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Abstract

Sensory neurons respond to external stimulus using sequences of action potentials

(“spikes”). They convey collectively to the brain information about the stimulus us-

ing spatio-temporal patterns of spikes (spike trains), that constitute a “neural code”.

Since spikes patterns occur irregularly (yet highly structured) both within and over

repeated trials, it is reasonable to characterize them using statistical methods and

probabilistic descriptions. However, the statistical characterization of experimen-

tal data present several major constraints: apart from those inherent to empirical

statistics like finite size sampling, ‘the’ underlying statistical model is unknown. In

this thesis we adopt a complementary approach to experiments. We consider neuro-

mimetic models allowing the study of collective spike trains statistics and how it

depends on network architecture and history, as well as on the stimulus. First, we

consider a conductance-based Integrate-and-Fire model with chemical and electric

synapses. We show that the spike train statistics is characterized by non-stationary,

infinite memory, distribution consistent with conditional probabilities (Left interval

specifications), which is continuous and non null, thus a Gibbs distribution. Then,

we present a novel method that allows us to unify spatio-temporal Maximum En-

tropy models (whose invariant measure are Gibbs distributions in the Bowen sense)

and neuro-mimetic models, providing a solid ground towards biophysical explanation

of spatio-temporal correlations observed in experimental data. Finally, using these

tools, we discuss the stimulus response of retinal ganglion cells, and the possible

generalization of the concept of receptive field.
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Resumé

Les neurones sensoriels réagissent à des stimuli externes en émettant des séquences

de potentiels d’action (“spikes”). Ces spikes transmettent collectivement de

l’information sur le stimulus en formant des motifs spatio-temporels qui constituent

le code neural. On observe expérimentalement que ces motifs se produisent de façon

irrégulière, mais avec une structure qui peut être mise en évidence par l’utilisation

de descriptions probabilistes et de méthodes statistiques. Cependant, la caractérisa-

tion statistique des données expérimentales présente plusieurs contraintes majeures:

en dehors de celles qui sont inhérentes aux statistiques empiriques comme la taille

de l’échantillonnage, ‘le’ modèle statistique sous-jacent est inconnu. Dans cette

thèse, nous abordons le problème d’un point de vue complémentaire à l’approche

expérimentale. Nous nous intéressons à des modèles neuro-mimétiques permettant

d’étudier la statistique collective des potentiels d’action et la façon dont elle dépend

de l’architecture et l’histoire du réseau ainsi que du stimulus. Nous considérons

tout d’abord un modèle de type Intègre-et-Tire à conductance incluant synapses

électriques et chimiques. Nous montrons que la statistique des potentiels d’action

est caractérisée par une distribution non stationnaire et de mémoire infinie, compati-

ble avec les probabilités conditionnelles (left interval-specification), qui est non-nulle

et continue, donc une distribution de Gibbs. Nous présentons ensuite une méthode

qui permet d’unifier les modèles dits d’entropie maximale spatio-temporelle (dont la

mesure invariante est une distributions de Gibbs dans le sens de Bowen) et les mod-

èles neuro-mimétiques, en fournissant une base solide vers l’explication biophysique

des corrélations spatio-temporelles observée dans les données expérimentales. En-

fin, en utilisant ces outils, nous discutons la réponse des cellules ganglionnaires de la

rétine à des stimulus, et la possible généralisation du concept de champ récepteur.
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Chapter 1

Introduction

Overview

In this chapter, we present neurons, biological neural networks, the visual pathway

and the retina. We introduce the in-vitro multi-electrode array method used to

capture neural activity in living neural networks. We present the models of spike

train statistics that we use and analyze along this thesis. We finish this chapter

introducing the main questions addressed in this thesis.

Contents
1.1 Neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Chemical synapses . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Electrical synapses . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Visual pathway . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Retina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Encoding stimuli by spikes in the retina: “Neural code” . . 8

1.3.1 Multi-Electrode Arrays . . . . . . . . . . . . . . . . . . . . . 9

1.4 Models of Spike train statistics . . . . . . . . . . . . . . . . . 9

1.4.1 Maximum Entropy method in the context of spike train statistics 13

1.4.2 Generalized Linear models . . . . . . . . . . . . . . . . . . . . 13

1.4.3 Conductance Based Integrate and Fire . . . . . . . . . . . . . 13

1.5 What is this thesis about? . . . . . . . . . . . . . . . . . . . . 14

1.6 De quoi traite cette thèse . . . . . . . . . . . . . . . . . . . . 16

1.1 Neurons

Neurons are electrically excitable cells that form the basic components of information

processing in the central nervous system (Gerstner and W.Kistler, 2002). They are

essentially made up of three different parts (see figure 1.1) : the dendrites, the soma,

and the axon.

Dendrites extend from neuron cell body. They receive messages from other

neurons, in the form of spikes that are pulse-like stereotyped waves of voltage of high

intensity (see figure 1.1). The input electrical signals that a given neuron receives are

added during the integration process (see fig 1.2). Neurons have a membrane that
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Figure 1.1: Figure showing the different parts of a neuron, the spikes and chemical

synapses. (Left middle) spike; characterized as a rapid change in the membrane po-

tential; (Right bottom) a chemical synapse (Image source: Modified from (National

Institut on Aging-brochure) and (Izhikevich, 2007)

.
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separates the extracellular and the intracellular fluid or cytoplasm. The membrane

of the neurons act as a capacitor and therefore has a time constant which prevents

rapid changes in the membrane potential (Difference in electric potential between

the interior and exterior of the cell). The membrane potential of a neuron shows

fluctuations in time. If the resulting voltage is raised above a threshold, an action

potential, or “spike”, is generated at the beginning of the axon. It travels along

the axon until its end, at a synapse with another neuron, where it usually causes

a new synaptic transmission. Just after a spike has been emitted, the cell can not

emit any other spike during an interval of a few milliseconds; this time is called the

refractory period. The very brief duration of spikes (a few milliseconds) allows us to

consider them as instantaneous events. Therefore, from now we assume that neurons

communicate with a discrete “code”, made of a temporal series of spikes called “spike

trains”. Neurons communicate electrical and chemical signals with another cells

using two types of synapses: Chemical synapses that relay the information via the

release of neurotransmitters and electrical synapses that pass ions directly through

gap junctions (see figure 1.3).

1.1.1 Chemical synapses

In chemical synapses the presynaptic neuron (neuron conducting an action potential

toward the synapse) releases neurotransmitters captured by a postsynaptic neuron

(the neuron receiving the signal) causing a brief change in the membrane poten-

tial called post-synaptic potential (PSP). Chemical synapses may be excitatory or

inhibitory. While excitatory synapses cause a temporary increase of postsynaptic

membrane potential, inhibitory synapses cause the opposite effect (see figure 1.2).

The decay or growth after the spike is modeled using the called alpha profiles, which

are functions governing the inter-neural transmission delays in the synaptic con-

nections of the network. Neurons are constantly adding up the excitatory and the

inhibitory synaptic input in time. If that summation is at or above a threshold the

neuron fires a spike (see figure 1.2).

1.1.2 Electrical synapses

An electrical synapse is a conductive link between two adjacent neurons that is

formed between them. The anatomical basis of electrical synapses are called gap

junctions; they contain connexons that allow flow of ions directly between the cells,

electrically coupling them (see figure 1.3). Electrical synapses are fast compared

with chemical synapses, usually are bidirectional and can be found in many parts

of the nervous system (Bennett and Zukin, 2004).

At the network level, electric synapses have several prominent effects such as

neurons synchronization (Beierlein et al., 2000, Galarreta and Hestrin, 1999), and

the generation of neural rhythms (Bennett and Zukin, 2004, Hormuzdi et al., 2004).

Further on this thesis we will discuss in more detail what is the role of electric

synapses in the spike train statistics while studying a neural network model.
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Figure 1.2: Input electrical signals coming from chemical synapses are added during

the integration process causing fluctuations in the membrane potential of the post-

synaptic neuron. If the resulting voltage is raised above a threshold, an action

potential, or spike, is generated.

Figure 1.3: Gap junctions: When the connexons in the membranes of two cells

in contact are aligned, they form a continuous channel that connects the two cell

interiors, allowing the flow of ions from one cell to the other (image source: Wihelma

Echevarria)
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1.2 Neural Networks

Animal nervous systems are composed of thousands or millions of interconnected

cells that form neural networks. The activity of a neuron directly influences other

neurons to which it is connected through a synapse (chemical or electrical). Massive

and hierarchical multi-layered networking of neurons seems to be the fundamental

precondition for the information processing capabilities of nervous system (Rojas,

1996). In this thesis, we will focus on one example of biological neural network: the

retina. This is mainly due the following reasons:

1. Sight is a very important sense in mammals. Nevertheless, it is still a mystery

how the visual perception in generated. Since the spikes on the retina are

the only source that the brain have to create the visual perception, there is

considerable interest in the power of retinal processing and how it shapes our

visual perception (Meister and Berry II., 1999).

2. It is possible to remove the retina from an animal. The living retina can be at-

tach it into an array of multi electrodes. Light can be projected into the retina

and the ganglion cells spiking activity can be recorded in vitro (Kriegeskorte

and Kreiman, 2010) (see figure 1.7). This technology provides reliable data to

study how the retina respond to different types of light stimulation.

3. One of the main characteristics of the retina is to operate exclusively as a feed-

forward network to higher areas of the brain. There is no feedback mechanism

by which the brain changes how the retina transduces light into spikes (the

eyes saccades may be considered as a form of feed-back, though).

4. The retina is the most extensively studied piece of the central nervous system

(Hegger, 2006). It is possible to compare results with previous achievements

done by the scientific community.

5. The retina provides a model for learning how the vertebrate nervous system

works, thus scientist are using the retina to understand the brain. A large part

of the cortical tissue is dedicated almost exclusively to the initial processing

of visual information (Roederer, 2005).

To put in context the role of the retina in the visual perception, let us first

introduce the visual pathway.

1.2.1 Visual pathway

The process of “seeing” is very complex and not yet well understood. Vision just

begins in the eye. Light entering the eye is projected onto the back of the eyeball,

where a complex signaling by cells within the layers of the retina is converted into

spikes. These spikes are sent through the optic nerves to the lateral geniculate

nucleus (LGN), there the message is processed. Then, neurons of the LGN send
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their axons to higher centers in the visual cortex of the brain for further processing

necessary for visual perception.

Figure 1.4: Visual Pathway: Illustration of the main steps in visual perception

(image source: www.photigy.com)

1.2.2 Retina

The retina is a complete piece of brain located at the back of the eye (see fig 1.4).

It transduces spatial and temporal variations in light intensity and transmits them

to the brain. The retina present a huge anatomical complexity. It is composed of at

least 50 clearly distinct cell types (Gollisch and Meister, 2010). They differ in size,

temporal and spatial properties. The neurons are arranged in cellular layers that

are interconnected (see fig 1.5).

The retina is composed of five layers of cells: Photoreceptors, Horizontal cells,

Bipolar cells, Amacrine Cells and Ganglion cells. The distinct cell types in the

retina and its specific connections suggests that each has a specific function. Pho-

toreceptors (cells which convert light into nerve impulses) are connected to bipolar

cells which arborize to receive multiple synaptic contacts from them. Horizontal

cells are laterally interconnecting photoreceptors and bipolar cells. Amacrine cells

extend their dendrites laterally to contact bipolar, other amacrine cells, and gan-

glion cells. This last type of cells collect information from bipolar cells and amacrine

cells. Amacrine and bipolar cells, like many types of neuron in the brain, are widely

coupled by gap junctions to their neighbors (see figure 1.5). Since many amacrine

cells fire action potentials, it is likely that gap junctions allow them to synchronize

their firing. The visual information arrives to the ganglion cells is in the form of

chemical messages sensed by its receptors. This message is integrated within the

ganglion-cell and “digitized” into spikes. Axons of retinal ganglion-cells form the

optic nerve (see figure 1.4). Information about the visual stimulus is encoded by

ganglion cells patterns of spikes. Spikes conserve their shape when traveling along
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Figure 1.5: Several distinct neural circuits within the retina transmit the signals from

the photoreceptors (rods and cones) to the retinal ganglion cells. The different types

of cells communicate information between them through chemical and electrical

synapses (image source: (Sharpee and Stockman, 1999))
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axons and signals travel rapidly over large distances. As a consequence, retinal

ganglion cells are capable to convey spike information reliably and rapidly to the

brain.

1.2.2.1 Receptive Fields of retinal ganglion cells

All visual information from the external world reaching the brain is transmitted

by retinal ganglion cells, each of them is sensitive to light reaching a small region

of the retina called receptive field (Gauthier et al., 2009). When this region is

stimulated the firing of the retinal ganglion cell is influenced. Therefore, retinal

ganglion cells fire action potentials in response to certain types of retinal stimulation.

The receptive fields of retinal ganglion cells are composed of inputs from many

rods and cones (see figure 1.6). The most common receptive fields are arranged

into a central disk, the “center”, and a concentric disk, the “surround”, each region

responding oppositely to light. There are on-center, off-surround ganglion cells

which fire most strongly when there is light in the center of the field, but no light

in the surround. There are also off-center, on-surround ganglion cells that fire most

strongly when the opposite occur. There exist also more complex receptive fields

that are not center surround.

Figure 1.6: Center surround antagonism in receptive fields of retinal ganglion cells

(image modified from: www.studyblue.com and www.webexhibits.org)

1.3 Encoding stimuli by spikes in the retina: “Neural

code”

Our perception of the world is driven by inputs from the sensory neurons (Rieke

et al., 1996). Deciphering how populations of spiking neurons represents sensory

information is one of the main problems in computational neuroscience and central

for our understanding of perception. Characterizing the relationship between sen-

sory stimuli and the spike responses of neurons is referred in the literature as “neural
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coding problem” (Rieke et al., 1996). Clearly, this code is not deterministic. It has

been observed in retinal ganglion cells that even when presenting the same stimulus

under very controlled experimental conditions the neural activity changes from trial

to trial (Shadlen and Newsome, 1998). The reason of this variability can either be

non-observed inputs, intrinsic noise of the individual neuron associated with various

biophysical processes that affect neuronal firing. It can also be collective dynamics.

This last remark is one of the reasons motivating this thesis. Thus, there is no

one-to-one mapping between visual stimulus and neural response. However, we can

assign a probability to each possible response given the stimulus. In this setting,

the problem can be framed as characterizing the probabilistic relationship between

stimuli and spike train response.

1.3.1 Multi-Electrode Arrays

Multi-Electrode arrays are devices that contain multiple electrodes through which

neural extracellular recordings are obtained attaching a living neural tissue into it

(see figure 1.7). For the particular case of the retinal ganglion cells, electrodes record

voltages generated in the extracellular array by the current fields outside the cells

in the local region when they generate action potentials (see figure 1.7). There-

fore, each electrode records the activity of several cells. Nowadays it is possible

to record a large number of simultaneously active neurons through multi-electrode

arrays (up to 4096 electrodes). Then, spike-sorting algorithms allows to identify

which neuron emits a spike and recover discrete time spikes from continuous extra-

cellular recordings (Marre et al., 2009). Spikes trains are usually “binned”. This

consist in discretizing the time by choosing time windows ∆tb (ranging from 1 to 20

milliseconds) considering that into these windows there is a spike or not; depending

on the binning there are cases where there is more than one spike in a bin, it these

cases the convention is to consider them as a single spike. After this procedure a

spike train or raster plot is obtained as a result of a visual stimulus presentation

(see figure 1.7).

1.4 Models of Spike train statistics

We have argued that the link between stimuli and responses cannot be expressed

by a one-to-one mapping, that is, we cannot predict the neural response exactly.

Statistical techniques and probabilistic descriptions are needed to characterize

the spike response. Models of spike train statistics are the central problem

of this thesis, because they provide a possible way to characterize the “neural

code". In this section we present briefly the mathematical setting we will use

and analyze further in this thesis. We will come back to these models to analyze

them mathematically, specially characterizing the spike train statistics they produce.
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Figure 1.7: A retina is mounted in the multi-electrode array, light stimulus is pro-

jected onto it via a computer in which images are produced. The membrane potential

of neurons in the multi-electrode array are collected. Then, a complex task of signal

processing is performed, called spike sorting, which detects the time at which a spike

is produced, finally a binning size is chosen previous to obtain a spike train (Source:

C. Mendl Phd thesis 2011)
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Figure 1.8: After having choose a binning size ∆tb, a given neuron either fires a spike

or it doesn’t, so it’s state is described by a binary variable {0, 1}. The blue circle

represent the case of more than one spike is fired in the same time bin mapped into

a single spike in the binary pattern. The red ellipse shows two spikes much more

separated in time than the green ellipse. Binned binary data consider spikes in the

red ellipse as simultaneous and those in the green ellipse occur in successive times.
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Figure 1.9: Spike train from retinal ganglion cells. Each row represent the activity of

one ganglion cell. While some of the spikes can be generated by direct excitation of

the receptive field of the respective ganglion cell, others can be generated by intrinsic

noise, or by indirect synaptic inputs not necessarily from their own receptive field

pathway (Image modified from: www.droualb.faculty.mjc.edu)
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1.4.1 Maximum Entropy method in the context of spike train
statistics

The maximum entropy principle (MaxEnt) is a statistical method that have been

successfully applied to characterize the spike train statistics of retinal ganglion cells

data obtained from MEA (Schneidman et al., 2006, Marre et al., 2009, Vasquez et al.,

2012). It consists in choosing a set of characteristic events in the data and measure

their empirical values. These empirical values are the constraints of the problem.

Maximum entropy method consist of finding, in the space of probability distributions

that matches these values, the one with maximum entropy (Jaynes, 1957). Finding

a distribution with maximal entropy which is still consistent with the data, amounts

to finding the simplest or minimally structured model. This method does not make

any assumptions about the underlying neural tissue that have generated the data.

Maximizing the entropy given those constraints provides a unique probability, called

a Gibbs distribution1. The MaxEnt relies on the assumption of stationarity (time

translation invariance of statistics) as well as an a priori and arbitrary choice of

constraints. This severely constrains the statistical model. In particular, memory-

less models focuses on synchronous events, hiding temporal causality.

1.4.2 Generalized Linear models

Generalized Linear models (GLM) focus on the point process2 nature of spike trains.

They are commonly used for modeling the relationship between neural population

activity and presented stimuli. In this modeling approach, the instantaneous spike

rate of the point process is described by a stimulus filter, a post-spike filter and

a constant offset which sets the baseline firing rate of the neuron (see figure 2.7).

Although these types of models are strictly phenomenological, their components can

be broadly compared to biophysical mechanisms. The stimulus filter approximates

the receptive field of the ganglion cell. The post-spike filter mimics voltage- currents

following a spike, whereas the nonlinearity implements a soft threshold converting

membrane potential to instantaneous spike probability (Calabrese et al., 2011). For

each neuron, a static nonlinear function is then applied to the summed filter re-

sponses. This method have also been used to predict retinal ganglion cell responses

to light stimulus.

1.4.3 Conductance Based Integrate and Fire

In 1907 Lapicque developed a neuron model that is still broadly used nowadays

(Lapicque, 1907). In this approach, a neuron is modeled using an equivalent electric

circuit composed of a parallel capacitor and a resistor, that represents the capaci-

tance and leak resistance of the cell membrane (see figure 1.10). When the membrane

capacitor is charged to a certain threshold potential, an action potential is fired and

the capacitor discharges, resetting the membrane potential (Abbott, 1999). The

1Later on we shall make a distinction between “equilibrium states” and “Gibbs distributions”
2Random process giving random configurations of points in time and space.
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model is known as Leaky Integrate-and-Fire neuron model (LIF). It is the simplest

dynamical model that captures the basic properties of neurons, including the tem-

poral integration of noisy sub-threshold inputs, all-or-nothing spiking. It postulates

a differential equation describing the behavior of the network motivated by the mi-

croscopic picture of how the system is assumed to work. Noise is important in the

cases of interest to us, as a stochastic description is required. Although action po-

tentials can vary in duration, amplitude and shape, integrate-and-fire models treat

them as identical stereotyped events. This simple model is capable of being analyzed

mathematically while at the same time being sufficiently complex to capture many

of the essential features of neural processing.

LIF models implement a reset mechanism on the membrane potential: If neuron

k has been reset at time τ , then the voltage at time t > τ depends only on the

voltage from the last reset time and not on previous values. In the conductance based

Integrate and Fire model proposed by (Rudolph and Destexhe, 2006), contrarily to

LIF, there is also a dependence in the past via the conductance and this dependence

is not erased by the reset. These models may have infinite memory.

One important application of these models in this thesis will be the study of

how neuronal collective dynamics affects the encoding properties of multiple neurons

and how the consideration of the gap junctions term incorporate information about

neuronal interdependencies.

Figure 1.10: Left: Equivalent circuit of the Integrate-and-Fire model. (Right).

Voltage trace of the Integrate and fire model. When reaching the threshold in-

stantaneously a spike is emitted and the voltage is reset (Image source (Abbott,

1999))

1.5 What is this thesis about?

The problem of the statistical characterization of experimental spiking data presents

several major constraints. Apart from those inherent to empirical statistics such as

finite size sampling, there is the fact that the true underlying statistical model is
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unknown. As a consequence researchers are seeking canonical forms of probabilities

from general principles (either based on statistical inference or biophysics) to fit

them to spiking data available thanks to MEA.

This thesis addresses this problem from a different point of view. We build

and analyze neuro-mimetic models providing a mathematical description of neural

dynamics. In particular, we focus on models suitable to reproduce spike trains

produced by retinal ganglion cells.

The main advantage of this approach is that we may control the parameters

characterizing the dynamics and spike train statistics of the neural network model.

Another important advantage of this approach is that we do not assume a priori the

form of the probability distributions, instead, they arise naturally from the dynamics

of the neural network.

From these neuro-mimetic models it is possible to obtain a probabilistic mapping

between the network architecture, the stimuli, the spiking history of the network

and the spiking response in terms of conditional probabilities of spike patterns given

the network history, allowing a mechanistic and causal understanding of the origin

of correlations.

This approach allows us to address interesting questions about the way in

which structured networks of interconnected neurons respond collectively to a

stimulus. In particular, this approach not only allows us to predict spike responses

to applied stimulus, but also, to explain “why” neurons respond the way they do.

More precisely, this thesis attempts to answer the following questions:

Question 1: Is it possible to characterize the network dynamics and the

population spike train statistics in a neural network model?

This question has been previously addressed in (Cessac, 2011b), where only the

effects of chemical synapses over the dynamics and statistics were considered in a

conductance based neural network model. While communication between neurons

involves chemical and electric synapses, the role of electric synapses in shaping

collective dynamics has been quite less studied than the role of chemical synapses.

They are supposed to play a key role in producing correlations in the spike train

statistics. We address question 1 by building and analyzing a biologically realistic

model based on (Rudolph and Destexhe, 2006) and including electric synapses.

The main motivation of this work is to better understand how ganglion cells in the

retina supporting both chemical and electric synapses coordinate spatio-temporal

spike patterns to convey information to the brain. We address this question in

chapter 3.

Question 2: Are Gibbs distributions good candidates to analyze the spike train

statistics for experimental data?

Although is impossible to categorically answer this question, we may address

it through presenting three examples of methods used by the computational
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neuroscience community (Maximum Entropy Principle, Generalized Linear Models

and Conductance based Integrate-and-Fire with and without electric synapses),

which correspond to Gibbs distributions. We investigate under which conditions

these methods can correspond to the same spike train characterization, and how to

compare them. We address this question in chapter 2.

Question 3: When attempting to characterize spike train statistics, Gibbs

distributions arise from data-based approaches (Maximum Entropy Models) and

from neuro-mimetic model-based approaches (Generalized Linear Models and

Conductance based Integrate-and-Fire). Is it possible to take advantage of properties

of Gibbs distributions to link both approaches?

We investigate whether it is possible to associate a unique canonical Maximum

entropy potential (a potential with a minimal number of parameters written as

a linear combination of spiking events) to the potential associated to the Gibbs

distribution corresponding to a given neuro-mimetic model, like Generalized

Linear Model or Integrate-and-Fire model. Also, we investigate if the canonical

Maximum Entropy potential can be explicitly constructed using the neural network

parameters shaping the neuro-mimetic model. Thus we look for a deterministic

and exact link between neuro-mimetic models and Maximum Entropy Models,

revealing the underlying mechanistic origin of correlations observed in experiments

of spike trains in the retina using the Maximum Entropy approach. This question

is addressed in chapter 4.

Question 4: Can we derive a more general notion of receptive fields looking

at the difference between the spontaneous and stimulus evoked spiking response of a

network of neurons using properties of Gibbs distributions?

While neurons respond collectively to a stimulus, the most classical notion of

receptive field is written in terms of firing rates of single neurons. We look for a more

general definition of the receptive fields in terms of spatio-temporal patterns. We

address this question in chapter 5 using neural network models and linear response

theory.

1.6 De quoi traite cette thèse

Le problème de la caractérisation statistique des données expérimentales de potentiel

d’action présente plusieurs contraintes majeures. En dehors de ceux inhérents aux

statistiques empiriques comme la taille fini de l’échantillon, il y a le fait que le

vrai modèle statistique sous-jacent est inconnu. En conséquence, les chercheurs

cherchent des formes canoniques, des probabilités en suivant des principes généraux

(soit sur l’inférence statistique ou sur la biophysique) pour ajuster les données qui

s’obtiennent gråce à MEA.
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Cette thèse aborde le problème d’un point de vue différent. Nous construisons

et analysons des modèles neuro-mimétiques qui fournissent une description mathé-

matique de la dynamique des neurones. En particulier, nous nous concentrons sur

des modèles adaptés à reproduire des potentiels d’action produits par des cellules

ganglionnaires de la rétine .

Le principal avantage de cette approche est ce qui nous permet de contrôler

les paramètres du modèle de réseau neuronal, que caractérisent la statistique de

potentiel d’action et la dynamique. Autre avantage important de cette approche

est que nous ne supposons pas à priori la forme des distributions de probabilité,

à la place, ils ’se produisent naturellement à partir de la dynamique du réseau de

neurones.

A partir de modèles neuro-mimétiques, il est possible d’obtenir une correspon-

dence probabiliste entre l’architecture du réseau, les stimuli, l’ histoire du réseau et la

réponse, en termes de probabilités conditionnelles, étant donné l’ histoire du réseau.

Cela permet une compréhension mécaniste et causale de l’origine des corrélations.

Cette approche nous permet de répondre à des questions intéressantes sur

la façon dont des réseaux structurés de neurones interconnectés collectivement

répondent aux stimulus. Cette approche nous permet non seulement de prédire les

réponses à un stimulus appliqué , mais aussi, d’expliquer "pourquoi" les neurones

répondent de la façon dont ils le font. Plus précisément, cette thèse se propose de

répondre aux questions suivantes:

Question 1: Est-il possible de caractériser la dynamique du réseau et les

statistiques de potentiel d’action dans un modèle de réseau de neurones?

Cette question a déjà été abordée dans (Cessac, 2011b), où seulement les effets

des synapses chimiques sur la dynamique et les statistiques ont été considérés dans

un modèle de réseau de neurones sur la base de la conductance. Tandis que la

communication entre les neurones implique des synapses chimiques et électriques.

Le rôle des synapses électriques dans la dynamique collective a été moins étudiée,

que le rôle des synapses chimiques. Ils sont censés jouer un rôle clé dans la

production des corrélations dans la statistique de potentiel d’action. Nous abordons

la question à partir de la constriction d’un modèle biologiquement réaliste basé

sur ((Rudolph and Destexhe, 2006) ) comprenant les synapses électriques. La

principale motivation de ce travail est de mieux comprendre comment les cellules

ganglionnaires de la rétine ayant des synapses chimiques et électriques peuvent

coordonner motifs spatio-temporel et modèles pour transmettre des informations

vers le cerveau. Cette question nous l’abordons dans le chapitre 3.

Question 2: Sont-ils les distributions de Gibbs de bons candidats pour analyser

les statistiques de potentiel d’action pour données expérimentales?

Bien qu’il soit impossible de répondre à cette question catégoriquement,

nous abordons cette question en présentant trois exemples de méthodes utilisées
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par la communauté des neurosciences (Principe d’entropie maximale, modèles

linéaires généralisés et Intégre-et-tire avec et sans synapses électriques). Tous

correspond à des distributions de Gibbs. Nous cherchons les conditions dans

lesquelles, ces méthodes peuvent correspondre à la même statistique de potentiel

d’action, et comment les comparer. Nous abordons cette question dans le chapitre 2.

Question 3: En essayant de caractériser les statistiques de potentiel d’action,

les distributions de Gibbs apparaissent naturellement tant dans des approches basées

sur des données (modèles d’entropie maximale) que dans des approches basées sur

des modèles neuro-mimétiques (modèles linéaires généralisés et Intégre-et-tire).

Est-il possible de profiter des propriétés des de Gibbs approches pour relier les

différentes approches?

Nous étudions la possibilité d’associer un unique potentiel d’entropie maximal

canonique (avec un nombre minimal de paramètres écrits comme combinaison

linéaire des événements), associée au potentiel de Gibbs correspondant à un modèle

neuro-mimétique (comme le modèle GLM ou Intégre- et-tire). Aussi, nous étudions

si le potentiel canonique d’entropie maximale peut être construit explicitement

en utilisant les paramètres du réseau de neurones qui déterminent le modèle

neuro-mimétique. Ainsi, nous regardons le lien déterministe entre les modeles

neuro-mimétique et modèles d’entropie maximale, ce qui permet de révéler l’origine

mécaniste sous-jacente de corrélations observées dans les expériences de potentiel

d’action dans la rétine en utilisant l’approche d’entropie maximale. Cette question

est abordée dans le chapitre 4.

Question 4: Peut-on tirer une notion plus générale de champs réceptifs à

partir de la différence entre le regime spontané et celui évoqué par le stimulus dans

une modèle de réseau de neurones en utilisant les propriétés des distributions de

Gibbs?

Tandis que les neurones respondent collectivement à un stimulus, la notion plus

classique de réceptifs champ est écrit en termes de taux de décharge de neurones

isolés. Nous recherchons une définition plus générale des champs réceptifs en termes

de modèles spatio-temporels.

Cette question est abordée dans le chapitre 5 en utilisant des modèles de réseaux

de neurones et la théorie de la réponse linéaire .



Chapter 2

Gibbs distributions as canonical
models for spike train statistics

Overview

In this chapter, we show how Gibbs distributions arise from the models introduced in

the first chapter. We start introducing the notations and definitions used throughout

this thesis. We introduce the thread of this thesis: the transition probabilities

of spike blocks. We then present Markov chains as a particular example where

stationary and fixed past transition probabilities bring useful information about

spike train statistics. Finally we move to the mathematical analysis of the methods

presented in chapter 1. We conclude that Gibbs distributions can be considered as

canonical models for characterizing spike train statistics.
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Chapter 2. Gibbs distributions as canonical models for spike train

statistics

2.1 Setting

In order to set a common ground for the analysis of spike train statistics, we in-

troduce here the notations used throughout this thesis. We consider a network of

N neurons. We assume that there is a minimal time scale, δ, set to 1 without loss

of generality such that a neuron can at most emit one spike within a time window

of size δ. This provides a time discretization labeled with an integer time n. To

each neuron k and discrete time n one associates a spike state ωk(n) = 1 if neuron

k as emitted a spike in the time window [nδ, (n + 1)δ[ and ωk(n) = 0 otherwise.

