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Abstract 

Megakaryocytes (MKs) are the highly specialized precursor cells that produce platelets via cytoplasm 

extensions called proplatelets. Proplatelet formation (PPF) requires profound changes in microtubule and actin 

organization. Formins are a family of highly conserved eukaryotic proteins with multidomains that govern 

dynamic remodeling of the actin and microtubule cytoskeletons. Most formins are Rho-GTPase effectors 

proteins. DIAPH1, a member of the formin family, is a mammalian homolog of Drosophila diaphanous gene 

that works as an effector of the small GTPase Rho and regulates the actomyosin cytoskeleton as well as 

microtubules. It contains the Rho-binding domain in the N-terminal and two distinct regions of formin homology, 

FH1 in the center and FH2 in the C-terminus. DIAPH coordinates microtubules and actin cytoskeleton through 

its FH2 and FH1 regions respectively, making DIAPH an ideal candidate in cell functions that depend closely on 

the cooperation between the actin and microtubule cytoskeletons. 

The objective of the project was to decipher the role of DIAPH1 in megakaryopoiesis. At the end of the MK 

maturation, PPF and MK migration are associated with profound changes in cytoskeleton organization. Due to 

its dual function in actin polymerization and microtubule stabilization, DIAPH1 was an obvious candidate to 

play an essential role in PPF and MK migration. 

Our results showed that DIAPH1 expression increased during MK differentiation, whereas DIAPH2 and 

DIAPH3 expression decreased suggesting that DIAPH1 may play a more important role than DIAPH2 and 

DIAPH3 in the late stages of MK differentiation. Immunostaining showed that DIAPH1 co-localized with F-

actin, tubulin and myosin IIa along the plasma membrane and proplatelet. Using a knockdown strategy with 

shRNA and expression of an active form of DIAPH1, we showed that DIAPH1 is an important effector of Rho 

that negatively regulates PPF by remodeling actin and microtubule cytoskeletons. A previous work of our team 

has shown that Rho-ROCK also negatively regulates PPF by inhibiting myosin IIa activation. By the double 

inhibition of the DIAPH1 and the ROCK/Myosin pathway, we showed that DIAPH1 and ROCK played additive 

roles in the negative regulation of PPF.  

These observations suggest that the cooperation between DIAPH1 and ROCK is required for the formation of 

cell structures dependent on actomyosin, such as the stress fibers and the contractile ring. Collectively, these 

results strongly suggest that cooperation of DIAPH1/microtubules and ROCK/Myosin may regulate PPF by 

modifying the balance between actomyosin and microtubules. 

Keywords: Megakaryocyte, Proplatelet formation, DIAPH1, Myosin, Actin, Microtubule, Cytoskeleton, Rho



 

4 

 

Résumé 

Les mégacaryocytes sont les précurseurs cellulaires hautement spécialisés qui produisent des plaquettes via 

des extensions cytoplasmiques appelées proplaquettes. La formation des proplaquettes exige de profonds 

changements dans l‟organisation du cytosquelette: microtubules et actine. Les formines sont une famille de 

protéines hautement conservées chez les eucaryotes composées de plusieurs domaines qui régulent le 

remodelage et la dynamique du cytosquelette d'actine et des microtubules. La plupart des formines sont des 

effecteurs protéiques des Rho-GTPase. DIAPH1, un membre de la famille des formines, est un homologue chez 

les mammifères du gène diaphanous de la drosophile qui fonctionne comme un effecteur de la petite GTPase 

Rho et régule le cytosquelette d'actomyosine ainsi que les microtubules. Il contient le domaine de liaison à Rho 

(Rho-binding domain) dans sa partie amino-terminale et deux régions distinctes d‟homologie aux formines, FH1 

localisée au centre de la protéine et FH2 dans la partie carboxy-terminale. DIAPH1 co-régule le cytosquelette 

des microtubules et d'actine à travers respectivement ses régions de FH2 et FH1. DIAPH1 est donc un gène 

candidat idéal dans toutes les fonctions cellulaires qui exigent une coopération étroite entre cytosquelettes 

d‟actine et de microtubules. 

L'objectif de ce projet de thèse était d‟étudier le rôle de DIAPH1 dans la mégacaryopoïèse. A la fin de la 

maturation des mégacaryocytes, la formation des proplquettes et la migration sont associées à des modifications 

importantes de la structure du cytosquelette. Nous avons émis l‟hypothèse que grâce à la sa double fonction dans 

la polymérisation de l'actine et la stabilisation des microtubules, DIAPH1 pourrait jouer un rôle essentiel dans les 

temps terminaux de la différenciation mégacaryocytaire. 

Nos résultats ont montré qu‟au cours de la différenciation mégacaryocytaire, l‟expression de DIAPH1 

augmente, alors que celles de DIAPH2 et DIAPH3 diminuent, ce qui suggère que DIAPH1 pourrait jouer un rôle 

plus important que DIAPH2 et DIAPH3 dans les stades tardifs de la différenciation mégacaryocytaire. Les 

études en immunomarquage montrent que DIAPH1 co-localise avec l‟actine F, la tubuline et la myosine IIa en 

niveau de la membrane plasmique et des proplaquettes. Nous avons étudié la fonction de DIAPH1 par des 

stratégies d‟invalidation (knockdown) et de surexpression d‟une forme active de DIAPH1. Les résultats montrent 

que DIAPH1 est un effecteur important de Rho, pour réguler négativement la formation des proplaquettes en 

remodelant le cytosquelette d‟actine et les microtubules. Le travail antérieur de notre équipe avait montré que 

Rho-ROCK régulait aussi négativement la  formation des proplaquettes, en inhibant l‟activation de la myosine 

IIa. En inhibant simultanément DIAPH1 et ROCK/myosine, nous avons montré que ces deux voies jouent un 

rôle additif dans l‟inhibition de la formation des proplaquettes. 

Ces résultats suggèrent que la coopération entre les voies DIAPH1 et ROCK/myosine est nécessaire pour la 

formation de structures cellulaire dépendant de l'actomyosine, telles les fibres de stress et l'anneau contractile en 

agissant à la fois sur le remodelage du cytosquelette et en assurant un équilibre entre l'actomyosine et 

microtubules. 

Mots-clés: Mégacaryocytes, Formation des proplaquettes, DIAPH1, Myosine, Actine, Microtubules, 

Cytosquelette, Rho 
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Abbreviation 

ADP, Adenosine diphosphate 

AML, Acute myeloid leukemia 

AMKL, Acute megakaryoblastic leukemia  

APC, Adenomatous polyposis coli 

Cdc42, Cell division control protein 42 

CLP, common lymphoid progenitor 

CMP, Common myeloid progenitor 

CXCR4, CXC chemokine receptor type 4 

DAD, Diaphanous auto-regulatory domain 

DID, Diaphanous-inhibitory domain 

DMS, Demarcation membrane system 

DRFs, Diaphanous-related formins 

EB3, End-binding protein three 

ECM, Extracellular matrix  

Erk1/2, Extracellular signal-related kinase 1/2 

ERG, ETS-related gene 

ETS, E26 transformation-specific or E-twenty six  

FH, Formin homology 

FGF-4, Fibroblast growth factor-4 

FLI-1, Friend leukemia integration 1 

FOG-1, Friend of GATA-1 

GABPα, GA-binding protein alpha  

GAPs, GTPase-activating proteins 

GBD, GTPase-binding domain  

GEFs, Guanine-nucleotide exchange factors 

GFI-1B, Growth factor independent 1B  

HSCs, Hematopoietic stem cells  

IF, Immunofluorescence 

IL, Interleukin  

IMS, Invaginated membrane system 

JAKs, Janus family of protein kinases 

KO, Knockout 

LIF, Leukemia inhibitory factor 

http://en.wikipedia.org/wiki/Acute_megakaryoblastic_leukemia
http://en.wikipedia.org/wiki/GTPase
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MAL, Megakaryocytic acute leukemia 

MAPK, Mitogen-activated protein kinase  

mDia, mammalian Diaphanous-related formins 

MDS, Myelodysplastic syndromes 

MEP, Megakaryocyte-erythroid progenitor  

MLC, Myosin light chain 

MK, Megakaryocyte 

MPL, Myeloproliferative leukemia virus oncogene  

MPPs, Multipotent progenitors 

MPD, myeloproliferative disorder 

MRLC, Myosin regulatory light chain 

MRTFs, Myocardin-related transcription factors 

MT, Microtubule 

mTOR, Mammalian target of rapamycin 

MYH, Myosin heavy chain 

MYB, Myeloblastosis 

NF-E2, Nuclear factor erythroid 2 

PAK1/2, p21-activated kinase 

PF4, Platelet factor 4 

PI3K, Phosphoinositide-3 kinase 

PKC, Protein kinase C 

PPF, Proplatelet formation 

SDF-1, Stromal cell-derived factor 

SOCS, Suppressor of cytokine signaling 

SRF, Serum response factor 

STATs, Signal transducers and activators of transcription 

ROCK, Rho-associated protein kinase 

RUNX, Runt-related transcription factor 

TPO, Thrombopoietin 

vWF, von Willebrand Factor 

WASP, Wiskott Aldrich syndrome protein 

WB, Western blot 

http://en.wikipedia.org/wiki/Mitogen-activated_protein_kinase
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Chapter I: Introduction 

All blood cells are derived from hematopoietic stem cells (HSCs). HSCs reside in the bone marrow 

and are the only long life cells of the hematopoietic system, capable to self renew and to differentiate 

towards all hematopoietic cells. One of the lineages derived from HSCs is the megakaryocytic cell line; 

the entire process of diffrentiation of this cell line is called megakaryopoiesis or thrombopoiesis and 

gives rise to platelets. Megakaryocyte (MK) is the bone marrow cell that has the ability to produce 

circulating platelets (Kaushansky, 2008). 

During hematopoiesis, HSCs give rise to multipotent progenitors (MPPs), a cell that has lost its self-

renewal capacities, but has retained the capacity to differentiate towards all hematopoietic multi-

lineages (Figure1). Generally, it is believed that the multipotent progenitors will subsequently give rise 

to two types of progenitors, the common lymphoid progenitor (CLP) (Kondo et al., 1997) and the 

common myeloid progenitor (CMP) (Akashi et al., 2000). CLP then will give rise to al lymphoid cells 

including natural killer cells, T and B cells and dendritic cells, while CMP will be at the origin of all 

myeloid lineages including the granulocyte/macrophage progenitor and the MK-erythroid progenitor 

(MEP) (Debili et al., 1996; Szalai et al., 2006). MEPs are bipotential precursors that give rise to cells 

of both erythroid and megakaryocytic lineages. Nevertheless, recent studies have suggested that the 

MEP may directly derive from the HSCs to yield either the erythroid or megakaryocytic lineages 

without the CMP intermediate (Adolfsson et al., 2005; Forsberg et al., 2006). Furthermore, it has also 

been suggested the presence of MK biased HSCs expressing the CD41 or the vWF (von Willebrand 

Factor), which allow a rapid platelet recovery in case of bone marrow transplantation. However this 

classical model is presently challenged by a model in which committed progenitors play a central role 

in producing blood cells in homeostatic conditions. 

1 Megakaryopoiesis 

Megakaryopoiesis is a complex and integrated differentiation process, which is highly regulated at 

multiple stages. The MK differentiation from MK progenitors includes the switch from mitosis to 

endomitosis and proplatelet formation (PPF). After proliferation by mitosis at the level of progenitors, 

MKs enter into endomitosis and increase their ploidy, then they develop an extensive internal 

demarcation membrane system (DMS), now called invaginated membrane system (IMS), which serves 

as a membrane reservoir and then mature to release platelets through the formation of long 

pseudopods, which are called proplatelet (Italiano et al., 1999a). Platelets are shed into vascular 
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sinusoids within the bone marrow by these processes. Platelets are essential in homeostasis and 

thrombosis and also in other processes such as the development of innate immunity, angiogenesis and 

metastasis. MK differentiation is regulated both positively and negatively by transcription factors and 

by the cytokine signaling. 
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Figure 1: The hematopoietic hierarchy 

Overview of the differentiation of hematopoietic stem cells (HSCs) towards the different 

hematopoietic lineages.  

HSCs are both multipotent and capable of self-renewal. LT-HSCs (long-term hematopoietic stem cell) 

represent the „true‟ stem cells that have important self-renewal capacities and produce ST-HSCs 

(short-term hematopoietic stem cell) with limited self-renewal capacities and multipotent potential and 

subsequently the MPPs (multipotent progenitor) without self-renewal capacity. MPPs give rise to 

CLPs (common lymphoid progenitor) and CMPs (common myeloid progenitor). The CLPs then give 

rise to lymphocytes including T cells and B cells, while CMPs give rise to GMPs (granulocyte-

macrophage progenitor) that produce granulocytes and macrophages and MEPs (megakaryocyte-

erythrocyte progenitor) that produce erythrocytes and megakaryocytes/platelets. LT-HSCs can directly 

give rise to MEPs without the CMP intermediate (Figure adopted and modified from (Sharpless and 

DePinho, 2007) ). 
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1.1 Transcriptional regulation of megakaryopoiesis 

A lot of transcription factors are involved in the regulation of megakaryopoiesis (Chang et al., 2007b; 

Goldfarb, 2007). During megakaryopoiesis, series of transcription factors coordinately regulate the 

MK-specific gene expression. 

Through loss-of-function studies in mice and analysis of human diseases, various transcription factors 

have been identified, which are involved in MK differentiation, polyploidization, proplatelet formation 

(PPF) and platelet shedding. Multiple transcription factors, including RUNX1 (AML1), GATA-

1/GATA-2, FOG-1 (Friend of GATA-1), GFI1b, NF-E2, FLI-1 (Friend leukemia integration1) and 

MYB, form large protein complexes that regulate the MK differentiation both positively and 

negatively (Figure 2) (Chang et al., 2007b). Some important examples are developped below. 

1.1.1 GATA-1/FOG-1 related complex 

GATA-1 is a member of the GATA transcription factor family and is involved in cell growth and 

malignancy. GATA-1 protein regulates the expression of nearly all erythroid and MK specific genes. 

It also plays a role in erythroid development by regulating the switch from fetal to adult hemoglobin. 

GATA-1 plays also a crucial role in MK development acting as either activator or repressor depending 

of the protein complexes (Chang et al., 2007b). GATA-1 regulates the main MK-specific genes such 

as GPIIB, PF4 (platelet factor 4), GPIbα, β-TG, GPIX or GPV. 

FOG-1 (Friend of GATA-1) is one of the most important co-factors of GATA-1. The GATA-1/FOG-1 

complex is critical in promoting MK/Erythroid lineage differentiation. The X chromosome-linked 

GATA-1 contributes to the differentiation of hematopoietic progenitors into erythroid and MK cells, 

and also to the development of eosinophil and mast cells. GATA-1 and FOG-1 physically interact and 

their complex is essential for GATA-1 functions in different cellular contexts. FOG-1 contributes to 

the regulation of cell type-specific gene expression in erythroid and MK differentiation (Tsang et al., 

1997). Mice lacking FOG-1 have an absence of megakaryopoiesis and an arrest in erythropoiesis 

(Tsang et al., 1998). Loss of the GATA-1/FOG-1 interaction leads to an obvious decrease in 

membrane protein expression and to an increase in reactive oxygen species accumulation, which 

disrupts the function of GATA-1 in erythrocyte development (Hasegawa et al., 2012). 
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GATA-1 mutations in the site of interaction with FOG-1 lead to an inherited human disorder 

characterized by an X-linked dyserythropoietic anemia associated with a macrothrombocytopenia: 

platelets are giant and immature with abnormal membrane complexes (Freson et al., 2001; Shivdasani 

et al., 1997). GATA-1 deficient MKs fail to undergo terminal differentiation and exhibit a significant 

hyperproliferation in vitro. gata-1 knockout (KO) mice die at the embryonic stage because of a failure 

in erythroid maturation with a blockage at the proerythroblast stage (Fujiwara et al., 1996; Fujiwara et 

al., 2004). GATA-1 and GATA-2 have overlapping functions at the yolk sac stage required for normal 

hematopoiesis, loss of either leads to embryonic lethality in KO mice due to a failure in erythroid 

maturation and the expansion of progenitors, suggesting that either GATA-1 or GATA-2 is essential to 

initiate blood formation in the embryo (Fujiwara et al., 2004). 

Mutations in exon 2 leading to a short form of GATA-1 (GATA-1s) are associated with all cases of 

Down syndrome-associated transient myeloproliferative disorder or transient leukemia (TL) (Greene 

et al., 2003), which may progress to acute megakaryoblastic leukemia (AMKL) (Rainis et al., 2003; 

Wechsler et al., 2002). GATA-1 mutations are present in utero demonstrating that it is an early event 

in leukemogenesis. GATA-1 mutation at birth may serve as a biomarker for an increased risk of Down 

syndrome-related AMKL (Pine et al., 2007; Shimada et al., 2004b). 

GATA-1 can interact with the myeloid PU.1 transcription factor and can repress PU.1-dependent 

transcription and myeloid differentiation (Nerlov et al., 2000). The competition between GATA-1 and 

PU.1 play an important role in determining the hematopoietic cell fate in CMP (Chou et al., 2009). 

Huang and colleagues have demonstrated that GATA-1 can regulate not only MK maturation by 

activation of platelet-specific gene expression, but also MK polyploidization by modulating STAT1 

(Huang et al., 2007).  

GFI-1B (growth factor independent 1B), a zinc-finger proto-oncogene acting as transcription repressor, 

is essential for erythroid and MK lineage development by interacting with GATA-1 (Saleque et al., 

2002). Taken together, all these findings emphasize the requirement of GATA-1 for MK development 

and platelet biogenesis. 

1.1.2 MYB 

c-MYB proto-oncogene protein, known as a transcriptional activator, is a member of the MYB 

(myeloblastosis) family of transcription factors. MYB family proteins contain three domains: an N-

terminal DNA-binding domain, a central transcriptional activation domain and a C-terminal regulatory 

http://en.wikipedia.org/wiki/Down_syndrome
http://en.wikipedia.org/wiki/Acute_megakaryoblastic_leukemia
http://en.wikipedia.org/wiki/Down_syndrome
http://en.wikipedia.org/wiki/Down_syndrome
http://en.wikipedia.org/wiki/Down_syndrome
http://en.wikipedia.org/wiki/Transcription_factor
http://en.wikipedia.org/wiki/N-terminus
http://en.wikipedia.org/wiki/N-terminus
http://en.wikipedia.org/wiki/DNA-binding_domain
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domain involved in transcriptional repression. c-Myb is highly expressed in multipotent hematopoietic 

progenitors and plays an important role in the regulation of hematopoietic cell differentiation and in 

oncogenesis (Oh and Reddy, 1999). 

Loss of c-Myb results in an embryonic lethality due to a failure of hematopoietic development. 

Suboptimal level of c-Myb expression induces the commitment of MPP toward the MK lineage and 

macrophage, while high level may control the erythropoiesis and lymphopoiesis (Emambokus et al., 

2003). In addition, c-Myb mutant mice exhibit a myeloproliferative phenotype with an important MK 

expansion and a major increased platelet production without requiring TPO signaling (Carpinelli et al., 

2004; Garcia et al., 2009).  

Studies have shown that c-Myb activity may affect the balance between MK lineage differentiation 

and other hematopoietic lineages (Emambokus et al., 2003; Frampton et al., 1995). In another study, it 

has been shown that a transgenic insertion inducing a marked decrease of c-Myb expression in the 

MEP, leads to an increase in MK number and a decrease in erythroid progenitors (Mukai et al., 2006). 

Expression of the c-Myb in the MEP favors erythropoiesis, and is down-regulated during 

megakaryopoiesis (Metcalf et al., 2005). These findings indicate that c-Myb is a crucial regulator of 

the MK/Erythroid lineage fate. 

