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The intensity variation is often used in signal or image processing algorithms after being quantified by a measurement method. The method for measuring and quantifying the intensity variation is called a « change measure », which is commonly used in methods for signal change detection, image edge detection, edge-based segmentation models, feature-preserving smoothing, etc. In these methods, the « change measure » plays such an important role that their performances are greatly affected by the result of the measurement of changes.

The existing « change measures » may provide inaccurate information on changes, while processing biomedical images or signals, due to the high noise level or the strong randomness of the signals. This leads to various undesirable phenomena in the results of such methods. On the other hand, new medical imaging techniques bring out new data types and require new change measures. How to robustly measure changes in those tensor-valued data becomes a new problem in image and signal processing.

In this context, a « change measure », called the Non-Stationarity Measure (NSM), is improved and extended to become a general and robust « change measure » able to quantify changes existing in multidimensional data of different types, regarding different statistical parameters.

A NSM-based change detection method and a NSM-based edge detection method are proposed and respectively applied to detect changes in ECG and EEG signals, and to detect edges in the cardiac diffusion weighted (DW) images. Experimental results show that the NSM-based detection methods can provide more accurate positions of change points and edges and can effectively reduce false detections.

A NSM-based geometric active contour (NSM-GAC) model is proposed and applied to segment the ultrasound images of the carotid. Experimental results show that the NSM-GAC model provides better segmentation results with less iterations that comparative methods and can reduce false contours and leakages.

Last and more important, a new feature-preserving smoothing approach called « Nonstationarity adaptive filtering (NAF) » is proposed and applied to enhance human cardiac DW images. Experimental results show that the proposed method achieves a better compromise between the smoothness of the homogeneous regions and the preservation of desirable features such as boundaries, thus leading to homogeneously consistent tensor fields and consequently a more reconstruction of the coherent fibers.
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Introduction Générale

Les images et les signaux biomédicaux sont connus pour leur faible intensité, leur faible rapport signal sur bruit (SNR) et leurs fortes propriétés aléatoires. Améliorer la performance des méthodes de traitement pour ces données biomédicales est l'une des tâches importantes dans le domaine du traitement d'image et du signal.

La variation des intensités est souvent exploitée comme une propriété importante du signal ou de l'image par les algorithmes de traitement. La grandeur permettant de représenter et de quantifier cette variation d'intensité est appelée « mesure de changement ». Par exemple, l'amplitude du gradient est souvent utilisée comme une mesure de changement pour quantifier l'intensité des contours en traitement d'images. La « mesure de changement » est couramment employée dans les méthodes de détection des changements d'un signal, en détection de contours dans des images, dans les modèles de segmentation basés contours, et dans les méthodes de lissage d'images avec préservation de caractéristiques.

Dans toutes ces méthodes basées sur la «mesure de changement », la précision de cette mesure influence directement la performance de la méthode. En traitement d'images et de signaux biomédicaux, les mesures de changement existantes fournissent des résultats peu précis lorsque le signal ou l'image présente un fort niveau de bruit ou un fort caractère aléatoire, ce qui conduit à une dégradation des performances des méthodes basées ce type de mesure.

Dans ce contexte, l'objectif de notre travail de thèse est d'étudier une « mesure de changement » robuste et de l'utiliser pour améliorer la performance des méthodes de traitement du signal et de l'image, vis-à-vis du bruit et des artefacts indésirables souvent observés dans les méthodes existantes. D'autre part, de nouvelles techniques d'imagerie médicale produisent de nouveaux types de données dites à valeurs multiples, qui nécessitent le développement des mesures de changement correspondantes. Par exemple, pour traiter les données de tenseur fournies par le DT-MRI, qui a apparu au milieu des années 1990, de nombreux travaux ont porté sur le traitement des champs de valeurs matricielles. Mesurer le changement dans ces données de tenseur pose alors de nouveaux problèmes en traitement d'images.

La mesure de non-stationnarité (NSM) est une mesure de changement robuste avec une bonne immunité au bruit. Elle peut refléter et quantifier les changements dans une image ou dans un signal en mesurant son degré de non-stationnarité. Dans ce travail, la méthode NSM est améliorée et étendue, et plusieurs approches de traitement d'image et de signal basées sur la NSM sont proposées et appliquées aux diverses images médicales ayant des niveaux de bruit élevés et aux signaux fortement aléatoires. En outre, la NSM étendue permet de mesurer les changements dans les données vectorielles et tensorielles, devenant ainsi une mesure générique et robuste pour des données de types différents et de dimensions quelconques. Les recherches effectuées sont détaillées comme suit: Tout d'abord, la NSM est améliorée et étendue. La notion de stationnarité de paramètre en général est introduite. Basée sur cette notion, la NSM est élaborée et expliquée et une
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2 Thèse en traitement de l'image medicale / 2013 Institut national des sciences appliquées de Lyon formulation générale de la NSM est donnée. Ensuite, le processus de construction des opérateurs de NSM est généralisé. Les sorties des opérateurs NSM dans plusieurs cas typiques sont formulées. L'avantage de l'opérateur NSM en termes d'immunité au bruit est théoriquement prouvé. Le choix des paramètres critiques est discuté. Enfin, l'opérateur de NSM est étendu pour traiter des données à N dimensions et pour mesurer les changements dans des données vectorielles et tensorielles, devenant ainsi une méthode de mesure de changement générique et robuste.

Deuxièmement, nous proposons une méthode de détection de changements ainsi qu'une méthode de détection de contours toutes deux basées sur la NSM. Nous l'appliquons aux signaux ECG et EEG, ainsi qu'a des images cardiaques pondérées en diffusion (DW), l'objectif visé étant de réduire les fausses alarmes et les mauvaises détections lors de la détection des changements dans ces signaux fortement aléatoires et bruités contenant de faux bords. . Les résultats expérimentaux montrent que les méthodes de détection basées sur la NSM permettent de fournir la position précise des points de changement et des bords avec un temps de calcul plus faible, et de réduire efficacement les fausses détections qui sont souvent présentes dans les résultats fournis par les autres méthodes de mesure de changement.

Troisièmement, en vue de résoudre le problème des faux contours et des fuites qui apparaissent lors de la segmentation d'images très bruitées, nous proposons un modèle de contour actif géométrique basé sur la NSM (NSM-GAC) et nous l'appliquons pour segmenter des images d'échographie carotidienne. Le modèle utilise la NSM au lieu de l'amplitude du gradient pour obtenir des informations de bord et guider l'évolution de l'ensemble de niveau zéro vers les positions souhaitées. Les résultats de segmentation sur des images de synthèse très bruitées et des images d'échographie carotidienne simulées et réelles montrent que le modèle NSM-GAC permet d'obtenir de meilleurs résultats avec moins d'itérations et un temps de calcul faible, et de réduire les faux contours et les fuites.

Enfin, et plus important encore, en se concentrant sur le difficile problème de compromis entre le lissage des régions homogènes et la préservation des caractéristiques désirées dans des images à faible RSB, nous développons une nouvelle approche de lissage préservant les discontinuités, appelée filtrage adaptatif de non-stationnarité (nonstationarity adaptive filtering-NAF, en anglais). Cette méthode estime l'intensité d'un pixel en faisant la moyenne des intensités sur un voisinage homogène adaptatif. Ce dernier est déterminé suivant cinq contraintes et la carte de NSM. L'approche proposée est appliquée pour améliorer les images DW cardiaques et comparée à la méthode de filtrage de diffusion anisotrope (FDA). Des résultats expérimentaux sur des données synthétiques montrent que l'indice de similarité structurelle moyenne (MSIMS, en anglais) des images DW lissées par le NAF est 120,3% plus élevé que celui des images bruitées, et est 22,6% plus élevé que celui des images lissées par la FAD. Les résultats expérimentaux sur des images DW cardiaques humaines montrent que la méthode proposée fournit un meilleur compromis entre le lissage des régions homogènes et la préservation des caractéristiques désirées telles que les bords ou frontières, ce qui conduit à des champs de tenseurs plus homogènes et par conséquent à des fibres plus cohérentes. Le temps de calcul du lissage NAF dépend de la taille de l'image traitée et de la taille du voisinage homogène de chaque pixel. Une façon très simple mais extrêmement Yanli ZHANG 3 Thèse en traitement de l'image medicale / 2013 Institut national des sciences appliquées de Lyon efficace pour réduire le coût de calcul est d'imposer une limite supérieure sur la taille du voisinage adaptatif.

Pour résumer, les méthodes de traitement d'images et du signal basées sur la NSM cidessous présentent une bonne immunité aux bruits, permettent de réduire les phénomènes indésirables induits par le bruit, et se prêtent bien au traitement des images très bruitées et des signaux fortement aléatoires.
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Résumé en français

Ce chapitre d'introduction a pour objectif de présenter le contexte et l'importance du sujet de thèse, les problématiques, les théories impliquées, et les contributions de ce travail de thèse.

Premièrement, l'importance et la nécessité d'une étude sur la mesure robuste de variation sont abordées (Section 1.1). Deuxièmement, les mesures de variation fréquemment utilisées en traitement des signaux 1-D sont introduites. Leurs avantages et inconvénients sont analysés et énumérés. La mesure de changement dans les signaux 1-D se trouve souvent dans les méthodes de détection de changement. Pour les signaux fortement aléatoires tels que les signaux ECG et les signaux EEG, les fausses alarmes et les mauvaises détections sont des problèmes souvent rencontrés avec les méthodes existantes de mesure de changement (Section 1.2).

Troisièmement, les mesures de variation couramment utilisées en traitement d'images 2-D et 3-D sont introduites. Leurs avantages et inconvénients sont également détaillés. La mesure de variation dans l'image 2-D est couramment employée pour la détection des contours dans les images, dans les modèles de segmentation basés contours, et dans les méthodes de lissage d'images avec préservation de caractéristiques. Pour des images ayant des niveaux de bruit élevés, telles que les images DW et les images échographiques, de faux contours se produisent souvent avec les méthodes de détection de contour basées sur la mesure de variation, et de faux contours ainsi que des ponts apparaissent dans les résultats de segmentation basés contours. Dans tous ces problèmes, la difficulté se trouve dans le compromis entre la réduction du bruit et la préservation des caractéristiques importantes telles que les bords et les détails (Section 1.3).

Quatrièmement, les mesures de changement utilisées en traitement des données de type vecteurs et tenseurs sont introduites (Section 1.4)

En particulier, une approche de mesure du changement robuste, appelée mesure de nonstationnarité (en anglais, Non-Stationarity Measure, NSM), est introduite, y compris son contexte, ses applications et l'état de l'art dans ce domaine (Section 1.5).

En analysant les mesures de changement existantes et leurs applications, nous pouvons résumer les problèmes comme suit: (1) absence d'approches générales et robustes de mesure du changement; (2) fausses alarmes et mauvaises détections dans le cas de signaux fortement aléatoires ou faux bords dans le cas d'images très bruitées; (3) faux contours ou fuites lors de la segmentation d'images très bruitées; (4) difficulté d'obtention d'un compromis acceptable entre réduction du bruit et préservation des caractéristiques dans le lissage des images à faible RSB.

Afin d'aborder les problèmes mentionnés ci-dessus, nous proposons dans ce travail de thèse: (1) d'améliorer et de généraliser la méthode NSM; (2) d'étudier des méthodes de détection de changement dans un signal et la détection des contours ou des bords dans une image en s'appuyant sur la NSM; (3) de développer un modèle de segmentation GAC (Geometric Active Contour) basé sur la NSM et de l'appliquer; (4) d'étudier un filtre adaptatif basé sur la NSM et de l'appliquer.
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Background and significance of the research

Biomedical images and signals are the visible manifestation of the physical, chemical, and biological phenomena produced by the body itself or stimulated by an external excitation. Some typical examples are the electro-cardiographic (ECG) signal, the electroencephalographic (EEG) signal, ultrasound echographies, magnetic resonance images, etc. These data carry important functional information about organs, tissues, cells, even molecules, that is indispensable for clinical diagnosis.

Processing biomedical images and signals and extracting qualitative and quantitative biomarkers is of great help to assist the medical doctor to optimize diagnosis and treatment of diseases.

However, biomedical images and signals are known to exhibit weak intensities, high noises and strong randomness. For such images and signals, especially for those with high noise level, most processing approaches are unable to guarantee the desired result. Making existing methods more robust to noise by altering their designs or designing a new method which is more robust than the existing ones has always been an important topic in image and signal processing.

In addition, new medical imaging modalities offer new information (images) about organism which make possible to functionally study the microstructure of tissues and organs. However, owing to the complexity of the imaging formation process and environment, the obtained images are often corrupted by a high-level of noise, leading to a low SNR. For instance, diffusion tensor magnetic resonance imaging (DT-MRI, or DTI), coming into existence in the mid-1990s, appears to be the unique available technique of measuring the diffusion of water molecules in ex vivo and in vivo tissues and organs [Basser et al., 1994]. DTI data can help to characterize the composition, microstructure and architecture of a tissue, and assess its changes in development, disease, and degeneration. However, important features of raw diffusion weighted (DW) magnetic resonance images, such as homogeneous regions, edges, and details, are often buried into speckled mosaic-like patterns aroused by high noise, which hampers the performance and the potentiality of DTI in studying in vivo tissues functionally [Basser et al., 2000;Chen et al., 2005;Ding et al., 2005;[START_REF] Jones | [END_REF]. For such emerging medical imaging modalities, there is an urgent need to develop image or signal processing methods that are robust against high-level noises.

The analysis of a large number of image and signal processing methods shows that most of them use information on changes within an image or a signal, and thus include operators to quantify these changes. Such an operator can be considered as a realization of a "change measure" method. It is used to measure and quantify changes, providing the magnitude of changes for various image and signal processing methods. For instance, the magnitude of a gradient is usually used as a "change measure" to quantify the edge strength contained in an image.

A "change measure" is commonly used in methods dedicated to signal change detection, image edge detection, edge-based segmentation models, and feature-preserving smoothing. Such methods are collectively referred as "change-measure based" methods in this work. The "change measure" plays such an important role that it can affect, to a large extent, the Yanli ZHANG 7 Thèse en traitement de l'image médicale / 2013 Institut national des sciences appliquées de Lyon performance of the "change measure-based" method itself. When dealing with biomedical images or signals, the existing change measures may provide inaccurate information on changes due to the high noise level or the strong randomness of the data, so leading to the degradation of the performance of the "change-measure based" methods and the generation of undesirable phenomena.

In this context, our research perspective is to study a "robust change measure" and to propose several processing methods based on it. These methods should be robust to noise, and also reduce undesirable phenomena which are often present in the processed data obtained by more conventional "change measure-based" methods.

Moreover, prompted by new medical imaging techniques, many multi-valued image processing methods are proposed, which require corresponding "change measures". Typically, to deal with the tensor-valued data provided by the DT-MRI, many works focused on the processing of matrix-valued fields [Burgeth et al., 2011;Hamarnesh et al., 2007;Welk et al., 2007]. To this end, some definitions of the difference between two tensors are given [Arsigny et al., 2006;[START_REF] Burgeth | [END_REF]Demirci, 2007;Pennec et al., 2006;Wang et al., 2005;Wang et al., 2004d]. So far, there has been no literature to discuss the robustness of these definitions. How to robustly measure variations in tensor-valued data becomes a new problem in image processing.

The Non-Stationarity Measure (NSM) studied in this work was proposed as a rupture detection method in 1994 [Liu et al.] and mainly used for the edge detection and the segmentation of ultrasound images. In the early 1990s, ultrasound images were much more difficult to deal with than other images because of the presence of speckle, shadows, low contrast, and varying spatial resolution. The satisfactory segmentation results obtained by the NSM showed its advantage in noise immunity. As a matter of fact, the NSM can reflect and quantify changes in an image or a signal by locally measuring its degree of non-stationarity. It can therefore be considered as a "change measure".

In this work, we demonstrate that the NSM provides basic and important information on changes for various image and signal processing algorithms. Then, we propose several NSM based algorithms and we apply them to process data with high noise level and/or strong randomness. Additionally, we extend the NSM to measure changes in vector-and tensorvalued data. Finally we show that the NSM is a general and robust change measure which can deal with different forms, arbitrary dimensional data regarding multiple statistical parameters.

This work was supported by the French ANR 2009 (ANR-09-BLAN-0372-01), the National Natural Science Foundation of China ( 61271092 change measures. For instance, in monitoring applications, such as monitoring of the heart rate [Yang et al., 2006], air pollution [Chelani, 2011], or sleep apnoea [Severo et al., 2006], any modification from an acceptable standard state of the process is considered as a change. To detect such changes, cumulative sum (CUSUM) based methods are often used, where the cumulative shift is taken as the change measure. In contrast, in the change detection method proposed in [Ensign et al., 2010;Lavielle, 1999;2005], a signal change is usually considered as a transition between two adjacent properties of the signal. It occurs very fast with respect to the sampling period, if not instantaneously. To detect such a change, a dissimilarity or distance can be used to measure the difference between two successive segments before and after each time instant t 0 [Laurent et al., 1998;[START_REF] Malegaonkar | [END_REF] (see Fig. 1.1) or between two hypothetical situations (assuming a change or no change occurring at the central point t 0 of a segment) [START_REF] Ajmera | [END_REF]Tourneret, 1998]. In this work we focus on such changes as well as on change measures (dissimilarities or distances) and change detection methods.

At present, most change measures of a signal can be roughly grouped into the following three categories. 

Based on the Log Likelihood Ratio

The change measure based on the log likelihood ratio (LLR) [Delacourt et al., 2000;Gish et al., 1994] is a common type of change measure in signal processing. with the single Gaussian density. [START_REF] Ajmera | [END_REF] proposed to model the data with a Gaussian mixture model (GMM) with two Gaussian components instead of the single Gaussian density.

Based on the Bayesian Information Criterion

The change measure based on the Bayesian Information Criterion (BIC) is another common type of change measure in signal processing. Among these change measures, △BIC [Chen et al., 1998;[START_REF] Cheng | [END_REF]Huang et al., 2005] is the most important one which can be expressed as

    10 10 BIC BIC , Z BIC , Z log L L n        HH , (1.4) 
where  is the penalty factor which should ideally be 1. △BIC is similar to LLR except the fact that the likelihoods now are penalized by the number of parameters used in the model. The decent measuring accuracy of this approach is widely recognized; however, as the length of the signal segment grows, it incurs a heavy computational cost due to numerous computations. To reduce the computational cost, Zhou and Hansen [Zhang et al., 2011;Zhou et al., 2005] integrated the Hotelling's 2 T -Statistic, which has the advantage of low computations, with the BIC, known as the distance measure 2 T -BIC. Another change measure based on the BIC, called the bilateral scoring [START_REF] Malegaonkar | [END_REF]Malegaonkar et al., 2007]., calculates the difference between two signal segments of equal length ( xy nn  ) before and after each time instant 0 t

            log Y log Y log X log X xy p p p p     .
(1.5)

Kullback-Leibler and J-divergence

The last of the dominant change measures is the Kullback-Leibler (KL) divergence (or relative entropy) which estimates the distance between two random distributions [Kuncheva, 2013;Noble et al., 2006]. The KL divergence of a pair of distributions p and q is given as

() KL( || ) ( )log () i i i pz p q p z qz   . (1.6)
Yanli ZHANG 10 Thèse en traitement de l'image médicale / 2013 Institut national des sciences appliquées de Lyon If the two distributions are identical, the value of KL( || ) pq is 0. The larger the value, the higher the likelihood that p is different from q . In the real-life case, we do not have p and q but only approximations of them estimated from X and Y, respectively. However, KL divergence is not symmetric and the most frequently used way to symmetrize it is the J-divergence given by   1 J( , ) KL( || ) KL( || ) 2 p q p q q p  .

(1.7)

Besides the above three dominant types, there are other change measures including the Kolmogorov distances, Küllback distance, "Jensen-like" divergence [Laurent et al., 1998], the dissimilarity in the kernel method [Desobry et al., 2005], the Pearson divergence [Liu et al., 2012], etc.

Signal change detection

Change detection is a basic and longstanding issue in signal processing. The objective of change detection is to discover and locate abrupt property changes lying behind time-series data. In most cases, signal properties can be identified using some basic statistical parameters, such as mean [Lavielle, 2005;Lebarbier, 2005] and variance [Lavielle, 2005;Tourneret, 1998], or using some high-level representations, such as time-frequency representations [Laurent et al., 1998], mel-cepstral coefficients [START_REF] Cheng | [END_REF], wavelet coefficients [Desobry et al., 2005;Laurent et al., 1998] in more complicated applications.

Existing change detection approaches include ones based on a model [La Rosa et al., 2008;Malegaonkar et al., 2007], based on models selection [Lebarbier, 2005;Rigaill et al., 2012], and based on change measures (metrics) [START_REF] Ajmera | [END_REF]Al-Assaf, 2006;Chen et al., 1998;[START_REF] Cheng | [END_REF]Desobry et al., 2005;Ensign et al., 2010;Huang et al., 2005;Huang et al., 2006;Khalil et al., 2000;Laurent et al., 1998;Lavielle, 2005;[START_REF] Malegaonkar | [END_REF]Malegaonkar et al., 2007;Tourneret, 1998;Zhang et al., 2011;Zhou et al., 2005].

In all the above mentioned approaches, change measure (metric)-based ones have recently become popular because of their robustness and effectiveness for change detection without supervision. Those approaches first use a change measure method to highlight abrupt changes in a signal. Then, based on the obtained measurement curve which peaks usually indicate abrupt changes, they estimate the locations of the change points. However, when dealing with signals showing strong randomness, those curves often become fluctuating. To avoid fluctuations, they are often smoothed by low-pass filters [Delacourt et al., 2000;Zhou et al., 2005]. Such remedies effectively improve the robustness of the method, but they lack elegant mathematical basis and may increase the missing rate.

Change measures of an image and their applications 1.3.1 Change measures of an image

Change measures provide basic and important information on changes for various 2-D and 3-D image processing algorithms. The most typical change in an image is the brutal
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11 Thèse en traitement de l'image médicale / 2013 Institut national des sciences appliquées de Lyon modification of its mean value which is commonly referred to an edge. The magnitude of such a change is correspondingly referred to the edge strength. Existing change measures in 2-D and 3-D can be grouped into three categories: based on derivatives, based on phase congruency and local energy, and based on probability and statistics.

Based on derivatives

The magnitude of the gradient is the most commonly used change measure in image processing. Gradient is usually computed by differential operators, such as Sobel, Prewitt, Roberts, etc. The gradient magnitude measures a local intensity change in a simple and effective way, but it is sensitive to noise [Gonzalez et al., 2002]. Therefore, in practice, it is reserved to deal with low noise images [Kawaguchi et al., 2003;Laligant et al., 2010], or images that have been pre-processed using smoothing techniques [Barcelos et al., 2003;Chen, 2008;Direkoglu et al., 2011;[START_REF] Xu | A Method Based on Rank-Ordered Filter to Detect Edges in Cellular Image[END_REF]].

