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INTRODUCTION

This memoir is a contribution to the solution of the equivale problem
for CR-manifolds in dimension up t6. The first occurence of this prob-
lem goes back to 1906, when Henri Poincaré formulated thé/&gace
problem for hypersurfaces @ as follows [24]:

Given two (local) real hypersurface®/, M’ c C?, does
there exist a (local) biholomorphism @ which sends\/
onM'?

Poincaré gave a heuristical argument to show that the artevtkis prob-
lem should be negative in general, but the first rigorousfozame in 1932,
when Elie Cartan [4, 5] constructed a “hyperspherical cotioeton real
hypersurfaces of?, using the powerful technique of moving frames which
is nowadays referred to as Cartan’s equivalence method. bemaer-
minology, given a manifold// and some geometric data specified an
which usually appears agastructure on/ (i.e. a reduction of the bundle
of coframes ofM), Cartan’s equivalence method seeks to provide a prin-
cipal bundleP on M together with a coframe of 1-forms onP which is
adapted to the geometric structureidfin the following sense: an isomor-
phism between two such geometric structubésand M’ lifts to a unique
isomorphism betweer and P’ which sendsv on w’. The equivalence
problem between/ and M’ is thus reduced to an equivalence problem be-
tween{e}-structures, which is well understood [19, 25].

The concept of CR-manifold enables a reformulation of the Ibitnor-
phic equivalence problem between real submanifolds of ¢exrgpaces in
a more intrinsic manner. We recall [3] that a CR-structure oaa man-
ifold M is the data of a subbundle of C ® T'M of even rank2n such
that

e LNL={0}
e L is formally integrable, i.e[L, L] C L.

The integern is the CR-dimension of\/ andk = dim M — 2n is the
codimension of\/. A generic real submanifold/ c C™ is canonically
endowed with a CR-structure when one defines the CR-bundk™° /.
Given two CR-structuresM,L) and (M’ L’), a diffeomorphism
p: M — M'is said to be a CR-isomorphism betwekhand M’ if ¢
sends the CR-bundle df/ onto the CR-bundle ol i.e. if (L) = L'.

The equivalence problem for CR-manifolds can be formulatedlbmsvs:
7



Given two (local) CR-manifolds/, M’, does there exist a
(local) CR-isomorphism betweéd and M’ ?

An important tool to answer this question is the concept ofi lferm
[1, 3]. The Levi formLF, of a CR-manifold}M at a pointp € M is the
skew-symmetric hermitian form defined @ by

LF,(X,Y)=4[X,Y], mod L,® L,

whereX, Y e L, andX andY are two local sectiond/ — L such

that)?p =X andf/p =Y. Itis a CR-invariant ofM/ in the sense that if
v: M — M'is a CR-isomorphism between and M’, thenLF =
©*LF'. 1t is well known [15] that if LF' does vanish identically o/,
which means that the bundled L is involutive, then)/ is CR-isomorphic

to a productM = C" x R*. We therefore exclude this degenerate case,
referred to as Levi-flat, in the subsequent parts of this miemo

Another CR-invariant plays a central role in our analysis. (&%), , be
the sequence of subbundles®f 7'M defined by: -

E''=LalL, Et =FE'o|[L E9[L, E,
and let
r; := rank: E°.

For example we always have = 2n, wheren is the CR-dimension of
M, whilery = ry if and only if M is Levi-flat. The sequence:= (r;);>1
constitutes a CR-invrariant af/. As it is increasing and bounded by the
dimension of)M, it is stationary for: sufficiently large. For this reason, we
will adopt the convention to write only the first distinct uak ofr, writing
for example(2, 3) instead 0f(2,3,3. .. ).

Let us now restrict the analysis of the equivalence problenCR-
manifolds of dimension not greater than The CR-dimensiom and the
codimensionk shall satisfy2n + k£ < 5, which, setting apart the trivial
cases of totally real and complex manifolds, only leavg®ssible values
for (n, k):

(L), (L2, (13, (21,
which we refer to as the type ofl.

A further investigation of the possible values for the semge and the
rank of the Levi-formL F’ leads to the identification @f different classes of
CR-manifolds of dimensior 5 (see [15]).

General clasd is constituted by non Levi-flat CR-manifolds of type
(1,1). In this case the Levi form is of constant rahkandr = (2,3).
The equivalence problem for this kind of CR-manifolds has tsmved by
Elie Cartan in the famous papers [4, 5] mentioned at the bawnof this
introduction. This problem has been tackled again recdmtlilerker and
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Sabzevari [12], in a way which explicits the CR-invariants\ofin terms of
its graphing function.

General clasdl is constituted by non Levi-flat CR-manifolds of type
(1,2) such that = (2, 3,4), which are also referred to as Engel manifolds.
The equivalence problem for this class has been solved bysBaka,
Ezhov and Schmalz [2] in 2007. An alternative proof of theutlesscon-
tained in [2] has been provided by [22], which constitutespthr 2 of this
memoir.

We mention that the other possible value foin the case of non-Levi
flat CR-manifolds of type1,2) is (2,3). However this case is set apart,
and should be considered as degenerate, as it is known [@iS)ths then
biholomorphic to a product/ = N x R, whereN is a CR-manifold be-
longing to general clads

For non Levi-flat CR-manifolds of typ€l, 3), the possible outcomes for
rare(2,3), (2,3,5) and(2,3,4,5). Caser = (2,3) is degenerate, as it
corresponds to producfd =~ N x R?, with V belonging to general class
[15]. Case" = (2, 3, 5) leads to the class of CR-manifolds which we refer to
as classll;. Cartan’s equivalence method for this class has been caaluct
recently by Merker and Sabzevari [13], which has led to a detefset of
invariants for these CR-manifolds. The third case- (2,3,4,5) defines
what we refer to as general cladk. To our knowledge, this class 6f
dimensional CR-manifolds has not been studied before, anotehd of
this memoir is devoted to solve the equivalence problemHisr ¢lass by
the construction of a Cartan connection [23].

In the case of non-Levi flat CR-manifolds of typ2 1), the sequence
can only take the valugl, 5), and the distinction between general classes
of CR-manifolds of this type depends on the rank of the Levi fotmavi
nondegenerate CR-manifolds are said to belong to generallglgsvhile
those whose Levi form is of constant rahlare said to belong to general
classlV,. One also assumes that the CR-manifolds which constitute this
last class are 2 nondegenerate, i.e. that their Freemanigaronzero (see
[15], pp 70-94), as they would otherwise be biholomorphi@ tproduct
N x C, with N belonging to general class

The equivalence problem for Levi-nondegenerate CR-marsfoldodi-
mensionl has been solved in 1974 by Chern and Moser [6] through the
use of Cartan’s original approach. The case of cldgss thus covered by
the results contained in [6]. General cldgs however has concentrated a
lot of research efforts recently. Ebenfelt gave a solutmthts problem in
2001 [7], but it appeared that this approach should only Insidered as a
partial one [8]. Isaev-Zaitsev [10], Medori-Spiro [14] aRdcchiola [20]
have independently provided solutions to the equivalemoblem for this
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class of CR-manifolds in 2013. Reference [20] is included imptéral of
the present memoir.

Each of these& classes entails a distinguished manifold, the model,
whose local CR-automorphisms group is of maximal dimensiomlalys
a special role, as CR-manifolds belonging to the same clasbeaiewed
as its deformations, generally by the way of Cartan conneciitve deter-
mination of the Lie algebra of infinitesimal automorphisnfighlee models
can be conducted through Cartan’s equivalence method, aftkit pro-
vides a guide for the more complicated case of general CR-oidsibf
the same class, as the same structure of normalizationsupb grarameters
occurs in both cases. For this reason, we started the riggobftthe equiv-
alence problem for general clasdgdll; andlV, by the determination of
the Lie algebra of infinitesimal CR-automorphisms of the medet each
of these3 classes, which are respectively given by:

(1) Beloshapka’s cubic ifT>:

wy, = wi + 21 27,
B:

we =Wy +212Z (24 72),
(2) the submanifold ¢ C*:
wy =wi + 2122,

N - wy =Wy +212Z(2+Z),
w3 = W; + 2i 2Z(2* + ; 2Z+7%),
(3) the tube over the future light corleC c C3:
LC : (Re21)” — (Rez)” — (Rez3)” = 0, Rez > 0.

The determination of their infinitesimal automorphismsaselin reference
[21], which constitutes chapter 4 of this memoir.

To conclude, the present memoir entails the following parts

e Chapter 1 contains two versions of the solution to the ecencd
problem for 2-nondegenerafedimensional CR-manifolds of con-
stant Levi rankl, a short one which summarizes the results and
sketches the proofs, and a longer one, which provides thessacy
details.

e Chapter 2 is constituted by reference [22], whose aim is teigeo
a solution to the equivalence problem for Engel CR-manifolds.

e Chapter 3 contains reference [23], which provides a solubdhe
equivalence problem for CR-manifolds belonging to generas<l
5.
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e Chapter 4 contains reference [21], which aims to determiee th
Lie algebra of infinitesimal CR-automorphisms of the model man
folds for general classék I1l, andlV, through Cartan’s equivalence
method.
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ABSOLUTE PARALLELISM
FOR 2-NONDEGENERATE REAL HYPERSURFACES
M?® C C3* OF CONSTANT LEVI RANK 1

SAMUEL POCCHIOLA

ABSTRACT

We study the local equivalence problem for five dimensioaal hyper-
surfacesM® of C* which are2-nondegenerate and of constant Levi rdnk
under biholomorphisms. We find two invariantsand W, which are ex-
pressed explicitly in terms of the graphing functibrof M, the annulation
of which gives a necessary and sufficient conditionX¥6tto be locally bi-
holomorphic to a model hypersurface, the tube over the ighe. If one
of the two invariants/ or W does not vanish on/, we show that the equiv-
alence problem under biholomophisms reduces to an eqoo@leroblem
between{e}-structures, that is we construct an absolute parallelisi/o

1. INTRODUCTION

A smooth5-dimensional real hypersurfadel c C3 is locally repre-
sented as the graph of a smooth functiBrover the5-dimensional real
hyperplaneC,, x C,, x R,:

u = F(217227Z_172_27v)'

Such a hypersurfac/ is said to be of CR-dimensianif at each pointp
of M, the vector space

1,0 ._ 1,0
Tp M = (C®TpM ﬂTp C

is of complex dimension.
We recall that the Levi fornd. F' of M at a pointp is the skew-symmetric
hermitian form defined off,)* M by

LF(X,Y)=1i[X,Y], mod T}°M & T M,

where X andY are two local sectiond/ —s T'°M such thatX, = X
andY, =Y.
The aim of this paper is to study the equivalence problem ubith@lo-

morphisms of the hypersurfacdg c C* which are of CR-dimensioa,
13



14 SAMUEL POCCHIOLA

and whose Levi form is degenerate and of constant tamor well-known
natural reasons, we will also assume that the hypersurfeeesnsider are
2-nondegenerate, i.e. that their Freeman forms are non-zero

We refer to [2] for a historical perspective on equivalenoabpems for
hypersurfaces of complex spaces, where the emphasis isnptlteoim-
portance and the lack of practical computations in the subj&or ex-
ample, even in the Levi-nondegenerate case of hyperssriagée™ c
C*+!, which was tackled by the celebrated paper by S.S. Chern and J.
Moser in 1974 (see [1]), a problem still open currently is &edmine the
Cartan-Chern-Moser invariants explicitely in terms of a famental da-
tum, namely a (local) graphing function for the hypersuefacAs a result,
the problem to determine whether a given hypersurface @lliobiholo-
morphic to a sphere is still open. It has been solved in 20@Bercase of
an ellipsoid ofC™ by S. M. Webster in [10], where he states:

Despite their importance, until now [the invariants of pseu
doconvex domains] have been fully computed, to our knowl-
edge, only in the case of the unit bal = B™, where they

all vanish!

The main result of this paper is an attempt to answer to Sitlvedyster’s
dissatisfaction in the case pfnondegenerate, Levi rarikhypersurfaces of
C3. It solves e.g. the problem to determine whether such a bypface is
locally biholomorphic to the tube over the light cone:

LC: (Rez1)? — (Rez)* — (Rez)” = 0, Rez; > 0,

which is the most symmetric hypersurface of this class. tlea summa-
rized as follows (the explicit expressions of the invarsahtindV in terms
of the graphing functior” of M are given in section 4):

Theorem 1. Two fundamental invariants]/ and ¥/, occur in the biholo-
morphic equivalence problem f@rnondegenerate hypersurfacés c C?
having Levi form of constant rarik M is locally biholomorphic to the tube
over the future light cone,

LC : (Rez;)? — (Rez)* — (Rez3)* = 0, Rez >0,
having 10-dimensional Lie algebra of infinitesimal CR-automorphisms
autcr(LC), if and only if:

J=W=0.
If either J # 0, or W # 0, an absolute parallelism is constructed on

M. In particular, the Lie algebra of infinitesimal CR-autombarpms of)M
satisfies:

dim autCR(M) S 5.
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The class oR-nondegenerate, Levi rarikhypersurfaced/ c C? which
are homogeneous (i.e have a transitive group of CR autonsmshihave
been classified in 2007 by Fels-Kaup in [5]. Theorem 1 conftimesdrop
from 10 to 5 of the group dimension observed in this case by Felds-Kaup,
and extends it to the case of CR manifolds which are not honemgen
Our approach is to employ Cartan’s equivalence method, wétosegth is
to provide explicit formulae for the invariants and to treat unified way
all CR-manifolds, regardless of their symmetry group.

We note that the class of hypersurfaces we consider has bedied
recently by [3], where an absolute parallelism is consedabn al0-
dimensional bundle, and [4], where a Cartan-connexion igigeal through
a purely Lie algebraic approach. To our knowledge, the Cartaathod we
employ here is the only one which exhibits the bifurcation:

(J=W =0) or (J#£0 or W #£0),

which characterizes explicitly the local equivalence ®riodel, and which
provides the estimate
dim autCR(M) <5

when M is not locally biholomorphic to the light cone.

2. INITIAL G-STRUCTURE

Let M C C? be a smooth hypersurface locally represented as a graph
over the5-dimensional real hyperplaré,, x C,, x R,:

U = F(Zla Z272_1a2_27 U)7
whereF' is a local smooth function depending barguments. We assume
that M is a CR-submanifold of CR dimensi@which is2-non degenerate

and whose Levi form is of constant rank The two vector fields?, and
% defined by:

2= w? WL =1,2
02 ov’ 144 F) SR
constitute a basis df;-°M at each poinp of M and thus provide an iden-
tification of 7.,-°A/ with C* at each point. Moreover, the reaiform o
defined by:

o:=dv— Atdz; — A%dz —mdz_l—ﬁdz_%

satisfies
{oc=0}=T"M T M,
and thus provides an identication of the projection
CRT,M — CoT,M /(T,°M & T,)' M)
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with the mapo,: C & T,M — C. With these two identifications, the
Levi form LF can be viewed at each poiptas a skew hermitian form on
C? represented by the matrix:

LEF = (Jp (Z ['iﬂlvz]) Op (i ["?%Z])) .
O'p (Z [Dg/ﬂl, gg]) O'p (Z [gg,gg])
The fact thatZLF" is supposed to be of constant rahkensures the exis-
tence of a certain functioh such that the vector field

%2: ]{30%1 +$2

lies in the kernel ofL F'. Here are the expressions.gf andk in terms of
the graphing functiorf:

H =k0., + 0., — (kF., + F.,) Oy,

1
1+ F,
Foysr+ Foy s F2 —iFsy Fay oy — Fer Fy Fy oy + i Fay Fer Fy oy — Fay Fy Fy 27

Fozi+ Foyzm F2 —iFg Foyo — Fg Fy Foy o + i Foy Fog o + Foy Fep Foo — Foy Fo Fyzp
and it is emphasized that the expressions that appear inbiseguent for-
mulae are expressed in terms of Lie derivatives of the foncti by the
vector fields%,, %, 4, # , hence in terms of.

From the above construction, the four vector fields .7, .4, # con-
stitute a basis of )’/ @ T,)"' M at each poinp of M. It turns out that the
vector field.7 defined by:

9 =1 [31731]

is linearly independant fron¥,, %, .%,, . With the five vector fields
L, o, L, & and. 7, we have thus exhibited a local section fravh
into C ® F'(M), the complexification of the bundlg()/) of frames of)M,
which is geometrically adapted 1@ in the following sense:

(1) the line bundle generated b¥ is the kernel of the Levi form ol/,

(2) % and.#” constitute a basis af*° M,

(3) 7 is defined by the formul& := i [.Z,, 4.

We now introduce the coframe, of 1-forms:

k=—

wo 1= (PO,HO,CO,EO,ZO)
which is the dual coframe of the frame:
(glafz/vzayv L7.) :

The expression of the exterior derivativesgf o, (o, %o, (o, Which con-
stitute the so-called structure equations of the cofragpénvolves another
important function onV/, that we denote by’ in the sequel. We give here
the expression oFf in terms of the graphing functiofR” because, as with
the functionk, all the subsequent formulae will involve terms expressed
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as derivatives of” by the fundamental vector field%’,, .7, A4, #, 7,
namely:
L, + A", — 1A}

P =
l )

where:
=i (AL - AL+ ATAT - ATAY).

In terms of P andk, the structure equations enjoyed by are the fol-
lowing:
1) _ _ _
dp():Ppo/\/io —.,g/ﬁl(k) po/\C() +Pp0/\/€_0—$1(k) po/\Co +i/€0/\/€_0,

drg = —T (k) po A Co — Li(k) ko ACo + Zi(k) o AFo,
dC():Oa
dio = =T (k) po A Co — L1(k) ko ACy — L(k) Fg A
d¢y = 0,

which are equivalent to the Lie bracket relations:

(7, %] =-P7, 7,4 = L4(k) T + T(k).4,
(7, %) =-PT (7,0 =4 (k) T+ Tk A,
4, D) =~i 7, (A, A = L(k) L,

[f %] iﬂl(k) 317 [E;J{] :_1<k) A,

(21, 0] = (k) A4, [, A =0.

We note that the Jacobi identity implies the following twaldidnal re-
lations:

%/(P> = _P-fl(k) -4 (31(]?))7
and
H (P) = —P A(k) — L (LK) —i T (k)
The Freeman form ai/ at a pointp might be identified with th&-skew
bilinear form:
FF(p) : (x,y) — 27 - Ko <[%,Z]p> ;

and it does vanish identically of/ if and only if M is biholomorphic,
locally in the neighbourhood of every point, to a product:

M =N x C?,

where N c C? is a smooth hypersurface df? (see, for example,
arxiv.org/abs/1311.5669/, pp. 70-94).
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From the above Lie brackets formulae, the fact thiais 2-nondegenerate
at every point, i.e. that its Freeman-form is non-zero, istbxpressed by
the biholomorphically invariant assumption that:

Z (k) vanishes nowhere all;

notice here that7 (k) appears as the coefficientGf A 7 in drk.

The equivalence problem under biholomophisms of hypessed\/ C
C3 which are2-nondegenerate and of constant Levi rdnik now reinter-
preted as an equivalence problem betwéestructures. We recall that if
G C GL(n,R) is a Lie group, &-structure on a manifold/ of dimension
n is a subbundle of the bundlé( /) of frames of)M, which is a principal
G-bundle. We make the following observation:difis a local biholomor-
phism of C* such thatp(M) = M, then the restrictiorb,, of ¢ to M is a
local smooth diffeomorphism a¥/ which satisfies the additional two con-
ditions:

(1) ¢, stabilizes the bundl&™°(A1);
(2) ¢, stabilizes the kernel of the Levi form éff.

As a result, there are three functiong ande on M such that :
and
¢M*($1) =cY +eX.
Of course, a®,, is a real diffeomorphism, we shall also have :
() = oar(H) =7,

and - o o

O (L) = o (L) =CTH +eX .
Moreover, as we have:

o T) =i [ous(A), o (L)) =ccT mod T M,

there exist two functions andd on M such that:

Let G; be thel0O-dimensional real matrix Lie group whose elements are of
the form:

c€c 0000
b ¢ 00 0

gi=|d e f 00},
b 00 ¢cO
d 00 ¢€f

wherec andf are non-zero complex numbers, whiled, e are arbitrary
complex numbers. The equivalence problemXobiis suitably encoded by
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the G, -structureP! on M consisting of the coframes afformsw which
satisfy the relation:

W =g - Wo,
for someg € G.
The rest of the present paper is devoted to solve the eqooalprob-

lem for P! using Cartan’s theory, for which we use [8] and [9] as standard
references.

3. REDUCTIONS OFP!.

The coframew, gives a natural (local) trivialisatiof* M ox Gy
from which we may consider any differential form dd (resp. GG;) as a
differential form onP! through the pullback by the first (resp. the second)
component ofr. With this identification, the structure equations/of are
naturally obtained by the formula:

dw=4dg-g ' Nw+ g-duwy.

The termg - dw, contains the so-called torsion coefficientsfof. A 1-
form & on P! is called a modified Maurer-Cartan form if its restriction to
any fiber of P! is a Maurer-Cartan form af,, or equivalently, if it is of the
form:

Ai=a—T,p —xsk—2cC — Txk — 2 C,

wherez,, x,, x¢, Tz, re are arbitrary complex-valued functions éh and
where« is a Maurer-Cartan form afr;. From the relations (3), we derive
the following structure equations &f':

dp=a"Np+alAp+iKAFR,
de=a'Nk+& ANp+TCAFR,
dC=a*ANp+a* AN+ a° AC,
dR = dr,
d¢ = d(,

for some modified Maurer-Cartan forms, a2, a3, a* anda®, where the
essential torsion coefficiefit is given by:

C R
T=— .
= 2 (k)

From standard results on Cartan theory (see [8, 9]), a diffephism of\/
is an isomorphism of thé';-structureP! if and only if it is an isomorphism
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of the reduced bundI&? c P! consisting of those coframeson M such
that

T =1.

This is equivalent to the normalization:
C —
f=-2A(k),
C

from which one can considé?? as aG,-structure onV/, whereG, is the
8-dimensional matrix Lie group whose elementske the form:

cc 0000
b ¢c 000
b 00<coO
0 0de ¢

The next step is now to reduce the bungte To this aim, one determines
its structure equations, which take the form:

dp=F"Np+ B Ap+ikAF,
di = ' AN+ B2 A p+CAE,
AC=FBAp+BA+BANC—BACHUCAR,

for some modified Maurer-Cartan formg, 32, 5* and 3*. Setting the
essential torsiof/ to 0 yields the normalization:

b= —iEe+iE (M —?) .

3\ “k)
Introducing the subbundI®?® c P? of those coframes o/ such thab is
defined by the above formula, we are reduced to the study®f equiva-
lence problem wheré'; is the6-dimensional matrix Lie group whose ele-
ments are of the form:

cc 0 0 0 O
—t1ec ¢ 0 0 O
1ec 0 0 ¢ O
d 00 @ ¢
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As for the first two steps, we determine the set of the new &tra@qua-
tions enjoyed byP?:

dp=F"Np+3*Ap+iKkATF,

de ="' AN+ ANp+ (AR

A= NANp+iVA+FANC—FACHVIEEAC+HVEREAR,
for some modified Maurer-Cartan forms, 72, 72 and two functiong/!

andV2. The normalization of the group parametecomes from the nor-
malizationV2 = 0, which yields:

d:—zlﬂﬂ'giy(_z(k))?+¢i§_1(__1(k))]_3
2 ¢ 9¢c  Ak)? 18 ¢ (k)
1c—2 lc—r 1c_1($1(Z(/€)))
ige P Higr AP —igr 50

Considering thosé-forms onM such thati’? = 0, we introduce a sub-
bundle P* which is aGy-structure onM, whereG, is the 4-dimensional
Lie group whose elements are of the form:

cc 0O 000
—tec ¢ 0 0 O
g= —g%cegoo
1ec 0 0 ¢ O
T RS

4. MAIN THEOREM

The fourth loop of reductions leads to a more advanced aisdlyan the
three previous ones. The normalizations of the group paemséat are
suggested at this stage depend on the vanishing or the mishiray of two
functions,J and W, which appear to be two fundamental invariants of the
problem. The new set of structure equations is indeed ofdima:f

dp=8"Ap+ 3L Ap+ikAF,
dk =0' AN+ ANp+ (AR

dC=i0° Nk +0"NC — 51/\C+Ep/\g“+z J PAR,
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for some modified Maurer-Cartan forms, 42, where the functiong and
W are defined o/ by:

5 A (&m) LA (A®K) L,
TCR T gar 3T T T am
20 4 (L) 5.4 (4R) 4 (4 (Lm))
21 Lk} 6 Ak
1.2 (4k) Z(P) 1.4 (4 (£Ak))
6 ,%1(%) 6 2 (k)
2 5 1 L 4 (4 (4 (4R)))
~ 5 P =S L(A(P) + ¢ 20 ,
and
o 2AEAR) 2 A (LAR)
-3 Ak 3 Ak)
L2 (Ak) # (LK) 14 (A (LK) | i Tk

3 Ay 5 AR SAK)

We thus observe a branching phenomenon at that pointaiidI1 are
both identically vanishing o/, then no further reductions of the group
parameters are allowed and the equivalence problem musirzied by a
suitable prolongation. However, ifis non-vanishing we can normalize the
parametet by

1
c=Js,
whereas ifi¥ is non vanishing we can perform the normalization
c=W.

We notice here that we are not treating the cases where ome divb
invariants/ or W might vanish somewhere oy without beeing identically
vanishing onl/, that is we are making a genericity assumptidnwhich is
a standard process when using Cartan’s theory. This matitfadollowing
definition:

Definition 1. A 5-dimensional CR-submanifold @ of CR-dimensior2
which is2-non degenerate, and whose Levi form is of constant rark
said to be generic if the functionsand IV are either( or non-vanishing
on M.

We are now in position to state the main theorem of the pressoer:
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Theorem 2. Let M C C? be a%¢*°-smooths-dimensional hypersurface of
CR-dimensiorz, which is2-non degenerate, whose Levi form is of constant
rank 1 and which is generic in the sense of definition 1. Then

Q) it W # 0orif J # 0on M, then the local equivalence problem
for M reduces to the equivalence problem for a five dimensional
{e}-structure.

(2) if W = 0andJ = 0 identically onM, thenM is locally biholo-
morphic to the tube over the light cone.

Granted that the functions and P are expressed in terms of partial
derivatives of ordek 3 of the graphing functior’, and that the two main
invariants/ andWV are explicit in terms ok and P, we stress that the local
biholomorphic equivalence to the light cone is expliciteharacterised in
terms ofF.

