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Cellules primaires du cerveau en microenvironnements contrôlés in vitro

Résumé : Du fait de sa complexité, le fonctionnement du cerveau est exploré par des méthodes
très diverses, telles que la neurophysiologie et les neurosciences cognitives, et à des échelles
variées, allant de l’observation de l’organe dans son ensemble jusqu’aux molécules impliquées
dans les processus biologiques. Ici, nous proposons une étude à l’échelle cellulaire qui s’intéresse
à deux briques élémentaires du cerveau : les neurones et les cellules gliales. L’approche choisie
est la biophysique, de part les outils utilisés et les questions abordées sous l’angle de la physique.

L’originalité de ce travail est d’utiliser des cellules primaires du cerveau dans un souci de
proximité avec l’in vivo, au sein de systèmes in vitro dont la structure chimique et physique est
contrôlée à l’échelle micrométrique. Utilisant les outils de la microélectronique pour un contrôle
robuste des paramètres physico-chimiques de l’environnement cellulaire, ce travail s’intéresse à
deux aspects de la biologie du cerveau : la polarisation neuronale, et la sensibilité des cellules
gliales aux propriétés mécaniques de leur environnement. A noter que ces deux questions sont
étroitement imbriquées lors de la réparation d’une lésion. La première est cruciale pour la di-
rectionalité de la transmission de signaux électriques et chimiques et se traduit par une rupture
de symétrie dans la morphologie du neurone. La seconde intervient dans les mécanismes de re-
colonisation des lésions, dont les propriétés mécaniques sont altérées. Les études quantitatives
menées au cours de cette thèse portent essentiellement sur la phénoménologie de la croissance
de ces deux types de cellules et leur réponse à des contraintes géométriques ou mécaniques.
L’objectif in fine est d’élucider quelques mécanismes moléculaires associés aux modifications
de la structure cellulaire et donc du cytosquelette.

Un des résultats significatifs de ce travail est le contrôle de la polarisation neuronale par le
simple contrôle de la morphologie cellulaire. Ce résultat ouvre la possibilité de développer des
architectures neuronales contrôlées in vitro à l’échelle de la cellule individuelle.

Mots clés : Cellules primaires du cerveau, neurones d’hippocampe, polarisation neuronale,
cellules gliales du cortex cérébral, motifs d’adhésion et de rigidité, mécanique cellulaire, méca-
nosensibilité, cytosquelette, biophysique



Primary brain cells in in vitro controlled microenvironments

Abstract: The complex structure of the brain is explored by various methods, such as
neurophysiology and cognitive neuroscience. This exploration occurs at different scales, from
the observation of this organ as a whole entity to molecules involved in biological processes.
Here, we propose a study at the cellular scale that focuses on two building elements of brain:
neurons and glial cells. Our approach reaches biophysics field for two main reasons: tools that
are used and the physical approach to the issues.

The originality of our work is to keep close to the in vivo by using primary brain cells
in in vitro systems, where chemical and physical environments are controlled at micrometric
scale. Microelectronic tools are employed to provide a reliable control of the physical and
chemical cellular environment. This work focuses on two aspects of brain cell biology: neuronal
polarization and glial cell sensitivity to mechanical properties of their environment. As an
example, these two issues are involved in injured brains. The first is crucial for the directionality
of the transmission of electrical and chemical signals and is associated to a break of symmetry
in neuron morphology. The second occurs in recolonization mechanisms of lesions, whose
mechanical properties are impaired. During this thesis, quantitative studies are performed on
these two cell types, focusing on their growth and their response to geometrical and mechanical
constraints. The final aim is to elucidate some molecular mechanisms underlying changes of
the cellular structure, and therefore of the cytoskeleton.

A significant outcome of this work is the control of the neuronal polarization by a simple
control of cell morphology. This result opens the possibility to develop controlled neural ar-
chitectures in vitro with a single cell precision.

Keywords: Primary brain cells, hippocampal neurons, neuronal polarization, cortical glial
cells, chemical and mechanical pattering, cellular mechanics, mechanosensitivity, cytoskeleton,
biophysics
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Introduction

Since the pioneering observations of Ramón y Cajal more than one century ago, the very fast
development of imaging technologies has given the possibility to investigate living systems, and
in particularly the brain, from submicrometric scale to the level of the whole organ. Therefore,
it does not surprise the growing charm around the understanding of the brain organization and
working. Although some knowledge about nervous system are now well established and largely
diffused, this complex system is far from being understood and still attract the attention of
scientists and people in general.

The complexity of the nervous system is partially due to its large panel of functions and
properties of mechanical, electrical and chemical origins, that distinguishes it from most other
tissues or organs. Therefore, the study of this biological system is approached from different
points of view. Nervous system can be considered for its morphological properties, as well as
for its capabilities to respond to a stimulus, to propagate and transfer nerve impulses, or for
its role in interaction with other organs. Nevertheless, it is crucial to consider nervous system
as relatively autonomous but fundamentally integrated in a larger biological system. In the
same way, single neurons are entities with independent functions that have to be taken into
account as a component of a larger computational entity that is the nervous system.

The surge of innovative technologies giving access to the cell and sub-cell scale environment
has allowed significant advances in the understanding of nervous system. The variety of tools
coming from genetics, physics, chemistry and optics opens new approaches and new questions
that motivate scientists. This context gives the great advantage to promote the encounter of
diverse disciplines that, each of them, provides its portion of knowledge and a combinatory of
approaches. The interest for the brain is that way addressed from both a computational and
a cellular point of view. These two angles of study enrich one another and are associated to
complex questions like the information processing in neuronal networks and the mechanisms
underlying the origin and the development of neurodegenerative diseases and brain cancers.

This PhD project has mainly taken place in a laboratory of physics. The point of view
of a physician is the guideline of this work, supported by enriching interactions with biolo-
gists. Indeed, several collaborations and exchanges with biologists in France and Europe have
been undertaken along this PhD to maintain a constructive dialog between these two domains
of research. The particular context of Grenoble has played a fundamental role thanks to a
large proximity of several laboratories of research and to a technological environment highly
developed in the microelectronic context.
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2 INTRODUCTION

In this PhD thesis, we focus on the issue of brain cell growth from a morphological point
of view at the scale of single cells. In particular, our interest is oriented towards the interplay
between cell morphology and its functions. From this point of view, a neuron is characterized
by a rather spherical cell body, named the soma, and arboreal extensions, called neurites, that
in polarized functional neurons differentiate into two types: dendrites and axons. Dendrites
are organized into a tree structure that collects the electrical activity produced by pre–synaptic
neurons, whereas the axon represents the long extension that conveys the output signal toward
post–synaptic neurons.

During this PhD project, experiments have been performed using primary brain cells.
These kind of cells differentiate from cell lines, that are quasi immortal cells with a nearly
unlimited capability of division. Cell lines have thus characteristics similar to cancer cells
and are populations that became stable after several steps in vitro, far from their original
environment in vivo. Contrarily, primary cells are more sensitive to their environment and
better reflect the properties of the organ of their origin.

Primary brain cells have been obtained from rodent embryos. Indeed, at least for studies on
cell brain behavior, rodents are considered as the best experimental compromise between avail-
ability and pertinence of brain tissues and ethical aspects. In particular, we have studied the in
vitro behavior of hippocampal neurons and cortical glial cells. Neurons from hippocampus are
a basic reference of primary brain cells but they are still poorly employed in microstructured in
vitro environments. Glial cells are another fundamental cell type in brain. They are known for
their metabolic and regulatory role of neuron activity but they are also at the origin of most of
brain cancers and of the mechanical changes in injured brains. This work is thus constituted
of two main topics. Firstly, the establishment of the neuronal polarization, or differentiation,
as a function of morphological changes associated to this crucial phenomenon in the neuron
development. Secondly, the sensitivity of glial cells to the physical and mechanical properties
of cell environment.

Our study highlights the importance of the interactions of cells with the physical and
chemical properties of their environment. These interactions are at the basis of the development
of a single cell and of its specific functions. In that sense, our approach is humbly inspired
by the work on the living system geometrical organization of the Scottish D’Arcy Thompson
(On Growth and Form, 1917) until the Chilean H. Maturana (Autopoiesis and Cognition: The
Realization of the Living, with F. Varela, 1980).

The methodology employed in this work is based on the fabrication of controlled environ-
ments in order to investigate the neurons and glial cells response to topographical, mechanical
and chemical cues. Indeed, although the nervous system is a complex network of interconnected
cells, one way to understand its complexity is to dissect it into simpler elements. For that, it
is necessary to study the properties of its cellular components, that are mainly neuronal and
glial cells. This is currently possible thanks to the contribution of microelectronic technologies
and of the development of instruments of microscopic observation that give access to a fine
control of the physical and chemical properties of the cell environment, as well as to a deep
analysis at the single cell level.
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In the first chapter of this manuscript, we will introduce the general context of our work

in order to describe the basics of cell neurobiology, the specific vocabulary associated to brain

cells (highlighted in bold) and the main steps of neuronal development in vitro. This section

will give some motivations underlying the studies on the cellular microenvironment and an

overview of the principal examples reported by the literature. We will mainly focus on studies

with primary brain cells, for the same reason we have made the choice to work with this kind

of cells, that is to keep a close relationship with the in vivo real environment.

The subject of the second chapter will be the methods employed as well as some additional

methods we have developed and tested, but not used for the results exposed in this manuscript.

The different techniques explored reflect the growing impact of microelectronics technologies

into life science. We will conclude this chapter with the presentation of some techniques to

trap cells in controlled microstructured substrates whose principles are based on magnetic

interactions.

In the two last chapters, we will report experimental results about neuronal and glial cell

responses to chemical and physical contraints of their environment. In the third chapter,

we will analyze the influence of the adhesion geometry on the neuronal growth. We will

especially focus on the neurite elongation and the neuronal polarization. More precisely, we will

report observations on neurons whose branches differ in width or number. Possible biophysical

mechanisms underlying the control of the neurite growth and polarization will be proposed

and discussed, eventually based on theoretical models.

In the fourth chapter, we will discuss about the mechanosensitivity of glial cells on patterns

of rigidity at different scales. This work represents a new exploratory study of the role played

by the chemistry of the glial cell environment in their sensitivity to the mechanical properties

of their substrates. A short section about the glial cell response to topography will conclude

this chapter.

At the end of each of these two last chapters we will provide a summary of our results. Finally,

more significant results will be recapitulated in a general conclusion discussing the various

perspectives that have come to light from this PhD work.
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Introduction

Depuis les observations pionnières de Ramón y Cajal il y a plus d’un siècle, le développement

très rapide des technologies d’imagerie a ouvert la possibilité d’étudier les systèmes vivants, et

en particulier le cerveau, de l’échelle submicrométrique à celle de l’organe vu dans son ensemble.

Ces techniques d’imagerie toujours plus résolues ont engendré un véritable engouement vers

la compréhension de l’organisation du cerveau et de son fonctionnement. Bien que certaines

connaissances sur le système nerveux soient maintenant bien établies et largement diffusées,

ce système complexe est loin d’être compris et attire encore fortement l’attention à la fois des

scientifiques et du grand public.

La complexité du système nerveux est en partie due à sa variété de fonctions, associées à

un environnement mécanique, électrique et chimique, qui le distingue de la plupart des autres

tissus ou organes. De ce fait, l’étude de ce système biologique est abordé sous différents points

de vue. Le système nerveux peut aussi être observé pour ses propriétés morphologiques, pour sa

capacité à répondre à un stimulus et à propager et transférer l’influx nerveux, ou pour son rôle

dans l’interaction avec d’autres organes. Il est crucial de considérer le système nerveux comme

relativement autonome mais fondamentalement intégré dans un système biologique plus grand.

De la même manière, les neurones sont des entités ayant des fonctions indépendantes qui doivent

être pris en compte en tant que composants d’une entité plus grande qui est le système nerveux.

L’émergence de technologies innovantes donnant accès à l’environnement à l’échelle cellu-

laire et sub-cellulaire a permis des avancées significatives dans la compréhension du système

nerveux. La variété des outils issus de la génétique, de la physique, de la chimie et de l’op-

tique ouvre de nouvelles approches et de nouvelles questions qui motivent les scientifiques.

Ce contexte donne le grand avantage de favoriser la rencontre de disciplines différentes qui,

chacune d’entre elles, apportant sa part de connaissances et d’approches possibles. Une spéci-

ficité du cerveau est l’importance d’approcher son fonctionnement à la fois avec un point de

vue cellulaire et un point de vue in silico. Ces deux angles d’étude s’enrichissent l’un l’autre

et sont associées à des questions complexes comme le traitement de l’information dans des

réseaux neuronaux, les mécanismes sous-jacents à l’origine et au développement de maladies

neurodégénératives ou l’invasion de cancers du cerveau.

Ce projet de thèse a principalement eu lieu dans un laboratoire de physique. Le point de vue
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d’un physicien est la ligne directrice de ce travail, soutenu par l’enrichissement des interactions

avec les biologistes. En effet, plusieurs collaborations et échanges avec des biologistes en France

et en Europe ont été entreprises le long de cette thèse afin d’assurer un dialogue constructif

entre ces deux domaines de recherche. Le contexte particulier de la ville de Grenoble a joué un

rôle fondamental grâce à une grande proximité de plusieurs laboratoires de recherche et à un

environnement technologique très développé dans le contexte de la microélectronique.

Dans cette thèse, nous nous concentrons sur la question de la croissance des cellules du

cerveau à partir d’une analyse morphologique à l’échelle de cellules individuelles. En particulier,

notre intérêt est orienté vers l’interaction entre la morphologie des cellules et leurs fonctions. De

ce point de vue, un neurone est caractérisé par un corps cellulaire plutôt sphérique, appelé soma,

et des ramifications, nommées neurites, qui dans les neurones fonctionnels une fois polarisés

se différencient en deux types : les dendrites et les axones. Les dendrites sont organisées en

une structure arborescente qui recueille l’activité électrique produite par les neurones pré–

synaptiques, alors que l’axone représente une longue extension qui transmet le signal de sortie

vers les neurones post–synaptiques.

Au cours de ce projet de thèse, des expériences ont été effectuées en utilisant des cellules

primaires du cerveau. Ce type de cellules se différencie des lignées cellulaires, devenues stables

après plusieurs étapes in vitro, loin de leur milieu d’origine in vivo. Bien que plus contraignantes

à manipuler, les cellules primaires sont plus sensibles à leur environnement et reflètent mieux

les propriétés de l’organe d’origine.

Les cellules primaires du cerveau ont été extraites d’embryons de rongeurs. En effet, au

moins pour les études sur le comportement des cellules du cerveau, les rongeurs sont considé-

rés comme le meilleur compromis expérimental entre la disponibilité et la pertinence des tissus

du cerveau et les aspects éthiques. Nous avons étudié le comportement in vitro des neurones

issus d’une région cérébrale appelée hippocampe et des cellules gliales corticales. Les neurones

de l’hippocampe sont une référence fondamentale des cellules primaires du cerveau, mais ils

sont encore peu utilisés dans des environnements microstructurés in vitro. Les cellules gliales

constituent l’autre grand type de cellules du cerveau. Elles sont connues pour leur rôle méta-

bolique et régulateur et de l’activité neuronale. Elles sont également à l’origine des cancers du

cerveau et du remodelage de l’environnement cellulaire dans les cerveaux blessés. Ce travail est

donc constitué de deux thèmes principaux : la mise en place de la polarisation neuronale (ou

différenciation axonale), en fonction de changements morphologiques associés à cette étape clé

de développement, puis la sensibilité des cellules gliales aux propriétés physiques et mécaniques

du micro-environnement cellulaire.

Notre étude met en évidence l’importance des interactions des cellules avec les propriétés
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physiques et chimiques de leur environnement. Ces interactions sont déterminantes pour la

croissance d’une cellule isolée et ses fonctions spécifiques. Dans ce contexte, notre approche

est modestement inspiré par le travail sur l’organisation géométrique des systèmes vivants

de l’écossais D’Arcy Thompson (On Growth and Form, 1917) jusqu’au chilien H. Maturana

(Autopoiesis and Cognition : The Realization of the Living, avec F. Varela, 1980).

La méthodologie utilisée dans ce travail est basée sur la fabrication d’environnements

contrôlés afin d’étudier la réponse des neurones et des cellules gliales à des signaux topo-

graphiques, mécaniques et chimiques. En effet, bien que le système nerveux soit un réseau

complexe de cellules interconnectées, une façon de comprendre sa complexité est de le sub-

diviser en éléments plus simples. Pour cela, il est nécessaire d’étudier les propriétés de ses

composants cellulaires, qui sont principalement des cellules neuronales et gliales. Ceci est ac-

tuellement possible grâce à la contribution des technologies de la microélectronique qui donnent

accès à un contrôle subcellulaire des propriétés physiques et chimiques de l’environnement de

la cellule, et à l’élaboration d’instruments d’observation microscopique qui permettent une

analyse approfondie des mécanismes cellulaires.

Dans le premier chapitre de ce manuscrit, nous allons présenter le contexte général de

notre travail afin de décrire les bases de neurobiologie cellulaire, le vocabulaire spécifique as-

socié aux cellules du cerveau (indiqués en gras) et les principales étapes du développement

neuronal in vitro. Cette section donnera les motivations sous-jacentes des études effectuées

dans des micro-environnements artificiels contrôlés et un aperçu des principaux exemples rap-

portés par la littérature. Nous nous concentrerons principalement sur l’état de l’art portant sur

des cellules primaires du cerveau, pour la même raison que celles pour lesquelles nous avons

fait le choix de travailler avec ce type de cellules.

Le sujet du deuxième chapitre sera dédié aux méthodes employées ainsi qu’à d’autres mé-

thodes que nous avons développées et testées, mais qui ne sont pas utilisés pour les résultats

exposés dans ce manuscrit. Les différentes techniques explorées reflètent l’impact croissant des

technologies de la microélectronique dans les sciences de la vie. Nous terminerons ce chapitre

par la présentation de quelques techniques basées sur des interactions magnétiques permettant

de capturer des cellules sur des sites prédéterminés lors de l’étape d ?ensemencement.

Les deux derniers chapitres suivants sont dédiés spécifiquement aux réponses des cellules neu-

ronales et gliales à des contraintes chimiques et physiques de leur environnement. Dans le

troisième chapitre, nous analyserons l’influence de la géométrie d’adhésion sur la croissance

neuronale. Nous mettrons l’accent sur l’élongation neuritique et la polarisation neuronale. Plus

précisément, nous rapporterons nos observations sur des neurones dont les branches varient en

largeur ou en nombre. De possibles mécanismes biophysiques sous-jacents contrôlant la crois-

sance des neurites et la polarisation seront proposés et discutés, éventuellement basés sur des



8 INTRODUCTION

modèles théoriques.

Dans le quatrième chapitre, nous discuterons de la sensibilité des cellules gliales aux pro-

priétés mécaniques de leur environnement sur des motifs de rigidité à différentes échelles. Ce

travail présente une étude exploratoire du rôle joué par la chimie de l’environnement des cellules

gliales dans leur réponse aux propriétés mécaniques de ce même environnement. Une courte

section sur la réponse des cellules gliales à la topographie terminera ce chapitre.

À la fin de chacun de ces deux derniers chapitres, nous fournirons un résumé de nos résultats.

Enfin, les résultats les plus significatifs seront récapitulés dans une conclusion générale qui

discutera les différentes perspectives résultant de ce travail de thèse.
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Chapitre I : résumé

Dans ce chapitre d’introduction nous présentons quelques propriétés fondamentales de

l’organisation cellulaire et subcellulaire des cellules du cerveau, les processus impliqués dans

leur développement et leur différentiation. Cela permet de poser le contexte biophysique et

d’introduire les éléments nécessaires à la compréhension de ce travail de thèse. Une étude

bibliographique portant sur l’interaction des cellules primaires du cerveau avec des microen-

vironnements contrôlés décrit et compare les travaux récents. Ce chapitre se termine par une

présentation succinte de la finalité et la validité des méthodes et des approches expérimentales

choisies.
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I.1 Functions and morphology

The nervous system assures the survival of living organisms by its capacity to orchestrate

their interaction with the external environment, which at the most basic level means to co-

ordinate the movements produced by the body and to process the signals from the various

organs, including sensory organs. The centralized control role played by the nervous system is

characterized by its complex and very quick capabilities to integrate information. During the

course of the Evolution, the nervous system has gained in complexity and efficiency, reaching

its higher level in primates with the emergence of consciousness. A high brain plasticity and

development throughout life is what distinguishes humans from the others primates. The level

of complexity of the nervous system in the organisms is often associated to a corresponding ca-

pacity to acquire new learning and to adjust behaviors in reaction to the external environment.

All responses to the various internal or external stimuli determines the organism behavior. In

that respect, the brain function is strongly associated to the foundation of biological individu-

ality, to such an extent that the existing legislation in most of the world equates the cessation

of all brain activity to death. Most questions about identity, consciousness and intelligence are

still open, gathering the joined efforts of neuroscientists, psychologists and philosophers.

In vertebrate organisms, the nervous system is composed of the central (CNS) and of

the peripheral (PNS) nervous system. The CNS includes the brain and the spinal cord and

results in a centralized control of the information coming both from the organism and its

environment. The CNS and the PNS are surrounded by three sheets of connective tissues

forming the meninges. The PNS is constituted of nerves leading from and to the CNS and of a

set of ganglia that are groups of nerve cells providing intermediary connections with the CNS.

Cells from the CNS will be the focus of this work. The CNS is mainly composed of neurons

and of more numerous glial cells.

Glial cells name takes origin from the Greek word "glue", thanks to their first known role of

support and protection of the nervous tissue. Glial cells are grouped in three principal types

(Figure I.1): astrocytes, microglia and oligodendrocytes.

Astrocytes, taking their name from their star-like shape, ensure several functions in the

nervous system: they supply glucose to neurons, they contribute to regulate the composition

of the interstitial fluid in the nervous tissue and to the formation of the blood-brain barrier,

they modulate synaptic activity, releasing and uptaking for example glutamate [1]. In the

fourth chapter we will discuss their interaction with neurons on mechanosensitive aspects.

Microglia are macrophage cells with an immune defense role. The third kind of glial cells has

a similar role than Schwann cells in the PNS, i.e. to wrap a myelin sheath around neuronal

extensions.
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Figure I.1: Morphologies of the three principal types of glial cells: astrocytes, microglia and
oligodendrocytes. Adapted from Ganong W.F., Review of Medical Physiology, 22nd Edition, 2005.

There is a growing interest for glial cells in general and for their active involvement in

various brain functions, including the regulation of the strength of neuronal connections [2, 3].

Glial cells, unlike mature neurons where the mitotic cell cycle is arrested [4], may retain the

potential to divide and this capacity is one of the reasons of the glial origin of most of brain

cancers. They are also associated to the mechanical changes observed in the injured brain.

Neurons are excitable cells characterized by a resting intra-cellular potential (∼ -70 mV )

induced by the difference of ions concentrations, mainly choloride (Cl−), sodium (Na+) and

potassium (K+), on opposite sides of the cellular membrane. The membrane potential can

locally switch to positive values in neuronal processes conveying electrical signals. The neuron

morphology reflects its function to collect, process and transmit electrical signals through

chemical junction named synapses. From a mature neuron cell body, or soma, emerge one

axon (sometimes two in specific neuronal types) that conveys the output signal toward post-

synaptic neurons, and multiple dendrites organized into a tree structure that collects the

electrical activity produced by pre-synaptic neurons. Soma and dendrites mainly compose the

grey matter of the CNS whereas the white matter is composed of bundles of myelinated

axons. In mammals, the typical size of a soma is on the order of 10 µm, the axon and

dendrites diameter of less than 1 µm [5]. The different steps of neuronal maturation in vitro

will be described in Section I.3.

There are over 200 different varieties of neuronal cells. The geometry of axons and dendrites

and synapses localization change strongly with the cell type, depending on their role in the

neural circuit (Figure I.2). For this reason, a better understanding of the interplay between

morphologies and associated functions is crucial.
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Figure I.2: Basic neuron types of different brain areas, classed by their morphology.
Adapted from wiseGEEK.com.

Brain can be divided into functional areas, which dimensions are species-dependent. Their

local architecture is nevertheless quite conserved, in relation to their biological function. For

example, the olfactory bulb is more developed in mice than in human beings, where the cerebral

cortex is the most developed region (Figure I.3).

Figure I.3: Longitudinal (A) and transverse (B) sections of human and rat (A) or mouse (B)
brains, showing functional similarities although in different proportions. Adapted from [6].

Interestingly, there are no qualitative differences between neurons of the human brain and

those of other mammals or other vertebrates. However, numerous variables differentiate the

brains of several species like their size, their number of neurons and glial cells, the number of

their sub-types, the molecular nature of synapses [7] and the architecture of the connectivity

between neurons.

The studies exposed in this manuscrit have been performed with neurons coming from the
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hippocampus or the cortex of rodent embryos at eighteen days of gestation (E18 embryos).

The main reason is that the dissociated hippocampal tissue provides a relatively homogeneous

cell population. Indeed, pyramidal neurons, so-called for their pyramidal-shaped soma, are

the predominant neuron type present in the hippocampus at this stage of development. These

cells are excitatory glutamatergic neurons, whereas the majority of the remaining neurons

are interneurons, GABAergic cells making inhibitory synaptic terminals [8]. Moreover, the

hippocampus development has been well-characterized in vitro. On a functional point of view,

the hippocampus plays an important role in spatial memory and in learning processes, it is

essential for the consolidation of long-term memories, acquired from experiences, and it may

be necessary in the encoding of novel associative information in short-term memory. Cerebral

cortex encompasses about two-thirds of the brain mass and it is responsible, amongst other

functions, of consciousness, memory, language and thinking.

I.2 Brain cells structure

Neurons, as all eukaryotic cells including glial cells (Figure I.4), have a common envelope

named the plasma membrane. This membrane, that contains many transmembrane proteins

and macromolecules, is at the interface between the extracellular matrix (ECM) and the

internal cytoplasm. The cytoplasm is composed of a medium called the cytosol where are

immersed the nucleus containing genes, various organelles (e.g. themitochondria which pro-

vides energy, the Golgi’s apparatus and the ribosomes that are able to synthesize proteins)

and three types of filaments. These filaments are microtubules, actin and intermediate

filaments that, organized in a network, form the cytoskeleton of the cell. These three impor-

tant structures will be detailed in the following subsections (I.2.1, I.2.2, I.2.3). The cytoskeleton

plays a critical role in the dynamical properties of the cell, e.g. migration, polarization, forces

generation and external signals transduction. In neurons, the cytoskeleton adopts specific or-

ganizations that will be described in the subsections entitled: axon, dendrites and growth

cone (I.2.4, I.2.5).

I.2.1 Microtubules

Microtubules are nucleated from the centrosome, an organelle composed of two centri-

oles, and they form the mitotic spindles that guide the chromosomes during cell division.

Recent studies have shown that most of microtubules dispersed in the different regions of neu-

rons are not only nucleated and released from the centrosome [9] but they can originate from

a acentrosomal assembly [10]. This phenomenon already known from plants and yeasts [11],

could be important for axonal specification, thanks for example to the presence in the axon of

some microtubule severing proteins like katanin [4].
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Figure I.4: Common components between a typical eukaryotic animal cell (left), like glial
cells, and a neuron (right). Adapted from Wikimedia Commons.

Microtubules are highly dynamic structures, with an external and internal diameter typically

of 22 nm and 12 nm and a length varying between fraction to tens of microns [12]. Their

tubular architecture makes them the stiffest filaments in the cytoskeleton, giving structural

support to cell shapes. The tubular structure of these protofilaments is polarized with a plus

(+) end (polymerization) and a minus (−) end (depolymerization) and is made up of α and

β-tubulin dimers (Figure I.5).

Figure I.5: Schematic representation of microtubule structure. A) Tubulin heterodimer (α
and β subunits) and a polarized protofilament. B) Protofilament network composed of parallel protofil-
aments with the same orientation. C) Electronic image of a microtubule segment showing a ring of 13
protofilaments [13].
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Of note, the growth of the microtubule + end is coordinated by the end–binding (EB)

proteins family, composed of three members (EB1 – 3) [14]. In neurons, EB1 is implicated in

axonal transport [15], whereas EB3 plays the role of a molecular link between microtubules and

the actin cytoskeleton [16]. The polarization of microtubules determines the direction of motion

of vesicles and organelles along the filaments. Kinesin and dynein are the molecular motors

associated to microtubules, moving respectively toward their + and - ends. A more recent

family of microtubule minus–end binding proteins called calmodulin–regulated spectrin–

associated proteins (CAMSAPs) have been described for their role of regulation of microtubules

dynamics. It has been shown that mammalian CAMSAP family members bind specifically to

microtubule minus–ends and protect them against kinesin-13–induced depolymerization [17].

In particular, CAMSAP2 specifically localizes to noncentrosomal microtubule minus–ends. In

neurons, it stabilizes the free microtubule minus–ends in order to control neuronal polarity and

development, playing a key role for proper microtubule organization [18].

In general,microtubule–associated proteins (MAPs) localized along microtubules promote

their stabilization and organization.

I.2.2 Actin filaments

Actin filaments, or F-actin, are organized in a double helix of 7 – 9 nm of diameter and

composed of monomers of globular actin, or G-actin. They are polarized and dynamic like

microtubules and their thin structure makes them very flexible (Figure I.6.A). Actin polymer-

ization is stimulated by nucleating factors, e.g. formins and Arp2/3 complex.

Actin filaments self assemble in 3D, 2D or 1D structures such as cortex, lamellipodium and

filopodium (Figure I.6.B). Lamellipodia are large projections of the leading edge of the cell

used to explore its environment and to move. Thin filopodia are filled with oriented, bundled

actin filaments that usually spread beyond the front of the lamellipodium with the + end to-

ward the protrusion direction. Actin-binding proteins, such as Eps8, are enriched in the growth

cones, in particular in the focal adhesions and in the filopodium. These regulatory proteins

are involved in the axonal filopodia formation and, more in general, in the control of the actin

dynamics in developing neurons [19]. Actin self assembly and bundling are the result of the

cooperation of numerous proteins, e.g. IRSp53, Ena/VASP, WASp/Scar. Antiparallel associa-

tions of actin filaments are found in stress fibers, making possible the production of mechanical

forces inside the cell by shifting actin filaments respectivly to each others. The actin filaments

relative motion involved in cell contractility is allowed by myosin-II, an ATP–dependent motor

protein (Figure I.6.C).
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Figure I.6: A) Actin polymerization stages: from nucleation of G-actin monomers (red), to
intermediary stable actin complexes (violet) to a gradual elongation of actin filaments (F-actin).
In the steady state, actin filaments are organized in a polarized double helix [20]. B) Example
of actin structures in glial cells at 2 DIV. The grey rectangle corresponds to the zoom in the
inset: lamellipodium (green arrow), filopodia (yellow arrow) and stress fibers (blue arrow).
Red, phalloidin. Blue, nucleus. Scale bar: 20 µm. C) Myosin II molecules (in blue and in
white) are associated in an antiparallel fashion to move (see arrows) towards the + ends of
antiparallel actin filaments leading to acto-myosin contractility [21].
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I.2.3 Intermediate filaments

Intermediate filaments are responsible for structural support. They are less dynamic than

the two others polymers (microtubules and actin filaments) and they are not polarized. Their

molecular structure depends on the cell type but they generally adopt an helical shape com-

posed of dimer proteins organized in protofilaments, with a typical diameter of 10 nm, i.e. an

intermediate size between the diameters of microtubules and of actin filaments.

In neurons, they are called neurofilaments and play a major role in the maturation and

the maintenance of axonal integrity as well as in the establishment of axonal diameter [13].

Their defective trafficking and mutations have also been implicated in mechanisms involved in

several neurological disorders, e.g. Parkinson’s disease and amyotrophic lateral sclerosis, and

in neuronal death [22].

Astrocytes in the CNS express a specific type of intermediate filament proteins: the glial fib-

rillary acid protein (GFAP). In embryonic glial cells, the vimentin intermediate filament, a

protein characteristic of mesenchymal cells (e.g. fibroblasts), is also present.

I.2.4 Axon and dendrites

Axons and dendrites are neuronal protrusions grouped under the generic term of neurites.

These cylindrical membrane protrusions are essentially composed of a bundle of axial micro-

tubules, a small proportion of neurofilaments and a peripheral actin cortex. Tau and MAP2

are distinctive microtubule-associated proteins of axons and dendrites respectively. Both play

a role in promoting microtubule stabilization.

Axon, the transmitter pole of neurons, morphologically differs from dendrites by its more

homogeneous aspect and its thinner and constant diameter. Its length varies depending on

the neuron type from hundreds of microns to a few meters in large animals. Microtubules are

all oriented with their + end towards the tip of the axon [23]. The proximal region of the

axon near the soma is called axonal initial segment (AIS). In this area, a high density of

sodium (Na+) channels fulfills the necessary conditions to initiate the action potential [24]. A

diffusion barrier is established at the AIS level, associated to the segregation of specific axonal

proteins like ankyrinG (ankG) [25]. The interplay between ankG and AIS microtubules that

support the maintenance of neuronal polarity is coordinated by microtubule plus–end–binding

proteins EB1 and EB3 [26].

The characteristic length of the AIS is typically 30 – 40 µm. A similar characteristic length

has been revealed in axotomy experiments where the remaining stump retains a memory of its

axonal nature only when longer than 35 µm [27] (Figure I.7).

An axonal length threshold of 40 µm is also critical to stabilize the polarized state [28].
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Figure I.7: A) GFP-positive hippocampal neuron at 10 DIV. Axon is identified by the arrow.
B) Axon is cut at 33 µm from the cell body (red dashed line). C) Responses of axotomized
neurons: above a threshold of ∼ 35 µm neurons mostly regrow their original axon. From [27].

In the myelinated axons of vertebrates, clustered Na+ channels are then activated at the

nodes of Ranvier to rapidly propagate action potentials along the axon [29]. Nodes of Ran-

vier (see Figure I.4) represent myelin sheath gaps of approximately 1 µm in length, leading to

uninsulated areas in axons that are necessary for their electrical processes.

The terminal region of the axon generally includes several branches, ending with a specialized

area called the synaptic button. This is the presynaptic part of the synapse. It contains

an actin network that mainly represents the site where neurotransmitter vesicles and the en-

ergy suppliers mitochondria are localized. Kinesins allow directional transfer of molecules from

soma to axon terminals, i.e. using vesicles to lead along microtubules materials required for

renewal of the membrane.

Unlike axons, dendrites, the receptors poles of neurons, possess microtubules with reverse

polarities, i.e. with their + or - ends directed toward the same side of the cell.

Some observations have shown that microtubules are involved in mRNA localization. More-

over, ribosomes, whose function is to decode mRNA information, have been observed closely

associated to microtubules. A specific distribution of mRNA triggers a locally controlled syn-

thesis of proteins, e.g. mRNA coding for MAP2 that is localized to dendrites [30]. For instance,

cytoskeletal proteins involved in the formation of dendritic spines, small membrane protru-

sions that are the main sites of excitatory synaptic inputs [31], could be synthesized in the

dendrites. Of note, in mammal PNS axons the ability to synthesize proteins is higher than in

the CNS, that might be directly correlated to the high capacity of axon spontaneous regener-

ation observed in the peripheral nervous system [32].

Recently, the development of high-resolution techniques in vitro gives the possibility to analyse

the structural organization of axon and dendrites. Stochastic optical reconstruction microscopy

(STORM) has revealed periodical ringlike structures around the axon circumference at a sub-

micrometric scale [33]. These rings are composed of actin and adducin, an actin-capping

protein, with a periodicity of ∼ 180 to 190 nm and alternated with spectrin rings, a cytoskele-

tal protein. Interestingly, these periodic rings have not been observed in dendrites (Figure I.8).
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Figure I.8: STORM imaging of cytoskeletal organization of axons and dendrites in hip-
pocampal neurons al 7 DIV [33]. A) Three-dimensional image of actin in a dendrite (top) and
an axon (bottom). Color-scale shows from violet to red the z positions closest to farthest from the
substratum, respectively. B) Actin, adducing and βII-Spectrin immunostaining in an axon.

The consequence of these actin structures in the regulation of shape and adhesive properties

of axons and dendrites remains an open issue. The state of the art of our knowledge on the

molecular features of neuronal adhesions will be exposed in a dedicated section (I.4).

I.2.5 Growth cone

The growth cone is another important specific structure of neurons. The growth cone is

formed at the neurite tip during development to ensure neurite guidance. Its high dynamics

and sensitivity toward guidance molecules play a key role in neuronal growth and polarization,

as much as in neuronal adhesion, as will be discuss in next sections (I.3, I.4). Beside, it has

been shown that a growth cone produce mechanical forces.

Structurally, a growth cone is composed of three areas that determine its shape and motion: a

central zone filled with microtubules, an intermediary zone and a peripheral one, composed of

lamellipodia and filopodia (Figure I.9). The intermediary area is made of an actin arc enclos-

ing the microtubules coming from the shaft and receiving the retrograde actin flow from the

peripheral zone. Myosin II, a main component of the actin arc, seems to actively constrain mi-

crotubules of the central domain through acto–myosin contractility, leading to the stabilization

of microtubules [34].
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Figure I.9: Growth cone. A) Schematic representation of the three areas of a growth cone: the
central (C) domain with stables microtubules, the transitional (T) zone with the actin arc enriched of
myosin II and the peripheral domain (P), composed of lamellipodia and filopodia. Adapted from [34].
B) Example of growth cone in a mouse hippocampal neuron at 2 DIV. Cyan: synapsin. Red: phalloidin.
Scale bar: 10 µm. C) Differential Interference Contrast image of a growth cone of a Xenopus spinal
neuron [35]. Scale bar: 5 µm.

I.3 Neuronal cell growth and polarization

Embryonic cortical and hippocampal neurons development in vitro has been described

by several stages identified by the morphological changes that occur during maturation [36, 37,

38] (Figure I.10). Soon after plating, lamellipodia and filopodia are observed at the periphery of

the soma. After several hours, these structures become immature neurites [39]. The navigation

of neurites in this phase is mainly guided by the presence of the growth cone. Then, one

neurite starts to elongate faster than the other. This longest neurite will progressively acquire

the molecular specificities of the axon and the other neurites will later fully differentiate into

dendrites. Finally, the dendritic spines that characterize a mature functional network will

appear after about two weeks of culture.

Figure I.10: The generic stages of development of cortical/hippocampal neurons. Time
refers to mouse hippocampal neurons, expressed in Days In Vitro (DIV). Adapted from [38].
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I.3.1 Mechanisms of neuronal polarization process

Neuronal polarization is the event that leads to the axonal specification. The common

denominator of neuronal polarization both in vivo and in vitro is the symmetry breaking

expressed by the distinct specific molecular and morphological characteristics of axons and

dendrites [38] (Figure I.10).

Contrarily to the non–uniform chemical and topographical in vivo environment where nu-

merous signals may orient the cell asymmetry associated with the polarization process, the

emergence of a structural asymmetry in vitro results from a stochastic process leading to a

random choice of the localization of axonal specification [40].

The mechanisms at the base of the breaking of symmetry associated to axonal specification

during neuronal polarization are more and more investigated. Recent studies have focused on

the interplay between extracellular signals and cytoskeletal organization, i.e. actin stability

and microtubule protrusion [40]. Local instability of the actin network restricted to a single

growth cone is a physiological signal that triggers neuronal polarization [41]. Axon specifica-

tion is also associated with an increased microtubule stabilization in one of the neurites, but

it is actually unclear how this stability is achieved.

Recently, it has been shown that, in cultured hippocampal neurons and in cortical slices,

laminin promotes neuronal polarization, i.e. axon specification and growth, through adhesive

contacts and a resultant regulation of directional microtubule assembly [42]. Both in vertebrate

and invertebrate species, growth cones interact with their environment, i.e. with other cells,

the physical substrate or diffusive molecular gradients. These aspects will be the subject of

the next subsection.

I.3.2 Molecular neuronal growth and guidance

Over the past decade, a large effort has been made in developmental neurobiology to iden-

tify the repulsive and attractive molecules that guide axons.

Proteins that promote axonal outgrowth have been arranged in three distinct classes: dif-

fusible molecules, such as trophic factors, components of the ECM and cell adhesion

molecules (CAMs) [43]. Trophic factors regulate neuron growth and survival, as it was

demonstrated by V. Hamburger and R. Levi Montalcini [44], who received the Nobel Prize in

1986 for the purification of the first trophic factor in the 1950s: the nerve growth factor (NGF).

ECM constituents will be more detailed in a dedicate section (I.4). Let us mention here that

proteoglycan proteins specifically regulate the structural organisation of the ECM, modu-

late growth factor activities and cellular adhesive and motility events, such as cell migration

and axon outgrowth [45]. CAMs include calcium independent (immunoglobulin superfamily

and integrins) and dependent (cadherins and selectins) proteins.
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N-CAM and L1 belong to the immunoglobulin superfamily. L1 is mainly observed on fasci-

culating axons (i.e. axons growing on top of each others) whereas N-CAM is predominantly

involved in the stabilization of the cell contacts and in the interactions between glial cells and

neurons [46]. They also contribute to more complex processes like axonal pathfinding, target

recognition, synapse formation and synaptic plasticity.

The main proteins that contribute to axonal navigation are the semaphorins. They act as

axonal guidance during brain development of vertebrates by the capacity of growth cones to

sense their signals.

Semaphorin-3A (Sema3A), the first discovered semaphorin, in 1993 [47], is repulsive for the

axon and attractive for the dendrites of cortical neurons [48]. More generally, semaphorins

are able to drive nerve fiber fasciculation as shown for example by the capacity of Sema3A to

inhibit the branching of cortical axons growing on two-dimensional substrates [49].

Amongst others guidance molecules, we report the most commonly known netrins, slits and

ephrins families.

Growth and guidance of CNS axons are also crucially influenced by the interaction with

astroglial cells. Neurite outgrowth and growth cone motility are mainly mediated by two

receptors: N–cadherin and β1–class integrin. The first one is a Ca2+–dependent cell

adhesion molecule, the second one is an ECM receptor. Chick ciliary ganglion neurons grown

on cultured astrocytes had shown to be strongly influenced by these receptors at E8, whereas

the influence of β1–integrin vanished at later stages [50]. The reduction of the integrin function

during development, i.e. the interactions with several ECM proteins, including laminin, could

be associated to the limited ability of adult CNS neurons to regenerate, in coherence with the

regenerative potential played by laminin [51].

N-cadherin may have a primary importance in neuritic growth and it could be also implicated

in adhesion between nerve and muscle in vivo [52], as well as in synaptogenesis [53].

I.3.3 Waves

To conclude this short introduction to neuronal growth and polarization, this section gives

the basics of growth cone–like structures named "waves" that have been first observed in

in vitro rat hippocampus cultures, mainly during the first stages (i.e. 2 and 3, Figure I.10) [54].

Waves are created at the soma level and travel to the neurite tip at a speed of approximately

3 µm/min [54] (Figure I.11.A-C). They occasionally move in a retrograde direction (less than

5% of waves). These structures are similar to growth cones in their dynamics and composition

[55]. Some previous works have suggested that these dynamical membrane deformations may

recruit many actin–binding proteins, like GAP–43, Ezrin, Cortactin and the axon–promoting

Shootin–1 protein [54, 56]. However, a global understanding of their molecular structure is
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still missing.

The wave arrival at the neurite tip is systematically correlated with an initial retraction followed

by an elongation of the neurite, leading to a net elongation, as well as an increase in the growth

cone dynamics [57] (Figure I.11.D).

Figure I.11: A) Wave propagation along an axon (see arrows): phase contrast image of a rat
hippocampal neuron after approximately 30 h in culture. Times are shown in minutes and
correspond to the respective times in the graph in D). Scale bar: 20 µm. B) Scanning electron
image showing 3D wave morphology of the rat hippocampal neuron. Scale bar: 1 µm. C)
Wave propagation (see arrows) toward the growth cone of a rat hippocampal neuron (out-
field), recorded after approximately 24 h in culture. Times are shown in minutes. Scale bar:
5 µm. D) Diagram of axon tip (circles) and wave (diamonds) positions in function of time
during the wave propagation. Wave arrival is associated to an axon retraction and a subsequent
elongation. Adapted from [57, 54].

Waves also contribute to the axon growth and to the creation of new branches [55]. The

frequency of these waves is higher along the nascent axon (approximately 2 times more than

in other neurites). Moreover, they were observed in hippocampal slices, confirming that they

are not in vitro artifacts [55]. Several fundamental open issues related to waves remain, like

their mechanisms of propagation and their possible role in the neuronal polarization process

as well as in the axonal transport mechanism [55, 56].

I.4 Brain cell adhesion in vitro

Cell adhesion mechanisms are involved at all levels, i.e. from the maintenance of the

cohesion of the neural tissue to the regulation of synaptic contacts in the mature nervous

system. Cell adhesion molecules directly or indirectly interact with cytoplasmic proteins and

cytoskeletal structures and therefore actively participate to various processes like cell spreading,
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differentiation or motility [58].

Of note, the identities and functions of many cytoplasmic proteins in association with the ECM

proteins are presently better understood in non-neural tissues, although several molecular and

cellular mechanisms, like the regulation of cell adhesion and cell motility, are fundamentally

similar in all cell types.

I.4.1 Extracellular matrix receptors and adhesion proteins

The main ECM proteins found in the brain are laminin, known to specifically foster ax-

onal growth [59], fibronectin, collagen (e.g. collagen IV [60] is one of the main component of

the basement membrane and collagen XVII has been observed mainly in the soma and proximal

axons of CNS neurons but not in glial cells [61]) and the heparan sulfate proteoglycan [60].

It has been also reported that ECM proteins regulate the balance of neuronal (laminin and

heparan sulfate) and glial (fibronectin) cell differentiation [62]. These basement membrane and

fibrous matrix proteins are mainly present in the embryonic brain. It has been showed that

laminin is expressed by astrocytes in vitro [63] and in vivo [64], that is coherent with a role

for laminin in neuron-astrocyte interactions. Conversely, the main components of the ECM of

the adult brain tissue are lecticans, a family of proteoglycans. This unique composition may

exist in order to better resist against invasion by tumoral cells of non-neuronal origin [65].