An efficient optimization scheme to lessen the sensitivity of gradient to noise is the one performed by the Canny operator [Canny, 1986]. In the implementation, the Canny operator is approximated using the first derivative of a Gaussian function. Two steps can be distinguished in the change measurement procedure carried out by the Canny operator: first, the raw image is convolved with a Gaussian filter; second, the first derivatives in the horizontal direction and the vertical direction of the filtered image are returned by convolving the image with a classical edge detection operator, Roberts, Prewitt, Sobel, for example. Thereby, the magnitude of the gradient (edge strength) can be obtained. Since the Canny operator is essentially based on gradient, the resultant magnitude can contain false information on change in some noisy cases. To overcome this drawback, solutions were proposed that introduce remedial steps performed after the gradient-based change measurement, such as the embedded confidence [Meer et al., 2001], the fused edge strength maps (ESM) [Shui et al., 2012], the edge following algorithm [Somkantha et al., 2011], and the edge membership degrees [Lopez-Molina et al., 2011].

In 1992, Mallat combined the Canny operator with the multiscale wavelet, clearly explaining the significance of multiscale idea in image edge detection. In fact, at a single scale, the modulus [Mallat, 2009] of some particular analyzing wavelet [Heric et al., 2007;[START_REF] Mallat | [END_REF]Nes, 2012;Sun et al., 2004], carrying the properties of abrupt signal changes such as edge slope and width, is equivalent to an intensity variation measure. However, the modulus at a finer scale, although representing edge position more accurately, is easily affected by noise. Therefore, in order to suppress spurious responses, the technique of maxima curves [Mallat, 2009] was employed to combine edge information at several scales.

Other derivative-based change measures, such as, the instantaneous coefficient of variation (ICOV) [Yu et al., 2004], were also designed to provide better immunity to noise.

Based on phase congruency and local energy

In studies on the phenomenon of Mach band, Morrone et al. [Morrone et al., 1986] found that there was a high phase congruency where features could be perceived in the image. Based on the theory of phase congruency, local energy was introduced to detect features. Morrone and Owens [Morrone et al., 1987] and [START_REF] Morrone | Feature Detection in Human Vision: A Phase Dependent Energy Model[END_REF] 

calculated
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12 Thèse en traitement de l'image médicale / 2013 Institut national des sciences appliquées de Lyon the local energy using the original signal and its 1-D Hilbert transform. However in practice, it is not convenient to compute the local energy on the horizontal and vertical orientations, separately. Subsequently, Kovesi developed a novel algorithm to calculate the local energy by using the odd and even log Gabor wavelet [Kovesi, 2000]. Then the authors of [Ke et al., 2011] introduced the 2-D discrete Hilbert transform to simplify the calculation of the local energy, and to improve the result of feature detection.

Since phase congruency marks a line feature with a single response and since its magnitude is largely independent of the local contrast [Kovesi, 2000], it is often used in the processing of images with abundant line features [Struc et al., 2009;Wong et al., 2008;Zhang et al., 2012]. However, the phase congruency is very sensitive to noise. Future work is required to improve the algorithm of phase congruency to control noise more efficiently.

Based on probability and statistics

In a local area, usually determined by a neighborhood window, the variance [Chuang et al., 1993;Park et al., 1995] or the weighted variance [Hou et al., 2003;Law et al., 2007] were computed as discontinuity measures. In [Kim et al., 2004], the authors computed the difference between the average intensities of two pixel groups formed by the ideal binary pattern as edge strength.

The log-likelihood ratio was also used as a local measure of edge strength in edge detection [Konishi et al., 2003a;[START_REF] Konishi | Statistical Edge Detection: Learning and Evaluating Edge Cues[END_REF] and in image segmentation [Zhu et al., 1996].

These statistical change measures are more effective than the gradient magnitude in noisy cases, but computationally more demanding.

Besides the change measures mentioned above, there also exist other interesting change measure methods. For instance, in [Bouda et al., 2008;Lopez-Molina et al., 2010;Sun et al., 2007], physics-based methods were proposed that use either the "universal gravitational force" or the "electric field" to measure image intensity variations.

All the change measures mentioned above have their advantages and disadvantages. Their common problem is however the decrease of their performance in high-level noise cases. Therefore, it is still a challenge issue to design a change measure with excellent noise immunity.

Image processing tasks involving change measures

Edge detection, edge-based segmentation, and feature-preserving smoothing are the three image processing tasks in which change measures of an image are often used.

Edge detection

Edge detection is a fundamental task in image processing, machine vision and computer vision. The results of edge detection particularly affects some high level tasks, such as feature extraction, target recognition, and image understanding.

Change measure-based edge detection approaches are basic and important because of their objectiveness and non-supervision. They first use a measurement method to highlight edges occurring between objectives, between regions, or between target and background. Then,
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13 Thèse en traitement de l'image médicale / 2013 Institut national des sciences appliquées de Lyon based on the obtained edge strength map, they estimate the locations of edges using subsequent processing steps. The Canny detector is considered to be one of the most successful approach of edge detection, and still widely used in many image processing tasks [Li et al., 2010;Shacham et al., 2007;Zhang et al., 2010]. The three steps of edge detection proposed in the Canny detector, estimation of the gradient magnitude, non maxima suppression, and hysteresis thresholding, have become an usual procedure of edge detection, except that different change measures other than gradient magnitude are designed in order to better highlight edges [Lopez-Molina et al., 2011;Shui et al., 2012].

In a change measure-based edge detection approach, change measure plays such an important role that the detected edges are greatly dependent on the results of the change measurement. When dealing with biomedical images, like DW magnetic resonance images, the existing change measures may provide inaccurate information on edges due to the high noise level, which leads to the generation of false edges in the results.

Edge-based segmentation

Segmentation is the process of partitioning an image into different regions. In medical imaging, these regions often correspond to different tissue classes, organs, pathologies, or other biologically relevant structures. Medical image segmentation is made difficult by low contrast, noise, and other imaging ambiguities.

Edge-based schemes and region-based schemes are two major types of image segmentation methods. Traditional edge-based segmentation schemes are performed based on edges obtained from edge detectors. However, in noisy cases, the obtained edges may not form closed contours. To separate topologically unconnected objects, these unclosed edges must be extended and connected to construct closed contours at approximate boundaries. In the early 90's, the geometric active model (GAC) formed through a combination of level set and active contour [Caselles et al., 1993;Malladi et al., 1995] was introduced into the field of image processing and computer vision. The GAC has several advantages, such as, handling topological changes in a natural and efficient way, and performing numerical computations on a fixed Cartesian grid without having to parameterize the points on a contour. Since its first application to the edge-based segmentation, the GAC has become increasingly popular as a general framework for image segmentation.

The edge-based GAC model guides the motion of the zero level set and stops the level set evolution using the image gradient magnitude in the external energy term. However, in highly noisy cases, the gradient may provide inaccurate information on edges for the edge-based GAC model so that such model can easily produce false contours or pass through weak object boundaries, called leakages.

Feature-preserving smoothing

As a special case of filtering, image smoothing is commonly applied in a processing chain to improve the visual appearance of an image and to simplify subsequent image processing stages such as feature extraction, image segmentation or motion estimation [Jähne, 1997]. As smoothing is sometimes applied to remove small details from an image prior to large object extraction and to bridge small gaps in lines or curves [Gonzalez et al., 2002], the term of Yanli ZHANG 14 Thèse en traitement de l'image médicale / 2013 Institut national des sciences appliquées de Lyon feature preserving smoothing (FPS) is used to emphasize another type of smoothing which aims to reduce undesirable distortions, due to the presence of noise or the poor image acquisition process, while preserving important features such as homogeneous regions, discontinuities, edges and textures [START_REF] Grazzini | [END_REF]Saintmarc et al., 1991;Tomasi et al., 1998].We focus on such smoothing in this work.

Traditional filters usually perform fixed operations on fixed neighborhoods, that is, their parameters cannot adapt themselves to the local image features. The most obvious side effect created by these nonadaptive filters is the significant blurring caused by averaging of distinct populations on the boundaries between two regions.

To avoid the undesirable phenomenon of blurring, there has been in particular substantial efforts in developing adaptive filters. A generic idea underlying most of them is to update a pixel's intensity through a local weighted averaging of its neighbor pixels' intensities within a neighborhood. They can adjust either the averaging weights or the neighborhood to the local image features. The filters having adaptive weights usually operate within a fixed neighborbood, such as nonlinear diffusion filters [Ding et al., 2005;Perona et al., 1990;Weickert, 1998] or Bilateral filters [Elad, 2002;Paris et al., 2008]. And the filters having adaptive neighborhoods often perform a fixed operation, such as, adaptive median filter [Gonzalez et al., 2002], amoeba dynamic structuring element [Lerallut et al., 2007], adaptive geodesic neighbourhood [START_REF] Grazzini | [END_REF]. These adaptive filters are more robust than nonadaptive filters and appropriate for FPS.

In such adaptive filters, the intensity gradient often exists to provide information on the local image intensity variations so that they can intrinsically allow the processing of image pixels with different strategies depending on the region where they are positioned. However, when dealing with biomedical images, the intensity gradient may provide inaccurate information on change due to the high noise level, which is one of the reasons for the degradation of the performance of these adaptive filters. For low-SNR images, it is hard to achieve a good compromise between noise reduction and feature preserving. There is a need for better adaptive schemes and robust change measures.

Change measures of vector-and tensor-valued data 1.4.1 Change measures of vector-valued data

Currently, change measures of vector-valued data are often used for processing color images, and relatively rarely used for processing biomedical images. The Euclidean distance and the orientation difference between two vectors are change measures that were once applied to restore direction fields in DTI [Coulon et al., 2004] and to detect edges in multiple channel images [Lukac et al., 2007].

Minkowski Distance and orientation difference

There are two common change measures of vector-valued data: the Minkowski distance and the orientation difference. The Minkowski distance between two vectors

 

12 , , , 

n n U u u u  R and   12 , , , n n V v v v  R
  1 1 , p n p ii i d U V u v       . (1.8)
This definition is typically used with p being 1 or 2. The latter is the Euclidean distance, also written as UV  , while the former is sometimes known as the Manhattan distance.

The orientation difference between U and V is defined as

  , arccos | | | | UV d U V UV       , (1.9)
where " " is the scalar product of the two vectors.

Based on statistics

Scharcanski et al. defined the change measure of a vector-valued image at an arbitrary pixel   00 , xy as the magnitude of the "gradient" [Scharcanski et al., 1997], although the "gradient" was obtained with two directional operators of size     
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Therefore, the magnitude of the "gradient" at pixel   00 , xy can be expressed as

2 2 0 0 0 0 ( , ) ( , ) xy U x y U x y   
. It is seen that, in order to obtain noise immunity, multiple vectors are averaged for calculating the gradient.

Demirci [Demirci, 2007] used the average of eight dissimilaries between the current point U and its 8-neighbors , 1, ,8

i Vi  as the change measure : [Demirci, 2007]  

8 1 1 ( ) , 8 i i d U d U V    , (1.12)
where   , i d U V can be the Euclidean distance or the orientation difference of two vectors defined in (1.8) and (1.9). In this definition, the average of multiple differences of two vectors is calculated for noise immunity.
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Based on rank ordering

In edge detection of a vector field, the change measures based on rank ordering, such as the minimal spanning tree (MST) ordering in [Theoharatos et al., 2005] and the minimum vector dispersion (MVD) in [Trahanias et al., 1993;1996], usually possess good noise immunity,. Among these ranking schemes, the MVD, expressed as

1 1 1 MVD min , 1, 2, , ; , l n j i j i U U j k k l n l           , (1.13)
is well known for its improved noise performance since the minimum operation makes it insensitive to long-tailed noise and the averaging operation makes it insensitive to short-tailed noise.

Sometimes, in order to obtain good noise immunity, the change measure of vector-valued data may be designed to be very complex, for example, the magnitude of the maximum variation rate proposed in [Kuo et al., 2007].

Change measures of tensor-valued data

At present, change measures of tensor-valued data are often used in the segmentation and the smoothing of diffusion tensor images and texture images. These change measures are restricted to the differences between two tensors.

Frobenius norm

The Frobenius norm, sometimes also called the Euclidean norm, of two matrices M 1 and M 2 is defined as

1 2 1 2 1 2 , [( ) ( )] T F tr    M M M M M M , (1.14)
where F represents the calculation of the Frobenius norm, and () tr  the calculation of the trace of the matrix. The Frobenius norm is the change measure first used for processing tensor-valued data, for instance, the smoothing [Welk et al., 2007] and the segmentation [Rousson et al., 2004;[START_REF] Wang | Tensor Field Segmentation Using Region Based Active Contour Model[END_REF]Wiegell et al., 2003] of diffusion tensor magnetic resonance images. This straightforward measure a priori leads to simple computations. Unfortunately, although the Frobenius norm is well adapted to general square matrices, it is unsatisfactory for tensors, positive definite symmetric matrices. Typical problems in Euclidean operations on tensors include nonpositive eigenvalues, tensor swelling, asymmetric tensors, etc.

Dissimilarity measure based on J-divergence

A diffusion tensor "distance" was defined as the square root of the J-divergence of two probability distributions [Wang et al., 2005;Wang et al., 2004d] ( | , ) pt rT represents the probability density of the displacement r of water molecules starting from a given location at time t , given a diffusion tensor T . If ( | , ) pt rT can be described as a Gaussian distribution, then

11 1 2 1 2 2 1 1 ( , ) ( ) 2 2 d tr n     T T T T T T , (1.16)
where n is the size of the square matrix T. This definition was used in the segmentation of texture images [Wang et al., 2004d] and diffusion tensor images [Wang et al., 2005;Wang et al., 2004d].

Riemannian metrics

To fully circumvent the difficulties in Euclidean operations on tensors, affine-invariant Riemannian metrics have been recently proposed for tensors by several teams. Among these Riemannian metrics, the most well-known is the one proposed in [Pennec et al., 2006] which can be expressed as

    1/2 1 2 2 1 2 1 1 / = log , d   T T T T T , (1.17)
where || ||  is an Euclidean norm on symmetric matrices.

Lenglet et al. also ended up with the same metric tensors, called geodesic distance [START_REF] Lenglet | Statistics on the Manifold of Multivariate Normal Distributions: Theory and Application to Diffusion Tensor Mri Processing[END_REF]. In [Lenglet et al., 2006a], the geodesic distance was compared to the Frobenius norm, and the J-divergence in the segmentation of tensor fields. The article suggested that the geodesic distance offered a better segmentation result. These Riemannian metrics were applied for interpolation [Batchelor et al., 2005;Pennec et al., 2006], segmentation [Guo et al., 2008;Lenglet et al., 2006a;[START_REF] Lenglet | Statistics on the Manifold of Multivariate Normal Distributions: Theory and Application to Diffusion Tensor Mri Processing[END_REF]Malcolm et al., 2007], and regularization [Castano-Moraga et al., 2007;Pennec et al., 2006] of tensor fields.

With affine-invariant metrics, symmetric matrices with negative and null eigenvalues are at an infinite distance from any tensor and the swelling effect disappears. Practically, this prevents nonpositive eigenvalues to appear, which is particularly difficult to avoid in Euclidean algorithms. However, the price paid for this success is a high computational cost spent on matrix inverses, square roots, logarithms, and exponentials.

Log-Euclidean metric

Affine-invariant Riemannian metrics have excellent theoretical properties, but also lead to complex and slow algorithms in practice. To remedy this limitation, a simple similarityinvariant Log-Euclidean metric [Arsigny et al., 2006] was proposed, which is given by

        1/ 2 2 1 2 1 2 , log log d tr      T T T T .
(1.18)
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Although not yielding full affine-invariance as the affine-invariant metrics, this metric is invariant by similarity (orthogonal transformation and scaling) [Vincent [START_REF] Arsigny | [END_REF], but with much simpler and faster computations.

Background on the Non-Stationarity Measure

From the 1950s through the 1970s, different types of medical imaging equipment appeared, including magnetic resonance imaging (MRI), ultrasound, X-ray and computed tomography (CT) scans. Since the late 1970s to the early 1980s, they began to be applied to assist in the diagnosis of illness and injury. Although different in the imaging principles and parameters, they all create images of the human body for clinical purposes or medical science. Since the late 1980s to the early 1990s, methods used to process these medical images began to appear in large numbers. At that time, the ultrasound image segmentation was strongly difficult because of speckle, shadows, and low contrast, as well as low spatial resolution.

A review on image segmentation techniques [Pal et al., 1993] suggested that: at that time, most techniques were not suitable for noisy environments; although Markov random field (MRF) model and neural network architecture (NNA) were robust to noise, they are computationally involved which was an insurmountable problem at that time. In contrast, the segmentation method proposed in [Liu, 1994;[START_REF] Liu | [END_REF], based on the Non-Stationarity Measure (NSM) together with thresholding and thinning, provided a satisfactory result with good noise immunity and less computation.

The NSM was first proposed in 1994 [Liu, 1994] and mainly used for the edge detection and segmentation in ultrasound images. Based on the concept of stationarity in the random process theory, the authors established a multidimensional geometric space where the geometric meaning of stationarity and nonstationarity of signal was explained. Each point in the space, corresponding to a signal segment in the time domain, represents a (non-)stationary state. The NSM is defined as a distance from any non-stationary point to the stationary line in a given space. This distance is mapped into the time domain and considered as the NSM of the central point of a signal segment. The NSM measures the difference between two states, represented in a multidimensional geometric space, the non-stationary state and a stationary state, while conventional methods consider the difference between two intensities or the weighted sums of these differences as change measures. The impact of noise is much smaller on the measurement of the NSM than on the simple difference between two intensities in the time-domain. This is why the NSM is particularly robust to noise compared to conventional techniques based on derivatives. The advantage of the NSM operator in terms of noise immunity is theoretically proved in [Liu, 1994;[START_REF] Liu | [END_REF].

Unfortunately, the research results in [Liu, 1994] had not been published except several short meeting papers [Liu et al., 1993a;[START_REF] Liu | [END_REF][START_REF] Liu | A New Approach for the Segmentation of Stochastic Processes[END_REF]] and a French article [START_REF] Liu | [END_REF]. Additionally, no following study was carried out afterwards. But the good noise immunity of the NSM has been proved by its long term use in the software package Creatools developed by the Creatis.
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Existing problems and contents of this research

Change measure is commonly used in methods for signal change detection, image edge detection, edge-based segmentation model, and feature-preserving smoothing. When dealing with biomedical images with high noise level and signals of strong randomness, the existing change measures may provide inaccurate information on change, which leads to the degradation of the performance of the change measure-based method and thus the generation of undesirable phenomena.

Analyzing the existing change measures from literature and their applications, we can summarize the problems encountered:

(1) lack of general and robust change measure So far, there has been a wide variety of change measurement methods serving for the image and signal processing. They are based on different principles and possess various advantages and disadvantages. However, most of them cannot measure changes regarding multiple statistical parameters, changes in data of arbitrary dimension, and changes in data of different types. There is a lack of a general change measure robust to noise able to deal with different types of data, arbitrary dimensional signals regarding multiple statistical parameters.

(2) false alarms and misdetections occurring in change detection of strong random signals and false edges occurring in edge detection of highly noisy images Signal change detection and image edge detection are the two most direct applications of change measures. In signal change detection, change measure-based methods have recently become popular because of their robustness, effectiveness, and non-supervision. However, for strong random signals, false alarms and misdetections often occur spoiling the results. With respect to image edge detection, approaches based on change measures have the advantages of being objective and unsupervised. However, for highly noisy images, false edges often occur so polluting the results.

(3) false contours and leakages in segmentation of highly noisy images

The edge-based GAC model guides the motion of the zero level set and stops the level set evolution using the image gradient magnitude from the external energy term. In highly noisy cases, the gradient provides inaccurate information for the edge-based GAC model so that such model may easily produce false contours or pass through weak object boundaries (leakages). ( 4) Difficulty in making a compromise between noise reduction and feature preservation in smoothing of low-SNR images Intensity gradient often exists in adaptive filters which aim to reduce undesirable distortions caused by noise while preserving important features. When dealing with low-SNR biomedical images, like diffusion weighted magnetic resonance images, the intensity gradient may provide inaccurate information on change due to the high noise level, which is one of the reasons for the degradation of the performance of such technique. It is difficult to achieve a Yanli ZHANG 20 Thèse en traitement de l'image médicale / 2013 Institut national des sciences appliquées de Lyon good compromise between noise reduction and feature preserving while smoothing low-SNR images.

Aiming to bring solutions to the above problems, we propose 4 contributions in this work:

(1) Improvement and extension of the Non-Stationarity Measure Despite various change measurement methods, there is a lack of a general and robust change measure able to deal with different forms, arbitrary dimensional data regarding multiple statistical parameter.

Compared with other change measures, the NSM appears to be more robust to noise. Moreover, analyzing its principle, shows that the NSM possesses an intrinsic expansibility. In this work, the NSM will be improved and extended to a general change measure able to quantify changes in scalar-, vector-, and tensor-valued data of N -dimensions regarding the r th -order moment.

(

2) NSM-based signal change detection and image edge detection methods and their applications

For strongly random signals, false alarms and misdetections often occur in the change detection results. Focusing on the problem, we will propose a NSM-based change detection method and apply it to detect changes in biomedical signals: ECG and EEG.

For highly noisy images, false edges often occur in the edge detection results. Focusing on the problem, we will propose a NSM-based edge detection method and apply it to detect edges in biomedical images: cardiac diffusion weighted (DW) magnetic resonance images.

(

3) NSM-based GAC image segmentation model and its application

In highly noisy cases, the edge-based GAC with gradient as the change measure may easily produce false contours or pass through weak object boundaries (leakages) during the segmentation process.

In this work, we will design a NSM-based geometric active contour (NSM-GAC) model and apply it to segment ultrasound images of the carotid.

(4) NSM-based adaptive filter and its application

When smoothing low-SNR biomedical images, it is hard to achieve a good compromise between noise reduction and feature preserving.

In fact, for any image pixel, a better operation to update its intensity is to average intensities of the pixels within its homogeneous neighborhood. So we design a new featurepreserving smoothing approach that appropriately choose the homogeneous neighborhood with the help of the robust NSM, and we apply it to enhance cardiac DW images. ............................................................................. 2.3.2 Outputs of the NSM operators ..................................................................................... 2.3.2 

Résumé en français

La mesure de nonstationarité (NSM) avait été proposée initialement comme technique de détection de rupture. Elle reflète les changements d'une image ou d'un signal et les quantifie en mesurant le degré de nonstationarité locale. Elle peut donc être considérée comme une mesure de changement. Dans le présent travail, en tant que méthode de mesure du changement, la NSM fournit des informations importantes de base pour les algorithmes de traitement d'images ou de signaux.

