L. F. Abbott, Lapicque's introduction of the integrate-and-fire model neuron, 1907.

Y. Ahmadian, J. Pillow, and L. Paninski, Efficient Markov Chain Monte Carlo Methods for Decoding Neural Spike Trains, Neural Computation, vol.79, issue.1, pp.46-96, 2011.
DOI : 10.1152/jn.90941.2008

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4740351

V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, 1983.

P. Baldi and L. Caramellino, Asymptotics of hitting probabilities for general onedimensional pinned diffusions, The Annals of Applied Probability, vol.12, issue.3, pp.1071-1095, 2002.

M. Beierlein, J. R. Gibson, and B. W. Connors, A network of electrically coupled interneurons drives synchronized inhibition in neocortex, Nature Neuroscience, vol.3, issue.9, pp.904-910, 2000.

M. Bennett and R. Zukin, Electrical Coupling and Neuronal Synchronization in the Mammalian Brain, Neuron, vol.41, issue.4, pp.495-511, 2004.
DOI : 10.1016/S0896-6273(04)00043-1

J. Besag, Spatial interaction and the statistical analysis of lattice systems, Journal of the Royal Statistical Society, vol.36, pp.192-236, 1974.

W. Bialek and R. Ranganathan, Rediscovering the power of pairwise interactions. arXiv.org:0712.4397 [q?bio, 2007.

S. Bloomfield and B. Völgyi, The diverse functional roles and regulation of neuronal gap junctions in the retina, Nature Reviews Neuroscience, vol.492, issue.7, pp.495-506, 2009.
DOI : 10.1038/nrn2636

R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lect. Notes.in Math, vol.470, pp.35-36, 1975.
DOI : 10.1007/BFb0081279

P. Bremaud, Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues, pp.22-27, 1999.
DOI : 10.1007/978-1-4757-3124-8

D. R. Brillinger, Maximum likelihood analysis of spike trains of interacting nerve cells, Biological Cybernetics, vol.56, issue.3, pp.189-200, 1988.
DOI : 10.1007/BF00318010

D. R. Brillinger, Nerve Cell Spike Train Data Analysis: A Progression of Technique, Journal of the American Statistical Association, vol.119, issue.418, pp.260-271, 1992.
DOI : 10.1080/01621459.1987.10478466

R. Brockett, Finite Dimensional Linear Systems, 1970.
DOI : 10.1137/1.9781611973884

T. Broderick, M. Dudik, G. Tka?ik, R. E. Schapire, and W. Bialek, Faster solutions of the inverse pairwise ising problem. Submitted (see http

E. N. Brown, R. Barbieri, U. T. Eden, and L. M. Frank, Likelihood Methods for Neural Spike Train Data Analysis, Computational Neuroscience: A Comprehensive Approach, 2003.
DOI : 10.1201/9780203494462.ch9

N. Brunel and N. Fourcaud, Dynamics of the firing probability of noisy integrateand-fire neurons, Neural Computation, vol.14, issue.112, pp.2057-2110, 2002.

N. Brunel and V. Hakim, Fast Global Oscillations in Networks of Integrate-and-Fire Neurons with Low Firing Rates, Neural Computation, vol.15, issue.7, pp.1621-1671, 1999.
DOI : 10.1038/373612a0

A. N. Burkitt, A Review of the Integrate-and-fire Neuron Model: I. Homogeneous Synaptic Input, Biological Cybernetics, vol.68, issue.1, pp.1-19, 2006.
DOI : 10.1007/s00422-006-0068-6

A. N. Burkitt, A review of the integrate-and-fire neuron model: II. Inhomogeneous synaptic input and network properties, Biological Cybernetics, vol.16, issue.60, pp.97-112, 2006.
DOI : 10.1007/s00422-006-0082-8

A. Calabrese, J. Schumacher, D. Schneider, L. Paninski, and S. Woolley, A Generalized Linear Model for Estimating Spectrotemporal Receptive Fields from Responses to Natural Sounds, PLoS ONE, vol.102, issue.2, pp.470-484, 2011.
DOI : 10.1371/journal.pone.0016104.g009

B. Cessac, A discrete time neural network model with spiking neurons, Journal of Mathematical Biology, vol.18, issue.26, pp.311-345, 2008.
DOI : 10.1007/s00285-007-0117-3

