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group, Krzystof Baczyński and Micha l Markiewicz, for their useful advices

concerning molecular dynamics simulations of biological membranes. Finally,

I would also like to acknowledge financial support by the Agence Nationale de

la Recherche.

Last but not least, I would like to thank my family and friends for all their

love and support. For my parents who provided me with encouragement and

unconditionally supported me in all my pursuits. Thank you!





Abstract

Various recent experimental and simulation studies show that the lateral di↵usion of

molecules in biological membranes exhibits anomalies, in the sense that the molecular

mean square displacements increase sub-linearily instead of linearly with time. Math-

ematically, such di↵usion processes can be modeled by generalized di↵usion equations

which involve an additional fractional time derivative compared to the corresponding

normal counterpart.

The aim of this thesis is to gain some more physical insight into the lateral di↵usion

processes in biological membranes. For this purpose, molecular dynamics simulations of

a lipid POPC bilayer are analyzed by employing concepts from the statistical physics of

liquids. The long-time tail of the center-of-mass velocity autocorrelation function, which

reflects the di↵usional regime of the molecules under consideration, is related to their

low-frequency dynamics and to the dynamical structure around each molecule. The latter

is studied in terms of the time dependent van Hove pair correlation function for their

centers-of-mass. It is in particular demonstrated that the first shell of neighbors of a

di↵using lipid molecule decays very slowly with t��, with 0 < � < 1. This finding is in

agreement with the observation that lipid molecules tend to form collective flow patterns,

which has been recently reported by other authors.

In order to evaluate the impact of the molecular dynamics force field on the nature

of the observed di↵usion process, the POPC bilayer was simulated with the OPLS all

atom force field and with the coarse-grained MARTINI force field. In the latter, four

heavy atoms are combined into one “bead”. In both cases lateral sub-di↵usion with

similar exponents is observed, but the di↵usional motion obtained with the coarse grained

force field is about three times faster and appears also to be faster than in experiments.

This result is reflected in the low-fequency dynamics of the POPC molecules and in the

dynamical structure of their local environment.

Keywords : subdi↵usion, simulations, molecular dynamics, lipids, membranes
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Résumé

De nombreuses études récentes, expérimentales et in-silico, montrent que la di↵usion

latérale des molécules dans des membranes biologiques présentent des anomalies, dans le

sens que les déplacements carré moyen moléculaires évoluent de façon sublinéaire au lieu

de linéaire avec le temps. Mathématiquement, ce type de di↵usion peut être modélisé par

des équations de di↵usion généralisées, dans lequelles une dérivée fractionnaire du temps

s’ajoute à l’équation de di↵usion normale correspondante.

Le but de cette thèse est d’obtenir un aperçu plus physique des processus de di↵usion

dans des membranes biologiques. A cet e↵et, des simulations de dynamique moléculaire

d’une bicouche lipidique POPC sont analysées en utilisant les concepts de la physique

statistique des liquides. La queue aux temps longs de la fonction d’autocorrélation de

vitesses des centres de masse, qui réflète le régime de di↵usion des molécules en ques-

tion, est mise en relation avec leur dynamique aux basses fréquences et avec la structure

dynamique autour de chaque molécule. La dernière est caractérisée par la fonction de

corrélation de paires dynamique de van Hove pour leurs centres de masse. Il est en par-

ticulier montré que la première couche de voisins d’une molécule lipidique qui di↵use ne

se désintègre que très lentement avec t��, où 0 < � < 1. Ce résultat est en accord avec

l’observation faite par d’autres auteurs, que les molécules dans une bicouche lipidique ont

la tendance de se déplacer d’une manière concertée.

Afin d’évaluer l’impact du champ de force sur la nature des processus de di↵usion

observés, la bicouche lipidique POPC a été simulée avec le champ de force tout atome

OPLS et avec le champ de force à gros grains MARTINI. Dans le second, quatre atomes

lourds forment un seul ”grain”. Dans les deux cas, on observe une sous-di↵usion latérale,

avec des exposants similaires, mais la di↵usion des lipides obtenue avec le champ de force

à gros grains est d’environ trois fois plus rapide et elle apparâıt aussi plus rapide que dans

des expériences correspondantes. Ce résultat est confirmé par la dynamique des molécules

POPC à basse fréquence et par la structure dynamique de leur environnement local.

Mots clés : sous-di↵usion, simulations, dynamique moleculaire, lipides, membrane
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Résumé Substantiel

I. INTRODUCTION

Une membrane biologique est une enveloppe continue qui joue le rôle de barrière physique

délimitant la cellule: elle sépare le milieu intracellulaire (tout ce qui compose la cellule) du

milieu extracellulaire (l’environnement de la cellule). Il existe également des membranes

biologiques intracellulaires, qui délimitent les organites (par exemple les membranes mi-

tochondriale, nucléaire, lysosomiale, etc.) [Berg et al. [2005]]. Toutes les membranes

sont composées principalement de lipides, dont les plus abondants sont les phospholipides

(Fig. 1). Ces lipides forment des mono- ou bicouches fermées. Une membrane biologique

contient également de nombreuses autres molécules, comme des protéines membranaires

ou des glucides [Alberts et al. [2005]]. Leur présence permet le transport bi-directionnel

de petites molécules à travers la membrane, ce qui intervient dans l’adhésion des cellules et

dans des nombreux processus enzymatiques. Tous ces processus sont fortement influencés

par la di↵usion latérale (dans le plan de la bicouche) des lipides, qui peut être caractérisée

par l’évolution dans le temps du déplacement carré moyen (DCM) d’une molécule, qui,

dans le régime asymptotique t!1, prend la forme

W (t) = h(x(t)� x(0))2i t!1⇠ 2D↵ t
↵, 0 < ↵ < 2. (1)

Ici x signifie la position de la molécule , D↵ est la constante fractionnaire de di↵usion

et le paramètre ↵ décrit le type de di↵usion. Pour ↵ = 1, nous avons une di↵usion
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dite normale, ce qui caractérise les liquides simples (par exemple l’eau). Le régime 0 <

↵ < 1 est typique pour les systèmes ”crowded”. On l’appelle la sous-di↵usion. Pour 1

< ↵ < 2, nous avons la super-di↵usion, ce qui signifie que les mouvements des molécules

sont accélérés. Les expériences et les simulations par dynamique moléculaire montrent des

résultats contradictoires pour la di↵usion latérale des lipides. Les expériences de di↵usion

Figure 1: La complexité d’une membrane biologique 1.

de neutrons révèlent, en générale, que la di↵usion des lipides est normale [Armstrong et al.

[2011]]. En même temps, sur une échelle de temps beaucoup plus grande, on observe

une sous-di↵usion par la spectroscopie de fluorescence [Schwille et al. [1999b]]. De même,

certaines simulations par dynamique moléculaire montrent un mouvement sous-di↵usif des

1
Source : http://commons.wikimedia.org/wikiFile:Cell_membrane_detailed_diagram_4.svg

vi

http://commons.wikimedia.org/wikiFile:Cell_membrane_detailed_diagram_4.svg


lipides [Arnold et al. [2004]; Jeon et al. [2012]; Kneller et al. [2011]; Stachura & Kneller

[2013]], pendant que d’autres études soulignent que la sous-di↵usion est transitoire et que

pour des temps plus longs la di↵usion devient normale [Flenner et al. [2009]; Goose &

Sansom [2013]; Niemelä et al. [2010]]. La sous-di↵usion peut être comprise par un ”e↵et

de cage” qui s’exprime dans la fonction d’autocorrélation des vitesses Cvv = hv(0) · v(t)i,

où v signifie la vitesse de la molécule, par une valeur négative à des temps longs [Kneller

[2011]]. Dans cette thèse, cette ”cage”, formée par les voisins les plus proches autour de

chaque lipide, est étudiée par la fonction de corrélation de paire vue comme fonction du

temps [Rahman [1963]; Van Hove [1954]]:

GD(r, t) =
V

N

n(r, t)

�V
. (2)

Elle montre les fluctuations de la structure formée par les voisins lipidiques à la distance

r de la molécule entourée. Ici V et N sont le volume total du système et le nombre de

molécules, respectivement, et n(r, t) est le nombre de molécules présentes dans l’élément

de volume/surface �V à la distance r.

L’objectif de cette thèse est d’obtenir une description plus physique des processus de

di↵usion des lipides, en s’appuyant sur la simulation par dynamique moléculaire (MD) et

la théorie des liquides. Les trajectoires MD ont été analysées pour en extraire le com-

portement à des temps longs des fonctions de corrélation.

II. SIMULATIONS DE DYNAMIQUE MOLECULAIRE

Une série de simulations par dynamique moléculaire d’une bicouche lipidique de 1-palmitoyl-

2-oleoylphosphatidylcholine (POPC) a été calculée pour deux modèles moléculaires : tout-

atome OPLS [Jorgensen & Tirado-Rives [1988]; Jorgensen et al. [1996]] et gros-grain

MARTINI [Marrink et al. [2004, 2007]] (Fig. 2).

Une membrane tout-atome consistant de 274 molécules de POPCa été simulée pen-
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AA CG

Figure 2: Comparaison entre les modèles tout-atome OPLS (AA) et gros-grain MARTINI
(CG) de membrane de POPC.

dant 15 ns et 150 ns, dans l’ensemble isobare- isotherme [Stachura & Kneller [2013]]. La

température de 310 K a été contrôlée par un thermostat de Nosé-Hoover [Hoover [1985];

Nosé [1984]] et la pression de 1 atm par un barostat de Parrinello-Rahman [Parrinello

[1981]].

Afin d’avoir un accès à des temps de simulation plus longs pour une plus grande bicouche

de POPC, des simulations MARTINI ont été e↵ectuées pour un système de 2033 lipides

pendant 600 ns, dans deux conditions thermodynamiques: NV T et NApzT (pression

ajustée uniquement dans la direction perpendiculaire à la bicouche) [Stachura & Kneller
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[2013]]. La température de 320 K a été fixée par le thermostat de Berendsen et la pres-

sion de 1 atm pour l’ensemble NApzT par la barostat de Berendsen [Berendsen & Postma

[1984]. Ces calculs ont été aussi servi pour tester la capacité du modèle gros- grains de

reproduire les propriétés dynamiques des systèmes tout-atome.

III. RESULTATS

Les analyses de l’évolution temporelle du déplacement carré moyen (DCM) du centre de

masse des lipides ont montré des devations de la forme linéaire caractéristique pour la

di↵usion normale. Les fits de l’ éq. 1 (Fig. 3) ont donné des paramètres ↵ ⇡ 0.68 et
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Figure 3: Les fits de l’ éq. 1 de déplacement carré moyen pour les simulations: a) 15 ns
OPLS-AA, b) 150 ns OPLS-AA, c) NV T et NApzT MARTINI pour des temps maximales
de 50 ns et d) NV T et NApzT MARTINI pour des temps maximales de 1.5 ns.
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↵ ⇡ 0.7 pour les simulations OPLS-AA de 15 ns et de et 150 ns, ce qui correspond à

la sous-di↵usion dans le régime asymptotique (t ! 1). Des résultats similaires ont été

obtenues pour les simulations MARTINI, avec ↵ ⇡ 0.57 et ↵ ⇡ 0.56 pour les ensembles

NApzT et NV T . Les constantes fractionnaires de di↵usion sont de D↵ ⇡ 0.018 nm2/ns↵

pour 15 ns et D↵ ⇡ 0.016 nm2/ns↵ pour 150 ns (OPLS-AA) et de D↵ ⇡ 0.051 nm2/ns↵

pour les deux simulations MARTINI. Ces valeurs sont du même ordre que les résultats

expérimentaux (D↵ ⇡ 0.101 nm2/ns↵) [Schwille et al. [1999b].
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C
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Figure 4: Comparaison entre les fonctions d’autocorrélation des vitesses pour les simu-
lations de OPLS-AA et MARTINI.

Un observation similaire est faite pour les densités d’états (DOS) des centres de masse.

Tous les DOS, calculés en utilisant trois méthodes di↵érentes (par transformation de

Fourier des fonctions d’autocorrélation de vitesse, FACVs, par estimation d’un processus

auto-régressif, et par le facteur de structure dynamique incohérent, FSDI), donnent en
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moyenne ↵ ⇡ 0.45 pour les deux champs de force (MARTINI et OPLS-AA). Ceci suggère

encore moins une di↵usion normale des lipides POPC dans le plan des bicouches que

l’analyse des DCMs.

L’origine des mouvements sous-di↵usifs des lipides a été expliquée par un “e↵et de cage”.

Il s’agit de la tendance des lipides d’inverser leurs vitesses et de rester plus localisées, ce

qui s’exprime dans le comportement asymptotique de la fonction d’autocorrélation des

vitesses qui est négative [Kneller [2011]]. En e↵et, un tel comportement peut être observé

pour les deux modèles, OPLS-AA et MARTINI, même si cet e↵et est beaucoup plus faible
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Figure 5: Les fonctions de corrélation de paire distincte dépendantes du temps, GD(r, t)
pour les simulations: a) 15 ns OPLS-AA, b) 150 ns OPLS-AA, c) NV T MARTINI et d)
et NApzT MARTINI. Dans les encarts sont montrés les fits de des temps longs.
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dans le deuxième cas, ce qui signifie que la cage formée par les voisins est plus souple que

pour les simulations tout-atome (Fig. 4).

Afin de visualiser cette cage, les fonctions de corrélation de paire distincte dépendantes du

temps, GD(r, t), ont été calculées pour les quatre simulations de POPC (15 ns et 150 ns

OPLS et 600 ns NV T et NApzT MARTINI) et pour une bôıte d’eau SPC/E simulée

pendant 1 ns dans l’ensemble NVT. L’analyse asymptotique de la dissolution dans le

temps de la première couche de voisins a montré une cage persistante, formée autour de

chaque lipide tout-atome, avec une décroissance algébrique à des temps longs (Fig. 5).
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Figure 6: La fonction de corrélation de paire distincte dépendantes du temps, GD(r, t),
pour la simulation de l’eau SPC/E.