The spike-state of the entire network in time bin n is thus described by a vector

ω(n)
def
= [ωk(n) ]

N
k=1, called a spiking pattern. A spike block is a finite ordered list of

such vectors, written:

ωn2
n1

= {ω(n) }{n1≤n≤n2} ,

where spike times have been prescribed between time n1 to n2. The length of a

block is n2 − n1 + 1, the number of time steps from n1 to n2. Thus, there are 2Nn

possible blocks with N neurons and range n.

Figure 2.1: Notation used throughout this thesis. In red there is a spike state, in

blue a spiking pattern and in green a spike block of range 3.

A spike train is a spike block ω+∞
−∞. Obviously, experimental spike trains start

from some initial time t0 > −∞ and end at some final time T < +∞, but, on

mathematical grounds the consideration of bi-infinite sequences simplifies the anal-

ysis. To alleviate notations we simply write ω for a spike train. The set of spiking

pattern is denoted A = { 0, 1 }N . The set of spike blocks ωnm is denoted An
m. The

set of spike trains is denoted Ω = A❩. To each spike train ω and each neuron in-

dex j = {1 . . . N} we associate an ordered (generically infinite) list of “firing times”

{t(r)j (ω)}+∞
r=1 such that t

(r)
j (ω) is the r-th time of firing of neuron j in the spike train
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ω. τk(t, ω) denote the last firing time of neuron k, before time t, in the spike train

ω.

2.1.1 Transition probabilities

The transitions between spike blocks are probabilistic. They depend on the

neural network characteristics such as neurons conductances, synaptic responses

or external currents. They give information about the dynamics that takes place

in the observed neural networks. Especially, they have a causal structure i.e. the

probability of an event depends on the past. The transition probabilities reflects

underlying biophysical mechanisms in the neural network, which are also causal. It

is impossible to know explicitly the history dependence of a neuron since it depends

on the past evolution of all variables determining the neural network. A possible

simplification is to consider that this probability depends only on the spikes emitted

in the past by the network. In this way, we are seeking a family of transition

probabilities of the form P
[
ω(n)

∣∣ωn−1
n−D

]
, the probability that the firing pattern

ω(n) occurs at time n, given a past spike block ωn−1
n−D. Here, D is the memory depth

of the probability, i.e., how far in the past does the transition probability depends

on ω. We say that those transition probabilities are time-translation invariant or

stationary if for all n, P
[
ω(n)

∣∣ωn−1
n−D

]
= P

[
ω(0)

∣∣ω−1
−D

]
whenever ωnn−D = ω0

−D.

2.1.2 Different types of transition probabilities used to character-
ize spike trains statistics

These transition probabilities depending on D can take four different forms:

1. Memory-less: D = 0 (Independent of the past). This is the case when

successive spike patterns are independent. We use the convention that

P
[
ω(n)

∣∣ωn−1
n−D

]
= P [ω(n) ], when D = 0.

2. Fixed length memory: Fixing D > 0 and assuming that transition proba-

bilities P
[
ω(n)

∣∣ωn−1
n−D

]
do not to depend explicitly on time (stationarity

assumption), they define a homogeneous Markov chain.

3. Variable length memory: HereD is not fixed. In the context of neural networks

models it appears naturally as memory of the neurons goes back up to its last

spike, which is variable for each neuron and for each time. To define them

properly we need to define a probabilistic context tree and a family of infinite

order transition probabilities in this context tree. In this thesis we do not use

this approach (It has been already introduced in neuroscience e.g. in (Galves

and Löcherbach, 2013)).

4. Infinite memory: They arise in the context of the neural network models that

we analyze in this thesis. The models we examine consider memory up to

the last firing time, which can be unbounded, thus we have to consider cases
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where the last firing time can go arbitrary far in past, this correspond to tran-

sition probabilities of the form: P
[
ω(n)

∣∣ωn−1
−∞

]
. These transition probabili-

ties define non Markovian processes called chains with “complete connections”

(Fernandez and Maillard, 2005) described further in this chapter.

2.2 Discrete Time Homogeneous Markov Chains and

spike train statistics

We start presenting Markov chains and how they are defined from transition prob-

abilities. We show how an invariant probability distribution can be obtained from

the transition probabilities and when it is unique. The invariant probability distri-

bution of the Markov chain is the fundamental object of this section, because it is

supposed to characterize the spike train statistics when the spike train is stationary.

We discuss the main disadvantage of estimating transition probabilities from data

and how this issue can be solved using MaxEnt method. We first show how this

approach can be used in the case when successive spikes are independent, then we

move to the more general case of fixed memory that includes the memory-less case.

2.2.1 Block coding

The properties of Markov chains considered in this thesis are easily expressed us-

ing matrix/vectors representation. For this purpose, we choose a symbolic repre-

sentation of spike blocks of length L (which are the states of the Markov chain

we construct). There are M = 2NL such possible spike blocks. Each spike

block of length L = D + 1 : ωD0 is associated to a unique integer (index)

l =
∑N

k=1

∑D
n=0 2

nN+k−1 ωk(n), where neurons k = 1, .., N are considered from

top to bottom and time n = 0, .., D from left to right in the spike train. We denote

ω(l) the spike block corresponding to the index l. Here an example with N = 2 and

L = 3, ω(6)=
[

0 1 0
1 0 0

]
.

2.2.2 Markov chains and transition probabilities

We start defining Markov chains. This presentation is based in the classical

textbook (Bremaud, 1999).

A sequence {Xn}n≥0 of random variables with values in a set E is called a

discrete-time stochastic process with state space E if n is a discrete set. If Xn = l,

the process is said to be in state l at time n, or to visit state l at time n. Here

E = AD−1
0 = AD−1+n

n

Homogeneous Markov Chain

Let {Xn}n≥0 be a discrete-time stochastic process with state space E. If for all

integers n > 0 and all states i0, . . . , in−1, l
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P[Xn = l | Xn−1 = in−1, Xn−2 = in−2, . . . , x0 = i0] = P[Xn = l | Xn−1 = in−1]

(2.1)

whenever both sides are well-defined, this stochastic process is called a Markov chain.

i.e., the state of the system at time n depends only on the state of the system at time

n − 1, and does not depend on any other state before. It is called a homogeneous

Markov chain (HMC) if, in addition, the right-hand side of (2.1) is independent of n.

In this thesis the states are spike blocks of finite length L, Xn = ωn+Ln . States are

denoted by either block notation ω(l) or by integer numbers following the previously

introduced block coding. Here an example of the state space E = A1
0 with N = 2

and L = 2.

E = {
[

0 0
0 0

]

︸ ︷︷ ︸
0

,
[

0 0
1 0

]

︸ ︷︷ ︸
1

, . . . ,
[

1 1
1 1

]

︸ ︷︷ ︸
15

}

2.2.3 Forbidden and allowed transitions

We are considering transition probabilities of the form P[ω(n) | ωn−1
n−D]. It is conve-

nient to represent these probabilities as transitions between blocks ωn−1
n−D → ωnn−D+1

where the block ωn−1
n−D+1 is common. This allows indeed a matrix representation of

the Markov chain. However, the price to pay is to artificially enlarge the set of tran-

sitions, because one is lead to consider, transition between any 2 blocks ω(l), ω(l′).

Consider two spike blocks ω(l), ω(l′) of length L ≥ 1. The transition ω(l) → ω(l′)

is legal if ω(l), ω(l′) have a common sub-block ωD1 of ω(l) and ωD−1
0 of ω(l). Here is

an example taking blocks with N = 2 and L = 3 of a legal transition:

ω(l) =
[

0 0 1
0 1 1

]
→ ω(l′) =

[
0 1 1
1 1 0

]

Figure 2.2: Allowed transition: The red block shifts to the blue block.

Thus, the probability to go from ω(l) to ω(l′) is non-negative.

P[ 0 1 1
1 1 0 | 0 0 1

0 1 1 ] = P[ 1
0 | 0 0 1

0 1 1 ] ≥ 0

For forbidden transition, the transition probability is zero, as the event is impossible.

ω(l) =
[

0 0 1
0 1 1

]
9 ω(l′) =

[
0 1 1
0 1 0

]

Then,
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P[ 0 1 1
0 1 0 | 0 0 1

0 1 1 ] = 0

We construct the transition matrix T as follows:

Tω(l),ω(l′) =

{
P[ω(l′) | ω(l)] ≥ 0 if ω(l) → ω(l′) is legal

0, otherwise.
(2.2)

Note that although T has (2NL)2 entries, it is a sparse matrix since each line

has, at most, 2N non-zero entries.

Since its entries are probabilities, and since a transition from any state ω(l) must

be to some state, it follows that

P[ω(l′) | ω(l)] ≥ 0;
∑

ω(l′)∈E

P[ω(l′) | ω(l)] = 1 (2.3)

for all states ω(l), ω(l′). A matrix T indexed by E and satisfying the above properties

is called a stochastic matrix (for an illustration see 2.4).

A square stochastic matrix T is called primitive if for some ≥ 1 the matrix T n

has no entries equal to 0.

Remark: Any block ωD0 of length L = D+1 can be viewed as a legal transition

from the block ω(l) = ωD−1
0 to the block ω(l′) = ωD1 and in this case we write

ωD0 ∼ ω(l)ω(l′).

Transition Diagrams

A Markov chain transition matrix can be represented graphically as a transition-

probability diagram where each node represents a state (or spike block), directed

arc connects state ω(l) to state ω(l′) if a one-step transition from ω(l) to ω(l′) is

allowed. The one-step transition probability P[ω(l′) | ω(l)] is written next to the

arc. A transition from a state to itself is represented by a loop (for an illustration

see 2.3).

2.2.4 Distribution of an homogeneous Markov Chain

The random variable X0 = ωD−1
0 is called the initial state, and its probability

distribution ν, is the initial distribution

ν(i) = P[X0 = i], (2.4)

From the homogeneous Markov property and the definition of the transition matrix;
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Figure 2.3: Transition diagram: for a simple network of two neurons and 1 step

memory. In this case all states are accessible in one time-step. This is not the case

any more if D > 1.

Figure 2.4: Transition matrix corresponding to the transition diagram 2.3



26
Chapter 2. Gibbs distributions as canonical models for spike train

statistics

P[X0 = i0, X1 = i1, . . . , Xk = ik] = ν(i0)Ti0,i1 · · · Tik−1,ik (2.5)

for all k > 0, for all states i0, i1, . . . , ik, equation (2.5) constitute the probability

law of the homogeneous Markov chain. The distribution of a discrete-time homoge-

neous Markov chain is determined by its initial distribution and its transition matrix.

Invariant Probability

We now introduce the central notion of the theory of discrete-time homoge-

neous Markov chains. A probability vector µ indexed by E satisfying

µT = µTT (2.6)

(where T denotes the transpose) is called an invariant or equilibrium distribution of

the transition matrix T (or of the corresponding homogeneous Markov chain). The

global balance equation (2.6) says that for all states ω(l)

µ[ω(l)] =
∑

ω(l′)∈E

P[ω(l) | ω(l′)]µ[ω(l′)] (2.7)

Detailed Balance

From equation (2.3) we get:

∑

ω(l′)

P[ω(l′) | ω(l)]µ[ω(l)] = µ[ω(l)]

and from equation (2.7):

∑

ω(l′)

(
P[ω(l) | ω(l′)]µ[ω(l′)]− P[ω(l′) | ω(l)]µ[ω(l)]

)
= 0 (2.8)

A sufficient, but not necessary condition to have (2.8) equal to 0 is to have the

quantity inside the parenthesis equal to zero. We call detailed balance this condition.

P

[
ω(l′)

∣∣∣ω(l)
]
µ[ω(l)] = P

[
ω(l)

∣∣∣ω(l′)
]
µ[ω(l′)], ∀ω(l), ω(l′) ∈ E. (2.9)

If the detailed balance equations are satisfied, µ is therefore a stationary distribution

of T .

Remarks:
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• Detailed balance is a sufficient condition to have an invariant measure, but it

is not necessary.

• Detailed balance is a common assumption in statistical physics, standard

MCMC (Markov chain Monte Carlo) methods are able to estimate (recon-

struct) the invariant measure of a Markov process assuming that the detailed

balance condition is satisfied.

• The framework we use in this thesis does not make this assumption, only a

weaker condition of primitivity (see section 2.2.7.1) of the transition matrix is

required.

Conditions for uniqueness

It may exist several distributions satisfying (2.6); the invariant probability is

not necessarily unique. Take for example the identity as transition matrix (note

that is a stochastic matrix). Then any probability distribution on the state space

is a stationary distribution. Uniqueness requires additional assumptions.

We call Return time to the state ω(l) ∈ E, the time:

Tω(l) = inf{n ≥ 1 : Xn = ω(l)}

A state ω(l) ∈ E is called recurrent if

P (Tω(l) <∞) = 1

and otherwise it is called transient. A recurrent state ω(l) ∈ E is called positive

recurrent if

E[Tω(l) ] <∞.

A state ω(l) is said to communicate with state ω(l′) (written ω(l) ↔ ω(l′)) if both

can be accessible from each other, denoted ω(l) → ω(l′) and ω(l′) → ω(l). A set of

states B is a communicating class if every pair of states in B communicates with

each other, and no state in B communicates with any state not in B.

A Markov chain is irreducible if its state space is a single communicating class,

i.e., if it is possible to get to any state from any state (not necessarily in one step).

Theorem 1 (Uniqueness of the invariant probability) (Bremaud, 1999) An irre-

ducible Markov Chain is positive recurrent if and only if there exist an invariant

measure µ. Then, µ is the unique invariant measure.

In terms of the transition matrix only a condition of primitivity is needed to

ensure the uniqueness of the invariant probability.
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2.2.5 Ergodic Theorem

A state ω(l) is said to be ergodic if it is aperiodic (returns to state ω(l) occur at

irregular times) and positive recurrent. If all states in an irreducible Markov chain

are ergodic, then the chain is said to be ergodic.

Theorem 2 (Ergodic Theorem) (Bremaud, 1999) Let {Xn}n≥0 be an ergodic

Markov chain with the stationary distribution µ, and let f : E → R be such that

∑

ω(l)∈E
|f(ω(l))|µ(ω(l)) <∞

Then, for any initial distribution ν, Pν − a.s:

lim
T→∞

1

T

T∑

k=1

f(Xk) =
∑

ω(l)∈E
f(ω(l))µ(ω(l))

This theorem tell us that the time average of an observable f over a sequence of

events Xk = ωk+Lk is the same as the average value of the observable with respect

to the stationary distribution µ, independent of initial probability distribution ν.

Further in this chapter, when we discuss about statistical estimation we come back

to this point.

2.2.6 Observables and Potentials

In this section we introduce the concept of potentials. We derive how to get form a

potential their associated transition probabilities and invariant measure, we show

in 2.2.7.2 an explicit example where the computations can be done analytically.

Let us start with some definitions.

Observables

An observable is a function, O(ω), that associates a real number to a spike train.

We say that an observable O has range R if it depends on R consecutive spike

patterns, e.g. O(ω) = O(ωR−1
0 ). We consider here that observables do not depend

explicitly on time (time-translation invariance of observables). As a consequence,

for any time n, O(ωR−1
0 ) = O(ωn+R−1

n ) whenever ωR−1
0 = ωn+R−1

n . Prominent

examples of observables are products of the form:

O(ω) = mp1,...,pr(ω) =

r∏

u=1

ωku(nu), (2.10)

where pu, u = 1 . . . r are pairs of neuron-time events (ku, nu), ku = 1 . . . N being the

neuron index and nu = 0 . . . D being the time index. These observables are called

monomials and take values {0, 1}. Typical choices of monomials are ωk1(n1) which

is 1 if neuron k1 fires at time n1 and which is 0 otherwise; ωk1(n1)ωk2(n2) which is 1
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if neuron k1 fires at time n1 and neuron k2 fires at time n2 and which is 0 otherwise.

Another example is ωk1(n1) (1 − ωk2(n2)) which is 1 is neuron k1 fires at time n1
and neuron k2 is silent at time n2. For N neurons and a time range R there are

thus 2NR possible monomials. Any observable of range R can be represented as a

linear combination of products (2.10). Monomials constitute therefore a canonical

basis for observable representation.

To alleviate notations, instead of labeling monomials by a list of pairs, as in

(2.10), we label them by an integer index, l (the index is defined in the same way

as the block index). So a monomial reads ml.

Potential

An example of observable is called a potential. Any potential of range R can be

written as a linear combination of monomials, which constitute the “effective inter-

actions”. The range of the potential is the maximum of the range of the monomials

ml. A potential of range R is therefore written as follows:

H(ωD0 ) =

2NR∑

l=1

hlml(ω
D
0 ). (2.11)

where the coefficients hl are finite1 real numbers. Some coefficients in the expansion

may be zero. We assume throughout this thesis that hl >∞.

2.2.7 Markov Chains and normalized potentials

We assume here that the memory depth of the chain D is constant and finite,

although an extension of the present formalism to variable length Markov chains

(D variable) or chains with complete connections (D infinite) is possible (Fernandez

and Maillard, 2005). We also assume that the chain is homogeneous (transition

probabilities do not depend explicitly on time) and primitive (In the present context

this property is ensured by the assumption H > −∞ (sufficient condition)). Then,

the Markov chain admits a unique invariant probability µ which obeys the Chapman-

Kolmogorov relation: ∀n1, n2, n2 +D − 1 > n1,

µ
[
ωn2
n1

]
=

n2−D∏

n=n1

P
[
ω(n+D)

∣∣ωn+D−1
n

]
µ
[
ωn1+D−1
n1

]
. (2.12)

Introducing:

φ(ωn+Dn ) = logP
[
ω(n+D)

∣∣ωn+D−1
n

]
, (2.13)

we have

µ
[
ωn2
n1

]
= e

∑n2−D
n=n1

φ(ωn+D
n )

µ
[
ωn1+D−1
n1

]
. (2.14)

1Thus, we do not consider here hard core potentials with forbidden configurations.
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φ is called a normalized potential. As we will see in the next section to each bounded

H of the form (2.11) corresponds a unique normalized potential φ and a unique

invariant measure µ. Although this correspondence can be found in many text-

books (see for example (Georgii, 1988, Keller, 1998)), we summarize it here since it

is the core of the methods we use in this thesis.

2.2.7.1 Transfer Matrix

A generalization of the concept of transition matrix is the transfer matrix L:

Lω(l),ω(l′) =

{
eH(ωD

0 ) if ωD0 ∼ ω(l)ω(l′)

0, otherwise.
(2.15)

Remarks:

• The transfer matrix is not necessarily a stochastic matrix (only when the

potential H is normalized).

• From the assumption H > −∞, each legal transition corresponds to a positive

entry in the matrix L. Therefore L is primitive and satisfies the Perron-

Frobenius theorem (Gantmacher, 1998).

Theorem 3 (Perron Frobenius) (Gantmacher, 1998)

L has a unique maximal and strictly positive eigenvalue s associated with a right

eigenvector R(·) and a left eigenvector L(·), with positive and bounded entries, such

that LR = sR, LL = sL. Those vectors can be chosen such that 〈L,R〉 = 1 where

〈·, ·〉 is the scalar product. The remaining part of the spectrum is located in a disk

in the complex plane, of radius strictly lower than s. As a consequence, for all v ,

1

sn
Lnv → 〈L,R〉v

as n→ ∞
The Gibbs-probability of a spike block w is:

µ(w) = 〈Lw, Rw〉

where Lw and Rw are the w − th component of R(·).

As a consequence of the Perron-Frobenius theorem, L has a unique real positive

eigenvalue s, strictly larger in modulus than the other eigenvalues. This unique

eigenvalue and its associated eigenvectors define uniquely the invariant probability

measure associated to L.

The following holds:
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(a) The potential:

φ(ωD0 ) = H(ωD0 )− logR
(
ωD−1
0

)
+ logR

(
ωD1
)
− log s

︸ ︷︷ ︸
ζ(ωD

0 )

(2.16)

where ζ(ωD0 ) is called normalization function is normalized i.e. it de-

fines via (2.13) an homogeneous Markov chain with transition probability

P

[
ω(D)

∣∣∣ωD−1
0

]
= eφ(ω

D
0 ).

(b) The unique invariant probability of this Markov chain can be written:

µ(ωD−1
0 ) =

R
(
ωD−1
0

)
L
(
ωD−1
0

)

〈L,R〉 . (2.17)

(c) It follows from Chapman-Kolmogorov equation (2.12) and from (2.16,2.17) that,

for D > 0:

µ [ωn0 ] =
e
∑n−D

k=0 H(ωk+D
k )

sn−D+1
R
(
ωnn−D+1

)
L
(
ωD−1
0

)
. (2.18)

This can be easily seen:

Write the Chapman-Kolmogorov equation 2.12 using the normalized potential:

µ[ωn0 ] = e
∑n−D

k=0 φ(ωk+D
k

)µ[ωD−1
0 ] (2.19)

Using equation (2.16), we have:

n−D∑

k=0

φ(ωk+Dk ) =

n−D∑

k=0

(
H(ωk+Dk )− logR(ωk+D−1

k ) + logR(ωk+Dk+1 )− log s
)

=

n−D∑

k=0

H(ωk+Dk )− logR(ωD−1
0 ) + logR(ωnn−D+1)− (n−D + 1) log s

Where the last equality is obtained by applying the sum to each term (most of

the terms logR(·) cancel out).

Taking exponential we get:

e
∑n−D

k=0 φ(ωk+D
k

) = e

(
∑n−D

k=0 H(ωk+D
k

)−logR(ωD−1
0 )+logR(ωn

n−D+1)−(n−D+1) log s

)

using properties of the exponential function and multiplying both sides by (2.17)

we get:
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e
∑n−D

k=0 φ(ωk+D
k

)µ[ωD−1
0 ] =

e
∑n−D

k=0 H(ωk+D
k

)R(ωnn−D+1)R(ω
D−1
0 )L(ωD−1

0 )

R(ωD−1
0 )sn−D+1

Finally, for the left hand we use equation (2.19) and the right hand side is

obtained canceling out the term R(ωD−1
0 ) > 0.

µ[ωn0 ] =
e
∑n−D

k=0 H(ωk+D
k

)R(ωnn−D+1)L(ω
D−1
0 )

sn−D+1
. (2.20)

On practical grounds, when the state space is finite, we can rely on the standard

results of linear algebra to study the asymptotic behavior of homogeneous Markov

chains. Therefore, to characterize uniquely the spike train statistics of a neural

network whose spikes are interacting following a potential H. The Perron-Frobenius

theorem is all that is needed, at least in the theory. Let us illustrate what have been

explained so far with an example.

2.2.7.2 Example: How to go from a bounded potential H to its invariant

measure µ ?

Let us consider a range-2 potential with two neurons:

H(ω) = h1ω1(1)ω2(0).

The transfer matrix (2.15) associated to H is:

L(H) =




1 1 1 1

1 1 eh1 1

1 1 1 1

1 1 1 1


 .

As this matrix is primitive by construction, thus, satisfy the hypothesis of the

Perron Frobenius theorem, there exist a unique maximum eigenvalue, root of the

characteristic polynomial, that in this case reads:

Q(s) = s4 − 4s3 + s2 − eh1s2 = s2(s2 − 4s+ 1)− s2eh1 (2.21)

Removing the trivial roots we get:

eh1 − 1 = s2 − 4s (2.22)

so we have 2 eigenvalues equal to 0 and the others can be obtained solving the

second degree equation. They are: 2 ±
√
eh1 + 3, thus the largest eigenvalue

is s = 2 +
√
eh1 + 3. The left and right eigenvectors associated to this largest

eigenvalue are respectively :



2.2. Discrete Time Homogeneous Markov Chains and spike train
statistics 33

L

(
0

0

)
= 1;L

(
0

1

)
= 1;L

(
1

0

)
= s− 3;L

(
1

1

)
= 1

R

(
0

0

)
= 1;R

(
0

1

)
= s− 3;R

(
1

0

)
= 1;R

(
1

1

)
= 1

The normalization function ζ 2.16 takes therefore the following values:

ζ

[
0 0

0 0

]
= logR

(
0

0

)
− logR

(
0

0

)
+ log s = log s

ζ

[
0 0

0 1

]
= logR

(
0

0

)
− logR

(
0

1

)
+ log s = − log(s− 3) + log s

ζ

[
0 1

0 0

]
= logR

(
0

0

)
− logR

(
1

0

)
+ log s = log s

ζ

[
0 1

0 1

]
= logR

(
0

0

)
− logR

(
1

1

)
+ log s = log s

ζ

[
0 0

1 0

]
= logR

(
0

1

)
− logR

(
0

0

)
+ log s = log(s− 3) + log s

ζ

[
0 0

1 1

]
= logR

(
0

1

)
− logR

(
0

1

)
+ log s = log s

ζ

[
0 1

1 0

]
= logR

(
0

1

)
− logR

(
1

0

)
+ log s = log(s− 3) + log s

ζ

[
0 1

1 1

]
= logR

(
0

1

)
− logR

(
1

1

)
+ log s = log(s− 3) + log s

ζ

[
1 0

0 0

]
= logR

(
1

0

)
− logR

(
0

0

)
+ log s = log s

ζ

[
1 0

0 1

]
= logR

(
1

0

)
− logR

(
0

1

)
+ log s = − log(s− 3) + log s

ζ

[
1 1

0 0

]
= logR

(
1

0

)
− logR

(
1

0

)
+ log s = log s

ζ

[
1 1

0 1

]
= logR

(
1

0

)
− logR

(
1

1

)
+ log s = log s

ζ

[
1 0

1 0

]
= logR

(
1

1

)
− logR

(
0

0

)
+ log s = log s

ζ

[
1 0

1 1

]
= logR

(
1

1

)
− logR

(
0

1

)
+ log s = − log(s− 3) + log s

ζ

[
1 1

1 0

]
= logR

(
1

1

)
− logR

(
1

0

)
+ log s = log s

ζ

[
1 1

1 1

]
= logR

(
1

1

)
− logR

(
1

1

)
+ log s = log s;

Taking the exponential of equation (2.16) on the r.h.s we get the values from the

transfer matrix and we divide by the previously computed values of the normaliza-
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tion function. Therefore the Markov chain transition matrix (2.2) reads :

eφ =
1

s




1 s− 3 1 1
1
s−3 1 eh1

s−3
1
s−3

1 s− 3 1 1

1 s− 3 1 1


 ,

with eh1 −1 = s2−4s, so that eφ is correctly normalised (the sum of entries on each

row is equal to 1).

The invariant probability of the Markov chain is given by equation (2.17) after

normalization by 〈L,R〉 = 2s− 4 :

µ

[
0

0

]
=

1

2s− 4
, µ

[
0

1

]
=

s− 3

2s− 4
, µ

[
1

0

]
=

s− 3

2s− 4
, µ

[
1

1

]
=

1

2s− 4

Here we can use the Chapman-Kolmogorov equation (2.12) to obtain the invariant

measure of blocks of length 2.

µ

[
1 0

0 1

]
= µ

[
1

0

]
e
φ



 1 0

0 1





=
s− 3

s

s− 3

2s− 4
;

µ

[
0 1

1 0

]
= µ

[
0

1

]
e
φ



 0 1

1 0





=
1

s

eh1

2s− 4
;

With these equations, using (2.13) we can verify that in general the detailed

balance condition is not satisfied :

⇔

µ

[
1 0

0 1

]
6= µ

[
0 1

1 0

]

Remark: The detailed balance condition is only satisfied in the trivial case

h1 = 0, in this case the maximum eigenvalue s = 4 and the invariant probability is

the uniform assigning 1
16 to each block of range 2 of the system.

2.2.8 From Markov chains to Gibbs distributions

Let us outline what we have obtained. Given a potential H of finite range R, written

as a linear combination of monomials, with finite coefficients, it is always possible to

associate a homogeneous Markov chain with memory D, and invariant distribution

µ. Let us now show that µ corresponds to the concept of Gibbs distribution coming

from statistical physics. To do that let us start with some definitions.
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2.2.8.1 Entropy of a Markov chain

We define the entropy rate (or Kolmogorov-Sinai entropy) of a stationary Markov

chain S [µ ] (Kitchens, 1998):

S [µ ] = −
∑

ωD
0

µ
[
ωD0
]
P

[
ω(D)

∣∣∣ωD−1
0

]
logP

[
ω(D)

∣∣∣ωD−1
0

]
, (2.23)

When D = 0, S [µ ] reduces to the classical memory-less definition:

S(µ) = −
∑

ω(0)

µ [ω(0) ] log µ [ω(0) ] . (2.24)

Note that the time index (here, zero) does not play a role, since we hace assumed

µ to be stationary (time translation invariant).

2.2.8.2 Variational principle and equilibrium states

Assume that H is bounded and has finite range2:

P [H ] = sup
ν∈Minv

(S [ ν ] + ν [H ] ) = S [µ ] + µ [H ] , (2.25)

where P [H ] is called the free energy or topological presure and its properties are

listed below. ν [H ] =
∑

ωD
0
H(ωD0 ) ν(ωD0 ) is the average value of H with respect to

the probability ν.

Looking at the second equality, the variational principle (2.25) selects, among

all possible probabilities ν the probability µ realizing the supremum of S [ ν ] + ν [H ].

The supremum is attained - not necessarily at a unique probability. Each proba-

bility µ for which the supremum is attained is called an equilibrium state for H. As

in statistical physics the word “state” is here used synonymously with “distribution”.

A variant of this principle holds when the average value of observables Ok is

constrained to a value Ck, fixed e.g. by experimental observations. For a probability

measure ν we have ν [H ] =
∑K

k=1 hk ν [Ok ], which becomes
∑K

k=1 hkCk if the

average value of all observables Ok is constrained. In this case the variational

principle (2.25) reduces to maximizing the entropy on the set of measures ν ∈ Minv

such that ν [Ok ] = Ck. Then, one is lead to a classical Lagrange multipliers problem

where the hks are the Lagrange multipliers. This is the classical approach introduced

by (Jaynes, 1957).

