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Tree Decompositions and Routing Problems

Abstract: A tree decomposition of a graph is a way to represent it as a tree by preserving
some connectivity properties of the initial graph. Tree decompositions have been widely
studied for their algorithmic applications, in particular using dynamic programming ap-
proach. In this thesis, we study tree decompositions satisfying various constraints and
design algorithms to compute them in some graph classes. We then use tree decomposi-
tions or specific graph properties to solve several problems related to routing. The thesis is
divided into two parts.

In the first part, we study tree decompositions satisfying some properties. In Chapter
2, we investigate minimum size tree decompositions, i.e., with minimum number of bags.
Given a fixed k ≥ 4, we prove it is NP-hard to compute a minimum size decomposition
with width at most k in the class of graphs with treewidth at least 4. We design polynomial
time algorithms to compute minimum size tree decompositions in some classes of graphs
with treewidth at most 3 (including trees). Part of these results will be presented in ICGT
2014.

In Chapter 3, we study the chordality (longest induced cycle) of graphs and introduce
the notion of good tree decomposition (where each bag must satisfy some particular struc-
ture). Precisely, we study the Cops and Robber games in graphs with no long induced
cycles. Our main result is the design of a polynomial-time algorithm that either returns an
induced cycle of length at least k+1 of a graph G or compute a k-good tree decomposition
of G. These results have been published in ICALP 2012 and Algorithmica.

In the second part of the thesis, we focus on routing problems. In Chapter 4, we design
a compact routing scheme that achieves good performance in the class of graphs admitting
k-good tree decompositions.

In Chapter 5, we consider the prize collecting Steiner tree problem (a generalization of
the Steiner-tree problem with weighted nodes and edges). We design two risk models of the
problem when the weights are given as intervals. In these models, we design polynomial-
time algorithms for graphs with small treewidth. These results have been published in
AAIM 2010 and the journal Acta Mathematicae Applicatae Sinica.

Finally, in Chapter 6, we consider the gathering problem in grids and in presence of in-
terferences. We design approximation algorithms (up to small additive constants depending
on the interferences) for solving this problem. This work is in revision for TCS.

Keywords: Tree Decomposition, Compact Routing Scheme, Prize Collecting Steiner
Tree, Gathering.



Décomposition Arborescente et Problème de Routage

Résumé :
Une décomposition arborescente d’un graphe est une manière de le représenter sous

forme d’un arbre (dont les sommets sont appelés ’sac’), en préservant des propriétés de
connexité. Les décompositions arborescentes ont été beaucoup étudiées pour leurs applica-
tions algorithmiques qui utilisent, en particulier, la programmation dynamique. Dans cette
thèse, nous étudions les décompositions arborescentes qui satisfont certaines contraintes
supplémentaires et nous proposons des algorithmes pour les calculer dans certaines classes
de graphes. Finalement, nous résolvons des problèmes liés au routage en utilisant ces dé-
compositions ainsi que des propriétés structurelles des graphes. Cette thèse est divisée en
deux parties.

Dans la première partie, nous étudions les décompositions arborescentes satisfaisant
des propriétés spécifiques. Dans le Chapitre 2, nous étudions les décompositions de taille
minimum, c’est-à-dire avec un nombre minimum de sacs. Etant donné une entier k≥ 4 fixé,
nous prouvons que le problème de calculer une décomposition arborescente de largeur au
plus k et de taille minimum est NP-complet dans les graphes de largeur arborescente au
plus 4. Nous décrivons ensuite des algorithmes qui calculent des décompositions de taille
minimum dans certaines classes de graphes de largeur arborescente au plus 3 (en particulier
dans les arbres). Ces résultats ont été présentés au workshop international ICGT 2014.

Dans le Chapitre 3, nous étudions la cordalité (plus long cycle induit) des graphes et
nous introduisons la notion de k-good décomposition arborescente (où chaque sac doit ad-
mettre une structure particulière). Nous étudions tout d’abord les jeux de Gendarmes et
Voleur dans les graphes sans long cycle induit. Notre résultat principal est un algorithme
polynomial qui, étant donné un graphe G, soit trouve un cycle induit de longueur au moins
k+1, ou calcule une k-good décomposition de G. Ces résultats ont été publiés à la con-
férence internationale ICALP’12 et dans la revue internationale Algorithmica.

Dans la seconde partie de la thèse, nous nous concentrons sur des problèmes de routage.
Dans le Chapitre 4, nous concevons un algorithme de routage compact qui a de très bonnes
performances dans les graphes qui admettent une k-good décomposition.

Dans le Chapitre 5, nous considérons le problème du "Price Collecting Steiner Tree".
Nous proposons 2 modèles de risque pour ce problème (lorsque les poids des sommets
et coûts des arêtes sont donnés sous forme d’intervalles). Pour ces deux modèles, nous
proposons des algorithmes polynomiaux qui résolvent ces problèmes dans les graphes de
petite largeur arborescente. Ces résultats ont été publiés dans AAIM 2010 et dans la revue
Acta Mathematicae Applicatae Sinica.

Finalement, dans le Chapitre 6, nous considérons le problème de collecte d’information
dans les réseaux en grille et en présence d’interférences. Nous proposons des algorithmes
d’approximation (à une petite constante additive près) pour résoudre ce problème. Ce
travail est en révision pour la revue internationale TCS.
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CHAPTER 1

Introduction

How do people keep up to date with the happenings around the world? How do people
keep in touch with friends all over the world? How do people find the information they
need... Most people will answer by the Internet. It goes without saying that Internet is very
important in our life.

One of the main roles of the Internet, also all kinds of communication network, e.g.
transportation network, social network, is to transmit information. Then a fundamental
task is to route the information between any pairs of its clients, which can be computers,
stations or people, that is to find paths in the network.

How to route the information efficiently, i.e., to find a desired path from the origin to the
destination quickly? Everyone knows how to go home after work everyday, because they
know the way from home to work. But imagine that someone is going to visit a new city.
Without a GPS or a map in their hand, they will spend a long time to find their way. We see
that the map, which shows the topology of the network (city), is important to do efficient
routing. It is not so difficult to get a map of a city, because we can record all the buildings
and all the roads in the map. However, what about getting a map of the Internet network,
Facebook, Twitter, etc.? So far, there are more than 65,000 Autonomous Systems (AS) in
the Internet [fIDAC]. Furthermore, according to [Cis14], over half a billion (526 million)
mobile devices and connections were added and global mobile data traffic grew by 81% in
2013. There were nearly 22 million wearable devices1 in 2013 generating 1.7 petabytes
of monthly traffic. The telecommunication networks are not only becoming larger and
larger but also more and more dynamic. All this brings difficulties in getting a map, i.e. in
knowing the global topology of the network. It is almost impossible to get it because the
Internet is changing all the time with many new devices connecting to the Internet and at
the same time many devices disconnecting from the Internet.

How does the Internet route nowadays? Routing in the Internet is mainly guided by
Border Gateway Protocol (BGP). Simply speaking, in BGP, every router stores a path to
any other router in the Internet. Since the Internet is changing all the time, the paths stored
in each router is also changing accordingly. Moreover, every router needs a big memory
to store the paths since there are huge numbers of routers in the Internet. Because of the
growth of the Internet, BGP may not work any more in the future. It is important to improve
BGP and also explore new protocols for routing in the Internet.

1The so called wearable devices are devices that can be worn on a person, which have the capability to
connect and communicate to the network either directly through embedded cellular connectivity or through
another device (primarily a smartphone) using Wi-Fi, Bluetooth or another technology, such as smart watches,
smart glasses, health and fitness trackers, health monitors, wearable scanners, navigation devices, smart cloth-
ing, and so forth [Cis14].
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A lot of research is dedicated to implement experiments to measure some properties of
large-scale networks, e.g. the Internet network. There are already many well known struc-
tural properties of the large-scale networks, such as logarithmic diameter (the diameter of
the network is much smaller than the number of clients), power-law degree distribution
(there are few clients connected with many other clients) and high clustering coefficient
(two clients connected with another one common client has big probability to be con-
nected) [BA99, AJB99, SFFF03, FFF99]. Traditionally, a network can be modeled by a
graph with the vertex set of all the clients and the edge set of possible connections between
two clients. Using some graph libraries or network simulators, e.g. Grph, DRMsim, NS
simulator, researchers and engineers are able to generate graph models satisfying some
of the above structural properties of the large-scale networks. Moreover, many efficient
routing algorithms are designed for these graph models [KFY04, CSTW12]. There is big
probability that these algorithms work also well in the real life large-scale networks, be-
cause these graph models satisfy the same properties. So it is interesting to design efficient
algorithms for graph models of large-scale networks. To design efficient algorithms for any
graph, it is helpful to take advantage of some particular structural properties of the graph.
The main motivation of my thesis is to explore the structural properties of graphs, which
may be used for algorithmic purposes.

One of the simplest classes of (undirected) graphs is the class of trees, connected
acyclic graphs. Many difficult (NP-complete) problems become easy (polynomially solv-
able) in the class of trees, see e.g. [DN66, CGH75]. It is conceivable that many prob-
lems should be also easy in a class of graphs ’close’ to trees. But how to define that a
graph is ’close’ to a tree? This question leads to the main topic of my PhD thesis, tree
decomposition, which is a way to study tree-likeness of a graph. Roughly speaking, a tree-
decomposition of a graph maps each vertex of the graph to a subtree of the decomposition
tree in a way that the subtrees assigned to the adjacent vertices intersect [RS86b, Bod98].
Such decompositions play an important role in design of efficient algorithms. Let us see
some definitions before presenting its algorithmic applications.

Definitions and Notations

In this section, we give some basic definitions used in this thesis. All the definitions in this
section can be found in [BM08].

For any two sets A and B, if any element in B in contained in A, we say that B is a
subset of A, denoted as B ⊆ A; if B ⊆ A and B 6= A then we say B is a proper subset of A,
denoted as B ⊂ A. Let G = (V,E) be any undirected simple graph. For any two adjacent
vertices u,v ∈ V , we denote the edge as uv. Any graph G′ = (V ′,E ′) with V ′ ⊆ V and
E ′ ⊆ {uv ∈ E : u,v ∈V ′} is a subgraph of G; moreover G′ is an induced subgraph of G, or
subgraph induced by V ′, denoted as G[V ′], if E ′= {uv∈E : u,v∈V ′}. For a set M⊆V ∪E,
we denote by G\M the subgraph (V \M,(E \M)\{uv : u ∈M or v ∈M}) of G. For any
subgraph H of G, denoted as H ⊆G, we use V (H) and E(H) to denote the vertex and edge
set of H, respectively. A graph is connected if there is a path between any two vertices in
it. A graph is disconnected if it is not connected. A connected component of a graph G is



3

a maximal connected subgraph of G.
A graph is complete if any of its two vertices are adjacent. We denote by Kn a complete

n-vertex-graph. Given a graph G, a subgraph K of G is a clique if K is complete. A graph
G = (V,E) is bipartite if there exist two disjoint subsets A,B ⊆ V such that V = A∪B
and each edge in E is incident to a vertex in A and the other one in B; moreover G is a
complete bipartite graph if each vertex in A and each vertex in B are adjacent. We denote
the complete bipartite graph G by K|A|,|B|. A graph is planar if it can be embedded in the
plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their
endpoints. In other words, it can be drawn in such a way that no edges cross each other.
Such a drawing is called a planar embedding of the graph. A planar graph is outerplanar
if it has a planar embedding such that all its vertices belong to the unbounded face.

Given a graph G = (V,E), the distance between two vertices u,v∈V in G is the length,
i.e., the number of edges, of a shortest path between them in G. For any vertex v ∈ V , the
open neighborhood of v is defined as NG(v) = {u : uv ∈ E}; the closed neighborhood of
v is defined as NG[v] = NG(v)∪{v}. When the graph is clear from the context, without
confusion we use N(v) or N[v] simply. The degree of a vertex v in G is |NG(v)|. We denote
by ∆ the maximum degree over all vertices in G. A subset D⊆V (G) is a dominating set of
the graph G if any vertex not in D is adjacent to some vertices in D.

Tree Decomposition

Definition 1. Given a graph G = (V,E), a tree decomposition (T,X) of G consists of a tree
T and a family X= {Xt : t ∈V (T )} of subsets of V , called bags, such that:

• ∪t∈V (T )Xt =V ;

• for any edge e = uv ∈ E, there exists a node t ∈V (T ) such that the bag Xt contains
both u and v;

• for any vertex v ∈V , the nodes in {t ∈V (T ) : v ∈ Xt} induces a subtree of T .

The width of (T,X) is maxt∈V (T ) |Xt |− 1, i.e. the maximum size of a bag minus one.
The treewidth2 of G, denote by tw(G), is the minimum width among all the tree decom-
positions of G [RS86b]. For each bag Xt , the diameter of Xt , denoted by diam(Xt), is
the maximum distance in G between any two vertices in Xt . The length of (T,X) is
maxt∈V (T ) diam(Xt), i.e. the maximum diameter of all bags in X. The treelength of G,
denote by tl(G), is the minimum length among all the tree decompositions of G [DG07].

Moreover, (T,X) is a path decomposition of G if T is a path. The pathwidth of G,
denote by pw(G), is the minimum width among all the path decompositions of G [RS83].

Given a tree decomposition (T,X= {Xt : t ∈V}) of G, without confusion, we identify
the bag Xt ∈ X and the node t ∈V (T ).

It is well-known that forests, union of disjoint trees, are exactly the class of graphs of
treewidth at most 1.

2Note that, while the term treewidth has been defined by Robertson and Seymour in their work on Graph
Minors, similar notions already appeared in previous work, e.g., [Ros74].
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Tree decomposition has been first introduced by Robertson and Seymour in the Graph
Minor theory [RS86b]. Let us give some basic definitions about graph minor.

Given an edge uv ∈ E(G), the edge contraction of uv in G, is to identify vertices u
and v in G and removing all loops and duplicate edges. The obtained graph is denoted
by G/{uv}. A graph H is a contraction of a graph G if H can be obtained by a sequence
of edge contractions from G. Particularly, we say that G is also a contraction of G. A
minor of a graph G is a contraction of a subgraph of G. (Note that G is also a subgraph
of G.) Given an n-vertex-graph G, for every fixed graph H there exists an O(n3) algorithm
testing whether H is a minor of G, where the big O notation hides a constant that depends
superexponentially on |V (H)|; while, if G is given with a tree decomposition of bounded
treewidth, then it can be tested in linear (but exponential in |V (H)|) time whether H is a
minor of G [RS95]. Kawarabayashi et. al improved their time complexity to O(n2) (for
general graph G) in [iKKR12].

The famous Wagner’s theorem says that a graph is planar if and only if it does not
contain K5 and K3,3 as a minor. It is well-known that a graph is outerplanar if and only if
it does not contain K4 and K2,3 as a minor. A graph is a partial 2-tree if it has treewidth at
most 2. Wald and Colbourn proved that:

Theorem 1. [WC83] A graph is a partial 2-tree if and only if it does not contain K4 as a
minor.

In Fig. 1.1, we see the clear hierarchy of the classes of forest, outerplanar graphs, partial
2-trees and planar graphs.

A class of graphs C is minor-closed if any minor of any graph in C is also a member of
C. Given a minor-closed class of graphs C, denote its complementary as C̄, i.e. the set of
graphs not in C. A graph F ∈ C̄ is a forbidden minor of C if F is minimal in C̄, i.e. no other
graphs in C̄ is a minor of F , equivalently any minor of F is in C. So Theorem 1 says K4

is the only forbidden minor of the class of partial 2-trees. Robertson and Seymour proved
that:

Theorem 2. [Graph Minor Theorem] Every minor-closed class of graphs has finite num-
ber of forbidden minors [RS04].

Planar graphs

Partial 2-trees
Outerplanar graphs

Forests

Figure 1.1: The hierarchy of the classes of forest, outerplanar graphs, partial 2-trees and
planar graphs.

Tree decompositions are also used in parameterized complexity theory. A parameter
is a function mapping graphs to nonnegative integers, e.g. chordality, treewidth. A pa-
rameterized problem, taking as parameter a fixed nonnegative integer k and as input an
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instance I, is Fixed Parameter Tractable (FPT) if there is an algorithm that solves it in time
f (k)nO(1)

I , where nI is the size of the instance and f is a function depending only on k. We
are going to see later that many parameterized problems are FPT, which takes as input a
graph G and as parameter the treewidth of G.

Plenty of work is devoted to compute the treewidth of a given graph. One of the well-
known exact algorithms for treewidth computation is given by Fomin et al. [FKTV08],
which is base on minimal triangulation of a graph. We present the related definitions in the
following.

A graph G is k-chordal for an integer k if there is no induced cycle, cycle without
chords, longer than k. The chordality of a graph G is the minimum k such that G is k-
chordal. In particular, a 3-chordal graph G is also called chordal graph. Given a graph
G = (V,E), a graph G+ = (V,E∪F) is a triangulation of G if G+ is chordal; moreover G+

is a minimal triangulation of G if for any proper subset F ′ ⊂ F , the graph H = (V,E ∪F ′)
is not chordal. That is to say that a minimal triangulation of G is obtained by adding a
minimal set of edges to G to make it chordal. There is a n2.376 time algorithm for finding a
minimal triangulation of an n-graph in [Mez11].

Chordal graphs have many different characterizations, see e.g. a survey [Heg06]. A
clique tree of a graph G is a tree decomposition of G such that the vertices in each bag of
the tree decomposition induces a clique in G. A graph G is chordal if and only if it has a
clique tree [Gav74, Bun74].

Given a graph G and a tree decomposition (T,X) of width tw(G), construct a graph
G+ by adding an edge uv in G if there exists a bag in (T,X) containing both u and v. Then
(T,X) is a clique tree of G+. So G+ is a chordal graph. This gives hints to the following
well known fact: G has treewidth at most k if and only if G has a minimal triangulation
with maximum clique of size at most k+1.

So the treewidth of a graph is closely related to the cliques in its minimal triangulations.
Given a graph G= (V,E), a potential maximal clique is a set of vertices in G which induces
a maximal clique in some minimal triangulation of G.

Given a graph G = (V,E), two vertices u,v ∈ V in a same connected component of G
and a subset S ⊆ V \ {u,v}, we say that S separates u and v, if u and v are in different
connected component of the subgraph G \ S; S is a separator of G if there exist u,v ∈ V
such that S separates u and v. Moreover S⊂V is a minimal separator if there exist u,v ∈V
such that S separates u and v but none of its proper subset S′ ⊂ S separates u and v. In
general, for any three subsets U,W,S ⊆ V , we say that S separates U and W if each path
between any vertex u ∈ U and any vertex w ∈W contains a vertex in S. Bouchitté and
Todinca proved that treewidth can be computed in polynomial time in the class of graphs,
which have polynomial number of minimal separators [BT02].

Treewidth Computations

In this section, we present some previous work focusing on the treewidth computation.
Many NP-hard problems in general graphs have been shown to be polynomially sol-

vable in the class of graphs with bounded treewidth. Particularly, the famous Courcelle’s
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theorem states that all problems expressible in monadic second order logic3 can be solved
in linear time in the class of graphs with bounded treewidth [Cou90]. It means that the
algorithm is linear time in the size of a given graph but maybe exponential in its treewidth.
Due to the important role of treewidth, the problem ’Given an n-vertex-graph G = (V,E)
and an integer k, is the treewidth of G at most k?’ received much attention.

This problem has been proved to be NP-complete by Arnborg et al. in [ACP87]. Ad-
ditionally, they showed that the problem is solvable in O(nk+2) time for a fixed k. Later,
Robertson and Seymour proved that there exists an O(33kn2) time algorithm for this prob-
lem [RS95]. Their algorithm consists of two steps: first, apply an O(33kn2) algorithm that
either decides that the treewidth of G is bigger than k, or computes a tree decomposition of
G with width at most 4k+3; if the first step outputs a tree decomposition of G with width
at most 4k+ 3, then implement the second step: Since the class of graphs with treewidth
at most k is minor-closed (see the reason in the subsection Graph Minor), it has a finite
number of forbidden minors. Given G with a tree decomposition of width at most 4k+3,
they check in linear time whether G has treewidth at most k by testing whether G has
some of those forbidden minors as minors. Note that the second step is non-constructive
because the forbidden minors are known to be finite but not listed. The time complexity
is dominated by the first step. (Actually, the results in [RS95] are presented in terms of
branchwidth, which is equivalent to treewidth up to a constant factor [RS91]. So this is an
unimportant technical difference.)

Plenty of work is devoted to improve the time complexity of the two steps in this algo-
rithm. Based on the notion of ’balanced separators’, Lagergren [Lag96] and Reed [Ree92]
can implement the first step in kO(k)n log2 n and kO(k)n logn time respectively. Bodlaender
made it be linear time and the total time complexity was kO(k3)n, by reducing the problem
for G in linear time to a problem on a smaller graph, which is a minor of G [Bod96]. On
the other hand, the second step can be improved without using graph minors; and there
exist linear time (single exponential in k) constructive algorithms for deciding whether
G has treewidth at most k if G is given with a tree decomposition of width O(k)(see
e.g. [BK91, LA91]).

Note that given a graph G of treewidth k, the first step of the algorithm outputs a tree de-
composition of G with width at most 4k+3. Then it is a 4-approximation for the treewidth.
All the algorithms above have time complexities either not linear in n or not single expo-
nential in k. Recently, Bodlaender et al. has given the first algorithm of time complexity
linear in n and single-exponential in k [BDD+13]. More precisely, given a graph G and an
integer k, their algorithm, in time 2O(k)n, either outputs that the treewidth of G is bigger

3Monadic second-order formulas in the language of graphs are built up from:

• atomic formulas E(x,y), x = y and X(x) (for set variable X and individual variables x,y) by using the
usual Boolean connectives ¬ (negation), ∧ (conjunction), ∨ (disjunction), → (implication), and ↔
(equivalence) and

• existential quantification ∃x, ∃X and universal quantification ∀x, ∀X over individual variables and set
variables.

Individual variables range over vertices of a graph and set variables are interpreted by sets of vertices. The
atomic formula E(x,y) expresses adjacency, the formula x = y expresses quality and X(x) means that the vertex
x is contained in the set X .
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that k, or constructs a tree decomposition of G of width at most 5k+4. So for a graph with
treewidth at most k, there is a 5-approximation algorithm for finding its treewidth in time
2O(k)n. Polynomial time approximation (but not constant ratio) algorithms for treewidth
can be found in [Ami10, FHL08].

In [BB05, BK07, BK10, BK11], several heuristic algorithms are presented for comput-
ing lower or upper bounds of the treewidth of a given graph.

There are also exact (exponential) algorithms for finding the treewidth of a given graph.
In [BT01], Bouchitté and Todinca gave an algorithm for computing the treewidth of a
given graph in polynomial time in the number of potential maximal cliques. In [BT02],
they listed all potential maximal cliques of a graph in polynomial time in the number of
minimal separators of the graph. So if we list all the minimal separators or all the potential
maximal cliques of a given graph, then the treewidth can be computed. Based on this idea,
Fomin et al. gave an O(1.8899n) time algorithm to find the treewidth of an n-vertex-graph
in [FKTV08]. Fomin and Villanger presented an O(1.7549n) time algorithm in [FV12].

Algorithmic Applications of Tree Decompositions

Tree decompositions have been used in many areas (see a survey e.g. [Bod93]). We present
in this section some of their algorithmic applications in graph problems.

Graph Minors

In this subsection, we briefly introduce the role of tree decomposition in proving the Graph
Minor Theorem [RS86b].

First let us show that the class of graphs with bounded treewidth are minor-closed.
Given a graph G = (V,E), let (T,X) be a tree decomposition of width k of G. Then (T,X)
is also a tree decomposition of any subgraph obtained by deleting any edges of G; for any
vertex v∈V , deleting v in all bags of (T,X), (T,X) becomes a tree decomposition of width
at most k of the subgraph G\{v} of G; for any edge uv ∈ E, identifying u and v in all bags
of (T,X), (T,X) becomes a tree decomposition of width at most k of the contraction graph
G/{uv} of G. So the treewidth of a minor of the graph G is at most the treewidth of G.

The Graph Minor Theorem, see in Theorem 2, is proved by Robertson and Seymour
in a series of twenty papers spanning over 500 pages from 1983 to 2004. In particular,
they proved that the set of graphs with bounded treewidth has a finite set of forbidden
minors [RS90]; and that the class of graphs having a fixed planar graph as a forbidden
minor has bounded treewidth [RS84, RS86a]. These two facts play an important role in
the proof of the Graph Minor theorem. Particularly, the grid minor theorem is involved in
the proofs, which says that any graph either has bounded treewidth or has a large grid as
minor [RST94]. More precisely, we display the related results on grid minor theorem in
the following.

Theorem 3. [grid minor theorem] Let G be a graph with treewidth at least k, then G
contains r× r-grid as a minor, where r ≥ f (k) for some function f :

• f (k) = Ω(
√

logk/ log logk) [iKK12];
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• f (k) = Ω(kδ ) for a fixed constant δ > 0 [CC13];

• if G is H-minor free, then f (k) = Ω(k) [DH08b, iKK12].

There exists graph with treewidth at least k but no O(
√

k/ logk)×O(
√

k/ logk) grid as a
minor [RST94].

We are going to see later that the grid minor theorem is one of the bases of the bidi-
mensionality theory.

Dynamic programming

In this subsection, we present dynamic programming, the main technique for efficiently
solving problems in bounded treewidth graphs.

As mentioned before, many NP-hard problems in general graphs are polynomially sol-
vable in the class of graphs with bounded treewidth, e.g. maximum independent set prob-
lem, minimum dominating set problem, coloring problem, etc. Given an n-vertex-graph G
these problems can be solved in ctw(G)nO(1) time for a constant c, see e.g. [AP89, TaP97].
Such algorithms generally proceed by dynamic programming.

Given an n-vertex-graph G and a tree decomposition (T,X) of width tw(G), let bag
Xr be the root of T . Consider e.g. the maximum independent set problem, in which it is
required to find a maximum set of vertices in G that are pairwise non-adjacent. Each leaf
bag X f induces a subgraph of G with at most tw(G) + 1 vertices. Let Xp be the parent
bag of X f in T . Consider the intersection set S = X f ∩Xp. The set S separates X f \ S and
V (G) \X f . For each independent set I ⊆ S in the induced subgraph G[X f ], find a ’partial
optimal solution’ MI , which is a maximum independent set in G[X f ] and satisfies MI∩S= I.
This can be done in O(2tw(G)) time because |X f | ≤ tw(G)+1. For each non-leaf-bag Xi in
(T,X), let Gi be the subgraph of G induced by vertices in Xi and its descendants in T . For
all children X js of Xi in T , we combine the ’partial optimal solutions’ of the subgraphs G js
to get ’partial optimal solutions’ for the subgraph Gi, until we get an optimal solution for
the graph Gr = G. More precisely, consider each independent set Y ⊆ Xi in the subgraph
Gi. Let X j be a child of Xi in T . Denote Si j = Xi∩X j. Then a maximum independent set MY

in Gi s.t. MY ∩Xi = Y can be obtained by the union of Y and the ’partial optimal solution’
containing Si j ∩Y for each child X j of Xi in the subgarph G j. Let Sp be the intersection of
Xi and its parent bag. Among all MY with the same Y ∩Sp, record one MY with maximum
size. This can be done in O(2tw(G)n) because there are at most 2tw(G) independent sets in
Xi and Xi has at most n−1 children. So it takes O(2tw(G)n2) time totally.

The key point of the above dynamic programming algorithm is that the intersection
of two adjacent bags in the tree decomposition is a separator of the graph. Moreover, for
the locally checkable problem, e.g. maximum independent set problem, it is sufficient to
record an optimal partial solution respective to each subset of this intersection. On the other
hand, the problems involving global constraints, e.g. the connectivity problem, may require
to record an optimal partial solution respective to each ordered subset of this intersection.
Generally it leads to running time tw(G)tw(G)nO(1).
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It was a long-standing challenge to find algorithms for the ’global constraints’ prob-
lem with time complexity single exponential on the treewidth. Fortunately, combin-
ing the dynamic programming with other techniques, such as sphere cut decomposition,
Catalan number, matrix rank and determinants, the connectivity problem can also be
solved in time single exponential in the treewidth, i.e. 2O(tw(G))nO(1). Please see details
in [DPBF10, ST10, DFT12, BCKN13].

From the time complexity of the above algorithms (2O(tw(G))nO(1) or tw(G)tw(G)nO(1)),
we get that all the problems above are FPT with parameter treewidth of a graph. We are
going to see in the next subsection that some parameterized problems with a parameter k
are FPT sub-exponential (i.e. 2o(k)nO(1)) solvable by using bidimensionality theory.

Bidimensionality Theory

In this subsection, we present some previous work on bidimensionality theory, which com-
bines the grid minor theorem and dynamic programming technique in the previous subsec-
tions.

The Bidimensionality theory has been introduced and developed in a series of papers,
see in a survey [DH08a] and references in it. A parameter P is (minor) bidimensional if

(i) there exists a function g such that the parameter P is at least g(r) in an r× r-grid
Gr×r; and

(ii) it does not increase when taking minors, i.e. for any graph G and its minor H,
P(H)≤ P(G).

Consider a decision problem associated with a parameter P, for a given graph G and a
nonnegative integer p, asking whether P(G)≤ p. Let P be a (g(r)-) bidimensional param-
eter. Let f be the same function as in Theorem 3, if the treewidth of G is Ω( f−1g−1(p)),
then G has a grid Gg−1(p)×g−1(p) as a minor. So P(G) ≥ P(Gg−1(p)×g−1(p)) > p; otherwise,
the treewidth of G is bounded by a function of p. If we can find a tree decomposition of
bounded width of G, then the problem can be solved by using dynamic programming pre-
sented in Section 1. So to solve this problem it is sufficient to answer : given a graph G and
an integer k > 0 (Ω( f−1g−1(p))), is the treewidth of G at most k? And if yes, find a tree de-
composition of width O(k) of G. We have seen that this can be done in time (2O(k)n) in the
previous section [BDD+13]. So when f−1g−1(p) = o(p), we get an FPT sub-exponential
time algorithm.

Moreover, this technique has been extended for parameters with less constrained prop-
erties, called contraction-bidimensionality [DFHT05, DH08a]. The main differences are
that contraction-bidimensionality parameter does not increasing when taking contraction
instead of minor, and it is ’large’ (i.e. at least g(r)) in a ’grid like’ graph instead of grid.
But the grid like graphs are only defined for the classes of planar graphs, bounded genus
graphs and apex-minor-free graphs. For instance, a planar grid like graph is an r× r grid
partially triangulated by additional edges that preserve planarity. For more details please
see in [DFHT05, DH08a].

In particular, the parameter chordality of a graph is contraction-bidimensional. The
decision problem associated with the chordality, for a given graph G and a nonnegative
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integer p, asks whether the chordality of G is at most p. We are going to show that this
problem is FPT (and subexponential on the parameter chordality) in the class of planar
graphs in Chapter 3.

Other parameters related with tree decompositions

In this section, we present some limitations of the application of tree decompositions of
bounded width. Then we introduce some other parameters related to tree decompositions,
which are used for efficiently solving some graph problems.

We have seen that tree decompositions of bounded width are the corner-stone for solv-
ing efficiently many graph problems. However, the algorithms presented above for com-
puting a tree decomposition of bounded width of a given graph are mainly of theoretical
importance due to the hidden huge constants or multiple-exponential functions of the pa-
rameters. Only for the class of graphs of treewidth at most 4, there are practical linear
algorithms for finding an optimal tree decomposition by a finite set of reduction rules,
which reduces a graph to an empty graph if and only if the graph has treewidth at most
4 [AP86, MT91, San96]. Indeed, for any nonnegative integer k, there is a finite set of reduc-
tion rules for the class of graphs of treewidth at most k [ACPS93, BF96]. But for k > 4, the
algorithms based on reduction rules may require big (exponential on k) memories [Bod07].
The lack of practical algorithm for treewidth computation is still a bottleneck of its appli-
cations in practice. Moreover, unless P = NP there is no polynomial time algorithm that
given a graph G computes a tree decomposition of width within an additive constant of
tw(G) [BGHK91]. Assuming the Small Set Expansion Conjecture4, the treewidth, also the
pathwidth, are NP-hard to approximate within a constant factor [APW12]. In addition, the
complexity of the computing the treewidth of planar graphs is still a longstanding open
problem.

On the other hand, there also exist problems, which remain hard for the class of graphs
with constant bounded treewidth, but become polynomially solvable on some class of
graphs with unbounded treewidth. For instance, the bandwidth problem5 is NP-complete
even for trees [GGJK78, Mon86]. But this problem is polynomially solvable in the class
of interval graphs [KV90]. A graph is an interval graph if every vertex in the graph can be
associated with an interval in the real line so that two vertices are adjacent in the graph if
and only if the two corresponding intervals intersect.

4Let G = (V,E) be an undirected d-regular graph, i.e. every vertex has degree d in G. For a set S ⊆ V of
vertices, the normalized edge expansion of S is ΦG(S) ≡ |E(S,V\S)|d|S| , where E(S,V \ S) = {uv ∈ E : u ∈ S,v ∈
V \ S}. The Small Set Expansion Problem with parameter η and δ , denoted by SSE(η ,δ ), distinguish two
cases:

Yes there exists an S⊆V with |S|= δ |V | and ΦG(S)≤ η ;

No For any subset S⊆V with |S|= δ |V | it holds that ΦG(S)≥ 1− eta.

The Small Set Expansion Conjecture says that For any η > 0, there is a δ > 0 such that SSE(η ,δ ) is NP-hard.
5Given an n-vertex graph, a linear arrangement is a numbering of the vertices from 1 to n (which can be

viewed as a layout of the graph vertices on a line) and its bandwidth is the maximum difference in numbers
given to the endpoints of an edge (the maximum stretch of an edge on the line). The (minimum) bandwidth
problem asks for a linear arrangement of minimum bandwidth.
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A clique path of a graph G is a path decomposition of G such that each of its bag
induces a clique in G. A graph G is interval if and only if it has a clique path. So the
class of interval graphs has unbounded treewidth. The algorithm in [KV90] for solving
the bandwidth problem in interval graphs used the clique paths of interval graphs, which
is actually a special path decomposition, and also a tree decomposition satisfying some
structure properties. The complexity of computing the pathwidth is NP-complete even in
the class of chordal graphs [Gus93]. We do not know any good approximation algorithms
for computing pathwidth in chordal graphs. It is an on-going work not included in this
thesis.

In [DG07] Dourisboure and Gavoille introduce the treelength of a graph, which studies
the structures inside each bag of the tree decomposition, the maximum diameter of each
bag. Note that chordal graphs are exactly graphs of treelength 1. It is NP-complete to
decide wether a given graph has treelength at most any fixed k ≥ 2 [Lok10], but it has an
easy linear time 3-approximation algorithm [DG07]. The bounded treelength graphs are
proved to admit compact routing schemes [Dou05] and sparse additive spanners [DG04].
Recently, Dragan and Köhler introduced in [DK11] another parameter related with tree-
length, named treebreadth, which is the minimum of the maximum radius6 of all the bags
among all the tree decompositions. Treebreadth is proved to be useful for tree spanner
problem [DK11, DAA13].

Motivated by application in parallel and dynamic graph algorithm, Bodlaender and
Hagerup investigated the tradeoff between the width and the diameter of tree decompo-
sitions [BH98]. Note that here the diameter is not the diameter of the bags in the tree
decompositions, but the diameter of the tree.

We are going to study the tradeoff between the width and the size (number of bags) of
tree decompositions in Chapter 2. Continuing the idea of exploiting the structural proper-
ties of the tree decompositions, we are going to study the dominating set of each bag of the
tree decompositions in Chapter 3. In the rest of the chapter, we describe the contributions
and organization of the thesis.

Contributions and Organization of the Thesis

This thesis studies mainly two topics: tree decompositions, such as minimum size tree
decompositions, k-good tree decompositions; and their applications to some routing prob-
lems, such as the compact routing schemes, prize collecting Steiner trees and gathering
problems. In the remainder of this section, we summarize the main contributions and orga-
nizations of the thesis.

Part I Tree Decomposition. In this part, we study two new parameters concerning tree
decompositions. It consists of two chapters:

6Given a graph G and a tree decomposition (T,X) of G, the radius of a bag X is the minimum of the
maximum distance in G from a vertex in the bag X to all other vertices in X .
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Chapter 2: Minimum Size Tree Decomposition. This chapter is dedicated to study the
minimum size tree decomposition (MSTD) problem, in which the size of a tree decomposi-
tion is the number of its bags. Given a graph G and an integer k ≥ 1, the objective of the
problem is to find a tree decomposition of G of width at most k with minimum size among
all its tree decompositions. For a given graph G and a nonnegative integer s, we prove that
it is NP-complete to decide whether there is a tree decomposition of G of size at most s and
width at most k, for any fixed integer k ≥ 4. Moreover, it is also NP-complete when k ≥ 5
and G is connected. Given a fixed integer k > 0 and a graph G = (V,E) of width at most k,
a general approach is proposed for computing a minimum size tree decomposition of width
at most k. A k-potential-leaf of G is a set S ⊆V such that there is a minimum size tree de-
composition (T,X) of G satisfying that S∈X is a leaf bag in T . We show that if we can find
an algorithm for computing a k-potential-leaf in the class of graphs C in time g(|V (G)|),
then we can construct a minimum tree decomposition in time O(g(|V (G)|) · |V (G)|) in the
class of graphs C. For k = 2, we present a linear (O(n+m)) time algorithm to find a 2-
potential-leaf of the class of partial 2-trees with n vertices and m edges. For k = 3, we give
linear (number of vertices) time algorithm for computing 3-potential-leaf only for the class
of trees and 2-connected outer planar graphs. So we can construct a minimum size tree
decomposition of width at most 2 or 3 in the corresponding classes of graphs. This result
has been presented in the conference ICGT 2014 [c-LMN14].

Chapter 3: k-Good Tree Decomposition. This chapter focuses on a new structural de-
composition, called k-good tree decomposition. A graph is called k-super-caterpillar for
k≥ 2 if it has a dominating path, i.e., a dominating set of size at most k−1 inducing a path
in it. A k-good tree decomposition of a graph is a tree decomposition such that each of its
bags X induces a k-super-caterpillar in the graph. The main result is inspired by the study
of Cops and Rober games in k-chordal graphs. In this game, a player starts by placing
c≥ 1 cops on some vertices of a graph, then a visible robber is placed on one vertex of the
graph. Alternately, the cop-player may move each cop along one edge, and then the robber
can move to an adjacent vertex. The robber is captured if, at some step, a cop occupies the
same vertex. The cop-number of a graph is the minimum number of cops such that there
exists a strategy for the cop-player that assures to capture the robber whatever he does. We
show that the cop-number of any k-chordal graph is at most k− 1. Particularly, we prove
that 2 cops are sufficient to catch a robber in any 4-chordal graph. The proofs of these facts
lead us to the main result of this chapter, the k-good tree decompositions.

We prove that there is a polynomial time algorithm, which given a graph G and an
integer k ≥ 3, either returns an induced cycle of length at least k + 1 in G or computes
a k-good tree decomposition of G. For graphs admitting such a decomposition, we give
upper bounds for its treewidth (≤ (k− 1)(∆− 1)+ 2), treelength (≤ k), hyperbolicity (≤
b3

2 kc). Particularly, any k-chordal graph admits a k-good tree decomposition and then it
has treewidth at most O(k∆) improving the exponential bound of [BT97]. This implies
that our tree decomposition may be used efficiently for solving problems using dynamic
programming in graphs of small chordality and small maximum degree. This result has
appeared in the proceedings of the conference ICALP 2012 [c-KLNS12] and in the journal
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Algorithmica [j-KLNS14].
It is well-known that it is NP-hard to compute the chordality in planar graphs. Based

on above result, given a graph G and an integer k ≥ 3, to decide whether the chordality of
G is at least k, it is sufficient to find an algorithm for computing the chordality of any graph
admitting a k-good tree decomposition for some integer k ≥ 3. We start from computing
the chordality of the k-super-caterpillar, the subgraph induced by each bag of a k-good tree
decomposition. In a small class of graphs, which are planar and k-super-caterpillars, we
conjecture that it is NP-complete to compute its chordality when k is part of the input. We
only present a dynamic programming algorithm for computing the chordality in a special
subclass of planar k-super-caterpillar, where the vertices except the dominating path induce
a cycle in the graph. Moreover, we also show that it is NP-complete to decide whether a
given planar graph is a k-super-caterpillar when k is part of the input.

Part II Routing Problems. In this part, we study some routing problems. Some of them
are solved by using tree decompositions. It consists of three chapters:

Chapter 4: Compact Routing Scheme for k-Good Tree Decomposable Graphs. In
this chapter, we present a compact rouging scheme for graphs admitting a k-good tree de-
composition. The objective of compact routing problem is to provide an algorithm for
finding a path from a sender vertex to a known destination. Compact routing scheme takes
routing decisions for a packet at every step using only very limited information stored at
each vertex. In our routing model, each vertex is assigned a name, which distinguishes
the vertex from others; also, each vertex has a routing table which stores the information
for routing. Every message has a header, which contains its destinations and some infor-
mations may be modified during the transmission. Our scheme has routing tables, names
and headers of O(k log∆+ logn) bit. When k is small it improves the previous ones with
routing tables O(log2 n) [Dou05] and O(∆ logn) [NRS12]. Roughly, the scheme consists
of two steps: first following the paths in a BFS-tree of the graph according to the scheme
in [FG01]; and secondly using one bag of the tree-decomposition as a short-cut between
two branches of the BFS-tree. Finally, we prove that our scheme has additive stretch at most
O(k log∆). That is to say that the maximum difference of the length of the path found by
our scheme between any two vertices and their distance in the graph is at most O(k log∆).
This result has appeared in the proceedings of the conference ICALP 2012 [c-KLNS12]
and in the journal Algorithmica [j-KLNS14].

Chapter 5: Prize Collecting Steiner Tree Problem on Serial Parallel Graphs. In this
chapter, we study the prize collecting Steiner tree problem (PCST). In this problem, given
a graph G = (V,E) and a target set V ′ ⊆ V , each edge has a nonnegative cost and each
vertex has a nonnegative prize. The objective is to find a tree T in G containing all the
target vertices in V ′ such that the cost of T (the sum of costs of all edges in T ) minus
the prize of T (the sum of the prizes of all vertices in T ) is minimum. PCST problem is
a kind of routing problem in the sense that it finds paths connecting all the target vertices.
It is a generalization of the classical Steiner tree problem, in which each vertex has prize
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0. The Steiner tree is NP-complete in general graphs [Kar72], so is the PCST problem.
In [WC83], there is a linear time algorithm for Steiner tree problem in the class of graphs
of treewidth at most 2. Generalizing their algorithm, we give a linear-time algorithm for the
PCST problem in the class of graphs of treewidth at most 2 using dynamic programming.

In real life, there is always some uncertainty, e.g., in the costs of some connections
and the prizes from some clients, but generally we can estimate its range, an interval from
a lower bound to an upper bound. So we consider the PCST problem, in which costs
and prizes are not only one number but belong to given intervals. Extending the two risk
models in [CHH09, Hu10] for this problem, we establish the min-max risk model and
min-sum risk model for the PCST problem with interval data, and propose two polynomial-
time algorithms for this problem in the class of graphs of treewidth at most 2 under these
two models. Finally, we describe an example in which the optimal values of these two
risk models are very different. This result has appeared in the proceedings of the con-
ference AAIM 2010 [c-AMCC+10] and in the journal Acta Mathematicae Applicatae
Sinica [j-AMCC+14].

Chapter 6: Data Gathering and Personalized Broadcasting in Radio Grids. This
chapter focuses on a type of routing problem, in which all messages has the same destina-
tion, the so called data gathering problem or simply gathering problem. In the gathering
problem, a particular vertex in a graph, the base station (BS), aims at receiving messages
from some vertices in the graph. At each step, a vertex can send one message to one of
its neighbor (such an action is called a call). However, a vertex cannot send and receive
a message during the same step. Moreover, the communication is subject to interference
constraints. More precisely, two calls interfere in a step, if one sender is at distance at most
dI ≥ 0 from the other caller. Given a graph with a base station and a set of vertices having
some messages, the goal of the gathering problem is to compute a schedule of calls for the
base station to receive all messages as fast as possible, i.e., minimizing the number of steps
(called makespan). The gathering problem is equivalent to the personalized broadcasting
problem where the base station has to send messages to some vertices in the graph, with
same transmission constraints. We focus on the personalized broadcasting problem (and
so the equivalent gathering problem) in grid networks, which model well many real life
networks [KLNP09]. We presented linear (in the number of messages) time algorithms
that compute schedules for the problem with dI ∈ {0,1,2}.

We first study the basic instance consisting of an open grid where no messages have
destination on an axis, with BS in the corner of the grid and with dI = 0. We give a simple
lower bound LB. Then we design for this basic instance a linear time algorithm with a
makespan at most LB+ 2 steps, so obtaining a +2-approximation algorithm for the open
grid, which improves the multiplicative 1.5 approximation algorithm of [RS07]. Moreover,
we refine this algorithm to obtain for the basic instance a +1-approximation algorithm.
Then we prove that the +2-approximation algorithm works also for a general grid where
messages can have destinations on the axis again with BS in the corner and dI = 0. For
the cases dI = 1 and 2, we give lower bounds LBc(1) (when BS is in the corner) and LB(2)
and use the +1-approximation algorithm to design algorithms with a makespan at most



15

LBc(1) + 3 when dI = 1 and BS is in the corner , and at most LB(2) + 4 when dI = 2.
Finally, we extend our results to the case where BS is in a general position in the grid. This
work is submitted to the journal Theoretical Computer Science [s-BLN+13].

Conclusion and Perspective. Finally, we conclude the thesis and give some perspectives
in the last chapter.
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In this chapter, we consider the problem of computing a tree-decomposition of a graph
with width at most k and minimum size, i.e. the number of bags in the tree decomposition.
More precisely, we focus on the following problem: given a fixed k ≥ 1, what is the com-
plexity of computing a tree-decomposition of width at most k with minimum size in the
class of graphs with treewidth at most k? The results of this chapter is a collaboration with
N. Nisse and F. Moataz. They were presented in the conference ICGT 2014 [c-LMN14].

2.1 Introduction

Sanders showed that there are practical algorithms for computing tree-decompositions of
graphs with treewidth at most 4 in [San96]. Based on these tree decompositions of small
widths, many NP-hard problem can be solved efficiently by dynamic programming in
graphs of treewidth at most 4. The time-complexity of the dynamic programming algo-
rithms is linear in the size of the tree-decompositions. Therefore, it is interesting to min-
imize it. Obviously, if the width is not constrained, then the problem is trivial since there
always exists a tree-decomposition of a graph with one bag (the full vertex-set). Hence,
given a graph G and an integer k≥ tw(G), we consider the problem of minimizing the size
of a tree-decomposition of G with width at most k.

Let k be any positive integer and G be any graph. If tw(G) > k, let us set sk(G) = ∞.
Otherwise, let sk(G) denote the minimum size of a tree-decomposition of G with width at
most k. See a simple example in Fig. 2.1. We first prove in Section 2.2 that, for any (fixed)
k≥ 4, the problem of computing sk is NP-hard in the class of graphs with treewidth at most
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k. Moreover, the computation of sk for k ≥ 5 is NP-hard in the class of connected graphs
with treewidth at most k. In Section 2.3, we present a general approach for computing
sk for any k ≥ 1. In the rest of the chapter, we prove that computing s2 can be solved in
polynomial-time. Finally, we prove that s3 can be computed in polynomial time in the class
of trees and 2-connected outerplanar graphs.
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Figure 2.1: Given a tree G with five vertices, for any k ≥ 1, a minimum size tree de-
composition of width at most k is shown. So we see that s1(G) = 4, s2(G) = s3(G) = 2,
sk>3(G) = 1.

Related Work. In [DKZ13], Dereniowski et al. consider the problem of size-constrained
path-decompositions. Given any positive integer k and any graph G with pathwidth at most
k. Let lk(G) denote the smallest size of a path-decomposition of G with width at most k.
For any fixed k ≥ 4, computing lk is NP-complete in the class of general graphs and it is
NP-complete, for any fixed k ≥ 5, in the class of connected graphs [DKZ13]. Moreover,
computing lk can be solved in polynomial-time in the class of graphs with pathwidth at
most k for any k≤ 3. Finally, the “dual" problem is also hard: for any fixed s≥ 2, it is NP-
complete in general graphs to compute the minimum width of a tree-decomposition with
size at most s. Note that this result was proved in [DKZ13] in terms of path-decomposition
but it is straightforward to extend it to tree-decomposition.

2.2 NP-hardness in the class of bounded treewidth graphs

In this section, we prove that:

Theorem 4. For any fixed integer k ≥ 4 (resp., k ≥ 5), the problem of computing sk is
NP-complete in the class of graphs (resp., of connected graphs) with treewidth at most k.

Note that the corresponding decision problem is clearly in NP. Hence, we only need to
prove it is NP-hard.

Our proof mainly follows the one of [DKZ13] for size-constrained path-
decompositions. Hence, we recall here the two steps of the proof in [DKZ13]. First, it
is proved that, if computing lk is NP-hard for any k ≥ 1 in general graphs, then the com-
putation of lk+1 is NP-hard in the class of connected graphs. Second, it is shown that
computing l4 is NP-hard in general graphs with pathwidth 4. In particular, it implies that
computing l5 is NP-hard in the class of connected graphs with pathwidth 5. The second
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step consists of a reduction from the 3-PARTITION problem [GJ79] to the one of comput-
ing l4. Precisely, for any instance I of 3-PARTITION, a graph GI is built such that I is a
YES instance if and only if l4(GI) equals some defined value `I.

Our contribution consists first in showing that the first step of [DKZ13] directly extends
to the case of tree-decompositions. That is, it directly implies that, if computing sk is NP-
hard for some k ≥ 4 in general graphs, then so is the computation of sk+1 in the class of
connected graphs. Our main contribution of this section is to show that, for the graphs GI

built in the reduction proposed in [DKZ13], any tree-decomposition of GI with width at
most 4 and minimum size is a path decomposition. Hence, in this class of graphs, l4 = s4

and, for any instance I of 3-PARTITION, I is a YES instance if and only if s4(GI) equals
some defined value `I. We describe the details as follows.

Lemma 1. If the problem of computing sk for an integer k ≥ 1 is NP-complete in general
graphs, then the computation of sk+1 is NP-complete in the class of connected graphs.

Proof. Let G be any graph. We construct an auxiliary connected graph G′ from G by adding
a vertex a adjacent to all vertices in V (G). Given two integers k,s≥ 1, in the following, we
prove that there is a tree decomposition of G with width at most k and size at most s if and
only if there is a tree decomposition of G′ with width at most k+1 and size at most s.

First, assume that (T,X) is a tree decomposition of G with width at most k and size at
most s. Add a in each bag of X. Then we get a tree decomposition of G′ with width at most
k+1 and size at most s.

Now let (T ′,X′) be a tree decomposition of G′ with width at most k+1 and size at most
s. We are going to find a tree decomposition of G with width at most k and size at most s.

Let Xa be the set of all bags in X′ containing a. Let Ta be the subtree of T ′ induced by
the bags in Xa. Every vertex v ∈V (G) is contained in a bag in Xa because va ∈ E(G′). For
any edge uv ∈ E(G), there is a bag X ⊇ {a,u,v} in X′ since {a,u,v} induces a clique in
G′. So X ∈ Xa. Delete a in each bag of Xa and denote X− as the obtained set of bags. So
(Ta,X

−) is a tree decomposition of G with width at most k and size at most s.

Before doing the reduction from the 3-PARTITION problem to the problem of comput-
ing s4, let us first recall its definition.

Definition 2. [3-PARTITION]
Instance: A multiset S of 3m positive integers S = (w1, . . . ,w3m) and an integer b.
Question: Is there a partition of the set {1, . . . ,3m} into m sets S1, . . . ,Sm such that
∑i∈S j wi = b for each j = 1, . . . ,m?

This problem is NP-complete even if |S j|= 3 for all j = 1, . . . ,m [GJ79].
Given an instance of 3-PARTITION, in the following, we construct a disconnected graph

G(S,b) as in [DKZ13].
First, for each i ∈ {1, . . . ,3m}, we construct a connected graph Hi as follows. Take wi

copies of K3, denoted by Ki,q
3 , q = 1, . . . ,wi, and wi− 1 copies of K4, denoted by Ki,q

4 ,
q = 1, . . . ,wi− 1 (the copies are mutually disjoint). Then for each q = 1, . . . ,wi− 1, we
identify two different vertices of Ki,q

4 with a vertex of Ki,q
3 and with a vertex of Ki,q+1

3 ,
respectively. This is done in such a way that each vertex of each Ki,q

3 is identified with
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Figure 2.2: Examples of gadgets in graph G(S,b).

at most one vertex from other cliques. Informally the cliques form a ’chain’ in which the
cliques of size 3 and 4 alternate. See Figure 2.2(a) for an example of Hi where wi = 3.

Second, we construct a graph Hm,b as follows. Take m+ 1 copies of K5, denoted by
K1

5 , . . . ,K
m+1
5 , and m copies of the path graph Pb of length b (Pb has b edges and b+ 1

vertices), denoted by P1
b , . . . ,P

m
b . (Again, the copies are taken to be mutually disjoint.)

Now, for each j = 1, . . . ,m, identify one of the endpoints of P j
b with a vertex of K j

5 , and
identify the other endpoint with a vertex of K j+1

5 . Moreover, do this in a way that ensures
that, for each j, no vertex of K j

5 is identified with the endpoints of two different paths. See
Figure 2.2(b) for an example of H2,4. This implies that the computation of s4 is NP-hard.

Let G(S,b) be the graph obtained by taking the disjoint union of the graphs H1, . . . ,H3m

and the graph Hm,b. In the following, we prove that there is a tree decomposition of G(S,b)
of width 4 and size at most s = 1−2m+2∑

3m
i=1 wi if and only if there is a partition of the

set {1, . . . ,3m} into m sets S1, . . . ,Sm such that ∑i∈S j wi = b for each j = 1, . . . ,m in the
instance of 3-PARTITION.

In Lemma 2.2 of [DKZ13], they constructed a path decomposition of G(S,b) of width
4 and length 1− 2m+ 2∑

3m
i=1 wi if there is a partition of the set {1, . . . ,3m} into m sets

S1, . . . ,Sm such that ∑i∈S j wi = b for each j = 1, . . . ,m in the instance of 3-PARTITION.
Obviously, this path decomposition is also a tree decomposition of G(S,b) of width 4 and
size s. So we have the following lemma.