L’e↵et de cage est préservé pendant des temps allant jusqu’à 10% de la longueur totale

des trajectoires MD. En revanche, le GD(r, t) pour la décroissance de l’eau est beaucoup

plus rapide (3 ordres de grandeur) et aussi exponentielle (Fig. 6). Ce résultat confirme
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l’existence d’une forte corrélation entre les lipides et leurs voisins, l’e↵et de cage, qui est

aussi une explication plausible pour la sous-di↵usion des lipides POPC dans la bicouche.

Dans le cas des simulations gros-grains, la décroissance de la première couche de voisins

est aussi algébrique, mais la décorrélation complète des fonctions GD(r, t) est visible pour

des temps inférieurs à 1% de la longueur totale des trajectoires MD. Ceci pourrait indiquer

les limites du modèle gros-grains MARTINI pour reproduire complètement les propriétés

dynamiques des systèmes lipidiques.

IV. CONCLUSION

Dans cette thèse, on a été montré que les mouvements latéraux des lipides POPC sont

sous-di↵usifs pour deux modèles: le modèle tout-atoms OPLS et le modèle gros-grains

MARTINI. L’e↵et de cage associé à la sous-di↵usion a été mis en évidence par la fonction

de corrélation de paire dépendante du temps, Gd(r, t). Pour les simulations des lipides

POPC, Gd(r, t) a montré une couche de voisins les plus proches très stable dans le temps,

qui se désintègre avec le temps de façon algébrique. Avec le modèle MARTINI, cette

décroissance est beaucoup plus rapide, ce qui peut indiquer les limites de ce type de

champ de force pour reproduire entièrement la dynamique réelle.
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Chapter 1

General Introduction

1.1 Biological membranes

Biological membranes are one of the most important constituents of prokaryotic and eu-

karyotic cells. The very beginning of life can be related to the formation of a biological

compartments protecting the very first organisms from their environment. This was pos-

sible only with the existence of biological membranes - physical barriers between cells and

their exterior. A following step in the evolution of cells was a further compartmentaliza-

tion of cells, leading to the formation of organelles. In this way, biological membranes

allowed various microenviornments to coexist within cells, which increased their ability

to adapt to di↵erent environments. A biological membrane consists of lipid molecules

forming mono- and bi- layers. These layers, in cellular conditions, always form closed

structures because of hydrophobic e↵ects resulting from interactions between lipids and

water molecules [Berg et al. [2005]]. The reason is that a lipid molecule has a hydrophobic

part - a water-repulsive tail, and a hydrophilic one - a water-attractive headgroup. In

order to shield hydrophobic regions from water, lipids organize themselves in an aggre-

gated phase. A biological membrane contains also many other diverse types of molecules

and actually is a very complex and heterogeneous system [Alberts et al. [2005]]. This is

1



1. General Introduction

why biological membranes play also an important role in the bidirectional transport of

molecules across the bilayer (or monolayer), in relaying signals, in the adhesion of cells,

and in many enzymatic processes.

Figure 1.1: Illustration1 showing the complexity of a membrane in cells and the structure
of a lipid molecule.

1
Source : http://commons.wikimedia.org/wikiFile:Cell_membrane_detailed_diagram_4.svg

2

http://commons.wikimedia.org/wikiFile:Cell_membrane_detailed_diagram_4.svg


1. General Introduction

Lipids are a very diverse group of chemical compounds that are either hydrophobic or

amphipathic (soluble in both - water and fats) [Berg et al. [2005]]. The lipids can refer to

amassed fatty acids in a volume, more complex steroids, or phospholipids. Table 1.1 shows

that cholesterol, cardiolipin and phospoholipids are the most abundant lipids in animal

cell membranes. The percentage of the total masses in di↵erent tissues indicates that the

most abundant are phosphatidylcholine and phosphatidylethanolamine (phospholipids)

and cholesterol for erythrocytes.

Table 1.1: Lipid composition in the heart, liver, erythrocytes and plasma (weight per-
centage of the total) [Christie [1985]].

LIPID CLASS TISSUE

Heart Liver Erythrocytes Plasma

Cholesteryl esters 0.22± 0.04 1.47± 0.10 - 16.04± 0.30
Triacylglycerols 3.77± 0.23 6.66± 0.15 - 48.65± 0.71
Cholesterol 4.06± 0.16 5.40± 0.13 30.23± 0.34 5.65± 0.10

Diacylglycerols 0.65± 0.07 - 0.38± 0.09 0.54± 0.06
Phosphatidylethanolamine 33.44± 0.21 19.91± 0.08 20.75± 0.21 -

Phosphatidylinositol 3.69± 0.06 4.43± 0.08 3.42± 0.14 -
Phosphatidylserine - - 3.11± 0.46 -
Phosphatidylcholine 38.57± 0.20 55.18± 0.13 32.03± 0.14 24.13± 0.59

Sphingomyelin 1.76± 0.50 2.09± 0.06 8.22± 0.17 1.99± 0.07
Lysophosphatidylcholine - - 0.89± 0.15 1.35± 0.06

Phospholipids have three main moieties (Fig. 1.2):

1. A hydrophilic headgroup, which consists of the phosphate group and additional

groups, e.g. a N(CH)
3

group. The latter is called a choline group and is a part of

phosphatidylcholines. Another example for a headgroup is the ethanolamine rest in

phosphatidylethanolamine.

3



1. General Introduction

Figure 1.2: Schematic 2 of the phosphatidylcholine chemical structure.

2. A backbone, consisting mostly of derivatives of glycerol, but in case of sphingomye-

lines, the base is a sphingosine, which is an amino alcohol with unsaturated fatty

acid rest.

Table 1.2: Lipid abundance in di↵erent organelles in rat liver (weight percentage of the
total) [A - Wuthier [1966], B - Gurr et al. [1965], C - Colbeau et al. [1971]].

LIPID CLASS WHOLE MEMBRANE

TISSUE Nuclei Mitochondria Microsomes Plasma
[A] [B] [C] [C] [C]

Phosphatidylethanolamine 25.2± 0.5 26.1 33.6± 1.3 21.6± 2.8 19.8
Phosphatidylinositol 7.2± 0.2 3.9 6.6± 1.5 8.2± 1.5 6.5
Phosphatidylserine 3.2± 0.1 5.5 0.9± 1.3 3.9± 2.8 3.7
Phosphatidylcholine 50.8± 0.4 57.3 40.5± 2.9 58.7± 4.0 43.1

Sphingomyelin 4.2± 0.2 6.3 2.4± 0.9 4.0± 0.5 23.1
Lysophosphatidylcholine 1.4± 0.2 - 1.4± 0.3 2.0± 1.0 1.8

Cardiolipin 2.2± 0.3 - 14.8± 1.2 1.6± 1.3 -

3. Tail(s) consisting of hydrocarbon chains that are derivatives of fatty acids. They

can be either saturated (all the carbon atoms in the chains are connected by single

2
Source : http://withfriendship.com/images/g/30850/Phospholipid-picture.jpg

4



1. General Introduction

bonds) or mono- and poli- unsaturated (at least one double bond).

The lipid composition of membranes presented in Table 1.2 for various organelles shows

again that the most common ones are phosphatidylcholines and phosphatidylethanolamines.

The abundance of the first does not fall below 40% of the total weight of the membrane

for all the presented organelles and is the lowest for mitochondria, which exhibits on the

other hand the highest concentration of cardiolipin and phosphatidylethanolamine. The

latter is the second most abundant type of lipid, with the lowest abundance of 20% in a

plasma membrane. According to these findings, phosphatidylethanolamine and in partic-

ular phosphatidylcholine are the basic lipids constituting biological membranes in cells.

They stand for 51% of the total weight of all membranes in a tissue.

Table 1.3: Fatty acids composition in di↵erent animal species (weight percentage of the
total) [A - Brockerho↵ et al. [1966], B - Christie & Moore [1970], C - Brockerho↵ &
Hoyle [1963]].

FATTY ACID SPECIES

Rat [A] Horse [A] Duck [A] Pig [B] Herring [C] Seal [C]

16 : 0 23 26 21 29 21 10
16 : 1 5 8 6 3 11 16
18 : 0 6 5 6 18 - -
18 : 1 35 31 49 41 23 26
18 : 2 19 9 16 8 1 2
18 : 3 2 18 2 - - -
20 : 1 - - - - 10 14
20 : 5 - - - - 9 7
22 : 1 - - - - 10 7
22 : 6 - - - - 5 8

The comparison above referred only to the properties of the headgroup moieties. The

other di↵erences concern the lengths of the hydrocarbon chains (tails) and their level of

5
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saturation (number of double bonds). In Table 1.3 the content of diverse fatty acid tails

is presented for six animal species: rat, pig, duck, horse, herring and seal. The nomencla-

ture in the first column should be read as - the total number of carbon atoms in a chain

: number of double bonds (“20 : 1” means for example a tail consisting of twenty carbon

atoms with one double bond). As one can easily see, the most abundant tails are the

saturated palmitoleic fatty acid rests (sixteen carbon atoms) and oleic acid rests with one

double bond (eighteen carbon atoms). This result suggests that the most common lipid

would be a phosphocholine with palmitoleic and oleic tails, which would be a 1-palmitoyl-

2- oleoyl-sn-glycero-3-phosphocholine (POPC). An interesting observation is that higher

order lipids with the unsaturated hydrocarbon chains of twenty and more carbon atoms

are found only in aquatic animals leaving in cold environment, here herring and seal.

Figure 1.3: Sketch of the POPC chemical structure 3.

The surface area of a membrane is huge in comparison to macromolecules, so the prob-

ability of finding a specific membrane protein is low. Many processes in cells involve

several proteins, and for that reason macromolecules taking part in the same reaction

must stay localized and close to each other in biological membranes [Berg et al. [2005]].

To raise the probability of finding the necessary proteins in the reaction volume, nature

developed several strategies. One of them is a confinement of proteins within physical

barriers, which are formed by the cytoskeleton attached to the membrane. Another strat-

3
Source : http://en.wikipedia.org/wiki/File:1-palmitoyl-2-oleoylphosphatidylcholine.svg

6
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egy, more interesting from the perspective of this work, is to slow down the di↵usion of

the lipids and proteins, keeping them more localized in the bilayer. In this case, there

is no need for physical barriers, since the very nature of the di↵usion of molecules would

already raise the probability of keeping them in the same place. One of the examples is

the self-organization of lipids into domains (so-called rafts), which seem to attract pro-

teins [Risselada & Marrink [2008]; Silva et al. [2007]]. These proteins di↵use with the

lipids in the raft.

1.2 Transport of molecules in cells and membranes

The di↵usion of molecules observed in living cells deviates in many cases from normal

di↵usion (the definition and its generalization is described in more details in the next

section), where normality is defined by Einstein’s di↵usion law [Einstein [1905]], which

predicts that the mean square displacement of the di↵using particle grows linearly with

time. In biological membranes one observes instead an anomalous sublinear growth.

Anomalous di↵usion has been observed in cells by various spectroscopic experimental

methods. Cells, including biological membranes, are crowded with a huge number of

di↵erent organelles and particles, as proteins, lipids, DNA, RNA and many more [Berg

et al. [2005]]. Moreover, organelles are also internally crowded with diverse molecules.

Very useful methods to study di↵usion in such crowded systems are fluorescence-based

techniques, such as the fluorescence correlation spectroscopy (FCS) and single particle

tracking methods (SPT). The former measures the concentration fluctuations of fluores-

cent particles and the latter, the movements of a single fluorescent particle [Bronstein

et al. [2009]; Owen et al. [2009]; Schwille et al. [1999b]].

SPT revealed for example that chromosomal loci in bacteria are moving subdi↵usively

7



1. General Introduction

Figure 1.4: Crowded cell compartments visualized by cryoelectron microscopy4 Actin
filaments are shown in orange, ribosomes and other macromolecular assemblies in grey,
and membrane structures in blue.

through the cytosole[Weber et al. [2010]]. This finding is significant for the dynamical

organization chromosomes, in particular for a possible contribution to the preservation of

the chromosomal territories during the segregation process. Further results from di↵erent

studies on chromosomal movements, which have been obtained again with SPT, show that

the telomeres in eucaryotic nucleus stay localized and their movements exhibit a transient

subdi↵usion [Bronstein et al. [2009]]. This could explain the strong conservation

4
Source : http://www.nature.com/embor/journal/v5/n1/fig_tab/7400056_F3.html
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1. General Introduction

of the genome organization. From a general point of view of chromosomal transport

Figure 1.5: Illustration of a chromosome 5, depicting its parts; the endings of each
of the four arms(3,4), called telomeres (1) and the centromere (2) connecting the two
chromatides.

within nuclei, subdi↵usion also leads to a preservation of the position without physical

constraints.

Fluorescence Correlation Spectroscopy (FCS) studies of the di↵usion of the DNA-

binding protein Lacl (lac repressor) show that this protein di↵uses normally between

bindings [Elf et al. [2007]]. This would suggest that most of the time the lacl protein is

di↵using freely along DNA strands and is non-specifically bound. The same conclusions

can be drawn from other FCS and SPT measurements for di↵erent small molecules in
5
Source : http://en.wikipedia.org/wiki/File:Chromosome.svg
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1. General Introduction

cells, whose di↵usion constants are several times smaller in denser media, like cytoplasm

(in comparison to water solution), but di↵use normally [Dix & Verkman [2008]].

Figure 1.6: Visualization of ion tra�cking in cells involving Golgi apparatus and rec-
tifier potassium channels (inward and delayed)6. The ion channels are synthesized in
endoplasmic reticulum and through Golgi are transported to the plasma membrane.

