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Thesis abstract 

 

Stereotyped left right (L/R) asymmetry ensures proper looping of internal organs. In 

Drosophila, the adult hindgut (AHG) has a clear stereotypical dextral loop and, like all LR 

asymmetric organs, require Myosin ID (MyoID) for correct orientation. MyoID is an 

unconventional type I myosin that binds to DE-Cadherin, this association being required 

for proper LR establishment; however, the mechanism that translates MyoID chirality 

into proper morphogenesis remains unknown.  

The AHG is a long tube coiled dextrally and located in the middle of the abdominal 

region. It develops from a cluster of progenitors containing two different populations of 

cells, H1 and H2. Here, we show that MyoID controls the AHG dextral loop by binding to 

the atypical cadherin Dachsous (Ds) in H1 cells. Further, Ds-Fat signaling propagates 

towards the H2 cells which in turn become polarized towards the right and consequently 

loop. H1 is a transient population of cells that wear off in the first hours of 

metamorphosis; nevertheless, the dextral information generated in H1 is maintained in 

H2 cells due to the cooperative action of PCP components. We demonstrate that the 

molecular basis of the LR establishment downstream of MyoID action lies in the PCP 

system, which has a double role transmitting and maintaining a dextral signal in the AHG.  

Thus, we provide for the first time a link in L/R morphogenesis between Drosophila and 

vertebrates in which PCP mutants result in L/R defects. 

Furthermore, in our attempts to better understand the evolution of L/R morphogenesis 
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we found the recently co-appearance of a myoID cis-regulatory element and the AHG 

dextral loop, during Drosophilidae evolution, suggesting that changes in myoID 

expression pattern induced the evolution of asymmetric structures.  

In summary, we present in this study a recently appeared regulatory network of L/R 

asymmetric morphogenesis, where MyoID appears to be upstream of the Dachsous/Fat 

and the canonical PCP pathway, through direct binding and regulation of Dachsous 

protein. 
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Résumé de la Thèse 

 

L’asymétrie Droite-Gauche (DG) est responsable de l’empaquetage et l’enroulement 

stéréotypé des organes internes au cours du développement. Chez la Drosophile, 

l’intestin postérieur adulte (AHG) se développe asymétriquement selon l’axe DG en 

formant une boucle dextrale. Comme pour tous les organes asymétriques DG de la 

Drosophile, la mise en place de l’axe DG nécessite l’expression de la myosine non 

conventionnelle de type I : MyoID. Cette myosine se lie à la DE-Cadherine au niveau des 

jonctions adhérentes (AJ) pour mettre en place l’axe DG, mais le mécanisme moléculaire 

qui transforme la chiralité de MyoID en une morphogenèse asymétrique DG est 

totalement inconnu.  

L’AHG est un long tube situé au milieu de l’abdomen, qui présente une boucle dextrale 

dans sa partie proximale. Il se développe à partir d’un groupe de progéniteurs formés de 

deux populations de cellules : H1 et H2. Dans cette étude, nous avons mis en évidence 

que MyoID contrôle la formation de la boucle dextrale du AHG grâce à son interaction 

avec la cadhérine atypique Dachsous dans les cellules H1.  De plus, nous avons pu 

mettre en évidence que la signalisation Dachsous-Fat est activée à travers les cellules H2 

entrainant leur polarisation du coté droit, et ainsi formant l’enroulement du AHG.  Les 

cellules H1 sont transitoires, elles disparaissent lors des premières heures de la 

métamorphose. Cependant, l’information dextrale générée dans les cellules H1 perdure 

dans les cellules H2 grâce à l’action coordonnée des composants de la polarité planaire. 
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Nous montrons que la polarité planaire contrôle l’établissement de l’asymétrie DG en 

aval de MyoID, en transmettant et en maintenant l’information DG dans le AHG. Ainsi, 

nous proposons pour la première fois, qu’il existe un lien entre la morphogenèse 

asymétrique DG de la Drosophile et des vertébrés chez lesquels des mutants des 

composants de la polarité planaire entrainent des défauts d’asymétrie DG.  De plus, 

nous montrons que la boucle dextrale de l’AHG est apparue récemment au cours de 

l’évolution de la Drosophile de manière concomitante à un élément régulateur du gène 

codant pour MyoID. 

Cette étude propose un nouveau réseau de régulation de la morphogenèse asymétrique 

DG, dans lequel MyoID agît sur la signalisation Dachsous-Fat et la voie canonique de 

polarité planaire, grâce à son interaction directe avec Dachsous, pour transmettre 

l’information asymétrique à l’ensemble du tissu.  
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Introduction 
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I Introduction  

 

L/R asymmetries are common to all animals and they can be separated into subtle 

asymmetries and conspicuous asymmetries. Subtle asymmetries are best represented by 

fluctuating asymmetries which are all the small perturbations that deviate from a 

perfect bilateral symmetry. These asymmetries are present at an individual level and are 

not shared among members of the same species  (i.e. the human face thus originally 

symmetric displays some small L/R defects that make it overall asymmetric). Fluctuating 

asymmetries are a consequence of developmental noise coupled to environmental 

effects and as so are used as a measure of developmental stability. During development, 

small random perturbations or environmental conditions cause the development to 

deviate from its expected path. As these processes act locally, therefore likely affecting 

only one body part, their effects will become apparent on the left or the right side 

separately, leading to asymmetric phenotypes or fluctuating asymmetries (Dongen, 

2006). 

The other types of asymmetries, the conspicuous are not random accumulation of 

defects but are generally shared among most individuals from a species. This type of L/R 

asymmetries can be further subdivided into random asymmetries (or anti-symmetries) 

and fixed (or stereotyped) asymmetries. Anti-symmetries are L/R asymmetries present in 

all the members of a given species but in which the right and the left sides are 

randomized (for example: many crab species develop one bigger claw than the other), 
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however this is not stereotyped or fixed as the number of big-right claw individuals are 

equal to the number of big-left claw individuals. It has been proposed based on its 

random characteristic, that anti-symmetries are generated by an external environmental 

cue that forces the developmental program to break symmetry thus choosing randomly 

either left or right side.  

On the other hand, stereotyped or fixed asymmetries, only right or left handed members 

in a species, are thought to be genetically controlled. A good example for stereotyped 

L/R asymmetries in the positioning of the heart in the human body, normally located to 

the left side, the stereotypic looping of the human intestine going from right to left or 

the differential size of the left lugh in relationship to the right one. There are many 

examples of stereotypic L/R asymmetries in animals that go from the fixed direction of 

toad vomit to the coiled direction in the shell of snails (Pohl, 2011; Asami et al., 2008; 

Grande, 2010; a very detailed list of asymmetries fount in animals has been gathered by 

Richard Palmer 

http://www.biology.ualberta.ca/palmer.hp/asym/Curiosities/Curiosities.htm)  

Stereotyped left right (L/R) asymmetry is important in animals for the proper packing 

and function of internal organs. For example, complete L/R axis inversions in humans are 

not common and though people with this condition are relatively healthy, randomization 

in the L/R positioning of internal organs is more common (estimated around 

1/5000-10000 in humans) and results in early miscarriage, heart defects and misrotation 

of the intestine. It has even been proposed that the main cause of miscarriage in 
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humans is due to this type of L/R defects (Reviewed in Coutelis et al., 2014). Therefore 

the accurate establishment of stereotypical L/R asymmetry is under strong genetic 

control as is crucial for the organism fitness. But also it represents an important 

biological question: how are fixed asymmetries generated from a symmetric and thus 

naïve state?  

The study of the establishment of L/R asymmetry has aided by several animal models 

mainly vertebrates. Over the years a huge amount of data has been recovered however 

most of the mechanism that have been described have turned out to be downstream of 

an early L/R asymmetry breaking event  (for details see L/R asymmetry in the animal 

kingdom section). Thus, the main question of how stereotypical L/R asymmetry is 

generated from an original symmetry break event has remained elusive.  

Recently, the addition of invertebrate genetic models in the study of L/R asymmetry 

development has proved to be useful for the understanding of common and divergent 

mechanism that govern L/R axis throughout development. While the genetic bases of 

L/R patterning in insects have only been recently exploited as a genetic model, it is now 

clear that the Drosophila fruit flies offer several advantages as a genetic model for L/R 

studies. In Drosophila L/R asymmetric patterning is controlled by the unconventional 

type 1 myosin, MyosinID (MyoID), if this protein is missing the whole fly develops with a 

completely inverted L/R axis (for details see L/R asymmetry in Drosophila chapter). 

However, neither the mechanisms that translate MyoID activity into proper asymmetric 

organ nor the mechanism in which MyoID activity is able to break symmetry have yet 
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been revealed. 
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L/R asymmetry and chirality  
 

Chirality is an accessible synonym for handedness and for L/R asymmetry. The term 

chirality as a property of handedness was first introduced by Sir William Thomson (later 

Lord Kelvin) in 1893 (Gerlach, 2013). The overly confusing exact words were: 

«I call any geometrical figure or group of points chiral and say it has chirality, if its image 

in a plane mirror, ideally realized, cannot be brought to coincide with itself. Two equal 

and similar right hands are homochirally similar. Equal and similar right and left hands 

are heterochirally similar. They are also called enantiomorphs as introduced by German 

writers I believe. Any chiral object and its image in a plane mirror are heterochirally 

similar.» 

 

Any chiral object and its mirror image are isometric, which means that the 

corresponding points have the same distance. The two objects cannot be distinguished, 

if we take only their metric into account. But chiral objects can be related pairwise either 

by translation or by reflection. These pairs then have equal or opposite chiral sense, 

homochiral or heterochiral respectively (Gerlach, 2013). Similar definitions are “An 

object is chiral if it cannot be brought to congruence with its mirror image by translation 

or rotation” (Prelog, 1982) and “An object is chiral if it is not superposable on its mirror 

image” (Mislow, 1999). 

Chirality is an important geometrical feature in animals as it is present in many 
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steotyped L/R asymmetric features. For example the directional coiling of snails is a 

chiral structure (Pohl, 2011; Asami et al., 2008; Grande, 2010); most importantly, the 

direction of the coiling can be found to be right handed in some species or left handed in 

others; therefore a chiral geometry is an important evolving trait.  

At the level of an individual organism, two types of asymmetries have to be 

distinguished. First the fixed L/R asymmetry which arises during early development, is 

genetically determined and controls the L/R asymmetry of internal organs, for example 

the coiling of gut, the shape and position of the heart and the laterality of the nervous 

system. And second, the stochastic fluctuating L/R asymmetry which is not necessarily 

genetically controlled and forms independently of the internal L/R body axis. A good 

example is the random yet dramatic difference in claw size of fiddler crabs or the 

stochastic L/R asymmetries in human faces (Géminard et al., 2014; Okumura et al., 2008; 

Pohl, 2011 ; Wood, 1998).   

The decision on an organism's primary L/R asymmetry can be thought of as a 

critical point early in development at which the system's chiral fate is determined by 

choosing either dextral or sinistral fate. The current paradigm for L/R patterning is that, 

after the initial critical point, fields of asymmetric gene expression are established. 

Asymmetric cellular behaviors emerge that eventually lead to asymmetric 

morphogenesis. Reversal experiments in many species indicate that in order to develop 

consistent directional L/R asymmetry, the initial chirality decision has to be propagated 

effectively (Géminard et al., 2014; Okumura et al., 2008; Pohl, 2011; Wood, 1998). 
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L/R axis interaction with other body axes 
 

All animals have three body axes: the antero-posterior (A/P) axis, the dorso-ventral (D/V) 

axis and of course the L/R axis. The L/R axis is particular in respect to the other two axes 

in the sense that it appears after the other two axes during development and because 

the L/R axis should be oriented in relation to the other axes. Of course the mechanism 

that aligns the L/R axis to the other axes is not known and it likely lies at the very core of 

the original symmetry breaking event. However, a very simple hypothesis that explains 

this alignment has been proposed by Brown and Wolpbert called the “F-molecule” 

hypothesis. This hypothesis states the existence of a chiral molecule called “F-molecule” 

that is able to read and align to both the A/P and the D/V axis, then given the chiral 

nature of this hypothetical molecule the L/R axis would be generated automatically 

(Brown and Wolpert, 1990).  
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L/R asymmetry in the Animal kingdom  

1 L/R asymmetry is a conserved feature of the animal kingdom 

 

L/R asymmetry is a conserved feature of the animal kingdom as it has been 

reported in the majority of phylogenetic groups, from protozoa to mammals (Ludwig, 

1932; Neville, 1976). Despite L/R being a conserved trait, the specific organs that exhibit 

L/R asymmetry are not all so conserved, the exception of the intestine or gut, which is 

looped in a stereotypic L/R fashion in most animals. Some general examples include: the 

heart, an asymmetrically localized structure in humans that in insects is dorsally located 

in a symmetric fashion and the coiled shell of snails, only present in mollusks (Figure 1). 

L/R axis is arguably one of the most diverse axis in terms of asymmetric organs and 

patterns in the animal kingdom, from coiled shells in snails to asymmetric positioning of 

the heart in humans and asymmetric neurons in nematodes. All animals studied so far 

have a common logic in L/R establishment (Reviewed in Coutelis et al., 2014). The 

process can be break-down into two processes: first an early asymmetry break in which 

the organism passes from a completely symmetric shape into early asymmetric cues 

(expression patterns, cila movements, ion gradients, for detailed description of these see 

Figure 1 of next Chapter ) and a second phase in which these early asymmetries are 

transformed into proper morphogenetic processes (For extensive reviews on L/R 

asymmetry establishment see: Aw and Levin, 2009; Nakamura and Hamada, 2012; 

Vandenberg and Levin, 2013; Namigai et al., 2014; Géminard et al., 2014; Grande, 2010; 



Figure 1. Examples of L/R asymmetric traits in the animal kingdom.  

(A) Fiddler crab with heterochelie (Uca pugnax, drawing is from De Kay (1844).). (B) Flatfish with 

two eyes placed on one body half (Pleuronectiformes from  http://www.gofishing.co.uk/Sea-
Angler). (C) ) Sinistral (left) and dextral (right) shells of Amphidromus perversus, a species with 
chiral dimorphism (Grande, 2009). 

C A 

B 
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Okumura et al., 2008; Pohl, 2011; Coutelis et al., 2014). Common to most animals 

studied is the fact that these two crucial events happen only once during embryogenesis. 

The most classic example is the embryonic mouse node (the Nodal Model), a structure 

containing small cilia that rotate in one chiral direction, thus breaking the system 

symmetry, the chiral movement of these cilia controls an asymmetric movement of fluid 

inside this node that leads to the specific deposit of Nodal-containing vesicles in the left 

side of the Node (Hirokawa et al., 2006; Coutelis et al., 2014; Vandenberg and Levin, 

2013). Finally, these vesicles induce a transcriptional activation cascade that initially 

leads to higher expression of Nodal, Pitx2 and the TGF-Beta homolog Lefty (see Figure 1 

in next section review article). 

However there are some clear evidences showing that the Nodal-cilia pathway is 

not all inclusive nor it is representative of all vertebrates studied; it has coined the term 

L/R organizer: a transient structure whose activity is needed to control later L/R 

asymmetryc developmental events. Of course one property of a L/R organizer is that 

when disrupted L/R organs will no longer be able to distinguish right from left and in 

consequence will become either symmetrical or randomly asymmetrical. 

As stated above, the vertebrate embryonic node is a crucial structure controlling 

L/R patterning. In mouse, where it is best described, the node forms at stage E8.5/6, 

while the flow happens during late gastrulation. Similar structures have been identified 

in other animals: the Kupffer’s Vesicle in Zebrafish, the Gastrocoel Roof Plate in Xenopus, 

and the Hensen’s Node in chicken (Vandenberg and Levin, 2013). In mouse the node is a 
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monociliated epithelium transient structure that forms a cavity at the ventral side of the 

embryo just at the end of the notochrord (Lee and Anderson, 2008). The cilia present in 

the Node are crucial players in the early phases of L/R asymmetry (Hashimoto et al., 

2010; Yoshiba and Hamada, 2014). If their motility is disrupted (by mutating the Dynein 

homolog) or if the cilia are absent L/R defects arise later in development (Supp et al., 

1997; Babu and Roy, 2013; Hirokawa et al., 2006). These cilia have a particular 

characteristic that they rotate in a chiral fashion, turning in a repetitive way clockwise; 

this rotation is also crucial for L/R establishment (Hashimoto et al., 2010). It has been 

proposed that the movement of these cilia generate a small current in the inside of the 

Node that goes from the right-sided wall towards the left-sided wall (Hashimoto et al., 

2010). The seminal experiments demonstrating the link between the flow and L/R 

patterning were conducted by artificially altering the flow movement by means of 

modifying its viscosity, leading to L/R randomization or directly changing its direction, 

leading to the imposed expression of Pitx2 and Lefty on the right side (Nonaka et al., 

2002; Hashimoto et al., 2010). Strangely, while the node contains around 200 cilia, some 

mutant conditions in which only two “normally-rotating” cilia are present in the Node, 

the resulting animals do not exhibit obvious L/R defects, indicating that very small and 

subtle asymmetries generated in this system are able to stereotypically break symmetry 

and efficiently propagate the L/R signal to the overall embryo (Shinohara et al., 2012). 

Another interpretation of these results is that despite the induction of a huge damage in 

the beating-cilia present in the Node, leaving only two of them functional, L/R defects 

are barely noticeable, thus questioning the importance of cilia in L/R 
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establishment/propagation. 

The second step in the Nodal model of L/R patterning comprised the specific 

transcriptional activation of specific genes on one side of the embryo, the left side. 

Nodal, a member of the Transforming growth factor beta (TGF-B) family originally 

expressed in a symmetric fashion is rapidly restricted to the left side of the Lateral Plate 

mesoderm, where it reinforces its own expression along with Lefty and Pitx2 expressions 

(Nakamura et al., 2006; Brennan et al., 2002). Finally, regulatory loops between these 

three components refine the final expression domains (Nakamura et al., 2006). Though 

the link between Nodal expression and the rotating cilia is not completely resolved it has 

been proposed the existence of a specific type of vesicle, termed Nodal Vesicle Parcels 

which are released into the Node and which are systematically transported by the flow 

(Tanaka et al., 2005). Alternatively another hypothesis has been raised based on the 

presence of another type of cilia, sensory cilia present in the perinodal crown cells. This 

alternative mechanism postulates that the signal present in the nodal flow is a 

mechanical one felt by the sensory cilia. Consistently, two Ca2+ channel encoding genes 

Pkd2 and Pkd11 are required specifically in crown cells to translate the signal coming 

from the nodal flow (Field et al., 2011; Pennekamp et al., 2002; McGrath et al., 2003). 

While the Nodal flow model is particularly useful in explaining the two steps 

needed for L/R patterning (Symmetry breaking and propagation) evidence in other 

animal models suggest that additional mechanisms are also involved in L/R patterning in 

vertebrate models (For review see: Aw and Levin, 2009; Vandenberg and Levin, 2013; 
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Okumura et al., 2008; Pohl, 2011; Coutelis et al., 2014). The key set of experiments 

questioning the validity of the Nodal-Flow simplicity are i) the evidence of early 

asymmetries present in different vertebrate animals (Zebrafish, Xenopus and Chicken, 

though not yet in the mouse) before the appearance of the Nodal Flow, like the H+/K+ 

ATPase activity leading to asymmetric cellular movements in chicken and ii) the apparent 

Nodal/Cilia-independent structures, like the heart looping in Zebrafish or the chicken 

Node which has immotile cilia (Stephen et al., 2014). In chicken the homologous region 

to the Node does not develop from mesodermal tissue, like the mouse one, but from 

endodermal tissue; yet the most striking difference between this region from chicken 

and the mouse’s Node is that the chicken Node has either short and non-motile cilia 

(Stephen et al., 2014). Therefore the chicken must rely in a different mechanism for 

establishing L/R asymmetry. One mechanism that has been revealed is that the node 

itself becomes asymmetric through cellular rearrangements and migration (Gros et al., 

2009). This mechanism contributes to the later in developmental asymmetries. This 

mechanism seems to contradict the importance of cilia-driven establishment of L/R 

patterning at least in the chicken. On the other hand, even in species with proper 

cilia-containing Nodes (Xenopus laevis), some evidence points to the existence of a 

previous asymmetric event taking place before the Node is formed (Levin et al., 2002). 

The clearest example of this is the presence of a graded L/R asymmetric 

expression/activity of the H+/K+ ATPase (Levin et al., 2002). Though the exact 

mechanism that links this early asymmetries to later events has not been extensively 

studied, the proposed mechanism involves the generation of an asymmetric signal based 
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on a differential pH formed through graded activity of the H+/K+ ATPase pump (Adams 

et al., 2006). Finally, even in mouse, where the cilia Nodal-flow model is most solid, 

there is one particular mutation (inversin) able to completely inverse the L/R axis, 

including the chiral cilia titling, thus suggesting an underlying mechanism controlling cilia 

mediated flow (Morgan et al., 1998). 

Far from resolved, the L/R asymmetry field has encountered many open 

questions that have still to be clarified. What has become evident is that the Nodal flow 

in not a completely conserved feature in the animal kingdom and that several 

mechanism can influence L/R patterning (For review see: Vandenberg and Levin, 2013). 

Nodal signaling cascade on the other hand is much more conserved, being present in all 

studied animals from mouse to snails and ascidia Ciona intestinalis, and only absent in 

some invertebrates, including Drosophila and C.elegans. However the upstream 

mechanisms that control this cascade are not conserved, since not all rely in the flow 

happening in the nodal and/or in cilia, most of these mechanisms remain to be 

identified. Therefore, the critical questions are, as they have been from the very 

beginning of the L/R field: How is L/R symmetry initially broken, where does this rupture 

happen and what are the underlying mechanisms? One approach to identifying the very 

early conserved events/mechanisms that generate L/R asymmetries is based on the 

hypothesis that the initial L/R symmetry breaking mechanism is conserved among all 

animals and that what is not conserved in the downstream effectors (such as Nodal 

signaling pathway. Thus, through the study of the underlying mechanisms that establish 

L/R asymmetry in animals that lack both Node-like structures and Nodal signaling 
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pathway (for example some invertebrates) it is possible to identify the most early steps 

in L/R asymmetric patterning in higher vertebrates.  

One particularly good example of invertebrate that despite lacking Nodal 

canonical pathway relies on one single L/R asymmetry breaking event to control all the 

asymmetric positioning of organs and structures is the nematode C. elegans. This 

genetically easy to manipulate model has recently become a good model for studying 

this initial rupture (Pohl and Bao, 2010; Pohl et al., 2012). In the very early embryo (with 

already a settled A/P axis), during the transition from 4 to 6 cells, the mitotic spindle 

rapidly shifts its polarity from being aligned to the A/P axis towards being slightly tilted 

in a L/R asymmetric manner (Pohl and Bao, 2010 and Figure 2 of next chapter). This shift 

has been placed under the control of the underlying actin cytoskeleton. Depletion of the 

WAVE-Arp3 complex or the formin homolog disrupts the L/R mitotic spindle shift, thus 

revealing an actin imposing role in L/R asymmetry (Pohl and Bao, 2010; Pohl et al., 2012).  

While some links are missing it has become clear that later asymmetries in the 

nematode body plan can all be traced back to this early event (Pohl, 2011; Singh and 

Pohl, 2014; see also Figure 2 in next section review article). 

We have very recently published a review on L/R asymmetry in Metazoa with 

more details about particular experiments, detailed references and controversies in the 

field; this review is presented in the next chapter as a support for what has been stated 

here. 
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2 Diversity and convergence of mechanisms establishing L/R asymmetry in 

metazoan (Review article) 
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Abstract

Differentiating left and right hand sides during embryogenesis

represents a major event in body patterning. Left–Right (L/R) asym-

metry in bilateria is essential for handed positioning, morphogene-

sis and ultimately the function of organs (including the brain),

with defective L/R asymmetry leading to severe pathologies in

human. How and when symmetry is initially broken during

embryogenesis remains debated and is a major focus in the field.

Work done over the past 20 years, in both vertebrate and inverte-

brate models, has revealed a number of distinct pathways and

mechanisms important for establishing L/R asymmetry and for

spreading it to tissues and organs. In this review, we summarize

our current knowledge and discuss the diversity of L/R patterning

from cells to organs during evolution.

Keywords L/R asymmetry; symmetry breaking; directional morphogenesis;

evolution, invertebrates; vertebrates
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Introduction

The first mutation affecting the whole body plan was isolated a

century ago and was shown to invert shell coiling in a small aquatic

snail (Lymnaea peregra) [1,2]. Despite this early finding and impor-

tant work describing genetic and cellular aspects of L/R asymmetry

[3–11], the first molecular study of L/R asymmetry was described

only recently, showing for the first time asymmetric expression of

the nodal gene in vertebrates [12]. A possible reason for this lag is

the fact that in contrast to A/P and D/V asymmetries, laterality is

not obvious at first sight, when looking at the external body shape,

with snail shell coiling being an exception. Indeed, despite looking

mostly bilaterally symmetrical, metazoa also differentiate along the

“invisible” L/R axis, leading to asymmetric positioning of unique

organs, such as the heart, liver and stomach, and asymmetrical

morphogenesis of bilateral ones, as for example the lung and brain.

In addition, L/R asymmetry controls the looping of tubular organs

(heart tube, gut, and other ducts) toward one direction. Laterality is

thus essential for the correct arrangement of visceral organs in the

abdomen and thorax, but is also essential for the asymmetric

morphogenesis, hence the function, of the heart and brain, for

example. Clinical studies led to an estimation of 1/5,000–1/10,000

humans suffering from L/R defects (situs inversus, heterotaxia, and

isomerism), being responsible for a number of complex congenital

heart defects, misrotation of the intestine, and spontaneous miscar-

riage. Furthermore, L/R asymmetry defects, which often originate

from ciliopathies, are associated with polycystic renal disease,

Kartagener and Ivemark syndromes, and others.

L/R asymmetry is therefore essential, and outstanding questions

remain to be addressed to understand how body shape and function

are established during evolution. What is, or what are, the origin(s)

of L/R asymmetry? Where and when does it take place in the

embryo? Are there any conserved features among metazoa and how

did L/R asymmetry establishment evolve in metazoa (Sidebar A)?

A specificity of L/R asymmetry is the fact that it has to be coordi-

nated with the other two—A/P and D/V—body axes and thus is estab-

lished relative to and after them as a “secondary” axis. This important

notion was summarized by Brown and Wolpert in their elegant

F-molecule model [13]. The incremental/two-step establishment of

body patterning is particularly interesting, as it implies that L/R asym-

metry establishment depends on mechanisms that integrate existing

2D positional information. Over the last few years, several studies

using different model organisms helped to identify unique mecha-

nisms at play during the establishment of L/R asymmetry. Although a

variety of mechanisms have been discovered, fascinating similarities

between quite distant phyla are emerging. On the following pages, we

will discuss the various mechanisms and synthesize common princi-

ples of L/R asymmetry establishment in vertebrates and invertebrates.

Vertebrate embryonic node and Nodal flow in
L/R patterning

A well-established model for the determination of the body situs in

several vertebrate species is that of the Nodal flow occurring at the
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late-gastrulation-neurulation stage in the mouse node and node-like

structures of other animals (Posterior Notochordal Plate in rabbit,

Kupffer’s Vesicle in zebrafish, Gastrocoel Roof Plate in Xenopus)

[14–16].

The Nodal flow model is best described in mouse, which serves

as the model paradigm; hence, we focus in the following on the

description of the data obtained in mouse. The node is a transitory

structure located on the ventral side of the embryo at the end of

the developing notochord (Fig 1A). The node is a cavity covered

by a monociliated epithelium-like monolayer of cells, which

appears decisive for proper lateralization [17]. Indeed, when the

node cilia are missing, mice show abnormal L/R patterning with

random lateralization, that is, both the normal situs solitus and the

inverted situs inversus are observed. This is for instance the case

in mice mutant for the Kif3A or Kif3B subunits of the kinesin-II

complex, a microtubule motor essential for proper ciliogenesis and

maintenance of the cilium. In these mutants, cilia fail to assemble

[18,19].

However, it is not merely the presence of these cilia that is

important, but rather their motility. Indeed, inversus viscerum (iv)

mutant mice, in which the cilia are present but immotile, show

similar randomized lateralization phenotypes [20,21]. iv encodes

the L/R dynein, another microtubule motor essential for node cilia

motility [20]. Node cilia rotate clockwise, thereby producing a left-

ward flow of extra-embryonic fluid, which appears to determine

the directionality of embryo lateralization [18,19,22,23]. Cilia have

been known for some time to be important for lateralization [24],

but their role in the production of the Nodal flow was only

recently described [18] (Fig 1A). Impairing the flow genetically

(with mutant mice) or experimentally (by increasing the viscosity

of the medium) leads to L/R patterning defects [25]. When the

node cilia are missing or immotile, the Nodal flow is abolished

and the L/R situs is consequently randomized. Interestingly, the

restoration of an artificially generated leftward Nodal flow is suffi-

cient to reinstate normal L/R patterning of mutant mice [25].

Conversely, in wild-type mice, superimposition of an artificial
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Figure 1. Left/Right determination in vertebrates.

(A) Schematic depiction of a E8.5 mouse embryo. Nodal is expressed around the

node. Nodal flow (i) leads to stronger expression of Nodal on the left side (ii) and

in the Lateral Plate Mesoderm (LPM) where it positively regulates its own

expression by a positive feedback loop. Nodal also activates expression of the

homeobox transcription factor Pitx2 and of the TGF-b homologues Lefty2 and

Lefty1 in the LPM near the notochord. Lefty1/2 antagonize Nodal diffusion to the

right side of the embryo and ultimately shut down Nodal signaling. Pitx2

expression is self-maintained and induces left-sided morphogenesis of the LPM.

(B) Schematic depiction of a stage 4 chick embryo’s primitive streak and Hensen’s

node. The leftward movement of cells from the right of Hensen’s node induces

the asymmetric remodffieling of the node’s morphology as well as asymmetric

gene expression patterns (e.g. Shh, green) due to the intermingling of cells with

different genetic programs [57,58]. (C) Xenopus embryo at the 4-cell stage shows

right-sided enrichment in subunit-A of the proton pump H+-V-ATPase, whose

activity is necessary for proper lateralization of the animal. Interestingly, this

early L/R asymmetric localization appears to be sensitive to actin but not

microtubule depolymerization [60].

Glossary

A/P anterior/posterior

Abd-B abdominal-B

ASEL, ASER left–right asymmetric bilateral sensory neurons in

C. elegans

D/V dorsal/ventral

dvl dishevelled-like

FGF fibroblast growth factor

GSK3 glycogen synthase kinase 3

Heterotaxia also situs ambiguus, uncoordinated placing of the

internal organs

Isomerism situation in which both sides of the body adopt the

same fate

iv inversus viscerum

L/R left–right

LPM lateral plate mesoderm

myoID myosin ID

PCP planar cell polarity

PH Pleckstrin Homology

Pitx2 paired-like homeodomain transcription factor 2

Pkd1l1 polycystic kidney disease-like 1

Pkd2 polycystic kidney disease 2

Shh sonic hedgehog

situs inversus inverted placing of the internal organs

situs solitus normal placing of the internal organs

TGF-b transforming growth factor beta

vangl Van Gogh-like
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rightward Nodal flow is able to override normal patterning and

leads to inversion of the axis, demonstrating the importance of the

flow in this process [25].

The normal mouse node is thought to comprise between 200 and

300 motile cilia, nevertheless only a couple of them seem to be

required for normal lateralization [26]. This precision was achieved

through thorough analysis of the phenotype of mutant mice, in

which ciliogenesis was strongly impaired but that nevertheless

retain some cilia at the node. This is for instance the case in mice

mutant for the Rfx3 transcription factor necessary for ciliogenesis.

The discovery that only two motile cilia—but not one—wherever

their position in the node, were sufficient to trigger normal L/R

patterning questions the sensitivity of the Nodal flow signal or the

existence of a on/off effect of the flow [26]. Remarkably, the genera-

tion of a small difference or initial bias between the left and right

sides by the Nodal flow appears to be sufficient to be turned into

robust asymmetry [27]. Similar analyses of flow dynamics in vari-

ous genetic conditions showed that in zebrafish, the flow generated

by thirty motile cilia or more reliably predicts the future laterality of

the animal [28]. Interestingly, the authors revealed distinct sensitivi-

ties of different organs to the flow. These observations could

account for heterotaxia in conditions in which the flow is compro-

mised but not abolished.

How is the information provided by the Nodal flow imple-

mented for asymmetric morphogenesis, and how does the Nodal-

signaling cascade initiate left-sided morphogenesis? Originally

detected on both sides of the node, Nodal expression is reinforced

on the left side by the Nodal flow. Nodal, a TGF-b family member,

diffuses to the LPM surrounding the node where it activates a

positive feedback loop inducing its own expression, as well as

those of Lefty2 and Pitx2 in the LPM and that of Lefty1 around the

midline [29] (Fig 1A). Lefty1 and Lefty2 molecules are monomeric

TGF-b family members that compete with Nodal signaling in the

extracellular medium. The expression of Lefty1 at the midline

antagonizes the Nodal produced on the left side of the embryo

LPM, thus preventing the diffusion of Nodal activity to the right

side and subsequent ectopic left-sided development [30,31].

Consistently, nodal mutants display right-sided characteristics on

both sides (right isomerism), whereas both sides of Lefty1 mutants

show left-sided characteristics [27,29,30]. Downstream of Nodal

signaling is the homeodomain-bearing transcription factor Pitx2.

Pitx2 expression once activated by Nodal remains expressed in the

LPM. Its expression dictates left-sided morphogenesis of the asym-

metric organs, thus presaging the development of morphological

asymmetries of the body [32–35].

These data show the importance of the flow generated by the

node cilia in locking the directionality of the L/R axis. However,

cilia rotating around their axis (from their base to their tip) should

produce a vortex without any clear directionality and not the

laminar flow that is observed experimentally. How can the clock-

wise rotation of the cilia produce a leftward flow? The answer is

twofold. First, the apical surface of the node cells forming the

embryonic cavity appears to be convex, and second, their basal

body (that anchors the cilium in the cell) is asymmetrically

positioned. In the node epithelium, the cilia basal bodies are not

positioned in the middle of the apical side but at the posterior end

[36,37]. These two factors lead to a posterior tilt of the cilia, which

in turn leads to an effective stroke toward the left side and an

ineffective recovery stroke toward the right side, thereby creating

the observed leftward flow [36–38].

How is this coordinated localization of the node cell basal bodies

from their initial central apical location to the posterior attained

across the node epithelium? A well-known example of the uniform

orientation of all cells in the plane of an epithelium is that of PCP.

PCP was first described in Drosophila ommatidia and wing bristles,

whose coordinated orientation was shown to genetically depend on

so-called PCP genes [39]. Proper L/R axis establishment is also

impaired in mice mutant for the PCP genes dvl and vangl, due to the

randomization of the cilia position at the surface of the node pit cells.

Thanks to PCP signaling, all node cells have their cilium basal body

located similarly at the posterior end of their apical domain and

can thus participate in the generation of the coordinated Nodal flow

[40–43]. Interestingly, the positioning of the cilia basal bodies also

depends on actin cytoskeleton remodeling, as the cooperation of the

PCP core protein Vangl2 and the actin-severing protein Cofilin1

appears to be important in this process [44]. In vangl2;cofilin1 double

mutant mice, the basal body fails to migrate posteriorly and remains

centrally located leading to L/R patterning randomization [44]. Taken

together, these data link the generation of the extra-embryonic Nodal

flow to the intracellular cell cytoskeleton organization and A/P axis.

Several questions remain, as for example, how does the Nodal

flow induce organism lateralization and subsequent asymmetric

morphogenesis? How is the Nodal flow sensed? It is now clear that

in addition to the node pit cell cilia, a second population of cilia

located on the crown cells around the node is crucial for sensing the

flow. To date, two not mutually exclusive hypotheses are debated,

the first chemical and the other mechanical (for review see [36,45]).

The former asserts that a morphogen gradient is established by the

Nodal flow and sensed by the perinodal crown cells. Nodal Vesicular

Parcels are membrane-sheathed vesicles originating from the node

cell that are released in an FGF-dependent fashion [46]. These Nodal

Vesicular Parcels are suggested to be transported by the Nodal flow

and to produce a putative gradient of molecules, such as Shh and

retinoic acid [18]. This hypothesis needs to gather firmer experimen-

tal confirmation in order to be corroborated. The latter hypothesis,

the mechanical one, claims that the signal carried by the Nodal flow

is actually the pressure that is sensed by the sensory cilia of the

perinodal crown cells [21].

Whichever the mechanism, it has been shown that the percep-

tion of the Nodal flow requires the Ca2+ channel encoded by the

Pkd2 and Pkd1l1 genes [47,48]. Interestingly, this complex appears

to be required solely in the perinodal crown cells for proper L/R

establishment. In Pkd2 null-mutant mice, Pkd2 expression was rein-

troduced by transgenesis in the perinodal crown cells but not in the

node pit cells. This localized expression was sufficient to restore

normal L/R patterning [49]. Consistently, mice with normal Pkd2

expression, in which cilia are absent from node pit cells and only

present in the perinodal crown cells, are able to respond to an artifi-

cial flow and trigger proper left-sided morphogenesis [19]. This

suggests that the Pkd2 and Pkd1l1 complex could be responsible for

the detection of the Nodal flow and possibly for the resultant Ca2+

signal observed on the left side of the node [47,48,50]. However,

how this Ca2+ signal impacts on Nodal expression and the subse-

quent signaling cascade remains to be resolved.

The Nodal flow model is very popular as it provides a comfort-

able mental frame to link cell polarity to structural chirality and
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ultimately to organism lateralization, but additional mechanisms

could be at play during vertebrate L/R axis establishment. Although

no early L/R asymmetry has yet been described in mouse, one study

found that blastomere repositioning at the 4- and 8-cell stages

affects the stereotypical embryonic axial rotation occurring days

later [51]. Furthermore, the left–right dynein encoded by the iv

locus and known for its role in L/R asymmetry (as mentioned

above) has recently been implicated in the process of chromatid

segregation [52], thus opening the way for a “chromatid segrega-

tion” model hypothesizing a L/R asymmetric imprinting of the chro-

matin from the zygote first cell division on [53]. In addition, recent

investigations suggest that a Nodal-independent mechanism, relying

on actin polymerization and myosin II activity, could control heart-

looping lateralization in zebrafish [54]. Other Nodal flow indepen-

dent mechanisms of L/R patterning in vertebrates and invertebrates

are discussed in more detail below.

Ion flux and left–right determination in vertebrates

Several vertebrate species with a node-like structure do not seem to

rely on the Nodal flow for their L/R axis determination. In chick for

instance, the homologous structure, the Hensen’s node, differs from

the mouse node. The mouse or rabbit node is formed of mesodermal

pit cells whose motile cilia produce a flow [36,55]. In the chick, on

the other hand, Hensen’s node cells are endodermal cells with

shorter and immotile cilia [56]. Interestingly, the chick node itself

becomes morphologically asymmetric and adopts a leftward tilt due

to cellular rearrangements, cell migration, and interactions with the

surrounding tissues (Fig 1B) [57,58]. This observation does not

seem to be a peculiarity of the chick, or of non-mammalian verte-

brates, as it was also reported in the pig embryo [58]. Remarkably,

these cell migration properties, which precede asymmetric Nodal

expression by several hours, directly depend on the L/R program

and are downstream of the earlier H+/K+ ATPase activity [58].

A whole body of work has shown the involvement of ion

pumps of various kinds in L/R patterning at the earliest stages of

development. Initially identified through pharmacological screening

for the effect of drugs on lateralization, ion pumps and ion chan-

nels such as H+/K+-ATPase, H+-V-ATPase, or Na+/K+-ATPase,

were found to possess asymmetric localizations and activities at

developmental stages prior to the “Node” and as early as the first

cleavages in several vertebrate species (Fig 1C) [59–61]. The asym-

metric expression of these pumps and channels on one side of the

embryo is thought to generate a localized ion flow creating steady

differences in pH and transmembrane voltage between left and

right sides of the embryo. These pH or electrical gradients are

thought to orient lateralization or to mediate the local concentra-

tion of small signaling molecules (for review see [14,16]). Indeed,

when the ion pump or channel activity is missing, the resultant

phenotype is often heterotaxia, that is, an uncoordinated L/R axis

[59–61]. Interestingly, some data indicate that the initial asymme-

try of these ion pumps during early development depends on the

correct organization of the cell cytoskeleton [60]. To our knowl-

edge, no data on whether ion pumps, channels or other mecha-

nisms preceding the Nodal flow stage could be at play in mouse

L/R asymmetry establishment are yet available. Taken together, it

appears that in several vertebrate species, L/R asymmetry is

established at different times of development and via different

mechanisms.

Left–right asymmetry determination in
non-vertebrate deuterostomes

Several of the actors and mechanisms found in vertebrate L/R deter-

mination appear to be conserved in non-vertebrate deuterostomes

without Node-like structures, such as the ascidian Ciona intestinalis

and Halocynthia roretzi or the echinodermata sea urchin. The

C. intestinalis larva possesses two asymmetrically located sensory

pigment spots near the brain as well as an asymmetric gut [62].

Similarly to the aforementioned vertebrates, Nodal signaling is

detected on the left side of C. intestinalis and leads to the expression

of the Pitx2 homologue, which in turn directs left-sided morphogen-

esis [62]. Interestingly, H+/K+ ATPase activity also appears to act

shortly before Nodal expression in C. intestinalis and its perturba-

tion affects the left-sided expression of the Pitx2 homologue, indicat-

ing the requirement for the ion channel in C. intestinalis L/R

patterning as well [62]. In H. roretzi, another ascidian, Nodal signal-

ing is also detected on the left side of the embryo for L/R morpho-

genesis. However, in H. roretzi, Nodal expression depends on

embryo-wide movements that bring the embryo epidermis and the

vitelline membrane in contact. Indeed, a recent study shows that

Nodal expression originates from this contact [63]. Interestingly, the

contact zone is consistently fixed through a cilium-driven stereo-

typical rotation of the neurula-stage embryo, called the “neurula

rotation” [63]. These data, once more linking Nodal and ciliary

function, suggest that cilia could act in more than one way for L/R

determination. Finally, in the sea urchin pluteus larva, the adult

rudiment (the progenitor tissue for the future sea urchin) forms

on one side of the mesodermal tissues [64,65]. Here, Nodal and

H+/K+ ATPase activities are also involved in L/R patterning

[65,66]. But there is a twist to it, as in sea urchin, Nodal is not a left

side marker or inducer but is instead found to be expressed on the

larval right side, where it prevents left-sided development of the

adult rudiment [65,66].