La méthode NSM initialement proposée présente cependant certaines limitations: a) la notion de (non-) stationnarité sur laquelle est fondée la NSM ne peut pas être utilisée pour étudier la stationnarité ou nonstationnarité des données vectorielles ou tensorielles; b) certaines notions utilisées dans la définition initiale de la NSM ne conviennent plus aux données vectorielles ou tensorielles; c) le comportement des opérateurs NSM n'a pas été étudié en détail et en profondeur; d) la sélection des paramètres cruciaux n'a pas été abordée.

Nous étions ainsi conduits à pallier ces insuffisances et à améliorer la méthode. Dans ce cadre, nous avons d'abord proposé la notion de stationnarité d'un paramètre en général comme base pour la méthode NSM. Par rapport à la notion de stationnarité classique, cette nouvelle notion définit la stationnarité par rapport à un paramètre (caractéristique) statistique du signal, et n'impose pas de forme concrète pour le paramètre et pour le signal, ce qui rend cette nouvelle notion de stationnarité plus générale, adaptative et évolutive. A partir de cette notion de stationnarité plus générale, nous avons calculé des paramètres statistiques glissants à l'aide d'une fenêtre, et construit ainsi un espace de paramètres statistiques glissant, ce qui nous a permis d'en déduire la mesure de non-stationnarité. Ensuite, le processus de construction de l'opérateur de mesure de la non-stationnarité a été formulé, et la réponse de l'opérateur à des signaux d'entrée typiques a été calculée analytiquement, ce qui nous a permis de démontrer de manière théorique la robustesse de l'opérateur d'ordre deux de mesure de la non-stationnarité. Enfin, le choix de la largeur de la fenêtre impliquée dans l'opérateur de mesure de non-stationnarité a été étudié en détail.

Introduction

Non-Stationarity Measure (NSM) was proposed as a rupture detection method in 1994 [Liu, 1994]. In fact, the NSM can reflect and quantify changes in an image or a signal through measuring its degree of non-stationarity, and therefore can be considered as a change measure. In this work, as a change measurement method, the NSM provides basic and important information of changes for various image and signal processing algorithms.

The original NSM method, however, has the following inadequacies: a) the basic concept of (non-) stationarity cannot be used to investigate the stationarity or non-stationarity of the vector-or tensor-valued signal; b) some notions, vector space for example, used in the definition of the NSM are no longer appropriate for the vector-or tensor-valued signal; c) the behaviors of the NSM operators have not been studied thoroughly; d) the selection of critical parameters was not investigated.

In this chapter, the original NSM is further improved and extended. On the one hand, the notion of general parameter stationarity (GPS) is introduced as the basis of the NSM method in Section 2.2.1. Based on the GPS, the principle of the NSM is elaborated using more appropriate notions, and a general formulation of the NSM is given (Sections 2.2.2 and 2.2.3). On the other hand, Section 2.3.1 generalizes the construction of a NSM operator; Section 2.3.2 studies the outputs of NSM operators in several typical cases; Section 2.3.3 provides the theoretical proof of the advantage of NSM operators in terms of noise immunity; Section 2.3.4 studies the selection of critical parameters.

Concept of non-stationarity measure

General parameter stationary

The inverse of change is stationarity. If certain feature (usually quantified by a statistical parameter) of a signal remains invariant in some sense, the signal is considered "stationary" regarding to the feature. More specifically, a signal ()

xn is said "stationary regarding  " or " stationary" if its statistical parameter () n  is a constant C independent of n: () nC   . (2.1)
The statistical parameter () n  can be mean, variance, higher order moments, even more complex statistics that can describe the signal feature at each time instant. In addition, in respect of data type,  can be a vector or matrix other than scalars. In this case, the constant C is correspondingly a vector-valued or a matrix-valued constant which does not change with time. Owing to the diversity of  , the "  stationary" can be considered the "general parameter stationary".

The GPS is different from the strict-sense stationarity (SSS) and the wide-sense stationarity (WSS) in stochastic process. Either the SSS or the WSS defines a stationary random process by requiring multiple statistical parameters to be independent of n. However, in some cases, we want to know the stationarity or non-stationarity of the signal regarding its certain statistical parameter; for instance, we want to know if a signal contains a change in its mean

Yanli ZHANG

25 Thèse en traitement de l'image médicale / 2013 Institut national des sciences appliquées de Lyon but no change in its variance (its variance is independent of n , but its mean not). With the GPS, we can say that the signal is stationary regarding its variance and non-stationary regarding its mean, while it is simply considered non-stationary according to the WSS or the SSS. Different from the concept of (non-) stationarity used by the original NSM, the proposed GPS allows investigating the stationarity or non-stationarity of the vector-or tensor-valued signal.

Generally, real signals are not globally stationary but stationary only over short periods. In this work, we study the stationarity or non-stationarity of a signal within an observation window. If the statistical parameters within a 21 W  wide observation window g (centered

on time nk  ) satisfy       k W k k W          , (2.2)
the signal () xn is then locally stationary over the duration of length 21 W  . On the contrary, with statistical parameters not satisfying (2.2), the signal () xn is locally non-stationary. For simplicity purpose, we will use the term "stationary" and "non-stationary" to mean "locally stationary" and "locally non-stationary" in the following.

With respect to the statistical parameter () n  , it is derived from a number of signal samples.

Yet, in most cases, the signal to be processed is obtained in a single acquisition. Therefore, intensities around the current time are often used as substitutes for those obtained from multiple acquisitions to estimate () n  . For instance, time averages (or more exactly, time interval averaging) calculated within a sliding window h are often substituted for ensemble averages to estimate the r th -order moment of a signal ()

xn :   1 ˆ( ) ( ) ( ) 21 n L n L rr r i n L i n L m n h i n x i x i L            , (2.3)
where L is the half width of the sliding window h . The statistical parameter estimated using a sliding window is called the moving statistical parameter in the present study. And then, the signal feature described by the moving statistical parameter is correspondingly called the moving feature.

Moving feature space

In this subsection, a multidimensional geometric space, called the moving feature space, is constructed based on the notion of the GPS, the moving statistical parameter and the moving feature. This space is essentially a vector space in the case of the scalar-valued signal, as it was called in the original NSM method [Liu, 1994]. In this work, the NSM is generalized to deal with the vector-and the tensor-valued data as well as the scalar-valued data. In the case of the vector-or the tensor-valued data, the multidimensional space is no longer a vector space. Therefore, instead of the notion of the vector space, the moving feature space is used in the present NSM to cover all the three cases. In the following, the NSM will be elaborated and explained using more appropriate notions like the moving feature space, the GPS, and the moving statistical parameter, etc. Thèse en traitement de l'image médicale / 2013
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The moving feature space is a ( 21 W  )-dimensional geometric space, written as 21 W  R . The dimension of the moving feature space 21 W  R equals the width of the observation window g in time domain. The coordinates of a point

K in the moving feature space   1 2 2 1 ˆˆ, , , W    
correspond to the moving statistical parameters inside the observation window g , that is,

1 1 2 1 ˆˆˆˆˆ( ), , ( ), , ( ) WW k W k k W             . If the coordinates of the point K equal each other, namely 1 1 2 1 ˆˆŴ W         , that is, ˆˆ( ) ( ) ( ) k W k k W          ,
the point K then represents a stationary state corresponding to a stationary signal segment

    () x k W x k x k W      
. All the stationary state points constitute a line  , called the stationary subspace, which passes through the origin. In contrast, the point whose coordinates are not all equal represents a non-stationary state corresponding to a nonstationary signal segment. All the non-stationary state points constitute a non-stationary subspace, which is the complementary part of  within 21 W  R . Taking 

) ( ) ( ) k W k k W a           , therefore the signal segments     () x k W x k x k W       in a T correspond
) ( ) ( ) k W k k W b         
 , and therefore signal segments  

x k W    () x k x k W     in b T correspond to the same stationary point B in 21 W  R .
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Non-stationarity measure

The non-stationarity measure (NSM) is defined as a distance   , dK from the state point K to the stationary line  in the moving feature space 21 W  R , see Fig. 2.1(c). This distance is mapped into the time domain and taken as the NSM of the central point of the observation window, see Fig. 2.1(d). Using to represent the operation of the NSM operator, we have

    ( ) ( ) , y n x n d K    . (2.4) If K , that is, constant i   , then ( , ) 0 dK ; If K , that is, constant i   , then ( , ) 0 dK , where 1,2, ,2 1 i W   .
According to the definition of the distance from a point to a line, the NSM is then calculated as

    ( , ) min , , Q d K d K Q d K K     , (2.5)
where Q is an arbitrary point on the stationary line  , and K is the stationary point which makes ( , ) dK minimal. The maximal distance from the transition trajectory  to the stationary line  in the case of Fig. 2.1 is obtained at the non-stationary point O, which is expressed as ( , ) max ( , ) max min ( , ) ( , ). In principle, any definition of the distance d can be used to calculate the NSM as long as it can appropriately quantify the distance between the non-stationary state point and the stationary line  . In this work, following the definition of the p-norm, we define the distance from point K to its stationary point K as 

Q KK d O d K d K Q d O O         (2.
    21 1 , ( ) , W p p i i d K K g i dis        , (2.7) where   ˆ, i dis  , 1,2,
    21 1 , ( ) , W p i i d K K g i dis        .
(2.8)

Here p, a non-zero natural number, is taken as the order of the NSM operator. In addition, the coordinate  of K can be estimated by setting to zero the partial derivative of d with respect to  , 0

d     .
To sum up, the NSM ˆ() yn of the scalar-valued signal () xn in time domain can be expressed as

  + ( ) ( ) ( ) ( ) nW p i n W y n x n g i i        .
(2.9)

The NSM measures the difference between two states in a multidimensional geometric space, the non-stationary state (corresponding to the current moment in time domain) and a stationary state, while other methods take the difference between intensities at two moments or the weighted sums of these differences as change measures. The impact of noise is much smaller on the measurement of NSM than on the simple difference between two intensities in time-domain. This is why the NSM is particularly robust to noise compared to conventional techniques based on the derivative.
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Operators of non-stationarity measure 2.3.1 Construction of NSM operators

The construction of a NSM operator needs to account for two points: a. The signal feature to study, which helps determine the statistical parameter  in (2.8). b. The choice of the distance between the non-stationary state point and the stationary line  , which amounts for determining   ˆ, i dis  , the weighted coefficient () gi and the order p of the NSM in (2.8). The procedure of calculating the NSM of a signal, see Fig. 2.2, includes:

1. estimate the moving statistical parameter  with a sliding window h ; 2. formulate the NSM according to the statistical parameter  and the distance d ; 3. estimate  by 0 () xn at the current time, the center of the observation window g . 

d     ; 4. calculate   , d K K as the NSM of signal
ˆ( ) ( ) ( ) ( ) 1 ( ). 21 nW i n W nW i n W n m n h i n x i xi W              (2.10)
Second, according to (2.9), the 2 nd -order NSM of () xn regarding the 1 st -order moment can be expressed as

  + 2 1 1 1 ˆ( ) ( ) ( ) ( ) nW i n W y n x n g i n m i m        , (2.11)
where 1 m is the coordinate of the stationary state point K . Setting 0

d     , the analytical expression of 1 m is obtained as 11 ( ) ( ) nW i n W m g i n m i       .
(2.12)

Substituting equation (2.12) into (2.11), we arrive at Usually, the half width L of the sliding window h takes the same value as the half width W of the observation window g , that is, LW  .

  2 2 1 1 1 ˆˆ( ) ( ) ( ) ( ) ( ) n W n W i n W i n W y n g i n m i g i n m i                , ( 2 

Outputs of NSM operators

The basic properties of the outputs of NSM operators are first given in this section. Then the outputs of the NSM operators in a number of typical cases are studied. To keep the theoretical analysis simple, continuous signals instead of discrete ones are addressed in the section.

Assume that the input signal () xt is composed of a useful signal () st (containing a discontinuity) and a zero mean noise () nt :
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(2.14)

The response of the p th -order NSM operator to () xt can be expressed as:

            ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) p x p y t x h x h g g t d s h s h g n h n h g g t d                                , (2.15)
where both the sliding window function () ht and the observation window function () gt are symmetric and normalized. When ( ) 0 nt  , the response of the NSM operator to the useful signal () st is expressed as

    ˆ( ) ( ) ( ) ( ) p s y t s h s h g g t d             . (2.16)
Obviously, ˆ() s yt has three properties [Liu, 1994]:

Property 1 Amplitude-shift invariance
When the amplitude of the input signal shifts to an arbitrary magnitude  , that is, () The original NSM [Liu, 1994] gave an analysis on the distances (the NSM) corresponding to 1 p  , 2 p  , and p . Compared with the case of 1 p  or p , theoretical results can be obtained more easily with 2 p  . We take three typical 2 nd -order NSM operators ( 2 p  ) as examples, and study their responses to three typical input signals. The 2 nd -order NSM operator can be expressed, in continuous form, as 

st shifts to () st   , the NSM remains invariant ˆ( ) ( ) ss y t y t    . ( 2 
      22 ˆ( ) ( ) ( ) ( ) s y t s t s h g t s h g t          , ( 2 

Three typical input signals

The ideal step signal 1 s describes the abrupt modification of its mean value, which is the most typical change in theory, see Fig. 2.4(a). 1 s is mathematically defined as

1 0, 0 ( ) ( ) 1, 0 t s t u t t       .
(2.22)

The step signal with a transition band 2 s represents a common case in practice, where the change might not be instantaneous, see Fig. 2

.4(b). 2 s is mathematically defined as 2 0, 2 ( ) 1 2, 2 2 , 1, 2 t s t t t t                  (2.23)
where  represents the width of the transition band, which is in general shorter than the observation window width 2W.

The step signal mixed with a ramp 3 s describes the fact that, sometimes, slow changes exist in the background, so that the profile of a clear edge gradually varies over a wide range, see Fig. 2.4(c). 3 s can be mathematically defined as

3 ( ) ( ) , s t u t t     (2.24)
where  is the slope of the ramp. If 0   , the step is in the same direction as the ramp; if 0   , the step and the ramp are in reverse directions. To differentiate the three window functions, 1 g , 2 g and 3 g are used to designate the rectangular, the concave and the convex function respectively. They are mathematically expressed as:

Three representative observation windows

1 1 () 22 t g t rect WW     , (2.25)   2 1 cos () 2 tW gt W    , (2.26)   3 1 cos () 2 tW gt W    , (2.27)
and illustrated in Fig. 2.5.

Typical outputs of the NSM operators

All the three typical input signals show odd symmetry after translation, so their NSM curves present even symmetric peaks. The positions of the apexes indicate the locations of the changes, and the heights of the peaks reflect the magnitudes of the changes.

Table 2.1 gives the theoretical heights of the output peaks regarding to three typical input signals 1 s , 2 s , 3 s and three representative window functions 1 g , 2 g and 3 g . Their deductions are provided in Appendices A to C, and the heights of the output peaks corresponding to the rectangular window function 1 g were given in [START_REF] Liu | [END_REF]. In From the theoretical results in Table 2.1 and the experimental ones in Fig. 2.6, we can obtain the following statements.

(1) The outputs of the NSM operators present symmetric peaks. The widths of these peak feet are related to the input signals 1 s , 2 s , 3

s and the observation/sliding window width 2W .

For the input signals 1 s and 3

s , the feet of the peaks are 4W wide, while for the input signal 2 s , they are 4W   .

( 

H                             Convex g
H                             Mixture of step and ramp S 3 Rectangular g 1   2 31 21 12 W H    Concave g 2 2 32 2 11 (2 1) ( ) 12 2 HW      Convex g 3 2 33 2 11 (2 1) ( ) 12 2 HW      Note /2 W   and 01  .
(3) For the same input signal, the outputs of the NSM operators corresponding to different window functions show different heights: 213 g , the output peaks may have flat tops, which make it difficult to locate the exact positions of the changes.

i i i H H H . It is seen from

Ideal step S 1

Step with transition band S 2 Mixture of step and ramp H for the step with transition band s 2 Thèse en traitement de l'image médicale / 2013 Institut national des sciences appliquées de Lyon Fig. 2.8 shows the responses of the NSM operators to the three typical input signals corrupted by Gaussian noises with zero mean and 0.33 standard deviation. Note that, in this work, the quality of the input signal is usually evaluated with the Contrast-to-Noise Ratio (CNR) which is defined as the ratio of the amplitude of the change to the standard deviation of the noise, n A  . The CNRs of these noisy input signals are about 3. It is seen that, despite low input CNRs, the NSM operators using the rectangular and concave window functions achieve higher output SNRs (theoretical analysis on the output SNRs is given in the next Section 2.3.3). From the apexes of the output peaks, the positions of changes can be located accurately in such noisy cases, which demonstrates the excellent noise-immunity abilities of the NSM operators. From the theoretical analyses and experimental results, it is concluded that:

(1) the observation window function influences the output of NSM operators: choosing the rectangular or concave function instead of convex function can generate a higher output SNR;

(2) the concave window function 2 g would be the best choice in practice as long as it can be implemented with a fast algorithm, since it provides the highest output SNR; Thèse en traitement de l'image médicale / 2013
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(3) the rectangular function 1 g is a good choice in practice because it requires less computation time and provides a high output SNR;

(4) similar to other change measures using sliding windows, the resolution of the NSM operator is related to the width of the window. Generally, changes at the details smaller than the width of the window might not be measured accurately.

In the above discussion, the heights of the step-like changes in the three input signals equal 1. According to the properties of the output of the NSM operator, it is known that, for the change of height A, the output peak will be p A times higher than before, where p is the order of the operator.

Output signal to noise ratio

The output SNRs of the 2 nd -order NSM operators adopting the three typical observation windows are studied and compared with that of the Canny operator. 

 , that is, ( ) ( ) ( ) x t A u t n t    .
(2.28)

The output signal-to-noise ratio (SNR) is defined as the ratio of the height of the response peak to the step signal and the square root of the mean-squared noise response [Canny, 1986] 

Output SNR of the NSM operator

n n n n AA A W W W W               .
(2.35)

The deductions of NSM,1  , NSM,2  and NSM,3  are provided in Appendix D.

Comparison with the Canny operator

The response of the Canny operator to the step signal ()

A u t  is given by ( ) ( ) ( ) , Au y t A u G t d              (2.36) where () Gt  
is the first derivative of a Gaussian function, which is used to approximate the optimal form of the Canny operator, and  is the standard deviation of the Gaussian function () Gt  . The height of the response peak to the step signal ()

A u t  is obtained at 0 t  , equal to 2 A 
, and the square root of the mean-squared noise response is calculated as

      2 2 22 3 ( ) ' . 4 n nn D y t G t dt       
(2.37)
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    Canny 3 2 1.06 14 n n A A         . (2.38)
The 2 nd -order NSM operators corresponding to the rectangular window 1 g are chosen to be compared with the Canny operator. Both the NSM operator and the Canny operator are the change measures using sliding windows, and their responses to a change therefore appear as peaks with certain widths. For a fair comparison, the two operators are compared based on the notion of "normalized width n L ". The normalized width n L is defined as the total area of the response to an ideal step signal divided by the height of the output peak [START_REF] Liu | [END_REF].

For the NSM operator, the normalized width is calculated as: the presence of a change or not. Fig. 2.9 shows two pairs of curves corresponding to the input CNRs 3 and 2.15 respectively. In order to study the performance of the two change measures in low input CNR case, an experience of simulation is given corresponding to the above theoretical analysis. 

Conclusion

In this chapter, the NSM has been improved in the following aspects. Firstly, the notion of general parameter stationarity (GPS) has been introduced as the basis of the present NSM method. Different from the concept of (non-) stationarity used by the original NSM, the proposed GPS allows investigating the stationarity or non-stationarity of the vector-or tensorvalued signal. That is, in respect of data form,  can be scalar, vector or matrix. In addition, the statistical parameter  in the GPS can be any statistic which describes the signal feature in time domain. Owing to the diversity of  , the NSM method based on the GPS thus can be extended in many ways.

Secondly, based on the GPS, the NSM has been elaborated and explained using more appropriate notions and a general formulation of the NSM has been given. The NSM measures the difference between a non-stationary state and a stationary state in the moving feature space, while other methods take the difference between intensities at two moments or the weighted sums of these differences as change measures. The impact of noise is much smaller on the NSM than on the simple difference between two intensities in time-domain. This is why the NSM is particularly robust to noise compared to conventional techniques based on the derivative.

Thirdly, the outputs of NSM operators using another two representative observation window functions, the concave and the convex, corresponding to three typical input signals, Thèse en traitement de l'image médicale / 2013

Institut national des sciences appliquées de Lyon have been studied. The theoretical analyses and experimental results showed that the concave function can provide the highest output SNR but with complex computations. In practice, the rectangular function is still a good choice because it requires less computation time and provides a high output SNR. Fourthly, the construction process of the NSM operator has been generalized and the selection of the observation/sliding window size has been discussed. Similar to other change measures using sliding windows, the resolution of the NSM operator depends on the width of the window. Generally, changes at the details smaller than the width of the window might not be measured accurately. 
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Résumé en français

Jusqu'à présent, beaucoup de méthodes de mesure de changement ont été proposées dans la littérature pour le traitement des données de dimensions et de types différents. Elles sont basées sur des principes différents et possèdent des avantages divers. Cependant, la plupart d'entre elles ne peuvent mesurer que des changements par rapport à un paramètre statistique spécifique, ou des changements de données monodimensionnelles, ou de données scalaires.

Dans le chapitre 2, nous avons amélioré la méthode NSM afin de pallier les déficiences existant dans sa forme originale. La présente méthode NSM après amélioration nous permet d'explorer les stationnarités d'un signal par rapport à une propriété statistique quelconque, et n'impose de limitations ni sur la forme des propriétés statistiques ni sur le type des données signal. Ainsi cette nouvelle méthode présente une grande souplesse.

Dans ce chapitre, L'extension à n-dimensions (n-D) de l'opérateur de mesure de nonstationnarité a également été effectuée. D'abord, nous avons défini la mesure de nonstationnarité pour des signaux n-D, et donné l'algorithme général de calcul de cette mesure. Ensuite, nous avons expliqué le principe de la mesure de non-stationnarité pour des données vectorielles et tensorielles, déduit les formules de calcul, et donné des illustrations à l'aide d'exemples. Nous prenons aussi des moments d'ordre supérieur comme exemples pour montrer la généralité de la méthode NSM dans la mesure des changements de divers paramètres statistiques. Des exemples similaires peuvent aussi être trouvés dans [Liu, 1994].

