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Combinatorial optimization problems are generally NP-hard problems, so they can only rely on heuristic or approximation algorithms to find a local optimum or a feasible solution. During the last decades, more general solving techniques have been proposed, namely metaheuristics which can be applied to many types of combinatorial optimization problems. This PhD thesis proposed to solve the deterministic and stochastic optimization problems with metaheuristics. We studied especially Variable Neighborhood Search (VNS) and choose this algorithm to solve our optimization problems since it is able to find satisfying approximated optimal solutions within a reasonable computation time. Our thesis starts with a relatively simple deterministic combinatorial optimization problem: Bandwidth Minimization Problem. The proposed VNS procedure offers an advantage in terms of CPU time compared to the literature. Then, we focus on resource allocation problems in OFDMA systems, and present two models. The first model aims at maximizing the total bandwidth channel capacity of an uplink OFDMA-TDMA network subject to user power and subcarrier assignment constraints while simultaneously scheduling users in time. For this problem, VNS gives tight bounds. The second model is stochastic resource allocation model for uplink wireless multi-cell OFDMA Networks. After transforming the original model into a deterministic one, the proposed VNS is applied on the deterministic model, and find near optimal solutions. Subsequently, several problems either in OFDMA systems or in many other topics in resource allocation can be modeled as hierarchy problems, e.g., bi-level optimization problems. Thus, we also study stochastic bi-level optimization problems, and use robust optimization framework to deal with uncertainty. The distributionally robust approach can obtain slight conservative solutions when the number of binary variables in the upper level is larger than the number of variables in the lower level. Our numerical results for all the problems studied in this thesis show the performance of our approaches.

Résumé

Les problèmes d'optimisation combinatoire sont généralement réputés NP-difficiles, donc il n'y a pas d'algorithmes efficaces pour les résoudre. Afin de trouver des solutions optimales locales ou réalisables, on utilise souvent des heuristiques ou des algorithmes approchés. Les dernières décennies ont vu naitre des méthodes approchées connues sous le nom de métaheuristiques, et qui permettent de trouver une solution approchées. Cette thèse propose de résoudre des problèmes d'optimisation déterministe et stochastique à l'aide de métaheuristiques. Nous avons particulièrement étudié la méthode de voisinage variable connue sous le nom de VNS. Nous avons choisi cet algorithme pour résoudre nos problèmes d'optimisation dans la mesure où VNS permet de trouver des solutions de bonne qualité dans un temps CPU raisonnable. Le premier problème que nous avons étudié dans le cadre de cette thèse est le problème déterministe de largeur de bande de matrices creuses. Il s'agit d'un problème combinatoire difficile, notre VNS a permis de trouver des solutions comparables à celles de la littérature en termes de qualité des résultats mais avec temps de calcul plus compétitif. Nous nous sommes intéressés dans un deuxième temps aux problèmes de réseaux mobiles appelés OFDMA-TDMA. Nous avons étudié le problème d'affectation de ressources dans ce type de réseaux, nous avons proposé deux mod¨¨les : Le premier modèle est un modèle déterministe qui permet de maximiser la bande passante du canal pour un réseau OFDMA à débit monodirectionnel appelé Uplink sous contraintes d'énergie utilisée par les utilisateurs et des contraintes d'affectation de porteuses. Pour ce problème, VNS donne de très bons résultats et des bornes de bonne qualité. Le deuxième modèle est un problème stochastique de réseaux OFDMA d'affectation de ressources multi-cellules. Pour résoudre ce problème, on utilise le problème déterministe équivalent auquel on applique la méthode VNS qui dans ce cas permet de trouver des solutions avec un saut de dualité très faible. Les problèmes d'allocation de ressources aussi bien dans les réseaux OFDMA ou dans d'autres domaines peuvent aussi être modélisés sous forme de problèmes d'optimisation bi-niveaux appelés aussi problèmes d'optimisation hiérarchique. Le dernier problème étudié dans le cadre de cette thèse porte sur les problèmes bi-niveaux stochastiques. Pour résoudre le prob-lème lié à l'incertitude dans ce problème, nous avons utilisé l'optimisation robuste plus précisément l'approche appelée "distributionnellement robuste". Cette approche donne de très bons résultats légèrement conservateurs notamment lorsque le nombre de variables du leader est très supérieur à celui du suiveur. Nos expérimentations ont confirmé l'efficacité de nos méthodes pour l'ensemble des problèmes étudiés.

Mots clés: Recherche à Voisinage Variable, problème de minimisation de la largeur de bande de matrices, problème d'allocation de ressource dans les réseaux OFDMA, problèmes bi-niveaux. 

Introduction

Combinatorial optimization problem consists in, under given optimum conditions, finding the optimal scheme among all the possible solutions. The general mathematical model can be described as:

min f (x) s.t. g(x) ≤ 0 x ∈ D (1.1)
where x is the decision variable, f (x) is the objective function, g(x) is the constraint, and D denotes the set consisting of a finite number of points.

A combinatorial optimization problem can be represented by three parameters (D, F, f ). D is the definition domain of decision variables. F represents the feasible region: F = {x|x ∈ D, g(x) ≤ 0}, and the element in F is called a feasible solution for the combinatorial optimization problem. f is the objective function, and the feasible solution x * which meets f (x * ) = min{f (x)|x ∈ F } is called the optimal solution for the problem.

The feature of combinatorial optimization consists in the feasible solution set is a finite set. Therefore, as long as the finite points are determined one by one to check whether they meet the constraints and compare with the objective function value, the optimal solution of the problem must exist and can be obtained. Because in the real life, most optimization problems consist in selecting the best integer solution among a finite number of solutions, then many practical optimization problems are combinatorial optimization problems. The typical combinatorial optimization problem includes:

traveling salesman problem (TSP), scheduling problem (such as flow-shop, job-shop), knapsack problem, bin packing problem, graph coloring problem, clustering problem etc.

The definition of combinatorial optimization problem shows that every combinatorial optimization problem can obtain the optimal solution by enumeration method.

The enumeration method takes time to find the optimal solution, some running time can be accepted, but some can not. Thus, the analysis of the enumeration algorithm needs to consider the space and time complexity of the problem.

The complexity of an algorithm or a problem is generally expressed as a function of the problem size n. The time complexity is denoted as T (n), and the space complexity is denoted as S(n). In the analysis and design of algorithms, the key operations of solving problem such as addition, subtraction, multiplication, comparison are defined as basic operations. Thus, the number of the basic operation performed in an algorithm is defined as the time complexity of algorithms, and the storage unit which algorithm takes during the execution is the space complexity of the algorithm.

If the time complexity of an algorithm A is T A (n) = O(p(n)), and p(n) is the polynomial function of n, thus the algorithm A is a polynomial algorithm. However, for many problems, there is no polynomial function to solve them. These problems may require exponential time to find the solution. When the problem size is large, the required time of such problem is often unaccepted.

Because some combinatorial optimization problems have not been solved in polynomial time to find the optimal solution, but these problems have the strong real application background, thus researchers try to use some algorithms which may not be able to get the optimal solution, refereed to as metaheuristics, to solve the combinatorial optimization problems.

Metaheuristic is proposed comparing with exact algorithms. The polynomial algo-rithm of a problem is to find the optimal solution. Metaheuristic is a technique which can find a sufficiently good solution even the optimal solution for optimization problems with less computational assumptions. Because in some cases, the running time of optimal algorithms is not acceptable, or the difficulty of the problem makes the running time increase exponentially with the size of the problem, then the problem can only be solved by using metaheuristics to obtain a feasible solution.

The definition of metaheuristics shows that it is simple and fast. Although it can not ensure to obtain the optimal solution, it can find a better acceptable feasible solution in a reasonable computational time. Therefore, metaheuristics have been developing rapidly and are widely used. The classic metaheuristic algorithms include: simulated annealing (SA), tabu search (TS), genetic algorithm (GA), scatter search (SS)...

Variable neighborhood search algorithm is a recent metaheuristic which includes the dynamic neighborhood structure. This algorithm is more general and the freedom is large which can be designed in various forms for particular problems.

The basic idea of VNS consists in systematically changing the neighborhood structure set to expand the search area in the search process and get local optimal solution, then based on this local optimum, find another the local optimal solution by changing the neighborhood structure to expand search range. Since the variable neighborhood search is proposed, it has been one of the research focus in metaheuristic algorithms.

Its idea is simple and easy to implement, and the algorithm structure is independent of the problem, so VNS is suitable for all kinds of optimization problems. Besides,

VNS can be embedded into other approximation algorithms, and it may also be evolved other approximation algorithms through transferring or increasing the component of algorithms. A large number of experiments and practical applications show that variable neighborhood search and its variants are able to find a more satisfying approximation optimal solution within a reasonable computation time.

Due to the efficiency of VNS, this algorithm is applied to solve the following two optimization problems in this thesis: bandwidth minimization problem and resource allocation problem of Orthogonal Frequency Division Multiple Access (OFDMA) sys-tem.

Assume a symmetric matrix A = a ij , the matrix bandwidth minimization problem is to find a permutation of the rows and columns of matrix A in order to keep the non-zero elements of A in a band that is as close as possible to the main diagonal, which is defined as:

min{max{|i -j| :

a ij = 0}} (1.
2)

The bandwidth minimization problem can also be described as a graph form: Let G = (V, E) be a graph with n vertices, and f (v) is the labeling of vertex v, then the graph bandwidth is defined as:

min{max{|f (u) -f (v)| : ∀u, ∀v, (u, v) ∈ E}} (1.
3)

The graph bandwidth minimization problem can be transformed into the matrix bandwidth minimization problem by considering the matrix as the incidence matrix for the graph. The bandwidth minimization problem was proved to be NP-complete.

Orthogonal Frequency Division Multiplex (OFDM) is a multi-carrier modulation, the frequency will be divided into a number of orthogonal subcarriers. OFDMA is a multiple access technology based on OFDM. Because OFDMA can obtain a higher data transfer rate, against frequency selective fading, overcome inter symbol interference and have flexible resource allocation etc., it is seen as the key technology of 4G.

In OFDMA system, how to optimally allocate the wireless resource such as subcarrier, bit, time slot and power to the different users is becoming a research hotspot in recent years. The dynamic resource allocation of OFDMA system is often seen as an optimization problem, e.g., minimize total system power under the constraint of the total number of bits, or maximize the system capacity with total power constraint. Therefore, the research in this area can be divided into two categories: margin adaptive resource allocation and rate adaptive resource allocation.

Several problems either in OFDMA systems or many other topics in resource allocation can be modeled as hierarchy problems, e.g., bi-level optimization problems.

In this thesis, we also study bi-level optimization problems under uncertainty.

Bi-level programming is an optimization framework with two level hierarchical structure. The general model of bi-level programming is denoted as: where x ∈ R n 1 , y ∈ R n 2 are the decision variables of upper level and lower level problems respectively. F : R n 1 × R n 2 → R and f : R n 1 × R n 2 → R are the objective functions for the upper and lower level problems respectively. The functions G :

R n 1 × R n 2 → R m 1 and g : R n 1 × R n 2 → R m 2 are called upper and lower level constraints respectively.

From the above model we can see: the upper and lower level problems have their own objective functions and constraints. The objective function and constraints of upper level are not only related to the decision variables of the upper level, but also depend on the optimal solution of the lower level. The optimal solution of the lower level is affected by the decision variables of the upper level.

Generally, solving bi-level programming problems is difficult. Bi-level linear programming is proved as a NP-hard problem, and finding the local optimal solution of the bi-level linear programming is also a NP-hard problem. Even both the objective function and constraint of the upper and lower level are linear, it may also be a non-convex problem. Non-convexity is another important reason which causes the complexity of solving bi-level programming.

In this thesis, our research will focus on two parts: using metaheuristics to solve combinatorial optimization problems, and solving bi-level programming problems.

For metaheuristics part, we especially use variable neighborhood search (VNS) algorithm to solve two combinatorial optimization problems: bandwidth minimization problem and resource allocation problem of OFDMA system. For bi-level programming part, we use a robust optimization approach for bi-level programming problems.

The details of the work are presented in the following four chapters.

In chapter 2, we give a survey of metaheuristics including the generation background, the definition, the advantages and weaknesses. Then, we describe several typical metaheuristics such as simulated annealing (SA), tabu search (TA), greedy randomized adaptive search procedure (GRASP), variable neighborhood search (VN-S), genetic algorithm (GA), scatter search (SS) in details. Besides, we also analyze how to improve and evaluate the effectiveness of metaheuristics.

In chapter 3, we study the bandwidth minimization problem. We focus on the literatures which solve the bandwidth minimization problem with different metaheuristics. According to the literature, we solve the bandwidth minimization problem with three metaheuristic algorithms by using the graph formulation which can save running time compared with the matrix formulation. For VNS, we combine the local search method with metaheuristics and change some key parameters to improve the efficiency of the algorithm. By the experiment results of 47 benchmark instances, the running time of the algorithm is reduced compared to the literature.

In chapter 4, we focus on another optimization problem: OFDMA resource allocation problem. We describe a hybrid OFDMA-TDMA optimization problem firstly, and then propose a simple VNS to solve this problem and compute tight bounds. The key part of the proposed VNS approach is the decomposition structure of the problem which allows solving a set of smaller integer linear programming subproblems within each iteration of the VNS approach. The experiment results show that the linear programming relaxations of these subproblems are very tight.

In chapter 5, We propose a distributionally robust model for a (0-1) stochastic quadratic bi-level programming problem. To this purpose, we first transform the stochastic bi-level problem into an equivalent deterministic formulation. Then, we use this formulation to derive a bi-level distributionally robust model. The latter is accomplished while taking into account the set of all possible distributions for the input random parameters. Finally, we transform both, the deterministic and the distributionally robust models into single level optimization problems. This allows comparing the optimal solutions of the proposed models. Our preliminary numerical results indicate that slight conservative solutions can be obtained when the number of binary variables in the upper level problem is larger than the number of variables in the follower.
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Chapter 2

Metaheuristics

Combinatorial optimization is an important branch of operational research, it widely exists in the area of economic management, industrial engineering, information technology, communications networks etc. Combinatorial optimization problem consists in finding the optimal solutions from all the solutions under a given optimal condition. The form of combinatorial optimization problems is diverse, but its general mathematical model can be described as follow:

minf (x) s.t. g(x) ≤ 0 x ∈ D (2.1)
where x is the decision variable, f (x) is the objective function, g(x) is the constraint, and D denotes the domain of x. F = {x|x ∈ D, g(x) ≤ 0} is feasible region. Any element in F is a feasible solution of the problem, and F is a finite set. Usually D is also a finite set. Therefore, as long as F is not an empty set, theoretically the optimal solution can be obtained through exhaustive search for the elements of D.

There are many classic combinatorial optimization problems in operational research, such as traveling salesman problem (TSP), knapsack problem, vehicle routing problem (VRP), scheduling problem, bandwidth minimization problem (BMP) etc.

Theory shows that these problems are NP-hard problems, so they can only rely on heuristic algorithms to find a local optimum or a feasible solution.

Heuristic algorithm is proposed with respect to the exact algorithm. The exact algorithm is to obtain the optimal solution for problems, but its computing time may be unacceptable. Especially in engineering applications, computing time is an important indicator of the algorithm feasibility. Therefore, exact algorithms can only be able to solve comparatively small size problems with a reasonable running time. In order to balance the relationship between calculation costs and the quality of results, heuristic algorithms began to be used to solve combinatorial optimization problems.

The heuristic algorithm is defined in several different descriptions with the literature. It is an intuitive or experienced construction algorithm. In an acceptable cost (time, space, etc.), a feasible solution for each instance of the combinatorial optimization problem is given, but the gap between the feasible solution and the optimal solution can not be considered.

The heuristic algorithm has the following advantages:

(1) The heuristic is simple, intuitive, and the solving time is fast.

(2) Some heuristic algorithms can be used in the exact algorithm, such as in the branch and bound algorithm, heuristic can be used to estimate the upper bound.

Meanwhile, there are some weaknesses of heuristic:

(1) It can not guarantee to obtain the optimal solution.

(2) The quality of the algorithm depends on the real problem, the designer's experience and technology.

However, before 1990s, most of the proposed heuristics for solving the combinatorial optimization problem were particular to a given problem [START_REF] Loiola | A survey for the quadratic assignment problem[END_REF]. Therefore, more general techniques have been proposed, known as metaheuristic. Because the metaheuristic does not excessively rely on the structure information of problems, it can be applied to many types of combinatorial optimization problems.

The term metaheuristic is first used by Glover in 1986 [START_REF] Glover | Future paths for integer programming and links to artificial intelligence[END_REF], which derives from two Greek words: Heuristic comes from the verb "heuriskein", which means "to find", and the prefix meta means "beyond, in an upper level" [START_REF] Blum | Metaheuristics in combinatorial optimization: Overview and conceptual comparison[END_REF]. The term metaheuristic was called modern heuristics before it was widely used [START_REF] Reeves | Modern heuristic techniques for combinatorial problems[END_REF].

So far there is no commonly accepted definition for metaheuristic, but there are several representative definitions. Osman and Laporte [START_REF] Osman | Metaheuristics: A bibliography[END_REF] gave the definition: "A metaheuristic is formally defined as an iterative generation process which guides a subordinate heuristic by combining intelligently different concepts for exploring and exploiting the search space, learning strategies are used to structure information in order to find efficiently near-optimal solutions." Other definitions can be seen in [231, [START_REF] Stutzle | Local search algorithms for combinatorial problems: analysis, improvements, and new applications[END_REF]322].

In summary, metaheuristic is the technique which is more general than heuristic.

Metaheuristic can find a sufficiently good solution even the optimal solution for the optimization problem with less computational assumptions. Therefore, in the past decades, many research have been focused on using metaheuristic for solving complex optimization problems.

In the Section 2.1 and 2.2, we introduce a number of well-known metaheuristics in details which can be divided into two kinds: single solution and population. Each metaheuristic will be presented from three parts: basic idea, key parameters and research status. Section 2.3 discusses two ways to improve the global search capability of the metaheuristic algorithm. Section 2.4 introduces three types of evaluation for metaheuristic performance. Section 2.5 concludes this chapter.

Single solution based metaheuristics

The single solution based metaheuristic (also called trajectory method) has only one solution in the iterative process. The commonality of this kind of metaheuristic is, there is always a mechanism to ensure that the inferior solution could be accepted and become the next state, and not just greedily select the best state.

The core processes of the single solution based metaheuristic contains two steps: select the candidate solutions, determine and accept the candidate solution. In first step, the generation of candidate solutions is dependent on the solution expression and selection of the neighborhood function, but this step is often associated with structure of optimization problems. As in the TSP problem, random swap and k-swap are the common methods to generate neighborhood solution.

The second step is the difference among these algorithms. For example, Tabu search produces multiple candidate solutions, and deterministically chooses the best state based on tabu list and aspiration criterion; Simulated annealing generates a candidate solution, and accepts inferior solutions with a probability.

Simulated Annealing

Simulated Annealing (SA) is a probabilistic metaheuristic proposed in [START_REF] Kirkpatrick | Optimization by simmulated annealing[END_REF] for finding the global solution. Simulated annealing algorithm is a random optimization algorithm based on Monte Carlo iterative solution strategy, and the starting point is based on the physical annealing process of solid matter. At a certain initial temperature, while accompanying by the decline of temperature, SA is combined with the sudden jump probability in the solution space to randomly search the global optimal solution of the objective function, that is, SA can probabilistically jump out of the local optimal solution, and eventually become a global optimal.

SA is a general optimization algorithm, which has been widely used in engineering, such as production scheduling, control engineering, machine learning, image processing and other areas.

Basic Scheme

SA was first proposed for the combinatorial optimization with the following aim:

(1) To provide an effective approximation algorithm for NP-hard problem.

(2) To overcome the optimization process falling into local optimum.

(3) To overcome the initial solution dependency.

The algorithm starts from a high initial temperature and uses Metropolis sampling strategy with sudden jump probability to do the random search in the solution space.

SA repeats the sampling process accompanied with the decline of temperature, and finally obtains the global optimal solution of the problem.

In pseudocode, the SA algorithm can be presented in Algorithm 1:

Algorithm 1 Simulated Annealing (SA) Initialization: Generate initial solution x; Set initial temperature t = t 0 , k = 0; Iteration:

1: while the temperature is not frozen do 2:

for Iteration=2,3,... do 3:

Randomly selected x from N (x);

4:

if f (x ) ≤ f (x) then 5:

x ← x ;

6: else 7:

x ← x with a probability; The advantages of SA are high quality performance, robustness initial solution and easy to achieve. However, in order to find a sufficiently good solution, the algorithm usually requires a higher initial temperature, the slower cooling rate, the lower end temperature, and a sufficient number of the sample at each temperature, so the optimization process of SA is longer, which is the biggest drawback of the algorithm. Therefore, the main content of improving the algorithm is improving search efficiency under the premise of guaranteed optimization quality.

Key Parameters

According to the algorithm process, simulated annealing algorithm consists of three functions and two criterions, which are the state generated function, the state accepted function, the temperature update function, the inner loop termination criterion and the outer loop termination criterion. The design of these parts will determine the optimize performance of SA algorithm. In addition, the selection of the initial temperature also has a great impact on the performance of SA algorithm.

State Generated Function

The starting point of designing the state generated function (neighborhood function) should be to ensure that the generated candidate solutions are throughout the entire solution space. Typically, the function consists of two parts: the way to generate candidate solutions and the probability distribution of generated candidate solutions. The former determines the way to generate candidate solutions from the current solution, and the latter determines the probability of selecting different states in candidate solutions. The way of generating candidate solutions is determined by the property of the problem, and usually solutions are produced in a certain probability way in the neighborhood structure of the current state. The neighborhood function and the probability way can be diversely designed, for example, the probability distribution can be the uniform distribution, the normal distribution, the exponential distribution, the Cauchy distribution etc.

State Accepted Function

The state accepted function is generally given by the way of probability, and the main difference among the different accepted function is the different form of the accepted probability. In order to design the state accepted probability, the following principles should be followed:

(1) Under a fixed temperature, the probability of accepting a candidate solution which makes the objective function value decline is greater than which increases the objective function value.

(2) With the drop of temperature, the probability of accepting the solution that makes the objective function value solution rising should gradually decreases.

(3) When the temperature goes to zero, only the solution of reducing the objective function value can be accepted.

The state accepted function is the most critical factor of SA algorithm to achieve the global search, but experiments show that specific form of the function does not have a significant impact on the performance of the algorithm. Therefore, SA algorithm usually used min[1, exp(-∆C/t)] as the state accepted function, and ∆C = f (x ) -f (x), where x is the new solution and x is the current solution respectively.

Initial Temperature

The initial temperature t 0 , the temperature update function, the inner loop termination criterion and the outer loop termination criterion are usually called annealing schedule.

Experimental results show that, greater is the initial temperature, larger is the probability of obtaining high quality solution, but the calculation time will increase.

Therefore, the initial temperature should be determined with considering both optimization quality and efficiency. Commonly used methods include:

(1) Uniform sampling a set of states, and the variance of each state's objective value is used as the initial temperature.

(2) A set of states is randomly generated, and the maximum objective value difference between any two states is defined as |∆ max |, and then based on the difference, using certain functions to determine the initial temperature. For example, t 0 = -∆ max / ln p t , where p t is the initial accepted probability.

(3) The initial temperature is given by the experience.

Temperature Update Function

The temperature update function is the drop way of temperature, which is used to modify the temperature in the outer loop.

Currently, the most commonly used temperature update function is t k+1 = αt k , where 0 < α < 1 and α can change.

Inner Loop Terminate Criterion

The inner loop termination criterion, or called Metropolis sample stability criterion, is used to decide the number of generated candidate solutions at each temperature.

Commonly used criterions include:

(1) Checking whether the mean of objective function is stability.

(2) Small change of objective value in several steps.

(3) Sampling according to a certain number of steps.

Out Loop Terminate Criterion

The out loop terminate criterion is the stopping rule of the algorithm, which determines the end time of the algorithm. Usually the criterion includes:

(1) Setting the threshold of termination temperature.

(2) Setting the iterations of the outer loop.

(3) The optimal value remains unchanged in consecutive several steps.

Research Status

In 1983 Kirkpatrick et al. [START_REF] Kirkpatrick | Optimization by simmulated annealing[END_REF] designed the large scale integrated circuit with using SA. Szu [START_REF] Szu | Fast simulated annealing[END_REF] proposed a fast simulated annealing algorithm (FSA) that the annealing rate is inversely proportional to the time. In 1987 Laarhoven and Aarts published the book 'Simulated Annealing' [START_REF] Van Laarhoven | Simulated annealing[END_REF], which systematically summarized the SA algorithm, and promoted the development of theoretical study and practical application of SA algorithm, this is a milestone in the history of SA algorithm. In 1990 Dueck and Scheuer [START_REF] Dueck | Threshold accepting: a general purpose optimization algorithm appearing superior to simulated annealing[END_REF] studied the method for determining the critical value of the initial temperature of the SA algorithm. Kirkpatrick et al. [START_REF] Ingber | Genetic algorithms and very fast simulated reannealing: A comparison[END_REF] used simulated annealing algorithm for optimization problems, and achieved very good results. Nabhan et al. [START_REF] Nabhan | A parallel simulated annealing algorithm with low communication overhead[END_REF] studied in parallel computing to improve computational efficiency of SA algorithm and can be used to solve complex scientific and engineering calculations.

So far, simulated annealing has been applied to several combinatorial optimization problems. Connolly [START_REF] Connolly | An improved annealing scheme for the QAP[END_REF] proposed an improved simulated annealing to solve the quadratic assignment problem. The experiment showed the effectiveness of this algorithm. Laarhoven et al. [START_REF] Van Laarhoven | Job shop scheduling by simulated annealing[END_REF] used simulated annealing for solving the job shop scheduling problem. Al-khedhairi [START_REF] Al-Khedhairi | Simulated annealing metaheuristic for solving p-median problem[END_REF] solved p-median problem by using simulated annealing in order to find the optimal or near-optimal solution of the p-median problem.

Liu et al. [START_REF] Liu | A heuristic simulated annealing algorithm for the circular packing problem[END_REF] proposed a heuristic simulated annealing algorithm for the circular packing problem. Rodriguez-Tello et al. [START_REF] Rodriguez-Tello | An improved simulated annealing algorithm for bandwidth minimization[END_REF] proposed an improved simulated annealing algorithm for solving the bandwidth minimization problem, while comparing with several literature algorithms under the benchmark instance experiment, the results showed the improvement of the algorithm. Hao [START_REF] Hao | Optimization Models and Heuristic Method Based on Simulated Annealing Strategy for Traveling Salesman Problem[END_REF] proposed a heuristic algorithm for solving traveling salesman problem. The approach introduced the crossover and mutation operator into SA in order to balance the running speed and accuracy.

Experiment verified the effectiveness of the proposed SA algorithm.

Tabu Search

Tabu Search (TS) is a metaheuristic originally proposed by Glover in 1989 [START_REF] Glover | Tabu search-part I[END_REF][START_REF] Glover | Tabu search-part II[END_REF].

By introducing a flexible storage structure and corresponding tabu criterion, TS can avoid the repetition search, and the aspiration criterion is used to release some good states which are banned, thereby TS ensures the diversification of effective search to eventually achieve the global optimization.

So far, TS algorithm has achieved great success in combinatorial optimization, production scheduling, machine learning, circuit design and other fields .

Basic Scheme

Tabu Search is a reflection of artificial intelligence, and an extension of the local neighborhood search. The most important idea of Tabu Search is to mark the objects which are corresponding to the found local optimal solution, and try to avoid these objects in further iterative search (not absolutely prohibit), thus can ensure an effective search for different exploration ways.

Tabu search is starting from a given initial solution and some candidate solutions in the neighborhood of current solution. If the objective value of the best candidate solution is better than 'best so far' state, the tabu property of the candidate solution will be ignored, and it will replace the current solution and 'best so far' state, and is put into the tabu list. If such a candidate solution does not exist, the best and no-tabu candidate solution will be chose as the new solution without considering the quality.

The simple pseudocode of the Tabu Search is presented in Algorithm 2.

Compared with traditional optimization algorithm, the main features of TS are:

(1) The worse solution can be accepted in the search process, so TS has a strong 'climbing ability'.

(2) The new solution is not randomly generated in the neighborhood of the current solution, but it is the solution which is better than the 'best so far' state, or is the best solution which is not in the tabu list, so the probability of selecting a good solution Algorithm 2 Tabu Search (TS) Initialization:

Generate a random initial solution x; Tabu List ← ∅; Iteration:

1: while Stopping rule is not satisfied do

2:

Generate the neighborhood solution N (x) of x and candidate list;

3:
Judge aspiration criterion;

4: if f (x best ) < f (x) then 5:
x ← x best , update Tabu List; end if 9: end while 10: return the best solution is much larger than choosing other solutions. Thus, TS is a global iterative optimization algorithm with strong local search capability. However, there are also some shortcomings of TS:

(1) TS has a strong dependence with the initial solution. A good initial solution can make TS find a good solution in the solution space, but a bad initial solution will reduce the convergence speed.

(2) The iterative search process is serial, which is only the moving of single state, not a parallel search.

In order to further improve the performance of tabu search, on the one hand the operations and parameters of the algorithm can be improved, on the other hand TS can be combined with other algorithms.

Key Parameters

Generally, in order to design a tabu search algorithm, the algorithm needs to determine the following points:

1. Fitness Function Fitness function of tabu search is used to evaluate the status of the search, and then it is combined with tabu guideline and aspiration criteria to select a new state.

Clearly, it is relatively easy that the objective function value is used directly as fitness function.

However, if the calculation of the objective function is difficult or time consuming, some eigenvalues which reflect the problem goals can be used as the fitness function, thereby can improve the time performance of the algorithm. Certainly, the selection of the fitness function should be determined according to the specific problem, but it must ensure optimality of both the eigenvalue and the optimality of objective function.

Tabu Object

The tabu object is a change element which will be put into the tabu list. The purpose of tabu is to avoid the circuitous search and explore more effective search ways. Usually, the tabu object can select the state itself, the state component or the change of fitness value etc.

(1) The most simple easiest way is the state itself or its change is used to be the tabu object. Specifically, when the state x changes to the state y, the state y (or the change state x → y) can be as the tabu object, thus the state y (or the change state x → y) can be prohibited to appears again under certain conditions.

(2) The change of state including the change of many state components, thus using the change of state component as the tabu object will expand the range of tabu, and reduce the corresponding calculation amount. For example, for flow shop problem, the two points exchange caused by SWAP operation means the change of state component, and it can be used as tabu object.

(3) The fitness value is used as tabu object. In other words, the states which have same fitness value are considered as the same state. The change of a fitness value implies the change of many states, so in this case, the tabu range will expand relative to state change.

Therefore, if the state itself is chose as the tabu object, the tabu range is smaller than the tabu object is the state component or fitness value, and the search range is larger which is easy to cause the increase of computing time. However, under the condition that the size of tabu length and candidate solution set are same and smaller, choosing state component or fitness value as the tabu object will make the search into local minimum because of the larger tabu range.

Tabu Length and Candidate Solution

The size of tabu length and candidate solution set are two key parameters that affects the performance of the TS algorithm. Tabu length is the maximum number of the tabu object which is not allowed to be selected without considering the aspiration criteria (To put it simply, it is the term of tabu object in the tabu list), the tabu object can be lifted only if the term is 0. The candidate solution set usually is a subset of the current neighborhood solution set. When constructing the algorithm, the computation and storage are required as little as possible, so the size of tabu length and candidate solution set should be as small as possible. However, too short tabu length will cause the circulation of search, and too small candidate solution set is easy to fall into local minimum.

The selection of tabu length is related to the problems characteristics and the researchers experience, which determines the computational complexity of the algorithm.

On the one hand, the tabu length t can be steady constant. For example, the tabu length is fixed at a number (such as t = 3 etc.), or fixed at an amount which is associated with the problem size (such as t = √ n, n is the dimension or size of the problem).

On the other hand, the tabu length can be dynamic. For example, the change interval [t min , t max ] of tabu length can be set according to the search performance and problems characteristic (such as [3,[START_REF] Alvarez | GRASP embedded scatter search for the multicommodity capacitated network design problem[END_REF], [0.9 √ n, 1.1 √ n]), and the tabu length can vary within its interval according to certain principles or formulas. Of course, the interval size of the tabu length may also change dynamically with the change of search performance.

Generally, when the dynamic performance of the algorithm has a significant decrease, it indicates that the current search capability is strong, and may also the minimal solution which near the current solution forms a deep 'trough', so we can set a large tabu length to continue the current search and avoid falling into local minimum. Numerous studies show that the dynamic setting mode for the tabu length has better performance and robustness than the static mode, but the more efficient and rational setting manner needs further studied.

The candidate solutions are usually selected in the neighborhood of current solution which under the principle of merit-based. However, selecting too many candidate solutions will cause excessive amount of computation, and selecting too few is easy to fall into local minimum. Besides, the merit-based selection in the whole neighborhood structure often requires a lot of calculations, for example, the SWAP operation of TSP will generate C 2 n neighborhood solutions. Therefore, the candidate solution can be chose deterministically or randomly in part of neighborhood solutions, and the specific number of candidate solutions can be determined by the characteristics of problem and the algorithm requirements.

Aspiration Criterion

In the tabu search algorithm, the situation that all the candidate solutions are in the tabu list or a tabu candidate solution is better than the 'best so far' state may appear, then the aspiration criterion will allow some states to be lifted, in order to achieve more efficient performance of optimization. Several common way of aspiration criterion is described as follows.

(1) Based on the fitness value The global mode (the most common mode): If the fitness value of a tabu candidate solution is better than the 'best so far' state, so this candidate solution will be lifted and used as the current state and the new 'best so far' state. The region mode: The search space is divided into several subregions, if the fitness value of a tabu candidate solution is better than the 'best so far' state in its region, thus this candidate solution will be used as the current solution and the new 'best so far' state in corresponding region. This criterion can be intuitively understood as the algorithm finds a better solution.

(2) Based on the search direction If a tabu object improved the fitness value when it was put in the tabu list last time, and now the fitness value of corresponding candidate solution for this tabu object is better than current solution, so this tabu object will be released. This criterion means the algorithm is running according to an efficient search way.

(3) Based on the minimum error If all the candidate solutions are banned, and there is not a candidate solution which is better than 'best so far' state, the best one in the candidate solutions will be released to continue the search. This criterion is a simple treatment for the deadlock of the algorithm.

(4) Based on the influence In the search process, the change of different objects has a different influence on the fitness value, and this influence can be used as a property to construct the aspiration criterion with the tabu length and the fitness value. The intuitive understanding is, releasing a high impact tabu object is helpful to get a better solution in the future search. It is noted that, the influence is just a scalar index, which can be characterized by a decrease of the fitness value, and can also represent the rise of the fitness value.

For instance, if all the candidate solutions are worse than the 'best so far' state, but the influence index of one tabu object is large, and it will be released soon, thus this tabu object should be lifted immediately to expect a better state. Obviously, this criterion is necessary to introduce a measure which describes the influence, and a value which is associated with the tabu length, so it will increase the complexity of the algorithm operation. Meanwhile, in order to adapt the change of the search process and the algorithm performance, it would be better these indicators are dynamic.

Tabu Frequency

Recording the tabu frequency is a supplement of the tabu property. It can relax the range of selecting the decision object. For example, if a fitness value occurs frequently, it can be speculated that the algorithm falls into a kind of loop or a minimum point, or the existing algorithm parameters are difficult to help to explore better state, thus the structure or parameters of the algorithm should be modified.

When solve the problem, according to the need of the problem and algorithm, the frequency of a state can be recorded. The information of some exchange objects or fitness value can be also recorded, and such information can be static or dynamic.

The static frequency information mainly includes the frequency of the state, the fitness value or the exchange object which appear in the optimization process, and its calculation is relatively simple, such as the number of times that the objects appear in the calculation, the radio between the appearance times and the total number of iterations, and the number of circles between two states etc. Obviously, these information help to understand the characteristics of some objects, and the number of the corresponding cycle appears and so on.

The dynamic frequency information mainly records the variation trend of the transfer from some states, fitness values or exchange objects to other ones, such as the change of a state sequence. The record of the dynamic frequency information is more complex, while the amount of the information is greater. Commonly used methods are as follows:

(1) Recording the length of a sequence, that is the number of elements in the sequence. When recording the sequence of some key points, the change of sequence length of these key points can be calculated.

(2) Recording the iteration number of starting from a element in the sequence and then back to this element.

(3) Recording the average fitness value of a sequence, or the fitness value change of each corresponding element.

(4) Recoding the frequency of a sequence appears.

The frequency information helps to strengthen the capacity and efficiency of the tabu search, and contributes to the control of the tabu search algorithm parameters.

Or based on the frequency information, the corresponding object will get punishment.

For instance, if a object appears frequently, increasing the tabu length can avoid the loop; If the fitness value of a sequence changes less, the tabu length for all the objects in this sequence can increase; If the best fitness value sustains for a long time, the search process can be terminated and this fitness value can be considered as the best solution.