It is well-known (see, for example, [6]) that the group of@abrphisms
% of an{e}-structure on &> manifold NV is a Lie transformation group
such that din?z < dim V.

Corollary 1. Let M c C3 be a¥*> CR-manifold satisfying the hypotheses
of theorem 2. 1M is not locally equivalent to the tube over the light cone
at a pointp € M, then the dimension of the Lie algebra of germs of CR-
automorphisms aoi/ at p is bounded by.

The next3 subsections are devoted to complete the proof of theorem 2, b
distinguishing the3 cases/ # 0, W # 0 andJ = W = 0. The following
lemma is of crucial importance for the first two cases:

Lemma 1. The invariants/ and W satisfy the following two differential
equations:

H(J)+3Z(k)J =0,
and
HW)+2 4 (k)W =0.
Proof. These equations are obtained by a direct computatio# 6 ) and

J (W), using the fact thatZ’ (k) = 0 and the commutation relations be-
tween the vector field¢/, .4, %, % and.7. O

4.1. CaseJ # 0. From the normalization® = .J, the expression ofp
becomes

dp =S p/\n+S§Cp/\§+SngAE+SZZp/\Z+z' KAR

K
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for some essential torsion coefficiertts , .S S” and S” On the other
hand, the expression at is
dC =10y N K
+ S pNE+ S pACHPAL

+S<</<;/\§+S< mm+SC KACH S g/\/-mLS< CAC,

pC'

where theS?, are new torsion coeficients. From the above equations, we get

that—S7. + S§E is an essential torsion coefficient, which can be normalized
to zero. The careful computation of this coefficient, usiegnmal, gives
the normalization oé:

| i3 (_ZU) L , 2 (Zi(K)) +F> |

e = —
38 J (k)

4.2. CaselV # 0. We now assume that the fonctidr does not vanish on
M, and we show how the group parametean be normalized. We choose
the normalization: := W. The second structure equation takes the form:

dk = —1de N\ p

+ Xp AR+ X pANCHX ,0/\/1+X pAC

+ X5 kA C +X:EI€/\I€+X:Z kAC+ (AR,
wheree = 3, and for a new set of torsion coefficientg,. The computa-
tion of the coefficientX . gives, using lemma:
LW) 1A (AK) 1P

wWw 3 WLk 3W

Setting this coefficient to zero, we get a normalizatiom,@&nd hence of.
4.3. CaseJ = W = 0. We suppose thdl’ = J = 0 identically on)/. If

we return to the structure equations that we have obtaimefl¥at the end
of section3, we have:

XE = —2¢—

dp=8"Np+ ol AptinAF,
(2) de ="' AN+ 02 ANp+ (AR
dC = i82 Ak 4+ AC— L AC,

for a certain choice of modified Maurer-Cartan forﬁﬁan~d52 on P*. We
remark that this set of equations are invariant if we reptaandd? by the
1-forms7! and=? defined by:

al = 51+tp
7= 52+tl€,
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wheret is a real parameter. As no further reductions of the grougrpaters
are allowed by the above structure equations, we perfornol@myation
of the problem by considering th&,,,;-structure onP* consisting of the
coframesu on P* of the form:

wt = <p7 K? C’E’ Z’ ﬂ—l’ 71—2’F’ F) )
whereG),,,, is thel-dimensional Lie group whoses elemeptsact on the
coframesw by:
Gt * Ws = Wi4s.
As P* is 9-dimensional, this introduce B-dimensional subbundle of the
bundle of frames of”*, that we denote byl in the sequel. Our next aim
is to determine the expressionsdf! anddr?. Both of these expressions
can be deduced by taking the exterior derivative of the egst(2). For
example, taking the exterior derivative of both sides of@haation giving
dp, we get after simplications:
0= (dwl —MAFJFWJFMAW?) A p.
The same operations fdrk andd( yield
0= (dr' = CAQ) A+ (dﬁ—w?AF—CAF) A p,
0= (dﬂ'l —dﬁ—iﬁ/\ﬁ) ANCH+1 (d7r2 —7T2/\;) A K.
From these equations, we deduce the existence of a modifiatek@artan
form A onII such that:
drt =ik Am24+CACH+AAp,
dr? =’ Al + CATZ+ AN K.
By addingA to the set ofl-forms p, , ¢, &, ¢, ©', 7%, @1, 72, we get a
10-dimensionae}-structure ol which constitutes the second (and last)
1-dimensional prolongation to the equivalence problememhains to de-

termine the exterior derivative of, which is done by taking the exterior
derivative ofdr* anddr?, which yields:

0= (dA—Aml —AAF—WAF) Ap
0= (dA—m?/\P—A/\wl—A/\F> Ak =0.
From these last two equations, we deduce that:

dA =i’ A2+ AAT + A AL
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Summing up the results that we have obtained so far, the-tiiferential
formsp, x, (, &, ¢, ', w2, 7!, w2, A, satisfy the structure equations:

dp=7m'ANp+nlAp+ikAF,

de =" AN+ 7> Ap+ (AR,

dC =im* AN+ ANC—TLAC,

dr' =ik AT2 4+ CAC+ AN,

drl =’ ATt + CATE+ AN,

AN =im? A2 + AAT + A ATL

The torsion coefficients of these structure equations dmaktant, and
they do not depend on the graphing functigrof M. This proves that all
the hypersurfaces/ which satisfy
J=W =0

are locally biholomorphic. A direct computation shows ttreg tube over
the future light cone is precisely such that= W = 0. This completes the
proof of theoren?.

5. EXTENSIONS OF THEOREM2

We now give a slight extension of theorem 2. Mf is a 5-dimensional
abstract CR-manifold of CR dimensi@rthen there exist a subbundieof
C ® T'M of dimensiore such that

(1) LN L={0}

(2) L is formally integrable.
It is then well-known that there exist local coordinates, x-, x3, x4, v) On
M and two local section”; and.%, of L, such that:

0 0 0 0
L=+ A = L =——+ A% —
Y7oy + ov’ 27 02y + ov’
where A! and A? are two locally defined functions oh/, and where the

vector fields;Z- and ;2 are defined by the usual formulas:

o _1(9 ;9 o _1(9 ;9
821 n 2 8m1 8ZE2 822 N 2 813 6174 )

As a result, we can define the functiohsand P together with the four
vector fields.#, 4, # and.7 in terms of the fundamental functions
and A2 as in the embedded case, and all the subsequent structai@oagu
at each step of Cartan’s method are unchanged. Theorem 2nsthas
valid in the more general setting of abstract CR-manifolds.
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Finally, theG-structures that we introduce at each step are in fact diobal
defined onM (as subbundles of @ T'M). As a result, the first part of
theorem 2 has the following global counterpart:

Theorem 3. Let M be an abstract CR-manifold satisfying the hypotheses

of theorem 2. Thew and W are globally defined on\/. If J does not
vanish onM or if W does not vanish o/, then there exist an absolute
parallelism on).
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EXPLICIT ABSOLUTE PARALLELISM
FOR 2-NONDEGENERATE REAL HYPERSURFACES
M?® C C3* OF CONSTANT LEVI RANK 1

SAMUEL POCCHIOLA

ABSTRACT

We study the local equivalence problem for five dimensioaal hyper-
surfacesM® of C* which are2-nondegenerate and of constant Levi rdnk
under biholomorphisms. We find two invariantsand W, which are ex-
pressed explicitly in terms of the graphing functibrof M, the annulation
of which give a necessary and sufficient condition iérto be locally bi-
holomorphic to a model hypersurface, the tube over the ighe. If one
of the two invariants/ or W does not vanish on/, we show that the equiv-
alence problem under biholomophisms reduces to an eqoa@leroblem
between{e}-structures, that is we construct an absolute parallelisi/o

1. INTRODUCTION

A smooth5-dimensional real hypersurfadel c C3 is locally repre-
sented as the graph of a smooth functiBrover the5-dimensional real
hyperplaneC,, x C,, x R,:

u = F(217227Z_172_27v)'

Such a hypersurfac/ is said to be of CR-dimensianif at each pointp
of M, the vector space

1,0 ._ 1,0
Tp M = (C®TpM ﬂTp C

is of complex dimensiog (for background, see [21, 4, 2]).
We recall that the Levi fornd. F' of M at a pointp is the skew-symmetric
hermitian form defined off,)* M by

LF(X,Y)=1i[X,Y], mod T}°M & T M,

where X andY are two local sectiond/ —s T'°M such thatX, = X
andY, =Y.
The aim of this paper is to study the equivalence problem ubith@lo-

morphisms of the hypersurfacdg c C* which are of CR-dimensioa,
28
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and whose Levi form is degenerate and of constant tamor well-known
natural reasons, we will also assume that the hypersurfeeesnsider are
2-nondegenerate, i.e. that their Freeman forms are non{zeedfor exam-
ple [21], p. 91). Two other approaches on this problem haes becently
provided by Isaev-Zaitsev and Medori-Spiro ([18, 10]). Véder to [9]
for an historical perspective on equivalence problems jgehsurfaces of
complex spaces.

We start by exhibiting two vector fields; and.% which constitute a
basis of7)-°M at each poinp of M. This provides an identification of
T,°M with C* at each point. We also exhibit a reaform o on 7'M
whose prolongation t&€ @ 7'M satisfies:

{o=0}=T"M & T"" M,
which provides an identication of the projection
CoT,M — CoT,M /(T,)°M & T)' M)

with the mapo,: C ® T,M — C. With these two identifications, the
Levi form LF can be viewed at each poiptas a skew hermitian form on
C? represented by the matrix:

— Up(i[glvz]) Up(i[g%g])
LE (ap (2. ) o, (i [zz,zz])) '

The fact thatLF" is supposed to be of constant rahkensures the exis-
tence of a certain functioh such that the vector field

H = kgl—i‘gg

lies in the kernel ofL F'. Our explicit computation of.F’ provides us with
an explicit expression of in terms of the graphing functiof' for M. In
fact, here are the expressionsgf and.7":

F
2 = z —1 — v
1= 0 =iy O
A = ko, +0., KE. +F.)0,
1+ 2 1+ZFU( + )

and also of:
Foyo + Foy i Fo — i Py Fayo — Fop Fy Fuzg + 1 Fzy Fog Fojo — Fzy Fy By sy

Foyzr + Foy 57 F2 — i Py Fay o — Fop Fo Foy o + 0 Foy Foypo + Foy Foy Foo — Foy Fo Fozy)

and we want to emphasize that all our subsequent compuwatvdhbe
expressed in terms of Lie derivatives of the functiohy the vector fields
L, K, LA, hence in terms oF .

From our construction, the four vector field§, .7, Z,, # constitute
a basis off))*M @ T;)"' M at each poinp of M. It turns out that the vector

k=—
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field .7 defined by:

,7 =1 [3172]
is linearly independant fron¥;, %, £, . With the five vector fields
LA, L4, ¥ and .7, we have thus exhibited a local section fravh
into C ® F(M), the complexification of the bundlE( /) of frames of)M,
which is geometrically adapted fd in the following sense:

(1) the line bundle generated b¥ is the kernel of the Levi form o/,
(2) 4 and.# constitute a basis af'"°M,
(3) 7 is defined by the formula” := i [.£], 4.

Then we define the coframe dfforms:

(pOa Ko, C-Oa Ro, ZO)
which is the dual coframe of the frame:

(glvxvzvyv L7.) .

The computation of the exterior derivatives @f xo, (o, %o, C,, Which
constitute the so-called structure equations of the caramvolves another
important function onV/, that we denote by in the sequel. We give here
the expression aP in terms of the graphing functiol because, as with the
function k, all our subsequent computations will involve terms expeds
as derivatives of” by the fundamental vector field®;, ¢, 4, #, 7,
namely:

L, + A", — 1 A}

P =
l )

where:
F,,
144 F,’

1=

and where:
L= (AL = AL+ ATAT - ATAL).

Then in terms of” and#, the structure equations enjoyed @y o, Co,
Ro, C,, are the following:
dpozppo/\/io —jl(k) po/\Co +Fp0/\li_o—z(E) po/\g—i"iﬁg/\ﬁ_o,
dig = =T (k) po Ao — Li(k) ko ACo + LA(k) o AFo
dCO = 07
drg = =T (k) po Ao — Zi(k) Ko A Gy — Zi(k) Ro A Gy,
déy = 0.
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The fact that)/ is 2-nondegenerate is expressed by the (biholomorphically
invariant, see [21]) assumption that:

Z (k) vanishes nowhere ol/;

notice here that7, (k) appears as the coefficient Gf A &g in dr.

The end of section 2 is devoted to reinterpret the equivalgmoblem
under biholomophisms of such hypersurfaces as an equealeroblem
betweenG-structures. We recall that & ¢ GL(n,R) is a Lie group, a
G-structure on a manifold/ of dimensionn is a subbundle of the bun-
dle F'(M) of frames of M, which is a principalG-bundle. The fact that
we can express the equivalence problem in terms of equivedeibetween
G-structures comes from the following observationgifs a local biholo-
morphism ofC? such thaty(M) = M, then the restrictiom,, of ¢ to M
is a local smooth diffeomorphism @ which satisfies the additional two
conditions:

(1) ¢y Stabilizes the bundi&'?());
(2) ¢u stabilizes the kernel of the Levi form off.

As a result, there are three functiong ande on M such that :
Qb]y{*(e%/) = ff%/7
and
gZﬁM*(.,%l) = C.i/ﬂl —i—e%/.
Of course, a®,, is a real diffeomorphism, we shall also have :
Oris(H) = apu(H) =T,

and - o o

O (4) = o (L) =CTH +ex.
It is then easy to show that the matrix Lie group which encstegtsbly the

problem is thel0 dimensional Lie groug~; given by the matrices of the
form:

cc 0000
b ¢ 0 0 0
g:defOO,
b 00¢coO
d 00 c¢&f

wherec andf are non-zero complex numbers, whiled, e are arbitrary
complex numbers.

The rest of our article is devoted to the implementation ot&ds equiv-
alence method to reduce thi§ -equivalence problem to an absolute paral-
lelism. We use [24] and [26] as standard references on Cartaqliva-
lence method. We develope the parametric version of Caréapivalence
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method, that is we perform all the computations and giveiexm@xpres-
sions of the functions involved in the normalizations of ¢ieup parame-
ters, because we need to control carefully the expressfdhese functions:
some of them might indeed vanish identically &h which is of crucial im-
portance when deciding whether a potential normalizatightibe allowed
or not. Our computations involves only terms which are ggives of the
functionsk andP by the fundamental vector field®,, ¢, %4, %, 7, and
they become ramified by the fact that some relations exidtsdss these
derivatives: those that follow simply from the Jacobi ideées$, and those
that follow from the fact that the Levi form a¥/ is of rank1 everywhere.
We give a sum up of the relations that we use at the end of stidis&r2.
These relations imply important simplifications in the fallae we obtain
for the torsion coefficients, and shall not be missed if onepkein mind
that we usually want to control whether these coefficientsatosh or not
on M, which is a delicate task, even with the help of a computeelaig
system.

We find in section 3 that the first normalization of the groupapaeters
is:

C —

This enables us to reduce, to a new matrix Lie grouf+, which is 8-
dimensional and whose elemepttake the form:

€ 0000
b ¢ 000
g=|d e £ 00
b 00¢cO
0 0de ¢

We then perform a second loop in Cartan’s equivalence metigddtion
4, which yields the normalization:

(g 1)

b= —ice+i- —
3 A (k)

and which therefore leads to@@-equivalence problem, whei@; is the
6-dimensional matrix Lie group whose elements are of the form

cc 0 0 0O
—1ec ¢ O 0
1ec 0 0 ¢ O
d 00 @ ¢
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The third loop is done in section 5 and it gives us a normabtnadf the
parametet as:

_ let 2c 1 ( 1(/€))2 1 ch (LAk)P
d——Z§T+Z§E _1(]{;)2 +ZEE _1<k;)
1c—o lc—r — 1c 4 (% (AK))
—Z§EP +Z—€$1(P)—’LEE _1(,1{;)

This therefore reducess; to the4-dimensional grou-,, whose elements
are of the form:

cc 0000
—1ec ¢ 0 0 O
g=|-3 e 00
tec 0 0 ¢ O
THEEE

The fourth loop of Cartan’s method, which is done in sectiole&ds to
a more advanced analysis than the three previous ones. Timalimations
of the group parameters that are suggested at this stagediepehe van-
ishing or the non-vanishing of two functiongand¥, which appear to be
two fundamental invariants of the problem. The expressang and W
are given below:

5 A (&m) L LA (A®K) L,

18 (k)2 PigPall) =g 2 (k) r
20 4 (AR)" 54 (AK) 4 (4 (4F))
27 Z(k)3 6 2 (k)?
1% (k) AP) 1.4 (4 (LK)
6 Z (k) 6 Z (k)
2 5 1 L4 (4 (4 (4m)))

— =P A(AP) + 2 20 ,
and
w2 AEE) 24 (A)
3 Ak 3 Ak
L2 (L) # (Li(k) 14 (LA (LK) | i T(k)

5 AW 3GAKE AR

We thus observe a branching phenomenon at that point: ahd 1/ are
both identically vanishing o/, then no further reductions of the group
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parameters are allowed by Cartan’s method. Howeveriginon-vanishing
we can normalize the parameteby

1
c=Js3,
whereas ifiV is non vanishing we can perform the normalization
c=W.

We notice here that we are not treating the cases where oitne ¢ivb
invariants/ or W might vanish somewhere dvi without beeing identically
vanishing on), that is we are making a genericity assumptign which
is a standard process when using Cartan’s technique. To lgepfelcise,
we also suppose in section 8 that the functigi{1}’) is generic on\/, that
is it is either identically0 or non-vanishing on/, in order to establish the
results of this section. This motivates the following defom:

Definition 1. A five dimensional CR-submanifold ©f of CR-dimension
2 which is2-non degenerate, and whose Levi form is of constant faisk
said to be generic if the functiong W and 7 (1) are either0 or non-
vanishing onM/.

Section 7 is devoted to show that in the cdsg 0, one can normalize the
last group parametey; thus reducing the equivalence problem to the study
of a five dimensiona{ e}-structure. Section 8 deals with the same issue in
the casdV # 0. To this end, we show thal’ # 0 implies.# (W) # 0
under the genericity assumption (this is the purpose of Larfijn In both
cases/ # 0 andW # 0, the final {e}-structure that we obtain on/
contains terms which are derivatives of the graphing famcki up to order
8. Thus the results of these sections only require tds 4*-smooth.

Finally, in section 9, we show that when bafthand W vanish identi-
cally on M, we can reduce the equivalence problem toalimensional
{e}-structure after performing two suitable prolongationsheTstructure
equations that we obtain are the same as those enjoyed hybthever the
future the light cone:

(Re 2’1)2 — (Re 22>2 — (Re 2’3)2 =0, Re z; > 0,
which is locally biholomorphic (see [11, 13]) to the grapliggbersurface:

ywF + 10m + 1l
u = .
I — 207
This proves the fact that whehand 1V are both vanishing)/ is locally
biholomorphic to the tube over the light cone. We summaitiesé results
in the following theorem:
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Theorem 1. Let M C C® be a%®-smooth5-dimensional hypersurface of
C R-dimensior2, which is2-non degenerate, whose Levi form is of constant
rank 1 and which is generic in the sense of definition 1. Then

Q) it W #£ 0orif J # 0on M, then the local equivalence problem
for M reduces to the equivalence problem for a five dimensional
{e}-structure.

(2) if W = 0 andJ = 0 identically on), then M is locally biholo-
morphic to the tube over the light cone.

Granted that the functions and P are expressed in terms of partial
derivatives of ordex 3 of the graphing functior’, and that the two main
invariants/ andWV are explicit in terms ok and P, we stress that the local
biholomorphic equivalence to the light cone is expliciteharacterised in
terms of F.

Itis well-known (see, for example, [17]) that the group ofauorphisms
% of an{e}-structure on &> manifold NV is a Lie transformation group
such that din?7 < dim N. As a result of theorem 1, we thus have:

Corollary 1. Let M C C? be a¥> C R-manifold satisfying the hypotheses
of theorem 1. If\/ is not locally equivalent to the tube over the light cone
at a pointp € M, then the dimension of the Lie algebra of germg’'ai-
automorphisms al/ at p is bounded by.

We now give a slight extension of theorem 1. Mf is a 5-dimensional
abstractC R-manifold of C'R dimensior2 then there exist a subbundleof
C ® T'M of dimensior2 such that

(1) LN L={0}

(2) L is formally integrable.
It is then well-known that there exist local coordinates, =5, x3, x4, v) On
M and two local sections”; and.%, of L, such that:

0 0
= — Al _—
4 0z * ov’
and 5 5
= 1+ A2 =
= 0z - ov’

where A' and A? are two locally defined functions ol/, and where the
vector fieldsaiz1 anda%2 are defined by the usual formulae:

o _1(fo 9
821_2 81’1 Z@.CL'Q ’

and
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As a result, we can define the functiohsand P together with the four
vector fields#, 4, # and.7 in terms of the fundamental functions
and A? as in the embedded case, and all the subsequent structaoegu
at each step of Cartan’s method are unchanged. Theorem lnsethas
valid in the more general setting of abstratk-manifolds.

Finally, theG-structures that we introduce at each step are in fact diobal
defined onM (as subbundles of ® T'M). As a result, the first part of
theorem 1 has the following global counterpart:

Theorem 2. Let M be an abstractC R-manifold satisfying the hypotheses
of theorem 1. Thew and W are globally defined on\/. If J does not
vanish onM or if W does not vanish o/, then there exist an absolute
parallelism on).

Acknowledgments wish to thank Professor Alexander Isaev for insight-
ful suggestions that provided improvements, e.g. the atisand global
counterparts of theorem 1.

2. GEOMETRIC AND ANALYTIC SET UP

2.1. Shape of the initial coframe. Let M C C? be a local real analytic
hypersurface passing through the origin@f. We recall that)/ can be
represented as a graph over thdimensional real hyperplarie,, x C,, x
R,:

u= F(z, 2,721, 22,0),
where F' is a local real analytic function depending drarguments. We
make the assumption thaf is aC R-submanifold ofC R dimensior2, that
is the bundler™ M is of complex dimensioa. Let us look for a frame of
T M constituted of two vectors field of the form:

0 0
gl_a_ajLAl@_w’
0 0

_ — A _—
= 822+ 2 0w’

with two unknown functions!; andA,. As M is the zero set of the function
G := u — F, the condition that#; and.%, belong to7* M take the form:

dG (<L) =0 and dG (%) =0.
As we have:
dG =du—F, dzy — F,,dzy — F5rdz1 — Fdzs — F, dv
and

Op = = (04 —10,),

1
2
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these two conditions read as:
1

sz—iAj—%FvAjzo, j=1,2,

which lead to:

%j

A;j=2 T
If = denotes the canonical projecti@f — C? x R which sends the
variables(z1, zo, w) ON (21, 29, v), the fact thatV/ is a graph over the hyper-
planeC., xC,, xR, makes the restriction of to M alocal diffeomorphism
M — C? xR, that is alocal chart oA/. All the subsequent computations
will be made in coordinate&; , z2, v), which means that they will be made
through this local chart provided by. The (extrinsic) vector fieldsZ; are
mapped byr onto the (intrinsic) vector fields, (%;). As . (8,) = —% Oy,
we have:

T (&) = 0., + A 0, j=1,2

where
Al = —i £, =12
ST J= 0

In order to simplify the notations, we will still denote, (.Z;) by .Z;
in the sequel. Ifo is a 1-form on M whose kernel at each pointis
T,°M & T;>* M, we identify the projection

CoT,M — CRT,M /T,°M&T)'M

with the mapo,: C ® T,M — C. An example of such a-form o is
given by:

o:=dv— A'dzy — A%dzy — AV dz; — A2 dz.

As an identification of)-° M with C* is also provided by the basis of vector
fields.} and.%, , the Levi form of M can be viewed as the skew-symmetric
hermitian form onC? given by the matrix:

LF — (Up (i[A, Z4)) o, (i [«5/”2,?1})) .

op (1[4, B)) o, (i[L, L))
The computation of the Lie bracke¥,, 4] gives:
4, 4] = 10., + A' 0,05 + A1,
- (le — AL 4 AVAT EA}]) 9.
Similar computations of%,, %], [ %, 21| and[.%,, .%,| give that
(A, L) = [, L] = [ L, L) =0 mod 0,.
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In the sequel, we make the assumption thais Levi degenerate of rank
1. There is therefore a functidndefined on) such that(’l“) gives a basis

of the kernel of LF". As a result of the definition of and LF, the four
Lie bracketd.Z,, 4|, 41, L], %, L] and[ %, 4] enjoy the following
two relations:
) k2, A+ [, 4] =0

k4. D) + %, B = 0.
Moreover, the vector field?” := £ + k £, gives a basis of the kernel of
the Levi form onM and the four vectors field¥, 7, £ and_# give a
basis of7’"°M @ T M. Let us introduce the fifth vector field

9 =1 [.,E/ﬂl,Z]

As 7 lies in the line bundle generated by, the five vector fields”, %,
A, # and# give a basis of2 Qg T'M.

2.2. Lie bracket structure. Let us explore the Lie bracket relations satis-
fied by this basis of @ T'M. We start with the computation @, .%].

A, L) = [0., + A'D,, 0., + A?0,]
=0 modd,,

which means that¥,, %] belongs to the line bundle generateddyy On

the other hand, a®, and.%, both belong taI''* M/, and as it is a well
known fact that7-° M is involutive, [, %] belongs toT"°M, whose
intersection withC - 0, is reduced to zero. We thus have:

As aresult, we can compufes’, .7, |. Indeed we have:

[%,Dfl] - [k.i/ﬂl +$2,$1] - —‘,2”1(]{;) .;iﬂl.

We now turn our attention on the computation of the bra¢gkét . |.
Using the relatior{1), we get:

[%,?ﬁ] =k 2 +$2,E]
=k [ghz] + [j%z} _E(k) 2
= —Zi(k) 2.

To compute further brackets, we need to determine the vdlL€ @).
Taking the Lie bracket betweer” and the complex conjugate of the first
equation of(1) gives:

'%(E) [-i/pl,Z] +E[’%/7 [,,Zﬂl’ZH + ['%/’ [3172]] = 0.
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As 7 (k) 4, £ belongs taC - 9, the vector field
S = E [‘/ai/? ["g’ﬂluz“ + [%7 ["%172“

is equal to its projection ot - 9,. It is thus sufficient to perform its com-
putation modl'™° /. The Jacobi identity gives:

S =k[H, L], L) +k[A, 4, L)+ |4, L), L)+ L, |, 2.