Lemma 2. Given a multiset S of 3m positive integers S = (w1, . . . ,w3m) and an integer b,
if there is a partition of the set {1, . . . ,3m} into m sets S1, . . . ,Sm such that ∑i∈S j wi = b for
each j = 1, . . . ,m, then G(S,b) has a tree decomposition of width at most 4 and size at most
s = 1−2m+2∑

3m
i=1 wi.

Now we prove the other direction.

Lemma 3. If G(S,b) has a tree decomposition (T,X) of width at most 4 and size at most
s = 1−2m+2∑

3m
i=1 wi, then there is a partition of the set {1, . . . ,3m} into m sets S1, . . . ,Sm

such that ∑i∈S j wi = b for each j = 1, . . . ,m.

Proof. Lemma 2.6 in [DKZ13] proved that if G(S,b) has a path decomposition (T,X) of
width at most 4 and length at most 1− 2m+ 2∑

3m
i=1 wi, then there is a partition of the set

{1, . . . ,3m} into m sets S1, . . . ,Sm such that ∑i∈S j wi = b for each j = 1, . . . ,m. So it is
enough to prove that any tree decomposition (T,X) of G(S,b) of width at most 4 and size
at most s = 1−2m+2∑

3m
i=1 wi is a path decomposition of G(S,b).

As proved in Lemma 2.3 of [DKZ13], each bag in (T,X) contains exactly one of the
cliques Ki,q

3 ,Ki,q
4 ,K j

5 . Indeed, each of these cliques has size at least 3. Moreover, any two
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of them share at most one vertex, and no two cliques of size 3 (Ki,q
3 ) share a vertex. So each

bag of (T,X) contains at most one of the cliques Ki,q
3 ,Ki,q

4 ,K j
5 . However, for any clique,

there is a bag in (T,X) containing its vertices. Since s equals the number of the cliques
Ki,q

3 ,Ki,q
4 ,K j

5 , each bag of (T,X) contains exactly one of them.
Moreover let us prove that any edge in Ki,q

4 ,K j
5 ,P

j
b (i.e. both the two endpoints of the

edge) are contained in exactly one bag. Since each bag in (T,X) contains exactly one of the
cliques Ki,q

3 ,Ki,q
4 ,K j

5 , the two endpoints of any edge in the paths P1
b , . . . ,P

m
b are contained in

a bag containing some Ki,q
3 . (The bags containing a Ki,q

4 (resp. K j
5) cannot add another two

vertices (one vertex) since (T,X) is a tree decomposition of width at most 4.) Every bag
containing some Ki,q

3 contains at most one edge in the paths P1
b , . . . ,P

m
b , because the bag can

add at most another two vertices and any Ki,q
3 and P j

b are disjoint. There are mb edges in
the paths P1

b , . . . ,P
m
b and there are mb bags containing some Ki,q

3 , so every bag containing a
Ki,q

3 contains exactly one edge in the paths P1
b , . . . ,P

m
b . So any edge in the paths P1

b , . . . ,P
m
b

is contained in exactly one bag. Also each bag containing some Ki,q
3 contains 5 vertices,

so it does not contains any edge (i.e. both its two endpoints) in Ki,q
4 or K j

5 . Therefore, any
edge on Ki,q

4 ,K j
5 are contained in exactly one bag.

Now we prove that there are only two leaves in T and so T is a path. If a bag con-
taining some Ki,q

3 and an edge uv on some path P j
b is a leaf bag in T , then its neighbor

bag also contains u,v because both u and v are incident to other edges in G(S,b). This is
a contradiction with any edge (its two endpoints) on P j

b are contained only in one bag. So
any bag containing some Ki,q

3 is not a leaf bag in T . Similarly, we can prove that any bag
containing any Ki,q

4 or K j
5 for 1 < j < m+1 is not a leaf bag in T . Thus there are only two

bags containing K1
5 and Km+1

5 are leaves in T .

Then we get the following corollary.

Corollary 1. It is NP-complete to compute s4 in the class of graphs of treewidth at most 4.

Theorem 4 follows from Lemma 1 and Corollary 1.

2.3 Notations and preliminaries

In this section, we present the definitions and notations used throughout the chapter and
some well known facts about tree-decompositions.

2.3.1 Notations

Given a graph G = (V,E), for any S ⊆ V , For an integer c ≥ 0, a graph G = (V,E) is c-
connected if |V |> c and no subset V ′ ⊆V with |V ′|< c is a separator in G. A 2-connected
component of G is a maximal 2-connected subgraph.

Let (T,X) be any tree-decomposition of G. Abusing the notations, we will identify a
node t ∈ V (T ) and its corresponding bag Xt ∈ X. This means that, e.g., instead of saying
t ∈V (T ) is adjacent to t ′ ∈V (T ) in T , we can also say that Xt ∈X is adjacent to Xt ′ ∈X in T .
A bag B ∈ X is called a leaf-bag if B has degree one in T . Let k ≥ 1 and G be a graph with
tw(G)≤ k. A subset B⊆V (G) is a k-potential-leaf if there is a tree-decomposition (T,X)
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with width at most k and size sk(G) such that B is a leaf bag of (T,X). A subgraph H ⊆V
is a k-potential-leaf of G if V (H) is a k-potential-leaf of G. Note that a k-potential-leaf has
size at most k+1.

A tree-decomposition is reduced if no bag is contained in another one. It is straight-
forward that, in any leaf-bag B of reduced tree-decomposition, there is v ∈ V such that v
appears only in B and so N[v]⊆ B. Note that it implies that any reduced tree-decomposition
has at most n−1 bags.

In the following we define two transformation rules, that takes a tree-decomposition
(T,X) of a graph G, and computes another one without increasing the width nor the size.

Leaf. Let X ∈ X and NT (X) = {X1, · · · ,Xd}. Assume that, for any 1 < i≤ d, Xi∩X ⊆ X1.
Let (T ∗,X∗) = Lea f (X ,X1,(T,X)) denote the tree-decomposition of G obtained by
replacing each edge XiX ∈ E(T ) by an edge XiX1 for any 1 < i ≤ d. Note that X
becomes a leaf-bag after the operation. See in Fig. 2.3.

Reduce. Let XX ′ ∈ E(T ) with X ⊆ X ′. Let (T ∗,X∗) = Reduce(X ,X ′,(T,X)) denote the
tree-decomposition of G obtained by deleting the bag X from the tree-decomposition
Lea f (X ,X ′,(T,X)). Note that the size of the tree decomposition is decreased by one
after the operation.

From any tree-decomposition of G with width k and size s, it is easy to obtain a reduced
tree-decomposition of G with width at most k and size at most s−1 by applying the Reduce
operation while it is possible (i.e., while a bag is contained in another one). In particular,
any minimum size tree decomposition is reduced.

1
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X

X

1T

2T

dT

1
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2
X

d
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1T
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➡( T, X ) ( T*, X*) 

Figure 2.3: In a tree decomposition (T,X), NT (X) = {X1, · · · ,Xd} and for any 1 < i ≤ d,
Xi∩X ⊆ X1. For 1≤ i≤ d, Ti∪Xi induces the subtree containing Xi in T \{XXi}. Replace
each edge XiX ∈ E(T ) by an edge XiX1 for any 1 < i≤ d. This gives a tree decomposition
(T ∗,X∗) = Lea f (X ,X1,(T,X)). X is a leaf-bag in (T ∗,X∗).

We conclude this section by a general lemma on tree-decompositions. This lemma is
known as folklore, we recall it for completness.
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Lemma 4. Let (T,X) be a tree decomposition of a graph G. Let X ∈ X and v,w ∈ X. If
there exists a connected component in G\X containing a neighbor of v and a neighbor of
w, then there is a neighbor bag of X in (T,X) containing v and w.

Proof. First, let us note that, for any connected subgraph H of G, the set of bags of T that
contain a vertex of H induces a subtree of T (the proof is easy by induction on |V (H)|).

Let C be a connected component in G\X containing a neighbor of v and a neighbor of
w. By above remark, let T ′C be the subtree of T induced by the bags that contain some vertex
of C. Moreover, because no vertices of C are contained in the bag X , then T ′C is a subtree
of T \X . Let TC be the connected component of T \X that contains T ′C. Let Y ∈V (TC) be
the bag of TC which is a neighbor of X in T . Let x ∈ N(v)∩C be a neighbor of v in C. Then
there exists a bag Z ∈ X in TC containing both x and v. So both X and Z contain vertex v.
Then the bag Y , which is on the path between X and Z in T , also contains v. Similarly, we
can prove that w ∈ Y .

Corollary 2. Let (T,X) be a tree decomposition of a 2-connected graph G. Let X ∈X and
|X | ≤ 2. Then there is a neighbor bag Y of X in (T,X) such that X ⊆ Y .

Proof. Since G is 2-connected, |V (G)| ≥ 3. So there exist at least another bag except X in
X.

If |X | = 1, let X = {v}. Then there is a neighbor bag Y of X containing v, since G is
2-connected and v is adjacent to some vertices in G. So X ⊆ Y .

Otherwise X = 2 and let X = {v,w}. Let G1 be any connected component in G\X . If v
is not adjacent to any vertex in G1, then {w} separates V (G1) from {v}. It contradicts with
the assumption that G is 2-connected. So any connected component in G \X containing
a neighbor of v and a neighbor of w. From Lemma 4, there is a neighbor bag Y of X
containing v,w, i.e. X ⊆ Y .

2.3.2 General approach

In what follows, we propose polynomial-time algorithms to compute minimum-size tree-
decompositions of graphs with small treewidth. Our algorithms mainly use the notion of
potential leaf.

Let k≥ 1 and G = (V,E) be a graph with tw(G)≤ k. The key idea of our algorithms is
to identify a finite number of subgraphs that may be potential-leaves (abusing the notations,
we will identify a subgraph and its vertex-set). Then, given a graph G and a k-potential-
leaf H, we will be able to compute a minimum-size tree-decomposition of G by adding H
to a minimum-size tree-decomposition of a smaller graph. So, our algorithms proceed by
induction on the number of nodes.

The next lemmas formalize the above paragraph. Given a graph G = (V,E) and a set
S⊆V , let GS = G∪{uv : u,v ∈ S}.

Lemma 5. Let k ≥ 1 and G = (V,E) be a graph with tw(G) ≤ k. Let B ⊆ V be a k-
potential-leaf of G. Let S⊂ B be the set of vertices of B that have a neighbor in V \B. Then
sk(G) = sk(GS \ (B\S))+1.
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Proof. Let us first prove sk(G)≤ sk(GS \ (B\S))+1. Suppose that (TS,XS) is a minimum
size tree decomposition of width at most k of the graph GS \ (B \ S). Then there exists a
bag X ∈ XS containing S because S induces a clique in the graph GS \ (B \ S). So add the
bag B and make it adjacent to X in the tree decomposition (TS,XS). Then we obtain a tree
decomposition of width at most k for graph G of size sk(GS \ (B\S))+1.

Now we prove that sk(G) ≥ sk(GS \ (B \ S))+ 1. Let (T,X) be a minimum size tree
decomposition of G of width at most k such that B is a leaf bag in it. Note that, if B = V
then GS \ (B\S) is the empty graph. Let us assume that B ⊂ V . Then (T,X) is also a tree
decomposition of GS. Let B be adjacent to the bag Y in (T,X). Then S ⊂ Y since each
vertex in S is contained in another bag in (T,X). Let (T ′,X′) be the tree decomposition
obtained by deleting the vertices in B \ S in all the bags of (T,X). Then B is changed
to B′ = S ∈ X′ and let Y be changed to Y ′ ∈ X′. So B′ ⊆ Y ′. Then the tree decomposition
Reduce(B′,Y ′,(T ′,X′)) is a tree decomposition of GS \(B\S) of size sk(G)−1. So sk(G)−
1≥ sk(GS \ (B\S)).

This lemma implies the following corollary:

Corollary 3. Let k ∈ N∗ and C be the class of graphs with treewidth at most k. If there is
a g(n)-time algorithm Ak that, for any n-vertex-graph G ∈ C, computes a k-potential leaf
of G. Then sk can be computed in O(g(n) · n) time in the class of n-vertex graphs in C.
Moreover, a minimum size tree decomposition of width at most k can be constructed in the
same time.

Proof. Let G ∈ C be a n-vertex-graph. Let us apply Algorithm Ak to find a subgraph H of
G in g(n) time, which is a k-potential-leaf of G. Let S⊂V (H) be the set of vertices having
a neighbor in G \H and G′ = GS \ (V (H) \ S). Then, by Lemma 5, sk(G) = sk(G′)+ 1.
Finally, |V (G′)| ≤ n− 1 and G′ has treewidth at most k. We then proceed recursively. So
the total time complexity is O(g(n) · n). Moreover, for any minimum size (sk(G′)) tree
decomposition (T ′,X′) of G′ of width k, there is a bag X containing S since S induces
a clique in G′. Add a new bag N = V (H) adjacent to X in (T ′,X′). The obtained tree
decomposition is a minimum size (sk(G) = sk(G′)+ 1) tree decomposition of G of width
at most k.

2.4 Graphs with treewidth at most 2

In this section, we describe algorithm A2 computes a 2-potential leaf of a given graph. In
particular, all graphs considered in this section have treewidth at most 2, i.e. partial 2-trees.
Please see all the 2-potential leaf of graphs of treewidth at most 2 in Fig. 2.4.

Lemma 6. Let G be a graph with treewidth at most 2 and p∈V (G) such that N(p)= { f ,q}
and f has degree one (see in Fig. 2.4(a)). Then { f , p,q} is a 2-potential-leaf of G.

Proof. Let (T,X) be any tree-decomposition of G with width at most 2 and size at most
s≥ 1. We show how to modify it to obtain a tree-decomposition with width at most 2 and
size at most s and in which { f , p,q} is a leaf bag.
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Figure 2.4: All the 2-potential leaves of graphs of treewidth at most 2.

Since f p ∈ E(G), there is a bag B in (T,X) containing both f and p. We may assume
that B is the single bag containing f (otherwise, delete f from any other bag). Similarly,
since pq ∈ E(G), let X be a bag in (T,X) containing both p and q.

First, let us assume that X = B = { f , p,q}. In that case, we may assume that X is
the single bag containing p (otherwise, delete p from any other bag). If X is a leaf bag,
then the lemma is proved. Otherwise, let X1, · · · ,Xd be the neighbors of X in T . Since f
and p appear only in X , then X ∩Xi ⊆ {q} for any 1 ≤ i ≤ d. If there is 1 ≤ i ≤ d such
that q ∈ Xi, let us assume w.l.o.g., that q ∈ X1. By definition of the operation Lea f , the
tree-decomposition Lea f (X ,X1,(T,X)) has width at most 2, same size as (T,X), and X is
a leaf.

Second, consider the case when X 6= B. There are two cases to be considered. Either
B = { f , p} or B = { f , p,x} with x 6= q. In the latter case, note that there is another bag B′,
neighbor of B, that contains x unless x is an isolated vertex of G. In the former case or if x
appears only in B (in which case, x is an isolated vertex), let B′ be any neighbor of B. Let
(T ′,X′) be obtained by deleting f , p in all bags of (T,X). Then, contract the edge BB′ in
T ′, i.e., remove B and make any neighbor of B adjacent to B′. Note that, in the resulting
tree-decomposition of G\{ f , p}, there is a bag X ′ containing q and with |X ′| ≤ 2 (the bag
that results from X). Finally, add a bag { f , p,q} adjacent to X ′ and, if node x was only in
B, then add x to X ′. The result is the desired tree-decomposition.

Lemma 7. Let G be a graph with treewidth at most 2 and q∈V (G) such that q has at least
two one-degree neighbors f and p (see in Fig. 2.4(b)). Then { f , p,q} is a 2-potential-leaf
of G.

Proof. Let (T,X) be any tree-decomposition of G with width at most 2 and size at most
s≥ 1. We show how to modify it to obtain a tree-decomposition with width at most 2 and
size at most s and in which { f , p,q} is a leaf bag.

Since f q ∈ E(G), there is a bag B in (T,X) containing both f and q. We may assume
that B is the single bag containing f (otherwise, delete f from any other bag). Similarly,
since pq ∈ E(G), let X be a bag in (T,X) containing both p and q. Again, we may assume
that X is the single bag containing p (otherwise, delete p from any other bag).

First, let us assume that X = B = { f , p,q}. If X is a leaf bag, then the lemma is
proved. Otherwise, let X1, · · · ,Xd be the neighbors of X in T . Since f and p appear only
in X , then X ∩Xi ⊆ {q} for any 1 ≤ i ≤ d. If there is 1 ≤ i ≤ d such that q ∈ Xi, let us
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assume w.l.o.g., that q ∈ X1. By definition of the operation Lea f , the tree-decomposition
Lea f (X ,X1,(T,X)) has width at most 2, same size as (T,X), and X is a leaf.

Second, let us assume that X = { f ,q} or B = {p,q}. In the former case, remove p from
any bag and add p to X . In the latter case, remove f from any bag and add f to B. In both
cases, we get a bag { f , p,q} as in the first case.

Otherwise, let B = { f ,q,x}, x 6= p, and X = {p,q,y}, y 6= f .

• If B and X are adjacent in T , then add a new bag N = {q,x,y}; remove B and X and
make each of their neighbors adjacent to the new bag N and, finally, add a leaf-bag
{ f , p,q} adjacent to N. See in Fig. 2.5(a). The obtained tree-decomposition has the
desired properties.

• Otherwise, if there is a neighbor B′ of B with q,x ∈ B′, then remove B, make all
neighbors of B adjacent to B′ and finally add a leaf-bag { f , p,q} adjacent to X . The
obtained tree-decomposition has the desired properties.

• Otherwise, let B′ be the neighbor of B on the path between B and X . In this case,
q ∈ B′ and x /∈ B′. Moreover, q does not belong to any neighbor of B that contains
x and the other way around: x does not belong to any neighbor of B that contains q.
For any neighbor Y of B with q ∈ Y (and hence x /∈ Y ), replace the edge Y B ∈ E(T )
with the edge Y B′. Finally, replace the edge BB′ ∈ E(T ) by the edge BX . See in
Fig. 2.5(b). In the resulting tree-decomposition of G, B and X are adjacent and we
are back to the first item.

B X

1T 2T

➡

q,p,yf,q,x

f,p,q

N

1T 2Tq,x,y

(a) In the tree decomposition (T,X), let
T1 ∪ B (resp. T1 ∪ B) induce the subtree
containing B (resp. X) in T \{BX}. Delete
B and X and make each of their neighbors
adjacent to the new bag N = {q,x,y}; and
add a leaf-bag { f , p,q} adjacent to N.

B X

➡

q,p,yf,q,x

Y

q,...
q,...

B'

B X

q,p,yf,q,x

Y

q,...
q,...

B'

x,...
Z

x,...
Z

(b) To be simple and clear, we show only
the induced path from B to X in T and two
neighbors Y,Z 6= B′ of B. Y contains q and
Z contains x. Then we just change Y to be
adjacent to B′ instead of B and change B to
be adjacent to X instead of B′.

Figure 2.5: Explanation of proof of Lemma 7.

Lemma 8. Let G be a graph with treewidth at most 2 and q ∈ V (G) such that q has
one neighbor f with degree 1 and for any vertex w ∈ N(q) \ { f}, {w,q} belongs to a 2-
connected component of G.
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If G has an isolated vertex α , then {q, f ,α} is a 2-potential-leaf; otherwise {q, f} is a
2-potential-leaf (see in Fig. 2.4(c)).

Proof. Let (T,X) be any tree-decomposition of G with width at most 2 and size at most
s ≥ 1. We show how to modify it to obtain a tree-decomposition with width at most 2
and size at most s and in which { f ,q,α} is a leaf bag if G has an isolated vertex α; and
otherwise { f ,q} is a leaf bag.

Since f q ∈ E(G), there is a bag B in (T,X) containing both f and q. We may assume
that B is the single bag containing f (otherwise, delete f from any other bag).

1. If B = { f ,q}, then the intersection of B and any of its neighbor in T is empty or {q}.
If there is a neighbor of B containing q, then let X be such a neighbor; otherwise let
X be any neighbor of B. By definition of the operation Lea f , the tree-decomposition
Lea f (B,X ,(T,X)) has width at most 2, same size as (T,X), and B is a leaf. If there
are no isolated vertices, we are done. Otherwise, if there is an isolated vertex α in
G, then delete α in all bags of the tree-decomposition Lea f (B,X ,(T,X)) and add α

to bag B, i.e. make B = { f , p,α}. The result is the desired tree decomposition.

2. Otherwise let B = { f ,q,x}.

(a) If x is a neighbor of q, then x and q are in a 2-connected component of G.
So there exists a connected component in G \B containing a vertex adjacent
to x and a vertex adjacent to q. From Lemma 4, there is a neighbor X of B
in (T,X) containing both x and q. Then by definition of the operation Lea f ,
the tree-decomposition Lea f (B,X ,(T,X)) has width at most 2, same size as
(T,X), and B is a leaf. Then delete x in B, i.e. B = { f ,q}. Finally, if α is an
isolated vertex of G, remove it to any other bag and add it to B. The result is
the desired tree decomposition.

(b) Otherwise x is not adjacent to q. If there is a neighbor X of B in (T,X) contain-
ing both x and q, then (T,X) is modified as in case 2a. Otherwise, any neighbor
of B in (T,X) contains at most one of q and x.
If there is a neighbor of B in T containing q, then let Y be such a neighbor of
B; otherwise let Y be any neighbor of B. Delete the edges between B and all its
neighbors not containing x except Y in (T,X) and make them adjacent to Y .
If there is no neighbor of B containing x, then x is an isolated vertex and we get
a tree decomposition of the same size and width as (T,X), in which there is a
leaf bag B = { f ,q,x}. It is a required tree decomposition.
Otherwise let Z be a neighbor of B in (T,X) containing x, then delete the edges
between B and all its neighbors containing x except Z in (T,X) and make them
adjacent to Z. Now B has only two neighbors Y and Z and B∩Y ⊆{q}, B∩Z =

{x} and Y ∩Z = /0. Delete the edge between B and Z and make Z adjacent to Y .
Delete x in B, i.e. make B = { f ,q}. See the transformations in Fig. 2.6. Then
we get a tree decomposition of the same size and width as (T,X), in which
B = { f ,q} is a leaf bag. Again, if α is an isolated vertex of G, remove it to any
other bag and add it to B. The result is the desired tree decomposition.
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Figure 2.6: To be simple and clear, we show only the subtree induced by B,Y and another
three neighbors Z,W,U of B. Y contains q; Z,U both contain x and W does not contain x.
First we make the bag not containing x, e.g. W adjacent to Y instead of B; and make the
bag containing x except Z, e.g. U adjacent to Z instead of B. Second, make Z adjacent to
Y instead of B and delete x in B. Then B = { f ,q} is a leaf-bag.

Lemma 9. Let G be a graph of treewidth at most 2. Let b ∈ V (G) with N(b) = {a,c}. If
N(a) = {b,c} (see in Fig. 2.4(d)) or if there is a path, with at least one internal vertex,
between a and c in G\{b} (see in Fig. 2.4(e)), then {a,b,c} is a 2-potential-leaf of G.

Proof. Let G= (V,E) be a graph of treewidth at most 2. Let b∈V with exactly 2 neighbors
a,c ∈ V satisfy the hypotheses of the lemma. If V = {a,b,c}, the result holds trivially, so
let us assume that |V | ≥ 4.

Let (T,X) be a reduced tree decomposition of width at most 2 of G. From (T,X), we
will compute a tree decomposition (T ∗,X∗) of G without increasing the width or the size
and such that {a,b,c} is a leaf-bag of (T ∗,X∗).

Let X be any bag of (T,X) containing {a,b} and Y be any bag containing {b,c}. The
bags X ,Y exist because ab,bc ∈ E. If X = {a,b}, then there exists a connected component
in G\X containing a neighbor of a and a neighbor of b. By Lemma 4, there is a neighbor
of X in (T,X) that contains both a and b, contradicting the fact that (T,X) is reduced. So
|X |= 3 and, similarly, |Y |= 3.

• Let us first assume that X = Y = {a,b,c}. In particular, it is the case when N(a) =
{b,c} since {a,b,c} induces a clique. We may assume that b only belongs to bag X
(otherwise, remove b from any other bag).

If N(a) = {b,c}, then we can also assume that a only belongs to X . Let Z be any
neighbor of B containing c if exists; otherwise let Z be any neighbor of B (Z exists
since |V | ≥ 4). Otherwise, there exists a path P between a and c in G \ {b} with at
least one internal vertex. In this latter case, there exists a connected component in G\
X containing a neighbor of a and a neighbor of c. So by Lemma 4, there is a neighbor
bag Z of X in (T,X) containing both a and c. In both cases, Lea f (X ,Z,(T,X)) is the
desired tree-decomposition.

• Otherwise, X = {a,b,x} and Y = {b,c,y} with x 6= c and y 6= a; and there exists a
path P between a and c in G\{b} with at least one internal vertex. Let Q be the path
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between X and Y in (T,X). We may assume that b only belongs to the bags in Q,
because otherwise b can be removed from any other bag.

– If X is adjacent to Y , then by properties of tree-decomposition, X ∩Y separates
a and c. Since {b} does not separate a and c, X ∩Y = {b,x}, i.e. x = y. In
this case, (T ∗,X∗) is obtained by making X = {a,c,x} and removing Y from
(T,X), then making all neighbors of Y adjacent to X and finally, adding a bag
{a,b,c} adjacent to X .

– Otherwise, let X ′ be the bag in the path Q containing a, which is closest to Y .
Similarly, let Y ′ be the bag in the path Q containing c, which is closest to X .
Finally, let Q′ be the path from X ′ to Y ′ in T and note that b belongs to each bag
in Q′ and a and c do not belong to any internal bag in Q′. Then we may assume
that b only belongs to the bags in Q′, because otherwise b can be removed from
any other bag.
If X ′ and Y ′ are adjacent in T , the proof is similar to the one in previous
item. Otherwise, let Z be the neighbor of X ′ in Q′. By properties of tree-
decompositions, X ′ ∩ Z separates a and c. Since {b} does not separate a
and c, let X ′ ∩Z = {b,x′}. Since Z 6= {b,x′} because (T,X) is reduced, then
Z = {b,x′,z} for some z ∈ V . Replace b with a in all the bags. By doing
this (T,X) is changed to a tree decomposition (T c,Xc) of the graph G/ab ob-
tained by contracting the edge ab in G. In (T c,Xc), the bag X ′ has become
Xc = {a,x′} and Z is changed to be Zc = {a,x′,z}. So Xc can be reduced in
(T c,Xc). Moreover Y is changed to Y c = {a,c,y}. To conclude, let us add the
bag {a,b,c} adjacent to Y c in the tree decomposition Reduce(Xc,Zc,(T c,Xc)).
See in Fig. 2.7. The result is the desired tree-decomposition (T ∗,X∗) of G.
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➡
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Z Y
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Y'

a,c,y'a,x',z

Z Y

a,c,y

X

a,x a,b,c

Figure 2.7: To be simple and clear, we show only the path from X to Y . After the two
transformations, {a,b,c} is a leaf-bag.

Before going further, let us introduce some notations. A bridge in a graph G = (V,E)
is any subgraph induced by two adjacent vertices u and v of G (i.e., uv ∈ E) such that the
number of connected components strictly increases when deleting the edge uv, but not the
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two vertices u,v in G, i.e., G′ = (V,E \{uv}) has strictly more connected components than
G. A vertex v ∈V is a cut vertex if {v} is a separator in G. A maximal connected subgraph
without a cut vertex is called a block. Thus, every block of a graph G = (V,E) is either
a 2-connected component of G or a bridge or an isolated vertex. Conversely, every such
subgraph is a block. Different blocks of G intersect in at most one vertex, which is a cut
vertex of G. Hence, every edge of G lies in a unique block, and G is the union of its blocks.

Let G= (V,E) be a connected graph and let r ∈V . A spanning tree T of G is a BFS-tree
of G if for any v ∈ V (G), the distance from r to v in G is the same as the one in T . Let
B = {C : C is a block of G}. The block graph of G is the graph B(G) whose vertices are
the blocks of G and two block-vertices of B(G) are adjacent if the corresponding blocks
intersect, that is, B(G) = (B,{C1C2 : C1,C2 ∈ B and C1 ∩C2 6= /0}). Note that B(G) is
connected. Finally, a block-tree of G is any BFS-tree F (with any arbitrary root) of B(G).
See an example in Fig. 2.8.
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G B(G)

Figure 2.8: Graph G is connected. For i = 1, . . . ,11, each Ci is a block of G. B(G) is the
block graph of G. The BFS tree of B(G) with bold edges is a block tree of G with root C1.

There is a linear (in the number of edges) algorithm for computing all blocks in a given
graph [HT73]. Also a BFS-tree can be found in linear (in the number of vertices plus the
number of edges) time. So given a graph G = (V,E), we can compute a block tree F of G
in O(|V |+ |E|) time.

Now we are ready to prove next theorem by using the Lemmas 6-9.

Theorem 5. There is an algorithm that, for any n-vertex-m-edge-graph G with treewidth
at most 2, computes 2-potential leaf of G in time O(n+m).

Proof. If n ≤ 3, then V (G) is a 2-potential-leaf of G. Let us assume that n ≥ 4. First, let
us compute the set of isolated vertices in G, which can be done in O(n) time. If G has only
isolated vertices, then any three vertices induce a 2-potential-leaf of G. Otherwise, there is
at least one edge in G.

Let G1 be any connected component of G containing at least one edge. If |V (G1)|= 2,
then from Lemma 9, either G has an isolated vertex α and {α,u,v} is a 2-potential-leaf or
{u,v} is a 2-potential leaf.

Otherwise, |V (G1)| ≥ 3. Compute a block tree F of G1 rooted in an arbitrary block
R. This can be done in time O(n+m). Note that any node in F corresponds to either a
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2-connected component of G or a bridge uv ∈ E(G). Let C be a leaf block in F , which is
furthest from R and |V (C)| is maximum. There are several cases to be considered.
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8C 9C
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G F

Figure 2.9: This graph G is an induced subgraph of the graph in Fig. 2.8. Its block tree F ,
with root C1, has two blocks less than the one in Fig. 2.8 (the blocks C6 and C10). All leaf
blocks, C7,C8,C9,C11, in F contains two vertices of G.

• let us first assume that C is a bridge in G, i.e. C consists of one edge f p ∈ E(G) and
p is a cut vertex. Then f has degree one in G because C is a leaf block in F . Let P
be the parent block of C in F . Then any child block A of P in F consists of one edge
because C has the maximum number of vertices among all the children of P; and A
is a leaf block in F because C is a furthest leaf from the root block R.

If P has another child block except C in F containing the cut vertex p, then this child
block also consists of one edge f ′p ∈ E(G), where f ′ has degree one in G because
this child is also a leaf block in F . (For example, in Fig. 2.9, take C as C8, which
intersects C9 with a cut vertex.) From Lemma 7, { f , p, f ′} is a 2-potential-leaf.

Otherwise P has only one child block C in F containing the cut vertex p. Then any
vertex in NG(p)\{ f} belongs to P. If P is also a bridge in G, i.e., P consists of one
edge pq ∈ E(G), then p has degree 2 in G. (For example, in Fig. 2.9, take C as C11,
whose parent C5 is also a bridge in G.) From Lemma 6, { f , p,q} is a 2-potential-
leaf of G. Otherwise, P is a 2-connected component of G and p ∈ V (G) satisfies
the hypothesis of Lemma 8. (For example, in Fig. 2.9, take C as C7, whose parent
C4 is a 2-connected component of G.) Hence, either G has an isolated vertex α and
{α, f , p} is a 2-potential-leaf or { f , p} is a 2-potential leaf.

• Finally, let us assume that C is a 2-connected component of G. It is known that any
graph with at least two vertices of treewidth k contains at least two vertices of degrees
at most k [BK11]. There is no degree one vertex in C because C is 2-connected. So
there exists two vertices with degree 2 in C. Since C is a leaf in F , there is only
one cut vertex of G in C. So there exists a vertex b in C which has degree two in
G. If |V (C)| ≥ 4, then there exists a path between two neighbors a,c of b in G\{b}
containing at least one internal vertex. (For example, in Fig. 2.8, take C as C10.)
From Lemma 9, {a,b,c} is a 2-potential-leaf. Otherwise C is a triangle {a,b,c}



34 Chapter 2. Minimum Size Tree Decomposition

with at least two vertices with degree 2 in G. Again from Lemma 9, {a,b,c} is a
2-potential-leaf.

So the total time complexity is O(n+m).

Corollary 4. s2 can be computed in polynomial-time in general graphs. Moreover, a min-
imum size tree decomposition can be constructed in polynomial-time in the class of partial
2-trees.

Proof. Let G be any graph. It can be checked in polynomial-time whether tw(G)≤ 2 (e.g.
see [WC83]). If tw(G) > 2, then s2 = ∞. Otherwise tw(G) ≤ 2, then the result follows
from Theorem 5 and Corollary 3.

2.5 Minimum-size tree-decompositions of width at most 3

In this section, we study the computation of s3 in the class of trees and 2-connected outer-
planar graphs.

2.5.1 computation of s3 in trees

In this subsection, given a tree G, we show how to find a 3-potential-leaf in G. Please see
all the 3-potential leaf of trees in Fig. 2.10.
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Figure 2.10: All the 3-potential leaves of trees.

Lemma 10. Let (T,X) be a tree decomposition of a tree G. Let X ∈ X and NT (X) =

{X1, . . . ,Xd} for d ≥ 1. Suppose that for any 1≤ i≤ d, Xi∩X ⊆ {x}. Then there is a tree
decomposition (T ′,X′) of G of the same width and size as (T,X) such that X is a leaf bag.

Proof. If there is a bag Xi for 1 ≤ i ≤ d containing x, then let B be Xi. Otherwise let
B be any neighbor of X . By definition of the operation Lea f , the tree-decomposition
Lea f (X ,B,(T,X)) is a desired tree decomposition.

Lemma 11. Let G be a tree rooted at r ∈ V (G). Let f be a leaf in G. Let p be the parent
of f and let g be the parent of p in G. Let p have degree 2 in G. Let (T,X) be a tree
decomposition of G of width at most 3 and size at most s ≥ 1. If there is no bag in (T,X)
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containing all of f , p,g, then there is a tree decomposition (T ′,X′) of G of width at most 3
and size at most s such that { f , p,g} ∈ X′ is a leaf bag.

Proof. Since f p ∈ E(G), there is a bag B in (T,X) containing both f and p. We may
assume that B is the single bag containing f (otherwise, delete f from any other bag).
Similarly, since pg ∈ E(G), let X be a bag in (T,X) containing both p and g. Let P be the
path in T from B to X . Then p is contained in all bags on P and we may assume that p
is not contained in any other bags (otherwise, delete p from any other bag). Let B′ be the
neighbor of B on P. Then B∩B′ ⊇ {p}. Note that it is possible that B′ = X .

If B = { f , p}, then make all other neighbors of B adjacent to B′ and delete B. Add a
bag { f , p,g} adjacent to X . The result is a desired tree decomposition (T ′,X′).

Otherwise, B contains at least one vertex not in { f , p}. If B∩ B′ = {p}, then {p}
separates g from any vertex in B \ {p}. So B \ {p} = { f}, i.e., B = { f , p}. It contradicts
with the assumption.

So |B∩B′| ≥ 2 and let {p,x}⊆B∩B′. Then create a bag Z = (B\{ f , p})∪(B′\{p,x}).
(Note that x ∈ Z since x ∈ B.) So |Z| ≤ 4. Make Z adjacent to all neighbors of B and all
neighbors of B′; and delete the two bags B and B′; and delete f , p from all bags. Finally
add another new bag N = { f , p,g} adjacent to some bag containing g. The obtained tree
decomposition has width at most 3, same size as (T,X), and a bag N = { f , p,g}.

Lemma 12. Let G be a tree rooted at r ∈V (G) and |V (G)| ≥ 4. Let f be a leaf in G. Let p
be the parent of f and let g be the parent of p in G. Suppose that both p and g have degree
2. Let h be the parent of g (see in Fig. 2.10(a)), then H =G[{ f , p,g,h}] is a 3-potential-leaf
of G.

Proof. Let (T,X) be any reduced tree decomposition of width at most 3 and size at most
s≥ 1 of G. We show how to modify it to obtain a tree-decomposition with width at most 3
and size at most s and in which { f , p,g,h} is a leaf bag.

From Lemma 11, we can assume that there is a bag B in (T,X) containing all f , p,g.
We may assume that B is the single bag containing f , p (otherwise, delete f , p from any
other bag). Since gh ∈ E(G), let Y be a bag in (T,X) containing both h and g.

1. If B = Y = { f , p,g,h}, then the intersection of B and any of its neighbor in T is
contained in {h}. A desired tree decomposition can be obtained from Lemma 10.

2. If B = { f , p,g}, then the intersection of B and any of its neighbors in T is contained
in {g}. From Lemma 10, there is a tree-decomposition (T ′,X′)) of the same width
and size as the ones of (T,X) such that B = { f , p,g} is a leaf. Then delete B in the
tree-decomposition Lea f (B,B′,(T,X)) and add a new bag N = { f , p,g,h} adjacent
to Y . The obtained tree decomposition has the desired properties.

3. Otherwise, B = { f , p,g,x} where x 6= h. Then the intersection of B and any of its
neighbor in T is contained in {g,x}. Let P be the path in T from B to Y . Then
g is contained in all bags on P. Let B′ be the neighbor of B on P. Note that it is
possible that B′ = Y . If B∩B′ = {g}, then {g} separates h from x. So x ∈ { f , p}
i.e. B = { f , p,g}, a contradiction with the assumption. So we have B∩B′ = {g,x}.
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By definition of the operation Lea f , the tree-decomposition Lea f (B,B′,(T,X)) has
width at most 3, same size as (T,X), and B= { f , p,g,x} is a leaf. Then delete B in the
tree-decomposition Lea f (B,B′,(T,X)) and add a new bag N = { f , p,g,h} adjacent
to Y . The obtained tree decomposition has the desired properties since {g,x} ⊆ B′

and {g,h} ⊆ Y .

Lemma 13. Let G be a tree rooted at r ∈ V (G) and |V (G)| ≥ 4. Let f a leaf in G. Let p
be the parent of f and let g be the parent of p in G. If p has degree 2 and g has a child f ′,
which is a leaf in G (see in Fig. 2.10(b)), then H = G[{ f , p,g, f ′}] is a 3-potential-leaf of
G.

Proof. Let (T,X) be any reduced tree decomposition of width at most 3 and size at most
s≥ 1 of G. We show how to modify it to obtain a tree-decomposition with width at most 3
and size at most s and in which { f , p,g, f ′} is a leaf bag.

From Lemma 11, we can assume that there is a bag B in (T,X) containing all f , p,g.
We may assume that B is the single bag containing f , p (otherwise, delete f , p from any
other bag). Since g f ′ ∈ E(G), let Y be a bag in (T,X) containing both f and g. We may
assume that Y is the single bag containing f ′ (otherwise, delete f ′ from any other bag).

• If B = Y = { f , p,g, f ′}, then the intersection of B and any of its neighbor in T is
contained in {g}. A desired tree decomposition can be obtained from Lemma 10.

• If B = { f , p,g}, then delete f ′ in Y and add f ′ in B, then we are in the previous case.

• Otherwise, B = { f , p,g,x} where x 6= f ′. Then the intersection of B and any of its
neighbor in T is contained in {g,x}. Let P be the path in T from B to Y . Then g
is contained in all bags on P. Let B′ be the neighbor of B on P. If B∩B′ = {g,x},
then by definition of the operation Lea f , the tree-decomposition Lea f (B,B′,(T,X))
has width at most 3, same size as (T,X), and B = { f , p,g,x} is a leaf. Then in the
tree-decomposition Lea f (B,B′,(T,X)), delete f ′ in Y and remove x from B and add
f ′ to B, i.e. make B = { f , p,g, f ′}. The obtained tree decomposition has the desired
properties since {g,x} ⊆ B′.

Otherwise B∩B′ = {g}. Delete f ′ from the bag Y and add x in Y ; delete x from B
and add f ′ in B, i.e., make B = { f , p,g, f ′}; finally make all neighbors of B except
B′ adjacent to Y since now {g,x} ⊆ Y . The result is the desired tree decomposition.

Lemma 14. Let G be a tree rooted at r ∈V (G) and |V (G)| ≥ 3. Let f be one of the furthest
leaves from r. Let p be the parent of f and let g be the parent of p in G. If g has degree at
least 3 and any child of g has degree 2 in G (see in Fig. 2.10(c)), then H = G[{ f , p,g}] is
a 3-potential-leaf of G.
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Proof. Let (T,X) be any reduced tree decomposition of width at most 3 and size at most
s≥ 1 of G. We show how to modify it to obtain a tree-decomposition with width at most 3
and size at most s and in which { f , p,g, f ′} is a leaf bag.

From Lemma 11, we can assume that there is a bag B in (T,X) containing all f , p,g.
We may assume that B is the single bag containing f , p (otherwise, delete f , p from any
other bag).

1. If B = { f , p,g}, then the intersection of B and any of its neighbor in T is contained
in {g}. A desired tree decomposition can be obtained from Lemma 10.

2. Otherwise, B = { f , p,g,x}. Then the intersection of B and any of its neighbor in T
is contained in {g,x}.

(a) If there is a neighbor B′ of B such that B∩B′ = {g,x}, then by definition of the
operation Lea f , the tree-decomposition Lea f (B,B′,(T,X)) has width at most
3, same size as (T,X), and B = { f , p,g,x} is a leaf. Then delete x in B in
the tree-decomposition Lea f (B,B′,(T,X)) since {g,x} ⊆ B′. The obtained tree
decomposition has the desired properties.

(b) Otherwise any neighbor of B contains at most one of g and x. If x is not adjacent
to g, then there is a connected component in G \B containing a neighbor of g
and a neighbor of x. From Lemma 4, there exists a neighbor bag of B in (T,X)
containing g and x. It is a contradiction. So we have x is adjacent to g in this
case.

i. x is a child of g. Then x has exactly one child y, which is a leaf in G since
f is one of the furthest leaves from r. Since yx ∈ E(G), there is a bag Y
in (T,X) containing both y and x. We may assume that Y is the single bag
containing y (otherwise, delete y from any other bag). Since {g,x} ⊂ B
and any neighbor of B contains at most one of g and x, any bag except
B contains at most one of g and x. Then g /∈ Y because x ∈ Y . So y,x,g
are not contained in one bag. From Lemma 11, we can modify (T,X) to
obtain a tree-decomposition (T ′,X′) of width at most 3 and size at most s
having a leaf bag X = {y,x,g}. Note that x (resp. y) plays the same role
as p (resp. f ) in G, i.e., g, p, f and g,x,y are symmetric in G. Hence, the
result is a desired tree decomposition.

ii. x is the parent of g. Let p′ be another child of g and let f ′ be the child of p′,
which is a leaf in G. Let B′ be the bag in (T,X) containing both f ′ and p′.
We may assume that B′ is the single bag containing f ′ (otherwise, delete
f ′ from any other bag). Let X ′ be a bag containing both p′ and g. Then we
have X ′ 6= B (because p′ /∈ B). Since g ∈ X ′ any bag except B contains at
most one of g and x, we have x /∈ X ′. In the following, we modify (T,X) to
obtain a tree-decomposition (T ′,X′) with width at most 3 and size at most
s having a bag { f ′, p′,g}. Then we are in case 1, since g, p, f and g, p′, f ′

are symmetric in G.



38 Chapter 2. Minimum Size Tree Decomposition

If B′ = X ′ = { f ′, p′,g} then, we are done. If B′ = X ′ = { f ′, p′,g,x′}. Then
x′ is not x, which is the parent of g, since x /∈ X ′. So we can do as in case 2a
or case 2(b)i.
Otherwise, B′ 6= X ′. From Lemma 11, we can modify (T,X) to obtain a
tree-decomposition with width at most 3 and size at most s having a leaf
bag { f ′, p′,g}.

Lemma 15. Let G be a tree rooted at r ∈ V (G) and |V (G)| ≥ 4. Let f a leaf in G. Let p
be the parent of f . If p has exactly two children f , f ′ in G and let g be the parent of p in G
(see in Fig. 2.10(d)), then H = G[{ f , f ′, p,g}] is a 3-potential-leaf of G.

Proof. Let (T,X) be any reduced tree decomposition of width at most 3 and size at most
s≥ 1 of G. We show how to modify it to obtain a tree-decomposition with width at most 3
and size at most s and in which { f , f ′, p,g} is a leaf bag.

Since f p ∈ E(G), there is a bag B in (T,X) containing both f and p. We may assume
that B is the single bag containing f (otherwise, delete f from any other bag). Similarly,
let B′ be the single bag in (T,X) containing both f ′ and p. Let X be a bag containing both
p and g.

1. If B = B′ = X = { f , f ′, p,g}, then we can assume that B is the single bag containing
p (otherwise, delete p from any other bag). So the intersection of B and any of its
neighbor in T is contained in {g}. Then a desired tree decomposition can be obtained
from Lemma 10.

2. If B = B′ = { f , f ′, p}, then the intersection of B and any of its neighbor in T is
contained in {p}. Let Y be a neighbor of B in T containing p. By definition of
the operation Lea f , the tree-decomposition Lea f (B,Y,(T,X)) has width at most 3,
same size as (T,X), and B = { f , f ′, p} is a leaf. Then delete B and add a new bag
N = { f , f ′, p,g} adjacent to X . The result is a desired tree decomposition.

3. If B = B′ = { f , f ′, p,x} and x 6= g, then the intersection of B and any of its neighbor
in T is contained in {p,x}. Since x /∈ { f , f ′,g}, p is not adjacent to x. There is a
connected component in G\B containing a neighbor of p and a neighbor of x. From
Lemma 4, there exists a neighbor bag of B in (T,X) containing p and x. Let Y be such
a neighbor of B in T . By definition of the operation Lea f , the tree-decomposition
Lea f (B,Y,(T,X)) has width at most 3, same size as (T,X), and B = { f , f ′, p,x} is a
leaf. Then delete x from B and we get a tree decomposition having a bag { f , f ′, p}.
So we are in case 2.

4. If B 6= B′ and |B| ≤ 3, then delete f ′ in B and add f ′ in B. Then we are in case 2 or 3.
It is proved similarly if B 6= B′ and |B′| ≤ 3.

5. Otherwise B 6= B′ and |B|= |B′|= 4. Let B = { f , p,x,y} and B′ = { f ′, p,x′,y′}. Let
P be the path in T from B to B′. Then p is contained in all bags on P. Let Y be
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the neighbor of B on P. If B∩Y = {p}, then {p} separates x from x′. But p is not a
separator between any two vertices in V (G)\{ f , f ′}. It is a contradiction. So w.l.o.g.
we can assume that B∩Y ⊇ {p,x}. Deleting f , f ′, p in all bags of (T,X). Add a new
bag Z = {x,y}∪Y \{p,x} adjacent to all neighbors of the two bags B,Y and delete
B and Y . Finally add another new bag N = { f , f ′, p,g} adjacent to a bag containing
g. The obtained tree decomposition has the desired properties.

Lemma 16. Let G be a tree rooted at r ∈ V (G) and |V (G)| ≥ 4. Let all children of p
be leaves in G and p have at least three children f , f ′, f ′′ (see in Fig. 2.10(e)). Then
H = G[{p, f , f ′, f ′′}] is a 3-potential-leaf of G.

Proof. Let (T,X) be any reduced tree decomposition of width at most 3 and size at most
s≥ 1 of G. We show how to modify it to obtain a tree-decomposition with width at most 3
and size at most s and in which {p, f , f ′, f ′′} is a leaf bag.

Since f p ∈ E(G), there is a bag B in (T,X) containing both f and p. We may assume
that B is the single bag containing f (otherwise, delete f from any other bag). Similarly,
let B′ (resp. B′′) be the single bag in (T,X) containing both f ′ (resp. f ′) and p.

1. If B = B′ = B′′ = { f , f ′, f ′′, p}, then the intersection of B and any of its neighbor in T
is contained in {p}. A desired tree decomposition can be obtained from Lemma 10.

2. If B = B′ = { f , f ′, p}, then delete f ′′ in B′′ and add f ′′ in B. Then we are in case 1.
It can be proved similarly if B = B′′ = { f , f ′′, p} or B′ = B′′ = { f ′, f ′′, p}.

3. If B = B′ = { f , f ′, p,x} and x 6= f ′′, then the intersection of B and any of its neighbor
in T is contained in {p,x}.

If x is a child of p, then x is also a leaf in G and x play the same role as f ′′. Then we
are in case 1. So in the following we assume that x is not a child of p.

If x is not the parent of p, then p is not adjacent to x. So there is a connected
component in G\B containing a neighbor of p and a neighbor of x. From Lemma 4,
there exists a neighbor bag of B in (T,X) containing p and x. Let Y be such a
neighbor of B in T . By definition of the operation Lea f , the tree-decomposition
Lea f (B,Y,(T,X)) has width at most 3, same size as (T,X), and B = { f , f ′, p,x} is a
leaf. Then delete x from B and we get a tree decomposition having a bag { f , f ′, p}.
So we are in case 2.

Otherwise x is the parent of p. Let P be the path in T from B to B′′. Then p is
contained in all bags on P. Let Y be the neighbor of B on P. If B∩Y = {p,x}, then
by definition of the operation Lea f , the tree-decomposition Lea f (B,Y,(T,X)) has
width at most 3, same size as (T,X), and B = { f , f ′, p,x} is a leaf. Then deleting
x from B we are in case 2. Otherwise, B∩Y = {p}. So {p} separates x from all
vertices in B′′ \ {p}. Then all vertices in B′′ \ {p} are children of p and so they are
leaves in G. So we can assume that any vertex in B′′ \ {p} are contained only in
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B′′ (otherwise we can delete it in any other bags). Then delete f , f ′ from B and add
vertices of B′′ \{ f ′′, p} in B; and make B′′ = { f , f ′, f ′′, p}. Then we are in case 1.

The cases B = B′′ = { f , f ′′, p,x} and x 6= f ′ or B′ = B′′ = { f ′, f ′′, p,x} and x 6= f can
be proved similarly.

4. Otherwise, none two of f , f ′, f ′′ are contained in a same bag.

If |B| ≤ 3, then delete f ′ in B′ and add f ′ in B. Then we are in case 2 or 3. It is
proved similarly if and |B′| ≤ 3 or |B′′| ≤ 3.

Otherwise |B|= |B′|= |B′′|= 4. In the following, we are going to modify (T,X) to
obtain a tree-decomposition with width at most 3 and size at most s having a bag X
containing at least two of f , f ′, f ′′ or f ∈ X and |X | ≤ 3. Then we are in the above
cases. Note that all children of p play the same role (they are all leaves) in G. So it is
enough to get that X contains at least two children of p or that X contains one child
of p and |X | ≤ 3.

Let Tp be the subtree in T induced by all the bags containing p. If |V (Tp)| ≤ 2, there
exists one bag containing at least two children of p since p has at least three children.
Then it is done. So we assume that |V (Tp)| ≥ 3. There is a bag R ∈V (Tp) containing
both p and g. Root Tp at R and let L ∈ V (Tp) be one of the furthest leaf bag in Tp

from R. If there is no child of p in L, then we can delete p in L and consider Tp \{L}.
So we can assume there is a vertex l ∈ L, which is a child of p in G. Let Y be the
neighbor of L in Tp. If the intersection of L∩Y = {p}, then p separate any vertex in
L\{p} and any vertex in Y \{p}. So at least one of L,Y , denoted as X , contains only
p and children of p. Then either X contains at least two children of p or X contains
only one children and |X |= 2. So (T,X) and X satisfy the desired properties.

Otherwise, |L∩Y | ≥ 2. If Y has no other child except L in Tp, then Y 6= R since
|V (Tp)| ≥ 3. Let X = {p, l} if Y contains no child of p; and X = {p, l, l′} if Y contains
one child l′ of p. Add a new bag Z = Y ∪L\X . Since |Y ∩L| ≥ 2, |Y ∪L| ≤ 6. Then
|Z| ≤ 4, since X ⊆ Y ∪L and |X | ≥ 2. Make Z adjacent to all neighbors of Y,L in T
and delete Y,L. Finally make X adjacent to R. The obtained tree decomposition and
X have the desired properties.

Otherwise, Y has at least another child L′ in Tp. Then L′ is also a furthest leaf from
R in Tp, since L is a furthest leaf from R. For the same reason as L, there is a vertex
l′ ∈ L, which is a child of p in G. Let L = {l, p,x,y} and L′ = {l′, p,x′,y′}. So the
intersection of L (resp. L′) and any of its neighbors except Y in T is contained in
{x,y} (resp. {x′,y′}). Create a new bag N = {x,y,x′,y′} adjacent to all neighbor
of L,L′ and delete L,L′. Finally add another bag X = {p, l, l′} adjacent to Y . The
obtained tree decomposition and X have the desired properties.

From Lemmas 12- 16 and Corollary 3, we obtain the following result.

Corollary 5. s3 and a minimum size tree decomposition of width at most 3 can be computed
in polynomial-time in the class of trees.
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Proof. From Corollary 3, it is enough to prove we can find a 3-potential-leaf in any tree in
polynomial time.

Let G be any tree. If |V (G)| ≤ 4, then V (G) is a 3-potential-leaf. Let us assume that
|V (G)| ≥ 5. Root G at any vertex r. Let f be one of the furthest leaves from r in G. Let
p,g,h be the first three vertices on the path from f to r in G (if exist), i.e. p is f ’s parent; g
is p’s parent; and h is g’s parent in G.

• If g, p both have only one child in G, then { f , p,g,h} is a 3-potential-leaf of G from
Lemma 12;

• If p has only one child and g has a child f ′, which is a leaf in G, then { f , p,g, f ′} is
a 3-potential-leaf of G from Lemma 13;

• If p has only one child and any child of g has exactly one child, then { f , p,g} is a
3-potential-leaf of G from Lemma 14;

• If p has only one child and there exist a child p′ of g, which has exactly two children
f1, f2, then { f1, f2, p′,g} is a 3-potential-leaf of G from Lemma 15;

• If p has only one child and there exist a child p′ of g, which has at least three children
f1, f2, f3, then { f1, f2, f3, p′} is a 3-potential-leaf of G from Lemma 16;

• If p has exactly two children f , f ′, then { f , f ′, p,g} is a 3-potential-leaf of G from
Lemma 15;

• Otherwise p has at least three children f , f ′, f ′′, then { f , f ′, f ′′, p} is a 3-potential-
leaf of G from Lemma 16.

