , by randomly generating    

chromosomes. 

Step 3: For each input vector   in the training set, compute the lower and upper bound outputs 

of the    NNs, each one with   parameters. 

Step 4:  Evaluate the two objectives PICP and NMPIW for the    NNs (one pair of values 1-

PICP and NMPIW for each of the    chromosomes in the population   ). 
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Step 5:  Rank the chromosomes (vectors of   values) in the population    by running the fast 

non-dominated sorting algorithm [37] with respect to the pairs of objective values, and 

identify the ranked non-dominated fronts            where    is the best front,    is the 

second best front and    is the least good front. 

Step 6: Apply to    a binary tournament selection based on the crowding distance [37], for 

generating an intermediate population    of size   . 

Step 7: Apply the crossover and mutation operators to   , to create the offspring population 

   of size   . 

Step 8: Apply Step 3 onto    and obtain the lower and upper bound outputs. 

Step 9: Evaluate the two objectives in correspondence of the solutions in   , as in Step 4. 

 

Evolution phase: 

Step 10: If the maximum number of generations is reached, stop and return   . Select the first 

Pareto front   as the optimal solution set. Otherwise, go to Step 11. 

Step 11: Combine    and    to obtain a union population         . 

Step 12: Apply Steps 3-5 onto    and obtain a sorted union population.  

Step 13: Select the    best solutions from the sorted union to create the next parent 

population     . 

Step 14: Apply Steps 6-9 onto      to obtain     . Set       ; and go to Step 10.  

 

Finally, the best front in terms of non-dominance and diversity of the individual solutions is 

chosen. Once the best front is chosen, the testing step is performed on the trained NN with 

optimal weight values.  

 

The total computational complexity of the proposed algorithm depends on two sub-

operations: non-dominated sorting and fitness evaluation. The time complexity of non-

dominated sorting is  (    ), where   is the number of objectives and    is the population 

size [37]. In the fitness evaluation phase, NSGA-II is used to train a NN which has    input 

samples.  Since for each individual of the population a fitness value is obtained, this process is 

repeated       times. Hence, time complexity of this phase is  (     ). In conclusion, 

the computational complexity of one generation is  (          ). 
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4. EXPERIMENTS AND RESULTS 

Two case studies have been considered: a synthetic case study, consisting of four time series 

datasets generated according to different input variability scenarios, and a real case study 

concerning time series of wind speed data.  The synthetic time series datasets have been 

generated with a 5-min time frequency from an Auto-Regressive Moving Average (ARMA) 

model with either Gaussian or Chi-squared innovation distribution.  For what concerns the 

real case study, hourly measurements of wind speed for a period of 3 years (from 2010 to 

2012) related to Regina, a region of Canada, have been used [38]. 

 

The synthetic case study is aimed at considering hourly data and the effects of within-hour 

variability. Hourly interval input data is obtained from the 5-min time series data by two 

different approaches, which we refer to as “min-max” and “mean”: the former obtains hourly 

intervals by taking the minimum and the maximum values of the 5-min time series data 

within each hour; the latter, instead, obtains one-standard deviation intervals               

by computing the sample mean (  ) and standard deviation (  ) of each 12 within-hour 5-min 

data sample. Single-valued (crisp) hourly input have also been obtained as a within-hour 

average, i.e. by taking the mean of each 12 within-hour 5-min data sample, for comparison. 

The wind speed case study considers the effect of within-day variability, and min-max and 

mean approaches are applied to the 24 within-day hourly data samples. 

 

The architecture of the NN model consists of one input, one hidden and one output layers. 

The number of input neurons is set to 2 for both case studies, since an auto-correlation 

analysis [39] has shown that the historical past values      and      should be used as input 

variables for predicting    in output. The number of hidden neurons is set to 10 for the 

synthetic case study and to 15 for the real case study, after a trial-and-error process. The 

number of output neurons is 1 in the input-interval case, since in this case a single neuron 

provides an interval in output; conversely, in order to estimate PIs starting from crisp input 

data, the number of output neurons must be set equal to 2, to provide the lower and upper 

bounds. As activation functions, the hyperbolic tangent function is used in the hidden layer 

and the logarithmic sigmoid function is used at the output layer. We remark that all arithmetic 

calculations throughout the estimation process of the interval-valued NN have been 

performed according to interval arithmetic (interval product, sum, etc.).  
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To account for the inherent randomness of NSGA-II, 5 different runs of this algorithm have 

been performed and an overall best non-dominated Pareto front has been obtained from the 5 

individual fronts. To construct such best non-dominated front, the first (best) front of each of 

the 5 runs is collected, and the resulting set of solutions is subjected to the fast non-dominated 

sorting algorithm [37] with respect to the two objective functions. Then, the ranked non-

dominated fronts            are identified, where    is the best front,    is the second best 

front and    is the worst front. Solutions in the first (best) front    are then retained as the 

overall best front solutions. This procedure gives us the overall best non-dominated Pareto 

front for the training set. After we have obtained this overall best front, we perform testing 

using each solution included in it. 

 

For the first case study, the first 80% of the input data have been used for training and the rest 

for testing. For the second, a validation process has been performed. So the dataset has been 

divided into three parts: the first 60% is used for training, 20% for validation and the 

remaining 20% for testing. All data have been normalized within the range [0.1, 0.9].  

 

Table 1 contains the parameters of the NSGA-II for training the NN. “MaxGen” indicates the 

maximum number of generations which is used as a termination condition and    indicates 

the total number of individuals per population.    indicates the crossover probability and is 

fixed during the run.        is the initial mutation probability and it decreases at each iteration 

(generation) by the formula:  

 

        ( 
   

      
)
            (12) 

 

4.1. Synthetic Case Study 

Four synthetic datasets have been generated according to the following model: 

 

 ( )   ( )   ( )             (13) 

 

where  ( ) is the deterministic component and  ( ) is the stochastic one, and the time 

horizon is 50 days which makes 1200 hours.  The deterministic component has the following 
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expression: 

 ( )            (
   

  
)     (

   

  
)        (14) 

 

where the period    of the first periodic component has been set equal to 1 week, while    is 1 

day. The stochastic component  ( ) of the generating model in (13) is given by an 

    (   ) model [39], with     autoregressive terms, with same coefficients       

   , and     innovation term with coefficient given by        . Four different scenarios 

are then considered, which differ in the distribution chosen for the innovation term, and in the 

higher or lower innovation variability: in two of the four scenarios the innovation is Gaussian, 

and has variance equal to 1 and 9 respectively, while in the other two scenarios the innovation 

has a Chi-squared distribution, with 2 or 5 degrees of freedom (corresponding to a variance 

equal to 4 and 10, respectively). We thus generate four different 5-min time series datasets, 

from which we will obtain either crisp or interval hourly data. 

 

    Table 1. NSGA-II and SOSA Parameters Used in the Experiments 

Parameter Numerical value 

MaxGen 300 

Nc 50 

Pm_int 

Pc 

0.06 

0.8 μ 0.9 

η 50 

Tinit 200 

Tmin 10
-50

 

CWCint 10
80

 

Geometric cooling schedule of SA Tk+1 = Tk * 0.95 

 

 

Fig. 1 illustrates the testing solutions corresponding to the first (best) Pareto front found after 

training the NN on interval data constructed by the min-max approach (left) and mean 

approach (right). The plots show the solutions for the data generated from a Gaussian 

distribution. On each plot, two testing fronts are illustrated: the ones where solutions are 

marked as circles have been obtained after training the NN on the interval data showing 
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higher variability, while the ones with solutions marked as diamonds have been obtained after 

training the NN on the interval data having lower variability. Testing solutions obtained with 

data showing a lower variability are better than the ones with higher variability; hence, we can 

conclude that a higher variability in the input data may cause less reliable prediction results, 

and should thus be properly taken into account. Pareto fronts of solutions obtained for the data 

generated from a Chi-squared distribution are similar, and the results robust with respect to 

the choice of the innovation distribution. 

 

Given the overall best Pareto set of optimal model solutions (i.e. optimal NN weights), it is 

necessary to select one NN model for use. For exemplification purposes, a solution is here 

subjectively chosen as a good compromise in terms of high PICP and low NMPIW. The 

selected solution is characterized by 95% CP and a NMPIW equal to 0.420 for the min-max 

approach applied to lower variability Gaussian data. The results on the testing set give a 

coverage probability of 95.5 % and an interval width of 0.412. Fig. 2 shows 1-hour-ahead PIs 

for the selected Pareto solution, estimated on the testing set by the trained NN; the interval-

valued targets included in the testing set are also shown in the figure.  

 

Moreover, we also plot in Fig. 3 the 5-min original time series data (testing set), 

corresponding to the generating scenario with Gaussian distribution and low variability, 

together with the estimated PIs corresponding to the selected solution: the solid line shows the 

5-min original time series data, while the dashed lines are the PIs, estimated starting from 

interval input data constructed with the min-max approach within each hour. Since the time 

step for the estimated PIs is 1 hour, in order to compare them to the 5-min original time series 

data, we have shown in Fig. 3 the same lower and upper bounds within each hour; thus, the 

PIs appear as a step function if compared to the original 5-min data. 
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Fig. 1.  Testing solutions for the Gaussian time series: min-max approach (left) and mean approach 

(right). 

Fig. 2.  Estimated PIs for 1-h ahead prediction on the testing set (dashed lines), and interval-valued 

input data (target) constructed by the min-max approach from the Gaussian distribution scenario with 

lower variability on the testing set (solid lines). 

Fig. 3.  Estimated PIs for 1-h ahead prediction on the testing set (dashed lines), and the original 5-min 

time series data on the testing set (solid line) obtained in the Gaussian distribution scenario with lower 

variability. 
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In order to compare the Pareto front optimal solutions obtained with crisp and interval-valued 

inputs, a new normalized measure of the mean prediction interval width, named NMPIW*,  

has been a posteriori calculated as follows: 

 

       
  

   
 

   

   
                (15) 

 

where RT, RRT and NRT represent, respectively, the range of target (i.e., the range of the 

non-normalized hourly training data in input), the range of real target (i.e., the range of the 

non-normalized 5-min original time series data over the training set), and the range of 

normalized target (i.e., the range of the normalized hourly training data in input,      

    ). Note that, unless the synthetic scenario changes, RRT takes the same value for min-

max, mean and crisp approaches. The idea behind renormalization is to be able to compare 

PIs estimated from both interval and crisp approaches with respect to 5-min original time 

series data. As NMPIW for each solution on the Pareto front has been calculated by dividing 

the mean prediction interval width (MPIW) by the range of the training set in question, which 

is different for the two approaches, the Pareto fronts corresponding to the two approaches are 

not comparable. In order to analyze the performance of each approach with respect to 5-min 

original time series data, one should carry out a renormalization process which takes into 

account the range of the dataset involved in the comparison, and which leads the estimated 

PIs to a common unit of measure. As a numerical example for the calculation of NMPIW*, 

we have considered a testing solution, obtained on the synthetic data generated from the 

Gaussian distribution with lower variability and with the crisp approach, reported in Fig. 4. 

The selected solution results in a coverage probability of 91% and an interval width of 0.328 

on the testing. The values of RT, RRT and NRT are 6.87, 11.383, and 0.647, respectively. 

Thus, by using (16), we have obtained NMPIW* as follows: 

 

       
    

      
 

     

   
                   (16) 

 

Moreover, for each solution on each Pareto front, a PICP* value has been a posteriori 

calculated. Equations (3) and (4) have been used with    representing non-normalized 5-min 

original time series data, and with     , if      (  )  (  )  and otherwise     , where 

 (  ) and  (  ) indicate de-normalized lower and upper bounds of the estimated PIs. Since 
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estimated PIs have been obtained with hourly input data, while original data have a 5-min 

time frequency, in order to a posteriori calculate PICP* with respect to the original  data we 

have assumed the same lower and upper bounds, [ (  ), (  )], for each 5-min time step 

within each hour. Renormalization allows us to convert current Pareto fronts to new ones 

whose coverage probability and interval size are calculated according to the 5-min dataset, 

and are comparable across different (crisp and interval) approaches. 

 

 

Fig. 4.  Testing solutions obtained in the synthetic case study with interval-valued (min-max approach) 

and crisp approaches: data have been generated from the Gaussian distribution with lower (left) and 

higher variability (right). 

 

In Fig. 4, a comparison between the testing fronts obtained with interval-valued and crisp 

inputs are illustrated. Solutions have been plotted according to the renormalized measures, i.e. 

the axes of the plots correspond to the new quantities NMPIW* and 1-PICP*, so that they can 

be compared. It can be appreciated that the solutions obtained with a crisp approach never 

result in coverage probabilities greater than 90% with respect to the original data. 

Furthermore, when the variability in the original data increases (right plots), the crisp 

approach gives less reliable results in terms of coverage probability, which is smaller than 

80%. However, a model should take the within hour variability (high or low) into account and 

be capable of properly capturing it. Predictions resulting in a coverage probability lower than 

expected show the poor prediction power of the crisp approach, which cannot be considered a 

reliable support to decision making in the presence of high variability.  
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4.2. Real Case Study: Short-term Wind Speed Prediction 

In this Section, results of the application of the proposed method to short-term wind speed 

forecasting with interval-input data are detailed. The dataset considered for the analysis 

consists in hourly wind speed data measured in Regina, Saskatchewan, a region of central 

Canada. Wind farms in Canada are currently responsible of an energy production of 5403 

MW, a capacity big enough to power over 1 million homes and equivalent to about 2% of the 

total electricity demand in Canada [40]. The actual situation in Saskatchewan is characterized 

by the presence of 4 large wind farms located throughout the region, with a total capacity of 

approximately 198 MW [41]. 

 

The wind speed dataset, covering the period from January 1, 2010 till December 30, 2012, has 

been downloaded from the website [38].  Since hourly data have been collected, 24 wind 

speed values are available for each day. Fig. 5 shows the behavior of hourly wind speed 

values only in the first 20 days, for the sake of clarity: one can appreciate the within-day 

variability in each individual day. The wind speed changes from 0 km/h to 72 km/h with an 

unstable behavior. From this raw hourly wind speed data, one can obtain daily interval wind 

speed data with the min-max and mean approach described at the beginning of Section 4. The 

so obtained datasets include 1095 intervals among which the first 60% is used for training, 

20% for validation and the remaining 20% for testing.  

 

The procedure described in Sections II and III has been applied for day-ahead wind speed 

prediction, both with interval and crisp inputs. Crisp results are reported for comparison, in 

terms of daily averages of the raw hourly data, with the same data splitting for training, 

validation and testing sets. The inputs are historical wind speed data     and      both for 

interval and crisp inputs; the optimal number of inputs has been chosen from an auto-

correlation analysis [39].  