In addition, in order to enhance the search quality and efficiency of the algorithm, many improved tabu search algorithms add the intensification and diversification mechanism in the algorithm based on the frequency and other information.

The intensification mechanism emphasizes that the algorithm focus on the search in the good region. For instance, re-initializing or multi-step searching based on the optimal or suboptimal state, and increasing the select probability of the algorithm parameters which obtain the best state, etc.; The diversification mechanism underlined broaden the search range, especially those unexplored areas, which is similar to the genetic algorithm with enhancing diversity of population. The intensification and diversification mechanism is contradictory on some levels, but both mechanisms have a significant impact on the performance of the algorithm. Therefore, as a good tabu search algorithm, it should have a capability of reasonable balance between the intensification and diversification mechanism.

Stopping Criterion

Tabu search requires a stopping criterion to end the algorithmic search process. If strictly achieving the theoretical convergence condition, that is achieving the traversal of the state space under the condition that the tabu length is sufficiently large, it is obviously not practical. Thus, the approximate convergence criterion is usually used for actually algorithm design. Common methods are as follows:

(1) Given the maximum number of iterations. This method is simple and easy to operate, but it is difficult to ensure the optimization quality.

(2) Set the maximum frequency of a tabu object. In other words, if the tabu frequency of a state, fitness value or exchange object exceeds a certain threshold, then the algorithm is terminated, which also includes the situation that the best fitness value remain unchangs for several consecutive steps.

(3) Set the deviation amplitude of the fitness value. That is, firstly there is a estimated lower bound of the problem, once the deviation between the best fitness value and the lower bound is smaller than a certain amplitude, then the algorithm stops.

Research Status

In the theory research, the main concern research aspect includes the selection of algorithm parameters, the algorithm operations and hybrid algorithm. Sexton et al. [START_REF] Sexton | Global optimization for artificial neural networks: a tabu search application[END_REF] proposed a improved TS algorithm which the size of tabu list is variable, and used for training the neural network. Jozefowska et al. [START_REF] Jozefowska | Tabu list management methods for a discrete¨Ccontinuous scheduling problem[END_REF] raised three tabu list management methods for discrete -continuous scheduling problem, and did a comparison study on three methods. Glover [START_REF] Glover | Tabu search-part I[END_REF][START_REF] Glover | Multi-start and strategic oscillation methods-principles to exploit adaptive memory[END_REF] proposed a strategy oscillation approach to strengthen the management of the tabu list, which is applied on the p-medium problem. In addition, in order to improve the optimization performance and efficiency of the algorithm, two or more algorithms are combined together, while forming a new hybrid algorithm which has become a trend. For example, the combination of TS and GA, etc. [START_REF] Jiang | An evolutionary tabu search for cell image segmentation[END_REF], The studies show that the hybrid algorithm has a more substantial upgrade on the performance and efficiency of the algorithm.

Because the TS algorithm has a strong versatility, and does not need special information of problems, so it has a wide area of application. At present the main application areas include scheduling problem [START_REF] Al-Turki | Tabu search for a class of singlemachine scheduling problems[END_REF][START_REF] Laguna | Integrating target analysis and tabu search for improved scheduling systems[END_REF][START_REF] Liaw | A tabu search algorithm for the open shop scheduling problem[END_REF][START_REF] Pezzella | A tabu search method guided by shifting bottleneck for the job shop scheduling problem[END_REF], quadratic assignment problem [START_REF] Diaz | A tabu search heuristic for the generalized assignment problem[END_REF][START_REF] Higgins | A dynamic tabu search for large-scale generalised assignment problems[END_REF][START_REF] Laguna | Tabu search for the multilevel generalized assignment problem[END_REF], traveling salesman problem [START_REF] Gendreau | A tabu search heuristic for the undirected selective travelling salesman problem[END_REF], vehicle routing problem [START_REF] Gendreau | A tabu search heuristic for the vehicle routing problem[END_REF],

knapsack problem [START_REF] Niar | A parallel tabu search algorithm for the 0-1 multidimensional knapsack problem[END_REF], bandwidth problem [START_REF] Martí | Reducing the bandwidth of a sparse matrix with tabu search[END_REF]...

Greedy Randomized Adaptive Search Procedure

The basic local search algorithm is easy to fall into the local minimum. A simple method to improve the quality of the solution is to start local search algorithm several times, and each time the local search starts from a new randomly generated initial solution. Although this method is able to improve the quality of the solution, the efficiency of the algorithm is low because of the randomness of the initial solution.

Greedy Randomized Adaptive Search Procedure (GRASP) was first introduced in Feo and Resende [START_REF] Feo | A probabilistic heuristic for a computationally difficult set covering problem[END_REF][START_REF] Feo | Greedy randomized adaptive search procedures[END_REF]. GRASP trying to improve the performance of the algorithm by generating the high-quality initial solution with certain diversity. It is a heuristic iterative method for solving stochastic optimal combination problems, which has been widely used in many fields.

Basic Scheme

Greedy Randomized Adaptive Search Process refers to randomized the greedy constructive heuristic method to generate a large number of different initial solutions for local search. Therefore, it is a kind of local search procedure which is multi-start, and each iteration consists of two phases:

(1)To construct the initial solution by greedy randomized adaptive structure algorithm.

(2)To optimize the constructed initial solution which generated in phase 1 through a local search algorithm.

The description of GRASP is showed in Algorithm 3.

Algorithm 3 Greedy Randomized Adaptive Search Procedure (GRASP)

1: while Stopping rule is not satisfied do 2:

Generate an initial feasible solution using a randomized greedy heuristic;

3:

Apply a local search starting from the initial solution; 4: end while 5: return the best solution The construction process of the solution is as follows: Suppose that the solution is composed of many solution elements, according to some heuristic criteria, an evaluation value is calculated for each solution element, which means the superior or inferior degree of the solution element which will be added into the partial solution under the current circumstances.

The restricted candidate list (RCL) is constructed by the partial solution element with high evaluation value, and then a solution element is randomly selected from the restricted candidate list to the partial solution. This process will be repeated until the solution construction is completed.

Key Parameters

Construction

The construction phase is a process of generating the feasible solution by iteration, and the restricted candidate list is a important part in this phase.

At each step of the construction phase, the solution element solution is sorted according to the greedy function, some top elements will be put into the restricted candidate list. The typical method of forming the restricted candidate includes two kinds:

(1) Best Strategy: This strategy selects the best top λ% in the solution element.

(2) First Strategy: The first strategy chooses the top δ% solution element according to sequence of the corresponding greedy value in the solution elements.

Besides, the length of RCL l has a great influence on the GRASP performance.

If the length is equal to 1, then each added solution element is the current best one, which is actually a deterministic greedy algorithm, and the same initial solution will be obtained each time. If the solution is equal to the number of all the elements, the construction algorithm is a completely random process, and GRASP degenerates into random multi-start local search algorithm. There are two different ways to determine the parameter l:

(1) Based on base number: The length of RCL can be defined as a fixed value.

(2) Based on evaluation value: This way is based on the evaluation value of the solution element. The element whose evaluation value is better than a certain critical value will be put into the restrict candidate list, and its length is not fixed.

Local Search

The randomly generated feasible solution from the construction phase can not guarantee the local optimum, so it is necessary to enter the local search phase. The local search starts from the feasible solution which is obtained in the construction phase, and find the local optimal solution in a certain neighborhood. The best local optimum in all iteration is the global optimal solution.

The local search process can use a basic local search algorithm, or some more advanced algorithms can be accepted such as simulated annealing, tabu search etc.

Research Status

Atkinson et al. [START_REF] Atkinson | A greedy randomised search heuristic for time-constrained vehicle scheduling and the incorporation of a learning strategy[END_REF] applied GRASP to solve the time constrained vehicle scheduling problem, and two forms of adaptive search (local adaptation and global adaptation) were illustrated. Fleurent et al. [START_REF] Fleurent | Improved constructive multistart strategies for the quadratic assignment problem using adaptive memory[END_REF] applied GRASP on the quadratic assignment problem. Laguna et al. [START_REF] Laguna | GRASP and path relinking for 2-layer straight line crossing minimization[END_REF] combined GRASP with path relinking to improve the algorithm performance. Prais et al. [START_REF] Prais | Reactive GRASP: An application to a matrix decomposition problem in TDMA traffic assignment[END_REF] used a reactive GRASP for a matrix decomposition problem in TDMA traffic assignment. Binato et al. [START_REF] Binato | Greedy randomized adaptive path relinking[END_REF] proposed a new metaheuristic approach named greedy randomized adaptive path relinking (GRAPR). Pinana et al. [START_REF] Pinana | GRASP and path relinking for the matrix bandwidth minimization[END_REF] developed a greedy randomized adaptive search procedure (GRASP) combined with a path relinking strategy for solving the bandwidth minimization problem. Hirsch et al. [START_REF] Hirsch | Global optimization by continuous grasp[END_REF] presented a continuous GRASP (C-GRASP) through extending GRASP from discrete optimization to continuous global optimization. Andrade et al. [START_REF] Andrade | GRASP with evolutionary path-relinking[END_REF] combined GRASP with an evolutionary path relinking to solve the network migration problem. Moura and Scaraficci [START_REF] Moura | A GRASP strategy for a more constrained School Timetabling Problem[END_REF] combined GRASP with a path relinking to solve the school timetabling problem. Marinakis [START_REF] Marinakis | Multiple phase neighborhood search-GRASP for the capacitated vehicle routing problem[END_REF] developed a Multiple Phase Neighborhood Search GRASP (MPNS-GRASP) for solving vehicle routing problem.

Variable Neighborhood Search

Variable Neighborhood Search (VNS) is a metaheuristic that is firstly proposed by Hansen and Mladenovic [START_REF] Mladenovic | Variable neighborhood search[END_REF] in 1997. This metaheuristic has been proved to be very useful for obtaining an approximate solution to optimization problems. Variable neighborhood search includes dynamically changing neighborhood structures. The algorithm is more general, the degree of freedom is large, and many variants can be designed for specific problems.

Since variable neighborhood search algorithm has been proposed, because VNS has the advantages such as the idea is simple, the algorithm is easy to achieve, the algorithm structure is irrelevant to the problem and is suitable for all kinds of optimization problems, so VNS has been one of the key optimization algorithms are studied.

Basic Scheme

The basic idea of variable neighborhood search is:

(1) The local optimal solution in a neighborhood structure is not necessarily the one in another neighborhood.

(2) The local optimal solution in all possible neighborhood structure is the global optimal solution.

Variable neighborhood search algorithm relies on the following three facts [START_REF] Hansen | Variable neighbourhood search: methods and applications[END_REF]:

Fact1. The local optimum of a neighborhood structure is not necessarily the local optimal solution of another neighborhood structure.

Fact2. The global optimal solution is the local optimal solution for all possible neighborhood structure.

Fact3. For a lot of problems, the local optimums of several neighborhood structures are close to each other.

The last fact is obtained from the experience, it means that the local optimal solution can provide some information of the global optimal solution. Through the study of the neighborhood structure, better feasible solutions can be found, and then VNS keeps close to the global optimal solution. When using neighborhood change to solve the problem, neighborhood transformation can be divided into three categories [START_REF] Hansen | Variable neighbourhood search: methods and applications[END_REF]: (1) deterministic; (2)stochastic;

(3)both deterministic and stochastic. N k (k = 1, 2, ..., k max ) is defined as a finite set of neighborhood structure, where N k (x) is the solution set of k neighborhood for x.

The basic procedure of neighborhood change is, comparing the value between the new solution f (x ) and the current solution f (x) in k th neighborhood N k (x). If the new solution has improved, then k = 1 and the current solution is updated (x ← x ).

Otherwise, the next neighborhood will be considered (k = k + 1).

Variable Neighborhood Descent (VND)

If the neighborhood changes based on deterministic methods, it is called the variable neighborhood descent search algorithm (VND).

Essentially, variable neighborhood descent is a algorithm by expanding the neigh-borhood to find the local optimal solution in a wider range, so the local optimal solution is closer to the global optimal solution. When the search range covering the entire feasible region, the global optimal solution can be obtained.

The steps of VND is presented in Algorithm 4.

Algorithm 4 Variable Neighborhood Descent (VND) Initialization:

Select the set of neighborhood structures N k , (k = 1, 2, ..., k max ); Generate a random initial solution x; Iteration:

1: while Stopping rule is not satisfied do

2: k = 1; 3: while k < k max do 4:
Exploration of neighborhood: Find the best neighbor x of x (x ∈ N k (x));

5:

Move or Not:

6: if f (x ) < f (x) then 7:
x ← x , k ← 1; end while 12: end while 13: return the best solution

Reduced VNS (RVNS)

If the neighborhood change is based on the stochastic approach rather than deterministic, it is called reduced variable neighborhood search algorithm (RVNS).

Reduced variable neighborhood search removes the local search process, while randomly selects the feasible solution in the neighborhood of the current optimal solution, and covers the entire feasible field as much as possible through the neighborhood change. The computing speed of RVNS is fast, but because of the random selection of feasible solution in neighborhood and the lack of local search, it will cause a problem that the search accuracy is not high, and the difference between the results obtained finally and the global optimal solution is relatively large.

The basic procedures of RVNS is illustrated in Algorithm 5. Shaking: One solution x (x ∈ N k (x)) is generated randomly from the k th neighborhood structure of x;

Basic VNS

5:

Move or Not:

6: if f (x ) < f (x) then 7:
x ← x , k ← 1; end while 12: end while 13: return the best solution The basic variable neighborhood search algorithm (Basic VNS) changes the neighborhood by using both deterministic and stochastic methods.

The basic variable neighborhood search algorithms includes three processes: shaking, local search and neighborhood change. Shaking is trying to jump out the current local optimum and find a new local optimal solution, while making the local optimal solution be closer to the global optimal solution. Local search is used to find the local optimal solution in order to improve search accuracy. "Move or not" which means the neighborhood change provides an iterative method and stopping criterion. Move or Not:

7: if f (x ) < f (x) then 8:
x ← x , k ← 1; end while 13: end while 14: return the best solution

Key Parameters

In summary, the various versions of VNS have their own characteristics, but each version must consider the following issues: the structural problem of initial solution, neighborhood structure set N k and number k max , searching sequence between neighborhood structure, design problem of local search, and design problem of stopping criterion etc.

Initial Solution

The quality of initial solution will directly affect the performance of the algorithm, a good initial solution can guarantee the algorithm to obtain the the global optimal solution or near-optimal solution within a short time. Typically, the structure of the initial solution has two approaches: random strategy and heuristic strategy.

Neighborhood Structure Set

It is one of the core part of the algorithm design, and the principle is trying to ensure the algorithm is global. Usually, a good global algorithm has a high probability to find the optimal solution, but meanwhile the solving time is long.

Neighborhood structure includes the following issues: the form of neighborhood structure set; the sequence among the neighborhood structure; the moving strategy among neighborhood structure. The design of neighborhood structure set in combinatorial optimization problem is shown below:

(1) Hamming Distance Hamming distance is the number of different elements between the two solution vectors, which is defined as ρ(x, x ) = |x \ x | [START_REF] Drazic | A continuous variable neighborhood search heuristic for finding the three-dimensional structure of a molecule[END_REF]. The neighborhood structure N k can be represented as

N k (x) = {x |ρ(x, x ) = k} or N k (x) = {x |ρ(x, x ) ρ k }.
(2) Operators Combination Common operators include or-opt, swap, 2-opt etc. Prandtstetter and Raidl [START_REF] Prandtstetter | An integer linear programming approach and a hybrid variable neighborhood search for the car sequencing problem[END_REF] designed 10 operators combination.

For optimization problems, the sequence among the neighborhood structure can be achieved by changing the order of neighborhood structure, and it is usually sorted by ascending, that is

|N 1 (x)| |N 2 (x)| ... |N kmax (x)|.
The moving strategy among neighborhood structure usually uses forward or backward strategy. The forward strategy is that the sort of neighborhood structure starts from in k = 1, then k increases, while the backward strategy is the neighborhood structure sequence begins at k = k max , then k decreases [START_REF] Hansen | Developments of variable neighborhood search[END_REF].

Local Search

The design of local search is another core part of VNS algorithm. Local search algorithm often introduces metaheuristics or strategies, such as first/best improvement strategy [START_REF] Hansen | First vs. best improvement: An empirical study[END_REF], VND, TS, SA, PSO etc., and the determination of the algorithm selection is depending on the specific problem.

Stoping Criterion

The selection of stopping criterion has a direct impact on the global convergence and timeliness of the algorithm. The common stopping criterion of VNS has three kinds:

(1) The number of traversing all the neighborhood structure k = k max .

(2) Set the maximum iteration in neighborhood structure, and maximum repeti-tion number of the optimal solution.

(3) The maximum allowable CPU time.

Research Status

Hansen and Mladenovic first proposed the variable neighborhood search algorithm in 1997, and then in the 2001 they published the invited review [START_REF] Hansen | Variable neighborhood search: Principles and applications[END_REF] in the European Journal of Operational Research, which analyzed the improved version of VNS and did the comparative analysis with the classical algorithm for specific problems. In recent years, a large number of papers on VNS emerged in the International Journals.

Hansen and Mladenovis [START_REF] Hansen | Variable neighborhood search: Principles and applications[END_REF] used VNS and 2-opt algorithm to solve the TSP (the problem size from 100 to 1000), and the results showed that the VNS obtains the average improvement in value of 2.73% and average save in solving time of 22.09s. Besides, the 2-opt algorithm is embedded into the local search of VNS, and the simulation results showed that the algorithm is superior to VNS. Hansen et al. [START_REF] Hansen | Variable neighborhood decomposition search[END_REF] using VNS, FI, RVNS and VNDS solved TSP. Based on CROSS-exchange and iCROSS-exchange operations, Polacek et al. [START_REF] Polacek | Scheduling periodic customer visits for a traveling salesperson[END_REF] designed VNS algorithm with 8 neighborhood for solving TSP. Kytöjoki et al. [START_REF] Kytojoki | An efficient variable neighborhood search heuristic for very large scale vehicle routing problems[END_REF] designed guided VNS algorithm to solve 32 existing large scale VPR problem, and the comparison with TS showed that the proposed algorithm is better than TS in terms of timeliness, and solved the VRP problem whose size is up to 20000 cities. Hemmelmayr et al. [START_REF] Hemmelmayr | A variable neighborhood search heuristic for periodic routing problems[END_REF] constructed initial solution using saving algorithm, and used 3-opt as the local search strategy. The results showed the effectiveness of VNS comparing with previous research. Avanthay et al. [START_REF] Avanthay | A variable neighborhood search for graph coloring[END_REF] first introduce VNS to solve the Graph Coloring Problem.

Ribeiro and Souza [START_REF] Ribeiro | Variable neighborhood search for the degree-constrained minimum spanning tree problem[END_REF] adopted VND to solve this problem, and its neighborhood design used k-edge exchange method, the experiments showed that VND is superior to GA in timeliness.

Hansen and Mladenovic [START_REF] Hansen | Variable neighborhood search for the pmedian[END_REF] designed VNS and compared with TS based on ORLIB and TSPLIB, the effect is good. Crainic et al. [START_REF] Crainic | Cooperative parallel variable neighborhood search for the p-median[END_REF] proposed a collaborative neighborhood VNS, and tested in TSPLIB.

Mladenovic et al. [START_REF] Mladenovic | Variable neighbourhood search for bandwidth reduction[END_REF] proposed a variable neighborhood search method which combines several ideas from the literatures for minimizing the bandwidth. The experiment results of 113 benchmark instances showed that the performance of the proposed VNS approach was better than all previous methods.

In addition, there are many papers used improved VNS to solve combinatorial optimization problems. For example, Gao et al. [START_REF] Gao | A hybrid genetic and variable neighborhood descent algorithm for flexible job shop scheduling problems[END_REF] solved jop shop scheduling problem using VNS combined with GA. Lopez et al. [START_REF] Garcia-Lopez | The parallel variable neighborhood search for the p-median problem[END_REF] solved p-median problem with parallel VNS. Burke et al. [START_REF] Burke | A hybrid heuristic ordering and variable neighbourhood search for the nurse rostering problem[END_REF] presented a hybrid heuristic ordering and VNS for solving the nurse roistering problem. Lazic et al [START_REF] Lazic | Variable neighbourhood decomposition search for 0-1 mixed integer programs[END_REF] proposed variable neighborhood decomposition search method for 0-1 mixed integer problem. Hu et al. [START_REF] Hu | Combining variable neighborhood search with integer linear programming for the generalized minimum spanning tree problem[END_REF] combined VNS and integer linear programming to solve the generalized minimum spanning tree problem. In these problems, the use of VNS have received good results.

Population based metaheuristics

In population based metaheuristics, each generation has multiple individuals with parallel computing. The difference between these metaheuristics is the rule of generating adjacent states (i.e., the next state for the population). For example, genetic algorithm does operation on certain selected chromosomes with genetic operators.

Scatter search constructs the subset from the reference set.

Genetic Algorithm

Genetic algorithm is proposed by Holland [START_REF] Holland | Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence[END_REF] inspired by biological evolution, and it is a metaheuristic which is based on the idea of the survival of the fittest. This algorithm represents the solving problem as the 'survival of the fittest' process of the chromosome. Through the population of chromosomes evolving generation by generation, while including selection, crossover and mutation operations, the algorithm ultimately converges to the individual which is the best adapted to the environment, and thus obtains the optimal solution or satisfactory solution.

GA is a general optimization algorithm. The encoding techniques and genetic operations are relatively simple, and optimization is not restrained by the constraint conditions, so it has a wide range of application value. Therefore, genetic algorithm is widely used in automatic control, computer science, pattern recognition, engineering design, management and social sciences and other fields.

Basic Scheme

Genetic algorithm is a kind of stochastic optimization algorithm, but it is not a simply random comparison search. Through using the evaluation on chromosomes and the role worked on chromosome genes, the existing information is effectively used to guide the search which can explore the state which hopefully improves the optimization quality.

The following pseudocode simply illustrates the genetic algorithm operation process.

Algorithm 7 Genetic Algorithm (GA) Initialization:

Initialize population Calculate the fitness value of initial population; Iteration:

1: while the stopping rule is not satisfied do 2:

According to the fitness value, execute the selection operation; Update population;

10:

Calculate the fitness value of new population 11: end while 12: return the best solution Genetic algorithm uses the idea of biological evolution and heredity. Different from traditional optimization methods, genetic algorithm has the following characteristics:

(1) Instead of the parameter itself, GA starts the evolution operation after the problem parameters are encoded as the chromosome. It makes the function be not restricted by function constraints, such as continuity, conductivity etc.

(2) The search process of GA is stating from a solution set of the problem, not a single individual, so it has a implicit parallel search feature, thus can greatly reduce the possible of falling into local minimum.

(3) All the genetic operation used in GA are random operations. Meanwhile, the search of GA is according to the fitness value information of the individual without other information.

(4) GA has the capability of global search.

The superiority of the genetic algorithm is mainly reflected in:

(1) The genetic algorithm can do the whole space parallel search, and the search focuses on the high performance parts, which can improve the efficiency and avoid local optimum.

(2) The algorithm has inherent parallelism. Through the genetic operation on the population, it can handle a large number of states, and is easy to parallel implementation.

Key Parameters

Typically, the genetic algorithm is designed according to the following steps:

(1) Determine the encode scheme of the problem.

(2) Determine the fitness value function.

(3) Design the genetic operators.

(4) Select the algorithm parameters, including the number of population, the probability of crossover and mutation, the number of generation etc.

(5) Determine the termination condition of the algorithm.

Following is the introduction of the design for the key parameters and operations.

Encode

Encode is to use a code to indicate the problem solution, thus the code space of genetic algorithm which is corresponding to the state space of the problem will be obtained. Encode is largely dependent on the property of the problem, and will affect the design of genetic operations.

The optimization process of GA dose not directly work on the problem parameter itself, but on the code space with corresponding encode scheme, so the selection of encode is an important factor affecting the performance and efficiency of the algorithm.

In the optimization function, the different code length and code system have a great influence on the accuracy and efficiency of the solving problem. The binary encoding describes the problem solution as a binary string, and the solution of the problem in decimal encoding is represented by a decimal string. Apparently the code length will affect the accuracy of the algorithm, and the algorithm should have a large amount of storage.

The real number encoding uses a real number to represent the problem solution, and it can solve the problem that the encode effect on the algorithm accuracy and the amount of storage, and also facilitates the introduction of problem related information in the optimization. Real number encoding has been widely used in high-dimensional complex optimization problems.

In combinatorial optimization, due to the property of the problem itself, the encoding requires a special design. For example, the path encoding based on the replacement in TSP problem, the 0-1 matrix encoding etc.

Fitness Function

The fitness value function is used to evaluate the individual, and is also the basis for the development of optimization process. When optimizing simple problems, usually the objective function can be directly converted to be used as the fitness value function. When optimizing complex problems, it often needs to construct an appropriate fitness function to adapt GA optimization.

Algorithm Parameter

The number of population is one of the factors affecting the optimize performance and efficiency of the algorithm. Typically, if the population is too small, it can not provide enough sample points, which causes a poor performance of the algorithm, and even can not obtain the feasible solution of the problem; When the population number is too large, although the increasing optimization information can prevent to fall into local optimum, but it will undoubtedly increase the amount of computation.

Of course, in the optimization process, the number of population is allowed to vary.

The crossover probability is used to control the frequency of crossover operation.

If the probability is too large, the strings in the population update soon, and then the individuals with high fitness value are quickly destroyed; If the probability is too small, rarely crossover operation will make the search stalled.

Mutation probability is an important factor to increase the diversity of population.

In GA which based on the binary encoding, usually a lower mutation rate is sufficient to prevent the gene at any location from remain unchanging in the entire population.

However, if the probability is too small, it will not produce new individuals; and the too large probability will make GA become a random search. Thus, determining the optimal parameters is an extremely complex optimization problem.

Genetic Operator

Survival of the fittest is the basic idea of genetic algorithm. The idea should be embodied in the genetic operator such as selection, crossover, mutation, while taking into account the impact on the algorithm efficiency and performance.

(

1) Selection Operation

The selection operation is also called the copy operation. Copy operation is to prevent the loss of effective gene to make high-performance individuals survival with greater probability, thereby improving the global convergence and computational efficiency. Potts et al. outlined 23 selection methods [START_REF] Potts | The development and evaluation of an improved genetic algorithm based on migration and artificial selection[END_REF]. Common selection operations are as follows:

Proportion Selection

The proportion selection is the most basic and common used selection method in genetic algorithm. The larger the fitness value of individual, the higher the selected probability. This method reflects the principle of natural selection which is 'survival of the fittest'. The selected individuals are put into the paired library, and randomly paired to perform the following crossover operation.

Sort Selection

There is no special requirements for the individual fitness value which taking positive or negative value. All the individuals in the population are sorted according to the corresponding fitness value, and selected probability for each individual is assigned according to the sorting.

Best Individual Selection

The individual with the best fitness value in the population is directly copied to the next generation without crossover operation. The benefit of doing so is to ensure that the optimal solution in one generation do not destroyed by crossover and mutation operations during the genetic process. This method is an essential condition to ensure the convergence of the genetic algorithm. However, it is also easy to make a local optimum individual can not be easily eliminated, while causing the algorithm stagnation in the local optimal solution, that is, this approach affects the global search ability of genetic algorithm. Therefore, it is usually not used alone.

Competition Selection

Two individuals are selected randomly, and the fitness value of them are compared.

The large one will be chose, and the small one is naturally eliminated. If the fitness value of two individuals are same, then one of them is selected arbitrarily. Repeating this process until the paired library contains N individuals. This approach not only ensures the paired library individuals have better dispersion in the solution space, but also ensures the individuals which are put into the library have larger fitness value.

(

2) Crossover Operation

The crossover operation is used to assemble a new individual, and do effective search in the solution space, while reducing the failure probability for effective models. [START_REF] Potts | The development and evaluation of an improved genetic algorithm based on migration and artificial selection[END_REF]. Several common crossover operators applied to binary coding or real number coding are as follows:

Potts et al. summarized 17 kinds of crossover method

Single Point Crossover

It is also referred to as the simple crossover. A cross point is randomly selected in the individual string, and two individuals exchange part of genes with each other before or after the point to generate a new individual.

Two Point Crossover

Two cross points are randomly set in a pair of two individual strings, and part of genes exchange between these two points.

Uniform Crossover

Each position gene of two individuals are exchanged with the same probability, thus two new individuals are generated.

Arithmetic Crossover

The new individual is generated by a linear combination of two individuals. That is,

x 1 = αx 1 + (1 -α)x 2 , x 2 = αx 2 + (1 -α)x 1 ,
and α ∈ (0, 1), x 1 , x 2 are the parent chromosomes, x 1 , x 2 are the offspring chromosomes.

Besides, according to the different research objects, there are a variety of alternative crossover methods, such as partially mapped crossover, order crossover, cycle crossover etc.

(

3) Mutation Operation

The mutation operation randomly changes some genes' value of the individual in the population with a small probability P m . The basic process of mutation is: for each gene value of offspring individuals which obtained by crossover operation, a pseudo random number rand ∈ (0, 1) is generated, if rand < P m , then do the mutation operation.

Mutation is random local search. If it is combined with the selection and crossover operators, it will be able to avoid the permanent loss of some information which is caused by the selection and crossover operations. Using the mutation operator in genetic algorithm has two main purposes:

(1) It ensures the effectiveness of the genetic algorithm, and makes GA has the capability of local random search;

(2) It ensures that GA maintains the diversity to prevent premature convergence.

Therefore, the mutation operation is a measure to avoid the algorithm falling into local optimum. Here are some common mutation methods:

Basic Mutation

For individual string, doing the mutation operation on one or a few genes which are assigned randomly with the mutation probability P m .

Uniform Mutation

Respectively using the random number which is in accord with uniform distribution within a certain range, the original gene value of the individual string is replaced with a small probability. Uniform mutation operation is particularly suitable for the initial running phase of the genetic algorithm, which makes the search points can move freely throughout the search space, and can increase the diversity of the population.

Binary Mutation

This method needs two chromosomes. After binary mutation operation, each gene of two new generated individuals will be valued as the xnor or xor of the corresponding gene value of original chromosomes. It changes the traditional way of mutation, while effectively overcoming the premature convergence and improving optimize speed of the genetic algorithm.

Gaussian Mutation

This method using the random number which is followed the normal distribution with the mean value µ and the variance σ 2 to replace the original gene value. Its operation process is similar to the uniform mutation.

Termination Condition

Improving the convergence speed is relevant to the design of algorithm operation and the selection of parameter. The algorithm can not go on running without stopping, and the optimal solution of the problem is usually not known, thus a certain condition is required to terminate the process of the algorithm. The most common termination condition is that given a maximum number of generation, or checking whether the optimal value has no significant change in several continuous steps etc.

Research Status

Genetic algorithm provides a common frame for solving complex system optimization problems, which does not depend on the specific area problem, is widely used in a variety of disciplines.

With the increasing scale of the problem, the search space of combinatorial optimization problems have expanded dramatically, sometimes on the current computer enumeration method it is difficult or even impossible to determine their exact optimal solution. For such complex problems, the research should focus on finding satisfactory solutions, and genetic algorithm is one of the best tools which seek such satisfactory solution. Practice has proved that the genetic algorithm has been successfully applied on the NP-hard problem such as traveling salesman problem [START_REF] Braun | On solving travelling salesman problems by genetic algorithms[END_REF], knapsack problem [START_REF] Chu | A genetic algorithm for the multidimensional knapsack problem[END_REF], bin packing [START_REF] Falkenauer | A hybrid grouping genetic algorithm for bin packing[END_REF], layout optimization [START_REF] Krishnakumar | Machining fixture layout optimization using the genetic algorithm[END_REF], bandwidth minimization problem [START_REF] Arany | An improve method for reducing the band-width of sparse symmetric matrices[END_REF]209] etc.

In many cases, the mathematical model created by conventional methods can not accurately solve the production scheduling problem, even after some simplification the problem can be solved, sometimes the result is far away from the actual target because of too much simplification. Under normal circumstances, scheduling is mainly relied on experience in real production. The study found that genetic algorithm has become an effective tool for solving complex scheduling problems, in terms of jobshop scheduling problem [START_REF] Cheng | A tutorial survey of job-shop scheduling problems using genetic algorithms-I[END_REF][START_REF] Della Croce | A genetic algorithm for the job shop problem[END_REF][START_REF] Goncalves | A hybrid genetic algorithm for the job shop scheduling problem[END_REF], flow shop scheduling problem [START_REF] Chen | An application of genetic algorithms for flow shop problems[END_REF][START_REF] Murata | Multi-objective genetic algorithm and its applications to flowshop scheduling[END_REF], lot sizing problem [START_REF] Xie | Heuristic genetic algorithms for general capacitated lot-sizing problems[END_REF], genetic algorithms have been effectively applied.

The robot is a complex and difficult to accurately modeling artificial system. Since the origin of the genetic algorithm if from the study of artificial adaptive system, certainly robotics becomes an important application field of genetic algorithms. Genetic algorithms have researched and applied on several aspects including mobile robot path planning [START_REF] Han | Genetic algorithm based path planning and dynamic obstacle avoidance of mobile robots[END_REF][START_REF] Hu | A knowledge based genetic algorithm for path planning of a mobile robot[END_REF], robot inverse kinematics [START_REF] Parker | Inverse kinematics of redundant robots using genetic algorithms[END_REF] etc.

Image processing is an important research field of computer vision. In the image processing, such as scanning, image segmentation, feature extraction, inevitably there will be some error, and thus affect the image effect. How to minimize these errors is an important requirement for practical use of computer vision. Genetic algorithm can be used to optimize the calculation of image processing, and currently has been applied in pattern recognition [START_REF] Pal | Genetic algorithms for pattern recognition[END_REF], image restoration [START_REF] Chen | A parallel genetic algorithm for image restoration[END_REF], image feature extraction [START_REF] Brumby | Investigation of image feature extraction by a genetic algorithm[END_REF][START_REF] Sahiner | Image feature selection by a genetic algorithm: Application to classification of mass and normal breast tissue[END_REF] etc.

Data mining can extract hidden, unknown, potential application value knowledge and rules from large database. Many data mining problems can be seen as a search problem. The database can be seen as the search space, mining algorithms can be seen as the search strategy. Applying genetic algorithm to search in the database, and the evolution is used for a set of rules which randomly generated, until the database can be covered by this set of rules, thus dig out hidden rules in the database [START_REF] Carvalho | A hybrid decision tree/genetic algorithm method for data mining[END_REF][START_REF] Cox | Fuzzy modeling and genetic algorithms for data mining and exploration[END_REF][START_REF] Flockhart | A Genetic Algorithm-Based Approach to Data Mining[END_REF].

Scatter Search

Scatter Search (SS) is introduced by Glover [START_REF] Glover | Heuristics for integer programming using surrogate constraints[END_REF] in 1997 for solving the integer programming problem. SS using global search strategy based on the population, and the intelligence iterative mechanism of 'decentralized-convergence gathering', to obtain the solution with high quality and diversity in reference set. Besides, SS applies the subset combination method and the reference set update method, to find the global optimal solution or satisfactory solution.

Compared to other algorithms, due to the memory ability of the reference set, scatter search can dynamically track the current search to adjust its search strategy, thus the randomness of the search process can be reduced, and SS more focuses on using some systematic way to build the new solution. In the meantime, scatter search has a flexible frame wherein each mechanism can be implemented using a variety of methods. SS algorithm incorporates a variety of effective mechanisms, including diversification generation method, local search method and path relinking method etc. [START_REF] Glover | A template for scatter search and path relinking[END_REF], which make scatter search can quickly obtain the satisfactory solution, while avoiding prematurely falling into local optimal solution. Therefore, scatter search can effectively solve the optimization problems.

Currently, SS has been applied in many fields, such as logistics and supply chain, production management, image processing, data mining, signal processing, operations research and other fields.

Basic Scheme

As an evolutionary algorithm, scatter search rarely relies on the stochastic of search process. It uses a series of systematic approaches which are in its frame to solve the optimization problem. Glove [START_REF] Glover | A template for scatter search and path relinking[END_REF] in 1998 defined the template of scatter search, and proposed the implementation of the key part of the template.