The aforementioned methods are also extensively used in studying the dynamics of molecules

within biological membranes. The FCS studies of Schwille et al. [1999b] on living cells,

revealed subdi↵usive movements of dilauroyl-sn-glycero-3-phosphocholine lipids (DLPC)

in the cell membrane. In contrast, the di↵usion in lipid granules in yeast cells display tran-

sient anomalous di↵usion for shorter times (SPT), but for longer times becomes normal

[Jeon et al. [2012]]. A very similar observation has been published using quasi-elastic neu-

tron scattering method (QENS) for the dimyristoyl-sn-glycero-3-phosphocholine (DMPC)

in the fluid phase at the pico- to nano-second time scale [Armstrong et al. [2011]]. In

the latter work the di↵usion is found to be normal for larger inter-lipid distances, with

6
Source : http://openi.nlm.nih.gov/detailedresult.php?img=2741594_pbio.1000203.g012&req=4
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1. General Introduction

a value of di↵usion coe�cient consistent with other findings. But for smaller lipid-lipid

lateral distances (0.23 nm) the nature of the movements are ballistic (motions without

collisions with other molecules). Other QENS results show that phospholipids might dif-

fuse together with their neighbors [Busch et al. [2010]]. This experiment of pico- to

nano-second time scale suggests a dynamical clustering of lipids moving together in plane

of a membrane.

As biological bilayers are vivid mosaics containing not only lipids but also proteins,

the scope of experimentalists also focused on the di↵usion of the latter. FCS studies of

the Golgi resident membrane proteins [Weiss et al. [2003]] tracked the subdi↵usion of

these molecules in the endoplasmic reticulum. Other findings using SPT on potassium

membrane channels, imply anomalous di↵usion of these proteins [Weigel et al. [2011]].

Movements which are supposedly a↵ected by the actin cytoskeleton network.

1.3 Modeling anomalous di↵usion

In 1855 Adolf Fick published one of the first theoretical papers on di↵usion, which was

inspired by Fourier’s work on heat transfer. The basic assumption in his work is that the

direction of the di↵usive flux, J , is from higher to lower concentrations of a substance [Fick

[1855]],

J(x, t) = �DrC(x, t), (1.1)

where D is the di↵usion coe�cient. Expressing the conservation of the total number of

particles in form of en equation of continuity, @tC(x, t) +r · J(x, t) = 0, it follows then

that C(x, t) fulfills the well-known di↵usion equation,

@

@t
C(x, t) = D�C(x, t). (1.2)
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1. General Introduction

The solution of Eq. (1.2) is a Gaussian function. Later Einstein has given a probabilistic

interpretation for Fick’s model, in which he has shown that this Gaussian function is the

mean squared displacement of the di↵using particles [Einstein [1905]]:

W (t) = h(x(t)� x(0))2i = 2D t. (1.3)

Here x is the position of the particle, D is the di↵usion constant and h· · · i is an average over

all realizations of a random walk. Experimental illustrations of Brownian movements were

published by Jean Baptiste Perrin [1909], where he recorded the random walk trajectories

of putty grains and reconstructed the Gaussian solution of the di↵usion equation by

histograms (Fig. 1.7).

Figure 1.7: Recorded di↵usion of putty grains published by Perrin [1909].

Reported exceptions from normal di↵usion have been reported quite early [Blair [1943];

Freundlich & Kruger [1935]; Herzog & Kruger [1929]; Long et al. [1953]] and one of

the manifestations is that the mean square displacement deviates from the linear form,
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1. General Introduction

Eq. (1.3),

W (t) = 2D↵ t
↵, 0 < ↵ < 2, (1.4)

where the di↵usion coe�cient D is replaced by its fractional counterpart. The ↵ param-

eter is defined in the range ↵ 2 (0, 2) and characterizes the type of di↵usion. The regime

0 < ↵ < 1 is typical for crowded systems and is called subdi↵usion. For 1 < ↵ < 2

we have superdi↵usion, suggesting the presence of forces accelerating the motions of the

particle under consideration.

Figure 1.8: MSD of a model system for various values of ↵ [Kneller [2011]].

Anomalous di↵usion can be modelled by considering probability density functions of wait-

ing times,  t, and lengths of jumps,  j, which is the base of the continuous time random

walk model [Montroll & Scher [1973]; Montroll & Weiss [1965]; Shlesinger [1974]]. In

case of subdi↵usive processes, waiting times can be very long and the characteristic wait-

ing time,
R1
0

dt t(t), diverges. The corresponding di↵usion equation has the form of a
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1. General Introduction

fractional di↵erential equation [Metzler & Klafter [2000]; Wyss [1986]]

@P (x, t)

@t
=

0

@1�↵t D↵ �P (x, t), (1.5)

where
0

@1�↵t denotes the factional Rieman-Liouville derivative of order (↵�1) [Oldham &

Spanier [2006]]. In general
0

@m��
t f(t) = dm/dtm

R t

0

�(�)�1(t� t0)��1f(t0) is the fractional

derivative of order m � �, where m = 0, 1, 2 and � � 0. The convolution expresses

non-Markovian memory e↵ects and for ↵ = 1 the normal di↵usion equation is retrieved.

In contrast to Eq. (1.2), P (x, t) ⌘ P (x, t|x
0

, t
0

) is, however, the conditional transition

probability of a stochastic process and not a concentration.

In the framework of the classical theory of liquids, the MSD can be expressed as [Boon

& Yip [1991]]

W (t) = h(x(t)� x(0))2i = 2

Z t

0

dt0(t� t0)Cvv(t
0), (1.6)

where Cvv = hv(t) · v(0)i is the velocity autocorrelation function of the di↵using particle.

As shown in Fig. 1.8, the MSD exhibits for short times a so-called ballistic behavior,

W (t) = h|v|2it2, which corresponds to movements without any collisions. For long times,

the asymptotic forms of the MSDs show either normal di↵usion, subdi↵usion or superdif-

fusion [Kneller [2011]]. Equation (1.4) is true only in asymptotic regime for t ! 1,

W (t)
t!1⇠ 2D↵ t

↵, 0 < ↵ < 2. (1.7)

1.4 Recent simulation work

Molecular dynamics simulation is a numerical method allowing to simulate the dynamics of

complex liquids and solids at atomic resolution [Allen & Tildesley [1991]]. This computer

technique gives access to a very detailed picture of the dynamics of molecular systems on

pico- to nano-seconds scale. Despite the limitations of the accessible time scale, molecular
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1. General Introduction

dynamics simulations provide deep insights.

In studies of biological membranes, molecular dynamics simulations are widely used

and some simulations show contradictory findings concerning the dynamics of lipids within

the membranes. In the work of Kneller et al. [2011] it was for example shown that the

MSD for the lateral di↵usion of lipid molecules in a dioleoyl-sn-glycero-3-phosphocholine

(DOPC) membrane exhibits a subdi↵usive form with ↵ ⇡ 0.5. Similar findings have

been published for the dynamics in lipid bilayers [Arnold et al. [2004]; Ritchie et al.

[2005]] Other molecular dynamics simulation results reveal subdi↵usive motions of the

Figure 1.9: Plot representing the displacements of the DPPC lipids in x and y planes for
the upper leaflet (a,b,c) and lower leaflet (d); (a) shows a 50 ps interval from 5.00 to 5.05
ns of the simulation, (b) a 500 ps interval from 5.0 to 5.5 ns, (c) a 5 ns interval from 5 to
10 ns, and (d) a 30 ns interval from 10 to 40 ns [Falck et al. [2008]].
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DOPC, DSPC (distearoyl-sn-glycero-3- phosphocholine) and SOPC (1-stearoyl-2-oleoyl-

sn-glycero-3- phosphocholine) lipids in mixtures with cholesterol [Jeon et al. [2012]]. On

the other hand, extensive simulations of DMPC by Flenner et al. [2009] and Goose

& Sansom [2013] show three regimes of lipids di↵usion in the bilayer, suggesting that

subdi↵usion is a transient phenomenon. There are, moreover, some interesting findings

of the collective motions of the lipids [Falck et al. [2008]]. The simulations, which were

performed for DPPC systems of di↵erent sizes (from 128 to 4608 lipids), showed collective

”flow-like” patterns of moving molecules strongly correlated over tens of nanometers. This

suggests that neighboring molecules di↵use together, keeping their relative distances for

long times.

The goal of this thesis is to elucidate this interplay of subdi↵usion and the persistence of

local ”cages” formed by neighboring lipids.
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Chapter 2

Concept of Molecular Dynamics

Simulations

Molecular dynamics (MD) is a computational method to study the structure and dynam-

ics of liquids, which was introduced by Alder and Wainwright[Alder & Wainwright [1957]].

Figure 2.1: Results of one of the first molecular dynamics simulation published by
Alder [Alder & Wainwright [1957, 1959]] - the figure shows traces of the simulated hard
sphere particles for about 3000 collisions.
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Following works of Alder and Wainwright, Rahman proposed in 1964 a realistic continu-

ous potential for the system of liquid argon [Rahman [1964]], and performed a simulation

for 864 argon molecules in a cubic box, which is considered the first classical MD simula-

tion. Further works of Rahman, with Stilinger, resulted in realistic simulations of liquid

water [Stillinger [1974]]. Three years later the MD method advanced another step with

the first simulation of a protein, bovine pancreatic trypsin inhibitor (BPTI), which was

performed by McCammon McCammon et al. [1977].

Figure 2.2: Structure of the first simulated protein - bovine pancreatic trypsin inhibitor
(BPTI)10. On the bottom of the figure is written full amino acid sequence of this protein.

Since then, computer technology progressed enormously and allows today to simulate

10
Source : http://en.wikipedia.org/wiki/File:BPTI_seq_ribbon_sticks.jpg
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such diverse biological systems as DNA-protein complexes or lipid membranes by MD.

One can in particular address biological relevant problems as protein folding and ligand

binding.

2.1 Classical Molecular Dynamics Simulations

2.1.1 Concept and potential function

Molecular dynamics simulations are conducted by solving Newton’s equations of motion

for a system of N atoms on a discrete time scale,

mi
d2ri
dt2

= Fi, i = 1, 2, ..., N. (2.1)

Here Fi is the acting force on the i�th atom, where mi is its mass. The force is computed

as the negative gradient of the potential energy V (r
1

, r
2

, ...rN),

Fi = �
@Vi

@ri
(2.2)

The potential energy describes all interactions in the simulated system, which are treated

in terms of classical mechanics. The equations of motions are solved for the atoms in

the system and the electrons are not considered explicitly. The dynamics of electrons

being much faster than one of the atomic nuclei, so one can consider that the movements

of electrons instantly adjust to the movements of atom. This is the Born-Oppenheimer

approximation. Moreover electrons are implicitly always in the ground states, so MD can

not model processes of electron transfers or systems with electrons in excited states. It is

one of the reasons why it is not possible to treat properly chemical reactions in classical

MD. This is also true for all the quantum e↵ects that can appear in the system, e.g.

tunneling of protons or existence of noncovalent intermediates. Such phenomena cannot be
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simulated by classical molecular dynamics simulations. Despite these limitations, classical

MD simulations have proven to be very successful in reproducing experimental results and

in predicting new properties of the systems under consideration.

The potential energy describes so-called bonded and non-bonded interactions,

V (r
1

, r
2

, ..., rN) =
X

bonds

Kb(b� b
0

)2 (2.3)

+
X

angles

K✓(✓ � ✓0)2 (2.4)

+
X

dihedrals

Vn

2
(1 + cos(n �  

0

)) (2.5)

+
X

i<j

A

r12ij
� B

r6ij
(2.6)

+
X

i<j

qiqj
✏rij

. (2.7)

Bonded interactions result from covalent bonds between atoms and include bond-stretchings

with a harmonic force with force constantKb around the equilibrium bond length, b
0

(2.3),

harmonic bending of valence angles (2.4) with harmonic constants K✓, and displacements

of dihedral angles (2.5). Here Vn is the height of the energy barrier and n-th number

of minima in the range (0, 2⇡). Non-bonded interactions include van der Waals (short-

range) and Coulomb interactions (long-range), which depend on the relative distances rij

between interacting atoms. Van der Waals interactions describe repulsion between atoms

due to volume exclusion, as well as dipole-induced attractions between atoms. These

interactions are described by the Lennard-Jones function (2.6). The Coulomb term in

the potential function 2.7, represents the electrostatic interactions between atom charges

qi and qj, and ✏ is the permittivity constant for the medium in which the charges are

embedded.

The values for the aforementioned physical quantities (e.g Kb, b0, ✓0, qi...) define the
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force-field (↵). They are fitted to experimental data and/or quantum mechanical calcu-

lations. The calculation of the potential energy with all-atom force-fields is very time-

consuming, since the computational e↵ort for the two-body interactions between free

N-particles (not bonded covalently) grows as N2. One of the approaches to reduce the

computational e↵ort is therefore to reduce the number of interaction centres. Three cate-

gories of force-fields are used today: all-atom (AA), united atom (UA) and coarse-grained

(CG) ↵s. The UA and CG ↵s group several atoms into one particle. In the united atom

model, one particle describes one heavy carbon atom with all aliphatic hydrogen atoms

bound to it. In coarse-grained force-fields, several heavy atoms (with all hydrogen atoms

bound to them) are represented as one interaction center, a so-called “bead”, allowing for

simulations on much larger time and length scales.

As already mentioned, Newton’s equations of motion are numerically solved by a

discretization scheme. One of these schemes is the leap-frog algorithm. This integrator

uses the positions ri at time t and velocities vi at t � 1

2

�t to calculate the positions at

time t+ �t [Frenkel & Smit [2002]] :

vi(t+
1

2
�t) = vi(t�

1

2
�t) +

�t

mi

Fi(t), (2.8)

ri(t+ �t) = ri(t) + �t vi(t+
1

2
�t). (2.9)

The new coordinates at t + �t are calculated after a leap over velocities at t + 1

2

�t

(therefore the name leap-frog). The algorithm is robust and time-reversible, and the

integration error is of order 3 in �t. The total energy can, however, not be calculated

directly at a given time step, as the potential and kinetic energies are not computed at the

same time. For this reason the the so-called Velocity-Verlet algorithm has been proposed.

As the Leap-Frog integrator, it integrates explicitly positions and velocities, but both are
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available at the same time [Frenkel & Smit [2002]] :

ri(t+ �t) = ri(t) + �tvi(t) +
�t2

2mi

Fi(t), (2.10)

vi(t+ �t) = vi(t) +
�t

2mi

(Fi(t+ �t) + Fi(t)). (2.11)

In both algorithms the explicit integration of velocities can be used to simulate systems

in contact with an external heat bath, which requires the scaling of the velocities.