 

When an optimal solution is selected from the front obtained by optimizing the NN on the 

basis of the training data, it is possible that the CP resulting from the application of this 

optimal NN to unseen data is lower than the one obtained on the training data. Thus, a 

validation set has been also selected, to test the generalization power of the proposed method. 

In other words, the aim is to test whether the selection of the solution with the required CP on 
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the training data will result in well-calibrated PIs on the validation data or not.  Fig. 6 shows 

the values of PICP and NMPIW obtained on the validation set along the iterations of the 

MOGA (for the min-max approach). To obtain these graphs, at each iteration an optimal 

solution has been selected from the training front, it has been used on the validation set, and 

the corresponding PICP and NMPIW values have been recorded. The motivation behind these 

plots is to show the capability of the MOGA algorithm to generate reliable predictions on 

unseen data. 

 

         Table 2. NSGA-II and SOSA Parameters Used in the Experiments 

Training Validation 

PICP (%) NMPIW PICP (%) NMPIW 

90.1 0.440 91.0 0.470 

93.2 0.487 94.3 0.514 

92.1 0.466 93.1 0.494 

90.6 0.452 91.6 0.482 

91.6 0.456 92.5 0.486 

90.3 0.446 92.0 0.474 

94.3 0.529 96.0 0.562 

93.6 0.493 94.4 0.526 

 

 

Table 2 reports the PICP and NMPIW values of the selected training and validation solutions 

corresponding to those having coverage probability between 90% and 95% on the overall best 

non-dominated Pareto front. These solutions are obtained by the min-max approach. From 

inspection both of Table 2 and the profiles of both objectives on the training and validation 

sets shown in Fig. 6, we can observe that the training and testing results do not show 

significant difference. The PICP evaluation is coherent with NMPIW; hence, we can conclude 

that the proposed method results in well-calibrated PIs not only on the training set but also on 

the validation set. 

 

In Fig. 7, the testing solutions obtained with the interval-valued min-max and mean 

approaches, and with crisp inputs, are illustrated. The figure has been plotted according to the 

renormalized solutions, as explained in Section 4.1, i.e. the axes of the plot correspond to the 

new quantities NMPIW* and 1-PICP*.  As already appreciated in the synthetic case study, 
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one can notice that the solutions obtained with a crisp approach do not result in a coverage 

probability larger than 95% with respect to the original data. Furthermore, looking at the 

solutions in Fig. 7 which show a CP greater than 90%, the ones corresponding to the crisp 

approach give larger interval size. Since in practice it is important to have narrow PIs with 

high coverage probability, an interval-inputs approach is more suited to reliable decision 

making. 

Fig. 5.  The raw hourly wind speed dataset used in this study: first 20 days. 

 

 

Fig. 6.  Evaluation of PICP (top) and NMPIW (bottom) with respect to training and validation sets 

along MOGA iterations, considering interval inputs obtained with a min-max approach. 

 



Paper IV-R. Ak, V. Vitelli and E. Zio. (2014), submitted to IEEE Transactions on Neural 

Networks and Learning Systems (under review). 

 

181 

 

From the overall best Pareto set of optimal solutions (i.e. optimal NN weights) obtained after 

training the network on the interval input data constructed with the min-max and mean 

approaches, a solution must be chosen. The selection of the solution might be accomplished 

by setting a constraint on one of the objective and choosing the optimal value for the other 

one, or by considering some other methods to weigh the two objectives [42]. In general, the 

selection should represent the preferences of the decision makers (DMs). Here, for 

simplicity’s sake, we do not introduce any specific formal method of preference assignment 

but subjectively choose a good compromise solution: for the min-max approach, the results 

give a coverage probability of 92.1% and interval width of 0.466 on the training, and a 

coverage probability of 93.9% and interval width of 0.48 on the testing. For the mean 

approach, the selected solution results in a coverage probability of 91.7% and interval width 

of 0.424 on the training, and a coverage probability of 93% and interval width of 0.437on the 

testing.  

 

 

Fig. 7. Comparison between crisp and interval-valued approaches testing solutions, after 

renormalization, for day-ahead wind speed prediction: min-max with respect to crisp approach 

comparison (left), and mean with respect to crisp approach comparison (right). 

 

Figs. 8 and 9 report day-ahead PIs (dashed lines) for the selected Pareto solutions, with 

respect to the mean and min-max approaches respectively, estimated on the testing set by the 

trained NN. The interval-valued targets (solid lines) included in the testing set are also shown 

in the figures. As wind speed cannot be negative, to reflect the real physical phenomena the 

negative lower bounds of the PIs have been replaced with zeros. From inspection of the 

figures, we observe that the target profile of the mean approach is more accurate if compared 

to that of the min-max approach. However, the peak points have been covered relatively 

better by the min-max approach if compared to the mean. Hence, which one would be 
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preferably chosen depends on the application. The mean approach might be considered more 

similar to classical methods for short-term wind speed/power prediction using single-valued 

data as inputs, obtained as a within-hour or within-day average. By this approach we can add 

information to the single-valued averages, and thus we can include in the model the potential 

uncertainty caused by the data itself showing a within hour/day variability. Hence, the mean 

approach is a well-suited interval inputs alternative to the classical crisp inputs one, and it 

might be considered more feasible in practice.  

 

Fig. 8.  Estimated PIs with interval inputs for day-ahead wind speed prediction on the testing set 

(dashed lines), and interval-valued wind speed data (constructed by the mean approach) included in 

the testing set (solid line).  

 

 

Fig. 9.  Estimated PIs (dashed lines) with interval inputs for day-ahead wind speed prediction on the 

testing set and interval-valued wind speed data (constructed by the min-max approach) included in the 

testing set (solid line).  
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In order to compare the interval-valued and crisp approaches in a clear way, we have shown 

the PIs obtained by both approaches in one Figure (see Figs. 10 and 11). In Fig. 10, we have 

shown the estimated day-ahead PIs corresponding to the selected solutions obtained by mean 

and crisp approaches, respectively, on the daily crisp wind speed testing set by the trained 

NN. The solutions have been selected from the overall best Pareto set of optimal solutions 

obtained by mean and crisp approaches. These solutions result in 91.8% CP* and 0.483 

NMPIW* for the mean approach, and has 91.3% CP and 0.495 NMPIW for the crisp 

approach, on the testing dataset. It is clear that the solution obtained by the mean approach 

dominates the one obtained by the crisp approach. Note that PICP* and NMPIW* values have 

been a posteriori calculated only for the mean approach; as the crisp approach has been 

trained with the crisp daily wind speed training set, it is not necessary to convert PICP and 

NMPIW to PICP* and NMPIW* values. 

 

Similarly, Fig. 11 has been plotted by considering a posteriori calculated PICP* and 

NMPIW* values (see Fig. 7) corresponding to the two solutions selected from the overall best 

Pareto fronts of min-max and crisp approaches, respectively. These solutions result in 91.4% 

CP* and 0.452 NMPIW* for min-max approach, and 91.2 % CP* with 0.472 NMPIW* for 

crisp approach, on the testing dataset (raw hourly wind speed data). It is obvious that the 

solution obtained by min-max approach is superior to the one obtained by crisp approach. In 

other words, we have obtained higher quality PIs with interval-valued input approach. Note 

that this comparison is done on the raw hourly wind speed dataset. Since the time step for the 

estimated PIs is 1 day, in order to compare them to the hourly original time series data, we 

have shown in Fig. 11 the same lower and upper bounds within each day; thus, the PIs appear 

as a step function if compared to the original 1-hour data. Due to space limitations we have 

only plotted the estimated PIs obtained by min-max approach. 
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Fig. 10. Estimated PIs with interval (dotted red lines) and crisp (dashed blue lines) inputs for day-

ahead wind speed prediction on the testing set and single-valued (crisp) daily wind speed data 

included in the testing set (solid line).  

 

Fig. 11.  Estimated PIs with interval (dotted red lines) and crisp (dashed  blue lines) inputs for day-

ahead wind speed prediction on the testing set and single-valued (crisp) raw hourly wind speed data 

(solid line).  

 

From the results illustrated in Figs. 10 and 11, one might comment that the PIs obtained with 

the interval inputs approach are capable of capturing the peak points (highest and lowest) of 

the target of interest (hourly data). Although there are some highly extreme values dropping 

out of the estimated PIs, the interval approach leads to better coverage of the intermittent 
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characteristic of wind speed than the crisp approach. In other words, the interval approach 

manages to describe more efficiently the short-term variability of wind speed.  

 

4.3. Comparison with single-objective simulated annealing (SOSA) method 

In this section, we present the results from a comparison with a method called “Lower and 

Upper Bound Estimation (LUBE)” proposed by Khosravi et al. in [7] to estimate PIs with 

single-valued (crisp) inputs. In their paper, the authors have used single-objective simulated 

annealing algorithm (SOSA) to train the NN and adopted the cost function defined in (17), 

which combines PICP and NMPIW, to be minimized. The cost function proposed in [7] is 

called coverage width-based criterion (CWC): 

 

          (   (    )    (      ))               (17)                 

 

where   and   are constants. The role of   is to magnify any small difference between   and 

PICP. The value of   gives the nominal confidence level, which is set to 90% in our 

experiments (see Table 1). Then,   and   are two parameters determining how much penalty 

is paid by the PIs with low coverage probability. The function   (    ) is equal to 1 during 

training, whereas in the testing of the NN is given by the following step function: 

 

 (    )  {
                   
                   

                 (18) 

 

To perform a comparison between SOSA and the proposed MOGA method, we have run the 

SOSA by using the same interval-valued wind speed training data. For SOSA, the initial 

temperature has been determined after a trial and error procedure. It has been tried with values 

of 5, 200 and 500: it turns out that the SOSA with initial temperature of 200 gives best 

performance. Table 1 contains the parameters of the SOSA; the maximum number of 

generation has been set to 500. 

 

The training process has been repeated five times. Training and testing results in each run 

have been reported in Table 3. Due to space limitation, we have put only min-max approach 

results. 
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According to the results reported in Table 3, it can be observed that the training and 

corresponding testing solutions do not show high consistency in terms of coverage probability 

and interval size among the five runs performed. In other words, there is a high difference 

among the results: SOSA gives high CP value in one run whereas it generates less accurate 

PIs in another one: 3 out of 5 runs give CP values smaller than the predetermined nominal 

confidence level, i.e. 90% in our experiments. Thus CWC values are quite high for those runs. 

This shows a drawback about SOSA method robustness on this specific problem.  

 

For comparison purpose, we have selected the run giving the smallest CWC value on the 

training set, which is 0.649. Note that in previous works of literature the mean or median 

value of several runs has been used as prediction result [7], [42]. The selected run results in 

93.8% CP and 0.567 NMPIW on the training set, and a coverage probability of 95.6% and 

interval width of 0.578 on the testing. By comparison, we have selected a solution from the 

overall best Pareto front obtained by MOGA min-max approach. This selected solution gives 

a coverage probability of 94.3 % and interval width of 0.529 on the training, and a coverage 

probability of 96.6 % and interval width of 0.546 on the testing. For what concerns the mean 

approach, we have observed similar results: 2 out of the 5 runs have given CP less than 90% 

both on training and testing sets. The runs resulting in coverage probability bigger than 90% 

have quite large interval widths (above 50%). We have selected a run which has the smallest 

CWC value: it has a coverage probability of 93.1% with 0.520 NMPIW on the training and 

94.7% CP and interval width of 0.531 on the testing datasets. On the contrary, the MOGA 

method has given a solution with 93.3% CP with 0.440 interval size on the training, and 

94.4% CP with 0.453 interval size on the testing set. 

 

It is clear that the solutions obtained by MOGA dominate the best ones obtained by SOSA. It 

is worth pointing out that as both solutions obtained by min-max method give large interval 

sizes (around 50%) they cannot provide useful information in practice, because the 

uncertainty level is too high to support a reliable and informed decision in typical application 

contexts. However, with the MOGA approach one can select a solution from the Pareto front 

giving tight PIW with a high CP, which satisfies the predetermined nominal confidence level. 

In short, from the results reported in Table 3, one can conclude that the SOSA method does 

not give high quality PIs with respect to the interval-valued time series forecasting case study 

considered in this work.  
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Table 3. PICP and NMPIW Values Obtained by SOSA with Respect to Wind Speed  

Dataset (Training / Testing) 

 

 

 

 

 

 

 

 

5. CONCLUSIONS 

The goal of the research presented in this paper is to quantitatively represent the uncertainty 

in neural networks predictions of time series data, originating both from variability in the 

input and in the prediction model itself. The application focus has been on wind speed, whose 

forecasting is crucial for the energy market, system adequacy and service quality in power 

grid with integrated wind energy systems. Accuracy of predictions of power supply and 

quantitative information on the related uncertainty is relevant both for the power providers 

and the system operators. 

 

Specifically, we have presented two approaches that can be used to process interval-valued 

inputs with multi-layer perceptron neural networks. The method has been applied on a 

synthetic case study and on a real case study, in which the data show a high (short-term) 

variability (within hour and within day). The results obtained reveal that the interval-valued 

input approach is capable of capturing the variability in the input data with the required 

coverage. The results enable different strategies to be planned according to the range of 

possible outcomes within the interval forecast. 

 

As for future research, the use of an ensemble of different NNs will be considered to further 

increase the accuracy of the predictions, and type-2 fuzzy sets can be integrated into the 

proposed model as an alternative way to represent the input uncertainty.  

  

SOSA METHOD PICP (%) NMPIW CWC 

1 93.8 / 95.6 0.567 / 0.578 0.649 / 0.578 

2 71.7 / 73.8 0.300 / 0.312 2897 / 1032 

3 72.0 / 75.2 0.297 / 0.310 2425 / 519.6 

4 75.5 / 76.3 0.317 / 0.328 439.0 / 311.3 

5 92.1 / 95.1 0.725 / 0.752 0.978 / 0.752 
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ABSTRACT 

In this paper, we present a modeling and simulation framework for conducting the adequacy 

assessment of a wind-integrated power system accounting for the associated uncertainties.  A 

multi-perceptron artificial neural network (MLP NN) is trained by a non-dominated sorting 

genetic algorithm–II (NSGA-II) to forecast point-values and prediction intervals (PIs) of the 

wind power and load. The output of the assessment is given in terms of point-valued and 

interval-valued Expected Energy Not Supplied (EENS). We consider different scenarios of 

wind power and load levels, to explore the influence of the uncertainty in wind and load 

predictions on the estimation of system adequacy. 

 

Keywords: Adequacy assessment, multi-objective genetic algorithm, neural networks, 

prediction intervals. 
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1. INTRODUCTION 

The adequacy assessment of a power system is challenging due to the many uncertainties 

associated, for example, to fluctuations in energy demand, to the prediction of future weather 

conditions (e.g. wind speed, solar irradiation, etc.), to possible equipment (e.g. generators, 

lines, etc.) unavailability, to failures in electric power transactions, to errors (operator errors, 

dispatcher and relay malfunctions), and to other relevant issues [1]-[3]. 