Furthermore, studies have shown that MYB is a target of the microRNA-150 (miR-150) in human and 

is negatively regulated by miR-150. MYB and miR-150 interaction is essential for embryonic 

development and probably oncogenesis (Lin et al., 2008). By gain- and loss-of-function studies, Lu J 

and colleagues have shown that miR-150 is expressed in MK development and in a post-

transcriptional manner decreases c-Myb expression and directs MEP differentiation toward the MK 

lineage (Lu et al., 2008). Another study suggests that TPO regulates the level of miR-150 and favors 

MK engagement of the MEP by down-regulating c-Myb (Barroga et al., 2008). 

Collectively, c-MYB has a complex involvement in the regulation of proliferation and establishment 

in the hematopoietic hierarchy, but inhibits MK differentiation. 

1.1.3 ETS family 

ETS (E26 transformation-specific or E-twenty six) family is one of the largest families of transcription 

factors. All ETS family members are identified by a highly conserved DNA binding domain, which is 

called ETS domain with a winged helix-turn-helix structure (Lee et al., 2005; Yordy and Muise-

http://en.wikipedia.org/wiki/Hematopoiesis
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Helmericks, 2000). In addition to DNA binding function, ETS domain is also involved in protein-

protein interaction. ETS family proteins are implicated in a wide range of functions including the 

regulation of cell differentiation, cell cycle control, cell migration, cell proliferation, apoptosis and 

angiogenesis. ETS-domain proteins function as either transcriptional repressors or transcriptional 

activators. 29 ETS genes in humans and 28 genes in the mouse have been described; among them, 

some are expressed in megakaryopoiesis and play a role in the development of erythroid and 

megakaryocytic lineages, such as FLI-1, GABPα, ETS1, ETS2 and ERG (ETS-related gene). 

FLI-1 is the most investigated ETS family member and is required for normal MK maturation by 

controlling MK-specific gene expression. It can cooperate with GATA-1 and FOG-1 to activate the 

expression of late MK genes such as GPIX, GPIbα, and PF4. fli-1 KO affects both vascular 

development and megakaryopoiesis, which leads to embryonic lethality at day 11.5 of embryogenesis 

with loss of blood vessel integrity and a partial block in MK differentiation (Hart et al., 2000). 

Another group has shown that fli-1 mutant mice have a profound hematopoietic phenotype and 

hematopoiesis is severely impaired at mid-gestation, which provide in vivo evidence for the role of 

Fli-1 in the regulation of hematopoiesis and hemostasis (Spyropoulos et al., 2000). In addition, FLI-1 

and GATA-1 work in cooperation to activate the expression of MK-specific genes (Eisbacher et al., 

2003): FLI-1 enhances the GATA-1 activity at MK promoters and represses the activity of erythroid 

factors on erythroid promoters (Starck et al., 2003). 

In human, the Paris Trousseau syndrome and Jacobsen syndrome have similar congenital anomalies 

with a thrombocytopenia and giant platelet α-granules, which are the consequence of a FLI-1 

haploinsufficiency due to a chromosome 11 deletion at 11q23.3 (Breton-Gorius et al., 1995; Raslova et 

al., 2004). However, fli-1 deletion in adult mice induces a mild thrombocytopenia with a defect of 

bone marrow MK maturation and modifies several myeloid lineage commitment decisions and 

accelerates proliferation arrest and terminal erythroid differentiation (Starck et al., 2010). 

ERG is an ETS family member extremely homologous with FLI-1. One study has shown that ERG is 

essential for definitive hematopoiesis in the embryo, adult HSC regulation and maintenance of the 

normal number of blood platelets (Loughran et al., 2008). Evidence from genetic approaches suggests 

that FLI-1 is required for megakaryopoiesis and ERG, more for normal adult HSC function. Double 

heterozygous KO mice for fli-1 and erg display a more dramatic phenotype than those with a single 

deletion, concerning the thrombocytopenia, defect in MK numbers and  MK maturation (Kruse et al., 

2009). These results suggest that FLI-1 and ERG act in synergy and may regulate common target 

genes. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Spyropoulos%20DD%5BAuthor%5D&cauthor=true&cauthor_uid=10891501
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In addition, some other members of the ETS family are also involved in the regulation of 

megakaryopoiesis, such as TLE-1, ETS1 and GABPα (GA-binding protein alpha). GABPα-deficient 

mice show a decrease in immature MKs and an increase in mature MKs. In addition, the ratio between 

GABPα/FLI-1 decreases during MK maturation. In agreement with their pattern of expression, it has 

been shown that GABPα regulates early stages of MK differentiation, particularly the expression of 

early MK-specific genes such as GPIIb and MPL (Pang et al., 2006). 

Furthermore, FLI-1 can interact with RUNX-1 by direct protein-protein interaction and results in a 

synergistic transcriptional activation of the MPL promoter. They are associated in a transcriptional 

protein complex that also includes GATA-1 and FOG-1. FLI-1 dephosphorylation affects RUNX-1 

binding and inhibits in vitro fetal liver differentiation of MK. These data underscore the interaction of 

FLI-1 and RUNX-1 during MK development (Huang et al., 2009). 

1.1.4 RUNX1 

RUNX1, also known as AML1 (acute myeloid leukemia 1) or CBFA2 (core-binding factor subunit 

alpha-2), is a member of the RUNX (Runt-related transcription factor) family. RUNX-1 is a DNA-

binding subunit of the core binding transcription factor complex, which is expressed in almost all 

hematopoietic cells and contributes to the commitment of hematopoietic stem and progenitor cells by 

regulating or interacting with other elements (Okuda et al., 2001).  

RUNX1 may interact and cooperate with GATA-1 in MK differentiation and during hematopoietic 

development in mammals (Elagib et al., 2003; Waltzer et al., 2003). RUNX1 is one of the rare 

transcription factors that is involved in MK differentiation, but inhibits erythroid differentiation, 

suggesting that RUNX1 plays an essential role in the MK/Erythroid lineage commitment (Niitsu et al., 

1997). An inducible runx-1 KO leads to a marked defect in megakaryopoiesis with a 

thrombocytopenia, highlighting its important role in MK differentiation (Ichikawa et al., 2004; Sun 

and Downing, 2004). 

It has been shown that runx1 haploinsufficiency is associated with alterations in the early mesoderm 

development of ES cell differentiation (Lacaud et al., 2004), as well as it influences the temporal and 

spatial generation of HSC in mouse embryos (Cai et al., 2000). In the hematopoietic system, it induces 

an increase in myeloid progenitors and may lead to leukemogenesis (Yamashita et al., 2005). 
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Several RUNX1 target genes have been identified during MK differentiation, such as CBF, MPL, 

IEX-1, MYL9 (myosin light chain) (Hamelin et al., 2006; Heller et al., 2005; Jalagadugula et al., 2010; 

Song et al., 1999), as well as p19
INK4D

, which is involved in the endomitotic arrest and MK maturation 

(Gilles et al., 2008). Germ-line heterozygous mutations and somatically point mutations are found in 

RUNX-1, all resulting in loss of transcriptional activity. Germ line mutations induce familial platelet 

disorder with predisposition to develop acute myeloid leukemia (AML) (Harada et al., 2004; Heller et 

al., 2005; Song et al., 1999). 

The role of RUNX1 on the control of HSC fate may be achieved by regulating the MPL promoter both 

positively and negatively, this dual activity being related to the binding partner according to the cell 

types (Satoh et al., 2008). The RUNX1 mutation related thrombocytopenia may result from a low MPL 

receptor expression in MK although low MPL expression is usually associated with a thrombocytosis 

in several murine models, but more obviously from altered expression of numerous genes encoding 

the actomyosin cytoskeleton (Heller et al., 2005). 

1.1.5 SRF/MAL 

SRF (serum response factor), a member of the MADS (MCM1, Agamous, Deficiens and SRF) 

domain-containing transcription factor, binds to the serum response element in the promoter/enhancer 

region of many target genes and confers the recruitment of other transcriptional cofactors. SRF is 

widely expressed and plays an important role in regulating the activity of many genes including 

immediate early genes and genes involved in cytoskeleton and muscle development, as well as genes 

involved in cell cycle regulation, growth and differentiation (Chai and Tarnawski, 2002; Miano, 2010; 

Morita et al., 2007; Schratt et al., 2002). 

MAL (megakaryocytic acute leukemia, also known as MKL1, BSAC and MRTF-A), a member of the 

MRTF (myocardin-related transcription factor) family, is one of the most important cofactors of SRF 

(Vartiainen et al., 2007). There are different extracellular stimuli that can activate SRF. One is the 

MAPK (mitogen-activated protein kinase) pathway, which acts through the ternary complex factors, 

the other is the small GTPase pathway acting through the MRTF family proteins (Cen et al., 2003; Hill 

et al., 1995). The MAL/SRF interaction is regulated by the Rho-actin pathway (Miralles et al., 2003; 

Morita et al., 2007). A recent study has shown that SRF and MAL regulate the myofibroblast 

differentiation by responding to both TGF-β1 and RhoA signaling (Small, 2012). 

http://en.wikipedia.org/wiki/MADS-box
http://en.wikipedia.org/wiki/Promotor_(biology)
http://en.wikipedia.org/wiki/Immediate_early_genes
http://en.wikipedia.org/wiki/Cell_cycle
http://en.wikipedia.org/wiki/Mitogen-activated_protein_kinase
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SRF and MAL play a crucial role in MK terminal differentiation including PPF. Mrft-A (Mal) KO 

mice exhibit a decrease of platelet count in peripheral blood and a reduced ploidy in bone marrow 

MKs, suggesting the involvement of MAL in MK differentiation (Cheng et al., 2009). MAL 

knockdown resulted in dysmorphic MKs with disorganized DMS and α-granules heterogeneously 

scattered in the cytoplasm, as well as a decreased expression of MYL9 and MMP9 (Gilles et al., 2009). 

Srf KO mice exhibit a similar phenotype with an abnormal DMS, a reduced platelet count and a down-

regulation of actin cytoskeleton gene expression as well as an abnormal stress fiber formation and 

actin distribution (Halene et al., 2010). These indicate that MAL/SRF complex is involved in normal 

MK maturation and PPF by regulating MYL9 and MMP9. 

MAL is shuttling from the cytoplasm to the nucleus. When localized in the nucleus, it activates SRF 

target genes transcription, suggesting that MAL subcellular localization is one important mechanism 

to control SRF activity (Vartiainen et al., 2007). A recent study has shown that MAL localization is 

disrupted by drugs inhibiting RhoA activity or actin polymerization, revealing that MAL subcellular 

localization and function is dependent on Rho GTPase family and actin organization (Smith et al., 

2013). These data widen the study of the molecular mechanisms that regulate MK differentiation. 

MAL16 (also known as MKL2, MRTF-B), a homologue of MAL, is also expressed in MK and 

participates in MK differentiation. By a double KO strategy, it has been demonstrated that MAL and 

MAL16 play a redundant and crucial role in MK maturation and platelet formation (Smith et al., 2012). 

Together, these findings confirm that SRF/MAL is necessary for MK maturation and platelet 

production, partly by regulating cytoskeleton genes. 

1.1.6 NF-E2 

The transcription factor NF-E2 (nuclear factor erythroid 2), belongs to the basic-leucine zipper family. 

It is a heterodimer complex containing two basic subunits, a widely expressed 18-kDa (p18
NF-E2

) 

subunit (Andrews et al., 1993b) related to chicken Maf proteins and a tissue-restricted 45-kDa (p45
NF-

E2
) subunit (Andrews et al., 1993a), whose expression is restricted to erythroid cells, MKs and mast 

cells. 

The NF-E2 complex is essential in erythroid and MK maturation and differentiation. p45
NF-E2

 KO mice 

are lethal at birth as a consequence of a profound thrombocytopenia with an increased number of MKs, 

which present evident defect in both DMS development and α-granules distribution and an absence of 

PPF (Shivdasani et al., 1995). Other genetic evidence has indicated a crucial role for p45
NF-E2

 and 

small Maf in the terminal MK maturation and platelet production. The double KO mice for the two 
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NF-E2 partners, MafG and MafK show a similar thrombocytopenia as p45
NF-E2

 KO mice with an 

absence of proplatelets (Lecine et al., 1998; Motohashi et al., 2000; Onodera et al., 2000). Furthermore, 

these mutant mice develop a severe anemia accompanied by an abnormal erythrocyte morphology and 

modifications in the membrane protein composition. These findings provide evidences that NF-E2 

plays an important regulatory role in erythropoiesis (Onodera et al., 2000), more particularly by 

regulating globin gene transcription. 

Several genes have been established as regulated by p45
NF-E2

 in MKs directly or indirectly, such as 

Thromboxane synthase, β1-tubulin, Rab27b, 3β-HSD (3beta-hydroxysteroid dehydrogenase) and 

Lims1 (Chen et al., 2007a; Deveaux et al., 1997; Lecine et al., 2000; Nagata et al., 2003; Tiwari et al., 

2003), all of which are involved in PPF and platelet biogenesis. Recently, Selp and Myl9, two other 

genes have been identified as direct p45
NF-E2

 targets, which are also implicated in platelet production 

and function (Fujita et al., 2013). All these observations provide strong evidence that NF-E2 is 

essential for establishing normal platelet function as well as for generating the proper number of 

platelets. 

Some other transcription factors also participate in hematopoiesis, MK differentiation and platelet 

production, such as zinc finger protein GFI-1b (growth factor independent 1B transcription repressor). 

GFI-1b is a crucial proto-oncogenic transcriptional regulator necessary for MK/Erythroid lineage 

development and differentiation. Dependent on the promoter and cell type context, GFI-1b functions 

as transcriptional repressor or transcriptional activator. It may also regulate cytokine signaling by 

repressing the activity of some promoters. 
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Figure 2: Overview of the transcription factors involved in megakaryopoiesis 

Multiple transcription factors regulate megakaryopoiesis at different developmental stages. HSC, 

hematopoietic stem cell; MPP, multipotent progenitor; CLP, common lymphoid progenitor; CMP, 

common myeloid progenitor; GMP, granulocyte-monocyte progenitor; Eo, eosinophil; Ba, basophil; 

Ne, neutrophil; Mo/Ma, monocyte/macrophage; MEP, megakaryocyte/erythrocyte progenitor; BFU-

MK, burst-forming unit megakaryocyte; CFU-MK, colony-forming unit megakaryocyte; PMKB, 

promegakaryoblast; MK, megakaryocyte; PfMK, proplatelet forming megakaryocyte; BFU-E, burst-

forming unit erythrocyte; NK, natural killer cell; DC, dendritic cell (figure from (Chang et al., 

2007b) ). 
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1.2 TPO/MPL signaling in megakaryopoiesis 

Cytokines and multiple compounds of bone marrow microenvironment are also involved in the 

regulation of MK differentiation. Numerous cytokines can stimulate MK progenitor proliferation, such 

as GM-CSF (Granulocyte-macrophage colony-stimulating factor), IL (interleukin)-3, IL-6, IL-11, IL-

12 and erythropoietin. Nevertheless, other cytokines participate in the regulation of MK maturation 

and platelet release, such as IL-1α and leukemia inhibitory factor (LIF) (Vainchenker et al., 1995). 

Thrombopoietin (TPO) is the most important cytokine for MK differentiation, more particularly in 

homeostatic conditions, as well as it plays a central role in HSC regulation (Kaushansky, 2006). 

TPO is also known as megakaryocytic growth and development factor or MPL (Myeloproliferative 

leukemia virus oncogene) ligand. TPO is a glycoprotein which functions as a hormone and is 

produced by the liver and at a lesser extent by kidney and regulates platelet production in homeostasis. 

TPO acts throughout all stages of megakaryopoiesis, including MK progenitor proliferation and MK 

polyploidization. It also increases MK size by promoting protein synthesis. The TPO receptor, MPL 

has been identified as the proto-oncogene of the viral oncogene v-mpl, a member of the hematopoietic 

receptor super-family that was identified as the transformation factor of the murine myeloproliferative 

leukemia virus. 

The TPO/MPL signaling pathway regulates platelet production and conversely the platelet number in a 

feedback manner negatively regulates TPO level. TPO is constitutively produced and the circulating 

TPO level is regulated both by platelets, its end products and MKs. TPO binds to MPL expressed by 

platelets and is endocytosed before being degraded. The blood platelet number thus regulates the TPO 

level. Low platelet level leads to higher level of plasmatic TPO that increases the number of MKs 

enhancing their further maturation. On the other hand, high platelet level decreases the availability of 

TPO for MKs. The discovery of TPO has contributed profoundly to platelet biology because it allows 

the development of cultures that generate MKs in vitro. This has greatly facilitated studies of MK 

differentiation and platelet related disorders. TPO and now synthetic MPL ligands are potential 

thrombopoietic and hematopoietic agents that are used as therapeutic drugs to stimulate expansion of 

HSC ex vivo and to treat some thrombocytpenia (Basser, 2002). 

TPO/MPL has remarkable functions in MK differentiation and thrombopoiesis through the TPO-

dependent signaling pathways (Figure 3) (Geddis, 2010; Santos and Verstovsek, 2011). These 

pathways include the Janus family of protein kinases (JAKs)/signal transducers and activators of 

http://en.wikipedia.org/wiki/Kidney
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transcription (STATs) pathway (Schulze et al., 2000), the Ras/Raf/mitogen-activated protein kinase 

(MAPK) pathway (Rojnuckarin et al., 1999), the phosphoinositide-3 kinase (PI3K)/Akt/mTOR 

pathway (Nakao et al., 2008; Pasquet et al., 2000; Soda et al., 2008) and the nuclear factor kappa B 

(NF-κB) pathway (Zhang et al., 2002). The important role of TPO has been demonstrated by animal 

experiments. TPO and MPL are essential for MK growth and development in mouse models, KO of 

one of them induces reduces numbers of MKs and of circulating platelets to approximately 10% of the 

normal (Gurney et al., 1994; Murone et al., 1998). 

MPL does not have intrinsic kinase activity, which is dependent on the cytoplasm tyrosine kinase 

JAK2. JAK2 kinase actives the downstream signaling pathways, such as the STATs, PI3K and the 

MAPK that activate and mediate the cellular response to TPO (Geddis et al., 2002). This cascade 

signaling allows cell proliferation and differentiation. MPL and JAK2 are involved in multiple 

inherited and malignant disorders leading to thrombocytosis, thrombocytopenia and aplastic anemia. 

TPO binding changes MPL conformation leading to JAK2 phosphorylation. Activated JAK2 kinase 

phosphorylates MPL, which induces the binding of the different STAT family members and their 

subsequent phosphorylation (Schulze et al., 2000). This leads to the dimerization of the activated 

STAT proteins and then to their translocation to the nucleus where they act as transcription factors by 

binding to different STAT-response DNA sequences. Constitutive activation of JAK2/STAT pathway 

induces a cytokine-independent growth and transformation, such as the V617F mutant of JAK2 in 

myeloproliferative disorders, TEL-JAK2 in leukemia or a constitutively active STAT5 in different 

leukemia cell lines (Harir et al., 2007; Najfeld et al., 2007).  

In addition, JAK2 can activate the small Ras-GTPase and the MAPK pathway to stimulate the 

activation of extracellular signal-related kinase 1/2 (ERK1/2). Studies have shown that TPO-induced 

MAKP signaling pathway has important role although controversial in normal MK differentiation 

(Rojnuckarin et al., 1999). TPO signaling activates Ras-GTPase based on the binding of the adaptor 

protein SHC to the phosphorylated MPL and the assembly of a complex consisting of the adaptor 

protein GRB2 (Growth factor receptor-bound protein 2) and the guanine nucleotide exchange factors 

(GEFs) like SOS (Son of sevenless), and then RAS activates RAF-1, ERK1/2 and MEK (mitogen-

induced extracellular kinase) (Avruch et al., 2001). 