The basic frame of SS consists of five parts: diversification generation, improvement, reference set update, subset generation and solution combination. The main steps of Scatter Search are presented in Algorithm 8:

Algorithm 8 Scatter Search (SS)

1: while the good quality and diverse solutions are not produced do 2:

Diversification Generation;

3:

Improvement;

4:

Reference Set Update; 5: end while 6: while the stopping rule is not satisfied do 7:

Subset Generation; The subset of reference set is created by using the subset generation method, and N s is the number of subsets. The common subset generation approach is generating all of the two-tuples in reference set, and each two-tuple is denoted as a subset, thus there are (b 2 -b)/2 subsets. The solution combination method combines the subset to generate one or more new solutions. The purpose of combination is making new solutions contain both the diverse solution and the high quality solution. The common approach is weighted linear combination [START_REF] Martí | Principles of scatter search[END_REF]. For example, generating two random number λ 1 and λ 2 , and λ 1 + λ 2 = 1, so the new solution set (S i ) is generated by the two-tuple (S k , S l ) according to the following linear combination approach:

s in = [λ 1 e kn + λ 2 e ln ], ∀S i = (s i1 , s i2 , ..., s iN ), E i = (e i1 , e i2 , ..., e iN ) (2.2)
Then the improvement method is used again to improve new solutions and obtain high quality solutions. This method can be also considered as the local search strategy with new solutions as the start point. The reference set update method updates the reference set according to the solution with high quality and diversity. The usual reference set update approach is that firstly selecting b 1 good solutions as the high quality solution, then from the current population, a solution which has the minimal sum of the distance with other solutions will be chose as a diverse solution, and this process will be repeated until b 2 diverse solutions are obtained.

The above algorithm is the basic processes of scatter search. Because SS has the characteristics of the flexible frame, the five parts can use different achievement methods for different problems. Meanwhile, the frame of scatter search is not fixed, it can be modified to some extent. For example, when scatter search is running under the real-time environment, the improvement method is not necessary to use, and it will improve the speed to generate the satisfactory solution.

Key Parameters

On the basis of the basic processes of scatter search, there are a lot of research focus on the important mechanism of the algorithm, which is to improve the speed of solving the problem, and enhance the solution result of SS. The research on the important mechanism in the algorithm frame are mainly summarized in the following aspects:

1. Reference Set Update

The reference set update method includes static method and dynamic method.

The static reference set update approach is putting the generated new solutions in a buffer pool, then updating the reference set once until all of the new solutions are generated or the buffer pool has been filled.

Valls et al. [START_REF] Valls | Project scheduling with stochastic activity interruptions[END_REF] proposed the dynamic reference set update approach. This method cancels the buffer pool and the reference set can be updated immediately after creating a new solution which can update the reference set. The dynamic method improves the generated speed of the new solutions, but also increases the complexity of the algorithm.

Alvarez et al. [START_REF] Alvarez | GRASP embedded scatter search for the multicommodity capacitated network design problem[END_REF] and Yamashita et al. [START_REF] Yamashita | Scatter search for project scheduling with resource availability cost[END_REF] verified the effectiveness of the dynamic reference set update method for solving the NP-hard problems.

Laguna et al. [START_REF] Laguna | Scatter search: methodology and implementations in C[END_REF] presented a multi-reference set update approach. First, the reference set is divided into three kinds: the solution set with good objective value, the solution set with high diversity and the solution set which meets certain objective value and diversity, then each solution set is updated according to the objective value, the diversity or the function which considers both objective value and diversity, thus the multi-reference set update method completes the update for the whole reference set.

Solution Combination

The solution combination is the method which has the most flexible achievement way in the scatter search frame. Due to the solution combination method is closely correlated with the expression form of solutions, which often changes depending on the different problem, so its achievement way is various.

Pardalos et al. [START_REF] Resende | Handbook of applied optimization[END_REF] proposed the scoring combination method, by selecting the solution in the subset and scoring its elements, the new solution is generated based on the element score. Lopez et al. [START_REF] Lopez | Scatter search for the feature selection problem[END_REF] raised through the operations of union, intersection and subtract to combine the subset and generate the new solution. Gomes et al. [START_REF] Gomes Da Silva | Integrating partial optimization with scatter search for solving bi-criteria {0, 1}-knapsack problems[END_REF] introduced the detected subset into the solution combination method to increase the diversity of the combination process. In addition, the crossover in genetic algorithm is also often introduced to the solution combination method which is used to combine the solutions in subset and create the new solution [START_REF] Cordon | 3D inter-subject medical image registration by scatter search[END_REF].

Research Status

In view of the superiority of scatter search, SS has been widely used in many areas of the natural science and the engineering science, and shows a strong advantage and potential.

SS is widely used in logistics and supply chain area including the problem of vehicle routing, location, inventory etc. Russell et al. [START_REF] Russell | Scatter search for the vehicle routing problem with time windows[END_REF] applied SS algorithm, and used TS as the improved method for SS solutions to solve vehicle routing problem with time windows. Greistorfer [START_REF] Greistorfer | A tabu scatter search metaheuristic for the arc routing problem[END_REF] combined the SS and TS to solve arc routing problem.

Keskin et al. [START_REF] Keskin | A scatter search-based heuristic to locate capacitated transshipment points[END_REF] used path relinking as the SS solution combination method, and the applied SS to solve two-stage layout problem. Alvarez et al. [START_REF] Alvarez | Scatter search for network design problem[END_REF] In the field of data mining, Scheuerer et al. [START_REF] Scheuerer | A scatter search heuristic for the capacitated clustering problem[END_REF] proposed SS based on heuristic to solve the clustering problem under the determinate capacity situations. Pacheco et al. [START_REF] Pacheco | A scatter search approach for the minimum sum-of-squares clustering problem[END_REF] combined TS, PR and SS to solve the non-hierarchical clustering problem.

Abdule-Wahab et al. [1] used SS to solve the automatic clustering problem. Lopez et al. [START_REF] Lopez | Scatter search for the feature selection problem[END_REF] solved the feature selection problem with parallel SS, and compared the performance with the serial SS which according to the sequence combination method.

In the field of signal processing, Cotta [START_REF] Cotta | Scatter search and memetic approaches to the error correcting code problem[END_REF] solved the design problem of error correction code in the communication field, and compared with local optimization algorithms based on population to verify the performance of scatter search. Garici

and Drias [START_REF] Garici | Cryptanalysis of substitution ciphers using scatter search[END_REF] solved the password replacement problem in cryptanalysis field.

In the field of operations research, SS has been widely applied and achieved good results. Gomes et al. [START_REF] Gomes Da Silva | A scatter search method for bi-criteria {0, 1}-knapsack problems[END_REF] applied scatter search to solve the bi-criteria 0-1 knapsack problem. Liu [START_REF] Liu | A scatter search based approach with approximate evaluation for the heterogeneous probabilistic traveling salesman problem[END_REF] applied SA and approximate evaluation methods into the frame of SS, to solve the heterogeneous probabilistic traveling salesman problem. Garcia-Lopez et al. [START_REF] Garcia-Lopez | Parallelization of the scatter search for the p-median problem[END_REF] proposed parallel scatter search algorithm which consists of three parallel strategies, and used this algorithm on the p-medium problem. Campos et al. [START_REF] Campos | An experimental evaluation of a scatter search for the linear ordering problem[END_REF] applied scatter search to solve the linear ordering problem, with plenty of experiments, the effectiveness of the algorithm is proved. Campos et al. [START_REF] Campos | Adaptive memory programming for matrix bandwidth minimization[END_REF] used the Scatter Search (SS) to solve the bandwidth minimization problem.

Improvement of metaheuristics 2.3.1 Algorithm Parameters

To improve the global search capability of the algorithm, there are many improved methods based on single algorithm, the most common way is to do some adjustment on the key parameters of the algorithm which is to guide the search process convert between intensification and diversification. Experience has shown that the choice of parameters has an important impact on algorithm performance.

Each metaheuristics has different core, and these key parameters can be divided into two parts: the general parameters and particular parameters.

For general part, the main parameters which needs to be considered are:

Solution

Firstly, what kind of information from the problem can be used as the expression of solution should be considered. Besides, the initial solutions are usually generated randomly, but for some metaheuristics, a good quality initial solution is constructed to saving the running time of algorithm. For example, [209,[START_REF] Mladenovic | Variable neighbourhood search for bandwidth reduction[END_REF] used breadth-firstsearch (BFS) to obtain the initial solution with good quality.

Evaluation function

The selection of evaluation function is very important in search procedure. First, the evaluation should be simple to efficiently check each potential solution. Second, it should be sensitive to catch even the smallest change during the searching process.

Finally, the evaluation function is consistent as the change of solutions, in other words, a better solution must has a better value [START_REF] Rodriguez-Tello | An improved simulated annealing algorithm for bandwidth minimization[END_REF]. Mostly, the objective function is set as the evaluation function which is easy to calculate. In [START_REF] Rodriguez-Tello | An improved simulated annealing algorithm for bandwidth minimization[END_REF], instead of the graph bandwidth, a new evaluation function is proposed which can avoid the situation that the bandwidth of graph dose not change after a move.

Neighborhood

The basic idea of neighborhood is guiding how to generate a new solution from the current solution. The design of the neighborhood often relies on the property of the problem and the expression of the solution. [START_REF] Rodriguez-Tello | An improved simulated annealing algorithm for bandwidth minimization[END_REF] generates a new labeling for neighborhood solution by rotating the current labeling to improve the diversification of solutions.

Different metaheuristics have different particular parameters. For example, for TS, the control parameters are needed to be considered such as the structure and the length of tabu list; for SA, the initial temperature, cooling ratio and the stopping rule should be set; For GA, the algorithm should concerns on the rate of crossover, the mutation method and the selection mechanism [START_REF] Jans | Meta-heuristics for dynamic lot sizing: A review and comparison of solution approaches[END_REF].

General Strategy

Because the mechanism of the existing metaheuristics have significant differences, the research on global search capability is often associated with the specific algorithm and problem Therefore, in addition to adjust key parameters of the algorithm, there are also general strategies as follows:

1. Decomposition strategy

(1) Complex structure problem

The original problem with complex structure can be decomposed into simple structure subproblems. Each subproblem can use an optimization algorithm alone, and the results of subproblems require further synthesis optimization.

(2) Large scale problem

The large scale original problem can be decomposed into a number of small-scale subproblems, each subproblem can be solved using the same algorithm.

Elite Strategy

This strategy is to save multiple good states which have been found, then use local search again on these states. Its purpose is to expand local search area, rather than stay at a final solution which is found by the algorithm.

Diffusion Strategy

For the individuals in the algorithm based on population and the good states based on elite strategy, it is necessary to keep the difference among individuals and the 'distance' among good status.

Hybrid Strategy

Hybrid algorithm is a research hot spot for mete-heuristics, which becomes an effective strategy to expand the application scope of the algorithm and improve the algorithm performance. Hybrid algorithm not only refers to the hybrid metaheuristic, but also the fusion of classic optimization method and metaheuristic.

Evaluation of metaheuristics

The performance evaluation index of metaheuristic are mainly three types: optimizing performance (effect), time performance (efficiency) and robustness. Metaheuristic usually more concerned about the first two indexes, namely whether the algorithm is able to improve the performance or running time.

Effect

The optimizing performance index includes absolute error and relative error. Absolute error is the deviation of the optimal value and the best value, and the percentage of this bias and the best value is the relative error.

The relative error Gap is defined as:

Gap = v opt -v best v best × 100% (2.3)
where v opt is the optimal value, and v best is the best value. Smaller gap means better optimal solution.

There are also many studies directly use the optimal value as the index of performance evaluation, which is usually used to compare the performance of multiple algorithms, and this method is more convenient.

Efficiency

The time performance can check the CPU time, either directly examine the number of iterations. Time-consuming calculation is as follows:

E = I a T 0 I max × 100% (2.4)
where I a is the average number of algorithm iterations after run several times over, T 0 is the average computational time for one step iteration, and I max is the given maximum number of iterations. E smaller, the converge of algorithm better.

Robustness

Robustness is used to measure the algorithm dependence on the initial value and controllable parameters. Robust index can directly use the mean square error of several experiment results, or use the following formula:

R = v a -v best v best × 100% (2.5)
where v a is the average value of algorithm after several times run. Smaller is R, better is the robustness .

Conclusions

The past 50 years, metaheuristic algorithm has been widely studied. Because metaheuristic is a effective procedure to solve optimization problem with few assumptions, it provides a new idea for solving complex problems. This chapter mainly describes two types of metaheuristic algorithm: the first category is single solution based metaheuristic including simulated annealing, tabu search, greedy randomized adaptive search procedure and variable neighborhood search; the second category is population based metaheuristic including genetic algorithm and scatter search. Besides, in order to improve the global search capability of metaheuristic, we can consider two points: key parameter for each algorithm and general strategy for metaheuristic.

Finally, three types of evaluation index are given.

Chapter 3 Bandwidth Minimization Problem

Matrix bandwidth minimization problem (MBMP) is a well-known problem. This problem consists of finding a permutation of the rows and columns of a sparse matrix in order to keep the non-zero elements in a band that is as close as possible to the main diagonal [START_REF] Martí | Reducing the bandwidth of a sparse matrix with tabu search[END_REF][START_REF] Mladenovic | Variable neighborhood search[END_REF][START_REF] Rodriguez-Tello | An improved simulated annealing algorithm for bandwidth minimization[END_REF].

The matrix bandwidth minimization problem originated in the 1950s when the steel frameworks was firstly analyzed by computers: When we bring all the nonzero entries into a narrow band around the main diagonal and get an reordering matrix, the operations such as inversion and determinants will save time [START_REF] Chinn | The bandwidth problem for graphs and matrices-a survey[END_REF]. Meanwhile, the graph bandwidth problem originated in 1962 at the Jet Propulsion Laboratory which focus on the error of 6-bit picture code and minimizing the maximum and average absolute error.

The main application of bandwidth minimization problem is to solve large size linear systems. Gaussian elimination will take O(nb 2 ) time with matrices of dimension n and bandwidth b, which is faster than the forward O(n 3 ) algorithm when b is smaller than n [START_REF] Lim | A genetic algorithm with hill climbing for the bandwidth minimization problem[END_REF]. Besides, bandwidth minimization problem has a wide range of other applications, e.g., data storage, network survivability, VLSI design, industrial electromagnetic [START_REF] Esposito | Sparse matrix band-width reduction:Algorithms, Applications and real industrial cases in electromagnetics, high performance algorithms for structured matrix problems[END_REF], saving large hypertext media [START_REF] Berry | Sparse matrix reordering schemes for browsing hypertext[END_REF], finite element methods, circuit design, large-scale power transmission systems, numerical geophysics [START_REF] Pinana | GRASP and path relinking for the matrix bandwidth minimization[END_REF].

Because of the wide range of applications, the bandwidth minimization problem has generated a strong interest in developing algorithms for solving it since 1960s. Pa-padimitriou [START_REF] Papadimitriou | The NP-completeness of the bandwidth minimization problem[END_REF] showed that the bandwidth minimization problem is NP-complete.

Garey et al. [START_REF] Garey | Complexity results for bandwidth minimization[END_REF] proved that the bandwidth minimization problem is NP-complete even though a given graph is a tree and the degree of all graph vertices is less than 3. Therefore, for the difficult cases, several heuristic algorithms have been proposed

in the literature to find good quality solutions with less running time [START_REF] Rodriguez-Tello | An improved simulated annealing algorithm for bandwidth minimization[END_REF]. However, most of the proposed heuristic methods are particular to a given problem, then recently more general algorithms are proposed which are called metaheuristics [START_REF] Loiola | A survey for the quadratic assignment problem[END_REF].

This chapter will focus on the use of meta-heuristics for solving bandwidth minimization problem and it consists of five sections. 

Formulations

Matrix bandwidth minimization problem

The matrix bandwidth minimization problem (MBMP) is defined as follows: Given a 0-1 sparse symmetric matrix A = {a ij }, the bandwidth of matrix A is

B(A) = max{|i -j| : a ij = 0} (3.1)
Thus, the MBMP consists of permuting the rows and columns of matrix A to keep the non-zeros elements in a band that is as close as possible to the main diagonal [START_REF] Martí | Reducing the bandwidth of a sparse matrix with tabu search[END_REF][START_REF] Mladenovic | Variable neighborhood search[END_REF][START_REF] Rodriguez-Tello | An improved simulated annealing algorithm for bandwidth minimization[END_REF], that is to minimize the bandwidth B(A).

Graph bandwidth minimization problem

The bandwidth minimization problem can be described in graph as follows: Let G = (V, E) be a finite undirected graph, where V is the set of vertices and E is the set of edges, and a one to one function f : V → {1, 2, ..., n} is the labeling of its nodes, then the bandwidth of vertex v is defined as

B f (v) = max i:(i,j)∈E {|f (i) -f (j)|} (3.2)
and the bandwidth of G for f is defined as

B f (G) = max{|f (i) -f (j)| : (i, j) ∈ E} (3.3)
The bandwidth minimization problem for graphs is to find a labeling f which minimizes the graph bandwidth, that is the B f (G) is minimum.

Equivalence between graph and matrix versions

The bandwidth minimization problem for graph and matrix versions are equivalent.

These two versions are interconvertible by transferring the given graph into an incidence matrix A [START_REF] Lim | Ant colony optimization with hill climbing for the bandwidth minimization problem[END_REF]. Following is an example we present to show this equivalence.

Example. Given an undirected graph G = (V, E) with |V | = 5 and the given

labeling f : f (v 1 ) = 3, f (v 2 ) = 1, f (v 3 ) = 2, f (v 4 ) = 5, f (v 5 ) = 4. The original graph is given in Figure 3-1.
Then the bandwidth of each vertex of the graph G under f is:

B f (v 1 ) = max{|1 -3|} = 2 B f (v 2 ) = max{|3 -1|, |2 -1|, |5 -1|} = 4 B f (v 3 ) = max{|1 -2|} = 1 B f (v 4 ) = max{|1 -5|, |4 -5|} = 4 B f (v 5 ) = max{|5 -4|} = 1 Figure 3-1: Labeling f of graph G.
The bandwidth of the graph G under f is:

B f (G) = max v∈V B f (v) = max{2, 4, 1, 4, 1} = 4
The adjacency matrix of the graph under labeling f is:

A(f ) =               1 1 1 0 1 1 1 0 0 0 1 0 1 0 0 0 0 0 1 1 1 0 0 1 1              
If we exchange the label of node v 1 with the label of node v 2 , the resulting graph with new labeling f is given in Figure 3-2.

Currently, the bandwidth of each vertex under labeling f is as follows:

B f (v 1 ) = max{|3 -1|} = 2 B f (v 2 ) = max{|1 -3|, |2 -3|, |5 -3|} = 2 B f (v 3 ) = max{|3 -2|} = 1 B f (v 4 ) = max{|3 -5|, |4 -5|} = 2 Figure 3-2: Labeling f of graph G B f (v 5 ) = max{|5 -4|} = 1
The graph bandwidth under f is:

B f (G) = max v∈V B f (v) = max{2, 2, 1, 2, 1} = 2
Hence, the bandwidth of graph has been reduced and the corresponding adjacency matrix A(f ) is:

A(f ) =               1 0 1 0 0 0 1 1 0 0 1 1 1 0 1 0 0 0 1 1 0 0 1 1 1              
For a graph with n vertices, the number of possible labeling is n!. The most direct method is to try all permutations and find which solution is the best. Because the computation cost for this method lies within an exponential factor of O(n!), this approach is impractical even for small matrices which only have 10 vertices [START_REF] Pop | Reducing the bandwidth of a sparse matrix with genetic programming[END_REF].

Solution methods

Based on the literature, the algorithms of bandwidth minimization problem can be divided into two classes. The first one is exact algorithms. The second one is heuristic methods, and recently metaheuristics have been developed for this problem in order to obtain high quality solutions.

Exact algorithms

For the optimal labeling of vertices in the graph and optimal permutation of rows and columns in the matrix, the exact algorithms are mainly based on branch and bound search. Del Corso and Manzini [START_REF] Del Corso | Finding exact solutions to the bandwidth minimization problem[END_REF] [START_REF] Martí | A branch and bound algorithm for the matrix bandwidth minimization[END_REF] proposed an algorithm which combines the branch and bound search with some information based on a heuristic.

It used the solution obtained by GRASP algorithm from [START_REF] Pinana | GRASP and path relinking for the matrix bandwidth minimization[END_REF] as the initial upper bound of branch and bound procedure.

For exact algorithms, the computational cost should be considered to obtain the optimal solution. Therefore, these methods can only be able to solve comparatively small size problems with a reasonable running time.

Heuristic algorithms

Heuristic refers to the technique which is based on experience, and it gives a solution which is not guaranteed to be optimal. However, heuristics can quickly find a solution which is good enough for combinatorial optimization problems.

In 1969, the well-known Cuthill-McKee algorithm [START_REF] Cuthill | Reducing the bandwidth of sparse symmetric matrices[END_REF] appeared, which uses breadth first search to construct a level structure for graphs. The Cuthill-McKee algorithm was the most widely used method for bandwidth minimization problem during the 1970s, but it has several disadvantages. For example, the time consuming, the actual bandwidth might be less than the width of level structure [START_REF] Chinn | The bandwidth problem for graphs and matrices-a survey[END_REF]. George [START_REF] George | Computer implementation of the finite element method[END_REF] proposed a reverse ordering for this problem.

A few years later, Gibbs et al. [START_REF] Gibbs | An algorithm for reducing the bandwidth and profile of a sparse matrix[END_REF] developed an algorithm known as GPS which is still based on the level structure. The GPS has three phases [START_REF] Chinn | The bandwidth problem for graphs and matrices-a survey[END_REF]:

(1) Finding a diameter of G. Generally, increasing the number of levels will reduce the vertices number in each level and the width of level structure. Thus, this phase will have a maximal depth with small width.

(2) Minimizing level width. A new level structure is created by combination of two previous level structures, and the width of new one usually smaller than the original ones.

(3) Numbering a level structure. The vertices are labeled level-by-level, and for each level, the labels are given to vertices starting from the the vertex with the smallest degree.

The experiment results showed that the GPS algorithm is comparable with the Cuthill-McKee algorithm while the time consuming is shorter [START_REF] Gibbs | An algorithm for reducing the bandwidth and profile of a sparse matrix[END_REF].

In [START_REF] Chinn | The bandwidth problem for graphs and matrices-a survey[END_REF][START_REF] Dueck | A Heuristic Bandwidth Reduction Algorithm[END_REF][START_REF] Gibbs | A comparison of several bandwidth and profile reduction algorithms[END_REF], several other algorithms for bandwidth minimization problem are mentioned.

Metaheuristics

Metaheuristic is a technique which is more general than heuristic,because the heuristic method is usually specific for a given problem. Metaheuristic can find a sufficiently good solution even optimal solution for the optimization problem with less computational assumptions. Therefore, in the past decades, many research papers focused on using metaheurisitics for solving complex bandwidth minimization problem.

Tabu Search

Tabu Search (TS) is a metaheuristic originally proposed by Glover in 1989 [129] [130].

The process of the algorithm is getting a initial solution firstly, then searching a better solution in neighborhood structure or moving to a worse area and searching the best solution in it. In order to avoid falling into local optimal solution, the path which has been searched should be recorded as the basis of the next search. This algorithm establishes a tabu list, which can avoid the local optimum, to record the local optimum points which have been searched, and uses the information of the tabu list in the next search to search these points no longer or selectly. Therefore, the algorithm can jump out of local optimum point and achieve global optimization.

The simple pseudocode of the Tabu Search is presented in Chapter 2, Algorithm 2.

According to the algorithm of TS, there are two important concepts: tabu list and aspiration criterion.

Tabu list

Tabu list is the core of the tabu search algorithm. The main purpose of tabu list is to prevent the circulation in search process and avoid falling into local optimum.

It is a circulate list which after each iteration, the latest move will be put in the end of tabu list, and the earliest move will be released from tabu list. The length of tabu list significantly influence search speed and quality of solution. If the length is short, it will cause the circulation of the search, and fall into local optimum. On the opposite, a tabu list with high length will increase the amount of calculation and memory. Therefore, a good tabu list length should be as small as possible but also avoid the algorithm into circulation.

Aspiration criterion

Aspiration criterion ensures that when all the candidate solutions or some candidate solutions which are better than current solution are banned, the specific solution can be released, or to say, this solution can be accepted as new current solution.

In 2001, Martí et al. [START_REF] Martí | Reducing the bandwidth of a sparse matrix with tabu search[END_REF] used the tabu search to solve the bandwidth minimiza-tion problem. Extensive experiments showed that their TS outperforms the previous algorithms. In the following we describe the key parts of this TS algorithm in details.

Critical vertex set

In [START_REF] Martí | Reducing the bandwidth of a sparse matrix with tabu search[END_REF], the critical vertex set includes the critical and near critical vertices. A near critical vertex v is belong to the set which B f (v) ≥ αB f (G) and 0 < α < 1.

Although the near critical vertices can not influence the current value of bandwidth, they will possibly become critical in following iterations. Therefore, the critical vertex set is defined as

C(f ) = v : B f (v) ≥ αB f (G) (3.4)

Candidate list of moves

First, a set of suitable swapping vertices is constructed. They defined two quantities for vertex v and current labeling f :

max(v) = max{f (u) : u ∈ N (v)} (3.5) min(v) = min{f (u) : u ∈ N (v)} (3.6)
and the best labeling for v is

mid(v) = [ max(v) + min(v) 2 ] (3.7)
Then the set of suitable swapping vertices for vertex v is defined as:

N (v) = {u : |mid(v) -f (u)| < |mid(v) -f (v)|} (3.8)
Thus, the candidate list of moves for vertex v is as follows:

CL(v) = move(v, u) : u ∈ N (v) (3.9)

Move value

Most algorithms define the value of move as the change of objective function value. However, in bandwidth minimization problem, sometimes the bandwidth will not change after a move if there are more than one critical vertex in the current labeling. Besides, calculating the bandwidth of graph after each execution of a move is computationally expensive. Therefore, they defined the value of move(v,u) which will be changed according to the following three cases:

(1) If (B f (u) > B f (u) and B f (u) > βB f (G)), movevalue(v, u) = movevalue(v, u)+ 1 (2) For all w in N (v), if (|f (v) -f (w)| > B f (w) and |f (v) -f (w)| > βB f (G)), movevalue(v, u) = movevalue(v, u) + 1 (3) For all w in N (u), if (|f (u) -f (w)| > B f (w) and |f (u) -f (w)| > βB f (G)), movevalue(v, u) = movevalue(v, u) + 1 4. Tabu list
The tabu list is constructed by a one dimensional array, and set to zero initially.

Besides, they set "tenure" as the number of iterations that vertex v is not accepted to change labels. Each time when vertex v changes labels, the tabu list updates the tabu status of vertex v.

Greedy Randomized Adaptive Search Procedure

Greedy Randomized Adaptive Search Procedure (GRASP) which is a random and iterative algorithm was first introduced in Feo and Resende [START_REF] Feo | A probabilistic heuristic for a computationally difficult set covering problem[END_REF][START_REF] Feo | Greedy randomized adaptive search procedures[END_REF]. Each iteration of the GRASP algorithm is composed of two phases: construction and local search.

The description of GRASP is showed in Chapter 2, Algorithm 3.

Construction

The construction phase is a process of generating the feasible solution by iteration. In each iteration the restricted candidate list (RCL) which consists of candidate elements is formed by using greedy function values, and a random element is selected to add to the solution. After choosing an element from the RCL, the remaining candidates need to be recalculated the greedy function value, and a new RCL is formed.

The method of randomly selecting element from RCL makes each construction phase can produce different feasible solution. When the processing of all elements is com-plete, the iteration is terminated, and returns the feasible solution.

Local search

The randomly generated feasible solution from the construction phase can not ensure the local optimum, so it is necessary to enter the local search phase. The local search starts from the feasible solution which is obtained in the construction phase, and find the local optimal solution in a certain neighborhood. The best local optimum in all iteration is the global optimal solution.

Rinana et al. [START_REF] Pinana | GRASP and path relinking for the matrix bandwidth minimization[END_REF] developed a greedy randomized adaptive search procedure (GRASP) combined with a path relinking strategy for the bandwidth minimization problem. The GRASP algorithm is made of two main phases: the construction phase and the improvement phase.

Construction phase

Firstly, a level structure which is a partition of V into sets L 1 , L 2 , ..., L k is constructed, and it has the following characteristics:

(1) vertices adjacent to a vertex in level L 1 are either in L 1 or L 2 ;

(2) vertices adjacent to vertex in level L k are either in L k or L k-1 ;

(3) vertices adjacent to vertex in level L i (for

1 < i < k) are either in L i-1 , L i or L i+1 .
Then, a vertex from the vertices with low degree is randomly selected as the root in L 1 , and from this starting vertex, the next level structure should begin with the vertex of minimum degree in the last level. Next, the vertex will be labeled levelby-level. In each iteration, the candidate list CL is formed with the vertices in the current level. Thus, the initial CL is the starting vertex in L 1 , and after this vertex has been labeled, CL=L 2 and so on.

In order to construct the RCL, the two function are defined:

(1) Lef tB(v, l): the difference between l and the minimum label of its adjacent vertices in level L i-1 ;

(2) RightB(v, l): the difference between l and the maximum label of its adjacent vertices in level L i+1 .

l is the label will be assigned, and v is the vertex in level L i . If the vertices in level L i+1 have not labeled, a lower bound of RightB(v, l) is defined as the number of vertices which have not labeled (not including v) in L i plus the number of adjacent vertices of v in L i+1 . Therefore, the RCL is composed of the vertices in CL with a minimum value of RightB(v, l) -Lef tB(v, l).

Improvement phase

The local search of GRASP is based on the Tabu Search proposed by Martí et al. [START_REF] Martí | Reducing the bandwidth of a sparse matrix with tabu search[END_REF]. They considered the set of critical vertices C(f ) which do not include the near critical vertices. Besides, the operator move(u, v) and the candidate list CL(v)

are also used in this algorithm. Meanwhile, a new move evaluation is presented as the difference between the number of critical vertices which is before and after the move:

movevalue(u, v) = ||C(f )| -|C(f )|| (3.10)
For the selection of vertex u in candidate list CL(v), there are two strategies are used. The best strategy selects the move whose move(u, v) is the largest among all moves with u in CL(v); The first strategy selects the first vertex u whose move(u, v) is strictly positive.

Genetic Algorithm

Genetic algorithm was proposed by Holland [START_REF] Holland | Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence[END_REF] inspired by biological evolution, and it is a metaheuristic which is based on the idea of the survival of the fittest. This algorithm is a kind of random optimization method, but it is not a simply random search. Through the evaluation of chromosome and the information of genes in the chromosome, it efficiently use the existing information to guide the search for those solution which can improve the optimization quality. Genetic algorithm solves the optimization problem as the survival of the fittest process of the chromosome. Through the generation of chromosome evolution, including the selection, crossover and mutation operation, it eventually find the individual which adapt to the environment, in other words, obtain the optimal solution of the problem.

In Chapter 2, Algorithm 7 simply illustrates the genetic algorithm operation process.

The core of genetic algorithm includes the following parts:

1. Fitness value Fitness value is used to evaluate the individuals. For simply problems, GA usually use the objective function as the fitness value directly. In optimizing the complex problems, we need to construct an appropriate evaluation function.

Population

The number of population is one of the factors influencing the performance and efficiency of the algorithm. The number which is too small can not provide enough sample points, so the algorithm performance is poor, even can not get feasible solution of the problem. Although large number of population can increase the optimization information, the running time is too long. In the process of optimization, the number of populations is allowed to change to adapt the requirement of the algorithm.

Selection

Selection operation is also called the copy operation. This operation selects the individuals which adapt to the environment according to the fitness value. Generally, the selection will make higher fitness individuals reproduce more next generation, but for the individuals with smaller fitness, the number of breeding the next generation is less or even be eliminated. The commonly used methods are proportion selection and selection based on the ranking. The former selects the corresponding individuals by the probability which is proportional to fitness value, and the latter is based on the ranking of individuals in the population.

Crossover

Crossover operation is to cross the two selected individuals with a crossover rate, so that two new individuals are generated. The crossover rate is used to control the frequency of crossover operation. When the rate is large, the strings in the population update soon, then the individuals with high fitness value will be destroyed quickly;

The small rate makes little crossover operation and can not generate enough new individuals.

Mutation

When the fitness values of next generation which is generated by crossover operation have stopped evolving and not obtained the optimal, it means the premature convergence of the algorithm. The root of this phenomenon is the loss of effective gene, but mutation overcomes this kind of situation to some extent, and it is helpful to increase the diversity of population. The rate of mutation is a important factor of enhancing population diversity. The low rate can not generate new individual, but high rate will make the algorithm as the random search.

In 

C(V ) =      0 when B f (v) < B f (G) 1 when B f (v) = B f (G) (3.11)
Through using this definition in the check condition, the time complexity is re-

duced into O(|V |(|V | + |E|)).
Then a genetic algorithm with this improved hill climbing is proposed. The method used the label sequences as chromosomes, and the different chromosomes are set as an initial set of solution. The crossover and mutation operations are applied on this set to generate new chromosomes. The next generation consists of the fittest chromosomes and the algorithm stops after a certain generations. The features of the GA algorithm are described as follows:

1

. Initial population

The initial population is generated by a level structure procedure which using breadth-first-search (BFS). A level structure of a graph is denoted by L(G), and it is a partition of the vertices into levels L 1 , L 2 , ..., L k which satisfy the following conditions [START_REF] Arany | An improve method for reducing the band-width of sparse symmetric matrices[END_REF][START_REF] Martí | Reducing the bandwidth of a sparse matrix with tabu search[END_REF]:

(1) vertices adjacent to a vertex in level L 1 are either in L 1 or L 2 ;

(2) vertices adjacent to vertex in level L k are either in L k or L k-1 ;

(3) vertices adjacent to vertex in level L i (for

1 < i < k) are either in L i-1 , L i or L i+1 .
According to this, reasonable good solutions can be obtained. Therefore, initial populations are generated by applying BFS with randomly selecting the start vertex, and different start vertices will provide different initial solutions. According to the experiment, the size of population is set to be 100 can balance the solution quality and running time.

Crossover

The crossover operation used mid-point crossover scheme. The two parent chromosomes are selected randomly, and split at the mid point of string. The genes to the left half of the split from one chromosome are exchanged with genes to the right half of the split from the other chromosome, and two new chromosomes are generated.

The experiment showed that when the crossover rate exceeds 0.95, the best solutions can be obtained.

Mutation

This GA used a k swap mutation scheme. A parent chromosome is chosen randomly at the beginning, then each time two labels are selected randomly in the parent chromosome and exchanged, and such operation will be done k times. Through the experiment, the best solutions are obtained when the mutation rate is between 0.002 to 0.005.

Selection

After generating the new chromosomes by crossover and mutation operation, and using the improved hill climbing to the new chromosomes, the fitness value of the new chromosomes will be calculated again, and the chromosomes which have largest fitness value from the old and new chromosomes are selected as the new generations.

From the experiment results, the bandwidth decreased quickly before 30 generations.

Therefore, the GA set 60 generations for considering both solution quality and running time.

Scatter Search

Scatter Search (SS) is introduced by Glover [START_REF] Glover | Heuristics for integer programming using surrogate constraints[END_REF] in 1997. The purpose of this algorithm is that obtain the better solution on the basis of original solution (parent generation). The main operation of the algorithm focus on the reference set. The new solutions are generated by the combination of reference subset, and the main mechanism of combination is linear combination of two solutions from reference set.

The new solution must be improved, after that, it is likely to enter the reference set.

The main steps of Scatter Search are presented in Chapter 2, Algorithm 8, and the five components are explained in the following:

1. Diversification Generation It generates the diverse trial solutions from the arbitrary trial solutions as the input of the algorithm.

Improvement

It transforms a trial solution into one or more enhanced trial solutions, and the local search is usually used in this step.

Reference Set Update

It is used to establish and maintain the reference set. The reference set consists of two subsets, one is composed of good quality solutions, the other one includes good diversity solution. Therefore, the goal is to ensure the good quality and diversity of the solutions.

Subset Generation

It creates the subset of reference set as a basis of creating combined solutions.

Solution Combination

It is transformed the subset of solutions which is produced by Subset Generation into one or more combined solutions.

Campos et al. [START_REF] Campos | Adaptive memory programming for matrix bandwidth minimization[END_REF] used the Scatter Search (SS) to solve the bandwidth minimization problem. Because the Diversification Generation, the Improvement and the Solution Combination are problem dependent, so these method should be designed specifically. The SS presents the three methods as follows.

Diversification Generation

Pinana et al. [START_REF] Pinana | GRASP and path relinking for the matrix bandwidth minimization[END_REF] proposed five different constructive methods. C2 based on the node assignment and C5 based on the level structure are used to obtain solutions with different structures. Besides, a new method C6 is proposed to enhance the diversity of solutions. Based on the level structure of C5, the difference between C5 and C6 is that C6 directly gives label l to the vertex v with the minimum value of Lef tB(v, l) -RightB(v, l) and do not generate candidate list.

Improvement

This local search is similar to the GRASP improvement phase [START_REF] Pinana | GRASP and path relinking for the matrix bandwidth minimization[END_REF]. For the selection strategy which chooses a vertex to be considered for a move, [START_REF] Campos | Adaptive memory programming for matrix bandwidth minimization[END_REF] used the first strategy.

Solution Combination

Four different combination methods are presented to obtain a new solution.