Although these three kinds of ECM proteins are widely used as in vitro substrates of adhesion,

non-specific adhesive molecules, i.e. poly-L-lysine (or its enantiomer poly-D-lysine, PLL

and PDL respectively) and poly-ornithine (PLO), are also commonly employed. Due to

the non-specific property of these positively-charged adhesive molecules, they are not directly

linked to a specific receptor of the cell membrane and they are often employed as control. Of

note, in vitro culture conditions have to be optimized for each kind of cells and complemented

with specific supplements (e.g. serum, growth factors and glutamine) in order to achieve the

best conditions of cell adhesion and survival [66].

For most cells, the membrane is attached to the ECM by integrin dependent adhesions called

focal adhesions (FAs). In addition, a complex network of cytoplasmic proteins mediates the

transmembrane interactions with the internal actin cytoskeleton. FAs play a central role in

cell migration, morphology, proliferation, differentiation and death.

In neurons, the organization of these proteins of adhesion and the cell response to the ECM

properties are poorly known. Due to its crucial role in neurite outgrowth and axonal guidance,

the growth cone has been for a long time the focus of most studies on neuron adhesion.

In vitro rat Dorsal-Root Ganglia (DRG) neurons cultured on laminin substrate shows integrin

clusters over the entire growth cone surface. The central domain of growth cones and the

tips of filopodia present an high concentration of vinculin, an intracellular protein specifically
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associated with FAs points and implicated in the control of growth cone motility, and of

paxillin and talin, two cytoskeletal proteins colocalized with β1–integrins (Figure I.12).

Figure I.12: Growth cones focal adhesions of primary Dorsal-Root Ganglia neurons on
laminin coated surfaces. β1–integrin (A) and vinculin (B) immunoreaction (see arrows). Scale
bar: 10 µm. Adapted from [67].

The rhoGTPases proteins RhoA, RhoB, and Cdc42, that activate the signaling pathways

associated to actin polymerization and myosin activity, have been observed in growth cones,

eventually colocalized with vinculin [67]. Another signal transduction protein, the focal ad-

hesion kinase (FAK), was also observed in growth cones. FAK is a non-receptor tyrosine

kinase that is required for the formation of growth cone adhesions. In non–neuronal cells,

FAK is indispensable for the assembly of FAs, where it participates to adhesion-dependent in-

tracellular signalling. FAK also promotes rapid neurite outgrowth by stabilizing lamellipodial

protrusions on permissive ECM substrata, suggesting that FAK may control axon pathfinding

in vivo [68, 69]. Biochemical analysis has revealed the presence of FAK immunoreactivity in

cells neuronal lineage [70] and in CNS [71]. FAK is highly expressed in the CNS both dur-

ing development and in the adult brain. FAK+, an isoform of FAK selectively enriched in

neurons, is responsible for the localization of FAK to FAs. In hippocampal growth cones in

culture, they overlap with F–actin enrichments but not with vinculin, showing a dependence

of FAK distribution on F–actin organization [72]. Controversially, it has also been shown that

primary hippocampal neurons display abundant FAK immunoreactivity in nerve cell bodies,

neurites and growth cones, coinciding with clusters of vinculin [73]. It has also been showed

in hippocampal neurons that FAKs ablation abolishes axon remodeling induced by Sema3A, a

growth cone guidance molecule [74].

Recently, the role of adhesion proteins has also been investigated in more detail in neurites

and especially in the axon. Neurofascin (NF186) and neuron-glia related cell adhesion

molecule (NrCAM) are members of the L1–family, i.e. the immunoglobulin superfamily (IgSF
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CAM) described in the subsection I.3.2. These proteins have been observed in the nodes of

Ranvier, where they contribute to the nodes formation in both the PNS [75] and the CNS

(excepted for NrCAM) [76], and in the axonal initial segment (AIS, see I.2.4). Their role in

the AIS is still unclear. NF186 in vivo and in vitro could be necessary for AIS maintenance and

NrCAM recruitment, whereas AnkG could be already required to coordinate AIS assembly [77].

The AIS stabilization could also be ensured by the NF186 ability to link key extracellular and

membrane components, e.g. AnkG and gephyrin, the postsynaptic scaffolding protein that is

required for clustering GABA receptors [29] (Figure I.13).

Figure I.13: Neurofascin (NF186) and neuron-glia related cell adhesion molecule (NrCAM)
in the axon initial segment (AIS) barrier. The model proposed here suggests that a lipid barrier
built up the AIS plasma membrane may influence diffusion rates in the AIS. The membrane protein
barrier (including NF186 and NrCAM), established through binding to ankyrin G, limits the lateral
mobility of other transmembrane proteins and lipids at the AIS. Actin filaments could contribute to
the maintenance of the AIS barrier and the neuronal polarity by limiting the entry of cytoplasmic
proteins into the axon through interactions with βIV spectrin. Microtubules should contribute to the
maintenance of neuronal polarity allowing axonal but not dendritic cargoes to enter the axon [29].

In conclusion, cell adhesion proteins contribute to mediate axon guidance and growth by

a direct influence on the cytoskeleton dynamics. In addition to these molecular approaches,

a fine control of the microenvironment has interestingly allowed to dissect the specific role of

the various chemical or physical features that promote neuronal growth and polarization. This

will be the focus of the following section.
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I.5 Brain cell response in controlled microenvironments

In this section, we will give an overview of a few important results on brain cell properties

obtained in controlled microenvironments. Some are directly associated to the core of this

work, some are more peripheral, but all illustrates the importance of micro-nanotechnological

tools to either isolate the cell response to specific stimuli or to reveal properties that would be

hidden in more conventional culture conditions.

I.5.1 Chemical, mechanical and topographical stimuli

In the developing embryonic brain, neurons undergo migration, growth, polarization and

branching. These early features persist into the mature brain both in physiological conditions

thanks to the existence of neurogenesis areas, and after injury where neuronal branches display

a regrowth ability if provided with a suitable environment. The in vivo environment is the

result of intricate guidance cues including diffusible factors and substrate-bound molecules (i.e.

the ECM) as exposed in section I.3.2, but also rigidity and topography.

These three aspects and their roles will be separately dissected in the following sub-sections.

I.5.1.1 Guidance cues

Either the migration of neural precursors or the necessity for mature neurons to connect

distant (at the scale of a soma) target sites imply guidance cues and a sensory machinery

located at the growth cone. Directing neuronal navigation in vitro requires to reconstruct,

eventually element by element, a migration microenvironment offering a combination of sig-

naling, adhesive, and migration events. Since the seminal experiments based on co-cultures,

where one cell type is used to secrete guidance factors for the surrounding neurons, a local

release of guidance molecules have been implemented using glass micropipettes [78] or more

sophisticated optical-based techniques [79]. However, only microfluidic tools allow a fine con-

trol of the concentration gradients (down to a few percent on the micrometric scale, i.e. more

than ten times better than other techniques) and to follow multiple neuronal processes in the

same experimental run [80]. These tools are particularly suitable to explore how living sys-

tems produce complexity and non-linearity from the combination of few elementary bricks. A

first example is the use of the γ–aminobutyric acid (GABA)–A neurotransmitter in inhibitory

synapses as a guidance molecule in the embryonic brain [81]. In addition, repulsive or attract-

ing effects can be set up from a combinatory of a few sets of molecules like Netrin (Figure I.14)

or Slit. It has recently been reported in vivo in a brain structure named the corridor that a

combination of Slit (a repulsive cue) and Netrin (that does not trigger any chemiotactic effect)

gradients generates an attractive effect on the axons crossing this brain area [82]. The ability of

microfluidic tools to produce controlled multiple gradients of diffusible molecules will therefore
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be an invaluable tool to decipher the molecule guidance alphabet of the brain. Moreover, the

study of haptotaxis (i.e. the cell response to an adhesive gradient) is also an exploration field

opened by microfluidic tools, as already demonstrated by Dertinger et al. [83], and by a novel

promising multiplexed optical device enabling surface grafting at the micron scale ("Digital

Mirror Device", [84]). If associated, these tools would enable the study of the cell responses to

a combination of adhesive and diffusive gradients in in vitro systems, similarly to what occurs

in the embryonic brain.

Figure I.14: Cell response to guidance cues. The chemical attractant, here Netrin delivered as
a gradient within a microfluidic channel (left). The graph shows the repulsive effect of Netrin on the
growth cone navigation (right) [81].

I.5.1.2 Rigidity

Cells regulate their morphology and adhesion by reaching the minimization of the total free

energy in their interactions with the environment. Significant changes on the cell structure and

functions in response to the substrate rigidity have been observed in many cell types. Never-

theless, brain cell mechanosensitivity has still to be clarified. In addition, the stiffness of brain

cells themselves is another important aspect of the mechanics of the nervous system. Passive

mechanical properties of the ECM and active forces inside the brain tissue influence neuronal

development, e.g. axonal elongation and guidance [85, 86]. Moreover, knowledge on the me-

chanical properties of brain cells or tissues should increase our understanding of healthy versus

diseased tissues, which often reveal distinct stiffness and mechanical sensitivity. Besides, brain

implants could gain in biocompatibility and efficiency by coupling a control of their chemical,

mechanical and eventually electrical properties [87].

Stiffness of the whole healthy brain has been estimated to be of several hundred Pa [88]

taking into account that its precise value can be affected by conditions of the tissue prepara-

tion as well as by the age of the brain tissue [89, 90]. From a macroscopic point of view, brain
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appears to be the softest tissue in comparison with relaxed muscles fibers (8 – 21 kPa) [91, 92],

skin (∼102 kPa) [93] and rigid bones (∼106 kPa) [94]. The injured brain characterized by

the higher presence of glial cells seems to be stiffer [95, 96] although neuron soma appears to

be around one and a half stiffer that glial cells [97]. Generally, in the context of brain studies,

"hard" and "soft" words are employed for elastic moduli respectively higher or lower of the

limit value of a normal brain (∼1 kPa).

Neurite elongation in DRG neuron-glial cell co-cultures was significantly diminished on PLL

coated visco-elastic polydimethylsiloxane (PDMS) substrates compared to rigid glass coverslip,

with the observation of an optimum of neurite elongation and cell attachment on semi-rigid

(∼88 kPa) substrates compared to the two other studied values of 18 and 173 kPa [98]. Another

example of substrates was provided by self-assembled randomly oriented peptide nanofibers

which display rigidities in the range 7 – 23 kPa according to the fiber density. An earlier ax-

onal specification was observed for hippocampal mice neurons grown on these substrates [99].

However, in these two last examples, the adhesive chemistry (different on PDMS compared to

glass coverslips) or the topography (fibers) are not deconvoluted from the rigidity parameter.

To work with pure soft elastic and planar substrates, one has to use bis-acrylamide crosslinked

polyacrylamide hydrogels. On such substrates, a rigidity as low as 200 – 300 Pa resulted in

an increased neurite branching [100] and neurite number [101] without however changing the

overall aspects of cells, e.g. the neurite length in the particular case of spinal cord [101] and

cortical neurons [102]. Interestingly, the variation of the neurite number displayed a minimum

in the range ∼30 – 100 kPa [101]. An intermediate stiffness range between 6 and 30 kPa

has been achieved using a new class of polyacrylamide hydrogels cross-linked by DNA [103].

Inconsistently with other studies, an increase of the neurite number was observed toward the

highest stiffness, associated to shorter axons and to a reduction in FAK expression. However,

no significant difference in dendritic length were reported on these DNA-crosslinked gels for

spinal cord neurons.

A similar trend of neuron length versus rigidity was found in pure neurons culture (95%) except

for a two-fold increase in the number of adherent neurons between gel stiffness of 300 Pa and

230 kPa [101]. This observation suggests that the interaction between neurons and astrocytes

might affect the neuronal response to the surface stiffness, especially on stiff gels, where well

adherent astrocytes usually play a role of support. Although within a narrower range of rigidity

(6 – 30 kPa), a later study has reported a similar trend also in mixed cultures [103]. Contrar-

ily to neurons, astrocytes are very sensitive to rigidity in a large range between ∼250 Pa to

more than 50 kPa. Indeed, these cells do not spread and show fewer stress fibers on soft gels

coated with laminin (∼250 Pa) [102], or matrigel (mainly composed of laminin and collagen IV,

∼50 – 550 Pa) [100]. Similar effects were obtained on intermediate rigidities of ∼50 kPa [99].

Another study has confirmed a larger cell spreading on stiff gels and demonstrated that rigidity,
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rather than a difference in the concentration of the PDL coating, was the parameter controlling

this effect [104]. Interestingly, when adherent, astrocytes may adopt on soft gels the star-like

shape characteristic of their in vivo morphology [104]. To summarize, astrocytes show similar

responses to rigidity in both mixed and pure cultures.

In conclusion, the analysis of neuronal mechanosensing in a wide range of stiffness values

has revealed the difficulty to achieve a global and consistent understanding for this quite unique

cellular type in its response to rigidity. However, one important point is that neurons seem

to be the only cell type that is able to polymerize F-actin on soft gels, compared with e.g.

astrocytes, myotubes, fibroblasts and endothelial cells. These observations suggest that actin-

myosin contractions in growth cone and in the lamellipodium of other cell types could not have

the same role despite their structural similarity [102]. The high growth cone sensitivity to the

mechanical properties could be due to its very low elastic modulus (∼100 Pa) and internal stress

(∼30 pN/µm2) [105]. At present time, only few results have been published. They have showed

that the mechanosensitivity of neurons might be associated to several morphological changes:

number of adherent cells, number and length of dendrites and axons. More investigations

should be made in order to identify the differences and similarities among the neuronal cell

types. This point highlights the crucial importance to decipher the relative importance between

different factors of the ECM environment, e.g. topographical and structural aspects, substrate

and medium chemical components, presence of other cells. For example, the issue of the

mechanical interaction between neuron and glial cells [97] should be considered in future works.

Actually, the critical challenge is to master the possibility to separate all these aspects taking

into account the final context of application. Soft and intermediate rigidity substrates appear

as promising tools to support neuronal development while impairing astrocytes proliferation

(Figure I.15), and would be therefore suitable for applications concerning the nervous system

regeneration [99].

Figure I.15: Cell response to rigidity. Astrocytes appear more spread on hard gels, whereas
neurons show insignificant differences. Phase contrast images of astrocytes (A, B) and cortical neurons
(C, D) on soft (A and C respectively) and hard (B and D respectively) LN–coated gels at 2 Days In
Vitro. Scale bars: 50 µm (A, B) and 25 µm (C, D) [102].
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I.5.1.3 Topography: grooves and curvatures

Digging grooves, offering neurons to navigate on fibers may partially reproduce some key

topographical cues found in the in vivo environment. In this subsection, the modalities of

neuron interaction with grooves and curvatures will be discussed.

Grooves topography is characterized by depth, width and pitch values and it was the first

to be implemented in usual protocols of cell cultures to mimic the aligned fibers of the extra-

cellular matrix in a context of regenerative medicine. After the seminal work of Brunette [047]

reporting an orientation effect of fibroblasts and epithelial cells on grooves, Clark et al. [048]

have shown that the alignment of chick embryo cerebral neurites was inversely proportional

to the grating pitch in the range 4 – 24 µm (2 µm deep and wide grooves). In the same line,

experiments reported by Rajnicek et al. [106] demonstrated that a set of 1, 2 and 4 µm wide

parallel grooves as faint as 14 nm in depth, separated by distances of 1 – 4 µm, could orient

xenopus and hippocampal neurites either parallel or perpendicularly to the groove direction

(Figure I.16.A). Interestingly, parallel guidance was enhanced for the largest pitch distance

(i.e. 4 µm) and the neurite tendency to grow perpendicular was higher in hippocampal neu-

rons extracted from early stage embryos (i.e. 16 days of gestation instead of 19). Of note, such

a feature was also reported by Nagata et al. on neuroblasts [107].

The purpose with curvature structures is to reproduce the specific curvatures of 3D brain

structures like blood vessels (diameters in the range 5 – 50 µm for capillary to small veins or

artery [108]), myelinated bundled fibers ( ∼10 µm [109]) and, at a the micrometric scale, the

elongated radial glial cells providing tracks for neuronal migration [110].

A curvature induced neuritic guidance has been observed in two complementary studies. In the

work of Smeal using isolated extruded polypropylene solid tubes of diameters ranging between

500 µm to 35 µm, therefore mimicking blood vessel diameters, the neurite guidance along the

tube long axis increases continuously toward the finest fibers (Figure I.16.B) [111]. A similar re-

sult has been found on a collection of oriented sub-micrometric (150 nm to 400 nm) fibers [112],

i.e. in the range of the characteristic sizes of neurite or radial glia processes. Moreover, it was

found by previous works performed in our team that the neurite curvature imposed by curved

adhesive stripes built from half–circles of diameter R inhibits axonal differentiation [113]. For

R within the range 5 – 40 µm, the smallest curvature provides the largest discriminative effect

between axon and dendrites specification.
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Figure I.16: Cell response to topography: grooves and curvatures. A) The effect of
nanogrooves (1 µm wide, 130 nm deep) on Xenopus neuron growth, showing perpendicular and parallel
extension of neurites with respects to grooves (right). Growth on a flat surface (left) is displayed as a
control. Scale bar: 50 µm [106]. B) Curvature–induced alignment of DRG neurons on 35 µm (top) and
500 µm (bottom) fiber diameters [111].

In conclusion, these results highlight the responses of brain cells, and in particular neurons,

in terms of adhesion, elongation or orientation phenomena. These responses ensue from various

properties of the microenvironment reproducing to a certain extent typical in vivo features.

More artificial growth conditions like micro or nanopillared surfaces, can reveal some neuronal

properties that would be hidden in a more conventional context. This aspect will be developed

in the next section.

I.5.2 Mechanical properties of neuronal cells

A fundamental aspect that will be developed in this subsection is related to the mechanical

properties of neuronal extensions and their ability to generate forces. The seminal work of

Bray [114] has suggested, from a vectorial analysis of the directions of neurite outgrowth on flat

surfaces, that growth cones exerted a mechanical tension all along neurites. 3D topographies

or micropatterns of adhesion have since allowed to visualize the tensile state of neurite.

I.5.2.1 Neurite tension and mechanical forces

The bending of highly flexible GaP nanowires by neurite transverse filopodia reported in

the work of Hällström et al. [115] has revealed the mechanical forces exerted by these generic

sub-cellular structures in the case of mice DRG neurons. When confronted to deep PDMS

grooves in the range of tens to hundreds of microns, DRG neurite can exert forces sufficient

to pull onto a cell body to suspend it above a groove between two ridges separated by 30 µm

(Figure I.17) [116].
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Figure I.17: Neurite tension. DRG neurons crossing deep PDMS grooves (arrow: suspended neu-
rite). The sketch displays the sequence of events involving neuritic force generation leading to the
configuration shows in the scanning electron microscopy image [116].

It has been previously shown by our team1 using curvatures imposed by adhesive PLL

micropatterns, that axons were under a higher tensile stress than minor processes [117]. Tension

is then expressed by a curvature–dependent rate of neurite unhooking events that occur when

adhesive forces are overcome by mechanical forces. Interestingly, quantitative values can be

obtained indirectly from the neuronal response to topographical constraints like the neurite

tension (in the range 1 – 10 nN) [117] or the bending stiffness D ∼ 10−27 Nm2 [111].

Concerning now neuron-neuron interactions, the use of ∼15 µm diameter carbon nanotubes

islands located at 50 µm from each other (center to center distance) has revealed that extending

neurites (locust frontal ganglion neurons) need to successfully reach a target situated on a

neighboring adhesive site in order to be maintained [118]. This observation identifies the neurite

tension as a key factor for the stabilization of axonal branches and possibly for the subsequent

formation of synaptic contacts. The hypothesis that the mechanical tension behaves as a

control signal modulating synaptic plasticity was similarly proposed by Siechen et al. [119] for

neuromuscular synapses. Lastly, carbon nanotubes islands have been also employed to decipher

the role of neurite tension in the mechanism of soma migration during the establishment of

neuronal connections [120].

I.5.2.2 Discrete adhesive contacts

There is a significant literature about cellular interaction with pillared surfaces in the

context of cell mechanics: the forces produced by the cells can be evaluated from pillars bend-

ing [121]. However, due the weak values (in the range of the nN) of both neurite tensions

and the forces exerted by neurites on the growth cones [105], pillars are not the adequate sub-

strate for a direct exploration of the mechanical properties of neurons. Basically, the principal

interest of plating neurons on pillars was to explore the combined effects of a discontinuous

surface of adhesion and of a pseudo 3D environment. The first review on the subject of neu-

ron/topography interaction mentioning a neurite guidance effect on micropillars is dated from

2001 [122]. Since then, the micro- and nanotechnologies have produced a wide range of nanopil-
1in collaboration with the Grenoble Institute of Neuroscience
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lar sizes to highlight the consequence of discontinuous adhesive contacts on neuronal growth.

The accelerated neurite elongation and neuronal polarization observed in discontinuous or re-

stricted adhesive conditions still requires a molecular understanding. However, this effect has

been attributed to the discontinuous adhesive path associated to all these microenvironments

that induces the formation of actin patches between which neurites might build mechanical

forces [123]. Interestingly, this hypothesis brings together (i) the several lines of evidence sug-

gesting that the fast elongating axon (relatively to the other neuronal processes) is the most

tensed neurite [117, 124] and (ii) the recent discovery of the existence of periodic actin rings

along the axon of hippocampal neurons (see Section I.2.4 and Figure I.8) [33]. Together, these

two findings suggest that a high neurite elongation rate might require a discrete actin structure,

either spontaneous (as the one built within the axon), or provided by artificial pillared surfaces.

Another hypothesis relies on a possible channeling effect provided by topographies. Neurite

directional choices were either clearly [123], or indirectly [125] evidenced on pillared surfaces,

which might reduce the time required for the growth cone decision–making and consequently

might trigger a faster elongation rate. To go further into this channeling effect hypothesis, a

mechanism for accelerated growth based on the integration of signals emanating from non–

aligned and aligned filopodia on a grooved surface was proposed [126].

Interestingly, these phenomenological effects might be already exploited for the design of im-

plants to foster brain reparation after injuries.

In summary, this section has shown that the chemical and physical properties of the en-

vironment seem to behave as key players in the establishment or the stability of neuronal

architectures. In particular, these signals can deeply enhance the neurite elongation rate and

the directionality of neuronal branches. More generally, the features revealed by the interac-

tion of neurons with their environment can provide useful tools to build controlled and stable

neuronal networks, as discussed in the next section.

I.6 Control from single cell to population

Different levels of organization of neuronal assemblies characterize the brain. In order to

meet this essential feature of the in vivo circuits, studies on neuronal adhesion and neurite

guidance must at some point converge into methods allowing to built custom in vitro microcir-

cuits of defined architecture, polarity and connectivity. This section gives an overview of the

attempts to fulfill these three requirements in in vitro studies, considering neuronal assemblies

either at the population or at the single cell level, and starting with the challenging issue of

placing dissociated soma on their dedicated adhesive sites during the seeding step.
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I.6.1 Active cell entrapment and long term soma positioning

When starting from a cell suspension, the filling of specific adhesive sites relies on the

stochastic process of sedimentation: the remaining cells falling on non-adhesive surfaces are

washed away shortly after seeding. This process inherently leads to a non-uniform and a low

occupancy rate of the adhesive sites, ruled out by a Poisson distribution [127]. The cell occu-

pancy rate of these sites could in principle be enhanced by increasing the cell concentration of

the initial suspension or by taking advantage of cell motility [128]. However, due to the presence

of thin adhesive lines guiding neuronal connections, the design of the adhesive micropatterns

associated to neuronal microcircuits offers natural interstitial adhesive sites. Therefore, ac-

tive strategies have to be implemented in order to increase the rate of soma site occupancy

relatively to the rate of interstitial cells. Lastly, due to the mechanical tension produced by

neurons, long term (i.e. from cell seeding to synapse formation) cell positioning implies not

only to initially locate the soma but also to maintain its initial position despite the mechanical

forces exerted by neurites.

Capturing individual soma was performed using a micropipette [129, 130], a laser guidance

technique [131] or dielectrophoresis [132]. The phenomenon of dielectrophoresis is the motion

of dielectric, i.e. non charged particles, under the influence of a non-uniform electric field. A cell

can be attracted or repelled from a region of high magnetic field strength depending on the ori-

entation of the electric dipole induced by the external electric field gradient. Dielectrophoresis

presents the advantage to be intrinsically fast compared to individual cell positioning methods.

An other promising methodology is the magnetic–based technique where magnetically labeled

target cells can be efficiently captured thanks to the high magnetic field gradients generated

by the microflux sources. Its efficacy has been demonstrated on bacteria [133] and on the

mouse embryonic fibroblast cell line NIH/3T3 [134]. This large scale, multiplexed technique

that could ultimately be pushed toward a single cell control is intrinsically transposable to

other cells, e.g. neurons [135].

The other aspect associated to soma positioning is the issue of the long-term stability of soma

localization. Up to now, stable soma pinning was mainly achieved from a physical confine-

ment strategy using microchambers. These chambers can be simple wells [089], PDMS mem-

branes [131, 136], arrays of picket fences [129] or more sophisticated structures like parylen

neurocages (Figure II.26) that trap soma into 40 µm diameter open wells and let neurites free

to colonize the outside substrate through 10 µm wide, 1 µm high tunnels [130]. However, di-

electrophoresis or magnetic entrapment should also intrinsically offer active solutions for long

term soma positioning.
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Figure I.18: Neurochip and soma trapping. Scanning Electron Microscope image of the parylene
neurocage design (left), showing the central area for neurons placement, near the gold electrode, and the
tunnels to allow axons and dendrites to grow through and to connect other neurons. Scale bar: 10 µm.
10 Days In Vitro culture of hippocampal cells (right) showing neurons trapped in the neurocages and
a mesh of neurites outside cages. Scale bar: 30 µm [130].

I.6.2 Neuronal architecture and polarity

The control of neuronal architectures has been largely investigated by means of pat-

terned substrates, although more exotic substrates like oriented carbon nanotubes (CNT)

square arrays has proved to be interesting guiding structures for hippocampal neurons (Fig-

ure I.19.A) [137]. More generally, the versatility in the design of micropattern geometries has

highlighted the cells ability to organize their cytoskeleton as a function of external constraints

to control fundamental features such as neuronal adhesion, growth and neuronal polariza-

tion [138].

Photolitography and microcontact printing (µCP) techniques have been employed to create

adhesive micropatterns characterized by various adhesive (e.g. ECM and CAM molecules) and

non-adhesive surfaces (e.g. PLL–PEG [139] or agarose layer [140]). As an example, the number

of adherent neurons, the soma spreading and the neurite number are observed to increase on

PLL coated glass surfaces, compared to matrigel or laminin. On the other hand, matrigel and

laminin promote neurite elongation. Fibronectin mainly selects non-neuronal cells adhesion

and therefore is discarded for neuronal cultures.

An optimized design of the adhesive patters is necessary to build neuron networks and

to preserve functional properties. As a preliminary step toward interconnected architectures,

the use of minimal geometries of uniformly wide adhesive stripes was reported almost two

decades ago [141]. This study enlightened the differences in the spatial range of the growth

cone exploration between different neuron types (12 µm in chick embryo brain neurons, and

50 µm for mouse neonatal DRG neurons), setting the minimal distance between branches of a

neuronal network. Then, more complex micropatterns built from non-parallel lines connected

through relatively large spots dedicated to soma localization have been used to produce in
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vitro organized neuronal networks [142, 143]. Patch-clamps recordings have been performed

on mature neuronal networks growing on such patterned surfaces (Figure I.19.B) [144, 140] to

validate their physiologic properties over several weeks.

The second step toward a full control of neuronal architectures is to force the axonal specifi-

cation of a given neurite, eventually at the single cell level, thereby setting the axo–dendritic

polarity of the network. It has been shown that axon guidance can be induced by stripes of

triangles of different heights and widths in the range 10 – 70 µm. Axons elongate from triangle

to triangle preferentially through their tips rather than along the reverse direction [145]. A

gradient of PLL or PLL and laminin achieved from the geometrical arrangement of rectangles

of increasing length and decreasing gaps can play a similar role than stripes of triangles. A

maximum rate of 84% of guided axons along a 4 µm–wide pattern of PLL along the direction

of increasing concentration was then reported [146]. Rather than a succession of adhesive and

non adhesive surfaces, an alternation of PLL, laminin and neuron–glia cell adhesion molecules

(NgCAM) stripes have shown that (i) growth cone preferentially guides axons on laminin and

NgCAM surfaces, and that (ii) crossing the frontier between the different coatings promotes

axonal specification independently of the direction of crossing [59]. In the same line, mixed

patterns of axonal–specific adhesive molecules superimposed to PLL lines have also been re-

ported to achieve axonal positioning. In this work, a PLL pattern achieved by µCP was used

to guide the elongation of minor neurites (i.e. the future dendrites) whereas the axonal specifi-

cation and guidance was ensured by stripes coated with L1, a transmembrane adhesion protein

expressed on the axon surface [147].

As already mentioned in section I.5.1.3 about previous works in our team, Roth et al. have

shown that a combination of somatic and neuritic constraints (i.e. curvatures) can set the

localization of axonal specification with a 87% selectivity (Figure I.19.C) [113].

Figure I.19: Neuronal controlled architectures. A) E18 rat hippocampal neurons along cross–
linked carbon nanotube yarn patterned substrate at 5 DIV. Neurons were incubated in Calcein–AM
(30 µg/ml) (DojinDO, Japan) solution at 37 ◦C in 5% CO2 for 25 min for staining. Dark lines: carbon
nanotubes. Scale bar: 50 µm [137]. B) Bright field (left) and phase contrast (right) images illustrating
patch–clamp recording performed on a square hippocampal neuronal network of PLL µCP patterns.
Scale bar: 200 µm [140]. C) Three-neurons triangular network at 7 DIV guided by the microadhesive
pattern shown in green in inset. Green: anti-tyrosinated tubulin, microtubules. Red: anti-ankyrinG,
axon initial segment. Blue: Hoechst, nuclei. Scale bar: 50 µm [113].
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Lastly, let us remark that one motivation for mastering neuronal architectures and polarity

is to achieve a control of synaptic localization. In this context, the approach developed by

Czöndör et al. [148] provided a novel and robust strategy to achieve a precise distribution of

synaptic contacts by substituting the post-synaptic structure by micro-dots coated with various

synaptogenetic adhesion molecules (e.g. neurexin–1β, SynCAM1).

I.6.3 Neuronal polarity at population levels

Complementarily to the search of a single-cell precision in in vitro neural architectures,

connecting neuronal populations in a controlled way might be relevant to collect biological

material in sufficient amount, or to induce collective effects reminiscent of the in vivo large

networks. Distinct elegant strategies have been employed to re-create in vitro controlled ar-

chitectures and unidirectional axon connectivity using microfluidic tools. In a seminal work,

Taylor et al. [149] took advantage of the fast axonal elongation compared to minor processes

to design a microfluidic axonal sorter using 10 µm wide, 3 µm high, and up to 900 µm long

microchannels (Figure I.20).

Figure I.20: Neuronal populations controlled by microfluidics. 150 to 900 µm wide barriers
isolate axons from soma and dendrites at 14 DIV with an increasing efficacy according with barrier
width. Red: Tau, axons. Green: MAP2, dendrites. Dashed lines indicate the barrier region [149].

An hydrostatic pressure difference on either side of the channel was established to main-

tained fluidic isolation and eventually to collect axonal RNA. In the same line, Peyrin et al. [150]

fabricated asymmetrical funnel-shaped micro-channels named "axon diodes" to ensure an uni-

directional axon connectivity with 97% selectivity using 15 to 3 µm funnels. Interestingly, this

work has demonstrated the ability of microfluidic devices to interconnect neuron population of

different cell types, e.g. cortical, hippocampal or striatal neurons, forming cortico–striatal or

cortico–hippocampal functional synapses. Adhesive patterns in the millimiter range have also

been employed to create another type of axonal diodes: in the work of Feinerman et al. [151],

the 50 µm wide restricted contact zones joining millimeter sized triangles induced a preferential
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unidirectional crossing of the axons toward the tip of these geometric shapes.

Some recent successful attempts have pushed the microfluidic approach toward single neuron

precision. In the technique of Compartmentalized Neuron Arraying (CAN) developed by Dinh

et al. [152], microfluidic channels were combined with a novel patterning method to use minimal

neuronal inputs (about 1000 cells, i.e. 10 – 100-fold less than existing systems) and to increase

by one order of magnitude the proportion of axons connecting two compartments. CAN is

therefore a suitable method for the studies on rare cells like substantia nigra or dopaminergic

neurons involved in Parkinson’s research.

I.6.4 Coming research approaches and applications

Although surface topographies give an access to the cellular behavior in a 3D environment,

true 3D substrates with comparable dimensions in the three directions of space were very re-

cently developed [153, 154]. These structures should bring new insights in cell biology. Indeed,

cell microenvironment is 3D and heterogeneous, whereas many studies are still achieved on

2D flat substrates that may induce different spatial distribution of cell interactions with ECM.

For example, β1–integrin and FAK molecules in DRG neurons have shown to decrease their

locally intracellular concentrations in 3D compared to 2D environments, altering cytoskeletal

dynamics, i.e. cell adhesion and neurite length [155]. It would therefore be extremely interest-

ing to see how 3D scaffolds might be used in neuroscience. A first attempt of neuronal culture

on 3D porous scaffolds has been reported by Tian et al. [156] and constitutes a striking proof

of concept of integrating nanoelectronics into a 3D cellular network.

Lastly, the possibility to master axonal guidance and positioning meets medical needs.

The ability to reconstruct oriented and mixed neuronal networks in 3D microfluidics channels

represents a stirring approach to develop suitable drugs for therapies of neurodegenerative

syndromes, such as Alzheimer’s and Parkinson’s diseases [157]. Microengineering surfaces

could also contribute to fulfill the challenging aim of guiding nerve repair and replacing the

autograft approach [158]. Nerve guides are actually used for peripheral nerve regeneration

(maximal curable nerve gaps from 3 to 8 cm) and different biocompatible materials are em-

ployed, both synthetic [159] and natural, i.e. collagen, silicon, skeletal muscles and mesothelial

chambers [160]. A recent review in the field shows some examples of grafts successfully exe-

cuted on human patients [161]. Direct applications of microengineering techniques, e.g. pores,

grooves and polymer fibers, in the design of neuronal scaffolds are already illustrated by several

reviews [162, 163, 164].



44 Chapter I. Introduction to brain cells

I.7 Context and objective of this work

In this first chapter, we have introduced the context of the present work. Firstly, we have

provided the basics of brain cell structure and development, related to the biological aspects

addressed in this manuscript. Then, we have reported the state-of-art of studies based on

biophysical approaches, where microelectronic techniques meet brain cells. We have mainly

focused on the works employing primary brain cells, as a first step towards a better under-

standing of brain tissue. We have concluded with some possible future evolutions of these

works and their applications.

All these researches, including this PhD work, have become possible thanks to important

progresses both from a point of view of microscopic observations and thanks to the achievable

control at the micron and nanometric scale in the fabrication or the manipulation of objects.

We highlight here some significant examples, fundamental for the realization of this work: the

study of the cell dynamics thanks to the possibility to access to their microscopic scale and

to manage a large amount of data, the techniques of immunofluorescence (or in general the

visualisation techniques associated to fluorescent proteins) and the parallel development of

fluorescent microscopes (with higher and higher resolutions) allowing the observation of spe-

cific internal properties of cells and, finally, the numerous microfabrication techniques coming

from the microelectronics, such as the photolithography, to create micro or nano structured

substrates for cell cultures.

These techniques have strongly contributed to the development of biophysics, and in par-

ticular of cell biophysics, which this work is part of. In this way, the physical approach is

combined with the biological one. Physical methodologies tend to simplify and to quantify the

expression of a specific character belonging to a more complex system. In general, the ultimate

aim is to the develop a theoretical model giving the possibility to generalize or to predict a

phenomenon, as well as to provide explanatory frameworks to some experimental observations.

On the other hand, biology needs to reiterate experiments to obtain statistically robust results,

compensating the biological variability. This PhD thesis research has been conducted with this

double approach.

In the following chapters we will get to the heart of this PhD project. The focus of this

work has been the study of fundamental questions linked to brain cell growth. In particular, we

have investigated the phenomenon of the neuronal polarization and the glial cells sensitivity to

the mechanical properties of their environment. These issues, poorly explored in the peculiar

case of glial cell mechanosensitivity, have been studied here with a point of view that highlights

cell interaction with its environment. For that, we have employed some methodologies coming

from microelectronic technologies in order to reliably control the properties of the in vitro cell

environment, using chemical and the physical patterns. Consistent with the purpose of the
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state-of-art presented in this chapter and with the idea to remain close to the real biological

system, we have made the choice to conduct this research using primary brain cells only.
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Chapitre II : résumé

Dans ce chapitre nous présentons l’ensemble des méthodes utilisées avec une description

détaillée des protocoles expérimentaux : les différentes méthodes de préparation des substrats

microstructurés et leur fonctionalisation, les techniques de cultures et de marquages de cellules

primaires du cerveau, les techniques d’observation et d’analyse employées. Cette partie métho-

dologique est très développée en raison de la variété des approches employées au cours de ce

travail de thèse. Ce chapitre se termine par la présentation d’une méthode utilisant des sites

magnétiques pour positionner de façon contrôlée les cellules, avec un intérêt particulier pour

les corps cellulaires des neurones.
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List of abbreviations and nomenclatures

AFM . . . . . . . . . . . . . . . . . . . . . . Atomic Force Microscope

ATRP . . . . . . . . . . . . . . . . . . . . . Atom Transfer Radical Polymerization

BSA . . . . . . . . . . . . . . . . . . . . . . . Bovine Serum Albumin
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ECM . . . . . . . . . . . . . . . . . . . . . . Extracellular matrix

EDTA . . . . . . . . . . . . . . . . . . . . . Ethylene-Diamine-Tetra-Acetic acid

FN . . . . . . . . . . . . . . . . . . . . . . . . . Fibronectin
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MEMs . . . . . . . . . . . . . . . . . . . . . Minimum Essential Medium ("s" is for "supplemented")

NBs . . . . . . . . . . . . . . . . . . . . . . . . NeuroBasal ("s" is for "supplemented")

PA . . . . . . . . . . . . . . . . . . . . . . . . . PolyAcrylamide

PBS . . . . . . . . . . . . . . . . . . . . . . . Phosphate buffered saline

PDMS . . . . . . . . . . . . . . . . . . . . . PolyDiMethylSiloxane

PLL . . . . . . . . . . . . . . . . . . . . . . . . Poly-L-lysine

PLO . . . . . . . . . . . . . . . . . . . . . . . Poly-ornithine

PNIPAM . . . . . . . . . . . . . . . . . . Poly(N-isopropylacrylamide)

UV . . . . . . . . . . . . . . . . . . . . . . . . Ultraviolet

3D, 2D . . . . . . . . . . . . . . . . . . . . 3 and 2 dimensions
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In this chapter we will present the protocols, the instrumentations and the methods em-

ployed during this PhD project. As methodologies are a common denominator of experiments

discussed in separated contexts, we have made the choice to group them in a dedicated chapter.

We will describe the preparation of the substrates for cell seeding, the protocols employed

for the neuronal and the glial cell cultures and the different microscopy set–ups. We will

illustrate the principles of the protocols in the figures, their successive steps will be in details

described in the text and the product information will be found in the footnotes.

These sections will be followed by a section dedicated to the methods of data analysis and by

a last one describing a few techniques to control the cell positioning in vitro.

II.1 Patterned substrates

The substrate is one of the critical aspects of the in vitro experiments. Indeed, it constitutes

both the physical and chemical support of cellular growth.

We have here employed microstructured substrates and created patterns of chemical, structural

or mechanical properties.

II.1.1 Chemical patterns

Photolithography and micropatterning techniques have been largely employed to create

controlled adhesive surfaces, in order to investigate the cell sensitivity to their environment.

This technique gives the possibility to analyse cell response to chemical stimuli (mainly ECM

and CAM molecules) as well as to control the cell morphology, by the control of the surface

of adhesion. These tools have highlighted the cells ability to organize their cytoskeleton,

i.e. morphology and functions. They have therefore contributed to analyse the mechanical

properties involved in cell adhesion and growth, e.g the axonal polarization in neurons [1].

We describe the various steps of preparation of our substrates. We have used glass coverslips

of different size and shapes (circular or square) depending on the application (thickness of

170 µm). Firstly, the surface is treated so as to acquire anti-adhesive properties, then the

patterns are formed with a photolithographic step followed by the incubation of adhesive

molecules. The first steps take place in a cleanroom. The last step is performed under the

hood of the culture room in order to avoid any contaminations.

II.1.1.1 Silanization: hydrophobic treatment

The silanization is a reaction that makes a surface hydrophobic. The generic formula

of the silanes presented in this section is X − (CH2)n − Si(OR)3, where X is a functional

group reacting with organic materials, located on the hydrophobic side of the chain and OR
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is a functional group reacting with inorganic materials, like glass. The (OR)3 group gives a

relative stability to the molecule. The fact remains that silanes are very reactive with water

in air, liberating for example methanol or ethanol.

Silanes employed and methods of deposition

The 3GPS1 silane has been validated for in vitro neuronal preparations as anti-adhesive

molecule since then used by our group. This silane needs to be prepared in liquid phase in

an atmosphere with controlled low hygrometry (e.g. working in a glovebox) to prevent any

degradation. During this PhD, we have made the choice to replace it by the APTES2, a silane

less sensitive to light and air moisture. Moreover, APTES presents the great advantage to be

part of a automated vapor–phase set–up, recently acquired at the Néel Institute. The Bind

Silane3 in liquid phase has also been successfully employed and we will expose the protocol

used for this silane in the section dedicated to the hydrogel fabrication (II.1.2.2). All these

silanes present the advantage to be sufficiently hydrophilic to obtain an uniform spreading of

the photoresist during the photolithography step, as exposed in the next subsection, but also

sufficiently hydrophobic to avoid the neuronal cell adhesion.

The silane molecules are covalently linked at the surface and their fixation is improved by

a previous step of oxygen plasma of few minutes enabling the formation of free radicals at the

glass surface (Figure II.1). The oxygen plasma is also useful to clean the surface and therefore

to create a reproducible "start condition".

Figure II.1: Steps of silanization. From left to right: O2 plasma oxidation forming free O− and
OH− radicals, followed by silane deposition. A final phase of hydrolysis binds the silane molecules to
the glass coverslip.

The success of the silanization step can be checked by the measure of the contact angle

(Figure II.2), typically of 60 ◦ for the silanes employed here.

13-glycidoxypropyl-trimethoxysilane: (C3H5O2)− (CH2)3 − Si(OCH3)3, Sigma-aldrich.
23-aminopropyl-triethoxysilane: NH2 − (CH2)3 − Si(OCH2CH3)3, Sigma-aldrich.
33-methacryloxypropyl-trimethoxysilane: (C4H5O2)− (CH2)3 − Si(OCH3)3, Ficher Scientific.
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Figure II.2: Contact angle measurement: θ is the angle between the surface of the substrate and
the tangent of the liquid/vapor interface of the liquid drop placed on the surface. The contact angle θ
quantifies the wettability of the surface as a measurement of the surface tension between the substrate
and the liquid. It indicates that a surface is hydrophobic if θ > 90 ◦ (left) or hydrophilic if θ > 90 ◦

(right). Light blue: glass coverslip. Dark blue: water drop.

II.1.1.2 Photolitography: pattern designs

Patterns are defined using UV classical photolithography, whose steps are reported in Fig-

ure II.3 and described below.

Figure II.3: Steps of the photolithography process. From left to right: spinning of the pho-
toresist layer and annealing, exposition to ultraviolet (UV) light through a chromed mask, photoresist
development to dissolve the exposed regions of the photoresist layer (in the case of a positive photore-
sist) followed by a washing step in deionized (DI) water. Light blue: glass coverslip. Red: photoresist.
Brown: chromed regions on the mask.

Experimental protocol

• Shipley S1805 photoresist spinning4;

• annealing step at 115 ◦C on a hotplate during 1 min;

• exposure of the resist through a mask;

• photoresist development5 during 1 min.

The chosen parameters of rotation speed (4000 rpm) and duration (30 s) define the final

thickness depending on the photoresist viscosity (0.5 µm in the case of the S1805 photoresist

from Shipley that we used). With the annealing step the solvents are removed, allowing a drying

of the resist. The sample is then exposed to the UV light through a mask thanks to a MJB4

aligner (Karl Süss KG München-Garching, mercury-vapor lamp, wavelength λ = 365 nm). The

44000 rpm/s2 of initial acceleration, 4000 rpm of speed during 30 s, thickness 0.5 µm.
51:1 dilution in DI water, Microposittm Developer concentrate, Shipley.
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time of exposure depends on the type of resist used and the power of the lamp6. During the

development the exposed areas of a positive resist like the S1805 are dissolved. The substrate

is finally washed in DI water in order to stop the process of dissolution of the resist.

Patterns on the mask

The areas without resist obtained after the development step, correspond to the patterns

designed on the mask. To design the geometry of the patterns we use the software Elphy

(other free softwares like KLayout are also adapted for this purpose). The masks we use are

made of quartz or glass (Soda–lime). The glass masks can be used only with lamps emitting

in the conventional UV spectrum (λ = 365 nm). We report in Figure II.4 the transmission

spectra of glass and quartz masks, showing that only quartz is transparent in the whole range

of UV light7.

Figure II.4: Spectrum of transmission in the range between 190 and 400 nm (UV light). Trans-
mission rate versus the wavelength of a mask made in quartz (blue line) and in glass (red line), showing
that glass is opaque in the range of the UV light below 320 nm while quartz is transparent in the whole
UV spectrum.

The patterns used during this PhD have a width varying from 2 to about ten µm. These

dimensions correspond to the size of neurons and glial cells, justifying the need of a photolitho-

graphic process using a cleanroom aligner, whose resolution in the 1 µm range8 could not be

achieved by other techniques like for example the microcontact printing method, based on

the utilization of PolyDiMethylSiloxane (PDMS) moulds [1]. The distance between parallel

stripe patterns was typically set to 100 – 150 µm, providing both a sufficient separation to

prevent neurites to jump between stripes and a reasonable density of neurons, promoting their

survival [2]. Our micropattern design is well adapted for mouse cell cultures, in particular a

stripe width of 2 µm. For slightly bigger rat cells, we have observed that larger stripes (∼

3 µm) would be more adapted.