 

In this paper, we present a modeling and simulation framework for conducting the adequacy 

assessment of a wind-integrated power system accounting for uncertainties in the data and 

prediction models. A widely used adequacy index, the Expected Energy Not Supplied 

(EENS), is evaluated as output of the assessment. EENS measures the failure of the system to 

meet the demand by the cumulative amount of energy that is not provided to the customers, 

over the time horizon of interest for the analysis [4], [5]. 

 

Several works in the literature calculate EENS for the adequacy assessment of a power 

network [6]-[8]. The originality of the present work lies in proposing not only point-valued 

results, like the works previously mentioned, but also interval-valued results to inform the 

decision makers (DMs) on the uncertainty in the predictions. Uncertainties are here 

considered due to load fluctuations, wind variability, and component failures. 

 

A case study is considered in which hourly wind speed data from the region of Regina, 

Saskatchewan, Canada are taken, from a 9-year period (1 Jan. 2003 to 31 Dec. 2011) [9]. 

Hourly mean wind speed data are used to determine the time-dependent wind power output of 

a wind turbine generator (WTG) using its power curve [7]. For load demand, the hourly load 

fluctuations are modeled using the chronological annual load curve of the IEEE Reliability 

Test System (RTS) [10] with the scaled annual peak load value.  

 

The generating units in the power system are represented by two-state models, describing 

operation and failure, and they are sampled by sequential Monte Carlo simulation. The inputs 

to estimate the EENS are the Prediction Interval (PIs) for 1-hour ahead wind power and load. 

These values are provided by the use of multi-perceptron artificial neural networks (MLP 

NNs) trained by the non-dominated sorting genetic algorithm–II (NSGA-II) [11]: the lower 
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and upper bounds of the NN-based PIs are optimal both in terms of coverage probability 

(PICP) and width (PIW). The NSGA-II training procedure generates Pareto-optimal solution 

sets, which include non-dominated solutions for the two objectives (PICP and PIW). One 

solution has, then, to be selected among the ones in the Pareto optimal set according to the 

preferences on the objectives. 

 

The method proposed for estimation of PIs for 1-hour ahead wind power and load is the 

extension of a single-objective optimization method, called Lower and Upper Bound 

Estimation (LUBE) approach, proposed in [12]. The strength of the proposed method has 

been already shown in [13] via comparison with the original LUBE method based on a single-

objective genetic algorithm, and with a baseline method, i.e. ARIMA. In [13], we have carried 

out a case study on four different single-valued wind speed datasets involving different wind 

speed profiles with seasonality. The results have confirmed the superiority of the NN-based 

PIs estimation approach trained by NSGA-II on the other methods considered in the 

comparison.  

 

The paper is organized as follows. Section 2 briefly introduces the definition of PIs and the 

use of NSGA-II for training a NN to estimate PIs. In Section 3, the methodology for interval-

based estimation of EENS is given. Experimental results on the case study are given in 

Section 4. Finally, Section 5 presents the conclusions of the study. 

 

2. METHODOLOGY TO ESTIMATE LOAD AND WIND POWER PIS 

In the following sub-sections, the main phases of the methodology are described. The 

application of the framework is shown on a case study taken from literature [7]. In Fig. 1, a 

flowchart of the methodology for the adequacy assessment of wind-integrated power systems 

is depicted. 

 

2.1. Wind Power Generation 

Hourly wind speed data have been collected for the region of Regina, Saskatchewan, Canada 

for a 9-year period (1 Jan. 2003 to 31 Dec. 2011) [9]. Since wind power is a function of wind 

speed, forecasts of power are generally derived from wind speed. In order to conduct the 
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adequacy assessment over one-year time horizon, for each hour in the year (8736 h) the 

hourly means are calculated over 9 years of wind speed values. The so obtained one-year time 

series of wind speed V(t), t   1,   8736, are then transformed in wind power  ( ) values 

using a quadratic characteristic curve (power curve) of literature [14], [15].  

 

Fig. 1.  Flowchart of the proposed methodology. 
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2.2. Load Modeling 

The load duration curve (LDC) on an annual basis (8736 h) is created by manipulating the 

hourly load values from the IEEE-RTS [10]. One year (8736 h) load data, i.e. a load value 

 ( ) for each hour     1,   8736, have been generated with the following formula [16]: 

 

 ( )   ̅( )   ̅( ) (
 

   
)              (1) 

 

where  ̅( ) is the expected value of load for hour  , calculated using the following equation: 

 ̅( )    ( )    ( )    ( )             (2) 

 

where      is the peak load in a year,   ( ) is the weekly peak load as a percentage of the 

annual peak,   ( ) is the daily peak load as a percentage of the weekly peak and   ( ) is the 

hourly peak load as a percentage of the daily peak. The system peak load      is set to 185 

MW [7].   is the load forecasting uncertainty error (standard deviation) expressed as a 

percentage of the hourly peak load, and       is defined as [16]: 

 

      √    (  )    (    )        (3) 

 

where    and    are two random numbers drawn from the standard uniform distribution on 

the open interval (0,1), and        is a normally distributed random number [16], [17]. The 

load forecasting error   is set to 5%.  

 

2.3. Estimation of NN-based PIs  

Based on the hourly wind power and load values over a 1-year horizon, we define a data-

driven strategy to perform short term (1-hour ahead) prediction of both load and wind power 

with uncertainty quantification. Not only a point estimate of the target, but also PIs are 

computed. 

 

PIs estimation is performed under the assumption of statistical independence of the input data, 

both wind speed and load. On the other hand, we do not rely on assumptions that the data are 

drawn from a given probability distribution and, hence, here we perform an empirical and 
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non-parametric approach to the estimation of PIs. 

 

In order to estimate PIs for 1-hour ahead wind power and load prediction, we use MLP NNs 

[18] which are a class of nonlinear statistical models inspired by brain architecture. Multi-

layer perceptron (MLP) is one of the most common types of feedforward neural networks 

proven to be a class of universal approximators [18]. MLP NNs are capable of learning 

complex nonlinear relationships among variables from observed data, by a process of 

parameter tuning called “training” [18]–[20]. MLP NNs have been successfully used in many 

practical applications for prediction, especially for nonlinear problems [21]. In the area of 

load and wind speed/power forecasting, literature on NN forecasting models [13], [22], [23] 

shows that the high complexity and nonlinearity of power systems are such that the 

application of classical forecasting techniques may not be reliable. It is known that short-term 

load and wind speed/power prediction plays a critical role for day-ahead electricity markets 

where wind power penetration is relatively high; medium-term forecasting (days to weeks) is 

relevant for the unit commitment and maintenance operations; and, long-term forecasting 

(months to years) is useful for planning and policy making [24]: thus, the necessity of reliable 

forecasting tools for wind speed prediction. On the other hand, the NN-based approaches to 

PIs estimation have become popular, and this area of research has been established and well 

accepted due to the superiority of these approaches on classical regression models for 

complex prediction problems [12], [13], [23], [25]. For this reason, we have chosen Multi-

layer Perceptron NN due to its capability of learning complex nonlinear relationships between 

input and output variables from observed data: many successful experiments show its 

superiority in terms of forecasting performance compared to classical methods. It is worth 

mentioning that there exist also probabilistic methods based on quantile regression that can 

perform forecasting taking into account the associated uncertainty [26], [27] among which 

some parametric probabilistic forecasting methods [28]. 

 

In Fig. 2 the structure of a typical three layer (input, hidden and output) NN is illustrated. The 

neurons are connected by weights. Each layer receives input signals generated by the previous 

layer, produces output signals through an activation function (e.g., a sigmoid transfer or 

activation function), and distributes them to the subsequent layer [18], [20]. The first output 

neuron provides the upper bound of the PIs, and the second the lower bound.  
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Set   to be the number of hidden neurons,    the number of input neurons and    the total 

number of training samples. Then, the output signal    of node   of the hidden layer is given 

by [18], [20]: 

 

     (∑     
   

   )                                          (4) 

 

where     , and for           ,    is the k-th input vector,    (  
    

       
 ),     

is the synaptic weight, and     is the activation function used in the hidden layer. 

 

After each hidden neuron output has been computed, the signal is sent to each of the neurons 

   in the output layer. Each output neuron    computes its output signal    to form the 

response of the network [18], [20]: 

 

      (∑      
 
   )                 ,                (5) 

 

where    is the number of output neurons and    indicates the activation function used in the 

output layer. 

 

The values of the weight vector w of the network are optimized during training. Training 

procedure aims at minimizing the quadratic error function on a training set of input/output 

values    (     )            . 

 

 ( )  ∑ ( (  )    )
   

   
                              (6) 

 

where   and   are the input and target vectors respectively,  (  ) is the estimated output 

value of the network for the i-th input sample   . It is worth mentioning that in the case study 

of the present work, the inputs                 to the NN are the historical values of wind 

power and load data, respectively. More precisely, we have used     ,     ,     , and       

wind power values of previous time steps as input variables to predict PIs for wind power   , 

i.e. for  (  ),  in output. The same procedure has been followed for the estimation of the load 

PIs at time t.  
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PI is comprised of upper and lower bounds in which a future unknown value of the target is 

expected to lie with a predetermined confidence level (   ) [12]. We evaluate the 

“goodness” of the PIs by estimating the empirical PIs coverage probability (PICP), which one 

wants to maximize, and the interval width (PIW), which one wants to minimize. 

 

The mathematical definitions of the PICP and PIW measures are [12]: 

     
 

  
∑   

  

   
                    (7) 

 

where     , if      (  )  (  )  and otherwise     , 

 

      
 

  
 ∑

( (  )  (  ))

         

  

   
                                    (8) 

 

where       is the Normalized Mean PIW, and      and      represent the true minimum 

and maximum values of the targets   (i.e., the bounds of the range in which the true values 

fall) in the training set, respectively. Normalization of the PI width by the range of targets 

makes it possible to objectively compare the PIs, regardless of the techniques used for their 

estimation or the magnitudes of the true targets.  

 

Fig. 2.  Architecture of a NN model for estimating the lower and upper bounds of PIs. 
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The PIs estimation problem is addressed by taking into account these two conflicting 

objectives within a multi-objective framework. For this, we solve the problem by a MOGA 

(multi-objective genetic algorithm for its ability to find nearly global optima, the ease of use 

and the robustness [11], [29]. More specifically, we use NSGA-II [11] to optimize the 

parameters (i.e. the weights  ̂) of the NN with respect to both PICP and PIW objectives. 

More precisely, the NN is trained by NSGA-II to produce the lower and upper bounds of the 

PIs for short-term forecasting (1-hour ahead) of wind power and load. For the details of the 

practical implementation of NSGA-II for NN-based PIs estimation see [30]. Among the 

several variations of MOGA in the literature, we select NSGA-II as the optimization tool, 

because comparative studies [11] have shown that it is one of the most efficient MOGAs. 

 

The training by NSGA-II is justified by the fact that the back-propagation, widely used for 

performing supervised learning tasks like the training of NNs, would require calculating the 

gradient of the error function to find the optimal weights that minimize the estimation error, 

whereas the NSGA-II does not require these derivative calculations. Moreover, existing 

techniques for estimating PIs for NN algorithm outputs such as Delta and Bayesian methods 

require the calculation of Jacobian and Hessian matrices, respectively, and although they are 

capable of generating high quality PIs, they demand high computational time in the 

development stage [25]. Compared to Delta and Bayesian methods, NSGA-II is less 

demanding at the training phase. Also the proposed approach integrates the estimation of the 

prediction intervals in its learning procedure while several methods construct PIs in two steps 

(first doing point prediction and then constructing PIs). 

 

To obtain a Pareto-front, another alternative way could be to use the -constraint method in 

the literature [31], [32]. To perform this method, one has to reformulate the problem as a 

single-objective one by choosing one objective for optimization and considering the other as a 

constraint. The constraint value is changed to generate the Pareto-optimal set. This approach 

requires multiple runs to form the Pareto and this can be time-consuming [31], [32]. In 

addition, the search is limited to few points in some predefined regions near the fixed 

constraint values. This may lead to missing some optimal solutions. On the contrary, approach 

using NSGA-II can find, multiple Pareto-optimal solutions in one single run and the 

nondominated solutions in the obtained Pareto-optimal set are well distributed and diverse 

[11], [29], [31], [32]. 
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3. METHODOLOGY TO ESTIMATE EENS 

In order to conduct the adequacy assessment of the wind-integrated power system, we use the 

well-known adequacy index, EENS, which quantifies the capability of the system to meet the 

demand in the time horizon considered for the analysis. EENS measures the expected value of 

the energy not supplied due to the lack of available energy through the given time horizon 

(e.g. one year). It depends on the predicted values for both the system energy production and 

the power demand, and it is formulated as follow [33], [34]: 

 

     ∑    (  
 
      )  (     )       (9) 

 

where      is the realization of the energy not supplied for the entire horizon the k-th 

simulation run;    is the equally sized time step (e.g. hour or day);   is the total number of 

time steps in the considered time horizon, in our case N   8736 for a one year time horizon, 

   is the total power generation available at time step  ;    is the load demand at time step  ; 

   (     ), which indicates the probability that the load demand exceeds the available 

power generation at time step  , is a generalized form of  (     ) to handle the interval 

values of    and   : when    and    are crisp values as in the classical adequacy assessment, 

   (     ) is reduced to  (     ) which equals to 1 if the condition is satisfied, 

otherwise equals to 0.  

 

Thus, EENS value of the system, i.e. the average amount of the unsupplied energy per year, is 

estimated as follow: 

 

       
∑     

 
   

 
          (10) 

 

where K is the total number of simulations that has been set to 100 in our experiments. 

 

In the classical definition of ENS given in (9), both the predicted value of the generation    

and of the load    at each time step   are assumed to be point estimates, resulting in a point 

estimate of EENS (see (10)). Our method is, instead, capable of providing PIs for both the 

power generation and the load at each time step, to take into account the possible uncertainties 

in the prediction arising from both the underlying physical processes (wind inherent 
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uncertainty, variability in power demand, etc.) and in the system stochastic behavior 

(equipment failures, approximations of the system complexities, etc.). A proper adequacy 

assessment model should take these sources of uncertainty into account, since uncertainty 

quantification is crucial for a real understanding of the system behavior, and for obtaining 

reliable results useful for robust decision making. Hence, we aim at a generalization of the 

ENS formulation given in (9), in order to include interval estimates of both    and    . 