2.2.8.3 Free energy

The quantity P [H ] has the following properties:

2The variational principle still holds if the range is infinite and its variation decays sufficiently

fast with m, typically exponentially. It can be shown that its invariant measure µ satisfy the

variational principle (Ruelle, 1978, Bowen, 1975, Chazottes and Keller, 2008)
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• P [H ] is a log generating function of cumulants. We have:

∂P [H ]

∂hl
= µ [ml ] , (2.26)

the average of ml with respect to µ and:

∂2P [H ]

∂hk∂hl
=
∂µ [ml ]

∂hk
=

+∞∑

n=−∞
Cmk ,ml

(n), (2.27)

where Cmk ,ml
(n)

COk Ol
(n) = µ [OkOl ◦ σn ] − µ [Ok ]µ [Ol ] ,

is the correlation function between the two monomials mk and ml at time n in

the equilibrium state µ. Note that correlation functions decay exponentially

fast whenever H has finite range and H > −∞, thus
∑+∞

n=−∞Cmk ,ml
(n) <

+∞. Eq. (2.27) characterizes the variation in the average value of ml when

varying hk (linear response). The corresponding matrix is a susceptibility ma-

trix. It controls the Gaussian fluctuations of monomials around their mean

(central limit theorem) (Bowen, 1975). When considering potential of range

1 (D = 0) eq (2.27) reduces to the classical fluctuation-dissipation theorem,

because the corresponding process has no memory (successive times are inde-

pendent thus Cmk,ml
(n) = 0 unless n = 0).

• For finite range potentials P(H) is a convex function of hl’s. This ensures the

uniqueness of the solution of (2.25).

Gibbs property: The invariant measure of the Markov chain µ obtained from

H have the following properties:

1. µ obeys the variational principle (2.25) and

P[H] = log s. (2.28)

When considering a normalized potential φ, the transfer matrix becomes a

stochastic transition matrix with maximal eigenvalue 1. Thus P[φ] = 0.

2. It follows from (2.18) that

∃A,B > 0 such that, for any block ωn0 the invariant distribution obeys (Bowen,

1975, Keller, 1998):

A ≤ µ [ωn0 ]

e−(n−D+1)P(H)e−
∑n−D

k=0 H(ωk+D
k )

≤ B. (2.29)

This equation can be verified by taking exponential to equation 2.28
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s = eP[H]

Plugging in equation 2.20 we obtain:

µ[ωn0 ]

e−(n−D+1)P[H]e−
∑n−D

k=0 H(ωk+D
k

)
= R(ωnn−D+1)L(ω

D−1
0 )

As R(ωnn−D+1)L(ω
D−1
0 ) are positive numbers, there exist A,B > 0 s.t.

A ≤ µ[ωn0 ]

e−(n−D+1)P[H]e−
∑n−D

k=0 H(ωk+D
k

)
≤ B

This is actually the definition of Gibbs distributions in ergodic theory and this

is the definition we use in this thesis 3.

This definition encompasses the classical definition of Gibbs distributions, eH

Z

found in standard textbooks of statistical physics. Let us indeed consider a potential

of range R = 1, (D = 0). This is a limit case in the definition of the transfer matrix

where transitions between spike patterns ω(0) → ω(1) are considered and where all

transitions are legal. Lω(0),ω(1) = eH(ω(0)), thus each column has the form:

(eH(ω(0)), eH(ω(0)), . . . , eH(ω(0))).

The matrix L is degenerated with a maximum eigenvalue:

s = Z =
∑

ω(0)

eH(ω(0))

and all other eigenvalues 0. The left eigenvector corresponding to s = Z is:

L = (
1

Z
,
1

Z
, . . . ,

1

Z
)

whereas R(ω(0)) = eH(ω(0)). Note that we have normalized L so that 〈L,R〉 = 1.

We have therefore:

µ(ω(0)) =
eH(ω(0))

Z
, (2.30)

the classical form for the Gibbs distribution. The normalized potential in the

limiting case is φ(ω(0)) = H(ω(0))− logZ, whereas the Markov chain has no mem-

ory: successive events are independent. This last remark reflects a central weakness

of memory-less MaxEnt models to describe neuron dynamics. They neither involve

3When considering finite range potentials equilibrium states and Gibbs distributions are equiv-

alent notions. This equivalence requires additional assumptions for infinite range potentials (Cha-

zottes and Keller, 2008).
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memory nor time causality. Note that from equation (2.18): µ[ωn0 ] has not the form
eH(ω(0))

Zn
with Zn =

∑
ωn
0
eH(ωn

0 ). However the following holds:

P[H] = lim
n→∞

1

n
logZn. (2.31)

This outlines a crucial point: as soon as one introduces memory in the MaxEnt,

infinite time limits have to be considered in order to fully characterize the statistics.

This is mutatis mutandis the same procedure as taking the thermodynamic limit in

spatial lattices (Georgii, 1988).

Remarks:

• While Gibbs distributions are defined by specifying certain conditional proba-

bilities, equilibrium states are defined by a variational principle. Gibbs states

are always equilibrium states, but the two notions do not coincide in general.

However, for a class of sufficiently regular potentials, equilibrium states are

also Gibbs states (Chazottes and Keller, 2008).

• For finite range potentials H , one has always a unique equilibrium state which

has the “Gibbs property” (2.29).

• Coming back to our example using the free energy we can push forward the

analysis made in our example 2.2.7.2 and compute the derivative with respect

to the parameter h1.

∂P[H]

∂h1
=
∂ log(2 +

√
eh1 + 3)

∂h1
,

=
eh1

4
√
eh1 + 3 + 2eh1 + 6

,

=
1

s

eh1

2s− 4
,

= µ

[
0 1

1 0

]

Verifying equation 2.26. Taking the second derivative of the Pressure gives:

∂2P[H]

∂h21
=
∂ eh1

4
√
eh1+3+2eh1+6

∂h1
,

=
eh1(3

√
eh1 + 3 + eh1 + 6)

2
√
eh1 + 3(2

√
eh1 + 3 + eh1 + 3)2

=

∂µ

[
0 1

1 0

]

∂h1



2.3. Infinite range Gibbs distributions 39

Characterizing how varies µ

[
0 1

1 0

]
with respect to h1.

2.3 Infinite range Gibbs distributions

In this section we introduce the construction of Gibbs distributions when

the state space is made of infinite elements, thus rendering the matrix-vector

markovian approach exposed in the previous section inappropriate. The con-

struction of a Gibbs measure for a system with an infinite number of interacting

components is done by the idea of specifying the interdependence structure

by means of a suitable class of conditional probabilities (Georgii, 1988). This

construction will be suited for the stochastic processes arising from the infi-

nite memory GLM and for the Conductance Based Integrate and Fire with

and without gap junctions.

To define properly under which hypothesis we obtain a Gibbs distribution let

us start with definitions.

2.3.1 Continuity with respect to a spike train

Consider an infinite spike train. For n ∈ ❩, we note An−1
−∞ the set of sequences

ωn−1
−∞ . Assume that we are given a set of transitions probabilities, like in the

previous section, possibly depending on an infinite past4, i.e. of the form

P
[
ω(n)

∣∣ωn−1
−∞

]
. We give in the next chapter an example of neural network

model where such transition probabilities with an infinite memory do appear.

Even if transition probabilities involve an infinite memory ωn−1
−∞ , it is reason-

able to consider situations where the effects of past spikes decreases as they

are more distant in the past. This corresponds to the mathematical notion

of continuity with respect to a spike train. We note, for n ∈ ❩, m ≥ 0 and r

integer:

ω
m,n
= ω′ if ω(r) = ω′(r), ∀r ∈ {n−m, . . . , n } .

Consider a function f depending both on discrete time n and on the spike

train part of ω anterior to n. We write f(n, ω) instead of f(n, ωn−1
−∞ ). f is

continuous with respect to the spike train ω if its m-variation:

varm [f(n, .)] = sup
{
| f(n, ω)− f(n, ω′) | : ω m,n

= ω′
}
. (2.32)

tends to 0 as m → +∞. This precisely means that the influence of a change

in the spikes has less and less effect on the actual value of f at time n as these

changes are more distant in the past (n −m decreases). From the definition

we see clearly that any finite range potential is continuous.

4In this case, one has to assume that (i) for every ω(n) ∈ A , P [ω(n) | . ] is mea-

surable with respect to F≤n−1, the sigma-algebra on An−1
−∞ ; (ii) for every ω

n−1
−∞ ∈ An−1

−∞ ,
∑

ω(n)∈AP
[

ω(n)
∣

∣ω
n−1
−∞

]

= 1.
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Définition 1 A Gibbs distribution is a probability measure µ such that:

(i) for all n ∈ ❩ and all F≤n-measurable functions f :

∫
f
(
ωn−∞

)
µ(dω) =

∫ ∑

ω(n)∈A
f
(
ωn−1
−∞ω(n)

)
P
[
ω(n)

∣∣ωn−1
−∞

]
µ(dω).

(ii) ∀n ∈ ❩, ∀ωn−1
−∞ ∈ An−1

−∞ , P
[
ω(n)

∣∣ωn−1
−∞

]
> 0.

(iii) For each n ∈ ❩, P
[
ω(n)

∣∣ωn−1
−∞

]
is continuous with respect to ω.

The condition (i) is a natural extension of the condition defining the invariant

probability of an homogeneous Markov chain (2.6). In its most general sense

(i) does not require stationarity and affords the consideration of an infinite

memory. It defines so-called compatibility conditions. This states that the

average of a function f(n, ω) with respect to µ, at time n (left hand side), is

equal to the average computed from transition probabilities (right hand side).

This equality must hold for any time n.

The remarkable aspect of this construction is the fact that a Gibbs measure for

a given type of potential may fail to be unique. In physical terms, this means

that a system with this interaction can take several distinct equilibrium. The

phenomenon of nonuniqueness of a Gibbs measure can thus be interpreted as

a phase transition. Therefore, the conditions under which a potential leads to

a unique or to several Gibbs measures turns out to be of central importance.

There exist several theorems guaranteeing the existence and uniqueness of a

Gibbs distribution (Georgii, 1988, Fernandez and Maillard, 2005).

2.3.2 Conditions for uniqueness of Gibbs measure for infinite
chains

There are several criteria of uniqueness. Here we consider the one presented

in (Fernandez and Maillard, 2005), as is more suited for our developments.

Let:

m(p) = inf
n∈Z

inf
ω∈An

−∞
P[ω(n) | ωn−1

−∞ ] (2.33)

and

v(p) = sup
m∈Z

∑

n′>m

varm−n′P[ω(n) | ·] (2.34)

Ifm(p) > 0 and v(p) <∞, then there exists a unique Gibbs measure consistent

with P[ω(n) | ωn−1
−∞ ].
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2.4 Statistical Estimation

We now focus on the problem of estimate the probability of spike patterns. In

Chapter 1 we have seen how experimentalist can obtain spikes from biological neural

networks as the retina using MEA. Now, having spike train data what can we do to

characterize the statistics of spike trains? We present methods to give an answer to

this question.

2.4.1 Maximum Entropy Method

We have seen how to obtain from transition probabilities of a Markov chain and the

unique invariant probability µ (2.17). Thus, the problem of obtaining the invariant

probability can be summarized as the correct estimation of the transition proba-

bilities. Transition probabilities P[ω(n) | ωn−1
n−D] can be estimated from data. Just

counting how many times the pattern ω(n) have appeared after the block ωn−1
n−D.

The problem in the context of spike train statistics is the following: Consider a

network of N neurons in the most simple possible scenario where the state of the

system does not dependent on the past. ω(n) is a spike pattern that can take 2N

possible values thus, N does not need to be very big to arrive a situation where it

is not possible to observe all possible states by doing simulations of spiking neurons

or doing real data acquisition. Take for instance 100 neurons. The spike pattern

can take 1267650600228229401496703205376 possible values. This fact renders the

frequentist approach unsuitable.

In section (2.2.7.1) we have exposed how, given a potential, we can obtain tran-

sition probabilities without need of sample them directly from the data. Here the

problem is how to choose the appropriate potential. The method is called Maxi-

mum Entropy. An important property of the solution of the MaxEnt problem is

that the solution always reads as a Gibbs distribution and as we will see, this is very

advantageous.

The relevant question for the spike train statistics is: What can we tell about

the statistics of these states given the fact that we observe a small part of all the

possible patterns? In (Jaynes, 1957) is introduced the maximum entropy method

in which you can build a probability distribution] that can be used for networks of

neurons to estimate P [ω(n) ] and P
[
ωn2
n1

]
without need to count how many times

each pattern appear in the spike train.

2.4.1.1 Average of monomials

As we have seen, in general, we cannot obtain samples of conditional probabilities

of all the states. On the other hand, there is something relatively easy to do which

is count how many times a neuron has spike or how many times two neurons have

fired at the same time, or delayed in time. MaxEnt method takes this information

to infer conditional probabilities. Given a spike train ω of length T , we note π
(T )
ω [O]

the empirical average of the observable O. For example, the empirical firing rate of
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neuron k is:

π(T )ω [ωk] =
1

T

T−1∑

n=0

ωk(n);

and the empirical probability that two neurons k, j fire at the same time is:

π(T )ω [ωkωj ] =
1

T

T−1∑

n=0

ωk(n)ωj(n).

Figure 2.5: Average of monomials. In red is the sequence of spikes of neuron 1.

There are two spikes (at time 5 and 24 ) in the 26 time steps. In blue are the

sequences of spikes of neurons 3 and 8, both fire at the same time once at time 3.

This is only a pedagogic example, real spike trains record up to 4 thousand neurons

simultaneously for several hours.

(see fig 2.5). Considering the empirical average of monomials on the data is not

enough to uniquely characterize the spike train statistics. Indeed, there are infinitely

many probability distribution sharing the same empirical average of monomials. Out

of those probabilities there is one particularly interesting for us, which maximizes the

entropy (2.23). Note that here we are assuming ergodicity (empirical or time average

is asymptotically equal to the average with respect to the invariant probability

measure). In other words the Maximum entropy method in the context of spike

train statistics solves the variational problem 2.2.8.2 when the empirical average of

given monomials are measured from the data and constitute the constraints for the

problem5. We give here few examples of Maximum Entropy Gibbs distributions,

found in the literature.

• Bernoulli model. Here only firing rates of neurons are constrained. The po-

tential has the form:

H(ω(0)) =
N∑

i=1

hiωi(0),

5What this method do not tell us is how to choose the set of monomials (potential) to constraint

the model
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This is memory-less model, where transitions probabilities are given by neuron

firing rates λi =
ehi

1+ehi
. The Gibbs distribution has the form:

µ [ωnm ] =
n∏

l=m

N∏

k=1

λ
ωk(l)
k (1− λk)

1−ωk(l), (2.35)

This is thus a product probability where neurons are independent.

• Ising model. This model was introduced by Schneidman et al (Schneidman

et al., 2006) for retina spike trains analysis. Here, firing rates 〈ωi〉 and instan-

taneous pairwise correlations 〈ωiωj〉 are constrained. The potential has the

form:

H(ω(0)) =
N∑

i=1

hiωi(0) +
N∑

i,j=1

Jijωi(0)ωj(0). (2.36)

This is memory-less model where the Gibbs distribution has the classical form

(2.30).

• Extended spatial Ising model. A natural extension of Ising model has been

proposed by Ganmor et al (Ganmor et al., 2011a), where triplets and more

general synchronous spike events are considered. The potential has the form:

H(ω(0)) =

N∑

i=1

hiωi(0) +

N∑

i,j=1

Jijωi(0)ωj(0) +

N∑

i,j,k=1

J
′
ijkωi(0)ωj(0)ωk(0) + . . .

(2.37)

This is memory-less model where the Gibbs distribution has the classical form

(2.30).

• Spatio temporal Ising model. In (Marre et al., 2009) a spatio-temporal exten-

sion of the Ising model is considered where the potential has the form:

H(ω1
0) =

N∑

i=1

hiωi(0) +
N∑

i,j=1

Jijωi(0)ωj(1). (2.38)

In this case, spatio-temporal pairs with memory depth 1 are considered. Al-

though the Gibbs distribution has not the form (2.30), the authors use an

approximation of the exact distribution by this form, based on a detailed bal-

ance assumption. They applied this model for spike train analysis in the cat

parietal cortex.

• General Spatio temporal model. General models of the form (2.11) have

been considered in (Vasquez et al., 2012, Cessac and Palacios, 2012, Nasser

et al., 2013) for the analysis of retina spike trains. A C++ implementa-

tion of methods for fitting spatio-temporal models from data is available at

http://enas.gforge.inria.fr/v3/.

http://enas.gforge.inria.fr/v3/
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Figure 2.6: Maximum Entropy Method Diagram: The blue line indicates that from

spike trains (under the hypothesis of stationarity) and after choosing a set of ob-

servables is possible to write down the MaxEnt problem and solve it using Lagrange

multipliers, these multipliers are the parameters of the Maximum Entropy potential.

The green line indicates that is possible to obtain transition probabilities from fixed

bounded potentials. We present an example in 2.2.7.2. The red line indicates that

is possible to obtain under some conditions we describe in 2.17 a unique invariant

probability from conditional probabilities. This probability is compared to data to

quantify how well it fits the data.
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2.4.1.2 Applications of MaxEnt method to neuroscience

The maximum entropy principle has been used by several authors (Schneidman

et al., 2006, Shlens et al., 2006, Tang et al., 2008, Yu et al., 2008, Ohiorhenuan

et al., 2010, Tkačik et al., 2009, Ganmor et al., 2011a,b) for Multi-electrode Arrays

(MEA) spike train analysis. Efficient methods have been designed to estimate the

parameters of the potential, in the spatial case (Dudík et al., 2004, Broderick et al.,

2007) and in the spatio-temporal case (Nasser et al., 2013).

This approach, grounded on statistical physics, attempts to find a generic model

for spike statistics based on a potential of the form (2.11), where the observables

and their related h parameters summarize “effective interactions” between neurons.

In statistical physics language, these are parameters conjugated to the constraints,

just like the inverse temperature β = 1
kT

is conjugated to the energy, or chemi-

cal potential is conjugated with the number of particles. However, whereas inverse

temperature or chemical potential have a clear interpretation thanks to the links

between thermodynamics and statistical physics, the fitting parameters (Lagrange

multipliers) used for spike train statistics do not benefit from such deep relations

and are interpreted e.g. via loose analogies with magnetic systems. For example the

Lagrange multipliers Jij (2.36) conjugated to pairwise spike coincidence are inter-

preted as “functional interactions” (Ganmor et al., 2011a) due to their analogy with

magnetic interactions in the Ising model. Likewise the parameters hi conjugated

with single spike events (whose average is the firing rate) are believed to be related

with an effective stimulus received by neuron i. However, the connection between

“functional” interactions Jij (2.36) and real interactions (e.g synapses) in the net-

work remains elusive, as well as the link between effective stimuli and the stimulus

viewed by a neuron.

Behind this approach exists, we believe, a physicists “dream”: inferring, from

data analysis, the equivalent of the equation of states existing in thermodynamics;

that is, summarizing the behavior of a big neuronal system by a few canonical

variables (analogous e.g. to temperature, pressure, volume in a gas). To our opinion,

recent exciting investigations to exhibit critical phenomena in retina spike train

statistics are part of this project (Tkačik et al., 2006, 2009, 2014).

The main advantage of the MaxEnt approach is the possibility of constructing

different statistical models based on a priori hypotheses on the most statistically sig-

nificant events (single spikes, pairs, triplets and so on). As such, it allows to consider

arbitrary forms of spatio-temporal correlations. This strength is also a weakness.

Indeed, the possible forms of potentials are virtually infinite and obviously, in the

setting of neuronal dynamics, one does not have the equivalent of mechanics or

thermodynamics to construct the potential from general principles.

2.4.2 Generalized Linear model

We now introduce a method for statistical estimation of transition probabilities using

models called Linear-Nonlinear (LN) model and Generalized Linear Model (GLM)
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(Brillinger, 1988, McCullagh and Nelder, 1989, Simoncelli et al., 2004, Paninski,

2004, Truccolo et al., 2005, Pillow et al., 2005, 2008, Ahmadian et al., 2011, Pillow

et al., 2011). These are methods based on the estimation of conditional probabil-

ities. We focus here on the GLM, in particular regarding their link with Gibbs

distributions. We follow the presentation found in (Ahmadian et al., 2011).

Let x ≡ x(t) be a time-dependent stimulus. In response to x the network

emits a spike train response ω. This response does not only depend on x, but

also on the network history H. The GLM (and LN) assimilate the response ω as an

inhomogeneous Poisson process: the probability that neuron k emits a spike between

t and t+dt is given by λk(t|ω) dt, where λk(t|ω) is called "conditional intensity”. In

the GLM this function is given by:

λk(t|ω) = f


 bk + (Kk ∗ x)(t) +

∑

j

(Hkj ∗ ωj)(t)


 , (2.39)

where:

• f is a non linear function (an exponential or a sigmoid);

• bk is some constant fixing the baseline firing rate of neuron k;

• Kk is a causal, time-translation invariant, linear convolution kernel that mim-

ics a linear receptive field of neuron k;

• ∗ is the convolution product;

• Hkj describes possible excitatory or inhibitory post spike effects of the j th

observed neuron on the k th. As such, it depends on the past spikes, hence

on ω. The diagonal components Hkk describe the post spike feedback of the

neuron to itself, and can account for refractoriness, adaptation and burstiness

depending on its shape.

2.4.2.1 Conditional independence

The GLM postulates that, given the history H and stimulus x, the neurons are

independent (conditional independence upon the past and stimulus) i.e.

P
[
ω(n)

∣∣ωn−1
n−D

]
=

N∏

k=1

λk(n|ω)ωk(n)(1− λk(n|ω))1−ωk(n). (2.40)

Where D can be −∞.

2.4.2.2 Gibbs distribution from GLM

Transition probabilities are strictly positive whenever 0 < λk(n|ω) < 1, for all k,n.

If f is e.g. a sigmoid this holds when its argument bi+(Ki ∗ x)(t)+
∑

j(Hij ∗ rj)(t)
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Figure 2.7: Generalized Linear Model Diagram: The stimulus interacts with the

filter Hk that mimics the receptive field of neuron k, in addition the history of

spikes of the network interact with the post spike filters Hkj . The history can be

infinite.
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remains bounded in absolute value. The continuity of λ with respect to ω holds

whenever f is continuous and H is continuous with respect to ω. This second

condition is fulfilled in two cases:

• The memory kernel H depends on a finite past; In this case we are reduced to

the framework of a Markov Chain, where we have seen in 2.2.8 the connections

with Gibbs distributions.

• The memory kernelH depends on an infinite past, but the memory dependence

decays sufficiently fast to ensure continuity.

• When considering the non linear function f as a sigmoid the positivity con-

dition required by the existence and uniqueness of the Gibbs distribution is

obtained under the assumption of having bounded memory kernels (physi-

cally plausible assumption). α profiles decay exponentially fast with time, so

we can use the same argument used in the appendix of (Cessac, 2011b) and

verify that transition probabilities match the conditions to ensure existence

and uniqueness of the Gibbs distribution (1).

The Gibbs potential is:

φn(ω) =
N∑

k=1

log λk(n|ω), (2.41)

where the dependence in ω occurs via H. It is normalized by definition.

2.4.2.3 Applications

This model has been applied in a wide variety of experimental settings (Brillinger,

1992, Chichilnisky, 2001, Theunissen et al., 2001, Brown et al., 2003, Paninski et al.,

2004, Truccolo et al., 2005, Pillow et al., 2008). Efficient methods has been designed

to estimate the parameters (Ahmadian et al., 2011). Note that in general, these

authors consider f as an exponential function. This function has the advantage of

being convex, but raises difficulties when considering the related asymptotic process.

To us, the main advantages of the GLM are:

• The transition probability is known (postulated) from the beginning and does

not require the heavy normalization (2.16) imposed by potentials of the form

(2.11);

• The model parameters have a neurophysiological interpretation and their num-

ber grows at most as a power law in the number of neurons.

• It has good decoding performances

• It holds for non stationary data.

Its main drawbacks are:
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• It postulates an ad hoc form for the transition probability of the stochastic

process;

• It uses a quite questionable assumption of conditional independence: neurons

are assumed independent at time n when the past is given. On the opposite,

the Maximum Entropy principle does not require this assumption.

• To us, the biophysical interpretation of the parameters Hkj is unclear. Do

they correspond to “real” connectivity ? “functional” connectivity ?

2.4.3 Conductance based Integrate and Fire neural networks

The next section is completely devoted to analyze a particular version of this model

for the estimation of transition probabilities. Comparing to previous approaches it

consider a completely different point of view. It consider the neural network dynam-

ics of membrane potentials and from this knowledge, the conditional probabilities

are obtained. The main difference with the previous approaches it that it does not

consider an ad-hoc form of transition probabilities, does not rely in the conditional

independence assumption. The biophysical interpretation of the parameters of the

model is not controversial, since are not obtained from fitting parameters. The

model we analyze is an extension of the conductance based Integrate-and-Fire neu-

ron model proposed in (Rudolph and Destexhe, 2006). Dynamics is ruled by a set

of differential equations where parameters, corresponding to conductances, depend

upon the action potentials emitted in the past by the neurons. In this way, the

dynamical system defined here is ruled both by continuous time and discrete time

dynamical variables. The relation of this model with Gibbs distributions is given in

the context of infinite range potentials.

2.5 Conclusion

In this chapter we have argued that Gibbs distributions considered in a general sense

may constitute generic statistical models to fit and to characterize spike trains. We

have seen that Markov chains are appropriate stochastic processes to represent the

spike activity of network of neurons. We have seen how Gibbs distributions appear

from the MaxEnt principle. In the purely spatial case the solution of the MAxEnt

problem is a Gibbs distribution in the classical sense, while in the spatio-temporal

case take a different form, but is still a Gibbs distribution (in the Bowen sense).

The example of GLM model suggests that such distribution could be also defined for

more elaborated neural networks models (FitzHugh-Nagumo or Hodgkin- Huxley).

In particular, the existence and uniqueness of a Gibbs measure holds whenever there

is continuity with respect to a raster, with a sufficiently fast decay of the variations

of the potential. As shown (Cessac, 2011b, Cofré and Cessac, 2013) this property

is ensured when interactions between neurons decay exponentially fast. This is

typically the case for chemical synapses where the α-profile (see chapter 1) decays

exponentially fast with time. We left for the next chapter a complete development of
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the Conductace based Integrate-and-Fire with chemical and electric synapses. The

three models we describe in this chapter (MaxEnt, GLM, and Conductace based

Integrate-and-Fire) introduce fall into the category of Gibbs distributions.



Chapter 3

Dynamics and spike trains
statistics in neural networks with

chemical and electric synapses

Overview

We present and analyze a natural and classical model of neural network with

chemical and electric synapses, where the spike train statistics is described by a

Gibbs distribution. The material of this chapter has been published in Cofré and

Cessac (2013).
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3.1 Introduction

In this chapter we develop in more detail the conductance based Integrate and Fire

model introduced in chapter 2. Compared to MaxEnt approach, apart from getting

rid of the stationary assumption, this approach has the advantage to characterize

the spike train statistics in terms of the parameters describing the neural network.

Therefore, the role in the dynamics and spike train statistics of each parameter can

be tracked. Now a natural question arise: What is the appropriate neural network

model to consider? It certainly depend on the questions we want to answer. As

seen in Chapter 1 neural networks admit complex branching formations integrating

inputs from other cells in a network, via both chemical and electrical synapses. The

characterization of the spike train statistics from neural network models have been

previously addressed several times in the literature . The role of chemical synapses in

shaping the population spike train statistics have been already addressed in (Cessac,

2011b), but without gap junctions. In this Chapter we analyze the dynamics and

spike train statistics of a conductance based integrate and fire model considering

gap-junctions. Our main motivation comes from the fact that gap junctions could

play a fundamental role in the retina. In this context to predict the probability of

a spike pattern we need the whole past history of spikes of the entire network.

3.2 Neural Network models including gap junctions

Electric synapses transmission is mediated by gap junctions with a direct electrical

communication between cells (Coombes and Zachariou, 2007), allowing faster com-

munication than chemical synapses. Electrical coupling between cells can be found

in many parts of the nervous system (Bennett and Zukin, 2004),(Connors and Long,

2004), and also outside: for example, certain cells in the heart and pancreas are con-

nected by gap junctions (Keener and Sneyd, 1998). At the network level, electric

synapses have several prominent effects such as neurons synchronization (Beierlein

et al., 2000), (Galarreta and Hestrin, 1999), (Ostojic and Brunel, 2009), and the

generation of neural rhythms (Hormuzdi et al., 2004), (Bennett and Zukin, 2004).

On theoretical grounds, the role of gap junctions in shaping collective dynamics

has been quite less studied than the role of chemical synapses, although different

models and approaches have been used to address this problem, in the context

of pattern formation, using techniques such as: Poincaré map (Chow and Kopell,

2000, Gao and Holmes, 2007, Pfeuty et al., 2005), Lyapunov functions (Medvedev

et al., 2003), mean-field approach and Fokker-Planck equation (Ostojic and Brunel,

2009), variance analysis (Medvedev, 2009), and phase plane analysis (Coombes,

2008, Coombes and Zachariou, 2007). The effects of gap junctions on spike trains

statistics is even less known.

The goal of this chapter is to push one step forward the mathematical analysis

of the join effects of chemical and electric synapses on neurons dynamics and spike

statistics. The main advantage of this type of model, rendering the mathematical

analysis tractable, is that the sub-threshold dynamics of membrane potential is
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described by a linear system of stochastic differential equations (SDE). This system

is nevertheless highly non trivial, as we show, since it is non autonomous, non

homogeneous, with, additionally, a flow depending on the whole (spike) history via

chemical synapses. Moreover, electric synapses introduce another mechanism of

history dependence, where the membrane potential of a neuron depends on its past

values, even those which are anterior to the last firing and reset of that neuron.

The flow of this linear system of stochastic differential equations can be explicitly

written.

From this, one can compute a family of transition probabilities, characterizing

the probability of a spike pattern at a given time, given the past. These transition

probabilities define a Gibbs distribution characterizing spike train statistics. The

potential of this Gibbs distribution can be approached by an explicit form, as we

show. We have therefore an explicit characterization of spike statistics in a model

including chemical and electric synapses.

This result has several implications in the realm of biological spike trains analy-

sis. Especially, as we show, the Gibbs potential of our model encompasses existing

models for spike trains statistics analysis such as MaxEnt models (Schneidman

et al., 2006, Tkačik et al., 2009, Shlens et al., 2006, 2009, Ohiorhenuan et al.,

2010, Ganmor et al., 2011a,b, Vasquez et al., 2012) and Generalized-Linear Models

(GLM) (Pillow et al., 2005, 2008, Ahmadian et al., 2011, Pillow et al., 2011,

Macke et al., 2011). Moreover, our formalism affords the study of non stationary

dynamics, while stationarity is a major assumption when using maximum entropy

models. Additionally, as we show, gap junctions introduce major correlations effects

ruining the hope of having conditionally-upon-the-past independent neurons, a

central hypothesis in GLM. Finally, three types of effects are responsible for neuron

correlations (pairwise and higher order): shared stimulus, chemical couplings,

and electric couplings. The two last types of correlations persists even when the

stimulus is switched-off.