6The UV dose for the S1805 resist is of 15 mJ · cm−2, given by the power lamp (mW · cm−2) multiplied for
the exposition time (s).

7Measurements have been performed with a spectrometer Lambda900 (Perkin Elmer Inc.), equipped with a
deuterium lamp for the UV light emission until 319.2 nm and a tungsten lamp for the higher wavelengths.

8MJB4 Mask Aligner data sheet, www.suss.com.
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Finally, we have designed specific patterns to create some visible marks on the glass cov-

erslips. This is particularly useful in a context where a selection of cells is required, like in

time-lapse experiments (Figure II.5).

Figure II.5: Mouse hippocampal neurons at 2 Days In Vitro on patterned glass coverslips
with etched markers to localize the pattern shape. Red dashed lines delimit the PLO adhesive
patterns of 2 or 6 µm wide stripes. Green dashed lines delimit the markers: "E" indicates the localiza-
tion of a 15 µm disk to anchor the cell body, a 6 µm branch on the left and a 2 µm branch on the right
of the disk (left image). Horizontal "T" indicates the begin and end of 2 µm wide stripes, alternated
with 6 µm wide stripes (right image).

For that, a first photolithography step is followed by an etching process (reactive ion etching

in CH3 vapor phase) of the glass coverslip9. The photoresist is then removed during a 3 min

sonication step in pure ethanol. The patterns for the cell adhesion are then made by a new

process of photoresist coating, exposure and development. In this case, an alignement step has

to be performed in order to get the adhesive patterns in correspondance with the etched glass

motifs.

II.1.1.3 Functionalization: selective adhesive treatment

At the end of the photolithography process we obtain substrates with regions protected by

the resist and free areas devoted to be covered by the adhesive coating. Figure II.17 describes

the technological steps of lift-off that leads to the final substrate characterized by an alternation

of adhesive and non-adhesive regions.

Figure II.6: Steps of the functionalization with adhesive molecules. Form left to right: the
patterned substrate is incubated in a solution of molecules of adhesion. By a lift-off step of sonication in
ethanol, the photoresist is removed leaving the proteins only in the regions initially free of photoresist.
Cells are finally plated on the patterned substrate and will adhere only on coated (green) region. Light
blue: glass coverslip. Green: molecules of adhesion. Red: photoresist.

9Etching process of the markers on the glass coverslip: CH3, 15 cc, 50 W , 2 ·10−2mbar, during 20 min.
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Activation of the surface and adhesive coating

The transfer of the proteins of adhesion on the substrates needs a step of activation by

oxygen plasma. Its duration depends on the power of the plasma10 but must be sufficient

to make the surface hydrophilic by producing free radicals (O−, OH−) on the glass surface.

These charged molecules allow electrostatic interactions with the polycationic molecules that

constitute the adhesive coating (PLO or PLL11). Of note, the oxygen plasma also reacts with

the photoresist, removing eventual residues of photoresist at the level of developed areas. By

eliminating all the organic impurities on the substrate, the oxygen plasma sterilizes the samples

before their transfer from the cleanroom to the cell culture room.

Free radicals having a short life time, the plasma step has to to be performed at maximum 1 h

before the incubation of the adhesive molecules. We mainly employ PLL or PLO, two widely

used polycationic coating for their non-specific properties. Laminin12 (LN) is a component of

the ECM and is commonly employed to foster axonal growth [3]. Therefore, it can be useful

in some experimental conditions. Importantly, we have quantitatively checked that PLL and

PLO provide equivalent results in terms of neurite elongation rate. We report in the Table II.1

the parameters of incubation employed for neurons and glial cells.

Cell type Molecule Character
Molecular
weight
(kDa)

Concentr.
(µg/cm2)

Solution
(µg/ml) Buffer Duration of

incubation Washing

Primary
neurons

PLL Non
specific 70 – 150 60 1 000 Boratea over-night

2 shorts
1 long

(20 min)
in water

PLO Non
specific 3 – 15 2 – 2.5 80 PBSb over-night 2 shorts

in PBS

LN Specific 900 0.3 10 PBS 30 - 60 min 2 shorts
in PBS

Glial
cells PLO Non

specific 3 – 15 3.5 – 4.5 150 PBS min. 4 h 2 shorts
in PBS

a Borate buffer composition for 100 ml of water: boric acid (0.31 g) and sodium tetraborate (0.28 g); filter;
0.1 M ; pH 8.5. b Phosphate buffered saline; pH 7.4.

Table II.1: Key elements of the protocols associated to the different coatings for cellular
adhesion: molecules, parameters and associated cell types. All incubations are performed at
room temperature. See the text for the protocol of deposition of the proteins and note the specific
protocol need for the LN.

10The duration of the oxygen plasma can varying between 15 and 120 s.
11PLO: Poly-ornithine. PLL: Poly-L-Lysine. Sigma-aldrich.
12LN: laminin. Sigma-aldrich.



68 Chapter II. Materials and Methods

Lift-off

The lift-off is performed using a sonication step in pure ethanol for 60 to 90 s. It is very

important to completely dissolve the resist in order to reveal the silanized regions as repulsive

surface for the cell adhesion. On the other hand, the adhesive molecules would be denatured by

a too long sonication in a solvent like ethanol. This solvent being toxic for cells, some shorts

washings after the lift-off are done. Of note, the ethanol sterilizes a last time the samples

before using them for the cell culture.

We will describe in the Section II.2, dedicated to the cell cultures, the protocol employed to

plate cells on these micropatterned substrates.

Alternative methods successfully tested to improve the protocol of adhesive func-
tionalization

Motivated by the need to transport our samples in other laboratories, in the frame of the

different collaborations undertaken during this PhD project, we have done some tests in order

to simplify the process of sample preparation. For example, reasonable neuron confinement

into micropatterns has been achieved by doubling the concentration of PLO and drying the

samples after the lift-off and the washing steps. These functionalized substrates can be used

just at the moment of the cell culture, after a step of rehydration in PBS of a few minutes

before cell seeding. This methods has been qualitatively validated. A quantification of cell

growth (e.g. neurite length or the chemical constrain effect) on these substrates should be

performed to check the equivalence between the standard and the dried method. Moreover,

the protocol should be optimized in terms of best conditions of work (adhesive molecule con-

centration, rehydration time, conservation of adhesive molecules over time, ...) to save time

and limit the use of consumables.

Finally, let us remark that LN does not adhere directly on glass and that it is easily

denatured by solvents. Thus, we have tested two protocol to make patterns of PLO and LN,

using the PLO as intermediary chemical layer to graft the proteins, or LN deposition by multi–

step coating.

The first method includes to incubate the LN just after the lift-off step of PLO. The method

is based on the greater affinity existing between the LN and the PLO than with the silanized

regions around the PLO patterns. The LN concentration indicated in the Table II.1 and a

duration of incubation of 30 min are the good conditions to avoid the deposition of the LN on

the entire surface, impairing the micropattern design. This protocol should be further tested

and optimized to insure a good reproducibility and to better understand the selective adhesion

mechanisms of LN.
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The second method requires to incubate a secondary antibody over-night at 4 ◦C (dilution

1/200 in PBS), then to make a second incubation of the primary antibody recognizing the

LN during 1 h at the room temperature (dilution 1/100 in PBS) and finally to deposit LN

at the required concentration. In this case the well-definition of the adhesive patterns, i.e.

the contrast between the adhesive and the repulsive regions, is ensured since contrarily to

the first method the molecules of adhesion are not put in contact with the silanized surface.

This method presents the disadvantage to require three steps of incubation molecules and to

need the application of an alternative technique of patterning without the lift-off step in pure

ethanol as the proteins would be denatured. We refer to the next paragraph for the description

of some alternative methods to lift-off.

II.1.1.4 Functionalization: anti-adhesive treatment

The silanization process described at the beginning of this section (II.1.1.1) has shown to

be very efficient to restrain neuronal cell adhesion only on pre-determined areas. Nevertheless,

the non-adhesive properties of silanes are not sufficient for long term neuronal cultures (longer

than 1 – 2 weeks in vitro) and for most types of cells that are able to secrete their own ECM,

like glial cells. We report in this paragraph some alternative techniques we have employed to

obtain adhesive micropatterns surrounded by repulsive areas.

♦ PLL-g-PEG

Poly-L-Lysine-grafted-PolyEthylene Glycol is a copolymer largely employed for cell patterning

techniques [4, 5, 6]. We have adopted this compound as a first option for long term neuronal

cultures or for glial cell patterning.
Experimental protocol

The different steps of our protocol have been adapted from the works of M. Théry and M.

Piel [5] as described below:

• ethanol cleaning of the glass coverslip;

• surface oxidation by O2 oxygen plasma;

• incubation of the cross-linker (EDC–NHS diluted in DI water13) during 30min followed

by twice DI gentle washings;

• incubation of the PLL-PEG molecules (diluted in PBS or HEPES14) during 1 h followed

by twice DI gentle washings (the reactions leading to the covalent linking of the PLL-

13EDC–NHS solution: 19.2 mg/ml and 11.5 mg/ml respectively. Avoid light exposition. EDC: N-
(3-Dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride: C8H17N3 · HCl, Sigma-aldrich.; NHS: N-
Hydroxysuccinimide: C4H5NO3, Sigma-aldrich.

14PLL-PEG concentration: ∼ 10 − 15 µg/cm2. PBS: phosphate buffered saline, Sigma-aldrich; HEPES:
2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid, Invitrogen, ref: 15630-049.
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PEG to the surface via the EDC–NHS cross-linker are reported in Figure II.7)15;

Figure II.7: Chemical reactions linking the PLL-PEG to the surface via the EDC–NHS
intermediary. Representation of the interaction between the EDC–NHS cross-linker with the oxi-
dized glass surface (represented by the number "1" yellow point) and with the PLL-PEG molecules
(represented by the number "2" blue point). From www.piercenet.com. The PLL-PEG copolymer is
employed as non-adhesive functionalization and its molecular structure is reported in the blue rectangle
on the right [4].

• oxidation of the mask surface by an O2 oxygen plasma16 during 3 min;

• exposure of the sample through a chromed mask with a lamp emitting deep UV radia-

tions17 (λ < 200 nm) during 6 min in order to ablate the PLL-g-PEG;

• gentle washings (twice with DI water and twice with PBS);

• then proceed with the functionalization of the adhesive regions.

Functionalization of the adhesive regions

The process of functionalization of the PLL-g-PEG patterned substrates is represented in

Figure II.8.

Of note, the non-adhesive property of the PLL-g-PEG is given by its chain–like structure

(see the molecular formula in Figure II.7). For this reason, the PLL-PEG concentration can

be modulated as a function of the chain density (in the range 0.5 – 0.1 mg/ml) but it is

not advisable to increase it. Indeed, this can lead to the deposition of multilayer films of

disordered chains of PLL-PEG. This may position the hydrophilic PLL side of the copolymer

at the interface with the culture medium rather than at surface with the glass substrate,

suppressing the non-adhesive properties of the copolymer.
15The sample functionalized with the PLL-g-PEG can be dried and so stored up to 1 week. A rehydration

of the substrate in DI water during 30 min is required before the exposure step. We have observed a better
repulsive effect on the patterned structures when the substrates had been conserved in water (4 ◦C) or dried
(room temperature) compared to when conserved in PBS (4 ◦C).

16The plasma on the mask makes its surface hydrophilic, increasing the wettability and the contact with the
sample. A minimal distance between the mask and the glass coverslip is fundamental in order to get a good
respect of the size of the patterns.

17UVO Cleaner Model 342–220, Jelight company, intensity 30 – 33 mW/cm2 measured at 254 nm with
distance of 4 mm.
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Figure II.8: Steps of functionalization of the PLL-g-PEG patterned substrates. From left
to right: adhesive molecules are put in incubation on the patterned substrate. Deposition on the glass
surface is prevented in the regions occupied by the chains of PLL-g-PEG, leading to adhesive and
repulsive patterned areas. Cells are finally plated on the microstructured substrate. Light blue: glass
coverslip. Violet: chains of PLL-g-PEG. Green: proteins of adhesion.

We have optimized this method by using cells that are easier to manipulate than primary

neurons. These preliminary experiments have given us the opportunity to collaborate with

two groups focusing their researches, amongst other subjects, on the muscle pathologies and

the engineering of 2D and 3D muscle tissues: respectively, the I. Marty’s team at the Grenoble

Institute of Neuroscience and the C. Picart’s team at the LMGP (materials and physical

engineering laboratory) in Grenoble. For this reason, these experiments have been performed

with L6 and C2C12 cells18 and they have confirmed the repulsive properties of PLL-g-PEG

toward cell adhesion for at least 10 days in vitro.

We report in Figure II.9 the details of our protocol for cell plating.

Figure II.9: Steps of cell plating on the PLL-g-PEG patterned substrates. Cells are plated
at a concentration of ∼ 550 cells/mm2 in a serum free medium, after 1 h a washing with the same
medium removes the cells died or weakly adherent outside of the adhesive patterns and finally medium
is replaced by a differentiation one. Light blue: glass coverslip. Violet: chains of PLL-g-PEG. Green:
proteins of adhesion. Red: cells.

C2C12 cell development has been compared on glass and polystyrene micropatterned sub-

strates (Figure II.10).

We have observed a better cellular confinement on polystyrene19, where the proteins ad-

here more efficiently and therefore the coating density is expected to be higher. Moreover, on

glass substrates the fusion of myoblasts at 5 DIV in a differentiation medium20 was not ob-

served, while on polystyrene substrates cells displayed features resembling striations, indicating

a more mature stage of cell differentiation, similar to the cell development on non-patterned

polystyrene substrates.

18L6 and C2C12 are two myoblast cell lines, from rat and mouse respectively.
19Polystyrene coverslips have been obtained by cutting circular substrates with a lathe from conventional

Petri dishes.
20DMEM Glutamax low glucose (Life Technologies, ref: 21885-108) supplemented with 2% horse serum (Life

Technologies, ref: 26050-070) and 1% Penicillin / Streptomycin (Life Technologies, ref: 15140-122).
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Figure II.10: C2C12 cells on PLL-g-PEG/FN patterned substrates at 5 DIV. A) Pattern
design of the mask used for the experiments. Blue: transparent regions where PLL-g-PEG chains are
exposed to the deep UV light and subsequently covered by FN. Brown: chromed regions. B) C2C12
cells on glass patterned substrates, before the fusion stage (see inset). C) C2C12 cells on polystyrene
patterned substrates, aligned and in fusion (see inset), before the striation stage. D) C2C12 cells on
Petri dish (control), showing some myotubes not still in the striation stage. In B, C and D: Green:
MHC (myosin heavy chain), myotubes. Red: phalloidin, actin. Blue: Hoechst, nuclei. Scale bars:
50 µm.

Remarks about the molecules of adhesion for PLL-g-PEG patterned substrates

Some remarks can be made about the choice of the proteins of adhesion. The fibronectin

(FN, Roche Applied Science) is a protein suitable for the majority of the cell cultures. It is

particularly adapted for this protocol thanks to its molecular weight of ∼ 440 kDa, that is

large enough to prevent FN adhesion in the regions occupied by the PLL-g-PEG chains21. Of

note, proteins like fibrinogen and collagen should be employed with a maximal concentration

of 10 µg/ml because they tend to form a continuous film over the PEG surface [7].

Alternative method to achieve an adhesive coating of molecules with a low molec-
ular weight on PLL-g-PEG patterned substrates

Contrarily to FN, polycationic polymers like PLL or PLO are very small molecules (molec-

ular weight of ∼ 70− 150 kDa and ∼ 3− 15 kDa respectively, Sigma-aldrich). They can thus

penetrate within the PLL-g-PEG chains and impair their repulsive effect. These molecules are

commercially available with greater molecular weight and different concentration of incubation

should be tested to check if it is possible to adapt the protocol of the PLL-g-PEG functional-

ization with PLL and PLO coatings. Alternatively, we propose here a variation of the protocol

described above to obtain low molecular weight PLL adhesive patterns surrounded by PLL-g-

PEG repulsive areas. This method consists in an inversion between the PLL-g-PEG incubation

and the adhesive coating deposition. PLL is firstly incubated during 1 h at ∼ 60 µg/cm2 (so-

lution of 1 mg/ml diluted in the borate buffer, see Table II.1) and then selectively removed by

an exposition to deep UV light through a mask with negative patterns in comparison with the

21The advised concentration of FN is ∼ 1 µg/cm2 during 1 h (solution ∼ 10− 25 µg/ml diluted in PBS) .
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previous method. Finally the PLL-PEG is incubated during 1 h at ∼ 25 µg/cm2 (solution

of 0.5 mg/ml diluted in PBS), leading to the formation of a repulsive layer outside the PLL

patterns.

This method is very efficient to confine cells for long times. We report in Figure II.11 some

examples of L6 and neurons growing on this kind of substrate, still following the pattern design

after 17 DIV.

Figure II.11: Long term cell confinement on PLL/PLL-g-PEG patterned substrates.
A) Phase contrast image of L6 cells at 7 DIV. Phase contrast (B) and fluorescence (C) images of
mouse cortical neurons at 17 DIV. In C: Red: MAP2, neurons. Blue: Hoechst, nuclei. The green
dashed lines delimit the PLL-g-PEG regions. Scale bars: 50 µm.

Finally, to graft LN (Sigma) on the glass surface, we refer to the methods exposed at

the end of the II.1.1.3 subsection, proposing to incubate the LN after the PLO or the PLL

deposition or to deposit the LN by the multi–step coating.

♦ Polymer brushes

We propose in this section an alternative solution to PLL-g-PEG functionalization that present

two advantages: patterned substrates can be stored for at least 2 months (dried at room tem-

perature and protected from light as compared with only few weeks in water at 4 ◦C or dried

at room temperature for PLL-g-PEG) and the cost of fabrication is much cheeper.

The non-adhesive regions are made via the grafting of polymer brushes, a protocol devel-

oped by L. Bureau at the LIPhy (Interdisciplinary Laboratory of Physics) in Grenoble [8]. In

the last decades, polymer brushes have inspired several research works investigating macro-

molecule phenomena in confined environment and have been largely employed from the early

1990s thanks to the development of rapid protocols based on user-friendly chemistry [9]. This

technique has been elaborated by the L. Bureau’s team to study for example cell dynamics

in polymer brush-coated microcapillaries, mimicking the glycocalyx, a macromolecular layer

coating the inner walls of blood vessels in vivo [10].
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Experimental protocol

The steps of fabrication of the PNIPAM22 polymer brushes are described in Figure II.12.

Figure II.12: Polymer brushes of PNIPAM chains grafting based on the atom transfer
radical polymerization (ATRP) method. From left to right: glass coverslips are cleaned and
silanized, before the immobilization at the surface of ATRP initiators, followed by the exposure by
deep UV light through a chromed mask and the PNIPAM chain polymerization at the level of the
initiators. Light blue: glass coverslip. Black stars: ATRP initiators. Brown: chromed regions on the
mask. Violet: PNIPAM polymer brushes.

Polymer brushes are produced by a "grafting–from" technique, i.e. growing from a layer

of polymerization initiators first grafted on the substrate. We resume the procedure below

from [8]:

• cleaning of the surface by an oxidation step using O2 oxygen plasma;

• APTES silanization in liquid solution23 during 2 h;

• monomer immobilization on the surface of the ATRP initiators in a dichloromethane

solution24 during 5 min, leading thus to bromine–terminated surfaces from which ATRP

can be initiated;

• washing with pure dichloromethane, ethanol and water before being dried;

• exposure of the substrate trough the mask with a lamp emitting deep UV radiations

(λ < 200 nm) during 2 min in order to ablate the active polymerization initiators in the

regions exposed to the light corresponding to the transparent regions of the mask25;

• a water solution of NIPAN26 and PMDETA27 is prepared in a flask and bubbled with

argon or nitrogen gas during 30 min before adding a CuCl catalyzer28;

• immersion in the solution leading to the polymerization of the polymer brushes

of PNIPAM from the initiator molecules. The time duration of the immersion in this

solution determines the polymer brush height (e.g. a duration of 5 min gives brushes

55 nm high).

The substrates are then dried and stored at room temperature or directly incubated with

22Poly(N-isopropylacrylamide).
233-aminopropyl-triethoxysilane: NH2 − (CH2)3 − Si(OCH2CH3)3, concentration: 8.5 · 10−3 M , Merck.
244.8% of TEA (triethylamine) and 1% of BMPB (2-bromo-2-methylpropionyl bromide, 98%, Acros Organics).
25UVO Cleaner Model 342–220, Jelight company, intensity 30 – 33 mW/cm2 measured at 254 nm with

distance of 4 mm.
26N-isopropylacrylamide, 30 mg/ml.
271,1,7,7-Pentamethyldiethylenetriamine, 0.75%.
28CuCl catalyzer, 3.75 mg/ml.
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proteins of adhesion before the cell seeding step.

An example of glial cells growing on this kind of patterned substrate29 is reported in

Figure II.13 and compared to silanized patterned substrates.

Figure II.13: Comparison of glial cells growing on PNIPAM and silanized patterned sub-
strates. Phase contrast images. Adhesive PLO patterns, alternated with repulsive regions occupied
by the PNIPAM polymer brushes at 2 (A) and 9 (B) DIV. C) Adhesive PLO patterns, alternated with
APTES silanized regions at 4 DIV. Cell growth is perfectly constrained by PNIPAM polymer brushes
patterns until 9 DIV, whereas at 4 DIV glial cell morphology on silanized surfaces does not respect the
pattern design. The green dashed lines delimit the PNIPAM (A, B) or the silanized (C) regions. Scale
bars: 50 µm.

This technique appears as quite promising for long term neuronal cultures. In the initial

protocol, substrates stick to the mask thanks to the capillary forces provided by a liquid layer

of hexadecane. The thickness of this intermediate layer is responsible for the broadening of the

pattern size (typically of 1 – 2 µm at each stripe edge). Therefore, a reduction of the contact

distance between the coverslips and the mask should be achieved, or the initial sizes of the

patterns on the mask should be reduced, in order to fabricate 2 – 3 µm wide adhesive stripes.

II.1.2 Physical patterns

II.1.2.1 Structural properties: glass etching

We have described in the previous section (see Figure II.5) the possibility to etch patterns

on glass substrates in order to design some visible markers enabling the localization of the

adhesive patterns on the substrate. The same etching protocol can be used to obtain physical

patterns on the substrate. After the development step at the end of the photolithography

process (Figure II.3), the substrate is etched by reactive ion etching. The functionalization can

be achieved before or after the lift-off, depending on the objectif to obtain an adhesive coating

on the whole surface or to combine physical and chemical patterns.

We report in Figure II.14 the measured etching velocity of the glass with the CH3 gaz30.

We note that reasonable thicknesses in the range of a few hundreds of nm are obtained with

this method for reasonable etching duration in the scale of minutes. To obtain larger depth

29Details of functionalization and culture of the PNIPAM patterned glass coverslip. PNIPAM
polymerization during 5 min (polymer brushes 55 nm high). PLO ∼ 4.5 µg/cm2 (150 µg/ml solution) during
5 h. Seeding conditions: ∼ 30 cells/mm2 in DMEMs culture medium.

30Etching process of the markers on the glass coverslip (SiO2 protocol): CH3, 15 cc, 50 W , 2 ·10−2mbar.
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Figure II.14: Experimental calibration of the glass etching. Measured depth (mean values± SD)
versus time (1 glass coverslip and 4 measurements for each condition). Best linear fit: y = 6.3 x− 3.2,
giving an etching velocity of about 6 nm/min.

through a plasma process, we refer to the last section dedicated to the methods developed to

achieve a control of cell positioning (Section II.5.2).

Chemical etching with hydrofluoric acid (HF) is very efficient but also strongly corrosive.

We have made the choice to not adopt this technique also because the etched profiles are

isotropic. Structures with high aspect ratios would therefore be impossible to achieve.

II.1.2.2 Mechanical properties: hydrogels

Hydrogels are largely used as substrates for cell cultures in order to modulate the stiffness

of the cell in in vitro environment [11, 12].

We describe in this section the methods employed during this PhD work to fabricate polyacry-

lamide (PA) hydrogels of uniform stiffness or with patterns of rigidity. The advantages of the

PA gels toward other soft materials are numerous [13, 14]:

• Stiffness modulation in a wide range of rigidities, between hundreds of Pa to several tens

or hundreds of kPa, thus enclosing physiological rigidities of the in vivo ECM.

• Weak non-specific adsorption of the proteins to uncoated gel surface.

• Non degradable, preventing degradation by cells.

• Transparency.

• Cell penetration is avoided thanks to the existence of pores in the range of 100 nm.

Moreover, these physical and chemical properties remain quite constant during cell cultures.

Photopolymerization

Our group in LTM in collaboration with Danielle Gulino in CEA Grenoble has developed

a method of photopolymerization [15] inspired by [16] that presents the advantage to locally

modulate the mechanical properties of the hydrogel. This enables the fabrication of stiffness
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micropatterns down the micron range. Moreover, the polymerization with this technique is

more uniform than with the usual chemical technique described in the follow paragraph enti-

tled "Chemical polymerization".

The principle of this method is to use a photoinitiator activated by UV light to enable

the local polymerization of the gel through a mask. The steps of fabrication are reported in

Figure II.15 and described below:

Figure II.15: PA hydrogel fabrication steps. Glass coverslips are cleaned and silanized before the
photopolymerization step. Polymerization occurs by a UV light exposition through a mask. Hydrogels
are finally swollen in ultra-pure water. Orange: Bind Silane solution. Dark blue: hydrogel solution.
Dark grey: wedges of 40 µm. Red: chromed regions on the mask (light grey). Violet: softer regions
(protected from the chrome, lower dose of light) of the hydrogel. Black: stiffer regions (higher dose of
light) of the hydrogel.

• glass coverslips (φ = 30 mm) are cleaned in soda (NaOH, 0.1M), washed in ultra-pure

water (0.22 µm filter, 18,2 MΩ · cm at 25◦C), then in ethanol (EtOH), each step during

10 min and upon a mixing platform (20 rpm), and finally dried;

• glass coverslips are silanized in order to covalently graft the PA hydrogels to the surface:

a drop of 500 µl of Bind Silane solution31 is applied on the surface during few minutes

and dried with a cleanroom wiper (dust-free, microfiber);

• a drop of 30 µl of hydrogel solution32 is deposited on the silanized surface of the

coverslip on a support equipped with 40 µm thick wedges in order to control the final

hydrogel height;

• polymerization occurs by UV exposition33 of the hydrogel solution through a chromed

or transparent mask (with hydrophobic treatment) that is gently removed after 15 –

45 min and the gel is allowed to swell in ultra-pure water for 24 h;

• patterned (or uniform) hydrogels are obtained according to the mask design.

31Bind Silane, 3-methacryloxypropyl-trimethoxysilane: (C4H5O2)− (CH2)3 − Si(OCH3)3, Ficher Scientific.
Solution for 15 ml of ethanol (absolute, ≥99.8%, Sigma-aldrich): acetic acid (484 µl) and Bind Silane (56 µl).
Glass coverslips can be so stored up to 1 month at room temperature and protected from air.

32hydrogel solution: 10% acrylamide (C3H5NO, 40% w/v stock solution, Sigma-aldrich), and 0.5% bis-
acrylamide (N,N’-Methylenebisacrylamide, C7H10N2O2, 2% w/v stock solution, Sigma-aldrich). Patent
CEA/CNRS FR2983201. Fluorescent beads can be added to the solution (usual concentration of 100 µl/ml,
i.e. 0.22% v/v, if for Tracking Force Microscopy experiments, 0.2 µm, 2% solid red beads, Molecular Probes).

33Fiber lamp Panacol/Eleco UVP281, λ = 350− 450 nm light, 18 mW/cm2.
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Chemical polymerization

This technique is based on a polymerization initiated by a solution of TEMED34 and APS35

in a water solution of a monomer and a cross-linker: respectively the acrylamide36 and the bis-

acrylamide37, like for the photopolymerization method. The hydrogel stiffness is modulated

by the concentration of these last two components.

A droplet of 35 µl of this solution is deposited on a glass coverslip (φ = 30 mm) cleaned

and silanized as described previously for the photopolymerization method and covered with a

hydrophobic treated silicon slide, gently removed after a given time necessary for the hydrogel

polymerization (10 – 30 min).

This protocol is the most commonly method employed in the literature and the parameters

chosen for our study have been adapted from [17] in order to obtain ultra–soft hydrogels.

Although it can be easier to obtain ultra–soft gels with the chemical method, the polymerization

in this case is longer (minutes compared to seconds) than with the photopolymerization method

and it is less homogeneous. Importantly, it is not possible with this technique to fabricate

hydrogels with micropatterns of rigidity.

Hydrogel stiffness characterization by atomic force microscopy

The hydrogel stiffness has been characterized by atomic force microscopy (AFM), that gives

an access to the Young’s modulus with a precision of ∼ 0.5 kPa.

The AFM set–up38 is located at the LIPhy (Interdisciplinary Laboratory of Physics) in

Grenoble. AFM probes were (MLCT, Bruker)39 V–shaped silicon nitride cantilevers with sili-

con nitride tips (Figure II.16.A), ideal for contact imaging modes, force modulation microscopy

and liquid operation. We used cantilevers with spring constant of 0.01 and 0.03 N/m in order

to cover the range of elastic moduli of about 0.1 to 100 kPa, characterizing the PA hydrogels.

Characterizations have been performed in PBS at ∼ 30 ◦C, as well as cantilever calibrations.

The influence of the temperature on the stiffness was also measured and was on the order of

magnitude of the error. We have employed the so-called "force mapping" mode which corre-

sponds to record multiple "force volume" curves (i.e. force spectra of the force evolution as a

function of the probe–sample distance) on a predefined grid. Typically, maps were constituted
34Tetramethylethylenediamine, final concentration employed: 0.2%.
35Ammonium persulfate, 10% w/v, final concentration employed: 0.5%.
36Acrylamide, Bio-Rad, 40% w/v stock solution, final concentration employed: 3%.
37Bis-acrylamide, Bio-Rad, 2% w/v stock solution, final concentration employed: 0.06%.
38NanoWizard II BioScience AFM set–up on Zeiss Axio Observer, JPK Instruments AG, objective 10X,

www.jpk.com.
39MLCT non-conductive triangular Bruker’s Microlever, with minimal – maximal resonant frequencies and

minimal – maximal spring constant respectively of 4 – 10 kHz and 0.005 – 0.02 N/m (shape "C") or 10 – 20 kHz
and 0.01 – 0.06 N/m (shape "D"), www.brukerafmprobes.com.
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of 5x 5 points on a 50x 50 µm2 area on the hydrogel surface in order to obtain a mean value of

stiffness on a surface similar to the cell size. It is advisable to measure various maps in order

to probe the stiffness uniformity at the level of the entire surface.

Data analysis have been performed with the software "JPK Data Processing". They are based

on the Hertz model of the study of the deformation of two solids in contact, assuming that the

AFM tip presses on an infinite surface. Practically, with a maximal indentation of less than

5% of the total hydrogel height, the Hertz’s model is applicable. This model does not take into

account potential adhesion forces between the tip and the sample. In that case the relation

between the applied force (Fe
40) and the indentation depth is [18]:

Fe =
4E∗ · tanα

π
√
π

h2 (II.1)

For the analysis, we use the approach curves in a range of indentation depth between 0.2 and

1 – 2 µm in order to always take into account the same window, where the elastic behvior of

the gel is predominant (Figure II.16.B).

Figure II.16: Atomic force microscopy hydrogel characterization. A) Picture of triangular
cantilevers used for the AFM measurements on a hydrogel surface. Scale bar: 50 µm. B) Example of
curve analyzed with the software "JPK Data Processing": vertical tip deflection versus the tip distance
from the hydrogel surface. The vertical deflection corresponds to the contact force with the substrate,
by an equivalence given by the calibration of the spring constant of the cantilever that leads to the
calculation of the Young’s modulus of the hydrogel. Curves represent the approach and the retraction
of the AFM tip to the surface. A picture of a pyramidal tip is reported in the inset. Refer to the text
for the parameters of analysis.

On ultra–soft hydrogels the window of analysis is reduced between 0.4 and 1 – 2 µm in

order to discard the adhesive effects of the tip to the surface at the contact point level.

Data are smoothed, a baseline is automatically subtracted to keep to zero the line of approach,

the contact point (offset) is automatically set to zero and finally the elastic modulus of the

40E∗ = E
(1−ν2) with E the Young’s modulus, 0.33 < ν < 0.45 for the Poisson’s ratio of the polyacrylamide,

α the angle of the pyramidal tip and h the indentation depth of the tip into the hydrogel.
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sample is determined by fitting the curve with the formula II.1. The parameters used are the

tip shape (quadratic pyramid with an half-angle to face of 18.75 ◦C) and the Poisson’s ratio

(0.45). Moreover, thanks to complementary experiments we have observed that (i) the result

is not influenced by the approach speed of the cantilever in a range between 1 and 16 µm/s

(ii) nor by the substrate functionalization41 and (iii) in a temperature range between 27 and

37 ◦C the result decreases by only ∼ 6 % (which is lower than the error due for example to the

choice of the Poisson’s coefficient value). Neverthless, the preparation of the hydrogel solution

remains a bit experimentalist–dependent, probably due to the residual air in the solution that

has a strong impact on the polymerization speed.

The AFM characterization is fundamental for the hydrogels fabricated with the photopoly-

merization method whose stiffness is scarcely predictable. Indeed, this parameter depends on

the duration of the exposure and the lamp power but it is also dependent on the ratio between

the soft and the stiff surfaces. As the component concentration is homogeneous, regions receiv-

ing an higher dose of light will pump the monomers proportionally to their surfaces, leading

to a reduction of the amount of hydrogel components in the soft, less illuminated, regions. For

this reason, a small stiff area will tend to be stiffer that expected for the same exposition time

on uniform substrates as the hydrogel components will be concentrated in a smaller volume.

In the same way, if the stiff region is very large in comparison with the soft one, the high con-

centration of hydrogel components pumped in the stiff region from the soft region will prevent

the hydrogel polymerization of the soft area.

Hydrogel functionalization

PA hydrogels are quite inert from a chemical point of view, making difficult to covalently

link proteins to their surface. We describe here the methods developed to graft the proteins of

adhesion necessary for brain cell cultures, i.e. FN or PLL/LN (Figure II.17).

As reported in Figure II.17, the method to covalently attach proteins of adhesion to the

hydrogels slightly change for the FN or the PLL/LN functionalization. Both are based on the

application of a heterobifunctional reagent named Sulfo-LC-SDA42, that thanks to its pho-

tosensitive diazirine group is more stable and more reactive compared with other commonly

employed compounds, like the Sulfo–SANPAH43.

The functionalization steps are described below:

41FN functionalization, 0.8 µg/cm2.
42Sulfosuccinimidyl 6-[4,4-azipentanamido]hexanoate, succinimidyl-ester diazirine (SDA) reagent, Pierce

Biotechnology.
43N–sulfosuccinimidyl–6–[4’–azido–2’–nitrophenylamino]–hexanoate.
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Figure II.17: Steps of functionalization of the polyacrylamide hydrogels. Adhesive molecules
are covalently grafted to the surface of patterned (or uniform) hydrogels using a photoactivable reagent
named Sulfo–LC–SDA. Refer to the bullet list into the text for a detailed description in case of PLL/LN
or FN coating. Light blue: glass coverslip. Orange: Bind Silane solution. Violet: softer regions
(protected from the chrome, lower dose of light) of the hydrogel. Black: stiffer regions (higher dose of
light) of the hydrogel. Red: Sulfo–LC–SDA solution. Green/Red: FN/Sulfo–LC–SDA solution. Green:
PLL then LN solution.

• hydrogels are dehydrated44;

• Sulfo–LC–SDA solution45 (PLL/LN coating) or FN/Sulfo–LC–SDA solution46 (FN

coating) is poured on the surface of the hydrogel and incubated during 2 h (PLL/LN

coating) or 1 h (FN coating) protected from light;

• hydrogels are dehydrated again and exposed to UV light47 during 5 min;

• hydrogels for PLL/LN coating are washed with water and 3 times with PBS before

incubation of the PLL solution48 during 1 h, followed by the LN solution49 incubation

during 1 h;

• finally, for both coatings, hydrogels are washed 3 times in PBS and incubated with cell

culture medium 1 h before cell seeding.

The covalent link of the proteins to the hydrogel surface occurs via the Sulfo–LC–SDA bifunc-

tional reagent, according to the representation reported in Figure II.18.

Of note, the functionalization via the bifunctional cross-linker is the critical aspect of this

method of functionalization. Indeed, this molecule is quite instable and the homogeneity of the

final distribution of the proteins of adhesion is not guaranteed. In particular, the succinimide

group is the most instable and for example, in the protocol with the FN, the quality of the in-

teraction is improved because it firstly reacts with the proteins, differently from the case of the

PLL coating. Moreover, the non-specific reaction of the diazirine group with inert molecules,

like water or polyacrylamide, makes difficult to control its attachement to the surface. The

44The dehydration time depends on the hydrogel stiffness and it is variable between 10 and 55 min (fractures
on the surface of ultra–soft gels can appear for too long periods of dehydration.

45Sulfo–LC–SDA concentration: 70 µg/cm2 in water (0.44 mg/ml solution).
46FN/Sulfo–LC–SDA concentration: 3.5/2.8 – 1.1/0.9 µg/cm2 in PBS. Fibronectin from human plasma

(Roche Applied Science).
47Fiber lamp Panacol/Eleco UV-P281, λ = 365 nm, 18 mW/cm2.
48PLL concentration: 115 µg/cm2 in borate buffer (1 mg/ml solution).
49LN concentration: 1.1 µg/cm2 in PBS (10 µg/ml solution).
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Figure II.18: Chemical reactions linking the proteins of adhesions to the hydrogel sur-
face via the Sulfo–LC–SDA intermediary. Representation of the interaction between the N-
Hydroxysuccinimide (NHS) esters of the Sulfo–LC–SDA reagent with the amine group (NH2) of
the PLL or the FN (represented by the yellow point named "Protein 1") and of the photoactivated
(λ = 330 − 370 nm) interaction of the diazirine esters of the Sulfo–LC–SDA reagent with the inert
polyacrylamide of the hydrogel surface (represented by the blue point named "Protein 2"). Adapted
from www.piercenet.com.

technique described for the FN coating has been developed in our group, considerably improv-

ing the homogeneity of the functionalization and minimizing the dependency of the protein

attachment on the hydrogel stiffness. This point is fundamental to guarantee an homogenous

controlled chemical coating on the surface, moreover independent of the gel stiffness, providing

optimized conditions to study of cell mechanosensitivity. For that, we have map the coating

density by confocal microscopy.

Functionalization characterization by confocal microscopy

To evaluate the attachment homogeneity of the proteins of adhesion to the hydrogel surface

by confocal imaging requires to label the proteins by immunofluorescence, similarly to the

protocol used for the cell labeling (Section II.2):

• incubation during 30 min of the saturation buffer50 upon a mixing platform (10 rpm);

• incubation during 1 h of the primary antibody51 upon a mixing platform (10 rpm),

rinsed 3 times with the saturation buffer;

• incubation during 1 h of the secondary antibody52 upon a mixing platform (10 rpm)

protected by light, rinsed 3 times with the saturation buffer and stored in PBS.

Hydrogels have been analyzed with a confocal microscope located at the CEA53, giving access

to a quantification of the fluorescent proteins of adhesion on the surface, with a z resolution

of ∼ 0.5 µm (water immersion objective 40X).

50Saturation buffer in PBS: Tween–20 (polyoxyethylene (20) sorbitan monolaurate, Sigma-Aldrich) 0.1% and
BSA (bovine serum albumin, Euromédex) 2%.

51Polyclonal FN or LN–antibody, dilution: 1:400 in the saturation buffer.
52Donkey α–rabbit antibody (Alexa 488), dilution: 1:2000 in the saturation buffer.
53Leica TCS SP2 microscope.
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We report in Figure II.19 few examples for both FN and PLL coatings.

Figure II.19: Characterization of the FN and PLL functionalization quality on the poly-
acrylamide (PA) hydrogel surface. A, B) Confocal images of a soft (∼ 1 kPa, A) and a stiff
(∼ 45 kPa, B) PA hydrogels showing a quite homogenous distribution of the FN and a more irreg-
ular surface of the soft hydrogel, due to its low stiffness. Green: α–LN. C, D) Confocal images of
stiff (∼ 30 kPa, C and ∼ 20 kPa, D) PA hydrogels showing a quite weak control of the distribution
of the PLL (irregular on the left and homogenous on the right, but very faint compared to the FN
coating). The images represent the xy view and the relative projections yz (left) and xz (top). Green:
FITC–PLL. Scale bars: 50 µm. Step between two consecutively z slices: 0.28 µm.

Of note, the effective concentration of FN bound to the hydrogel surface has been quantified

in our group with well reproducible results. The amount obtained by ELISA (enzyme-linked

immunosorbent assay) tests is of 90± 5% of the protein concentration diluted from the stock.
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II.2 Primary cell cultures

Most experiments reported in this manuscript have employed embryos from the C57 Black 6

inbred strain of laboratory mice and, occasionally, rat embryos.

II.2.1 Neuronal and mixed neuronal–glial cell cultures

Neuronal and mixed cell cultures are respectively achieved using hippocampus or cortex

of mouse embryos at eighteen days of gestation. This corresponds to the phase just before

their birth, since the gestation period is about 19 – 21 days. The reasons of this choice are

that (i) hippocampus development has been well-characterized in vitro, (ii) young cells result

more adaptable in constrained in vitro environments and (iii) dissociated hippocampal tissues

provide a relatively homogeneous cell population, mainly composed of pyramidal neurons and

a very low concentration of glial cells (less than 1% [2]). This point is fundamental to study

isolated neurons. Indeed, glial cells can secrete the necessary proteins enabling them to colonize

the initially repulsive space between patterns, if not blocked with polymer brushes or PLL-

g-PEG molecules non-adhesive molecules, therefore providing a substrate for non-controlled

neuronal adhesion.

The culture protocol employed is based on the method developed by Banker [19, 20] and the

medium compositions have been kindly provided by the group of A. Triller (IBENS, Paris,

France).

Exceptionally, in the context of collaborations with other groups of research, rat embryos at

nineteen days of gestation (rat development requires about two additional days in comparison

with mice) have been employed. This will be specified in the legend of the figures.

II.2.1.1 Dissection: hippocampus and cortex

The quality of the dissection of embryo brains is critical to guarantee the achievement of

experiments and the cell survival in vitro. 1 – 2 h is the maximum duration recommend between

the animal euthanasia and the cell seeding. The dissection is made using a stereomicroscope,

narrow pincers and scissors (Fine Science Tools).

The Figure II.20 illustrates the main steps of dissection of hippocampus and cortex from

mouse embryonic brains. The typical length of a mouse embryonic hippocampus (at 18 days

of gestation) is about 2 mm when straightened and slightly greater in rats.

Tissues are extracted in the dissection medium54 at ∼4 ◦C. Hippocampi are then incubated

during 10 min at 37 ◦C in 3 ml of the same medium supplemented with 10% of Trypsin

without EDTA (2.5%, Life Technologies), rinsed three times with the dissection medium at

54Dissection medium: Hank’s HBSS 10x (10%) and Hepes 1M (2%) diluted in sterile water. Gibco Invitrogen.
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Figure II.20: Dissection of hippocampus and cortex from mouse embryonic brains. A) Fetal
mouse brain. Left and right hemispheres of the cerebral cortex are delimited by the dashed white line
(external view). B) Right hemisphere (inner view) and the olfactory bulb. Hippocampus ("hip")
is delimited by the dashed white line. Meninges surrounding each hemisphere are removed. C) The
hippocampus is removed with a microscissor. D) Cortex ("cx") and hippocampus ("hip") are separated.
E, F) The fimbriae (arrowhead) on the concave side of the hippocampus are removed (open arrowhead).
Adapted from [21].

room temperature and dissociated with a 1 ml pipette in 1 ml (20 passages max. through the

tip) of MEMs medium55 at 37 ◦C.

II.2.1.2 Cell seeding and standard culture conditions

One hippocampus usually provides about 0.3 – 0.7 millions neurons and one cortical hemi-

sphere about 2 – 3 millions of cells. Substrates are prepared (see Section II.1) before the

dissection and kept in PBS at room temperature until the seeding step. Around 1 h before the

cell seeding, samples can be also incubated in MEMs medium at 37 ◦C (especially in the case of

hydrogel substrates, Section II.1.2.2). PBS or MEMs is aspirated by taking care of not drying

the substrates. Cells are then plated at a given concentration56 in the MEMs medium. In the

case of hippocampal neurons, after 3 – 4 h in the incubator at 37 ◦C and controlled atmosphere

of 5% of CO2, MEMs medium is quickly replaced by the maintenance NBs medium57.

II.2.1.3 Variations from standard protocols: remarks about influence of the cul-
ture medium in cell confinement

As described in the previous paragraph, a culture medium supplemented with serum is

commonly used from 1 h before to 3 h after the cell seeding step. We have investigated

by immunofluorescence if this incubation step in presence of serum proteins could modify

the initial chemical coating of our substrates. For that purpose, we have incubated a PLO-

patterned substrates (alternation of PLO or silanized stripes) with various culture mediums

for different periods of times, from 24 h before fixation or cell seeding to 24 h after cell seeding.

After fixation, proteins of interest were immunolabeled (see the corresponding protocols in the

following subsections). Finally, samples were observed under identical exposition conditions

(i.e. duration and intensity), in order to achieve reliable quantifications of the relative protein
55MEMs medium: horse serum (10%), L–Glutamine 200 mM (1%), Sodium pyruvate 100 mM (1%) and

Penicillin / Streptomycin (0.05%) in MEM. Invitrogen. Filtered at 220 nm.
56Usual cell density in 3 ml of medium in 6-well plates: ∼ 4 · 103 cells/cm2 for observations at 1 – 2 DIV,

∼ 3 · 103 cells/cm2 for longer cultures.
57NBs medium: B27 (2%), L–Glutamine 200 mM (1%) and Penicillin / Streptomycin (0.05%) in Neurobasal.

Invitrogen. Filtered at 220 nm.
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concentrations as a function of the incubation time.

We summarize below some conclusive remarks about FN and LN coatings induced by different

culture medium on patterned glass substrates (see Section II.1.1 for the fabrication protocol

of these substrates).