 

Two different strategies are considered for interval-based EENS estimation: a point 

estimation and an interval estimation. They are both interval-based, in the sense that the 

inputs to the evaluation are the short-term PIs for load and for power generation, as obtained 

by the NN-based estimation procedure described in the previous section. 

 

3.1. Interval-based Interval Estimation of EENS 

One possible strategy for taking into account load and power generation PIs in EENS 

estimation consists in directly using (9) with interval-valued    and     thus obtaining as a 

result an interval evaluation of EENS by directly applying the principles of interval arithmetic 

[35]. In other words, all arithmetic calculations throughout the evaluation process of the 

interval-valued    and    are performed according to interval arithmetic (interval product, 

sum, intersection, etc.). Moreover, an assumption is made in the computation of   (     ) 

in the case of interval- valued    and   : due to lack of further information, a uniform 

probability is assumed for the actual (unknown) values of both load and power generation 

being anywhere inside the intervals of    and   , respectively.  

 

Since the expected value of a random variable lies in the range where the random variable 

lies, and since EENS is (in general) the expected value of a random variable over a given time 

horizon, we are here giving a new and probabilistically coherent definition of EENS when it 

is evaluated based on interval load and power values. The relationship between our estimates 

and the range for the expected value of the EENS random variable is to be fully studied, and 

will be the objective of our future speculations. 

 

Precisely, total load and total generation at time t are defined as       
    

   and    

   
    

  , respectively, where   
  and   

  indicate the lower bounds, and   
  and   

  indicate 
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the upper bounds of the intervals of the two quantities.  

(     ) in (9) is calculated as follows, in accordance with the interval arithmetic rules [35]: 

 

 (     )     
    

    
    

          (11) 

 

More precisely, (11) shows an interval arithmetic operation for the difference of two intervals, 

   and    [35]. The difference (     ) is one of the terms on the right side of (9). Since we 

used interval-valued, i.e. estimated, PIs, for load and power, (11) has been given to explain 

how we calculated the (     ) in (9) by using interval-valued arithmetic. 

 

Numbers in Fig. 3 illustrate the possible relationships between load and total generation with 

respect to two different cases describing possible load and generation at time  . Note that, in 

order to calculate EENS, we are interested in the subintervals where load may be larger than 

total power generation. For example, in Fig. 3(a), number 1 indicates that load takes a value 

inside the interval [  
     . This means that even load takes the maximum value,   , the total 

generation will be greater than load, so EENS will be 0. On the other side, if load and 

generation take a value inside intervals       
   and    

     , respectively, which have been 

indicated by number 2 in Fig. 3(a), this may lead to an EENS value bigger than 0. The 

following statements have been given to explain these relationships and corresponding EENS 

calculations. 

 

For the case in Fig. 3(a),    (     ) is calculated as follows by considering subintervals 2 

and 3: 

 

  (     )                     (12) 

 

where    ,    , and    ,     are fractions of the intervals    and   , respectively. Specifically, 

if     ( ) indicates the length of an interval,     is the fraction of     (  
    ) over the 

length of the entire interval,     (  
    

 ): 

 

    
    (  

    )

     (  
    

 )
          (13) 
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This fraction corresponds to the probability of the actual (unknown) load (or generation) 

being within that part (subinterval) of the interval, because of the assumption of uniform 

distribution of the actual load (or generation) within the estimated intervals. In fact, we can 

formally derive (12) and (13) by directly using the probability density function of a uniform 

random variable [36]: if   is a uniform random variable on the interval (   ), then its 

probability density function  ( ) is given by 

 

 ( )  {
 

   
         

           
          (14) 

 

If       is a subinterval of (   ), then the probability of   falling within the interval       

depends only on the length of       with respect to (   ). Specifically [36]: 

 

  (     )  ∫
  

   
 

   

   

 

 
                           (15)

       

 

Fig. 3.  Two different cases describing possible load and generation at time t. 
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Equation (12) has been written in order to explicit the calculation of the term   (     ) in 

(9). This calculation, for exemplification purposes, has been carried out by considering a 

certain relationship between load and generation, the one shown in Fig. 3(a), where the lower 

bound of load is smaller than the lower bound of total power generation, and the upper bound 

of load is smaller than the upper bound of total power generation. So, for the case in Fig. 3(a), 

if load takes a value inside the interval       
  , and total generation takes a value inside the 

interval    
     , the computed value of ENS can be bigger than 0 with positive probability. 

Equation (12) calculates this probability according to a classical formulation of ENS, given in 

(9).   

 

Ultimately, for the case in Fig. 3(a), with respect to the interval-valued load and total 

generation at time step   for the k-th simulation, (9) has been modified as follows: 

 

                    
    

    
    

        (16) 

     ∑     
 
             (17) 

 

Note that in this example, as the    
    

  value is smaller than 0, we set it to 0 to consider 

only the subintervals, e.g.       
  ,  which may result in unserved energy. In other words, 

when   
    

  is negative, this means that we have enough energy to meet the demand, so 

EENS becomes 0. For exemplification, let the intervals for load and total generation be [5, 15] 

and [10, 20], respectively. According to (11), from the       subtraction we obtain [-15, 5] 

as a result. However, in our calculation we only consider the interval [0, 5] as possibly 

resulting in unserved energy. This means that we can have maximum 5 MWh of unserved 

energy at time t, and this corresponds to the interval       
  .  

If the load and the generation intervals are as in Fig. 3(b),    (     ) is calculated similarly 

as follows: 

 

  (     )                  ,       (18) 

 

where    ,    , and     are the intervals fractions as defined above. This calculation 

corresponds to the probabilistic assumption that load and generation can take any value in 

   
     

   and    
    

  , respectively, with uniform probability, i.e. each point in [  
 ,   

 ] and 
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   is equally likely to be a possible value of L and G, respectively. In another words, to 

perform decision making and to use in practice, one should select a final crisp value of load 

(power) within the interval       
    

  . By selecting a uniform distribution, we gave equal 

chances to all the values inside the interval.  

 

Finally, one should calculate the mean value of the estimated ENS values for each simulation 

run and, thus, obtain the expected (average) amount of the unsupplied energy (load) (EENS) 

of the system (see (10)) over the study period which is one year in our case.   

 

It is worth mentioning that we performed some simulations, with Gamma and Gaussian 

distributions inside the intervals, in order to assess whether the results were much influenced 

by these choices with respect to the use of a Uniform distribution instead: the answer is no, 

there is no significance influence. 

 

3.2. Interval-based Point Estimation of EENS 

As explained in Section 3.1, load and power generation, provided by NNs as PIs, can be 

directly used for EENS estimation. One possible strategy, leading to an interval estimation of 

EENS, has already been described in the previous section. An alternative way to generalize 

EENS to the interval case leads to obtaining a point estimate of the adequacy index. This 

strategy is based on the probability density function of the continuous random variable 

        , where       and       are, respectively, two admissible values of the load 

demand and power generation at time  , thus               
    

     
    

  .  Any value 

assumed by    represents a possible amount of energy that cannot be supplied by the power 

system at time   to meet the demand: hence, a point estimate of EENS (PEENS) at time   can 

be obtained by computing the expected value of    over the intervals of admissible values for 

load and power,    and   , respectively. This is indeed a probabilistic approach, since the 

assumption of uniform distribution of the energy values within    and    has again to be 

made. Moreover, uncertainty quantification is taken into account, because the load and power 

PIs are used in the EENS estimation process. The obtained final estimate of EENS is a single 

value, which may give a more interpretable result. 

 

According to this strategy, the PEENS of the system for the k-th simulation can be calculated 
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as follows [34]: 

 

       ∫    
  
    

 

   {       
    

 }
  (    )         (19) 

 

Note that   (    ) is a value obtained by computing an integral over the relevant domains 

of the two variables    and    under the assumption of a uniform distribution. We wrote it 

inside the integral for giving the general definition of EENS. Indeed, this is not easy to 

compute in general, so instead of computing   (    ) directly, we found it easier for 

carrying out the computations to modify the domain and integrate it together with   .  

 

From this general formulation we can derive the following expressions, for the examples 

shown in Fig. 3 (Fig. 3(a) and 3(b), respectively): 

 

       ∫ ∫  (     )
 

  

  

  
 

 

  
      

  
 

  
                  (20)     

       ∫ ∫ (     )
 

  

  
 

  

 

  
   

  
 

  
                  (21) 

           

where      
    

  and      
    

 , and we directly computed the integrals assuming a 

uniform probability density function for both random variables    and   . In general, for any 

of the possible cases of interval-valued load and generation at each time step, we can derive 

an analytic expression for the interval-based point estimate of EENS. We do not report the 

explicit EENS calculations in each case, for the sake of brevity. 

 

As mentioned in the previous section, to estimate the expected point estimation of EENS 

(EPEENS) from all the simulation runs over the study period, the following formulation 

holds: 

       
∑       

 
   

 
         (22) 

 

4. EXPERIMENTAL RESULTS 

The proposed approach has been tested on the RBTS (Roy Billinton test system) system [37]. 

The RBTS system consists of 11 conventional generation units with a total capacity of 240 
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MW. A wind farm with 20 identical WTG units has been added to the RBTS system. Each 

WTG is assumed to have a rated capacity of 2 MW and cut-in, rated and cut-out speeds of 

14.4 km/h, 36 km/h and 80 km/h, respectively. In Fig. 4, the system topology of the RBTS 

system is shown. 

Fig. 4.  Single line diagram of the RBTS [7]. 

 

4.1. Failure Modeling 

With respect to the failure and repair behavior, the system components are considered to be 

independent and with only two states: up and down.  

 

It is assumed that all components are initially in the up state. For a generic component i (such 

as generator, transformer, line, etc.), both time-to-failure (TTFi) and time-to-repair (TTRi) 

follow an exponential distribution. By randomly sampling two numbers    and    from a 

uniform distribution on (0, 1), the sampled values of the state residence time are calculated as 

follows: 

  

             (  )             (23) 

             (  )                              (24) 

 

where MTTF and MTTR are the means of the respective exponential distributions.  

 

Conventional generation 
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In order to generate a failure state matrix for the system in question, first, we have sampled 

the duration of the current state for each component   for a 1-year time horizon by using (23) 

or (24), i.e. if the current state is up we have used (23), otherwise (24). Then, we have 

combined them in a matrix to obtain a sequence of system states. We have assumed that the 

availability of each component is independent of each other and also independent of load 

value.  

 

Fig. 5 shows a simulated component operating/restoration history, i.e. the transition history 

from the upstate to the down state [16], [38].  

 

Table 1 reports conventional generating unit ratings and reliability data [37]. For an individual 

wind turbine, the failure and repair rates are set to 0.0005/hr and 0.013 /hr, respectively [2]. 

 

4.2. Data Description and NN Parameters 

Hourly wind speed time data for the period 2003-2011 (9 year series) have been measured in 

Regina, Saskatchewan, a region of central Canada [9]. These 9 years data have been used to 

calculate hourly mean wind speed values. The one year time series of wind speed have then 

been transformed in a time series of wind power through the characteristic curve (power 

curve) of a wind turbine, defined in Section 2.1. One year (8736 h) load data, i.e. load profile 

over 1 year with 1-h time step, have been generated according to the load model described in 

Section 2.2. Fig. 6 shows raw time series data sets, for both total wind power of WTG units, 

with a maximum value of 37.36 MW and load, with a maximum value of 196.88 MW. Both 

time series data sets show remarkable fluctuations along time.    

 

The architecture of the NN model used consists of one input, one hidden and one output 

layers. The number of input neurons is set to 4 for both load and wind power PIs estimations, 

since an auto-correlation analysis [39] has shown that the historical past values     ,     , 

    , and      should be used as input variables for predicting    in output; the number of 

hidden neurons is set to 10 after a trial-and-error process; the number of output neurons is set 

to 2, to provide the lower and upper bounds. As activation functions, the hyperbolic tangent 

function in the hidden layer and the logarithmic sigmoid function in the output layer have 

been found to give the most satisfactory results.  
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To account for the inherent randomness of NSGA-II, five different runs have been performed 

and an overall best non-dominated Pareto front has been obtained from the five individual 

fronts. All data have been normalized within the range [0.1, 0.9].  

Table 1. Conventional Generation Units’ Reliability Data [37] 

Unit size (MW) Type 
No. of 

units 

MTTF 

(hr) 

MTTR 

(hr) 

5 hydro 2 4380 45 

10 thermal 1 2190 45 

20 hydro 4 3650 55 

20 thermal 1 1752 45 

40 hydro 1 2920 60 

40 thermal 2 1460 45 

 

 

Table 2 contains the parameters of the NSGA-II for training the NN. “MaxGen” indicates the 

maximum number of generations which is used as a termination condition and    indicates 

the total number of individuals per population.    indicates the crossover probability and is 

fixed during the run.        is the initial mutation probability and it decreases at each iteration 

(generation) by the formula:  

 

        ( 
   

      
)
          (25) 

 

Table 2. NSGA-II Parameters Used in the Experiments 

 

 

 

 

 

  

Parameter Numerical value 

MaxGen 300 

Nc 50 

Pc 0.8 

Pm_int 0.06 
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4.3. Estimated PIs  

The multi-objective NSGA-II with PI coverage probability and width provides Pareto sets of 

solutions (one for the wind power and one for the load), i.e. optimal NN models (weights); it 

is, then, necessary to select the optimal sets of weights to use in the NN models for prediction 

(see Fig. 7). 

 

 

Fig. 5.  Example of an operating/repair scenario for a component. 

 

In practice, the selection of the solution mainly depends on the preferences of the DMs. In 

addition to DMs’ subjective choices, some quantitative procedures can be also performed. 

Zio, et al. [40] have described three methods to choose a compromise solution from a Pareto-

optimal front. Each method results in a different solution which locates differently in the 

Pareto-frontier. More precisely, one solution might be towards the center of the Pareto-front, 

so then gives lower PICP but on the other hand narrower PIWs; whereas another might has 

higher coverage probability with larger interval size.   

 

In the light of the methods defined in [40], Ak, et al. [13] have employed two different 

selection procedures for choosing a solution, with reference to the Pareto-optimal front 

obtained after training.   

 

For exemplification purposes, solutions are here subjectively chosen as a good compromise in 

terms of high PICP and low NMPIW. The selected solutions are characterized by 95 % PICP 

and a NMPIW equal to 0.265 for the load prediction, and 95 % PICP with a NMPIW equal to 
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0.19 for the wind power prediction, respectively. Note that in Fig. 7, the X axis indicates “1-

PICP".    

 

Fig. 8 shows 1-hour ahead PIs for the selected Pareto solutions, marked in rectangles in Fig. 

8, estimated by the trained NNs for wind power from one turbine and load predictions. For the 

sake of clarity of visualization, a zoom on the first 250 hours has been plotted.  

 

Fig. 6.  The wind power time series set and load curve over 1 year used in this study: (a) load (b) wind 

power. 