Left–right asymmetry determination in invertebrates

Although they do not all possess asymmetrically positioned organs,

most bilaterian animals show some kind of internal L/R asymmetry.

Bilateria is a big clade containing the Deuterostomes and

Protostomes phyla. All the aforementioned species belong to the

Deuterostomes, yet the Protostomes (usually referred to as “inverte-

brates”) are key to understand the basis of L/R patterning both at

the morphological and at the functional level [14,67]. Among those,

studying three different genera, snails of the Lymnaea genus, the

Caenorhabditis elegans nematode, and the Drosophila melanogaster

fruit fly, led to some major advances in our understanding of L/R

asymmetry, which are discussed below.

Lymnaea snails

In snails, L/R asymmetry can be seen in the asymmetric positioning

of organs such as the gonad or renal organ but is most evident in

the coiling of their shell, whose direction is firmly controlled. There
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are snail species with dextral coiling, others with sinistral coiling of

their shell. Yet, snails with inverted shell coiling can naturally occur

within a strain and prove invaluable to the study of L/R axis deter-

mination and patterning. In snails, both nodal and Pitx homologues

are asymmetrically expressed during embryogenesis. Their expres-

sion is localized to the right side of dextral snails and to the left in

sinistral snails and is important for the normal asymmetric produc-

tion of the shell. Indeed, treatment with a general chemical inhibitor

of the TGF-b superfamily (to which Nodal belongs) led to some indi-

viduals with non-coiled shells, which could suggest a loss of asym-

metry [68]. A possible downstream effector of Nodal/Pitx signaling

guiding the asymmetric growth of the shell could be the morphogen

Dpp, another TGF-b family member. Indeed, Dpp expression

appears to predict shell coiling in several species [69].

What controls the asymmetric Nodal/Pitx expression in snails?

The exact symmetry-breaking event is unknown, but it appears to

happen at the earliest stages of embryo development. At the 8-cell

stage, the blastomere arrangement appears chiral. The four micro-

meres on top have their “axis” slightly shifted to one side compared

to the bottom macromeres (Fig 2A). This “spiral” positioning of the

blastomeres occurs at the third cleavage and predicts the coiling

direction of the shell. It is thus found to the left in sinistral species

and to the right in dextral ones [68,70,71]. Yet, the situation is strik-

ingly different between variants of a given species, at least for the

first stages. Until the 8-cell stage, the situs inversus embryos have

all their blastomeres aligned, thus lacking the top micromere tilt of

the situs solitus embryos of the same species [70,71]. But from the

8-cell stage onwards, an inversed tilt happens and the situs solitus

and situs inversus individuals appear to be mirror images. These

observations raised the possibility that two distinct mechanisms

could be at play to control the dextral and sinistral fates [70].

Furthermore, micromanipulations of the blastomere arrangement

during the third cleavage (leading to the 8-cell stage) can impose

lateralization on the embryos (Fig 2A). Indeed, inversing the normal

tilt of the blastomeres in situs solitus embryos or restoring a spiral

blastomeric arrangement in situs inversus ones triggers the coiling

of the shell of the resulting adults in the direction imposed by the

manipulation, as well as Nodal and Pitx asymmetric expression

during development [70]. These results indicate the crucial impor-

tance of the early asymmetric mechanisms at play at the third

cleavage stage for L/R axis establishment. Interestingly, treatment

of 4-cell stage embryos with the microtubule depolymerizing agent

nocodazole does not affect proper L/R development, whereas treat-

ments with actin depolymerizing agents such as latrunculin A or B

at the same four-cell stage do impair snail lateralization, indicating

the importance of the actin cytoskeleton in this process [71].

In spite of these indications, the molecular mechanisms regulat-

ing snail chirality remain unknown. Genetic experiments have

shown that shell chirality depends on a single gene [72,73]. Taking

advantage of the naturally occurring sinistral individuals of

Lymnaea peregra, geneticists performed crossing experiments and

found that shell directionality depends on a single locus of the

maternal genome [73]. Furthermore, injection of dextral egg cyto-

plasm into sinistral eggs was sufficient to induce normal dextral

development, whereas the injection of sinistral egg cytoplasm into

dextral eggs had no effect, indicating that the dextral allele is domi-

nant over the sinistral one [73]. Interestingly, phylogeny modeling

has shown that determination of shell coiling by a single gene is

evolutionary conserved [74] and that it could reflect an adaptive

prey/predator response to snake asymmetric mandibles [75].

However, the exact gene that controls dextral coiling has not yet

been identified, despite several attempts [72]. And thus, the nature

of this maternally inherited and dominant dextral cytoplasmic

factor, which is present in the egg and likely acts on the actin

cytoskeleton during the first developmental cleavages, remains

unknown.

Caenorhabditis elegans

Caenorhabditis elegans is a popular model system, for which the

stereotypical developmental fate of each of the one thousand or so

cells has been precisely mapped. Caenorhabditis elegans possesses

many LR asymmetric features as well as asymmetrically positioned

organs, such as the gonad, spermatheca, or vulva (for review on L/R

patterning in C. elegans see [76,77]). Although the exact symmetry-

breaking event during C. elegans development is unknown, the

genetic regulation controlling asymmetric morphogenesis has been

carefully dissected.

The dextral positioning of blastomeres occurring at the 4- to

6-cell stage transition is the first apparent sign of L/R asymmetry.

This process has been heavily used to study early L/R patterning

[76,78,79]. During the transition from the 4- to 6-cell stage, the

anterior and posterior dorsal blastomeres slightly turn to the right,

thus orientating the mitotic spindle rightward (Fig 2B). Upon cyto-

kinesis, this asymmetric division leads to the rightward daughter

cells to be positioned posteriorly relative to the leftward ones, the

whole embryo thus adopting a dextral orientation (Fig 2B). The

bias in the direction of the mitotic spindle appears to originate

from the earliest stage of embryonic development. The one-cell

embryo stereotypically rotates by 120° always in the same direction

prior to the first mitosis. This process relies on the organization of

the actin cytoskeleton, as depletion of the WAVE-Arp2/3 complex

or of the CYK-1 Formin homologue impairs embryo rotation and

C. elegans laterality, thus revealing the existence of an actin-based

intrinsic chirality [80]. This initial chirality seems to be transmitted

to the astral microtubules of the spindle, through the cortical

G-alpha protein encoded by the gpa-16 gene. Loss of gpa-16

G-alpha protein activity leads to random lateralization of the 6-cell

stage blastomere [81]. Consistently, disruption of the spindle orien-

tation process similarly results in the randomization of 6-cell blas-

tomere positioning [81,82]. These data suggest that these

mechanisms are used to orient the mitotic spindle in order to fix

consistent L/R development. Among these mechanisms, the non-

canonical Wnt signaling pathway has been suggested to act on the

cytoskeleton and thereby control blastomere spindle orientation

[83,84]. From stage 12 onwards, a series of Notch inductions

controls L/R patterning [85]. Indeed, after the asymmetric blasto-

mere division at the 6-cell stage, a first Notch induction instructs

asymmetric L/R patterning [80]. Thus, the original L/R asymme-

tries in spindle orientation are at the basis of later L/R patterning

in worms [80,86].

Finally, the C. elegans brain shows two kinds of neuronal L/R

asymmetries. First is the stochastic expression of GFP in a reporter

line in a set of two neurons that are thus termed “On/Off” [87,88].

Through calcium signals between these two neurons, only one of

the pair expresses the odorant receptor gene str-2 [88]. This process

rather corresponds to anti-symmetry than to proper stereotyped L/R
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asymmetry. Second is the stereotyped L/R asymmetry of the neuron

pair ASEL/ASER (Fig 2B). Although the ASEL/ASER fate also

depends on the 6-cell stage blastomere asymmetry, their future

differentiation is determined at the 24-cell stage through two rounds

of Notch inductions that leave a L/R mark on the postmitotic

neurons [89,90]. Recent work identified the nature of the L/R marks

and found that a miRNA, encoded by the lsy-6 locus, induced chro-

matin de-compaction in the neuron committed to the ASEL fate

[91,92].

Drosophila melanogaster

In all the model systems reviewed so far, the animal L/R axis

appears to be established sequentially from an initial symmetry-

breaking event, yet in Drosophila the various L/R organs seem to

be able to individually lateralize owing to the existence of L/R orga-

nizing centers [93,94 and González-Morales N et al, in prepara-

tion]. Furthermore, it is a striking feature of Drosophila that a reset

of the lateralization can occur at metamorphosis (for review on L/R

patterning in Drosophila see [95]). In Drosophila, most L/R research
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Figure 2. Left/right determination in Protostomes.

(A) In snails, L/R asymmetry is manifested in the coiling of the shell. The direction of this coiling depends on the orientation of the first two cell cleavages. The asymmetric

spatial arrangement of the blastomeres leads to the spiral orientation of the spindles. Whereas forced inversion at the 2- to 4-cell stage causes only a temporal L/R

perturbation, mended at the 4-cell stage, forced inversion at the 4- to 8-cell stage results in a permanent inversion of the L/R axis highlighted by asymmetric Nodal and Pitx

expression (green spot). (B) The first clear asymmetric marker in Caenorhabditis elegans is the dextral placement of blastomeres during the 4–6 cell stage transition. The

anterior cell and the posterior cell slightly spin so that the mitotic spindle orients rightward, with the result that the midline reorients slightly dextrally. This early asymmetry

is propagated later on; one example is the appearance of the functionally asymmetric ASEL/ASER neurons, controlled by the specific expression of lys2 and lys6 genes. (C)

Terminalia looping in Drosophila depends on the rotations of two independent rings, the A8a and the A8p, each contributing 180° (white arrowheads on A8a and A8p) to the

360° rotation (blue arrowheads). Although they are in close proximity, the direction of rotation of each of these rings, dextral or sinistral, is independent of each other and only

depends on the presence and absence of the dextral determinant MyoID. (D) The gut of the Drosophila embryo is divided in three parts, foregut (red), midgut (blue), and

hindgut (green), each displaying a complex L/R asymmetry pattern.
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has been performed on the lateralization of two organs at two

different times of development: first, the dextral looping of the

embryonic hindgut during embryogenesis, and second, the dextral

360° rotation of the male terminalia and the associated coiling of

the spermiduct during metamorphosis (Fig 2C and D, [95,96]). The

dextral orientation of these organs, as well as that of the other

Drosophila L/R asymmetric organs, depends on the activity of a

single gene: myosin ID (myoID). When myoID activity is missing,

Drosophila L/R asymmetry is inverted, thus revealing the activity of

an underlying sinistral pathway [94,97]. Interestingly, in some of

these organs, L/R organizers could be identified in which MyoID

activity was exclusively required for normal dextral development of

the organ [94 and González-Morales N et al, in preparation]. Using

temporally and spatially controlled genetic tools, it was shown that

L/R establishment of the embryonic hindgut and terminalia is inde-

pendent and happens at two distinct developmental times

[94,97,98].

Further thorough analysis of myoID expression yielded unantici-

pated results. Indeed, in the L/R organizer controlling terminalia

rotation, MyoID is expressed in two distinct cell rows [94]. Interest-

ingly, these two MyoID expression domains each correspond to the

two independent rings contributing to the 360° terminalia rotation.

Selective depletion of myoID activity in one, the other, or both

domains shows that each cell ring contributes 180° to the rotation

and that they behave as two genetically independent mini-L/R orga-

nizers. Consequently, when myoID activity is present, the ring

rotates dextrally by 180° and by 180° sinistrally when myoID activity

is missing. These data open startling evolutionary perspectives

which could explain the observed diversity in terminalia rotation in

diptera, through the appearance and later duplication of a 180° L/R

unit [99].

Recently, the Hox transcription factor Abd-B was identified as

the upstream regulator of L/R determination in Drosophila (Fig 3A).

Abd-B and other Hox genes are key to establish A/P identity [100],

nevertheless this new function in L/R patterning appears to be sepa-

rate. Upon depletion of Abd-B activity in the embryonic hindgut or

the male terminalia L/R organizer, loss of myoID expression is

observed [93]. Nevertheless, unlike myoID loss of function, Abd-B

depletion does not result in an inverted asymmetric development of

the L/R axis but in the loss of asymmetry leading to a symmetric

development of the organs [93]. Remarkably, restoring MyoID

expression is sufficient to rescue this phenotype indicating that

Abd-B controls the expression of the symmetry-breaking factor, the

dextral determinant MyoID. Furthermore, Abd-B depletion in a

myoID null, and so sinistral, background similarly yields flies devel-

oping symmetrically, showing that a genuine sinistral pathway, also

under the control of Abd-B, exists (Fig 3A) [93]. These data suggest

that factors involved in L/R axis establishment might be able to

“read” the A/P axis.

Molecularly, the dextral determinant MyoID is a type I unconven-

tional myosin, a one-headed, monomeric actin-based motor, that is

very well conserved in evolution [94,97,101]. Type I myosins

comprise three domains: an N-terminal single-headed motor domain

coupled to a C-terminal tail via an alpha-helical neck [102,103]. The

motor domain binds actin and hydrolyses ATP. The neck contains a

number of IQ domains and binds light chains acting as a lever-arm,

thus transmitting the conformational changes that occur in the

motor domain after ATP hydrolysis [104,105]. Finally, the tail

domain is thought to interact with cargos and binds membrane

phospholipids through its Pleckstrin Homology domain, a positively

charged lipid-binding region [106,107].

How does MyoID act during L/R determination? Interestingly,

MyoID activity appears to be required only for a short time to

induce a dextral bias [94]. To date, the exact mechanism of MyoID

action remains unknown, but the actin-binding head domain

appears to be central for L/R patterning [98]. Additionally, in the

cells of the organizer, MyoID requires the adherens junction

components b-catenin and E-cadherin as well as a properly orga-

nized cortical actin cytoskeleton (Fig 3B) to induce dextral L/R

development [94,97,98,108,109]. In the epithelium of the embryonic

hindgut, MyoID has been shown to cell-autonomously bias cell

chirality and induce membrane bending [108]. Interestingly,

computer simulations showed that mild membrane bending in each

cell is sufficient to induce a complete dextral loop of the hindgut

[108]. MyoID-dependent membrane bending appears to be mediated

by E-cadherin, as membranes in E-cadherin null mutants do not
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Beta-Catenin
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Transcriptional
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B

Figure 3. Genetic and cellular determination of Drosophila L/R

asymmetry.

Schematic depiction of genetic and cellular aspects of Drosophila lateralization.

(A) The wild-type, or “dextral”, orientation depends on the activity of MyoID

(Blue). Dextral determination is dominant over sinistral determination (Red),

which only becomes apparent in myoID null flies. Interestingly, Abd-B (Yellow)

controls the expression and/or activity of the two opposite pathways. In Abd-B

depleted flies, the L/R organs develop symmetrically [93]. To date, the putative

sinistral counterpart to MyoID is still unknown. (B) In the cells of the L/R

organizer, MyoID (blue) binds to cortical actin (red) and needs to associate with

the adherens junction components E-cadherin (yellow) and b-catenin (green) at

the apical membrane for proper L/R determination [94,109]. (C) Several lines of

cultured vertebrate cells orient themselves according to their nucleus–

centrosome axis (arrow) and are thus able to migrate in a L/R asymmetric

manner.

EMBO reports Vol 15 | No 9 | 2014 ª 2014 The Authors

EMBO reports L/R asymmetry in bilateria Jean-Baptiste Coutelis et al

932



bend [108]. Taken together, these data suggest that L/R morphogen-

esis could originate from asymmetric membrane tension generated

by a MyoID/E-cadherin complex. Interestingly, unlike in the

absence of E-cadherin or b-catenin when no consistent orientation is

seen, in the absence of MyoID cell membranes of the hindgut still

bend, but this time in the opposite direction [108,109]. These obser-

vations suggest that the sinistral factor(s), whose activity is only

apparent in the absence of MyoID, is also able to induce an orien-

tated cell membrane bias.

Innate cellular chirality

As mentioned above, asymmetric traits are not specific to multicel-

lular structures but can also appear at the single cell level. Indeed,

numerous cell types exhibit chiral structures, orientated movements

as well as chiral behaviors [110–113]. These observations argue that

intracellular elements might underlie L/R asymmetry determination.

This idea, termed the “intracellular model”, has been around for

some time and proposes that the origin of asymmetry in the body

plan relies on intracellular structures and in particular the actin

cytoskeleton [16]. Supporting this model is the fact that in cultured

migrating cells, a clear 3D cell polarity can be seen. In addition to

the first two axes, rear-front and top-bottom, a third one, drawn

from the center of the nucleus to that of the centrosome, demon-

strates clear cell chirality and corresponds loosely to the direction

followed by these cells during their migration [113]. However, when

cultured in contact with a repeated pattern, cells consistently

migrate with a clear bias toward the left side of this third axis

(Fig 3C), strongly suggesting the existence of an intracellular bias

present in each individual cell [110,112,113].

The cell chirality depends on the cell cytoskeleton. Disrupting

microtubule integrity leads to randomization, revealing the need for

an intact microtubule cytoskeleton for this leftward bias [113].

Disruption of the actin cytoskeleton instead leads to the “inversion

of the cell L/R axis” that is, a rightward bias in cell migration [110].

Consistently, the expression of constitutively active GSK3 similarly

inverts the cell “L/R axis”. The cells now polarize to the right of the

nucleus-to-centrosome axis. These data suggest that GSK3 could act

as a link between the unknown original chiral template and the

cytoskeleton sensing the spatial cues and orienting cell polarity

[113]. These data, obtained in vertebrate cells, are reminiscent of

the link between the actin cytoskeleton and L/R patterning in

Drosophila, C. elegans or the Lymnaea snails, suggesting a

conserved mechanism. Furthermore, they also support the existence

of a sinistral factor, as cell or organismal orientation can be consis-

tently inverted and not simply randomized. However, a diversity of

L/R orientations exists in cultured cells with some cell types having

a dextral bias, others a sinistral one and some with no bias at all

[111,112]. To conclude, cell culture experiments revealed the crucial

role of actin dynamics for internal cell chirality and suggest that

both dextral and sinistral L/R patterning might originate from intra-

cellular polarity.

Indeed, several pieces of evidence obtained from studies of type

I myosins and actin dynamics support the idea that L/R asymme-

tries can be created de novo from basic cell components [114].

Type I myosins, to which Drosophila MyoID belongs, are members

of the myosin superfamily of actin-based motors and are found in

most eukaryotic cells [115,116]. In vertebrates, eight type I

myosins (myosin I a–h) are found, whereas only two members

exist in Drosophila (myosin ID and IC) [117,118]. Recent work,

using in vitro binding of murine MyoIc to actin, revealed that
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Common and divergent principles of L/R asymmetry establishment in themodel systems discussed in this review (see text for details). Species are aligned along a phylogenetic
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MyoIc can asymmetrically guide motility, leading to actin filaments

that curl counterclockwise [114]. Importantly, this generation of

asymmetric motility appears to be a property of MyoIc and not a

universal characteristic of myosin I motors, since neither murine

MyoIa nor Ib are able to generate a similar asymmetric actin

movement [114]. Although it is not directly stated, the head

domain seems to be responsible for this feature, which is consis-

tent with the fact that, in vivo, the L/R activity of Drosophila

MyoID also appears to depend on its head domain [98]. The find-

ing that specific myosins can make actin fibers chiral are the earli-

est described signs of asymmetry somehow related to L/R

patterning.

Taken together, it appears that from all the model systems

discussed, Nodal flow is rather an exception in L/R axis establish-

ment (Fig 4). Evolutionarily, it could correspond to a refinement

that was added to earlier mechanisms happening at the cellular

level. The conserved involvement of fundamental cellular elements

such as ion channels or cytoskeletal components may point to

common ancestral L/R asymmetry mechanisms. Additionally, they

allow for the generation of a theoretical model for how, from core

molecules at the cellular level, such as the actin cytoskeleton, L/R

patterning may be created in metazoans.
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L/R asymmetry in Drosophila  

1 Drosophila as a genetic model  

 

Drosophila melanogaster has been extensively studied for over a century as a 

model organism for genetic investigations. It has many characteristics which make it an 

ideal organism for the study of animal development and behavior, neurobiology, and 

human genetic diseases. The fruit fly has many practical features: a short life cycle, an 

ease of culture and maintenance, and a small genome size. As the fruit fly has been 

heavily studied for over a century, which has lead to the creation of a vast amount of 

publicly available tools going from: stock collections carrying mutations and/or specific 

tools for modifying the expression of nearly every gene, and other Drosophila species for 

comparison analysis; DNA collections; and Internet based platforms devoted to aid the 

Drosophila research. 

In Drosophila L/R asymmetric organs have been observed and documented since 

the beginning of the use of this animal as a genetic model. As a general and non 

exhaustive list the main L/R organs in Drosophila are the embryonic gut (both midgut 

and hindgut), the terminalia dextral looping, the testis dextral coiling and the adult gut 

(see figure 1 in next section review article). The dextral looping of the embryonic 

hindgut for example (For a more detailed explained in more detail in next chapter 

section: MARKERS OF LEFT–RIGHT ASYMMETRY IN DROSOPHILA) is clearly explained and 

documented in the seminal works of both Hartenstein (Hartenstein, 1995) and Bate, 
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Martinez-Arias (Bate, 1994). Other L/R markers, like the terminalia and testis looping 

have also been heavily described (Reviewed in Géminard et al., 2014; Ligoxygakis et al., 

2001; Hayashi et al., 2005 and Figure 1 of next chapter). In fact, the terminalia looping 

has been used extensively for taxonomic classification in the Diptera order (reviewed as 

Supplementary content in: Suzanne et al., 2010).  

Though, the underlying causes of these asymmetries were initially not 

investigated and to some extent are still unknown. A major breakthrough in the study of 

Drosophila L/R asymmetry was the discovery of an inverted L/R mutant (Speder et al., 

2006; Hozumi et al., 2006). This mutant completely inactivates the function of myosin ID 

(myoID) a gene coding for an unconventional type 1 myosin (Speder et al., 2006). Before 

this huge discovery, there were a few attempts of elucidating the underlying cause of L/R 

asymmetry; the most famous example of these is the set of experiments done by the 

Averof’s group. The main question was whether the anterior-posterior axis directly 

controls L/R looping; through a very elegant approach in which the duplication of the 

posterior segments was induced in the embryonic head, resulting in an embryo with two 

tails and no head (Ligoxygakis et al., 2001), they showed that, with some exceptions, 

most tails maintained their dextral condition; somehow showing that the looping is 

independent of the anterior-posterior axis. However the experiment was clever, it failed 

to give a clear answer as there were indeed some L/R defects in these embryos (Hayashi 

et al., 2005). 

After myoID mutant was revealed in the two seminal papers published (Speder et 
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al., 2006; Hozumi et al., 2006). The idea of how L/R asymmetry is controlled in 

Drosophila radically changed: first the mutated gene encodes a myosin protein which 

directly links L/R patterning with actin cytoskeleton and not directly with gene regulation; 

second, though not clearly stated, based on myoID expression patterns and phenotypic 

rescue experiments, in both embryo and larva, the existence of at least two separate 

organizers appeared, in contrast to the unique organizer model, deduced from most 

animal models used, ranging from vertebrates to nematodes and snails where there is 

clearly only one symmetry breaking event (Reviewed in Coutelis et al., 2014). Finally the 

discovery of myoID opened a whole new set of questions in the L/R asymmetry field in a 

simple genetic model. This thesis, as the work done by others regarding the function of 

MyoID in Drosophila L/R establishment was devoted to answer some of these questions. 

Broadly, the questions are: is there a specific L/R organizer for each L/R organ in 

Drosophila? If so, how are the asymmetries generated at a half-developed larval stage? 

And how are these asymmetries generated, maintained and propagated? Does MyoID 

function unveils an underlying actin cytoskeleton asymmetry? Is there a sinistral factor 

that takes over when MyoID is absent and thus explaining the inverted phenotype?  

The work of two groups (Stéphane Noselli and Kenji Matsuno) has been 

extensively focused on answering these questions, and the simplified current overview 

of the system can be summarized as follows. MyoID transcription is controlled by the 

HOX-bearing protein Abdominal-B (Abd-B) that binds mainly the 1st and second intron 

and is necessary and sufficient for myoID expression (Coutelis et al., 2013). Once MyoID 
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is present in the cell it localizes at the adherent junctions where it binds DE-Cadherin 

and B-Catenin (Speder et al., 2006; Petzoldt et al., 2012). This binding is necessary for 

correct L/R pattering and is specifically blocked by the action of another type one myosin, 

MyoIC (Speder et al., 2006; Petzoldt et al., 2012). MyoIC is normally present in the same 

cells as MyoID, however in wild type situation it does not affect MyoID function while if 

the MyoID/MyoIC ratio is changed towards a more of the latest the process will fail 

(Petzoldt et al., 2012). These two myosins are quite similar structurally and in fact most 

of their domains can be completely interchanged without affecting their function 

(Hozumi et al., 2008). There is though one domain that cannot be exchanged and that is 

the head or motor domain (Hozumi et al., 2008). The motor domain is responsible for 

actin binding and so this reinforces the view that MyoID-actin interaction is crucial to L/R 

asymmetry (see figure 2 in next section review article).   

Furthermore, the link between MyoID and DE-Cadherin has been used to point 

out several important details in MyoID function. As stated above this link is absolutely 

necessary for L/R pattering; but more interestingly is the fact that MyoID has been 

shown to kink or bend the cellular membranes at the sites of binding to DE-cadherin 

(the adherens junctions) in a cell autonomous L/R asymmetric fashion (Taniguchi et al., 

2011). Consistently, a mathematical model of this bending explains the overall looping of 

the embryonic hindgut (Taniguchi et al., 2011). In a different study, MyoID action has 

been shown to be cell-autonomous (Taniguchi et al., 2011). Thus myoID is the key player 

in L/R patterning in Drosophila and acts in a cell autonomous manner, yet is has 

restricted spatial expression in all L/R asymmetric organs (Reviewed in Géminard et al., 
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2014). How could, then, L/R patterning be propagated and maintained throughout 

development? 

Another important detail about MyoID function is its transient function; for 

terminalia looping MyoID is necessary for a very narrow time-window of three hours; 

while DE-Cadherin is necessary for a slightly broader time-window (Speder et al., 2006; 

Petzoldt et al., 2012). These observations point out the logical existence of a propagation 

and/or maintenance system that transform MyoID functional asymmetric cues into 

proper L/R morphogenesis. 

We have very recently published a review on L/R asymmetry in Drosophila with 

more details about particular experiments, detailed references and supporting data; this 

review is presented here in the next chapter as a support for what has been stated here. 
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2 The Myosin ID Pathway and Left–Right Asymmetry in Drosophila (Review 

article) 
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Summary: Drosophila is a classical model to study

body patterning, however left-right (L/R) asymmetry

had remained unexplored, until recently. The discovery

of the conserved myosin ID gene as a major determi-

nant of L/R asymmetry has revealed a novel L/R path-

way involving the actin cytoskeleton and the adherens

junction. In this process, the HOX gene Abdominal-B

plays a major role through the control of myosin ID

expression and therefore symmetry breaking. In this

review, we present organs and markers showing L/R

asymmetry in Drosophila and discuss our current

understanding of the underlying molecular genetic

mechanisms. Drosophila represents a valuable model

system revealing novel strategies to establish L/R

asymmetry in invertebrates and providing an evolution-

ary perspective to the problem of laterality in bilateria.

genesis 52:471–480, 2014. VC 2014 Wiley Periodicals, Inc.

Key words: genetic; morphogenesis; developmental biol-
ogy; invertebrates; diptera; left–right asymmetry; asymmet-
ric morphogenesis in invertebrates; symmetry breaking;
unconventional type I myosin; HOX gene Abdominal-B

INTRODUCTION

Differentiating the left and right hand sides is essential
for the development, positioning and looping of vis-
ceral organs like the heart and gut, and for the acquisi-
tion of new cognitive and behavioral functions.
Improper establishment of left-right (L/R) asymmetry
underlies a number of defects and syndromes, repre-
senting, for instance, the main cause of congenital heart
disease and spontaneous abortion in humans

(Aylsworth, 2001; Manner, 2009). Work done in the
past 20 years has revealed unique molecular mecha-
nisms and strategies to break symmetry and translate it
into asymmetric tissue morphogenesis (Speder et al.,
2007). In vertebrates, such strategies include the gener-
ation of a directional fluid flow or asymmetric cell
migration at the embryonic node (Levin et al., 1995;
Mercola and Levin, 2001; Tabin, 2005). However, in
Xenopus, asymmetries have also been described before
gastrulation (i.e. prior to node formation), with the for-
mation of asymmetric pH gradients and gene expres-
sion as early as the four-cell stage (Levin et al., 2002;
Adams et al., 2006; Danilchik et al., 2006). There are
therefore several mechanisms underlying L/R asymme-
try in vertebrates and there is still debate on whether or
not these can be common among bilateria (Speder
et al., 2007; Coutelis et al., 2008; Raya and Izpisua Bel-
monte, 2008; Vandenberg and Levin, 2013).
L/R asymmetry in invertebrates has been less well

studied making it unclear whether some mechanisms
and/or principles are conserved with vertebrates
(Speder et al., 2007; Okumura et al., 2008).
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Understanding how key L/R factors act at the cellular
level to control cell chirality may help unify the current
data.

In this review, we present our current knowledge of
how L/R asymmetry is established in the fruit fly Dro-

sophila melanogaster. First, we introduce the markers
of asymmetry in this organism, which are found at all
stages from embryo to adult and which are mostly
related to tubular organs. Second, we discuss the role of
the Myosin ID (MyoID) pathway, which plays a major
role in the control of L/R asymmetry in flies.

MARKERS OF LEFT–RIGHTASYMMETRY
IN DROSOPHILA

The Brain

Brain activity and morphology show L/R asymmetry
in many vertebrates (reviewed in Concha and Wilson,
2001; Roussigne et al., 2012; Bishop, 2013; Morton,
2013). In Drosophila, data related to brain asymmetry
is limited. One structure, called the asymmetric body,
has a biased localization on the right hand side of the
midline, next to the mushroom bodies (Fig. 1A). The
asymmetric body appears asymmetric in 92% of wild
type flies. Other flies showing a symmetric structure
present long-term memory defects (Pascual et al.,
2004). Recently, efforts to characterize the expression
pattern of randomly selected enhancers in the adult
Drosophila brain identified a specific enhancer-trap
line that is expressed in the asymmetric body (Fig. 1A).
The enhancer is located in the pog gene encoding for a
glutamate G-protein coupled receptor (Brody and Crav-
chik, 2000; Jenett et al., 2012). The pog enhancer-trap
does not drive asymmetric expression in the larval brain
suggesting that asymmetry is established later, during
metamorphosis. Note that asymmetry in the brain is not
controlled by the same genes controlling MyoID-
dependent visceral asymmetry (see below), suggesting
the existence of an alternative L/R asymmetry mecha-
nism controlling brain functions in flies, as is observed
in vertebrates (Roussigne et al., 2012; Aizawa, 2013).

Malpighian Tubules

The Malphighian tubules are an excretory organ
mainly devoted to the clearing of toxic compounds.
They consist of two bifurcated tubes attached to the
midgut-hindgut junction. Malphighian tubules develop
during embryogenesis and continue to grow during
larval stages. Interestingly, they are among the few struc-
tures that remain functional and do not degenerate dur-
ing pupal development (for review see Beyenbach et al.,
2010); thus, tissue asymmetry is maintained throughout
metamorphosis. A recent microarray study revealed that
Malphighian tubules are both morphologically and tran-
scriptionally LR asymmetric (Chintapalli et al., 2012).

The right pair of Malpighian tubules is directed anteri-
orly and wraps around the midgut, while the left pair is
directed posteriorly and associates with the hindgut
(Chintapalli et al., 2012). It will be interesting to test this
whether asymmetric gene expression indeed lead to mal-
pighian tubules functional lateralization.

FIG. 1. (a) Frontal view of the Drosophila brain adapted from
(Jenett et al., 2012). The asymmetric body (yellow spot; white
arrow) is a unique structure found on one side of the midline in
most adult flies (see text for details). (b and c) Dorsal view of a
schematized drosophila embryo: left (L), right (R). In wild-type (b),
the three parts of the embryonic gut, the anterior proventriculus,
the central midgut and the posterior hindgut, are oriented toward
the right (Dextral, light gray and blue). In myoID null mutant
embryos (c), both the midgut and hindgut are inverted, thus adopt-
ing a leftward orientation (Sinistral, red) whereas the proventriculus
maintains its rightward orientation (Dextral, light gray). (d–i) Dorsal
view of transverse sections of Drosophila adult male abdomen,
highlighting the L/R asymmetric organs: hindgut (d), spermiduct
and associated rotation of the terminalia (e), Testes (f) and their ori-
entations (Situs solitus or Dextral, blue; Situs inversus or Sinistral,
red) in various genetic contexts: wild-type male flies (g), myoID null
flies (h) or flies in which myoID activity is selectively depleted in the
L/R terminalia organizer (A8, I). See text for details.
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Testis

The two drosophila testes are elongated, spiral,
blunt-ended tubes coiling around the seminal vesicle
and located symmetrically on each side of the fly abdo-
men; they are inherently L/R asymmetric (chiral) and
both testes are coiled toward the same direction (Fig.
1F).

Gonads in Drosophila develop from a group of
embryonic primordial germ cells or pole cells, which,
at the blastoderm stage, move with the rest of the germ
band as it elongates, until they reach the fifth abdominal
segment, forming two lateral symmetrical spheres. Dur-
ing larval stages, the stem cell niche is established at the
apical pole of these gonads (Santos and Lehmann, 2004;
Le Bras and Van Doren, 2006). Gonads keep a spherical
shape until around 36 h after puparium formation
(APF) at which stage they become attached to the vas

deferens; then, they undergo dramatic morphological
changes, elongating and coiling, to become two Dextral
spirals (Fig. 1F).

Several signaling pathways have been shown to be
involved in testis development, including TGF-b signal-
ing for the maintenance of germline stem cells and the
restriction of spermatogonial proliferation (Loveland
and Hime, 2005), as well as Jak/Stat signaling which
contributes to stem cell self-renewal (Hombria and
Brown, 2002; de Cuevas and Matunis, 2011). On the
other hand, the mechanisms underlying asymmetric
coiling have not yet been addressed.

The Larval Gut

The gut is arguably the most obvious and conserved
L/R asymmetric organ in the animal kingdom. In Dro-

sophila, the gut is composed of the foregut, the midgut
and the hindgut; all of these structures have clear L/R
asymmetric features (Fig. 1B,D). The larval gut develops
during embryogenesis (stages 13–17) through the inva-
gination of precursor cells that initially form a continu-
ous symmetrical tube, which later on adopts a global
stereotyped L/R asymmetry. The asymmetric looping is
sequential, appearing first in the hindgut with a 90�

Dextral twist, then in the foregut with the right tilt of
the proventriculus, and finally in the midgut with a
more complex pattern (Fig. 1B) (Hayashi and Mura-
kami, 2001; Lengyel and Iwaki, 2002; Myat, 2005). The
cellular mechanism underlying gut lateralization is dis-
cussed further down.

The Adult Gut

Unlike the Malpighian tubules and the testes that are
preserved throughout pupal development, the adult gut
is almost completely renewed from imaginal tissues dur-
ing metamorphosis (for review see Hartenstein, 1993).
In the adult, L/R asymmetry is evident when looking at
the morphology of the coiled midgut and hindgut. The

adult midgut derives from the adult midgut precursors
present in the larval midgut. The adult midgut precur-
sors are located in between the larval enterocytes and
can adopt two different fates, either becoming adult
enterocytes or adult midgut-intestinal stem cells. During
metamorphosis the larval midgut delaminates from the
visceral mesoderm and basement membrane. Then, the
adult midgut precursors divide and fuse to form the
adult midgut epithelium, enterocytes and intestinal
stem cells. Although both larval and adult guts are asym-
metric organs, it is likely that they do not share com-
mon organizers since the L/R asymmetry of the larval
midgut is lost before adult midgut coiling and some
mutations affecting adult hindgut coiling do not affect
embryonic hindgut coiling (Takashima et al., 2011).
Note that L/R asymmetry is preserved during intesti-

nal epithelium constant turn over and adult midgut
regeneration (Micchelli and Perrimon, 2006; Ohlstein
and Spradling, 2006; Micchelli, 2012). Yet, the mecha-
nisms maintaining L/R asymmetry during regeneration
remain unknown. Thus, Drosophila midgut appears an
excellent model to study the interaction between L/R
asymmetry and regeneration (for review see, Jiang and
Edgar, 2011, 2012; Micchelli, 2012).

Terminalia

Rotation of the male terminalia is a prominent L/R
marker which has been extensively studied (Adam
et al., 2003; Speder et al., 2006; Coutelis et al., 2008,
2013; Suzanne et al., 2010). The adult male terminalia,
which includes all somatic tissues composing the geni-
talia and analia, originate from the male genital disc.
The genital disc is unique in several respects: first, it is
located at the ventral midline, whereas other imaginal
discs are found paired on both sides of the larval body;
second, it exhibits a strong sexual dimorphism; and,
finally, it is a compound disc made of cells from three
different embryonic segments, namely the A8, A9 and
A10 (Fig. 3A). During metamorphosis, the genital disc
evaginates to form the adult terminalia. During this pro-
cess, the A8 segment forms a ring of cells around seg-
ments A9 and A10 (Keisman and Baker, 2001; Rousset
et al., 2010) (Fig. 3B). Then, asymmetry is established
through a stereotyped 360� clockwise (or Dextral) rota-
tion, which leads to the coiling of the spermiduct
around the gut (Adam et al., 2003; Speder et al., 2006)
(Fig. 1E). This stereotyped rotation process last for
about 15 h, taking place during the second day of pupal
development, from 25 to 36 h APF (Suzanne et al.,
2010). Importantly, circumrotation does not originate
from a single rotation event but rather from the addition
of two independent half-a-turn (180�) rotations
(Suzanne et al., 2010) (Fig. 3C). Indeed, live imaging of
terminalia rotation in pupae identified two distinct mov-
ing domains made of the A8a (for anterior) and A8p (for
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posterior). The A8p moves first and is followed by A8a
2.5 h later. Thus, the observed 360� rotation is the
result of a composite process involving two additive
180� movements reminiscent of the asynchronous
appearance of the two rotations during evolution
(Suzanne et al., 2010). Importantly, the same mecha-
nism is responsible for both rotations (Suzanne et al.,
2010; Coutelis et al., 2013) (see MyoID section below).

In Drosophila pachea, another Drosophila species,
males show an additional kind of asymmetry of their
terminalia, with the left external lobe being 1.5 times
longer and thinner than the right one (Lang and Orgo-
gozo, 2012). Surprisingly, 20% of males from one labora-
tory stocks possess fully symmetric external lobes,
reminiscent of the incomplete asymmetry of the asym-
metric body found in the brain. Symmetry of Drosoph-
ila pachea terminalia dramatically reduces mating
efficiency compared to asymmetric flies (Lang and
Orgogozo, 2012). The asymmetric lobes are proposed
to be an adaptation optimizing terminalia coupling dur-
ing mating and therefore increasing their efficiency.
The mechanism controlling lobe asymmetry in Dro-

sophila pachea is currently unknown.

GENES AND SIGNALING PATHWAYS
CONTROLLING L/R ASYMMETRIC
MORPHOGENESIS

The Myosin ID Pathway

Situs inversus genes, i.e. genes whose mutation leads
to a complete and coordinated inversion of the L/R
axis, are rare and valuable tools. To date only two have
been molecularly characterized: i) inversin in mouse
(Morgan et al., 1998) and ii)myosin ID (myoID) in Dro-

sophila (Hozumi et al., 2006; Speder et al., 2006).
MyoID is responsible for the wild-type Dextral orienta-
tion of all Drosophila L/R viscera (looping of the gut,
coiling of the spermiduct, rotation of the male termina-
lia; see previous section) (Hozumi et al., 2006; Speder
et al., 2006). In myoID mutants, the L/R axis is inverted
and the flies develop sinistraly (Fig. 1 compare G and
H), making MyoID a Dextral determinant. The genes
specifically affecting the L/R development of a single
organ are discussed elsewhere (Maeda et al., 2007; Cou-
telis et al., 2008; Okumura et al., 2010; Kuroda et al.,
2012; Nakamura et al., 2013).