Avec le dernier chapitre, la méthode NSM a été améliorée et étendue en une mesure générique et robuste de changements, qui permet de quantifier les changements existants dans des données multidimensionnelles et de différents types et par rapport à différents paramètres statistiques.

Introduction

We can notice that many change measurement methods are dedicated to the processing of data in different dimensions and of different value types. They are based on different principles and possess various advantages. However, most of them can only measure changes regarding either a specific statistical parameter, or a single dimension, or a single value types. On the contrary, it can be known that the improved NSM possesses an intrinsic expansibility.

In this chapter, the NSM is extended to deal with data regarding higher order moments, N - dimensional (N-D) data, and vector-valued or tensor-valued data.

This chapter is organized as follows. First, Section 3.2 takes higher order moments as an example to show the generality of the NSM method in measuring changes related to various statistical parameters. Although most of its contents are contained in [Liu, 1994], Section 3.2 is still included here because it is an important part of the NSM methodology. Section 3.3 discusses the possibility to extend the NSM to process N -D data and gives the procedure to calculate the NSM of multidimensional data. Recently, change measures dedicated to vectorvalued and tensor-valued data have often been used to process color images, texture images, dynamic images and diffusion tensor images. To answer that needs, the NSM is extended, in Section 3.4, to process vector-valued and tensor-valued data.

NSM of a signal regarding its r th -order moment

Moments are important statistical descriptors describing the characteristics of a signal. In this section, higher order moments are taken as examples to show the generality of the NSM method in measuring changes related to various statistical parameters. The 2 nd -order NSM of a signal regarding the r th -order moment is discussed as follows [START_REF] Liu | [END_REF].

The moving r th -order moment 

( ) ( ) 1 ( ). 21 r nW r i n W nW r i n W n m n h i n x i xi W              (3.1) ) 
The 2 nd -order NSM of the signal () xn regarding its moving r th -order moment ˆ() r mn can be expressed as

  2 2 ˆˆ( ) ( ) ( ) ( ) ( ) n W n W r r r i n W i n W y n g i n m i g i n m i                , ( 3.2) 
and illustrated in Fig. 3.1.
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NSM of a signal regarding its 2 nd -order moment

The 2 nd -order central moment (variance) is a mathematical expectation of the average squared deviations from the mean, measuring the dispersion of a set of data points around their mean value.

A signal () xn containing a step in its 2 nd -order central moment can be designed as

0 ( ) [1 ( )]sin( ) ( ) x n A u n wn n       , (3.3) 
where A is a positive real number, () un the unit step signal, w the angular frequency, 0

 the initial phase that is a random number between [ , ]   , and () n  the noise. From the definition, it comes that the 1 st and 2 nd -order central moments of 

x(n) (3.3) can be written 1 [ ( )] 0 m E x n  , 2 2 2 21 1 [( ) ] [1 (2 ) ( )] 2 m E x m A A u n          .

NSM of a signal regarding its 3 rd order moment

The 3 rd -order central moment (skewness) describes asymmetry from the normal distribution of a set of statistical data. Skewness can be either a "negative skewness" or a "positive Yanli ZHANG 51 Thèse en traitement de l'image médicale / 2013 Institut national des sciences appliquées de Lyon skewness", depending on whether the data points are skewed to the left (negative skew) or to the right (positive skew) of the data average.

A signal () xn containing a change in its 3 rd -order central moment but not in its 1 st -order and 2 nd -order moments can be designed as follows. Let us suppose that the value of a random variable x depends on a binary event. If the outcome of the event is 1, the conditional probability ( |1)

px is p 1 ; if the outcome is 0, ( | 0)
px is p 2 . After a time 0 n , x has the probability p 3 for the result 1 and has p 4 for the result 0. So the probability of x is given by

1 2 0 3 4 0 ( ) ( |1) (1) ( | 0) (0) (1) (0) 
(1) (0) 

    1 2 0 1 3 4 0 1 2 () 1 2 nn mn nn             , 2 2 2 1 2 2 0 2 2 2 2 3 4 4 0 11 2 12 () 11 2 12 nn mn nn                              , 2 2 2 1 1 2 2 2 0 3 2 2 2 3 3 4 4 4 0 1 1 1 3 2 2 2 () 1 1 1 3 2 2 2 nn mn nn                                      . If 12 0   , 13 0
  , 24 0   and 24   , then the signal () 

                     .
In the experiment shown in Fig. 3.3,1 2

  , 2 2   , 3 2   , 4 2
  , and 24 =1   .

The signal thus obtained possesses the following moments:

1 ( ) 0, 4096 m n n    , 2 ( ) 109 24, 1 4096 m n n    , 3 5 2,1 2048 () 5 2, 2048 4096 
n mn n         .
As expected, since the signal is stationary regarding the 1 st -order and the 2 nd -order moments, the corresponding NSM curves 1 ˆ() yn and 2 ˆ() yn in ).

NSM of a signal regarding its 4 th -order moment

The 4 th -order central moment (kurtosis) is a measure of the relative concentration (flatness or peakedness) of data values in the center versus in the tails when compared with a normal distribution. Distributions having higher kurtosis have fatter tails or more extreme values, and those with lower kurtosis have fatter middles or fewer extreme values.

A signal () xn containing a step in its 4 th -order central moment can be designed as 00 ( )

( )sgn[sin( )] ( )sin( ) ( ) x n a n wn b n wn n         , (3.5) 
where sgn designates the signum function, and 0  , the initial phase, is a random number of uniform distribution between [ , ]   , () n  the noise. The r th -order moment of () xn is
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  - - - - =0 1 ( ) ( ) 2 1 = ( ) ( ) sgn sin sin 2 r r r r ri i i r i r i m n x d C a n b n d                 . (3.6)
When r is an odd number, ( ) 0 r mn . When r is an even number,

-- 0 =0 1 ( ) ( ) ( ) sin ( ) r i i r i r i rr i m n C a n b n d       . So, we have 22 2 ( ) ( ) ( ) 2+4 ( ) ( ) m n a n b n a n b n   , 4 3 2 2 3 4 4 ( ) ( ) 8 ( ) ( ) 3 ( ) ( ) 16 ( ) ( ) 3 +3 ( ) 8 m n a n a n b n a n b n a n b n b n      .
In the experiment shown in Fig. 3.4,

1 1 2000 () 2000 4000 12 n an n         , 1 1 2000 () 2000 1000 2 n bn n         .
The signal thus obtained possesses the following moments: ).

Extension of the NSM to process N-dimensional data

This section discusses the possibility to extend the NSM to process N -D data, and gives the steps to calculate the NSM of N -D data.

In order to measure the non-stationarity of a signal, we need to construct a multidimensional moving feature space, since the NSM is defined as the distance between a non-stationary state point and the stationary line in the same space. For 1-D signals, the state point is determined by the sequence of statistical parameters within the 1-D observation window in the time domain. The number of dimensions of the moving feature space equals the width of the observation window. For example, the observation window width 2W+1 equals 21 (that is, 21 samples of the signal are contained in the sliding observation window), the moving feature space has 21 dimensions.

For multidimensional data, we study the NSM in a multidimensional sliding observation window. The statistical parameters within the multidimensional window can be arranged into an ordered sequence. Similar to the 1-D case, the sequence corresponds to a point in the moving feature space whose dimension equals the size of the observation window. The distance from the point to the stationary line is mapped into the time domain and considered as the NSM of the central point of the multidimensional sliding observation window. Such arrangement makes the extension straightforward and has no impact on the distance although it affects the location of the point. 

Extension of the NSM to process vector-valued and tensor-valued data

From the general formulation of the NSM (see (2.8)) it comes that:

    21 1 ,, W p ii i d K K g dis        ,
it can be seen that the NSM is the sum of the weighted differences between the coordinate ˆi  of the state point K and the coordinate  of the stationary point K . Therefore, as long as we can estimate the moving statistical parameter of the vector-valued or the tensor-valued data and we can define the dissimilarity between two vectors or two tensors properly, the NSM can be extended to process the vector-valued and the tensor-valued data.
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NSM of vector-valued data

For vector-valued data, each state point K in the moving feature space is determined by a sequence of vectorial coordinates  

1 2 2 1 ˆˆ, , , W    
, where ˆi  is a vector with 1, ,2 1 iW  . The stationary point which makes ( , ) dK minimal is written as  

, , ,

K     , where 
is also a vector. The NSM of the vector-valued signal () n v is generally formulated as:

      21 1 ˆ( ) ( ) , Ŵ p ii i y n n d K K g dis            v (3.7) with   ˆ, i
dis  representing the dissimilarity between two vectors, the coordinate ˆi  of point K and the coordinate  of point K . We now elaborate the construction of a 2 nd -order NSM operator for the vector-valued signal 

ˆ( ) ( ) ( ) ( ) 1 () 21 nW i n W nW i n W nn h i n i i W              m v v . ( 3.8) 
Using the definition of the orientation difference between two vectors, see (1.7), according to (3.7) and (3.8), the 2 nd -order NSM of the signal () n v regarding its 1 st -order moment can be expressed as:

  + 11 1 2 11 ˆ() ˆ( ) ( ) ( ) arccos ˆ() nW i n W i y n n g i n i                   mm v mm , ( 3.9) 
where 1 m is the coordinate vector of the stationary state point K . By

1 0 d    m , the
analytical formula of 1 m is given by: v and 3 v . The angle between 1 v and 2 v is 30°, and the angle between 2 v and 3 v is 60° (see Fig. 3.7(b)). According to the procedure to calculate the NSM of multidimensional data described in Section 3.3, the NSM operator defined in (3.9) can be extended to process 2-D vector fields. With both () gn and () hn being a rectangular window function of size 3×3, the NSM map of the 2-D vector field regarding its 1 st -order moment can be obtained and is shown in Fig. 3.7(c). From the brightness of the 2-D NSM map, we can observe the positions and the magnitudes of changes occurring in the vector field. Obviously, the difference between 2 v and 3 v is larger than that between 1 v and 2 v . From the horizontal profile of the NSM map, see Fig. (d) Horizontal profile of (c).

1 1 ( ) ( ) nW i n W g i n i       mm . ( 3 

NSM of tensor-valued data

A mathematical or a physical quantity T can be described in a Cartesian coordinate system Z by 3 n elements ij m t , the so-called translation invariants. Here the number of indices , , , i j m is exactly equal to n ( 0) n  . The indices are ordered, and each of them takes the values 1, 2 and 3. If under a coordinate transformation from Z to Z , the new elements are defined as: Bronshtein et al., 2007]. From the point of view of isomorphism, a scalar is a tensor of rank zero, a vector is a tensor of rank 1, and a 3×3 matrix is a tensor of rank 2. In diffusion tensor magnetic resonance imaging (DT-MRI, or simply DTI), the Yanli ZHANG 61 Thèse en traitement de l'image médicale / 2013 Institut national des sciences appliquées de Lyon diffusion ellipsoid is mathematically represented by a tensor of rank 2. The tensor is most commonly represented by a 3×3 symmetric positive definite real matrix with 6 independent components.

3 3 3 1 1 1 i j m ij m i j m t a a a t            , ( 3 
This subsection focuses on studying the NSM with respect to the tensors in the DTI. In order to circumvent the problems in usual Euclidean operations on tensors, such as nonpositive eigenvalues, tensor swelling, and asymmetric tensors, the computations on tensors involved in the NSM of tensor-valued data are performed according to the Log-Euclidean Metrics [Arsigny et al., 2006;[START_REF] Arsigny | [END_REF]. Under the Log-Euclidean framework, the matrix logarithm () T log of a tensor T can be calculated in three steps [Arsigny et al., 2006]:

1. perform a diagonalization of T , which provides a rotation matrix R and a diagonal matrix D with the eigenvalues 1  , 2  , 3  of T in its diagonal, with the equality: Using the definition of the similarity-invariant Log-Euclidean metric, see (1.19), according to (3.12) and (3.13), the 2 nd -order NSM of the signal () n t can be expressed as:

T    T R D R ; 2.
        1 2 + 1 1 Trac ˆ( ) ( ) ( ) ( e ) nW i n W y n n g i n i            t log log  , (3.14)
where 1  is the coordinate vector of the stationary state point K . By

1 0 d    
, the analytical formula of 1  is obtained as:

1 1 ( ) ( ) nW i n W g i n i        .
(3.15) Fig. 3.8(a) shows a tensor-valued signal of length 100, with the first fifty tensors equal to   1,0,0;0,2,0;0,0,1 and the last fifty ones equal to   1,0,0;0,1,0;0,0,2 . That is, there exists a change at time 51 n  in the 1 st -order moment of the tensor-valued signal. Using the NSM operator defined in (3.14), with both () gn and () hn being the rectangular window function of width 3, the NSM of the tensor-valued signal regarding its 1 st -order moment can be obtained and is shown in 

Conclusion

In this chapter, the NSM method is extended in three aspects: the NSM regarding different statistical parameters, the NSM of N-D data, and the NSM of vector-and tensor-valued data.
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Second, the possibility to extend the NSM to process N-D data has been discussed and the procedure to calculate the NSM of multidimensional data has been given. The examples of using the NSM operator to process 1-D signal can be found in Section 4.2, and those concerning the NSM map of 2-D image can be found in Section 3.4 and Chapters 4 to 6.

Third, the NSM has been extended to process vector-valued and tensor-valued data. The extended NSM could be used for processing color images, textured images, dynamic images and diffusion tensor images. Due to limited research time, more and deep study on the subject will be carried on in the future.

Together with the last chapter, the NSM method has been improved and extended to become a general and robust change measure which can quantify changes existing in multidimensional data of various types, regarding different statistical parameters.
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Résumé en français

La détection de changements dans un signal et la détection des contours dans une image sont deux applications les plus simples de mesures de changement. Les méthodes basées sur la mesure du changement dans ces deux applications sont généralement conçues de manière similaire: premièrement utiliser la mesure du changement afin de mettre en évidence les changements brusques dans le signal ou les bords dans l'image; puis, estimer les positions de ces changements ou des bords a partir de l'amplitude des changements obtenus.

Les méthodes basées sur des mesures de changement sont récemment devenues populaires en raison de leur robustesse, de leur 'efficacité et de leur caractère non supervisé. Toutefois, pour les signaux fortement aléatoires, les résultats des mesures de changements sont souvent fluctuants, ce qui peut conduire à la génération de fausses alarmes et de fausses détections lorsqu'on utilise ce genre de méthode.

Les méthodes de détection de bords basées sur des mesures de changement sont fondamentales et importantes en raison de leur caractère objectif et non supervisé. Toutefois, lorsqu'il s'agit d'images biomédicales avec un niveau de bruit élevé, certaines mesures de changement existantes peuvent fournir des informations inexactes sur les bords, ce qui peut engendrer de faux bords. Cherchant à résoudre le problème des fausses alarmes et des fausses détections rencontrées dans les signaux extrêmement aléatoires, nous en sommes arrivés à proposer une méthode de détection de changement basée sur la NSM. En effet, grâce à sa robustesse au bruit, la méthode basée sur la NSM permet la détection des changements de manière précise et fiable, même dans des cas très bruités.

Les résultats sur des images synthétiques et sur des images réelles telle que DW cardiaques ont montré que la méthode basée sur NSM est effectivement capable de réduire les faux bords qui se produisent avec d'autres méthodes de détection de bord basées sur la mesure du changement.

Introduction

Signal change detection and image edge detection are two most straightforward applications of change measures. The change measure-based methods in the two applications are usually designed in a similar way: first use the change measurement method to highlight abrupt changes in the signal or edges in the image; then, based on the obtained magnitude of the changes, estimate the locations of the change points or edges.

In signal change detection, the methods based on change measures have recently become popular because of their robustness, effectiveness, and non-supervision. However, for strong random signals, their change measurement curves often become fluctuated, which may lead to the generation of false alarms and misdetections in these change measure-based detection methods. In section 4.2, a change detection method based on the robust NSM is introduced in subsection 4.2.1 and applied to detect change points in heart rate signals (subsection 4.2.2) and EEG signals (subsection 4.2.3).

The edge detection methods based on change measures are basic and important because of their objectiveness and non-supervision. However, when dealing with biomedical images with high noise levels, existing change measures may provide inaccurate information on edges, which can induce false edges in the methods based on these change measures. In section 4.3, a NSM-based edge detection method is proposed in subsection 4.3.1, evaluated on synthetic image in section 4.3.2, and applied to the edge detection of cardiac diffusion weighted (DW) images in section 4.3.3. Finally, conclusion is given in section 4.4. 

NSM-based method for signal change detection

Change detection of heart rate signals

Heart rate is easy to acquire. Nowadays, the heart rate signal can even be acquired with people feeling nothing. As such acquisition has almost no effect on sleep, the heart rate signals thus acquired are of great significance in understanding sleep and discovering illnesses concerning sleep.

In this subsection, the NSM-based change detection method is used to detect change points in a heart rate signal of a new born baby to identify a heavy sleep period in it. External measurements (such as that of the eye-lids' movements) allow us to know that the heavy sleep period is approximately between data 1300 and data 3200. The signal was once used in [Lavielle, 1999].

The method based on the NSM is compared with other three change detection methods. Two of them are change measure-based methods, the classic △BIC [Chen et al., 1998] and a recent method which is based on the relative Pearson divergence [Liu et al., 2012]. The third one [Lavielle, 2005] is based on model selection and referred to as the DCPC (Detection of Changes using a Penalized Contrast). For all of the three change measure-based methods, the more abrupt the change, the higher local maxima. For each method, we localize the same number of changes one by one according to the local maxima of the measurement curves from higher to lower. For the model selection method, the DCPC, the number of changes is set the same as the latter, so that these methods are made comparable to some extend. The Yanli ZHANG 71 Thèse en traitement de l'image médicale / 2013 Institut national des sciences appliquées de Lyon 1) all the change detection results agree with the external measurements except for the △BIC which indicates a change during the heavy sleep period; 2) outside of the period, the methods based on the Pearson divergence and the DCPC give similar results which are different from those obtained with our method. For example, they indicate changes around 856 and 3895 which are visually not as abrupt as those at 1135 and 1197 indicated by the NSM-based method.

Change detection of EEG signal

EEG, which records the brain's spontaneous electrical activity, has attracted much attention of both researchers and clinical doctors owing to its non-invasive nature and high temporal resolution. The alpha wave presenting a fusiform amplitude modulation and a frequency ranging from 8 Hz to 12 Hz is considered a basic rhythmic EEG activity of a normal adult in a quiet state. Clinically, the state of alpha waves is used as an important criterion for assessing brain function.

In this subsection, the NSM-based change detection method is used to detect change points in an EEG signal to identify the start moment of an alpha wave in it. The feature of alpha wave allows us to know that the wave starts from 700 in the signal. The signal was once used in [Lavielle, 2005].

As in the last subsection, the NSM-based method is compared with the △BIC method [Chen et al., 1998], the method based on the Pearson divergence [Liu et al., 2012], and the DCPC method [Lavielle, 2005]. Change points are located in the same way as that described in the last subsection. The specific parameter settings are listed as follows. For the △BIC, the size of the signal segment Z is 300, and the penalty factor The results on the heart rate and EEG signals showed that the NSM-based method is robust to noise and can more efficiently reduce false alarms and misdetections compared to other change measure-based methods.

NSM-based method for image edge detection

NSM-based edge detection method

The NSM-based edge detection method includes three steps: 1. Calculation of the NSM map of the image. The NSM map of the input image is calculated using a 2-D NSM operator; 2. Nonmaxima suppression. Two virtual neighbors are defined at the intersections of the gradient direction with the 3×3 sampling grid and the NSM for these neighbors is interpolated from the adjacent pixels, see Fig. 

Edge detection of synthetic images

To test the performance of the NSM-based edge detection method in suppressing false edges, a number of experiments on a highly noisy image is done. The original image of size 270×270 contains three gray level values (0, 128 and 255) and two gray level changes of magnitude 128 (0-128 and 128-255). The image is corrupted by an additive Gaussian white noise with mean 0 and standard deviation 43 n   , see Fig. 4.7(a1). The minimal CNR of the image is 3.

The NSM-based method is compared with other three change measure-based edge detection methods: a derivative-based nonlinear filtering scheme (NLFS) [Laligant et al., 2010], the classic Canny filter [Canny, 1986], and a recent method based on the fused edge strength (FES) [Shui et al., 2012]. The specific parameter settings are listed as follows. For the NFLS, no parameter need to be set. For the Canny operator, the standard deviation of the Gaussian Yanli ZHANG 76 Thèse en traitement de l'image médicale / 2013 Institut national des sciences appliquées de Lyon (4) The responses of the Canny filter, the FES method and the NSM operator to edges present as ridges, whose widths depend on the sizes of the sliding windows used in these methods; (5) image details smaller than the window width are not be measured well (see corners in (c1), ( c2), ( d1), ( d2), ( e1) and ( e2)).

After measuring edge strength by the four methods, nonmaxima suppression and hysteresis thresholding are carried out, yielding the edges shown in Fig. 4.8. Note that, for a fair comparison, the same thresholds 0. 

Edge detection of cardiac diffusion weighted images

The myocardium is the basic muscle that makes up the heart. The death of a part of the cardiac muscle is known as myocardial infarction or heart attack, which could in turn lead to a complete cessation of the heart muscles, known as cardiac arrest. Therefore, studies on the myocardial fibers have great significance for the analysis of the heart function and the prevention and treatment of serious heart diseases.

Diffusion tensor magnetic resonance imaging (DT-MRI, or DTI) appears currently as the unique imaging modality to investigate noninvasively both ex vivo and in vivo myocardial fiber architectures of the human heart. Yanli ZHANG 78 Thèse en traitement de l'image médicale / 2013 Institut national des sciences appliquées de Lyon in vivo tissues, the performance and the potentiality of DTI are hampered by the presence of high-level noise in diffusion weighted (DW) images [Basser et al., 2000;Chen et al., 2005;Ding et al., 2005;[START_REF] Jones | [END_REF]. These images are corrupted so severely that their features, such as edges, can be buried in the speckled mosaic-like patterns aroused by noise.

In this subsection, the NSM-based edge detection method is used to detect edges of cardiac DW images. As in the experiments on synthetic images, the NLFS [Laligant et al., 2010], the Canny filter [Canny, 1986], and the FES method [Shui et al., 2012] are used as comparison methods. In the implementation of these methods, parameters in the four methods are the same as those used in the experiments on the synthetic images. Also, the measurement results are normalized by their own maxima as we did in the last subsection.

