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ABSTRACT v

Title: Dynamic cavity method and problems on graphs
Author: Andrey Y. Lokhov

Abstract:

A large number of optimization, inverse, combinatorial and out-of-equilibrium prob-
lems, arising in the statistical physics of complex systems, allow for a convenient represen-
tation in terms of disordered interacting variables defined on a certain network. Although
a universal recipe for dealing with these problems does not exist, the recent years have
seen a serious progress in understanding and quantifying an important number of hard
problems on graphs. A particular role has been played by the concepts borrowed from
the physics of spin glasses and field theory, that appeared to be extremely successful in
the description of the statistical properties of complex systems and in the development
of efficient algorithms for concrete problems.

In the first part of the thesis, we study the out-of-equilibrium spreading problems on
networks. Using dynamic cavity method on time trajectories, we show how to derive dy-
namic message-passing equations for a large class of models with unidirectional dynamics
— the key property that makes the problem solvable. These equations are asymptotically
exact for locally tree-like graphs and generally provide a good approximation for real-
world networks. We illustrate the approach by applying the dynamic message-passing
equations for susceptible-infected-recovered model to the inverse problem of inference of
epidemic origin.

In the second part of the manuscript, we address the optimization problem of finding
optimal planar matching configurations on a line. Making use of field-theory techniques
and combinatorial arguments, we characterize a topological phase transition that occurs
in the simple Bernoulli model of disordered matching. As an application to the physics of
the RNA secondary structures, we discuss the relation of the perfect-imperfect matching
transition to the known molten-glass transition at low temperatures, and suggest general-
ized models that incorporate a one-to-one correspondence between the contact matrix and
the nucleotide sequence, thus giving sense to the notion of effective non-integer alphabets.

Keywords: cavity method, out-of-equilibrium dynamics, message-passing, belief propa-
gation, unidirectional dynamics, spreading processes, constrained satisfaction problems,
combinatorial optimization, planar matching, phase transitions
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RESUME vii

Titre: Méthode de cavité dynamique et problemes sur des graphes
Autheur: Andrey Y. Lokhov

Résumé:

Un grand nombre de problemes d’optimisation, ainsi que de problemes inverses, com-
binatoires ou hors équilibre qui apparaissent en physique statistique des systemes com-
plexes, peuvent étre représentés comme un ensemble de variables en interaction sur un
certain réseau. Bien que la recette universelle pour traiter ces problemes n’existe pas,
la compréhension qualitative et quantitative des problemes complexes sur des graphes a
fait de grands progres au cours de ces dernieres années. Un role particulier a été joué
par des concepts empruntés la physique des verres de spin et la théorie des champs, qui
ont eu beaucoup de succes en ce qui concerne la description des propriétés statistiques
des systemes complexes et le développement d’algorithmes efficaces pour des problemes
concrets.

En premiere partie de cette these, nous étudions des problemes de diffusion sur des
réseaux, avec la dynamique hors équilibre. En utilisant la méthode de cavité sur des tra-
jectoires dans le temps, nous montrons comment dériver des équations dynamiques dites
“message-passing” pour une large classe de modeles avec une dynamique unidirectionnelle
— la propriété clef qui permet de résoudre le probleme. Ces équations sont asymptotique-
ment exactes pour des graphes localement en arbre et représentent en général une bonne
approximation pour des réseaux réels. Nous illustrons cette approche avec une applica-
tion des équations dynamiques pour résoudre le probléeme inverse d’inférence de la source
d’épidémie dans le modele “susceptible-infected-recovered”.

Dans la seconde partie du manuscrit, nous considérons un probléeme d’optimisation
d’appariement planaire optimal sur une ligne. En exploitant des techniques de la théorie
de champs et des arguments combinatoires, nous caractérisons une transition de phase
topologique qui se produit dans un modele désordonné simple, le modele de Bernoulli.
Visant une application a la physique des structures secondaires de I’ARN, nous discutons
la relation entre la transition d’appariement parfait-imparfait et la transition de basse
température connue entre les états fondu et vitreux de biopolymere ; nous proposons
également des modeles généralisés qui suggerent une correspondance exacte entre la ma-
trice des contacts et la séquence des nucléotides, permettant ainsi de donner un sens a la
notion des alphabets effectifs non-entiers.

Mots-clés: méthode de cavité, dynamique hors équilibre, passage de messages, belief
propagation, dynamique unidirectionnelle, processus de diffusion, problemes de satis-
faction des contraintes, optimisation combinatoire, appariement planaire, transitions de
phase
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Chapter 1

Foreword: statistical physics of
complex systems

Modern statistical physics of complex systems can be generally thought of as a collection
of concepts and techniques that make it possible to study in detail systems involving
many interacting variables: particles, spins, colors, boolean variables that appear in
combinatorial optimization and information theory, etc. Conceptually, the success of sta-
tistical physics lies in the surprising ability to explain an emergent complex behavior of
the systems composed of many elementary constituents, from the underlying microscopic
interactions between them. Although the manifestations of the systems’ global behavior
can seem to be very different, they can be often explained by collective effects of elemen-
tary components, common to many systems of different nature, and described by very
general concepts, such as phase transitions — a qualitative change of the system’s state.

It is often convenient to represent the topology of the interactions in a complex system
by a network G = (V, E), with a collection of nodes V', corresponding to variables, and
edges E (directed or undirected), representing interactions between them (correspond-
ingly directed or undirected). This interaction network can be extracted from the real
system one wants to study, or can be artificially generated if one is interested in the
general properties of the system: in this case, either the network is pre-designed to have
some special structure, or a random network is used as an approximation to the real-
world interaction graph. In this thesis, we will use both random networks (for physical
modeling of the system and systematic study of its properties) and real-world networks
(for practical applications and test of performance of the developed algorithms). De-
pending on the probability distribution which is used for generating the network, it may
have some specific properties. In the part I we will mostly use sparse and locally tree-like
random graphs, that are in general defined in the N-dimensional space, where N is the
number of nodes of the network. On the contrary, in the part II we will mostly focus on
dense and planar graphs, i.e. graphs that can be drawn without self-intersections on a
plane, and hence are defined in a two-dimensional space.

The evolution of a complex system is generically accompanied by some microscopic
dynamics. Still, depending on the questions one asks on the behavior or the properties of
a complex system, the problem can be classified as static or dynamic. We will say that
the problem is static in the case where one would like to find a particular solution to a
related optimization problem, or studies the system at equilibrium (i.e. the underlying
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microscopic dynamics respects the so-called detailed balance condition and hence the
emergent global properties do not change). In this thesis, a particular attention will
be devoted to the investigation of the out-of-equilibrium dynamics of complex systems.
Depending on its nature, the system may eventually relax to the equilibrium state, fall
down to some final absorbing state, or always stay out of equilibrium. Last but not least,
both static and dynamic processes can be defined on static or dynamically-changing
networks.

Throughout this thesis, we will see that the description of each problem involve con-
cepts that are related to both statics and dynamics. For instance, in the part I, we will
study the physics of the out-of-equilibrium dynamic processes on networks, such as, for
instance, avalanches in magnetic systems, epidemic spreading, or propagation of opinions
and information in social networks. The description of these processes in terms of time
trajectories of individual variables will allow us to reformulate this problem in a purely
static setting; however, the easiest way to obtain the solutions of the corresponding static
equations consists in using an iterative message-passing algorithm, with its proper con-
vergence dynamics. On the other hand, for many processes of interest, we will be able
to write dynamic equations that instead have to be iterated in a physical time. Another
example of mixing between the two concepts will be given by one of the problems studied
in the part II, where we will solve a static constrained satisfaction problem of planar
matching, relevant for the physics of secondary structures of RNA molecules. Again, a
numerical algorithm that solves this problem, called dynamical programming algorithm,
can be given an interpretation of a dynamic growth and rewiring of a certain graph. The
planar matching problem will also have a one-to-one correspondence with a constrained
random walk on a line and on a regular tree, which will be used for an analytic study of
this optimization problem.

One of the main difficulties for treating the problems considered in this thesis es-
sentially arises from their disordered nature. The disorder may be present both in the
topology of the problem (in the heterogeneity of the interaction network) and in the pa-
rameters of the interactions. The two can be related if one is interested in the problems
defined on dynamically-changing graphs: the dynamics can often be encoded into the
change of interactions (e.g. a zero coupling would mean that the corresponding edge in
the network is absent). If the dynamics of the network is much faster than the dynamics
of the corresponding process, we would say that the disorder is annealed; in the oppo-
site case, when the network can be considered as static, we will say that the disorder
is quenched: typically, these problems are hard to solve. Finally, the disorder can be
relevant, being at the source of a global properties of the system, or irrelevant, when it is
not crucial. An example of this type will be provided in the part II, with a heterogeneous
polymer behaving as a homopolymer at sufficiently high temperature.

All these concepts will be studied and explained in detail in the next chapters. The
part I focuses mainly on the dynamic aspects of out-of-equilibrium processes on networks.
In the part II, we consider a static optimization problem of planar matching, related to
the problem of optimal folding in the physics of RNA. However, we will witness a frequent
occurrence of the highlighted concepts in both parts.
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Dynamic processes on networks






Chapter 2

Introduction

Over the past few decades, a serious progress has been made in the theory of disor-
dered systems at equilibrium. The mean-field methods of statistical physics allow for the
detailed study of the equilibrium problems involving a large number of interacting vari-
ables, both in the cases of dense and diluted interaction graphs. The developed mean-field
techniques made it possible to introduce efficient algorithms for statistical inference and
optimization, and to study the corresponding phase diagrams.

The recent years have seen a growing interest for building new analytical tools for
the description of the out-of-equilibrium systems defined on heterogeneous networks, but
there is still no well-established tractable method for solving the corresponding disordered
dynamics in the general case. In this chapter, we will briefly review the existing statis-
tical approaches to the out-of-equilibrium dynamics of classical disordered spin models
and complex systems, and introduce a recently suggested approach to the problem, the
dynamic cavity method on time trajectories.

2.1 The static spin-glass systems in a nutshell

A large part of theoretical developments in the statistical physics of disordered systems
came from the efforts to describe the physics of spin glasses. A concrete physical example
of a spin glass is given by an alloy of a noble non-magnetic material, crystallized on
a regular lattice, with a small fraction of magnetic impurities, placed randomly inside
the lattice. A particularity of the spin glass is that the sign of the interactions between
atoms inside the material is an oscillating function of distance, leading to an unusual
low temperature phase, in which the magnetizations of the impurities are fixed to some
non-zero values, but the long range order is absent. The first model for these alloys has
been suggested by Edwards and Anderson in 1975 [EA75]. This EA model is described
by the Hamiltonian for N Ising spins o; = £1:

H= —ZJZ‘J'OZ‘O']', (21)
(i)

where the interactions occur between the neighboring sites of a three-dimensional lattice,
and the couplings J;; take positive (ferromagnetic) or negative (anti-ferromagnetic) val-
ues. The exact solution of the EA model is a widely open question nowadays: even in the
absence of disorder, the partition function of the purely ferromagnetic Ising model has
been computed only at two dimensions. The EA model can be generalized to a family of
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disordered spin models of the spin glass type, given by the Hamiltonian
H=-— Z Jil...ipah e Uip' (22)

(i1...ip)

The definition of the model should be completed by the topological specification of the
interaction graph GG. The interacting variables o;, 1 = 1, ..., N, take either discrete values
0; = £1 (Ising spins), or real values under some additional constraints that have to be
included in the Hamiltonian (2.2). In the soft-spin Ising representation, the values o;
are favored to take the values around 41; another popular choice is the spherical model,
when the constraint Zf\il 0? = N is imposed. The integer parameter p > 2 controls
the number of spins involved in each interaction. The random couplings J;, .., are fixed
(quenched) random numbers, drawn from some probability distribution; in the following,
this distribution will be specified for each model.

2.1.1 Infinite-range systems

The models (2.2) can be solved in a special case, when the interaction graph is of a
fully-connected type: the interactions run over all the interaction variables. Thus de-
fined, the model is of a mean-field type: each variable interacts with a very large num-
ber of neighboring ones. In the case of a complete graph, one usually takes Gaussian
or bimodal distribution of the couplings J;,. ;,, with zero mean and variance, so that
(J2 )y =plJ?/(2NP71) to ensure a correct thermodynamic limit. The statistical prop-

91...0p
erties of the infinite-range Ising systems have been intensively investigated during several

decades, for a review see [BY86, MVP87, FH93, DGO06]. The case p = 2 of (2.2) for Ising
spins corresponds to the so-called Sherrington-Kirkpatrick (SK) model [SK75, KS78] with
infinite-range random interactions between Ising spins o; = +1:

H=— Z Jij0i0;, (2.3)
i<j

where the sum runs over all the ordered pairs of N spins. In the original papers, this
problem has been attacked by the replica method, very often used in the mean-field
disordered models: the introduction of n replicas, or copies, of the system, allows one
to decouple the interaction between the spins; a peculiar limit n — 0 is then used
for computed quantities. Sherrington and Kirkpatrick have used the so-called replica-
symmetric (RS) ansatz for the structure of the replicas space, but the obtained solution
was not correct: the entropy at zero temperature appeared to be negative, and the
solution was proved to be unstable [dAT78]. The correct solution of the SK model has
been given by Parisi in a series of papers [Par80a, Par80c, Par80b| using the concept
of the replica symmetry breaking (RSB), and has been rigorously proven by Talagrand
[Tal06] using the interpolation method of Guerra [Gue03].

The spherical p-spin model has been introduced in [CS92], and can be studied and
solved using the Thouless-Anderson-Palmer (TAP) method [TAP77, KPV93, CS95]. A
particularly interesting case is given by the the limit p — oo, when the energies of a pair
of configurations are no longer correlated, and the system is frozen in a small number
of configurations of small energy. This model, called the random energy model (REM),
has been introduced by Derrida [Der81] as a simplification of the spin glass problem,
in which the energies of configurations can instead be regarded as correlated random
variables [BM97]. The limit p — oo has been also studied by Gross and Mézard [GM84],
while the final p effects have been investigated in [Gar85].
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2.1.2 Finite connectivity systems

Obviously, the infinite-range systems differ a lot from their real three-dimensional coun-
terparts: in the realistic models, the connectivity of the interaction graph remains finite
(equal to 6 for a three-dimensional hyper-cubic lattice). The advantage of the diluted
models of spin glasses is twofold: they provide for the finite connectivity even in the
thermodynamic limit N — oo, but stay of the mean-field nature. Indeed, the neighbors
for each node are chosen randomly between N sites of the system, and hence there is no
notion of euclidean distance in the interaction graph. Therefore, one could hope that the
properties of the diluted systems would be closer to the real spin glass systems.

In the finite connectivity systems, the interactions of (2.2) are drawn from the prob-
ability distribution [SCMO04]

B cp! cp!
P(Jil...ip) = <1 - NP1> 6<Ji1.‘.ip) + prln(c]il...ip)a (2.4)

where 0 is the Dirac distribution, II is a regular distribution, and c is the average ratio
of p-spin interactions per variable. The case p = 2 corresponds to the Viana-Bray model
[VBS85], with the couplings distribution of the form

C

PUy) = (1= ) 8(J) + 7). (2.5)

N
where, again, 7 is some regular distribution. However, the analytical treatment of the
diluted models is more involved with respect to the fully-connected models: the order
parameter in the systems with finite connectivity becomes a function and not a number.
The order parameter at the RS level has been studied in the original work [VB85] and in
[KS87] in the zero-temperature limit. The RSB phenomenon in week connectivity systems
has been first studied in [DM87]. A breakthrough in the understanding of the disordered
diluted systems has been done by Mézard and Parisi [MPO1]. These authors have used
the cavity method, which is equivalent to the use of replicas, but is more intuitive and
gives simpler equations for the diluted systems. They showed how to treat the problem at
the first step of the RSB, solving the equations numerically with the population dynamics
technique.

2.1.3 Algorithmic applications

A special interest for the study of the finite connectivity systems is explained by a mapping
between a large number of optimization problems and the diluted spin glass models. An
instance of an optimization problem corresponds to a particular realization of disorder
in a spin glass system, and the optimal configuration is given by the ground state of the
physical model. This analogy appeared to be very fruitful for bringing to the optimization
problems the tools developed in statistical physics [MMO09]. On the numerical side, the
idea to use Monte Carlo for finding the solutions of the optimization problems has led
to the development of the simulated annealing technique [KGV83]. Analytical methods
from the statistical physics of disordered systems allowed to obtain a number of previously
inaccessible results. In the early works, the replica method has been successfully applied
to the travelling salesman problem [MP86a, MP86b|, the weighted bipartite matching
[IMP85] and bi-partitioning [FA86]. Later on, a number of other optimization problems
have been treated using the tools from the statistical physics of disordered systems.
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The examples include the XORSAT problem, represented by a diluted p-spin model
[CDMMO03, MRTZ03]; the K-SAT problem, introduced to the physics community by
Monasson and Zecchina [MZ96, MZ97] and followed by research on the effects of RSB
[RTWZ01], leading to the efficient survey propagation algorithm [MPZ02, MZ02]; the
2+p-SAT problem [MZK™*99]; the graph coloring [MPWZ02], and many more.

Importantly, in practical applications it is desired to find a solution to a given instance
of the optimization problem on a single network. A very efficient local algorithm of this
type, called belief propagation (BP), and closely related to the replica symmetric cavity
method, allows for a computation of marginal probabilities in the graphical models in
a distributed, message-passing way. Let us briefly present the ideas behind the BP
algorithm that we will use in the following for introducing a general approach to dynamic
problems; see [MMO09] for more details on the BP approach.

Suppose that we have a graphical model defined on a tree graph by a joint probability
distribution

P(o) = o [] vulonn). (2.6)

where Z is the normalization constant. Note that this expression is given in a factorized
form, each factor 1, representing a local interaction weight. Very often it is convenient
to represent the graphical model in a form of a corresponding factor graph that reflects
this structure of the model (2.6). The factor graph can be thought of as a bipartite
graph G = (V, F, E): V is a list of variables, ¢ = {0;}icy, and F represents a list of
interactions, or function nodes, so that an edge (i,a) € E is present if the interaction
a € F involves a variable ¢; in the node ¢ € V. The neigboring nodes in the factor graphs
are denoted by 0i¢ and Oa for the variables and function nodes, correspondingly. The
concept of factor graph is illustrated in the Fig. 2.1 for the samples of EA, SK and p-spin
models, mentioned previously. A review on the factor graph representations is given in
[KFLO1].

(a) (b) ()

Figure 2.1: Factor graph representation of spin glass models with N spins: (a) two-
dimensional EA model with N =9, (b) SK model with N = 4, and (c) 3-spin model with
N = 4. The hatched squares represent interactions between spins.

The marginal probability distribution (also called belief) that the variable on the site
1 takes value o;, is defined as
m'(0:) =Y Pla). (2.7)
a\;
The basic idea of the method consists in the following observation: since the model is
defined on a tree, when one removes a site ¢ from the graph G and cuts the corresponding
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connection to the neighboring interactions, the resulting cavity graph G® is given by a
collection of independent and statistically uncorrelated branches of a tree. Therefore, the
marginal m‘(o;) can be expressed simply as a product over the conditional probabilities
that represent the contributions of these branches:

LT (2.8)

a€di

In this expression, Z* is the normalization factor that ensures that > m(o;) = 1, and
0i stands for the neighbors of ¢ in the factor graph. The probability ma_”(ai), called
message, is defined as the marginal probability that node 7 takes value ¢; in the modified
graph, in which all the interactions around 7 except a have been cut out. Now, in order
to compute m(a;), one needs to know the values of m*~*(o;). These quantities obey the
coupled self-consistency equations

i—a 1 o 7
m'o;) = i H mP~ (o), (2.9)
bedi\a
m " (o;) = Za—” Z Va(Ts,) H mh (o (2.10)
THa\i keda\i

where we have also introduced another sort of messages, m'~%(o;), which is defined as
the marginal probability that node i takes value o; in the modified graph, in which the
interaction a has been deleted. In these equations, Z'?% and Z%~* are the normalization
constants. The coupled equations (2.9) and (2.10) are usually solved by iteration: first,
one initialises all the messages to some value, and iterate the equations (2.9) and (2.10)
until convergence. Then, the final values for the messages m® ' (o;) are used in (2.8)
for computing the eract values of the marginal probability distributions m’(o;). This
procedure explains the fine terminology of the BP algorithm: the iteration of equations
(2.9) and (2.10) can be thought of as a message-passing protocol, each message holding
a conditional information on the probability of the corresponding variable; the marginal
is then given by a belief shaped by the information contained in all the messages arriving
to the node.

Note that although the equations (2.8)-(2.10) have been derived for a tree graph,
they can be viewed as an algorithm that can be run on an arbitrary interaction graph.
They will provide accurate estimations of the marginals as long as the replica symmetric
assumption holds for the interaction graph, i.e. that the correlations induced by loops
decay fast enough, so that the approximation (2.8) as a product over neighboring inter-
actions is correct. In particular, the BP equations (2.8)-(2.10) give asymptotically exact
(in the thermodynamic limit N — oo) expressions for the beliefs on the only locally tree-
like networks; in what follows, we will see that sparse random graphs, as well as many
real-world networks of interest, fall into this category.

Sometimes, it is easier to eliminate one sort of messages in (2.9) and (2.10) and to
use a single iteration equation for messages instead of two:

me~"(a;) Zﬂqua oo0) [T T ™ *(ow), (2.11)

THa\i keda\i bedk\a

with Z7" = Z97" [, oa\i Z k=a This expression further simplifies in the important case
of pairwise models, when the variables interact pairs by pairs, and the joint probability
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distribution factorizes over the links in the graph:

P(o) = % (H) Vij(0i, 05).- (2.12)

In this case, the update equation (2.11) can be rewritten exclusively in terms of messages
m'™(0;), a short-cut for m ) (g;):

m'~(o;) = % H Zwik(ai,ak)mk_’i(ak). (2.13)

kedi\j ok

Belief propagation, also known as the sum-product algorithm, has been rediscovered
several times independently and in different contexts. It has been introduced by Pearl
[Pea88] for the inference problems in acyclic Bayesian networks. In the field of cod-
ing theory, the BP equations appeared as an application to the low-density parity-check
codes [Gal62, BG96, KS98]. In physics, the history can be traced back to the mean-field
approximations to the Ising model, developed in terms of pseudo-marginals by Bethe
[Bet35]. The replica symmetric cavity method applied to sparse spin-glass models has
been discussed for the first time by Mézard and Parisi in [MP87a]. An overview of
the belief propagation algorithm in the framework of factor graphs is given in [KFLO01]
and in [YFWO00, YEWO03, YFWO05]. The last papers suggested a variational formulation
of belief propagation in terms of stationary points of the Bethe free energy, and intro-
duced the so-called generalized BP algorithm, related to the cluster variational method
of Kikuchi [Kik51]. The loop corrections to BP have been considered in [MR05] and in
[CCO06a, CCO6b|, where it has been shown that the BP fixed points appear as a first-order
approximation in a perturbative loop calculus procedure.

2.2 Dynamics of the Ising systems

There is no intrinsic dynamics in the static model defined by the Hamiltonian (2.2), and it
has to be defined on a separate basis. In this section, we briefly discuss two popular choices
for the dynamics of the spin-glass systems. We mostly focus on the basic definitions
and techniques that are traditionally used in the studies of the disordered systems and
deliberately put aside some interesting aspects about the aging of the spin glasses, the
phenomenology of the dynamical phase transitions, mode-coupling approximations, as
well as connections to the physics of structural glasses and hard spheres systems; for a
review of these topics see, e.g., [BCKM96, BCKM98, Cug03].