(1) Comb1 is based on the "average label". Given two labeling f and g, the "average label" for vertex v is

Avg(v) = (1/2)(f (v) + g(v)) (3.12)
Then the vertices are sorted according to their average values from lowest to highest, and assigned the labels for them from 1 to n.

(2) Comb2 is based on the "convex combination label".

Conv(v) = f (v) + λ(g(v) -f (v)) (3.13)
and sorting and labeling vertices are same as Comb1.

(3) Comb3 considers that each labeling votes for its first label which has not been included in the combine solution, and the vote decides the next label to the first as the vertex which has not been labeled of the combined solution. Besides, before combining two solutions with Comb3, one of the solution is rotated to maximize the number of vertices with the same label in two solutions.

(4) Comb4 constructs two level structures. The first one starts from the vertex which has label 1 in solution f , and the level structure as in GRASP is constructed.

The second one firstly focuses on the vertices in the last level of first level structure.

Then from those vertices, the vertex with largest label in solution g is selected and set as the starting vertex for the second level structure. Finally, these two level structures are combined, and in each level, the first label is given to the vertex with lowest average value which defined in Comb1.

Simulated Annealing

Simulated Annealing (SA) is a probabilistic meta-heuristic proposed in [START_REF] Kirkpatrick | Optimization by simmulated annealing[END_REF]. The algorithm generates an initial solution and temperature parameter T . Then, in each iteration, a solution x is randomly selected in the neighborhood N (x) of the current solution x. If x is better than x, x is accepted and x is replaced by x . Otherwise,

x can be accepted with a probability depending on the difference of value between two solutions and the temperature parameter.

In pseudocode, the SA algorithm can be presented in Chapter 2, Algorithm 1:

The acceptance probability and cooling schedule are the important part in SA.

Acceptance Probability

The key fact of SA to achieve the global search is acceptance probability. SA algorithms usually use min[1, exp(-∆C/t)] where ∆C is the value difference between new and current solution (∆C = f (x ) -f (x))as the acceptance probability.

Cooling Schedule

In cooling schedule, the initial temperature can influence the solution. Experiment results show that if the initial temperature is higher, the probability of getting good solution is bigger, but the calculation time will increase. Therefore, the selection of initial solution should consider both solution quality and running time. For updating the temperature, the most common function is t k+1 = αt k (0 < α < 1). The update function of temperature shows that the temperature decreases during the search process, so the probability of accepting the worse solution is high at the beginning of search, and it gradually decreases as the temperature drops.

Rodriguez-Tello et al. [START_REF] Rodriguez-Tello | An improved simulated annealing algorithm for bandwidth minimization[END_REF] proposed an improved simulated annealing algorithm for bandwidth minimization problem. This method integrates three important features which have a great influence on the heuristic search which described specifically as follows: 

Neighborhood function

The neighborhood of the current labeling f in this algorithm is that f is obtained by rotating the labels from f . swap(f (i), f (j)) is the function of exchanging two labels of f , and the rotation between two labels f (i) and f (j) is defined as:

rotation(f (i), f (j)) = swap(f (i), f (j)) * swap(f (i), f (j -1)) * * swap(f (i), f (j -2)) * • • • * swap(f (i), f (i + 1)) (3.14) where 0 ≤ f (i) ≤ n-1, 0 ≤ f (j) ≤ n-1 and f (i) < f (j).
The rotation can construct a compound move, and the compound moves can find better solution than those only using the simply moves.

Evaluation function

The proposed evaluation function for a labeling f is defined as follows where d x is the number of absolute differences with value x between two adjacent vertices, and β is the bandwidth of labeling f :

δ(f ) = β + β x=1 d x (n+β-x+1)! n! ) (3.15)
This new evaluation function is to decrease the impact of the absolute differences d x with small values and increase the influence of those with values close to the bandwidth β, so it is sensitive enough to catch the smallest improvement.

Variable Neighborhood Search

Variable Neighborhood Search (VNS) was firstly proposed by Hansen and Mladenovic [START_REF] Mladenovic | Variable neighborhood search[END_REF] in 1997. This meta-heuristic has been proved to be very useful for obtaining an approximate solution to optimization problems. Variable neighborhood search systematically changes the set of neighborhood structure to expand the search range and obtain the local optimal solution until the best solution is found.

The pseudocode of the Variable Neighborhood Search is presented in Chapter 2, Algorithm 6.

According to the approach, after generating the initial solution, the main cycle of VNS begins. This cycle includes three steps: shaking, local search, move or not.

Shaking

The aim of shaking is jumping out current area of local optimal solution and search new one to make local optimum near the global optimal solution.

Local search

Local search is used to find local optimal solution and improve search precision.

The result of local search is mainly dependent on the selection of the starting point and neighborhood structure. Therefore, in order to obtain better solution, the different neighborhood structure and starting point can be chosen in local search.

Move or not

Because a local optimal solution which is obtained in one neighborhood structure may be not local optimal in another neighborhood structure, so the choice of acceptance criteria for move or not is very important. In literature [START_REF] Hansen | Variable neighborhood search: Principles and applications[END_REF][START_REF] Hansen | Variable neighborhood search methods Variable Neighborhood Search Methods[END_REF], the problem of what strategy should be used is considered, and several strategies of move or not are discussed.

Mladenovic et al. [START_REF] Mladenovic | Variable neighbourhood search for bandwidth reduction[END_REF] proposed a variable neighborhood search method which combines several ideas from the literatures for minimizing the bandwidth problem.

The experiment results of 113 benchmark instances showed that the performance of the proposed VNS approach was better than all previous methods. The detail of the key parts is described as follows.

Initialization

The random initial solution replaced by a good quality one in this method. They construct a good initial solution with depth-first-search manner. The idea is obvious:

In a good solution which means the small bandwidth, the adjacent vertices should have close labels. The initial labeling of vertex is set in rows: There is only one vertex v which is selected randomly in first row, and this vertex is given the label 1

(f (v) ← 1); the second row contains the adjacent vertices of vertex v, and the label of them is 2,3,...; the third row contains the adjacent vertices of the vertices in previous row, but these adjacent vertices do not appear in second row and so on.

Shaking

Two shaking functions are proposed in [START_REF] Mladenovic | Variable neighbourhood search for bandwidth reduction[END_REF]. The first one defined a distance to show the number of different labels between any two solution f and f at the beginning. The distance is given by

ρ(f, f ) = n i=1 η(i) -1, η(i) -1 =      1 f (i) = f (i) 0 otherwise (3.16)
Then a vertex u ∈ K (the set K is specially defined) is chose randomly, and the its critical vertex v is found. Next a vertex w which satisfy the following condition would be selected as the swap vertex with v: max{f

(v) -f min (w), f max (w) -f (v)} is minimum, where f min (u) ≤ f (w) ≤ f max (u).
The second shaking function uses the transformation from f to π (or from π to f ) as follows:

π(f (v)) = v, ∀v (or f (π(v)) = v, ∀v).

Local search

In local search of this VNS algorithm, the define of suitable swapping vertices proposed by [START_REF] Martí | Reducing the bandwidth of a sparse matrix with tabu search[END_REF] and the hill climbing strategy proposed by [209] was applied to construct the reduced swap neighborhood.

Move or not

Three acceptance criteria are used in [START_REF] Mladenovic | Variable neighbourhood search for bandwidth reduction[END_REF]:

(1) If the new objective function value is better than current one:

B f (G) < B f (G) (2) If B f (G) = B f (G)
, the number of critical vertices of f is smaller than f :

|V c (f )| < |V c (f )| (3) If B f (G) = B f (G) and |V c (f )| = |V c (f )|, the distance between f and f is far: ρ(f, f > α) (α = 10 is set in [237])

The VNS approach for bandwidth minimization problem

The detail of our algorithm for solving bandwidth minimization problem is described as follows.

Initial solution

A good initial solution can be generated by a level structure procedure which using breadth first search (BFS). The idea is that adjacent vertices should have close labels.

A level structure of a graph is denoted by L(G), and it is a partition of the vertices into levels L 1 , L 2 , ..., L k which satisfy the following conditions [START_REF] Martí | Reducing the bandwidth of a sparse matrix with tabu search[END_REF]:

(1) vertices adjacent to a vertex in level L 1 are either in L 1 or L 2 ;

(2) vertices adjacent to vertex in level L k are either in L k or L k-1 ;

(3) vertices adjacent to vertex in level

L i (for 1 < i < k) are either in L i-1 , L i or L i+1 .
According to this, reasonable good solutions can be obtained. Therefore, initial solutions are generated by applying BFS with random selection of the starting vertex, and different starting vertices will provide different initial solutions. For example, for the matrix A, if we start from the vertex v3, the bandwidth decreases to 3. If we choose vertex v2 as the first label, the bandwidth is 2. 

Shaking

A labeling f is in the k th neighborhood of the labeling f , that is, there are k + 1 different labels between f and f . More precisely, the distance ρ between any two solutions f and f is defined as:

ρ(f, f ) = n i=1 η(i) -1, η(i) =      1 f (i) = f (i) 0 f (i) = f (i) (3.17)
For example, the label f of Figure 3-3 is: f = (3, 2, 1, 5, 4), and the label f of Figure 3-4 is: f = (4, 1, 3, 2, 5), thus the distance between f and f is 4. In order to choose the vertices to swap their labels, two definitions are added:

f max (v) = max{f (u), u ∈ N (v)} (3.18) f min (v) = min{f (u), u ∈ N (v)} (3.19)
f max (v) indicates the maximum label of the adjacent vertex to vertex v, and f min (v)

is the minimum label. For Figure 34,

f max (v2) = 3 and f min (v2) = 2.
Firstly, a vertex set K ⊆ V is defined whose cardinality is larger than k. Then a vertex u is chosen randomly from the set K and its critical vertex is also found. Next, a vertex w will be selected according to the conditions:

max{f max (w) -f (v), f (v) - f min (w)} is minimum and f min (u) ≤ f (w) ≤ f max (u).
Finally the label of vertex v is replaced by vertex w.

In the following pseudo code, the shaking process can be presented as:

Algorithm 9 Shaking (k, f ) Initialization: Let K = {v|B f (v) ≥ B }, B is chosen such that |K| ≥ k; Iteration: 1: for i = 1 to k do 2: u ← RandomInt (1, |K|); 3: v ← such that |f (u) -f (v)| = B f (u); 4: if (u, v) ∈ E then 5: w ← arg min w {max{f max (w) -f (v), f (v) -f min (w)}|f min (u) ≤ f (w) ≤ f max (u)}; 6: swap(f (v), f (w)) 7:
end if 8: end for

Local search

We use the local search which is proposed in [START_REF] Martí | Reducing the bandwidth of a sparse matrix with tabu search[END_REF] to construct a set of suitable swapping vertices. The best labeling for current vertex v is defined as:

mid(v) = [ max(v) + min(v) 2 ] (3.20)
Then the set of suitable swapping vertices for vertex v is: CanImprove = F alse;

N (v) = {u : |mid(v) -f (u)| < |mid(v) -f (v)|} ( 3 
3:

for v = 1 to n do 4: if B f (v) = B f (G) then 5:
for all u such that u ∈ N (v) do end for 15: end while

Move or not

After finding the local optimal solution, we must decide whether the current solution f is replaced by the new solution f . The following three cases are considered: 1. Algorithm 11 Move (f, f , α)

B f (G) < B f (G): If the
1: M ove ← F alse; 2: if B f (G) < B f (G) then 3:
M ove ← T rue; 4: else

5: if B f (G) = B f (G) then 6: if |V c (f )| < |V c (f )| or ρ(f , f ) > α then 7:
M ove ← T rue; end if 10: end if Thus, the pseudo code of our VNS is presented in Algorithm 12.

Algorithm 12 VNS (A, k min , k max , k step , α) Initialization:

1: B * ← ∞;t ← 0;

2: i max = Int((k max -k min )/k step) ); 3: f ← InitSol(f );f ← LocalSearch(f );; 4: i ← 0;k ← k min ; 5: while i ≤ i max do 6: f ← Shaking(f, k); 7: f ← LocalSearch(f ); 8: if M ove(f, f , α) then 9: f ← f ;k ← k min ;i ← 0; 10: else 11: k ← k + k step ; i ← i + 1; 12:
end if 13: end while

Numerical results

In order to evaluate the performance of the algorithm, we compare the solution and running time of our VNS with other two algorithms from the literature: Simulated Annealing (SA) [START_REF] Torres-Jimenez | A new measure for the bandwidth minimization problem[END_REF] and Tabu Search (TS) [START_REF] Martí | Reducing the bandwidth of a sparse matrix with tabu search[END_REF]. We tested 47 instances from the Harwell-Boeing Sparse Matrix Collection which are divided into two sets: the first set includes 21 instances (the dimension of the matrix ranging from 30 to 199) and the second set consists of 26 instances (the dimension of the matrix ranging from 200 to 1000). First, we transfer the matrix into the graph considering the incidence matrix, then we implement the algorithm with a graph formulation. Because the solution and running time of different algorithms are obtained from different computers, in order to compare the performance of these methods, we resume the experiment of different methods with our computer according to the literature description. × 100% where v opt is the optimal value of each method, and v best is the best value which is showed in the fourth column.

For each instance, we test 10 times, and the best result is shown in Tables 3.1 and 3.2. For our VNS, we define the parameters as follows: According to the result, our VNS does not work as well as in the literature [START_REF] Martí | Reducing the bandwidth of a sparse matrix with tabu search[END_REF][START_REF] Mladenovic | Variable neighbourhood search for bandwidth reduction[END_REF][START_REF] Torres-Jimenez | A new measure for the bandwidth minimization problem[END_REF], but compared with the size of the matrix, we have significantly decreased the bandwidth, i.e., improved the quality of the upper bounds. Our VNS offers an advantage of the CPU time. Especially for large size matrices, it can solve the problem in a shorter time.

k min = 2, k step = 3, k max = n/2, α = 10.

Conclusions

Bandwidth minimization problem, especially for the large size matrix is challenging because it is difficult to solve. Meta-heuristic is an efficient procedure to solve such optimization problem with few assumptions. In this work, we have discussed several meta-heuristics in details including the basic idea and application for bandwidth In the early 1990s, the Qualcomm company proposed CDMA cellular mobile communication system which is a milestone in the development of mobile communication system. Since then, CDMA occupied the more important position in the field of mobile communication. The digital mobile communication system which is currently widely used is called the second generation mobile communication system. However, with the increasing requirement of communication service range and business, the second generation mobile communication system was difficult to meet new business needs. In order to meet the market demands, the third generation mobile communication system (3G) which is mainly based on CDMA was proposed.

However, for the high speed data service, both the single carrier TDMA system and the narrow band CDMA system are flawed, the research of fourth generation mobile communication system (4G) emerged. The fourth genration mobile communication technology will have the function of intelligence, broadband, individualization and mobilization. Orthogonal Frequency Division Multiplexing (OFDM) technology is generally considered as the core technology in the fourth generation mobile communication system because its network structure is highly scalable and it has good anti-noise property and high utilization of the spectrum [START_REF] Rappaport | Wireless communications: principles and practice[END_REF]. 

Orthogonal Frequency Division Multiplexing

(OFDM)

Development and application

Orthogonal Frequency Division Multiplexing (OFDM) originated in the mid 1950s, and the concept of using parallel data transmission and frequency division multiplexing had been formed in 1960s. The first practical application is the high frequency wireless communication link for military. In 1971, Weinstein and Ebert applied the discrete Fourier transform (DFT) to the modulation and demodulation of orthogonal frequency division multiplexing system [START_REF] Wong | Multiuser OFDM with adaptive subcarrier, bit, and power allocation. Selected Areas in Communications[END_REF].

Because Orthogonal frequency division multiplexing multi-carrier transmission

technique can effectively solve the inter-symbol interference problem which is faced by the broadband wireless communication system, it is suitable for the high speed data transmission in mobile environment. For this reason, OFDM technology received more and more attention and began to be widely used in practical systems.

Application 1: High definition television (HDTV)

OFDM made a wide range of applications in digital broadcast television system.

Further, the modulation technique which is adopted by digital HDTV transmission system includes OFDM. In the area of digital audio broadcasting and digital video broadcasting (DVB), the main reason of selecting OFDM is: OFDM can effectively solve the multipath delay spread problem. 

OFDM characteristics

In recent years, OFDM system is more widely used because it has the following advantages:

1. High spectral utilization

In the conventional frequency division multiplexing access, the frequency band is divided into several disjoint subfrequency bands to transmit data in parallel, so the utilization of the spectrum is low. In OFDM system, each subcarrier is orthogonal to each other and spectrum overlap, thus the spectrum utilization of system is high.

The inherent frequency diversity ability

When the data is assigned in parallel on the unrelated subbands to send, the time diversity and frequency diversity can be combined to improve the reliability of the system transmission.

Different transmission rate

Generally, the amount of transmission data in the downlink is much greater than in the uplink. For example, the web browsing in Internet business, FTP download, etc. On the other hand, the power of the mobile terminal is generally small, and the base station transmission power can be large. Therefore, considering from the need of user data business and the requirement of mobile communication system, the physical layer is supposed to support the asymmetric data transmission, and OFDM system can easily achieve the different transmission rate in downlink and uplink by using a different number of subchannels [START_REF] Zhang | Multiuser adaptive subcarrier-and-bit allocation with adaptive cell selection for OFDM systems[END_REF].

However, due to the orthogonal subcarriers in OFDM system, and a plurality of subchannel signals are superimposed when OFDM outputs signals, so compared with single carrier system, OFDM has the following drawback:

(1) As the subchannel spectrum covering each other, so the strict requirement of orthogonality is requested. The basis of OFDM is the subcarrier must be orthogonal.

Otherwise, the performance of the whole system would seriously decline, and the crosstalk would be generated among the subcarriers.

(2) Compared with single carrier system, the output of multi-carrier modulation system is a superposition of a plurality of subchannel signals. If the phase of multiple signals is consistent, the instantaneous power of superimposed OFDM signals will be greater than the average power of signals. Thus a large peak to average power ratio (PAR) is generated. How to reduce the PAR of signal is another difficulty in OFDM technology [START_REF] Wong | Multiuser OFDM with adaptive subcarrier, bit, and power allocation. Selected Areas in Communications[END_REF].

Orthogonal Frequency Division Multiplexing

Access (OFDMA)

Orthogonal frequency division multiplexing access (OFDMA) technology is a key technology in the fourth generation (4G) mobile communication, which is based on the OFDM technology. As mentioned before, OFDM technology is a kind of multicarrier modulation technique, which uses hundreds or even thousands narrow band subcarrier for high speed data transmission, wherein the subcarrier is orthogonal to each other. Because subcarriers overlapping occupy the spectrum, OFDM can provide high spectrum efficiency and high information transmission rate. Through assigning different subcarriers to different users, OFDMA provides a natural multiaccess mode. Besides, because of occupying different subcarriers, the orthogonality is satisfied between users and without inter-cell interference. The idea of this technology is simple which is proposed as early as the 1950s-1960s, and currently it becomes the key technology of 4G [START_REF] Boudreau | Interference coordination and cancellation for 4G networks[END_REF].

OFDMA can support fixed terminals and mobile terminals to access the wireless metropolitan area networks (WMANs). Due to the mobile characteristic of terminals and the "not line of sight" (NLOS) transmission, the channel fading will appear which caused by path loss, shadow fading and multi-path effect etc. Thus, for the channel fading, designing the effective and reliable resource allocation algorithm for OFDMA technology is necessary. Because OFDMA divides the entire bandwidth into a set of orthogonal subchannels, thereby increasing the coherence symbol length and making the system enhance the ability of against inter-symbol interference and frequency selective fading. For multi-users situation, OFDMA using each user in different time slots and different subchannels with different channel responses provide a dynamic slot allocation (DSA) scheme. Therefore, matched channel DSA scheme greatly improves the system throughput. Meanwhile, the achieved rate of system is directly related to the distribution power, so the adaptive power allocation (APA) can also improve the system throughput [START_REF] Ali | Dynamic resource allocation in OFDMA wireless metropolitan area networks [Radio Resource Management and Protocol Engineering for IEEE 802[END_REF].

OFDMA resource allocation problem can generally be classified as follows. According to the target, OFDMA resource allocation problem can be divided into rate adaptive (RA) problem and margin adaptive (MA) problem. The RA problem is to maximize the system throughput under the limited power condition, and the MA problem is to minimize the power loss of the system subject to the throughput constraint [START_REF] Ali | Dynamic resource allocation in OFDMA wireless metropolitan area networks [Radio Resource Management and Protocol Engineering for IEEE 802[END_REF].

Except the classification of OFDMA problem, generally, OFDMA resource can be divided into a time slot, a frequency domain (subcarrier), coding (using different coding techniques) and a space (combined with MIMO). In addition, OFDMA should face the power limit of base station or mobile terminal, the limit on the number of bits and the limit of quality of service (Qos) requested by users. Thus OFDMA resource allocation problem is to optimize the user access under the limit of power, hardware implementation, bit load and fairness among users and the various channel conditions. The user access is assigning corresponding resource to users, and the resource includes space, time and frequency. The target can be the purpose of saving resource, or maximizing the rate of user terminals [START_REF] Li | An adaptive subcarrier, bit and power allocation algorithm for multicell OFDM systems[END_REF]. and integrated circuit rapidly developed, OFDMA technology received attention and its application had been widely researched [START_REF] Kivanc | Computationally efficient bandwidth allocation and power control for OFDMA[END_REF].

Background of OFDMA

Combining OFDM modulation technology with multiple access technique will constitute different multi-user mobile communication system. The common multiple access technique includes: TDMA, FDMA, CDMA, SDMA [START_REF] Rappaport | Wireless communications: principles and practice[END_REF].

Time Division Multiple Access (TDMA)

TDMA scheme consists in the channel is divided into a number of time division channels according to the time slot, then each user occupies one slot and only send or receive signals within the specified time slot. The key part of TDMA is the user.

Each user is assigned to a time slot.

Frequency Division Multiple Access (FDMA)

The frequency division also refers to channelization sometimes. The assignable spectrum is divided into a plurality of individual wireless channels, each channel can transmit one voice or control information. Under the system control, any user can access any one of these channels.

Code Division Multiple Access (CDMA)

Unlike FDMA and TDMA which separate the user information from the frequency and time, CDMA can simultaneously transmit a plurality of user information in one channel, i.e., the mutual interference between users is allowed. The key is the information should be encoded specially before the transmission, and the original information will not lost. So many mutually orthogonal code sequence, so many users can simultaneously communicate on one carrier.

Space Division Multiple Access (SDMA)

SDMA is to constitute different channels by using space division. It is a satellite communication mode, which uses the directivity of dish antenna to optimize the use of wireless frequency and reduce system cost. For example, using a plurality of antennas on the satellite, the beam of each antenna toward the different regions of the earth's surface. Even the earth stations which are on the ground in different regions work at the same time with the same frequency, the interference will not be formed between them.

About the subcarrier allocation scheme, OFDMA must consider the subcarrier exclusivity. Assuming the number of user as K and the number of subcarrier as N , if user k is assigned the power p k,n on the subcarrier n, so p k,n = 0, ∀k ∈ {1, ..., K}, n ∈ {1, ..., N }, and p k ,n = 0, ∀k = k, k ∈ {1, ..., K}, i.e., any subcarrier is used by one and only one user.

Then, the uplink and downlink resource allocation problem of OFDMA system will be described [START_REF] Kim | Downlink and uplink resource allocation in IEEE 802.11 wireless LANs[END_REF]. Downlink is one transmitter sending signals to many receiver, for example, the radio and television broadcasting, the transmission access from a base station to mobile terminals and the transmission access from a satellite to ground stations. Uplink is many transmitter sending signals to one receiver, for example, the laptop wireless LAN, the transmission link from mobile terminals to a base station and the transmission link from ground stations to a satellite.

Margin adaptive (MA) problem

Assume the throughput of user k is r k . Generally, for the downlink channel, the system has a limit of total link throughput R, and K k=1 r k ≥ R; for the uplink channel, the throughput of each user is limited which can be represented as r k ≥ R k [START_REF] Chieochan | Adaptive radio resource allocation in OFDMA systems: a survey of the state-of-the-art approaches[END_REF].

The objective of margin adaptive approach is to minimize the system power of whole system subject to the downlink/uplink throughput constraint and the assigned power constraint. Assume P bs is the power constraint of base station, and P k is the power constraint of user k. Thus, for downlink, the margin adaptive problem can be represented as:

min p k,n k k=1 N n=1 p k,n s.t. k k=1 N n=1 r k,n ≥ R k k=1 N n=1 p k,n ≤ P bs p k ,n = 0, ∀p k,n = 0; ∀k = k; ∀k, k ∈ {1, ..., K}; ∀n ∈ {1, ..., N } (4.1)
For uplink, the margin adaptive problem can be represented as:

min p k,n k k=1 N n=1 p k,n s.t. N n=1 r k,n ≥ R k , ∀k ∈ {1, ..., K} N n=1 p k,n ≤ P k , ∀k ∈ {1, ..., K} p k ,n = 0, ∀p k,n = 0; ∀k = k; ∀k, k ∈ {1, ..., K}; ∀n ∈ {1, ..., N } (4.2)

Rate adaptive (RA) problem

The objective of rate adaptive approach is to maximize the system throughput with the power constraint [START_REF] Chieochan | Adaptive radio resource allocation in OFDMA systems: a survey of the state-of-the-art approaches[END_REF]. If the system can provide limited resources, and the channel condition of some users are good, it is possible that other users can not be completely assigned the resource. Therefore, for the downlink, the rate adaptive problem can be written as: 

OFDMA resource allocation method

Convex optimization

According to the optimization theory, the convex optimization problem is generally denoted as [START_REF] Pierre | Optimization theory with applications[END_REF]:

min f 0 (x) s.t. f i (x) ≤ 0, i = 1, ..., K (4.5)
where x ∈ R n is the optimal variable, f 0 , ..., f k are convex functions. Assume that the dual variable for each constraint f i (x) ≤ 0 is λ i . The Lagrange optimization problem can be denoted as the following:

L(x, λ) = f 0 (x) + i λ i , f i (x)
where ., . represents the scalar product. thus, the dual objective is defined as

g(λ) = inf x L(x, λ)
Easy to know from the above, g(λ) is the lower bound of optimal f 0 (x):

f 0 (x) ≥ f 0 (x) + i λ i , f i (x) ≥ inf z (f 0 (z) + i λ i , f i (z) ≥ g(λ)
Thus,

max λ g(λ) ≤ min x f 0 (x)
Therefore, the minimization problem under the primal constraint and the maximization problem under the λ constraint can be referred to the dual problem. The difference between primal objective and dual objective is called duality gap. However, if the primal problem is a convex problem, then there is no duality gap at the optimal point. Under such situation, the primal problem can obtain the optimal solution by using KKT condition.

Define x and λ are the optimal solutions of primal problem and dual problem respectively, thus the relation of inequality of all the above problem can be transformed into the equal relationship. Because λ i , f i (x) ≤ 0, λ i ≥ 0 and f i (x) ≤ 0, so in order to get g( λ) = f 0 (x), the equation λ i , f i (x) = 0 must be satisfied. Meanwhile, the function g(λ) and f 0 (x) should be differentiable at their minimum value. Therefore, taking these conditions above, the following KKT condition can be obtained:

f i (x) ≤ 0 λi ≥ 0 ∇f 0 (x) + i=1 ∇ λi , f i (x) = 0 λi , f i (x) = 0 (4.6)
As long as the problem (4.5) is a convex optimization problem, then the optimal value of this problem can be solved and obtained using the above conditions.

Integer programming

In mathematical programming, in addition to the objective function and constraint function are linear function, the decision variable is the integer variable, such problem is called linear programming [START_REF] Pierre | Optimization theory with applications[END_REF]. Besides, if the decision variable is 0-1 variable, that is 0-1 programming which denoted as:

min c • x s.t. Ax = b x j ∈ {0, 1}, j = 1, 2, ..., n (4.7) 
where c • x is the objective function, Ax = b is the constraint, A is a m × n matrix, c is a n-dimensional column vector, b is a m-dimensional row vector, and x is a n-dimensional row vector.

For solving such problem, there are several algorithms such as branch and bound, cutting plane method and implicit enumeration etc.

Branch and Bound

Branch and bound is the classic method for solving 0-1 integer programming. Directly solving the integer programming problem is difficult, so the feasible region can firstly split into several smaller sets, then get the optimal value of objective function on the smaller set, and the results are integrated to generate the optimal solution of the original problem. When solving the corresponding subproblem of the smaller set, the bound of the subproblem optimal value is estimated and compared with the known feasible solution of original problem, if the subproblem can be determined that can not get a better feasible solution, there is no need to solve the subproblem accurately. Branch and bound method involves three basic concepts: relaxation, decomposition and detection.

(1) Relaxation

Removing the integer constraint, the linear programming is obtained:

min c • x s.t. Ax = b 0 ≤ x j ≤ 1, j = 1, 2, ..., n (4.8) 
The relaxation problem P and the original problem P 0 have the following relationship:

(a) If P doesn't have the feasible solution, so P 0 doesn't have the feasible solution.

(b) The minimum value of P is the lower bound of the minimum value of P 0 .

(c) If the optimal solution of P is the feasible solution of P 0 , so the optimal solution of P is the optimal solution of P 0 .

(

2) Decomposition

Assume the feasible set of integer programming problem P 0 is S(P 0 ), and the feasible sets of subproblems (P 1 ), ..., (P k ) are S(P 1 ), ..., S(P k ). Each subproblem has the same objective function as P 0 , and satisfies the condition k j=1 S(P i ) = S(P 0 ) S(P i ) S(P j ) = ∅, ∀i = j so P 0 is the sum of subproblems (P 1 ), ..., (P k ).

Firstly, assume the optimal solution of relaxation problem P is not satisfied by the integer requirement of P 0 . Randomly select a variable x j which doesn't meet the integer requirement, and assume the value of x j is v j , and [v j ] denotes the maximum integer while is less than v j . Then using the constraints x j ≤ [v j ] and x j ≥ [v j ] + 1, the original problem P 0 is divided into the following two subproblems:

min c • x s.t. Ax = b x j ≤ [v j ]
x j ∈ {0, 1}, j = 1, 2, ..., n (4.9)

and

min c • x s.t. Ax = b x j ≥ [v j ] + 1 x j ∈ {0, 1}, j = 1, 2, ..., n (4.10) 
(3) Detection

Assume the integer programming P 0 has been already divided into the subproblems (P 1 ), ..., (P k ), and relaxation problem of subproblems are denoted as (P 1 ), ..., (P k ), and x is a feasible solution of P 0 , thus the detection results are below:

(a) If the relaxation problem P i does not have the feasible solution, so the corresponding subproblem P i does not have feasible solution, and this branch will be deleted.

(b) If the minimum solution of relaxation problem P i is not less than c • x, so subproblem P i does not have better feasible solution than x, and this branch will be deleted.

(c) If the optimal solution of relaxation problem P i is the feasible solution of P i , P i will not continue to decomposition and detection, and c • x j is directly compared with c • x, if c • x j is better than c • x, so c • x j can be considered as a upper bound of optimal value.

(d) If the minimum solution of relaxation problem P i is not the feasible solution of P i , but c • x j is better than c • x, the subproblem can keep decomposition.

(e) If the minimum value of each relaxation problem P i is not less than the known upper bound of P 0 optimal value, thus P 0 finds the optimal solution.

Using branch and bound to solve the problem P 0 , a upper bound of optimal value c • x should be given firstly. If the feasible solution x is not obtained currently, the upper bound can be defined as c • x = +∞. Then P 0 is divided into several subproblems, and the subproblems are solved in sequence to determine the lower bound of subproblem's objective function value. According to the result, whether the subproblem will continue to decompose is decided, and the upper bound of optimal value is updated gradually. This process is carried out to all the subproblems have been detected, the optimal solution of problem P 0 will be obtained, or the conclusion is unbounded.

Cutting Plane Method

The basic idea of cutting plane method is: Firstly the linear relaxation problem of integer programming is solved. If the optimal solution of relaxation problem satisfies the requirement of integer, it is the optimal solution of integer programming. Otherwise, a basic variable which does not meet the integer requirement is selected, and a new constraint is defined to add into the original constraint set. This constraint is to cut a part of feasible solution which are not integer and narrow the feasible region while retain all the integer feasible solutions. Then, solve the new linear relaxation programming and repeat the process above until the integer optimal solution is found.

Cutting plane method can guarantee to obtain the optimal solution of integer programming in finite steps (if is exists). This method needs to solve a series of linear programming problem (the feasible region of linear programming contains which of integer programming), and use the optimal solution of linear programming problem to gradually approximate the optimal solution of original integer programming problem.

Cutting plane method is also a relaxation method actually. For minimization form of integer programming problem, the optimal solution of relaxation problem is the lower bound of optimal solution of integer programming problem.

The key of cutting plane method is how to define the cutting constraint. Assume a integer programming problem:

min c • x s.t. Ax = b x j ≥ 0, j = 1, 2, ..., n, x j ∈ Z (4.11)
and its relaxation problem is:

min c • x s.t. Ax = b
x j ≥ 0, j = 1, 2, ..., n (4.12)

Assume the optimal variable of the relaxation problem is B, so the optimal solution is:

x * =    x B x N    =    B -1 b 0    =    b 0    ≥ 0 (4.13)
If the components of x * are integer, so x * is the optimal solution of problem (4.11). Otherwise, a basic variable which does not meet the integer requirement is selected such as x B i , and the cutting constraint is defined by using a constraint which contains this basic variable. Assume the constraint which contains x B i is:

x B i + j∈R y ij x j = bi (4.14)
where R is the subscript set of nonbasic variable, y ij is the i th component of B -1 p j , and p j is the j th column of A. The variation coefficient and constant in (4.14) are divided into two parts: integer and nonnegative true fraction, that is:

bi = [ bi ] + f i y ij = [y ij ] + f ij , j ∈ R
Thus, equation (4.14) is rewritten as:

x B i + j∈R [y ij ]x j -[ bi ] = f i - j∈R f ij x j (4.15)
Because 0 < f i < 1, 0 ≤ f ij < 1, x j > 0, according to (4.15), the following inequality can be obtained:

f i - j∈R f ij x j < 1
For any integer feasible solution, because the left side of equation (4.15) is integer, so the right side is the integer which less than 1, thus the necessary condition of integer solution is obtained as below:

f i - j∈R f ij x j ≤ 0 (4.16) (4.16
) is used as the cutting condition and added into the constraint of problem (4.12) and a new linear programming problem is:

min c • x s.t. Ax = b f i - j∈R f ij x j ≤ 0 x j ≥ 0, j = 1, 2, ..., n (4.17)
and then the problem is solved again.

It is easy to know that the original non integer solution

x * =    B -1 b 0   
is not the feasible solution of problem (4.17). Otherwise, because x j = 0, ∀j ∈ R, and f i > 0, so the left side of inequity (4.16) is more than 0 which is contradict with the constraint (4.16).

Implicit Enumeration

The 0-1 programming P is denoted as: 

min c • x s.t. A i x = b i , i = 1, 2, ..., m x j ∈ {0, 1}, j = 1, 2, ..., n (4.18) where c = (c 1 , c 2 , ..., c n ), x = (x 1 , x 2 , ..., x n ) T , A =         
          =           A 1 A 2 . . . A m           , b =           b 1 b 2 . . . b m           , c j ≥ 0(j = 1, 2, ..

., n).

There are two assumptions:

(1) If c j < 0, then do the variable substitution which defines x j = 1 -x j , and for

x j , the coefficient must meet the condition -c j > 0.

(

) c 1 ≤ c 2 ≤ • • • ≤ c n . 2 
If this requirement is not met, then change the variable subscript to make the hypothesis stand.

The basic idea of implicit enumeration algorithm is, the problem P is divided into several subproblems, according to certain rules, each subproblem is detected until the optimal solution is found [START_REF] Geoffrion | Integer programming by implicit enumeration and Balas' method[END_REF]. Specifically, the problem P is divided into P 1 and P 2 according to x 1 taking 1 or 0, and P 1 is denoted as {+1} and

P 2 is {-1}.
x 1 is called fixed variable, and x 2 , x 3 , ..., x n are called free variable.

Then decompose each subproblem according to x 2 taking 1 or 0. Define x 2 taking 1 as {+2} and taking 0 as {-2}. If x 1 and x 2 are taken as fixed variables,

x 3 , x 4 , ..., x n are free variables, so 4 subproblems are obtained, and respectively denoted as {+1, +2}, {+1, -2}, {-1, +2}, {-1, -2}. Generally, if x i , x j , ..., x k are fixed variables, and the value of them are 1, 0, ..., 1 respectively. {σ} is represented as the corresponding subproblem which is denoted as {σ} = {+i, -j, ..., +k}, and the other variables are free variable.

Implicit enumeration algorithm starts from problem P {∅}, along each branch, each subproblem is detected from left to right until the optimal solution is found or the conclusion of no solution is obtained.