A DW image corresponding to one slice of the acquired 3D volumes in one direction is shown in Fig. 4.9(a1). Its change measurement maps obtained by the four methods are respectively shown from the second row to the bottom in the left column. For clearer observations, a horizontal profile of each map marked by a red dashed line is shown in the right column. It is seen from the results that (1) similar to the experiments on synthetic images, the measurement result with the derivative-based NFLS is most susceptible to noise, with responses to real edges buried in false responses aroused by noise (see ( b1) and ( b2)); (2) the Canny filter and the FES method give better measurement results than the NFLS, with more salient responses to edges (see ( c1) and ( d1)), less false responses in flat areas and higher output SNRs (see ( c2) and (d2)); ( 3) the NSM operator provides the most robust change measurement map, with the least false responses (see ( e1)) and the highest output SNR (see ( e2)).

After measuring edge strength by the four methods, nonmaxima suppression and hysteresis thresholding are carried out, yielding the edges shown in Fig. 4.10. For a fair comparison, different thresholds adapted to each method are used. It is seen that the NLFS, the Canny filter and the FES methods yield more or less false edges. In contrast, the NSM-based method generates more clean results, see (d). Yanli ZHANG 79 Thèse en traitement de l'image médicale / 2013 Institut national des sciences appliquées de Lyon

Conclusion

Aiming at the problem of false alarms and misdetections in the change detection of highly random signals, a NSM-based change detection method has been proposed. Because of the robustness of the NSM to noise, the method based on the NSM allows for accurate and reliable change detection even in highly noisy cases. The results on the heart rate and EEG signals showed that the NSM-based method can more efficiently reduce false alarms and misdetections compared to other change measure-based methods.

Aiming at the problem of false edges in the edge detection of highly noisy images, a NSMbased edge detection method has been proposed. The method based on the NSM enables the edges to be accurately and reliably detected. The results on both synthetic images and real cardiac DW images showed that the NSM-based method can effectively reduce false edges occurring with other change measure-based edge detection methods.
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Résumé en français

La segmentation d'images médicales est rendue difficile à cause du faible contraste, du bruit important et d'autres ambiguïtés dans les images. Aujourd'hui, le modèle géométrique actif (GAC), introduit au début des années 90, est devenu un cadre général de plus en plus populaire pour la segmentation des images en particulier biomédicales. Comme type principal de modèle GAC, le modèle GAC basé contours utilise souvent l'amplitude du gradient pour guider les déplacements de l'ensemble de niveau zéro et pour arrêter l'évolution de l'ensemble de niveau. Toutefois, dans les cas très bruités, le gradient peut fournir des informations inexactes sur les bords de telle sorte que le modèle GAC basé contours peut facilement produire de faux contours autour des formes induite par le bruit ou des ponts au niveau des contours faiblement marqués des objets.

Dans ce travail, nous nous sommes focalisés sur le problème des faux positifs et de la délocalisation des contours dans des images très bruitées. Nous proposons de remplacer l'amplitude du gradient par la NSM robuste comme mesure de variation, pour fournir des informations sur l'intensité des contours au modèle GAC basé contour. Ce nouveau modèle GAC est appelé modèle NSM-GAC.

Le mécanisme du modèle réside dans l'exploitation de la robustesse de l'opérateur 2D de mesure de non-stationnarité pour mesurer l'intensité des contours et guider le contour actif vers les contours cibles contenus dans l'image. Les résultats sur des images de synthèse montrent que le modèle est particulièrement robuste au bruit gaussien et que le résultat de segmentation se dégrade peu avec l'augmentation du niveau de bruit. Sur des images ultrasonores de la carotide, la méthode proposée est plus performante que les méthodes DRLSE et C-V et plus robuste au bruit spatial de« speckle » propre aux images ultrasonores. Le temps de calcul est réduit et la précision de segmentation (moins de faux contours, moins de délocalisation de contours) comparativement meilleure.

Introduction

Medical image segmentation is made difficult by low contrast, noise, and other imaging ambiguities. So far, the geometric active (GAC) model, introduced in the early 90's [Caselles et al., 1993;Malladi et al., 1995], has become increasingly popular as a general segmentation framework used for segmenting various types of images and among them biomedical images. The edge-based GAC model usually guides the motion of the zero level set and stops the level set evolution using the image gradient magnitude computed in the external energy term [Gao et al., 2011;Li et al., 2010]. However, in highly noisy cases, the gradient may provide inaccurate information on edges so that the edge-based GAC model can easily produce false contours around noise-induced patterns or leakages at weak object boundaries.

In this chapter, we propose to modify the classical edge-based GAC model by replacing the gradient magnitude change measure by the NSM . Thus, a NSM-based GAC model, called the NSM-GAC model, is proposed in Section 5.2.1. Its flow chart is given in Section 5.2.2. Thanks to the robustness of the NSM, the new model should be immune to noise, reducing false contours and leakages which are often present in the output of the GAC models using the gradient magnitude as change measure.

In order to thoroughly analyze its performance in noisy cases, the proposed model is tested on synthetic images with different noise levels in Section 5.3. In Section 5.4, the model is applied to segment ultrasound images of the carotid. The conclusion is in Section 5.5.

The NSM-GAC segmentation model

Design of the NSM-GAC model

Let : R

  be a level set function defined on a domain  . The active contour C can be represented as the zero level set of  by   : ( , , ) 0 C

x y t   , and thus the initial contour 0 C is expressed as 0 ( , ,0) xy   . We define an energy function ()

E  by ( ) ( ) ( ) ext EE        . (5.1)
The first term () ext E  is the external energy, depending on the input image. It guides the zero level set (the active contour C ) towards the object boundary. The energy () ext E  is designed such that it achieves a minimum when the zero level set of  is located at the object boundary.

Specifically, (

) where the Dirac delta function is defined as .5) and the Heaviside function

ext E  is defined as ( ) ( ) ( ) ext e e E L A      , ( 5 
[1 cos(2 3)] 3, | | 3 2 () 0 , | | 3 2 xx x x          , ( 5 
  1 sin 2, ( ) 0, 1, x x x H x x x                       .
(5.6)

Like other edge-based GAC models, the NSM-GAC model includes an edge indicator function e to control the level set evolution. Traditionally, the function e is defined as [Caselles et al., 1993;Li et al., 2010] 2 1 1 e GI       is a constant, and ()   is a distance regularization term [Li et al., 2010] given by ( ) .9) where p represents the double-well potential function defined as .10) This distance regularization term forces the gradient magnitude of the level set function toward one of its minimum points, thereby maintaining a desired shape of the level set function, particularly a signed distance profile near its zero level set. The distance Yanli ZHANG 84 Thèse en traitement de l'image médicale / 2013 Institut national des sciences appliquées de Lyon regularization completely eliminates the need for reinitialization which is usually used in conventional level set formulations.

( ) p dxdy       , ( 5 
  2 2 1 1 cos(2 ) 1 (2 ) () 1 ( 1) 1 2 ss ps ss             . ( 5 
To sum up, the energy function of (5.1) can be expressed as

      22 11 ( ) ( ) ( ) 11 E dxdy H dxdy p dxdy II                         
. (5.11) This energy function can be minimized by solving the following gradient flow:

      22 ' () 1 ( )div div 11 p t II                               .
(5.12)

Flow chart of the NSM-GAC model

In the implementation of the NSM-GAC model, an image I can be segmented according to the flow chart shown in Fig. 5.1. Like other GAC models, in the implementation, the computation time mainly depends on the number of iterations  . 

Segmentation of synthetic images

Segmentation of images with different noise levels

To test the performance of the NSM-GAC model in segmenting images with different noise levels, four sets of experiments are done on synthetic images corrupted by an additive white Gaussian noise with mean 0 and variance 0, 25, 45 and 65 (see the first row in Fig. 5.2) respectively. These synthetic images contain various shapes, such as two ellipses, a rightangled triangle, and a concave shape. These shapes are used to evaluate the performance of the model in segmenting different geometric shapes. The noise-free image of size 128×128 includes three gray level values (0, 128 and 255) and two gray level changes of magnitude 128 (0-128 and 128-255) and 255 (0-255). With the increase of the noise variance (25, 45 and 65), the minimal CNR of the noisy synthetic image decreases (5.12, 2.84 and 1.97).

The distance regularized level set evolution (DRLSE) [Li et al., 2010], a recently proposed edge-based GAC model, is used as a comparison method. In the DRLSE formulation, the gradient magnitude GI   is used as the change measure to provide information on edges for the level set evolution. The parameters (the weighting coefficient  , the iteration number  , the standard deviation of the Gaussian function  , the width of the sliding and the observation window 21 W  ) of the two models have been experimentally optimized to produce the best segmentation results with less iteration. The Parameters remaining constant are:

5.0   , 0.04   , 5.0 t  , and 1.5   .

The same initial contour marked with a red rectangle is used in the four sets of experiments (see the input images in the first row of Fig. 5.2). The images in the second and third rows are respectively the segmentation results of the DRLSE and the NSM-GAC model. It is seen that

(1) with the increase of the noise level, more and more false contours and leakages are present in the results of the DRLSE model;

(2) the NSM-GAC model gives good segmentation results for all the noisy images;

(3) the NSM-GAC model always perform better than the DRLSE model in noisy cases.

These results are quantitatively evaluated using four indices which are the Jaccard similarity (JS) coefficient, Dice coefficient, false positive rate (FPR) and false negative rate (FNR). The JS coefficient measures similarity between two sample sets, and is defined as .13) where SR (Segmentation Result) and GT (Ground Truth) respectively represent the set of pixels contained in the segmented object and in the object of reference, and where || is the operation of counting their number. The closer to 1 the JS value is, the more similar the SR and the GT are. The Dice coefficient is also a similarity measure between two sets, which definition is not very different from the JS coefficient. The Dice coefficient is defined as Like the JS coefficient, the Dice coefficient ranges between zero and one. Also, the closer to 1 the Dice value is, the more similar the SR and the GT are.

SR GT JS SR GT  , ( 5 
n   0.96   , 1   , 310  2 1 3 W , 1   , 310  25 n   1.4   , 4.5   , 3610  2 1 3 W , 1.3   , 310  45 n   1.4   , 5   , 3610  2 1 3 W , 3.2   , 310  65 n   1.6   , 5.5   , 2410  2 1 3 W , 5   , 310 
The FPR is equivalent to the false alarm rate: it is the proportion of pixels contained in the SR that do not belong to the GT. The FPR is defined as

SR SR GT FPR GT   . (5.15)
The FNR is equivalent to the missing alarm rate: its represents the proportion of pixels contained in the GT that do not belong to the SR. The FNR is defined as

GT SR GT FNR GT   .
(5.16) Table 5.1 reports the values of the JS coefficient, Dice coefficient, FPR and FNR corresponding to the results in Fig. 5.2. We can see from the table that (1) For the noise-free image, the segmentation result of the DRLSE model is highly similar to the ground truth ( 0.99 JS  , 1.00 Dice 

) with few false and missing alarms ( 0 FPR  , 0.98% FNR 

), while for the noisy images, the results have a low similarity to the ground truth (the minimum JS and Dice are respectively 0.77 and 0.87) and high false and missing alarm rates (the maximum FPR and FNR are respectively 15.3% and 10.7%).

(2) For the NSM-GAC model, all the segmentation results are highly similar to the ground truth (the minimum JS and Dice are respectively 0.97 and 0.98) with few false and missing alarms (the maximum FPR and FNR are respectively 0.6% and 2.6%);

(3) The four indices computed on the segmentation results of the NSM-GAC model experience no significant changes while the noise level present in the images increases. Both qualitative and quantitative analyses show that the NSM-GAC model is robust to noise, and that using the NSM as the change measure can improve the performance of the edge-based GAC model in segmenting images corrupted by Gaussian noise.
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Segmentation of an image with a high noise level

To test the performance of the NSM-GAC model in reducing false contours and leakages which usually occur in the segmentation results of highly noisy images, a set of experiments is done on a synthetic image corrupted by an additive white Gaussian noise with mean 0 and variance 65 (see Fig. 5.3 (a)). The minimal CNR of the noisy synthetic image is only 1.97.

The edge-based DRLSE model [Li et al., 2010] and the classical region-based C-V model [Chan et al., 2001] The same initial contour, marked with a red rectangle in the input image shown in Fig. 5.3 (a), is used in the three experiments. The segmentation results of the DRLSE model, the C-V model, and the NSM-GAC model are respectively shown in (b) to (d). We can see that

(1) the segmentation result of the DRLSE model contains a number of false contours and an obvious leakage at the upper left corner of the concave shape;

(2) both the region-based C-V model and the NSM-GAC model provide good segmentation results with no false contour and no obvious leakage;

(3) the NSM-GAC model only iterates 410 times to produce a segmentation result as good as that of the C-V model which is obtained after 810 iterations;

(4) the contours in the result of the NSM-GAC model have rounded corners, which is a common problem for the edge-based models which use sliding windows to estimate the edge strength.

Table 5.2 reports the values of the JS coefficient, the Dice coefficient, the FPR and the FNR corresponding to the results in Fig. 5 ) with few false and missing alarms (C-V:

1.1% FPR  , 2.2% FNR  ; NSM-GAC: 0.6% FPR  , 2.6% FNR  );
Both qualitative and quantitative analyses show that, for noisy images corrupted by Gaussian noise, the NSM-GAC model can provide better segmentation results with fewer false contours and leakages than the GAC model with the gradient magnitude as the change measure.

We recorded the CPU times consumed by the three models: 33.77s for the DRLSE model, 7.03s for the C-V model, and 5.49s for the NSM-GAC model. The CPU times are obtained by running the Matlab programs on a PC with Intel (R) Core (TM) 2 Duo CPU, E7300, 2.66 GHz, 3.25GB RAM, with Matlab 7.10.0.499 (R2010a) on Windows XP Professional SP3. From the consumed times and the above segmentation results, we demonstrate that the proposed NSM-GAC model can provide better results with less iterations and less computation time. 

Segmentation of ultrasound images of the carotid

The good condition or bad condition of the carotid artery are closely related to the good or bad global cardiovascular state of a patient. The evaluation of this condition plays an important role in identifying the danger of asymptomatic patients. Ultrasound imaging is the most commonly used modality to image the carotid artery. However, segmenting ultrasound image is strongly difficult because of the speckle, shadows, low contrast, as well as low spatial resolution inherent to that type of images.

Segmentation of a simulated ultrasound image

To test the performance of the NSM-GAC model in segmenting ultrasound images, a set of experiments is done on a simulated carotid image. According to the simulation method presented in [Bamber et al., 1980;Yu et al., 2002], the simulated image shown in Fig. 5.4 (b) is obtained with a 128×128 echogenicity model shown in Fig. 5.4 (a). The specific parameter settings in the simulation are: the center frequency 12MHz, the propagation speed 1540 m/s, the pulse-width of the transmitting ultrasonic wave 2 MHz, the beam-width of transmitting ultrasonic wave 1.5 MHz, and the variance of the Gaussian fluctuation 1 MHz. The large noise variance results in blurring the arterial walls and providing a low CNR in the simulated image. The edge-based DRLSE model [Li et al., 2010] and the classic region-based C-V model [Chan et al., 2001] (2) different from the case of the synthetic image corrupted by Gaussian noise, the regionbased C-V model fails to segment the simulated ultrasound image, mainly because, unlike the zero mean Gaussian noise, the impact of speckle noise on the average intensity of the image inside and outside the active contour is hardly eliminated by the averaging;

(3) the NSM-GAC model provides a good result with no false contour and no obvious leakage;

(4) the NSM-GAC model only iterates 460 times and produces the best segmentation result, while the DRLSE model iterates 910 times. ).

Both qualitative and quantitative analyses show that the NSM-GAC model is immune to the speckle noise and can effectively reduce false contours and leakages which usually occur while segmenting highly noisy ultrasound images.

The CPU times consumed by the three models are recorded: 12.95s for the DRLSE model, 3.83s for the C-V model, and 8.47s for the NSM-GAC model. Although the C-V model consumed a shorter computation time, its result cannot be improved by prolonging the running time, i.e., increasing the number of iterations. 

Segmentation of a real ultrasound image of the carotid

In order to test the performance of the NSM-GAC model on real data, a set of experiments is done on a real ultrasound image of the carotid, aiming to segment the artery out. Compared with the simulated image, the real carotid image has a higher CNR, but still with strong speckle noise and weak edges.

Similar to the simulation experiment, the DRLSE model [Li et al., 2010] and the C-V model [Chan et al., 2001] are used as comparison methods. Still, the parameters of the three methods are experimentally optimized to produce the best segmentation results with the smaller number of iterations. For the DRLSE model, 1210

 , 2.88   , 2   , 5.0   , 0.04   , 5.0 t  , 1.5   . For the C-V model, 1610  . For the NSM-GAC model, 610  , 2 W  , 1.4   , 5.0   , 0.04   , 5.0 t  , 1.5   .
The same initial contour, marked with a red rectangle in the real carotid image shown in (2) although after 1610 iterations, the result of the C-V model contains a number of undesirable false contours, most of them created by the speckle noise;

(3) a good segmentation result, with no false contour and no obvious leakage, is obtained by the NSM-GAC model after 610 iterations, which is only half of that of the DRLSE model, and one third of the C-V model.

We recorded the CPU times consumed by the three models: 186.81s for the DRLSE model, 65.90s for the C-V model, and 97.84s for the NSM-GAC model. Generally speaking, the NSM-GAC model can produce a better result with less iteration time and shorter running time than the other two models. 

Conclusion

We have presented a NSM-GAC model to overcome false contours and leakages while segmenting highly noisy images.

By qualitatively and quantitatively analyzing the segmentation results on noisy synthetic images, a simulated ultrasound image and a real ultrasound image of a carotid, we can derive the following conclusions

(1) The NSM-GAC model is immune to the Gaussian noise, the most common noise encountered in biomedical images, and to the speckle noise.
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(2) For images with a high noise level, the NSM-GAC model can provide good segmentation results with few false contour s and obvious leakages.

(3) Like other GAC models, the running time of the NSM-GAC model mainly depends on the number of iterations. The experimental results show that the proposed model can provide better segmentation results with less iteration time and shorter running time than classical GAC models.

(4) Thanks to the NSM, the NSM-GAC model is more robust to noise than the GAC model using the gradient magnitude as change measure. ................................................................................. 6.2.3 Boundary points processing ....................................................................................... 6.2.4 Spatiodirectional NSM map ........................................................................................ 6.2.5 Selection of parameters ........................................................................................... 6.3.1 Production of synthetic data ...................................................................................... 6.3.2 Experiments and results ............................................................................................. 6.3.3 
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Introduction

De nouvelles modalités d'imagerie médicale, qui rendent possible l'étude des microstructures d'organes humains, ouvrent de nouvelles perspectives pour le traitement et la prévention des maladies graves. Cependant, à cause du principe même de ces nouvelles modalités d'imagerie, conjugué avec la complexité des tissus imagés, les images obtenues contiennent souvent des bruits importants, et présentent ainsi de faibles rapport signal sur bruit. Les images à faible RSB peuvent limiter l'utilisation de ces nouvelles modalités d'imagerie et la potentialité de ces dernières. L'amélioration de la qualité de ces images à faible RSB a attiré l'attention des chercheurs. Dans ce domaine, la difficulté se trouve dans le compromis difficile à trouver entre réduction du bruit et préservation des caractéristiques importantes (bords, contours, détails, etc.) de l'image. L'imagerie par résonance magnétique du tenseur de diffusion (DT-MRI ou simplement DTI en anglais), qui est une nouvelle méthode d'imagerie, permet de mesurer la diffusion des molécules d'eau dans des directions différentes, fournissant ainsi des informations biologiquement et cliniquement pertinentes sur les tissus étudiés [Basser et al., 1994]. Ces informations peuvent aider à caractériser la composition, la microstructure et l'architecture du tissu, et à évaluer son éventuel changement durant le développement, ou en cas de maladie ou de dégénérescence. L'Imagerie du tenseur de diffusion a été intensivement étudiée pour le cerveau humain [Alexander et al., 2007;Assaf et al., 2008;Xu et al., 2009a], et plus récemment pour le coeur humain [Frindel et al., 2009;Lombaert et al., 2012;Wei et al., 2013a;b;Wu et al., 2009;Wu et al., 2006;Yang et al., 2012], ainsi que pour d'autres tissus et organes [Eyal et al., 2012;Notohamiprodjo et al., 2008;Raya et al., 2012]. L'Imagerie du tenseur de diffusion devient donc un outil de plus en plus populaire et important pour la recherche médicale et pour le diagnostic.

Bien que prometteur pour l'étude de la microstructure des tissus in vivo, la performance et la potentialité de l'Imagerie du tenseur de diffusion sont entravées par la présence de bruit important dans les images pondérées en diffusion (DW images en anglais) [Basser et al., 2000;Chen et al., 2005;Ding et al., 2005;[START_REF] Jones | [END_REF]. Ces images sont corrompues si sévèrement que leurs caractéristiques, telles que les bords ou les détails, peuvent disparaitre sous forme de mosaïque mouchetée suscitée par le bruit, et l'analyse de DTI ultérieure telle que l'estimation du tenseur, le suivi des fibres et le calcul des cartographies de paramètres sont entachées d'incertitude et d'erreurs. Pour ces raisons, l'amélioration des données est devenue l'une des tâches primordiales dans l'étude de DTI.