• MEMs vs NBs medium: FN and LN coatings are observed only with MEMs medium,

i.e. in the presence of serum.

• Surface activation by O2 plasma: FN and LN concentrations are slightly increased.

• Adhesive coating with PLO: FN and LN concentrations are slightly increased by the

presence of a PLO adhesive layer on the substrates.

• 1 h, 6 h and 24 h of MEMs incubation: FN and LN concentrations are constant and the

cell confinement in the adhesive patterns is not impaired.

• 1 h, 6 h and 24 h of MEMs incubation after the cell seeding: the cell confinement in the

adhesive patterns is not impaired.

Interestingly, the surface silanization does not avoid the FN and LN deposition, even though

their concentration appears higher on the patterns exposed to the O2 plasma and/or incubated

with adhesive molecules. Nevertheless, neuronal cell confinement is not influenced.

II.2.1.4 Cell preparation for fluorescence time-lapse microscopy: transfections
and infections

Transfections by electroporation and virus infections techniques have been employed for

live-imaging experiments of GFP labeled neurons.

Electroporation

The process of electroporation is based on the application of an external electrical field

to permeabilize the cell plasma membrane and thus to introduce some substances inside, like

nucleic acids (DNA plasmids). We have employed the Neon transfection system (Invitrogen).

This system is especially adapted for primary cells compared with the traditional Amaxa Nu-

clefector system (Lonza) thanks to a new pipette chamber that generates a more uniform

electric field [22]. Moreover, this system requires only some µl of medium volume and allows

customs protocols to optimize the infected–died cell ratio. Below, the protocol we employed:

• hippocampi dissection and dissociation (refer to the Section II.2.1.1);

• centrifugation step (400 rpm, 5 min) to re-suspend cells in a concentration of 20 000

cells/µl58;

58A final concentration of ∼ 6 · 104 cells/cm2 on the substrates is replaced by the usually concentration of
∼ 4 · 104 cells/cm2 used for live-imaging at 1 – 2 DIV, taking into account an estimation of around 30% of cell
death during electroporation.
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• electroporation parameters: 1 pulse, 20 ms, 1600 V and 0.5 µm of DNA in the

culture medium without Penicillin / Streptomycin;

• cell seeding (refer to the Section II.2.1.2).

These experimental conditions have been optimized thanks to some preliminary experiments

performed during a couple of weeks spent in C. Métin’s group at the Institut du Fer à Moulin

in Paris (France). Experiments whose results are reported in this manuscript have been then

performed in G. Scita’s group at the IFOM in Milan (FIRC Institute of Molecular Oncology,

Italy).

Virus infection

Virus infections can be achieved by using retroviruses or lentiviruses. With the latter

technique, viral RNA is delivered into the genome of the host cell without the need of a

process of cell division by mitosis. Lentiviral infections are therefore particularly adapted to

neurons.

Lentivirus constructs used in our experiments have been developed in G. Scita’s group at the

IFOM in Milan (FIRC Institute of Molecular Oncology, Italy). Double infections have been

performed at 1 DIV with the following protocol:

• first infection: 10 or 20 µl in 0.5 ml (1 ml) of NBs medium for a 12–well (6–well) plate;

• changing medium after 3 h;

• second infection: 10 or 20 µl in 0.5 ml (1 ml) of NBs medium for a 12–well (6–well)

plate;

• changing medium after 3 h (overday condition) or after one night (overday / overnight

condition).

II.2.2 Pure glial cell cultures

Keeping cell cultures in DMEMs medium59 improves glial cell proliferation and leads to a

pure glial population. The protocol described in this section provides the cellular preparation

commonly employed to obtain the conditioned medium used for long term neuronal cultures.

By maintaining glial cells at confluence in NBs, this medium is enriched the nutriments (e.g

thrombospondin [23, 24]) secreted by glial cells to in particular foster synaptogenesis.

II.2.2.1 Cell seeding

Cells are obtained as described in the previous section for the mixed neuronal–glial cell

cultures (Section II.2.1), whit the difference that the dissociation step and cell seeding occur

in DMEMs medium. Cells are plated in 100 mm Petri dishes previously functionalized with a
59DMEMs medium: Fetal bovine serum (10%), L–Glutamine 200 mM (1%), Sodium pyruvate 100 mM (1%)

and Penicillin / Streptomycin (0.05%) in DMEM. Invitrogen. Filtered at 220 nm.
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PLO coating60 at concentration of ∼ 4·104 cells/cm2 in 10ml of medium (∼ 3·106 cells/P100,

P100: 100 mm Petri dish).

II.2.2.2 Cell maintenance

Medium is replaced by fresh DMEMs medium at 1 and 3 DIV. At 7 DIV cells usually reach

confluence. Then medium needs to be replaced only once a week. This preparation can be

used for preparing conditioned medium for neuron cultures or, as described below, to perform

studies on glial cells (e.g. adhesion and proliferation).

II.2.2.3 Glial cell replating

P100 petri dishes covered by confluent glial cells are washed with warm PBS (37 ◦C) and

incubated with 2 ml of Trypsin with EDTA (0.05%, Life Technologies) during 6 min at 37 ◦C.

Cells are then gently detached from the surface with a 1 ml pipette in the trypsin solution

diluted with 2 or 3 ml of warm DMEMs medium in order to stop the trypsin action. Two

options are then possible: (i) cells are re-suspended and plated at a given concentration, and

the medium is replaced after 3 h (i.e. once glial cells have adhered) in order to completely wash

the trypsin; (ii) cells are centrifuged (1000 rpm, 5 min), the trypsin containing supernatant is

removed, replaced by culture medium, and the cells are gently re-suspended and plated.

II.2.3 Fixation

Several methods of cell fixation exist. They are adapted to the antibody we used and

to the kind of microscope employed for observations (e.g. glutaraldehyde fixation creates

a stronger cross–linking of proteins inside cells and it is especially adapted for scanning

electron microscopy [25]). For the experiments reported in this manuscript, we have em-

ployed paraformaldehyde, with the following protocol: after an optional washing with warm

PBS (37 ◦C), neurons are fixed in 4% paraformaldehyde (PBS dilution) during 10 – 20 min.

Paraformaldehyde can be also directly diluted in the culture medium. Indeed, PBS can be a

stress factor for cells but it is also useful to rince the substrates from died cells and cellular

fragments. Importantly, paraformaldehyde has to be at room temperature or lukewarm, in

order to not depolymerize microtubules during fixation. Cells are then washed three times

with PBS at room temperature and used for immunofluorescence or stored at 4 ◦C in PBS. In

this case, as the paraformaldehyde can have a reversible effect, a new fixation just before the

immunofluorescence might be advisable.

For EB3 staining we have fixed cells with methanol (MetOH) during 10 min at −20 ◦C, fol-

lowed by three PBS washings of 5 min at room temperature.
60PLO concentration: 0.2 µg/cm2 diluted in DI water (15 µg in 10 ml). PLO is incubated over night at room

temperature and Petri dish surface is later dried.
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For EB1–CAMSAP2 staining we have fixed cells with methanol (MetOH) during 5 min at

−20 ◦C, followed by one PBS washing at room temperature and by a second fixation step in

4% paraformaldehyde / 4% sucrose during 5 min at room temperature, followed by three PBS

washings of 5 min at room temperature.

II.2.4 Immunofluorescence

Once cells are fixed, they can be labeled by immunofluorescence. The principle of the

immunostaining technique is to incubate cells with a first antibody that binds the target

molecule or antigen. This first (primary) antibody is produced in a specific animal. Cells are

then incubated with a secondary antibody, always labeled with a fluorophore, that recognizes

the host animal specie of the primary antibody. Primary antibodies can be incubated together,

as well as the secondary antibodies, being careful not to use primary antibodies made with

the same animal specie, otherwise the secondary antibody will label all the molecules bound

to the primary ones.

This technique requires a previous step of permeabilization and blocking of non-specific binding

of the antibodies61. Cells are first washed with PBS and immunolabeling is achieved with the

following protocol (all steps are made at room temperature):

• primary antibodies incubation, diluted in PBS–X62, during 1 h63;

• three washings in PBS, during 3 min upon a mixing platform (20 rpm);

• secondary antibodies incubation, diluted in PBS–X, during 45 – 60 min protected

from light64;

• three washings in PBS, during 3 min upon a mixing platform (20 rpm);

• Hoechst65 incubation for nuclei staining, diluted in PBS–X, during 5 min;

• short washings in PBS–X, then in PBS and finally in water.

Finally, coverslips are mounted with a drop of a mounting medium on a microscope slide and

let dried at 4 ◦C, until microscopic observations.

II.2.4.1 Antibodies employed in this work

Primary and secondary antibodies employed for the results exposed in this manuscript are

summarized in the Table below.

61Permeabilization and blocking solution: bovine serum albumin (BSA, 0.2 – 2%) and Triton X–100 (0.1 –
0.2%) in PBS. Incubation during 10 – 30 min at room temperature. Of note, Triton X–100 is a detergent that
can be replaced with the Tween–20.

62PBS–X: Triton X–100 (0.1%) in PBS. As an alternative, antibodies can be diluted in a 1 – 2% BSA solution
in PBS.

63As an alternative, primary antibody can be incubated overnight at 4 ◦C.
64An optional fixation in 4% paraformaldehyde during 5 min can be achieved to fixe the secondary antibody.
65Hoechst 33258, an DNA binding, dilution employed: 1 µg/ml.
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Indirect immunofluorescence
Primary antibodies

Target molecule Target localization Host animal Dilution
Brand or
Kindly

provided by
Tyr–Tubulina Microtubules Rat 1:850 – 1:1000 Laboratory product
βIII tubulin Rabbit 1:1000 C. Hoogenraad

Monoclonal Tau–1 Axon specific
MAPs Mouse 1:500 Millipore

Synapsin I Synaptic vesicles Rabbit 1:200

AnkyrinG Axonal initial
segment Mouse 1:200 C. Hoogenraad

Actin Actin Mouse 1:200

MAP2 Dendrites Mouse 1:500 Invitrogen
Chicken 1:10000

C. HoogenraadEB1 End–binding
protein of

microtubules

Mouse 1:100
EB3 Rabbit 1:400

CAMSAP2 Rabbit 1:300

GFAP Astrocyte
cytoskeleton Rabbit 1:250 A. Triller

N–cadherin Cell-cell adhesions Mouse 1:200 D. GulinoVinculin Focal adhesions Mouse 1:300
Myosin heavy chain Myotubes C. Picart

Fibronectin Protein
of adhesion Rabbit 1:100 D. Gulino

Laminin Protein
of adhesion Rabbit 1:100 Sigma

GFP GFP Rabbit G. Scita
Secondary antibodies

Target animal Fluorophore Host animal Dilution Brand

Mouse Alexa Fluor 488 Goat 1:300 Invitrogen
Cyanine 3 Goat 1:300 Invitrogen

Rabbit Alexa Fluor 488 Goat 1:300 Invitrogen
Alexa Fluor 647 Goat 1:400

C. HoogenraadAlexa Fluor 568 Goat 1:400
Chicken Alexa Fluor 647 Goat 1:400
Rat Alexa Fluor 488 Donkey 1:300 Invitrogen

Direct immunofluorescence
Target molecule Target localization Fluorophore Dilution Brand

Phalloidin Actin Alexa Fluor 594 1:150 Invitrogen
DNAb Nuclei Blue 1:1000 Invitrogen

a YL1/2 antibody. It detects the tyrosinated form of the α-tubulin subunit.
b Hoechst or DAPI antibody.
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Indirect immunofluorescence includes primary and secondary antibodies, while direct im-

munofluorescence is based on antibodies chemically linked to a fluorophore. In this case,

antibodies are incubated with the secondary ones.

In the Table, we have reported the target molecule and its localization, the host animal used

for the antibody production, the used dilutions for cell labelings and the brand name or the

name of the group leader that has kindly provided the antibody for our experiments.

II.3 Microscopy observations

II.3.1 Time-lapse experiments

Images of living neurons were acquired using several inverted microscopes: Olympus IX71,

Leica confocal spinning disk microscope (SP8 SMD), Zeiss Axiovert 200M, Nikon Eclipse Ti

(equipped with an UltraView VoX spinning disk confocal unit, Perkin Elmer), and Leica AM

TIRF MC (Total Internal Reflection Fluorescence) microscopes. All were equipped with a

heated workplate or incubator, a humidifier, a CO2 delivery system and a motorized stage to

allow multi-position and multi-condition acquisitions. Microscopes were usually piloted by the

Metamorph or the Cell̂ R softwares.

Time-lapse observations requires some compromises. Typically the interval between two acqui-

sitions has to be (i) sufficiently short to follow the event dynamics (e.g. waves along the neu-

rites) and (ii) sufficiently long in order to reduce the stress induced by phototoxicity. Neurons

have been usually observed to follow the waves propagations along the neurites (∼ 3 µm/min),

with an interval of 2 – 4 min and a duration of 4 – 12 h. Time-lapse experiments with glial

cells have been performed to observe their proliferation, that occurs on a time window in the

order of hours. In this case, we have used an interval of 15 – 30 min and duration of 24 – 72 h.

II.3.2 Fixed cells

Optical microscopes

Isolated fixed and eventually immunostained neurons were analyzed by phase contrast or

fluorescence imaging with a right Olympus BX51WI or an inverted Olympus CKX41 micro-

scope, both piloted by the Cell̂ B software.

Confocal microscopes

Fixed and immunostained cells were observed with an higher resolution using Leica TCS

SP2 microscopes.
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Atomic force microscope (AFM)

AFM investigations of neuron 3D morphology were performed using JPK Nanowizard III

microscope (JPK Instruments AG, Berlin, Germany). The AFM head is coupled to a commer-

cial inverted optical microscope (Axio Observer.A1, Carl Zeiss, Göttingen, Germany). Analyses

were performed in PBS using Bruker DNP-10 cantilevers (Bruker probes, Berlin, Germany),

with a nominal spring constant of 0.35 N/m. Before each experiment, we calibrated the me-

chanical properties of the tip using the JPK software. All images were obtained by working in

the quantitative imaging (QI) modality, an evolution of the force-volume mode in which the

AFM tip is placed in fast oscillation over the sample and the deformation of the cantilever

is recorded to reconstruct an image formed by a large number of force distance (FD) curves.

Typical images contain up to 256x256 pixels and, for every pixel, 2048 points per FD curves

were collected. The tip-sample interaction was limited to a maximum cantilever deflection of

3 nm (i.e. 1 nN).

Digital holographic microscope (DHM)

Phase images of neurons were acquired with a transmission Digital Holographic Microscope

(DHM T1000, Lyncée tec, Switzerland).

II.4 Analysis methods

II.4.1 Neurite length of isolated cells

Cells growth on micropatterned substrates were recognized as "isolated" when separated

from neighbor cells by at least ∼ 30 µm, in order to discard cells whose elongation is limited

by external factors. In the case of patterns with adhesive disks for the cell body localization,

cells were selected only if about half of the nucleus was on the disk. The neurite length is

measured from the edge of the soma to the extremity of the neurite tip.

II.4.2 Statistical tests

The statistical analyses of our experimental data have been performed with the GraphPad

Prism software that provides a large panel of statistical tests. In our studies, we often deal with

large populations, i.e. samples greater than 100 cells. As most of biological data, measured data

follow bell-shaped distributions. When samples are huge, they can be often approximated to

Gaussian distributions and parametric tests are quite robust. However, in order to also process

data obtained on smaller samples, we have mainly adopted non parametric tests. These tests

make few assumptions about the distribution of the data and result adapted both for Gaussian

distributions and for smaller samples. We will describe in this section the main tests we used
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depending on the type of available data.

♦ Mann–Whitney test

The unpaired nonparametric Mann–Whitney test was employed to compare for example

two series of cells belonging to the same culture batch but experiencing different growth

conditions (for example two kinds of patterns). Samples are independent and may have

different sizes.

♦ Kruskal–Wallis test

The nonparametric Kruskal–Wallis test was employed as an extension of the Mann–

Whitney test to compare more than two groups of samples.

♦ Fisher’s and Chi-square tests

Theses tests were used to compare frequency values. Contingency tables are created,

where the categories defining the rows and columns must be mutually exclusive. Theses

tests can for example be dedicated to the comparison between the polarization rates

between two populations of cells grown on two different types of patterns or to a random

condition (i.e. to a probability of 50%). For series of small sizes, the Fisher’s test is

considered more accurate than the Chi-square test.

♦ Linear regression: slope comparison

Linear trends are fitted by linear curves with methods based on the least squares ap-

proach. Slopes are compared between two similar interpolation fits or with a null slope

in order to identify a significant linear trend.

Data sets collected from equivalent experimental conditions and configurations in different

samples and cell cultures are pooled together only once checked that they are not significantly

different.

In all these cases, the null hypothesis when comparing two populations is that they are the

same. In this manuscript, we will report the experimental results giving the two-tailed P value

associated to the adapted statistical test. P values provide an indication of the probability

that the null hypothesis is true, with a significance level depending on the confidence interval.

Commonly, a 95% of confiance threshold is chosen and it indicates how precisely the P value

is determined. We adopt the common asterisk code to describe values levels of statistical

significance according to the table below.
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P value Code Interpretation
< 0.001 *** Extremely significant

0.001 to 0.01 ** Very significant
0.01 to 0.05 * Significant

> 0.05 ns Not significant

Table II.2: Asterisk code employed to describe values levels of statistical significance.
Threshold values are set by the conventional significance levels associated to the confidence intervals
of 99.9%, 99% and 95%.

II.4.3 Neurite volume: atomic force and digital holographic microscopes

Neurite 3D profiles were measured and compared using atomic force (AFM) and digital

holographic (DHM) microscopes. Figure II.21 illustrates typical cartographies obtained with

both microscopes and the method adopted on the corresponding neurite height profiles to

calculate the neurite volume.

Figure II.21: AFM and DHM imaging of neurons on patterned substrates. A) AFM
map of one neurite of a neuron on a 2 µm wide stripe pattern. The red line represents the cross
section and the dashed lines delimit the zone (± 1 µm) where the mean is calculated to get
the neurite height profile. B) Height profile of the cross section represented in (A). C) DHM
phase image of a neuron on a 2 µm wide stripe pattern. The green line represents the cross
section (± 1 µm) where the mean is calculated to get the neurite height profile. Scale bar:
10 µm. D) Phase profile of the cross section represented in (C). Error bars denote standard
deviations.

AFM cartographies were analyzed with the SPIP software. Cross section profiles were

traced on neurites every 5 µm from the end of the soma to the end of the neurite, with

a mean of 2 µm along the neurite. To adjust these profiles, we treated them by a "plane

correction". They provided us mean surfaces of the neurite cross sections at different points,
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used as indications of the neurite thickness along its length. The total neuritic volume could

be accessed by treating the whole length of the neurite. DHM phase acquisitions were saved

as text files and profiles were traced in equivalent positons along the neurite, as reported for

AFM data.

II.4.4 Waves detection

Waves are very dynamic structures, and therefore of very changeable morphology. We thus

used a manual recognition of their positions like in [26]. Only propagative membrane defor-

mations on at least three consecutive images are identified as actin waves. Waves being very

extended structures, the determination of their coordinates is intrinsically affected by a large

uncertainty. We nevertheless retained as the most reliable and reproducible structural mark

the boundary between a relatively dense, central area, and the lamellipodium–like structure,

more transparent, at the front of the wave (Figure II.22).

Figure II.22: Actin wave in a neuron on an adhesive pattern of 2 µm wide stripes spaced of
disks for the soma localization. Insets show the zoomed areas with wave. Numbers indicate in
minutes the respective acquisitions of the time-lapse experiment. Only propagative membrane
deformations on at least three consecutive images are identified as actin waves. Then, the
position of this structure is determined manually from the boundary between a relatively
dense and central area and the lamellipodium–like structure, more transparent, at the front of
the actin wave (white arrows). A similar manual recognition is performed to follow the neurite
tip. Scale bars: 14 µm.

From each video, we created a text file that recapitulates the coordinates of the soma

center, the neurite tips and the waves. Zeros encode the absence of waves and authorize an

automatic recognition of the occurrence of these structures through a set of routines written

in GNU Octave [27]. These routines were then used to automatically extract the following

informations:

• the wave and soma instantaneous and mean speeds (from linear fits);

• the total distance traveled by wave and soma;

• the neuritic lengths.

In time-lapse acquisitions of GFP–infected or transfected neurons we identified waves by differ-

ential interference contrast (DIC) microscopy or by higher concentrations of fluorescent actin

associated to waves (Lifeact staining).
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II.4.5 Optical tweezers

Optical tweezer experiments were performed with a Nikon eclipse TE2000 confocal micro-

scope, equipped with a custom built optical tarp using a Ytterbium fiber laser at 1.064 nm

(IPG Photonics). Carboxylated 2.8 µm-diameter beads (Spherotech) are poured onto the neu-

ronal cultures. Microbeads are individually trapped by optical tweezers, whose principle is

based on the attractive force played by a focused laser beam on the microbead. Beads are

moved close to the cell and immobilized until an adhesive contact with the membrane is built.

By pulling the bead away from the neurite a membrane tether is created, whose length is then

gradually increased in the perpendicular direction. The force required to keep the microbead

in a same position corresponds to the local membrane tension associated to the tether position

along the neurite.

II.5 Cell positioning by magnetic traps

We will describe in this section some methods developed during this PhD in order to

improve the rate of cells correctly positioned on the adhesive patterns. Enlarging locally

adhesive stripes to form 15 µm adhesive disk increases the probability to retain soma in these

areas and thus to impose controlled initial conditions (Figure II.23.A). However, most cells

fall and attach outside the disks and further elongate to adopt different shapes than the ones

initially expected (Figure II.23.B).

Figure II.23: Neurons on patterned substrates. Adhesive pattern module (green) is lim-
ited by the dashed square: two different stripe widths with a disk for the soma localization.
A) Neuron (red) correctly growing on the pattern module, with the soma in correspondance of
the disk. B) Neuron (red) growing outside the pattern module, resulting useless for analyses.

With standard methods, we can estimated the percentage of cells correctly positioned on

the adhesive patterns to around 20% of all adherent cells. Magnetic patterned substrates have

shown to be a promising tool to improve the control of the cell localization by significantly

increasing for example the probability to fill a 3-neuron network [28]. We describe below two

techniques we have developed during this PhD, based on the magnetic cell trapping either on

PDMS or on glass substrates.
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II.5.1 Micropatterned hard magnetic particles in PDMS

The first magnetic cell trapping method has been developed by the group of N. Dempsey

at the Néel Institute [29]. The possibility to trap cells functionalized with superparamagnetic

beads by micropatterned hard magnets embedded in a PDMS matrix has then been demon-

strated. The fabrication principle is based on a patterning technique, named "micro Magnetic

Imprinting" (µMI) [30], in which the local fields produced by a "magnetic hard mold" are

used to imprint micron–scaled patterns of magnetic particles (average diameter ∼ 16 µm) in

a non-magnetic soft matrix (PDMS in this case). The main steps of fabrication are reported

in Figure II.24.

Figure II.24: Micropatterned hard magnetic films on PDMS. Schematic diagram of the
micro magnetic imprinting process (side view perspective): 1) hard magnetic particles sprin-
kled onto master structure and magnetophoretically concentrated at the interfaces between
neighbouring micro-magnets, 2) polymer poured over the hard magnetic powders to form a
matrix, 3) the solid composite is peeled off the master structure.

We have validated this method with several cell types, like HEK293, NIH/3T3 and glial

cells66.

Nano- and microparticles

Cells are functionalized with superparamagnetic nano- or microbeads, respectively: nanopar-

ticles passivated with silica (diameter = 200 nm, SiMAG-Silanol, Chemicell GmbH) or polystyrene-

based red fluorescent beads (diameter = 2.8 µm, Fe-oxide inclusions, Micro-particles GmbH).

Nanobeads present the advantage to be potentially internalized by endocytosis in the whole

cell volume. Their interaction with the micromagnets on the substrate?s surface would results

into a more homogeneous magnetic attraction at the cell scale compared to the configuration

of isolated microbeads. In this way, the probability of magnetic trapping should increase.

However, brain cells are characterized by a low rate of endocytosis and the possible effects of

the nanobeads on the biological functions are still poorly known.

Cell functionalization

In a first step, a solution containing 5 · 1010 nanobeads or 107 microbeads is mixed for 7 h

into 1ml of PLO (100 µg/ml, Sigma). After centrifugation (4000 rpm, 5min), the supernatant

66HEK293 is a Human Embryonic Kidney cell line, NIH/3T3 is a mouse embryonic fibroblast cell line and
glial cells comes from primary mouse embryonic brain cultures.
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is removed and the beads are re-suspended in 5 ml of culture medium (DMEM GlutaMAX

supplemented with 10% fetal bovine serum and 1% Peni-Streptomycine, Invitrogen). This

solution is then poured onto a monolayer of cells at the bottom of a 100 mm Petri dish (ratio

of nanobeads and of microbeads to cells ∼ 103 and ∼ 3 respectively). The cell preparation

is left 8 h to allow the PLO coated beads to attach to the cells. The cells are then detached

using 0.05% Trypsin–EDTA (Invitrogen).

Cell solution preparation

After a step of centrifugation (1000 rpm, 5 min), the trypsin containing supernatant is

removed, replaced by culture medium, and the tagged cells are gently re-suspended using a

1 ml pipette. Hoechst stain is added (1:500) to label cell nuclei and therefore to allow a tracing

of live cells trapping events on µMI structures by fluorescence.

Different methods can be then employed to trap cells on magnetic patterned substrates, as

described below using HEK293, NIH/3T3 and glial cells.

Cell trapping methods

For experiments with NIH/3T3 and glial cells, tagged with microbeads, a solution of cells

(250 000 cells/ml) was dropped onto the surface of PDMS-based µMI samples placed upon

a mixing platform (Rotamax120, 50 rpm, 3 min) to favour the passage of cells close to the

magnetic traps, and to prevent sedimentation in random positions. Then cells were fixed using

4% paraformaldehyde (Figure II.25.A–B). Based on the bead size and the volume content of

magnetic nanoparticles associated to simulations of the magnetic field gradient, the trapping

force was estimated to be on the order of about 10 nN.

For experiments with nanoparticles and HEK293 cells (a cell type known for its endocytosis

properties), the cell suspension (∼ 5 · 106 cells/ml) was introduced into a microfluidic PDMS

channel (dimensions: 38 µm x 500 µm x 1.2 mm) to guide the cells above the magnetic

patterns at a flow rate of approximately 2 – 3 µl/min. The trapping force was estimated to

be about 0.4 nN . Of note, cells could be removed from the magnetic traps by increasing the

flow rate by approximately a factor of 5 (Figure II.25.C).

The images of Figure II.25 clearly demonstrate that the magnetically functionalized cells

are attracted and trapped by the regions of maximum magnetic field and field gradient at the

surface of the µMI structure67.

Of note, the stray fields produced by isolated hard magnetic particles embedded in the µMI

matrix, are insufficient to trap the functionalized cells, though some do trap free magnetic

beads. This illustrates the influence of the pattern size on trapping efficiency.

67Field gradients in the range of 104 − 105 T/m are estimated for distances in the range 5 µm − 100 nm
above the µMI 100 x 100 µm structures.
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Figure II.25: Trapped cells on micropatterned hard magnetic films on PDMS. Super-
paramagnetic functionalized cells are trapped above the NdFeB powder patterns in the PDMS
substrate. A – B) NIH/3T3 (A, fluorescence image) and glial (B, superposition of bright
field and fluorescence images, main image and zoom) cells attached to polystyrene microbeads
(red, φ = 2.8 µm). In A, the µMI structure is illustrated by the bright field image in the
inset. C) Superposition of bright field and fluorescence images of HEK293 cells functionalized
by endocytosis with nanobeads (φ = 200 nm) in a microfluidic PDMS channel (dimensions:
38 µm x 500 µm x 1.2 mm). Blue: Hoechst, nuclei. Scale bars: 50 µm.

II.5.2 Micropatterned soft magnetic particles in glass

The second magnetic cell trapping method has been developed to create soft magnetic

patterns on glass substrates. The principle is to create cylindrical cavities in the glass substrate

and to fill them with superparamagnetic microbeads. The methodology used to localize the

microbeads on the surface is the capillary assembly process developed by L. Malaquin at the

Curie Institute (Paris, France) [31]. Cells are functionalized with superparamagnetic beads

as already described for the first method. the rotamax-assisted or the microfluidic methods

to trap cells can be indifferently adopted for this kind of magnetic substrates. As magnetic

patterns are built from superparamagnetic particles, the application of a permanent magnet

below the substrate is in this case necessary to create the magnetic force required during cell

seeding. On the other hand, once cells have been trapped, the permanent magnet can be

removed and cells are no more exposed to the magnetic field.

We describe below the methodology developed to create soft magnetic patterns on glass

coverslips.

Glass etching

• MicroChemicals AZ4562 photoresist spinning68;

• annealing step at 95 ◦C on a hotplate during 2 min;

• exposure through a mask (UV dose necessary: 56 mJ · cm−2);

• photoresist development69 during 1 min.

• second annealing step at 120 ◦C on a hotplate during 5 min;

683000 rpm/s2 of initial acceleration, 3000 rpm of speed during 30 s, 7 µm of thickness.
69Pure Microposittm Developer, Shipley.
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• high power ion etching of glass70;

• surface cleaning with acetone with a cleanroom wiper (dust-free, microfiber) and a finale

O2 plasma during 2 min.

Samples are then silanized in order to improve the efficiency of the capillary assembly process.

Samples are finally annealed at 200 ◦C during 1 h in order to heat the polystyrene shell of the

microbeads deposited into the cavities in order to maintain them as a whole inside the glass

holes. Doubling the cavity diameter from ∼ 3 µm to ∼ 6 − 7µm is a easy and an optional

solution that gives the possibility to localize up to three microbeads in the same cavity and

thus increase the magnetic attractive efficiency. Of note, this technique can be also adapted

with pure ferromagnetic particles in order to increase the magnetic force.

The advantage of using glass coverslips is the practical aspects associated to this kind of

substrate both for adhesive pattern fabrication by photolithography (Figure II.26) and for cell

observations under a microscope stage. Thus, this technique is a promising tool to improve

the control of the cell localization on adhesive patterns.

Figure II.26: Soft magnetic microbeads patterns in glass coverslip. Superparamagnetic
polystyrene microbeads (diameter 2.8 µm) are assembled in patterns of etched cavities in glass.
A) Optical image of photoresist patterns obtained by photolithoghraphy after an alignement
step on patterns of magnetic particles. Microbeads are localized in the photoresist free regions
of the center of the disk and at the crossing of the stripes. The black square delimits a region
where a bead is inserted in a disk. Scale bar: 50 µm. B) Scanning electron microscope image
of the region inside the black square in (A). Adhesive pattern (PLO coating) showing a 2 µm
wide stripe pattern and a magnetic microbead located in a 15 µm in-diameter disk to anchor
the cell body.

70Applied Materials eMAX™ magnetically-enhanced reactive ion etcher (MERIE). "Dry Clean" with a O2 − HI
plasma on SiO2 to create a "start point" condition of the chamber. "eMAX quartz" program (40 sccm of CF4, 10 sccm
of CH2F2, 800 W , 100 mTorr) during 120 s on samples fixed to a Si wafer. This cycle is repeated a number of time
proportional to the depth required (etching rate ∼ 430 nm/min).
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II.6 Summary

In this chapter we have presented the main techniques employed during this work. We have

first described the methods of fabrication of chemical and physical patterns. For that, tech-

niques such as photolithography on glass and photopolymerization of polyacrylamide hydrogels

have been used. Some variations from standard protocols have been discussed. For example,

some alternative surface chemistry with adhesive and non-adhesive patterns have been inves-

tigated in the perspective of long term neuronal cultures or to achieve a strong confinement of

non neuronal cells, like glial cells.

The protocols to obtain primary brain cells have been described, as well as the techniques

of patterned coverslip processing, including the list of the antibodies employed for the results

described in the following chapters. The variety of techniques and microscopes (standard and

non standard) employed in this work reflect a respective interplay between these tools and the

scientific issues. Indeed, if cellular biophysics gains from the existence of these tools that may

contribute to open new approaches and questions, biological experimental conditions encourage

the development of new techniques.

The analysis methods used to obtain or process the results exposed in the following chap-

ters have been also described. Finally we have presented two techniques to control the cell

positioning by magnetic traps, either on PDMS or on glass substrates. Some experiments with

different cell types have been reported, that validate these tools and show their potential to

obtain an better control of cell localization on chemical patterns during the cell seeding step.

A good mastering of the methodologies would be very important to obtain reproducible

experimental conditions and robust results. Moreover, well-defined and reproducible protocols

usually lead to a gain of time during experiments. Let us remark, that such a robustness

would pave the way to more elaborated or ultimately automatic protocols, and even to new

techniques.



102 Chapter II. Materials and Methods

Bibliography

[1] Joseph M Corey and Eva L Feldman. Substrate patterning: an emerging technology for
the study of neuronal behavior. Experimental neurology, 184:89–96, 2003. 40, 62, 65

[2] Y Ikegaya, Y Itsukaichi-Nishida, M Ishihara, D Tanaka, and N Matsuki. Distance of target
search of isolated rat hippocampal neuron is about 150 µm. Neuroscience, 97(2):215–217,
2000. 65, 84

[3] Teresa Esch, Vance Lemmon, and Gary Banker. Local presentation of substrate molecules
directs axon specification by cultured hippocampal neurons. The Journal of neuroscience,
19(15):6417–6426, 1999. 28, 41, 67, 167

[4] Ning-Ping Huang, Roger Michel, Janos Voros, Marcus Textor, Rolf Hofer, Antonella Rossi,
Donald L Elbert, Jeffrey A Hubbell, and Nicholas D Spencer. Poly (l-lysine)-g-poly (ethy-
lene glycol) layers on metal oxide surfaces: surface-analytical characterization and resis-
tance to serum and fibrinogen adsorption. Langmuir, 17(2):489–498, 2001. 69, 70

[5] Ammar Azioune, Marko Storch, Michel Bornens, Manuel Théry, and Matthieu Piel. Sim-
ple and rapid process for single cell micro-patterning. Lab on a chip, 9(11):1640–1642,
2009. 69

[6] Sébastien G Ricoult, Jennifer S Goldman, David Stellwagen, David Juncker, and Timo-
thy E Kennedy. Generation of microisland cultures using microcontact printing to pattern
protein substrates. Journal of neuroscience methods, 208(1):10–17, 2012. 40, 69

[7] Ammar Azioune, Nicolas Carpi, Qingzong Tseng, Manuel Thery, and Matthieu Piel. Pro-
tein micropatterns: A direct printing protocol using deep uvs. Methods in cell biology,
97:133–146, 2010. 72

[8] Ibrahim B Malham and Lionel Bureau. Density effects on collapse, compression, and
adhesion of thermoresponsive polymer brushes. Langmuir, 26(7):4762–4768, 2009. 73, 74

[9] Rigoberto C Advincula, William J Brittain, Kenneth C Caster, and Jürgen Rühe. Polymer
brushes. Wiley Online Library, 2004. 73

[10] Luca Lanotte, Giovanna Tomaiuolo, Chaouqi Misbah, Lionel Bureau, and Stefano Guido.
Red blood cell dynamics in polymer brush-coated microcapillaries: A model of endothelial
glycocalyx in vitro. Biomicrofluidics, 8(1):014104, 2014. 73

[11] Adam J Engler, Shamik Sen, H Lee Sweeney, and Dennis E Discher. Matrix elasticity
directs stem cell lineage specification. Cell, 126(4):677–689, 2006. 33, 76

[12] Penelope C Georges, William J Miller, David F Meaney, Evelyn S Sawyer, and Paul A
Janmey. Matrices with compliance comparable to that of brain tissue select neuronal over
glial growth in mixed cortical cultures. Biophysical journal, 90(8):3012–3018, 2006. 33,
34, 76, 180

[13] Robert J Pelham and Yu-li Wang. Cell locomotion and focal adhesions are regulated by
substrate flexibility. Proceedings of the National Academy of Sciences, 94(25):13661–13665,
1997. 76

[14] Penelope C Georges and Paul A Janmey. Cell type-specific response to growth on soft
materials. Journal of Applied Physiology, 98(4):1547–1553, 2005. 76, 180

[15] Danielle Gulino, Abbas Mgharbel, and Alice Nicolas. Procédé de preparation d’une
matrice en hydrogel par photopolymerisation, June 6 2013. WO Patent App.
PCT/EP2012/066,781. 76, 150

[16] Joyce Y Wong, Alan Velasco, Padmavathy Rajagopalan, and Quynh Pham. Directed
movement of vascular smooth muscle cells on gradient-compliant hydrogels. Langmuir,
19(5):1908–1913, 2003. 76

[17] Justin R Tse and Adam J Engler. Preparation of hydrogel substrates with tunable me-
chanical properties. Current protocols in cell biology, pages 10–16, 2010. 78, 152



II.6. Bibliography 103

[18] L Sirghi, J Ponti, F Broggi, and F Rossi. Probing elasticity and adhesion of live cells by
atomic force microscopy indentation. European Biophysics Journal, 37(6):935–945, 2008.
79

[19] Gary A Banker andWMaxwell Cowan. Rat hippocampal neurons in dispersed cell culture.
Brain research, 126(3):397–425, 1977. 84

[20] Stefanie Kaech and Gary Banker. Culturing hippocampal neurons. Nature protocols,
1(5):2406–2415, 2007. 28, 84

[21] Thomas Fath, Yazi D Ke, Peter Gunning, Jürgen Götz, and Lars M Ittner. Primary
support cultures of hippocampal and substantia nigra neurons. Nature protocols, 4(1):78–
85, 2008. 85

[22] Jeong Ah Kim, Keunchang Cho, Mi Sun Shin, Won Gu Lee, Neoncheol Jung, Chanil
Chung, and Jun Keun Chang. A novel electroporation method using a capillary and
wire-type electrode. Biosensors and Bioelectronics, 23(9):1353–1360, 2008. 86

[23] Adam S Asch, LL Leung, Joan Shapiro, and Ralph L Nachman. Human brain glial cells
synthesize thrombospondin. Proceedings of the National Academy of Sciences, 83(9):2904–
2908, 1986. 87

[24] Karen S Christopherson, Erik M Ullian, Caleb CA Stokes, Christine E Mullowney, Jo-
hannes W Hell, Azin Agah, Jack Lawler, Deane F Mosher, Paul Bornstein, and Ben A
Barres. Thrombospondins are astrocyte-secreted proteins that promote cns synaptogene-
sis. Cell, 120(3):421–433, 2005. 87

[25] JD Eisenback. A comparison of techniques useful for preparing nematodes for scanning
electron microscopy. Journal of nematology, 18(4):479, 1986. 88

[26] Gordon Ruthel and Gary Banker. Role of moving growth cone–like “wave” structures in
the outgrowth of cultured hippocampal axons and dendrites. Journal of neurobiology,
39(1):97–106, 1999. 27, 95, 133, 134

[27] Ghislain Bugnicourt. Adhésion, croissance et polarisation de neurones sur substrats micro-
et nano-structurés. PhD thesis, Grenoble, 2011. 95

[28] Cécile Delacour, Ghislain Bugnicourt, Nora M Dempsey, Frédéric Dumas-Bouchiat, and
Catherine Villard. Combined magnetic and chemical patterning for neural architectures.
Journal of Physics D: Applied Physics, 47(42):425403, 2014. 39, 96

[29] NM Dempsey, D Le Roy, H Marelli-Mathevon, Gorky Shaw, A Dias, RBG Kramer, M Kus-
tov, LF Zanini, C Villard, K Hasselbach, C Tomba, and F Dumas-Bouchiat. Micro-
magnetic imprinting of high field gradient magnetic flux sources. Applied Physics Letters,
104(26):262401, 2014. 39, 97

[30] Nora M Dempsey and Frédéric Dumas-Bouchiat. Procédé de fabrication d’un film
comprenant des microstructures magnétiques tridimensionnelles, November 29 2013.
FR20120054667, US61/650,398. 97

[31] Laurent Malaquin, Tobias Kraus, Heinz Schmid, Emmanuel Delamarche, and Heiko Wolf.
Controlled particle placement through convective and capillary assembly. Langmuir,
23(23):11513–11521, 2007. 99





Chapter III

Neuronal growth under chemical
adhesive constraints

Contents
III.1 How neurite width controls neuronal growth . . . . . . . . . . . . . 112

III.1.1 Neurite growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

III.1.2 Neuronal polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

III.1.3 Neurite volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

III.1.4 Summary about the influence of neurite width in neuronal growth . . 123

III.2 Behind the role of the neurite width in the axonal specification . 124

III.2.1 Changing the adhesive width along a same neurite . . . . . . . . . . . 124

III.2.2 About axonal and dendritic markers . . . . . . . . . . . . . . . . . . . 129

III.2.3 Summary about our biophysical approach of neuronal polarization . . 132

III.3 Growth cone like waves along neurites . . . . . . . . . . . . . . . . . 133

III.3.1 Neurite elongation and neuronal polarization: which mechanisms? . . 133

III.3.2 Neurite width influences wave characteristics . . . . . . . . . . . . . . 133

III.3.3 Waves as force generating structures . . . . . . . . . . . . . . . . . . . 140

III.3.4 Summary about wave dynamics . . . . . . . . . . . . . . . . . . . . . . 158

III.4 Molecular high resolution investigation . . . . . . . . . . . . . . . . 160

III.4.1 Actin structure and effectors . . . . . . . . . . . . . . . . . . . . . . . 161

III.4.2 Microtubules organization and associated proteins . . . . . . . . . . . 162

III.4.3 Summary about waves and molecular aspects . . . . . . . . . . . . . . 165

III.5 Toward controlled neuronal networks . . . . . . . . . . . . . . . . . 166

III.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

105





107

Chapitre III : résumé

Dans ce chapitre nous présentons les résultats expérimentaux portants sur la croissance

contrôlée de neurones sous contraintes géométriques d’adhérence sur des substrats microstruc-

turés. Deux résultats majeurs sont obtenus. Premièrement, la maîtrise parfaitement reproduc-

tible de la localisation de l’axone par le simple contrôle de la largeur neuritique, via le contrôle

de la largeur des motifs de molécules d’adhérence à la surface des substrats. Un modèle théo-

rique est proposé, qui reproduit les mesures quantitatives de la croissance neuritique en fonction

de la géométrie des motifs d’adhérence. Ce modèle prédit l’existence d’une longueur critique au

delà de laquelle la polarisation axonale est possible. Deuxièmement, nous démontrons la corré-

lation entre la fréquence d’émission des vagues d’actine dans les neurites et la vitesse de pousse

des neurites et, par conséquence, de la polarisation neuronale. Ces deux résultats constituent

un apport important pour la réalisation de réseaux neuronaux in vitro et la compréhension de

la polarisation neuronale in vivo au cours du développement du cerveau.
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List of abbreviations and nomenclatures

AFM . . . . . . . . . . . . . . . . . . . . . . Atomic Force Microscope

AIS . . . . . . . . . . . . . . . . . . . . . . . . Axonal Initial Segment

AnkG . . . . . . . . . . . . . . . . . . . . . . AnkyrinG

CNS . . . . . . . . . . . . . . . . . . . . . . . Central Nervous System

DHM . . . . . . . . . . . . . . . . . . . . . . Digital Holographic Microscope

DIV . . . . . . . . . . . . . . . . . . . . . . . Days In Vitro

DRG . . . . . . . . . . . . . . . . . . . . . . . Dorsal-Root Ganglia neurons

MAPs . . . . . . . . . . . . . . . . . . . . . Microtubule–Associated Proteins

NS . . . . . . . . . . . . . . . . . . . . . . . . . Not Significantly different

PA . . . . . . . . . . . . . . . . . . . . . . . . . PolyAcrylamide

PDMS . . . . . . . . . . . . . . . . . . . . . PolyDiMethylSiloxane

PIV . . . . . . . . . . . . . . . . . . . . . . . . Particle Imaging Velocimetry

PLL . . . . . . . . . . . . . . . . . . . . . . . . Poly-L-lysine

PLO . . . . . . . . . . . . . . . . . . . . . . . Poly-ornithine

PNS . . . . . . . . . . . . . . . . . . . . . . . Peripheral Nervous System

PTV . . . . . . . . . . . . . . . . . . . . . . . Particle Tracking Velocimetry

SD . . . . . . . . . . . . . . . . . . . . . . . . . Standard Deviation

SEM . . . . . . . . . . . . . . . . . . . . . . . Standard Error of the Mean

TFM . . . . . . . . . . . . . . . . . . . . . . . Traction Force Microscopy

x–x . . . . . . . . . . . . . . . . . . . . . . . . Patterns of simple stripes, 2 branches

x:x, x:x:x, x:x:x:x . . . . . . . . Patterns with a 15 µm adhesive disk, 2, 3 and 4 branches
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Mature neurons clearly present a differentiation in the morphology of the neurites depending

on their functions. Dendrites appear shorter than axons and organized in a dense ramifica-

tion adapted to collect the informations from other neurons. Whereas axons are longer and

thinner in order to reach also far neurons, muscles or glands, and thus to transmit the elec-

trical and chemical signals. However, it is still unclear how developing neurons control their

morphology and how this parameter participates in the establishment of neuronal polarization.

In the present work, we have investigated these issues by imposing morphological con-

straints to developing neurons. As our interest was focused on the establishment of the neuronal

polarization, we have mainly studied the neuron growth until the three first stages of develop-

ment in vitro (see Figure I.10). Typically, that corresponds to 3 – 4 Days In Vitro (DIV).

We have firstly played on the control of the neurite width to quantify how this element influ-

ences the neuron growth: the neurite 2D elongation and polarization as well as the neurite 3D

growth, i.e. the volume. Then we have deeper investigate this parameter that have shown to

be crucial in the neuron growth. Looking for the cell response to the control of the neurite

width at the neurite level, we have achieved the development of a theoretical model putting in

relation the neuronal morphology and the polarization process.

Then, the dynamics of so-called "waves" emitted from the soma and transmitted along the

neurites has been studied for the role of these structures associated to the neurite growth.

These analyses, again under a control of the neurite width, have led to a minimal model pro-

viding a possible explication at the base of the emission of these waves.

A section of this chapter will be dedicated to the forces associated to the propagation of the

waves and then to a molecular high resolution investigation of the cytoskeletal organization

when a wave is emitted.