URL : https://hal.archives-ouvertes.fr/inria-00530115

B. Cessac, A VIEW OF NEURAL NETWORKS AS DYNAMICAL SYSTEMS, International Journal of Bifurcation and Chaos, vol.20, issue.06, pp.1585-1629, 2010.
DOI : 10.1142/S0218127410026721

URL : https://hal.archives-ouvertes.fr/inria-00534326

B. Cessac, A discrete time neural network model with spiking neurons: II: Dynamics with noise, Journal of Mathematical Biology, vol.19, issue.1???3, pp.863-900
DOI : 10.1007/s00285-010-0358-4

URL : https://hal.archives-ouvertes.fr/inria-00530115

B. Cessac, Statistics of spike trains in conductance-based neural networks: Rigorous results, The Journal of Mathematical Neuroscience, vol.1, issue.1, pp.52-53
DOI : 10.1038/nature05534

URL : https://hal.archives-ouvertes.fr/hal-00640501

B. Cessac and R. Cofré, Estimating maximum entropy distributions from periodic orbits in spike trains, INRIA Research Report Number, vol.8329, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00842776

B. Cessac and A. Palacios, Spike Train Statistics from Empirical Facts to Theory: The Case of the Retina, Current Mathematical Problems in Computational Biology and Biomedicine, vol.102, p.43, 2012.
DOI : 10.1007/978-3-642-31208-3_8

URL : https://hal.archives-ouvertes.fr/hal-00640507

B. Cessac and T. Viéville, On dynamics of integrate-and-fire neural networks with adaptive conductances, Frontiers in neuroscience, vol.2, issue.2, pp.53-56, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00338369

J. Chazottes and G. Keller, Pressure and equilibrium states in ergodic theory, Israel Journal of Mathematics, vol.131, issue.1, pp.35-37, 2008.

E. Chichilnisky, A simple white noise analysis of neuronal light responses, Network: Computation in Neural Systems, vol.12, issue.2, p.48, 2001.
DOI : 10.1080/713663221

C. Chicone and Y. Latushkin, Evolution semigroups in dynamical systems, page 61 URL http://books.google.fr/books, 1999.

C. C. Chow and N. Kopell, Dynamics of Spiking Neurons with Electrical Coupling, Neural Computation, vol.18, issue.7, pp.1643-1678, 2000.
DOI : 10.1023/A:1008841325921

P. Churchland and T. Sejnowski, The Computational Brain, 2002.

S. Cocco, N. Leibler, and R. Monasson, Neuronal couplings between retinal ganglion cells inferred by efficient inverse statistical physics methods, Proceedings of the National Academy of Sciences, vol.106, issue.33, pp.14058-14062, 2009.
DOI : 10.1073/pnas.0906705106

R. Cofré and B. Cessac, Dynamics and spike trains statistics in conductance-based integrate-and-fire neural networks with chemical and electric synapses, Chaos, Solitons & Fractals, vol.50, issue.8, pp.13-31, 2013.
DOI : 10.1016/j.chaos.2012.12.006

R. Cofré and B. Cessac, Exact computation of the maximum-entropy potential of spiking neural-network models, Physical Review E, vol.89, issue.5, pp.368-368
DOI : 10.1103/PhysRevE.89.052117

B. Connors and M. Long, ELECTRICAL SYNAPSES IN THE MAMMALIAN BRAIN, Annual Review of Neuroscience, vol.27, issue.1, pp.393-418, 2004.
DOI : 10.1146/annurev.neuro.26.041002.131128

S. Coombes, Neuronal Networks with Gap Junctions: A Study of Piecewise Linear Planar Neuron Models, SIAM Journal on Applied Dynamical Systems, vol.7, issue.3, pp.1101-1129, 2008.
DOI : 10.1137/070707579

S. Coombes and M. Zachariou, Gap Junctions and Emergent Rhythms, pp.77-94, 2007.
DOI : 10.1007/978-1-4419-0389-1_5

URL : http://eprints.nottingham.ac.uk/894/1/COBENN.pdf

P. Dayan and L. Abbott, Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems, 2005.

A. Destexhe, Z. M. Zf, and T. Sejnowski, Kinetic models of synaptic transmission, 1998.

M. Dudík, S. Phillips, and R. Schapire, Performance Guarantees for Regularized Maximum Entropy Density Estimation, Proceedings of the 17th Annual Conference on Computational Learning Theory, 2004.
DOI : 10.1007/978-3-540-27819-1_33