Class I myosins are members of the myosin family of
actin-based motor proteins (for review see Kim and Fla-
vell, 2008). They are found in eukaryotes from yeast to
human and are thought to be one of the earliest myosin
proteins (Richards and Cavalier-Smith, 2005). Mouse
and human have eight class I myosin genes (MyoIa, b, c,
d, e, f, g, and h) where Drosophila only has two (MyoIC
and MyoID) (Berg et al., 2001). In vertebrates, these
myosins play diverse roles in various processes such as

actin cytoskeleton organization, cell motility, and endo-
cytosis; for instance, Myo1a connects the structural
actin cytoskeleton shafts of microvilli to the plasma
membrane, MyoIC is involved in the vesicular trans-
ports to and from the plasma membrane in various cell
types (for review see Kim and Flavell, 2008).
In Drosophila, myoID expression in the primordia of

the various L/R tissues correlates with the fact that L/R
patterning appears to be set-up independently (Hozumi
et al., 2006; Speder et al., 2006). Indeed specific deple-
tion of myoID in a given tissue leads to the reversal of
its lateralization without affecting the other L/R organs
(Hozumi et al., 2006; Speder et al., 2006; Speder and
Noselli, 2007; Taniguchi et al., 2007). This notion
appears particularly interesting as it differs from the ver-
tebrate situation where L/R patterning seems to be set-
up once and for all for the whole body plan. This inde-
pendence of L/R patterning of Drosophila organs has
made possible the identification of L/R organizers in
which MyoID activity is required. This notion is best
exemplified in the genital disc. At the end of the larval
period, myoID is solely expressed in two rows of cells
of the A8 segment – A8a and A8p - of the male genital
disc (Fig. 3A). Exclusive depletion of MyoID activity in
the A8 segment is sufficient to lead to the inversion
(Sinistral) of the spermiduct coiling and of the associ-
ated male terminalia rotation whereas the other L/R
organs (testes, hindgut, etc.) are unaffected (Fig. 1I).
Conversely, restoring MyoID expression in the A8 seg-
ment alone of myoID null flies is sufficient to restore
the normal Dextral development of both the spermi-
duct and terminalia rotation (Speder et al., 2006). These
results show that the A8 segment is the terminalia L/R
organizer.
To promote Dextral determination, the MyoID pro-

tein was shown to require a properly organized actin
cytoskeleton and to bind to Armadillo, the Drosophila

beta-catenin homolog (Hozumi et al., 2006; Speder
et al., 2006; Petzoldt et al., 2012). This is of particular
interest as the gene product of the mouse inversin

locus, an ankyrin-repeat protein, also directly binds to
beta-catenin (Nurnberger et al., 2002). This conserved
property of both the situs inversus gene products led
to the closer investigation of the role of the adherens
junctions in the establishment of L/R asymmetry. Spe-
cific silencing of the adherens junction components
DE-Cadherin, alpha-Catenin or beta-Catenin in the A8
segment leads to penetrant terminalia rotation defects,
suggesting that adherens junctions as a whole are
required for the establishment of L/R asymmetry (Pet-
zoldt et al., 2012). Their participation was refined by
looking at DE-cadherin temporal requirement for termi-
nalia asymmetric rotation. Interestingly, two peaks are
seen, the first synchronous with that of MyoID and the
second occuring during the actual rotation process.
Thus, DE-Cadherin is required both during L/R
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determination and asymmetric morphogenesis (Pet-
zoldt et al., 2012). Furthermore, in the A8 segment, DE-
Cadherin, beta-Catenin and MyoID belong to a complex
reinforcing the idea that the adherens junctions repre-
sent an essential signaling platform during L/R asymme-
try determination required for MyoID activity (Fig. 2A).

The involvement of DE-Cadherin in L/R asymmetry
was further investigated in the directional rotation of
the embryonic hindgut. In the hindgut epithelial cells,
DE-Cadherin is distributed in a polarized fashion to the
cell boundaries, which predicts the direction of rota-
tion. Indeed, in myoID mutant embryos, the L/R asym-
metric distribution of DE-Cadherin is inverted and so is
the coiling of the embryonic hindgut (Taniguchi et al.,
2011). Interestingly, the embryonic hindgut cells show
a MyoID-dependent L/R bias of DE-Cadherin and centro-
some distributions as well as asymmetric cell shape
within their plane leading to planar cell-shape chirality
(Taniguchi et al., 2011). In silico modeling suggests
that this intrinsic chirality could set up L/R asymmetric
tissue morphogenesis (Taniguchi et al., 2011).

Abdominal-B

In a genetic screen for myoID interactors involved in
L/R determination, the Hox gene Abdominal-B (Abd-B)
was identified as a major upstream regulator of L/R deter-
mination in Drosophila (Coutelis et al., 2013). Abd-B is a
homeobox transcription factor of the Bithorax complex
known to specify segment identity along the Antero-
Posterior axis (for review see Maeda and Karch, 2006).
To circumvent the homeotic transformation phenotypes

associated with classic Abd-B mutations, the authors
used spatially and temporally controlled RNAi-mediated
depletions of Abd-B activity. This led to specific L/R phe-
notypes without disturbance of Antero-Posterior identity
and patterning or morphological defects indicating that
this novel role for Abd-B is distinct from its function in
Antero-Posterior patterning (Coutelis et al., 2013). Abd-B
was shown to bind to myoID regulatory sequences and
to be required for MyoID expression in the L/R organizer
(Fig. 2A). Nevertheless, the L/R defects observed in both
the hindgut and male terminalia upon Abd-B L/R activity
depletion are neither an inversion nor a randomization
of the asymmetry but rather resemble a lack of asymme-
try. This strikingly differs from the situation of myoID

null flies, in which the orientation of the L/R axis is fully
inverted, thus revealing the activity of an underlying Sin-
istral activity only apparent in a myoID mutant context
(Fig. 2B). It was therefore hypothesized that Abd-B could
also be required for the Sinistral pathway. Indeed, in
myoID null flies – in which the Sinistral determination is
active – the depletion of Abd-B L/R activity leads to simi-
lar loss of asymmetry phenotypes indicating that Abd-B
also controls the Sinistral activity (Coutelis et al., 2013).
Abd-B therefore directs the earliest events of Drosophila
L/R asymmetry establishment through control of both
opposite Dextral and Sinistral determinants, allowing
morphogenesis to reach a L/R asymmetric state from an
initial symmetric situation. Thus, when Abd-B L/R activ-
ity is missing, no symmetry breaking occurs and flies
develop symmetrically (Fig. 2C). This notion is particu-
larly important as it indicates that in Drosophila the
default state is symmetry. These data indicate that a

FIG. 2. Summary of the genetic and molecular interactions taking place in the L/R organizer cells. (a) The Hox family transcription factor
Abd-B (orange) activates the expression ofmyoID in cells of the L/R organizer. MyoID (blue) localizes to the adherens junction via its interac-
tion with beta-Catenin (purple) and DE-Cadherin (brown). This localization is essential for MyoID-dependent Dextral determination. Overex-
pression of the closely related MyoIC (red) displaces MyoID from the adherens junction thus antagonizing MyoID function, resulting in a
MyoID null-like Sinistral phenotype (see text for details). Cells adopt oriented asymmetric shape and positioning of their centrosomes
(green). (b) InmyoID null mutant flies, recessive Sinistral activity leads to the full inversion of the L/R axis. (c) In Abd-B loss of function condi-
tions, neither Dextral nor Sinistral are active, resulting in a no rotation phenotype.
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Sinistral pathway exists, whose determinant(s) and
molecular nature remain to be characterized.

Myosin IC

Interestingly, MyoIC, the other Drosophila class I
myosin, has for a while represented a very good candi-
date for a Sinistral determinant. Indeed, MyoIC overex-
pression leads to the inversion of the L/R organs (gut
looping, terminalia rotation, etc.) perfectly resembling
a myoID loss of function situation (Hozumi et al., 2006,
2008; Petzoldt et al., 2012). Moreover, this effect of
MyoIC overlaps with the temporal window of MyoID L/
R determination (Petzoldt et al., 2012). Nevertheless,
MyoIC does not appear to be the Sinistral determinant
for several reasons: i) myoID and myoIC double mutant
flies show the same situs inversus phenotype as myoID

single mutants do (Petzoldt et al., 2012), ii) MyoIC over-
expression does not seem to be able to rescue Abd-B L/
R activity depletion as does the restoration of MyoID
expression (Coutelis et al., 2013, unpublished results).
In fact, thorough investigation of MyoIC function
showed that MyoIC rather works as an antagonist of
MyoID as MyoIC overexpression displaces MyoID from
the adherens junction (Petzoldt et al., 2012). MyoIC
antagonizes MyoID binding to the adherens junction
components beta-Catenin and DE-Cadherin, both in

vitro and in vivo (Petzoldt et al., 2012). Thus, MyoIC
overexpression affects L/R asymmetry establishment by
dislodging MyoID from the adherens junction (Fig. 2A).

Unlike the better-known Myosin-II class, unconven-
tional type-I myosins are non-filamentous single peptide

with three distinct domains, head, neck and tail. The N-
terminal head bears the actin binding and motor
domains; the central neck possesses several IQ motifs
that are thought to bind regulatory light chains such as
calmodulin; and the C-terminal tail is the site of putative
cargo loading and of interaction with membranous
phospholipids (for review see Coluccio, 1997; Barylko
et al., 2000). In Drosophila, MyoID and MyoIC sequen-
ces are close, however short stretches of amino acids
specific to one or the other can be found. This led to
the investigation of the L/R activities of chimeric MyoID
and MyoIC proteins in which their head, neck and tail
domains were swapped. Very interestingly, MyoID and
MyoIC specific L/R activities are not due to cargo-
binding tail regions of the proteins but rather to their
Actin- and ATP-binding head regions (Hozumi et al.,
2008; Sp�eder et al., unpublished results). These results
are of particular interest as they correlate with the strik-
ing observation that in vitro the motor domain of
MyoIC has the singular property of generating asymmet-
ric motility (Pyrpassopoulos et al., 2012). This ability to
generate counterclockwise turns in the actin filaments
could represent a way for class I myosins to establish
asymmetry in vivo.
In Drosophila, the processes linking early L/R pat-

terning with late morphogenesis are still poorly under-
stood. For instance, in the terminalia, Dextral
determination through MyoID occurs 24 h before the
actual rotation process. In the following sections, we
discuss the role of JNK signaling, cell death and hor-
mones which are important for tissue morphogenesis,
after the L/R patterning has taken place.

FIG. 3. (a–c) Schematic depiction of the developmental events leading to the directed rotation of the male terminalia. The developmental
stages (upper part) are given relative to puparium formation (APF, after puparium formation). The larval genital disc (a) is composed of three
segments (A8 (blue), A9 (green), and A10 (light gray and dashed)). In the A8 segment, which acts as the L/R organizer (see text for details),
MyoID is expressed in two rows of Posterior (A8p, light blue) and Anterior (A8a, dark blue) cells. Following disc eversion upon puparium for-
mation (b), A8 segment cells (anterior and posterior) fuse dorsally via a JNK-dependent process (light orange) to enclose the A9 (green) and
A10 (light gray) cells that will give rise to the genital and anal parts, respectively. Between 24 and 39 h APF (c), each of the A8 compartments
(posterior and anterior, dark and light blue) contribute half a turn each to the whole rotation (white arrows). Local cell death (red), triggered
by the expression of the proapoptotic gene hid, works as a break release freeing the rotation of both A8 compartments. Increase in Juvenile
Hormone (JH) levels or treatment with its analogs leads to an impaired terminalia rotation (see text for details).
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JNK Signaling

The Jun N-terminal Kinase (JNK) signaling pathway is
known to be involved in a wide variety of processes
including programmed cell death, cell competition,
immunity, stress response, cell reprogramming, as well
as tissue remodeling and cell elongation during mor-
phogenesis and regeneration (Glise et al., 1995; Glise
and Noselli, 1997; Holland et al., 1997; Adachi-Yamada,
et al., 1999; Agnes and Noselli, 1999; Agnes et al.,
1999; Noselli and Agnes, 1999; Zeitlinger and Boh-
mann, 1999; Manjon et al., 2007; Thomas et al., 2009;
Gettings et al., 2010). Recently though, JNK signaling
has also been shown to play a role in L/R asymmetry in
Drosophila. Indeed, terminalia rotation defects are
observed in males carrying loss or gain of JNK function.
Mutant alleles for the JNK Kinase hemipterous (hep) or
the over-expression of the JNK phosphatase Puckered
(Puc) lead to an absence or a partial rotation of termina-
lia (Glise et al., 1995; Holland et al., 1997; Macias et al.,
2004). Interestingly, JNK signaling controls two sepa-
rate aspects of terminalia development which are cru-
cial for rotation. First, the loss of JNK activity leads to
improper fusion of the A8 segment in its dorsal part,
which normally takes place prior to rotation. In the
absence of fusion, rotation is strongly affected (Fig. 3B).
Negative feedback of JNK activity through the serine
protease Scarface, a novel JNK target gene, is required
for the perfect fusion of the A8 segment and the genital
arch, eliciting the rotation of the terminalia (Rousset
et al., 2010). Once the rotation is completed, JNK sig-
naling is required in the A8 segment for proper fusion
of the terminalia with the abdomen (Rousset et al.,
2010).

In addition to controlling terminalia rotation, JNK sig-
naling is also involved in the asymmetric development
of the embryonic anterior midgut (Taniguchi et al.,
2007). Both down-regulation or hyper-activation of JNK
signaling affects the asymmetric cell rearrangements in
the circular visceral muscle surrounding the embryonic
gut epithelium, leading to the subsequent randomiza-
tion of L/R asymmetric development of the anterior
midgut (Taniguchi et al., 2007).

Cell Death

Affecting apoptosis was long known to perturb termi-
nalia rotation (Abbott and Lengyel, 1991; Grether et al.,
1995; Macias et al., 2004). However, only recently has
the role of cell death during terminalia looping been
unraveled (Suzanne et al., 2010). Indeed, localized apo-
ptosis at the boundary of the A8a and A8p rings is
essential for uncoupling rings at the onset of their rota-
tion. This break releaser activity takes place as two
waves of cell death in the A8 segment, coinciding spa-
tially and temporally with the rotation of the A8a and
A8p rings, where MyoID is expressed (Fig. 3C)

(Suzanne et al., 2010). This localized cell death is pro-
posed to free tissues for proper morphogenetic looping
and to control their speed to ensure developmental
coordination (Suzanne et al., 2010; Kuranaga et al.,
2011).

Hormones

As mentioned above, terminalia rotation occurs in
the pupae during metamorphosis, a process under tight
endocrine regulation. Previously, it has been shown
that juvenile hormone levels can impact on terminalia
rotation (Adam et al., 2003). Indeed, ectopic juvenile
hormone activity during the pupal stage through injec-
tion of JH analogs or in a specific Fasciclin2 mutant con-
dition, induces terminalia rotation defects (Adam et al.,
2003). Importantly, the juvenile hormone is a terpenoid
hormone related to retinoic acid (RA) which also plays
a crucial role in vertebrate LR asymmetric development
(Harmon et al., 1995; Hall and Thummel, 1998). How-
ever, in Drosophila, the homologue of the RA co-
receptor (RxR) is not the JH receptor Met but Ultra-
spiracle which dimerizes with the receptor of the ste-
roid hormone Ecdysone, the key hormone controlling
puparium formation (Hall and Thummel, 1998). None-
theless, we have observed that Ecdysone and JH inter-
play to control terminalia rotation (G�eminard et al.,
unpublished data), consistent with JH receptor ability
to bind to USP and EcR (Jones and Sharp, 1997). Thus,
the encouraging parallel between the hormonal control
of Drosophila and vertebrates L/R asymmetry should
be worth digging into.

CONCLUSIONS

Drosophila represents a new valuable model to study
L/R asymmetry. The identification of the Myosin ID
pathway has revealed the clear role of actin and associ-
ated molecular motors in patterning the L/R body axis.
A striking feature of Drosophila, not found in verte-
brates, is the finding that organs can have their own
independent organizers. However, despite the use of
multiple organizers, organ asymmetry depends on the
same MyoID core pathway.
How MyoID activity then connects to cell and organ

chirality and whether events downstream of MyoID are
conserved in different organs remain to be determined.
In the organizer cells, the interaction of MyoID with
beta-catenin and DE-cadherin suggests an important
role of the adherens junction in connecting up L/R
asymmetry with cell and organ polarity. Following ini-
tial establishment of asymmetry, several processes and
pathways need to be coordinated downstream of
MyoID for proper L/R morphogenesis. Recent work has
identified JNK signaling and cell death for control of dis-
crete steps during the process of genitalia rotation. Fur-
thermore, L/R development is under hormonal control
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for correct coordination with other morphogenetic
events.

L/R asymmetry relies on a two-determinant system,
Dextral/MyoID and Sinistral. Identifying the genes
responsible for Sinistral development represents a criti-
cal step toward understanding the molecular basis of L/
R asymmetry. The identification of Abd-B as a major fac-
tor of asymmetry important for both Dextral and Sinis-
tral development should help identify the still elusive
Sinistral pathway.

Whether vertebrates and invertebrates share com-
mon mechanisms and principles to set up L/R asymme-
try still remains unclear. Data suggest that a number of
mechanisms have emerged that can act at different
developmental stages or in different organisms. Interest-
ingly, our recent results suggest a conservation of
MyoID function in some vertebrates (Coutelis et al.,
unpublished data), which may provide some new per-
spectives on the evolution of L/R asymmetry.
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Planar cell polarity (PCP) 

1 Definition 

 

Cell polarity is a fundamental feature of many types of cells. From a three 

dimensional point of view, the cell have 3 axes (X, Y and Z). The Z axis is represented by 

the Apico/Basal (A/P) polarity system. As an example of a polarized cell type, the 

intestine epithelial cells feature an apical domain, facing the intestine lumen, and a basal 

plasma membrane domain, facing the internal side of the organism (Figure 2). 

The orthogonal plane to the Z axis is then the X, Y axis; in cell biology this axis is 

called the planar cell polarity axis. The term planar polarity was first used by Nübler-Jung 

(Nübler-Jung, 1987) to describe the spatial organization of polarized structures such as 

bristles on the insect cuticle (Figure 3). Planar polarity is a common property of animal 

tissues that is most obvious when cells are organized in epithelial sheets. (For definitions 

of planar polarity, see:  Adler, 2002; Lewis and Davies, 2002; Lawrence et al., 2007; 

Segalen and Bellaïche, 2009; Wang and Nathans, 2007). 

In Drosophila, planar cell polarity is evident in a variety of tissues, including the 

larval epidermis (Donoughe and DiNardo, 2011), the ommatidia (Das et al., 2002), the 

wing and abdomen hairs (Lawrence et al., 2002; Adler, 2012), and the stretching of cells 

during different developmental processes (Rauzi et al., 2010; Bosveld et al., 2012). The 

positioning of wing hairs serves as a good example to explain PCP because it is a well 

characterized model and, given the strong evidence that the principles seen in the wing 



Figure 2. The apicobasal polarity in epithelial cells 

 
In epithelial cells, the individual cells are split into two regions, the apical and 
basolateral regions, which are chemically and structurally different from each 
other.  The apical region is defined as the area lying above the tight junctions 
and contains the apical membrane which faces the lumen or the outer 
surface.  The basolateral region is the side that is below the tight junctions and 
contains the basolateral membrane which is in contact with the basal lamina. 
Image from (Bryant and Mostov, 2008) 
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are at least partially conserved across tissues and species (Carroll and Yu, 2012), it serves 

to provide a framework for understanding planar polarity establishment. Though, there 

are some controversies in the field 

In the Drosophila wing PCP is evident by the positioning of single distally pointing 

trichomes (insect small hair). Two main cellular systems govern the cell-cell interactions 

that underlie the local alignment of cell polarity in the wing and in most PCP tissues 

studied so far: the so-called core planar polarity pathway and the global Fat/Dachsous 

(Ft/Ds) pathway (Figure 4). Both systems act through an underlying common logic; they 

generate asymmetric contacts between cells through heterophilic interactions between 

proteins located in the cell membrane, which in turn exhibit asymmetric sub-cellular 

activities and/or distributions. Finally, the activity of these PCP components restrict the 

formation of the trichomes to the distal site of the cell, leading to a distally located and 

pointing trochome.  

The logic behind PCP establishment can be viewed as a three step process: First 

the activity of a signal coming from the tissue axes (dorso-ventral and proximo-distal) 

orients the tissue PCP axis, then the intracellular activity of PCP components which read 

and interpret the incoming signal and translate this signal to the rest of the component 

in a cell-autonomous manner. Finally the newly oriented cell is able to transmit its PCP 

information to neighboring cells thus propagating PCP information throughout a specific 

tissue (for reviews see Lawrence and Casal, 2013; Peng and Axelrod, 2012; Adler, 2012; 

Matis and Axelrod, 2013; Goodrich and Strutt, 2011; Segalen and Bellaïche, 2009; Singh 



Figure 3. Planar Cell Polarity in the Drosophila wing epithelium.  

A three step process to adquire proper PCP in the wing epithelium trichomes: First the tissue axis 
directional cues, in the form of expression gradients or selective diffusion of secreted factors, 
provide directional information about the tissue. Then the core PCP module adjust the inta-
cellular PCP to match while coordinating and amplifying the polarity by intercellular 
communication and feedback mechanisms. Then while the components of the core PCP pathway 
localize distinct protein complexes to opposite sides of the cell they maintain PCP. Finally cells 
respond with appropriate tissue-specific behaviors, shown here is the production of a  trichome 
(or hair) from the distal side of the cell that points distally. Mutations in components that affect 
PCP result a very characteristic patterns of trichome orientation defects: aligned and ponting 
distally in normal flies, random pointing in dsh mutants and non-random but non-aligned in  
mutants.  Adapted from (Matis and Axelrod, 2013) 
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and Mlodzik, 2012; Eaton and Jülicher, 2011).  

As stated PCP is a complex system receiving both intracellular and extracellular feedback 

signals. Though, it is an oversimplification of the actual process to present each pathway 

separately, to try to streamline the main components of the PCP pathways in Drosophila, 

I will present first the core-PCP pathway, then the global-PCP pathway and finally the 

relationship between the two pathways. 

2 The core planar cell polarity pathway 

 

The core pathway in flies is composed by six proteins; they had all been 

described based on their similar activities, their mutant phenotypes and by their 

localization at the adherens junctions. During wing development, before the appearance 

of the distal hair, in the wing disc during larval stages, the core PCP proteins exhibit a 

transient asymmetric localization in the epithelial plane (Strutt and Strutt, 2009; 

Goodrich and Strutt, 2011) (Figure 4). On the distal side of the cell junctions resides 

Frizzled (Fz), a seven-pass transmembrane protein, along with the ankyrin containing 

protein Diego (Dgo) and the PDZ bearing protein Dishevelled (Dsh), located both in the 

cytoplasm. On the other side of the cell (proximal) lays Strabismus (Stbm), a four-pass 

transmembrane protein and Prikled (Pk) a cytosolic protein. Finally, Flamingo (a.k.a. 

Starry Night Fmi/Stan) a seven-pass transmembrane cadherin, is present on both sides 

of the cell (Strutt and Strutt, 2009; Goodrich and Strutt, 2011 and Figure 5). Complete or 

partial loss of activity of any of the core proteins leads to mislocalization of other 



Figure 4. Subcellular localization of PCP components and polarization  

The Ft/Ds pathway, through the oppositely oriented  gradients of Ds and Fj, may provide 
directional information. The core proteins (Fmi, Fz, Dsh, Dgo, Vang, and Pk) segregate to 
opposite sides of the cell. Adapted from (Matis and Axelrod, 2013).  

In contrast to Ft homogeneous distribution Fj and Ds exhibit opposite expression gradients in 
the wing. This opposite gradients are thought to establish an aligning cue for the proper PCP in 
the wing. The endokinase Fj, present in the Golgi (orange ) is able to phosphorylate both Ds 
(green) and Ft (brown) , this prosphorylation changes the binding affinity of the ECD of these 
atypical cadherins. From the outter membrane space DsECD is able to stably  bind FtECD 
however no such stable binding is made from homodimers. This mechanism is thought to be 
responsible for the opposite segregation of Ds  and Ft to different  sides of the membrane. In 
turn the microtubule network orients following the polarity dictated by Ft/Ds localizations and 
this microtubule orientation is finally read through Pk or Sple (pink). Pk in turn restricts Dgo 
((ight blue) to the plus end of the microtubules and which is able to bind Fz and Fmi (Yellow 
and green)  and stabilize Vang and Fmi  the minus ends. 
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core-PCP components with an associated loss of planar cell polarity as evidenced by the 

trichome positioning/pointing (Wong and Adler, 1993). 

Core-PCP is originally established at a cellular level; consistently, all of the 

core-PCP components mentioned above localize within the plane of the epithelium in a 

specific side of the cell and the disruption of one component affects the other in a cell 

autonomous manner (Jenny et al., 2003; Das et al., 2004; Bastock et al., 2003 Axelrod, 

2001). However, the general asymmetric coordination seems to also require cell-cell 

contacts and the formation of asymmetric intercellular contacts, the removal of one 

component also affects the neighbor cell’s components (Chen et al., 2008; Strutt and 

Strutt, 2008; Tree et al., 2002; Wu and Mlodzik, 2008). Thus the core PCP pathway is a 

complex process that receives intracellular and extracellular inputs within an epithelium. 

Since mutations in any component of the core PCP pathways affect the 

localization of the other components it seems that the planar-polarized localization of 

each protein is reinforced by both positive (when a component is anchored to the 

membrane by other component) or negative (when one component is excluded from 

one side of the membrane) interactions (Peng and Axelrod, 2012; Carroll and Yu, 2012).  

Finally, the core PCP pathway has the peculiar function to transmit or propagate 

its intracellular PCP directionality, thus it has a non-cell autonomous function. The most 

clear evidence for the non cell-autonomous function of the core PCP in coordinating 

polarity over the wing is that when groups of cells that lack Fz are induced, neighboring 

cells (with normal Fz) point their hairs towards the mutant cells; similarly, loss of Stbm 
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causes neighboring cells to point their hairs away (Wu and Mlodzik, 2008; Strutt and 

Strutt, 2002). This suggests that polarity is generated inside the cell and further 

propagated to neighboring cells (Figure 4 and Goodrich and Strutt, 2011). 

 

 

3 The global planar cell polarity pathway 

 

The global pathway is composed of the Fat (Ft), Dachsous (Ds) and Four-jointed 

(Fj) proteins (Figure 6). The ft and ds genes both encode atypical cadherins that 

preferentially bind heterophilically to each other at the cell surface (Ma et al., 2003; 

Matakatsu and Blair, 2004), and this interaction is modulated by phosphorylation of both 

extracellular domains by the Golgi-localized ectokinase protein Fj (Strutt et al., 2004; 

Brittle et al., 2010; Simon et al., 2010). 

The Drosophila Fat and Ds proteins are members of the cadherin super family, a 

group of type I integral membrane proteins characterized by the presence in the 

extracellular domain of cadherin-type repeats composed of two β sheets mediating 

Ca2+-dependent binding. ft is predicted to encode a 5147-amino-acid protein with a 

calculated mass of 560 kDa, it contains three basic domains, an intracellular domain 

(ICD), a transmembrane domain and a large extracellular domain (ECD), the latter region 

containing five epidermal growth factor like repeats, 34 tandem cadherin-type domains, 
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and two laminin domains (Matis and Axelrod, 2013). In contrast, ds is predicted to 

encode a 3503-amino-acid protein with a calculated mass of 380 kDa with 27 cadherin 

repeats in its extracellular domain, a transmembrane domain and an intracellular 

domain (Figure 7) (Goodrich and Strutt, 2011; Matis and Axelrod, 2013).  

Although Ft and Ds exhibit weak asymmetric subcellular localizations (Strutt and 

Strutt, 2002; Ma et al., 2003) their activity leads to the strong polarized subcellular 

distribution of Dachs, a downstream-acting atypical myosin (Ambegaonkar et al. 2012; 

Brittle et al. 2012; Bosveld et al. 2012; Mao et al., 2006; Rogulja et al., 2008). Dachs 

localizes to one side of the apical membrane in a planar-cell polarity fashion in response 

to a Ds gradient. Dachs is thought to control the proximo-distal elongation in the wing 

disc cells by controlling cell geometry, and thus indirectly influencing the mitotic spindle 

(Mao et al., 2011). Since Dachs is planar-polarized it has been suggested to act as a 

selective cell-cell junction constrictive force (Mao et al., 2011). Consistently mutant 

clones for dachs are small and rounded as opposed to the stereotyped elongated form 

of wild-type clones (Mao et al., 2011). Therefore, Ds asymmetric localization promotes 

the strong asymmetric accumulation of Dachs at one side of the cell through direct 

binding to the intracellular domain of Dachsous (DsICD) (Ambegaonkar et al. 2012; 

Brittle et al. 2012; Bosveld et al. 2012). Since Dachs is more strongly asymmetrically 

accumulated than Ds, an amplification mechanism has been suggested, and very 

recently has been identified: the ubiquitin ligase FbxI7 that binds to the intracellular 

domain of Ft (FtICD) but not the intracellular domain of Ds (DsICD) is able to promote 

the proteolytic degradation of Dachs specifically where Ft is highly localized; thus 
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explaining the stronger asymmetric accumulation of Dachs in relationship with Dachsous 

(Bosch et al., 2014; Rodrigues-Campos and Thompson, 2014). 

The other component of the pathway, the kinase Fj is largely localized to the Golgi 

(Strutt et al. 2004) where it phosphorylates the cadherin domains of Ft and Ds in four 

and three cadherin domains respectively (Ishikawa et al. 2008). However this 

phorsphorylation leads to opposite effects: phosphorylated Ft increases the binding 

affinity to Ds (Simon et al. 2010) while phosphorylation of Ds decreases its affinity for Ft. 

Finally this phosphorilation is important for the polarity function of Ds (Brittle et al. 2010; 

Simon et al. 2010). Unlike Ft, Ds and Fj are expressed in gradients that may contribute to 

their ability to provide directional information and growth regulatory activity (Zeidler et 

al. 1999; Casal et al. 2002; Yang et al. 2002; Ma et al. 2003; Lawrence et al. 2004). Fj is 

expressed in opposite gradients to Ds along the proximo-distal axis in imaginal discs 

(Zeidler et al. 1999; Casal et al. 2002; Yang et al. 2002; Ma et al. 2003; Lawrence et al. 

2004). This opposite effect, coupled with the gradient imposed by Fj, is thought to be 

the basis of planar cell polarity of this system. Finally, as a refinement of the system, Ft is 

further processed at two cleavage sites located in the extracellular domain in a 

Ds-dependent fashion revealed by biochemical analyses, with consequences in the 

regulation of the final wing size, revealing an even more complex signaling pathway 

(Feng and Irvine 2009).  

However there is also some type of regulation between Ft and Ds happening in 

the intracellular space which function has not been completely resolved but it existence 



Figure 5. Properties of the core planar polarity proteins in Drosophila wing development.  

(A) The core protein arrangement and localization at the adherens junction in the Drosophila wing. 
An intercellular asymmetric junction complex forms, with the transmembrane proteins Fz (green) 
and Fmi (red), and the cytosolic proteins Dsh (dark blue) and Dgo (purple) in one cell, associating 
with the transmembrane proteins Stbm (orange) and Fmi, and the cytosolic protein Pk (pale blue) in 
the adjacent cell. (B) The core-PCP components and some trichome formation effectors show a clear 
subcellular distribution in the pupal wing. Here the core-PCP components are shown using the same 
color code as in panel A and the effectors are drown as a black arrow (representing a growing 
trichome). In mutant cells for the PCP-components or in which the activity of these components in 
uniformly localized the trichome production happens randomly or in the cell center. (C) Normal 
trichome polarity shown in blue arrows can be affected in a non-autonomous manner by making 
clones of cells lacking planar polarity gene function (big gray circles). However the non-automomous 
effect is somehow different depending on the missing protein: clones of cells lacking stbm, ft or fj 
activity (left) cause cells proximal to the clone to invert their polarity (red arrows), in turn groups of 
cells lacking fz or ds function (right) cause trichomes distal to the clone to invert their polarity. 
Adapted from (Goodrich and Strutt, 2011) 



Figure 6. Fat Four-jointed and Dachsous interactions in the Drosophila wing.  

Model of the interactions between the components of the Global pathway (Fat and 
Dachsous) at the adherens junctions of epithelial cells in the Drosophila imaginal discs. (A) Ft 
(blue) and Ds (magenta) are large atypical cadherin molecules that prefferable interact 
heterophilically thus creating an asymmetric junction. (B) The heterophilic interactions 
between Fat and Dachsous are modulated by the kinase activity in the Golgi  Four-jointed 
(yellow), FJ phosphorylates the extracellular cadherin repeats in both Ft and Ds as they 
traffic through the Golgi apparatus to the cell surface; this Fj-mediated phosphorylation in Ft 
increases its binding affinity for Ds, while phosphorylation of Ds decreases its affinity for Ft. 
Adapted from (Goodrich and Strutt, 2011) 

 



 

40 

 

has been demonstrated to be of PCP consequences (Matis and Axelrod, 2013). The most 

noteworthy series of experiments that overall suggest a functional intracellular Ft/Ds 

interactions are: If a clone of cells in which the Ds protein is present in higher 

concentrations, the cells the border of the clone show a clear polarity reversal 

phenotype, pointing towards the highest peak of Ds expression; this same phenotype 

can be achieved using a form of Ds lacking the extracellular domain (DsΔECD). Though 

the repolarization phenotype observed using the DsΔECD form is weaker than the one 

induced using the full-length form of Ds, this experiment questions the necessity of the 

ECD to transmit non-cell autonomous PCP information (Sharma and McNeill, 2013). 

Surprisingly, the non-autonomy phenotype observed by the overexpression of either Ds 

or DsΔECD depends on the presence of Ft within the clone, as evidenced by the rescue 

of the ectopic polarity reversals when the clones are depleted of Ft protein. Therefore, 

since the interaction is restricted to the intracellular space and the ICD of Ds, there is a 

functional PCP signal transmitted by the ICD of Ds that depends on Ft (Sharma and 

McNeill 2013). While the experiment of also removing the ECD in this already complex 

system was not done, since the ICD of Ds cannot bind the, ECD of Ft it is plausible to 

postulate that there is an ECD-free PCP signal coming from the interaction between 

Ds/Ft. A mechanism to explain how is this ECD-free signal able to propagate throughout 

the epithelial tissue is, to my knowledge, not been reported. 

 

In summary, though there are plenty of interaction between the members of the 
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global pathway happening in which has become a very complex system, it is clear that 

the Ft/Ds system converts transcription gradients of Fj and Ds into sub cellular 

asymmetries of Ds/Ft heterodimers that reside at adherent junctions (Yang et al. 2002; 

Ma et al. 2003). The essential feature of this mechanism is that it captures information 

about the direction of the tissue axes and provides sub cellular asymmetric molecular 

cues that are available to orient PCP relative to the tissue axes.  

Another particularity of the system is that though the original PCP asymmetric 

localization of Ds, Ft and therefore Dachs are generated inside of the cell. This 

asymmetric localization propagates to the neighboring cells throughout several cell 

diameters. The basis for this mechanism is that the accumulation of Ft in one cell would 

recruit Ds within neighboring cells or vice versa on the opposite side of the neighboring 

cell (Matis and Axelrod, 2013). A propagation mechanism for the Ft/Ds/Fj module was 

first predicted computationally (Ma et al. 2008), and then seen in wing discs. In order to 

test the propagation of the global PCP pathway signal an elaborated experimental set-up 

was used: in wing discs with clones overexpressing Ds, the polarity of the neighboring 

cells is inverted, and this inversion was seen not only by the positioning of the trichomes 

but also by tagging the endogenous Ds and Dachs outside of the clone (Ambegaonkar et 

al. 2012; Brittle et al. 2012). The observed non-autonomous effect of the Ft/Ds/Fj 

module is reminiscent of that produced by the core PCP module (Figure 4; Matis and 

Axelrod, 2013). 

However, there is some controversy in the field based on a particular experiment 



Figure 7. Illustrative views of Fat and Dachsous atypical cadherins.  

Conserved extracellular domains are indicated. Sites of phosphorylation by Fj are marked 
with “P,” and cleavage sites are marked with arrows. Known intracellular binding sites are 
shown, as are putative functional domains identified by various structure/function studies. 
Adapted from (Matis and Axelrod, 2013). 
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that comes from the analysis of Fat truncated forms in their ability to rescue both 

growth and PCP defects. Fat protein forms lacking the cadherin domains (FtΔECD) 

provide substantial polarity-rescuing activity in ft-null mutant wing and abdominal tissue 

(Matakatsu and Blair 2006, 2012; Zhao et al. 2013) Even more surprising, a smaller form 

FtΔECDΔ1-C construct lacking the complete extracellular domain and all binding regions 

identified in the ICD is also able to rescue ft mutant overgrowth and PCP defects  

(Matakatsu and Blair 2012). Interestingly, the remaining domains in the FtΔECDΔ1-C are 

not strongly conserved (Matis and Axelrod, 2013). This particular experiment seems to 

question the validity of the heterophilic binding of Ft to Ds for proper planar cell polarity 

propagation and also question the role of the domains present in the ICD of Ft. However 

since the evidence for the interaction between Ds and Ft are enormous some side 

explanations can be pointed to solve the apparent paradox of the rescuing activity of 

FtICD: first it could be that the mutant used was not completely abolishing Ft, for 

example if it generates a truncated protein that is normally useless but that can form 

dimmers with the overexpressed truncated form; second it could be that the rescuing 

activity is mediated by forming protein complexes with another Fat-like atypical cadherin 

(possibly encoded by the fat2 gene) and third it could be that the truncated forms used 

to rescue ft mutants are able to self polarize the tissue independent of the global 

pathway: in such a way that can only be observed when the tissue is mispolarized. Of 

course this explanations are somehow not the standard view f rescuing experiments in 

Drosophila  however since the implication of FtICD rescuing activity are so huge some 

side explanations have to be drawn. 
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Never the less and apart the strange and unresolved paradox the global pathway 

is a very studied system that translates information about the tissue axis into cellular 

asymmetries which are then propagated throughout the tissue. 

 

4 Interaction between Global and Core PCP pathways 

How is the core PCP pathway aligned with the dorsoventral and anteroposterior 

axes of the wing? The answer to this question is at present not clear. Since PCP is broadly 

aligned to the tissue axes, it was originally speculated that the pathways involved in the 

generation of these axes might somehow cue PCP. The dorso-ventral and the 

antero-posterior axes of the wing are broadly specified by gradients of the morphogens 

Wingless (Wg, a member of the Wnt family) and Decapentaplegic (Dpp), respectively 

(For a recent review on the integration of morphogen signaling into the wing growth see: 

Baena-Lopez et al., 2012). In vertebrates, a link between the Wnt non-canonical pathway 

and planar cell polarity has been suggested through the activation of β-catenin (Gao, 

2012). However, the absence of planar polarity phenotypes upon loss of Wg suggests 

that Wg does not signal to the core PCP pathway (Lawrence et al., 2002; Goodrich and 

Strutt, 2011).  

On the other hand, mutations affecting the Global-Fat/Ds (Ft/Ds) pathway (explained in 

more detail after) lead to the separation of the core-PCP pathway from the 

proximo-distal axis, together with the fact that the Global-Fat/Dachsous pathway forms 

a proximo-distal gradient in the wing, has lead to the proposal that the Ft/Ds pathway 
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might be responsible for the global coordination of the core PCP pathway to the tissue 

axes, hence its name as a global coordinator of PCP (Ma et al., 2003). The current view is 

that the Global-Ft/Ds pathway provides indirect cues that serve to align the core-PCP 

pathway to the body axis. This alignment is done either indirectly by controlling the cell 

geometry through accumulation of a downstream myosin Dachs (Goodrich and Strutt, 

2011; Matis and Axelrod, 2013; Mao et al., 2011; Bosveld et al., 2012) or by guiding the 

planar polarity of the microtubule network which is finally read through one of the two 

isoforms in the prickle locus: pricke (pk) or spiny-legs (sple) (Ayukawa et al., 2014; 

Merkel et al., 2014; Olofsson et al., 2014; Matis et al., 2014). 

When originally proposed the Ft/Ds pathway provided an elegant solution to the 

problem of how the core PCP components orient the global tissue axes. However, the 

accumulating data followed this proposal has proved it not to be completely accurate. 

The main experiments that lead to the idea that the Ft/Ds pathway provides a 

cue to the core PCP pathway are: 1) mutant clones of ft, ds, or fj generated in the wing 

or in the eye, dissociates the core module orientation from the tissue axes, indicating a 

loss of global directional input; and 2) Ft overexpression influences ommatidial PCP 

polarity only if Fz is active, suggesting an epistatic behavior (Yang et al. 2002). These two 

experiments strongly suggest that the Ft/Ds system guides the orientation of the core 

PCP pathway. 

However, recent experiments suggest that the relationship between these two 

pathways is not completely direct. For example, artificially flattening of the Ds and Fj 
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gradients does not affect PCP in the wing, suggesting that the proximo-distal information 

present in these gradients is not necessary for PCP. Similarly, like in all tissues studied in 

the abdomen the Ds system has an intrinsic capacity to non-cell autonomously re 

polarize cells (Ambegaonkar et al. 2012; Brittle et al. 2012), however in this particular 

tissue, this repolarization happens even when the cells are stan mutant. Therefore the 

Global pathway is able to induce PCP polarization without the core-PCP pathway (Simon 

2004; Casal et al. 2006; Mao et al. 2006; Repiso et al. 2010; Donoughe and DiNardo 

2011).  

Though the exact mechanism has not been resolved yet and the genetic 

interaction between the Ft/Ds and the core PCP pathways suggest the existence of 

several links, alternative possibilities have been suggested to explain how the Ft/Ds 

pathway indirectly cues the alignment of the core PCP pathway. One way is through the 

alignment of the microtubule cytoskeleton. In the wing, the microtubules are aligned 

along the P/D axis, with a modest excess of plus ends on the distal side of the cell, this 

alignment contributes to the transport of Fz (Shimada et al. 2006). The apical 

microtubule cytoskeleton shows strong correlation with the core protein PCP pathway 

during wing development (Eaton et al., 1996; Shimada et al., 2006; Harumoto et al., 

2010). Consistently, a mutation of ds has been found to alter microtubules orientation in 

a specific region of the wing, pointing towards a model in which polarization of Ft and Ds 

patterns the microtubules cytoskeleton, which in turn contributes to alignment of core 

module polarization (Harumoto et al. 2010). However, not always the core-PCP 

components respond equally to the Ds/Ft imposed polarity. The orientation of the 
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microtubule network is proposed to be assimilated in different directions by the two 

isoforms of the prickle locus: prickle (pk) and spiny-legs (sple) thus explaining the 

diversity of polarities observed by the core-PCP pathway in relationship with Ds and Fj 

gradients (Ayukawa et al., 2014; Merkel et al., 2014; Olofsson et al., 2014; Matis et al., 

2014). However, this does not explain the repolarization induced by Ds in the absence of 

Stan protein or the lack of defect phenotype observed by the artificial flattening of the 

Ds gradient. 