As [, 4 = —Z(k) L, we have[Z, %, 7] = 0 mod T M.,
Similarly we havel.%’, %] = —%,(k) %, from which we deduce that
(L1, [, %)) = 0 modTH0 M. We thus have:

— k¥, L) D)+ 7. L), D) mod T\

= Ht%/ gl] k’gl] H%,gl],Z] mOdTl’OM

=7, 4], A mod 7M.

The involutivity of the bundleT™°) implies that[#", %] belongs to
T°M. As ¢ has been choosen to belong to the kernel of the Levi form
of M, [[#, 4], # ] belongs tal''° M. We thus haves = 0 modT'°M,
from which we deduce:

(2) K (k) =0.
We are now ready to compufe?’, 7|
(A, A = [k L+ Lo kL + B
=kk[A, A+ k[AL)+k[L, A+ kL, L) + | L, Lo
+ kAR G+ LR A~ Gk L~ F Ak 4
k(k[%, L)+ [AL5)) + (kL A+ [, 5)) + X (k) L — H (k) A
=0 by (1) and(2).
We now computé.%;, .7]. We recall that from the definition o we have
7 =10,, where the functiori is defined by
L= (AL - AL+ AVAT - ATAY).
We thus have:
A, 7] = 0., + A'0,,10,]
= (L., +A'l, -1 A}) 0,
=P7.
whereP is the function defined o/ by
l,, +A'l, — A}

P ==
[
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The last bracket that we need to compute.&, .7]. Using the Jacobi
identity, we get:
A, T =ilx, |4, 4

=il Al Al +ila, 2, 24

=i~ Ak LB +ilA ~Ak)L)

= —Z(k) T +iZ (LK) L4 —i L (LK) L

= —A(k) T —ilA, Bk 2
-4 (k)T — T (k) 4.
The Jacobi identity actually implies other relations begwéhe functions
P, k and their derivatives with respect to the five vector fiefds.#,, £,

2 and.% . The following computation of 7", .7, #,]] aims to determine
an expression of? (P).

T Al = -1, P T
=—-X(P)7 —-P|-A(k)T - T(k) 4]
=—-X(P)T+PAk) T+ PT (kL4
On the other hand, the Jacobi identity gives:
[%, [3731]] = H% 9] 51] [9 [f%/afl]]
=[-Z(k) T - T (k) L, A + [T, -Li(k) Z]
=L (7 (k) L -4k [T, 4]+ 4 (L(k) T
—4(k) [, 31]—9(31( ) &
=4, Tk A+24(%k) (A, T+ 4 (Ak) T
=PI k) AHA+2L(k)PT + 24 (A(k) T
=PI k) L+ A4 (Kk)P+ 4 (LK) T.
By identification of both results, we have:
— X (P)+ PA(k)=2A4()P+ 4 (L((k)),

that is:

H(P)=—-PLA(k)— A (AKk).
We compute” (P) in a similar way. We start with a direct computation of
7, A

[T, Al = ~[H, P T
=X (P) T - P~ 4(k) T - T(k) L]
——#(P)T +PL4K) T +P Tk 4.
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The computation using the Jacobi identity gives:
T, D) = 4. 7). L) + |7, (%, 2
=[-Ak) T - T (k) 21, L)+ T, -2 4]
= A (LK) T = 4(k) T, 4]+ A (T (k) £
~ TWL. D)~ T (Zk) L4~ LT, L)
=2 (LK) T+PLAK) T+ [A, Tk L+iT (k)T +PAKk T
= (Zi (LK) + PAK) + PR +i T (k) T +P T (k)L

Identification of both results gives:

H(P) = —PZ(k) - Z; (AK) —i T (k).

Let us sum@rize the re_sults that we have obtained so farfiviheector
fields.7, 4, %4, # and.# enjoy the following Lie bracket structure:

7, 4] =-PT,
7, %) =~-P7,
(7, 4] = L(k) T + T (k) 4,
(7,4 = Ak T+ Tk A,
(A, A =—i T,

©) B, H] = Li(k) 4,
[agﬂh%] = gl(E> Z,
(2, ] = A(k) A,
4, A = L(k) A,
(A, H ] =0,

where P is a function defined o/. The Jacobi identity implies the fol-
lowing two additional relations:

H(P) =P (k) - 24 (LA(k),
and
H (P) = —PZ(k) — A (LK) — i T ().
2.3. Structure equations of the initial coframe. From the formula
dw(X,Y) = X (w(Y)) =V (w(X)) —w (X, Y]),

where X andY are two arbitrary vector fields andis a 1-form, we de-
duce from equation (3) the structure equations enjoyeddp#se coframe
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(po, Ko, Co, Fo, ), that is:
4) B - B
dpo = P po N ko — L1(k) po AN Co + P po Ao — L1(k) po A\ (o + i ko AFo

dig = =T (k) po A Co — Li(k) ko ACo + Zi(k) o AFo,

dCOZOa
dio = =T (k) po NG — Li(k) ko A Gy — Zi(k) Fo A Go
déy = 0.

2.4. Equivalence under biholomorphisms. Let ¢ be a local biholomor-
phism of C* such that¢(0) = 0 which preservesV/, i.e. such that
o(M) = M. Then the restriction,, of ¢ to M is a local real analytic
diffeomorphism of M which satisfies the following two additional condi-
tions:

(1) ¢y, stabilizes the bundlé'°)/.
(2) ¢, stabilizes the kernel of the Levi form éff.

As a result, there are three functioing ande on M such that:
Orp(H) =1,
and
Gre (L) =c L +eX.
Of course, a®), is a real diffeomorphism, we shall also have:
Onrx (7) = ¢M*(<%/) = F?,
and
Orre(A) = o (L) =€ A +o.X.
On the other hand there is a priori no special condition thall e satisfied
by . (7)), except the fact that it shall be a real vector field, becaidde

real. There are thus a real functiarand two complex valued functiorns
andd such that:

O T)=a T +b L +d X +b A +dH.
We sum up these relations with the following matrix notation

T abdbd T
4 0 ce 00 4
b | =100 f 00 H
z 00 0¢ce kZ
WV 0000 f A

As ¢y Is invertible, the functions, c andf shall not vanish onl/.
The relation between the coframey, o, (o, 70, (o) and the coframe
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o3 (po, k0, Co, Fo, 5) is thus given by a plain transposition of the previous
equation, that is:

00 a 0000 £0
Ko b c 000 Ko
sulcol=[defoo] |
Ro b 00 ¢ 0 Ko
¢o d oo c&f Co

In fact the functiora shall satisfy another condition. AS = i [.£4, %],
we have

Ou(T) = i [ (1), darn (1))
iclr+eX ,c L) +ex|

=ccT mod T,

On the other hand we have from the definitionadghat ¢,,.(.7) = a .7
mod TH°M, which implies:

2.5. Initial G-structure. Let GG; be thel0 dimensional real matrix Lie
group whose elements are of the form:

cc 0000
b ¢ 00 0

g:defOO,
b 00¢coO
d 00 & f

wherec andf are non-zero complex numbers wheréad ande are arbi-
trary complex numbers.

Following [24], let us introducé new one-forms, «, ¢, %, ¢ in accor-
dance with the shape of the ambiguity matrix related to lbdalomorphic
equivalences of such kinds of hypersurfaces:

P Po
K )
Cl=9g-1%C],
E Ko
¢ Co
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that is to say, in expanded form:

p = CC po,

Kk := b py + ¢ Ko,
¢:=dpy+ery+fC,
R := b po + CHy,

Cuv:=dpy+erRy+f (.
By inverting the matrix:

1
P g U 000N
o T
GOl=]"cg —a 7 U 0p]C],
o =% 0 0 L 0"
be—cd g 1 C
o = 00 5 S\

we find how the{ }o-indexed forms express in terms of the lifted complete
forms:

1
Po= —0pP,
cc
b 1
Ko=—"—>%=pP+ =K,
c2c C
be — cd e 1
_ b Ll
Rg = — —= - K
0 Cagp T
— be—dcd e 1-
= p— ——__+: .
O="ZF PTghTEe

3. ABSORPTION OF TORSION AND NORMALIZATION FIRST LOOP

3.1. Lifted structure equations. We apply the Cartan’s method as ex-
plained in [24]. The first step is to compute the structurea¢iqus for
the lifted coframe. With the matrix notations

Po P
Ko R
wo:=1|¢C |, w:=1\1¢C|,
o I
Co ¢

we have
w=g-wy.



45

As aresult, the structure equations for the lifted coframnea@lated to those
of the base coframe by the relation:

(6) dw=dg-g ' Nw+ g - dwp.

The termdg - g~ A w depends only on the structure equationgzgfand
is expressed through its Maurer-Cartan forms. The termw, contains
the so-called torsion coefficients of tlig-structure. It is computed easily
in terms of the forms, &, ¢, &, ¢, by applying the linear change (5) in the
expression oflw,, which is given by the set of equations (4), and a matrix
multiplication byg.

We start with the expression of the Maurer-Cartan form&/of They
are given by the linear independant entries of the malyixg—*. An easy
computation gives:

al4al 0 0 0 O
a? a0 0 0
dg-g ' = a_3 ot ad 0 01,
@ 00 a0
1% 0 0 ot &b
where
d
alzz—c,
c
9 db bdc_
a::—_——zc,
cc c
3 dd bde (—dc+eb)df
a’i=— —
cc ¢k c2cf
, de edf
ot = — — —,
C cf
df
5. ab
a’ -

The next step is to express the structure equations of tieel Idoframe
from equation (6) as explained above. Rather lenghty buigtioavard
computations give:

dp=a'ANp+alAp
+Z;pAK+TQpAQ+T§pAE+72pAZ+inAE
di =o' Nk +a? Ap
—l—T:Kp/\fi—l—T/pr/\C%-T;Ep/\E

+ T p ANCH TR RN+ Tk AR+ TE (AR,
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d=a*Np+a* Nk+a®AC
+ TS pANE+ T pAC+ T p AR
+Tp<Z PAC+ Tk NG+ Tk ANE+ T C AR,

where the expressions of the torsion coefficiéfi{sare given by the fol-
lowing equations:

b e P
70 — ;2 & k) 4+ —
pre ZCEJrcfgl( )+ c’

P
cc?




a7

de —- be? — bd de —
¢ _
Tp/@ - 22f ”g/ﬂl(k) 262f "E/ﬂl(k) -1 c2e2 + Cag?ﬂ(k) + _2P7

d —

= — L ZM)

P cef 1(k)
(S

¢ = % @),

w ccf 1(k)

3.2. Normalization of the group parameter f. We now proceed with the
absorption step of Cartan’s method. We introduce the modiedrer-
Cartan formsy’, which are a related to theformsca® by the relations:

~1

R S N R O e e
a' =o' —x,p —r k=10 — TR — 216G,

wherez!, 22, 3, 2* andz® are arbitrary complex-valued functions. The
previously written structure equations take the new form:

dp=a"Np+alnp
1 1 14 1 1
+(T5H—xﬁ—xﬁ)p/\/€+ (Tpc—xn—map/\g
+ (T —at—a1) prs + (T4 —at—al) pAC+in AT,
dk =& Nk + &% A p
+ (T — 2 +ay) p Ak + (T = 22) pAC
+ (T;E—ac%)p/\ﬁ%—(T:E—x%)p/\ZjL (T:C+xé)/<e/\<’
+ (Tf — ) KAR + T5CAE + (Tiz—fig) N
dC=a*ANp+a*Ae+a° N
(T b+ ap) prn+ (T =2l +03) pACH (TS, —22) p AR
+ (T/?-x%)p/\fjt (Tgﬁ—xé)ﬁ/\ﬁ+(TgE—x2)CAE
+(xi—xé);€/\§—x%/<a/\ﬁ+ (x%—x%)ﬁ/\C—ng/\Z-

We then choose!, 22, 23, z* andz® in a way that eliminate as many
torsion coefficients as possible. We easily see that thecadificient which
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can not be absorbed is the one in front{of % in dx, because it does not
depend on the's. We choose the normalization

TG =1,
which yields to:
f = %E(kz).
We notice that the absorbed structure equations take thre for
dp=a"ANp+alAp+ir AR,
di =a' Ak +a* Ap+CAF,
dC=a&Np+a*Ax+a° A

As a preliminary step towards the second loop of the algaritve return
to the expression of the lifted coframe. The normalizatibri gives the
new relation:

p @« 0 0 0 0 o
K b c 0 0 0 Ko
(7) (l=|[d e &k 0 0 Co
R b 0 0 T 0 Fo
¢ 00 d & <Ak ¢

Let us interpret this in the framework 6f-structures. We introduce the
new one-form

(8) Go = (k) - o,
such that the previous equation rewrites:

P cc 00 0O Po
K b ¢ 000 Ko
(9) (| = g e £ 00 Co
R b 0 9 c 0 Ko
¢ 0 0 d e ¢ Co

We thus have reduced tlie, equivalence problem to @, equivalence
problem, wher&>, is the8 dimensional real matrix Lie group whose ele-
ments are of the form

cc 0000
b ¢ 000
g:dG%OO
b 00coO
0 0de ¢
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The last task that we need to perform before the second lodpeoél-
gorithm is to compute the new structures equations enjoyethé base

coframe(py, ko, Co, Ko, Co). We easily get:

dpgszO/\/ig—éi—Egpo/\éo—i- FpOA%—%EgpoAg+imoA%,
dro = —%po/\éo— égg ko A Co + Co A o,

4. ABSORPTION OF TORSION AND NORMALIZATION SECOND LOOP

4.1. Lifted structure equations. The Maurer forms of thé&:, are given by
the independant entries of the mati#ix- g—!. A straightforward computa-
tion gives

B4/ 0 0 0

B2 B 00

dg-g7'=1 p* p* B =p" 0
g2 0 0o Bt

g0 0 Bt —ptp

where the formg3!, 52, 53 and* are defined by

o O OO

dc
1, %%
gi=,
o db_ bie
G
, (—dc+eb)dc (—dc+eb)dc dd bde
N
g S sl
C cC C

Using formula (6), we get the structure equations for theedifcoframe
(p, . ¢, %, C) from those of the base coframg, «, Co, %o, (o) by a matrix
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multiplication and a linear change of coordinates, as irfitiseloop:
dp=p"Np+ BT Ap
+Uﬁp/\m+Up<p/\C+Upﬁp/\/<c+Upp/\C—i—Z/f/\n
de = B* AN+ B*Ap
+ U, p N+ U pNC+HULp AR
—|—U;Ep/\C—i-U,’:Cﬁ/\C—i-USERAE—F(/\E,
d¢ =B Np+ B N+ B AC—BIAC
+US pAE+ U pACHU Hp/\E—l—U%p/\E
+US K AC+ U /4;/\/@+Ufm\c+ gﬁmmzf&mz.

The torsion coefficient&;, are given by:

pr b4k P
P ¢t Ak) ¢
) _ TR
128 Cgl(k)’
v — b & A(E) P
PR € & Ak T
ge <Ak
¢ < Ak)
«__e 7k e dAKHE bb beL(k) b

c A(k) ck’

« b 1.7k
e ¢ Ak
d e b beZk) b -
==t = — —P
Up“ cc c%c Zc2 +_3 gl(k;) c?
n__bgl(k)
e Am
ko Cgl(k)
k¢ T Cgl(k’)’
U:E:—E—HE_
c c
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d % (Ak)  ed Z(F) eeb Zi(k)  eb 2 (LK)

UCZ—_——— — —
Tode Ak @Ak Ceam) oL Ak
7 (@ (k 2 ?b b
e TUAW) £ T b,

e & (k‘) c3 %(k‘) cc3 c2c c2c

T&® AWK @AM kD zluc) S Zik)

ed Z (k) eeb Z(k) L4 2 (Zi(k)  eb A (A(k))

TS Ak T pak) & Ak 2 Ak

ed eb db d —
B S By 2)
o T led + cc?

T2 k) & Lk
o LA (AE) e AR
rkC < 2 o )

c 1(k) ¢ Z(k)
(_SAE e A(AK) @ d
e Ak ¢ LAk 2 cc

UCf _ _E _1<§)
K¢ < 4 )’

c wZk) 1A(LAE) e
Ués e 2k < Ak e
¢ cAk)

UCZ Tk

4.2. Normalization of the group parameter b. We can now perform the
absorption step. As for the first loop, we introduce the medifviaurer-
Cartan formss® which differ from the* by a linear combination of the

1-formsp, k, ¢, &, (, i.e. that is:
B=B—y,p —yir—yiC — yik — y:C.
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The structure equations rewrite:
dp=PB"Np+ B Ap
+ (Upe = Ye = Tx) pA K+ (U;’C—y}—y%>p/\c
+(Ufs =Yz =) pPAR+ (U;’C—yg—yg)p/\chiﬁAﬁ,
dﬁZBI/\Ii+52Ap
+ (U +yp —uR) p A+ (U —5g) p A CH (U —w2) p AR
(U= 12) pACH (U ) kAC
+ (U:E—y%)m/\ﬁ—y%m/\z—i-C/\E,
dC=BNp+ B Ne+ B AC—BLAC
+ (US =2 +y,) p Ak + (Uﬁg—y?er,ﬁ—?,ﬁ)p/\(
"’(Upcﬁ_y%) P/\E‘F(U,gg—yé—i-yi—@i) /1/\C+<U,§E—y%> KAR
+ (ng—gé) KAC+ <U§E—y%+yi> AR+ (ng—y%—kyé) CAC.

We get the following absorption equations:

Y + T = U, v +7e=Ul, Yx + T = Ul
Ye + 7 =Up —Yp + v =Up. Ve =Up.
y% = U:E7 ?J% = ;Zv yé = :Q
Yx = U, yr =0, Ys =Y, = Us,
v -y + 7 = U, ye = U, vl =y + - = US,
vi = Uteo v =US, Ve~ Tn = Ul
v =¥ =Ug

Eliminating they: among these equations leads to the following relations
between the torsion coefficients:

Uppﬁ - U_Ppﬁa
U = U
Upe = Ues
Uiz = U

k _ 17¢
22U = UCE—f— U/’)JE.
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We verify easily that the first four equations do not dependhengroup
coefficients and are already satisfied. However, the lastoas depend on
the group coefficients. It gives us the normalizatiorb @fs it rewrites:

()

b= —ice+i- —
3 2 (k)

We now look at the new relation between the cofrdmero, 50, R0, a) and
the lifted coframdp, k, (, %, ¢), when one takes into account the normaliza-
tion (4.2). Indded we have:

p = cC po

K= —1eCpy+cC (Ho-ﬁ-z <@—?> po)

3
C:dpo—i-e/ﬁo-i-%fo-

As in the first loop of the method, we modify the base coframgdban
interpretation of these equations a§'atructure. Let us introduce:

) i (Z(Zk) -
Ko :— R + - —_— — P .
0 073 ( Z(k) Po
The first two equations become

p=ccpy and k= —ieCpy+ Cko,

while the third one rewrites:

= ld Sy (Z—(_E(k)) —F)
3\ Ak
e (Z(ZR) S

Let us introduce the new group parameter=d — i £ (— — P .

N C 2
po—i-e/io—i-ECO.

3 21 (k)
We note thatd’ describesC whend describesC. We have thus reduced
the problem to an equivalence 6f-structure, described by the coframe

(p, &,C, &, ¢) and the relations:

P € 0000 Po
K —iec ¢ 0 0 0 Ro
(=] d e<00 Co
I iec 0 0 T O ko
¢ d 00 & ¢ Co
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To simplify the notations, we simply drop thend writed instead ofd’ in
the sequelGs is the matrix Lie group whose elements are of the form

cc 0 0 0O
—1ec ¢ O 0
tec 0 0 c O
d 00 e ¢

=

Itis a six dimensional real Lie group. We compute its Maurert&aforms

with the usual formula

Y+ 0 0 0 0
72 ! 0 0 0
dg-g =1 ¥ iy A't=7" 0 0
2 0 0 1 0
—3 0 0 —i7? A
where
, dc
o=,
C
9 . dc .edc . de
Y 2:Ze—2—l—_—l—
C CC C
and

5 dc+ie’c) [dc dc dd . ede
V=TT —— — |+ =+ -
c’c c cc c

As a preliminary step before the third loop of absorption aadnaliza-

tion, we compute the structure equations for the cofrgmeso, (fo, ko, CO).
From the formula :

d<£M$MM_P>_(ﬂygv_XW%%D9L%%D+9@ﬁ@ﬂMD

(k) 21 (k)? 2 (k
L (L(k) £ (L) | 2 (4 (AK)) -
+< A2 T AW _iﬂm>m
4 (AE) A (Ak) P) LA (4 (AR)) R
Zi(k)? 21 (k) 0
Z (AR Z(A(Z®))
+&m2 7 iﬂ@“
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L (L
dmpz(E_Liiﬁlz+§P>pOAgm—iﬁ%hmA@

3 #(k) 2 (k)
14 (Ak)  2— — Ak
+ (ET(]{:)_'_gP) pO/\KO_gl(E)pO/\CO‘f‘Z’{O/\RO
i _ [1A(GR) A (AR) | 2% (LK)
T\ ZAmAk 9 Ak
iR 5 2p iy P) 14 (4 (A(k))
9 Z(k) 9 3~ 3 Z(k)
i 2 (Ak) 2 (Zk) )
5T Awy ) o
AR CAG) i A (LK) H (LK)
3 Ak 3 Zi(k)?
X (AEAW) L (L) Tk v
3 Ak 3 Z(k) 2k )
L[ ABEW) AR 2
9T Ak 9 Ak 9
14 (4 (4(k)) —
+@§ E(k:) ) Po N\ Ro
Zi(k) 15 14 E&AE)Y . = s =
_ gl(k)/io/\CoJr <3P 3—_1(l<:) )FLO/\FLQ—FC()/\HO,
and
06y (z 2 (L(k) L (Z(k)) B 371(?1(@)]3
T3 Akar) 3 (k)
| Z(AK) 4 (AR) P AAWR) 5, T (AR)
3 Zi(k)? 3 Ak Ak )0
2 (k) Z(Ak) . - k) . =
+ 0 ko A Co — Z ) e KO+,$1(E) Go N Co
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5. ABSORPTION OF TORSION AND NORMALIZATION THIRD LOOP

5.1. Lifted structure equations. We are now ready to perform the third
loop of Cartan’s method. We begin with the structure equatimn the
lifted coframe. We have:

dp =" Np+~"Ap
+Vppnp/\n+vp@p/\g+vpfgp/\ﬁ+%%p/\fﬂ'm\ﬁ,

dk ="' A+ Ap
+ Vo pNE+VEipANC+VEp AR
+VEPACHVERACHVERAR+ (AR,

A= ANp+ivV A+ AC=7TAC
—i—Vpip/\/i—i-VpCCp/\C—i—Vp%p/\E—i—Vp%p/\z

+VECH/\C—FVH%R/\E—FVH%K/\Z—i-VC%C/\E—l-VC%C/\Z,

where

yo_ 8, 1AAK) 2P et LK)
PR 3c ,,2”1(2) 3¢ & Ak

.4
8 c % (k‘)’

RO (1)
r c 3¢ Ak

P e Z(k)
T —"_ 3 —_’
c < Lk

L2
3

N
—~
=

P
V=

[ellNe]

8K
=
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e X (B(AW) i e F(TW) H (Ak)

TEET ZHwr 8@ AW
ie L(AKk) 20 A(AK)P 2 e b
32 2k Y& Zm 3¢
ie— 11 — 24 _— ¢ L4k
fsel st s e By
1i Z(Ak) % @Ak 10 A(Aak)P
9 AmAR 9 A
LieA(Ak) 1e T(k) d LK)
3¢ Ak 3C AR A
i &A@w) A (&Am) 10 A4 (E4(AR)
3 cc Zi(k)? 3 A
e _ 1 AGWR) A (AR) i L (AK)
vk (Zk)” ¢ Ak
i A (AEAW) 1 Tk e i A(4AE)
3c (Z(@)Q 3¢ A(k) € 3¢ Ak
Ve 2 e i (Z(R) L4 (A (Z<k))2)2

3¢cc Ak 9 & (k)

i PA(ARK) _iPe 2P i A(P)
9c*  Zi(k) 3cc 9 3 ¢
i AA(EW) 4 =A )
EA0 < EAm)
V’izzg_l@),
pS Cog/ﬂl(k>
e = _C Zi(k)
¢ (k)

1 Z(4AKF) 1
T3 Ak 3

[
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2i ee L (LK) 0 es ep ! i e PL4(Z (k)
3 2 (k) 3 cc? 3 c2¢ 2 (k)
i L (LK) | d 4 (LK)
3¢t Z(k) k. Z(k)
A AR i e %AW G (A
2y

VS =

( ) 3 ck E(ky -
7 (4(k) i e Z P+ e PZ (Ak))

i e L(A(AWR)) 1€ Tk
3¢k Z (k) 3¢ Zi(k)
i e’ 0%1 (Dgl(E)) de 2 d p 1 e ﬁjl ($1 (E))

3¢t Alk) cc?  3ck 9k A (k)
AWK (FAW) i & X (A(EWD))
3 (“ ()’ 3¢ (A’

2i e % e D) 4 (AR)
9 c%c 9 c%c Z (k)L (k)
& Z(k) e 1dZ(AR)
A ¢ 3¢k Lk

i 124 (LK) 4 (LK)

3cc A L(F) 3c
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(_,'A(E) = ZE) 4 d A(AK)
RS Ak S Lk) 3T Ak)
25 & A (AW)  4i e (Z(AW)

t+ o= —
3cct Ak 9 Tc Ak

2

i e AAFW) L@ 24
3¢ Zi(k @ '3 3
oo o d Ak e AR

TP ARm Al

¢ eA(k)
KC 531(16)’

.« ZAF 1AAW) e
‘ST am i @m  c
¢ <Ak
ERI)

5.2. Normalization of the group parameterd. As for the previous steps,
we now start the absorption step. We introduce:

ok ::7"—z;p—zi/@—zé(—z%ﬁ—zéz.
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The structure equations are modified accordingly:
dp=5"Np+3"Ap
+ (Vo - s =) o+ (Ve =2l =21) pA¢
+ (V&—%—Z) pPAFR + (Vﬁ—z_g—z ) pAC +ik AR,

d/{z?l/\/{—i—f/\p
+ (Vi =z 42) pAe+ (Vii—22) pAC

+(Vp’%—z%)p/\ﬁ+<Vp%—z§> pAC+ (Vi —28) kAC
+ (Vi —2) KAR +CAR =22 K AC,
and

A =FNp+iVN+F ANC=FAC

+ (VS — 2 +ZZ)PA“+<VL§;+Z$—Z§’—?;>;>AC
+(Vi—22) par+ (Ve-22) pACH(VE—izd+zt—21) kAC
+<V,§E—ZZE>I£/\H+(V§ —Zz>/§/\c

(‘/C%_ZE‘FZ)C/\CvL(VQ%—z%—I—Z_%) CAC.