 

Fig. 7.  The overall best Pareto front obtained by training of the NNs for 1h-ahead load and wind 

power predictions: (a) load (b) wind power. 

 

As an alternative method to estimate PIs for wind power, we have used the histogram and 

empirical cumulative distribution function (cdf) of wind power at time t using the historical 

data. For exemplification of this analysis, we have used only winter data with respect to the 
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seasonality in the entire dataset which is one year in our EENS estimation. More precisely, for 

each time instant (hour) t in a day (1, 2,…, 24), we have collected 89 historical data samples 

over three months period of winter. By using these historical wind power data samples, we 

have constructed the histogram and empirical cdf for each hour t, so we have obtained 24 

histograms. Fig. 9 shows the histogram and the cumulative distribution function of the wind 

power at hour 3 in any winter day. 

Fig. 8.  Estimated PIs (solid lines) over a 1-year time horizon and target data (dashed lines): (a) 1h-

ahead load (b) 1h-ahead wind power from one turbine. 

 

 

To obtain PIs for each hour t, we have set the confidence level to 95% and recorded the lower 

and upper bounds corresponding to this confidence level from the histogram of the hour in 

question. For each day, we have used the same PIs obtained for each hour of the day. On this 

basis, we have calculated both the prediction interval coverage probability (PICP) and interval 

width of the estimated PIs on the entire testing set (target): the PICP is 95% with a NMPIW 

equal to 0.448. 

 

For comparison purpose, we have selected a Pareto optimal solution obtained by the trained 

NN with 95 % PICP that corresponds to NMPIW equal to 0.19. Fig. 10 shows 1-hour ahead 

PIs for the winter period obtained by the selected Pareto solution and the histogram. For the 

sake of clarity of visualization, a zoom on the 24 hours has been plotted. Note that due to the 

high frequency of 0 as a value of the wind power for each hour t, the lower bound of the PIs 

estimated by the empirical distribution is also 0 for each hour t (see Figs. 9 and 10). 
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From the inspection of Fig. 10, one can see that the PIs obtained by the empirical distribution, 

i.e. the histogram, do not give accurate and reliable coverage for the target of interest. NN-

based PIs obtain the same coverage probability (95 %) with lower interval size. One can 

appreciate that the PIs estimated by the histogram of wind power at time t cannot provide 

useful information in practice, since the uncertainty level in the outcome is too high, i.e. the 

interval size is too large. On the contrary, the training of the NN with wind speed historical 

data ensures accounting for the time dependency among successive observations, leading to 

more accurate predictions.  

 

Fig. 9.  The histogram (left) and the cumulative distribution function (right) of the wind power at hour 

3 in any winter day. 

 

Fig. 10.  Estimated PIs by the trained NN (dotted lines) and by the empirical distribution (dashed 

lines) over winter dataset, and true target data (solid line). 
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4.4. Estimated EENS 

To estimate the overall EENS accounting for failures and repairs of the components, we 

performed 100 repetitions. In each repetition, a new matrix of the up and down states of the 

components is generated. Then, for each repetition the assessment process is followed with 

the same estimated load and wind power PIs and conventional units’ generation capacity. Fig. 

11 shows the ENS results obtained according to the methods explained in Sections III-A and 

III-B. It can be noticed that the estimated PIs of ENS include the point estimations (PEENS) 

of the expected energy not supplied for each simulation (see Section 3.2). With respect to the 

results shown in Fig. 11(a), we have estimated the expected energy not supplied, i.e. interval 

EENS, for the interval ENS via (10): [18000, 26788.13]. Note that this interval includes the 

EPEENS value reported in Table 3. We can interpret the PEENS value as the expected value 

of the interval ENS for each simulation run (see Fig. 11 and Section 3). Although both 

approaches are based on interval-valued inputs, interval-valued ENS carries more 

information, i.e. reflects the worst and best cases of unavailable energy during the given time 

horizon, and it provides an indication of how the uncertainties in input affect the output 

quantities. 

 

Table 3. Descriptive Statistics of EENS over 100 Simulations 
 

 

 

 

 

 

 

 

 

 

The ENS values in Fig. 11(b) have been obtained by considering 6 different scenarios, 

corresponding to the different uncertainty levels in the input parameters, i.e. wind power, load 

and system state. These scenarios have been called PEENS, interval ENS, ENS LB, ENS 

mean, ENS UB and ENS actual. The former two are also shown in Fig. 11(a) separately. ENS 

 Mean Std dev. 

EENS_LB 19278.93 11090.22 

EENS_UB 25521.84 14663.75 

EENS_mean 22381.89 12859.20 

EPEENS 22419.12 12888.83 

EENS_actual 22769.24 13147.55 

EENS_MC 21320.00 13590.00 
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LB and ENS UB have been calculated by considering only the LB and UB of the estimated 

load and wind power PIs, respectively, and by computing a single-valued inputs ENS index. 

Similarly, to estimate ENS mean, the central values (mean point) of the PIs have been used as 

input. For computing ENS actual, we have used the actual data sets shown in Fig. 6: ENS 

actual is, thus, the unknown quantity we would like our estimates to be close to, and it cannot 

be computed in a real case study; we have calculated it here only for demonstration of the 

strength of our approach.  

 

Note that, differently from the PEENS and interval ENS, the values of ENS LB, ENS UB, and 

ENS mean are calculated with single-valued load and wind power inputs. Table 3 reports the 

mean and standard deviations of the ENS LB, ENS UB, ENS mean, PEENS and ENS actual 

results over 100 simulations, so it gives the expected energy not supplied calculated by (10) 

and (22), over one year period for each scenario. Note that, being capable of properly 

accounting also for uncertainties, EPEENS is the closest to EENS actual on average (and with 

comparable variability). 

 

EENS is equal to zero when there is no failure of conventional generators (see Fig. 11), 

because at any time t over the given time horizon, the total available generation capacity,  ( ) 

is bigger than the total load  ( ), i.e. the maximum load value is less than 200 MW, whereas 

the total capacity of conventional generation units (GUs) is 240 MW.   In case of failures, 

EENS takes different non-zero values according to the load and wind levels. This means that 

if there is no failure in the system, the system is able to meet the total energy demand. Note 

that load and wind levels do not change through the runs. Hence, there is only one factor that 

can affect the system EENS value through the runs and this factor is the failure of the GUs. 

Thus, the magnitude of the EENS values (see Table 3) shows the effect of the failures on the 

system adequacy. 

 

For our specific problem, a component can be evaluated as critical if its failure rate is 

relatively larger and, at the same time, its generation capacity is bigger than the others. In our 

case study, two conventional generation units have biggest failure rates and generation 

capacities (see Table 1).  In case of the failure of these two components, the system might not 

be able to meet the demand, thus determining a positive EENS value. In order to identify the 

most critical GUs, i.e. those which contribute more to EENS of the system in case of their 
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failure, one can apply a possible quantitative strategy, based on the link between the resulting 

EENS value and the GUs failure rate.  

 

We, here, briefly outline the methodology for assessing the GUs impact on EENS, even if it is 

beyond the scope of the present paper: 

Step 1) For each simulation, assign a value to each generation unit  , calculated by the 

multiplication of a weight value that is proportional to the amount of time in which the unit 

was OFF in that simulation; this weight could be, for instance,   = (time the unit   was 

OFF)/(total time of the simulation), and the power generation capacity of this unit  ,   . 

Step 2) For each unit  , sum up all the values       computed in Step 1 along the runs, and 

divide by the sum of the simulation runs, i.e. 100: the higher this value, the more the unit 

contributes to the EENS of the system (i.e. the more the unit is critical).  

One can, then, use the results of such analysis to identify the components (by calculation of 

the component importance indices) which have high contribution to the expected annual 

energy not supplied. Also, if the estimated EENS is unacceptable, technical interventions may 

be needed, e.g. new generation units might be added to the system. 

 

As each scenario carries different information, ultimately the decision makers are supposed to 

select the one which gives a more interpretable result for their final decisions/actions. Fig. 12 

shows the boxplots of the differences obtained by the subtraction of ENS_actual from the 

ENS_LB, ENS_UB, ENS_mean and PEENS, respectively. A boxplot is an exploratory 

graphic used to visualize key statistical measures, such as median and quartiles, and to have 

an idea about the distribution of a data set, i.e. the location, dispersion, and symmetry or 

skewness of the data set, at a glance [41], [42]. It is also used to make comparisons of these 

features in two or more data sets. The boxplots dif_mean and dif_point are comparatively 

shorter (meaning narrower distributions) than the boxplots dif_LB and dif_UB.  This fact 

indicates a higher variability for the estimates of ENS obtained using PIs LB and UB, 

compared to the ones based on PEENS and mean. In other words, ENS mean and PEENS 

show comparable results, which are also more consistent with respect to the actual values of 

ENS throughout the simulations (not just on average, as we could already conclude from 

Table 3). Since the PEENS is estimated on the basis of the load and power PIs, i.e. it takes 

into account the uncertainties in the inputs, it is more precise and reliable compared to the 

others. Hence, among all the possible estimates of ENS that could be obtained, PEENS shows 
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more promising and trustable results in capturing the actual ENS by considering the uncertain 

inputs. 

 

On the basis of the comparisons shown in Fig. 11 and Table 3, where load demand and wind 

power generation take different values according to the considered scenario, the conclusion 

that different load and wind levels result in different EENS can be drawn. From the results 

reported in Table 3 we can observe that, for values of the load corresponding to the upper 

bound of PIs, a bigger EENS is obtained compared to the one obtained in other scenarios. It is 

worth to remark that, in the same scenario, an increase in the wind level would reduce the 

EENS. If we consider only the LB and UB of the estimated wind power, and we look at load 

PIs, total wind power covers 1.3 % and 5.8 % of the total load during the given time horizon 

(1-year) for the LB scenario and UB scenario, respectively. This is due to the low wind power 

penetration for both scenarios. Therefore, the change in the wind power penetration from the 

LB to the UB of the wind power PIs, does not play a significant role in the variation of the 

EENS value, whereas the change from LB to UB of load causes a larger amount of energy not 

supplied. Then, when we consider the LB scenario of load, it is expected to obtain a lower 

EENS value (see Table 3). In other words, when the wind penetration level is low and total 

load is relatively high, the combined impact of the uncertainties of the load and the system 

component failures on the EENS value is more dominant than the wind variability, as 

expected. 

 

Ultimately, having an estimate of EENS with an associated variability helps the decision 

makers in managing the system on the basis of a more realistic/reliable adequacy assessment. 

 

4.5. Comparison with a Method based on MC Simulation 

In this section we discuss the results obtained by estimating EENS using a probabilistic 

Monte Carlo (MC) simulation method [43]. Load and wind speed are assumed to be random 

variables. In order to determine the probability density function (pdf) for wind, we have used 

the same wind speed time series data set, i.e. hourly mean wind speed values, described in 

Section 4.2. In order to sample the load in each repetition, we have used (1-3) described in 

Section 2.2.  
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For wind power, first we have generated the wind speed values from the corresponding 

probability density functions (pdfs). To do so, we have split the entire data set into four parts 

with respect to the seasonality. In other words, each subset represents a season (winter, spring, 

summer and autumn). Table 4 reports the characteristics of the pdfs used for wind speed. It is 

worth saying that as the wind speed is random, the wind power output is also random. 

However, we have generated wind power values,  ( ), using the power curve whose 

parameters have been given in Section 4.  

In each repetition, a new matrix of the up and down states of the GUs is generated using the 

failure model defined in Section 4.1. Note that, load and wind speed values also change 

through the runs. Then, for each repetition the assessment process is followed with the 

sampled load and the wind power values generated from the sampled wind speeds.   

It is worth saying that for each subset of date, normal, gamma and weibull distributions have 

been fit with respect to the shape of the histogram. Then, the ultimate pdfs have been chosen 

according to the best fits. All choices are reported in Table 4. 

 

From the inspection of the results reported in Table 3, we can conclude that EENS_MC 

estimated by the probabilistic MC approach gives a point value within the EENS_LB and 

EENS_UB. However, the EENS_MC is less accurate with respect to the actual EENS if 

compared to the EPEENS value. 

 

Using this MC method, we can represent random behavior of both load and wind speed, and 

hence wind power, in each run. However, when using MC simulation, it is very important to 

choose an appropriate probability distribution function to sample from.  

 

An alternative methodology, similar to our proposal, but based on the sampling of wind speed 

and load values from a proper probability distribution, could be stated as follows: the pdfs 

both for load and wind speed could be estimated by using the time series data we use for PIs 

estimation [43], [44]. Then, in each run of the simulation, load and wind speed values can be 

sampled for 1-year time horizon by using the pdfs. The sampled wind speed values can be 

transformed to the wind power values by using the characteristic curve (power curve) of a 

wind turbine. These samples are used as inputs to NN to estimate PIs of load and wind power. 

When computing interval-based point EENS through (18-20), the previously estimated pdfs 

are used to approximate the integrals, rather than making a uniform distribution assumption. 
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Thus, for each time step t, load and wind power output values are sampled within the intervals 

based on the pdf functions. Finally, this process is repeated for each run. Note that this 

methodology does not generate an interval valued EENS, but it provides a point EENS with 

an associated variability measure given by Monte Carlo sampling. 

 

This second version of the MC approach could provide more information but at a higher 

computational cost. This is because in MC estimates randomization is needed over all 

unknowns in the problem, and this means for our case study randomizing over wind, load, and 

failures of units (as we are currently doing). Hence in this perspective, a comparison between 

this alternative and our approach should be carried out with caution. In addition, compared to 

the methodology proposed in the present work, this alternative seems redundant: it might not 

be needed to estimate new PIs in each repetition, since these PIs would be based on data 

sampled from a common pdf, and thus they are expected to be consistent. This is the main 

reason why we have assumed the estimated PIs to be the same for each repetition.  

 

Finally, an MC-based EENS distribution will heavily depend on assumptions made on the 

load and power distributions, while our approach can be used based on the assumption, 

uniform distribution, in absence of enough information to build proper pdfs, without losing 

accuracy, robustness and generalization in realistic applications. 

 

      Table 4. PDFs Used in the MC Experiment to Sample Wind 

Season Pdfs 

Winter Normal (18.2, 3.68) 

Spring 8 + Gamrna (1.67, 7.31) 

Summer 6 + Gamrna (1.62, 6.46) 

Autumn 7 + Weibull (11.3, 2.84) 

 

 

5. CONCLUSION 

A method which calculates the EENS value for a wind-integrated power network based on 

interval-valued load and wind power input data has been proposed. The objective is to know 

and dominate the impact of the uncertainty in wind and load on the uncertainty in EENS. 
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Simulation results on different scenarios confirm that uncertainties in input data can be 

properly taken into account to obtain more reliable EENS estimations. 