G. B. Ermentrout and D. H. Terman, Mathematical Foundations of Neuroscience, 2010.
DOI : 10.1007/978-0-387-87708-2

R. Fernandez and G. Maillard, Chains with complete connections : General theory, uniqueness, loss of memory and mixing properties, J. Stat. Phys, vol.118, pp.3-4555, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01296844

M. Galarreta and S. Hestrin, A network of fast-spiking cells in the neocortex connected by electrical synapses, Nature, vol.402, issue.6757, pp.72-75, 1999.

M. Galarreta and S. Hestrin, Electrical synapses between Gaba-Releasing interneurons, Nature Reviews Neuroscience, vol.235, issue.6, pp.425-433, 2001.
DOI : 10.1038/35077566

A. Galves and E. Löcherbach, Infinite Systems of Interacting Chains with Memory of Variable Length???A Stochastic Model for Biological Neural Nets, Journal of Statistical Physics, vol.5, issue.2, pp.896-921
DOI : 10.1007/s10955-013-0733-9

E. Ganmor, R. Segev, and E. Schneidman, The Architecture of Functional Interaction Networks in the Retina, Journal of Neuroscience, vol.31, issue.8, pp.313044-3054, 2011.
DOI : 10.1523/JNEUROSCI.3682-10.2011

E. Ganmor, R. Segev, and E. Schneidman, Sparse low-order interaction network underlies a highly correlated and learnable neural population code, Proceedings of the National Academy of Sciences, vol.108, issue.23, pp.9679-9684, 2011.
DOI : 10.1073/pnas.1019641108

F. R. Gantmacher, The theory of matrices, 1998.

J. Gao and P. Holmes, On the dynamics of electrically-coupled neurons with inhibitory synapses, Journal of Computational Neuroscience, vol.22, issue.1, pp.39-61, 2007.
DOI : 10.1007/s10827-006-9676-3

J. Gauthier, G. Field, A. Sher, M. Greschner, J. Shlens et al., Receptive Fields in Primate Retina Are Coordinated to Sample Visual Space More Uniformly, PLoS Biology, vol.17, issue.4, 2009.
DOI : 10.1371/journal.pbio.1000063.g006

H. Georgii, Gibbs measures and phase transitions De Gruyter Studies in Math- ematics:9. Berlin, pp.30-39, 1988.

W. Gerstner and W. Kistler, Spiking Neuron Models, 2002.

M. Gil, Explicit Stability Conditions for Continuous Systems: A Functional Analytic Approach, Lecture Notes in Control and Information Sciences, vol.314, 2005.
DOI : 10.1007/b99808

T. Gollisch and M. Meister, Eye Smarter than Scientists Believed: Neural Computations in Circuits of the Retina, Neuron, vol.65, issue.2, pp.150-164, 2010.
DOI : 10.1016/j.neuron.2009.12.009

E. Granot-atedgi, G. Tka?ik, R. Segev, and E. Schneidman, Stimulus-dependent Maximum Entropy Models of Neural Population Codes, PLoS Computational Biology, vol.012020, issue.3, p.2013
DOI : 10.1371/journal.pcbi.1002922.g010

G. Grimmett, A Theorem about Random Fields, Bulletin of the London Mathematical Society, vol.5, issue.1, pp.81-84, 1973.
DOI : 10.1112/blms/5.1.81

J. M. Hammersley and P. Clifford, Markov fields on finite graphs and lattices. unpublished, pp.76-81, 1971.

P. Hanus, D. Mauldin, and M. Urbanski, Thermodynamic formalism, multifractal analysis of conformal infinite iterated function, Acta Mathematica Hungarica, vol.96, issue.1/2, pp.27-98, 2002.
DOI : 10.1023/A:1015613628175

R. Haslinger, G. Pipa, L. Gordon, D. Laura, D. Nikoli? et al., Encoding Through Patterns: Regression Tree???Based Neuronal Population Models, Neural Computation, vol.5, issue.8
DOI : 10.1093/cercor/bhn047