3.3 Model definition

The Integrate-and-Fire model remains one of the most ubiquitous model for simu-

lating and analyzing the dynamics of neuronal circuits. Despite its simplified na-

ture, it captures some of the essential features of neuronal dynamics (see (Lindner

and Schimansky-Geier, 2002, Lindner et al., 2004, Burkitt, 2006a,b, Lindner, 2009)

for a review). In this chapter we consider an extension of the conductance based

Integrate-and-Fire neuron model proposed in (Rudolph and Destexhe, 2006). The

model-definition follows the presentation given in (Cessac and Viéville, 2008, Cessac,

2011b). Dynamics is ruled by a set of stochastic differential equations where param-

eters, corresponding to chemical conductances, depend upon a sequence of discrete

variables summarizing the action potentials emitted in the past by the neurons. In

this way, the dynamical system defined here is ruled both by continuous time and
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discrete time dynamical variables. Let us first introduce the discrete time variables.

3.3.1 Membrane potential dynamics

Neurons are considered here as points, with neither spatial extension nor biophysical

structure (axon, soma, dendrites). We note Vk(t) the membrane potential of neuron

k = 1, . . . , N , at time t. Denote V (t) the vector with entries Vk(t). The continuous-

time dynamics of V (t) is defined as follows. Fix a real variable θ > 0 called “firing

threshold”. For a fixed time t, we have two possibilities:

1. Either Vk(t) < θ, ∀k = 1, . . . , N . This corresponds to sub-threshold dynamics.

2. Or, ∃k, Vk(t) ≥ θ. Then, we speak of firing dynamics.

3.3.1.1 Sub-threshold dynamics

Let us remember what has been already exposed in chapter 2. The sub-threshold

variation of the membrane potential of neuron k at time t is given by:

Ck
dVk
dt

= −gL,k(Vk−EL)−
∑

j

gkj(t, ω)(Vk−Ej)−
∑

j

gkj (Vk − Vj)+ Ik(t). (3.1)

• Ck is the membrane capacity of neuron k.

• The term Ik(t) is a current given by:

Ik(t) = i
(ext)
k (t) + σBξk(t), (3.2)

where i
(ext)
k (t) is a deterministic external current (“stimulus”). The noise term

ξk(t) mimics: (i) the random variation in the ionic flux of charges crossing the

membrane per unit time at the post synaptic button, upon opening of ionic

channels due to the binding of neurotransmitter, (ii) the fluctuations in the

current resulting from the large number of opening and closing of ion channels

(Schwalger et al., 2010); (iii) noise coming from electrical synapses. It is

common to model this noise by a Wiener white noise (diffusion approximation).

We use this modelling choice in the chapter. We note σB > 0 the amplitude

(mean-square deviation) of ξk(t).

• gL,k is a leak conductance, EL < 0 is the leak reversal potential.

• gkj(t, ω) corresponds to the conductance of the chemical synapses from the

pre-synaptic neuron j to the post-synaptic neuron k, while Ej is the reversal

potential associated with the neurotransmitter emitted by neuron j. In this

model, the conductance gkj(t, ω) at time t depends upon the spikes emitted by

the pre-synaptic neuron j. The description of this dependence is made explicit

in section 3.3.1.2.
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• gkj is the electric conductance (gap junctions) between two different neurons

j and k. Although, the gap junction strength is biophysically non static (Pan

et al., 2010, Hu et al., 2010), we model it here as a simple ohmic conductance,

tending to equalize membrane potentials of the neurons they connect. As a

consequence, gkj = gjk ≥ 0.

• For chemical as well as electric contacts terms of eq. (3.1) the sums
∑

j

hold on all neurons, but we afford some conductances gkj(t, ω) or gkj to be 0,

corresponding to no connection (chemical or electrical), between neuron j and

neuron k. In this way, we can define chemical and electric network topologies.

The mathematical results obtained in section 3.4 hold for any such network.

3.3.1.2 Update of chemical synapses conductances

Upon firing of the pre-synaptic neuron j at (discrete) time t
(r)
j (ω), the membrane

conductance gkj(t) of the post-synaptic neuron k is modified as (Rudolph and Des-

texhe, 2006):

gkj(t) = gkj(t
(r)
j (ω)) +Gkjαkj(t− t

(r)
j (ω)), t > t

(r)
j (ω), (3.3)

where Gkj ≥ 0 characterizes the maximal amplitude of the conductance during a

post-synaptic potential.

The function αkj (called “alpha” profile (Destexhe et al., 1998)) mimics the time

course of the chemical synaptic conductance upon the occurrence of the spike. We

assume that the alpha profiles have the form:

αkj(t) = h(t)e
− t

τkj H(t), (3.4)

with α(0) = 0, where h(t) is a polynomial function continuous at 0, typically h(t) =
t
τkj
, where τkj is the characteristic decay time. H(t) is the Heaviside function.

As a consequence, upon the arrival of spikes at times t
(r)
j (ω) in the time interval

[s, t], eq. (3.3) becomes:

gkj(t) = gkj(s) +Gkj
∑

r;s≤t(r)j (ω)<t

αkj

(
t− t

(r)
j (ω)

)
.

If we assume that this relation extends to s → −∞ and if we set

lims→−∞ gkj(s) = 0 (see (Cessac, 2011b) for a justification), we finally obtain:

gkj(t, ω) = Gkj
∑

r;t
(r)
j (ω)<t

αkj

(
t− t

(r)
j (ω)

)
,

The notation (t, ω) makes explicit the dependence of the conductance upon the

(past) firing activity of the pre-synaptic neuron j. This dependence decays expo-

nentially fast thanks to the exponential decay of αkj .
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3.3.1.3 Firing dynamics

If, at time t, some neuron k reaches its threshold θ, Vk(t) = θ, then this neuron

elicits a spike. In neurophysiology, the spike emission is a complex nonlinear mecha-

nism involving additional physical variables (probability of opening/closing of ionic

channels), as described by the Hodgkin-Huxley equations (Hodgkin and Huxley,

1952). The time course of the spike has a typical shape (depolarization / repolar-

ization / refractory period) with a finite duration. One important simplification

in Integrate-and-Fire models is to describe neuron dynamics in terms of the mem-

brane potential only. As a consequence, the spike shape has to be simplified. In

the simplest Integrate-and-Fire models (Gerstner and W.Kistler, 2002, Ermentrout

and Terman, 2010) a spike is registered at time t whenever Vk(t) = θ, whereas the

membrane potential is instantaneously reset to 0. Moreover, the refractory period

and transmission propagation delays are set to 0. Beyond the bio-physical fact that

reset, refractory period and transmission propagation are not instantaneous, this

modelling leads to severe mathematical problems and logical inconsistencies, such

as the possibility of having uncountably many spikes within a finite time interval, or

situations where the state of a neuron cannot be defined (see (Cessac and Viéville,

2008, Cessac, 2010) for a discussion).

To avoid those problems we consider that spikes emitted by a given neuron

are separated by a minimal time scale τsep > 0. Additionally, to conciliate the

continuous time dynamics of membrane potentials and the discrete time dynamics

of spikes we define the spike and reset as follows.

1. The neuron membrane potential Vk is reset to 0 at the next integer time (in

δ units) after t, namely [t] + 1. Between t and [t] + 1 the membrane potential

keeps on evolving according to (3.1). The main reason for this modelling choice

is that it makes the mathematical analysis simpler.

2. A spike is registered at time [t]+ 1. This allows us to represent spike trains as

events on a discrete time grid. It has the drawback of artificially synchronizing

spikes coming from different neurons, in the deterministic case (Cessac and

Viéville, 2008, Kirst and Timme, 2009). However, the presence of noise in

membrane potential dynamics eliminates this synchronization effect.

3. We consider that τsep > 0 is a multiple of δ (thus an integer).

4. Between [t] + 1 and [t] + τsep the membrane potential Vk is maintained to 0

(refractory period). From time [t]+τsep on, Vk evolves according to (3.1) until

the next spike.

5. When the spike occurs (at time [t]+1), the spike train ω as well conductances

gkj(t, ω) are updated.

Figure 3.1 illustrates these modelling choices.
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Figure 3.1: Top: Continuous time course of the membrane potential in our model.

The green dashed curve illustrates the shape of a real spike, but what we model is

the blue curve. Bottom: A spike is registered at integer time [t] + 1.

3.3.1.4 Matrix-Vector representation of subthreshold dynamics

The sub-threshold dynamics can be rewritten in the form of a stochastic linear

non-autonomous and non-homogeneous differential equation:

C
dV

dt
+
[
G(t, ω)−G

]
V = I(t, ω), (3.5)

where C is a diagonal matrix which contains the capacity of each neuron. For

simplicity we assume from now on that all neurons have the same capacity c so

that C = cIN where IN is the identity matrix of dimension N ; V is the vector of

membrane potentials; G(t, ω) is a diagonal matrix:

Gkl(t, ω) =


 gL,k +

N∑

j=1

gkj(t, ω)


 δkl def= gk(t, ω)δkl. (3.6)

G is a matrix with entries gkj for k 6= j and −∑j gkj for k = j. It is therefore

symmetric and the non diagonal part of this matrix specifies the connection topology

of electric synapses in the network. Finally, I(t, ω) is the vector of currents that can

be separated in 3 components.

I(t, ω) = I(cs)(t, ω) + I(ext)(t) + I(B)(t), (3.7)

with:

I
(cs)
k (t, ω) =

∑

j

Wkjαkj(t, ω), (3.8)

where:

Wkj
def
= GkjEj , (3.9)

is the synaptic weight from neuron k to neuron j;

I
(ext)
k (t) = gL,kEL + i

(ext)
k (t); (3.10)
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and

I
(B)
k (t) = σBξk(t).

The first term corresponds to the current received by neuron k from chemical

synapses (cs), the second term represents the external current (ext) and the last

term (B) is the the noise part of the current.

Define:

Φ(t, ω) = C−1
(
G−G(t, ω)

)
, (3.11)

which is a symmetric matrix. All entries of Φ(t, ω) are bounded and continuous

in time (alpha profiles are continuous in time and the components of Φ(t, ω) are

composition of continuous functions).

Defining:

f(t, ω) = C−1I(cs)(t, ω) + C−1I(ext)(t), (3.12)

and using the decomposition of currents (3.7) the system (3.5) can be expressed as a

system of coupled Stochastic Differential Equations (SDE) of Ornstein-Uhlembeck

type (O-U) in ❘N

dV

dt
= C−1(G−G(t, ω))︸ ︷︷ ︸

Φ(t,ω)

V + C−1I(cs)(t, ω) + C−1I(ext)(t)︸ ︷︷ ︸
f(t,ω)

+C−1I(B)(t),

⇔




dV = (Φ(t, ω)V + f(t, ω))dt+ σB
c
INdW (t),

V (t0) = v,

(3.13)

where v is the initial condition at time t0. Here f(t, ω) is thus a non random,

measurable and locally bounded function of t; σB
c

is a constant; and W (t) is a

standard N -dimensional Brownian motion independent of v ∈ ❘N .

3.3.1.5 Remarks

• Although (5.6) is a linear system, it has a rather complex structure, due to

the ω-dependence of Φ(t, ω), f(t, ω). Indeed, these functions integrate the

past spike-activity of the network from the initial time t0 to time t. Thus,

the membrane potentials at time t are determined by the past spikes-activity

which, in turn, is determined by the trajectory V (s), s ∈ [t0, t] of the membrane

potentials: the evolution of the network depends on its whole history via ω. If

ω is given, the integration of (5.6) generates a flow which is explicitly computed

in section 3.4.1.4.

• The discrete structure of the spike trains set Ω (discrete events and discrete

times) induces a partition on the set P of trajectories of V . A trajectory
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V ∈ P belongs to the partition element Pω, associated with the spike train ω,

if and only if:

∀k = 1, . . . N, ∀n ∈ ❩,





ωk(n) = 0 ⇔ maxt∈]n−1,n] Vk(t) < θ;

ωk(n) = 1 ⇔ maxt∈]n−1,n] Vk(t) ≥ θ;

(3.14)

This constitutes compatibility conditions between spike trains and membrane

potential trajectories.

In the absence of noise (σB = 0) some partition elements Pω (depending on

model-parameters) are not visited by any trajectory. It has been shown in

some variants of (5.6) considered in (Cessac, 2008, Cessac and Viéville, 2008),

that the set of non empty Pωs is finite, leading to specific, although quite rich,

periodic orbit structure of the attractors. In the presence of noise, all Pωs are

visited by any trajectory with a positive probability.

• The Wiener process on noise trajectories induces a probability measure µ on

spike trains, described in section 3.5, characterizing spike train statistics.

3.3.2 Particular cases of the model with electric synapses

The model (3.1) is quite general as it considers chemical and electric synapses, with

a spike-history dependence. We don’t know any analysis of this model in its most

general form in the literature. However, upon simplifications it reduces to several

models studied in the literature. As an illustration of the methods developed here,

we refer to some of these examples all along the chapter Instead of presenting them

in a section following the main results of the chapter, we introduce them step by

step, in order to be as didactic as possible. As a conclusion of this section 3.3, let

us here briefly present those examples.

3.3.2.1 No electric synapse

As mentioned in the introduction the model without electric synapse has been stud-

ied in (Cessac, 2011b). The sub-threshold dynamics reads:

Ck
dVk
dt

= −gL,k(Vk − EL)−
∑

j

gkj(t, ω)(Vk − Ej) + Ik(t).

In this case

Φ(t, ω) = C−1G(t, ω),

while f(t, ω) takes the same form (3.12) as in the general model.

3.3.2.2 Simple chemical conductances

By “simple” we mean chemical conductances that do not depend explicitly on spike

history and a conductance matrix that takes the form G(t, ω) ≡ G(t) = κ(t)IN ,
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where κ(t) is a real function independent of ω. Note that in this case G(t) and G

commute, while this not the case if G(t) is a general matrix. Classical examples are

κ(t) = 0 or κ(t) = gL, the leak conductance.

In this case the sub-threshold equation (3.5) reads:

C
dV

dt
= −κ(t) IN V +GV + I(cs)(t, ω) + I(ext)(t) + σBdW (t). (3.15)

Let us consider two examples.

The Medvedev model

In (Medvedev, 2009), this author considers Integrate-and-Fire neurons subject to

a randomly perturbed synaptic input and an electrically coupled ensemble of such

neurons. He shows that in electrically coupled groups, neurons are less affected

by noise than when in isolation. The magnitude of this effect depends on network

size, topology of electrical coupling and the electrical coupling strength. Via a direct

computation of the variances of the stochastic processes generated by the electrically

coupled model, he shows that variances can be made arbitrarily small by increasing

the number of neurons in the network and the strength of electrical coupling. In

this way the organization of neurons in electrically coupled groups at the network

level, may be involved in the filtering noise and therefore may play an important

role in the information processing mechanisms.

The model is, in Medvedev notations:

ε
dV

dt
= −V +D(g)V + P (t) +

√
εσINdW (t), (3.16)

where D(g) is a matrix whose components are functions of the maximal electric

conductance over all neurons g = maxij gij and P (t) is the external current. This

is as a particular case of (3.15) taking c = ε; κ(t) = 1; I(ext)(t) = P (t); G = D(g),

and σB =
√
εσ.

Upon reaching the threshold, the system generates an action potential, followed

by the refractory period. After that, the evolution of the system is again gov-

erned by equation (3.16) until the next action potential. In this example the (SDE)

(5.6) can be written using Φ = C−1(G− IN ); f(t) = C−1(P (t)) and diffusion term√
εσC−1dW (t).

The Ostojic-Brunel-Hakim model

In (Ostojic and Brunel, 2009) these authors investigate how synchrony can be gen-

erated or induced in networks of electrically coupled Integrate-and-Fire neurons

subject to noisy and heterogeneous inputs. Using a mean field approach and a

Fokker-Planck analysis they find analytically the bifurcation between synchronous

and asynchronous states for different input and coupling parameters. Two regimes

are considered in this analysis: when the input parameters are homogeneous (equal
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for all neurons) and heterogeneous (different, but with equal distribution). The

model is characterized by a sub-threshold dynamics:

Ck
dVk(t)

dt
= −gmVk(t) +

βcm
N

∑

j

∑

t
(r)
j <t

δ(t− t
(r)
j (ω))

+
γ

N

∑

j

(Vj(t)− Vk(t)) + iextk (t) + σBξk(t).

The correspondence between the parameters introduced by the authors (with

their notations) and our model is:

Gkj =
β

N
; αkj(x) = δ(x); gkj =

γ

N
; gL,k = gm; EL = 0; E+ = 0; E− = 0.

The input parameters are (µext, σ) = ( iext

gm+γ ,
σB√
gm+γ

) and the coupling parame-

ters (gc, β) = ( γc
gm+γ , β).

If we set Ck = 1 for all ks this system can be expressed in a matrix form:

dV

dt
= ΦV (t, ω) + I(t, ω)

where Φ is the symmetric matrix

Φkj = (−gm − γ)δkj +
γ

N
.

Note that in the limit N → +∞ (the “mean-field” limit considered in (Ostojic and

Brunel, 2009), Φkj → (−gm − γ)δkj , a diagonal matrix.

Additionally:

I(t, ω) =




βcm
N

∑
j

∑
t
(r)
j <t

δ(t− t
(r)
j (ω)) + i

(ext)
1 (t, ω) + σBξ1(t)

βcm
N

∑
j

∑
t
(r)
j <t

δ(t− t
(r)
j (ω)) + i

(ext)
2 (t, ω) + σBξ2(t)

...
βcm
N

∑
j

∑
t
(r)
j <t

δ(t− t
(r)
j (ω)) + i

(ext)
N (t, ω) + σBξN (t)



.

In this example the (SDE) (5.6) can be written using Φ = (−gm − γ)δkj +
γ
N

and f(t, ω) = Idet(t, ω) .

In this model the reset is instantaneous and the refractory period is not consid-

ered.

Besides, the conductance term G(t, ω) of our model reduces to the leak γ, while

the spike dependent history does not appear in the conductance, but in the current.

3.4 Solutions of the stochastic differential equation

We now derive several mathematical results allowing the integration of the SDE

(5.6) and the consideration of firing dynamics.
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3.4.1 Flow in the sub-threshold regime

We consider first the integration of (5.6) on a time interval [t0, t] in the sub-threshold

regime, Vk(s) < θ, k = 1, . . . , N , s ∈ [t0, t]. We assume that ω is fixed. Note that,

necessary, ω obeys ωk(n) = 0, k = 1, . . . , N , t0 < n < t (cf the compatibility

conditions (3.14)). Nevertheless, we don’t make any assumption on ω before time

t0, that is, we can have any spike history prior to t0.

3.4.1.1 General form of the flow

We start by solving the associated homogeneous Cauchy problem
{

dV (t,ω)
dt

= Φ(t, ω)V (t, ω),

V (t0) = v,
(3.17)

The following theorem is standard and can be found e.g. in (Brockett, 1970).

Theorem 4 If Φ(t, ω) is a square matrix whose elements are bounded, the sequence

of matrices Mk(t0, t, ω) defined recursively by:

M0(t0, t, ω) = IN

Mk(t0, t, ω) = IN +

∫ t

t0

Φ(s, ω)Mk−1(s, t)ds, t ≤ t1,

converges uniformly in [t0, t1]. We note:

Γ(t0, t, ω)
def
= lim

k→∞
Mk(t0, t, ω) (3.18)

the limit function called “flow”.

3.4.1.2 Exponential flow

If Φ(t, ω) and Φ(s, ω) commute, ∀s, t, then the flow takes the form of an exponential:

Γ(t0, t, ω) =

∞∑

k=0

1

k!
(

∫ t

t0

Φ(s, ω)ds)k = e
∫ t
t0

Φ(s,ω)ds
.

From (5.23) the commutation condition reads

C−1
[
G−G(t, ω)

]
C−1

[
G−G(s, ω)

]
= C−1

[
G−G(s, ω)

]
C−1

[
G−G(t, ω)

]
.

Since we have assumed that all neurons have the same capacity, the commutation

condition reduces to
[
G−G(t, ω)

] [
G−G(s, ω)

]
=
[
G−G(s, ω)

] [
G−G(t, ω)

]
,

i.e. G and G(t, ω) commute for all t. Since G(t, ω) is diagonal, the commutation

condition reads gi(t, ω)Gij = Gijgj(t, ω), ∀i, j. Therefore, here are the only cases

where the commutation property holds:

1. G = 0;

2. G(t, ω) = κ(t, ω)IN where κ(t, ω)) is a real function.

These cases correspond respectively to the following examples.
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No electric synapse

In this case Φ(t, ω) = −1
c
G(t, ω) is a diagonal matrix. Thus, the flow takes the

exponential form:

Γ(t0, t, ω) = e
∫ t
t0

Φ(s,ω)ds
= e

− 1
c

∫ t
t0
G(s,ω)ds

, (3.19)

which is also a diagonal matrix.

Simple chemical conductances

In this case Φ(t, ω) = 1
c
G− κ(t,ω)

c
IN and the flow takes an exponential form:

Γ(t0, t, ω) = e
− 1

c

∫ t
t0
κ(s,ω) ds

e
1
c
G(t−t0). (3.20)

It is not diagonal in the canonical basis, but it can be diagonalized by an orthogonal

variable change.

3.4.1.3 General form for the flow

In the general case, namely in any model taking into account simultaneously chemical

and electric synapses with a generic form, G and G(t, ω) do not commute, and the

flow (3.18) does not read as an exponential but as a general Dyson series:

Γ(t0, t, ω) = IN +

+∞∑

n=1

∫ t

t0

∫ s1

t0

. . .

∫ sn−1

t0

∆(s1, ω) . . .∆(sn, ω) dsn . . . ds1.

Setting B = C−1G and A(t, ω) = −C−1G(t, ω), this equation reads:

Γ(t0, t, ω) = IN +
+∞∑

n=1

∫ t

t0

· · ·
∫ sn−1

t0

n∏

k=1

(B +A(sk, ω))ds1 · · · dsn,,

where
∏

denotes the matrix product, hence ordered. Finally, the flow can be written:

Γ(t0, t, ω) = IN +
+∞∑

n=1

∑

X1 = (B,A(s1, ω) )
X2 = (B,A(s2, ω) )

. . .

Xn = (B,A(sn, ω) )

∫ t

t0

· · ·
∫ sn−1

t0

n∏

k=1

Xk ds1 · · · dsn . (3.21)

This form is quite cumbersome when A(t, ω), B do not commute. It has nevertheless

the following property.

3.4.1.4 Exponentially bounded flow

Definition: An exponentially bounded flow is a two parameter (t0, t) family

{Γ(t0, t, ω)}t≤t0 of flows such that, ∀ω ∈ Ω:

1. Γ(t0, t0, ω) = IN and Γ(t0, t, ω)Γ(t, s, ω) = Γ(t0, s, ω) whenever t0 ≤ t ≤ s;
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2. For each v ∈ ❘N and ω ∈ Ω, (t0, t) → Γ(t0, t, ω)v is continuous for t0 ≤ t;

3. There is M > 0 and m > 0 such that :

||Γ(s, t, ω)|| ≤Me−m(t−s), s ≤ t. (3.22)

Recall that a strong solution of the SDE (5.6) is a stochastic process for which the

paths are right-continuous with left limits everywhere with probability one, adapted

to the filtration generated by W (t). From (Wooster, 2011) we have the following

theorem:

Theorem 5 If (3.18) converges to an exponentially bounded flow Γ(t0, t, ω), there

is a unique strong solution for t ≥ t0 given by:

V (t0, t, ω) = Γ(t0, t, ω)v +

∫ t

t0

Γ(s, t, ω)f(s, ω)ds+
σB
c

∫ t

t0

Γ(s, t, ω)dW (s). (3.23)

Thus, given an initial condition v at a time t0 and a noise trajectory, this

equation gives the membrane potential vector at time t by integration of the

flow, provided maxk=1...N maxu∈[t0,t] Vk(u) < θ (sub-threshold dynamics). This

is a classical form although Γ has a complex structure (3.21) and a non trivial

dependence in the spike train history.

Let us now show that (3.21) converges to an exponentially bounded flow. If

Ḡ = 0 then Γ(s, t, ω) given by (3.19), is diagonal and exponentially bounded. In

this case Γ(s, t, ω) = diag(e−
1
c

∫ t
s
gk(u,ω)du) where gk is given by (3.6). Consequently,

setting gL = infω,u,k gk(u, ω), the smallest conductance value attained when no

neuron fires ever, in the absence of gap junctions, we have:

||Γ(s, t, ω)|| ≤ e−
gL
c
(t−s). (3.24)

This is therefore an exponentially bounded flow.

When Ḡ 6= 0 we use the following perturbational result (for details see corollary

2.2.3 in (Gil, 2005)). Set Φ̂(t, ω) = −C−1G(t, ω). Considering B = C−1(Ḡ), as a

(not necessarily small) perturbation of Φ̂(t, ω), we have:

Theorem 6 Let the flow Γ̂(s, t, ω) be the exponentially bounded flow of equation

(3.24), obtained when Φ̂(t, ω) = −C−1G(t, ω). Then the flow Γ(s, t, ω) of equation

(3.17), when Ḡ 6= 0 and Φ(t, ω) = Φ̂(t, ω) +B obeys the inequality

‖Γ(s, t, ω)|| ≤ e−
gL
c
(t−s)e

∫ t
s
||Φ̂(r,ω)−Φ(r,ω)‖dr.

Moreover,

‖Γ(s, t, ω)− Γ̂(s, t, ω)|| ≤ e−
gL
c
(t−s)(e

∫ t
s
||Φ̂(r,ω)−Φ(r,ω)‖dr − 1). (3.25)
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Using (3.24) the flow associated to equation (5.6) satisfies the following inequality

with ||B|| = b:

||Γ(s, t, ω)|| ≤ e−
gL
c
(t−s)eb(t−s) = e(b−

gL
c
)(t−s) (3.26)

Therefore we can ensure exponentially bounded flow for equation (5.6) when

b < gL
c

. Since Ḡ is symmetric and C = c IN the norm b = ‖C−1Ḡ‖ is equal to
σ1
c

, where σ1 is the largest eigenvalue of Ḡ and has the physical dimension of a

conductance. So, theorem 6 provides a (sufficient) condition for the existence of a

strong solution, given by:

σ1 < gL. (3.27)

The largest eigenvalue of Ḡ has to be smaller than the leak conductance.

3.4.1.5 Remarks

• As stated e.g. in (Galarreta and Hestrin, 2001) the typical electrical conduc-

tance values are of order 1 nano-Siemens, while according e.g. to (Wohrer

and Kornprobst, 2009) the leak conductance of retinal ganglion cells is of or-

der 50 micro-Siemens. Therefore, the condition (3.27) is compatible with the

biophysical values of conductances in the retina.

• Looking at the series (3.21) one may think that the exponentially bounded

flow is ensured whenever Φ(t) have a negative spectrum. This property is in

general not determined by the eigenvalues of Φ(t) in the non-autonomous case.

There are examples in which the matrix Φ(t) have negative real eigenvalues

∀t, but the solutions of the corresponding differential equation grow in time.

For a review and intuitive explanation see (Josić and Rosenbaum, 2008) and

example 3.5 in (Chicone and Latushkin, 1999). For a more complete mathe-

matical analysis see (Wooster, 2011). Therefore, in order to ensure a unique

strong solution to (5.6) one needs to find conditions ensuring exponentially

boundedness.

• The Dyson series (3.21) is obviously intractable on numerical and on analytical

grounds. A natural idea is to truncate this series. If gap junctions conduc-

tances are small compared to chemical synapses, one can reorder the series

writing first terms containing no term G, then one term G, two terms, and so

on. The order of truncation is fixed by the norm of G, which is equal to its

spectral radius since this is a symmetric matrix. If this radius is small enough

truncation at small order in G provide a good approximation of (3.21).

3.4.2 Flow and firing regime

The flow (3.21) characterizes the evolution of the membrane potential vector in the

sub-threshold regime. Let us now extend its definition to the firing regime.
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3.4.2.1 Extended flow

For a spike train ω, recall that t
(r)
j (ω) is the r-th time of firing of neuron j in

the spike train ω. Let T (p)(ω) be the p-th time in which a neuron is reset, i.e.

T (1)(ω) = minj{t(1)j (ω)}, and T (p)(ω) = minj,r{t(r)j (ω) > T (p−1)(ω)}. Let K(p)(ω)

be the set of neurons firing at time T (p)(ω) i.e. ∀j ∈ K(p)(ω), ωj(T (p)(ω)) = 1.

Consider a membrane potential trajectory compatible with ω. Thus, for an ini-

tial time t0 < T (1)(ω), vk < θ, k = 1, . . . , N . The membrane potential vector V

follows the evolution (3.23) until time T (1)(ω), where the membrane potential of

neurons in K(1)(ω) is set to 0. It keeps this value during the refractory period, until

time T (1)(ω) + τsep. During this period the neurons /∈ K(1)(ω) keep on evolving ac-

cording to (3.23), but flow Γ(t0, s, ω) undergoes a variation at time T (1)(ω), where

conductances are updated. The smoothness of this variation depends on the as-

sumed regularity of the α function (3.4). After the refractory period, the membrane

potential of all neurons follows the evolution (3.23), until another group K(2)(ω)

fires at time T (2)(ω), and so on.

To take into account the refractory periods where neurons are in the rest state,

we introduce a diagonal matrix χ ≡ χ(s, ω) with entries:

χkk(s, ω) =





0, if s ∈
⋃
r[T (r)(ω), T (r)(ω) + τsep], and k ∈ K(r)(ω);

1, otherwise.

Then we replace Γ in (3.23) by Γχ. This gives

V (t0, t, ω) = Γ(t0, t, ω)χ(t, ω) v +

∫ t

t0

Γ(s, t, ω)χ(s, ω) f(s, ω)ds

+
σB
c

∫ t

t0

Γ(s, t, ω)χ(s, ω) dW (s).

To simplify the computations made in the section 3.5, we add the following

modelling choice. Denote τk(t, ω) − τsep the last time1 before t where neu-

ron k has been reset in the past. When t0 < τk(t, ω) we replace the integral∫ t
t0
Γ(s, t, ω)χ(s, ω) dW (s) by

∫ t
τk(t,ω)

Γ(s, t, ω)χ(s, ω) dW (s). In this way, the

stochastic dependence upon the past is reset when the neuron’s membrane po-

tential is reset. On one hand, this modeling choice does not deeply change the

phenomenology. On the other hand it allows us to formulate the determination of

spike train statistics as a first passage problem (section 3.5.1). On the opposite,

we keep the (deterministic) integral

∫ t

t0

Γ(s, t, ω)χ(s, ω) f(s, ω)ds unchanged. This

term contains indeed a deep effect intrinsic to gap junctions, explained in details in

section 3.4.2.2.

1By construction of the model this is an integer ≤ [ t ]− 1 only determined by t, ω.
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To summarize, we have thus:

V (t0, t, ω) = Γ(t0, t, ω)χ(t, ω) v +

∫ t

t0

Γ(s, t, ω)χ(s, ω) f(s, ω)ds (3.28)

+
σB
c

∫ t

τk(t,ω)
Γ(s, t, ω) dW (s).