We thus want to solve the system of linear equations:

z,i—kz_%:‘/p’,’{, -t 2l =V, zé—l—z_%:‘/p’é,
TV 2o 2-vs,
F= Vs 2=V S
z%:(), % =VE, =i ;Q)ZVPCF»’
—2 —i—zl—i—zg’ Vp%, z,li—z_%—izgz Vfg, i22=V5,
2-VS 2=vE =V,

-2 =V, G- =V
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This is easily done as:

(2 =V -VE,
%= Vi

2= Vies
oo,
=V
Z%_ p%’
Zg_ p’Z"
Z%_V;)Cﬁa
2=V
R=viest o
z,‘Z:VpCH—Hzp,
\zi: et 2

where 2} and z; may be choosen freely. Eliminating th¢ we get the
following additional conditions on th&::

[ Vi=Vi,
Vp% =Vie
Ve = V"
128 KQ?
(10) vk 1/€
7 sz = VHZ’
_ <
VppC - _ng’
ko ¢
\ QVNE - Vppﬁ + ‘/CE'
and
va’% = Vn%»
(11)

¢ ¢ _ 1k
VKZ+VKC_Z o

We easily verify that the equations (10) are indeed satisflédwever
the remaining two equations are not and they provide twongisséorsion

coefficients, namely V. — /a3 andVEZ + VfC — iV, which will give us
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at least one new normalization of the group coefficientseéadwe have

e ALAEAWR) 11 A(AB)P 2P
van Vi 9 ¢? z(k)Q 9 &2 E(k:) 0=
1AP) 1AL (AW) L, d ¢
3 c? 3 c? E(k) c 2
Setting this expression ti) we get the normalization of the parameder
i 2 (Ak)” Z (Ak)P
go_jlec, 2eAAw) 1 c A (AW)
2 c 9¢ (k)2 18 ¢ 2
D - A (4 (Ak
—i1§P2+i1§,§,ﬂl(P)_Zlg 1(;( 1(k)))
9¢c 6°¢C 6C ,%1(]{;)

The other equation gives the essential torsion coefficient:
1 (g L (ZK) |, 2 A (AF) | 1A (AR) A (AK)

c\3 Ak 3 Ak 3 Z(k)?
1A (A(Aw)) i Tk
3 Ak 3 Ak

In the sequel we define the functioAsand on A° by:

g 2DEAW) 1 Z(FW)P
9  Ak) 18 Z(k)
12 1— — 14(%4((&AK))
SRR R G At S re
and
1z W 24 EAB) 24 (ADB)
3 Zi(k) 3 (k)

VA (AR) H (AR) 1 (A (ZR) i TE)
AT AT FAC)
We do not use the normalizatian= W at the moment, because this is

allowed only ifi¥” does not vanish. We will deal with this discussion further
during the fourth loop of the algorithm. With these notapwe have

d— 1% icqh
2 c C
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As aresult, the relationspetween the base cofrgmek, éo, ko, a) and
the lifted cofram€p, «, , &, {) take the form:

p = C€C o
R = —ieEpo —|—EI%0
1 €? . c/. .
C:—Z—_—Po+e/€o+:<Co+2HP0>
2 cc C

Here again we explicitly exhibit the ne@-structure by letting

(o = €0+iHPo-

With these notations, we have:

p = cCpo
Kk = —i€C py + Chko
1e? ) c .
= —1——poteko+ = C(o.
¢ 2ECPO 0 ECO

We have reduced the previoGg-structure to a7,-structure, wheré, is
the four dimensional matrix Lie group whose elements arb@form:

cc 00 00
—tec ¢ 0 0 O
i€ e £ 0 0
tec 0 0 ¢ O
555 00 @ f

_@ _Z,dc _edc . de

ot :
c c? cC c

>
]
Il
D
|
|
~
|
~
|
<
%)
no

6. ABSORPTION OF TORSION AND NORMALISATION FOURTH LOOP

At this stage we could compute the structure equations edjby the

base coframépy, o, o, 70, (o), but as this involves rather lenghty compu-
tations, we procceed slightly differently from here. Wetjssbstitute the
parameted by its normalization in the set of structure equations atftirel
loop. We have to take into account the fact tiidis modified accordingly.
Indeed we have:

p— . 2_ f—
dd = —jes — L &€ <Lﬁ—§) +¢H§(§—$> YisdH
C C C C C C
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The formsy! and~? are not modified as they do not involve termsdih
but this is not the case for® which is transformed as:

3_dd+,e ddc  ,dc ddc  e*dc

—tl—— - —1e— — T 11—
cc 2 c2e? 3 cc? cc?
dH

=7 —
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The expressions afp and drx are thus unchanged from the expressions
given by the structure equations at the third step, excepfabt that we
shall replacel by —%if +1 £ H inthe expression of each torsion coefficient
Ve and the fact that the formg' and+? shall be replaced by the forna$
andé?, that is:

dp=0"Np+doLAp

+VﬁpAK+V§pAC+V%pAE+V§pAZ+iKAE

v

and
de=6"NKk+ 0 Ap
+ Vo pANE+VEipANC+HVE pAE
+K§pAZ+V§mA(+M%nAE+§AE
The computation ofi¢ involves the expression of the fory? and is
therefore modified as
dH , _
dCIZ?Ap+Z52/\/€+(51AC—51/\<
¢ ¢ ¢ = ¢ Va
—l—‘/,mp/\n—l—vpcp/\CjL‘/;,Ep/\/i—l—‘/'pzp/\C
+VERACHVERAR+VERACHVECAR+VECAC
The termi—’j A p involves torsion terms ip Ak, p A ¢, p AR andp A C,
which only affect the expressions of the coefficiens, V5., V. and V.
If we write W5, W¢,, W, andiV, for these modified torsion coefficients,
we get
dC =003 N+ AC =01 AC
+WEPAE+WSpAC+Wep AT+ Wp%p/\(
+ Vi KACHVERNE+VERACHVECAR+ VAL
Before computing the actual value of the coefficierts, we proceed
with the absorption phase. We make the two substitutions
ot =" +w, p+w /<a+wé(’+w%%~l—w%z,

1
52 ::52+w§p+wiﬁ+w§(+wéﬁ+wgz
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in the previous equations. We get:
dp=38"Np+dtAp
+ <Vp’,’{—w,1{—w_%) pAK+ (V%—wé—@) pAC

+(V,ﬁ— %—w_}) p/\E—i—(V’i—w_é—w%)p/\Z,

de =0" AN+ 62 Ap

+ (Voo —wi+w,) p Ak + (Ve —wf) pAC

+(V;%—w§)p/\ﬁ+<vpg—w§)p/\f+( = wi) KAC

+ (Vi —wg) KAR + AR —wp kA C,

and

AC =0 AN +81 AC— 8 AC
+(W§H+iw§)p/\ﬁ+<W§<+w;—w_;> pAC
+W§Ep/\E+W§Zp/\Z+(V,fE—iw%) kAR

- <V§Z—z‘w§) KAC+ (V&%—w%-i-w_}{) CAC.

From the last equation, we immediately see ﬁﬁ@g ande% are two new
essential torsion coefficients. We find the remaining onesabying the set
of equations:

1 _ 1, 71 _ 1, 1
w, +wg =V, we +wk =V72, we +wg =V
o1 1 _ 2 1 _ y/k 2 Y/K
w§+w2_‘/l)%7 wm_wp_‘/p/w wﬁ_‘/pﬁ
2 __ /K 2 \/K 1 _ y/k
we =V wz ="V we = Vig

1 1 .9

wz = 0, we =V, —lw, = Vpi
1, 771 _1/¢ 11 g2 ¢ .92 ¢
—w, +w, =V, w, —wg —iw; ==V, iws =V
wy —wh= Vg iug =V, wp —wl =V
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which lead easily as before to:

(

wi = V7,
wy = Vi,
1 _ y/p
we =V
w% =0,
R PR
(13) 2 _ w
We = Voo
2 K
we =Vt
w2 =V +w!
K PR P
2 _ e
P W/m
—w +wl =W
\ p p p¢:

Eliminating thew? from (13), we get one additionnal condition on the,
which has not yet been checked, namely Méfg shall be purely imagi-
nary. We now need to compute the two essential torsion c'cmffE:WpCE
and W[fz. As they both involves the termdH A p, we start with the com-
putation of this term. Standard differentiation with resijge base coframe
(po, Ko Co, Fo, Co) Yields:

dH = T (H) po + L (H) ko + A (H) G + Z1(H) "o + A (H) Co.
Taking the wedge product withand using the fact that
Ko ANp=FKoAp

and .
Co
ANp==——Ap,
CoAp .,2”1(/6) P
which is easily seen from the definitions faf andfo, we get:
L H(H) - o — %(H)T)
p ( () i ) G B R TG )

We now use the expressions of théorms i, and(, in terms ofp, x and(,
which are deduced by the use of (5), that is:

. e 1
Ko =1—5p+ =K
C C
. 1e%c ec c
=—4-——p——kr+-C.
Co 2C3P 2 CC
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As a result, we get:

dH A p = (:_ggéj)) . 31((:]‘1)) PAK — [¢ é((k)) pAC
e (H) AH) _ cAH -
(?E@)‘ c )”M c@Am "

Inserting this equation in the expressiondgf we find that:
dC=i0s N+ 6 AN — 5_1/\§

- <V< - ;_’f;(( )) =4 )) pAK
(=& Zm)
(VC i ’f;((ﬂ)) EZ—;Z(H)) pAR
)

¢ <X =
+(VpC = 31(16)) ANC+ Vo kAC
+V§EnAE+VH%/<;/\Z+VC%(AE+VC%C/\Z.
We thus have

¢ _ < C H(H)
(14) We=Ve—ig 20
and
¢ ¢ 4 ec H(H) 1
(15) A S Zi(H),

We first computeW,fE. Performing the substitutios = —2 €€+ ¢ in
C .
sz gives
(16) Ve = —2i— Zlk) gy
p< C .,2”1(]6)

On the other hand, straightforward computations using tiancutation
relations given by the set of equations (3) lead to:

2

7 (H) = —%(‘)%—%Z@ %&g’“)ﬂgzwﬁ
o B@EEW) 1o
+§-$1(7€) Z(h) —gfl(k)gl (P),
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that is:
H(H)=—-2ZL(k)H.
Combining this with (14) and (16) leads to
¢ _
Wpf =0,

which therefore do not provide any new normalization of theup pa-
rameters. We now turn our attention Uﬁp%. As before, the substitution

d=—1¢<C1i<H gives

that is, taking into account the expressiontbf

o _g k) (4 4 (k) + F) H.

dam 3 Awm

Combining this equation with (15), we thus get the valuwf,g:

¢ & 1 — — P2, A EAW) 5., o
W =i 70 (2 1(k)H+Ji/(H))+EB 3<2—Z(l~c) +P>H Zl(H)]
|2 L(Ak) - __

as the last equality follows from the relation (16). This\pde us with a
new essential torsion coefficient, leading to a new invarédmthe problem.
Indeed we define the functiohby:

-2, A EW) 5\, o
o [ (2 ) -]

If J does not vanish, one can perform the normalizatibn= J. We now
give the expression of the invariartin terms of the functiong, P and
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their coframe derivatives. Straightforward computatiteal to
o ALZA®R) 1A (AW A (L (LR))

1( )_ 9 ?ﬁ(/f)?) 18 Z(k)2
1A EAW) S 1 AEAW) S
18 Z(k)? 18 ZA(k)
L £ (&) A(P) 25—
18 (k) g ")
2 (A (& (Alk I
which in turn gives the expression gf
S5 AEW) 5 g p  LA(AR) g
']_18 2 (k)2 P SP'X( ) - 9 Z(k) P
20 % (ZAh)" 5 A (AK) Z (4 (L))
21 Z(k)? 6 Z(k)
1 A (Ak) Z(P) 14 (A (%A )))ﬁ
6 Ak 6 Ak
2 4 1 1 % (4 (4 (&)
- P - A(A(P) + ¢ =

7. CASEJ # 0

We now turn our attention on the cage# 0. We show here how the
last group parametercan be normalized, reducing thus tieequivalence
problem to the study of asstructure. From the normalizatien = .J, we
get

de _1dJ
c 3J
The expression afp is thus modified as:
1/dJ dJ
dp = 3 <7+ 7) ANp+VE p NV p NCHVE p ANRHV p A C+i kAR,

which rewrites
dp=Sh pAK+Sh pAC+Sh p/\E+SZEp/\Z+2' KAR.

From this expression, we see ti$gf, S/, S7- andSﬁZ are essential torsion
coefficients. We now turn our attention on the computatiof/of
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The expression af.J A p is obtained in a similar way as that @H A p,
namely:

W (e_E{(J) _.zm) o EX)

cz 21 (k) c c A (k) ¢
ecx (J) L)) X)) -
+(?E<k> c )’”“_%ﬂ(%ﬂ’“

Replacinge by J'/3, we thus get that

dJ AT\
g 7))

e JW () A (J 20 A
+ e— —=2/3 ()+ —(> o 1(13)_ 14<3) AE
Lk 7P\ J g Y
1 J (o) o (J _
L2 (F)  FO
Zi(k) T J J
On the other hand, after replacindy its normalization i/, we get:
Z (A IRALEAC
fo;:—%Jrl_ll/g 1(_1( ))+2_P +éi2/3 L)
J 37 Z(k) 3 J T (k)

We thus obtain the following essential torsion coefficiemjch depends
one ande:

e e JU3 L)) 1))
Spn J1/3 K% (E) 72/3 (fl(k) g 7 * g J )
1 — LA (ZAk) () Z)
+ 3= (2P Z ) 7 7 )

The actual computation of the other essential torsion coeffisS?, , S7-
and S”C do not lead to any useful equation depending.inOn the other
hand, the study of the third structure equation provides iils another
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meaningful essential torsion coefficient. Indeed we have:
dJ dJ
d¢ =163 A — == A
(=10 ANE+ 3 ( 7 J) ¢
+Wep N+ Wi p ACHWp AR+ WS pAC
+K§nAc+vgﬁAn+v§nAZ+V§CAE+V§CA§

which, taking into account the facts theit;, = 0 and thati/’*; as been
normalized tol, can be rewritten as

dC:iég/\K,
+ S pNE+ S pACHPAL
+S§mA§+S¢mAm+S<mAC+SCCAm+ %(Aa

where theS?, are new torsion coeficients. We easily deduce from this equa-
tion that

¢ ¢

L & sefxu) ) 4 Al)
3|4k 7PN\ J g7

is an essential torsion coefficient. From the expressiovg%)bbtained by
performing the substitution:= J3, we have

o _ & J1/3.$1(k) 1 4 (Ak)
R J1/3 —2/3 2 E) 71/3 z(k)
Ll_& J1/3 % 7) EAUNEAY
+ —2/3 —1/3 + —4/3 ’
JJ J

We now substract the two essential torsion coefficientsuieahave get so
far:

9 -
J1/3 72/3 .,gl(k’) J
(k

2 1 (?«7) , 2 (k) ﬁ)_

37BN T T Ak

1/3 - R0
— St S =2 el <.$1(k) %%(‘D)

From the full expression of# () in terms of the coframe derivatives, ob-
tained by using extensively the commutations relationsw®)find the re-
lation:



72 SAMUEL POCCHIOLA

from which we deduce that the following expression:
e 11 (A0) _,A(4K) 5
J1/3 3 J1/3 J gl(lf)

is an essential torsion coefficient. Setting this coefficterzero, gives the
normalization of:

LI ZA) AR 5

e

8. CASEW # 0

We now assume that the fonctidr does not vanish o/, and we show
how the group parametercan be normalized. We choose the normaliza-
tion ¢ := W. We recall that prior to this last normalization, the strwet
equations read:

dp=0"ANp+ 6t Ap

VR PANEFVE pANCHVE p/\E—l—VppZ pAC+i KAR,

de=6"NK + 82 Ap
+ Vo PAE+VEpANCHVE pAE
+VEPACHVE KACHVE KAR + (AR
and
dC =1 03Nk + 0 AC — 6 AC
+ WS pAE+We pAC+We pAR+VE BAC
+ Vi KAR+VE RACHVE (AR +VE (AL,

where J y e
C X C .edac . ae
51:— , 62:7,6—2—2—_—2—,
C C CcC C
and _
J
g .
WPE_ZE_3'
As we have

5% = —z’ﬁ—z‘d(%,
CcC C
it is convenient to introduce the new parametdefined by

With the normalizatiorr := W, we get:
daw

st=20
W?



73

dW
6% = —ide — ie—
1 de 1€
and
J
C .
W Z_Ws'

As a result, the new structure equations take the form:

d,o:X,prAnJngCp/\(+X§Ep/\E+X/pr/\Z+z’ kAR,

dr = —ide N\ p
+ X PAK+Xp pACHXp pAT + X pAC
+X:</</\C+X:E“/\E+X:g kNG +CAR,

d( =de N K
+ X5, ,o/\/~€+X,§C p/\C+X§g PAE+X;§< KAC
+ Xox RAR + XSG RACH X (AR +XE (AL,

for a new set of torsion coefficienfs;,. The absorption process is straight-
forward and leads to the following essential torsion cosdfits:

p P p p
XP” ’ XPC ’ XPE’ sz’
Xre, o XE, XE X,
X< X¢ X i XS + X"
pR? CR? ¢’ e p¢)
VS K - v ¢ K
i X + X0, i X+ X

The careful computation of the coefficielt}. gives:

o L XV ZW) L A(EAR) |
oowWak) WW 3 WA(k)

1P
3W'
The expression of#” (1) can be simplified by using the commutations
relations (3), as in the case &f (/). We find the relation:
H(W)+2Z4 (k)W =0,

from which we deduce that /. rewrites:
AW 1A (AR) 1P

wWw 3 WLk 3W
Setting this coefficient to zero, we get a normalizatiom,@&nd hence of.

Xro= 2%
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9. CASEJ =0AND W =0

We show that in this cas@/ is biholomorphically equivalent to the light
cone. We start by showing that the coefficiéﬁ§< is purely imaginary,
which implies that no further group reductions are allowedhé stage.
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The full computation of this coefficient leads to:

1 ZWA (AR) , 14 (4AR) 4 (AR)
18 L(k)? 3 Zi(k) 2 (k)

1A (Ak) Z (Alk) y
18 Zi(k)?

ippad 4 (Zik ))_Jf/ (Z (“4(k)))
9 9 2 (k)3

X (B(F(AW) 1 DA (W)
6 Zi(k)? 6 Zi(k)
1 (k) P2 EZ(E)‘,% (% (k)
9 Z(k) 6 2 (k

)
LAKZAP) 44 (Zk) A (LK) 1 AP
6 2k 9 9
1 X (4 (LK) P
18 Zi(k)?
L LAKA (L (Ak)) | 5 (L) 2 (Ak))
6 Zi(ky? 18 Zi(ky?
L2AWZ(ZW) | 1 X (AR) Z(Z ()
9 AW 6 Zi(k)?
1
9

4 (@) , 1 FEW)
Zi(k) 9 Z(k)
1 A (k)% (L) 5. L4 (Ak) e T(k)

18 (k)2 < Ak 3c Ak
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As we shall check that this expression is real, we just dregehms which
come together with their conjugate counterpart, i.e., wéope a compu-
tation modR. We thus get:

i _2%e L (ZAK) L T (Ak) | 1ee X (A (Z4(F))
C 3 Ak k) 3 AR

Llee A (AK) 1te 4 (AK) A (AK)
3¢ Ak 3c Zi(k)?

1K (AWR) L (AW) 5
18 Zi(k)3

EEACAQEACIACAC))
9 KAGE

1A (AL (AWR) 4 X (4k) Z (k)
6 2 (k)2 9 Zi(k)*

L LA(A(AW) P 5 A (AK) Z (AR)
- AGk 18 Zi(k)?

LA (AW) L (4 (4R) 1A(AK) 5
6 Ak 9 Ak

L1 1(_ (k) Py Z&?ﬁ(k’)) _1ec T(k)
9 Zk) < Ak 3c Ak
i LT k) i L4 (Ak) 4i P

5 Zm 0z O e ge 7w

We now give an expression otc W/fc in terms of the functio’}” and its

derivative by.Z;. Using the expression d# given by (12) and dropping
once again the terms which come with their conjugate copaterwe get
the formula:

- | (Z (k) - | ec
¢ — - (A=) - _ &
iccW. = o ( A0 P [4/+202”1(W) . W,

from which we get thaWCC is purely imaginary under that assumption that
W does vanish identically on/.

The normalization step of Cartan’s algorithm stops here amdhvall now
perform a prolongation of the problem. We introduce the mediMaurer

Cartan forms of the grou@,, namely:
{51 =0 — w p— w,lifi—wCC wiE —w %Z
wh— Wi — Wik — w2

52 ::52—wpp—w
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wherew’, wi, wf, wk, wé, i = 1, 2, are the solutions of the system of

equations (13) correspondingztg + w_}) =0, that is:

R 1 _ o
= 84 LV - Vi~ VG~ ViR

2 1 _
2. §2 K ¢ K K —= K

=0 =V (V- 3V ) m— Vg - VaR- VAT

We also introduce the modified Maurer Cartan forms which spoed to
solutions of the system (13) wheke(w,) is not necessarily set to zero,
namely:

Let P° be the nine dimensionnali,-structure constituted by the set

of all coframes of the form(p, s, ¢, %,¢) on M. The initial coframe
p

(po, Ko, Co, Fo, Cp) gives a natural trivialisation”® —— M x G, which
allows us to consider any differential form oW or G* as a differen-
tial form on P°. If w is a differential form onA/ for example, we just
considerp*(pri(w)), wherepr; is the projection on the first component
M x Gy 5% M. We still denote this form by in the sequel. Fol-
lowing [24], we introduce the two coframég, », ¢, 7, (, 0", 62, 01, 62) and
(p. 5, ¢, R, ¢, wt, w%, wl, 7%) on PY. Settingt := —Re(w}), they relate to
each other by the relation:

P P
K K
4 4
[ K
C = Gt - C
! ot
w2 5
e ot
w2 0?2
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whereg;, is defined by

100000O0O0O
01 00O00O0O00¢O0
001 0O0O0O0O0©O0
0001O00O0O00O0
g:=10000100O0O00O0
t 00 001O0O0O
0t 00O0O0T1O00@O0
t 00 00O0O0OT1O
000¢ 0O0O0O0T1

The set{¢g;, t € R} defines a one dimensional Lie groGy,.;, whose Mau-
rer Cartan form is given byt. We now start the absorption-normalization
procedure in Cartan’s method @.

From the definition ofr! and=? as the solutions of the absorption equa-
tions(13), the five first structure equations read as

dp=m"Np+7LAp+irAF,
de =T ' ANk + 7> Ap+ (AR,
(17) dC=im* A+mAC =TI A,
di =1 ' ANR+m2Ap—rAC,
dl=—im® AR+7m A =7 AC

The computations that follow aim to determine the expressiof dr'
and dn?. Both of these expressions can be deduced from the the set of
equationg17). For example, taking the exterior derivative of both sides o
the equation giving/p, we get:

O=dr'Ap—n'ANdp+dntAp—7 ANdp+idi AR — ik AdF.

Replacing each two-formp, dx anddr by its expression given by (17)
yields:

O=dr'Ap+drtAp—ntA (wl/\p+F/\p+m/\E)
—FA(wlAp+FAp+M/\E> +i (T AK+T2Ap+(AR) AR
LA (F/\E%—p/\p—/@'/\Z),

which can be simplified as:

0= (dwl—im\FJrWﬂ’E/\w?) A p.
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Performing the same computation from the equation givingwe get:
0=drn' Ak —7m ' Ade +dr* ANp—7m* ANdp+d{ N — C AN dR,
that is:
0=dr' A —7"A (7r1/\/<;—|—7r2/\p+g“/\ﬁ)
+dri A p—m*A (wlAp+F/\p+m/\E)
- <z‘7r2m+7r1Ac—FA§> AR—CA (F/\EjLF/\p—/ﬁ/\Z) :
which yields:
0= (dwl—C/\Z) A K+ <d7T2—7T2/\F—C/\F> A p.

On the other hand, the same computation with the equatianggilC
leads to

0=idr’ Nk —im? A (T A+ T2 Ap+(AR) +dr' A¢
—driAC (F-ﬂ) A (m2/\n+7r1A§—F/\c),
that is:
0= (dwl—dﬁ—mm#) AC+i <d7r2—7r2/\F> A K.
Let us introduce the two-form3; and(2, defined by
O =drt —ikAT2—=CAC,
and - -
Qo :=dr* — 7 Aml — (AT,

With these notations, the three equations that we have rduataso far
rewrite:

0= (Q1 + Q_l) A p,
(18) 0=MUAE+ QA p,
0= (2 —M%)AC+iQ Ak
Taking the exterior product with in the second equation gives:
0= ApAK,
from which we can deduce the two relations:
0= (2 +Q)ApAL,
0= (Q1 —Q_l) ANpAG,
which yields:
QL ApANC=0.
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This implies the existence of twaforms« and such that:
U =aAp+BAC.
Similarly, there exist twd-form v andé such that:
Qy=7Ap+IAK.

Inserting these two expressions in the second equatidh8yf we obtain
the existence of a reatform A such that:

leA/\,O,
QQIA/\K.

If we come back to the expressiondf! andd=?, we get the two following
additional structure equations:

drt =ik Am2+CACH+AAp,
dr* = P AT+ CAT2+ A A

From the definition ofr' and=?, A shall involve a term init. By adding
A to the set ofl-forms p, &, ¢, 7, ¢, 7', 2, 71, 72, we thus get al0-
dimensional{e}-structure or,,.,; x P?, which constitutes the second (and
last) 1-dimensional prolongation to the equivalence problemerains to
compute the exterior derivative df, which is done in what follows.