The PI3K signaling pathway also participates downstream of JAK2 in megakaryopoiesis. It has been 

shown that TPO up-regulates platelet α-granule secretion and aggregation induced by thrombin 

through PI3K signaling (Kojima et al., 2001). TPO stimulates PI3K phosphorylation and activation of 
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the threonine/serine kinase AKT (also known as protein kinase B, PKB) that enhances the TPO-

induced survival and proliferation of MK (Nakao et al., 2008; Soda et al., 2008). mTOR (mammalian 

target of rapamycin), a downstream target of the PI3K/AKT pathway, is involved in the growth and 

the ploidy of mature MKs. Inhibition of mTOR by rapamycin reduces MK size and ploidy, through an 

inhibition of the G1/S transition, via a decrease of p21 and cyclin D3, and a delay in MK maturation 

preventing PPF. These results suggest that mTOR plays an important role in MK proliferation and 

maturation (Raslova et al., 2006). 

Furthermore, TPO has a major function in the regulation of HSC and progenitors in vivo and in vitro 

(Bruno et al., 2003; Kaushansky, 2006; Pick et al., 2002). Studies of c-mpl KO mice have shown that 

TPO/MPL is associated with early hematopoietic progenitor development, while HSCs also express 

MPL and depend on TPO signaling for their maintenance and expansion (Fox et al., 2002). Studies 

have shown that TPO plays an important role in maintaining HSC quiescence in the bone marrow 

niche and in DNA gene repair after double strand DNA breaks by stimulating NHEJ (de Laval et al., 

2014). tpho and c-mpl KO mice show not only a thrombocytopenia, but also a decrease in HSCs and 

in early progenitors of all hematopoietic lineages (Murone et al., 1998). Thus, the TPO/MPL axis 

plays a crucial role for hematopoiesis and megakarypoiesis. Interestingly, in human, hereditary 

homozygous or composite heterozygous loss of function mutations of MPL lead to a 

thrombocytopenia with an absence of MK, which subsequently progresses to aplastic anemia, 

demonstrating that the TPO/MPL axis is also crucial for the maintenance of human HSCs.  
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Figure 3: TPO-induced signaling pathways in megakaryopoiesis 

TPO binds to its receptor Mpl and the conformational changes on the homodimer induced by TPO 

binding result in activation of JAK2 by transphosphorylation, which initiates and activates 

downstream signaling pathways including the STATs, PI3K/Akt/mTOR and Ras/Raf/MAPKs 

pathways. TPO, thrombopoietin; MPL, Myeloproliferative leukemia virus oncogene; JAK, Janus 

family of protein kinase; PI3K, Phosphoinositide-3 kinase; mTOR, mammalian target of rapamycin; 

MAKP, mitogen-activated protein kinase (Figure adopted from (Santos and Verstovsek, 2011) ). 

http://en.wikipedia.org/wiki/Mitogen-activated_protein_kinase
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Recent data suggest that the roles of TPO and MPL/JAK2 on MK differentiation are more complex 

than previously thought. First, it has been shown that a strong signaling through MPL/JAK2 induces 

an arrest in proliferation and a „senescence‟ like phenotype. Second, jak2 and c-mpl KO during MK 

differentiation induce a thrombocytosis associated with high TPO level. This suggests that the role of 

TPO is indispensable in early stages of hematopoiesis and MK differentiation, but is not required for 

terminal differentiation. MPL plays an important role in late MK differentiation stages, not as a 

signaling receptor, but more as a receptor involved in TPO clearance. 

As the main cytokine regulating MK development and platelet production, TPO is critical to maintain 

the homeostatic balance and prevent a hematopoietic deficiency, such as thrombocytopenia and 

aplastic anemia. TPO/MPL signaling is also negatively regulated in order to maintain this homeostatic 

balance. For instance, the JAK/STAT pathway activation induces the transcription of members of the 

suppressor of cytokine signaling (SOCS) family, which can inhibit JAK signaling in different ways 

according to the member (Alexander and Hilton, 2004). TPO signaling and JAK2 activity can be 

inhibited by TPO induced SOCS1 and SOCS3, respectively (Hookham et al., 2007; Wang et al., 2000). 

LNK is an adaptor protein that binds JAK2 and regulates its activity. LNK negatively regulates growth 

of HSCs, erythroid and megakaryocytic cells by inhibiting TPO/MPL signaling pathway (Seita et al., 

2007; Tong and Lodish, 2004).  

Overall, TPO is the most important hematopoietic cytokine for MK differentiation and platelet 

production; both a positive and a negative regulation of TPO signaling are necessary for homeostasis 

and hematopoietic development. 

Chemokines and cellular interactions are also involved in megakaryopoiesis and thrombocytopoiesis. 

The two chemokines that have crucial roles on megakaryopoiesis and platelet production are SDF-1 

(Stromal cell-derived factor1, also known as CXCL12) and PF4 (CXCL4). SDF-1 belongs to the CXC 

family, which is involved in MK differentiation and in homing of HSCs to the bone marrow. SDF-1 

and fibroblast growth factor-4 (FGF-4) can restore platelet production in thpo
-/-

 and c-mpl
-/-

 mice by 

mediating interaction of MK progenitors with the bone marrow vascular niche (Avecilla et al., 2004). 

CXCR4 (CXC chemokine receptor type 4) is the SDF-1 receptor, which is expressed during the entire 

MK differentiation from early progenitor to platelet production. SDF-1-induced migration of mature 

MK through endothelial cell layers leads to an increase in platelet production (Lane et al., 2000). A 

study has shown that molecular upregulation of CTAPIII in MKs, a CXC cytokine, is associated with 

maturation and is involved in cellular interactions with extracellular matrix (ECM) and platelet 

production (Deutsch et al., 2000). 
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2 Cytoskeleton and MK differentiation 

MK differentiation is associated with multiple cell changes at the level of the cytoplasmic membrane 

and of secretory granules and in the cytoskeleton. Reorganization of cytoskeleton including MT 

(microtubule), actin filaments and myosin, plays an essential role in MK differentiation and migration, 

particularly in PPF and platelet release. Because of the dramatic morphological changes that occur 

during proplatelet production, the cytoskeleton mechanics that drive these processes have become a 

central issue in studies of megakaryopoiesis. 

2.1 MK maturation 

The late stages of MK differentiation include the switch from mitosis to endomitosis and PPF. After 

proliferation by mitosis, the MK performs endomitosis to increase its ploidy and then matures to 

release platelets through the formation of long pseudopods, which are called proplatelets (Deutsch and 

Tomer, 2006; Italiano et al., 1999a). The former process by inducing MK polyploidization increases 

the cell volume, while the latter is essential for platelet production. At last, the mature MK migrates to 

the vascular niche where platelets are directly released into the blood stream. 

2.1.1 Endomitosis/polyploidization 

When MKs progressively differentiate from HSCs, they loss their ability of proliferation and become 

polyploid through a process called endomitosis (Bluteau et al., 2009). The MK endomitotic cell cycle 

appears to be nearly identical to a normal proliferative cell cycle, but lacking cytokinesis (Figure 4). 

During differentiation, diploid premegakaryoblasts give rise to tetraploid megakaryoblasts and then 

larger and more polyploid pro-MKs and MKs by rounds of DNA replication.  

During cell cycle, MKs firstly undergo a proliferative 2N stage which is the same as for other 

hematopoietic cells and subsequently begin endomitosis and accumulate successively a DNA content 

of 4N, 8N, 16N, 32N, 64N and eventually 128N in a single polylobulated nucleus before proceeding 

with their final maturation and subsequent PPF (Figure4) (Chang et al., 2007b; Zimmet and Ravid, 

2000). The hallmark of a mature MK is to be a large cell containing a single, multilobulated and 

polyploid nucleus (Geddis, 2010). Mature MKs may have a diameter of up to 80µM and are the largest 

hematopoietic cells in the bone marrow. This massive size allows each MK to produce several 

thousands of platelets. 
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Though not completely known, the mechanisms regulating MK endomitosis begin to be better 

understood. Endomitosis is a form of “endoreduplication” process, in which the cell cycle is regulated 

as in the mitotic process. During polyploidization, MKs undergo normal cell cycle progression i.e., G1, 

S, G2 and M phases, but the M phase is incomplete (Ravid et al., 2002). After M phase, MKs re-enter 

into a G1 phase to initiate a subsequent cell cycle in order to increase their DNA content. Initial 

studies have suggested that the endomitotic cell cycle continues till anaphase A and then skips 

anaphase B and cytokinesis, because the subsequent late stages of mitosis were not observed (Nagata 

et al., 1997; Vitrat et al., 1998). Later using time-lapse microscopy, it was observed the presence of a 

telophase and the onset of a cytokinesis, but endomitotic MKs were unable to complete the late 

cytokinesis (Geddis and Kaushansky, 2006; Lordier et al., 2008).  

In order to explain the defects in late stages of the mitosis in endomitosis, studies have been first 

focused on the central spindle. Studies have shown that two components of the central spindle, Aurora 

B and survivin, are absent in endomitotic MKs (Kawasaki et al., 2001; Zhang et al., 2001; Zhang et al., 

2004). Nevertheless, in human MKs, Aurora B and survivin are present and are normally localized 

including in the midbody (Bluteau et al., 2009; Geddis and Kaushansky, 2004). Aurora B is functional 

both at the metaphase/anaphase transition and during the late stages of endomitosis (Lordier et al., 

2010). However, in contrast to normal mitosis, survivin and Aurora B are dispensable for 

polyploidization. Several studies have demonstrated that endomitosis is associated with a defect 

cleavage furrow, which cannot confer the abscission forces required for separation of two daughter 

cells. Following G1 and S phases, endomitotic MKs enter M phase and at anaphase, they separate the 

two pairs of chromosomes and begin to form a cleavage furrow (Geddis et al., 2007; Vitrat et al., 

1998). However, nuclei fail to completely divide and cleavage furrows regress before cytokinesis 

completion, leading to the generation of a single cell with a multilobulated nucleus (Geddis et al., 

2007). In higher ploidy MKs, cleavage furrow formation and ingression are also observed, but at much 

lower level than in the 2N/4N stages.  

Endomitosis is a failure in cytokinesis and appears to be related to a defect in contractile forces related 

to the actin/myosin II complex. RhoA is one important regulator of cytokinesis and of the contractile 

ring assembly. RhoA is present in the cleavage furrow of MKs and is partially functional because 

inhibition of RhoA or ROCK increases MK ploidy (Lordier et al., 2008). The late failure of 

cytokinesis in endomitotic MKs seems to be related to a defect in RhoA activation/deactivation and/or 

to a defect in myosin II present at the cleavage furrow. Both mechanisms have been demonstrated. On 

the one hand, it has been shown that there is no accumulation of MYH9 in the contractile furrow of 

MKs and that MYH10, which can accumulate in the cleavage furrow of MKs, is transcriptionally 

silenced by RUNX1 during endomitosis (Lordier et al., 2012a). On the other hand, a defect of RhoA 
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activation in the cleavage furrow has been directly illustrated due to a downregulation of two RhoA-

GEF (GEF-H1 and ECT2) preventing the localization and activation of RhoA in the contractile ring 

(Gao et al., 2012).  

 

A defect in karyokinesis is also observed in MK in addition to a cytokinesis failure (Lordier et al., 

2012b). Recent study has identified two protein-tyrosine phosphatases Shp1 and Shp2 as important 

regulators of MK differentiation, showing that Shp1 and Shp2 function in endomitosis, and emphasize 

the importance of Shp1 and Shp 2 in MK maturation and ultimately in platelet production (Mazharian 

et al., 2013). 

Several other regulators have been demonstrated to be involved in MK endomitosis process, such as 

cyclin D1/D3 and cyclin E. MKs express very high level of cyclin D3 in endomitosis, while 

overexpression of cyclin D1 leads to an increase in MK ploidy level, suggesting that the D-type 

cyclins function in MK endomitosis and polyploidization (Sun et al., 2001; Wang et al., 1995). In 

addition, cyclin E KO mice have a significant defect in MK polyploidization without altering 

proliferation of the other hematopoietic cells (Geng et al., 2003). MK endomitosis process can stop 

DNA duplication at any ploidy level between 2N and 128N, thus one possibility to explain platelet 

heterogeneity may be that platelets originating from different classes of polyploid MKs have different 

functions. However, there is some evidence that polyploidization may not affect per se gene 

expression, but is mostly involved in the regulation of gene expression in a differentiation-related 

manner (Raslova et al., 2007). This implies that polyploidization may be directly integrated into the 

MK differentiation program.  

The majority of neonatal MKs derived from cord blood have a low ploidy, suggesting they have a 

reduced capacity to produce platelets (Mattia et al., 2002). Recent studies have suggested that neonate 

platelets have a prolonged survival that counteracts this relative defect in production (Liu et al., 2014). 

In contrast to other cells that become polyploid in response to stress, MK polyploidization occurs 

during normal homeostatic differentiation. Polyploidy is a manner of increasing platelet production, as 

polyploidy is associated with an increase in DNA and protein synthesis leading to an augmentation in 

the MK cytoplasm volume. In addition, polyploidization may be a way to significantly increase 

metabolic pathways and to modify the level of gene expression, as MK polyploidization results in a 

functional gene amplification, all alleles being transcriptionally active except for those localized on the 

X chromosome (Raslova et al., 2003). Polyploidization is also a way to partially counterbalance a 

haploinsufficiency in case of mutations in key MK genes and thus to better keep a genomic integrity. 

This is particularly important as MK terminal differentiation is associated with high ROS levels, 

which may promote double DNA strain breaks. 
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Figure 4: Scheme of the megakaryocyte endomitosis  

The overview of the endomitotic process in megakaryocyte, which results in polyploidization (Figure 

adopted from (Chang et al., 2007b) ). 
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2.2 Proplatelet formation and platelet release 

Each day, 2x10
11 

platelets are produced in humans by a highly regulated mechanism. The biology of 

platelet formation is unique, as platelets arise from cytoplasm fragmentation of their marrow 

precursors, the MKs. Circulating blood platelets are specialized cells that function to prevent bleeding 

and minimize blood vessel injury. Platelets circulate in a non-activated form, when stimulated, they 

change their form and spread on the affected tissue to generate a physical barrier that prevents blood 

loss. Platelets are essential for homeostasis. Thrombocytopenia is a main clinical disorder across 

several pathological conditions, including immune thrombocytopenic purpura, hematological 

malignancies, particularly myelodysplastic syndrome, leukemia and other malignant bone marrow 

infiltration, chemotherapy or drug toxicity, intravascular coagulation, aplastic anemia and viral 

infection including HIV and Ebola. A better understanding of the platelet formation mechanisms will 

give the chance to improve therapy of thrombocytopenia. 

The mechanism of platelet biogenesis has been studied for many years; up to now, there are two 

models proposed to explain platelet production from mature MKs, which are not mutually exclusive. 

In the fragmentation model, within the MK cytoplasm, the prepackaged platelets are released by 

fragmentation within DMS. This hypothesis is supported by electron microscopy analysis of platelet 

producing from MKs explosive-fragmentation within internal membranes (Mori et al., 1993). When 

cultured on subendothelial extracellular matrix, mature MKs are stimulated to release platelets by a 

highly efficient explosive fragmentation of the entire cytoplasm (Caine et al., 1986; Eldor et al., 1986). 

Alternatively, in the PPF model, mature MKs in the bone marrow develop numerous and long 

branching cytoplasm processes that extend into the marrow sinusoidal blood vessels, where they 

fragment and release individual platelets into the circulation (Figure 5) (Italiano et al., 1999a; Junt et 

al., 2007; Patel et al., 2005a). Using live cell microscopy, Italiano and colleagues have observed the 

development of a network of branching proplatelets in cultured MK, then platelet assembly and their 

bud off at the end of each proplatelet (Italiano et al., 1999a). Another group has extended these results 

in vivo by dynamic imaging of the bone marrow compartment and show that fluorescently-labeled 

MKs form proplatelets into marrow vascular sinusoids and release large fragments making a link 

between PPF and their rupture by shear forces (Junt et al., 2007). PPF is thus an essential intermediate 

in platelet biogenesis, but is not yet sure that it is the only manner for MKs to produce platelets.  

The platelet production process is a dynamic and organized process beginning after the end of the 

endomitosis and the increase of cell size by organelles and granules synthesis. The platelet release in 

contrast to all the other steps of megakaryopoiesis takes place in the blood stream and is regulated by 



 

33 

 

the shear stress. The MT cytoskeleton undergoes a profound remodeling during PPF. In immature 

MKs, MTs translocate from the center to the cell cortex. Cortical MTs organize into thick bundles 

situated beneath the plasma membrane. These tubules further grow and form repeated branching 

structures, which develop a beaded appearance at short intervals along their length. The whole MK 

cytoplasm is consumed in proplatelets, except a nuclear mass surrounded by a thin rim of cytoplasm 

that consequently is degraded by apoptosis and phagocytosed by macrophages. During proplatelet 

evagination, the MT bundles turn and bring opposing bundles in contact and then interlink together in 

the proplatelet shaft. MTs sliding in the shaft extends the proplatelet and then MTs detach from the 

shaft to further fragment and release platelets (Hartwig and Italiano, 2006). After the whole MK cell 

body has been converted into proplatelet, the nucleus is eventually extruded and degraded, while 

individual platelets are released from the proplatelet ends. 

Apoptosis is the process of programmed cell death that may occur in multicellular organisms and 

confer advantages for organism life cycle. The role of apoptosis is a controversial issue concerning 

MK development and functions, especially in platelet production (Kile, 2014). There are two distinct 

apoptotic pathways in mammals: the intrinsic pathway and extrinsic pathway, they seem to be 

convergent and both might be implicated in megakaryopoiesis and thrombopoiesis (Youle and Strasser, 

2008). These two apoptotic pathways can be triggered by chemotherapy or infection. The intrinsic 

apoptotic pathway is controlled by the BCL-2 family proteins, which can be either pro-apoptotic 

(including Bax, BAD, and Bak) or anti-apoptotic (including Bcl-2, Bcl-xL, Bcl-w). The extrinsic 

apoptotic pathway can be triggered by ligands binding to death receptors belonging to the tumor 

necrosis factor receptor family, such as Fas or tumor necrosis factor receptor-1 (Youle and Strasser, 

2008). 

Concerning apoptosis and PPF there are presently opposite results. On the one hand, it has been 

demonstrated by several genetic approaches in the mouse that PPF absolutely requires a state of 

resistance to apoptosis with an excess of anti-apoptotic genes of the BH3 family, Mcl1 and Bcl-xL 

over the apoptotic members (Kodama et al., 2012). Studies have shown that at the end of MK 

differentiation, the activation of the intrinsic anti-apoptotic pathway is involved in platelet production 

(Kile, 2009),  and also in platelet survival (Mason et al., 2007; Zhang et al., 2007). Platelet survival is 

regulated by an apoptotic process, which is dependent of the equilibrium between anti-apoptotic and 

apoptotic BH3 family members. Indeed a recent study has demonstrated that MKs and platelets 

possess functional BAK/BAX-mediated intrinsic apoptotic pathway and FasL-inducible extrinsic 

apoptotic pathway (Josefsson et al., 2014). Both pathways must be restrained during MK growth and 

development to allow normal platelet production. MKs possess a functional extrinsic apoptotic 

pathway, which can be activated by FasL, but the activation of apoptotic pathway by FasL does not 

http://en.wikipedia.org/wiki/Apoptosis
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stimulate platelet production and leads to failure of PPF (Josefsson et al., 2014). Livin is an 

intracellular anti-apoptotic protein, which belongs to the inhibitor of apoptosis protein family and acts 

by binding and inhibiting caspases. Recent study has shown that Livin has a role in thrombopoiesis by 

regulating the apoptotic and anti-apoptotic balance in MK endomitosis and platelet production (Abd-

Elrahman et al., 2013). 

On the other hand, Bcl-xL over expression in MKs induces an abnormally developed platelet DMS 

and cell margin extensions, as well as impaired PPF (Kaluzhny et al., 2002). Furthermore, two studies 

have suggested that members of the apoptotic machinery also contribute to the PPF (Clarke et al., 

2003; De Botton et al., 2002). Clarke and colleagues have shown that distinct apoptotic factors 

accumulate in mature MKs including caspase activation. De Botton et al have shown that this 

activation of caspase is compartmentalized in the cytoplasm and recent studies suggest that it occurs in 

the mitochondria. Caspase inhibitors are able to inhibit PPF (Clarke et al., 2003; De Botton et al., 

2002). Presently, the caspase substrates are not yet known and may be components of the cytoskeleton. 