2.1.2 Periodic boundary conditions and treatment of electro-

static interactions

Molecular systems in MD simulations are many orders of magnitude smaller than macro-

scopic systems studied by experimental methods. A direct simulation would produce

unwanted artefacts, especially at the edges of the simulated systems. In order to avoid

such artefacts, one can apply periodic boundary conditions (PBC).

This means an infinite replication of the simulation box in all the directions. Assuming

a cubic simulation box, the images of the i-th atom have the positions

r0i = ri + nL = (xi + nxL, yi + nyL, zi + nzL) (2.12)

where L is the dimension of the box and n = (nx, ny, nz), with nx,y,z 2 N. An illustration

id given in Fig. 2.3. During MD simulations the use of PBC just means that molecules

can leave the box and enter it on the opposite side. To avoid jumps in the forces the

minimum image convention is used; interactions are computed for the closest site (either

a ”real” atom or its image). This convention implies also use of a cut-o↵ radius for the

short- range interactions, which is generally defined as half the length of the shortest linear

box dimension (rcutoff  L). This approach is, however, not correct for the long-ranged

Coulomb interactions, which exceed the box dimensions. Here the simulated system is
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Figure 2.3: Ilustration of the periodic boundary conditions (PBC) method with the
minimum image convention. The box in the middle is replicated in all directions and the
non-bonded interactions are calculated only for the closest atoms or their images.

treated as a pseudo-crystal, using the Ewald summation to compute the electrostatic en-

ergy and forces.

The Coulomb energy of a system with periodic boundary conditions reads [Frenkel &

Smit [2002]]

V
electrostatic

(ri) =
1
X

|n|=0

0
N
X

i=1

N
X

j=1

qiqj
|rij + nL| . (2.13)

The series above does not include the interactions between identical atoms in the central

box (|n| = 0) which is indicated by the prime on the first sum. Series (2.13) does not
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converge and depends on the order of summation. The most common choice is spherical

shell summation, which means summation over the lattice of simulation cells within a

finite radius R >> L, taking the limit R ! 1. Since the system under consideration

is periodic, the electrostatic potential and the charge distribution are written as Fourier

series. The Fourier series for the charge distribution is split into a component which is

made convergent by a spherical Gaussian damping factor and the complement which is

evaluated in real space [Ballenegger [2014]; Ewald [1921]]. An e�ciency gain for the

computation of the first component can be obtained by evaluating charge distribution

on a mesh (grid) and computing its Fourier transform by the Fast Fourier Transform

algorithm (FFT). The is the so-called particle-mesh Ewald (PME) summation [Darden

et al. [1993]; Deserno & Holm [1998]].

2.2 Treatment of thermodynamic conditions

With the conventional molecular dynamics method systems are simulated in microcanon-

ical conditions (NV E ensemble), i.e. with a constant number of atoms, N , a constant

volume, V , and a constant total energy E. Most processes in nature happen, however, in

conditions where the temperature, T , and/or pressure, p, are constant. More realistic for

simulating biological systems is the canonical ensemble, where the total number of parti-

cles, the volume and the average temperature are kept constant (N, V, T = const), or the

isothermal-isobaric ensemble (N, p, T = const), where the total number of particles, the

average pressure and the average temperature are fixed (N, p, T = const).

In order to perform molecular dynamics simulations of a system in the NpT ensemble,

Andersen and Nosé introduced the extended system method [Andersen [1980]; Hoover

[1985]; Nosé [1984]]. In this approach scaling variables are introduced, which are addi-

tional degrees of freedom of the dynamical system and which represent, respectively, the

thermostat and the barostat. By scaling the positions and the velocities of the system
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with these these additional variables, one can obtain the desired ensemble. The equations

of motions for the isothermal-isobaric ensemble read

ṙi =
V̇

3V
ri +

pi

mi

, (2.14)

ṗi = Fi �
V̇

3V
pi � ⇠pi, (2.15)

V̇ =
pV
WV

, (2.16)

ṗV =
1

3V

n

N
X

i=1

p2

i

mi

�
N
X

i=1

ri · Fi

o

� p� ⇠pV , (2.17)

⇠̇ =
1

WS

n

N
X

i=1

p2

i

mi

+
p2V
2WV

� (3N + 1)kBT
o

. (2.18)

Here ri are the atomic positions, pi the associated momenta, mi is the mass of atom i,

and V is the (fluctuating) volume of the simulation box. The variable ⇠ plays the role of a

“friction constant”, which can, however, take positive and negative values. The constants

WS and WV are pseudo masses describing the inertia of the thermostat and barostat,

respectively, which determine the reaction time of the system to adapt to the imposed

values of pressure and temperature. As usual, kB denotes the Boltzmann constant.

Another method to regulate the temperature and pressure in the simulated system is

the Berendsen coupling scheme [Berendsen & Postma [1984]]. The algorithm imposes

corrections to deviations from the reference temperature or/and pressure at each step of

the simulation. The Berendsen method is very robust, but does not correspond to the

usual thermodynamic NV T or NpT ensembles.

An generalization of the extended system method, which allows for pressure control in

anisotropic systems, was proposed by Parrinello and Rahman [Parrinello [1981]]. Here

the components of the stress tensor instead of the (scalar) pressure are adjusted to desired

values.
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Chapter 3

Simulated systems and simulations

3.1 System setup

In this thesis two types of force-fields were used for molecular dynamics simulations of

POPC bilayers - the all-atom Optimized Potentials for Liquid Simulations (OPLS) [Jor-

gensen & Tirado-Rives [1988]; Jorgensen et al. [1996]] and the coarse-grained MARTINI

force field [Marrink et al. [2004, 2007]]. The longest production run using the OPLS-AA

↵ was of 150 ns, given the limitations of computer power. In order to attain longer time

scales and larger systems, additional simulations were performed with a coarse-grained

model.

3.1.1 All-atom OPLS force-field

The OPLS-AA force-field was originally developed for the simulations of proteins in liquid

solutions [Jorgensen & Tirado-Rives [1988]; Jorgensen et al. [1996]] and has been extended

later for the simulation of macromolecules [Kony et al. [2002]; McDonald & Jorgensen

[1998]; Takeuchi [2012]; Watkins & Jorgensen [2001]], including lipids [Pasenkiewicz-

Gierula et al. [1999]; Róg et al. [2002]; Shinoda & Okazaki [2001]; Takaoka et al. [2000]].
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Figure 3.1: Simulated box of POPC all-atom model membrane. The system consists of
total 274 lipids embedded in 10 471 water molecules.

The all-atom system consisted of 137 POPC lipids in each leaflet (274 lipids in total) and

was built from POPC lipid patches provided by the VMD program [Humphrey et al.

[1996]]. Thereafter it was fully hydrated with 10 471 water molecules using one of the

tools from the GROMACS package [Hess et al. [2008]]. An average number of 38 water

molecules per lipid is assumed to correspond to a fully hydrated POPC membrane (the

expected value is of at least 27 water molecules per POPC molecule [Murzyn et al.

[2001]; Nagle [1993]; Nagle et al. [1996]; Tristram-Nagle et al. [1998]]). The interactions

of water were calculated with the SPC/E model, which assumes a rigid structure of the

water molecules [Berendsen et al. [1987]]. The choice of the SPC/E force-field was

motivated by the fact that it is one of the most commonly used models, which reproduces
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well most properties of water and can be used in simulations with the OPLS-AA force-

field [Hess & van der Vegt [2006]]. The final structure of the simulated system is shown

in Fig. 3.1 [Stachura & Kneller [2013]].

3.1.2 Coarse-grained MARTINI force-field

The MARTINI force-field [Marrink et al. [2004, 2007]] was chosen for the extended simu-

lations with a coarse-grained force-field. In this ↵ each molecule is built from beads, which

represent each four heavy atoms with all hydrogen atoms bonded to them. Therefore one

water bead equals four water molecules.

Figure 3.2: Simulated box of POPC coarse-grained model membrane. The system consists
of 2033 lipids hydrated by 231 808 water molecules.

The POPC bilayer constructed for the simulations with the MARTINI ↵ consisted of

2033 lipids in total and was hydrated by 57 952 water beads, representing 231 808 wa-
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ter molecules (Fig. 3.2) [Stachura & Kneller [2013]]. The starting structure was taken

from Loe✏er & Winn [2009].

In the MARTINI ↵ each POPC lipid molecule is built of 13 beads, and has a total

mass MCG = 936 amu. The value is slightly higher than the real mass M = 760.08 amu

AA CG

Figure 3.3: Comparison between all-atom and coarse-grained models of POPCmembrane.

(amu means atomic mass units). To compensate for the higher masses the simulations

were conducted at a temperature higher by 10 K compared to the temperature for the
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all-atom calculations [Stachura & Kneller [2013]]. The comparison between all-atom and

coarse-grained models is presented in Fig. 3.3.

3.2 Membrane simulations

All simulations in this thesis were conducted with the GROMACS package [Hess et al.

[2008]] and the resulting trajectories were analysed with the nMoldyn program [Hinsen

et al. [2012]; Kneller et al. [1995]]. All simulated systems (MARTINI and OPLS-AA ↵s)

were energetically equilibrated, before the production runs. Equilibration does not only

imply constant total energy but also stable box fluctuations and surface areas per POPC

lipid, which should be close to experimental data on average. All the simulations were

performed above the main phase transition temperature of POPC lipids (270 K), which

means that bilayers were in liquid phase [Lewis et al. [1988]; Litman et al. [1991]].

3.2.1 OPLS-AA force-field

The integration time-step in the all-atom simulations was generally set to 1 fs. An ex-

ception was the very first stage of the system equilibration, where the time-step was 2 fs.

All bonds involving hydrogen atoms were constrained using the LINCS algorithm [Hess

et al. [1997]]. Periodic boundary conditions were applied in all three directions with the

minimum image convention. The Coulomb interactions were treated using the Particle-

Mesh Ewald method with a real cut-o↵ radius, rcutoff , of 1.2 nm. The same rcutoff was

chosen for the van der Waals interactions. During simulations a constant temperature of

310 K was preserved either by Nosé-Hoover or Berendsen thermal baths. Most of the cal-

culations were performed in isothermal-isobaric conditions (NpT), at a constant pressure

of 1.01325 bar ( 1 atm). The pressures perpendicular and parallel to the bilayer were ad-

justed independently. The force-field parameters, were chosen as in similar simulations of

POPC bilayers with the OPLS-AA force-fields [Murzyn et al. [2001]; Róg et al. [2003]].
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3.2.1.1 System equilibration

The equilibration of the system was performed according to the method proposed by

Berger et al. [1997]. The process has several stages:

1. A short 100 ps simulation in the canonical ensemble. The starting structure being

far from equilibrium, a constant temperature was adjusted with the Berendsen ther-

mostat, using a relatively short relaxation constant of 90 fs. The initial velocities

of the atoms were generated according to the Maxwell-Boltzmann distribution at a

temperature of 310 K.

2. Afterwards the system was coupled for 10 ps to the Berendsen barostat at 1 atm

applying the pressure semi-isotropically (adjusting the pressure independently in

perpendicular and vertical directions to the membrane). The relaxation time con-

stants were set to 50 fs and 20 fs for pressure and thermal baths, respectively.

3. In the last stage, much longer isothermal-isobaric (NpT) simulations were con-

ducted, where the system was coupled to the Nosé-Hoover thermostat and the

Parrinello-Rahman barostat with the time constants of 200 fs and 500 fs, respec-

tively. Again a pressure of 1 atm was adjusted semi-isotropically.

The last part of the equilibration process was performed until the total energy and sur-

face area per lipid attained stable fluctuations around the desired mean values. Three

consecutive simulations were conducted - 50 ns, then 30 ns and lastly 150 ns (230 ns in

total), before the system was considered to be in equilibrium.

3.2.1.2 Short production run - 15 ns

After the equilibration phase a 15 ns production simulation was performed for further

analyses. The total energy of the POPC membrane does not show any signs of decay -

the energy fluctuations have the same amplitude around the mean value (Fig. 3.4). The
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same can be said about the box fluctuations in the X, Y and Z directions (see Fig. 3.5a).

The pressure applied during the simulation was treated isotropically in the XY-plane.

The fluctuations in the X and Y directions are thus identical.
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Figure 3.4: Total energy of the POPC bilayer during 15 ns simulation with OPLS-AA
force-field. The system is in equilibrium.

The fluctuations of the surface area per lipid, which are presented in Fig. 3.5b, are rela-

tively stable. The mean area per lipid is 0.638± 0.004 nm2, which is in good agreement

with the experimental results. Published estimations of the surface area per POPC in the

literature are 0.63 nm2 using a surface pressure of 30 mN/m [Smaby et al. [1997]] and

0.66 nm2 for a surface pressure of 20 mN/m [Hyslop et al. [1990]].

32



(a)

0 2 4 6 8 10 12 140.50

0.55

0.60

0.65

0.70

0.75

t @nsD

A
re

a
pe

rl
ip

id
@nm

2 D

(b)

Figure 3.5: Plots representing the behavior of the system during the 15 ns production run.
The plots show fluctuations of : a) the simulation box in all three dimensions; b) the area
surface per lipid. Both are stable with the mean value of the latter of 0.638± 0.004 nm2,
which indicates that the system is in equilibrium.
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3.2.1.3 Extended simulation - 150 ns

For comparison, a longer 150 ns simulation was performed. Here the starting structure for

the calculations was the last frame of the 15 ns simulation. Fig. 3.6 shows that the total

energy of the membrane is stable. This is also true for the fluctuations of the simulation

box (Fig. 3.7a).
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Figure 3.6: Total energy of the POPC bilayer of 150 ns all-atom simulation - the system
is in energetic equilibrium.