2.2.1 Langevin-type dynamics

For a system defined by the Hamiltonian (2.2), one can define a relaxation dynamics of

the Langevin type
= — i (1), 2.14
D ) (2.14)
where 7;(t) is a Gaussian thermal noise with zero mean and white-noise statistics.
The Langevin dynamics of the fully-connected models has been studied for the soft-

spin version of the SK model by Sompolinsky and Zippelius in [SZ81, SZ82, Som81], see
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also [MVP87, CK94]. The solution is obtained perturbatively with respect to the four-
spin coupling constant (that large limit of this constant corresponds to the limit of the
Ising spins) and allows to study the long-time asymptotic behavior of the spin correlators.
A review on the relaxation dynamics of the SK model is given in [CKO08].

The Langevin relaxation dynamics due to the Hamiltonian (2.2) for a spherical p-
spin model has been studied by Crisanti, Horner and Sommers [CHS93] in the high-
temperature phase. In the low-temperature phase, this system has been solved by
Cugliandolo and Kurchan [CK93]. The dynamical TAP approach based on the path-
integral techniques for p-spin model has been analysed in [Bir99].

Understanding the dynamis of the diluted p-spin model is a particularly important
problem for the same reason as in the static case: still being of a mean-field nature, this
system is closer to the finite dimensional case. In the thermodynamic limit N — oo, the
description of the disordered average dynamics is not limited to the linear response and
two-time auto-correlation functions, but should involve many-time correlation functions.
The Monte Carlo simulations of the diluted p-spin model [RTZ00, MRT03a] have pointed
out the heterogeneous character of the dynamics and demonstrated the validity of the
out-of-equilibrium fluctuation-dissipation relations. The analytical investigation of the
relaxation dynamics of the diluted spherical p = 2 spin model has been done in [SCO03] for
a case of a diagonal interaction matrix. The paper [SCM04] makes use of the generating
functional techniques [MSR73, De 78] in order to construct a series of approximated
equations for the averaged dynamics; note, however, that only typical properties can be
studied within this approach, and a detailed description of a single spin dynamics in a
given heterogeneous environment is not accessible.

2.2.2 Glauber dynamics

Another setting consists in imposing the Glauber dynamics for the Ising spins in the SK
model. The stochastic Glauber dynamics [Gla63] at each type step is defined by a local
transition probability wi(o}*" | {ol};es:) that node i takes value oj*" at time ¢ + 1 given
the values {c%} of its neighbors at time ¢:

t+1
Bai Af

2 cosh(BAL)’ (2.15)

wi(oft | {o5}jeai) =

where Al is the local field at time ¢, created by the set of neighbors 9i of 7 in the interaction
graph:

A=) ok (2.16)

In the fully-connected SK model, 07 corresponds to all spins except ¢. The inverse temper-
ature f controls the randomness of the dynamics: it is completely random for g — 0 and
deterministic for § — oo. One has to specify the choice of the time step and of the spin
for each update. A simultaneous update of all nodes o' = {o!};cy at once corresponds
to the Markovian parallel dynamics:

P(o"™) =) W(o" | o")P(c"), (2.17)

with the transition probability

W(o™ | o) = [ Jwiloi™ [ {o}}e00). (2.18)

eV
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In the case of symmetric interactions J;; = .Jj;, the dynamics (2.17) obeys the detailed
balance condition W (o' | o)P(c) = W(o | 0')P(0’), and leads to the equilibrium distri-
bution that can be formally written in the Boltzmann form

P. (o) o e PHs(0), (2.19)

where Hz (o) is the Peretto’s temperature-dependent pseudo-Hamiltonian [Per84]:

Hgs(o) = —% Z log 2 cosh(BA;). (2.20)

2%

A convergence to the equilibrium distribution with the Hamiltonian (2.3) happens under
an asynchronous update of spins: node 7 is chosen randomly and independently from the
set V', and the spin o; is updated with the probability (2.15) at each time step (which is
now proportional to 1/N so that all the spins have been updated on average on a time
scale O(N?)). This gives rise to the sequential dynamics, defined by the Markov chain
(2.17), but now with the transition probability [Coo01]

1
W' o) =+ [H 6] wilo ! | {o}ien). (221)
eV Lj#i

In the continuous time limit, the process defined by (2.17) and (2.21) gives rise to the
master equation [BLLS71]

d

aP(at) = Z [wi(Fio')P(Fio') — w;(0")P(a")] (2.22)
i€V
where Fio' = (ot,...,—cl,... oY) is the spin-flip operator, and

w; (o) = %[1 — ol tanh BAY]. (2.23)

In the case of symmetric interactions, this dynamics converges to the unique (for ergodic
processes) equilibrium distribution

P

€q

(0) ox e PHealo) (2.24)

with H., given by (2.3).

The dynamics of the SK model under Glauber dynamics has been considered in the
original papers [SK75, KS78]. A systematic path-integral approach has been developed in
[Som87], using the formalism introduced by De Dominicis [De 78]. Above the spin-glass
transition, the Glauber dynamics of the SK model via the high-temperature expansion
has been studied in [NY96]. Another approach in terms of deterministic flow equations
for macroscopic state variables has been proposed by Laughton, Coolen and Sherrington
[CS93, CS94, LCS96]. A development of this approach in the spirit of the continuous
fraction expansion is given in [Sza98a, Sza98b].

More recently, several mean-field approximations have been suggested for the study of
the Glauber dynamics of Ising systems, motivated by inference in the kinetic inverse Ising
model [MS11, RH11, SRMH12, MS13, HK14]. In contrast to the symmetric networks
(Jij = Jj), in the fully asymmetric case of SK model [CS88] the stationary state is not
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described by Gibbs measure, but the dynamics exhibits small correlations among spins at
different times. This property allows to use the Gaussian approximation and develop an
exact formalism for the corresponding parallel dynamics [MS11], reminiscent to what has
been done in earlier works in the context of asymmetric neural networks [DGZ87, GMS8S]:
the method gives the exact values of local magnetizations and an exact relation between
equal time and time-delayed correlations. The incorporation of information from previous
times allows to get a better approximation for the application to the symmetric networks
[MS13].

The numerical studies of the Glauber dynamics in diluted systems [BZ99, MRT03b]
highlighted the effects of heterogeneity on the dynamics. The sequential dynamics of the
Bethe lattice spin glass with binary couplings has been treated in [KHO08] using cavity-like
arguments. Hatchett et al. [HWCT04] have applied the generating functional analysis
techniques [MSR73, De 78] to the parallel dynamics of Ising model on a Poissonian net-
work. This approach has been generalized in [MC09a] for graphs with a given degree
distribution. Although being exact, the number of order parameters (single-site spin and
field paths) grows exponentially with time, making it intractable for a reasonable number
of time steps. An alternative approach [SW04, HCCS05, MC08, MCO09b], based on (or
equivalent to) the dynamical replica analysis [CS94, LCS96| for the SK model, does not
suffer from the growth of order parameters with time, but is not exact: one has to increase
the set of observables for a better precision, which is not easy to control. Finally, the
cavity method has been recently used to solve the Glauber dynamics on random graphs
in terms of single-spin time trajectories [NB09, KM11, AM12]. This approach has a ben-
efit of providing exact answers on locally tree-like graphs, but suffers from the problems
similar to the generating functional method when applied to symmetric networks: the
number of variables grows exponentially, making it difficult to solve the problem beyond
only a few time steps. We will return to this point in more details in the section 2.4,
where an equivalent formulation of this approach is presented in the form of dynamic
belief propagation.

2.3 Spreading dynamics in complex systems

Before proceeding to the formulation of dynamic belief propagation as an approach to deal
with dynamic problems, let us take a short survey into the dynamics of some prototypical
complex system models of spreading processes, which are used to describe very diverse dif-
fusion phenomena: propagation of infections [Mur89, AM91, Het00, BLM*06] and innova-
tions [Rogl10, CWWT08, LGLDGO03, GDGP*02, SS98] in a social media, spread of black-
outs and failures in power grid and computer networks [DCLN07, KCAL05], communica-
tion protocols, such as gossip algorithms and peer-to-peer file sharing [DGG*87, VRB03],
avalanche dynamics in biological and neural networks [OCK13, KYK12], magnetic mate-
rials [DSS97, OS10] and financial markets [Kim04, Kos98]. Although all these cascading
processes refer to different systems, their mathematical formulation relies on similar mod-
els that characterize the emergence of a collective behavior starting from the microscopic
interactions between a large number of individuals in spatially extended systems. Con-
ceptually, this setting is close to the statistical physics approach to the study of the
non-equilibrium phase transitions in disordered systems [BBV08, CFL09, Vesl1]|. This
fact explains the success of the techniques akin to the statistical physics of mean-field
disordered models applied to the study of these complex systems. For instance, the bi-
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nary variables used in voter [Gal02], majority-rule [KR03] and Sznajd [SWS00] models of
opinion formation are similar to Ising spins, with continuous opinion variables [DNAWO00)]
close to a soft-spin representation, while the few-state discrete variables used in epidemic
[KM27] and other models can be viewed as Potts spins. However, as we will see, the
dynamics may be defined not by a Hamiltonian, but rather through a set of dynamic
transition rules. Typically, one is interested in the study of these models on realistic net-
works, either real, extracted from a particular system, or random, that models the system
of interest in a satisfactory way. In this section, we will first mention some features of
these networks that will be used through the rest of the thesis, and define several typical
and common models used to approximate the spreading processes.

2.3.1 Some aspects of complex networks

It turns out that a careful study of a dynamic process can not be carried out without
accounting for the properties of the underlying network, as the topology of the interaction
graph enters in the very definition of the model. To cite an example, we will see that the
topological parameters enter in the expressions of the critical thresholds for dynamic pro-
cesses. For this reason, the network science itself became fundamental in the investigation
of the out-of-equilibrium dynamics occurring on top of a complex topology. Recent years
have seen a large number of works on the structure and emergence of complex networks,
for a review see [AB02, New03, BLM 06, DGMO08, BBV08, CH10].

A network G = (V, E), represented by a collection of nodes (V') and edges (E) between
them, is characterized by a number of parameters: node degrees and degree correlations,
number of motifs (small subgraphs) and communities, diameter, betweenness, cluster-
ing coefficient, resilience, etc. Depending on the particular application, it is useful to
construct and to study a relevant class of artificial graphs that mimic the properties of
interest of a given real network. Hence, a primary role is played by the theory of random
graphs, pioneered by Erdos and Rényi [ER60]. A random graph with a constrained degree
profile can be constructed using the configuration model [Bol80, MR95]: given a degree
sequence of N nodes in a network, {ki,...,ky}, the connections are made by choosing
uniformly at random the matchings between the nodes’ stubs (half-edges); in order to get
a simple graph, one should explicitly forbid the formation of self-loops and multi-edges.
The degree sequence can be drawn from some probability distribution P(k). A random
graph is called regular, see Fig. 2.2(a), if each degree is equal to some fixed value c:

P(k)=46(k —c). (2.25)

A Poissonian random graph, also called Erdds-Rényi graph (drawn on the Fig. 2.2(b)),

is obtained if the degrees are chosen according to the Poissonian law with a mean value ¢
o

P(k) = e_cy. (2.26)

Many real-world networks are characterized by heavy-tailed and skewed degree distribu-
tion, with a few nodes (hubs) with very high degree distributions. These networks are
often approximated by a power-law degree distribution of the form

Plk) ~ k™, (2.27)

giving rise to a high level of large-scale fluctuations [BA99]. A cartoon picture of this
type of graph is given in the Fig. 2.2(c).
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Figure 2.2: Cartoon examples of connected components of random graphs: (a) random
regular, (b) Erdés-Rényi, and (c) power-law.

A random graph will be referred to as dense, if an average degree of nodes is of order
of N, (k) = O(N), as opposed to the sparse graph, in which ¢ = (k) is of order of one.
The examples of sparse networks include the finite-connectivity diluted model defined by
(2.5), or a power-law graph with a finite variance (k?). The sparse networks with finite
variance share a particular tree-like property: they look as trees at a distance scaling
as log N [AS04]. More precisely, if [; is the length of the shortest loop going through a
randomly chosen node 4, then with high probability I; ~ log N/ log c.

2.3.2 Spreading processes

Let us give a common example of a spreading process on a network, typically used to
describe a propagation of pathogens or information in a network. The mathematical
modeling of epidemic spreading is a subject of growing interest because of its importance
for practical applications, such as analysis, evaluation and prevention of consequences of
epidemiological processes [AM91]. The simplest epidemiological model is the susceptible-
infected-recovered (SIR) model, introduced in 1927 [KM27]. In this model, a node in
a network G = (V, F) at each time can be in either of three states: susceptible (5),
infected (I), or recovered (R). The propagation of infection on this model occurs due to
the pairwise interactions between individuals: an individual in the state S can be infected
by one of its I neighbors. The infected node can then switch to a recovered state with a
certain rate, leading to an ultimate depletion of infected agents. These transition rules
can be summarized by the following diagram [BLM™06]:

S() + 1) 225 1) + 1(j) (2.28)
1(i) & R(3). (2.29)

Another possibility of the recovery mechanism consists in a return of an infected individ-
ual to the susceptible state after some time: it corresponds to the so-called susceptible-
infected-susceptible (SIS) model, introduced on a regular lattice by Harris in 1974 [Har74]
under the name of the contact process, and which is used to model the behavior of en-
demic diseases, in general leading to an indefinite persistence of the disease. This recovery
mechanism is encoded in the equation (i) £ S(i) that should be used instead of the
equation (2.29) in the definition above.

As a first approximation, the dynamics (2.28)-(2.29) is studied within the homogeneous
maxing hypothesis. It consists in neglecting the actual topology of the network, assuming
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that the individuals interact through the whole population. This assumption allows one
to write simple naive mean-field (NMF) equations on the densities of susceptible (s),
infected (i) and recovered (r) nodes in the population. For example, in the continuous
time limit, and for homogeneous infection (A) and recovery () rates, one gets

ds(t)

= = = MR)i()s(0), (2.30)
O — pi(t) + ARYi(0)s(0), (231)
d:lit) _ i) (2.32)

with (k) being the average number of contacts of each individual. Although the mass-
action mixing hypothesis is obviously a very crude approximation, the analysis of the
equations (2.30)-(2.32) predicts the existence of the epidemic threshold ., separating
in the thermodynamic limit N — oo the regions of parameters that lead either to the
zero epidemic incidence r(00) = 0, or to a percolation of the infection to a finite fraction
of population r(oco) > 0. This threshold corresponds to the condition Ry = 1 on the
reproductive number Ry = A(k)/u that controls the average number of secondary infection
cases, generated by a primary one in an entirely susceptible population, yielding \. =
1/ (k).

A more refined framework is given by the heterogeneous mean-field (HMF) approach
[PSVO01b, PSV0la, New02, MPSV02], in which the variables are aggregated according
to their degree k, assuming that the nodes are statistically equivalent inside each degree
block. This gives rise to the mean-field equations for the degree class densities s (t), ix(t)
and r(t), similar to the equations (2.30)-(2.32):

dsp(t

Sd’“—t() — —Mksp(1)O(1), (2.33)
dig(t

d?"k(t) .

LAY 2.
where ©(t) has a meaning of the probability that a given link points to an infected node
[PSVO01b, PSVO01al:

kEP(k)ir(t

() ’
with an assumption that the network is uncorrelated. The global quantities are obtained
by averaging over the degree distribution P(k): for example, the fraction of recovered
nodes r(t) at time ¢ will be given by r(t) = >, P(k)ry(t). The analysis of the large-time
limit of the equations (2.33)-(2.35) yields the reproductive number Ry = Au~'(k?)/(k),
locating the critical threshold value at A\, = u(k)/(k?). This threshold has a finite value
for networks with (k?) < oo, but vanishes in the graphs with strong connectivity fluc-
tuations, for instance in the scale-free networks with 2 < v < 3 with (k%) — oo in the
thermodynamic limit. The large-time limit of the SIR epidemic can also be studied using
the similar heterogeneous mean-field and generating functions techniques, mapping the

problem to the bond percolation model [New02, KRO7].
The absence of the epidemic threshold has been first reported by analysing a variant of
the equations (2.33)-(2.35) for the SIS model in [PSV01b, PSV01la]. Since then, a number
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of rigorous results for the thresholds as a function of the network topology have been
derived, see, e.g., [CPS10, Durl0, KNZ14, HP14]. In particular, many results relating
the critical value to the largest eigenvalue of the adjacency matrix (or, more recently,
of the so-called non-backtracking matrix [KNZ14, HP14]) have been established for the
quenched networks, for which the adjacency matrix is fixed during the spreading process,
as opposed to the assumptions of NMF and HMF, in which the edges are continuously
reshuffled. Hence, HMF can in principle be used only to model the influenza-like illnesses
with an infection period long with respect to the duration of transmission contacts, and
is not suitable to the systems with an opposite time scale separation, where the infection
spreads very rapidly.

Several recent investigations addressed this issue by carrying out a more advanced
approach to the problem, providing the differential equations for the fraction of nodes
in a heterogeneous environment that are susceptible, infected, or recovered at a given
time [Vol08, KN10, Milll], see also [MSV12]. Although averaged over the graph en-
sembles and initial conditions, these equations should not be confused with the NMF or
HMF approximations that were derived under perfect mixing assumptions: the equations
[Vol08, Mill1] appear to be exact in the thermodynamic limit, N — oo, for locally tree-
like random graphs. Karrer and Newman [KN10] wrote a message-passing version of these
equations by treating a more general SIR model (in which the transmission and recovery
distributions are non-exponential), however, in a not very transparent convolutional form
and averaged over initial conditions.

The derivation of these exact equations relies on identifying correct dynamic variables
that are required to obtain the closed-form expressions. Let us present such a derivation
for a message-passing version of these equations, applicable on a single instance of the
contact network for a given initial condition. These dynamic message-passing (DMP)
have been reported in [P-2], and are derived using a cavity-like argument, similar to what
has been used for the derivation of the equation (2.8). In particular, we will show that
the probabilities of being susceptible, infected, or recovered at a given time t as provided
by the DMP equations are exact for all initial conditions and every realization of the
transmission and recovery probabilities A;; and g, if the graph of contacts is a tree, and
give asymptotically exact results for locally tree-like random graphs. When averaged over
initial conditions or/and the graph ensemble, the DMP equations are equivalent to those
of [Vol08, Milll] and to a special case of [KN10].

For the purpose of derivation, we assume that the graph G = (V, E) is a tree, and
associate to each node i a Potts-like discrete-time variable of that can take one of three
values: susceptible, of = S| infected, of = I, or recovered, of = R. Then, we define the
discrete parallel dynamics of the SIR model: at each time step, an infected node i will
recover with probability p;, and a susceptible node ¢ will become infected with probability
1 —JTeo:(1 = Akibop(1),1), where Oi is the set of neighbors of node ¢, and \;; measures the
efficiency of spread from node k to node i. The recovered nodes never change their state.
The set of quenched probabilities {\;;}(ijycr, {1i}icv determine a single instance of the
problem.

Let us define Pi(t), Pi(t) and Pj(t) as the marginal probabilities that of = S, of =T
and of = R. These marginals sum to one and thus

Pi(t+1)=1— Pi(t+1) — Ph(t+1). (2.37)
Since the recovery process from state [ to state R is independent of neighbors, we have

Ph(t 4 1) = PL(t) + i Pj(t). (2.38)
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The epidemic process on a graph can be interpreted as the propagation of infection
signals from infected to susceptible nodes. The infection signal d*7/(t) is defined as
a random variable which is equal to one with probability d,:-1 ;A;;, and equal to zero
otherwise. Consider an auxiliary dynamics D; where node jz receives infection signals,
but ignores them and thus is fixed to the S state at all times. Since the infection cannot
propagate through node j in this dynamic setting, different graph branches rooted at node
J become independent if the underlying graph is a tree. This is the natural generalization
of the cavity method to dynamic processes. Notice that the auxiliary dynamics D; is
identical to the original dynamics D for all times such that ¢ = S. We also define an
auxiliary dynamics D;; in which the state of a pair of neighboring nodes ¢ and j is always
S.

In order to obtain a closed system of message-passing equations, we write the remain-
ing update rules in terms of three kinds of cavity messages, defined as follows. We first
define the message 6*7(t) as the probability that the infection signal has not been passed
from node k to node ¢ up to time ¢ in the dynamics D;:

65=i(t) = Prob” (Zt: d"H () = o) : (2.39)

The quantity ¢*7(¢) is the probability that the infection signal has not been passed from
node k to node ¢ up to time ¢ in the dynamics D; and that node k is in the state I at
time ¢:

¢*7(t) = Prob” (Z A" ) =0, of = I) : (2.40)
=0

Finally, PE7(t) is the probability that node k is in the state S at time ¢ in the dynamics
DZ'I

PE7(t) = Prob” (o}, = S) . (2.41)
In what follows, we prove that

P (t+1) =Py0) T 0"t +1), (2.42)
kedi\j

where 0i\ j means the set of neighbors of i excluding j. Indeed, by definition

t+1
Py7(1+1) = Prob® (! = 8) = P4(0) Prob® [ S° S a () | (2.43)
kedi\j t'=0

Since the auxiliary dynamics D;; coincides with dynamics D; as long as node ¢ is in the
S state, we can write

t+1
PG (t+1) = Py(0)Prob”s [ Y~ Y "dF it | . (2.44)

ke€di\j /=0
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Since different branches of the graph containing nodes k € 0i\j are connected only
through node i, they are independent of each other, hence

keaz\j t'=0

Moreover, for nodes k € 0i\j, the dynamics D;; is equivalent to the dynamics D;, so
we can replace D;; by D; in the last expression and hence, using the definition (2.39),
we obtain equation (2.42). We complete the updating rules by writing the equations
for 0*i(t) and ¢*(t). The only way in which #*7(¢) can decrease is by actually
transmitting the infection signal from node k to node ¢, and this happens with probability
Ar; multiplied by the probability that node k was infected, so we have

OFi (1) — 05 (E) = — Nt i (2). (2.46)

The change for ¢*i(t) at each time step comes from three different possibilities: either
node k actually sends the infection signal to node i (with probability A;), either it recovers
(with probability py), or it switches to I at this time step, being previously in the S state
(this happens with probability P57 (t — 1) — Py 7 (t)):

¢kz—>i(t) o ¢kz—>i(t _ 1) — _)\kiqbk—n'(t o 1) o ,ukqbk—n‘(t o 1) + )\killjkqﬁk_ﬁ(t . 1)
+ PEIt — 1) — PE7U(t). (2.47)
The third compensation term on the right-hand side of the previous equation has been
introduced in order to avoid double-counting in the situation when node k& transmits the
infection and recovers at the same time step.
This completes the update rules for cavity messages. These equations can be iterated
in time starting from initial conditions for cavity messages:
0'=3(0) = 1, (2.48)
¢"7(0) = 050,1- (2.49)
The marginal probability in the original dynamics D is obtained by including all the
neighbor nodes k € 0i in eq. (2.42):

Pi(t+1) O [t +1 (2.50)
kedi

Let us summarize the closed set of recursion rules, given by the combination of (2.37),
(2.38), (2.42), (2.46), (2.47) (2.50):

Pt +1) 0) I] ¢*7(t+1 (2.51)
keoi\j
OF 7 (t + 1) — 0570 (t) = — A1), (2.52)
¢ ) = (1= M) (1 — )" 7't = 1) — [P§™(1) — P§T(t — 1)]. (2.53)
The marginal probabilities that node i is in a given state at time ¢ are then given as
Pi(t+1 O [t +1) (2.54)
keoi
Pp(t +1) = P(t) + paPy(t) (2.55)

Pi(t+1)=1—Pi(t+1)— Pht+1). (2.56)
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Together with the initial conditions (2.48-2.49), these equations give the exact values of
marginal probabilities P%(t), Pi(t) and P4(t) on a tree graph. The algorithmic complexity
of DMP equations for a given vertex i is O(tNc¢), where ¢ is the average degree of the
graph.

Note that despite the similarity with the BP equations (2.9) and (2.10) that need to be
iterated until convergence, the DMP equations are iterated in the physical time: starting
from the initial conditions at time zero, by applications of the equations (2.51)-(2.56), one
gets the values of marginal probabilities at time one, etc. In general, it is very difficult
to guess the right dynamic messages (analogous to (2.39)-(2.41) in the SIR model) that
should be used in the dynamic equations for more complicated models, involving a larger
number of states and several non-trivial transitions. In the chapter 3, we will develop a
general procedure for deriving the DMP equations for these complicated models, based
on the dynamic belief propagation approach, presented in the next section.