3.4.2.2 Role of gap junctions on history dependence

In the case G = 0, Γ is diagonal (eq. (3.19)) as well as Γχ. The reset of the

membrane potential has the effect of removing the dependence of Vk(t, ω) on its

past since Vk([t] + τsep, ω) is replaced by 0. As a consequence, the k component of

eq. (3.28) holds, from the time τk(t, ω), introduced in the previous section, up to

time t. Therefore, eq. (3.28) factorizes as a set of N equations (Cessac, 2011b):

Vk(t, ω) = Γkk(τk(t, ω), t, ω) vk +

∫ t

τk(t,ω)
Γkk(s, t, ω) fk(s, ω)ds

+
σB
c

∫ t

τk(t,ω)
Γkk(s, t, ω) dWk(s), (3.29)

with Γkk(τk(t, ω), t, ω) = e
− 1

c

∫ t
t0
gk(s,ω)ds in agreement with (3.19).

In this case, the reset has the effect of erasing the dependence of Vk on its

past anterior to its last firing time. Note that, in equation (3.29), the flow is inte-

grated from the time τk(t, ω), but the total conductance defining the flow (the term∫ t
t0
gk(s, ω)ds) corresponds to an integral starting from the initial time t0. This

is because, contrarily to membrane potentials, conductances are not reset when a

neuron fire.

The situation is quite more subtle when electric synapses are present, G 6= 0.

Neuron k membrane potential is still reset at firing. From this time on, its evolution

depends on the whole vector V (t), in particular Vj(t). But Vj(t) depends on Vk(s)s≤t
via the gap junction connection. Due to this interaction type, the evolution of Vk
depends on its past before firing, via the membrane potential of the other neurons.

3.4.2.3 Initial conditions

Equation (3.28) still depends on the initial condition V (t0) = v. However, we are free

to choose any t0 < T (1)(ω). Especially, we can take t0 → −∞. This corresponds to a

situation where the neural network has started to exist in a distant past (longer than

all characteristic relaxation times in the system) and we observe it after transients.

This corresponds to an “asymptotic” regime which not necessarily stationary, if the

external current i(ext) depends on time.

From the exponentially bounded flow property (3.22) Γ(t0, t, ω)v → 0 as t0 →
−∞. Therefore upon taking t0 → −∞ we may write (3.28) as:

V (t, ω) =

∫ t

−∞
Γ(s, t, ω)χ(s, ω)f(s, ω)ds+

σB
c

∫ t

τk(t,ω)
Γ(s, t, ω) dW (s).
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The integrals are well defined thanks to the exponentially bounded flow property.

From now on we work with the limit t0 → −∞. To alleviate notation we remove

the variable t0 in the expression of the membrane potential.

3.4.2.4 Membrane potential decomposition

The stochastic process V (t, ω) is therefore the sum:

V (t, ω) = V (d)(t, ω) + V (noise)(t, ω), (3.30)

of a deterministic part:

V (d)(t, ω) =

∫ t

−∞
Γ(s, t, ω)χ(s, ω) f(s, ω)ds = V (cs)(t, ω) + V (ext)(t, ω), (3.31)

with:

V (cs)(t, ω) =
1

c

∫ t

−∞
Γ(s, t, ω)χ(s, ω) I(cs)(s, ω)ds, (3.32)

the chemical synapses contribution to the membrane potential;

V (ext)(t, ω) =
1

c

∫ t

−∞
Γ(s, t, ω)χ(s, ω) I(ext)(s, ω)ds, (3.33)

the external current + leak term contribution, and a stochastic part:

V (noise)(t, ω) =
σB
c

∫ t

τk(t,ω)
Γ(s, t, ω) dW (s). (3.34)

Thanks to the limit t0 → −∞ which has removed the dependence in the initial

condition V (d)(t, ω) is uniquely determined by the spike history ω (and the time

dependence of the external current i(ext), if any). Likewise, V (noise)(t, ω) is the

integral of the Wiener process with a weight Γ(s, t, ω) depending on the spike history.

3.5 Spike train statistics and Gibbs distribution

This section is devoted to the characterization of spike train statistics in the model.

The main result establishes that spike train are distributed according to a Gibbs

distribution. Note that we do not make any assumption on the stationarity of dy-

namics: the present formalism affords to consider as well a time dependent external

current (stimulus). There is no explicit form of the potential determining the Gibbs

distribution in the general case, but upon an assumption discussed in section 3.5.3,

the potential can be approached by an analytic form. This form, is further discussed

in the section 3.6 with its deep connections, on one hand, with the Generalized Lin-

ear Model (GLM) and on the other with maximum entropy models.

For the non specialized readers, we give here the main ideas behind mathematics.

Spike statistics is characterized by a family of transition probabilities giving the

probability to have a spike pattern ω(n) given a past spike history ωn−1
−∞ . From this
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set of transitions probabilities, one defines the Gibbs distribution depending on the

bio-physical parameters defining the model, as exposed in chapter 2. This is done in

a similar way as homogeneous and positive Markov chains transition probabilities

define the invariant distribution of the chain, although the case considered here is

more general (we do not assume stationarity and we do not assume a finite memory).

3.5.1 Transition probabilities

We want to determine the probability P
[
ω(n)

∣∣ωn−1
−∞

]
to have a spiking pattern

ω(n) at time n given the spike history ωn−1
−∞ . This can be stated as a first passage

problem (Burkitt, 2006a,b, Touboul and Faugeras, 2007).

Fix ω, n and t < n. Set:

θ̂k(t, ω) = θ − V
(d)
k (t, ω), (3.35)

the distance of the deterministic part of the membrane potential to the threshold.

Neuron k will emit a spike at time n if there exist a time t ∈ [n − 1, n] such that

V
(noise)
k (t, ω) = θ̂k(t, ω).

Denote:

σ2k(t, ω) =
σ2B
c2

N∑

j=1

∫ t

τk(t,ω)
Γ2
kj(s, t, ω) ds.

Following (Touboul and Faugeras, 2007) Dubins-Schwarz’ theorem can be used to

change the time scale to write V
(noise)
k (t, ω) as a Brownian motion V

(noise)
k (t, ω)

def
=

Wσ2
k
(t,ω) and the spiking condition at time n reads:

Wσ2
k
(t) = θ̂k(t, ω).

This equation characterizes the first hitting time hk of the Brownian motion Wσ2
k
(t)

to the“boundary” θ̂k(t, ω).

Denote P [h1, . . . , hN ] the joint law of the first hitting times of neurons

1, . . . , N . For a spiking pattern ω(n) divide the set of indices { 1, . . . , N }
into two subsets S+(n, ω) = { k ∈ { 1, . . . , N } , ωk(n) = 1 } and S−(n, ω) =

{ k ∈ { 1, . . . , N } , ωk(n) = 0 }. We have:

P
[
ω(n)

∣∣ωn−1
−∞

]
= P


 ⋂

k∈S+(n,ω)

{hk ∈ [n− 1, n[ } ∩
⋂

l∈S−(n,ω)

{hl > n }


 . (3.36)

This equation can be written in terms of an integral of the join density of hitting

times.

The first passage problem can be solved in simple one dimensional situations

following a method developed by Lachal (Lachal, 1998). The Laplace transform of

the first hitting time density can be obtained as a solution of a PDE. However, we
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haven’t been able to find a general form for the joint density of the N -dimensional

problem in our model.

An alternative approach is to use the Fokker-Planck approach for IF models

developed by several authors (Brunel and Hakim, 1999, Lindner et al., 2004,

Burkitt, 2006a,b, Ostojic and Brunel, 2009). The resulting equations are seemingly

not solvable unless using a mean-field approximation in the thermodynamic limit as

done e.g. by Ostojic-Brunel-Hakim (Ostojic and Brunel, 2009) in the specific case

where chemical and electric synapses are constant and equals. The Fokker-Planck

method is a dual approach to the first passage problem but it meets the same

difficulties.

In the next section, we discuss about the general conditions ensuring neverthe-

less that this system of transition probabilities define a Gibbs distribution. Then,

in section 3.5.3 we propose an approximation allowing an explicit computation of

transition probabilities.

3.5.2 The Gibbs distribution

The transition probabilities (3.36) define a stochastic process on the set of spike

trains, where the probability of having a spiking pattern ω(n) at time n depends on

an infinite past ωn−1
−∞ . Under suitable conditions exposed in section 2, a sequence

of transition probabilities defines a unique probability distribution µ on the set of

spike trains, a “Gibbs distribution”. corresponding to the following Gibbs potential:

φ (n, ω ) = logP
[
ω(n)

∣∣ωn−1
−∞

]
, (3.37)

3.5.3 Approximating the Gibbs potential

The previous subsections provide mathematical results, but they do not allow ex-

plicit computations. The basic step for this would be to have an explicit form for

the Gibbs potential (resp. the transition probabilities). As mentioned in section

3.5.1 this is not tractable in general. We propose here an approximation.

3.5.3.1 The stochastic term V (noise)(t, ω) and compatibility conditions

V (noise)(t, ω) is the integral of a Wiener process (eq. (3.34)). As a consequence this

is a Gaussian process, with independent increments, mean 0, and covariance matrix:

Q(t, ω)
def
= Cov

[
V (noise)(t, ω), V (noise)T (t, ω)

]
,

where T denotes the transpose. From standard Wiener integration we have:

Q(t, ω) =
σ2B
c2

E

[∫ t

τk(t,ω)
Γ(s, t, ω)χ(s, ω) dW (s)(

∫ t

τk(t,ω)
Γ(s′, t, ω)χ(s′, ω) dW (s′))T

]

=
σ2B
c2

∫ t

τk(t,ω)

∫ t

τk(t,ω)
Γ(s, t, ω)χ(s, ω)χT (s′, ω)ΓT (s′, t, ω)E

[
dW (s)dW (s′)T

]
,



3.5. Spike train statistics and Gibbs distribution 71

so that:

Q(t, ω) =
σ2B
c2

∫ t

τk(t,ω)
Γ(s, t, ω)χ(s, ω) ΓT (s, t, ω) ds, (3.38)

where we used χ(s, ω)χT (s, ω) = χ(s, ω).

However, as mentioned in section 3.3.1.5 the model definition imposes compat-

ibility conditions between the trajectories of the membrane potential V (t, ω) and

the spike train ω (see eq. (3.14)). Fixing a spike train ω, fixes the flow Γ as well

as the deterministic part of the membrane potential V (d)(t, ω) (eq. (3.31)). Then,

V (noise)(., ω) has to obey the following compatibility conditions:

∀k = 1, . . . N, ∀n ≤ t,





ωk(n) = 0 ⇔ maxu∈]n−1,n]

[
V

(noise)
k (u, ω)− θ̂k(u, ω)

]
< 0;

ωk(n) = 1 ⇔ maxu∈]n−1,n]

[
V

(noise)
k (u, ω)− θ̂k(u, ω)

]
≥ 0;

(3.39)

As a consequence, when computing the law of V
(noise)
k (., ω) we have to take these

constraints into account. We write PC
[
V

(noise)
k (., ω)

]
the law of V

(noise)
k (., ω) given

these constraints. Although, V
(noise)
k (t, ω) is Gaussian, PC

[
V

(noise)
k (., ω)

]
is not a

Gaussian distribution. For example, if ωk(n) = 0 then, necessarily, V
(noise)
k (t, ω) <

θ − V
(d)
k (t, ω), [ t ] + 1 = n, while a Gaussian random variable takes unbounded

values.

3.5.3.2 A Gaussian approximation.

A plausible approximation consists then of approximating PC
[
V (noise)(., ω)

]

by the Gaussian law of V (noise), i.e. “ignoring” compatibility conditions. This

approximation can be justified under the following conditions.

• Weak noise. Consider the compatibility conditions for ωk(n) = 0: ∀u ∈
]n−1, n], V

(noise)
k (u, ω) < θ̂k(u, ω). What is the probability that the Gaussian

noise V
(noise)
k (u, ω) violates this condition for some u in the interval ]n− 1, n]

?

Denoting σ2k(u, ω)
def
= Qkk(u, ω), the variance of V

(noise)
k (u, ω) at time u (given

explicitly by eq. (3.38)), this probability is given by:

P

[
V

(noise)
k (u, ω) ≥ θ̂k(u, ω)

]
=

1√
2π

∫ +∞

θ̂k(u,ω)

σk(u,ω)

e−
h2

2 dh.

From the explicit form of σ2k(u, ω) (eq. (3.38)) and from the exponentially

bounded flow property of Γ, σ2k(u, ω) is upper bounded, uniformly in u and ω,

by
σ2
B

c2
B where B is some constant depending on the model parameters and

where σB is the Wiener noise intensity. Thus, σ2k(u, ω) → 0 as σB → 0.
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If σB = 0 then the compatibility conditions for ωk(n) = 0 is ∀u ∈]n − 1, n],

θ̂k(u, ω) > 0 (i.e. V
(d)
k (u, ω) < θ). Assume that θ̂k(u, ω) > ε for some ε > 0.

If σB 6= 0, θ̂k(u,ω)
σk(u,ω)

> εc√
B

1
σB

, so that:

P

[
V

(noise)
k (u, ω) ≥ θ̂k(u, ω)

]
<

1√
2π

∫ +∞

εc√
B

1
σB

e−
h2

2 dh =
1

2

(
1− erf

(
εc√
B

1

σB

))
,

where erf(x) admits the following series expansion as x→ +∞:

erf(x) = 1− e−x
2 1√

π

(
1

x
− 1

2x3
+

3

4x5
− 15

8x7

)
+ ◦

(
x−8e−x

2
)
.

Therefore, as σB → 0, we have:

P

[
V

(noise)
k (u, ω) ≥ θ̂k(u, ω)

]
<

1

2
e−x

2 1√
π

(
1

x
− 1

2x3
+

3

4x5
− 15

8x7

)
+◦
(
x−8e−x

2
)
,

(3.40)

with x = εc√
B

1
σB

.

This shows that the probability that the noise violates the compatibility condi-

tion decreases exponentially fast as σB → 0. As a consequence, when the noise

is small, approximating PC
[
V

(noise)
k (., ω)

]
by the Gaussian law of V

(noise)
k pro-

vides a reliable approximation. This amounts to considering that the spikes

arising between [n − 1, n[ are determined by the deterministic part of the

membrane potential, not by the noise. If a neuron is about to fire at time n

because its deterministic part crosses the threshold at a time t ∈ [n−1, n[, the

(weak) noise can affect the time t where the crossing occurs, but, with high

probability this time stays in the interval [n− 1, n[.

• Time discretization. Beyond the compatibility conditions, an additional

aspect makes the analytic computation of transition probabilities delicate:

membrane potential time evolution is continuous. Since we are focusing

here on spike statistics, where spike occur on discrete times, this obstacle

can be raised using the following approximation. We replace the spike con-

dition of neuron k at time n: ∃u ∈]n − 1, n], V
(noise)
k (u, ω) ≥ θ̂k(u, ω) by:

V
(noise)
k (n, ω) ≥ θ̂k(n, ω). The argument supporting this choice is the follow-

ing. Suppose that V
(noise)
k (n−1, ω) < θ̂k(n−1, ω); if V

(noise)
k (n, ω) ≥ θ̂k(n, ω)

then with probability 1, the continuous process crosses the threshold be-

tween ]n − 1, n], therefore the spike is registered at time n. On the other

hand if V
(noise)
k (n, ω) < θ̂k(n, ω) there is nevertheless a positive probability

that the continuous process crosses the threshold at some time t between

]n − 1, n[. In this case, there will be a spike that our approximation ne-

glects since V
(noise)
k (n, ω) < θ̂k(n, ω). The probability of occurrence of such

an event can be explicitly computed for general diffusion processes (see (Baldi
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and Caramellino, 2002)) and depend on the noise intensity σB and time step

discretization δ. It is given by:

C
θ̂
exp

(
−2(θ̂k(n− 1, ω)− V

(noise)
k (n− 1, ω))(θ̂k(n, ω)− V

(noise)
k (n, ω))

δσB

)
,

where C
θ̂

is a bounded function depending on the value of θ̂ at time n − 1.

Therefore, when σB, δ are small (as in our case) this probability is also small.

3.5.3.3 Approached form of the potential.

Thanks to these approximation we have now the following result. If we note:

Jk(n, ω) =





]−∞, θ̂k(n− 1, ω)[, if ωk(n) = 0;

[θ̂k(n− 1, ω),+∞[, if ωk(n) = 1;

and

J (n, ω) =

N∏

k=1

Jk(n, ω), (3.41)

where
∏

denotes the Cartesian product of intervals, eq. (3.36) becomes, using the

Gaussian approximation for V (noise)(., ω):

P
[
ω(n)

∣∣ωn−1
−∞

]
=

∫

J (n,ω)

e
−V TQ−1(n−1,ω)V

2

(2π)
N
2 |Q(n− 1, ω)| 12

dv, (3.42)

where dv =
∏N
i=1 dVi.

Taking the log of (3.42) we obtain the approached form of the Gibbs potential.

3.5.3.4 Remarks

The apparently simple form (3.42) hides a real complexity.

• The integration domain J (n, ω) corresponds to a product of intervals involving

the variables θ̂k(n−1, ω), the distance of V
(d)
k (n−1, ω) to the threshold. Now,

from eq. (5.6), (3.31), involves the chemical synapse current I(cs)(t, ω), eq.

(3.8), and the external current I(ext)(t) (3.10), integrating, via the flow Γ, the

spike history of the network. As a consequence, the transitions probabilities

depend on all parameters defining the system: synaptic weights Wkj (eq. (3.9),

gap junctions, external current, and biophysical parameters such as membrane

capacity, or characteristic time scale of the post-synaptic potential αkj(t) (eq.

(3.4)).

• Without electric synapses the covariance (3.38) takes a diagonal form since Γ

and χ are diagonal matrices. Thus, in this case, neurons are (conditionally
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upon the past), independent. As a consequence the transition probability

P
[
ω(n)

∣∣ωn−1
−∞

]
factorizes:

P
[
ω(n)

∣∣ωn−1
−∞

]
=

N∏

k=1

P
[
ωk(n)

∣∣ωn−1
−∞

]
. (3.43)

3.6 Consequences

In this section we adopt the following point of view. Assuming that the model

presented here captures enough of the biophysics of real neurons, what are the -

relevant for neuroscience- consequences of the mathematical results developed in

the previous sections ? We essentially focus on spike trains analysis and argue that:

1. Spikes correlations are not only due to shared stimulus: there are correlations

induced by dynamics, that persists without stimulus. Moreover, in the absence

of electric synapses neurons are conditionally independent upon the past.

2. The Gibbs potential (3.37) or even its Gaussian approximation (3.42), in-

cludes existing models for spike trains statistics such as maximum entropy

models (Schneidman et al., 2006, Tkačik et al., 2009, Shlens et al., 2006, 2009,

Ohiorhenuan et al., 2010, Ganmor et al., 2011a,b, Vasquez et al., 2012) and

GLM (Pillow et al., 2005, 2008, Ahmadian et al., 2011, Pillow et al., 2011,

Macke et al., 2011).

3.6.1 Correlations structure

3.6.1.1 Transition probabilities do not factorize in general

This can be illustrated in the Gaussian approximation. The covariance matrix

Q(n−1, ω) can always be diagonalized by an orthogonal variable change P (n−1, ω)

depending on n and ω:

Q(n− 1, ω)P (n− 1, ω) = P (n− 1, ω) Σ(n− 1, ω),

where Σ(n− 1, ω) is diagonal with real, positive eigenvalues σ2k(n− 1, ω).

Upon the variable change V = P (n − 1, ω)V ′, the transition probability reads

therefore:

P
[
ω(n)

∣∣ωn−1
−∞

]
=

∫

J ′(n,ω)

N∏

k=1

1√
2πσk

e
− V ′2

k

2σ2
k
(n−1,ω) dV ′

k,

where J ′(n, ω) is the image of J (n, ω) in the variable change. As a classical result

the variables change has transformed the join Gaussian density of V (noise)(n− 1, ω)

into a product of one dimensional Gaussian with mean zero and variance σ2k(n−1, ω).

However, the same variable change has transformed the domain J (n, ω), reading as

a product of intervals (eq. 3.41) into the domain J ′(n, ω) which is not a product

any more, except in the case with no gap junctions.
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Therefore, in general:

P
[
ω(n)

∣∣ωn−1
−∞

]
6=

N∏

k=1

P
[
ωk(n)

∣∣ωn−1
−∞

]
. (3.44)

3.6.2 Correlations

Note first that conditional independence upon the past does not mean independence.

Conditional independence upon the past means that the Gibbs potential reads:

φn (ω ) =

N∑

k=1

φn,k (ω ) .

This is a sum of per-neuron potentials φn,k, but each of this potential is a function

of the past network activity ω. On the opposite, neurons independence would mean

that:

φn (ω ) =
N∑

k=1

φn,k (ωk ) ,

where now the per-neuron potentials φn,k depends on the past activity of neuron k

only.

Now, what are the sources of general correlations (i.e. pairwise and higher

order) in our model ? Namely, what makes the potential depend on the network

history ? Even in the absence of electric synapses, correlations can be induced on

one hand by the stimulus (the term V ext(t, ω), eq (3.33)) if the external current

i(ext)(t) in (1) has correlations between its entries (i
(ext)
k (t) and i

(ext)
l (t) for k 6= l

are correlated), and on the other hand by the chemical synapses term V (cs)(t, ω),

(eq. (3.32)). Even if the stimulus is zero, the chemical synapses term remains.

We arrive then to the (somewhat obvious) conclusion that in the model the main

source of correlations is not a (shared) stimulus. It is due to interactions between

neurons.

A deeper question is to quantify the intensity of correlations induced by (i)

chemical synapses; (ii) electric synapses; (iii) stimulus and under which conditions

(parameters value) shared stimulus correlations are dominant. This is the main

additional issue to investigate neuronal encoding by a population of neurons. This

requires an extended investigation.

3.6.3 The Gibbs potential form includes existing models for spike
trains statistics

3.6.3.1 Markovian approximation

The exponentially bounded flow property (3.22) means that the norm of the flow

Γ(s, t, ω) decays exponentially fast as t − s grows. A consequence of this is the

exponential decay of the variation of Γ(s, t, ω) with respect to ω. Assume that we
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know the spike patterns of the spike train ω from some integer time m < t to time

t, but we ignore the spike patterns occurring before m. What is the maximal error

than we can make on the value of Γ(s, t, ω) ? As shown in the appendix of (Cofré and

Cessac, 2013), thanks to the exponential bounded flow property, this error decays

exponentially fast as t − m grows. The same property holds for the membrane

potential. It holds as well for the Gibbs potential under conditions stated in the

appendix.

As a consequence the norm of the difference between the exact Gibbs potential

(3.37) and an approximate potential where the past spike history ωn−1
−∞ is replaced

by ωn−1
n−D for some integer D > 0 called memory depth, decreases exponentially fast

with D.

Therefore, we may replace the infinite range potential (3.37) corresponding to a

process with infinite memory, by a truncated potential, corresponding to a Markov

chain with memory depth D. In this case, the Gibbs distribution is the invariant

probability of the corresponding Markov chain. For a small number of neurons this

probability can be characterized using transfer matrices techniques (Vasquez et al.,

2012). For larger networks Monte Carlo methods can be used (Nasser and Cessac,

2014).

If φ has finite range D: φ(n, ω) ≡ φ(ωnn−D) then, a classical result from Hammer-

sley and Clifford (Hammersley and Clifford, 1971) establishes that φ can be written

as:

φ(ωnn−D) =
2ND∑

k=0

φkOk(ω
n
n−D), (3.45)

where the φks are real parameters, (non linear) functions of the network parameters

of the model.

Now, the inspection of the Gibbs potential in our model leads to several strong

conclusions:

1. The Gibbs potential is definitely not Ising, and is actually quite far from

an Ising model. The main reason for that is that Ising model involves only

instantaneous (pairwise) events, with no memory effects. On the opposite,

strong memory effects exist in our model, requiring to consider transition

probabilities depending on spike history.

2. The exact expansion (3.45) involves 2ND constraints, making rapidly in-

tractable any numerical methods attempting to match all constraints. Ob-

viously, one can argue that some φks can be close to 0 so that the correspond-

ing constraints can be ignored in the approximation of µ. Unfortunately, this

argument does not tell us which are the negligible terms. It might well be

that the answer depend on the network parameters as well. This aspect is

investigated in the next chapter.

3. Although the expansion (3.45) of a potential into a linear combination of

observables is quite natural in the realm of statistical physics and Jaynes prin-

ciple, it may not be appropriate for the study of neural networks of the type
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studied here. Indeed, the parameters φks, whose number increases exponen-

tially fast with the number of neurons, are redundant : they are functions of

the network parameters, such as synaptic weights, whose number increases, at

most, like N2. Using approximations like the Gaussian one allows to obtain an

explicit form for the potential as a function of these parameters. One obtains

in the end a nonlinear function, but with quite a bit less parameters to tune;

additionally those parameters have a straightforward biophysical interpreta-

tion. This constitutes an alternative strategy to estimate spike statistics from

empirical data.

3.7 Conclusion

In this work we have analyzed the joint effects of spike history dependent chemical

synapses conductances and gap junctions in an Integrate and Fire model. We have

pointed out several technical and conceptual difficulties mainly lying in the fact that,

in general, the chemical conductance matrix G(t, ω) and the gap junctions matrix

G do not commute. As we showed, this has no impact on the well posedness of the

model, provided that the values of chemical and electrical conductances are com-

patible with biophysics. There exists a strong solution of the stochastic differential

equations. However, except in some specific cases, the flow reads as a Dyson series,

hardly tractable.

We have also considered the statistics of spike trains in this model and showed

that it is characterized by Gibbs distribution, time-dependent (non stationary)

whenever the external current is time-dependent. The corresponding potential can

be computed under a Gaussian approximation: it has infinite range with exponen-

tially decaying interactions.

The main observation resulting from our analysis is that spike statistics is

indecomposable. The probability of spike patterns does not factorize as a product of

marginal, per-neuron, distributions. This effect is enhanced by the presence of gap

junctions. As a consequence, in that model, there is absolutely now way to defend

that neurons act as independent sources. Additionally, correlations mainly result

from the chemical and electrical interactions between neurons (correlations persist

even if there is no external current / stimulus). Our work suggests especially that

electric synapses could have a strong influence in spike train statistics of biological

neural systems, especially the retina where gap junctions connections are ubiquitous.

As mentioned in the introduction, one of the main motivation of this work was

to better understand how ganglion cells in the retina supporting both chemical and

electric synapses coordinate spatio-temporal spike patterns to encode information

conveyed to the brain. Developing a further understanding of the regulation of

gap junctions, as well as the dynamic relationship between electrical and chemical

transmission, is an important challenge for the future (Bloomfield and Völgyi, 2009).





Chapter 4

Exact computation of the
Maximum Entropy Potential from

spiking neural networks models

Overview

Preceding chapters have left us with several distinct approaches to analyze neural

network spike train statistics. We know, in particular fron chapter 2 that a MaxEnt

potential of the form (2.11) is always associated to a set of transition probabilities

corresponding to a Markov chain. Here we address the inverse correspondence:

Having a set of transition probabilities (GLM, IF) with stationary dynamics, can

one construct a MaxEnt potential leading the same Gibbs distribution? As we

show, there are infinitely many such potentials. Nevertheless, there is a unique

canonical one, in the sense described in this chapter. We present a method, based on

equivalence between potentials, Hammersley-Clifford hierarchy and periodic orbits

invariance to recover this canonical MaxEnt potential. We present an example based

on a discrete time Integrate and Fire model in which we compute explicitly the

“local fields” and “Ising couplings” as non linear functions of the chemical synaptic

architecture and stimulus. We finally present the conclusions of this work in which

we address especially the issue of the difference of dimensionality between the space

of parameters of MaxEnt and neuro-mimetic models. This chapter is based on the

published work (Cofré and Cessac, 2014).
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4.1 Introduction

Let us introduce this chapter by contextualizing the main point in terms of the guid-

ing lines of this thesis i.e. the transition probabilities. As we have seen in the previ-

ous chapter when considering neural network models the transition probabilities and

therefore the spike train statistics can be written in terms of the parameters defining

the model. This fact present an enormous advantage with respect to the maximum

entropy approach in which the transition probabilities can also be obtained in terms

on the maximum entropy fitting parameters, but lacking interpretation in terms of

the neural network model of the tissue which has generated the data.

An alternative to the MaxEnt approach (explained in chapter 2) is based on

spiking neuron models, providing a mathematical description of neural dynamics

(see chapter 3 for an explicit example). These models give a probabilistic mapping

between network architecture, stimuli, spiking history of the network and spiking

response in terms of conditional probabilities of spike pattern given the network his-

tory. Prominent examples are the Linear-Non Linear model (LN), the Generalized

Linear Model (GLM) (Brillinger, 1988, Chichilnisky, 2001) or Integrate-and-Fire

models (Gerstner and W.Kistler, 2002). In all these examples the conditional prob-

abilities that a spike pattern occurs at time t given the network spike history are

explicit functions of “structural” parameters in the neural network (that can be

interpreted as synaptic weights W matrix, and stimulus I) (Fig. 4.1).

These conditional probabilities define a Markov process that mimics the biophys-

ical dynamics of neurons in a network and the mechanisms that govern spike trains

emission, including stimulus dependence and neurons interactions via synapses. We

call them neuro-mimetic statistical models.

To summarize, at least two different representations can be used to analyze

spike train statistics in neural networks (fig. 4.1). The goal of this chapter is

to establish an explicit and exact correspondence between these two representations.

A previous result attempting to describe such a relationship can be found

in (Cocco et al., 2009). Here, the authors fit a leaky Integrate and Fire model

matching spike train data from a population of retinal ganglion cells. At the same

time they fit a MaxEnt Ising model from this data. This allows them to compare in

particular synaptic weights Wij with MaxEnt Ising couplings Jij . Another work in

this direction can be found in (Granot-Atedgi et al., 2013) in which stimulus depen-

dent MaxEnt is introduced based on (LN) model, attempting to include stimulus

information into the “local fields” of the Ising model. Both examples are lim-

ited to the Ising model, thus do not include memory effects in the MaxEnt statistics.

We propose here a generalization which allows us to handle more general types

of neuro-mimetic models as well as general spatio-temporal MaxEnt distributions
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Figure 4.1: (A) Neuro-mimetic approach. Neurons are interacting via synaptic

weights Wij and submitted to a stimulus I. Spike probabilities are explicit func-

tions of these parameters. (B) MaxEnt statistical approach. Here the relations

between neurons are expressed by functional parameters allowing to correctly fit

the correlations in the model. The graph represents the Ising model where only

local fields and pairwise interactions are drawn. More general interactions are con-

sidered in the text. In Ising model pairwise interactions are symmetric (represented

without arrows). We are looking for an explicit and exact correspondence between

these two representations.