In the process of detection, for each subproblem {σ}, take the point which the free variables are equal to 0 as the detected point and denoted as σ 0 . For example, for subproblem {σ} = {+1, -2, +3}, take σ 0 = (1, 0, 1, 0, ..., 0) T as the detected point of this subproblem. Obviously, because 0

≤ c 1 ≤ c 2 ≤ • • • ≤ c n , if σ 0 is the feasible point, so it is the minimum point of subproblem {σ}.
Assume x is a feasible point of integer programming P , and its objective function value is f = c x. Consider a subproblem {σ} of P , the corresponding detected point is denoted as σ 0 . Assume x j is the free variable with minimum subscript in {σ}, so the rule of detection is:

(1) If cσ 0 ≥ f , so there is not better feasible solution than x in subproblem {σ}.

(2) If cσ 0 < f , and σ 0 is the feasible solution of P , so σ 0 is better than the original x, thus x = σ 0 and f = cσ 0 .

(3) If cσ 0 < f , but σ 0 is not the feasible solution of P , and cσ 0 + c j ≥ f , so there is not a better feasible solution than x in {σ}.

(4) Assume the free variable includes x j 1 , x j 2 , ..., x j k , which satisfies the inequality

cσ 0 + c j 1 ≤ • • • ≤ cσ 0 + c jr < f ≤ cσ 0 c j r+1 ≤ • • • ≤ cσ 0 + c j k
and denoted as J = j 1 , j 2 , ...j r , J is called collection set.

Define

s i = A i σ 0 -b i (i = 1, ..., m
), s i is the relaxation variable of the i th constraint.

If s i ≥ 0, ∀i, so σ 0 is better than current solution x, thus x = σ 0 and f = cσ 0 .

(5) If σ 0 is not the feasible solution, defining I = {i|s i < 0} which is called against constraint set, and

J i = {j|j ∈ J, a ij > 0}, i ∈ I q i = j∈J i a ij , i ∈ I
where a ij is the element of matrix A in row i and column j.

Calculate s i + q i , ∀i ∈ I, if for one i(i ∈ I), there is s i + q i < 0, so this subproblem does not have better feasible solution.

Research status of algorithms

An important feature of the wireless communication is the communication channel having a fast variability. The variability includes the path loss, frequency selective fading, shadow fading and the impact of interference and noise received by the receiver. For these channel weaknesses, the user admission control and resource allocation algorithm related to the channel are presented in many studies. The resource allocation algorithm of OFDMA system has many key points to consider, the main considered factor includes channel influence, impact of inter-cell interference, relay network model and multiple-input multiply-output model. The detail of these studies are listed below.

In [START_REF] Rong | Adaptive power allocation and call admission control in multiservice WiMAX access networks [Radio Resource Management and Protocol Engineering for IEEE 802[END_REF], from two points of view of the service provider and access user of WiMax system, two resource allocation algorithm are proposed which are adaptive power allocation (APA) and call mission control (CAC). Adaptive power allocation algorithm reasonably allocates the power in access users. Call mission control algorithm reasonably allocates the bandwidth according to the service request. The joint APA and CAC can effectively solve the resource allocation problem of PHY and MAC layers.

Finally the literature proposed an optimal strategy for balancing the profit of service provider and user's satisfaction for access rate.

In [START_REF] Ali | Dynamic resource allocation in OFDMA wireless metropolitan area networks [Radio Resource Management and Protocol Engineering for IEEE 802[END_REF], the researchers focused on IEEE 802.16 wireless metropolitan area network and discussed four interrelated resource allocation problems, including adaptive subcarrier allocation, adaptive power allocation, admission control and capacity planning.

In [START_REF] Kim | Downlink and uplink resource allocation in IEEE 802.11 wireless LANs[END_REF], the resource allocation model of a single cell OFDMA system is proposed, KKT condition is used to find the optimal solution of corresponding problem to the model, and joint power allocation and subcarrier allocation scheme is presented.

In [START_REF] Mohanram | A sub-optimal joint subcarrier and power allocation algorithm for multiuser OFDM[END_REF], the algorithm of maximizing the throughput under the power constraint in order to ensure the fairness among the users is studied, and this algorithm reduced the complexity of calculation.

In [START_REF] Hassan | Joint flow control and physical resource allocation in multi-service multiuser downlink OFDMA system[END_REF], a joint flow control and resource allocation algorithm of multi-service multi-user OFDMA system is proposed. The flow control algorithm can determine the output data rate requirement for each user according to the user channel state information and user service request. Resource allocation algorithm allocates the subcarrier and power to the user according to the data rate.

In [START_REF] Fattah | A load adaptive subcarrier and bit allocation algorithm for non-real time services in an OFDMA system[END_REF], the research of optimal resource allocation which allow the delayed user request is studied based on the traditional resource allocation problem, and a load adaptive algorithm for the non-real time services is proposed to minimize the average packet delay for all users.

Literature [4,[START_REF] Gotsis | Linear modeling and performance evaluation of resource allocation and user scheduling for LTE-like OFDMA networks[END_REF][START_REF] Mao | Efficient optimal and suboptimal radio resource allocation in OFDMA system[END_REF][START_REF] Turgu | A low complexity resource allocation algorithm for OFDMA systems[END_REF] solved the resource allocation problem of OFDMA system by using integer programming.

In [START_REF] Turgu | A low complexity resource allocation algorithm for OFDMA systems[END_REF], the integer modeling for solving the resource allocation problem with limited rate and subcarrier of OFDMA system is proposed.

In [START_REF] Gotsis | Linear modeling and performance evaluation of resource allocation and user scheduling for LTE-like OFDMA networks[END_REF], the integer modeling for the resource allocation problem with limited rate, subcarrier, power and user admission fairness of OFDMA system is developed.

In [4], the integer modeling considered throughput constraint and delay constraint, that is, in traditional resource modeling problem of OFDMA system, not only the allocation of time and frequency are considered, but also the time slot allocation to ensure the minimum delay is taken into account.

In [START_REF] Mao | Efficient optimal and suboptimal radio resource allocation in OFDMA system[END_REF], based on integer programming, a resource allocation algorithm using branch and bound is developed. Two suboptimal algorithms including pre-allocation and re-allocation are also proposed.

In [START_REF] Ksairi | Resource allocation for downlink cellular OFDMA systems-part I: optimal allocation[END_REF], the multi-cell resource allocation problem is studied. Under considering the condition of the multi-cell interference, the model and solution of multi-cell resource allocation are proposed.

In [START_REF] Xiao | A novel fractional frequency reuse architecture and interference coordination scheme for multi-cell OFDMA networks[END_REF], a new frequency reuse architecture is proposed. Based on this new frequency reuse architecture, a inter-cell interference coordination scheme is presented to avoid allocating strong interference bit on subcarrier.

In [START_REF] Hernandez | Impact of ICI management schemes on packet scheduling strategies in OFDMA systems[END_REF], a new frequency reuse framework is developed, and the optimal power allocation method is proposed by using water filling algorithm.

In [START_REF] Hernandez | Interference management through resource allocation in multi-cell OFDMA networks[END_REF], the proposed frequency reuse framework is different from [START_REF] Hernandez | Impact of ICI management schemes on packet scheduling strategies in OFDMA systems[END_REF], the resource allocation problem which is based on SINR link estimation is discussed.

In [START_REF] Boudreau | Interference coordination and cancellation for 4G networks[END_REF], various feasible interference coordination techniques for 4G OFDM systems are proposed including power control, adaptive fractional frequency reuse, intra and inter-base station interference cancelation, spatial antenna techniques and opportunistic spectrum access etc.

In [START_REF] Liang | A frequency reuse partitioning scheme with successive interference cancellation for OFDM downlink transmission[END_REF], a wide variety of frequency reuse frameworks are presented, and the inter-cell interference under these frequency reuse frameworks are analyzed.

In [START_REF] Sung | Fair resource allocation for the Gaussian broadcast channel with ISI[END_REF], the fair resource allocation problem with inter-symbol interference in Gaussian frequency division broadcast channel is considered, and an iterative method

Introduction

Orthogonal frequency and time division multiple access (resp. OFDMA, TDMA) are two wireless multi-carrier transmission schemes currently embedded into modern technologies such as Wifi and Wimax [START_REF] Sternad | Towards systems beyond 3G based on adaptive OFDMA transmission[END_REF]. In an OFDMA network, multiple access is achieved by assigning different subsets of subcarriers (subchannels) to different users while maintaining orthogonal frequencies among subcarriers. In theory, this means that interference among subcarriers is completely minimized which allows simultaneous data rate transmissions from/to several users to/from the base station (BS). The transmission direction from the BS to users is known as a downlink process while the opposite is known as an uplink process. The TDMA transmission scheme, on the other hand, has the property of scheduling users in time by assigning all bandwidth channel capacity to only one user within a given time slot in order to transmit signals. Although, these transmission schemes work differently, the underlying purpose in both of them is nearly the same, i.e., to make an efficient use of resource allocation of power and bandwidth channel capacity of the network.

In this paper, we propose a hybrid resource allocation model for OFDMA-TDMA wireless networks and an algorithmic framework using a variable neighborhood search metaheuristic approach (VNS for short) for solving the problem [START_REF] Hansen | Variable neighborhood search: Principles and applications[END_REF]. More precisely, we aim at maximizing the total bandwidth channel capacity of an uplink OFDMA-TDMA network subject to user power and subcarrier assignment constraints while simultaneously scheduling users in time. As such, the model is best suited for nonreal time applications where signals can be transmitted at different time slots without further restrictions [START_REF] Navaie | Optimal downlink resource allocation for non-real time traffic in cellular CDMA/TDMA networks[END_REF]. The latter allows the fact that subchannel multiuser diversity can be further exploited simultaneously in frequency and in time domains. As far as we know, joint OFDMA-TDMA transmission schemes have not been investigated so far. In [START_REF] Chang | Cross-layer QoS analysis of opportunistic OFDM-TDMA and OFDMA networks. Selected Areas in Communications[END_REF], the authors compare the performance in support of real time multimedia transmission schemes when using separately OFDMA-TDMA and OFDMA networks.

Their numerical results show that OFDMA outperforms OFDMA-TDMA in several quality of service metrics for real-time applications. In a similar vein, the authors in [START_REF] Katoozian | Optimal utility-based resource allocation for OFDM networks with multiple types of traffic[END_REF] consider resource allocation of an OFDM wireless network while mixing realtime and non-realtime traffic patterns. They use a utility based framework to balance efficiency and fairness among users. Thus, they propose a scheduler mechanism which gives in one shot the subcarrier and power allocation plus the transmission scheduling for each time slot. Their numerical results indicate that the proposed method achieves a significant performance in terms of the overall throughput of the system.

Another related work is proposed in [START_REF] Navaie | Optimal downlink resource allocation for non-real time traffic in cellular CDMA/TDMA networks[END_REF] where an hybrid transmission scheme for non-realtime applications while using simultaneously code division and time division multiple access (CDMA-TDMA) schemes is investigated. The authors use a utility based approach as well, and formulate the optimal downlink resource allocation problem for a non-realtime CDMA-TDMA network. Their numerical results show a significant improvement in the overall throughput of the system due to multi-accesspoint diversity gain.

We propose a simple VNS based metaheuristic approach [START_REF] Hansen | Variable neighborhood search: Principles and applications[END_REF] to compute tight bounds for our hybrid OFDMA-TDMA optimization problem. To this purpose, we randomly partition the set of users into T disjoint subsets of users within each iteration of the VNS approach. By doing so, we must solve T smaller integer linear programming (ILP) subproblems, one for each subset of users assigned to time slot t ∈ T = {1, ..., T }. Note that, in principle, each subproblem could be solved sequentially or in parallel using any algorithmic procedure. As in our case each subproblem is formulated as an ILP problem, so far now, we solve its linear programming (LP) relaxation to compute the bounds. In fact, this is a key aspect in our proposed VNS 

Problem formulation

We consider a BS surrounded by several mobile users within a single cell area. The BS has to assign a set of N = {1, .., N } subcarriers (or subchannels) to a set of K = {1, .., K} users in different time slots T = {1, .., T } in order to allow users to send signals to the BS. The allocation process is performed by the BS dynamically in time depending on the quality of the channels which are intrinsically stochastic. The latter affects the amount of bandwidth channel capacity needed by users to transmit their signals. Without loss of generality, we assume that the BS can fully and accurately predict the channel state information for each t ∈ T . This is possible in OFDMA-TDMA networks when using adaptive overlapping pilots in uplink applications [START_REF] Sternad | Channel estimation and prediction for adaptive OFDMA/TDMA uplinks, based on overlapping pilots[END_REF].

A scheduling formulation for an uplink wireless OFDMA-TDMA network can thus be written as follows: ) denote the power utilized by user k using subcarrier n in time slot t. Finally, (P k ) denotes the maximum power allowed for each user k to transmit their signals to the BS. The objective function in P is aimed at maximizing the total bandwidth channel capacity of the network. Constraint (4.20) is a maximum available power constraint imposed for each user k and for each time slot t to transmit signals to the BS. This is the main constraint which makes the difference between a downlink and an uplink process. In the former, there should be only one power constraint imposed for the BS whereas in the latter, each user is constrained by its own available maximum power (P k ), k ∈ K. Constraint (4.21) imposes the condition that each user must be attended by the BS in a unique time slot t ∈ T . This constraint is specifically related to the time domain which is basically the transmission scheme of TDMA wireless networks. Whereas constraint (4.22) is realted to the OFDMA scheme which imposes the condition that each subcarrier should be assigned to at most one user at instant t ∈ T . Finally, constraint (4.23) are domain constraints for the decision variables.

P : max x,ϕ T t=1 K k=1 N n=1 c t k,n x t k,n (4.19) 
We note that P is an integer linear programming (ILP) formulation which is NP-Hard and thus difficult to solve directly for medium and large scale instances. Instead, we propose a VNS decomposition approach to compute tight bounds.

The VNS approach

In order to computer tight bounds for P using a VNS metaheuristic approach, we first note that for any feasible assignment of ϕ k,t = ( φk,t ), i.e., such that T t=1 φk,t = 1, ∀k. Problem P reduces to solving T subproblems of the following form: Note that there are T K feasible assignments for ϕ k,t = ( φk,t ) and each subset K t has a cardinality of k∈K φk,t users. In case any subset K t = ∅, it means that no user is scheduled to be attended in time slot t ∈ T . Also notice that solving each P(t), ∀t ∈ T such that K t = ∅ is an NP-Hard problem as it is equivalent to solve a multiple choice multiple knapsack problem [START_REF] Mostofa Akbar | Solving the multidimensional multiple-choice knapsack problem by constructing convex hulls[END_REF].

P(t) : max y k∈Kt N n=1 ĉt k,
VNS is a recently proposed metaheuristic approach [START_REF] Hansen | Variable neighborhood search: Principles and applications[END_REF] that uses the idea of neighborhood change during the descent toward local optima and to scape from the valleys that contain them. We define only one neighbor structure as N gh(ϕ) for P as the set of neighbor solutions ϕ in P at a distance "h" from ϕ where the distance "h" corresponds to the number of users assigned in solutions ϕ and ϕ. The VNS procedure we propose is depicted in Algorithm 13. As input receives an instance of problem P and provides a tight solution for it. We denote by (x, φ, f ) the final solution obtained with the algorithm where f represents the objective value function.

The algorithm is simple and works as follows. First, it computes randomly a feasible assignment of φ = ( φk,t ) and solve each subproblem P(t), ∀t ∈ T according to φ. This allows obtaining an initial solution (x, φ, f ) for P that we keep. Next, the algorithm performs a variable neighborhood search by randomly scheduling H ≤ K users in different time slots. Initially, H ← 1 while it is increased in one unit when there is no improvement after new "η" solutions have been evaluated. On the other hand, if (x, φ, f ) ← (x * , ϕ * , g * );
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T ime ← 0; count ← 0; end if 33: end while 34: (x, φ, f ) ← (x, φ, f ); a new current solution found is better than the best found so far, then H ← 1, the new solution is recorded and the process continuous. The whole process is repeated until the cpu time variable "T ime" is less than or equal to the maximum available "maxT ime". Note we reset "T ime = 0" when a new better solution is found. This gives the possibility to search other "maxT ime" units of time with the hope of finding better solutions.

As it can be observed, the VNS approach is constructed upon a key aspect of problem P, namely its decomposition structure. On the other hand, the effectiveness of the algorithm also relies on the fact that the linear programming relaxation of each subproblem P(t), ∀t ∈ T is very tight.

Numerical results

We present preliminary numerical results for problem P using the proposed VNS algorithm. We generate realistic power data using a wireless channel from [START_REF] Shen | Short range wireless channel prediction using local information[END_REF] while we set the capacities c t k,n = M t k,n , ∀k, n, t where M t k,n represents an integer number of bits randomly and uniformly generated between {1, .., 10}. These number of bits are required in higher order M-PSK or M-QAM modulation transmission schemes [2]. Specially for multimedia applications where the users bit rate demands are significantly higher. So far, we assume that the bit rate demands are uniformly distributed. In a larger version of this work, we will also consider other distribution types. Finally, we set P k = 0.4 • n∈N p 1 k,n , ∀k ∈ K and η = 500. A Matlab program is implemented using CPLEX 12 to solve problem P while we use MOSEK solver [START_REF]MOSEK is an optimization software designed to solve large-scale mathematical optimization problems[END_REF] to solve its linear programming relaxation we denote hereafter by LP and each linear programming relaxation P(t), ∀t ∈ T within each iteration of the VNS algorithm.

The numerical experiments have been carried out on a Pentium IV, 1 GHz with 2 GoBytes of RAM under windows XP. In Table 4.1, column 1 gives the instance number and columns 2-4 give the instances dimensions. In columns 5-8, we provide the optimal solutions of P, LP, and the cpu time in seconds CPLEX needs to solve P and LP, respectively. Similarly, in columns 9-11, we present the initial solutions found with the Algorithm 13, its best solution found and the cpu time in seconds the algorithm needs to reach that solution. Notice that this cpu time considers all the time spent when solving all the subproblems involved in the algorithm sequentially and not in parallel as it could be improved. In all our tests we set the maximum time available to maxT ime = 50 seconds. We also mention that whenever the variable T ime reached this amount, it means the algorithm did not find any better solution within 50 seconds, therefore we subtract this amount to the complete registered time.

The latter provides the exact cpu time the VNS approach needs to find the best solution found so far. Finally, in columns 12 and 13 we provide gaps we compute as LP-Opt.P Opt.P * 100 and |V N S-Opt.P| Opt.P * 100, respectively.

Additionally, the last three rows in Table 4.1 provide minimum, maximum and average values for columns 5-13, respectively. From Table 4.1, we mainly observe that the bounds obtained with the VNS approach are very tight when compared to those obtained with LP. For example, the gaps are less than 1% in about 66.6% and less 2% in about 83.3% of the instances when using the VNS approach. This is confirmed by the total average gap which is 1.04%. Whereas the gaps obtained with the LP are not tight when compared to the optimal solutions in all cases. Another observation is that the average best solution found by the VNS algorithm improves in approximately 43% from the initial solution found by the algorithm which confirms its effectiveness. Moreover, when computing the difference for the average cpu time needed to solve problem P between the VNS approach and CPLEX, we obtain an improvement of 97, 16%. Finally, we observe that the cpu time required by CPLEX to compute an optimal solution of a particular instance grows rapidly while increasing its dimensions. So far, the averages presented in Table 4.1 are computed using only one sample for the input data of instances 1-42.

Figure 4-1: Average bounds for instances 1-24 in Table 4.1

In order to provide more insight about these numerical results, in Figures 4-1 and 4-2 we plot average results for instances 1-24 of Table 4.1. We do not present averages for instances 25-42 since their cpu times become highly prohibitive as shown in Table 4.1. For this purpose, we generate 25 samples for the input data of these instances.

We use plots in this case to appreciate easily the trends of the average numerical results. In Figure 4-1, the instance number appears in the horizontal axis while the vertical axis gives the averages we compute for the optimal solution of P, for the linear programming relaxation of P(LP), for the initial solution (Ini.Sol.) found with Figure 4-2: Average CPU times in seconds for instances in Table 4.1 the VNS Algorithm 13, and for the VNS approach respectively. Here, the trends of the curves mainly confirm the numerical results of Table 4.1. We observe that VNS provides very tight near optimal solutions. By computing the average differences between VNS and the optimal solutions of P we obtain a 1.06% of tightness which is similar to the average obtained in Table 4.1. We also observe that the initial solutions are substantially improved by the VNS approach. In this case, we compute an average difference of 42.35% between the initials and best solutions of the VNS approach. Finally, we confirm that LP relaxation is not tight at all. In Figure 4-2, the instance number appears in the horizontal axis while the vertical axis provides the average cpu time needed by CPLEX to solve problem P, the average cpu time for LP, and for the VNS approach as well. Here, we mainly observe that the cpu times required by VNS approach are significantly lower than CPLEX. In particular, we notice that for larger instances these cpu times remain below 10 seconds which is an interesting result.

Conclusions

In this paper, we proposed a hybrid resource allocation model for OFDMA-TDMA wireless networks and a VNS metaheuristic approach for solving the problem. The model is aimed at maximizing the total bandwidth channel capacity of an uplink OFDMA-TDMA network subject to user power and subcarrier assignment constraints while simultaneously scheduling users in time. As such, the model is best suited for non-real time applications where subchannel multiuser diversity can be further exploited in frequency and in time domains, simultaneously. The effectiveness of the proposed VNS approach relies on the decomposition structure of the problem which allowed solving a set of smaller integer linear programming subproblems within each iteration of the VNS approach. It turned out that the linear programming relaxations of these subproblems were very tight. Our numerical results showed tight bounds for the proposed algorithm, e.g., less than 2% in most of the instances. Besides, the bounds were obtained at a very low computational cost.

Future research will be focussed on developing other algorithmic approaches for solving each subproblem while considering other variants of the proposed model such as minimizing power subject to capacity constraints for uplink and downlink applications.

Stochastic resource allocation for uplink wireless multi-cell OFDMA networks

In this section, we present our numerical result under the form of the paper published in MobiWIS-Mobile Web Information Systems Conference 2014, Spain.

Introduction

Orthogonal frequency division multiple access (OFDMA) is a wireless multi-carrier transmission scheme currently embedded into modern technologies such as IEEE 802.11a/g WLAN and IEEE 802.16a. It has also been implemented in mobile WiMax deployments ensuring high quality of service (QoS) [START_REF] Sternad | Towards systems beyond 3G based on adaptive OFDMA transmission[END_REF][START_REF] Yaghoobi | Scalable OFDMA physical layer in IEEE 802.16[END_REF]. In a wireless OFDMA network, multiple access is achieved by assigning different subsets of subcarriers (subchannels) to different users using orthogonal frequencies. In theory, this means that interference is completely minimized between subcarriers which allows simultaneous data rate transmissions from/to several users to/from the base station (BS). We can have an OFDMA system consisting of one or more BSs surrounded by several mobile users within a given radial transmission area. The former is known as a single-cell OFDMA network while the latter forms a multi-cell OFDMA network. The last one is by far the highest complex scenario since it involves the interference generated among different users [START_REF] Amzallag | Multi-cell slots allocation in OFDMA systems[END_REF]. Interference between the BSs is also possible as long as their radial transmissions overlap each other. The interference phenomenon is mainly caused by the fact that different users and BSs use the same frequency bands either for uplink and/or downlink transmissions. In the uplink case, the transmission of signals is performed from the users to the BS whereas in the downlink case, this is done in the opposite direction. In this paper, we propose a (0-1) stochastic resource allocation model for wireless uplink multi-cell OFDMA networks. The proposed model maximizes the total signal to interference noise ratio (SINR) produced in a multi-cell OFDMA network subject to user power and subcarrier assignment constraints. The SINR is defined as the ratio between the power of a signal over the sum of different powers caused by other interfering signals plus the absolute value of the Additive White Gaussian Noise (AWGN). Maximizing SINR is relevant in a multi-cell OFDMA network as it allows selecting the best subcarriers for the different users while simultaneously exploiting multi-user diversity. The multi-user diversity phenomena occurs since subcarriers perceive large variations in channel gains which are different for each user and then each subcarrier can vary its own transmission rate depending on the quality of the channel. The better the quality of the channel, the higher the number of bits that can be transmitted. On the other hand, the interfering signals in a particular subcarrier can be efficiently detected using any multi-user detection scheme [START_REF] Verdu | Multiuser detection[END_REF]. We transform the proposed stochastic model into a deterministic equivalent binary nonlinear optimization problem having quadratic terms and second order conic constraints. Finally, we use the deterministic model to derive an equivalent mixed integer linear programming formulation. This allows computing optimal solutions and upper bounds directly using its linear programming (LP) relaxation. Since the problem is NP-Hard, we propose a simple reduced variable neighborhood search (VNS) metaheuristic procedure to come up with tight near optimal solutions [START_REF] Hansen | Variable neighborhood search: Principles and applications[END_REF][START_REF] Hansen | Variable neighborhood decomposition search[END_REF]. We choose VNS mainly due to its simplicity and low memory requirements [START_REF] Hansen | Variable neighborhood search: Principles and applications[END_REF]. Our numerical results indicate that VNS provides near optimal solutions for most of the instances when compared to the optimal solution of the problem. Moreover, it provides better feasible solutions than CPLEX when the instances dimensions increase. Finally, these solutions are obtained at a significantly less computational cost.

Several mathematical programming formulations for resource allocation in OFD-MA networks have been proposed in the literature so far. In [START_REF] Amzallag | Multi-cell slots allocation in OFDMA systems[END_REF], the authors present a table with 19 papers published until 2007 where only two of them deal with multicell OFDMA networks either for uplink and downlink transmissions. More recent works can be found in [START_REF] Hernandez | Interference management through resource allocation in multi-cell OFDMA networks[END_REF][START_REF] Venturino | Energy-efficient coordinated user scheduling and power control in downlink multi-cell OFDMA networks[END_REF][START_REF] Zhou | Resource Allocation Based on Immune Algorithm in Multi-cell Cognitive Radio Networks with OFDMA[END_REF]. In [START_REF] Hernandez | Interference management through resource allocation in multi-cell OFDMA networks[END_REF], the authors address the problem of inter-cell interference (ICI) management in the context of single frequency broadband OFDMA based networks. Whereas in [START_REF] Zhou | Resource Allocation Based on Immune Algorithm in Multi-cell Cognitive Radio Networks with OFDMA[END_REF], the problem of resource allocation in multi-cell OFDMA networks under the cognitive radio network (CRN) paradigm is considered. Finally, in [START_REF] Venturino | Energy-efficient coordinated user scheduling and power control in downlink multi-cell OFDMA networks[END_REF] the problem of energy efficient communication in the downlink of a multi-cell OFDMA network is considered where user scheduling and power allocation are jointly optimized. As far as we know, stochastic programming or VNS algorithmic procedures have not been investigated so far for resource allocation in multi-cell OFDMA networks. In this section, we adopt a simple scenario based approach to handle the expectation in the objective function of our stochastic formulation [START_REF] Gaivoronski | Knapsack problem with probability constraints[END_REF]. This is a valid assumption in stochastic programming framework as one may use historical data for instance [START_REF] Delage | Distributionally robust optimization under moment uncertainty with application to data-driven problems[END_REF][START_REF] Gaivoronski | Knapsack problem with probability constraints[END_REF]. On the other hand, we use a second order conic programming (SOCP) approach to deal with the probabilistic user power constraints [START_REF] Lobo | Applications of second-order cone programming[END_REF]. For this purpose, we assume that the entries in the input power matrices are independent multivariate random variables normally distributed with known means and covariance matrices. The normal distribution assumption is motivated by its several theoretical characteristics amongst them the central limit theorem.

This paper is organized as follows. Section 4.4.2 briefly introduces the system description and presents the stochastic multi-cell OFDMA model. In Section 4.4.3,

we transform the stochastic model into a deterministic equivalent mixed integer linear programming problem. Subsequently, in Section 4.4.4 we present our VNS algorithmic procedure. In Section 4.4.5, we conduct numerical tests to compare the optimal solution of the problem with those obtained with the LP relaxation and with the VNS approach, respectively. Finally, in Section 4.4.6 we give the main conclusions of the paper and provide some insights for future research.

System description and problem formulation

In this section, we give a brief system description of an uplink wireless multi-cell OFDMA network and formulate a stochastic model for the problem.

System description

A general system description of an uplink wireless multi-cell OFDMA network is shown in Figure 4 where no strict planning of the network is possible due to short time constraints. In a multi-cell OFDMA network, the interference phenomena is a major concern in order to efficiently assign subcarriers to users. Each BS must perform the allocation process over time in order to exploit the so-called multi-user diversity and hence increasing Amplitude Modulation) modulations are used in OFDMA networks [START_REF] Wong | A low complexity algorithm for proportional resource allocation in OFDMA systems[END_REF].

In the next subsection, we propose a (0-1) stochastic resource allocation model to efficiently assign subcarriers to users in an uplink wireless multi-cell OFDMA network.

Stochastic formulation

We consider an uplink wireless multi-cell OFDMA network composed by a set of N = {1, .., N } subcarriers in each BS, a set of K = {1, .., K} users and a set of B = {1, .., B} BSs. The BSs are surrounded by several mobile users within a given radial transmission range as depicted in Figure 4-3. Each BS has to assign a set of subcarriers to a set of users within a given frame 1 . The allocation process is performed by each BS dynamically in time depending on the quality of the channels in order to exploit multi-user diversity. The stochastic model we propose can be written as follows

P 0 : max x E ξ    B b=1 K k=1 N n=1   Q b k,n (ξ)x b k,n B {w=1,w =b} K {v=1,v =k} Q w v,n (ξ)x w v,n + |σ 0 (ξ)|      (4.29) 
st:

P N n=1 p b k,n (ω)x b k,n ≤ P b k ≥ (1 -α), ∀k ∈ K, b ∈ B (4.30) K k=1 x b k,n ≤ 1, ∀n ∈ N , b ∈ B (4.31) x b k,n ∈ {0, 1}, ∀k, n, b (4.32) 
where E{•} denotes mathematical expectation and P{•} a probability measure. The decision variable x b k,n = 1 if user k is assigned subcarrier n in BS b, otherwise x b k,n = 0. The objective function (4.29) maximizes the total expected SINR produced in an uplink wireless multi-cell OFDMA network. The parameter σ 0 (ξ) represents the AWGN and | • | the absolute value. Constraint (4.30) is a probabilistic user power constraint [START_REF] Gaivoronski | Knapsack problem with probability constraints[END_REF][START_REF] Lobo | Applications of second-order cone programming[END_REF]. This is the main constraint which makes the difference between a downlink and an uplink application. In the former, there should be only one power constraint imposed for each BS whereas in the latter, each user is constrained by its own maximum available power

P b k , k ∈ K, b ∈ B.
Without loss of generality, we assume that each user makes his own decision regarding the amount of power P b k to be used for each BS b ∈ B. In this paper, we mainly focus on the combinatorial nature of the problem rather than using a specific technology where the power assignment protocol may differ. For example, both technologies WiMAX and long term evolution (LTE) use OFDMA, however both operate under different protocols. Therefore, in order to avoid specific technological aspects, in our numerical results presented in Section 4.4.5, we generate these power values randomly. We further assume that the

entries in each input matrix (Q b k,n ) = (Q b k,n (ξ)) and input vector (p b k,n ) = (p b k,n (ω)) are random variables. In general, the entries in matrix (Q b k,n (ξ)) can be computed as (Q b k,n (ξ)) = (p b k,n (ω)H b k,n (χ))
, where each entry in matrix (H b k,n (χ)) represents the channel gain associated to the channel link of user k when using subcarrier n of b ∈ B.

The probabilistic constraint (4.30) imposes the condition that each power constraint must be satisfied at least for (1 -α)% of the cases where α ∈ [0, 0.5) represents the risk of not satisfying some of these constraints. Constraint (4.31) indicates that each subcarrier in each BS should be assigned to at most one user. Finally, constraint (4.32) are domain constraints for the decision variables. In the next section, we present a simple equivalent deterministic formulation for P 0 .

Deterministic equivalent formulation

In order to obtain a simple deterministic equivalent formulation for P 0 , we assume that the input vectors (p b k,• (ω)) ∀k, b are independent multivariate random variables normally distributed with known means (p b k,• ). Also, let Σ kb = (Σ kb ij ), ∀i, j ∈ N , k ∈ K, b ∈ B be the corresponding covariance matrices for each vector (p b k,• ). For sake of simplicity, we assume that the input matrices (Q b k,n (ξ)) and the input parameter σ 0 (ξ) are discretely distributed which might be the case when using sample data in order to approximate any unknown source of uncertainty [START_REF] Delage | Distributionally robust optimization under moment uncertainty with application to data-driven problems[END_REF][START_REF] Gaivoronski | Knapsack problem with probability constraints[END_REF]. This allows considering finite sets of scenarios such as (Q b,1 k,n ), (Q b,2 k,n ), ..., (Q b,S k,n ) and σ 1 0 , σ 2 0 , ..., σ S 0 ) with probabilities P r(s) ≥ 0, s ∈ S = {1, 2, ..., S} such that s∈S P r(s) = 1. In particular, each σ s 0 , s ∈ S is generated according to a normal distribution with zero mean and standard deviation equal to one. Thus, an equivalent deterministic formulation for P 0 can be written as [START_REF] Lobo | Applications of second-order cone programming[END_REF]:

P 1 : max x B b=1 K k=1 N n=1 S s=1   P r(s)Q b,s k,n x b k,n B {w=1,w =b} K {v=1,v =k} Q w,s v,n x w v,n + |σ s 0 |   (4.33) st: N n=1 pb k,n x b k,n + F -1 (1 -α) N i=1   N j=1 Σ k,b i,j x b k,j   2 ≤ P b k , ∀k ∈ K, b ∈ B (4.34) K k=1 x b k,n ≤ 1, ∀n ∈ N , b ∈ B (4.35) x b k,n ∈ {0, 1}, ∀k, n, b (4.36) 
where F -1 (1 -α) denotes the inverse of F (1 -α) which is the standard normal cumulative distribution function.

Mixed integer linear programming formulation

In order to obtain an equivalent mixed integer linear programming formulation for P 1 , we introduce variables t b,s k,n , ∀k, n, b, s in the objective function (4.33) and square both sides of constraint (4.34). This allows writing P 1 equivalently as

P 2 : max x,t B b=1 K k=1 N n=1 S s=1 P r(s)t b,s k,n (4.37) st: B {w=1,w =b} K {v=1,v =k} Q w,s v,n t b,s k,n x w v,n + t b,s k,n |σ s 0 | ≤ Q b,s k,n x b k,n , ∀k, n, b, s (4.38) F -1 (1 -α) 2 N i=1   N j=1 Σ k,b i,j x b k,j   2 ≤ P b k - N n=1 pb k,n x b k,n 2 ∀k ∈ K, b ∈ B (4.39) 
P b k ≥ N n=1 pb k,n x b k,n , ∀k ∈ K, b ∈ B (4.40) K k=1 x b k,n ≤ 1, ∀n ∈ N , b ∈ B (4.41) x b k,n ∈ {0, 1}, ∀k, n, b (4.42) 
Afterward, we consider separately each quadratic term in constraint (4.39) and in- 

troduce linearization variables ϕ w,b,s v,n,k = t b,s k,n x w v,n with (v = k, w = b) and θ b k,j,l = x b k,j x b k,l , ∀k ∈ K, j, l ∈ N with (j = l)
B {w=1,w =b} K {v=1,v =k} Q w,s v,n ϕ w,b,s v,n,k + t b,s k,n |σ s 0 | ≤ Q b,s k,n x b k,n , ∀k, n, b, s (4.44) ϕ w,b,s v,n,k ≤ Mx w v,n , ∀v, n, k, w, b, s, (v = k, b = w) (4.45) ϕ w,b,s v,n,k ≤ t b,s k,n , ∀v, n, k, w, b, s, (v = k, b = w) (4.46) ϕ w,b,s v,n,k ≥ Mx w v,n + t b,s k,n -M, ∀v, n, k, w, b, s, (v = k, b = w) (4.47)
ϕ w,b,s v,n,k ≥ 0, ∀v, n, k, w, b, s, (4.48) 

F -1 (1 -α) 2 N i=1   N j=1 (Σ kb ij ) 2 x b k,j + N j=1 N l=1,j =l Σ kb ij Σ kb il θ b k,j,l   ≤   (P b k ) 2 -2 N n=1 pb k,n P b k x b k,n + N n=1 (p b k,n ) 2 x b k,n + N j=1 N l=1,j =l pb k,j pb k,l θ b k,j,l   ∀k ∈ K, b ∈ B (4.49) P b k ≥ N n=1 pb k,n x b k,n , ∀k, b (4.50) K k=1 x b k,n ≤ 1, ∀n ∈ N , b ∈ B (4.51) θ b k,j,l ≤ x b k,j , ∀k ∈ K, j, l(j = l), b ∈ B (4.52) θ b k,j,l ≤ x b k,l , ∀k ∈ K, j, l(j = l), b ∈ B (4.53) θ b k,j,l ≥ x b k,j + x b k,l -1, ∀k ∈ K, j, l(j = l), b ∈ B (4.54) x b k,n ∈ {0,

Variable neighborhood search procedure

VNS is a recently proposed metaheuristic approach [START_REF] Hansen | Variable neighborhood search: Principles and applications[END_REF][START_REF] Hansen | Variable neighborhood decomposition search[END_REF] that uses the idea of neighborhood change during the descent toward local optima and to avoid valleys that contain them. We define only one neighborhood structure as N gh(x) for P 1 as the set of neighbor solutions x in P 1 at a distance "h" from x where the distance "h" corresponds to the number of 0-1 values which are different in x and x, respectively.