Taking the exterior derivative of the equation giviig', we get:

0=ide Am2 — ik Adn2+dCAC—CNANAC+dANp—AAdp,
that is
O0=i(r' A+ T Ap+CAR)ATE—ik A (FAvrlJrZAw?JrAAE)
+<i7r2/\/€+7r1/\C—F/\C> AZ—CA(—z‘FAE+FAZ—w1AZ>
+dAAp—AN (yrl/\p+FAp+mAE>,
which yields:
0= (dA—A/\wl—AAF—m?AP> A p.

On the other hand, a similar computation starting from thEession of
dn? gives:

0=dm’ Amt — w2 Adrt +dC A2 —CAdr2+dA Ak — A A dr,
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that is
(wZAFJrg/\FM\An) AT =2 A (=RAT +CAC+HANp)
+ <i7r2/\f<a+7rl/\C—F/\C) ATZ— (A (F/\leLZ/\WQ%—A/\E)
+dAANE=AN(T' AR+ T Ap+(AR),
or
(dA—zﬁrQ/\F—A/\w1 —A/\F) Ak =0.
From these last two equations, we deduce that:
dA =i Am2+ AAT + AATL
Summing up the results that we have obtained so far, the tiiferential
formsp, x, (, &, ¢, ', 72, 7, w2, A, satisfy the structure equations:
dp=7m"Np+nlAp+ikAF,
de =T AN+ 7> Ap+(AKR,
dC=im’ A+ AC =T AC,
di =T AR+m2Ap—£KAC,
d = —im® AR+ AL =7 A,
drt =ik Am24+CACH+AAp,
dr* = AL+ AT+ A A K,
dA =i A2+ AAT + AATL
The torsion coefficients of these structure equations &asmaktant, and

they do not depend on the graphing functiérof M. This proves that all
the hypersurfaces/ which satisfy

J=W=0

are locally biholomorphic. A direct computation shows ttreg hypersur-
face defined by

— 1 _2— 1.2
2121 + 52%22 + 52%22

U = —
1—2222

is precisely such that = W = 0. This completes the proof of theorem
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CANONICAL CARTAN CONNECTION FOR 4-DIMENSIONAL
CR-MANIFOLDS BELONGING TO GENERAL CLASSII

SAMUEL POCCHIOLA

ABSTRACT

We study the equivalence problem férdimensional CR-manifolds of
CR-dimensionl and codimensior2 which have been referred to as be-
longing to general clasH in [9], and which are also known as Engel
CR-manifolds. We construct a canonical Cartan connection oh 8R-
manifolds through Cartan equivalence’s method, thus pnogidn alter-
native approach to the results contained in [1]. In paréigulve give the
explicit expression oft biholomorphic invariants, the annulation of which
is a necessary and sufficient condition for an Engel maniioloe locally
biholomorphic to Beloshapka’s cubic @?.

1. INTRODUCTION

As highlighted by Henri Poincaré [14] in 1907, the (locahdiomorphic
equivalence problem between two submanifaldsand M/’ of C¥ is to de-
termine whether or not there exists a (local) biholomonphisof CV such
thato(M) = M’. Elie Cartan [2, 3] solved this problem for hypersurfaces
M? c C?in 1932, as he constructed a “hyperspherical connectiosuch
hypersurfaces by using the powerful technique which is referred to as
Cartan’s equivalence method.

Given a manifoldM and some geometric data specified an which
usually appears as @-structure onM (i.e. a reduction of the bundle of
coframes ofM), Cartan’s equivalence method seeks to provide a princi-
pal bundleP on M together with a coframe of 1-forms on P which is
adapted to the geometric structureidfin the following sense: an isomor-
phism between two such geometric structukésand M’ lifts to a unique
isomorphism betwee and P’ which sendsv on w’. The equivalence
problem between/ and M’ is thus reduced to an equivalence problem be-
tween{e}-structures, which is well understood [10, 15].

We recall that a CR-manifold/ is a real manifold endowed with a sub-
bundleL of C @ T'M of even rankn such that

(1) LN L ={0}
84
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(2) Lisformally integrable,i.e[L, L] C L.
The integem is the CR-dimension o/ andk = dim M — 2n is the codi-
mension ofM/. In a recent attempt [9] to solve the equivalence problem for
CR-manifolds up to dimension it has been shown that one can restrict the
study to six different general classes of CR-manifolds of disien < 5,
which have been referred to as general classBsllily, Iy, 1V, andIV,.
The aim of this paper is to provide a solution to the equivedeproblem
for CR-manifolds which belong to general cldkghat is the CR-manifolds
of dimensiond and of CR-dimension whose CR-bundléd. satisfy the ad-
ditional non-degeneracy condition:

C®TM=L+L+[L L]+[L,[L, L]],

meaning thaC 7'M is spanned by, L and their Lie brackets up to order
3.

This problem has already been solved by Beloshapka, Ezhov and
Schmalz in [1], where the CR-manifolds we study are called Engan-
ifolds. The present paper provides thus an alternativdisalto the results
contained in [1]. The main result is the following:

Theorem 1. Let M be a CR-manifold belonging to general cldssThere
exists a 5-dimensional subbundieof the bundle of coframeS ® F'(M)
of M and a coframew := (A,0,p,(,¢) on P such that any CR-
diffeomorphisnh of M lifts to a bundle isomorphisr* of P which satisfy
h*(w) = w. Moreover the structure equationswofon P are of the form:

do=3ANo+pANC+pAC,

dp=2ANNp+i(AC

AC=ANCH+T oAp+TooANCH+Tso ANCH+HTipANC+TspAC,

AC=ANCH+T o Ap+T30ANCH+Too ACH+TspACH+Tip NG,

IN= 190 AT ST o AC 5 (3459) pAC— 5 (Ba+35) pAC
+Jgo AC,

whereJ, 31, Js, J3, J4, J5, are functions orP.

An example of CR-manifold belonging to general cldss provided by
Beloshapka'’s cubi8 c C?, which is defined by the equations:
8 wy, = wi + 21 27,
' we =Wy +2i2Z(2+Z).
Cartan’s equivalence method has been applied to Beloshaphatsin [12]
where it has been shown that the cofrafheo, p, ¢, () of theorem 1 satisfy
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the simplified structure equations:
do=3ANc+pAC+pAC,
dpo=2ANNp+iCAC,

dC=ANC,
dC=ANC,
dA =0,

corresponding to the case where the biholomorphic invesianvanish
identically. From this result together with theorem 1, welake the ex-
istence of a Cartan connection on CR-manifolds belonging terg¢class
II'in section 4.

We start in section 2 with the construction of a canonigadtructureP*
on M, (e.g. a subbundle of the bundle of coframes\ff, which encodes
the equivalence problem fd/ under CR-automorphisms in the following
sense: a diffeomorphism

h:M— M

is a CR-automorphism a¥/ if and only if
h*: Pt — P!

is a G-structure isomorphism of!. We refer to [9, 6, 7] for details on
the results summarized in this section and to [15] for arodhiction to

G-structures. Section 3 is devoted to reduce successivelp three sub-
bundles:

P*c P?c P?c P,
which are still adapted to the biholomorphic equivalenaabfam for M.

We use Cartan equivalence method, for which we refer to [1@¢nEually
a Cartan connection is constructed Bhin section 4.

2. INITIAL G-STRUCTURE

Let M be a4-dimensional CR-manifold belonging to general classd
% be alocal generator of the CR-bundlef M. As M belongs to general
classll, the two vector fields”, .7, defined by:

T =ilZ, 2,
S =L, 7],
are such that:
d=rank (£, 2,7,7),
namely
(2,%2,7,7)is aframe on\/.
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As a result there exist two functionsand B such that:

S =A-T+B-7.
From the fact that” = <, the functionsA and B satisfy the relations:

BB =1,

1 —
@) A+ BA=0.

There also exist two function8, ) such that:
LS =P T +Q-F.
The conjugate of and@, P and@, are given by the relations:

(2) o
@:xﬂﬂ+3@%m+§%a,

F:Bi%ﬂ—Agﬂﬂ—BAQaM—A%¥ﬁ+§WD+§P

The four functions4, B, P, ) appear to be fundamental as all other Lie
brackets between the vector fields, .Z, .7 and.” are expressed in terms
of these five functions and thejr?, .Z'}-derivatives ([7]).

In the case of an embedded CR-manifdld c C3, we can give an ex-
plicit formula for the fundamental vector fiel@’, and hence for the func-
tions A, B, P, @, in terms of a graphing function af/. We refer to [8] for
details on this question. Let us just mention that the sulifildn)/ c C3
is represented in local coordinates:

(z,wi,we) = (x 4+ 1y, uy + 1 vy, uy +ive)
as a graph:
vr = ¢1(z,y,ur, ug)
vy = Go(T, Y, ur, Uz).
There exists then a unique local generaiof 71°M of the form:

0 0 0
= — Al e A2 -~
Z 0z * ouy * Ous

having conjugate:

9 — 8 9
Ty S iy v
S =R W W
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which is a generator af*! M, where the functionsl! and A? are given by
the determinants:

_le,z ¢1,u2
_¢2,z 1+ ¢2,ug

{ + ¢1,u1 _¢1,z
L ¢27U1 _¢2,Z
i + ¢1,u1 ¢1,u2 Z + ¢1,u1 ¢1,u2
¢2,u1 Z + ¢2,u2 ¢2,u1 Z + ¢2,u2
Returning to the general case of abstract CR-manifolds, lettusduce
the coframe

Al N 2

Y

Wo ‘= (007;007@,20) )

as the dual coframe 7, .7, ., ). We have [7]:

Lemma 1. The structure equations enjoyeddyare of the form:
dog=Hoo A po+ FogA{y+ Qoo Alo+ BpoACy+ poA o,
dpy = GogNpo+EogANCy+Pog Ao+ Apg Ao +io Ay,
dGo =0,
dZO =0,

where the four functions:

E, F, G, H,
can be expressed in terms of the four fundamental functions:
A, B, P Q,

and their{.#, Z}-derivatives as:

E:=%(A)+BP,

F:=2(B)+BQ+A,

G=iZ2(ZA)+iPZLB)—iZ(P)—iQX(A)+iP.Z(B)+iBZ(P),

H=iZ2(¥B)+iQZL(B)+iBZ(Q)+22(A) —iZ(Q).

Leth : M — M be a CR-automorphism df/. As we have

h. (L) =L,
there exists a non-vanishing complex-valued functi@m M such that:
he(Z)=aX.

From the definition of7, ., and the invariance

for any vector fieldsX, Y on M, we easily get the existence of four func-
tions

b,c,d,e: M — C,
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such that:
< a 0 0 O <z
L1202 0 0 z
17| |b b az 0 T
5% e d c a%a 5%

This is summarized in the following lemma [6]:

Lemma?2. Leth: M — M a CR-automorphism a¥/ and letGG; be the
subgroup ofGL,4(C)

a’%a 0 0 0
c aa 0 0

Gy = d b a0 ,aeC\ {0}, b,c,decC
b 0 a

Then the pullback of wy by h, w := h*wy, satisfies:
W =g - Wo,

whereg is smooth (locally defined) functiond - G;.

This motivates the introduction of the subbundté of the bundle of
coframes onV/ constituted by the coframesof the form

W= g - Wy, g € Gy.
The next section is devoted to reduce successiiélio three subbundles:
P*c PP c P?c P,

which are adapted to the biholomorphic equivalence prolitem/.

3. REDUCTIONS OFP!

The coframew, gives a natural (local) trivialisatior* s M ox Gy
from which we may consider any differential form dd (resp. GG;) as a
differential form onP! through the pullback by the first (resp. the second)
component ofr. With this identification, the structure equations/of are
naturally obtained by the formula:

3) dw=dg-g ' Nw+ g - dwp.

The termg - dw, contains the so-called torsion coefficientstf A 1-form
a on P! is called a modified Maurer-Cartan form if its restriction taya
fiber of P! is a Maurer-Cartan form ofi;, or equivalently, if it is of the
form:

&::a—xaa—xpp—xgg—xzz,

wherez,, z,, z, Tz, are arbitrary complex-valued functions an and
whereq is a Maurer-Cartan form af;.
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A basis for the Maurer-Cartan forms 6f; is given by the followingl -

forms:
., da
Q= —,
a
9 bda db
Q== T T
aZa  aa

o cla i de
T aad 3%a? a%a’
A (daa —bc)da cdb  dd

= —

a4a? a%a?  a%2a’

5 (eaE —b c) da  cdb de
o = — — - 5= =
a3a’ a’%a?  a%2a’

together with their conjugate.
We derive the structure equations Bf from the relations (3), from
which we extract the expression @f:

do=2a"No+a' Ao
— a —
+T17,0Np =T 0 NC —T;EO'/\C + pAC +§B pAC,
or equivalently:
da:2&Aa+iﬁAa+pAc+§BpAZ,

for a modified Maurer-Cartan fora'. The coefficient

2B,

a
which can not be absorbed for any choice of the modified Ma@eetan
form &', is referred to as an essential torsion coefficient. Fromdsted
results on Cartan theory (see [10, 15]), a diffeomorphism/ofs an iso-

morphism of the;-structureP! if and only if it is an isomorphism of the
reduced bundlé>? C P! consisting of those coframeson M such that

°B=1.
a
This is equivalent to the normalization:
a=aB.
A coframew € P? is related to the coframe, by the relations:
o =a’Ba,
p=cao+aBp
(=dog+bpy+ad
C=eop+bpy+aB,
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which are equivalent to:
o=a’o
p=co+ a’2p1
(=do+bp +3a ¢

Z =é o +BP1 + 3,517

where:
01 = 0—017 P1 = Po, G = COU
Bz B2
and
7 =z B2, for r=a,c d e

We notice that’ is a real parameter, and thatis a reall-form. Letw; be
the coframev; := (o1, p1, (1, ¢y ), andG- be the subgroup af:

a> 0 00
c a2 0 0

Gy = d b a0 ,a€ R\ {0}, b,c,decC
e b 0 a

A coframew on M belongs toP? if and only if there is a local function

g: M -2 Gy such thaty = g - wy, namelyP? is aG, structure on\/.
The Maurer-Cartan forms @f, are given by:

da
1._
B P
bda db
2.
=t
3 cda dc
B _2a_4 >
A (da®> —bc)da cdb dd
e I
ea? —bc)da db d
po- R D

together withs2, 33, 54, 3°. Using formula (3), we get the structure equa-
tions of P2

do=3p'N0o
+ng0/\p+UgCU/\C+U;’ZU/\Z+p/\C—I—,0/\Z
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dp=28"Np+ Ao
+U5po—/\p+U5<a/\g+Uo’fEaAZ
p P i AT
+Up<,0/\C+Upr/\C+ZC/\C,

dC=B"NC+B*Ap+ B Ao
+nga/\p+Ufca/\(#—UjZa/\Z—{—Ugcp/\(
¢ - ¢ Vi
+UprAC+UcZ</\C'

Introducing the modified Maurer-Cartan forms:

B =0 ~yo o —y,p—y: ¢ —yeC,
the structure equations rewrite:
do =3 Bl No
+ (U5, =3y,) o Ap+ (Ug =3y) o ¢

+(U;’Z—3yg) GAC+pACHpAT

dp=2B8"Np+ B Ao
—|—(Uc’,’p+2yclr—y2) 0/\p+(U§<—y§’) oA(
+<U(fz—y?> U/\Z—F(U&—Zyé) pAC

+<U52—2y%> pANC+i CAC,

dC=BAC+BAp+Bine
+ (U, + vz — ) 0/\,0+(U§<+y;—y§) oAC
+(sz—y§) aAZ+<U§C+y},—y§) pAC

+<U§Z—y%> p/\z—i—(ng—y%) (AC,
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which leads to the following absorbtion equations:

o 1 _ o o
3yp Ugps 3yC = Uz, 3y< Uog’
1 P P
—2y, + yp Uy =Ug, Uac’
p _T7°P 2 ¢
2 y( Up(? 2 yg - Upi —Yo t yp Uap7
~y +4¢ = Use, ye = U, —yb R = U,
2 q 1 ¢
y=Ue Yo =V

Eliminating y% among these equations leads to:

C_ ,0__ o
UcZ_ U7—3UU<,

from which we deduce the following normalizations:

c=a’C,,
and
b=a Bo,
where: 2B )
1
Cy = (2 . +1op) )
and

o (f@_ii_fBéQ_f‘g( )>.

We introduce the coframe; := (o3, p2, (2, (,) on M, defined by:
O3 := 01,
p2 = p1+ Coor,
G2 :=C1 + Bopr,

and the3-dimensional subgrou@'s C Gs:

50 00
a

0
0

o]
[

0| acR\ {0} dec
a

L O

G3 =

oo o
o

The normalizations:
b:=aB,, c:=a’C,,

amount to consider the subbund?é c P? consisting of those coframes
of the form

W= g-ws, whereg is a functiong : M -5 Gj.
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A basis of the Maurer Cartan forms €% is given by:

., da 9 dda dd

Vo= :7 V== a4 +a_37 72'

The structure equations & are:

do=3~v'"'No
+ V5, 0N+ Vo ANCHVETAC+pACHpAG

dp:271/\p+praAp+VjCa/\c+V’laAZ
+V<p/\§+vpp/\§+z(/\§,

dC=7'"NC+* Ao
+VS oA p+ VS 0/\C+VCJ/\C+V<p/\C
¢ VS AT
-I—szp/\{’—k CZC/\C’

dC=7'"ANC+Y* N0
+VEoAp+Y, a/\c+vC oAC+Vy p/\C
CoONCALVS AT
+V;)Zp/\{’+V<ZC/\C.
It is straightforward to notice thdt, and VU”Z are two essential torsion
coefficients. The first one leads to the normalization:

a = aﬁo,
with
—  iZ(B)? i i i i L(B) i )
while the second essential torsion coefficient gives thenatization:
d= aDo,
with:
2i i Z£(B)A i i Z(B)Q i Z(B) i )
Do:= -3 2B Q-5 —5 6Q6 B 3 B 3°¢
i Z(B)Z(B) i ZL(ZL(B) i, :
i ZL(A) — 3 2 2 5 + 2.,2”(@) i BP.

The coherency of the above formulae can be checked usingltteons (1)
and (2).
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Let G4 be thel-dimensional Lie subgroup @3 whose elements are
of the form:

a2 0 00
0 a2 0 0
0 0 0 a
and letws := (o3, p3, (3, (3) be the coframe defined oW by:

03 1= 09, p3 = p2, (3 := G2 + Do oa.
The normalization ofl is equivalent to the reduction d# to a subbundle
P* consisting of those coframeson M such that:
W= g - ws, whereg is a function g : M - G,.
The Maurer-Cartan forms a@f, are spanned by:
da
=

Proceeding as in the previous steps, we compute the steuetiuations
of P4

Qo

da

dazB:/\a
+W, o Np+ Wi o ANCH+WZa AC+pACHpAC,
da - _
@::%;Ap+W%aAp+W§pAc+W§pA¢+MAQ
d
ac =" n¢
a
+W@aAp+WﬁaAC+WEoAZ+W§pAC
¢ AT Cr AT
+WEp AL+ WECAL,
— da -
dc = L AT

+W§aAp+WﬁaA§+W§aAZ+W§pA§
s Va 5 Va
+szpAC+W<ZC/\C.
Introducing the modified Maurer-Cartan forin

da  We,oooowe o owg, o W7
:—+ —

A _lep o7
e A i iy
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these equations rewrite in the absorbed form as:
(4) _
do=3ANo+pAC+pAC,

dp=2MNNp+iCAC,
I I, I3 Iy I
¢ = AAC+—0Ap+—aAC+—JAC+ 5 P A C+ pAQ

_ _ I_ I_ ]_ _ I_ I_ _
dC=AN(+—0Ap+ =0 A+ A+ pAC+ 5 pAC,
a a a a a

where the invariants;, i = 2...5, are given by:

A Z (Dy)

1
2

Z (B 1
I3 = —DyCyp+ él ) Do+B2QD,
2

—i BoDy+i B3Cy

A .zB 1 Z(B
— - BCy+By.Z(A)+ BPB, + (0>Co+— (B)

B2 B3 2 B3

B, Co

3. 1. 11 9 . 2. .
]424—11 5 +6@$(B)Q+%ZBQ —23(3(3))—§ZB$(Q)+ZBP,
ZL(ZL(B) 5 ZL(B)? i
2. Z(Z(B) i

L=t 2(A)+: 2(Q) -

2
il P -
—|—36ZBQ +iB +3 iz 3.;S,”(.;S,”(B))
i AZ(B) 7 ZZ( )Q i
T3 TREWBemg T a0
and/; is given by:
2i 2i

The exterior derivative of\ can be determined by taking the exterior
derivative of the four equations (4), which leads to the alted Bianchi-
Cartan’s identities. For example, taking the exterior dgiwe of the first
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equation of (4), one gets:

L, I L I
= {3d/\+ (a_5+a_5) pAC+ (;‘l—a—d) p/\g} Ao
while taking the exterior derivative of the second equagves:
I _—_—
0= {QdA—za—ia/\C—irza—ia/\C} A p
Eventually we get:

(5)
ZIl 7 Il

dA———o/\C———U C—— (——l——) pAC—= (—+13> AC—l—I—a/\C,
2 a4 as

wherel is given by:
1 _
Io:= —55 ()¢ = 507 (h)e-

4. CARTAN CONNECTION

We recall that the model for CR-manifolds belonging to genelasdsl|
is Beloshapka'’s cubiB c C3, which is defined by the equations:

5 wy =Wy + 2127,
' wy =Wy +212Z(2+72) .

Its Lie algebra of infinitesimal CR-automorphisms is givenliy following
theorem:

Theorem 2. [12]. Beloshapka'’s cubic,

wy = wi + 2127,
B:

Wy =Ws +212Z (24 %),

has a5-dimensional Lie algebra of CR-automorphismscr(B). A basis
for the Maurer-Cartan forms odutcg(B) is provided by thé differential
1-formsa, p, ¢, ¢, a, which satisfy the structure equations:
do=3aANo+pAC+pAC,
dp=2anp+i(NC,
d¢ = aN(,
d¢=ang,
da = 0.
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Let us writeg instead ofautcg(B) for the Lie algebra of inifinitesimal
automorphisms of Beloshapka'’s cubic, an({IseoJ; €o, €p, €, ez) be the dual
basis of the basis of Maurer-Cartan 1-fornfe;, o, p, ¢, () of g. From the
above structure equations, the Lie brackets structuga®given by:

[eom 60’] = —3 €o, [60“6/)] = —2 607 [60” eC] — —6<’
[eayed = — 627 [€p7€<] = —€g, [Gp, ez] = —e,,
[GC’ed = —1 eP?

the remaining brackets being equal to zero.

We refer to [5], p. 127-128, for the definition of a Cartan cartio.
Let go C g be the subalgebra spanned &y & the connected, simply
connected Lie group whose Lie algebrggiand &, the connected closed
1-dimensional subgroup @ generated by,. We notice thats, = G4,
so thatP* is a principal bundle oveit/ with structure groug,, and that
dim &/G, = dim M = 4.

Let (A, a,p,C, C) be the coframe of-forms onP* whose structure equa-
tion are given by (4) — (5) and the 1-form on P with values ing defined
by:

w(X) = AX)ea+0(X) e, +p(X)e, + C(X) e, +((X) ez,
for X € T,P*. We have:
Theorem 3. w is a Cartan connection of*.

Proof. We shall check that the following three conditions hold:

(1) w(e) = e, Wheree?, is the vertical vector field o#* generated by
the action ofe,,,
(2) R w = Ad(a!)w for everya € &,
(3) for eactp € P*, w, is an isomorphisnT;, P* = g,
Condition (3) is trivially satisfied ag\, o, p, ¢, ¢) is a coframe or* and
thus defines a basis @];*P“ at each poinp.
Condition (1) follows simply from the fact that is a modified-Maurer
Cartan form onP*:
da Wg, Wy, we we.
_ o —

A= Jp_az_
a 2 P 3 $7 3 ©

so that
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sincee;, is a vertical vector field o*.
Condition (2) is equivalent to its infinitesimal counterpart
Ler w = —ad., w,

where.Z,. w is the Lie derivative ofu by the vector field}, and wheread.,
is the linear magy — g defined by:ad._ (X) = [e,, X]|. We determine
Z.- w with the help of Cartan’s formula:

Lor w =€ 2dw + d (€, 1w),

with
d (62 J w) =0
from condition (1). The structure equations (4)—(5) give:
0
30
Car sdw=1|2p |,
<
¢
which is easily seen being equaltad. w from the Lie bracket structure
of g. O

From theorem 3, the structure equations (4) and (5), anchtttatiat the
invariants/, and/, are expressed in terms 6f, I3, 14, I5, we have:

Theorem 4. A CR-manifold)M belonging to general cladgs is locally bi-
holomorphic to Beloshapka’s cubg c C? if and only if the condition

[25[35]45[550
holds locally on)/.
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CANONICAL CARTAN CONNECTION FOR 5-DIMENSIONAL
CR-MANIFOLDS BELONGING TO GENERAL CLASS Ill,

SAMUEL POCCHIOLA

ABSTRACT

We study the equivalence problem for CR-manifolds belongingen-
eral clasdll,, i.e. the5-dimensional CR-manifolds of CR-dimensiorand
codimensior3 whose CR-bundle satisfies a degeneracy condition which has
been introduced in [9]. For such a CR-manifdlfi, we construct a canon-
ical Cartan connection on@dimensional principal bundl& on M. This
provides a complete set of biholomorphic invariants¥ér

1. INTRODUCTION

As highlighted by Henri Poincaré [14] in 1907, the (locahdiomorphic
equivalence problem between two submanifaldsaind M/’ of CV is to de-
termine whether or not there exists a (local) biholomonphisof C" such
thato(M) = M. Elie Cartan [2, 3] solved this problem for hypersurfaces
M? c C?in 1932, as he constructed a “hyperspherical connectiostch
hypersurfaces by using the powerful technique which is referred to as
Cartan’s equivalence method.

Given a manifoldM and some geometric data specified an which
usually appears as @-structure onM (i.e. a reduction of the bundle of
coframes ofM), Cartan’s equivalence method seeks to provide a princi-
pal bundleP on M together with a coframe of 1-forms on P which is
adapted to the geometric structureidfin the following sense: an isomor-
phism between two such geometric structukésand M’ lifts to a unique
isomorphism betweer and P’ which sendsv on w’. The equivalence
problem betwee/ and M/’ is thus reduced to an equivalence problem be-
tween{e}-structures, which is well understood [10, 15].