(including memory). The method we used is based on Hammersley-Clifford

decomposition (Hammersley and Clifford, 1971) and periodic orbit invariance from

ergodic theory (Pollicott and Weiss, 2003). The techniques are therefore different

from (Cocco et al., 2009, Granot-Atedgi et al., 2013).

More generally, we answer the following questions:

Question 1: Given an ergodic Markov process, where the transition prob-

abilities are known, can we construct a MaxEnt potential, with a minimum of

constraints, reproducing exactly the (spatio-temporal) statistics of this process?

This is the most general question we answer in this chapter. It is important to

notice that our results are not restricted to spike trains and neural networks, but

to any ergodic Markov chain. The next question focuses on the correspondence

between MaxEnt parameters and structural parameters defining spiking neural

networks.

Question 2: Given the transition probabilities from a neuro-mimetic model, is

it possible to derive an analytic correspondence between MaxEnt fitting parameters

(Lagrange multipliers) and neuro-mimetic structural parameters? For example can
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we establish a correspondence between the local fields hi and the external stimulus

Ii? Between Ising couplings Jij with Wij, the synaptic weights?

We show that there exists an exact and analytic correspondence revealing that

Lagrange multipliers are complex non-linear functions of structural parameters. For

example the local field Hi or the functional interactions Jij are non-linear functions

depending generically on all stimuli and all synaptic weights.

Additionally this correspondence raises up the question of dimensionality. A

neuro-mimetic model with N neurons typically has N2+N independent parameters

(N2 synaptic weights and N stimuli); a MaxEnt model with memory depth D may

have up to 2N(D+1) independent parameters (see text). The dimensionality of these

two types of models is drastically different. When mapping a MaxEnt model to a

neuro-mimetic model there is clearly a loss of dimensionality.

Question 3: Consider a MaxEnt model equivalent to a neuro-mimetic model.

Then, the difference in dimensionality between the spaces of parameters of both

models suggests that either many of MaxEnt parameters are zero, or that there are

relations among them, i.e. they are not independent. What is the generic situation?

At the end of this chapter we address the issue of the difference of dimensionality

between the space of parameters of MaxEnt and neuro-mimetic models.

4.2 Setting
We study a network composed by N neurons as in the introduction of this thesis.

We also consider a potential H of range R = D + 1. We assume H(ωD0 ) > −∞. As

we have seen in chapter 2 any such potential can be written:

H(ωD0 ) =
L∑

l=0

hlml(ω
D
0 ), (4.1)

This potential defines a unique stationary probability µ.

4.2.1 Equivalent potentials

Although a potential H of the form (4.1) corresponds (if H > −∞) to a unique

normalized potential φ and Gibbs distribution µ, this correspondence is not one to

one. To a normalized potential φ corresponds infinitely many potentials of the form

(4.1). Hence two potentials H(1),H(2) can correspond to the same Gibbs distribution

(We call them equivalent).

A standard result in ergodic theory states that H(1) and H(2) are equivalent if and

only if there exists a range D > 0 function f such that (Bowen, 1975):

H(2)
(
ωD0
)
= H(1)

(
ωD0
)
− f

(
ωD−1
0

)
+ f

(
ωD1
)
+∆, (4.2)
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where ∆ = P
[
H(2)

]
−P

[
H(1)

]
. This relation establishes a strict equivalence and

does not correspond e.g. to renormalization. The validity of (4.2) can be readily

seen by plugging H(2) in the variational formula (2.25) the terms corresponding to f

cancels because ν is time-translation invariant. Therefore, the supremum is reached

for the same Gibbs distribution as H(1) whereas ∆ is indeed the difference of free

energies. The “only if” part is more tricky.

Equation (2.16) is a particular case of equation (4.2), where H(2) = φ,H(1) =

H, f = logR and ∆ = − log s. This equation has the virtue to unify two very

different approaches. It establishes a relation between Markov chain normalized

potentials (2.13) on one hand and potentials of the form (4.1) on the other hand

(the arrow φ→ H in fig. 4.1). Equation (4.2) answers therefore the first part of the

question (1), but, by itself does not provide a straightforward way to exploit it, due

to the arbitrariness in the choice of f . Indeed, there are infinitely many potentials

H corresponding to the same Gibbs distribution (the same normalized potential φ).

This arbitrariness in the choice of f raises a natural question closely related to

the second part of question (1). Given a normalized potential is it possible to find,

among the infinite family of equivalent potentials, a canonical form of H with a

minimal number of terms ? The situation is a bit like normal forms in bifurcations

theory where variable changes allows one to eliminate locally non resonant terms in

the Taylor expansion of the vector field (Arnold, 1983). Here, the role of the variable

changes is played by f . By suitable choices of f one should be able to eliminate some

monomials in the expansion (4.1). An evident situation corresponds to monomials

related by time translation, e.g. ωi(0) and ωi(1): since any ν ∈ M is time trans-

lation invariant ν [ωi(0) ] = ν [ωi(1) ], the firing rate of neuron i. Such monomials

correspond to the same constraint in (2.25) and can therefore be eliminated. A

potential where monomials, related by time translation, have been eliminated (the

corresponding hl vanishes) is called canonical. A canonical potential contains thus,

in general, 2NR− 2N(R−1) terms. We now show that canonical potentials cannot be

further reduced.

4.2.2 Canonical interactions cannot be eliminated using the equiv-
alence equation (4.2)

Assume that we are given two potentials H(1),H(2) in the canonical form, where H(1)

has a zero coefficient for the canonical interaction ml whereas H(2) = H(1) + hlml,

hl 6= 0. Let us show that these two potentials are not equivalent. For this we need

to introduce a bit of notations further used in the text.

Since a monomial is defined by a set of spike events (ku, nu), one can associate to

each monomial a spike block or “mask” where the only bits ’1’ are located at (ku, nu),

u = 1, . . . , r. This mask has therefore an index. Whereas the labeling of monomials

in (4.1) was arbitrary, ml denotes from now on the monomial with mask ω(l). Let

us define the block inclusion ⊑, by ωD0 ⊑ ω′D
0 if ωk(n) = 1 ⇒ ω′

k(n) = 1, with the

convention that the block of degree 0, ω(0), is included in all blocks. Then, for two

integers l, l′:



84
Chapter 4. Exact computation of the Maximum Entropy Potential

from spiking neural networks models

ml′(ω
(l)) = 1 if and only if ω(l′) ⊑ ω(l). (4.3)

Now, from (4.2), H(2) = H(1) + hlml and H(1) are therefore equivalent if one can

find a D-dimensional function f such that, ∀ωD0 :

f
(
ωD1
)
− f

(
ωD−1
0

)
+∆+ hl✶ω(l)⊑ωD

0
= 0,

where ✶ω(l)⊑ωD
0

is the standard indicator function that takes value 1 when ω(l) ⊑ ωD0
and 0 otherwise. Let us consider 2 specific blocks. The block only composed by ’1’s

contains all other blocks, and it is translation invariant so that the terms involving

f cancel in the equation above. We have therefore ∆ + hl = 0. The block only

composed by ’0’s is also translation invariant and, if l > 0 we obtain ∆ = 0, so that

hl = 0, in contradiction with the hypothesis. Therefore, two canonical potentials

are equivalent if and only if all their canonical their coefficients hl, l > 0, are equal

(Cessac and Cofré, 2013).

There is still an arbitrariness due to the term h0 (“Gauge” invariance). One

can set it equal 0 without loss of generality. In this way, there is only one canonical

potential, with a minimal number of monomials, corresponding to a given stationary

Markov chain.

In the next section we show how to compute the coefficients of the canonical

potential H(2) equivalent to a known H(1).

4.3 Method

Given a spike block ω(l0), a periodic orbit of period κ is a sequence of spike blocks

ω(ln) where ω(lpκ+n) = ω(ln), p ≥ 0, 0 ≤ n ≤ κ− 1. From equation (4.2) we have, for

such a periodic orbit,

κ−1∑

n=0

H(2)
(
ω(ln)

)
=

κ−1∑

n=0

H(1)
(
ω(ln)

)
+ κ∆, (4.4)

because the f -terms disappear when summed along a periodic orbit. It follows that

the sum of a potential along a periodic orbit is an invariant (up to the constant

term κ∆) in the class of equivalent potentials. This is a classical result in ergodic

theory extending to infinite range potentials (Livšic, 1972). This equation is valid

whatever periodic orbit is considered. It is singularly useful if one takes advantage

of an existing hierarchy between blocks and between monomials, the Hammersley-

Clifford (H-C) hierarchy (Hammersley and Clifford, 1971) that we explain now.
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4.3.1 Hammersley-Clifford hierarchy

The construction of our method is based on the (H-C) factorization theorem, proved

in the seminal although unpublished paper (Hammersley and Clifford, 1971). Later

simpler proofs were given in (Grimmett, 1973, Besag, 1974). This result establishes

the equivalence between Markov random fields and Gibbs distributions. It was

proved in the context of undirected graphs where the clique structures provide the

factorization of the potential. Our result is based on a decomposition of the potential

over inclusions ⊑ of (spatio-temporal) blocks defined previously. Inclusions provide

a hierarchical structure similar to the blackening algebra of (H-C). However (H-C)

theorem does not provide by itself an explicit method to obtain from a Markov chain

the corresponding canonical MaxEnt potentials. On the opposite, our method of

periodic orbits allows to perform this computation.

We can express H(2) in the form (4.1), then using (4.3) it follows that (4.4)

becomes:

κ−1∑

n=0

∑

l⊑ln
h
(2)
l ml(ω

(ln)) =

κ−1∑

n=0

H(1)(ω(ln)) + κ∆ (4.5)

where, with a slight abuse of notations l ⊑ ln stands for ω(l) ⊑ ω(ln).

The interesting fact about this representation is that the l.h.s of this equation is

written entirely in terms of blocks included in the blocks considered in the periodic

orbits. Therefore, in order to compute all the coefficients hl’s that characterize the

canonical MaxEnt potential we can proceed by first obtaining the coefficient of

degree 0, then the coefficients of degree 1,2, and so on. We use equation (4.5) to

compute from a known H(1) potential its associated canonical potential H(2). From

now on we focus in the particular case when H1 = φ is a normalized potential. To

alleviate notation we note H(2) = H.

Degree 0: Free energy

Start from the first mask in hierarchy, the mask ω(0) containing only 0’s, whose

corresponding monomial is m0 = 1 and consider its periodic orbit, of period κ = 1,{
ω(0)

}
. The application of (4.5) gives h0 = φ(ω(0)) + P [H ] and since we choose

h0 = 0 for the canonical potential we obtain a direct way to compute the free

energy of H.

P [H ] = −φ(ω(0)) (4.6)

Degree 1: Local Fields

Let us now consider masks of degree 1:
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ω(l0) =




0 0 · · · 0
...

... · · · ...

0 0 · · · 1
...

... · · · ...

0 0 · · · 0



,

(where dots correspond to 0) corresponding to the monomial ωi(D). Also consider

the periodic orbit obtained by a R-circular shift of this block (κ = R):

ω(l0) =




0 0 · · · 0
...

... · · · ...

0 0 · · · 1
...

... · · · ...

0 0 · · · 0




→ ω(l1) =




0 · · · 0 0
... · · · ...

...

0 · · · 1 0
... · · · ...

...

0 · · · 0 0




· · · → ω(lD) =




0 0 · · · 0
...

... · · · ...

1 0 · · · 0
...

... · · · ...

0 0 · · · 0



.

Since the corresponding monomials of the blocks in the orbit ω(l0), ω(l1), . . . , ω(lD)

are related by time translation they correspond to the same constraint in (2.25).

The coefficient of all but one of these monomials is therefore set to 0 in the canon-

ical potential H. We use the convention to keep the monomial ml0 whose mask

contains a 1 in the right most column. This convention extends to the monomials

considered below. The block ω(l) considered to generate this periodic orbit has one

spike corresponding to neuron i. To make this explicit we note hl ≡ hi: Then,

applying (4.5) to this periodic orbit we obtain:

hi = φ(ω(l0)) + φ(ω(l1)) + · · ·+ φ(ω(lD)) (4.7)

+Rφ(ω(0))

We have thus obtained the coefficient corresponding to the monomial ωi(0) which

is precisely hi in Ising model (2.36).

Considering a different ω(l0) of degree 1 and the periodic orbit generated by its

R-circular shift we get another local field term. We do the same for the N neurons.

Degree 2: Instantaneous pairwise interactions

Let us now consider instantaneous pairwise interactions. We consider masks of the

form :
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ω(l0) =




0 0 · · · 0
...

... · · · ...

0 0 · · · 1
...

... · · · ...

0 0 · · · 1
...

... · · · ...

0 0 · · · 0




.,

corresponding to the monomial ωi(D)ωj(D), the procedure is the same as above i.e.

take the periodic orbit:

ω(l0) =




0 0 · · · 0
...

... · · · ...

0 0 · · · 1
...

... · · · ...

0 0 · · · 1
...

... · · · ...

0 0 · · · 0




→ ω(l1) =




0 · · · 0 0
...

...
...

...

0 · · · 1 0
...

...
...

...

0 · · · 1 0
...

...
...

...

0 · · · 0 0




· · · → ω(lD) =




0 0 · · · 0
...

... · · · ...

1 0 · · · 0
...

... · · · ...

1 0 · · · 0
...

... · · · ...

0 0 · · · 0




The coefficients corresponding to this monomials are Jij in the Ising model (2.36).

We have, from (4.5):

Jij =

R−1∑

n=0

φ
(
ω(σnl)

)
+Rφ(ω(0))−

R−1∑

n=0

∑

l′n❁σnl

hl′n . (4.8)

For blocks l′n ❁ σnl of degree 1 the spike is either on neuron i or neuron j. The

contribution of these blocks is hi +hj . In the blocks l′n ❁ σnl there is also the block

ω(0), whose contribution is h0 = 0. Therefore, we finally have:

Jij =
R−1∑

n=0

φ
(
ω(σnl)

)
+Rφ(ω(0))− hi − hj . (4.9)

Degree 2: (1 time-step memory):
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For the one step of memory pairwise coefficients (e.g. ωj(0)ωi(1)) the situation is

slightly different;

ω(l0) =




0 · · · 0 0
...

...
...

...

1 0 · · · 0
...

...
...

...

0 1 · · · 0
...

...
...

...

0 · · · 0 0




,

Here the periodic orbit generated by the R-circular shift of ω(l0) is:

ω(l0) =




0 · · · 0 0
...

...
...

...

1 0 · · · 0
...

...
...

...

0 1 · · · 0
...

...
...

...

0 · · · 0 0




.→ ω(l1) =




0 · · · 0 0
...

...
...

...

0 · · · 0 1
...

...
...

...

1 · · · 0 0
...

...
...

...

0 · · · 0 0




ω(l2) =




0 · · · 0 0
...

...
...

...

0 · · · 1 0
...

...
...

...

0 · · · 0 1
...

...
...

...

0 · · · 0 0




→ · · · → ω(lD) =




0 0 0 · · ·
...

...
...

...

0 1 0 · · ·
...

...
...

...

0 0 1 · · ·
...

...
...

...

0 · · · 0 · · ·




This orbit is not sufficient because it contains 2 unknowns in eq (4.5), namely the

first and second blocks ω(l0) and ω(l1) correspond to monomials ωj(D − 1)ωi(D)

and ωj(D)ωi(0) which are not related by time translation, so correspond to

different canonical constraints both having degree 2. Therefore it is not possible

to solve (4.5) just generating one circular periodic orbit. Fortunately is possible to

circumvent this problem by generating additional periodic orbits.

Let us now consider the following periodic orbit:
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ω(l0) =




0 · · · 0 0
...

...
...

...

1 0 · · · 0
...

...
...

...

0 1 · · · 0
...

...
...

...

0 · · · 0 0




→ ω(l1) =




0 · · · 0 0
...

...
...

...

0 · · · 0 0
...

...
...

...

1 · · · 0 0
...

...
...

...

0 · · · 0 0




ω(l2) =




0 · · · 0 0
...

...
...

...

0 · · · 0 0
...

...
...

...

0 · · · 0 0
...

...
...

...

0 · · · 0 0




→ ω(l3) =




0 · · · 0 0
...

...
...

...

0 · · · 0 1
...

...
...

...

0 · · · 0 0
...

...
...

...

0 · · · 0 0




ω(l4) =




0 · · · 0 0
...

...
...

...

0 · · · 1 0
...

...
...

...

0 · · · 0 1
...

...
...

...

0 · · · 0 0




· · · → ω(lR+2) =




0 0 0 · · ·
...

...
... · · ·

0 1 0
...

...
...

... · · ·
0 0 1

...
...

...
... · · ·

0 0 0 · · ·




(4.10)

We have generated a periodic orbit, where (4.5) has only one unknown, the

coefficient associated to the first block. All the other blocks in the orbit are either

of lower degree, thus we have already computed them; or are time translations of

the first block, thus their coefficient is set to zero.

This is a particular example of a general procedure that we describe now. It

allows to compute hierarchically any hl. The procedure is general, but we illustrate

it with:

ω(l) =
[

0 0 1 1 0 1
0 0 1 0 1 1

]

• Step 1. Shift circularly ω(l) until the left-most spiking pattern has at least a

1. Each of the circular shifts generate a mask, which corresponds to the same

constraint in (2.25) so the corresponding hl coefficient is set to zero.

[
0 0 1 1 0 1
0 0 1 0 1 1

]
→
[

0 1 1 0 1 0
0 1 0 1 1 0

]
→
[

1 1 0 1 0 0
1 0 1 1 0 0

]
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• Step 2. Continue circularly left shifting but, before shifting, remove the 1 with

the lower neuron index, on the left most spike pattern. Tag the 1s that has

been removed. Do this until the total number of left shifts including step 1

and 2 is R.

[
1 0 1 0 0 0
0 1 1 0 0 1

]
→
[

0 1 0 0 0 0
1 1 0 0 1 0

]

→
[

1 0 0 0 0 0
1 0 0 1 0 0

]
→
[

0 0 0 0 0 0
0 0 1 0 0 1

]

• Step 3. Same as step 1. All the masks generated at this step correspond to

the same constraint and thus have a zero coefficient.

[
0 0 0 0 0 0
0 1 0 0 1 0

]
→
[

0 0 0 0 0 0
1 0 0 1 0 0

]

• Step 4. Do the opposite of what was done in step 2: Restore the 1’s that has

been removed on the left most spike pattern while circularly shifting. In this

way we finally regenerate ω(l).

[
0 0 0 0 0 1
0 0 1 0 0 1

]
→
[

0 0 0 0 1 1
0 1 0 0 1 0

]

→
[

0 0 0 1 1 0
1 0 0 1 0 1

]
→
[

0 0 1 1 0 1
0 0 1 0 1 1

]

As claimed we have generated a periodic orbit where all monomials, but ω(l),

have either a coefficient 0 or have a degree smaller than ω(l) and have therefore been

already computed. Obviously, when getting to larger and larger degrees the method

becomes rapidly intractable because of the exponential increase in the number of

terms. The hope is that the influence of monomials decays rapidly with their degree.

Additionally, applying it to real data where transition probabilities are not exactly

known leads to severe difficulties. Our goal here was to answer the first question

asked in the introduction. This goal is now achieved.

We now switch to the second question.

4.4 Example: The discrete time Leaky Integrate and

Fire model

In this section we illustrate our result in a stochastic leaky Integrate-and-Fire model

with noise and stimulus (Soula et al., 2006) analyzed rigorously in (Cessac, 2011a).

This model is a discretization of the usual leaky Integrate-and-Fire model. Its

dynamics reads:

V (t+ 1) = F (V (t)) + σBB(t), (4.11)
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where V (t) = (Vi(t) )
N
i=1 is the vector of neuron’s membrane potential at time t;

F (V ) is a vector-valued function with entries:

Fi(V ) = γVi(1− S [Vi ]) +
N∑

j=1

WijS [Vj ] + Ii, i = 1 . . . N

where γ ∈ [0, 1[, is the (discrete-time) “leak rate 1”; S is a function characterizing

the neuron’s firing: for a firing threshold θ > 0, S(x) = 1 whenever x ≥ θ and

S(x) = 0 otherwise; Ii is an external current. In the most general version of this

model, Ii depends on time. Here, we focus on the case where Ii is constant, ensuring

the stationarity of dynamics.

Finally, in (4.11), σB > 0 is a variable controlling the noise intensity, where

the vector B(t) = (Bi(t))
N
i=1 is an additive noise. It has Gaussian independent and

identically distributed entries with zero mean and variance 1.

4.4.1 The normalized potential

The normalized potential of the model (4.11) has infinite range. Indeed, a neuron

has memory only back to the last time when it has fired. But this time is unbounded

(although the probability that the last firing time arises before time m decays expo-

nentially fast as m→ −∞). Nevertheless, the exact potential can be approximated

by the finite range potential (Cessac, 2011a).

φ(ωD0 ) =
N∑

k=1

[
ωk(D) log π

(
Xk

(
ωD−1
0

))
(4.12)

+ ( 1− ωk(D) ) log
(
1− π(Xk

(
ωD−1
0

))]
,

where the function π is:

π(x) =
1√
2π

∫ +∞

x

e
−u2

2 du.

All functions appearing below depend on the spike block ωD−1
0 and make explicit

the dependence of the network state (membrane potentials) on the spike history of

the network.

The term:

Xk

(
ωD−1
0

)
=
θ − V

(d)
k ωD−1

0

σk(ω
D−1
0 )

, (4.13)

contains the network spike history dependence of the neuron k at time D. More pre-

cisely, the term V
(d)
k ωD−1

0 contains the deterministic part of the membrane potential

of neuron k at time D, given the network spike history ωD−1
0 , whereas σk(ω

D−1
0 )

1Thus, it corresponds to γ = 1− dt
RC

in the continuous-time LIF model.
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characterizes the variance of the integrated noise in the neuron k’s membrane po-

tential. We have:

V
(d)
k ωD−1

0 =
N∑

j=1

Wkj ηkj

(
ωD−1
0

)
+ Ik

1− γD−τk(ωD−1
0 )

1− γ
.

The first term is the network contribution to the neuron k’s membrane potential,

where:

ηkj

(
ωD−1
0

)
=

D−1∑

l=τk(ωD−1
0 )

γD−1−lωj(l),

is the sum of spikes emitted by j in the past, with a weight γD−1−l corresponding

to the leak decay of the spike influence as time goes on. The notation τk

(
ωD−1
0

)

means the last time before D−1 where neuron k has fired, with the convention that

this time is 0 if neuron k didn’t fire between 0 and D− 1 in the block ωD−1
0 . In the

definition of ηkj

(
ωD−1
0

)
we sum from τk

(
ωD−1
0

)
: this is because the membrane

potential of neuron k is reset whenever k fires, hence loosing the memory of its past.

Finally, in (5.28), we have:

σ2k(ω
D−1
0 ) = σ2B

1− γ2(D−τk(ωD−1
0 ))

1− γ2
.

(see (Cessac, 2011a) for details)

4.4.2 Explicit calculation of the canonical Maximum Entropy Po-
tential

The goal now is to derive from (4.12) a canonical potential H of the form (4.1) whose

spike interactions terms hl’s are functions of the network parameters: the synaptic

weight matrix W and the external stimulus I, hl ≡ hl(W, I).
Equation (4.5) gives a relation between the normalized potential and an

equivalent non-normalized potential. From this equation, after considering the

elimination of equivalent interactions is it possible to compute explicitly the values

of the interaction terms hl’s.

Free energy:

From (4.6) and (4.12) we get the free energy:

−φ(ω(0)) = P[H] = −
N∑

k=1

log


 1− π


 θ − Ik

1−γD
1−γ

σB

√
1−γ2D
1−γ2




 .

Local fields:

They are computed using equation (4.7). We consider the periodic orbit obtained

by the R-circular shift of the block corresponding to the monomial ωi(D). We have
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therefore to compute φ(ω(l0)) + φ(ω(l1)) + · · · + φ(ω(lD)) using equation (4.12). To

obtain this quantity we have compute Xk (5.28) for all the blocks in the periodic

orbit. Note that Xk does not depend on the last column of the blocks in the orbit.

We abuse the notation by writing Xk

(
ω(σnl)

)
instead of Xk

(
ω
(σnl)D−1
0

)
. The

same holds for ηkj
(
ω(σnl)

)
and σk(ω

(σnl)). We obtain:

Xk

(
ω(σnl)

)
=






θ−Wki γ
n−1−Ik

1−γD

1−γ

σB

√
1−γ2D

1−γ2

, 1≤n≤R−1, k 6=i;

θ−Wkk γn−1−Ik
1−γn

1−γ

σB

√
1−γ2n

1−γ2

, 1≤n≤R−1, k=i;

θ−Ik
1−γD

1−γ

σB

√
1−γ2D

1−γ2

, ∀k, n=0.

(4.14)

Combining equations (4.7) , (4.12) and (4.14) we obtain:

Hi =
∑R−1

n=1

∑N
k=1 log

[
1− π

(
Xk

(
ω(σnl)

) ) ]
+

∑
k 6=i log

[
1− π

(
Xk

(
ω(σ0l)

)) ]
+

log
[
π
(
Xi

(
ω(σ0l)

)) ]
−Rφ(ω(0)).

(4.15)

which is an explicit function of synaptic weights and stimuli. Clearly:

• The “local field” of a neuron i depends non linearly on all stimuli (not only

Ii).

• It depends non linearly on the incoming synaptic weights connected to i.
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Pairwise interactions (instantaneous):

We get:

Xk

(
ω(σnl)

)
=






θ−(Wki+Wkj) γ
n−1−Ik

1−γD

1−γ

σB

√
1−γ2D

1−γ2

, 1≤n≤R−1, k 6=i,j;

θ−(Wkk+Wkj) γ
n−1−Ik

1−γn

1−γ

σB

√
1−γ2n

1−γ2

, 1≤n≤R−1, k=i;

θ−(Wkk+Wki) γ
n−1−Ik

1−γn

1−γ

σB

√
1−γ2n

1−γ2

, 1≤n≤R−1, k=j;

θ−Ik
1−γD

1−γ

σB

√
1−γ2D

1−γ2

, ∀k, n=0.

(4.16)

Plugging (4.16) in (4.12) and using (4.9), one finally obtains Jij as a explicit

function of synaptic weights and stimulus.

Remarks:

• The “instantaneous pairwise” interaction Jij depends not only on Wij , but

in all synaptic weights of neurons connected with i or j.

• It also depends in the stimulus of all neurons in the network.

Pairwise interactions (1 time-step):

As mentioned in the previous section, in order to compute this term, the periodic or-

bit obtained by the R-circular shift of the block ω(l0) corresponding to the monomial

ωi(1)ωj(0) is not sufficient. We have therefore to use the periodic orbit obtained

by our procedure (4.10). From ω(l1) to ω(l4) we have already computed their corre-

sponding value Xk

(
ω(σnl)

)
when computing the Local fields. From ω(l4) to ω(lR+2)

we just circularly shift ω(l4). We compute the corresponding Xk

(
ω(σnl)

)
:

Xk

(
ω(σnl)

)
=






θ−Wkiγ
n−4−Wkjγ

n−3−Ik
1−γD

1−γ

σB

√
1−γ2D

1−γ2

, 4≤n≤R+2, k 6=i,j;

θ−Wkkγn−4−Wkjγ
n−3−Ik

1−γn−3

1−γ

σB

√
1−γ2(n−3)

1−γ2

, 4≤n≤R+2, k=i;

θ−Wkkγn−4−Wkiγ
n−3−Ik

1−γn−2

1−γ

σB

√
1−γ2(n−2)

1−γ2

, 4≤n≤R+2, k=j;

(4.17)

We then apply equation (4.5) to obtain the desired term, from previously

computed interaction terms.
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A numerical illustration of our method is presented in figure (4.2). We start from

the normalized potential (4.12) and construct the canonical equivalent potential.

We then compare the conditional probability of patterns predicted by H with the

empirical probabilities inferred from a spike train generated by (4.12). This is just

an illustration, and not a systematic study. Note that this numerical analysis is

limited to small N,R since the number of terms in H grows exponentially fast,

rendering intractable the method for NR ≥ 20.

4.5 Conclusion

We have presented a method capable to recover explicitly the MaxEnt potential

associated to a set of transition probabilities of a Markov chain. In other words,

we have found a way to revert the well known mapping (presented in detail in

chapter 2, see also the example 2.2.7.2) from MaxEnt potentials (bounded and

finite range) to transition probabilities corresponding to a Markov chain. When the

normalized potential φ is derived from a neuro-mimetic model (e.g. eq. (4.12)),

it follows that the “local fields” hi depends non linearly on the complete stimulus

I (not only the stimulus applied to neuron i), and the synaptic weights matrix

W . This is not that surprising. Even considering an Ising model of two neurons

with no memory, a strong favorable pairwise interaction between the two neurons

will increase the average firing rate of both neurons, even in the absence of an

external field. Likewise, Jij depends on the whole synaptic weights matrix W and

not only on the connection between i and j. This example clearly shows that there

is no straightforward relation between the so-called “functional connectivity” in Ising

model Jij and the neural synaptic connectivity (Wij).

Our method allows a mechanistic and causal understanding of the origin of corre-

lations observed in recordings on retinal ganglion cells using the MaxEnt approach,

in consequence, opens up new possibilities allowing a better understanding of the

role of different circuit topologies and stimulus on the collective spike train statistics.

Our result is not limited to spike trains and could also impact different areas of

scientific knowledge where binary time series are considered.
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Figure 4.2: (A). Exact conditional probabilities for blocks of range R obtained from

the normalized potential (4.12), vs exact conditional probabilities associated with

the potential (4.1). (B) Empirical probabilities of blocks ωk0 , k = 1, . . . 5 (darker

lower length), obtained from a discrete leaky integrate and fire spike train of size

T = 105 vs the probabilities of the same blocks predicted by the Gibbs ditribution

with potential H (4.1). Each dot stands for one of the 2Nk spatio-temporal patterns,

where k is the block length. Diagonal shows equality. Confidence bounds (blue and

red lines) correspond to fluctuations ruled by Central Limit Thorem. Plot is in log

scale. This figure corresponds to N = 5, R = 3, γ = 0.2, σB = 0.2, θ = 1, Ik =

0.7, k = 1, . . . 5. The synaptic weights are random and sparse. Each neuron was

randomly connected to other 2 neurons whose weights were drawn from a gaussian

0 mean and variance J2

N
. In this example J = 3.