However it remains possible, as none of the caspase inhibitors used is totally specific that other 

proteases close to caspases are required for PPF. Indeed in the mouse, caspase 9 KO does not inhibit 

PPF.  

It remains that this controversy is not completely solved, but it is not excluded that platelet release 

may occur by different mechanisms: in vivo during the homeostatic production platelets may be 

formed by the standard PPF which requires a strong anti-apoptotic machinery; in vitro, in the shear or 

in case of acute thrombocytopenia when platelet release is accelerated, it may require additional 

mechanisms involving a caspase activation that may be initially independent of apoptosis. However, 

after platelet release, apoptosis is involved in the destruction of the MK nucleus that remains 

surrounded by a rim of cytoplasm. Further studies are required to elucidate the function of apoptosis in 

MK differentiation and to further investigate the role of the apoptotic machinery in platelet release 

with the hypothesis that the apoptotic machinery is used for platelet production in a different way than 

apoptosis. 

Platelet shedding must occur directly in the circulation. During maturation, MKs originally located in 

the marrow close to the osteoblasts migrates to the sub-endothelium region near sinusoids. Proplatelets 

must cross the endothelial barrier to enter into the marrow sinusoids. In vivo imaging has shown that 

platelets can be shed from proplatelet extension directly in marrow sinusoids (Junt et al., 2007). There 

are three main determinants that are associated with platelet production, including DMS or IMS, MT 

and actin filaments. The process and regulation of PPF is based on both MT and actin cytoskeleton 

(Patel-Hett et al., 2008; Patel-Hett et al., 2011; Patel et al., 2005b; Thon et al., 2012; Thon et al., 2010). 
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Figure 5: Overview of platelets formation from mature megakaryocytes 

Successive events occur during MK transition from immature cells (A) to individual platelet shedding 

(E). (B) MKs undergo rounds of endomitosis, organelle synthesis, and cytoplasm maturation and 

expansion, as well as centrosomal MT array. (C) Before the onset of proplatelet formation, 

centrosomes disassemble and microtubules translocate to the cell cortex. PPF begins with the thick 

pseudopodia formation. (D) Sliding of overlapping microtubules drives proplatelet elongation; while 

organelles are tracked into proplatelet ends to give rise to nascent platelets. Proplatelet elongation 

continues expansion, bending and branching to amplify proplatelet ends. (E) The entire 

megakaryocytic cytoplasm is converted into proplatelets, which are released from the cell. The 

nucleus is eventually extruded from proplatelets, and individual platelets are released from proplatelet 

ends (Figure is from (Patel et al., 2005a) ). 
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2.2.1 DMS or IMS 

Proplatelet elongation requires an increase in plasma membrane, which is performed by the DMS or 

IMS. The network of DMS contains the membrane cisternae and tubules originally thought to 

fragment the cytoplasm into channelized areas, from where platelets are shed. The process of MK 

maturation is associated with formation of secretory granules, increased cytoskeleton proteins and 

development of a complex membrane system. DMS or IMS arises from the invagination of the MK 

plasma membrane and forms a network of membrane channels that serves as a membrane reservoir for 

platelet formation (Radley and Haller, 1982; Schulze et al., 2006). At all development stages, the 

DMS remains continuous on the cell surface. A recent study has demonstrated that the DMS 

biogenesis from the plasma membrane occurs by four successive steps, but a part of the DMS directly 

originates from the Golgi system (Eckly et al., 2014). The DMS is also associated with both the MT 

and the actin filaments during PPF, and is evaginated to form pseudopodial processes during PPF 

(Patel et al., 2005b; Schulze et al., 2006). A recent study has shown that CIP4 (Cdc42-interacting 

protein 4) is involved in the formation of plasma membrane and platelet production in MKs by 

impairing membrane-cytoskeleton remodeling (Chen et al., 2013). 

During development, numerous different types of granules including lysosomes, α- and dense granules 

are formed. These granules as well as other MK organelles such as mitochondria and ribosomal RNAs 

are transferred into the nascent platelets. α-granules are formed in the Golgi and contain both 

endogenously produced proteins and proteins derived from the extracellular environment through 

receptor-mediated endocytosis or pinocytosis. The DMS directly participates in platelet production, 

whereas special platelet organelles such as α- and dense granules through their content play important 

roles in platelet function, but also in more general phenomenon such as bone marrow remodeling and 

formation of the hematopoietic niche, innate immunity and endothelium activation. PF4 and vWF are 

component of -granules that are synthesized by MKs and follow the normal route for packaged 

proteins. They are detected early in MK differentiation in the endoplasmic reticulum and Golgi, then 

their expression increases during differentiation and they localize into α-granules (Schmitt et al., 2001). 

Some platelet proteins, such as the GPIIb/IIIa, are synthesized and directed to the MK surface 

membrane and then to -granules, may be through an endocytic pathway. Other proteins such as 

fibrinogen or immunoglobulins are not synthesized by MKs, but are endocytosed to the α-granules by 

their respective receptors GPIIb/IIIa or the Fc receptor. This may imply that a part of the GPIIb/IIIa is 

activated in MKs to bind fibrinogen. Individual organelles including granules migrate from the cell 

body to the proplatelets, with approximately 30% of them in motion at any given time (Richardson et 

al., 2005). 
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2.2.2 Microtubules 

MTs are the main component of mitotic spindle participating in cell division and play roles in 

intracellular transport by interaction with dynein and kinesin, as well as in several other cellular 

processes. MTs play an important role in transport of mitochondria, granules and other vesicular 

organelles into proplatelets (Richardson et al., 2005). MTs may also convey spliceosomes, a 

phenomenon that may be important to permit protein synthesis in platelets (Denis et al., 2005). PPF 

depends on the MT function because treatment of MKs with drug that disassembled MT, such as 

colchicine or nocodazole, can block PPF (Tablin et al., 1990). Dynamic MT reorganization is essential 

for PPF and defects in their assembly lead to an absence of PPF and thrombocytopenia. MTs are the 

main structural component of proplatelet and a continuous MT polymerization is required for 

proplatelet enlargement. However, it is the sliding of overlapping MTs driven by dynein within 

cortical bundles that acts as the primary motor for proplatelet elongation. Dynein, a minus-end MT 

motor protein, localizes along the length of the proplatelet MT array and appears to provide directly 

the forces for MT sliding, because inhibition of dynein blocks PPF by disassembly of the dynactin 

complex (Patel et al., 2005b). Thus, the contribution of cytoplasmic dynein and dynactin to MT sliding 

appears to be key events for driving proplatelet elongation. 

Visualization of MT dynamics in living MKs has provided insights into the role of MTs in PPF. EB3 

(End-binding protein three), a MT plus end-binding protein associated with polymerizing MTs, is 

fused to GFP and has been expressed in mouse MKs and used as a marker to follow the dynamics of 

MT plus ends (Patel-Hett et al., 2008; Patel et al., 2005b). Time-lapse fluorescence microscopy of 

proplatelet-producing MKs expressing EB3-GFP has shown that, as proplatelets extend, MT 

polymerization occurs continuously throughout the entire proplatelet, including the swellings, the shaft 

and the tips (Patel et al., 2005b). The EB3-GFP has also shown that MTs polymerize in both directions 

in proplatelets, toward the cell body and the tips, revealing that the MTs composing the bundles have a 

mixed polarity. 

In order to elucidate the mechanism of MT functions in late stages of MK maturation, Thon et al. have 

identified a large, intermediate discoid stage in platelet production, which they call „preplatelet‟ (Thon 

et al., 2010). The preplatelets are large discoid anucleate platelet precursors that have the capacity to 

convert reversibly into elongated proplatelet by twisting MT-based forces that can be visualized in 

proplatelets expressing GFP-β1-tubulin. Larger MT coils may undergo twisting to continue MT 

polymerization and form barbell shaped proplatelet. During barbell PPF, dynamic and bidirectional 

assembly of MT coils mediate platelet cytoskeleton arrangement as α- and dense granules track to 

distal proplatelet tips. 
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The platelets release from the ends of proplatelets occurs at an increasing rate in time during culture, 

as large proplatelets undergo successive fission along the midbody (Thon et al., 2010). When 

pseudopodia begin to elongate, MT bundles align in the proplatelet shafts to form a loop at the free 

end of proplatelet extension. It is believed that mature platelets are only formed and released from the 

tips of proplatelet extension, but not from the swelling along the extension (Italiano et al., 1999a; 

Italiano et al., 2007). MT bundles form discrete loops at the ends of proplatelets, then the MT marginal 

band will form the outline of the discoid platelets (Geddis, 2009).  

β1-tubulin isoform is unique to the MK lineage, particularly for platelets. The discoid form of platelet 

is maintained by a marginal band of tightly coiled MT. A functional polymorphism in β1-tubulin has 

been found in humans, which modifies platelet morphology and functions (Freson et al., 2005). Mice 

lacking β1-tubulin have shown a decreased PPF with thrombocytopenia and spherical platelets due to 

abnormal marginal MT band structure (Italiano et al., 2003). β1-tubulin mutations lead to 

macrothrombocytopenia in CKCS (Cavalier King Charles Spaniels) dogs These mutations induce an 

instability of the α/β-tubulin dimers leading to impaired PPF (Davis et al., 2008). A mutation of β1-

tubulin has been found in a patient with a congenital macrothrombocytopenia (Kunishima et al., 2009). 

This β1-tubulin mutant may not transport organelles from the MKs into proplatelets. In addition, β1-

tubulin is not expressed in NF-E2-deficient MKs (Lecine et al., 2000), which have an absence of PPF, 

this defect being partially rescued by reintroduction of β1-tubulin. These results link the NF-E2 and 

β1-tubulin with PPF, and provide further molecular insights into the role of MTs in platelet production. 

2.2.3 Actin 

The actin cytoskeleton plays an important role at both early and late stages of platelet biogenesis. At 

early stages, cytoplasmic polymerized actin is associated with DMS and actin is highly aggregated in 

cultured MKs during PPF, while inhibition of actin polymerization blocks PPF before pseudopodia 

elongation. This may be the consequence of an association of actin cytoskeleton with DMS and of 

actin function in PPF (Rojnuckarin and Kaushansky, 2001; Schulze et al., 2006). Actin assembly does 

not play an indispensable role in proplatelet extension, but actin filaments are enriched at the sites of 

proplatelet bifurcation suggesting that actin is involved in proplatelet branching and amplification of 

proplatelet tips, a phenomenon which may be important for the regulation of platelet production 

(Italiano et al., 1999a; Italiano et al., 1999b). In addition, actin cytoskeleton may participate in platelet 

functions, as actin regulates platelet shape both in unstimulated and activated platelets (Fox, 2001). 

Actin filaments are the thin filaments of the cytoskeleton and act as tracks for the movement of 

myosin molecules that attach to the microfilament and walk along them. Myosin motoring along F-

actin filaments generates contractile forces, which are called actomyosin fibers, both in muscle as well 

http://en.wikipedia.org/wiki/Myosin
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as in most non-muscle cell types. Actomyosin plays an important role in the regulation of PPF and 

platelet production, though the mechanisms are not completely understood. It has been shown that 

myosin II and its upstream regulator RhoA control the onset of PPF because altered myosin II activity 

leads to the premature initiation of proplatelets within the marrow space. Inhibition of myosin light 

chain phosphorylation or the absence of the main myosin heavy chain MYH9 increases PPF in vitro 

(Chen et al., 2007b; Eckly et al., 2009), while activation of Rho through ROCK and phosphorylation 

of MLC2 decrease PPF in vitro (Chang et al., 2007a). Even more, activation of Cdc42 and Rac 

increases PPF. 

It has also been demonstrated that actin fibers assembly near the MK internal membranes, suggesting 

that the actin/myosin complex may play a role both in PPF and in generation of forces that promote 

platelet release from proplatelets (Schulze et al., 2006). In Wiskott Aldrich syndrome patients, loss of 

function mutations in WASP (Wiskott Aldrich syndrome protein), an actin-regulating protein, are also 

associated with a thrombocytopenia, which combines a peripheral platelet destruction and a defect in 

platelet production related to an absence of MK egress from the bone marrow (Sabri et al., 2006).  

Furthermore, myosin II may interact with MTs to generate the forces that impair the protrusion 

required for PPF. This interaction between the actin and MT cytoskeleton may be extremely important 

in the late stages of MK differentiation, but also in platelets. A recent study has focused on the 

functional crosstalk between F-actin and MTs systems by using confocal microscopy and has shown 

an interdependence between MTs and F-actin dynamics in the morphological platelet changes induced 

by thrombin (Severin et al., 2013). Overall, the role of actomyosin in PPF is complex, because it is 

required at three steps: MK motility, PPF and generation of the contractile forces required for platelet 

abscission. Further studies should be performed to elucidate the functional and molecular interaction 

among actin, myosin and MT in platelets. 

In addition, recent studies indicate that ECM regulates PPF. Integrin receptors link the cytoskeleton 

changes in the MK with the ECM environment. For example, collagen I interaction with its receptors 

αIIβ1 and GPVI inhibit PPF within the marrow (Balduini et al., 2008; Sabri et al., 2004), while 

constitutive activation of integrin αIIbβ3 leads to an abnormal PPF and inhibits thrombopoiesis 

(Ghevaert et al., 2008). When they begin to migrate towards the endothelium barrier, MKs respond to 

other components of ECM such as vWF, fibrinogen or collagen type IV, which may promote PPF and 

platelet release by interacting with different receptors (Larson and Watson, 2006b). A differential 

response to extracellular factors provides a mechanism to prevent premature platelet release until MKs 

reach the vascular niche, suggesting the existence of a spatial and temporal regulation during platelet 

production (Larson and Watson, 2006a). 
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There is evidence that FGF4 and SDF-1 also play an important role in MK marrow localization and 

migration as well as in PPF (Avecilla et al., 2004). At the end of maturation, there are controversial 

results on the role of SDF-1. On one hand, SDF-1 induces MKs migration and PPF, on the other hand 

mature MKs present a decrease in response to SDF-1 resulting in a reduction in the marrow retention 

force, which may facilitate their exit from the marrow (Riviere et al., 1999). This decreased function 

of the SDF-1 receptor CXCR4 is due to the over-expression of RGS16, a negative regulator of G 

protein-coupled receptor signaling (Berthebaud et al., 2005). 

2.3 Rho-GTPase during megakaryopoiesis 

The Rho-GTPase is a family of small (~21 kDa) signaling G proteins that, belongs to the Ras 

superfamily. The Rho-GTPase proteins work as molecular switches that control intracellular signaling 

networks, such as organelle development, cytoskeleton dynamics, cell proliferation, cell differentiation, 

cell adhesion, apoptosis, cell migration and other common cellular functions (Boureux et al., 2007; 

Bustelo et al., 2007; David et al., 2012; Etienne-Manneville and Hall, 2002; Raftopoulou and Hall, 

2004). The Rho-GTPase proteins mediate these signal transduction pathways and cellular processes by 

multiple effectors and are regulated by GEFs (Guanine-nucleotide exchange factors) and GAPs 

(GTPase-activating proteins), which permit their switch between inactive GDP and active GTP forms 

(Aslan and McCarty, 2013; Bos et al., 2007; Etienne-Manneville and Hall, 2002; Schwartz, 2004). 

There are about 20 members of Rho-GTPase family in human, among which Cdc42, Rac1 and RhoA 

are the most common members that have been studied. These three members have different functions 

on the dynamics of the actin filaments: in fibroblasts Cdc42 affects filopodia extension, Rac1 

lamellipodia formation and RhoA stress fiber formation. In MK differentiation, the Rho-GTPase-

binding proteins Cdc42, Rac1 and RhoA regulate platelet production and function by mediating 

cytoskeleton reorganization (Bodie et al., 2001; McCarty et al., 2005; Pleines et al., 2010). Each Rho-

GTPase protein has numerous downstream effectors proteins. When activated, Rho-GTPase proteins 

bind to their effectors and participate in various cell processes (Figure 6). Rho-GTPases are the most 

important regulators during MK differentiation, more particularly on PPF (Aslan and McCarty, 2013). 
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Figure 6: The main effector pathways of Rho-GTPases family 

Regulation of the numerous effectors stimulated downstream Rho-GTPases family. ROCK, mDia, 

citron kinase and PKN are effectors acting downstream Rho A. ROCK including ROCK1 and ROCK2 

are the major effectors, which can regulate myosin light chain phosphorylation and myosin regulatory 

chain that induce contractility. LIMK works downstream of RhoA to phosphorylate cofilin and release 

actin monomers to promote actin polymerization. Another RhoA effector, mDia mediates both actin 

polymerization and MT stabilization. Rac has multiple effectors that mediate direct and indirect  

effects on cytoskeleton and gene expression, respectively. An important role of Rac is the formation of 

lamellipodia by the Arp2/3 complex activation. Both Rac and Cdc42 bind and activate PAK1, PAK2 

and PAK3. WASP is main effector of Cdc42 that mediates filopodia formation. (Figure is adapted 

from (Schwartz, 2004)). 
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2.3.1 RhoA during megakaryopoiesis 

During MK development, RhoA plays multiple roles in platelet biology, such as regulation of 

endomitosis, PPF, platelet release, platelet activation and function (Chang et al., 2007a; Lordier et al., 

2008; Suzuki et al., 2013). In addition, RhoA mediates actin assembly, actomyosin contractility and 

MT dynamics, which are important for MK differentiation and platelet generation (Piekny et al., 2005). 

After activation, RhoA binds to two main downstream effectors including ROCK (Rho-associated 

protein kinase) and mDia (mammalian diaphanous homologue) to regulate the cytoskeleton dynamics. 

mDia is a member of formin family protein involved in de novo actin nucleation and extension of non-

branched actin filaments and alignment of MTs (Schirenbeck et al., 2005), while the Rho/ROCK 

pathway plays a key role in the activation of myosin IIa providing the contractile forces required for 

platelet formation and allowing full spreading of platelets (Calaminus et al., 2007; Calaminus et al., 

2008; Ono et al., 2008). ROCK is a kinase that activates myosin regulatory light chain (MRLC), either 

directly or through the inactivation of myosin phosphatases and functions as a key regulator of 

actomyosin contractility (Ueda et al., 2002). 

RhoA regulates platelet production, shape change and secretion by controlling actin cytoskeleton 

forces. Expression of a constitutively active RhoA leads to a decrease in PPF, probably by preventing 

the folding of pseudopodia extensions from DMS (Chang et al., 2007a). RhoA deficient mice have a 

pronounced macrothrombocytopenia with platelet count about half the number of WT mice and 

changes in platelet shape. This leads to a prolonged tail bleeding time (Pleines et al., 2012). These 

results suggest that RhoA contributes to platelet production and platelet function in homeostasis and 

thrombosis. Using a similar mouse model, another group has observed the same platelet phenotype. In 

addition, the RhoA deficient MKs have a larger size with a higher ploidy and abnormal stiff 

membranes (Suzuki et al., 2013). These findings suggest that RhoA is necessary for normal MK 

development and platelet production. 

RhoA contributes to the assembly of the contractile ring by polymerizing actin filaments and by 

activating myosin through ROCK. Two RhoA effectors, ROCK and citron kinase regulate the actin 

contractile ring, which generates the contractile forces (Yamashiro et al., 2003). During MK 

differentiation, the GEF regulating RhoA must be down-regulated in endomitosis, which allows a low 

RhoA activation leading to contractile ring disassembly, cleavage furrow regression and subsequently 

cytoskeleton failure (Gao et al., 2012; Geddis et al., 2007). RhoA-mediated activation of ROCK and 

inhibition of myosin light chain (MLC) phosphatase induce MLC phosphorylation, leading to 

actomyosin modulation and conversion of platelet shape from discoid to spherical. Myosin IIa 
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deficiency affects F-actin organization and organelle distribution in MKs, which leads to 

macroplatelets with abnormal organelle content, suggesting that myosin IIa is required for proplatelet 

fragmentation, platelet abscission and the distribution of organelles within platelets (Pertuy et al., 

2014). Other RhoA effectors may also contribute to the assembly of the actin ring, such as mDia and 

phosphatidylinositol 5-kinase (PIP5K) (Glotzer, 2009). These findings support that RhoA is as a 

multifunctional regulator in MK development and platelet production. 