2.4 Dynamic belief propagation

In this section, we will describe the cavity approach to the dynamics on networks, already
mentioned in the section 2.2, in a simple form of belief propagation equations, described
in the section 2.1. We will use this dynamic belief propagation (DBP) formulation as
a starting point for obtaining new results, presented in the chapter 3. Equivalent for-
mulations have appeared in [NB09, KM11, AM12, ABDZ13b|. The presentation of the
dynamic belief propagation follows the publication [P-1].

Consider again a graph G = (V, F), defined by a vertex set V' and a set of edges
E. Each vertex i € V is characterized by a variable, taking the value of at time t. We
assume here that the set of possible values of o? is a finite set of size K. We consider a
generic dynamic process defined in a discrete-time parallel dynamics and described by a
local transition probability w;(o{™" | {o}};cs;) that node i takes value o' at time ¢ + 1
given the values {aj-} of its neighbors at time ¢ (the set of neighbors of i on the graph is
denoted by 0i).

If we denote by & = (0?,...,0l) the trajectory of variable i at times t = 0,...,T,
where T is defined as the stopping time, the joint probability distribution of the trajec-
tories P({7;}icv) can be written as follows:

PG Yev) = [T ] wilot™ | {04} 0 P (2.57)

i€V t=0

where Py = P({0%}.cv) is the distribution of variables at initial time.

It is a well-known fact that BP equations are exact for static graphical models when
the factor graph is a tree. However, when we consider the factor graph of the model
defined in (2.57) (where the variables are time trajectories &;), it turns out that the
factor graph contains many loops, even in the case where G is a tree, see Fig. 2.3.

A way to fix this problem consists in exploiting the duality between variables and
interactions by putting the variables on the edges. To this purpose, we introduce a
different representation of the problem, that uses auxiliary variables (time-trajectories)
Gi—; on each directed edge (i,5) € E. For a given i, all the variables ¢;_,; are supposed
to be copies of the original ;. They should thus be all equal, and we implement this
by adding for each i an additional constraint &;_,; = &, for all j,k € 0i. The joint
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| n

Figure 2.3: An example of a factor graph of the graphical model at two nearest times
described by the joint probability distribution P({d;}icv). The check node a represents
interaction between the variable ¢! and the variables {0} jcoi at a previous time step.

This factor graph is characterized by systematic short loops.

probability distribution (2.57) of time trajectories can hence be written in terms of these
new variables:

T-1
P({Gisj, Gimitager) = [T LT |wiloli | {oroitvear) TT 0ot ot [P0 (2.58)
ieV =0 kedi\l

where [ is any of the variables influenced directly by i, and k& € 9i\l means the set of nodes
neighboring node ¢, excluding [. This new form of the probability distribution is described
by a factor graph which is very closely related to G : the new variables &;_,;, 7, live
on each edge (ij) € F, and there is a function node (interaction) associated with every
vertex ¢ € V. If the original graph G is a tree, the factor graph is also a tree, see Fig. 2.4.
This crucial property allows to use the BP method in terms of this new description for
studying the dynamics, with the guarantee that the resulting equations are exact if G is
a tree.

-

( a(ail a—vk) ( O;'—~mr 0m-i)

(G-,G-) (G-n0n-)

Figure 2.4: An example of a factor graph of the graphical model at all times described
by the joint probability distribution P({d;-;,dj-:}@j)er). The check node i represents
interaction between trajectories &; and {7,};es;. This factor graph is characterized by
the underlying structure of the original graph.

Let us now write the BP equations, using the form of BP for single type of messages
(2.11). Using the fact that ¢;_,; = & for all j, k € 01, it is convenient to rename the
variables {;,;, 7} j)er to {0, 0} jyep- We can write the BP equation for the joint
probability (2.58) in terms of messages m'~7(d;, d;):
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T-1
mlﬁﬂ(ai,gj):ZHj > T wilel™ |Hotheons: o) Po| [ m* 7" (6+,5). (2.59)

{Gk}treoin Lt=0 kedi\j

The normalization constant Z?77 can be calculated explicitly for the markovian dy-
namics from the normalization condition

> miT(G,d) =1 (2.60)
k:—n(

T

7

Ok, Uz)
and so

For example, in the case of a general Markov dynamics we use the fact that m
does not depend on ¢! and perform the summation first over O'T then over o;
on for the times 7'— 1, ...,0. Finally, we get the normalization factor

i—j 1
ARCEES =y (2.61)
for this case, where d; is the number of neighbors of the node 7 in the initial graph.

The message m'~7(d;, ;) has the meaning of the probability for the trajectories ;, @;
in the transformed cavity graph, where the factor node j has been removed. We can
also rewrite the equation (2.59) in terms of conditional probabilities m*~7(d; | &;) in the
cavity graph. Thus, for the dynamics obeying the Markov property we have

1
Z m'(3;,3;) = oo (2.62)

and hence get

m7IG | 5) =) sz (077 | {0k heonss o) Bo| [T m* (@1 d0).  (2.63)

{O'k}keaz\j t=0 keal\]

The normalization factor in this equation is exactly equal to 1, due to the Markov
property of the dynamics. Note that, again, by construction, mkﬂ(ak | 7;) does not
depend on o7, so this variable can be erased. Then, as far as [[,_, wi(a™! | {0} Freon, )
does not depend on o{, we can perform the sum over o{ in the rlght hand side of the
equation (2.63), which yields the special form of the equation, appeared in the work
[KM11] for the study of the voter model:

T-1

mp (3135 = ) wi(of™ [ {ohtneons: o) Po| [ mi~(dx 1 3), (2.64)
t kedi\j

Il
=)

T-1
{02,.“,0,6 }keai\j

where we denote mi. % (5 | &;) = m™9(5; | &;) and my7 (5 | ;) = pPRIE my (55| 7))
The message m'™7(d; | ;) in (2.63) has the meaning of the probability for the tra-
jectory &; given the trajectory &; in the transformed cavity graph, where the factor node

J has been removed. We denote the dynamics in the corresponding cavity graph as D).
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The equation (2.63) can be iterated until convergence, and the corresponding marginal
probability of a time trajectory &; will be given by

7ﬂ@:§jljmﬁw@m@%]jwﬂ@my (2.65)

{Gr}trecoi Lt=0 keoi

Note that in the general case, it takes an exponential number of operations in the du-
ration of the process to solve the equations (2.63) and (2.65), since each message has
KT components, where K is the number of values that each variable of may take, and
the sum in (2.63) is performed over K%~ variables for each node i, with d; being the
number of neighbors of 7. However, we will see that a crucial simplification occurs for the
models with unidirectional dynamics, introduced in the chapter 3.

If the graph G is purely directed, meaning that the direct influence between neigh-
boring nodes ¢ and j runs only in one direction, another immediate simplification occurs
in the DBP approach. In this case, m*™/(d; | ;) does not depend on the variable ¢;, and
the equation (2.63) is reduced to

m'(d;) = Z 1:[ wi(07 ™ [ {0} bheoyi) Po H m* (). (2.66)

{Fk}reo,,: Lt=0 k€dini

Therefore, writing the marginal in a factorized form
m'(5;) = [ [ mi(o}), (2.67)
t
we immediately get from (2.65) for ¢ > 0

miﬂ(afﬂ) = Z wi(o; " | {0} heani) H my (o7). (2.68)

{0 keo,,i k€dini

Note, however, that in the case of the dynamics that depends on the state of the same
node at the previous time, the factorization (2.67) does not lead to a decoupled expression,
and we have

[Triae™ =111 >. wiol™ [{oitreoni-o)Po [] mi(oh) |- (2.69)
t

t [{of ko, k€dini

The DBP equations (2.63) and (2.65) are equivalent to those of [NB09, KM11], but
are presented in a simple belief-propagation-like form for a generic local transition prob-
ability w;(o]*! | {o%};e0:). Although the time factorization ansatz (2.67) is exact only for
the fully asymmetric networks, it has been also used (under the name “one-time approxi-
mation”) in [NB09] and in [AM12] for symmetric networks, breaking the exactness of the
approach even for tree graphs. We will not use this approximation since we are interested
in the exact results, and instead look on the dynamic side of what can be done from the
DBP equations. We will see that the exact dynamic message-passing equations can be
derived in the DBP framework for a large class of models with unidirectional dynamics,
which is the subject of the next chapter.
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Chapter 3

Dynamic processes with
unidirectional dynamics

In this chapter, using the dynamic cavity method on time trajectories, we construct a
general procedure for deriving the dynamic message-passing equations for a large class
of models with unidirectional dynamics — the key ingredient that makes the problem
solvable. These equations are applicable to single instances of the corresponding problems
with arbitrary initial conditions, and are asymptotically exact for problems defined on
locally tree-like graphs. They also provide a good analytic approximation of the real
dynamics on a number of tested real-world networks. The presented results are reported
in detail in [P-1]; in this chapter, we will summarize the principle results, and discuss
some unpublished details — in particular, the large-time limit of the DMP equations for
the SIR and the rumor spreading models.

3.1 Unidirectional dynamics: preliminary consider-
ations

We have seen in the section 2.4 that the solution of the dynamic belief propagation
equations (2.63) and (2.65) require in general an exponential number of operations in
the duration of the process. However, in a few special cases, some progress has been
recently made by a number of authors that were able to write, using cavity-like arguments,
tractable asymptotically-exact mean-field dynamic equations for several models defined
on locally tree-like graphs, such as the zero-temperature random field Ising model (RFIM)
[SDS193, OS10], the susceptible-infected-recovered model [Vol08, KN10, Mill1l, MSV12]
(cf. section 2.3), and the threshold models [ABDZ13a, SM14]: the precise definitions
of these models will be provided below. All these models share a common property:
they describe a unidirectional dynamics involving one complex transition to the active
state; the derivation of the corresponding equations is typically based on identifying
correct dynamic variables that are required to obtain the closed-form expressions. These
examples lead to the hypothesis that the microscopic irreversibility of the dynamics is a
key property that makes it possible to derive such equations [Luc12, ABDZ13b]. However,
in general it is very difficult to guess the right dynamic variables that should be used in the
dynamic equations for more complicated models, involving a larger number of states and
several non-trivial transitions. Perhaps, the simplest model of this kind is the so-called
rumor spreading model [DK64, DK65, MT73], which is a three-state dynamic model with
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two neighbors-dependent transitions.

In this chapter, we develop a general procedure for deriving, starting from the DBP
equations, the dynamic message-passing (DMP) equations for models with unidirectional
dynamics and arbitrary number of states. They allow one to estimate the marginal
probabilities of each variable at each time on a given network of contacts, using a number
of operations that is polynomial both in the size of the network and in the duration of
the dynamic process. These equations are applicable to single-instance problems with
arbitrary initial conditions, they are asymptotically exact on locally tree-like networks,
and typically provide a good approximation for real-world networks. We show that the
unidirectional nature of the dynamics is indeed a crucial element that makes the problem
solvable. More precisely, the time trajectories in these models can be fully parametrized
with only a few flipping times, leading to a significant simplification of the corresponding
dynamic BP equations. As a result, these equations can be rewritten in terms of closed-
form DMP equations with a computational complexity which turns out to be reduced
from an exponential in the duration of the process to a polynomial. This simplification
occurs thanks to the use of dynamic variables that appear naturally to be the weighted
sums of messages of the DBP equations on trajectories.

Let us give here some preliminary definitions of the unidirectional processes. We
assume that in the expression for the transition probability w;(oi™" | {o%};cs:), the value
ot for some node i and time ¢ takes one of the K ordered discrete values that we denote
01,09, ...,Qk. We call the dynamic process unidirectional if each node can change its
state only in a directed and irreversible way:

Q= QD — ... — Q, (3.1)

and the transition to one of the previous states is forbidden by the dynamic rules.

Among unidirectional processes with K = 2 states (o} can take one of the two values
—1 =] or 1 =1), one can mention the zero-temperature random field Ising model with
homogeneous initial condition, considered in [OS10]:

[T000-0 =L D). (32)

Each spin can flip only if the local field created by its neighbors is positive (precise defi-
nitions will be given in the next section). Once being flipped, the spins in this avalanche
dynamics remain in the position 1 for all times, since the local field is a monotone non-
decreasing function of time. Therefore, this system has a unidirectional dynamics with
two ordered states, | and 1. The model can be generalized to any initial condition if
the backward transition from 71 to | is explicitly forbidden by the dynamic rules. The
situation is different from the standard Glauber dynamics of the Ising model with non-
zero temperature (2.15), or from the majority dynamics of voters that switch to one of
the alternative opinions according to the majority of their neighbors [KM11], where each
variable is free to flip an arbitrary number of times. Note that the linear threshold model
(LTM) with random thresholds studied in [ABDZ13a, ABDZ13b] is equivalent to this
formulation of the RFIM.

Another example of model with two states and unidirectional dynamics is given by
the susceptible-infected (SI) model, in which the node can be in either of two states:
susceptible (S), or infected (). The propagation of infection on this model occurs due
to the pairwise interactions between individuals: for instance, the S individual can be
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infected by one of its I neighbors at each time step, and then remains infected forever.
Obviously, the SI model is directly related to the SIR model (2.28)-(2.29). Note also
that if there exists a recovery mechanism that allows an infected individual to become
susceptible again after some time, the resulting SIS model, considered in the section 2.3,
does not belong to the class of unidirectional models anymore.

Unidirectional dynamic processes with K = 3 states include the previously defined
susceptible-infected-recovered (SIR) model (2.28)-(2.29). Another well known model with
unidirectional dynamics and three states is given by the so-called rumor spreading, or the
ignorant-spreader-stifler (ISS) model, introduced by Daley and Kendall [DK64, DKG65]
and further revisited by Maki and Thompson [MT73], which describes the propagation of
information by spreaders to ignorants that are unaware of rumor, and takes into account
the possibility that the spreader can become uninterested in the rumor under the influence
of its neighbors. Depending on the setting, the rumor spreading can be regarded as an
adverse problem to the epidemic spreading: besides an accurate modeling of the infection
outbreak, the aim is to develop the mitigating strategies in order to minimize the impact
of the disease spread. On the contrary, the rumor spreading models are usually designed
in a way to maximize the information dissemination. The precise formulation of the ISS
model will be given in the section 3.3.

In what follows, we discuss the dynamic message-passing equations for the models
listed above, illustrating the general method to derive such equations for other models
with arbitrary K. Typically, these equation would allow to answer the following question:
what is the probability that a certain node i is in a certain state €, at time t? As we have
seen, for some of these models, the equivalent equations have already appeared in the
literature, however, in a form averaged over the ensemble of random graphs and/or over
the initial conditions, and not suitable to the algorithmic purposes for single-instance
problems. For others, the DMP equations have never been stated previously. For each
model considered in the following, we will discuss the relation of our DMP equations to
those existing in the literature, if any.

3.2 Models with 2 states

As a first example, we illustrate the method in detail on the most general case of unidi-
rectional dynamic model with two states and pairwise interactions between nodes: the
generalized SI model. The derivation of the DMP equations for other models will fol-
low a similar scheme: starting from the general DBP equation (2.63) on trajectories,
parametrized by a few flipping times (thanks to the irreversibility of the dynamics), and
using a properly defined dynamic kernel for a particular model, we form the dynamic mes-
sages of interest, typically represented by the marginal probabilities for different states.
These marginals, defined in the cavity graph, are given by the corresponding sums of
DBP messages. After sometimes cumbersome, but straightforward algebra, we are able
to obtain the closed-form equations, using the dynamic messages that emerge automat-
ically as the weighted sums of DBP messages. These expressions of dynamic messages
allow us to give them a concrete physical sense. Although for some simple models as the
SI process these messages can be guessed from the beginning (see, e.g., the derivation
in the section 2.3), it becomes very hard to get them for more complicated models: the
examples of such models will be given further, in the sections 3.3 and 3.4, where we will
point out some subtleties that appear for models with a larger number of states.
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3.2.1 SI model

The definition of the generalized ST model in discrete time can be represented as follows:

S(i) + S(5) =5 1(i) + S(j), (3.3)
S(i) + 1() 22 16) + 1(5), 3.4
S(i) 5 I(0) 3.5

This diagram represents the dynamic rules at each time step. Here, ¢ and j mean two
neighboring nodes in the network, and €;;, A;; and v; correspond to the transition proba-
bilities at each time step. Each of these independent interactions may lead to a transition
to the final state.

Since there are only two possible states and the dynamics is unidirectional, the time
trajectory &; of node ¢ has a typical form ‘S SSSSSSI_IIIIII > and hence can be
parametrized by a single time, 7;, when the spin flips from the state S to the state (7;
is the first time for which ¢]' = I). If node ¢ is initially in the state I, we set 7; = 0, and
we put by definition 7; = T if the flipping happens after the observation time 7', or never
happens (7" is the stopping time, i.e. the condition 7; = T summarizes all the events that
happen after the time T').

Therefore, the dynamic cavity equation (2.63) for the generalized SI model takes the
following form for 7; < 7™

m' (1, | 1) = Z Wsr H m* i (e | 7)), (3.6)

{Tk reain; kedi\j

where Wy, is the kernel that resumes the dynamics of the model up to the final time 7"

Wsr = Pj(0)1[r; = 0]

Ti—2

+Py(0)1[r > 0] [T = w) [ (1 = exil[re = ¢/ + 1)) (1 = A [t > 7))
/=0 keoi
X (1 — (=) [] (O = erillme = 7)) (1= Ml [rs > 7 + 1])) . (3.7)
keoi
Here and in what follows we use a convention
II¢.)=1 (3.8)
t=a

for any fixed a and € > 0.
The messages m* ™ (7; | 7;) allow one to define the marginal probabilities describing
the dynamics of the SI model:

Py(t) =Y mi(m), (3.9)

Pi(t) =1 — PL(t). (3.10)



3.2. MODELS WITH 2 STATES 29

It is also useful to define the marginal probability that node ¢ is in the state S at a given
time in the cavity graph D;, in which the node j is fixed to the state .S for all times:

Po(t) = Z m™ (7, | T). (3.11)

Ti >t

The DMP equations for this model can be derived, starting from the equation (3.6),
and using the definitions (3.9), (3.10), as well as the elementary properties of the messages,
such as normalization and causality constraints:

Property 1. For every fixed 7;

T
> m T (n | ) = 1. (3.12)
7,=0

Property 2. If 7; > 7;, then for every ¢’ > 7;
m' (1 | 1) = m T (7 | 1), (3.13)
Using the definition (3.9), we get for ¢t > 0
PI(t+1)

=Py0) Y > An=T) ﬁ<1 —v) [T Q= eilre > ¢ + 1)) (1 = AL [t > 7))
Ti>t+1 {7k heai t'=0 kedi
kedi kedi\j

An important observation that can be made on this expression is that one can replace
[Ticon; mE=4(7;, | 7;) in the right-hand side of the last expression by [Ticony mkE=i (7, | T)
for arbitrary value of the stopping time 7' > t + 1. The easiest way to see it consists in
observing that the value of the probability Pi(¢ 4 1) should not depend on the value of
the stopping time provided that 7" > t + 1, and can be assigned to an arbitrary value.
Directly from the definition (3.11), P&/ (t 4 1) involves only the messages m 7 (r; | T)
with 7; > t + 1, and in particular we can choose T = t + 2. Since the stopping time
comprises by definition all the events that happen after the time T', we get

P& (t+1) = P50)(1 — 1) (1 — e5)"™
< > I TTO = ewitlme > ¢+ 1)) (1= M) = 7))y m* (7, | T)

{Tk}keoi; kE€I\ /=0

X [ > i =T] 1:[ (L—w) [] (0= erilm = ' + 1)) (1 = AL [t > 7))

Ti>t+1 t'=t+1 keoi

keoi

x (1 (=) [T (- eullme = 7)) (1= Al = 7+ 1])) ] . (3.15)

The sum in the square brackets gives exactly one, and we obtain a simple factorized
expression

Py(t+1) = By0)(1 = X) (1 =)t [T 647+ 1), (3.16)
k€di\k
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where 0%7¢(t 4 1) are given by

OFi(t + 1) = ZH (1 —egil[me >t +1]) (1 = A [t > 7)) m* (7 | ). (3.17)

T t'=

In order to close the equations on PE7i(t), we recover the computational scheme for
it + 1)

OF i (1) — 05 (1) = ) <ﬁ (1= epil[m >t +1]) (1 — M L[t' > Tk])>

t'=0
X (—Gki]l[Tk Z t+ 1] — )\]m]l[t Z Tk]) mk%i(Tk ’ T)

=—€n ) (H (1 —enillm > 1" + H)) m (g | Ty > ¢+ 1]

t'=0

Tk

Tk

— )\kz Z (H (1 — Eki]l[Tk Z t/ -+ 1]) (1 — )\kl]l[t/ 2 Tk])) mk_”'(Tk ’ T)]l[t Z Tk]

—eri®y (1) = Awidhs T (8), (3.18)

where, using the identity 1], > ¢+ 1] = 17 > t] — 6(7%, 1), we get for ¢F(¢)

() = Z (1:[ (1 —epil[me > ' + 1])) (1 — gl [rp > t]) m* (7 | T) L[5 >t + 1]

= (1 — )"t —1) — (1:[(1 — ekz)> m*i(t | T)
= (1 ok - 1)~ (1 e (P (- 1) - B ), (3.1

and for ¢§7(t)

i) =Y (H

(1 — eki]l['rk Z t/ + 1]) (1 — )\ki]l[t/ Z Tk])> (1 — Eki]l[Tk Z t])

X (1 — M\l k[t > :k + 1))y m* (e | T)Lt > 7
= (1 — M) ’f—”(t — 1)+ (1 — )’ (P’“—”( 1) — P’“—”( ). (3.20)

As follows from their explicit mathematical definitions, the introduced dynamic vari-
ables can be given the physical interpretations, similar to (2.39)-(2.41):

e 0*7i(t) is the probability that neither of both ¢ and A infection signals has been
passed from node k to node ¢ up to time ¢ in the cavity dynamics D;;

e ¢¥7(t) is the probability that the € infection signal has not been passed from node
k to node ¢ up to time ¢ in the cavity dynamics D; and that k is in the state S at
time ¢;

e ¢57i(t) is the probability that neither of both ¢ and ) infection signals has been
passed from node k to node i up to time ¢ in the cavity dynamics D; and that k is
in the state I at time t;
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DMP prediction for P&(t)

Figure 3.1: Comparison of prediction of the DMP equations for the generalized SI model
with the Monte Carlo simulations. Marginal probabilities P%(t) are presented for five
nodes from a tree graph with N = 20 nodes and ¢ = 5, the parameters of the model are
A=0.5, ¢ =0.1 and v = 0.1, there is one infected node at initial time. The MC average
is performed over 107 instances. The error bars are negligible and are not shown.

e PE7i(t) is the probability that k is in the state S at time ¢ in the cavity dynamics

D;.
Let us recapitulate the DMP equations for the generalized SI model:
PEZH(t) = PE0)(1 — e)'(1 — 1)’ H 0" (1), (3.21)
ledk\i
OF (1) = 0"t — 1) — et 7 (t — 1) — Ao ' (t — 1), (3.22)
(1) = (= e)@i 7' (t = 1) — (1 — ) (Pg ' (t = 1) = P§(2)), (3.23)
571 (1) = (1= M) (t = 1) + (1 — ) (P (t — 1) — P§T(1)). (3.24)
The initial conditions are
0"1(0) = 1, (3.25)
17(0) = d,0.5 = P5(0), (3.26)
5 7(0) = 6,0, = P1(0) = 1 — P§(0). (3.27)

Finally, the marginal probabilities for nodes to be in the states S or [ at time t are
computed via

Py(t) = PE0)(1 — )" [T 0" (1), (3.28)

keoi

Pi(t) =1 — PL(t). (3.29)

The exactness of the DMP equations for the generalized SI model on tree graphs is
demonstrated in the Fig. 3.1. Their computational complexity is O(Nct), where ¢ is
the average degree of the graph. These equations have never appeared in the literature.
However, in some sense this model is a straightforward generalization of the SIR model
that is considered further, see the next section.
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3.2.2 Random field Ising model
The RFIM Hamiltonian reads

H==Y Jjoio;— Y (h+h)o, (3.30)

(i7) i

where J;; is a non-negative interaction between spins ¢ and j, h is an external uniform
magnetic field, and h; is a random magnetic field on site 7, extracted from some probability
distribution. At zero temperature spin ¢ tends to be aligned with its local magnetic field

Al=h+hi+ Y ol (3.31)
keoi

Consider the initial condition in the form P({o}}icv) = [[;cy 0o0,—1 (as it has already
been mentioned, one could choose any initial condition, provided the dynamics is such
that the transition from 1 to | is forbidden). Define the zero temperature stochastic
dynamics respecting the following property: spin o; = —1 with a positive local field A;
flips with the probability 1/7, and does not flip otherwise. Again, each spin flips at most
only once, so the trajectory &; has a typical form ‘¢0¢¢¢¢¢¢¢T” TTTTTTTT> and is in the
one-to-one correspondence with the flipping time 7; (7; is the first time for which o; = 1).
If the spin does not flip for all the times 0,...,7T — 1, then by definition we set 7, = T
(T is the stopping time, i.e. the condition 7; = 7' summarizes all the events that happen
after the time 7).