In fact, the algorithm for trees can be extended to forests by consider their connected
component, i.e., trees. The only difference is in Lemma 14 the 3-potential-leaf becomes
{ f , p,g,α} if there is an isolated vertex α in the given forest.

2.5.2 Computation of s3 in 2-connected outerplanar graphs

In this subsection, given a 2-connected outerplanar graph G, we show how to find a
3-potential-leaf in G. See all the 3-potential leaf of 2-connected outerplanar graphs in
Fig. 2.11.

The following fact is well known for 2-connected outerplanar graphs.

Lemma 17. [Sys79] A 2-connected outerplanar graph has the unique Hamilton cycle.

In the rest of this subsection, let G be a 2-connected outerplanar graph and C be the
Hamilton cycle in G.

Definition 3. Any edge in E(G)\E(C) is called a chord in G.
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Figure 2.11: All the 3-potential leaves of 2-connected outerplanar graphs.

The vertices v1, . . . ,v j ∈ V (G), for 2 ≤ j ≤ |V (G)|, are consecutive in C ( we also say
that they are consecutive in G) if vivi+1 ∈ E(C) for 1≤ i≤ j−1; and v1, . . . ,v j ∈V (G) are
also called the consecutive vertices from v1 to v j.

Lemma 18. Let a,b,c,d ∈ V (G) be consecutive in C. If {a,b,c} induces a clique and c
has degree 3 in G (see in Fig. 2.11(a)), then H = G[{a,b,c,d}] is a 3-potential-leaf of G.

Proof. Let (T,X) be any tree decomposition of width at most 3 and size at most s ≥ 1 of
G. We show how to modify it to obtain a tree-decomposition with width at most 3 and size
at most s and in which {a,b,c,d} is a leaf bag.

Since {a,b,c} induces a clique in G, there is a bag B containing all a,b,c. Let X be a
bag in (T,X) containing both c and d (it exists since cd ∈ E(G)). Note that b is not incident
to any chords, i.e. has degree 2. (Because if by ∈ E(G) is a chord in G, then deleting all
chords except ac,by in G and contracting the edges in C except ab,bc we get a K4-minor
in G. It is a contradiction with the fact that G is outerplanar.)

Replace b,c with a in all bags of (T,X). Then (T,X) becomes a tree decomposition
(T ′,X′) of the graph G′ obtained by contracting the edges ab and bc. The bag X becomes
X ′, which contains both a and d; and B becomes B′ = {a} if B = {a,b,c} or B′ = {a,x}
if B = {a,b,c,x}. From Corollary 2, in both case there exists a neighbor Y of B′ such that
B′ ⊆ Y . So B′ can be reduced in (T ′,X′). The tree decomposition Reduce(B′,Y,(T ′,X′))
has one bag less than (T,X). Finally, add a new bag N = {a,b,c,d} adjacent to X ′, which
contained both a and d, in the tree decomposition Reduce(B′,Y,(T ′,X′)). The result is a
desired tree decomposition, because b,c are not adjacent to any vertices in V (G)\N.

Lemma 19. Let a,b,c,d,e ∈ V (G) be consecutive in C. If {a,b,c} and {c,d,e} induce
two cliques respectively in G and ae ∈ E(G) (see in Fig. 2.11(b)), then H = G[{a,b,c}] is
a 3-potential-leaf of G.

Proof. Let (T,X) be any tree decomposition of width at most 3 and size at most s ≥ 1 of
G. We show how to modify it to obtain a tree-decomposition with width at most 3 and size
at most s and in which {a,b,c} is a leaf bag.

Since {a,b,c} (resp. {c,d,e}) induces a clique in G, there is a bag X (resp. Y )
containing all a,b,c (resp. c,d,e). Note that b,c,d are not adjacent to any vertices in
V (G)\{a,b,c,d,e}.
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Delete b,c,d in all bags of (T,X). Then (T,X) becomes a tree decomposition (T ′,X′)
of the graph G′ = G\{b,c,d}. The bag X becomes becomes X ′ = {a} if X = {a,b,c} or
X ′ = {a,x} if B = {a,b,c,x}. From Corollary 2, in both case there exists a neighbor A of
X ′ such that X ′ ⊆ A. So X ′ can be reduced in (T ′,X′). Similarly, the bag Y becomes Y ′,
which can also be reduced in (T ′,X′). After reducing the two bags X ′,Y ′ in (T ′,X′), let
the obtained tree decomposition be (T ′′,X′′). Finally, add two new bags N1 = {a,b,c} and
N2 = {a,c,d,e}; make N1 adjacent to N2 and make N2 adjacent to a bag Z containing both
a and e in the tree decomposition (T ′′,X′′). (Z exists because ae ∈ E(G′).) The result is a
desired tree decomposition.

Lemma 20. Let Cl be a cycle of l ≥ 4 vertices. Let (T,X) be a tree decomposition of Cl

of width at most 3. Then there exist either a bag containing all vertices of V (Cl) (only
if l = 4) or two bags X ,Y ∈ X such that X (resp. Y ) contains at least three consecutive
vertices x1,x2,x3 (resp. y1,y2,y3) and the two edge sets {x1x2,x2x3}∩{y1y2,y2y3}= /0.

Proof. The treewidth of any cycle is bigger than 1, so there exists a bag in any tree de-
composition of a cycle (with at least 4 vertices) containing two vertices not consecutive,
equivalently they are not adjacent in the cycle. We prove the lemma by induction on l in
the following.

First let us prove that it is true for l = 4. Let a,b,c,d be the four consecutive vertices
in C4. Let (T,X) be a tree decomposition of width at most 3. Then there exists a bag
containing a,c or b,d. W.l.o.g assume a,c are contained in one bag. So (T,X) is also
a tree decomposition of H, obtained from C4 by adding the edge ac. The set {a,b,c}
induces a clique in H. So there is a bag X containing a,b,c. For the same reason, there
is a bag Y containing c,d,a. If X = Y then there is a bag containing all a,b,c,d of V (C4).
Otherwise there are two bags X ,Y such that X ⊇ {a,b,c} and Y ⊇ {c,d,a}. We see that
{ab,bc}∩{cd,da}= /0. So the lemma is true for l = 4.

Now suppose it is true for l ≤ n−1 and we prove it for l = n≥ 5. Note that since (T,X)
has width 3 and l ≥ 5, there is no bag containing all vertices of V (Cl). So in the following
we prove that there always exist two bags X ,Y with the desired properties. Let v1, . . . ,vn

be the n consecutive vertices in Cn. Let (T,X) be a tree-decomposition of width at most 3
of Cn. Then there exists a bag containing two non-adjacent vertices vi,v j for 1≤ i < j ≤ n.
So (T,X) is also a tree decomposition of the graph H, obtained from Cn by adding the
edge viv j. The graph H is also the union of two subcycles C1 induced by {vi, . . . ,v j}
and C2 induced by {v j, . . . ,vn, . . . ,vi}. Then max{|C1|, |C2|} ≤ n− 1. Let (T 1,X1) (resp.
(T 2,X2)) be the tree decomposition of C1 (resp. C2) obtained by deleting all vertices not
in C1 (resp. C2) in the bags of (T,X).

If |V (C1)|= 3 then there is a bag in (T 1,X1) containing V (C1) = {vi,vi+1,v j = vi+2}.
So viv j /∈ {vivi+1,vi+1v j}.

If |V (C1)| ≥ 4 then, by induction, there exist either a bag in (T 1,X1) containing all
vertices of V (C1) = {vi,vi+1,vi+2,v j = vi+3} or two bags A,B in (T 1,X1) containing three
consecutive vertices a1,a2,a3 and b1,b2,b3 respectively in C1; moreover, {a1a2,a2a3}∩
{b1b2,b2b3}= /0. So we have either viv j /∈ {a1a2,a2a3} or viv j /∈ {b1b2,b2b3}.

In both cases (|V (C1)|= 3 and |V (C1)| ≥ 4), there is at least one bag X in (T 1,X1) con-
taining three consecutive vertices in C1, denoted as x1,x2,x3, such that viv j /∈ {x1x2,x2x3}.
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So x1,x2,x3 are also consecutive in C. Similarly, there is at least one bag Y in (T 2,X2) con-
taining three consecutive vertices in C2, denoted as y1,y2,y3, such that viv j /∈ {y1y2,y2y3}.
So y1,y2,y3 are also consecutive in C. Finally, we have {x1x2,x2x3} ∩ {y1y2,y2y3} = /0
because E(C1)∩E(C2) = {viv j} and viv j /∈ {x1x2,x2x3}.

Lemma 21. Let xy be a chord in G. Let C′ be the set of all the consecutive vertices from x to
y in C and |C′| ≥ 4. If each vertex in C′ \{x,y} has degree 2 in G, then for any consecutive
vertices a,b,c,d ∈C′ (see in Fig. 2.11(c)), H = G[{a,b,c,d}] is a 3-potential-leaf of G.

Proof. Let (T,X) be any tree decomposition of width at most 3 and size at most s ≥ 1 of
G. We show how to modify (T,X) to obtain a tree-decomposition of G, which has width at
most 3, size at most s and a leaf bag {a,b,c,d}.

Note that the vertices of C′ induce a cycle in G. Without confusion, we denote this cycle
C′. Let (T ′,X ′) be the tree decomposition of C′ obtained by deleting all vertices not in C′

in the bags of (T,X). From Lemma 20, there is either a bag containing all vertices in C′

(only if |C′|= 4); or two bags X ,Y containing three consecutive vertices in C′ respectively
and the two corresponding edge sets do not intersect.

In the former case, V (C′) = {a,b,c,d} and so (T,X) is also a tree decomposition of
G∪{ac}, from Lemma 18, {a,b,c,d} is a 3-potential-leaf of G.

In the latter case, let X ⊇ {u,v,w} and Y ⊇ {u′,v′,w′}, where u,v,w (resp. u′,v′,w′)
are consecutive in C′. Since {uv,vw}∩ {u′v′,v′w′} = /0, we have either xy /∈ {uv,vw} or
xy /∈ {u′v′,v′w′}. W.l.o.g. assume that xy /∈ {uv,vw}. Then u,v,w are also consecutive
in C and at least one of u,w has degree 2 in G. W.l.o.g. suppose w has degree 2 in G,
i.e.w /∈ {x,y} (since x,y have degree at least 3 in G). Let z ∈ C′ be the other neighbor
(except v) of w in C′. (z exists because w /∈ {x,y}.)

(T,X) is also a tree decomposition of G∪{uw}, which is still an outerplanar graph by
assumptions. Note that w has degree 3 in the graph G∪{uw}. So from Lemma 18, we
can modify (T,X) to obtain a tree-decomposition (T ′,X′) of G∪{uw}, which has width
at most 3, size at most s and a leaf bag L containing four consecutive vertices {u,v,w,z}.
Note that (T ′,X′) is also a tree decomposition of G. So we get a tree decomposition where
a leaf bag contains 4 consecutive vertices of C′. It remains to show how to modify it to
obtain a tree decomposition with a leaf bag {a,b,c,d}.

Let B be the neighbor of L in T . Then u,z ∈ B since each of u,z is adjacent to some
vertices in G\L. We can assume that L is the single bag containing v,w in (T ′,X′), because
otherwise we can delete them in any other bags. Thus, deleting the bag L in (T ′,X′), we
get a tree decomposition (T1,X1) of the graph G1, which is the graph obtained by deleting
v,w and adding an edge uz in G. So (T1,X1) has width at most 3 and size at most s− 1.
Note that the graph G1 is isomorphic to the graph G2 ≡ G∪{ad}\{b,c} since z ∈C′. So
from the tree decomposition (T1,X1) of G1 we can obtain a tree decomposition (T2,X2) of
G2 with the same width and size. Note that since ad ∈ E(G2), there is a bag Y containing
both a and d. Finally, add a new bag N = {a,b,c,d} adjacent to Y in (T2,X2). The result
is a desired tree decomposition.

Lemma 22. There is an algorithm that, for any 2-connected outerplanar graph G, com-
putes 3-potential leaf of G in polynomial time.
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Proof. Let G be a 2-connected outerplanar graph and C be the unique Hamilton cycle of
G. If |V (G)| ≤ 4, then V (G) is a 3-potential-leaf of G. Otherwise, |V (G)| ≥ 5 and consider
the outerplanar embedding of G.

• If there exists an inner face f with at most one chord of G and f has at least four
vertices, then from Lemma 21, the set of any four consecutive vertices in f , which
are also consecutive in C, is a 3-potential-leaf in G.

• If there is an inner face f = {a,b,c} with only one chord ac of G and c has degree
3, then let d be the other neighbor of c except b,a. From Lemma 18, the set of four
consecutive vertices a,b,c,d, is a 3-potential-leaf in G.

• Otherwise, let F be the set of all inner faces with only one chord of G. Then any face
f ∈ F has three vertices and both the two endpoints of the chord in f have degree at
least 4, i.e., they are incident to some other chords except this one. We can prove by
induction on |V (G)| that:

Claim 1. There exist two faces f1, f2 ∈ F such that (1) f1 = {a,b,c}; (2) f2 =

{c,d,e}; (3) a,b,c,d,e are consecutive in G; (4) there is a face f0 containing both
ac and ce and at most one chord, which is not in any face of F. See in Fig. 2.12.

It is true when |V (G)|= 5. Assume that it is true for |V (G)| ≤ n−1. Now we prove
it is true for |V (G)|= n. Note that F 6= /0 if there is at least one chords in G, which is
valid in this case. Let f ∈ F have three consecutive vertices x,y,z and let xz ∈ E(G)

be the single chord in f . Then the graph G\y is a 2-connected outerplanar graph with
n−1 vertices. From the assumption, we have the desired faces f ′0, f ′1, f ′2 in G\ y. If
xz is not an edge in any face of f ′1, f ′2, then these faces are also the desired faces in
G. Otherwise, let xz be an edge of f ′1 or f ′2 = {x,z, t}. Then z has degree 3 in G, i.e.
it is not incident to any other chords except xz, since xt ∈ E(G). So we are in second
case above, which contradicts with the assumption.

1

a

f

2
f

0
f

0
f
_

e

d

c

b

1
f
_ 2

f
_ x

y

Figure 2.12: F is the set of all inner faces with only one chord of G, such as f1, f2, f̄1, f̄2.
The faces f0, f1, f2 satisfy the properties in Claim 1. But f̄0, f̄1, f̄2 does not satisfy the
properties since f̄0 contains two edges ey,xy which are not in any face of F.

In the following, let f0, f1, f2 be the faces as in Claim 1. If ae ∈ E(G), then from
Lemma 19, {a,b,c} is a 3-potential-leaf of G.
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Otherwise, we can prove that any tree decomposition of G of width at most 3 can
be modified to a tree decomposition of G∪{ae} with the same width and size in the
following. So {a,b,c} is a 3-potential-leaf of G.

Let (T,X) be a tree decomposition of width at most 3 and size at most s ≥ 1 of G.
Let (T0,X0) be the tree decomposition obtained by deleting all vertices not in f0.
Then (T0,X0) is a tree decomposition of f0 (without confusion f0 is used to denote
the face and the cycle induced by vertices in f0 as well). From Lemma 20, there
is a bag containing three consecutive vertices u,v,w in f0 and uv,vw are edges of
some faces in F. (Note that u,v,w are not consecutive in C.) So (T,X) is also a tree
decomposition of G∪ uw. The graph G∪ uw and the graph G∪ ae are isomorphic.
So from (T,X) we can obtain a tree decomposition (T ′,X′) of G∪ae with the same
width and size. Then (T ′,X′) is the desired tree decomposition.

From Lemmas 22 and Corollary 3, we obtain the following result.

Corollary 6. s3 can be computed and a minimum size tree decomposition of width at most
3 can be constructed in polynomial-time in the class of 2-connected outerplanar graphs.

2.6 Perspective

In this chapter, we gave preliminary results on the complexity of minimizing the size of
tree-decompositions with given width. Table 2.1 summarizes our results as well as the
remaining open questions.

s1 s2 s3 sk,k ≥ 4
tw = 1 P(trivial) P P ?
tw = 2 - P ? ?
tw = 3 - - ? ?
tw≥ 4 - - - NP-hard

Table 2.1: Summary of the complexity results.

We currently investigate the case of s3 in the class of connected graphs with treewidth
2 or 3 and we conjecture it is polynomially solvable. But it is more tricky than computing
s3 in trees and 2-connected outerplanar graphs. It seems that a global view of the graph
needs to be considered to decide wether a subgraph is a 3-potential leaf of the graph. See
an example in Fig. 2.13(a). In this example, G is a connected outerplanar graph. {r,a,b,c}
is not a 3-potential leaf of G, but it is a 3-potential leaf of G\{yw}. Let G′ ≡ G\{a,b,c}.
Then G′ is 2-connected outerplanar. From the algorithm of computing s3 in 2-connected
outerplanar graphs in subsection 2.5.2, we can compute that s3(G′) = 5. So if {r,a,b,c} is
a potential leaf of G, then s3(G) = 6. But there exists a tree decomposition of G of width
3 and size 5, where the bags are {a,r,z,y},{r,y,x,w},{b,r,w,v},{r,v,u,e},{c,r,d,e}. So
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{r,a,b,c} is not a 3-potential leaf of G. However, in the graph G′′≡G\{yw}, we can prove
that s3(G′′) = 5 and there is a minimum size tree decomposition containing {r,a,b,c} as
a leaf bag, i.e. {r,a,b,c} is 3-potential leaf of G′′. So the existence of the edge yw, not
incident to any vertex in {r,a,b,c}, changes the behavior of {r,a,b,c}.
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w v
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(a) {r,a,b,c} is not a 3-potential leaf of G, but
it is a 3-potential leaf of G\{yw}. The five bags
{a,r,z,y},{r,y,x,w},{b,r,w,v},{r,v,u,e},{c,r,d,e}
connecting as a path in this order forms a tree
decomposition of G.
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(b) In any minimum size tree decomposi-
tion of width 5 (and size 2) of this tree,
there exists a bag inducing a forest, not
a subtree. For example, in a tree decom-
position of width 5 and size 2, one bag
is {r,a1,a2,a3,b1,b2} and the other one is
{r,b2,b3,c1,c2,c3}.

Figure 2.13

The problem of computing sk, for k ≥ 4, seems more intricate already in the case of
trees. Indeed, our polynomial-time algorithms to compute sk, k ≤ 3, in trees mainly rely
on the fact that, for any tree T , there exists a minimum-size tree-decomposition of T with
width at most 3, where each bag induces a connected subtree. This is unfortunately not
true anymore in the case of tree-decomposition with width 5. As an example, consider the
tree G (with 10 nodes) obtained from a star with three 3 leaves by subdividing twice each
edge. See in Fig. 2.13(b). s5(G) = 2 and any minimum size tree decomposition has a bag
X such that G[X ] is disconnected.
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This chapter studies a special tree-decomposition of a graph, called k-good tree decom-
position for an integer k ≥ 2, in which each bag contains a dominating set of size at most
k− 1 inducing a path in the graph. The main result of this chapter is inspired by a study
of the cops and robber game in k-chordal graphs for an integer k ≥ 3. We show that given
a graph G and an integer k ≥ 3, there is a quadratic time algorithm that outputs either an
induced cycle of length at least k+1 in G or a k-good tree decomposition of G.

It is well-known that given a graph G and an integer k it is NP-complete to decide
whether there is an induced cycle of length at least k when k is an input. Equivalently, it
is NP-complete to decide whether the chordality of a graph G is at least k. The problem
remains NP-complete even when G is planar. However, as mentioned in Chapter 1, the
chordality is a contraction-bidimensional parameter: the chordality of an r× r-grid is at
least g(r) = O(r2) ; and it does not increase when taking contractions. In [ST10], there is
an FPT algorithm for finding a longest induced cycle in bounded treewidth graphs, where
the parameter is the treewidth of the graph. Combining with the bidimensionality theory
in [DH08a], there is FPT algorithm to decide whether the chordality of any planar graph
G is at least k in 2O(

√
k)n time. But as always, this approach is not practical because a tree

decomposition of a bounded width is required. Therefore, it is interesting to find a practical
algorithm for computing the chordality without using the tree decomposition of bounded
width.

Based on our main result mentioned above, given a graph G and an integer k ≥ 3, if
our algorithm outputs an induced cycle of length at least k+1, then the chordality of G is
bigger than k; otherwise, our algorithm outputs a k-good tree decomposition. Note that in
the latter case, it is possible that there exists an induced cycle of length at least k+ 1. So
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if we can find a practical algorithm (FPT algorithm without very huge constants because
of the NP-completeness) for computing the chordality of a graph admitting a k-good tree
decomposition for some integer k ≥ 3, then we find a practical algorithm (FPT without
very huge constants) for deciding the chordality of any graph.

An initial step is to compute the chordality of the subgraph, called k-super-caterpillar,
induced by each bag of a k-good tree decomposition, which contains a dominating set of
size at most k− 1 inducing a path in the graph. We were expecting polynomial time al-
gorithm for computing the chordality in the class of planar k-super-caterpillars, which
are planar and k-super-caterpillars. We find a linear time dynamic programming algo-
rithm for computing the chordality in a special subclass of planar k-super-caterpillar in
Section 3.4.2. However, after many attempts, we conjecture that it is NP-complete to com-
pute the chordality of a planar k-super-caterpillar when k is part of the input, since we prove
that this problem is NP-complete if the problem of deciding whether there is a Hamiltonian
cycle in a given planar graph with a Hamiltonian path is NP-complete. More details is
shown in Section 3.4.

The results of Section 3.2 and 3.3 is a collaboration with N. Nisse, K. Suchan and A.
Kosowski. They appeared in the proceedings of the conference ICALP 2012 [c-KLNS12]
and in the journal Algorithmica [j-KLNS14]. The results of Section 3.4 is a collaboration
with N. Nisse and A. K. Maia.

3.1 Introduction

Because of the huge size of real-world networks, an important current research effort con-
cerns exploiting their structural properties for algorithmic purposes. Indeed, in large-scale
networks, even algorithms with polynomial-time complexity in the size of the instance
may become unpractical. Therefore, it is important to design algorithms depending only
quadratically or linearly on the size of the network when its topology is expected to sat-
isfy some properties. Among these properties, recall that the chordality of a graph is the
length of its longest induced (i.e., chordless) cycle. The (Gromov) hyperbolicity of a graph
reflects how the metric (distances) of the graph is close to the metric structure of a tree.
More precisely, a graph has hyperbolicity ≤ δ if, for any u,v,w ∈ V (G) and any shortest
paths Puv,Pvw,Puw between these three vertices, any vertex in Puv is at distance at most δ

from Pvw ∪Puw [Gro87]. Intuitively, in a graph with small hyperbolicity, any two shortest
paths between the same pair of vertices are close to each other. Several recent works take
advantage of such structural properties of large-scale networks for algorithm design (e.g.,
routing [KPBnV09, CSTW09]). As mentioned in Chapter 1, Internet-type networks have
a high clustering coefficient (see e.g. [WS98, OP09]), leading to the existence of very few
long chordless cycles, whereas their low (logarithmic) diameter implies a small hyperbol-
icity [dMSV11].

Another way to study tree-likeness of graphs is by tree-decompositions. We have al-
ready seen that such decompositions play an important role in design of efficient algorithms
in Chapter 1. However, from the practical point of view, this approach has several draw-
backs. First, all the mentioned algorithms in Chapter 1 are linear in the size of the graph
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but (at least) exponential in the treewidth. Moreover, due to the high clustering coeffi-
cient of large-scale networks, their treewidth is expected to be large [dMSV11]. Hence,
to face these problems, it is important to focus on the structure of the bags of the tree-
decomposition, instead of trying to minimize their size. In this chapter, we consider the
k-good tree-decompositions, in which all vertices of each bag induces a k-super-caterpillar
in the graph. Such decompositions turn out to be applicable to a large family of graphs,
including k-chordal graphs.

The results on k-good tree decomposition are inspired by a study of the so called cops
and robber games. The aim of such a game is to capture a robber moving in a graph,
using as few cops as possible. This problem has been intensively studied in the literature,
allowing for a better understanding of the structure of graphs [BN11].

Section 3.2 studies the cops and robber problem. It is proved that k−1 cops are suffi-
cient to capture a robber in k-chordal graphs (generalizing some results in [AF84, CN05]).
Particularly, for 4-chordal graphs, 2 cops are enough.

Using these results, Section 3.3 provides a polynomial time algorithm that, given a
n-vertex graph G and an integer k ≥ 3, either returns an induced cycle of length at least
k+ 1 in G or computes a k-good tree-decomposition of G. In the case when G admits a
k-good tree decomposition, this ensures that G has treewidth at most (k− 1)(∆− 1)+ 2
(where ∆ is the maximum degree), tree-length at most k and Gromov hyperbolicity at most
b3

2 kc. In particular, this shows that the treewidth of any k-chordal graph is upper-bounded
by O(k ·∆), improving the exponential bound of [BT97].

We study the complexities of the recognition and the chordality of the k-super-
caterpillars in Section 3.4. We show that it is NP-complete to decide whether given a
planar graph and an integer k this planar graph is a k-super-caterpillar or not. In the inves-
tigation of the chordality of the k-super-caterpillar, we propose an interesting conjecture:
given a planar graph G which has a Hamilton path, it is NP-complete to decide whether
there is a Hamilton cycle in G. We prove that the conjecture is true when G is general
graph. If the conjecture is true, then we can prove that the chordality problem in planar
k-caterpillars is also NP-complete. For a special subclass of k-super-caterpillars, in which
the vertices except the backbone inducing a cycle, a dynamic programming algorithm is
presented for computing the chordality.

3.1.1 Related Work

Chordality and hyperbolicity. Chordality and hyperbolicity are both parameters mea-
suring “tree-likeness” of a graph. Some papers consider relations between them [BC03,
WZ11]. In particular, the hyperbolicity of a k-chordal graph is at most k, i.e. the hyperbol-
icity of a graph is at most its chordality. But the gap, i.e. the difference between the two pa-
rameters, may be arbitrary large (take a 3×n-grid). The seminal definition of hyperbolicity
is the following. A graph G is δ -hyperbolic provided that for any vertices x,y,u,v ∈V (G),
the two larger of the three sums d(u,v)+d(x,y),d(u,x)+d(v,y) and d(u,y)+d(v,x) differ
by at most 2δ [Gro87]. With this definition, it is proved that any graph with tree-length
at most k has hyperbolicity at most k [CDE+08]. This definition is equivalent to that of
Gromov hyperbolicity (mentioned at the beginning of the introduction), which we use in
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this chapter, up to a constant ratio [AJ13]. There is an O(n3.69) algorithm to compute hy-
perbolicity in [FIV12]. The problem of deciding whether the chordality of a graph G is at
most k is NP-complete if k is as part of the input. Indeed, if G′ is obtained by subdividing
all the edges in G once, then there is an induced cycle of length 2|V (G)| in G′ if and only
if G has a Hamilton cycle. It is NP-complete to decide whether there is a Hamilton cycle
in the class of planar graphs [GJT76]. So the problem of computing the chordality is also
NP-complete in the class of planar graphs. It is coNP-hard to decide whether an n-vertex
graph G is k-chordal for k = Θ(n) [Ueh99].

There are several problems related to chordality are considered. Finding the longest in-
duced path is W [2]-complete [CF07]. In [KK09], the problem of deciding whether there is
an induced cycle passing through k given vertices is studied. This problem is NP-Complete
in planar graphs when k is part of the input and in general graphs even for k = 2. However,
this problem is FPT in planar graphs with parameter k, the number of the given vertices.
Finding an induced cycle of size exactly k in d-degenerate graph (every induced subgraph
has a vertex of degree at most d) is FPT if k and d are fixed parameters [CCC06]. Note that,
any planar graph is 5-degenerate. Recently, Coudert and Ducoffe proved that the problem
of deciding whether an unweighted graph has hyperbolicity 1/2 is subcubic equivalent to
the problem of determining whether there is an induced cycle of size 4 in a graph [CD14].

Treewidth. Although, it is NP-complete to decide whether the treewidth of a graph G
is at most k in general graphs [ACP87], there are polynomial algorithms for (4-)chordal
graphs, cographs [BM93], circular arc graphs [SSR94], chordal bipartite graphs [KK95]
and etc. Bodlaender and Thilikos proved that the treewidth of a k-chordal graph for (k≥ 4)
with maximum degree ∆ is at most ∆(∆−1)k−3 which implies that treewidth is polynomi-
ally computable in the class of graphs with chordality and maximum degree bounded by
constants [BT97]. They also proved that the treewidth problem is NP-complete for graphs
with small maximum degree [BT97].

3.1.2 Notations and Definitions

Throughout this chapter, given a graph G = (V,E) and a vertex set U ⊂ V , we put
NG[U ] = ∪u∈U NG[u] and NG(U) = NG[U ] \U . If the context is clear for graph G, then
we use N(v) instead of NG(v) and similarly for N[v], N(U) and N[U ]. Given two paths
P = (p1, . . . , pk) and Q = (q1, . . . ,qr), we denote their concatenation by (P,Q) the path in-
duced by V (P)∪V (Q); to make descriptions more concise, we omit the detail of reversing
P or Q if necessary.

A graph H is called k-super-caterpillar if there is a dominating set B⊆V (H) in H such
that |B| ≤ k− 1 and H[B] is an induced path; this dominating path is called backbone of
H. A tree decomposition (T,X) of a graph G is called a k-good tree decomposition for an
integer k ≥ 2 if each bag of X induces a k-super-caterpillar in G.
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Figure 3.1: illustration for the proof of Theorem 6

3.2 A detour through Cops and Robber games

In this section, we study the cops and robber games introduced by Winkler and
Nowakowski [NW83], independently defined by Quilliot [Qui85]. Given a graph G, a
player starts by placing k ≥ 1 cops on some vertices of G, then a visible robber is placed
on one vertex of G. Alternately, the cop-player may move each cop along one edge, and
then the robber can move to an adjacent vertex. The robber is captured if, at some step, a
cop occupies the same vertex.

Aigner and Fromme introduced the notion of cop-number of a graph G, i.e., the fewest
number of cops cn(G), such that there exists a strategy for the cop-player that assures to
capture the robber whatever he does [AF84]. A long standing conjecture due to Meyniel
states that cn(G) = O(

√
n) for any n-vertex graph G [Fra87]. To tackle this question, many

researchers have focused on particular graph classes and provided many nice structural
results (see the recent book [BN11]). For any n-vertex graph G, cn(G) = O( n

2(1−o(1))
√

logn )

[LP12, SS11], cn(G) ≤ 3 in any planar graph G [AF84], cn(G) ≤ 3+ 3
2 g in any graph G

with genus at most g [Sch01], cn(G) = O(m) in any graph G excluding a m-edge graph as
a minor [And86], etc. Bounded hyperbolicity graphs have been considered in [CCNV11].
The cop number of graphs with minimum degree d and smallest induced cycle (girth) at
least 8t− 3 is known to be Ω(dt) [Fra87]. Strangely, little is known related to the largest
induced cycle (chordality): in [AF84], it is shown that cn(G) ≤ 3 for any 2-connected
5-chordal graph G. In this section, we consider the class of k-chordal graphs.

Theorem 6. Let k ≥ 3. For any k-chordal connected graph G, cn(G) ≤ k− 1, and there
exists a strategy where all k−1 cops always occupy a chordless path except for the move
that captures the robber.

Proof. Let v ∈V be any vertex and place all cops at it (see in Fig. 3.1(a)). Then, the robber
chooses a vertex. Now, at some step, assume that the cops are occupying {v1, · · · ,vi}
which induce a chordless path, i≤ k−1, and it is the turn of the cops (initially i = 1). Let
N =

⋃
1≤ j≤i N[v j], if the robber occupies a vertex in N, it is captured during the next move.
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Else, let R 6= /0 be the connected component of G\N occupied by the robber. Finally, let S
be the set of vertices in N that have some neighbor in R. Clearly, since R is non-empty, so
is S.

Now, there are two cases to be considered.

• If N(v1)∩ S ⊆
⋃

1< j≤i N[v j]. This case may happen only if i > 1. Then,“remove"
the cop(s) occupying v1. That is, the cops occupying v1 go to v2. Symmetrically,
if N(vi)∩ S ⊆

⋃
1≤ j<i N[v j], then the cops occupying vi go to vi−1. Then, the cops

occupy a shorter chordless path while the robber is still restricted to R.

• Otherwise, there is u ∈ (N(v1) ∩ S) \ (
⋃

1< j≤i N[v j]) and v ∈ (N(vi) ∩ S) \
(
⋃

1≤ j<i N[v j]). First, we show that this case may happen only if i< k−1. Indeed, let
P be a shortest path between such u and v with all internal vertices in R (possibly, P
is reduced to an edge). Such a path exists by definition of S. Then (v1, · · · ,vi,v,P,u)
is a chordless cycle of length at least i+2 (See in Fig. 3.1(b)). Since G is k-chordal,
this implies that i+2≤ k.

Then one cop goes to vi+1 := v while all the vertices in {v1, · · · ,vi} remain occupied.
Since v ∈ S, it has some neighbor in R, and then, the robber is restricted to occupy
R′, the connected component of G\ (N∪N[v]) which is strictly contained in R.

Therefore, proceeding as described above strictly reduces the area of the robber (i.e., R)
after < k steps, R decreases progressively and the robber is eventually captured.

Note that previous Theorem somehow extends the model in [CN05], where the authors
consider the game when two cops always remaining at distance at most 2 from each other
must capture a robber. It is possible to improve the previous result in the case of 4-chordal
graphs, i.e. k = 4. In the following theorem, we prove that cn(G) ≤ 2 for any 4-chordal
connected graph G.

Theorem 7. For any 4-chordal connected graph G, cn(G) ≤ 2 and there always exists a
winning strategy for the cops such that they are always at distance at most one from each
except for the move that captures the robber.

Proof. Initially, place the cops on any two adjacent vertices. At some step of the strategy,
let us assume that the cops are on two adjacent vertices a and b (or a = b) and it is the
turn of the cops. If the robber stands at some vertex in N = N[a]∪N[b], then it is captured
during the next move. Hence, let R be the connected component of G\N where the robber
stands. Let S ⊆ N be the set of the vertices adjacent to a or b and at least one vertex of R,
i.e., S is an inclusion-minimal separator between {a,b} and R.

We will prove that there is z ∈ {a,b} and a vertex c in S∩N(z), such that, S ⊂ N[z]∪
N[c] = N′. Since c ∈ S, N(c)∩V (R) 6= /0. Hence, if the cops move from a,b to c,z, which
can be done in one step, then the robber is constrained to occupy a vertex of R′ where R′

is the connected component of G \N′ which is strictly contained in R. Note that, R′ is a
proper subgraph of R. Iterating such moves, the robber will eventually be captured.

It remains to prove the existence of z ∈ {a,b} and c ∈ S∩N(z), such that, S ⊆ N[z]∪
N[c].
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• If there is z ∈ {a,b} such that S ⊆ N[z], then any vertex in N(z)∩ S satisfies the
requirements.

• Else, let c ∈ S \N(b) (such a vertex exists because otherwise we would be in the
previous case). Clearly, S∩N(a)⊆ N[a]∪N[c]. Now, let x ∈ S\N(a). By definition
of S, there is a path P from x to c with internal vertices in R. Moreover, all internal
vertices of P are at distance at least two from a and b; also c is not adjacent to b
and x is not adjacent to a. Hence, considering the cycle a,b,x,P,c, there must be
an edge between x and c because G is 4-chordal. So S \N(a) ⊂ N(c). Therefore,
S = (S∩N(a))∪ (S\N(a))⊆ N[a]∪N[c].

The bound provided by this theorem is tight because of the cycle with 4 vertices.

Theorem 6 relies on chordless paths P in G such that N[V (P)] is a separator of G, i.e.,
there exist vertices a and b of G such that all paths between a and b intersect N[V (P)]. In
the next section, we show how to adapt this to compute particular tree-decompositions.

3.3 Structured Tree-decomposition

In this section, we present our main contribution, proving the following theorem:

Theorem 8. Given an m-edge-graph G and an integer k ≥ 3, there is an O(m2)-algorithm
which:

• either returns an induced cycle of length at least k+1;

• or returns a k-good tree-decomposition of G.

Proof. The proof is by induction on |V (G)| = n. We prove that either we find an induced
cycle larger than k, or for any chordless path P = (v1, . . . ,vi) with i ≤ k− 1, there is a k-
good tree-decomposition for G with one bag containing NG[V (P)]. Note that the later case
does not mean that a large induced cycle does not exist. Obviously, it is true if |V (G)|= 1.
Now we assume that it is true for any graph G with n′ vertexs, 1≤ n′ < n, and we show it
is true for n-vertex graphs.

Let G be a connected n-vertex graph, n > 1. Let P = (v1, . . . ,vi) be any chordless path
with i≤ k−1 and let N =NG[V (P)] and G′=G\N. There are three cases to be considered:

Case 1. Let G′= /0. In this case, we have V (G) =N. The desired tree-decomposition consists
of one node, corresponding to the bag N.

Case 2. Let G′ be disconnected. Let C1, . . . ,Cr, r ≥ 2, be the connected components of G′

For any j ≤ r, let G j be the graph induced by C j∪N. Note that any induced cycle in
G j, for any j ≤ r, is an induced cycle in G. By the induction hypothesis, either there
is an induced cycle C larger than k in G j, then C is also an induced cycle larger than
k in G, or our algorithm computes a k-good tree-decomposition T D j of G j with one
bag X j containing N. To obtain the k-good tree-decomposition of G, we combine the
T D j’s, for j ≤ r, by adding a bag X = N adjacent to all the bags X j for j = 1, . . . ,r.
It is easy to see that this tree-decomposition satisfies our requirements.
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(b) The induced subgraph
(P,vi+1,u2,Q,u1,v0) is an induced cycle
with at least i+2≥ k+1 vertices in G.

Figure 3.2: illustration for the proof of Theorem 8

Case 3. Let G′ be connected. We consider the order of the path P = (v1, . . . ,vi). In the
following proof, first we prove that if the order of path P, i = k− 1, then we can
find either an induced cycle larger than k or the required tree-decomposition for G.
Subsequently, we prove it is also true for path with order i < k− 1 by backward
induction on i. More precisely, if i < k−1, either we find directly the desired cycle
or tree-decomposition, or we show that there exists a vertex vi+1 such that P∪{vi+1}
induces a chordless path P′ of order i+ 1. By backward induction on i we can find
either an induced cycle larger than k or a k-good tree-decomposition of G with one
bag containing NG[V (P′)]⊇ NG[V (P)].

(a) If i = k−1, then we consider the following two cases. Note that k≥ 3, so i≥ 2
and then v1 6= vi.

• Assume first that there is u ∈ NG(V (P)) ∪ {v1,vi} (in particular, u /∈
P \ {v1,vi}) such that NG(u) ⊆ NG[V (P) \ {u}] (See in Fig. 3.2(a)). Let
G̃ = G\{u}. Then G̃ is a graph with n′ = n−1 vertices. By the induction
hypothesis on n′ < n, the algorithm either finds an induced cycle larger
than k in G̃, then it is also the one in G; Otherwise our algorithm com-
putes a k-good tree-decomposition T̃ D of G̃ with one bag X̃ containing
NG̃[V (P) \ {u}]. To obtain the required tree-decomposition of G, we just
add vertex u into the bag X̃ . The tree-decomposition is still k-good.
• Otherwise, there exist two distinct vertices v0 ∈NG(v1)\NG(V (P)\v1) and

vi+1 ∈ NG(vi)\NG(V (P)\vi), since v1 6= vi; and there are vertices u1,u2 ∈
V (G′) (possibly u1 = u2) such that {v0,u1} ∈ E(G) and {vi+1,u2} ∈ E(G)

(See in Fig. 3.2(b)). If {v0,vi+1} ∈ E(G), (P,v0,vi+1) is an induced cycle
with k + 1 vertices. Otherwise, let Q be a shortest path between u1 and
u2 in G′ (Q exists since G′ is connected). So (P,vi+1,u2,Q,u1,v0) is an
induced cycle with at least k+1 vertices in G.

(b) If i < k−1, we proceed by backward induction on i. Namely, assume that, for
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any chordless path Q with i+1 vertices, our algorithm either finds an induced
cycle larger than k in G or computes a k-good tree-decomposition of G with
one bag containing N[V (Q)]. Note that the initialization of the induction holds
for i = k−1 as described in case (a). We show it still holds for a chordless path
with i vertices. We consider the following two cases.

• Either there is u ∈ NG(V (P))∪{v1,vi} (in particular, u /∈ P\{v1,vi}) such
that NG(u)⊆ NG[V (P)\{u}]. That is, we are in the same case as the first
item of (a). We proceed as above and the result holds by induction on n.
• Or there is w ∈ (NG(v1)∪NG(vi))\V (P) such that (P,w) is chordless (i.e.,

the vertex w is a neighbor of v1 or vi but not both and w /∈ NG(V (P) \
{v1,vi})). Therefore, we apply the induction hypothesis (on i) on P′ =
(P,w). By the assumption on i, either our algorithm returns an induced
cycle larger than k or it computes a k-good tree-decomposition of G with
one bag containing NG[V (P′)]⊇ NG[V (P)].

Now we describe the algorithm and study its complexity. Let G be an m-edge n-vertex
graph with maximum degree ∆. Roughly speaking, the algorithm proceeds by steps. At
each step, one vertex is considered and the step takes O(m) time. We prove that at each
step (but the initial one), at least one edge will be considered and that each edge is con-
sidered at most once (but one vertex may be considered several times). This implies a
time-complexity of O(m2) for the algorithm.

The algorithm starts from an arbitrary vertex v ∈ V (G) and computes the connected
components C1, · · · ,C j of G\N[v] ( j ≥ 1) in time O(m) [HT73]. We start with the k-good
tree-decomposition for the induced graph of N[v] in G that consists of one bag B = N[v]
adjacent to, for any i ≤ j, each bag Bi = {v}∪{w ∈ N(v) : N(w)∩Ci 6= /0}. This takes
time O(m).

Now, at some step of the strategy, assume that we have built a k-good tree-
decomposition (T,X) of a connected subgraph G0 of G. Let C1, · · · ,C j ( j ≥ 1) be the
connected components of G \G0, and, for any i ≤ j, let Si be the set of the vertices of G0

that are adjacent to some vertex of Ci. Assume finally that, for any i≤ j, there is a leaf bag
Bi ⊃ Si of (T,X) where Pi = Bi \ Si is a chordless path dominating Bi and has minimum
number of vertices.

For any e ∈ E(G), we say that e = {x,y} is alive if there is i ≤ j such that x ∈ Si∪Ci

and y ∈Ci. Note that, if an edge is alive, such an integer i is unique. An edge that is not
alive is said dead. Note also that, after the initial step, all edges in the bag B are dead and
other edges are alive.

The next step consists of the following. Choose any i ≤ j and let w be any vertex of
Si such that Q = Pi∪{w} is a chordless path. (Such w exists because Pi is the dominating
path with the minimum order. Suppose Pi = {v1, . . . ,vl}. If NG(v1) \V (Pi) = /0, then the
chordless path Pi \ v1 dominates Bi and has less vertices than Pi. So NG(v1) \V (Pi) 6= /0.
If any w ∈ NG(v1) \V (Pi) is a neighbor of some vertices in Pi, then the chordless path
Pi \ v1 dominates Bi and has less vertices than Pi. ) Note that by definition of Si, there
is at least one edge from w to Ci and that such an edge is alive before this step. We
add the bag B′ = Q∪Bi ∪ (N(w)∩Ci) adjacent to Bi. If Q is larger than k, by the above
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proof, the algorithm finds a large cycle. Otherwise, the connected components C′1, · · · ,C′r
of Ci∪Bi \B′ are computed in time O(m). Let S′h, h≤ r, be the subset of the vertices of Si

that are adjacent to some vertex in C′h, and let Qh be the smallest subpath of Q dominating
S′h. Computing the sets S′1, · · · ,S′r only requires a time O(m) since we have only to check
the edges in B′. For any h≤ r, add a bag B′h = Qh∪S′h adjacent to B′.

One can check that this algorithm follows the above proof and that it eventually com-
putes the desired tree-decomposition or returns a large cycle.

To conclude, we can check that the set of edges alive after one step is contained in the
set of edges alive before this step, and that, at each step at least one edge (the one(s) from w
to Ci) becomes dead. Therefore, at each step, the number of alive edges strictly decreases
and the algorithm terminates when there are no more. Since each step takes time O(m) and
there are at most m steps, the result follows.

The following two theorems discuss some properties of the graphs with k-good tree
decompositions.

Theorem 9. Let G be a graph that admits a k-good tree-decomposition. Let ∆ be the
maximum degree of G. Then tw(G)≤ (k−1)(∆−1)+2 and tl(G)≤ k.

Proof. It directly follows the fact that, in a k-good tree-decomposition, each bag has a
dominating path with < k vertices.

Recall that a graph G has Gromov hyperbolicity ≤ δ if, for any u,v,w ∈V (G) and any
shortest paths Puv,Pvw,Puw between these three vertices, any vertex in Puv is at distance at
most δ from Pvw∪Puw. In the next theorem, we prove that the Gromov hyperbolicity of the
graph admitting a k-good tree-decomposition is at most b3

2 kc.
Notice that the result given in [CDE+08] refers to the seminal hyperbolicity and does

not imply our result for Gromov hyperbolicity.

Theorem 10. Any graph G that admits a k-good tree-decomposition has Gromov hyper-
bolicity at most b3

2 kc.

Proof. Let G = (V,E) be a graph that admits a k-good tree-decomposition ({Xi|i ∈ I},T =

(I,M)). Let T be rooted at bag X0, 0 ∈ I. For any u,v ∈ V , let us denote the distance
between u and v in G by d(u,v). By definition of a k-good decomposition, for any i ∈ I and
for any u,v ∈ Xi, we have d(u,v)≤ k.

Let x,y,z ∈V and let P1,P2,P3 be any three shortest paths in G between x and y, y and
z, x and z respectively. Let u ∈ P1. To prove the Theorem, we show that there is v ∈ P2∪P3

such that d(u,v)≤ b 3
2 kc.

First, let us assume that there is i ∈ I such that u ∈ Xi and there is v ∈ (P2∪P3)∩Xi 6= /0.
In that case, d(u,v)≤ k and the result holds.

Otherwise, let Tu be the subtree of T induced by {i ∈ I : u ∈ Xi}. Similarly, let Tx

be the subtree of T induced by {i ∈ I : x ∈ Xi} and Ty be the subtree of T induced by
{i ∈ I : y ∈ Xi}. Let P be the path in T between Tx and Ty. Note that P may be empty if
V (Tx)∩V (Ty) 6= /0. Let j ∈ V (Tx)∪V (Ty)∪P that is closest to Tu in T . If j ∈ V (Tu), then
X j is a separator between x and y or x ∈ X j or y ∈ X j. If x ∈ X j or y ∈ X j, then we are in
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the first case above; otherwise we have X j is a separator between x and y. Then z ∈ X j or
z cannot be in both the component of G \X j containing x and of the one containing y. So
one of the paths P2 or P3 should pass trough X j and we are in the the first case again.

Assume that j /∈ V (Tu), then we have that either X j is a separator between x and u or
x ∈ X j, and that either X j is a separator between y and u or y ∈ X j. Let Pxu and Puy be
the subpaths of P1 from x to u and from u to y respectively. By remark above, there exist
vertices w ∈ Pxu ∩X j and t ∈ Puy ∩X j. Possibly, w = t. Then d(w,u)+ d(u, t) = d(w, t)
because P1 is a shortest path, therefore, d(w,u)+ d(u, t) = d(w, t) ≤ k. So there is ` ∈ X j

with d(u, `)≤ b k
2c.

Finally, let us show that there is h ∈ (P2∪P3)∩X j. If x ∈ X j or y ∈ X j or z ∈ X j, it is
obvious. Otherwise, z cannot be in both the component of G \X j containing x and of the
one containing y, because X j separates x and y in G. Therefore one of the paths P2 or P3

should pass trough X j.
To conclude, d(u,h)≤ d(u, `)+d(`,h)≤ b k

2c+ k ≤ b3
2 kc.

From the above theorems, it is easy to get the following corollaries.

Corollary 7. Any k-chordal graph G with maximum degree ∆ has treewidth at most (k−
1)(∆−1)+2, tree-length at most k and Gromov hyperbolicity at most b3

2 kc.

Proof. By definition of k-chordal graph and Theorem 8, any k-chordal graph admits a k-
good tree-decomposition. The result follows from Theorems 9 and 10.

Corollary 8. There is an algorithm that, given an m-edge graph G and k ≥ 3, states that
either G has chordality at least k+1 or G has Gromov hyperbolicity at most b3

2 kc, in time
O(m2).

3.4 Recognition and Chordality of Planar k-Super-Caterpillars

In this section, we investigate the recognition of the k-super-caterpillars for an integer k ≥
1. We show that their recognition is NP-complete even when restricted in the class of
planar graphs. Moreover, we study the problem of computing the chordality of any k-
super-caterpillar.

3.4.1 NP-completeness of the recognition of planar k-super-caterpillars

Let us define the recognition problem of planar k-super-caterpillars as follows:

RECOGNITION OF PLANAR k-SUPER-CATERPILLARS

Instance: A planar graph G and a positive integer k.
Question: Is G a k-super-caterpillar?

We prove the NP-completeness of RECOGNITION OF PLANAR k-SUPER-
CATERPILLARS by doing a reduction from HAMILTON PATH OF PARTIAL GRIDS

problem [IPS82]. Obviously, it is in NP, because a dominating induced path smaller than
k of a graph G is a certification that G is a k-super-caterpillar. We show now that it is
NP-hard.
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Theorem 11. RECOGNITION OF PLANAR k-SUPER-CATERPILLARS is NP-hard.

Proof. Given a planar graph G, we construct a new planar graph H by subdividing every
edge e ∈ E(G), i.e., adding a new vertex ae for every edge e = uv of G and replacing uv by
a path uaev. In the following, we prove that:

Claim 2. There is a Hamilton path in G if and only if H is a planar k-super-caterpillar for
some k > 0.

If G has a Hamilton path, then after the subdivision of each edge, the Hamilton path in
G becomes an induced path P in H of order k− 1 = 2n− 1, n = |V (G)|. Every v ∈ V (G)

is in P and every ae is a neighbor of some v ∈V (G). So every vertex in H is either in P or
adjacent to some vertex in P. That is H is planar k-super-caterpillar.

Suppose now that H is a planar k-super-caterpillar, for some k > 0. Let P =

{b1b2 . . .bp}, p ≤ k− 1 be a dominating induced path in H. From the construction of
H, we see that every vertex v ∈V (G) is exactly adjacent to ae for each e incident to v; for
any e = uv ∈ E(G), every ae has degree 2 only adjacent to u and v. Equivalently, the two
neighbors of ae for any e ∈ E(G) are adjacent in G. So the vertices in P are arranged alter-
nately one vertex in G and one vertex ae /∈V (G) for some e∈ E(G). If every v∈V (G) is in
P, then suppose {bi,bi+2, . . . ,bi+2(n−1)}=V (G) for i = 1 or 2. Indeed, if b1 ∈V (G), then
i = 1; otherwise, i = 2. So each ae ∈ {bi+1,bi+3, . . .bi+2(n−1)−1}∩V (G) = /0 has two neigh-
bors in P, which are adjacent in G. Then bibi+2 . . .bi+2(n−1) for i = 1 or 2 is a Hamilton
path in G because for any i≤ j≤ i+2(n−2), b jb j+2 ∈ E(G). Otherwise, let u∈V (G)\P.
Then one neighbor ae of u is in P for some e incident to u in G. Since ae has degree 2 in H
and one of its neighbor u is not in P, ae has only one neighbor in P. So ae is an endpoint in
P. There are at most two endpoints in P, so, at most two vertices u,w ∈V (G) are not in P.
Then, we take P′ = uPw, if u 6= w, or P′ = uP, otherwise, as a dominating induced path in
H. Then we are in the previous case, in which it is proved that G has a Hamilton path.

From the above proof, we see that given an n-vertex planar graph G with a Hamil-
ton path, we can create a 2n-planar super-caterpillar by subdividing all the edges in G.
This is useful for proving the NP-completeness of deciding the chordality of any k-super-
caterpillars in the next subsection.

3.4.2 Chordality of planar k-super-caterpillars

In this subsection, we study the chordality of planar k-super-caterpillars.
From the proof of the Theorem 11, we see that the chordality of a planar k-super-

caterpillar is closely related with the following problem:

HAMILTON CYCLE WITH HAMILTON PATH(HCHP)
Instance: A graph G, which has a Hamilton Path.
Question: Is there a Hamilton Cycle in G?

Claim 3. If the HAMILTON CYCLE WITH HAMILTON PATH problem is NP-complete in
the class of planar graphs, then it is NP-complete to decide whether the chordality of a
given planar k-super-caterpillar is at least k.
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Proof. Given a planar graph G with a Hamilton path and |V (G)|= n, create a planar graph
H by subdividing all edges in G. Then from the proof of Theorem 11, H is a 2n-super-
caterpillar because G has a Hamilton path. Then there is a Hamilton cycle in G if and only
if there is an induced cycle of size at least 2n in H, equivalently the chordality of H is at
least 2n.

So we propose the following conjecture.

Conjecture 1. The HAMILTON CYCLE WITH HAMILTON PATH problem is NP-complete
in the class of planar graphs.

In the following, we prove that the HAMILTON CYCLE WITH HAMILTON PATH prob-
lem is NP-complete for general directed graphs by reduction from EXACT COVER problem.
The proof is similar with the one in [BM08], which proved that it is NP-complete to decide
whether there is a directed hamilton cycle in a given directed graph.

Let F be a family of subsets of a finite set U . An exact cover of U by F is a partition
of U , each set of which belongs to F [BM08].

EXACT COVER (EC)
Instance: A set U and a family F of subset of U .
Question: Is there an exact cover of X by F?

Lemma 23. [BM08] Exact Cover problem is NP-complete.

Theorem 12. The HAMILTON CYCLE WITH HAMILTON PATH problem is NP-complete
in the class of directed graph.