The calculated mean surface area per POPC lipid, 0.637± 0.006 nm2, is very close to the

value obtained for the 15 ns simulation. With the di↵erence that the mean fluctuations

are nearly twice larger. Nevertheless, the system can still be considered stable, as this

value is much smaller than the di↵erence of 0.03 nm2 between the experimental surface

areas obtained for 20 mN/m and 30 nM/m (Fig. 3.7b).
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Figure 3.7: Plots show the fluctuations of the box (a) and the surface area per POPC
(b) for 150 ns simulation. The mean area per lipid of 0.637 ± 0.006 nm2 is close to the
value obtained for the 15 ns simulation.
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3.2.2 MARTINI force-field

The MARTINI force-field parameters chosen in this thesis are very close to the ones pub-

lished by the developers of the force-field [Marrink et al. [2004, 2007]]. The reduction

of interaction centres in this ↵ allows for longer integration time-steps. In this study the

integration time-step was was chosen to be 30 fs for all simulations (the proposed values

are between 20 fs and 40 fs). Coulomb and van der Waals interactions were smoothly

switched to zero in a distance range, rmin  r  rmax [Marrink et al. [2007]]. For

short-range interactions rmin = 0.9 nm and rmax = 1.2 nm were used, and for long-range

interactions rmin = 0 nm and rmax = 1.2 nm. The simulations were conducted in two

thermodynamic conditions - canonical (NVT) and pseudo-isothermal-isobaric (NApzT )

[Marrink et al. [2007]]. A constant temperature of 320 K was kept using the Berendsen

thermal bath with a relaxation time of ⌧T = 1.5 ps. In case of NApzT simulations the

surface area of the bilayer was constant and the Berendsen barostat adjusted only the

pressure of 1 atm in direction perpendicular to the surface of the membrane. The coupling

time constant was ⌧p = 3 ps and the compressibility � = 4.5⇥ 10�5 bar�1.

3.2.2.1 System equilibration

In comparison to the all-atom calculations the procedure for the MARTINI system equi-

libration was much simpler, as the starting structure used for the simulations was already

equilibrated. The system equilibration process was conducted for both systems for 1.2µs

in the respective ensembles, until drifts were su�ciently small. The mean surface area

per POPC lipid is fixed at 0.666 nm2, which is very close to the experimentally estimated

value of 0.673± 0.013 nm2 at a temperature of 323 K [Kučerka et al. [2011]].
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3.2.2.2 600 ns production run in the canonical ensemble

After equilibration the system was simulated for additional 600 ns. The total energy of

the bilayer, which is shown in Fig. 3.8, has attained stable fluctuations around the desired

mean equilibrium value.
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Figure 3.8: Total energy of 600 ns MARTINI simulation in NVT conditions.
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3.2.2.3 600 ns production run in the NApzT ensemble

The simulations in the NApzT ensemble were performed for 600 ns, as well. The total

energy of the bilayer is also reasonably stable, which is shown in Fig. 3.9.
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Figure 3.9: Total energy fluctuations of 600 ns MARTINI simulation in the NApzT
ensemble.

3.3 Bulk water reference simulation

For comparison, a 100 ps simulation of SPC/E bulk water was performed in the canonical

ensemble. The cubic simulation box of water of 5 nm edge length was created using

GROMACS package [Hess et al. [2008]] and energetically equilibrated for 1 ns prior to
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the production run. The starting velocities of atoms were generated according to the

Maxwell-Boltzmann distribution for the temperature of 310 K. The system was coupled

to the Berendsen thermostat to fix the temperature at 310 K, using a relaxation time

of 90 fs. In the Fig. 3.10 fluctuations of the total energy during the production run are

presented.
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Figure 3.10: Fluctuations of the total energy of the reference box of bulk SPC/E water
simulated for 100 ps.
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Chapter 4

Results

4.1 Single molecule dynamics in a lipid bilayer

This chapter focuses on movements of a single lipid molecule. The single particle dynamics

is described by autocorrelation functions [McQuarrie [2000]],

C(t) = hA(0)A(t)i, (4.1)

where h· · · i denotes a time average and A is the physical quantity under consideration.

As an example, A(t) can be the velocity of the molecule,

Cvv(t) = hv(0) · v(t)i. (4.2)

Here v is the velocity vector, which implies that Cvv(t) is averaged over the three direc-

tions, X, Y, Z. In this thesis, all autocorrelation functions are calculated in the plane of

the model membranes (lateral autocorrelation functions). It was mentioned earlier, the

dynamics of the POPC lipids within the bilayers, is of main interest for this work.

The presented analyses of the OPLS all-atom and MARTINI coarse-grained simulations

were performed with the nMoldyn program [Hinsen et al. [2012]; Kneller et al. [1995]].
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4.1.1 Mean Square Displacements

The lateral mean square displacements, W (t) = h(x(t)� x(0))2i, were calculated for the

centers of mass (CM) of the all-atom and coarse-grained POPC lipids, using an e�cient

FFT implementation [Kneller et al. [1995]] of

Wi(n) ⇡
1

Nf � n

Nf�n�1

X

k=0

(xi(k + n)� xi(n))
2. (4.3)

Here Nf is the total number of frames (time-steps) of the analysed trajectories, x(n) ⌘

x(n�t), and �t is the integration time-step. In order to raise statistical accuracy the

center-of-mass MSDs were averaged over the total number of all lipids,

Wm =
1

N

N
X

j=1

Wi(n) (4.4)

The maximum accessible lag-time of the analyses was chosen to be shorter than 10%

of the total length of the MD trajectories. This choice was made in order to guarantee

the statistical relevance of the results. For longer lag times the time averaging of the

calculated functions might prove insu�cient to obtain reliable results. Therefore the

maximal lag-time for the 15 ns OPLS-AA simulation was 1.5 ns, 15 ns for the 150 ns

OPLS-AA simulation and 50 ns for the MARTINI calculations.

4.1.1.1 Atom-detailed simulations

Expression (1.4) was fitted to the numerically lateral center-of-mass mean square dis-

placements computed for both the shorter (15 ns) simulation and and the longer (150 ns)

simulation. The results are presented in Fig. 4.1. In both cases the MSDs exhibit clearly

a sublinear behavior. This strongly contrasts with normal di↵usion in case of simulated

SPC/E water, for which the W(t) evolves linearly with time (inset in Fig. 4.1a), as one

expects for normal di↵usion. The fitted values of the parameter ↵ for 15 ns (↵ = 0.668)
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Figure 4.1: The MSD, W(t), calculated for the centres of the masses of the POPC lipids
simulated for 15ns (a) and 150 ns (b). The inset in (a) shows the MSD for normal di↵usion
(SPC/E water).
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and 150 ns (↵ = 0.701) fall in the regime of subdi↵usion. These results are consistent

with the experimentally determined value of ↵ ⇡ 0.74 for biological membranes [Schwille

et al. [1999a]] and with simulation results of pure DOPC bilayer, ↵ = 0.61 [Kneller et al.

[2011]]. This comparison shows that the characteristics of lateral di↵usion in these bi-

ological membranes is the same. The fitted fractional di↵usion constants D↵ for POPC

have values of 0.016 nm2

ns↵
(150 ns) and 0.018 nm2

ns↵
(15 ns). In order to compare obtained

fractional di↵usion constants with the value for DOPC (D↵ = 0.101 nm2

ns↵
), one can cal-

culate the typical time scale ⌧
vacf

, which quantifies the asymptotic regime for VACF and

depends on D↵ and ↵ parameter (more details are given in next section). The typical

time scale ⌧
vacf

is related to friction in a system as ⌧
vacf

= ��1. Therefore the larger ⌧
vacf

the faster observed di↵usion. For the POPC simulations calculated ⌧
vacf

= 0.065 ps and

⌧
vacf

= 0.046 ps for 15 ns and 150 ns simulations, respectively, are smaller than for the

DOPC ⌧
vacf

= 0.345 ps, which shows the time scale of subdi↵usive motions for the both

systems is clearly di↵erent. The lateral di↵usion of DOPC lipids in the bilayer is thus

several times faster than for POPC membrane. This can be explained by the fact that

the latter is less fluid at the same temperature - its main phase transition from gel to

liquid, occurs at 270 K, while the transition for DOPC happens already

Table 4.1: Di↵usion fractional constants, D↵ and ↵ parameters obtained from the fit of
the Eq. (1.4) to the CM MSDs of POPC lipids for 15 ns and 150 ns OPLS-AA simulations.

OPLS-AA

15 ns 150 ns

↵ 0.668 0.701

D↵ (nm2/ns↵) 0.018 0.016
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at 256 K [Lewis et al. [1988]; Litman et al. [1991]]. In comparison, the experimental

value of D↵ = 0.088± 0.007 nm2

ns↵
for ↵ = 0.701 has ⌧

vacf

= 0.117 ps, which is twice larger

than for POPC and three times smaller than for DOPC. In this context it is important to

underline that the experimental results in Ref. Schwille et al. [1999a] concern studies of

a di↵erent type of lipid - DLPC (dilauroyl-sn- glycero-3- phosphocholine), but computed

⌧
vacf

for the simulations of POPC are of the right order of magnitude.

Due to the lack of any experimental works on fractional di↵usion constants for POPC

lipids, one can only compare results for the normal di↵usion. NMR studies on the

temperature dependence of normal di↵usion constant (↵ = 1) for POPC give values

of D = 0.012 ± 0.004 nm2

ns
for the temperature of 308.15 K [Lindblom et al. [1981]]

and D = 0.014 ± 0.002 nm2

ns
for 323.15 K [Köchy & Bayerl [1993]], which correspond to

⌧
vacf

= 0.0017 ps and ⌧
vacf

= 0.0021 ps, respectively. These values are much smaller than

⌧
vacf

obtained for the simulations, which means that di↵usion of POPC lipids observed in

the NMR experiments is much slower.

4.1.1.2 Coarse-grained force-field results

I recall that the mass of one lipid is MAA = 760.08 amu, while the total mass of coarse-

grained POPC lipid, MCG, is 936 amu (”amu” : means atomic mass units). Obviously

motions of heavier lipid molecules would be slower in comparison to lighter lipids and

hence have a reduced fractional di↵usion constant, D↵, which is proportional to the am-

plitude of the velocity autocorrelation function, Cvv [Kneller [2011]],

D↵ =
1

�(↵ + 1)

Z 1

0

dt
0

@↵�1

t Cvv(t), (4.5)

where
0

@↵�1

t Cvv(t) = d/dt
R t

0

dt0 �(2 � ↵)�1(t � t0)1�↵Cvv(t0) is the factional Rieman-

Liouville derivative of order (↵ � 1). As Cvv(0) is the mean squared velocity, h|v|2i =

2kBT/m, the reduction of the D↵ is of around 20% (MAA
MCG

⇡ 0.8). In order to compensate
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for that, the simulations with the MARTINI force-field were conducted at a higher

Table 4.2: Experimental values of the di↵usion constant of POPC lipids for di↵erent
temperatures [Köchy & Bayerl [1993]].

Temperature

10�C 30�C 50�C

D (10�12 m2/s) 2.1± 0.7 4.0± 0.8 7.0± 1.0

temperature than the all-atom calculations. According to the temperature dependence of

the POPC di↵usion constant shown in Table 4.2 [Köchy & Bayerl [1993]], the rise of 10

K (10�C), from 310 K to 320 K, results in estimated increase of the di↵usion constant by

⇡ 23%. Therefore MARTINI simulations were performed at a temperature of 320 K. The

lateral mean square displacements for both MARTINI simulations (with canonical, NVT,

and pseudo-isothermal-isobaric, NApzT , thermodynamic conditions) were calculated for

maximal time-lags of 50 ns, which is less than 10 % of the total trajectory length

Table 4.3: Fractional di↵usion constants, D↵ and ↵ parameters obtained from the fit of
Eq. (1.4) to the CM MSDs of coarse-grained POPC lipids for 600 ns NApzT and NVT
simulations.

MARTINI

NApzT 1.5 ns NVT 1.5 ns NApzT 50 ns NVT 50 ns

↵ 0.515 0.508 0.571 0.558

D↵ (nm2/ns↵) 0.057 0.058 0.051 0.051

(Fig. 4.2). The MSDs are very similar, especially for the shorter time- lags of 1.5 ns (inset
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in Fig. 4.2), for which both MSDs are practically identical. The parameters from the fits

of Eq. (1.4), which are presented in Table 4.3, give very similar values. The fractional

di↵usion constants D↵ from the fits up to 50 ns are the same for the NVT and NApzT

simulations: 0.051 nm2

ns↵
. The corresponding ↵ parameters of ↵ = 0.558 and ↵ = 0.571,

respectively, have also very similar values, and lie in the range of subdi↵usion.
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Figure 4.2: The MSD,W(t), calculated for the centres of the masses of the lipids simulated
for 600 ns.

In comparison to the results from the fits for 50 ns, the fractional di↵usion constants

obtained from the fits for a maximum time lag of 1.5 ps are slightly higher, but the values

of ↵ are smaller, meaning that for the longer time-lags the motions of molecules are ”less
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normal”. The calculated mean ⌧
vacf

= 0.44 ps and ⌧
vacf

= 0.30 ps for the shorter 1.5

ns) and longer (50 ns) maximal time-lag, respectively, are very similar, which shows that

analyses for shorter time-lags as short as 1.5 ns are already representative.

4.1.1.3 Comparison between OPLS-AA and MARTINI force-fields

In Figure 4.3 the lateral mean squared displacements for the simulations with the 15 ns

OPLS-AA and the 600 ns MARTINI force field (NV T and NApzT ensembles in the latter

case) are presented. The MSDs are compared for a maximal time-lag of 1.5 ns. For all

simulations the calculated MSDs have a sublinear form. The curve of the all-atom MSD
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Figure 4.3: Comparison of the centre of mass MSDs calculated for the 15 ns all-atom
and the 600 ns coarse-grained simulations (the maximal time-lag is 1.5 ns).
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seems to be slightly more linear than for the coarse-grained case. This observation is

reflected in a higher value of ↵ parameter (see Table 4.4), implying more ”normal” dif-

fusional motions of all-atom POPC lipids. In all cases the fractional di↵usion constants

(D↵ ⇡ 0.05 nm2

ns↵
) and ⌧

vacf

= 0.44 ps and ⌧
vacf

= 0.30 ps for the shorter (1.5 ns) and

longer (50 ns) maximal time-lags are several times higher than the values for the all-atom

simulations (D↵ = 0.018 nm2

ns↵
) with ⌧

vacf

= 0.065 ps. This result is consistent with other

findings showing that calculated di↵usion constants from the MARTINI simulations are

in most cases several times higher than experiments predict [Marrink et al. [2004, 2007]].