We recall that a CR-manifold/ is a real manifold endowed with a sub-
bundleL of C @ T'M of even rankn such that

(1) LN L={0}
(2) Lisformally integrable,i.e[L, L] C L.
The integern is the CR-dimension of\/ andk = dim M — 2n is the

codimension of\/. In a recent attempt [9] to solve the equivalence problem
101
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for CR-manifolds up to dimensioh it has been shown that one can restrict
the study to six different general classes of CR-manifoldsroedsion< 5,
which have been referred to as general clags$kesll,, Ill5, IV, andlV,. The
aim of this paper is to provide a solution to the equivalenagbiem for
CR-manifolds which belong to general cldfls, that is the CR-manifolds
of dimension5 and of CR-dimension such thatC ® T'M is spanned by
L, L and their Lie brackets up to order no less ti3arMore precisely, the
following rank conditions hold:

3=rank: (L+L+[L, L),
4=rank (L+ L+ (L, L] + [L,[L, L]}),
4=rank (L+ L+ [L, L]+ [L,[L, L] + [L,[L, L]])
5=rank: (L+ L+ (L, L] + [L,[L, L]| + [L,[L, L]] + [L, [L,[L, L]]]) ,
the third one beeing an exceptional degeneracy assumption.
The main result of the present paper is the following:

Theorem 1. Let M be a CR-manifold belonging to general clddg. There
exists a 6-dimensional subbundkeof the bundle of coframeS ® F(M)
of M and a coframew := (A,7,0,p,(,¢) on P such that any CR-
diffeomorphisnt of M lifts to a bundle isomorphisia* of P which satisfies
h*(w) = w. Moreover the structure equationswfon P are of the form:

Adr =4ANT+ T TAC = TAC+3F1oAp+oAC+oNnC,

do=3AANo
+Jo0T Ap+IsTACHIsTAC+TJuo Ap
—%0A<+%JAZ+p/\C+pAZ,
dp=2ANNp
+ 35T A +TFeTAp+TFrTAC+TeTAC+Ts o Ap+Tgo AC
+30 0 A= pAC+ D pAT+i (AT,
dc=ANC

+J0TAC+IuTAP +J12TAC+ Tz TAC
+JuocANp+Jis0NC,

dAzE:XWVAu, MMZTNRMQa

vp

wherey;, X, ,, are functions onP.

v
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The model manifold for this class is provided by the CR-madifélC
C3 given by the equations:

wy =Wy + 2122,

wy =Wy +212Z(2+Z),
3
w3 = W3 + 21 2% (z2+§z§+§2>,

Cartan’s equivalence method has been applied to this mofE2]jnwhere
it has been shown that the cofraie 7, o, p, ¢, ¢) of theorem 1 satisfy the
simplified structure equations:

dr =4 AANT+0ANC+oNC,
do=3ANo+pAC+pAC,
dp=2ANp+i(AC,

dC=ANC,
dC=ANC,
dA =0,

corresponding to the case where the biholomorphic inveignvanish
identically. This result, together with the Lie algebrausture of the in-
ifinitesimal CR-automorphisms of the model, implies the exise of a
Cartan connection of/, which we construct in section 4.

We start in section 2 with the construction of a canoni@adtructureP*
on M, (e.g. a subbundle of the bundle of coframes\ff, which encodes
the equivalence problem fdv/ under CR-automorphisms in the following
sense: a diffeomorphism

h: M — M

is a CR-automorphism a¥/ if and only if
h* . Pt — P!

is a G-structure isomorphism of!. We refer to [9, 6, 7] for details on
the results summarized in this section and to [15] for arpdhiction to
G-structures. Section 3 is devoted to reduce successively four sub-
bundles:

PS> c P*c PPc P?c P,
which are still adapted to the biholomorphic equivalenaabjam for M.

We use Cartan equivalence method, for which we refer to [1@¢nEually
a Cartan connection is constructed Bhin section 4.
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2. INITIAL G-STRUCTURE

Let M be a CR-manifold belonging to general cld$sand.# be a local
generator of the CR-bundleof M. As M belongs to general cla$l$,, the
three vector fields7, .7, #, defined by:

T =ilZ, 2,

S =L, 7],

X =L, T,
are such that the following biholomorphic invariant coradis hold:
3=rank (¥, %Z,7), d=rank (¥, 2,7,7),
d=rank (£, 2,7,7,7), 5=rank (£, %,7,5.%).

As a result there exist two functionsand B such that:
S =A-T+B- 7.
From the fact that” = 7, the functionsA and B satisfy the relations:
BB =1,
A+ BA=0.
There also exist three functiots F', G, such that:
(L% =FE-T+F - Y+G-Z%.

The five functions4, B, F, F, G appear to be fundamental as all other Lie
brackets between the vector field§, ., .7, .7 andZ can be expressed
in terms of these five functions and th¢i#’, . }-derivatives.

In the case of an embedded CR-manifdld c C*, we can give an ex-
plicit formula for the fundamental vector fiel&®’, and hence for the func-
tions A, B, P, @, in terms of a graphing function af/. We refer to [8] for
details on this question. Let us just mention that the suliimldn)/ c C*
is represented in local coordinates:

(z, w1, we, ws) = (x 4+ 1y, uy + vy, Uy + i ve, uz +ivs),

as a graph:

¢1(93,?/, Uy, U, U3),
¢2($7 Y, U1, U, U3),
vz = ¢3(x, Yy, uy, Uz, ug).
There exists a unique local generatgrof 71 M of the form:
0 9, 0 9,

L =—+ At A? A3
0z + Ouy + Ouy + Ous’

(%1

U2
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having conjugate:

— 0 — 0 —= 0 — 0
L =—+A A? A3
AR T TR T
which is a generator of ! M. The explicit expressions of the functions
Al, A2 and A3 in terms of¢ can be found in [8].
Returning to the general case of abstract CR-manifolds, let

Wo = (70700,P07C0>Zo)
be the dual coframe of%,.7, 7,.%, ). We have:
Lemma 1. [7]. The structure equations enjoyeddyare of the form:
dro=T 19 Noo +Q 10 Apo+ K 10N +G 79N
+NogApo+0o9NG +BoyN(y,
dog=S19Noo+P1oNpo+F10NC +J 10Ny +M g A po
+(ZL(B)+A) oo Ay + B po Ay + po Ao,
dpo=R1toNog +O 19 Npy+HT19N +E 19N
+LogApo+L(A) oo Ay +Apo Ay +1i oAy,
dGo = 0,
d¢o =0,
where the twelve functions:
H J K, L, M, N,O, P, Q,R,S,T,
can be expressed in terms of the five fundamental functions:
A B, E F G,
and their{.#, Z}-derivatives.
Leth : M — M be a CR-automorphism df/. As we have

h. (L) =L,
there exists a non-vanishing complex-valued functi@m A/ such that:

From the definition of7, ., % and the invariance
he ([X,Y]) = [he(X), ha(Y)]

for any vector fieldsX, Y on M, we easily get the existence of eight func-
tions

b,c,d,e,f,g.h,k: M — C,
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such that
< a 0 0 O 0 <
<z 0a 0 0 0 Zz
ha | Z|=|b b aa 0 0 T
S e d c a’%a 0 54
74 k h g f a% R

This is summarized in the following lemma:

Lemma?2. [6]. Leth : M — M a CR-automorphism a¥/ and letG, be
the subgroup o6L;(C):

a’a 0 0 00
f a%a 0 0 0
G = g ¢ aa 0 0|,aeC\{0}, b,c,d,e,f,g,hkeC
h d b a0
k e b 0 a

Then the pullback of wy by h, w := h*wy, satisfies:
W =g - Wo,
whereg is smooth (locally defined) functiond - G;.
Let P! be theG,-structure onV/ defined by the coframes of the form
W= g - Wo, g€ G
The next section is devoted to construct four subgrous,;of
Gs C G4 C Gz C Gy C Gy,
and fourG;-structures on/:
PSc P*c PPc P?c Pt

which are adapted to the biholomorphic equivalence prolitemd/ in the
sense that a diffeomorphismof M is a CR-automorphism if and only if
h* is aGj-structure isomorphism af:.

3. REDUCTIONS OFP!

tr

The coframew, gives a natural (local) trivialisatio®! — M x G,
from which we may consider any differential form dd (resp. GG;) as a
differential form onP! through the pullback by the first (resp. the second)
component ofr. With this identification, the structure equations/of are
naturally obtained by the formula:

(1) dw=dg-g ' Nw+ g-duwy.
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The termg - dw, contains the so-called torsion coefficientsdf A 1-form
a on Pl is called a modified Maurer-Cartan form if its restriction toya
fiber of P! is a Maurer-Cartan form ofi;, or equivalently, if it is of the
form:
A=Q— T, T—T,0—Tpp—Tc( —xzz,

wherez,, x,, z¢, z¢ are arbitrary complex-valued functions ad and
where« is a Maurer-Cartan form af;.

A basis for the Maurer-Cartan forms 6f; is given by the followingl -
forms:

d
o=
a
5 bda db
ati= s T o
aa  aa
3 cda cda = dc
o = — - = + ==

3a3  23%a?  a?2a’

4 (daa —bc)da cdb  dd

o = — — -
a4a? a3a’? a3’

5 (eai —b c) da cdb de
Q== 3=3 T 322 + 257
a’a a’a aZa

6. _,fda_fda df
' 3at  a%3?  3a’d’
;  (ga*a—cf)da (ga’a—cf)da fdc dg

@ ERER 3%a’ 253 + 3a3’

. (ha®a®—dfaa—bga’a+bcf)da  (ga%a—cf)db fdd  dh
“m a’a’ B a33 2532 | 3ad’
0 (ka®a® —efaa —bga’a+bcf)da  (ga’a—cf)db fde  dk
“m a3t B a%3? 2532 i 3a’’

together with their conjugates.
We derive the structure equations Bf from the relations (1). The ex-
pression oflr is:
dr=3a* AT +alAT
+ T, TN+ T, T Ap+T7- TNC
+TZTACHT 0 Ap+aNC —2Bons
a
The coefficient .,
—_ B7
a
which can not be absorbed for any choice of the modified Ma@eetan
form a!, is referred to as an essential torsion coefficient. Fromdstead
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results on Cartan theory (see [10, 15]), a diffeomorphism/ofs an iso-
morphism of the 7, -structureP! if and only if it is an isomorphism of the
reduced bundlé>? C P! consisting of those coframeson M such that

d
- B - ]_
a
This is equivalent to the normalization:
a=ab.
A coframew € P? is related to the coframe, by the relations:
r=a'B, o =fr+a’Boy,

p =g+ coy+a’ B py, ¢=hm+dog+bpy+ad,
Z:kTQ—i-er—l-Bpo—FaBZO,

which are equivalent to:

14 / /3
T=a mn, oc=1fmn+a" oy,

p=grn+co+a’p, (=hmn+do+bp +a,
C—Kn+do+bp+aC,

where:
1 ZE, 01 = 001, P1 = Po, G Ziol,
B B2 B2
and
x,._{x-Bé, for r=a,c, d, e,
r- B, for z=1f, g h, k.

We notice that' is a real parameter, and thatis a reall-form. Letw;
be the coframey, := (1,01, p1, 1, (1), andG, be the subgroup af;:

a* 0 0 00
f a2 0 0 0
Gy = g ¢ a2 0 0f,aeR\ {0}, bcdef,ghkecC
h d b a 0
k e b 0 a

A coframew on M belongs toP? if and only if there is a local function
g: M -2 Gy such thaty = g - wy, namelyP? is aG, structure on\/.
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The Maurer-Cartan forms @f, are given by:

da
1.
6 T av
bda db
2.
=t
cda dc

3.
B=—2—+,

(da* —bc)da  cdb  dd

4 _
gr=- al ab | ad’

s (ea®—bc)da cdb de
e

fda df

6 _

f=-3 ey + JvE
3

;. (ga®—cf)da fdc dg
=2t -t

8 (ha® — dfa? — bga® + bcf)da  (ga® —cf)db  fdd dh
B = - 510 B ) o a_7 ?7

0 (ka® —efa? —bga® +bcf)da  (ga® —cf)db  fde  dk
gr=- alo a a? Cafa | at

together with3i, i =2...9.
Using formula (1), we get the structure equationg’6f

dr =48'AT
+UTTUT/\0+UTTPT/\p—I—UTTCT/\C+UTTZT/\Z
+ Uz, 0 Ap+a ANC+0a A,

do=3p"No+BAT
+ U, TANo + U, TAp + U TAC
FUZTANCHUZ, 0 Np +UG o NG
+UZoAC+HpAC+HpAC

do=28"Np+ P Noc+B AT
+UgrAa+UgrAp+UQrA<+U%pAZ+UgaAp
+UQJA§+U&aAZ+U&pA§+U&pAZ+i§AZ
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dC=B"NC+BNp+p Ao +BAT
+ U T A+ US, T A p+ UL TAg+U€TAZ
+U¢aAp+UcaAc+U<aAg+ PG
¢ ¢ =
+Upzp/\é+ CZC/\C'
Introducing the modified Maurer-Cartan forms:
B =8 =y =Yoo=y, p =y ¢ —y:
the structure equations rewrite:
dr =48' AT
+ (U:a—4y[1,) TNO + (UTTp—ély[l,) TAPp
+{U&—4%)¢A§+<U%—4%>¢AZ
+U, oAp+aNC+oNC,

do=3B"No+ AT
+ (U, +3yr—y) TAo+ (U2, —yp) TAp
+ (U7 — )TA§+< %)TAZ
+ (U2, =3y,) onp+ (U2 —3yt) o A¢
+(Q%—3%)JAC+pAC+pAZ

dp:2§1/\p—|—§3/\0+57/\7'
+ (U2, +y2 —yl) 7'/\0+(Up +2y! — yg) TAp
+ (Uf, - )TA§+< iz y>pAC
+(U§p—|—2ya— )J/\p—l—( )J/\C
+<U52_y2> a/\C+(U’f’<—2y<) pAC

+<U52—2y%> pANC+i CAC,
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dC=BNC+BAp+BING+ AT
+ (Uss +yr —y5) TAG+ (Up, + 47 —y,) TAp
+<Uf<+yi—y§> T/\C+<Ufz—y§> TAC
+ (US, + 2 —u)) oAp+(U§<+y;—y§) oAC
¢ 4 - ¢ 1 2
+(UoZ_yZ) UAC+<Up<+yp—yC> pAC

+(U§Z—y§> p/\z+<U§E—y%> CAC.

We get the following absorbtion equations:

1 _ T 1 _ T 1 _ T
4ya’ - UTO" 4yp - UTp’ 4y< - YT
dy: = UL, =3y + o = U7, v = U7,

6 _ 770 6 _ 170 1 _ 770

yC - Y10 yz - U.,—ZJ 3yp - Uo'p?
3y1: o 3yl: o _y3+y7:Up
¢ ¢ ¢ ol T o TO)
1 7T __ T __ 7P T __77P
_2y7— + yp - Ufp? yg — Yo ?JZ - UTZ7
1 3 _ 3 _77P 3 _77P
=2y, +y, =0, y: =Uge y: = U
1 _grp 1 _ 7P .4 8 _ 77¢C
2y§ - UPC’ 2yz - UPZ’ yT + yo‘ - U7'o'7
2 8 _ 17¢ 1 8 _ 176 8 _ 176
—Yr + yp - UTp7 —Y; + Ye = U»rga yg - UT?
2 4 _ 11¢ 1 4 _ 77¢ 4 _ 77¢
yo- _'_ yp - Uapv ya + y( - Uo’C? yg - UU?
ot 2 = U 2 s L_ e
yp + y( - Upgv yc - Up? yc - UCZ

T L . .
Eliminatingy-_— andyZ among the previous equations leads to the normal-
izations:

b—aBo,
c=a’Cy,
f:a3F0,

where the function8,, C, andF, are defined by:
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3 L(B) i A 1 K i Z(B)
By = 10 r2  5@i T T
B2 B2 10B2 10 BQ

11 . Z(B 3 1 (B 1A 3 K
0= 51 (1)+_B%G+_ (3)__ 1 an 10
20 B3 20 20 B3 5RBs 20 RBs
1 4B 3 1 B 2 A 3 K
Foe LZE) | 3y 1 2(B) 24 3 K
10 B 10 10 pB3 53 10 B3

The absorbed structure equations take the form:

~ 3 3 _ 7 _
dr =48 AT+ 27 AC—27AC+32 0Ap+oAC+aAC,
a a a

~ . 3 5 _ _
da:3ﬁﬂAJ+w¢AT—ElaAC+§laAC+pAC+pAQ
a a
~ - - 3 3 o- -
@p:%ﬂAp+63Aa+B7Ar—éipA§+§§pA(+zgAg,

=B AC+BEAp+ B Ao+ BAT,
where the functior¥, is a biholomorphic invariant a¥/ and is given by:

1 (B 3 1 1 Z(B 2 A 3 K
LB B 1 FB) 24 3K
2 B 10 10 B3 5 B2 10 Bs
We introduce the coframe; := (72, 02, p2, (2, (,) on M, defined by:

:‘12

To ‘= T
09 = F(] 1 + o1,

p2 = p1 + Cyoy,

G2 := (1 + By p1,

and the subgrou’s C Gs:
a* 0 0 00
0 a2 0 00

Gs = g 0 a> 0 0],aeR\{0},d, e g h keC

h d 0 a 0
k e 0 0 a

We notice that, is a real one-form. The normalizations:
b :=aB,, c:=a’C,, =a’F,,

amount to consider the subbundté c P? consisting of those coframes
of the form

W= g-ws, whereg is a functiong : M %5 Gj.
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A basis of the Maurer Cartan forms €% is given by:

=B

a
,  dda dd
ViETT T
5 eda de
V= _a_4+a_3’
4. gda dg
v -——23—5 347
5 hda dh
= _a_5+a_4’
¢ kda  dk
T T

We get the following absorbed structure equationsidr

~ ~ ~

~ J J - J -
dT:4’yl/\7‘—|—?17'/\C—?17/\C+3?10/\p+0/\c+0/\c,

do =35 No
+VLT AP+ VLT ACHVETACHV] 0 Ap

J J - -
oA C+HE GACHPACHPAC,
2a 2a
ol ~4
dp=2~v Np+7 AT
—i—V(pr/\p—i-VUpCUAC—i-V:ZU/\Z
j ~

1 J1 = . =
— A — p A\ A\
+23‘|‘P C+2ap ¢+iCAC,

A = FAC+ FAo + FAT + VepAC + Vp%p/\Z,

From the essential torsion coefficiem’sg, VTUZ and Vp% we obtain the
normalizations:

d:=aDy, g := a’ Gy,
where
AB, Z(B 1 Y(B)B
Do:=iB2—- "+ (10)+— (3)07
B3 B2 2 B3
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and
1 Z(B 1 1 1 1
GO::_Z B(;)FO—F3+§BQGFO—§BQ$(FO)+C()FO
1 1 Z(B) 1 K 1Z(F,) J 1A
SFB+-""Fy+-—F,— = -2 F,.
TP TR T g T Tl 2 2p% "
We introduce the coframe; := (73, 03, p3, (3, (3) on M, defined by:
T3 = T3
03 1= 09
p3 = p2 + Cy 7o,
(3 := G2 + Dy oy,
and the subgrouf’, C Gs:
at ' 0 0 00
0 a> 0 0 0
Gy=X|0 0 a2 00| ,acR\{0},heC
h 0 0 a 0
h 0 0 0 a

The normalizations:
d :=aDy, g := a’ G,

amount to consider the subbundté c P3 consisting of those coframes
of the form

W= g - ws, whereg is a functiong : M - G,.
A basis of the Maurer-Cartan forms is given by:
5= B
=
hda dh
2. _
YT

together withs .

As for the previous step, we determine the structure equatid>* us-
ing formula (1). We just write here the expressiondgf as it provides a
normalization oth:

dC=0"NCH+PAT+WE, o Ap+ W o AN+ WS o AT,
for some modified Maurer-Cartan forms, o2.

The essential torsion coefficievﬂt{fC can be normalized t0, which is
equivalent to the normalization:

h:= aHg,
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where
Z(B A — !
HO = —D0F0+CoD0— (l )Do_ EDO+$(DO)B§ +iB0D0
2 2
A Z (B 1 Z(B
—iB2Cy+ — By Cy — Z(A) B, — (10)00—— (3)3000.
B2 B3 2 B3

Let G5 be thel-dimensional Lie subgroup af, whose elements are
of the form:

at ' 0 0 00
0 a> 0 00
gi=10 0 a> 0 0, ae R\ {0},
0 0 0 a0
0 0 0 0 a

and letw, := (74, 04, pa, 4, ;) be the coframe defined ov by:
04 := 03, P4 1= P3, C1 = C3+Hys.

The normalization ofi is equivalent to the reduction d#* to a subbundle
P? consisting of those coframeson M such that:

W= g-ws, whereg is a functiong : M %5 G,.
The Maurer-Cartan forms a@f; are spanned by:
da
o= —.

a
Proceeding as in the previous steps, we determine thesteusjuations
of P* which take the absorbed form:

~ ~ ~

3 3 ] -
dr =4ANT+ 27 AC—27AC+32 0Ap+oAC+0AC,
a a a

do=3ANo
J J J —
+a—§7'/\p+a—§7'/\g+a—;7'/\<+a—§0'/\p
J J - -
o ACHE AT HPACHPAL,
2a 2a

dp=2ANp

35 Jg J7 J7 = Jg
+§T/\a~|—¥T/\p+a—37/\C+a—37/\C+a—30/\P

~ ~ ~ ~

I
2a p

Ty

3 _ 5 -
+S oA+ oAl — A+ pAC+i CAC,
a a 2a
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d¢ =ANC

3 J J T —
—1——1(507/\0—#%7/\,0—#—1427'/\(—1——1437/\{
a a a a

~ ~

J
+ —144 oNp+ % oAN(,
@ g
whereA is a modified-Maurer Cartan form:
d _
A= ?a — X m = X,0— X, p— Xc ¢ — Xz G,
and where

3, i=1...15,

are biholomorphic invariants af/.

The exterior derivative ol can be determined by taking the exterior de-
rivative of the four previous equations which leads to thealbed Bianchi-
Cartan’s identities. We obtain the fact th&t does not contain arg~form
involving thel-form A, namely:

(3) dA:ZXV,uV/\:u7 V?N’:7—70-7)07<7<'
vp
4. CARTAN CONNECTION

We recall that the model for CR-manifolds belonging to genelessli|,
is the CR-manifold defined by the equations:

wy =wi + 21 22,
wy =Wy +212Z(2+Z),
3
w3 = W3 + 20 2% (z2 + 5z2+22> .
Its Lie algebra of infinitesimal CR-automorphisms is givenlg following
theorem:
Theorem 2. [12]. The model of the clagH,:
wy =wi + 2122,
wy =Wy +212Z(2+Z),
3
wy = W3 + 20 2% (z2 + §zz+22> ,

has a6-dimensional Lie algebra of CR-automorphismscg(N). A basis
for the Maurer-Cartan forms ofutcr(N) is provided by the differential
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1-formsT, o, p, ¢, ¢, a, which satisfy the Maurer-Cartan equations:
dr=4aANT+0ANC+oNC,
do=3anNoc+pAC+pAC,
dp=2aANp+i (N,

d¢ = aN(,
dZ:a/\Z,
da = 0.

Let us writeg instead ofautcg(N) for the Lie algebra of inifinitesimal
automorphisms oN and let(eq, e-, e, €,, €, ¢z) be the dual basis of the
basis of Maurer-Cartan 1-form$a, T,0,p,C, Z). From the above structure
equations, the Lie brackets structurega$ given by:

ewtd = —der,  femed= e femed=—en
ea, €] = =3 e, lea, €,] = —2€,, [ea, €] = — e,
leas el = [ep, €¢] = —eo, [eps eg]l = —¢o,
[GCveg] = Zepy

the remaining brackets being equal to zero.

We refer to [5], p. 127-128, for the definition of a Cartan castima. Let
go C g be the subalgebra spanneddyy & the connected, simply connected
Lie group whose Lie algebra isand®, the closed -dimensional subgroup
of & generated byy,. We notice that, = G, so thatP® is a principal
bundle overM with structure groug,, and thatlim & /&, = dim M = 5.

Let (A, 7,0,p,¢.C) be the coframe ot-forms on P*> whose structure
equation are given by (2) — (3) andthe 1-form on P with values ing
defined by:

w(X) = AX)eq +7(X)er +0(X) es + p(X) e, + (X)) ec, +C(X) e,
for X € T,P°. We have:
Theorem 3. w is a Cartan connection o®°.

Proof. We shall check that the following three conditions hold:
(1) w(e) = e, Wheree?, is the vertical vector field o#* generated by
the action ok,,,
(2) R:w = Ad(a™")w for everya € &,,
(3) for eachp € P?, w, is an isomorphisnd, P5 —%; g.
Condition (3) is trivially satisfied a(sA, T,0,p,C, Z) is a coframe onP®
and thus defines a basisﬁJP5 at each poinp.
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Condition (1) follows simply from the fact that is a modified-Maurer
Cartan form onP®:

A= ? —Xom—Xo0—X,p—Xc( — Xz,
so that
w(ep) = Aear) = €a,
as
- da
T(ea) = 0(eq) = pleg) = Cleg) = Clep) =0, —(eq) =1,

sincee;, is a vertical vector field of®.
Condition (2) is equivalent to its infinitesimal counterpart

Ler w = —ad,, w,

where.Z,. w is the Lie derivative ol by the vector fiel@, and wheread.,
is the linear may — g defined by:ad._ (X) = [e,, X]|. We determine
Z.- w with the help of Cartan’s formula:

Lox w = eqr 2dw +d (e, 1w),

with
d(e; sw)=0
from condition (1). The structure equations (2)—(3) give:
0
471
Cor 2dw = g; ,
<
¢

which is easily seen being equal+tad. w from the Lie bracket structure
of g. O
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LIE ALGEBRAS OF INFINITESIMAL AUTOMORPHISMS FOR
THE MODEL MANIFOLDS OF GENERAL CLASSES I, Ill, AND
IV,

SAMUEL POCCHIOLA

ABSTRACT

We determine the Lie algebra of infinitesimal CR-automorpkisiithe
models of general classék Ill, and IV, through Cartan’s equivalence
method.