Proof. Given a set U = {e1, . . . ,em} and a family F = {S1, . . . ,Sn} of subsets of U , con-
struct a digraph G = (V,A) with a Hamilton path, which is only one arc different from the
digraph constructed in [BM08] (page 185-188). For the sake of completeness, we describe
it as follows. Let P be a directed path u1u2 . . .umum+1 with each arc (ui,ui+1) = ei ∈U for
i = 1, . . . ,m. Let Q be another directed path f1 f2 . . . fn fn+1 with each arc ( f j, f j+1) = S j

for j = 1, . . . ,n. Add two arcs (u1, f1) and ( fn+1,um+1) between the two directed paths P
and Q. For each element ei ∈ S j, i = 1, . . . ,m, j = 1, . . . ,n, let Pi j be a ’path’ of length
two whose edges are pairs of oppositely oriented arcs, i.e., Pi j = bi jci jdi j with four arcs
(bi j,ci j),(ci j,bi j),(ci j,di j),(di j,ci j). Take each Pi j for ei ∈ S j as a vertex and connect
them to be a directed path. Denote the obtained ’path’ as D j, j = 1, . . . ,n (See in Fig-
ure 3.3). Add arcs from f j to the initial vertex on D j and arcs from the terminal vertex
on D j to f j+1. Additionally, add arcs from bi j to ui and arcs from ui+1 to di j for each
ei ∈ S j, i = 1, . . . ,m, j = 1, . . . ,n. Finally, add one more arc (um+1,u1), which is not
added in the proof in [BM08]. There is a Hamilton path from f1 to um in G, which is
f1D1 f2 · · · ∪ fnDn fn+1∪{ fn+1um+1u1}∪ (P \ {um+1}). As proved in [BM08], the digraph
G has a directed Hamilton cycle C if and only if the set U has an exact cover by the family
of subsets F. If C does not use the arc S j, it is obliged to traverse D j from its initial to its
terminal vertex. Conversely, if C uses the arc S j , it is obliged to include each one of the
paths Pi j of D j in its route from um+1 to u1. Moreover, C contains exactly one of the paths
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Pi j (ei ∈ S j) in traveling from ui+1 to ui. The arcs S j of Q which are included in C therefore
form a partition of U . Conversely, every partition of U corresponds to a directed Hamilton
cycle of G. Further more, the numbers of vertices and arcs of G are linear functions of the
size of the instance (U,F). So the HAMILTON CYCLE WITH HAMILTON PATH problem
for directed graph is NP-complete.

P
1u

b ij

Q

jD

2u 3u iu i+1u mu m+1u

1f 2f jf j+1f nf n+1f

1S jS nS

1e
2e 3e ie m-1e

me

c ij d ij

Pij

Figure 3.3: The digraph G constructed from the exact cover problem.

Corollary 9. The HAMILTON CYCLE WITH HAMILTON PATH problem for general undi-
rected graph is NP-complete.

Proof. There is a classical transformation from directed graphs to undirected graphs. Given
a digraph D=(V,A), construct an undirected graph G as follows. Replace each vertex v∈V
with a path vinvmidvout and make each arc (u,v) ∈ A (resp. (v,u) ∈ A) incident to vin (resp.
vout). Change every arc to an edge, i.e., ignore the orientations of arcs. It is easy to check
that there is a directed Hamilton cycle in D (resp. Hamilton path from u to v for u,v ∈ V )
if and only if there is a Hamilton cycle in G (resp. Hamilton path from uin to vout).

3.4.2.1 Properties of planar k-super-caterpillar

Let us prove some properties of planar k-super-caterpillars graphs in this subsection, which
are going to be used for computing the chordality. In the rest of this section, let G = (V,E)
be a planar k-super-caterpillar graph with backbone B = {b1b2 . . .bp}, for p < k. Denote
by O the subgraph induced by G\B.

Lemma 24. O is an outerplanar graph.

Proof. Suppose by contradiction that O is not outerplanar. So, O has a K4 or a K2,3 as a
minor. In G, contract the backbone B to a unique vertex v. Then v is adjacent to every other
vertex in G. The K4 (K2,3) of O together with v is a K5-minor (K3,3-minor) of G. This is a
contradiction with the fact that G is a planar graph.

For a given planar k-super-caterpillar G, suppose that O is 2-connected. Then from
Lemma 17 O is a cycle {v1,v2, . . . ,vl} with some chords. Observe that if all neighbors
of b1 are neighbors of some vertex in {b2, . . . ,bp}, we could consider the backbone as
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{b2, . . . ,bp}, which is still an induced dominating path in G. So we can always sup-
pose there exists a vertex v1 that is a neighbor of b1 but not a neighbor of any vertex in
{b2, . . . ,bp}. Similarly, we suppose that vq is a neighbor of bp but it is not a neighbor of
{b1, . . . ,bp−1}. We can prove the following property for graphs where O is 2-connected:

Fact 1. Let v j be a neighbor of bi and v j′ be a neighbor of bi′ , for 1 ≤ j < j′ ≤ l and
1≤ i, i′ ≤ p. Then i≤ i′ when 1≤ j < j′ ≤ q, and i > i′, when q < j < j′ ≤ l.

Proof. Suppose i > i′ when 1≤ j < j′ ≤ q. We contract the backbone to an edge bi′bi and
O to a cycle with vertex set {v1,v j,v j′ ,vq}. Then v1 is adjacent to bi′ and vq is adjacent to
bi. With the two edges v jbi and v j′bi′ , the obtained graph is a K3,3, with one part {v j,vq,bi′}
and another part {v1,v j′ ,bi}. So, there is a K3,3 as a minor of G. It is a contradiction with the
fact that G is a planar graph. Similarly, we can prove that i≥ i′ when q+1≤ j < j′≤ l.

Before continuing, we give another notation. A segment in O is a set of consecutive
vertices in the cycle {v1,v2, . . . ,vl}. Take two vertices vs,vt for 1 ≤ s < t ≤ l as the two
ends of a segment, then there are two possible segments, denoted as {vs,vs+1, . . . ,vt} and
{vt ,vt+1, . . . ,vl,v1, . . . ,vs}. We say a segment {vs,vs+1, . . . ,vt} is between v1 and vq (resp.
between vq+1 and vl) if 1 ≤ s < t ≤ q (resp. q+ 1 ≤ s < t ≤ l). From the above Fact, we
obtain:

Fact 2. The neighbors of bi in O, for 1≤ i≤ p, are at most two segments: one between v1

and vq and another one between vq+1 and vl .

Proof. If for any 1 ≤ i ≤ p, bi has at most one neighbor in O, then it is true. Suppose for
1 ≤ s < t ≤ q, vs and vt are adjacent to bi but vs−1 and vt+1 are not adjacent to bi. Let
vr for s < r < t be adjacent to bx for some 1 ≤ x ≤ p. Then from vs adjacent to bi and
1 ≤ s < r ≤ q, we have x ≥ i by Fact 1; but from vt adjacent to bi and 1 ≤ r < t ≤ q, we
have x ≤ i by Fact 1. So i = x, i.e. bi = bx and vr for any s < r < t is only adjacent to bi.
So take the first and the last neighbor of bi in {v1, . . . ,vq}. The segment between this two
vertices are all neighbors of bi. Similarly we can prove that there is at most another one
segment between vq+1 and vl , which is a set of neighbors of bi.

3.4.2.2 Polynomial algorithm for chordality when O is an induced cycle

Let us now consider the chordality problem for planar k-super-caterpillars in the easy case
in which O is an induced cycle, i.e., there is no chords in O. Recall that G is a planar
k-super-caterpillar with backbone B = {b1, . . . ,bp}, for p < k, and O is an induced cycle
{v1,v2, . . . ,vl}. Let v1 be a neighbor of b1 but not a neighbor of b2 and vq a neighbor of bp

but not a neighbor of bp−1.

Lemma 25. If every vertex on the backbone has two segments neighbors, then O is a
longest induced cycle in G.

Proof. The proof is done by induction on |B|= p. Obviously, the lemma is true for p = 1.
Assume that it is true for any k-super-caterpillar with backbone B such that |B| < p. Now
we prove it is true for |B|= p.
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Suppose O is not a longest induced cycle in G. Then any longest induced cycle C of G
has to contain at least one vertex of the backbone. If C passes only by b1 at the backbone,
then it needs to passes by another (and only by) two neighbors v,v′ of b1. If v is adjacent
to v′, then C is a triangle. So O is also a longest induced cycle in G. Otherwise, since C
does not contain {b2, . . . ,bp}, it passes by all their neighbors in O. Then from C we get O
by replacing {vb1v′} in C with the segment in O from v to v′, which has at least two edges
(three vertices), since v and v′ are non-adjacent. So, |O| ≥ |C|. It can be proved similarly if
C passes only bp or C passes for both b1 and bp.

So, C passes by at least one bi for some 1 < i < p. Since every vertex on the backbone
has two segments neighbors in O, let u (resp. u′) be a neighbor of bi in O between v1

(resp. vq+1) and vq (resp. vl). Then {u,bi,u′} is a separator of G. Denote the two connect
components obtained by removing this separator as G1 and G2. The subgraph induced by
{u,bi,u′} is denoted as S. Note that C is either in G1 ∪ S or in G2 ∪ S (or passes u and u′

but not bi, which is not the case). Suppose that C is in G′ = G1∪S. To transform G′ to G′′,
a k-super-caterpillar with backbone B = {bi,bi+1, . . . ,bp}, we add a new vertex v0 adjacent
to bi, u and u′. So C is also an induced cycle in G′′. By induction, the longest induced cycle
in G′′ is OG′′ , which is the union of {uv0u′} and the segment from u to u′ in O∩G1. So,
|C| ≤ |OG′′ | ≤ |O|, and O is the longest induced cycle in G.

Now we consider the general case in which each vertex on the backbone have at most
two segment of neighbors in the induced cycle O. For easy description, we see some
notations first. For 1 ≤ i ≤ p, let Gi be the subgraph of G induced by {b1, . . . ,bi} and all
their neighbors in O. Denote by ui (resp. wi) the vertex v j in Gi ∩O with the maximum
(resp. minimum) j between 1 and q (resp. q+1 and l). Call the segment of neighbors of
bi between v1 and vq (resp. vq+1 and vl) its up neighborhood (resp. down neighborhood),
denoted by upN(bi) (resp. downN(bi)). If upN(bi) 6= /0 (resp. downN(bi) 6= /0) denote by
fi (resp. gi) the smallest (resp. biggest) neighbor of bi. Observe that ui (resp. wi) is not
always a neighbor of bi, since it is possible that bi has no neighbors between v1 and vq

(resp. vq+1 and vl), the case in which ui = ui−1 (resp. wi = wi−1). See Figure 3.4 for the
visual explanations of the defined vertices.

We are going to present a dynamic programming algorithm for finding a longest in-
duced cycle in G. For 1 ≤ i ≤ p, in each step i, we consider the induced subgraph Gi,
which is induced by {b1, . . . ,bi} and their neighbors in O. We compute a longest induced
cycle in Gi and if i 6= p the longest induced paths in Gi between every two vertices in
{ui,bi,wi}. Because for 1≤ i≤ p−1, {ui,bi,wi} is a separator of Gi and Gi+1, the induced
paths and cycles in Gi+1 can be computed based on the ones in Gi. In the following, we
give the detailed algorithm.

In order to simplify the understanding, we are going to define a subroutine for each
parameter calculated on the main algorithm. Given two paths P and Q, denote max{P,Q}
as the longer path of P and Q in the following; denote their concatenation by (P,Q) the
path induced by V (P)∪V (Q); to make descriptions more concise, we omit the detail of
reversing P or Q if necessary. Given two vertices u,w ∈ V (G), let P(u,w) be an induced
path between u and w. Given three vertices u,w,b ∈V (G), let P(u,w, b̄) be an induced path
between u and w not passing through b. For vs,vt ∈O, 1≤ s≤ t ≤ l, denote O[vs, . . . ,vt ] as
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Figure 3.4: The special defined neighbors fi,gi,ui,wi of bi. fi = ε means fi does not exist
since upN(bi) = /0

the induced path vsvs+1 . . .vt−1vt in O from vs to vt .
Algorithm 1 computes a longest induced path between ui and bi in Gi. A longest

induced path between wi and bi in Gi is calculated similarly.

Algorithm 1: Longest induced path LIP(ui,bi)

Input: Gi and a longest induced path P(ui−1,bi−1) between ui−1 and bi−1 in the
subgraph Gi−1, also a longest induced path P(ui−1,wi−1, b̄i−1) (resp.
P(ui−1,bi−1, w̄i−1)) between ui−1 and wi−1 (resp. bi−1) not passing through
bi−1 (resp. wi−1) in the subgraph Gi−1

Output: P(ui,bi)

if upN(bi) = /0 and downN(bi) = /0 then1

P(ui,bi)← (P(ui−1,bi−1),bi)2

else if upN(bi) 6= /0 then3

P(ui,bi)← (ui,bi)4

else if biwi−1 ∈ E(Gi) then5

P(ui,bi)← max{(P(ui−1,wi−1, b̄i−1),bi),(P(ui−1,bi−1, w̄i−1),bi)}6

else7

P(ui,bi)← max{(P(ui−1,wi−1, b̄i−1),gi,bi),(P(ui−1,bi−1),bi)}8

Lemma 26. Algorithm 1 outputs a longest induced path P(ui,bi) between ui and bi in Gi.

Proof. Recall that Gi is the graphs induced by V (Gi−1), bi and its neighbors in O. If the up
neighborhood and the down neighborhood of bi are empty, then ui = ui−1 and bi−1 is the
only vertex that connects bi to the rest of the graph. So, every path from any vertex to bi

passes necessarily by bi−1. Then, P(ui,bi) = (P(ui−1,bi−1),bi). If the up neighborhood of
bi is not empty, then there is an edge between ui and bi, and P(ui,bi) = (ui,bi). Consider
now that the up neighborhood of bi is empty but its down neighborhood is not. So, again,
ui = ui−1, and any path from ui to bi should pass through bi−1 or wi−1 (or both).

If biwi−1 ∈ E(Gi), then any induced path from ui to bi has to pass through exactly one
of bi−1 and wi−1. If it passes through wi−1, then it is at most as long as the induced path
(P(ui−1,wi−1, b̄i−1),bi); otherwise it is at most as long as (P(ui−1,bi−1, w̄i−1),bi). So the
maximum one of these two paths is a longest induced path from ui to bi in Gi.



66 Chapter 3. k-Good Tree Decomposition

Otherwise, consider wi−1bi /∈ E(Gi). So gi /∈ V (Gi−1). (Recall that gi is the biggest
neighbor of bi in O between vq+1 and vl when downN(bi) 6= /0.) Then any induced path
from ui to bi has to pass through exactly one of bi−1 and gi. If it passes through gi, then
it is at most as long as the induced path (P(ui−1,wi−1, b̄i−1),gi,bi), since any induced path
from ui to gi has to pass through wi−1; otherwise it is at most as long as (P(ui−1,bi−1),bi).
So the maximum one of these two paths is a longest induced path from ui to bi in Gi.

Algorithm 2 computes a longest induced path between ui and bi in Gi not passing
through wi. A longest induced path between wi and bi in Gi not passing through ui is
calculated similarly.

Algorithm 2: Longest induced path LIP(ui,bi, w̄i)

Input: Gi and a longest induced path P(ui−1,bi−1) between ui−1 and bi−1 in the
subgraph Gi−1, also a longest induced path P(ui−1,wi−1, b̄i−1) (resp.
P(ui−1,bi−1, w̄i−1)) between ui−1 and wi−1 (resp. bi−1) not passing through
bi−1 (resp. wi−1) in the subgraph Gi−1

Output: P(ui,bi, w̄i)

if upN(bi) = /0 and downN(bi) = /0 then1

P(ui,bi, w̄i)← (P(ui−1,bi−1, w̄i−1),bi)2

else if upN(bi) 6= /0 then3

P(ui,bi, w̄i)← (ui,bi)4

else if |downN(bi)|= 1 and biwi−1 /∈ E(Gi) then5

P(ui,bi, w̄i)← (P(ui−1,bi−1),bi)6

else if |downN(bi)|= 1 and biwi−1 ∈ E(Gi) then7

P(ui,bi, w̄i)← (P(ui−1,bi−1, w̄i−1),bi)8

else if |downN(bi)|> 1 and biwi−1 /∈ E(Gi) then9

P(ui,bi, w̄i)← max{(P(ui−1,wi−1, b̄i−1),gi,bi),(P(ui−1,bi−1),bi)}10

else11

P(ui,bi, w̄i)← max{(P(ui−1,wi−1, b̄i−1),bi),(P(ui−1,bi−1, w̄i−1),bi)}12

Lemma 27. Algorithm 2 outputs a longest induced path P(ui,bi, w̄i) between ui and bi not
passing through wi in Gi.

Proof. Recall that Gi is the graphs induced by V (Gi−1), bi and its neighbors in O. If the
up neighborhood and the down neighborhood of bi are empty, then ui = ui−1, wi = wi−1

and bi−1 is the only vertex that connects bi to the rest of the graph. So, every path from
any vertex to bi passes necessarily by bi−1. Then, P(ui,bi, w̄i) = (P(ui−1,bi−1, w̄i−1),bi).
If the up neighborhood of bi is not empty, then there is an edge between ui and bi, and
P(ui,bi, w̄i) = (ui,bi). Consider now that the up neighborhood of bi is empty but its down
neighborhood is not. So ui−1 = ui. If bi has only one neighbor in its down neighbor-
hood and biwi−1 /∈ E(Gi), then wi 6= wi−1 and wiwi−1 ∈ E(Gi). Since ui = ui−1 and wi
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is not in Gi−1, (P(ui−1,bi−1),bi) is a longest induced path between ui and bi not pass-
ing by wi. If bi has only one neighbor in its down neighborhood and biwi−1 ∈ E(Gi),
then wi = wi−1 and the desired path is (P(ui−1,bi−1, w̄i−1),bi). If bi has more than one
neighbor in its down neighborhood and biwi−1 /∈ E(Gi), then P(ui,bi, w̄i) is the longer
path between (P(ui−1,wi−1, b̄i−1),gi,bi) and (P(ui−1,bi−1),bi), since any path from ui to
bi should pass through bi−1 or wi−1. Otherwise, P(ui,bi, w̄i) is the longer one between
(P(ui−1,wi−1, b̄i−1),bi) and (P(ui−1,bi−1, w̄i−1),bi).

Algorithm 3 computes a longest induced path between ui and wi in Gi which does not
pass through bi.

Algorithm 3: Longest induced path LIP(ui,wi, b̄i)

Input: Gi and a longest induced path P(ui−1,wi−1) between ui−1 and wi−1 in the
subgraph Gi−1

Output: P(ui,wi, b̄i)

P(ui,wi, b̄i)← (O[ui, · · · ,ui−1],P(ui−1,wi−1),O[wi−1, · · · ,wi])1

Lemma 28. Algorithm 3 outputs a longest induced path P(ui,wi, b̄i) between ui and wi not
passing through bi in the subgraph graph Gi.

Proof. Any induce path between ui and wi not passing through bi has to pass through
ui−1 and wi−1. The only induced path from ui (resp. wi) to ui−1 (resp. wi−1)
is O[ui, . . . ,ui−1] (resp. O[wi, . . . ,wi−1]), the segment on O. So P(ui,wi, b̄i) =

(O[ui, · · · ,ui−1],P(ui−1,wi−1),O[wi−1, · · · ,wi]).

Algorithm 4 calculates a longest induced P(ui,wi) path between ui and wi in Gi. Note
that P(ui,wi) is the longer path between a longest induced path from ui to wi passing
through bi and one not passing through bi, i.e., P(ui,wi, b̄i). It is simple to compute
P(ui,wi, b̄i) in Algorithm 3. However, many cases need to be considered to compute a
longest induced path between ui and wi passing through bi.

Lemma 29. Algorithm 4 outputs a longest induced path P(ui,wi) between ui and wi in the
subgraph graph Gi.

Proof. A longest induced P(ui,wi) path between ui and wi in Gi is the longer path of two
paths, a longest induced path between ui and wi not passing through bi, i.e., P(ui,wi, b̄i),
and a longest induced path between ui and wi passing through bi. As proved in Lemma 28,
P(ui,wi, b̄i) can be computed by Algorithm 3. The main difficulty is to compute a longest
induced path between ui and wi passing through bi. In the following, the proof is performed
case by case.

• If bi has no neighbors in O, i.e. upN(bi) = /0 and downN(bi) = /0, then bi is only
adjacent to bi−1 in Gi and ui = ui−1, wi = wi−1. No path in Gi between ui and wi

passes through bi. So P(ui,wi) = P(ui,wi, b̄i).
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Algorithm 4: Longest induced path LIP(ui,wi)

Input: Gi and a longest induced path P(ui−1,wi−1) between ui−1 and wi−1 in the
subgraph Gi−1, also longest induced path P(bi−1,wi−1, ūi−1)) and
P(bi−1,wi−1) in the subgraph Gi−1

Output: P(ui,wi)

P(ui,wi, b̄i)← The output of Algorithm 3 Longest induced path LIP(ui,wi, b̄i)1

if upN(bi) = /0 and downN(bi) = /0 then2

P(ui,wi)← P(ui,wi, b̄i)3

else if upN(bi) 6= /0 and downN(bi) 6= /0 then4

P(ui,wi)← max{P(ui,wi, b̄i),ui,bi,wi}5

else6

Exactly one of upN(bi) and downN(bi) is empty. /*We deal with the cases in7

which upN(bi) 6= /0 and downN(bi) = /0 in the following (the case in which
upN(bi) = /0 and downN(bi) 6= /0 is analogue)*/
if |upN(bi)| ≥ 2 and biui−1 /∈ E(Gi) then8

P(ui,wi)← max{P(ui,wi, b̄i),(ui,bi,bi−1,P(bi−1,wi−1))}9

else if |upN(bi)| ≥ 2 and biui−1 ∈ E(Gi) then10

P(ui,wi)← max{P(ui,wi, b̄i),(ui,bi,bi−1,P(bi−1,wi−1, ūi−1))}11

else if |upN(bi)|= 1 and biui−1 /∈ E(Gi) then12

P(ui,wi)← max{P(ui,wi, b̄i),(ui,bi,bi−1,P(bi−1,wi−1, ūi−1))}13

else14

h←max{x : bxui−1 ∈ E(Gi−1),1≤ x≤ i−1}15

m←max{y : byui−1 ∈ E(Gi−1),1≤ y≤ i−1}16

if h < m then17

P(ui,wi)← max{P(ui,wi, b̄i),(ui,bi,bi−1, . . . ,bm,wi−1)}18

else19

P(ui,wi)← P(ui,wi, b̄i)20

• If bi has two segments of neighbors in O, i.e., upN(bi) 6= /0 and downN(bi) 6= /0, then
uibi,wibi ∈ E(Gi). So if P(ui,wi) passes through bi, then P(ui,wi) = (ui,bi,wi). So
P(ui,wi) = max{P(ui,wi, b̄i),(ui,bi,wi)}.

• Otherwise bi has only one segment of neighbors in O. Suppose upN(bi) 6= /0 and
downN(bi) = /0. The other case can be proved symmetrically. So wi = wi−1, biwi /∈
E(Gi) and biui ∈ E(Gi).

– If |upN(bi)| ≥ 2 and biui−1 /∈ E(Gi), then ui 6= ui−1 and uiui−1 /∈ E(Gi).
A longest induced path between ui and wi passing through bi also passes
through bi−1. (If not, it needs to passes through ui−1. But an in-
duced path from ui to ui−1 passing through bi is not longer than the
one O[ui, · · · ,ui−1].) Then it consists of two subpaths, (ui,bi,bi−1) and a
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longest induced path P(bi−1,wi−1) between bi−1 and wi = wi−1 in Gi−1. So
P(ui,wi) = max{P(ui,wi, b̄i),(ui,bi,bi−1,P(bi−1,wi−1))}. Note that bi is only
adjacent to bi−1 in Gi−1 and ui is not adjacent to any vertex in Gi−1. So
(ui,bi,bi−1,P(bi−1,wi−1)) is an induced path. But it will be different for the
next two cases below (bi or ui will be adjacent to ui−1).

– Consider the case in which |upN(bi)| ≥ 2 and biui−1 ∈ E(Gi). As men-
tioned above, the path (ui,bi,bi−1,P(bi−1,wi−1)) may be not induced if
P(bi−1,wi−1) passes through ui−1 because biui−1 ∈ E(Gi). So we replace
P(bi−1,wi−1) with P(bi−1,wi−1, ūi−1). Then (ui,bi,bi−1,P(bi−1,wi−1, ūi−1)) is
a longest induced path between ui and wi passing through bi. So P(ui,wi) =

max{P(ui,wi, b̄i),(ui,bi,bi−1,P(bi−1,wi−1, ūi−1))}.
– If |upN(bi)|= 1 and biui−1 /∈ E(Gi), then ui 6= ui−1 and uiui−1 ∈ E(Gi). Simi-

larly, the path (ui,bi,bi−1,P(bi−1,wi−1)) may be not induced if P(bi−1,wi−1)

passes through ui−1 because uiui−1 ∈ E(Gi). So we replace P(bi−1,wi−1)

with P(bi−1,wi−1, ūi−1). Then the path (ui,bi,bi−1,P(bi−1,wi−1, ūi−1)) is a
longest induced path between ui and wi passing through bi. So P(ui,wi) =

max{P(ui,wi, b̄i),(ui,bi,bi−1,P(bi−1,wi−1, ūi−1))}.
– Now see the last case in which |upN(bi)| = 1 and biui−1 ∈ E(Gi), i.e. bi has

only one neighbor ui = ui−1 in O. Any path between ui and wi passing through
bi also passes through bi−1, because bi is only adjacent to ui and bi−1 in this
case. Then it consists of two subpaths, (ui,bi,bi−1) and a longest induced path
P(bi−1,wi−1) between bi−1 and wi = wi−1 in Gi−1 not passing through ui−1

and its neighbors (to make sure (ui,bi,bi−1,P(bi−1,wi−1)) is induced). Since
ui = ui−1 and wi = wi−1 are both in Gi−1, they are neighbors of some ver-
tices in {b1, . . . ,bi−1}. As defined in the algorithm, bh ∈ {b1, . . . ,bi−1} is the
one with biggest index h such that bh is a neighbor of ui−1, i.e., no vertex bx

is adjacent to ui−1 for x = h + 1, . . . , i− 1. Fact 1 shows that upN(bx) = /0
for x = h+ 1, . . . , i− 1. Similarly bm ∈ {b1, . . . ,bi−1} is the one with biggest
index m such that bm is a neighbor of wi−1. Then from Fact 1 each vertex
by ∈ {bm+1, . . . ,bi−1} satisfies downN(by) = /0 for y = m + 1, . . . , i− 1. So
no induced path from bi−1 to wi−1 can reach O until arriving bh or bm. If
h < m, then the path passes bm first and goes to wi−1 directly. So P(ui,wi) =

max{P(ui,wi, b̄i),(ui,bi,bi−1, . . . ,bm,wi−1)}. Otherwise, the path passes bh and
ui−1bh ∈ E(Gi) then uibibi−1 · · ·bh is a cycle. So P(ui,wi) = P(ui,wi, b̄i).

Finally, we describe the main algorithm. It receives G with O an induced cycle and
returns, after successive calls of the previous described subroutines, a longest induced cycle
on it.

Theorem 13. Given a planar k-super-caterpillar G with a backbone B = {b1, . . . ,bp} and
O = G \B being an induced cycle, Algorithm 5 gives the longest induce cycle C in linear
time.
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Algorithm 5: Main: longest induced cycle
Input: G is a planar k-super-caterpillar G with a backbone B = {b1, . . . ,bp} and

O = G\B being an induced cycle {v1, . . . ,vl}
Output: C
if downN(b1) = /0 then1

P(u1,b1)← (u1,b1); P(u1,b1, w̄1)← (u1,b1); P(w1,b1)← /0;2

P(w1,b1, ū1)← /0; P(u1,w1)← /0; P(u1,w1, b̄1)← /0;3

if upN(b1) = {v1} then4

C1 ← /05

else6

C1 ← (v1,b1,v2,v1)7

else8

P(u1,b1)← (u1,b1); P(u1,b1, w̄1)← (u1,b1)1; P(w1,b1)← (w1,b1);9

P(w1,b1, ū1)← (w1,b1); P(u1,w1)← O[w1, · · · ,u1];10

P(u1,w1, b̄1)← O[w1, · · · ,u1]; C1← (v1,g1,b1,v1)11

for i← 2 to p do12

if upN(bi) = /0 and downN(bi) = /0 then13

Ci←Ci−114

else if upN(bi) 6= /0 and downN(bi) = /0 (the case in which upN(bi) = /0 and15

downN(bi) 6= /0 is analogue) then
Ci← max{Ci−1,(P(ui−1,bi−1),bi, fi,ui−1)}16

else if biui−1 ∈ E(Gi) and biwi−1 ∈ E(Gi) then17

Ci← max{Ci−1,(P(ui−1,wi−1, b̄i−1),bi,ui−1),18

(P(ui−1,bi−1, w̄i−1),bi,ui−1),(P(wi−1,bi−1, ūi−1),bi,wi−1)};
else if biui−1 ∈ E(Gi) and biwi−1 /∈ E(Gi) (the case in which biui−1 /∈ E(Gi) and19

biwi−1 ∈ E(Gi) is analogue) then
Ci← max{Ci−1,(P(ui−1,wi−1, b̄i−1),gi,bi,ui−1),20

(P(ui−1,bi−1),bi,ui−1),(P(wi−1,bi−1, ūi−1),bi,gi,wi−1)};
else21

Ci← max{Ci−1,(P(ui−1,wi−1, b̄i−1)gi,bi, fi,ui−1),22

(P(ui−1,bi−1),bi, fi,ui−1),(P(wi−1,bi−1),bi,gi,wi−1)};
P(ui,bi)← The output of Algorithm 1 Longest induced path LIP(ui,bi)23

P(ui,bi, w̄i)← The output of Algorithm 2 Longest induced path LIP(ui,bi, w̄i)24

P(wi,bi)← Longest induced path LIP(wi,bi) computed as in Algorithm 125

P(wi,bi, ūi)← Longest induced path LIP(wi,bi, ūi) computed as in Algorithm 226

P(ui,wi, b̄i)← The output of Algorithm 3 Longest induced path LIP(ui,wi, b̄i)27

P(ui,wi)← The output of Algorithm 4 Longest induced path LIP(ui,wi)28

return Cp29
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Proof. Let Ci be the cycle computed by the algorithm for 1≤ i≤ p. It is enough to prove
that Ci is a longest induced cycle in Gi, which is the subgraph of G induced by {b1, . . . ,bi}
and all their neighbors in O. The proof is by induction. For i = 1, G1 is induced by b1

and its neighbors in O. As we assumed before, v1 is a neighbor of b1 (but not a neighbor
of b2). So upN(b1) = {v1,v2, . . . ,u1}. downN(b1) may be an empty set. Because of the
simple structure of G1, one can see that for both cases, downN(b1) is empty or not, C1 is
a longest induced cycle, a triangle, in G1 if it exists. Simultaneously, P(u1,b1) is a longest
induced path from u1 to b1 and P(u1,b1, w̄1) is the one not passing through w1; similarly
P(w1,b1), P(w1,b1, ū1), P(u1,w1), P(u1,w1, b̄1) are the longest induced paths if they exist.
Suppose Ci−1 is a longest induced cycle in Gi−1. In the following, we prove that Ci is a
longest induced cycle in Gi.

Note that S = {ui−1,bi−1,wi−1} is a separator in Gi. In Gi \S, there are two connected
components, L = Gi−1 \S and R = Gi \Gi−1. Any induced cycle in Gi is contained either in
L∪Gi[S] =Gi−1 or in Gi[S]∪R or none of them. A longest induced cycle in Gi is the longest
one among these three case, denote them as Cle f t , Cright and Cmid respectively. We see
that Cle f t is a longest induced cycle in Gi−1, so Cle f t =Ci−1 by assumption. The subgraph
Hi =Gi[S]∪R is induced by S, bi and its neighbors in Gi. Because of the simple structure of
Hi, Cright is easy to get if it exists, either a triangle or a square. We are going to see that Cright

is always smaller than Cmid . So Ci =max{Ci−1,Cmid}. Since S is a separator between L and
R and |S|= 3, Cmid ∩R is an induced path in Gi and |V (Cmid ∩R)| ≥ 1. The end(s) of this
induced path is (are) adjacent to two vertices in S. There are three possibilities for these two
vertices in S, {ui−1,wi−1}, {ui−1,bi−1} or {wi−1,bi−1}. Then Cmid consists of two induced
paths between these two vertices, one in Gi−1 and the other one in Hi with all interior
vertices in R. So Cmid ∩Gi−1 is also an induced path between these two vertices. (Note
that this induced path may also pass through the third vertex in S, i.e. |S∩Cmid | may be
3.) Consider the f or loop in the algorithm. In the (i−1)th loop, we get that P(ui−1,bi−1),
P(ui−1,bi−1, w̄i−1), P(wi−1,bi−1), P(wi−1,bi−1, ūi−1), P(ui−1,wi−1), P(ui−1,wi−1, b̄i−1) are
the longest induced paths in Gi−1 between two vertices and some of them not passing
through specific vertices from Lemmas 26 - 29. To compute the desired induced paths in
Hi and to make sure that Cmid is induced, several cases need to be considered.

• If bi has no neighbors, i.e., upN(bi) = /0 and downN(bi) = /0, then there is no desired
induced path in Hi. Then Cright and Cmid do not exist. So Ci =Ci−1.

• Suppose bi has only one segment neighbors, i.e., upN(bi) 6= /0 and downN(bi) = /0
or the contrary. We consider only the first case and the other one can be proved
similarly. There is only one induced path (bi−1,bi, fi,ui−1) from bi−1 to ui−1. Re-
mind that fi denotes the smallest neighbor of bi if upN(bi) 6= /0. Then fi = ui−1

if ui−1bi ∈ E(G). So Cmid = (P(ui−1,bi−1),bi, fi,ui−1) and it is induced because
bi and fi is not adjacent to any interior vertices in P(ui−1,bi−1). Then Ci =

max{Ci−1,(P(ui−1,bi−1),bi, fi,ui−1)}.

• Now consider bi has two segments neighbors, i.e., upN(bi) 6= /0 and downN(bi) 6= /0.
We see that all the induced paths in Hi between two vertices in S passes through bi. So
to make sure Cmid is induced, it is necessary to consider the cases bi is adjacent to ui−1
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and wi−1 or not separatorly. If biui−1 ∈ E(Gi) and biwi−1 ∈ E(Gi), then the induced
path from wi−1 to ui−1 is (wi−1,bi,ui−1). Combining it with P(ui−1,wi−1, b̄i−1) or
P(ui−1,wi−1) will obtain a cycle in Gi. To make sure the obtained cycle is induced,
we get (P(ui−1,wi−1, b̄i−1),bi,ui−1) since bibi−1 ∈ E(Gi). Similarly, the induced
path in Hi from bi−1 to ui−1 (resp. wi−1) is (bi−1,bi,ui−1) (resp. (bi−1,bi,wi−1)).
Combining it with P(ui−1,bi−1, w̄i−1) (resp. P(wi−1,bi−1, ūi−1)) gives an induced
cycle, (P(ui−1,bi−1, w̄i−1),bi,ui−1) (resp. (P(wi−1,bi−1, ūi−1),bi,wi−1)). Then Cmid

is the longest cycle among these three. We see that Cright is a triangle and it is
smaller than Cmid . So we have that Ci = max{Ci−1,(P(ui−1,wi−1, b̄i−1),bi,ui−1),
(P(ui−1,bi−1, w̄i−1),bi,ui−1),(P(wi−1,bi−1, ūi−1),bi,wi−1)}. The other three cases
can be proved similarly, in which biui−1 ∈ E(Gi) and biwi−1 /∈ E(Gi), biui−1 /∈ E(Gi)

and biwi−1 ∈ E(Gi), biui−1 /∈ E(Gi) and biwi−1 /∈ E(Gi). We omit the tedious proofs.

In the f or loop, the induce paths and cycle are updated in constant time. So the algorithm
runs in linear time.

3.5 Perspectives

Inspired by the study of cops and robber games on k-chordal graphs, we get a polynomial
algorithm that, given a graph G and k ≥ 3, either returns an induced cycle larger than k in
G, or computes a k-good tree decomposition of G. So for any k-chordal graph, we always
get a k-good tree decomposition of this graph. A graph with a k-good tree decomposition is
proved to have bounded (O(k)) treelength and hyperbolicity; also its treewidth is bounded
by O(k− 1)(∆− 1)+ 2, where ∆ is the maximum degree of the graph. It is interesting to
explore some algorithmic applications of k-good tree decompositions. In next chapter, we
apply it to design a compact routing schemes for graphs admitting a k-good tree decompo-
sitions, including k-chordal graphs.

In the k-good tree decomposition for k = 2, each bag contains a dominating vertex,
which is adjacent to all other vertices in the bag. So we also call the 2-good tree decompo-
sitions as star tree decompositions. Note that in the proof of Theorem 8, it is a necessary
condition that k ≥ 3. One of the ongoing works is to characterize graphs admitting a star
tree decomposition.

Recall that given a tree decomposition (T,X) of a graph G = (V,E), the breadth of
(T,X) is the minimum integer r such that for every bag X ∈ X there is a vertex vX ∈ V at
distance at most r from all other vertices in X . Note that in the definition of breadth, vX is
not necessary contained in X . But we can prove that a graph has a star tree decomposition
if and only if the graph has treebreadth 1, which is the minimum breadth over all tree
decompositions of the graph. In [AAD14], Abu-Ata and Dragan said that ’ it is conceivable
that the problem of determining whether a given graph has treebreadth at most ρ ≥ 1 is
NP-complete’. But no proof is given. The complexity is still open to decide whether a
given graph has a star tree decomposition. We have not gotten a strong clue for the NP-
completeness.

Another challenge is to prove or disprove the Conjecture 1, which says that it is NP-
complete to decide whether a graph with a Hamilton path has a Hamilton cycle.



Part II

Routing Problems





CHAPTER 4

Compact Routing Scheme for
k-Good Tree Decomposable Graphs

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Model And Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2.1 Routing In Trees [FG01] . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.2 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 Compact Routing algorithm in k-good tree-decomposable graphs . . . . 79
4.4 Performance of the routing scheme . . . . . . . . . . . . . . . . . . . . . 80
4.5 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Compact routing problem, is one of the research areas in which tree decompositions
have already been proved useful [Dou05]. As an application of k-good tree decompo-
sition presented in Chpater 3, this chapter proposes a compact routing scheme for the
class of graphs admitting such tree-decompositions, the so called k-good tree decom-
posable graphs. The results of this chapter is a collaboration with N. Nisse, K. Suchan
and A. Kosowski. It has been published in the proceeding of the conference ICALP
2012 [c-KLNS12] and in the journal Algorithmica [j-KLNS14].

4.1 Introduction

Transmitting messages between pairs of routers (vertices) is an elementary and essential
activity of any communication networks. This mission is performed by using a routing
scheme, which is an algorithm directing traffic in a network. More precisely, when any
source vertex in the network has a message to a destination vertex, a routing scheme is an
algorithm selecting the best path to send the message to its destination according to its rout-
ing tables, which stores some informations of the network. Naturally, it is fastest to route
messages along shortest paths from the sources to the destinations. To guarantee optimal
routes, a straightforward approach is to store a complete routing table in each vertex s of
the network, which for each destination vertex t, specifies the first edge on some shortest
path from s to t. This approach requires O(n logd) memory bits for a vertex of degree d in
an n-vertex network. So it becomes too expensive for large scale communication networks,
e.g. the Internet, the Facebook. Thus it is interesting to design compact routing schemes,
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which requires lower memory and produces paths not too much longer than the shortest
paths.

The efficiency of a routing scheme is measured in terms of its multiplicative or additive
stretch factors, which are the maximum ratio or difference between the length of a path
computed by the scheme and the one of a shortest path between the same pair of vertices.
The space complexity of a routing scheme is mainly (not only) measured in terms of the
size of its routing table in each vertex, which stores the necessary information for routing
messages. The address or (name) of each vertex and the port number of each edge also
requires some memory space. If the designer of the scheme is allowed to label the vertices
in the way he wants, then the routing scheme is called labelled routing scheme; otherwise,
that is, each vertex in the network already has a predefined fixed label or name, it is called
name-independent routing scheme. Let us see some related works below.

4.1.1 Related Work

In a name-independent routing scheme, the designer of the scheme is not allowed to la-
bel the vertices in the way he wants, that is, each vertex in the network has a prede-
fined fixed label. Abraham et al. provided a universal name-independent routing scheme
with multiplicative stretch O(k) and O(n1/k polylog(n)) space in [AGM04]. There is a
big constant hidden in the multiplicative stretch O(k) of this routing scheme. But for
k = 2, Abraham et al. reduces the hidden constant. They presented a compact routing
scheme using O(

√
npolylog(n)) space and multiplicative stretch 3 [AGM+08]. This is op-

timal in the sense that there are weighted trees for which every name-independent routing
scheme with space less than n1/k requires stretch at least 2k+1 and average stretch at least
k/4 [AGM06].

In labelled routing scheme, a routing scheme with multiplicative stretch at most 2k−1,
k ≥ 2 and using n1/k polylog(n) bits per vertex in arbitrary graph is designed in [TZ05].
Moreover, for any shortest path routing scheme, for any constant ε , 0 < ε < 1, and for
every integer d such that 3 ≤ d ≤ εn, there exists a n-vertex network of maximum degree
d that locally requires Θ(n logd) bits of memory on Θ(n) vertices [GP96], which is the
same as the complete routing table. Subsequently, the interest of the scientific community
was turned toward specific properties of graphs. Several routing schemes have been pro-
posed for particular graph classes: e.g., trees [FG01], bounded growth1 [AM05], bounded
hyperbolic graph [CDE+12], bounded doubling dimension2 [AGGM06, KRX06], exclud-
ing a fixed graph as a minor [AGM05, AG06], etc. The best compact routing scheme
in k-chordal graphs (independent from the maximum degree) is due to Dourisboure and
achieves a stretch of k+ 1 using routing tables of size O(log2 n) bits [Dou05]. A routing
scheme achieving stretch k−1 with a distributed algorithm for computing routing tables of
size O(∆ logn) bits has been proposed in [NRS12], where ∆ denotes the maximum degree
of the graph.

1A weighted undirected graph is δ growth bounded if the number of vertices at distance 2r around any
given vertex is at most δ times the number of vertices at distance r [AM05].

2The doubling dimension of a graph G is the minimum k such that any ball of radius R can be covered by
2k balls of radius R/2 [GKL03].
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The rest of this chapter is organized as follows. We describe the model and data struc-
tures applied in our compact routing scheme in the next section. Then the details of the
compact routing algorithm is presented for k-good tree decomposable graphs in Section 4.3.
It is proved that our routing scheme has additive stretch at most O(k log∆) in Section 4.4.
Note that in the following the degree of any v ∈V (G) is denoted as dG(v).

4.2 Model And Data Structures

We propose a labelled routing scheme in which we are allowed to give one identifier,
name(v), of O(logn) bits to any vertex v of G. Moreover, following [FG01], we consider
the designer-port model, which allows us to choose the permutation of ports (assign a label
of logdG(v) bits to any edge incident to v in V (G)). Finally, to any vertex v ∈ V (G), we
assign a routing table, denoted by Table(v), where local information of O(k · log∆+ logn)
bits is stored. Any message has a header that contains the address name(t) of the destina-
tion t, three modifiable integers pos ∈ {−1,1,2, · · · ,k− 1},cnt,cnt ′ ∈ {−1,0, · · · ,∆+ 1},
one bit start and some memory, called path, of size O(k · log∆) bits. The two items start
and path change only once.

Following our routing scheme, a vertex v that receives a message uses its header,
name(v), Table(v) and the port-numbers of the edges incident to v to compute its new
header and to choose the edge e = {v,u} over which it relays the message. Then, the vertex
u knows that the message arrived from v. The length of the path followed by a message
from a source s ∈V (G) to a destination t ∈V (G), using the routing scheme, is denoted by
|P(s, t)|, and so the additive stretch of the scheme is maxs,t∈V (G)(|P(s, t)|− d(s, t)) where
d(s, t) is the distance between s and t in G.

To design our routing scheme, we combine the compact routing scheme in trees
of [FG01] together with the k-good tree-decomposition. Roughly, the scheme consists of
following the paths in a BFS-tree F of G according to the scheme in [FG01], and using one
bag of the tree-decomposition as a short-cut between two branches of F . Intuitively, if the
source s and the destination t are "far apart", then there is a bag X of the tree-decomposition
that separates s and t in G. The message follows the path in F to the root of F until it reaches
X , then an exhaustive search is done in X until the message finds an ancestor y of t, and fi-
nally it follows the path from y to t in F using the scheme of [FG01]. The remaining part of
this chapter is devoted to the proof of the next Theorem that summarizes the performances
of our routing scheme.

Theorem 14. For any n-vertex m-edge graph G with maximum degree ∆ and with a k-good
tree-decomposition, there is a labelled routing scheme R with the following properties. R
uses addresses of size O(logn) bits, port-numbers of size O(log∆) bits and routing tables
of size O(k · log∆+ logn) bits. The routing tables, addresses and port-numbers can be
computed in time O(m2). Except the address of the destination (not modifiable), the header
of a message contains O(k · log∆) modifiable bits. The header and next hop are computed
in time O(1) at each step of the routing. Finally, the additive stretch is≤ 2k(dlog∆e+ 5

2)−
2dlog∆e−4.
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4.2.1 Routing In Trees [FG01]

Since we use the shortest path routing scheme proposed in [FG01] for trees, we start by
recalling some of the data structures they use. Let F be a tree rooted in r ∈ V (F). For
any v ∈V (F), let Fv be the subtree of F rooted in v and let wF(v) = |V (Fv)| be the weight
of v. Consider a Depth-First-Search (DFS) traversal of F , starting from r, and guided by
the weight of the vertices, i.e., at each vertex, the DFS visits first the largest subtree, then
the second largest subtree, and so on. For any v ∈ V (F), let IdF(v) ∈ {1, · · · ,n} be the
preordering rank of v in the DFS.

Lemma 30. For any u,v ∈ V (F), v ∈ V (Fu) if and only if IdF(u) ≤ IdF(v) ≤ IdF(u)+
wF(u)−1.

For any v ∈ V (F) and any e incident to v, the edge e receives a port-number pF(e,v)
at v as follows. Set pF(e,v) = 0 if v 6= r and e leads to the parent of v in F , i.e., the edge
e is the first edge on the path from v to r. Otherwise, let (u1, · · · ,ud) be the children of
v (where d = dF(v) if v = r and d = dF(v)− 1 otherwise) ordered by their weight, i.e.,
such that wF(u1)≥ ·· · ≥ wF(ud). Then, let pF({ui,v},v) = i, for any i ≤ d. Finally, each
vertex v ∈ V (F) is assigned a routing table RTF(v) and an address `F(v) of size O(logn)
bits allowing a shortest path routing in trees (see details in [FG01]).

4.2.2 Data Structures

Let G be a graph with the k-good tree-decomposition (T =(I,M),{Xi|i∈ I}). Let r∈V (G).
Let F be a Breadth-First-Search(BFS) tree of G rooted at r. Let T be rooted in b ∈ I such
that r ∈ Xb.

We use (some of) the data structures of [FG01] for both trees F and T . More precisely,
for any v ∈V (G), let IdF(v),wF(v), `F(v) and RTF(v) be defined as above for the BFS-tree
F . Moreover, we add dF(v) to store the degree of v in the tree F . Set pe,v = pF(e,v) for
edges that belong to F defined as above, the ports > dF(v) will be assigned to edges that
do not belong to F . Knowing dF(v), the ports that correspond to edges in F can be easily
distinguished from ports assigned to edges in G\E(F)≡ F .

For any v ∈V (G), let (u1, · · · ,ud) = NF(v) be the neighborhood of v in F ordered such
that IdF(u1) < · · · < IdF(ud). We assign pei,v = dF(v)+ i, where ei = {v,ui}, for each ui

in this order. This ordering will allow to decide whether one of the vertices in NF(v) is an
ancestor of a given vertex t in time O(log∆) by binary search.

For any i∈ I, let IdT (i) and wT (i) be defined for the tree T as above. For any v∈V (G),
let Bv ∈ I be the bag of T containing v which is closest to the root b of T . To simplify the
notations, we set IdT (v) = IdT (Bv) and wT (v) = wT (Bv). These structures will be used to
decide “where" we are in the tree-decomposition when the message reaches v ∈V (G).

Finally, for any i ∈ I, let Pi = (v1, · · · ,v`) be the backbone of Bi with ` ≤ k−1 (recall
that we consider a k-good tree decomposition). Let (e1, · · · ,e`−1) be the set of edges of
Pi in order. Set Backbonei = (pe1,v1 , pe1,v2 , pe2,v2 , · · · , pe`−1,v`). For any v ∈V (G) such that
IdT (v) = i∈ I, if v= v j ∈ Pi, then back(v) = ( /0, j) and if v /∈ Pi, let back(v) = (pev , j) where
e = {v,v j} and v j ( j ≤ `) is the neighbor of v in Pi with j minimum. This information will
be used to cross a bag (using its backbone) of the tree-decomposition.
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Now, for every v ∈V (G), we define the address name(v) = 〈`F(v), IdT (v)〉. Note that,
in particular, `F(v) contains IdF(v). We also define the routing table of v as Table(v) =
〈RTF(v),dF(v),wT (v),Backbone(v),back(v)〉, where Backbone(v) = Backbonei for i = Bv,
i.e. the backbone of the bag containing v and closest to the root of T .

Next table summarizes all these data structures.

notation description
name(v) `F(v) the address of v in tree F [FG01]

IdT (v) the identifier of the highest bag Bv containing v in T
RTF(v) the routing table used of v for routing in F [FG01]
dF(v) the degree of v in F

Table(v) wT (v) the weight of the subtree of T rooted in Bv

Backbone(v) information to navigate in the backbone of Bv

back(v) information to reach the backbone of Bv from v

Clearly, name(v) has size O(logn) bits and Table(v) has size O(k · log∆+ logn) bits.
Moreover, any edge e incident to v receives a port-number pe,v of size O(log∆) bits.

4.3 Compact Routing algorithm in k-good tree-decomposable
graphs

Let us consider a message that must be sent to some destination t ∈ V (G). Initially, the
header of the message contains name(t), the three counters pos,cnt, cnt ′ = −1, the bit
start = 0 and the memory path = /0, which stores the backbone of the bag containing an
ancestor (in F) of the destination vertex of the message. Let v ∈V (G) be the current vertex
where the message stands. First, using IdF(t) in name(t), IdF(v) in name(v) and wF(v)
in RTF(v) ∈ Table(v), it is possible by using Lemma 30 to decide in constant time if v is
an ancestor of t in F . Similarly, using IdT (t) in name(t), IdT (v) in name(v) and wT (v) in
Table(v), it is possible to decide if the highest bag Bv containing v is an ancestor of Bt in
T . There are several cases to be considered.

• If v is an ancestor of t in F , then using the protocol of [FG01] the message is passed
to the child w of v that is an ancestor of t in F towards t. Recursively, the message
arrives at t following a shortest path in G, since F is a BFS-tree.

• Else, if path = /0, then

– if neither Bv is an ancestor of Bt in T nor Bt = Bv, then the message follows the
edge leading to the parent of v in F , i.e., the edge with port-number pe,v = 0.
Note that the message will eventually reach a vertex w that either is an ancestor
of t in F or Bw is an ancestor of Bt in T , since the message follows a shortest
path to the root r of F and Br is the ancestor of any bag in T .

– Else, an ancestor of t belongs to Bv since either Bv = Bt , or Bv is an ancestor
of Bt . (This is because T is a tree-decomposition, Bv has to contain a vertex on
the shortest path from t to r in F . ) Now the goal is to explore the bag Bv using
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its backbone P = (v1, · · · ,v`) (` < k), until the message finds an ancestor of t in
F .
In this case we put the message on the backbone, and then explore the back-
bone using Backbone(v) copied in path in the header of the message. Using
back(v) = (p, j) ∈ Table(v), pos is set to j. If p = /0 then the message is al-
ready on the backbone. Otherwise, the message is sent over the port p. Recall
that by the definition of back(v), port p leads to v j ∈ P. The idea is to explore
the neighborhoods of vertices on the backbone, starting from v1. Note that in
what follows path 6= /0 and pos 6=−1.

• Else, if start = 0 (This is the case initially), then the message is at v = v j ∈ P and
pos indicates the value of j. Moreover, in the field path of the header, there are
the port-numbers allowing to follow P. If pos > 1 then pos = j− 1 is set and the
message follows the corresponding port-number pe j−1,v j ∈ Backbone(v j) to reach
v j−1. Otherwise, start is set to 1, cnt = dF(v1) and cnt ′ = dG(v1)+1.

• Else, if start = 1, then the exploration of a bag containing an ancestor of t (or t itself)
has begun. The key point is that any ancestor w of t in F satisfies that IdF(w) ≤
IdF(t)≤ IdF(w)+wF(w)−1 by Lemma 30. Using this property, for each vertex v j

of the backbone P = (v1, · · · ,v`), the message visits v j first. If v j is an ancestor of
t or v j = t then we are in the first case; otherwise the message is sent to the parent
of v j in F . If v j’s parent is an ancestor of t (or t itself) then we are in the first case;
otherwise we explore NF(v j) by binary search. Notice that the other neighbors of
v j are its descendants in F , so if t has an ancestor among them, then v j also is an
ancestor of t.

– If cnt = cnt ′−1, the neighborhood of the current vertex v = v j, where j = pos,
has already been explored and no ancestor of t has been found. In that case,
using path, the message goes to v j+1 the next vertex in the backbone. Then
pos is set to j+1.

– Otherwise, let pn = b cnt ′+cnt
2 c. The message takes port-number pn from v to-

wards vertex w. If w is an ancestor of t, we go to the first case of the algo-
rithm. Otherwise, the message goes back to v = v j. This is possible since
the vertex w knows the port over which the message arrives. Moreover, if
IdF(t) > IdF(w)+wF(w)−1, then cnt is set to pn and cnt ′ is set to pn other-
wise.

The fact that the message eventually reaches its destination follows from the above
description. Moreover, the computation of the next hop and the modification of the header
clearly takes time O(1).

4.4 Performance of the routing scheme

In this section, we give an upper bound on the additive stretch of the routing scheme de-
scribed in previous section.
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Lemma 31. The routing scheme has additive stretch ≤ 2k(dlog∆e+ 5
2)−2dlog∆e−4.