Le prétraitement de ces données peut s'opérer soit sur les images DW soit sur les tenseurs. Jusqu'en 2007, de nombreux travaux ont porté sur la régularisation des tenseurs en étendant des méthodes classiques de traitement d'image scalaire et des champs de matrices [Burgeth et al., 2011;Hamarnesh et al., 2007;Welk et al., 2007]. D'autres approches [Chou et al., 2009;Coulon et al., 2004] ont été développées pour lisser les champs de vecteurs dérivé des tenseurs. Cependant, sans prétraitement des DW images, ces tenseurs ne peuvent souvent pas être garantis d'être semi-définis positifs, sauf avec un traitement spécial, comme dans le cadre de Cholesky [START_REF] Wang | A Constrained Variational Principle for Direct Estimation and Smoothing of the Diffusion Tensor Field from Complex Dwi[END_REF] ou de Log-euclidienne [Arsigny et al., 2006]. Par conséquent, la régularisation des champs de tenseurs a une utilisation limitée.
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97 Thèse en traitement de l'image medicale / 2013 Institut national des sciences appliquées de Lyon D'autre part, le prétraitement ou le lissage des DW images consiste à traiter le problème en amont car il permet de réduire la propagation des erreurs dans le calcul ultérieur des grandeurs dérivées. Le filtrage par diffusion basé sur l'équation aux dérivées partielles (PDE) a été un premier choix pour lisser les images DW, en raison de sa solide base théorique et de sa bonne performance. Les auteurs [Parker et al., 2000] ont utilisé le filtre de diffusion non linéaire proposé dans [Perona et al., 1990] pour réduire le bruit dans les images DW. Dans [Ding et al., 2005], le tenseur de structure dans le filtrage par diffusion anisotrope (ADF) [Weickert, 1999] a été reformulé afin de s'adapter aux structures des faisceaux de fibres dans les images de tenseur de diffusion. Des résultats illustratifs ont démontré que la technique de filtrage ou lissage anisotrope est supérieure à la méthode non linéaire [Parker et al., 2000] dans la réduction de l'impact du bruit sur les mesures d'anisotropie et de la direction des images du tenseur de diffusion. Cette approche de lissage anisotrope [Ding et al., 2005] a également été testée dans [Moraschi et al., 2010] et est apparue plus adaptée aux données DTI. Récemment, la méthode de [Ding et al., 2005] a été améliorée à la fois dans la stabilité et dans la précision temporelle [Xu et al., 2010]. Outre le filtrage par diffusion basé sur PDE, d'autres méthodes de lissage ont également été développées qui concernent, par exemple, le lissage par TV-norm pondéré [Vemuri et al., 2001] et le lissage adaptatif structurel basé sur la méthode de propagation-séparation [Tabelow et al., 2008]. La plupart de ces techniques de lissage ont utilisé le filtrage par diffusion basé sur les équations aux dérivées partielles comme méthode de comparaison, et les résultats n'ont pas montré d'avantages évidents.

Malgré ces travaux, pour les images ayant un faible RSB comme les images DW, réduire le bruit tout en préservant les caractéristiques désirables demeure un défi persistant pour les méthodes de lissage existants. Dans ce chapitre, en nous appuyant sur un meilleur compromis entre la réduction du bruit et la préservation des caractéristiques dans l'image, nous proposons une nouvelle méthode de lissage, appelée filtrage adaptatif par non-stationnarité (nonstationarity adaptive filtering-NAF en anglais). Cette nouvelle méthode est décrite dans la Section 6.2. Ensuite, elle est évaluée dans la Section 6.3 sur des images DW de synthèse. Enfin, les résultats de traitement d'images DW du coeur humain par la méthode proposée sont donnés dans la Section 6.4, suivie d'une conclusion à la Section 6.5.

Nonstationarity adaptive filtering

Traditional averaging filters have undesirable side effect of blurring boundaries and details mainly because the average is performed on a fixed mask. In fact, for any pixel, a better operation to update its intensity is to average intensities of the pixels within its homogeneous neighborhood. Since the points in the homogeneous neighborhood have similar nature, the operation of averaging them can reduce noise without introducing any distortion caused by heterogeneous points. Therefore, such averaging can achieve a better compromise between the reduction of noise and the preservation of desirable features. The key point, especially for low-SNR images, is to appropriately choose the homogeneous neighborhood, in particular near boundaries.
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() 1 ( ) ( ) ff M     yx xy , ( 6 

Adaptive neighborhood constrains

To obtain adaptive homogeneous neighborhood, we impose the following five constraints: 1) Geometrical nearness: the intensity of an image typically varies slowly over space (except highly textured images or regions), so near points are more likely to have similar nature than points far away, and they therefore lend themselves to be included in the neighborhood.

2) Topological connectivity: there should always be a path between x and y in the usual Euclidean topology, and any point in the path belongs to the neighborhood. 3) Intensity similarity: for scalar-valued images, homogeneous points usually have quasiidentical intensities. But image intensity is susceptible to noise. In the presence of heavy noise, originally homogenous points may have rather different intensities.

Likewise, originally heterogeneous points may have similar intensities. 4) Noise immunity: factors immune to noise should be taken into account in the design of ( , ) R xy in order to decrease the influence of noise on the computation of intensity similarity. 5) Robustness design: the design of ( , ) R xy should be robust so that the adaptive neighborhood of the filter can exclude spurious points.

Homogeneous membership rule

Following the five constraints described above, we define the membership rule ( , ) R xy as 

      , , , 
        1 1 ,, n i i i i D nsm nsm f f       
x y y y y , (6.5)
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      1 i i i nsm f f   y y y (intensity similarity).
The weighting coefficient () nsm y is a spatiodirectional NSM map explained in subsection 6.2.4. Simply speaking, when a point y is inside a region, () nsm y tends to have a small value near zero. On the contrary, () nsm y has a larger value when y locates near the boundary. Thus, within the region, if noise is present,     1 ii ff   yy might be great, but   i nsm y is small. As a result, their product is much smaller than     

        11 2 1 , n i i i i i i R nsm f f           x y y y y y y . (6.6)
Of course, this rule is also suitable for 3-D volumes if the point x or y represents the voxels of the 3-D volume.

Boundary points processing

After the first smoothing of the input image following the black arrows flow in Fig. 6.1, the noisy image is generally well smoothed inside regions except points on the boundary, whose intensities were not well smoothed, exhibiting mosaic effect on the boundary. These boundary points usually have neighborhoods of small sizes, which sometimes consist of themselves. The existence of such rough boundary points is mainly due to the fact that its 8-neighbors cannot become the members of its adaptive neighborhood since either the NSMs or the Yanli ZHANG 101 Thèse en traitement de l'image medicale / 2013 Institut national des sciences appliquées de Lyon intensity difference between the boundary point and its 8-neighbors or still both of them are so big that R exceeds the threshold Th [see (6.6)]. As a result, the pixels other than the 8neighbors cannot be further handled due to the "topological connectivity" constraint. To cope with this problem, we set ( , ) 0 R  xy for the homogeneous points in the 8 neighbors of the boundary point, which allows continuing the process of searching other possible members of the neighborhood (Fig. 6.1).

Our experiments showed that the homogeneous 8-neighhors whose ( , ) R xy is set to zero usually have two characteristics in the gradient field of the boundary image: 1) they are located in the side opposite to the gradient direction of the boundary point; 2) they have the same gradient direction as the boundary point. For example, in Fig. 6.2, point no. 4 and no.5 circled by red dashed rectangles are homogeneous 8-neighbors of the point p. Note the gradient is calculated according to

1 2 1 2 1 2 1 2 1 2 ( 1, ) ( 1, ) ( , 1) ( , 1) x x G f x x f x x G f x x f x x              , (6.7)
where 1

x and 2

x represent the coordinates of image points. According to the above two characteristics, the homogeneous 8-neighhors of a boundary point can be determined following the procedure below.

1) Obtain the binary boundary image by thresholding the spatiodirectional NSM map of the averaged image. 2) Calculate the gradient field of the binary boundary image, and find out the homogeneous 8-neighbors of each boundary point according to the two characteristics mentioned above, and set their R(x, y) to zero.

Once the above BBP is achieved, based on the homogeneous 8-neighbors determined, we continue to find other homogeneous members according to (6.6) and (6.2) to finally determine the adaptive neighborhood of the boundary points. 

Spatiodirectional NSM map

Compared to conventional imaging data, DTI data is a set of 3-D volumes, each of which corresponds to a diffusion gradient direction. Add to all that a b0 volume corresponding to the case the diffusion gradient is zero. To exploit both spatial and (diffusion gradient) directional information encoded in the DTI data, we construct a so-called spatiodirectional NSM map for each of the 3-D slices. The spatiodirectional NSM map for each 2-D slice is obtained following the steps: 1) calculate the NSM map of the DW image in each diffusion gradient direction, and then compute the average of the NSM maps in different directions; 2) calculate the NSM map of b0 image; 3) take the larger value between the two NSM maps obtained in the first two steps.

By doing so, the change information weakened in one image can be captured from others.

Selection of parameters

In the implementation of the NAF, three parameters need to be set: the weighting function g, the parameter estimation function h, and the threshold Th. Usually, rectangular windows of the same size are an effective and simple choice for g and h. The size (2W+1)×(2W+1) of the window depends on noise and to some extent image resolution. The selection of window width W can refer to Section 2.3.4. In smoothing DTI data, due to the poor resolution of the latter, we have chosen W as 1, which corresponds to a window size of 3×3. Concerning the choice of the threshold Th, it depends on the geometric distance and intensity dissimilarity in (6.6) and ranges from 5 to 9 for the cardiac DTI data in the present study. In principle, various window functions can be used for g and h.

Smoothing of synthetic DTI data

Production of synthetic data

A set of synthetic cardiac DW images of size 128×128 corresponding to six diffusion gradient directions were generated in order to both qualitatively and quantitatively evaluate the performance of the NAF. The synthetic images were designed such that they are similar to a slice of real human heart DTI volumes. Visually, each image mainly consists of three regions (Fig. 6.3): the cardiac region of interest, the perfluoropolyether fomblin (PF) and the air. In the air region, no diffusion tensor exists; in the PF region, isotropic diffusion tensors were designed with three equal eigenvalues 0.75; in the myocardium region, the three eigenvalues of anisotropic diffusion tensors were 1.5, 0.75, and 0.75, respectively. The principal eigenvectors of these anisotropic tensors make a fixed angle (45 °) with the slice plane, and their projections on the plane take the direction of the tangents of the concentric circles centered on the center of the left ventricle (LV). In order to thoroughly analyze the smoothing performance of the NAF in Rician noisy cases, different level noises   

Experiments and results

For all the experiments, g and h were set as 2-D rectangular functions with size 3×3.

Different Th values were chosen following different noise levels, as denoted by   , r Th



, to get better smoothing performance: (5, 5), (10, 5), (15, 6), (20, 6) and (25, 6.25). The proposed NAF is compared with an anisotropic diffusion filtering (ADF) recently used in DTI for the DW image smoothing [Xu et al., 2010].

To illustrate the performance of the NAF in highly noisy cases, the result of smoothing synthetic data corrupted with Rician noise =25 r  is shown in Fig. 6.4. The images in the first column to the fourth column respectively correspond to the case of noise-free, noisy, smoothed by the ADF and smoothed by the NAF. To better observe the results of the two methods, the images in the first diffusion gradient direction are zoomed and shown in Fig. 6.5.

Smoothed by the ADF [Fig. 6.5(c)], the DW image gains good visual appearances since the grainy aspect caused by the Rician noise is smoothed to a large degree. However, the smoothed areas show a little "wavy" and the sharp edges are blurred. In contrast, with the proposed NAF [Fig. 6.5(d)], the noise in flat regions is reduced to a larger degree, while the features such as edges are preserved very well. This can be more clearly seen in the profiles shown in Fig. 6.5(e)-(h). Fig. 6.6 shows the tensor fields computed from the noise-free, noisy and smoothed DW images. Tensors are displayed as ellipsoids and colored according to the direction of their principal eigenvectors. The red color indicates a left-right direction, the green color the anterior-posterior direction, and the blue the inferior-superior direction. Note that the ellipsoids outside the myocardium region were masked since they are not of interest. The uniform tensor field computed from the noise-free data [Fig. 6.6(a), (e)] becomes disordered because of the heavy Rician noise in the noisy data [Fig. 6.6(b), (f)]. With the ADF, both the shapes and the colors of the ellipsoids become coherent [Fig. 6.6(c), (g)], but rather different from the original ones. In particular, the ellipsoids in the boundary areas between the myocardium and the PF become isotropic and smaller compared to the ellipsoids inside the myocardium, which reflects the presence of edge blurring effect. With the NAF, the shapes and the colors of the ellipsoids are close to those in the noise-free case, which indicates that the NAF preserve the characteristics of tensors while smoothing. It is worth mentioning that Yanli ZHANG 106 Thèse en traitement de l'image medicale / 2013 Institut national des sciences appliquées de Lyon

Evaluation of smoothing results

Mean structural SIMilarity

Mean Structural SIMilarity (MSSIM) is an objective and effective measure to quantify the structural similarity between two images [START_REF] Wang | Image Quality Assessment: From Error Visibility to Structural Similarity[END_REF]. The MSSIM depends on the similarity of luminance, contrast and structure, and is defined as a mean structural similarity (SSIM) index to evaluate the overall image quality

1 1 MSSIM( , )= SSIM( , ) M jj j M   U V u v (6.8)
where U and V are the reference and smoothed or noisy images, respectively; SSIM the structural similarity of the image contents u j and v j at the j th local window, and M the number of local windows of the image.

The MSSIM values calculated for the smoothing results are given in Table 6.1. With the two smoothing methods, the MSSIM values of the six DW images all increased significantly. By the ADF smoothing, the MSSIMs increased from 65.0% (for the DW image in the 6 th direction) to 110.3% (for the DW image in the 1 st direction). In contrast, using the NAF, the MSSIMs increased from 103.0% (for the same 6 th direction image) to 164.9% (for the same 1 st direction image). The average MSSIM of the DW images smoothed by the NAF are 22.6% up on that of the images smoothed by the ADF. When increasing noise levels, the MSSIMs of the resultant smoothed images are plotted in Fig. 6.7. It is observed that the NAF always outperforms the ADF and produces results with higher MSSIMs.

Diffusion anisotropy index

Fractional anisotropy (FA) and mean diffusivity (MD) are the two parametric indices commonly used in DTI study.

FA describes the spatial heterogeneity of the water molecules displacements that is related to the presence of orientated structures [Kingsley, 2006], it is defined as where  represents MD which describes the overall mean-squared displacement of the water molecules [Bronshtein et al., 2007]. It is defined by the average of the three apparent diffusion coefficients (ADC) respectively measured along the three axes of the tensor Yanli ZHANG 108 Thèse en traitement de l'image medicale / 2013 Institut national des sciences appliquées de Lyon The FAs in the myocardium and the PF region are plotted respectively in Fig. 6.8(a) and (b). The results show that: 1) both mean and variance of FA values increase with the increase of noise levels, and such increasing is much significant in the region where the diffusion is isotropic than in the region where the diffusion is anisotropic; 2) while smoothing reduces noise level, it induces the decreasing of FA values and generates FA values smaller than the true FA value in anisotropic regions; 3) for the same smoothing, the induced FA decrease is much significant in isotropic diffusion region (in the PF region) than in anisotropic region (in the myocardium region), but with the NAF, the mean FA is much closer to the true value with very small variance in comparison with the ADF smoothing that presents big variance; 4) for the image presenting both isotropic and anisotropic diffusion regions in Fig. 6.5, the ADF tends to over-smooth the anisotropic region and at the same time under-smooth the isotropic region, in which, after the ADF smoothing, the mean FA and variance remain big (while the FA in isotropic diffusion regions should be equal to zero). All these results demonstrate that the NAF can better preserve the anisotropy of original DTI data than the ADF. Regarding the smoothing effect on MD, the results are plotted in Fig. 6.9. It is seen that: 1) The mean of MD values varies little when the noise level increases, but the variance increases proportionally; 2) after both the ADF and the NAF smoothing, the mean of MD values decreases more or less, but the NAF has much less effect on MD values than the ADF while substantially reducing the variance; 3) in contrast to the FA case, the smoothing (with the ADF or NAF) has rather homogeneous effect on isotropic and anisotropic regions, but the NAF yields MD values much closer to the true MD value than the ADF that also exhibits big variance.
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Smoothing of human cardiac DTI data 6.4.1 Acquisition of cardiac DTI data

Our real data come from a set of 38 acquisitions performed on eight ex vivo human hearts. These hearts were processed a few hours after death and not perfused with any fixing agent in order not to change their diffusion properties. Each heart was placed in a plastic container filled with the PF which help the heart maintain a diastolic shape.

The data were acquired with a Siemens Avanto 1.5T MR Scanner using echo planar acquisitions with the following parameters: 52 contiguous axial slices of 128×128/160×160 size, 2×2 mm 2 spatial resolution, 2 mm thickness, and 12/6 diffusion sensitizing directions.

Experiments and results

Three neighboring slices of 3-D real cardiac DTI datasets were processed in 3-D by the two methods. For the NAF, as in the case of synthetic data, spatiodirectional NSM maps were constructed and the averaged intensity of the 3-D homogeneous neighborhood of a voxel was calculated to substitute for its original intensity for the smoothing of DW images. The function g and h were set as 3×3 rectangular functions, and T took 9 in the black arrows flow and 6 in the blue arrows flow. The ADF was also applied to the same dataset for comparison.

In Fig. 6.10(a)-(c), we chose to show the noisy and smoothed LVs on a middle slice. As in the simulation case, the proposed NAF achieves a better compromise between the reduction of noise and the preservation of discontinuities at the boundaries or other desirable features than the ADF. Fig. 6.10(d)-(f) shows a zoomed version of the boxed region of the LV myocardium in Fig. 6.10(a)-(c). It is clearly seen that the red-dashed line corresponding to the NAF gives, compared to original noisy or ADF smoothed images, substantially more flat segments for homogeneous regions (within the myocardium and PF) in the image, and at the same time much sharper edges (at the endocardium and the epicardium).

The diffusion tensors corresponding to the zoomed parts of the myocardium in Fig. 6.10 (d)-(f) are shown in Fig. 6.11(a)-(c). A mask was used to show ellipsoids only in the myocardium. After smoothing with the two methods, the chaotic diffusion tensor field becomes orderly. With the ADF, the ellipsoids in the boundary areas between the myocardium and the PF become isotropic and larger compared to the ellipsoids inside the myocardium, which reflects the presence of edge blurring effect. In contrast, The NAF ensures a more consistent diffusion tensor field in the homogeneous region. All that implies that, compared to the ADF, the NAF can better reduce errors in the estimation of tensor Yanli ZHANG 110 Thèse en traitement de l'image medicale / 2013 Institut national des sciences appliquées de Lyon characteristics, such as the magnitude and the direction of principal eigenvectors. These errors present in the results smoothed by the ADF due to blurring lead to the spreading of fiber pathways into neighboring fiber bundles, as shown in Fig. 6.12(b). 

Evaluation of smoothing results

For the real data, the smoothing results are quantitatively evaluated using the coherent index (CI) [Basser et al., 1996] Table 6.2 summarizes the values of FA, MD and CI. These quantitative results confirm the above qualitative analyses. It is seen that, in comparison with the FA values of the original noisy diffusion tensors, the FA values decrease after smoothing using both methods. Nevertheless, compared to the ADF, the NAF generates moderate decrease in FA while presenting a smaller variance of FA, which indicates that the NAF maintains the anisotropy of diffusion tensors while regularizing them effectively. In addition, the greater mean and much lower variance of CI also imply that, after smoothing by the NAF, the diffusion tensors of neighboring voxels have more consistency with respect to the orientation of their principal eigenvectors. Such directional coherence would advantage the subsequent fiber tracking. Fig. 6.12 shows fiber launching from the same petit patch of interest inside the LV. These fibers are colored according to their local orientation in the same manner as that used in Fig. 6.6. It is seen that the noisy raw data presents tousy fibers with diverse directions and lengths due to the presence of high-level noise. After smoothing by the ADF, the fibers become more Yanli ZHANG 112 Thèse en traitement de l'image medicale / 2013 Institut national des sciences appliquées de Lyon regular, but fiber spreading as a result of smoothing without adequate boundary preservation is visible in the sense that the fiber pathways spread into neighboring structures. The fiber bundles obtained after the NAF resemble the original ones but with more coherent and longer fibers, which is consistent with the fact that contiguous fibers would present similar features. Furthermore, the longer fibers in Fig. 6.12(c) imply the well preserved anisotropy of diffusion tensors by the NAF since the fiber tracking was stopped using the same FA value.

Finally, Table 6.3 reports the statistical results of FA, MD, and CI in the whole LV myocardium region of other seven DTI datasets with very high noises, before and after smoothing by the proposed NAF method. On average, FA means and variances decreased by 42.9% and 67.7%, and MD means and variances by 5.3% and 68.7%, while CI means increased by 92.1% and CI variances decreased by 35.7% after smoothing. After smoothing, the variances of the three indices for each heart decreased substantially, which implies that FA, MD and CI converge towards more consistent results. For each heart, the first line corresponds to the DT-MRI data before smoothing, the second line to the data after smoothing using NAF, and the third line to the rate of change.
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Conclusion

Nous avons proposé une nouvelle méthode de lissage, appelée filtrage adaptatif par nonstationnarité (nonstationarity adaptive filtering-NAF en anglais), en nous appuyant sur un meilleur compromis entre la réduction du bruit et la préservation des caractéristiques dans l'image. La méthode proposée consiste à estimer l'intensité d'un pixel en calculant la moyenne des intensités de ses voisins dans un voisinage homogène. Comme les points dans un voisinage homogène partagent la même caractéristique, le moyennage permet alors de réduire le bruit sans introduire des distorsions causées par les points hétérogènes.

Pour des images à faible RSB, il est particulièrement difficile de déterminer convenablement le voisinage homogène pour chaque pixel. Selon les cinq contraintes sur l'appartenance homogène, nous avons pu définir la règle d'appartenance basée sur NSM pour obtenir le voisinage homogène. Comme le NSM est insensible au bruit, il a été utilisé comme un facteur de pondération pour diminuer l'impact du bruit sur les différences d'intensité et pour ainsi améliorer la robustesse de la règle d'appartenance. Pour le traitement de points frontières, la cartographie de NSM a été utilisée afin d'obtenir l'image binaire de la frontière pour déterminer les huit voisins homogènes d'un point frontière, ainsi que son voisinage homogène. La NAF proposée réalise le moyennage dans les voisinages homogènes, et permet de ce fait un meilleur compromis entre la réduction du bruit et la préservation des caractéristiques désirable pour les images à faible RSB.

La NAF a été appliquée pour lisser des images DW cardiaques. Les résultats sur des images cardiaques synthétiques montrent que la moyenne de MSSIM des images DW lissées par la NAF est 120,3% plus élevée que celle des images bruitées, et est 22,6% plus élevée que celle des images lissées par le FAD. Les résultats sur des images cardiaques réelles montrent que la NAF proposée permet d'avoir un meilleure aspect visuel pour les images DW, de régulariser efficacement le champs de tenseurs de diffusion tout en restaurant l'anisotropie des tenseurs, et d'assurer une reconstruction plus fiable des fibres. 
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Conclusions

Cette thèse portrait sur l'étude de la mesure de la non-stationnarité des signaux et des images. Dans ce cadre, nous avons généralisé la définition de la non-stationnarité pour des signaux et des images, et développé une méthode générique pour mesurer le changement des caractéristiques d'un signal multidimensionnel quelconque.

En nous appuyant sur la nouvelle mesure de nonstationnarité, nous avons développé quatre méthodes de traitement de signaux et d'images: détection de changements dans un signal, détection de contours dans une image, segmentation d'images, et lissage adaptatif. Toutes ces méthodes ont pour mécanisme commun de se baser sur la mesure de changements des caractéristiques du signal ou de l'image.