D. Hegger, Perception lecture Notes, 2006.

A. Hodgkin and A. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, The Journal of Physiology, vol.117, issue.4, pp.500-544, 1952.
DOI : 10.1113/jphysiol.1952.sp004764

S. Hormuzdi, M. Filippov, G. Mitropoulou, R. Monyer, and H. Bruzzone, Electrical synapses: a dynamic signaling system that shapes the activity of neuronal networks, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1662, issue.1-2, pp.113-137, 2004.
DOI : 10.1016/j.bbamem.2003.10.023

E. Hu, F. Pan, B. Völgyi, and S. Bloomfield, Light increases the gap junctional coupling of retinal ganglion cells, The Journal of Physiology, vol.405, issue.21, pp.4145-4163, 2010.
DOI : 10.1113/jphysiol.2010.193268

E. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, 2007.

E. Jaynes, Information Theory and Statistical Mechanics, Physical Review, vol.106, issue.4, pp.13-35, 1957.
DOI : 10.1103/PhysRev.106.620

K. Josi? and R. Rosenbaum, Unstable Solutions of Nonautonomous Linear Differential Equations, SIAM Review, vol.50, issue.3, pp.570-584, 2008.
DOI : 10.1137/060677057

J. Keener and J. Sneyd, Mathematical Physiology, Interdisciplinary Applied Mathematics, vol.8, issue.1, 1998.
DOI : 10.1007/978-0-387-75847-3

G. Keller, Equilibrium States in Ergodic Theory, p.30, 1998.
DOI : 10.1017/CBO9781107359987

C. Kirst and M. Timme, How precise is the timing of action potentials?, Frontiers in Neuroscience, vol.3, issue.1, pp.2-3, 2009.
DOI : 10.3389/neuro.01.009.2009

B. P. Kitchens, Symbolic Dynamics: One-sided, Two-sided and Countable State Markov Shifts, 1998.
DOI : 10.1007/978-3-642-58822-8

N. Kriegeskorte and G. Kreiman, Understanding visual population codes -towards a common multivariate framework for cell recording and functional imaging, 2010.

L. Lapicque, Recherches quantitatives sur l'excitation électrique des nerfs traitée comme une polarisation, J. Physiol. Pathol. Gen, vol.9, pp.620-635, 1907.

B. Lindner, Stochastic Methods in Neuroscience., chapter A brief introduction to some simple stochastic processes, pp.1-28, 2009.

B. Lindner and L. Schimansky-geier, Maximizing spike train coherence or incoherence in the leaky integrate-and-fire model, Physical Review E, vol.66, issue.3, p.31916, 2002.
DOI : 10.1103/PhysRevE.66.031916

B. Lindner, J. Garcia-ojalvo, A. Neiman, and L. Schimansky-geiere, Effects of noise in excitable systems, Physics Reports, vol.392, issue.6, pp.321-424, 2004.
DOI : 10.1016/j.physrep.2003.10.015

A. Liv?ic, COHOMOLOGY OF DYNAMICAL SYSTEMS, Mathematics of the USSR-Izvestiya, vol.6, issue.6, pp.1278-1371, 1972.
DOI : 10.1070/IM1972v006n06ABEH001919

J. Macke, G. Zeck, and M. Bethge, Receptive fields without spike-triggering, 21th Neural Information Processing Systems Conference, pp.280-286, 2008.

J. Macke, L. Buesing, J. Cunningham, B. Yu, K. Shenoy et al., Empirical models of spiking in neural populations, Advances in Neural Information Processing Systems 24, pp.1350-1358, 2011.

O. Marre, S. Boustani, Y. Frégnac, and A. Destexhe, Prediction of spatiotemporal patterns of neural activity from pairwise correlations. Physical review letters, pp.13-43, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00444939

D. N. Mastronarde, Interactions between ganglion cells in cat retina, J Neurophysiol, vol.49, issue.2, pp.350-65, 1983.

P. Mccullagh and J. A. Nelder, Generalized linear models, 1989.

G. Medvedev, C. J. Wilson, J. Callaway, and N. Kopell, Dendritic synchrony and transient dynamics in a coupled oscillator model of the dopaminergic neuron, Journal of Neuroscience, vol.15, pp.53-69, 2003.