Chapter 5

Characterizing the collective
response of a neural network

model to weak stimuli

In this chapter we take advantage of the formalism developed in the previous chap-

ters to propose an extension of the standard approach of modeling the impact of

the external stimulus on neural responses considering the network structure and its

dynamics in a neural network model. While the current knowledge allows to assess

the impact of external stimulus application on single neuron firing rates, we show

how this can (formally) be extended to spatio-temporal correlations (more generally

observables) in the spike trains they produce. Our theoretical approach is based

on Gibbs distributions and linear response theory. We exploit properties of the

Gibbs potential associated to a neural network model to recover the convolution

term characterizing the single neuron response. The convolution is written in terms

of a correlation matrix, computed with respect to the spontaneous probability. This

matrix can also be used to propose a new definition of “preferred stimulus”. We

mention at the end of this chapter other possible uses of this matrix in the realm of

retinal spike train data analysis.
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5.1 Introduction

A central question in computational neuroscience is whether neurons within a popu-

lation encode stimuli independently, by modulating their firing rates, or collectively

using spatio-temporal patterns of spikes (Haslinger et al., 2013). Classical models

to predict firing rates are based on the estimation of kernel functions that shape the

firing rates of single neurons. The kernel function that interacts with the stimulus is

often referred as the “receptive field” of the neuron (already introduced in chapter 1

and 2) and is usually derived from the mean of the spike-triggered stimulus ensemble

(STA) (Pillow et al., 2005, Truccolo et al., 2005). This approach considers each spike

as an independent message, rather than considering that the information might be

conveyed through spatio-temporal patterns of neural activity distributed across the

space and time. At the level of sensory neurons, there is however, clear evidence

that information is encoded not by single neurons, but instead, by populations or

networks of neurons responding collectively to characteristics of the stimulus. The

spatio-temporal patterns of spikes produced in the retina reflect indeed both the

intrinsic dynamics of the structured network and the temporal characteristics of the

stimulus. The retina provides clear evidence that the stimulus is encoded by spatio-

temporal patterns. This encoding strategy is known as population coding, and turns

out to be common throughout the nervous system (Pouget et al., 2000).

While the importance of studying populations of neurons rather than just single

neurons has been recognized for decades, the experimental and theoretical tools to

empirically investigate the computational properties of neural populations is still

lacking (Macke et al., 2008). Nowadays, thanks notably to the MEA technology

and theoretical work done in the last years, it is possible to characterize the spike

train statistics of populations of neurons responding to stimuli.

In this chapter we propose a framework to characterize, in the context of a neural

network model, the impact of a weak time dependent stimulus application in the

spatio-temporal correlations of the spike trains produced by the model.

Although our approach is general, we base our result considering the conductance

based Integrate and Fire model introduced in chapter 3, but without gap junctions,

the evoked time dependent potential is explicitly computed in terms of the neural

network parameters.
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5.1.1 Characterizing the single neuron response to sensory stimuli:
The experimental approach

A simple approach to characterize the single neuron response to a “sensory” stimu-

lus is called “Linear model”. In this approach, the firing rate of a neuron at time t

depends on the behavior of the stimulus over a period of time. The influence of the

rest of the population here is somewhat hidden in the shape of the response model.

In this approach the spikes are supposed to obey a non homogeneous Poisson dis-

tribution with rate rk(t). The basic problem is to construct an estimate r̂k(t) of

the firing rate evoked by a stimulus I(t) (in the case of retinal ganglion cells corre-

spond to images projected on the photoreceptors). The simplest way to construct

an estimate is to assume that the firing rate at any given time can be expressed as

a weighted sum of the values taken by the stimulus at earlier times. This effect is

represented by a convolution. The estimate is Dayan and Abbott (2005):

r̂k(t) = r0 +Dk ∗ I(t), (5.1)

where the term r0 accounts for a background firing occurring without stimulus I = 0.

Here Dk is a filter that characterize the receptive field of neuron k, determining how

strongly, and with what sign, the value of the stimulus affects the firing rate at time

t. Note that the convolution in this equation corresponds to linear filtering.

Different methods can be used to estimate theDk filters, notably the Spike-Triggered

average. A generalization of the linear model is the Linear non linear model (LNL),

which assumes that spikes are generated by non homogeneous Poisson process with

a time varying rate r̂k(t), which depends only on the stimulus vector. Subsequently,

a monotonic nonlinearity f transforms the real-valued output of the linear filtering

into a nonnegative instantaneous firing rate (Simoncelli et al., 2004).

r̂k(t) = f(r0 +Dk ∗ I(t)). (5.2)

Another extension of the previous approach, where firing rate depend not only on the

stimulus but also on the history of spikes generated by the neuron is the Generalized

linear model (GLM), presented in chapter 2.

5.1.2 Problem setting

In this section, we explain how the convolution form (5.1) can be obtained consid-

ering a neural network model via the Gibbs distributions setting.

We suppose that the conductance based neural network model has evolved un-

til time t0 without external current i.e., we fix all the parameters of the synaptic

weights, threshold, etc.. to given values and set the external stimulus to 0. As shown

in (Cessac, 2011b) to this set of parameters is associated a unique normalized po-

tential and a unique Gibbs distribution characterizing the “spontaneous” spike train

statistics (note that neurons can fire without external stimulation). Considering
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now one perturbs the model by including a time dependent external stimulus at

time t0, what is the new “evoked” spike train statistics? This situation is illustrated

in figure 5.1.

Figure 5.1: A) We consider the Conductance based Integrate and Fire without gap

junctions and without current before t0. B) We assess the impact of the time de-

pendent current injection to the equation in the difference between the spontaneous

and evoked probability distributions.

Indeed, this question have been already addressed before in this thesis. What

is new in this chapter is the fact that the normalized potential obtained from the

conditional probabilities considering a model with time dependent external stimulus

can be divided in two parts: one independent of the external stimulus, thus time

independent corresponding to spontaneous activity, and the other characterizing the

stimulus, time dependent. This fact allows to easily assess the influence of the time

dependent stimulus on the statistics of spikes.

An important result in this direction is presented in Brunel and Fourcaud (2002),

where the response of the firing rate to weak current injection in an integrate and fire

model, is expressed as a convolution, whose kernel is computed analytically in the

frequency domain. The analysis is done on the LIF model which does not consider

the structure of connectivity between neurons in the network. The approach is based

on a small perturbation of the steady state of the Fokker-Planck equation..

An important advantage of our framework is that is that allows us to consider

models that takes into consideration any connectivity structure of the network.

Special attention should be taken when comparing our approach with the ex-

perimental approach. While in the experimental approach one attempts to fit a
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kernel or "Receptive field" from the spike trains and the sensory stimulus (belong-

ing to the external world, in the case of retinal ganglion cells: visual images), in the

neural network modeling approach the external stimulus is of different nature and

correspond to a time dependent current injection that affect the fluctuations in the

membrane potential of the neurons. In the case of retinal ganglion cells, they receive

directly current coming from bipolar and amacrine cells, which integrate currents

from photoreceptors and horizontal cells.

Figure 5.2: Receptive fields of sensory neurons (for instance of retinal ganglion

cells) are usually represented as a filter that respond to images presented to the

retina. However a retinal ganglion cell does not "see" directly the image, it receives

currents from the outer plexiform layer (OPL) of the retina causing variations in its

membrane potential due to the network that has been stimulated previously by the

visual stimulus..

Our aim is to characterize the average response of an arbitrary observable f to

a time dependent perturbation on its membrane potential.

The response of the system to this perturbation can be characterized thanks to

the knowledge of the spontaneous Gibbs distribution µ(sp). This represent a great

advantage, because this distribution can be obtained from the MaxEnt principle

using the Perron-Frobenius theorem as explained in chapter 2.

In this chapter we look to bridge the effects of a weak external stimulus per-

turbation to the concepts of receptive fields, convolution kernel, preferred stimulus.

In particular we are interested in a more general characterization of these concepts

and investigate potential application to real recordings of retinal ganglion cells under

different stimuli scenarios. This work is still under development.
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5.1.3 Ansatz of the Linear response to weak stimulus

How does the paradigm of filters of a stimulus, obtained from real spiking data

characterizing receptive fields of a neuron, connects with the paradigm of Gibbs

distributions? Are these two visions coherent?

Given a normalized Gibbs potential φ obtained from a neural network model it is

possible to compute the linear response to a stimulus considered as a weak perturba-

tion of the spontaneous dynamics (when there is no stimulus). This linear response

is characterized by a convolution kernel depending on the observables which could

be compared to the models of receptive field filters used in the literature (Cessac

and Palacios, 2012). However, one should take care about one point. While the

concept of receptive field applies to sensory neurons receiving the external stimulus

from the external world (i.e for visual receptive in the cortex V1 an angled bar

or a natural image for retinal ganglion cells) in neural network model framework,

modeling retinal ganglion cells for instance, we assess the influence of the injection

of current affecting the membrane potentials in the spike train statistics . While

sensory neurons only feels the external stimulus through current coming from other

neurons (see image 5.2).

Under this setting we ask the following: Can we infer the impact of a small time

dependent current injection in the correlations of spike trains from the parameters

of the Gibbs potential?

We call δµ [ f(t, .) ] the difference in the mean value of the observable f between

the evoked and spontaneous regime.

µ[f(t, ω)]− µ(sp) [ f(t, ω) ] = δµ [ f(t, .) ] (5.3)

We assume that the current injection I(ext)(t) = ε ι(t), where ε > 0 is a small

parameter and ι contains the time-dependence of this current. For small ε the

variation δµ [ f(t, .) ] is proportional to ε, provided the exponential decay of the

variations of the normalized potential φ characterizing the transition probabilities

of the neural network (see Cessac (2011b)). We call linear response of f to the

external current I(ext) at time t the limit (Ruelle, 1999) :

Rt [ f ] = lim
ε→0

δµ [ f(t, .) ]

ε
.

An alternative formulation of Rt [ f ], allowing explicit computation, can be formally

obtained from derivatives of the free energy. This computation is indeed formal, be-

cause the free energy is defined in the context of time-translation invariant dynamics

(stationarity) whereas, we consider here a time dependent perturbation. For a rig-

orous derivation in the stationary dynamics see (Hanus et al., 2002). The situation

is the same as considering, in statistical mechanics, say a magnetic system with

a non spatially uniform magnetic field. As a consequence of I(ext)(t) = ε ι(t) , the

perturbation of the normalized potential δφ(l, ω) is proportional to ε. In this section



5.2. The strategy and the model 103

we write δφ(l, ω) = εψ(l, ω). From the definition of the derivative we have:

∂P
(
φ(sp) + εψ(n, .) + λ f(t, .)

)

∂ε

∣∣∣∣∣
ε=0

= lim
ε→0

P
(
φ(sp) + εψ(n, .) + λ f(t, .)

)
− P

(
φ(sp) + λ f(t, .)

)

ε
,

Therefore,

Rt [ f ] =
∂2P

(
φ(sp) + εψ(n, .) + λ f(t, .)

)

∂λ∂ε

∣∣∣∣∣
λ=0,ε=0

. (5.4)

From chapter 2 eq (2.27), where ψ(n, ω) = 0 if n ≤ 0 (no external current for t ≤ 0),

we finally obtain the discrete convolution:

Rt [ f ] =

+∞∑

l=1

C(sp) [ψ(n− l, .), f(t, .) ] =

n∑

l=1

C(sp) [ψ(l, .), f(t, .) ] (5.5)

where the finite sum of correlations is obtained after a change of index and con-

sidering the fact that ψ(n, ω) = 0 if n ≤ 0. This equation relates the variation

in the average of f , upon application of an external current, to correlation func-

tions measured with respect to the spontaneous Gibbs distribution. This is the

fluctuation-response relation, classical in non equilibrium statistical physics. The

power of eq. (5.4), (5.5) is that the linear response is directly given as the deriva-

tive of the free energy, that can be numerically approximated. This computation is

general and does not depend on the underlying neural network model.

5.2 The strategy and the model

We focus in the Conductance based Integrate and Fire model introduced in section

3, but without gap junctions. We chose this model because, in this case, we have

a simple form to approximate the potential and as shown in (Cessac, 2011b) for

any choice of parameters characterizing the sub-threshold dynamics always exist a

unique Gibbs measure. We suppose that the system has evolved from −∞ to time

0−, spontaneously, i.e. the external stimulus is switched off in eq. (5.7) for t = −∞
to t = 0. Then, at time t0 = 0+ one applies a time dependent external stimulus

which, for instance, can be a random current (the situation is illustrated in figure

5.1).

Thanks to a Taylor expansion in the normalized potential obtained from the

neural network model, around the spontaneous regime, this potential can be sepa-

rated in two parts: one time and stimulus independent and other time and stimulus

dependent. This procedure provides a very convenient representation of the evoked

probability measure allowing to assess the impact of the current injection in any

correlation caused in the spike trains.

Let us first recall the form of the model without gap junctions.
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We may rewrite eq. (3.1) as:

Ck
dVk
dt

+ gk ( t, ω )Vk = ik(t, ω), (5.6)

Without gap junctions, the term ik(t, ω) reads:

ik(t, ω) = gL,k EL +
N∑

j=1

Wkj αkj(t, ω) + i
(ext)
k (t) + σBξk(t), (5.7)

where Wkj is the synaptic weight:

{
Wkj = E+Gkj , if j ∈ E ,
Wkj = E−Gkj , if j ∈ I.

We use the same notations as in chapter 3. Assume that the spike train ω is

given. Then, it is straightforward to solve the linear equation (5.6). In this case the

flow reads 3.19:

Γk(t1, t2, ω) = e
− 1

Ck

∫ t2
t1
gk(u,ω ) du

. (5.8)

In the case without gap junctions the reset condition introduced in (3.3.1) has

the consequence of removing the dependence of neuron k on the past anterior to

τk(t, ω). In this setting, the membrane potential of neuron k at time t is a function

of the spike occuring in the network before t. We can decompose the solution of

equation (5.6) as done in (Cessac, 2011b):

Vk(t, ω) = V
(det)
k (t, ω) + V

(noise)
k (t, ω). (5.9)

5.2.1 Deterministic part of the integrated membrane potential

This is :

V
(det)
k (t, ω) = V

(syn)
k (t, ω) + V

(ext)
k (t, ω), (5.10)

where:

V
(syn)
k (t, ω) =

1

Ck

N∑

j=1

Wkj

∫ t

τk(t,ω)
Γk(t1, t, ω)αkj(t1, ω)dt1, (5.11)

is the synaptic contribution to the membrane potential at time t. Moreover,

V
(ext)
k (t, ω) =

EL
τL,k

∫ t

τk(t,ω)
Γk(t1, t, ω)dt1 +

1

Ck

∫ t

τk(t,ω)
i
(ext)
k (t1)Γk(t1, t, ω)dt1,

(5.12)

where we set:

τL,k
def
=

Ck
gL,k

, (5.13)

the characteristic leak time of neuron k. We have included the leak reversal potential

term in this “external” term for convenience. Even if there is no external current

this term is non zero.
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5.2.2 Stochastic part of the integrated membrane potential

The term:

V
(noise)
k (t, ω) = Γk(τk(t, ω), t, ω)Vreset + V

(B)
k (t, ω), (5.14)

is the stochastic part of the membrane potential. The first term in the left-hand

side comes from the reset of the membrane potential to a random value after reset.

The second one is due the integration of synaptic noise from τk(t, ω) to t:

V
(B)
k (t, ω)

def
= =

σB
Ck

∫ t

τk(t,ω)
Γk(t1, t, ω)dBk(t1). (5.15)

As a consequence, for a fixed ω, V
(noise)
k (t, ω) is the k-th component, at time t,

of a N -dimensional Gaussian process V (noise)(., ω) with mean zero and covariance:

Cov
[
V

(noise)
k (t, ω), V

(noise)
l (u, ω)

]
=

δkl

[(
σB
Ck

)2 ∫ min( t,u )
max( τk(t,ω),τk(u,ω) )

Γk(t1, t, ω) Γk(t1, u, ω) dt1 + σ2R Γ2
k(τk(t, ω), t, ω) δ(t− u)

]
.

In particular, V
(noise)
k (t, ω) is Gaussian, centered, with variance

σ2k(t, ω)
def
=

(
σB
Ck

)2 ∫ t

τk(t,ω)
Γ2
k(t1, t, ω) dt1 + σ2R Γ2

k(τk(t, ω), t, ω). (5.16)

Under the approximation discussed in section 3, the probability of ω(n), given

the past sequence ωn−1
−∞ is given by:

Pn[ω(n)|ωn−1
−∞ ] = eφ(n,ω ), (5.17)

with:

φ (n, ω ) =

N∑

k=1

φk (n, ω ) , (5.18)

φk (n, ω ) = ωk(n) log π (Xk(n− 1, ω) ) + ( 1− ωk(n) ) log ( 1− π (Xk(n− 1, ω) ) ) ,

(5.19)

Xk(n− 1, ω) =
θ − V

(det)
k (n− 1, ω)

σk(n− 1, ω)
, (5.20)

and

π(x) =
1√
2π

∫ +∞

x

e−
u2

2 du. (5.21)

5.2.3 Gibbs distribution

As shown in chapter 3 there is a unique Gibbs distribution associated with φ, where

for all m < n ∈ ❩, the probability of a spike block ωnm, given the past ωm−1
−∞ is:

P[ωnm | ωm−1
−∞ ] = eΦ(m,n,ω), (5.22)

Φ(m,n, ω) =
n∑

l=m

φ ( l, ω ) . (5.23)
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5.2.3.1 Probability of spike blocks and expected values of observables

As a consequence of (5.22),

µ [ωnm ] =

∫

Am−1
−∞

eΦ(m,n,ω)µ(dω). (5.24)

In this equation the integral holds on the set Am−1
−∞ of sequences ωm−1

−∞ .

As another consequence of (5.22), for an observable f(t, ω), setting n = [ t ] the

integer part of t, the expectation of f(t, ωn−∞) with respect to µ obeys:

µ [ f(t, .) ] =

∫
f ( t, ω )µ(dω) =

∑

ω(n)∈A

∫
f
(
t, ωn−1

−∞ω(n)
)
eφ(n,ω )µ(dω), (5.25)

and, by induction, for any integer m < n:

µ [ f(t, .) ] =
∑

ωn
m∈An−m+1

∫
f
(
t, ωm−1

−∞ ωnm
)
eΦ(m,n,ω)µ(dω). (5.26)

5.2.4 Spontaneous Gibbs potential.

Let us now consider the situation where the system (5.6) has evolved spontaneously,

i.e. i
(ext)
k (t) is switched off. More generally, it could be a time constant external

current. But, there is no loss of generality in assuming that this current vanishes,

since a time constant current can be included in (5.12) by e.g. a modification in the

term EL

τL,k

∫ t
τk(t,ω)

Γk(t1, t, ω)dt1.

We denote the corresponding potential φ(sp) where:

φ
(sp)
k ( l, ω ) = ωk(l) log π

(
X

(sp)
k ( l − 1, ω )

)
+( 1− ωk(l) ) log

(
1− π

(
X

(sp)
k ( l − 1, ω )

))
,

(5.27)

with

X
(sp)
k ( l − 1, ω ) =

θ − V
(syn)
k (l − 1, ω)− EL

τL,k

∫ l−1
τk(l−1,ω) Γk(t1, l − 1, ω)dt1

σk(l − 1, ω)
. (5.28)

The Gibbs distribution corresponding to this potential (statistics in spontaneous

activity) is denoted µ(sp).

5.2.5 Perturbative expansion of the potential

We write Xk(t, ω) = X
(sp)
k ( t, ω ) + δXk ( t, ω ) where X

(sp)
k ( t, ω ) is given by (5.28)

while,

δXk ( t, ω ) = − 1

Ck

∫ t
0 i

(ext)
k (t1)Γk(t1, t, ω)dt1

σk(t, ω)
, (5.29)

the time-dependent term, for t ≥ 0. We have thus
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φk ( l, ω ) = ωk(l) log π
(
X

(sp)
k ( l − 1, ω ) + δXk ( l − 1, ω )

)

+ ( 1− ωk(l) ) log
(
1− π

(
X

(sp)
k ( l − 1, ω ) + δXk ( l − 1, ω )

))
.

(5.30)

In the reminder of this section we write X
(sp)
k , δXk instead of

X
(sp)
k ( l − 1, ω ) , δXk ( l − 1, ω ) whenever it causes no confusion, to alleviate

notations.

π
(
X

(sp)
k + δXk

)
is bounded away from 0, ∀ω, provided X

(sp)
k +δXk > A > −∞

with probability 1 − ε where ε → 0 as A → −∞. We can make a series expansion

of log π(X
(sp)
k + δXk) at X

(sp)
k .

log π(X
(sp)
k + δXk) = log π(X

(sp)
k ) +

+∞∑

r=1

ar(X
(sp)
k ) ( δXk )

r , (5.31)

log
(
1− π(X

(sp)
k + δXk)

)
= log

(
1− π(X

(sp)
k )

)
+

+∞∑

r=1

br(X
(sp)
k ) ( δXk )

r (5.32)

where:

a1(x) =
π′(x)
π(x)

= − 1√
2π

e−
x2

2

π(x)
, b1(x) = − π′(x)

1− π(x)
, (5.33)

ar and br are the r − th derivative of log π(x) and log(1− π(x)) respectively.

Therefore,

φk ( l, ω ) = φ
(sp)
k ( l, ω ) + δφk ( l, ω ) ,

where φ
(sp)
k ( l, ω ) is given by (5.27) and

δφk ( l, ω ) =

+∞∑

r=1

δφ
(r)
k ( l, ω ) , (5.34)

the time dependent perturbation. We have set:

δφ
(r)
k ( l, ω ) = H(r)

k ( l, ω ) ( δXk(l − 1, ω) )r , (5.35)

with:

H(r)
k ( l, ω )

def
= ωk(l) ar

(
X

(sp)
k ( l − 1, ω )

)
+ ( 1− ωk(l) ) br

(
X

(sp)
k ( l − 1, ω )

)
.

(5.36)

Those quantities are time-translation invariant. Note that both φ
(sp)
k ( l, ω ) and

φk ( l, ω ) are normalised (log of conditional probabilities).
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5.2.6 Influence of the current injection in the average value of an
observable f

Setting:

δφ ( l, ω ) =
N∑

k=1

δφk ( l, ω ) , (5.37)

and

δΦ(1, n, ω) =

n∑

l=1

δφ ( l, ω ) , (5.38)

for n ≥ 1, we have :

eΦ( 1,n,ω ) = eΦ
(sp)( 1,n,ω )+δΦ(n,ω )

= eΦ
(sp)( 1,n,ω )




+∞∑

p=0

δΦ(1, n, ω)p

p!


 (5.39)

Where the last equation is obtained taking the Taylor expansion of eδΦ(n,ω ).

Taking the first order approximation in δΦ(1, n, ω) from equation (5.39) we get:

eΦ( 1,n,ω ) ∼ eΦ
(sp)( 1,n,ω ) [ 1 + δΦ(1, n, ω) ] , (5.40)

While Φ ( 1, n, ω ) and Φ(sp) ( 1, n, ω ) are normalized potentials, using the first

order approximation, eΦ
(sp)( 1,n,ω ) [ 1 + δΦ(1, n, ω) ] is not anymore a normalized

potential. We introduce therefore the conditional probability given the past as

follows:

eΦ( 1,n,ω ) =
eΦ

(sp)( 1,n,ω ) [ 1 + δΦ(1, n, ω) ]

Z[ω0
−∞]

, (5.41)

and,

Zn[ω
0
−∞] =

∑

ωn
1

eΦ
(sp)(1,n,ω)[1 + δΦ(1, n, ω)]

= 1 +
∑

ωn
1

P[ωn1 | ω0
−∞]δΦ(1, n, ω)

(5.42)

Therefore,

Zn[ω
0
−∞] ∼ 1 + E

(sp)[δΦ(1, n, ω) | ω0
−∞],

where E
(sp) stands for the expected value under the spontaneous probability

distribution.

Therefore:



5.2. The strategy and the model 109

eΦ(n,ω ) ∼ eΦ
(sp)(1,n,ω)[1 + δΦ(1, n, ω)][1− E

(sp)[δΦ(1, n, ω) | ω0
−∞] (5.43)

At first order in δΦ(1, n, ω):

P(ωn1 | ω0
−∞) = eΦ(n,ω ) ∼ eΦ

(sp)(1,n,ω)
(
1 + δΦ(1, n, ω)− E

(sp)[δΦ(1, n, ω)) | ω0
−∞)]

)

(5.44)

Now, as we are interested in the average of an observable after a small pertur-

bation, we consider equation (5.25), which reads now:

µ[f(t, ω)] =

∫ ∑

ωn
1 ∈An

1

f(t, ω)P(ωn1 | ω0
−∞)µ(dω)

and replace the conditional probability by r.h.s of equation (5.44):

µ[f(t, ω)] = µ(sp)[f(t, ω)]+µ(sp)[f(t, ω)δΦ(1, n, ω)]−µ(sp)[f(t, ω)E[δΦ(1, n, ω) | ω0
−∞]]

Assuming that f(t, ω) and E
(sp)[δΦ(1, n, ω) | ω0

−∞] are independent, we obtain:

µ(sp)[f(t, ω)]µ(sp)
(
E
(sp)[δΦ(1, n, ω) | ω0

−∞]
)
= µ(sp)[f(t, ω)]µ(sp)[δΦ(1, n, ω)]

So far, we have not been able to find the conditions under which is natural to

consider that f(t, ω) and E
(sp)[δΦ(1, n, ω) | ω0

−∞] are independent

Finally,

µ[f(t, ω)] = µ(sp)[f(t, ω)] + µ(sp)[f(t, ω)δΦ(1, n, ω)]− µ(sp)[f(t, ω)]µ(sp)[δΦ(1, n, ω)]

µ[f(t, ω)] = µ(sp)[f(t, ω)] + C(sp)[f(t, ω), δΦ(1, n, ω)] (5.45)

where C(sp) stands for the correlation function under the spontaneous probability

distribution. Plugging equation (5.38) in the correlation we obtain:

µ[f(t, ω)] = µ(sp)[f(t, ω)] + C(sp)[f(t, ω),
n∑

l=1

δφ(l, ω)] (5.46)

As the correlation is a bilinear operator we get:

µ[f(t, ω)] = µ(sp)[f(t, ω)] +

n∑

l=1

C(sp)[f(t, ω), δφ(l, ω)] (5.47)

One obtains the stimulus-dependent averages from averages with respect to µ(sp),

i.e. averages in the spontaneous regime.
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5.2.7 Explicit form of the convolution kernel

The linear response is characterized by a convolution kernel κf , called the response

function, depending on f :

Rt [ f ] =

∫ t

0
κf ( t− t1 ) ι(t1) dt1 = [κf ∗ ι ] ( t ) , (5.48)

where κf (u ) = 0 if u < 0 (causality), while here ι(t′) = 0 if t′ ≤ 0.

Note that the response kernel depends on the observable f .

Let us now write κf in a more explicit form. From (5.29) we have:

δXk ( t, ω ) = −
∫ t
0 ιk(t1)Γk(t1, t, ω)dt1

Ck σk(t, ω)
.

As ε→ 0, all terms δφ
(r)
k ( l, ω ) in (5.35) with r > 1 can be neglected with respect to

the first order term δφ
(1)
k ( l, ω ) = H(1)

k ( l, ω ) δXk(l − 1, ω). Therefore, δφ(l, ω) ∼∑N
k=1 δφ

(1)
k ( l, ω ), and since δφ(l, ω) = εψ(l, ω),

ψ(l, ω) ∼ −
N∑

k=1

∫ t

0

H(1)
k ( l, ω ) Γk(t1, t, ω)

Ck σk(t, ω)
ιk(t1)dt1 (5.49)

as ε→ 0.

We have thus C(sp) [ψ(l, .), f(t, .) ] = −
∫ t
0

∑N
k=1 C(sp)

[
H(1)

k
( l,. ) Γk(t1,t,.)

Ck σk(t,.)
, f(t, .)

]
ιk(t1)dt1

and, from (5.5),

Rt [ f ] = −
N∑

k=1

∫ t

0

n∑

l=1

C(sp)

[
H(1)
k ( l, . ) Γk(t1, t, .)

Ck σk(t, .)
, f(t, .)

]
ιk(t1)dt1.

By identification we obtain the linear response kernel as a vector valued operator

with components:

κk,f ( t− t1 ) = −
n∑

l=1

C(sp)

[
H(1)
k ( l, . ) Γk(t1, t, .)

Ck σk(t, .)
, f(t, .)

]
.

Finally, setting

hk(n, ω) =
n∑

l=1

H(1)
k ( l, ω )

and using (5.33) so that:

hk(n, ω) =

n∑

l=1

π′
(
X

(sp)
k ( l − 1, ω )

)

 ωk(l)

π
(
X

(sp)
k ( l − 1, ω )

) +
1− ωk(l)

1− π
(
X

(sp)
k ( l − 1, ω )

)


 ,

(5.50)

we obtain:

κk,f ( t− t1 ) = −C(sp)

[
hk(n, .) Γk(t1, t, .)

Ck σk(t, .)
, f(t, .)

]
.
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Since µ(sp), Γk(t1, t, .) and σk(t, .) are invariant under time translation we have:

κk,f ( t− t1 ) = −C(sp)

[
hk(n− t1, .) Γk(0, t− t1, .)

Ck σk(t− t1, .)
, f(t− t1, .)

]
. (5.51)

Thus, κk,f is a function of t − t1. This is the general form of the response kernel

for the Conductance based Integrate and Fire model, and depends on the system

parameters via hk,Γk, on the noise via σk and on the observable f

5.2.8 Remarks:

• The response function Rt[f ] is the convolution of the perturbation of the

potential and the observable f . It can be interpreted as the response associated

to the observable f .

• The response function is written in terms of correlation functions, computed

according to the Gibbs distribution associated with the unperturbed system.

Although this is a well known result in statistical mechanics, up to our knowl-

edge, it has not been explored previously in the context of spiking neural

networks. These correlations can be directly obtained as the derivative of the

free energy of the evoked potential, that can be numerically approximated.

5.3 Example

In order to give a concrete example of the use of our results, we consider here

a simplified model: the leaky Integrate and Fire model (LIF), compared to the

conductance based model, here we consider constant conductances and replace the

exponentially decaying alpha profiles by delta functions. In the simplified model, as

conductances are constant, the evolution operator does not depend any more on ω:

Γk(t1, t, ω) = e
−1
Ck

∫ t
t1
gk(u,ω)du = e

− gk
Ck

(t−t1)

Thus, the deterministic part of the solution of the dynamic equation:

V
(det)
k (t, ω) = V

(syn)
k (t, ω) + V

(ext)
k (t, ω)

Now reads:

V
(syn)
k (t, ω) =

1

Ck

N∑

j=1

Wkj

∫ t

τk(t,ω)
Γk(t1, t)δ(t1 − t̂j)dt1

=
1

Ck

N∑

j=1

Wkj

∑

τk(t,ω)<t̂j<t

Γk(t̂j , t)

=
1

Ck

N∑

j=1

Wkj

∑

τk(t,ω)<t̂j<t

e
− gk

Ck
(t−t̂j)

(5.52)
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where t̂j is the time at which neuron j has fired, and

V
(ext)
k (t, ω) =

EL
τL,k

∫ t

τk(t,ω)
e
− gk

Ck
(t−t1)dt1 +

1

Ck

∫ t

τk(t,ω)
i(ext)(t)e

− gk
Ck

(t−t1)dt1

When the external current is constant (i(ext)(t) = I) :

V
(ext)
k (t, ω) = (

EL
τL,k

+
I

Ck
)

∫ t

τk(t,ω)
e
− gk

Ck
(t−t1)dt1 = (

EL
τL,k

+
I

Ck
)
(1− e

− gk
Ck

(t−τk(t−t1,ω)))
gk
Ck

(5.53)

Therefore:

X
(sp)
k (t, ω) =

θ − 1
Ck

∑N
j=1Wkj

∑
τk(t,ω)<t̂j<t

e
− gk

Ck
(t−t̂j) − ( EL

τL,k
+ I

Ck
) (1−e

− gk
Ck

(t−τk(t−t1,ω))
)

gk
Ck

σk(t, ω)
(5.54)

Moreover,

σ2k(t− t1, ω) = (
σB
Ck

)2
∫ t

τk(t−t1,ω)
Γ2
k(0, t− t1)dt1

=
σ2B
C2
k

(1− e
−2gk
Ck

(t−τk(t−t1,ω)))
2gk
Ck

(5.55)

Knowing the last firing time of neuron k at time (t− t1), this random function

becomes deterministic.