We finally conclude with an application of this study for controlled neuronal networks in vitro.

Methodology

We have employed chemical adhesive micropatterns to constrain neuronal shapes. This

control of the geometry of adhesion allows to dissect the link between morphologies and devel-

opment.

In vitro hippocampal neurons developing on fully adhesive surfaces generate from their soma

about four neurites on average [1]. The characteristic width of these branches is 1 – 2 µm.

We have diverted these spontaneous morphological characteristics using various geometries of

poly-L-lysine (PLL) or poly-ornithine (PLO) adhesive micropatterns.

We have first chosen micronwide stripes as the simplest pattern in order to analyze and quan-

tify a few features of neuron development like length and polarization. In this configuration,
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neurons are constrained to generate two neurites along different stripe widths, as represented

in Figure III.1. Later in the text, simple stripes will be defined by the nomenclature x–x (with

x = 2, 4, 6 and 8 µm corresponding to the stripe width, III.1.A). In a second type of patterns,

stripes are intercalated with a 15 µm in–diameter disk to anchor the soma. The nomenclature

of these patterns changes to x:x (III.1.B). We also designed patterns with 3 and 4 branches

drawn from a central disk (the 2:2:2 and 2:2:2:2 patterns respectively, III.1.C).

Figure III.1: Micropatterns and neuronal morphologies at 2 DIV.Mouse hippocampal neurons
on the x–x (A) and x:x (B) patterns (x = 2, 4, 6 or 8 µm). The white arrow points to an instability
in neurite adhesion. C) Mouse hippocampal neurons with 3 (2:2:2 pattern) and 4 (2:2:2:2 pattern)
neurites on 2 µm wide stripes. Green: YL1/2, microtubules. Blue: Hoechst, nuclei. Adhesive patterns
are shown in insets of the images. All neurons are fixed at 2 Days In Vitro (DIV). Scale bars: 20 µm.

I had the great opportunity to spend one month in the A. Triller’s group at the Biology

Institute of the Ecole Normale Supérieure (IBENS) in Paris (France) at the beginning of

my PhD. During this period I learned the necessary techniques for the dissection of mice

hippocampal and cortical neurons I have employed for all my experiences over the PhD. In

addition, I had also the opportunity to achieve three consecutive cultures in the same conditions

and to obtain the results reported in the next section for the x–x and x:x patterns.
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III.1 How neurite width controls neuronal growth

The first striking feature we observed when enlarging the stripe width is that neurites

tend to spread toward the adhesive stripe’s edges. This emphasizes the neurite capability to

increase its spontaneous width in culture by a factor of 3 to 6. However, dynamical instabilities

in neurite width are sometimes observed, characterized by a transient local shrinking that

preferentially occurs close to the edges of the adhesive stripes (e.g. neuron on the 8–8 pattern

in Figure III.1.A). Of note, these instabilities were observed only on the largest patterns,

i.e. on 6 µm wide stripes and most of all on the 8 µm wide stripes. This indicates that

a length of about 8 µm delimits a territory outside which adhesive frontiers are not anymore

perceived, and somehow gives an estimation of the lateral distance over which a neurite explore

its environment. Why this specific size? In which terms the sensitivity and the adaptability

of neurons exploring their environment influence the evolution of their growth? We will give

in the next subsections some elements to approach these issues, discussing separately some

aspects of the neuronal growth.

III.1.1 Neurite growth

We have performed a complete study of the neurite lengths on all the pattern geometries

shown in Figure III.1 and we report in the Table III.1 data set information about the results

shown below.

Number of cells (n)
2 DIV 3 DIV

Stripe width (µm) Simple stripe With disk Simple stripe With disk
x–x pattern x:x pattern x–x pattern x:x pattern

2 180 162 180 180
4 180 165 180 180
6 180 169 180 180
8 167 78 180 39

Control 100 100

Table III.1: Statistics informations about data shown in this section about mouse hippocampal
neurons fixed at 2 and 3 DIV on x–x and x:x patterns (PLL coating). Control corresponds to cells on
an uniform adhesive substrate. For all conditions: 3 cultures, 6 coverslips.

The expression "total neurite length" will state the sum of the neurite lengths. We have

analyzed the total neurite length of isolated neurons fixed at 2 or 3 DIV (Table III.2).

The analyses of neurite length on patterns with different branches have been performed in

the context of Celine Braïni and Beilun Wu’s internships, two students I have co–supervised

during my second year of PhD.
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The first consideration is that the presence of an adhesive disk does not modify the total

neurite length (Figure III.2.A). Importantly, both for x–x and for x:x series of patterns we

report a significant decrease of the neurite length versus the stripe width (Figure III.2.B).

Whereas, on the patterns with 2–4 branches, we have observed that neurons retain their

overall length, a result that suggests a mechanism of cell length regulation independently of

the number of neurites (Table III.3).

Total neurite length (µm)
2 DIV 3 DIV

Stripe width (µm) Simple stripe With disk Simple stripe With disk
x–x pattern x:x pattern x–x pattern x:x pattern

2 189 ± 83 191 ± 62 320 ± 149 288 ± 124
4 145 ± 63 160 ± 64 248 ± 109 227 ± 82
6 104 ± 38 116 ± 42 178 ± 69 167 ± 64
8 95 ± 40 92 ± 43 149 ± 67 150 ± 63

Control 172 ± 86 252 ± 87

Table III.2: Total neurite length (mean ± SD) of mouse hippocampal neurons fixed at 2 and 3 DIV
on x–x and x:x patterns (PLL coating). Control corresponds to cells on an uniform adhesive substrate.
Refer to Table III.1 for data informations.

Figure III.2: Influence of the stripe width on the total neurite length at 2 DIV. Adhesive
patterns are shown in insets of the graphs. A) Total neurite length comparison between x:x (blue
circles) and x–x patterns (red triangles). Error bars denote SEM. Slope comparison between the two
linear regression fits (blue and red): NS (p = 0.7808). The goodness of linear fits is indicated by the R2

values associated to the respective equations (in blue and red). B) Decrease of the total neurite length
versus the pattern width in x:x patterns. Refer to Table III.2 for data informations; p = 0.0056 (**,
slope comparison with zero). Top and bottom of a box indicate 75th and 25th quartiles, respectively;
whiskers indicate 10th and 90th percentiles; the middle line is the median. Symbols indicate the mean
values.

Of note, the neurons plated on the 2 to 4 branches sets of patterns were grown in our culture

room in Grenoble under slightly different conditions of culture (different serum batch, different

mice type, different temperature set–point of the incubator) that prevents a direct compari-

son of the length data obtained from neurons grown at the IBENS on the x–x and x:x patterns.
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Total neurite length (µm)
x:x

pattern
x:x:x

pattern
x:x:x:x
pattern

308 ± 97 282 ± 88 284 ± 93

Table III.3: Influence of the number of branches on the total neurite length at 2 DIV. Total
neurite length (mean ± SD) and graph showing the independence of the total neurite length on the
number of neurites. Mouse hippocampal neurons, PLO coating, 2 cultures: n (number of coverslips) =
219 (7), 37 (4) and 81 (4) cells for the 2, 3 and 4 neurite conditions, respectively. NS, Kruskal–Wallis
test. Top and bottom of a box indicate 75th and 25th quartiles, respectively; whiskers indicate 10th
and 90th percentiles; the middle line is the median. Symbols indicate the mean values.

Interestingly, neuritic lengths of neurons on the 2:2 pattern (i.e the pattern with the 15 µm

adhesive disk) are more asymmetric than on the 2–2 patterns (Table III.4). We have quantified

how this asymmetry was expressed in terms of neuronal polarization rate and we report these

results in the next subsection.

Asymmetry factor (%)
2 DIV 3 DIV

Stripe width (µm) Simple stripe With disk Test Simple stripe With disk Test
x–x pattern x:x pattern x–x pattern x:x pattern

2 0.29 ± 0.22 0.39 ± 0.25 ** 0.34 ± 0.23 0.43 ± 0.25 **
4 0.23 ± 0.18 0.28 ± 0.22 NS 0.29 ± 0.19 0.31 ± 0.21 NS
6 0.19 ± 0.15 0.24 ± 0.19 NS 0.27 ± 0.20 0.29 ± 0.19 NS
8 0.21 ± 0.17 0.26 ± 0.20 NS 0.25 ± 0.20 0.28 ± 0.18 NS

Table III.4: Asymmetry factor (mean ± SD) of cells fixed at 2 and 3 DIV on x–x and x:x patterns.
It is computed as (Ll − Ls)/(Ll + Ls), where Ll and Ls are respectively the length of the longest and
shortest neurite. Refer to Table III.1 for data informations. Test values represent the results of the
Mann–Whitney test.

III.1.2 Neuronal polarization

To investigate the neurite width influence on the neuronal polarization, we have analyzed

cells fixed at stage 3 of cell development (Figure I.10). For that, we have quantitatively assessed

the percentage of polarized neurons on all patterns by Tau-1 immunolabeling [2] at 2 and 3

DIV (Table III.5 and III.6 respectively).

We have measured that the percentage of polarized neurons decreases (i) when the number

of branches increases from 2 to 4, and (ii) when the pattern width increases.
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Polarization rate (%)
x:x

pattern
x:x:x

pattern
x:x:x:x
pattern

57.6 45.7 27.3

Table III.5: Influence of the number of branches on the polarization rate at 2 DIV. Error
bars in the graph denote the 95% confidence intervals. p = 0.0044 (**, linear regression test, slope
compared to zero). Refer to Table III.3 for data informations.

Polarization rate (%)
Stripe width

(µm)
Simple stripe
x–x pattern

With disk
x:x pattern

Total Ll Ls Total Ll Ls

2 65.6 99.1 9.3 73.3 96.2 12.1
4 60.6 93.6 13.8 63.9 99.1 5.2
6 42.7 98.7 1.3 47.2 95.3 10.6
8 42.2 94.7 3.9 36.8 100 0

Control Total 57.0

Table III.6: Polarization rate of cells fixed at 3 DIV on x–x and x:x patterns. The rate is obtained
by the percentage of tau-1 gradient–positive neurons. It includes the total polarization rate and, among
polarized cells: the polarization rate on the longest neurite (Ll) and the shortest one (Ls). Control
corresponds to cells on an uniform adhesive substrate. Refer to Table III.1 for data informations.
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Let us remark that the significantly higher asymmetry factor found at 2 DIV on the 2:2 pattern

than on the 2–2 pattern did not result into a higher rate of polarization at 3 DIV. Note however

that, at 3 DIV, the disparity of asymmetry factors for the two kinds of patterns is reduced.

This observation suggests that the presence of the disk might induce a premature tendency to

break the symmetry (see Table III.4, student’s t–test at 2 DIV compared to at 3 DIV) but

without leading to a significant difference between the polarization rates at a later stage. On

the other hand, for both types of patterns the stripe width strongly influences the polarization

rate and highlights the fact that a morphological constraint can tune the polarization rate at

a given stage of development.

Similarly to what was reported in cultures on fully adhesive surface [3], double axons have also

been observed in rare cases (∼ 10% of the total number of polarized neurons, Table III.7).

Double axons rate (%)
Stripe width

(µm)
Simple stripe
x–x pattern

With disk
x:x pattern

2 8.5 (4.7; 14.9) 8.3 (4.7; 14.3)
4 7.3 (3.8; 13.8) 4.4 (1.9; 9.9)
6 0 (0 ; 4.8) 5.9 (2.5; 13.0)
8 3.9 (1.3; 11.0) 0 (0; 21.5)

Control 10.5 (4.9; 21.1)

Table III.7: Double axons rate of cells fixed at 3 DIV on x–x and x:x patterns. Probability to observe
doubles axons among polarized cells of Table III.6. Rate and the 95% confidence interval (lower limit;
upper limit). Example of an mouse hippocampal neuron with double axon on a 2:2 pattern, fixed at
3 DIV. Red: tau-1, axons. Green: YL1/2, microtubules. Blue: Hoechst, nuclei. Adhesive pattern is
shown in the inset of the image. Scale bar: 20 µm. Control corresponds to cells on an uniform adhesive
substrate. Refer to Table III.1 for data informations.

III.1.2.1 Neuritic width control to master the localization of axonal specification

The specification of a neurite into an axon is supposed, as also exposed in Section I.2.4,

to proceed through the crossing of a threshold of neurite length [4]. Having found a way to

tune that length, we have designed a new type of pattern to try to control the process of

axonal polarization in bipolar neurons (Figure III.3.A). This pattern is characterized by two

lines of different widths, namely of 2 and 6 µm to maximize the expected growth difference

while keeping the condition of an uniform neuritic spreading in-between the stripe’s edges

(this condition would not have been fulfilled using 8 µm wide stripes, Figure III.1.A). A 15 µm

diameter disk is inserted at the junction between the two different stripes. In that way, the

location of the soma is controlled as well as the width of the proximal segment of each neurite.
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Figure III.3: Micropatterns and neuronal morphologies at 2 and 3 DIV. A) Mouse hippocam-
pal neuron grown on the asymmetric 2:6 pattern fixed at 2 DIV. B) Mouse hippocampal neurons grown
on symmetric (2:2 and 6:6) and asymmetric pattern (2:6) fixed at 3 DIV. Red: tau-1, axons. Green:
YL1/2, microtubules. Blue: Hoechst, nuclei. Adhesive patterns are shown in insets of the images.
Scale bars: 20 µm. C) Lengths of the longest (grey columns) and shortest (gold columns) neurites
on 2:2 and 6:6 patterns compared to the lengths found on the 2:6 pattern (red column for the 2 µm
branch and green columns for the 6 µm branch) of neurons fixed at 2 (left) and 3 DIV (right). Error
bars denote SD. Refer to Table III.1 (x:x patterns) and III.8 (2:6 pattern) for data informations. Test
values represent the results of the Mann–Whitney test.

We have performed the same analysis of length and polarization as above on this new

pattern (Table III.8).

Total neurite length (µm) Asymmetry factor (%)
2 DIV 3 DIV 2 DIV 3 DIV

169 ± 60 259 ± 67 0.47 ± 0.26 0.55 ± 0.19
Polarization rate at 3 DIV (%)

Total 2 µm 6 µm Double Axons
89.4 100 0 0

Table III.8: Characteristics of mouse hippocampal neurons growing on the 2:6 pattern at
2 and 3 DIV: total neurite length (mean ± SD), asymmetry factor (% ± SD), total polarization rate
(%) and, among polarized cells: the polarization rate on the 2: side (2 µm), on the :6 side (6 µm) and
the probability to observe double axons. 3 cultures, PLL coating. 2 DIV: 18 coverslips, n = 181 cells,
3 DIV: 16 coverslips, n = 180 cells.
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On the asymmetric 2:6 pattern, we have observed that neurites elongate differently on

each branch with the longest neurite forming on the 2 µm–branch. The independent tuning

of neuritic length in asymmetric patterns suggests a local regulation of length at the neurite

scale.

A typical neuron on the 2:6 pattern is shown in Figure III.3.B and compared to neurons growing

on the 2:2 and the 6:6 pattern. Interestingly, the shortest neurite of the 6:6 pattern and the

neurite on the 6 µm–branch of the 2:6 patterns display the same length. Likewise, there is

no significant difference between the length of the longest neurite on the 2:2 patterns and the

neurite on the 2 µm–branch of the 2:6 patterns (Figure III.3.C). For further information, we

report in the Table III.9 the neurite lengths for all patterns.

Neurite length (µm)
2 DIV

Simple stripe x–x pattern With disk x:x pattern
Stripe width (µm) Longest Shortest Longest Shortest

2 124 ± 61 65 ± 35 133 ± 49 58 ± 33
4 90 ± 46 54 ± 25 102 ± 46 57 ± 30
6 63 ± 26 42 ± 16 72 ± 27 44 ± 20
8 58 ± 27 37 ± 17 59 ± 33 34 ± 15

3 DIV
Simple stripe x–x pattern With disk x:x pattern

Stripe width (µm) Longest Shortest Longest Shortest
2 218 ± 113 102 ± 65 204 ± 49 58 ± 33
4 162 ± 80 86 ± 43 150 ± 65 77 ± 34
6 116 ± 55 63 ± 27 108 ± 48 59 ± 26
8 96 ± 52 53 ± 24 97 ± 49 53 ± 24

2 DIV 3 DIV
2: :6 2: :6

2:6 126 ± 54 42 ± 21 202 ± 60 57 ± 24

Table III.9: Neurite length (mean ± SD) of cells fixed at 2 and 3 DIV on x–x, x:x patterns and
the 2:6 asymmetric one. Neurite length (mean ± SD) of the longest and the shortest neurite. Refer to
Table III.1 (x–x and x:x patterns) and III.8 (2:6 pattern) for data informations.

The 2:6 pattern therefore provides the highest asymmetry in neurite length of all patterns,

recreating in vitro a bias favoring the rapid extension of one neurite to the detriment of the

other, and this from the beginning of neuritic growth. It is therefore not surprising that the 2:6

pattern gives the significantly highest rate of polarization compared to all other symmetric con-

figurations (Figure III.4.A) and even compared to unconstrained neurons (57.0%). Strikingly,

this high polarization rate is associated to a deterministic location of the axon specification:

among the population of polarized cells on the 2:6 pattern, 100% of them differentiated their

axon on the thinnest line (Figure III.4.B). In support of this deterministic control of the axo-

dendritic polarity, we have never observed double axons in the 2:6 configuration (Table III.8).
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Figure III.4: Polarization rate at 3 DIV. Adhesive patterns are shown in insets of the graphs.
A) Total polarization rate on the 2:6 asymmetric pattern (green) compared to the different geometries
of symmetric patterns (light and dark grey). p < 0.001 (***, Fisher’s test). NS (Fisher’s test). p =
0.0053 (**, linear regression test of x:x patterns, slope compared to zero). Refer to Table III.1 (x–x and
x:x patterns) and III.8 (2:6 pattern) for data informations. B) Localization of the axon on the 2 µm
(2:, light green) and 6 µm (:6, light blue) wide stripes of the asymmetric 2:6 pattern. The dark dashed
line corresponds to random (50%), p < 0.001 (***, Fisher’s test, 3 cultures, n = 161 cells). Error bars
denote the 95% confidence intervals.

III.1.3 Neurite volume

In the previous sections we have discussed how geometrical constraints on neuronal growth

allows a control of neurite morphologies in two dimensions. In this section we address the issue

of the third dimension, i.e. the neurite volume.

Atomic force microscopy (AFM) imaging is a method that is largely employed to study the

3D morphology of materials of various origins. It has been more and more adapted in the last

decades to manipulate biological objects (e.g. DNA, proteins and cells [5, 6, 7]), and to study

living cells [8, 9]. With this technique, the objects are probed with a nanometric tip at the

extremity of a cantilever whose deflection reflects the sample topography or stiffness.

A more recent technique that has been developed to image living cells in 3D by optical mi-

croscopy is the digital holographic microscope (DHM) at the EPFL (École polytechnique

fédérale de Lausanne, Switzerland). The operating principle is based on the measurement

of the projected image of an object, recorded as a hologram that is consequently reconstructed

by a dedicated algorithm [10, 11, 12].

The advantage of the AFM is that it provides a direct measurement of the topography of the

object of analysis, whereas the DHM gives a measurement of the difference of optical path

between a beam crossing the object and one of reference. This means that the measurement

depends on the index of refraction of the object, which is difficult to assess for living objects.

On another hand, AFM needs to scan the sample, which is rather invasive, time consuming

and not directly adapted to follow dynamical events. In optimized experimental conditions
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with the DHM (high magnification objectives, vibrations filtering, suppression of fluctuations

of the liquid-air interface, ...), we could theoretically reach a vertical resolution of 0.2 ◦. Al-

though we are improving our set-up in order to reduce the noise during acquisition, with our

current experimental conditions we have a vertical resolution of about 1 ◦. Due to the working

principle of this microscope, the phase-length conversion depends on the relative values of the

refractive index of the medium and of the cell. With the available data, it corresponds to

about 10 – 20 nm. As biological samples are quite inhomogeneous, this order of magnitude

approaches fairly well the sub-nanometric vertical resolution provided by the AFM. Moreover,

a higher lateral resolution can be achieved with the DHM than with the AFM (∼ 150 nm

compared to the ∼ 300 nm resolution obtained with the AFM).

We report here some measurements by AFM, providing preliminary indications about the

neurite volume on pattern stripes of different widths. This issue will be only briefly discussed

here as it is the focus of the PhD project of Céline Braïni, a PhD student in our team at the

Néel Institute.

AFMmeasurements have been performed at the Laboratory of physics of living matter (LPMV)

of the EPFL in the G. Dietler’s team, during a couple of days spent in Lausanne. We have

made the choice to select a set of neurons grown on the main significant pattern designs, i.e.

symmetric 2–2 and 6–6 stripes and the asymmetric 2:6 pattern. The long duration that is

necessary for each map did not give us the possibility to obtain a large set of data. The graph

in Figure III.5 reports the mean neurite volume measured as a function of the neurite width

on 4 neurons.

Let us remark that as AFM is a quite invasive method, a bias in the measurements during

the lateral displacement of the AFM tip might be explain why the effective neurite width

is lower that expected, according to the pattern width (especially for the neuron on the 6–

6 pattern). About vertical resolution, the height measurements have an estimated erreur of

1 nm.

We note in the graph that the volumes displayed by neurites growing on symmetric patterns

(2–2 and the 6–6) are not systematically different. Nevertheless, in both symmetric patterns,

the neurite volume is always larger on the shortest neurite (see black stars in Figure III.5).

We have then measured in a first approximation the whole neurite volume by an accumu-

lation of successive mean height profiles traced along the entire neurite. For both neurons on

the symmetric patterns the volume results around 40 µm3, with about a factor two between

the shortest and highest neurite compared to the longest and thinnest one. These observations

suggest that the neurite volume is quite independent of the neurite width, conversely to the
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Figure III.5: Atomic force microscope local measurements of neurite volume. Hippocampal
neuronal cells cultured on PLO patterns and fixed at 2 DIV. Mean volume (µm3) measured on 2 µm
of the neurite length at 15 µm from the soma versus neurite width (µm) measured at the base of the
neurite profile. Symbols refer to the 4 neurons observed by AFM. The corresponding pattern designs
are reported in the legend, blue (red) symbols indicate the nominal value of 2 µm (6 µm) of the adhesive
stripes. Values pointed by the black stars are associated to the shortest neurite of the x – x pattern.
The triangular cantilever used for the experiments is shown in the picture on the left, approaching a
mouse hippocampal neuron on a 2:6 pattern where the landmark "E" indicates the localization of the
15 µm adhesive disk for the soma. Error bars denote SD.

neurite length that clearly varies with the width (see Section III.1). Moreover, the two neurites

of neurons on the asymmetric 2:6 pattern display the lowest and the highest volume values

compared to 2 and 6 µm stripes, respectively. Keeping in mind that in this asymmetric pat-

tern the longest neurite is mainly observed on the 2 µm stripe (Figure III.3), this asymmetry

imposed by the adhesive surface might impose a neurite volume regulation at the cell level,

controlling the asymmetric volume values on the two branches.

These measurements suggest that neurites might regulate their volume in the course of the

axonal polarization process. They also give important indications for future measurements

with the DHM: firstly, data obtained on neurons growing on symmetric and asymmetric pat-

terns should not be pooled. Secondly, it should be taken into account that as the neurite

volume seems to depend on the neurite length, a deeper analysis along neurites would provide

important information about the evolution of the neuron volume during its growth.

About neuron volume, we do not have at the moment sufficient data to conclude about its

conservation at the cell level (at least when neurites of the same cell are not constrained to adopt

different widths). Indications that the volume increases proportionally to the neurite width

have to be confirmed. Similarly, preliminary results showing that an asymmetry in neurite

width might lead to an asymmetry in both neurite length and volume have to be confirmed.

This point would be in agreement with other previous studies reporting that dendrites are

shorter, larger and thicker than axons [13, 14].



122 Chapter III. Neuronal growth under chemical adhesive constraints

I AFM and DHM measurements to estimate the refractive index of neurites

These experiments have been performed on fixed neurons in order to compare the AFM mea-

surements with the DHM observations on the same cells. We report an example of a 2 µm

wide neurite measured with the two techniques, leading to the measurement of the index of

refraction of the neurite, according to the relation [15]:

∆φ =
2π

λ
·∆OPL =

2π

λ
· hcell · (ncell − nmedium) (III.1)

where ∆φ is the phase measured with the DHM, λ = 664.8nm the wavelength of the DHM

laser, ∆OPL the difference of optical path length between a beam crossing the cell and one of

reference, hcell the height measured with the AFM and n the refractive index of the cell and

of the medium (for these experiments in PBS, nPBS = 1.331). We used the maximal height

obtained on the biggest neurite of that neuron (Figure III.5, 556 nm high and 2.4 µm wide, 2–2

pattern) and compared it with ∆φ = 0.104 rad measured with the DHM for the same region

of the same cell, leading to an estimation of its refractive index (nneurite = 1.361). This value

is close to the value measured for the soma by Rappaz et al. [15] (nsoma = 1.377). However,

the refractive index might not be constant between the soma and neurites, or between neurites

of different width, or along the same neurite. More experiments are needed to conclude on that.

An interesting comparison might be performed with another technique, i.e. the fluores-

cence exclusion technique. This method is based on optical observations, presenting the same

advantage of the DHM to provide measurements of the volume evolution at the cell level in

real time. Its principle is to obtain a measurement of the cell volume by a negative staining,

adding to the extracellular medium a non-cell-permeant fluorescent dye [16]. This technique

has been recently implemented and improved at the Curie Institute (Paris, France), and a

potential collaboration about this issue is already planned.

1PBS refractive index has been measured with an Optilab Rex (Wyatt) refractometer (Range 1.28 – 1.8 RIU ;
Sensitivity ± 0.002 RIU) at the IBS (Institut de Biologie Structurale, Grenoble).
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III.1.4 Summary about the influence of neurite width in neuronal growth

In this section we have employed a geometrical control of neuronal morphology and in-

vestigate its role in the establishment of the neuronal polarization. This method has proved

to finely control the neuron length and polarization, providing well reproducible experimental

conditions.

More precisely, we have shown that:

• neurites can spread to achieve a width of 8 µm, therefore are capable to adopt a size much

larger than their spontaneous diameter when constrained by micropatterns of adhesion;

• neurons growing with wider neurites are shorter and, interestingly, their rate of growth

is not associated to a surface conservation but to a surface increase;

• changing the neurite number between two and four, with a constant width of 2 µm,

does not modify the total neurite length;

• the neuronal polarization rate varies inversely to the neurite width and neurite num-

ber;

• asymmetric adhesive patterns imposing to neurons two different neurite widths (2

and 6 µm) lead neurons to a neurite length regulation where the thinnest neurite

meanly elongates as the mean length of the longest neurite on symmetric 2 µm wide

patterns and, similarly, the widest neurite adopt in average the mean length of the

shortest neurite on symmetric 6 µm wide patterns;

• asymmetric adhesive patterns perfectly control the localization of axonal polar-

ization on the 2 µm wide side of the pattern;

• preliminary experiments by atomic force microscope (AFM) observations show that the

total volume of neurons growing on symmetric patterns seems to be conserved;

To recapitulate, we have achieved a control of neurite length and polarization leading to a

deterministic localization of the axon with a novel pattern design. Doing so, we have provided

an evidence, in this particular case of axonal polarization, that morphology controls functions.
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III.2 Behind the role of the neurite width in the process of ax-
onal specification

III.2.1 Changing the adhesive width along a same neurite

By using patterns with an asymmetric configuration of stripe width, we have achieved an

independent tuning of individual neurite length and biased the neuritic competition to reach

a perfect control of axonal positioning in vitro (Section III.1.2). We now wonder what would

be the response in terms of growth and polarization of a neurite confronted to two successive

stripe widths. This question is related to the issue of the possible existence of a critical length

controlling the process of axonal polarization, as already suggested indirectly by several results

(see for example Section I.2.4).

The adhesive patterns

We have designed fours series of geometric variations of the 2:6 pattern in which the lengths

of either the 2 µm or the 6 µm wide stripe have been progressively reduced and replaced by

a 6 µm or 2 µm wide portion of length l, respectively. More precisely, in the patterns on the

left represented in Figure III.6, the non–modified portion of the 2:6 pattern remains near the

adhesive disk (i.e. from the soma), on the contrary, on the patterns on the right, the 6 µm

(top) or 2 µm (bottom) wide portions of length l depart from the circular disk. For these

configurations, all patterns are defined by the nomenclature of type x:xy or y:xy expressing

the spatial succession of the 2 and 6 µm wide stripes. These sets of patterns allow to control

the neurite width during growth by the generation of a progressive cell shape asymmetry on

either side of the cellular body.

Experiments and model in comparison

In this study, the neurite length has been systematically measured and the polarization

rate analyzed.

In order to provide a complementary approach to this work, we have collaborated with Nir Gov

of the Weizmann Institute of Science in Rehovot (Israel) to develop a model to be compared

to the experimental data.

The model is based on (i) a width–dependent rate of neurite elongation and polarization,

(ii) the existence of a critical neurite length that sets the axonal fate (Section I.2.4) and (iii)

a growth rate dependent on the axonal or dendritic nature of the neuronal branch after the

polarization decision.
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Figure III.6: Asymmetric micro pattern (2:6) in different modified configurations. A) In
each configuration (6:26, 6:62, 2:62, 2:26) the length of the 2 or 6 µm segment near the central disk
varies between 20 and 100 µm. B) Four mouse hippocampal neurons illustrating the four different
geometries associated to the 2:26 pattern. The position and length of the various 2 µm wide stumps
emerging from the central disk are indicated on each image. Red: tau-1, axons. Green: YL1/2,
microtubules. Blue: Hoechst, nuclei. Scale bar: 20 µm.

The model is based on the observations that:

• The growth velocity is affected by the width of the adhesive stripe on which the neurite

grows. With the hypothesis that the growth material synthesized at the soma level has

to be distributed along the available surface of the neurite, the simplest consideration is

that the growth velocity vtip is larger (smaller) when the neurite (i.e. the pattern) width

is smaller (wider).

• During the polarization establishment, the future axon increases its growth with a ve-

locity βvtip (β ≥ 1), whereas the other neurites reduce their growth velocity γvtip

(1 ≤ γ ≤ 1).

• The neuronal polarization event seems to depend on the absolute and critical length of

the neurite [17, 18].

By the presence of this critical length that sets the axonal fate, we can define a step–like cumu-

lative probability to polarize Ppol(x) (Equation III.2) and its probability distribution function

ppol(x) (Equation III.3), represented in Figure III.7. σpol gives the variance of the probability

distribution function around the critical length Lpol.
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Ppol(x) =
1

2

(
1 + tanh

[
x− Lpol

σpol

])
(III.2)

ppol(x) =
dPpol(x)

dx
=

1

2σpol
sech

[
x− Lpol

σpol

]2
(III.3)

Figure III.7: Polarization cumulative probability Ppol(x) (Equation III.2) and the probability
distribution function ppol(x) (inset, Equation III.3). The parameters used are Lpol = 50 µm
and σpol = 20 µm.

The model requires a set of parameters, namely the culture duration (T ), the elongation

rates of neurites constrained by either 2 and 6 µm wide stripes, the multiplicative coefficients

controlling the change of these elongation rates after axonal specification (β for the axon, γ

for the dendrite), and the characteristic lengths of the probability distribution function Lpol

and σpol. The three first parameters are fixed by the experiments, with T = 72 h (all neurons

were fixed and analyzed after 3 DIV), v2 = 4 µm/h and v6 = 2 µm/h, as estimated from the

data of the total neurite length of cells grown on symmetric x:x patterns (x = 2 and 6 µm,

Table III.2). Values of Lpol, σpol, γ and β are obtained by fitting the model to the experimental

data. Calculations of the neurite lengths and the polarization probabilities are compared to

experimental data in Figures III.8, III.9, III.10 and III.11, where the neurite lengths and the

observed frequencies of axons identified by immunolabeling are separately represented for each

branch of the pattern. Of note, the set of parameters is the same for all cases. Among them,

only Lpol, σpol, β and γ were free when running our model.

As remarked previously for the experiments on the patterns with the 2 to 6 branches, neurons

plated on the four different x:xy or y:xy sets of patterns were grown in our culture room in

Grenoble under slightly different conditions of culture (different serum batch, different mice

type, different temperature set–point of the incubator). The lengths obtained from neurons

grown on the 2:6 pattern during my stay at the IBENS, in Paris, were too profoundly affected

by the changes of experimental conditions to be featured here. Nevertheless, we made the

choice to show on the polarization graphs the data coming from all patterns, including the 2:6

geometry (red symbols, positioned at l = 0 µm in Figures III.8 and III.9 and arbitrary located

at the coordinate l = 200 µm in Figures III.10 and III.11), in order to give a complete overview

of our results.
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Figure III.8: Neurite length and polarization on 6:62 patterns at 3 DIV. A) Lengths of the
left and right neurite in the 6:62 pattern. Symbols denote the experimental data and lines the result
of the model calculation: Circles (dashed line, LR) along the right neurite, squares (solid line, LL) for
the left neurite. Error bars denote SD. B) Polarization probabilities of the left and right neurite, in
the 6:62 pattern. Symbols denote the experimental data and lines the result of the model calculation:
Circles (dashed line, PR) along the right neurite, squares (solid line, PL) for the left neurite. Error
bars denote the 95% confidence intervals. Red dots correspond to the polarization probability obtained
for neurons on the 2:6 pattern and positioned at l = 0 µm (experiments performed at the IBENS, in
Paris). The parameters used in this calculation are: T = 72 h, ν6 = 2 µm/h, ν2 = 4 µm/h, β = 1.2,
γ = 0.4, Lpol = 50 µm, σpol = 20 µm.

Figure III.9: Neurite length and polarization on 2:26 patterns at 3 DIV. A) Lengths of the
left and right neurite in the 2:26 pattern. Symbols denote the experimental data and lines the result
of the model calculation: Circles (dashed line, LR) along the right neurite, squares (solid line, LL) for
the left neurite. Error bars denote SD. B) Polarization probabilities of the left and right neurite, in
the 2:26 pattern. Symbols denote the experimental data and lines the result of the model calculation:
Circles (dashed line, PR) along the right neurite, squares (solid line, PL) for the left neurite. Error
bars denote the 95% confidence intervals. Red dots correspond to the polarization probability obtained
for neurons on the 2:6 pattern and positioned at l = 0 µm (experiments performed at the IBENS, in
Paris). The parameters used in this calculation are the same as in Figure III.8.
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Figure III.10: Neurite length and polarization on 2:62 patterns at 3 DIV. A) Lengths of the
left and right neurite in the 2:62 pattern. Symbols denote the experimental data and lines the result of
the model calculation: Circles (dashed line, LR) along the right neurite, squares (solid line, LL) for the
left neurite. Error bars denote SD. B) Polarization probabilities of the left and right neurite, in the 2:62
pattern. Symbols denote the experimental data and lines the result of the model calculation: Circles
(dashed line, PR) along the right neurite, squares (solid line, PL) for the left neurite. Error bars denote
the 95% confidence intervals. Red dots correspond to the polarization probability obtained for neurons
on the 2:6 pattern and arbitrarily located at the coordinate l = 200 µm (experiments performed at the
IBENS, in Paris). The parameters used in this calculation are the same as in Figure III.8.

Figure III.11: Neurite length and polarization on 6:26 patterns at 3 DIV. A) Lengths of the
left and right neurite in the 6:26 pattern. Symbols denote the experimental data and lines the result of
the model calculation: Circles (dashed line, LR) along the right neurite, squares (solid line, LL) for the
left neurite. Error bars denote SD. B) Polarization probabilities of the left and right neurite, in the 6:26
pattern. Symbols denote the experimental data and lines the result of the model calculation: Circles
(dashed line, PR) along the right neurite, squares (solid line, PL) for the left neurite. Error bars denote
the 95% confidence intervals. Red dots correspond to the polarization probability obtained for neurons
on the 2:6 pattern and arbitrarily located at the coordinate l = 200 µm (experiments performed at the
IBENS, in Paris). The parameters used in this calculation are the same as in Figure III.8.
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Some conclusions about the model

We note that the length data are very well fitted by our model and that the trend of the

polarization rate is also correctly described by the model, although a systematic shift can be

observed in certain cases. The fits give for the two parameters Lpol and σpol the following

values: Lpol = 50 µm and σpol = 20 µm. The critical polarization length Lpol is therefore

similar to the length of the axonal initial segment (AIS), i.e. 30 – 40 µm, found experimen-

tally [17, 18], although a little bit higher. Of note, the probability to polarize into an axon

has a significant spread around this critical length (see Figure III.7), in coherence with the

experimental data reported by Wainrib et al. [19]. Interestingly, it has been shown that a dif-

ferential neurite elongation obtained using adhesive geometries, where only one neurite among

four is allowed to extend beyond a length of ≥ 60µm, is highly favorable for the axonal speci-

fication of the longest neurite [17]. Our findings are in very good agreement with these recent

results, also supporting the existence of a critical length, close to the AIS length, implicated

in the establishment of the neuronal polarization. The other parameters used in the model

find a biological relevance too. The different elongation rates chosen for the axons (β) and the

dendrites (γ) are in coherence with the different growth rates found by Ruthel et al. [20, 21].

Indeed, these authors report that a neurite elongation is mediated by periodic growth spurts

produced by propagative growth cone like structures (so–called waves, already introduced in

the Section I.3.3) when reaching the neurite tip and that their frequency between the nascent

axon and the other minor processes gives a ratio of about ∼ 2 – 4. This value is in perfect

agreement with the value β/γ = 3 that came out of our model.

In conclusion, we have probed the impact of geometry on the neuronal polarization process,

putting in relation the neuronal morphology and growth. We have shown that the elongation

rate of the neurite tip is width dependent while the critical length for the axonal polarization

is width independent. We will discuss in the next section, dedicated to the "waves", some

possible mechanisms underlying the control of the neurite growth.

III.2.2 About axonal and dendritic markers

Until here, we have employed the immunostaining technique as a tool to visualize the cell

morphology, and consequently to mesure the neurite length and to identify axons by a gradient

of tau-1 immunolabeling. Moreover, immunofluorescence, based on the specificity of antibodies

to their antigen to target specific molecules inside the cells, is also fundamental to investigate

neuron from a molecular point of view.
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AnkyrinG and MAP2

We check here if constraining neurons on micropatterns affects the localization of the usual

molecular markers of neuronal differentiation. Immunolabeling of MAP2 and ankyrinG (ankG),

were performed to identify dendrites and the axonal initial segment (AIS) respectively (see

section I.2.4 for more details). Some examples of neurons fixed at 6 DIV on the 6:26 pattern

are shown in Figure III.12.

Figure III.12: Rat hippocampal neurons grown on 6:26 patterns at 6 DIV. Adhesive pattern
(PLO coating) is represented by the grey design, the 2 µm wide segment is shown in red (l = 20, 40, 60,
100 µm). The position and length of the various 2 µm wide stumps emerging from the central disk are
indicated on each image of neurons in the four geometries. Yellow: DAPI, nuclei. Red: βIII tubulin,
microtubules. Green: AnkyrinG, axonal initial segment. Blue: MAP2, dendrites. Scale bar: 10 µm.

We note that MAP2 is well confined on the shortest neurite, i.e. on the branch on the 6 µm

wide branch of the 6:26 pattern, which displays the highest probability to become a dendrite

(see Figure III.11). The ankG stained segment seems to be specific of 2 µm wide stumps

independently of the length of this section. Moreover, ankG stained segment is 30 – 50 µm

long and it appears just after the MAP2 short segment located near the soma, on the :26 side,

as expected from observation in non-constrained neurons. Of note, MAP2 staining stops just

in the proximal region of the axon near the soma (this area corresponds to begin of the AIS

in the neurons in the patterns with l = 40 and 100 µm), while it appears more diffused in the

whole neurite in the neuron on the pattern with the shortest l length (l = 20 µm), where the

AIS marker is not expressed.
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For these experiences, the scarcity of isolated neurons correctly positioned (with their soma on

the 15 µm disks) prevented a quantitative analysis of the AIS length and position on varying

the parameter l.

More experiences should be performed in order to evaluate from a molecular point of view

a possible impact of the pattern shape, i.e. the neurite width close to the soma, on the axon

formation. Nevertheless, we have observed that the establishment of the molecular specificities

of the AIS and of dendrites was not impaired by morphological constraints.
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III.2.3 Summary about our biophysical approach of neuronal polarization

In this second section we have deeper investigated how neurite length critically partici-

pates to neuronal polarization. For that, we have combined experimental and modeling

approaches of neuron growth and polarization under constrained geometries.

Firstly, we have confirmed the existence of a critical length for neuronal polarization.

Then, we have demonstrated that this length does not depend on the neurite width although

the neurite tip elongation rate is dependent on the neurite width.

By immunostaining observations, we have confirmed that morphological constraints do

not impair the establishment of the molecular specificities of the axonal initial segment nor of

the dendrites.

A quantitative analysis of the localization of the axonal initial segment as a function of the

neurite width should bring complementary information about the establishment of the axon

molecular and morphological properties.

In order to get some clues on the underlying mechanisms at the origin of these observations,

in the next section of this chapter we will explore the dynamical properties of propagative

growth cone like structures, named "waves" and associated with neurite elongation.
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III.3 Growth cone like waves along neurites

III.3.1 Neurite elongation and neuronal polarization: which mechanisms?

The establishment of neuronal polarization relies on the activation of numerous signaling

pathways that results in both a morphological and a functional distinction between one axon

and several dendrites. In the previous sections we have developed the aspects related to the

structural evidence of the polarization event, i.e. the faster elongation of the nascent axon

relatively to the other neurites, and how this process is influenced by the width or the number

of neurites. It is undoubted that on the observation of fixed cells allow the implementation of

statistically relevant analysis of a large number of cells in the same conditions and at the same

stage of development. However, an important complement is provided by dynamical observa-

tions of living neurons, in order to follow in real time the phenomena associated to neuronal

growth. A less known feature of neuronal polarization concerns the properties of propagative

growth cone like structures named "waves" by Ruthel and Banker [20].

The fundamental role of these "waves" during development has been assessed by several re-

ports during the last decade, even if not much attention has been paid until now to molecular

aspects of these structures. The seminal works of Ruthel and Banker in the late 90’ [20, 22]

have established several characteristics and functions of these dynamical structures: waves are

initiated at the soma level, propagate along neurites at a rate of about 3 µm/min, are two

times more frequently directed along the presumptive axon during the stage 2 – 3 transition

(Figure I.10), and their arrival at the neurite tip triggers a retraction, whose amplitude is

lower in axons than in future dendrites, preceding a growth sprout. A more recent work has

also assessed the crucial role of waves in neurite branching and further demonstrated the physi-

ologically relevance of waves by revealing their presence in organotypic hippocampal slices [21].

We have studied the properties of these waves with the purpose to look deeper into their

role in neurite growth and in the phenomenology of neuronal polarization. We report in

this section the results obtained from our approach of neuronal shapes, i.e. from the control

of neurite morphology by micropatterned substrates. We have therefore selected some key

micropatterns to study how neurons regulate their wave production.

III.3.2 Neurite width influences wave characteristics

In this section, we will use adhesive stripes to well characterize the wave properties on a

minimal and reproducible system of neurons with two diametrically opposed neurites of various

widths. Thanks to this configuration, it is possible to (i) accurately measure the contribution of

waves in the neurite growth, (ii) to measure the waves characteristics and (iii) to compare these

results to the variation of the neurite growth rate we have already observed on different stripe
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widths. Indeed, two observations can be put together: the fact that neurite width controls the

neurite length (Section III.1) and that waves are associated to neurite growth [22]. We can

therefore expect that a link should exist between the neurite width and the wave properties.

To collect a convincing amount of data, numerous time–lapse experiments have been necessary.

We have selected young neurons (i.e. taken at about 1 DIV) with rather symmetric neurite

length (stage 2 of the development of hippocampal neurons in vitro, Figure I.10) in order to

study the properties of the waves before the process of neuronal polarization (see Section II.4.4

for the modalities of wave identification). The characteristics of waves we are interested in are

the velocity, the emission period at the cell level and the allocation of waves along each neurite.

I Waves and neurite growth

Firstly, we noticed a wave–induced retraction and elongation at the neurite tip on patterned

neurons. This feature appears therefore as a generic phenomenon of neuronal growth either in

constrained or unconstrained conditions [22]. We have then, similarly to Ruthel and Banker

in their seminal works on waves [22], evaluated the proportion of the neurite’s growth that is

temporally correlated with the arrival of waves at the tip. To assess the relation between neurite

growth and waves in morphologically constrained neurons, we have determined separately (i)

the transient wave–associated net tip outgrowth, and (ii) the total cell elongation during the

full window of observation, computed as the total length increase between the two neurite tips.

The wave-associated net tip outgrowth is determined by the difference between the wave–

induced neurite elongation and an initial retraction. The initial retraction is computed within

the time window of wave propagation (light blue window, Figure III.13.B). Symmetrically, the

same duration was used to set the end of the elongation step (red window, Figure III.13.B). To

get a direct perception of the effect of a single wave, these two values were computed per wave.

For a set of eight neurons plated on 2–2 and 6–6 patterns that display a broad distribution of

growth rates, the relation between these two lengths draws a linear variation of slope close to

1 (Figure III.13.A). This reveals the dominant contribution of the transient wave–associated

tip growth in neurite elongation.

I Neurite morphology and wave emission frequency

Then, we focused on the influence of the neurite number and width on the frequency of neu-

ronal waves at the cell level.

We first observed that waves are emitted periodically in all configurations. For the patterns

composed of 2 µm wide stripes, we have measured periods that are not significantly different

(Figure III.14.A).
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Figure III.13: Role of waves in cell elongation of mouse hippocampal neurons. A) Coordi-
nates of a wave (light gray dots) and the corresponding neurite retraction followed by elongation (dark
gray dots). The amplitude of the net tip growth is indicated by arrows and results from the sum of
the initial tip retraction and the subsequent growth spurt computed within the red and blue windows,
respectively. B) The wave–associated elongation versus the total cell elongation. Elongation values are
normalized per wave. n (pattern, number of cells) = 191 (2–2 pattern, 4 cells, blue symbols), 57 (6–6
pattern, 4 cells, gold symbols). Error bars indicate SEM. The dashed line is a linear fit of slope 0.84.
The goodness of the linear fit is indicated by the R2 value.