G. S. Medvedev, Electrical Coupling Promotes Fidelity of Responses in the Networks of Model Neurons, Neural Computation, vol.21, issue.23, pp.3057-3078, 2009.
DOI : 10.1038/373033a0

M. Meister, M. Berry, and I. , The Neural Code of the Retina, Neuron, vol.22, issue.3, pp.435-450, 1999.
DOI : 10.1016/S0896-6273(00)80700-X

H. Nasser and B. Cessac, Parameter Estimation for Spatio-Temporal Maximum Entropy Distributions: Application to Neural Spike Trains, Entropy, vol.16, issue.4, p.2014
DOI : 10.3390/e16042244

URL : https://hal.archives-ouvertes.fr/hal-01096213

H. Nasser, O. Marre, and B. Cessac, Spatio-temporal spike train analysis for large scale networks using the maximum entropy principle and Monte Carlo method, Journal of Statistical Mechanics: Theory and Experiment, vol.2013, issue.03, pp.43-45, 2013.
DOI : 10.1088/1742-5468/2013/03/P03006

URL : https://hal.archives-ouvertes.fr/hal-00846160

S. Nirenberg and P. Latham, Population coding in the retina, Current Opinion in Neurobiology, vol.8, issue.4, pp.488-493, 1998.
DOI : 10.1016/S0959-4388(98)80036-6

S. Nirenberg and P. Latham, Decoding neuronal spike trains: How important are correlations?, Proceedings of the National Academy of Sciences, vol.100, issue.12, pp.7348-7353, 2003.
DOI : 10.1073/pnas.1131895100

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC165878

I. E. Ohiorhenuan, F. Mechler, K. P. Purpura, A. M. Schmid, Q. Hu et al., Sparse coding and high-order correlations in fine-scale cortical networks, Nature, vol.17, issue.7306, pp.617-621, 2010.
DOI : 10.1038/nature09178

S. Ostojic, V. Brunel, N. , and H. , Synchronization properties of networks of electrically coupled neurons in the presence of noise and heterogeneities, Journal of Computational Neuroscience, vol.97, issue.3, pp.369-392, 2009.
DOI : 10.1007/s10827-008-0117-3

F. Pan, D. Paul, S. Bloomfield, and B. Völgyi, Connexin36 is required for gap junctional coupling of most ganglion cell subtypes in the mouse retina, The Journal of Comparative Neurology, vol.17, issue.6, pp.911-927, 2010.
DOI : 10.1002/cne.22254

D. Panas, H. Amin, A. Maccione, O. Muthmann, M. Van-rossum et al., Spontaneous neuronal network remodeling takes place along sloppy parameter dimensions. preprint, p.2014

L. Paninski, Maximum likelihood estimation of cascade point-process neural encoding models, Network: Computation in Neural Systems, vol.15, issue.4, pp.243-2620954, 2004.
DOI : 10.1088/0954-898X_15_4_002

L. Paninski, M. Fellows, S. Shoham, N. Hatsopoulos, and J. Donoghue, Superlinear Population Encoding of Dynamic Hand Trajectory in Primary Motor Cortex, Journal of Neuroscience, vol.24, issue.39, pp.8551-8561, 2004.
DOI : 10.1523/JNEUROSCI.0919-04.2004

S. Panzeri and S. Schultz, A Unified Approach to the Study of Temporal, Correlational, and Rate Coding, Neural Computation, vol.80, issue.10, pp.1311-1349, 2001.
DOI : 10.1088/0954-898X/8/2/003

I. Park, A. Parva, T. Demarse, and J. Principe, An efficient algorithm for continuous-time cross correlation spike trains, J. Neurosci. Methods, vol.128, issue.2, 2008.