Using the representation in terms of flipping times, the equation (2.63) can be ex-
pressed as follows:

m7(1; | 75) Z Wrrrm H m (7 | 7)), (3.32)
{Tk}kec’h\J ]{?687,\]
where
i 1 1 .
4% = 1— =1[AY > 0] | =1[A7! > 0]. 3.33
e = [T (12108 > 0) Z11a77 > 0 (3.39

From the conditional messages m'~’(7; | 7;), we can define two quantities:

P =Y m T (n | T), (3.34)
i >t

¢t =) m (| T). (3.35)
T, <t

These quantities characterize the marginals of the zero-temperature RFIM in the cavity
dynamics Dj, in which a§ = —1 for every t and never flips, even if A; > 0. In this
dynamics, p'™7(t) is the probability that spin i stays in the state of = —1 at time ¢, and
q"77(t) is defined as the probability that spin i has already flipped, and hence o! = 1.

Of course, we will be ultimately interested in writing a closed equation for the
marginals in the original dynamics:

pt) = m'(m), (3.36)

¢() = 1—pi(t). (3.37)
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The derivation of the DMP equations for this model follows very closely the scheme used
in the case of the SI model, for details see [P-1]. The resulting DMP equations can be
shown to take the following form in discretized time notations:

. 1
Pit4+1)=(1— =) ¢ 1|h+h Jki Jii >0
¢ (t+1) < 7_) Z + +Z kiOk — Jji >

{Uk}keaz\] keoi\j

< ]I 7@ ] -] (3.38)

kedi\j:op=+1 k€di\jiop=—1

Therefore, the marginal probability for spin ¢ to be in the state 4+1 at time ¢ 4 1 is given
by ¢'(t + 1), that can be computed according to the following expression:

: 1
q’(t—{—l):(l——) LS ha b+ Y dor > 0

{Uk}keaL keoi

< I[ &7 I h-d"®)]. (3.39)

k€di:op=+1 k€di:op=—1

The probability that spin 7 is still in the state —1 at time ¢+ 1 is then given by p'(t+1) =
1 —¢'(t +1). Note that the DMP equations (3.38) and (3.39) can now be run in the
real time, starting with initial conditions ¢'(0) = ¢77(0) = 0 for each node i and j;
these equations have a closed self-consistent form, so we no longer need to compute the
messages using (3.32). In the most straightforward implementation, the computational
complexity of the DMP equations for the zero-temperature RFIM is O(N2°t), where c is
the average degree of the graph.

The averaged form of the DMP equations has been first derived in [OS10] using a
cavity-like argument for the dynamic variables ¢"77(¢) and ¢'(t). The derivation, which
is close to ours, have been provided in [ABDZ13a], where an equivalent linear threshold
model has been investigated. This model has been also studied in a different setting in
the form of the voter model in [KM11].

3.3 Models with 3 states

3.3.1 SIR model

Note that the SIR model, defined by equations (2.28) and (2.29), represents in some sense
a particular case of the generalized SI model, with a;; = 0 and v; = 0 for all ¢ and j.
At the same time, a trivial (independent on the state of neighbors) transition to the R
state with probability pu; is added. The main difference with respect to the SI model
is that now the time trajectory for a node ¢ can be fully parametrized by two flipping
times: &; = ’S SSSSSSI IIIIIIR, RRRRRR > (7i,w;). Hence, the marginals of
interest in the SIR model are defined as

Z Z (75, W), (3.40)

Ti>t wi>T;

= Z Zmi(n,wi), (3.41)

T, <t w;>t

=3 > mi(mw). (3.42)

wi<t T;<w;
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We also define the marginal probability for the susceptible state in the corresponding

cavity graph:
Pt =Y m ™ (r,wi | T,T). (3.43)

Ti>t wi>T;

Let us point out the properties of the messages.
Property 1. m"/ (7, w; | T,T) = 0 if 7; > w;;

Property 2. If 7; > 7, then m"™ (7, w; | 7j,w;) = m" (7, w; | t',w;) for every
T <t < Wy,

Property 3. > m' ™ (n,w; | T,T) = 1;

Property 4. m™(r,w; + 1| T,T) = (1 — ) )m™ (1;,w; | T, T).

The properties, equivalent to 1, 3 and 4, are also valid for the marginals m‘(7;,w;). It
is straightforward to establish first two evolution equations on the quantities P4(t), Pit
and Pj(t). According to the definitions,

PRt+1 Z Z Tuwz Z Z mez +6wlt+lzm Tzawz>

wi<t+1 7;<w; wi<t T;<w; T, <t

= Py(t) + wPr(t),  (3.44)

where we have used an equivalent of the property 4 for the marginals, because

Z m'(r,w;) = ————m' (1, t + 1) = —m' (73, t + 1). (3.45)
wi>t+1 1= (1= ) Hi

Since the expressions defined in (3.40)-(3.42) sum to one, it is obvious that

Pit+1)=1—Pi(t+1)— Ph(t+1). (3.46)

~The rest of the derivation follows the SI case. Again, we show that we can put
Py (t 4 1) in the form

P (t+1) = Py0) J] 0" (t+1), (3.47)
keoi\j

where 0%7¢(t + 1) (with a definition obviously adapted to the case of two flipping times)
can be calculated via P57(¢) at each time step. This leads to the DMP equations (2.51)-
(2.56), presented in the section 2.3, where their relation to those existing in the literature
is also discussed. Here we note thereupon that the recent work [SM14] presented a
generalization of the SIR model to the threshold models where a transition happens only
if the information is received from a certain number A of neighbors. This model can
also be readily solved within the DMP approach. Indeed, the expression (2.54) for the
marginal probability that node i is in the state S would take a form similar to the second
term in the right-hand side of the equation (3.39) in the RFIM, with ¢*7(¢) replaced
by 6*7(t + 1): one would need to sum over all the subsets of di that correspond to
the transmission of information by at least A neighbors. Hence, this model represents a
three-state model with a RFIM-like non-trivial transition to the infected state.
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Large-time limit

Let us discuss the large-time limit of the dynamic equations (2.51)-(2.56), also considered
in the work [KN10], leading to the static percolation-like equations. We will use the
following preliminary formulae. The solution of the differential equation

d
5 () =—af(t) +9() (3.48)
is given by
t
f(t) = e f(0) —l—/ eV g(1)dr. (3.49)
0
Moreover, if we assume that the limit lim,, ., g(t) = g(c0) exists, then performing the

integration by parts and using lim;_, ., ¢'(t) = 0, we get

lim T Dg(r)dr = ag(oo). (3.50)

t—4o00 0

In order to take the large-time limit in the SIR model, let us rewrite the DMP equa-
tions in the differential form:

d . - L d ;.

ST = —e () = Ao (t) — dtPé (1), (3.51)

%QW () = =Xy (1), (3.52)

P (t) = Py(0) TT 5. (3.53)
kedi\j

Solving the first equation, we get

t
L d
¢2—>J<t): —(Aijtpa)t [¢z—>1() / (Nij+pa)T — PHJ( )dT ] (3_54)
0
Performing the integration by parts, we get
61 = e [6(0) + PS0)] - P (0

t
+ (Nij + 1) / Vi tr)(T=t) pimi (1), (3.55)
0

This expression can be further simplified by noticing that ¢~/ (0)4P% 7 (0) = 6777(0) = 1.
Now solving the equation over 077 (t), we get

07 (t) = 0777 (0) — Ay /0 ¢ (T)dr, (3.56)

and hence
Aij

Oty =14+ —"9
(1) P

t
[emGurtmt — 1] 4 Ny / P (T)dr
0

t T
O+ ) / e~ / eCurti)s pivi(s\ds.  (3.57)
0 0
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Again, performing the integration by parts in the last term, we get

- \ii
0i(t) =1+ 20—

t
—(Najtua)t (Nij+pi)(T—t) pi—J
e\ 1]+ N / g P (T)dr. 3.58

Now, taking the large ¢ limit in the last expression and assuming that P;_)j () has a large
t limit, we get

/\ .

| &
Aij + i

Aij + 1

0 (00) = 1— 1— PV (c0)] = 1— 1—Py(0) J] 0" 7(c0)|- (3.59)

kedi\j

In order to demonstrate explicitly the physical sense of the corresponding terms, we can
rewrite this expression as follows:

0" (c0) 0) J] 0" (0 Fi 11— Pio ) I] 07 (o) | - (3.60)

kedi\j )‘” T kedi\j

The first term corresponds to the case where the infection has never been transmitted
to node ¢ in the cavity graph, and the second corresponds to receiving the infection, but
recovering before transmitting it to j. The message-passing equations (3.60) have recently
appeared in [KNZ14] (see also [KN10]) as an exact solution to the bond percolation
problem on locally tree-like networks. This connection to percolation is not a surprise,
since the correspondence between epidemic spreading and percolation has been widely
used in the literature, see e.g. [New02]. In percolation, the bonds are independently
occupied with some probability p, and one is usually interested in the resulting sizes of
percolation clusters. In the same way, watching the epidemic outbreak in a network,
one may mark links as “occupied” if the infection has been transmitted across it, which
happens with the disease transition probability. The final size of the outbreak is then the
size of the “percolation cluster” of vertices, reachable from the initially infected nodes.
For regular random graphs these percolation-like equations can be iterated, providing
the value 6(oco) (the same for all links). In the general type of random graph with
degree probability distribution P(k), one can write a density evolution equation for the
distribution of 6(oc0):

_ Zk:p(k) /d91 ...dOLP(6)) ... P(6,)6 (9 _ [1 _ A;j " (1= P5(0)6; .. .ek)D .
(3.61)

3.3.2 Rumor spreading model

The definition of the rumor spreading model can be summarized as follows [BLM™*06].
For the sake of simplicity, we keep the same notations for the states, as in the SIR model.
Each node ¢ € V at discrete time ¢ can be in one of three states o!: ignorant, ! = S,
spreader, of = I, or stifler, of = R. At each time step, an “infected” node i will recover
with probability 1 — ], a:(1 — kilgt, 1), and a “susceptible” node ¢ will become infected
with probability 1 — [[,cs(1 — Akidst 1), where 0i is the set of neighbors of node 7. The
recovered nodes never change their state. These rules can be summarized by the following
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scheme:

The interpretation of this model is as follows: a spreader node can either inform one of
its ignorant neighbors on the rumor, in which case they start to communicate the rumor
to their neighbors, or become uninterested in the rumor and turn to the R state if the
rumor looses its “news value”. This happens in a directed way when the spreader gets
in contact with another spreader. Note that some rumor spreading models include an
additional modeling of such a spreading decay, described by a contact of a spreader with
a stifler with the same probability «. This additional transition can be easily included in
our approach, but for simplicity we stick to this “minimal” version of the ISS model that
captures the main features of the rumor spreading process and its difference with respect
to the epidemiological spreading models, such as the SIR model. As in the previous
cases, the irreversibility of the dynamics of the rumor spreading model makes it possible
to parametrize the time trajectory of a node by only two flipping times: &; = (1, w;) for
node 7.

The rumor spreading model, defined via the transition rules (3.62)-(3.63), is notably
more complicated than the SIR model because it has two non-trivial transitions, depen-
dent on the state of neighbors. As we will see, it is not easy to obtain the corresponding
DMP equations for this model by guessing the correct dynamic variables since the com-
putation of the very DBP messages is required. On the other hand, they appear auto-
matically in the dynamic cavity approach. Let us state the DMP computational scheme
for this model.

The marginal probabilities P§(t + 1), Pj(t + 1) and Pj(t 4+ 1) that node 4 is in the
state S, I and R respectively at time t are given by the following equations that can be
iterated in time starting from the initial conditions at time ¢ = 0:

Pi(t+1) = Py0) [T 0"t + 1), (3.64)
keoi

Pi(t+1) = Ph(t) + > mi(r, t+1), (3.65)

Pj(t+1)=1— PL(t :1) — Ph(t+1), (3.66)

where m’(7;,t 4+ 1) has the physical meaning of the marginal probability that node 7 has
switched to the state I at time 7; and to the state R at time ¢ + 1. The remaining
computational scheme serves to compute this probabilities explicitly. To this purpose,
we introduce a number of auxiliary dynamic messages that can be computed iteratively.
Again, these messages may be given a physical interpretation, and are defined in the
corresponding cavity dynamics. As an illustration, consider the message P;Hj (t), defined
as the probability for node i to be in the state S at time ¢ in the cavity graph, in which
all the connections of node j, except to i, has been removed. It is updated as follows:
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P (t+1)=Py0) T 0" (t+1), (3.67)
kedi\j
OF 7t 4 1) — 057 () = — M\ (1), (3.68)
@) = (1= Aa)g" (¢ — 1) + P§(t — 1)
—PET) = Y (L= M) T (st | T T, (3.69)
T <t—1

In these equations, the dynamic messages 0*7¢(t + 1), ¢*7(t) and m*>i(m,t | T, T)
have the following physical sense (for precise mathematical expressions, refer to [P-1]):

e 0*7i(t + 1) is the probability that the infection signal A has not been passed from
node k to node ¢ up to time ¢ 4 1 in the cavity dynamics D;;

e ¢*7i(t) is the probability that the infection signal A has not been passed from node
k to node 7 up to time ¢ in the cavity dynamics D; and that £ is in the state [ at
time ¢;

o m*?i(7y,t | T,T) is the marginal probability that node k has the trajectory (4, t)
in the cavity dynamics D;.

Hence, the last term in the equation (3.69) represents a contribution to the change of
®*7%(t) due to the recovery of node k exactly at time ¢ in the cavity dynamics D;. The
initial conditions are given by #74(0) = 1, and ¢*7(0) = 0g0.1-

So far, the equations (3.67)-(3.69) are not in a closed form, we still need to know how
to compute m*~(7;, ¢ | T, T) for 7; < t. We have for each ¢

P1:X1 P1,X1

m 0| 7 T) = PO fi (<2t =2 | m) = [ (2= m)]. (370

m' (1, t | 75, T) ZPé(O)[ij (i—2t=2]7) = L (n—2t-1]m)

P1,X1 P1,X1

P2;X2 P2,X2

for 1 <7, <t—1and 0 <7; <t. The functional ;}j (t1,t2 | 75) is defined as follows:

1] N — ) k—i
j
o (B, ta| ) = p! 7 (t e | 7)) H X (1 ta), (3.72)
kedi\j

where the 7;-dependent coefficients, characterizing the influence of node j on the dynamics
of i, read for to =t —2or ty, =t — 1:

P T = 2.t | 1) = (1= )" 0! (ﬁ(l —ayil[r < tlD) , i

t'=T1;
py (T = Lt [ ) = (1= A)™ 7 (H(l — ayl[r; < t’])> ' (3.74)
t'=r;

Let us remind at this point, that the convention (3.8) is used here and in the following.
Note that in the update equation (3.69) we are only interested in the messages of the
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form m'™(7;,t | T,T) that correspond to 7; = ¢, and for which the j-influence is not
present: in this case p} (1, — 2,5 | 7;) and p} "*(1; — 1,1 | 7;) are simply equal to one.
Still, in the computation scheme for )(1‘7_”(7z —2,t;) and Y57 (7; — 1,1) all the values
0 < 7; <t—1 are also required, since the remaining update equations read

and

k—m( . 2 t— 1)
=Pt =2 1) = PEPU -1 1) + (1 — il )T — 2,8 — 2)

— Z (1 — Apg)im et (1:[ (1 — agl[m < t’])) m* 7 (e, t — 1| 7, T),  (3.77)

T <t—2 t'=1;

k—i

=Pt —2| 1) = P&t =1 )+ (1 — a5 (1 — 1, — 2)

- Y ) (f[ (1— agl[r < t’])) Mt — 1| 7, 1), (3.78)

TR <t—2 /=

The conditional quantity P57 (¢, | 7;) is defined as

P&ty | ) = PEO) (L = )" [T 67F(ta (3.79)
ledk\i

The necessary initial conditions are given by Y?i(—=2,—1) = 1 and ¥¥?1(-2,0) =
#"7%(0). The following border conditions are used for 7; =t — 1:

’Hl(t —3,t—2) =0t —2), (3.80)
Mt —2,t —2) =07t — 1), (3.81)
R -3, —2) = ¢H(t —2), (3.82)

le< 2, —2) = (1= M) (L - 2). (3.83)

and xF7(t — 3t — 1), XAt —2,t — 1), ¥t = 3,¢ — 1), Y52t — 2,¢ — 1) follow the
equations (3.75)-(3.78).

Therefore, the computation of m* ™7 (7;, ¢ | T, T) for 7; < t involves messages m' ™7 (7;, t—
1|7,T)for; <t—1and7; <t—1, computed at a previous step. Finally, the marginal
probabilities m’(7;,t + 1) are computed via equations (3.70) and (3.71), with replacement
of the indices i — j simply by 4, and the corresponding change of product over k € 9i\j
in the definition (3.72) by the product over all the neighboring nodes k € 9i. The com-
putational complexity of DMP equations for rumor spreading model is O(Nct?), where
c is the average degree of the graph. The details of the derivation are presented in [P-1].

The validity of these equations has been checked numerically via comparison with the
Monte Carlo (MC) simulation: as expected, the marginals given by the DMP equations
appear to be exact on any tree graph. Although a priori the DMP equations are not
guaranteed to be exact on networks that do not have a locally tree-like structure, they
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Figure 3.2: Right: Comparison of prediction of the DMP equations for the rumor spread-
ing model with the Monte Carlo (MC) simulations. Marginal probabilities P§(t) are
presented for the Facebook-like social network with N = 1899 nodes and ¢t = 10, the
parameters of the model are A = 0.3, a = 0.2, there is one infected node at initial time.
The MC average is performed over 10* instances. The error bars are smaller than the
symbol size on the plots and are not shown. Left: A representation of the topology of
the network, generated with Gephi [BHJ09]. The high-degree nodes (hubs) are placed on
the periphery.
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Figure 3.3: Right: Comparison of prediction of the DMP equations for the rumor spread-
ing model with the Monte Carlo (MC) simulations. Marginal probabilities P§(t) are
presented for the Zachary’s carate club network with N = 34 nodes and t = 10, the
parameters of the model are A = 0.3, a = 0.2, there is one infected node at initial time.
The MC average is performed over 10* instances. The error bars are smaller than the
symbol size on the plots and are not shown. Left: A representation of the topology of the
network, generated with Gephi [BHJ09]. This network has a block structure and contains
many loops of small length.

provide remarkably accurate predictions even for small and loopy networks. For example,
we have tested the performance of the DMP equations for the rumor spreading model on
two real-world networks. The first example is a Facebook-like social network with 1899
nodes and 20296 edges that represents an online community for students at University of
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California, Irvine [OP09]; the predictions for the marginals given by DMP are compared
with the values obtained from 10* MC simulations, see Fig. 3.2. Another test has been
performed for the small Zachary’s karate club network of friendships between 34 members
of a karate club at a US university [Zac77], the results are presented in the Fig. 3.3. In
both cases, the predictions of the DMP equations appear to be very accurate with respect
to the true values of the marginals.

The DMP equations for the rumor spreading model have never been reported so far.
The existing approaches include the naive mean-field equations that are derived under
the complete-mixing assumption and completely neglect the topology of the network,
or the so-called heterogeneous mean-field equations that assume equivalent behavior for
different nodes of the same degree. These equations are averaged over the ensemble of
random graphs and are not applicable on a single instance of the network; cf. section 2.3
for a discussion of these mean-field techniques.

Large-time limit

Let us discuss what happens in the large-time limit of the DMP equations for the rumor
spreading model. We start with the corresponding differential form:

SHIE) = Ny I(e) = TP — F), (3.81)
%e“j (t) - —Aijw (0), (3.85)
Pt 0) T ¢*7t) (3.86)
keoi\j
where i
[ = /0 (1= Xij)" " "m" 7 (r,t | T, T)dr. (3.87)

Proceeding as in the DMP equations for the SIR model, we would like to close the
equation on the variable "7 (t), using

t
0" (t) = 67 (0) — )\z‘j/ ¢ (7)dr. (3.88)
0
Hence, we first solve the equation for ¢*7/(t), obtaining
t d . .. L
o) = [omi0) - [ (P e )ar] . es)
0 T
Performing the integration by parts, we get

t t
6 (1) = et — PI(E) 4 A / MO PG (r)dr — / MO f(r)dr. (3.90)
0 0

Putting this expression in (3.88) gives

¢ ¢
09 (t) = et 4 )\ij/ i () P (1Y dr - / [1- e’\"f(T_t)} 7 (r)dr. (3.91)
0 0
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Now we take the large ¢ limit in the last expression, assuming that Pg 7(t) and f=7(t)
have a large t limit:

L , . 1 .
614)](00) _ Pé(O) H H’HZ(oo) _ rfl%j + tginoo/ fl%J (3.92)
kedi\j K

At the same time, if P " (t) has a limit, then directly from (3.85) we get ¢**7(c0) = 0.
Hence, on one hand, from (3.90) we obtain

¢'™(00) = fHJ( ) =0, (3.93)
and on the other, since
t—1
fiﬁj(oo) - tligloo 0 €7ij(77t+1)mi%j (T,t | T, T)dT

1 o
=— lim m™7(t—-1,t|T,7), (3.94)

where 7;; = —log(1 — \;;), we get lim;, ;oo m' ™ (t — 1,¢ | T,T) = 0. Hence, we finally
get

67 (00) = P§(0) J] 67" (c0) + lim [ f(7)dr. (3.95)

kedi\j

In this expression, again, the first term corresponds to the case where the rumor has
never been transmitted to the node ¢ in the cavity graph, and the second corresponds to
receiving the rumor, but recovering before transimitting it to j. Now we need to study
only the large ¢ limit of [J fi=7(7)dr. Note that this limit is trivial in the case \;; — O:

¢
lim /fHJ )dr < lim lim f'77(7)dr

t—+00 t——+o00 0 Aij—0

= lim dt/ mi i (r,t | T, T)dr = 1. (3.96)

t—+o00

Using the integration by parts we get

lim / f79(r)dr = — lim {/ m7(r — 1,7 | T, T)dr — f79(t)], (3.97)

t——+o0 t—>+oo

or, returning to the discrete form

¢
lim / f79(r)dr = — lim Zmi_’j(T —1,7|T,7T). (3.98)
=1

t——+o0 t—>+oo

Explicitely, from the DMP equations, we get

¢
lim Zm”j(T,T—i—l | T, T)
0

t—+o00

kEDi\j =0 \ k€di\j

- 11 {ek*i(f)—a—(aﬁm(ﬂrl) A [Pé*%f)—Psk”(fHﬂ)D- (3.99)
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We see that although m /(7,7 +1 | T, T) is a decreasing function in 7, we have to solve
the dynamics up to some time t, to have a lower-bounded estimate for the expression
(3.95). This approximation can be controlled by fixing some threshold ¢, and defining t.
as the first time for which m*7(t,,t,+1 | T, T) < e. Therefore, a lower bound to 6"~/ (co)
can be found with a complexity proportional to O(t3(g)). An exact limit (as it has been
done for the SIR model) is, however, not accessible, due to the intrinsic properties of the
microscopic dynamics of the rumor spreading model.