Another possible mechanism that has been proposed to explain the direction 

imposed by the Global pathway to the core PCP pathway comes from the observation of 

the Ds-dependent contraction of the hinge region of the wing during pupal 

development . This contraction has been surprisingly found to induce tissue remodeling 

in large regions of the proper wing (Aigouy et al. 2010). This contraction mechanism is 

based on a more mechanical signal than a mere gradient could impose: the hindge 

contraction was proposed to impose anisotropic tension on the wing blade, thereby 

inducing cell flow through cellular rearrangements, cell elongation, and consequently 

oriented cell divisions; all of which finally exert a mechanical tissue remodeling force 

that would reorient PCP domains (Sagner et al. 2012). Although it is not known what 

causes the contraction of the hinge region, it is partially dependent on Ds function, and 

one might imagine a mechanism similar to the Dachs-mediated anisotropic polarization 

which remodels the notum (Bosveld et al. 2012). While this model is appealing, it does 

not explain the induced repolarization of the core PCP components in clones 

over-expressing Ds (Adler et al. 1998; Strutt and Strutt 2002; Ma et al. 2003, 2008). 
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Finally, it is important to note that though the direct relationship between the 

Ft/Ds pathway and the core PCP pathway seems complex and several apparent 

paradoxes have been raised (several feedback relationships going on; the existence of 

some tissues where one pathway is needed but not the other; the biphasic response of 

the core PCP pathway which can be aligned or in the reversed to the global pathway 

signal, depending on the relative levels of Pk/Sple isoforms; and that some details in the 

intrinsic regulatory feedbacks happening in each system which are not completely 

resolved) these two systems constitute the molecular basis for planar cell polarity in 

most tissues already analyzed. 

5 L/R asymmetry and PCP 

 

L/R asymmetry and Planar Cell Polarity establishments operate on similar bases: 

1) they both generate an asymmetric cue based on existing coordinated axes (namely 

Dorso/Ventral, Antero/Posterior axis and/or the Apico/Basal, Proximo/Distal); 2) they 

both are generated intracellularly and 3) they are both propagated throughout a tissue 

in a non-cell autonomous fashion. These similar and common features have lead to the 

tempting hypothesis that L/R asymmetry is a form of planar cell polarity (Aw and Levin, 

2009).  

  But far from being an hypothetical idea, a link between these two pathways has 

been demonstrated; for example, the inversin mutant mouse strain which causes a near 

complete inversion of the L/R axis in mouse is mutated in a gene coding for a distant 
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homolog of the core-PCP related protein Diego (Morgan et al., 1998). Consistently, hair 

PCP defects are observed in the inversin mutant and the Inversin protein has been 

shown to localize and bind the core-PCP proteins Vang and Pk (Simons et al., 2005). All 

of these experiments show that information related to L/R asymmerty and PCP 

establishments are both present in one single protein. Two other components of the 

core-PCP pathway, Vang and Dishevelled, are also necessary for the correct cilia 

positioning in the node (the L/R organizer) thus reinforcing the role of PCP in L/R 

establishment. If Vang or Dsh proteins are absent the L/R axis becomes randomized 

(Antic et al., 2010; Borovina et al., 2010; Hashimoto et al., 2010). Another good example 

of the relationship between these pathways came from the analysis of the mouse 

mutant for the bbs4 gene which induces classical PCP phenotypes (Ross et al., 2005). 

Noticeably the bbs4 gene is one of the most common mutated genes in human patients 

that exhibit Bardet-Biedl syndrome, a condition that leads to clear L/R randomization 

defects (Ansley et al., 2003).  

Finally, though a clear link between the core-PCP pathway and L/R asymmetry 

establishment has been showed in higher vertebrates; no such link has ever been made 

in Drosophila, nor it has been made between the Global-Ft/Ds pathway and L/R 

asymmetry establishment in any animal model studied so far. 
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The adult hindgut 
 

The typical gut of an insect consists of the foregut, the midgut, and the hindgut 

(Lemaitre and Miguel-Aliaga, 2013). While the foregut and the midgut are the main sites 

for nutrient assimilation, the hindgut is where most of water and ions are reabsorbed if 

needed (Lemaitre and Miguel-Aliaga, 2013). In the last decades, there has been a 

substantial advance towards the understanding of the development and the function of 

the intestine in Drosophila. However, most studies in the Drosophila fly have been 

focused on the midgut and in contrast not so much is known about the last portion of 

the gut, the hindgut (Figure 8).  

 

Originally, an enormous set of genetic evidence, made in the Drosophila embryo, 

described the basic principles of hindgut development in embryogenesis (Lengyel and 

Iwaki, 2002; Myat, 2005). Yet the adult counterpart has remained obscure. Only recently, 

followed by the identification of putative stem cell population in the adult hindgut 

(Takashima et al., 2008) some advances have been done in the study of the development 

of the adult hindgut (Takashima et al., 2013; Fox and Spradling, 2009).  

 

The adult and the larval hindguts are morphologically similar (Figure 9); they are 

broadly divided into the pyloric region, the ileum and the rectum (Gupta and Berridge, 

1966; Takashima et al., 2008; Fox and Spradling, 2009). The larval pyloric region is 



Figure  8. Structure and development of the alimentary tract of the fly 

 
The typical gut of an insect consists of the foregut (blue), the midgut (red), and the hindgut (blue).  
During pupa development the epithelium of the larval gut degenerates completely and is by imaginal cells. 
Precursors of the imaginal gut, present at larval stages, (dark blue or red) are integrated into the larval gut 
epithelium (light blue or red). The midgut is replaced by midgut histoblasts (mhi) scattered throughout the 
larval midgut epithelium (mg). Precursors of the adult hindgut (hg) lie in an imaginal ring (imr)located at the 
junction between larval hindgut and midgut; the posterior hindgut is replaced by cells originating in the 
genital disc (gd).  At the end of the prepupal stage (12 hr apf), most of the larval gut has been replaced by 
imaginal cells. The primordium of the adult midgut forms a cylindrical chamber that encloses the remnants 
of the larval midgut (yellow body). The hindgut has been partly replaced.  Components present in the adult 
fly that had not been present in the larva are the crop (cr), an unpaired outgrowth of the esophagus, and 
the rectal ampulla (amp), a specialization of the posterior hindgut. Conversely, the gastric caeca (gc), out-
growths of the anterior larval midgut, are not replaced in the adult gut. (air) Air bubble; (ph) pharynx (also 
called cibarium in the adult); (pv) proventriculus (also called cardia in the adult). proventriculus (pv) 
Malpighian tubules (mp) adult salivary duct (sd) glands (sg). Adapted from (Hartenstein, 1995) 
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subdivided by the imaginal ring and the actual pyloric valve. It controls the passage of 

fluid from the midgut and the malpighian tubules into the hindgut, and thus it is 

surrounded by strong visceral musculature (Coast, 2007; Cohen, 2013; Lemaitre and 

Miguel-Aliaga, 2013). The imaginal ring contains around 600 diploid cells that are 

recognized to be the adult hindgut (AHG) precursors (Murakami and Shiotsuki, 2001; 

Murakami et al., 1994; Fox and Spradling, 2009). The adult pylorus is formed by the 

pyloric valve and adjacent to the AHG, the stem cells of the pylorus. The exact nature of 

these stem cells is not completely resolved. They have been shown to be normally 

quiescent but to divide upon stress and their progeny in the AHG has been followed until 

the pylorus, but never in the ileum or rectum (Fox and Spradling, 2009). 

The larval ileum consists of big polyploid cells and covers most of the hindgut 

length. During metamorphosis it degrades together with the larval pyloric valve and so 

the adult ileum is formed de novo from the imaginal ring (Murakami and Shiotsuki, 

2001). The adult ileum is very similar to its larval counterpart; it is formed by only one 

type of big polyploidal cells and is also the biggest part of the AHG (Takashima et al., 

2008). 

The larval rectum consists of the rectum and the anal pads; they are formed by 

big polyploidal cells (Murakami and Shiotsuki, 2001). Interestingly, these cells are not 

degraded during metamorphosis but they mitotically divide to form the adult rectum, 

they are a very unusual case of polyploidal mitosis (Fox and Spradling, 2009). The adult 

rectum, though it comes directly from polyploidal mitotic divisions of the larval rectum, 



Figure 9. Comparison between larval and adult hindguts. 

 
The adult and the larval hindguts are morphologically similar; they are broadly divided into the 
pyloric region, the ileum and the rectum. In color are shown the different proposed regions fro the 
larval hindgut , redrawn from (Murakami et al., 1994).  Colors in the adult hindgut represent the 
homologous regions. 
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it is morphologically very different. It is a rounded structure that host 4 conic structures 

called rectal papillae that serve as the last water reapportion organ (Fox et al., 2010). 

From the outside the rectum is covered by strong musculature and the rectal sheath 

epithelium and from lumen side it hosts a dense layer of cuticle (Fox et al., 2010; 

Peacock and Anstee, 1977). 

In terms of function, the seminal work on non-Drosophila insects have gave a 

good impression about the physiology of the hindgut (Hopkins, 1967; Cohen, 2013; 

Lemaitre and Miguel-Aliaga, 2013) yet until very recently these ideas have begun to be 

tested in the Drosophila genetic model (Cognigni et al., 2011; Seisenbacher et al., 2011). 

Though, functional studies have confirmed a role in the hindgut in osmoregulation 

(Seisenbacher et al., 2011), there are likely more functions to be uncovered; evidence to 

this is that most genes highly expressed in the adult hindgut are currently 

uncharacterized (Chintapalli et al., 2013).   
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General Experimental procedures 
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II General Experimental procedures 

1 Fly strains 

 

Flies were grown on standard cornmeal molasses agar medium with crosses 

performed at 25°C unless indicated otherwise. Strains are described in FlyBase 

(http://flybase.org) or otherwise specified. w1118 flies or sibling controls were used as 

wild type. During the course of this work a large amount of different Drosophila strains 

have been produced an exhaustive list of stocks used is provided as Supplementary Table 

1. 

2 UAS/GAl4 system 

 

The bipartite UAS/Gal4 transcription system derived from the budding yeast 

Saccharomyces cerevisiae is used in Drosphila melanogaster to express a given construct, 

e.g. RNAi or coding gene sequences, in a tissue of choice (Brand and Perrimon, 1993). 

The transcriptional activator Gal4 has been inserted in the fly genome and lays 

downstream of a promoter sequence of interest (enhancer trap). The regulatory 

sequence targets Gal4 expression into the tissue of interest (Figure 10). This construct is 

denominated "driver". Flies carrying the driver construct are crossed to transgenic flies 

encoding the UAS- gene/construct of interest. UAS stands for Upstream Activation 



Figure 10. Overview of the UAS/GAL4 system in Drosophila. 

 

The yeast transcriptional activator Gal4 can be used to regulate gene expression in Drosophila by inserting 
the upstream activating sequence (UAS) to which it binds next to a gene of interest (gene X). The GAL4 
gene has been inserted at random positions in the Drosophila genome to generate 'enhancer-trap' lines 
that express GAL4 under the control of nearby genomic enhancers, and there is now a large collection of 
lines that express GAL4 in a huge variety of cell-type and tissue-specific patterns. Therefore, the expression 
of gene X can be driven in any of these patterns by crossing the appropriate GAL4 enhancer-trap line to 
flies that carry the UAS–gene X transgene. This system has been adapted to carry out genetic screens for 
genes that give phenotypes when misexpressed in a particular tissue. Image adapted from St Johnston , 
2002. 
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Sequence, a specific Gal4 binding site. The UAS sequence is cloned upstream of the 

construct or gene of interest. Consequently, in the F1 generation, the gene or construct 

of interest adopts the temporal and special expression pattern of the driver. The system 

is temperature sensitive and expression is strongest at 30°C as this is the optimal 

temperature for yeast growth and is less efficient at 25°C. 

3 Gal80TS and temperature dependent expression 

 

The Gal80 gene is a repressor of the Gal4 activator and acts by binding to the 

activation domain of Gal4, thus preventing the interaction between Gal4 and the 

transcriptional machinery in yeast (Ma et al., 1987) and has been introduced in fly (Lee 

et al., 1999). Conditional gene expression can be achieved by use of a ubiquitously 

expressed Gal80, e.g. by fusion to a ubiquitous promoter as tubulin (Tub-Gal80), which is 

temperature sensitive (ts). The repressor is inactive at 30°C and the Gal4 activator is 

transcribed and activates gene expression, therefore 30°C is the permissive temperature. 

The Gal80 repressor is active at 25°, inhibiting the Gal4 driven expression of the gene, 

hence 25°C is the restrictive temperature. Shifts between both temperatures permit the 

expression of the gene or construct at any time- window in development (McGuire et al., 

2004). 

4 RNAi silencing 

 



Figure 11. Overview of the transgenic RNAi mediated depletion system in Drosophila.  

 
The generic GAL4/UAS system is used to drive the expression of a hairpin RNA (hpRNAs). 
These double-stranded RNAs are processed by Dicer into siRNAs which direct sequence-
specific degradation of the target mRNA. Modified from VDRC website 
http://stockcenter.vdrc.at 
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RNAi silencing is used as a loss of function approach and acts through 

posttranscriptional depletion. The mRNA transcript of a gene of interest is destroyed by 

the RISC complex (RNA-induced silencing complex) of the cell, for review see 

(Sontheimer, 2005). Double stranded RNA is recognised by the ribonuclease-III enzyme 

dicer and cut into 21-23 nt short interfering siRNAs (Figure 11). Upon assembly of the 

RISC complex triggered by the siRNAs, the former recognizing the unwounded target 

mRNA by siRNAi-mRNA base pairing, the mRNA is cleaved and degraded. This 

mechanism is part of the cellular defense against viral infections and implied in 

endogenous control of gene transcription. By use of the UAS-Gal4 system the RNAi 

construct can be driven into the tissue of interest. RNAi is advantageous, if loss of 

function analysis is required in only a subset of cells or tissues and can be used for 

temporal analysis of protein requirement in connection with the Gal80ts allele. 

Drawbacks of this method are that the efficiency of silencing can vary largely between 

different constructs, and depends on protein half-live and turn-over. Gene silencing can 

be successful with only 19 nucleotides of sequence identity and off-targets that is 

involuntary silencing of proteins, can be responsible for observed phenotypes (Ma et al., 

2006). Silencing efficiency can be increased by the simultaneous overexpression of dicer, 

a component of the RISC complex (Dietzl et al., 2007). 

5 FLP/FRT mitotic clones 

 

The FLP/FRT system permits to induce somatic clones in the tissue of interest by 



Figure 12. Overview of the FRT/FLP mediated clone induction  system in Drosophila.  

 

Flp recombinase mediates site-specific recombination between FRT (Flp recombinase 
target) sites during replication very efficiently when expressed in Drosophila. Flp-
mediated recombination can be used to generate mitotic clones by creating flies with 
transgenic FRT sites at identical positions on homologous chromosomes. If the site-
specific recombination between homologues occurs after DNA replication, and the 
daughter chromatids segregate appropriately, the region of the chromosome arm that 
lies distal to the FRT site will be made homozygous, with each daughter cell inheriting 
two copies of this region from one of the parental chromosomes. This site-specific 
recombination event can be used to make a mutagenized chromosome arm (red) 
homozygous in clones of cells, which can then be screened for a phenotype. Image 
adapted from St Johnston , 2002. 
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use of the site-specific recombinase FLP (flipase) to force mitotic crossing-over at the 

target FRT sites (Xu et al., 1993; Stowers, 1999) and (Figure 12). Mutant clones can be 

marked by cell autonomous markers, e.g. GFP. The flipase coding sequence is either 

under the control of a heat shock promoter or the UAS-Gal4 system regulating the 

temporal and/or spatial generation of mutant clones. The advantage of clonal analysis is 

the possibility to directly compare adjacent wildtype and mutant cells and to detect 

minor differences in protein localisation or expression. For the induction of mitotic 

clones in the A8 segment of the genital disc we first constructed a line containing 

Ubi:GFP, frt40a/Cyo; AbdB
LDL

-Gal4, UAS-flp/TM6b. We then crossed this line to chic
p5202

, 

FRT40A. 

6 Visualization of terminallia rotation 

 

We determined the terminallia rotation phenotype by dissection of the abdomen 

of the male adult flies. Parallel observation of the position of the male terminallia from 

the exterior and looping of the spermiduct around the hindgut in the dissected flies 

permitted the determination of the degree and direction of the plate rotation. The 

rotation degree phenotype was broadly measured and expressed as degrees (from-360° 

up to 360°). 

7 Visualization of adult hindgut looping 
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In order to visualize the looping of the AHG and preserve the structure of the 

abdomen we followed two strategies. 

Blue Erioglaucine staining 

 

Flies were fed on a mixture of agar 3%, sucrose 5% and erioglaucine 2.5% 

(Sigma#861146) for at least 6 hours. Then the AHG position was examined in a LeicaMZ6 

stereoscope. 

Wholemount for confocal microscopy 

 

Headless flies were fixed in formaldehyde 4% overnight; following washes in PBS 

with 0.1% Triton, the dorsal part of the abdominal cuticle was carefully removed using 

forceps. Abdomens were then stained with FITC- TRITC-phalloidin of overnight. 

Complete abdomens were mounted in 2% agarose in a concaved slide and image in an 

SPE Leica upright confocal 

8 Standard procedures 

 

For all standard molecular techniques (PCR, ligation, digestion and sequencing) 

we followed to common protocols of Sambrook and Russell (2001). Bacteria 

transformation was performed by electroporation. For purification of PCR products we 
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used the QIAquick PCR purification protocol (Invitrogen). For purification of PCR 

products from gel we used QIAquick Gel Extraction Kit (Invitrogen). For DNA purification 

from bacteria we used QIAquick Spin Miniprep or Midiprep Kit (Invitrogen). 

DNA preparation from single fly 

 

Smash one fly in 50 μl of squishing buffer (10mM Tris-HCl pH 8.2, 1 mM EDTA, 25 

mM NaCl, 200μg/mlfresh proteinase K). Incubate for 30 min at 25-37°C. Inactivate 

proteinase K by heating to 95°C for 2 min.  

Fosmid/BAC modification 

 

The fosmid FlyFos transgenes rescue mutant phenotypes, recapitulate 

endogenous gene expression patterns and in some cases allow imaging of gene products 

in living animals. The D.pseudoobscura transgenes rescue RNAi phenotypes when 

introduced into the D.melanogaster genome, providing a convenient control for the 

specificity of the knockdown (Langer et al. 2010). For RNAi rescue experiments the 

ortholog region containing the desire gene from D.pseudoobscura were obtained from 

the Flybase Blast. Then the specific fosmid was selected from the FlyFos project website 

(https://transgeneome.mpi-cbg.de/transgeneomics/). The obtained Fosmids were 

prepared for injection and sent to Best gene. The fosmids are inserted into the pFlyFos 

backbone containing inducible oriV, the attB sequence for ϕC31-mediated gene 
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integration and eye promoter–driven dsRed selectable marker (Langer et al., 2010; 

Kondo et al., 2009) 

 

Co-immunoprecipitation and Western Blott 

 

Drosophila Schneider line-2 R+ cells (S2R+) were maintained in Schneider’s Insect 

medium (PAA) containing heat inactivated Fetal Bovine Serum (10%, Lonza) and 

Penicillin-Streptomycin cocktail (100 Unit/ml, Gibco). S2R+ cells were transfected using 

Lipofectamine  (Invitrogen) and protein expression was performed using MyoID-GFP 

and DsICD-FLAG Drosophila expression vectors under the control of a constitutive actin 

promoter and actin::Gal4 vector. 

Transfected cells were lysed 3 days after transfection in lysis buffer (10 mM 

Tris-HCl pH 7.5, 150 mM NaCl, 0.5mM EDTA and 0.5% NP-40, protease inhibitors). Cell 

extracts (200ug of protein) were incubated overnight at 4°C with 20ul of GFP-Trap® 

beads (Chromotek), beads were then washed and treated according to the Chromotek 

protocol. Immuno-complexes were denatured for 5 minutes at 75°C and loaded onto 

NuPAGE Novex gel (12%, Bis-Tris Gel, Invitrogen). Proteins were detected by Western 

blotting using anti-Flag mouse antibody (1/2000, Sigma), anti-GFPN-term rabbit 

antibody (1/2000, Sigma). Antibody detection was performed using Odyssey® Infrared 

imaging system (Li-cor). 
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9 Antibodies and staining reagents 

Antobody name origin species Dilution IF Dilution WB 

B-galactosidase Promega/ 

Invitrogen 

Mouse,chicken 1/100, 1/500  

DE-Cadherin DSHB Rat  1/50  

Dlg DSHB Mouse  1/100  

Chicadee DSHB Mouse  1/10 1/50 

Wg DSHB Mouse 1/50  

Cora DSHB Mouse 1/50  

GFP Invitrogen/Sigma Mouse, Rabbit 1/100 1/1000, 1/50 

CoIP 

HA Covance Mouse 1/100 1/500 

Flag ? Mouse  1/50 CoIP 

Alexa-546 or Cy3 Invitrogen  1/200  

Cy5 Invitrogen  1/200  

DAPI /Höchst  NA 1/100  

Phalloidin-TRITC Invitrogen NA 1/500  

IF=Immunoflourescence, WB=WesternBlott, CoIP=Co-immunoprecipitation assay  
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10  Hobo mediated deficiency generation 

 

P{wHy} is a compound element comprised of P-transposon carrier arms and a 

central deleter transposon, hobo, which is flanked by white and yellow genes. Flanking 

deletions are obtained by introducing a source of hobo transposase, followed by 

recombination between the original and second copy of hobo; the direction of the 

deletion is indicated by the particular P{wHy} marker lost. The genetic schemes and 

strains for the basic manipulation of P{wHy} transposition are described in (Huet et al., 

2002; Myrick et al., 2009). 

All initial D. melanogaster strains used for deletion generation had genetic backgrounds 

devoid of hobo elements. Hobo-mediated deletions were generated by using 

P{wHy}DG30510 insertion on chromosome 2 at 2L:66,953..66,953 [-]. G0 crosses were 

matings of Df (1)w67c23, y1 w67c23; P{wHy,w+y+} with Df (1)w67c23, y1 w67c23; In 

(2LR)Gla, wgGla-1/CyO P{hsH\T-2}. P{hsH\T-2} contains the hobo transposase gene 

placed under a heat-shock promoter. Crosses were brooded three times every other day. 

The progeny were heat-shocked three times during development for 30 min at 37°C at 

2-day intervals to elevate the expression of the hobo transposase. Each G1 cross 

consisted of two males of the genotype y1 w67c23; P{wHy}/CyO, P{hsH\T-2} and virgin 

females of the genotype y1 w67c23; In (2LR)Gla, wgGla-1/SM6a. G2 matings consisted 

of one y1 w67c23; P{5′wHy,w+y−} or P{3′wHy,w−y+}/SM6a male crossed to virgin y1 

w67c23; In (2LR)Gla, wgGla-1/SM6a females. From these latter crosses, stocks of the 
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P{5′wHy} or P{3′wHy} derivatives were established, balanced with SM6a. 

 

11  CRISPR/CAS9 mutagenesis 

 

 

CRISPRs (clustered regularly interspaced short palindromic repeats) and the 

CRISPR-associated Cas9 nuclease function as part of an adaptive immune system in 

bacteria and archaea (Barrangou et al., 2007). In type II CRISPR systems, a CRISPR RNA 

(crRNA), which contains sequence complementary to invading virus or plasmid DNA, and 

a trans-activating CRISPR RNA (tracrRNA) interact with Cas9 to direct sequence-specific 

cleavage of exogenous DNA. A minimal two-component system required for the 

site-specific cleavage of DNA are the Cas9 endonuclease and a chimeric RNA (chiRNA), 

comprising the crRNA and tracrRNA (Jinek et al., 2012). The introduccion of two chiRNA 

induces a deletion flanked by the two chiRNAs (Gratz et al., 2013). 

 

We made two injections, each comprising two chiRNAs the first one aiming for a 

3.3kb deletion of the first intron; the second one for a small 1.4kb deletion of the 

putative AHG enhancer. Both injections were done in flies bearing a M(vas-cas9)ZH 

transgene (Bloomington #51323). G0 crosses were matings of all the survival males mass 

crossed against w1118; If/Cyo. The progeny were individually crossed against either 

w1118; If/Cyo (enhancer mutant) or against w1118; myoID k2, shg p(w+k03401)/Cyo. 
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Finally, efficient deletions were selected by PCR and the exact breaking points detected 

by sequencing the amplicon. Eight enhancer mutants were kept but as they all had 

similar phenotipes only one w; myoIDAHG#A2 was further analyzed; Three intron mutants 

were kept, one w; myoIDintron#E2 was mostly used. 
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Aims   
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III Aims 

This thesis aims to contribute to the understanding of L/R patterning in 

Drosophila.  The main focus is to further investigate the mechanisms that convert 

MyoID function in the Drosophila alimentary canal into a stereotypical dextral looped 

tube. We focused on a particular region of the adult Drosophila gut called the hindgut. 

Through the use of genetic and molecular approaches we now present our current view 

on a possible mechanism that translates original asymmetries from MyoID into a whole 

asymmetric organ. 

Two main objectives were set: i) set up, as a collaborative approach together 

with other members of the L/R asymmetry group, a genome-wide screen in an effort to 

identify new components of the MyoID L/R machinery involved in the dextral looping of 

the terminalia and ii) understand how MyoID controls the adult hindgut dextral looping 

and thus set up this organ as a new model for the study of L/R patterning. 
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Results   
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IV Results 

 

The result section is divided in four parts. The first one is presenting the data 

concerning the interaction between the unconventional myosin, MyoID and the planar 

cell polarity pathway through the regulation of the atypical cadherin Dachsous and its 

binding partner Fat. This novel regulatory interaction seems to be controlling the 

establishment of the dextral coil in the Adult hindgut. The data suggesting this 

interaction are summarized in the manuscript “The Atypical Cadherin Dachsous and 

Planar Cell Polarity control Left-Right Asymmetry in Drosophila”, which is currently in the 

revision process for publication. 

The second part constitutes an evolutionary approach to understand the origin 

of AHG looping in Drosophila. The original experiment that led to this approach was 

kindly suggested by Francisco (Paco) Martin during a seminar session in the institute. 

Briefly, He asked whether the dextral coiled was conserved among flies, that led us to 

screen for some Drosophila species apart from D.melanogaster, the description of what 

we found out is described in Part 2 of the results section. 

The third part includes a short story on clarifying the AHG precursor cells located 

in the larva. It came out as a logical consequence on focusing on the study of the 

development of the AHG, which has not been studied. The results of this part include 

the screen for gene expression patterns in the AHG and the lineage tracing experiments 

that allowed the identification of specific cell precursors. This story is summarized in the 
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chapter “Regional division and development of the Adult Hindgut in Drosophila”.  

The four part is a collection of experiments that were originally thought to be 

included as part 1 or 2 but they were left aside for different reasons. Alone they do not 

constitute a complete story; however I thought to include them as a complete section as 

they provide insights into the general process of AHG looping. 

The fifth part is the summary of the results obtained during a genome wide 

genetic screen for genes interacting with myoID and the further identification of Profilin 

homolog in flies, chickadee. This project was done in collaboration with a former Ph.D 

student Nicolas Porquet, a researcher Charles Géminard and a post-doc Jean-Baptiste 

Coutelis.  
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The Atypical Cadherin Dachsous and Planar Cell Polarity control Left-Right 

Asymmetry in Drosophila 

 

 

The manuscript "The atypical cadherin Dachsous and planar cell polarity control 

left-right asymmetry in Drosophila" which is now under revision process, we show a 

new role for the components of the Global Fat/Dachsous and core planar cell polarity 

(PCP) pathways in controlling the asymmetric left/right looping of the adult Drosophila 

hindgut. Using tissue-specific myoID knockdown we show that MyoID regulates 

terminalia rotation and hindgut looping independently, this indicates that MyoID is 

required in two different L/R organizers for two different tissues. We further show that 

MyoID is expressed in the H1 region of the larval hindgut, and by the specific MyoID 

knockdown in different regions, we conclude that the H1 of the imaginal hindgut ring 

domain represents a critical, transiently present organizer domain that is responsible for 

asymmetric looping of the entire hindgut structure. Consistently, we found an early L/R 

asymmetric orientation of the hindgut primordium (H2 cells) which direction is under 

the control of MyoID activity in the adjacent H1 cells. Also we further demonstrate a 

biochemical interaction between MyoID and Dachsous using co-immunoprecipitation 

experiments and show that loss of Dachsous results in a misloop phenotype which we 

interpret as a loss of asymmetry phenotype.  
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Finally using biochemical experiments we characterize the interaction between MyoID 

and Dachsous and found it to require the Dachsous intracellular domain. This interaction 

is also likely required for proper L/R asymmetric patterning based on misexpression 

experiments. Finally, we demonstrate that not only Dachous but all the components of 

both planar cell polarity pathways are required to maintain the asymmetric orientation 

and thus the final adult hindgut L/R looping. 

 

Overall our results identify a novel role for components of the core and global 

PCP pathways in a novel cellular system, adult hindgut looping, and identify key cellular 

structures within this system that are important for the initiation or transmission of L/R 

asymmetry signals. This is the first time components of the global Fat/Dachsous 

pathway have been shown to play a role in L/R asymmetry in animals and the first time 

for the core-PCP components in insects. 
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ABSTRACT 

Left-Right (L/R) asymmetry is essential for organ development and function in 

metazoans. Yet, how initial L/R cue is relayed to tissues still remains unclear. 

Here, we uncover a mechanism by which the Drosophila L/R determinant 

Myosin ID (MyoID) transfers L/R information to neighboring cells through the 

planar cell polarity (PCP) atypical cadherin Dachsous (Ds). Molecular interaction 

between MyoID and Ds in a specific L/R organizer controls dextral cell polarity 

of adjoining hindgut progenitors and is required for organ looping in adults. 

Loss of Ds blocks hindgut tissue polarization and looping, indicating that Ds is a 

crucial factor for both L/R cue transmission and asymmetric morphogenesis 

downstream of MyoID. We further show that the Ds/Ft and Frizzled PCP 

pathways are required for the spreading of L/R asymmetry throughout the 

hindgut progenitor tissue. These results identify a direct functional coupling 

between the L/R determinant MyoID and PCP, essential for non-autonomous 

propagation of early L/R asymmetry. 
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INTRODUCTION 

 Left/Right asymmetry is a prominent feature of bilateria (for recent 

review, see Blum et al., 2014; Coutelis et al., 2014; Nakamura and Hamada, 

2012; Namigai et al., 2014; Vandenberg and Levin, 2013; Yoshiba and Hamada, 

2014). Differentiating two body sides is essential for positioning organs, 

controlling their looping and ultimately their function. Abnormalities in L/R 

patterning can lead to a range of defects including loss of asymmetry 

(isomerism), loss of concordance between organs (heterotaxia, situs 

ambiguous) and inversion of the L/R axis (situs inversus); several congenital 

health threatening or lethal conditions are indeed linked to defects in L/R 

asymmetry (Peeters and Devriendt, 2006). Understanding how symmetry is 

initially broken and how de novo asymmetry is transferred to tissues during 

development represent major questions. Studies using a range of 

deuterostome/vertebrate model organisms have revealed some original 

patterning mechanisms, including the generation of ion flux in pre-gastrula 

embryos, the generation of a leftward flow at the embryonic node through 

rotating cilia, and asymmetrical cell movement (Adams et al., 2006; Blum et al., 

2014; Coutelis et al., 2014; Cui et al., 2009; Gros et al., 2009; Lenhart et al., 

2013; Levin et al., 2002; Namigai et al., 2014; Vandenberg and Levin, 2013; 

Yoshiba and Hamada, 2014). These early events contribute to symmetry 

breaking, ultimately leading to asymmetric activation of the conserved 

nodal/TGF-beta pathway which then controls organ asymmetrical 

morphogenesis (Raya and Izpisua Belmonte, 2006). 

 Studies of highly stereotypical L/R asymmetric organs in Drosophila 

suggest that distinct symmetry breaking mechanisms have emerged during 

evolution since Drosophila mostly lack primary cilia (except in some sensory 

neurons) and a Nodal signaling cascade (Coutelis et al., 2008; Géminard et al., 

2014). In contrast to vertebrates, Drosophila L/R markers are relatively simple 

and homogeneous as they are restrained to tubular organs which undergo 

directional morphogenesis towards dextral; these include male terminalia 

rotation, looping of the larval and adult gut, and testis (Hozumi et al., 2006; 

Géminard et al., 2014; Speder et al., 2006 Coutelis et al., 2008;). Genes 

controlling L/R asymmetry in flies have only recently been identified. The 

conserved type ID myosin gene (Myosin ID, MyoID; aka Myo31DF) (Mooseker 

and Cheney, 1995; Morgan et al., 1995) is unique as myoID loss of function 
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leads to complete situs inversus with all asymmetric organs developing as 

sinistral (Hozumi et al., 2006; Géminard et al., 2014; Speder et al., 2006 Coutelis 

et al., 2008;). The expression of MyoID, and hence L/R symmetry breaking, is 

under the direct control of the HOX transcription factor Abdominal-B (Coutelis 

et al., 2013). Further, binding of MyoID to the adherens junction proteins beta-

catenin and E-cadherin is important for its function in both the terminalia and 

embryonic hindgut (Petzoldt et al., 2012; Taniguchi et al., 2011). Interestingly, 

tissue-targeted invalidation of myoID in the genital disc has revealed the 

existence of a restricted domain controlling dextral terminalia rotation, termed 

the terminalia L/R organizer (Speder et al., 2006). Knockdown of myoID in this 

specific terminalia L/R organizer inverts the rotation of the terminalia; other 

organs, however, develop normally suggesting the existence of additional 

tissue-specific L/R organizers which remain to be characterized. 

 The Drosophila adult hindgut represents an attractive yet 

uncharacterized model to study MyoID-dependent control of de novo L/R 

asymmetry. Indeed, adult hindgut L/R asymmetry is established independently 

of larval hindgut asymmetry as it derives from dedicated precursor cells 

clustered in the larval imaginal ring. The imaginal ring comprises two 

subdomains (H1 and H2), which are thought to give rise to the adult sphincter-

like pylorus, the absorptive ileum and the stem-cell region (Fox and Spradling, 

2009, Takashima et al., 2008; Takashima et al., 2013). During pupal 

development, imaginal ring derivatives proliferate and differentiate, while 

larvae counterparts degenerate (Fox and Spradling, 2009; Robertson, 1936) 

(Fig. 2E). The transition from larval to adult hindgut thus provides an interesting 

model to characterize the mechanisms responsible for asymmetry cue 

transmission downstream of MyoID, which, we show here, is dependent on 

planar cell polarity (PCP) signaling (Gray et al., 2011; Wallingford, 2012; for 

recent reviews, see also Yang, 2012).  

 In Drosophila, PCP is involved in the polarity of hair-like structures in 

many organs including the wing, eye, abdomen and notum (Adler, 2012; 

Lawrence et al., 2007; Lawrence and Casal, 2013; Matis and Axelrod, 2013; 

Singh and Mlodzik, 2012). The well-studied Drosophila PCP genes are known to 

belong to two major pathways: the ‘core system’ and the ‘global system’ 

(Axelrod, 2009; Goodrich and Strutt, 2011 Lawrence and Casal, 2013; Matis and 

Axelrod, 2013). The core system comprises the distally located (relative to the 
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anterior-posterior (A/P) axis) proteins Frizzled (Fz), Dishevelled (Dsh) and Diego 

(Dgo), the proximally located proteins Van Gogh (Vang, aka Strabismus) and 

Prickle (Pk) and symmetrically localized Flamingo (Vinson and Adler, 1987; 

Krasnow et al., 1995; (Bastock et al., 2003; Das et al., 2002; Tree et al., 2002; 

Wolff and Rubin, 1998;). The global system includes the atypical cadherins Fat 

(Ft) and Dachsous (Ds) and the Golgi kinase Four-Jointed (fj) (Sharma and 

McNeill, 2013; Simon et al., 2010; Thomas and Strutt, 2012; Yang et al., 2002). 

Both systems rely on extracellular protein interactions and feedback signaling to 

ensure proper polarization of tissues (Axelrod, 2009; Goodrich and Strutt, 2011; 

Peng and Axelrod, 2012). Current studies suggest that the two pathways can 

interact in different ways depending on the cell context with Ds gradient 

direction and core module polarization oriented either parallel or anti-parallel 

(Zeidler et al., 2000; Casal et al., 2002; Ma et al., 2003; Matakatsu and Blair, 

2004; Rogulja et al., 2008). Interestingly, it has been proposed that the global 

system provides a directionality cue which is then used by the core system to 

align the polarity of each cell with that of their neighbors (Ayukawa et al., 2014; 

Hogan et al., 2011; Ma et al., 2003; Olofsson et al., 2014).  

 The first hint of a role of PCP in L/R asymmetry initially came from the 

identification of the mouse inversin gene (a distant homolog of the diego PCP 

gene), mutations of which lead to a high percentage of situs inversus (Morgan 

et al., 1998). More recently, the mouse PCP core pathway has been shown to 

control cilia positioning in the embryonic node, important for nodal flow and 

correct L/R asymmetry (Antic et al., 2010; Song et al., 2010). However, no study 

so far has linked global PCP and L/R asymmetry. 

 In this study, we characterize a new role of both core and global PCP 

pathways in de novo Drosophila adult hindgut L/R asymmetry downstream of 

MyoID. We identified the hindgut imaginal ring subdomain H1 as the L/R 

organizer controlling the directional looping of the adult hindgut. In H1 cells, 

MyoID physically interacts with the intracellular domain of Ds to polarize H2 

hindgut precursor cells towards dextral. Polarization is inverted (sinistral) in 

myoID loss-of-function while it is absent when Ds is specifically invalidated in 

the H1 domain. In addition, MyoID and Ds interact genetically to polarize the 

H2 cells. Therefore, Ds is essential to convey MyoID-dependent L/R information 

to neighboring H2 hindgut precursors. We further show that spreading of L/R 

polarity within H2 precursor cells depends on both global and core PCP 
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pathways. These results thus reveal a novel mechanism allowing cell non-

autonomous transmission of symmetry breaking information from a L/R 

organizer to organ precursors essential for proper L/R morphogenesis.  
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RESULTS 

Myosin ID controls directional looping of the adult hindgut through a specific 

L/R organizer 

 In wild type flies, the adult hindgut coils clockwise forming a single 

stereotyped loop localized on the right hand side of the abdomen when viewed 

from dorsal (Fig. 1A, D). Looping can be visualized by transmission microscopy 

using a non-invasive ‘blue feeding’ method which stains the gut lumen while 

keeping organs in their native configuration. The phenotype can be further 

analyzed by dissecting the whole fly abdomen followed by confocal microscopy. 

Using these methods, we show that in myoID null mutants, the adult hindgut 

displays an inverted sinistral phenotype in 80% of individuals (Fig. 1B ,E, G); the 

remaining 20% of the population show a twisted phenotype, whereby the adult 

hindgut does not form a loop but a roughly symmetrical ‘S’ shape (Fig. 1C, F, G) 

(Hozumi et al., 2006). This phenotype can be reproduced when expressing 

myoID-RNAi driven by either MyoID-Gal4, which mimics the myoID expression 

pattern (Coutelis et al., 2013; Petzoldt et al., 2012 ; Speder et al., 2006), or byn-

Gal4 (hereafter referred to as hindgut-GAL4), which is expressed in hindgut 

precursor cells (Fig. 1G). Altogether, these observations show that, like in other 

L/R organs, MyoID controls the directionality of adult hindgut looping towards 

dextral.  

 At the posterior end of the adult hindgut is the rectum which is part of 

the rotated terminalia but derives from both the genital disc and rectal larval 

cells (Fox et al., 2010). As myoID expression in the genital disc A8 segment 

controls dextral rotation of the terminalia we asked whether MyoID activity in 

the genital disc and/or rotation of the terminalia itself might be involved in 

adult hindgut looping. In order to test these possibilities, we knocked-down 

myoID by RNAi specifically in the A8 segment (using Abd-B
LDL

-Gal4, hereafter 

referred to as A8-GAL4) or in the hindgut (using hindgut-Gal4) and looked at 

terminalia rotation and adult hindgut looping in both cases. myoID invalidation 

in the hindgut did not affect terminalia rotation but was sufficient to induce a 

sinistral and mislooped adult hindgut (Fig. 1G); reciprocally, when myoID was 

specifically silenced in the A8 segment the terminalia was misrotated but the 

hindgut properly looped (Fig. 1G). These results show that i) terminalia rotation 

and adult hindgut looping are two independent events and ii) hindgut looping is 
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controlled by a hindgut specific MyoID-dependent organizer. Thus, we reveal 

that MyoID controls hindgut looping and terminalia rotation through two 

distinct tissue-specific organizers.  

 We next asked when MyoID activity is required for adult hindgut looping. 

Therefore, we knocked down myoID at different time periods during 

development using the Tub-Gal80ts/Gal4 system (TARGET method; McGuire et 

al., 2003). Using this approach, we show that myoID activity is required during 

days 3-5 of larval development for proper adult hindgut looping. Note that this 

functional timeframe overlaps with the requirement of myoID activity during 

terminalia rotation (Fig. 1H)(Petzoldt et al., 2012; Speder et al., 2006), 

indicating that, although terminalia and hindgut MyoID-dependent organizers 

are spatially distinct, they are temporally synchronous.  

 

The hindgut L/R organizer lies in the H1 domain of the larval imaginal ring  

 As mentioned earlier, the adult hindgut derives from the larval imaginal 

ring which comprises two domains, a small anterior domain called H1, and a 

larger posterior domain called H2 (see Fig. 2E) (Murakami and Shiotsuki, 2001). 