We propose a reduced variable neighborhood search procedure [START_REF] Hansen | Variable neighborhood search: Principles and applications[END_REF][START_REF] Hansen | Variable neighborhood decomposition search[END_REF] in order to compute feasible solutions for P 1 . The VNS approach mainly consists in solving the following equivalent problems

P V N S 1 : max x B b=1 K k=1 N n=1 S s=1   P r(s)Q b,s k,n x b k,n B {w=1,w =b} K {v=1,v =k} Q w,s v,n x w v,n + |σ s 0 |   + M K k=1 B b=1 min        P b k - N n=1 pb k,n x b k,n -F -1 (1 -α) N i=1   N j=1 Σ k,b i,j x b k,j   2 , 0        st: K k=1 x b k,n ≤ 1, ∀n ∈ N , b ∈ B x b k,n ∈ {0, 1}, ∀k, n, b
Where M is a positive bigM value. The VNS procedure we propose is depicted in Algorithm 14. It receives an instance of problem P 1 and provides a feasible solution for it. We denote by (x, f ) the final solution obtained with the algorithm where f represents the objective function value and x the solution found. The algorithm is simple and works as follows. First, it computes randomly an initial feasible solution (x, f ) for P V N S 1 that we keep. Next, the algorithm performs a variable neighborhood search process by randomly assigning to H ≤ K users a different subcarrier and a different BS. Initially, H ← 1 and it is increased in one unit when there is no improvement after new "η" solutions have been evaluated. On the other hand, if a new current solution is better than the best found so far, then H ← 1, the new solution is recorded and the process goes on. Notice that the value of H is increased until H = K, otherwise H ← 1 again after new "η" solutions have been evaluated.

This gives the possibility of exploring in a loop manner from local to wider zones of the feasible space. The whole process is repeated until the cpu time variable "T ime" is less than or equal to the maximum available "maxT ime". Note we reset "T ime = 0" when a new better solution is found. This allows searching other "maxT ime" units of time with the hope of finding better solutions. Draw a random number r in the interval (0, 1); 

Numerical results

We present numerical results for P 1 using CPLEX 12 and the proposed VNS algorithm. We generate a set of 1000 samples of realistic power data using a wireless channel from [START_REF] Shen | Short range wireless channel prediction using local information[END_REF] while the entries in matrices (Q b,s k,n ) are computed as (Q b,s k,n ) = p b,s k,n H b,s k,n , ∀s ∈ S where the values of p b,s k,n are also generated using the wireless channel from [START_REF] Shen | Short range wireless channel prediction using local information[END_REF]. with zero mean and standard deviation equal to one. We calibrated the value of η = 50 in Algorithm 14. Finally, we set α = 0.1 and the bigM value M = 10 10 .

A Matlab program is implemented using CPLEX 12 to solve P M IP and its linear programming relaxation LP M IP and the proposed VNS Algorithm 14. The numerical experiments have been carried out on a AMD Athlon 64X2 Dual-Core 1.90 Ghz with 1.75 GoBytes of RAM under windows XP. In Table 4.2, column 1 gives the instance number and columns 2-4 give the instances dimensions. In columns 5, 7 and 6, 8, we provide the optimal solutions of P M IP , LP M IP , and the cpu time in seconds CPLEX needs to solve them. Similarly, in columns 9-10, we present the best solution found and the cpu time in seconds VNS Algorithm 14 requires to reach that solution. We arbitrarily set the maximum cpu time available for CPLEX to be at most 1 hour. While for the VNS algorithm, we set in all our tests the maximum available time to maxT ime = 100 seconds. We also mention that whenever the variable T ime in Algorithm 14 reaches the 100 seconds, it means the algorithm did not find any better solution within this amount of time, therefore we subtract this amount to the complete registered time. The latter provides the exact cpu time VNS approach requires to obtain that solution. Finally, in columns 11 and 12, we provide gaps we compute as LP M IP -P M IP P M IP * 100 and |V N S-P M IP | P M IP * 100 respectively. We also mention that the preliminary numerical results presented in Table 4.2 are obtained using only S = 4 scenarios in P M IP . From Table 4.2, we mainly observe that the gaps obtained with the VNS approach are lower than 5% for most of the instances. In particular, we obtain optimal solutions for instances 2-3 and 10-11, and best feasible solutions than CPLEX for the instances 17-24. Moreover, for the larger size instances 21-24, the differences between the solutions obtained with P M IP and VNS are notably larger which confirms that the proposed VNS approach outperforms CPLEX significantly.

Besides, these solutions are obtained at a considerably lower cpu time. This obser- vation can also be verified by looking at the upper bounds of the optimal solutions obtained with LP M IP which, by far, overpass the solutions obtained with P M IP . This is not the case for the VNS approach. In summary, we see that the gaps are better when the number of users increase. This is an interesting observation as these type of networks are designed for multiple access purposes. Regarding the cpu times, we observe that VNS can find better feasible solutions at a significantly less computational cost than CPLEX. This is the case in about 83.3% of the instances. Particularly, for instances 7-8, 12, 14-16, and 17-24 where the cpu time required by CPLEX to get these solutions is at least one hour. On the other hand, the cpu time required by CPLEX to solve the LP relaxations grows considerably when the instances dimensions increase. Finally, we observe that the gaps obtained with the LP relaxation deteriorates rapidly when the instances dimensions increase. In order to give more insight regarding the number of scenarios considered in P M IP , in slightly deteriorates when compared to Table 4.2. In this case, they are in average lower than 7% approximately. In particular, we obtain near optimal solutions for instances 2-4, 8-11, and 18. We know that these solutions are near optimal since the solutions obtained with P M IP are obtained in less than 1 hour of cpu time. Otherwise they should only be considered as best feasible solutions found with CPLEX.

We also see that CPLEX can not solve large scale instances and that the gaps obtained with VNS get tighter when the number of users increase. Regarding the cpu times, we observe that VNS can find better feasible solutions at a significantly less computational cost than CPLEX. Finally, the cpu time required by CPLEX to solve the LP relaxations grows even faster than in Table 4.2 when the instances dimensions increase. Next, we further consider a more realistic demanding situation where the number of users is significantly larger. These numerical results are presented below in Tables 4.4 and 4.5, respectively. The column information in these tables is exactly the same as in the previous tables. In particular Table 4.4 presents numerical results using S = 4 whereas in Table 4.5 we use S = 8 scenarios. In these tables, we mainly observe that finding optimal solutions with CPLEX becomes rapidly prohibitive. In fact, we can only find feasible solutions for instances 1, 2 and 9 in Table 4.4 and for instance number 1 in Table 4.5 using the linear programs. On the opposite, using VNS approach still allows finding feasible solutions up to instances with K = 100 users. Although, the cpu times are considerably larger when compared to Tables 4.2 and 4.3, respectively. This confirms again that the proposed VNS approach is competitive.

In general, when looking at the four tables presented, we observe that solving P M IP and LP M IP is considerably harder than solving the proposed VNS approach.

However, the proposed linear programs still provide an alternative way to compute optimal solutions and upper bounds for the multi-cell OFDMA problem. Also, we observe that the VNS approach outperforms the solutions obtained with CPLEX in most of the cases, especially when the instances dimensions increase. Additionally, we observe that the number of scenarios s ∈ S directly affects the performance of CPLEX when solving the linear programs. This can be explained by the fact that using more scenarios implies using more variables in the linear programs. This is not the case for the VNS approach where the number of variables in P V N S 1 does not depend on the number of scenarios. Finally, we observe that the linear programs can not be solved efficiently when considering a larger number of users in the system. Hence, the number of scenarios and the number of users can be considered as bottlenecks for the proposed linear programs. On the other hand, the performance of the VNS approach deteriorates when incrementing the number of users and the number of subcarriers either separately or simultaneously.

Conclusions

In this paper, we propose a (0-1) stochastic resource allocation model for uplink wireless multi-cell OFDMA Networks. The model maximizes the total signal to interference noise ratio produced in a multi-cell OFDMA network subject to user power and subcarrier assignment constraints. We transformed the stochastic model into a deterministic equivalent binary nonlinear optimization problem having quadratic terms and second order conic constraints. Subsequently, we use the deterministic model to derive an equivalent mixed integer linear programming formulation. Finally, we proposed a reduced variable neighborhood search metaheuristic procedure [START_REF] Hansen | Variable neighborhood search: Principles and applications[END_REF][START_REF] Hansen | Variable neighborhood decomposition search[END_REF] to compute feasible solutions. Our preliminary numerical results provide near optimal solutions for most of the instances when compared to the optimal solution of the problem. Moreover, we find better feasible solutions than CPLEX when the instances dimensions increase. Finally, we obtain these feasible solutions at a significantly less computational cost.

As future research, we plan to study new stochastic and algorithmic approaches for the problem. first presented hierarchy programming in his monograph [START_REF] Stackelberg | The theory of the market economy[END_REF]. Although hierarchy programming is similar to multilevel programming, for multilevel programming, the decision makers in each level make decisions in sequence, and each strategy set can be no longer separated. In 1960s, Dantzig and Wolfe proposed the decomposition algorithm for large scale linear programming, which admitted a core decision maker whose goal is above all else. However, there is a big difference between the decomposition algorithm and multilevel programming. The latter admits the highest decision maker but not absolutely, it allows the lower decision makers have different interests. The multi-objective programming which was developed in 1970s usually seek a compromise solution for conflicting multiple objective function of a decision maker, while the multilevel programming emphasizes the impact of the lower level decision on the upper level decision, and the multilevel programming problem usually can not be solved independently by levels.

Since the 1970s, in the study of the various reality optimization problems of distributed level systems such as production planning, resource allocation, government regulation and engineering design, it was found that the above methods and traditional mathematical programming techniques can not better solve such problems, thus in the process of finding a variety of specific methods which successfully solve these problems, the concept and the method of multilevel programming is gradually formed. The term "multilevel programming" is first proposed by Candler and Norton in the research report of the dairy industry model and the Mexico agricultural model [START_REF] Candler | Mutilevel Programming[END_REF].

In the past few decades, the theory, method and application of multilevel programming have a lot of development and become a new important branch in the optimization theory. In the study of multilevel programming, the bi-level programming is an important study object. The bi-level programming is a special case in the multilevel programming, which can be seen as a complex of a series of bi-level programming [START_REF] Benson | On the structure and properties of a linear multilevel programming problem[END_REF][START_REF] Bialas | Two-level linear programming[END_REF].

In this chapter, Section 5.1, 5.2, 5.3, 5.4, 5.5 present the definition, formulation, application, property and method of bi-level programming in detail, respectively. Section 5.6 proposes a distributionally robust model for a (0-1) stochastic quadratic bi-level programming problem. Section 5.7 concludes this chapter.

Definition

Bi-level programming was first proposed in the research of unbalanced economy market competition. In 1973, in the article of Bracken and Mcgill [51], the bi-level programming model is presented. In 1977, in the scientific report of Candler and Norton [START_REF] Candler | Mutilevel Programming[END_REF], the term of bi-level programming and multilevel programming officially appeared. From the 1980s, bi-level programming attracted a lot of attention. The research began to focus on bi-level programming problems and multilevel programming problems.

Bi-level programming is a kind of system optimization problem with two level hierarchical structures. The upper and lower level problems have their own decision variables, constraints and objective functions. The objective function and constraint of the upper level problem is not only related to the decision variable of upper level problem, but also the optimal solution of lower level problem, while the optimal solution of lower level problem is affected by the upper level decision variable.

According to the above definition, bilevel programming has the following main features:

(1) Hierarchy. The system is a hierarchical management, decision makers in each level make decisions orderly, and the lower obeys the upper.

(2) Conflict. Each decision maker has its different objective function, and these objective functions are often contradictory.

(3) Priority. The upper decision maker makes priority decisions, while the lower decision maker can not go against the upper decision when chooses the decision to optimize its objective function.

(4) Conditionality. The lower decision will not only determine the achievement of its own objective, but also affects the realization of the upper objective.

(5) Dependence. The allowed strategy set of each level decision maker are usually inseparable, they tend to form an interconnected whole.

Formulation

In 1973, the bi-level programming model was appeared in Bracken and Mcgill's article.

In bi-level programming model, different decision makers control the corresponding decision variables and optimize their own objective function. Because the strategy set selected by two levels is independent, the upper decision will affect the lower decision selection and objective achievement, and vice versa. 

s.t. G(x, v(x)) ≤ 0 v(x) = min y∈Y {f (x, y)|g(x, y) ≤ 0} (5.3)
Generally, the first model is a hot area of researches.

In order to study the characteristic, method and application of bi-level programming problem, some further concepts of bi-level programming are introduced in the following:

(1)Constraint region:

Ω = {(x, y) ∈ R n 1 × R n 2 :
x ∈ X, G(x, y) ≤ 0 and g(x, y) ≤ 0}

(2)For a given x, the lower level feasible set:

Ω(x) = {y ∈ R n 2 : g(x, y) ≤ 0}
(3)For a given x, the rational reaction set of lower level problem:

M (x) = {y ∈ R n 2 : y ∈ argmin{f(x, y) : y ∈ Ω(x)}} (4 
)For a given x and corresponding y ∈ M (x), the optimal value of lower level problem:

v(x) = f (x, y)
(5)Induced region:

IR = {(x, y) ∈ R n 1 × R n 2 : x ∈ X, G(x, y) ≤ 0, y ∈ M (x)}
The induced region is the feasible solution set of bi-level programming problem.

For any decision variable x of upper level, when the rational reaction set M (x) is a singleton, the solution of lower level is unique. In addition, in order to ensure that bi-level programming problem has a solution, we assume that the constraint region Ω and the induced region IR are nonempty and bounded. The definition of feasible solution and optimal solution are given below. Assuming that x is selected in upper level, lower level will optimize its objective function with parameter x. However, for the given x, lower level problem may have an infinite number of optimal solutions. These solutions are undifferentiated to the lower level, but are probably different for the objective function of upper level, thus the difficulty of optimizing objective function of upper level increases. In other words, the rational reaction set M (x) of lower level is not a singleton, the objective function F (x, y)(y ∈ M (x)) of upper level problem is a multi-valued function.The following example will illustrate this.

Example.

min x F = x + y 1 -y 2 s.t. 0 ≤ x ≤ 1 min y f = -y 1 -y 2 s.t. x + y 1 + y 2 = 1 y 1 , y 2 ≥ 0
For the above problem, the upper level has only one decision variable x, and the lower level has two decision variables y 1 and y 2 . When 0 ≤ x ≤ 1, the objective function of lower level can be obtained as f = x -1 according to x + y 1 + y 2 = 1.

When x = 0.5 in upper level, the optimal value of objective function in lower level is min f = x -1 = -0.5, but the optimal solution of lower level is not unique. When the solution of the lower level satisfies constraints x + y 1 + y 2 = 1 and y 1 , y 2 ≥ 0, the objective function of the upper level F = x + y 1 -y 2 will be affected obviously. For example, when (y 1 , y 2 ) = (0.5, 0), F = 1; when (y 1 , y 2 ) = (0, 0.5), F = 0. For this example, the upper level can take any x ∈ [0, 1], and the optimal solution of lower level is not unique, that is, there will be an infinite number of optimal solutions. This example illustrates that when the upper level gives an allowable decision, if the optimal solution of the lower level is not unique, i.e., the element in the rational reaction set of the lower level is not unique, it will cause the complexity of solving the entire bilevel programming problem, even not guarantee to obtain the optimal solution of the problem [START_REF] Ben-Ayed | Bilevel linear programming[END_REF].

In order to overcome the difficulty of multiple solutions, Bialas and Karnm [START_REF] Bialas | Two-level linear programming[END_REF] proposed a method which replaces the objective function of the lower level f 2 by using f 2 + εf 1 , where ε is an appropriate small positive number. The idea consists in the upper level gives a part of the income to the lower level, thus the lower level selects its solution which is beneficial for the upper level. In other application of bilevel programming problem, f 2 -εf 1 can be used to represent a kind of "opposition" relationship between the upper and lower objectives.

Generally, when the lower level of bi-level linear programming problem exists more than one optimal solution, the bi-level linear programming can be solved twice. The first time f 2 + εf 1 is used to replace f 2 (optimistic case), the second time f 2 -εf 1 instead of f 2 (pessimistic case). If a solution in both cases is the optimal solution, then it is the optimal solution of the whole problem. Otherwise, the bi-level linear programming problem is only able to get the lower and upper bounds for its optimal solution, and the optimal solution doesn't exist.

Dempe [START_REF] Dempe | Foundations of bilevel programming[END_REF] pointed out that if the solution of the lower level problem is not unique, the bi-level programming will be unstable. In order to overcome the difficulty, two modeling approaches are proposed in the literature which are optimistic bilevel programming and pessimistic bi-level programming.

In the optimistic bi-level programming, the follower will choose an optimal solution which is the best one for the leader. The optimistic bi-level programming problem is defined as following: However, both optimistic and pessimistic solution are not the good approximation to the solution of the original bi-level programming in practice. A slight change in the data of the problem will have a huge impact on the solution of the lower level.

Therefore, Dempe proposed not to select the optimal solution of bi-level programming but select a small perturbation of the optimal solution to ensure that the lower level has the unique and stable solution. In addition, Dempe gave some theories to assure such solutions can be obtained, and also presented some algorithms for the bi-level programming problem where the optimal solution of lower level is not unique [START_REF] Dempe | A bundle algorithm applied to bilevel programming problems with non-unique lower level solutions[END_REF][START_REF] Dempe | On an algorithm solving two-level programming problems with nonunique lower level solutions[END_REF].

Application

For general bi-level programming problem, the earliest application that appears in the literature is the general problem of economic planning at the regional or national level [START_REF] Migdalas | Multilevel optimization: algorithms and applications[END_REF]. The early work of Candler and Nonton [START_REF] Candler | Mutilevel Programming[END_REF] mainly focused on the development of agriculture in northern Mexico, which explained how to use bi-level programming to analyze the adjustment of economy. Fortuny-Amat and McCarl [START_REF] Fortuny-Amat | A representation and economic interpretation of a two-level programming problem[END_REF] gave a regional model for the competition of fertilizer supply among the farm. Aiyoushi, Shimizu [3] and Bard [25] studied the energy distribution problem of the hierarchical organization.

The transportation is a major application area of bi-level programming. Currently there is a wide literature which describes the urban transportation network design problem (NDP) with the bi-level programming model. Leblance and Boyce [START_REF] Leblanc | A bilevel programming algorithm for exact solution of the network design problem with user-optimal flows[END_REF] first solved the NDP with the bi-level programming model, and gave a clear definition, but their model assumed that the cost function increases linearly which has a certain gap with the practical problem. Later, Ben-Aye et al. [START_REF] Ben-Ayed | A general bilevel linear programming formulation of the network design problem[END_REF] gave a more general formulation under the condition of allowing the cost function increases non-linearly. Bard [START_REF] Bard | Practical bilevel optimization: algorithms and applications[END_REF] took Tunisia for instance, according to the regional highway network planning problem in developing country, discussed a more realistic bi-level programming model. In addition, the study of NDP such as continuous NDP, balance NDP etc. can be seen in [START_REF] Ben-Ayed | Construction of a real-world bilevel linear programming model of the highway network design problem[END_REF][START_REF] Friesz | The multiobjective equilibrium network design problem revisited: A simulated annealing approach[END_REF][START_REF] Marcotte | Network design problem with congestion effects: A case of bilevel programming[END_REF][START_REF] Marcotte | Efficient implementation of heuristics for the continuous network design problem[END_REF][START_REF] Suh | Solving nonlinear bilevel programming models of the equilibrium network design problem: a comparative review[END_REF][START_REF] Tzeng | Application of multiple criteria decision making for network improvement[END_REF].

The application of bilevel programming on the transportation also includes estimating Origin-Destination demands problem and traffic control problem. Migdalas et al. [START_REF] Migdalas | Multilevel optimization: algorithms and applications[END_REF] made a detailed description for estimating O-D demands problem, discussed the significance and application of the problem, and derived the necessary optimality condition. Moreover, how to control the signal to make the user have a reasonable response and reduce the traffic congestion and delay can be also considered as a bi-level programming problem, the related literature can be seen in [START_REF] Chiou | Optimization of area traffic control for equilibrium network flows[END_REF][START_REF] Yang | Traffic assignment and traffic control in general freeway-arterial corridor systems[END_REF][START_REF] Yang | Traffic assignment and signal control in saturated road networks[END_REF].

Resource allocation is a kind of complex management problem. The upper department allocates resources to multiple lower departments, and lower departments organize production to maximize their own benefits according to the allocated resources and their existing resources. However, the resource of the upper level department is limited, and the benefit of each lower department is different, so how to make limited resources produce the greatest benefits is the biggest problem for the upper level.

Based on this contradiction, bi-level programming model can describe this kind of problem well [START_REF] Bard | A bilevel programming approach to determining tax credits for biofuel production[END_REF].

The price problem and the production planning problem are typical bilevel programming problem. Baumol and Fabian [START_REF] Baumol | Decomposition, pricing for decentralization and external economies[END_REF] studied the pricing control problem with bi-level programming, Lam and Zhou [START_REF] Lam | Optimal fare structure for transit networks with elastic demand[END_REF], Goel and Haghani [START_REF] Goel | Model for determining airline fares for meeting or convention demand[END_REF] also focused on such problem. Nicholls [START_REF] Nicholls | Aluminum Production Modeling-A Nonlinear Bilevel Programming Approach[END_REF][START_REF] Nicholls | Developing an integrated model of an aluminium smelter incorporating sub-models with different time bases and levels of aggregation[END_REF] continuously published the articles about the production planning problem of aluminum production company. Karlof and Wang [START_REF] Karlof | Bilevel programming applied to the flow shop scheduling problem[END_REF] studied the flow shop-scheduling problem.

Currently, with the rapid development of market globalization and the drastic change of competition environment, more and more companies recognize the importance of supply chain management. Manufacturer working closely with its supplier to achieve a win-win strategy becomes a hot research issue. Therefore, establishing the bi-level programming model, while the lower level objective is to maximize the benefit to each member and the upper level objective is the comprehensive performance of the supply chain, has important application value and practical significance. In addition, the bi-level programming is also applied in the field of engineering [START_REF] Kočvara | A numerical solution of two selected shape optimization problems[END_REF],

Then, Outrata [START_REF] Outrata | Necessary optimality conditions for Stackelberg problems[END_REF], Chen and Florian [START_REF] Chen | The nonlinear bilevel programming problem: Formulations, regularity and optimality conditions[END_REF] obtained some sufficient and necessary conditions for bi-level programming by using non-smooth analysis. J.J. Ye et al. [START_REF] Ye | Exact penalization and necessary optimality conditions for generalized bilevel programming problems[END_REF] got the Kuhn-Tucker necessary optimality condition for generalized bi-level programming through the exact penalty function and non-smooth analysis, while J. Ye and X. Ye [START_REF] Ye | Necessary optimality conditions for optimization problems with variational inequality constraints[END_REF] gave the Kuhn-Tucker necessary optimality condition for bilevel programming under the condition of given constraint qualification. Recently, Babahadda and Gadhi [START_REF] Babahadda | Necessary optimality conditions for bilevel optimization problems using convexificators[END_REF] gave the necessary optimality condition for the bi-level optimization problem by applying the concept of convexificator, thus introduced an appropriate regularity condition to understand Lagrange-Kuhn-Tucker multiplier. J.

Ye [START_REF] Ye | Constraint qualifications and KKT conditions for bilevel programming problems[END_REF] extended some common constraint qualifications for nonlinear bi-level programming, and derived the Kuhn-Tucker necessary optimality condition under these constraint qualifications.

However, the optimality analysis above ignore the geometric character of the problem. Savard and Gauvin [START_REF] Savard | The steepest descent direction for the nonlinear bilevel programming problem[END_REF] proposed the necessary optimality conditions for bilevel programming problem based on the steepest descent direction. Vicente and Calamai [START_REF] Vicente | Geometry and local optimality conditions for bilevel programs with quadratic strictly convex lower levels[END_REF] directly presented the first-order and second-order necessary and sufficient condition for the bi-level programming with strictly convex quadratic lower level problem based on the geometric property of bi-level programming.

The common Karush-Kuhn-Tucker (KKT) condition is illustrated below. The basic idea of Karush-Kuhn-Tucker approach consists in the lower level problem can be replaced by its Karush-Kuhn-Tucker conditions which can transform the bi-level programming problem into a single level programming problem. The well known reformulation within KKT conditions is:

min x,y,µ F (x, y) s.t. G(x, y) ≤ 0 g(x, y) ≤ 0 ∇ y f (x, y) + µ∇ y g(x, y) = 0 µ T g(x, y) = 0, µ ≥ 0 (x, y) ∈ R n 1 × R n 2 (5.8)

Methods

Extreme-point approach

The basic idea consists in any solution of linear bi-level programming problem appears in the extreme point of lower level constraint set. Firstly, a variety of methods are used to find the extreme point of constraint space, then the local optimal point or global optimal point are found out from the extreme point. However, as the size of the problem and the number of extreme point increase, the amount of computation increases rapidly, thus the large scale problem is difficult to solve.

In the study of linear bi-level programming which has no constraint in upper level and the unique solution in lower level, Candle and Townsley [START_REF] Candler | A linear two-level programming problem[END_REF] got a property: if the number of linear bi-level programming optimal solutions is finite, then at least an extreme point is the optimal solution from the extreme point of the constraint set. Later, Bard [START_REF] Bard | An investigation of the linear three level programming problem[END_REF], Bialas and Karwan [START_REF] Bialas | Two-level linear programming[END_REF] proved that this property is a general characteristic of linear bi-level programming under the assumption of the bounded constraint set. Bialas and Karwan [START_REF] Bialas | On two-level optimization[END_REF] firstly proposed K th best approach which obtains the optimal solution of linear bi-level programming problem through enumerating all extreme points of linear bi-level programming constraint region. Bard [START_REF] Bard | An efficient point algorithm for a linear two-stage optimization problem[END_REF] proposed an algorithm using sensitivity analysis to solve linear bi-level programming problem, and it was more efficient than K th best. However, Haurie et al. [START_REF] Haurie | A note on: an efficient point algorithm for a linear two-stage optimization problem[END_REF] and Ben-Ayed and Blair [37] pointed out that this algorithm may not find the optimal solution, and the reason is that it can not provide the middle result, i.e., if the algorithm stops when the termination condition is not satisfied, the algorithm can not even obtain an approximatal solution. Even if a solution can be obtained, the algorithm can not be sure that this solution is the global or local optimal solution [37].

Recently, based on the new definition of bilevel linear programming solution [START_REF] Shi | On the definition of linear bilevel programming solution[END_REF],

Shi et al. [START_REF] Shi | An extended Kth-best approach for linear bilevel programming[END_REF] not only proposed extended K th best approach to solve linear bilevel programming problem, but also the K th best approach for the linear bi-level programming with several decision makers in lower level [START_REF] Shi | The kth-best approach for linear bilevel multifollower programming[END_REF].

Branch-and-bound algorithm

Branch and bound approach divides the solving problem into a series of sub-problems according to the pre-selected branching criteria, and chooses a sub-problem and tests to determine the choice. Branch and bound approach is widely used in the convex bi-level programming problem.

Fortuny-Amat and McCarl [START_REF] Fortuny-Amat | A representation and economic interpretation of a two-level programming problem[END_REF] replaced the lower level problem of quadratic bi-level programming by its Karush-Kuhn-Tucker conditions to get a single level programming problem, then used two equation constraints with binary variable instead of nonlinear complementarity condition to obtain a mixed integer bi-level programming, thus the global solution of bi-level programming problem will be obtained.

Likewise, Bard and Moore [START_REF] Bard | A branch and bound algorithm for the bilevel programming problem[END_REF] changed linear bi-level programming problem into single level problem by using Karush-Kuhn-Tucker condition to replace the lower level problem, then solved the linear programming after removing the complementary condition, and checked whether the complementary condition is true in each iteration. If true, the corresponding point is in the induced region, so a potential optimal solution is obtained; Otherwise, all combinations of complementary slackness conditions are checked by branch and bound method. Due to the general property of this branch and bound algorithm, it can also be used to solve the nonlinear bi-level programming problem. Later, Hansen et al. [START_REF] Hansen | New branch-and-bound rules for linear bilevel programming[END_REF] proposed a new branch and bound algorithm to solve linear bi-level programming, which explores or simplifies the sub-problem by using the necessary optimality conditions which is represented by the tight constraint of lower level, and the branch and punish operation are same as in the mixed integer programming. This approach is particularly effective for medium size problems. In addition, Bard and Falk [31] studied the branch and bound method to solve multilevel programming. Bard [START_REF] Bard | Convex two-level optimization[END_REF], Edmunds and Bard [START_REF] Edmunds | Algorithms for nonlinear bilevel mathematical programs[END_REF] and Al-Khayyal et al. [START_REF] Al-Khayyal | Global optimization of concave functions subject to quadratic constraints: an application in nonlinear bilevel programming[END_REF] proposed the branch and bound approach for the quadratic bi-level programming.

Wen and Yang [START_REF] Wen | Algorithms for solving the mixed integer two-level linear programming problem[END_REF], Bard and Moore [START_REF] Bard | An algorithm for the discrete bilevel programming problem[END_REF][START_REF] Moore | The mixed integer linear bilevel programming problem[END_REF] presented branch and bound algorithm for solving the integer linear bi-level programming. Edmunds and Bard [START_REF] Edmunds | An algorithm for the mixed-integer nonlinear bilevel programming problem[END_REF] solved integer quadratic bi-level programming problem by using branch and bound approach.

Complementary pivoting approach

This approach is proposed for linear bi-level programming problem, and the main idea is to transfer the problem into parametric complementarity problem, then solve the problem by using the complementary pivot algorithm. This method is a heuristic algorithm.

Bialas et al. [START_REF] Bialas | A parametric complementary pivot approach for two-level linear programming[END_REF] first solved the linear bi-level programming with the complementary pivoting approach, and the algorithm can also be used to solve linear three-level programming problem. However, Bialas and Karwan [START_REF] Bialas | Two-level linear programming[END_REF] pointed out that this algorithm can not get the global optimal solution of linear bi-level programming, so Judice and Faustino [START_REF] Júdice | The solution of the linear bilevel programming problem by using the linear complementarity problem[END_REF] improved the complementary pivoting approach to ensure the global optimal solution. Later, Judice and Faustino [START_REF] Júdice | The solution of the linear bilevel programming problem by using the linear complementarity problem[END_REF][START_REF] Júdice | A sequential LCP method for bilevel linear programming[END_REF][START_REF] Júdice | The linear-quadratic bilevel programming problem[END_REF] presented sequential linear complementary pivoting (SLCP) algorithm to get the ε global optimal solution of linear quadratic bi-level programming, and this algorithm is effective for medium size problems. The complementary pivoting algorithm which is proposed by Önal [START_REF] Önal | A modified simplex approach for solving bilevel linear programming problems[END_REF] can be seen as an improved simplex method.

Descent method

This algorithm solves the problem based on some optimality conditions of the lower level or by using the gradient information of lower level optimal solution about upper level decision variable. Although the application scope of this method is wide, generally it can only obtain the local optimal solution of nonlinear bi-level programming problem.

The first typical algorithm is the steepest descent approach. Savard and Gauvin [START_REF] Savard | The steepest descent direction for the nonlinear bilevel programming problem[END_REF] 

Metaheuristic method

Mathieu et al. [START_REF] Mathieu | Genetic algorithm based approach to bi-level linear programming[END_REF] proposed a genetic algorithm (GA) to solve linear bi-level programming problem. In this algorithm, the decision variable of upper level is generated randomly, and the reaction of lower level is obtained through solving a linear programming, and only mutation operation is used in GA. However, because each individual does not necessarily represent a extreme point, but represents a reachable solution, such that the search space is greatly expanded. Hejazi et al. [START_REF] Hejazi | Linear bilevel programming solution by genetic algorithm[END_REF] presented a genetic algorithm. Each feasible individual represents a vertex of the feasible region, thus the search space is greatly reduced. In addition, Liu [START_REF] Liu | Stackelberg-Nash equilibrium for multilevel programming with multiple followers using genetic algorithms[END_REF] proposed a genetic algorithm to solve Stackerberg-Nash equilibrium for multilevel programming. Niwa et al. [START_REF] Niwa | Decentralized two-level 0-1 programming through genetic algorithms with double strings. Knowledge-Based Intelligent Electronic Systems[END_REF] solved decentralized bi-level 0-1 programming problem by using genetic algorithm with double strings. Yin [START_REF] Yin | Genetic-algorithms-based approach for bilevel programming models[END_REF] applied genetic algorithm on bi-level programming model in transport planning and management. In this method, the decision variable of upper level is encoded, and its fitness value is calculated through solving the lower level problem, finally the optimal solution is obtained by using the selection, crossover and mutation operations. Later, Oduguwa and Roy [START_REF] Oduguwa | Bi-level optimisation using genetic algorithm[END_REF] presented a genetic algo-

Distributionally robust formulation for stochastic quadratic bi-level programming

In this section, we present out numerical results under the form of the paper published in ICORES-International Conference on Operations Research and Enterprise Systems 2013, Spain.

Introduction

Bi 

where x ∈ R n 1 , y ∈ R n 2 , F : R n 1 × R n 2 → R and f : R n 1 × R n 2 → R are the
decision variables and the objective functions for the upper and lower level problems, respectively. The functions G : R

n 1 × R n 2 → R m 1 and g : R n 1 × R n 2 → R m 2 denote
upper and lower level constraints. The goal is to find an optimal point such that the leader and the follower minimizes their respective objective functions subject to their respective linking constraints [START_REF] Audet | Links between linear bilevel and mixed 0-1 programming problems[END_REF]. Applications of BP include transportation, network design, management and planning among others. For more application domains, see for instance [START_REF] Floudas | Encyclopedia of Optimization[END_REF]. It has been shown that bi-level problems are strongly NP-Hard, even for the simplest case where all the involved functions are affine [START_REF] Audet | Links between linear bilevel and mixed 0-1 programming problems[END_REF].

As far as we know, robust optimization approaches have not yet been reported in the literature for bi-level programming. Some preliminary works concerning pure stochastic programming approaches can be found, for instance, in [START_REF] Audestad | Extending the stochastic programming framework for the modeling of several decision makers: pricing and competition in the telecommunication sector[END_REF][START_REF] Carrión | A bilevel stochastic programming approach for retailer futures market trading[END_REF][START_REF] Kalashnikov | Natural gas cash-out problem: Bilevel stochastic optimization approach[END_REF][START_REF] Özaltin | The bilevel knapsack problem with stochastic right-hand sides[END_REF][START_REF] Wynter | Encyclopedia of Optimization, chapter Stochastic Bilevel Programs[END_REF].

In [START_REF] Carrión | A bilevel stochastic programming approach for retailer futures market trading[END_REF], an application for retailer futures market trading is considered whereas a natural gas cash-out problem is studied in [START_REF] Kalashnikov | Natural gas cash-out problem: Bilevel stochastic optimization approach[END_REF].

Stochastic programming (SP) as well as robust optimization (RO) are well known optimization techniques to deal with mathematical problems involving uncertainty in the input parameters. In SP, it is usually assumed that the probability distributions are discrete and known or that they can be estimated [START_REF] Shapiro | Lectures on stochastic programming: modeling and theory[END_REF]. There are two well known scenario approaches in SP, the recourse model and the probabilistic constrained approach. See for instance [START_REF] Birge | Introduction to stochastic programming[END_REF][START_REF] Schultz | Two-stage stochastic integer programming: a survey[END_REF]. Different from the SP approach, the RO framework assumes that the input random parameters lie within a convex uncertainty set and that the robust solutions must remain feasible for all possible realizations of the input parameters. Thus, the optimization is performed over the worst case realization of the input parameters. In compensation, we obtain robust solutions which are protected from undesired fluctuations in the input parameters. In this case, the objective function provides more conservative solutions. We refer the reader to [START_REF] Bertsimas | The price of robustness[END_REF] and [START_REF] Bertsimas | Theory and applications of robust optimization[END_REF] for a more general understanding on RO.