Ces méthodes ont été appliquées à des signaux aléatoires de type ECG (électrocardiogramme) et EEG (électroencéphalogramme), à des images IRM pondérées en diffusion qui sont très bruitées et possèdent un faible contraste, et à des images ultrasonores de la carotide. Les résultats obtenus sur des images aussi bien synthétiques que réelles ont montré que ces méthodes sont particulièrement robustes au bruit, et que la mesure robuste du changement ainsi que les méthodes résultantes de traitement du signal et de l'image sont particulièrement intéressantes pour les signaux et les images biomédicaux.

Les contributions principales de ce travail de thèse sont résumées ci-dessous:

 Amélioration et généralisation de la mesure de non-stationnarité Nous avons d'abord proposé la notion de stationnarité d'un paramètre en général. Par rapport à la notion de stationnarité classique, cette nouvelle notion définit la stationnarité par rapport à un paramètre (caractéristique) statistique du signal, et n'impose pas de forme concrète pour le paramètre et pour le signal, ce qui rend cette nouvelle notion de stationnarité plus générale, adaptative et évolutive. A partir de la notion de stationnarité d'un paramètre en général, nous avons calculé des paramètres statistiques glissants à l'aide d'une fenêtre et construit ainsi un espace de paramètres statistiques glissant, ce qui nous a permis d'en déduire la mesure de non-stationnarité locale. Ensuite, le processus de construction de l'opérateur de mesure de la non-stationnarité a été formulé, et la réponse de l'opérateur à des signaux d'entrée typiques a été calculée analytiquement, ce qui nous a permis de démontrer de manière théorique la robustesse de l'opérateur d'ordre deux de mesure de la non-stationnarité. Enfin, le choix de la largeur de la fenêtre impliquée dans l'opérateur de mesure de non-stationnarité a été étudié en détail.

L'extension à n-dimensions (n-D) de l'opérateur de mesure de non-stationnarité a également été effectuée. D'abord, nous avons défini la mesure de nonstationnarité pour des signaux n-D, et donné l'algorithme général de calcul de cette mesure. Ensuite, nous avons expliqué le principe de la mesure de non-stationnarité pour des données vectorielles et tensorielles, déduit les formules de calcul, et donné des illustrations à l'aide d'exemples. La méthode proposée permet ainsi de mesurer la non-stationnarité de signaux multidimensionnels quelconques (scalaires,
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 Détection de changement dans un signal et de contours dans une image

En vue d'adresser le problème des faux positifs et faux négatifs dans la détection de changement dans un signal ou une image, nous avons proposé des méthodes de détection du changement qui utilisent la mesure de non-stationnarité. Dans le cas des signaux 1D, la méthode de détection du changement consiste à générer une courbe de mesure de non-stationnarité, et à déterminer le changement à partir de cette courbe par rapport à un seuil. Quand la valeur de la mesure de nonstationnarité dépasse le seuil, un changement est alors considéré avoir lieu à l'instant correspondant. Par rapport à la méthode classique △BIC ou aux méthodes plus récentes telles que la Pearson divergence méthode et la DCPC méthode, la méthode proposée permet de détecter des instants de changements dans des signaux ECG et EEG de manière plus précise et avec un temps de traitement plus court, tout en réduisant les faux positifs et faux négatifs.

Dans le cas des images, la méthode de détection de contours proposée utilise l'opérateur 2D de mesure de non-stationnarité pour mesurer l'amplitude du changement des contours, et détecter les contours par un seuillage des valeurs des mesures de non-stationnarité combinées avec la prise en charge du voisinage. Les résultats montrent que la méthode proposée est particulièrement efficace pour des images très bruitées telles que les images cardiaques pondérées en diffusion, en permettant d'obtenir des contours plus précis et de réduire le nombre de faux contours par rapport aux méthodes classiques ou récentes, telles que Canny, NLFS et FES.

 Segmentation d'images par mesure de non-stationnarité et contour actif géométrique Dans ce travail, nous nous sommes focalisés sur le problème des faux positifs et de la délocalisation des contours dans des images très bruitées. Nous avons proposé un model basé sur la mesure de la non-stationnarité locale et sur les contours actifs géométriques (NSM-GAC). Le mécanisme du modèle réside dans l'exploitation de la robustesse de l'opérateur 2D de mesure de non-stationnarité pour mesurer l'intensité du contour et guider le contour actif vers les contours cibles dans l'image. Les résultats sur des images de synthèses montrent que le modèle est particulièrement robuste au bruit gaussien et que le résultat de segmentation se dégrade peu avec l'augmentation du niveau de bruit. Sur des images ultrasonores de la carotide, la méthode proposée est plus performante que les méthodes DRLSE et C-V en termes de robustesse au bruit spatial de « speckle » propre aux images ultrasonores, de temps de calcul, et de précision de segmentation (moins de faux contours, moins de délocalisation de contours).
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117 Thèse en traitement de l'image medicale / 2013 Institut national des sciences appliquées de Lyon  Lissage adaptatif des images basé sur la mesure de non-stationnarité Pour aborder le difficile compromis entre lissage et préservation de caractéristiques de l'image ayant un faible rapport signal sur bruit (RSB), nous avons proposé une méthode de lissage basée sur la mesure de non-stationnarité, appelée NAF (nonstationarity adaptive filtering, en anglais). Utilisant l'hypothèse selon laquelle la meilleure estimation de l'intensité d'un pixel s'obtient par moyennage des intensités des pixels de son voisinage dit homogène, nous avons été conduits à formuler cinq contraintes qui nous ont permis de définir, à partir de la mesure de non-stationnarité, la règle d'appartenance d'un pixel au voisinage homogène. Selon cette règle d'appartenance, le voisinage homogène de chaque pixel est déterminé de manière adaptative. Ensuite, l'intensité du pixel courant est remplacée par la valeur moyenne du voisinage. Enfin, après un traitement spécifique pour les points frontières, on obtient le lissage final de l'image. Les résultats sur des images simulées de faible RSB montrent que la ressemblance selon le critère MSSIM entre l'image lissée par NAF et l'image originale sans bruit est de 0,943, ce qui correspond à une augmentation (amélioration) de 120,3% par rapport à la valeur de MSSIM de l'image bruitée. En comparaison avec la méthode de l'état de l'art ADF, la valeur de MISSIM a été augmentée de 22,6%. Sur des images réelles du coeur humain pondérées en diffusion, les résultats montrent que la méthode proposée permet un meilleur compromis entre réduction du bruit et préservation des contours et des détails, et conduit à une meilleure régularisation du champs de tenseurs tout en préservant l'anisotropie des tenseurs conduisant à des fibres plus cohérentes en termes de longueur et d'orientation. Le temps de calcul de la méthode proposée NAF dépend du nombre de pixels ou voxels à traiter et de la taille des voisinages homogènes. En pratique, on peut réduire de manière efficace le temps de calcul en imposant une limite supérieure à la taille du voisinage homogène.

Perspectives

La mesure de non-stationnarité développée dans cette thèse est une mesure générique capable de mesurer la non-stationnarité d'un signal par rapport à n'importe quelle caractéristique statistique et de quantifier la variation des données scalaires, vectorielles et tensorielles. Des études futures peuvent être poursuivies sur des points suivants: 1) Etude approfondie de la mesure de non-stationnarité des données tensorielles, étude de sa performance vis-à-vis du bruit, et exploration de son application à la segmentation et au lissage des champs de tenseurs en imagerie du tenseur de diffusion 2) Etude approfondie de la mesure de non-stationnarité des données vectorielles, analyse de sa performance en fonction du bruit, et exploration de son application pour la segmentation, le lissage des champs de vecteurs et pour la tractographie des fibres.
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For the second term of (A. 
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Therefore, with the observation window function 1 () gt, the height of the response peak of the 2 nd -order NSM operator to the ideal signal 1 s is

2 11 1 1 1 3 2 12 H       . (A.6)
For the observation window function

  2 1 cos () 2 tW gt W   
, the height of the response peak of the 2 nd -order NSM operator to the ideal step signal 1 s can be expressed as: , the height of the response peak of the 2 nd -order NSM operator to the ideal signal 1 s can be expressed as: .12) According to (A.8), (A.9) and (A.10), we arrive at 
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The maximum of the output of the 2 nd -order NSM operator is obtained at 0 t  : , the height of the response peak of the 2 nd -order NSM operator to 3 s can be expressed as: To obtain the square root of the mean-squared noise response, we first estimate the variance of the response to the noise. In order to keep the theoretical analysis simple, we assume the noise   nt as a Gaussian white noise with zero mean. The response of the 2 nd -order NSM to the noise   nt can be expressed as: 
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Fig. 1

 1 Fig. 1.1 Signal segments X , Y and Z involved in the measurement of the change at time t 0



  are the ML estimates of the parameters of the Gaussian densities of data set X and Y, respectively. Then, the change measure based on the LLR can be expressed

2

  Fig. 1.2 Main contents and the organization of the thesis

  Fig. 2.1 as an example, we elaborate the relationship between the time-domain signal () xn and the moving feature space 21 W  R . There exists an abrupt change (or transition) at time o in the mean of the noisy signal () xn . With the sliding window h , the moving statistical parameter ˆ() n  (the 1 st -order moment in the present example) is estimated. Moving the observation window g along ˆ() n  , point by point, it is observed that: 1) in the time period a T before the change time o , the moving statistical parameters inside the observation window g nearly equal each other, namely ˆˆ(

  to the same stationary point A in 21 W  R ; 2) in the close vicinity of the change time o , the moving statistical parameters inside the observation window g are not all equal, no longer satisfying (2.2) -the signal segments in this interval correspond to the points on the transition trajectory  in the non-stationary subspace; 3) in the time period b T after the change time o , the moving statistical parameters inside the observation window g nearly equal each other, namely ˆˆ(

  Fig. 2.1 Relationship among the signal x(n), the moving statistical parameter ˆ() n  , the moving feature space R 2W+1 ,

  6) The signal segments in the time periods a T and b T respectively correspond to the stationary points A and B  , and the output ˆ() yn of the NSM operator in the two periods equals zero (Fig. 2.1(d)). For the signal segments in the interval between a T and b T , the corresponding transition trajectory  gradually deviates from the stationary line  , Yanli ZHANG 29 Thèse en traitement de l'image médicale / 2013 Institut national des sciences appliquées de Lyon achieves the maximum distance at the point O , then gradually approaches the line  , and ends at the point B . Plotting the distances from the non-stationary state points in  to the stationary line  arrives at the NSM curve, see Fig. 2.1(d). It is seen that the NSM curve presents a symmetrical peak, whose position of indicates the location of the abrupt change, and the height of the peak giving the magnitude of the change.

Fig. 2

 2 Fig. 2.2 Diagram for the calculation of the NSM ˆ() yn

  1

  .13) which is illustrated by the block diagram in Fig. 2.3.

Fig. 2 . 3

 23 Fig. 2.3 Block diagram of the 2 nd -order NSM operator regarding the 1 st -order moment of the signal x(n)

4

 4 Fig. 2.4 Three typical input signals. (a) Ideal step 1 s . (b) Step with transition band 2 s . (c) Mixture of step and ramp 3 s .

  Different observation window functions can result in different distances d , leading to different NSM operators. The original NSM studied the behavior of the NSM operator using a rectangular window function. In this section, another two representative observation window functions are given, and the typical outputs of the corresponding NSM operators are studied. Yanli ZHANG 34 Thèse en traitement de l'image médicale / 2013 Institut national des sciences appliquées de Lyon

5

 5 Fig 2.5 Three typical observation window functions g. (a) Rectangular 1 g . (b) Concave 2 g . (c) Convex 3 g .

  YanliZHANG 35 Thèse en traitement de l'image médicale / 2013 Institut national des sciences appliquées de Lyon order to differentiate the heights of different output peaks, ij H is used to represent the peak height corresponding to the input signal i s and the window function j g . Fig 2.6 shows the corresponding output curves of the NSM operators.

3 Fig

 3 Fig. 2.6 Output peaks of NSM operators regarding to typical input signals and window functions

  Fig. 2.8 Response peaks of the NSM operators to noisy input signals.

  is the variance of the noise response, equivalent to the mean-squared noise response.

Fig. 2

 2 Fig. 2.9 Curves of output SNR of the NSM and the Canny operators. Red solid line: the NSM operator. Blue dashed line: the Canny operator.

  Fig. 2.10(a) shows a highly noisy input signal whose input CNR equals 2.15. The signal is a step of height 1 A  corrupted by a Gaussian centered noise. The responses of the NSM operator and the Canny operator are normalized to allow for quantitative comparisons. When the window width takes a small value like 3, see Fig. 2.10(b), it is difficult to locate the discontinuity from both outputs because of the low output SNRs ( NSM,1

.

  Fig. 2.10 Comparison between the responses of the NSM operator and the Canny operator to the input signal with CNR 2.15  . (a) Unit step signal with a discontinuity at 100 t  corrupted by a white centered Gaussian noise. (b) 23 W  , 0.96   . (c) 29 W  , 2.88   . (d) 2 15 W  , 4.80  . All the outputs are normalized by their own maxima since the contrast is the thing that really matters in this comparison.

   can be used to indicate the desired level of approximation, where  is usually a small positive number. This naturally provides the lower bound of W hand, the size of the smallest detail that we want to preserve limits the maximum size of W . If W is greater than the maximum value, some smaller temporal or spatial details might not be identified accurately through the output of the NSM operator. The height and the position of the apex of the output peak indicate the magnitude and the location of the change. The calculation of the value of such apex usually involve intensities within the range of width 4W around the apex. If a detail of width d L is modeled as two adjacent discontinuities, see Fig. 2.11, to accurately measure changes at the d L wide detail, the window width 2W should Yanli ZHANG 44 Thèse en traitement de l'image médicale / 2013 Institut national des sciences appliquées de Lyon be smaller than d L to ensure that the value of the apex is only related to one single discontinuity/change, that is, 2 Fig. 2.11 Determination of the maximum of the window width. (a) A detail of width d L . (b) The NSM of the detail.
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Fig. 3 .

 3 Fig. 3.1 Block diagram of the 2 nd -order NSM regarding the r th -order moment of the signal x(n)

Fig. 3 .

 3 Fig. 3.2(a) shows the corresponding synthetic signal, defined by (3.3), whose size is 1000 samples with 1 A  , 0.28 w   , 0 0.91   . The signal is corrupted by an additive Gaussian

Fig. 3 . 3

 33 Fig. 3.3 NSMs of a random signal containing a change in its 3 rd -order moment. (a) x(n): random signal with a change at 2049 n  in its 3 rd -order moment. (b) 1 ˆ() yn: NSM regarding the 1 st -order moment ( 120 W  ). (c) 2 ˆ() yn: NSM regarding the 2 nd -order moment ( 120 W  ). (d) 3 ˆ() yn: NSM regarding the 3 rd -order moment ( 120 W ).

  xn is corrupted by an additive Gaussian noise with mean 0 and standard deviation 0.04. As expected, since the signal is stationary regarding the 1 st -order, the 2 nd -order and the 3 rd -order moments, the corresponding NSM curves 1 yn inFig 3.4 (b), (c) and (d) are very close to zero (along the x-axis). In contrast, the signal is non-stationary regarding its 4 th -order moment. Taking advantage of the NSM curve 4 spotted. 55Thèse en traitement de l'image médicale / 2013 Institut national des sciences appliquées de Lyon traitement de l'image médicale / 2013 Institut national des sciences appliquées de Lyon
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 34 Fig. 3.4 NSMs of a noisy signal containing a change in its 4 th -order moment. (a) () xn : noisy signal with a change at 2001 n  in its 4 th -order moment. (b) 1 ˆ() yn: NSM regarding the 1 st -order moment ( 100 W  ). (c) 2 ˆ() yn: NSM regarding the 2 nd -order moment ( 100 W  ). (d) 3 ˆ() yn: NSM regarding the 3 rd -order moment ( 100 W  ). (e) 4 ˆ() yn: NSM regarding the 4 th -order moment ( 100 W ).
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 3 5 illustrates how to determine the state point in the moving feature space for 1-D to N -D data. Taking a 2-D image for example, the statistical parameters within the traitement de l'image médicale / 2013Institut national des sciences appliquées de LyonIn practical applications, the NSM of multidimensional data can be calculated in four steps:1. estimate the statistical parameter ˆ() n  with a multidimensional sliding window h ; 2. formulate the NSM according to the statistical parameter ˆ() n  and the distance d ; as the NSM of the central point of the multidimensional sliding observation window g in the time domain.

Fig. 3 . 5

 35 Fig.3.5 Determination of the state point in the moving feature space for 1-D to N-D data

Fig. 3 .

 3 Fig. 3.6(a) shows a vector-valued signal of length 100, with the first fifty vectors equal to   1,1,0 and the last fifty ones equal to   1,1,0  . That is, there exists a change at time 51 n in the 1 st -order moment of the signal. Using the NSM operator defined in (3.9), with both

Fig. 3 .

 3 Fig. 3.7(a) shows a 2-D vector field of size 33×45 which contains three sets of vectors 1 v , 2

Fig. 3 .

 3 Fig.3.7 2-D vector field and its NSM map. (a) 2-D vector field composed of v 1 , v 2 , v 3 successively. (b) relative angular orientations of the three vector field. (c) NSM map of the 2-D vector field regarding its 1 st -order moment. (d) Horizontal profile of (c).

  coefficients of a linear transformation from Z to Z , then T is called a tensor of rank n , and the elements ij m t with ordered indices are the components of the tensor T [

  Fig. 3.8(b). We note that the NSM values corresponding to the two periods before and after the change time 51 n  equal zero, which indicates that the signal is locally stationary regarding the 1 st -order moment in the two periods. Around the time 51 n  , the NSM curve 1 ˆ() yn presents a symmetrical peak with the position of the apex indicating the location of the abrupt change occurring

  Fig. 3.8 1-D tensor signal and its NSM. (a) 1-D tensor signal. (b) 1 ˆ() yn: NSM of the 1-D tensor signal with the detection of a 1 st order moment change.

Fig. 3 .

 3 Fig.3.9(a) shows a 2-D tensor field of size 33×45 which contains three sets of tensors:

  Similar to the usual detection procedure based on change measure, the NSM-based change detection method first highlights abrupt changes in signal using the NSM operator, and then estimates the locations of change points by examining the local maxima of the NSM curve above a threshold. Two change detection situations are given below to explain the method visually. The noisy synthetic signal 1 () xn contains three steps respectively at 200 n  , 300, and 500 regarding its 1 st -order moment (Fig. 4.1(a)). The magnitude of the first two steps is 1, and that of the third step is 2. The minimal CNR of the signal 1 () xn is only 2. According to (3.1) and (3yn is obtained and shown in Fig. 4.1(c). Above the threshold 0.05, there are three local maxima which indicate accurate positions of the three steps in the signal 1 d). Above the threshold 0.37, there are three local maxima indicating the positions of the three steps in the signal 2 () xn. Yanli ZHANG 68 Thèse en traitement de l'image médicale / 2013 Institut national des sciences appliquées de Lyon detection of noisy synthetic signals. (a) Noisy synthetic signal 1 () xn with three steps in its 1 storder moment. (b) Noisy synthetic signal 2 () xn with three steps in its 2 nd -order moment. (c) 1 ˆ() yn: NSM of the noisy synthetic signal 1 () xn. (d) 2 ˆ() yn: NSM of the noisy synthetic signal 2 () xn.

  Fig. 4.2 Heart rate signal of a new born baby and its change measurement curves. (a) The heart rate signal. (b) to (d) Change measurement curves obtained using the △BIC, the Pearson divergence, and the NSM 1 ˆ() yn, respectively.Signal is courtesy of Lavielle 1999.

Fig. 4 . 3

 43 Fig. 4.3 Change detection of the heart rate of a new born baby. Red arrows: the NSM-based method; green arrows: the △BIC-based method; magenta arrows: the Pearson divergence-based method; brown arrows: the DCPC.

  For the NSM, the order of the moment 2 r  , and the half size of the observation window 12 W  . Since only one change point is located in the three change measure-based methods, the number of segments in the DCPC is set as 2 K  . An EEG signal is shown in Fig. 4.4(a). Its change measurement curves obtained using the △BIC, Pearson divergence, and NSM methods are respectively shown in Fig. 4.4(b), (c) and (d) where one change point is marked. It is seen from Fig. 4.4 that 1) the EEG signal shows strong randomness; 2) The three change measure-based methods did not generate the same change measurement curves because of their different principles; 3) the methods based on the △BIC and the Pearson divergence give complex curves presenting a lot of variations, which makes it difficult to determine the position of the change; 4) the NSM-based method gives the most simple curve among the three change measuresignal and its change measurement curves. (a) EEG signal. (b) to (d) Change measurement curves using the △BIC, the Pearson divergence and the NSM 2 ˆ() yn respectively. Signal is courtesy of Lavielle 2005. Yanli ZHANG 73 Thèse en traitement de l'image médicale / 2013 Institut national des sciences appliquées de Lyon The positions of the change point detected by the four methods are sketched in Fig. 4.5 with different colors. Note that the start moment of the alpha wave is indicated by the blue vertical line. It is seen that 1) both the △BIC and the DCPC indicate a change point near the blue line; 2) the NSM-based method gives an accurate position of the start moment of the alpha wave; 3) the method based on the Pearson divergence indicates a change far away from the blue line, creating an obvious false detection and misdetection.

Fig. 4 . 5

 45 Fig. 4.5 Change detection of an EEG signal. Red arrows: the NSM-based method; green arrows: the △BIC-based method; magenta arrows: the Pearson divergence-based method; brown arrows: the DCPC.

Fig. 4 .

 4 Fig. 4.6 Nonmaxima suppression.

Fig. 4 .

 4 Fig. 4.7 Noisy synthetic image and its change measurement maps obtained by the NLFS, the Canny filter, the FES method and the NSM operator.

Fig. 4 .

 4 Fig. 4.8 Edge detection of a noisy synthetic image. (a1) to (d1) Edges detected by the NLFS, the Canny filter, the FES method and the NSM-based method, respectively. (a2) to (d2) Upper left parts of (a1) to (d1).

Fig. 4 .

 4 Fig. 4.9 Cardiac diffusion weighted image and its change measurement maps obtained by the NLFS, the Canny filter, the FES method and the NSM operator respectively. Images are courtesy of Pierre Croisille.

Fig. 4 .