To precisely map MyoID expressing cells in the imaginal ring, we analyzed the 

expression of several MyoID reporter lines (MyoID-Gal4, MyoID-lacZ and 

MyoID::GFP) relative to that of known markers in the larval hindgut (Fig. 2A-D) 

(Fox and Spradling, 2009; Takashima et al., 2013). We found that MyoID 

expressing cells co-localize perfectly with Wg expression which marks all H1 

cells (Fig. 2B). To check whether MyoID expression is exclusive of H1 cells, we 

used the posterior H1 and anterior H2 marker ptc>GFP (ptc-Gal4, UAS-

MCD8GFP) which overlaps the H1-H2 boundary. Importantly, MyoID colocalized 

with ptc>GFP in posterior H1 cells but not in H2 cells (Fig. 2C). These results 

were confirmed by checking the absence of MyoID expression from the H2 

domain using an exclusive H2 marker (GBE-Su(H)-Gal4, UAS-MCD8GFP) (Fig. 2C, 

D). From these data we conclude that MyoID is precisely expressed in the H1 

domain.  

 To test if H1 cells may represent the adult hindgut L/R organizer, myoID 

function was knocked down by RNAi using Gal4 drivers expressed in different 

portions of the ring domain. The sinistral phenotype observed using MyoID-
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Gal4 (H1 driver) was also obtained using hindgut-Gal4, which is expressed in 

both the H1 and H2 domain and ptc-Gal4 which is expressed in a subset of 

posterior H1 cells as well as in anterior H2 cells (Fig. 2C, E). However, no 

phenotype was observed using the H2-specific driver (GBE-Su(H)-Gal4) 

indicating that H2 cells do not play a role in L/R determination. Altogether, 

these data show that MyoID activity in the H1 domain is necessary and 

sufficient for proper L/R asymmetry of the adult hindgut. Furthermore, these 

data show that the newly identified Drosophila MyoID-dependent L/R organizer 

is localized in the H1 domain of the imaginal ring.  

 

The hindgut L/R organizer is a transient structure 

 Although lineage tracing experiments have identified the adult pylorus 

and ileum precursors, the exact contribution of the H1 domain to different 

parts of the tissue has not been revealed (Takashima et al., 2013). Therefore, 

we analyzed the contribution of H1/MyoID cells to the adult hindgut through a 

lineage tracing method using the MyoID-Gal4 line (see Materials & Methods). 

We confirmed that the progeny of H1+H2 cells (hindgut-Gal4 lineage) or H2 

cells alone (GBE-Su(H)-Gal4 lineage) covers the entire adult hindgut, including 

the recently identified posterior terminal midgut (Fig. 3A, B) (Takashima et al., 

2013). However, the progeny of H1 cells (myoID-Gal4 lineage) does not cover 

any cell population of the adult hindgut or midgut (Fig. 3C), suggesting that in 

fact, the adult hindgut derives solely from H2 cells.   

 To further determine the fate of H1 cells, we followed their behavior 

during pupal development. Consistent with our lineage tracing experiments, 

MyoID-Gal4 is not expressed in the developing hindgut during late pupa stages, 

indicating that H1 cells have indeed a distinct fate from that of H2 cells (Fig. 3I). 

In fact, at 10hrs after pupal formation (APF), H1 cells (expressing both MyoID 

and hindgut-Gal4) are physically separated from the rest of the imaginal ring 

(Fig. 3D). Then, at 24hrs APF, H1 cells are found in the pupal midgut, a transient 

structure responsible for larval midgut degradation prior to its elimination in 

the meconium by young adults (Takashima et al., 2011). Consistently, H1 cells 

are also found in the meconium (Fig. 3J-M), indicating that the H1 cells are 

degraded in the pupal midgut along with other transient larval tissues. Note 

that H1 domain detachment is normal in myoID null mutants indicating that 
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myoID does not have a role in this process (Fig. 3E, H). Altogether, this analysis 

demonstrates that the H1 domain is a transient structure. Thus, we 

hypothesized that intervention of the H1 domain in hindgut asymmetry 

breaking occurs prior to H1 detachment.  

 To test this model, H1 cells were ablated at different time points by 

driving expression of the pro-apoptotic gene reaper in a temperature-

dependent manner (using myoID-Gal4;tub:Gal80
ts

). Strikingly, ablating the H1 

domain between 0 and 10hrs APF resulted in a mislooped phenotype, whereas 

ablation of H1 after 10hrs APF (i.e. after normal H1 detachment) had no effect 

on adult hindgut looping. Importantly, the overall adult hindgut integrity and in 

particular the midgut-hindgut junction was not compromised by H1 ablation as 

shown by histochemical analysis and retention of blue food dye in adult guts 

(Supplementary Fig. 1). These results are consistent with the fact that H1 cells 

do not structurally constitute the adult hindgut and further demonstrate that 

the H1 domain is essential prior to detachment to control hindgut asymmetry.  

 Furthermore, our results redefine the adult hindgut fate map. Indeed, 

previous work has shown that the boundary between the hindgut and the 

midgut is not stable, with some anterior hindgut cells crossing the border to 

invade the midgut to form the posterior terminal midgut. However, we show 

that the most anterior MyoID/Wg/H1 cells are eliminated and thus do not 

contribute to the posterior terminal midgut. Thus, we propose that H2 cells are 

the adult hindgut proper primordial cells (with the most anterior H2 cells 

invading and constituting part of the midgut), whereas H1 cells are in fact 

transient, non-structural, regulatory cells that provide the L/R directional cue 

guiding adult hindgut looping (Fig. 3M). 

 

H1 cells transmit directionality to the hindgut precursor cells 

 Since the H1 domain detaches from the adult hindgut primordium well 

before hindgut looping and morphogenesis (approximately 50hrs before), it 

raises the question of how H1-MyoID-generated L/R information is translated to 

H2 cells. Therefore we analyzed cell behavior in the H2 domain during early 

pupal development. Cell shape changes and orientation were characterized by 

measuring the orientation of cellular membranes relative to the A/P axis 
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(Viktorinova and Dahmann, 2013) (Fig. 4A, B). Before pupal formation (L3 larval 

stage), H2 cells are cuboidal in shape with no visible L/R asymmetry (Fig. 4C, F, 

I). Strikingly though, the first visible cell shape changes occur at 10hrs APF when 

H2 cells become oriented with a +50° bias relative to the A/P axis; we call this 

orientation dextral by convention (Fig. 4D, G, J). Importantly, H2 cells in myoID 

mutants are inverted compared to wild type, showing an orientation of -50° 

(sinistral) (Fig. 4E, H, K). These data indicate that MyoID activity in H1 cells 

orchestrates the early H2 cell shape changes underlying directional looping of 

the adult hindgut.  Thus, myoID has an instructive and cell non-autonomous 

function in H1 to direct L/R asymmetry of the H2 hindgut precursor cells. 

 

Planar cell polarity mediates L/R polarity of H2 cells 

 However, the question remains as to how L/R asymmetry is transmitted 

and maintained in H2 cells from H1 detachment to looping morphogenesis. It is 

noteworthy that cell shape changes in H2 cells occur in the plane of the 

epithelium. Therefore, we asked whether the PCP pathways which set and 

maintain planar cell polarity in other epithelia (Goodrich and Strutt, 2011; Peng 

and Axelrod, 2012), are also required for hindgut L/R polarity. To do so, we 

drove RNAi targeting components of the ‘core’ and ‘global’ PCP pathways in 

either H1 (myoID-Gal4) or H1+H2 cells (hindgut-Gal4). Knocking down any of 

the core system components in H1+H2 cells resulted in a penetrant mislooped 

adult hindgut phenotype (Fig. 5 B, C, D, E). In contrast, RNAi depletion solely in 

H1 cells did not lead to any looping defect (Fig. 5F), suggesting that the core 

PCP genes are required in H2 cells alone for maintaining proper polarity and 

looping of the adult hindgut.  

 Similar to the core system, RNAi depletion of the global ft, ds or fj genes 

in H1+H2 or H2 cells resulted in a highly penetrant mislooped phenotype (Fig. 

5G, H, I, K and Supplementary Fig. 2). Surprisingly though, and unlike any other 

member of the PCP pathways, knockdown of ds specifically in H1 cells resulted 

in a highly penetrant mislooped phenotype, indicating that Ds is essential in the 

H1 domain for adult hindgut asymmetry (Fig. 5J, L and Supplementary Fig. 2). 

Thus, the ds H1-specific loss-of-function phenotype reveals that Ds plays a non-

autonomous role in H1 cells to direct H2 directionality. Altogether, these results 

indicate that adult hindgut looping relies on proper PCP signaling in both H1 
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and H2 compartments. Although both Fz and Ft/Ds systems participate in 

maintaining L/R orientation in H2 cells, the atypical cadherin Ds achieves a 

specific function in the H1 domain. 

 

Dachsous interacts with MyoID to control early L/R polarity of H2 cells 

To further assess the role of Ds in H1 cells, we specifically removed ds function 

from H1 cells using myoID-Gal4 and analyzed H2 cell orientation. Interestingly, 

the quantification of membrane orientation showed a complete loss of H2 cell 

orientation bias (Fig. 6A, B). Thus ds is essential in H1 cells for H2 cell L/R 

polarity (Fig. 5). Importantly, the absence of bias inversion in ds mutants as 

observed in myoID mutant conditions indicates that ds is essential in H1 to 

transmit both dextral and sinistral orientations. Therefore, in the absence of ds, 

directional guidance cannot be conveyed to H2 cells, thus the tissue remains 

naïve.  

The unique involvement of Ds in the H1 domain suggests a possible interaction 

with MyoID to direct L/R asymmetry. To test this hypothesis, we evaluated 

potential genetic interactions between the two genes. Heterozygous mutant 

flies for ds or myoID show none or very low penetrance (~2%) mislooped 

phenotypes, respectively (Fig. 6C and D). However, in double heterozygous flies 

mutant for one myoID and one ds allele, the frequency of mislooped defects is 

significantly raised (Fig. 6E and F), indicating that myoID and ds interact for 

proper adult hindgut looping and suggesting they act in the same genetic 

pathway controlling L/R asymmetry. 

 

Ds intracellular domain is responsible for MyoID-dependent L/R polarization   

 Previously, MyoID has been shown to bind beta-catenin and DE-cadherin 

for proper looping of the terminalia (Petzoldt et al., 2012; Taniguchi et al., 

2011). Since Ds is an atypical Cadherin whose expression is needed in the same 

domain as myoID in the imaginal ring (see Fig. 5), we tested if MyoID and Ds 

also interact molecularly. For this purpose, we expressed both MyoID::GFP and 

Ds::HA tagged proteins in the H1 domain. In this experiment, genomic 

constructs were used to drive tagged proteins at physiological levels (Fig. 6H). 
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Co-immunoprecipitation with anti-HA antibodies from larval hindgut extracts 

led to the specific pull-down of MyoID::GFP (Fig. 6G). These data show that 

MyoID and Ds bind in a same complex and interact together in H1 cells for 

proper L/R morphogenesis of the hindgut.  

 MyoID is known to act inside cells, thus we checked whether MyoID 

specifically interacts with the Ds intracellular domain (ICD). Tagged forms of 

MyoID (MyoID-GFP) and the Ds intracellular domain (Ds amino-acids 3120-

3556; Ds-ICD-Flag) were co-expressed in Drosophila S2R+ cells. Interestingly, we 

noticed that both proteins co-localize and accumulate at membrane sites in 

contact with neighboring cells (Fig. 7A). This co-localization was further 

supported biochemically in a co-immunoprecipitation assay showing that 

MyoID-GFP is able to co-immunoprecipitate the full-length intracellular domain 

of Ds (Fig. 7A). 

 In other planar polarized epithelia, ds overexpression induces long-range 

polarity rearrangements due to Ds protein mislocalization (Ambegaonkar et al., 

2012; Brittle et al., 2012; Bosveld et al., 2012; Matakatsu and Blair, 2006). 

Interestingly, overexpression of ds in H1 cells induces a gain-of-function adult 

mislooped phenotype in about 40% of flies (Fig. 7D), suggesting that 

stoichiometry between MyoID and Ds should be maintained in H1 cells. Thus, 

overexpression of MyoID would be expected to at least partially rescue Ds-

overexpression phenotype. In fact, the ds overexpression phenotype was fully 

rescued by co-overexpression of myoID in H1 cells (Fig. 7G, J), corroborating the 

importance of the Ds-MyoID interaction in H1 for proper looping. 

 We used this rescue assay to further probe which of the Ds domains is 

required for interaction with MyoID in vivo by overexpressing truncated forms 

of Ds, lacking either the intracellular (dsΔICD) or extracellular (dsΔECD) domain 

(Matakatsu and Blair, 2006). Expression of these truncated forms also led to a 

gain-of-function mislooped phenotype (Fig. 7E, F). However, the phenotype 

induced by overexpression of dsΔICD was not at all rescued upon co-expression 

of MyoID (Fig. 7H, K), confirming that the Ds intracellular domain is indeed 

important for the interaction with MyoID. The mislooped phenotype observed 

by overexpression of dsΔECD is likely due to the displacement of endogenous 

full-length Ds/MyoID complexes. Indeed, DsΔECD cannot bind to Ft and 

therefore cannot propagate planar polarity to other cells. Consistently, this 
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phenotype was rescued by MyoID co-overexpression which likely re-

equilibrates the dose of active versus inactive complexes (Fig. 7I, L).  

 Altogether, these results suggest that Ds/MyoID stoichiometry is 

important in vivo and that MyoID in H1 cells propagates L/R asymmetry to H2 

target cells through interaction with the intracellular domain of Ds in H1 cells. 
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DISCUSSION 

 In this work, we reveal the existence of a new, hindgut-specific L/R 

organizer having transient activity. We show that L/R information is transferred 

non-autonomously from this organizing center to the target tissue, through a 

unique MyoID-Ds interaction taking place at a PCP signaling boundary (the 

H1/H2 boundary). The initial MyoID-Ds-dependent L/R information is then 

relayed to the developing hindgut through Ds/Ft global PCP signaling and 

subsequently amplified through core PCP signaling. Importantly, these results 

reveal that MyoID can act as a directional cue to bias planar cell polarity. 

 So far, only a role for the core PCP pathway in cilia positioning and L/R 

asymmetry had been reported in mouse, chick and Xenopus (Antic et al., 2010; 

Song et al., 2010; Zhang & Levin, 2009). Here, we reveal a previously unknown 

role of the global PCP pathway in L/R asymmetry. We show that the atypical 

cadherin Ds is essential for early L/R planar polarization of hindgut precursors 

and later on for looping morphogenesis. Ds appears singular among other PCP 

genes, as it is unique in playing a specific role in the L/R organizing center (H1 

domain) through interaction with the dextral factor MyoID. Further, Ds has a 

cell non-autonomous function, allowing transfer of L/R information from the H1 

domain to H2 hindgut precursor cells. Ds therefore represents a critical relay 

factor acting at the boundary between – and linking – a L/R organizer and its 

target tissue.  

 In addition to a MyoID-dependent function in H1, the mislooped 

phenotype induced upon Ds silencing in the H2 domain (Fig. 5; Suppl. Fig. 2) 

suggests that Ds also has a MyoID-independent activity in H2 cells, likely 

through interaction with other PCP genes. Indeed, reducing the activity of PCP 

global or core gene functions reveals that the two pathways are important in 

the H2 region for adult hindgut looping. However, the results reveal important 

differences in the way these pathways control hindgut asymmetry. First, 

although the terminal adult phenotype is similar upon silencing of one or the 

other pathway, the early polarization of H2 cells in pupae (10hrs APF) is only 

affected when knocking down the activity of the global pathway (Fig. 5 and data 

not shown). These results show that the global pathway, but not the core 

pathway, is required for establishing early L/R polarity. Second, the phenotype 

is quantitatively different, since silencing of global PCP led to a consistent and 
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very strong phenotype while reducing core PCP signaling had a significantly less 

penetrant one. These data suggest a partly overlapping function of core and 

global signaling for late hindgut morphogenesis. Together, these genetic data 

show that the Ds/Ft pathway plays an early and predominant role for setting 

initial MyoID-dependent L/R polarity, whereas the core pathway likely 

intervenes at late morphogenesis to relay/amplify the global PCP polarizing 

information for proper L/R asymmetry of the adult hindgut (Fig. 5). Therefore, 

we propose the following sequential model (Fig. 7M): in H1 cells, MyoID 

interacts with Ds intracellular domain which becomes ‘biased’ towards dextral, 

through a currently unknown mechanism (discussed below). This initial L/R bias 

is then transmitted across the H1/H2 boundary through Ds/Ft heterophilic 

interaction. Then, boundary H2 cells relay the initial bias and spread it to the 

remaining H2 cells through classic Ds/Ft PCP. Interestingly, the local signaling 

boundary suggested by our model is consistent with recent studies showing 

that Ds can propagate polarity information in a range of up to 8 cells 

(Ambegaonkar 2012; Bosveld 2012; Brittle 2012; Sharma and McNeill, 2013), a 

distance that is consistent with the size of the H2 domain at 10 hrs APF (Fig. 4). 

Once initial polarity has been set up through the Ds/Ft pathway, this is in turn 

relayed to and amplified by the core pathway, acting as a secondary PCP 

program. Interestingly, a similar two-step mechanism has also been proposed 

for the wing (Hogan et al., 2011) and could apply to other tissues (Ayukawa et 

al., 2014; Olofsson et al., 2014). 

 The discovery of a coupling between the MyoID dextral factor and Ds is a 

nice example of crosstalk between signaling modules. In the simplest crosstalk 

model, the role of MyoID would just be to bias or tilt Ds function towards one 

side, possibly through Ds localization and/or activity polarization along the L/R 

axis. Using both in vitro and in vivo assays, we show that interaction between 

Ds and MyoID requires Ds intracellular domain, supporting a cytoplasmic 

interaction between the two proteins. These results along with recent findings 

suggest that Ds may represent a general platform for myosin function in 

different tissues. In particular, the intracellular domain of Ds was found to bind 

to the unconventional myosin Dachs, controlling Dachs polarized localization 

which is important for subsequent cell rearrangements underlying thorax 

morphogenesis (Bosveld 2012). However in contrast to thoracic Dachs, MyoID is 

expressed uniformly in H1 cells (Fig. 2, 6), suggesting that the interaction 
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between myosins and Ds may involve different mechanisms. Additionally, we 

could not detect any L/R polarized localization of MyoID or Ds in H1 cells, 

although we cannot exclude the existence of subtle asymmetries undetectable 

by available tools. Nevertheless, alternative means to generate the L/R bias in 

H1 include: i) L/R polarized expression of an unknown asymmetric factor, or ii) 

L/R asymmetric activity of Ds. These interesting possibilities are consistent with 

recent work showing that some type I myosins can generate directed spiral 

movement of actin filaments in vitro (Pyrpassopoulos et al., 2012). It is 

tempting to speculate that similarly, MyoID putative chiral activity could be 

translated into Ds asymmetrical function along the L/R axis. Future work will 

explore this possibility as well as others to unravel the molecular basis of MyoID 

L/R biasing activity in the H1 organizer. 

 The identification of the H1 domain as a specific adult tissue L/R 

organizer demonstrates the existence of multiple, independent tissue and 

stage-specific L/R organizers in flies. This situation echoes with what is known in 

other models including vertebrates, in which at least two phases of asymmetry 

establishment can be distinguished. A first pre-gastrula phase, as early as the 4-

cell stage in Xenopus, involves the generation of asymmetric gradients of ions. 

Then a second phase takes place at gastrulation and involves Nodal flow and 

asymmetric cell migration, eventually leading to asymmetric expression of the 

nodal gene in the left lateral plate mesoderm (Adams et al., 2006; Levin et al., 

2002; Raya and Izpisua Belmonte, 2006). In Drosophila, some interesting 

common and specific features can be drawn out by comparing the hindgut and 

terminalia organizers (Géminard et al., 2014; Speder et al., 2006). A first, major 

common feature is the fact that both organizers rely on MyoID function, 

showing the conserved role of this factor in Drosophila L/R asymmetry. Second, 

the two organizers show temporal disconnection, acting much earlier than L/R 

morphogenesis, which is expected of a structure providing directionality to 

tissues per se (24hrs for terminalia and approx. 72 hrs for hindgut looping). 

Such temporal disconnection of MyoID function with late morphogenesis is also 

observed in the terminalia where a peak of MyoID activity precedes terminalia 

rotation by 24hrs (Speder et al., 2006; Suzanne et al., 2010). Time lag in MyoID 

function requires L/R cue transmission and maintenance in developing tissues 

until directional morphogenesis. The finding of a role of Ds and PCP in hindgut 

L/R asymmetry provides a simple mechanism by which initial L/R information is 
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maintained and transmitted across a tissue through long-range PCP self-

propagation. 

 Importantly, the two organizers also show distinct features. In terminalia, 

MyoID has a cell autonomous function in two adjacent domains (Suzanne et al., 

2010). In addition, the terminalia organizer is permanent, developing as an 

integral component of the adult tissue. In contrast, MyoID in the imaginal ring 

has a cell non-autonomous function. And indeed a striking feature of the 

hindgut organizer is its transience as it detaches from the hindgut precursors 

50hrs before full looping morphogenesis prior to its degradation and 

elimination, hence the need to transfer L/R information to the H2 hindgut 

primordium. An interesting question then is whether the MyoID-Ds/PCP 

interaction is conserved in terminalia? We have shown that terminalia rotation 

requires the activity of DE-cadherin, however invalidation of the atypical 

cadherins Ds or Ft or core PCP signaling in the terminalia organizer did not 

affect asymmetry (Petzoldt et al., 2012). The fact that PCP does not have a 

general role in Drosophila L/R asymmetry is not altogether surprising as MyoID 

cell autonomous function in terminalia and organizer persistence do not require 

that L/R information be transferred to and stored in other parts of the tissue, as 

is the case in the hindgut. Therefore, despite conservation of MyoID-dependent 

upstream dextral cue, significant differences in downstream morphogenetic 

pathways imply alternative cellular mechanisms controlling cue transmission 

and maintenance.  

The L/R signaling module, comprising the dextral determinant MyoID and the 

still unknown sinistral determinant, can thus be coupled to distinct 

morphogenetic modules including PCP as shown in this study. We suggest that 

coupling between L/R asymmetry and PCP might be observed in processes 

requiring long distance patterning of tissues and organ precursors, both in 

invertebrate and vertebrate models. Understanding organ L/R morphogenesis 

clearly requires studying diverse and complementary models. In this context, 

the multiplicity of L/R organizers discovered in Drosophila represents a 

powerful model to study the diversity in coupling of L/R organizers with 

downstream programs responsible for late tissue morphogenesis. In particular, 

the Drosophila hindgut represents an invaluable model to study the genetic 

basis and molecular mechanisms coupling L/R asymmetry with PCP patterning. 
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Experimental Procedures 

Fly stocks 

Fly stocks were maintained on standard agar Drosophila medium. Crosses were 

done at 25°C and for the case of Gal4/UAS then transferred to 29°C. For 

detailed description of stocks and genetic analysis see Supplementary 

Experimental Procedures. 

Histochemistry and Image analysis 

Detailed description can be found in the Supplementary Experimental 

Procedures. 
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FIGURE LEGENDS 

FIGURE 1. myosin ID controls adult hindgut looping  

(A-C) Dorsal views of adult fly abdomens after feeding with a blue dye to reveal 

hindgut shape. Wild type flies show hindgut dextral looping (A), whereas 

myoID
k2/k2

 mutant flies show either looping inversion (sinistral, B) or mislooping 

(C).(D-F) Confocal microscopy images of the whole adult abdomen showing 

hindgut looping in wild type (D, dextral), inverted, and mislooped myoID
k2/k2

 

mutant flies (E, sinistral; F, mislooped). The hindgut is false-colored for clarity 

(blue=dextral; red=sinistral; orange=mislooped). This color-code is used 

hereafter. Scale bar: 100μm 

(G) Histogram showing the adult hindgut and terminalia phenotypes following 

knockdown of myoID in either the terminalia L/R organizer (myoID-Gal4) or the 

whole hindgut precursor tissue (i.e. the imaginal ring; hindgut-Gal4 - HG-gal4); 

same color-code as in D-E. N=100 for each genotype.  

(H) Temporal requirement for MyoID activity during hindgut (green line) or 

terminalia (red line) L/R development. In both cases, MyoID function is required 

around day 5 of larval development, thus, 3 days before actual adult hindgut 

looping. N=50 flies for each time point. 

 

FIGURE 2. MyoID is expressed and essential in the H1 domain for hindgut L/R 

asymmetry 

(A-E) Confocal images of L3 imaginal rings stained with specific markers 

expressed in the larval imaginal ring. Expression patterns shown in A‘-E’ and A‘’-

E’’ panels are schematized on the right in gray. MyoID is expressed specifically 

in the H1 domain, overlapping with Wg-expressing cells.  The yellow and orange 

line positions H1 cells and H2 cells, respectively. Scale bar: 50μm 

(F) Schematic representation of the larval digestive tract. The H1 (yellow) and 

H2 (orange) domains of the imaginal ring are shown. Summary of the 

phenotypes induced by myoID RNAi expression in the larval imaginal ring. 

Expression of MyoID specifically in the H1 domain is essential for proper dextral 

looping of the adult hindgut. 
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FIGURE 3. The hindgut organizer is a transient structure 

(A-C) Lineage tracing experiments showing the progeny (GFP, green) of H1+H2 

(A), H2 (B) or H1 (C) cells. While the lineage from H1+H2 cells (A) or H2 cells 

alone (B) covers all the adult hindgut (AHG) and terminal posterior midgut 

(tPMG), the lineage from H1 cells alone does not produce any adult hindgut 

GFP positive cells. APF, after puparium formation. Scale bar in all panels: 50μm 

(D) The H1 domain, marked by hingut-Gal4 is separated from the H2 domain at 

10HAPF. The yellow line shows the distance between H1 and H2 cells. 

(E) Similar to (D). Detachment of H1 is not impaired in myoID mutants. 

(F) At 24 hr APF, H1 cells (expressing GFP) are trapped inside the pupal midgut 

(PMG, encircled, white dashed line) together with the larval midgut (LMG); H2 

cells on the other hand, are located in between the adult midgut (AMG) and 

the degrading larval hindgut (LHG, marked by white dashes). F’ and F’’ are 

magnification images from F. 

(G) At 24 hr APF, H1 cells present in the pupal midgut still express myoID::GFP 

(red) and hindgut-Gal4 (green). 

(H) At 24 hr APF, myoID mutants H1 cells, marked with hindgut-Gal4, are also 

trapped in the pupal midgut. 

(I) At 36 hr APF, MyoID expression is not detectable in H2 cells (orange line). 

(J) The pupal midgut, together with the remnants of the larval midgut, is 

expelled during the first hours of adult life in the meconium. 

(K) Confocal image of a meconium showing hindgut-Gal4 positive cells. 

(L) Schematic representation of H1 domain behavior at different time points 

showing the detachment of the H1 domain from the H2 domain. 

(M) Schematic representation of the fate map of adult hindgut and posterior 

midgut. 
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FIGURE 4. MyoID controls early L/R polarization of H2 cells 

 (A)  A representative L3 imaginal ring expressing PH::GFP to mark cell 

membranes (hindgut-Gal4, UAS-PH::GFP). The black box delineates the region 

used for quantitative measurements. It corresponds to the central region of the 

imaginal ring that is best aligned with the anterior-posterior (A/P) axis. R, right; 

L, Left 

(B) Scheme showing the method used to measure cell orientation. The 

orientation of cells is measured by the angle (blue arrow) made between cell 

membranes and the A/P axis. By convention, angles between +67.5 and +22.5 

were considered as dextral, while the ones between -67.5 and 22.5 were 

considered as sinistral. 

(C-E) Representative images of H2 cells at different time points. At 0 hr APF, 

cells do not show any LR bias (C), whereas at 10 hr APF cells become elongated 

and orient towards the right hand side (D). In myoID mutants, cells show an 

inverted orientation towards the left hand side (E). 

(F-H) Graphic plot showing the distribution of cellular angles found in H2 cells at 

0H APF in wild type cells (control, F) and at 10H APF in wild type (G) and myoID 

mutant cells (H). Mean values are represented by a solid line and SEM is shown 

in gray. In (F) the peak at 90°/-90° represents symmetrical orientation along the 

A/P axis, whereas in (G) and (H) peaks indicate the preferential right or leftward 

orientations measured at 10H APF. N=10 for each genotype.  

(I-K) Plot of the sum of rightward (R) against leftward oriented angles. At 0H 

APF, there is no significant L/R preference (I), while at 10H APF there is a clear 

2.5 fold difference between R and L (J). In myoID mutants, this difference is 

inverted (K). Standard errors and p-values at statistical difference at 95% 

confidence values are shown.   

 

FIGURE 5. Hindgut phenotypes of core and global PCP genes 

 (A-D, G-J) Hindgut phenotypes from control flies (A), flies expressing RNAi 

against core (green, B-D) or global (purple, G-J) PCP pathways genes and flies 

expressing Ds RNAi specifically in the H1 domain (J). Representative confocal 
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images are shown with false-colored hindguts for clarity (color code as in Fig. 

1). Scale bar: 100μm 

(E-L) Histogram showing the percentage of defects following RNAi depletion of 

the core and global system components in the entire imaginal ring (H1+H2 

domains) using hindgut-Gal4 (E,K) or specifically in H1 cells, using myoID-Gal4 

(F,L). N=100 for each genotype.  

 

FIGURE 6. Genetic and biochemical interaction between MyoID and Ds in H1 

cells 

(A) Representative images of H2 cells at 10 hr APF, from control (top) or ds-RNAi 

flies (bottom). Cells are elongated and oriented towards the right hand side in 

control while in ds-RNAi flies, cells do not show any bias as in early O hr APF H2 

cells (Fig. 4C). 

(B) Knockdown of ds in the H1 domain results in a loss of LR polarity as revealed 

by the distribution of cellular angles found in H2 cells compared to the control 

(blue line). N=10 for each genotype. 

(C) Plot of the sum of rightward (R) and leftward (L) oriented angles after 

depletion of Ds in H1 cells at 10H APF. Control cells show a bias towards the 

right hand side, while depletion of ds from H1 cells leads to a loss of the L/R 

bias. Standard errors and p-values at statistical difference at 95% confidence 

values are shown. 

(D-F) Heterozygous ds (D) or myoID (E) flies show a wild type dextral 

phenotype. However, double ds; myoID heterozygotes show mislooped 

hindguts (F) indicating genetic interaction between the two genes. 

Representative confocal images are shown with false-colored hindguts for 

clarity (color code as in Fig. 1). N=100 for each genotype.  Scale bar: 100μm. 

(G) Histogram showing the percentage of defects in single and double 

heterozygous flies mutant for ds and/or myoID. Standard errors are shown and 

statistical difference at 95% confidence values are denoted by an asterisk. 

N=100 for each genotype. 
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(H). Co-immunoprecipitation experiment using myoID-gal4, UAS-myoID::GFP; 

attpB-P(acman-ds::HA) larval hindgut extracts. MyoID is specifically 

immunoprecipitated by Ds::HA.  

(I) Confocal image of an imaginal ring from a larva overexpressing MyoID::GFP 

and Ds-HA at low levels (myoID-Gal4, UAS-myoID::GFP; attpB-P(acman-ds::HA). 

Ds expression is visible in both H1  (marked by myoID-Gal4) and H2 cells . White 

dashed line outlines the H1/H2 border. 

 

FIGURE 7. MyoID interacts with Ds intracellular domain 

(A) Co-expression of Ds-ICD and MyoID in Drosophila S2R+ cells showing 

membrane co-localization of both proteins at cell-cell contact sites 

(arrowheads). Heat map false colored confocal images showing protein 

concentration. 

(B) Co-immunoprecipitation of Ds-ICD-Flag using MyoID::GFP as bait in 

Drosophila S2R+ cells.  

(C) Cartoon of full length and truncated forms of Ds used in D-L panels, showing 

the intracellular domain (ICD, green), the transmembrane domain (orange) and 

the extracellular domain (ECD, blue). 

(D-I) Hindgut phenotype from flies overexpressing different forms of Ds alone 

(D-F) or co-overexpressing different forms of Ds and MyoID (G-I). Scale bar: 

100μm 

 (J-L)  Histogram showing the percentage of defects shown in D-I.  Standard 

errors are shown and statistical difference at 95% confidence values are 

denoted by an asterisk. n=100 for each genotype. 

(M) Model of MyoID and Ds interaction in the H1 L/R organizer. Transient 

interaction between MyoID and Ds ‘biases’ Ds in H1 cells. This L/R bias is then 

transferred to H2 cells through Ds/Ft interaction at the H1/H2 boundary. At 10 

hr APF, H2 cells become polarized along the L/R axis, initiating looping 

morphogenesis leading to a fully looped hindgut at 50 hr APF. 
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Supplemental Experimental Procedures 

Fly stocks 

The strain w
1118

 was used as control. TubP:Gal80
ts

, UAS-FLP,  Ubi-

p63E(FRT.STOP)Stinger, ds
05142

, ds
38k

,  ds
33k

, 
 

fj
9-11

,   UAS:PH(�)-GFP,  

UAS:myrRFP,  10XStat92E-GFP,  UAS:MCD8-GFP, UAS:dicer2, were all obtained 

from Bloomington Drosophila Stock Center. The hindgut specific byn
Gal4 

was 

originally described by Judith Ann Lengyel (Iwaki and Lengyel, 2002), but was 

given to us by Kenji Matsuno.  The A8 specific AbdB
LDL-Gal4 

was a gift from E. 

Sanchez Herrero (de Navas et al., 2006). GBE-Su(H)
Gal4

 drives expression in H2 

cells and  was a gift from Xiankun Zeng (Zeng et al., 2010).  ptc
Gal4

, myoID
Gal4-

(NP1458)
, myoID

LacZ
, myoID

k2/k2
, UAS:myoID-RNAi-2X, UAS:myoID-GFP have been 

previously described (Speder et al., 2006). P(w+,  genomic-myoID-GFP) is a 

insertion in the 2nd chromosome that contains the genomic sequence of 

myoID in which a HA-GFP cassette has been placed before the stop codon, and 

which can rescue myoID
k2/k2

.  attB-P(acman-ds-HA)  was a gift from Ken Irvine  

(Ambegaonkar et al., 2012).  The following RNAi lines were used: ds
GD14350

,
 

ds
GD2646

,
 

ds
JM02842, 

ds
GD14350

,
 

ft
KK101190

,
 

ft
GD881

,
 

ft
JF03245

,
 

fj
GD430

, fj
HMS01310, 

fj
JF02843

, 

dgo
HMS01454

, dgo
GD7575

, dgo
KK

, fz
GD4614

, fz
kk108004

, pk
GD1510

, stan
HMS01464

, stan
JF02047

, 

stan
GD607

, stan
GD607

, vang
GD1889

, vang
KK108814 

they were obtained from 

Bloomington Drosophila Stock Center and Vienna Drosophila RNAi Center. 

Blue Erioglaucine staining 

Flies were fed on a mixture of agar 3%, sucrose 5% and erioglaucine 2.5% 

(Sigma#861146) for at least 6 hours. Then the adult hindgut position was 

examined in a LeicaMZ6 stereoscope. 

Wholemount for confocal microscopy 

Headless flies were fixed in formaldehyde 4% overnight, following washes in 

PBS with 0.1% Triton, the dorsal part of the abdominal cuticle was carefully 

removed using forceps. Abdomens were then stained with FITC- TRITC-

phalloidin of overnight. Complete abdomens were mounted in 2% agarose in a 

concaved slide and image in an SPE Leica upright confocal. 

Antibodies and stainings 
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Larval and adult hindguts were dissected in PBS and fixed in 4% formaldehyde 

for 20 minutes. Subsequent washes and incubations were done in PBS with 

0.1% Triton. Tissues were incubated overnight with primary antibody at 4°C, 

followed by two-hour incubation with secondary antibodies at room 

temperature.  Antibodies used were mouse Wg (Developmental Studies 

Hybridoma Bank, 1:50), mouse B-Galactosidase (Promega 1:1000). Phalloidin-

Cy3 –FITC (Molecular Probes 1:400). FITC-, Cy3-, and Cy5-conjugated secondary 

antibodies were obtained from Jackson Immunolabs and used at 1:200. 

TARGET system  

Synchronized fly populations of the genotype myoD-Gal4, tub-Gal80TS/ UAS-

myoID-RNAi were raised at 25°C, where Gal4 system is off, then changed for 1 

day to 29°. The same procedure was used in combination with UAS-reaper to 

genetically ablate H1 cells but in this case flies were kept at 29° one hour. 

Lineage tracing strategy 

Flies carrying myoID-Gal4 (H1), GBE-Su(H)-Gal4 (H2) or byn-Gal4 (H1-2)  in 

combination with all the constructs of the linage tracing were kept at 29° to 

allow the excision of the stop cassette; then, at white prepupa stage they were 

transferred to 18°C to prevent further GFP expression. Finally adults were 

dissected and analyzed for GFP presence. 

Cell polarity measurements 

A small square was selected in the middle of the H2 ring to minimize the effects 

of deformation caused by the architecture of a tube. Images were previously 

aligned along the A/P axis. L/R cell orientation was then analyzed with Fiji first 

manually by calculating the main axis of one cell and measuring its angle with 

the perpendicular A/P axis, and then using Fiji ‘Directionality’ plug-in  created 

by Jean-Yves Tinevez (http://fiji.sc/Directionality). This plug-in gives the 

preferred orientation of structures present in the input image (cellular 

membrane) and plots them as a histogram of frequencies. 
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SUPPLEMENTARY FIGURES 

 

Supplementary FIGURE 1. (related to Figure 3) 

Ablation of the H1 domain leads to mislooped adult hindguts  

(A) Summary of 1hr-targeted expression of the pro-apoptotic gene reaper with 

myoID-Gal4. Expression in early stages (L1 to L3) results in lethality during 

larval stages. Expression between 0-10H APF induces mislooped hindguts, while 

expression after this stage does not affect hindgut development or looping. 

(B-C) Confocal microscopy images of the whole abdomen showing hindgut 

looping phenotype from genetic ablation of H1 cells after 10 hrs APF (B), or 

between 0-10 hrs APF (C). 

(D) Dorsal view of a mislooped hindgut phenotype in a H1 ablated adult fly fed 

with blue food. Note that the blue dye remains inside the adult hindgut 

confirming the integrity of the adult hindgut when the H1 domain is ablated 

after 10 hr APF. 

(E) Confocal images of wild type (top) and mislooped (bottom) adult hindgut 

resulting from H1 ablation at 10H APF showing hindgut integrity. 

(F) The general morphology of the adult pylorus is unaffected by H1 ablation. 

 

Supplementary FIGURE 2. (related to Figure 5) 

Core and global PCP pathway hindgut phenotypes 

(A) Histogram showing the percentage of defects upon depletion of the Ft/Ds 

pathway components using different RNAi lines driven by hindgut-Gal4. 

(B) Histogram showing the percentage of defects upon depletion of the Ft/Ds 

pathway components using different RNAi lines driven by myoID-Gal4. 

(C) Histogram showing the percentage of defects upon depletion of the core 

PCP pathway components using different RNAi lines driven by hindgut-Gal4. 

(D) Histogram showing the percentage of defects upon depletion of the Ft/Ds 

pathway components driven by the H2 specific GBE-Su(H)-Gal4. 
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Evolution of the Adult Hindgut loop 

1 Summary 

 

Left-Right organs have appeared multiple times during insect evolution. The 

most common form of asymmetry is the asymmetric gut looping, present in most 

insects. In Drosophila, the adult hindgut forms a dextal loop; the direction of this loop is 

under the control of the myoID gene. While myoID control all asymmetric organs in 

Drosophila, the appearance of these asymmetric events ocurred at different 

evolutionary times. Here we explore the recent appearance of the adult hindgut loop 

and use it to map a specific cis-regulatory element that likely caused its appearance 

during Drosophila evolution. 

2 Adult hindgut looping is an evolutionary novelty of Sophophora flies 

 

Proper gut packing is thought to be vital for correct gut functioning, and the 

general insect gut is quite similar among insect groups. However, the AHG shape seems 

less conserved among insects. In Diptera the AHG shape does not seem a conserved 

feature, A. Gambiae has a very short and straight AHG (Thompson, 2012), and the 

Glossina tsetse fly has semi looped AHG (Pollock, 1982). Unfortunately morphological 

descriptions of the AHG within Drosophilidae are not available, therefore, to test the 

conservation of the AHG looping in Drosophilidae we analyzed flies from different 
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Drosophila subgenus using a combination of blue dye feeding and confocal imaging in 

whole mount abdomens stained with TRITC-conjugated phalloidin.  

 

The Drosophilidae family contains several subgenus the most important being 

Sophophora and Drosophila, strangely D.melanogaster belongs to Sophophora 

subgenus.  

 

Interestingly, all flies that belong to the Drosophilidae subgenus Sophophora, 

including D.melanogaster, have a completely looped AHG, the exception is D.takahashii 

in which only half of the flies has a stereotyped dextral loop, however flies from the 

sister subgenus, Drosophila, have a randomized S shaped AHG which resembles H1 

ablation experiments in D.melanogaster, with the exception of D.hydei and 

D.albomicans (Figure 13). This interesting phylogenetic pattern suggest that AHG 

looping appeared during evolution when Sophophora bifurcated from the rest of 

Drosophila, 25-40 millions of years ago (Drosophila 12 Genomes Consortium et al., 

2007). 

 

The evolutionary pattern suggests that AHG looping has appeared at least twice 

during Drosophila evolution, a last appearance happened at the Drosophila/Sophophora 

bifurcation. However to completely rule out the possibility that dextral looping was the 

ancient condition we screened two outer flies belonging to the same family but a 

different genus, Zapronius indianus and Scaptodrosophila latifasciaeformis, in both the 



Figure 13. Evolution of 

the AHG looping 

direction in Drosophila. 