In this paper, we propose a distributionally RO model for a (0-1) stochastic quadratic bi-level problem with expectation in the objective and probabilistic knapsack constraints in the leader. To this purpose, we first transform the stochastic problem into an equivalent deterministic problem [START_REF] Gaivoronski | Knapsack problem with probability constraints[END_REF]. Subsequently, we apply a novel and simple distributionally robust approach proposed by [START_REF] Liao | Staffing a call center with uncertain non-stationary arrival rate and flexibility[END_REF] to derive a distributionally robust formulation for our stochastic bi-level problem. The latter allows optimizing the objective function over the set of all possible distributions in the input random parameters. Finally, we compute optimal solutions by transforming both problems, the deterministic as well as the distributionally models into single level optimization problems [START_REF] Audet | Links between linear bilevel and mixed 0-1 programming problems[END_REF]. Preliminary numerical comparisons are given. The paper is organized as follows. Section 5.6.2, presents the stochastic model under study and the equivalent deterministic formulation. In Section 5.6.3, we derive the distributionally robust formulation. In Section 5.6.4, we transform the deterministic and robust models into single level optimization problems. Then, in Section 5.6.5, we provide preliminary numerical comparisons. Finally, Section 5.6.6 concludes the paper.

Problem formulation

We consider the following (0-1) stochastic quadratic bi-level problem we denote hereby ., c K } respectively, with probability vector q T = (q 1 , .., q K ) such that K k=1 q k = 1 and q k ≥ 0. A deterministic equivalent formulation proposed by [START_REF] Gaivoronski | Knapsack problem with probability constraints[END_REF] can be obtained by replacing the probabilistic constraint with the following deterministic constraints:

n 1 j=1 a k j x j + n 2 j=1 b k j y j ≤ c k + M k z k , z k ∈ {0, 1}∀k K k=1 q k z k ≤ α (5.16)
where M k is defined for each k = 1 : K by M k = n 1 j=1 a k j + n 2 j=1 b k j -c k . The variable z k for each k is a binary variable used to decide whether a particular constraint is discarded. This is handled by taking the risk α in constraint (5.16).

Analogously, D i,j (ξ) are discretely distributed, i.e., D i,j (ξ) = (D 1 i,j , ..., D K i,j ), ∀i, j such that K k=1 ρ k = 1 and ρ k ≥ 0 where ρ is the probability vector. Thus, the This model is a deterministic equivalent formulation for Q 0 provided the assumption on the discrete probability space Ω holds.

The distributionally robust formulation

In this section, we derive a distributionally RO model for Q D . We assume that the probability distributions of the random vectors ρ T = (ρ 1 , .., ρ K ) and q T = (q 1 , .., q K ) are not known and can be estimated by some statistical mean from some available historical data. Thus, we consider the maximum likelihood estimator of the probability vectors ρ T and q T to be the observed frequency vectors. In order to formulate a robust model for Q D , we write its objective function as follows where the sets H β and H γ are defined respectively as

H β = π k ≥ 0, ∀k : K k=1 π k = 1, K k=1 |π k -ρ k | √ ρ k ≤ β
and H γ = p k ≥ 0, ∀k :

K k=1 p k = 1, K k=1 |p k -q k | √ q k ≤ γ
where β, γ ∈ [0, ∞). Now, let δ k = π k -ρ k , then the inner max problem in (5.17 The associated dual problem is min 

{w 1 ,ϕ 1 ,v 1 } K k=1 ρ k   n 1 i=1 n 1 j=1 -D k i,j x i x j   + K k=1 ρ k w 1 k + βϕ 1 s.t. ϕ 1 ≥ √ ρ k   v 1 + w 1 k - n 1 i=1 n 1 j=1 D k i,j x i x j   , ∀k ϕ 1 ≥ - √ ρ k   v 1 + w 1 k - n 1 i=1 n 1 j=1 D k i,j x i x j   ,
ρ k   n 1 i=1 n 1 j=1 D k i,j x i x j   - K k=1 ρ k w 1 k -βϕ 1 s.t.ϕ 1 ≥ √ ρ k   v 1 + w 1 k - n 1 i=1 n 1 j=1 D k i,j x i x j   , ∀k ϕ 1 ≥ - √ ρ k   v 1 + w 1 k - n 1 i=1 n 1 j=1 D k i,j x i x j   , ∀k w 1 k ≥ 0, ∀k (5.22 
) G i,j y j ≤ h i , i = 1 : m 2 0 ≤ y j ≤ 1, j = 1 : n 2

n 1 j=1 a k j x j + n 2 j=1 b k j y j ≤ c k + M k z k , k = 1 : K z k ∈ {0, 1} k = 1 : K K k=1 q k z k + K k=1 q k w 2 k + γϕ 2 ≤ α ϕ 2 ≥ √ q k (z k + v 2 + w 2 k ), ∀k ϕ 2 ≥ - √ q k (z k + v 2 + w 2 k ),
In the next section we transform both models: Q D and Q R D into single level optimization problems. More precisely, we obtain Mixed Integer Linear programming problems (MILP) [START_REF] Audet | Links between linear bilevel and mixed 0-1 programming problems[END_REF].

Equivalent MILP formulation

Since the follower problem is the same for both Q D and Q R D , we derive equivalent MILPs by replacing the follower problem with its primal, dual and complementarity slackness conditions. These conditions can be written as 

λ i h i - n 1 j=1 F i,j x j - n 2 j=1
G i,j y j = 0, i = 1 : m 2 (5.29) µ j (1 -y j ) = 0, j = 1 : n 2 (5.30)

m 2 i=1
λ i G i,j + µ j -d j y j = 0, j = 1 : n 2 (5.31)

where (5.24)-(5.25)and (5.26)-(5.28)are the primal and dual follower constraints respectively. Note that constraints (5.29)-(5.31) are quadratic constraints. [START_REF] Audet | Links between linear bilevel and mixed 0-1 programming problems[END_REF] proposed a splitting scheme to linearize these complementarity constraints. The approach introduces binary variables as follows:

h i - n 1 j=1 F i,j x j - n 2 j=1
G i,j y j + v 1 i L ≤ L, i = 1 : m 2 (5.32) Finally, let Ψ i,j = x i xj be a linearization variable for each quadratic term in Q D and Q R D [START_REF] Fortet | Applications de l'algebre de boole en recherche operationelle[END_REF]. Thus, a MILP formulation for Q D can be written as Ψ i,j ≤ x j , i, j = 1 : n 1 (5.42) Ψ i,j ≥ x i + x j -1, i, j = 1 : n 1 (5.43)

λ i ≤ v 1 i L, i
Ψ i,j ∈ {0, 1}, i, j = 1 : n 1 (5.44)

x j ∈ {0, 1}, j = 1 : 

n 1 n 1 j=1 F i,j x j + n 2 j=1 G i,j y j ≤ h i , i = 1 : m 2 0 ≤ y j ≤ 1, j = 1 : n 2 m 2 i=1 λ i G i,j + µ j ≥ d j , j = 1 : n 2 λ i ≥ 0, i = 1 : m 2 µ j ≥ 0, j = 1 : n 2 h i - n 1 j=1 F i,j x j - n 2 j=1 G i,j y j + v 1 i L ≤ L, i = 1 : m 2 λ i ≤ v 1 i L, i = 1 : m 2
D k i,j Ψ i,j   - K k=1 ρ k w 1 k -βϕ 1 s.t.ϕ 1 ≥ √ ρ k   v 1 + w 1 k - n 1 i=1 n 1 j=1 D k i,j x i x j   , ∀k ϕ 1 ≥ - √ ρ k   v 1 + w 1 k - n 1 i=1 n 1 j=1 D k i,j x i x j   , ∀k w 1 k ≥ 0, ∀k n 1 j=1 a k j x j + n 2 j=1 b k j y j ≤ c k + M k z k , k = 1 : K z k ∈ {0, 1} k = 1 : K K k=1 q k z k + K k=1 q k w 2 k + γϕ 2 ≤ α ϕ 2 ≥ √ q k (z k + v 2 + w 2 k ), ∀k ϕ 2 ≥ - √ q k (z k + v 2 + w 2 k ), ∀k
w 2 k ≥ 0, ∀k Ψ i,j ≤ x i , i, j = 1 : n 1 Ψ i,j ≤ x j , i, j = 1 : n 1 Ψ i,j ≥ x i + x j -1, i, j = 1 : n 1 Ψ i,j ∈ {0, 1}, i, j = 1 : n 1

x j ∈ {0, 1}, j = 1 : n 1

n 1 j=1 F i,j x j + n 2 j=1 G i,j y j ≤ h i , i = 1 : m 2 0 ≤ y j ≤ 1, j = 1 : n 2 m 2 i=1 λ i G i,j + µ j ≥ d j , j = 1 : n 2 λ i ≥ 0, i = 1 : m 2 µ j ≥ 0, j = 1 : n 2 h i - n 1 j=1 F i,j x j - n 2 j=1 G i,j y j + v 1 i L ≤ L, i = 1 : m 2 λ i ≤ v 1 i L, i = 1 : m 2 v 1 i ∈ {0, 1}, i = 1 : m 2 1 -y j + v 2 j L ≤ L, j = 1 : n 2 µ j ≤ v 2 j L, j = 1 : n 2 v 2 j ∈ {0, 1}, j = 1 : n 2 m 2 i=1
λ i G i,j + µ j -d j + v 3 j L ≤ L, j = 1 : n 2 y j ≤ v 3 j L, j = 1 : n 2 v 3 j ∈ {0, 1}, j = 1 : n 2

where Υ = {w 1 , ϕ 1 , v 1 , w 2 , ϕ 2 , v 2 , x, y, z, Ψ, λ, µ, v 1 , v 2 , v 3 }. We denote this model by MIP R D .

In the next section, we provide numerical comparisons between MIP D and MIP R D . This allows measuring the conservatism level of MIP R D with respect to MIP D . The conservatism level can be measured by the loss in optimality in exchange for a robust solution which is more protected against uncertainty [START_REF] Bertsimas | The price of robustness[END_REF]. This means, the less conservative the robust solutions are, the better the RO approach.

Numerical results

In this section, we present preliminary numerical results.A Matlab program is developed using Cplex 12.3 for solving MIP D and MIP R D . The numerical experiments have been carried out on a Pentium IV, 1.9 GHz with 2 GB of RAM under windows XP.

The input data is generated as follows. The probability vectors ρ and q are uniformly distributed in [0, 1] such that the sums are equal to one. The parameter α is set to 5.1, we mainly observe that solutions tend to be more conservative when a) the number of scenarios K is larger than n 1 , n 2 and m 2 and b) when the number of variables of the follower problem: n 2 is larger than n 1 , K and m 2 . On the opposite, we see slight conservative solutions when the number of binary variables: n 1 is larger than n 2 , K and m 2 . The variations of β and γ do not seem to affect these trends. However, they seem to affect the conservatism level in each case. For example, the average increases significantly up to 47.33% when β < γ and n 2 is large. Same remarks when K is large. In this case, increasing γ when β = 0 affects the optimal solutions. In particular, when β = 0 and γ goes from 60 to 90, we have a large increase of 31.04% in the conservatism level. This is repeated for each value of β = 0, 30, 60, 90 when γ goes from 60 to 90. The worst gap occurs when β = γ = 90.

Finally, in table of instance 4, we observe weak conservatism levels in all cases. In fact, they are lower than 10%. This instance corresponds to the case when the binary variables of the leader problem, i.e., n 1 are larger when compared to n 2 , m 2 and K.

Notice that when β = 0 and γ grows, then the optimal solutions are slightly affected.

Conclusions

In this paper, we proposed a distributionally robust model for a (0-1) stochastic quadratic bi-level programming problem. To this end, we transformed the stochastic bi-level problem into an equivalent deterministic model. Afterward, we derived a bi-level distributionally robust model using the deterministic formulation. In particular, we applied a distributionally robust approach proposed in [START_REF] Liao | Staffing a call center with uncertain non-stationary arrival rate and flexibility[END_REF]. This allows optimizing the problem when taking into account the set of all possible distributions of the input random parameters. Thus, we derived Mixed Integer Linear Programming formulations using Fortet linearization method [START_REF] Fortet | Applications de l'algebre de boole en recherche operationelle[END_REF] and the approach proposed by [START_REF] Audet | Links between linear bilevel and mixed 0-1 programming problems[END_REF]. Finally, we compared the optimal solutions of this model to measure the conservatism level of the proposed robust model. Our preliminary numerical results show that slight conservative solutions are obtained for the case when the number of binary variables in the upper level problem is larger than the number of variables in the follower problem.

Conclusions

This chapter mainly focused on the bi-level programming model, property, application and method. Since a variety of problems can be described as the bi-level programming model in real life, so modeling bi-level programming to solve practical problems is still one of the future development direction. However, due to the wide range of types of practical problems, the study of all types of bi-level programming model is needed.

Besides, it is not only necessary to design the feasible and effective algorithm, but also make further discussion on the basic property and optimality condition of bi-level programming.

Chapter 6

Conclusions

In this thesis, our research considers three problems: bandwidth minimization problem, resource allocation problem of OFDMA system and bi-level programming problem. The parameters of the bandwidth minimization problem are deterministic, and we use a metaheuristic-variable neighborhood search (VNS) to solve it. For the OFD-MA system, we propose two models of the resource allocation problem. The first one is a deterministic model. We obtain the relaxation of this model, and use linear programming and VNS to solve it. The second one is a stochastic model. Firstly we use a second order conic programming (SOCP) approach to transform the stochastic model into a deterministic model. Then we apply mixed integer linear programming and VNS for solving the problem respectively. About the stochastic bi-level programming problem, we apply a distributionally robust approach to deal with the probabilistic constraints in the problem, then it is solved by transforming the model into single level optimization problem.

In practical application, due to many problems are proved to be NP-hard problems, it is difficult to find an efficient algorithm to solve such problems. A reasonable approach is to find metaheuristic algorithms. After using metaheuristic algorithms, under the condition of an acceptable computational complexity, the local optimal solution or a feasible solution of such problems can be obtained. Because the optimizing mechanism of the metaheuristic do not very depend on the structure information of problems, it can be applied to many types of optimization problems. Metaheuristics include simulated annealing, tabu search, genetic algorithm, variable neighborhood search etc. Especially, variable neighborhood search has better ability of finding the optimal solution, so this algorithm is used in this thesis for solving two optimization problems: bandwidth minimization problem and the dynamic resource allocation problem of OFDMA system.

Besides, for many practical problems, the hierarchy of systems needs to be considered, i.e., there are more than one decision makers in the entire system, and they control the different decision variables and objective functions. This kind of problems can not be solved with traditional mathematical programming techniques, so multilevel programming has gradually attracted the attention. Bi-level programming is the basic form of multi-level programming, thus bi-level programming has important research values. Bi-level programming is a system optimization problem with two level hierarchical structures. In the model of bi-level programming, the upper and lower level have their own objective functions and constraints. The objective function and constraint of upper level are not only relevant to the decision variables of the upper level, but also relies on the optimal solution of the lower level. However, the optimal solution of the lower level is affected by the decision variables of the upper level. Because bi-level programming is a NP-hard problem, the effective and feasible algorithm to solve bi-level programming should be studied. Thus we consider the approach for bi-level programming in this thesis. For the resource allocation problem of OFDMA system, we propose a hybrid resource allocation model for OFDMA-TDMA wireless networks and an algorithmic framework using a Variable Neighborhood Search metaheuristic approach for solving the problem. The model is aimed at maximizing the total bandwidth channel capacity of an uplink OFDMA-TDMA network subject to user power and subcarrier assignment constraints while simultaneously scheduling users in time. As such, the model is best suited for non-real time applications where subchannel multiuser diversity can be further exploited simultaneously in frequency and in time domains. The VNS approach is constructed upon a key aspect of the proposed model, namely its decomposition structure. Our numerical results show tight bounds for the proposed algorithm, and the bounds are obtained at a very low computational cost. Meanwhile, we present a (0-1) stochastic resource allocation model for uplink wireless multi-cell OFDMA Networks. The model maximizes the total signal to interference noise ratio produced in a multi-cell OFDMA network subject to user power and subcarrier assignment constraints. We transform the stochastic model into a deterministic equivalent binary nonlinear optimization problem having quadratic terms and second order conic constraints. Subsequently, we use the deterministic model to derive an equivalent mixed integer linear programming formulation. Then, we propose a reduced variable neighborhood search to compute feasible solutions. Our preliminary numerical results provide near optimal solutions for most of the instances when compared to the optimal solution of the problem. Moreover, we find better feasible solutions than CPLEX when the instances dimensions increase. Finally, we obtain these feasible solutions at a significantly less computational cost.

For the part of bi-level programming, we propose a distributionally robust model for a (0-1) stochastic quadratic bi-level programming problem. We first transform the stochastic bi-level problem into an equivalent deterministic formulation. Then, we use this formulation to derive a bi-level distributionally robust model. Finally, we transform both the deterministic and the distributionally robust models into single level optimization problems and compare the optimal solutions of the proposed models. Our preliminary numerical results indicate that slight conservative solutions can be obtained when the number of binary variables in the upper level problem is larger than the number of variables in the follower.

The future work of each problem is presented as follows.

For bandwidth minimization problem, we still consider use other metaheuristics or hybrid algorithms (such as hybrid metaheuristics or the combination of classic optimization methods and metaheuristics) to solve large size problems. Besides, we consider applying semidefinite programming to come up with strong lower bound in order to improve the metaheuristics performances. We also focus on proposing an algorithm to obtain good quality initial solution which can save the running time of the method.

For resource allocation problem of OFDMA system, we try to develop other metaheuristics for solving the two proposed models: the hybrid OFDMA-TDMA model and the 0-1 stochastic model. In addition, we only focus on Rate Adaptive (RA) problem which is to maximize the system capacity with total power constraint in this thesis, and we will consider other variants of the proposed model such as Margin Adaptive (MA) problem which is to minimize the power subject to capacity constraints.

For bi-level programming, we will continue studying on combining the distributionally robust model and variable neighborhood search (VNS) to solve large size of 0-1 stochastic quadratic bi-level programming problems. Besides, we can consider more complex bi-level programming models, such as using joint probabilistic constraint to replace the individual probabilistic constraint, which will have more application values.
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  Reference Set Update; 11: end while Firstly, SS uses the diversification generation method to generate a series of diverse initial solutions in the feasible solution space of the problem, and N p is the number of initial solutions. After the improvement method, the local search is used to improve initial solutions, and through the reference set update method, the reference set Ref Set = {x 1 , x 2 , ..., x b } is constructed with the initial solutions, which includes b 1 high quality solutions and b 2 diverse solutions, and b 1 + b 2 = b. The amount of solutions in reference set is small and satisfies 10 × b N p[START_REF] Glover | Fundamentals of scatter search and path relinking[END_REF].

  solved the commodity network design problem with scatter search. Gutierrez et al.[START_REF] Gutierrez | A comparison between scatter search and the RAND method for solving the joint replenishment problem[END_REF] compared SS with RAND, and respectively solved the joint replenishment problem.Because the optimization problem in the field of production and management is often the large-scale combinatorial optimization problem, in recent years SS has been widely used in this field. Nowicki et al.[START_REF] Nowicki | Some aspects of scatter search in the flow-shop problem[END_REF] combined the SS and PR to solve the flow shop problem, and verified the performance of the algorithm. Alvarez-Valdes et al.[START_REF] Alvarez-Valdes | A scatter search algorithm for project scheduling under partially renewable resources[END_REF] solved the project scheduling problem under the situation of existing both renewable resources and nonrenewable resources. Rahimi-Vahed et al.[START_REF] Rahimi-Vahed | A multi-objective scatter search for a mixed-model assembly line sequencing problem[END_REF] applied multi-objective SS algorithm to solve the mixed model assembly line sequencing problem, and compared with other multi-objective algorithms which also solved this problem, finally verified the effectiveness of the algorithm.Hamiez et al.[START_REF] Hamiez | Scatter search for graph coloring[END_REF] first introduced scatter search to the field of image processing, to solve the graph coloring problem. Cordon et al.[START_REF] Cordon | A scatter search algorithm for the 3D image registration problem[END_REF] applied SS in 3D image registration problem, and compared with the classical algorithm to check the validity of SS. Cordon et al.[START_REF] Cordon | A fast and accurate approach for 3D image registration using the scatter search evolutionary algorithm[END_REF] solved point matching problem which is in the medical 3D image registration process with SS. Cordon et al.[START_REF] Cordon | 3D inter-subject medical image registration by scatter search[END_REF] used SS to solve the 3D image registration problem with considering the similarity transformation, and six different images are used to verify the performance of scatter search.

  Section 3.1 concentrates on the two formulations of bandwidth minimization problem: matrix bandwidth minimization problem and graph bandwidth minimization problem, and an example shows the formulation specifically and the equivalence between the matrix and graph versions. Section 3.2 discusses the literature for solving bandwidth minimization problem including exact algorithm, heuristic, and especially meta-heuristic. Section 3.3 introduces the basic VNS and describes the detail of each step of our VNS for solving bandwidth minimization problem. Section 3.4 concentrates on the computational experiments and compares the results of different three meta-heuristics which solve the bandwidth minimization problem. Section 2.5 concludes the chapter.

  2006, Lim et al. [209] presented a method combing the genetic algorithm and improved hill climbing to solve the bandwidth minimization problem. First, based on the set of suitable swapping vertices which is proposed by [229], they used a hill climbing strategy to determine whether change the label of critical vertex, and the condition is that the number of critical edges reduced. This hill climbing strategy requires O(|V | 2 |E|) time for each iteration. Next, in order to reduce the required checking amount, they defined the critical value C(V ) by:

1 .

 1 Internal representationFor a given graph G = (V, E), a labeling f is defined as f : V → 1, 2, ..., n where n = |V |. Then the labeling f is represented as an array l whose ith value l[i] denotes the vertex with the label i. This representation has a key characteristic: because of the intrinsical locality, an interchange of two adjacent vertices produces smooth changes[START_REF] Rodriguez-Tello | An improved simulated annealing algorithm for bandwidth minimization[END_REF].

Figure 3 -

 3 3 and 3-4 show the examples of initial solution. According to the level structure, all the initial solutions are better than the original assignment. Obviously, the bandwidth obtained by this method can not be worse than the maximum bandwidth of the graph, because the adjacent vertices are assigned with sequential numbers. BFS method gives an upper bound of good quality solution.

Figure 3 - 3 :Figure 3 - 4 :

 3334 Figure 3-3: v3 is the first label vertex
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 2110 According to the swapping vertices set N (v), the label of the current critical vertex v will swap by trying each vertex u ∈ N (v) in ascending value of |mid(v) -f (u)| until find the improved solution [209]. Besides, if the bandwidth of the graph is not reduced, but the number of critical edges (critical edge means the bandwidth of the vertices connected with the edge is equal to the graph bandwidth B f (v) = B f (G) ) is reduced, this condition can also be seen as the solution is improved. The local search procedure is given in Algorithm 10. Local Search (f ) 1: while CanImprove do 2:

6 : 7 : 8 :

 678 swap (f (v), f (u)) and update (B f (w), B f (G)), ∀w ∈ (N (v) ∪ N (u)); if number of critical edges reduced then CanImprove = T rue; swap (f (v), f (u)) and update (B f (w), B f (G)), ∀w ∈ (N (v) ∪ N (u));

  bandwidth of new solution is better than current solution, it is easy to determine the move. 2.|V c (f )| < |V c (f )|: If the bandwidth does not change, that is, B f (G) = B f (G),we compare the number of critical vertex for current and new solution to see if |V c (f )| is reduced. 3. ρ(f , f ) > α: If the two cases above are not satisfied, we compare these two solutions with a distance α which is a coefficient given by the user. The detail is presented in the Algorithm 11.

For

  the instances, the algorithms are implemented in C and compiled with Microsoft Visual C++ 6.0, and the program was run with a Intel I7 at 2 GHz with 4 GB of RAM. In Tables 3.1 and 3.2, the first column indicates the name of the instance, the second column shows the size of the matrix. The third column presents the lower bound of the bandwidth obtained by the literature, and the fourth column shows the best solution of the bandwidth minimization problem. Then, the column of VNS standard presents the results from the literature [237]. Value is the bandwidth and CPU is the running time of the algorithm. The other three columns are the results of our VNS, SA and TS. The last two rows show the average value and running time of each method, and the gap we compute as Gap = |vopt-v best | v best

  minimization problem. Besides, We transfer the matrix problem into a graph problem and apply variable neighborhood search (VNS) to solve the bandwidth minimization problem. By combining the improved local search with the basic VNS and defining the parameters which influent the neighborhood change, the experiment results show that our VNS is competitive with the state of art from the result quality point of view, and both for the small and large instances, our VNS outperforms the state of art from CPU time point of view. For the future work, on one hand, we could further improve the result quality of our algorithm with considering to add a restart in the program so that it does not end early and may gain better solution. On the other hand, because of the reduced running time of our VNS, we can use this algorithm to solve very large size instances, i.e., matrices with more than 10,000×10,000.. communication is an important component of modern communication systems. As the name suggests, mobile communication consists in at least one of the communicating parties to transmit information in a state of motion. The development of modern mobile communication technology began in the 1920s. Mobile communication not only integrates the latest technological achievement of wireless communication and wired communication, but also many achievements of network reception and computer technology. Currently, mobile communication has been developed from analog communication to digital communication stage, and to a higher stage of fast and reliable individual communication. The goal of future mobile communication is to be able to provide fast and reliable communication service to anyone at any time and any place [273]. In the end of 1978, the United States Bell Labs successfully developed the advanced mobile phone system (AMPS) and built a cellular simulation mobile communication network which greatly improved the system capacity. At the same time, other countries had also developed the public cellular mobile communication network. At this stage, the cellular mobile communication network became a practical system, and rapidly developed around the world. The reasons for the rapid development of mobile communication are not only the main driving force of rapid increase in user demand, but also the condition offered by several aspects of technological development. First, micro-electronic technology had rapidly developed in this period which made the com-munication device can realize miniaturization and microminiaturization. Second, the concept of cellular network which is proposed by Bell Labs in the 1970s formed a new system of mobile communication. The birth of the mobile communication system in this stage is generally called the first generation mobile communication system.

Section 4 .

 4 1 introduces development, application and characteristic of OFDM. Section 4.2 discusses the background of OFDMA system, the definition of resource allocation problem of OFDMA system and the solving method and their research states in detail. Section 4.3 proposes a hybrid resource allocation model for OFDMA-TDMA wireless networks and an algorithmic framework using a variable neighborhood search metaheuristic approach (VNS for short) for solving the problem. Section 4.4 presentes a (0-1) stochastic resource allocation model for uplink wireless multi-cell OFDMA Networks and a simple reduced variable neighborhood search metaheuristic procedure to solve this model. Section 4.5 concludes this chapter.

OFDMA technology is proposed

  by Mosier and Clabaugh in 1957. Its principle is to divide a wide frequency band into several narrow bands and transmit in parallel which can be good for fighting against multi-path interference. This technology was mature on theory, but due to the high complexity generated by discrete Flourier transform which is used in the algorithm and the limitation of integrated circuit implementation, it had been not put in an important position. Until 1966, Turkey proposed fast Fourier transform which reduces the complexity from O(N 2 ) to O(N/2 • log 2 (N/2)),

  n ≥ R k , ∀k ∈ {1, ..., K} k k=1 N n=1 p k,n ≤ P bs p k ,n = 0, ∀p k,n = 0; ∀k = k; ∀k, k ∈ {1, ..., K}; ∀n ∈ {1, ..., N } (4.3)Similarly, for the uplink, the rate adaptive problem can be written as:max n ≥ R k , ∀k ∈ {1, ..., K}N n=1 p k,n ≤ P k p k ,n = 0, ∀p k,n = 0; ∀k = k; ∀k, k ∈ {1, ..., K}; ∀n ∈ {1, ..., N } (4.4)

  approach since the LP relaxations of the subproblems are very tight. Since each user must be attended by the BS in only one time slot t ∈ T , the final solution of the problem can be easily reconstructed for the original problem from the solutions of each time slot t ∈ T . The decomposition of the problem allows us to apply the VNS procedure in a straightforwardly manner and also to compute tight bounds easily. It turns out that solving the problem to optimality becomes rapidly prohibitive from a computationally point of view when the instances dimensions increase.The paper is organized as follows. Section 4.3.2 briefly introduces the system description and presents the OFDMA-TDMA formulation of the problem. Section 4.3.3 presents the VNS algorithmic procedure while Section 4.3.4 provides preliminary numerical result. Finally, Section 4.3.5 gives the main conclusion of the paper and provides some insights for future work.

- 3 .

 3 As it can be observed, within a given radial transmission area, the BSs and users simultaneously transmit their signals. This generates interference and degrades the quality of wireless channels. These type of networks may arise in many difficult situations where infrastructure less approaches are mandatorily required. Mobile ad hoc networks (MANETS) or mesh type networks are examples of them commonly used in emergency, war battlefield or natural disaster scenarios
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  and b ∈ B. This leads to write the following mixed integer linear program P

Algorithm 14 VNS approach 1 : 2 : 5 : 10 : 13 :

 1251013 Data: A problem instance of P 1 Result: A feasible solution (x, f ) for P 1 3: T ime ← 0; H ← 1; count ← 0; x b k,n ← 0, ∀k, n, b; 4: for b ∈ B, k ∈ K and n ∈ N do Draw a random number r in the interval (0, 1); Let (x, f ) be the an initial solution for P V N S 1 with objective function value f ; 11: while (T ime ≤ maxT ime) do 12: for i = 1 to H do Choose randomly k ∈ K, b ∈ B and n ∈ N ; 14:x b k ,n ← 0, ∀k ∈ K;15:

  y) : G(x, y) ≤ 0, y ∈ M (x)}(5.5) and a pair of points (x * , y * ) is called a local optimistic solution of the bi-level programming problem if y * ∈ M (x), F (x * , y * ) = ϕ o (x * ), and x * is the optimal solution of upper level.On the other hand, the pessimistic bi-level programming problem is:ϕ p (x) = max y {F (x, y) : G(x, y) ≤ 0, y ∈ M (x)} (5.7)and a pair of points (x * , y * ) is called a local pessimistic solution of the bi-level pro-gramming problem if y * ∈ M (x), F (x * , y * ) = ϕ p (x * ), and x * is the optimal solution of upper level.

1 j=1D

 1 i,j (ξ)x i x j

n 1 j=1F i,j x j + n 2 j=1G

 12 i,j y j ≤ h i , i = 1 : m 2 (5.14) 0 ≤ y j ≤ 1, j = 1 : n 2 (5.15) where x ∈ {0, 1} n 1 and y ∈ [0, 1] n 2 are the leader and the follower decision variables respectively. The term E{•} denotes mathematical expectation while P{•} represents a probability imposed on the upper level knapsack constraint. This probability should be satisfied as least for (1-α)% of the cases where α ∈ (0, 0.5] represents the risk. The matrices D, F, G and vectors a, b, d, h, c are input nonnegative real matrices/vectors defined accordingly. We assume D = D(ξ), a = a(ξ), b = b(ξ) and c = c(ξ) are random variables distributed according to a discrete probability distribution Ω. As such, one may suppose that a j (ξ), b j (ξ) and c(ξ) are concentrated on a finite set of scenarios as a j (ξ) = {a 1 j , .., a K j }, b j (ξ) = {b 1 j , .., b K j } and c(ξ) = {c 1 , .

expectation in the objective function ( 5 

 5 This yields the following deterministic equivalent problem we denote by Q D as follows: max

1 y ∈ arg max {y} { n 2 j=1d

 12 y j ≤ c k + M k z k , ∀k K k=1 q k z k ≤ α z k ∈ {0, 1}∀kx j ∈ {0, 1}, j = 1 : n j y j } s.t.

n 1 j=1F i,j x j + n 2 j=1G 2 0

 122 i,j y j ≤ h i , i = 1 : m ≤ y j ≤ 1, j = 1 : n 2

  δ k ≥ -ρ k , k = 1 : K (5.21)

n 1 j=1F i,j x j + n 2 j=1G 2 i=1λ

 122 i,j y j ≤ h i , i = 1 : m 2 (5.24) 0 ≤ y j ≤ 1, j = 1 : n 2 (5.25) m i G i,j + µ j ≥ d j , j = 1 : n 2 (5.26) λ i ≥ 0, i = 1 : m 2 (5.27)µ j ≥ 0, j = 1 : n 2 (5.28)

2 i=1λ

 2 = 1 : m 2 (5.33)v 1 i ∈ {0, 1}, i = 1 : m 2 (5.34) 1 -y j + v 2 j L ≤ L, j = 1 : n 2 (5.35) µ j ≤ v 2 j L, j = 1 : n 2 (5.36) v 2 j ∈ {0, 1}, j = 1 : n 2 (5.37) m i G i,j + µ j -d j + v 3 j L ≤ L, j = 1 : n 2 (5.38)y j ≤ v 3 j L, j = 1 : n 2 (5.39) v 3 j ∈ {0, 1}, j = 1 : n 2 (5.40) where constraints (5.32)-(5.34), (5.35)-(5.37) and (5.38)-(5.40) replace the single constraints (5.29), (5.30)and (5.31), respectively. The parameter L is a large positive number.

  max {x,y,z,Ψ,λ,µ,v 1 ,v 2 ,v 3 }

n 1 j=1 a k j x j + n 2

 2 j=1 b k j y j ≤ c k + M k z k , ∀k 182 K k=1 q k z k ≤ α z k ∈ {0, 1} ∀k Ψ i,j ≤ x i , i, j = 1 : n 1 (5.41)

v 1 i 2 1 2 i=1λ

 122 ∈ {0, 1}, i = 1 : m -y j + v 2 j L ≤ L, j = 1 : n 2 µ j ≤ v 2 j L, j = 1 : n 2 v 2 j ∈ {0, 1}, j = 1 : n 2 m i G i,j + µ j -d j + v 3 j L ≤ L, j = 1 : n 2 y j ≤ v 3 j L, j = 1 : n 2 v 3 j ∈ {0, 1}, j = 1 : n 2where constraints (5.41)-(5.44) are Fortet linearization constraints. We denote this model by MIP D . Consequently, a MILP distributionally robust model for Q R D can be written as follows:

0. 1 . 1 j=1F i,j + n 2 j=1G

 112 Matrices F, G and vectors a k , b k , ∀k are uniformly distributed in [0, 1]. The symmetric matrices D k , ∀k and vector d are uniformly distributed in [0, 10]. The scalars c k , ∀k and the vector h are generated respectively as i,j   , ∀i = 1 : m 2 In Table 5.1, columns 1-4 give the size of the instances. Columns 5-6 provide the average optimal solutions over 25 different sample instances. Finally, column 7 gives the average gaps we compute for each instance as (M IP D -M IP R D ) M IP D • 100%. These results are calculated for different values of β and γ. From Table

For

  bandwidth minimization problem, through introducing the different formulations of bandwidth minimization problem and the relationship during these formulation, we choose graph formulation and use three metaheuristics including simulated annealing, tabu search and variable neighborhood search to solve bandwidth minimization problem which can save CPU time compared with other formulations. Based on VNS, by combining the local search with the metaheuristic and changing some key parameters of the algorithm, the experiment results of running time is reduced compared with the other two metaheuristic methods.

  

  

Table 3 .

 3 1: Result of small dimension matrix

					VNS	Standard	Our	VNS	Simulate	Annealing	Tabu	Search
	Instance	n	LB	Best	value	CPU	value	CPU	value	CPU	value	CPU
	arc130	130	63	63	63	0.02	63	1.73	65	9.14	65	19.34
	bcspwr01	39	5	5	5	0.42	6	0.00	5	0.07	5	0.02
	bcspwr02	49	7	7	7	0.24	9	0.00	5	0.16	5	0.05
	bcspwr03	118	9	10	10	1.44	14	0.03	13	0.37	10	1.84
	bcsstk01	48	16	16	16	0.29	16	0.02	17	0.40	16	0.18
	bcsstk04	132	36	37	37	0.04	38	1.89	41	28.34	39	15.9
	can_144	144	13	13	13	0.23	14	0.11	15	1.70	13	7.24
	can_161	161	18	18	18	0.48	24	0.52	24	1.98	21	7.68
	fs_183_1	183	52	60	60	14.25	64	4.51	68	5.04	64	43.59
	gent113	104	25	27	27	2.13	31	0.42	28	1.58	28	2.60
	impcol_b	59	19	20	20	0.14	21	0.08	21	0.80	21	0.29
	impcol_c	137	23	30	30	9.81	36	0.28	36	0.92	33	4.90
	lund_a	147	19	23	23	0.02	23	0.02	23	9.59	23	10.90
	lund_b	147	23	23	23	0.01	23	0.28	23	9.41	23	10.50
	nos1	158	3	3	3	0.00	5	3.30	6	1.21	4	15.1
	nos4	100	10	10	10	0.89	11	0.03	12	0.63	10	0.89
	west0132	132	23	32	32	42.71	37	1.04	35	0.17	37	6.70
	west0156	156	33	36	36	12.73	44	0.84	40	0.89	39	16.10
	west0167	167	31	34	34	69.28	40	1.47	35	2.48	36	11.35
	will199	199	55	65	65	11.28	76	11.32	53	3.37	53	51.75
	will57	57	6	6	6	1.25	7	0.01	8	0.32	8	0.14
	Average		23.28	25.61	25.61	7.98	28.67	1.33	27.29	3.74	26.33	10.81
	Gap		9.10%		0%		11.95%		6.56%		2.81%	

Table 3 .