Proof. Let s be the source and t be the destination. Recall the main idea of the algorithm:
We route along the path from s to r in tree F until we arrive a vertex x, whose bag Bx is an
ancestor of t’s bag Bt in tree T . Then applying binary search algorithm, we search in the
bag Bx for a vertex y, which is an ancestor of t in tree F . In the end, we route from y to t in
tree F .

Because F is a BFS tree and x is an ancestor of s in F , the length of the path followed by
the message from s to x is d(s,x), the distance between s and x in G. Similarly, because y is
an ancestor of t in F , the length of the path followed by the message from y to t is d(y, t). Let
track(x,y) be the length of the path followed by the message in Bx from x to y. Therefore,
the length of the path followed by the message from s to t is d(s,x)+ track(x,y)+d(y,d).

From the binary search algorithm, for any vertex of the backbone, the message visits at
most dlog∆e neighbors and this causes a path of length 2dlog∆e. There are at most k− 1
vertices on the backbone of the bag Bx. The worst case occurs when x is the neighbor
of the last vertex of the backbone vl , for l ≤ k− 1, then the message goes to the first
vertex of the backbone, v1, while y is a neighbor of vl . After arriving at x, the message
goes to v1, i.e., visits l ≤ k− 1 vertices, then it visits dlog∆e neighbors of each of the
l ≤ k−1 vertices of the backbone and y is the last vertex visited. Therefore, track(u,a)≤
2k(dlog∆e+1)−2dlog∆e−4. Then it is sufficient to prove d(s,x)+d(y, t)≤ d(s, t)+3k.

If Bs is an ancestor of Bt , then x = s and d(s,x) = 0. Moreover, if Bt = Bx, d(y, t) = 0.
Otherwise, let B be the nearest common ancestor of Bs and Bt in the tree-decomposition
T . Let Q be a shortest path between s and t. Because the set of vertices in B separates
s from t in G, let x′ be the first vertex of Q in B and let y′ the last vertex of Q in B. Let
Q = Q1∪Q2∪Q3 where Q1 is the subpath of Q from s to x′, Q2 is the subpath of Q from
x′ to y′ and Q3 is the subpath of Q from y′ to t. Note that because each bag has diameter at
most k, d(x′,y′)≤ k.

We first show that x ∈ B. If Bx = B, it is trivially the case. Let Px be the path followed
from s to x. Since Bx is an ancestor of B, B separates s from x. Therefore, Px∩B 6= /0. Let
h be the first vertex of Px in B. Since h ∈ B, the highest bag containing h is an common
ancestor of Bs and Bt . Therefore, when arriving at h, the message must explore Bh. Hence,
we have h = x ∈ B.

Finally, since x ∈ B, d(x,x′) ≤ k. Moreover, y ∈ Bx therefore d(y,x) ≤ k. Thus,
d(y,y′)≤ d(y,x)+d(x,x′)+ |Q2| ≤ 2k+ |Q2|. Finally, d(s,x)≤ d(s,x′)+d(x′,x)≤ k+ |Q1|
and d(y, t) ≤ d(y,y′) + d(y′, t) ≤ 2k + |Q2|+ |Q3|. Therefore, d(s,x) + d(y, t) ≤ |Q1|+
|Q2|+ |Q3|+3k ≤ |Q|+3k = d(s, t)+3k.

4.5 Perspectives

A k-good tree decomposition is applied to design a compact routing scheme with routing
tables, addresses and headers of size O(k log∆+ logn) bits and achieving an additive stretch
of O(k log∆). A first step improvement can be to reduce the O(k · log∆) additive stretch
due to the dichotomic search phase of our routing scheme.
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To make this compact routing more practical, the second challenge is to design a dis-
tribute algorithm to construct the routing tables of the scheme. So it is interesting to find a
k-good tree decomposition for a given graph and integer k in a distributed way.

Last but not least, our routing scheme is labelled routing scheme, which limits its ap-
plicability to static topologies networks. Then it is not applicable in dynamic network, e.g.
the Internet. It would be more useful to modify the scheme to be name-independent.
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This chapter studies the Prize Collecting Steiner Tree (PCST) problem. Given a con-
nected graph G = (V,E) with a nonnegative cost for each edge in E, a nonnegative prize
for each vertex in V , and a target set V ′ ⊆V , the PCST problem is to find a subtree T of G
interconnecting all vertices of V ′ such that the total cost on edges in T minus the total prize
at vertices in T is minimized1. It is a generalization of the classical Steiner Minimum Tree
(SMT) problem [HR92], in which each vertex is associated with a prize zero.

For instance, a typical application of PCST occurs when a natural gas provider wants to
build a most profitable transportation system for natural gas delivery from a station to some
customers on scattered locations, where each link (segment of pipeline) is associated with
a cost which is incurred if the link is installed, and each location is associated with a profit
which is obtained if the location is connected to the station by links installed. Moreover,
the transportation system is required to contain some specified customers. This problem
can be formulized as a PCST problem. The graph is the complete graph on the vertex sets
consisting of the gas station and all customers. The target set includes the gas station and
the specific customers needed to be contained in the transportation system. The prize of
each customer is the profit they pay and the prize of the station can be set to be 0. The
cost of each edge is the cost of the pipeline to connect the two endpoints. Then we see that
a most profitable transportation system corresponds to an optimal solution of the PCST
problem. We design linear algorithm for solving the PCST problem in the class of graphs
of treewidth at most 2.

1There are several variations of PCST problem, see in e.g. [JMP00]. We only consider this one in the thesis.
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In real life, we may not know exactly the information we need. Instead, we can estimate
the range, i.e. an upper bound and a lower bound, of the required data. For instance, in the
above example, the cost of a pipeline e may be any value ce ∈ [c−e ,c

+
e ]; the profit from a

customer v may be any value pv ∈ [p−v , p+v ]. So it is interesting to study the PCST problem
with interval data on the costs of the edges and prizes of the vertices. We propose two risk
models for the PCST problem with interval data and solve them in polynomial time in the
class of graphs of treewidth at most 2.

The results of this chapter is a collaboration with X. Hu, X. Chen, E. A. Miranda and
A. C. Vejar. It appears in a publication in the conference AAIM 2010 [c-AMCC+10] and
in the journal Acta Mathematicae Applicatae Sinica [j-AMCC+14].

5.1 Introduction

The PCST problem introduced by Balas [Bal89] has been extensively studied in the areas of
computer science and operations research. For example, using the PCST model, [PDL10]
designed a leakage detection system2 for finding the optimal location of detectors and their
corresponding transponders to provide a desired coverage under budget constraints in the
water distribution network of the Swiss city, Lausanne; [LWP+06] carried out a concrete
application of the PCST problem to the design of fiber optic networks for some German
cities. Both the trade-off between connection costs (represented by edge costs) and cus-
tomers revenues (represented by vertex prizes) and the goal of establishing the most prof-
itable network were perfectly modeled by the PCST problem. Moreover, the PCST problem
is applied in bioinformatics. Using the algorithmic framework in [LWP+06], [DKR+08]
solved the problem of finding functional modules in protein-to-protein interaction networks
by modeling it as the PCST problem. Also, [BBBZ09] and [BBBB+11] used the PCST
model to solve some problems in cell communication.

Since the Steiner Minimum Tree (SMT) problem is NP-complete in general [Kar72],
even in planar graphs [GJ77], so is the PCST problem. In [GW95], Goemans and
Williamson presented a 2-approximation O(n3 logn)-time algorithm for the PCST prob-
lem in general graphs. The time complexity of this approximation algorithm was improved
to O(n2 logn) in [FFFdP07].

To obtain optimal solutions in polynomial time, it is helpful to consider some specific
structural properties of the graphs. Telecommunication networks typically possess cer-
tain sparse and planar structural properties [MS89], their representations as series-parallel
graphs3 are often convenient [Rag04], offering clearer representations of real-world in-
stances. In particular, the densest (maximum number of edges with fixed number of ver-

2It is used for detecting leakages in the water distribution networks.
3A series parallel graph is a multi graph with two distinguished vertices, called source s and sink t, which

can be formed with the following rules: (1) A graph with two vertices: source s and sink t and one edge st is a
series parallel graph. (2) If for i = 1,2, Gi = (Vi,Ei) with source si and sink ti are series parallel graphs, then
the graph obtained by taking the disjoint union of G1 and G2 and then identifying t1 and s2 (resp. identifying
s1 and s2 and identifying t1 and t2) is a series parallel graph with source s1 (resp. s1 and s2) and sink t2 (resp.
t1 and t2). Note that series parallel graphs are proper subset of partial 2-trees. For instance, K1,3 is not a series
parallel graph.
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tices) series-parallel graphs, known as 2-trees (see formal definition in next section) and
independently reliable networks [WC83], play an important role in the reliable broadcast-
ing problem on independently reliable networks in which all pairs of nodes can communi-
cate as long as the failures of nodes and edges are isolated [BSK94]. It is well-known that
the class of series-parallel graphs is a subclass of graphs of treewidth at most 2 [Bod98],
called partial 2-trees for short in the following. When restricted to partial 2-trees, [WC83]
proved that the SMT problem is polynomial-time solvable. In this chapter, we extend their
approach to an efficient algorithm for the PCST problem on partial 2-trees. The reader is
referred to [YT94, KZ06, WNC08, RSS11] for more research and applications on series-
parallel networks (or partial 2-trees)4.

In real-world applications, the information or data, e.g. the costs and the prizes in
the PCST problem, may be uncertain. One of the simplest form of the uncertainty rep-
resentation is to specify the data as closed intervals. A lot of research have been done
about interval combinatorial optimization problems [KZ10], such as shortest path, mini-
mum spanning tree [AL04], and minimum-cut [ABV08] with the edge-costs belonging to
some given intervals, which are used to indicate the ranges of the edge-costs. Most of
these literature has been developed under the name of robust optimization, in which one
optimizes against the worst instance that might arise among all the possible values in the
given intervals [KY10]. One of the most popular objectives in robust optimization is to find
a solution that minimizes the maximum regret, which is the maximum difference between
the value of any solution with any value realizations and the value of the optimal solution
under this value realization. Despite the popularity, many robust optimization problems,
such as the robust shortest path and robust spanning tree problems [AL04, Zie04, AVH04],
suffer from two major drawbacks: they are NP-hard even though their deterministic coun-
terparts are polynomial-time solvable; their solutions tend to be over-conservative, as it
considers the maximum regret among all the possible values.
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Figure 5.1: The number or interval beside each vertex (resp. edge) is its prize (resp. cost)
or prize interval (resp. cost interval). The terminal set is {s, t}.

See a simple example for explaining the PCST problem and robust PCST problem
in Fig. 5.1. In (PCST), the optimal solution is the subtree T1 induced by {s,u,v, t},
whose value is −9. In (Robust PCST), the optimal solution is the subtree T2 induced
by {u,s,w,z, t}, whose maximum regret is 3. This maximum regret achieves when the cost

4A commonly repeated mistake is that a graph is series parallel graph if and only it is partial 2-trees.
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(resp. prize) of any edge (resp. vertex) in T2 takes the upper (resp. lower) bound of its
interval; and the cost (resp. prize) of any other edge (resp. vertex) takes the lower (resp.
upper) bound of its interval. With these realized costs and prizes, the optimal solution is
the subtree T1, whose value is −9 and the value of T1 is −6. So the regret is 3. Actually, in
the same way, we can compute the maximum regret of T1 is 14.

To address the tractability and over-conservatism of the robust solution, [BS03] pro-
posed an approach to controlling the degree of conservation of the solution by regulating
the number of the values which are allowed to vary in the given intervals. They established
a bounded probability of their robust solutions being infeasible, but their robust solutions
still might be far from optimal.

Along a different line, [CHH09] and [Hu10] proposed two novel models for minimum
spanning tree and shortest path problems with interval data on the edge costs. In these
problems, each edge e is associated with a cost interval [c−e ,c

+
e ]. The solutions of these

models are paths or trees together with the cost xe ∈ [c−e ,c+e ] for each edge e on the paths or
trees. (Note that these models are different from the classical robust optimization models
mentioned above, in which the solution are only paths or trees, not including an exact
cost for each edge on the paths or trees.) The risk of edge e with cost xe is quantified
as (c+e − xe)/(c+e − c−e ), which is consistent with the common sense that higher expense
often brings about more satisfactory service (prevention of malfunction). The two models
are to find solutions that minimizes the maximum risk or the sum of the risks over all the
edges of the solution respectively under the constraint that the total cost of the solution
(the sum of the costs of edges on the path or tree) is at most a given bound. The shortest
path and minimum spanning tree problems with interval data under these two models are
polynomial-time solvable, preserving the polynomial-time solvability of their deterministic
counterparts. In this chapter, we will extend their approaches to the PCST problem in
partial 2-trees by considering the interval costs on edges and interval prizes at vertices.

Taking a concrete instance, in the above PCST applications mentioned at the beginning
of the chapter, the gas provider may spend c+e dollars to install a gas pipe link e using the
best materials to assure continuous transmission through e during a long period without
any interruption for maintenance. On the other hand, the provider can also spend c−e (< c+e )
dollars to install the link e using ordinary materials while taking the risk of malfunction at e
and service suspension for repair. Generally, lower expense on link construction could lead
to higher risk of transmission malfunction. Similarly, if the gas provider wants to collect the
highest possible prize p+v from the customer at location v for the gas transmitted to v, then
the provider faces the highest risk of rejection by customer at v because of the existence of
competitors who sell the same kind of products. Usually, the smaller prize is demanded,
the smaller the risk of being rejected is taken. For easy description, in the reminder of the
chapter we use the risks of edges (resp. vertices) to denote the risk of malfunction at links
(resp. rejection by customers). Naturally, it is desirable to make good balances between
low net expense and small risk. Under budget constraint, the gas provider may have full
control over the edge payments and can ask for any reasonable prize at any reachable vertex
(customer). Our work contributes to modeling this kind of practical trade-off between the
expense and risk and minimizing the risk under budget restriction.

Compared to the models in [CHH09] and [Hu10], our PCST models consider not only



5.2. Dynamic Programming for PCST on Partial 2-Trees 87

the risks of edges, but also the risks of vertices, which are not studied in the previous
models. Vertices behave quite differently from edges, and turn out less amenable in com-
binatorial optimization. (A typical example consists of the minimum vertex cover prob-
lem, which is NP-hard, and the minimum edge cover problem equivalently the maximum
matching problem, which is polynomial time solvable.) Algorithmic approaches successful
in dealing with edges do not always work for vertices. Our success in coping with risks of
vertices relies on exploiting the structural properties of partial 2-trees.

In Section 5.2, there is a linear-time algorithm for the PCST problem on partial 2-
trees. In Section 5.3, we establish the min-max risk model and min-sum risk model for
the PCST problem with interval data, and propose two polynomial-time algorithms for the
PCST problem on partial 2-trees under these two models.

5.2 Dynamic Programming for PCST on Partial 2-Trees

In this section, we present a linear time dynamic programming to solve the PCST problem
on partial 2-trees.

5.2.1 Preliminary Definitions and Notations

Let us first see some definitions and notations in this subsection.
In the PCST problem, given a connected graph G=(V,E), each vertex v∈V is assigned

a nonnegative prize pv ∈ R+, and each edge e ∈ E is assigned a nonnegative cost ce ∈ R+.
For any subgraph S of G, we abbreviate ∑e∈E(S) ce to c(S), and ∑v∈V (S) pv to p(S). Let
c ∈ RE

+, p ∈ RV
+ be the vectors of edge costs and vertex prizes in G. The value of subgraph

S is defined as
ν(S,c, p)≡ c(S)− p(S).

In the definition of the PCST problem, the input includes a target set V ′ ⊆V , also called a
terminal set. The objective of the PCST problem is to find a tree in G such that it spans V ′

and its value is minimum among all trees in G spanning V ′:

(PCST) min
{

ν(T,c, p) | T is a tree in G and V ′ ⊆V (T )
}

Such a tree is called an optimal PCST in (G,V ′;c, p) or simply in G, and denoted by
Topt(G,V ′;c, p).

In the following lemma, we show that the PCST problem (G,V ′;c, p) can be trans-
formed to the PCST problem (G, /0;c, p′) by reassigning to each vertex in V ′ a sufficiently
large prize.

Lemma 32. Given G = (V,E) with target set V ′ ⊆V , c ∈ RE
+, p ∈ RV

+, and a real number
M > c(G), let p′ ∈ RV

+ be defined by p′v = M for every v ∈ V ′, and p′v = pv for every v ∈
V \V ′. If T ∗ is an optimal PCST in (G, /0;c, p′), then T ∗ is an optimal PCST in (G,V ′;c, p).

Proof. First, let us prove that V ′⊆V (T ∗). Suppose on the contrary that T ∗ does not contain
some target vertex u ∈V ′ \V (T ∗). Let P be a path in G from u to a vertex in T ∗ such that P
intersects T ∗ only at this vertex, written as t. It follows that the union of T ∗ and P, written
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as T ∗ ∪P, is a tree in G, and its value ν(T ∗ ∪P,c, p′) is smaller than ν(T ∗,c, p′) as seen
from the following (in)equalities:
ν(T ∗∪P,c, p′) = ν(T ∗,c, p′)+ν(P,c, p′)+ pt

≤ ν(T ∗,c, p′)− pu + c(E) = ν(T ∗,c, p′)−M+ c(G)< ν(T ∗,c, p′)

The contradiction to the optimality of T ∗ proves V ′ ⊆V (T ∗).
Now, it is sufficient to prove that any subtree spanning V ′ in G has value at least the

value of T ∗. Suppose on the contrary that there exists a tree T ′ in G with V (T ′) ⊇ V ′ and
ν(T ′,c, p)< ν(T ∗,c, p). Then

ν(T ′,c, p′) = ν(T ′,c, p)+ p(V ′)− p′(V ′)< ν(T ∗,c, p)+ p(V ′)− p′(V ′) = ν(T ∗,c, p′),
which contradicts the optimality of T ∗. So no such a tree T ′ exists.

Remark 1. From Lemma 32, we just focus on the PCST problem with empty terminal set
in the rest of the chapter. We denote its optimal solution as Topt(G,c, p).

There is a linear algorithm for the PCST problem in bounded treewidth graphs by ap-
plying the dynamic programming based on a tree decomposition of bounded width. Given
a tree decomposition of bounded width (T,X) of a graph G = (V,E), root T at a node
r ∈V (T ). The dynamic programming processes from the leaves of T to the root r. In each
step, a bag X ∈ X is considered. It computes a set of sub-solutions, i.e., forests, in the
subgraph of G, induced by all vertices in bag X and in any descendant-bag of X in T . The
number of forests and the time complexity of computing these forests are both functions of
the width of the tree decomposition. In the end, when the root bag Xr is considered, they
choose a tree of optimal value among the computed forests of the graph G. So the PCST
problem is solved in O( f (tw(G))|V (G)|) time, where f is a function of the treewidth of
the graph G at most (tw(G))O(tw(G)).

We see that the base of the above algorithm is a tree decomposition of bounded width
of the graph. As mentioned in Chapter 1, the fastest algorithm, as far as we know, for
computing a tree decomposition of width O(k) of a graph of treewidth at most O(k)
is in time 2O(k)n. So the final time complexity of the above algorithm is still at most
O((tw(G))O(tw(G))|V (G)|)S.

In this chapter, we study the PCST problem in graphs of treewidth at most 2. Our al-
gorithm is less unified, because it takes advantage of the structural properties of the graphs
of treewidth at most 2, which may not be extended easily to the graphs of treewidth at least
3. First let us see the definition of the densest graphs of treewidth at most 2, called 2-trees.

The graph class of 2-trees is defined recursively as follows: An edge is a 2-tree. Given
a 2-tree, picking an edge uv in it, adding a new vertex z adjacent with both u and v yields a
2-tree. See Fig.5.2 for an illustration, where vertex z has degree 2 in the new 2-tree. 2-trees
are the densest graphs of treewidth 2 in the sense that no edge can be added in a 2-tree
without increasing the treewidth. The constructive definition guarantees the following.

Figure 5.2: Construction of 2-trees.
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Remark 2. Every 2-tree G = (V,E) is either an edge or has at least one vertex z ∈ V of
degree 2 which is contained in a triangle (a complete graph of three vertices). Moreover
G\{z} is still a 2-tree.

Fact 3. [Bod98] Any graph of treewidth at most 2 is a spanning subgraph of a 2-tree.

The following result plays an important role in our algorithm for PCST problem in
graphs of treewidth at most 2.

Lemma 33. [WC83] In linear time, edges can be added to a graph of treewidth at most 2
to construct a 2-tree whenever this is possible.

Now we show that the PCST problem in any graph of treewidth at most 2 can be
transformed to the PCST problem in a 2-tree as follows:

Lemma 34. Given a graph G = (V,E) of treewidth at most 2 and cost vector c ∈ RE
+ and

prize vector p ∈RV
+, and a real number L > p(G), let G′ = (V,E∪E ′) be a 2-tree obtained

by adding edges in G. Let c′ ∈RE∪E ′
+ be defined by c′e = L for every e ∈ E ′, and c′e = ce for

every e∈ E. If T ∗ is an optimal PCST in (G′,c′, p), then T ∗ is an optimal PCST in (G,c, p).

Proof. It is sufficient to prove that T ∗ does not contain any edge in E ′. Suppose it is not
true and there is an edge e′ ∈ E ′∩E(T ∗). Then ν(T∗,c′, p)> ce′ − p(G)> 0. Take a tree
T containing only one vertex v ∈ V . Then ν(T,c′, p) = −pv ≤ 0 < ν(T ∗,c′, p). It is a
contradiction.

From Lemma 33 and 34, we have that:

Corollary 10. From any algorithm for PCST problem in 2-tree with time complexity f (n),
we can obtain an algorithm for PCST problem in the class of graphs of treewidth at most 2
with time complexity f (n)+n, where n is the number of vertices in the graph.

So in the following, we only describe our algorithms with input graphs being 2-trees.
From Remark 2, any 2-tree can be reduced to a single edge by deleting recursively a

vertex z of degree 2 contained in a triangle {u,v,z}. The algorithm in [WC83] for SMT
problem in the class of 2-trees applied this vertex elimination procedure. During each
elimination, it summarizes information about the triangle {u,v,z} on two arcs (u,v) and
(v,u), where z has degree 2. This summary information encodes information about the
sub-solutions of SMT problem, i.e. forests, in the subgraph of the 2-tree, which has been
reduced to the edge uv so far. In fact, from the vertex elimination procedure, a tree decom-
position of width 2 can be constructed. The idea of the algorithm in [WC83] is essentially
the same as the classical dynamic programming algorithm for SMT problem in bounded
treewidth graphs.

We generalize the algorithm in [WC83] for SMT problem in 2-trees to solve the PCST
problem in 2-trees. Since we consider empty terminal set in the PCST problem, our algo-
rithm needs to encode less information than their algorithm during each elimination. We
keep the notations in [WC83] and explain them as follows.

Given a 2-tree G = (V,E) and cost vector c ∈ RE
+ and prize vector p ∈ RV

+, order all
vertices in V as z1, . . . ,zn such that each vertex zi, for 1 ≤ i ≤ n− 2, has degree 2 and is
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contained in a triangle, i.e., complete graphs on three vertices, in the induced subgraph
Gi ≡ G[{zi, . . . ,zn}]. Note that Gi is still a 2-tree.

Definition 4. For 1≤ i≤ n−2 and each pair (u,v) corresponding to an edge uv ∈ E(Gi),
define the subgraph Hi(u,v) as follows:

• For i = 1, H1(u,v) = G[{u,v}];

• For 2 ≤ i ≤ n− 2, Hi(u,v) = Hi−1(u,v)∪Hi−1(u,zi−1)∪Hi−1(zi−1,v) if u,v are the
two neighbor of zi−1 in Gi−1; and Hi(u,v) = Hi−1(u,v) otherwise.

By induction, it is easy to see that, for any 2≤ i≤ n−2, Hi(u,v)\{u,v} only contains
some vertices in {z1, . . . ,zi−1}. So for 2 ≤ i ≤ n−2 Hi(u,v) has been reduced to the edge
uv after deleting z1, . . . ,zi−1. From the definitions, we can get the following lemma, which
is crucial for our dynamic programming algorithm.

Lemma 35. For each i = 1, . . . ,n−2 and each edge uv ∈ E(Gi), {u,v} separates Hi(u,v)
from G\Hi(u,v).

Proof. It is sufficient to prove that any vertex in Hi(u,v) \ {u,v} is not adjacent to any
vertex in G\Hi(u,v), for each i = 1, . . . ,n−2 and each edge uv∈ E(Gi). For i = 1, G1 = G
and H1(u,v) = G[u,v] for each pair (u,v) corresponding to an edge uv ∈ E(G), so it is true.
Assume that it is true for any 1≤ j≤ i−1. We prove that it is true for j = i in the following.

If u,v are not the two neighbor of zi−1 in Gi−1, then Hi(u,v) = Hi−1(u,v). From the
assumption of the induction, it is true.

Otherwise u,v are the two neighbor of zi−1 in Gi−1 and Hi(u,v) = Hi−1(u,v) ∪
Hi−1(u,zi−1)∪Hi−1(zi−1,v). Let z be any vertex in Hi(u,v) \ {u,v}. If z ∈ V (Hi−1(u,v)),
then from the assumption of the induction, z is not adjacent to any vertex in G\Hi−1(u,v)⊇
G \ Hi(u,v). So z is not adjacent to any vertex in G \ Hi(u,v). Similarly, if z ∈
V (Hi−1(u,zi−1)) or z ∈V (Hi−1(zi−1,v)), then z is not adjacent to any vertex in G\Hi(u,v).
Thus any vertex in Hi(u,v)\{u,v} is not adjacent to any vertex in G\Hi(u,v).

Remark 3. By induction, it is easy to see that
⋃

uv∈E(Gi) Hi(u,v) = G for any 1≤ i≤ n−2.
So Hn−2(zn−1,zn) = G.

Definition 5. For each 1 ≤ i ≤ n− 2 and each (ordered) pair (u,v) corresponding to an
edge uv ∈ Gi, we will associate five measures defined as follows, which summarize the
values incurred in the subgraph Hi(u,v).

(i) sti(u,v) is the minimum value of a tree in Hi(u,v) containing both u and v;
Tsti(u,v) denotes such a tree;

(ii) dti(u,v) is the minimum value of the forest consisting of two vertex-disjoint trees in
Hi(u,v), one containing u and the other containing v;
Tdti(u,v) denotes such a forest;

(iii) yni(u,v) is the minimum value of a tree in Hi(u,v) containing u but not v;
Tyni(u,v) denotes such a tree;

(iv) nyi(u,v) is the minimum value of a tree in Hi(u,v) containing v but not u;
Tnyi(u,v) denotes such a tree;
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(v) nni(u,v) is the minimum value of a tree in Hi(u,v) containing neither u nor v;
Tnni(u,v) denotes such a tree.

Note that Tnni(u,v) might be empty, i.e., possibly Tnni(u,v) = ( /0, /0). Since edge uv can
also be written as vu, we have sti,dti,nni are symmetric, but yni(u,v) = nyi(v,u),nyi(u,v) =
yni(v,u).

Then we have the following lemma.

Lemma 36. The optimal value of the PCST problem (G,c, p) is:
min{stn−2(zn−1,zn),ynn−2(zn−1,zn),nyn−2(zn−1,zn),nnn−2(zn−1,zn)}. Moreover, the
tree T ∈ {Tstn−2(zn−1,zn),Tynn−2(zn−1,zn),Tnyn−2(zn−1,zn),Tnnn−2(zn−1,zn)} with the minimum value is
an optimal solution of the PCST problem (G,c, p).

Proof. From Remark 3, stn−2(zn−1,zn) is the minimum value of a tree in G contain-
ing both zn−1 and zn; ynn−2(zn−1,zn) (resp. nyn−2(zn−1,zn)) is the minimum value of
a tree in G containing zn−1 (resp. v) but not zn (resp. zn−1); and nnn−2(zn−1,zn) is
the minimum value of a tree in G containing neither zn−1 nor zn. Any Topt(G,c, p)
has to satisfy one of the following: it contains both zn−1 and zn; it contains only one
of them; it contains neither of them. So its value is the minimum value of the four
values stn−2(zn−1,zn),ynn−2(zn−1,zn),nyn−2(zn−1,zn),nnn−2(zn−1,zn). Then the tree T ∈
{Tstn−2(zn−1,zn),Tynn−2(zn−1,zn),Tnyn−2(zn−1,zn),Tnnn−2(zn−1,zn)} with the minimum value is an opti-
mal solution of the PCST problem (G,c, p).

For brevity, we define Πi≡{sti,dti,nvi,uni,nni} for i= 1, . . . ,n−2. For i= 1, . . . ,n−2
and πi ∈Πi, πi(u,v) denotes any measure of the pair (u,v) as defined above. For any edge
uv ∈ E(G), H1(u,v) only contains one edge uv. It is easy to find the five measures and its
corresponding forests as follows:

st1(u,v) = cuv− pu− pv, Tst1(u,v) = ({u,v},uv);
dt1(u,v) =−pu− pv, Tdt1(u,v) = ({u,v}, /0);
yn1(u,v) =−pu, Tyn1(u,v) = ({u}, /0);
ny1(u,v) =−pv, Tny1(u,v) = ({v}, /0);
nn1(u,v) = 0, Tnn1(u,v) = ( /0, /0).

(1)

These are the initial state in the dynamic programming, which is presented in the next
subsection.

For any set S of subgraphs of G, we use Min(S) to denote an arbitrary subgraph R ∈ S

whose value ν(R,c, p) is the minimum among all elements of S.

5.2.2 Dynamic Programming

In this subsection, we describe the dynamic programming algorithm for the PCST prob-
lem in 2-trees. From Lemma 36, to solve the PCST problem (G,c, p), it is sufficient
to compute the measures stn−2(zn−1,zn),ynn−2(zn−1,zn),nyn−2(zn−1,zn),nnn−2(zn−1,zn) of
the pair (zn−1,zn) and the corresponding trees achieving these values.

For 2 ≤ i ≤ n− 2 and any pair (u,v) corresponding to an edge uv ∈ E(Gi), as-
sume that any measure πi(u,v) for πi ∈ Πi, are computed already after the elimination
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of {z1, . . . ,zi−1}. In the following, we see how to compute the measures πi+1(u,v), for any
πi+1 ∈Πi+1 after the elimination of zi in Gi.

Lemma 37. For any pair (u,v) corresponding to an edge uv ∈ E(Gi+1), given πi(u,v), for
any πi ∈Πi, sti+1(u,v) and Tsti+1(u,v) can be computed as follows:

• If u,v are not the two neighbors of zi in Gi, sti+1(u,v) = sti(u,v) and Tsti+1(u,v) =

Tsti(u,v);

• Otherwise, sti+1(u,v) = min{sti(u,v)+ yni(u,zi)+nyi(zi,v)+ pu + pv,

sti(u,v)+ sti(u,zi)+dti(zi,v)+ pu + pzi + pv,

sti(u,v)+dti(u,zi)+ sti(zi,v)+ pu + pzi + pv,

dti(u,v)+ sti(u,zi)+ sti(zi,v)+ pu + pzi + pv},

and Tsti+1(u,v) = min{Tsti(u,v)∪Tyni(u,zi)∪Tnyi(zi,v), Tsti(u,v)∪Tsti(u,zi)∪Tdti(zi,v),

Tsti(u,v)∪Tdti(u,zi)∪Tsti(zi,v), Tdti(u,v)∪Tsti(u,zi)∪Tsti(zi,v)}.

Proof. Recall that sti+1(u,v) is the minimum value of a tree containing both u and v in the
subgraph Hi+1(u,v), denoted as Tsti+1(u,v).

If u,v are not the two neighbors of zi in Gi, then Hi+1(u,v) = Hi(u,v). So sti+1(u,v) =
sti(u,v) and Tsti+1(u,v) = Tsti(u,v).

Otherwise, u,v are the two neighbors of zi in Gi, then Hi+1(u,v) = Hi(u,v)∪Hi(u,zi)∪
Hi(zi,v). Let S be the triangle, i.e. a complete graph on three vertices, induced by {zi,u,v}
in Gi. The intersection of S and any tree in Hi+1(u,v) containing both u and v is one
of the following cases: S1 = S \ {zi+1}, S2 = S \ {zi+1vi+1}, S3 = S \ {zi+1ui+1}, S4 =

S\{ui+1vi+1}, shown in Fig. 5.3.

Figure 5.3: Forests in a triangle containing both u and v.

• If Tsti+1(u,v)∩ S = S1, then from Lemma 35, Tsti+1(u,v)∩Hi(u,v) = Tsti(u,v), Tsti+1(u,v)∩
Hi(u,zi) = Tyni(u,zi) and Tsti+1(u,v) ∩ Hi(zi,v) = Tnyi(zi,v). So Tsti+1(u,v) = Tsti(u,v) ∪
Tyni(u,zi)∪Tnyi(zi,v). Then sti+1(u,v) = sti(u,v)+ yni(u,zi)+nyi(zi,v)+ pu + pv, since
u (resp. v) is contained both in Tsti(u,v) and Tyni(u,zi) (resp. Tnyi(zi,v)).

Similarly, we can prove that:

• If Tsti+1(u,v) ∩ S = S2, then Tsti+1(u,v) = Tsti(u,v) ∪ Tsti(u,zi) ∪ Tdti(zi,v) and sti+1(u,v) =
sti(u,v)+ sti(u,zi)+dti(zi,v)+ pu + pzi + pv.

• If Tsti+1(u,v) ∩ S = S3, then Tsti+1(u,v) = Tsti(u,v) ∪ Tdti(u,zi) ∪ Tsti(zi,v) and sti+1(u,v) =
sti(u,v)+dti(u,zi)+ sti(zi,v)+ pu + pzi + pv.

• If Tsti+1(u,v) ∩ S = S4, then Tsti+1(u,v) = Tdti(u,v) ∪ Tsti(u,zi) ∪ Tsti(zi,v) and sti+1(u,v) =
dti(u,v)+ sti(u,zi)+ sti(zi,v)+ pu + pzi + pv.
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So sti+1(u,v) (resp. Tsti+1(u,v)) is the minimum among the four cases. The lemma is proved.

Lemma 38. For any pair (u,v) corresponding to an edge uv ∈ E(Gi+1), given πi(u,v), for
any πi ∈Πi, dti+1(u,v) and Tdti+1(u,v) can be computed as follows:

• If u,v are not the two neighbors of zi in Gi, sti+1(u,v) = dti(u,v) and Tdti+1(u,v) =

Tdti(u,v);

• Otherwise, dti+1(u,v) = min{dti(u,v)+ yni(u,zi)+nyi(zi,v)+ pu + pv,

dti(u,v)+ sti(u,zi)+dti(zi,v)+ pu + pzi + pv,

dti(u,v)+dti(u,zi)+ sti(zi,v)+ pu + pzi + pv,},

and Tdti+1(u,v) = min{Tdti(u,v)∪Tyni(u,zi)∪Tnyi(zi,v), Tdti(u,v)∪Tsti(u,zi)∪Tdti(zi,v),

Tdti(u,v)∪Tdti(u,zi)∪Tsti(zi,v)}.

Proof. Recall that dti+1(u,v) is the minimum value of the forest consisting of two vertex-
disjoint trees, one containing u and the other containing v, in the subgraph Hi+1(u,v),
denoted as Tdti+1(u,v).

If u,v are not the two neighbors of zi in Gi, then Hi+1(u,v) = Hi(u,v). So dti+1(u,v) =
dti(u,v) and Tdti+1(u,v) = Tdti(u,v).

Otherwise, u,v are the two neighbors of zi in Gi, then Hi+1(u,v) = Hi(u,v)∪Hi(u,zi)∪
Hi(zi,v). Let S be the triangle, i.e. a complete graph on three vertices, induced by {zi,u,v}
in Gi. The intersection of S and any forest consisting of two vertex-disjoint trees, one
containing u and the other containing v, in Hi+1(u,v) is one of the following cases: S5 =

S\{zi+1}\{uv}, S6 = S\{zi+1vi+1,uv}, S7 = S\{zi+1ui+1,uv}, shown in Fig. 5.3.

• If Tdti+1(u,v)∩S = S5, then from Lemma 35, Tdti+1(u,v)∩Hi(u,v) = Tdti(u,v), Tdti+1(u,v)∩
Hi(u,zi) = Tyni(u,zi) and Tdti+1(u,v) ∩Hi(zi,v) = Tnyi(zi,v). So Tdti+1(u,v) = Tdti(u,v) ∪
Tyni(u,zi)∪Tnyi(zi,v). Then dti+1(u,v) = dti(u,v)+yni(u,zi)+nyi(zi,v)+ pu+ pv, since
u (resp. v) is contained both in Tdti(u,v) and Tyni(u,zi) (resp. Tnyi(zi,v)).

Similarly, we can prove that:

• If Tdti+1(u,v) ∩ S = S6, then Tdti+1(u,v) = Tdti(u,v) ∪ Tsti(u,zi) ∪ Tdti(zi,v) and dti+1(u,v) =
dti(u,v)+ sti(u,zi)+dti(zi,v)+ pu + pzi + pv.

• If Tdti+1(u,v) ∩ S = S7, then Tdti+1(u,v) = Tdti(u,v) ∪ Tdti(u,zi) ∪ Tsti(zi,v) and dti+1(u,v) =
dti(u,v)+dti(u,zi)+ sti(zi,v)+ pu + pzi + pv.

So dti+1(u,v) (resp. Tdti+1(u,v)) is the minimum among the three cases. The lemma is
proved.

Similarly, we can prove that:

Lemma 39. For any pair (u,v) corresponding to an edge uv ∈ E(Gi+1), given πi(u,v), for
any πi ∈ Πi, πi+1(u,v) and Tπi+1(u,v) for any πi+1 ∈ {yni+1,nyi+1,nni+1} can be computed
as follows:
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• If u,v are not the two neighbors of zi in Gi, πi+1(u,v) = πi(u,v) and Tπi+1(u,v) = Tπi(u,v)

for any πi+1 ∈ {yni+1,nyi+1,nni+1};

• Otherwise, we have:

– yni+1(u,v) = min{yni(u,v)+ yni(u,zi)+ pu, yni(u,v)+ sti(u,zi)+ yni(zi,v)+
pu+ pzi}, and Tyni+1(u,v) = min{Tyni(u,v)∪Tyni(u,zi), Tyni(u,v)∪Tsti(u,zi)∪Tyni(zi,v)};

– nyi+1(u,v) = min{nyi(u,v) + nyi(zi,v) + pv, nyi(u,v) + nyi(u,zi) + sti(zi,v) +
pzi + pv}, and Tnyi+1(u,v) = min{Tnyi(u,v)∪Tnyi(u,zi), Tnyi(u,v)∪Tnyi(u,zi)∪Tsti(zi,v)};

– nni+1(u,v) = min{nni(u,v), nni(u,zi), nni(zi,v), nyi(u,zi) + yni(zi,v) + pzi},
and Tnyi+1(u,v) = min{Tnni(u,v), Tnni(u,zi), Tnni(zi,v), Tnyi(u,zi)∪Tyni(zi,v)}.

The following pseudo-code in Algorithm 6 gives the details of our algorithm.

Algorithm 6: Algorithm for PCST on 2-tree (ALG PCST)
Input: 2-tree G = (V,E) with c ∈ RE

+, p ∈ RV
+

Output: An optimal tree T ∗ of the PCST problem on (G,c, p) with optimal value ν∗

G1← G;1

z1← a vertex in G1 of degree 2;2

for each pair (u,v) corresponding to an edge uv in G1 do3

H1(u,v)← G[{u,v}];4

set π1(u,v) and its corresponding forest as in (1) for any π1 ∈Π1;5

n← |V (G)|;6

for i = 2 to n−2 and do7

Gi← G\{z1, . . . ,zi−1};8

zi← a vertex in Gi of degree 2;9

for each pair (u,v) corresponding to an edge uv in Gi do10

if u,v are not the two neighbors of zi−1 in Gi−1 then11

Hi(u,v)← Hi−1(u,v);12

else13

Hi(u,v)← Hi−1(u,v)∪Hi−1(u,zi−1)∪Hi−1(zi−1,v)14

set πi(u,v) and its corresponding forest as in Lemma 37-39 for any πi ∈Πi;15

ν∗←min
{

stn−2(u,v),ynn−2(u,v),nyn−2(u,v),nnn−2(u,v)
}

, where u,v ∈ G\Gn−2;16

T ∗← Tπn−2(u,v), where πn−2 ∈ {stn−2,ynn−2,nyn−2,nnn−2} and π(u,v) = ν∗;17

return T ∗ and ν∗.18

From Lemma 36-39, we get:

Theorem 15. Given any PCST instance on a 2-tree of n vertices, Algorithm ALG PCST

outputs its optimal PCST and optimal value in O(n) time.
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5.3 Risk Models for PCST Problem with Interval Data

In this section, we consider the PCST problem with interval data. We design two risk
models for this problem and propose strongly polynomial-time algorithms in 2-trees.

Given an undirected graph G= (V,E), each edge e∈E is associated with a cost interval
[c−e ,c

+
e ], and each vertex v ∈V is associated with a prize interval [p−v , p+v ], where 0≤ c−e ≤

c+e and 0≤ p−v ≤ p+v . These intervals indicate possible ranges of construction cost of edge
e ∈ E and collection prize of vertex v ∈V , respectively.

We define the risk at edge e with cost xe ∈ [c−e ,c
+
e ] as5

r(xe)≡
c+e − xe
c+e − c−e

,

and the risk at vertex v with prize yv ∈ [p−v , p+v ] as

r(yv)≡
yv− p−v
p+v − p−v

.

We see that the risks r(xe), for any e ∈ E, and r(yv), for any v ∈V , both range from 0 to
1. It is consistent with the sense that the higher cost xe ∈ [c−e ,c

+
e ] one pays to construct the

link e, the lower risk it is that the link e breaks down; and that the lower prize yv ∈ [p−v , p+v ]
one asks for from the costumer v, the lower risk it is that the costumer v refuse the deal.
In particular, r(xe) = 0 when xe = c+e (resp. r(yv) = 0 when yv = p−v ), meaning no risk
occurs if the payment is high enough (the expected prize is low enough). On the other
hand, r(xe) = 1 when xe = c−e (resp. r(yv) = 1 when yv = p+v ), meaning a full risk occurs
at the lowest payment (resp. the highest prize).

Let T denote the set of trees, i.e., acyclic connected subgraphs, in G. We define the
value of T ∈T with charged payment x ∈ RE(T )

+ and collected prize y ∈ RV (T )
+ as

ν(T,x,y)≡ ∑e∈E(T ) xe−∑v∈V (T ) yv,

where by x ∈ R /0
+ (in case of E(T ) = /0) we mean that x is a null vector.

Let B be a given budget. It is required that T ∈T with charged payment x and collected
prize y satisfy ν(T,x,y)≤B. So in case of negative B, the construction of tree T must make
profit. To assure the feasibility of ν(T,x,y)≤ B subject to

xe ∈ [c−e ,c
+
e ],∀ e ∈ E(T ) and yv ∈ [p−v , p+v ],∀ v ∈V (T ), (2)

bound B obviously cannot be smaller than, Bmin, the optimal value of the PCST prob-
lem with respect to ce = c−e for every e ∈ E and pv = p+v for every v ∈ V . Meanwhile,
Bmax ≡ c+(E) is a trivial upper bound on ν(T,x,y) for any T ∈T , x∈RE(T )

+ and y∈RV (T )
+

satisfying (2). We assume B ∈ [Bmin,Bmax] throughout. Moreover, we assume that B < 0
to prevent the trivial solution T = /0, which has value 0.

5.3.1 PCST Problem under Min-Max Risk Model

The PCST problem under min-max risk model, denoted by MMR PCST, consists of finding
a tree T along with payment x and prize y such that the maximum risk at edges and vertices
in T is minimized and the value ν(T,x,y) is no greater than the given budget B. This

5For ease of description, we make the notational convention that 0
0 = 0.
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problem can be formulated as follows:

(MMR_PCST) min
T∈T

max
e∈E(T ),v∈V (T )

{ c+e − xe

c+e − c−e
,

yv− p−v
p+v − p−v

}

s.t. ν(T,x,y)≤ B;
xe ∈ [c−e ,c

+
e ], ∀ e ∈ E(T );

yv ∈ [p−v , p+v ], ∀ v ∈V (T ).

Let (T ∗,x∗,y∗) be an optimal solution to the MMR PCST problem, where T ∗ is called an
optimal tree. We reserve symbol r∗ for the value rm(T ∗,x∗,y∗) of the optimal solution, i.e.,

r∗ ≡ rm(T ∗,x∗,y∗)≡ max
e∈E(T ∗),v∈V (T ∗)

{ c+e − x∗e
c+e − c−e

,
y∗v− p−v
p+v − p−v

}. (3)

For example, given a graph G with cost intervals and prize interval as shown in Fig. 5.1
(Robust PCST), let the budget B is −12. The optimal solution of the MMR PCST problem
is (T ∗,x∗,y∗), where T ∗ is the subtree induced by {s,w,z, t}, x∗ = (7,8,2) is the cost vector
of the edges (sw,wz,zt) on T ∗ and y∗ = (10,6,3,10) is the prize vector of the vertices
(s,w,z, t) on T ∗. The optimal value r∗ = 0.5 achieves at each vertex and edges on T ∗.

The following lemma shows that (T ∗,x∗,y∗) possesses an evenness property – the risks
of edges and vertices are all equal, which will play an important role in our algorithm
design.

Lemma 40 (Evenness property). For every edge e and every vertex v in T ∗, either we have
c−e = c+e and p−v = p+v or it holds that

c+e − x∗e
c+e − c−e

=
y∗v− p−v
p+v − p−v

= r∗.

Proof. Suppose that the lemma is not true. Then there exists f ∈ E(T ∗) with c+f > c−f and
0≤ (c+f −x∗f )/(c

+
f −c−f )< r∗ or u ∈V (T ∗) with p+u > p−u and 0≤ (y∗u− p−u )/(p+u − p−u )<

r∗. Let Q = {e ∈ E(T ∗) : c+e −x∗e
c+e −c−e

= r∗} ∪ {v ∈ V (T ∗) : y∗v−p−v
p+v −p−v

= r∗}. Then Q 6= /0 since
T ∗ 6= /0. We can take sufficiently small ε > 0 such that the MMR PCST has a solution
(T ∗,x′,y′) with x′ ∈ RE(T ∗)

+ and y′ ∈ RV (T ∗)
+ given by

x′e=


x∗e+ε, if e∈Q∩E
x∗e−|Q|ε, if e= f
x∗e , otherwise

y′v=
{

y∗v−ε, if v∈Q∩V
y∗v , otherwise

or,

x′e=
{

x∗e+ε, if e∈Q∩E
x∗e , otherwise

y′v=


y∗v−ε, if v∈Q∩V
y∗v+|Q|ε, if v=u
y∗v , otherwise

In either case, we have rm(T ∗,x′,y′)< r∗, which contradicts with the optimality of r∗.

Definition 6. For any r ∈ [0,1], each edge e ∈ E and each vertex v ∈V , we define that:

xr
e = c+e − r(c+e − c−e ), and yr

v = p−v + r(p+v − p−v ). (4)
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Moreover, define T r = Topt(G,xr,yr) ∈ T be an optimal PCST with cost vector xr and
prize vector yr. So we have that:

ν(T r,xr,yr) = min
T∈T

ν(T,xr,yr) for any r ∈ [0,1]. (5)

Note that for any fixed r ∈ [0,1], the PCST problem (G,xr,yr) can be solved by Algo-
rithm 6, i.e., T r can be found in O(n) time.

The following lemmas are important for our polynomial algorithm of MMR PCST
problem in 2-trees, presented in next subsection.

Lemma 41. For any r,s ∈ [0,1], r > s if and only if ν(T r,xr,yr)< ν(T s,xs,ys).

Proof. If r > s, then from (4), we have xr
e < xs

e for every e ∈ E and yr
v > ys

v for every v ∈V .
Then ν(T s,xr,yr) < ν(T s,xs,ys). From (5), we have that ν(T r,xr,yr) ≤ ν(T s,xr,yr). So
ν(T r,xr,yr)< ν(T s,xs,ys).

Now we prove that if ν(T r,xr,yr) < ν(T s,xs,ys) then r > s. Suppose it is not true. If
r = s then ν(T r,xr,yr) = ν(T s,xs,ys) from the definition. Otherwise r < s. By previous
paragraph, reversing the role of r and s, we get ν(T s,xs,ys)< ν(T r,xr,yr), a contradiction.
So r > s.

Lemma 42. If r∗ > 0, then ν(T r∗ ,xr∗ ,yr∗) = B.

Proof. Since (T r∗ ,xr∗ ,yr∗) is a feasible solution of the MMR PCST problem,
ν(T r∗ ,xr∗ ,yr∗) ≤ B. Suppose ν(T r∗ ,xr∗ ,yr∗) < B. Since r∗ > 0, xr∗

e > c−e and yr∗
v > p−v

for each e ∈ E(T r∗) and each v ∈V (T r∗). Then we can increase xr∗
e and decrease yr∗

v a little
bit for each e ∈ E(T r∗) and each v ∈V (T r∗) such that its value is still at most B. But then
the risks of each edge and vertex in T r∗ are decreased. So r∗ is not the optimal value of the
MMR PCST problem. It is a contradiction. So ν(T r∗ ,xr∗ ,yr∗) = B.

From the above two lemmas, it is easy to get the following corollary.

Corollary 11. If r∗ > 0, then r = r∗ if and only if ν(T r,xr,yr) = B.

For r∗ = 0, the following fact is trivial.

Fact 4. r∗ = 0 if and only if ν(T 0,x0,y0)≤ B.

Remark 4. If ν(T 1,x1,y1) > B, then we have ν(T r,xr,yr) > B for any r ∈ [0,1]. So the
MMR PCST problem has no feasible solution. In the following subsection, we always
assume that ν(T 1,x1,y1)≤ B. Then the MMR PCST problem is to find the minimum r such
that ν(T r,xr,yr)≤ B.

5.3.1.1 Polynomial Algorithm for the MMR PCST problem in 2-Trees

In this subsection, we describe a polynomial algorithm for the MMR PCST problem on
2-trees.

Given a 2-tree G = (V,E), each edge e ∈ E is associated with a cost interval [c−e ,c
+
e ],

and each vertex v ∈V is associated with a prize interval [p−v , p+v ], where 0≤ c−e ≤ c+e and
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0 ≤ p−v ≤ p+v . For any r ∈ [0,1], xr
e for each edge e ∈ E, yr

v for each vertex v ∈ V and
T r are defined as in Definition 6. Recall that in Section 5.2.1, we order all vertices in
V as z1, . . . ,zn such that each vertex zi, for 1 ≤ i ≤ n− 2, has degree 2 and is contained
in a triangle in the induced subgraph Gi ≡ G[{zi, . . . ,zn}]. Moreover, Hi(u,v) is the same
as defined in Definition 4 for i = 1, . . . ,n− 2 and any pair (u,v) corresponding to an an
uv ∈ E(Gi).

From Fact 4, we can apply Algorithm 6 with input (G,x0,y0) to see wether
ν(T 0,x0,y0) ≤ B or not. If yes, then r∗ = 0. In the following, we consider the case
ν(T 0,x0,y0)> B, in which r∗ > 0.

From Corollary 11, it is sufficient to compute the r such that ν(T r,xr,yr) = B. For
each fixed r ∈ (0,1], ν(T r,xr,yr) can be computed in linear time by Algorithm 6 with input
(G,xr,yr). But there are infinite number of r in the (0,1]. It is impossible to check for each
r ∈ (0,1] wether ν(T r,xr,yr) = B. Our idea is to compute a linear function f of r and, a
lower bound α ∈ [0,1] and an upper bound β ∈ [0,1] of r∗, such that ν(T r,xr,yr) = f (r)
for any r ∈ [α,β ]. From Corollary 11, r∗ is the solution of the linear equation f (r) = B.
Then T r∗ can be computed by Algorithm 6 with input (G,xr∗ ,yr∗).

To compute the required linear function ν(T r,xr,yr) (of r) and the bounds of r∗, we
apply the same dynamic programming as in Algorithm 6 with each measure πi ∈Πi for i =
1, . . . ,n−2 replaced by a linear function of r, where r is contained some interval containing
r∗. To be clear, denote the measure as πr

i corresponding to each πi ∈Πi for i = 1, . . . ,n−2,
defined in Definition 5.

Corresponding to the Lemma 36, we have the following lemma for the MMR PCST
problem.

Lemma 43. For any r ∈ [0,1], we have:

ν(T r,xr,yr) = min{str
n−2(zn−1,zn),ynr

n−2(zn−1,zn),nyr
n−2(zn−1,zn),nnr

n−2(zn−1,zn)}.

Corresponding to (1), we define the initial measures, which are linear functions of r, for
i = 1, r ∈ [α1,β1]≡ [0,1] and each pair (u,v) corresponding to an edge uv ∈ E as follows:

str
1(u,v) = xr

uv− yr
u− yr

v; dtr
1(u,v) =−yr

u− yr
v; ynr

1(u,v) =−yr
u;

nyr
1(u,v) =−yr

v; nnr
1(u,v) = 0

(6)

Note that it is not necessary to compute the forests Tπr(u,v), because T r∗ will be com-
puted by Algorithm 6 with input (G,xr∗ ,yr∗) after r∗ is computed.

For 2≤ i≤ n−3 and any pair (u,v) corresponding to an edge uv ∈ E(Gi), assume that
any measure πr

i (u,v) for πi ∈Πi and the range of r∗, [αi,βi] are computed already after the
elimination of {z1, . . . ,zi−1}; moreover πr

i (u,v) is a linear function of r for r ∈ [αi,βi]. In
the following, we see how to compute the measures πr

i+1(u,v), for any πi+1 ∈Πi+1, and the
range [αi+1,βi+1] after the elimination of zi in Gi, such that πr

i+1(u,v) is a linear function
of r for r ∈ [αi+1,βi+1] and r∗ ∈ [αi+1,βi+1].

