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INTRODUCTION

This memoir is a contribution to the solution of the equivalence problem
for CR-manifolds in dimension up to5. The first occurence of this prob-
lem goes back to 1906, when Henri Poincaré formulated the equivalence
problem for hypersurfaces ofC2 as follows [24]:

Given two (local) real hypersurfacesM,M ′ ⊂ C
2, does

there exist a (local) biholomorphism ofC2 which sendsM
onM ′ ?

Poincaré gave a heuristical argument to show that the answerto this prob-
lem should be negative in general, but the first rigorous proof came in 1932,
when Elie Cartan [4, 5] constructed a “hyperspherical connection” on real
hypersurfaces ofC2, using the powerful technique of moving frames which
is nowadays referred to as Cartan’s equivalence method. In modern ter-
minology, given a manifoldM and some geometric data specified onM ,
which usually appears as aG-structure onM (i.e. a reduction of the bundle
of coframes ofM ), Cartan’s equivalence method seeks to provide a prin-
cipal bundleP onM together with a coframeω of 1-forms onP which is
adapted to the geometric structure ofM in the following sense: an isomor-
phism between two such geometric structuresM andM ′ lifts to a unique
isomorphism betweenP andP ′ which sendsω on ω′. The equivalence
problem betweenM andM ′ is thus reduced to an equivalence problem be-
tween{e}-structures, which is well understood [19, 25].

The concept of CR-manifold enables a reformulation of the biholomor-
phic equivalence problem between real submanifolds of complex spaces in
a more intrinsic manner. We recall [3] that a CR-structure on a real man-
ifold M is the data of a subbundleL of C ⊗ TM of even rank2n such
that

• L ∩ L = {0}
• L is formally integrable, i.e.[L, L] ⊂ L.

The integern is the CR-dimension ofM and k = dimM − 2n is the
codimension ofM . A generic real submanifoldM ⊂ C

n is canonically
endowed with a CR-structure when one defines the CR-bundleL asT 1,0M .

Given two CR-structures(M,L) and (M ′, L′), a diffeomorphism
ϕ : M −→ M ′ is said to be a CR-isomorphism betweenM andM ′ if ϕ
sends the CR-bundle ofM onto the CR-bundle ofM ′, i.e. if ϕ(L) = L′.
The equivalence problem for CR-manifolds can be formulated asfollows:
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Given two (local) CR-manifoldsM , M ′, does there exist a
(local) CR-isomorphism betweenM andM ′ ?

An important tool to answer this question is the concept of Levi form
[1, 3]. The Levi formLFp of a CR-manifoldM at a pointp ∈ M is the
skew-symmetric hermitian form defined onLp by

LFp(X, Y ) = i [X̃, Ỹ ]p mod Lp ⊕ Lp,

whereX, Y ∈ Lp and X̃ and Ỹ are two local sectionsM −→ L such
that X̃p = X and Ỹp = Y . It is a CR-invariant ofM in the sense that if
ϕ : M −→ M ′ is a CR-isomorphism betweenM andM ′, thenLF =
ϕ∗LF ′. It is well known [15] that ifLF does vanish identically onM ,
which means that the bundleL⊕L is involutive, thenM is CR-isomorphic
to a productM ∼= C

n × R
k. We therefore exclude this degenerate case,

referred to as Levi-flat, in the subsequent parts of this memoir.
Another CR-invariant plays a central role in our analysis. Let(Ei)i≥1

be
the sequence of subbundles ofC⊗ TM defined by:

E1 := L⊕ L, Ei+1 := Ei ⊕ [L,Ei]⊕ [L,Ei],

and let
ri := rankCE

i.

For example we always haver1 = 2n, wheren is the CR-dimension of
M , while r2 = r1 if and only if M is Levi-flat. The sequencer := (ri)i≥1

constitutes a CR-invrariant ofM . As it is increasing and bounded by the
dimension ofM , it is stationary fori sufficiently large. For this reason, we
will adopt the convention to write only the first distinct values ofr, writing
for example(2, 3) instead of(2, 3, 3 . . . ).

Let us now restrict the analysis of the equivalence problem to CR-
manifolds of dimension not greater than5. The CR-dimensionn and the
codimensionk shall satisfy2n + k ≤ 5, which, setting apart the trivial
cases of totally real and complex manifolds, only leaves4 possible values
for (n, k):

(1, 1), (1, 2), (1, 3), (2, 1),

which we refer to as the type ofM .
A further investigation of the possible values for the sequencer and the

rank of the Levi-formLF leads to the identification of6 different classes of
CR-manifolds of dimension≤ 5 (see [15]).

General classI is constituted by non Levi-flat CR-manifolds of type
(1, 1). In this case the Levi form is of constant rank1, andr = (2, 3).
The equivalence problem for this kind of CR-manifolds has beensolved by
Elie Cartan in the famous papers [4, 5] mentioned at the beginning of this
introduction. This problem has been tackled again recentlyby Merker and
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Sabzevari [12], in a way which explicits the CR-invariants ofM in terms of
its graphing function.

General classII is constituted by non Levi-flat CR-manifolds of type
(1, 2) such thatr = (2, 3, 4), which are also referred to as Engel manifolds.
The equivalence problem for this class has been solved by Beloshapka,
Ezhov and Schmalz [2] in 2007. An alternative proof of the results con-
tained in [2] has been provided by [22], which constitutes chapter 2 of this
memoir.

We mention that the other possible value forr in the case of non-Levi
flat CR-manifolds of type(1, 2) is (2, 3). However this case is set apart,
and should be considered as degenerate, as it is known [15] thatM is then
biholomorphic to a productM ∼= N × R, whereN is a CR-manifold be-
longing to general classI.

For non Levi-flat CR-manifolds of type(1, 3), the possible outcomes for
r are (2, 3), (2, 3, 5) and (2, 3, 4, 5). Caser = (2, 3) is degenerate, as it
corresponds to productsM ∼= N × R

2, with N belonging to general classI
[15]. Caser = (2, 3, 5) leads to the class of CR-manifolds which we refer to
as classIII1. Cartan’s equivalence method for this class has been conducted
recently by Merker and Sabzevari [13], which has led to a complete set of
invariants for these CR-manifolds. The third caser = (2, 3, 4, 5) defines
what we refer to as general classIII2. To our knowledge, this class of5-
dimensional CR-manifolds has not been studied before, and chapter 3 of
this memoir is devoted to solve the equivalence problem for this class by
the construction of a Cartan connection [23].

In the case of non-Levi flat CR-manifolds of type(2, 1), the sequencer
can only take the value(4, 5), and the distinction between general classes
of CR-manifolds of this type depends on the rank of the Levi form. Levi
nondegenerate CR-manifolds are said to belong to general class IV1, while
those whose Levi form is of constant rank1 are said to belong to general
classIV2. One also assumes that the CR-manifolds which constitute this
last class are 2 nondegenerate, i.e. that their Freeman formis nonzero (see
[15], pp 70–94), as they would otherwise be biholomorphic toa product
N × C, with N belonging to general classI.

The equivalence problem for Levi-nondegenerate CR-manifolds of codi-
mension1 has been solved in 1974 by Chern and Moser [6] through the
use of Cartan’s original approach. The case of classIV1 is thus covered by
the results contained in [6]. General classIV2 however has concentrated a
lot of research efforts recently. Ebenfelt gave a solution to this problem in
2001 [7], but it appeared that this approach should only be considered as a
partial one [8]. Isaev-Zaitsev [10], Medori-Spiro [14] andPocchiola [20]
have independently provided solutions to the equivalence problem for this
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class of CR-manifolds in 2013. Reference [20] is included in chapter 1 of
the present memoir.

Each of these6 classes entails a distinguished manifold, the model,
whose local CR-automorphisms group is of maximal dimension. It plays
a special role, as CR-manifolds belonging to the same class canbe viewed
as its deformations, generally by the way of Cartan connection. The deter-
mination of the Lie algebra of infinitesimal automorphisms of the models
can be conducted through Cartan’s equivalence method, and itoften pro-
vides a guide for the more complicated case of general CR-manifolds of
the same class, as the same structure of normalizations of group parameters
occurs in both cases. For this reason, we started the resolution of the equiv-
alence problem for general classesII, III2 and IV2 by the determination of
the Lie algebra of infinitesimal CR-automorphisms of the models for each
of these3 classes, which are respectively given by:

(1) Beloshapka’s cubic inC3:

B :
w1 = w1 + 2 i zz,

w2 = w2 + 2 i zz (z + z) ,

(2) the submanifoldN ⊂ C
4:

N :

w1 = w1 + 2 i zz,

w2 = w2 + 2 i zz (z + z) ,

w3 = w3 + 2i zz(z2 +
3

2
zz + z2),

(3) the tube over the future light cone,LC ⊂ C
3:

LC : (Re z1)
2 − (Re z2)

2 − (Re z3)
2 = 0, Re z1 > 0.

The determination of their infinitesimal automorphisms is done in reference
[21], which constitutes chapter 4 of this memoir.

To conclude, the present memoir entails the following parts:

• Chapter 1 contains two versions of the solution to the equivalence
problem for 2-nondegenerate5-dimensional CR-manifolds of con-
stant Levi rank1, a short one which summarizes the results and
sketches the proofs, and a longer one, which provides the necessary
details.

• Chapter 2 is constituted by reference [22], whose aim is to provide
a solution to the equivalence problem for Engel CR-manifolds.

• Chapter 3 contains reference [23], which provides a solutionto the
equivalence problem for CR-manifolds belonging to general class
III2.
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• Chapter 4 contains reference [21], which aims to determine the
Lie algebra of infinitesimal CR-automorphisms of the model mani-
folds for general classesII, III2 andIV2 through Cartan’s equivalence
method.
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ABSOLUTE PARALLELISM
FOR 2-NONDEGENERATE REAL HYPERSURFACES

M5 ⊂ C
3 OF CONSTANT LEVI RANK 1

SAMUEL POCCHIOLA

ABSTRACT

We study the local equivalence problem for five dimensional real hyper-
surfacesM5 of C3 which are2-nondegenerate and of constant Levi rank1
under biholomorphisms. We find two invariants,J andW , which are ex-
pressed explicitly in terms of the graphing functionF of M , the annulation
of which gives a necessary and sufficient condition forM to be locally bi-
holomorphic to a model hypersurface, the tube over the lightcone. If one
of the two invariantsJ orW does not vanish onM , we show that the equiv-
alence problem under biholomophisms reduces to an equivalence problem
between{e}-structures, that is we construct an absolute parallelism onM .

1. INTRODUCTION

A smooth5-dimensional real hypersurfaceM ⊂ C
3 is locally repre-

sented as the graph of a smooth functionF over the5-dimensional real
hyperplaneCz1 × Cz2 × Rv:

u = F (z1, z2, z1, z2, v).

Such a hypersurfaceM is said to be of CR-dimension2 if at each pointp
of M , the vector space

T 1,0
p M := C⊗ TpM ∩ T 1,0

p C

is of complex dimension2.
We recall that the Levi formLF of M at a pointp is the skew-symmetric

hermitian form defined onT 1,0
p M by

LF (X, Y ) = i [X̃, Ỹ ]p mod T 1,0
p M ⊕ T 0,1

p M,

whereX̃ and Ỹ are two local sectionsM −→ T 1,0M such thatX̃p = X

andỸp = Y .
The aim of this paper is to study the equivalence problem under biholo-

morphisms of the hypersurfacesM ⊂ C
3 which are of CR-dimension2,

13
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and whose Levi form is degenerate and of constant rank1. For well-known
natural reasons, we will also assume that the hypersurfaceswe consider are
2-nondegenerate, i.e. that their Freeman forms are non-zero.

We refer to [2] for a historical perspective on equivalence problems for
hypersurfaces of complex spaces, where the emphasis is put on the im-
portance and the lack of practical computations in the subject. For ex-
ample, even in the Levi-nondegenerate case of hypersurfaces M2n+1 ⊂
C

n+1, which was tackled by the celebrated paper by S.S. Chern and J.
Moser in 1974 (see [1]), a problem still open currently is to determine the
Cartan-Chern-Moser invariants explicitely in terms of a fondamental da-
tum, namely a (local) graphing function for the hypersurfaces. As a result,
the problem to determine whether a given hypersurface is locally biholo-
morphic to a sphere is still open. It has been solved in 2000 inthe case of
an ellipsoid ofCn by S. M. Webster in [10], where he states:

Despite their importance, until now [the invariants of pseu-
doconvex domains] have been fully computed, to our knowl-
edge, only in the case of the unit ballD = Bn, where they
all vanish!

The main result of this paper is an attempt to answer to SidneyWebster’s
dissatisfaction in the case of2-nondegenerate, Levi rank1 hypersurfaces of
C

3. It solves e.g. the problem to determine whether such a hypersurface is
locally biholomorphic to the tube over the light cone:

LC : (Re z1)
2 − (Re z2)

2 − (Re z3)
2 = 0, Re z1 > 0,

which is the most symmetric hypersurface of this class. It can be summa-
rized as follows (the explicit expressions of the invariantsJ andW in terms
of the graphing functionF of M are given in section 4):

Theorem 1. Two fundamental invariants,J andW , occur in the biholo-
morphic equivalence problem for2-nondegenerate hypersurfacesM ⊂ C

3

having Levi form of constant rank1. M is locally biholomorphic to the tube
over the future light cone,

LC : (Re z1)
2 − (Re z2)

2 − (Re z3)
2 = 0, Re z1 > 0,

having 10-dimensional Lie algebra of infinitesimal CR-automorphisms
autCR(LC), if and only if:

J ≡ W ≡ 0.

If either J 6≡ 0, or W 6≡ 0, an absolute parallelism is constructed on
M . In particular, the Lie algebra of infinitesimal CR-automorphisms ofM
satisfies:

dim autCR(M) ≤ 5.
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The class of2-nondegenerate, Levi rank1 hypersurfacesM ⊂ C
3 which

are homogeneous (i.e have a transitive group of CR automorphisms) have
been classified in 2007 by Fels-Kaup in [5]. Theorem 1 confirmsthe drop
from 10 to 5 of the group dimension observed in this case by Felds-Kaup,
and extends it to the case of CR manifolds which are not homogeneous.
Our approach is to employ Cartan’s equivalence method, whosestrength is
to provide explicit formulae for the invariants and to treatin a unified way
all CR-manifolds, regardless of their symmetry group.

We note that the class of hypersurfaces we consider has been studied
recently by [3], where an absolute parallelism is constructed on a10-
dimensional bundle, and [4], where a Cartan-connexion is provided through
a purely Lie algebraic approach. To our knowledge, the Cartan’s method we
employ here is the only one which exhibits the bifurcation:

(J ≡ W ≡ 0) or (J 6≡ 0 or W 6≡ 0) ,

which characterizes explicitly the local equivalence to the model, and which
provides the estimate

dim autCR(M) ≤ 5

whenM is not locally biholomorphic to the light cone.

2. INITIAL G-STRUCTURE

Let M ⊂ C
3 be a smooth hypersurface locally represented as a graph

over the5-dimensional real hyperplaneCz1 × Cz2 × Rv:

u = F (z1, z2, z1, z2, v),

whereF is a local smooth function depending on5 arguments. We assume
thatM is a CR-submanifold of CR dimension2 which is2-non degenerate
and whose Levi form is of constant rank1. The two vector fieldsL1 and
L2 defined by:

Lj =
∂

∂zj
+ Aj ∂

∂v
, Aj := −i

Fzj

1 + i Fv

, j = 1, 2,

constitute a basis ofT 1,0
p M at each pointp of M and thus provide an iden-

tification of T 1,0
p M with C

2 at each point. Moreover, the real1-form σ

defined by:

σ := dv − A1 dz1 − A2 dz2 − A1 dz1 − A2 dz2,

satisfies
{σ = 0} = T 1,0M ⊕ T 0,1M,

and thus provides an identication of the projection

C⊗ TpM −→ C⊗ TpM /
(
T 1,0
p M ⊕ T 0,1

p M
)
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with the mapσp: C ⊗ TpM −→ C. With these two identifications, the
Levi form LF can be viewed at each pointp as a skew hermitian form on
C

2 represented by the matrix:

LF =

(
σp

(
i [L1,L1]

)
σp

(
i [L2,L1]

)

σp

(
i [L1,L2]

)
σp

(
i [L2,L2]

)

)

.

The fact thatLF is supposed to be of constant rank1 ensures the exis-
tence of a certain functionk such that the vector field

K := kL1 + L2

lies in the kernel ofLF . Here are the expressions ofK andk in terms of
the graphing functionF :

K = k ∂z1 + ∂z2 −
i

1 + i Fv

(k Fz1 + Fz2) ∂v,

k = −
Fz2,z1 + Fz2,z1 F 2

v − i Fz1 Fz2,v − Fz1 Fv Fv,z2 + i Fz2 Fz1 Fv,v − Fz2 Fv Fv,z1

Fz1,z1 + Fz1,z1 F 2
v − i Fz1 Fz1,v − Fz1 Fv Fz1,v + i Fz1 Fz1,v + Fz1 Fz1 Fv,v − Fz1 Fv Fv,z1

,

and it is emphasized that the expressions that appear in the subsequent for-
mulae are expressed in terms of Lie derivatives of the function k by the
vector fieldsL1, K , L1, K , hence in terms ofF .

From the above construction, the four vector fieldsL1, K , L1, K con-
stitute a basis ofT 1,0

p M ⊕ T 0,1
p M at each pointp of M . It turns out that the

vector fieldT defined by:

T := i [L1,L1]

is linearly independant fromL1, K , L1, K . With the five vector fields
L1, K , L1, K andT , we have thus exhibited a local section fromM
intoC⊗ F (M), the complexification of the bundleF (M) of frames ofM ,
which is geometrically adapted toM in the following sense:

(1) the line bundle generated byK is the kernel of the Levi form ofM ,
(2) L1 andK constitute a basis ofT 1,0M ,
(3) T is defined by the formulaT := i [L1,L1].

We now introduce the coframeω0 of 1-forms:

ω0 :=
(
ρ0, κ0, ζ0, κ0, ζ0

)

which is the dual coframe of the frame:
(
L1,K ,L1,K ,T

)
.

The expression of the exterior derivatives ofρ0, κ0, ζ0, κ0, ζ0, which con-
stitute the so-called structure equations of the coframeω0, involves another
important function onM , that we denote byP in the sequel. We give here
the expression ofP in terms of the graphing functionF because, as with
the functionk, all the subsequent formulae will involve terms expressed
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as derivatives ofP by the fundamental vector fieldsL1, K , L1, K , T ,
namely:

P =
lz1 + A1 lv − l A1

v

l
,

where:

l := i
(

A1
z1
− A1

z1
+ A1A1

v − A1A1

v

)

.

In terms ofP andk, the structure equations enjoyed byω0 are the fol-
lowing:
(1)
dρ0 = P ρ0 ∧ κ0 − L1(k) ρ0 ∧ ζ0 + P ρ0 ∧ κ0 − L1(k) ρ0 ∧ ζ0 + i κ0 ∧ κ0 ,

dκ0 = −T (k) ρ0 ∧ ζ0 − L1(k) κ0 ∧ ζ0 + L1(k) ζ0 ∧ κ0 ,

dζ0 = 0,

dκ0 = −T (k) ρ0 ∧ ζ0 − L1(k) κ0 ∧ ζ0 − L1(k) κ0 ∧ ζ0 ,

dζ0 = 0,

which are equivalent to the Lie bracket relations:

[T ,L1] = −P T , [T ,K ] = L1(k)T + T (k)L1,

[T ,L1] = −P T , [T ,K ] = L1(k)T + T (k)L1,

[L1,L1] = −iT , [L1,K ] = L1(k)L1,

[L1,K ] = L1(k)L1, [L1,K ] = L1(k)L1,

[L1,K ] = L1(k)L1, [K ,K ] = 0.

We note that the Jacobi identity implies the following two additional re-
lations:

K (P ) = −P L1(k)− L1 (L1(k)) ,

and
K (P ) = −P L1(k)− L1 (L1(k))− iT (k)

The Freeman form ofM at a pointp might be identified with theC-skew
bilinear form:

FF(p) : (x, y) −→ xy · κ0

(

[K ,L1]p

)

,

and it does vanish identically onM if and only if M is biholomorphic,
locally in the neighbourhood of every point, to a product:

M = N × C
2,

where N ⊂ C
2 is a smooth hypersurface ofC2 (see, for example,

arxiv.org/abs/1311.5669/, pp. 70–94).
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From the above Lie brackets formulae, the fact thatM is2-nondegenerate
at every point, i.e. that its Freeman-form is non-zero, is thus expressed by
the biholomorphically invariant assumption that:

L1(k) vanishes nowhere onM ;

notice here thatL1(k) appears as the coefficient ofζ0 ∧ κ0 in dκ0.
The equivalence problem under biholomophisms of hypersurfacesM ⊂

C
3 which are2-nondegenerate and of constant Levi rank1 is now reinter-

preted as an equivalence problem betweenG-structures. We recall that if
G ⊂ GL(n,R) is a Lie group, aG-structure on a manifoldM of dimension
n is a subbundle of the bundleF (M) of frames ofM , which is a principal
G-bundle. We make the following observation: ifφ is a local biholomor-
phism ofC3 such thatφ(M) = M , then the restrictionφM of φ to M is a
local smooth diffeomorphism ofM which satisfies the additional two con-
ditions:

(1) φM stabilizes the bundleT 1,0(M);
(2) φM stabilizes the kernel of the Levi form ofM .

As a result, there are three functionsf, c ande onM such that :

φM∗(K ) = f K ,

and
φM∗(L1) = cL1 + eK .

Of course, asφM is a real diffeomorphism, we shall also have :

φM∗(K ) = φM∗(K ) = f K ,

and
φM∗(L1) = φM∗(L1) = cL1 + eK .

Moreover, as we have:

φM∗(T ) = i [φM∗(L1), φM∗(L1)] ≡ c cT mod T 1,0M,

there exist two functionsb andd onM such that:

φM∗(T ) = ccT + bL1 + dK + bL1 + dK .

Let G1 be the10-dimensional real matrix Lie group whose elements are of
the form:

g :=









cc 0 0 0 0
b c 0 0 0
d e f 0 0
b 0 0 c 0
d 0 0 e f









,

wherec and f are non-zero complex numbers, whileb, d, e are arbitrary
complex numbers. The equivalence problem forM is suitably encoded by
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theG1-structureP 1 on M consisting of the coframes of1-formsω which
satisfy the relation:

ω = g · ω0,

for someg ∈ G1.
The rest of the present paper is devoted to solve the equivalence prob-

lem forP 1 using Cartan’s theory, for which we use [8] and [9] as standard
references.

3. REDUCTIONS OFP 1.

The coframeω0 gives a natural (local) trivialisationP 1 tr
−→ M × G1

from which we may consider any differential form onM (resp. G1) as a
differential form onP 1 through the pullback by the first (resp. the second)
component oftr. With this identification, the structure equations ofP 1 are
naturally obtained by the formula:

dω = dg · g−1 ∧ ω + g · dω0.

The termg · dω0 contains the so-called torsion coefficients ofP 1. A 1-
form α̃ on P 1 is called a modified Maurer-Cartan form if its restriction to
any fiber ofP 1 is a Maurer-Cartan form ofG1, or equivalently, if it is of the
form:

α̃ := α− xρ ρ − xκ κ− xζ ζ − xκ κ − xζ ζ,

wherexρ, xκ, xζ , xκ, xζ are arbitrary complex-valued functions onM and
whereα is a Maurer-Cartan form ofG1. From the relations (3), we derive
the following structure equations ofP 1:

dρ = α̃1 ∧ ρ+ α̃1 ∧ ρ+ i κ ∧ κ,

dκ = α̃1 ∧ κ+ α̃2 ∧ ρ+ T ζ ∧ κ,

dζ = α̃3 ∧ ρ+ α̃4 ∧ κ+ α̃5 ∧ ζ,

dκ = dκ,

dζ = dζ,

for some modified Maurer-Cartan forms̃α1, α̃2, α̃3, α̃4 andα̃5, where the
essential torsion coefficientT is given by:

T =
c

cf
L1(k).

From standard results on Cartan theory (see [8, 9]), a diffeomorphism ofM
is an isomorphism of theG1-structureP 1 if and only if it is an isomorphism
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of the reduced bundleP 2 ⊂ P 1 consisting of those coframesω onM such
that

T = 1.

This is equivalent to the normalization:

f =
c

c
L1(k),

from which one can considerP 2 as aG2-structure onM , whereG2 is the
8-dimensional matrix Lie group whose elementsg take the form:

g =









cc 0 0 0 0
b c 0 0 0
d e

c

c
0 0

b 0 0 c 0
0 0 d e

c

c









.

The next step is now to reduce the bundleP 2. To this aim, one determines
its structure equations, which take the form:

dρ = β̃1 ∧ ρ+ β̃1 ∧ ρ+ i κ ∧ κ,

dκ = β̃1 ∧ κ+ β̃2 ∧ ρ+ ζ ∧ κ,

dζ = β̃3 ∧ ρ+ β̃4 ∧ κ+ β̃1 ∧ ζ − β̃1 ∧ ζ + U ζ ∧ κ,

for some modified Maurer-Cartan forms̃β1, β̃2, β̃3 and β̃4. Setting the
essential torsionU to 0 yields the normalization:

b = −i ce+ i
c

3

(

L1

(
L1(k)

)

L1(k)
− P

)

.

Introducing the subbundleP 3 ⊂ P 2 of those coframes onM such thatb is
defined by the above formula, we are reduced to the study of aG3 equiva-
lence problem whereG3 is the6-dimensional matrix Lie group whose ele-
ments are of the form:

g =









cc 0 0 0 0
−i ec c 0 0 0
d e

c

c
0 0

i ec 0 0 c 0
d 0 0 e

c

c









.
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As for the first two steps, we determine the set of the new structure equa-
tions enjoyed byP 3:

dρ = γ̃1 ∧ ρ+ γ̃1 ∧ ρ+ i κ ∧ κ,

dκ = γ̃1 ∧ κ+ γ̃2 ∧ ρ+ ζ ∧ κ

dζ = γ̃3 ∧ ρ+ i γ̃2 ∧ κ+ γ̃1 ∧ ζ − γ̃1 ∧ ζ + V 1 κ ∧ ζ + V 2 κ ∧ κ ,

for some modified Maurer-Cartan formsγ̃1, γ̃2, γ̃3 and two functionsV 1

andV 2. The normalization of the group parameterd comes from the nor-
malizationV 2 = 0, which yields:

d = −i
1

2

e
2
c

c
+ i

2

9

c

c

L1

(
L1(k)

)2

L1(k)2
+ i

1

18

c

c

L1

(
L1(k)

)
P

L1(k)

− i
1

9

c

c
P

2
+ i

1

6

c

c
L1

(
P
)
− i

1

6

c

c

L1

(
L1

(
L1(k)

))

L1(k)
.

Considering those1-forms onM such thatV 2 = 0, we introduce a sub-
bundleP 4 which is aG4-structure onM , whereG4 is the4-dimensional
Lie group whose elements are of the form:

g =









cc 0 0 0 0
−i ec c 0 0 0

− i
2

e2c

c
e

c

c
0 0

i ec 0 0 c 0
i
2

e
2
c

c
0 0 e

c

c









.

4. MAIN THEOREM

The fourth loop of reductions leads to a more advanced analysis than the
three previous ones. The normalizations of the group parameters that are
suggested at this stage depend on the vanishing or the non-vanishing of two
functions,J andW , which appear to be two fundamental invariants of the
problem. The new set of structure equations is indeed of the form:

dρ = δ̃1 ∧ ρ+ δ̃1 ∧ ρ+ i κ ∧ κ,

dκ = δ̃1 ∧ κ+ δ̃2 ∧ ρ+ ζ ∧ κ

dζ = i δ̃2 ∧ κ+ δ̃1 ∧ ζ − δ̃1 ∧ ζ +
W

c
ρ ∧ ζ + i

J

c
3
ρ ∧ κ ,
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for some modified Maurer-Cartan formsδ̃1, δ̃2, where the functionsJ and
W are defined onM by:

J =
5

18

L1

(
L1(k)

)2

L1(k)2
P +

1

3
P L1 (P )−

1

9

L1

(
L1(k)

)

L1(k)
P 2

+
20

27

L1

(
L1(k)

)3

L1(k)3
−

5

6

L1

(
L1(k)

)
L1

(
L1

(
L1(k)

))

L1(k)2

+
1

6

L1

(
L1(k)

)
L1(P )

L1(k)
−

1

6

L1

(
L1

(
L1(k)

))

L1(k)
P

−
2

27
P 3 −

1

6
L1 (L1 (P )) +

1

6

L1

(
L1

(
L1

(
L1(k)

)))

L1(k)
,

and

W :=
2

3

L1

(
L1(k)

)

L1(k)
+

2

3

L1

(
L1(k)

)

L1(k)

+
1

3

L1

(
L1(k)

)
K
(
L1(k)

)

L1(k)3
−

1

3

K
(
L1

(
L1(k)

))

L1(k)2
+

i

3

T (k)

L1(k)
.