1. INTRODUCTION

The classification of CR-manifolds up to dimensidrhas highlighted
the existence of non-trivial classes of CR-manifolds, which have been re-
ferred to as general classkdl, Illy, Iy, IV, and IV, [9]. Each of these
classes entails a distinguished manifold, the model, whasalgebra of
infinitesimal CR-automorphisms is of maximal dimension. Hyd a spe-
cial role, as CR-manifolds belonging to the same class candveed as its
deformations, generally by the way of Cartan connection. diheof this
paper is to determine the Lie algebra of infinitesimal CR-awtiquhisms
of the models for general classBslll, andIV,. This is already known
[1, 5] for general classd$ (Engel manifolds) antV, (2-nondegeneraté;
dimensional CR-manifolds of constant Levi rahk but is unknown, to our
knowledge, in the case of general cléids In our view, the main interest
of this paper is to provide a unified treatment for thelasses through the
use of Cartan’s equivalence method, in the spirit of [10]. &dstequiva-
lence method has indeed been employed recently to solvegtheaéence
problem for general classéis Ill, andIV, [11, 12, 13]. For each of these
classes, the solution to the equivalence problem for theeirtoas been of
a great help for the treatment of the general case, as a sistilecture of
normalizations of the group parameters occurs in both cases

For general clash, the model is provided by Beloshapka’s cubic(p,
which is the CR-manifold defined by the equations:

wy =Wy + 2122,
B: _ . _
wy =Wy +2i2Z(2+Z).
120
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For general claskl,, the model is thé-dimensional submanifoltd ¢ C*
defined by:

wy =Wy + 2122,

N - wy =Wy +2i2Z(2+Z),
' 3
ws :w_3+2iz2(22+§z§+22).

For general clasly/,, the model is provided by the tube over the future light
cone,LC C C3, defined by:

LC: (Rez;)? — (Rez)* — (Rez3)” = 0, Rez > 0.

A Cartan connection has been constructed for CR-manifoldsigeig to
general clasH [1, 12] andlll; [13]. The equivalence problem for manifolds
belonging to general cla$g, has been solved either by the determination of
an absolute parallelism [4, 11], or the construction of a &adonnection
[7]. We use Cartan’s equivalence method for which we refed@ ps a
standard reference.

2. CLassll

This section is devoted to the determination of the Lie algelf CR-
automorphisms of Beloshapka’s cubialn, which is the CR-manifold de-
fined by the equations:

wy =Wy + 2122,
B: _ - =
we =Wy +2i2Z(2+Z).

It is the model manifold for generi¢-dimensional CR-manifolds of CR
dimensionl and real codimensio®, i.e. CR-manifolds belonging to class
[, in the sense that any such manifold might be viewed as ameatan of
Beloshapka’s cubic by the way of a Cartan connection [1, 12} fain
result of this section is:

Theorem 1. Beloshapka'’s cubic,

wy, = wi + 2127,
B:

Wy =W +212Z(2+2),

has a5-dimensional Lie algebra of CR-automorphisms. A basis fer th
Maurer-Cartan forms oéutcr(B) is provided by thé differential 1-forms
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o, p, ¢, ¢, a, which satisfy the structure equations:
do=3anc+pANC+pAC,
dp=2anp+i(NC,

d¢ = aN(,
dC = aNC,
da = 0.

2.1. Initial G-structure. The vectors field#; defined by:

90, D
gl'_&—i_lz_aul—i_z(zzz—i_z)8U27
together with its conjugate:
— 0 0 , o O
,;%1 5—228—1’“—2(2224‘2)8—@7

constitute a basis (TI}’OB at each poinp of B. Moreover the vector fields
7 and.¥ defined by:

T =1i[A4,24],
and
S =4, 7],
complete a frame 0B:
(7, 7,2, 2}

The expressions o and.” are:

0 0
=2 — 4 47) —
T 28u1+(z+ Z)8u2’

0
—4
7 3u2
The dual coframéoy, po, (o, (o) is thus given by:

1 7 1 1 1
00:Z§2dz—122d2— (52—#53) du1+1du2,

. . 1
Po = —%Zdz+%zd§+§du1,

CO - dZ7
(o = dz.
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We deduce the structure equations enjoyedday po, Co, (o, ):

doo = po A Co + po A o,

(1) C;Po i i Co A o,
CO - 07
d¢y = 0.

As the torsion coefficients of these structure equationg@nstants, we
have the following result:

Lemma 1. Beloshapka’s cubic is locally isomorphic to a Lie group whose
Maurer-Cartan forms satisfy the structure equatighs

The matrix Lie group which encodes suitably the equivalgoradlem
for Beloshapka’s cubic (see [12]) is tih@-dimensional Lie grou:; whose
elements; are of the form:

a’a 0 0 0
o c aa 0 O
9-= E a 0
b 0 a
With the notations:
(o) g
_ | Po N
Wo - §0 s W £ s
Co ¢

we introduce thé&;-structureP! on B constituted by the coframeswhich
satisfy the relation:

W= g - wo.

The proof of theorem (1) relies on successive reduction®othrough
Cartan’s equivalence method.

2.2. Normalization of a. The structure equations for the lifted coframe
are related to those of the base coframdy the relation:

(2) dw=dg-g " Nw+ g dwp.

The termdg - g~ A w depends only on the structure equationgzgfand

is expressed through its Maurer-Cartan forms. The termw, contains

the so-called torsion coefficients of tlig-structure. We can compute it
easily in terms of the forms, p, ¢, ¢, by a simple multiplication by in the
formulae (1) and a linear change of variables. The Maurer-Cartan forms
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for the groupz; are given by the linearly independent entries of the matrix
dg - g—*, which are:

d
)
a
9 bda db
Q=T T
a2a a3
3 cda cda dc
a’ = —

4 (daa—bcjda cdb =~ dd

CY o —2 -2 —)

a‘a a3a a%a

. (eaa—bc)da cdb  de
o’ = — - -+ —
a33’ a3a? a3’

together with their conjugates.
The first structure equation is given by:

— e d C C — a _
do=2a"'No+a No+| =+ —=|oAp——= 0 A(—— o AC+pAC+= pAC.
a2  a?a a%a aa a
from which we immediately deduce thats an essential torsion coefficient
which might be normalised tbby setting:
a=a.

2.3. Normalizations of b and c. We have thus reduced tli§ equivalence
problem onB to a5, equivalence problem, where, is the9 dimensional
real matrix Lie group whose elements are of the form

a® 0 00
c a2 00
9= 1d b a 0] ack
e b 0 a
The Maurer-Cartan forms @f, are given by:
da
1, aa
=
bda db
2.
B : ERPCERECE
3 cda dc
b7 = —2?4—?,
da? —bc)da cdb dd
54 - _(T)_a_5+a_3’

(ea? —bc)da cdb de

5
=
al ad ad’
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together with2, 3, 54, 3. Using formula(2), we get the structure
equations for the lifted cofram@, p, ¢, ¢) from those of the base coframe

(00, pos Co, Co) by a matrix multiplication and a linear change of coordisate
as in the first step:

do=3p"No
—|—U§pa/\p+U§CJ/\C—i—U:ZU/\Z—i—p/\Cva/\Z,

dp=28"Np+ P No
+U5po—/\p+U§<a/\§+szoAZ
p P i AT
+Up<p/\C+Upr/\C+zC/\C,

dC=B"NC+B*Ap+ B Ao
+U§p0/\p+U§Ca/\C+UEZJ/\ZvLUéCp/\Q
¢ - ¢ -
+USpAC+USCAT

We now proceed with the absorption phase. We introduce tlaified
Maurer-Cartan forms:

B =8 ~yo o —y,p—y: ¢ —yeC,

such that the structure equations rewrite:

d0:3§1/\0
—I—(U;’p—i’)y},) 0/\p+( g<—3yé) oN(

+(U§Z—3y%> o ANCpAC+pAC,

dp=2B8"Np+ B Ao
+ (UL, +2ys =) onp+ (Ul —yl) o AC
+<U(fz—y§> o ANC+ (U —2yt) png

+<U§Z—2y%> pANC+i CAC,
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dC=BAC+BAp+Bine
+(U§p+y§—yﬁ)0/\,0+(U§<+y;—y§> oAC
+(U§Z—y§) a/\Z+<U§C+y},—y§> pAC
¢ _ .2 = ¢ _ 1 =
+(UpZ y<> pAg+(UCE yg) CAC.

We get the following absorbtion equations:

3y, =U7, 3y = Uge, By = UL,

—2yl+y} = UL, v = U, ve = Ul

2yt = U", 2yp = U, —ys+y, = U,

—yy + Yt = U, ye = U, —yp + 9l =Us,
v:=Us v =Ugz

Eliminating y% among the previous equations leads to:

! 1
C _ g — ~ 7170
Ue=35Ve=3U0

ib 1 (c by 1
a2 2 \ad a2/ 3

from which we easily deduce that

that is:

(o
a_37
b=c=0.

2.4. Normalizations of d and e. We have thus reduced the groGp to a
new group('s, whose elements are of the form

Q
Il

Q)

o oo Y,

oo Y o

o oo

v o oo
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The Maurer Cartan forms @f; are:

da
,}/1 =

a
9 dda  dd
= YRR
N eda de
v = —a—4+a—3.

The third loop of Cartan’s method is straightforward. We ¢etfollow-
ing structure equations:

d
do=3v'No + e

T OAPFPACH AL,

d _ _
dp:2’yl/\p+ia—2 a/\C—ia—30AC+iC/\C,

d(d+ d d -
dgzyl/\g“+72/\a+%o—/\p+a—3p/\g+ s PN,

a?
_ — e(d+e e e =
dgz71/\4“+73/\a+¥o/\p+—3p/\g+—3p/\g,
a a a
from which we deduce that we can perform the normalizations:
e=d=0.

With the 1-dimensional groug-, whose elementg are of the form:

and whose Maurer-Cartan form is

we get the following structure equations:
do=3aNo+pAC+pAC,
dp=2aNp+i (N,
d¢ = aN(,
dC=aNnC.

No more normalizations are allowed at this stage. We thuspgegorm
a prolongation by adjoining the form to the structure equations, whose
exterior derivative is given by:

da = 0.
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This completes the proof of Theorem 1.

3. CLAsslll,

This section is devoted to the determination of the Lie algelf CR-
automorphisms of the model manifold of cldfs which is defined by the
equations:

wy =Wy + 21 22,
N - wy =Wy +2i2Z(2+72),
‘ 3
W3 zw_3+2iz2(22+§z2—|—22).

It is the model manifold for CR-manifolds belonging to cldls, in the
sense that any such manifold might be viewed as a deformatiNrby the
way of a Cartan connection ( [13]). The main result of this isecis the
following:

Theorem 2. The model of the clagd,:
wy =Wy + 2122,
N - wy =Wy +2i2Z(2+72),
3
w3:ﬂ§+2m@@2+§zz+z%,
has a6-dimensional Lie algebra of CR-automorphisms. A basis fer th

Maurer-Cartan forms oéutcr(N) is provided by thé differential 1-forms
7,0, p, (, ¢, a, which satisfy the structure equations:

dr=4aAT+oANC+aNC,
do=3aNo+pANC+pAC,
dp=2aNp+i (N,

d¢ = a g,
dz =aA Z ,
da = 0.
3.1. Initial G-structure. The vector fields :
25:gz+ﬁ§%+w@ﬁ+z%5%+4@£z+&?+z%5%,
with its conjugate:
L = 3_ A (227 + 2°) o i(322% + 3272 + 2°) o

0z ouy Ouy ous’



129

constitute a basis df}°N and of7))"'N at each poinp of N. Moreover the
vector fields7, . and% defined by:

T =12, 4],

y = [.,E/ﬂl, y],
and

X =4, 7],

complete a frame oN:
(#,7, T, %, L}
The expressions of, . andZ are:

_q 9 9 2 = ey O
T = 28u1 + (4Z+4Z)8u2 + (627 + 1227 + 6z°) Jur’

9, 9]
=4 — + (122 + 122) —
57 o + (122 + 12z) Duy’

X = 12i

8U3 ’

The dual coframér, oo, po, Co, (o} is thus given by:

) ] 1 1 1 1 1 1
Toz—éz?)dZ—FéZSdz—‘— (1—12’2—‘—522—{—122) dul— (124—[—12) dUQ—FEdUg,

g g (1) g !
00—42: dz 4zd2 (2z+2z)du1+4du2,

‘ . )
poz—iidz—i-%zdf—i-gdul,

2
CO :dZ,
(o = dz.

We deduce the structure equations enjoyed by the base @fram
{7-07 00, 0, CO; <0}:

dro = 00 A (o + 09 A (o,

dog = po A Go+ po A Co,
3 dpo =i Co A o,

dGo = 0,

déy = 0.
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As the torsion coefficients of these structure equationganstants, we
have the following result:

Lemma 2. The model of the claddl, is locally isomorphic to a Lie group
whose Maurer-Cartan forms satisfy the structure equations

The matrix Lie group which encodes suitably the equivalgmadlem
for the model of clas$ll, (see [13]) is thel8-dimensional Lie grougr,
whose elementg are of the form:

a’a 0 0 0 0
f a%a 0 0 0
g=18g ¢ a 00
h d b a0
k e b 0 a
With the notations:
T0 T
o1y o
Wo = | Po | wi= 1P,
So ¢
Co ¢

we introduce th&, -structureP! onN constituted by the coframeswhich
satisfy the relation:

W= g - Wwp.

As in the case of Beloshapka’s cubic, the proof of theorem €i¢s on
successive reductions &f' through Cartan’s equivalence method.
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3.2. Normalization of a. The Maurer-Cartan forms @¥; are given by:

da
al = —,
a

5 bda db
o= ——+ -,
aa a3
o Cdacda de
T 3a3  3%a?  a%a’
4 (daa —bc)da cdb  dd

Q= —

a43? %32 | a3’
. (eaa—bc)da cdb  de
o= — — + —=,
a3a’ ada?  aZa
fd fda df
ab = -2 2 2

3al 2% 3ad’
. (ga’a —cf)da (ga’a—cf)da fdc dg

al = — —

ERER 3%a’ © a%a? | 323’

. (ha'a®—dfaa —bga’a+bcf)da (ga’a—cf)db fdd  dh
“m T a’a’ a a3’ %Al | aad
0 (ka®a® —efaa —bga’a+bcf)da  (ga’a—cf)db fde  dk
“m T aba’ T waaa

together with their conjugates.
The first structure equation is given by:

dr=3a' AT +al AT
+ T, TN+ T, TANp +T7. TNC
— a —
+T7TZT/\C + 1,0 ANp+oNC = oN(,
from which we immediately deduce thats an essential torsion coefficient
which shall be normalized to by setting:
a=a.

We thus have reduced thig, equivalence problem to @, equivalence
problem, where~, is the10 dimensional real matrix Lie group whose ele-
ments are of the form

o8]
N

)
I
X oD 0m@ -
[«5]
o an Yo
olo ¥, o o
v oo o
v oo oo
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3.3. Normalizations of f, b and c. The Maurer-Cartan forms afi, are
given by:

§=2
bda db
2. _
pe = 5 T
3 cda dc
g _2a_4 -
4, (da®*—bc)da cdb dd
e
g ~ (ea? —:)c) da @ N d_:,
a a a
fda df
pOi= 83—+,
% a
3
;. (ga’—cf)da fdc dg
i -
s (ha® —dfa®> —bga® +bcf)da (ga® —cf)db fdd dh
pri=- all - a ad T
0 (ka® —efa? —bga® +bcf)da  (ga® —cf)db  fde  dk
fi=— 10 - 9 T2 o
a a a"a’?  a

together with3i, i =2...9.
Using formula (2), we get the structure equations for thedifcoframe

(1,0, p, ¢, C) from those of the base cofrante,, oo, po, (o, (o) by a matrix
multiplication and a linear change of coordinates, as irfitisestep:

dr =4p'NT
+UL TN+ UL TAp+ Ul TACHULZTAC
+UL,oAp+oAC+o NG,

do=3B"No+BAT
+ UL TNo +UL,TANp +UTAC
+UZTAC+Ug, 0 Np +Uge 0 AC
+Q§0AZ+pA§+pAa
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dp=2B"Np+ B No+B AT
+UQTA0+UgrAp+UQrA§+U%pAE+U&aAp
+UQaAc+U%aAZ+UQpA§+U%pAZ+ng&

dC=B*"NC+BNp+p Ao +BAT
+U§rAa+U@rAp+U§rAC+U%TAZ
+UéaAp+UéaAC+U%JAZ+U&pAC
C AT FAT
+USpAC+USCAC

We now proceed with the absorption phase. We introduce tlaified
Maurer-Cartan forms:

B =5 =y —yo0 —y,p =y — yeC.

The structure equations rewrite:

dT:451/\7'
+ (UL, —4y,) T/\U+(U7Tp—4y;) TAp
+ (U = 4yl) TAC+ (U~ 4yt) 71T
+U, oNp+0oAC+oNC,

do =3 gl/\a+§6/\7'
+ (U, +3yr—yo) Ao+ (U2, —ys) TAp
+ (U — Q) T/\C%—(Ufz—yg) TAC
+(ng—3y;) U/\p—i-(Ugg—ZSyé) oA

+<Q%—3%>0AZ+pAC+pAa
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dp=28"Np+ B No+ B AT
+ (Ul +v7 —yg) Ao+ (Uf, + 2y, — ;) TAp

+(W2—%)TAC+<@?—%>pAZ

SAMUEL POCCHIOLA

¢
+(U£p+29<17—y2) UAIO+(U£

¢

—42) o AC
+ (U= 42) o AT+ (U = 208) pAC

# (U —20) pAT+i AT,

dg:ﬁ/\g"'gi/\PﬂLBZ/\aj&/B\g/\T
F(US +ut =) Ao+ (US, 02 =) A

(U= vf) TACH (U - ) TAC

+(U§p+y§—yf;) 0/\p—|—<U§<_}_y;_y2¥> oA C

+<U§Z—y§) 0/\Z+<Ul§<+y})_yg> PAC

syl —
1yl =
Yyl =
3yé:
2yt 4yl =
-2y, +y, =
24! =
—y2 4y =
—y2 =
—y, +yi =

UT

TO)

-

o
¢
o
o
p

v,

Ur

op’

P
UPC ’

UC

TP

UC

op’

¢
UpC ’

(U= 82) oA T (

We get the following absorbtion equations:

4y;
~3y; + Y,

v
3 y%

ul
v

Qy%

—yr+
—ye+yt

_J7T
- UTpJ
__ 770
- UTa'?

g
TZ’
g
UZ’
= Uf@
= U;)C’
_ 7P
n Upf’
— UTCO

_ 776
= Uy,

-

%)CAZ_
4y2 = Ul
yp = U7,
3y, = U,
yr+yp = UL,
yr=U",
y2=U",
Y + 9o = Usy,
ye=U%,
i =Ul,
yi=Ug.
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Eliminating y% among the previous equations leads to:

1 1 1
C _ g — Zqo _ =
UCZ_QUPC 3U0C

T

4°7¢

b_1(c iby_ 1(c f)_ 1f
a2 2 \a3 a2/ 3 \ad  at/) 4 a%

from which we easily deduce that

that is:

b=c=f=0.

We have thus reduced the groGjp to a new grougrs, whose elements
are of the form

at 0 0 00
0 a> 0 0 0
g=1g 0 a2 00
h d 0 a 0
k e 0 0 a

P2
a
9 dda dd
v T T
3 eda de
v T T
4 gda dg
v ——23—5 347
5 hda dh
v RS
¢ kda dk
T T T

We get the following structure equations:

dr =4y' AT+ VI TAc+0AC+0AC,
do =37 No+V, T Ap+Vi T ACHVG T ACHV, o AptpACHp A,

dp:271AprAT+K%TA0+V2TAC+V%pAZ+KQaAC+K%0AZ+iCAZ,
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dC=v"NC+Y¥ Ao+ AT
VS TATHVETAp+ VT ANCHVET AL
+V§aAp+V§aAc+v§aAZ+v§pAg
A
and
A=A+ Ao +7°AT
+VETAG+VETAp+VETACHVETAL
+ VSO NP+ Vo ACH VT A+ Vi pAC
Z —
+V&pAQ

From these equations, we immediately see ﬂj‘gﬂ/;% and V/fc are es-
sential torsion coefficients. As we have:

o_ 8 ¢_d

‘/T - a4’ ‘/;76 o 33,

we obtain the new normalizations:
d=e=g=0.

The reduced groug, is of the form:

at 0 0 00
0 a> 0 0 0
gi=]0 0 a2 0 0
h 0 0 a 0
k 0 0 0 a

Its Maurer-Cartan forms are given by:

61'::da
=
hda dh
2. _
=t
kda  dk
3._
0° = —?+a—4.

The structure equations are easily computed as:



137

h + k _
dr =4 6" AT + i TANo+oANC+aNC,

a4

h +k _
do=36"No + TAp+pANC+pNC,

34
_k ~h = . -
dp:251/\p+za—4 T/\C—Z;T/\C—FZC/\C,

h (h + k)

h h _
dC = ANC+ 3 AT + — TN+ 0ANC+—S0NC,
a a a

_ - k(h+k k k -
d¢ = 51A§+53/\r+¥7/\a+—4a/\§+—40/\c.
d a d
We deduce from these equations that we can perform the naatiah:
h=k=0.

With the 1-dimensional grougr5 of the form:

al 0 0 0 0
0 a5 0 0 0
gi=10 0 a2 0 0],
0 0 0 a0
0 0 0 0 a

whose Maurer-Cartan form is given by
da

a: ,
a

we get the following structure equations:
dr=4aAT+0ANC+oNC,
do=3ano+pANC+pAC,
dp=2aAp+i (N,
d¢ = aN(,
dC=anc(.

No more normalizations are allowed at this stage. We thuspgegorm

a prolongation by adjoining the form to the structure equations, whose
exterior derivative is given by:

da = 0.

This completes the proof of Theorem 2 .
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4. CLASS IV,

ClasslV; is constituted by thé-dimensional real hypersurfacas® c
C3 which are of CR-dimensio, whose Levi form is of constant rank
and which ar@-nondegenerate, i.e. their Freeman forms are non-zero. The
most symmetric manifold of this class is the tube over thartitight cone,
which is defined by the equation:

LC : (Rez;)? — (Rez)* — (Rez)* = 0, Rez > 0.

This section is devoted to the determination of the Lie algebtcg(LC) of
infinitesimal CR-automorphisms &fZ. This has been done before by Kaup
and Zaitsev [5]. We prove the following result:

Theorem 3. The tube over the future light cone:
LC: (Rez;)? — (Rez)* — (Rez3)” = 0, Rez > 0.

has a10-dimensional Lie algebra of CR-automorphisms. A basis fer th
Maurer-Cartan forms ofhutcgr(LC) is provided by thel0 differential 1-
formsp, k, ¢, %, ¢, 7, 7%, @', 72, A, which satisfy the Maurer-Cartan
equations:

dp=7m"Np+7nlAp+iKkATF,

di =T Nk + 7> Ap+ (AR,
dC=im* A+mAC =TI A,
dR=m'AR+m2Ap—£KAC,

d = —im? ANRE+mIAC =7 A,
dit =AANp+ik AT+ (NG,

dr? =ANK+ AT+ 72 AT
dit=ANp—iRATE— (AL,

dr? = AANR+ AT — 7t A2,

dA = — ' ANA+ i A2 — 7t AA.

(4)

4.1. Geometric set-up. In order to motivate our subsequent notations, it is
convenient to introduce some general results on CR-manibaltsging to
classlV,, for which we refer to [11] for a proof.

Let M c C? be a smooth hypersurface locally represented as a graph
over the5-dimensional real hyperplare,, x C,, x R,:

u = F(217227Z_172_2>v)7
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whereF' is a local smooth function depending barguments. We assume
that M is a CR-submanifold of CR dimensi@which is2-nondegenerate
and whose Levi form is of constant rank The two vector fields?;, and
% defined by:

-2 w0 e =12
70z o’ T 144 F) J=5%
constitute a basis df "M at each poinp of M and thus provide an iden-
tification of 7,7 with C* at each point. Moreover, the reafform o

defined by:

o:=dv— Aldz — A% dzy — Al dzy — A2 d73,
satisfies
{o =0} =T"MaT"'M,
and thus provides an identication of the projection
CT,M — CT,M/ (TI}’OM & TZ?JM)

with the mapo,: C ® T,M — C. With these two identifications, the
Levi form LF can be viewed at each poiptas a skew hermitian form on
C? represented by the matrix:

— Up(i[ﬂvz]) Up(i[g%z])
LE (o—p (i[4. ) o (i [.,s,ﬂz,.,%])) '

The fact that. /' is supposed to be of constant ranknsures the existence
of a certain functiork such that the vector field

%Z: kgl +$2

lies in the kernel ofL F'. Here are the expressions.gf andk in terms of
the graphing functiorf”:

H =k, + 0., — (k F., + F.,) 0y,

1
1+ F,
Fz2ﬂﬁ+Fz2,HF2_iFHF22,U _FHFUFU,Zz +7:FZ2FHFU,U _Fzz FUFU,H

v

k=— .
le,ﬂ“l’le,ZFE *iFZle,'u 7FZF’U le,v +inl FH,’U +le FHF'U,'U 7le F'u F’u,ﬁ

From the above construction, the four vector fields .7, %, # con-
stitute a basis of .M @ T,)-* M at each poinp of M. It turns out that the
vector field.7 defined by:

9 =1 [-ﬁ/ﬂlwﬁ/ﬂl]
is linearly independant fron¥,, ¢, Z,, % .
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It is well known (see [3, 8]) that the tube over the future tigbhne is
locally biholomorphic to the graphed hypersurface:

— 1.2 , 13
2T+ 52075 + 521 %

1 — 207

The five vector fields?,, .7, 4, # and.7, wich constitute a local frame
on LC, have thus the following expressions:

0 21+ 2129 0
0z 1 — 2975 OV’

i+ 2z 0 0 iz 20Tz + 235t 0

1— 2929 8_2'1 82’2 2 (1 — 222_2)2 %7

H =

and

2 0

1 _ZQZ_Q %

T = —
Moreover the functiork is given by

1+ 217z
1 — 2%

Let (po, Ko, (o, o, ) be the dual coframe di7, %, # ', £, % ). We
have:

k=

. —) — 2——2 .
T, o 1217+ 22172125 + 2172 7 o
=— (;14+2122) dz1 — = dzo+—= (21+7122) dzy
£o 2(1 12) 1 1 1— 2073 2 2(1 12) 1
© 2 — | =2.2
1 2] + 2212071 + 21725 1 o
- dzg + = (=1 + 2979) dv,
4 1— 2% 2t 5 272)
li():dzl"—LZldeQy
1—2’222
Go = dza,
K_Ozdz_1+21+212’2dz2,
— Z29%9
(o =dz.