As proved in Lemma 37-39, we get the corresponding lemma for each πi+1 ∈Πi+1

Lemma 44. For any pair (u,v) corresponding to an edge uv ∈ E(Gi+1), given linear func-
tions πr

i (u,v) of r in [αi,βi], for any πi ∈ Πi and r∗ ∈ [αi,βi], each πr
i+1(u,v) can be com-

puted as follows:
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• If u,v are not the two neighbors of zi in Gi, πr
i+1(u,v) = πr

i (u,v), for each πi+1 ∈Πi+1

and πi ∈Πi;

• Otherwise, we have:

– str
i+1(u,v) = min{str

i (u,v)+ ynr
i (u,zi)+nyr

i (zi,v)+ yr
u + yr

v,

str
i (u,v)+ str

i (u,zi)+dtr
i (zi,v)+ yr

u + yr
zi
+ yr

v,

str
i (u,v)+dtr

i (u,zi)+ str
i (zi,v)+ yr

u + yr
zi
+ yr

v,

dtr
i (u,v)+ str

i (u,zi)+ str
i (zi,v)+ yr

u + yr
zi
+ yr

v};
– dtr

i+1(u,v) = min{dtr
i (u,v)+ ynr

i (u,zi)+nyr
i (zi,v)+ yr

u + yr
v,

dtr
i (u,v)+ str

i (u,zi)+dtr
i (zi,v)+ yr

u + yr
zi
+ yr

v,

dtr
i (u,v)+dtr

i (u,zi)+ str
i (zi,v)+ yr

u + yr
zi
+ yr

v,},
– ynr

i+1(u,v) = min{ynr
i (u,v)+ ynr

i (u,zi)+ yr
u,

ynr
i (u,v)+ str

i (u,zi)+ ynr
i (zi,v)+ yr

u + yr
zi
};

– nyr
i+1(u,v) = min{nyr

i (u,v)+nyr
i (zi,v)+ yr

v,

nyr
i (u,v)+nyr

i (u,zi)+ str
i (zi,v)+ yr

zi
+ yr

v};
– nnr

i+1(u,v) = min{nnr
i (u,v), nnr

i (u,zi), nnr
i (zi,v), nyr

i (u,zi)+ ynr
i (zi,v)+ yr

zi
}.

From Lemma 44, for πi+1 ∈ Πi+1, we see that if u,v are not the two neighbors of zi in
Gi, then πr

i+1(u,v) = πr
i (u,v) is a linear in function in [αi,βi]. Otherwise, πr

i+1(u,v) is the
minimum of at most four linear functions of r in [αi,βi]. So πr

i+1(u,v) is a piecewise linear
function of r in [αi,βi] with at most three non-differentiable points. So there are at most 15
non-differentiable points in all the five measures. In the following lemma, we compute an
interval containing r∗, [αi+1,βi+1]⊆ [αi,βi], in which each πr

i+1(u,v) is linear.

Lemma 45. For any pair (u,v) corresponding to an edge uv∈ E(Gi+1), let each πr
i+1(u,v),

for any πi+1 ∈ Πi+1, be a piecewise linear function of r in [αi,βi] with at most three non-
differentiable points. Moreover r∗ ∈ [αi,βi]. Let A = {αi,βi} ∪ { the non-differentiable
points of all πr

i+1(u,v), for any πi+1 ∈Πi+1}.
Let αi+1 = maxr∈A{r : ν(T r,xr,yr) ≥ B} and βi+1 = minr∈A{r : ν(T r,xr,yr) ≤ B}.

Then πr
i+1(u,v), for any πi+1 ∈ Πi+1}, is a linear function of r in [αi+1,βi+1] and r∗ ∈

[αi+1,βi+1].

Proof. From Lemma 42, ν(T r∗ ,xr∗ ,yr∗) = B. So ν(T αi+1 ,xαi+1 ,yαi+1) ≥ ν(T r∗ ,xr∗ ,yr∗) ≥
ν(T βi+1 ,xβi+1 ,yβi+1). From Lemma 41, αi+1 ≤ r∗ ≤ βi+1, i.e. r∗ ∈ [αi+1,βi+1].

To prove that πr
i+1(u,v), for any πi+1 ∈ Πi+1, is a linear function of r in [αi+1,βi+1],

it is sufficient to prove that there is no non-differentiable points in (αi+1,βi+1) of any
πr

i+1(u,v). Suppose there is a non-differentiable point r ∈ (αi+1,βi+1) of some πr
i+1(u,v).

If ν(T r,xr,yr) ≤ B ≤ ν(T αi+1 ,xαi+1 ,yαi+1), then r ≥ βi+1 from Lemma 41; otherwise, we
have r < αi+1. It is a contradiction.

Remark 5. If αi+1 = βi+1, then r∗ = αi+1 = βi+1. Then it is not necessary to compute the
measures πr

j , for any π j ∈Π j for i+2≤ j ≤ n−2.

Theorem 16. The MMR PCST problem in 2-trees of n vertices can be solved in O(n2) time.
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Proof. From Lemma 44 and 45, for 1 ≤ i ≤ n− 2 and any pair (u,v) corresponding to
an edge uv ∈ E(Gi), we can compute the measures πr

i (u,v), for any πi ∈ Πi, and interval
[αi,βi] such that πr

i (u,v) is a linear function of r in [αi,βi] and r∗ ∈ [αi,βi].
For each i= 1, . . . ,n−2, to compute the measures as in Lemma 44, we need to compute

the minimum of at most four linear functions. In [Meg79], there is an O(k logk) algorithm
for computing the minimum of k linear functions. So each πr

i (u,v) can be computed in
constant time. To compute [αi,βi] as in Lemma 45, we need to compute ν(T r,xr,yr) for
r belongs to all the non-differentiable points, at most 15 non-differentiable points, of all
measures πr

i (u,v), for any πi ∈ Πi, in [αi−1,βi−1]. From Theorem 15, this can be done in
O(n) time. So it costs O(n2) time to compute all the measures πr

i (u,v) and interval [αi,βi]

for 1≤ i≤ n−2, any πi ∈Πi, and any pair (u,v) corresponding to an edge uv ∈ E(Gi).
From Lemma 43, to compute ν(T r,xr,yr), we only need to compute the minimum of

the four linear functions of r in [αn−2,βn−2], str
n−2(zn−1,zn), ynr

n−2(zn−1,zn), nyr
n−2(zn−1,zn)

and nnr
n−2(zn−1,zn), which takes constant time. So ν(T r,xr,yr) is a piecewise linear func-

tions of r in [αn−2,βn−2] with at most three non-differentiable points. Then as in Lemma 45,
we can compute an interval [α,β ] ⊆ [αn−2,βn−2] such that ν(T r,xr,yr) is linear in [α,β ]

and r∗ ∈ [α,β ]. It take O(n) time.
Finally, we solve the linear equation ν(T r,xr,yr) = B for r ∈ [α,β ]. Its solution is

the optimal value r∗ of the MMR PCST problem. Then T r∗ is an optimal solution of the
MMR PCST problem, which can be computed by Algorithm 6 in O(n) time.

So the MMR PCST problem in 2-trees of n vertices can be solved in O(n2) time

5.3.2 PCST Problem under Min-Sum Risk Model

The PCST problem under min-sum risk model, denoted by MSR PCST, is to find a tree T
in given graph G = (V,E) along with payment x ∈ RE(T )

+ and prize y ∈ RV (T )
+ such that the

sum of risks at edges and vertices in T :

rs(T,x,y)≡ ∑
e∈E(T )

c+e − xe

c+e − c−e
+ ∑

v∈V (T )

yv− p−v
p+v − p−v

= ∑
e∈E(T )

r(xe)+ ∑
v∈V (T )

r(yv)

is minimized and the value ν(T,x,y) is no greater than the given budget bound B. This
problem can be formulated as follows:

(MSR_PCST) min
T∈T

(
∑

e∈E(T )

c+e − xe

c+e − c−e
+ ∑

v∈V (T )

yv− p−v
p+v − p−v

)
s.t. ν(T,x,y)≤ B;

xe ∈ [c−e ,c
+
e ], ∀ e ∈ E(T );

yv ∈ [p−v , p+v ], ∀ v ∈V (T ).

For example, given a graph G with cost intervals and prize interval as shown in Fig. 5.1
(Robust PCST), let the budget B is −12. The optimal solution of the MMR PCST problem
(T ∗,x∗,y∗) is also an optimal solution of the MSR PCST problem, where T ∗ is the subtree
induced by {s,w,z, t}, x∗ = (7,8,2) is the cost vector of the edges (sw,wz,zt) on T ∗ and
y∗ = (10,6,3,10) is the prize vector of the vertices (s,w,z, t) on T ∗. The optimal value
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rs(T ∗,x∗,y∗) = 2.5. In addition, the solution (T ∗,x,y) for x = (8,9,1) and y = (10,7,3,10)
is also an optimal solution of the MSR PCST problem.

Now let us see an easy lemma satisfied by any optimal solution of the MSR PCST
problem, which is similar to the property of Lemma 42 for the MRR PCST problem

Lemma 46. Let (T ∗,x∗,y∗) be an optimal solution of the MSR PCST problem. If
rs(T ∗,x∗,y∗)> 0, then ν(T ∗,x∗,y∗) = B.

Proof. Since rs(T ∗,x∗,y∗) > 0, there exist an edge or a vertex with risk bigger than 0.
W.l.o.g, suppose u ∈ V (T ) has risk r(y∗u) > 0, i.e. y∗u ∈ (p−u , p+u ). If ν(T ∗,x∗,y∗) < B,
then let δ = min{p+u − y∗u,B−ν(T ∗,x∗,y∗)}. Let change y∗u to be y∗u +δ . Then (T ∗,x∗,y∗)
is still a feasible solution, but rs(T ∗,x∗,y∗)0 strictly decreases. It is a contradiction. So
ν(T ∗,x∗,y∗) = B.

The MSR PCST problem has an optimal solution that satisfies the following extreme-
ness property – the edge payments and vertex prizes hit lower or upper limits with at most
one exceptional edge and at most one exceptional vertex. This property is contrary to the
property in Lemma 40 for the MRR PCST, where all price and cost are fixed when r is
fixed.

Lemma 47 (Extremeness property). There exists an optimal solution (T ∗,x∗,y∗) of the
MSR PCST problem which contains an edge f ∈E(T ∗) if E(T ∗) 6= /0 and a vertex u∈V (T ∗)
such that

x∗e ∈ {c−e ,c+e } for all e ∈ E(T ∗)\{ f} if E(T ∗) 6= /0; and
y∗v ∈ {P−v , p+v } for all v ∈V (T ∗)\{u}. (7)

Proof. Let (T ∗,x∗,y∗) be an optimal solution to the MSR PCST problem such that the
union of two sets E(T ∗,x∗,y∗) ≡ {e : e ∈ E(T ∗),x∗e ∈ (c−e ,c

+
e )} and V(T ∗,x∗,y∗) ≡ {v :

v ∈ V (T ∗),y∗v ∈ (p−v , p+v )} contains as few elements as possible. If |E(T ∗,x∗,y∗)| ≤ 1 and
|V(T ∗,x∗,y∗)| ≤ 1, then the lemma is true.

If |E(T ∗,x∗,y∗)|> 1, then there exist distinct edges g, f ∈ E(T ∗,x∗,y∗) with c+g −c−g ≤
c+f −c−f . Take δ =min{c+g −x∗g,x

∗
f −c−f } and define x′ ∈RE(T ∗)

+ by setting x′g = x∗g+δ , x′f =
x∗f −δ and x′e = x∗e for every e ∈ E(T ∗)\{g, f}. Then ν(T ∗,x′,y∗) = ν(T ∗,x∗,y∗)≤ B and
rs(T ∗,x′,y∗) ≤ rs(T ∗,x∗,y∗). So (T ∗,x′,y∗) is also an optimal solution to the MSR PCST
with E(T ∗,x′,y∗)⊂ E(T ∗,x∗,y∗) and V(T ∗,x′,y∗) = V(T ∗,x∗,y∗). It is a contradiction.

If |V(T ∗,x∗,y∗)| > 1, then there exist distinct vertices u,z ∈ V(T ∗,x∗,y∗) with p+u −
p−u ≤ p+z − p−z . Take δ = min{y∗u − p−u , p+v − y∗v} and define y′ ∈ RV (T ∗)

+ by setting
y′u = y∗u− δ , y′z = y∗z + δ and y′v = y∗v for every v ∈ V (T ∗) \ {u,z}. Then ν(T ∗,x∗,y′) =
ν(T ∗,x∗,y∗) ≤ B and rs(T ∗,x∗,y′) ≤ rs(T ∗,x∗,y∗). So (T ∗,x∗,y′) is also an optimal solu-
tion to the MSR PCST with V(T ∗,x∗,y′) ⊂ V(T ∗,x∗,y∗) and E(T ∗,x∗,y′) = E(T ∗,x∗,y∗).
It is a contradiction.

For easy description, we give the following definition.

Definition 7. An optimal solution (T ∗,x∗,y∗) of the MSR PCST problem is called an ex-
treme optimal solution if there are an edge f ∈ E(T ∗) unless E(T ∗) = /0 and a vertex
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u ∈ V (T ∗) such that (T ∗,x∗,y∗) satisfies (7); moreover, f (resp. u) is called the extreme
edge (resp. extreme vertex) of (T ∗,x∗,y∗).

In an extreme optimal solution (T ∗,x∗,y∗) with an extreme edge f and an extreme
vertex u, each edge e (resp. vertex v) in T ∗ except f (resp. u) has two possible costs,
either c+e (resp. p+v ) or c−e (resp. p−v ), so it has risk either 0 (resp. 1) or 1 (resp. 0).
Intuitively, if we change the cost of f to be c+f and the prize of u to be p−u in (T ∗,x∗,y∗),
then its value should be the minimum among all solutions (T,x,y), where T containing f ,u,
x f = c+f , yu = p−u , all other edges and vertices have risk either 0s or 1s, and rs(T,x,y) ≤
rs(T ∗,x∗,y∗)− r(x∗f )− r(y∗u). In the following, we see how to get an extreme optimal
solution of the MSR PCST problem. It is divided into two problems (BWCC) and (LP) as
presented in the following lemma:

Lemma 48. Let (T ∗,x∗,y∗) be an extreme optimal solution with extreme edge f ∈ E(T ∗)
and extreme vertex u ∈ V (T ∗) of the MSR PCST problem. Assume that r(T ∗,x∗,y∗) > 0.
Let (T,x,y) be an optimal solution of the following problem (BWCC):

(BWCC) minν(T,x,y)

s.t. rs(T,x,y)≤ rs(T ∗,x∗,y∗)− r(x∗f )− r(y∗u);
f ∈ E(T ),u ∈V (T ),x f = c+f ,yu = p−u ;
xe ∈ {c+e ,c−e }, ∀ e ∈ E(T )\{ f};
yv ∈ {p+v , p−v }, ∀ v ∈V (T )\{u}.

Let (x0,y0) be an optimal solution of the following linear programming (LP):

(LP) min
c+f − x0

c+f − c−f
+

y0− p−u
p+u − p−u

s.t. ν(T,x,y)− x f + yu + x0− y0 ≤ B;
x0 ∈ [c−f ,c

+
f ],

y0 ∈ [p−u , p+u ].

Then (T,x′,y′) is also an extreme optimal solution with extreme edge f ∈ E(T ) and extreme
vertex u ∈ V (T ) of the MSR PCST problem, where x′f = x0,y′u = y0, x′e = xe for any edge
e ∈ E(T )\{ f} and y′v = yv for any v ∈V (T )\{u}.

Proof. It is sufficient to prove that ν(T,x′,y′) ≤ B and rs(T,x′,y′) ≤ rs(T ∗,x∗,y∗), since
x′e = xe ∈ {c−e ,c+e } for any e ∈ E(T ) \ { f} and y′v = yv ∈ [p−v , p+v ] for any v ∈ V (T ) \ {u}
and f ∈ E(T ),u ∈ V (T ) from (BWCC) and (LP). Since ν(T,x′,y′) = ν(T,x,y)− x f +

yu + x0− y0, then ν(T,x′,y′)≤ B from (LP). In the following, we show that rs(T,x′,y′)≤
rs(T ∗,x∗,y∗).

One see that rs(T,x′,y′) = rs(T,x,y)− r(x f )− r(yu) + r(x′f ) + r(y′u). Since x f = c+f
and yu = p−u , r(x f ) = r(yu) = 0. So rs(T,x′,y′) = rs(T,x,y) + r(x0) + r(y0). From the
first condition of (BWCC), rs(T,x′,y′) ≤ rs(T ∗,x∗,y∗)− r(x∗f )− r(y∗u)+ r(x0)+ r(y0). If
r(x0)+ r(y0)≤ r(x∗f )+ r(y∗u), then the lemma is proved.

To prove r(x0)+ r(y0)≤ r(x∗f )+ r(y∗u), it is sufficient to prove that (x∗f ,y
∗
u) is a feasible

solution of (LP). So we only need to prove that ν(T,x,y)− x f + yu + x∗f − y∗u ≤ B. From
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Lemma 46, it is enough to prove that ν(T,x,y)− x f + yu + x∗f − y∗u ≤ ν(T ∗,x∗,y∗), i.e.
ν(T,x,y)− x f + yu ≤ ν(T ∗,x∗,y∗)− x∗f + y∗u. Suppose it is not true, i.e., ν(T,x,y)− x f +

yu > ν(T ∗,x∗,y∗)−x∗f +y∗u. Then let x̄ f = c+f , ȳu = p−u , x̄e = x∗e for any edge e∈E(T ∗)\{ f}
and ȳv = y∗v for any v∈V (T ∗)\{u}. Then ν(T ∗, x̄, ȳ) = ν(T ∗,x∗,y∗)−x∗f +y∗u+c+f − p−u <

ν(T,x,y)− x f + yu + c+f − p−u = ν(T,x,y), i.e. ν(T ∗, x̄, ȳ) < ν(T,x,y). If (T ∗, x̄, ȳ) is a
feasible solution of (BWCC), then it is a contradiction. So the lemma is proved.

Finally, we only need to prove that (T ∗, x̄, ȳ) is a feasible solution of (BWCC). Since
x̄ f = c+f , ȳu = p−u , x̄e = x∗e for any edge e∈ E(T ∗)\{ f} and ȳv = y∗v for any v∈V (T ∗)\{u},
we only need to prove rs(T ∗, x̄, ȳ)≤ rs(T ∗,x∗,y∗)−r(x∗f )−r(y∗u). We see that rs(T ∗, x̄, ȳ) =
rs(T ∗,x∗,y∗)−r(x∗f )−r(y∗u)+r(x̄ f )+r(ȳu). Since x̄ f = c+f and ȳu = p−u , r(x̄ f ) = r(ȳu) = 0.
So rs(T ∗, x̄, ȳ) = rs(T ∗,x∗,y∗)− r(x∗f )− r(y∗u). The lemma is proved.

Note that the optimal solution (T,x,y) of (BWCC) has the minimum value of any tree
containing f ,u with both cost risk of f and prize risk u being 0 and any other vertices and
edges on the tree with risks either 1 or 0; and moreover, the sum of all the risks of edges
and vertices on the tree is at most r∗− r(x∗f )− r(y∗u). This lemma plays an important role
in our algorithm for the MSR PCST problem in 2-trees, which is going to be presented in
the rest of this subsection.

5.3.2.1 Polynomial Algorithm for the MSR PCST problem in 2-Trees

In this subsection, we present the polynomial algorithm for the MSR PCST problem in
2-Trees.

Given a 2-tree G = (V,E), each edge e ∈ E is associated with a cost interval [c−e ,c
+
e ],

and each vertex v ∈V is associated with a prize interval [p−v , p+v ], where 0≤ c−e ≤ c+e and
0 ≤ p−v ≤ p+v . Let |V |= n. We denote r∗ as the optimal value of the MSR PCST problem
(G,c+,c−, p+, p−,B).

It is easy to check whether r∗ = 0. We only need to apply the Algorithm 6 with input
(G,x0,y0) to see whether ν(T 0,x0,y0) ≤ B. If yes, then the r∗ = 0 and ν(T 0,x0,y0) is an
optimal solution. Otherwise, r∗ > 0. In the following, we always assume ν(T 0,x0,y0)>B,
i.e., r∗ > 0.

We are going to find an extreme optimal solution. Assume that f ,u are the extreme
edge and extreme vertex of some extreme optimal solution (T ∗,x∗,y∗), and moreover the
risk Γ≡ rs(T∗,x∗,y∗)− r(x∗f )− r(y∗u) is known. Then from Lemma 48, we just need to
solve the two problems (BWCC) and (LP). After solving (BWCC), we see that (LP) is
just a linear programming with only 2 variables and 5 constraints, which can be solved in
constant time. So the key point is to compute Γ and solve the problem (BWCC). The main
idea of our algorithm is to compute a bound of the risk Γ. Note that Γ is an integer. From
the computed bound of Γ, which is going to be presented later, Γ can be three possible
integers. On the other hand, since it is not sure which edge and vertex can be the extreme
edge f and extreme vertex u, we are going to consider each pair of edge and vertex in G
as f and u respectively in the (BWCC) problem. Finally, we solve the (BWCC) and (LP)
problems with three possibilities of Γ and O(n2) possibilities of f ,u. Then we choose a
solution with the minimum sum of all risks among all the O(n2) solutions we get as in
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Lemma 48. In the following, we see how to compute the bound for Γ and how to solve the
problem (BWCC). It turns out that both of these two problems are closed related with the
Binary Weight Constrained Prize Collecting Steiner Tree (BWC_PCST) problem (see the
definition in the next paragraph).

Bound of Γ = rs(T ∗,x∗,y∗)− r(x∗f )− r(y∗u)

First let us compute the bound for Γ by solving the Binary Weight Constrained Prize Col-
lecting Steiner Tree (BWC_PCST) problem, defined as follows for any non-negative integer
ζ :

(BWC_PCST ) min
T∈T

ν(T,x,y)

s.t. rs(T,x,y)≤ ζ ;
xe ∈ {c−e ,c+e }, ∀ e ∈ E(T );
yv ∈ {p−v , p+v }, ∀ v ∈V (T ).

For easy description, we denote the optimal value as νζ . One sees that in the (BWC_PCST )
problem, the costs and prizes of any edges and vertices are either the upper bounds or lower
bounds of the given intervals. So their risks are either 1s or 0s. Note that rs(T,x,y)≤ 2n−1
for any (T,x,y). So we always assume that 0≤ ζ ≤ 2n−1.

Lemma 49. Let β be the minimum non-negative integer such that νβ ≤ B. Then β −2 ≤
Γ≤ β , i.e., Γ ∈ {β −2,β −1,β}.

Proof. Recall that Γ = rs(T ∗,x∗,y∗) − r(x∗f ) − r(y∗u) for an extreme optimal solution
(T ∗,x∗,y∗) of the MSR PCST problem with extreme edge f ∈ E(T ∗) and extreme vertex
u ∈V (T ∗). If β = 0, then ν0 ≤ B. So r∗ = 0. Then any optimal solution of the MSR PCST
problem has risk 0 of each edge and vertex. So Γ = 0. The lemma is proved.

Otherwise, β ≥ 1 and νβ−1 > B. Since νβ ≤ B, the optimal solution (T,x,y) of the
(BWC_PCST ) problem for ζ = β is a feasible solution of the MSR PCST problem. Then
rs(T ∗,x∗,y∗)≤ β , since rs(T,x,y)≤ β from the first condition of (BWC_PCST ).

If r∗ = 0, then β = 0. So we have r∗ > 0. From Lemma 46, ν(T ∗,x∗,y∗) = B.
Since νβ−1 > B, then νβ−1 > ν(T ∗,x∗,y∗). So (T ∗,x∗,y∗) is not a feasible solution of the
(BWC_PCST ) problem for ζ = β −1, i.e., rs(T ∗,x∗,y∗) > β −1. So Γ = rs(T ∗,x∗,y∗)−
r(x∗f )− r(y∗u)≥ rs(T ∗,x∗,y∗)−2 > β −3.

From Lemma 49, the desired bound of Γ can be obtained if we can solve the
(BWC_PCST ) problem for any integer ζ ∈ [0,2n−1].

Solving the (BWC_PCST ) Problem for ζ ∈ [0,2n−1]

To solve the (BWC_PCST ) problem, we are going to follow the idea of Algorithm 6 and
add the risk into the measures. Recall that in Section 5.2.1, we order all vertices in V as
z1, . . . ,zn such that each vertex zi, for 1 ≤ i ≤ n− 2, has degree 2 and is contained in a
triangle in the induced subgraph Gi ≡ G[{zi, . . . ,zn}]. Moreover, Hi(u,v) is the same as
defined in Definition 4 for i = 1, . . . ,n− 2 and any pair (u,v) corresponding to an uv ∈
E(Gi). In the following, we give the definitions of the measures with risk.
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Definition 8. For each 1≤ i≤ n−2, for τ,θ ∈ {+,−}, for each pair (uτ ,vθ ) correspond-
ing to an edge uv ∈ Gi and each integer ξ ∈ [0,ζ ], we will associate five measures defined
as follows, which summarize the values and sum-risks6 incurred in the subgraph Hi(u,v);
moreover, u (resp. v) has prize pτ

u (resp. pθ
v ).

(i) sti(uτ ,vθ ,ξ ) is the minimum value of a tree in Hi(u,v) containing both u and v with
sum-risks at most ξ ; (T sti(uτ ,vθ ,ξ ),xsti(uτ ,vθ ,ξ ),ysti(uτ ,vθ ,ξ )) denotes such a solution;

(ii) dti(uτ ,vθ ,ξ ) is the minimum value of the forest consisting of two vertex-disjoint trees
in Hi(u,v), one containing u and the other containing v, with sum-risks at most ξ ;
(T dti(uτ ,vθ ,ξ ),xdti(uτ ,vθ ,ξ ),ydti(uτ ,vθ ,ξ )) denotes such a solution;

(iii) yni(uτ ,vθ ,ξ ) is the minimum value of a tree in Hi(u,v) containing u but not v with
sum-risks at most ξ ; (T yni(uτ ,vθ ,ξ ),xyni(uτ ,vθ ,ξ ),yyni(uτ ,vθ ,ξ )) denotes such a solution;

(iv) nyi(uτ ,vθ ,ξ ) is the minimum value of a tree in Hi(u,v) containing v but not u with
sum-risks at most ξ ; (T nyi(uτ ,vθ ,ξ ),xnyi(uτ ,vθ ,ξ ),ynyi(uτ ,vθ ,ξ )) denotes such a solution;

(v) nni(uτ ,vθ ,ξ ) is the minimum value of a tree in Hi(u,v) containing neither u nor v
with sum-risks at most ξ ; (T nni(uτ ,vθ ,ξ ),xnni(uτ ,vθ ,ξ ),ynni(uτ ,vθ ,ξ )) denotes such a solu-
tion.

We can always omit the subscript τ (resp. θ ) if u (resp. v) is not contained in the forest. So
we also use yni(uτ ,v,ξ ), nyi(u,vθ ,ξ ) and nni(u,v,ξ )

Similarly to Lemma 36, we have the following lemma for the (BWC_PCST ) problem.

Lemma 50. For any ζ ∈ [0,2n−1], we have:

νζ =min{stn−2(zτ
n−1,z

θ
n ,ζ ),ynn−2(zτ

n−1,zn,ζ ),nyn−2(zn−1,zθ
n ,ζ ),nnn−2(zn−1,zn,ζ ) : τ,θ ∈{+,−}}.

Moreover, the corresponding solution achieving the value νζ is an optimal solution of the
(BWC_PCST ) problem.

First let us define the initial measures for i = 1, ξ = 0, . . . ,ζ and any pair (u,v) corre-
sponding to an edge uv ∈ G.

st1(u−,v−,0) = c+uv− p−u − p−v , Tst1(u−,v−,0) = ({u,v},uv);
dt1(u−,v−,0) =−p−u − p−v , Tdt1(u−,v−,0) = ({u,v}, /0);
yn1(u−,v,0) =−p−u , Tyn1(u−,v,0) = ({u}, /0);
ny1(u,v−,0) =−p−v , Tny1(u,v−,0) = ({v}, /0);
nn1(u,v,0) = 0, Tnn1(u,v,0) = ( /0, /0).

(8)

The cost vectors and prize vectors are not presented explicitly, but one can see it clearly
from the formula of the corresponding measures. For example, from st1(u−,v−,0) = c+uv−
p−u − p−v , we know that xst1(u−,v−,0)

uv = c+uv, yst1(u−,v−,0)
u = p−u and yst1(u−,v−,0)

v = p−v .
If r(yu) + r(yv) > ξ , then set st1(uτ ,vθ ,ξ ) = dt1(uτ ,vθ ,ξ ) = ∞. For example,

st1(u+,v−,0) = ∞ since r(yu) = 1 > 0.
If r(yu)> ξ (resp. r(yv)> ξ ), then set yn1(uτ ,v,ξ ) = ∞ (resp. ny1(u,vθ ,ξ ) = ∞).

6The sum of all risks of edges and vertices.
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So any other measure for ξ = 0 and i = 1 except the ones in (8) has value ∞.
For any ξ ≥ 1, Tπ1(uτ ,vθ ,ξ ) = Tπ1(uτ ,vθ ,0) for any π1 ∈ Π1. So in the following, we only

present the measures π1(u,v,ξ ).

st1(u−,v−,1) = c−uv− p−u − p−v ,
st1(u+,v−,1) = c+uv− p+u − p−v ,
st1(u−,v+,1) = c+uv− p−u − p+v ;
st1(u+,v+,2) = c−uv− p+u − p+v ,
st1(uτ ,vθ ,ξ ) = c−uv− pτ

u− pθ
v , for any 2≤ ξ ≤ ζ and r(yu)+ r(yv)< 2;

st1(uτ ,vθ ,ξ ) = c−uv− pτ
u− pθ

v , for any 3≤ ξ ≤ ζ ;
dt1(uτ ,vθ ,1) =−pτ

u− pθ
v , for any (τ,θ) 6= (+,+)

dt1(uτ ,vθ ,ξ ) =−pτ
u− pθ

v , for any 2≤ ξ ≤ ζ ;
yn1(uτ ,v,ξ ) =−pτ

u, for any 1≤ ξ ≤ ζ ;
ny1(u,vθ ,ξ ) =−pθ

v , for any 1≤ ξ ≤ ζ ;
nn1(u,v,ξ ) = 0, for any 1≤ ξ ≤ ζ .

Any other measure for ξ ≥ 1 and i = 1 has value ∞.
We update the measures recursively. Assume that, for 2≤ i≤ n−3, and any pair (u,v)

corresponding to an edge uv ∈ E(Gi), any measure πi(uτ ,vθ ,ξ ) for πi ∈ Πi, ξ = 0, . . . ,ζ
and τ,θ ∈ {+,−} are computed already after the elimination of {z1, . . . ,zi−1}. In the
following, we see how to compute the measures πi+1(uτ ,vθ ,ξ ) for πi ∈ Πi, ξ = 0, . . . ,ζ
and τ,θ ∈ {+,−}.

As proved in Lemma 37-39, we get the corresponding lemma:

Lemma 51. For 2≤ i≤ n−3, and any pair (u,v) corresponding to an edge uv ∈ E(Gi+1),
any 0≤ ξ ≤ ζ and τ,θ ∈ {+,−}, each πi+1(uτ ,vθ ,ξ ) can be computed as follows:

• If u,v are not the two neighbors of zi in Gi, πi+1(uτ ,vθ ,ξ ) = πi(uτ ,vθ ,ξ ), for each
πi+1 ∈Πi+1 and πi ∈Πi;

• Otherwise, we have:

– sti+1(uτ ,vθ ,ξ ) = min{sti(uτ ,vθ ,ξ1)+ yni(uτ ,zi,ξ2)+nyr
i (zi,vθ ,ξ3)+ yτ

u + yθ
v ,

sti(uτ ,vθ ,ξ4)+sti(uτ ,z+i ,ξ5)+dtr
i (z

+
i ,v

θ ,ξ6)+yτ
u+ p+zi

+yθ
v ,

sti(uτ ,vθ ,ξ7)+sti(uτ ,z−i ,ξ8)+dtr
i (z
−
i ,v

θ ,ξ9)+yτ
u+ p−zi

+yθ
v ,

sti(uτ ,vθ ,ξ10)+dti(uτ ,z+i ,ξ11)+str
i (z

+
i ,v

θ ,ξ12)+yτ
u+ p+zi

+yθ
v ,

sti(uτ ,vθ ,ξ13)+dti(uτ ,z−i ,ξ14)+str
i (z
−
i ,v

θ ,ξ15)+yτ
u+ p−zi

+yθ
v ,

dti(uτ ,vθ ,ξ16)+sti(uτ ,z+i ,ξ17)+str
i (z

+
i ,v

θ ,ξ18)+yτ
u+ p+zi

+yθ
v ,

dti(uτ ,vθ ,ξ19)+ sti(uτ ,z−i ,ξ20)+ str
i (z
−
i ,v

θ ,ξ21)+yτ
u + p−zi

+yθ
v

| for any ξ j ≥ 0, j = 1, . . . ,21 and ξ1 +ξ2 +ξ3 = · · ·= ξ19 +ξ20 +ξ21 = ξ};
– dti+1(uτ ,vθ ,ξ ) = min{dti(uτ ,vθ ,ξ1)+yni(uτ ,zi,ξ2)+nyr

i (zi,vθ ,ξ3)+yτ
u+yθ

v ,

dti(uτ ,vθ ,ξ4)+sti(uτ ,z+i ,ξ5)+dtr
i (z

+
i ,v

θ ,ξ6)+yτ
u+ p+zi

+yθ
v ,

dti(uτ ,vθ ,ξ7)+sti(uτ ,z−i ,ξ8)+dtr
i (z
−
i ,v

θ ,ξ9)+yτ
u+ p−zi

+yθ
v ,

dti(uτ ,vθ ,ξ10)+dti(uτ ,z+i ,ξ11)+str
i (z

+
i ,v

θ ,ξ12)+yτ
u+ p+zi

+yθ
v ,

dti(uτ ,vθ ,ξ13)+dti(uτ ,z−i ,ξ14)+str
i (z
−
i ,v

θ ,ξ15)+yτ
u+ p−zi

+yθ
v

| for any ξ j ≥ 0, j = 1, . . . ,21 and ξ1 +ξ2 +ξ3 = · · ·= ξ13 +ξ14 +ξ15 = ξ};
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– yni+1(uτ ,v,ξ ) = min{yni(uτ ,v,ξ1)+ yni(uτ ,zi,ξ2)+ yτ
u,

yni(uτ ,v,ξ3)+ sti(uτ ,z+i ,ξ4)+ yni(z+i ,v,ξ5)+ yτ
u + p+zi

,

yni(uτ ,v,ξ6)+ sti(uτ ,z−i ,ξ7)+ yni(z−i ,v,ξ8)+ yτ
u + p−zi

| for any ξ j ≥ 0, j = 1, . . . ,8 and ξ1 +ξ2 = ξ3 +ξ4 + x5 = ξ6 +ξ7 +ξ8 = ξ};

– nyi+1(u,vθ ,ξ ) = min{nyi(u,vθ ,ξ1)+nyi(zi,vθ ,ξ2)+ yθ
v ,

nyi(u,vθ ,ξ3)+nyi(u,z+i ,ξ4)+ sti(z+i ,v
θ ,ξ5)+ p+zi

+yθ
v ,

nyi(u,vθ ,ξ3)+nyi(u,z−i ,ξ4)+ sti(z−i ,v
θ ,ξ5)+ p−zi

+ yθ
v

| for any ξ j ≥ 0, j = 1, . . . ,8 and ξ1 +ξ2 = ξ3 +ξ4 + x5 = ξ6 +ξ7 +ξ8 = ξ};

– nni+1(u,v) = min{nni(u,v,ξ ), nnr
i (u,zi,ξ ), nnr

i (zi,v,ξ ),
nyr

i (u,z
+
i ,ξ1)+ ynr

i (z
+
i ,v,ξ2)+ y+zi

,

nyr
i (u,z

−
i ,ξ3)+ ynr

i (z
−
i ,v,ξ4)+ y−zi

| for any ξ j ≥ 0, j = 1, . . . ,4 and ξ1 +ξ2 = ξ3 +ξ4 = ξ}.

Moreover, the corresponding solution (T πi+1(uτ ,vθ ,ξ ),xπi+1(uτ ,vθ ,ξ ),yπi+1(uτ ,vθ ,ξ )) can also be
computed.

Theorem 17. The (BWC_PCST ) problem can be solved in O(nζ 3) time in 2-trees.

Proof. From Lemma 50, the (BWC_PCST ) problem can be solved as long as we
can compute all the measures stn−2(zτ

n−1,z
θ
n ,ζ ), ynn−2(zτ

n−1,zn,ζ ), nyn−2(zn−1,zθ
n ,ζ ),

nnn−2(zn−1,zn,ζ ) for any τ,θ ∈ {+,−}. From Lemma 51, for any 0≤ ξ ≤ ζ , each update
takes O(ξ 2) time, so it takes O(ζ 3) in all. We need to update n− 2 times, so the time
complexity is O(nζ 3).

Solving the Problem (BWCC) in Lemma 48

Recall the problem (BWCC) in Lemma 48 as follows:

(BWCC) minν(T,x,y)

s.t. rs(T,x,y)≤ Γ;
f ∈ E(T ),u ∈V (T ),x f = c+f ,yu = p−u ;
xe ∈ {c+e ,c−e }, ∀ e ∈ E(T )\{ f};
yv ∈ {p+v , p−v }, ∀ v ∈V (T )\{u}.

Remark 6. The problem (BWCC) is a constrained (BWC_PCST ) problem, which requires
that the a special edge f and special vertex u are contained in the tree and their risks are
both 0s, i.e. x f = c+f and yu = p−u ; moreover, the sum-risks is at most Γ, i.e. ζ = Γ in the
(BWC_PCST ) problem.

So to solve the (BWCC), we just need to solve the constrained (BWC_PCST ) problem,
which has solutions containing f ,u for f ∈ E(G) and u ∈V (G) with x f = c+f and yu = p−u .
As proved in Lemma 32, we can assign very big prizes for u and the two endpoints of
edge f , and assign small cost for f , then any optimal solution of (BWC_PCST ) problem
contains u and f . We describe this formally as follows.
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Lemma 52. Given G = (V,E) with cost vectors c+ ∈RE
+,c
− ∈RE

+ and prize vectors p+ ∈
RV
+, p− ∈ RV

+, and a real number M > c+(E)+ p+(V ), an edge f = ab ∈ E and a vertex
u ∈ V , let p′+ be defined by p′+v = M for every v ∈ {u,a,b}, and p′+v = p+v for every
v ∈ V \ {u,a,b}; let p′− be defined by p′−v = M for every v ∈ {u,a,b}, and p′−v = p−v for
every v ∈ V \ {u,a,b}; let c′+ be defined by c′+f = 0, and c′+e = c+e for every e ∈ E \ { f};
let c′− be defined by c′−f = 0, and c′−e = c−e for every e ∈ E \{ f}.

If (T,x′,y′) is an optimal solution of the (BWC_PCST ) problem with input
(G,c′+,c′−, p′+, p′−,Γ), then define x f = c+f , xe = x′e for every e∈ E(T )\{ f} and yu = p−u ,
yv = y′v for every v ∈V (T )\{u}. Then (T,x,y) is an optimal solution of the (BWCC).

So we have the following result:

Lemma 53. For any edge f ∈ E and vertex u ∈V , the problem (BWCC) can be solved in
O(nΓ3) time.

Summing up the Lemma 48, Lemma 49, Theorem 17 and Lemma 53, we solve the
MSR PCST.

Theorem 18. The MSR PCST problem in 2-trees can be solved in O(n6) time.

Proof. First, for each ζ = 0, . . . ,2n−1, solve the (BWC_PCST ) problem, in O(nζ 3) time
from Theorem 17, to compute its optimal value νζ . If for any ζ = 0, . . . ,2n−1, we have that
νζ > B, then the MSR PCST problem has no solution. Otherwise, let β be the minimum
ζ ∈ {0, . . . ,2n−1} such that νζ ≤ B.

If β = 0, then an optimal solution of the (BWC_PCST ) problem with ζ = 0 is an
optimal solution of the MSR PCST problem; moreover, its optimal value r∗ = 0. So the
problem is solved in O(n4) since ζ ≤ 2n−1.

Otherwise, β > 0. Then νζ > B. So we have r∗ > 0.
For each vertex v∈V , if p+v ≥−B≥ p−v , then let yv =−B. So the tree, containing only

one vertex v, together with its prize yv = −B is the solution of the MSR PCST problem
containing only one vertex v with the minimum sum-risks. Let A1 be the set of all such
solutions containing only one vertex. So it takes O(n) time to obtain A1.

For each vertex u ∈V and each edge f ∈ E, and each Γ ∈ {β ,β −1,β −2}∩R+, solve
the programming (BWCC) in O(nΓ3) time from Lemma 53, to obtain an optimal solution
(T,x,y) of (BWCC). Then solve the linear programming (LP), presented in Lemma 48, to
obtain an optimal solution (x0,y0) of (LP). Define the vectors x′ ∈RE(T )

+ and y′ ∈RV (T )
+ as:

x′f = x0,y′u = y0, x′e = xe for any edge e ∈ E(T )\{ f} and y′v = yv for any v ∈ V (T )\{u}.
So we get such a solution (T,x′,y′) for each vertex u ∈ V and each edge f ∈ E, and each
Γ∈ {β ,β−1,β−2}∩R+. Let A2 be the set of all these O(n2) solutions. So it takes O(n6)

time to obtain A2.
Choose the (T,x,y) ∈ (A1∪A2), which has the minimum rs(T,x,y). In the following,

we prove that (T,x,y) is an optimal solution of the MSR PCST problem.
If any optimal solution of the MSR PCST problem contains only one vertex, then A1

contains all the optimal solutions. So (T,x,y) is optimal.
Otherwise, let (T ∗,x∗,y∗) be an extreme optimal solution with extreme edge f ∈ E(T ∗)

and extreme vertex u ∈ V (T ∗) of the MSR PCST problem. Then from Lemma 49,
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rs(T ∗,x∗,y∗)−r(x∗f )−r(y∗u)∈{β ,β−1,β−2}. So the extreme optimal solution (T,x′,y′)
as in Lemma 48 is contained in A. So (T,x,y) is optimal.

So the MSR PCST problem in 2-trees is solved in O(n6) time.

Remark 7. Recall that any graph of treewidth at most 2 can be transformed to a 2-tree
by adding some edges (seen in Lemma 33). Given any graph of treewidth at most 2, we
add some edges to get a 2-tree in O(n) time. Assign a cost interval [M,M] for each new
added edge, where M is very huge number, e.g. the sum of all upper bounds of the costs
and prizes. Then solve the MMR PCST and MSR PCST problems in the obtained 2-trees.
As proved in Lemma 34, the new added edges are not contained in the optimal solutions.
So the MMR PCST and MSR PCST problems in graphs of treewidth at most 2 can also be
solved in polynomial time.

5.3.3 Discussion

In the preceding subsections we propose two risk models, the MSR PCST and the
MMR PCST, for the PCST problem with interval data. These two models with the same
data setting may yield different solutions as shown by the example depicted in Fig.5.4.

Figure 5.4: Min-max risk model and Min-sum model are different.

Both models investigate a cycle on k2 + 4 vertices, where k ≥ 8 is an integer. The
cost interval of every edge is specified beside the edge. In particular, c−e = 1/k2 and
c+e = (100k− 1)/(k2(k− 1)), for edge e = vivi+1, i = 1,2, · · · ,k2. Every vertex has prize
interval [0,0]. The target set consists of two black vertices v1 and vk2+1. The tree in
any solution to the MSR PCST problem or to the MMR PCST problem must be one of
the two paths T1 = v1u1u2u3vk2+1 and T2 = v1v2v3 . . .vk2+1 between v1 and vk2+1. Given
budget bound B = 100, using Lemmas 40 and 41, one can easily verify that the optimal
solution to the MMR PCST is (T2,

100
k2 1,0) with maximum risk 1/k, because every fea-

sible solution (T1,x,0) must have some e ∈ E(T1) with xe ≤ 25, which has risk at least
min{25−20

30−20 ,
25−19
35−19} =

3
8 > 1

k . On the other hand, the optimal solution to the MSR PCST
problem is (T1,x,0) with x = (20,30,30,20) that has risk sum 17

16 , because every feasible
solution on T2 has risk sum at least k ≥ 8. In this example, the optimal solution to the
MMR PCST problem is very inefficient for the MSR PCST problem in case of large k, and
vice versa.

However, in practice, we simulate the MMR PCST and the MSR PCST models in vari-
ous of network situations to investigate the solution behaviors and average performance
of both models. We discover that in average the optimal solution of the MMR PCST
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model is not a very bad solution for the MSR PCST model. But the optimal solution of
the MSR PCST model may be very far from the optimal solution of the MSR PCST model.

5.4 Perspectives

In this chapter, we have presented a dynamic programming algorithm for the PCST prob-
lem in graphs of treewidth at most 2. This algorithm has been generalized in [CMZ11] to
solve the PCST problem in graphs of treewidth at most k, for any fixed integer k, by using
more general dynamic programming base on a tree decomposition of bounded width.

Moreover, we have proposed two risk models for the PCST problem with interval data
and solved them in graphs of treewidth at most 2. Compared with other models for uncer-
tain optimization problems, their advantages lie in not only keeping computational com-
plexity unchanged but also providing flexibility for decision makers. So far risk models
have been applied in dealing with several polynomial-time solvable problems. In the future,
it is worthwhile studying how to apply risk models to some other optimization problems
with interval data, particularly NP-hard optimization problems. Moreover, it is interesting
to see if our models and approaches can be extended to the problems where uncertainty is
not described using intervals.
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In this chapter, we study a class of routing problem that was motivated by designing
efficient strategies to provide Internet access using wireless devices [BBS05]. Typically,
several houses in a village need access to a gateway (for example a satellite antenna) to
transmit and receive data over the Internet. To reduce the cost of the transceivers, multi-
hop wireless relay routing is used. We formulate this problem as gathering information
in a Base Station (denoted by BS) of a wireless multi-hop network when interferences
constraints are present. This problem is also known as data collection.

The results of this chapter is a collaboration with J. C. Bermond, N. Nisse, M.-L.
Yu and H. Rivano. The work is submitted to the journal Theoretical Computer Sci-
ence [s-BLN+13].
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6.1 Introduction

6.1.1 Problem, model and assumptions

Gathering problem is very important in sensor networks and access networks. Depending
on the functions of the devices in the networks, the problem have different models and
assumptions.

Transmission model We adopt the network model considered in [BGK+06, BGR10,
BKK+10, FFM04, RS08]. The network is represented by a node-weighted symmetric
digraph G = (V,E), where V is the set of nodes and E is the set of arcs. More specifically,
each node in V represents a device (sensor, station, . . . ) that can transmit and receive data.
There is a special node BS ∈V called the Base Station (BS), which is the final destination
of all data possessed by the various nodes of the network. Each node may have any number
of pieces of information, or messages, to transmit, including none. There is an arc from u
to v if u can transmit a message to v. We suppose that the digraph is symmetric; so if u can
transmit a message to v, then v can also transmit a message to u. Therefore G represents the
graph of possible communications. Some authors use an undirected graph (replacing the
two arcs (u,v) and (v,u) by an edge {u,v}). However calls (transmissions) are directed: a
call (s,r) is defined as the transmission from the node s to node r, in which s is the sender
and r is the receiver and s and r are adjacent in G. The distinction of sender and receiver
will be important for our interference model.

Here we will consider grids as they model well both access networks and also random
networks [KLNP09]. The network is assumed to be synchronous and the time is slotted
into steps. During each step, a transmission (or a call) between two nodes can transport at
most one message. That is, a step is a unit of time during which several calls can be done
as long as they do not interfere with each other. We suppose that each device is equipped
with an half duplex interface: a node cannot both receive and transmit during a step. This
models the near-far effect of antennas: when one is transmitting, it’s own power prevents
any other signal to be properly received. Moreover, we assume that a node can transmit or
receive at most one message per step.

Following [FFM04, GR09, RS07, RS08, ZTG05] we assume that no buffering is done
at intermediate nodes and each node forwards a message as soon as it receives it. One of
the rationales behind this assumption is that it frees intermediate nodes from the need to
maintain costly state information and message storage.

Interference model We use a binary asymmetric model of interference based on the
distance in the communication graph. Let d(u,v) denote the distance, that is the length of
a shortest directed path, from u to v in G and dI be an nonnegative integer. We assume that
when a node u transmits, all nodes v such that d(u,v) ≤ dI are subject to the interference
from u’s transmission. We assume that all nodes of G have the same interference range
dI . Two calls (s,r) and (s′,r′) do not interfere if and only if d(s,r′)> dI and d(s′,r)> dI .
Otherwise calls interfere (or there is a collision). We will focus on the cases when dI ≤ 2.
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Note that we suppose in this chapter dI ≥ 0. It implies that a node cannot receive and send
simultaneously.

The binary interference model is a simplified version of the reality, where the Signal-
to-Noise-and-Interferences Ratio (the ratio of the received power from the source of the
transmission to the sum of the thermic noise and the received powers of all other simul-
taneously transmitting nodes) has to be above a given threshold for a transmission to be
successful. However, the values of the completion times that we obtain will lead to lower
bounds on the corresponding real life values. Stated differently, if the value of the com-
pletion time is fixed, then our results will lead to upper bounds on the maximum possible
number of messages that can be transmitted in the network.

Gathering and Personalized broadcasting Our goal is to design protocols that will effi-
ciently, i.e., quickly, gather all messages to the base station BS subject to these interference
constraints. More formally, let G = (V,E) be a connected symmetric digraph, BS ∈V and
and dI ≥ 0 be an integer. Each node in V \BS is assigned a set (possibly empty) of mes-
sages that must be sent to BS. A multi-hop schedule for a message consists of the path it
must follow to reach BS together with the starting step (because no buffering is allowed,
the starting step defines the whole schedule). The gathering problem consists in computing
a multi-hop schedule for each message to arrive the BS under the constraint that during any
step any two calls do not interfere within the interference range dI . The completion time or
makespan of the schedule is the number of steps used for all messages to reach BS. We are
interested in computing the schedule with minimum makespan.

Actually, we will describe the gathering schedule by illustrating the schedule for the
equivalent personalized broadcasting problem since this formulation allows us to use a sim-
pler notation and simplify the proofs. In this problem, the base station BS has initially a set
of personalized messages and they must be sent to their destinations, i.e., each message has
a personalized destination in V , and possibly several messages may have the same destina-
tion. The problem is to find a multi-hop schedule for each message to reach its correspond-
ing destination node under the same constraints as the gathering problem. The completion
time or makespan of the schedule is the number of steps used for all messages to reach
their destination and the problem aims at computing a schedule with minimum makespan.
To see that these two problems are equivalent, from any personalized broadcasting sched-
ule, we can always build a gathering schedule with the same makespan, and the other way
around. Indeed, consider a personalized broadcasting schedule with makespan T. Any call
(s,r) occurring at step k corresponds to a call (r,s) scheduled at step T+1−k in the corre-
sponding gathering schedule. Furthermore, as the digraph is symmetric, if two calls (s,r)
and (s′,r′) do not interfere, then d(s,r′) > dI and d(s′,r) > dI; so the reverse calls do not
interfere. Hence, if there is an (optimal) personalized broadcasting schedule from BS, then
there exists an (optimal) solution for gathering at BS with the same makespan. The reverse
also holds. Therefore, in the sequel, we consider the personalized broadcasting problem.
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6.1.2 Related Work

Gathering problems like the one that we study in this chapter have received much recent
attention. The papers most closely related to our results are [BGP+11, BGR10, FFM04,
GR09, RS07, RS08]. Paper [FFM04] firstly introduced the data gathering problem in a
model for sensor networks similar to the one adopted in this chapter. It deals with dI = 0
and gives optimal gathering schedules for trees. Optimal algorithms for star networks
are given in [RS08] find the optimal schedule minimizing both the completion time and
the average delivery time for all the messages. Under the same hypothesis, an optimal
algorithm for general networks is presented in [GR09] in the case each node has exactly
one message to deliver. In [BGR10] (resp [BGP+11]) optimal gathering algorithms for tree
networks in the same model considered in this chapter, are given when dI = 1 (resp.,dI ≥ 2).
In [BGP+11] it is also shown that the Gathering Problem is NP-complete if the process
must be performed along the edges of a routing tree for dI ≥ 2 (otherwise the complexity is
not determined). Furthermore, for dI ≥ 1 a simple (1+ 2

dI
) factor approximation algorithm

is given for general networks. In slightly different settings, in particular the assumption of
directional antennas, the problem has been proved NP-hard in general networks [RSY10].
The case of open-grid where BS stands at a corner and no messages have destinations in
the first row or first column, called axis in the following, is considered in [RS07], where a
1.5-approximation algorithm is presented.

Other related results can be found in [BCY09, BGK+06, BP12, BY10, BKSS08] (see
[BKK+10] for a survey). In these articles data buffering is allowed at intermediate nodes,
achieving a smaller makespan. In [BGK+06], a 4-approximation algorithm is given for
any graph. In particular the case of grids is considered in [BP12], but with exactly one
message per node. Another related model can be found in [GPRR08], where steady-state
(continuous) flow demands between each pair of nodes have to be satisfied, in particular,
the authors also study the gathering in radio grid networks.

6.1.3 Main results

In this chapter, we propose algorithms to solve the personalized broadcasting problem
(and so the equivalent gathering problem) in a grid with the model described above (syn-
chronous, no buffering, one message transmission per step, with an interference parameter
dI). Initially all messages stand at the base station BS and each message has a particular
destination node (possibly several messages may be sent to the same node). Our algorithms
compute in linear time (in the number of messages) schedules with no calls interfering,
with a makespan differing from the lower bound by a small additive constant. We first
study the basic instance consisting of an open grid where no messages have destination on
an axis, with a BS in the corner of the grid and with dI = 0. This is exactly the same case
as that considered in [RS07]. In Section 6.2 we give a simple lower bound LB. Then in
Section 6.3 we design for this basic instance a linear time algorithm with a makespan at
most LB+ 2 steps, so obtaining a +2-approximation algorithm for the open grid, which
greatly improves the multiplicative 1.5 approximation algorithm of [RS07] . Such an algo-
rithm has already been given in the extended abstract [BNRR09]; but the one given here
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is simpler and we can refine it to obtain for the basic instance a +1-approximation algo-
rithm. Then we prove in Section 6.4 that the +2-approximation algorithm works also for a
general grid where messages can have destinations on the axis again with BS in the corner
and dI = 0. Then we consider in Section 6.5 the cases dI = 1 and 2. We give lower bounds
LBc(1) (when BS is in the corner) and LB(2) and show how to use the +1-approximation
algorithm given in Section 6.3 to design algorithms with a makespan at most LBc(1)+ 3
when dI = 1 and BS is in the corner , and at most LB(2)+ 4 when dI = 2; however the
coordinates of the destinations have in both cases to be at least 2. In Section 6.6, we extend
our results to the case where BS is in a general position in the grid. In addition, we point
out that our algorithms are 2-approximations if the buffering is allowed, which improves
the result of [BGK+06] in the case of grids with dI ≤ 2. Finally, we conclude this chapter
in Section 6.7. The main results are summarized in Table 6.1.