We thus observe a branching phenomenon at that point: ifJ andW are
both identically vanishing onM , then no further reductions of the group
parameters are allowed and the equivalence problem must be handled by a
suitable prolongation. However, ifJ is non-vanishing we can normalize the
parameterc by

c = J
1

3 ,

whereas ifW is non vanishing we can perform the normalization

c = W.

We notice here that we are not treating the cases where one of the two
invariantsJ orW might vanish somewhere onM without beeing identically
vanishing onM , that is we are making a genericity assumptionM , which is
a standard process when using Cartan’s theory. This motivates the following
definition:

Definition 1. A 5-dimensional CR-submanifold ofC3 of CR-dimension2
which is2-non degenerate, and whose Levi form is of constant rank1 is
said to be generic if the functionsJ andW are either0 or non-vanishing
onM .

We are now in position to state the main theorem of the presentpaper:
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Theorem 2. LetM ⊂ C
3 be aC ∞-smooth5-dimensional hypersurface of

CR-dimension2, which is2-non degenerate, whose Levi form is of constant
rank1 and which is generic in the sense of definition 1. Then

(1) if W 6≡ 0 or if J 6≡ 0 on M , then the local equivalence problem
for M reduces to the equivalence problem for a five dimensional
{e}-structure.

(2) if W ≡ 0 andJ ≡ 0 identically onM , thenM is locally biholo-
morphic to the tube over the light cone.

Granted that the functionsk and P are expressed in terms of partial
derivatives of order≤ 3 of the graphing functionF , and that the two main
invariantsJ andW are explicit in terms ofk andP , we stress that the local
biholomorphic equivalence to the light cone is explicitelycharacterised in
terms ofF .

It is well-known (see, for example, [6]) that the group of automorphisms
U of an{e}-structure on aC ∞ manifoldN is a Lie transformation group
such that dimU ≤ dimN.

Corollary 1. LetM ⊂ C
3 be aC ∞ CR-manifold satisfying the hypotheses

of theorem 2. IfM is not locally equivalent to the tube over the light cone
at a pointp ∈ M , then the dimension of the Lie algebra of germs of CR-
automorphisms ofM at p is bounded by5.

The next3 subsections are devoted to complete the proof of theorem 2, by
distinguishing the3 casesJ 6≡ 0, W 6≡ 0 andJ ≡ W ≡ 0. The following
lemma is of crucial importance for the first two cases:

Lemma 1. The invariantsJ andW satisfy the following two differential
equations:

K (J) + 3L1(k) J = 0,

and

K (W ) + 2L1(k)W = 0.

Proof. These equations are obtained by a direct computation ofK (J) and
K (W ), using the fact thatK (k) = 0 and the commutation relations be-
tween the vector fieldsL1, L1, K , K andT . �

4.1. CaseJ 6≡ 0. From the normalizationc3 = J , the expression ofdρ
becomes

dρ = Sρ
ρκ ρ ∧ κ + S

ρ

ρζ ρ ∧ ζ + S
ρ
ρκ ρ ∧ κ + S

ρ

ρζ
ρ ∧ ζ + i κ ∧ κ
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for some essential torsion coefficientsSρ
ρκ, Sρ

ρζ , S
ρ
ρκ andSρ

ρζ
. On the other

hand, the expression ofdζ is
dζ = i δ2 ∧ κ

+ Sζ
ρκ ρ ∧ κ+ S

ζ

ρζ ρ ∧ ζ + ρ ∧ ζ

+S
ζ

κζ κ∧ ζ +S
ζ
κκ κ∧κ+S

ζ

κζ
κ∧ ζ +S

ζ

ζκ ζ ∧κ+S
ζ

ζζ
ζ ∧ ζ,

where theS•
•• are new torsion coeficients. From the above equations, we get

that−S
ρ
ρκ+S

ζ

ζκ is an essential torsion coefficient, which can be normalized
to zero. The careful computation of this coefficient, using lemma1, gives
the normalization ofe:

e =
1

3

J1/3

J
1/3

(

−
L1(J)

J
+ 2

L1

(
L1(k)

)

L1(k)
+ P

)

.

4.2. CaseW 6≡ 0. We now assume that the fonctionW does not vanish on
M , and we show how the group parametere can be normalized. We choose
the normalizationc := W . The second structure equation takes the form:

dκ = −i dǫ ∧ ρ

+Xκ
ρκ ρ ∧ κ +Xκ

ρζ ρ ∧ ζ +Xκ
ρκ ρ ∧ κ +Xκ

ρζ
ρ ∧ ζ

+Xκ
κζ κ ∧ ζ +Xκ

κκ κ ∧ κ+Xκ

κζ
κ ∧ ζ + ζ ∧ κ,

whereǫ = e

W
, and for a new set of torsion coefficientsX•

••. The computa-
tion of the coefficientXκ

κκ gives, using lemma1:

Xκ
κκ = −2 ǫ−

L1 (W )

WW
−

1

3

L1

(
L1(k)

)

WL1(k)
+

1

3

P

W
.

Setting this coefficient to zero, we get a normalization ofǫ, and hence ofe.

4.3. CaseJ ≡ W ≡ 0. We suppose thatW ≡ J ≡ 0 identically onM . If
we return to the structure equations that we have obtained for P 4 at the end
of section3, we have:

(2)

dρ = δ̃1 ∧ ρ+ δ̃1 ∧ ρ+ i κ ∧ κ,

dκ = δ̃1 ∧ κ+ δ̃2 ∧ ρ+ ζ ∧ κ

dζ = i δ̃2 ∧ κ+ δ̃1 ∧ ζ − δ̃1 ∧ ζ,

for a certain choice of modified Maurer-Cartan formsδ̃1 andδ̃2 onP 4. We
remark that this set of equations are invariant if we replaceδ̃1 andδ̃2 by the
1-formsπ1 andπ2 defined by:

{
π1 := δ̂1 + t ρ

π2 := δ̂2 + tκ,
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wheret is a real parameter. As no further reductions of the group parameters
are allowed by the above structure equations, we perform a prolongation
of the problem by considering theGprol-structure onP 4 consisting of the
coframesω onP 4 of the form:

ωt :=
(

ρ, κ, ζ, κ, ζ, π1, π2, π1, π2

)

,

whereGprol is the1-dimensional Lie group whoses elementsgt act on the
coframesω by:

gt · ωs = ωt+s.

As P 4 is 9-dimensional, this introduce a10-dimensional subbundle of the
bundle of frames ofP 4, that we denote byΠ in the sequel. Our next aim
is to determine the expressions ofdπ1 anddπ2. Both of these expressions
can be deduced by taking the exterior derivative of the equations (2). For
example, taking the exterior derivative of both sides of theequation giving
dρ, we get after simplications:

0 =
(

dπ1 − i κ ∧ π2 + dπ1 + i κ ∧ π2

)

∧ ρ.

The same operations fordκ anddζ yield

0 =
(
dπ1 − ζ ∧ ζ

)
∧ κ+

(

dπ2 − π2 ∧ π1 − ζ ∧ π2

)

∧ ρ,

0 =
(

dπ1 − dπ1 − i κ ∧ π2

)

∧ ζ + i
(

dπ2 − π2 ∧ π1

)

∧ κ.

From these equations, we deduce the existence of a modified Maurer-Cartan
formΛ onΠ such that:

dπ1 = i κ ∧ π2 + ζ ∧ ζ + Λ ∧ ρ,

dπ2 = π2 ∧ π1 + ζ ∧ π2 + Λ ∧ κ.

By addingΛ to the set of1-forms ρ, κ, ζ, κ, ζ, π1, π2, π1, π2, we get a
10-dimensional{e}-structure onΠ which constitutes the second (and last)
1-dimensional prolongation to the equivalence problem. It remains to de-
termine the exterior derivative ofΛ, which is done by taking the exterior
derivative ofdπ1 anddπ2, which yields:

0 =
(

dΛ− Λ ∧ π1 − Λ ∧ π1 − i π2 ∧ π2

)

∧ ρ

0 =
(

dΛ− i π2 ∧ π2 − Λ ∧ π1 − Λ ∧ π1

)

∧ κ = 0.

From these last two equations, we deduce that:

dΛ = i π2 ∧ π2 + Λ ∧ π1 + Λ ∧ π1.
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Summing up the results that we have obtained so far, the ten1-differential
formsρ, κ, ζ, κ, ζ, π1, π2, π1, π2, Λ, satisfy the structure equations:

dρ = π1 ∧ ρ+ π1 ∧ ρ+ i κ ∧ κ,

dκ = π1 ∧ κ+ π2 ∧ ρ+ ζ ∧ κ,

dζ = i π2 ∧ κ+ π1 ∧ ζ − π1 ∧ ζ,

dπ1 = i κ ∧ π2 + ζ ∧ ζ + Λ ∧ ρ,

dπ2 = π2 ∧ π1 + ζ ∧ π2 + Λ ∧ κ,

dΛ = i π2 ∧ π2 + Λ ∧ π1 + Λ ∧ π1.

The torsion coefficients of these structure equations are all constant, and
they do not depend on the graphing functionF of M . This proves that all
the hypersurfacesM which satisfy

J = W = 0

are locally biholomorphic. A direct computation shows thatthe tube over
the future light cone is precisely such thatJ = W = 0. This completes the
proof of theorem2.

5. EXTENSIONS OF THEOREM2

We now give a slight extension of theorem 2. IfM is a 5-dimensional
abstract CR-manifold of CR dimension2 then there exist a subbundleL of
C⊗ TM of dimension2 such that

(1) L ∩ L = {0}
(2) L is formally integrable.

It is then well-known that there exist local coordinates(x1, x2, x3, x4, v) on
M and two local sectionsL1 andL2 of L, such that:

L1 =
∂

∂z1
+ A1

∂

∂v
, L2 =

∂

∂z2
+ A2

∂

∂v
,

whereA1 andA2 are two locally defined functions onM , and where the
vector fields ∂

∂z1
and ∂

∂z2
are defined by the usual formulas:

∂

∂z1
=

1

2

(
∂

∂x1

− i
∂

∂x2

)
∂

∂z2
=

1

2

(
∂

∂x3

− i
∂

∂x4

)

.

As a result, we can define the functionsk andP together with the four
vector fieldsK , L1, K andT in terms of the fundamental functionsA1

andA2 as in the embedded case, and all the subsequent structure equations
at each step of Cartan’s method are unchanged. Theorem 2 remains thus
valid in the more general setting of abstract CR-manifolds.
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Finally, theG-structures that we introduce at each step are in fact globally
defined onM (as subbundles ofC ⊗ TM ). As a result, the first part of
theorem 2 has the following global counterpart:

Theorem 3. Let M be an abstract CR-manifold satisfying the hypotheses
of theorem 2. ThenJ andW are globally defined onM . If J does not
vanish onM or if W does not vanish onM , then there exist an absolute
parallelism onM .
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EXPLICIT ABSOLUTE PARALLELISM
FOR 2-NONDEGENERATE REAL HYPERSURFACES

M5 ⊂ C
3 OF CONSTANT LEVI RANK 1

SAMUEL POCCHIOLA

ABSTRACT

We study the local equivalence problem for five dimensional real hyper-
surfacesM5 of C3 which are2-nondegenerate and of constant Levi rank1
under biholomorphisms. We find two invariants,J andW , which are ex-
pressed explicitly in terms of the graphing functionF of M , the annulation
of which give a necessary and sufficient condition forM to be locally bi-
holomorphic to a model hypersurface, the tube over the lightcone. If one
of the two invariantsJ orW does not vanish onM , we show that the equiv-
alence problem under biholomophisms reduces to an equivalence problem
between{e}-structures, that is we construct an absolute parallelism onM .

1. INTRODUCTION

A smooth5-dimensional real hypersurfaceM ⊂ C
3 is locally repre-

sented as the graph of a smooth functionF over the5-dimensional real
hyperplaneCz1 × Cz2 × Rv:

u = F (z1, z2, z1, z2, v).

Such a hypersurfaceM is said to be of CR-dimension2 if at each pointp
of M , the vector space

T 1,0
p M := C⊗ TpM ∩ T 1,0

p C

is of complex dimension2 (for background, see [21, 4, 2]).
We recall that the Levi formLF of M at a pointp is the skew-symmetric

hermitian form defined onT 1,0
p M by

LF (X, Y ) = i [X̃, Ỹ ]p mod T 1,0
p M ⊕ T 0,1

p M,

whereX̃ and Ỹ are two local sectionsM −→ T 1,0M such thatX̃p = X

andỸp = Y .
The aim of this paper is to study the equivalence problem under biholo-

morphisms of the hypersurfacesM ⊂ C
3 which are of CR-dimension2,

28
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and whose Levi form is degenerate and of constant rank1. For well-known
natural reasons, we will also assume that the hypersurfaceswe consider are
2-nondegenerate, i.e. that their Freeman forms are non-zero(see for exam-
ple [21], p. 91). Two other approaches on this problem have been recently
provided by Isaev-Zaitsev and Medori-Spiro ([18, 10]). We refer to [9]
for an historical perspective on equivalence problems for hypersurfaces of
complex spaces.

We start by exhibiting two vector fieldsL1 andL2 which constitute a
basis ofT 1,0

p M at each pointp of M . This provides an identification of
T 1,0
p M with C

2 at each point. We also exhibit a real1-form σ on TM

whose prolongation toC⊗ TM satisfies:

{σ = 0} = T 1,0M ⊕ T 0,1M,

which provides an identication of the projection

C⊗ TpM −→ C⊗ TpM /
(
T 1,0
p M ⊕ T 0,1

p M
)

with the mapσp: C ⊗ TpM −→ C. With these two identifications, the
Levi form LF can be viewed at each pointp as a skew hermitian form on
C

2 represented by the matrix:

LF =

(
σp

(
i [L1,L1]

)
σp

(
i [L2,L1]

)

σp

(
i [L1,L2]

)
σp

(
i [L2,L2]

)

)

.

The fact thatLF is supposed to be of constant rank1 ensures the exis-
tence of a certain functionk such that the vector field

K := kL1 + L2

lies in the kernel ofLF . Our explicit computation ofLF provides us with
an explicit expression ofk in terms of the graphing functionF for M . In
fact, here are the expressions ofL1 andK :

L1 = ∂z1 − i
Fz1

1 + i Fv

∂v,

K = k ∂z1 + ∂z2 −
i

1 + i Fv

(k Fz1 + Fz2) ∂v,

and also ofk:

k = −
Fz2,z1 + Fz2,z1 F 2

v − i Fz1 Fz2,v − Fz1 Fv Fv,z2 + i Fz2 Fz1 Fv,v − Fz2 Fv Fv,z1

Fz1,z1 + Fz1,z1 F 2
v − i Fz1 Fz1,v − Fz1 Fv Fz1,v + i Fz1 Fz1,v + Fz1 Fz1 Fv,v − Fz1 Fv Fv,z1

,

and we want to emphasize that all our subsequent computations will be
expressed in terms of Lie derivatives of the functionk by the vector fields
L1, K , L1, K , hence in terms ofF .

From our construction, the four vector fieldsL1, K , L1, K constitute
a basis ofT 1,0

p M ⊕ T 0,1
p M at each pointp of M . It turns out that the vector
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field T defined by:

T := i [L1,L1]

is linearly independant fromL1, K , L1, K . With the five vector fields
L1, K , L1, K andT , we have thus exhibited a local section fromM
intoC⊗ F (M), the complexification of the bundleF (M) of frames ofM ,
which is geometrically adapted toM in the following sense:

(1) the line bundle generated byK is the kernel of the Levi form ofM ,
(2) L1 andK constitute a basis ofT 1,0M ,
(3) T is defined by the formulaT := i [L1,L1].

Then we define the coframe of1-forms:
(
ρ0, κ0, ζ0, κ0, ζ0

)

which is the dual coframe of the frame:
(
L1,K ,L1,K ,T

)
.

The computation of the exterior derivatives ofρ0, κ0, ζ0, κ0, ζ0, which
constitute the so-called structure equations of the coframe, involves another
important function onM , that we denote byP in the sequel. We give here
the expression ofP in terms of the graphing functionF because, as with the
function k, all our subsequent computations will involve terms expressed
as derivatives ofP by the fundamental vector fieldsL1, K , L1, K , T ,
namely:

P =
lz1 + A1 lv − l A1

v

l
,

where:

A1 = 2
Fz1

1 + i Fv

,

and where:

l := i
(

A1
z1
− A1

z1
+ A1A1

v − A1A1

v

)

.

Then in terms ofP andk, the structure equations enjoyed byρ0, κ0, ζ0,
κ0, ζ0, are the following:

dρ0 = P ρ0 ∧ κ0 − L1(k) ρ0 ∧ ζ0 + P ρ0 ∧ κ0 − L1(k) ρ0 ∧ ζ0 + i κ0 ∧ κ0 ,

dκ0 = −T (k) ρ0 ∧ ζ0 − L1(k) κ0 ∧ ζ0 + L1(k) ζ0 ∧ κ0 ,

dζ0 = 0,

dκ0 = −T (k) ρ0 ∧ ζ0 − L1(k) κ0 ∧ ζ0 − L1(k) κ0 ∧ ζ0 ,

dζ0 = 0.
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The fact thatM is 2-nondegenerate is expressed by the (biholomorphically
invariant, see [21]) assumption that:

L1(k) vanishes nowhere onM ;

notice here thatL1(k) appears as the coefficient ofζ0 ∧ κ0 in dκ0.
The end of section 2 is devoted to reinterpret the equivalence problem

under biholomophisms of such hypersurfaces as an equivalence problem
betweenG-structures. We recall that ifG ⊂ GL(n,R) is a Lie group, a
G-structure on a manifoldM of dimensionn is a subbundle of the bun-
dle F (M) of frames ofM , which is a principalG-bundle. The fact that
we can express the equivalence problem in terms of equivalences between
G-structures comes from the following observation: ifφ is a local biholo-
morphism ofC3 such thatφ(M) = M , then the restrictionφM of φ to M

is a local smooth diffeomorphism ofM which satisfies the additional two
conditions:

(1) φM stabilizes the bundleT 1,0(M);
(2) φM stabilizes the kernel of the Levi form ofM .

As a result, there are three functionsf, c ande onM such that :

φM∗(K ) = f K ,

and
φM∗(L1) = cL1 + eK .

Of course, asφM is a real diffeomorphism, we shall also have :

φM∗(K ) = φM∗(K ) = f K ,

and
φM∗(L1) = φM∗(L1) = cL1 + eK .

It is then easy to show that the matrix Lie group which encodessuitably the
problem is the10 dimensional Lie groupG1 given by the matrices of the
form:

g :=









cc 0 0 0 0
b c 0 0 0
d e f 0 0
b 0 0 c 0
d 0 0 e f









,

wherec and f are non-zero complex numbers, whileb, d, e are arbitrary
complex numbers.

The rest of our article is devoted to the implementation of Cartan’s equiv-
alence method to reduce thisG1-equivalence problem to an absolute paral-
lelism. We use [24] and [26] as standard references on Cartan’s equiva-
lence method. We develope the parametric version of Cartan’sequivalence
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method, that is we perform all the computations and give explicit expres-
sions of the functions involved in the normalizations of thegroup parame-
ters, because we need to control carefully the expressions of these functions:
some of them might indeed vanish identically onM , which is of crucial im-
portance when deciding whether a potential normalization might be allowed
or not. Our computations involves only terms which are derivatives of the
functionsk andP by the fundamental vector fieldsL1, K , L1, K , T , and
they become ramified by the fact that some relations exists between these
derivatives: those that follow simply from the Jacobi identities, and those
that follow from the fact that the Levi form ofM is of rank1 everywhere.
We give a sum up of the relations that we use at the end of subsection 2.2.
These relations imply important simplifications in the formulae we obtain
for the torsion coefficients, and shall not be missed if one keeps in mind
that we usually want to control whether these coefficients dovanish or not
on M , which is a delicate task, even with the help of a computer algebra
system.

We find in section 3 that the first normalization of the group parameters
is:

f =
c

c
L1(k).

This enables us to reduceG1 to a new matrix Lie groupG2, which is 8-
dimensional and whose elementsg take the form:

g =









cc 0 0 0 0
b c 0 0 0
d e c

c
0 0

b 0 0 c 0
0 0 d e c

c









.

We then perform a second loop in Cartan’s equivalence method in section
4, which yields the normalization:

b = −i ce+ i
c

3

(

L1

(
L1(k)

)

L1(k)
− P

)

,

and which therefore leads to aG3-equivalence problem, whereG3 is the
6-dimensional matrix Lie group whose elements are of the form:

g =









cc 0 0 0 0
−i ec c 0 0 0
d e c

c
0 0

i ec 0 0 c 0
d 0 0 e c

c









.
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The third loop is done in section 5 and it gives us a normalization of the
parameterd as:

d = −i
1

2

e2c

c
+ i

2

9

c

c

L1

(
L1(k)

)2

L1(k)2
+ i

1

18

c

c

L1

(
L1(k)

)
P

L1(k)

− i
1

9

c

c
P

2
+ i

1

6

c

c
L1

(
P
)
− i

1

6

c

c

L1

(
L1

(
L1(k)

))

L1(k)
.

This therefore reducesG3 to the4-dimensional groupG4, whose elements
are of the form:

g =









cc 0 0 0 0
−i ec c 0 0 0

− i
2

e2c

c
e c

c
0 0

i ec 0 0 c 0
i
2

e
2
c

c
0 0 e c

c









.

The fourth loop of Cartan’s method, which is done in section 6,leads to
a more advanced analysis than the three previous ones. The normalizations
of the group parameters that are suggested at this stage depend on the van-
ishing or the non-vanishing of two functions,J andW , which appear to be
two fundamental invariants of the problem. The expressionsof J andW
are given below:

J =
5

18

L1

(
L1(k)

)2

L1(k)2
P +

1

3
P L1 (P )−

1

9

L1

(
L1(k)

)

L1(k)
P 2

+
20

27

L1

(
L1(k)

)3

L1(k)3
−

5

6

L1

(
L1(k)

)
L1

(
L1

(
L1(k)

))

L1(k)2

+
1

6

L1

(
L1(k)

)
L1(P )

L1(k)
−

1

6

L1

(
L1

(
L1(k)

))

L1(k)
P

−
2

27
P 3 −

1

6
L1 (L1 (P )) +

1

6

L1

(
L1

(
L1

(
L1(k)

)))

L1(k)
,

and

W :=
2

3

L1

(
L1(k)

)

L1(k)
+

2

3

L1

(
L1(k)

)

L1(k)

+
1

3

L1

(
L1(k)

)
K
(
L1(k)

)

L1(k)3
−

1

3

K
(
L1

(
L1(k)

))

L1(k)2
+

i

3

T (k)

L1(k)
.

We thus observe a branching phenomenon at that point: ifJ andW are
both identically vanishing onM , then no further reductions of the group
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parameters are allowed by Cartan’s method. However, ifJ is non-vanishing
we can normalize the parameterc by

c = J
1

3 ,

whereas ifW is non vanishing we can perform the normalization

c = W.

We notice here that we are not treating the cases where one of the two
invariantsJ orW might vanish somewhere onM without beeing identically
vanishing onM , that is we are making a genericity assumptionM , which
is a standard process when using Cartan’s technique. To be fully precise,
we also suppose in section 8 that the functionK (W ) is generic onM , that
is it is either identically0 or non-vanishing onM , in order to establish the
results of this section. This motivates the following definition:

Definition 1. A five dimensional CR-submanifold ofC
3 of CR-dimension

2 which is2-non degenerate, and whose Levi form is of constant rank1 is
said to be generic if the functionsJ , W and K (W ) are either0 or non-
vanishing onM .

Section 7 is devoted to show that in the caseJ 6= 0, one can normalize the
last group parametere, thus reducing the equivalence problem to the study
of a five dimensional{e}-structure. Section 8 deals with the same issue in
the caseW 6= 0. To this end, we show thatW 6= 0 impliesK (W ) 6= 0
under the genericity assumption (this is the purpose of Lemma 1). In both
casesJ 6= 0 andW 6= 0, the final{e}-structure that we obtain onM
contains terms which are derivatives of the graphing functionF up to order
8. Thus the results of these sections only require thatM is C 8-smooth.

Finally, in section 9, we show that when bothJ andW vanish identi-
cally onM , we can reduce the equivalence problem to a10-dimensional
{e}-structure after performing two suitable prolongations. The structure
equations that we obtain are the same as those enjoyed by the tube over the
future the light cone:

(Re z1)
2 − (Re z2)

2 − (Re z3)
2 = 0, Re z1 > 0,

which is locally biholomorphic (see [11, 13]) to the graphedhypersurface:

u =
z1z1 +

1

2
z21z2 +

1

2
z21z2

1− z2z2
.

This proves the fact that whenJ andW are both vanishing,M is locally
biholomorphic to the tube over the light cone. We summarize these results
in the following theorem:
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Theorem 1. LetM ⊂ C
3 be aC 8-smooth5-dimensional hypersurface of

CR-dimension2, which is2-non degenerate, whose Levi form is of constant
rank1 and which is generic in the sense of definition 1. Then

(1) if W 6= 0 or if J 6= 0 on M , then the local equivalence problem
for M reduces to the equivalence problem for a five dimensional
{e}-structure.

(2) if W = 0 andJ = 0 identically onM , thenM is locally biholo-
morphic to the tube over the light cone.

Granted that the functionsk and P are expressed in terms of partial
derivatives of order≤ 3 of the graphing functionF , and that the two main
invariantsJ andW are explicit in terms ofk andP , we stress that the local
biholomorphic equivalence to the light cone is explicitelycharacterised in
terms ofF .

It is well-known (see, for example, [17]) that the group of automorphisms
U of an{e}-structure on aC ∞ manifoldN is a Lie transformation group
such that dimU ≤ dimN. As a result of theorem 1, we thus have:

Corollary 1. LetM ⊂ C
3 be aC ∞ CR-manifold satisfying the hypotheses

of theorem 1. IfM is not locally equivalent to the tube over the light cone
at a pointp ∈ M , then the dimension of the Lie algebra of germs ofCR-
automorphisms ofM at p is bounded by5.

We now give a slight extension of theorem 1. IfM is a 5-dimensional
abstractCR-manifold ofCR dimension2 then there exist a subbundleL of
C⊗ TM of dimension2 such that

(1) L ∩ L = {0}
(2) L is formally integrable.

It is then well-known that there exist local coordinates(x1, x2, x3, x4, v) on
M and two local sectionsL1 andL2 of L, such that:

L1 =
∂

∂z1
+ A1

∂

∂v
,

and

L2 =
∂

∂z2
+ A2

∂

∂v
,

whereA1 andA2 are two locally defined functions onM , and where the
vector fields ∂

∂z1
and ∂

∂z2
are defined by the usual formulae:

∂

∂z1
=

1

2

(
∂

∂x1

− i
∂

∂x2

)

,

and
∂

∂z2
=

1

2

(
∂

∂x3

− i
∂

∂x4

)

.
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As a result, we can define the functionsk andP together with the four
vector fieldsK , L1, K andT in terms of the fundamental functionsA1

andA2 as in the embedded case, and all the subsequent structure equations
at each step of Cartan’s method are unchanged. Theorem 1 remains thus
valid in the more general setting of abstractCR-manifolds.

Finally, theG-structures that we introduce at each step are in fact globally
defined onM (as subbundles ofC ⊗ TM ). As a result, the first part of
theorem 1 has the following global counterpart:

Theorem 2. LetM be an abstractCR-manifold satisfying the hypotheses
of theorem 1. ThenJ andW are globally defined onM . If J does not
vanish onM or if W does not vanish onM , then there exist an absolute
parallelism onM .

Acknowledgments.I wish to thank Professor Alexander Isaev for insight-
ful suggestions that provided improvements, e.g. the abstract and global
counterparts of theorem 1.