RhoA-mediated platelet contraction may also have a role in thrombus stability under shear flow 

conditions, as RhoA and its downstream effectors can stabilize and maintain platelet-matrix and 

platelet-platelet interactions. It has been shown that RhoA may play a role in regulating the stability of 

αIIbβ3 and integrin adhesion contacts, while it also sustains stable platelet-matrix interactions under 

conditions of high shear stress (Schoenwaelder et al., 2002). In addition, stress fiber formation on 

collagen is repressed by inhibition of either ROCK by Y27632 or myosin II by blebbistatin. Inhibition 

of ROCK also results in a significant decrease in thrombus formation in vivo (Calaminus et al., 2007). 

These data support the contention that as an effector of RhoA, myosin IIa contractility is necessary for 

maintenance of platelet structure during spreading on collagen and essential for thrombus stability. 

PKC (protein kinase C) is a family of serine/threonine kinases, which have been commonly studied in 

thrombopoiesis. Their expression varies during human MK development and controls MK maturation 

and platelet shedding. PKCε is one member of the PKC family, its down-regulation in cultured murine 

MKs leads to a decrease in PPF and the production of larger platelets (Gobbi et al., 2013). 

Furthermore, RhoA inhibition rescues the proplatelet defects induced by PKCε down-regulation. Thus, 

these data suggest that a decreased RhoA activity increases PPF. Interestingly, this seems 

contradictory to the RhoA deficient mice in which RhoA is necessary for normal MK development 

and PPF (Pleines et al., 2012; Suzuki et al., 2013), but in agreement with the results obtained in culture. 

This may due to differences in experimental procedures and the origin of the MKs used in the different 

studies. Alternatively, RhoA may act in opposite ways at different stages of MK differentiation, being 

required at early steps and inhibiting PPF at late stages. Furthermore regulation of RhoA may greatly 

differ in in vitro and in in vivo experiments. 

2.3.2 Cdc42 during megakaryopoiesis 

Cdc42 is necessary for platelet filopodia formation, granule secretion and aggregation, as well as 

platelet activation and function, which are involved in platelet mediated thrombosis and hemostasis 

(Akbar et al., 2011; Pleines et al., 2010). Cdc42 deficient mice exhibit a thrombocytopenia and a 

slightly increase in platelet size, as well as a decreased life span in vivo. PAK1/2 (p21-activated kinase) 

are effectors downstream of Cdc42. Activation of PAK1/2 is significantly reduced in Cdc42 deficient 



 

44 

 

platelets and leads to a failure in the formation of filopodia or lamellipodia on fibrinogen or CRP 

(collagen-related peptide) (Akbar et al., 2011). An acceleration of arterial occlusive thrombus 

formation with prolonged bleeding times is also observed. Cdc42 deficient platelets also show an 

increased granule secretion and an enhanced aggregation on collagen under flow, with a reduced 

filopodia extension after adhesion on immobilized vWF, suggesting a link with GPIb signaling. All 

these observations imply that Cdc42 plays an important role in various aspects of platelet production, 

such as regulation of platelet activation and granule organization. 

Cdc42 activation is commonly associated with filopodia formation. Early studies support this 

contention in platelets because Cdc42 is found to be abundant. Stimulated by TRAP (thrombin 

receptor-activating peptide) or ADP (Adenosine diphosphate), Cdc42 translocates to the platelet 

cytoskeleton through the activation of the αIIbβ3 integrin followed by actin polymerization and 

tyrosine kinase activation (Dash et al., 1995). Additionally, treatment of platelets with secramine A, a 

Cdc42-specific inhibitor, blocks platelet adhesion on collagen and collagen-induced platelet 

aggregation (Dash et al., 1995). Another group has demonstrated that actin polymerization and Cdc42 

activation are required for activation of integrin α2β1, thus regulating platelet adhesion to collagen and 

their subsequent activation (Pula and Poole, 2008). Cdc42 can also be rapidly and extensively 

activated by PAR-1 stimulation in solution and associated with actin cytoskeleton in resting platelets 

(Azim et al., 2000), as well as after activation by PAK stimulation that leads to early platelet shape 

change (Vidal et al., 2002). 

WASP is a main effector of Cdc42 that mediates filopodia formation. Active Cdc42 induces the 

activation of WASP by changing its conformation, which leads to Arp2/3 complex activation, 

resulting in an increase actin turnover and initiating the formation of parallel actin bundles. Its major 

role concerns the branching of the actin filament. Cdc42 can also bind to and activate IRSp53 to 

subsequently recruit the Ena/vasodilator-stimulated phosphoprotein (VASP) family protein Mena, thus 

promoting filopodia elongation (Krugmann et al., 2001). 

A recent study has focused on the respective role of Rac and Cdc42 in PPF. Using conditional KO 

mice, Pleines and colleagues have shown that Cdc42 and Rac1 have redundant functions in PPF and 

platelet functions (Pleines et al., 2013). The double Cdc42/Rac1 KO leads to a 

macrothrombocytopenia with an abnormal platelet morphology as well as impaired platelet function 

and PPF in vitro. Double KO mice also show nearly normal actin structures and assembly, but 

surprisingly MK tubulin organization is severely disrupted. This disruption in MT organization and 

stability inhibits PPF and results in a decrease of platelet release (Pleines et al., 2013). This study 

introduces Rac1 and Cdc42, as novel, and functionally redundant regulators of MT stabilization and 

dynamics. Together, these studies suggest that the combined action of Rac1 and Cdc42 is crucial for 
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platelet production, particularly by regulating MT dynamics. 

2.3.3 Rac1 during megakaryopoiesis 

Rac-GTPase proteins are involved in a wide variety of cellular functions such as cell polarity, 

vesicular trafficking, cell cycle and transcriptional dynamics (Bustelo et al., 2007). There are three 

isoforms of Rac-GTPase, Rac1, Rac2 and Rac3, among which only Rac1 is expressed in platelets and 

involved in actin cytoskeleton reorganization. Early studies of Rac in platelet function have shown that 

Rac is activated in platelets upon stimulations with different agonists, including collagen, thrombin 

and fibrinogen (Soulet et al., 2001; Suzuki-Inoue et al., 2001). Use of different inhibitors has shown 

that Rac and PAK are activated during platelet spreading on collagen, suggesting that they are 

downstream effectors of α2β1 integrin, as well as the Src family kinases and PI3-kinase. 

Rac1 is involved in the regulation of platelet secretion and aggregation, and its effectors control the 

formation of platelet lamellipodia. Rac1 is required for lamellipodia formation when platelet spread on 

surfaces of fibrinogen, vWF, laminin and collagen (McCarty et al., 2006; McCarty et al., 2005). Using 

Rac-deficient platelets, it has been shown that the formation of lamellipodia on collagen and laminin is 

Rac1-dependent (McCarty et al., 2005). Furthermore, Rac1 has been shown to be crucial for GPVI-

regulated platelet spreading as well as in sustaining shear-resistant platelet aggregates under dynamic 

flow conditions both in vitro and in vivo. Rac1 is also required to maintain the stability of the platelet 

aggregation under physiological shear conditions as well as for thrombus stability at sites of injury. 

Another study using both Rac1 KO mice and Rac1 inhibitor-treated mice has shown that loss or 

inhibition of Rac1 blocks platelet secretion and prolongs the bleeding times, suggesting the Rac1 is 

required for platelet secretion and aggregation as well as for platelet functions (Akbar et al., 2007).  

Rac has a role in PI3K activation in platelets, while PI3K activation is also required to  completely 

activate Rac, supporting a feedback model of platelet activation that control platelet lamellipodia 

formation, secretion and thrombus stability. Phospholipase C-gamma2 is activated downstream of the 

immunoreceptor tyrosine activation motif (ITAM) receptor GPVI, which is one of the platelet 

collagen receptors. Rac1 may play a role in PLC-gamma2 activation through a mechanism 

independent of tyrosine phosphorylation (Piechulek et al., 2005). In platelets, Rac1 is required for 

PLC-gamma2 activation downstream of GPVI/ITAM and is essential for thrombus formation in vivo 

(Pleines et al., 2009). Rac1 is also involved in GPVI-mediated platelet aggregation, αIIbβ3 activation, 

granule secretion and ADP secretion downstream of calcium mobilization. Rac1 also participates in 

vWF-induced activation of αIIbβ3 integrin upstream of PI3K/Akt pathway to drive platelet responses 

to GPIb-IX (Delaney et al., 2012). 
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Similar to Cdc42, Rac translocates to the platelet cytoskeleton after activation. During PAR-1-

mediated platelet activation, Rac translocates to the cell periphery, binds to the plasma membrane 

where it can interact with phosphoinositide kinases implicated in actin assembly (Azim et al., 2000). 

Rac is also found in the center of activated platelets, which is enriched in platelet granules and 

membranes. Rac1 activation is also required for platelet integrin-mediated p38 and ERK 

phosphorylation, suggesting that in addition to its role in cell spreading, Rac1 has also a role in clot 

retraction by MLC phosphorylation through p38 and ERK, independently of the Rho and ROCK 

pathway (Flevaris et al., 2009).  

Rac1 has multiple effectors that mediate effects on the cytoskeleton and gene expression. One 

important role of Rac is the formation of lamellipodia by the activation of the Arp2/3 complex. Rac1 

downstream of PLC-gamma2 and calcium signaling regulates platelet secretion, aggregation and 

spreading processes by activating Rac effectors, such as the Arp2/3 complex and the PAK family. 

Both Rac and Cdc42 bind and activate PAK1, PAK2 and PAK3. Platelets express different PAK 

isoforms, and like Rac, PAKs are activated as platelets spread on collagen in a Src- and PI3K-

dependent manner (Azim et al., 2000; Vidal et al., 2002). In platelets, PAKs act downstream of Rho-

GTPase to control the intracellular cortactin distribution. The interaction of cortactin with the Arp2/3 

complex is associated with the activation of actin polymerization in lamellipodia structures (Uruno et 

al., 2001). The adaptor protein SLP-76 has also been proposed to potentiate PAK activity downstream 

of Rac activation to mediate platelet lamellipodia formation (Obergfell et al., 2001). 
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3 Formin family 

3.1 Formin family 

Formins (formin homology proteins) are a family of proteins highly conserved in eukaryotes, which 

possess several domains and govern the dynamic remodeling of both actin and MT cytoskeleton 

(Bartolini and Gundersen, 2010; Chesarone et al., 2010; Goode and Eck, 2007). Formins are involved 

in a wide range of cellular functions, such as cell polarity, cytokinesis, cell migration and SRF 

transcriptional activity. They also play a role in embryonic development (Faix and Grosse, 2006; 

Sagot et al., 2002a). Most formins are Rho-GTPase effector proteins (Kuhn and Geyer, 2014). 

Formins can also interact with diverse signaling molecules and cytoskeleton proteins, while certain 

formins have also been assigned with nucleus functions (Baarlink and Grosse, 2014; Young and 

Copeland, 2010). 

3.1.1 Molecular structure of formins 

Formins are characterized by the presence of three FH (Formin homology) domains (FH1, FH2 and 

FH3), although some members of the formin family do not necessarily contain all these three domains 

(Kitayama and Uyeda, 2003; Wallar and Alberts, 2003). The most highly conserved domains of 

formins are FH1 and FH2, both of them are involved in the control of actin assembly (Evangelista et 

al., 2002; Goode and Eck, 2007; Sagot et al., 2002a; Watanabe and Higashida, 2004). 

The proline-rich FH1 domain mediates interactions with a variety of proteins, including the actin-

binding protein profilin, SH3 (Src homology 3) domain proteins, and WW domain proteins. Profilin is 

required to bind to actin monomers and the FH1 domain of the formins to induce actin polymerization. 

The FH2 domain remains continually associated with the fast-growing barbed end of the actin 

filament while the FH1 domain increases the rate of assembly by directing the association of profilin–

actin monomers above the theoretical diffusion-limited rate (Kovar et al., 2006; Romero et al., 2004). 

The FH2 domain is also required for the self-association of formin proteins through the ability of FH2 

domain to associate (Shimada et al., 2004a; Takeya and Sumimoto, 2003). The FH2 dimer nucleates 

actin filament assembly by interacting directly with actin and stabilizing actin polymerization, 

including dimers and trimers. The FH2 domain binds directly to G- and F-actin and has been shown in 

many formins to nucleate actin molecules, elongate actin filaments and control actin nucleation 
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(Goode and Eck, 2007; Higashida et al., 2013). FH2 domains act as the functional center of formins, 

which nucleates new actin filaments and associates with the fast-growing end (barbed end) of actin 

filaments (Bear, 2002; Higgs, 2005; Pollard, 2002; Zigmond, 2004). The FH2 domain differs quite a 

lot among individual formins, reflecting the different cellular functions and regulatory mechanisms of 

the actin polymerization factors. Thus, most of the FH2 domain may be dedicated to an actin assembly 

role. 

In addition, certain members of formins can be auto-inhibited, and are classified as Diaphanous-

related formins (DRFs) (Alberts, 2001; Watanabe et al., 1999), because they are homolog to the 

Drosophila gene diaphanous (Castrillon and Wasserman, 1994). In addition to the conserved FH1 and 

FH2 domains, DRFs contain a conserved N-terminal regulatory domain and a C-terminal Diaphanous-

autoinhibitory domain (DAD). The core regulatory domain at the N-terminal includes several 

adjoining domains: a GTPase-binding domain (GBD) required for binding to small GTPases, which is 

contiguous to the FH3, a Diaphanous-inhibitory domain (DID), which is a subdomain of the 

GBD/FH3 domain, and a dimerization domain (DD). A molecular scheme of the domain architecture 

of DRFs is shown in Figure 7. The GBD domain is a bifunctional auto-inhibitory domain that interacts 

with activated Rho family members. The DAD domain can mediate auto-inhibition through 

interactions with the DID, while the intra-molecular interaction between the C-terminal DAD and its 

N-terminal DID leads to the auto-inhibition of DRFs (Alberts, 2001; Lammers et al., 2005; Li and 

Higgs, 2003; Watanabe et al., 1999). However, the intra-molecular auto-inhibition can be relieved 

upon the interaction with an active Rho-GTPase, such as Rho, Rac or Cdc42, which binds to GBD and 

disrupts the DAD-DID interaction to release the DAD domain away from the DID domain, leading to 

a partial activation of the DRFs (Faix and Grosse, 2006; Li and Higgs, 2005; Nezami et al., 2006; 

Rose et al., 2005). Addition of the DAD to mammalian cells induces actin filament formation, 

stabilizes MTs and activates serum-response mediated transcription. However, this activation process 

requires high concentrations of Rho-GTP, so the release of the auto-inhibition requires membrane-

associated factors that cooperate with Rho-GTP (Seth et al., 2006). 

 

Some formins contain a FH3 domain between the GBD and the FH1 domain, which is the least 

conserved module among the different domains and is involved in the regulation of formin activity. 

The FH3 domain is required for sub-cellular localization and directs formins to the correct intracellular 
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localization, such as the mitotic spindle or bud tips in yeast (Kato et al., 2001; Ozaki-Kuroda et al., 

2001; Sharpless and Harris, 2002). Alternatively, some part of the FH3 domain may contribute to 

interactions with binding partners, such as the Rho small GTPases (Westendorf et al., 1999). In the 

inactive state of formins, the FH3 domain recognizes the C-terminal DAD to generate an intra-

molecular auto-inhibited complex. After the Rho-GTPase binding to GBD, the conformation changes 

from an auto-inhibited state to an active state. 

The conservation of the formin homology domains suggests that all formins have similar molecular 

activities and underscores the need to characterize their structure and function. 
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Figure 7: Scheme of the structure and the molecular regulation of Diaphanous-related formins 

(A)Among formin proteins, besides the conserved FH1 and FH2 domain, DRFs contain conserved 

regulatory domains and a C-terminal Diaphanous auto-inhibitory domain (DAD). The core region at 

the N-terminal includes several contiguous subdomains including a GTPase binding domain (GBD), a 

Diaphanous-inhibitory domain (DID), and a dimerization domain (DD). (B) Auto-inhibition of DRFs. 

It has been shown that the interaction between the DID and DAD domains inhibits the activity of the 

FH2 domain. The binding of specific Rho-GTPases to GBD can relieve this auto-inhibition by directly 

release the DAD domain away from the DID domain, leading to a partial activation of the DRFs (Li 

and Higgs, 2005; Rose et al., 2005). Alternatively, the Diaphanous-related formins that bind to 

activated Rho GTPases. (Figure from (Faix and Grosse, 2006) ). 
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3.1.2 Formin functions in the regulation of actin cytoskeleton 

Formins act as regulators of actin cytoskeleton organization that regulate the dynamics of actin 

filaments. In contrast to the Arp 2/3 complex, formins nucleate directly the formation of unbranched 

actin filaments. For example, Bni1p and Cdc12p have a direct function involving actin nucleation. 

Overexpression of the FH1FH2 domains of Bni1p and Cdc12p in yeast increases the formation of 

actin cables (Kovar et al., 2003; Pruyne et al., 2002; Sagot et al., 2002b), while deletion analysis 

reveals that the Bni1p FH2 domain is sufficient for actin filament nucleation (Pruyne et al., 2002). 

Cytochalasin B inhibits actin polymerization through binding to the fast-growing (barbed) end of F-

actin filaments. Polymerization induced by Bni1p is inhibited by cytochalasin B, indicating that the 

nucleated filaments growth predominantly at the barbed end. In vitro studies of Bni1p (Pring et al., 

2003; Sagot et al., 2002b) and Cdc12p (Kovar et al., 2003) have shown that they bind to the barbed 

end of actin filaments and increase the overall step of actin polymerization by promoting the actin 

nucleation rate, a process occurring in cells independently of the Arp2/3 complex (Pollard and Borisy, 

2003). However, binding of Bni1p to the barbed end reduces the polymerization-depolymerization rate, 

without blocking the barbed-end actin dynamics (Pring et al., 2003). Alternatively, Cdc12p binds to 

the barbed end like capping protein and inhibits actin assembly-disassembly dynamics. This suggests 

that Bni1p and Cdc12p are actin-filament-capping proteins, but unlike traditional capping proteins that 

bind to the barbed end and prevent filament elongation, they bind to the barbed end of filaments and 

promote the growth rate. 

Actin nucleation is regulated by profilin, a ubiquitous G-actin-binding protein, which induces the 

addition of monomers to the barbed end of actin filaments. High concentration of profilin decelerates 

the rate of FH1FH2-induced actin assembly, while low profilin concentration accelerates the actin 

polymerization rate (Pring et al., 2003; Sagot et al., 2002b). The presence of profilin greatly reduces 

formin nucleation activity, while interactions between profilin-actin with the FH1 domain accelerate 

their elongation activity at the FH2-capped barbed ends (Chesarone et al., 2010). Profilin can not only 

promote the polymerization rate of the filaments, but also stimulate actin filaments barbed-end 

elongation, suggesting that profilin may have two different roles in formin-dependent actin assembly: 

both nucleation and elongation of actin filaments. 

Alternatively, there is evidence that some specific DRFs may promote nucleus actin assembly in a 

signal-dependent manner (Baarlink and Grosse, 2014). Under certain conditions, some DRFs can 

change of cellular compartments by shuttling between cytoplasm and nucleus. A study has shown that 
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there is a functional nuclear localization signal in the N-terminus of mDia2 and at least one functional 

nuclear export signal in the C-terminus (Miki et al., 2009). 