Interference Additional hypothesis Performances
no buffering buffering

dI = 0 +2-approximation
no messages on axes +1-approximation

dI = 1 BS in a corner and no messages +3-approx. ×1.5-approx.
“close" to the axes (see Def. 10)

no messages at distance ≤ 1 ×1.5-approximation
from an axis

dI = 2 no messages at distance ≤ 1 +4-approx. ×2-approx.
from an axis

Table 6.1: Performances of the algorithms designed in this chapter. Our algorithms deal
with the gathering and personalized broadcasting problems in a grid with arbitrary base
station (unless stated otherwise). In this table, +c-approximation means that our algorithm
achieves an optimal makespan up to an additive constant c. Similarly, ×c-approximation
means that our algorithm achieves an optimal makespan up to an multiplicative constant c.

6.2 Notations and Lower bound

In the following, we consider a grid G = (V,E) with a particular node, the base station
BS, also called the source. A node v is represented by its coordinates (x,y). The source
BS has coordinates (0,0). We define the axis of the grid with respect to BS, as the set of
nodes {(x,y) : x = 0} or {(x,y) : y = 0}. The distance between two nodes u and v is the
length of a shortest directed path in the grid and will be denoted by d(u,v). In particular,
d(BS,v) = |x|+ |y|.

We consider a set of M > 0 messages that must be sent from the source BS to some
destination nodes. Note that BS is not a destination node. Let dest(m) ∈ V denote the
destination of the message m. We use d(m)> 0 to denote the distance d(BS,dest(m)). We
suppose that the messages are ordered by non-increasing distance from BS to their destina-
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tion nodes, and we denote this ordered set M= (m1,m2, · · · ,mM) where d(m1)≥ d(m2)≥
·· · ≥ d(mM). The input of all our algorithms is the ordered sequence M of messages. For
simplicity we suppose that the grid is infinite; however it suffices to consider a grid slightly
greater than the one containing all the destinations of messages. Note that our work does
not include the case of the paths, already considered in [BCY09, FFM04, RS07].

We will use the name of open grid to mean that no messages have destination on an
axis that is when all messages have destination nodes in the set {(x,y) : x 6= 0 and y 6= 0}.

Note that in our model the source can send at most one message per step. Given a set
of messages that must be sent by the source, a broadcasting scheme consists in indicating
for each message m the time at which the source sends the message m and the directed path
followed by this message. More precisely a broadcasting scheme will be represented by
an ordered sequence of messages S = (s1, · · · ,sk), where furthermore for each si we give
the directed path Pi followed by si and the time ti at which the source sends the message
si. The sequence is ordered in such a way message si+1 is sent after message si, that is we
have ti+1 > ti.

As we suppose there is no buffering, a message m sent at step tm is received at step
t ′m = lm + tm− 1, where lm is the length of the directed path followed by the message m.
In particular t ′m ≥ d(m) + tm− 1. The completion time or makespan of a broadcasting
scheme is the step where all the messages have arrived at their destinations. Its value is
maxm∈M lm + tm−1. In the next proposition we give a lower bound of the makespan:

Proposition 1. Given the set of messages M=(m1,m2, · · · ,mM) ordered by non-increasing
distance from BS, the makespan of any broadcasting scheme is greater than or equal to
LB = maxi≤M d(mi)+ i−1.

Proof. Consider any personalized broadcasting scheme. For i≤M, let ti be the step where
the last message in (m1,m2, · · · ,mi) is sent; therefore ti ≥ i. This last message denoted m
is received at step t ′i ≥ d(m)+ ti−1 ≥ d(mi)+ ti−1 ≥ d(mi)+ i−1. So the makespan is
at least LB = maxi≤M d(mi)+ i−1.

Note that this result is valid for any topology (not only grids) since it uses only the fact
that the source sends at most one message per step. If there are no interference constraints,
in particular if a node can send and receive messages simultaneously, then the bound is
achieved by the greedy algorithm where at step i the source sends the message mi of the
ordered sequence M through a shortest directed path from BS to dest(mi), i.e. the makespan
LB is attained by BS sending all the messages through the shortest paths to their destinations
according to the non-increasing distance ordering.

If there are interferences and dI > 0, we will design in Section 6.5 some better lower
bounds. If dI = 0, we will design in the next two sections linear time algorithms with a
makespan at most LB+ 2 in the grid with the base station in the corner and a makespan
at most LB+ 1 when furthermore there is no message with a destination node on the axis
(open-grid). In case dI = 0 in open grid, our algorithms are simple in the sense that they
use only very simple shortest directed paths and that BS never waits.
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Example 1. Here, we exhibit examples for which the optimal makespan is strictly larger
than LB. In particular, in the case of general grids, LB+ 2 can be optimal. On the other
hand, results of this chapter show that the optimal makespan is at most LB+1 in the case
of open-grids for dI = 0 (Theorem 22) and at most LB+ 2 in general grids for dI = 0
(Theorem 25). In case dI = 0 and in open-grids, our algorithms use shortest paths and
the BS sends a message at each step. We also give examples for which optimal makespan
cannot be achieved in this setting.

Let us remark that there exist configurations for which no personalized broadcasting
protocol can achieve better makespan than LB+1. Figure 6.1(a) represents such a config-
uration. Indeed, in Figure 6.1(a), message mi has a destination node vi for i = 1,2,3 and
LB = 7. However, to achieve the makespan LB = 7 for dI = 0, BS must send the message
m1 to v1 at step 1 (because v1 is at distance 7 from BS) and must send message m2 to v2

at step 2 (because the message starts after the first step and must be sent to the destination
node at distance 6) and these messages should be sent along shortest directed paths. To
avoid interferences, the only possibility is that BS sends the first message to node (0,1),
and the second one to the node (1,0). Intuitively, this is because otherwise the shortest
paths followed by first two messages would intersect in such a way that interference cannot
be avoided. A formal proof can be obtained from Fact 6 in Section 6.3.2. But then, if we
want to achieve the makespan of 7, BS has to send the message m3 via node (0,1) and it
will reach v3 at step 7; but the directed paths followed by m2 and m3 need to cross and at
this crossing point m3 arrives at a step where m2 leaves and so the messages interfere. So
BS has to wait one step and sends m3 only at step 4. Then the makespan is 8 = LB+1.

In addition, there are also examples in which BS has to wait for some steps after sending
one message in order to reach the lower bound LB for dI = 0. Figure 6.1(b) represents such
an example. To achieve the lower bound 7, BS has to send messages using shortest directed
paths firstly to v1 via (3,0) and then consecutively sends messages to v2 via (0,4) and v3

via (2,0). If BS sends message m4 at step 4, then m4 will interfere with m3. But, to avoid
this interference, BS can send message m4 at step 5 and will reach v4 at step 7.

There are also examples in which no schedule using only shortest directed paths
achieves the optimal makespan1. For instance, consider the grid with four messages to
be sent to (0,4),(0,3),(0,2) and (0,1) (all on the first column) and let dI = 0 (a more
elaborate example with an open-grid is given in Example 6.6(a)). Clearly, sending all
messages through shortest directed paths implies that BS sends messages every two steps.
Therefore, it requires 7 steps. On the other hand, the following scheme has makespan 6:
send the message to (0,4) through the unique shortest directed path at step 1; send the
message to (0,3) at step 2 via nodes (1,0),(1,1),(1,2)(1,3); send the message to (0,2)
through the shortest directed path at step 3 and, finally, send the message to (0,1) at step
4 via nodes (1,0),(1,1). Note that the optimal makespan is in this example LB+2.

1The authors would like to thanks Prof. Frédéric Guinand who raised this question.
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v1

v2

3v

BS

(a) Configuration when the
trivial lower bound cannot be
achieved.

v1v2

3v

4v

BS

(b) BS has to wait for one step to
achieve the trivial lower bound.

Figure 6.1: Two particular configurations

6.3 Basic instance: dI = 0, open-grid, and BS in the corner

In this section we study simple configurations called basic instances. A basic instance is
a configuration where dI = 0, messages are sent in the open grid (no destinations on the
axis) and BS is in the corner (a node with degree 2 in the grid). We will see that we can
find personalized broadcasting algorithms using a basic scheme, where each message is
sent via a simple shortest directed path (with one horizontal and one vertical segment) and
where the source sends a message at each step (it never waits) and achieving a makespan
of at most LB+1.

6.3.1 Basic schemes

A message is said to be sent horizontally to its destination v = (x,y) (x > 0,y > 0), if it goes
first horizontally then vertically, that is if it follows the shortest directed path from BS to
v passing through (x,0). Correspondingly, the message is sent vertically to its destination
v = (x,y), if it goes first vertically then horizontally, that is if it follows the shortest directed
path from BS to v passing through (0,y). We will use the notation a message is sent in
direction D, where D = H (for horizontally) (resp. D = V (for vertically)) if it is sent
horizontally (resp. vertically). Also, D̄ will denote the direction different from D that is
D̄ =V (resp. D̄ = H) if D = H (resp. D =V ).

Definition 9. [basic scheme] A basic scheme is a broadcasting scheme where BS sends a
message at each step alternating horizontal and vertical sendings. Therefore it is repre-
sented by an ordered sequence S = (s1,s2, . . . ,sM) of the M messages with the properties:
message si is sent at step i and furthermore, if si is sent in direction D, then si+1 is sent in
direction D̄.

Notation: Note that, by definition of horizontal and vertical sendings, the basic scheme
defined below uses shortest paths. Moreover, as soon as we fix S and the sending direction
D of the first or last message, the directed paths used in the scheme are uniquely deter-
mined. Hence, the scheme is characterized by the sequence S and the direction D. We
will use when needed, the notation (S, f irst = D) to indicate a basic scheme where the first
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message is sent in direction D, and the notation (S, last = D) when the last message is sent
in direction D.

6.3.2 Interference of messages

Our aim is to design an admissible basic scheme in which the messages are broadcasted
without any collisions. The following simple fact shows that we only need to take care of
consecutive sendings. In the following, we say that two messages are consecutive if the
source sends them consecutively (one at step t and the other at step t +1)

Fact 5. When dI = 0, in any broadcast scheme using only shortest paths (in particular in
a basic scheme), only consecutive messages may interfere.

Proof. By definition, a basic scheme uses only shortest paths. Let the message m be sent
at step t and the message m′ at step t ′ ≥ t + 2. Let t ′+ h (h ≥ 0) be a step such that the
two messages have not reached their destinations. As we use shortest directed paths the
message m is sent on an arc (u,v) with d(v,BS) = d(u,BS) + 1 = t ′ + h− t + 1, while
message m′ is sent on an arc (u′,v′) with d(v′,BS) = d(u′,BS) + 1 = h+ 1. Therefore,
d(u,v′)≥ t ′− t−1≥ 1 > 0 = dI and d(u′,v)≥ t ′− t +1≥ 3 > dI .

We now characterize the situations when two consecutive messages interfere in a basic
scheme. For that we use the following notation:

Notation: In the case dI = 0, if BS sends in direction D ∈ {V,H} the message m at step t
and sends the message m′ in the other direction D̄, at step t ′ = t+1, we will write (m,m′)∈
DD̄ if they do not interfere and (m,m′) /∈ DD̄ if they interfere.

m

m'

BS

(a) (m,m′) /∈ HV

BS

m'

m

(b) (m,m′) /∈V H

Figure 6.2: Cases of interferences

Fact 6. Let m and m′ be two consecutive messages in a basic scheme. Then, (m,m′) /∈ DD̄
if and only if the paths followed by the messages in the basic scheme intersect in a vertex
which is not the destination of m.

Proof. Suppose the directed paths intersect in a node v that is not the destination of m. The
message m sent at step t has not reached its destination and so leaves the node v at step
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t +d(v,BS); but the message m′ sent at step t +1 arrives at node v at step t +d(v,BS) and
therefore the two messages interfere.

Conversely if the two directed paths used for m and m′ do not cross then the messages
do not interfere. If the paths intersect only in the destination dest(m) of m, then m′ arrives in
dest(m) one step after m has stopped in dest(m) and so the two messages do not interfere.

Remark 8. Note that Fact 6 does not hold if we do not impose basic schemes (i.e., this is
not true if any shortest paths are considered). Moreover, we emphasize that the two paths
may intersect, but the corresponding messages do not necessarily interfere.

In some proofs throughout this chapter, we will need to use the coordinates of the
messages. Therefore, the following equivalent statement of Fact 6 will be of interest. Let
dest(m) = (x,y) and dest(m′) = (x′,y′). Then

• (m,m′) /∈ HV if and only if {x′ ≥ x and y′ < y};

• (m,m′) /∈V H if and only if {x′ < x and y′ ≥ y};

Figure 6.2 shows when there are interferences and also illustrates Fact 6 for D = H
(resp. V ) in case (a) (resp. (b)).

6.3.3 Basic lemmas

We now prove some simple but useful lemmata.

Lemma 54. If (m,m′) /∈ DD̄, then (m,m′) ∈ D̄D and (m′,m) ∈ DD̄.

Proof. By Fact 6, if (m,m′) /∈ DD̄, then the two directed paths followed by m and m′ in
the basic scheme (in directions D and D̄ respectively) intersect in a node different from
dest(m). Then, the two directed paths followed by m and m′ in the basic scheme (in direc-
tions D̄ and D respectively) do not intersect. Hence, by Fact 6, (m,m′) ∈ D̄D. Similarly,
the two directed paths followed by m′ and m in the basic scheme (in directions D and D̄
respectively) do not intersect. Hence, by Fact 6, (m′,m) ∈ DD̄.

Note that this lemma is enough to prove the multiplicative 3
2 approximation obtained in

[RS07]. Indeed the source can send at least two messages every three steps, in the order of
M. More precisely, BS sends any pair of messages m2i−1 and m2i consecutively by sending
the first one horizontally and the second one vertically if (m2i−1,m2i) ∈ HV , otherwise
sending the first one vertically and the second one horizontally if (m2i−1,m2i) /∈HV (since
this implies that (m2i−1,m2i) ∈ V H). Then the source does not send anything during the
third step. So we can send 2q messages in 3q steps. Such a scheme has makespan at most
3
2 LB.

Note that in general, (m,m′) ∈ DD̄ does not imply (m′,m) ∈ D̄D, namely when the
directed paths intersect only in the destination of m which is not the destination of m′.

Lemma 55. If (m,m′) ∈ DD̄ and (m′,m′′) /∈ D̄D, then (m,m′′) ∈ DD̄.
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Proof. By Fact 6, (m,m′) ∈ DD̄ implies that the paths followed by m and m′ (in direc-
tions D and D̄ respectively) in the basic scheme may intersect only in dest(m). Moreover,
(m′,m′′) /∈ D̄D implies that the paths followed by m′ and m′′ (in directions D̄ and D re-
spectively) intersect in a node which is not dest(m′). Simple check shows that the paths
followed by m and m′′ (in directions D and D̄ respectively) may intersect only in dest(m).
Therefore, by Fact 6, (m,m′′) ∈ DD̄.

Lemma 56. If (m,m′) /∈ DD̄ and (m,m′′) /∈ D̄D, then (m′,m′′) ∈ DD̄.

Proof. By Lemma 54 (m,m′) /∈ DD̄ implies (m′,m) ∈ DD̄. Then we can apply the preced-
ing Lemma 55 with m′,m,m′′ in this order to get the result. The second claim is obtained
similarly.

6.3.4 Makespan can be approximated up to additive constant 2

Recall that M = (m1, . . . ,mM) is the set of messages ordered by non-increasing distance
from BS. Throughout this chapter, S�S′ denotes the sequence obtained by the concatena-
tion of two sequences S and S′.

In [BNRR09], we use a basic scheme to design an algorithm for broadcasting the mes-
sages in the basic instance with a makespan at most LB+ 2. We give here a different al-
gorithm with similar properties, but easier to prove and which presents two improvements:
it can be adapted to the case where the destinations of the messages may be on the axes
(i.e. for general grid) (see Section 6.4) and it can be refined to give in the basic instance a
makespan at most LB+1. We denote the algorithm by TwoApprox[dI = 0, last = D](M);
for an input set of messages M ordered by non-increasing distances from BS, and a direc-
tion D ∈ {H,V}, it gives as output an ordered sequence S of the messages such that the
basic scheme (S, last = D) has makespan at most LB+2. Recall that D is the direction of
the last sent message in S in Definition 9.

The algorithm TwoApprox[dI = 0, last = D](M) is given in Figure 6.3. It uses a basic
scheme, where the non-increasing order is kept, if there are no interferences; otherwise we
change the order a little bit. To do that, we apply dynamic programming. We examine the
messages in their order and at a given step we add to the current ordered sequence the two
next unconsidered messages. We show that we can avoid interferences, only by reordering
these two messages and the last one in the current sequence.

Remark 9. Notice that, there are instances (see examples below) for which Algorithm
TwoApprox computes an optimal makespan only for one direction. Hence, it may some-
times be interesting to apply the algorithm for each direction and take the better resulting
schedule.

Because of the behavior of a basic scheme, the direction of the final message and of the
first one are simply linked via the parity of the number of messages. Hence, we can also
derive an algorithm TwoApprox[dI = 0, f irst = D](M) that has the first direction D of the
message as an input.



122 Chapter 6. Data Gathering and Personalized Broadcasting in Radio Grids

Input: M = (m1, · · · ,mM), the set of messages ordered by non-increasing distances from
BS and the direction D ∈ {H,V} of the last message.
Output: S = (s1, · · · ,sM) an ordered sequence of the M messages satisfying (i) and (ii)
(See in Theorem 19)
begin
1 Case M = 1: return S= (m1)

2 Case M = 2:
3 if (m1,m2) ∈ D̄D return S= (m1,m2)

4 else return S= (m2,m1)

5 Case M > 2:
6 let O� p = TwoApprox[dI = 0, last = D](m1, · · · ,mM−2)

(p is the last message in the obtained sequence)
7 Case 1: if (p,mM−1) ∈ DD̄ and (mM−1,mM) ∈ D̄D return O� (p,mM−1,mM)

8 Case 2: if(p,mM−1) ∈ DD̄ and (mM−1,mM) /∈ D̄D return O� (p,mM,mM−1)

9 Case 3: if(p,mM−1) /∈ DD̄ and (p,mM) ∈ D̄D return O� (mM−1, p,mM)

10 Case 4: if(p,mM−1) /∈ DD̄ and (p,mM) /∈ D̄D return O� (p,mM,mM−1)

end

Figure 6.3: Algorithm TwoApprox[dI = 0, last = D](M)

Example 2. Here, we give examples that illustrate the execution of Algorithm TwoApprox.
Moreover, we describe instances for which it is not optimal.

Consider the example of Figure 6.4(a). The destinations of the messages mi (1≤ i≤ 6)
are v1 = (7,3), v2 = (7,1), v3 = (3,3), v4 = (2,4), v5 = (1,5) and v6 = (2,2). Here
LB = 10. Let us apply the Algorithm TwoApprox[dI = 0, last = V ](M). First we apply
the algorithm for m1,m2. As (m1,m2) /∈ HV , we are at line 4 and S = (m2,m1). Then we
consider m3,m4. The value of p (line 6) is m1 and as (m1,m3) /∈ V H and (m1,m4) ∈ HV ,
we get (line 9, case 3) S= (m2,m3,m1,m4). We now apply the algorithm with m5,m6. The
value of p (line 6) is m4 and as (m4,m5) /∈V H and (m4,m6) /∈HV , we get (line 10, case 4)
S = (m2,m3,m1,m4,m6,m5). The makespan of the algorithm is LB+ 2 = 12 = d(m1)+ 2
achieved for s3 = m1.

But, if we apply to this example the Algorithm TwoApprox[dI = 0, last = H](M), we
get a makespan of 10. Indeed (m1,m2) ∈ V H and we get (line 3) S = (m1,m2). Then as
p = m2, (m2,m3) ∈ HV and (m3,m4) /∈ V H, we get (line 8, case 2) S = (m1,m2,m4,m3).
Finally, with p = m3, (m3,m5) ∈ HV and (m5,m6) ∈ V H we get (line 7, case 1) the final
sequence S= (m1,m2,m4,m3,m5,m6) with makespan 10 = LB.

Consider the example of Figure 6.4(b). The destinations of the messages m′i (1 ≤ i ≤
6) are v′i, which are placed in symmetric positions with respect to the diagonal as vi in
Figure 6.4(a). So v′1 = (3,7), v′2 = (1,7),. . . , v′6 = (2,2). So we can apply the algorithm
by exchanging the x and y, V and H. By the Algorithm TwoApprox[dI = 0, last =V ](M) ,
we get S= (m′1,m

′
2,m

′
4,m

′
3,m

′
5,m

′
6) with makespan 10; by the Algorithm TwoApprox[dI =

0, last = H](M) , we get S= (m′2,m
′
3,m

′
1,m

′
4,m

′
6,m

′
5) with makespan 12.
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However there are sequences M such that both Algorithms TwoApprox[dI = 0, last =
V ](M) and
TwoApprox[dI = 0, last = H](M) give a makespan LB + 2. Consider the example of
Figure 6.4(c) with M = (m1, . . . ,m6,m′1, . . . ,m

′
6). The destinations of m1, . . . ,m6 are ob-

tained from the destination nodes in Figure 6.4(a) by translating them along a vec-
tor (3,3), i.e. we move vi = (xi,yi) to (xi + 3,yi + 3). So LB = 16 and Algorithm
TwoApprox[dI = 0, last =V ](m1, . . . ,m6) gives the sequence SV = (m2,m3,m1,m4,m6,m5)

with makespan 18 and Algorithm TwoApprox[dI = 0, last = H](m1, . . . ,m6) gives the
sequence SH = (m1,m2,m4,m3,m5,m6) with makespan 16. Note that the destina-
tions of m′1, . . . ,m

′
6 are in the same configuration as those of Figure 6.4(b). Now,

if we run the Algorithm TwoApprox[dI = 0, last = V ](M) on the sequence M =

(m1, . . . ,m6,m′1, . . . ,m
′
6), we get as (m5,m′1) ∈ V H and (m′1,m

′
2) ∈ HV , the sequence

SV � S′V = (m2,m3,m1,m4,m6,m5,m′1,m
′
2,m

′
4, m′3,m

′
5,m

′
6) with makespan 18 achieved

for s3 = m1. If we run Algorithm TwoApprox[dI = 0, last = H](M) on the sequence
M= (m1, . . . ,m12), we get as (m6,m′1) ∈ HV and (m′1,m

′
2) /∈V H the sequence SH �S′H =

(m1,m2,m4,m3,m5,m6,m′2,m
′
3,m

′
1,m

′
4,m

′
6,m

′
5) with makespan 18 achieved for s9 = m′1.

However we can find a sequence with a makespan 16 achieving the lower bound with
a basic scheme namely S∗ = (m1,m5,m2,m4,m3,m′1,m6,m′2,m

′
5,m

′
3,m

′
4,m

′
6) with the first
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Figure 6.4: Examples for Algorithms TwoApprox[dI = 0, last =D](M) and OneApprox[dI = 0, last =D](M)

Theorem 19. Given a basic instance and the set of messages ordered by non-increasing
distances from BS, M = (m1,m2, · · · ,mM) and a direction D ∈ {H,V}, Algorithm
TwoApprox[dI = 0, last = D](M) computes in linear-time an ordering S = (s1, · · · ,sM)

of the messages satisfying the following properties:

(i) the basic scheme(S, last = D) broadcasts the messages without collisions;

(ii) s1 ∈ {m1,m2}, s2 ∈ {m1,m2,m3} and si ∈ {mi−2,mi−1,mi,mi+1,mi+2} for any 3 ≤
i≤M−2 and sM−1 ∈ {mM−3,mM−2,mM−1,mM}, sM ∈ {mM−1,mM}.

Proof. The proof is by induction on M. If M = 1, we send m1 in direction D (line 1). So the
theorem is true. If M = 2, either (m1,m2) ∈ D̄D and S= (m1,m2) satisfies all properties or
(m1,m2) /∈ D̄D and by Lemma 54 (m2,m1) ∈ D̄D and S= (m2,m1) satisfies all properties .
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If M > 2, let O� p = TwoApprox[dI = 0, last = D](m1, · · · ,mM−2) be the sequence
computed by the algorithm for (m1,m2, · · · ,mM−2). By the induction hypothesis, we may
assume that O� p satisfies properties (i) and (ii). In particular p is sent in direction D
and p ∈ {mM−3,mM−2}. Now we will prove that the sequence S = {s1, . . . ,sM} satisfies
properties (i) and (ii). Property (ii) is satisfied in all cases: for si,1 ≤ i ≤ M− 3, as it is
verified by induction in O; for sM−2, as either sM−2 = p∈ {mM−3,mM−2} or sM−2 = mM−1;
for sM−1, as either sM−1 = p ∈ {mM−3,mM−2} or sM−1 = mM−1 or sM−1 = mM and finally
for sM, as sM ∈ {mM−1,mM}. For property (i) we consider the four cases of the algorithm
(lines 7-10). Obviously, the last message is sent in direction D in all cases. In the following
we prove that there are no interferences in any case. For cases 1, 2 and 4, O� p is by
induction a scheme that results in no collision.

In case 1, by hypothesis, (p,mM−1) ∈ DD̄ and (mM−1,mM) ∈ D̄D.
In case 2, since (p,mM−1) ∈ DD̄ and (mM−1,mM) /∈ D̄D, Lemma 55 with p,mM−1,mM

in this order implies that (p,mM) ∈ DD̄. Furthermore, by Lemma 54, (mM−1,mM) /∈ D̄D
implies (mM,mM−1) ∈ D̄D.

For case 4, by Lemma 54 (p,mM) /∈ D̄D implies (p,mM) ∈ DD̄. Furthermore
Lemma 56, applied with p,mM,mM−1 in this order and direction D̄, implies (mM,mM−1) ∈
D̄D

For case 3, (p,mM) ∈ D̄D; furthermore by Lemma 54, (p,mM−1) /∈ DD̄ implies
(mM−1, p) ∈ DD̄. It remains to verify that if q is the last message of O, (q,mM−1) ∈ D̄D.
As O� p is an admissible scheme we have (q, p) ∈ D̄D and since also (p,mM−1) /∈DD̄, by
Lemma 55 applied with q, p,mM−1 in this order and direction D̄, we get (q,mM−1) ∈ D̄D.

As corollary we get by property (ii) and definition of LB that the basic scheme (S, last =
D) achieves a makespan at most LB+2. We emphasize this result as a Theorem and note
that in view of Example 2 it is the best possible for the algorithm.

Theorem 20. In the basic instance, the basic scheme (S, last = D) obtained by the Algo-
rithm TwoApprox[dI = 0, last = D](M) achieves a makespan at most LB+2.

Proof. It is sufficient to consider the arrival time of each message. Because Algorithm
TwoApprox[dI = 0, last = D](M) uses a basic scheme, each message follows a shortest
path. By Property (ii) of Theorem 19, the message s1 arrives at its destination at step
d(s1)≤ d(m1)≤ LB and the message s2 arrives at step d(s2)+1≤ d(m1)+1≤ LB+1; for
any 2 < i≤M, the message si arrives at its destination at step d(si)+ i−1≤ d(mi−2)+ i−
1 = d(mi−2)+(i−2)−1+2≤ LB+2.

6.3.5 Makespan can be approximated up to additive constant 1

In this subsection, we show how to improve Algorithm TwoApprox[dI = 0, last = D](M)

in the basic instance (open grid with BS in the corner) to achieve makespan at most LB+1.
For that we will distinguish two cases according to the value of last term sM which can be
either mM or mM−1. In the later case, sM = mM−1 we will also maintain another ordered
admissible sequence S′ of the M− 1 messages (m1, · · · ,mM−1) which can be extended in
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the induction step when S cannot be extended. Both sequences S and S′should satisfy some
technical properties (see Theorem 21).

We denote the algorithm as OneApprox[dI = 0, last = D](M). For an ordered input
sequence M of messages and the direction D ∈ {H,V}, it gives as output an ordered se-
quence S of the messages such that the basic scheme (S, last = D) has makespan at most
LB+ 1. Algorithm OneApprox[dI = 0, last = D](M) is depicted in Figure 6.5. As we
explain in Remark 9, we can also obtain algorithms with the first message sent in direction
D.

Input: M = (m1, · · · ,mM), the set of messages ordered by non-increasing distances from
BS and the direction D ∈ {V,H} of the last message.
Output: S = (s1, · · · ,sM) an ordered sequence of M satisfying properties (a) and (b) and,
only when sM = mM−1, an ordering S′ = (s′1, · · · ,s′M−1) of the messages (m1, · · · ,mM−1)

satisfying properties (a’), (b’) and (c’) (See in Theorem 21). When S′ is not specified
below, it means S′ = /0.
begin
1 Case M = 1: return S= (m1)

2 Case M = 2:
3 if (m1,m2) ∈ D̄D return S= (m1,m2)

4 else return S= (m2,m1) and S′ = (m1)

5 Case M > 2:
6 let O� p = OneApprox[dI = 0, last = D](m1, · · · ,mM−2) and when p = mM−3, let
O′ be the ordering of {m1, · · · ,mM−3} satisfying (a’)(b’)(c’).
7 Case 1: if (p,mM−1)∈DD̄ and (mM−1,mM)∈ D̄D return S=O�(p,mM−1,mM)

8 Case 2: if (p,mM−1)∈DD̄ and (mM−1,mM) /∈ D̄D return S=O�(p,mM,mM−1)

and S′ = O� (p,mM−1)

9 Case 3: if (p,mM−1) /∈ DD̄ and (mM−2,mM) ∈ D̄D
10 Case 3.1: if p = mM−2 return S= O� (mM−1,mM−2,mM)

11 Case 3.2: if p = mM−3 return S= O′� (mM−1,mM−2,mM)

12 Case 4: if (p,mM−1) /∈ DD̄ and (mM−2,mM) /∈ D̄D
13 Case 4.1: if p = mM−2 return S = O� (mM−2,mM,mM−1) and S′ = O�
(mM−1,mM−2)

14 Case 4.2: if p = mM−3 return S = O� (mM−3,mM,mM−1) and S′ = O′�
(mM−1,mM−2)

end

Figure 6.5: Algorithm OneApprox[dI = 0, last = D](M)

Example 3. Here, we give examples that illustrate the execution of Algorithm OneApprox.
Moreover, we describe instances for which it is not optimal.

Consider again the Example of Figure 6.4(a) (see Example 2). Let us apply the
Algorithm OneApprox[dI = 0, last = V ](M). First we apply the algorithm for m1,m2;
(m1,m2) /∈HV , we are at line 4 and S= (m2,m1) and S′ = (m1). Then we consider m3,m4;
the value of p (line 6) is m1; as (m1,m3) /∈V H and (m2,m4) ∈ HV , we are in case 3.2 line
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11 (p = mM−3). So we get, as O′ = (m1), S = (m1,m3,m2,m4). We now apply the algorithm
with m5,m6; the value of p (line 6) is m4; as (m4,m5) /∈V H and (m4,m6) /∈ HV , we are in
case 4.1 line 13. So we get S = (m1,m3,m2,m4,m6,m5). The makespan of the algorithm is
LB+1 = 11 = d(m5)+5 achieved for s6 = m5.

But, if we apply to this example the Algorithm OneApprox[dI = 0, last =H](M), we get
a makespan of 10. Indeed (m1,m2) ∈ HV and so the algorithm applied to (m1,m2) gives
S = (m1,m2). Then as p = m2, (m2,m3) ∈HV and (m3,m4) /∈V H, we are in case 2 line 8.
So we get S = (m1,m2,m4,m3) and S′ = (m1,m2,m3). Finally, with p = m3, (m3,m5)∈HV
and (m5,m6) ∈ V H we get (line 7 case 1) the final sequence S = (m1,m2,m4,m3,m5,m6)

with makespan 10 = LB.
However there are sequences M such that both Algorithms OneApprox[dI = 0, last =

V ](M) and
OneApprox[dI = 0, last = H](M) give a makespan LB + 1. Consider the example of
Figure 6.4(c). Like in Example 2, LB = 16; furthermore, for the messages m1, . . . ,m6

Algorithm OneApprox[dI = 0, last = V ](M) gives the sequence (m1,m3,m2,m4,m6,m5)

denoted by SV with makespan 17 and Algorithm OneApprox[dI = 0, last = H](M)

gives the sequence (m1,m2,m4,m3,m5,m6) denoted by SHwith makespan 16. For
the messages m′1, . . . ,m

′
6, we get (similarly as in Example 2) by applying Algo-

rithm OneApprox[dI = 0, last = V ](M) the sequence S′V = (m′1,m
′
2,m

′
4,m

′
3,m

′
5,m

′
6) with

makespan 10 and by applying the Algorithm OneApprox[dI = 0, last = H](M) the se-
quence S′H = (m′1,m

′
3,m

′
2,m

′
4,m

′
6,m

′
5) with makespan 11 achieved for s′6 = m′5. Now if

we run the Algorithm OneApprox[dI = 0, last = V ](M) on the global sequence M =

(m1, . . . ,m6,m′1, . . . ,m
′
6), we get as (m5,m′1) ∈ V H and (m′1,m

′
2) ∈ HV , the sequence

SV � S′V = (m1,m3,m2,m4,m6,m5,m′1,m
′
2,m

′
4,m

′
3,m

′
5,m

′
6) with makespan 17 achieved for

s6 = m5. If we run Algorithm OneApprox[dI = 0, last = H](M) on the global sequence
M= (m1, . . . ,m6,m′1, . . . ,m

′
6), we get as (m6,m′1) ∈ HV and (m′1,m

′
2) /∈V H, the sequence

SH � S′H = (m1,m2,m4,m3,m5,m6,m′1,m
′
3,m

′
2,m

′
4,m

′
6,m

′
5) with makespan 17 achieved for

s12 = m′5.
However, we know that the sequence S∗ (defined in Example 2) achieves a makespan

16.

Theorem 21. Given a basic instance and the set of messages ordered by non-increasing
distances from BS, M = (m1,m2, · · · ,mM) and a direction D ∈ {H,V}, Algorithm
OneApprox[dI = 0, last = D](M) computes in linear-time an ordering S = (s1, · · · ,sM)

of the messages satisfying the following properties:

(a) the basic scheme (S, last = D) broadcasts the messages without collisions;

(b) s1 ∈ {m1,m2} and si ∈ {mi−1,mi,mi+1} for any 1 < i ≤ M − 1, and sM ∈
{mM−1,mM}.

When sM = mM−1, it also computes an ordering S′ = (s′1, · · · ,s′M−1) of the messages
(m1, · · · ,mM−1) satisfying properties (a′)-(c′).

(a’) the scheme(S′, last = D̄) broadcasts the messages without collisions;
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(b’) s′1 ∈ {m1,m2}, and s′i ∈ {mi−1,mi,mi+1} for any 1 < i ≤ M − 2, and s′M−1 ∈
{mM−2,mM−1}.

(c’) (s′M−1,mM) /∈ D̄D and if s′M−1 = mM−2, (mM−2,mM−1) /∈ DD̄

Proof. The proof is by induction. If M = 1, the result is correct as we send m1in direction
D (line 1). If M = 2, either (m1,m2) ∈ D̄D and S= (m1,m2) satisfies properties (a) and (b)
or (m1,m2) /∈ D̄D and by Lemma 54 (m2,m1) ∈ D̄D and S = (m2,m1) satisfies properties
(a) and (b) and S′ = (m1) satisfies all properties (a’), (b’) and (c’).

Now, let M > 2 and let O� p = OneApprox[dI = 0, last = D](m1, · · · ,mM−2) be the
sequence computed by the algorithm for (m1,m2, · · · ,mM−2). By the induction hypothesis,
we may assume that O� p satisfies properties (a) and (b). In particular p is sent in direction
D and p ∈ {mM−3,mM−2}. We have also that, if p = mM−3,O

′ satisfies properties (a’), (b’)
and (c’).

Property (b) is also satisfied for si,1≤ i≤M−3 as it is verified by induction either in
O or in case 3.2 in O′. Furthermore, either sM−2 = p ∈ {mM−3,mM−2} or sM−2 = mM−1

in case 3. Similarly, sM−1 ∈ {mM−2,mM−1,mM} and sM ∈ {mM−1,mM}. Hence, Property
(b) is satisfied. Property (b’) is also satisfied for s′i,1 ≤ i ≤ M− 3, as it is verified by
induction in O or for case 4.2 in O′. Furthermore s′M−2 ∈ {mM−3,mM−2,mM−1} and s′M−1 ∈
{mM−2,mM−1}. Hence, Property (b’) is satisfied.

Now let us prove that S satisfies property (a) and S′ properties (a’) and (c’) in the six
cases of the algorithm (lines 7-14). Obviously the last message in S (resp. S′) is sent in
direction D (resp. D̄).

In cases 1, 2, 3.1, 4.1 the hypothesis and sequence S are exactly the same as that given
by Algorithm
TwoApprox[dI = 0, last = D](M). Therefore, by the proof of Theorem 19, S satisfies
property (a) and so the proof is complete for cases 1 and 3.1 as there are no sequences S′.

In case 2, S′ satisfies (a’) as by hypothesis (line 8) (p,mM−1) ∈ DD̄. Property (c’) is
also satisfied as s′M−1 = mM−1 and by hypothesis (line 8) (mM−1,mM) /∈ D̄D.

In case 4.1 (p = mM−2), let q be the last element of O; (q,mM−2) ∈ D̄D as O� p is
admissible. By hypothesis (line 12), (mM−2,mM−1) /∈ DD̄ and then by Lemma 55 applied
with q,mM−2,mM−1 in this order, we get (q,mM−1) ∈ D̄D; furthermore, by Lemma 54
,(mM−2,mM−1) /∈ DD̄ implies (mM−1,mM−2) ∈ DD̄. So, S′ satisfies Property (a’). Finally
s′M−1 = mM−2 and by hypothesis (line 12) (mM−2,mM) /∈ D̄D and (mM−2,mM−1) /∈DD̄ and
therefore S′ satisfies property (c’).

The following claims will be useful to conclude the proof in cases 3.2 and 4.2. In these
cases p = mM−3 and let p′ be the last element of O′. By induction on O′, and by property
(b’), p′ ∈ {mM−4,mM−3}.

Claim 4. : In cases 3.2 and 4.2, (mM−2,mM−1) /∈ DD̄

Proof. To write a convincing proof, we use coordinates and the expression of Fact 6 in
terms of coordinates (see Remark 8). We use dest(mM−i) = (xM−i,yM−i). Let us suppose
D =V (the claim can be proved for D = H by exchanging H and V and exchanging x and
y).

By hypothesis (lines 9 and 12) (mM−3,mM−1) /∈V H.
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• If p′ = mM−3, by induction hypothesis (c’) applied to O′, we have (p′,mM−2) /∈HV .
Then (mM−3,mM−1) /∈V H and (mM−3,mM−2) /∈HV imply by Fact 6: {xM−1 < xM−3

and yM−1 ≥ yM−3} and {xM−2 ≥ xM−3 and yM−2 < yM−3}.

So we have xM−1 < xM−3 ≤ xM−2 implying xM−1 < xM−2 and yM−1 ≥ yM−3 > yM−2

implying yM−1 > yM−2. These conditions imply by Fact 6 that (mM−2,mM−1) /∈V H.

• If p′ = mM−4, by induction hypothesis (c’) applied to O′, we have (p′,mM−2) /∈ HV
and (mM−4,mM−3) /∈ V H. So (mM−3,mM−1) /∈ V H, (mM−4,mM−2) /∈ HV and
(mM−4,mM−3) /∈ V H imply respectively by Fact 6: {xM−1 < xM−3 and yM−1 ≥
yM−3}; {xM−2 ≥ xM−4 and yM−2 < yM−4} and {xM−3 < xM−4 and yM−3 ≥ yM−4}.

So we have xM−1 < xM−3 < xM−4 ≤ xM−2 implying xM−1 < xM−2 and yM−1 ≥
yM−3 ≥ yM−4 > yM−2 implying yM−1 > yM−2. These conditions imply by Fact 6
that (mM−2,mM−1) /∈V H.

Claim 5. : In cases 3.2 and 4.2, (p′,mM−1) ∈ D̄D.

Proof. If p′ = mM−3 by hypothesis lines 9 and 12 (mM−3,mM−1) /∈ DD̄ and by Lemma 54
(mM−3,mM−1) ∈ D̄D. If p′ = mM−4, by induction hypothesis (c’) applied to O′,
(mM−4,mM−3) /∈ DD̄ and so by Lemma 54 (mM−4,mM−3) ∈ D̄D; furthermore by hypoth-
esis (mM−3,mM−1) /∈ DD̄ and so by Lemma 55 applied with mM−4,mM−3,mM−1 in this
order, we get (mM−4,mM−1) ∈ D̄D.

In case 3.2, by hypothesis (line 9) (mM−2,mM) ∈ D̄D; by the claim 1 (mM−2,mM−1) /∈
DD̄ and so by Lemma 54 (mM−1,mM−2) ∈ DD̄; and by claim 2, (p′,mM−1) ∈ D̄D. So the
theorem is proved in case 3.2.

Finally it remains to deal with the case 4.2. Let us first prove that S satisfies (a).
By hypothesis line 12 (mM−2,mM) /∈ D̄D and by the claim (mM−2,mM−1) /∈ DD̄ and
so by Lemma 56 applied with mM−2,mM,mM−1 in this order we get (mM,mM−1) ∈
D̄D. We claim that (mM−3,mM−2) ∈ DD̄; indeed, if p′ = mM−3, by induction hypoth-
esis (c’) applied to O′, we have (mM−3,mM−2) /∈ D̄D and so (mM−3,mM−2) ∈ DD̄. If
p′ = mM−4, by induction hypothesis (c’) applied to O′, we have (mM−4,mM−2) /∈ D̄D and
(mM−4,mM−3) /∈ DD̄ and so by Lemma 56 applied with mM−4,mM−3,mM−2 in this order
we get (mM−3,mM−2) ∈ DD̄. Now the property (mM−3,mM−2) ∈ DD̄ combined with the
hypothesis line 12 (mM−2,mM) /∈ D̄D gives by Lemma 55 applied with mM−3,mM−2,mM

in this order (mM−3,mM) ∈ DD̄.
Finally, by claim 1, (mM−2,mM−1) /∈ DD̄ and so by Lemma 54 (mM−1,mM−2) ∈ DD̄.

By claim 2, (p′,mM−1)∈ D̄D and so S′ satisfies Property (a’). S′ satisfies also Property (c’)
as (mM−2,mM) /∈ D̄D by hypothesis and (mM−2,mM−1) /∈ DD̄ by claim 1.

As corollary we get by property (b) and definition of LB that the basic scheme (S, last =
D) achieves a makespan at most LB+1. We emphasize this result as a Theorem and note
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that in view of Example 3 it is the best possible for the algorithm. The proof is similar to
that Theorem 20.

Theorem 22. In the basic instance, the basic scheme (S, last = D) obtained by the Algo-
rithm OneApprox[dI = 0, last = D](M) achieves a makespan at most LB+1.

As we have seen in Example 3, Algorithms OneApprox[dI = 0, last = V ](M) and
OneApprox[dI = 0, last = H](M) are not always optimal since there are instances for
which the optimal makespan equals LB while our algorithms only achieves LB+1. How-
ever there are other cases where Algorithm OneApprox[dI = 0, last =V ](M) or Algorithm
OneApprox[dI = 0, last = H](M) can be used to obtain an optimal makespan LB. The next
theorem might appear as specific, but it includes the case where each node in a finite grid
receives exactly one message (case considered in many papers in the literature, such as
in [BP12] for the grid when buffering is allowed).

Theorem 23. Let M = (m1,m2, · · · ,mM) be an ordered sequence of messages (i.e., by
decreasing distance), if the bound LB = maxi≤M d(mi) + i− 1 is reached for an unique
value of i, then we can design an algorithm with optimal makespan = LB .

Proof. Let k be the value for which LB is achieved that is d(mk) + k − 1 = LB
and d(mi) + i− 1 < LB for i 6= k. We divide M = (m1, · · · ,mM) into two ordered
subsequences Mk = (m1, . . . ,mk) and M′k = (mk+1, . . . ,mM). So |Mk| = k and
|M′k| = M − k. Let SV (resp., SH) be the sequence obtained by applying Algorithm
OneApprox[dI = 0, last = V ](Mk) (resp., Algorithm OneApprox[dI = 0, last = H](Mk))
to the sequence Mk. The makespan is equal to LB; indeed if the sequence is (s1, . . . ,sk),
then the makespan is maxi≤k d(si) + i− 1. But we have si ∈ {mi−1,mi,mi+1} for any
i ≤ k− 1, and so d(si)+ i− 1 ≤ d(mi−1)+ (i− 1) ≤ LB (as d(mi−1)+ (i− 1)− 1 < LB);
we also have sk ∈ {mk−1,mk} and so either d(sk)+ (k− 1) = d(mk−1)+ (k− 1) ≤ LB or
d(sk)+(k−1) = d(mk)+ k−1 = LB.

Suppose k > 1, then the destination of mk−1 is at the same distance of that of mk;
indeed if d(mk−1) > d(mk), then d(mk−1)+ k− 2 ≥ d(mk)+ k− 1 = LB and LB will also
be achieved for k−1 contradicting the hypothesis. Consider the set Dk of all the messages
with destinations at the same distance as that of mk (so if k > 1 |Dk| ≥ 2) and let mu

(resp.,m`) be the uppermost message (resp., lowest message) of Dk, that is the message in
Dk with destination the node with the highest y (resp., the lowest y); (in case there are many
such messages with this property, i.e. they have the same destination node, we choose one
of them).

We claim that there exists a basic scheme for Mk, such that if the last message is
sent vertically (resp., horizontally) it is mu (resp. m`). Indeed, suppose we want the last
message sent vertically to be mu it suffices to order the messages in Mk such that the last one
mk = mu; then if we apply Algorithm OneApprox[dI = 0, last =V ](Mk) we get a sequence
where sk ∈ {mk−1,mk}. Either sk = mk = mu and we are done or sk = mk−1 and sk−1 = mu;
but in that case (sk−1,sk) ∈ HV implies, by Fact 6, that xk−1 < xu or yk−1 ≥ yu, where
(xu,yu) and (xk−1,yk−1) are the destinations of mu and mk−1. But mu,mk−1 ∈ Dk and mu

being the uppermost vertex, yk−1 ≤ yu and xk−1 ≥ xu. Therefore, sk−1 and sk have the same



130 Chapter 6. Data Gathering and Personalized Broadcasting in Radio Grids

destination. So, we can interchange them. Similarly using Algorithm OneApprox[dI =

0, last = H](Mk) we can obtain an HV -scheme denoted SH with the last message sent
horizontally being m`.

If k=1, Mk is reduced to one message m1 and the claims are satisfied with mu =m` =m1

and SV = SH = m1.

Now, we consider the sequence M′k; the lower bound is LB′ = maxk<i≤M d(mi)+ i−
k− 1 < LB− k as LB is not achieved for any i 6= k. Let S′H be the sequence obtained
by applying Algorithm OneApprox[dI = 0, f irst = H](M′k) with the first element of
S′H sent horizontally and let s′h be this first element. (We obtain this algorithm from
Algorithm OneApprox[dI = 0, last = V ](M′k) if |M′k| = M − k is even or Algorithm
OneApprox[dI = 0, last = H](M′k) if |M′k| is odd). Similarly, let S′V be the sequence
obtained by applying Algorithm OneApprox[dI = 0, f irst =V ](M′k) with the first element
of S′V sent vertically and let s′v be this first element. In all the cases the makespan is at most
LB′+1≤ LB− k.

Finally, we consider the concatenation of the sequences SV � S′H and SH � S′V . We
claim that one of these two sequences has no interferences. If the claim is true, then the
theorem is proved as the makespan will be LB for the first k messages and LB′+1+k≤ LB
for the last M− k messages. In what follows, let as usual (xu,yu), (xl,yl), (x′h,y

′
h) and

(x′v,y
′
v) denote respectively the destinations of messages mu, ml , s′h and s′v. Now, suppose

the claim is not true, that is (mu,s′h) /∈ V H and (m`,s′v) /∈ HV . That implies by Fact 6 that
x′h < xu and y′h ≥ yu and x′v ≥ x` and y′v < y`. But we choose the destination of mu (resp.,m`)
to be the uppermost one (resp., the lowest one) in Dk. So, xu ≤ xl and yu ≥ yl . Therefore
x′h < x′v and y′h > y′v which imply first that s′h 6= s′v and by Fact 6 that (s′v,s

′
h) /∈ V H and

(s′h,s
′
v) /∈ HV .

Note that, by the property of Algorithm OneApprox[dI = 0, last = D](M), s′h ∈
{mk+1,mk+2} and s′v ∈ {mk+1,mk+2}; thus, as they are different, one of s′h,s

′
v is mk+1 and

the other mk+2. Suppose that s′h = mk+1 and s′v = mk+2; then in the sequence S′V the first
message is s′v = mk+2 and from property (c) in Theorem 21, the second message is neces-
sarily mk+1 = s′h, but that implies (s′v,s

′
h) ∈ V H a contradiction. The case s′h = mk+2 and

s′v = mk+1 implies similarly in the sequence S′H that (s′h,s
′
v) ∈ HV , a contradiction. So the

claim and the theorem are proved.

Example 4. As mentioned above, Algorithm OneApprox is not always optimal. The design
of a polynomial-time optimal algorithm seems challenging because of some reasons that
we discuss now. First, the first example below shows that there are open-grid instances
for which any broadcast scheme using shortest paths in not optimal (a general grid with
such property was already given in Example 1). In this example described in Figure 6.6(a),
we have 6 messages mi (1 ≤ i ≤ 6) with destinations at distance d for m1 and m2, d−
1 for m3 and d − 4 for m4,m5,m6. Here LB = d + 1, achieved for m2, m3 and m6. In
the Figure 6.6(a), d = 14, v1 = (11,3), v2 = (12,2), v3 = (9,4), v4 = (5,5), v5 = (3,7)
and v6 = (2,8) and LB = 15. If we apply OneApprox[dI = 0, last = V ](M) we get the
sequence (m1,m3,m2,m5,m4,m6) with a makespan 16 attained for s3 = m2. If we apply
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Figure 6.6: Examples for optimal schedules are difficult to obtain.

OneApprox[dI = 0, last = H](M) we get the sequence (m1,m2,m4,m3,m6,m5) also with a
makespan 16 attained for s4 = m3. Consider any algorithm where the messages are sent
via shortest directed paths. If the makespan is LB then m1 and m2 should be sent in the
first two steps and to avoid interferences the source should send m1 via (0,1) and m2 via
(1,0). m3 should be sent at step 3. If m2 was sent at step 1 and so m1 at step 2, then m3

should be sent at step 3 via (1,0) and will interfere with m1. Therefore, the only possibility
is to send m1 at step 1 via (0,1), m2 at step 2 via (1,0) and m3 at step 3 via (0,1). But
then at step 4, we cannot send any of m4,m5,m6 without interference. So the source does
no sending at step 4, but the last sent message will be sent at step 7 and the makespan
will be d +2 = LB+1. However there exists a tricky schedule with makespan LB, but not
with shortest directed paths routing. We sent m1 vertically, m2 horizontally, m3 vertically
but m4 with a detour to introduce a delay of 2. More precisely, if v4 = (x4,y4), we send m4

horizontally till (x4+1,0), then to (x4+1,1) and (x4,1) (the detour) and then vertically till
(x4,y4). Finally we send m6 vertically at step 5 and m5 horizontally at step 6. m4 has been
delayed by two but the message arrives at time LB and there is no interference between the
messages.

Secondly, even if we restrict ourselves to use shortest paths, the computation of an op-
timal schedule seems difficult. Indeed, the second example below illustrates the fact that
optimal schedule may be very different compared to the non-increasing distance schedule.
The example is decribed in Figure 6.6(b). We have 8 messages mi (1≤ i≤ 8) with destina-
tions at v1 = (6,6), v2 = (5,6), v3 = (2,7), v4 = (2,6), v5 = (1,5), v6 = (2,4), v7 = (3,2)
and v8 = (4,1). Here LB = 12, achieved for m1, m2 and m8. We will prove that there
is a unique sequence of messages reaching the bound LB which is the ordered sequence
(m1,m2,m6,m3,m4,m5,m8,m7) with the first message sent horizontally. Indeed to reach
the makespan LB, m1 and m2 have to be sent first and second because their distances are
12 and 11 and in order they do not interfere m1 has to be sent horizontally and m2 verti-
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cally.The next message to be sent cannot be m3 nor m4 as they will interfere with m2. If the
third message sent is mi for some i ∈ 5,7,8, then the fourth and fifth messages have to be
m3 vertically then m4 horizontally since their distances are 9 and 8. Now only message m5

can be sent vertically at step 6, otherwise there will an interference with m4. Then message
m6 has to be sent horizontally at step 7 since its distance is 6. But then the last message m7

or m8 (the one not sent at the third step) can not be sent vertically as it will interfere with
m6. So the only possibility consists in sending m6 at the third step and then the ordered
sequence is forced.

In the last example, some specific message (m6) has to be chosen to be sent early (while
being close to BS compared with other messages) to achieve the optimal solution. Deciding
of such "critical" message seems to be not easy. Hence it shows that the complexity of
determining the value of the minimum makespan might be a difficult problem (even when
considering only shortest path schedules).

6.4 Case dI = 0; general grid, and BS in the corner

We will see in this section that, by generalizing the notion of basic scheme, Algorithm
TwoApprox[dI = 0, last = D](M) also achieves a makespan at most LB+2 in the case of
a general grid, that is when the destinations of the messages can be on one or both axes
and with BS in the corner. First we have to generalize the notions of horizontal sendings
for a destination node on Y-axis and vertical sendings for a destination node on the X-axis.
However the proofs of the basic lemmata are more complicated as Lemma 55 is not fully
valid in this case. Furthermore, we cannot present the conditions only in simple terms like
in Fact 6 and so to be precise we need to use coordinates.

The following definitions are illustrated on Figure 6.7. We will say that a message is
sent “horizontally to reach the Y axis”, denoted by HY -sending, if the destination of m is on
the Y axis, i.e., dest(m) = (0,y), and the message is sent first horizontally from BS to (1,0)
then it follows the vertical directed path from (1,0) till (1,y) and finally the horizontal arc
((1,y),(0,y)). For instance, an HY -sending of message m is illustrated in Figure 6.7(a) and
of message m′ in Figure 6.7(d).