5.3.1 General response of the observable f

The convolution kernel κk,f equation (5.51) in the simplified model reads:

κk,f (t−t1) = −e−
gk
Ck

(t−t1)µ(sp)[

∑t−t1
l=1 π′(X(sp)

k (l − 1, ω))[ ωk(l)f(t−t1,ω)
π(X

(sp)
k

(l−1,ω))
+ (1−ωk(l))f(t−t1,ω)

1−π(X(sp)
k

(l−1,ω))
]

Ckσk(t− t1, ω)
]

+e
− gk

Ck
(t−t1)µ(sp)[

∑t−t1
l=1 π′(X(sp)

k (l − 1, ω))[ ωk(l)

π(X
(sp)
k

(l−1,ω))
+ (1−ωk(l))

1−π(X(sp)
k

(l−1,ω))
]

Ckσk(t− t1, ω)
]µ(sp)[f(t−t1, ω)]

(5.56)

We note the exponential decay with respect to the characteristic time of the

neuron gk
Ck

. This result is (at first sight) in agreement with Brunel and Fourcaud

(2002). This last equation can be simplified. From the integral term appearing in
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X
(sp)
k (t, ω) in equation (5.54), we note that necessarily t > τk(t, ω), thus in equation

(5.56) for X
(sp)
k (l−1, ω) we must consider l−1 > τk(t−t1, ω) → l > τk(t−t1, ω)+1.

In that case, the first part of the braket is zero (because, by definition ωk(l) = 0, ∀l >
τk(t− t1, ω) + 1 ). Therefore,

κk,f (t− t1) = −e−
gk
Ck

(t−t1)µ(sp)[

∑t−t1
l=τk(t−t1,ω)+1

π′(X(sp)
k

(l−1,ω))

1−π(X(sp)
k

(l−1,ω))
f(t− t1, ω)

Ckσk(t− t1, ω)
]

+ e
− gk

Ck
(t−t1)µ(sp)[

∑t−t1
l=τk(t−t1,ω)+1

π′(X(sp)
k

(l−1,ω))

1−π(X(sp)
k

(l−1,ω))

Ckσk(t− t1, ω)
]µ(sp)[f(t− t1, ω)]

(5.57)

Taking out of the sum the terms independent of l we get finally:

κk,f (t− t1) = −e−
gk
Ck

(t−t1)µ(sp)[
f(t− t1, ω)

∑t−t1
l=τk(t−t1,ω)+1

π′(X(sp)
k

(l−1,ω))

1−π(X(sp)
k

(l−1,ω))

Ckσk(t− t1, ω)
]

+

e
− gk

Ck
(t−t1)µ(sp)[

∑t−t1
l=τk(t−t1,ω)+1

π′(X(sp)
k

(l−1,ω))

1−π(X(sp)
k

(l−1,ω))

Ckσk(t− t1, ω)
]µ(sp)[f(t− t1, ω)]

(5.58)

Considering the observable f(t − t1, ω) as the firing rate of neuron p i.e. f(t −
t1, ω) = ωp(t− t1) the convolution kernel (5.58) reads:

κk,ωp(t− t1) = −e−
gk
Ck

(t−t1)µ(sp)[
ωp(t− t1)

∑t−t1
l=τk(t−t1,ω)+1

π′(X(sp)
k

(l−1,ω))

1−π(X(sp)
k

(l−1,ω))

Ckσk(t− t1, ω)
]

+ e
− gk

Ck
(t−t1)µ(sp)[

∑t−t1
l=τk(t−t1,ω)+1

π′(X(sp)
k

(l−1,ω))

1−π(X(sp)
k

(l−1,ω))

Ckσk(t− t1, ω)
]µ(sp)[ωp(t− t1)]

(5.59)

This result must be confronted to numerical simulations (in progress).

5.4 Linear Response obtained from the correlation ma-

trix between monomials

In the previous section we have focused on a neural network model whose potential

has infinite range and is time dependent. In this section we focus is a much more

simple case: finite range and time independent. Then, we can go further in the

consequences of the Gibbs distribution setting and linear response. As we have seen
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in the previous chapter we can decompose any (finite length) observable in the base

of monomials. We decompose here ψ representing the perturbation of the potential

φ(sp)

ψ =
∑

l

ψlml (5.60)

We also decompose the observable f :

f =
∑

l

flml

Taking equation (5.5) decomposed using the new representation of ψ and develop

in the base of monomials, we obtain:

Cψ,f (n) = µ(sp)[ψ ◦ σnf ]− µ(sp)[ψ]µ[f ]

=
∑

l,l′

ψlfl′µ
(sp)[ml ◦ σnml′ ]−

∑

l,l′

ψlfl′µ
(sp)[ml]µ

(sp)[ml′ ]

=
∑

l,l′

ψlfl′Cll′(n)

(5.61)

Where:

Cll′(n) = µ(sp)[ml ◦ σnml′ ]− µ(sp)[ml]µ[ml′ ]

Summing on n we obtain the following matrix (indexed by integers representing

monomials):

χll′ =
∞∑

−∞
Cll′(n),

Therefore, we can write the linear response formula in terms of a quadratic form

as follows:

R[f ] =
∑

ll′

ψlχll′fl′ = 〈ψ, χf〉 (5.62)

This is the linear response giving the variation of the average of f when there

is a variation ψ of the potential φ(sp)

Remarks

• Note that Cll′(n), and thus, the correlation matrix is obtained with respect to

the spontaneous measure µ(sp).

• The matrix χ can be obtained numerically from simulated spiking data or real

recording of retinal ganglion cells (see image 5.3 obtained with the software

EnaS http://enas.gforge.inria.fr/v3/ ).
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• This formula allows to characterize the receptive field of the observable f , i.e.

measure the change in the statistics in the spontaneous and evoked regime.

Figure 5.3: Correlation matrix between monomials obtained from simulated data.

Each number (in the axes) represent one monomial (this correspondence was ex-

plained in chapter 2). For each pair of monomials the temporal correlation is com-

puted. The singular structure appears due to the arbitrary choice of coding blocks

to numbers

5.4.1 Eigenvalue decomposition of χ

Noting |vk〉 the eigenvectors of χ associated to the real eigenvalues σk we can de-

compose χ as follows:

χ =
∑

k

σk|vk〉〈vk| (5.63)

Where 〈vk| represent the transpose of the eigenvector |vk〉. Therefore taking equa-

tion 5.62:

〈ψ|χf〉 =
∑

k

σk〈ψ|vk〉〈vk|f〉 (5.64)

For a given observable f , 〈vk|f〉 is constant.

5.4.2 Consequences and perspectives

Apart from the application concerning the impact of a perturbation in the stimulus

in the average value of a given observable, it has been shown recently (Panas et al.,



116
Chapter 5. Characterizing the collective response of a neural network

model to weak stimuli

2014) a novel application of the matrix χ concerning the identification of insensitive

regions in parameter space of pairwise maximum entropy models, where the global

network statistics is slightly altered. This study only consider a simplified version

of χ (only considering spatial monomials) Regions of high sensitivity are also

identified. This work is done considering a purely spatial pairwise MaxEnt model.

The authors argue that this form of degeneracy endows neuronal networks with

the flexibility to continuously remodel and explore large regions of parameter space

without compromising stability and function. Using tools exposed in this chapter

we can extend this analysis to the spatio-temporal case. Indeed, we are able to

compute the matrix χ for spatio-temporal observables. From this matrix the Fisher

information matrix can be computed and the same analysis can reveal interesting

mechanism taking place when time in taken into account. As the correlation matrix

χ can be obtained also from neural network models, a more ambitious project is to

link this two approaches.

Another important application comes from the fact that is it possible to derive

formally the “preferred stimulus" of an observable from the normalized potential

associated to a structured model of spiking neurons? We ask if exist a vector ~I that

maximizes 〈~I|χf〉. This vector can be interpreted as the “preferred stimulus of the

observable f ”. In the case when f is a monomial corresponding to a single spike

event (rate), this notion should coincide with the receptive field of the associated

neuron.

We note uk = 〈~I|vk〉, thus:

〈~I|χf〉 = Gf (u) =
∑

k

σk〈vk|f〉uk

If the solution exist it depends on the observable and the perturbation, as it

is expected. Then one looks under which conditions the function Gf (u) have a

maximum. These conditions are under current investigation.

5.5 Conclusion

We have presented a closed formula characterizing the statistical response of a struc-

tured neural network model to a small perturbation on the stimulus. Our results

allow to assess the impact of this perturbation on any observable defined in the

spike train this model produce. One interesting application is found in the general-

ization of the concept of receptive fields. Our result is obtained from the correlation

matrix, computed with respect to the invariant Gibbs distribution corresponding to

the neural network model under the unperturbed regime. An interesting point is

that this matrix can be computed directly from spiking data, is symmetric and real,

thus is possible to obtain a singular value decomposition. From this representation
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it is natural to find the principal components, allowing to investigate what is the

“favorite stimulus” for each observable. The results of this chapter form part of a

more ambitious research project attempting to obtain known results in receptive

field models as particular cases of our characterization. This certainly needs further

investigation. In particular we are interested to link our results with those obtained

in (Sharpee et al., 2004), where using tools of information theory they obtain the

maximally informative dimensions of the stimulus for firing rates.





Chapter 6

General conclusion, discussion and
future research

6.1 General conclusion

Experimental recordings from MEA provide an unprecedented amount of spiking

data, opening up the possibility of studying the statistical structure of neural activity

in large populations of neurons responding simultaneously to external stimuli. A

more complete understanding of “the code” that neurons use to send spatio-temporal

spike patterns to the brain requires not only powerful statistical methods allowing to

predict responses, it also requires an “explanatory” idea of the mechanistic and causal

structure behind these responses, going in this way, beyond the strictly predictive

ability. So far, computational neuroscience lacks a general theory capable to unify

and explain the diversity of phenomena observed in spiking neurons under different

experimental settings: “neuroscience is data rich and theory poor” (Churchland and

Sejnowski, 2002).

The aim of this thesis has been to answer the four very focused questions asked

in the introduction. The goal was certainly much more modest than to build a

theory of neural circuits or retinal responses, but we believe that is a step forward

in that direction.

We repeat the four questions here. Below each question we stress the results

and general conclusions. More general discussions and consequences of our results

are left to the next section.

Question 1: Is it possible to characterize the network dynamics and the

population spike train statistics in a neural network model?

We have build a biologically realistic model including both chemical and

electric synapses. We have characterized the dynamics and spike train statistics

arising from this model. We show that these probabilities are Gibbs distributions

depending on the parameters shaping the neural network model. These Gibbs

distributions are non-stationary and depend mathematically on an infinite past i.e

the spike statistics have an infinite memory and as a consequence is non-Markovian

(although Markovian approximation is possible). The fact that the stochastic

process is non-Markovian is a consequence of the modeling choice and may not

represent a biophysical fact. A question arising from our result is: How far should

we consider the past? This question has been addressed mainly in chapter 3.
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Question 2: Are Gibbs distributions good candidates to analyze the spike train

statistics from experimental data?

This question is present throughout this thesis, but is mainly addressed in

chapter 2, where we concluded that all canonical models used for spike train statis-

tics we analyzed lead to Gibbs distributions. In chapter 2 we provide a complete

theoretical treatment for the generalization of the Maximum Entropy approach

to the characterization of the spike train statistics (including spatio-temporal

constraints) and show how Gibbs distributions arise from this approach. We

have shown in chapter 2 that the introduction of memory requires to define the

Gibbs distribution in a more general setting than is usual in statistical physics. We

present the Generalized Linear model and compute explicitly its Gibbs potential, we

address the issue of conditions ensuring the existence and uniqueness of the Gibbs

distributions. In chapter 3 we present a Conductance based Integrate-and-Fire

model with electric synapses, we also show an approximation of its Gibbs potential.

Gibbs distributions introduce a unifying framework that integrates many aspects

considered in different models of spike train statistics.

Question 3: When attempting to characterize spike train statistics, Gibbs

distributions arise from data-based approaches (Maximum entropy models) and from

neuro-mimetic model-based approaches (Generalized linear models and conductance

based integrate and fire). Is it possible to take advantage of properties of Gibbs

distributions to link both approaches?

To answer question 3 we took advantage of properties of (stationary) Gibbs

distributions. Starting from the conditional probabilities of a discrete time

Integrate-and-Fire neural network we provide an explicit example for the 1-time

step spatio-temporal extension of the Ising model, where we compute explicitly the

Maximum Entropy parameters in terms of neural-network parameters. Our method

extends to potentials with general spatio-temporal constraints. This method

can be further exploited to investigate in more detail the mechanistic origins of

spatio-temporal correlations observed in spike train data.

Question 4: Can we derive a more general notion of receptive fields looking

at the difference between the spontaneous and evoked spiking response of a network

of neurons using properties of Gibbs distributions?

Using a neural network model and perturbing the stimulus of this model, we

analyze using linear response theory the statistical response of the spiking network

to the perturbation. We get a closed formula based on correlations with respect

to the unperturbed regime, that represent the average behavior of any observable,

generalizing in this way the concept of receptive fields to general spatio-temporal

events (not just firing rates). This chapter is under development.
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Results of this thesis have contributed to the general understanding of spike

train statistics. Our results set a solid ground for future studies attempting to

unveil the mechanistic origins from data observed spatio-temporal correlations.

Our results have been used in the software EnaS (a C++ library that allow users to

manage spike data, perform empirical statistics, modeling and visualizing results)

http://enas.gforge.inria.fr/v3/.

6.2 Conclusion générale

Les enregistrements expérimentaux obtenus à partir du MEA fournissent une quan-

tité sans précédent de données de potentiel d’action, offrant la possibilité d’étudier

la structure statistique de l’activité neuronale dans de grandes populations de neu-

rones qui répondent simultanément à des stimuli externes. Une compréhension plus

complète du “code neural” que les neurones utilisent pour envoyer des motifs spatio-

temporels au cerveau, exige non seulement des méthodes statistiques puissantes

permettant de prédire les réponses, il faut aussi avoir une idée “explicative” de la

structure mécanique et causale derrière ces réponses, allant dans ce sens, au-delà de

la capacité strictement prédictive.

Jusqu’à présent, dans les neurosciences computationnelles il manque une théorie

générale apte à unifier et expliquer la diversité des phénomènes observés dans les

neurones pour différents paramètres expérimentaux: “les neurosciences sont riches

en données et pauvres en la théorie” (Churchland and Sejnowski, 2002). L’objectif

de cette thèse a été de répondre aux quatre questions très ciblées posées dans

l’introduction. Le but était certainement beaucoup plus modeste que de construire

une théorie des circuits neuronaux de la rétine ou de ses réponses aux stimuli, mais

nous croyons que c’est un pas en avant dans cette direction.

Nous répétons les quatre questions ici. En dessous de chaque question, nous

soulignons les résultats et les conclusions générales. Des discussions plus générales

et les conséquences de nos résultats sont laissées à la section suivante.

Question 1: Est-il possible de caractériser la dynamique du réseau et les

statistiques de potentiel d’action dans un modèle de réseau de neurones?

Nous avons construit un modèle biologiquement réaliste comprenant à la fois

des synapses chimiques et électriques. Nous avons caractérisé la dynamique et

les statistiques de potentiel d’action résultant de ce modèle. Nous montrons que

ces probabilités sont des distributions de Gibbs en fonction des paramètres du

modèle de réseau neuronal. Ces distributions de Gibbs sont non stationnaires et

dépendent mathematiquement, sur un passé infini. C’est-à-dire que les statistiques

de potentiel d’action ont une mémoire infinie et par conséquent non-markovien

(Néanmoins l’approximation Markovienne est possible). Le fait que le processus
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stochastique est non Markovien est une conséquence du choix de modélisation et

peut ne pas représenter un effet biophysique. Une question qui se pose à partir de

notre résultat est: jusqu’où devrions-nous considérer le passé? Cette question a été

abordée principalement dans le chapitre 3.

Question 2: Sont-ils les distributions de Gibbs de bons candidats pour analyser

les statistiques de potentiel d’action pour données expérimentales?

Cette question est présente tout au long de cette thèse, mais s’adresse princi-

palement dans chapitre 2, où nous avons conclu que tous les modèles canoniques

utilisées pour les statistiques de potentiel d’action que nous avons analysé donnent

distributions de Gibbs. Dans le chapitre 2, nous offrons un traitement théorique

complet pour la généralisation de l’approche d’entropie maximale pour la carac-

térisation des statistiques de potentiel d’action (y compris avec des contraintes

spatio-temporelles) et montrons comment les distributions de Gibbs découlent

de cette approche. Nous avons montré au chapitre 2 que l’introduction de

mémoire nécessite de définir les distribution de Gibbs dans un cadre plus général

qu’habituellement en physique statistique. Nous présentons le modèle linéaire

généralisé et calculons explicitement son potentiel de Gibbs, nous abordons la

question des conditions garantissant l’existence et l’unicité des distributions de

Gibbs. Dans le chapitre 3, nous présentons un modèle base en conductance de

type Intégre-et-tir avec les synapses électriques, nous montrons également une

approximation de son potentiel de Gibbs. Les distributions de Gibbs introduisent

un cadre unificateur qui intègre de nombreux aspects pris en compte dans les

différents modèles de statistiques de potentiel d’action.

Question 3: En essayant de caractériser les statistiques de potentiel d’action,

les distributions de Gibbs apparaissent naturellement tant dans des approches basées

sur des données (modèles d’entropie maximale) que dans des approches basées sur

des modèles neuro-mimétiques (modèles linéaires généralisés et Intégre-et-tire).

Est-il possible de profiter des propriétés des de Gibbs approches pour relier les

différentes approches?

Pour répondre à la question 3, nous avons utilisé des propriétés des distributions

de Gibbs (stationnaires). A partir des probabilités conditionnelles à temps discret

obtenus à partir du modèle Intégre-et-tir dans un réseau de neurones, nous

fournissons un exemple explicite pour le modèle d’Ising spatio-temporel (avec

1 pas de temps), où nous calculons explicitement les paramètres du potentiel

d’entropie maximale canonique en termes de paramètres de réseaux de neurones.

Notre méthode s’étend à des potentiels avec des contraintes spatio-temporelles

plus générales. Notre méthode peut être exploitée pour étudier plus en détail les

origines mécaniques de corrélations spatio-temporelles observées dans les données

expérimentales.
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Question 4: Peut-on tirer une notion plus générale de champs réceptifs à

partir de la différence entre le regime spontané et celui évoqué par le stimulus dans

une modèle de réseau de neurones en utilisant les propriétés des distributions de

Gibbs?

En utilisant un modèle de réseau neuronal et en le perturbant, nous analysons en

utilisant la théorie de la réponse linéaire, la réponse statistique du réseau de neurones

induite par la perturbation. Nous obtenons une formule basée sur des corrélations

obtenues par rapport au régime non perturbé, qui représentent le comportement

moyen d’une observable, généralisant ainsi la notion de champs récepteurs à des

événements spatio-temporels généraux? (non seulement les taux de tir). Ce chapitre

est en cours de développement.

Les résultats de cette thèse ont contribué à la compréhension générale de la

statistiques de potentiel d’action. Nos résultats donnent une base solide pour de

futures études tentant de dévoiler les origines mécaniques à partir des données ob-

servées corrélations spatio-temporelles. Nos résultats ont été utilisés dans le logiciel

ENAS (une bibliothèque C ++ qui permettent aux utilisateurs de gérer les don-

nées de potentiel d’action, calculer des statistiques empiriques, la modélisation et la

visualisation des résultats) http://enas.gforge.inria.fr/v3/.

6.3 Discussion

In this section we discuss some issues appearing in the development of this thesis.

We focus in particular on those concerning current approaches to model spike trains

of retinal ganglion cells.

6.3.0.1 Difficulty of direct comparison of neural network approach and

MaxEnt approach due to binning

There are ongoing debates on the sources of correlations observed between spikes

of ganglion cells in the retina: are ganglion cells independent encoders or do

they act in a correlated way? (Nirenberg and Latham, 1998, 2003, Roudi et al.,

2009, Mastronarde, 1983, Schneidman et al., 2006, Ganmor et al., 2011a,b) What

are the sources of correlations (Panzeri and Schultz, 2001, Schneidman et al.,

2003) ? Are they only due to a shared stimulus or shared noise, or do they also

result from interactions between neurons (Tyrcha et al., 2012) ? We have shown

that we can answer these questions in the context of a neural network model.

However, it is important to highlight that the conductance based integrate and

fire model that we have considered in chapter 3 constitutes an inaccurate model

of the retina: it involves only firing cells while most cell types in the retina

(amacrine, horizontal, bipolar) do not “spike”. Nevertheless, our analysis raises

questions about retinal spike trains: if dynamical correlations are so important in

this simple model, how can they become weaker in a more complex neural system
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like the retina ? If such correlations exist why are they so difficult to exhibit in

experiments, without controversy (Schneidman et al., 2006, Roudi et al., 2009)

? Concerning this last question, note that the spike train we obtained is not

binned. In binning data one makes strong assumptions about the way information

is encoded: assuming a fixed temporal resolution and a fixed internal clock defining

the bin boundaries (Staude et al., 2010). Note that, by binning, information

about the exact spike times is lost. Therefore, any posterior analysis will have

limited accuracy (Park et al., 2008). The price to pay in leaving the data on a

rather fine temporal resolution is a huge quantity of sparse data. Binning data at

10 − 20 ms generates a time scale larger than the characteristic time scale of gap

junctions and of the order of the time decay of chemical synapses. Due to this

huge difference in relevant time scales binned data may not reveal the presence

of gap junctions. The impact of the binning transformation must be taken into

account. The effect of binning in our model needs however to be further investigated.

6.3.0.2 The “Ising miracle"

We have pointed out that the Gibbs potential obtained from the conductance-based

model we consider in chapter 3 (in the stationary case) is quite a lot more complex

than the Ising model or similar models used in retinal spike train analysis (Schnei-

dman et al., 2006, Tkačik et al., 2010, Ganmor et al., 2011a,b, Tyrcha et al., 2012).

In particular, it involves spatio-temporal spike patterns. A neuro-mimetic model

with N neurons has O(N2) parameters, whereas a MaxEnt model with N neurons

and memory depth D has O(2NR) parameters hl (canonical potential). Given the

fact that the Ising model characterizes quite well spike recordings of retinal ganglion

cells, we are presented with either a paradox or a miracle. We can only speculate how

the Ising model arise from a neuro-mimetic approach, a more complete clarification

requires further investigation. We have two possibilities:

(i) If a large number of MaxEnt parameters hl’s vanish, in particular higher order

terms.

(ii) If the coefficients hl’s are related among them and the higher order terms do

not add additional information to the statistical model.

The two possibilities are actually not exclusive. Let us first address this question

from the mathematical (dynamical systems) viewpoint which was the line followed

in this thesis.

Consider a neuro-mimetic model with a well defined dynamics (e.g. (4.11)) and

the associated normalized potential φ = φ(W, I) (e.g. (4.12)). We may view a

normalized potential as a point in a space: the coordinates of this point are fixed

by W, I. A neuro-mimetic model corresponds therefore to the space of normalized

potential of dimension O(N2). Using the same representation MaxEnt models

with memory depth D span a space of dimension O(2NR), but MaxEnt models
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equivalent to our neuro-mimetic model span a space of dimension O(N2). There

is therefore a huge projection effect. Now eq (4.8), or, more generally, eq. (4.5)

show that (ii) always functionally holds: hl are non linear functions of W, I and

are related to each other. This has a dramatic effect. Assume that we want to fit

(exactly) a neuro-mimetic model with a MaxEnt. We will need 2NR terms whereas

O(N2) are sufficient. This is exactly what happens in Fig 2. Now, one may hope

that many hl’s are zero or close to zero. This is actually where MaxEnt models

could make a breakthrough; showing that, in real spike trains many hl’s (almost)

cancel would reveal a hidden law of nature.

What is the hope for this? If we address this question from the dynamical systems

viewpoint, there is almost no hope. Indeed in this context, one has to look for

generic conditions under which the hl’s vanish (case (i)). But it results from our

analysis that the hl’s of a canonical potential corresponding to a neuro-mimetic

model are generically non zero: considering e.g. random synaptic weights Wij , the

probability that some hl’s in (4.5) vanish is indeed zero1.

However, real neural networks are non generic: synaptic weights are not drawn at

random but result from a long phylogenetic and ontogenetic evolution, also they are

subject to change in time due to plasticity. Also the statistics of the stimulus modify

the MaxEnt parameters, and thus could play a role in eliminating some parameters.

When trying to “explain” spike statistics of real neural networks with the Maximum

Entropy Principle, one is seeking a general law which has to be expressed with

relatively few phenomenological parameters in the potential (4.1). The hope is that

many coefficients coming from real data are 0 or close to 0. This could explain

the efficiency of pairwise MaxEnt models (Bialek and Ranganathan, 2007) for spike

trains analysis (although this effect could also arise due e.g. binning).

6.4 Directions on future research

Our contributions suggest specific open questions and directions for future research.

The remainder of this section will lay out some of these more immediately accessible

avenues for future research.

6.4.1 Model with Gap junctions in terms of the model without
them

We have seen in Chapter 3 that, the model including gap junctions, leads to a

much more complicated dynamics than in the model without them (see chapter 4).

One possible direction to explore is to consider the model without gap junctions

and “perturb” this model with small conductances corresponding to gap junctions.

1There are two notions of generic properties: topological in which the generic property holds

on a dense open set; and metric in which the generic property holds almost everywhere. In our

case, the coefficients are generically non null in both senses
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After doing this one can consider first order approximations and look how the per-

turbed model (with gap junctions) can be written in terms of the model without

gap junctions. This representation could be very advantageous.

6.4.2 Criticality in retinal spike train recordings

One of the biggest ambitions in the field of spike train statistics is that techniques

and ideas from statistical mechanics and thermodynamics will help us understand

the collective “macroscopic” behavior of big populations spiking neurons with rela-

tively few parameters. A recent paper (Tkačik et al., 2014), discuss about signatures

of criticality found in retinal spike trains. The main idea is to use concepts and

procedures from statistical mechanics considering networks with larger and larger

numbers of neurons, expecting to see the emergence of a “thermodynamic limit"

providing simpler universal behavior for the network as a whole, independent of

microscopic details. The authors discover signatures of criticality by changing the

parameters of the Maximum Entropy potential along one axis in parameter space

(scaling). The fact that they observe a peak in the specific heat suggests that the

real network is poised in the parameter space very close to a maximum in the vari-

ance of log(probability), which constitutes the dynamic range of surprise that can

be represented by the network. This peak is a signature of criticality (second order

phase transition) in statistical physics. An important point discussed in this paper

is that systems near critical points are maximally responsive to certain external

signals, and this sensitivity may be functionally useful for the retina (Tkačik et al.,

2014). The authors finish the paper suggesting further tests of criticality. In sta-

tistical mechanics, scale invariance in the correlation length is a feature of second

order phase transitions. Near a phase transition or critical point, fluctuations occur

at all length scales, and thus one should look for an explicitly scale invariant theory

to describe the phenomena. Finite size scaling techniques help to know how we can

extract the correct values for the interesting quantities of the infinite system out of

the finite system.

With the tools developed in this thesis we can answer the following questions.

Does the correlation matrix χ have scale invariance properties for real retinal data?

Can we say something in the case of retina recordings ? Do this properties translate

to the spectra? Note that in comparison to (Tkačik et al., 2014), our matrix χ also

handles spatio-temporal correlations. This is an interesting avenue of research that

will be developed in the near future.

One point that is not discussed and that, we believe deserves further investigation

is the role of binning in this result. Clearly, changing the binning size one changes the

data set and thus different parameters for the Maximum Entropy model would be

found. We believe that this result would be more robust if is stable under a different

choose of time binning, i.e., if the divergence of the specific heat is independent of

the time binning.

There is still work to be done in order to make sense in a more general picture

of what is going on behind phase transitions. We leave the question of alterna-
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tive neuro-mimetic approaches to spike train distribution modeling open for future

research.

6.4.3 Can we give an example of Conductance based Integrate and
Fire model exhibiting critical behavior?

Taking advantage of the results of this thesis another alternative to find critical

behavior is to identify a neural network model capable to exhibit second order phase

transitions. Identifying the underlying dynamical system would help producing a

more “complete” global picture of what is going on. In particular, would help to

answer “how” and eventually “why” the system is poised near the critical point.

This can not be done using the methods exposed in (Tkačik et al., 2014). Note that

such property (criticality) is again non generic, unless a so specific mechanism (self

organized criticality) drives the system to a critical point. But, which biophysical

mechanism would correspond to self organized criticality?

Conductance based Integrate and Fire generate spatio-temporal spike patterns

whose temporal correlations can be measured. If these correlations decay as power

law, is a signature of critical behavior. Under which conditions in the parameters of

the model or in the model this could happen? In order to give a sense of previous

work done in MaxEnt models (under the hypothesis of stationarity and ergodic-

ity) we are looking for a system that is ergodic, but not mixing, because mixing

implies exponential decay of temporal correlations, which implies no second order

phase transitions. In particular we look for a dynamical system whose spectral

gap (in the transfer matrix) disappear when the number of neurons goes to infinity

(“thermodynamic limit”).

6.4.3.1 Example: From MaxEnt to Neural network model

In chapter 4 we have shown how to go from transition probabilities to MaxEnt

potentials. A natural extension of our work is the following: Given a spatio-temporal

MaxEnt potential and a neuro-mimetic model can we identify the parameters of the

neuro-mimetic model leading the Gibbs distribution obtained from the given spatio-

temporal MaxEnt potential. Particularly important is to identify (if possible) a

neural network model “equivalent" to the Ising model. Here the main difficulty is

that while considering neural network models is natural to include memory, the Ising

model consider successive spikes as independent events.
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