Therefore, varying the number of neurites or forcing the soma to sit on an adhesive disk

does not alter the periodicity of wave emission. Then, we have found that the period of waves

scaled with the stripe width: the period is multiplied by almost a factor of 3 for stripe widths

varying from 2 to 6 µm (Figure III.14.B).

Our results thus demonstrate a simple way to modulate the periodicity of waves in hip-

pocampal neurons by the unique control of the neurite lateral spreading. To check what is

the cellular compartment that controls this period, we have analyzed the neuronal growth on

the asymmetric 2:6 pattern. Very interestingly, this pattern shows distinct wave periods along

each neurite, similar to the values found for the neurites on corresponding symmetric patterns

(Figure III.14.C). The production of waves thus appears to be locally tuned by the stripe

width, being more frequent along the neurite that elongates on the thinnest adhesive line. In

brief, from a variation of the stripe width (i.e. of the neurite width) we have found a method

to bias the allocation of waves along neuronal extensions.

We remark that both for neurons on 2–2 (weakly anchored soma configuration) and 2:2

patterns (where the soma is trapped by 15 µm adhesive disks), the emission period (Fig-

ure III.14.A) and the alternative rate (70.9% and 71.3% respectively for the 2–2 and the 2:2

pattern) are conserved.
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Figure III.14: Influence of the stripe number and width on the wave emission period.
A) Wave period for the various 2 µm wide stripe patterns. NS: Kruskal–Wallis test. B) Wave period
versus the stripe width in the x–x patterns. p < 0.001: Kruskal–Wallis test. C) Wave periods measured
along a given neurite. For the symmetric x–x patterns, periods are computed neurite by neurite and
pooled. All the patterns are sketched in blue below the graphs. Top and bottom of a box indicate
75th and 25th quartiles, respectively; whiskers indicate 10th and 90th percentiles; the middle line is
the median. Symbols indicate the mean values. NS: Kruskal–Wallis test. See Table III.10 for relative
values and culture conditions.

Cell level
Pattern Wave period (min) Number of waves Number of cells

2:2 13.2 ± 7.7 136 4
2:2:2:2 13.9 ± 7.0 168 2
2–2 13.0 ± 7.6 186 4
4–4 21.1 ± 12.5 81 4
6–6 36.2 ± 24.2 62 5

Neurite level
Pattern Wave period (min) Number of waves Number of cells
2–2 23.7 ± 15.6 186 4
6–6 67.1 ± 51.3 62 5
2:6 22.7 ± 9.6 (2:) and 80.5 ± 61.8(:6) 49 (2:) and 16 (:6) 4

Table III.10: Wave emission period (mean ± SD). Periods at the cell or the neurite level of cells
growing on the selected patterns and observed at 1 DIV. Relative number of waves and of cells for each
condition. Period at the neurite level represents the mean between the two neurites of the cell of the
period of waves emitted on a single neurite.
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Importantly, these results showing that wave emission period does not change between

2:2 and 2–2 patterns and that decreases on wider neurites are consistent with the trends

obtained for the neurite length on the same patterns, where not significant differences have

been observed between x–x and x:x patterns and where neurites are shorter on wider patterns

(see Figure III.2.A). This result reinforces the interplay between the wave production and the

neurite growth.

I Neurite morphology and wave velocity of propagation

A deeper characterization of waves was performed by measuring their velocity as a function of

the neurite width (Figure III.15.A). Along the 6–6 pattern, waves show a significant decrease

of their velocity when increasing the neurite width from 2 to 6 µm (3.8 ± 1.6 µm/min down to

2.4 ± 0.9 µm/min). How wider adhesive surface and, probably, across larger neurite section

(see Section III.1.3) influence the wave velocity remains an open issue. Conversely, neurite

width appears to not influence significantly the alternation of wave emission. Nevertheless,

with 29.1% of probability to have two consecutive waves along the same neurite on the 2–2

pattern against 38.7% on the 6–6 pattern (Figure III.15.B), waves on this last pattern seem to

follow a tendency to be less alternative.

Figure III.15: Waves dynamics in neurons on 2–2 and 6–6 patterns. A) Wave velocity along
neurites. Top and bottom of a box indicate 75th and 25th quartiles, respectively; whiskers indicate
10th and 90th percentiles; the middle line is the median. Symbols indicate the mean values (8.82 ± 1.65
and 2.36 ± 0.89 are the mean ± SD on the on the 2–2 and the 6–6 pattern respectively). p < 0.001:
Mann–Whitney test. B) Alternative waves rate, calculated as the conditional probability to have a
wave on a neurite when the previous wave has been emitted on the other one (70.9% on the 2–2 and
61.3% on the 6–6 pattern). NS: Fisher’s test. n (pattern, number of cells) = 114 (2–2 pattern, 4 cells)
and 67 (6–6 pattern, 5 cells). Error bars denote the 95% confidence intervals. All the patterns are
sketched in blue below the graphs.

I Influence of the neurite width along wave propagation

Finally, we studied if the wave propagation was influenced by the variation of the neurite width

along a given neurite. For that purpose, we have chosen the 2:26 pattern (Figure III.16.A).

The analyses of the time–lapse experiments on neurons growing on this kind of pattern have
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been performed in the frame of Yohan Lecomte’s internship, a student I have co–supervised

during my last year of PhD.

Surprisingly, it has been observed that a significant number of waves emitted on the :26 branch

stops their propagation where the stripe width changes from 2 to 6 µm (Figure III.16.B).

Interestingly, the rate of these "stop" waves increases toward higher values of length of the 2 µm

segment (Figure III.16.C). These observations would be interpreted by the existence of critical

threshold of concentration of one or several wave’s components responsible for the propagation

of these structures. Crossing the frontier between 2 and 6 µm wide stripes would correspond

to a sudden dilution of some critical components that would further stop the propagation of

the wave.

Figure III.16: Wave characteristics in neurons on the 2:26 pattern. A) Adhesive pattern
represented by the grey design, the 2 µm wide segment is shown in red (l = 20, 40, 60, 100 µm).
B) Time–lapse experiment indicated in minutes: 0’ is 48 h after plating, l = 60 µm. The frontier of the
adhesive region is delimited by two green dashed lines (top image) and waves by white dashed lines.
Scale bar: 10 µm. C) Rate of waves stopping at the 2–6 frontier in function of the length of the 2 µm
wide segment. n (l, number of cells) = 11 (20 µm, 3 cells), 20 (40 µm, 2 cells), 17 (60 µm, 4 cells) and
7 (100 µm, 3 cells). Error bars denote the 95% confidence intervals. The goodness of the linear fit is
indicated by the R2 value.

To explain why no "stop waves" were observed on the shortest 2 µm stump configuration,

we first propose that the 2 µm segment of 20 µm of length is a too short distance from the

soma to have an impact on the wave emission and propagation. It may be justified by the

observations that (i) this length is of the same order of magnitude of the wave size and that

(ii) occasionally waves appear in the proximal part of the neurite rather than strictly at the

soma level. We might also hypothesize that the amount of material transported by waves

decreases on their way up to the neurite tip. The waves would then have a lowest probability

to be maintained, in the long range from the soma, in particular when experiencing a sudden

dilution of their constituents at the frontier between 2 and 6 µm wide stripes. To validate this

hypothesis, we plan to observe the opposite frontier condition, changing from 6 to 2 µm. The
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wave constituents would increase abruptly across this frontier and the "stop" waves phenomena

should disappear.

Some conclusions about influence of the neurite width on wave dynamics

We have focused our study on the analysis of the wave dynamics in neurons of controlled

widths. We have shown a direct interplay between the characteristics of the wave emission

along the neurites and their elongation, with an emission frequency and a velocity of propa-

gation varying inversely to the neurite width. Finally, these results and the observation of the

"stop" wave phenomenon in the experiments with neurite width changing along a same neurite

suggest that a threshold of wave components might be necessary to allow the wave propagation

on wider neurites. This hypothesis is also supported by the preliminary observations reported

in the previous section (III.1.3) showing that the neurite volume on wider stripes is similar or

greater than for neurites on narrower wide patterns.

In collaboration with B. Friedrich of the Max Planck Institute in Dresden (Germany),

we have developed a minimal model of actin wave routing that reconciles our experimental

observations of a wave emission dependent on the neurite width (Figure III.17).

Figure III.17: "Integrate–and–fire" model of actin wave (AW) routing. A) A factor critical
for AW initiation is produced within the soma at a constant rate and subsequently distributed to the
respective neurite bases. B1 – B2) AW initiation along a neurite requires the local concentration of
this factor to exceed a threshold. B3) Upon AW routing, the local pool of this factor would be reset.

In this model, we suggest that wave components (excess mass of polymerized actin, and/or

critical signaling factor) are produced by the cell at a constant rate and sequentially distributed

to the respective neurite bases. When this material reaches a critical neurite-width dependent

concentration, wave initiation occurs and the local reservoir of wave components at the neurite
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base would be reset.

Although this model does not reflect the complex full biological system, it reconciles the obser-

vations of neurite lengths and emission periods on stripes of different widths (Figures III.2.B

and III.14B). Moreover, the assumption of a constant rate of material production suffices to

predict a emission period independent of the neurite number (in agreement with the graph

of Figure III.14.A) and implies a redistribution of waves along the pool of existing neurites.

This would give a simple explanation of the conservation of the total neurite length displayed

in the graph of Figure III.2. Finally, if we assume that the critical concentration required for

actin wave initiations increases with neurite width, the observation of preferential actin wave

routing along the thinner neurite on the 2:6 asymmetric pattern is likewise accounted for this

model (Figures III.14.C).

Of note, and quite importantly, we have observed waves also in mouse and rat cortical neu-

rons (Figure III.18), suggesting a potentially broader significance of these structures although

their association to cortical neuron elongation have still to be demonstrated.

Figure III.18: Actin waves in rat cortical neurons at 2 DIV. Neurons on adhesive patterns
(from the top: 2:2, 6:6, 6-6). Blue: DAPI, nuclei. Red: actin antibody, actin. Scale bars: 10 µm.

III.3.3 Waves as force generating structures

Previous works in our team have shown that waves are force generating structures. Indeed,

the limited surface of adhesion for the soma defined by the micron–wide stripes has revealed

that the soma (i) moves concomitantly with the waves and (ii) that it reverses its direction of

motion when successive waves are emitted along opposite neurites. All these phenomenological

features are represented in Figure III.19, showing an example of a neuron observed during a

time–lapse experiment on a 6–6 pattern.

Our group has also previously reported that the neurite with the highest mechanical tension

becomes the axon. Furthermore, we suggest that waves may contribute to the neurite tension.

Indeed, as shown in Figure III.20, the axonal specification is inhibited in neurites growing
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Figure III.19: Soma and neurite tips dynamics associated to the wave propagation.
A) Time–lapse experiment (indicated in minutes, 0’ is 24 h after plating) of a mouse hippocampal
neuron developing on a 6–6 pattern. The frontier of the adhesive region is delimited by two green
parallel lines (top image) and waves by white dashed lines (the inset displays a wave at higher mag-
nification). Blue and gold arrows point to the waves emitted on the left and on the right of the soma
respectively, whose coordinates are represented in (B). White arrow points to instabilities in neurite
width near the edges. Scale bar: 20 µm. B) Coordinates of waves (squared gold and blue symbols),
neurite tips (triangular grey symbols) and soma center (circular red symbols) versus time for the neuron
in (A). They illustrate the oscillatory motion of the soma, in correspondence of the wave arrival and
the associated retraction followed by an elongation of the neurite with the wave. The origin of the
spatial coordinates is set to the initial soma position.

on curved adhesive micropatterns. This is possibly due to transient and reversible tension–

induced unhooking from curved stripes that impairs neuritic elongation within the first stages

of development (namely stage 1 and 2, Figure I.10).

Figure III.20: Tension in growing neurites. A, B, C) Neurons growing on curved patterns [23].
A) Time-lapse experiment (indicated in minutes, 0’ is 30 h after plating) of a neurite developing on
a curved pattern. The adhesive region is marked by the green dashed line (top image). The white
arrow points to the region where the neurite partially detaches from the adhesive pattern. The black
arrowheads point to the neurite tip. Scale bars: 20 µm. B) Partial (white arrow) and complete (yellow
arrow) unhookings observed of a neuron fixed at 3 DIV. Green: YL1/2, microtubules. Red: phalloidin,
actin. Scale bar: 10 µm. C) SEM image of an axon crossing the curved pattern. Scale bar: 5 µm.
D) Neurite elongation and following axonal specification induced by external tensions [24]. The black
arrowhead points to the chosen neurite tip for needle application. Scale bar: 20 µm.
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This observation is good in agreement with the experiments performed by Lamoureux et

al. where the axonal specification of a given neurite can be induced by its mechanical stretch-

ing [24] (Figure III.20.D): by applying a tension between 200 and 1000 pN , undifferentiated

neurites become an axon, growing with a rate proportional to the external tension. In addition,

we have observed that unhooking events were always associated to the propagation of a wave.

The wave dynamics therefore shows that they are structures involved in the mechanical

properties of neurons, e.g. the soma motion, the neurite tension and the neurite tip dynamics

associated to the wave propagation. The next step is to try to quantify this contribution and

to investigate the mechanisms behind these observations.

We have chosen to approach this issue looking at two possible mechanisms related to wave

propagation: the measurement of (i) the membrane tension could provide information about

an eventual braking role of neurite membrane and of (ii) the transmitted forces to the substrate

at the neurite level could show if wave propagation leans on this kind of forces.

The two following subsections will be dedicated to these problematics.

III.3.3.1 Measurement of the membrane tension

Is there a relationship between the higher frequency of waves in axons reported in the lit-

erature and the high tension characterizing the whole axon (including forces coming from the

cytoskeleton and the membrane)? Answering this question means to investigate if the wave

propagation is associated to an increase of the neurite tension. For that, we have spent a couple

of days in the group of Patricia Bassereau at the Curie Institute in Paris (France), where we

could use an optical tweezers set–up. This technique (see Section II.4.5 for more details) allows

the measurement of the membrane tension, by manipulating microbeads attached to the cell

membrane.

Once a microbead is attached up to the neurite membrane, it is possible to form a membrane

tether, simply by pulling out the bead at a constant velocity to a known distance from the cell.

The diameter of the beads was 2.8 µm and the experimental parameters are represented in

Figure III.23.A. Asymmetric patterns have been used in order to induce the breaking of mor-

phology symmetry occurring with neuronal polarization and to probe different neurite widths

while keeping a high probability to observe a wave on the thinnest neurite (see Figure III.14.C

for results about wave emission periods). The establishment of the membrane tether leads to

a quick force peak that decays within a few seconds to reach a force plateau.

Results from optical tweezer measurements

Many measurements have been done to quantify the membrane tension in more than ten

neurites of mouse hippocampal neurons growing on our patterned substrates.
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Importantly, the force plateau does not seem to depend on the tether length, i.e. the distance

x of the bead from the neurite, for the probed tether of lengths up to 20 µm (Figure III.23.B).

Similarly, the force values we have obtained from nine neurons do not show a drastic dependence

on the distance of the bead from the soma (Figure III.23.C). They seem to have only a weak

tendency to increase moving toward the neurite tip, which appears to be in contrast with the

inverse tendency of a ∼ 2 pN force decrease of tether forces from the soma to the growth cone

observed by Dai et al. on embryonic chick DRG neurons [25].

Figure III.21: Optical tweezers measurements. A) Experimental parameters: length of the
membrane tube between the bead and the neurite (x) and the distance of the bead hook and the the
soma (l). The neuron on the asymmetric 2:6 pattern and the hooked bead are marked by the orange
and bleu dashed lines, respectively. The other beads are free to move in the culture medium. Scale
bar: 10 µm. B) Force plateaus values (pN) in function of the tube length x (µm). C) Force plateaus
values (pN) in function of the distance from the soma l (µm). D) Force plateaus values (pN) in function
of the bead position relative to the cell regions: axon, soma or dendrite. Cell regions are identified by
the "E" marker on the glass surface (see Figure II.5) locating the 2 µm wide stripe (axon), the 15 µm
adhesive disk (soma) and the 6 µm wide stripe (dendrite). Top and bottom of a box indicate 75th and
25th quartiles, respectively; whiskers indicate minimum and maximum of the dataset; the middle line
is the median. Every force value is the mean over 40 – 60 s of a force plateau of a single tether with
specific length.

More statistics would be necessary to confirm this trend and to better understand the

reason of an eventually non uniform tension along the neurites. Associated live imaging exper-

iments would be useful to correlate the measured force values with the neurite dynamics and

the growth cone activity. The average value of the observed forces is of 13.9 ± 0.3 pN , a value

of the same order of magnitude than the ∼ 6.7 pN measured on the growth cone by Dai et

al. [26]. On the other hand, the results are probably cell type–dependent, that could justifies

that values reported in the literature differ from one another.

We have then analyzed the membrane tension as a function of the specificity of the cell

compartment, i.e. the soma, the axon or the dendrite (Figure III.23.D). Our results display

that the cell equilibrates its membrane tension after adhering to the substrate, independently

of the surface of adhesion.
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Finally, we provide one example of measurements in the presence of waves (Figure III.22).

Figure III.22: Displacement of trapped bead attached to a membrane tether measured
with optical tweezers during a passing wave. The displacement is related to the force acting
on the bead via F = k · x. The trace shows a force plateau after a tether was pulled from the axon
(t > 0 min) and two peaks associated with the wave propagation, due to an active puling of the tether.

The passing wave caused an increase of the measured force, with a force peak similar to

the very fast peaks observed during the establishment of the membrane tether. As its duration

appears short compared to the order of magnitude of wave propagation velocity (∼ µm/min),

it seems that wave propagation does not lead to an increasing of the membrane tension. This

suggests that wave propagation is not braked by a local need of membrane supply. This obser-

vation might be explained by an additional contribution of the wave into actin pulling inside

the tether and by a local and quite fast reorganization of the cytoskeleton, i.e. between the

cylindrical morphology of the neurite and the membrane deformation associated to the wave

arrival.

More examples are necessary to quantify the force contribution of a wave and to better corre-

late this peak of force with the wave propagation.

Actin–fluorescent live imaging experiments might be interesting to access to the interaction

between the wave and the membrane tether.

In conclusion, we have shown that the membrane tension equilibrates quite rapidly, on

a time scale faster than few seconds, suggesting that if the actin wave increases membrane

tension, it would be too short to be responsible for soma motility in response to the wave

propagation. We propose the hypothesis that if there is a mechanical reason for the soma

movement it is transmitted via microtubules or actin cytoskeleton. More experiments should

be done to measure the force values induced by longer tethers and to get more statistics, as

well as to quantify the wave contribution to the membrane tension. It might be also inter-

esting if the peaks associated to the establishment of the membrane tethers show a different

relaxation time as a function of the neurite width. This would, indirectly probe the levels of

the membrane reservoirs associated to these different neurite morphologies.
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III.3.3.2 Calculation of the forces transmitted to the substrate

Choice of the methodology

The optical tweezers experiments described above allow an access to the value of the internal

membrane tension. Another approach of cellular mechanics is to measure the forces transmitted

by the cells to the substrate by quantifying substrate deformations. The capability of these

cells to deform their substrate has been largely reported in the literature for several cell types,

e.g. fibroblasts, muscle, endothelial or epithelial cells, both in isolated conditions and in cell

aggregates [27, 28, 29]. Different techniques have been developed to measure cellular forces,

that use different kind of force sensor (Figure III.23).

Figure III.23: Example of substrates deformed by cells. A) Fibroblast cell on a thin layer of
silicone rubber forming some wrinkles at the surface [27]. B) SEM image of a muscle cell on an array
of PDMS pillars [29]. C) Confocal image of immunofluorescence staining of a muscle cell on fibronectin
(red) coated pillars. White arrows indicate the forces exerted by the cell [29]. D) Confocal image of
immunofluorescence staining of the focal adhesion protein vinculin (green) correlated to the force map
already shown in (C). E) Fluorescence image of a muscle cell on a polyacrylamide gel where 200 nm
beads are embedded (white line represents the outline of the cell) [30]. F) Displacement field of the
beads under the adherent muscle cell shown in (E). Arrows represent the relative magnitude of the
displacements. Scale bars: 10 µm.

The most employed techniques are presently (i) PDMS micropillars that can be deflected

by the cells growing on the top of them, and (ii) polyacrylamide (PA) hydrogels where the

substrate deformations are detected by the displacement of fluorescent microbeads that are

embedded inside (Traction Force Microscopy technique). In both examples, micropillars and

hydrogels, the stiffness of the substrate is controlled by respectively (i) varying the aspect

ratio of the pillars and (ii) modulating the polymerization rate of the polyacrylamide or of the

PDMS. Importantly, cells adapt the forces they transmit to the extracellular matrix as a func-
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tion of its rigidity, as shown by some experiments demonstrating cell capability to adapt their

response to the mechanical properties of their microenvironment. For example, it has been

shown that fibroblast and epithelial cells linearly increase their force with the substrate rigidity

until a saturation plateau of the order of some tens of nN/µm2 [31]. This situation differs in

brain cells. For instance, the retrograde flow of actin in neuron growth cones, a quantity that is

inversely proportional to the magnitude of the traction forces and is significantly slower on soft

substrates than on stiffer ones. This flow reaches a maximum of ∼ 110 nm/s once exceeded

a stiffness of ∼ 1.3 kPa [32]. This means that neurons forces transmitted by the growth cone

are enhanced on soft substrates. Using micropillars or hydrogels has some implication on cell

behavior. Pillar substrates appears microstructured compared to the continuous surface of

the hydrogels. Therefore, cell adhesion is constrained to the pillar section and cell behavior is

influenced by this discrete adhesive environment (see Section I.5.2 for more details). Addition-

ally, pillars are mechanically independent of each other, meaning that local cellular forces do

not transmit through the matrix to some other regions of the cell as it does on a continuous

substrate like hydrogels. Forces values are in this case obtained by the measurement of the

micropillars deflection, giving access to the shear, tangential forces, but not to the normal,

compressive forces. Indeed, micropillars are incompressible in the range of the cellular forces

whereas hydrogels have an isotropic elasticity. For these reasons, the micropillar technique is

mainly indicated for the study of the mechanics at the micrometric scale of the cellular adhe-

sions. These characteristics, in addition to the low physiological properties of pillars, from a

mechanical point of view, make this technique inappropriate for the measurement of the weak

forces exerted by so thin cellular processes such as neurites.

Forces associated to neurons

The state-of-the-art on the mechanics of neurons mainly reports experiments that focus on

the mechanics of the growth cone. Indeed, this region of the cell is expected to produce the

most significant forces due to its role in pathfinding, migration and extension. Nevertheless, it

has been shown that growth cones, and other regions of the neuron, exert randomly directed

and fluctuating traction forces whereas the main structures responsible for oriented and sig-

nificant forces are the growth cone filopodia [32]. The growth cone is a very soft structure,

that, regarding its function, it is expected to be very sensitive to the mechanical properties of

its environment. However, regarding its very low Young’s modulus, estimated around a value

of 100 Pa [33], the maximal forces that it can transmit are naturally limited by its softness,

compared to other stiffer cells such as fibroblasts. By considering the elastic modulus as a

force per unit area (1 kPa = 1 nN/µm2), this result appears also consistent with a neurite

tension in the order of magnitude of only some pN (growth cone rigidity: 0.1 kPa· area of the

growth cone filopodia of order of 1 µm2 = 100 pN). The same authors have combined the
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mechanical properties of the growth cone of NG108-15 cell line to the local measurements of

the actin retrograde flow in the direction of the central domain of the growth cone to calcu-

late the internal stresses. Indeed, this retrograde flow, with a centripetal direction, and the

pushing actin polymerization toward the edge determines the dynamics of the lamellipodium

of the growth cone. In the same study, traction force measurements on PA hydrogels (Young’s

modulus ∼ 200 Pa) have given a independent access to the calculation of the stresses trans-

mitted to the substrate and generated by the internal cellular forces. All these studies show

a direct correlation between cell rigidity, internal stresses and traction forces on the substrate

(both giving values on the order of ∼ 25 – 30 Pa) [33].

Traction force microscopy (TFM) has recently been employed to estimate forces in growth

cones ofAplysia bag cell neurons on soft silicon gels (Young’s modulus∼ 3 kPa, Figure III.24) [34].

Figure III.24: Forces in growth cone by traction force microscopy [34]. A) Phase contrast
image of Aplysia bag cell growth cone. P: peripheral domain, T: transition zone, C: central domain, N:
growth cone neck. Scale bar: 20 µm. B) Map of traction stress vectors in growth cone in (A) showing
localization of traction force in peripheral domain delimitated by white and yellow outline. C) Map of
strain energy density for growth cone in (A).

This work differs from other studies that focused on the forces produced by individual

filopodia at the leading edge, showing that the traction stresses applied by the growth cone on

the substrate reach the highest values (∼ 9 Pa) in the peripheral domain close to the central

domain, i.e. away from the leading edge, following the direction of the actin flow. Forces might

then be balanced in other parts of the growth cone or transmitted to the cell in the form of

a neurite tension. Moreover, the maximum internal stresses have been measured in the range

of kPa, as compared with the few Pa found for the traction forces, suggesting that growth

cones are able to accumulate high levels of cytoskeletal stress. Neurite tension was independent

of the growth cone size suggesting that growth cone is mechanically isolated from the rest of

the cell, possibly in order to independently respond to its environment.

Koch et al. have performed an interesting study in the context of our work, comparing

traction forces between peripheral nervous system (PNS) and central nervous system (CNS)

cells, i.e. dorsal root ganglion (DRG) and hippocampal neurons [35]. These authors have
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reported that neurite outgrowth of hippocampal neurons was independent of the substrate

stiffness (PA hydrogels with a Young’s modulus in a range between 150 and 5000 Pa) whereas

DRG neurons displayed maximal growth rate on substrates with a Young’s modulus of∼ 1 kPa.

In both cases, the traction force was dependent on the substrate stiffness: from 23 to 31 Pa

(with a peak of 39 Pa on 1.1 kPa substrates) for DRG growth cones at 3 – 10 h after plating

in the range 500 – 1700 Pa substrates and from 26 to 29 Pa (with a peak of 44 Pa on 1 kPa

substrates) at 20 – 30 h after plating; from 5 to 9 Pa for hippocampal neurons at 20 – 30 h after

plating on the substrates within the range 200 – 430 Pa (pay attention to the different stress

scale bars in Figure III.25). Deformations on stiffer gels were not larger than the measurement

noise for this kind of cells, showing a remarkable low capability of hippocampal neurons to

generate traction forces. This observation might be explained by (i) the three times faster

retrograde flow of actin and (ii) a significantly lower concentration of paxillin in these neurons

in comparison with the DRG ones (Figure III.25).

Figure III.25: Comparison between PNS and CNS growth cones [35]. A) Growth cone of
a dorsal root ganglion neuron (PNS). From the left to the right: traction stress fields on a 1 kPa
substrate, actin (green) and paxillin (red) distribution. B) Growth cone of an hippocampal neuron
(CNS). From the left to the right: traction stress fields on a 300 Pa substrate, actin (green) and
paxillin (red) distribution. Growth cone shapes are indicated by the white outline. The white arrows
give the direction and magnitude of traction stress. The magenta arrow shows the direction of the net
traction force (calculated in the area surrounded by the black line). Scale bars: 10 µm.

Indeed, in DRG neurons paxillin is concentrated in the growth cone periphery and along

filopodia while it is almost absent of the growth-cone of hippocampal neurons where it concen-

trates within neurites. Interestingly, the higher traction stresses of DRG growth cones after

1 DIV, a stage of development characterized by substantial rearrangement of neuronal pro-
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cesses associated to the formation of interconnected networks, are associated with a significant

level of internal tension.

In DRG growth cones, the highest traction stresses are located around the peripheral region,

in particular at the filopodia level, and the traction they generate is quite stable in time. This

is in contrast with the properties of hippocampal growth cones that display short periods of

high stress with long phases of low stress, expressing a highly dynamic behavior. These rapid

changes of the traction stresses are also in agreement with the quasi absence of focal adhesions

observed by paxillin immunostainings (Figure III.25.B).

These findings contribute to reveal the different properties of PNS and CNS neurons related

to their different behaviors and functions. First, PNS and CNS neurons live in mechanically

distinct environments. Both of them find their way through growth cones exploration. Conse-

quently, they involve a different distribution of paxillin in the focal adhesion regulation. From

a mechanical point of view, the PNS neurons, unlike most other cell types, do not prefer

substrate stiffnesses on the order of the kPa. Moreover, they show a relatively narrow maxi-

mum in outgrowth and traction force versus stiffness. This high degree of mechanosensitivity

might be useful considering the extended range of substrate stiffness encountered by these cells

in the PNS (see Section I.1). In contrast, the CNS neurons grow indifferently from stiff to

extremely soft substrates with a non measurable mechanosensitivity, possibly in response to

their very soft environment of the whole developing brain. Moreover, neurite extension takes

place also with very low traction stresses, indicates that CNS neurons are less dependent on

the adhesion to modulate their growth and guidance. However, traction forces produced by

growth cones may play an important role in the establishment of neuritic tension and conse-

quently, as exposed above by works about neurite tension, in axonal specification. Consistent

with this hypothesis, it has been shown in Figure III.25 that the traction stress field of hip-

pocampal growth cones is often highly localized and aligned with the net force toward the axon.

These works highlight the importance of considering cell interaction with the mechanical

environment to better understand cell functions, as well as the complexity of this relationship.

In the same line, the different behaviors and properties depending of the specific cell type, and

even more specifically among neurons, express the importance to be consistent between the

choice of a cell type and of the experimental method when addressing a scientific issue. Last,

but not least, these reports on the mechanical aspects of neurons further support our interest

for the force–generating properties of waves despite the extreme difficulty to measure forces in

hippocampal neurons. We have therefore chosen to try to investigate the interplay between

waves and the force generation, as exposed in the next section.
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Traction Force Microscopy to investigate wave contribution to neurite forces

We have used PA hydrogel substrates, loaded with fluorescent microbeads to characterize

the forces produced by developing neurons by Traction Force Microscopy (see Section III.3.3.2).

Image analysis and mathematical algorithms of microbead tracking have been developed in the

context of Michel Moussus’s PhD on the characterization of the mechanical forces within the

endothelium [36].

The main difference between neurons and endothelial cells is the order of magnitude of the

expected forces: lower than 50 Pa for neurons, and in the range of few hundreds Pa for en-

dothelial cells. This aspect sets a critical constraint for the substrate fabrication, whose elastic

modulus has to be of the order of a few Pa. The narrow range between the lowest stiffness

limit (the hydrogel must be polymerized everywhere, so to be elastic but not viscous) and

the highest one (forces transmitted by neurons must be detectable) imposes to achieve a high

uniformity of the substrate stiffness using substrates with few hundreds Pa. For this reason,

we have mainly employed the photopolymerization technique developed in our laboratory [37],

as described in Section II.1.2.2.

There are two methods to obtain the displacement field: Particle Imaging Velocimetry (PIV)

and Particle Tracking Velocimetry (PTV). PIV averages the displacements on fixed windows of

the field of view, giving a regular field of displacements. It is quite fast and it has indeed given

more accurate results. PTV technique is based on the tracking of single bead trajectories,

giving a displacement field that depends on the local density of the particles. The thinness of

the neurites (few microns wide) makes this constraint difficult to achieve. Therefore, the PIV

method seems to be more adapted for our problematic.

First, it is necessary to compensate the thermal drift and the hysteresis of the microscope stage:

the image sequences of the time–lapse experiments are realigned using the regions of the gel

that are free of cells. Indeed, during the acquisition, the microscope stage is not absolutely

stable, producing some variations in the position of the field of view. This problem is caused by

(i) the microscope precision to come back to the same position during a multi–position acqui-

sition and (ii) the thermal stability of the set-up. The PIV technique provides the corrections

of the beads positions in the x and y directions, with a precision of ∼ 70 nm (Figure III.26).

Then, the PIV method is employed a second time to define the field of the deformation of the

substrate. For this purpose, the field of view is divided in windows of 16 x 16 pixels. The little

size of the windows (compared with the other values also commonly employed of 32 x 32 or

64 x 64 pixels) is justified by the small displacements expected for the weak forces exerted by

the neurons. This point also explains why we took the first (or the last) image of the image

sequence as a reference for this calculation in order to measure the displacements relatively to

a fixed position. Indeed, the displacements calculated using consecutive images are too small
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Figure III.26: Particle imaging velocimetry (PIV) principle. Side view (sketch on the left)
and top views (fluorescent images) of an hydrogel substrate for PIV measurements. 1) Fluorescent
microbeads (in red) are uniformly distributed in the hydrogel (in blue, over the glass coverslip). Cells
(in yellow) are deposited on the surface, where their forces transmitted to the substrate induce a
displacement of the beads (black arrows). The fluorescent image reports an example of field of view
of fluorescent beads. 2) The field of view with the fluorescent beads is divided in small windows
(16 x 16 pixels). 3) The changing windows are compared with the reference window. The peak in the
cross-correlation plan corresponds to the optimal overlapping between the windows. The PIV provides
the final displacement field of the beads. Adapted from [36]

to be detected. The algorithms of correlation between consecutive images were implemented

in Matlab software and allowed a sub-micrometric resolution in particle tracking. The total

resolution of these calculations can be estimated around 50 – 100 nm.

Results from traction force microscopy measurements

The technique of photopolymerization employed for the hydrogel fabrication leads either

to uniform or patterned stiffnesses depending on the design of the mask used for the UV light

illumination. In the range of stiffness of interest for our study, we were quite limited by the

situations of instability of the microbeads within ultra–soft gels or of inhomogeneous unmold-

ing of the gel from the mask giving irregular surfaces. Both situations mean that the field of

spatial bead distribution do not have the necessary properties to be used for the TFM. Ini-

tially, we have employed hydrogel substrates with alternative submillimetric stripes of low and

high stiffnesses. In this configuration we have obtained ∼10 kPa stripes surrounded by larger

ones of much lower stiffness (∼100 Pa). Hippocampal neuronal cultures have been observed

on this kind of gels, giving qualitatively results that support the hypothesis of an interplay

between wave propagation and neurite forces (Figure III.27). However, this example has been

an exception and the inhomogeneity of the hydrogel stiffness has not made possible to provide

quantifications of the forces observed on this hydrogel. After some experiments without sig-

nificant results, also changing the exposure time, we have concluded that the stiffness gradient

between two hard stripes was too important to obtain very soft regions sufficiently homoge-

neous at the cell level.
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Figure III.27: TRM of mouse hippocampal neurons on a PA hydrogel at 1 DIV (photopoly-
merization method). PA gel fabricated with the photopolymerization method with a mask giving
alternative stripes of Young’s modulus of ∼ 10 and 0.1 kPa. Phase image of a wave (pointed by the red
arrow) propagating along a neurite on the softest region and the associated field of forces (green arrows)
obtained from the displacements of fluorescent microbeads (infrared, 200 nm in diameter, 60 µl/ml,
i.e. 0.12% v/v) embedded into the hydrogel. Scale bar: 10 µm

Technical problems have played a crucial role in these already challenging experiments, also on

uniform gels: absence of visible neuronal waves, lost of focus during the time–lapse imaging,

changes of some components of the UV lamp and of the experimental set-up influencing the

reproducibility of the calibrated exposure times versus stiffness, replacement of the microscope

set-ups. Some combinations of these problems were also associated to the difficulty to perform

these experiments a great number of time, due to the scarcity of primary neuronal cells we had

access to.

Finally, we have compared both photopolymerization and chemical techniques of hydrogels

fabrication. In this case the Young’s modulus measured for the photopolymerized gels was of

∼ 1.4 ± 0.6 kPa with 4.4 s of UV light exposure and a nominal stiffness of ∼ 0.5 ± 0.2 kPa

for the PA gels with the chemical method (acrylamide – bis-acrylamide concentration: 3%–

0.06%) [38].

We summarize the results obtained with the PIV technique described above through some

examples. We display in Figure III.28.A a typical distribution of microbeads in a very soft

gel and a field of displacements in PA gels in response to the growth of hippocampal neurons

(Figure III.28.B). The cell density employed is 100 cells/mm2 in order to ensure both a suffi-

cient number of cells to obtain good conditions of survival and a sufficient number of isolated

cells. From the displacement values in the x and y directions we can obtain the displace-

ment modulus (
√
x2 + y2 = | u |) and analyze its distribution (Figure III.28.C). In this way,

a direct and approximate information of the noise in our calculations is provided, by means

of the statistical distribution giving the most probable value, i.e. the first peak value. We

obtained ∼ 22 ± 8 nm for the gel fabricated with the chemical method (Young’s modulus:



III.3. Growth cone like waves along neurites 153

∼ 0.5 ± 0.2 kPa) and ∼ 27 ± 9 nm using the phopolimerization method (Young’s modulus:

∼ 1.4 ± 0.6 kPa, exposure time: 4.4 s, gel in Figure III.30). In order to check if the second

peak that appears in histograms such as the one displayed in Figure III.28.C corresponds to

specific areas occupied by neurons, we have reported their localization on the respective field

of view of the hydrogel. However, the noise dispersion is unfortunately too important to allow

any consistent conclusions (Figure III.28.D).

Figure III.28: TRM of mouse hippocampal neurons on a PA hydrogel at 3 DIV (chemical
method). PA gel fabricated with the chemical method and with a Young’s modulus of ∼ 0.5 ± 0.2 kPa.
A) Field of fluorescent microbeads (infrared, 500 nm in diameter, 100 µl/ml, i.e. 0.22% v/v). B) Phase
image and displacements field (green arrows) of the field of view in (A). C) Histogram of the displace-
ment modulus values expressed in nm. D) Localization of the values of the displacement modulus
belonging to the second peak of the histogram in (C), i.e. fixed between 80 and 113 nm, and super-
posed to the field of view of (B). Scale bars: 20 µm.

Indeed, in general, there are no values exceeding the noise level. This is not surprising if

we take into account the displacement values measured by Odde et al. [32] (∼ 10 – 20 nm)

and the force values reported by Koch et al. [35] (∼ 10 Pa) for hippocampal neurons.

We can nevertheless provide an approximate information of the force value corresponding to

the measured noise as an estimation of the upper limit of the forces exerted by hippocampal

neurons. We consider the hydrogel, whose thickness is of ∼ 80 – 100 µm, as an elastic and
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half–space medium with an uniform stiffness. The hypothesis of a "semi–infinite" medium is

justified by the presence of only one limit represented by the interface in contact with the cells

whereas the coverslip supporting the gel is relatively far to not have a significant contribution.

The force distribution ~f acting on the surface of the elastic medium with a displacement field

~u is represented by the following equation [39]:

~u(x, y) =

∫
~~G(x− x′, y − y′)~f(x′, y′)dx′dy′ (III.4)

where ~~G is the Green’s tensor, x and y the coordinates of the bead displacements on the plane

at the surface. The relation between the displacement u of the 16 x 16 pixels windows given

by PIV and the force F can be approximate by the following relation:

u ∼ F

E
(III.5)

with E the Young’s modulus of the hydrogel. By this approximation of the elastic problem we

firstly obtain the stress value σ corresponding to the displacement u by:

σ ∼ E · u
Lwindow

(III.6)

with Lwindow the side of the window obtained by PIV. With the hypothesis that the stress

is uniformly distributed on the PIV window, we can finally obtain an estimation of the local

force on one bead:

Fbead ∼ σ ·R2
bead (III.7)

with Rbead the bead radius. Using approximated values of the parameters just described

(E ∼ 1 kPa, u ∼ 25nm, Lwindow ∼ 2.5µm and Rbead ∼ 0.25µm), we obtain a noise value (i.e.

corresponding to the first peak value of the histogram) of the order of 0.1 – 1pN .

Then, we have compared the results obtained on the gels fabricated with the two methods

mentioned above (Figures III.29 and III.30). They reveal that some forces seem to be exerted

at the level of the growth cone, in particular during the retraction of a neurite (red inset in

Figure III.29) but not significant results have been observed in the presence of the waves.
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Figure III.29: TRM of mouse hippocampal neurons on a PA hydrogel at 2 DIV (chemical
method). PA gel with a Young’s modulus of ∼ 0.5 ± 0.2 kPa. A) Field of fluorescent microbeads
(infrared, 500 nm in diameter, 100 µl/ml, i.e. 0.22% v/v). B) Phase image and displacements field
(green arrows) of the field of view in (A). Scale bars: 20 µm. Time–lapse experiments of the selected
areas in red and light blue are reported below. Time is indicated in minutes: 0’ is 48 h after plating.
The orange arrows in the red square point to the neurite tip during its retraction.
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Figure III.30: TRM of mouse hippocampal neurons on a PA hydrogel at 3 DIV (pho-
topolymerization method). PA gel with a Young’s modulus of ∼ 1.4 ± 0.6 kPa. A) Field of
fluorescent microbeads (infrared, 500 nm in diameter, 100 µl/ml, i.e. 0.22% v/v). B) Phase image and
displacements field (green arrows) of the field of view in (A). Scale bars: 20 µm. Time–lapse experiment
of the selected area in red is reported on the right. Time is indicated in minutes: 0’ is 72 h after plating.
The wave localization and propagation along the neurite is delimited by the blue line and reported in
the insets. No significant displacements are detected.
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Some conclusions and perspectives to improve the experimental system

It seems that neurites are not strongly adherent to the surface, which could explain the

quite absence of forces transmitted to the substrate. See as an example the blue inset in Fig-

ure III.29 where the curved region of the neurite gradually moves out of the focus. Considering

the number of experiments where the right conditions of softness and surface chemistry were

gathered, we can conclude this method is not adapted to measure forces within waves.

Experiments with softer gels may still reduce the noise and improve the resolution to better

evaluate the threshold corresponding to the maximal forces transmitted to the surface. How-

ever, these experiments reveal that these forces are very low or absent and this suggests that

waves have no impact on the mechanical properties surrounding the neurite.

We propose some methodological aspects that could be improved.

First, we need an improvement of microscope setup with a better stability and objectives with

an higher magnification and resolution (60x instead of 40x and an oil objective instead of the

available air one), the use of smaller fluorescent microbeads (200 nm-diameter beads) and the

achievement of z–stacks time–lapse experiments in order to not loose the information about

the bead displacements in the perpendicular direction. Moreover, as we have observed that

waves were very sensitive to the cellular stresses, eventually stopping or vanishing much below

the level of stress leading to neuronal death, we might also achieve less toxic conditions of

observations by increasing the exposure time while reducing the laser intensity. A fine control

of the adhesive coating might be improve the neuronal adhesion, and thus the interaction with

the hydrogel structure.
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III.3.4 Summary about wave dynamics

This third section has focused on the properties of waves on geometrically constrained

neurons.

We have observed that:

• it exists a direct interplay between wave arrival at the neurite tip and the total elon-

gation of the neurite;

• the frequency of wave production is independent on the neurite number;

• enlarging the neurite width decreases the frequency of wave emission;

• the frequency of wave emission on the asymmetric adhesive patterns seems to be

controlled at the single neurite;

• the wave velocity decreases on larger neurites.

Our works has shown that neurite width was controlling the wave period, as it controls the

neurite length. Moreover, the periodicity of waves in asymmetric patterns has suggested that

this control was performed at the neurite level (rather than at the soma level). Consistent with

these results, we have proposed a minimal model suggesting that wave components (excess mass

of polymerized actin, and/or critical signaling factor) are produced by the cell at a constant

rate and that a critical neurite–width dependent concentration has to be reached to initiate

wave emission.

Together, our work reinforces the association between neurite elongation and waves and

gives a phenomenological framework of waves as a basis for future molecular studies. The

exploration of a possible mechanism of neuronal polarization through a preferential allocation

of waves in the future axon will be the object of further studies in our team.

As various lines of evidence suggest that axons are the neurite under the highest tensile

stress and as waves might contribute to the establishment of this tension, we have reported

some results about the calculation of membrane tension as function of the neurite nature

(axon ans dendrite) and width and of transmitted forces associated to wave propagation.

We have shown that the neurite width does not influence the membrane tension and that

this tension equilibrates fast. Additionally, we have shown that wave propagation only induces a

transient resistance of the membrane, that we suspect to be associated to the remodelling of the

membrane cortex as the wave forms. In the same line, traction force microscopy experiments

have provided that forces directly transmitted to the substrate by waves were absent or very

weak (lower than ∼ pN). However, we could show that wave propagation does not result

in stress transmission to the extracellular matrix, suggesting that wave propagation relies on

internal tension. Some technical suggestions have been made to improve further experiments,

although neuronal adhesions seem to be too low to measure with this method eventual forces

exerted by waves.
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In conclusion, wave propagation seems to not strongly involve mechanical mechanisms, at least

at level neither of neurite membrane nor of forces transmitted to the substrate. A study of

this process from a molecular point of view is therefore addressed in the next section.
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III.4 Molecular high resolution investigation

In the previous section we have exposed our results about the dynamical and mechanical

characteristics of waves during neurite elongation. A better understanding of the mechanisms

behind their propagation would require to investigate these structures from a molecular point

of view.

The investigation of the actin dynamics and of the proteins involved in the cytoskeleton orga-

nization can contribute to clarify the role of waves in the neuronal growth and polarization.

For that purpose, we have performed preliminary studies on the wave components potentially

involved in the mechanisms of propagation of these structures.

During my PhD, I had the opportunity to spend two weeks in the Giorgio Scita’s group at the

IFOM in Milan (FIRC Institute of Molecular Oncology, Italy) and three weeks in the Casper

Hoogenraad’s group at the Utrecht University (The Netherlands). These labs are among the

best places in Europe for their recognized expertise respectively in cellular dynamics of actin

structures and microtubules dynamics in neurons.

A fundamental contribution to the cellular understanding results from dynamical observations.

This consideration is particularly true for waves, that are quite compact and very dynamical

structures. However, several aspects make the tracking of waves a challenging purpose. First,

our attention must be focused on isolated neurons in order to ensure that the wave dynamics

is not affected by the interaction with other neurites. To increase the number of isolated cells

growing on the patterns we have to plate cells at low densities. Live imaging on single cells and

low density cultures are two conditions that make cells, and even more patterned cells, very

sensitive to the stress of their environment, especially to the phototoxicity. Importantly, waves

emission drastically decreases in cells submitted to stress. Moreover, the time window with

the highest wave emission is quite short (1 – 3 DIV) and it coincides with the early steps of

cell growth, where neurons are very fragile. Finally, virus infections or transfections techniques

are required to selectively observe the molecular constituent of waves, but are known to stress

cells. Furthermore, this means that fluorescent microscopy has to be employed, that involves

an additional phototoxicity effect.