2. GEOMETRIC AND ANALYTIC SET UP

2.1. Shape of the initial coframe. Let M ⊂ C
3 be a local real analytic

hypersurface passing through the origin ofC
3. We recall thatM can be

represented as a graph over the5-dimensional real hyperplaneCz1 ×Cz2 ×
Rv:

u = F (z1, z2, z1, z2, v),

whereF is a local real analytic function depending on5 arguments. We
make the assumption thatM is aCR-submanifold ofCR dimension2, that
is the bundleT 1,0M is of complex dimension2. Let us look for a frame of
T 1,0M constituted of two vectors field of the form:

L1 =
∂

∂z1
+ A1

∂

∂w
,

L2 =
∂

∂z2
+ A2

∂

∂w
,

with two unknown functionsA1 andA2. AsM is the zero set of the function
G := u− F , the condition thatL1 andL2 belong toT 1,0M take the form:

dG (L1) = 0 and dG (L2) = 0.

As we have:

dG = du− Fz1 dz1 − Fz2 dz2 − Fz1 dz1 − Fz2 dz2 − Fv dv

and

∂w =
1

2
(∂u − i ∂v) ,
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these two conditions read as:

Fzj −
1

2
Aj −

i

2
Fv Aj = 0, j = 1, 2,

which lead to:

Aj = 2
Fzj

1 + i Fv

j = 1, 2.

If π denotes the canonical projectionC3 −→ C
2 × R which sends the

variables(z1, z2, w) on (z1, z2, v), the fact thatM is a graph over the hyper-
planeCz1×Cz2×Rv makes the restriction ofπ toM a local diffeomorphism
M −→ C

2×R, that is a local chart onM . All the subsequent computations
will be made in coordinates(z1, z2, v), which means that they will be made
through this local chart provided byπ. The (extrinsic) vector fieldsLj are
mapped byπ onto the (intrinsic) vector fieldsπ∗ (Lj). Asπ∗ (∂w) = − i

2
∂v,

we have:

π∗ (Lj) = ∂zj + Aj ∂v j = 1, 2

where

Aj := −i
Fzj

1 + i Fv

j = 1, 2.

In order to simplify the notations, we will still denotep∗ (Lj) by Lj

in the sequel. Ifσ is a 1-form on M whose kernel at each pointp is
T 1,0
p M ⊕ T 0,1

p M , we identify the projection

C⊗ TpM −→ C⊗ TpM / T 1,0
p M ⊕ T 0,1

p M

with the mapσp: C ⊗ TpM −→ C. An example of such a1-form σ is
given by:

σ := dv − A1 dz1 − A2 dz2 − A1 dz1 − A2 dz2.

As an identification ofT 1,0
p M with C

2 is also provided by the basis of vector
fieldsL1 andL2 , the Levi form ofM can be viewed as the skew-symmetric
hermitian form onC2 given by the matrix:

LF :=

(
σp

(
i [L1,L1]

)
σp

(
i [L2,L1]

)

σp

(
i [L1,L2]

)
σp

(
i [L2,L2]

)

)

.

The computation of the Lie bracket[L1,L1] gives:

[L1,L1] = [∂z1 + A1 ∂v, ∂z1 + A1 ∂v]

=
(

A1
z1 − A1

z1
+ A1A1

v − A1A1

v

)

∂v.

Similar computations of[L1,L2], [L2,L1] and[L2,L2] give that

[L1,L2] = [L2,L1] = [L2,L2] = 0 mod ∂v.
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In the sequel, we make the assumption thatM is Levi degenerate of rank
1. There is therefore a functionk defined onM such that

(

k

1

)

gives a basis

of the kernel ofLF . As a result of the definition ofk andLF , the four
Lie brackets[L1,L1], [L1,L2], [L2,L1] and[L2,L2] enjoy the following
two relations:

(1)

{
k [L1,L1] + [L2,L1] = 0

k [L1,L2] + [L2,L2] = 0.

Moreover, the vector fieldK := L2 + kL1 gives a basis of the kernel of
the Levi form onM and the four vectors fieldsL1, K , L1 andK give a
basis ofT 1,0M ⊕ T 0,1M . Let us introduce the fifth vector field

T := i [L1,L1].

As T lies in the line bundle generated by∂v, the five vector fieldsT , L1,
L1, K andK give a basis ofC⊗R TM .

2.2. Lie bracket structure. Let us explore the Lie bracket relations satis-
fied by this basis ofC⊗R TM . We start with the computation of[L1,L2].

[L1,L2] = [∂z1 + A1∂v, ∂z2 + A2∂v]

≡ 0 mod∂v,

which means that[L1,L2] belongs to the line bundle generated by∂v. On
the other hand, asL1 andL2 both belong toT 1,0M , and as it is a well
known fact thatT 1,0M is involutive, [L1,L2] belongs toT 1,0M , whose
intersection withC · ∂v is reduced to zero. We thus have:

[L1,L2] = 0.

As a result, we can compute[K ,L1]. Indeed we have:

[K ,L1] = [kL1 + L2,L1] = −L1(k)L1.

We now turn our attention on the computation of the bracket[K ,L1].
Using the relation(1), we get:

[K ,L1] = [kL1 + L2,L1]

= k [L1,L1] + [L2,L1]− L1(k)L1

= −L1(k)L1.

To compute further brackets, we need to determine the value of K (k).
Taking the Lie bracket betweenK and the complex conjugate of the first

equation of(1) gives:

K (k) [L1,L1] + k [K , [L1,L1]] + [K , [L1,L2]] = 0.
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As K (k) [L1,L1] belongs toC · ∂v, the vector field

S := k [K , [L1,L1]] + [K , [L1,L2]]

is equal to its projection onC · ∂v. It is thus sufficient to perform its com-
putation modT 1,0M . The Jacobi identity gives:

S = k [[K ,L1],L1] + k [L1, [K ,L1]] + [[K ,L1],L2] + [L1, [K ,L2]].

As [K ,L1] = −L1(k)L1, we have[L1, [K ,L1]] ≡ 0 mod T 1,0M .
Similarly we have[K ,L2] = −L2(k)L1, from which we deduce that
[L1, [K ,L2]] ≡ 0 modT 1,0M . We thus have:

S ≡ k [[K ,L1],L1] + [[K ,L1],L2] modT 1,0M

≡ [[K ,L1], kL1] + [[K ,L1],L2] modT 1,0M

≡ [[K ,L1],K ] modT 1,0M.

The involutivity of the bundleT 1,0M implies that [K ,L1] belongs to
T 1,0M . As K has been choosen to belong to the kernel of the Levi form
of M , [[K ,L1],K ] belongs toT 1,0M . We thus haveS ≡ 0 modT 1,0M ,
from which we deduce:

(2) K (k) = 0.

We are now ready to compute[K ,K ]:

[K ,K ] = [kL1 + L2, kL1 + L2]

= k k [L1,L1] + k [L1L2] + k [L2,L1] + k [L2,L1] + [L2,L2]

+ kL1(k)L1 + L2(k)L1 − L2(k)L1 − kL1(k)L1

= k
(
k [L1,L1] + [L1L2]

)
+
(
k [L2,L1] + [L2,L2]

)
+ K (k)L1 − K (k)L1

= 0 by (1) and(2).

We now compute[L1,T ]. We recall that from the definition ofT we have
T = l ∂v, where the functionl is defined by

l := i
(

A1
z1
− A1

z1
+ A1A1

v − A1A1

v

)

.

We thus have:

[L1,T ] = [∂z1 + A1 ∂v, l ∂v]

=
(
lz1 + A1 lv − l A1

v

)
∂v

= P T .

whereP is the function defined onM by

P =
lz1 + A1 lv − l A1

v

l
.
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The last bracket that we need to compute is[K ,T ]. Using the Jacobi
identity, we get:

[K ,T ] = i[K , [L1,L1]]

= i [[K ,L1],L1] + i [L1, [K ,L1]]

= i [− L1(k)L1,L1] + i [L1,−L1(k)L1]

= −L1(k)T + iL1 (L1(k))L1 − iL1

(
L1(k)

)
L1

= −L1(k)T − i [L1,L1](k)L1

= −L1(k)T − T (k)L1.

The Jacobi identity actually implies other relations between the functions
P , k and their derivatives with respect to the five vector fieldsT , L1, L1,
K andK . The following computation of[K , [T ,L1]] aims to determine
an expression ofK (P ).

[K , [T ,L1]] = −[K , P T ]

= −K (P )T − P [− L1(k)T − T (k)L1]

= −K (P )T + P L1(k)T + P T (k)L1.

On the other hand, the Jacobi identity gives:

[K , [T ,L1]] = [[K ,T ],L1] + [T , [K ,L1]]

= [− L1(k)T − T (k)L1,L1] + [T ,−L1(k)L1]

= L1 (T (k)) L1 − L1(k) [T ,L1] + L1 (L1(k)) T

− L1(k) [T ,L1]− T (L1(k)) L1

= [L1,T ](k)L1 + 2L1(k) [L1,T ] + L1 (L1(k)) T

= P T (k)L1 + 2L1(k)P T + L1 (L1(k)) T

= P T (k)L1 + (2L1(k)P + L1 (L1(k)) )T .

By identification of both results, we have:

−K (P ) + P L1(k) = 2L1(k)P + L1 (L1(k)) ,

that is:
K (P ) = −P L1(k)− L1 (L1(k)) .

We computeK (P ) in a similar way. We start with a direct computation of
[K , [T ,L1]]:

[K , [T ,L1]] = −[K , P T ]

= −K (P )T − P [− L1(k)T − T (k)L1]

= −K (P )T + P L1(k)T + P T (k)L1.
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The computation using the Jacobi identity gives:

[K , [T ,L1]] = [[K ,T ],L1] + [T , [K ,L1]]

= [− L1(k)T − T (k)L1,L1] + [T ,−L1 L1]

= L1 (L1(k)) T − L1(k) [T ,L1] + L1 (T (k)) L1

− T (k)[L1,L1]− T
(
L1(k)

)
L1 − L1(k)[T ,L1]

= L1 (L1(k)) T + P L1(k)T + [L1,T ](k)L1 + iT (k)T + P L1(k)T

=
(
L1 (L1(k)) + P L1(k) + P L1(k) + iT (k)

)
T + P T (k)L1.

Identification of both results gives:

K (P ) = −P L1(k)− L1 (L1(k))− iT (k).

Let us summarize the results that we have obtained so far. Thefive vector
fieldsT , L1, L1, K andK enjoy the following Lie bracket structure:

(3)

[T ,L1] = −P T ,

[T ,L1] = −P T ,

[T ,K ] = L1(k)T + T (k)L1,

[T ,K ] = L1(k)T + T (k)L1,

[L1,L1] = −iT ,

[L1,K ] = L1(k)L1,

[L1,K ] = L1(k)L1,

[L1,K ] = L1(k)L1,

[L1,K ] = L1(k)L1,

[K ,K ] = 0,

whereP is a function defined onM . The Jacobi identity implies the fol-
lowing two additional relations:

K (P ) = −P L1(k)− L1 (L1(k)) ,

and
K (P ) = −P L1(k)− L1 (L1(k))− iT (k).

2.3. Structure equations of the initial coframe. From the formula

dω(X, Y ) = X (ω(Y ))− Y (ω(X))− ω ([X, Y ]) ,

whereX andY are two arbitrary vector fields andω is a 1-form, we de-
duce from equation (3) the structure equations enjoyed by the base coframe
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(ρ0, κ0, ζ0, κ0, ζ0), that is:
(4)
dρ0 = P ρ0 ∧ κ0 − L1(k) ρ0 ∧ ζ0 + P ρ0 ∧ κ0 − L1(k) ρ0 ∧ ζ0 + i κ0 ∧ κ0 ,

dκ0 = −T (k) ρ0 ∧ ζ0 − L1(k) κ0 ∧ ζ0 + L1(k) ζ0 ∧ κ0 ,

dζ0 = 0,

dκ0 = −T (k) ρ0 ∧ ζ0 − L1(k) κ0 ∧ ζ0 − L1(k) κ0 ∧ ζ0 ,

dζ0 = 0.

2.4. Equivalence under biholomorphisms.Let φ be a local biholomor-
phism of C3 such thatφ(0) = 0 which preservesM , i.e. such that
φ(M) = M . Then the restrictionφM of φ to M is a local real analytic
diffeomorphism ofM which satisfies the following two additional condi-
tions:

(1) φM stabilizes the bundleT 1,0M .
(2) φM stabilizes the kernel of the Levi form ofM .

As a result, there are three functionsf, c ande onM such that:

φM∗(K ) = f K ,

and
φM∗(L1) = cL1 + eK .

Of course, asφM is a real diffeomorphism, we shall also have:

φM∗(K ) = φM∗(K ) = f K ,

and
φM∗(L1) = φM∗(L1) = cL1 + eK .

On the other hand there is a priori no special condition that shall be satisfied
by φM∗(T ), except the fact that it shall be a real vector field, becauseT is
real. There are thus a real functiona and two complex valued functionsb
andd such that:

φM∗(T ) = aT + bL1 + dK + bL1 + dK .

We sum up these relations with the following matrix notation:

φM∗









T

L1

K

L1

K









=









a b d b d

0 c e 0 0
0 0 f 0 0
0 0 0 c e

0 0 0 0 f









·









T

L1

K

L1

K









.

As φM∗ is invertible, the functionsa, c and f shall not vanish onM .
The relation between the coframe(ρ0, κ0, ζ0, κ0, ζ0) and the coframe
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φ∗
M

(
ρ0, κ0, ζ0, κ0, ζ0

)
is thus given by a plain transposition of the previous

equation, that is:

φ∗
M









ρ0
κ0

ζ0
κ0

ζ0









=









a 0 0 0 0
b c 0 0 0
d e f 0 0
b 0 0 c 0
d 0 0 e f









·









ρ0
κ0

ζ0
κ0

ζ0









.

In fact the functiona shall satisfy another condition. AsT = i [L1,L1],
we have

φM∗(T ) = i [φM∗(L1), φM∗(L1)]

= i [cL1 + eK , cL1 + eK ]

≡ c cT mod T 1,0M,

On the other hand we have from the definition ofa thatφM∗(T ) ≡ aT

mod T 1,0M , which implies:

a = c c.

2.5. Initial G-structure. Let G1 be the10 dimensional real matrix Lie
group whose elements are of the form:

g :=









cc 0 0 0 0
b c 0 0 0
d e f 0 0
b 0 0 c 0
d 0 0 e f









,

wherec andf are non-zero complex numbers whereasb, d ande are arbi-
trary complex numbers.

Following [24], let us introduce5 new one-formsρ, κ, ζ, κ, ζ in accor-
dance with the shape of the ambiguity matrix related to localbiholomorphic
equivalences of such kinds of hypersurfaces:









ρ

κ

ζ

κ

ζ









:= g ·









ρ0
κ0

ζ0
κ0

ζ0









,
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that is to say, in expanded form:

ρ := cc ρ0,

κ := b ρ0 + cκ0,

ζ := d ρ0 + eκ0 + f ζ0,

κ := b ρ0 + cκ0,

ζv := d ρ0 + eκ0 + f ζ0.

By inverting the matrix:








ρ0
κ0

ζ0
κ0

ζ0









=









1

cc
0 0 0 0

−b

c2c

1

c
0 0 0

be−cd

c2cf
− e

cf

1

f
0 0

−b

cc
2 0 0 1

c
0

be−cd

cc
2
f

0 0 − e

cf

1

f

















ρ

κ

ζ

κ

ζ









,

we find how the{}0-indexed forms express in terms of the lifted complete
forms:

(5)

ρ0 =
1

cc
ρ,

κ0 = −
b

c2c
ρ+

1

c
κ,

ζ0 =
be− cd

c2cf
ρ−

e

cf
κ+

1

f
ζ,

κ0 = −
b

cc2
ρ+

1

c
κ,

ζ0 =
be− cd

cc2f
ρ−

e

cf
κ+

1

f
ζ.

3. ABSORPTION OF TORSION AND NORMALIZATION: FIRST LOOP

3.1. Lifted structure equations. We apply the Cartan’s method as ex-
plained in [24]. The first step is to compute the structure equations for
the lifted coframe. With the matrix notations

ω0 :=









ρ0
κ0

ζ0
κ0

ζ0









, ω :=









ρ

κ

ζ

κ

ζ









,

we have
ω = g · ω0.
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As a result, the structure equations for the lifted coframe are related to those
of the base coframe by the relation:

(6) dω = dg · g−1 ∧ ω + g · dω0.

The termdg · g−1 ∧ ω depends only on the structure equations ofG1 and
is expressed through its Maurer-Cartan forms. The termg · dω0 contains
the so-called torsion coefficients of theG1-structure. It is computed easily
in terms of the formsρ, κ, ζ, κ, ζ, by applying the linear change (5) in the
expression ofdω0, which is given by the set of equations (4), and a matrix
multiplication byg.

We start with the expression of the Maurer-Cartan forms ofG1. They
are given by the linear independant entries of the matrixdg · g−1. An easy
computation gives:

dg · g−1 =









α1 + α1 0 0 0 0
α2 α1 0 0 0
α3 α4 α5 0 0

α2 0 0 α1 0

α3 0 0 α4 α5









,

where

α1 :=
dc

c
,

α2 :=
db

cc
−

b dc

c2
c,

α3 :=
dd

cc
−

b de

c2c
+

(−dc+ eb) df

c2cf
,

α4 :=
de

c
−

e df

cf
,

α5 :=
df

f
.

The next step is to express the structure equations of the lifted coframe
from equation (6) as explained above. Rather lenghty but straigtforward
computations give:

dρ = α1 ∧ ρ+ α1 ∧ ρ

+ T ρ
ρκ ρ ∧ κ+ T

ρ

ρζ ρ ∧ ζ + T
ρ
ρκ ρ ∧ κ+ T

ρ

ρζ
ρ ∧ ζ + i κ ∧ κ,

dκ = α1 ∧ κ+ α2 ∧ ρ

+ T κ
ρκ ρ ∧ κ+ T κ

ρζ ρ ∧ ζ + T κ
ρκ ρ ∧ κ

+ T κ

ρζ
ρ ∧ ζ + T κ

κζ κ ∧ ζ + T κ
κκ κ ∧ κ+ T κ

ζκ ζ ∧ κ,
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dζ = α3 ∧ ρ+ α4 ∧ κ+ α5 ∧ ζ

+ T ζ
ρκ ρ ∧ κ+ T

ζ

ρζ ρ ∧ ζ + T
ζ
ρκ ρ ∧ κ

+ T
ζ

ρζ
ρ ∧ ζ + T

ζ

κζ κ ∧ ζ + T
ζ
κκ κ ∧ κ+ T

ζ

ζκ ζ ∧ κ,

where the expressions of the torsion coefficientsT •

••
are given by the fol-

lowing equations:

T ρ
ρκ = i

b

cc
+

e

cf
L1(k) +

P

c
,

T
ρ

ρζ = −
L1(k)

f
,

T
ρ
ρκ = −i

b

cc
+

e

cf
L1(k) +

P

c
,

T
ρ

ρζ
= −

L1(k)

f
,

T κ
ρκ = −

e

ccf
T (k)−

be

cc2f
L1(k)−

d

ccf
L1(k)+i

bb

c2c2
+

be

c2cf
L1(k)+

b

c2c
P,

T κ
ρζ =

b

c2f
L1(k)−

1

cf
T (k),

T κ
ρκ = −

d

c2f
L1(k) +

be

cc2f
L1(k)− i

b2

c2c2
+

be

cc2f
L1(k) +

b

cc2
P ,

T κ

ρζ
= −

b

ccf
L1(k)

T κ
κζ = −

L1(k)

f
,

T κ
κκ = −

e

cf
L1(k) + i

b

cc
,

T κ
ζκ =

c

cf
L1(k),

T ζ
ρκ = −

e2

c2cf
T (k)−

be2

c2c2f
L1(k) + i

bd

c2c2
+

d

c2c
P,

T
ζ

ρζ = −
e

ccf
T (k) +

be

cc2f
L1(k) +

be

c2cf
L1(k)−

d

ccf
L1(k),
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T
ζ
ρκ = −

de

cc2f
L1(k) +

be2

c2c2f
L1(k)− i

bd

c2c2
+

de

cc2f
L1(k) +

d

cc2
P ,

T
ζ

ρζ
= −

d

ccf
L1(k),

T
ζ

κζ = −
e

ccf
L1(k),

T
ζ
κκ = −

e2

ccf
L1(k) + i

d

cc
,

T
ζ

ζκ =
e

cf
L1(k).

3.2. Normalization of the group parameter f. We now proceed with the
absorption step of Cartan’s method. We introduce the modifiedMaurer-
Cartan forms̃αi, which are a related to the1-formsαi by the relations:

α̃i := αi − xi
ρ ρ − xi

κ κ− xi
ζ ζ − xi

κ κ − xi

ζ
ζ,

wherex1, x2, x3, x4 andx5 are arbitrary complex-valued functions. The
previously written structure equations take the new form:

dρ = α̃1 ∧ ρ+ α̃1 ∧ ρ

+
(
T ρ
ρκ − x1

κ − x1

κ

)
ρ ∧ κ +

(

T
ρ

ρζ − x1

κ − x1

ζ

)

ρ ∧ ζ

+
(

T
ρ
ρκ − x1

κ − x1
κ

)

ρ ∧ κ +
(

T
ρ

ρζ
− x1

ζ − x1

ζ

)

ρ ∧ ζ + i κ ∧ κ,

dκ = α̃1 ∧ κ+ α̃2 ∧ ρ

+
(
T κ
ρκ − x2

κ + x1

ρ

)
ρ ∧ κ +

(
T κ
ρζ − x2

κ

)
ρ ∧ ζ

+
(
T κ
ρκ − x2

κ

)
ρ ∧ κ+

(

T κ

ρζ
− x2

ζ

)

ρ ∧ ζ +
(
T κ
κζ + x1

ζ

)
κ ∧ ζ

+
(
T κ
κκ − x1

κ

)
κ ∧ κ + T κ

ζκ ζ ∧ κ +
(

T 1

κζ
− x1

κζ

)

κ ∧ ζ,

dζ = α̃3 ∧ ρ+ α̃4 ∧ κ+ α̃5 ∧ ζ

+
(
T ζ
ρκ − x3

κ + x4

ρ

)
ρ∧κ+

(

T
ζ

ρζ − x3

ζ + x5

ρ

)

ρ∧ ζ +
(
T ζ
ρκ − x3

κ

)
ρ ∧ κ

+
(

T
ζ

ρζ
− x3

ζ

)

ρ ∧ ζ +
(

T
ζ
κκ − x4

κ

)

κ ∧ κ+
(

T
ζ

ζκ − x5

κ

)

ζ ∧ κ

+
(
x5

κ − x4

ζ

)
κ ∧ ζ − x4

κ κ ∧ κ +
(

x5

κ − x4

ζ

)

κ ∧ ζ − x5

ζ
ζ ∧ ζ.

We then choosex1, x2, x3, x4 andx5 in a way that eliminate as many
torsion coefficients as possible. We easily see that the onlycoefficient which
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can not be absorbed is the one in front ofζ ∧ κ in dκ, because it does not
depend on thexi’s. We choose the normalization

T κ
ζκ = 1,

which yields to:

f =
c

c
L1(k).

We notice that the absorbed structure equations take the form:

dρ = α̃1 ∧ ρ+ α̃1 ∧ ρ+ i κ ∧ κ,

dκ = α̃1 ∧ κ+ α̃2 ∧ ρ+ ζ ∧ κ,

dζ = α̃3 ∧ ρ+ α̃4 ∧ κ+ α̃5 ∧ ζ.

As a preliminary step towards the second loop of the algorithm, we return
to the expression of the lifted coframe. The normalization of f gives the
new relation:

(7)









ρ

κ

ζ

κ

ζ









=









cc 0 0 0 0
b c 0 0 0
d e c

c
L1(k) 0 0

b 0 0 c 0
0 0 d e c

c
L1(k)









·









ρ0
κ0

ζ0
κ0

ζ0









.

Let us interpret this in the framework ofG-structures. We introduce the
new one-form

(8) ζ̂0 = L1(k) · ζ0,

such that the previous equation rewrites:

(9)









ρ

κ

ζ

κ

ζ









=









cc 0 0 0 0
b c 0 0 0
d e c

c
0 0

b 0 0 c 0
0 0 d e c

c









·









ρ0
κ0

ζ̂0
κ0

ζ̂0









.

We thus have reduced theG1 equivalence problem to aG2 equivalence
problem, whereG2 is the8 dimensional real matrix Lie group whose ele-
ments are of the form

g =









cc 0 0 0 0
b c 0 0 0
d e c

c
0 0

b 0 0 c 0
0 0 d e c

c









.
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The last task that we need to perform before the second loop ofthe al-
gorithm is to compute the new structures equations enjoyed by the base

coframe(ρ0, κ0, ζ̂0, κ0, ζ̂0). We easily get:

dρ0 = P ρ0 ∧ κ0 −
L1(k)

L1(k)
ρ0 ∧ ζ̂0 + P ρ0 ∧ κ0 −

L1(k)

L1(k)
ρ0 ∧ ζ̂0 + i κ0 ∧ κ0,

dκ0 = −
T (k)

L1(k)
ρ0 ∧ ζ̂0 −

L1(k)

L1(k)
κ0 ∧ ζ̂0 + ζ̂0 ∧ κ0,

dζ̂0 =
T
(
L1(k)

)

L1(k)
ρ0 ∧ ζ̂0 +

L1

(
L1(k)

)

L1(k)
κ0 ∧ ζ̂0

−
L1

(
L1(k)

)

L1(k)
ζ̂0 ∧ κ0 +

L1(k)

L1(k)
ζ̂0 ∧ ζ̂0 .

4. ABSORPTION OF TORSION AND NORMALIZATION: SECOND LOOP

4.1. Lifted structure equations. The Maurer forms of theG2 are given by
the independant entries of the matrixdg · g−1. A straightforward computa-
tion gives

dg · g−1 =









β1 + β1 0 0 0 0
β2 β1 0 0 0

β3 β4 β1 − β1 0 0

β2 0 0 β1 0

β3 0 0 β4 −β1 + β1









,

where the formsβ1, β2, β3 andβ4 are defined by

β1 :=
dc

c
,

β2 :=
db

cc
−

bdc

c2c
,

β3 :=
(−dc+ eb) dc

c3c
−

(−dc+ eb) dc

c2c2
+

dd

cc
−

bde

c2c
,

β4 := −
edc

c2
+

edc

cc
+

de

c
.

Using formula (6), we get the structure equations for the lifted coframe

(ρ, κ, ζ, κ, ζ) from those of the base coframe(ρ0, κ0, ζ̂0, κ0, ζ̂0) by a matrix
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multiplication and a linear change of coordinates, as in thefirst loop:

dρ = β1 ∧ ρ+ β1 ∧ ρ

+ Uρ
ρκ ρ ∧ κ+ U

ρ

ρζ ρ ∧ ζ + U
ρ
ρκ ρ ∧ κ+ U

ρ

ρζ
ρ ∧ ζ + i κ ∧ κ,

dκ = β1 ∧ κ+ β2 ∧ ρ

+ Uκ
ρκ ρ ∧ κ+ Uκ

ρζ ρ ∧ ζ + Uκ
ρκ ρ ∧ κ

+ Uκ

ρζ
ρ ∧ ζ + Uκ

κζ κ ∧ ζ + Uκ
κκ κ ∧ κ+ ζ ∧ κ,

dζ = β3 ∧ ρ+ β4 ∧ κ+ β1 ∧ ζ − β1 ∧ ζ

+ U ζ
ρκ ρ ∧ κ+ U

ζ

ρζ ρ ∧ ζ + U
ζ
ρκ ρ ∧ κ+ U

ζ

ρζ
ρ ∧ ζ

+ U
ζ

κζ κ ∧ ζ + U
ζ
κκ κ ∧ κ+ U

ζ

κζ
κ ∧ ζ + U

ζ

ζκ ζ ∧ κ+ U
ζ

ζζ
ζ ∧ ζ.