Moreover the scaling value of 4 has been mentioned in these works in case of motions of

MARTINI water beads, where it was shown that di↵usion constant is 4 times higher than

the experimental value. This di↵erence can be attributed to less detailed structure

Table 4.4: Fractional di↵usion constants, D↵ and ↵ parameters obtained from the fit of
Eq. (1.4) to the CM MSDs of coarse-grained POPC lipids for 600 ns NApzT and NV T
simulations.

OPLS-AA NApzT CG NV T CG

15 ns 150 ns 1.5 ns⇤ 50 ns⇤ 1.5 ns⇤ 50 ns⇤

↵ 0.668 0.701 0.515 0.571 0.508 0.558

D↵ (nm2/ns↵) 0.018 0.016 0.057 0.051 0.058 0.051

of MARTINI lipids (13 beads in comparison to 134 atoms building real POPC molecule)

and therefore smaller number of individual interactions between them. This could lead

to less hindered movements, so faster lateral movements of POPC lipids.

The above results show, however, also that the dynamics obtained by the coarse-grained

simulations with the MARTINI force-field, preserves the subdi↵usive character of the lipid
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motions.

It is worth noting that a transition from anomalous to normal di↵usion was reported

by Flenner et al. [2009]] on a time scale of 10 ns and normal di↵usion for POPC with

the MARTINI ↵ by Niemelä et al. [2010], who analyzed a 500 ns simulation. In this

work the subdi↵usive nature of lipids motions is preserved for 15 ns and up to 50 ns

for the all-atom and the 600 ns coarse-grained POPC lipids simulations, respectively. A

possible explanation for these discrepancies is the statistical error, which is induced by

using appropriate maximal lag-times.

4.1.1.4 Bulk water comparison with membrane hydration water

In order to verify if the simulated system of bulk water reproduces the behavior of a real

water system, in particular normal di↵usion, it is compulsory to compare the di↵usion

constant obtained from the simulation with an experimental value. Figure 4.4 shows

the mean square displacement calculated for the reference SPC/E bulk water, which was

simulated for 100 ps in canonical thermodynamic conditions at the temperature of 310

K (section 3.3). The di↵usion constant calculated from the fit of Relation (1.3), gives

the value of 3.528 · 10�9

m2

s
(3.528 nm2

ns
). In comparison to experimental findings, where

the di↵usion constant is D = 2.919 · 10�9

m2

s
[Mills [1973]] for temperature of 307.15 K,

the obtained value is reasonably close. According to studies of Mark & Nilsson [2001],

simulations using the SPC/E water model yield best di↵usion constants (compared to

other models, e.g. TIP3P and SPC), but still the obtained value is about 20 % too large

for the given temperature.

A very interesting subject is the behavior of water around lipid membranes. Exper-

imental findings show that water molecules close to the surface of biological membranes

interact with lipid molecules, forming a particular hydration layer [Arnold et al. [1983];

Fitter & Lechner [1999]; Gawrisch et al. [2007]; Pearson & Pascher [1979]]. They create

a network of intermolecular bonds between lipids, which are linked to each other via hy-
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drogen bonds of water molecules, so-called water-bridges, and thus stabilize the structure

of membrane [Binder et al. [1999]; Mombelli et al. [2003]; Pasenkiewicz-Gierula et al.

[1997]; Pearson & Pascher [1979]; Róg et al. [2009]; Steinbauer et al. [2003]].
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Figure 4.4: W(t), calculated for the centres of the masses of the bulk SPC/E water
simulated for 100 ps.

This obviously a↵ects motions of water and some findings show a reduction of the dif-

fusion constant by a factor of 2-5 in comparison to bulk water [Fitter & Lechner [1999];

Gawrisch et al. [2007]; Pasenkiewicz-Gierula et al. [1997]; Róg et al. [2009]].

Although this subject was not in the focus of this thesis, some short analysis can be

given on the water motions in studied POPC systems in this thesis. The hydration level

of atom detailed OPLS POPC bilayer and coarse-grained MARTNI membrane is ⇡ 38
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Figure 4.5: The MSD, W(t), calculated for the centres of the masses of the water around
POPC bilayer in case of 15 ns all-atom simulation (a) and 600 ns MARTINI (b).
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water molecules and⇡ 28 water beads per POPC lipid, respectively. The reported number

of water molecules forming hydrogen bridges vary with the type of lipids, but in case

of fully hydrated POPC it may include up to average ⇡ 9.4 molecules per one POPC

lipid [Gawrisch et al. [2007]]. This means that ⇡ 25% of all water molecules surrounding

simulated bilayers are potentially involved in forming water bridges. This should have an

influence on the average di↵usion constant of the simulated water molecules (alternatively

water beads). Figure 4.5 shows plots of the mean square displacements for the centre of

mass of SPC/E water from 15 ns OPLS-AA simulations (Fig. 4.5a) and for water beads

of both, NVT and NApzT 600 ns MARTINI simulations (Fig. 4.5b). The calculated

di↵usion constants of 1.721·10�9

m2

s
(1.721 nm2

ns
) (OPLS-AA) and 1.399·10�9

m2

s
(1.399 nm2

ns
)

(MARTINI) are indeed smaller than for the bulk SPC/E water - 3.528·10�9

m2

s
(3.528 nm2

ns
),

i.e. by a factor of ⇡ 2 (Table 4.5).

Table 4.5: Comparison of the di↵usion constants of a bulk and surrounding lipid bi-
layer SPC/E water, water in the MARTINI POPC simulations and the experimental
value [Mills [1973]].

WATER

bulk SPC/E SPC/E (mem.) CG (mem.) exper.

D (10�9 m2/s) 3.528 1.721 1.399 2.919

This indicates that in the simulated systems presented in this thesis, similarly to earlier

findings, exist strong water interactions involving water molecules/beads and POPC lipids

in model membranes. Very interesting is the fact that di↵usion constants for water beads

in MARTINI systems (which are exactly the same for both thermodynamic conditions)

is smaller than for all-atom case. This would suggest a much stronger e↵ect of water-

bridging (especially when the reported di↵usion constant of bulk MARTINI water is ⇡ 4
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higher than experimental result [Marrink et al. [2007]]). This matter would need more

further investigation to give a more coherent view of the problem.

4.1.2 Velocity autocorrelation function analysis

For the following considerations we need that the MSD and VACF are related via [Boon

& Yip [1991]]

W (t) = 2

Z t

0

(t� t0)Cvv(t
0)dt0, (4.6)

It follows now from Eq. (1.7) that its Laplace transform behaves as [Kneller [2011]]

Ŵ (s)
s!0⇠ 2D↵

�(↵ + 1)

s↵+1

, (4.7)

and on the other hand it follows from Eq. (4.6) :

Ŵ (s) =
2Ĉvv(s)

s2
, (4.8)

For an arbitrary function f(t) the Laplace transform is defined as f̂(s) =
R1
0

dt exp(�st)f(t)

(<{s} > 0). The relation between asymptotic form of MSD and VACF can be obtained

by comparing Eqs. (4.7) and (4.8), which leads to [Kneller [2011]]:

Ĉvv(s)

s

s!0⇠ D↵�(↵ + 1)s�↵, (4.9)

where Ĉvv(s)/s is the Laplace transform of the integral

fc(t) =

Z t

0

dt0Cvv(t
0). (4.10)

Since Eq. (4.9) is singular for any ↵ > 0, as s approaches zero, one obtains the equivalence

f̂c(s)
s!0⇠ D↵�(↵ + 1)s�↵ , fc(t)

t!1⇠ ↵D↵�1

t↵�1 (4.11)
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and finally [Kneller [2011]]

W (t)
t!1⇠ 2D↵t

↵ , fc(t)
t!1⇠ ↵D↵�1

t↵�1. (4.12)

Since Cvv(t) = dfc(t)/dt, one obtains from Expression (4.12) the necessary condition

W (t)
t!1⇠ 2D↵t

↵ ) Cvv(t)
t!1⇠ D↵↵(↵� 1)t↵�2 (4.13)

for the long-time tail of the VACF. I mention here that Expression (4.5) for the fractional

di↵usion constant follows from Eq. (4.9).

The asymptotic regime can be quantified as t� ⌧
vacf

, where [Kneller et al. [2011]]:

⌧
vacf

=
⇣ D↵

hv2i

⌘

1
2�↵

. (4.14)

To facilitate comparisons in the time domain, the VACFs in this thesis are presented

normalized,

 (t) =
Cvv(t)

Cvv(0)
(4.15)

and the long-time tail of the integral (4.10) behaves then:

f (t)
t!1⇠ D↵↵

hv2i t
↵�1. (4.16)

The velocity autocorrelation functions were computed for the center of masses (CM) of

the POPC lipids according to

Ci(n) ⇡
1

Nf � n

Nf�n�1

X

k=0

(vi(k) · vi(k + n)), (4.17)
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where Nf is the total number of frames (time-steps) of the analysed trajectories. Here

x(n) ⌘ x(n�t) and �t is the integration time-step. For reasons of e�ciency, Expres-

sion (4.17) is computed by a FFT-based Fast Correlation Algorithm [Kneller et al. [1995]].

Similarly to the computation of the MSDs, Eq. (4.4), all the VACFs were averaged over

the total number of all the lipids, N :

Cm =
1

N

N
X

j=1

Ci(n) (4.18)

The integration of the numerical normalized VACFs of the timestep, �t, was performed

by using the central di↵erence scheme [Stachura & Kneller [2013]],

f (n) ⇡
0<n<Nt�1

X

k=0

�t

12
(8 (k) + 5 (k � 1)�  (k + 1)). (4.19)

The velocity autocorrelation functions for the 15 ns all-atom OPLS and 600 ns coarse-

grained MARTINI (NV T and NApzT ) simulations are presented in Fig. 4.6. The VACF

curves for the MARTINI case are identical for both ensembles. This is consistent with the

observation of the MSDs for short time-lags of maximum 1.5 ns (section 4.1.1.2), which

were also indistinguishable for the NV T and NApzT conditions. One distinguishes two

regimes in the VACF: a short-time regime, containing the minimum of the VACF, which

extends up to ⇡ 3ps, and a long-time regime. In case of the OPLS-AA ↵ the minimum is

deeper and starts earlier than for the MARTINI ↵. This suggests a weaker ”cage e↵ect”

for the latter and faster lateral motions of the coarse-grained lipids. This is true in light

of the MSD calculations, for which the fractional di↵usion constants are higher than for

the atom detailed simulations. In addition the VACFs of MARTINI simulations have

a ”bump” around 0.7 ps. The origins of it have not been discerned and do not have

any theoretical explanation. More important is the long-time tail of the VACFs, which
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Figure 4.6: Comparison of the centre of mass Velocity Autocorrelation Functions calcu-
lated for the 15 ns all-atom and 600 ns coarse-grained simulations.

for both, the all-atom and the coarse-grained calculations, get closer to each other for

longer time-lags and both approach asymptotically zero from negative values. Negative

velocity autoccorelations of the molecules can be expressed in physical terms, namely

as the tendency of reversing the direction of motion and staying localized for longer

times (”cage e↵ect”). The calculated typical time scales ⌧
vacf

, Eq. (4.14), of 0.065 ps for

OPLS-AA and 0.293 ps for MARTINI (the mean squared velocities hv2i = 0.0057nm2

ps2

and hv2i = 0.0068nm2

ps2
for the coarse-grained and all-atom lipids, respectively) define

the asymptotic regime, which stands for t � ⌧
vacf

. The superposition of the model for
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Figure 4.7: Comparison of the integrals over the centre of mass VACFs calculated for
the 15 ns all-atom and 600 ns coarse-grained simulations.
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the VACF tail, Eq. (4.13), with the values of the fractional di↵usion constants and ↵

parameters from the MSD fits (Table 4.4) are shown in the insets of Fig. 4.6. The

theoretical curves start to converge with calculated VACFs for long time-lags, which are

already noisy (especially in case of the all-atom simulations). The agreement is much less

good than in earlier work on DOPC [Kneller et al. [2011]]. For this reason the long time-

tails of the integrated VACFs were calculated, which are in consistent with the analytical

forms of Eq. (4.10) (insets in Fig. 4.7), clearly indicating subdi↵usive character of POPC

lipid di↵usion. The agreement is much better for the coarse-grained simulations, which

is the result of better statistical accuracy than for the all-atom case. The available time

lags are over 40 times longer trajectory than in the OPLS simulations and the correlation

functions can be averaged over 7 times more POPC lipids.

4.1.3 Density of States (DOS)

4.1.3.1 DOS as Fourier transform of VACF

The density of states (DOS), g(!), is obtained from the velocity autocorrelation function

(VACF) by a Fourier cosine transform,

g(!) =

Z 1

0

d! Cvv(t) cos(!t), (4.20)

Noting that Cvv(�t) = Cvv(t) it follows that

g(!) =
1

2

Z

+1

�1
dt exp(�i!t)Cvv(t). (4.21)

Equation (4.20) is also called the power spectrum of Cvv(t), which is an even function

in !. To understand the physical meaning of this function, consider a sample length ⌧ of

the VACF,

Cvv(t) = lim
⌧!1

1

⌧

Z

⌧
2

� ⌧
2

dtv(t)v(t+ t0) (4.22)
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According to the Wiener-Khintchine theorem [Boon & Yip [1991]], the Fourier trans-

formed VACF, C̃vv(!), in limit of ⌧ !1, equals the mean squared velocity in !-domain,

which is proportional to the frequency spectrum of the kinetic energy,

C̃vv(!) = lim
⌧!1

|ṽ(!)|2

⌧
/ Ek(!). (4.23)

In order to obtain an analytical expression for the DOS in the low frequency region,

Eq. (4.9), and C̃vv(!) = <{Ĉvv(i!)} are used, where C̃vv ⌘ g(!) is the cosine transform

of Cvv(t) and Ĉvv(s) its Laplace transform,

g(!) =
1

2
C̃vv(!)

!!0⇠ D↵

2
�(↵ + 1)!1�↵ sin

⇣⇡ ↵

2

⌘

. (4.24)

In case of normal di↵usion, ↵ = 1, the model derived above, tends for ! ! 0 to the

di↵usion constant. In general:

D↵ = lim
!!0

g(!)!(1+↵)

�(↵ + 1) sin
⇣

⇡ ↵
2

⌘ . (4.25)

This alternative expression for D↵ is certainly easier to use in practice than Expres-

sion (4.5). The Fourier spectra of ensemble averaged MARTINI and OPLS-AA VACFs,

Eq. (4.18) were computed only for the 15 ns all-atom and 600 ns NApzT coarse-grained

simulations (corresponding VACF are nearly identical for bothNV T andNApzT ensembles).