 3 1 and 3.2 summarize the result of different algorithms with 47 instances.

Table 3 .

 3 2: Result of large dimension matrix

					VNS	Standard	Our	VNS	Simulate	Annealing	Tabu	Search
	Instance	n	LB	Best	value	CPU	value	CPU	value	CPU	value	CPU
	ash292	292	16	19	19	39.35	27	1.10	24	4.63	19	9.61
	bcspwr04	274	23	24	24	33.52	37	2.33	45	2.36	39	6.60
	bcspwr05	443	25	27	27	28.55	56	3.34	54	2.90	39	17.14
	bcsstk06	420	38	45	45	208.9	47	7.77	47	85.20	47	44.87
	bcsstk19	817	13	14	14	199.34	18	33.22	28	52.10	25	280.30
	bcsstk20	467	8	13	13	52.13	17	6.31	14	13.00	17	24.47
	bcsstm07	520	37	45	45	208.90	66	23.02	57	74.70	47	43.02
	can_445	445	46	52	52	119.68	77	16.67	61	14.60	54	75.29
	can_715	715	54	72	72	192.68	119	151.56	88	62.05	87	229.73
	can_838	838	75	86	86	402.23	107	61.72	104	148.25	99	284.48
	dwt_209	209	21	23	23	25.30	33	0.62	30	3.82	28	6.12
	dwt_221	221	12	13	13	23.88	17	0.29	20	2.41	15	5.36
	dwt_245	245	21	23	23	25.3	31	0.58	23	1.98	18	9.94
	dwt_310	310	11	12	12	11.45	16	5.92	20	5.17	12	23.52
	dwt_361	361	14	14	14	7.22	18	11.30	22	9.30	16	15.37
	dwt_419	419	23	25	25	69.21	30	2.84	45	26.56	42	33.81
	dwt_503	503	29	41	41	174.40	63	13.81	56	93.10	55	228.24
	dwt_592	592	22	29	29	111.32	34	8.18	53	47.70	50	84.75
	dwt_878	878	23	25	25	111.32	37	23.01	41	40.20	34	300.05
	dwt_918	918	27	32	32	223.19	53	53.51	55	165.20	52	180.50
	plat362	362	29	34	34	179.34	45	6.91	39	84.24	36	38.44
	plskz362	362	15	18	18	22.29	21	4.61	21	8.85	20	14.45
	str_0	363	87	116	117	43.36	139	180.11	123	70.12	125	90.25
	str_200	363	90	125	125	38.27	150	47.06	133	118.50	144	85.08
	west0381	381	119	151	153	66.59	181	20.00	164	53.97	171	84.56
	west0479	479	84	121	121	38.50	173	350.87	130	43.90	137	72.32
	Average		37.53	45.75	45.82	108.80	61.14	39.27	57.58	47.49	54.92	88.01
	Gap		17.96%		0.15%		33.63%		25.67%		19.86%	

  , ∀k, n, t and ϕ k,t , ∀k, t are the decision variables. These variables are defined as follows: x t k,n = 1 if user k is assigned subcarrier n at time slot t and zero otherwise. Similarly, ϕ k,t = 1 if user k is scheduled to be attended in time slot t and zero

	N	
	p t k,n x t k,n ≤ P k ϕ k,t , ∀k, t	(4.20)
	n=1	
	T	
	ϕ k,t = 1, ∀k	(4.21)
	t=1	
	K	
	x t k,n ≤ 1, ∀n, t	(4.22)
	k=1	
	x t k,n ∈ {0, 1}; ϕ k,t ∈ {0, 1}, ∀k, n, t	(4.23)
	where x t k,n otherwise. Matrices (c t k,n ), (p t k,n ) and (P k ) are input data matrices defined as follows.
	The entries in (c t k,n ) denote the capacity achieved by user k using subcarrier n in time
	slot t while entries in (p t k,n	

s.t.

  ) and (P k ) we obtain from model P for each t ∈ T according to users in K t . Note that any solution x t k,n of P in a particular time slot t ∈ T can be reconstructed by simply mapping the values of variables y t k,n , ∀k ∈ K t , n ∈ N into each user position in x t k,n , ∀k ∈ K t . All remaining values in x t k,n such that k / ∈ K t must be equal to zero. Therefore, for any feasible assignment ϕ = φ the optimal solutions xt in P and optimal solutions ỹt in P(t), ∀t ∈ T , we have

	n y t k,n k,n ≤ Pk ϕ k,t , ∀k ∈ K t k,n y t pt k∈Kt N n=1 y t k,n ≤ 1, ∀n y t k,n ∈ {0, 1}, ∀k ∈ K t , n ∈ N k,n ), (p t k,n ) and ( Pk ) are respectively submatrices (4.24) (4.25) (4.26) (4.27) T t=1 k∈Kt N n=1 t=1 K slot t and zero otherwise. Matrices (ĉ t s.t. where T of (c t k,n ), (p t k,n T t=1 K k=1 N n=1 c t k,n xt k,n = ĉt k,n ỹt k,n (4.28)

t = K. Variables y t k,n for each k ∈ K t , n ∈ N and t ∈ T are analogously defined as for x t k,n , i.e., y t k,n = 1 if user k ∈ K t ⊂ K is assigned subcarrier n in time

  Algorithm 13 VNS approach1: Data: A problem instance of P 2: Result: A tight solution (x, φ, f ) for P 3: T ime ← 0; H ← 1; count ← 0; ϕ k,t ← 0, x t k,n ← 0, ∀k, n, t; 4: for each k ∈ K do Let (x, φ, f ) be the initial solution found for P with objective value function f ; 12: while (T ime ≤ maxT ime) do

	5:	choose randomly t ∈ T ;
	6:	ϕ k,t ← 1;
	7: end for
	8: for each t ∈ T do
	9:	Solve the linear programming relaxation of P(t)
	10: end for
	11: 13:	for i = 1 to H do
	14:	choose randomly k ∈ K and t ∈ T ;
	15:	ϕ k ,t ← 0, ∀t ∈ T ;
	16:	ϕ k ,t ← 1;
	17:	end for
	18:	for each t ∈ T do
	19:	Solve the linear programming relaxation of P(t)
	20:	end for
	21: Let (x 23: H ← 1;

* , ϕ * , g * ) be the new found solution for P with objective value function g * ; 22: if (g * > f ) then 24:

Table 4 .

 4 1: Upper and Lower bound for P

		Instance Dimensions		Linear Programs		VNS Approach		Gaps
		K	N	T	Opt.P	LP	T imeP	T imeLP	Ini.Sol.	V N S	T ime	LP	V N S
	1	8	32		2092	3488.1608	6.62	0.56	1622.7385	2118.9987	5.79	66.73	1.29
	2	10	32		2771	3741.1867	13.28	0.62	2050.6937	2819.2678	7.49	35.01	1.74
	3	12	32		3049	3967.9855	6.90	0.65	1786.4225	2972.4251	1.85	30.14	2.51
	4	14	32		3109	4061.5510	8.79	0.71	2250.4192	3051.9827	1.71	30.63	1.83
	5	20	32		3408	4137.6329	11.23	0.89	2246.0866	3409.5674	12.98	21.40	0.04
	6	25	32		3591	4242.6719	28.84	1.00	2391.5610	3605.4858	11.20	18.14	0.40
	7	30	32		3587	4208.7842	4.48	1.21	3039.4362	3592.3845	3.06	17.33	0.15
	8	8	32		2351	6588.8126	11.48	0.84	1591.9860	2372.0500	1.45	180.25	0.89
	9	10	32		2875	6548.8915	27.96	1.03	1505.5937	2879.8230	2.96	127.78	0.16
	10	12	32		3281	7383.7370	51.51	1.11	2191.0147	3281.7037	1.60	125.04	0.02
	11	14	32		4025	7801.8038	312.28	1.20	3077.3167	4025.6315	9.92	93.83	0.01
	12	20	32		5965	8202.6180	74.56	1.51	3537.3049	5714.2134	58.03	37.51	4.20
	13	25	32		6164	8195.6053	72.51	2.01	4022.6847	6186.9960	99.39	32.95	0.37
	14	30	32		6548	8246.2234	105.09	2.28	4414.5224	6466.0896	115.84	25.93	1.25
	15	8	64		3954	6754.0846	21.76	0.78	2829.6211	3970.8774	13.23	70.81	0.42
	16	10	64		5606	7952.9545	35.12	0.87	3099.0138	5609.6752	6.56	41.86	0.06
	17	12	64		5637	7780.5791	33.48	1.09	3950.4271	5541.4436	1.87	38.02	1.69
	18	14	64		6334	7877.6160	47.54	1.20	5561.6601	6348.4896	3.87	24.37	0.22
	19	20	64		6538	8225.0918	55.17	1.51	5386.4010	6553.5962	4.03	25.80	0.23
	20	25	64		6941	8482.0337	77.23	1.78	6052.6174	6947.6831	5.95	22.20	0.09
	21	30	64		7326	8496.0615	81.28	2.20	6282.7184	7326.0244	12.95	15.97	3e-4
	22	8	64		4586	12789.0347	67.64	1.50	3200.9471	4544.7142	15.92	178.87	0.90
	23	10	64		5753	14772.2571	167.57	1.60	4341.6136	5797.1178	10.15	156.77	0.76
	24	12	64		6751	13449.2497	257.04	2.23	3891.1626	6781.0690	25.71	99.21	0.44
	25	14	64		7692	14758.2530	576.20	2.37	4934.2025	7725.3751	18.18	91.86	0.43
	26	20	64		11520	16342.8073	949.50	2.95	7692.8888	10795.0753	39.93	41.86	6.29
	27	25	64		12297	16036.8844	536.17	3.86	8692.1874	12314.8432	110.20	30.41	0.14
	28	30	64		12981	16873.0624	624.00	4.36	9327.2974	13017.9855	46.52	29.98	0.28
	29	8	128		9292	15469.9953	167.86	1.31	6093.5991	9008.2856	32.44	66.49	3.05
	30	10	128		10416	14341.4803	409.72	1.69	5150.2308	10590.8256	7.83	37.69	1.68
	31	12	128		12248	16081.9795	728.13	1.77	8734.9364	12332.6018	13.91	31.30	0.69
	32	14	128		12454	16002.4214	273.94	2.11	9538.7185	12510.7866	35.45	28.49	0.46
	33	20	128		13441	16831.7606	387.81	2.69	9426.4508	13525.7884	9.31	25.23	0.63
	34	25	128		14211	17059.0616	89.80	3.36	11492.2275	14236.2739	24.95	20.04	0.18
	35	30	128		14546	17237.8062	519.84	4.39	12087.5565	14628.2521	8.53	18.51	0.57
	36	8	128		9485	26344.7369	288.05	2.73	6802.1687	9547.7500	45.30	177.75	0.66
	37	10	128		10993	25420.2375	479.06	3.84	8000.8647	11244.5429	6.77	131.24	2.29
	38	12	128		13252	29327.4069	1577.70	4.05	8246.3013	13440.7492	23.98	121.31	1.42
	39	14	128		14344	29151.5630	2239.27	5.73	8248.1641	14349.1162	33.30	103.23	0.04
	40	20	128		23355	33356.0498	8416.50	5.64	16501.7620	22609.7154	34.83	42.82	3.19
	41	25	128		24769	32729.1363	4964.91	7.48	16515.5073	24252.8271	96.31	32.14	2.08
	42	30	128		25475	33352.2393	6170.50	11.44	17457.1910	25512.9978	162.50	30.92	0.15
		Minimum values		2092	3488.2	4.48	0.56	1505.6	2119	1.45	15.97	3e-4
		Maximum values		25475	33356	8416.5	11.44	17457	25513	162.50	180.25	6.29
		Average values		8690.8	13431	737.57	2.43	6077.8	8656.2	28.18	61.37	1.04

  , respectively. The parameter M is a bigM positive value. Model P M IP allows obtaining optimal solutions and upper bounds for P 1 . In the next section, we propose a VNS algorithmic procedure to compute feasible solutions for P 1 as well.

	1}, ∀k, n, b	(4.55)
	θ b k,j,l ∈ {0, 1} ∀k ∈ K, j, l ∈ N , b ∈ B	(4.56)
	where constraints (4.45)-(4.47) and (4.52)-(4.54) are standard linearization constraints
	[111] for constraints (4.38) and (4.39) in P 2	

  Each maximum available power value P b k , ∀k, b is set equal to P b k = 0.4 * N No solution found due to CPLEX shortage of memory.

										n=1	pb k,n
	where each pb k,n ∀k, n, b corresponds to the average over the set of 1000 samples. The
	channel values H b,s k,n are generated according to a standard Rayleigh distribution func-
	tion with parameter σ = 1. The input parameter σ s 0 , ∀s ∈ S is normally distributed
	Table 4.2: Feasible solutions obtained using CPLEX and VNS with S=4 scenarios
	#	Instances Dimensions K N B	P M IP	Linear programs T ime LP M IP	T ime	VNS Approach V N S T ime	LP %	Gaps V N S%
	1 4 8	3	187.1625	6.88	237.5973	1.05	178.5370 21.53	26.9471	4.6085
	2 8 8	3	384.3661	26.30	479.5605	3.14	384.3661 151.72	24.7666	0
	3 12 8	3	293.9304 181.63	367.4731	7.77	293.9304	5.59	25.0205	0
	4 14 8	3	1525.0840 145.00 1822.3541 16.50	1464.9243 32.45	19.4920	3.9447
	5 4 8	5	604.5217	20.61	768.5897	2.97	575.5403 179.19	27.1402	4.7941
	6 8 8	5	583.8594 409.56	735.0504 22.74	574.7517 86.28	25.8951	1.5599
	7 12 8	5	305.6647	3600	406.9006 45.91	298.0767 86.19	33.1199	2.4824
	8 14 8	5	46832.5618	3600 67656.9540 50.05 44682.1000 40.73	44.4656	4.5918
	9 4	3	1403.5467	37.95 1707.7717	4.50	1395.5805 50.66	21.6754	0.5676
	10 8	3	599.1510 133.49	730.1556	9.94	599.1510 11.47	21.8650	0
	11 12	3	660.5156 1796.75	834.0475 30.44	660.5156 14.71	26.2722	0
	12 14	3	1445.0892	3600 1741.4093 21.63	1515.0978 37.52	20.5053	4.8446
	13 4	5	40616.6713 836.81 53810.3188 10.83 34136.6073 198.95	32.4833 15.9542
	14 8	5	595.1008	3600	874.2042 27.31	543.9943 310.23	46.9002	8.5879
	15 12	5	811.7762	3600 1331.2226 72.23	780.8005 50.12	63.9889	3.8158
	16 14	5	*	* 1783.3788 66.98	1113.9113 131.86	*	*
	17 4	3	767.3340	3600 1261.3962 24.55	841.8803 62.17	64.3869	9.7150
	18 8	3	3686.4326	3600 5998.2713 103.74	3720.8249 92.26	62.7121	0.9329
	19 12	3	993.0576	3600 1506.5105 55.55	995.9633 146.50	51.7042	0.2926
	20 14	3	1454.5490	3600 2454.8796 115.69	1530.6112 160.04	68.7726	5.2293
	21 4	5	240.6614	3600 4364.5604 147.28	2443.5389 128.41 1713.5687 915.3430
	22 8	5	739.9245	3600 5062.2949 248.47	2567.0373 277.26	584.1637 246.9323
	23 12	5	*	* 4818.1842 292.50	2736.2113 372.58	*	*
	24 14	5	*	* 2831.4831 603.98	1586.3495 740.02	*	*
	* :								

Table 4 .

 4 3: Feasible solutions obtained using CPLEX and VNS with S=8 scenarios No solution found due to CPLEX shortage of memory.

	#	Instances Dimensions K N B	P M IP	Linear programs T ime LP M IP	T ime	VNS Approach V N S T ime	Gaps LP % V N S%
	1 4 8	396.0058 17.80	494.4254	1.80	359.6266 23.17 24.8531 9.1865
	2 8 8	294.5774 72.69	343.9400	7.33	294.5774 18.61 16.7571	0
	3 12 8	378.1765 189.66	457.9363 38.55	363.0186 88.31 21.0906 4.0081
	4 14 8	382.0399 304.97	446.0401 22.92	375.1456 99.72 16.7522 1.8046
	5 4 8	1645.5083 63.64 1946.0497	7.02 1367.9773 216.03 18.2644 16.8660
	6 8 8	988.6564 715.42 1224.7990 26.53	811.7008 31.23 23.8852 17.8986
	7 12 8	2475.8996	3600 3438.1747 90.45 2258.9482 36.36 38.8657 8.7625
	8 14 8	818.3844	3600 1088.7688 114.09	799.9939 65.89 33.0388 2.2472
	9 4 16	680.5390 723.66	871.3750 10.94	671.8174 386.89 28.0419 1.2816
	10 8 16	420.1876 268.45	509.4053 27.16	412.1617 167.61 21.2328 1.9101
	11 12 16	965.5496 703.63 1163.4646 51.66	965.5496 186.19 20.4977	0
	12 14 16	*	*	984.4130 81.28	732.6627 248.62	*	*
	13 4 16	1357.7920	3600 1964.5528 22.81 1031.8239 21.08 44.6873 24.0072
	14 8 16	980.9758	3600 1454.2974 79.11	929.1635 138.29 48.2501 5.2817
	15 12 16	*	* 1583.5987 178.19 1036.2983 575.86	*	*
	16 14 16	*	* 2363.6524 490.03 1606.6579 244.51	*	*
	17 4 32	10481.2140	3600 13788.7161 51.72 9495.2439 344.46 31.5565 9.4070
	18 8 32	786.9654	3600 1092.8612 143.33	754.8404 382.65 38.8703 4.0821
	19 12 32	*	* 1585.6223 106.89 1081.1442 269.78	*	*
	20 14 32	*	* 1420.6889 167.36 1087.8288 401.65	*	*
	21 4 32	*	* 5959.0736 111.61 3372.2211 467.43	*	*
	22 8 32	*	* 1447.7113 357.77	873.4855 466.66	*	*
	23 12 32	*	*	*	* 2889.0945 583.05	*	*
	24 14 32	*	*	*	* 6652.0679 893.88	*	*
	* :						

Table 4 .

 4 4: Feasible solutions obtained with CPLEX and VNS for larger number of users using S=4 scenarios No solution found due to CPLEX shortage of memory.

	#	Instances Dimensions K N B	P M IP	Linear programs T ime LP M IP		T ime	VNS Approach V N S T ime	Gaps LP % V N S%
	1 8	3	270.5294 951.79 338.7968 14.40	270.5294	57.42 25.2347	0
	2 8	3	490.9271	3600 593.0366 44.20	495.8847 116.24 20.7993 1.0098
	3 8	3	*	* 263.2351 539.21	126.3258 105.54	*	*
	4 100 8	3	*	*	*	*	275.0429 134.03	*	*
	5 8	5	*	* 773.6433 82.67	583.6842 507.71	*	*
	6 8	5	*	* 671.2375 365.91	543.9147 755.11	*	*
	7 8	5	*	*	*	*	446.9953 363.37	*	*
	8 100 8	5	*	*	*	* 4138.8963 348.22	*	*
	9 16	3	607.2990	3600 745.4151 59.20	662.6294 394.06 22.7427 9.1109
	10 16	3	*	* 1587.8095 181.55 1424.2695 1597.67	*	*
	11 16	3	*	*	*	* 5865.1871 1276.79	*	*
	12 100 16	3	*	*	*	* 1272.3440 223.53	*	*
	13 16	5	*	* 2783.0741 162.20 1299.5881 1234.41	*	*
	14 16	5	*	*	*	* 8524.1006 652.28	*	*
	15 16	5	*	*	*	* 1917.7369 212.81	*	*
	16 100 16	5	*	*	*	* 2832.1584 886.86	*	*
	17 32	3	*	* 3770.3202 230.89 2426.4821 2902.60	*	*
	18 32	3	*	*	*	* 2428.6924 3853.00	*	*
	19 32	3	*	*	*	*	675.1841 174.92	*	*
	20 100 32	3	*	*	*	* 1677.3204 615.92	*	*
	21 32	5	*	*	*	* 2507.8547 1422.99	*	*
	22 32	5	*	*	*	*	880.2869 1555.05	*	*
	23 32	5	*	*	*	*	724.5287 922.64	*	*
	24 100 32	5	*	*	*	*	453.1134 4000.73	*	*
	* :								

Table 4 .

 4 3 we present further numerical results using S = 8. The column information is exactly the same as in Table 4.2. From Table 4.3, we observe that the gaps obtained with VNS algorithm

Table 4 .

 4 5: Feasible solutions obtained with CPLEX and VNS for larger number of users using S=8 scenarios No solution found due to CPLEX shortage of memory.

	#	Instances Dimensions K N B	P M IP	Linear programs T ime LP M IP		T ime	VNS Approach V N S T ime	Gaps LP % V N S%
	1 8	3	304.9070 926.97 363.6304 62.98	250.3734 226.53 19.2594 17.8853
	2 8	3	*	* 346.1478 104.80	317.3865 155.50	*	*
	3 8	3	*	*	*	*	192.7712 402.53	*	*
	4 100 8	3	*	*	*	*	328.1000	60.58	*	*
	5 8	5	*	* 1929.2130 284.56	1220.2991 1099.84	*	*
	6 8	5	*	*	*	*	2063.0753 331.43	*	*
	7 8	5	*	*	*	*	736.4978 185.36	*	*
	8 100 8	5	*	*	*	*	140.0601 619.28	*	*
	9 16	3	*	* 4902.3964 144.20	4290.7134 492.44	*	*
	10 16	3	*	*	*	*	7289.1626 1133.05	*	*
	11 16	3	*	*	*	*	532.0673 737.55	*	*
	12 100 16	3	*	*	*	*	242.7288 478.31	*	*
	13 16	5	*	*	*	*	1142.8744 1158.90	*	*
	14 16	5	*	*	*	*	687.1994 1739.78	*	*
	15 16	5	*	*	*	*	990.0482 403.17	*	*
	16 100 16	5	*	*	*	*	615.1829 2235.63	*	*
	17 32	3	*	* 3926.1787 327.11	2156.4379 1687.58	*	*
	18 32	3	*	*	*	*	819.6241 585.23	*	*
	19 32	3	*	*	*	*	14159.5528 427.56	*	*
	20 100 32	3	*	*	*	*	2154.5143 1071.48	*	*
	21 32	5	*	*	*	* 100865.1824 3447.88	*	*
	22 32	5	*	*	*	*	2255.9878 1005.44	*	*
	23 32	5	*	*	*	*	1787.8574 2139.78	*	*
	24 100 32	5	*	*	*	*	828.8698 6320.64	*	*
	* :									

  used this algorithm to solve nonlinear bi-level programming problem. Vicente the cut set, thus the property of the penalty problem was good without the tight assumption. Liu et al.[START_REF] Liu | Exact penalty functions for convex bilevel programming problems[END_REF] proposed a new constraint qualification for convex bilevel programming, and gave a locally and globally first order exact penalty function method under this constraint qualification, without considering whether the linear independence and strict complementary condition in lower level are satisfied. Calvete and Gale[START_REF] Calvete | A penalty method for solving bilevel linear fractional/linear programming problems[END_REF] presented a penalty function method for bi-level programming problem which the upper level is linear fractional and the lower level is linear. Based on considering the relationship between the lower level problem and its dual problem, this method used the duality gap of lower level to construct a exact penalty method to achieve the global optimum. Recently, Lv et al.[START_REF] Lv | A penalty function method for solving weak price control problem[END_REF] proposed a penalty function method to solve the weak price control problem, and Lv et al.[START_REF] Lv | A penalty function method based on Kuhn-Tucker condition for solving linear bilevel programming[END_REF] also presented a penalty function method based on Karush-Kuhn-Tucker condition for linear bi-level programming.

  ∀k w 1 k ≥ 0, ∀k and ϕ 1 , v 1 , w 1 are Lagrangian multipliers for constraint (5.19)-(5.21), respectively. Similarly, we obtain a dual formulation for max probability constraint (5.18) as , v 2 , w 2 are Lagrangian multipliers. Now, replacing these dual problems in Q D gives rise to the distributionally robust formulation we denote by Q R D max {w 1 ,ϕ 1 ,v 1 ,w 2 ,ϕ 2 ,v 2 ,x,z}

	follows:	
		K	K
	min {w 2 ,ϕ 2 ,v 2 } s.t.	q k z k + ϕ 2 ≥ k=1 √ q k v 2 + w 2 q k w 2 k + γϕ 2 k=1 k + z k , ∀k
		ϕ 2 ≥ -√ q k v 2 + w 2 k + z k , ∀k
		w 2 k ≥ 0, ∀k
	where ϕ 2 K
		k=1

Table 5 .

 5 1: Average comparisons over 25 instances.Instance sizeAvg. Opt. Sol.Avg. Gap R n 1 n 2 K m 2 MIP D MIP RIn order to see how the parameters β and γ affect the conservatism levels, we solve one instance for each row while varying only β and γ. These results are shown Table5.5: Instance # 4: n 1 = 20, n 2 = 10, m 2 = 5, K = 10.

		D	
	β = 50 and γ = 50	
	10 10 10 5	300.09 267.31	10.85 %
	10 10 30 5	283.95 229.39	21.88 %
	10 10 10 10 322.94 284.46	11.98 %
	20 10 10 5	985.82 917.55	6.95 %
	10 20 10 5	152.09 115.25	22.12 %
	β = 100 and γ = 50	
	10 10 10 5	313.29 258.47	17.74 %
	10 10 30 5	272.49 212.07	22.05 %
	10 10 10 10 320.94 290.30	9.29 %
	20 10 10 5	990.99 931.64	5.93 %
	10 20 10 5	138.99 100.97	27.53 %
	β = 50 and γ = 100	
	10 10 10 5	290.98 255.61	12.06 %
	10 10 30 5	278.32 197.80	28.66 %
	10 10 10 10 311.54 282.26	9.08 %
	20 10 10 5 1013.41 958.89	5.23 %
	10 20 10 5	169.78 89.12	47.33 %

Table 5 .

 5 6: Instance # 5: n 1 = 10, n 2 = 20, m 2 = 5, K = 10.to the case where the number of scenarios K is larger compared to n 1 , n 2 and m 2 .

	Robustness Optimal Solutions Gap R β γ MIP D MIP R D
		0		257.00	0 %
		30		257.00	0 %
		60		257.00	0 %
		90		257.00	0 %
	30	0		241.17	6.16 %
	30	30		241.17	6.16 %
	30	60		241.17	6.16 %
	30 60	90 0	257.00	241.17 230.29	6.16 % 10.39 %
	60	30		230.29	10.39 %
	60	60		230.29	10.39 %
	60	90		230.29	10.39 %
	90	0		223.45	13.06 %
	90	30		223.45	13.06 %
	90	60		223.45	13.06 %
	90	90		223.45	13.06 %

A frame is a packet in which the data to be transmitted is placed. Each frame is composed by T time slots and N subcarriers.
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which allocates the power and subcarrier respectively to solve the joint power and subcarrier allocation problem.

In [START_REF] Stefanatos | Downlink OFDMA resource allocation under partial channel state information[END_REF] and [START_REF] Li | QoS-driven power allocation for multi-channel communication under delayed channel side information[END_REF], different from that most studies of OFDMA resource allocation problem are based on perfect channel information estimation, two resource allocation problems with imperfect channel information are considered. The former is based on partial channel state information, and the latter is based on delayed channel side information. Both the proposed algorithms in two papers considered the balance between the algorithm performance and computation complexity, and had a good throughput performance.

In [START_REF] Cui | Distributive subband allocation, power and rate control for relay-assisted OFDMA cellular system with imperfect system state knowledge[END_REF], the imperfect global channel state information is considered. The imperfect global channel state information is mainly constrained by estimation noise and delay.

Based on imperfect CSI, a solution which considers the user admission rate fairness, relay network, distributed subcarrier allocation power and rate control is proposed.

In [START_REF] Ng | The impact of CSI and power allocation on relay channel capacity and cooperation strategies[END_REF], the impact of CSI and power allocation on relay channel capacity and cooperation strategies is considered, including the receiver and the transmitter have full CSI information, and only the receiver has full CSI information.

In [START_REF] Miao | Energy-efficient transmission in frequencyselective channels[END_REF], the energy utilization efficiency factor which is proportional to the achieved rate and inversely proportional to the transmission power is proposed in order to maximize energy efficiency. According to this factor, a link adaptation solution is presented which has 15% improvement in energy utilization.

In [START_REF] Chen | An Efficient Downlink Bandwidth Allocation Scheme for Improving Subchannel Utilization in[END_REF], the resource waste problem is considered, and a strategy minimizing the internal bandwidth wastage and external bandwidth wastage is proposed.

Scheduling in wireless OFDMA-TDMA networks using variable neighborhood search metaheuristic

In this section, we present our numerical results under the form of the paper published in MISTA-Multidisciplinary International Scheduling Conference 2013, Belgium.

Stochastic Resource Allocation for Uplink Wireless

Conclusions

This chapter mainly focused on the field of OFDMA system and resource allocation and scheduling problem. Based on the introduction of OFDM system, the detailed information of OFDMA system includes the background, modeling, basic algorithm, especially the method for solving the OFDMA resource allocation problem with various conditions are described. In our two papers, we presented numerical results for two OFDMA optimization problems.

Chapter 5

Bi-level Programming Problem

Hierarchy is one of the important characteristics of a given system. It is a main characteristic for large and complicated systems. In the fields of socio-economic, engineering, management and military, the system with the hierarchical relationships can be found everywhere, for example, the superior and the subordinate relationship in management institutions, the supply and marketing relationship in the economic activity, the defense and counter-defense relationship in military system, the relationship between the company and the branch, the relationship between the control variables and state variables in the engineering design etc. In these systems with hierarchical structure, the upper level is the leader to consider the overall situation which has coordinating and leading effect, and the goal is to make the whole system cost minimum. The lower level is the follower which makes decisions depending on the constraints of the upper level problem to make the cost minimum of the subsystem. Therefore, the multilevel programming is proposed to study the system hierarchy.

Multilevel programming is a kind of mathematical programming which contains the optimization problem in the constraints. It studies the interaction among multiple objective functions which are according to the non-cooperative and orderly manner.

The behavior of each one affects the strategy selection and goal achievement of the other ones, but neither can fully control the selection behavior of the other ones.

The hierarchy programming model was firstly proposed by H. Stackelberg. In the 1950s, in order to better describe the economic model in reality, H. Stackelberg et al. [START_REF] Vicente | Descent approaches for quadratic bilevel programming[END_REF] proposed two descent methods for convex bi-level programming. One is based on pivot steps, but it can not ensure the local optimum. The other one is a modified steepest descent approach which overcomes this drawback. Then a hybrid approach which combines these two strategies is discussed. Another typical approach is the descent approach presented by Kolstad and Lasdon [START_REF] Kolstad | Derivative evaluation and computational experience with large bilevel mathematical programs[END_REF] using the gradient information to solve nonlinear bi-level programming problem.

Penalty function method

This method mainly uses the principle of penalty function in the theory of nonlinear programming which uses different forms of penalty terms to transform the lower level problem into an unconstrained mathematical programming problem, then the penalty term is added to the objective function of upper level, and the problem is changed into a single level problem with the penalty parameter. After solving a series of nonlinear programming problems, the optimal solution of bi-level programming is obtained.

This method not only appling to linear bi-level programming, but also for solving nonlinear bi-level programming problem.

Based on the fact that the duality gap equals to zero when linear programming is at its optimal solution, Anandalingam and White [START_REF] Anandalingam | A solution method for the linear static Stackelberg problem using penalty functions[END_REF] proposed a penalty function method using duality gap as penalty term. In this method, the duality gap of lower level problem is taken as the penalty term of the upper level problem, then this complex problem is decomposed into a series of linear programming problems, thus the local optimal solution of original problem is obtained. Then they presented a penalty function method for solving linear bi-level programming to get the global optimal solution [START_REF] White | A penalty function approach for solving bi-level linear programs[END_REF]. Ishizuka and Aiyoshi [START_REF] Ishizuka | Double penalty method for bilevel optimization problems[END_REF] constructed a penalty function method through punishing both objective function of upper and lower level to solve bi-level programming where the optimal solution of lower level is not unique. White and Anandalingam [START_REF] White | A penalty function approach for solving bi-level linear programs[END_REF], White [START_REF] White | Solving bi-level linear programmes[END_REF] presented the exact penalty function method for bi-level programming. Campelo et al. [START_REF] Campêlo | A note on a penalty function approach for solving bilevel linear programs[END_REF] pointed out that the original dual tight assumption which is considered in the literature [START_REF] White | A penalty function approach for solving bi-level linear programs[END_REF] is inaccurate, and the cut set to remove the optimal solution in the algorithm is not defined clearly. They redefined rithm for bi-level programming which solves different types of bi-level programming problems in a single framework through the finite asymmetrical cooperation between two participants. Wang et al. [START_REF] Wang | An evolutionary algorithm for solving nonlinear bilevel programming based on a new constraint-handling scheme[END_REF] solved bi-level programming using an evolutionary algorithm with a new constraint-handling scheme.

Gendreau et al. [START_REF] Gendreau | A hybrid tabu-ascent algorithm for the linear bilevel programming problem[END_REF] proposed an adaptive search algorithm combined with tabu search to solve linear bi-level programming problem. This algorithm determined the initial solution and improved the current solution by using the concept of penalty function, and also used tabu search algorithm to make search from a feasible point to another feasible point. Wen and Huang [START_REF] Wen | A simple tabu search method to solve the mixed-integer linear bilevel programming problem[END_REF] presented a simple tabu search algorithm to solve mixed integer linear bi-level programming problem. Shih et al. [START_REF] Shih | A neural network approach to multiobjective and multilevel programming problems[END_REF] solved multi-objective and multilevel programming problem with neural network algorithm.

Lan et al. [START_REF] Lan | A hybrid neural network approach to bilevel programming problems[END_REF] proposed a hybrid algorithm which combines the neural network and tabu search to solve bi-level programming.

Other methods

Wu et al. [START_REF] Wu | A cutting plane method for linear bilevel programs[END_REF] proposed a cutting plane method to solve linear bi-level programming problem. Loridan and Morgan [START_REF] Loridan | New results on approximate solution in two-level optimization[END_REF] gave an approximate algorithm for bi-level programming. Weng and Wen [START_REF] Weng | A primal-dual interior point algorithm for solving bilevel programming problem[END_REF] presented an improved primal-dual interior point algorithm to solve linear bi-level programming. Marcotte et al. [START_REF] Marcotte | A trust region algorithm for nonlinear bilevel programming[END_REF] proposed a trust region algorithm for solving nonlinear bi-level programming. Dempe [START_REF] Dempe | A bundle algorithm applied to bilevel programming problems with non-unique lower level solutions[END_REF] presented a bundle algorithm for bi-level programming with non-unique solution of lower level.

Önal [START_REF] Önal | A modified simplex approach for solving bilevel linear programming problems[END_REF] gave an improved simplex method for linear bi-level programming problem. This method replaced the lower level problem by its Karush-Kuhn-Tucker conditions, and took the complementary slackness conditions as the penalty term of upper level problem, finally used the improved simplex algorithm to solve bi-level programming problem and got the global optimum. However, Campelo and Scheimberg [START_REF] Campêlo | A note on a modified simplex approach for solving bilevel linear programming problems[END_REF] pointed out some problems which exist in the theoretical analysis, and the algorithm above may not find the global optimum. Then, Campelo and Scheimberg [START_REF] Campêlo | A simplex approach for finding local solutions of a linear bilevel program by equilibrium points[END_REF] proposed a simplex algorithm for finding local optimum of linear bi-level programming, and gave the local optimality condition for linear bi-level programming problem. 

• 100%. In Table 5.2, we observe that when β = 0, then augmenting the values of γ does not affect the optimal solutions. This is not the case when γ = 0 and β > 0. Next, when both β > 0 and γ > 0, the optimal solutions are affected. In particular, we observe that the parameter β affects more the optimal solutions than γ does. For example, when β goes from 30 to 60, we observe an increment of 0.61%. This is not the case when γ increases. In this particular case, we observe a decrement of 1.28% in each case. The increase of γ seems to produce the opposite effect than incrementing β. For example, we notice that when β = 30, 60, 90 and γ goes from 0 to 30, 60 or 90, the gaps are decremented except in the worst case when both, β = γ = 90.

Similar observations are obtained for instances 3 and 5, respectively. Instances 2 and 4 in Table 5.3 and 5.5, provide additional information.