The torsion coefficientsU •

••
are given by:

Uρ
ρκ = i

b

cc
+

ec

c2
L1(k)

L1(k)
+

P

c
,

U
ρ

ρζ = −
c

c

L1(k)

L1(k)
,

U
ρ
ρκ = −i

b

cc
+

ec

c2
L1(k)

L1(k)
+

P

c
,

U
ρ

ρζ
= −

c

c

L1(k)

L1(k)
,

Uκ
ρκ = −

e

c2
T (k)

L1(k)
−

eb

c2c
−

d

c2
L1(k)

L1(k)
+ i

bb

c2c2
+

be

c3
L1(k)

L1(k)
+

b

c2c
P,

Uκ
ρζ =

b

cc
−

1

c

T (k)

L1(k)
,

Uκ
ρκ = −

d

cc
+

eb

c2c
− i

b2

c2c2
+

be

c3
L1(k)

L1(k)
+

b

cc2
P ,

Uκ

ρζ
= −

b

c2
L1(k)

L1(k)
,

Uκ
κζ = −

c

c

L1(k)

L1(k)
,

Uκ
κκ = −

e

c
+ i

b

cc
,
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U ζ
ρκ =

d

c2c

L1

(
L1(k)

)

L1(k)
−

ed

cc2
L1(k)

L1(k)
+

eeb

c3c

L1(k)

L1(k)
+

eb

c2c2
L1

(
L1(k)

)

L1(k)

−
e

c2c

T
(
L1 (k)

)

L1 (k)
+

e2

c3
T (k)

L1(k)
−

e2b

cc3
+ i

db

c2c2
+

d

c2c
P,

U
ζ

ρζ =
d

c2
L1(k)

L1(k)
−

eb

c3
L1(k)

L1(k)
−

b

cc2
L1

(
L1(k)

)

L1(k)
−

b

c2c

L1

(
L1(k)

)

L1 (k)

+
1

cc

T
(
L1(k)

)

L1(k)
−

e

c2
T (k)

L1(k)
+

eb

c2c
+

be

c3
L1(k)

L1(k)
−

d

c2
L1(k)

L1(k)
,

U
ζ
ρκ = 2

ed

c3
L1(k)

L1(k)
−

eeb

c3c

L1(k)

L1(k)
+

d

cc2
L1

(
L1(k)

)

L1(k)
−

eb

c2c2
L1

(
L1(k)

)

L1(k)

−
ed

c2c
+

e2b

cc3
− i

db

c2c2
+

d

cc2
P ,

U
ζ

ρζ
= −2

d

c2
L1(k)

L1(k)
+

eb

cc2
L1(k)

L1(k)
,

U
ζ

κζ =
1

c

L1

(
L1(k)

)

L1(k)
−

ec

c2
L1 (k)

L1(k)
,

U
ζ
κκ =

ee

c2
L1(k)

L1(k)
+

e

cc

L1

(
L1(k)

)

L1(k)
−

e2

c2
+ i

d

cc
,

U
ζ

κζ
= −

e

c

L1(k)

L1(k)
,

U
ζ

ζκ = −
ec

c2
L1(k)

L1(k)
−

1

c

L1

(
L1(k)

)

L1(k)
+

e

c
,

U
ζ

ζζ
=

c

c

L1(k)

L1(k)
.

4.2. Normalization of the group parameter b. We can now perform the
absorption step. As for the first loop, we introduce the modified Maurer-
Cartan formsβ̃i which differ from theβi by a linear combination of the
1-formsρ, κ, ζ, κ, ζ, i.e. that is:

β̃i = βi − yiρ ρ − yiκ κ− yiζ ζ − yiκ κ − yi
ζ
ζ.
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The structure equations rewrite:

dρ = β̃1 ∧ ρ+ β̃1 ∧ ρ

+
(
Uρ
ρκ − y1κ − y1κ

)
ρ ∧ κ+

(

U
ρ

ρζ − y1ζ − y1
ζ

)

ρ ∧ ζ

+
(
U

ρ
ρκ − y1κ − y1κ

)
ρ ∧ κ+

(

U
ρ

ρζ − y1
ζ
− y1ζ

)

ρ ∧ ζ + i κ ∧ κ,

dκ = β̃1 ∧ κ+ β̃2 ∧ ρ

+
(
Uκ
ρκ + y1ρ − y2κ

)
ρ ∧ κ+

(
Uκ
ρζ − y2ζ

)
ρ ∧ ζ +

(
Uκ
ρκ − y2κ

)
ρ ∧ κ

+
(

Uκ

ρζ
− y2

ζ

)

ρ ∧ ζ +
(
Uκ
κζ − y1ζ

)
κ ∧ ζ

+
(
Uκ
κκ − y1κ

)
κ ∧ κ− y1

ζ
κ ∧ ζ + ζ ∧ κ,

dζ = β̃3 ∧ ρ+ β̃4 ∧ κ+ β̃1 ∧ ζ − β̃1 ∧ ζ

+
(
U ζ
ρκ − y3κ + y4ρ

)
ρ ∧ κ+

(

U
ζ

ρζ − y3ζ + y1ρ − y1ρ

)

ρ ∧ ζ

+
(

U
ζ
ρκ−y3κ

)

ρ ∧ κ+
(

U
ζ

κζ −y4ζ +y1κ−y1κ

)

κ∧ζ+
(

U
ζ
κκ−y4κ

)

κ∧κ

+
(

U
ζ

κζ
− y4

ζ

)

κ∧ ζ+
(

U
ζ

ζκ− y1κ+ y1κ

)

ζ ∧κ+
(

U
ζ

ζζ
− y1

ζ
+ y1ζ

)

ζ ∧ ζ.

We get the following absorption equations:

y1κ + y1κ = Uρ
ρκ, y1ζ + y1

ζ
= U

ρ

ρζ , y1κ + y1κ = U
ρ
ρκ,

y1
ζ
+ y1ζ = U

ρ

ρζ , −y1ρ + y2κ = Uκ
ρκ, y2ζ = Uκ

ρζ ,

y2κ = Uκ
ρκ, y2

ζ
= Uκ

ρζ
, y1ζ = Uκ

κζ ,

y1κ = Uκ
κκ, y1

ζ
= 0, y3κ − y4ρ = U ζ

ρκ,

y3ζ − y1ρ + y1ρ = U
ζ

ρζ , y3κ = U
ζ
ρκ, y4ζ − y1κ + y1κ = U

ζ

κζ ,

y4κ = U
ζ
κκ, y4

ζ
= U

ζ

κζ
, y1κ − y1κ = U

ζ

ζκ,

y1
ζ
− y1ζ = U

ζ

ζζ
.

Eliminating they•

•
among these equations leads to the following relations

between the torsion coefficients:

U
ρ
ρκ = U

ρ
ρκ,

U
ρ

ρζ
= U

ρ

ρζ ,

U
ρ

ρζ = Uκ
κζ ,

U
ζ

ζζ
= −U

ρ

ρζ
,

2Uκ
κκ = U

ζ

ζκ + U
ρ
ρκ.
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We verify easily that the first four equations do not depend onthe group
coefficients and are already satisfied. However, the last onedoes depend on
the group coefficients. It gives us the normalization ofb as it rewrites:

b = −i ce+ i
c

3

(

L1

(
L1(k)

)

L1(k)
− P

)

.

We now look at the new relation between the coframe(ρ0, κ0, ζ̂0, κ0, ζ̂0) and
the lifted coframe(ρ, κ, ζ, κ, ζ), when one takes into account the normaliza-
tion (4.2). Indded we have:

ρ = cc ρ0

κ = −i ec ρ0 + c

(

κ0 +
i

3

(

L1

(
L1(k)

)

L1(k)
− P

)

ρ0

)

ζ = d ρ0 + eκ0 +
c

c
ζ̂0.

As in the first loop of the method, we modify the base coframe toget an
interpretation of these equations as aG-structure. Let us introduce:

κ̂0 := κ0 +
i

3

(

L1

(
L1(k)

)

L1(k)
− P

)

ρ0.

The first two equations become

ρ = cc ρ0 and κ = −i ec ρ0 + c κ̂0,

while the third one rewrites:

ζ =

[

d− i
e

3

(

L1

(
L1(k)

)

L1(k)
− P

)]

ρ0 + e κ̂0 +
c

c
ζ̂0.

Let us introduce the new group parameterd′ := d − i e

3

(
L1(L1(k))

L1(k)
− P

)

.

We note thatd′ describesC whend describesC. We have thus reduced
the problem to an equivalence ofG3-structure, described by the coframe

(ρ, κ̂, ζ̂, κ̂, ζ̂) and the relations:








ρ

κ

ζ

κ

ζ









=









cc 0 0 0 0
−i ec c 0 0 0
d

′

e c

c
0 0

i ec 0 0 c 0

d
′

0 0 e c

c









·









ρ0
κ̂0

ζ̂0
κ̂0

ζ̂0









.
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To simplify the notations, we simply drop the′ and writed instead ofd′ in
the sequel.G3 is the matrix Lie group whose elements are of the form

g =









cc 0 0 0 0
−i ec c 0 0 0
d e c

c
0 0

i ec 0 0 c 0
d 0 0 e c

c









.

It is a six dimensional real Lie group. We compute its Maurer Cartan forms
with the usual formula

dg · g−1 =









γ1 + γ1 0 0 0 0
γ2 γ1 0 0 0
γ3 i γ2 γ1 − γ1 0 0
γ2 0 0 γ1 0
−γ3 0 0 −i γ2 −γ1 + γ1









where

γ1 :=
dc

c
,

γ2 := i e
dc

c2
− i

e dc

cc
− i

de

c

and

γ3 :=

(
dc+ i e2c

c2c

)(
dc

c
−

dc

c

)

+
dd

cc
+ i

ede

c2
.

As a preliminary step before the third loop of absorption andnormaliza-

tion, we compute the structure equations for the coframe(ρ0, κ̂0, ζ̂0, κ̂0, ζ̂0).
From the formula :

d

(

L1

(
L1(k)

)

L1(k)
− P

)

=

(

−T
(
P
)
−

L1

(
L1(k)

)
T
(
L1(k)

)

L1(k)2
+

T
(
L1

(
L1(k)

))

L1(k)

)

ρ0

+

(

L1

(
L1(k)

)
L1

(
L1(k)

)

L1(k)2
+

L1

(
L1

(
L1(k)

))

L1(k)
− L1

(
P
)
)

κ0

+

(

L1

(
L1(k)

)
K
(
L1(k)

)

L1(k)2
− K

(
P
)
+

K
(
L1

(
L1(k)

))

L1(k)

)

ζ0

+

(

−
L1

(
L1(k)

)2

L1(k)2
+

L1

(
L1

(
L1(k)

))

L1(k)
− L1

(
P
)
)

κ0

+

(

−
L1(k)L1

(
L1(k)

)

L1(k)
+ L1(k)P

)

ζ0,
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we get:

dρ0 =

(

1

3

L1

(
L1(k)

)

L1(k)
+

2

3
P

)

ρ0 ∧ κ̂0 −
L1(k)

L1(k)
ρ0 ∧ ζ̂0

+

(

1

3

L1

(
L1(k)

)

L1(k)
+

2

3
P

)

ρ0 ∧ κ̂0 −
L1(k)

L1(k)
ρ0 ∧ ζ̂0 + i κ̂0 ∧ κ̂0,

dκ̂0 =

(

i

9

L1

(
L1(k)

)
L1

(
L1(k)

)

L1(k)L1(k)
+ i

2

9

L1

(
L1(k)

)

L1(k)
P

−
i

9

L1

(
L1(k)

)

L1(k)
P − i

2

9
PP +

i

3
L1

(
P
)
−

i

3

L1

(
L1

(
L1(k)

))

L1(k)

+
i

3

L1

(
L1(k)

)
L1

(
L1(k)

)

L1(k)2

)

ρ0 ∧ κ̂0

+

(

−
i

3

L1

(
L1(k)

)

L1(k)
+

i

3

L1

(
L1(k)

)
K
(
L1(k)

)

L1(k)3

−
i

3

K
(
L1

(
L1(k)

))

L1(k)2
−

i

3

L1

(
L1(k)

)

L1(k)
−

T (k)

L1(k)

)

ρ0 ∧ ζ̂0

+

(

i
4

9

L1

(
L1(k)

)2

L1(k)2
+

i

9

L1

(
L1(k)

)
P

L1(k)
− i

2

9
P

2

+ i
1

3

L1

(
L1

(
L1(k)

))

L1(k)

)

ρ0 ∧ κ̂0

−
L1(k)

L1(k)
κ̂0 ∧ ζ̂0 +

(

1

3
P −

1

3

L1

(
L1(k)

)

L1(k)

)

κ̂0 ∧ κ̂0 + ζ̂0 ∧ κ̂0,

and

dζ̂0 =

(

i

3

L1

(
L1(k)

)
L1

(
L1(k)

)

L1(k)L1(k)
−

i

3

L1

(
L1(k)

)

L1(k)
P

−
i

3

L1

(
L1(k)

)
L1

(
L1(k)

)

L1(k)2
+

i

3

L1

(
L1(k)

)

L1(k)
P +

T
(
L1(k)

)

L1(k)

)

ρ0 ∧ κ̂0

+
L1

(
L1(k)

)

L1(k)
κ̂0 ∧ ζ̂0 −

L1

(
L1(k)

)

L1(k)
ζ̂0 ∧ κ̂0 +

L1(k)

L1(k)
ζ̂0 ∧ ζ̂0.
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5. ABSORPTION OF TORSION AND NORMALIZATION: THIRD LOOP

5.1. Lifted structure equations. We are now ready to perform the third
loop of Cartan’s method. We begin with the structure equations for the
lifted coframe. We have:

dρ = γ1 ∧ ρ+ γ1 ∧ ρ

+ V ρ
ρκ ρ ∧ κ+ V

ρ

ρζ ρ ∧ ζ + V
ρ
ρκ ρ ∧ κ+ V

ρ

ρζ
ρ ∧ ζ + i κ ∧ κ,

dκ = γ1 ∧ κ+ γ2 ∧ ρ

+ V κ
ρκ ρ ∧ κ+ V κ

ρζ ρ ∧ ζ + V κ
ρκ ρ ∧ κ

+ V κ

ρζ
ρ ∧ ζ + V κ

κζ κ ∧ ζ + V κ
κκ κ ∧ κ+ ζ ∧ κ,

dζ = γ3 ∧ ρ+ i γ2 ∧ κ+ γ1 ∧ ζ − γ1 ∧ ζ

+ V ζ
ρκ ρ ∧ κ+ V

ζ

ρζ ρ ∧ ζ + V
ζ
ρκ ρ ∧ κ+ V

ζ

ρζ
ρ ∧ ζ

+ V
ζ

κζ κ ∧ ζ + V
ζ
κκ κ ∧ κ+ V

ζ

κζ
κ ∧ ζ + V

ζ

ζκ ζ ∧ κ+ V
ζ

ζζ
ζ ∧ ζ,

where

V ρ
ρκ = −

e

c
+

1

3c

L1

(
L1

(
k
))

L1

(
k
) +

2

3

P

c
+

e c

c2
L1(k)

L1(k)
,

V
ρ

ρζ = −
c

c

L1(k)

L1 (k)
,

V
ρ
ρκ = −

e

c
+

1

3c

L1

(
L1(k)

)

L1(k)
+

2

3

P

c
+

ec

c2
L1(k)

L1(k)
,

V
ρ

ρζ
= −

c

c

L1(k)

L1(k)
,
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V κ
ρκ =

i

3

e

c2

K
(
L1

(
L1(k)

))

L1(k)2
−

i

3

e

c2

L1

(
L1(k)

)
K
(
L1(k)

)

L1(k)3

−
i

3

e

c2
L1

(
L1(k)

)

L1(k)
+

2

9

i

cc

L1

(
L1(k)

)
P

L1(k)
−

2i

3

e

c2
P

+
i

3

e

c2
P +

1

3

i

cc
L1(P )−

2

9

i

cc
PP − i

ce2

c3
L1(k)

L1(k)

+
1

9

i

cc

L1

(
L1(k)

)
L1

(
L1(k)

)

L1(k)L1(k)
−

1

9

i

cc

L1

(
L1(k)

)
P

L1(k)

+
i

3

e

c2

L1

(
L1(k)

)

L1(k)
+

1

3

e

c2
T (k)

L1(k)
−

d

c2
L1(k)

L1(k)

+
1

3

i

cc

L1

(
L1(k)

)
L1

(
L1(k)

)

L1(k)2
−

1

3

i

cc

L1

(
L1

(
L1(k)

))

L1(k)

V κ
ρζ =

i

3c

L1

(
L1(k)

)
K
(
L1(k)

)

(
L1(k)

)3 −
i

3c

L1

(
L1(k)

)

L1(k)

−
i

3c

K
(
L1

(
L1(k)

))

(
L1(k)

)2 −
1

3c

T (k)

L1(k)
+ i

e

c
−

i

3c

L1

(
L1(k)

)

L1(k)
,

V κ
ρκ = −

2i

3

e

c c

L1

(
L1 (k)

)

L1(k)
+

4i

9

(
L1

(
L1 (k)

))2

c2
(
L1(k)

)2

+
i

9c2
PL1

(
L1(k)

)

L1(k)
−

i

3

P e

cc
−

2i

9

P
2

c2
+

i

3

L1

(
P
)

c2

−
i

3c2
L1

(
L1

(
L1(k)

))

L1(k)
−

d

cc
− i

ee

c2
L1

(
k
)

L1(k)
,

V κ

ρζ
= i

e

c

L1(k)

L1(k)
,

V κ
κζ = −

c

c

L1(k)

L1 (k)
,

V κ
κκ = −

1

3c

L1

(
L1(k)

)

L1(k)
+

1

3

P

c
,
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V ζ
ρκ =

2i

3

ee

cc2
L1

(
L1(k)

)

L1(k)
+

i

3

ee

c c2
P −

i

3

e

c2c

PL1

(
L1 (k)

)

L1 (k)

+
i

3

e2

c3

L1

(
L1(k)

)

L1(k)
+

d

c2c

L1

(
L1(k)

)

L1(k)

−
ed

cc2
L1(k)

L1(k)
+

2i

3

e

c2c

L1

(
L1(k)

)
L1

(
L1(k)

)

L1(k)2

−
e

c2c

T
(
L1(k)

)

L1(k)
+

i

3

e

c2c
L1(P ) +

5i

9

e

c2c

PL1

(
L1(k)

)

L1(k)

−
i

3

e

c2c

L1

(
L1

(
L1(k)

))

L1(k)
+

1

3

e2

c3
T (k)

L1(k)

+
i

3

e2

c3

L1

(
L1(k)

)

L1(k)
−

d e

c c2
+

2

3

d

c2c
P −

i

9

e

c2c

PL1

(
L1

(
k
))

L1

(
k
)

−
i

3

e2

c3

L1

(
L1(k)

)
K
(
L1 (k)

)

(
L1 (k)

)3 +
i

3

e2

c3

K
(
L1

(
L1(k)

))

(
L1(k)

)2

−
2i

9

e

c2c
PP −

2i

9

e

c2c

L1

(
L1(k)

)
L1

(
L1(k)

)

L1(k)L1(k)

+ i
ee2

c3
L1

(
k
)

L1(k)
− i

e2e

c2c
+

1

3

d

c2c

L1

(
L1(k)

)

L1(k)
,

V
ζ

ρζ = −
1

3

e

c2
T (k)

L1(k)
−

d

c2
L1(k)

L1(k)
+

i

3

1

cc

PL1

(
L1(k)

)

L1(k)

+ i
e e

c c
− i

ce2

c3
L1(k)

L1(k)
−

i

3

e

c2

K
(
L1

(
L1(k)

))

L1(k)2

−
i

3

1

c c

PL1

(
L1(k)

)

L1(k)
− i

e

c2
L1

(
L1(k)

)

L1(k)
+

1

cc

T
(
L1(k)

)

L1(k)

−
i

3

e

c2

L1

(
L1(k)

)

L1

(
k
) −

i

3

1

cc

L1

(
L1 (k)

)
L1

(
L1(k)

)

L1(k)2

+
i

3

1

cc

L1

(
L1(k)

)
L1

(
L1(k)

)

L1(k)L1(k)
+

i

3

e

c2

L1

(
L1(k)

)
K
(
L1(k)

)

L1(k)3

+ i
2

3

e

c2

L1

(
L1(k)

)

L1(k)
− i

ce2

c3
L1(k)

L1

(
k
) −

d

c2
L1(k)

L1(k)
,
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V
ζ
ρκ = 2

de

c3
L1

(
k
)

L1(k)
+ i

ee2

c2c

L1(k)

L1(k)
+

4

3

d

c2c

L1

(
L1(k)

)

L1(k)

+
2i

3

e2

c c2

L1

(
L1(k)

)

L1(k)
+

4i

9

e

c2c

(
L1

(
L1(k)

))2

L1(k)2

+
i

9

e

c2c

PL1

(
L1 (k)

)

L1 (k)
+

i

3

e2

cc2
P −

2i

9

e

c2c
P

2
+

i

3

e

c2c
L1

(
P
)

−
i

3

e

c2c

L1

(
L1

(
L1 (k)

))

L1(k)
− 2

ed

cc2
− i

e3

c3
+

2

3

d

c2c
P ,

V
ζ

ρζ
= −2

d

c2
L1(k)

L1

(
k
) − i

e2

c c

L1(k)

L1(k)
,

V
ζ

κζ =
1

c

L1

(
L1(k)

)

L1(k)
−

e c

c2
L1 (k)

L1(k)
,

V
ζ
κκ =

ee

c2
L1(k)

L1(k)
+

2

3

ec

c

P

L1(k)
+

1

3

e

c c
P −

e2

c2
+ i

d

c c
,

V
ζ

κζ
= −

e

c

L1(k)

L1(k)
,

V
ζ

ζκ = −
ec

c2
L1(k)

L1(k)
−

1

c

L1

(
L1(k)

)

L1(k)
+

e

c
,

V
ζ

ζζ
=

c

c

L1(k)

L1(k)
.

5.2. Normalization of the group parameter d. As for the previous steps,
we now start the absorption step. We introduce:

γ̃i := γi − ziρ ρ− ziκ κ− ziζ ζ − ziκ κ− zi
ζ
ζ.
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The structure equations are modified accordingly:

dρ = γ̃1 ∧ ρ+ γ̃1 ∧ ρ

+
(

V ρ
ρκ − z1κ − z1κ

)

ρ ∧ κ +
(

V
ρ

ρζ − z1ζ − z1
ζ

)

ρ ∧ ζ

+
(

V
ρ
ρκ − z1κ − z1κ

)

ρ ∧ κ +
(

V
ρ

ρζ
− z1ζ − z1

ζ

)

ρ ∧ ζ + i κ ∧ κ,

dκ = γ̃1 ∧ κ+ γ̃2 ∧ ρ

+
(
V κ
ρκ − z2κ + z1ρ

)
ρ ∧ κ +

(
V κ
ρζ − z2ζ

)
ρ ∧ ζ

+
(
V κ
ρκ − z2κ

)
ρ ∧ κ +

(

V κ

ρζ
− z2

ζ

)

ρ ∧ ζ +
(
V κ
κζ − z1ζ

)
κ ∧ ζ

+
(
V κ
κκ − z1κ

)
κ ∧ κ + ζ ∧ κ− z1

ζ
κ ∧ ζ ,

and

dζ = γ̃3 ∧ ρ+ i γ̃2 ∧ κ+ γ̃1 ∧ ζ − γ̃1 ∧ ζ

+
(
V ζ
ρκ − z3κ + i z2ρ

)
ρ ∧ κ +

(

V
ζ

ρζ + z1ρ − z3ζ − z1ρ

)

ρ ∧ ζ

+
(

V
ζ
ρκ−z3κ

)

ρ ∧ κ+
(

V
ζ

ρζ
−z3

ζ

)

ρ ∧ ζ +
(

V
ζ

κζ−i z2ζ +z1κ−z1κ

)

κ ∧ ζ

+
(

V
ζ
κκ − i z2κ

)

κ ∧ κ +
(

V
ζ

κζ
− i z2

ζ

)

κ ∧ ζ

+
(

V
ζ

ζκ − z1κ + z1κ

)

ζ ∧ ζ +
(

V
ζ

ζζ
− z1

ζ
+ z1

ζ

)

ζ ∧ ζ .

We thus want to solve the system of linear equations:

z1κ + z1κ = V ρ
ρκ, z1κ + z1κ = V

ρ
ρκ, z1ζ + z1

ζ
= V

ρ

ρζ ,

z1ζ + z1
ζ
= V

ρ

ρζ
, z2κ − z1ρ = V κ

ρζ , z2κ = V κ
ρκ,

z2ζ = V κ
ρζ , z2

ζ
= V κ

ρζ
, z1ζ = V κ

κζ ,

z1
ζ
= 0, z1κ = V κ

κκ, z3κ − i z2ρ = V ζ
ρκ,

−z1ρ + z1ρ + z3ζ = V
ζ

ρζ , z1κ − z1κ − i z2ζ = −V
ζ

κζ , i z2κ = V
ζ
κκ,

z3κ = V
ζ
ρκ, z3

ζ
= V

ζ

ρζ
, i z2

ζ
= V

ζ

κζ
,

z1κ − z1κ = V
ζ

ζκ, z1
ζ
− z1ζ = V

ζ

ζζ
.
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This is easily done as:






z1κ = V
ρ
ρκ − V κ

κκ,

z1κ = V κ
κκ,

z1ζ = V
ρ

ρζ ,

z1
ζ
= 0,

z2κ = V κ
ρκ,

z2
ζ
= V κ

ρζ
,

z2ζ = V κ
ρζ ,

z3κ = V
ζ
ρκ,

z3
ζ
= V

ζ

ρζ
,

z3ζ = V
ζ

ρζ + z1ρ − z1ρ,

z3κ = V ζ
ρκ + i z2ρ,

z2κ = V κ
ρζ + z1ρ,

wherez1ρ and z2ρ may be choosen freely. Eliminating thez•

•
we get the

following additional conditions on theV •

••
:

(10)






V
ρ
ρκ = V

ρ
ρκ,

V
ρ

ρζ
= V

ρ

ρζ ,

V
ρ

ρζ = V κ
κζ ,

i V κ

ρζ
= V

ζ

κζ
,

V
ρ

ρζ = −V
ζ

ζζ
,

2V κ
κκ = V

ρ
ρκ + V

ζ

ζκ.

and

(11)






i V κ
ρκ = V

ζ
κκ,

V
ζ

κζ
+ V

ζ

κζ = i V κ
ρζ .

We easily verify that the equations (10) are indeed satisfied. However
the remaining two equations are not and they provide two essential torsion
coefficients, namelyi V κ

ρκ − V
ζ
κκ andV ζ

κζ
+ V

ζ

κζ − i V κ
ρζ , which will give us
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at least one new normalization of the group coefficients. Indeed we have

i V κ
ρκ − V

ζ
κκ = −

4

9

1

c2
L1

(
L1(k)

)2

L1(k)2
−

1

9

1

c2
L1

(
L1(k)

)
P

L1(k)
+

2

9

P
2

c2

−
1

3

L1

(
P
)

c2
+

1

3

1

c2
L1

(
L1

(
L1(k)

))

L1(k)
− 2i

d

cc
+

e2

c2
.

Setting this expression to0, we get the normalization of the parameterd:

d = −i
1

2

e2c

c
+ i

2

9

c

c

L1

(
L1(k)

)2

L1(k)2
+ i

1

18

c

c

L1

(
L1(k)

)
P

L1(k)

− i
1

9

c

c
P

2
+ i

1

6

c

c
L1

(
P
)
− i

1

6

c

c

L1

(
L1

(
L1(k)

))

L1(k)
.

The other equation gives the essential torsion coefficient:

1

c

(

2

3

L1

(
L1(k)

)

L1(k)
+

2

3

L1

(
L1(k)

)

L1(k)
+

1

3

L1

(
L1(k)

)
K
(
L1(k)

)

L1(k)3

−
1

3

K
(
L1

(
L1(k)

))

L1(k)2
+

i

3

T (k)

L1(k)

)

.

In the sequel we define the functionsH andW onM5 by:

H :=
2

9

L1

(
L1(k)

)2

L1(k)2
+

1

18

L1

(
L1(k)

)
P

L1(k)

−
1

9
P

2
+

1

6
L1

(
P
)
−

1

6

L1

(
L1

(
L1(k)

))

L1(k)

and

(12) W :=
2

3

L1

(
L1(k)

)

L1(k)
+

2

3

L1

(
L1(k)

)

L1(k)

+
1

3

L1

(
L1(k)

)
K
(
L1(k)

)

L1(k)3
−

1

3

K
(
L1

(
L1(k)

))

L1(k)2
+

i

3

T (k)

L1(k)
.