In order to retrieve the fractional di↵usion constant from g(!), one has to work with

the unnormalized VACFs, where Cvv(0) = hv2i. Here for the MARTINI POPC lipids

hv2i = 0.00568 nm2

ps2
and hv2i = 0.00678 nm2

ps2
for the all-atom lipids.

For numerical calculations, the continuous Fourier transform

C̃vv(!) =

Z

+1

�1
dt exp(�i!t)Cvv(t), (4.26)

59



may be computed via the discrete Fourier transform (DFT) [Brigham [1974]]:

Ĉvv(k) =
N�1

X

n=�(N�1)

exp

✓

�2⇡i kn

2N � 1

◆

Cvv(n). (4.27)

Here the Cvv(n) is defined in range of n 2 (�N + 1, N � 1) and additionally Cvv(n) =

Cvv(n + l(2N � 1)) for l 2 Z, as the DFT implicitly assumes a periodic signal. Here N

is the length of the trajectory. Then the approximation of the Fourier integral (4.26) is

given by

C̃vv(!) ⇡ �t Ĉvv(k), (4.28)

where Ĉvv(k) ⌘ Cvv(k�!) and �! = 2⇡/(�t(2N � 1)). With increasing number of

points, for N ! 1, the Fourier transform of VACF becomes more and more noisy. For

this reason the C̃vv(!) is smoothed by a window function w(t) and then the Fourier

spectrum is calculated according to the following integral:

C̃(w)

vv (!) =

Z

+1

�1
dt exp(�i!t)w(t)Cvv(t). (4.29)

The smoothing function w(t) is positive and fulfills the conditions,

w(0) = 1, (4.30)

w(t) = w(�t), (4.31)

where the first condition conserves the integral of the spectrum

Z

+1

�1
d! C̃w

vv(!) =

Z

+1

�1
d! C̃vv(!). (4.32)

According to the convolution theorem of the Fourier transform [Brigham [1974]] the
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smoothed Fourier transform is then

C̃w
vv(!) =

1

2⇡

Z

+1

�1
d!0 w̃(! � !0)C̃vv(!

0). (4.33)

In this thesis the Fourier transform is smoothed with a Gaussian function [Harris [1978]]:

w(t) = exp

 

�1

2



t

�

�

2

!

 ! w̃(!) =
p
2⇡� exp

✓

�1

2
[�!]2

◆

, (4.34)

where � is the width of w(t), which in frequency domain is the inverse of the width in

time, and

lim
�!1

w̃(!)

2⇡
= �(!). (4.35)

One can see that the smoothing becomes stronger if the value of � decreases. Similarly to

Eq. (4.29), the discrete Fourier transform is smoothed by the window function and then

Eq. (4.27) simply becomes:

Ĉw
vv(k) =

N�1

X

n=�(N�1)

exp

✓

�2⇡i kn

2N � 1

◆

w(n)Cvv(n). (4.36)

In this thesis the densities of states were calculated with � = 10% of the total length of

the MD trajectories.

Figure 4.8 shows the comparison between the computed g(!) for the coarse-grained

(main plot) and the all-atom simulations (inset). In case of the latter the peak is less

pronounced and occurs at ! ⇡ 3.5THz, whereas for the MARTINI simulation the peak

is at ! ⇡ 1.5THz. Moreover, g(!) is broader for the all-atom simulation.

The fits of Relation (4.24) to the calculated g(!) for small angular frequencies are

presented in the Fig. 4.9. The choice of the region that would be considered as for small

! is not clearly defined. The final choice of the maximal value of ! defining this region

was taken to be smaller than 10% of the calculated maximal frequency (! = 20 THz),
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Figure 4.8: Calculated densities of states from the VACFs Fourier transforms for the 600
ns MARTINI simulations (CG) and 15 ns OPLS-AA simulation (AA - the inset).

with a condition that the small frequencies part refers only to ! smaller than the frequency

for which the peak in g(!) occurs (! 2 (0, 1.5 THz) for the coarse-grained calculations

and ! 2 (0, 3.5 THz) for all-atom case). Following this reasoning the fitted parts of

the g(!) were up to ! = 0.6 THz and ! = 2.0 THz for the MARTINI and OPLS-AA

↵s, respectively. The fractional di↵usion constants obtained from the fits have values of

0.059nm2

ns↵
for the MARTINI and 0.020nm2

ns↵
for the OPLS-AA simulations, which are slightly

larger than the results from the MSDs fits (Tab. 4.6). The obtained ↵ parameters of

0.437 and 0.467 for the all-atom and the coarse-grained DOS, respectively, are considerably

smaller than their MSD counterparts. Especially in case of the former, the ↵ parameter

is ⇡ 30% lower, which suggests a stronger subdi↵usional behavior of the lipids than the
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Figure 4.9: Figures show the fits of Expression for the DOS (4.24) for the MARTINI
(a) and the OPLS-AA (b) simulations. The insets present values of the function s(!),
Eq. (4.25), for the ↵ parameters obtained from the fits (the red line is the value of D↵

from the MSD calculations).
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MSD results indicate. This observation is also true for the MARTINI calculations, for

which the ↵ parameter has a very similar value to the ↵ for the OPLS-AA. The calculated

⌧vacf = 0.29 ps for the OPLS-AA simulation is much higher than the ones computed for the

MSDD↵ and ↵ parameters (⌧vacf = 0.065 ps), which implies observation of faster di↵usion

in the DOS. But, as expected, is smaller than for the ⌧vacf = 0.50 ps calculated for the

MARTINI simulation, which is also higher than the mean ⌧vacf = 0.30 ps obtained from

the MSD. The higher ⌧vacf for the coarse-grained model than for the all-atom case means

smaller friction in the system, according to � = (⌧vacf )�1. The values of � = 3.46 ps�1

for the OPLS-AA simulation is higher than for the MARTINI force-field (� = 2.01 ps�1),

which corresponds to broader peak for the DOS in case of the former.

Table 4.6: Comparison between D↵ and ↵ parameters for OPLS-AA and MARTINI
POPC lipids, obtained from the fit of Eq. (1.4) to the MSDs and of the Eq. (4.24) to the
DOS for small !.

OPLS-AA MARTINI

MSD DOS MSD DOS

↵ 0.668 0.437 0.571 0.467

D↵ (nm2/ns↵) 0.018 0.020 0.051 0.059

The function s(!), Eq. (4.25), in the range of small angular frequencies, should be constant

with the mean value close to D↵ obtained from the corresponding fits (the insets in the

Fig. 4.9). The functions were computed according to Eq. (4.24). The discrepancy to the

red line (D↵ from MSD) is attributed to the fact that ↵ parameters obtained by the DOS

and MSD methods, respectively, do not have the same values.
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4.1.3.2 Density of the States from the Autoregressive Model

A discrete approximation of the continuous Fourier transform (4.26), which does not

assume periodicity in time, is the infinite sum [Papoulis [1984, 1991]]

C̃vv(!) = �t
+1
X

n=�1
Cvv(n) exp(�i!n�t), (4.37)

where Cvv(n) ⌘ Cvv(n�t) and �t again the sampling interval of the VACF. Then the

z-transform of Cvv(n), defined as Papoulis [1984, 1991]

Cz
vv(z) =

+1
X

n=�1
Cvv(n)z

�n, (4.38)

is related as follows to Expression (4.37)

C̃vv(!) = �t Cz
vv(exp(i!�t)). (4.39)

Concurrently, the velocity autocorrelation function can be considered in terms of a sample

vN(n) of v(t),

Cvv(n) ⌘ lim
N!1

1

2N � 1

N�1

X

k=�(N�1)

vN(n+ k)vN(k), (4.40)

where the length of the sample is 2N � 1 and it follows from the convolution theorem of

the z-transform, (the asterisk denotes a complex conjugate)

(f � g)(n) ! F (z)G⇤(1/z⇤) (4.41)

that

Cz
vv(z) = lim

M!1

1

2N � 1
VN(z)V

⇤
N(1/z

⇤). (4.42)
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The z-transform of the an autocorrelation function – here the VACF – can be easily

calculated if one assumes an autoregressive model for the time series of the underlying

time series [Papoulis [1984, 1991]]

v(n) =
M
X

k=1

akv(n� k) +R(n). (4.43)

Here M is the order of the AR process, ak are constant coe�cients and R(n) is white noise

with zero mean and autocorrelation hR(n)R(k)i = �2

M�nk. The amplitude of the noise

R(n) can be determined by using the fact that R(n) is not correlated with past values of

v(n), hR(n)v(n� k)i = 0,

�2

M = Cvv(0)�
M
X

k=0

akCvv(k), (4.44)

Since R(n) is white noise, it is not correlated with the velocity signal for di↵erent times.

This property can be used to derive the following set of linear equations for the coe�cients

ak:

Cvv(j) =
M
X

k=0

Cvv(|j � k|)ak (j = 1, 2, ...,M) (4.45)

Performing now the z-transform of Eq. (4.43) and using the parameters for the autore-

gressive model, one obtains

VN(z) =
R(z)

1�
PM

k=1

akz�k
, (4.46)

where R(z) is the z-transform of R(n). In the next step the expression above is inserted

to Equation (4.42). Using that

lim
N!1

1

2N � 1
R(z)R⇤(1/z⇤) = Crr(z) = �2. (4.47)
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the z-transform of the VACF is found to be [Kneller & Hinsen [2001]]:

Cz
vv(z) =

�2

M

(1�
PM

k=0

akz�k)(
PM

l=0

akzl)
(4.48)

Setting z = exp(i!�t), the AR density of states becomes

gAR(!) =
�t

2
Cz

vv exp(i!�t), (4.49)

The coe�cients of the autoregressive process of order M for the estimation of the densities

of states, gAR(!), were obtained by solving the linear Yule-Walker equations (4.45) [Walker

[1931]; Yule [1927]] with order M = 666 for the analysis OPLS-AA simulations and with

M = 3333 for MARTINI simulations.

The estimated densities of states obtained from the AR model are very similar to those

calculated by discrete Fourier transform (see Fig. 4.10). They show in particular the same

di↵erences between the DOS of the coarse-grained and the all-atom simulations (Fig. 4.11).

In case of the latter the peak is also shifted to ⇡ 3.5 THz (for CG ⇡ 1.5 THz). In

Fig. 4.12 are presented the fits of Relation. 4.24 to the estimated g(!) from the MARTINI

(Fig. 4.12a) and OPLS-AA simulations Stronger fluctuations of the g(!) can be seen for

both cases, but the characteristic curves of the DOS for subdi↵usion are preserved. The

fitted fractional di↵usion constants and the ↵ parameters are very close to the computed

values from the Fourier transformed VACFs (Table 4.7). This is in particular true in

case of the coarse-grained calculations, for which the D↵ have exactly the same values

of 0.059 nm2

ns↵
. The ↵ parameters are practically the same and the ↵-parameters for the

all-atom simulations obtained from the AR model and by classical Fourier transform are

also very close. On the other hand, D↵ = 0.023 nm2

ns↵
overestimates the lateral di↵usion of

the POPC lipids even somewhat stronger compared to the analysis with the Fourier
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Figure 4.10: The figures show the densities of states for MARTINI (a) and OPLS-AA
(b) estimated by AR model. In the insets are presented the results of the FT method for
comparison.
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Figure 4.11: Comparison of estimated densities of states by the autoregressive model
(AR) for the 600 ns MARTINI simulations (CG) and 15 ns OPLS-AA simulation (AA -
the inset).

transform method. Nevertheless, ⌧vacf = 0.33 ps and � = 3.04 ps�1 for the OPLS-AA

force-field and ⌧vacf = 0.50 ps and � = 1.99 ps�1 for the MARTINI force-field obtained

from the AR model are very close to the FT calculations, which shows that both methods

give nearly identical results.
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Figure 4.12: Figures show the fits of Eq. (4.24) to the autoregressive DOS for the
MARTINI (a) and OPLS-AA (b) simulations. The insets compare the evolution of s(!)
with the value of D↵ obtained from the MSD fits.
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Table 4.7: Comparison between D↵ and ↵ parameters for OPLS-AA and MARTINI
simulations obtained from the fit of Eq. (1.4) to the MSDs and of Eq. (4.24) to the
DOS for small !. The DOS-FT means the g(!) calculated by the Fourier transform and
DOS-AR for g(!) computed within the AR process.

OPLS-AA MARTINI

MSD DOS-FT DOS-AR MSD DOS-FT DOS-AR

↵ 0.668 0.437 0.429 0.571 0.467 0.466

D↵ (nm2/ns↵) 0.018 0.020 0.023 0.051 0.059 0.059

4.1.4 Conclusions

In this chapter a single molecular dynamics of the OPLS all-atom and MARTINI coarse-

grained POPC lipids was presented. The MD trajectories were analysed in terms of the

mean square displacements, velocity autocorrelation functions and the densities of states.

All the proposed models clearly show that the movements of POPC lipids within model

membrane exhibit a subdi↵usive characteristics, within the accuracy of the analysis. The

analyses of the MSDs predict an ↵ parameter of ⇡ 0.7 and ⇡ 0.6 for the OPLS-AA and

MARTINI simulation, respectively.The analyses of the DOS indicate a stronger subdi↵u-

sive characteristics, with ↵ parameter of ⇡ 0.4. The independent estimation of DOS using

autoregressive process confirms the results for g(!), obtained by the Fourier transform of

the velocity autocorrelation function.