 

The presented expected annual energy not supplied can be integrated with a cost model whose 

results help the decision makers to take operational level decisions and do medium-term and 

long-term strategic planning. 

 

 

 

(a) 
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(b) 

Fig. 11.  The ENS results over 100 runs: (a) interval-valued ENS and PEENS (b) comparisons of 

different scenarios. 

 

Fig. 12. Boxplots of the differences obtained by the subtraction of ENS_actual from the ENS_LB, 

ENS_UB, ENS_mean and PEENS, respectively.  
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ABSTRACT 

Accurate short-term wind power forecasting with quantification of the associated uncertainty 

is crucial for the management of energy systems including wind power generation. On top of 

the inherent uncertainty in wind speed, it is necessary to account also for the uncertainty in 

the relationship between wind speed and the corresponding power production, typically 

described by a power curve whose characteristic parameters are not precisely known in 

practice. In this paper, we propose a novel approach to wind power forecasting with 

uncertainty quantification. The approach can be schematized in two steps: first, short-term 

estimation of wind speed prediction intervals (PIs) is performed within a multi-objective 

optimization framework worked out by non-dominated sorting genetic algorithm–II (NSGA-

II); then, the uncertainty in wind speed and the uncertainty in the power curve are combined 

via a bootstrap sampling technique, thus obtaining wind power PIs with same coverage as the 

wind speed PIs. 
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1. INTRODUCTION 

Power production via renewable energy sources is a hot topic of research and application. 

This is due to both the widespread availability of such sources (e.g. wind, sun, etc.) and to the 

sustainability of the associated production process. Among renewable energy sources, wind 

power is widely recognized as one of the most promising, because of its tremendous potential 

in commercialization and bulk power generation. 

 

The management of wind power generation systems relies on short-term wind power 

generation forecasting, which must also provide a measure of the associated uncertainty. Two 

uncertainty sources can be considered: the inherent uncertainty in wind speed, due to the 

intermittent and unstable nature of wind (aleatory uncertainty); the uncertainty in the 

relationship between wind power and wind speed (epistemic uncertainty) (Helton 1994). The 

latter uncertainty is mainly due to the parameters defining the power curve (cut-in, rated and 

cut-off speeds, and rated power), which can be different for each single turbine within a wind 

farm (Novoa & Jin 2011).  

 

In the present work, we treat the power curve parameters as random variables and account for 

the epistemic uncertainty by bootstrapping (Efron 1981), which allows combining also the 

aleatory uncertainty in the wind speed. 

 

To do so, we first perform short-term forecasting of wind speed in a multi-objective 

optimization framework, where the non-dominated sorting genetic algorithm–II (NSGA-II) 

(Deb et al., 2002) is applied to optimize the weights of a neural network (NN) for estimating 

the prediction intervals (PIs) of wind speed. We, then, combine the uncertainty in wind speed 

forecasting with the uncertainty in the power curve via a bootstrap sampling technique. This 

results in obtaining wind power PIs with the associated uncertainty. By a precise probabilistic 

formulation, we show that the coverage probability of the wind power PIs obtained is the 

same as the one of wind speed PIs. Moreover, we test the robustness of the procedure with 

respect to the form of the distributions for the power curve random parameters. 

 

The rest of the paper is organized as follows. In Section 2, the methodology for NN-based 

wind speed PIs estimation and for bootstrap-based wind power PIs estimation is introduced 
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and described. In Section 3, a case study is carried out to test the effectiveness of the proposed 

approach. Finally, in the Conclusion Section some final remarks are given. 

 

2. METHODOLOGY 

2.1.  Estimation of Wind Speed PIs by NSGA-II 

A PI is comprised of upper and lower bounds in which a future unknown value of the target is 

expected to lie with a predetermined confidence level (   ).The formal definition of a PI is 

thus (Geisser, 1993): 

 

 ( ( )   ( )   ( ))                                       (1)

     

where  ( ) and  ( ) indicate respectively the lower and upper bounds of the PI of the output 

 ( ) corresponding to input  ;  the confidence level (   ) refers to the expected probability 

that the true value of  ( ) lies within the PI,   ( )  ( ) . 

 

In order to provide wind speed PIs, we use multi perceptron artificial neural networks (NNs) 

(Korbicz et al. 2004) which are a class of nonlinear statistical models inspired by brain 

architecture, capable of learning complex nonlinear relationships among variables from 

observed data (Hornik et al. 1989), by a process of parameter tuning called “training”. It is 

common to represent the task of such a NN model as one of nonlinear regression of the kind 

(Zio 2006, Shrestha & Solomatine 2006): 

 

 ( )   (   )   ( )     ( )  (    
 ( ))              (2)             

             

where  ,  ( ) are the input and output vectors of the regression, which in our case represent 

measured historical wind speeds at time              and the true target at time  , 

respectively.   represents the vector of values of the parameters of the model function  , in 

general nonlinear. The term  ( ) is the error associated to the regression model  , and it is 

assumed normally distributed with zero mean. 

We evaluate the PIs by the coverage probability of the prediction intervals (CP), which one 

wants to maximize, and the interval width (PIW), which one wants to minimize. The 

mathematical definitions of the PICP and PIW used in this work are (Khosravi et al. 2011): 
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∑   

  

   
                    (3) 

 

where np is the number of samples in the training or testing sets, and     , if    

  (  )  (  )  and      otherwise.  (  ) and  (  )  are the estimated lower and upper bounds 

of the prediction interval in output, in correspondence of the input   . 

 

      
 

  
 ∑

( (  )  (  ))

         

  

   
                                  (4) 

 

where       is the Normalized Mean PIW, and      and      represent the true minimum 

and maximum values of the targets (i.e., the bounds of the range in which the true values fall) 

in the training set, respectively. Normalization of the PI width by the range of targets makes it 

possible to objectively compare the PIs, regardless of the techniques used for their estimation 

or the magnitudes of the true targets.  

 

The PIs estimation problem is addressed by taking into account the two conflicting objectives 

in a multi-objective framework. For this, we use NSGA-II, which is one of the most efficient 

multi-objective genetic algorithms (MOGAs) (Konak et al. 2006, Deb et al. 2002), to 

optimize the parameters (i.e. the weights) of the network taking into account both objectives. 

More precisely, the neural network is trained by NSGA-II to produce the lower and upper 

bounds of the prediction intervals for short-term forecasting (1-hour ahead) of wind speed. 

The practical implementation of NSGA-II on our specific problem involves two phases: 

initialization and evolution. These can be summarized as follows: 

 

Initialization phase: 

Step 1: Split the input data into training (Dtrain) and testing (Dtest) subsets. 

Step 2: Fix the maximum number of generations and the number of chromosomes 

(individuals)    in each population; each chromosome codes a solution by   real-valued 

genes, where   is the total number of parameters (weights) in the NN. Set the generation 

number    . Initialize the first population    of size   , by randomly generating    

chromosomes. 

Step 3: For each input vector   in the training set, compute the lower and upper bound outputs 

of the    NNs, each one with   parameters. 



Paper VI- R. Ak, V. Vitelli and E. Zio. In Proc Esrel 2013 Conference, 29 Sept. – 2 Oct. 

2013, Amsterdam. 

 

229 

 

Step 4:  Evaluate the two objectives PICP and NMPIW for the    NNs (one pair of values 1-

PICP and NMPIW for each of the    chromosomes in the population   ). 

Step 5: Rank the chromosomes (vectors of   values) in the population    by running the fast 

non-dominated sorting algorithm (Deb et al. 2002) with respect to the pairs of objective 

values, and identify the ranked non-dominated fronts            where    is the best front, 

   is the second best front and    is the least good front. 

Step 6: Apply to    a binary tournament selection based on the crowding distance (Deb et al. 

2002), for generating an intermediate population    of size   . 

Step 7: Apply the crossover and mutation operators to   , to create the offspring population 

   of size   . 

Step 8: Apply Step 3 onto    and obtain the lower and upper bound outputs. 

Step 9: Evaluate the two objectives in correspondence of the solutions in   , as in Step 4. 

 

Evolution phase: 

Step 10: If the maximum number of generations is reached, stop and return   . Select the first 

Pareto front    as the optimal solution set. Otherwise, go to Step 11. 

Step 11: Combine    and    to obtain a union population         . 

Step 12: Apply Steps 3-5 onto    and obtain a sorted union population.  

Step 13: Select the    best solutions from the sorted union to create the next parent 

population     . 

Step 14: Apply Steps 6-9 onto      to obtain     . Set       ; and go to Step 10.  

 

Finally, the best front in terms of ranking of non-dominance and diversity of the individual 

solutions is chosen. Once the best front of solutions is obtained, then the testing step is 

performed on the trained NN with optimal weight values. 

 

2.2. Wind Power PIs Estimation 

The wind power value  ( ) depends on the wind speed  ( ). Suppose that [Lp(x), Up(x)] is 

the PI associated to the wind power value  ( ) in correspondence of the input  , i.e. to the 

wind speed value  ( ). Then, the following property must hold: 
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 (  ( )   ( )    ( ))      ,                           (5) 

 

 where 1 ─  p ϵ [0,1] is the coverage probability.  

 

Our working hypothesis stands on the fact that both wind power values and PIs depend on the 

wind speed values and PIs, respectively, via a non-monotonic transformation, namely the 

power curve. In this hypothesis, the rest of the subsection is devoted to the following two 

issues: 

1. assess the value of 1 ─  p given the coverage probability of the PI associated to the wind 

speed  ( ); 

2. develop a bootstrap-based approach to the estimation of [Lp(x), Up(x)]. 

 

In order to assess the coverage probability of wind power PIs, we have to take into account 

the fact that they have been obtained via a power curve transformation, which means: 

 

  ( )    ( ( ))                                                         (6) 

  ( )    ( ( ))                                                            (7) 

 

where   ( )  ( )  is the PI for the wind speed value  ( ) associated to the input  , with 

associated coverage probability     , while    is a quadratic power curve transformation 

given by the following expression (Justus et al. 1976): 

 

  ( )  {

                     

   (        )              

             

         (8) 

 

with 

 

   
   (      ) (   

           
 )

 (      )    
                  (9) 

 

  
   

      
         

   
        

    
 

 (      )    
                (10) 
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 (      )    
                 (11) 

 

and with   (             ) being the vector of parameters defining the power curve, i.e. 

cut-in speed, rated speed, cut-off speed and rated power. A plot of the power curve    is 

shown in Figure 1. In the following, we will consider     and    to be fixed (deterministic) 

values, and respectively equal to the values 30 m/s and 20 MW (Albadi & El-Saadany 2012, 

Akdag & Guler 2010), while     and    are random variables with distributions     and   , 

respectively. The inherent stochasticity in the power curve is motivated by the fact that 

different wind turbines correspond to specific power curve parameters, which leads to an 

imprecise and imperfect knowledge of the power curve transformation.  

Figure 1. Plot of the power curve    as a function of wind speed. Solid vertical lines correspond to 

the values of the two stochastic parameters     and   . Dashed vertical lines identify the domains of 

the distributions     and   , respectively. 

 

The following chain of identities holds: 

 

 (  ( )   ( )    ( ))   (  ( ( ))   ( )    ( ( )))     

   ∫  (  ( ( ))   ( )    ( ( ))|    )    
 (    )        (12) 

 ∫  (  
  (  ( ( )))   ( )    

  (  ( ( ))) |    )  
   

 (    )     

 ∫ (    )   
 (    )   (    ). 
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The first and second equalities in Equation (12) derive from our working hypothesis, the third 

one from the theorem of total probability, the fourth one from the definition of coverage 

probability for wind speed PIs, and the last one stands because we integrate out the parameter 

vector   over the whole probability space  . 

 

Hence, we can conclude that      , i.e. the coverage probability is maintained while passing 

from wind speed PIs to wind power PIs via a wind power curve transformation. 

 

We remark that, in general,  ( ( )   ( )   ( ))   (     ) if and only if   is a 

strictly monotonic function, because in this case the existence of the inverse is ensured. The 

power curve transformation   , whose definition is given in Equation (8), is non-monotonic, 

but it is monotonic when restricted to the open subset of the co-domain (    ). Note that the 

co-domain of the power curve is given by the closure of the latter subset, i.e.       . Hence, 

we can restrict our analysis to the open subset (    ), and treat the non-monotonicity issue as 

a border issue, a posteriori restricting the obtained wind power PIs to their domain of 

admissibility (note that this is usually done in the context of PIs estimation when the target of 

interest is a bounded variable, e.g. a proportion). 

 

We now move to the problem of estimating the wind power PIs [Lp(x1), Up(x1)], …  ,[Lp(xn), 

Up(xn)] corresponding to the testing set        , for        .  

 
Since the parameter vector   is a multivariate random variable, the wind power PIs estimation 

process provides a distribution of intervals accounting for the parameters stochasticity. To get 

such a distribution, parametric bootstrap (Efron 1981, Shao & Tu 1995) is used. Parametric 

bootstrap is a technique which allows generating a sample for each parameter, and then 

estimating some relevant quantities concerning the target of interest. 

 

More precisely, given the estimated wind speed PIs   (  )  (  )      (  )  (  )  in the 

testing set, the parametric bootstrap sampling technique is articulated in the following two 

steps: 
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1. Bootstrap Phase: 

Sample two values for the stochastic parameters     and    from the corresponding 

distributions, i.e.         and      , and transform all wind speed PIs 

  (  )  (  )      (  )  (  )  into wind power PIs [Lp(x1), Up(x1)], …  ,[Lp(xn), Up(xn)] 

via the power curve transformation    defined in (8), and using the previously sampled 

parameter values. Repeat the sampling until a sufficient number of sets of wind power PIs has 

been obtained. 

 

2. Aggregation Phase:  

Aggregate the results of the bootstrap phase by computing, for each element of the testing set, 

the bootstrapped average wind power PI and the 5
th

 and 95
th

 percentiles of the wind power PI 

bootstrapped distribution. 

 

This bootstrapping technique allows obtaining a set of wind power PIs, which accounts for 

both the aleatory uncertainty intrinsic in wind power generation and the variability associated 

to wind power PIs themselves, thus expressing the epistemic uncertainty related to the power 

curve estimation procedure. The aleatory uncertainty can be expressed by showing the 

bootstrapped average wind power PIs, while the epistemic one can be summarized in the 5
th

 

and 95
th

 percentiles of the wind power PIs bootstrapped distribution. 