We do not use the normalizationc = W at the moment, because this is
allowed only ifW does not vanish. We will deal with this discussion further
during the fourth loop of the algorithm. With these notations, we have

d = −
i

2

e2c

c
+ i

c

c
H.
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As a result, the relations between the base coframe(ρ0, κ̂0, ζ̂0, κ̂0, ζ̂0) and
the lifted coframe(ρ, κ, ζ, κ, ζ) take the form:






ρ = cc ρ0

κ = −i ec ρ0 + c κ̂0

ζ = −i
1

2

e2

cc
ρ0 + e κ̂0 +

c

c

(

ζ̂0 + iH ρ0

)

Here again we explicitly exhibit the newG-structure by letting

ζ̌0 := ζ̂0 + iH ρ0.

With these notations, we have:





ρ = cc ρ0

κ = −i ec ρ0 + c κ̂0

ζ = −i
1

2

e2

cc
ρ0 + e κ̂0 +

c

c
ζ̌0.

We have reduced the previousG3-structure to aG4-structure, whereG4 is
the four dimensional matrix Lie group whose elements are of the form:









cc 0 0 0 0
−i ec c 0 0 0

− i
2

e2c

c
e c

c
0 0

i ec 0 0 c 0
i
2

e
2
c

c
0 0 e c

c









The basis for the Maurer-Cartan forms ofG4 is provided by the four forms

δ1 :=
dc

c
, δ2 := i e

dc

c2
− i

e dc

cc
− i

de

c
, δ1 , δ2.

6. ABSORPTION OF TORSION AND NORMALISATION: FOURTH LOOP

At this stage we could compute the structure equations enjoyed by the
base coframe(ρ0, κ̂0, ζ̌0, κ̂0, ζ̌0), but as this involves rather lenghty compu-
tations, we procceed slightly differently from here. We just substitute the
parameterd by its normalization in the set of structure equations at thethird
loop. We have to take into account the fact thatdd is modified accordingly.
Indeed we have:

dd = −ie
c

c
−

i

2

e2c

c

(
dc

c
−

dc

c

)

+ iH
c

c

(
dc

c
−

dc

c

)

+ i
c

c
dH
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The formsγ1 andγ2 are not modified as they do not involve terms indd,
but this is not the case forγ3 which is transformed as:

γ3 =
dd

cc
+ i

e

c2
−

d dc

c2c2
− i e2

dc

c3
+

d dc

cc2
+ i

e2 dc

cc2

= i
dH

c2

The expressions ofdρ and dκ are thus unchanged from the expressions
given by the structure equations at the third step, except the fact that we
shall replaced by− i

2

e2c

c
+i c

c
H in the expression of each torsion coefficient

V •

••
and the fact that the formsγ1 andγ2 shall be replaced by the formsδ1

andδ2, that is:

dρ = δ1 ∧ ρ+ δ1 ∧ ρ

+ V ρ
ρκ ρ ∧ κ+ V

ρ

ρζ ρ ∧ ζ + V
ρ
ρκ ρ ∧ κ+ V

ρ

ρζ
ρ ∧ ζ + i κ ∧ κ,

and
dκ = δ1 ∧ κ+ δ2 ∧ ρ

+ V κ
ρκ ρ ∧ κ+ V κ

ρζ ρ ∧ ζ + V κ
ρκ ρ ∧ κ

+ V κ

ρζ
ρ ∧ ζ + V κ

κζ κ ∧ ζ + V κ
κκ κ ∧ κ+ ζ ∧ κ.

The computation ofdζ involves the expression of the formγ3 and is
therefore modified as

dζ = i
dH

c2
∧ ρ+ i δ2 ∧ κ+ δ1 ∧ ζ − δ1 ∧ ζ

+ V ζ
ρκ ρ ∧ κ+ V

ζ

ρζ ρ ∧ ζ + V
ζ
ρκ ρ ∧ κ+ V

ζ

ρζ
ρ ∧ ζ

+ V
ζ

κζ κ ∧ ζ + V
ζ
κκ κ ∧ κ+ V

ζ

κζ
κ ∧ ζ + V

ζ

ζκ ζ ∧ κ+ V
ζ

ζζ
ζ ∧ ζ.

The termdH

c
2 ∧ ρ involves torsion terms inρ ∧ κ, ρ ∧ ζ, ρ ∧ κ andρ ∧ ζ,

which only affect the expressions of the coefficientsV ζ
ρκ, V ζ

ρζ , V
ζ
ρκ andV ζ

ρζ .

If we writeW ζ
ρκ, W ζ

ρζ , W
ζ
ρκ andW ζ

ρζ for these modified torsion coefficients,
we get

dζ = i δ2 ∧ κ+ δ1 ∧ ζ − δ1 ∧ ζ

+W ζ
ρκ ρ ∧ κ+W

ζ

ρζ ρ ∧ ζ +W
ζ
ρκ ρ ∧ κ+W

ζ

ρζ
ρ ∧ ζ

+ V
ζ

κζ κ ∧ ζ + V
ζ
κκ κ ∧ κ+ V

ζ

κζ
κ ∧ ζ + V

ζ

ζκ ζ ∧ κ+ V
ζ

ζζ
ζ ∧ ζ.

Before computing the actual value of the coefficientsW •

••
, we proceed

with the absorption phase. We make the two substitutions

δ1 := δ̃1 + w1

ρ ρ+ w1

κ κ+ w1

ζ ζ + w1

κ κ+ w1

ζ
ζ,

δ2 := δ̃2 + w2

ρ ρ+ w2

κ κ+ w2

ζ ζ + w2

κ κ+ w2

ζ
ζ
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in the previous equations. We get:

dρ = δ̃1 ∧ ρ+ δ̃1 ∧ ρ

+
(

V ρ
ρκ − w1

κ − w1
κ

)

ρ ∧ κ +
(

V
ρ

ρζ − w1

ζ − w1

ζ

)

ρ ∧ ζ

+
(

Vρκ − w1

κ − w1
κ

)

ρ ∧ κ +
(

V
ρ

ρζ
− w1

ζ − w1

ζ

)

ρ ∧ ζ ,

dκ = δ̃1 ∧ κ+ δ̃2 ∧ ρ

+
(
V κ
ρκ − w2

κ + w1

ρ

)
ρ ∧ κ +

(
V κ
ρζ − w2

ζ

)
ρ ∧ ζ

+
(
V κ
ρκ − w2

κ

)
ρ ∧ κ +

(

Vρζ − w2

ζ

)

ρ ∧ ζ +
(
V κ
κζ − w1

ζ

)
κ ∧ ζ

+
(
V κ
κκ − w1

κ

)
κ ∧ κ + ζ ∧ κ− w1

ζ
κ ∧ ζ ,

and

dζ = i δ̃2 ∧ κ+ δ̃1 ∧ ζ − δ̃1 ∧ ζ

+
(
W ζ

ρκ + i w2

ρ

)
ρ ∧ κ +

(

W
ζ

ρζ + w1

ρ − w1
ρ

)

ρ ∧ ζ

+W
ζ
ρκ ρ ∧ κ +W

ζ

ρζ
ρ ∧ ζ +

(

V
ζ
κκ − i w2

κ

)

κ ∧ κ

+
(

V
ζ

κζ
− i w2

ζ

)

κ ∧ ζ +
(

V
ζ

ζκ − w1

κ + w1
κ

)

ζ ∧ ζ .

From the last equation, we immediately see thatW
ζ
ρκ andW ζ

ρζ
are two new

essential torsion coefficients. We find the remaining ones bysolving the set
of equations:

w1

κ + w1
κ = V ρ

ρκ, w1

κ + w1
κ = V

ρ
ρκ, w1

ζ + w1

ζ
= V

ρ

ρζ ,

w1
ζ + w1

ζ
= V

ρ

ρζ
, w2

κ − w1

ρ = V κ
ρκ, w2

κ = V κ
ρκ,

w2

ζ = V κ
ρζ , w2

ζ
= V κ

ρζ
, w1

ζ = V κ
κζ ,

w1

ζ
= 0, w1

κ = V κ
κκ, −i w2

ρ = V ζ
ρκ,

−w1

ρ + w1
ρ = V

ζ

ρζ , w1

κ − w1
κ − i w2

ζ = −V
ζ

κζ , i w2

κ = V
ζ
κκ,

w1

κ − w1
κ = V

ζ

ζκ, i w2

ζ
= V

ζ

κζ
, w1

ζ
− w1

ζ = V
ζ

ζζ
,
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which lead easily as before to:

(13)






w1

κ = V
ρ
ρκ,

w1

κ = V κ
κκ,

w1

ζ = V
ρ

ρζ ,

w1

ζ
= 0,

w2

κ = V κ
ρκ,

w2

ζ
= V κ

ρζ
,

w2

ζ = V κ
ρζ ,

w2

κ = V κ
ρκ + w1

ρ,

w2

ρ = W ζ
ρκ

−w1

ρ + w1
ρ = W

ζ

ρζ .

Eliminating thew•

•
from (13), we get one additionnal condition on theW •

••

which has not yet been checked, namely thatW
ζ

ρζ shall be purely imagi-

nary. We now need to compute the two essential torsion coefficientsW ζ
ρκ

andW ζ

ρζ
. As they both involves the termdH ∧ ρ, we start with the com-

putation of this term. Standard differentiation with respect to base coframe
(ρ0, κ0, ζ0, κ0, ζ0) yields:

dH = T (H) ρ0 + L1(H)κ0 + K (H) ζ0 + L1(H)κ0 + K (H) ζ0.

Taking the wedge product withρ and using the fact that

κ0 ∧ ρ = κ̂0 ∧ ρ

and

ζ0 ∧ ρ =
ζ̌0

L1(k)
∧ ρ,

which is easily seen from the definitions ofκ̂0 andζ̌0, we get:

dH ∧ ρ =

(

L1(H) κ̂0 +
K (H)

L1(k)
ζ̌0 + L1(H) κ̂0 +

K (H)

L1(k)
ζ̌0

)

∧ ρ.

We now use the expressions of the1-formsκ̂0 andζ̌0 in terms ofρ, κ andζ,
which are deduced by the use of (5), that is:






κ̂0 = i
e

c2
ρ+

1

c
κ

ζ̌0 = −i
1

2

e2c

c3
ρ−

ec

c2
κ+

c

c
ζ.
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As a result, we get:

dH ∧ ρ =

(
ec

c2
K (H)

L1(k)
−

L1(H)

c

)

ρ ∧ κ −
c

c

K (H)

L1(k)
ρ ∧ ζ

+

(
ec

c2
K (H)

L1(k)
−

L1(H)

c

)

ρ ∧ κ −
c

c

K (H)

L1(k)
ρ ∧ ζ .

Inserting this equation in the expression ofdζ, we find that:

dζ = i δ2 ∧ κ+ δ1 ∧ ζ − δ1 ∧ ζ

+

(

V ζ
ρκ +

i

c2c

K (H)

L1(k)
−

i

cc2
L1(H)

)

ρ ∧ κ

+

(

V
ζ

ρζ −
i

cc

K (H)

L1(k)

)

ρ ∧ ζ

+

(

V
ζ
ρκ + i

ec

c4
K (H)

L1(k)
−

i

c3
L1(H)

)

ρ ∧ κ

+

(

V
ζ

ρζ
− i

c

c3
K (H)

L1(k)

)

ρ ∧ ζ + V
ζ

κζ κ ∧ ζ

+ V
ζ
κκ κ ∧ κ + V

ζ

κζ
κ ∧ ζ + V

ζ

ζκ ζ ∧ κ + V
ζ

ζζ
ζ ∧ ζ .

We thus have

(14) W
ζ

ρζ
= V

ζ

ρζ
− i

c

c3
K (H)

L1(k)

and

(15) W
ζ
ρκ = V

ζ
ρκ + i

ec

c4
K (H)

L1(k)
−

i

c3
L1(H).

We first computeW ζ

ρζ
. Performing the substitutiond = − i

2

e2c
cc

+ i c

c
H in

V
ζ

ρζ
gives

(16) V
ζ

ρζ
= −2i

c

c3
L1(k)

L1(k)
H.

On the other hand, straightforward computations using the commutation
relations given by the set of equations (3) lead to:

K (H) = −
4

9
L1(k)

L1

(
L1(k)

)2

L1(k)2
−
1

9
L1(k)

L1

(
L1(k)

)

L1(k)
P+

2

9
L1(k)

2 P
2

+
1

3
L1(k)

L1

(
L1

(
L1(k)

))

L1(k)
−

1

3
L1(k)L1

(
P
)
,
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that is:

K (H) = −2L1(k)H.

Combining this with (14) and (16) leads to

W
ζ

ρζ
= 0,

which therefore do not provide any new normalization of the group pa-
rameters. We now turn our attention onW ζ

ρκ. As before, the substitution

d = − i
2

e2c
cc

+ i c

c
H gives

V
ζ
ρκ = 2i

ec

c4
L1(k)

L1(k)
H +

i

c3

(

4

3

L1

(
L1(k)

)

L1(k)
+ P

)

H

+i
e

c2c

(

−
1

3

L1

(
L1(k)

)

L1(k)
−

2

9
P

2
+

1

9

L1

(
L1(k)

)

L1(k)
P +

4

9

L1

(
L1(k)

)2

L1(k)2
+

1

3
L1(P )− 2H

)

,

that is, taking into account the expression ofH,

V
ζ
ρκ = 2i

ec

c4
L1(k)

L1(k)
H +

i

c3

(

4

3

L1

(
L1(k)

)

L1(k)
+ P

)

H.

Combining this equation with (15), we thus get the value ofW
ζ
ρκ:

W
ζ
ρκ = i

ec

c4
1

L1(k)

(
2L1(k)H + K (H)

)
+

i

c3

[

2

3

(

2
L1

(
L1(k)

)

L1(k)
+ P

)

H − L1(H)

]

=
i

c3

[

2

3

(

2
L1

(
L1(k)

)

L1(k)
+ P

)

H − L1(H)

]

,

as the last equality follows from the relation (16). This provide us with a
new essential torsion coefficient, leading to a new invariant of the problem.
Indeed we define the functionJ by:

J :=

[

2

3

(

2
L1

(
L1(k)

)

L1(k)
+ P

)

H − L1(H)

]

.

If J does not vanish, one can perform the normalizationc3 := J . We now
give the expression of the invariantJ in terms of the functionsk, P and
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their coframe derivatives. Straightforward computationslead to

L1(H) = −
4

9

L1

(
L1(k)

)3

L1(k)3
+

11

18

L1

(
L1(k)

)
L1

(
L1

(
L1(k)

))

L1(k)2

−
1

18

L1

(
L1(k)

)2

L1(k)2
P +

1

18

L1

(
L1(k)

)

L1(k)
P

+
1

18

L1

(
L1(k)

)
L1

(
P
)

L1(k)
−

2

9
P L1

(
P
)

−
1

6

L1

(
L1

(
L1

(
L1(k)

)))

L1(k)
+

1

6
L1

(
L1

(
P
))

,

which in turn gives the expression ofJ :

J =
5

18

L1

(
L1(k)

)2

L1(k)2
P +

1

3
P L1

(
P
)
−

1

9

L1

(
L1(k)

)

L1(k)
P

2

+
20

27

L1

(
L1(k)

)3

L1(k)3
−

5

6

L1

(
L1(k)

)
L1

(
L1

(
L1(k)

))

L1(k)2

+
1

6

L1

(
L1(k)

)
L1(P )

L1(k)
−

1

6

L1

(
L1

(
L1(k)

))

L1(k)
P

−
2

27
P

3
−

1

6
L1

(
L1

(
P
))

+
1

6

L1

(
L1

(
L1

(
L1(k)

)))

L1(k)
.

7. CASE J 6= 0

We now turn our attention on the caseJ 6= 0. We show here how the
last group parametere can be normalized, reducing thus theG-equivalence
problem to the study of ane-structure. From the normalizationc3 = J , we
get

dc

c
=

1

3

dJ

J
.

The expression ofdρ is thus modified as:

dρ =
1

3

(
dJ

J
+

dJ

J

)

∧ ρ+V ρ
ρκ ρ ∧ κ+V

ρ

ρζ ρ ∧ ζ+V
ρ
ρκ ρ ∧ κ+V

ρ

ρζ ρ ∧ ζ+i κ∧κ,

which rewrites

dρ = Sρ
ρκ ρ ∧ κ + S

ρ

ρζ ρ ∧ ζ + S
ρ
ρκ ρ ∧ κ + S

ρ

ρζ
ρ ∧ ζ + i κ ∧ κ .

From this expression, we see thatSρ
ρκ, Sρ

ρζ , S
ρ
ρκ andSρ

ρζ
are essential torsion

coefficients. We now turn our attention on the computation ofS
ρ
ρκ.
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The expression ofdJ ∧ ρ is obtained in a similar way as that ofdH ∧ ρ,
namely:

dJ ∧ ρ =

(
ec

c2
K (J)

L1(k)
−

L1(J)

c

)

ρ ∧ κ −
c

c

K (J)

L1(k)
ρ ∧ ζ

+

(
ec

c2
K (J)

L1(k)
−

L1(J)

c

)

ρ ∧ κ −
c

c

K (J)

L1(k)
ρ ∧ ζ .

Replacingc by J1/3, we thus get that

(
dJ

J
+

dJ

J

)

∧ ρ =

[

e

L1(k)

J
1/3

J2/3

(

K (J)

J
+

K
(
J
)

J

)

−
L1(J)

J4/3
−

L1

(
J
)

J1/3 J

]

ρ ∧ κ

−
1

L1(k)

J
1/3

J1/3

(

K (J)

J
+

K
(
J
)

J

)

ρ ∧ ζ

+

[

e

L1(k)

J1/3

J
2/3

(

K (J)

J
+

K
(
J
)

J

)

−
L1(J)

JJ
1/3

−
L1

(
J
)

J
4/3

]

ρ ∧ κ

−
1

L1(k)

J1/3

J
1/3

(

K (J)

J
+

K
(
J
)

J

)

ρ ∧ ζ

On the other hand, after replacingc by its normalization inV ρ
ρκ, we get:

V
ρ
ρκ = −

e

J1/3
+

1

3

1

J
1/3

L1

(
L1(k)

)

L1(k)
+

2

3

P

J
1/3

+ e
J1/3

J
2/3

L1(k)

L1(k)
.

We thus obtain the following essential torsion coefficient,which depends
on e ande:

S
ρ
ρκ = −

e

J1/3
+

e

L1(k)

J1/3

J
2/3

(

L1(k) +
1

3

K (J)

J
+

1

3

K (J)

J

)

+
1

3

1

J
1/3

(

2P +
L1

(
L1(k)

)

L1(k)
−

L1(J)

J
−

L1(J)

J

)

.

The actual computation of the other essential torsion coefficientsSρ
ρκ, Sρ

ρζ

andSρ

ρζ
do not lead to any useful equation depending ine. On the other

hand, the study of the third structure equation provides us with another
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meaningful essential torsion coefficient. Indeed we have:

dζ = i δ2 ∧ κ+
1

3

(
dJ

J
−

dJ

J

)

∧ ζ

+W ζ
ρκ ρ ∧ κ+W

ζ

ρζ ρ ∧ ζ +W
ζ
ρκ ρ ∧ κ+W

ζ

ρζ
ρ ∧ ζ

+ V
ζ

κζ κ ∧ ζ + V
ζ
κκ κ ∧ κ+ V

ζ

κζ
κ ∧ ζ + V

ζ

ζκ ζ ∧ κ+ V
ζ

ζζ
ζ ∧ ζ,

which, taking into account the facts thatW ζ
ρκ = 0 and thatW ζ

ρζ
as been

normalized to1, can be rewritten as

dζ = i δ2 ∧ κ

+ Sζ
ρκ ρ ∧ κ+ S

ζ

ρζ ρ ∧ ζ + ρ ∧ ζ

+S
ζ

κζ κ∧ ζ +S
ζ
κκ κ∧κ+S

ζ

κζ
κ∧ ζ +S

ζ

ζκ ζ ∧κ+S
ζ

ζζ
ζ ∧ ζ,

where theS•

••
are new torsion coeficients. We easily deduce from this equa-

tion that

S
ζ

ζκ = V
ζ

ζκ +
1

3

[

e

L1(k)

J1/3

J
2/3

(

K (J)

J
−

K
(
J
)

J

)

−
L1(J)

JJ
1/3

+
L1

(
J
)

J
4/3

]

is an essential torsion coefficient. From the expression ofV
ζ

ζκ obtained by

performing the substitutionc := J
1

3 , we have

S
ζ

ζκ =
e

J1/3
− e

J1/3

J
2/3

L1(k)

L1(k)
−

1

J
1/3

L1

(
L1(k)

)

L1(k)

+
1

3

[

e

L1(k)

J1/3

J
2/3

(

K (J)

J
−

K
(
J
)

J

)

−
L1(J)

JJ
1/3

+
L1

(
J
)

J
4/3

]

.

We now substract the two essential torsion coefficients thatwe have get so
far:

− S
ρ
ρκ + S

ζ

ζκ = 2
e

J1/3
− 2 e

J1/3

J
2/3

1

L1(k)

(

L1(k) +
1

3

K (J)

J

)

+
2

3

1

J
1/3

(

L1(J)

J
− 2

L1

(
L1(k)

)

L1(k)
− P

)

.

From the full expression ofK (J) in terms of the coframe derivatives, ob-
tained by using extensively the commutations relations (3), we find the re-
lation:

1

3
K
(
J
)
+ L1(k) · J = 0,
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from which we deduce that the following expression:

e

J1/3
+

1

3

1

J
1/3

(

L1(J)

J
− 2

L1

(
L1(k)

)

L1(k)
− P

)

is an essential torsion coefficient. Setting this coefficient to zero, gives the
normalization ofe:

e =
1

3

J1/3

J
1/3

(

−
L1(J)

J
+ 2

L1

(
L1(k)

)

L1(k)
+ P

)

.

8. CASE W 6= 0

We now assume that the fonctionW does not vanish onM , and we show
how the group parametere can be normalized. We choose the normaliza-
tion c := W . We recall that prior to this last normalization, the structure
equations read:

dρ = δ1 ∧ ρ + δ1 ∧ ρ

+ V ρ
ρκ ρ ∧ κ + V

ρ

ρζ ρ ∧ ζ + V
ρ
ρκ ρ ∧ κ + V

ρ

ρζ
ρ ∧ ζ + i κ ∧ κ ,

dκ = δ1 ∧ κ + δ2 ∧ ρ

+ V κ
ρκ ρ ∧ κ + V κ

ρζ ρ ∧ ζ + V κ
ρκ ρ ∧ κ

+ V κ

ρζ
ρ ∧ ζ + V κ

κζ κ ∧ ζ + V κ
κκ κ ∧ κ + ζ ∧ κ

and
dζ = i δ2 ∧ κ + δ1 ∧ ζ − δ1 ∧ ζ

+W ζ
ρκ ρ ∧ κ +W

ζ

ρζ ρ ∧ ζ +W
ζ
ρκ ρ ∧ κ + V

ζ

κζ κ ∧ ζ

+ V
ζ
κκ κ ∧ κ + V

ζ

κζ
κ ∧ ζ + V

ζ

ζκ ζ ∧ κ + V
ζ

ζζ
ζ ∧ ζ ,

where

δ1 =
dc

c
, δ2 = i e

dc

c2
− i

e dc

cc
− i

de

c
,

and

W
ζ
ρκ = i

J

c3
.

As we have

δ2 = −i
e dc

cc
− i d

(e

c

)

,

it is convenient to introduce the new parameterǫ defined by

ǫ :=
e

c
.

With the normalizationc := W , we get:

δ1 =
dW

W
,
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δ2 = −i dǫ− iǫ
dW

W

and

W
ζ
ρκ = i

J

W 3
.

As a result, the new structure equations take the form:

dρ = Xρ
ρκ ρ ∧ κ +X

ρ

ρζ ρ ∧ ζ +X
ρ
ρκ ρ ∧ κ +X

ρ

ρζ
ρ ∧ ζ + i κ ∧ κ ,

dκ = −i dǫ ∧ ρ

+Xκ
ρκ ρ ∧ κ +Xκ

ρζ ρ ∧ ζ +Xκ
ρκ ρ ∧ κ +Xκ

ρζ
ρ ∧ ζ

+Xκ
κζ κ ∧ ζ +Xκ

κκ κ ∧ κ+Xκ

κζ
κ ∧ ζ + ζ ∧ κ,

dζ = dǫ ∧ κ

+Xζ
ρκ ρ ∧ κ +X

ζ

ρζ ρ ∧ ζ +X
ζ
ρκ ρ ∧ κ +X

ζ

κζ κ ∧ ζ

+X
ζ
κκ κ ∧ κ +X

ζ

κζ
κ ∧ ζ +X

ζ

ζκ ζ ∧ κ +X
ζ

ζζ
ζ ∧ ζ ,

for a new set of torsion coefficientsX•

••
. The absorption process is straight-

forward and leads to the following essential torsion coefficients:

Xρ
ρκ, X

ρ

ρζ , X
ρ
ρκ, X

ρ

ρζ
,

Xκ
κζ , Xκ

κκ, Xκ

κζ
, X

ζ

ρζ ,

X
ζ
ρκ, X

ζ

ζκ, X
ζ

ζζ
, iX

ζ

κζ +Xκ
ρζ ,

iX
ζ
κκ +Xκ

ρκ, iX
ζ

κζ
+Xκ

ρζ
.

The careful computation of the coefficientXκ
κκ gives:

Xκ
κκ = ǫ

K (W )

WL1(k)
−

L1 (W )

WW
−

1

3

L1

(
L1(k)

)

WL1(k)
+

1

3

P

W
.

The expression ofK (W ) can be simplified by using the commutations
relations (3), as in the case ofK (J). We find the relation:

K (W ) + 2L1(k)W = 0,

from which we deduce thatXκ
κκ rewrites:

Xκ
κκ = −2 ǫ−

L1 (W )

WW
−

1

3

L1

(
L1(k)

)

WL1(k)
+

1

3

P

W
.

Setting this coefficient to zero, we get a normalization ofǫ, and hence ofe.
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9. CASE J = 0 AND W = 0

We show that in this case,M is biholomorphically equivalent to the light
cone. We start by showing that the coefficientW

ζ

ρζ is purely imaginary,
which implies that no further group reductions are allowed at this stage.
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The full computation of this coefficient leads to:

i ccW
ζ

ρζ = −
1

6
L1(P )−

1

6
L1(P )−

2

3

c e

c

L1

(
L1(k)

)

L1(k)
+

1

2

c2 e2

c2
L1(k)

L1(k)

+ i
T
(
L1(k)

)

L1(k)
+

1

3

ce

c

K
(
L1

(
L1(k)

))

L1(k)2
+

1

3

c e

c

L1

(
L1(k)

)

L1(k)

+
1

2

c2 e2

c2
L1(k)

L1(k)
−

1

3

c e

c

L1

(
L1(k)

)
K
(
L1(k)

)

L1(k)3

+
1

18

L1(k)L1

(
L1(k)

)

L1(k)2
P −

1

3

L1

(
L1(k)

)
L1

(
L1(k)

)

L1(k)L1(k)

−
1

18

K
(
L1(k)

)
L1

(
L1(k)

)

L1(k)3
P − e e

+
2

9
P P +

4

9

L1

(
L1(k)

)
K
(
L1

(
L1(k)

))

L1(k)3

−
1

6

K
(
L1

(
L1

(
L1(k)

)))

L1(k)2
−

1

6

L1

(
L1

(
L1(k)

))

L1(k)

−
1

9

L1(k)

L1(k)
P

2
−

1

6

L1(k)L1

(
L1

(
L1(k)

))

L1(k)2
+

1

6

L1(k)L1(P )

L1(k)

+
1

6

L1(k)L1(P )

L1(k)
−
4

9

K
(
L1(k)

)
L1

(
L1(k)

)2

L1(k)4
−
1

9

L1(k)P
2

L1(k)

+
1

18

K
(
L1

(
L1(k)

))
P

L1(k)2
+

2

9

L1(k)L1

(
L1(k)

)2

L1(k)3

−
1

6

L1(k)L1

(
L1

(
L1(k)
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As we shall check that this expression is real, we just drop the terms which
come together with their conjugate counterpart, i.e., we perform a compu-
tation modR. We thus get:

i ccW
ζ

ρζ ≡ −
2

3

c e

c

L1

(
L1(k)

)

L1(k)
+ i

T
(
L1(k)

)

L1(k)
+

1

3

ce

c

K
(
L1

(
L1(k)

))

L1(k)2

+
1

3

c e

c

L1

(
L1(k)

)

L1(k)
−

1

3

c e

c

L1

(
L1(k)

)
K
(
L1(k)

)

L1(k)3

−
1

18

K
(
L1(k)

)
L1

(
L1(k)

)

L1(k)3
P

+
4

9

L1

(
L1(k)

)
K
(
L1

(
L1(k)

))

L1(k)3

−
1

6

K
(
L1

(
L1

(
L1(k)
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9

K
(
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)
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(
L1(k)

)2

L1(k)4

+
1

18

K
(
L1

(
L1(k)

))
P

L1(k)2
+

5

18

L1

(
L1(k)

)
L1

(
L1(k)

)

L1(k)2

+
1

6

K
(
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L1

(
L1

(
L1(k)
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(
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P +

ce

c
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(
L1(k)
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i

3

ec

c
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−
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L1 (T (k))
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9
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(
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We now give an expression ofi ccW ζ

ρζ in terms of the functionW and its
derivative byL1. Using the expression ofW given by(12) and dropping
once again the terms which come with their conjugate counterpart, we get
the formula:

i ccW
ζ

ρζ ≡
1

6

(

L1

(
L1(k)

)

L1(k)
− P

)

W +
1

2
L1(W )−

ec

c
W,

from which we get thatW ζ

ρζ is purely imaginary under that assumption that
W does vanish identically onM .