A direct computation gives the structure equations enjopgdthe
COframe(p07 Ko, CO? ’%_05 CO):
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Z9 29 — . _
dpoz _po/\<0+ _po/\co—i_lffo/\ffo,
1 — 2975 1 — 207
Z9 1
dky = 2 Ko NGy — — (o A Fo ,
1 — 2975 1 — 2075
G ag=o,
1 — Z -
dﬁoi _:‘io/\(o‘i‘ Q_H_OACO>
1 — 2975 1 — 2975
d¢y = 0.

The matrix Lie group which encodes the equivalence problem € is
the 10 dimensional Lie groufd; whose elements are of the form:

€ 0000
b ¢ 00 0

gi=|d e f 00},
b 00 ¢coO
d 00 ¢€f

wherec andf are non-zero complex numbers wheréad ande are arbi-
trary complex numbers (see [11, 9]). We introduceitmeew one-forms,
k, (, R, ¢ by the relation:

Ro

G |,

Ko

Co

N Ty T D
I
N

which we abbreviate as:
W= g - wo.

The coframes define aG; structureP! on LC. The rest of this section
is devoted to reduc#! to an absolute parallelism drC through Cartan
equivalence method.
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4.2. Normalization of f. The Maurer Cartan forms d@f, are the follow-
ing:

d
al = —C,
c
9 db bdc_
O == — —2C,
cc C
N dd bde (—dc+eb)df
o’ = — —
cc c%c c2cf
. de edf
= — — —
c cf
df
5. Y
o’ = =

The structure equations read as:
dp=a'Ap+alAp
+T5Hp/\f<;+T;’<pA§+T5EpAE+T/pr/\Z+MAE,
de =o' ANk +a? Ap
+ T pNE+TpANC+TRp AR
+ T p ANCH TR RN+ Tk AR+ TE AR,
dC=c*ANp+a*Ar+a’ANC
—l—Tng/\ﬁ;—l—TpCCp/\C—i-Tp%p/\E
+T§Z PAC + Tk ANC+ Tk NE+ T C AR,

where the expressions of the torsion coefficidéiftsare given in the appen-
dix.

We now proceed with the absorption step of Cartan’s method.invwe
troduce the modified Maurer-Cartan formig which are a related to the
1-formsc’ by the relations:

~1

i i i i — i 7
a'=a—x,p —T k- x( — R — xEC,

wherez!, 22, 23, 2* andz® are arbitrary complex-valued functions. The
previously written structure equations take the new form:

dp=a'ANp+atnp
1 1 p 1 _ 1
+(Tl§’5—x,{—x§)p/\/i + (Tpg_xn_$g>9/\§
+ <T5R—xé—x_,£>p/\ﬁ+ <T;’Z—xé—xé>p/\z
+ ik AR,
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de =" Nk +a*Ap
+ (T — 2l +x)pAk + (T —a2) pAC
+ (T = a2) p AT+ (T = a2) p AT
+ (Th +ap) kAC+ (Th —2p) AR
+ T5CAR + (T —ak) kAC

dC=aNp+a*Aw+a® AC
+(Tp€€—xi+xﬁ)pAf<¢+<T§<—x§+xf)>p/\§
3 = ¢ 3 =
+(T§n—:pg)p/\/{+<TpZ—xz)p/\C
+ (Tfﬁ—x@/@/\ﬁ—i- (Téﬁ—x@CAE
—i—(xi—xé)m/\(—x%m/\ﬁ
+ <a:%—:c§>%/\c—mgcAZ.

We then choose!, 22, 23, 2* andz® in a way that eliminates as many
torsion coefficients as possible. We easily see that theca@fficient which
can not be absorbed is the one in front{of % in dk, because it does not
depend on the's. We choose the normalization

15 =1,
which yields to :
foS L
cl-— Z5Z

We notice that the absorbed structure equations take the for
dp=a'Ap+atAp+ir AR,
di =a* Ak +a* Ap+C AR,
dC=a*ANp+a*ANk+a° AC.

The normalization of gives the new relation :

P cc 0 0 0 0 o
K b ¢ 0 0 0 Ko
C - g € %71%}225 0 0 : CO
i b o 0 T 0 o
¢ 0 0 d g £ o

—1+2973
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We thus introduce the new one-form

CAO:_ 1_'<07

1-— 2929

such that the previous equation rewrites :

P cc 0000 Po
K b c 000 Ko
C:de%OO C()
R b 00 ¢co0 Fo
¢ 0 0dzec) \(

We have reduced th@, equivalence problem to@, equivalence prob-
lem, where(, is the8 dimensional real matrix Lie group whose elements
are of the form

c€c 0000
b ¢ 000
g:dG%OO
b 00<coO
0 0de ¢

We determine the new structure equations enjoyed by the dafsame
(PO; Ko, C()’ Ro, CO) We get .

dpo = —7Z2 po N\ Co — 22 po N\ Go + 1 Ko N\ Ko,
drog = _2_250A<?0+60 N Ro,

d&ozzzéoAéo-

4.3. Normalization of b. The Maurer forms of the&y, are given by the
independant entries of the matriy - g—'. We have:

B4+ /1 0 0 0

B Bl 0 0

dg-gt=| p* p* p=p" 0
gz 0 0o g

g0 0 gt gt

o O OO
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where the forms3!, 52, 83 ands* are defined by

dc
1. %
6‘_(:7
BQ.__db bdc
T cx’
—dc + eb) dc —dc+eb)dc dd bde
3
V=G ez tTa @
ﬁ4::—2?+ﬁ+@.
C CC C

Using formula (2), we get the structure equations for theedifcoframe
(p, . ¢, %, C) from those of the base coframigy, ko, Co, 7o, (o ):

dp=p"Np+ BT Ap
+ U pANE+USpNCHULp AR
+U%pAZ+imAE

dk = BN+ B*Np
+U:,ip/\/£+U;Cp/\C+U;Ep/\E—J—U:Ep/\Z
+ Uk NCHUSZREANE+ (AR,

d¢ =B Np+B* N+ B AC— BT A
+U&pAm+U&pAC+U&pAE
+ U pACH U kA + Uge kAR
+U§Z/<;/\Z+ UgEC/\EnLUéZ(AZ.

We introduce the modified Maurer-Cartan fOfEiSNhiCh differ from the
(¢ by a linear combination of the-formsp, x, ¢, &, ¢, i.e. that s :

B'=p"—y,p — Yk —yeC = YR — yr (.
The structure equations rewrite:
dp=PB"Np+ B Ap
+ (Ul —ys —Tr) p A K+ (Uﬁg—yé —ﬂ%)p/\é

+ (Upe = ¥e = Uu) PAF+ (Ugc—y%—yé>p/\(+if<a/\ﬁ,
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de=B'ANk+B2Ap
+ (Upe + 9y —v) pAE+ (U —5E) pACH (U — vR) PN
+ (Ujg—y§)pAf+( ne—ye) A
+ (U:E—y%)ﬁ/\ﬁ—y%ﬁ/\z—i-g/\ﬁ,

Q=B Ap+ B AR+ AC—BIAC
+ (U =i+ ) p Akt (U =g+ = Th) PG
+<U§E—y%> pAE+(U§<—y§+yi—ﬂi) MCJr(U,fE—y%) KAR
+ (U —42) oA+ (U —wi+08) CAR+ (UG =yt +E) CAC

We get the following absorbtion equations:

Y+ Tx = Upes v + 7z = U, Y+ T = Uprs
ye+0c = Uge —Yp +Un = Upo ve = Up,
vz = Uy, y=Urx v = Uk
Yy = Uk, y: =0, e —y, =US,,
v —yr+7, =Us, ys =Us, vl —yr+7r = Us,
¥z = Uss, ye=Ug, Ve~ Tx = Ul

ve =T =Ug

Eliminating they? among theses equations leads to the following relations
between the torsion coefficients :

U;fﬁ = U_ppffa
Use = Uk
Upe = Use:
Uge = ~U

k _ 17€
2U% = UCE—f— U/’;E.

We verify easily that the first four equations do not dependhengroup
coefficients and are already satisfied. However, the lastoas depend on
the group coefficients. It gives us the normalizatior afs it rewrites :

b= —ice.
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The absorbed structure equations rewrite:
dp=B'"Ap+ B Ap+irAF,
di =B Ak+ B Ap+C AR,
dC=BAp+B Ne+B NC—B ACH <U§E+U,§’E—2U:E> CAR.

4.4. Normalization of d. We have thus reduced the grogp to a new
groupGs, whose elements are of the form

cc 0 0 0O
—ec ¢ 0 0 O
tec 0 0 ¢ O
d 00 e ¢

Itis a six-dimensional real Lie group. We compute its Ma@artan forms
with the usual formula

Y+ 0 0 0 0
2 At 0 0 0
dg-g'=| ¥ i =7 0 0 :
2 0 0 1 0
_,}/3 O O _272 _,.)/1 _|_71
where
A= @,
C
9 . dc .edc . de
Yy ::Ze—Q—Z—_—Z—,
c cc C
and
5 dc+ie’c) [dec dc dd . ede
V= — =t =+1—
c2c C c cc c

As the normalization o does not depend on the base variables, the third
loop of Cartan’s method is straightforward. We get the follayvstructure
equations:

dp=~"Np++"Ap
TV PN+ VEPpANCHVEp AR
+Vp%p/\Z+m/\E,
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de ="' AN+ Ap

+ Ve pPANE+VEpANCHVEP AR

+Vp’%p/\z—|—VH’ZI{/\Q%—VH’%/{/\EWLC/\E,

A=V Ap+iv’ ANs+7"AC—=~LAC
+Vpip/\mvpip/\chVp%pAEJrvp%pAZ
V’fclﬁ/\c—i-vﬁ%li/\ﬁ—l-VK%FL/\Z-FVC%C/\E

c _

+V@C/\C.

We now start the absorption step. We introduce:

Vi :zyi—zép—zén—zé(—z%%—zéz.
The structure equations are modified accordingly:
dp=F"Np+7"Np
+ (VPpﬁ—zé—z—g pAK+ <Vp — 2
—I—(‘/pf—z%—z_;)p/\ﬁ%—(‘/pf—zl—zl) ¢
de ="' ANk +75*Ap
+ (Vi

=

—zi+ ) pAE+ (Vii—22) pAg

pﬁ—z%)pAE—i-(sz—z%)p/\sz( ,fc—zé)fi/\g“
e = 2%) KAR +CAR— 2z KAC,
and
d=FPAp+iFANE+F ANC—=FAC
+(Vp€€—zz—|—iz§)p/\f€+<Vpi+z;—z§—§+pl)p/\g
#(V— ) onm o+ (V= 2) o T (Vi 142 mam
- <VH%—Z'Z<3> KAE+(V<%—Z%+Z_,£> (AC.

We thus want to solve the system of linear equations :
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1,1 1 1, o1
z,i—i—z%:Vp’;, 2=+ 2zl = Vp%, 2z —i—z%:VppC,
1 1 _ 2 1 _ 2 _
ze+ 7= Vp%, z.—2,=Vy, ze=Vi,
2 2 1

2=V %=V 2 = Ve
1 1 3.2

z = 0, 2= =V z, — iz, = Vpcm

1 3 _ y/¢ 1 1 2 _ ¢ 2 _ /¢

—z,+ 2z, 20 =V, Ze — 2z — 120 ==V, P2z =V,
3 3 2

%= Ve %=V 1=V

1 _ 1/¢ 1.1 _ y/¢

z, — 2k = e ZZ—ZC—‘/CE.
This is easily done as:
(1
z, = Vp’%,
%= Vi
1 _y/p
¢ = Voo
1
ZZ = y
2
ZE: p%’
2 _ K
% P’
< 22 K
¢ oo
3
R = vp%?
3 _ /¢
Z = sz,
3 _ 1€ 1.1
¢ = Ve 2, = 2
z,?; = Vpi +iz,,
2 K 1
\ Pk = VPC + “p>
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Wherez; and zf) may be choosen freely. Eliminating th¢ we get the
following additional conditions on th&;, :

( VE=Vi,
Vp% - v_/’pc’
o un
® L
128 KC’
Vi =V
|2V =VE+ VS,
and
iV =V,
(7)

¢ ¢ _ i1k
Vﬁz—{—VHC —szC.

We easily verify that the equations (6) are indeed satisfiddwever
the remaining two equations are not and they provide twongiggéorsion

coefficients, namely V2 — Vg andV'_fZ + Vi — iV, which will give us

at least one new normalization of the group coefficientseéadwe have

e2

d
. K C o .
Z‘/pﬁ_ V/@E = —2254— c—2
Setting this expression tg we get the normalization of the parameder

1 e%c
d=—i-—.
Z2 c
4.5. Prologation of the G4 structure. We have reduced the previoGs-
structure to aG4-structure, wheré, is the four dimensional matrix Lie
group whose elements are of the form :

cc 00 00
—2ec ¢ 0 0 O
i e € 0 0
tec 0 0 ¢ O
RS

The basis for the Maurer-Cartan forms @f, is provided by the four
forms
dc o dc . edc . de — —

oli=— 52::ze—2—z—_—2— , ot 02,
c c cc c
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Now we just substitute the parameteby its normalization in the struc-
ture equations at the third step. We have to take into acdberfiact that
dd is modified accordingly. Indeed we have:

The formsy! and~? are not modified as they do not involve termsdih
but this is not the case for* which is transformed into:

5 dd+,e ddc ,2dc+ddE+_e2dE

= —4i——— —jef =+

cc 2 c2e? 3 cc? cc2
= 0.

fy

The expressions ofp and dx are thus unchanged from the expressions
given by the structure equations at the third step, excepfabt that we
shall replacel by —%if +1 £ H inthe expression of each torsion coefficient
Ve, which we renaméV’?,, and the fact that the formg' and~! shall be

replaced by the form&' andé?, that is:

dp=0"Np+dLAp
+WﬁpAn+WﬁpA(+W§pAE+W§pAZ+imAE

and
de =8 ANk +8Ap
+WopNE+WEpANCHWE p AR

+WE pACHWERACHWERAT + (AR

The expression af( is obtained in the same way, settifngto zero, and

renamingl¥’¢, the coefficientd/, in which one performs the substitution

— ;1 €%
d= i 55

dC =003 AN+ AC =01 AC
+W§,€p/\/<o+WpC<p/\C—|—WEEpAE—i—Wp%p/\ZvLWEC kAC

+W&mAE+W§&AE+W@CAE+W&CAE

Let us now proceed with the absorption phase. We make theubstis
tutions:

5t ::gl+wép+wén+wé(+w§%+w§f,
52 ::gZ—i—wip—i—wi

K

m+u@(+u£ﬁ+u%&
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in the previous equations. We get:

dp:gl/\p%—ﬁ/\p

—|—<pr,$—w,1§—w_%> p/\/@—i—(WffC—wé—w_%) pAC
+<ng—w%—w_}i> p/\E—i—(Wle—w_é—w%) pAC,

di=0"AK+06>Np
—i—(W;@—wz%—w;)p/\/ﬁ—i—( ;C—w?)p/\g

—I-(W{’fg—w%) PAE + (sz—w%> pAC

+ (W —wl) KAC+ (Wi —wh) AT + (AR —wk s AT,

and
AC =iy A+ 01 AC— 1 AC
+(W[§,€+iwz)p/\/<:+(W§<+wﬁl,—w_;)p/\(
+W/§E,0/\E+W§Zp/\z+ (W,Sg_iw%> KNR

+ (Wgz—z'w%) kAT + (Wfﬁ—w%%—w_w CAC.

From the last equation, we immediately see lll’t@g andW/fZ are two new
essential torsion coefficients. We find the remaining onesabying the set

of equations:

w! +wl =W? wa + w}

I
3

w<+

WP

o

R PRI R K PR ¢ pC)

w_%—{— w% = WZZ, wi — ,1, = W:m w% = :E7
wi =W, wg =W, we =W,

IU% =0, wé =W, —1 3 - WPCK’

—wh +wl =W, wh—wk—iuw} = Wi, i =W,
wy, — wh = We, iwg = WEZ’ wy — w} = chz’
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which lead easily as before to:

( 1
w, = W;’H,
1
wﬁ_ W:m
1 _ 4
we =W,
u% =0,
2
(8) wﬁ_ W;I{?
2 K
We = WPC’
2 K
We P>
w? = W +w
2
w, = W,fn,
| —w, +w1 WC

Eliminating thew? from (8), we get one additionnal condition on tHé®,
which has not yet been checked, namely tﬁ)(étC shall be purely imaginary.

The computation ofV’S ., W, andWC gives:

=2
ee i e’c i e%c
WC =l——=——F20— = — %
c 237 2™
”/'C_
pﬁ_o’
and
”/'C_
pZ_O’

which indicates that no further normalizations are allowaethis stage and
that we must perform a prolongation of the problem. Let usothice the
modified Maurer Cartan forms of the grotfa, namely :
{51'—(51 wp—w H—wé( wi R wC
6= 6% — wp wm—wgg wiE w(

wherew’, wy, wi, wk, wc’ i = 1, 2, are the solutions of the system of

equations (8) correspondlng@ + w_}, =0, thatis:

K!?

. 1 _
0= 0+ SV p = Vik — V(= VR,

1

(9)
§2 . Vv Ve ‘IC K VERE_VEC
0% = 0" = pcf-e ( D) ) & ViR — Ve

P 9 " pC

We also introduce the modified Maurer Cartan forms which epwad
to solutions of the system (8) whéha(w})) IS not necessarily set to zero,
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namely :
(10)

Let P be the nine dimensional,-structure constituted by the set of
all coframes of the form(p,«,(,%,¢) on M°. The initial coframe
(po, ko, Co, Fo, o) gives a natural trivialisatio?? % M° x G, which
allows us to consider any differential form aw® or G* as a differen-
tial form on P?. If w is a differential form onA/° for example, we just
considerp*(pri(w)), wherepr; is the projection on the first component
M x G, 5 M5. We still denote this form by in the sequel. Fol-
lowing [10], we introduce the two coframég, , ¢, 7, (, 0", 62, 01, 62) and
(p, k. ¢ R, ¢, mt, w2, wl, 72) on PP, Settingt := —R(w}), they relate to each
other by the relation:

p p
K K
¢ ¢
K K
ngt-f,
il ot
2 52
il ot
w2 5
whereg; is defined by
1000 0O0O0O0OO
01 0000O0O0O
001 0O0O0O0O0O0
00 010O0O0O0O0
g:=10 0001 0 0 0 O
t 000O0T1TO0O0O
0Ot 0O0O0O0T1TTQO0O0
t 000 0O0O0T1TFO
000 ¢t O0O0O0O0T1

The set{g;,t € R} defines a one- dimensional Lie group, whose Maurer
Cartan form is given byit, which we renam@ in the sequel. We now start
the reduction step in the equivalence problem/n From the definition

of 7! and=? as the solutions of the absorption equati¢®s the five first
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structure equations read as
dp=m"Np+aLAp+irAF,
de =m' AN+ T Ap+ (AR,
(11) dC=im’ Ae+m  AC =T NG,
di =T ANR+m2Ap—rAC,
Al =—im? NE+7mEAC— 7t AC.
We could obtain the expressions@f! anddr? by taking the exterior de-
rivative of the previous five equations. But for now, as we haxplicit

expressions ofr* and#? given by formulag9) and(10), we can perform
an actual computation:

drt =dt A p
—i—Xlep/\fi—l—chp/\C—l—X;Ep/\E—l—X;Zp/\Z
+Xp17r1p/\7r1—i—X;Trgp/\ﬁz—l—Xple/\F
+X;pp/\p+iﬁ/\p+C/\Z,
and
dr* = dt A K
+X§,€pA/<a+X§</@/\C+XSE/§/\E+X:ZF;/\Z
—|-X57r1KJ/\7T1—|-X57T2/<;/\7T2+XEF/{/\F
+X:§/£AF+C/\F+7T2/\F.

From these equations, we see that the absorption is sti@hatrd and
that there remain no nonconstant essential torsion teraeckhif we define
the absorbed form by:

2 1 1
A=dt— X, p— X  Kk— Z XV,
v=Cml e w2
the previous two equations become:
dit =AAp+inAT2+ A,
and
dr* = ANk +(AT2 4+ 7% ATl
A straightforward computation gives the expression &f
dA = —m* AN+ i A2 — bt AAL
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Let us summarize the results that we have obtained so fartefheforms
p, k, (R, ¢, w2, wl, w2, A satisfies the structure equations given(by.
This completes the proof ofh Theorem 3.

APPENDIXA. TORSION COEFFICIENTS FOR THEZ-STRUCTURES ONB

A.1. CoefficientsUy,.

e d
g __
U =gt
o _ _ %
oC T g3
Uo. =<
o 33’
UPZE E_zbe zdb7
ap T 36 T 46 20 20
e 2
UP:E_ZbC_i

p_c b

Upé_a:% 32’
p _Cc b
Upf_a?’ a2’
2 12

g _ & ibdb ieb® de

ap = 36 37 37 36

Uc_ibe ibcb  cd
oC T 5 AT b’
¢ cd idb ib%c
ol _aiﬁ_a75+7’
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APPENDIXB. TORSION COEFFICIENTS FOR THEZ-STRUCTURES ONN
B.1. CoefficientsUy,.

ur, = 8 28
O gt a6 a6 Q6”
. _bf bt
™ 36 T 367
. __f
TC T4
;__f
¢ a4’
o b B
op 2 2

[C—
Urp 10 T 10 g7 7 T g4 g4
o 8, f
TCT 44 T T g8
o &, <
¢ ad T T ¥
. d bf bf
Un =@ ta e
s C f
T e
- c f
R

Ule=—19 50 T a0 T o0 Ta0t500 57t 57 300 50 L1071 ,8
o cdf fbg fbg cef hc ke bk ibef idbf ibh
N L e e

b el il iBg O g ik g
TCT 0 T T a6 a0 a7 i 5%
U’D,ziibd—{-idf—kibg c%‘_g_gj_ﬁ

C 29 a7 | a6 T al0 T 7 38 47

—iebg_chh+ing+ibck egc dgc idk ieh c%h c’k @ g7k gh g%b
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o ce cd gb gb ibe idb
A
. 0 2
, e ibc ¢ g
Vac=3 = o tan
. 2 .
p_ibe < id e
UUE_ a® A% a3 * at’
) C ib
V=3t
p_C _ib
Upf_a3 a?’
¢ —ieb’g  idkb iehb ib>ck hk d?g ibchb
Uzo = il 39 + 39 a1 38 T 310 T a1l
idbgb cdk cdh ged hbg hbg h?
EPT S S S i e S
¢ kd def hbf hbf ikb? ibdfb ibhb iefb®? dh  d?f
U= ot t0 " 58 L0 T 8 Too T o
¢ gd fh ibef ibgb ibcfb cdf bk
R B T R R
¢ gd fh idfb cdf ihb ib%g  ib%cf
e e e
¢ _d> hb  ibdb ieb? de hb
VT w Tt w T e
17 _ ibe ibcb  cd h
00T b AT a6 T ¥
Ue — cd idb h b
o¢ ab 3> at a7’
d ibb
¢ _
U=g3t1t 1
d ib?
C - _
Upf_a3 at’
¢ _ b
UCZ a2’
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APPENDIXC. TORSION COEFFICIENTS FOR THEZ-STRUCTURES ONLC

C.1. CoefficientsTy,.
b e =
TP — — = 2
Tl e T 1 — 2975

eb 1 d Z _ bb eb Z
a i _
cc?f 1 — 2975 ccf 1 — 2975 c2c2  c2cf 1 — 2973
Wb 1
Pe e 1— 225’

Ko
T =

d 1 eb 1 b2 N be 29
a _ . _ 7
T2 1 — 2975 B3 1 — 2973 c2c?  @@2f 11— 27,

Ko
T =

H,ZLL

¢ cef 1— 2973

k1 =

~G f1—2%

e 1 b
T = — —— 4§ —

Efl—zQ72+ZcE’
__¢c_ 1
R of 1 — 2975
e?b 1 Jr,dB
pr Z s
PR Q282 1 — 2975 c2¢2

T eb 1 eb Z d =
P el — 27Zy c2cf 1 — 29Z9 ccf 1 — Z22727

ed 1 e2b 1 . bd de Z9
- —1 - —
3 1 — 2975 283 1 — % 2?2 2fl— 27

Tp% —

¢_d =
K cef 1 — 205
e Z2

71C — "‘77 P —
K ccf 1 — 2979
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2
e 1 . d
TS = —

= ———=+1—=
cef 1 — 2973 cc

¢ e 1

F = _5 1-— 2272'
C.2. CoefficientsUsy,.
b ec__

U’ =1—+ <22
pPr cc 277

2
¢ ed eeb ed e’b . db
R R A==
d eb
Ugf:_2€2 Z2+T2Z27
¢ ec
UHC _72227



C.3. CoefficientsV,,.

Ve - _E de ee?
pK 2

2 =2

.ee .ce”_  .ce

P c2 cc c3

de ge? ed
Ve =2 i 2oy
Pk e c2c cc?
2
e
V€:—27—z2—z—722
2 9
p c cc

d
Vi:—jz2+zi—z—z2—zf

2

ny .e’e
2 — —5 Tl g 22— 1 5=
cc? ¢ cc’

. €
_ZC73’
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¢ _
VHC—* 222,
2
¢ _ ee e - d
VHE—QZQ—Cﬁ‘i‘ZE,
e
V:-Z:_:ZQ?
¢ ec e
C.4. Coefficients Xg,.
X! 1 ce_ 3Z,e2€7+1té+1,e62 7+1_e362
=——t—m—-t—F=n+tt-+-1— 1 —
pre 2 ¢ 3P T 9¢ 8c€2z222 8Zc5
1.8 1. ee 1 . c2e?
1 _ . . — . _9
X="glg Tyla= a2
XL = X1
PR PRI
XL =Xxt
pC S
X =—t,
le 1ec
X ,=-Z4-Z%5
TRz
1
prt t
1 _ 1
X=X,
o ol lde 1 1 1 , 1 el
T T @ a2 16 ¢ P 16

X2, =X, for v=¢( ot w2
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