Formin-induced nucleation may be further regulated by formin post-translational modifications or by 

the binding partners. For example, formin Bni1p is regulated by phosphorylation in vivo. It has been 

shown that a particular sub-domain of FH2 and formin-interacting proteins participate in the 

regulation of actin assembly. The N-terminal region of Rho1p targets the Bni1p FH2 domain bound to 

the translation elongation factor eF1A and bundles actin filaments, implying a Rho1p-mediated 

reorganization of the actin cytoskeleton (Liu et al., 2002; Umikawa et al., 1998). Deletion of the 

eF1A-binding site within Bni1p induces a disruption in actin assembly (Umikawa et al., 1998), while 

overexpression of eF1A leads to reassembly of actin filaments that correlates with an activated Bni1p 

(Munshi et al., 2001). 

The tumor suppressor protein adenomatous polyposis coli (APC) is one of the in vivo binding partner 

of the formin mDia1 during actin filament assembly. It has been shown that APC nucleates actin 

assembly and synergizes with tmDia1, while they are associated to overcome the inhibition of actin 

filament formation induced by capping protein and profilin, suggesting a collaboration between 

different actin assembly-promoting factors (Okada et al., 2010). Another group has shown that APC 

recruits actin monomers and binds to the tail region of mDia1 to form a complex, which initiates the 

actin filament formation and represses the inhibition of actin filament formation induced by capping 

protein and profilin. At the onset of filament polymerization, the complex deaggregates and mDia1 

moves to the growing barbed ends, while APC remains at the site of nucleation (Breitsprecher et al., 

2012). Thus, the two assembly factors directly interact to initiate filament assembly and then separate 

to retain independent associations with either ends of the growing filament. APC is an efficient 

nucleator that allows new filaments assembly, even at a high profilin level, where formins are less 

efficient. Alternatively, mDia1 has an independent role in protecting filament elongation from capping 

proteins and enhances the polymerization rate. 

As actin nucleator, formin assembles unbranched actin filaments and typically associates with the 

growing barbed end of actin filaments (Pollard, 2007). Formins are also involved in the regulation of 

linear bundles of actin filaments, such as stress fiber formation, filopodia structures, lamilipodia 

formation and contractile ring during cytokinesis. In cultured mammalian fibroblasts, formin mDia1 

plays an essential role in Rho-mediated stress fiber formation (Tominaga et al., 2000; Watanabe et al., 

1997; Westendorf et al., 1999). Using live-cell microscopy analysis, recent studies have shown that 

mDia1 assembles stress fibers, which are associated with focal adhesions where actin polymerization 

occurs (Hotulainen and Lappalainen, 2006). mDia1 is involved in stress fiber assembly both in 
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fibroblasts and in myofibroblasts (Anderson et al., 2004). Formin FMLN2 may promote the rate of 

filament elongation by protecting the growing end of the filament from actin-capping proteins and by 

attaching the filament ends to the plasma membrane (Blanchoin and Michelot, 2012). 

In addition, formins play a role in many organisms by modulating actin activity, such as cytokinesis 

and transcriptional activation of the SRF. A general requirement of formins in cytokinesis implies that 

formins may regulate the formation of the actin contractile ring. Use of RNAi to decrease the 

expression level of the formin CYK-1 has shown that this formin regulates cortical microfilaments 

assembly and is essential for cytokinesis in the early embryo, while Arp2/3 is dispensable (Severson et 

al., 2002). Rho-mediated stimulation of formin protein and profilin is required for assembly of the 

actin contractile ring (Tolliday et al., 2002). The formin Cdc12 is a component of the cell division ring 

and is required for the primary F-actin ring formation cables that generates the actin contractile ring 

(Arai and Mabuchi, 2002). The contractile ring is the active site of actin assembly, this actin 

polymerization activity requires Cdc12 and Arp3, profilin and WASP, while Arp 2/3 complex and 

formins induced actin polymerization are crucial for cytokinesis (Pelham and Chang, 2002). Thus, 

formation of some actin structure may require coordination of formins and the Arp2/3 complex. 

3.1.3 Formin functions in regulation of microtubule cytoskeleton 

In addition to their actin cytoskeleton activity, formins also play important roles in regulating the 

dynamics of MT cytoskeleton (Bartolini and Gundersen, 2010; Chesarone et al., 2010; Gundersen et 

al., 2004; Ishizaki et al., 2001; Kato et al., 2001). Formins participate in multiple cellular processes 

and signaling pathway by remodeling MT cytoskeleton, such as regulation of cell migration, cell 

division, and metastasis and embryo development. 

In mammalian cells, mDia formins act as a scaffold regulator downstream of Rho and modulate MT 

function and organization as well as promote MT stabilization (Kato et al., 2001; Palazzo et al., 2001). 

In mouse embryonic fibroblasts, active Rho and mDia1 colocalize at the cell front. Loss of function 

analysis has indicated that mDia1 is required for MT stabilization and cell migration, as well as 

necessary for the formation of orientated and stable MTs during wound healing, suggesting that Rho-

mDia1 signaling functions during cell movement, while Galha12/13 is dispensable in this process 

(Goulimari et al., 2005). mDia1 mediates formation of stable MTs by interaction with the MT tip 

proteins APC and EB1, thereby capturing MTs at the cell cortex to promote cell migration (Wen et al., 

2004). Formins also directly bind to MTs by their FH2 domain. This interaction is important in 

promoting the capture and stabilization of MTs oriented towards the leading edge of migrating cells. 

mDia also promotes the capture of MTs by the kinetochore during mitosis and the alignment of MTs 

along actin filaments (Bartolini and Gundersen, 2010). mDia is sufficient to generate and orient stable 
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MTs and DRFs are a part of the conserved pathway that regulates the dynamics of MT ends. 

Microinjection of serum-starved NIH 3T3 cells with DNA encoding a constitutively active form of 

mDia2 or DNA encoding the DAD auto-inhibitory domain, leads to activation of endogenous mDia1 

and stimulates the formation of stable MTs oriented towards the wound edge (Palazzo et al., 2001).  

In addition, mDia formins colocalize with a subset of MTs in some cells and bind directly to MTs in 

vitro. mDia1 localizes to the mitotic spindle in HeLa cells mitotic spindle and plays a role in the 

spindle-cleavage furrow interaction during cell division (Kato et al., 2001). mDia1 and mDia2 

stabilize MTs by reducing the tubulin subunit exchange at the plus ends. The exact mechanism 

sustaining this effect is not yet fully understood. However, the affinity of formins for actin is much 

higher than for MTs (Chesarone et al., 2010). By expression of constitutively active forms of thirteen 

mammalian formins in HeLa and NIH3T3 cells, another group has shown that regulation of MT 

acetylation is likely a general formin feature and that FH1-FH2 domain of mammalian formins is 

sufficient to induce MT acetylation (Thurston et al., 2012). Therefore, these data support an important 

functional link between mDia formins and the regulation of MT cytoskeleton. 

Furthermore, formins may regulate multiple cell processes by coordinating the MT and actin 

cytoskeleton. By catalyzing actin polymerization and stabilizing MTs, mDia1 plays also an important 

role in cell migration (Yamana et al., 2006). ACF7 (actin crosslinking family 7), the spectraplakin 

family member that has both actin and MT binding domain, acts as an integrator of MT-actin 

dynamics. ACF7 may bind along MT and is required for MT stabilization downstream of active mDia, 

as well as it regulates MT dynamics and enhances the link between MT and polarized F-actin 

(Kodama et al., 2003). Alternatively, as it is the case for actin polymerization and SRF activation, the 

mDia1 FH2 domain is essential for stable MT formation, suggesting that actin-dependent processes 

may nevertheless be involved (Wen et al., 2004). Thus, formins mediate crosstalk between the actin 

and MT cytoskeletons.  

3.2 Formin associated with megakaryopoiesis 

In mammals, there are fifteen formins that cluster into eight different sub-families based on their 

sequences and domain architectures (Schonichen and Geyer, 2010), among which the DRFs are 

grouped into four subfamilies, including mDia (mammalian Diaphanous-related formin), Daam, 

FMNL and FHOD that commonly share a similar domain organization. mDia includes three members, 

mDia1, mDia2 and mDia3 and acts downstream of Rho-GTPases to assemble actin assembly. 

Alternatively, mDia may interact with microfilaments as well as regulation of MT dynamics to 
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establish and maintain cell polarity during migration and to sustain asymmetric division and other 

cytoskeletal-related activities. 

mDia1 is present in eukaryotic cells, localizes at the mitotic spindle and midbody and participates in 

multiple cytoskeleton-mediated cellular activities and organism formation, including stress fiber and 

filopodia formation, MT dynamics control, endocytosis, phagocytosis, activation of SRFs and 

formation of adherent junctions (Chesarone et al., 2010). DIAPH1 (Diaphanous-related formin 1, also 

known as mDia1, Drf1) is encoded by the gene DRF1 (DIAPH1), which is located on chromosome 

5q31.3, a chromosomal region that often undergoes a deletion in myelodysplastic syndromes (MDS, 

true 5q-syndrome or other MDS, but outside the minimum deletion). DIAPH1 is the homolog of the 

Drosophila diaphanous gene and belongs to the formin family. As a member of formin family, 

DIAPH1 works as an effector downstream of Rho-GTPase and regulates the actomyosin cytoskeleton 

as well as MT dynamics. In addition, inhibition of DIAPH1 may increase SDF1-mediated MK 

migration and our data show that it may be involved in PPF in the marrow. 

Depending on the cell type and stage in the cell cycle, mDia1 localizes to the cell cortex, trafficking 

endosomes, cleavage furrow, midbodies, centrosomes and the cytoplasm MT-organizing center crucial 

for cell division (Tominaga et al., 2000). Recent findings from KO mouse models or non-neuronal 

tumor cell lines in vitro suggest that, as a Rho-effector, mDia1 plays an essential role in the 

maintenance of the adherent junction and polarity of neuroepithelial cells in multiple brain regions and 

in modulating actin dynamic that drives tangential migration of neuronal precursors (Shinohara et al., 

2012; Thumkeo et al., 2011; Zaoui et al., 2008). 

Despite their important functions in cell biology and development, few studies have directly 

investigated the role of formins in late stage MK differentiation, particularly in PPF and platelet 

release. Previous studies have shown that human platelets contain the formins mDia1 and Daam1, 

both are effectors of Rho and are platelet actin assembly factors directly regulated by Rho GTPases 

(Higashi et al., 2008). Daam1 and mDia1 may contribute to shape change and aggregation in activated 

platelets by their actin assembly activity. Because mDia1 is 10-fold more potent than Daam1 in actin 

assembly activity, these two DRFs may have distinct functions, but little is known about their precise 

functions aas well those of other formin family members in platelets.  

Thomas and colleagues have found that there are six formins present in mouse MKs (mDia1, mDia2, 

Daam1, Fmnl1, Fmnl3 and FHOD1), mDia3 being also found in human MKs (Thomas et al., 2011). 

There are four formins (mDia1, mDia2, Daam1 and FHOD1) present in human platelets while only 

three formins (mDia1, Daam1 and FHOD1) are detected in mouse platelets, confirming previous 

reports for mDia1 and Daam1 (Higashi et al., 2008), but the presence of mDia2 and FHOD1 was 
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reported for the first time (Thomas et al., 2011). FHOD1 is an effector of Rho kinase in platelets and 

may be involved in the formation of platelet stress fibers. The most well characterized mammalian 

formin is mDia1, which is present both in mouse and in human platelets. However, mDia1 KO 

analysis has revealed the absence of alteration in platelet count, fibrinogen binding, tyrosine 

phosphorylation, P-selectin surface expression, platelet spreading or clot retraction in response to both 

G protein-coupled and tyrosine kinase-linked receptors (Thomas et al., 2011). Another group has 

shown that there is no evident difference in mDia1 expression level between quiescent and activated 

platelets, but PI3-kinase mediates the thrombin-induced platelet aggregation through the mDia1 

pathway (Gao et al., 2010). 

3.3 DRFs-related diseases 

Formins are implicated in a growing number of cancers and other diseases, which may due to their 

important roles in cytoskeleton remodeling including nucleation and elongation of non-branched actin 

filaments and the control of MT dynamics, two processes, which are tightly associated with cell 

division and migration. 

Upon the activation of GTP-bound Rho, mDia1 generates linear actin filaments implicated in the 

maintenance of polarity during adhesion, migration, division in immune cells and neuroepithelial cells 

and in driving tangential migration of cortical interneuron in rodents. Previous studies have shown that 

mDia1 (DFNA1) is associated with non-syndromic autosomal hearing loss (Lynch et al., 1997), as 

well as in neuronal migration of cortical interneuron and neuron development (Shinohara et al., 2012). 

A recent study has shown that patient with a homozygous nonsense DIAPH1 alteration has 

microcephaly, as well as reduced height and weight (Ercan-Sencicek et al., 2014). mDia1 protein is 

expressed in human neuronal progenitors during mitotic cell division and has a major impact in the 

regulation of spindle formation and cell division. These findings indicate that DIAPH1 has a crucial 

role in brain development and exhibits species differences in its function. 

Human DIAPH1 (homolog to mouse mDia1) located at 5q31.3, has essential roles in actin and MT 

remodeling, cell division and in response to adhesive and migratory stimuli. It has been shown that 

mDia1 acts as a main effector in a tumor-suppressor network that is involved in several 5q minus-

related hematopoietic disorders, such as MDS (Eisenmann et al., 2009). mDia1 KO mice show a 

splenomegaly, a bone marrow and splenic fibrosis, an hypercellularity with extramedullary 

hematopoiesis in the spleen and liver and the presence of immature myeloid cells with a high 

nucleus/cytoplasm ratio. This phenotype is similar to a human mixed MPD (myeloproliferative 

disorder)/MDS, suggesting that defective mDia1 expression or mDia1 function may contribute to 



 

57 

 

myeloid malignancies (Peng et al., 2007). In addition to the myeloproliferative defect, mDia1 KO 

mice also develop a lymphopenia with reduced T cell populations in lymphoid tissues, suggesting 

mDia1 is also associated with some formin-mediated immune diseases (Eisenmann et al., 2007). Mitf-

induced downregulation of DIAPH1 gene expression leads to an increased ROCK-dependent 

invasiveness in melanoma cells (Carreira et al., 2006). 

In addition, members of the DRF family (DRF1-DRF3) are required for invadopodia formation, 

suggesting that DRFs are involved in aggressive breast cancer cells (Lizarraga et al., 2009), while 

inhibition of the activation of mouse mDia1 (homolog to human DIAPH1) blocks the protrusion 

formation in carcinoma cells (Sarmiento et al., 2008). mDia1 also directly binds to leukemia-

associated Rho-GEF to mediate RhoA activity (Kitzing et al., 2007), which is associated with a wide 

range of cancers (Sahai and Marshall, 2002). 

In human cells, high expression of FMNL1 (formin-like protein 1) is associated with leukemia (Favaro 

et al., 2003) and non-Hodgkin lymphoma (Favaro et al., 2006), while overexpression of FMNL2 is 

involved in metastasis of colorectal cancer cells (Zhu et al., 2008). FMN1 and mDia1 are also crucial 

for macrophage phagocytosis and immune function (Brandt et al., 2007; Colucci-Guyon et al., 2005; 

Seth et al., 2006). Therefore, additional studies are needed to elucidate the involvement of formins in 

inherited immune disorders. 

Formin mutations also cause defects in fertility and development. Loss-of-function analysis show that 

mDia1 and FMN2 are crucial for normal gamete formation (Castrillon and Wasserman, 1994; Dumont 

et al., 2007; Leader et al., 2002) and embryonic development (Afshar et al., 2000; Grosshans et al., 

2005; Magie et al., 1999), while FMN1 is essential for normal limb development (Zhou et al., 2009). 

An early study links chromosomal truncation of human Dia2 (homologous to mouse mDia3) and 

oogenesis, while Dia2 defect leads to premature ovarian failure (Bione et al., 1998). Genome-wide 

studies have identified formins gene mutations in brain and pancreatic tumors (Jones et al., 2008; 

Parsons et al., 2008). 

Formins are promising targets for cancer therapies, as T cells engineered to recognize a FMN1 peptide 

exhibit potent anti-tumor activity (Schuster et al., 2007). Furthermore, mDia1 KO mice exhibit a 

mixed MPD/MDS syndrome, particularly by the proliferation of hematopoietic progenitors, indicating 

that defective mDia1 expression or function may contribute to myeloid malignancies. It suggests that 

mDia1 may act as a tumor suppressor gene and may be as an attractive therapeutic target in MDS and 

MPD (Peng et al., 2007). Lash L.L and colleagues have identified two DID-DAD disruptor molecules 

that are called intra-mimics (IMM-01 and -02). In vivo analysis of these two disruptor molecules 

shows that they have the ability to slow tumor growth in a mouse xenograft model of colon cancer 

http://en.wikipedia.org/wiki/Premature_ovarian_failure
http://www.ncbi.nlm.nih.gov/pubmed?term=Lash%20LL%5BAuthor%5D&cauthor=true&cauthor_uid=24242070
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(Lash et al., 2013). Furthermore, these two disruptor molecules may trigger actin assembly and MT 

stabilization, cell-cycle arrest, serum response factor-mediated gene expression and apoptosis. 

Collectively, these data suggest that DID-DAD disruptor molecules and DRFs protein peptide can be 

used as a new general strategy for therapeutic targeting of the cytoskeleton remodeling machinery of 

cancer cells. 
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Chapter II: Results and Conclusion 
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1 Results about non muscle Myosin II in MK polyploidization 

Introduction 

MKs are the highly specialized precursors that have the ability to produce platelets. During 

differentiation, MKs undergo polyploidization (endomitosis), leading to an increase in cell size and 

protein synthesis that precedes platelet production. Polyploidy is a manner of increasing platelet 

production, as the increase in DNA or proteins synthesis and MK cytoplasm volume is parallel to the 

level of ploidy. MKs give rise to platelets by remodeling their cytoplasm into long pseudopodia 

extensions that are called proplatelets, which serve as assembly lines for platelet production (Chang et 

al., 2007b; Geddis, 2010; Machlus and Italiano, 2013; Ravid et al., 2002). Endomitosis is a unique MK 

differentiation process that is the consequence of a late cytokinesis failure associated with a contractile 

ring defect. This cytokinesis failure is related to a defect both in Rho activation and myosin II 

accumulation in the contractile ring (Gao et al., 2012; Geddis et al., 2007; Geddis and Kaushansky, 

2006; Lordier et al., 2008).  

Herein, our two studies show that MYH10 is the only non-muscle myosin II present in the contractile 

ring during MK mitosis and endomitosis, but its expression is silenced during MK differentiation. This 

induces the switch from mitosis to endomitosis and allows MK polyploidization. Contrary to MYH14, 

which is not detectable, MYH9 is well expressed during MK differentiation, but is not recruited in the 

contractile ring whether MK are in mitosis or endomitosis (Lordier et al., 2008). These results 

revealed that MYH9 and MYH10 must display distinct functions during MK polyploidization and 

cytokinesis.  

In this study, we have also tried to elucidate the role of RUNX1 in regulating MYH10 expression and 

MK polyploidization. 

Results 

First, we have studied the expression of the different heavy chains of non-muscular myosin (MYH) 

during megakaryopoiesis by qRT-PCR and WB (western blot) analysis. Results showed that the 

expression of MYH9 increased during MK differentiation whereas MYH10 expression decreased and 

became undetectable in mature MKs and blood platelets. MYH14 is not expressed during MK 

differentiation. Immunofluorescence analysis has shown that MYH10 accumulates at the contractile 

ring (midzone and midbody) and is implicated in the mitosis/endomitosis transition. MYH9 expression 
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increases during MK differentiation, but is not recruited in the contractile ring irrespective of MK 

mitosis or endomitosis. Indeed, MYH9 is diffusively present in the cytoplasm of endomitotic MKs. 

These data suggest that MYH10 and MYH9 must have distinct functions during MK polyploidization 

and cytokinesis. 