 

3. CASE STUDY 

The wind speed data used in this study have been measured for Regina, Saskatchewan, a 

region of central Canada (Canadian Weather Office, 2012) over a period of two months from 

1st of February 2012 to 31st of March 2012. The total data set includes 1437 samples (see 

Fig. 2), among which the first 80% (the first 1150 samples) are used for training and the rest 

for testing. The architecture of the multi-perceptron NN consists of one input, one hidden and 

one output layers. The number of input neurons is 3 corresponding to the wind speed values 

of the previous three time steps (Wt-1, Wt-2 and Wt-3); the number of hidden neurons is set to 10 

after a trial-and-error process; the number of output neurons is 2, one for the lower and one 

for the upper bound values of the PIs. As activation functions, the hyperbolic tangent function 

is used in the hidden layer and the logarithmic sigmoid function is used at the output layer 

(these choices have been found to give the best results by trial and error, although the results 
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have not shown a strong sensitivity to them). The training of the NN weights is done by 

NSGA-II to maximize PICP (Equation 3) while minimizing (Equation 4). All data have been 

normalized within the range [0.1, 0.9]. To account for the inherent randomness of NSGA-II, 

twenty different runs have been performed and an overall best non-dominated Pareto front has 

been obtained from the twenty individual fronts. 

 

 

Figure 2. The wind speed data set used in this study. 

 

 

Figure 3. Estimated PIs for 1-hour ahead wind speed prediction on the test data set (dashed lines), and 

wind speed target data included in the test data set (solid line). 
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Given the overall best Pareto set of optimal solutions (i.e. optimal NN weights), one has to 

pick one (i.e. one trained NN) for use. We take a solution subjectively chosen, because judged 

to provide a good compromise in terms of high PICP and low NMPIW. The selected solution 

has 90% CP and 0.242 NMPIW on the training, and 82% CP and 0.255 NMPIW on the 

testing. Figure 3 shows wind speed target data (testing set) together with the estimated PIs 

corresponding to the selected solution. 

 

The bootstrapping estimation technique described in the previous section is then applied to 

the estimated wind speed PIs (testing set) shown in Figure 3 to obtain wind power PIs. The 

number of bootstrap replicates has been set equal to 1000. In order to test the robustness of 

this bootstrapping technique with respect to the parametric assumption concerning the 

distribution of the power curve parameters, we sample     and    from both a uniform and a 

Gaussian distributions centered around average values of 3.5 and 14.5 m/s, respectively, with 

a range of uncertainty of [3, 4] and [12, 17] m/s, respectively, defining the domain of the 

associated distribution (see Figure 1). Then, the two parameters are sampled either from a 

uniform distribution (           and            ), or from a Gaussian one (    

 (    (   ) ) and     (     (   ) ). 

 

The resulting average bootstrapped PIs for 1-hour ahead wind power prediction, obtained by 

applying to the wind speed PIs of the testing data set the bootstrapping scheme described in 

the previous section, are shown in Figure 4. From inspection, the robustness of the 

bootstrapping procedure with respect to the distribution hypothesis can be appreciated. The 

results are also compared with the ones obtained by fixing the stochastic parameters defining 

the power curve to their average values; in this case, the uncertainty is evidently 

underestimated. 

 

In Figures 5 and 6, we finally show the bootstrapped distributions of the wind power PIs 

obtained by uniform and Gaussian sampling, respectively. The bootstrapped distributions are 

shown by the 5
th

 and 95
th

 percentiles (dotted and dashed lines, respectively). By looking at 

these plots, some considerations can be made: first, the bootstrapping technique allows us to 

efficiently decouple epistemic (PIs distribution) and aleatory (PIs width) uncertainty. 

Secondly, the epistemic uncertainty that generates a variability into the PIs bounds, described 

by the percentiles in Figures 5 and 6, is smaller than the aleatory uncertainty, quantified via 
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the PIs width: this can be appreciated in the fact that the 95
th

 percentile of the lower bound 

bootstrapped distribution is never greater than the 5
th

 percentile of the upper bound 

bootstrapped distribution; or, in other words, by the fact that the PIs width is in general bigger 

than the uncertainty associated to the PIs themselves. 

 

Figure 4. Average bootstrapped PIs for 1-hour ahead wind power prediction on the testing data set, 

obtained by sampling the power curve stochastic parameters from a uniform distribution (red lines), 

from a Gaussian distribution (green lines), and by fixing them to their average values (black lines). 

 

Figure 5. 5th (dotted lines) and 95th (dashed lines) percentiles of the bootstrapped distribution of 1-

hour ahead wind power PIs obtained by sampling the power curve stochastic parameters from a 

uniform distribution, together with wind power PIs obtained by fixing the parameters to their average 

values (solid line). 
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Figure 6. 5th (green lines) and 95th (red lines) percentiles of the bootstrapped distribution of 1-hour 

ahead wind power PIs obtained by sampling the power curve stochastic parameters from a Gaussian 

distribution, together with wind power PIs obtained by fixing the parameters to their average values 

(black lines). 

 

4. CONCLUSIONS 

In this work, we presented a novel approach to wind power PIs estimation, taking into 

account both aleatory and epistemic uncertainty. The proposed approach quantifies aleatory 

uncertainty by estimating wind speed PIs, and then transforms them into wind power PIs by 

using a power curve. In doing so, epistemic uncertainty arising from the imperfect knowledge 

of the power curve parameters is also taken into account through bootstrap sampling. The 

procedure manages to effectively decouple aleatory and epistemic uncertainty, and moreover 

shows a good robustness with respect to the parametric assumptions implicit in the bootstrap. 

The invariance of the coverage probability by passing from wind speed to wind power PIs has 

also been shown. 
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ABSTRACT 

In this paper, we address the problem of wind speed prediction for wind power production. 

Prediction intervals (PIs) are considered to account for the uncertainties in the predictions and 

two non-parametric methods are proposed to construct ensemble models made by Neural 

Networks (NNs) to estimate PIs. Short-term (1-h ahead) wind speed prediction on a real 

dataset of hourly wind speed measurements for the region of Regina in Saskatchewan, 

Canada, is considered as case study. Both methods proposed for NNs ensemble construction 

demonstrate consistent results and high prediction precision, compared both to the individual 

NNs of the ensembles and to conceptually similar estimation methods proposed in the 

literature. 

Keywords: multi-perceptron neural networks, ensemble, multi-objective, wind speed 

prediction, prediction intervals. 
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1. INTRODUCTION 

The efficient and reliable use of renewable energy sources continues to be a most important 

issue for world sustainable energy management. Significant amount of investments are being 

made to replace existing energy sources with new and renewable ones. This must be done 

while reliably and safely operating power systems, under the challenging conditions brought 

by intermittent renewable energy (e.g. wind, solar, etc.) fed into the energy grids. 

 

For planning and operational purposes, then, accurate and robust prediction of the power 

generated by renewable energy sources becomes critical to guarantee the adequacy of the 

generation system, particularly for intraday energy trading: errors in prediction of the 

renewable energy sources can impact significantly on subsequent operations. 

 

Among renewable energy sources, wind energy represents a popular, clean (contributes to less 

carbon-intensive energy production) and sustainable solution. Over the past decade,  wind 

energy has received fast-growing attention throughout the world, and the utilization of wind 

power has increased dramatically [1]. Furthermore, the use of wind energy  is expected to 

continue to increase: the World Wind Energy Association (WWEA) has predicted a possible 

wind capacity of more than 700000 MW by 2020 [2]. These projections enhance the 

importance of the reliable integration of large amount of wind energy to the power grid, 

without harming its reliability. 

 

The planning and operation for the generation of energy from wind requires accurate mapping 

and prediction of wind speed, with the volatile and stochastic character of wind speed posing 

additional challenges for predictability. The prediction model must be capable of providing in 

output also a quantification of the uncertainty associated to the prediction, for informed 

decision-making. To this aim, in the present work we propose a novel framework to estimate 

prediction intervals (PIs). The framework proposed allows developing an ensemble of Neural 

Network (NN) models.  

 

In general terms, it is well known that an ensemble of different predictors can generate 

predictions that are more accurate than those obtained by individual predictors [3]. 

Specifically, a NN ensemble is a learning paradigm where a certain number of NNs are 

combined to estimate the desired output for the target of interest (see Fig. 1) [3]. Typically, a 
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NN ensemble is constructed in two steps: i) training a number of individual NNs and ii) 

combining the predictions yielded from these NNs. The aim of assembling a number of NNs 

into an ensemble is to improve the generalization ability and estimation accuracy of the 

prediction model.  

 

Considerable research has been done on ensembles and, also, specifically on ensembles of 

NNs. Traditional NN ensemble techniques have been built via several strategies, such as 

randomly trying different topologies (different number of hidden layers and neurons) in each 

individual NN, setting different initial weights or parameters, using different training datasets 

(e.g. bagging, cross-validation, etc.) or learning algorithms, etc. [4]-[8]. 

  

Bagging and boosting are the most prevailing approaches used to produce ensembles [3], [7]. 

Bagging is based on bootstrap sampling [5], since it produces replicate training sets by 

sampling with replacement from the training samples [6], [9], [10]. The method works by 

training the multiple (m) models on different data splits (generated by sampling with 

replacement from the original training dataset) and by averaging their outcomes to obtain the 

ultimate prediction results on the testing set [9]. In boosting ensembles, the patterns that the 

earlier classifiers in the series recognized incorrectly are over-represented in the composition 

of a particular training set, i.e. training samples that are incorrectly predicted by previous 

classifiers in the series are more often chosen than samples that were correctly predicted [6],  

[7], [11]. Thus, boosting aims at producing new classifiers that are more capable to predict 

samples for which the current ensemble performance is poor [7]. 

 

Regarding the combination of the estimated predictions (outputs) of each individual NN, 

different techniques can be adopted, like a simple arithmetic mean, a weighted mean, a 

median, a linear combination, local fusion (LF), dynamic integration, etc. [6], [12]. As an 

exemplification, Baraldi et al. [12] have explored the LF strategies for the aggregation of the 

outcomes of different ensemble models, whereas Khosravi et al. [4] have combined individual 

PI forecasts through mean and median calculations.  

 

In our previous works [13], [14] a simple multi-layer perceptron neural network (MLP NN) 

model has been used to estimate PIs. We have introduced a multi-objective framework to 

estimate PIs, which are dominant-optimal in terms of both interval width (PIW) and coverage 

probability (CP). More precisely, a MLP NN is trained by a MOGA, namely the non-
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dominated sorting genetic algorithm–II (NSGA-II) [15]: this approach integrates the 

estimation of the PIs in a learning procedure where the MLP NN is trained to concurrently 

minimize the PIs width and maximize their coverage probability. In this paper, we propose an 

enhanced version of the non-parametric multi-objective genetic algorithm (MOGA)-NN 

method, which has been originally proposed by Ak et al. in [13], [14],  here extended to build 

an ensemble of MLP NNs as base learners and we apply it to the problem of short-term wind 

speed prediction. The case study considered is that of [14], where we have considered short-

term wind speed prediction on four different wind speed datasets involving different wind 

speed profiles with seasonality. 

 

We propose two NN ensemble methods, differing in the partitioning or not of the training 

dataset, and embedding the k-nearest neighbors (k-nn) approach in the aggregation phase for 

the identification of the neighborhoods of a test pattern [12], [16], [17]. The first strategy 

splits the training dataset into sub-sets with an equal number of samples and, then, each 

individual NN is trained on a different sub-training set; the second strategy, instead, uses the 

same training dataset (the entire dataset) for the training of each individual NN. The two 

methods differ also in the combination method of the individual NNs outputs.  

 

The rest of the paper is organized as follows. The basics of MLP NNs modelling and the 

definition of PIs are given in Section 2. Section 3 provides the details of the methods 

proposed in the present work for the ensemble of NNs. Section 4 presents the data and 

parameters used in the experiments, and the results of the case study. Finally, Section 5 

concludes the paper. 

Figure 1. A basic scheme of NN ensemble.  
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2. MLP NNs and PIs 

NNs are universal functional approximators often used as regression models capable of 

learning non-linear patterns from historical data [18].  MLP NNs are a common and popular 

type of feed-forward NNs [18], [19]. A MLP NN consists of processing units, the so called 

neurons, that are ordered into layers: one input layer, one or several hidden layers and one 

output layer. The nodes are connected by weights. Each layer receives input signals generated 

by the previous layer, it produces output signals through an activation function (e.g. a sigmoid 

transfer, or activation, function), and it distributes them to the subsequent layer through the 

neurons.  

 

The prediction accuracy of a NN can depend on several factors, such as the network topology, 

the level of variability and uncertainty in the input data, the number of data samples for 

training, the learning algorithm, the set of initial parameters, etc. For the theoretical basics of 

the NN modelling, we refer the reader to [19]-[21].  

 

Figure 2 shows the scheme of a three-layered MLP NN used in the present work to construct 

PIs. The first output neuron provides the upper bound and the second the lower bound. With 

these two output neurons, the NN generates a PI interval for each input pattern.  

 

Figure 2. Sketch of a three-layered MLP NN architecture. 
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A PI is a statistical estimator composed by upper and lower bounds that include a future 

unknown value of the target  ( )  with a predetermined probability, called confidence level 

and in general indicated with     [22], [23]. The formal definition of a PI can be, thus, 

given in the following form:  

            

  ( ( )   ( )   ( ))                          (1) 

 

where  ( ) and  ( ) are the estimators of the lower and upper bounds of the PI 

corresponding to input  , and the confidence level (   ) is the probability that the true 

unknown value of  ( ) lies within the interval   ( )  ( ) . 

 

The prediction interval coverage probability (PICP) represents the probability that the set of 

estimated PIs will contain the true output values and it is estimated as the proportion of true 

output values lying within the estimated PIs. Prediction interval width (PIW) simply measures 

the extension of the interval as the difference between the estimated lower and upper bound 

values. These are in general conflicting measures (wider intervals give larger coverage), and 

in practice it is important to have narrow PIs with high coverage probability. The 

mathematical definition of the PICP and PIW measures here employed are, respectively [23]:  

 

     
 

  
∑   

  

   
                              (2) 

 

where    is the number of samples in the training or testing sets, and     , if    

  (  )  (  )  and otherwise     , 

 

      
 

  
 ∑

( (  )  (  ))

         

  

   
                                            (3) 

 

where       is the Normalized Mean PIW, and      and      represent the true minimum 

and maximum values of the target (i.e., the bounds of the range in which the true values fall) 

in the training set, respectively. Normalization of the PI width by the range of targets makes it 

possible to objectively compare the PIs, regardless of the techniques used for their estimation 

or the magnitudes of the true targets.  
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Khosravi et al. [23] proposed a “Lower and Upper Bound Estimation Method (LUBE)”, in 

which they obtain NN-based PIs by considering both CP and PIW in the PI construction 

phase. They perform the training by using a single-objective PI-based cost function called 

coverage width criterion (CWC), in which they combine two separate objectives: PICP and 

NMPIW. The CWC objective function is given by [23]:  

 

          (   (    )    (      ))               (4)                 

 

where   and   are constants. The role of   is to magnify any small difference between   and 

PICP. The value of   gives the nominal confidence level, which is set to 90% in our 

experiments. Then,   and   are two parameters determining how much penalty is paid by the 

PIs with low coverage probability. The function   (    ) is equal to 1 during training. 