Both techniques, i.e. lentivirus infections and transfection by electroporation, have been tested

and the first one has given the best results. Efficient live imaging experiences have been per-

formed at 2 DIV for two main reasons:

• at 1 DIV cells are too much fragile, leading to a high rate of cell death

• and at 3 DIV the higher expression level of fluorescent proteins compromised the cells

survival in these particular conditions of culture.
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III.4.1 Actin structure and effectors

Live imaging with GFP–Lifeact has allowed to observe actin concentration and propagation

within waves, that is usually not accessible by common bright field imaging. Some examples

of these waves are shown in Figure III.31, confirming the high concentration of actin in the

waves. We have also checked that actin immunostainings (from the phalloidin marker) and the

Lifeact signal show a good colocalization (Figure III.32).

Figure III.31: Live imaging of a GFP–LifeAct infected neurons at 2 DIV.Mouse hippocampal
neurons on 2 µm adhesive pattern, PLO coating. A) Spinning Disk microscope. Acquisition interval:
15 s. Times of shown stacks (from the left to the right): 51, 54 and 78 min. B, C) TIRF microscope:
GFP–Lifeact (B) and bright field (C). Acquisition interval: 15 s. Times of shown stacks (from the
left to the right): 0.5, 2, 3 and 5 min. Arrows show actin wave position and its propagation way.
GFP–LifeAct infection conditions: 20 µl, overday (A) and overday / overnight (B). Scale bars: 10 µm.

Figure III.32: GFP–LifeAct infected neurons at 2 DIV. Mouse hippocampal neurons on 6 µm
adhesive pattern, PLO coating. A) Actin localization in a wave. B) Actin localization in a growth cone.
Blue: DAPI, nuclei. Green: GFP antibody, Lifeact. Red: pholloidin, actin. GFP–LifeAct infection
conditions: 20 and 10 µl respectively, overday / overnight. Scale bar: 10 µm.
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Then, we have investigated actin regulatory proteins like VASP end Eps8 (see section I.2.2

for more details). Both appear highly concentrated within waves of living neurons.

Unfortunately, it was not possible to resolve their fine structure inside the waves, that where

unusually narrow possibly due to the stress induced by infection and imaging (Figures III.33

and III.35).

We have nevertheless confirmed some known characteristics of these proteins, e.g. their pres-

ence in the lamellipodia and the filopodia tips (Figures III.36 and III.34.A). VASP colocalizes

with focal adhesions, observed here in glial cells (Figure III.34.B). Interestingly, the growth

cone shown in Figure III.34.C has adapted its morphology to the 15 µm adhesive disk, allowing

the observations of clear spots of VASP staining along all the growth cone edges. Of note, the

Eps8 overexpression might be explain the unusual morphology and slow time of propagation

of the wave observed in Figure III.35.

Figure III.33: Live imaging of a GFP–VASP electroporated neuron at 1 DIV. Mouse hip-
pocampal neuron partially positioned on 2 µm adhesive pattern, PLO coating. Spinning Disk micro-
scope. Acquisition interval: 15 s. Times of shown stacks (from the left to the right): 4, 6, 8 and 9 min.
Arrows show actin wave position and its propagation way. GFP–VASP electroporation conditions:
1 pulse, 20 ms, 1600 V , 0.5 µg of DNA. Scale bar: 10 µm.

III.4.2 Microtubules organization and associated proteins

The organization of microtubules, the other key element of the cytoskeleton, has been

investigated by immunostaining of microtubule end–binding proteins (see section I.2.1 for more

details). We have observed that (i) microtubule plus–ends (EB1 and 3, in green) are excluded

from the waves like in growth cones (Figure III.37.A, B), (ii) they seem to be lengthwise

aligned with patterns both in 8 µm (Figure III.37.C) and in 2 µm (Figure III.37.D) wide

stripes and to localize preferentially near the neurite edges, whereas (iii) microtubule minus–

ends (CAMSAP2, in red) seem to have a more compact distribution, mainly in the middle of

the neurites. Of note, the immunostainings for microtubules in large patterns have not revealed

individual microtubules, since they seem to bundle also in these wide patterns, at least in these

few examples.
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Figure III.34: VASP localization in brain cells at 2 DIV. Mouse hippocampal neurons and glial
cell, PLO coating. A) Neuron grown on a 2–2 pattern. Blue: DAPI, nuclei. Red: phalloidin, actin.
Green: GFP antibody, VASP. Inset: zoom of the orange rectangle showing the VASP staining in a
filopodium along a neurite. B) Glial cell grown on a uniform adhesive area. Blue: DAPI, nuclei. Red:
phalloidin, actin. Green: GFP antibody, VASP. Magenta: vinculin antibody, focal adhesions. C) Con-
focal microscope image of a neuron (cell body out–field) grown on a 2 µm wide pattern and the 15 µm
adhesive disk. Green: GFP antibody, VASP. Magenta: microtubules. GFP–VASP electroporation
conditions: 1 pulse, 20 ms, 1600 V , 0.5 µg DNA. Scale bars: 10 µm.

Figure III.35: Live imaging of a GFP–Eps8 infected neuron at 2 DIV. Mouse hippocampal
neuron on 2 µm adhesive pattern, PLO coating. Spinning Disk microscope. Acquisition interval: 15 s.
Times of shown stacks (from the left to the right): 0, 23 and 44 min. Arrows show actin wave position
and its propagation way. GFP–Eps8 infection conditions: 20 µl, overday. Scale bar: 10 µm.
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Figure III.36: Eps8 localization in neurons at 2 DIV. A) Confocal microscope image of a mouse
hippocampal neuron (cell body out–field) grown on uniform adhesive area, PLO coating. Green: GFP
antibody, Eps8. GFP–Eps8 electroporation conditions: 1 pulse, 20 ms, 1600 V , 0.5 µg DNA. Grey
rectangle corresponds to the zoom shown in (B) and (C). Scale bars: 10 µm.

Figure III.37: Microtubules organization in neurons on patterns of different widths. Rat
hippocampal neuron, PLO coating. A) Neuron on a 2:6 pattern at 2 DIV. Blue: DAPI, nuclei. Red:
actin–antibody, actin. Green: EB3, end–binding protein of microtubules. Grey rectangle corresponds
to the zoom shown in (B). B) Zoom of (A) showing an actin wave. C) Neuron on a 8–8 pattern at
2 DIV. Blue: DAPI, nuclei. Green: EB3, end–binding protein of microtubules. Red: βIII–tubulin,
microtubules. D) Neuron on a 6:6 pattern at 6 DIV. Blue: βIII–tubulin, microtubules. Green: EB1,
end–binding protein of microtubules. Red: CAMSAP2, minus–end binding protein of microtubules.
Scale bars: 10 µm.
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III.4.3 Summary about waves and molecular aspects

With the few results obtained until now, we can conclude that waves display an actin rich

organization similar to growth cone. For the first time, actin dynamics has been observed

by time-lapse experiments showing high actin concentrations within waves, propagating along

neurites toward the growth cone. Moreover, the wave velocity of propagation on the order of

a few µm/min is compatible with a few tens of nm/s characterizing both the rate of actin

polymerization of F-actin filaments and molecular motors dynamics along microtubules [40].

Some regulatory proteins for the branching (VASP) or the bundling (Eps8) of actin fila-

ments have been observed in fixed and living neurons. These proteins are involved in axonal

guidance, showing an enriched localization at the leading edge of the growth cone lamellipodia,

at the tips of filopodia [41, 42, 43] or in dendritic spines [44]. Here, we have confirmed a similar

localization in hippocampal neurons and show in addition that these proteins accumulate.

Microtubules end-binding proteins have been also observed. Our initial aim was to take

advantage of the de-bundling of microtubules sometimes observed in neurite growing on the

largest stripes to follow the dynamics of individual filaments, eventually in interaction with

F-actin. These preliminary experiments have shown their exclusion from the membrane de-

formations produced by waves and their spatial organization was not qualitatively different in

waves compared to the rest of the neurite shaft. An interaction of F-actin filament of waves

with the central structure of microtubules in neurites is however not excluded. It would require

to search for actin-microtubule linkers, as formins.

Two hypothesis at the basis of wave propagation seem thus to be consistent, or not excluded

by with these exploratory experiments. Of note, both of them have not to be seen as exclusive:

(i) the wave propagation might be associated to an actin polymerization along the neurites

and (ii) it could be supported by an actif transport managed by molecular motors along

microtubules, such as kinesins.

To achieve a deep understanding of these high dynamic structures it will be necessary to

perform more experiments on living cells, interfering with the expression of specific genes that

could be involved in wave propagation.
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III.5 Toward controlled neuronal networks

The possibility to master the axonal specification process can be seen as a strategy to con-

trol of mature neuronal networks in vitro in terms of polarity and connectivity.

In this section, we will show some analysis on neurons at a later stage of development than that

previously exposed. The idea was to investigate the molecular aspects related to the functional

properties of neuronal networks grown on our microstructured substrates and to present a few

examples of patterned neuronal networks as a first step toward functional organized neuron

architectures.

Neurons fixed at 6 DIV showing dendrites and axons stainings (MAP2 and ankyrinG re-

spectively, Figure III.12) represent already an encouraging result showing that neuronal devel-

opment is not compromised morphological constraints, at least until this stage.

Neurons fixed at 16 DIV have been immunostained with synapsin I, a synaptic vesicle pro-

tein. In mature cultures of hippocampal neurons (i.e. starting from around 10 DIV), this

pre–synaptic protein has been observed in concentrated spots corresponding on the sites where

axons contact neuronal cell bodies and dendrites [45]. In early stage, synapsin I is primarily

concentrated in the soma and it can also be present along the neurites. Then its distribution

into the axon occurs even in isolated cells, independently of interactions with other cells. More

generally, its expression increases throughout the course of development. Importantly, authors

highlight that spots of synapsin I staining were seen even also along isolated axons, but forming

smaller spots than at the level of the presynaptic points of contact with dendrites or somas.

These results have been confirmed by our observations: a growth cone of a neuron fixed at 2

DIV (Figure I.9) displays a quite uniform distribution of synapsin I, and synapsin I spots are

clearly visible on neurons at a later stage of development (Figure III.38).

In contrast with the Fletcher’s observations, in our cultures all branches of isolated cells

(axon and dendrites) present spots of synapsin I staining. There is little doubt that the longest

and weakly branched neurite of the neuron in Figure III.38.A is the axon. This assumption is

also in agreement with the weaker presence of visible spots of synapsin I staining, as described

by [45]. This condition might suggest that a dense network of other very thin extensions

cross dendrites giving the bright synapsin I spots. This hypothesis should be confirmed by

microscopy technique with an higher resolution, as SEM (scanning electron microscopy).

As clearly evidenced by the morphology of neurons in Figure III.38 that does not follow any-

more the initial 2:2 pattern, the patterning technique employed here is therefore not adapted

for long term cultures. Other solutions are exposed in the Section II.1.1.4.
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Figure III.38: Mouse hippocampal neurons at 16 DIV. A) Neuron on adhesive 2 µm wide
pattern. Grey rectangle corresponds to the zoom shown in (C). B) Neuron on uniform adhesive area.
C) Zoom of (A). Blue: Hoechst, nuclei. Green: synapsin I, synaptic vesicles. Red: Phalloidin, actin.
PLO coating. Scale bars: 20 µm.

Finally, an example of design of connected neuronal architectures is shown in Figure III.39.

Our goal was to recreate in vitro the conditions for a deterministic axonal localization. We re-

fer to the section I.6 and to the several examples of only a partial control of the axo–dendritic

process achieved until now in the literature (obtained by playing with the molecular speci-

ficities of the extra–cellular matrix [46, 47, 48] or by employing adhesive micropatterns [49]

inspired by the axonal preference to low adhesive conditions reported by Prochiantz et al. [14])

to illustrate the purpose of such a goal. Our results on the control of the localization of ax-

onal specification achieved on isolated cells have been applied here to iinterconnected neurons.

In addition, curvatures at the tip of the thinnest branch (presumably the axon) have been

designed to increase the probability to form synaptic connections through axonal branching.

Three connected neurons fixed at 3 DIV with their soma correctly positioned on the 15 µm

disk are shown in Figure III.39. The same pattern fabricated with the methods described in

the Section II.1.1.4 (i.e. combining the grafting of repulsive and adhesive areas) might allow a

good cellular confinement to grow controlled neuronal networks until a more mature stage.
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Figure III.39: Controlled network of mouse hippocampal neurons at 3 DIV. Adhesive pattern
(left) and phase contrast image of three connected neurons (right). PLO coating. Scale bar: 50 µm.
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III.6 Conclusion

In this chapter we have investigated the question of how geometrical constraints at the

cell level can influence neuronal growth and differentiation. For that, we have mainly

observed hippocampal neurons in a time window around 1 – 3 days in vitro, in order to follow

the first steps of growth, until the axonal differentiation phase. We have adapted the size of

the adhesive patterns to the order of magnitude of mouse neurons at this stage of development

in vitro, i.e. around 1 – 2 µm of width and until few hundreds of µm of length. We have

made the choice to employ pattern designs characterized by minimal straight stripes, varying

their number or width. In this way, cell responses to adhesive 2D properties could be analyzed

separately and quantified (see Section III.1.4).

In a second part of this chapter, we have investigated the existence of a neurite critical

length in the process of neuronal polarization. Experimental and theoretical approaches have

been employed, as described in the summary of the Section III.2.3.

Then, we have reported in the Section III.3.4 the conclusions about our study of the wave

dynamics, including the influence of the neurite width and the forces associated to their prop-

agation.

In the fourth section we have explored the molecular aspects associated to wave prop-

agation, looking for the actin effectors and microtubule associated proteins. The summary

of these explorative experiments about possible mechanisms at the basis of wave propagation

along the neurites is reported in Section III.4.3.

Of note, and quite importantly, we observed waves in cortical neurons, suggesting a po-

tentially broader significance of these structures although their association to cortical neuron

elongation is still to be demonstrated (Figure III.18).

Finally, we have shown as our results might provide practical implications for the manip-

ulation of in vitro neurons and the design of controlled neuronal micro–circuits. These

kinds of architectures would be also interesting to study synaptic formation in different and

controlled configurations, like for example in tip to tip connections.
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Chapitre IV : résumé

Dans ce chapitre nous présentons des résultats expérimentaux portant sur la sensibilité

des cellules du cerveau aux propriétés mécaniques de leur environnement. Les cellules gliales,

qui sont actuellement un sujet d’étude en forte expansion, jouent un rôle important dans la

formation et la réparation des réseaux neuronaux. Nous analysons, par une étude systématique

et quantitative, l’effet de la rigidité du substrat et de ces propriétés chimiques ainsi que la

contribution du milieu de culture, sur l’adhérence et la prolifération cellulaire. Nous montrons

que contrairement aux neurones, les gliales sont influencées de manière significative par ces

paramètres. Pour la première fois, nous montrons que l’adhérence et la prolifération des gliales

sont augmentées dans un environnement rigide mais que ce résultat est conditionné par la

chimie de surface, ouvrant des questions sur les mécanismes d’adhésion de ces cellules du

cerveau.

Ce chapitre se termine par une exploration de la sensibilité des cellules gliales à la topographie

du substrat, à l’échelle de quelques centaines de nanomètres, qui conclut à l’absence d’influence

significative de cette échelle de topographie sur la morphologie cellulaire.
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IV.1 Glial cells sensitivity to the substrate stiffness

Most cells are sensitive to their environment in the sense that they adapt their character-

istics to the properties of this environment [1, 2]. Among these properties, stiffness plays an

important role in the regulation of cell behavior. The aim of in vitro studies is, by reproducing

a large range of physiological in vivo ECM stiffnesses, to highlight the cellular responses to

this physical parameter. The further challenge is then to find and understand the correlations

between the in vitro and the in vivo behaviors.

Although several studies have confirmed that the brain is the softest tissue in mammals, in

the order of few hundreds Pa [3], the brain cell mechanosensitivity is still poorly understood.

Moreover, the brain global stiffness is not uniform, also over time. For example, similarly to

the organization and the concentrations of the different brain cell types, brain stiffness changes

during its development and in pathological conditions, showing that mechanical properties are

quite intrinsically linked to brain functions [3, 4, 5].

The interest for glial cells is in part motivated by their involvement in injuries or cancers.

For example, it has been demonstrated that soft hydrogel implants prevent the formation of

glial scars, favouring neuronal regrowth [1]. Glial cells seem to respond to a larger range of

stiffness values than the central nervous system (CNS) neurons [6, 7, 8]. Some studies have

shown that glial cells survive better and spread more on stiff substrates [9, 10, 11]. The

scarcity of studies giving a complete analysis of the brain cells mechanosensitivity may be ex-

plained by the complexity of the brain and especially by the difficulty to manipulate brain cells.

In this context, we have made the choice to deeper investigate this issue. Thus, in this

chapter we will focus on the mechanosensitivity of glial cells. In particular, we will provide

some exploratory experiments leading to systematic quantifications of glial cell density, in the

context of adhesion and proliferation, as a function of the substrate stiffness. Although our

conclusions are for the moment based on only few cell cultures, some key cell responses come to

light rather coherently. We will report these experimental results with the purpose to highlight

the glial cell sensitivity to mechanical stimuli and how this clear mechanosensitivity is influ-

enced by the cell chemical environment, e.g. the culture medium, the molecules of adhesion

and the presence of neurons.
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IV.1.1 Methodology

We have employed microstructured hydrogels of polyacrylamide (PA) to elucidate the con-

tribution of precise conditions of in vitro cultures such as the stiffness and the topography of

the ECM, the composition of the medium and the nature of the adhesive ligands on the ECM.

As the glial cell response is influenced by the presence of neurons, we will discuss the two cases

of mixed glial/neurons and pure glia cultures in two separate sections.

The photopolymerization technique used for the fabrication of PA gels has already been dis-

cussed in the section III.3.3.2 dedicated to the study of the forces exerted by neurons. It is

here employed to create rigidity patterns of various geometries. This technique allows to create

elastic patterns with tunable geometries and mechanical properties. We have chosen for this

study to probe the response of glial cells on mechanically uniform substrates within a panel

of stiffnesses, and on mechanically non uniform substrates consisting of two apposed, signifi-

cantly distinct values of stiffnesses with three kinds of geometrical designs. With this latter

configuration, we explored the role of high stiffness gradient, at various scales in comparison

with cell size, as presented in the Table IV.1.

Pattern Characteristics Aim Pattern Characteristics Aim

Uniform

Uniform
stiffness

depending on
the

exposure
time

Comparison
of

cell behavior
as a function

of
stiffness Double stiffness

Two
stiffnesses

characterized
by

a difference
of several

tens of kPa

Analysis
of

the response
to both sharp

gradient
and

uniform
stiffness

Stripes

Stripes of
different
widths,
between

5 to 75 µm

Analysis
of

the response
to high
stiffness
gradients
at the

cell level

Target

Circular
areas with
a delta of
several

tens of kPa

Multiply
the number of
high stiffness
gradients

at a
larger scale

than
the cell level

Table IV.1: Designs of stiffness patterns projected on polyacrylamide (PA) hydrogels.
Substrates are transferred on round coverslips (φ = 30 mm). The orange regions correspond to the
soft parts of the gel, the blue ones are the rigid regions. The "Characteristics" and the "Aim" columns
express the interest of the corresponding pattern.

We have exposed in Section II.2 the techniques employed to in vitro manipulate glial cells

to obtain mixed or pure cultures. For all experiments with mixed or pure glial cell cultures we

have used mouse cortical cells from embryos of 18 days of gestation.
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In the next section we analyze how glial cell proliferation is influenced by the mechanical prop-

erties of their ECM, in the presence of neighboring neuronal cells in mixed culture conditions.

Therefore, the exploration of their mechanosensitivity with this method is closer to the in vivo

situation than with pure cultures. Of note, in in vitro mixed cultures glial cells are usually

observed in direct contact with the substrate (neurons are located on top of glial cells). For

this reason, glial cells interaction with the substrate stiffness is not impaired by neurons.

Pure culture has been used to investigate the response of primary glial cells both in terms of

adhesion and proliferation as a function of the substrate stiffness. As it will be discussed, this

technique presents also the advantage to get a more controlled condition in terms of initial cell

concentration. These results will be presented in the Section IV.1.3.

For each experiment, we will report in the footnotes information about hydrogels, including

parameters of fabrication, concentration of molecules of adhesion, medium employed for the

culture and cell seeding concentration. See footnotes in the Section II.2 for information about

the composition of the culture media.

IV.1.2 Mixed neuronal–glial cell cultures

We first describe preliminary experiments, that give a first insight of glial cell response to

stiffness. We then report more systematic analysis.

Qualitative explorations of glial cells mechanosensitivity on mixed cultures

Some different culture conditions, including adhesive coating and culture medium, are

explored.

♦ Poly-L-lysine and laminin (PLL/LN) coating and serum free culture medium

To investigate the glial cells behavior in presence of neurons, an important component of

their static mechanical environment, we have chosen the "double stiffness" substrates (see

the Table IV.1 for the nomenclature) functionalized with PLL/LN proteins and cultured in a

medium adapted to neuronal development. We observed that glial cells proliferate on the stiff

side and stop at the frontier with the soft region, whereas neurons extend branches on both

surfaces (Figure IV.1)1.

♦ Fibronectin (FN) coating and culture medium supplemented with serum

Then, the experience has been repeated on "uniform" and "double stiffness" hydrogels, func-

tionalized with FN protein and cultured in a medium adapted for glial cells proliferation. This
1Details of fabrication, functionalization and culture of the hydrogel. 3 equivalent samples. Ex-

posure time: 100 s; chrome thickness: 40 nm; fluorescent microbeads: φ = 200 nm, 30 µl/ml, i.e. 0.06% v/v;
PLL 105 µg/cm2 during 1 h, LN 1.1 µg/cm2 during 1 h. Seeding conditions: ∼ 100 cells/mm2 in MEMs
culture medium, replaced after 3 h by NBs. Young’s moduli: ∼ 100 kPa (transparent region) and ∼ 25 kPa
(chromed region).
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Figure IV.1: Cortical mixed culture on a "double stiffness" hydrogel using PLL/LN surface
coating and NBs as culture medium. Phase contrast (top) and fluorescence (bottom) images of
mixed neuronal–glial cell culture on a "double stiffness" gel of 25 kPa (left) and 100 kPa (right).
Green: α–GFAP, glial cells. Red: MAP2, neurons. Blue: Hoechst, nuclei. Central picture shows the
frontier between the stiff and soft regions (red line). Glial cells only grew on the stiff side and their
proliferation stopped at the border, while neurons crossed it freely. Cells are fixed at 17 Days In Vitro
(DIV). Scale bars: 50 µm.

time glial cells grew on both sides but achieved confluence faster on the stiff region.

Interestingly, after reaching confluence at 7 and 10 DIV on the stiff and the soft region respec-

tively, cells tend to gather together and to detach themselves from the surface (Figure IV.2)2,

a phenomenon that is never observed when glial cells are cultivated at the bottom of a Petri

dish.

The tendency of glial cells to preferentially proliferate on stiff substrates that emerges from

these experiments needs now a deeper analysis of the impact of the medium and the proteins

of adhesion on the cells behavior, as developed below.

♦ Four different conditions of molecules of adhesion and culture medium

Some experiments have been conducted on "double stiffness" hydrogels, where we have tracked

glial cell development in four different configurations of medium and coatings (Table IV.2)3.
2Details of fabrication, functionalization and culture of the hydrogels. Exposure time: 15 and

150 s (homogenous gels), 55 s ("double stiffness" gel, chrome thickness: 20 nm); protocol with dehydration; FN
3.5 µg/cm2 during 1 h. Seeding conditions: ∼ 400 cells/mm2 in DMEMs culture medium. Young’s moduli:
∼ 25 kPa and ∼ 60 kPa (homogenous gels), 100 kPa and 25 kPa (transparent and chromed regions of the
"double stiffness" gel).

3Details of fabrication, functionalization and culture of the hydrogels. Exposure time: 44 s;
chrome thickness: 20 nm; fluorescent microbeads: φ = 500 nm, 100 µl/ml, i.e. 0.22% v/v; protocol with
dehydration; FN 3.5 µg/cm2 during 1 h; PLL 110 µg/cm2 during 1 h, LN 1.1 µg/cm2 during 1 h. Seeding
conditions: ∼ 200 cells/mm2 in DMEMs culture medium, eventually replaced after 3 h by NBs. Young’s
moduli: 60 kPa (transparent region) and 30 kPa (chromed region).



184 Chapter IV. Glial cells under physical constraints

Figure IV.2: Cortical mixed culture on "uniform" and "double stiffness" hydrogels with FN
as adhesion ligand and DMEMs as culture medium. Phase contrast images of a neuronal–glial
cell culture on soft (25 kPa, top) and stiff (60 – 100kPa, bottom) "uniform" gels during development.
The picture on the right of 10 DIV shows the frontier area at similar ageing of a mixed culture on
a "double stiffness" gel, delimited by the red line. Images show the gradually achievement of the
confluence stage and the consequently detachment of the cell layer. This phenomenon occurs firstly
on the stiff gels (bottom, 10 DIV) then on the soft ones (top, 14 DIV). FN coating, DMEMs culture
medium. Scale bars: 50 µm.

PLL/LN FN
Soft (30 kPa) Stiff (60 kPa) Soft (30 kPa) Stiff (60 kPa)

D
M
E
M
s

N
B
s

Table IV.2: Influence of the culture conditions on cortical mixed cultures on "double
stiffness" hydrogels. Phase contrast images of a neuronal–glial cell culture on the soft (30 kPa)
and the stiff (60 kPa) side of "double stiffness" gels in different conditions of medium and proteins of
adhesion: PLL/LN coating or FN coating with NBs or DMEMs culture medium. Cells are fixed at
14 DIV. Scale bars: 100 µm.

These experiments confirmed a higher rate of glial cell proliferation in presence of both

FN coating and DMEMs medium, with the highest rate on the stiff regions. While neurons

are never observed directly on the FN as adhesion ligand, we observed neuronal growth on

top of glial cells. The PLL/LN–DMEMs condition led to similar observations, although the

initial neuron concentration after plating was higher. In both cases, the DMEMs medium

progressively kills neurons, independently of the surface chemistry. Conversely, a combination



IV.1. Glial cells sensitivity to the substrate stiffness 185

of PLL/LN surface chemistry and NBs culture medium led to dense neuron network both on

the soft and stiff regions. On the contrary, for both adhesive coatings in NBs medium glial

cell proliferation is delayed on the soft substrate, although higher with FN. In brief, these

exploratory experiments concerning glial cells seem display that the effect of stiffness can be

modulated by the conditions of culture (DMEMs versus NBs and FN versus PLL/LN).

Quantitative results of glial cells mechanosensitivity on mixed cultures

The culture conditions just discussed in the preliminary experiments, associated to a larger

panel of stiffnesses, should give a better understanding of the mechanosensitivity of the glial

cells. Therefore, we have designed "target" patterns to:

• multiply the number of different stiffnesses available on a single substrate, and to highlight

cell responses at the frontiers between two different stiffnesses;

• analyze different conditions without duplicating the number of samples, as it should be

necessary with elastically uniform substrates.

The thickness of the chrome layer on the mask has been adapted to observe on the same sub-

strate glial cells behavior on highly contrasted values of stiffness (some tens of kPa) and the

stiffness of the soft regions has been reduced to values close or lower than 1 kPa, in order to

approach the order of magnitude of the whole brain stiffness.

Let us remark that for the "target" pattern the two soft regions do not have the same

rigidity, with the inner area surrounded by the stiff disk slightly stiffer than the external one.

We refer to the paragraph "Hydrogel stiffness characterization by atomic force microscopy

(AFM)" of Section II.1.2.2 for the reason of this feature. A similar difference should be obtained

between the two stiff regions but the external one was too close to the Petri dish edges to be

correctly analyzed. We will use the nomenclature "soft 1" for the inner region and "soft 2"

for the external one. The "stiff" will correspond to the region between the two soft disks (see

Table IV.1 for the "target" design).

♦ Long mixed cultures under four different conditions of molecules of adhesion

and culture medium

We have quantified glial cell proliferation from the first days of culture up to three weeks,

in mixed cell populations as a function of the culture conditions (see Tables A.1 and A.2 for

respectively the glial and the neuronal cell densities)4.
4Details of fabrication, functionalization and culture of the hydrogels. Exposure time: 20 s;

chrome thickness: 30 nm); protocol with dehydration; FN 1.1 µg/cm2 during 1 h (nominal value 3.5 µg/cm2);
PLL 110 µg/cm2 during 1 h, LN 1.1 µg/cm2 during 1 h. Seeding conditions: ∼ 150 cells/mm2 in DMEMs
culture medium, eventually replaced after 3 h by NBs. Young’s moduli: 45 kPa (transparent regions), ∼ 1 kPa
and < 0.5 kPa (chromed regions, "soft 1" and "soft 2" respectively).
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I Glial cell proliferation is influenced by the culture medium

We focused our analysis on the proliferation of the glial cells and their sensitivity to the stiffness

of the substrate. For that, we plotted the glial cell density versus time, showing the behavior

for each culture condition on the different regions of stiffness (Figure IV.3).

Figure IV.3: Glial cell density (cells/mm2) in different culture conditions: PLL/LN or FN
coating, DMEMs or NBs culture medium. Cells were observed between 3 and 21 DIV. Evolution over
time on the "soft 1" substrate (A, ∼ 1 kPa), on the "soft 2" substrate (B, < 0.5 kPa) and on the stiff
substrate (C, 45 kPa). Error bars denote SD.

We first note that the impact of the medium is the highest. In the serum free NBs, the

concentration of glial cells is not significantly different from zero, independent of the stiffness

and of the adhesive coating of the substrate. In DMEMs, the observation differs depending

whether the cells grow on PLL/LN or on FN.

I Glial cell mechanosensitivity is influenced by the adhesive coating

We report in separate graphs the evolution of cell density under the two coating conditions for

an easy comparison of the response of glial cells to the mechanical properties of the substrate

in proliferation medium (DMEMs, Figure IV.4).

In the case of PLL/LN coating, a high proliferation rate is favoured by the soft conditions.

Figure IV.4: Glial cell density (cells/mm2) with different functionalizations: PLL/LN (A)
or FN (B) coating, DMEMs culture medium. Cells were observed between 3 and 21 DIV. Evolution
over time on the "soft 1" substrate (∼ 1 kPa), on the "soft 2" substrate (< 0.5 kPa) and on the stiff
substrate (45 kPa). Error bars denote SD.

The proliferation on the soft region at different stages is illustrated in Figure IV.5.
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Figure IV.5: Neuronal–glial cell culture on a PLL/LN coated hydrogel and maintained in
the DMEMs culture medium. Phase contrast images of the "soft 1" area (∼ 1 kPa) at 3 (A), 10
(B) and 21 (C) DIV showing the gradual proliferation of glial cells. Scale bars: 60 µm.

Of note, the highest values of cell density were surprisingly obtained on the "soft 1" area,

that is the less soft area among the two soft regions of the "target" hydrogel.

This result could arise from the fact that ultra-soft gels like in the "soft 2" region often show

inhomogeneities in terms of thickness (close to the polymerization limit, hydrogel incorrectly

demould from the mask). This would in turn decrease locally the gel stiffness and thus increase

the effective stiffness of the substrate felt by cells.

Another hypothesis is that glial cells display a maximum of proliferation for the stiffness

corresponding to the soft 1" region. This point remains an open question and these results

obtained from one cell culture should be certainly confirmed with more experiments.

Another unexpected result is the inversion of the mechanosensitivity phenomenon by the nature

of the gel coating. To understand why the PLL/LN functionalization gives a higher rate of

proliferation on soft rather than on stiff substrates, we first refer the reader to the paragraphs

"Hydrogels functionalization and characterization" of Section II.1.2.2 for a discussion about

the differences of protocol for the FN and the PLL coatings. Indeed, they currently leads to

a less controlled distribution of the molecules of adhesion for the PLL coating condition in

presence of a high stiffness gradient between the soft and the stiff regions. As it appears that

the PLL/LN coating is less uniform on soft gels, where it is enriched close to glial cells, we

could hypothesize that low stiffness might influences their capacity to secrete LN and therefore

to adapt their proliferation rate as a function of the rigidity of the substrate. These hypothesis

are both supported (i) by some confocal images of the hydrogels surface recorded at the end

of the experience, showing a higher and non uniform surface density of LN on the soft than on

the stiff region (Figure IV.6) and (ii) by the observations reporting that glial cells are able to

secrete LN (Figure IV.7).

An opposite behavior is observed with the FN coating: the stiff region induces a rate of

proliferation that is more than a factor of ten higher than on the soft regions. Strikingly, this

is the highest absolute rate observed for all culture conditions. Some views of these samples

are reported in Figure IV.8.
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Figure IV.6: Glial cells growing on a PLL/LN coated "target" hydrogel and maintained
in the DMEMs culture medium. Neuronal–glial cell culture fixed at 21 DIV. Confocal images
of the stiff (45 kPa, left) and the "soft 1" area (∼ 1 kPa, right) of a "target" hydrogel showing an
irregular distribution of the proteins of adhesion and a higher concentration around cells on the soft
region. Green: α–LN. Blue: Hoechst, nuclei. Scale bars: 50 µm.

Figure IV.7: Exploration of LN and FN secretion by glial cells. Pure glial cell culture on PLO
coated coverslips and maintained in the DMEMs culture medium, showing both LN and FN on the
cells. Cells are fixed at 11 DIV. Green: α–LN (left) and α–FN (right). Red: Phalloidin, actin. Blue:
Hoechst, nuclei. Scale bars: 50 µm.
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Figure IV.8: Neuronal–glial cell culture on a FN coated "target" hydrogel and maintained
in the DMEMs culture medium. Phase contrast images of: A – B – C) glial cell proliferation
between 3 and 14 DIV, until the confluence stage, on the stiff area (45 kPa); D – E) stiff areas (45 Pa)
at 14 DIV showing cells detachment from the surface after the confluence stage. F) "soft 1" area
(∼ 1 kPa) at 14 DIV showing mainly rounded or small cells. In (E) and (F) the stiff region is not in
focus. Scale bars: 60 µm.

This such high rate of proliferation leads to the already described effect of detachment of

layers of confluent cells (see Figure IV.2 and Table IV.2) causing the impossibility to count

the cells at 14 DIV and later (Figure IV.8.D–E). This effect will be discussed in more details

further in this manuscript, in order to give a complete overview of this phenomenon for both

mixed and pure glial cell cultures (Section IV.1.4).

I Neuronal cell density is influenced by the adhesive coating and the culture

medium

As observed previously, the only favourable condition of culture for neurons are substrate

functionalization with PLL/LN coating and culture in the NBs medium (Figure IV.9). In

this case, the number of neurons is slightly larger on the soft substrates than on the stiff one.

Moreover, neuron density is statistically constant over time, showing a good survival in this

culture condition.

The fluctuations observed in the number of neurons over time are related to the difficulty

to count them in bright field images, especially after two weeks of culture when neurons are

organized in mature networks and where individual soma are quite difficult to identify. Some

pictures of the condition of PLL/LN coating in NBs medium are reported in Figure IV.10 as

examples.
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Figure IV.9: Neuron density (cells/mm2) in different culture conditions: PLL/LN or FN
coating, DMEMs or NBs culture medium. Cells were observed between 3 and 21 DIV. Evolution over
time on the "soft 1" substrate (A, ∼ 1 kPa), on the "soft 2" substrate (B, < 0.5 kPa) and on the stiff
substrate (C, 45 kPa). Error bars denote SD. See Figure IV.3 for a direct comparison with the glial
cell density in the same culture conditions.

Figure IV.10: Neuronal–glial cell culture on a PLL/LN coated "target" hydrogel and
maintained in the NBs culture medium. Phase contrast images of the "soft 1" area (∼ 1 kPa) at
7 (A) and 14 (B) DIV and of the frontier (red line) with the stiff area (45 kPa) at 14 DIV (C) showing
mature and dense neuronal networks both on soft and stiff regions. The soft region is not in focus.
Scale bar: 60 µm.
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The NBs culture medium is therefore essential for neuron survival but cannot compensate

for a non suitable coating like FN. In this case, the adhesion of neurons is strongly impaired.

Indeed, in Figure IV.11 (FN–NBs conditions) we initially observe neurons almost exclusively

on top of glial cells and progressively making compact clusters, at the level of the very low

number of the glial cells. Indeed their absence of proliferation is caused by NBs medium. This

neuron morphology is typically observed in situations of inadequate conditions of adhesion.

Figure IV.11: Neuronal–glial cell culture on a FN coated "target" hydrogel and maintained
in the NBs culture medium. Phase contrast images of the frontier (red line) between the "soft 1"
area (∼ 1 kPa, bottom of the frontier) and the stiff area (45 kPa, top of the frontier) at 3 (A), 10 (B)
and 14 (C) DIV showing neurons growing on the glial cells and gradually gather together in spheric
aggregates. Scale bar: 60 µm.

The results obtained in this section are now compared to those of similar experiments

performed with pure cultures. This comparison is crucial to elucidate the role of neurons in

the glial cell sensitivity to the mechanical and chemical properties of their environment. The

results of this study are presented in the next section.

IV.1.3 Pure glial cell cultures

The purpose of this section is to decouple the possible effect of glial cells interaction with

neurons on glial cell response to mechanical cues. We have employed the same methodology

as described above to analyze the glial cell response to the stiffness as a function of different

growth conditions.

The fundamental difference for this set of experiences is that pure cultures are obtained at least

one week after brain dissection. This means that cells are plated on the hydrogel substrates once

they have sufficiently proliferated inside PLO coated rigid Petri dishes in DMEMs medium.

This point is of importance for its potential influence on the results, in addition to the absence

of neurons. On the other hand, this two–step protocol offers two advantages: (i) to control

the initial number of glial cells in contrast to experiments performed on mixed cultures, just

after dissection (usually polluted with tissue fragments) and (ii) to quantify the percentage of

adhesive cells to integrate our previous study on glial cell proliferation in mixed cultures.

Of note, the initial cell density of seeding for pure cultures is reduced to ∼30 cells/mm2
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(∼150 cells/mm2 for mixed cultures). We tried to work with a similar glial cell density in

the two conditions. For that, we took into account that (i) the glial–neuronal cell ratio is

close to 2 in the mature brain, and (ii) glial cells represent about the 20% of the cells in the

cerebral cortex at 18 days of gestation. This proportion was deduced from the final density of

glial cells (after one week of culture) compared to the seeding density of cortical cells and the

proliferation rate estimated from Figure IV.3 (i.e. ∼ 1.4 per day). This weak proportion of

glial cells is coherent with the fact that the burst of glial cell proliferation in vivo occurs only

after birth.

As for experiments with mixed cultures, we first describe preliminary experiments, that give

a first insight of the response to stiffness of glial cells coming from pure cultures. We then

further report more systematic quantitative analysis.

Qualitative explorations of glial cells mechanosensitivity on pure cultures

On the basis of the results obtained with mixed cultures (see Figure IV.3), we firstly focused

on the conditions of surface functionalization and culture medium that had given the higher

rate of proliferation (i.e. FN and DMEMs respectively), to insure good conditions for glial

cells to adhere and proliferate.

♦ Fibronectin (FN) coating and culture medium supplemented with serum

First experiments have been performed on "uniform" hydrogels (see Table IV.1 for the nomen-

clature), as preliminary tests of adhesion to investigate the impact of substrate stiffness on

glial cell behavior. These experiments have confirmed the tendency for glial cells to adhere

and proliferate preferentially on stiff substrates (Figure IV.12)5.

I Glial cell adhesion and proliferation are influenced by the substrate stiffness

Then, experiments were performed to analyze the mechanosensitivity of glial cells within

different chemical environments, using the "target "pattern, as for the study with mixed cul-

tures. The choice to observe glial cell behavior by live–imaging just after cell seeding gave us

the possibility to follow step-by-step the evolution of single cells on our substrates. Videomi-

croscopy observations of the border between a soft and a stiff region suggested that processes

of mitosis mainly occur on the stiff side, as illustrated in Figure IV.136.

5Details of fabrication, functionalization and culture of the hydrogel. Exposure time: 10 and
150 s; protocol with dehydration; FN 3.5 µg/cm2 during 1 h. Seeding conditions: ∼ 15 cells/mm2 in DMEMs
culture medium. Young’s moduli: ∼ 20 and 60 kPa.

6Details of fabrication, functionalization and culture of the hydrogel. Exposure time: 19.3 s;
chrome thickness: 30 nm; protocol with dehydration; FN 3.5 µg/cm2 during 1 h. Seeding conditions:
∼ 30 cells/mm2 in DMEMs culture medium. Young’s moduli: 45 kPa (transparent regions), ∼ 1 kPa and
< 0.5 kPa (chromed regions, "soft 1" and "soft 2" respectively).
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Figure IV.12: Cortical pure culture on a FN coated "uniform" hydrogels and maintained
in the DMEMs culture medium. Phase contrast images of a glial cell culture on "uniform" gels
of 20 kPa (top) and 60 kPa (bottom), showing the tendency to adhere and proliferate more on the
stiff substrate. Cells are observed 4 h after seeding, at 1 and 2 DIV (from the left to the right). Scale
bars: 50 µm.

Figure IV.13: Cortical pure culture on a FN coated "target" hydrogels and maintained in
the DMEMs culture medium. Time–lapse experiment (indicated in hours, "0 h" is 24 hrs after
plating) of a glial cell culture at the frontier (red line) between the "soft 2" area (< 0.5 kPa, left of
the frontier) and the stiff area (45 kPa, right of the frontier). Green arrows point to cells in phase of
mitosis on the stiff region. Mainly rounded cells are present on the soft region. Scale bars: 50 µm.
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During two days and a half of observations, very different behaviors have been observed on

the two rigidities: glial cells display roundish shapes on soft regions whereas on the stiff areas

they spread and can divide. These cellular processes being slow and repetitive, we found more

informative to resume our observations at several days interval outside the videomicroscope

set–up, typically taking pictures at 7 and 12 DIV (Figures IV.14 and IV.15).

Figure IV.14: Cortical pure culture on FN coated "target" hydrogels and maintained in
the DMEMs culture medium. Phase contrast images of a glial cell culture at the frontier (red
line) between the "soft 1" area (∼ 1 kPa, left of the frontier) and the stiff area (45 kPa, right of the
frontier), on the "soft 1" region (left) and the stiff region (right). A higher number of spread cells is
present on the stiff regions. Cells are aged of 7 DIV. Scale bars: 50 µm.

Figure IV.15: Cortical pure culture on a FN coated "target" hydrogel and maintained in
the DMEMs culture medium. Immunofluorescence images of a glial cell culture at the frontier
(solid white line) between the "soft 1" area (∼ 1 kPa, inner region) and the stiff area (45 kPa, external
region). Images are delimited by dashed white lines in the corresponding position on a reconstruction of
the inner soft region and the surrounding stiff region of the "target" pattern. Few and small cells adhere
on the soft region as compared to the numerous and spread cells on the stiff one. Red: phalloidin,
actin. Green: N-Cadherin, cell-cell adhesions. Blue: Hoechst, nuclei. Cells are fixed of 12 DIV. Scale
bars: 300 µm.



IV.1. Glial cells sensitivity to the substrate stiffness 195

I Cytoskeletal organization of glial cell is influenced by the substrate stiffness

Such a significant difference in terms of adhesion and morphology of the glial cells as a function

of the substrate stiffness leads to some inevitable questions about the structure and adhesion

of glial cells. Figure IV.15 shows that immunolabeled cells are very spread on the stiff region

with respect to the soft one.

A deeper investigation at higher magnification displays that on the soft substrate cells ap-

pear generally smaller and isolated, with a disorganized network of actin and a surrounding

lamellipodium where focal adhesions (FAs) staining is associated to actin filaments (vinculin

labeling, Figure IV.16.A). On the stiff substrate stress fibers are long and cover large portions

of the surface, where FAs staining occurs as short segments along the actin filaments (vinculin

labeling, Figure IV.16.B). However, no significant differences characterize the intercellular ad-

hesions on the soft (in the rare case where cells are in contact) and the stiff regions (N–cadherin

labeling, Figures IV.16.C–D).

Figure IV.16: Comparison of the structure and the FAs localization on cortical glial cells
on soft and stiff substrates. Immunofluorescence images of a pure culture at 12 DIV on the "soft
1" area (∼ 1 kPa, A – C) and the stiff area (45 kPa, B – D) of a "target" hydrogel. Red: phalloidin,
actin. Green (A – B): Vinculin, FAs. Green (C – D): N-Cadherin, cell-cell adhesions. Blue: Hoechst,
nuclei. "target" hydrogel, FN coating, DMEMs culture medium. Scale bars: 20 µm.

These experiments have qualitatively shown that in conditions well-adapted to glial cell devel-

opment, i.e. a FN coating and DMEMs as a culture medium, stiff substrates promote both

glial cell adhesion and proliferation. Moreover, glial cells on the stiff regions display a larger
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area of adhesion and significant stress fibers associated to dashed localizations of adhesions to

the substrate. To obtain a quantitative description of the cytoskeleton organization and the

adhesion site localization as a function of the substrate stiffness, it is necessary to analyse a

greater number of images. For that, a combination of rigidity and chemical patterns at the cell

level might provide an interesting experimental support. We report now some results about

the impact of the chemical environment on the mechanical sensitivity of the glial cells.

♦ Long pure cultures under four different conditions of molecules of adhesion

and culture medium

Similarly to the experimental procedure followed for the mixed cultures, we perform a quanti-

tative study of the glial cell mechanosensitivity by analyzing the evolution of cell density with

time in different cell culture conditions.

For that, we have selected the "target" pattern and we have followed the glial cell adhesion

and proliferation during a couple of weeks in different conditions of medium and proteins of

adhesion (Table A.3)7.

We report in Figure IV.17 the cell density over time for different culture conditions and in

separate graphs as a function of the substrate stiffness.