The normalization step of Cartan’s algorithm stops here and we shall now
perform a prolongation of the problem. We introduce the modified Maurer
Cartan forms of the groupG4, namely:

{
δ̂1 := δ1 − w1

ρ ρ− w1

κ κ− w1

ζ ζ − w1

κ κ− w1

ζ
ζ

δ̂2 := δ2 − w2

ρ ρ− w2

κ κ− w2

ζ ζ − w2

κ κ− w2

ζ
ζ
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wherewi
ρ, w

i
κ, wi

ζ , w
i
κ, wi

ζ
, i = 1, 2, are the solutions of the system of

equations (13) corresponding tow1
ρ + w1

ρ = 0, that is:






δ̂1 := δ1 +
1

2
V

ζ

ρζ ρ− V
ρ
ρκ κ− V

ρ

ρζ ζ − V κ
κκ κ

δ̂2 := δ2 − V ζ
ρκ ρ−

(

V κ
ρκ −

1

2
V

ζ

ρζ

)

κ− V κ
ρζ ζ − V κ

ρκ κ− V κ

ρζ
ζ.

We also introduce the modified Maurer Cartan forms which correspond to
solutions of the system (13) whenRe(w1

ρ) is not necessarily set to zero,
namely:

{
π1 := δ̂1 − Re(w1

ρ) ρ

π2 := δ̂2 − Re(w1

ρ)κ.

Let P 9 be the nine dimensionnalG4-structure constituted by the set
of all coframes of the form(ρ, κ, ζ, κ, ζ) on M . The initial coframe
(ρ0, κ0, ζ0, κ0, ζ0) gives a natural trivialisationP 9 p

−→ M × G4 which
allows us to consider any differential form onM or G4 as a differen-
tial form on P 9. If ω is a differential form onM for example, we just
considerp∗(pr∗1(ω)), wherepr1 is the projection on the first component
M × G4

pr1
−→ M . We still denote this form byω in the sequel. Fol-

lowing [24], we introduce the two coframes(ρ, κ, ζ, κ, ζ, δ1, δ2, δ1, δ2) and
(ρ, κ, ζ, κ, ζ, π1, π2, π1, π2) on P 9. Settingt := −Re(w1

ρ), they relate to
each other by the relation:

















ρ

κ

ζ

κ

ζ

π1

π2

π1

π2

















= gt ·

















ρ

κ

ζ

κ

ζ

δ1

δ2

δ1

δ2
















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wheregt is defined by

gt :=
















1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
t 0 0 0 0 1 0 0 0
0 t 0 0 0 0 1 0 0
t 0 0 0 0 0 0 1 0
0 0 0 t 0 0 0 0 1
















.

The set{gt, t ∈ R} defines a one dimensional Lie groupGprol, whose Mau-
rer Cartan form is given bydt. We now start the absorption-normalization
procedure in Cartan’s method onP 9.

From the definition ofπ1 andπ2 as the solutions of the absorption equa-
tions(13), the five first structure equations read as

(17)

dρ = π1 ∧ ρ+ π1 ∧ ρ+ i κ ∧ κ,

dκ = π1 ∧ κ+ π2 ∧ ρ+ ζ ∧ κ,

dζ = i π2 ∧ κ+ π1 ∧ ζ − π1 ∧ ζ,

dκ = π1 ∧ κ+ π2 ∧ ρ− κ ∧ ζ,

dζ = −i π2 ∧ κ+ π1 ∧ ζ − π1 ∧ ζ.

The computations that follow aim to determine the expressions of dπ1

and dπ2. Both of these expressions can be deduced from the the set of
equations(17). For example, taking the exterior derivative of both sides of
the equation givingdρ, we get:

0 = dπ1 ∧ ρ− π1 ∧ dρ+ dπ1 ∧ ρ− π1 ∧ dρ+ i dκ ∧ κ− i κ ∧ dκ.

Replacing each two-formdρ, dκ anddκ by its expression given by (17)
yields:

0 = dπ1 ∧ ρ+ dπ1 ∧ ρ− π1 ∧
(

π1 ∧ ρ+ π1 ∧ ρ+ i κ ∧ κ
)

− π1 ∧
(

π1 ∧ ρ+ π1 ∧ ρ+ i κ∧ κ
)

+ i
(
π1 ∧ κ+ π2 ∧ ρ+ ζ ∧ κ

)
∧ κ

− i κ ∧
(

π1 ∧ κ+ π2 ∧ ρ− κ ∧ ζ
)

,

which can be simplified as:

0 =
(

dπ1 − i κ ∧ π2 + dπ1 + i κ ∧ π2

)

∧ ρ.
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Performing the same computation from the equation givingdκ, we get:

0 = dπ1 ∧ κ− π1 ∧ dκ+ dπ2 ∧ ρ− π2 ∧ dρ+ dζ ∧ κ− ζ ∧ dκ,

that is:

0 = dπ1 ∧ κ− π1 ∧
(
π1 ∧ κ+ π2 ∧ ρ+ ζ ∧ κ

)

+ dπ2 ∧ ρ− π2 ∧
(

π1 ∧ ρ+ π1 ∧ ρ+ i κ ∧ κ
)

+
(

i π2∧κ+π1∧ ζ−π1∧ ζ
)

∧κ− ζ ∧
(

π1∧κ+π2∧ρ−κ∧ ζ
)

,

which yields:

0 =
(
dπ1 − ζ ∧ ζ

)
∧ κ+

(

dπ2 − π2 ∧ π1 − ζ ∧ π2

)

∧ ρ.

On the other hand, the same computation with the equation giving dζ

leads to

0 = i dπ2 ∧ κ− i π2 ∧
(
π1 ∧ κ+ π2 ∧ ρ+ ζ ∧ κ

)
+ dπ1 ∧ ζ

− dπ1 ∧ ζ +
(

π1 − π1

)

∧
(

i π2 ∧ κ+ π1 ∧ ζ − π1 ∧ ζ
)

,

that is:

0 =
(

dπ1 − dπ1 − i κ ∧ π2

)

∧ ζ + i
(

dπ2 − π2 ∧ π1

)

∧ κ.

Let us introduce the two-formsΩ1 andΩ2 defined by

Ω1 := dπ1 − i κ ∧ π2 − ζ ∧ ζ,

and
Ω2 := dπ2 − π2 ∧ π1 − ζ ∧ π2.

With these notations, the three equations that we have obtained so far
rewrite:

(18)






0 =
(
Ω1 + Ω1

)
∧ ρ,

0 = Ω1 ∧ κ+ Ω2 ∧ ρ,

0 =
(
Ω1 − Ω1

)
∧ ζ + iΩ2 ∧ κ.

Taking the exterior product withκ in the second equation gives:

0 = Ω2 ∧ ρ ∧ κ,

from which we can deduce the two relations:

0 =
(
Ω1 + Ω1

)
∧ ρ ∧ ζ,

0 =
(
Ω1 − Ω1

)
∧ ρ ∧ ζ,

which yields:
Ω1 ∧ ρ ∧ ζ = 0.
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This implies the existence of two1-formsα andβ such that:

Ω1 = α ∧ ρ+ β ∧ ζ.

Similarly, there exist two1-form γ andδ such that:

Ω2 = γ ∧ ρ+ δ ∧ κ.

Inserting these two expressions in the second equation of(18), we obtain
the existence of a real1-form Λ such that:

Ω1 = Λ ∧ ρ,

Ω2 = Λ ∧ κ.

If we come back to the expression ofdπ1 anddπ2, we get the two following
additional structure equations:

dπ1 = i κ ∧ π2 + ζ ∧ ζ + Λ ∧ ρ,

dπ2 = π2 ∧ π1 + ζ ∧ π2 + Λ ∧ κ.

From the definition ofπ1 andπ2, Λ shall involve a term indt. By adding
Λ to the set of1-forms ρ, κ, ζ, κ, ζ, π1, π2, π1, π2, we thus get a10-
dimensional{e}-structure onGprol×P 9, which constitutes the second (and
last)1-dimensional prolongation to the equivalence problem. It remains to
compute the exterior derivative ofΛ, which is done in what follows.

Taking the exterior derivative of the equation givingdπ1, we get:

0 = i dκ ∧ π2 − i κ ∧ dπ2 + dζ ∧ ζ − ζ ∧ dζ + dΛ ∧ ρ− Λ ∧ dρ,

that is

0 = i
(
π1 ∧ κ+ π2 ∧ ρ+ ζ ∧ κ

)
∧ π2 − i κ ∧

(

π2 ∧ π1 + ζ ∧ π2 +Λ ∧ κ
)

+
(

i π2∧κ+π1∧ ζ−π1∧ ζ
)

∧ ζ− ζ ∧
(

−i π2∧κ+π1∧ ζ−π1∧ ζ
)

+ dΛ ∧ ρ− Λ ∧
(

π1 ∧ ρ+ π1 ∧ ρ+ i κ ∧ κ
)

,

which yields:

0 =
(

dΛ− Λ ∧ π1 − Λ ∧ π1 − i π2 ∧ π2

)

∧ ρ.

On the other hand, a similar computation starting from the expression of
dπ2 gives:

0 = dπ2 ∧ π1 − π2 ∧ dπ1 + dζ ∧ π2 − ζ ∧ dπ2 + dΛ ∧ κ− Λ ∧ dκ,
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that is
(

π2 ∧ π1 + ζ ∧ π2 +Λ∧ κ
)

∧ π1 − π2 ∧
(
−κ∧ π2 + ζ ∧ ζ +Λ∧ ρ

)

+
(

i π2∧κ+π1∧ ζ−π1∧ ζ
)

∧π2− ζ ∧
(

π2∧π1+ ζ ∧π2+Λ∧κ
)

+ dΛ ∧ κ− Λ ∧
(
π1 ∧ κ+ π2 ∧ ρ+ ζ ∧ κ

)
,

or (

dΛ− i π2 ∧ π2 − Λ ∧ π1 − Λ ∧ π1

)

∧ κ = 0.

From these last two equations, we deduce that:

dΛ = i π2 ∧ π2 + Λ ∧ π1 + Λ ∧ π1.

Summing up the results that we have obtained so far, the ten1-differential
formsρ, κ, ζ, κ, ζ, π1, π2, π1, π2, Λ, satisfy the structure equations:

dρ = π1 ∧ ρ+ π1 ∧ ρ+ i κ ∧ κ,

dκ = π1 ∧ κ+ π2 ∧ ρ+ ζ ∧ κ,

dζ = i π2 ∧ κ+ π1 ∧ ζ − π1 ∧ ζ,

dκ = π1 ∧ κ+ π2 ∧ ρ− κ ∧ ζ,

dζ = −i π2 ∧ κ+ π1 ∧ ζ − π1 ∧ ζ,

dπ1 = i κ ∧ π2 + ζ ∧ ζ + Λ ∧ ρ,

dπ2 = π2 ∧ π1 + ζ ∧ π2 + Λ ∧ κ,

dΛ = i π2 ∧ π2 + Λ ∧ π1 + Λ ∧ π1.

The torsion coefficients of these structure equations are all constant, and
they do not depend on the graphing functionF of M . This proves that all
the hypersurfacesM which satisfy

J = W = 0

are locally biholomorphic. A direct computation shows thatthe hypersur-
face defined by

u =
z1z1 +

1

2
z21z2 +

1

2
z21z2

1− z2z2
is precisely such thatJ = W = 0. This completes the proof of theorem1.
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CANONICAL CARTAN CONNECTION FOR 4-DIMENSIONAL
CR-MANIFOLDS BELONGING TO GENERAL CLASS II

SAMUEL POCCHIOLA

ABSTRACT

We study the equivalence problem for4-dimensional CR-manifolds of
CR-dimension1 and codimension2 which have been referred to as be-
longing to general classII in [9], and which are also known as Engel
CR-manifolds. We construct a canonical Cartan connection on such CR-
manifolds through Cartan equivalence’s method, thus providing an alter-
native approach to the results contained in [1]. In particular, we give the
explicit expression of4 biholomorphic invariants, the annulation of which
is a necessary and sufficient condition for an Engel manifoldto be locally
biholomorphic to Beloshapka’s cubic inC3.

1. INTRODUCTION

As highlighted by Henri Poincaré [14] in 1907, the (local) biholomorphic
equivalence problem between two submanifoldsM andM ′ of CN is to de-
termine whether or not there exists a (local) biholomorphism φ of CN such
thatφ(M) = M ′. Elie Cartan [2, 3] solved this problem for hypersurfaces
M3 ⊂ C

2 in 1932, as he constructed a “hyperspherical connection” onsuch
hypersurfaces by using the powerful technique which is now referred to as
Cartan’s equivalence method.

Given a manifoldM and some geometric data specified onM , which
usually appears as aG-structure onM (i.e. a reduction of the bundle of
coframes ofM ), Cartan’s equivalence method seeks to provide a princi-
pal bundleP on M together with a coframeω of 1-forms onP which is
adapted to the geometric structure ofM in the following sense: an isomor-
phism between two such geometric structuresM andM ′ lifts to a unique
isomorphism betweenP andP ′ which sendsω on ω′. The equivalence
problem betweenM andM ′ is thus reduced to an equivalence problem be-
tween{e}-structures, which is well understood [10, 15].

We recall that a CR-manifoldM is a real manifold endowed with a sub-
bundleL of C⊗ TM of even rank2n such that

(1) L ∩ L = {0}
84
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(2) L is formally integrable, i.e.[L, L] ⊂ L.

The integern is the CR-dimension ofM andk = dimM − 2n is the codi-
mension ofM . In a recent attempt [9] to solve the equivalence problem for
CR-manifolds up to dimension5, it has been shown that one can restrict the
study to six different general classes of CR-manifolds of dimension≤ 5,
which have been referred to as general classesI, II, III1, III2, IV1 and IV2.
The aim of this paper is to provide a solution to the equivalence problem
for CR-manifolds which belong to general classII, that is the CR-manifolds
of dimension4 and of CR-dimension1 whose CR-bundleL satisfy the ad-
ditional non-degeneracy condition:

C⊗ TM = L+ L+ [L, L] + [L, [L, L]],

meaning thatC⊗TM is spanned byL, L and their Lie brackets up to order
3.

This problem has already been solved by Beloshapka, Ezhov and
Schmalz in [1], where the CR-manifolds we study are called Engel man-
ifolds. The present paper provides thus an alternative solution to the results
contained in [1]. The main result is the following:

Theorem 1. LetM be a CR-manifold belonging to general classII. There
exists a 5-dimensional subbundleP of the bundle of coframesC ⊗ F (M)
of M and a coframeω := (Λ, σ, ρ, ζ, ζ) on P such that any CR-
diffeomorphismh of M lifts to a bundle isomorphismh∗ of P which satisfy
h∗(ω) = ω. Moreover the structure equations ofω onP are of the form:

dσ = 3Λ ∧ σ + ρ ∧ ζ + ρ ∧ ζ,

dρ = 2Λ ∧ ρ+ i ζ ∧ ζ

dζ = Λ ∧ ζ + I1 σ ∧ ρ+ I2 σ ∧ ζ + I3 σ ∧ ζ + I4 ρ ∧ ζ + I5 ρ ∧ ζ,

dζ = Λ ∧ ζ + I1 σ ∧ ρ+ I3 σ ∧ ζ + I2 σ ∧ ζ + I5 ρ ∧ ζ + I4 ρ ∧ ζ,

dΛ =
i

2
I1 σ ∧ ζ −

i

2
I1 σ ∧ ζ −

1

3

(
I2 + I3

)
ρ ∧ ζ −

1

3

(
I2 + I3

)
ρ ∧ ζ

+ I0 σ ∧ ζ ,

whereI0, I1, I2, I3, I4, I5, are functions onP .

An example of CR-manifold belonging to general classII is provided by
Beloshapka’s cubicB ⊂ C

3, which is defined by the equations:

B :
w1 = w1 + 2 i zz,

w2 = w2 + 2 i zz (z + z) .

Cartan’s equivalence method has been applied to Beloshapka’scubic in [12]
where it has been shown that the coframe(Λ, σ, ρ, ζ, ζ) of theorem 1 satisfy
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the simplified structure equations:

dσ = 3 Λ ∧ σ + ρ ∧ ζ + ρ ∧ ζ ,

dρ = 2 Λ ∧ ρ + i ζ ∧ ζ ,

dζ = Λ ∧ ζ ,

dζ = Λ ∧ ζ ,

dΛ = 0,

corresponding to the case where the biholomorphic invariants Ii vanish
identically. From this result together with theorem 1, we deduce the ex-
istence of a Cartan connection on CR-manifolds belonging to general class
II in section 4.

We start in section 2 with the construction of a canonicalG-structureP 1

onM , (e.g. a subbundle of the bundle of coframes ofM ), which encodes
the equivalence problem forM under CR-automorphisms in the following
sense: a diffeomorphism

h : M −→ M

is a CR-automorphism ofM if and only if

h∗ : P 1 −→ P 1

is a G-structure isomorphism ofP 1. We refer to [9, 6, 7] for details on
the results summarized in this section and to [15] for an introduction to
G-structures. Section 3 is devoted to reduce successivelyP 1 to three sub-
bundles:

P 4 ⊂ P 3 ⊂ P 2 ⊂ P 1,

which are still adapted to the biholomorphic equivalence problem forM .
We use Cartan equivalence method, for which we refer to [10]. Eventually
a Cartan connection is constructed onP 4 in section 4.

2. INITIAL G-STRUCTURE

LetM be a4-dimensional CR-manifold belonging to general classII and
L be a local generator of the CR-bundleL of M . AsM belongs to general
classII, the two vector fieldsT , S , defined by:

T := i [L ,L ],

S := [L ,T ],

are such that:
4 = rankC

(
L ,L ,T ,S

)
,

namely
(
L ,L ,T ,S

)
is a frame onM .
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As a result there exist two functionsA andB such that:

S = A · T +B · S .

From the fact thatS = S , the functionsA andB satisfy the relations:

(1)
BB = 1,

A+ BA = 0.

There also exist two functionsP , Q such that:

[L ,S ] = P · T +Q · S .

The conjugate ofP andQ, P andQ, are given by the relations:
(2)

Q = L (B) + BQ+ 2A+
L (B)

B
,

P = B L (A)− AL (B)−BAQ− A2 − A
L (B)

B
+ L (A) + B2 P.

The four functionsA, B, P , Q appear to be fundamental as all other Lie
brackets between the vector fieldsL , L , T andS are expressed in terms
of these five functions and their{L ,L }-derivatives ([7]).

In the case of an embedded CR-manifoldM ⊂ C
3, we can give an ex-

plicit formula for the fundamental vector fieldL , and hence for the func-
tionsA, B, P , Q, in terms of a graphing function ofM . We refer to [8] for
details on this question. Let us just mention that the submanifold M ⊂ C

3

is represented in local coordinates:

(z, w1, w2) := (x+ i y, u1 + i v1, u2 + i v2)

as a graph:

v1 = φ1(x, y, u1, u2)

v2 = φ2(x, y, u1, u2).

There exists then a unique local generatorL of T 1,0M of the form:

L =
∂

∂z
+ A1

∂

∂u1

+ A2
∂

∂u2

having conjugate:

L =
∂

∂z
+ A1

∂

∂u1

+ A2
∂

∂u2
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which is a generator ofT 0,1M , where the functionsA1 andA2 are given by
the determinants:

A1 :=

∣
∣
∣
∣

−φ1,z φ1,u2

−φ2,z i+ φ2,u2

∣
∣
∣
∣

∣
∣
∣
∣

i+ φ1,u1
φ1,u2

φ2,u1
i+ φ2,u2

∣
∣
∣
∣

, A2 :=

∣
∣
∣
∣

i+ φ1,u1
−φ1,z

φ2,u1
−φ2,z

∣
∣
∣
∣

∣
∣
∣
∣

i+ φ1,u1
φ1,u2

φ2,u1
i+ φ2,u2

∣
∣
∣
∣

.

Returning to the general case of abstract CR-manifolds, let us introduce
the coframe

ω0 :=
(
σ0, ρ0, ζ0, ζ0

)
,

as the dual coframe of
(
S ,T ,L ,L

)
. We have [7]:

Lemma 1. The structure equations enjoyed byω0 are of the form:

dσ0 = H σ0 ∧ ρ0 + F σ0 ∧ ζ0 +Qσ0 ∧ ζ0 +B ρ0 ∧ ζ0 + ρ0 ∧ ζ0,

dρ0 = Gσ0 ∧ ρ0 + E σ0 ∧ ζ0 + P σ0 ∧ ζ0 + Aρ0 ∧ ζ0 + i ζ0 ∧ ζ0,

dζ0 = 0,

dζ0 = 0,

where the four functions:
E, F, G, H,

can be expressed in terms of the four fundamental functions:

A, B, P, Q,

and their{L ,L }-derivatives as:

E := L (A) +B P,

F := L (B) + BQ+ A,

G := iL (L (A)) + i P L (B)− iL (P )− i QL (A) + i P L (B) + i BL (P ),

H := iL (L (B)) + i QL (B) + i B L (Q) + 2iL (A)− iL (Q).

Let h : M −→ M be a CR-automorphism ofM . As we have

h∗ (L) = L,

there exists a non-vanishing complex-valued functiona onM such that:

h∗ (L ) = aL .

From the definition ofT , S , and the invariance

h∗ ([X, Y ]) = [h∗(X), h∗(Y )]

for any vector fieldsX, Y onM , we easily get the existence of four func-
tions

b, c, d, e : M −→ C,
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such that:

h∗







L

L

T

S







=







a 0 0 0
0 a 0 0
b b aa 0
e d c a

2
a







·







L

L

T

S







.

This is summarized in the following lemma [6]:

Lemma 2. Leth : M −→ M a CR-automorphism ofM and letG1 be the
subgroup ofGL4(C)

G1 :=












a
2
a 0 0 0
c aa 0 0
d b a 0
e b 0 a







, a ∈ C \ {0}, b, c, d, e ∈ C






.

Then the pullbackω of ω0 byh, ω := h∗ω0, satisfies:

ω = g · ω0,

whereg is smooth (locally defined) functionM
g

−→ G1.

This motivates the introduction of the subbundleP 1 of the bundle of
coframes onM constituted by the coframesω of the form

ω := g · ω0, g ∈ G1.

The next section is devoted to reduce successivelyP 1 to three subbundles:

P 4 ⊂ P 3 ⊂ P 2 ⊂ P 1,

which are adapted to the biholomorphic equivalence problemfor M .

3. REDUCTIONS OFP 1

The coframeω0 gives a natural (local) trivialisationP 1 tr
−→ M × G1

from which we may consider any differential form onM (resp. G1) as a
differential form onP 1 through the pullback by the first (resp. the second)
component oftr. With this identification, the structure equations ofP 1 are
naturally obtained by the formula:

(3) dω = dg · g−1 ∧ ω + g · dω0.

The termg · dω0 contains the so-called torsion coefficients ofP 1. A 1-form
α̃ on P 1 is called a modified Maurer-Cartan form if its restriction to any
fiber of P 1 is a Maurer-Cartan form ofG1, or equivalently, if it is of the
form:

α̃ := α− xσ σ − xρ ρ− xζ ζ − xζ ζ,

wherexσ, xρ, xζ , xζ , are arbitrary complex-valued functions onM and
whereα is a Maurer-Cartan form ofG1.
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A basis for the Maurer-Cartan forms ofG1 is given by the following1-
forms:

α1 :=
da

a
,

α2 := −
bda

a2a
+

db

aa
,

α3 := −
cda

a a3
−

cda

a
2
a2

+
dc

a2a
,

α4 = −
(daa− bc) da

a4a
2

−
cdb

a3a
2
+

dd

a2a
,

α5 = −

(
eaa− b c

)
da

a3a
3

−
cdb

a3a
2
+

de

a2a
,

together with their conjugate.
We derive the structure equations ofP 1 from the relations (3), from

which we extract the expression ofdσ:

dσ = 2 α1 ∧ σ + α1 ∧ σ

+ T σ
σρ σ ∧ ρ − T σ

σζ σ ∧ ζ − T σ

σζ
σ ∧ ζ + ρ ∧ ζ +

a

a
B ρ ∧ ζ ,

or equivalently:

dσ = 2 α̃1 ∧ σ + α̃1 ∧ σ + ρ ∧ ζ +
a

a
B ρ ∧ ζ ,

for a modified Maurer-Cartan form̃α1. The coefficient
a

a
B,

which can not be absorbed for any choice of the modified Maurer-Cartan
form α̃1, is referred to as an essential torsion coefficient. From standard
results on Cartan theory (see [10, 15]), a diffeomorphism ofM is an iso-
morphism of theG1-structureP 1 if and only if it is an isomorphism of the
reduced bundleP 2 ⊂ P 1 consisting of those coframesω onM such that

a

a
B = 1.

This is equivalent to the normalization:

a = aB.

A coframeω ∈ P 2 is related to the coframeω0 by the relations:





σ = a
3 B σ0

ρ = cσ0 + a
2B ρ0

ζ = dσ0 + b ρ0 + a ζ0

ζ = eσ0 + b ρ0 + aB ζ0,
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which are equivalent to:





σ = a
′ 3 σ1

ρ = c
′ σ1 + a

′ 2 ρ1

ζ = d
′ σ1 + b ρ1 + a

′ ζ1

ζ = e
′ σ1 + b ρ1 + a

′ ζ1,

where:

σ1 :=
σ0

B
1

2

, ρ1 := ρ0, ζ1 :=
ζ0

B
1

2

,

and
x′ := x ·B

1

2 , for x = a, c, d, e.

We notice thata′ is a real parameter, and thatσ1 is a real1-form. Letω1 be
the coframeω1 :=

(
σ1, ρ1, ζ1, ζ1

)
, andG2 be the subgroup ofG1:

G2 :=












a
3 0 0 0
c a

2 0 0
d b a 0
e b 0 a







, a ∈ R \ {0}, b, c, d, e ∈ C






.

A coframeω on M belongs toP 2 if and only if there is a local function
g : M

g
−→ G2 such thatω = g · ω1, namelyP 2 is aG2 structure onM .

The Maurer-Cartan forms ofG2 are given by:

β1 :=
da

a
,

β2 := −
bda

a3
+

db

a2
,

β3 := −2
cda

a4
+

dc

a3
,

β4 = −
(da2 − bc) da

a6
−

cdb

a5
+

dd

a3
,

β5 = −

(
ea

2 − b c
)
da

a6
−

cdb

a5
+

de

a3
,

together withβ2, β3, β4, β5. Using formula (3), we get the structure equa-
tions ofP 2:

dσ = 3 β1 ∧ σ

+ Uσ
σρ σ ∧ ρ + Uσ

σζ σ ∧ ζ + Uσ

σζ
σ ∧ ζ + ρ ∧ ζ + ρ ∧ ζ
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dρ = 2β1 ∧ ρ+ β3 ∧ σ

+ Uρ
σρ σ ∧ ρ+ U

ρ

σζ σ ∧ ζ + U
ρ

σζ
σ ∧ ζ

+ U
ρ

ρζ ρ ∧ ζ + U
ρ

ρζ
ρ ∧ ζ + i ζ ∧ ζ,

dζ = β1 ∧ ζ + β2 ∧ ρ+ β4 ∧ σ

+ U ζ
σρ σ ∧ ρ+ U

ζ

σζ σ ∧ ζ + U
ζ

σζ
σ ∧ ζ + U

ζ

ρζ ρ ∧ ζ

+ U
ζ

ρζ
ρ ∧ ζ + U

ζ

ζζ
ζ ∧ ζ.