Similarly a message is sent “vertically to reach the X axis”, denoted by VX -sending, if
the destination of m is on the X axis, i.e., dest(m) = (x,0), and the message is sent first
vertically from BS to (0,1) then it follows the horizontal directed path from (0,1) till (x,1)
and finally the vertical arc ((x,1),(x,0)). For instance, an VX -sending of message m′ is
illustrated in Figure 6.7(b) and of message m in Figure 6.7(c).
Notations. Definition 1 of basic scheme in Section 6.3.1 is generalized by allowing HY

(resp., VX )-sendings as horizontal (resp., vertical) sendings. For emphasis, we call it mod-
ified basic scheme. We will also generalize the notation HV (resp., V H) by including HY

(resp., VX )-sendings.
Note that we cannot have an HY -sending followed by a VX -sending (or a VX -sending

followed by an HY -sending) as there will be interference in (1,1).

Fact 7. Let dest(m) = (x,y),dest(m′) = (x′,y′) and suppose at least one of dest(m) and
dest(m′) is on an axis. Then
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Figure 6.7: Cases of interferences with destinations on the axis.

• (m,m′) /∈ HV if and only if we are in one of the following cases, see in Fig. 6.7(a)
and 6.7(b)

7.1: x = 0 and x′ > 0

7.2: x = 0, x′ = 0 and y′ > y

7.3: x > 0, y′ = 0, x≤ x′ and y≥ 2

or equivalently

• (m,m′) ∈ HV if and only if we are in one of the following cases

7.4: y = 0

7.5: x = 0, x′ = 0 and y′ ≤ y

7.6: x > 0,y > 0, x′ = 0

7.7: x > 0,y > 0, y′ = 0, and either y = 1 or x′ < x

Proof. First suppose dest(m) is on one of the axis. If, y = 0 there is no interference (7.4).
If x = 0 and y′ > y message m arrives at its destination (0,y) at step y+2, but message m′

leaves (0,y) at step y+2 and so they interfere (7.2 and 7.1 with y′ > y). If x = 0 and y′ ≤ y,
either x′ = 0 and the directed paths followed by the messages do not cross (7.5), or x′ > 0,
but then message m leaves (1,y′) at step y′+ 2, while message m′ arrives at (1,y′) at step
y′+2 and so they interfere (7.1 with y′ ≤ y).

Suppose now that dest(m) is not on one of the axis, that is x > 0 and y > 0. If x′ = 0, the
directed paths followed by the messages do not cross (7.6). If y′ = 0, then either x′ < x and
the messages do not interfere (7.7) or x′ ≥ x, and the directed paths cross at (x,1) and there
either y = 1 and the messages do not interfere (7.7) or y ≥ 2 , but then message m leaves
(x,1) at step x+ 2, while message m′ arrives at (x,1) at step x+ 2 and so they interfere
(7.3).

Fact 8. Let dest(m) = (x,y),dest(m′) = (x′,y′) and suppose at least one of dest(m) and
dest(m′) is on an axis. Then

• (m,m′) /∈ V H if and only if we are in one of the following cases, see in Fig. 6.7(c)
and 6.7(d)
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8.1: y = 0 and y′ > 0

8.2: y = 0, y′ = 0 and x′ > x

8.3: y > 0, x′ = 0, y≤ y′ and x≥ 2

or equivalently

• (m,m′) ∈V H if and only if we are in one of the following cases

8.4: x = 0

8.5: y = 0, y′ = 0 and x′ ≤ x

8.6: x > 0,y > 0, y′ = 0

8.7: x > 0,y > 0, x′ = 0, and either x = 1 or y′ < y

Lemma 57. If (m,m′) /∈ DD̄, then (m,m′) ∈ D̄D and (m′,m) ∈ DD̄.

Proof. We prove that if (m,m′) /∈ HV (case D = H), then (m,m′) ∈ V H in the following.
Other results are proved similarly. If none of the destinations of m and m′ are on the
axis, the result holds by Lemma 54. If at least one destination is on an axis, suppose that
(m,m′) /∈ HV . If conditions of Fact 7.1 or 7.2 are satisfied, then x = 0 but then by Fact 8.4
(m,m′)∈V H. If condition of Fact 7.3 is satisfied , so x > 0, y′ = 0 and y≥ 2 which implies
by Fact 8.6 that (m,m′) ∈V H.

However Lemma 55 is no more valid in its full generality.

Lemma 58. Let dest(m) = (x,y), dest(m′) = (x′,y′) and dest(m′′) = (x′′,y′′).
If (m,m′) ∈ DD̄ and (m′,m′′) /∈ D̄D, then (m,m′′) ∈ DD̄ except if:

• Case D = H: y′ = 0 (VX -sending is used for m′), and y ≥ max(2,y′′+ 1), and 0 <

x′ < x≤ x′′.

• Case D = V : x′ = 0 (HY -sending is used for m′), and x ≥ max(2,x′′+ 1), and 0 <

y′ < y≤ y′′.

Proof. Let us prove the case D = H. If none of the destinations of m,m′,m′′ are on an
axis the result holds by Lemma 55. If y = 0, then (m,m′′) ∈ HV by Fact 7.4. By Fact 8,
(m′,m′′) /∈ V H implies x′ > 0. If x = 0, then by Fact 7.5, (m,m′) ∈ HV implies x′ = 0 a
contradiction with the preceding assertion. Therefore x > 0 and dest(m) is not on an axis.
If x′′ = 0, then by Fact 7.6 (m,m′′) ∈ HV . If y′ > 0, then (m′,m′′) /∈V H implies x′′ = 0 by
Fact 8.3, where we already know that by Fact 7.6 (m,m′′) ∈ HV . So y′ = 0, x > 0, y > 0
and by Fact 7.7 (m,m′) ∈ HV implies that either y = 1 or x′ < x.

If y′′ = 0, by Fact 7.3, (m,m′′) /∈ HV if and only if y≥ 2 and x≤ x′′. If y′′ > 0, none of
the destinations of m and m′′ are on the axis and so by Fact 6, (m,m′′) /∈ HV , if and only
if x′′ ≥ x and y′′ < y. So again y≥ 2 and x≤ x′′. In summary (m,m′′) /∈ HV , if and only if
y≥ 2 and when y′′ > 0, y > y′′ and 0 < x′ < x≤ x′′

The case D =V is obtained similarly.
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We give the following useful corollary for the proof of the next theorem.

Corollary 12. If d(m′)≥ d(m′′) then: If (m,m′) ∈ DD̄ and (m′,m′′) /∈ D̄D, then (m,m′′) ∈
DD̄.

We now show that:

Lemma 59. Lemma 56 is still valid in general grid.

Proof. We prove it for D = H. The case D =V can be obtained similarly.
If none of the destinations of m,m′,m′′ are on an axis the result holds by Lemma 56.

Suppose first dest(m′′) is on an axis; by Fact 8 (m,m′′) /∈V H implies x > 0. If furthermore
dest(m) or dest(m′) are on an axis, by Fact 7.3 (m,m′) /∈ HV implies y′ = 0 and so by
Fact 7.4 (m′,m′′) ∈ HV . Otherwise if none of dest(m) and dest(m′) are on an axis, y > 0
and by Fact 8.3 (m,m′′) /∈V H implies x′′ = 0, and with x′ > 0 and y′ > 0 Fact 7.6 implies
(m′,m′′) ∈ HV .

If dest(m′′) is not on an axis, then one of dest(m) and dest(m′) is on an axis and (m,m′) /∈
HV implies y > 0. We cannot have x = 0 otherwise it contradicts (m,m′′) /∈V H. If x > 0,
then by Fact 7.3 (m,m′) /∈ HV implies y′ = 0, but then Fact 7.4 implies (m′,m′′) ∈ HV .

Theorem 24. Let dI = 0, and BS be in the corner of the general grid. Given the set of mes-
sages ordered by non-increasing distances from BS, M= (m1,m2, · · · ,mM) and a direction
D, Algorithm TwoApprox[dI = 0, last = D](M) computes in linear-time an ordering S of
the messages satisfying following properties

(i) the modified basic scheme(S, last = D) broadcasts the messages without collisions;

(ii) s1 ∈ {m1,m2,m3}, s2 ∈ {m1,m2,m3,m4} and si ∈ {mi−2,mi−1,mi,mi+1,mi+2} for
any 2 < i≤M−2, and sM−1 ∈ {mM−3,mM−2,mM−1,mM} and sM ∈ {mM−1,mM};

(iii) for any i≤M, if si is an HY (resp., VX ) sending with destination on column 0 (resp.,
on line 0), then either si ∈ {mi,mi+1,mi+2} if i < M− 1, or si ∈ {mi,mi+1} if i =
M−1, or si = mi if i = M.

Proof. We prove the theorem for D = V . The case D = H can be proved similarly. The
proof is by induction on M and follows the proof of Theorem 19. We have to verify the
new property (iii) and property (i) when one of p,q,mM−1,mM has its destination on one
of the axis. Recall that q is the last message in O. We will denote dest(p) = (xp,yp),and as
usual dest(mM−1) = (xM−1,yM−1) and dest(mM) = (xM,yM).

For property (i) the proof of Theorem 19 works if, when using Lemma 55, we are in
a case where it is still valid, that is when Lemma 58 is valid. We use Lemma 55 to prove
case 2 of the Algorithm TwoApprox[dI = 0, last =V ](M) with p,mM−1,mM in this order.
The order on the messages implies d(mM−1)≥ d(mM) and so by Corollary 12, Lemma 58
is valid. We also use Lemma 55 to prove the case 3 of the algorithm with q, p,mM−1 in
this order. The order on the messages implies d(p) ≥ d(mM−1) and so by Corollary 12,
Lemma 58 is valid. Note that to prove case 4 of the algorithm we use Lemma 56 which is
still valid (Lemma 59).
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It remains to verify property (iii). In case 2 of the algorithm, we have to show that
sM = mM−1 is not using VX -sending because we use induction for (m1, . . . ,mM−2). So it is
sufficient to prove yM−1 > 0. Indeed, by Fact 7, (mM−1,mM) /∈ HV implies yM−1 > 0.

In case 3 of the algorithm, to verify property (iii) we have to show that sM−1 = p is not
using HY -sending because we use induction for (m1, . . . ,mM−2). So it is sufficient to prove
xp > 0. Indeed, by Fact 8, (p,mM−1) /∈V H implies xp > 0.

In case 4 of the algorithm, to verify property (iii) we have to show that sM = mM−1 is
not using VX -sending. Suppose it is not the case i.e. yM−1 = 0; as (p,mM−1) /∈ V H, we
have by Fact 8.2 yp = 0 and xM−1 > xp. But then d(p)< d(mM−1) contradicts the order of
the messages.

As corollary we get by properties (ii) and (iii) and the definition of LB, that the modified
basic scheme(S, last = D) achieves a makespan at most LB+2. We emphasize this result
as a Theorem and note that in view of Example 2 or the example given at the end of
Section 6.2 it is the best possible.

Theorem 25. In the general grid with BS in the corner and dI = 0, the modified basic
scheme (S, last =D) obtained by the Algorithm TwoApprox[dI = 0, last =D](M) achieves
a makespan at most LB+2.

6.5 dI-Open Grid when dI ∈ {1,2}

In this section, we use the Algorithm OneApprox[dI = 0, last = D](M) and the detour
similar with the one in Example 4 to solve the personalized broadcasting problem for dI ∈
{1,2} in dI-open grids, defined as follows:

Definition 10. A grid with BS(0,0) in the corner is called 1-open grid if at least one of
the following conditions is satisfied: (1) All messages have destination nodes in the set
{(x,y) : x≥ 2 and y≥ 1}; (2) All messages have destination nodes in the set {(x,y) : x≥ 1
and y≥ 2}.

The 1-open grid differs from the open grid only by excluding destinations of messages
either on the line x = 1 (condition (1)) or on the column y = 1 (condition (2)). For dI ≥ 2
the definition is simpler.

Definition 11. For dI ≥ 2, a grid with BS(0,0) in the corner is called dI-open grid if all
messages have destination nodes in the set {(x,y) : x≥ dI and y≥ dI}.

6.5.1 Lower bounds

In this subsection, we give the lower bounds of the makespan for dI ∈ {1,2} in dI-open
grids:

Proposition 2. Let G be a grid with BS in the corner, dI = 1 and the set of messages, M=

(m1,m2, · · · ,mM), ordered by non-increasing distances from BS, with all the destinations at
distance at least 3 (d(mM)≥ 3), then the makespan of any broadcasting scheme is greater
than or equal to LBc(1) = maxi≤Md(mi)+ d3i/2e−2.
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Proof. First we claim that if the source sends two messages in two concecutive steps t and
t +1, then it cannot send at step t +2. Indeed, suppose that the source sends a message m
at step t on one axis; then at step t +1 it must send the message m′ on the other axis. But
then at step t + 2, both the two neighbors of the source are at distance at most 1 from the
sender of messages m or m′. So if the source sends m′′ at step t +2, m′′ will interfere with
m or m′.

Let ti be the step where the last message in (m1,m2, · · · ,mi) is sent; therefore ti ≥
d3i/2e− 1. This last message denoted m is received at step t ′i ≥ d(m)+ ti− 1 ≥ d(mi)+

ti−1≥ d(mi)+ d3i/2e−2 and for every i≤M, LBc(1)≥ d(mi)+ d3i/2e−2.

Remark 10. (A): Obviously, this bound is valid for 1-open grid according to Definition 10.

(B): This bound is valid for dI = 1 only when the source has a degree 2 (case BS in the
corner of the grid). If BS is in a general position in the grid we have no better bound than
LB.

(C): One can check that the bound is still valid if at most one message has a destination
at distance 1 or 2. But if two or more messages have such destinations (d(mM−1) ≤ 2),
then the bound is no more valid. As an example, let dest(mi) = vi, with v1 = (1,2),
v2 = (2,1), v3 = (1,2) and v4 = v5 = (1,1), then d(m1) = d(m2) = d(m3) = 3 and
d(m4) = d(m5) = 2 and LBc(1) = d(m5)+6 = 8. However we can achieve a makespan of
7 by sending m4 horizontally at step 1, then m1 vertically at step 2 and m2 horizontally at
step 3, then the source sends m3 vertically at step 5 and m5 horizontally at step 6. m3 and
m5 reach their destinations at step 7.

(D): Finally let us also remark that there exist configurations for which no gathering
protocol can achieve better makespan than LBc(1)+ 1. Let dest(m1) = v1 = (x,y), with
x+ y = d, dest(m2) = v2 = (x,y− 1) and dest(m3) = v3 = (x− 1,y− 2). To achieve a
makespan of LBc(1) = d, m1 should be sent at step 1 via a shortest directed path; m2

should be sent at step 2 via a shortest directed path; and m3 should be sent at step 4 via a
shortest directed path. But, at step d, the sender of m2 (either (x,y−2) or (x−1,y−1)) is
at distance 1 from v3 = dest(m3) and so m2 and m3 interfere.

For dI ≥ 2, we have the following lower bound.

Proposition 3. Let dI ≥ 2 and suppose we are in dI-open grid. Let M= (m1,m2, · · · ,mM)

be the set of messages ordered by non-increasing distances from BS, then the makespan of
any broadcasting scheme is greater than or equal to LB(dI) = maxi≤Md(mi)+(i−1)dI .

Proof. Indeed if a source sends a message at some step the next message has to be sent at
least dI steps after.

Remark 11. For dI = 2, there exist configurations for which no gathering protocol can
achieve a better makespan than LB(2)+2. Let dest(m1) = v1 = (x,y), with x+ y = d and
dest(m2) = v2 = (x− 1,y− 1). Note that LB(2) = d. Let s1,s2 be the sequence obtained
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by some algorithm ; to avoid interferences s1 being sent at step 1 , s2 should be sent at
step ≥ 3. If s2 = m1, the makespan is at least d + 2; Furthermore, if m1 is not sent via a
shortest directed path again the makespan is at least d + 2. So s1 = m1 is sent at step 1
via a shortest directed path. At step d the sender of m1 (either (x,y−1) or (x−1,y) is at
distance 1 from v2. Therefore, if m2 is sent at step 3 (resp., 4) it arrives at v2 (resp.,at a
neighbor of v2) at step d and so m2 interferes with m1. Thus, m2 can be sent in the best
case at step 5 and arrives at step d +2. In all the cases, the makespan of any algorithm is
LB(2)+2.

6.5.2 Routing with ε-detours

To design the algorithms for dI ∈ {1,2}, we will use the sequence S obtained by Algorithm
OneApprox[dI = 0, f irst = D](M). First, as seen in the proof of lower bounds, the source
will no more send a message at each step. Second, we need to send the messages via
directed paths more complicated than horizontal or vertical sendings; however we will see
that we can use relatively simple directed paths with at most 2 turns and simple detours.
Let us define precisely such sendings.

Definition 12. We say that a message to be sent to node (x,y) is sent vertically with an
ε-detour, if it follows the directed path from BS(0,0) to (0,y+ ε), then from (0,y+ ε) to
(x,y+ε) and finally from (x,y+ε) to (x,y). Similarly a message to be sent to node (x,y) is
sent horizontally with an ε-detour, if it follows the directed path from BS(0,0) to (x+ε,0),
then from (x+ ε,0) to (x+ ε,y) and finally from (x+ ε,y) to (x,y).

Note that ε = 0 corresponds to a message sent horizontally (or vertically) as defined
earlier (in that case we will also say that the message is sent without detour). Note also
that in the previous section we use directed paths with 1-detour but only to reach vertices
on the axes which are now excluded, since we are in open grid. A message sent at step t
with an ε-detour reaches its destination at step t + d(m)+ 2ε − 1. We also note that the
detours introduced here are slightly different from the one used in Example 4. They are
simpler in the sense that they are doing only two turns and for the case ε = 1 (1-detour)
going backward only at the last step.

We will design algorithms using the sequence obtained by Algorithm OneApprox[dI =

0, f irst = D](M) but we will have to send some of the messages with a 1-detour. We will
first give some lemmata which characterize when two messages m and m′ interfere when
dI = 1, but not interfere in the basic scheme that is when dI = 0, according to the detours
of their sendings. For that the following fact which gives precisely the arcs used by the
messages will be useful.

Fact 9. • If dest(m)= (x,y) and m is sent horizontally at step t with an ε-detour (ε = 0
or 1) then it uses at step t +h the following arc

case 1: ((h,0),(h+1,0)) for 0≤ h < x+ ε

case 2: ((x+ ε,h− (x+ ε)),(x+ ε,h+1− (x+ ε)) for x+ ε ≤ h < x+ y+ ε

case 3: if ε = 1 ((x+1,y),(x,y)) for h = x+ y+1
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• If dest(m′) = (x′,y′) and m′ is sent vertically with an ε ′-detour (ε ′ = 0 or 1) at step
t ′, then it uses at step t ′+h′ the following arc

case 1’: ((0,h′),(0,h′+1)) for 0≤ h′ < y′+ ε ′

case 2’: ((h′− (y′+ε ′),y′+ε ′),(h′+1− (y′+ε ′),y′+ε ′)) for y′+ε ′ ≤ h′ < x′+y′+ε ′

case 3’: if ε ′ = 1 ((x′,y′+1),(x′,y′)) for h′ = x′+ y′+1

Lemma 60. Let G be an open grid. Let dest(m) = (x,y) and m be sent at step t horizontally
without detour, i.e. ε = 0. Let dest(m′) = (x′,y′) and m′ be sent vertically with an ε ′-detour
(ε ′ = 0 or 1) at step t ′ = t +1. Let furthermore {x′ < x or y′ ≥ y} (i.e. (m,m′) ∈ HV in the
basic scheme). Then for dI = 1, m and m′ do not interfere.

Proof. To prove that the two messages do not interfere, we will prove that at any step for
any pair of messages sent but not arrived at destination, the distance between the sender of
one and the receiver of the other is ≥ 2. Consider a step t + h = t ′+ h′ where h′ = h− 1
and 1≤ h < min{x+ y,x′+ y′+1+2ε ′}. By Fact 9 we have to consider 6 cases. We label
them as case i- j’ if we are in case i for m and in case j’ for m′, i = 1,2 and 1≤ j ≤ 3:

case 1-1’: 1 ≤ h < x and 0 ≤ h− 1 < y′+ ε ′. Then, the distance between a sender and a
receiver is at least 2h≥ 2.

case 1-2’: 1≤ h < x and y′+ε ′ ≤ h−1 < x′+y′+ε ′. Then, the distance between a sender
and a receiver is at least 2(y′+ ε ′)≥ 2, as y′ ≥ 1.

case 1-3’: 1 ≤ h < x and ε ′ = 1 h− 1 = x′+ y′+ 1. Then, the distance between a sender
and a receiver is at least h− x′+ y′ = 2y′+2≥ 4.

case 2-1’: x ≤ h < x+ y and 0≤ h−1 < y′+ ε . Then, the distance between a sender and
a receiver is at least |x|+ |x−2| ≥ 2.

case 2-2’: x≤ h < x+y and y′+ε ′ ≤ h−1 < x′+y′+ε ′. Recall that (m,m′) ∈HV ; so, by
Fact 6, x′ < x or y′ ≥ y. If x′ < x, as h ≤ x′+(y′+ ε ′), we get h ≤ x+(y′+ ε ′)−1.
If y′ ≥ y, h < x+ y implies h ≤ x+ y′−1. But, the distance between a sender and a
receiver is at least 2(x+(y′+ ε ′)−h)≥ 2 in both cases.

case 2-3’: x≤ h < x+y and ε ′ = 1 h−1 = x′+y′+1. Then, the distance between a sender
and a receiver is at least |x′− x|+ |x′− x+2| ≥ 2.

The next lemma will be used partly for proving the correctness of algorithm for dI =

1 (since the last case in the lemma will not happen in the algorithm) and fully for the
algorithm for dI = 2.

Lemma 61. Let G be an open-grid. Let dest(m) = (x,y) with x≥ 2 and m be sent horizon-
tally at step t with an ε-detour (ε = 0 or 1). Let dest(m′) = (x′,y′) and m′ be sent vertically
with an ε ′-detour (ε ′ = 0 or 1) at step t ′ = t + 2. Let furthermore {x′ < x or y′ ≥ y} (i.e.
(m,m′) ∈ HV in the basic scheme). Then, for dI = 1 or 2, m and m′ interfere if and only if
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case 00. ε = 0,ε ′ = 0: x′ = x−1 and y′ ≤ y−1

case 01. ε = 0,ε ′ = 1: x′ = x−1 and y′ ≤ y−2

case 10. ε = 1,ε ′ = 0: x′ ≥ x and y′ = y

case 11. ε = 1,ε ′ = 1: x′ = x−1 and y′ = y−1

Proof. Consider a step t +h = t ′+h′ so h′ = h−2. By Fact 9 we have to consider 9 cases
according the 3 possibilities for an arc used by m and the 3 possibilities for an arc used by
m′. We label them as case i- j’ if we are in case i for m and in case j’ for m′, 1 ≤ i, j ≤ 3.
We will prove that in all the cases, the distance of the sender and receiver of these two
messages is either at most 1 or at least 3. So the interference happens in the same condition
for dI = 1 and dI = 2.

case 1-1’: Then, the distance between a sender and a receiver is at least 2h− 1 ≥ 3 as
h′ = h−2≥ 0.

case 1-2’: Then, the distance between a sender and a receiver is at least 2(y′+ ε ′)+1≥ 3
as y′ ≥ 1.

case 1-3’: h = h′+2 = x′+y′+3. The distance between a sender and a receiver is at least
h− x′+ y′ = 2y′+3≥ 5, as y′ ≥ 1.

case 2-1’: Then, the distance between a sender and a receiver is either |x+ ε|+ |x+ ε −
3| ≥ 3 or 2(x+ ε)−1≥ 3 as x≥ 2.

case 2-2’: Then, the distance between a sender and a receiver is at least 2(x+ε +y′+ε ′−
h)+1. If y′ ≥ y−α , then h≤ x+y+ ε−1≤ x+y′+α + ε−1 implies x+ ε +y′+
ε ′− h ≥ ε ′+ 1−α and the distance is at least 2ε ′+ 3− 2α . If α ≤ 0 (y′ ≥ y) then
the distance is ≥ 3. Furthermore if ε ′ = 1 and α = 1, the distance is also ≥ 3.

Otherwise, y′ < y and by the hypothesis x′ < x. Let x′ = x− 1− β with β ≥ 0;
h′+ 2 = h ≤ x′+ y′+ ε ′+ 1 = x− β + y′+ ε ′ implies x+ ε + y′+ ε ′− h ≥ ε + β

and the distance is at least 2ε +1+2β . If β ≥ 1 or ε = 1, then the distance is ≥ 3.
Otherwise when β = 0 (i.e. x′ = x−1) and ε = 0, we have a distance 1, achieved for
h = x′+ y′+ ε ′+ 1. More precisely when ε ′ = 0, it is achieved with x′ = x− 1 and
y′ ≤ y−1, which corresponds to case 00. When ε ′ = 1, we have already seen that the
distance is 3, for y′ = y−1 (case α = 1); otherwise the distance is 1 with x′ = x−1
and y′ ≤ y−2 (case 01).

case 2-3’: In this case ε ′ = 1 and h = x′+ y′+3 ≤ x+ y+ ε−1. The distance between a
sender and a receiver is |x+ ε− x′| + |x+ ε + y′−h|. If y′ ≥ y−1, h = x′+ y′+3≤
x+y+ε−1≤ x+y′+ε implies x′ ≤ x+ε−3 and so |x+ε−x′| ≥ 3. Otherwise, by
hypothesis, x′< x; if x′≤ x−3 , then |x+ε−x′| ≥ 3. In the remaining case x′= x−1
or x′ = x−2. If x′ = x−1, then |x+ ε− x′|= 1+ ε and h = x′+ y′+3 = x+ y′+2,
which implies |x + ε + y′ − h| = 2− ε . So the distance is 3; If x′ = x− 2, then
|x+ ε− x′|= 2+ ε and h = x′+ y′+3 = x+ y′+1, which implies |x+ ε + y′−h|=
1− ε . So the distance is 3.
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case 3-1’: Then, the distance between a sender and a receiver is at least 2x−1≥ 3 as x≥ 2.

case 3-2’: In that case ε = 1 and h = x+ y+ 1 and h ≤ x′+ y′+ ε ′+ 1. The distance
between a sender and a receiver is |x+ y′+ ε ′+ 2− h| + |y′+ ε ′− y|. If x′ ≤ x− 1,
h = x+y+1≤ x′+y′+ε ′+1≤ x+y′+ε ′ implies |x+y′+ε ′+2−h|+y′+ε ′−y≥
2+1 = 3. Otherwise x′ ≥ x, and, by hypothesis, y′ ≥ y; Let y′ = y+γ with γ ≥ 0. So
x+y′+ε ′ = x+y+γ +ε ′ = h−1+γ +ε ′ implies |x+y′+ε ′+2−h|+y′+ε ′−y≥
2ε ′+2γ +1. If ε ′ = 1 or γ ≥ 1, then the distance is at least 3; otherwise the distance
is 1 and so we have interference if ε = 1,ε ′ = 0,x′ ≥ x and y′ = y (case 10).

case 3-3’: Then , ε = 1,ε ′ = 1 and h = x+ y+ 1 = x′+ y′+ 3. The distance between
a sender and a receiver is either |x+ 1− x′|+ |y′− y| or |x− x′|+ |y′+ 1− y|. If
y′ ≥ y, then h = x+ y+ 1 = x′+ y′+ 3 implies x ≥ x′+ 2 and the distance is 3. If
y′ ≤ y−1, then by hypothesis x′ ≤ x−1 and x+y+1 = x′+y′+3 implies y′ = y−1
and x′ = x− 1. Then the distance is 1 we have interference. In summary, we have
interference if ε = 1,ε ′ = 1,x′ = x−1 and y′ = y−1 (case 11).

By exchanging horizontally and vertically , x and y and x′ and y′ in Lemma 60 and
Lemma 61 we get the following two lemmata:

Lemma 62. Let G be open grid. Let dest(m) = (x,y) and m be sent vertically (without
detour) at step t. Let dest(m′) = (x′,y′) and m′ be sent horizontally with an ε ′-detour
(ε ′ = 0 or 1) at step t ′ = t +1. Let furthermore {x′ ≥ x or y′ < y} (i.e. (m,m′) ∈V H in the
basic scheme). Then, for dI = 1, m and m′ do not interfere.

Lemma 63. let G be an open grid. Let dest(m) = (x,y) with y≥ 2 and m be sent vertically
at step t with an ε-detour (ε = 0 or 1). Let dest(m′) = (x′,y′) and m′ be sent horizontally
with an ε ′-detour (ε ′ = 0 or 1) at step t ′ = t + 2. Let furthermore {x′ ≥ x or y′ < y} (i.e.
(m,m′) ∈V H in the basic scheme). Then for dI = 1 or 2, m and m′ interfere if and only if

case 00. ε = 0,ε ′ = 0: x′ ≤ x−1 and y′ = y−1

case 01. ε = 0,ε ′ = 1: x′ ≤ x−2 and y′ = y−1

case 10. ε = 1,ε ′ = 0: x′ = x and y′ ≥ y

case 11. ε = 1,ε ′ = 1: x′ = x−1 and y′ = y−1

6.5.3 General-scheme dI = 1.

We will have to define general-scheme by indicating not only the ordered sequence of
messages S= (s1, · · · ,sM) sent by the source, but also by specifying for each si the time ti
at which the message si is sent and the directed path followed by the message si, in fact the
direction Di and the εi-detour used for sending it. More precisely,
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Definition 13. A general-scheme is defined as a sequence of M quadruples (si, ti,Di,εi),
where the i-th message sent by the source is si. This message is sent at step ti in direction
Di with an εi-detour.

Note that we will send the messages alternatively horizontally and vertically in our
algorithm. Therefore, we have only to specify the direction of the first (or last) message. We
will see in the next theorem that the sequence S obtained by the algorithm OneApprox[dI =

0, f irst = D](M) in Section 6.3 almost works when dI = 1. More precisely, we propose a
scheme that sends the messages in the same order as in S. However, BS waits one step every
three steps; i.e., the source sends two messages of the sequence S during two consecutive
steps and then stops sending for one step. Furthermore, a message must sometimes be sent
with a detour to avoid interference. That is, the messages are sent without detours like in
S, except that, if the first message is sent in direction D, an even message s2k+2 is sent in
direction D̄ with a 1-detour if and only if without detour it would interfere with s2k+3.

Theorem 26. Let dI = 1, and let BS be in a corner of a 1-open grid. Let M= (m1, . . . ,mM)

be the set of messages ordered by non-increasing distances from BS and suppose that the
destination v = (x,y) of any message satisfies {x≥ 1,y≥ 2} (condition (2) of 1-open grid).
Let us define:

• S= (s1, . . . ,sM) is the ordered sequence obtained by the Algorithm OneApprox[dI =

0, f irst = H](M)

• for any i = 2k+1, 0≤ k ≤ b(M−1)/2c, let ti = 3k+1 Di = H and εi = 0,

• for any i = 2k+2, 0≤ k < bM/2c, let ti = 3k+2, Di =V and ε2k+2 = 0 if s2k+2 does
not interferes with s2k+3 for dI = 1, otherwise ε2k+2 = 1.

Then the general-scheme defined by the sequence (si, ti,Di,εi)i≤M broadcasts the messages
without collisions for dI = 1 and the first message is sent in direction H.

Proof. To prove the theorem, we need to prove that any two messages do not interfere at
any step in the general scheme with parameters (si, ti,Di,εi). A message si cannot interfere
with a message si+ j for j ≥ 2 sent at least 3 steps after; indeed the senders of such two
messages will be at distance at least 3 (at each step, including the last step when the mes-
sages do a 1-detour, the distance of a sender to the base station increases by one). So we
have only to care about si and si+1.

First consider the message s2k+1. Let s2k+1 = m, with dest(m) = (x,y) and s2k+2 = m′,
with dest(m′)= (x′,y′). Message m is sent horizontally at step t = 3k+1 without detour and
m′ is sent vertically at step t ′= t+1= 3k+2 with an ε ′-detour for ε ′= ε2k+2. Furthermore,
by Theorem 21, we have (m,m′) ∈ HV . We conclude by Lemma 60 that s2k+1 and s2k+2

do not interfere.
Now let us prove that s2k+2 does not interfere with s2k+3. Let s2k+2 = m with dest(m) =

(x,y) and s2k+3 = m′ with dest(m′) = (x′,y′). Message m is sent vertically with an ε-
detour, ε = ε2k+2 at step t = 3k+2 and m′ is sent horizontally at step t ′ = t +2 = 3k+4.
Furthermore by Theorem 21 (m,m′) ∈V H and so {x′ ≥ x or y′ < y} by Fact 6. So we can
apply Lemma 63. If {x′ ≤ x− 1 and y′ = y− 1}, we are in the case 00 of Lemma 63 and
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so if m and m′ were sent without detour they would interfere. Then by the algorithm we
have to choose ε2k+2 = 1, but now we are in the case 10 of Lemma 63 which implies no
interference. (Case 11 never happens in the Theorem.) Otherwise we have {x′ > x− 1 or
y′ 6= y−1}; also we have ε = 0 according to the Theorem. By case 00 of Lemma 63, they
do not interfere. The proof works because interferences in case 00 and 10 of Lemma 63
cannot appear simultaneously.

Remark 12. Note that we cannot relax the hypothesis that the messages satisfy y ≥ 2.
Indeed if y = 1, we might have to do a 1-detour for m = s2k+2 when x′ ≥ x as at any
step t + h (2 ≤ h ≤ x) the sender of m is at distance 1 from the receiver of m′ = s2k+3

(case 2-1’ in the proof). So we have to send m vertically with a 1-detour; but at step
t + x+2 the sender of m′ (x′,0) is at distance 1 from the receiver of m (x′,1) (case 3-1’ in
the proof). A simple example is given with 3 messages m1,m2,m3 whose destinations are
respectively (5,1),(4,1),(3,1). Then OneApprox[dI = 0, f irst =H](M)gives the sequence
(m1,m3,m2), where m3 = s2 is sent vertically at step 2 and m2 = s3 is sent horizontally at
step 3. Now, for dI = 1, m2 is sent at step 4. If m3 is sent without detour, it interferes with
m2 at step 4 and 5; otherwise if m3 is sent with a 1-detour it interferes with m2 at step 7.

By exchanging x and y, H and V, we also get that when the destination v = (x,y) of any
message satisfies {x≥ 2,y≥ 1} (condition (1) of 1-open grid) we can adapt our algorithm
to compute a general-scheme that broadcasts the messages without collisions for dI = 1
and where the first message is sent in direction V . Furthermore, if we are in a 2-open grid
we can have a general-scheme where the direction of the first message is arbitrary.

Theorem 27. In the 1-open grid with BS in the corner and dI = 1, there exists a general-
scheme achieving a makespan at most LBc(1)+3.

Proof. Applying the Algorithm OneApprox[dI = 0, f irst = D](M), we get an ordered
sequence S which satisfies the Property (b) of Theorem 21: mi ∈ {si−1,si,si+1}. Con-
sider parameters as in Theorem 26 in case of condition (2) of 1-open grid (the proof
is similar for condition(1)). Recall that a message m sent at step t with an ε-detour
reaches its destination at step d(m) + 2ε + t − 1. Then s2k+1 reaches its destination
(the worst case being s2k+1 = m2k sent without detour at step 3k + 1) at step at most
d(m2k) + 3k + 1− 1 = d(m2k) + d3(2k)

2 e − 2+ 2. Similarly s2k+2 reaches its destination
(the worst cases being s2k+2 = m2k+1 sent with a 1-detour at step 3k+ 2) at step at most
d(m2k+1) + 2+ 3k + 2− 1 = d(m2k+1) + 3k + 3 = d(m2k+1) + d3(2k+1)

2 e− 2+ 3. So the
makespan is at most maxi≤Md(mi)+ d3i/2e+1 = LBc(1)+3.

6.5.4 General-scheme dI = 2.

In this section, we present a linear-time (in the number of messages) algorithm that com-
putes a general-scheme (Definition 13) broadcasting the messages without collisions for
dI = 2 in a 2-open grid, and achieving a makespan up to 4 from the optimal.

As in the case dI = 1, BS will send the messages in the same order as in S. However, BS
sends one message only every two steps (which is necessary when dI = 2). The difficulty
here is to decide the detour that must be followed by each message, in order to avoid
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interference. Next algorithm, described in Figure 6.8, is dedicated to compute the sequence
(εi)i≤M of the detours.

Input: M = (m1, · · · ,mM) the set of messages ordered by non-increasing distances from
BS, in a 2-open grid, and the direction D of the first message.
Output: ε = (ε1,ε2, . . . ,εM) where εi ∈ {0,1}
begin
1 Let (s1, · · · ,sM) =OneApprox[dI = 0, f irst = D](M)

2 Let ti = 2i−1, and Di = D if i is odd and Di = D̄ otherwise, for any 1≤ i≤M
3 Let start with εi = 1 for 1≤ i≤M.
4 for i = M−1 to 1
5 if si interferes with si+1 in the general-scheme defined by (si, ti,Di,εi)i≤M when
dI = 2 then

(we emphasis that we consider interferences with the current values
of the (εi)i≤M)
6 εi← 0
7 return ε = (ε1,ε2, . . . ,εM)

end

Figure 6.8: Algorithm E psilon(M, f irst = D)

Theorem 28. Let dI = 2, and let BS be in a corner of a 2-open grid. Let M= (m1, . . . ,mM)

be the set of messages ordered by non-increasing distances from BS. Let us define
(si, ti,Di,εi)i≤M such that

• S= (s1, . . . ,sM) is the ordered sequence obtained by the Algorithm OneApprox[dI =

0, f irst = D](M)

• for any i≤M, ti = 2i−1 and Di = D if i is odd and Di = D̄ otherwise.

• ε = (ε1,ε2, . . . ,εM) is the sequence obtained by Algorithm E psilon(M, f irst = D)

Then the general-scheme defined by the sequence (si, ti,Di,εi)i≤M broadcasts the messages
without collisions for dI = 2 and the first message is sent in direction D.

Proof. We need to prove that any two messages do not interfere at any step. A message si

cannot interfere with a message si+ j, for j ≥ 2, sent at least 4 steps after. Indeed, at any
step, the senders of two such messages are at distance at least 4. This is because, at each
step including the last step when the messages do a 1-detour the distance of a sender to the
base station increases by one. So we have only to show that si does not interfere with si+1

for any 1≤ i < M. For this purpose, we need the following claim that we will prove thanks
to Lemma 61 and 63.

Claim 6. For dI = 2, if si sent with an εi = 1-detour interferes with si+1 , then if we send si

without detour, si does not interfere with si+1.
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Indeed suppose si is sent in direction D. As the sequence S is obtained by Algorithm
OneApprox[dI = 0, f irst = D](M), (si,si+1) ∈ DD̄. So we are in cases 10 if εi+1 = 0 or in
case 11 if εi+1 = 1 of Lemma 61 (D = H) or Lemma 63 (D =V ). First suppose that we are
in case 10, then we are not in the case 00; therefore if we send si without detour, si does
not interfere with si+1. Now assume that we are in case 11, then we are not in the case 01;
therefore if we send si without detour, si does not interfere with si+1.

Now the algorithm E psilon(M, f irst = D) was designed in such a way it gives either
εi = 1 in which case si does not interfere with si+1 or it gives εi = 0 because si sent with a
1 detour was interfering with si+1, but then, by the claim 6, si sent without detour does not
interfere with si+1.

Theorem 29. In the 2-open grid with BS in the corner and dI = 2, the general-scheme
defined in Theorem 28 achieves a makespan at most LB(2)+4.

Proof. By definition of the scheme, the messages are sent in the same order as computed
by OneApprox[dI = 0, f irst = D](M). Therefore, by Property (b) of Theorem 21, si ∈
{mi−1,mi,mi+1}. So the message si arrives at its destination at step d(si)+ 2εi + ti− 1 ≤
d(mi−1)+ 2+ 2i− 1− 1 = d(mi−1)+ 2(i− 1− 1)+ 4. Then the result follows from the
definition of LB(2).

6.6 Personalized Broadcasting in Grid with Arbitrary Base Sta-
tion

In this section, we show how to use the algorithms proposed above to broadcast (or equiv-
alently to gather) a set of personalized messages M, in a grid with a base station placed in
an arbitrary node. More precisely, BS will still have coordinates (0,0), but the coordinates
of the other nodes are in Z. A grid with arbitrary base station is said to be an open-grid if
no destination nodes are on the axes. More generally, a grid with arbitrary base station is
said to be an 2-open-grid if no destination nodes are at distance at most 1 from any axis.

We divide the grid into four quadrants Qq,1 ≤ q ≤ 4, where Q1 = {(x,y) such that
x≥ 0,y≥ 0}, Q2 = {(x,y) such that x≤ 0,y≥ 0}, Q3 = {(x,y) such that x≤ 0,y≤ 0}, and
Q4 = {(x,y) such that x ≥ 0,y≤ 0}. Note that, BS belongs to all quadrants, and any other
node on an axis belongs to two different quadrants.

Each quadrant can be considered itself as a grid with the BS in the corner. Therefore, we
can extend all the definitions of the preceding sections, in particular the basic scheme and
general-scheme by considering a move in Q1 (resp., Q2, Q3, Q4) as horizontal, if it is on the
positive x-axis (reps. positive y-axis, negative x-axis, negative y-axis) and a vertical move
as one on the other half-axis of the quadrant. Then, if we have a sequence of consecutive
messages, still ordered by non-increasing distance to BS, and all in the same quadrant we
can apply any of the preceding algorithms. Otherwise, we can extend the algorithms by
splitting the sequence of messages into maximal subsequences, where all the messages are
in the same quadrant and applying any of the algorithms to this subsequence. We have just
to be careful that there is no interference between the last message of a subsequence and
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the first one of the next subsequence; fortunately we will take advantage of the fact that we
can choose the direction of the first message of any subsequence.

Theorem 30. Given a grid with any arbitrary base station BS, and M= (m1,m2, · · · ,mM)

the set of messages ordered by non-increasing distances from BS, then there are linear-time
algorithms which broadcast the messages without interferences, with makespan:

• at most LB+2 if dI = 0;

• at most LB+1 if dI = 0 in an open-grid;

• at most LBc(1)+3 if dI = 1 in a 2-open-grid;

• at most LB(2)+4 if dI = 2 in a 2-open-grid;

Proof. We partition the ordered set of messages into maximal subsequences, of messages
in the same quadrant. That is M = M1 �M2 . . .M j . . .�Mt , where all the messages
in M j belong to the same quadrant and the messages of M j and M j+1 belong to dif-
ferent quadrants. Then, depending on the cases of the theorem, we apply Algorithms
TwoApprox[dI = 0, f irst = D](M), OneApprox[dI = 0, f irst = D](M), or the algorithms
defined in Theorems 26 or 28 to each M j, in order to obtain a sequence S j. Now we define
the value of D in the algorithms by induction. The direction of the first message of S1 is
arbitrary. Then the direction of the first message of S j+1 has to be chosen on an half-axis
different from that of the last message of S j, which is always possible as two quadrants
have at most one half axis in common. For example, suppose the messages of M j belong
to Q1 and the last message of S j is sent vertically (i.e. on the positive y-axis) and that
the messages of M j+1 belong to Q2, then the first message of S j+1 cannot be sent on the
the positive y-axis (that is horizontally in Q2), but should be sent to avoid interferences on
the negative x-axis (that is vertically in Q2). Otherwise if the last message of S j is sent
horizontally (i.e. on the positive x-axis), we can sent the first message of S j+1 as we want
(as the positive x-axis does not belong to Q2); similarly if the messages of M j+1 belong to
Q3 we can send the first message of S j+1 as we want (as there are no half axes in common
between Q1 and Q3). Finally, in the case dI = 2, we have to wait one step between the
sending of the last message of S j and the first message of S j+1. With these restrictions, we
have no interferences between two consecutive messages inside the same S j by the correct-
ness of the various algorithms; furthermore we choose the direction of the first message of
S j+1 and we add in the case dI = 2 a waiting step in order to avoid interferences between
the last message of S j and the first message of S j+1. Unconsecutive messages are sent far
apart to avoid interferences; indeed the distance between two senders is > dI +1. Finally
the values of the makespan follow from that of the respective algorithms.

Note that the values of LB (resp., LB(2)) are lower bounds for the case of an arbitrary
position of BS. Therefore, we get the following corollary

Corollary 13. There are linear-time (in the number of messages) algorithms that solve the
gathering and the personalized broadcasting problems in any grid, achieving an optimal
makespan up to an additive constant c where:



6.7. Perspective 147

• c = 2 when dI = 0;

• c = 1 in open-grid when dI = 0;

• c = 3 in 1-open-grid when dI = 1 and BS is a corner;

• c = 4 in 2-open-grid when dI = 2.

However, for dI = 1, LBc is not a lower bound when BS is not in the corner; the best
lower bound we know is LB. In fact this bound can be achieved in some cases. For example
suppose that, in the ordered sequence M, the message m4 j+q belong to the quadrant Qq,
then we send the messages m4 j+q horizontally in Qq that is on the positive x-axis for q = 1,
on the positive y-axis for q = 2, on the negative x-axis for q = 3, and on the negative y-axis
for q = 4. There is no interferences and the makespan is exactly LB. On the opposite, we
conjecture that, when all the messages are in the same quadrant, we can obtain a makespan
differing of LBc(1) by a small constant; so in that case our algorithm will give a good
approximation.

Remark 13. Note that when buffering is allowed at the intermediate nodes, LB is still a
lower bound for the makespan of any personalized broadcasting or gathering scheme. All
our algorithms get makespans at most 3

2 LB+3 for dI = 1, since LBc(1)≤ 3
2 LB and 2LB+4

for dI = 2, since LB(2) ≤ 2LB. So we have almost 3
2 and 2-approximation algorithms for

dI = 1 and dI = 2 in 2-open grid respectively when buffering is allowed. For the special grid
networks, this improves the result in [BGK+06], which gives a 4-approximation algorithm.

6.7 Perspective

We give several algorithms for the personalized broadcasting and so the gathering problem
in grids with arbitrary base station for dI ≤ 2. It will be nice to have additive approximations
for dI ≥ 3; we try to generalize the ideas developed before by using ε detours with ε ≥ 2;
doing so, we can avoid interferences between consecutive messages, but not with messages
si and si+2. Another challenging problem consists in determining the complexity of finding
an optimal schedule and routing of messages for achieving the gathering in the minimum
completion time or characterizing when the lower bound is achieved. Example 4 shows it
might not be an easy problem. Determining if there is a polynomial algorithm to compute
the makespan in the restricted case where messages should be sent via shortest directed
paths seems also to be a challenging problem (See Example 4). Last but not least, a natural
extension will be to consider the gathering problem for other network topologies.





CHAPTER 7

Conclusion and Perspective

In this chapter, we conclude the thesis and present some perspectives.

Conclusion

In this thesis, we have mainly studied two topics: tree decompositions and some routing
problems.

In the first part, we have focused on tree decompositions. In Chapter 2, the minimum
size tree decomposition is to find a tree decomposition of minimum number of bags under
the constraint that the width of the tree decomposition is at most a given integer k ≥ 1.
We have proved that for k ≥ 4, it is NP-hard to find a minimum size tree decomposition
of width at most k in general graphs; it is still NP-hard for k ≥ 5 in the class of connected
graphs. Moreover, polynomial algorithms have been presented to find a minimum size
tree decomposition of width at most 2 (resp. 3) in class of graphs of treewidth at most 2
(resp. trees and 2-connected outerplanar graphs). In Chapter 3, inspired by the study of
cops and robber game in k-chordal graphs for k ≥ 3, we have investigated the k-good tree
decompositions for k≥ 2, in which each bag contains a dominating set of size at most k−1
and inducing a path in the graph. Given a graph G and an integer k ≥ 3, we have proved
that there is a quadratic time algorithm either outputs an induced cycle of size at least k+1
of G or computes a k-good tree decomposition of G. We have also studied the problem
of computing the chordality of planar graphs admitting a k-good tree decomposition. We
were able to propose a linear time algorithm for the subclass of planar graphs containing a
dominating set of size at most k−1 inducing a path and all other vertices inducing a cycle.
We conjecture that it is NP-hard to compute the chordality of the class of planar graphs,
which contains a dominating set of size at most k−1 inducing a path.

In the second part, we have investigated several routing problems, some of which are
solved by applying tree decompositions. In Chapter 4, we have designed a compact routing
scheme for the class of graphs admitting a k-good tree decomposition. The compact routing
scheme has message header and routing table of size O(k log∆+ logn) and additive stretch
O(k log∆), where ∆ is the maximum degree of the graph. In Chapter 5, the Prize Collecting
Steiner Tree (PCST) problem has been studied in the class of graphs of treewidth at most 2.
We have presented a linear algorithm for PCST problem in the class of graphs of treewidth
at most 2. The algorithm has been generalized to the class of bounded treewidth graphs
in [CMZ11]. Moreover, for the PCST problem with interval costs and prizes, we have pro-
posed the min-max risk model and the min-sum risk model. Polynomial algorithms have
been presented for solving these two risk models of the PCST problem . In Chapter 6, we
have studied the Data Gathering problem in grid radio networks under small interference
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distance. Linear constant approximation algorithms have be presented for several cases.
The results have been presented in Table 6.1 on Page 114.

Perspectives

For a short term future work, several open problems have been mentioned in the last section
of each chapter. I summarize them in the following.

Given a graph G of treewidth at most 3, the complexity of finding a minimum size
tree decomposition of width at most 3 of G is still open. In addition, given a tree T and
an integer k > 3, the complexity of finding a minimum size tree decomposition of width
at most k of T is also open. More generally, given a graph G of treewidth tw ≥ 2 and an
integer k > tw, the complexity of finding a minimum size tree decomposition of width at
most k of G is open.

Given a graph G and a fixed integer k ≥ 2, the complexity of deciding whether there
is a k-good tree decomposition of G is open. In particular, it is still open even for k = 2.
It is interesting to find a k-good tree decomposition of G with the minimum k, e.g. in its
applications in designing compact routing scheme in Chapter 4. We have conjectured that
it is NP-hard to compute the chordality of the class of planar k-super-caterpillar graphs, and
we have reduced this conjecture to the determination of the complexity of the problem of
deciding whether a planar graph with a Hamiltonian path (without precision on that path)
also has a Hamiltonian cycle. Although Hamiltonian path and Hamiltonian cycle are both
well-studied subjects, the complexity of this problem is still open.

Our compact routing scheme for any k-good tree decomposition admissible graph, pre-
sented in Chapter 4, has small size of routing tables and addresses for each vertex, but it
has an additive stretch O(k log∆), where ∆ is the maximum degree of the graph. It will
be nice to decrease the additive stretch to be O(k) without increasing the routing table and
address sizes of each vertex. Moreover, it is more practical to design name-independent
compact routing scheme, i.e. without designing special address for each vertex.

The min-max risk model and min-sum risk model presented in Chapter 5 for Prize
Collecting Steiner Tree problem with interval data in class of graphs of treewidth at most 2
have been already used for the shortest path problem [Hu10] and minimum spanning tree
problem with interval data in general graphs[CHH09]. It is interesting to classify the class
of graph problem P with interval data on edges and vertices, which satisfies that, if P with
deterministic data can be solved in polynomial time, then P with interval data under the
two risk models can be solved in polynomial time. Moreover, if P with deterministic data
is NP-hard, how can we approximate the P with interval data under the two risk models?

For the gathering problem in grid network with dI = 0, we have presented a linear
algorithm with at most one step more than the optimal solution. But it is still open to
determining the complexity of find the optimal solution in this case. Another generalization
of our work on this problem is to design additive approximation algorithm for dI ≥ 3.

In the rest of this section I share with you some long term perspectives.
Due to the applications of tree decompositions of bounded width, the computation

of treewidth is of great significance. As we mentioned, the best constant approximation
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algorithm presented in [BDD+13] is linear in n and single exponential in the treewidth.
But this algorithm is mainly of theoretical importance, because the base c of the single
exponential function on the treewidth is huge. It is an interesting challenge to design more
efficient and practical approximation algorithm for treewidth.

A multiplicative (resp. additive) t-spanner of a graph G=(V,E) is a spanning subgraph
H of G such that the distance between any pair of vertices in H is at most t times (resp.
plus) their distance in G. This notion is introduced by Peleg and Ullman in [PU87]. For
any connected graph G, a sparsest t-spanner, i.e. with minimum number of edges, can
be a spanning tree of G. Among plenty of open questions about the t-spanner problems,
in [DAA13] Dragan and Abu-Ata proposed an interesting open problem to find a necessary
and sufficient conditions under which a graph admits a multiplicative or additive t-spanner
of treewidth at most k.

Tree decompositions have played an important role in proving the Graph Minor Theo-
rem, which says that finite graphs are well-quasi-ordered1 by the minor relation. Another
famous conjecture about well-quasi-ordering, Nash-Williams’ strong immersion conjec-
ture [NW65], says that finite graphs are well-quasi-ordered by the strong immersion2 re-
lation. I would like to learn more about well-quasi-ordering in the future, since it will be
interesting to work on the Nash-Williams’ strong immersion conjecture; and explore some
new tools, even more powerful than tree decompositions, for solving many graph problems.

To conclude, I am only at the early stage of my research life and I will continue to study
interesting problems in order to design beautiful algorithms.

1A quasi-ordering � on a set S is a reflexive and transitive binary relation. It is a well-quasi-ordering if for
every infinite sequences s1,s2, . . . in S, there exist i < j such that si � s j.

2Given two graphs G,H, a strong immersion of H in G is a function α with domain V (H)∪E(H), such
that

• α(v) ∈V (G) for all v ∈V (H), and α(u) 6= α(v) for all distinct u,v ∈V (H);

• for each edge e ∈ E(H), if e has distinct ends u,v, then α(e) is a path of G with ends α(u),α(v), and
if e is a loop incident with a vertex v then α(e) is a circuit of G with α(v) ∈V (α(e));

• for all distinct e, f ∈ E(H), E(α(e)∩α( f ) = /0;

• for all v ∈V (H) and e ∈ E(H), if e is not incident with v in H then α(v) /∈V (α(e)).

Without the last condition, it is called weak immersion. In [RS10], Robertson and Seymour already proved
that finite graphs are well-quasi-ordered by the weak immersion relation.
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