3.4 Models with larger number of states

Following the general derivation procedure, the DMP equations for the rumor spreading
model, described in the previous section, can be easily generalized to a more complicated
pairwise model with arbitrary number of states, similar to the generalized SI model.
The models with K > 3 states that include direct transitions that skip some number of
intermediate states can also be taken into account in this approach. The procedure for
deriving these equations from the general dynamic cavity equation (2.63) is very similar
to the derivation of the DMP equations for the rumor spreading model. In [P-1], the
method is illustrated using a “minimal” model with K = 4 states, which is an extension
of the rumor spreading model with an additional non-trivial transition to the final state.
Let us consider four states S, I, Iy and R, and the following dynamic rules:

S(i) + L(j) 2 () + L), (3.100)
L(i) + L(j) =5 L) + L)), (3.101)
L) + () 25 R(i) + L()). (3.102)

Now the time trajectory of node ¢ can be parametrized by three flipping times: 7;
(first time in [;), w; (first time in I5) and ¢; (first time in R). The trajectory of spin 4
is hence described by ;(t) = (7;,w;, €;), and the corresponding marginal of the dynamic
cavity equation (2.65) could be written as m'(7;,w;,e;). Similarly to the SI, the SIR
and the rumor spreading model, we might expect that the expressions for the marginal
probabilities at time ¢ could be written in the following form:

Pi(t+1) O J[o" ¢+t (3.103)
keoi
Tz‘iilgétwi
PL(t+1)=PLt)+ > m'(n,t+1e), (3.105)
EZ;?il
PL(t+1)=1- Pyt +1) = Pi(t+1) = Pt +1). (3.106)

The apparent difficulty in the equation (3.105) is that the sum runs over all the flipping
times €; > t+ 1, and the number of terms can potentially be very big, of the order of the
stopping time 7T'. In [P-1] it is shown that this difficulty can be overcome if one defines a
new sort of messages:

Pt | T,T) = ) m* (g, tep | T,T,T). (3.107)

ex>t+1
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The evolution of u*=%(r,t | T,T) follows the same equations as for the rumor spreading
model (3.70)-(3.83), except that now we will require the computation of u* (74, t | 73, w;).
The details of derivation for this case are presented in [P-1].

The variants of this model may describe different models with 4 states, for example
the generalization of the SIR model that include immunized or exposed states [AM91].
As it has been expected, the computational complexity for this K = 4 model is higher:
O(Nct®), where c is the average degree of the graph. For a general model with unidirec-
tional dynamics and M non-trivial transitions, the computational complexity grows as
t?=1"Note that M is not always equal to K — 1, for instance, compare the SIR (K = 3,
M = 1) and the rumor spreading (K = 3, M = 2) models. The growth of the number
of operations with the number of states of the model in the DMP equations is essentially
due to the local effects of retro-action that have to be taken into account. Nevertheless,
the DMP approach opens a way to a number of applications aimed at a better control of
the cascading processes on networks. The fact that the DMP equations can be applied
to a single instance of a graph has been recently used for the algorithmic application to
an inverse problem in the context of epidemic spreading: the inference of the origin of an
epidemic outbreak [P-2]. This application is presented in the next chapter, 4.



Chapter 4

Application: patient zero problem

In this chapter, we address an application of the DMP equations for the SIR model to the
problem of estimation of the origin of an epidemic outbreak (the so-called patient zero):
given a contact network and a snapshot of epidemic spread at a certain time, determine
the infection source. The DMP approach is in the core of the inference algorithm that
leads to a significant improvement of performance compared to previous approaches. The
results presented in this chapter are published in [P-2].

4.1 Context of the inference problem

Whereas the dynamics and the prediction of epidemic spreading in networks have at-
tracted a considerable number of works, the problem of estimating the epidemic origin
has been mathematically formulated only recently [SZ10], followed by a burst of re-
search on this practically important problem [Cd11, SZ11, PVF12, FC12, PTV12, ZY13,
DZT13, BH13, ABD"14b]. In order to make the estimation of the origin of spreading a
well-defined problem we need to have some knowledge about the spreading mechanism.
We shall adopt here the same framework as in existing works, namely we assume that
the epidemic spread follows the susceptible-infected-recovered model, discussed in the
previous chapters. Note, however, that depending on a particular area of application, the
use of a different avalanche model (such as the rumor spreading model) can be required.
The DMP-based method, discussed in this chapter, can be straightforwardly adapted to
such a setting. This remark justifies the name dynamic message-passing algorithm for
the method.

The stochastic nature of infection propagation makes the estimation of the epidemic
origin intrinsically hard: indeed, different initial conditions can lead to the same config-
uration at the observation time. Finding an estimator that locates the most probable
origin, given observed configuration, is in general computationally intractable, except
in very special cases such as the case where the contact network is a line or a regular
tree [SZ10, SZ11, DZT13]. The methods that have been studied in the existing works
are mostly based on various kinds of graph-centrality measures. Examples include the
distance centrality or the Jordan center of a graph [SZ10, Cd11, SZ11, ZY13]. The
problem was generalized to estimating a set of epidemic origins using spectral methods
in [PVF12, FC12]. Another line of approach uses more detailed information about the
epidemic than just a snapshot at a given time [PTV12]. The DMP algorithm, presented
in the next section, estimates the probability that the observed snapshot resulted from a
given patient zero in a way which is crucially different from the previous approaches: for
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every possible origin of the epidemic, we use the DMP equations to estimate the proba-
bility that a given node in the network was in the observed state (S, I or R). We then
use a mean-field-like approximation to compute the probability of the observed snapshot
as a product of the marginal probabilities. We finally rank the possible origins according
to that probability.

4.2 DMP algorithm

To define the problem of estimation of the epidemic origin, we consider the case where,
at initial time ¢ = 0, only one node is infected (the patient zero, ip), and all other nodes
are susceptible. After to > 0 time steps (o is in general unknown), we observe the state
of a set of nodes O C V, and the task is to estimate the location of the patient zero based
on this snapshot, see Fig. 4.1.

Figure 4.1: An example of a single instance of the inference problem on a random regular
graph of degree ¢ = 4 with N = 40 nodes. The patient zero is labeled by P and appears
in the state R in the snapshot. The epidemic is generated for A = 0.5 and p = 0.5, the
snapshot is represented at time ty = 5.

Let us briefly explain two existing algorithms [SZ10, SZ11, ZY13] that we will use as
benchmarks. The authors of [SZ10, SZ11, ZY13| considered only the case when all the
nodes were observed, O = V. In [P-2] we propose a generalization of these algorithms to
a more general case. The most basic measure for node i to be the epidemic origin is the
distance centrality, D(i), which we define as

D(Z) = Z d(/L?]) (50']'(t0),] + 60j(t0),R/,uj) ) (41)

jeg

where the graph G is a connected component of the original graph G containing all
infected and recovered nodes and only them, and d(i,7) is the shortest path between
node ¢ and node j on the graph G. The ad-hoc factor 1/pu; is introduced to distinguish
recovered nodes that for small y; tend to be closer to the epidemic origin. In the exist-
ing works this factor was not present, because [SZ10, SZ11] treated only the SI model,
and [ZY13] considered that susceptible and recovered nodes are indistinguishable. The
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authors of [SZ10, SZ11] suggested the rumor centrality estimator and showed that for
tree graphs, the rumor centrality and the distance centrality coincide. Another simple
but well-performing estimator, Jordan centrality J(i), was proposed in [ZY13] and cor-
responds to a node minimizing the maximum distance to other infected and recovered
nodes:

J(i) = maxd(i, j). (4.2)

j€G

The node i for which J(i) is minimal is known as the Jordan center of G in the graph
theory literature. Note that in [ZY13] the Jordan center was chosen only among the
infected nodes, hence this implementation uses more information.

The core of the proposed algorithm is the DMP equations for the SIR model (2.51)-
(2.56), which provides an estimate of the probabilities Pg(t,io) (respectively ij (t,10),
Pé(t,z’o)) that node j is in each of the three states S, I, or R, at time t, for a given
patient zero ig. Let us first assume that the time ¢y is known. With the use of Bayes’ rule,
the probability that node 7 is the patient zero given the observed states is proportional
to the joint probability of observed states given the patient zero, P(i|O) ~ P(O|i). We
also define an energy-like function of every node E(i) = —log P(O|i), such that nodes
with lower energy are more likely to be the infection source. If one were able to compute
P(0OJi) exactly, finding ¢ which minimizes F(i) would be the optimal inference scheme
for the patient zero problem. As there is no tractable way to compute exactly the joint
probability of the observations, we approximate it using a mean-field-type approach as a
product of the marginal probabilities provided by the dynamic message-passing

pPoliy~ [ Péti) [ Piti J[ P (4.3)

k€O leo neo
o (tg)=S oy (tg)=1 on(tg)=R

To estimate the value of ¢y, we compute the energy E(i,t) for different possible values
t, and choose the value that maximizes the “partition function” Z(t) = Y, e P0H. As
mentioned previously, the algorithmic complexity for computing the energy E(i) of a

given vertex i (and therefore the probability that it is the epidemic origin) is O(toNc),
where c is the average degree of the graph.

—

4.3 Results and discussion

Let us briefly present the results that are obtained with the DMP algorithm. We first
test our algorithm on random regular graphs (2.25), i.e. random graphs drawn uniformly
from the set of graphs where every node has degree c. In all the simulations we consider
uniform transmission and recovery probabilities A\;; = A and p; = p.

In the first illustrative example, inset of Fig. 4.2, we plot the energies F(i) of the
nodes for which the probability of being the epidemic origin is finite according to the
DMP algorithm; the nodes are ordered according to the energy values. The true epidemic
origin is marked with a red cross. We define the rank of candidates for the epidemic origin
to be its position in this ranking (the lowest energy node having rank 0). The main graph
of Fig. 4.2 shows the histogram of normalized ranks (i.e. the rank divided by the total
number of nodes that were observed as recovered or infected) of the true epidemic origin
as obtained from the DMP inference algorithm, compared to the rankings obtained by
distance, rumor and Jordan centralities. The DMP algorithm considerably outperforms
the three centrality measures, with a comparable computational cost.



48 CHAPTER 4. APPLICATION: PATIENT ZERO PROBLEM

90 T T T T T T T T T T T
780 T T T s
80 | N
DMP mm 740 | ]
70 | ne® i
xe Jordan [ = o®
o Distance [ ) oo
o 60 - 700 | .I. _ I
0 Rumor [ oo
= o
2 50 | o .
% 660 b I I I I
p 40 1 0 10 20 30 40
§ node rank
= 30 | 1
[}
H
20 + -
10 H .
0 JHH ol Al o oo om oo

0 10 20 30 40 50 60 70 80 90 100

rank of 4o in % among nodes in |G|

Figure 4.2: A test of inference of the epidemic origin on random regular graphs of degree
¢ =4, size N = 1000. Inset: An epidemic is generated with recovery probability u = 1,
transmission probability A = 0.6, a snapshot of all the nodes is taken at time t; = 8 (in
this figure we assume we know the value of ty), 242 nodes are observed to be in the I
or R state. The dynamic message-passing is used to compute the energy of every node.
This energy is finite for 43 nodes; it is plotted as a function of their rank r. The true
patient zero is marked by a red cross, and its rank is r(ig) = 2 in this case. Main figure:
an epidemic is generated with =1, A = 0.5, t; = 5. The histogram (over 1000 random
instances) of the normalized rank (i.e. the rank divided by the number of R or I nodes in
the snapshot) of the true patient zero is plotted for the dynamic message-passing (DMP)
inference, as well as for the distance, rumor and Jordan centrality measures.

In Fig. 4.3 and Fig. 4.4 we present the average normalized rank of the true epidemic
origin for random regular graphs for the whole range of the transmission probability A,
for different values of the recovery probability p, and snapshot times #y. As an estimation
for the spreading time ty, we take the one maximizing the “partition function” Z(t) =
>~ e @D The distribution of the estimated time is concentrated at the true spreading
time ty. The Fig. 4.3 shows the dependence on the spreading time t, for fixed values of A
and p. Note that DMP remains efficient even for relatively large ty, when the centrality
algorithms fail to make a prediction. Importantly, in some range of parameters, the
average normalized rank of the true epidemic origin is not so close to zero (note that
the value 1/2 of the normalized rank corresponds to a random guess of patient zero
among all the infected or recovered nodes). The problem of estimating the epidemic
origin with a good precision is very hard in these regions. In some cases the information
about the epidemic origin was lost during the spreading process. For instance for A >
Ae = p/(c — 2+ p) [New02] the epidemic percolates at large times ¢y > log. N; then
the information about the epidemic origin is lost. On the other hand for ¢y < log. N,
the epidemic is confined to a tree network and in this case the inference of the origin is
easier, cf. Fig. 4.3. In Fig. 4.4, we mostly focus on the intermediate case ¢y ~ log, N.
We find that for different values of u, DMP inference always outperforms the centrality
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Figure 4.3: Average rank of the true epidemic origin on random regular graphs of size
N = 1000 with degree ¢ = 4. Each data point is averaged over 1000 instances. The
plot shows the dependence of the average rank, normalized on the number of infected
and recovered nodes in the snapshot |G|/N, on the observation time ¢, for A\ = 0.7 and
= 0.5. The DMP estimator (red circles) is compared to the Jordan centrality (green
triangles) and the distance centrality (blue squares) estimators. The dashed line is the
average fraction of nodes that were infected and the dash-dotted line is the average
fraction of nodes that were recovered in the snapshot; both are normalized to N. In this
figure t, is inferred by the algorithm.

measures (see, e.g., case (a)), except in a special case (b) (u = 1, corresponding to the
deterministic recovery), in a range of 0.3 < A < 0.58 where Jordan center is a better
estimation. In other cases, however, Jordan centrality is less performant. Note that for
1 < 1 Jordan centrality does not distinguish between recovered and infected nodes, which
partly explains its rather bad performance in that case.

We have also studied the performance of the DMP algorithm in the case where the
snapshot is incomplete, i.e. the state of a large fraction of nodes is not observed. We
compare it to the generalizations of Jordan and distance centralities to this case that we
propose in [P-2]. The idea behind this generalization consists in a careful construction
of a connected component of infected, recovered and undefined nodes, for which the
centrality algorithms can be applied. With incomplete snapshots, the DMP inference
algorithm outperforms both centralities even in the particular case 0.3 < A < 0.58,
1= 1.0, where for complete snapshots the Jordan centrality was better.

In [P-2], the systematic results for other families of random networks are also pre-
sented, like the Erdos-Rényi and scale-free random graphs, that can be qualitatively more
relevant for applications, see Fig. 4.5 for cartoon examples of these networks. In both
cases, the DMP algorithm considerably outperforms Jordan and distance centralities. In
order to illustrate the method on non-randomly generated network, we studied the per-
formance of DMP for synthetic data on a real network of the U.S. West-Coast power grid
which contains N = 4941 nodes with a mean degree (¢) = 2.67 and a maximum degree
19 [WS98], also considered as an application to the patient zero problem in [SZ10]. This
network is in fact a widely used example of a real network with the small-world property,
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Figure 4.4: Average rank of the true epidemic origin on random regular graphs of size
N = 1000 with degree ¢ = 4. Each data point is averaged over 1000 instances. The plots
(a) and (b) represent the dependences of the average rank on the infection rate A, for the
snapshot time ¢y = 10 and recovery probability u: (a) 4 = 0.5 and (b) u = 1. In this
figure t is inferred by the algorithm. The DMP estimator (red circles) is compared to the
Jordan centrality (green triangles) and the distance centrality (blue squares) estimators.
The dotted line shows the average fraction of nodes that were infected or recovered in
the snapshot, |G|/N, we use this number to normalize the ranks of the epidemic origin.

Figure 4.5: Left: An instance of inference problem on the Erdos-Rényi graph with average
degree (¢) = 4 and N = 84. The epidemic is generated for A = 0.7 and p = 0.5. In this
example, only infected (light) and recovered (dark) nodes are present in the snapshot at
time tg = 5. Right: An instance of inference problem on the scale-free graph with average
degree (¢) = 5/3 and N = 77. The epidemic is generated for A = 0.7 and p = 0.5. The
snapshot is represented at time ¢, = 10. In both figures, the true patient zero is labeled
by P, and the best-ranked nodes for DMP, Jordan and distance centralities are marked
by M, J and D, correspondingly.

having a right-skewed degree distribution, and is quite different with respect to an Erdos-
Rényi random graph of the same size and mean degree: its measure of cliquishness, the
clustering coefficient C' = 0.08, is much bigger than the transitivity of a corresponding
random graph Crang = 0.005 [WS98, New03]. The results are reported in Fig. 4.6: we see
that the algorithm works well and DMP estimator gives better prediction for all range of
A
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Figure 4.6: Left: A representation of the topology of the U.S. West-Coast power grid
network, generated with Gephi [BHJ09]. Right: Normalized rank (averaged over 1000
instances) of the true epidemic origin for epidemic spreading with x4 = 0.5 and all nodes
observed at time ¢ty = 10, on the power grid network. DMP inference is significantly
better than inference based on distance and Jordan centralities.

Because of its practical relevance, the patient zero problem continues to attract a
significant attention. Unfortunately, the problem of finding the maximum likelihood
(which would correspond to the Bayesian optimal inference) of a generic snapshot is a NP-
hard problem, therefore all tractable algorithms are doomed to give only an approximate
solutions. For example, there are two possible sources of sub-optimality for the DMP
algorithm on real networks: first, the fact that the message-passing equations may lead
to errors on loopy graphs; and second, the mean-field-like approximation (4.3) of the
joint probability distribution. We have observed that taking into account the two-point
correlation in this approximation does not lead to any improvement in our results. Hence,
the performance of each algorithm can be only evaluated in a systematic comparison
with other methods; for the DMP algorithm it means that there is no guarantee of best
performance compared to other possible algorithms for the patient zero problem. Let us
name, in particular, one interesting recent work [ABD*14b] which is closely related to
the dynamic belief propagation approach, and outperforms the DMP algorithm for most
values of the parameters. Let us briefly explain the approach of Altarelli et al., using our
notations.

The starting point of [ABD*14b] is also the use of the Bayes’ theorem, which states
that the posterior probability of the initial configuration {oV};cy (containing the patient
zero) given the observed snapshot O = {0/°};cy is proportional to the probability of
observing the snapshot O given the initial condition; hence, the same problem remains:
what is the best approximation of the probability P(O|{c!}.cv) which appears in (4.3)?
The work [ABD*14b] exploits the fact that the trajectories can be parametrized by pairs
of flipping times {(7;,w;)}icv, and establish the algorithm on the basis of the dynamic
belief propagation, presented in the section 2.4: the nodes can be ranked by the values
of the marginal probabilities to be in the state [ at initial time, i.e. to have the zero
sesceptible-infected flipping time. In principle, the flipping times marginals m‘(7;, w;) (for
i € V) of the forward dynamics can be computed via (2.65), using the belief propagation
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equations (2.59) or (2.63) for the SIR dynamics. If this were indeed the case, the DMP
algorithm and the approach of [ABD*14b] would be equivalent (except for possible con-
vergence issues of the DBP equations on general graphs, as it is discussed by Altarelli and
co-authors). Indeed, as we know from the chapter 3 in general, and from the equations
(3.40)-(3.42) in particular, the DMP marginals can be expressed through the marginals
of the trajectories, and the expression (4.3) can be rewritten as
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being approximated by the marginals of the forward dynamics; when represented by
a single sum (by opening all the brackets), each term corresponds to a set of flipping
times that leads to the observed snapshot. However, the marginals used in [ABD*14b)]
are different: the computed marginals m’(7;,w;) (for i € V) are restricted to be fully
consistent with the observed configuration O; for example, if a node 7 is observed in the
state S, then mi(7;,w;) = 0 for all 7; < t. These modified marginals can be evaluated by
explicitly adding extra factors (that ensure the consistency with the observed snapshot)
in the standard factor graph, depicted in the Fig. 2.4. Similarly, the inference of the
observation time is performed by adding the factious neighbors to each node of the original
factor graph, which act as local external fields and may cause a spontaneous infection
of nodes. A recent paper [ABD*"14a] extends this approach to treat other interesting
cases of incomplete information, such as confused and noisy observations, or unknown
spreading parameters.

As it is argued in [ABD"14b], this consistency-restricted scheme is preferable since the
mean-field-like approximation used in (4.3) may lead to the errors even on tree graphs.
Still, surprisingly, the inferior DMP approach may still provide better results (with re-
spect to the belief propagation approach and the version of the DMP algorithm, re-
stricted to the connected component of infected and recovered nodes, both considered in
[ABD"14b]) in loopy situations for a narrow range of parameters, for instance for large
transmission probabilities A. It would be interesting to search for better approximations
of the likelihood in a general situation.



Chapter 5

Perspectives

In this final chapter of the part I, we will highlight the most important results that are
related to the dynamic message-passing approach, and indicate some future directions.

Key results

In spite of some recent progress, the challenging question of efficient description of the
non-equilibrium dynamics on networks remains open. In this part we have described a
step in this direction, based on a generalization of the cavity method for dynamic prob-
lems, defined in terms of time trajectories of interacting variables. This framework makes
it possible to develop a general procedure for deriving new dynamic message-passing equa-
tions for a large class of models with unidirectional dynamics. A nice property that these
DMP equations share with the equilibrium cavity method is that they give asymptoti-
cally exact results if the contact network is sparse. The fact that DMP equations are
applicable to single instances makes it possible to apply them to the inverse and optimiza-
tion inference problems. Moreover, solving one instance with arbitrary initial conditions
for many models (that involve one non-trivial transition) is as easy as running a single
Monte-Carlo simulation, and has a polynomial complexity for more complex models.

Future directions

Let us mention some interesting, in our view, emergent directions that can be treated
within the DMP approach, and the study of which are left for the future work. They can
be roughly divided in three categories: dynamic on and of networks for existing models,
and the development of new behavioral models.

Dynamics on networks

The DMP approach opens a way to a number of important applications aimed to a better
control of the dynamics on networks. In particular, it would be interesting to explore the
following natural applications:

1. Derivation of the DMP equations for the generalizations of the epidemiological
models of interest that are adapted to the description of specific infectious dis-
eases [AM91]. One of the possible generalizations consists in including additional
states, such as immunized (M) or exposed (E), leading to the models like SEIR
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(susceptible-exposed-infected-recovered). Another possibility is to introduce tran-
sitions that allow one to skip a certain state during the dynamic process, or to
couple the model to external sources: birth, death, migration of agents, as well
as a transition of the passive immunity to the newborn individuals. The range of
possibilities is quite extended, as it is reflected by the title of the reference [Het94],
“A thousand and one epidemic models”;

2. Optimization problems that require an inference of the optimal parameters of the
model, e.g. determination of the most influential nodes in a network for an efficient
information dissemination or development of the immunization strategies. A large
amount of works exist on these topics; as an example, let us indicate a couple
of recent works [ABDZ13b, ABDZ13a, GS14] that solve the inverse optimization
problems with the belief propagation techniques using the irreversibility of the
dynamics. The DMP method could also be used as a basis for the practical problems
related to the optimal detection of cybernet attacks in computer networks, as well
as for the control of failures propagation in infrastructures and power grids;

3. A very important direction that we will investigate consists in a development of
the systematic approximations for the out-of-equilibrium models with general unre-
stricted dynamics. It turns out that the models defined on purely directed networks
can be treated exactly within the dynamic cavity method, see (2.68). For undirected
networks, the main idea would consist in approximating the general dynamics by
a corresponding unidirectional process, for which the DMP equations can be de-
rived, using the method presented in the chapter 3. The potential applications are
numerous: dynamics of glassy systems with finite connectivity, modeling of the en-
demic diseases, dynamics of the algorithms in inference and constrained satisfaction
problems, and the study of quantum problems.