 4 Fig. 4.10 Edge detection of a cardiac DW image. Edges detected by (a) the NLFS ( 0.25, 0.088 hl TT  ), (b) the

G

   is a Gaussian kernel with a standard deviation  , and GI   is the gradient magnitude obtained by the Canny operator. Although being an efficient scheme to lessen the sensitivity of the gradient to noise, the Canny operator, essentially based on derivatives, may produce false responses in noisy cases anyway. In our model, the NSM I is substituted for GI   to construct a new edge indicator function such that: e takes smaller values at the object boundaries than elsewhere. It can slow down the level set evolution at the locations where the intensity greatly varies and speed it up in flat areas. Being more robust than the Canny operator (see subsection 2.3.3.2), the NSM operator can provide more accurate edge strength to the function e , and thereby improve the performance of the edge-based GAC model.In the second term of (5.1), 0

Fig. 5 .

 5 Fig. 5.1 Flow chart of the NSM-GAC model
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Fig. 5 .

 5 Fig. 5.2 Segmentation of synthetic images with different noise levels.

  are used as comparison methods. The parameters (the weighting coefficient  , the iteration number  , the standard deviation of the Gaussian function  , the width of the sliding and the observation window 21 W  ) of the three models have been experimentally optimized to produce the best segmentation results with the smaller number of iterations. The specific parameter settings are listed as follows. For the DRLSE model, of synthetic image corrupted by Gaussian noise. (a) Noisy synthetic image and the initial contour. (b) to (d) Segmentation result of the DRLSE model, the C-V model and the NSM-GAC model. Yanli ZHANG 89 Thèse en traitement de l'image médicale / 2013 Institut national des sciences appliquées de Lyon

  data. (a) backscatter cross section distribution. (b) Simulated ultrasound image of a carotid.

  are used as comparison methods. The parameters of the three models have been experimentally optimized to produce better segmentation results with the less iterations as possible. For the DRLSE model, traitement de l'image médicale / 2013 Institut national des sciences appliquées de Lyon The same initial contour, marked with a red rectangle in the input image shown in Fig. 5.5 (a), is used in the three experiments. The segmentation results of the DRLSE model, the C-V model, and the NSM-GAC model are respectively shown in (b) to (d). We can see that (1) the segmentation result of the DRLSE model contains two false contours at the bottom right corner and an obvious leakage in the upper middle part;

Fig. 5 . 5

 55 Fig. 5.5 Segmentation of a simulated ultrasound image. (a) Simulated image and the initial contour in red. (b) to (d) Segmentation results in green of the DRLSE model, the C-V model and the NSM-GAC model.

  Fig. 5.6 (a), is used in the three experiments. The segmentation results of the DRLSE, the C-V model, and the NSM-GAC model are respectively shown in (b) to (d). We can see that Yanli ZHANG 93 Thèse en traitement de l'image médicale / 2013 Institut national des sciences appliquées de Lyon (1) the segmentation result of the DRLSE model contains four obvious false contours indicated with green arrows and two leakages indicated with magenta arrows;

Fig. 5 .

 5 Fig. 5.6 Segmentation of a real ultrasound image of a carotid. (a) Carotid image and the initial contour in red. (b) to (d) Segmentation results of the DRLSE model, the C-V model and the NSM-GAC model. Image is courtesy of Ping Li.
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  adaptive neighborhood of the pixel (or voxel for a 3-D volume)  x , and M the size of ()  x . The homogeneous neighborhood ()  x is composed of points  y whose intensities and locations are close to those of x. The points in ()  x are called the homogeneous points or members. The neighborhood ()  x can be expressed as R xy designates the rule which governs the relationship between the current point x and any neighborhood member y, and Th representing the threshold is a positive real number. The design of ( , ) R xy is crucial since, for a fixed Th, it determines the adaptive neighborhood ()  x , thus the smoothed image () f x .

Fig. 6 . 1

 61 Fig. 6.1 Block diagram of the nonstationarity adaptive filtering (NAF) method.

  is a path from the current pixel x (starting point) to its neighborhood member y (ending point) which has the smallest R value among all paths connecting the two points (topological connectivity), the intensities of x and y defined by

Fig. 6 . 2

 62 Fig. 6.2 Determination of homogeneous 8-neighbors of the boundary point.

p
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  of a synthetic DW image similar to a slice of a human cardiac DTI volume. (a) Synthetic DW image. (b) Human cardiac DW image. Image is courtesy of Pierre Croisille.

4 5

 45 Fig. 6.4 Smoothing of synthetic human cardiac DW images in 6 diffusion gradient directions.

  Fig. 6.6 Tensor fields in the Myocardium area before and after smoothing. (a)-(d) Tensor fields corresponding respectively to noise-free data, noisy, ADF smoothed and NAF smoothed cases. (e)-(h) Tensor fields in the red rectangles in (a)-(d).

Fig. 6

 6 Fig. 6.7 Comparison of smoothing results obtained by the NAF and the ADF in terms of the MSSIM with different noise levels ranging from 5 to 25.

  Fig. 6.9 Comparison of MD values of synthetic diffusion tensor data with different noise levels ranging from 5 to 25. (a) MD in the myocardium. (b) MD in the PF.

  Fig. 6.10 Smoothing results of a real cardiac DW image. (a) Noisy DW image from an ex vivo human cardiac DTI datasets with 12 gradient directions. (b) Smoothed by the ADF. (c) Smoothed by the NAF. (d)-(f) Region circled by the red rectangles in (a)-(c). Images are courtesy of Pierre Croisille.

  as well as FA and MD. CI estimates the orientation coherence Yanli ZHANG 111 Thèse en traitement de l'image medicale / 2013 Institut national des sciences appliquées de Lyon of fibers and is defined as the mean dot product of the eigenvectors v and its 26 value reflects directional coherence of fibers in neighboring voxels.

  Fig. 6.12 Bundle of cardiac fibers lunching from a small patch of myocardium in the LV tracked from (a) the noisy data, (b) the smoothed data by the ADF, and (c) the smoothed data by the NAF. To indicate the locations of the fibers, they are overlapped with the original and the smoothed DW images, which are adjusted in color balance to highlight the fibers.

  traitement de l'image medicale / 2013 Institut national des sciences appliquées de Lyon the observation window function 2 () gt, the height of the response peak of the 2 nd -order NSM operator to the ideal signal 1

  the observation window function 2 () gt, the height of the response peak of the 2 nd -order NSM operator to 3 s is calculated as:

  29), it can be seen that the height of the response peak of the NSM operator to the ideal step signal () A u t  and the square root of the mean-squared noise response are two important elements in the calculation of the output SNR.The heights of the response peaks of the NSM operators corresponding to the three representative observation windows to the ideal step signal ()
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  ,2 1 iW  , represents the dissimilarity between the coordinate ˆi 

	2 +1 W
		( ) 1 gi
	i	1

of point K and the coordinate  of the stationary point K , and it is usually defined as ˆi   for the scalar-valued signal; () gi , the weighted coefficient of   ˆ, i dis  , determines the observation window function g with    . Usually, we substitute p d for d to counteract the operation of the p th root in the definition of d . Therefore, we have

  .20)

	where () ht is a rectangular window function of width 2W :	
	() h t		1 22 rect WW t   	.	(2.21)
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Table 2 .

 2 2) For the same observation window function, the responses of the NSM operators to different input signals show similar shapes but different heights 3 1 Heights of the output peaks regarding to typical input signals and window functions

	H	j	1 H  j	H	2	j	. The

  Table2.1 that, for Thèse en traitement de l'image médicale / 2013 Institut national des sciences appliquées de Lyon For s 2 , the similar conclusion arises even though it is not apparent because of the complicated expression form. From the trend graph of 2 j H in Fig.2.7, it is directly seen that 22

	1 s and 3 s , there is clearly 12 H	11 H 	13 H	and 32 H	31 . 21 33 H H H H 	H	23	when
	01  , namely, 02 W  	.						
	(4) Using the convex window function 3					

  The noise-immunity ability of the NSM operator is proved theoretically and demonstrated by means of representative experiments.

	Assume the input signal () xt is composed of a step signal	() A u t 	and an additive white
	Gaussian noise () nt with mean 0 and standard deviation		
	n		

.4 Selection of window width

  Two window functions () ht and () gt are used in the design of the NSM operator. The sliding window function () ht is used to estimate the moving statistical parameter of the signal, while the observation window function () gt is used for the definition of the distance between the non-stationary state point and the stationary line  in the moving feature space 21 W  R .Usually the two window functions take the same width 2W ( 21 W  in discrete form).The window width 2W is an important parameter in the design of NSM operators. The original NSM did not discuss the selection of the window width. In the following, a range of W is given to guide its practical choice. The choice of W depends on the noise level of the input signal and the size of the smallest detail to be captured.The noise level of the input signal limits the minimum size of W . If W is smaller than the minimum value, the number of samples will be too small to correctly estimate the statistical parameter. If the rectangular sliding window () ht is used to estimate the r th -order moment of

	2.3() xt , we have				
			ˆ( ) ( m t  h x t )( ), r	(2.43)
			r			
	where () ht satisfies the following two conditions	
				( ) h t dt 	1,	(2.44)
			R			
			lim W 		2 h t dt ( )		0.	(2.45)
				R		
	The variance of the estimate of the r th -order moment ˆr m is given by
		  22 r r r 2 ˆ( D m m m 	) / 2 W	.	(2.46)
	For a stationary segment, a small	  ˆr Dm means that ˆr 2 m is a good estimator of	r m . An
	inequality	  2 ˆr Dm				
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  transform each diagonal element of D (which is necessarily positive, since it is an eigenvalue of T ) into its natural logarithm in order to obtain a new diagonal matrix

	D		1 diag(log ,log ,log ) 2 3   	;
	3. recompose D and R to obtain the logarithm with the formula	() T R D R    log	T	.
	Conversely, the matrix exponential	() T exp	is obtained by replacing the natural logarithm
	with the scalar exponential. definite real matrix with iW  . The stationary point which makes ( , ) 1 2 2 1 ˆˆ, , , W     , where ˆi  is a 3×3 symmetric positive 1, ,2 1 dK minimal is written as   , , , K     , where  is also a matrix like ˆi  . The NSM of the tensor-valued signal () n t is generally formulated as:   ˆ( ) ( ) y n n  t
	  21 1 , ii   Ŵ p i d K K g dis         dis  representing the dissimilarity between two matrices, the coordinate ˆi   (3.12)   ˆ, i  of point K and the coordinate  of point K . with We now elaborate the construction of a 2 nd -order NSM operator for the tensor-valued signal () n t . If we want to study the stationarity/non-stationarity of the signal () n t regarding its mean, we first use a rectangular window function () hn of width 21 W  to estimate the moving evolving statistical parameters   1 1 ˆ( ) ( ) 21 () nW nW i nn i W           t  exp log . (3.13)

For tensor-valued data, each state point K in the moving feature space is determined by a sequence of matrix coordinates   Thèse en traitement de l'image médicale / 2013 Institut national des sciences appliquées de Lyon

Table 5 .

 5 1 JS coefficient, Dice coefficient, FPR and FNR of segmentation results in Fig.5.2

	Model	Index	n  	0	n  	25	n  	45	n  	65
		JS	0.99	0.91	0.80	0.77
	DRLSE	Dice FPR	1.00 0	0.95 5.5%	0.89 16.5%	0.87 15.3%
		FNR	0.98%	4.0%	6.5%	10.7%
		JS	0.99	0.99	0.98	0.97
	NSM-	Dice	1.00	0.99	0.99	0.98
	GAC	FPR	0		0.2%	0.2%	0.6%
		FNR	0.95%	1.0%	1.3%	2.6%

  .3. We see from the table that (1) the result of the DRLSE model has low similarity with the ground truth (

													JS 	0.77	,
	Dice 	0.87	) and high false and missing alarm rates (	FPR 	15.3%	,	FNR 	10.7%	);
	(2) the results of the C-V model and the NSM-GAC model are highly similar to the ground
	truth (C-V:	JS 	0.98	,	Dice 	0.99	; NSM-GAC:	JS 	0.97	,	Dice 	0.98

Table 5 .

 5 2 JS coefficient, Dice coefficient, FPR and FNR of segmentation results shown in Fig. 5.3

	Evaluation index	DRLSE	C-V	NSM-GAC
	JS	0.77	0.98	0.97
	Dice	0.87	0.99	0.98
	FPR	15.3%	1.1%	0.6%
	FNR	10.7%	2.2%	2.6%

Table 5 .

 5 3 reports the values of the JS coefficient, the Dice coefficient, the FPR and the FNR corresponding to the results shown in Fig.5.5. It comes from the table that(1) the segmentation result of the C-V model has the lowest similarity to the ground truth (

		JS 	0.26	,		Dice 	0.41	) and the highest missing alarm rate (	FNR 	74%	);
		(2) the result of the DRLSE model has a moderate similarity to the ground truth (	JS 	0.92	,
	Dice 	0.96	) but a higher false alarm rate (	FPR 	6.2%	);
		(3) the result of the NSM-GAC model has the highest similarity to the ground truth
	(	JS 	0.98	,	Dice 	0.99	) and the lowest false and missing alarm rates (	FPR 	1.8%	,
	FNR 	0.2%			

Table 5 .

 5 3 JS coefficient, Dice coefficient, FPR and FNR of the segmentation results shown in Fig. 5.5

	Evaluation index	DRLSE	C-V	NSM-GAC
	JS	0.92	0.26	0.98
	Dice	0.96	0.41	0.99
	FPR	6.2%	0.0%	1.8%
	FNR	2.5%	74%	0.2%
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  will remain great and consequently R is great and exceeds the threshold Th, which stops the neighborhood spreading beyond the boundary and avoids including, in the neighborhood, the pixels beyond the boundary (robustness design).

						1 ii ff   yy , which
	allows decreasing the dissimilarities	 D nsm ,,  xy between x and y falsely caused by the 
	noise and enables more homogeneous points y to be included in the adaptive neighborhood
		() x	(noise immunity). The summation operation Σ in (6.5) is introduced for robustness
	since, if a boundary exists on the path ρ, the sum of the difference
	      1 i i i f f   y y y The adaptive homogeneous neighborhood () x nsm 	corresponding to the rule thus defined has
	the following two properties:
	Property 1 Non-empty
	For each point x, its neighborhood () x 	has at least one member x. That is, ()  x 
	and the size of the neighborhood	1 M  .
	Property 2 Non-negative
		a.	L 	  , xy		0
		b.	nsm	  0  y
		c.	 D nsm , ,  xy			0
		d.   , RR  0, ;  x y x y	  , x y		0,	. x y 
	To sum up, the homogeneous membership rule (6.3) can be further expressed as

Table 6 .

 6 1 MSSIMs of DW Images Smoothed by NAF and ADF ( 25

	r   )

  .9)
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Table 6 .

 6 2 FA, MD and CI of the Diffusion Tensors in Fig.6.11

		FA		MD		CI	
	Mean	Mean	Var	Mean (10 -3 mm 2 s -1 )	Var (10 -6 )	Mean	Var
	Noisy	0.311	0.012	1.033	0.073	0.643	0.083
	ADF	0.208	0.006	1.051	0.068	0.960	0.013
	NAF	0.236	0.004	0.919	0.023	0.990	0.000

Table 6 .

 6 3 FA, MD and CI of Diffusion Tensors Calculated from Real Cardiac DTI Data in the LV Myocardium of

				Seven Human Hearts			
		FA		MD		CI	
	Heart	Mean	Var	Mean (10 -3 mm 2 s -1 )	Var (10 -6 )	Mean	Var
		0.327	0.014	0.707	0.038	0.589	0.148
	1	0.233	0.005	0.676	0.018	0.854	0.087
		-28.7%	-64.3%	-4.4%	-52.6%	+45.0%	-41.2%
		0.356	0.018	0.738	0.072	0.506	0.178
	2	0.219	0.005	0.701	0.030	0.851	0.073
		-38.5%	-72.2%	-5.0%	-58.3%	+68.2%	-59.0%
		0.369	0.021	0.994	0.070	0.401	0.142
	3	0.175	0.004	0.957	0.029	0.830	0.098
		-52.6%	-81.0%	-3.7%	-58.6%	+107.0%	-31.0%
		0.266	0.022	1.450	0.128	0.403	0.156
	4	0.112	0.003	1.390	0.032	0.821	0.111
		-57.9%	-86.4%	-4.1%	-75.0%	+103.7%	-28.8%
		0.219	0.008	1.537	0.071	0.339	0.135
	5	0.093	0.003	1.455	0.013	0.838	0.109
		-57.5%	-62.5%	-5.3%	-81.7%	+147.2%	-19.3%
		0.267	0.016	0.666	0.066	0.447	0.119
	6	0.175	0.003	0.591	0.003	0.888	0.073
		-34.5%	-81.3%	-11.3%	-95.5%	+98.7%	-38.7%
		0.668	0.049	0.908	0.118	0.474	0.143
	7	0.463	0.036	0.878	0.048	0.828	0.097
		-30.7%	-26.5%	-3.3%	-59.3%	+74.7%	-32.2%
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 Wan-Yu Liu, Yan-Li Zhang,

Heights of the response peaks of NSM operators to the ideal step signal s 1

  

	The ideal step signal 1 s is mathematically defined as		
	1 s t u t ( ) ( )   1, 0,  	t t	 	0 0	.	(A.1)
	Its 1 st -order moment obtained with a rectangular window function () ht of width 2W is
	expressed as					
		0,		tW
	1 ˆ( ) t	1 22 t W	,	W t W
		1,		tW

  3), we have

	Yanli ZHANG
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Heights of the response peaks of NSM operators to the step signal mixed with a ramp s 3

  Therefore, with the observation window function 2 () gt, the height of the response peak of the 2 nd -order NSM operator to 2 s is given by:The step signal mixed with a ramp 3 s is mathematically defined as:

	1 1 12 24 1 WW 1 2 13 960 W d W W W                   2W   and 0 1  . For the observation window function 4 H W 1    1 ++ 2 4 2 W W W                            where   2 1 cos () 2 tW gt W    , the height of the response d  , (B.4) peak of the 2 nd -order NSM operator to 2 s can be expressed as:         For the observation window function   3 1 cos () 2 tW gt W    , the height of the response peak of the 2 nd -order NSM operator to 2 22 31 1 1 1 1 ++ 2 2 2 2 WW WW H d d W W W W                                    . (C.4) s can be written as:       2 2 23 2 3 2 3 2 21 2 2 1 2 ˆ( ) ( ) ( ) ( ) cos cos ˆˆ+ ( ) 2 ( ) ( ) ( ) 22 WW WW W W W W W W H g d g d WW H d g d d WW                           2 21 W    12                   For the observation window function   2 1 cos () tW gt    , the height of the response 2 W . s can be expressed as: peak of the 2 nd -order NSM operator to 3 2 2 cos ˆ() 2 W W W d W             2 2 32 3 2 3 2 ˆ( ) ( ) ( ) ( ) WW WW H g d g d                  2 2 22 2 2 2 2 2 2 2 1 2 1 2 21 2 2 1 2 ˆ( ) ( ) ( ) ( ) cos cos ˆ( ) ( ) ( ) ( ) 22 cos cos ˆˆ( ) 2 ( ) ( ) ( ) 22 WW WW WW WW WW W W W H g d g d WW g d g d WW WW H d g d d WW                                                                      , (B.5) (B.10) According to (B.6), (B.7) and (B.8), we arrive at: 23 23 3 2 4 2 1 13 1 3 1 + sin( ) 12 24 960 4 16 8 4 H              2 2 3 1 3 1 cos cos ˆ( ) ( ) ( ) ( ) 22 WW WW WW g d g d WW                                               . (B.11)     2 31 3 3 1 3 cos cos ˆˆ( ) 2 ( ) ( ) ( ) 22 WW W W W WW H d g d d WW                                    2 cos ˆ() 2 W W W d W             2 W  4 3 5 2 3 1 3 cos( ) sin( ) sin( ) 4 4 8                 
	where			
	  cos sin( ) ˆ() 2 2 3   1 W 4 W       When W t W 2 2 16 W W       8 d  3 4      , its 1 st -order moment obtained with a rectangular window function () 2 4 3 5 2 1 3 1 3 cos( ) sin( ) sin( ) 4 4 4 8 , (B.6) s t u t t     . (C.1) 3 ( ) ( )               ht
	  cos W d 2 W    1  W ( )   2  cos WW 2 1 ˆ( ) ( ) WW g d      of width 2W is given by:    2 ˆ( ) 2 W W     3 ˆ( ) + 2 tt W     .     The maximum of the output of the 2 nd -order NSM operator is obtained at  0 W d   , 0 .	0 t  :	(B.7) (C.2) (B.8)
	y	3 s		22 33 ˆ(0) ](0) ( ) (0) g g  [   
	s For the observation window function 1 WW WW y g g g d            g d            1 () 22 t g t rect WW    , the height of the response (B.3)  23 22 3 2 4 2 4 3 5 2 1 13 1 3 1 sin( ) 12 24 960 4 16 8 4 3 1 3 cos( ) sin( ) sin( ) 4 4 8 H                   2 2 33 ˆ( ) ( ) ( ) ( ) WW WW g d g d          . (C.3)                       . (B.9) For the observation window function 1 1 () 22 t g t rect WW    , the height of the response    peak of the 2 nd -order NSM operator to 3 s is
	peak of the 2 nd -order NSM operator to 2 s is
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C.

  

	where the sliding window function	() h t		1 22 rect WW t   	.
	Let	U			  n h 	2		 g t ()	and	 V n h g t  2 ()   	, then the variance of the noise response
	 2 ˆ()								
										ˆn y t	22 t g h n t  g h n       	,	(D.4)
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n D y t can be expressed as:

  21) , the convolution in the  

		When	0    E UV Wt			
		 * * ( ) h h g t												
		0				1	1		 cos ( t	)	W		tW				1	1	 cos ( t	)	W	
		tW	4 W	2	2 W	2 W	2 W		d	0		4 W	2		2 W	2 W	2 W	d
		0				1	1		tW			1	1		0			1	 cos ( tW )	
		t W	4 W	2	2 W W 2	d	0	4	2	2	2	d	t W	4	2	2	2	d
						1											
					2 42											
		Yanli ZHANG												
																		130
		Thèse en traitement de l'image medicale / 2013							
		Institut national des sciences appliquées de Lyon							

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0090/these.pdf © [Y. Zhang], [2013], INSA de Lyon, tous droits réservés

Thèse en traitement de l'image médicale / 2013 Institut national des sciences appliquées de Lyon

Thèse en traitement de l'image médicale / 2013 Institut national des sciences appliquées de Lyon (a) (b) (c) Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0090/these.pdf © [Y. Zhang], [2013], INSA de Lyon, tous droits réservés

Thèse en traitement de l'image medicale / 2013 Institut national des sciences appliquées de Lyon

to thank Professor Jin Li, president of the jury, for her valuable advice and kindness. I also thank Professor Ping Li for agreeing to be the member of my thesis committee.

I have had the priviledge of working in two outstanding labs: the Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (Creatis) and the HIT-

Yanli ZHANG