 
A-B) Confocal images of 
the AHG of wholemount 
Drosophila species: 
D.simulans and 
D.pseudoobscura (A) , 

D.virilis and D.mojavensis 
(B).  C) Phylogenetic tree 
of Drosophila family 
evolution adapted from 
(Drosophila 12 Genomes 
Consortium et al., 2007; 
Gao et al., 2011; van der 
Linde et al., 2010). Blue 
color denotes species 
with dextral loop, while 
orange denotes species 
without a clear dextral 
loop. Doted line for 
D.takahashii denotes that 
only half of the flies 
studied had a dextral 
loop. 
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AHG was not dextrally looped (Figure 13). Thus, suggesting that dextral loop was not 

lost in some Drosophila subgenus species and rather appeared as an evolutionary 

innovation in the Sophophora group, in D.hydei and in D.albomicans (Figure 13).  

 

L/R asymmetry in Drosophila has been shown to be organ specific; that is the 

decision of whether a particular organ becomes dextral or not resides at a particular 

organizer that functions independently from the other L/R organs or organizers. 

Consistently, the inhibition of one particular organizer impacts only one tissue (i.e 

removing MyoID from the A8 segment only affects terminalia rotation) and has no 

effect on any other L/R organ  (Taniguchi et al., 2011; Suzanne et al., 2010; Spéder et 

al., 2006; Petzoldt et al., 2012; Hozumi et al., 2006 Géminard et al., 2014; Coutelis et al., 

2013).  

 

In evolutionary terms, having separate organizers may provide the advantage of 

freely modifying one L/R organ without compromising the integrity on another. A 

particularly good example of this is the fact that all Drosophilidae flies tested have a 

completely dextrally rotated terminallia, in consistence with previous reports (Suzanne 

et al., 2010) despite whether or not they have a dextral looped AHG. This observation 

suggests that the AHG dextral looping appeared without modifying the existing L/R 

organs (such as the terminalia).  
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3 Putative AHG Cis-Regulatory Module revealed by conservation scores  

 

MyoID function in L/R determination seem conserved among tissues, it is 

required in all asymmetric organs. Thus the question of how evolutionary forces act on 

the same gene (MyoID) to control the appearance of a new dextral organ, without 

affecting the other asymmetric organs seems to stand out. myoID complete gene span is 

15kb and its expression is thought mostly to be controlled by specific Cis regulatory 

modules (CRM) located in the first intron, spanning 8kb (Coutelis et al., 2013;Nègre et al., 

2011; Kharchenko et al., 2011). 

 

We then wonder if the appearance of a specific regulatory sequence in myoID 

locus could be associated with the appearance of a dextral AHG loop. Cis regulatory 

modules or enhancers are normally classified according to their ability to bind specific 

transcription factors, their ability to promote expression of neighboring genes and its 

conservation among closely related species. myoID expression is controlled by the 

HOX-bearing protein Abd-B, which indeed binds to myoID 1st intron (Coutelis et al., 

2013). 

  

Apart from Abd-B binding sites we lacked information regarding functional TF 

binding to myoID locus, to overcome this problem we focused on analyzing functional 

conservation sites in non-coding regions in myoId locus. We reasoned that a particular 

regulatory element in myoID involved in AHG looping would likely be present in looped 



Figure 14. Putative AHG Cis-Regulatory Module revealed by conservation scores 

 
A) MyoID gene span comprises 165 PhastCons sites based on the conservation score 
obtained from direct compassion to 12 Drosophila species and 3 insects. B) Graphic 
representation of blastn analysis for each PhastCon site, blue color notes that this 
sequence is conserved and orange means it was not found in each specied noted. C)  
Two neighbouring PhastCon sites located in the middle of the 1st intron are the only 
ones present in looped species and absent in non looped species. 
 
 
 



Figure 15. Abd-B in myoID 

regulation. 

 

A) Graphic plot of scores for 
predicted Abd-B binding sites 
for all Sophophora flies  
(blue) and Drosophila flies 
(orange). The LOD52-54 
region is highlighted in gray. 
B) DHS data plot showing the 
DNA availability in a different 
tissue, note that LOD52-54 
region partially overlaps with 
one DNAse sensitive peak. C) 
Confocal image of the AHG 
precursor expressing RFP 
under the control of myoID 

regulatory elements (green) 
and stained for Abd-B. Abd-B 
is detected in a gratient 
starting at the anterior, 
myoID expressing cells with 
decreasing intensity at the 
posterior end. D) Specific 
down regulation of Abd-B 
following the expression of a 
specific RNAi in myoID 

expressing cells renders Abd-
B protein undetectable in 
these cells (inside dotted 
line). E, F) Donwregulation of 
Abd-B in the complete AHG 
promordium using two 
different RNAi conditions. 
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flies and absent in non-looped flies. To test this, we first classified all regions in myoID 

locus with a high conservation score from a genome wide conservation score study from 

D.simulans, D.sechellia, D.yakuba, D.erecta, D.ananassae, D.pseudoobscura, D.persimilis, 

D.willistoni, D.virilis, D.mojavensis, D.grimshawi, A.gambiae, A.mellifera and 

T.castaneum (Siepel, 2005). We then isolated 160 highly conserved sites (PhastCon sites, 

LODs) spanning the entire myoID locus (Figure 14) 

 

Conservation scores in these PhastCon sites was calculated by a mix of looped 

and non looped insects, thus to uncover the specific ones that are distinct from looped 

flies and non looped ones we performed a Blast-search for each PhastCon sequence 

from D.melanogaster against 12 Drosophila flies with genome sequence previously 

annotated. While most sites are conserved among all the 12 species (Figure 13B) we 

found 7 sites, clustered together in a 521 bp region which is present in all looped flies 

and missing in all non looped flies (Figure 13C). 

 

During the course of this study, several other Drosophila flies genome became 

sequences, though not completely annotated. To confirm the specificity of the region to 

looped flies, we expanded our search to include 13 other Drosophila species whose 

genome complete sequence became recently available (D. albomicans, D. americana, D. 

biarmipes, D. bipectinata, D. elegans, D. eugracilis, D. ficusphila, D. kikkawai, D. 

mauritiana, D. miranda, D. rhopaloa, D. santomea, D. suzukii and D. takahashii). Using a 

similar strategy, we performed a BLAST search for the PhastCons we previously obtained. 
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Consistent with our hypothesis PhastCons sites (LOD52 and LOD54) inside the 

“Looped-specific-region” were found present in looped flies but absent in non-looped 

ones. Al together these data confirms that one region in myoID locus appeared at the 

same time as dextral looping (Figure 13E). 

 

4 Abd-B expression/function in the AHG organizer  

 

The identification of two PhastCon sites, LOD52 and LOD54, selectively present in 

looped species in a region annotated as enhancer containing at the middle of the 1st 

intron (Kharchenko et al., 2011) suggested the appearance of a cis regulatory module. As 

noted above, except for Abd-B we lacked information regarding transcription factor 

binding at the myoID locus, therefore we concentrated in analyzing AbdB binding sites. 

We then analyzed AbdB predicted binding sites in all Drosophila species along the 1st 

intron, using the FlySurvey Database of mapped predicted binding sites (Noyes et al., 

2008; Christensen et al., 2012; (Brodsky and Wolfe, 2014). 

 

Our analysis showed accumulation of Abd-B putative binding sites in one 

particular region overlapping with LOD52-54 when predicted in all looped species 

(Sophophora) but absent in that particular region all non-looped species (Drosophila) 

(Figure 15A).  

 



Figure 16. Abd-B downregulation affects myoID expression. 

 
A) Schematic representation of genomic myoID reporter line containing the promoter (black) the 1st 
intron (gray), the coding sequence (yellow), HA and GFP (red and green); below is plotted the 
conservation score and the DNAse hypersensitive sites score. B) MyoID (red) and Abd-B (green) 
colocalize in H1 cells. C)  The genomic myoID reporter line (green) is detected in the same pattern as 
myoID-Gal4 UAS-RFP (red), in H1 cells. D) Down regulation of Abd-B using a RNAi  construct impacts 
myoID reporter expression.  

A 

B 

C 

C’ 

D 

D’ 

B’ 
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Abd-B expression in myoID expressing cells has been documented in the genital 

disc, in the testis and in the embryonic gut (Coutelis et al., 2013; Papagiannouli et al., 

2014). However, the expression of Abd-B in the AHG primordium remains elusive. We 

then stained for an antibody that specifically recognizes Abd-B in the AHG primordium; 

to mark myoID expressing cells (H1 cells) we used myoID-Gal4 in combination with 

UAS-RFP. Abd-B can be detected as a gradient starting at myoID expressing cells with 

decreasing detection intensity towards the posterior end (Figure 15C). Consistently, 

expression of an RNAi hairpin directed against Abd-B in H1 cells renders Abd-B 

undetectable in H1 cells only (Figure 15D), and the expression of two different Abd-B 

RNAi constructs in the whole hindgut completely abolish Abd-B detection (Figure 15 E, 

F). 

 

To demonstrate the role of Abd-B, previously described in other tissues, of 

controlling myoID expression (Coutelis et al., 2013; Papagiannouli et al., 2014), we first 

followed myoID expression in the imaginal ring using an reporter line carrying myoID 

promoter and 1st intron followed by myoID and GFP coding sequences, called 

myoID::GFP (Figure 16A). As previously reported myoID::GFP expression is detected in 

the first row of cells, H1 cells (Figure 16C) and this expression is no longer detected 

when Abd-B is depleted from myoID expressing cells using the H1 specific myoID-Gal4 

(Figure 16D). 
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5 CRISPR/Cas9 mutants induce tissue specific phenotypes 

 

 

Through the analysis of aligned sequences of all sequenced Drosopohila species 

we reached a region in the 1st intron of MyoID likely responsible for the appearance of 

the AHG looped throught the evolution of flies. In summary, this region i) is present only 

in looped species and absent in non-looped species; ii) it is classified as an enhancer 

from the modENCODE project and iii) it has conserved (in looped species) binding sites 

for the HOX bearing protein Abd-B, which has been shown to control myoID expression 

in other tissues.  

 

In order to functionally test this region we took advantage of the recent method 

for inducing specific deletions anywhere in the genome through the induction of precise 

breaks via the CRISP/Cas9 system. Briefly there are two minimal components required 

for the induction of DNA breaks: the presence of the Cas9 nuclease and a chimeric RNA 

(chiRNA) comprising the crRNA and tracrRNA. Thus, in this modified CRISPR RNA/Cas9 

system a common nuclease is directed to specific DNA sequences by a short, readily 

generated RNA (Ren et al., 2013; Port et al., 2014; Gratz et al., 2013). The injection of 

two chiRNA induces a specific deletion between the two chiRNA injected. We injected 

two chiRNA aiming for a deletion of the whole 1st intron or the looped-specific region 

(see materials and methods) Intron mutants were identified by the terminalia 

phenotype while the AHG enhancer mutants were identified by genomic PCR (Figure 



Figure 17. Generation of enhancer 

specific CRISP mutants in myoID 

locus. 

 
A) General strategy scheme for 
generation myoID  CRISP mutants. 
Prom: promoter, Ex: exon1, enH: 
hindgut enhancer, Ex2: exon 2, 
purple arrows denote primers and 
CRISP sgRNA target sites are noted 
by dotted lines  (zone 1-4). 
B) Crossing scheme for enhancer 
myoID mutant. Both Z2+Z3 sgRNA 
were injected in flies expressing vas-

Cas9, the males were recovered and 
crossed to a balancer in mass, then 
individual males from the resulting 
progeny were crossed again against a 
balancer and were used as PCR 
template for primers F2-R2 right 
after copulation to maintain the 
progeny. Finally the progeny from 
males carrying a positive deletion 
were used to generate an stable 
stock. 
C) Representative PCR product in 1% 
agarose gel. Wildtype PCR product 
f2+r2 results in a band of around 
2.3Kb, while the expected deletion 
result in 0.8Kb. Positive lines are 
denoted by red text indicating the 
stock number. The overall efficiency 
was 32%  
D)   
Crossing scheme for 1st intron myoID 
mutant. Both Z2+Z3 sgRNA were 
injected in flies expressing vas-Cas9, 

the males were recovered and 
crossed to a balancer in mass, then 
individual males from the resulting 
progeny were crossed again against 
flies carrying a myoID null allele and 
a lethal p-element carrying a mini-
white marker. The progeny was 
scored for defects and the stock if 
positive maintained. 
E)  Representative pictures from a 
non deleted myoID intron and a 
positive deleted intron with a 
mislooped terminalia. 

A 

B 

C 

D 

E 



Figure 18.  Genomic map of Crisp Mutants and  regions specific for Sophophora (looped) flies.  

 
 (A) MyoID gene span comprises 15 Kb sites. Conservation score and local alignments for both 
looped (Sophophora in blue) and non-looped (Drosophila in orange) were calculated  based on the 
alignment from 12 Drosophila species and obtained from the UCSC table Browser (Siepel et al., 
2005). Abdb Binding regions (black) were obtained from (Coutelis et al., 2013). Looped specific 
regions were calculated from myoID alignements in Galaxy software. CRISPR induced specific 
mutants are shown as dotted green (AHG enhancer) and red (1st intron) lines . (B) Table of overall 
phenotypes induced by specific deletions in myoID locus. 
 
 
 

Genotype Terminalia Adult Hindgut Testis 

Wild Type (w-) Dextral Dextral Dextral 

myoID null Inverted Inverted Inverted 

myoID  AHG enhancer Dextral Mislooped Dextral 

myoID 1st intron Inverted Inverted Dextral 

A 

B 
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17). 

 

Consistent with our hypothesis, the deletion of the 1st intron of myoID 

phenocopies myoID null mutations in both the terminalia and the adult hindgut (Figure 

18). Strangely, the testes appear normally looped, wild type appearance. A recently 

publish paper in which genome wide Abd-B binding sites were collected using a DAM-ID 

approach identified the promoter region in the myoID locus as the sole binding site for 

Abd-B in the testis (Papagiannouli et al., 2014). Consistent with this previous report our 

intronic mutant has a normal looped testis despite having an inverted terminalia and 

Adult hindgut (Figure 18). On the other hand, the AHG enhancer mutant, which 

completely deletes the looped-specific region in myoID, has a mislooped adult hindgut 

phenotype without affecting the terminalia or testes (Figure 18). This result alone, 

demonstrates that the region which appearance correlates with the appearance of 

dextrally looped adult hindgut during Sophphora bifurcation, around 40 million years 

ago is responsible for the looping of the AHG. As this region contains Abd-B binding sites 

is likely functioning as an enhancer of myoID expression in the AHG primordium (Figure 

18). Therefore, in the enhancer mutant this expression is likely diminished but not 

completely absent since the overall phenotype is a mislooped AHG instead of a 

completely inverted one. Though at present we cannot rule out the possibility of a 

distinct role of this particular region involved in AHG looping independent of myoID 

expression we consider this possibility very unlikely. 
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Regional division and development of the Adult Hindgut in Drosophila  

1 Introduction 

 

The typical gut of an insect consists of the foregut, the midgut, and the hindgut 

(Lemaitre and Miguel-Aliaga, 2013). While the foregut and the midgut are the main sites 

for nutrient assimilation, the hindgut is where most of water and ions are reabsorbed if 

needed (Lemaitre and Miguel-Aliaga, 2013). In the last decades, there has been a 

substantial advance towards the understanding of the development and the function of 

the intestine in Drosophila. However, most studies have been focused in the Drosophila, 

midgut, and in contrast not so much is known about the last portion of the gut, the 

hindgut.  

The adult hindgut is a specialized structure in insects that serves for water and 

ion re-absortion. It is broadly divided into the pyloric region, the ileum and the rectum 

(Gupta and Berridge, 1966; Takashima et al., 2008; Fox and Spradling, 2009). The adult 

pylorus is formed by the pyloric valve and adjacent to the HG, the stem cells of the 

pylorus. The exact nature of these stem cells is not completely resolved. They have been 

shown to be normally quiescent but to divide upon stress. Their progeny in the AHG has 

been followed until the pylorus, but never in the ileum or rectum (Fox and Spradling, 

2009). The adult ileum is formed by only one type of big polyploidal cells and is the 

biggest part of the AHG (Takashima et al., 2008). Finally, the adult rectumIt is a rounded 
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structure that host 4 conic structures called rectal papillae that serve as the last water 

reapportion organ (Fox et al., 2010). From the outside the rectum is covered by strong 

musculature and the rectal sheath epithelium and from lumen side it hosts a dense layer 

of cuticle (Fox et al., 2010; Peacock and Anstee, 1977). 

The adult hindgut stem-cell region, pylorus and ileum develop from the imaginal 

ring, a structure present in the larval gut that contains around 600 diploid cells. Based on 

lineage tracing experiments the imaginal ring is recognized to be the adult hindgut (AHG) 

precursor (Murakami and Shiotsuki, 2001; Murakami et al., 1994; Fox and Spradling, 

2009). However the rectum has a completely different origin, it comes directly from 

polyploidal mitotic divisions of the larval rectum (Fox et al., 2010).  

Most hindgut studies in Drosophila have been limited by the available genetic 

tools. In Drosophila, the Gal4-UAS system is widely used to manipulate gene expression 

in a tissue- or cell-specific manner (Brand and Perrimon, 1993), but in the Drosophila 

hindgut, there are no region-specific Gal4 lines available. Here we describe a set of Gal4 

lines with restricted expression patterns in the adult hindgut and in their progenitors in 

the imaginal ring. Moreover, through the analysis of lineage tracing experiments we 

identify the progenitors of the AHG main regions. 

In this study we use the recently constructed collections of enhancer trap lines 

containing putative enhancer fragments fused upstream of a Drosophila core synthetic 

promoter is followed by the yeast transcription activator protein GAL4 to assess the 

regional compartmentalization in the AHG (Pfeiffer et al., 2008). We report the 
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expression pattern of 21 Gal4 lines in the AHG and in the imaginal precursors. We 

further describe lineage tracing manipulations to show that the compartments are 

already present in larval precursor cell populations. Our work will facilitate the 

functional studies of the adult hindgut in Drosophila. 

2 Selective screen for Gal4 lines differentially expressed in the AHG 

 

In order to fast-screen for Gal4 lines driving expressing in the AHG we designated 

a biased approach based of known expression patterns.  

More than 50 Gal4 lines from the Flylight project collection (Pfeiffer et al., 2008) 

were chosen among a collection of by their expression pattern in imaginal discs (Jory et 

al., 2012; Manning et al., 2012). Briefly, we selected exclusively lines which were 

expressed in all imaginal discs, thus raising the possibility of them to be expressed in the 

hindgut imaginal ring, and lines with a clear biased pattern in the anterior-posterior axis, 

thus selecting lines with higher chances of differential expression patterns along the 

adult hindgut and hindgut ring.  

On the other hand, 20 Gal4 lines from the Vienna Tile collection were selected 

for their predicted associated gene that are known to be highly expressed in the AHG, 

according to the Fly Atlas project (Robinson et al., 2013).  

Flies bearing the Gal4 constructs, from both collections, were then crossed to 

flies containing the UAS-MCD8cherry transgene and the F1 was analyzed at both adult 
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and Larval 3th stage for red fluorescence under an epifluorescence microscope. 

We then selected 21 Gal4 lines (2 from the Vienna Tile collection and 19 from the 

Flylight project) with reproducible AHG expression pattern and 6 Gal4 lines with 

reproducible imaginal ring expression pattern (Supplementary Table 3).  

 

3 AHG subdivision revealed by Gal4 expression patterns 

 

In order to establish a proper comparison between Gal4 expression patterns we 

used an insertion carrying 10XStat92E-GFP  (Stat-GFP) a GFP reporter, generated by 

placing Stat92E binding sites from a Stat92E target gene (Socs36E) upstream of 

enhanced GFP, that accurately reflect activity of the Drosophila JAK/Stat pathway (Bach 

et al., 2007). 

In the Adult hindgut Stat-GFP is mainly detected in the stem-cell region anterior 

to the pylorus and in the rectal junction cells. In order to use Stat-GFP as a counter stain 

we first constructed flies carying the Gal4 and the UAS-MCD8cherry transgenes and 

crossed them to Stat-GFP bearing flies. The F1 adults were analyzed for both GFP and 

RFP fluorescence.  

Non-overlapping regions were deduced from Gal4 expression patterns. From the 

21 Gal4 lines with reproducible AHG expression pattern we divided the AHG in 9 

genetically different sub regions (Figure 19A), several Gal4 lines were found to be 



Figure 19.  Subdivision of the AHG based 

on Gal4 expression patterns 

 

A) Illustration describing the AHG regions 
identified in this study; regions are 
numbered starting from the most anterior; 
this include: 1 the stem cell region, 2 the 
pylorus , 3 the anterior ileum, 4 the 
posterior ileum, 5-7  the rectal junction, 8 
the rectal sheath and 9 the rectal papillae.  
B) Histogram of the number of Gal4 lines 
with expression in each AHG region. 
C) Stat-GFP and 47826-Gal4, UAS:MCD8-

cherry are both expressed in the stem cell 
region 
D) 45586-Gal4, UAS:MCD8-cherry is 
expressed in the pylorus, abutting the Stat-

GFP positive stem cell region. 
E) 46714-Gal4 is also expressed in the 
pylorus and not in the stem cell region 
F) Stat-GFP is detected in the rectal 
junction regions, while 48011-Gal4, 

UAS:MCD8-cherry is detected immediately 
anterior to the rectal junction, in the 
posterior ileum. 
G) 47381-Gal4, UAS:MCD8-cherry is 
detected in the Stat-GFP positive cells in 
the rectal junction 
H) 49931-Gal4 drives expression 
specifically in the rectal papillae, F-actin is 
shown in green as counter stain. 
I) 47466-Gal4, UAS:MCD8-cherry marks 
the rectal junction regions 5 and 6 but it is 
absent in region 7 (asterisk), it is also 
detected in the rectal sheath 
J) 38687-Gal4, UAS:MCD8-cherry is 
detected in the anterior ileum. 
K) 48011-Gal4, UAS:MCD8-cherry is also 
detected in the anterior ileum as random 
cell clusters. 
All images are oriented anterior to the top, 
unless stated Stat-GFP is shown in green 
and Gal4 expression detected by Cherry 
fluorescence is shown in red. Scale bars 
are shown. 
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expressed at each region (Figure 19B). Lines expressed at the stem-cell region (region 1) 

were revealed by the overlapping expression of Stat-GFP (Figure 19C). Similarly lines 

with abutting expression posterior to Stat-GFP positive region were designated as the 

pylorus or region 2 (Figure 19D, E).  

The ileum is considered a homogeneous organ, however we found two 

genetically distinct regions in the ileum; we designated these as Anterior and Posterior 

Ileum respectively (Figure 19F, K). Surprisingly, we found one particular line which drove 

expression in both the anterior and posterior ileum regions; it is noteworthy that its 

expression in the anterior ileum was observed in specific cell clusters (Figure 19K) and 

not homogeneously as other anterior Gal4 lines (Figure 19J). This specific pattern has 

never reported for this tissue before, however it might not represent a specific region on 

its own since this pattern was never found with any other Gal4 construct and we never 

found the opposite pattern. These result together show clearly that the ileum is not as 

homogeneous structure as previously thought and that is formed by distinct genetic 

regions. 

The rectum containing the rectal sheath and the rectal papillae (Regions 8 and 9) 

develops from the genital disc and the larval rectal cells respectively. Thus in the most 

posterior part of the AHG that develops from the imaginal disc is the junction between 

the ileum and the rectum, the rectal junction. We found three genetically distinct 

regions in the rectal junction, regions 5 to 7. Region 5 being the region where most of 

Gal4 lines were expressed (Figure 19B). Region 5 and 6 together form a ball and socket 
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appearing structure, being region 5 the inner part and region 6 the outer part (Figure 

19G). On the other hand, region 7 comprises a group of cells that invade the rectum, 

particularly 47466-Gal4 was particularly useful to detect this region as it is expressed in 

region 5, 6 and 8 but not in region 7 (Figure I9). Finally, the rectum is formed by the 

rectal sheath and the rectal papillae, regions 8 and 9, we found 8 lines expressed in the 

rectal papillae and 3 in the rectal sheath (Figure 19H, I).   

 

4 Lineage tracing experiment confirms progenitors of all the AHG 

 

We have previously shown that all the AHG except for the rectum comes from 

the H2 cells only; H1 cells instead do not proliferate and degrade during pupal 

development in a structure called the pupal midgut (See previous chapter and 

Takashima et al., 2011).  

While looking for Gal4 lines expressed in the larval imaginal ring, we isolated two 

Gal4 lines, 49732-Gal4 and bynVT-Gal4, which are expressed in all H2 cells. 49732-Gal4 

contains the promoter region of the sixbanded gene (sba) it's expression covers all the 

imaginal ring, H1+H2, from the most anterior Stat-GFP positive cells to the most 

posterior part in contact with the pylorus (Figure 20A and B). In contrast, bynVT-Gal4 

expression is restricted to H2 cells and is not present in H1 cells marked by MyoID::GFP, 

a constructed reporter for the expression of the H1 specific gene myoID (Figure 20D). 

Surprisingly, bynVT-Gal4 is sometimes not expressed in all H2 cells and randomly 



Figure 20 AHG precursors detection using linage tracing and selective Gal4 lines 

 

A) Sagital view of an imaginal ring expressing 46732-Gal4, UAS:MCD8-cherry (red) and Stat-GFP (green). 
B) Top view of an imaginal ring expressing 46732-Gal4, UAS:MCD8-cherry and Stat-GFP 
C) Lineage descendent cells of 46732-Gal4, UAS:MCD8-cherry larval expressing cells marked in the adult 
hindgut  by nGFP, note all the AHG has nGFP including the rectal sheath (asterisk)  
D) Section of an imaginal ring expressing bynVT-Gal4, UAS:MCD8-cherry(red) and Stat-GFP (green). 
E) Top view of an imaginal ring expressing bynVT-Gal4, UAS:MCD8-cherry and Stat-GFP. Note the RFP 
negative spot encircled by a red line. 
F) Lineage descendent cells of bynVT-Gal4 larval expressing cells marked in the adult hindgut by nGFP, note 
the lack of nGFP positive cells in the rectal sheath and the GFP negative region in the stem cell area marked 
by a red line. 
G) Illustration describing in green the linage of 46732-Gal4 and bynVT-Gal4 expressing cells respectively; 
regions are numbered as in Figure 1. All images are oriented anterior to the left. 
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distributed RFP-negative patches are often seen (Figure 20E).  

Next we wondered whether we could follow lineage tracing experiments to 

evaluate the contribution of specific cell populations to the final AHG. To test this we 

crossed flies containing 49732-Gal4 and bynVT-Gal4 to flies carrying TubP:Gal80ts, 

UAS-FLP,  Ubi-p63E(FRT.STOP.FRT)Stinger.  Following a temperature heat shock during 

larval period (see Materials and Methods section) the descendant cells are permanently 

marked in the adult tissues with nuclear GFP (Evans et al., 2009).  

Consistently, with our previous report, the GFP positive cells, marking the lineage 

from the 49732-Gal4, H1+H2 cells precisely, cover all the structures in the AHG (Figure 

20C). Some GFP negative cells are often seen; their random positioning suggests that our 

lineage strategy is not perfectly efficient. It has already been shown that the Flipase 

dependant excision of the FRT.STOP.FRT "Flip-out" cassette is not 100% efficient and thus 

random GFP negative patches are often seen  (Evans et al., 2009). Never the less, since 

a big proportion of cells for each region are GFP marked we conclude that this method is 

accurate enough to detect the specific cell lineages in the AHG. 

The gene byn codes for a T-Box Transcription factor required for specification of 

the larval hindgut, with restricted expression to the hindgut (Singer et al., 1996). The 

bynVT-Gal4 is a Gal4 containing line part of the Vienna Tile collection containing part of 

byn genetic regulatory elements. During Larval stages it drives expression in the entire 

hindgut except for H1 cells (Figure 20D and E). 

The linage analysis from bynVT-Gal4 revealed a GFP pattern all along the AHG 
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except for the rectal sheath, which originates from the genital disc (Figure 20F). As 

expected, some random GFP negative patches are also often seen, we assume these are 

the result of non saturated efficiency at the flip-out cassette lineage tracing method 

together with weak patchy Gal4 expression. Thus using this approach we confirmed that 

the whole adult hindgut comes from H2 cells only.  

To our knowledge the specific progenitors that give rise to each region of the 

hindgut are not known. Therefore, in order to better clarify the specific origins of the 

hindgut regions we made lineage tracing experiments with Gal4 lines driving expression 

in specific patterns in the imaginal ring. 

 

5 The progenitors of the rectal junction 

 

The line 45926-Gal4 covers a small region in the 1st intron of the invected gene 

(inv), when crossed to flies bearing a UAS-MCD8cherry transgene it specifically marks all 

the pylorus and the last row of cells in the imaginal ring in the larval hindgut (Figure 21A 

and B). The pylorus is degraded during pupal development and therefore it is not likely 

to contribute to any adult structure, however 45926-Gal4 in the last row of cells of the 

imaginal ring, marked by Stat-GFP strongly suggests they are involved in the 

development of the adult hindgut. 

Visualization of GFP fluorescence following by our lineage tracing method in 



Figure 21 The rectal 

junction precursors 

 

A) Top view of an 
imaginal ring expressing 
45926-Gal4, UAS:MCD8-

cherry (red) in the 
pylorus and the rectal 
junction precursors in 
the imaginal ring, 
marked by Stat-GFP( 
green). 
B) Sagital section of an 
imaginal ring expressing 
45926-Gal4 and Stat-
GFP.  
C) Close-up image of the 
rectal junction 
expressing nGFP in the 
linage of 45926-Gal4 

larval expressing cells, 
including regions 6 and 
7. 
D) Continuous lineage 
tracing results in similar 
linage expression 
pattern, containing 
regions 6 and 7. 
E) Illustration describing 
in green the linage of 
45926-Gal4 expressing 
cells; regions are 
numbered as in Figure 1.  
All images are oriented 
anterior to the left. 
 



 

88 

 

45926-Gal4  expressing cells revealed a portion of the adult hindgut in the rectal 

junction with GFP positive cells, regions 6 and 7 but not region 5 (Figure 21C). These 

regions are the most posterior ones deriving from the imaginal ring, the rectal rectal 

papilla and sheath have rectal and imaginal disc origins respectively.  

To ensure that the lack of region 5 cells is due to the lack of gal4 expressing 

progenitors and not from a weak efficiency of the lineage flip-out cassette and since this 

particular Gal4 line does not drive expression in the AHG (Supplementary Table 3) we 

changed our Lineage strategy toward a continuous temperature shock thus increasing 

the flip-out efficiency but loosing the temporal resolution. Indeed, in an always active 

lineage analysis region 6 and 7 are GFP positive while cells in region 5 were not detected 

(Figure 21D) These results suggest that the most posterior cells of the imaginal ring give 

rise to the most posterior regions of the AHG, 6 and 7. Moreover, these results are in 

agreement with a model for AHG development in which cell migration does play an 

important role as has been already suggested based on the analysis of mitotic clones 

(Fox and Spradling, 2009). 

 

6 The progenitors of the anterior ileum  

 

The 38386-Gal4 line covers a specific enhancer for the predicted isoforms B and 

F of the E2F transcription factor (e2f). 38386-Gal4, when crossed to flies bearing a 

UAS-MCD8cherry transgene, specifically marks a line of cells in the middle of the 



Figure 22 . The anterior 

ileum precursors 

 
A) Top view of an 
imaginal ring expressing 
38386-Gal4, UAS:MCD8-

cherry (red) in the ileum 
precursors, located in the 
Stat-GFP negative portion 
at the middle of the 
imaginal ring. 
B) Sagital section of an 
imaginal ring expressing 
38386-Gal4, UAS:MCD8-

cherry and Stat-GFP; note 
that Cherry positive cells 
are not Stat-GFP positive . 
C) Complete AHG 
confocal image showing 
nGFP in the anterior 
ileum, the descendants of 
38386-Gal4 larval 
expressing cells 
(arrowhead), nGPF is also 
seen at the muscles of 
the rectal junction 
(asterisk) which are not 
developing from the 
imaginal ring. 
D) Illustration describing 
in green the linage of 
38386-Gal4 expressing 
cells; regions are 
numbered as in Figure 1.  
All images are oriented 
anterior to the left. 
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Stat-GFP negative portion of the imaginal ring (Figure 22).  

The anterior Stat-GFP positive cells are comprised by the H1 cells which degrade 

during pupal development and likely the progenitors of the AHG stem cells. Therefore, 

38386-Gal4 positive cells, which do not overlap with Stat-GFP, are the precursors of the 

pylorus and the ileum. We then followed the lineage of these cells throughout 

development; following lineage tracing GFP positive cells appear mostly in the anterior 

ileum, but also as scattered cells in the posterior ileum and the pyloric region (Figure 22). 

Since the majority of cells are located in the anterior ileum (Region 3) we suggest that 

38386-Gal4 marks the ileum progenitors, though there must be some weak leaky 

expression in other cells of the imaginal ring. 

 

7 The progenitors of the Adult stem cells 

 

The adult hindgut stem cells are controversial, they don’t seem as prone to 

proliferate as their midgut counterpart and thought they divide when forced by strongly 

damaging the hindgut (Takashima et al., 2008), their progenitors do not seem to go 

farther that the adult pylorus (Fox and Spradling, 2009; Takashima et al., 2008; Xie, 

2009). However, their active status as stem cells, the stem cell region is interesting 

because it is the most anterior part of the hindgut, and thought at very early adult 

stages it expresses byn, this expression is lost in one day old adult stages (Fox and 

Spradling, 2009). Like all the other hindgut regions, except the rectum, the adult 



Figure 23.  The stem-cell region precursors 

 
A) Top view of an imaginal ring expressing 46714-Gal4, UAS:MCD8-cherry (red) in the stem cells 
precursors, located in the Stat-GFP positive portion at the anterior of the imaginal ring 
(arrowhead). Note RFP expression is also in the adult midgut precursors (asterisk) 
B) Higher contrasted image of a 46714-Gal4, UAS:MCD8-cherry expressing imaginal ring reveals 
random cells located in the middle of the imaginal ring with weak RFP fluorescence 
(arrowhead) 
C) Close-up image of the pyloric region expressing nGFP in the linage of 46714-Gal4 larval 
expressing cells in the posterior midgut (asterisk) and the AHG stem cell region (arrowhead). . 
D) Close-up image of the anterior ileum region expressing nGFP in random 4-cell clones 
deriving from 46714-Gal4 expressing cells in the larval ileum precursors. 
E) Illustration describing in green the linage of 46714-Gal4 expressing cells in the stem-cell 
region and in random 4-cell clones in the anterior ileum. Regions are numbered as in Figure 1.  
All images are oriented anterior to the left 
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stem-cell region derives from the imaginal ring (Figure20) (Takashima et al., 2013). 

In the imaginal ring, the 46714-Gal4 line is mainly expressed in the 2 most 

posterior Stat-GFP positive cells in the imaginal ring (Figure 23A) and sometimes in 

individual randomly positioned cells in the middle of the imaginal ring; in the ileum 

precursor region (Figure 23B). Notable, the 46714-Gal4 line is also expressed in the AMG 

precursors located in small clusters in the larval midgut (Figure 23A). Consistently, 

lineage tracing experiments with this line results in nGFP marked cells mainly in the stem 

cell region and in the midgut (Figure 23C) and in rare 4-cell clones in the anterior ileum 

(Figure 5D).  

 

8 Discussion 

 

While the regionalization of the adult foregut and midgut, have been heavily 

studied using RNAseq from dissected regions, expression pattern analysis from selected 

Gal4 enhancer trap lines from the Flylight collection (Marianes and Spradling, 2013) and 

by microarrays (Buchon et al., 2013), the Drosophila adult hindgut has received very 

little attention and thus not so much is known about its development. Here we describe 

a similar strategy to the one used to analyze the regions in the Drosophila midgut but 

applied to the adult hindgut. Our results suggest a previously unrecognized complexity 

in the adult hindgut epithelia. We propose a regional classification of the AHG based of 

genetic expression data; it includes 9 regions, 7 of which are all comprised in the 
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imaginal ring. 

Our lineage tracing experiments showed that as previously stated all the AHG 

except for the rectum comes from the hindgut imaginal ring (Fox and Spradling, 2009; 

Takashima et al., 2013) we have extended the understanding of the AHG development 

by showing that region 1-7 are also disc derived. Furthermore, we have shown the exact 

progenitors for regions 1, 3, 6 and 7. Interestingly, the progenitors of region 1 are the 

most anterior followed by the progenitors of region 3 and finally at the most posterior 

end the progenitors of regions 6-7. It has already been proposed, based on the analysis 

of GFP marked mitotic clones that the AHG develops without cell migration (Fox and 

Spradling, 2009) and thus the progenitors should be organized in the imaginal ring in 

sequential anteroposterior order as they will become the adult structure. Here we 

tested this hipotesis and our results are consistent with a model of sequential progenitor 

and no-migration development.   

The insect AHG is recognized for its ability to reabsorb water and ions if under 

dry stress conditions. Metadata analysis from gene expression data at single tissue in 

Drosophila has shown that sodium regulation is conspicuous in the hindgut 

transcriptome, as are general substrate transporters of the Organic anion transporters 

family, consistent with its role in osmoregulation (Chintapalli et al., 2013). Consistently, 

at the functional level, salt unbalance impact a stress response in the hindgut led by the 

JNK and the p38/MK2 pathways (Seisenbacher et al., 2011). Yet, more strikingly the AHG 

is enriched in uncharacterized genes pointing out a yet uncharacterized function of this 
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organ (Chintapalli et al., 2013). Our newly described Gal4 lines will be useful for 

researchers interested in the physiology of the AHG as they will permit the specific 

manipulation of gene expression in specific parts of the AHG.   
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The AHG insights 

1 The growth and looping 

 

From an evolutionary perspective, the gut is looped as a consequence of its 

length, which is normally longer that the body itself; i.e. the human small intestine is 

around 7 meter long. This suggests that the looping process itself, but not the direction 

of the loop, might be the result of the intrinsic growth of the gut. However, this might 

not necessarily be true; the gut might loop by a combination of genetic factors and thus 

loop independently on its final length. 

The Drosophila hindgut is around 4.5 times bigger than the length between the 

junction with the stomach (midgut) and the rectal junction (Figure 24A). We have shown, 

see previous sections, that the orientation of the AHG loop is genetically controlled by 

the L/R asymmetric controlling gene myoID and that the further amplification of the 

directionality signal is mediated by the Ft/Ds pathway and the core PCP components.  

In order to explore whether the adult hindgut loop is forced by physical constrain, 

imposed by the differential length of the hindgut versus the abdominal cavity, or 

whether the loop is intrinsically looped, we tried to impair the hindgut loop simply by 

reducing the adult hindgut size in an otherwise normal fly. The insulin pathway is a 

mayor regulator of growth in metazoans, including Drosophila, cell autonomous size 

reduction defects can be obtained by the specific removal or down-regulation of the 
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insulin Receptor (InR). Then, to test whether a smaller hindgut would fail to loop in a 

normal animal, we depleted the insulin receptor from the hindgut using a specific RNAi 

hairpin sin combination with the hindgut specific driver, byn-Gal4. The result flies were 

the same size as wild type flies, yet their adult hindgut was significantly smaller (Figure 

24E). More interestingly was the fact that around half of them had an impaired hindgut 

loop. To properly correlate this looping defect with the relative AHG size, we first 

calculated the relative size (the AHG length divided by the abdominal cavity lenght). 

Interestingly, the mislooping defect was closely associated with the strength of the 

relative size reduction; flies with a relative size below 2.4 developed a mislooped 

phenotype, while flies with a relative size bigger than 2.4 did not (Figure 24B). This 

phenotype is interesting because i) it is a particularity of the gut, other organs do not 

behave in this way , i.e. depletion of InR in the wing results in a smaller yet properly 

patterned wing; and ii) it clearly shown that the final shape of the adult hindgut loop is 

influenced by size constrains. 

In order to rule out any effect of insulin pathway other than growth control in the 

looping process we decided to analyze mutants for the insulin pathway that affect the 

whole fly. We focused on two insulin mutant conditions that develop into viable but 

unfertile and rather small flies. The first is a termosensible heteroallelic condition 

InR
GC25/E19 (Shingleton et al., 2005) and the second is the null mutant for the Insulin 

receptor substrate coding gene chico
1/1

 (Oldham et al., 2002; Bohni et al., 1999). If the 

misloop phenotype observed before (byn-Gal4, INR-RNAi, Figure 24B) is the 

consequence of reducing the relative size of the hindgut, it should not be seen a whole 



Figure 24. The relation between growth and looping in the AHG. 
 
A) The AHG (red bar) is 4.5 folds longer than the abdominal length 
(yellow bar). B) Flies with smaller AHG in a normal abdomen 
develop dose dependent mislooped phenotypes . C-D) However, 
smaller flies with smaller AHG develop a properly looped AHG. E) 
Quantification of AHG length in different genetic conditions. F) 
Quantification of the AHG ratio, as in panel A in different genetic 
conditions.  
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body mutants as in these mutants the relative size remain unchanged, though the 

absolute size in reduced. Consistently with our hypothesis, neither InR mutants nor chico 

mutants have a mislooped phenotype despite having a strong reduction in adult hindgut 

size (Figure 24BC, D). 

In summary, reducing the relative size of the adult hindgut directly affects the 

loop shape, however reducing the size of the whole fly size (the relative size remains 

unchanged) has no obvious effect on the adult hindgut shape. These results clearly 

indicate that the mislooped phenotype is indeed caused by the physical shortening of 

the AHG relative to the body size and not by a direct effect of insulin signaling because 

InRE19
/GC25 and chico

1/1 flies have a small yet fully looped AHG (Figure 24C, D). 