B. Pfeuty, G. Mato, D. Golomb, and D. Hansel, The Combined Effects of Inhibitory and Electrical Synapses in Synchrony, Neural Computation, vol.16, issue.3, pp.633-670, 2005.
DOI : 10.2170/jjphysiol.8.305

URL : https://hal.archives-ouvertes.fr/hal-00094743

J. Pillow, L. Paninski, V. Uzzell, E. Simoncelli, and E. Chichilnisky, Prediction and Decoding of Retinal Ganglion Cell Responses with a Probabilistic Spiking Model, Journal of Neuroscience, vol.25, issue.47, pp.11003-11013, 2005.
DOI : 10.1523/JNEUROSCI.3305-05.2005

J. Pillow, Y. Ahmadianr, and L. Paninski, Model-Based Decoding, Information Estimation, and Change-Point Detection Techniques for Multineuron Spike Trains, Neural Computation, vol.79, issue.1, pp.1-45, 2011.
DOI : 10.1109/TNSRE.2009.2023307

J. W. Pillow, J. Shlens, L. Paninski, A. Sher, A. Litke et al., Spatio-temporal correlations and visual signalling in a complete neuronal population, Nature, vol.22, issue.7207, pp.995-999, 2008.
DOI : 10.1038/nature07140

M. Pollicott and H. Weiss, Free Energy as a Dynamical Invariant (or Can You Hear the Shape of a Potential?), Communications in Mathematical Physics, vol.109, issue.3, pp.457-482, 2003.
DOI : 10.1007/s00220-003-0905-6

A. Pouget, R. Zemel, and P. Dayan, Information processing with population codes, Nature Reviews Neuroscience, vol.1, issue.2, pp.125-132, 2000.
DOI : 10.1038/35039062

F. Rieke, D. Warland, R. De-ruyter-van-steveninck, and W. Bialek, Spikes, Exploring the Neural Code. The M.I, 1996.

J. Roederer, Information and Its Role in Nature, 2005.

R. Rojas, Neural Networks: A Systematic Introduction, 1996.
DOI : 10.1007/978-3-642-61068-4

Y. Roudi, S. Nirenberg, and P. Latham, Pairwise Maximum Entropy Models for Studying Large Biological Systems: When They Can Work and When They Can't, PLoS Computational Biology, vol.9, issue.5, p.123, 2009.
DOI : 10.1371/journal.pcbi.1000380.g007

M. Rudolph and A. Destexhe, Analytical Integrate-and-Fire Neuron Models with Conductance-Based Dynamics for Event-Driven Simulation Strategies, Neural Computation, vol.18, issue.9, pp.2146-2210, 2006.
DOI : 10.1103/PhysRevLett.71.1280

URL : https://hal.archives-ouvertes.fr/hal-00120630

. Ruelle, Thermodynamic formalism, 1978.
DOI : 10.1017/CBO9780511617546

D. Ruelle, Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics, Journal of Statistical Physics, vol.95, issue.1/2, pp.393-468, 1999.
DOI : 10.1023/A:1004593915069

E. Schneidman, W. Bialek, M. Berry, and I. , Synergy, redundancy, and independence in population codes, J Neurosci, vol.23, issue.37, pp.11539-53, 2003.

E. Schneidman, M. Berry, I. , R. Segev, and W. Bialek, Weak pairwise correlations imply strongly correlated network states in a neural population, Nature, vol.37, issue.7087, pp.1007-1012, 2006.
DOI : 10.1038/nature04701

T. Schwalger, K. Fisch, J. Benda, and B. Lindner, How Noisy Adaptation of Neurons Shapes Interspike Interval Histograms and Correlations, PLoS Computational Biology, vol.81, issue.12
DOI : 10.1371/journal.pcbi.1001026.g014

M. Shadlen and W. Newsome, The variable discharge of cortical neurons: implications for connectivity, computation, and information coding, J. Neurosci, vol.18, issue.10, pp.3870-3896, 1998.

L. T. Sharpee and A. Stockman, Rod pathways: the importance of seeing nothing, Trends in Neurosciences, vol.22, issue.11, pp.497-504, 1999.
DOI : 10.1016/S0166-2236(99)01458-7

T. Sharpee, N. Rust, and W. Bialek, Analyzing Neural Responses to Natural Signals: Maximally Informative Dimensions, Neural Computation, vol.22, issue.2, pp.223-250, 2004.
DOI : 10.1016/S0896-6273(03)00022-9

E. J. Litke and . Chichilnisky, The structure of multi-neuron firing patterns in primate retina, J Neurosci, vol.26, issue.32, pp.8254-66, 2006.