Dynamics of networks

A second class of naturally emerging problems is related to the dynamics of networks:
the study of models defined on dynamically-changing networks, and identification of the
optimal rewiring strategies for adaptation and control of cascading processes in commu-
nication and electrical networks, see e.g. [SS11, VSP10, SwS13]. Note that the DMP
equations can be readily applied to the contact networks that evolve in time: one only
needs to encode the dynamics of the network into the time-changing transmission prob-
abilities, e.g. \;;(t) for the SIR model (2.51)-(2.56). The SIR model on dynamically
changing networks has been already studied using the graph-averaged version of the
DMP equations in [VMO07, VMO09]. We anticipate that the DMP approach to inference
problems on a single graph will also be useful for studies where specific experimental
data about the changing network, such as those of [SVBT11], can be used. The study of
the networks that evolve on a timescale comparable to that of the dynamic process (as it
generally happens in the real-world social networks) would allow to close the gap between
the two descriptions, discussed in the section 2.3: quenched static networks, and rapidly
changing networks that lead to a fully-mixed dynamics, in which the network effectively
disappears from the mathematical description.
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Behavioral models

Last but not least, one of the major challenges of actual research consists in understanding
the co-evolution of networks with the dynamic process. The adaptive behavior of agents
is an essential ingredient for an adequate description of a spreading process: the epidemic
or opinions are spreading due to the contacts between individuals, but the individuals
minimize, maximize or establish their interactions depending on the state of the infection
or information spread. A correct characterization of the interplay between the dynamics
and the behavioral feedback is therefore an important issue in the study of the spreading
processes [FSJ10, Vesll]. Hence a necessity to construct new models of epidemic and
information spreading that could include behavioral changes of individuals due to the
propagation of awareness, or to the mass media effect: being widely distributed, media
reports play a key role in the influence of people’s behavior. Several attempts have been
made in this direction in the context of epidemics, consisting in treating at the mean-field
level the extensions of epidemiological models that incorporate the effect of mass media
[TDB*11, TB12, MSS11], or make use of coupled disease-awareness spreading models
[FGWJ09, FGJ10, PBGV11]. The awareness effects are usually taken into account by
the changes in the couplings strength depending on the spread of the dynamic process,
either on a local or on a global scales. The DMP equations can be useful for solving these
emergent behavioral models.
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Chapter 6

Introduction

Optimization is an omnipresent concept in nature in general, and in human activities
in particular. A large number of problems of a very broad scope can be formulated as
optimization problems, which consist in finding a configuration of variables that minimize
some cost function. Recently, the discovered deep connections between statistical physics
and optimization (see discussion in the subsection 2.1.3) have brought the understanding
of the hardness appropriate to the optimization problems to a new level.

The matching optimization problems on graphs are frequently used as a playground
for testing new ideas in the complexity science. In general, finding a maximum matching
configuration is known to be a relatively easy problem of polynomial complezxity, while
computing the number of matchings is classified as an exponential NP-hard problem. In
this part, we present a particular matching problem under a global planarity constraint,
in which both finding and counting the number of maximum matchings is a polynomial
problem. Despite this algorithmic simplicity, the analytical description of the easiest
matching models appear to be rather involved. Although defined through only a few
parameters, these models exhibit a non-trivial critical behavior. A particular interest for
the study of the planar matching comes from its relevance to the statistical mechanics of
the RNA secondary structures.

In this chapter, we will first define the simplest model for the disordered planar match-
ing, the Bernoulli model, and present its relation to the toy model of the RNA molecules.
Then, we will discuss the numerical results on the topological phase transition in this
model, described in [P-3] and [P-4], and point out the difficulties of the analytical esti-
mation of the critical point, arising from the quenched nature of disorder.

6.1 Disordered planar matching: definitions

The matching problems have attracted considerable attention in mathematics, physics
and computer science communities, for a review see [LP09]. In the most general setting,
they are defined as follows: given a graph G = (V, E) with N nodes, find a collection
of M edges on this graph, so that each node is incident with at most one edge in this
set. When M = N/2, we say that the matching is complete, or perfect. If at most M.«
non-touching edges can be chosen at once, we define M., as the size of the mazimum
matching. Although finding a maximum matching on a general graph is a polynomial
problem, counting the number of solutions might be a problem of an exponential com-
plexity [MV80]. However, for some special graphs, the algorithmic complexity is reduced:
for example, an equivalent problem of counting dimer covers on planar lattices has been

29
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solved exactly by Kasteleyn back in 1961 [Kas61].

Deep connections between the spin-glass theory (cf. section 2.1) and optimization
problems have allowed to apply the techniques developed for the study of disordered sys-
tems to the study of statistical properties of optimization problems. One of the pioneering
examples is given by an application of the replica theory to bipartite weighted matching
problem with random identically distributed independent weights [MP85, MP87b], com-
puting the average minimal total weight. The belief propagation approach (described in
2.1.3) to this assignment problem has been studied in [BSS08]. The ((2)-limit has been
rigorously proven by Aldous [Ald01] by means of the local weak convergence method.

An instance of the matching problem is usually defined by a matrix of weights A;;
between the N points. In addition, the matching assignments can be subject to some
global constraint. In the case of planar matching models on a line that we consider
in this part, this non-local topological constraint is given by the requirement to have
a planar structure for the optimal matching configurations. The planar diagrams play
a key role in many areas, including matrix and gauge theories [BIPZ78], many-body
condensed matter physics [AG75], quantum spin chains [Sai90], random matrix theory
[Meh04]. Another area where the planar matching appears naturally is the biophysics
of secondary structures of RNA molecules, see next section 6.2. Probably the simplest
model of this kind is the Bernoulli model [Neb04], defined as follows.

Take L points! ¢ = 1,...,L on a line, and define the entries of the symmetric con-
tact matrix A as independent identically distributed random variables, generated by the
distribution

Prob(A;;) = pé(A;; — 1) + (1 — p)d(A;j), (6.1)

where 0(z) = 1 for = 0, and §(x) = 0 otherwise. In other words, each element A;; = A,
is independently either one with probability p for any ¢ # j, or zero otherwise. Now we
draw L/2 non-intersecting links between pairs of points allowed by the non-zero entries
A;j, such that each point is involved in one link only and the links form a planar diagram,
see Fig. 6.1(a). If at least one such set of links exists, we say that the problem allows for
the perfect matching solution. If the maximum matching structure includes some gaps,
this configuration will be referred to as imperfect matching.

Let us point out an important one-to-one mapping between the L-point planar di-
agrams and the L-step Brownian excursions, known as Dyck paths [Lan03]. In this
representation, also called mountain (or height) diagram, each monomers is represented
by either an “up”-step () or a “down”-step () with “up”-steps corresponding to open-
ing arcs, and “down”-step to closing ones. An example is given in the Fig. 6.1, with the
steps up and down at positions 2 and 9, corresponding to the arc between points 2 and
9 in the planar matching structure. The total number of Dyck paths of even length L is
given by a Catalan number

L! 2L 23

where the asymptotic expression is valid for L > 1. If p = 1 in our matching problem, all
the planar configurations are solutions to the perfect matching problem, and their total
number is then also given by (6.2).

'Here and through the rest of this part, we will use the notation L for the number of nodes in order to
avoid a confusion with a traditional notation for the 't-Hooft 1/N expansion that is used in the section
7.1.
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(a) Q e

1 2 3 4 5 6 7 8 9 10 11 12 13 14

(b) .

Figure 6.1: Example of (a) a perfect planar matching configuration, and (b) the corre-
sponding mapping to a Dyck path. The arc is given by an “up” and “down” steps at the
same height, shown by arrows " and \,. The part of the walk between arrows is a Dyck
path itself. The shortest arcs correspond to the peaks of the Dyck path representation
(marked with red).

For 0 < p < 1, some planar diagrams in the fully-connected ensemble are forbidden.
This reduces the number of possible planar configurations, which drops to zero below
a certain value of link formation probability p., indicating an occurrence of the phase
transition [P-3]. It can be equivalently thought of as a transition in a constrained satis-
faction problem [Fri99]: as the number of constraints per node, imposed by the matrix A,
is below a certain critical value, the problem exhibits a perfect matching solution, while
otherwise no complete matching solution exists in the large L limit. Before presenting
the details of this phase transition, given in 6.3 and 6.4, let us describe a connection of
this model to the statistical physics of the RNA secondary structures.

6.2 Relation to the statistical mechanics of RN A sec-
ondary structures

A real RNA is a single-stranded biopolymer composed of four types of nucleotides: A,
C, G, and U. The sequence of these monomers encodes the genetic information, and is
called the primary structure of RNA. The polymer is not free, and is characterized by
some compactification properties: unlike DNA that form a long double-helical structure
with a complementary strand, a single-stranded RNA polymer folds onto itself in order to
create local double-helical structures of stable Watson-Crick pairs A-U and G-C between
complementary subsequences of the same strand. The set of all chemical bonds of this
kind determines the secondary structure of RNA. The study of the secondary structures in
RNA molecules is relatively easy compared to the investigation of the protein folding due
to the separation of energy scales: the effective stacking energies (that include entropy
change due to the loss of single-stranded degrees of freedom, as well as the expulsion
of water molecules surrounding the hydrophobic parts of base pairs) of contacts are
considerably larger then the energies associated with the tertiary structure, i.e. the spatial
arrangement of the biopolymer.

Another restrictions that are generally assumed for the RNA secondary structures
is the saturation of base pairings and the exclusion of the pseudoknots, depicted on
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a b c d

Figure 6.2: Examples of the RNA secondary structures and corresponding one-
dimensional contacts representations: with [(b) and (d)] and without [(a) and (c)] pseu-
doknots.

the Fig. 6.2(b), and which are known to be rare in real RNAs [vB00]. If we number
the monomers along the chain, this restriction means that an accepted configuration of
bonds between monomers is subject to a constraint that two base pairings (¢, j) and (k, )
are either independent ©+ < 7 < k < [, or nested i < k <l < j. In other words, a valid
secondary structure configuration, presented in the Fig. 6.2(a), leads to a planar diagram
of contacts Fig. 6.2(c), already discussed the section 6.1, while the knotted configurations
Fig. 6.2(b) and Fig. 6.2(d) are forbidden.

Although the primary sequence of a RNA molecule is obviously not random, the
basic models of random sequences are used as a common playground for theoretical in-
vestigations of the RNA statistical properties. Given an alphabet of ¢ monomer types,
the nucleotides of different types are distributed at random in a chain, and the effective
contact energies ¢;; between different monomers in a chain are defined. In practice, these
energies are usually assumed to be taken from some probability distribution. Therefore,
we see that the problem of optimal secondary structure (see Fig. 6.3(c)) is equivalent
to the optimal matching problem, described in the previous section 6.1, if ¢;; are drawn
from a bimodal probability distribution (6.1); continuous distribution of €;; would lead
to a weighted formulation of the problem.

Figure 6.3: (a) Secondary structure of a real RNA gene HARIF [PSL*06]; Examples of
RNA secondary structures: with (b) and without (c¢) gaps, corresponding to the imperfect
and perfect structures in the planar matching formulation.

Intuitively, it is clear that on the energy scale of order ¢;; the structure of the het-
eropolymer would play a significant role in the formation of the secondary structure,
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while for much larger energies all the contacts will be more or less equivalent, and the
RNA molecule would demonstrate a homopolymer-like behavior. This difference will be
crucial for the molten-glass transition, discussed in the section 8.1. The physics of dAT
homopolymers have been first studied by de Gennes [dG68], a recent review on the ho-
mopolymer models of RNA is given in [M03]. The parameter ¢ is often taken equal to
four, corresponding to the four-letter alphabet {A, C, G, U} in real RNAs. However,
for the modeling purposes, the parameter ¢, as well as particular matching rules can be
used along with the temperature as tuning parameters for the quenched sequence disorder
[BHO02]. Hence, further (in the section 8.2) we will generalize the model to an alphabet
with ¢ arbitrary monomer types {A, B, C, ...}, and assume for simplicity that the match-
ing occurs between the monomers of the same type: A-A, B-B, C-C, etc. Although in
the real RNA the matching rules involve instead pairings between the complementary
monomer types, this difference becomes irrelevant for large sequences: what matters is
the density of contacts in the contact matrix A. In Bernoulli model, these matching rules
would correspond to a density p = 1/c of ones. Note that ¢ = 1/p is not an integer for
a general p, and one should hence give a physical sense to the notion of the non-integer
alphabet; see section 8.2 for a detailed discussion. More realistic models of RNA folding
include the condition of finite flexibility of the molecule, requiring a minimal length of a
loop [MPRT02, KMMO02]; we neglect this minimal hairpin condition since it is not natural
a priori for the planar matching problem formulation, and is not crucial for the problem
to be frustrated [BH02, SGS93].

The low-temperature properties of random RNAs have been studied in a number of
works [BH99, PPRT00, Har01, PPRT01, KMMO02, MPRT02, BH02]. These works have
identified a finite-temperature transition to the glassy phase at sufficiently low temper-
atures, and have discussed the exponents in the glassy phase. Our formulation as an
optimization problem corresponds instead to the zero-temperature limit of the problem,
but for a varying alphabet; a connection to the freezing transition will be discussed in
the section 8.1.

The aforementioned topological constraints and simplifications of the model for the
secondary structures of RNA allows for an exact computation of the RNA’s partition
function [dG68, Hig96], leading to efficient algorithms for the prediction of the corre-
sponding secondary structures based on the minimization of the corresponding free energy
[INJ80, ZS81]. We use a version of this prediction algorithm based on dynamical program-
ming procedure, and present the numerical results for the zero-temperature transition in
the Bernoulli model in the next section.

6.3 Topological transition: numerical

Let us briefly discuss the numerical investigation of the topological transition in the
planar matching problem, predicted in [VTN12] and described in [P-3]. It is based on an
exact dynamical programming algorithm for a given quenched contact matrix. First of
all, let us observe that the recursion relation for the partition function Z; ;. of the part
between nodes ¢ and ¢ + k reads [dG68, Hig96]:

i+k
Ziivk = Zivrivk + E BisZit1,s-1 Lsy1ith (6.3)
s=i+1
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where 3;; = e 44/T are statistical weights of bonds (1 < i < j < n), and A;; are
the elements of the contact matrix: A;; = 1 if ¢ and j match each other, and A;; = 0
otherwise. In the zero-temperature limit, the equation (6.3) is reduced to the dynamical
programming algorithm for the ground state free energy [NTV11]:

Fiipr = m T'InZ 54 = o max [Fittik: €is + Fiars1 + Foprivn] - (6.4)

This expression can be interpreted as a growth of the optimal graph: at each time
step a node is added to the sequence, and the new graph is rewired according to the non-
crossing constraint, in order to minimize the number of gaps, see Fig. 6.4. The dynamic
programming algorithm (6.4) has a cubic computational complexity in the length of the
sample L.

O+

Figure 6.4: An interpretation of the algorithm (6.4) in terms of a growing graph: a newly
added node creates an optimal bond with one of the existing nodes, and other links rewire
in order to satisfy the non-crossing constraint.

Since the free energy F' of the whole chain is proportional to the number of nucleotides
involved in the planar bond formation, the combinatorial problem of planar matching can
be regarded as a T" = 0 optimization problem for the free energy of the RNA molecule with
a given matrix of contacts, A. Therefore, the exact dynamical programming algorithm
(6.4) allows to detect the phase transition by considering the fraction fr(p) = 2F/L of
links, involved in planar binding, for different densities of contacts p in the limit L — oo:
one expects fo(p) =1 for p > p., and fo(p) < 1 for p < p..

Thus, looking for the fraction 1. (p) of sequences, which allow perfect matchings, in
the whole ensemble of random sequences, one has 7. (p) = 1 for p > p., and 7. (p) = 0
for p < p.. The corresponding dependencies are shown in Fig. 6.5(a) for different polymer
lengths, L = 500, 1000, 2000. As L — oo, the function 7. (p) tends to a step function.
Two different phases are observed: for p > p. one has a gapless perfect matching with
all nodes involved in planar binding, while for p < p. there is always a finite fraction of
gaps in the best possible matching.

The scaling analysis determines the phase transition at the critical point p. ~ 0.379.
The Fig. 6.5(b) shows that curves with different L collapse, demonstrating the scaling
behavior n ((p — p.)/L"), giving the transition width in form of power-law decay L7,
with v = 0.5. The convergence of the function f to a limiting value fo(p) (cf. Fig. 6.6)
in the perfect and imperfect phases has, respectively, an exponential and a power-law

tails:
{ foo(p) = fr(p) ~ e L@ for p > p,
foo(p) = fr(p) ~ L7*®) for p < p,

where the screening length ¢(p) diverges at the point p = p. (two examples for p = 0.38
and p = 0.4 are shown on Fig. 6.6(a) in the semi-logarithmic scale), and finite-size scaling
analysis gives 0.8 < a(p) < 1 (see Fig. 6.6(b) for two examples, p = 0.32 and p = 0.34
on the log-log plot). Note that the exponential scaling in the perfect phase may not
be universal (with respect to other models) and is likely to be a feature of the Bernoulli

(6.5)
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Figure 6.5: (a) The fraction of perfect matchings 7. (p) as a function of the density p of
ones in the contact matrix A for chain lengths L = 500, 1000, 2000, averaged over 10000
instances. The dashed line corresponds to the thermodynamic limit L. — oo, yielding the
critical value p. = 0.379. (b) The scaling analysis of curves, corresponding to different
chain lengths L. The fitting procedure gives the exponent of the transition width v ~ 0.5.

model (6.1), while the power-law behavior in the imperfect phase appears in other models,
e.g. for integer-valued alphabet [VTN12].

6.4 Topological transition: naive mean-field and cor-
relations

Let us indicate some immediate considerations with respect to the perfect-imperfect phase
transition, reported in the section 6.3. First of all, let us mention the lower and upper
bounds on the critical transition point that can be readily obtained using an explicit
formulation in terms of integer-valued alphabets. It is easy to realize that a two-letter
sequence always allows for a perfect-matching solution in the thermodynamic limit L —
oo: indeed, it is not hard to show that the sequential pairing of neighbors of the same
type and their removal from the chain ultimately gives at most two unpaired nodes, see an
example in the Fig. 6.7. Hence, one immediately gets p. < 1/2. A lower bound p. > 1/3
for the RNA-type matching has been found in [Vlal3] using the explicit construction
in terms of a three-letter alphabet. A discussion on more elaborated rigorous bounds
directly for the Bernoulli model is presented in the chapter 9.

A naive estimation of p. can be easily obtained via the following mean-field-like ar-
gument. Since each arc in the diagram is present with the probability p, the probability
that the whole configuration is allowed, is given by p”/2. Assuming that planar diagrams
in the fully-connected ensemble are statistically independent, we get the probability P to
have at least one perfect planar matching configuration:

P=1—(1-p"?)%2 =1—exp (—p"*Crp) (6.6)

where the last equality is valid for L. — oo. In this limit, the probability P is equal to
one for p > p., and to zero for p < p.. The perfect-imperfect naive mean-field threshold
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Figure 6.6: Convergence of fraction of links, involved in planar binding, f;, to the limiting
value fy in two regimes, p > p. and p < p.. (a) In the perfect phase, the exponential
convergence is demonstrated for p = 0.38 and p = 0.4 in the semi-logarithmic scale. The
screening length ¢(p) diverges as p approaches the critical value p.. (b) In the imperfect
phase, the power-law behavior is shown for p = 0.32 and p = 0.34 in the log-log scale.
The exponent «(p) as a function of p takes values between 0.8 and 1. The data points
are averaged over 1000 instances.
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Figure 6.7: The word reduction algorithm for a two-letter sequence. At a first stage
(a), we pair and remove all neighboring monomers of the same type. This procedure
is repeated for a reduced sequence (b) until the irreducible sequence of the alternating
type (c) is left. For this sequence, it is sufficient to remove one of the central monomers,
counting it is a gap, and repeat the elimination procedure (a) and (b). At most 2 gaps
are left overall at the final stage (d).

pe is thus given by the condition
: 2/L
Jim pe [Crp]™ =1, (6.7)

yielding p. = 1/4. However, here we have neglected the statistical correlations between
different configurations in the fully-connected ensemble of planar configurations. For
instance, let 7 and p be the two arbitrarily chosen configuration of arcs out of the fully-
connected ensemble of Cp/, possible configurations. The probability that they both
satisfy the constraints imposed by the contact matrix A is not simply equal to p”, but
instead is given by p™/2pt/2p=rmoel/2 where n-n, is a fraction of common arcs in the
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configurations 7 and p.

This argument can be extended in order to introduce quantities nin9n..~m for the
number of mutual arcs between m randomly picked configurations. Therefore, a more ac-
curate expression for the probability P of existence of at least one solution can be written
using the inclusion-exclusion principle for the expectation values of overlap fractions:

Cr/2(Crj2 — 1)

P = CL/2p1 - 5

P2 + C%L/ng 4+ ... s (68)

where py = p™/2, po = pE [p~102E/2], py = pPLIPE [p— smnel/2pmnznsl/2| - ete However,
the computation of these expectation values is very hard (a computation of the two-
configuration overlap is sketched in the chapter 9), and the alternating series (6.8) is not
easy to analyse. Moreover, a quick survey shows that the maximum contribution to this
series comes from rather distant terms, and therefore it can not be truncated at a small
number of terms. Of course, if we assume that all the diagrams in the fully-connected set
are independent, we have p,, = pf, and thus we recover the expression (6.6). Anyway, we
see that the equation (6.7) provides only a crude estimation to the true value of p., and
it has to be generalized to

lim €(p.) [Cup] " =1, €(pe) = 1/4, (6.9)

where £(p) is some weight (due to correlations) to be determined. In the next chapter,
we will see how to calculate the transition value analytically in a more accurate way.
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Chapter 7

Analytical description of the
topological phase transition in the
Bernoulli model

In this chapter, we present analytical estimations of the perfect-imperfect transition point
in Bernoulli model, described in the previous chapter. The difficulty in the calculations
arise essentially from the quenched nature of disorder in the random contact matrix that
has to be averaged out. We will follow two approaches. The first one is based on a
field-theory generating function for planar diagrams, the corresponding estimation has
been reported in [P-3]; in this chapter, we will reveal some technical details that were not
present in the work [P-3]. The second approach relies on a combinatorial treatment of
the quenched disorder, and opens a way to a systematic improvement of the estimation
of the critical point. A key ingredient that makes the problem solvable is the fact that
the global constraint satisfaction problem can be reduced to a set of local ones that are
easier to solve. In this chapter, we will present the obtained results, and summarize the
main features of the developed combinatorial expansion procedure.