Introducing the modified Maurer-Cartan forms:

β̃i = βi − yσ σ − yiρ ρ− yiζ ζ − yi
ζ
ζ,

the structure equations rewrite:

dσ = 3 β̃1 ∧ σ

+
(
Uσ
σρ − 3 y1ρ

)
σ ∧ ρ +

(
Uσ
σζ − 3 y1ζ

)
σ ∧ ζ

+
(

Uσ

σζ
− 3 y1

ζ

)

σ ∧ ζ + ρ ∧ ζ + ρ ∧ ζ

dρ = 2β̃1 ∧ ρ+ β̃3 ∧ σ

+
(
Uρ
σρ + 2 y1σ − y3ρ

)
σ ∧ ρ +

(
U

ρ

σζ − y3ζ
)
σ ∧ ζ

+
(

U
ρ

σζ
− y3

ζ

)

σ ∧ ζ +
(
U

ρ

ρζ − 2 y1ζ
)
ρ ∧ ζ

+
(

U
ρ

ρζ
− 2 y1

ζ

)

ρ ∧ ζ + i ζ ∧ ζ ,

dζ = β̃1 ∧ ζ + β̃2 ∧ ρ+ β̃4 ∧ σ

+
(
U ζ
σρ + y2σ − y4ρ

)
σ ∧ ρ +

(

U
ζ

σζ + y1σ − y4ζ

)

σ ∧ ζ

+
(

U
ζ

σζ
− y4

ζ

)

σ ∧ ζ +
(

U
ζ

ρζ + y1ρ − y2ζ

)

ρ ∧ ζ

+
(

U
ζ

ρζ
− y2

ζ

)

ρ ∧ ζ +
(

U
ζ

ζζ
− y1

ζ

)

ζ ∧ ζ ,
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which leads to the following absorbtion equations:

3 y1ρ = Uσ
σρ, 3 y1ζ = Uσ

σζ , 3 y1
ζ
= Uσ

σζ
,

−2 y1σ + y3ρ = Uρ
σρ, y3ζ = U

ρ

σζ , y3
ζ
= U

ρ

σζ
,

2 y1ζ = U
ρ

ρζ , 2 y1
ζ
= U

ρ

ρζ
, −y2σ + y4ρ = U ζ

σρ,

−y1σ + y4ζ = U
ζ

σζ , y4
ζ
= U

ζ

σζ
, −y1ρ + y2ζ = U

ζ

ρζ ,

y2
ζ
= U

ζ

ρζ
, y1

ζ
= U

ζ

ζζ
.

Eliminatingy1
ζ

among these equations leads to:

U
ζ

ζζ
=

1

2
U

ρ

ρζ
=

1

3
Uσ

σζ
,

from which we deduce the following normalizations:

c = a
2
C0,

and
b = aB0,

where:

C0 :=

(
1

2

L (B)

B
1

2

+
1

2
QB

1

2

)

,

and

B0 :=

(
i

3

L (B)

B
3

2

−
i

3

A

B
1

2

−
i

6
B

1

2Q−
i

6

L (B)

B
1

2

)

.

We introduce the coframeω2 :=
(
σ2, ρ2, ζ2, ζ2

)
onM , defined by:






σ2 := σ1,

ρ2 := ρ1 +C0 σ1,

ζ2 := ζ1 +B0 ρ1,

and the3-dimensional subgroupG3 ⊂ G2:

G3 :=












a
3 0 0 0
0 a

2 0 0
d 0 a 0
d 0 0 a







, a ∈ R \ {0}, d ∈ C






.

The normalizations:

b := aB0, c := a
2
C0,

amount to consider the subbundleP 3 ⊂ P 2 consisting of those coframesω
of the form

ω := g · ω2, whereg is a function g : M
g

−→ G3.
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A basis of the Maurer Cartan forms ofG3 is given by:

γ1 :=
da

a
, γ2 := −

dda

a4
+

dd

a3
, γ2.

The structure equations ofP 3 are:

dσ = 3 γ1 ∧ σ

+ V σ
σρ σ ∧ ρ + V σ

σζ σ ∧ ζ + V σ

σζ
σ ∧ ζ + ρ ∧ ζ + ρ ∧ ζ,

dρ = 2γ1 ∧ ρ+ V ρ
σρ σ ∧ ρ+ V

ρ

σζ σ ∧ ζ + V
ρ

σζ
σ ∧ ζ

+ V
ρ

ρζ ρ ∧ ζ + V
ρ

ρζ
ρ ∧ ζ + i ζ ∧ ζ,

dζ = γ1 ∧ ζ + γ2 ∧ σ

+ V ζ
σρ σ ∧ ρ+ V

ζ

σζ σ ∧ ζ + V
ζ

σζ
σ ∧ ζ + V

ζ

ρζ ρ ∧ ζ

+ V
ζ

ρζ
ρ ∧ ζ + V

ζ

ζζ
ζ ∧ ζ.

dζ = γ1 ∧ ζ + γ3 ∧ σ

+ V ζ
σρ σ ∧ ρ+ V

ζ

σζ σ ∧ ζ + V
ζ

σζ
σ ∧ ζ + V

ζ

ρζ ρ ∧ ζ

+ V
ζ

ρζ
ρ ∧ ζ + V

ζ

ζζ
ζ ∧ ζ.

It is straightforward to notice thatV ρ

σζ andV ρ

σζ
are two essential torsion

coefficients. The first one leads to the normalization:

d = aD0,

with

D0 :=
i

2

L (B)2

B
+
i

3
QL (B)−

i

2
L (L (B))−

i

2
BL (Q)+

i

2
A

L (B)

B
+
i

6
AQ+iBP,

while the second essential torsion coefficient gives the normalization:

d = aD0,

with:

D0 := −
2i

3
L (B)Q−

i

6

L (B)A

B
−
i

6
AQ+

i

6

L (B)Q

B
−
i

3

L (B)2

B
−
i

3
BQ2

− iL (A)−
i

3

L (B)L (B)

B2
+

i

2

L (L (B))

B
+

i

2
L (Q)− i B P.

The coherency of the above formulae can be checked using the relations (1)
and (2).
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Let G4 be the1-dimensional Lie subgroup ofG3 whose elementsg are
of the form:

g :=







a
3 0 0 0
0 a

2 0 0
0 0 a 0
0 0 0 a







, a ∈ R \ {0},

and letω3 :=
(
σ3, ρ3, ζ3, ζ3

)
be the coframe defined onM by:

σ3 := σ2, ρ3 := ρ2, ζ3 := ζ2 +D0 σ2.

The normalization ofd is equivalent to the reduction ofP 3 to a subbundle
P 4 consisting of those coframesω onM such that:

ω := g · ω3, whereg is a function g : M
g

−→ G4.

The Maurer-Cartan forms ofG4 are spanned by:

α :=
da

a
.

Proceeding as in the previous steps, we compute the structure equations
of P 4:

dσ = 3
da

a
∧ σ

+W σ
σρ σ ∧ ρ +W σ

σζ σ ∧ ζ +W σ

σζ
σ ∧ ζ + ρ ∧ ζ + ρ ∧ ζ,

dρ = 2
da

a
∧ ρ + W ρ

σρ σ ∧ ρ + W
ρ

ρζ ρ ∧ ζ + W
ρ

ρζ
ρ ∧ ζ + i ζ ∧ ζ,

dζ =
da

a
∧ ζ

+W ζ
σρ σ ∧ ρ+W

ζ

σζ σ ∧ ζ +W
ζ

σζ
σ ∧ ζ +W

ζ

ρζ ρ ∧ ζ

+W
ζ

ρζ
ρ ∧ ζ +W

ζ

ζζ
ζ ∧ ζ,

dζ =
da

a
∧ ζ

+W ζ
σρ σ ∧ ρ+W

ζ

σζ σ ∧ ζ +W
ζ

σζ
σ ∧ ζ +W

ζ

ρζ ρ ∧ ζ

+W
ζ

ρζ
ρ ∧ ζ +W

ζ

ζζ
ζ ∧ ζ.

Introducing the modified Maurer-Cartan formΛ:

Λ :=
da

a
+

W ρ
σρ

2
ρ−

W σ
σρ

3
σ −

W σ
σρ

3
ζ −

W σ

σζ

3
ζ,
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these equations rewrite in the absorbed form as:
(4)

dσ = 3Λ ∧ σ + ρ ∧ ζ + ρ ∧ ζ,

dρ = 2Λ ∧ ρ+ i ζ ∧ ζ,

dζ = Λ ∧ ζ +
I1

a4
σ ∧ ρ+

I2

a3
σ ∧ ζ +

I3

a3
σ ∧ ζ +

I4

a2
ρ ∧ ζ +

I5

a2
ρ ∧ ζ,

dζ = Λ ∧ ζ +
I1

a4
σ ∧ ρ+

I3

a3
σ ∧ ζ +

I2

a3
σ ∧ ζ +

I5

a2
ρ ∧ ζ +

I4

a2
ρ ∧ ζ,

where the invariantsIi, i = 2 . . . 5, are given by:

I2 =
i

8

QL (B)2

B
1

2

−
i

8
B

1

2L (B)Q2−
3i

4

L (L (B))L (B)

B
1

2

+
i

4
B

1

2L (B)L (Q)

−
i

2
B

1

2PL (B)−
i

4
B

1

2QL (L (B))−
i

4
B

1

2QL (L (B))

−
3i

4
B

3

2QL (Q) +
i

2
B

3

2PQ+
3i

8

L (B)3

B
3

2

+
i

8
B

3

2Q3

+
i

2
B

3

2L (L (Q)) +
i

2
B

1

2 L (L (L (B)))− iB
3

2L (P )

I3 = −D0C0+
L (B)

B
1

2

D0+B
1

2QD0+
A

B
1

2

D0−
L (D0)

B
1

2

−iB0D0+iB2

0C0

−
A

B
1

2

B0C0 +B0 L (A) + BP B0 +
L (B0)

B
1

2

C0 +
1

2

L (B)

B
3

2

B0C0

I4 =
3

4
i
L (B)2

B
+
1

6
iL (B)Q+

11

36
i B Q2−iL (L (B))−

2

3
i B L (Q)+i BP,

I5 =
i

3
L (A) +

i

3
L (Q)− i

L (L (B))

B
+

5

12
i
L (B)2

B
−

i

3
BL (Q)

+
11

36
i B Q2 + i B P +

2

3
i
L (L (B))

B
−

i

3
L (L (B))

+
i

3

AL (B)

B
+

7

18
iL (B)Q−

i

9

L (B)Q

B
+

i

9
AQ,

andI1 is given by:

I1 =
2i

3
(I3)ζ −

2i

3
(I2)ζ .

The exterior derivative ofΛ can be determined by taking the exterior
derivative of the four equations (4), which leads to the so-called Bianchi-
Cartan’s identities. For example, taking the exterior derivative of the first
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equation of (4), one gets:

0 =

[

3 dΛ +

(
I2

a3
+

I3

a3

)

ρ ∧ ζ +

(
I2

a3
+

I3

a3

)

ρ ∧ ζ

]

∧ σ,

while taking the exterior derivative of the second equationgives:

0 =

[

2 dΛ− i
I1

a4
σ ∧ ζ + i

I1

a4
σ ∧ ζ

]

∧ ρ.

Eventually we get:
(5)

dΛ =
i

2

I1

a4
σ ∧ ζ−

i

2

I1

a4
σ ∧ ζ−

1

3

(
I2

a3
+

I3

a3

)

ρ ∧ ζ−
1

3

(
I2

a3
+

I3

a3

)

ρ ∧ ζ+
I0

a4
σ ∧ ζ ,

whereI0 is given by:

I0 := −
1

2a4
(I1)ζ −

1

2a4
(
I1
)

ζ
.

4. CARTAN CONNECTION

We recall that the model for CR-manifolds belonging to generalclassII
is Beloshapka’s cubicB ⊂ C

3, which is defined by the equations:

B :
w1 = w1 + 2 i zz,

w2 = w2 + 2 i zz (z + z) .

Its Lie algebra of infinitesimal CR-automorphisms is given by the following
theorem:

Theorem 2. [12]. Beloshapka’s cubic,

B :
w1 = w1 + 2 i zz,

w2 = w2 + 2 i zz (z + z) ,

has a5-dimensional Lie algebra of CR-automorphismsautCR(B). A basis
for the Maurer-Cartan forms ofautCR(B) is provided by the5 differential
1-formsσ, ρ, ζ, ζ, α, which satisfy the structure equations:

dσ = 3 α ∧ σ + ρ ∧ ζ + ρ ∧ ζ ,

dρ = 2 α ∧ ρ + i ζ ∧ ζ ,

dζ = α ∧ ζ ,

dζ = α ∧ ζ ,

dα = 0.
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Let us writeg instead ofautCR(B) for the Lie algebra of inifinitesimal
automorphisms of Beloshapka’s cubic, and let

(
eα, eσ, eρ, eζ , eζ

)
be the dual

basis of the basis of Maurer-Cartan 1-forms:
(
α, σ, ρ, ζ, ζ

)
of g. From the

above structure equations, the Lie brackets structure ofg is given by:

[eα, eσ] = −3 eσ, [eα, eρ] = −2 eρ, [eα, eζ ] = − eζ ,

[eα, eζ ] = − eζ , [eρ, eζ ] = −eσ, [eρ, eζ ] = −eσ,

[eζ , eζ ] = −i eρ,

the remaining brackets being equal to zero.
We refer to [5], p. 127-128, for the definition of a Cartan connection.

Let g0 ⊂ g be the subalgebra spanned byeα, G the connected, simply
connected Lie group whose Lie algebra isg andG0 the connected closed
1-dimensional subgroup ofG generated byg0. We notice thatG0

∼= G4,
so thatP 4 is a principal bundle overM with structure groupG0, and that
dimG/G0 = dimM = 4.

Let
(
Λ, σ, ρ, ζ, ζ

)
be the coframe of1-forms onP 4 whose structure equa-

tion are given by (4) – (5) andω the1-form onP with values ing defined
by:

ω(X) := Λ(X) eα + σ(X) eσ + ρ(X) eρ + ζ(X) eζ ,+ζ(X) eζ ,

for X ∈ TpP
4. We have:

Theorem 3. ω is a Cartan connection onP 4.

Proof. We shall check that the following three conditions hold:

(1) ω(e∗α) = eα, wheree∗α is the vertical vector field onP 4 generated by
the action ofeα,

(2) R∗
a ω = Ad(a−1)ω for everya ∈ G0,

(3) for eachp ∈ P 4, ωp is an isomorphismTpP
4

ωp

−→ g.

Condition (3) is trivially satisfied as
(
Λ, σ, ρ, ζ, ζ

)
is a coframe onP 4 and

thus defines a basis ofT ∗
pP

4 at each pointp.
Condition (1) follows simply from the fact thatΛ is a modified-Maurer

Cartan form onP 4:

Λ =
da

a
+

W ρ
σρ

2
ρ−

W σ
σρ

3
σ −

W σ
σρ

3
ζ −

W σ

σζ

3
ζ,

so that
ω(e∗α) = Λ(eα∗) = eα,

as

σ(e∗α) = ρ(e∗α) = ζ(e∗α) = ζ(e∗α) = 0,
da

a
(e∗α) = 1,
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sincee∗α is a vertical vector field onP 4.
Condition (2) is equivalent to its infinitesimal counterpart:

Le∗
α
ω = −adeαω,

whereLe∗
α
ω is the Lie derivative ofω by the vector fielde∗α and whereadeα

is the linear mapg → g defined by:adeα(X) = [eα, X]. We determine
Le∗

α
ω with the help of Cartan’s formula:

Le∗
α
ω = eα∗ y dω + d (e∗α yω) ,

with
d (e∗α yω) = 0

from condition (1). The structure equations (4)–(5) give:

eα∗ y dω =









0
3σ
2 ρ
ζ

ζ









,

which is easily seen being equal to−adeαω from the Lie bracket structure
of g. �

From theorem 3, the structure equations (4) and (5), and the fact that the
invariantsI0 andI1 are expressed in terms ofI2, I3, I4, I5, we have:

Theorem 4. A CR-manifoldM belonging to general classII is locally bi-
holomorphic to Beloshapka’s cubicB ⊂ C

3 if and only if the condition

I2 ≡ I3 ≡ I4 ≡ I5 ≡ 0

holds locally onM .
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CANONICAL CARTAN CONNECTION FOR 5-DIMENSIONAL
CR-MANIFOLDS BELONGING TO GENERAL CLASS III2

SAMUEL POCCHIOLA

ABSTRACT

We study the equivalence problem for CR-manifolds belonging to gen-
eral classIII2, i.e. the5-dimensional CR-manifolds of CR-dimension1 and
codimension3 whose CR-bundle satisfies a degeneracy condition which has
been introduced in [9]. For such a CR-manifoldM , we construct a canon-
ical Cartan connection on a6-dimensional principal bundleP onM . This
provides a complete set of biholomorphic invariants forM .

1. INTRODUCTION

As highlighted by Henri Poincaré [14] in 1907, the (local) biholomorphic
equivalence problem between two submanifoldsM andM ′ of CN is to de-
termine whether or not there exists a (local) biholomorphism φ of CN such
thatφ(M) = M ′. Elie Cartan [2, 3] solved this problem for hypersurfaces
M3 ⊂ C

2 in 1932, as he constructed a “hyperspherical connection” onsuch
hypersurfaces by using the powerful technique which is now referred to as
Cartan’s equivalence method.

Given a manifoldM and some geometric data specified onM , which
usually appears as aG-structure onM (i.e. a reduction of the bundle of
coframes ofM ), Cartan’s equivalence method seeks to provide a princi-
pal bundleP on M together with a coframeω of 1-forms onP which is
adapted to the geometric structure ofM in the following sense: an isomor-
phism between two such geometric structuresM andM ′ lifts to a unique
isomorphism betweenP andP ′ which sendsω on ω′. The equivalence
problem betweenM andM ′ is thus reduced to an equivalence problem be-
tween{e}-structures, which is well understood [10, 15].

We recall that a CR-manifoldM is a real manifold endowed with a sub-
bundleL of C⊗ TM of even rank2n such that

(1) L ∩ L = {0}
(2) L is formally integrable, i.e.[L, L] ⊂ L.

The integern is the CR-dimension ofM and k = dimM − 2n is the
codimension ofM . In a recent attempt [9] to solve the equivalence problem

101
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for CR-manifolds up to dimension5, it has been shown that one can restrict
the study to six different general classes of CR-manifolds of dimension≤ 5,
which have been referred to as general classesI, II, III1, III2, IV1 andIV2. The
aim of this paper is to provide a solution to the equivalence problem for
CR-manifolds which belong to general classIII2, that is the CR-manifolds
of dimension5 and of CR-dimension1 such thatC ⊗ TM is spanned by
L, L and their Lie brackets up to order no less than3. More precisely, the
following rank conditions hold:

3 = rankC
(
L+ L+ [L, L]

)
,

4 = rankC
(
L+ L+ [L, L] + [L, [L, L]]

)
,

4 = rankC
(
L+ L+ [L, L] + [L, [L, L]] + [L, [L, L]]

)
,

5 = rankC
(
L+ L+ [L, L] + [L, [L, L]] + [L, [L, L]] + [L, [L, [L, L]]]

)
,

the third one beeing an exceptional degeneracy assumption.
The main result of the present paper is the following:

Theorem 1. LetM be a CR-manifold belonging to general classIII2. There
exists a 6-dimensional subbundleP of the bundle of coframesC ⊗ F (M)
of M and a coframeω := (Λ, τ, σ, ρ, ζ, ζ) on P such that any CR-
diffeomorphismh ofM lifts to a bundle isomorphismh∗ ofP which satisfies
h∗(ω) = ω. Moreover the structure equations ofω onP are of the form:

dτ = 4Λ ∧ τ + J1 τ ∧ ζ − J1 τ ∧ ζ + 3 J1 σ ∧ ρ + σ ∧ ζ + σ ∧ ζ ,

dσ = 3Λ ∧ σ

+ J2 τ ∧ ρ+ J3 τ ∧ ζ + J3 τ ∧ ζ + J4 σ ∧ ρ

−
J1

2
σ ∧ ζ +

J1

2
σ ∧ ζ + ρ ∧ ζ + ρ ∧ ζ,

dρ = 2Λ ∧ ρ

+ J5 τ ∧ σ + J6 τ ∧ ρ + J7 τ ∧ ζ + J7 τ ∧ ζ + J8 σ ∧ ρ + J9 σ ∧ ζ

+ J9 σ ∧ ζ −
J1

2
ρ ∧ ζ +

J1

2
ρ ∧ ζ + i ζ ∧ ζ ,

dζ = Λ ∧ ζ

+ J10 τ ∧ σ + J11 τ ∧ ρ + J12 τ ∧ ζ + J13 τ ∧ ζ

+ J14 σ ∧ ρ + J15 σ ∧ ζ ,

dΛ =
∑

νµ

Xνµ ν ∧ µ , ν, µ = τ, σ, ρ, ζ, ζ,

whereJi, Xνµ, are functions onP .
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The model manifold for this class is provided by the CR-manifold N ⊂
C

3 given by the equations:

N :

w1 = w1 + 2 i zz,

w2 = w2 + 2 i zz (z + z) ,

w3 = w3 + 2i zz

(

z2 +
3

2
zz + z2

)

,

Cartan’s equivalence method has been applied to this model in[12], where
it has been shown that the coframe(Λ, τ, σ, ρ, ζ, ζ) of theorem 1 satisfy the
simplified structure equations:

dτ = 4 Λ ∧ τ + σ ∧ ζ + σ ∧ ζ ,

dσ = 3 Λ ∧ σ + ρ ∧ ζ + ρ ∧ ζ ,

dρ = 2 Λ ∧ ρ + i ζ ∧ ζ ,

dζ = Λ ∧ ζ ,

dζ = Λ ∧ ζ ,

dΛ = 0,

corresponding to the case where the biholomorphic invariants Ji vanish
identically. This result, together with the Lie algebra structure of the in-
ifinitesimal CR-automorphisms of the model, implies the existence of a
Cartan connection onM , which we construct in section 4.

We start in section 2 with the construction of a canonicalG-structureP 1

onM , (e.g. a subbundle of the bundle of coframes ofM ), which encodes
the equivalence problem forM under CR-automorphisms in the following
sense: a diffeomorphism

h : M −→ M

is a CR-automorphism ofM if and only if

h∗ : P 1 −→ P 1

is a G-structure isomorphism ofP 1. We refer to [9, 6, 7] for details on
the results summarized in this section and to [15] for an introduction to
G-structures. Section 3 is devoted to reduce successivelyP 1 to four sub-
bundles:

P 5 ⊂ P 4 ⊂ P 3 ⊂ P 2 ⊂ P 1,

which are still adapted to the biholomorphic equivalence problem forM .
We use Cartan equivalence method, for which we refer to [10]. Eventually
a Cartan connection is constructed onP 5 in section 4.
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2. INITIAL G-STRUCTURE

LetM be a CR-manifold belonging to general classIII2 andL be a local
generator of the CR-bundleL of M . AsM belongs to general classIII2, the
three vector fieldsT , S , R, defined by:

T := i [L ,L ],

S := [L ,T ],

R := [L ,T ],

are such that the following biholomorphic invariant conditions hold:

3 = rankC
(
L ,L ,T

)
, 4 = rankC

(
L ,L ,T ,S

)
,

4 = rankC
(
L ,L ,T ,S ,S

)
, 5 = rankC

(
L ,L ,T ,S ,R

)
.

As a result there exist two functionsA andB such that:

S = A · T +B · S .

From the fact thatS = S , the functionsA andB satisfy the relations:

BB = 1,

A+ BA = 0.

There also exist three functionsE, F , G, such that:

[L ,R] = E · T + F · S +G · R.

The five functionsA, B, E, F , G appear to be fundamental as all other Lie
brackets between the vector fieldsL , L , T , S andR can be expressed
in terms of these five functions and their{L ,L }-derivatives.

In the case of an embedded CR-manifoldM ⊂ C
4, we can give an ex-

plicit formula for the fundamental vector fieldL , and hence for the func-
tionsA, B, P , Q, in terms of a graphing function ofM . We refer to [8] for
details on this question. Let us just mention that the submanifold M ⊂ C

4

is represented in local coordinates:

(z, w1, w2, w3) = (x+ i y, u1 + i v1, u2 + i v2, u3 + i v3),

as a graph:
v1 = φ1(x, y, u1, u2, u3),

v2 = φ2(x, y, u1, u2, u3),

v3 = φ3(x, y, u1, u2, u3).

There exists a unique local generatorL of T 1,0M of the form:

L =
∂

∂z
+ A1

∂

∂u1

+ A2
∂

∂u2

+ A3
∂

∂u3

,
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having conjugate:

L =
∂

∂z
+ A1

∂

∂u1

+ A2
∂

∂u2

+ A3
∂

∂u3

,

which is a generator ofT 0,1M . The explicit expressions of the functions
A1, A2 andA3 in terms ofφ can be found in [8].

Returning to the general case of abstract CR-manifolds, let

ω0 :=
(
τ0, σ0, ρ0, ζ0, ζ0

)

be the dual coframe of
(
R,S ,T ,L ,L

)
. We have:

Lemma 1. [7]. The structure equations enjoyed byω0 are of the form:

dτ0 = T τ0 ∧ σ0 +Q τ0 ∧ ρ0 +K τ0 ∧ ζ0 +G τ0 ∧ ζ0

+N σ0 ∧ ρ0 + σ0 ∧ ζ0 + B σ0 ∧ ζ0 ,

dσ0 = S τ0 ∧ σ0 + P τ0 ∧ ρ0 + F τ0 ∧ ζ0 + J τ0 ∧ ζ0 +M σ0 ∧ ρ0

+ (L (B) + A) σ0 ∧ ζ0 + B ρ0 ∧ ζ0 + ρ0 ∧ ζ0 ,

dρ0 = R τ0 ∧ σ0 +O τ0 ∧ ρ0 +H τ0 ∧ ζ0 + E τ0 ∧ ζ0

+ L σ0 ∧ ρ0 + L (A) σ0 ∧ ζ0 + A ρ0 ∧ ζ0 + i ζ0 ∧ ζ0 ,

dζ0 = 0,

dζ0 = 0,

where the twelve functions:

H, J, K, L, M, N, O, P, Q, R, S, T,

can be expressed in terms of the five fundamental functions:

A, B, E, F, G,

and their{L ,L }-derivatives.

Let h : M −→ M be a CR-automorphism ofM . As we have

h∗ (L) = L,

there exists a non-vanishing complex-valued functiona onM such that:

h∗ (L ) = aL .

From the definition ofT , S , R and the invariance

h∗ ([X, Y ]) = [h∗(X), h∗(Y )]

for any vector fieldsX, Y onM , we easily get the existence of eight func-
tions

b, c, d, e, f, g, h, k : M −→ C,
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such that

h∗









L

L

T

S

R









=









a 0 0 0 0
0 a 0 0 0
b b aa 0 0
e d c a2a 0
k h g f a3a









·









L

L

T

S

R









.

This is summarized in the following lemma:

Lemma 2. [6]. Leth : M −→ M a CR-automorphism ofM and letG1 be
the subgroup ofGL5(C):

G1 :=














a3a 0 0 0 0
f a2a 0 0 0
g c aa 0 0
h d b a 0
k e b 0 a









, a ∈ C \ {0}, b, c, d, e, f, g, h, k ∈ C






.

Then the pullbackω of ω0 byh, ω := h∗ω0, satisfies:

ω = g · ω0,

whereg is smooth (locally defined) functionM
g

−→ G1.

Let P 1 be theG1-structure onM defined by the coframesω of the form

ω := g · ω0, g ∈ G1

The next section is devoted to construct four subgroups ofG1:

G5 ⊂ G4 ⊂ G3 ⊂ G2 ⊂ G1,

and fourGi-structures onM :

P 5 ⊂ P 4 ⊂ P 3 ⊂ P 2 ⊂ P 1,

which are adapted to the biholomorphic equivalence problemfor M in the
sense that a diffeomorphismh of M is a CR-automorphism if and only if
h∗ is aGi-structure isomorphism ofP i.