Finally, to confirm our model in a wild type condition, we speculated that  if the 

spatial limitation is the main force of the looping there should be an intermediate state 

of development in which the adult hindgut has started to grow but has not met its final 

size and therefore should be a straight tube. In order to find this state, byn-Gal4, 

UAS-GFP staged pupa were section using a standard vibratome in order to keep the 

general shape of the HG in the developing pupa. At 24h APF the AHG has not started to 

grow and the larval HG has started to degenerate. Later, at 50hAPF most of the larval HG 

has degenerated completely and its remnants are present as bright GFP dots in the 

abdominal cavity. The AHG has started to grow but has not reached its final length and 

at this moment is not looped. Finally at 60hAPF the loop is already achieved, though, the 

AHG has still not reached the final length (Figure 25). All of these data, together, suggest 



A B C 

Figure 25. The looping moment revealed by time serial sections. 
 
A-C) Confocal images of pupa at different hours of development expressing 
GFP under the control of byn-Gal4, to mark the hindgut. At 24h APF the AHG 
has not started to grow and the larval HG has started to degenerate (A). Later, 
at 50hAPF most of the larval HG has degenerated completely and its 
remnants are present as bright GFP dots in the abdominal cavity; the AHG has 
started to grow but has not reached its final length and at this moment is not 
looped (B). Finally at 60hAPF the loop is already achieved, though, the AHG 
has still not reached the final length (C).  An illustration of the entire process 
is summarized  as an illustration in panel  D.  

A B C 

D 
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that the spatial limitation works as an amplification system that drives adult hindgut 

looping. 

2 Abd-B in hindgut looping and hindgut morphogenesis 

 

As noted in the previous section “Evolution of the Adult Hindgut loop” Abd-B 

plays an important role in controlling myoID expression in the genital disc (Coutelis et al., 

2013) and likely in the AHG primordium. Abd-B is expressed in the hindgut imaginal ring 

as an anteroposterior gradient peaking in H1 cells (most anterior) and decreasing 

towards the posterior end. MyoID is solely detected in the H1 cells and is responsible 

only for directing the AHG looping direction. Using an RNAi hairpin directed against 

Abd-B either in H1 cells alone or in the entire imaginal ring (H1+H2), is able to render 

Abd-B protein undetectable using an antibody. Furthermore, in an imaginal ring 

depleted for Abd-B, MyoID::GFP reporter is no longer detected, suggesting that indeed 

Abd-B is responsible for myoID expression (see section Evolution of the Adult Hindgut 

loop).  

However, Abd-B expression pattern extends towards the H2 cells suggesting 

another role for this HOX-bearing transcription factor in the development of the adult 

hindgut. In other to test the role of Abd-B in H2 cells, we depleted from the entire AHG 

primordium (H1+H2) using byn-Ga4. In this condition the adult hindgut  is severely 

disrupted with: i) a huge reduction in size, ii) improperly formed rectal papillae (Figure 

26 )and in extreme cases the complete loss of terminallia structure (Figure 27). 



Figure 26. Depletion of Abd-B or Byn in the imaginal ring strongly impairs AHG 

formation. 

 

A) Control  fly bearing byn-Gal4, UAS-PH-GFP transgene. (B, C) Abd-B depletion in H1+H2 
cells, using byn-Gal4 and AbdB-RNAi-GD,  results in misformed smaller AHGs 
accompanied by loss of GFP. (D) Abd- depletion solely in H1 cells, using myoID-Gal4,  
does not affect AHG formation. Abd-B depletion in H1+H2 cells with a different RNAi 
transgene, Abd-B-TRiP, also results in smaller misformed AHGs. (F) Depletion of Byn in 
H1+H2 cells mimics Abd-B phenotype in  B and C. 
 
 

A B C 

D E F 



Figure  27. Depletion of Abd-B but not Byn  in H2 cells results in absence of 

terminallia structures. 

A) Depletion of Abd-B in H1 cells have no effect on terminalia structure. B) 
Depletion of Abd-B in H1+H2 in extreme cases results in the loss of extrenal 
terminalia stuctures (arrow). C) Depletion of Abd-B using a different , weaker, RNAi 
transgene does not affect the terminalia. D)Depletion of Byn in H2 cells do not 
affect the terminalia. 
 

 

 
 

A B 

C D 

myoID>Abd-B RNAi GD myoID>Abd-B RNAi GD 

byn>Abd-B RNAi GD byn> byn RNAi KK 
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One surprising feature of byn-Gal4, UAS-Abd-B
GDRNAi flies is the expression of 

byn-Gal4 which appears diminished, followed by a UAS-GFP construct (Figure 26). This 

phenotype was later confirmed by RT-Q-PCR for byn mRNA (Figure 28). We thus asked 

whether Byn depletion would affect similar the AHG morphology. There are two 

available RNAi lines for byn (byn
GD

 and byn
KK

) both in combination with byn-Gal4 result 

in early lethality, thus masking the adult phenotype. We then used a weaker Gal4 line 

with similar expression pattern as byn-Gal4 but restricted to H2 cells:  bynVT-Gal4. This 

particular line comprises one regulatory element from the gene byn (for further 

description of this line see section “Regional division and development of the Adult 

Hindgut in Drosophila”). Consistently downregulation of byn using bynVT-Gal4 line 

phenocopies the small AHG phenotype obtained from Abd-B depletion though it does 

not alter terminallia morphology (Figure 26 and 27). 

Interestingly byn and Abd-B are of the most abundant transcription factors found 

in both larval and adult hindguts, consistent with a role in the specification/maintenance 

of the AHG identity (Figure 29).  

Since depletion of Abd-B using byn-Gal4 resulted in decreased byn expression 

assessed by RTqPCR and byn-Gal4 reporter>GFP levels we then thought to asses whether 

Abd-B affects also the expression of the reporter byn-VTGal4 (which contains only a part 

of the complete cis-regulatory elements for byn). To test this we either overexpress 

Abd-B (isoform M) or deplete Abd-B using RNAi driven by bynVT-Gal4.  Surprisingly we 

did not observed any difference at the GFP intensity levels between the overexpression 



A 

C 

B 

Figure 28. Abd-B depletion leads 

to byn down regulation 

 
A)  Byn>GFP fluorescence intensity 
plot from control a AbdB-GD flies,  
the GFP detections is clearly 
diminished in the ileum of Abd-B-
GD flies. B) RT-Q-PCR in the same 
conditions from AHGs for byn and 
otp, another T-box transcription 
factor also present in the larval HG. 
C) RT-Q-PCR plot for both Abd-B 
forms showing efficient reduction 
of mRNA. 



Figure 29. Abd-B  and byn are highly enriched genes in the hindgut. 

 

A) Byn mRNA expression plot along all tissues in both larva and adult stages. B)  
Abd-B mRNA expression plot along all tissues in both larva and adult stages . C) 
Most enriched genes plot  in the larval hindgut, byn (green) and Abd-B (orange) 
and D) Most enriched genes in the larval hindgut, byn (green) and Abd-B (orange). 
mRNA data was obtained from the flyatlas proyect (Robinson et al., 2013) 

A 

B 

C 

D 



Figure 30.  Effects on bynVT-Gal4 expression upon increased and decreased 

Abd-B levels.  



Figure 31. Localization of putative Abd-B BS  at the byn locus. 

 
 Note the absence of High-scoring point within the VT region. byn gene is shown 
in green, with thick boxes representing the exons and a thin line for the introns, 
the promoter is the region before byn start, comprised by the complete 
regulatory sequence.  
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or the depletion of Abd-B in comparison to the control (Figure 30). Since bynVT-Gal4 is 

an enhancer construct made with only one part of byn regulatory elements we then 

checked if any Abd-B binding sites were predicted to exist in this region. Consistently we 

found predicted Abd-B binding sites in the byn locus; however all of these were outside 

the regulatory element comprised in bynVT-Gal4 (Figure 31). This explains why Abd-B 

affects the expression levels of byn-Gal4 but not of bynVT-Gal4. Since both Gal4 lines are 

specifically expressed in the hindgut, the role of Abd-B is likely not to restrict byn 

expression to the hindgut but to control the expression levels of of byn. However, the 

presence of Abd-B binding sites, we have not been able to show a direct binding and 

thus we cannot rule out an indirect effect by which Abd-B might affect the expression of 

byn.  

3 Imaginal ring culture 

 

Arguably, the most interesting events of L/R asymmetry establishment and 

transmission happen in the imaginal ring in H1 cells during a small interval of time of 

10H occurring at the onset of pupariation. The imaginal ring is located in the middle of 

the pupa covered by think opaque fat therefore dissection is necessary to observe this 

particular tissue under a microscope. Ruling out the possibility of observing the process 

in live, unless we manage to isolate the imaginal ring and culture it in a way that 

somehow resembles the endogenous place.  

This section is devoted to explain the approach we used to film the imaginal ring 



Figure 32. Markers of proper AHG 

development in culture. 
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under specific culture conditions, with specific reference to the problems we faced.  

In order to image the imaginal ring under culture we had to first make sure that the 

imaginal ring would develop properly under this condition. We used S2 medium 

supplemented either with insulin or ecdyzone or both, without much difference in the 

final outcome in an incubator at constant 25°C. We dissected larval and white prepupa 

(0HAPF) hindguts for 12H, 24H and 48H. In order to assess the development of the AHG 

we asses 1) the detachment of H1 cells from H2 cells, 2) the degradation of the ileum 3) 

the change in shape of the H2 cell region from a flat trapezoid to an elongated rectangle 

and 4) the proper localization of Ph-GFP to the cytoplasmic membrane (Figure 32). 

 

Table Summary of culture media  effect on AHG development 

Stage 

Hours in 

culture 

Culture 

media 

H1 

detachment 

Ileum 

degeneration 

H2 change 

in shape 

Proper GFP 

localization 

L3 12 alone no no no yes 

prepupa 12 alone no no yes yes 

L3 24 alone no no no no 

prepupa 24 alone no no yes no 

L3 48 alone no yes no no 

prepupa 48 alone no yes yes no 

L3 12 ecdyzone no no no yes 

prepupa 12 ecdyzone no no yes yes 
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L3 24 ecdyzone no no no no 

prepupa 24 ecdyzone no no yes no 

L3 48 ecdyzone no yes no no 

prepupa 48 ecdyzone no yes yes no 

L3 12 insulin no no no yes 

prepupa 12 insulin no no yes yes 

L3 24 insulin no no no yes 

prepupa 24 insulin no no yes yes 

L3 48 insulin no yes no yes 

prepupa 48 insulin no yes yes yes 

L3 12 both no no no yes 

prepupa 12 both no no yes yes 

L3 24 both no no no yes 

prepupa 24 both no no yes yes 

L3 48 both no yes no yes 

prepupa 48 both no yes yes yes 

 

Despite our efforts to set up the right conditions to culture the AHG development we 

failed to get a condition in which the H1 cells properly separate from the H2 cells. We 

managed to avoid membrane disruption, asses by GFP localization, by the addition of 

insulin. We also managed to induce H2 cell shape changes that end up with the 

elongation of the H2 region by simply dissecting prepupa instead of L3 late larvae. A 

peak of ecdyzone is responsible for the transition of L3 to prepupa (Andersen et al., 2013; 



Figure 33. H2 dextral  polarization revealed by time-lapse confocal microscopy. 

 
A) Imaginal ring in culture at different time points, H1 cells extend towards the 
anterior . B) Tracked cell center trajectories show a slight displacement towards 
one side of the cell in a L/R asymmetric fashion. C) Color-coded H2 cell 
membranes reveal a time specific L/R asymmetric polarity pattern. D) 
Membrane polarity plots from all time points, color coded lines: darker blue at 
the starting time point and increasing in lighter blue towards the last time 
points. 

A 
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Di Cara and King-Jones, 2013) and is likely also controlling the H2 rearrangements; 

however the addition of ecdyzone into the culture media had little effect on this. Finally 

ileum degradation is a strange marker as it does occur in normal development starting at 

24H APF however in culture media we observed it later on suggesting that either the 

process is delayed under culture or that the degeneration we observe is not related to 

normal degeneration observed in flies. 

Finally, as a last resort to try to set up this technique into the study of L/R 

morphogenesis in the AHG, we decided to film dissected cultured prepupa under a 

Lab-Tek cover slide chamber and an inverted confocal microscope. This approach is 

particularly hard as the malpigian tubules contract moving the HG constantly out of 

focus, however in some occasions this problem did not appear and then we were able to 

film the process. Our longest film is 8H long and shown from the stat the cell shape 

changes occurring in H2 cells, including the dextral polarization. However, H1 cells 

remained in place their behavior was completely different from H2 epithelial cells; long 

protrusions could be seen and a highly dynamic membrane was also apparent. This 

approach showed that H1 complete detachment is not necessary for H2 polarization, 

and proved to be a good model for measuring specific cell changes in vivo (Figure 33). 

Consistently myoID mutants showed the inverse polarization (data not shown) 

 

4 L/R patterning and the Centrosomes 
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The centrosome is an organelle that serves as the main microtubule organizing 

center (MTOC) of the animal cell (Figure 34A). Centrosomes are composed of two 

orthogonally arranged centrioles surrounded by an amorphous mass of protein termed 

the pericentriolar material (PCM). The PCM contains proteins responsible for 

microtubule nucleation and anchoring including γ-tubulin, pericentrin and ninein. 

Interestingly, centrioles are not required for the progression of mitosis. When the 

centrioles are irradiated by a laser, mitosis proceeds normally with a morphologically 

normal spindle. Moreover, development of the fruit fly Drosophila is largely normal 

when centrioles are absent due to a mutation in a gene required for their duplication 

(Basto et al., 2006). 

Nevertheless since the centrosomes are a unique organel at each cell they have 

been used as a way to infer the polarity of a single cell (Xu et al., 2007; Taniguchi et al., 

2011; de Anda et al., 2005). The main principle is that if the center of mass of either the 

nucleus of a cell or the entire cell is linked by a line to the centrosome, then a polarity 

will be drawn, if this is done for several cells in a tissue the frequencies will tell is they 

are randomly oriented of if they follow a specific pattern. In cell culture they have been 

shown to be preferably localized to the left side of cells  (Xu et al., 2007); neurons have 

been shown to localize their centrosomes and golgi apparatus to the side the axon will 

grow, before the axon is even detected (Figure 34B) (de Anda et al., 2005); and in the 

embryonic hindgut of Drosophila it was suggested that Centrosomin (Cnn-GFP) is able to 

mark the single pericentriolar material (Figure 34C), thus the centrosome, and this 

pattern was shown to be L/R asymmetric (Figure 34D) (Taniguchi et al., 2011). 



A      B 

Figure 34. Examples of asymmetry revealed by tagged centrosomes. 

 
A) the centrosome is an organelle that serves as the main microtubule organizing 
center of the animal cells,  it is associated with the nuclear membrane and it serves 
as a polarity marker (shown in red).  B) the polarized activities of the centrosome 
dictates the position of the neurite , thus precedes neuronal polarity; two neurons 
right after mitosis segregate their centrosome, top panel, to the place where the 
neurite will grow, bottom panel (de Anda et al., 2005). C) The centrosome position 
can be used to infer tissue polarity by comparing its position to that of the cell 
centroid. D) Using the centrosome as a PCP marker it has been shown that the 
embrionic gut is polarized to the right just before its asymmetric shape appears 
(Taniguchi et al., 2011). 



Figure 35. Multiple Cnn-positive structures uppon Cnn-GFP overexpression. 
 
A) H2 cell close-up reveals ectopic centrosomes located at the apical and basal side 
of the cell, The red line denotes the cell membrane acquired with F-actin staining. 
B) The H1 cells also have ectopic centrosomes. C) The ectopic centrosomes are even 
more evident in a poliploid cell type, in this case ileum cells. The genotypes for all 
panels was byn-Gal4, UAS-CNN-GFP and cell membranes were visualized with 
phaloidin-TRITC 
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C C’ 



 

103 

 

Thus, we tried to repeat this assay in the imaginal ring model. Briefly we 

expressed Cnn-GFP using byn-Gal4 and observed the centrosome pattern. We didn’t go 

far on the polarity assessment since the most shocking observation was that over 

expression of CNN-GFP gave rise to ectopic supernumerary centrosome-like structures 

(Figure 35). The appearance of supernumerary centrosome-like structures might be 

caused by high doses of Cnn::GFP  and therefore reducing the levels of expression of 

the cnn::GFP transgene might resolve solve this issue; however we were not able to find 

a condition in which the amount of Cnn::GFP was low enough to mark only one spot per 

cell.  

Genome wide screen and the identification of Profilin homolog 

1 Genome wide deficiency based interaction screen  

 

Mutations that completely abolish myoID gene function result in a completely 

inverse terminallia looping, -360 degrees. However the knockdown of myoID transcript 

via RNAi results a wide range of intermediate positions between 0 and -360 degrees 

(Figure 36).  

We constructed a line that gave a terminalia looping dominant phenotype (-185 

degrees) when out crossed (Figure 36), we then used this line to screen for deficiencies 

that would modify this dominant phenoype. We screen for big deficienciess that covered 

all the 2nd and 3rd Chromosomes. We then narrowed the specific interacting location 



 

104 

 

using smaller deficiencies.  

We identified 3 regions in chromosome 2: 50D 25D-E, 21A-B. We further 

identified the associated genes by RNAi depletion in combination with the tester line or 

by using null alleles for available genes. Here I will briefly describe the identification of 

two of these regions (50D and 21A-B), region 25D-E is described with more detail in next 

section. 

Region 21A-B was originally identified as a region containing a myoID phenotype 

suppressor, deficiencies covering this region rescue myoID loss of function in the tester 

line, with different degrees. Most deficiencies in this region were originally generated by 

X-rays and the molecular lesion determined by genetic recombination rates and 

polytene bands analysis; thus the molecular lesion has not been precisely mapped; 

however one single deficiency, Df2l)Ed50001, originally generated  by FRT/FLP method 

and then precisely mapped by PCR was available. This particular deficiency resulted in a 

weaker yet completely penetrant and significant suppression of the phenotype 

compared to the other deficiencies tested in this region. The Df2l)Ed50001 uncovers 4 

genes (CG11023, lgl, Ir21a and Cda5). From all of these only lgl null mutation is available; 

however in combination with the tester line did not phenocopy the suppression effect. 

Therefore we changed our strategy to RNAi mediated depletion of these genes; sadly, 

the depletion of any of these genes phenocopied the original deficiency. We then 

hypothesized that the suppression effect might be flanking the deficiency, in order to 

test this; we test deficiencies in the flanking regions.  Df2l)Ed50001 is next to the start 
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of chromosome two and was made by directly fusioning chromosome two tip (21B) to 

chromosome 3, therefore removing region 21A. Thus Df2l)Ed50001 has only one flank, 

being the other flank part of another chromosome. Deficiencies flanking Df2l)Ed50001 in 

combination with the tester line did not significantly suppressed the phenotype. 

Therefore we can conclude that the suppressor effect lays in region 21A-B but we failed 

to map it precisely. Also shockingly is the fact that x-ray mutations around this area have 

a stronger suppression effect, this might be explained by the different genetic 

background, not shared between deficiencies and/or by additional mutations included in 

those deficiencies. However without a precise description of the molecular lesion in all 

deficiencies it is hard to speculate. Finally, as a last resort, we decided to generate small 

deficiencies around region 21A-B. We used a specific method based on HOBO 

transposon. This method allows the generation of nested deficiencies which direction 

can be positively selected based on eye-color change (see materials and methods). 

Briefly, we screened 1500 flies and recover 15 deficiencies; sadly none of these had the 

expected suppressor effect. Therefore, at present we cannot ascertain the locus involved 

in the genetic interaction with myoID in the terminalia looping process 

The other region, 50D, was originally described as an enhancer of the tester line 

sinistral partial (-180°) phenotype. It was uncovered by 3 overlapping deficiencies. More 

detailed deficiency mapping showed that the enhancer activity was likely in a region 

uncovering 9 genes. Since there were no known mutants available we screened the RNAi 

loss of function phenotypes.  From all RNAi tested only one, directed against Tango7 

gene, strongly modified the tester line phenotype. Strangely, the original effect of 
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removing one copy of Tango7 gene in combination with the tester line resulted in an 

enhancement of the sinistral phenotype, from -180° to -270°, however the effect of the 

RNAi depletion resulted in a no-rotation phenotype (0° movement). We believe that 

Tango7 likely is required for normal rotation and thus complete RNAi depletion might 

mask the enhancement effect. Consistent with this hypothesis RNAi mediated depletion 

of Tango7 alone, resulted in impaired rotation. These data suggest that Tango7 is 

involved in terminalia rotation in both MyoID dependant and independent manner.  

Tango7 is a Golgi resident protein identified in a genome wide screen for to 

identify genes required for constitutive protein secretion, therefore the name: Transport 

and Golgi Organization = Tango (Bard et al., 2006). This gene has been previously been 

implicated in apoptosis; in Tango7 depleted S2 Drosophila cells apoptotic induction by 

UV irradiation does not happen (Chew et al., 2009); later Tango7 role in apoptosis was 

confirmed in vivo (D’Brot et al., 2013). Briefly, Tango7 collaborates with the Drosophila 

apoptosome to drive a caspase-dependent remodeling process needed to resolve 

individual sperm from a syncytium. In these cells, Tango7 specifies the Drosophila 

apoptosome as an effector of cellular remodeling (D’Brot et al., 2013). 

Given Tango7 involvement in apoptosome related tissue remodeling and the 

established role of apoptosis in remodeling the tissue before terminalia rotation actually 

takes place. Tango7 role in terminalia rotation might be related to apoptosis; we did not 

further test this hypothesis, however in noteworthy that though Tango7 depletion 

resulted in both terminally and AHG mislooping, the complete blockage of apoptosis by 



Terminalia rotation 

Large deficiencies Tester line 

Figure 36.  General strategy for deficiency-based genome wide screen. 

 

The tester line composed  (w; myoID-/+; ptc-Gal4, UAS-myoID-RNAi/+)  has a terminalia rotation 
defect that  ranges from  -150° to -200°  counterclockwise , while a wild type flies has a complete 
+360°. We collected female virgins from the tester line and crossed them agains males carrying 
large deficiencies. 
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the expression of the baculovirus protein p35 only blocks terminallia rotation and has no 

detectable effect on AHG looping; suggesting that Tango7 remodeling might not be 

completely dependent on apoptosis.  

 

2 The role of chikadee in LR patterning 

Deficiency based screen identified chic locus 

 

Mutations that completely abolish myoID gene function result in a completely 

inverse terminallia looping, -360 degrees. However the knockdown of myoID transcript 

via RNAi results a wide range of intermediate positions between 0 and -360 degrees 

(Figure 36).  

We constructed a line that gave a terminalia looping dominant phenotype (-185 

degrees) when out crossed (Figure 36), we then used this line to screen for deficiencies 

that would modify this dominant phenoype. We screen for big deficienciess that covered 

all the 2nd and 3rd Chromosomes. We then narrowed the specific interacting location 

using smaller deficiencies. 

Several interacting deficiencies were found, but we focused on the 2L25-27 

region, where we found several deficiencies that strongly modified the tester line 

phenotype, from -185 to – 70 degree looping (Figure 37A-D). There was only one gene 

present in all interacting deficiencies tested in the 2L25-26 region, chicadee (chic), which 



Figure 37. Genome wide screen unveils the role of chic in LR patterning. 

 
A) Control male terminalia rotates +360° or clockwise. B) myoID mutant terminalia 
rotates -360° or counterclockwise. C) The tester line designed for the screen is a strong 
myoID loss of function dominant condition that results in -180 rotation of the terminalia. 
D) The tester line in combination with chic loss of function results in -80° rotation. E) 
Graphic of the average rotation degree of the tester line in combination with deficiencies 
that uncover chic, colored in yellow, flanking deficiencies, colored in gray. Error bars 
represent the SEM, n=30-40 flies, red lines represent p-values for T-student test. F) 
Graphic of the avererage rotation degree of the tester line in combination with chic 

alleles. Error bars represent the SEM, n=30-40 flies, red lines represent p-values for T-
student test. G) Genome map of chic locus, interacting deficiencies are colored in yellow 
and non interacting deficiencies in black; the null alleles chic221 and chic5205 phenocopied 
the interaction, colored in yellow, while the chic13321 hipomorphic allele did not. 
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encodes the actin binding protein Profilin (Figure 37G).  Same wise deficiencies that 

flank chic locus, do not phenocopy the interaction phenotype (Figure 37E). Indeed, null 

mutations for chic modify the tester line dominant phenotype in the same way as the 

original deficiencies, and a P-element inserted in chic locus that does not alter its 

function (Schnorr et al., 2001), does not phenocopy the interaction (Figure 37). All of 

these data together suggest that chic interacts genetically with myoID. 

 

Over expression of chickadee rescues myoID loss of function phenotype 

 

Since null mutations for chic modify the tester line dominant phenotype into an 

impaired rotation defect; we hypothesized Chic could be involved in the cell movements 

occurring during terminalia rotation; we then predicted that the over expression of chic 

would have the opposite effect. Overexpression of Chic in an otherwise wild type 

background has no effect, using ptc-gal4, AbdB
LDL

-Gal4 or myoID-Gal4; however the over 

expression of Chic in the tester line genetic background modified the phenotype 

towards a complete sinistral loop (Figure 38B). Thus the chic loss of function condition 

impaired rotation while the over expression condition enhanced it. The effect observed 

upon chic overexpression is specific because the same manipulation with other 

cytoskeleton known regulators in the tester line background had no effect on terminallia 

looping. 



Figure 38. Chic overexpression rescues myoID depletion. 

 
A) Depletion of myoID by Abdb-Gal4 resulted in an incomplete sinistral rotation, -100°, (red) which 
could be rescued to a dextral one by the overexpression of chic, +160° (blue). Adding one copy of 
UAS-Dicer2 did not affect chic mediated rescue of myoID-RNAi phenotype. Overexpression of Chic 
alone did not affect terminalia rotation nor did the control Gal4 lines (grey). Error bars represent 
the SEM, n=30-40 flies, *** represent p-value <0.0001 for T-student test. B) Depletion of myoID by 
ptc-Gal4 also resulted in an incomplete sinistral rotation, -185° (grey); however coexpression of 
chic by two different lines (see Materials and methods for detailed explanation) resulted in 
completely sinistral rotation –360° (red). Error bars represent the SEM, n=30-40 flies, red lines 
represent p-values of 0.001 for T-student test. C) Depletion of myoID by myoID-Gal4 also results in 
an incomplete sinistral rotation (red) that can be rescued to a complete dextral rotation by 
coexpression of chic (blue). Increase of temperature of adding UAS-Dicer2 did not affect the chic 
mediated rescue. Overexpression of chic alone with ptc-Gal4 or myoID-Gal4 did not affect 
terminalia rotation (grey) Error bars represent the SEM, n=30-40 flies, *** represent p-value 
<0.0001 for T-student test. 
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We then speculate that Chic might be part of the force mechanism responsible 

for rotation rather than the direction choice of the movement. We thus tried to over 

express Chic in a weaker MyoID loss of function condition. We used a MyoID-gal4, 

UAS-myoID
RNAi background line which has a similar sinistral but weaker phenotype as the 

tester line; in this condition the over expression of chic modified the rotation towards a 

complete dextral rotation, in other words it completely rescued myoID phenotype. It is 

noteworthy that without chic over expression, MyoID-gal4, UAS-myoIDRNAi never 

develops a dextral terminallia (Figure 38C). Finally to double-check our results we did 

the same experiment using a different Gal4 line, we used the A8 specific Abd-B-LDL-Gal4. 

Consistently, overexpression of chic is also able to rescue myoID depletion sinistral 

phenotype (Figure 38A). 

 

Chickadee-RNAi depletion leads to a No-rotation phenotype 

 

Null mutations at the chicadee locus are lethal, and hypomorphic combinations 

that result in viable flies have no obvious terminallia looping phenotype. Therefore we 

used RNAi technology to study the loss of function phenotype of Chic in terminalia 

rotation. There are two available RNAi lines, UAS-chicRNAi#102759 and 

UAS-chicRNAi#HMS00550 they target different sequences of chic transcript. Both RNAi 

lines in combination with ptc-Gal4 or myoID-Gal4 resulted in larval lethality. Thus, we 

analyzed the depletion in the A8 segment using AbdB-Gal4. This line, in combination 



Figure 39.  chic loss of function phenotypes  

 
A) Knockdown using UAS-chicRNAi#102759 resulted in a severe blockage of terminalia rotation, 80° 
(yellow). This phenotype does not increase with the addition of Dicer2 or UAS-Gal4.AbdB-Gal4 did 
not affect terminalia rotation (gray) Error bars represent the SEM, n=30-40 flies, *** represent p-
value <0.0001 for T-student test. B) Graphic of phenotype ratio obtained by the temporal 
expression of UAS-chicRNAi#102759 at different developmental times.  UAS-myoIDRNAi was done 
in parallel to compare the temporal requirements of chic and myoID. MyoID had one clear peak of 
activity, while chic had two clear peaks, one before and one after myoID. C) Clones of chic5205 null 
allelle specifically at the A8 segment also resulted in a blockage of terminalia looping (yellow), 
which could be rescued by chic overexpression. Error bars represent the SEM, n=30-40 flies, *** 
represent p-value <0.0001 for T-student test. D) Depletion of Chic in the A8 phenocopied DE-
Cadherin depletion. Further, DE-Cadherin depletion phenotype was enhanced by depletion of Chic 
and conversely DE-Cadherin depletion phenotype was rescued by chic overexpression. Error bars 
represent the SEM, n=30-40 flies, *** represent p-value <0.0001 for T-student test. 
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with UAS-chicRNAi#102759 results in strong blockage of terminalia rotation. This 

phenotype does not increase by adding one copy of UAS-dicer2 or of UAS-Gal4 (Figure 

39A). Surprisingly, AbdB-Gal4 in combination with UAS-chicRNAi#HMS00550 resulted in 

lethality during the pupal period, so we restricted the expression of the RNAi hairpin 

using a Tub-gal80ts. Indeed, flies with this combination resulted in a similar non rotation 

phenotype, thus confirming the specificity of our RNAi lines.    

 

Chic in the A8 is efficiently depleted 

 

Chic is widely expressed gene (Robinson et al., 2013), which is expected from a 

pleiotropic gene that controls actin dynamics. In the genital disc Chic proteins is 

detected homogeneously throughout the disc (Figure 40A). Depletion of Chic in the A8 

disc using Abdb-Gal4 and UAS-chicRNAi#102759 effectively eliminates the protein in the 

A8 segment but not in the rest of the disc (Figure 40C). 

Chic RNAi phenotype cannot be rescued by Chic over expression   

 

To confirm our RNAi phenotype specificity, we then tried to rescue by over 

expressing chic coding sequence. However both RNAi constructs target the coding 

sequence and thus the end phenotype is the same as the depletion alone. We then 

change our strategy towards a modified genomic version of chic that is not targeted by 



Figure 40. Chic is homogeneously distributed in the genital disc 

 
A) Control genital disc stained for actin (green) and Chic (red) B) Chic staining (red) 
is not affected upon myoID loss of function. C) Disrupted Chic staining upon 
expression of UAS-chicRNAi#102759  in GFP positive cells (green). 
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the RNAi constructs. In order to do so, we isolated the chic locus from D.pseudoobscura 

a closely related Drosophila specie whose sequence is not targeted by chic-RNAi lines 

but in which Chic function is likely conserved. This strategy has been used to rescue RNAi 

phenotypes (Langer et al., 2010; Kondo et al., 2009). We constructed two insertions of 

chic
pseudoobscura genomic constructs in chromosomes 2 and 3 respectively. However and 

despite our efforts chic-RNAi phenotype could not be rescued by FlyFos containing chic.  

Since our RNAi rescue experiments were discouraging, we tried to rescue a 

classical mutant for chic with normal UAS-chic overexpression construct. For this, we 

used chic-Gal4 line which is an insertion into chic promoter resulting in a loss of unction 

mutation of chic that also induces expression of the Gal4 exogene specifically in the chic 

expression pattern. While chic-Gal4
 is embryonic lethal in homozygous conditions or in 

combination with a deficiency uncovering the chic locus; when in the presence of the 

UAS-chic transgene late stage pupa are normally obtained which develop normally but 

arrest as a pharate adult and die. This partial lethality rescue, suggest that UAS-Chic is 

indeed capable of rescuing chic mutations and so it induces functional Chic protein.  

In order to confirm our chic-RNAi terminalia looping phenotypes in a different way, we 

then induced mitotic clones in the A8 segment of the genital disc in order to generate a 

A8 segment with around half of the cells completely devoid of Chic protein (See 

materials and methods section). The induction of clones, containing the null mutation 

chicp5205, lead to a strong blockage of terminalia rotation (Figure 39C); thus confirming 

the RNAi phenotype. Furthermore, this loss of function condition could be completely 



Figure 41. Terminalia rotation defects of Chic depletion in A8 

 
A) RNAi mediated depletion of Chic in the A8 segment blocks terminalia looping, the genotype 
is AbdB-Gal4 UAS-chicRNAi#102759. B) The phenotype of chic clones can be fully rescued by 
chic overexpression, the genotype is w; chicp5205, FRT40A/FRT40a; AbdB-Gal4, UAS-flp/UAS-

chic. C) Flies with clones of chic null mutants specifically in the A8 segment showed impaired 
terminalia looping,  the genotype is w; chicp5205, FRT40A/FRT40a; AbdB-Gal4, UAS-flp. D) 

Graphic representation of average rotation in chic depletion in blue compared to the control in 
gray, genotype as in A. E) Graphic representation of average rotation as in B. F) Graphic 
representation of average rotation as in C 
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rescued by the addition of UAS-chic transgene; thus confirming the role of Chic in 

terminalia rotation (Figure 39C and 41). 

 

Temporal requirement 

 

MyoID activity in directing dextral terminalia rotation is required for 3 hours 

before pupariation (Speder et al., 2006). To test whether Chic and MyoID have 

synchronous functions in the A8 segment, we used the temperature-dependent TARGET 

gene expression system (McGuire et al., 2004) to knockdown the expression of chic in 

the A8 segment at different developmental times. This method has been used to map 

the temporal activities of MyoIC and DE-Cadherin relative to MyoID activity. MyoIC 

ativity is perfectly synchronized with MyoID, while DE-Cadherin activity is required hours 

before MyoID peak (Petzoldt et al., 2012). 

The minimal time at which Chic depletion resulted in terminalia rotation defects 

was 3 hours, which seems reminiscent of MyoID activity. However Chic activity did not 

completely overlap with MyoID, rather it seem to peak once before MyoID peak and 

again after (Figure 39B).  

 

Chic and DE-Cadherin 
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Adherent junctions are adhesive cell-cell contacts and signaling platforms, 

localizing apically in epithelial cells (Miyoshi and Takai, 2008). Their core component is 

the dimeric Ca2+-dependent transmembrane protein E-Cadherin, establishing cell 

adhesion through extracellular domain binding of homodimers at the apical surfaces of 

adjacent cells (Niessen and Gottardi, 2008).  

Since the depletion of Chic and DE-Cadherin using AbdB-Ga4 result in very similar 

phenotypes, with  similar activity peaks just before MyoID activity and both bind to 

MyoID, we sought these two proteins might work together in establishing dextral 

terminalia rotation. This interaction is not new, in fact is has proposed for several other 

models. In cultured cells profilin (Pfn1) depletion leads to E-Cadherin delocalization (Zou 

et al., 2007), Pfn1 overexpression promotes adherent junction formation through 

R-Cadherin (Zou et al., 2009), and the control that Pfn1 imposes on AJ is mediated by 

Rho1 and its effector Dia1 (Bonacci et al., 2012). In Drosophila, E-cadherin, F-actin and 

APC2 failed to localize properly in chic mutant testes, which leads to a loss of stem cells 

phenotype that could be partially rescued by overexpression of APC2, a known regulator 

of AJ (Shields, 2014). Similarly, DE-Cadherin has been shown to strongly influence MyoID 

function. MyoID binds to DE-Cadherin in A8 segment, if this binding is blocked MyoID fail 

to control dextral rotation.   

We then hypothesized that Chic and De-Cadherin might function together in 

terminalia rotation. Consistently, the depletion of both DE-Cadherin and Chic in the A8 

results is a stronger phenotype that if depleting either one alone. Furthermore, the 



Figure 42. Chic and Cadherin are required in the Hindgut organizer for proper dextral 

looping 

 
A) In control flies, the AHG is clearly looped dextrally. B) Depletion of DE-Cadherin in the 
transient H1 cells result in a mislooped AHG,  C) Depletion of DE-Cadherin in the transient H1 
cells restricted to 12 hours during L3 stage. D) Depletion of Chic in the transient H1 cells 
restricted to 12 hours during L3 stage 
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overexpression of chic slightly ameliorates the terminalia rotation phenotype induce by 

DE-Cadherin depletion (Figure 39D). These results suggest that Chic and DE-Cadherin 

might be functionally coupled in the terminalia looping process.  

 

Chic and DE-Cadherin function in H1 cells to control Adult Hindgut 

looping 

 

As stated before, the looping of the terminalia is not the only L/R organ in 

Drosophila; there are at least two that occur during metamorphosis and in which their 

L/R organizer are known. The dextral looping of the Adult hindgut is controlled by MyoID 

activity in its specific L/R organizer: the H1 cells. The overall mechanism that conveys the 

original MyoID-generated asymmetries in the adult hindgut is controlled by the Ft/Ds 

pathway in coordination with the Fz-planar cell polarity cascade. Neither the Ft/Ds nor 

the Fz-PCP pathways have a clear role in transmitting dextral information in the 

terminalia. However, the original L/R asymmetries are generated by MyoID in both 

tissues, thus the adult hindgut loop represents an attractive model to study the core L/R 

module, which should play a role in all MyoID dependant L/R tissues. 

In other to explore the possibility that Chic would be involved in adult hindgut looping, 

we depleted its expression specifically in the H1 cells, the L/R organizer for the AHG. 

RNAi depletion of Chic, using either myoID-Gal4 or byn-Gal4 results in larval lethality 

likely for pleiotropic effectsnot taking place in the H1 cells. To avoid this problem we 



Figure 43. MyoID localization is not Chic dependant 

 
A) MyoID-GFP in H1 cells is distributed along the A-P axis. B) MyoID-GFP distribution in H1 cells 
upon Chic depletion is not affected, however the H1 domain seems enlarged. C) MyoID-GFP 
distribution in H1 cells upon Chic overexpression is not affected. D) Graphic of average H1 
domain width. Error bars represent the SEM, n=5-8.  
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specifically depleted Chic in H1 cells during a restricted time window, using the 

TubGal80
TS construct. In this condition, viable flies were obtained; the confocal analysis 

of the AHG loop revealed a completely penetrant mislooped phenotype, we interpreted 

this phenotype as a loss of L/R polarity (Figure 42D compared to A).  We then 

wondered if depletion of DE-Cadherin in H1 cells would have a similar effect. RNAi 

depletion of DE-Cadherin using MyoID-Gal4 yields some adult escapers, we then 

analyzed the AHG loop of these escapers. The AHG in this condition is clearly mislooped 

(Figure 42B) but as a side effect they are also severely thicker. To test if ths was a 

consequence of the loss of polarity consequence of the depletion of De-Cadherin in H1 

cells or if it was a consequence of the continous depletion of DE-Cadhering in adult 

stages, we restricted DE-Cadherin depletion to L3 stages, using the TubGal80TS construct. 

In this condition a completely penetrant mislooped phenotype is observed without the 

thickening of the AHG (Figure 42C). Therefore we conclude that both De-Cadherin and 

Chic are required specifically in H1 cells to generate or transmit dextral information.  

We speculate that the function in H1 cells of these proteins is likely conserved with that 

of the A8 terminalia L/R organizer. 
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General Discussion   
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V General Discussion 

 

The AHG as a model to study L/R patterning 

 

The main objective of this thesis study was to establish the adult hindgut (AHG) 

as a model for understanding the molecular and cellular basis underlying L/R patterning 

in Drosophila. This was particularly interesting because first it directly questions the 

hypothesis of the existence of several organizing centers in Drosophila during one 

specific developmental stage. Though, the existence of several organizing centers was 

somehow expected due to the independent nature of the adult asymmetric organs with 

respect to the embryonic ones; this study is the first one to clearly demonstrate that 

several independent organizers occur at similar developmental times. Therefore the 

identification of H1 cells as the AHG organizers is crucial for the understanding of 

Drosophila L/R establishment. Second, before the study of L/R asymmetry in Drosophila 

was mainly focused on two asymmetric organs the embryonic gut and the adult 

terminallia rotation and the genetic comparison between these two was used as an 

argument for constructing a “core” L/R module. This for example was the case for Abd-B 

the Hox-bearing transcription factor which was originally discovered to affect myoID 

transcription in the terminallia rotation process during a genome-wide deficiency screen. 

Then Abd-B effect on myoID transcription was further expanded to the embryonic gut. 
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Similarly, the role of the adherent junction component DE-cadherin in L/R determination 

and its interaction with MyoID had been documented for both the terminallia roation 

and the embryonic gut. Thus the integration of a new model for L/R asymmetry in 

Drosophila serves as a model for similar comparisons.  

Most likely, the initial L/R asymmetry breaking event occurs at the cellular level in 

a given population of cells, termed the organizer, which in turn propagate this original 

L/R bias into a coordinated L/R movement. In the AHG the organizer lays in the H1 cells, 

a transient structure, easily recognized by the expression of wg and myoID. The main 

advantage of this model is its simplicity; the H1 cells break the symmetry and then 

transmit this breaking information into the H2 cells, the proper AHG primordium. This 

whole process happens during a 10 hour period, the propagation of L/R bias can be then 

observed in H2 cells right after this short period of time. Furthermore, the L/R 

information is maintained for at least 50 hours until a final dextral loop appears in the 

AHG. This models in thus useful as it has all the theoretical steps for L/R patterning and 

they can be independently assessed. For example the specific special and temporal 

inactivation of a component in can be easily achieved using the Gal4/UAS system in 

combination with the temperature dependant repressor Gal80ts. Similarly the effects of 

a mutation can be assessed at different time-point tu understand its role; a general 

misloop phenotype can be thus divided into H2 cell early (10H) mispolarization, as is the 

case for myoID, Ds and Ft. 