Study of MK-restricted myh9 KO mice showed that there is no significant change in MK pploidization 

compared to control mice. Addition of 50µM blebbistatin in culture, a small molecule inhibitor of 

myosin II, leads to an increase in mean ploidy level of myh9 KO MK. Using human cells we observe 

changes in ploidy level induced by MYH10 knockdown or its overexpression. MYH10 knockdown by 

shRNA induces a marked increase in MK ploidy, while its overexpression induces an increase in 2N 

MKs and a decrease in mean MK ploidy level. These results suggest that MYH10 is the main myosin 

II isoform implicated in MK mitosis and endomitosis and its silencing is associated in the switch from 

mitosis to endomitosis. 

Next, we analyze whether accumulation of myosin in the contractile ring is associated with some 

myosin activity. Immunofluorescence showed that MLC2 is phosphorylated at the end of telophase in 

the midbody in both dipolar mitotic/endomitotic MKs and multipolar endomitotic MKs. This result 

suggests that some myosin II activity is present at the contractile ring at the end of MK telophase. 

Afterwards, we have studied the effects of MK treatment with the myosin inhibitor blebbistatin to 

explore the role of myosin II activity on furrow ingression. Cytometry and real-time video show that 

myosin II activity inhibition increases ploidy level, while the furrow ingression is almost completely 

inhibited. These data suggest that myosin II is implicated in MK furrow ingression and that its 

activation have a negative role in MK polyploidization. 

The transcription factor RUNX1 plays a crucial role in MK differentiation by regulating genes 

involved in MK differentiation and platelet functions, including MYL9/MLC2 and the CDK inhibitor 

p19
INK4D

. During polyploidization, MYH10 expression is repressed by RUNX1. Thus, the 

RUNX1/MYH10 pathway seems an important regulator of the switch from mitosis to endomitosis and 

polyploidization during MK differentiation. 

Conclusion 

Previous studies have shown that polyploidization occurs by endomitosis, a process characterized by a 

cytokinesis failure related to a defect in Rho activation (Gao et al., 2012; Lordier et al., 2008). We 

show that this cytokinesis failure is also associated with a defect in myosin II accumulation in the 

contractile ring. 
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Using WB and immunofluorescence analysis, we could show that MYH9 expression increases during 

MK differentiation, but does not accumulate in the MK contractile ring. In contrast, MYH10 

accumulates in the MK contractile ring, but its expression is silenced by RUNX1 during 

differentiation. This result is identical with previous results showing that MYH10 is involved in 

cytokinesis and that its knockdown in cell lines leads to multinucleated polyploid cells. These results 

indicate that MYH10 is the main myosin II isoform whose expression regulates the switch from 

mitosis to endomitosis in MK.  

It is interesting to observe that RUNX1 and the same transcription factor complex regulate both the 

endomitotic process and MK differentiation explaining that the endomitotic process is transcriptional 

regulated in a MK specific manner and explains the coupling between MK terminal differentiation and 

polyploidization. Thus, RUNX1 mediates MYH10 silencing is required for the switch from mitosis to 

endomitosis, linking polyploidization with MK differentiation. This explains why in the KO of 

RUNX1 and member of the RUNX1 complex such as FLI-1 and GATA-1 or in diseases involving in 

these transcription factors, MKs are hypoploid. 

It remains a very important question to be solved why MYH9 does not accumulate in the contractile 

ring of MKs whereas it is able to do it in non-MK cells?  

Studies in the second manuscript using transgenic mice with chimeric myosins II have shown that the 

localization of MYH10 in the contractile ring is related to its carboxy terminus. It remains now to 

understand why and answer to this question will be crucial to understand the mechanisms, which are 

responsible of MK polyploidization. Is there any link between the defect in Rho activation and this 

defect in myosin II accumulation or is it related to some scaffold protein necessary for MYH9 

accumulation in the contractile ring that is not expressed during MK differentiation? 
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2 Results about karyokinesis in endomitosis 

Introduction 

Endomitosis is a unique MK differentiation process where cells undergo repeated rounds of DNA 

replication, but fail to execute cytokinesis. This mitotic process ends prematurely due to aborted 

cytokinesis that leads to mature MKs that contain a DNA content of up to 128N, in contrast to normal 

diploid (2N) cells (Bluteau et al., 2009; Chang et al., 2007b; Zimmet and Ravid, 2000). The 

development of polyploid MKs results from the failure of cytokinesis associated with a contractile 

ring defect and absence of myosin II accumulation in the contractile ring (Gao et al., 2012; Geddis et 

al., 2007; Geddis and Kaushansky, 2006; Lordier et al., 2012a; Lordier et al., 2008). However, usually 

a defect in cytokinesis leads to multinucleated cells whereas polyploid MKs exhibit a single 

multinucleate nucleus. Herein, we have observed that a defect in karyokinesis is also present during 

endomitosis, which may explain the presence of a single nucleus.  

Results 

Using MK derived from human CD34
+
 cells, we studied the chromosome kinetics by DNA staining 

and nuclear membrane dynamic by laminA/C immunostaining. LaminA/C is an important component 

of the nuclear envelope, which is disassembled during the first stage of mitosis and reassembled 

around the chromosomes at the last stages of mitosis (Margalit et al., 2005). Using confocal 

microscopy, we observe that the nuclear membrane of endomitotic MKs remains disassembled until 

anaphase. At late telophase, the nuclear membrane starts to reassemble, but the nuclear membrane is 

not complete at the end of endomitosis leading to a single polylobulated nucleus after endomitosis. 

Next, by staining with TOTO and antibodies against laminin, we observe the presence of 

nucleoplasmic bridges (NPM) between segregated chromosomes during endomitosis. The histone 3 

phosphorylation is spatially and temporally coordinated with mitotic chromosome condensation (Hans 

and Dimitrov, 2001). Therefore, we confirm the presence of NPM in endomitosis through the 

observation of a phospho-histone 3 signal expressed in the DNA bridges. Furthermore, by double 

staining, we have found that Phospho-H3 and laminA/C colocalize around segregated chromosomes in 

telophase MKs. 

Defects in Fanconi proteins and BLM are one of the main causes of NPM (Naim and Rosselli, 2009a, 

b). WB data show that BLM is expressed in MKs, while immunofluorescencne data show that both 

http://en.wikipedia.org/wiki/Cytokinesis


 

81 

 

FANCD2 and BLM are present in NMP during MK endomitosis, suggesting these proteins are 

expressed and that they may be partially functional in MKs. 

Conclusion 

Polyploidization is limited to specific cell types, such as MKs (Ravid et al., 2002). Polyploidy and 

aneuploidy are also common phenomena present in cancer cells (Storchova and Pellman, 2004). It is 

believed that aneuploidy always follows the re-entry in mitosis of tetraploid cells. By immunostaining 

with LaminA/C, TOTO and phospho-histone 3, we have shown the NPMs are present in dipolar and 

multipolar endomitosis. Taken together, we have shown the presence of a defect in karyokinesis 

during MK endomitosis characterized by the presence of NPMs, which are not completely resolved at 

the end of telophase. This defect increases with ploidy and may be involved in the formation of a 

single multilobulated nucleus in polyploid MKs. Therefore, it is important to study the precise 

mechanisms responsible for the presence of these NPM in MK endomitosis. Interestingly, we have 

shown that FANCD2 and BLM are present in these NPM and are expressed in MKs. It remains to 

understand at which level this pathway is altered during endomitosis because it is one of the most 

important pathway regulating NPM as well as Aurora B. It will be interesting to study if there are 

increased defects in nuclear bridges in the Fanconi disorders, which are associated with 

thrombocytopenia and if they may leads to a blockage in DNA replication followed by apoptosis, 

which may explain the thrombocytopenia.  

http://en.wikipedia.org/wiki/Megakaryocyte
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3 DIAPH1 and proplatelet formation by megakaryocytes 

Introduction 

There is now strong evidence that actomyosin and MT cytoskeleton play an important role in MK 

differentiation, particularly in polyploidization, PPF and platelets release. Formins are a large family 

of proteins that are highly conserved. They are multidomain proteins that are involved in regulation of 

the dynamics and organization of both actin and MT cytoskeletons (Chesarone et al., 2010; Wallar and 

Alberts, 2003). Most formins are Rho-GTPase effector proteins (Kuhn and Geyer, 2014). DIAPH1 is 

one of RhoA effector that is encoded by the gene DIAPH1 (also known as Drf1) and is located on 

chromosome 5q31.3, a chromosomal region that may often undergo a deletion in MDS. The 

phenotype of drf1 KO mice, particularly the remarkable proliferation of hematopoietic progenitors, 

suggests that DIAPH1 may act as a tumor suppressor gene (Eisenmann et al., 2009; Peng et al., 2007). 

As one member of formin family, DIAPH1 is a mammalian homolog of Drosophila diaphanous gene 

that works as an effector of the small Rho GTPase and regulates the actomyosin cytoskeleton as well 

as MTs. It contains the Rho-binding domain in the amino terminal and two distinct regions of formin 

homology, FH1 in the center of the molecule and FH2 in the carboxy-terminus. DIAPH1 coordinates 

MTs and the actin cytoskeleton through its FH2 and FH1 domains respectively, which induce and 

regulate the MT and actin polymerization. Thus DIAPH1 appears as a good candidate for playing a 

major function in MK differentiation and PPF. 

In this work, we focus on the study of the role of DIAPH1 in MK proplatelet formation. 

Results 

First, we analyzed the expression of DIAPH during MK differentiation (see the article Figure 1). 

Relative to housekeeping gene HPRT, qRT-PCR analysis show that the expression of DIAPH1 

increases during MK differentiation, while DIAPH2 and DIAPH3 expressions decrease. Using the heat 

shock protein (HSC70) as protein loading control, WB analysis show the same pattern of expression 

for the protein as demonstrated for the mRNA. By immunofluorescence analysis, we find that 

DIAPH1 co-localizes with both actin and tubulin along the cytoplasm membrane in mature MKs, as 

well as along proplatelets, particularly in the swelling and the tips (Figure 8). The expression and 

localization analysis suggest that DIAPH1 may play a more important role than DIAPH2 and DIAPH3 

in late stages of MK differentiation, particularly in the process of platelet formation. 
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In order to study the role of DIAPH1, two shRNA (sh7, sh8) were constructed and vectorized in 

lentiviruses for functional studies (see the article Figure 2A-C). WB and qRT-PCR analysis show that 

these shRNA elicit a 40-60% decrease in DIAPH1 expression level compared to the control SCR, 

without changes in expression level of DIAPH2 and DIAPH3. The percentage of MKs bearing PPF 

was daily quantified during three days. The presence of at least one pseudopodial extension was 

considered as a PPF. DIAPH1 knockdown leads to a significant increase in PPF compared to the 

control SCR at day 13 and day 14 of culture (see the article Figure 2D-E). However, knockdown of 

DIAPH1 by shRNA decreases formation of actin stress fibers on collagen and the size of the stress 

fibers, which are thinner compared to the controls (see the article Figure 3A-B). This indicates that 

DIAPH1 is involved in the Rho-mediated assembly of actin stress fibers.  

Furthermore, tubulin polymerization assays were performed and analyzed by immunofluorescence and 

WB. It is known that stable MTs accumulate a post-translational modification of tubulin called 

detyrosinated tubulin (or Glu-Tubulin), whereas dynamic MTs contain predominantly tyrosinated 

tubulin (Tyr-Tubulin) (Gundersen et al., 1984; Westermann and Weber, 2003). The ratio between Glu-

Tubulin and Tyr-Tubulin is increased in MKs infected by DIAPH1 shRNA compared to control (see 

the article Figure 3F), indicating that loss of DIAPH1 increases MT stability. In addition, DIAPH1 

knockdown MKs show more obvious MT elongation after nocodazole treatment compared to the SCR 

control treated MK (see the article Figure 3D-E and Figure 9). 

To confirm the role of DIAPH1 induced by the shRNA strategy, a constitutive active form of mouse 

DIAPH1 (mDia1ΔN3) was expressed in human MKs (see the article Figure 4A-B). In contrast to 

DIAPH1 knockdown, PPF is decreased in MKs expressing mDia1ΔN3 compared to the control 

(empty vector infected MKs) (see the article Figure 4C). Remarkably, proplatelets of MKs expressing 

mDia1ΔN3 often present a more simple structure with less branching and shorter extensions, which 

lead to a clear decrease in proplatelet area (see the article Figure 4D). Stress fiber formation is 

increased in MK expressing mDia1ΔN3 compared to the control (see the article Figure 5A), while MT 

polymerization is decreased after nocodazole treatment (see the article Figure 5B). Immunofluorescent 

and WB analysis reveal that mDia1ΔN3 expression decreases the ratio between Glu-Tubulin and Tyr-

Tubulin, which indicates a loss in MT stability (see the article Figure 5C). 

To demonstrate that the increase in PPF observed in DIAPH1 knock down MKs is specific, but not an 

off-target effect of the shRNAs, we perform rescue experiments by expressing mDia1ΔN3 (see the 

article Figure 6A-B). For these experiments, we use the sh8-shRNA because this shRNA targets the 

endogenous DIAPH1, but not mDia1ΔN3. The sh8-shRNA was cloned in a lentiviral vector 

containing as reporter gene, the cherry and a non-relevant shRNA SCR was also cloned in the same 
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vector to be used as a control. Double-infected MKs show a rescue in PPF, meaning in this case a 

decrease in PPF in comparison to DIAPH1 knockdown (see the article Figure 6C). 

The RhoA/ROCK pathway plays a negative role in PPF by inducing myosin II activation (Chang et al., 

2007a). Herein, our results imply that DIAPH1 may also play a negative role in PPF by remodeling 

the actin and MT cytoskeleton. As effectors of RhoA, DIAPH1 shows a similar localization as MYH9 

in mature MK and in PPF suggesting that it can cooperate with myosin IIA to regulate actomyosin and 

MT dynamics during PPF. Inhibition of ROCK by Y27632 (10μM) or myosin II by blebbistatin 

(25μM) disturbs MK stress fiber formation, but increases tubulin polymerization by tubulin 

polymerization assays (see the article Figure 6D-E). WB results indicate that inhibition of ROCK and 

myosin II by Y27632 and Blebbistatin increases the ratio between Glu-tubulin/Tyr-tubulin (see the 

article Figure 7A), which means that ROCK and myosin II inhibit PPF by simultaneously increasing 

contractile force and reducing the stability of MTs. 

We then studied the relationship between Rho/ROCK/myosin and Rho/DIAPH1 pathways by treating 

MKs with ROCK and myosin II inhibitors (Y27632 and blebbistatin) after infection with the shRNA 

directed against DIAPH1. The increase in PPF observed in sh7- or sh8-transduced MK is further 

augmented when ROCK or myosin II inhibitors are added alone or the two in association (see the 

article Figure 7B). This double inhibition of both ROCK/myosin and DIAPH1 pathways further 

increases MT stability compared to a single DIAPH1 inhibition by analyzing the ratio between Glu-T 

and Tyr-T (see the article Figure 7E). Moreover, MKs double transduced by a shRNA against 

DIAPH1 cloned in a lentiviral vector containing cherry as reporter (sh8) and a shRNA against MYH9 

cloned in a lentiviral vector containing GFP as reporter (shMYH9) show an increased PPF compared 

to a single knockdown (see the article Figure 7C). These data suggest that Rho/ROCK/myosin and 

Rho/DIAPH1 pathways have an additive role in PPF. 

Finally, we performed additional experiments to test if DIAPH1 is implicated in platelet release by 

testing the number of platelets produced in culture (Figure 10). The number of platelet released into 

the culture supernatant from MK infected either by shRNA against DIAPH1 or by mDia1ΔN3 was 

measured by flow cytometry. Three independent experiments were performed, and results reported to 

the different controls assigned as 1.0. We observethat DIAPH1 knockdown just slightly increases 

platelet production in vitro (Figure 10A), while overexpression of the active form mDia1ΔN3 results 

in a significant decrease in platelet production (Figure 10B). These results suggest that DIAPH1 

probably contributes to the platelet release process. 
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Figure 8: Localization of DIAPH1 during MK differentiation. 

IF revealed the presence and co-localization of DIAPH1 with F-actin, tubulin and MYH9 in mature 

MK (8A. 8B. 8C. upper images) and proplatelet (8A. 8B. 8C. lower images). Cells were stained for 

DIAPH1 (green), F-actin (green), tubulin (red), MYH9 (red) and DNA was stained with TOTO (blue). 
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Figure 9: DIAPH1 knockdown increases tubulin polymerization and stability 

CD41+ MK infected by SCR, sh7 or sh8 were plated on collagen-coated slides for 1h and then treated 

for another hour with nocodazole. Tubulin polymerization assay was performed 10 min after washing. 

MK infected with sh7 and sh8 show increased tubulin polymerization compared to the SCR control. 

Confocal microscopy image is taken for one zone showing the general tubulin polymerization state of 

cells. α-tubulin, blue; β-tubulin, red. 
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Figure 10: Effect of DIAPH1 in platelet release in vitro 

Number of platelet released into the culture supernatant from the MK infected either by shRNA-

DIAPH1 (A) or by mDia1ΔN3 (B) was measured by flow cytometry. The gragh showed the relative 

number compared to the different controls assigned as 1.0 (3 independent experiments). DIAPH1 

knockdown only slightly increased platelet production in vitro but overexpression mDia1ΔN3 induced 

a significant decrease in platelet production. 

 



 

94 

 

Conclusion 

PPF is associated with morphological changes that require profound actin and MT cytoskeleton 

reorganization.  There is strong evidence that PPF is mainly regulated by MTs (Italiano et al., 1999a), 

and that actin is involved in the branching structures that serve to increase the number of proplatelet 

ends and thus the platelet number. Although MTs are constantly assembling in proplatelets, the 

continuous MTs polymerization is required for proplatelet enlargement, but not for providing the 

forces for extension. Nevertheless, the sliding of overlapping MTs is necessary for proplatelet 

elongation, which may be impaired by inhibiting the function of MT-associated motor protein dynein.  

In mammalian cells, mDia formins modulate MT and actin function and organization (Ishizaki et al., 

2001; Kato et al., 2001; Li and Higgs, 2003; Palazzo et al., 2001). As a member of formin and an 

effector of RhoA, DIAPH1 has the ability to regulate both the actin and the MT cytoskeleton, this 

feature making it a good candidate for regulating PPF. Our results suggest that DIAPH1, in addition to 

ROCK, is another important effector of Rho during megakaryopoiesis that may also negatively 

regulate PPF. More surprisingly, our results show that DIAPH1 and ROCK are involved not only in 

Rho-mediated stress fiber assembly, but also in MT stability and dynamics regulation during PPF 

making a link between these two types of cytoskeleton. 

Our results also show that the expression of two other DIAPH (DIAPH2 and DIAPH3) decrease 

during MK differentiation. It is particularly important to elucidate if this silencing is really required 

for polyploidization and MK maturation. 
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Chapter III: Discussion and Perspectives 
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Rho/ROCK/Myosin pathway during megakaryopoiesis 

Recent studies have shown that MK endomitosis is an incomplete multipolar mitosis characterized by 

failure of both cytokinesis and karyokinesis producing a cell that contains a unique multilobulated 

nucleus. Polyploidy is a manner of increasing platelet production, as it induces a parallel increase in 

DNA and proteins synthesis and MK cytoplasm volume. The defect in cytokinesis is a late failure, 

consequence of a contractile ring defect related to alteration both in Rho activation and myosin II 

accumulation in the contractile ring (Gao et al., 2012; Geddis et al., 2007; Geddis and Kaushansky, 

2006; Lordier et al., 2012a; Lordier et al., 2008). After activation, RhoA binds to numerous 

downstream effectors including ROCK and mDia, to regulate the cytoskeleton dynamics. As one of 

the main Rho effector, ROCK regulates MLC2 phosphorylation, which is necessary for actomyosin 

activation to provide essential contractile forces required for a diversity of cellular processes, such as 

cell contraction, cytokinesis, cell migration, and membrane blebbing (Kawano et al., 1999; Sebbagh et 

al., 2001). ROCK stimulates MLC2 phosphorylation at Ser19 and inactivates myosin phosphatase, 

producing actomyosin contractility (Amano et al., 1996; Narumiya et al., 1997; Ueda et al., 2002).  