7.1 Field-theory approach

In the previous chapter, we have highlighted a similarity between the perfect matching
configurations of arcs and the planar diagrams that play an important role in the field
theory. Indeed, the planar diagrams represent a dominant contribution to the perturba-
tive computation of Green functions in the limit of large number of dimensions of the
problem. Examples include the 1/N expansion in the SU(N) theory of strong interactions
[Col88], introduced for the first time by 't Hooft ['t 74], or the resolvent computation in
the random matrix theory [Meh04]. In this section, we use this property for generating
the appropriate configurations in the planar matching problem. As a possible application
to the physics of RNA, this approach has been suggested by Orland and Zee in [0Z02],
and further developed in [VOZ05] for the counting problem and in [POZ05] for the study
of the tertiary structure. Although this approach is fruitful in a homogeneous setting,
assuming that all the nodes of the biopolymer are equivalent, the problem becomes much
harder in the heterogeneous case. In the following, we apply the 1/N-expansion tech-
nique to the disordered Bernoulli model. Let us start with the matrix model, previously
suggested in [VOZ05], and adapted to our setting. For the set of L vertices, associate
to vertex ¢ an Hermitian matrix (¢;)yxny. The L-point generating function Z; can be

69



70 CHAPTER 7. TOPOLOGICAL TRANSITION: ANALYTICAL

written as follows:

L L
1 N <L 1 1
ZL(N,A) = ——— [ [[ dore> 2= Do) —p TT(1 =
LV, A) WL(N)/k:1 ol N I}Uf o

_ [ Do I, (1 +60) _
N [ D¢iellﬂfo =TI+ @) o, (7.1)

=1

where

Hy = =5 S (A ) tr(0n6). (7.2

Since tr(dig;) = >, s = D abed Sad0pedly @, every propagator enters with a 1/N
factor, while every loop gives a factor NV, and we have:

N
<¢i¢j>Ho = % <%Aw) Z 5aa5bb - Az‘j; (73)

a,b=1

and it is easy to verify that due to the Wick theorem

(@1 dn)my = O[] ox0w) o (7.4)

pairs k,k’

one has

1
ZUNA) =14 At D AgAut ot Y Awdpto.. (75)

1<j 1<j<k<l 1<j<k<l

Hence, each non-planar configuration comes with a factor 1/N? at some power and there-
fore vanishes in the large N limit. Since we are interested only in the subclass of complete
diagrams, it will be easier to work with the generating function Z(N; A)

dey...dprefo L
z(v; 4= 122 e X008 (ornd (76)

that counts in the limit N — oo the number of planar diagrams with exactly L/2 arcs
compatible with a specific realization of the disorder defined by the matrix A.

In the absence of any disorder, one can set A;; = « for any (7, j), where « is some
constant (it corresponds to the p = 1 limiting case in the Bernoulli model):

0 a «o «

a 0 « «Q
A=]a a 0 o (7.7)

o

a ... a 0

In this case the multi-dimensional integral (7.6) can be reduced by a series of Hubbard-
Stratonovich transformations to a one-dimensional integral involving the spectral density
of a Gaussian matrix, which is a well-known result of the random matrix theory [VOZ05,
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GD09]. We will refer to this realization of A as to the fully-connected case. If we set
a =1, we get [VOZ05]

N—oo

where C'p /5 is the Catalan number (6.2), as it should be. However, for a generic disordered
matrix A, the calculations are intractable. Still, we show below that by averaging over
the matrix distribution (6.1) and by applying the self-consistency arguments, we are able
to treat the partially-connected system with 0 < p < 1 as an effective fully-connected
system with « different from one, thus obtaining a correction to the naive mean-field
result (6.7). Following this arguments, the function £(p) defined by the equation (6.9)
can be computed by averaging Z;(N; A) over disorder:

(ZL(N, A)) s = / dA; P(A) Z1(N, A). (7.9)

Changing the order of integration, introducing new hermitian matrices (h;)nxn and per-
forming the Hubbard-Stratonovich transformation, we get:

L
1 N . 1
Zi(N, AV 4= | dA;;P(A;;)——— dope™ 2 2ii (A7 )ijtr(9ids) _ ¢
(ZL(N, A))a / iP( J>WL(N>/IQ dre (01 on)

L
1 1 1
= dor—t dA;; P(A;;) —————
/IH ¢kN r(gbl ¢L)/ J ( ])WL(N)O
L
% / H dhme—% Zz‘j Aijtr(hihj)-‘riNzitr(hi(ﬁi) (710)
m=1

The Hubbard-Stratonovich transformation yields a normalization factor 1/C', with

L
C = / [T dhume T sttt (7.11)
m=1

We remind at this point that
L
N -1
Wi(N) = / [ dhme> 2t Db, (7.12)
m=1

and C' o« 1/vdet A, Wi(N) o 1/4/det (A~1) with the same coefficients which are inde-
pendent on A (typically (7 /N)N*L/29NL/2)  Since

det (A™') = 1/det A, (7.13)

the product Wy (N)C = B is independent on A, and we have
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L L
1 1 ‘ N
_ _ i3, Ntr(h;¢;) . o~ Xi; Aigtr(hihy)
B /gdgkatr (¢1 e ¢L) gl dhy,e /dAsz(AzJ)e
1 & 1 L
== — —_— ZZZ Ntr(hz¢z) . —ﬁtr(thJ)
_B/gd¢thr<¢l---¢L)Edhme 1;[[& p) +pe Fhn)]

L L
1 1 ' N N
= 5 [ TLaougyn 1. 0) TT dne =50 TLexplog |1+ p(-rihuny) +.)
k=1

m=1 ij
1 [+p ., 1 L
=5 / Hd(bkﬁtr(@...(m) / [ dhmet™ 2itrtuoes, (7.14)
k=1 m=1
where B is a numerical constant, S = Sy + V, and
N
S() = — p? Ztr(hih]‘), (715)
ij
p(1 —p)N? p(1 —p)(1 —2p)N?
V= T) > “ler(hihy))? — ( (48 > ler(hib)P+ .. (7.16)
ij ij

Up to this point, no approximation has been made. The Sy term (7.15) corresponds to
a fully-connected matrix with an additional factor p behind. If this term only was present,
then, performing the inverse Hubbard-Stratonovich transformation and returning to the
functional of the type (7.6), we would get £(p) = p, recovering the naive mean-field
value p. = 1/4 given by (6.6). Note that adding the first term of the expansion (7.16)
is equivalent to replacing the true bimodal distribution P(A;;) (6.1) with a Gaussian,
preserving the first and the second moments:

1 (Ayj — Ao)?
P(A;j) — Wexp (—T>, (7.17)

where Ay = p and 0® = p(1 — p). This is similar to some variational approaches that ap-
proximate the true Hamiltonian S by a trial Gaussian Hamiltonian [BMPY91]. Another
remark is that using the Gaussian distribution instead of the bimodal distribution (6.1)

from the beginning and assuming that the matrix A belongs to the Gaussian Orthogonal
Ensemble (GOE)

P(A)dA e~ 2740 gA, (7.18)
something could be done directly in the integral (7.9), passing to the distribution over the
inverse matrix of A. Indeed, if X is the inverse matrix of A, the distribution of X = A~1

can be computed! using from the distribution of the eigenvalues z; = \;', where ); are
the eigenvalues of A:

P(X)dX x e 27| det X|~NDdX. (7.19)

The correction to p. due to the whole series V' (7.16) can be estimated as follows. The
series given by the action S can be thought of as a Gaussian theory with the interaction

!Private communication by Yan V. Fyodorov.
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V. Since V contains an infinite number of terms, it is impossible to treat it perturbatively.
Still, we can use a self-consistent nonperturbartive approach reminiscent of the Feynman’s
variational principle [Feyb5, GZRF85] in the field theory: as all the fields {h;};—;, .1 in
Eq.(7.16) are equivalent, we assume that the average of Ntr(h;h;), N*(h;h;)s, = U is
independent on (i,7). Within the adopted mean-field approximation, the replacement

ed = e%¢V) is supposed, where
p(l —p)N p(l—p)(A—2p)N
(V) = TU%:tr(hihj) - o U %:tr(hihj) +... (7.20)

Resumming the series (7.20), we obtain the following self-consistent equation for the

“propagator” U:
_ 2 log |1 + u (7.21)
T og p+ pexp 5 )| .

The equation (7.21) yields U = —2log [1 — #} Hence, finally, we can write
N
S = —% > tr(hihy) (7.22)
]

where

§(p) = (—2log {1 - L/\ﬂ ) B : (7.23)

p
Substituting (7.23) into (6.9), we get an estimation for the critical value pi = 0.455.
Although the self-consistent approximation (7.20) leads to the correct direction of the
shift of p. from the naive mean-field value p. = 0.25, it is rather crude, and we would
like to have a better control on the estimated value. This can be achieved in a different
approach, presented in the next section.

7.2 Combinatorial approach

As we have seen in the previous section, the field-theory-based estimation requires a
use of uncontrollable, to a certain extent, approximation. In this section we describe a
procedure for a detailed treatment of quenched disorder at the level of shortest arcs in
the complete planar matching problem. In particular, we show how to get successive
estimations to the value of the transition point via arcs expansion, explicitly calculating
the contributions of shortest and next-to-shortest arcs, and treating the contribution of
the rest in a mean-field manner.

To this purpose, we exploit the formulation of the problem in terms of Dyck paths,
presented in the section 6.1, by combining exact combinatorial and mean-field techniques.
The method is based on the observation that the arcs with smaller lengths are more likely
to appear in the complete matching structure than those with higher lengths. Indeed,
locally, in the complete matching configuration, the arc opened at ¢ and closed at j
corresponds to the part of a Dyck path, starting by an “up”-step " in position ¢ and
ending by the first “down”-step \, at the same height in position j, cf. Fig. 6.1(b).
Hence, this random walk between ¢ and j is a Dyck path itself, and the probability to
find an arc connecting ¢ and j, reads

.. Ok*l 2
Pli, ) =~ (7.24)
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where k£ = 7 — 7; the nominator represents the total number of Dyck paths of length &,
given by (6.2), and the denominator is the total number of possible random walks of this
length.

From (7.24) we see that short links play an exceptional role in the formation of planar
configurations: P(i, j) is non-zero for odd k only, and a few first values are P(i,i + 1) =
1/4, P(i,i+ 3) = 1/16, P(i,i +5) = 1/32, etc. In particular, in the large L limit, about
a half of all L/2 arcs are the shortest ones (“S-arcs”) of length two (corresponding to the
red peaks in the Fig. 6.1(b)).

7.2.1 First order of the expansion

In the work [P-3], the dominance of S-arcs is used to provide an estimate for the perfect-
imperfect transition point by considering the following approximation:

&P = o PYw), (7.25)

long arcs S—arcs

that is, explicitly accounting for the correlations coming from the shortest arcs, and
assuming that all longer arcs give a mean-field contribution p*/4. Thus, the problem
is reduced to placing L/4 shortest arcs on the line of L points, representing positions
(1,7 + 1), each position being allowed or forbidden as dictated by the contact matrix
values A;;;1, see Fig. 7.1. Note that since the arcs can not share the same node, the
S-arcs can not occupy neighboring positions (i,i41) and (i+1,i42) in such a placement.

shortest arcs (L/4 of them)

ST

(a) @ " unmatched points (L/2 of them)

) — O ° OH” o O|o|

Figure 7.1: Computation of Bg) (p): (a) Selection of L/4 non-touching arcs on the set
of L points (L/2 open dots remain unmatched); (b) the same problem reformulated as a
partitioning of vertical segments (arcs) between open dots (unmatched points). A certain
number of partitions are forbidden by the matrix of contacts A.

We can express Pél)(p) as follows:

0
Ps(p) = igng ; (7.26)

where B(Sl)(p) is the number of ways to put uniformly L/4 S-arcs, allowed by the contact
matrix A of density p, on a line of L points, according to the non-touching constraint.
It is easy to see that in the fully-connected case p = 1 (all the positions are allowed),

Bél)(l) = C'?)LL/;Z, corresponding to the placement of L/4 objects among L/4 S-arcs and
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L/2 unmatched vertices. In [P-3], the approximation Bg)(p) = C?,Lp /L4 /4 18 used, assuming
that each position of arcs (4,74 1) out of L available a priori is allowed with probability
p. Strictly speaking, it is not true, and gives only an upper-bound on the value of critical
point computed at this level. Indeed, the density of ones in the diagonal A, ;14 is equal to
p in the thermodynamic limit, but the ones are distributed independently, meaning that
they may correspond to incompatible neighboring positions (i,i+ 1) and (i + 1,7+ 2); at
the same time, the “circle-and-stick” representation automatically incorporates the non-
touching constraint. In the following, we derive a contribution of the S-arcs (or peaks in
the Dyck path representation, see Fig. 6.1), via an exact procedure [P-4].

Let us first introduce some useful notations. We denote an allowed (A;;+1 = 1)
position for the S-arc by a square with a dot (i,7 + 1) = [, and the forbidden position
(A;ix1 = 0) by an empty square (i,7+ 1) = 0. In the general, p # 1 case, the contact
matrix partitions the length-L chain of all possible shortest arcs positions into pieces,
representing the sequences of allowed positions, surrounded by forbidden ones: (---O [
DOOHORBEA---). Let us denote g the density (in the large L limit) of sequences of
allowed positions of length k: O -- -], We have

—_—

k
qr = pk(l — p)z, (7.27)

where the two factors (1 — p) come from the forbidden positions nearest to the first and
to the last positions of the sequence, and each factor p is the probability of an allowed
position. It is easy to check that the overall density of allowed positions for the shortest
arcs must be equal to p:

Z’f% =p(1—p)*(1+2p+3p*+...) =p. (7.28)
k

Given the physical sense of Bél) (p), we need to solve the following constrained independent
set (CIS) problem: count the number of ways to distribute L/4 arcs so that they do not
touch each other, on the ensemble of these allowed partitions. For each sequence it
means that if a certain position is chosen, other arcs can not be placed in the neighboring
positions, even if these last are allowed by the contact matrix A. Note, however, that
this global CIS problem is reduced to a set of local ones on the sequences with densities
qx: since they are separated by at least one forbidden position, the distribution of S-arcs
happens independently on each sequence.

As a by-product, here comes a non-trivial strict bound on the value of p.. It is easy
to see that for a piece of length k, at most [(k + 1)/2] = 7, positions can be occupied
under the non-touching constraint. Therefore, the maximum fraction of shortest arcs is

k41
> [T} g =p(1+p)1—pPL+2p°+3p" +4° +...) = 1%. (7.29)
k

Since we need to place at least L/4 arcs, we immediately get that p. > 1/3. It coincides
with the lower bound discussed in the section 6.4.
Now, the solution of the local CIS problem is easy, and is given by

Rmvk = Ol:'n—m—&-h (730)

where R, ), the number of ways to put m S-arcs on the allowed sequence of positions
of length k (see [P-4] for details of the derivation). Given the solution of the local CIS
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problem (7.30), it is easy to construct the solution of the global problem. Let us introduce
a generating function for a piece of length k:

Qi(s) = > Ryps™ (7.31)
m=0

Then the generating function for the whole chain of L a priori available positions for the

S-arcs reads
L

Q(s) = [ J(@x(s))"*, (7.32)

k=1

or, explicitly,
Q(s) = (14 8) 007 (1 425 07 (197 (1 | 35 1 )PP (] | 454 320 10  (7.33)

Since we want to place L/4 shortest arcs, we are interested in the coefficient behind

the s/*: this is exactly the quantity Bél)(p). This coefficient is given by the integration

of Q(s)/s"* around zero:

1
BY(p) = 5 § dsexp [L((1 - pA(p) — 1/110g )], (7.34)
where
L ((k+1)/2]
folp) =) p*log O ™ | - (7.35)
k=1 m=0

Using explicit re-summation, this result can be written as

folp) = p'log <<1+ VI+as)™ (1 Vi+ds) +2) . (7.36)

— 2k+2,/1 + 4s

Each term in the sum (7.35) is decreasing, so in numerical calculations we can approximate
this function by partial sums to some order kq. The integral (7.34) can be treated by the
steepest descent method. The saddle-point equation reads

(1 —p)z%im = 4_15‘ (7.37)

Given the solution s* of the equation (7.37), one gets the expression for B(Sl)(p):

By (p) = exp [L((1 = p)? for (p) — 1/410g s")] . (7.38)

Approximating the large deviation function (7.35) by partial sums up to the fifteenth
order, and combining with (7.26), (7.25) and (6.9), we get a fast convergence to the
prediction of the critical point p} = 0.3376, see Fig. 7.2, providing an expected shift to a
lower value from the result p; = 0.35, found at this level of expansion if one assumes a

mean-field approximation Bél)(p) = C’?’Lp / L4 14 [P-3].
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Figure 7.2: Estimation of the prediction p} for the critical value p. at the first order of arcs
expansion. Each point represents a corresponding estimation when (7.35) is approximated
by a partial sum up to the lengths ky. The estimations demonstrate a fast convergence
with ko to the value p} = 0.3376.

7.2.2 Beyond the first order

The first-order estimation can be systematically improved by considering correlations
arising form the higher-length arcs. At the second order, the idea is to use not only the
information from the diagonal A;,; ; of the contact matrix, but also from the diagonal
A, i3, l.e. to take into account the constraints on the placement of the shortest (.5),
length-2 arcs, that come from the placement of the length-4, or next-to-shortest (NJS)
arcs. Therefore, we can write, as previously

L/2(py — o L/4 2)
&) = P P ), (7.39)

longer arcs S—arcs

but now the influence of the L/16 NS-arcs is accounted in the factor PéQ) (p) representing
L/4 S-arcs. As before, we will compute the contributions of the shortest arcs under the
correlations arising from the placement of the N S-arcs, and treat the contribution arising
from the longer arcs in a mean-field manner.

In other words, the problem is now reduced to the placement of both S and NS arcs
that respect the constraints imposed by the contact matrix A. Obviously, the placement of
arcs of one type introduces additional constraints on the placement of those of other type.
First, some of the places will become forbidden because of the non-crossing constraints.
Second, if we are interested in the complete matching configurations, placing a length-4
arc automatically means placing a length-2 arc underneath. Therefore, our goal is to
place altogether L/16 NS-arcs, each covering a S-arc, L/4 — L/16 = 3L/16 remaining
S-arcs and L —4 x L/16 — 2 x 3L/16 = 3L/8 unmatched vertices. The placements are
subject to the non-touching constraints. Proceeding in the same way as in the previous
section, we can write

By
P (p) = fQ)( ) (7.40)
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where the factor Bg) (p) represents the contributions of the S-arcs under the correlations
arising from the presence of the NS-arcs. The denominator of the product (7.40) is given
by a multinomial coefficient

5L
(2) _ 8 " _ ~L/16 ~3L/16
BS (1) T L) 3Ly3Ly C’5L/8C(9L/16' (741)
1616 8 °

The multinomial coefficient has the following physical sense: it counts the number of
ways to place length-4 constructions, length-2 arcs and unmatched vertices when all
the places are available by the contact matrix. It can be factorized into two binomial
coefficients that have the following sense: first place L/16 length-4 constructions among
L/16 + 3L/16 + 3L/8 = 5L/8 objects, and then place 3L/16 remaining S-arcs among
3L/16 + 3L/8 = 9L/16 available places.

The computation of Bg) (p) follows the similar ideas as for the Bél)(p). First of all, the
problem is localized on independent subsequences of a special form, and the local problem
of distribution of S and NS arcs is solved on these subsequences. Unfortunately, it is
hard to write a closed combinatorial formula, similar to (7.30), since the solution inside
each block depends on the distribution of forbidden and allowed positions. However, if
we truncate the series at some length ky (as it has been done at the first order of arcs
expansion), these solutions can be computed for each sequence via explicit enumeration,
see [P-4] for details. Again, going in maximum length up to kg = 15, the global problem
demonstrates a fast convergence to the value p? = 0.3743 which is very close to the value
pe = 0.379 found in numerical simulation, see Fig. 7.3.
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Figure 7.3: Estimation of the prediction p} for the critical value p. at the second order of
arcs expansion. Each point represents a corresponding estimation when the lengths up
to ko of independent subsequences are taken into account. The estimations demonstrate
a fast convergence with £ to the value p} = 0.3743.

In principle, this estimation can be improved further by considering the higher arcs
contribution. For example, for the next order, including length-6, or next-to-next-to-
shortest (NN S) arcs, we can write

()= pHt PP (p),, (7.42)

longer arcs S—arcs
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where now the S-arcs are placed according to the restrictions imposed by L/32 NNS-
arcs and L/16 N S-arcs. A subtlety here is that if we are interested in the fully-matched
configurations, each of the NN S-arcs may hide either 2 S-arcs, either a nested structure
of NS and S arcs. Hence, placing L/32 NN S-arc on a certain position (allowed with
the probability p(1 — (1 — p*)?)) automatically means placing L/64 N S-arcs and 3L /64
S-arcs; at the same time, L/16 — L/64 = 3L/64 of NS-arcs are still remaining outside
the placed NN S-arcs, and L/4 —3L/64 —3L/64 = 5L/32 of S-arcs are still remaining
outside both NN S and NS. We have to place them altogether with 5L/16 unmatched
vertices. Therefore, if we write, as usual,

B(3) D
P (p) = f3)< ) (7.43)

Bg (1)

the factor B?(l) will be given by
3) 2l L/32 ~3L/64 ~5L/32
— 64 _
BS <1) ~ L)3L\5L|5L| C’35L/64CV‘3>3L/64C¢15L/32' (744)
32764732 16"

The calculation of the factor BS’) (p) would involve, as previously, the partitioning of the
problem to a set of local CIS problems. The solution to the global problem could then
be obtained by imposing that the overall number of S-arcs is fixed to L/4.
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Chapter 8

Application: optimal folding in RNA
secondary structures

Aiming at the application to the toy models of random RNA, in this chapter we establish
the relation between the zero-temperature perfect-imperfect matching transition in ran-
dom planar diagrams, and a temperature-dependent molten-glass transition in random
RNAs, widely discussed in the literature. We find that the perfect-imperfect phase tran-
sition point lies on the critical line, separating molten and glassy regions, and coincides
with the freezing transition at zero temperature [P-3]. Therefore, while on the corre-
sponding phase diagram the molten phase exists in both perfect and imperfect regions,
the glassy phase is present only in the region with gaps. As a second application, we
introduce two new models involving explicit representation of an instance of the problem
as a string of letters, and study numerically the perfect-imperfect phase transition in
these models [P-4].

8.1 Connection to the molten-glass transition

The investigation of thermodynamic properties of RNA secondary structures has been
addressed in a number of papers [BH99, PPRT00, BH02, KMM02, MPRT02, LWO06,
HT06, DW07, HIL"14]. Many of them provided numerical and analytical evidence for
the existence of a low-temperature glassy phase. In [BHO02] it was shown that in the
high-temperature phase the system remains in the molten phase, characterized by a
homopolymer-like behavior. In the molten phase the disorder is irrelevant, and the bind-
ing matrix elements A;; can be replaced by some effective value «. Carrying out the
two-replica calculation, the authors were able to show that the system exhibits a phase
transition from a high-temperature regime, in which the replicas are independent, to a
low-temperature phase, in which the disorder is relevant and replicas are strongly cou-
pled. The authors numerically characterized the transition to a glassy phase by imposing
a pinch between two bases and measuring the corresponding energy cost.

Several other works [KMMO02, MPRT02] used an alternative, the so-called e-coupling
method, to investigate the nature and the scaling laws of the glassy phase, observing
the effect of typical excitations imposed by a bulk perturbation. The authors argued
that for the models with non-degenerate ground states, the low-temperature phase is
not marginal, but is governed by a scaling exponent, close to § = 1/3. The field-theory
approach to the freezing transition has been developed in [LW06, DWO07]. The explicit
numerical studies of the specific heat demonstrate that molten-glass transition is only a

81
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fourth order phase transition [PPRT00].

Regardless of particular details of models considered in all these works, it is clear that
the existence of the glassy phase is possible only in a sufficiently disordered and frustrated
system. Besides the planarity constraint, shared by all simple models of random RNA, the
Bernoulli model is described by a unique disorder parameter, p, that controls the density
of allowed contacts. In this model, the appearance of the glassy phase is impossible
above a certain threshold, p*. Indeed, it is well-known that for p = 1/2 (corresponding
to an effective alphabet ¢ = 2), there is no transition to the glassy phase at all, and
the system remains always in the molten phase [PPRT00, BH02]. Below, we present
arguments, supporting the hypothesis that p* is equal to the critical value of perfect-
imperfect matching transition, p..