The main question of how the initial symmetry breaking event happens can be 
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applied to the AHG organizer, as it can for any other symmetry breaking event. Though 

at present this question is not close to being answered we have some insights that may 

help the planning of future experiments. 

In the adult hindgut it is clear that the initial symmetry breaking event happens in H1 

cells and is controlled by the activity of MyoID. In other tissues (the embryonic gut and 

the genital disc) it has been shown that the motor domain of MyoID is the only domain 

responsible for the L/R activity of MyoID; likely this is also true for the H1 cells. In the 

genital disc MyoID localize to the adherent junctions where it has been shown to bind 

DE-Cadherin, while in H1 cells MyoID seems to be equally distributed along the 

membrane based on the results presented in this thesis. The group of Yohanns Beillaiche 

has assessed MyoID localization in the developing notum of Drosophila with similar 

results (Bosveld and Beillaiche personal communication). Despite the homogeneous 

distribution of MyoID in H1 cells, the association with DE-Cadherin seems to also play a 

role in the AHG dextral looping; as depletion of DE-Cadherin led to L/R defects. MyoID 

localization was originally assessed through antibody staining in the embryonic gut and 

the genital disc; though this antibody is no longer available, we managed to solve this 

issue by creating a GFP tagged version of MyoID expressed and normal physiological 

levels which is able to rescue the myoID mutant phenotype. Therefore, the difference in 

the localization pattern might just be a reflex ion of the different strategies, being likely 

the GFP tagged method more sensitive. The MyoID::GFP tagged version might be useful 

for doing in vivo recordings of myoID activity during the time period in which is required 

in H1 cells.  
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We have also developed an ex-vivo culture approach that recapitulates most of 

the initial steps of L/R propagation. Thought this sytem recapitulates H2 cells early 

polarization and the initial steps of H1 cells detachment, the system does not allow 

further exporation as the tissue in culture suffers a development arrest, somehow 

around 8-10 HAPF. This approach despite its limitations appears elegant to study MyoID 

function through live imaging; the obvious experiment would be to follow myoID 

localization/dynamics using our newly generated MyoID-GFP expressed at physiological 

levels. Whether to expect MyoID to move around in a particular direction or to be 

progressively localized one side of the cell, this assay might be usefull to answer to this 

question. However, it is not a simple experiment to do, H1 cells are highly dynamic 

especially at the moment when they detach from the H2 cells; therefore analyzing the 

dynamics of MyoID in an already dynamic cell population might be difficult. 

Still understanding the dynamics of MyoID in the organizer is a critical step into 

understanding L/R symmetry breaking. Cultured mammalian cells had been shown to 

exhibit stereotypical L/R asymmetric patterns when cultured into a special medium. This 

has never been shown using Drosophila cells. However, it could be possible to dissociate 

H1 cells and culture them while analyzing MyoID localization. Drosophila cells have a 

particularly useful screening center devoted to automatically detect phenotypic patterns 

and/or protein localization while specifically knock-down the expression of genes. 

Therefore, setting up an assay to reveal cellular asymmetries in Drosophila cells might be 

a powerful approach. However this system is not completely flawless, the S2 cells (or 

S2R+ cells) which are commonly use in Drosophila cell culture assays do not look like an 
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epithelia in culture while all the cell types that have been used for L/R assays in 

mammalian systems do.   

Ft/Ds in L/R patterning 

 

We show a clear functional link betweenboth PCP pathways and L/R MyoID 

pathway in Drosophila AHG patterning. This link has already been reported several times 

in higher vertebrates, to name a few: the inversing mutant in a distant homolog of diego, 

both Vang and Pk mutants display clear L/R defects in mouse and the human L/R 

defective condition Bardet-Biedl syndrome has been related to the bbs4 gene which 

when mutated leads to PCP defects in mouse. However our results are of importance to 

the field because i) this is the first time that a link between the PCP pathways and L/R 

asymmetry is drawn in an invertebrate species pointing out the conservative role of this 

link and ii) our results point out a crucial role of the global pathway, more specifically of 

Ds atypical cadherin in L/R asymmetry; which is the first report, to my knowledge, that 

the role of the global pathway has been linked to L/R establishment. 

The involvement of both the core and the global PCP pathways in the adult 

hindgut loop suggests that they are involved in both the propagation and maintenance 

of the initial dextral bias. There is currenty some controversy about whether the global 

PCP and the core PCP proteins function in the same pathway, in two separate pathways 

or both. The most accepted view is that the global pathway indirectly cues the core-PCP 

pathway. Though, at this point we have no evidence that clearly states that the core 
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pathway activity lays downstream of the Ft/Ds pathway as it has been proposed for 

several other models. It is likely that this is the case for the following reasons: i) the 

defects obtain by depletion of the core PCP components are always less frequent than 

the depletion of the Ft/DS components; ii) only Ds protein has a clear role in H1 cells; 

and ii) depletion of Ft or Ds in H2 cells result in cell disorientation 10hrs APF, while this is 

not the case for components of the PCP pathway. The critical experiments to do would 

be to perform epistatic analysis; for example, the overexpression of Ds in H1 cells result 

in a mislooped phenotype but whether or not this is dependent of the core-PCP 

pathway is not know, therefore it would be crucial to analyze flies overexpressing Ds in 

H1 cells and mutant for the core-PCP pathway in H2 cells. His is of course genetically 

complicated but following the recent advances in drosophila transgenic recourses it 

might be achievable; for example using both the Gal4 and the LexA systems. 

One key observation in the study of the core PCP pathway is the fact that some 

of their components are transiently localized to one side of the cell (typically 

proximal/distal sides); I was not able to observe such localization by any of the core PCP 

pathway components, likely because the known sided localization must occur at a 

transient period during pupal development, where the AHG is practically unreachable by 

normal dissection. 

On the Ft/Ds side, it has been shown that both Dachous and Fat are slightly 

localized towards one side of the cell membrane and that localization leads to the strong 

accumulation of the atypical myosin Dachs (Ambegaonkar et al., 2012; Brittle et al., 
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2012 ; Bosveld et al., 2012). Ds localization was assessed by the knock-in allele Ds::GFP, 

the HA-tagged form and the overexpression of a GFP tagged form of Ds. In any of these 

was an accumulation of Ds obvious, somehow consistent with the weak accumulation of 

Ds in other tissues. However, more precise microscopy techniques should be able to 

resolve this issue. On the other hand, Dachs whch is strongly localized and is usually 

easier to see than Ds was also analyzed. There are several tools used to analyze the 

localization of Dachs: an antibody published by the Strutt group, an V5-tagged 

overexpression form and a Citrine-tagged form. Dach localization was assessed by the 

overexpression of the V5- and citrine-Tagged versions In the case of the citrine-tagged 

version a clear membrane accumulation was evident in the posterior membrane of H2 

cells; though at this point we have not been able to resolve whether this is L/R 

asymmetric feature or not. 

 

Chic and the underlying actin cytoskeleton 

 

We have uncovered through the use of the powerful genetic system of 

Drosophila a new role of Chic/Profilin in controlling the directional dextral movement of 

the terminalia; we have also shown that this role is achieved in concert with MyoID, the 

known dextral determinant in flies, and DE-Cadherin; and finally that the Chic/Profilin 

role in L/R patterning is conserved among tissues. However, at present we lack 

information to propose a clear model for Chic function; new data from Michel Ostap’s 
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Lab have shown that some type 1 myosins, including Drosophila MyoID are able to 

impose a chiral direction over sliding actin filaments when anchored to a phospholipid 

membrane (Pyrpassopoulos et al., 2012). This results is most telling, they strongly 

suggest that the simplest L/R asymmetry complex is composed only of actin filaments 

and myosin. Though at present we lack information to conclude whether or not this 

asymmetric sliding capability of myoID is the functional information that breaks 

asymmetry in flies; this assay still can be used to infer the activity of MyoID cofactors. To 

my knowledge there is currently no way of setting up a similar experiment in flies, as it 

would require to look at individual actin filaments inside a cell. However, the in vitro 

assay can be applied to understand the relationship between components that have 

been isolated through genetic screen and in which an exact molecular explanation is 

missing. Such is the case of Chic/Profilin; initially isolated through a genetic screen, has 

been shown to be needed along with MyoID for proper L/R function, and forms a 

complex in vivo with MyoID but the exact mechanism of action has remain completely 

elusive. 

At present we know very little about Chic function in actin dynamics and almost 

nothing of its function in L/R asymmetry establishment. While classic loss-of-function 

experiments are hard to analyze due to the fact that Chic is a general component on 

actin dynamics and thus affecting its function leads to a general cytoskeleton problem. 

The in vitro approach might be suitable for understanding at a molecular level the role of 

Chic and MyoID. 
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The strongest evidence that we have regarding the functional link between Chic 

and MyoID in L/R patterning is that the overexpression of Chic can, in some specific 

conditions, rescue MyoID loss of function phenotype. To my knowledge this is the only 

gene to which this particular function has been reported. Again, the in-vitro actin gliding 

assay might provide useful information. At this point our lab has set-up collaboration 

with Michael Ostap’s group to understand the molecular basis of Chic-MyoId function. 

We know that Chic is dispensable for MyoId asymmetric gliding of actin filaments 

in-vitro, because the original assay did not include any Profilin homolog in the mix, 

however it would be important to know whether the addition of Chic would affect the 

actin motility in this particular assay, as it has been reported in other actin 

polymerization assays (Jégou et al., 2011). 

 

The sinistral factor 

 

To this date the most convincing evidences of the existence of a sinistral factor in 

Drosophila are i) the specific nature of myoID loss of function phenotype, in which a 

complete inversion of the L/R axis is observed as opposed to a randomization off the axis 

or a symmetrical state and ii) the fact that Abd-B, the upstream activator factor of myoID, 

when depleted in the organizer leads to a symmetric state that can be rescued by myoID 

forced expression. 
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Those two key observations have lead to the proposal that Abd-B controls the 

expression of both myoID and the yet elusive sinistral factor (Coutelis et al., 2013). This 

particular conclusion is based upon the assumption that when Abd-B is missing in the 

L/R organizer the only two genes whose expression is affected are myoID and the sinitral 

factor. Otherwise, how would it be possible to restore dextral looping in Abd-B depletion 

upon myoID forced expression? 

While this reasoning appears logic, most efforts to isolate the sinistral factor have 

not been successful, I though useful to discuss some examples that show that the nature 

of the sinistral factor might be more complex than estimated.  

During our deficiency genome-wide screen (See Chapter: Genome wide 

deficiency based interaction screen) we identified a specific region in Chromosome 2 

able to completely rescue myoID loss of function, therefore acting as a putative sinistral 

factor. While this deficiency uncovered only 5 genes, none of them was clearly able to 

explain the interacting phenotype of the deficiency by itself. Thus raising the question of 

what exactly is behind this deficiency that makes it rescue myoID loss of function 

phenotype? Of course, at present we have no answer to this question. However a key 

observation is that none of the proteins encoded in these genes have structural 

similarity with MyoID; which is expected from a sinistral factor that functions in a similar 

fashion to MyoID. 

When these observations were done, we lacked a method for generating precise 

deletions, which if now available through the CRISPR/Cas9 method. We also lacked a 
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way of visualizing the expression of these genes which is also now available through the 

Flylight and Viena-Tile projects. These two recent and powerful tools might provide 

enough insights into the nature of this particular region involved so strongly in L/R 

patterning. 

Another example that questions the simplicity of the sinistral factor model is the 

fact that while myoID has a similar function in the adult hingut and the terminalia, and 

while Abd-B controls its expression in both tissues, the specific regions where Abd-B 

binds in myoID locus are unique in the genome. This is surprising as the expectation was 

that the regulatory regions in both MyoID and the sinistral factor had co-evolveed, thus 

resulting in similar sequences controlling the expression of MyoID and the sinistral 

factor.  

Finally, the “symmetric” phenotype induced by the loss of most genes that have 

been related to myoID and thus to L/R asymmetry in Drosophila are explained by the 

hypothesis, not yet tested, that they also affect the sinistral pathway. Such is the case of 

DE-Cadherin, of Abd-B and of Dachsous. Therefore, the sinistral factor should act very 

similar to MyoID. All Drosophila myosins have been tested for L/R phenotypes but none 

has been identified as the sinitral factor (Petzoldt et al., 2012). Since the sinistral factor is 

thus not a myosin, how is it able to function in such a similar way as MyoID? Of course, 

this question has not a clear answer at present and only the identification of such factor 

will be able to shed light into this mechanism. 

As a summary, while the existence of a sinistral factor is almost certain, the 
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nature of this factor is where the surprise will be. Likely it is not related structurally to 

MyoID, but it should act upstream of the same components as MyoID (Cadherin, 

Dachsous). It is under the control of Abd-B yet the regulatory regions are likely not 

similar to those of myoID. Could it be that the sinistral factor lies in front of our eyes and 

yet it has been so hard to see? 

Mammalian cells in culture, in a particular way of culture, are able to orient 

themselves in a chiral L/R asymmetric way. Strikingly, while most cells exhibit a dextral 

chirality some have a sinistral one; and the overall dextral chirality of those cells can be 

reverted by adding drugs that disturb the actin cytoskeleton (Wan et al., 2011). This 

experiment demonstrates the intrinsic chiral property of the actin cytoskeleton. Of 

course such experiment is hard to do in vivo as disturbing the actin cytoskeleton would 

have much more dramatic effects that would cover from sight any L/R phenotype. 

However these experiments strongly suggest the chiral nature of the actin cytoskeleton, 

at least for mammalian cultured cells, raising the possibility that the actin cytoskeleton 

lays at the base of L/R asymmetric breaking event.  

 

The evolution of L/R asymmetry  

 

Another advantage of the AHG as a model for L/R is the fact that it has recently 

appeared during the course of Drosophila evolution (around 50 million years ago). This 
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established a temporal framework in which all the necessary components for L/R 

asymmetry appeared for a specific organ. We have shown that MyoID is necessary in a 

row of transient cells (termed H1) for the correct dextral orientation of the hindgut 

primordium (named H2 cells); we have also shown that the propagation/mainteinance 

of this dextral orientation is originally transmitted through the atypical cadherin 

Dachsous, further propagated by the Dachsous/Fat patchway and finally maintained by 

the core Fz-PCP pathway (see Results chapter). Therefore, 50 million years ago all these 

components assembled into a new L/R organizing center which provided a dextral 

looping.  

As it has been previously hypothesized, evolution functions on the 

rearrangement of pre-existing components (Werner et al., 2010). At present is hard to 

completely understand how the AHG dextral loop came to existence. The most probable 

scenario would be that the essential components for L/R patterning in other tissues (i.e 

the terminalia looping) were reused to form the adult hindgut organizer. There are at 

least two possible ancestral conditions: i) the absence of expression of L/R components 

in the AHG pimordium or ii) the complete lack of H1 cells. Since MyoID is specifically 

detected in H1 cells either ancestral condition would lead to the absence of MyoID in 

non-looped species. Thus, if the appearance of adult hingut looping correlated with the 

appearance of H1 cells it would also correlate with the gain of myoID expression. This is 

not particularly true for the PCP components as they are mostly functional in H2 cells for 

correct AHG dextral looping. Thus the questions: were the PCP components present in 

the AHG primordium before the appearance of dextral looping? If so, what was their 
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function? We did not detect any other obvious phenotype in the AHG after the 

inactivationof the PCP components, however this does not completely rule out the 

possibility that they have another yet elusive function in this organ. 

The identification of a particular cis-regulatory region in myoID locus provides a 

good explanation on how the AHG looped came to existence: the appearance of a novel 

cis-regulatory element in the myoID locus evolved the adult hindgut dextral loop, 

without modifying the other dextral organs (i.e. the terminalia looping). Similar events in 

which the appearance (or loss) of a cis-regulatory element in a gene correlates with the 

appearance of a specific trait have been reported, in particular for the interspecies 

variation of wing and body pigmentation in Drosophila genus (Gruber et al., 2012; Kalay 

and Wittkopp, 2010; Wittkopp, 2010; Jeong et al., 2008; Prud’homme et al., 2006; 

Werner et al., 2010; Williams et al., 2008). Therefore, cis-regulatory element variation 

might be a common principle in animal evolution that might be proven true also for the 

evolution of L/R structures. 

L/R patterning in insect evolution is particularly diverse, while most likely most 

insect orders have a dextrally coiled embryonic gut, the terminallia dextral looping is a 

particularity of a group of flies which do not include mosquitoes (Reviewed in Suzanne 

et al., 2010), the testes dextral coiling is present in the closest relatives to Drosophila 

melanogaster but is not in the Drosophila pseudoobscura group. It would be interesting 

to understand if cis-regulatory elements in myoID locus underlie the diversity of L/R 

structures in insects. Recently the complete genome sequence of many (>40) insects 
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from different orders became publicly available facilitating the exploration on the 

evolution of myoID sequence.  

Our results on a cis-regulatory element in myoID underlying AHG looping shows 

for the first time the evolutionary advantage of having several L/R organizers, as 

opposed to vertebrates which rely on only one. Having several organizers liberate the 

evolutionary constrains of L/R pattering by letting each L/R organ bare its own 

evolutionary pressures. Briefly, whatever the evolutionary pressure that caused the 

fixation of the AHG dextral loop did not affected the L/R patterning at the terminalia. 

This particularity of Drosophila (which might be true also for other insects) has likely 

contributed to the diversification of L/R asymmetric structures. 
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Supplementary Table 1 List of Drosophila stocks used 

Stock 

number 1st Chromosome 2nd Chromosome 3rd Chromosome Unknown location Usage Comments 

 
w 

chic-flyfosattp40 

052096 mkrs/tm6b 

 
 chic genomic rescue 

 

    

chic-flyfosattp40 

052096      chic genomic rescue 

the number 
corresponds to the 
number of fosmid 
clone used 

   

chic-flyfosattp2 047881 

 
 chic genomic rescue 

the number 
corresponds to the 
number of fosmid 
clone used 

      UAS-Diap1    block apoptosis   

  

UAS-Decad-wt uas-chic 

 
Chic -Cad Interaction 

     UAS-Decad-GFP uas-chic   Chic -Cad Interaction   

  

UAS-Decad-RNAi uas-chic 

 
Chic -Cad Interaction 

     UAS-Decad-DN uas-chic   Chic -Cad Interaction   

 
w 

 

uas-chic+3'UTR-

Flag/tm3 

 
chic overexpression 

 

  w chic-gal4 uas-chic   chic rescue 

rescue from embryinic 

lethality to late pupa 

   

uas-chic, chic-trip 

 
Chic RNAi rescue does not rescue 

    

chic-kk, uas-decad-

DN     Chic-Cad interaction   

 
w 

chic-kk, DECAD-

RNAi 

  
Chic-Cad interaction 

 



 

 

  w   uas-diap1, uas-chic   Chic-JNK interaction   

  

uas-p35 uas-chic 

 
Chic-JNK interaction 

       uas-chic, uas-bsk-dn   Chic-JNK interaction   

   

uas-hep4e, uas-chic 

 
Chic-JNK interaction 

       uas-chic, uas-puc2a   Chic-JNK interaction   

 
w 

 

uasMyoIC,uaschic 

 
Chic-MyoIC interaction 

     chic-kk mid-RNAi 2x   Chic-MyoID   

  

myoID k2 uas-chic 

 
Chic-MyoID 

       mid RNAi 2x UAS chic   Chic-MyoID interaction   

S1 w 

chicp5202, MyoID-

RFPSTOP 

  
Chic-MyoID interaction 

 

S2 w 

chicp5202, MyoID-

RFPSTOP     Chic-MyoID interaction   

 
w chic5202, myoIDK2 

  
Chic-MyoID interaction 

 
  yw hsFLP122 

act<cd2,y>d:citrine 
A2     dachs YFP clones   

 
Ud2 PTC gal 4 mid k1 mid RNAi 2x  

 
deficiency screen 

     PTC gal 4 mid k1 mid RNAi 2x    deficiency screen   

9182 w def2L25 

  
Deficiency Screen 

 24626 w df2lED50001/cyo     Deficiency Screen   

6153 w df(2l)21/cyo 

  
Deficiency Screen 

     ptc-gal4, myoID K1     Deficiency Screen   

 
yw hsFLP122 if/CYO 

Ubi:GFP attB-P(acman-
HA:DS), FRT80 /TM B Ds reporter  

endogenous ds HA 
tagged 

  w 
ds-EGFP-loxP 
w+loxp, frt40/S-T     Ds reporter  

GFP tagged 
endogenous ds 

UamuraLab 
   

Ubi::fmi-3xGFP flamingo reporter 
I never detected any 
GFP pattern 

    myoID gal 4 tubGal80TS UAS GFP   Gal4   

   

dpp-gal4/tm6b 

 
Gal4 

 



 

 

    ptc-gal4, R80     Gal4   

   

drm-gal4,GFP 

 
Gal4 

     48ygal4, mcd8GFP     Gal4   

30557 
 

en-Gal4 

UASmcd8RFP 

  
Gal4 

   w myoID-gal4,UD2 dr/tm3   Gal4   

 
yw 

 

ac69-Gal4/TM2 

 
Gal4 

     myoID-gal4, UD2     Gal4   

  

ptc-GAl4, 

UASmcd8GFP 

  
Gal4 

 

    

myoID-Gal4, uas-

myrRFP/CYO     Gal4   

  

Su(H)GBE-gal4/CYO 

  
Gal4 

 

    

Su(H)GBE-gal4, 

UASmcd8GFP/CYO     GAl4   

13aMel w 

 

arm-Gal4/tm6b 

 
Gal4 

 914 w,twi-gal4       Gal4   

   

byn-Gal4, UAS-PHGFP, 

UASGalt-RFP/Tm6b 

 
Gal4  

hindgut RFP golgi and 
membrane green 

      byn-Gal4, UD2/Tm6b   Gal4 and Dicer2   

  

sp/cyo byn-Gal4, UD2/Tm6b 

 
Gal4 and Dicer2 

 

    

chic-gal47313, 

uasmcd8GFP/cyo     Gal4 chic with GFP   

   

byn-Gal4, UAS-

PHGFP/Tm6b dfd-YFP 

 
Gal4 hindgut and GFP  

line used for 
quantifications  

47466         Gal4 hindgut screen   

49931 
    

Gal4 hindgut screen 
 48461         Gal4 hindgut screen   

48278 
    

Gal4 hindgut screen 
 47381         Gal4 hindgut screen   



 

 

47253 
    

Gal4 hindgut screen 
 45926         Gal4 hindgut screen   

45919 
    

Gal4 hindgut screen 
 47620         Gal4 hindgut screen   

49320 
    

Gal4 hindgut screen 
 46732         Gal4 hindgut screen   

46714 
    

Gal4 hindgut screen 
 38687         Gal4 hindgut screen   

48011 
    

Gal4 hindgut screen 
 40680         Gal4 hindgut screen   

47826 
    

Gal4 hindgut screen 
 40648         Gal4 hindgut screen   

45586 
    

Gal4 hindgut screen 
 45341         Gal4 hindgut screen   

29398 
  

bynVT-Gal4 attp 
 

Gal4 hindgut screen 
 201648     VT025776-junction   Gal4 hindgut screen   

 
yw 

 

uas:luciferace attp2 

 
Gal4 reporter 

   yw uas-hid 14/cyo     induce apoptosis   

  

uas-hid 4 

  
induce apoptosis 

   UASDRONC/FM7       induce apoptosis   

  

TubP:Gal80ts, 

UAS-FLP,  Ubi-

p63E(FRT.STOP)Stinger 

 
lineage tracing 

 

    TubP:Gal80ts, 

UAS-FLP,  Ubi-

p63E(FRT.STOP)Stinger, 

UAS:nRFP   lineage tracing   

   

UAS-FLP,  Ubi-

p63E(FRT.STOP)Stinger 

 
lineage tracing 

 

28281     

UAS-FLP,  Ubi-

p63E(FRT.STOP)Stinger, 

UAS:nRFP   lineage tracing   



 

 

29037 uas-Baz-GFP 

   
membrane apical GFP 

 

      

UAS-PH(PLCgamma)-

GFP   membrane GFP 

marks pip2, clean 
membrane pattern in 
imaginal ring 

27392 w 

 

UASmcd8-chRFP 

 
membrane RFP 

 288   ds38k/Cyo     mutant   

11394 
 

ds05142/CYO 
  

mutant 
 5298 dsh 1       mutant    

9454 dsh A3 
   

mutant  
 5297 dsh 6/ Fm7a       mutant    

 
w 

ds UAC71, frt40/ 
CYO GFP 

p(Act<stop>ds-
EGFP/TM6b 

 
mutant and rescue ds 

   w ds UAC71Sm6b     mutant ds   

6370 
 

fj lacW9-11 / Cyo 
  

mutant Fj and lacZ 
enhancer trap 

 

140296   

myoId-pBac (dsRed-

stop), frt40a     mutant myoID   

 
w 

ds UAC71, frt40/ 
CYO GFP 

p(Act<stop>dsS>Ax3-
EGFP/TM6b 

 
mutante and rescue ds 

 
  w   myoID-dvir J17 attp2   

myoID genomic from 

d,virilis   

 
w myoID k2 myoID-flyfos/tm6b 

 

myoID mutant and 

rescue for 

d,pseudoobscura 

     myoID lacZ     myoID reporter   

707 
  

UAS-LacZnuclear 

 
Overexpress LacZ 

 28874     uas-rac1wt   Overexpressio Rac1   

28872 
   

uas-rho1 wt Overexpressio rho1 
 7334     uas-rho1 wt   Overexpressio rho1   

   

UAS myoID 34/tm3 

 
overexpression 

 



 

 

      UAS-Decad wt/tm3   Overexpression   

28873 
   

uas-cdc42-wt Overexpression cdc42 
 

      uas-chic-venus 7/tm3   
overexpression chic 
Venus tagged   

   

uas-chic-venus 6 

 

overexpression chic 
Venus tagged 

 

      uas-chic-venus 3/tm3   
overexpression chic 
Venus tagged   

  

uas-chic-venus 4 

  

overexpression chic 
Venus tagged 

localizes properly, does 
not rescue chic 
mutations 

S, Blair w   UAS-ds   Overexpression ds   

S, Blair w 
 

UAS-ds∆ICD 
 

Overexpression ds 
truncated 

 
S, Blair w   UAS-ds∆ECD   

Overexpression ds 
truncated   

S, Blair w 
 

uas-fat 
 

Overexpression fat 
 

S, Blair w   UAS-fat∆ECD   
Overexpression fat 
truncated   

S, Blair w 
 

UAS-fat∆ICD 
 

Overexpression fat 
truncated 

       uas:MyoID/tm3   Overexpression MyoID   

30099 
  

wts EP/tm6b 
 

overexpression warts 
 28813   uas-yki-gfp     overexpression yorkie    

28816 
   

uas-yki-V5 overexpression yorkie  
 

28816       uas-yki-s168a-gfp 
overexpression yorkie 
modified   

28836 
   

uas-yki-s168a-GFP 
overexpression yorkie 
modified 

 

28818       uas-yki-S1689-V5 
overexpression yorkie 
modified   



 

 

  

spCyo UAS myoID RNAi 2x 

 
RNAi 

       UAS myoID RNAi 2x   RNAi   

  

Decad-RNAi (HV) 

  
RNAi 

 27727   rho1-trip     RNAi   

28021 
 

cdc42-trip 

  
RNAi 

 35756   cdc42-trip     RNAi   

34910 
 

rac1-trip 

  
RNAi 

 28985   rac1-trip     RNAi   

 
w chic-KK mkrs/tm6b 

 
RNAi 

 28009       fj-TRIP RNAi   

34323 
   

fj-TRIP RNAi 
 28008       ds-TRIP RNAi   

14350 
   

ds-GD RNAi 
 32964       ds-TRIP RNAi   

29566 
   

ft-Trip RNAi 
 34970       ft-Trip RNAi   

6774 
  

fj-GD 
 

RNAi 
 6774   fj-GD     RNAi   

27664 
   

d-TRIP RNAi 
 108863       Ft-KK RNAi   

1665 
  

fmi-GD 
 

RNAi 
 31736   diego-GD     RNAi   

36219 
 

ds-GD 
  

RNAi 
 43075   fz-GD     RNAi   

31734 
  

diego-GD 
 

RNAi 
 43077       fz-GD RNAi   

7376 
 

stmb-GD 
  

RNAi 
 51382       fmi-GD RNAi   

108410 
   

diego-KK RNAi 
 35040       diego-TRIP RNAi   



 

 

35050 
   

stan-TRIP RNAi 
 26066       stan-TRIP RNAi   

32413 
   

pk-Trip RNAi 
 100819       stmb-kk RNAi   

105493 
   

fz-kk RNAi 
 31307       dsh-trip RNAi   

31306 
   

dsh-trip RNAi 
 31306       dsh-trip RNAi   

11099 
   

pk-GD RNAi 
 101525       dsh-kk RNAi   

34354 
   

vang-trip RNAi 
 27661       hippo-trip RNAi   

27662 
   

wts-trip RNAi 
 34064       wts-TRIP RNAi   

33614 
   

hippo-trip RNAi 
 51939       drip-gd RNAi   

106911 
   

drip-KK RNAi 
 101764       otp-kk RNAi   

34329 
   

tll-trip RNAi 
 101534       byn-kk RNAi   

43909 
   

byn-GD RNAi 
   w   10x-stat92-gfp   Stat reporter   

  

10x-stat92-gfp 

  
Stat reporter 

 28291     UAS:D-V5-His   Tagged Dachs   

30910 w UAS-RFP-KDEL 

  
tagged ER 

 

30907 w   

UAS-RFP-Golgi 

(galt)/tm6b   tagged golgi    

 
yw 

 

uas:chic, uas:luciferace 

attp2 

 

test Gal4 activity after 
chic overexpression 

 oregonR         wlid type stock   



 

 

 
w1118 

   
wlid type stock 

  



 

 

 

Supplementary table 2 List of PhastCons 

 

Name chromosome chromStart chromEnd score 

lod=32 chr2L 10491867 10491887 322 

lod=20 chr2L 10491888 10491898 259 

lod=37 chr2L 10491908 10491931 342 

lod=82 chr2L 10491950 10492001 448 

lod=36 chr2L 10492015 10492030 338 

lod=65 chr2L 10492058 10492110 417 

lod=42 chr2L 10492191 10492215 359 

lod=21 chr2L 10492295 10492304 266 

lod=79 chr2L 10492337 10492393 443 

lod=131 chr2L 10492396 10492505 511 

lod=126 chr2L 10492550 10492611 506 

lod=42 chr2L 10492622 10492654 359 

lod=103 chr2L 10492661 10492720 479 

lod=20 chr2L 10492783 10492791 259 

lod=191 chr2L 10492812 10492945 561 

lod=11 chr2L 10492948 10492953 179 

lod=13 chr2L 10492965 10492971 202 

lod=123 chr2L 10492991 10493073 503 

lod=123 chr2L 10493086 10493168 503 

lod=12 chr2L 10493173 10493178 191 

lod=68 chr2L 10493212 10493250 423 

lod=84 chr2L 10493260 10493334 451 

lod=56 chr2L 10493341 10493364 397 

lod=142 chr2L 10493374 10493457 522 

lod=139 chr2L 10493461 10493556 519 

lod=456 chr2L 10493560 10493781 678 

lod=132 chr2L 10493785 10493859 512 

lod=64 chr2L 10493860 10493883 415 

lod=135 chr2L 10493893 10493976 515 

lod=443 chr2L 10493977 10494197 674 

lod=203 chr2L 10494285 10494369 570 

lod=202 chr2L 10494423 10494488 569 

lod=101 chr2L 10494492 10494533 476 

lod=40 chr2L 10494537 10494578 352 

lod=223 chr2L 10494582 10494718 582 

lod=17 chr2L 10494720 10494734 238 

lod=24 chr2L 10494737 10494761 284 

lod=43 chr2L 10494779 10494813 362 



 

 

lod=98 chr2L 10494873 10494947 472 

lod=66 chr2L 10494967 10495029 419 

lod=22 chr2L 10495033 10495062 272 

lod=42 chr2L 10495072 10495107 359 

lod=10 chr2L 10495149 10495154 166 

lod=82 chr2L 10495204 10495263 448 

lod=16 chr2L 10495754 10495785 229 

lod=11 chr2L 10495838 10495857 179 

lod=15 chr2L 10495899 10495919 221 

lod=12 chr2L 10495998 10496007 191 

lod=10 chr2L 10496313 10496319 166 

lod=30 chr2L 10496429 10496486 314 

lod=11 chr2L 10496525 10496531 179 

lod=55 chr2L 10496537 10496565 395 

lod=73 chr2L 10496626 10496658 433 

lod=286 chr2L 10496662 10496787 616 

lod=144 chr2L 10496788 10496851 524 

lod=15 chr2L 10497100 10497108 221 

lod=43 chr2L 10497115 10497149 362 

lod=14 chr2L 10497166 10497175 212 

lod=61 chr2L 10497192 10497252 409 

lod=41 chr2L 10497253 10497284 355 

lod=23 chr2L 10497306 10497315 278 

lod=20 chr2L 10497318 10497331 259 

lod=26 chr2L 10497360 10497383 294 

lod=17 chr2L 10497415 10497435 238 

lod=35 chr2L 10497439 10497459 334 

lod=29 chr2L 10497516 10497545 309 

lod=47 chr2L 10497847 10497872 374 

lod=597 chr2L 10497879 10498158 714 

lod=22 chr2L 10498182 10498200 272 

lod=29 chr2L 10498203 10498224 309 

lod=39 chr2L 10498279 10498331 349 

lod=20 chr2L 10498442 10498455 259 

lod=71 chr2L 10498457 10498508 429 

lod=13 chr2L 10499071 10499080 202 

lod=21 chr2L 10499132 10499142 266 

lod=24 chr2L 10499154 10499203 284 

lod=34 chr2L 10499225 10499263 330 

lod=77 chr2L 10499288 10499349 440 

lod=139 chr2L 10499363 10499446 519 

lod=19 chr2L 10499507 10499532 252 

lod=33 chr2L 10499550 10499565 326 

lod=43 chr2L 10499590 10499626 362 

lod=71 chr2L 10499660 10499702 429 

lod=26 chr2L 10499728 10499743 294 



 

 

lod=12 chr2L 10499777 10499787 191 

lod=67 chr2L 10499844 10499879 421 

lod=33 chr2L 10499892 10499952 326 

lod=15 chr2L 10500502 10500536 221 

lod=29 chr2L 10500569 10500594 309 

lod=10 chr2L 10500663 10500670 166 

lod=22 chr2L 10500695 10500704 272 

lod=15 chr2L 10500774 10500779 221 

lod=17 chr2L 10500782 10500789 238 

lod=28 chr2L 10500800 10500819 304 

lod=16 chr2L 10500850 10500857 229 

lod=31 chr2L 10500899 10500930 318 

lod=14 chr2L 10500953 10500969 212 

lod=71 chr2L 10500975 10501032 429 

lod=46 chr2L 10501058 10501088 371 

lod=25 chr2L 10501377 10501401 289 

lod=15 chr2L 10501422 10501454 221 

lod=26 chr2L 10501474 10501495 294 

lod=116 chr2L 10501568 10501655 495 

lod=46 chr2L 10501689 10501724 371 

lod=88 chr2L 10501758 10501813 458 

lod=48 chr2L 10501826 10501860 377 

lod=15 chr2L 10501901 10501915 221 

lod=40 chr2L 10501979 10502009 352 

lod=27 chr2L 10502013 10502031 300 

lod=20 chr2L 10502048 10502064 259 

lod=43 chr2L 10502112 10502145 362 

lod=95 chr2L 10502161 10502214 468 

lod=17 chr2L 10502230 10502244 238 

lod=13 chr2L 10502302 10502334 202 

lod=20 chr2L 10502396 10502421 259 

lod=46 chr2L 10502430 10502492 371 

lod=19 chr2L 10502536 10502552 252 

lod=54 chr2L 10502836 10502897 392 

lod=52 chr2L 10502918 10502974 387 

lod=12 chr2L 10502978 10502986 191 

lod=14 chr2L 10503049 10503089 212 

lod=20 chr2L 10503304 10503333 259 

lod=12 chr2L 10503352 10503363 191 

lod=35 chr2L 10503387 10503404 334 

lod=24 chr2L 10503437 10503461 284 

lod=17 chr2L 10503468 10503515 238 

lod=88 chr2L 10503544 10503666 458 

lod=21 chr2L 10503745 10503760 266 

lod=124 chr2L 10503766 10503861 504 

lod=67 chr2L 10503873 10503917 421 



 

 

lod=13 chr2L 10503984 10503999 202 

lod=17 chr2L 10504060 10504077 238 

lod=42 chr2L 10504088 10504102 359 

lod=20 chr2L 10504131 10504143 259 

lod=78 chr2L 10504163 10504209 442 

lod=14 chr2L 10504224 10504235 212 

lod=42 chr2L 10504262 10504292 359 

lod=18 chr2L 10504308 10504329 245 

lod=24 chr2L 10504342 10504363 284 

lod=22 chr2L 10504391 10504405 272 

lod=15 chr2L 10504663 10504672 221 

lod=44 chr2L 10504827 10504898 365 

lod=31 chr2L 10504937 10504985 318 

lod=17 chr2L 10505003 10505017 238 

lod=26 chr2L 10505031 10505056 294 

lod=53 chr2L 10505062 10505109 390 

lod=66 chr2L 10505462 10505553 419 

lod=61 chr2L 10505594 10505666 409 

lod=16 chr2L 10505693 10505713 229 

lod=25 chr2L 10505920 10505927 289 

lod=66 chr2L 10505934 10505957 419 

lod=128 chr2L 10505961 10506018 508 

lod=33 chr2L 10506099 10506117 326 

lod=12 chr2L 10506127 10506137 191 

lod=23 chr2L 10506178 10506190 278 

lod=71 chr2L 10506199 10506256 429 

lod=81 chr2L 10506301 10506459 447 

lod=23 chr2L 10506473 10506537 278 
 



 

 

 

Supplementary Table 3 List of Gal4 lines tested with expressed in the AHG 

 

      Larva Adult 

Stock number Name gene Imaginal Ring Stem-Cells Pylorus Iluem anterior Ileum posteior Rectal junction Papilla Sheath 

38687 R49E02 E2f  yes     yes             

40648 R93C07 CG31418  no (only larval pylorus)                   

40680 R94C12 en        yes yes yes   yes yes   

45341 R48H08 beat-IIIc                      

45586 R32C11 stg      yes     yes yes     yes 

45919 R86H07 CG14020                      

45926 R88B08 inv  yes                   

46714 R56F05 CTPsyn  yes                   

46732 R82G11 sba  yes   yes   yes yes yes   yes yes 

47253 R94C10 en                  yes   

47381 R56G11 dally            yes         

47466 R15D02 rut          yes yes yes     yes 

47620 R50D03 E2f    yes                 

47826 R88C04 inv    yes yes               

48011 R94D09 en        scattered yes       yes   

48278 R10H12 bi                  yes   

48461 R11E08 bi            yes     base   

49320 R25E10 Adf1          yes yes yes weak     

49931 R36C06 al                  yes   

201648 VT025776 Rh50           yes x       

205774 bynVT-Gal4  byn yes   yes yes yes yes yes yes yes   



 

 

Supplementary Table 4 List of deficiencies tested in regions 21A-B, 25D-E and 50D 

Region 21A-B 
Name SF SP NR DP DF 

w1118 0 84 16 0 0 
Df(2L)net62  0 93 7 0 0 
Df(2L)Exel6001  0 84 16 0 0 
Df(2L)ED929  3 94 3 0 0 
Df(2L)ED5878  24 73 3 0 0 
Df(2L)net-PM86A  0 0 0 0 100 
Df(2L)PM51  0 0 0 0 100 
Df(2L)PM44  0 0 0 5 95 
Df(2L)net-PMC  0 0 3 13 83 
Df(2L)net-PMF  0 0 0 39 61 
Df(2L)PM59  0 0 0 47 53 
Df(2L)PM1  0 0 10 42 48 
Df(2L)net18  0 0 30 56 15 
Df(2L)PM82  0 2 33 60 5 
Df(2L)net-PM47C  0 0 6 88 6 
Df(2L)TE21A  3 24 15 53 6 
Df(2L)net-PM29A  0 0 26 74 0 
Df(2L)PM73  0 0 58 42 0 
Df(2L)PM4  0 8 92 0 0 
Df(2L)net14  0 3 94 3 0 
Df(2L)PMA  0 0 100 0 0 
Df(2L)PMD  0 2 95 2 0 
Df(2L)PMG  0 17 83 0 0 
Df(2L)PM11  0 6 94 0 0 
Df(2L)PM45  0 3 94 3 0 



 

 

 Df(2L)ED50001   0 0 100 0 0 
l(2)gl4 27 70 3 0 0 
 

 

Region 25D-E 
Name SF SP NR DP DF 

w1118 0 84 16 0 0 
Df(2L)ED292  0 10 56 0 5 
 Df(2L)Exel7024   6 15 56 12 12 
Df(2L)ED334  13 16 68 3 0 
Df(2L)2802  10 90 0 0 0 
Df(2L)Exel6013  3 97 0 0 0 
Df(2L)ED270  3 80 18 0 0 
Df(2L)ED284  3 77 21 0 0 
Df(2L)E110  0 77 23 0 0 
Df(2L)ED285  3 94 3 0 0 
Df(2L)ED347  3 97 0 0 0 
Df(2L)BSC169  3 92 6 0 0 
Df(2L)BSC168  0 94 6 0 0 
Df(2L)ED279  50 47 3 0 0 
UAS-chic; pin 88 12 0 0 0 
UAS-chic; Cyo 91 6 3 0 0 

      Region   50D 
Name SF SP NR DP DF 

control 0 84 16 0 0 
Tango 7 GSV7 55 45 0 0 0 
 Df(2R)Exel7130 71 29 0 0 0 
 Df(2R)Exel7131 13 83 3 0 0 
 Df(2R)BSC134 0 84 16 0 0 



 

 

 Df(2R)BSC401 3 97 0 0 0 
 Df(2R)50C-101 3 97 0 0 0 
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