4.2 Collective motions of lipids

In contrast to the earlier chapter, which covered the single molecular dynamics, this chap-

ter concentrates solely on the collective motions of POPC lipids in the plane of model

membrane. The main goal is to visualize the cage of nearest neighbors of a tagged di↵using

71



particle. This subject will be presented in terms of spatio-temporal density fluctuations

within the simulated POPC membranes.

4.2.1 Pair Correlation Function

Structural and dynamical correlations in condensed matter systems are described by the

van Hove correlation function [Van Hove [1954]]

g(V H)(r, t) =
1

N

N
X

↵,�=1

h�(r� [R�(t)�R↵(0)])i (4.50)

where R↵(t) is the position of particle ↵, which is the center of mass of a lipid molecule in

the context of this thesis. The van Hove correlation function plays a fundamental role in

the interpretation of neutron and light scattering experiments on liquids and colloids [Bée

[1988]; Berne & Pecora [2000]; Lovesey [1984]]. It splits into a self- and a distinct part,

g(V H)(r, t) = g
(V H)

S (r, t) + g
(V H)

D (r, t), (4.51)

where

g
(V H)

S (r, t) =
1

N

N
X

↵=1

h�(r� [R↵(t)�R↵(0)])i, (4.52)

g
(V H)

D (r, t) =
1

N

N
X

↵6=�=1

h�(r� [R�(t)�R↵(0)])i. (4.53)

The distinct part describes is of interest in the following since it quantifies the structural

correlations in the system under consideration. One verifies easily that its spatial average
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over the volume V of the system yields the mean particle density, ⇢ = N/V , for large N ,

1

V

Z

V

dV g
(V H)

D (r, t) =
N � 1

V
⇡ ⇢. (4.54)

Figure 4.13: The schematic visualising the definition of the pair distribution function11.

This motivates the definition of the time-dependent pair correlation function through

GD(r, t) =
1

⇢

1

�Vr

Z

�Vr

dV g
(V H)

D (r, t), (4.55)

11
Source : Adapted from D.S. Goodsell, Trends Biochem. Sci. 16:203-206, 1991.
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where �Vr is the volume of a spherical shell of thickness �r and r = |r|. (see Fig. 4.13).

As r tends to infinity, the spatial correlations between the position of a tagged central

particle ↵ and the partner particles � decay and therefore their density in the shell between

r and r + �r approaches the mean density, ⇢, such that

lim
r!1

GD(r, t) = 1. (4.56)

The static pair correlation function is obtained through

g(r) = GD(r, 0). (4.57)

In order to elucidate the time-dependent structural correlations in the POPC lipid mem-

branes, GD(r, t) is computed for the centers-of-mass of the lipid molecules, by binning,

according to Eq. (4.55), the (normalized) density of partner lipids � around each lipid

molecule ↵ in concentric rings of thickness �r and averaging the resulting histograms

over all central particles ↵.

4.2.2 Visualization of the cage e↵ect

The lateral time-dependant pair correlation functions, GD(r, t) were calculated according

to Eq. (4.55) choosing a maximal time lag of 10% of the respective trajectory length.

For comparison, a similar analysis, but in three dimensions, was performed for the bulk

SPC/E water system simulated for 1 ns in NVT ensemble. The biggest radius value was

set to be smaller than half the box length in either x or y direction for the all-atom POPC

lipids, i.e. 4.4 nm, with the radial step, �r, of 0.1 nm. The same parameters were used

for the MARTINI simulations. For the water the maximal radius was 2.0 nm, which was

less than half the edge of cubic simulation box, with �r = 0.01 nm.

The distinct time-dependant pair correlation functions, GD(r, t), for the all-atom and the
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Figure 4.14: The pair distribution function, g(r), for the bulk SPC/E water.

coarse-grained simulations are shown in three dimensional plots in Figs. 4.15 and 4.16,

respectively. The first peak of the GD(r, t) at r = 0.8 nm, corresponds to the first shell

of neighbors surrounding each POPC lipid. It is visible that the peaks decay slowly

and the general structure of the shell is preserved until reaching the mean density. This

behavior of the GD(r, t) di↵ers strongly from the results for the simulated bulk SPC/E

water (Fig. 4.17). In case of the latter, the first shell of neighbors decays much more

rapidly. Figure 4.18 shows the decay of the first peak for three time slices (time-lags) in

case of the OPLS-AA 15 ns (4.18a) and 150 ns (4.18b) simulations. The first time slice,

for t = 0, is the pair distribution function (solid line).

For the 15 ns simulation the maximal calculated time-lag was for 1.5 ns and in the

figure (dotted line) it is noticeable that around this value the GD(r, t) reaches the mean

density.
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(a)

(b)

Figure 4.15: Three dimensional plots of the distant time- dependant pair correlation
functions, GD(r, t), for the all-atom POPC 15 ns (a) and 150 ns (b) simulations.
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(a)

(b)

Figure 4.16: 3D plots of the GD(r, t), for the 600 ns NV T (a) and NApzT (b) MARTINI
simulations.

77



Figure 4.17: 3D plot of the computed GD(r, t) for the simulated bulk SPC/E water.

In case of the 150 ns simulation the functions starts to reach the mean density around 10

ns, and the function finally reaches the mean density around 15 ns (dotted line). These

results show the persistence of the cage of nearest neighbors by the POPC molecules. The

density correlations are strong, which leads to maintaining the structure of the first shell of

neighbors. This observation contrasts strongly with results for the simulated bulk SPC/E

water, presented in Fig. 4.19. The decorrelation of the GD(r, t) is not only more rapid –

the first peak vanishes already after 1.5 ps (dotted line) – but also the character of this

decay is di↵erent than for the POPC lipids, which was already visible in Fig. 4.17. It is

worth noticing that the computed pair distribution function for t = 0 (solid line), matches

very well known molecular dynamics results [Rahman & Stillinger [1971]; Sciortino et al.

[1996]]. Moreover the first peak at r = 0.2 nm agrees with experimentally measured pair
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Figure 4.18: Plots show the calculated GD(r, t) of the OPLS-AA 15 ns (a) and 150 ns
(b) simulations for three time-lags. Visible slow time decay of the first shell of neighbours
in long time-tail analysis, the log-log plots in the insets, indicate power-law behavior.
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Figure 4.19: Pair correlation function for the centre of mass of SPC/E water molecules
for three time slices : t = 0 (solid line), t = 300 fs (dashed line) and t = 1.5 ps (dotted
line). The first shell of neighbours, in log plot shown on the inset, decays rapidly and
exponentially.

correlation function for a bulk water [Narten [1971]].

In order to further investigate the nature of motions in the all-atom POPC bilayer,

the time decay of the first shell of neighbors was analysed, by taking into account only

their long-time behavior. The insets in Fig. 4.18 show log-log plots of the GD(r, t) values

for the first peak in function of time. The long-time part, chosen from 400 ps for the

15 ns and from 3ns for the 150 ns simulations, shows a power-law decay dependency. A

corresponding function was fitted to the data points,

GD(t) = At��. (4.58)
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Figure 4.20: The GD(r, t) of the MARTINI NV T (a) and NApzT (b) simulations for
three time lags : t = 0 (solid line), t = 500 ps (dashed line) and t = 1.5 ns (dotted line).
Similarly to the all-atom case, the long-time tails (the insets) decay as a power-law.
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The fitted values of � = 0.573 and � = 0.526, for the OPLS-AA simulations of 15 ns and

150 ns, respectively, show clearly the power-law decay of the first peak in GD(r, t) (see Ta-

ble 4.8). Since the first peak in GD(r, t) corresponds to the shell of nearest neighbors, its

slow power-law decay for POPC molecules indicates that each molecule moves essentially

for long time with its neighbors. For comparison, the corresponding analysis for water is

shown in the inset of Fig. 4.19. Here one observes an exponential decay and thus a much

less stable cage of nearest neighbors. The form of the decay is here more important than

the time scale.

Table 4.8: Comparison between the fit parameters of Eq. (4.58) to the long-time tail of
computed GD(r, t) for the OPLS-AA and MARTINI simulations.

OPLS-AA MARTINI

15ns 150ns NV T NApzT

� 0.573 0.307 0.235 0.244

A 0.474 1.125 0.658 0.663

A similar analysis was performed for the MARTININV T andNApzT simulations (Fig. 4.20).

The calculated GD(r, t) functions reach the mean density already after 1.5 ns (dotted

line). This can be expected by looking at the velocity autocorrelation functions for the

coarse-grained simulations (Fig. 4.6). In comparison to the all-atom VACFs, the observed

minimum of the Cvv is less pronounced, which corresponds to a weaker cage e↵ect and

which is consistent with a faster decay of the cage of the nearest neighbors. The analyses

of the time decay of the first peak of the GD(r, t) (insets in Fig. 4.20), show again a

power-law decay with � = 0.235 and � = 0.293 for the NV T and NApzT simulations,
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Figure 4.21: Figures show the � parameter dependence on the time-lag, defining the
beginning of the GD(r, t) long-time tail for the simulations : (a) 15ns OPLS-AA, (b)
150 ns OPLS-AA, (c) 600 ns NV T MARTINI and (d) 600 ns NApzT MARTINI. The
maximal time-lag for which the GD(r, t) functions were computed is denoted by tMAX .

respectively. The � parameters are, however, nearly twice smaller than for the all-atom

simulations and similar for both thermodynamic ensembles. The choice of the time range

for the fits of Expression (4.58) is, of course, debatable. Figure 4.21 shows the depen-

dence of the �-parameter on the initial time tstart for the fit interval. The fitted values

are relatively stable for tstart up to 70 % and to 90 % of the maximal analysed time-lags

for the OPLS-AA and MARTINI simulations, respectively.
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4.2.3 Conclusions

In this chapter the analysis of the local structure dynamical structure around each lipid

molecule in a POPC membrane was analyzed by analyzing the behavior of the lateral

time-dependent pair correlation functions. They reveal a persisting cage of the first shell

of neighboring lipids (for over 15 ns in case of the 150 ns OPLS-AA simulation), which

are consistent with the observed negative long-time tails of the calculated VACFs. The

analyses of the long-time tails of the first peaks of the GD(r, t), exhibit a power-law decay,

with � ⇡ 0.55 and � ⇡ 0.25 for the all-atom OPLS and the coarse-grained MARTINI

simulations, respectively. These results contrast strongly with findings for the bulk SPC/E

water, for which the first shell of neighbors vanishes rapidly (already after 1.5 ps) and,

moreover, exponentially.

The existence of the cage e↵ect in POPC lipid membrane for long correlation times is in

good agreement with molecular dynamics simulations findings of concerted movements in

lipid bilayers, forming so-called ”collective flow patterns” [Falck et al. [2008]].

The connection between the ↵-parameter describing the long-time behavior of the MSD,

Eq. (1.4) and the �-parameter describing the slow decay in the first peak of GD(r, t) is

not yet established.
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Chapter 5

Conclusions

The main goal of this thesis was to characterize the nature of the lateral movements of

lipids within a model membrane. For this purpose a series of molecular dynamics simu-

lations of a 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) lipid bilayer was conducted

with the all-atom (OPLS) and the coarse-grained (MARTINI) force fields. An all-atom

energetically equilibrated POPC membrane of 274 lipids in total was simulated for 15 ns

and 150 ns in full hydration. The equilibration process had several intermediate steps,

which account for the total simulation time of 230 ns, and the 150 ns simulation was an

extension to the 15 ns one. The systems were considered to be in equilibrium when the

fluctuations of the total energy and the average area per lipid were stable, with the value

of the latter being close to the experimental ones. In order to have access to longer time

scales and larger system sizes, simulations of 600 ns for a system of 2033 lipid molecules

were conducted with the MARTINI force field, using the NV T and the NApzT ensemble.

In the latter ensemble the pressure was adjusted only in the direction perpendicular to

the bilayer. The production runs for both ensembles were performed after energy equi-

libration simulations of 1.2 µs. The MARTINI force-field calculations were also used to

test the ability of coarse-grained models to reproduce dynamical properties of all-atom

simulations.
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The lateral di↵usion of the lipid molecules was analyzed using di↵erent physical quantities

and numerical methods. For all simulations, the time evolution of the computed molec-

ular mean square displacements (MSDs) showed clear deviations from the asymptotic

linear form which characterizes normal di↵usion. The fits of the relation for the MSD

gave average ↵ parameters of ⇡ 0.69 and ⇡ 0.55 for the OPLS-AA and MARTINI simu-

lations, respectively. The observed di↵usion of POPC lipids was 6-8 times faster for the

MARTINI simulations than for the OPLS-AA, which is also coherent with publications

showing that in general the di↵usion constants obtained from the MARTINI simulations

are several times higher than the experimental values. The MSD results are consistent

with the analyses of the VACF power spectra, which were calculated with two di↵erent

methods: (a) by a windowed discrete Fourier transform of the VACF, and (b) by fitting

an autoregressive model to the underlying velocity time series. For both OPLS-AA and

MARTINI, the corresponding ↵-parameters were, however, slightly smaller than those

obtained from the analyses of the MSDs. Similarly to the MSD analysis, the di↵usion of

the coarse-grained lipids was faster than the di↵usion of the all-atom ones. The so-called

cage e↵ect, which manifests itself by negative algebraic long-time tails in the VACFs,

was further analyzed by examining the time-dependent local structure around each lipid

molecule by means of the time-dependent pair correlation function. The first peak of the

latter exhibits a slow power-law decay, indicating that the local cage formed by the shell

of nearest neighbors decays very slowly. This is a direct physical manifestation of the cage

e↵ect, which is suggested by the negative long-time tails of the VACF. The persistence

of the local structure is in agreement with flow-like dynamical patterns in membranes,

which have been observed recently by other authors [Falck et al. [2008]]. The comparison

of the simulations with the all-atom OPLS and the coarse-grained MARTINI force field

showed clearly that both exhibit subdi↵usion, with similar ↵-parameters, but the latter

is several times faster. In agreement with these findings, the molecular VACFs exhibit a

more shallow minimum and the cage of nearest neighbors of the lipid molecules decays
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faster. These observations can be attributed to the fact that the coarse-grained represen-

tation of the lipid molecules in the MARTINI force field leads to less interactions with

the neighbors and thus to less entanglement.
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Chapter 6
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