To identify the dependence of the molten-glass transition temperature on the effective
alphabet (defined as ¢ = 1/p), we follow the procedure suggested in [BH02]. In the high-
temperature regime the disorder is irrelevant (this corresponds to a homopolymer-like
behavior in polymer language) and one can put A;; = «. In this regime the free energy of
the chain of length L scales linearly with L, up to a logarithmic correction, which is just
the logarithm of the power-law multiplier in the Catalan number (6.2) enumerating all
possible structures: F(L,T) = f(T)L — (37/2)In L, where f(T') is some (non-universal)
function of the temperature. In particular, the energy cost of imposing a bond connecting
two monomers at distance L/2 from each other equals in the high temperature regime

AF(L,T)=F(L,T)—-2F(L/2,T) = ;Tlng. (8.1)

The violation of this behavior indicates [BH02| the appearance of the glassy phase. This

fact can be used to detect the transition temperature in the Bernoulli model. Namely,

we use the following fit for AF(L,T) (where F(L,T) is to be determined via recursion
relations (6.4))

AF(L,T)=a(T)In L+ b(L), (8.2)

and plot the T-dependence of a(T), see Fig. 8.1. We interpret the deviation of the a(7T)
from the high-temperature value 37'/2 as appearance of the glass transition. Note that
the logarithmic fit (8.2) for the free energy does not give a correct asymptotics at low

temperatures (indeed, the true asymptotics is known to include power-law and logarithm-
squared terms [HT06]).

As it follows from Fig. 8.1, the expected behavior (8.1) is indeed observed at high
temperatures, and is violated at a certain temperature T,. Following [BH02| we identify
this regime change with the molten-glass transition. We see that with the increase of p, the
critical temperature 7, shifts to lower values, approaching zero for some 0.35 < p* < 0.5.
At low temperatures, the numerical computations become very time consuming, leading
to the loss of precision in the vicinity of p*. However, it seems that the hypothesis
p* = p. still holds: the sequences corresponding to p > p. remain in the molten phase,
the pinching free energy (8.2) has the same dependence even for very low temperatures.

The results presented in this section suggest the generic phase diagram shown in the
Fig. 8.2 for the Bernoulli model of random RNA chains. The perfect-imperfect transition
at zero temperature, separates two matching regions: with and without gaps. In the
previous chapters, we have proved analytically the existence of the transition from the
perfect matching region to the imperfect one, and provided estimates for the values of
the transition point, p.. Using the exact dynamical programming algorithm (6.4), we
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Figure 8.1: The dependence of the coefficient a(7") in (8.2) on the temperature for p =
0.15,0.2,0.25,0.35,0.5. For p > p* (0.35 < p* < 0.5), the coefficient a(T") seems to
follow the a(T) = 3T /2 law, typical for the molten phase, up to very low temperatures.
For p < p*, the a(T)-dependence deviates from the high-temperature behavior at some
temperature, which we identify as a critical temperature of transition to the glassy phase.
The data points are averaged over 10000 samples.

found this critical value to be p. &~ 0.379, highlighted by a thick dashed line (B-C) in
Fig. 8.2. The previous studies have been mostly concentrated on the description of the
finite-temperature molten-glass transition for a sufficiently frustrated model with a fixed
alphabet (corresponding to a fixed p in the Bernoulli model). An example of such a
phase transition point is marked by a thin dashed line in the Fig. 8.2, and corresponds to
an intensively studied case of the 4-letter alphabet (p = 0.25). The ensemble of critical
points for different values of p gives a critical curve (A-B) in the (7', p) plane.

The computational cost increases drastically for temperatures close to zero (and,
hence, in the vicinity of p.), and the recursive relations (6.3) are no more applicable.
However, we can still try to carry out the analysis of the pinching free energy AF(L,T)
at zero temperature, using the exact dynamical programming algorithm (6.4). Indeed,
the glassy phase does not exist if AF(0co,0) = 0. This happens for p > p*, where p* is
defined as the density of constrains, for which the critical temperature is zero: T.(p*) = 0.
The corresponding plot is shown in the inset of Fig. 8.2. According to (6.5), the pinching
free energy (8.1) decreases with growth of L in the imperfect matching phase, while
increases (with growth of L) in the perfect matching regime. Hence, the value of p* in
the large L limit can be identified as a crossing point of AF(L,0) curves for different
L. The crossing point for L = 1000 and L = 2000 is indeed found to be very close to
the value p. = 0.379, strongly supporting the hypothesis p* = p.. The aforementioned
results indicate that the critical curve T,(p) crosses zero at the critical value p.. Hence,
the perfect-imperfect transition point seems to lie at the critical line, separating molten
and glassy regions, and coincides with its limiting 7" = 0 value. We see that although the
glassy phase exists only in the region where the gaps are present, the molten phase lies
in both, perfect and imperfect, matching regions.
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Figure 8.2: Main figure: the phase diagram of Bernoulli model on the (7',p) plane.
The data points correspond to the critical temperature 7T, of the molten-glass transition
for different values p = 0.15,0.2,0.25,0.3,0.35,0.5. A 4-letter alphabet (p = 0.25), is
highlighted by a thin dashed line. The critical curve (A-B) separates glassy and molten
phases. We conjecture that at zero temperature, the endpoint B, giving p*, coincides
with the critical point p. for the perfect-imperfect transition. The thick dashed line (B-
C) separates the perfect and imperfect matching cases. The glassy phase lies entirely
inside the region, characterized by gaps. Inset: an evidence for the conjecture p* = p..
Study of the pinching free energy AF(L,T) at zero temperature. In the limit of large
L, the glassy phase is absent for p > p*, characterized by AF(0c0,0) = 0. The point
p* can be identified as a crossing point for different AF(L,0) curves, presented here for
L = 1000 and L = 2000, and it’s value is found to be very close to p. = 0.379. The data
points are averaged over 1000 samples.

Because of the one-parameter dependence, the Bernoulli model is probably the sim-
plest model for modelling the secondary structure of the RNA, that captures the es-
sential physical properties of the process. Being applied to the studies of the thermo-
dynamic properties of random RNAs, it provides some enlightenment on the nature
of molten-glass transition at zero temperature. In principle, one could generalize the
present approach to investigate more sophisticated and realistic models of the RNA
secondary structure, for example, by introducing the minimal allowed hairpin length
[PPRT00, BH0O2, KMMO02], taking into accounts the pseudoknots [VOZ05] and different
binding probabilities [VOZ05, MPRT02]. In the next section, however, we will instead
discuss the models that allow for an explicit sequence representation.
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8.2 Other models for random sequences with non-
integer alphabets

Although it is clear that, given the pairing complementarity rules, one can always build
a contact matrix from a given primary sequence, the opposite in general is not true.
Indeed, in the Bernoulli model (6.1), each element of the matrix is generated independently
according to the probability distribution (6.1), hence, it lacks the transitivity: even if the
elements A;; and Aj;, appear to be equal to one in the contact matrix, the element A
might be zero.

It would be interesting to understand whether there is a way to construct explicit
random primary sequence that could model the primary sequences with non-integer al-
phabets. In the context of the phase transition described in the section 6.3, we have seen
that there is a critical value p. &~ 0.379 of the bond formation probability that separates
the regions of optimal and non-optimal structures; this critical probability corresponds
to the critical alphabet c.. &~ 2.64 in this generalized primary sequence setting. In this
section, we address the following questions: i) Is it possible to construct explicitly a ran-
dom sequence with transitive or partially transitive matching rules that would correspond
to a non-integer alphabet ¢, i.e. have a density p = 1/c of ones in the contact matrix,
generated according to this sequence? ii) Do these sequences exhibit an analogous critical
behavior as the Bernoulli model with the same parameter p, and what is the relation to
the behavior of the Bernoulli model?

8.2.1 Construction of the non-integer alphabets

For the models of random sequences, we consider a set of monomers of different types,
that we will call A, B, C, etc. Perhaps the most natural way to think of the non-integer
alphabet 2 < ¢ < 3 is to consider three types of monomers: A, B and C, mixed together.
For the sake of simplicity, we will assume that the links can be established between the
monomers of the same type, A-A, B-B and C-C. It is clear that if three types of monomers
are distributed randomly and independently along the sequence, this corresponds to an
alphabet ¢ = 3. However, the effective non-integer alphabet ¢ < 3 can be modeled if one
assumes that the distribution of monomers along the chain is correlated. Suppose that
starting from the first randomly chosen monomer, each next monomer in the sequence
is generated according to the Markov-like process, with the probabilities that depend on
the monomer at the previous step:

A B ¢
All-—2¢ € €
B € 1—2¢ €
C € € 1—2¢

This probability matrix is chosen to be symmetric with respect to all monomer types.
Each monomer type appears in subsequences unless it is changed to another type: (--- A
AABBBBACCC---). Using the word reduction algorithm, described in the section
6.4 (see Fig. 6.7), we see that without any loss of generality, the repeated monomers can
be matched along the chain; this way, each subsequence of a certain type of even or
odd length is reduced to one or zero monomers of this type, respectively: (---B A A A

C )= (--BAC--).
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The variation of the parameter € from 0 to 1/3 then gives a sequence that corresponds
to an effective alphabet ¢ in a range from 1 to 3. The relation between € and ¢ can be

estimated as follows:
LIPARE (8.3)
C = _—— . .
€ 1— 2¢

The rational behind this estimation is based on the concept of Shannon information
entropy [Sha48]. The entropy rate of this markovian sequence is given by

> Pla) > P(b|a)logP(b]|a), (8.4)

a=A.B,C b=A,B,C

where P(a) = 1/3 is an a priori probability for the monomer of a certain type, and
P(b | a) is a conditional probability that the monomer of the type a is followed by the
monomer of the type b; this probability is given by the probability matrix of the considered
Markov process. On the other hand, if one assumes that the sequences constructed in
this way are described by an effective alphabet with ¢ equivalent monomers, we simply
have

Z P(a)log P(a (8.5)

with P(a) = 1/c. The combination of (8.4) and (8.5) gives us the relation (8.3). Thus
constructed alphabet will be referred to as the “correlated” alphabet.

Figure 8.3: An example of the matching rules in the (8,3) rational alphabet model. In
this representation, a double arrow between the monomers of types X; and X; means
that they can potentially form a bond in the matching structure.

Another model that can be suggested for non-integer alphabets can be obtained using
the observation that each non-integer alphabet ¢ can be approximated by a rational frac-
tion ¢ = P/Q. Imagine a random polymer with P different monomer types X, ..., Xp,
but now allow each of them to bind only with () other monomer types. The comple-
mentary rules can be depicted as a P-polygon with ) — 2 additional links, where each
link means a possible matching between two monomers, see Fig. 8.3 for an example with
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P =8 and (Q = 3. The “commutation relations” for the monomers read

{Xi, Xig;} = Lor 1 <j <[Q/2],

{X;, X;} =1if Q and P odd,

{X:, Xivp2} =1if Q odd and P even,
{Xi, Xi+;} = 0 otherwise,

© 00 3 O

A~ /N I/~
® 00 o 00
~— — ~— ~—

where { X;, X} represents a presence (one) or absence (zero) of possible matching between
the two monomers X;, Xj; the periodic condition X;, p = X; is understood. We will call
this model a (P, Q) “rational alphabet”. Note that by construction this alphabet is non-
transitive. A particularity of this model is that there is an infinite number of ways to
represent ¢ as a fraction. Let us call P* and Q* as the minimal P and () that give
¢ = P/Q. Then P =nP* and Q = nQ* for an arbitrary integer n give the same value of
¢, although involving a different number of monomer types. In the thermodynamic limit
L — oo it will make no difference since the density of ones in the contact matrix will be
exactly p = @/P, but for finite L it may result in a different behaviors for the models
with ¢ = P*/Q*, ¢ = 2P*/2Q*, etc. In order to minimize this effect, we place ourselves
in the context of the urn model, in which the number of monomers of different sorts in
the sequence are restricted to be equal.

8.2.2 Perfect matching transition for non-integer alphabets

1of T T e e T ]
a4 5/10
12
0.8 S .
0.6 .
= —m— Rational alphabet
=04 —e— Rational alphabet (P=L)
—A— Bernoulli model
0.2 .
0.0 ]

0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50 0.52
p

Figure 8.4: The fraction of perfect matchings n;(p) as a function of the density p of
possible contacts in the model of (P, @) rational alphabet (squares, the respective values
of p = P/Q are indicated on the plot), fluctuation-free Bernoulli model (rational alphabet
model with P = L, circles) and Bernoulli model (triangles). The simulations have been
performed for L = 2000 and averaged over 10000 instances.

We have investigated the behavior of both correlated and rational alphabets with
respect to the perfect matching transition. To this purpose, we start by drawing random
sequences corresponding to a particular ¢, then construct the contact matrix A according
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to the matching rules defined in both models, and, finally solve the matching problem
for each instance by the dynamical programming algorithm.

Surprisingly, we have not observed any transition with variation of ¢ for the model of
the correlated alphabet. In fact, if ¢ > 2 (or € > 0.1135) in this model, there is always a
non-zero fraction of sequences that do not allow for the complete matching solutions. A
possible reason for this is that due to the structure of the sequence, the matching on each
subsequence is easy, but then the sequence is reduced to the primary structure of length
O(L) which corresponds effectively to the alphabet ¢ = 3, while it is known that for this
alphabet (for p = 1/3) in general there is no solution to the perfect matching problem
[Vlal3].

On the contrary, the rational alphabet model clearly exhibits a critical behavior in
the matching problem. In the Fig. 8.4, we present the numerical results for the fraction,
nr(p), of contact matrices that allow perfect matchings for different p. To avoid the
sensitivity on the value of P due to the finite size effects, we have chosen simple test
values p = @/ P with similar P in the range P € [8,12]. The number of perfect matching
in these points are compared to the special case of the limit P = L, i.e. when all the L
randomly distributed monomers in the chain are distinct, however being able to match
() = pL other monomers in the chain. This limit corresponds to the fluctuations-free
Bernoulli model, in which every line of the matrix A contains exactly pL of ones, without
fluctuations of order v/L that appear in the model defined by (6.1). The rational alphabets
give similar predictions, which are however very different with respect to the predictions
of the Bernoulli model. This difference illustrates the “positive” role of fluctuations of the
number of contacts in the Bernoulli matrix from the viewpoint of the matching problem.



Chapter 9

Perspectives

This final chapter of the part II is devoted to some open questions and perspectives for
the problems that emerge from the planar-matching results.

Key results

There is a particular interest for studying the planar matching models considered in
this part. On one hand, their statistical properties are fully determined by only a few
parameters: one for the Bernoulli model (p) and for the model of correlated alphabet
(¢, or €), or two for the rational alphabet model (P and @). On the other hand, these
disordered models exhibit a non-trivial critical behavior. Although the matching problem
can be solved by the dynamical programming algorithm with a polynomial complexity
O(L?), where L is the size of an instance of the problem), the analytical estimation of the
critical point is hard due to the quenched nature of the disorder. We have seen that the
analytical investigation has led to a number of interesting problems and results, including
an expansion procedure that benefits from the observation that the arcs of small length
play an exceptional role in the complete matching structures. A key ingredient that
makes the problem solvable is the fact that the global constraint satisfaction problem
can be reduced to a set of local ones that are easier to solve. The developed method
hence provides an insight into the fundamental structural properties of the fully-matched
configurations.

Future directions

As it often happens, finding a solution to some previous problems bring up new questions
and ideas. In this section, we will describe some open questions related to the topics
discussed in this part, and shape the directions of the future research.

Strict bounds and second-moment method

In the sections 6.4 and 7.2, we have mentioned the bounds to the phase transition point
in the Bernoulli model, p. < 1/2 and p. > 1/3. It would be interesting to obtain
rigorous bounds on this critical value, using methods from the optimization science. One
of the powerful methods that could be used to this purpose is the second-moment method

89
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[ANPO5]. Tt starts from the fact that for any integer-valued variable X, the following
identities hold:

Pr[X > 0] < E[X], (9.1)
Pr[X > 0] > E@? (9.2)

In order to introduce useful notations for the second-moment method, let us rewrite the
derivation of the naive mean-field value (it will follow from the identity (9.1)). Let X be
the number of solutions to the perfect matching problem, and let 7 be a randomly chosen
configuration of arcs out of the fully-connected ensemble of C7,/, possible configurations.
We will say that the configuration 7 (or an arc (ij) in this configuration) is SAT if it
satisfies the constraints imposed by the contact matrix A, and we note 1, = 1 if 7 is
SAT, and 1, = 0 otherwise. We have

EX] =) E[L.] =) Prlris SAT] = [] Prl(ij) is SAT)] = Crpop"?.  (9.3)

T (ij)er

The first equality follows from the linearity of the expectation value. We see from (9.1)
that Pr[X > 0] is non-zero only if p > 1/4, which is the naive mean-field value.

In order to use the expression (9.2), one needs to compute the second moment of X,
and hence to account for the statistical correlations between a pair of configurations. As
we have seen in the section 6.4, the probability that two randomly chosen configurations
7 and p are SAT is given by pY/2pl/2p=mmeL/2 wwhere n,n, is a fraction of common arcs
between 7 and p. Precisely, we have

E[X?] = Z ZE[]IT]IP] = ZPr[T&p are SAT| = ZpL/QpL/Q]E [pinmpLﬂ] . (94)

T?p T?p

Remark 1. Ultimately, we will be interested in p that will lead to Pr[X > 0]. Hence,
in the first approximation, we could try to find the lower bound to the right hand-side of
the equation (9.2), in particular provided by the upper bound on the E[X?]. Directly from
(9.4), we see that we can use the dominance of S (shortest) arcs in the fully-matching
configurations and approximate n.n, by nfmp, where nfmp is the number of common S
arcs in the configurations 7 and p.

We will follow the approach to the two-replica problem, suggested in [BH02]. First of
all, let us rewrite the expression (9.4) by introducing an auxiliary probability p for the
common arcs:

GL+1.p)=)_ > p"HPE[(E) ). (9.5)

Obviously, we have E[X?| = G(L + 1,p = p). In what follows, we will use the
following observation: the common arcs, shared by two configurations 7 and p, form a
(non fully-matched) valid matching structure by themselves. Therefore, we rearrange
the sum in (9.5) in a different way: fist, we sum over all possible structures of common
arcs; for a given structure of common arcs, we sum over all remaining possibilities of
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Figure 9.1: Ilustration of the equation (9.6) for the two-replica problem. The summation
runs over the common link structure (thick lines) of two configurations, denoted by ~.
Inside each bubble (in this example, three of them are drawn: a, b and ¢) we count the
number pairs of non-overlapping complete-matching pairings.

arcs placement under the constraint that no new common arcs are created. The last sum
factorizes into the independent contribution of loops, or bubbles, and each contribution
depends solely on the number of sites inside the bubble, see Fig. 9.1. Moreover, since
we are interested in the complete matching configurations, we need to count only the
fully-matched contributions of the bubbles. Taking into account all these considerations,
we finally get

GiL+1p= > e ]] e+, (9.6)
— —

common arcs bubbles

where || is the number of common arcs in the structure -+, [; is the number of sites in
the bubble i, and Q(l + 1) has a sense of the number of pairs (7, p;) of fully-matching
configurations in the bubble with [ sites that do not share common arcs:

QU+1) = 1[ngn, =0]. (9.7)

T1,P1

Remark 2. If we are interested in the computation of n?, , only, the equation (9.6) is

greatly simplified: since the structures of common arcs involve only the S arcs and thanks
to the word reduction property (see example in the Fig. 6.7), there is always exactly one

bubble left.
From the definitions (9.5) and (9.7) it is clear that
p"Q(L+1)=G(L+1,p— o0). (9.8)

Another obvious remark is that for p = 1, we have

G(L+1,p=1) = E[X]* = (Cr2)*p". (9.9)
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Using two consistency relations (9.8) and (9.9), it is possible to write a self-consistency
equation for the Laplace-transformed function G(L+1, p) (the details with straightforward
correspondences are presented in [BH02)):

G(2,p) = %@ (E —pZ(@‘lﬁ(z,@) . (9.10)

p

This equation is valid for any value of p, and in particular the value p = 1 can be
used. The z-transform of G(L + 1,p = 1) = E[X]? is given by

E[X]? = ¢oLiy [%] , (9.11)

where ¢y = 23/, and the trilogarithm Lis[x] is defined as

Lislz] = Y % (9.12)

The further progress can be done by analyzing the singularities in the equations (9.10)

"

and (9.11). Since the singularity of E[X]? occurs at the point zy = 4p, we are able to
locate the singularity & of the function Q(&): & = 4 —pco((3). Finally, this value is used
to determine the singularity z; of G(z,p) for arbitrary p:

% — p(B)'eo¢(3) = 4 — peol(3), (9.13)

1
Performing the inverse Laplace transform, we have G(L + 1,p) o 2F(p), and, finally,
E[X?] = G(L +1,p = p) o (4p + p(1 = p)coC(3))". (9.15)

We see that E[X?] is exponentially larger than E[X]?, and (9.2) always gives a trivial
relation, meaning that the vanilla second-moment method fails for this problem. In fact,
this result could be predicted in advance: since we know that the S-arcs represent a half
of all links, it is clear that we will always have non-vanishing overlaps nf_mp and n.q,
between two configurations 7 and p, and hence an additional exponentially small factor
n (9.4). Still, it is known [ANPO05] that the situation can be improved by considering,
instead of X, a new variable Y (still related to the existence of solution of the optimization
problem), which could correspond in our case to reweighed configurations. It would be
interesting to find a proper weight that would lead to a non-trivial bound from (9.2).
An insight could come from our knowledge for the structure of the complete-matching
configurations: a possible idea would be to assign an exponential weight to the arcs
depending on their length in order to eliminate the dominating contribution of the small
arcs to the value of the overlap n.~,. However, this question remains open, and is left for
a future work.
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Narayana statistics

Let us have a second look on the first order of expansion procedure in the computation
of Bél)(p) in the section 7.2. When solving the problem of placing L/4 S-arcs on the
line of L positions, we have assumed that the that short arcs are uncorrelated apart from
the non-overlap constraints. In real arc structures it is not the case: indeed, the total
number of available structures with exactly £ shortest arcs in the absence of disorder is
known to be given by the so-called Narayana number N (2L, k) [Deu99|, and this is the
quantity that should in principle be used instead of C’BL L/j‘4. Still, there is no danger for the
general expansion procedure. Indeed, the correlations between short arcs are induced by
the positions of longer ones, so assuming them to be uncorrelated seems to be a natural
first approximation, while the correlations will arise naturally as one takes into account
arcs of length 3, 5, etc. Still, the estimation of the critical value p. can be made more
accurate already at the first order of the expansion procedure, correctly accounting for the
correlations between the S-arcs, corresponding to the peaks in the Dyck path mapping,
see Fig. 6.1. As far as we know, these correlations have not yet been quantified; it would
be useful to compute the correlation function C'(iy,i3) of two peaks located at the points
11 and iy, and understand more in detail the Narayana statistics of the Dyck paths.

Localization in Cayley graphs

= ]

e ABCCBACAAC

Figure 9.2: Example of the mapping of the planar matching problem to a walk on a
Cayley tree with ¢ = 3 branches. A sequence allows for a perfect matching if there exist
a walk that returns to the origin at the step L.

Apart from the mapping to the Brownian excursions, the RNA-type matching, con-
sidered in the sections 6.2 and 8.2, allows for another mapping: a random walk on a
Cayley tree, represented in the Fig. 9.2. It is constructed as follows. Associate to each
letter of the alphabet a vector (representing a particular branch of the tree at each gen-
eration), and use the following rule: for each letter in the sequence, a move can be done
forward or backward only in the direction of the corresponding branch. It is clear that
the complete-matching solution corresponds to a walk that returns to the origin after L
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steps. In a random setting, a generalization of these rules would correspond to a random
walk on such a tree; obviously, under these simple rules, a simple random walk has no
chance to return to the origin. Starting from this point, it would be interesting to un-
derstand whether this tree structure can be modified, for example by “gluing” together
some of the branches in order to get a localization close to the origin; see e.g. [VNBO0O]
for an example of a modification of this kind. This procedure is interesting in itself, be-
cause such a Cayley graph corresponds to a structural representation of some locally-free
groups with partially commutative relations between the generators. Preliminary results
on the path counting on such topologies indicate an existence of a localized behavior due
to the “entropic trap” in the origin. But this is a starting point for a completely different
ongoing story, and we finish at this point.
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