Our study has shown that MYH10 is the only non-muscle myosin II that accumulates in the contractile 

ring during MK mitosis and endomitosis, but its expression is silenced during MK maturation. This 

induces the switch from mitosis to endomitosis and allows MK polyploidization. MYH9 is well 

expressed during MK differentiation, but is poorly or not recruited in the contractile ring whether MKs 

were in mitosis or endomitosis (Lordier et al., 2008). These results reveal that MYH9 and MYH10 

may display distinct functions during MK polyploidization and cytokinesis. 

We have also demonstrated that RUNX1 mediates MYH10 silencing, which is required for the switch 

from mitosis to endomitosis, linking polyploidization with MK differentiation (Lordier et al., 2012a). 

The mechanism responsible for the specific accumulation of MYH10 in the MK contractile ring is not 

yet  understood. As one characteristic of MK endomitosis is the low level of RhoA activation in the 

contractile ring, an attractive hypothesis would be that MYH10 accumulation in the contractile ring is 

more sensitive to Rho activation than MYH9. Alternatively, MYH9 and MYH10 may not have the 

same scaffold proteins to localize in the contractile ring and those specific for MYH9 may be lacking 

in MKs. Further experiments will be required to solve this question, which is one of the key 

determinants for understanding MK polyploidization and its regulation.  

Furthermore, it has been shown that in FPD-AML patient (germ-line mutation of RUNX1), MYH10 is 

not silenced in MKs. It will be important to determine if both MYH9 and MYH10 have similar 

properties in PPF and platelet abscission because these patients have a thrombocytopenia. This type of 

experiments will require the use of knock in mice in which MYH10 is placed in the MYH9 locus 
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(Figure 11). These experiments are ongoing in our laboratory and suggest that MYH10 is capable to 

induce the contractile forces necessary for platelet release, but in a less efficient manner than MYH9. 

It has been shown that Rho/ROCK stimulates the actin/myosin contractile activity that may accelerate 

membrane retraction (Etienne-Manneville and Hall, 2002; Jaffe and Hall, 2005; Raftopoulou and Hall, 

2004). This may inhibit the pseudopodia processes. In contrast, studies in fibroblasts have revealed 

that the two other major members of the Rho-GTPase family, Cdc42 and Rac, promote membrane 

protrusion. The fibroblast model has been extended to study the effects of Rho-GTPase in neurite 

outgrowth and differentiation. Rac and Cdc42 promote neurite formation, while Rho activation 

antagonizes this effect and causes neurite retraction (Etienne-Manneville and Hall, 2002; Govek et al., 

2005; Van Aelst and Cline, 2004). On the basis of the neurite model, we have hypothesized that in 

MKs, Rac or Cdc42 may facilitate the protrusion forces required for PPF, whereas Rho/ROCK may 

generate opposite forces repressing cytoplasm extensions by MLC2 phosphorylation. At the early 

stage of MK differentiation, Rho activation predominates and restrains PPF. At the end of MK 

differentiation, the decrease of Rho activation coupled to an increase in Cdc42 activation confers an 

advantage to protrusion forces leading to PPF. Thus, when the Rho/ROCK pathway is inhibited at the 

onset of PPF in cultured MKs, the equilibrium in contractile forces in MKs is disrupted and leads to an 

increase in PPF. The fact that a dominant-negative expression of N-WASp prevents PPF by blocking 

actin fiber assembly along the demarcation membranes (Schulze et al., 2006) supports this hypothesis. 

The molecular mechanisms leading to platelet release in the blood flow is not completely understood. 

Platelet biogenesis depends on the PPF, which is under the control of cytoskeleton organization. 

Cytoskeleton plays an important role in proplatelet elongation and platelet release. The ploidy level of 

MK may influence the number of produced platelets. During maturation, MKs increase cell size by 

proteins synthesis and develop the DMS for PPF and platelet release. In parallel, actin/myosin activity 

increases to get more contractility for keeping the normal MK shape. The regulation of Rho/ROCK 

through MLC2 phosphorylation may be associated with proplatelet constrictions and platelet shedding. 

Phosphorylated-MLC2 localizes along the cytoplasm extension, particularly in the swellings and tips 

of proplatelet. The increased expression of actin and phospho-MLC2 suggests that actin/myosin 

contractility might be necessary to keep a normal cell shape during polyploidization (Chang et al., 

2007a). When MLC2 phosphorylation is inhibited, platelet size is increased in the absence of enough 

contractile forces, suggesting that actin/myosin may provide forces for both constrictions and 

retraction of proplatelet and regulation of platelet release and size. Previous data from in vitro and in 

vivo models have revealed the key role of the Rho/ROCK/myosin II pathway in PPF (Chang et al., 

2007a; Suzuki et al., 2013). The Rho/ROCK pathway is implicated in platelet shape changes during 

activation by regulating MLC2 phosphorylation (Suzuki et al., 1999; Watanabe et al., 2001). MKs 
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may interact with extracellular matrix to regulate platelet production. MKs adhesion on collagen type I 

leads to an inhibition of PPF likely through the activation of the Rho/ROCK pathway (Sabri et al., 

2004). In addition, there is evidence showing that proplatelet elongation is regulated by MTs, while 

actin can play a negative role in PPF through Rho/ROCK effectors such as LIM kinase, which can 

inactivate the actin depolymerizing protein cofilin (Maekawa et al., 1999; Ohashi et al., 2000). 

Through inhibition of MLC2 phosphorylation by either Tat-C3 or Y27632 or P18, previous results of 

our group have revealed that the Rho/ROCK pathway negatively regulates PPF through MLC2 

phosphorylation (Chang et al., 2007a). However, inhibition of ROCK by Y27632 or myosin II by 

blebbistatin disturbs MK stress fiber formation, but also modifies tubulin polymerization by tubulin 

polymerization assays. Furthermore, inhibition of ROCK and myosin II increases the ratio between 

Glu-tubulin/Tyr-tubulin, suggesting that ROCK and myosin II inhibit PPF by simultaneously 

increasing contractile force from actomyosin and reducing the stability of MTs. 

Some human platelet disorders are associated with an increase in platelet size, which are due to defects 

in actin/myosin activation (Balduini et al., 2002). The Bernard-Soulier syndrome is associated with an 

absence or a decreased expression of the GPIb-GPIX-GPV complex that is linked to the membrane 

actin cytoskeleton and may participate in cytoskeleton transduction signaling leading to normal 

platelet formation. MYH9 is the only myosin isoform present in platelets, while the May-Hegglin 

syndrome is a rare inherited human macrothrombocytopenia caused by mutations in the MYH9; the 

precise effects of these mutations on MYH9 functions remain controversial. However, the fact that 

MYH9 mutations in human lead to a macrothrombocytopenia underscore the role of actomyosin in 

platelet production (Kunishima and Saito, 2010). 
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Figure 11: Generation of the Knock-in Mouse Lines. 

Knock-in mice lines were generated for further studing the functions of MYH9 and MYH10 in PPF 

and platelet production. MYH10 is placed in the MYH9 locus: MYH9 first coding exon is disrupted 

either by a cDNA encoding GFP target human NMII-B (Ab*/Ab* mice) or by a cDNA encoding 

chimeric GFP-hNMHCII-AB (the N-terminal domain of NMII-A is fused to the C-terminal II-B 

domain, A
ab

/A
ab

 mice) (Figure from Wang (Wang et al., 2010)). 
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Rho/DIAPH1 pathway during megakaryopoiesis 

Formins are a conserved family of proteins that play key roles in cytoskeleton remodeling, including 

nucleate and elongate non-branched actin filaments and also modulate MT cytoskeleton dynamics 

(Bartolini and Gundersen, 2010; Schirenbeck et al., 2005). The PPF is associated with morphological 

changes that require profound actin and MT cytoskeleton reorganization. mDia is a member of formin 

family that acts as an effector downstream Rho-GTPase. Once activated RhoA binds to mDia and 

regulates the cytoskeleton dynamics. DIAPH1 (mDia1 or Drf1) has critical roles in actin remodeling 

in cell division and in response to adhesive and migratory stimuli. DIAPH1 coordinates MTs and the 

actin cytoskeleton through its FH2 and FH1 domains, respectively and thus appears as a good 

candidate for regulating MK differentiation and PPF. 

DIAPH1 colocalizes with tubulin, F-actin or MYH9 in mature MK along the plasma membrane and 

along PPF in the swelling and in the tips. This co-localization may be important to understand the role 

of DIAPH1 in actin or tubulin cytoskeleton regulation and cooperation with myosin II in cortical 

contractile forces around MK. 

Actin assembly is not required for MKs to extend proplatelets, but actin filaments are enriched at the 

sites of proplatelet bifurcation, suggesting that actin is essential for proplatelet branching structures 

leading to amplification of the number of proplatelet tips and thus of the produced platelets (Italiano et 

al., 1999a). DIAPH1 knockdown increases the number of PPF, while expression of a DIAPH1 active 

form decreases PPF. These results suggest that DIAPH1, in addition to ROCK, is the other important 

effectors of Rho during megakaryopoiesis, particularly in PPF. Therefore, DIAPH1 could be an 

important Rho effector involved in PPF in cooperation with ROCK by its dual function on actin and 

MT cytoskeleton. 

On the other hand, the elongation of proplatelet required the forces derived from tubulin 

polymerization, MTs sliding, or may be a combination of both processes, while actin filament 

assembly may transmit contractile forces to the MT bundle to help its compression during loop 

formation (Italiano et al., 2007; Schwer et al., 2001; Thon et al., 2012; Thon et al., 2010). By 

knockdown or expression of an active form, our results have shown that DIAPH1 negatively regulates 

the PPF, with a direct effect on MT stability during MK differentiation, suggesting that DIAPH1 plays 

a negative role in MT polymerization and stability. Together, these data show that DIAPH1 could 

negatively regulate PPF by regulating MT reorganization. Thus, activated DIAPH1 could restrict PPF 

by two mechanisms, one by inducing stress fiber formation that generating contractile force, and the 

other by destabilizing MTs. 
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Interestingly, it has been reported that activated formins have essentially a stabilizing effect on MTs 

by increasing both MT detyrosination and acetylation (Ishizaki et al., 2001; Palazzo et al., 2001; 

Thurston et al., 2012). In contrast, our results show that DIAPH1 destabilizes MTs during PPF. 

Similar results have been reported in osteoclasts, where inhibition of Rho correlates with an increased 

MT stabilization; however, this is mediated by mDia2, but not mDia1 through tubulin acetylation 

(Destaing et al., 2005). We did not observe any significant change in MT acetylation level when we 

knockdown or express the active form of DIAPH1 in human MKs, suggesting that regulation of 

tubulin acetylation is mediated more by mDia2 or others formins than by mDia1. Thus, these different 

observations underscore the complexity of the DIAPH pathway on MT stability or destabilization, 

which may depend on the cellular context. 

Furthermore, mDia may mediate important crosstalk between the actin and tubulin cytoskeleton. In 

mammalian cells, mDia modulates MT and actin reorganization (Ishizaki et al., 2001; Kato et al., 2001; 

Li and Higgs, 2003; Palazzo et al., 2001). Expression of an active form of mDia1 induces bipolar 

elongation of HeLa cells and alignment of MTs and F-actin bundles with the long axis of the cell 

(Ishizaki et al., 2001). However, mutation of conserved residues within the mDia1 FH2 domain 

abolishes this phenotype. As a member of formin and effector of RhoA, DIAPH1 affects actin stress 

fiber formation and the MT stability during PPF, suggesting that it regulates both actin and MT 

cytoskeleton. The precise mechanism by which DIAPH1 mediates stable MTs and coordinates MT 

and actin cytoskeletons will require further studies. It is not known whether this dual activity on actin 

and tubulin is restricted to certain formins such as DIAPH1 or represents a general property of this 

protein family. 

PPF and platelet release are two independent processes. DIAPH1 knockdown increases PPF and 

normally it is expected that it would lead to a higher platelet production if the platelet release process 

is normal. However, DIAPH1 knockdown only induces a slight increase in platelet number, implying 

that DIAPH1 is implicated in the platelet release process, but in a positive way. Otherwise, there 

should be a parallel increase in the number of platelets produced and in PPF. These results suggest the 

DIAPH1 contributes to the platelet release process. Thus DIAPH1 may have two opposite effects in 

platelet production: decreasing PPF and increasing platelet abscission. Further studies will be required 

to precisely demonstrate that DIAPH1 is implicated in the platelet abscission and how it coordinates 

the forces required. Whatever, this implies that DIAPH1 must be tightly regulated during platelet 

production. 

Linkage between ROCK/Myosin and DIAPH1 pathway during megakaryopoiesis 
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Most formins are Rho-GTPase effectors that nucleate, elongate and bundle actin filaments to support 

polarized cell division, adhesion and migration (Goode and Eck, 2007; Wallar and Alberts, 2003). The 

Rho-GTPases may induce specific types of actin cytoskeleton and regulate MT dynamics. GTP-bound 

RhoA binds to and directly activates formins by disrupting the DID-DAD intramolecular auto-

inhibition that induces the binding through the FH1-FH2 domain to actin filaments and MTs and 

mediates their assembly (Schonichen and Geyer, 2010). Furthermore, cooperation between the RhoA 

effectors ROCK and the formins is required for the formation of stress fibers as required both F-actin 

polymerization and activation of myosin contractility for proper function (Narumiya et al., 2009). 

At the end of maturation, MKs extend their demarcation membranes to form proplatelets. Changes in 

cytoskeleton structures cause proplatelets to further extend, to re-localize organelles, to fragment and 

then to release platelets into the blood stream of marrow sinusoids. The RhoA/ROCK pathway clearly 

plays a negative role in PPF in vitro by inducing myosin II activation. Alternatively, DIAPH1 also 

negatively regulates PPF. DIAPH1 colocalizes with F-actin and MYH9 along the plasma membrane in 

mature MKs and along the PPF, especially in the swelling and the tips of proplatelets, suggesting that 

it could cooperate with myosin IIA to regulate cytoskeleton dynamics during PPF and to generate 

contractile forces restraining cytoplasmic extensions during PPF and keeping a normal platelet shape. 

Changes in MLC2 phosphorylation level could not be detected after DIAPH1 knockdown, implying 

that mDia1 may contribute to actomyosin assembly, only by promoting actin polymerization, but not 

by activating myosin II. The double inhibition of both DIAPH1 and ROCK/myosin pathway has an 

additive effect on PPF and increases even more the MT stability. These two main effectors of the Rho-

GTPase pathway, DIAPH1 and ROCK/myosin II, are involved not only in Rho-mediated stress fiber 

assembly but also in MT stability and dynamics regulation during PPF. These results suggest that a 

cooperation between DIAPH1 and ROCK is required for the formation of cell structures dependent on 

actin-myosin to generate the contractile forces that restrain cytoplasmic extensions and finally to 

inhibit PPF during MK differentiation. 

Interestingly, DIAPH1 expression increases during MK differentiation, but DIAPH1 knockdown 

increases PPF. How to explain these two results which seems controversial? In fact, MKs become 

polyploid during differentiation, with a great increase of cell size and a parallel elevation of actin 

content (Chang et al., 2007a; Raslova et al., 2007). This increased actin content may require more 

DIAPH1 expression to regulate its polymerization, which is required for normal cell functions and cell 

shape. This may explain why DIAPH1 expression is increased during MK differentiation, particularly 

between day 6 and day 9 of culture when polyploidization occurs. However, at the end of 

differentiation, MK needs to promote membrane protrusion to form proplatelet. Actin and myosin 

could generate contractile forces restricting cytoplasm extensions and keeping a normal cell shape. 
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Hyperactivation of actin assembly may impair the ability of MKs to alter membrane plasticity. Thus, 

DIAPH1 knockdown, as well as inhibition of ROCK/myosin II activity, could disrupt the force 

equilibrium and facilitate PPF. In addition, it is possible that DIAPH1 plays an important role in very 

late stages of MK differentiation by regulating platelet release. Thus, is appears that the regulation of 

DIAPH1 is certainly as important as its level of expression during MK differentiation. 

In the present work, our results have shown the important role of DIAPH1 in the reorganization of the 

cytoskeleton during PPF in human MKs. However, the mechanism by which DIAPH1 acts on actin 

and tubulin during megakaryopoiesis should be studied in more details. Moreover, It should be 

important to investigate the effects of DIAPH1 mutated forms, such as those carrying mutations of the 

DID and/or the DAD domain to evaluate the role of DIAPH1 auto-activation in the regulation of MK 

differentiation and PPF. As mentioned before, both DIAPH1 and ROCK/myosin could negatively 

regulate PPF. However, the results of our group have shown that the ROCK/myosin pathway 

participates in the regulation of MK polyploidization. Our preliminary results show that knockdown of 

DIAPH1 slightly increases the polyploidization in in vitro cultured MKs, so it will be important to 

investigate the contribution of DIAPH1 to MK polyploidization. It will be also important to 

understand by which precise machanics DIAPH1 is capable to destablize microtubules in MKs 

whereas it increase their stability in other cell types and if the FH2 domain is implicated in both 

processes. 

Our work has revealed that DIAPH1 knockdown does not affect the expression of DIAPH2 and 

DIAPH3 in human MKs. Various formin family members are present in MKs and platelets, such as 

FHOD1, INF2 or DAAM1, thus there might be redundancy among this large protein family, at least 

for some functions. Therefore, it will be very interesting to elucidate whether other formins are 

involved in PPF and if they have redundancy or synergy effects on cytoskeleton organization during 

PPF and MK migration. 

It has been shown that mDia2 is crucial for mammalian cell cytokinesis by providing an actin scaffold 

for contractile ring assembly and maintaining its position in the middle of a dividing cell (Watanabe et 

al., 2008). The expression of the two other DRFs, DIAPH2 (mDia3) and DIAPH3 (mDia2), decreases 

during MK differentiation. Thus, it will be very interesting to study if this silencing is required for MK 

polyploidiztion and PPF, particularly the function of DIAPH3 (mDia2) in cytokinesis and cell 

migration. 

 In addition, inhibition of DIAPH1 may increase SDF1-mediated MK migration, which is important 

for proper MK localization in the marrow. Both actin and MT cytoskeleton undergo continuous 

remodeling during PPF and serve as motor machineries for MK migration. Previous studies have 
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shown that MAL/SRF complex was involved in the MK migration by regulating MYL9 and MMP9 

(Gilles et al., 2009). Other evidence also reveals that Rho, mDia or Rho/ROCK are implicated in cell 

migration (O'Connor and Chen, 2013; Schofield et al., 2012; Shinohara et al., 2012). Thus, future 

studies should be focused on the precise functions and mechanisms by which Rho/DIAPH1 or 

Rho/ROCK affect MK migration, as well as the cooperation between DIAPH1 and ROCK/Myosin 

occurs during MK migration towards SDF-1 and during interaction with extracellular matrix, such as 

collagen I, fibronectin, vWF and fibrinogen. 

Formins as potential activators of actin assembly in the cytoplasm and in turn of cytoplasmic actin 

polymerization may promote actin release from MAL protein for SRF transcriptional activity, while 

serum stimulates actin assembly inside the nucleus in a formin-dependent manner. Thus, it is 

interesting to study if DIAPH-mediated actin polymerization within the nucleus could control the 

serum-dependent MAL/SRF activity and related genes expression, which also may affect the PPF and 

MK migration. 

Altogether, understanding of the molecular mechanism responsible for PPF and platelet release are 

important for basic research and understanding the mechanisms of some thrombocytopenia and 

thrombocytosis, but it may also important for improving the techniques to produce platelets in vitro, 

which may have consequences in the future for transfusion of ex vivo produced platelets. 
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