Figure IV.17: Glial cell density (cells/mm2) in different culture conditions: PLL/LN or FN
coating, DMEMs or NBs culture medium. Cells were observed between 2 and 17 DIV. Evolution over
time on the "soft 1" substrate (A, ∼ 1 kPa), on the "soft 2" substrate (B, < 0.5 kPa) and on the stiff
substrate (C, 45 kPa). Error bars denote SD.

I Glial cell adhesion is influenced by the substrate stiffness and the adhesive

coating

We first note that at 2 DIV the two soft regions displays equivalent results, showing for all the

culture conditions a very low rate of adhesion: this is slightly higher on the PLL/LN coating
7Details of fabrication, functionalization and culture of the hydrogels. Exposure time: 20 s;

chrome thickness: 30 nm; fluorescent microbeads: φ = 500 nm, 5 µl/ml, i.e. 0.01% v/v; protocol with
dehydration; FN 3.5 µg/cm2 (nominal value) during 1 h; PLL 145 µg/cm2 during 1 h, LN 1.1 µg/cm2 during
1 h. Seeding conditions: ∼ 30 cells/mm2 in DMEMs culture medium, eventually replaced after 24 hrs by NBs.
Young’s moduli: 45 kPa (transparent regions), ∼ 1 kPa and < 0.5 kPa (chromed regions, "soft 1" and "soft
2" respectively).
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than on the FN one (Figure IV.17.A, B). On the stiff region, the density of adherent cells is

equivalent to the initial cell density plated on each hydrogel (∼ 30 cells/mm2, Figure IV.17.C).

I Glial cell proliferation is influenced by the substrate stiffness and the culture

medium

The culture medium appears crucial to obtain a significant rate of proliferation. Indeed, the

Figure IV.17.C shows a constant cell density for the NBs medium condition. The initial

concentration is due to the first hours of incubation in the DMEMs culture medium that are

required to allow the glial cell adhesion. We thus note that glial cells survive in the NBs

culture medium but their proliferation is quite null. Some pictures of glial cells growing in this

condition are reported in Figure IV.18 as example.

Figure IV.18: Glial cell culture on a FN coated "target" hydrogel and maintained in the
NBs culture medium. Phase contrast images of the frontier (red line) between the "soft 1" (∼ 1 kPa,
right of the frontier) and the stiff (45 kPa, left of the frontier) area at 2 (A), 8 (B), and 17 (C) DIV.
Images show the proliferation of glial cells on the stiff side and an apparent saturation of the cell density
induced by the getting in touch with very spread cells. Scale bars: 60 µm.

We observe on these pictures that glial cells preferentially attached and then spread on the

stiff part of the gel.

I Glial cell mechnosensitivity is influenced by the adhesive coating

Interestingly, with the DMEMs medium, opposite behaviors are observed depending of the

proteins of adhesion, similarly to the results obtained for mixed cultures. On the PLL/LN

functionalized hydrogels glial cells slowly proliferate on the soft regions and they do not adhere

nor proliferate on the stiff ones (Figure IV.19).

Inversely, on the FN coated substrates glial cells strongly proliferate on the stiff regions

whereas soft areas impair both cell adhesion and proliferation (Figure IV.20).

From these observations, we have made the choice to not perform the condition that couples

PLL/LN coating with the NBs medium. A nearly null cell adhesion would be expected, as

would be the cell proliferation rate.
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Figure IV.19: Glial cell culture on a PLL/LN coated "target" hydrogel and maintained in
the DMEMs culture medium. Phase contrast images of the frontier (red line) between the "soft
1" (∼ 1 kPa, top of the frontier) and the stiff (45 kPa, bottom of the frontier) area at 2 (A), 8 (B),
and 17 (C) DIV, showing the glial cell proliferation on the soft side. Scale bars: 60 µm.

Figure IV.20: Glial cell culture on a FN coated "target" hydrogel and maintained in the
DMEMs culture medium. Phase contrast images of the frontier (red line) between the "soft 1"
(∼ 1 kPa, bottom of the frontier) and the stiff (45 kPa, top of the frontier) area at 2 (A), 8 (B), and
17 (C) DIV, showing the glial cell proliferation on the stiff side. Scale bars: 60 µm.

IV.1.4 Discussion about glial cell mechanosensitivity in mixed and pure
cultures

Let us remark that the main difference between the experiments employing mixed and

pure cultures is a lower rate of proliferation in the second case. This point is highlighted both

quantitatively by the graphs showing the cell density (Figure IV.3 and IV.17) and qualitatively

by the absence of detachment from the surface of the layer of confluent cells, that was observed

in the experiences with mixed cultures (Figure IV.2 and Table IV.2). We compare the behavior

of cells growing on the stiff regions coated with FN and cultured in the DMEMs medium in

the two experimental conditions. Interestingly, the cell density in the experiments with mixed

cultures achieves a saturation level of confluence around a value of 350 cells/mm2 followed

by a cell detachment from the surface (Figure IV.3). In the case of pure cultures, cells are

very spread and can therefore approach a confluence stage where cells cover almost the entire

surface with a density of only ∼ 100 cells/mm2 (Figure IV.17). This high spreading seems

to be associated within an inhibition of cell proliferation, coupled to a rearrangement on the

surface without significant change in the total number of cells, as suggested by the observations

of the same regions over the time where the cell density can locally decrease without that the

total cell density measured on the hydrogel changes (Figure IV.20.B–C). Therefore, is the
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detachment phenomenon caused by a cell density at confluence above a certain threshold? We

have investigated this phenomenon by confocal imaging but deeper analyses are required to

give a definitive explanation for the detachment occurring after at least one week of culture. We

display some examples recorded with a confocal microscopy of samples where this phenomenon

has occurred or not (Figure IV.21).

Figure IV.21: Confocal images of hydrogels functionalized with FN and kept in culture
during 21 DIV in the DMEMs medium. The images represent the plan xy and the relative
projections yz (right) and xz (bottom). A) Portion of a stiff region showing a typical inclination in
the case of cell detachment, suggesting an upthrust of the entire gel surface. B) Portion of a stiff
curved surface showing a cell on a different plane than the close gel surface. The surface of the gel is
represented by the layer of fluorescent red microbeads. C) Glial cells on a sloping but flat portion of
a stiff region showing the case of a entire tilted sample without the detachment phenomenon. Green:
α–FN, surface coating. Red: phalloidin, actin. Blue: Hoechst, nuclei. Step between two consecutively
z slices: 0.8 µm. Scale bars: 80 µm.

By the observation of the fluorescence of the proteins of adhesion coating the hydrogel

surface (IV.21.A, C) and of microbeads embedded into the hydrogel (IV.21.B), the cell de-

tachment phenomenon does not seem be a local phenomenon: an entire upper portion of the

hydrogel detaches with the cell layer. These observations might suggest that, when cell con-

fluence occurs, the cell layer deforms sufficiently the gel so that it comes off with the cells,

inducing its detachment from the glass coverslip. However, this detachment might be a result

of an association of different effects still not completely understood and the very high deforma-

tions observed by phase contrast imaging are too important to be deeply analyzed by confocal

microscopy.

On the same gel, the cell detachment has always been observed to start on the stiff regions

where the cells are the first to reach confluence. Rather, as detachment was observed in all ex-

periences performed with mixed cultures8 but only in one sample in pure culture conditions9,
8Phenomenon observed on a total of six samples functionalized with FN and maintained in DMEMs culture

medium, with different patterns (homogenous, double stiffness and circular) and fabricated for three different
cultures performed in a window of time of eight months.

9Total of four samples with the circular pattern functionalized with FN and maintained in DMEMs culture
medium, fabricated for two different cultures performed in a window of time of four months. The detachment
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although the same protocol and the same culture duration were performed10, the nature of

cell-cell interactions might be involved.

The medium has been identified as the necessary element for glial cell proliferation. Glial

cell favorable medium (DMEMs, a medium supplemented with serum) concomitantly sup-

presses neuronal cell growth. For this reason, the higher proliferation rate observed in the

mixed cultures compared to the pure ones,might be more justified by the difference in steps of

glial cell plating in the two situations than by the presence of neurons. Indeed, the cultivation

during a week of glial cells in Petri dishes to promote their growth and to suppress neurons,

might reduce their capability to proliferate. Of note, technical problems linked to the effective

concentration of FN that is grafted to the surface have not allowed to achieve parallel (i.e.

in identical conditions) experiments with mixed and pure cultures In DMEMs medium. This

experiment should be repeated again to get a finer quantitative comparison between the results

obtained on pure and mixed glial cell cultures with identical FN coating.

The interaction between glial and neuronal cells therefore needs more investigations in order

to elucidate if the presence of neurons plays a role in the functions supplied by glial cells, and

in association, if it changes the mechanosensitivity of glial cells.

An alternative solution to analyze the influence of neurons on the glial cell proliferation might

be to use two different substrates, one with neurons alone and another without, and to plate

glial cells on both. The comparison of the glial cell proliferation in both cases would be very

informative. To keep neurons alive, it could be useful to cultivate cells in the MEMs medium,

a medium observed to be less harmful for neurons (also less adapted for glial cells) supple-

mented with the serum necessary for the glial cell proliferation. We have also observed that

the PLL/LN coating is more adapted to neurons as compared with the FN functionalization,

that is better for glial cells. Thus, mixing FN and LN as surface coating might be a compromise

to achieve acceptable culture conditions for both neurons and glial cells.

Nevertheless, despite their limitations, these experiments showed that glial cells maintain their

mechanosensitive properties independently of their history after dissection, i.e. for mixed cul-

tures directly extracted from the brain or for pure cultures obtained after a step of preliminary

in vitro culture.

phenomenon has been observed on only one sample, not shown in the results because failed from a point of
view of cell adhesion. We consider important to report this unique case, even if probably fabrication problems
(silanization, polymerization, ...) have occurred for this sample.

10Phenomenon never observed for a total of sixteen samples (double stiffness and circular patterns, five
cultures on a window of time of eleven months), cultured for the same time duration of the sample in the
condition of DMEMs culture medium with FN coating but in NBs and functionalized with PLL/LN or FN
coatings or in DMEMs functionalized with PLL/LN.
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IV.1.5 Mechanical constraints at the cell level

In the previous sections we have demonstrated that the sensitivity of glial cells to the

mechanical properties of their environment is strongly influenced by the chemical culture con-

ditions. We have reported a significant change of adhesion and proliferation between stiff

substrates (Young’s modulus of several tens kPa) and soft substrates below a threshold of

stiffness (i.e. below a Young’s modulus ∼ 1 kPa). We have also observed that above this

approximate threshold of 1 kPa, cell response keeps similar whatever the rigidity, but is ac-

celerated by increased rigidity (from few tens of kPa to 100 kPa). This raises the following

issue: are these behaviors maintained also when cells are forced to encounter a stiffness gra-

dient at the scale similar to their size? To answer to this question, we analyze now the glial

cells behavior on the "stripes" pattern, i.e. on hydrogels where the alternation of soft and stiff

regions takes place on the spatial scale of the cell size.

Some preliminary experiments have been necessary to optimize the chemical functionalization

on this kind of pattern in order to obtain a concentration of adhesive molecules independent

of the rigidity and, consequently, to keep the substrate stiffness as the only control parameter.

We report in Figure IV.22 the most significant results of glial cells growing on this pattern

during the first hours after plating11.

I Glial cell mechanosensitivity revealed at cell level in pure cultures

We note that glial cells adapt their morphology to follow and to find contacts with the stiff

stripes, confirming the previous results obtained on larger stiff and soft regions. Different

shapes are observed as a function of the width of the stripes. Interestingly, glial cells are

able to proliferate on this kind of substrate. Performing other experiments on stripes with

higher gradients of stiffness, i.e. stripes with a greater difference between the stiff and the

soft values, might give the possibility to explore some issues: (i) could a total confinement be

obtained within a stiff stripe? (ii) Is there a threshold of width above which glial cell adhesion

is suppressed on soft stripes? (iii) Could glial cells proliferation occur on constrained adhesion

conditions given by stiff stripes? More experiments should be also performed to investigate

the localization of the adhesive contacts of glial cells on this kind of substrate and to deeper

investigate the dependence of the cellular shape with the width of the stripes.

I Investigation of the hydrogel topography

Finally, some observations using a confocal and a digital holographic microscopes have been

made in order to investigate if the variation of rigidity was associated to a difference of topogra-

phy. This might have some eventual impacts on the results just discussed above (Figure IV.23).
11Details of fabrication, functionalization and culture of the hydrogels. Exposure time: 20 s; chrome

thickness: 15 nm; protocol with dehydration; FN 3.5 µg/cm2 during 1 h. Seeding conditions: ∼ 30 cells/mm2

in DMEMs culture medium. Young’s moduli: ∼ 40 kPa (transparent stripes), ∼ 10 – 20 kPa (chromed stripes).
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Figure IV.22: Pure cortical culture on FN coated stiff/soft alternate "stripes" in hydrogels
and maintained in DMEMs culture medium. Time–lapse experiment (indicated in hours, 0 h
being the seeding time) of a glial cell culture on stripes of different rigidities and widths. Widths of
stiff (darker stripes, ∼ 40 kPa depending on the size) and soft (∼10 – 20 kPa depending on the size)
areas are reported respectively on the left and on the right of the images. The images selected here
show the cell alignment with the stiff stripes. Scale bars: 50 µm.
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Figure IV.23: Analysis of the topography of "target" and stiff/soft alternate "stripes"
hydrogels by confocal microscope. A) Confocal image of a "target" hydrogel functionalized with
FN and kept in culture during 21 DIV in the NBs medium. The images represent the xy view and the
relative projections yz (right) and xz (bottom), showing the frontier between the stiff (45 kPa, top of
the frontier) and soft (∼ 1 kPa, bottom of the frontier) region of a "target" pattern. Green: α–FN,
surface coating. Step between two consecutively z slices: 0.3 µm. Scale bar: 80 µm. B) Differential
interference contrast (DIC, top, xy view) and confocal (bottom, xz view) images of a "stripes" hydrogel
functionalized with FN. The dashed red lines delimit the frontier between stiff (40 kPa, narrow stripes)
and soft (∼ 12 kPa, wide stripes) showing the absence of topography at the surface of this hydrogel.
Scale bar: 30 µm.

These images show that during the hydrogel fabrication variation of stiffness can be asso-

ciated to variation of gel thickness. We have observed that the difference of height between

areas of different rigidities could be reduced by a slow demolding of the mask (Figure IV.23.B).

Therefore, the amplitude of the topographical effect can slightly change from one sample to

another. However, in particular when the difference of stiffness from two regions is quite high,

it is very difficult to completely eliminate topography (Figure IV.23.A).

Cells can be observed to align their morphology along the frontiers, suggesting a sensitivity

to high gradients of rigidity or maybe to the topography. Gel topography scales either at

the nanoscale (gels are porous materials) and at the micrometer scale when mechanically pat-

terned. In order to get preliminary insights on the impact of topography on glial cell adhesion,

we addressed this issue by looking at the effect of a topography at a sub-micrometric scale on

an infinitely rigid surface. We will discuss some exploratory experiments concerning this last

aspect in the next section.
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IV.2 Glial cells sensitivity to the substrate topography

We have reported in the previous sections different approaches and configurations in order

to shed light on the sensitivity of glial cells to the stiffness of their environment. Cells can

be observed to align their morphology along the frontiers, suggesting a sensitivity to high

gradients of rigidity or to the topography. We present here some preliminary experiments to

approach this issue.

We have adopted a micropatterning technique by photolithography to obtain topographical

patterns (i.e. grooves) on glass coverslips in controlled conditions (see Figure II.14). The

parameters taken into account were the influence of the topography alone or coupled with

the surface chemistry, i.e. within uniform coating conditions or a chemical functionalization

restricted to the bottom and edges of the grooves (i.e. "in-groove patterning"). Firstly, we have

not observed any differences on the glial cells response to the topography in a range of PLO

concentration between 2 to 12 µg/cm2. Thus, we have chosen a concentration of 3.6 µg/cm2 for

the ensemble of the experiments and the Table IV.3 illustrates some representative exemplars

for the most significant experimental conditions.

PLO FN
Etched Flat Etched Flat
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o

Table IV.3: Glial cell response to the surface topography compared to flat substrates. Phase
contrast and fluorescence images of cortical pure glial cell cultures on chemical and physical patterns
(i.e. "in-groove patterning" condition, 90 nm, "Etched" column) or chemical patterns alone ("Flat"
column) of different proteins of adhesion: PLO coating (3.6 µg/cm2) or FN coating (0.3 µg/cm2) in
DMEMs culture medium. Cells are fixed at 4 DIV. Etched patterns are represented by the light grey
regions in phase contrast images. The same pattern design has been employed for chemical patterns
on "Flat" substrates and the stripe geometry is recognizable by the glial cell shape in parallel lines.
Red: Phalloidin, actin. Blue: Hoechst, nuclei. Scale bars: 50 µm.

I Morphology of glial cells from pure cultures is more influenced by the adhesive

coating than by topography

We observed no significant difference between flat or etched substrates ("in-groove patterning"

condition): in both cases, glial cells are only partially restrained into the PLO patterns. Differ-

ently, on FN patterns, glial cells are not at all restrained by the chemical contrast of adhesion
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and are only slightly sensitive to the etched patterns. For this reason, we adopted the PLO

coating in the following experiments.

Then, we have investigated the influence of the pattern depth, with or without the coupling

with the chemical confinement. Again, the Table IV.4 illustrates some representative exemplars

for the most significant experimental conditions.

Etched patterns with PLO coating
30 nm 60 nm 180 nm
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Table IV.4: Glial cell response to the surface topography coupled or not with chemical
patterns. Phase contrast images of cortical pure glial cell cultures on physical coupled chemical
patterns ("Chemical patterns" row) or physical patterns with uniform chemical coating ("Uniform
coating" row) of different depths. PLO coating in DMEMs culture medium (cell passaging 1 for 60 nm
patterns and cell passaging 3 for 30 and 180 nm, 2 coverslips for each condition). Cells are fixed at 2
DIV. Etched patterns are represented by the light grey regions. Scale bars: 50 µm.

The comparison between patterns of different depths between a few tens to a few hundreds

of nm has not given significantly different cell responses ("Chemical patterns" condition, Ta-

ble IV.4). The comparison between uniform or patterned adhesive coatings has shown that

chemistry plays the highest role in the cell sensitivity to the microstructuration of the surface.

Indeed, cells grow almost completely unrestrained on uniform grooved functionalized substrates

("Uniform coating" condition, Table IV.4).

To conclude concerning the glial cell sensitivity, these experiments have shown that in the

range of pattern depths observed (between some tens to some hundreds of nm) the chemical

confinement is more effective than the topographical one.

These experiments are far to be complete and would require complementary observations,

e.g. increasing the depth of the patterns and checking by immunofluorescence that the adhesive

molecules do not concentrate on the edges of the grooves. However, microfabrication techniques

applied to hard substrates, like glass, are time consuming and the etching profiles are less
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controlled, as we have discussed in the dedicated section on the second chapter (II.1.2.1). It

would be interesting to switch to PDMS substrates to study the effects of topography.

IV.3 Discussion

In this chapter we have reported our results about glial cells sensitivity to the mechanical

properties of their environment. In particular, we have analyzed their response to stiffness on

polyacrylamide hydrogels. The employed technique is based on hydrogel photopolymerization

that gives the possibility to create elastic patterns with a micron–scale resolution.

This set of experiments has highlighted the potential of the photopolymerization technique for

the hydrogels fabrication, giving the possibility to simultaneously observe cell behavior on stiff

and soft regions, under identical culture conditions. Moreover, we have shown that the number

of frontiers between two regions can be increase by the geometrical design in order to obtain

statistically robust results. Doing so, the reduction of the number of required samples is an

advantage to take into account.

We have investigated cell adhesion and proliferation on different configurations of pattern size

and design as well as on different culture conditions.

These experiments have allowed to quantify glial cell response to the stiffness as a function

of the culture medium and the molecules of adhesion bound to the surface.

I Glial cell mechanosensitivity and culture medium

In both situations of mixed and pure cultures, the proliferation rate is enhanced on stiff sub-

strates and favored by the DMEMs medium, that proved to constitute the major element

required for glial cell proliferation. Glial cell proliferation has been observed in NBs culture

medium only on substrates of several tens of kPa. The most evident difference between NBs

and DMEMs medium is the presence of the serum. Therefore, it should be interesting to repeat

the experience with NBs supplemented with serum in order to confirm the critical role played

by the serum in the glial cell proliferation. Doing so, the serum influence on neuron survival

would be also tested.

I Glial cell mechanosensitivity and molecules of adhesion

It has been confirmed by several experiments that the strongest rate of proliferation occurs

with the combination of the following conditions: stiff substrate, fibronectin (FN) coating and

DMEMs medium. Contrarily, still in DMEMs medium, poly–L–lysine and laminin (PLL/LN)

coating seems to promote glial cell proliferation on soft regions. In this case, the proliferation

rate was lower compared to the rate observed on stiff regions functionalized with FN.



IV.3. Discussion 207

Importantly, these results need to be confirmed after an optimization of the protocol of func-

tionalization in order to guarantee a uniform distribution of the bound molecules of adhesion

on the surface, as already done for FN. Indeed, if our current protocol leads to a higher density

PLL/LN molecules on soft regions, it may explain the glial cell proliferation on these regions

compared to the absence of cells on stiff ones in pure cultures. However, in mixed cultures

we have observed a lower, but not nul, concentration of glial cells on stiff regions than on soft

ones. This confirms the glial cell tendency in these culture conditions to proliferate more on

soft regions. On the other hand, it expresses a certain variability in the results that would sup-

port the hypothesis of a not well reproducible functionalization with the PLL/LN coating. An

other explanation is that the irregular density of LN that we observed locally at the cell level

occurs independently of the mechanical properties of the hydrogel, this may means that on

soft region glial cells are able to secrete the necessary proteins to supply the irregular chemical

environment. This could explain the cell behavior that we have observed. Moreover, analyses

by confocal microscope showing high and irregular concentration of LN on soft regions close

to cells seem to confirm this hypothesis. More analysis of the secretion of LN and FN from

glial cells on these coatings and in according to the substrate stiffness might contribute to the

understanding of this issue. In experiments with pure cultures, we have observed a higher rate

of adherent cells at 2 days in vitro on soft regions compared to the quasi absence of adhesion

on stiff ones, that might be an element in favor of a higher concentration of adhesive molecules

on soft areas since the cell seeding step. However, the two hypothesis are still an open question

to explore.

A factor to investigate in order to better elucidate the results obtained with the PLL/LN coat-

ing, is the role of the PLL and the LN interaction with the glial cells. Some experiments with

the only PLL functionalization might confirm that (i) PLL alone is not a good candidate for

the glial cell adhesion and proliferation and that (ii) a PLL (or poly–ornithine) uniform coating

is necessary to guarantee a consequent homogeneous binding of the proteins of adhesion, such

as LN.

All these observations also suggest that the glial cell adhesion and proliferation, and thus the

sensitivity to the substrate stiffness, might be dependent on the concentration of the proteins

of adhesion. To verify this hypothesis, some supplementary experiments should be performed

to probe the effect of the density of proteins grafted at the surface. If this assumption is

confirmed, an analysis from a molecular point of view would be required in order to highlight

the mechanisms at the basis of cell response to the mechanical-chemical properties of the ECM.

I Glial cell mechanosensitivity and neurons

An important factor to keep into account when analyzing the glial cell interaction with its ECM

is the presence of neurons. From this study, it seems that neurons do not play a significant
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role in glial mechanosensitivity. Similar results have been obtained both in mixed and pure

cultures of glial cells, apart from the only condition where neurons were significantly maintained

in culture (PLL/LN coating in NBs medium, i.e. the worst environment for glial cells). In this

culture condition let us note that neurons have displayed only a slightly higher cell density

on the soft regions than on the stiff ones. For chemical environments scarcely adapted for

neuronal survival, glial cells seem thus to play a role of physical support for neuron growth.

This was not the case for glial cells, which behavior follows the same tendency in presence or

not of neurons.

These observations suggest the existence of a bi-univocal interaction between neurons and

glial cells that might mainly depend on chemical rather than on mechanical environment.

By performing some co–cultures of neurons and glial cells, it would be possible to deeper

explore this issue. For example, neurons could be added in high concentrations once glial cells

are already adherent, in order to not compromise the neuron survival if the substrate coating is

not adapted for neurons. Inversely, glial cells could be plated on a neuronal cell culture where

neurons have been isolated in a given region: will glial cells adhere more on soft, stiff areas or

in the area in presence of neurons?

These configurations just proposed might be more pertinent considering the 3D in vivo

glial/neuron organization within brain. With this point of view, it would be interesting to

investigate if the proliferation of glial cells depends on their localization in brain, according to

their local specific functions.

I Glial cells and topography

Finally, our study has been completed with some preliminary results about glial cell sensitiv-

ity to the substrate topography. Grooves in the order of some hundreds of nanometers have

displayed no significant influence on glial cell growth. Nevertheless, cultures on deeper topog-

raphy should be performed to explore the possible existence of a threshold of sensitivity to

substrate topography.

I Isolated glial cells and aggregates

Finally, a fine analysis of the response of glial cells to the properties of their environment should

also require to study the influence of cell concentration, in order to distinguish between the

behavior of isolated cells and of aggregates. Indeed, the intracellular interactions in aggregates

could interfere in the interpretation of results.
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Conclusions and perspectives

The research work of this PhD thesis has focused on the study of the response of primary

brain cells to chemical and physical cues of their in vitro microenvironment.

This work has been achieved in a context where high technological tools from microelec-

tronics field were available. In parallel, various collaborations with cell biologists have nour-

ished our work and have provided the fundamental competences required to conduct this study.

Brain cells exhibit a large variety of morphologies according to their localization, their

function in the brain and eventually their pathologies. The purpose of this PhD thesis was

therefore to investigate the interplay between shapes and functions.

We have explored neuronal and glial cell growth in in vitro controlled microenvironments

with the aim to investigate how chemical and physical constraints can modify cell development.

Employing technologies from the microelectronics, such as lithography, we have achieved the

fabrication of chemical, structural or elastic patterns at the micron scale of cells. In this way, we

have reached a reliable and reproducible control of some properties of the in vitro environment,

like chemistry, rigidity or topography, giving access to the analysis of specific aspects of cell

growth. For example, elongation and polarization in the case of neurons, and adhesion and

proliferation in the case of glial cells.

Isolated neurons under chemical constraints

Well-reproducible experiments have been performed with hippocampal neurons of mouse

embryos. Robust results have been obtained on isolated cells growing on chemical patterns,

giving the possibility to quantify the neuronal response to morphological contraints. Our ge-

ometrical approach has revealed that a single morphological parameter like the neurite width

can direct the complex process of neuronal polarization. Indeed, the control of the neurite

width results in the modulation of the neurite length, leading to a modulation of the polar-

ization rate and of the localization of axonal specification. This study has also showed that

the kinetic of neuronal polarization is accelerated when providing to the cell an initial mor-

phological asymmetry and that, unlike to what occurs in conventional in vitro preparations, a

deterministic and not a probabilistic localization of the axon could be achieved. Moreover, this

211
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study has shown that changing the neurite elongation is not associated to a conservation of the

adhesive surface. Some explorative experiments have been conducted to investigate volume

conservation, showing that this 3D parameter in neurites is not systematically controlled by

the neurite width. Further quantitative analyses of the dependence of the neuronal volume in

association to 2D morphological constraints will be the object of forthcoming researches in our

group.

Some mechanisms at the origin of these results have been addressed. For instance, the

dynamical properties of propagative growth cone like structures named waves and produced

during neuronal growth and polarization stages have been investigated. These structures,

previously reported in the literature, were still poorly analyzed. This work have allowed to

reinforce the association between waves and neurite elongation. The influence of the neurite

width on the dynamical properties of waves, such as frequency of emission and their velocity,

has been showed.

Our studies have led to a few models supporting the dependence of neuronal elongation

and wave emission on neurite width. We have provided a phenomenological framework of

waves as a basis for future molecular studies. Some preliminary investigation of the elements

constituting the cytoskeleton, such as actin, microtubules and associated proteins, have showed

some similarities between the molecular composition of waves and growth cones. A mechanism

involving both molecular motors along microtubules and actin polymerization at the basis

of the wave propagation is not excluded. Eventually, we propose some new perspectives to

investigate this issue:

. The elucidation of the role played by centrosome in microtubules polarization related to

wave emission.

. Observations at high resolution of actin filaments in waves. This might give important

information about their dynamics and structure.

. Deeper molecular analyses employing some drug treatments might highlight which com-

ponents are essential for wave formation and propagation. Examples of drugs: blebbis-

tatin, a myosin II inhibitor, latrunculin B or nocodazole, that respectively depolymerize

actin and microtubules, taxol, a microtubule stabilizer, or formin, a molecular motor in-

hibitor (for example, it has been reported in the literature that nocodazole occasionally

induces a reversal of the direction of wave propagation before a systematic disorganization

of wave structure and its collapse (Ruthel et al., 1998)).

Finally, a possible role of wave in axonal branching is suggested by the observation reported

in literature that the inhibition of doublecortin, a protein that colocalizes with microtubules and

observed within waves, delays collateral branching in hippocampal neurons and also decreases

the wave frequency (Tint et al., 2010).

The combination of these molecular approaches with our control of the neuronal morphology
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might enrich and promote the understanding of these complex issues related to neuronal growth

and polarization.

Neuronal and glial cells under mechanical constraints

Little is currently known about the mechanical properties of the physiological environment

of brain cells.

We have focused our study on glial cell response to mechanical stimuli. We have shown

that mechanosensitivity of glial cells depends on the chemistry of their environment. We have

employed elastic patterns to achieve a systematic analysis of their adhesion and proliferation

according to the chemical properties of their substrate and of the medium employed to maintain

them in in vitro culture. Chemistry represents a critical element for neuron growth too, but

no remarkable mechanosensitive response has been observed. The presence of neurons does

not seem to have a significant influence on glial cell mechanosensitivity.

Varying the sizes of rigidity patterns has given access to a multiscale analysis, from isolated cells

to more collective configurations (both with glial cells alone and in interaction with neurons).

As the best chemical conditions were not the same for neuronal and glial cells, some possible

ways to deeper investigate how the mechanosensitive response of glial cells is influenced by the

interplay between these two kind of cells in mechanosensitivity has been discussed.

This study represents a first step toward a quantitative investigation and dissection of the

different elements attending glial cell dependence on the mechanical properties of their envi-

ronment.

In conclusion, we have probed neuronal and glial cell growth with novel experimental set-ups

that allow to select specific cell behaviors in controlled microenvironments and to emphasize key

elements having a major role in their growth. These insights might also contribute to envision

new experimental systems to study brain cell behavior, for example, leading to controlled in

vitro colocalizations of glial and neuronal architectures.

An approach towards 3D systems, in particular for glial cells, should be considered in the

future to get closer the heterogeneous 3D microenvironment of cell in vivo. Some methods

to achieve 3D environments have been very recently developed (Tian et al. 2012, Dana et

al. 2014) but they are still scarcely mastered. When mature, these techniques, coupled to the

outcomes of 2D studies, appear as promising tools to meet the needs in the field of neuroscience

that take place at different levels, from the most fundamental basics of neurobiology to medical

applications.
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Conclusions et perspectives

Les travaux de recherche de cette thèse ont porté sur l’étude de la réponse des cellules pri-

maires du cerveau à des signaux chimiques et physiques de leur microenvironnement in vitro.

Ce travail a été réalisé dans un contexte où des outils technologiques issus de la microélectro-

nique étaient disponibles. En parallèle, diverses collaborations avec des biologistes cellulaires

ont nourri notre travail et ont fourni les compétences fondamentales nécessaires pour mener

cette étude.

Les cellules du cerveau présentent une grande variété de morphologies en fonction de leur

localisation, leur fonction dans le cerveau et, éventuellement, leurs pathologies. L’objectif de

cette thèse était donc d’étudier l’interaction entre ces formes et ces fonctions.

Nous avons étudié la croissance des cellules neuronales et gliales in vitro dans des microenvi-

ronnements contrôlés dans le but d’étudier la façon dont les contraintes chimiques et physiques

peuvent modifier le développement des cellules. Employant des technologies de la microélectro-

nique, comme la lithographie, nous avons réalisé la fabrication de motifs chimiques, structurels

ou élastiques à l’échelle micrométrique. De cette façon, nous avons atteint un contrôle fiable et

reproductible de certaines propriétés de l’environnement in vitro, comme la chimie, la rigidité

ou la topographie, donnant accès à l’analyse d’aspects spécifiques de la croissance cellulaire. Par

exemple, l’élongation et la polarisation dans le cas des neurones, et l’adhésion et la prolifération

dans le cas de cellules gliales.

Neurones isolés sous contraintes chimiques

Des expériences reproductibles ont été réalisées avec des neurones d’hippocampe d’em-

bryons de souris. Des résultats solides ont été obtenus sur des cellules isolées sur des motifs

chimiques, donnant la possibilité de quantifier la réponse neuronale à des contraintes morpho-

logiques. Notre approche géométrique a révélé qu’un seul paramètre morphologique comme la

largeur des neurites pouvait diriger le processus complexe de polarisation neuronale. En effet,

le contrôle de la largeur des neurites amène à une modulation de la longueur, du taux de

polarisation axonale ainsi que de la localisation de l’axone. Cette étude a également montré

que la cinétique de polarisation neuronale est accélérée lorsqu’une asymétrie morphologique

initiale est imposée et que, contrairement à ce qui se passe dans les préparations classiques in



216 CONCLUSIONS AND PERSPECTIVES

vitro, une localisation déterministe et non probabiliste de l’axone peut être obtenue. En outre,

cette étude a montré que la modification de l’élongation neuritique n’est pas associée à une

conservation de la surface d’adhésion. Certaines expériences exploratoires ont été menées pour

étudier la conservation du volume, montrant que ce paramètre en 3D dans les neurites n’est pas

systématiquement contrôlé par la largeur des neurites. D’autres analyses quantitatives de la

dépendance du volume neuronale en association aux contraintes morphologiques en 2D feront

l’objet de recherches à venir dans notre groupe.

Certains mécanismes à l’origine de ces résultats ont été pris en compte. Par exemple, les

propriétés dynamiques de structures appelées vagues et similaires au cône de croissance qui

sont produites pendant les phases de croissance et de polarisation de neurones ont été étudiées.

Ces structures, déjà rapportés dans la littérature, étaient encore peu analysées. Ce travail a

permis de renforcer l’association entre les vagues et l’élongation des neurites. L’influence de la

largeur des neurites sur les propriétés dynamiques de vagues, telles que la fréquence d’émission

et leur vitesse, a été montrée.

Nos études renforcent l’existence d’un lien entre l’élongation neuronale et l’émission des

vagues. Nous avons fourni un cadre phénoménologique d’analyse des vagues pour des études

moléculaires futures. Quelques études préliminaires des éléments constituants le cytosquelette,

tel que l’actine, les microtubules et quelques unes de leurs protéines associées, ont montré

des similitudes entre la composition moléculaire des vagues et celle du cône de croissance. Un

mécanisme de propagation des vagues impliquant à la fois des moteurs moléculaires le long des

microtubules et une polymérisation de l’actine n’est pas exclu. Finalement, nous proposons de

nouvelles perspectives pour étudier cette question :

. L’élucidation du rôle joué par le centrosome dans la polarisation des microtubules liée à

l’émission des vagues.

. Des observations à haute résolution des filaments d’actine dans les vagues. Cela pourrait

donner des informations importantes sur leur dynamique et leur structure.

. Des analyses des aspects moléculaires plus approfondies employant des traitements phar-

macologiques pourraient mettre en évidence les composants essentiels pour la formation

et la propagation des vagues.

. L’utilisation de drogues : la blebbistatine, un inhibiteur de la myosine II, la latrunculine

B ou le nocodazole, qui dépolymérisent respectivement l’actine et les microtubules, le

taxol, un stabilisateur des microtubules, ou la formin, un inhibiteur des moteurs mo-

léculaires (par exemple, il a été rapporté dans la littérature que le nocodazole induit

parfois une inversion de la direction de propagation des vagues avant une désorganisation

systématique de leur structure et son effondrement (Ruthel et al., 1998)).

Enfin, un rôle possible des vagues dans la ramification axonale est suggéré par l’observation

rapportée dans la littérature que l’inhibition de la doublecortine, une protéine qui est coloca-
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lisée avec les microtubules et observée dans les vagues, retarde le branchement des axones

hippocampiques tout en diminuant la fréquence des vagues (Tint et al., 2010).

La combinaison de ces approches moléculaires avec notre contrôle de la morphologie neu-

ronale pourrait enrichir et promouvoir la compréhension de ces questions complexes liées à la

croissance neuronale et la polarisation.

Cellules neuronales et gliales sous contraintes mécaniques

La littérature fournit des données éparses et parfois contradictoires sur les propriétés mé-

caniques de l’environnement physiologique des cellules du cerveau et leurs conséquences sur

l’adhésion et la prolifération des cellules gliales.

Nous avons donc mené une étude de la réponse des cellules gliales aux stimuli mécaniques.

Nous avons montré que la sensibilité des cellules gliales aux propriétés mécaniques de leur

environnement dépend des propriétés chimiques de celui-ci. Nous avons utilisé des motifs élas-

tiques pour réaliser une analyse systématique de leur adhésion et prolifération en fonction des

propriétés chimiques de leur substrat et du milieu utilisé pour les maintenir en culture in vitro.

La chimie représente un élément essentiel pour la croissance des neurones aussi, mais aucune

réponse remarquable n’a été observée en fonction des propriétés mécaniques du substrat. La

présence de neurones ne semble pas avoir une influence significative sur la mécanosensibilité

des cellules gliales.

La variation de la taille des motifs de rigidité a donné accès à une analyse à différentes

échelles, des cellules isolées à des configurations plus collectives (avec des cellules gliales seules

ou en interaction avec les neurones). Comme les meilleures conditions chimiques ne sont pas les

mêmes pour les cellules neuronales et gliales, des moyens possibles pour étudier de façon plus

approfondie comment la mécanosensibilité des cellules gliales est influencée par l’interaction

entre ces deux types de cellules a été discutée.

Cette étude constitue une première étape phénoménologique vers une étude plus complète

de la dépendance des cellules gliales aux propriétés mécaniques de leur environnement.

En conclusion, nous avons étudié la croissance des cellules neuronales et gliales avec de

nouveaux dispositifs expérimentaux permettant de sélectionner les comportements de cellules

spécifiques dans des microenvironnements contrôlés et à mettre l’accent sur des éléments clés

ayant un rôle important dans leur croissance. Ces idées pourraient également contribuer à

imaginer de nouveaux systèmes expérimentaux pour étudier le comportement des cellules du

cerveau, par exemple, en conduisant à des architectures contrôlées mixtes in vitro de cellules

gliales et neuronales.

Une approche vers des systèmes 3D, en particulier pour les cellules gliales, doit être envisagé

à l’avenir pour se rapprocher du microenvironnement 3D et hétérogène de cellules in vivo.
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Appendix A

Tables chapter IV: glial and neuronal
cell densities

PLL/LN FN
Soft Stiff

(45 kPa)
Soft Stiff

(45 kPa)Soft 1
(∼ 1 kPa)

Soft 2
(< 0.5 kPa)

Soft 1
(∼ 1 kPa)

Soft 2
(< 0.5 kPa)

D
M
E
M
s

3 DIV 0.8 ± 1.9 1.1 ± 1.3 0.6 ± 1.5 0.0 ± 0.0 0.6 ± 1.8 27.9 ± 14.4
7 DIV 31.0 ± 17.8 18.4 ± 13.5 12.3 ± 11.0 6.7 ± 6.0 0.0 ± 0.0 200.7 ± 84.6
10 DIV 63.7 ± 25.1 48.9 ± 33.1 10.4 ± 17.0 15.9 ± 14.3 18.2 ± 34.1 336.5 ± 150.7
14 DIV 105.8 ± 36.5 70.4 ± 36.3 23.6 ± 31.8 4.6 ± 9.0
17 DIV 154.2 ± 72.2 70.5 ± 33.4 28.1 ± 22.6 8.2 ± 19.0
21 DIV 180.0 ± 30.8 35.8 ± 7.5 0.0 ± 0.0

N
B
s

3 DIV 2.7 ± 1.5 2.5 ± 3.2 0.9 ± 1.3 0.0 ± 0.0 0.3 ± 1.3 4.4 ± 6.8
7 DIV 3.1 ± 1.8 7.5 ± 4.4 3.0 ± 2.9 0.0 ± 0.0 0.0 ± 0.0 5.5 ± 9.6
10 DIV 6.9 ± 5.7 5.1 ± 3.4 1.3 ± 1.3 0.0 ± 0.0 0.6 ± 1.8 3.6 ± 5.3
14 DIV 4.0 ± 3.4 0.0 ± 0.0 7.8 ± 8.9 0.0 ± 0.0 0.0 ± 0.0 10.0 ± 10.4
17 DIV 6.9 ± 4.2 0.0 ± 0.0 8.4 ± 21.5 4.3 ± 9.9 0.0 ± 0.0 11.7 ± 11.3
21 DIV 5.6 ± 1.0 0.0 ± 0.0 18.3 ± 2.5

Table A.1: Glial cell density (cells/mm2) in different culture conditions. Mean value ± SD
of glial cells on the soft (soft 1, ∼ 1 kPa, and soft 2, < 0.5 kPa) and the stiff (45 kPa) regions of
"target" hydrogels in different conditions of medium and molecules of adhesion: PLL/LN coating or
FN coating with NBs or DMEMs culture medium. Cells were observed between 3 and 21 DIV. Mean
density values are calculated on a number of fields of view (surface of around 0.5 mm2) varying from 4
to 12 and depending on the localization on the sample of the area of interest. This corresponds to an
amount of counted cells from a few tens to more than 2000 (in the cases of high proliferation).
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PLL/LN FN
Soft Stiff

(45 kPa)
Soft Stiff

(45 kPa)Soft 1
(∼ 1 kPa)

Soft 2
(< 0.5 kPa)

Soft 1
(∼ 1 kPa)

Soft 2
(< 0.5 kPa)

D
M
E
M
s

3 DIV 1.9 ± 6.0 2.6 ± 2.8 0.9 ± 1.6 0.0 ± 0.0 0.0 ± 0.0 3.1 ± 3.1
7 DIV 11.4 ± 8.2 1.7 ± 1.4 2.8 ± 5.3 0.0 ± 0.0 0.0 ± 0.0 4.3 ± 2.2
10 DIV 0.7 ± 0.9 0.4 ± 1.2 0.5 ± 1.1 0.0 ± 0.0 0.0 ± 0.0 1.9 ± 3.1
14 DIV 3.2 ± 2.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
17 DIV 1.5 ± 3.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
21 DIV 0.0 ± 0.0 2.7 ± 1.2 0.0 ± 0.0

N
B
s

3 DIV 88.8 ± 21.0 65.5 ± 51.4 51.6 ± 22.5 1.5 ± 4.4 0.0 ± 0.0 3.0 ± 8.4
7 DIV 90.7 ± 14.5 77.5 ± 49.7 38.1 ± 21.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
10 DIV 89.4 ± 26.6 73.6 ± 57.8 51.4 ± 40.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
14 DIV 72.0 ± 22.6 72.7 ± 19.7 68.4 ± 47.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
17 DIV 76.0 ± 21.3 87.2 ± 3.5 45.2 ± 25.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
21 DIV 81.7 ± 12.6 0.0 ± 0.0 0.0 ± 0.0

Table A.2: Neuron density (cells/mm2) in different culture conditions. Mean value ± SD of
neurons on the soft (soft 1, ∼ 1 kPa, and soft 2, < 0.5 kPa) and the stiff (45 kPa) regions of "target"
hydrogels in different conditions of medium and molecules of adhesion: PLL/LN coating or FN coating
with NBs or DMEMs culture medium. Cells were observed between 3 and 21 DIV. Means density
values are calculated on a number of fields of view (surface of around 0.5 mm2) varying from 4 to 12
and depending on the localization on the sample of the area of interest. This corresponds to an amount
of counted cells from a few tens to some hundreds (in the cases of high adhesion and survival).

DMEMs NBs
PLL/LN FN FN

So
ft

So
ft

1

(∼
1
k
P
a
) 2 DIV 7.2 ± 6.4 1.7 ± 3.7 3.5 ± 5.8

6 DIV 21.7 ± 20.6 1.2 ± 2.6 1.4 ± 1.9
8 DIV 33.5 ± 28.0 0.0 ± 0.0 0.0 ± 0.0
13 DIV 30.0 ± 18.9 0.0 ± 0.0 0.9 ± 1.9
17 DIV 31.7 ± 17.9 0.0 ± 0.0 0.8 ± 1.7

So
ft

2

(<
0.
5
k
P
a
) 2 DIV 7.0 ± 8.7 0.0 ± 0.0 0.0 ± 0.0

6 DIV 15.7 ± 14.1 0.0 ± 0.0 0.3 ± 0.7
8 DIV 19.2 ± 25.6 0.0 ± 0.0 0.0 ± 0.0
13 DIV 31.9 ± 23.2 0.0 ± 0.0 0.0 ± 0.0
17 DIV 26.2 ± 14.3 0.0 ± 0.0 0.0 ± 0.0

St
iff

(4
5
k
P
a
) 2 DIV 0.0 ± 0.0 23.9 ± 25.0 32.4 ± 28.1

6 DIV 0.2 ± 0.5 54.2 ± 39.3 46.2 ± 33.7
8 DIV 0.0 ± 0.0 74.3 ± 44.6 36.6 ± 27.6
13 DIV 0.0 ± 0.0 56.8 ± 37.4 34.1 ± 27.8
17 DIV 1.5 ± 3.8 55.0 ± 35.3 31.1 ± 26.5

Table A.3: Glial cell density (cells/mm2) in different culture conditions. Mean value ± SD
of glial cells on the soft (Soft 1, ∼ 1 kPa, and Soft 2, < 0.5 kPa) and the stiff (45 kPa) regions of
"target" hydrogels in different conditions of medium and molecules of adhesion: PLL/LN coating or
FN coating with NBs or DMEMs culture medium. Cells were observed between 2 and 17 DIV. Mean
values are calculated on a number of fields of view (surface of around 0.5 mm2) varying from 4 to 12
and depending on the localization on the sample of the area of interest. This corresponds to an amount
of counted cells from a few tens to some hundreds (in the cases of high proliferation).
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