J. Shlens, G. Field, J. Gauthier, M. Greschner, A. Sher et al., The Structure of Large-Scale Synchronized Firing in Primate Retina, Journal of Neuroscience, vol.29, issue.15, pp.5022-5031, 2009.
DOI : 10.1523/JNEUROSCI.5187-08.2009

E. P. Simoncelli, J. P. Paninski, J. Pillow, and O. Schwartz, Characterization of Neural Responses with Stochastic Stimuli. The cognitive neurosciences, 2004.

H. Soula, G. Beslon, and O. Mazet, Spontaneous Dynamics of Asymmetric Random Recurrent Spiking Neural Networks, Neural Computation, vol.18, issue.1, 2006.
DOI : 10.1214/aoms/1177731118

URL : https://hal.archives-ouvertes.fr/hal-00119755

B. Staude, S. Grun, and S. Rotter, Higher-order correlations in non-stationary parallel spike trains: statistical modeling and inference, Frontiers in computational neuroscience, vol.4, issue.16, p.2010

A. Tang, D. Jackson, J. Hobbs, W. Chen, J. Smith et al., A Maximum Entropy Model Applied to Spatial and Temporal Correlations from Cortical Networks In Vitro, Journal of Neuroscience, vol.28, issue.2, pp.505-518, 2008.
DOI : 10.1523/JNEUROSCI.3359-07.2008

F. E. Theunissen, S. V. David, N. C. Singh, A. Hsu, W. E. Vinje et al., Estimating spatio-temporal receptive fields of auditory and visual neurons from their responses to natural stimuli, Network: Computation in Neural Systems, vol.10, issue.3, pp.289-316, 2001.
DOI : 10.1126/science.287.5456.1273

G. Tka?ik, E. Schneidman, M. Berry, I. , and W. Bialek, Ising models for networks of real neurons. arXiv, q-bio/0611072, 2006.

G. Tka?ik, E. Schneidman, M. J. Berry, I. , and W. Bialek, Spin glass models for a network of real neurons, pp.45-53

G. Tka?ik, J. Prentice, V. Balasubramanian, and E. Schneidman, Optimal population coding by noisy spiking neurons, Proceedings of the National Academy of Sciences, vol.107, issue.32, pp.14419-14424, 2010.
DOI : 10.1073/pnas.1004906107

G. Tka?ik, T. Mora, O. Marre, D. Amodei, M. Berry et al., Thermodynamics and signatures of criticality in a network of neurons, Proceedings of the National Academy of Sciences, vol.112, issue.37, pp.2014-2059
DOI : 10.1073/pnas.1514188112

J. Touboul and O. Faugeras, The spikes trains probability distributions: A stochastic calculus approach, Journal of Physiology-Paris, vol.101, issue.1-3, pp.78-98, 2007.
DOI : 10.1016/j.jphysparis.2007.10.008

W. Truccolo, U. Eden, M. Fellows, J. Donoghue, and E. Brown, A Point Process Framework for Relating Neural Spiking Activity to Spiking History, Neural Ensemble, and Extrinsic Covariate Effects, Journal of Neurophysiology, vol.93, issue.2, pp.1074-1089, 2005.
DOI : 10.1152/jn.00697.2004

J. Tyrcha, Y. Roudi, M. Marsili, and J. Hertz, Effect of nonstationarity on models inferred from neural data. preprint http

J. Vasquez, O. Marre, A. Palacios, M. Berry, I. et al., Gibbs distribution analysis of temporal correlation structure on multicell spike trains from retina ganglion cells, J. Physiol. Paris, vol.43, pp.13-53, 2012.

A. Wohrer and P. Kornprobst, Virtual Retina: A biological retina model and simulator, with contrast gain control, Journal of Computational Neuroscience, vol.32, issue.3, pp.219-249, 2009.
DOI : 10.1007/s10827-008-0108-4

URL : https://hal.archives-ouvertes.fr/inria-00160716

R. Wooster, Evolution systems of measures for non-autonomous stochastic differential equations with levy noise, Communications on Stochastic Analysis, vol.5, issue.65, pp.353-370, 2011.

S. Yu, D. Huang, W. Singer, and D. Nikolic, A Small World of Neuronal Synchrony, Cerebral Cortex, vol.18, issue.12, 2008.
DOI : 10.1093/cercor/bhn047