 

In this work, in order to obtain PIs optimal in terms of both interval size and coverage, we 

proceed as in [13] and [14] using NSGA-II, which is one of the most powerful multi-objective 

evolutionary algorithms (MOEAs): NSGA-II finds the values of the parameters of the NN 

which minimize the two objective functions PICP (2) and NMPIW (3) simultaneously, in 

Pareto optimality sense (for ease of implementation, the maximization of PICP is converted to 

minimization by subtracting from unity, i.e. the objective of the minimization is 1-PICP). The 

practical implementation of NSGA-II on our specific problem can be found in [13], [14]. 

 

Then, in our framework for NN ensemble construction, we use the CWC of [23] as a measure 

to rank the individual NNs on the validation set. We stress that we do not use CWC (4) during 

the training of the individual networks, but, rather, the multi-objective formulation of the PI 

estimation problem in terms of (2) and (3). 

 

3. PI ESTIMATION VIA AN ENSEMBLE OF MOGA-BASED NNS  

In order to construct PIs using an ensemble of NNs we propose two methods. The first one is 

classical and consists of partitioning the training dataset into several sub-sets, and then 

performing the training of each individual NN with different training sets. The second method 

uses the same training data set for each individual NN, which differs for the initial weights 

randomization. With method 2, we obtain an overall Pareto front, hereafter called combined 
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Pareto front, which is obtained by applying non-dominated sorting to the Pareto fronts 

obtained by the training of each network.  

 

The implementing procedures for the methods are synthesized below. 

 

Method 1: 

Step 1: Divide the input dataset into training (Dtr), validation (Dvald) and testing (Dtest) sets. 

Step 2: Split the training set Dtr into ntotal sub-sets with equal number of samples. 

Step 3: Set the number of hidden neurons and other initial parameters. 

Step 4: Train ntotal MOGA-based NNs by assigning a training set to each network. 

Step 5: After training the ntotal NNs, select one solution from each Pareto front. This solution 

is selected by the rule described below: 

• First, select the solutions on the Pareto front giving PICP greater than 90%. 

• Apply the “weighted average” approach [24] to the selected solutions and select one final 

solution among them. 

Step 6: After the selection of a single solution from each optimal Pareto front, perform 

validation using the parameters of each selected NN.  

Step 7: Calculate the value of CWC on the validation set, CWCvald, for each of the ntotal NNs, 

and rank them on the basis of their CWCvald values. 

Step 8: Select the nbest NNs giving the smallest CWCvald and discard the others. 

Step 9: For each testing sample i in the testing dataset, find the k-nn in the training dataset of 

each selected nbest NN. 

 

Method 2: 

Step 1: Divide the input data set into training (Dtr), validation (Dvald) and testing (Dtest) sets. 

Step 2: Set the number of hidden neurons and other initial parameters. 

Step 3: Train m MOGA-based NNs using Dtr, where each network uses the full training set 

and differs only in its random initial weight settings. Thus, obtain m optimal Pareto fronts. 

Step 4: Obtain an overall best Pareto front from the m optimal Pareto fronts. 

Step 5: Perform validation using Dvald with the solutions on the overall best Pareto front. 

Step 6: Obtain the non-dominated solutions on the validation front obtained in Step 5. 

Step 7: Calculate the CWCvald value of the non-dominated solutions and sort (rank) them with 

respect to their CWCvald values. 
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Step 8: Select the nbest NNs giving the smallest CWCvald and discard the others. 

Step 9: For each testing sample i in the testing dataset, determine the k-nn in the training 

dataset of each selected nbest NNs. 

 

Combination of the outputs 

Step 10: Combine the lower and upper bounds of the selected k-nn by mean, median and 

weighted mean calculations, respectively. 

Step 11: Perform testing with the selected nbest NNs on the testing set. Then, compare the 

estimated PI results of the selected nbest NNs with the combined PI results. 

 

Each individual NN in the ensemble is trained independently to minimize the prediction error 

with respect to the target. We have used the same architecture (i.e. number of hidden neurons) 

for each individual NN. The number of hidden neurons has been determined by a trial-and 

error method. 

 

In both methods, the validation set has been used to screen the NNs with respect to their 

performance in PIs estimation on the validation set (see Step 7). In other words, in method 1, 

we have ranked the ntotal NNs on the basis of their validation performances, i.e. considering 

their CWCvald values, and then we have selected the nbest NNs to be used to estimate the upper 

and lower bounds of the combined PIs. In method 2, we have filtered the solutions two times 

consecutively: after we have obtained an overall Pareto front of m optimal individual Pareto 

fronts generated by training m NN models, which are diversified through their random 

initialization in the training stage, we have performed validation for each solution using the 

validation set. More precisely, to construct such an overall Pareto front, the first (best) front of 

each of m runs is collected and the resulting set of solutions is subjected to the fast non-

dominated sorting algorithm [15] with respect to the two objective functions values. Then, the 

ranked non-dominated fronts            are identified, where    is the best front,    is the 

second best front and    is the worst of the k fronts. Solutions in the first (best) front    are 

then retained as overall best front solutions. This procedure gives us the overall best non-

dominated Pareto front for the training set. After that, we have performed validation for each 

optimal solution on the overall front, and then a non-dominated sorting has been applied to 

these validation solutions. Thus, we have a posteriori obtained a set of non-dominated 

validation solutions forming an optimal Pareto front. This can be viewed as the first ranking 
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process on the validation. Figure 3 shows the validation solutions before non-dominated 

sorting and after it (the dominated and non-dominated solutions seem very similar in the plot 

but they are not identical, especially where 1-PICP is closer to 0, which is the region of 

interest for high coverage probability solutions). For the sake of clarity of visualization, a 

zoom on the solutions have CP of 95 % or greater has also been plotted. Note that in Figure 3 

the X axis indicates “1-PICP”. 

 

Figure 3. Validation fronts before (marked as circle) and after (marked as star) non-dominated sorting. 

 

After this step, the non-dominated validation solutions are ranked on the basis of their 

CWCvald results (as in method 1), and then the first nbest NNs giving the smallest CWCvald 

values are kept, while the remaining ones are discarded.  

 

The aggregation phase is identical for both methods: for each pattern i in the testing set, we 

have found k-nn patterns in the training sets of each selected nbest NNs. The k-nearest 

neighbors of a specific pattern i in the testing set are determined by the Euclidean distance 

between the input values of the specific pattern and the patterns in the corresponding training 

set, i.e. given a set X of n samples (training set) and a distance function, a k-nn search lets you 

find the k closest samples in X for each query sample (pattern) in Y (testing set).  

 

Finally, for each testing pattern i, the upper and lower bounds of PIs estimated from the 

selected k neighbors are aggregated to generate the combined PIs on the testing set. Note that, 

herein, the weights used in the “weighted mean” aggregation method correspond to the 
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reciprocal of the CWC values of the nbest selected solutions, i.e. individual NNs, calculated on 

their corresponding training sets. Hence, a solution which has a smaller CWC value, has a 

higher weight, and gives thus higher contribution to the combined PIs.  

 

It is worth pointing out that the “weighted average” approach mentioned in Step 5 of method 

1 is one of the quantitative criteria performed to select a single best compromise Pareto 

solution. It is a simple strategy used to choose a compromise solution with respect to the 

particular user-specified weighted average of the objective functions. In our specific two-

objective optimization problem, the weight vector   (     ) is set to (0.6, 0.4) by 

assuming that the first objective (maximizing the CP) is approximately 1.5 times more 

important than the second one (minimizing the PIW). Note that the weighted average method 

chooses the Pareto-optimal solution according to the user-specified weights assigned, i.e. 

another solution can be found with a different weight-vector.  

 

4. CASE STUDY RESULTS 

In this Section, the results of the application of the proposed ensemble methods to short-term 

wind speed forecasting are detailed. The considered wind speed data have been measured in 

Regina, Saskatchewan, a region of central Canada. The hourly wind speeds measured from 1
st
 

of February 2003 to 28
th

 of July 2012 in Regina, Saskatchewan have been downloaded from 

the website (80000 samples in total) [25]. The entire dataset has been split into three parts, 

training, validation and testing, including 60000, 10000 and 10000 samples, respectively. For 

method 1, the training set has been split into ntotal  = 100 sub-sets; thus, each training sub-set 

has 600 samples. Table 3 reports the parameters used in the experiments. The input dataset 

has been normalized to have values between 0.1 and 0.9. 

 

In order to select the relevant lagged values of the wind speed (           ) to be included 

as input variables in the prediction model for estimating (  ), the empirical Autocorrelation 

Function (ACF) and the Partial Autocorrelation Function (PACF) have been inspected [26]. 

In our case, the ACF and PACF indicate that for predicting    in output, the wind speed 

values at the three previous time steps     ,      and      are the most appropriate input 

variables. 
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      Table 3. Parameters used in the experiments. 

Parameter Numerical value 

MaxGen 300 

Nc 50 

Pm_int 

Pc 

0.06 

0.8 Μ 0.9 

Η 50 

Dtr 60000 

Dvald 10000 

Dtest 10000 

ntotal 100 

ntest 

m 

10 

5 
 

 

We have calculated the combined results with respect to different k values, i.e. for k = 1, 3, 5, 

7. We have observed that in our specific problem, different values of k lead to different 

results. It is worth nothing that the results obtained with k = 5 are quite close to those obtained 

with k = 3. As we have obtained more accurate results with k = 3, in Tables 1-2 we report only 

these ones. Table 2 reports the combined PICP and NMPIW results on the testing set, while in 

Table 3 the results of the 10 selected best networks are given with respect to methodologies 1 

and 2.  One can see that in both methods we have obtained quite high CP with very small 

interval sizes. It is evident that the coverage probabilities with all aggregation methods, i.e. 

mean, median and weighted mean, are higher than the ones obtained with each of the 10 best 

individual NNs. For what concerns the interval size, although some of the selected 10 best 

NNs give slightly smaller interval sizes, their accuracy, i.e. their CPs are lower than the 

combined ones. For exemplification, the combined PI results (ensemble of NNs) of method 2 

via median calculation outperforms all individual NN models (10 best) in terms of the PI 

accuracy (measured by PICP), while its interval size is slightly larger than 4 out of 10 

individual NNs. We remark that our strategy for selecting the k-nearest neighbors from the 

training set for each of the patterns in the testing set has played an important role to obtain 

high quality PIs, characterized by both high CP and small PIW. 

 

It is worth pointing out that Khosravi et al. [4] provide combined PIs for wind power data by 

using a single-objective optimization framework, i.e. they provide a framework for 
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synthesizing PIs generated using an ensemble of NN models trained according to the original 

LUBE method . If we take as reference their combined PI results estimated for wind power 

generation [4], we can clearly say that we have obtained higher quality PIs in terms of both 

CP and PIW on our wind speed case study. For what concerns the comparison of the 

combined results obtained by methods 1 and 2, although both give high CPs with small PIWs, 

the combined results are non-dominated: the results obtained by median calculation give 

99.62 % PICP and 26.75 % NMPIW for method 1, and 99.18 % PICP and 23.91 % NMPIW 

for method 2. These two results are non-dominated. Thus, there is an intrinsic trade-off in the 

selection of any solution, since in making a choice either coverage or interval width has to be 

favored; hence the decision maker (DM) has to select one final solution according to his/her 

subjective preferences. On the other hand, the aggregation methods (mean, median and 

weighted mean) used to generate combined PIs for the testing set do not show significant 

differences. Both PICP and NMPIW values are quite close for each aggregation method.   

 

Table 2. Combined PI results of methods 1 and 2 on the testing set according to the three aggregation 

schemes. 

k = 3 Method 1 Method 2 

 Mean Median 
Weighted 

mean 
Mean Median

 
Weighted 

mean 

PICP (%) 99.60 99.62 99.60 99.54 99.18 99.54 

NMPIW (%) 26.57 26.75 26.73 24.14 23.91 24.18 

 

Moreover, it can be observed that the validation and corresponding testing results of the 10 

selected individual NNs show high consistency in terms of coverage probability and interval 

size (see Table 3). All solutions result in a CP bigger than 90 % with low interval sizes. This 

confirms the generalization power of the original MOGA NN approach, which is capable of 

generating high quality PIs. Figure 4 shows the combined PIs for the testing set estimated by 

method 2 via median aggregation. For the sake of clarity of visualization, a zoom on the first 

300 hours has been plotted.  
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Table 3. PICP and NMPIW results of the 10 best selected NNs on the validation and testing sets 

according to methods 1 and 2. 

 

 

Figure 4.  Estimated PIs for 1-h ahead wind speed prediction on the testing set (dashed lines), and 

wind speed data included in the testing set (solid line). 

 

5. CONCLUSIONS 

The goal of this work is to present a framework to construct accurate PIs using ensemble of 

individual NN models, for short-term wind speed prediction. To this aim, we have introduced 

two non-parametric methods. On the real data considered as case study, both methods have 

obtained superior results compared to those yielded from the selected individual networks 

Method 1 Method 2 

Validation Testing Validation Testing 

PICP 

(%) 

NMPIW 

(%) 
PICP (%) 

NMPIW 

(%) 
PICP (%) 

NMPIW 

(%) 
PICP (%) NMPIW (%) 

94.57 0.228 93.57 22.85 94.32 22.55 93.61 22.58 

94.84 0.232 94.12 23.28 95.27 24.14 94.76 24.18 

95.74 0.248 95.06 24.88 95.65 24.54 95.25 24.60 

 95 .43 0.248 95.09 24.87 94.60 23.85 94.09 23.85 

95.26 0.248 94.57 24.84 92.84 21.62 92.10 21.63 

96.52 25.78 95.85 25.82 96.38 26.30 96.17 26.35 

95.18 24.97 94.50 25.04 96.86 26.97 96.21 27.01 

93.09 22.12 92.00 22.14 91.84 20.36 91.10 20.41 

95.42 25.33 94.96 25.34 91.75 20.22 90.98 20.25 

96.37 25.99 95.77 26.05 97.91 29.97 97.54 30.02 
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selected in the respective ensembles. Compared to literature methods conceptually and 

methodologically similar to the present ones, the results obtained show a significant 

improvement in terms of the quality of the predicted PIs. We can, then, conclude that 

both ensemble modelling frameworks proposed yield a reliable estimation of the PIs, 

characterized by a high coverage probability and a small interval size. The reported results 

demonstrate the practically efficient methods proposed for quantification of uncertainties 

associated with wind speed prediction. 
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