3. REDUCTIONS OFP 1

The coframeω0 gives a natural (local) trivialisationP 1 tr
−→ M × G1

from which we may consider any differential form onM (resp. G1) as a
differential form onP 1 through the pullback by the first (resp. the second)
component oftr. With this identification, the structure equations ofP 1 are
naturally obtained by the formula:

(1) dω = dg · g−1 ∧ ω + g · dω0.
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The termg · dω0 contains the so-called torsion coefficients ofP 1. A 1-form
α̃ on P 1 is called a modified Maurer-Cartan form if its restriction to any
fiber of P 1 is a Maurer-Cartan form ofG1, or equivalently, if it is of the
form:

α̃ := α− xτ τ − xσ σ − xρ ρ− xζ ζ − xζ ζ,

wherexσ, xρ, xζ , xζ , are arbitrary complex-valued functions onM and
whereα is a Maurer-Cartan form ofG1.

A basis for the Maurer-Cartan forms ofG1 is given by the following1-
forms:

α1 :=
da

a
,

α2 := −
bda

a2a
+

db

aa
,

α3 := −
cda

a a3
−

cda

a2a2
+

dc

a2a
,

α4 := −
(daa− bc) da

a4a2
−

cdb

a3a2
+

dd

a2a
,

α5 := −

(
eaa− b c

)
da

a3a3
−

cdb

a3a2
+

de

a2a
,

α6 := −2
fda

a a4
−

fda

a3a2
+

df

a a3
,

α7 := −
(ga2a− cf) da

a2a6
−

(ga2a− cf) da

a3a5
−

fdc

a5a2
+

dg

a a3
,

α8 := −

(
ha3a2 − dfaa− bga2a+ bcf

)
da

a7a3
−

(ga2a− cf) db

a6a3
−

fdd

a5a2
+

dh

a a3
,

α9 := −

(
ka3a2 − efaa− b ga2a+ b cf

)
da

a6a4
−

(ga2a− cf) db

a6a3
−

fde

a5a2
+

dk

a a3
,

together with their conjugates.
We derive the structure equations ofP 1 from the relations (1). The ex-

pression ofdτ is:

dτ = 3 α1 ∧ τ + α1 ∧ τ

+ T τ
τσ τ ∧ σ + T τ

τρ τ ∧ ρ + T τ
τζ τ ∧ ζ

+ T τ

τζ
τ ∧ ζ + T τ

σρ σ ∧ ρ + σ ∧ ζ −
a

a
B σ ∧ ζ

The coefficient
a

a
B,

which can not be absorbed for any choice of the modified Maurer-Cartan
form α̃1, is referred to as an essential torsion coefficient. From standard
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results on Cartan theory (see [10, 15]), a diffeomorphism ofM is an iso-
morphism of theG1-structureP 1 if and only if it is an isomorphism of the
reduced bundleP 2 ⊂ P 1 consisting of those coframesω onM such that

a

a
B = 1.

This is equivalent to the normalization:

a = aB.

A coframeω ∈ P 2 is related to the coframeω0 by the relations:

τ = a4 B τ0, σ = f τ0 + a3 B σ0,

ρ = g τ0 + cσ0 + a2 B ρ0, ζ = h τ0 + dσ0 + b ρ0 + a ζ0,

ζ = k τ0 + eσ0 + b ρ0 + aB ζ0,

which are equivalent to:

τ = a′
4
τ1, σ = f ′ τ1 + a′

3
σ1,

ρ = g′ τ1 + c′ σ1 + a′
2
ρ1, ζ = h′ τ1 + d′ σ1 + b ρ1 + a′ ζ1,

ζ = k′ τ1 + e′ σ1 + b ρ1 + a′ ζ1,

where:

τ1 :=
τ0

B
, σ1 :=

σ0

B
1

2

, ρ1 = ρ0, ζ1 :=
ζ0

B
1

2

,

and

x′ :=

{

x ·B
1

2 , for x = a, c, d, e,

x ·B, for x = f, g, h, k.

We notice thata′ is a real parameter, and thatτ1 is a real1-form. Letω1

be the coframeω1 :=
(
τ1, σ1, ρ1, ζ1, ζ1

)
, andG2 be the subgroup ofG1:

G2 :=














a4 0 0 0 0
f a3 0 0 0
g c a2 0 0
h d b a 0
k e b 0 a









, a ∈ R \ {0}, b, c, d, e, f, g, h, k ∈ C






.

A coframeω on M belongs toP 2 if and only if there is a local function
g : M

g
−→ G2 such thatω = g · ω1, namelyP 2 is aG2 structure onM .
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The Maurer-Cartan forms ofG2 are given by:

β1 :=
da

a
,

β2 := −
bda

a3
+

db

a2
,

β3 := −2
cda

a4
+

dc

a3
,

β4 = −
(da2 − bc) da

a6
−

cdb

a5
+

dd

a3
,

β5 = −

(
ea2 − b c

)
da

a6
−

cdb

a5
+

de

a3
,

β6 = −3
fda

a5
+

df

a4
,

β7 = −2
(ga3 − cf) da

a8
−

fdc

a7
+

dg

a4
,

β8 = −
(ha5 − dfa2 − bga3 + bcf) da

a10
−

(ga3 − cf) db

a9
−

fdd

a7
+

dh

a4
,

β9 = −

(
ka5 − efa2 − b ga3 + b cf

)
da

a10
−

(ga3 − cf) db

a9
−

fde

a5a2
+

dk

a4
,

together withβi, i = 2 . . . 9.
Using formula (1), we get the structure equations ofP 2:

dτ = 4 β1 ∧ τ

+ U τ
τσ τ ∧ σ + U τ

τρ τ ∧ ρ+ U τ
τζ τ ∧ ζ + U τ

τζ
τ ∧ ζ

+ U τ
σρ σ ∧ ρ+ σ ∧ ζ + σ ∧ ζ,

dσ = 3 β1 ∧ σ + β6 ∧ τ

+ Uσ
τσ τ ∧ σ + Uσ

τρ τ ∧ ρ + Uσ
τζ τ ∧ ζ

+ Uσ

τζ
τ ∧ ζ + Uσ

σρ σ ∧ ρ + Uσ
σζ σ ∧ ζ

+ Uσ

σζ
σ ∧ ζ + ρ ∧ ζ + ρ ∧ ζ

dρ = 2β1 ∧ ρ+ β3 ∧ σ + β7 ∧ τ

+ Uρ
τσ τ ∧ σ + Uρ

τρ τ ∧ ρ+ U
ρ

τζ τ ∧ ζ + U
ρ

τζ
ρ ∧ ζ + Uρ

σρ σ ∧ ρ

+ U
ρ

σζ σ ∧ ζ + U
ρ

σζ
σ ∧ ζ + U

ρ

ρζ ρ ∧ ζ + U
ρ

ρζ
ρ ∧ ζ + i ζ ∧ ζ,
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dζ = β1 ∧ ζ + β2 ∧ ρ+ β4 ∧ σ + β8 ∧ τ

+ U ζ
τσ τ ∧ σ + U ζ

τρ τ ∧ ρ+ U
ζ

τζ τ ∧ ζ + U
ζ

τζ
τ ∧ ζ

+ U ζ
σρ σ ∧ ρ+ U

ζ

σζ σ ∧ ζ + U
ζ

σζ
σ ∧ ζ + U

ζ

ρζ ρ ∧ ζ

+ U
ζ

ρζ
ρ ∧ ζ + U

ζ

ζζ
ζ ∧ ζ.

Introducing the modified Maurer-Cartan forms:

β̃i = βi − yiτ τ − yσ σ − yiρ ρ− yiζ ζ − yi
ζ
ζ,

the structure equations rewrite:

dτ = 4 β̃1 ∧ τ

+
(
U τ
τσ − 4 y1σ

)
τ ∧ σ +

(
U τ
τρ − 4 y1ρ

)
τ ∧ ρ

+
(
U τ
τζ − 4 y1ζ

)
τ ∧ ζ +

(

U τ

τζ
− 4 y1

ζ

)

τ ∧ ζ

+ U τ
σρ σ ∧ ρ + σ ∧ ζ + σ ∧ ζ ,

dσ = 3 β̃1 ∧ σ + β̃6 ∧ τ

+
(
Uσ
τσ + 3 y1τ − y6σ

)
τ ∧ σ +

(
Uσ
τρ − y6ρ

)
τ ∧ ρ

+
(
Uσ
τζ − y6ζ

)
τ ∧ ζ +

(

Uσ

τζ
− y6

ζ

)

τ ∧ ζ

+
(
Uσ
σρ − 3 y1ρ

)
σ ∧ ρ +

(
Uσ
σζ − 3 y1ζ

)
σ ∧ ζ

+
(

Uσ

σζ
− 3 y1

ζ

)

σ ∧ ζ + ρ ∧ ζ + ρ ∧ ζ

dρ = 2β̃1 ∧ ρ+ β̃3 ∧ σ + β̃7 ∧ τ

+
(
Uρ
τσ + y3τ − y7σ

)
τ ∧ σ +

(
Uρ
τρ + 2 y1τ − y7ρ

)
τ ∧ ρ

+
(
U

ρ

τζ − y7ζ
)
τ ∧ ζ +

(

U
ρ

τζ
− y7

ζ

)

ρ ∧ ζ

+
(
Uρ
σρ + 2 y1σ − y3ρ

)
σ ∧ ρ +

(
U

ρ

σζ − y3ζ
)
σ ∧ ζ

+
(

U
ρ

σζ
− y3

ζ

)

σ ∧ ζ +
(
U

ρ

ρζ − 2 y1ζ
)
ρ ∧ ζ

+
(

U
ρ

ρζ
− 2 y1

ζ

)

ρ ∧ ζ + i ζ ∧ ζ ,
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dζ = β̃1 ∧ ζ + β̃2 ∧ ρ+ β̃4 ∧ σ + β̃8 ∧ τ

+
(
U ζ
τσ + y4τ − y8σ

)
τ ∧ σ +

(
U ζ
τρ + y2τ − y8ρ

)
τ ∧ ρ

+
(

U
ζ

τζ + y1τ − y8ζ

)

τ ∧ ζ +
(

U
ζ

τζ
− y8

ζ

)

τ ∧ ζ

+
(
U ζ
σρ + y2σ − y4ρ

)
σ ∧ ρ +

(

U
ζ

σζ + y1σ − y4ζ

)

σ ∧ ζ

+
(

U
ζ

σζ
− y4

ζ

)

σ ∧ ζ +
(

U
ζ

ρζ + y1ρ − y2ζ

)

ρ ∧ ζ

+
(

U
ζ

ρζ
− y2

ζ

)

ρ ∧ ζ +
(

U
ζ

ζζ
− y1

ζ

)

ζ ∧ ζ .

We get the following absorbtion equations:

4 y1σ = U τ
τσ, 4 y1ρ = U τ

τρ, 4 y1ζ = U τ
τζ ,

4 y1
ζ
= U τ

τζ
, −3 y1τ + y6σ = Uσ

τσ, y6ρ = Uσ
τρ,

y6ζ = Uσ
τζ , y6

ζ
= Uσ

τζ
, 3 y1ρ = Uσ

σρ,

3 y1ζ = Uσ
σζ , 3 y1

ζ
= Uσ

σζ
, −y3τ + y7σ = Uρ

τσ,

−2 y1τ + y7ρ = Uρ
τρ, y7ζ = U

ρ

τζ , y7
ζ
= U

ρ

τζ
,

−2 y1σ + y3ρ = Uρ
σρ, y3ζ = U

ρ

σζ , y3
ζ
= U

ρ

σζ
,

2 y1ζ = U
ρ

ρζ , 2 y1
ζ
= U

ρ

ρζ
, −y4τ + y8σ = U ζ

τσ,

−y2τ + y8ρ = U ζ
τρ, −y1τ + y8ζ = U

ζ

τζ , y8
ζ
= U

ζ

τζ
,

−y2σ + y4ρ = U ζ
σρ, −y1σ + y4ζ = U

ζ

σζ , y4
ζ
= U

ζ

σζ
,

−y1ρ + y2ζ = U
ζ

ρζ , y2
ζ
= U

ζ

ρζ
, y1

ζ
= U

ζ

ζζ
.

Eliminatingy1
zeta

andy1
ζ

among the previous equations leads to the normal-
izations:

b = aB0,

c = a2 C0,

f = a3 F0,

where the functionsB0, C0 andF0 are defined by:
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B0 :=
3i

10

L (B)

B
3

2

−
i

5

A

B
1

2

−
i

10

K

B
1

2

−
i

10

L (B)

B
1

2

,

C0 :=
11

20

L (B)

B
1

2

+
3

20
B

1

2G+
1

20

L (B)

B
3

2

−
1

5

A

B
1

2

+
3

20

K

B
1

2

,

F0 :=
1

10

L (B)

B
+

3

10
B

1

2G+
1

10

L (B)

B
3

2

−
2

5

A

B
1

2

+
3

10

K

B
1

2

.

The absorbed structure equations take the form:

dτ = 4 β̃1 ∧ τ +
I1

a
τ ∧ ζ −

I1

a
τ ∧ ζ + 3

I1

a
σ ∧ ρ + σ ∧ ζ + σ ∧ ζ ,

dσ = 3 β̃1 ∧ σ + β̃6 ∧ τ −
I1

2a
σ ∧ ζ +

I1

2a
σ ∧ ζ + ρ ∧ ζ + ρ ∧ ζ,

dρ = 2β̃1 ∧ ρ+ β̃3 ∧ σ + β̃7 ∧ τ −
I1

2a
ρ ∧ ζ +

I1

2a
ρ ∧ ζ + i ζ ∧ ζ ,

dζ = β̃1 ∧ ζ + β̃2 ∧ ρ+ β̃4 ∧ σ + β̃8 ∧ τ,

where the functionI1 is a biholomorphic invariant ofM and is given by:

I1 :=
1

2

L (B)

B
+

3

10
B

1

2G−
1

10

L (B)

B
3

2

+
2

5

A

B
1

2

−
3

10

K

B
1

2

.

We introduce the coframeω2 :=
(
τ2, σ2, ρ2, ζ2, ζ2

)
onM , defined by:






τ2 := τ1

σ2 := F0 τ1 + σ1,

ρ2 := ρ1 +C0 σ1,

ζ2 := ζ1 +B0 ρ1,

and the subgroupG3 ⊂ G2:

G3 :=














a4 0 0 0 0
0 a3 0 0 0
g 0 a2 0 0
h d 0 a 0
k e 0 0 a









, a ∈ R \ {0}, d, e, g, h, k,∈ C






.

We notice thatσ2 is a real one-form. The normalizations:

b := aB0, c := a2C0, f := a3 F0,

amount to consider the subbundleP 3 ⊂ P 2 consisting of those coframesω
of the form

ω := g · ω2, whereg is a function g : M
g

−→ G3.
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A basis of the Maurer Cartan forms ofG3 is given by:

γ1 :=
da

a
,

γ2 := −
dda

a4
+

dd

a3
,

γ3 := −
eda

a4
+

de

a3
,

γ4 := −2
gda

a5
+

dg

a4
,

γ5 := −
hda

a5
+

dh

a4
,

γ6 := −
kda

a5
+

dk

a4
.

We get the following absorbed structure equations forP 3:

dτ = 4 γ̃1 ∧ τ +
I1

a
τ ∧ ζ −

I1

a
τ ∧ ζ + 3

I1

a
σ ∧ ρ + σ ∧ ζ + σ ∧ ζ ,

dσ = 3 γ̃1 ∧ σ

+ V σ
τρ τ ∧ ρ + V σ

τζ τ ∧ ζ + V σ

τζ
τ ∧ ζ + V σ

σρ σ ∧ ρ

−
I1

2a
σ ∧ ζ +

I1

2a
σ ∧ ζ + ρ ∧ ζ + ρ ∧ ζ ,

dρ = 2 γ̃1 ∧ ρ + γ̃4 ∧ τ

+ V ρ
σρ σ ∧ ρ+ V

ρ

σζ σ ∧ ζ + V
ρ

σζ
σ ∧ ζ

+
I1

2a
+ ρ ∧ ζ +

I1

2a
ρ ∧ ζ + i ζ ∧ ζ ,

dζ = γ̃1 ∧ ζ + γ̃2 ∧ σ + γ̃5 ∧ τ + V
ζ

ρζ ρ ∧ ζ + V
ζ

ρζ
ρ ∧ ζ ,

From the essential torsion coefficientsV σ
τζ , V

σ

τζ
andV ζ

ρζ
, we obtain the

normalizations:

d := aD0, g := a2G0,

where

D0 := iB2

0 −
AB0

B
1

2

+
L (B0)

B
1

2

+
1

2

L (B)B0

B
3

2

,
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and

G0 := −
1

4

L (B)

B
1

2

F0 − F
2

0 +
1

2
B

1

2GF0 −
1

2
B

1

2L (F0) +C0F0

+
1

2
FB +

1

4

L (B)

B
3

2

F0 +
1

2

K

B
1

2

F0 −
1

2

L (F0)

B
1

2

+
J

2
−

1

2

A

B
1

2

F0.

We introduce the coframeω3 :=
(
τ3, σ3, ρ3, ζ3, ζ3

)
onM , defined by:






τ3 := τ2

σ3 := σ2

ρ3 := ρ2 +C0 τ2,

ζ3 := ζ2 +D0 σ2,

and the subgroupG4 ⊂ G3:

G4 :=














a4 0 0 0 0
0 a3 0 0 0
0 0 a2 0 0
h 0 0 a 0
h 0 0 0 a









, a ∈ R \ {0}, h ∈ C






The normalizations:

d := aD0, g := a2G0,

amount to consider the subbundleP 4 ⊂ P 3 consisting of those coframesω
of the form

ω := g · ω3, whereg is a function g : M
g

−→ G4.

A basis of the Maurer-Cartan forms is given by:

δ1 :=
da

a
,

δ2 := −
hda

a5
+

dh

a4
,

together withδ
2
.

As for the previous step, we determine the structure equations ofP 4 us-
ing formula (1). We just write here the expression ofdζ, as it provides a
normalization ofh:

dζ = δ̃1 ∧ ζ + δ̃2 ∧ τ +W ζ
σρ σ ∧ ρ +W

ζ

σζ σ ∧ ζ +W
ζ

σζ σ ∧ ζ ,

for some modified Maurer-Cartan formsδ̃1, δ̃2.
The essential torsion coefficientW ζ

σζ can be normalized to0, which is
equivalent to the normalization:

h := aH0,
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where

H0 := −D0 F0 +C0 D0 −
L (B)

B
1

2

D0 −
A

B
1

2

D0 +L (D0)B
1

2 + iB0 D0

− iB2

0 C0 +
A

B
1

2

B0 C0 − L (A)B0 −
L (B0)

B
1

2

C0 −
1

2

L (B)

B
3

2

B0 C0.

Let G5 be the1-dimensional Lie subgroup ofG4 whose elementsg are
of the form:

g :=









a4 0 0 0 0
0 a3 0 0 0
0 0 a2 0 0
0 0 0 a 0
0 0 0 0 a









, a ∈ R \ {0},

and letω4 :=
(
τ4, σ4, ρ4, ζ4, ζ4

)
be the coframe defined onM by:

σ4 := σ3, ρ4 := ρ3, ζ4 := ζ3 +H0 τ3.

The normalization ofh is equivalent to the reduction ofP 4 to a subbundle
P 5 consisting of those coframesω onM such that:

ω := g · ω3, whereg is a function g : M
g

−→ G4.

The Maurer-Cartan forms ofG5 are spanned by:

α :=
da

a
.

Proceeding as in the previous steps, we determine the structure equations
of P 4 which take the absorbed form:

dτ = 4Λ ∧ τ +
I1

a
τ ∧ ζ −

I1

a
τ ∧ ζ + 3

I1

a
σ ∧ ρ + σ ∧ ζ + σ ∧ ζ ,

dσ = 3Λ ∧ σ

+
I2

a3
τ ∧ ρ+

I3

a2
τ ∧ ζ +

I3

a2
τ ∧ ζ +

I4

a2
σ ∧ ρ

−
I1

2a
σ ∧ ζ +

I1

2a
σ ∧ ζ + ρ ∧ ζ + ρ ∧ ζ,

dρ = 2Λ ∧ ρ

+
I5

a5
τ ∧ σ +

I6

a4
τ ∧ ρ +

I7

a3
τ ∧ ζ +

I7

a3
τ ∧ ζ +

I8

a3
σ ∧ ρ

+
I9

a2
σ ∧ ζ +

I9

a2
σ ∧ ζ −

I1

2a
ρ ∧ ζ +

I1

2a
ρ ∧ ζ + i ζ ∧ ζ ,
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dζ = Λ ∧ ζ

+
I10

a6
τ ∧ σ +

I11

a5
τ ∧ ρ +

I12

a4
τ ∧ ζ +

I13

a4
τ ∧ ζ

+
I14

a4
σ ∧ ρ +

I15

a3
σ ∧ ζ ,

(2)
whereΛ is a modified-Maurer Cartan form:

Λ :=
da

a
−Xτ τ −Xσ σ −Xρ ρ−Xζ ζ −Xζ ζ,

and where
Ii, i = 1 . . . 15,

are biholomorphic invariants ofM .
The exterior derivative ofΛ can be determined by taking the exterior de-

rivative of the four previous equations which leads to the so-called Bianchi-
Cartan’s identities. We obtain the fact thatdΛ does not contain any2-form
involving the1-form Λ, namely:

(3) dΛ =
∑

νµ

Xνµ ν ∧ µ , ν, µ = τ, σ, ρ, ζ, ζ.

4. CARTAN CONNECTION

We recall that the model for CR-manifolds belonging to generalclassIII2
is the CR-manifold defined by the equations:

N :

w1 = w1 + 2 i zz,

w2 = w2 + 2 i zz (z + z) ,

w3 = w3 + 2i zz

(

z2 +
3

2
zz + z2

)

.

Its Lie algebra of infinitesimal CR-automorphisms is given by the following
theorem:

Theorem 2. [12]. The model of the classIII2:

N :

w1 = w1 + 2 i zz,

w2 = w2 + 2 i zz (z + z) ,

w3 = w3 + 2i zz

(

z2 +
3

2
zz + z2

)

,

has a6-dimensional Lie algebra of CR-automorphismsautCR(N). A basis
for the Maurer-Cartan forms ofautCR(N) is provided by the6 differential



117

1-formsτ , σ, ρ, ζ, ζ, α, which satisfy the Maurer-Cartan equations:

dτ = 4 α ∧ τ + σ ∧ ζ + σ ∧ ζ ,

dσ = 3 α ∧ σ + ρ ∧ ζ + ρ ∧ ζ ,

dρ = 2 α ∧ ρ + i ζ ∧ ζ ,

dζ = α ∧ ζ ,

dζ = α ∧ ζ ,

dα = 0.

Let us writeg instead ofautCR(N) for the Lie algebra of inifinitesimal
automorphisms ofN and let

(
eα, eτ , eσ, eρ, eζ , eζ

)
be the dual basis of the

basis of Maurer-Cartan 1-forms:
(
α, τ, σ, ρ, ζ, ζ

)
. From the above structure

equations, the Lie brackets structure ofg is given by:

[eα, eτ ] = −4 eτ , [eσ, eζ ] = − eτ , [eσ, eζ ] = − eτ ,

[eα, eσ] = −3 eσ, [eα, eρ] = −2 eρ, [eα, eζ ] = − eζ ,

[eα, eζ ] = − eζ , [eρ, eζ ] = −eσ, [eρ, eζ ] = −eσ,

[eζ , eζ ] = −i eρ,

the remaining brackets being equal to zero.
We refer to [5], p. 127-128, for the definition of a Cartan connection. Let

g0 ⊂ g be the subalgebra spanned byeα,G the connected, simply connected
Lie group whose Lie algebra isg andG0 the closed1-dimensional subgroup
of G generated byg0. We notice thatG0

∼= G5, so thatP 5 is a principal
bundle overM with structure groupG0, and thatdimG/G0 = dimM = 5.

Let
(
Λ, τ, σ, ρ, ζ, ζ

)
be the coframe of1-forms onP 5 whose structure

equation are given by (2) – (3) andω the 1-form on P with values ing
defined by:

ω(X) := Λ(X) eα + τ(X) eτ + σ(X) eσ + ρ(X) eρ + ζ(X) eζ ,+ζ(X) eζ ,

for X ∈ TpP
5. We have:

Theorem 3. ω is a Cartan connection onP 5.

Proof. We shall check that the following three conditions hold:
(1) ω(e∗α) = eα, wheree∗α is the vertical vector field onP 4 generated by

the action ofeα,
(2) R∗

a ω = Ad(a−1)ω for everya ∈ G0,
(3) for eachp ∈ P 5, ωp is an isomorphismTpP

5
ωp

−→ g.

Condition (3) is trivially satisfied as
(
Λ, τ, σ, ρ, ζ, ζ

)
is a coframe onP 5

and thus defines a basis ofT ∗
pP

5 at each pointp.
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Condition (1) follows simply from the fact thatΛ is a modified-Maurer
Cartan form onP 5:

Λ :=
da

a
−Xτ τ −Xσ σ −Xρ ρ−Xζ ζ −Xζ ζ,

so that
ω(e∗α) = Λ(eα∗) = eα,

as

τ(eα) = σ(e∗α) = ρ(e∗α) = ζ(e∗α) = ζ(e∗α) = 0,
da

a
(e∗α) = 1,

sincee∗α is a vertical vector field onP 5.
Condition (2) is equivalent to its infinitesimal counterpart:

Le∗
α
ω = −adeαω,

whereLe∗
α
ω is the Lie derivative ofω by the vector fielde∗α and whereadeα

is the linear mapg → g defined by:adeα(X) = [eα, X]. We determine
Le∗

α
ω with the help of Cartan’s formula:

Le∗
α
ω = eα∗ y dω + d (e∗α yω) ,

with
d (e∗α yω) = 0

from condition (1). The structure equations (2)–(3) give:

eα∗ y dω =











0
4 τ
3σ
2 ρ
ζ

ζ











,

which is easily seen being equal to−adeαω from the Lie bracket structure
of g. �



119

REFERENCES

[1] Beloshapka, V.K.; Ezhov, V.; Schmalz, G.: Canonical Cartan connection and
holomorphic invariants on Engel CR manifolds, Russian J. Mathematical Physics14
(2007), no. 2, 121–133.

[2] Cartan, E.: Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux
variables complexes, Ann. Mat. Pura Appl.11 (1933), no. 1, 17–90.

[3] Cartan, E.: Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux
variables complexes II, Ann. Scuola. Norm. Sup. Pisa1 (1932), no. 4, 333–354.

[4] Ezhov, V.; McLaughlin, B.; Schmalz, G.: From Cartan to Tanaka: Getting Real in
the Complex World, Notices of the AMS (2011)58, no. 1.

[5] Kobayashi, S.: Transformation groups in differential geometry, Ergebnisse der
Mathematik und ihrer Grenzgebiete,70, Springer-Verlag, New-York Heidelberg
Berlin, 1972.

[6] Merker, J.: Equivalences of 5-dimensional CR manifolds, III: Six models and (very)
elementary normalizations, 54 pages, arxiv.org/abs/1311.7522.

[7] Merker, J.: Equivalences of5-dimensional CR-manifolds, IV: Six ambiguity matrix
groups, (Initial G-structures), 34 pages, arxiv.org/abs/1312.1084.

[8] Merker, J.: Equivalences of 5-dimensional CR-manifolds V: Six initialframes and
coframes; Explicitness obstacles, 63 pages, arxiv.org/abs/1312.3581.

[9] Merker, J.; Pocchiola, S.; Sabzevari, M.: Equivalences of5-dimensional CR-
manifolds, II: General classes I, II, III-1, III-2, IV-1, IV-2, arxiv.org/abs/1311.5669.

[10] Olver, P.J.: Equivalence, Invariance and Symmetries. Cambridge University Press,
Cambridge, 1995, xvi+525 pp.

[11] Pocchiola, S.: Absolute parallelism for2-nondegenerate real hypersurfacesM
5 ⊂

C
3 of constant Levi rank1, arxiv.org/abs/1312.6400, 56 pp.

[12] Pocchiola, S.: Canonical Cartan connection for4-dimensional CR-manifolds be-
longing to general classII, 17 pp.

[13] Pocchiola, S.: Lie algebras of infinitesimal CR-automorphisms for the model mani-
folds of general classesII, III2, IV2, 44 pp.

[14] Poincaré, H.: Les fonctions analytiques de deux variables et la représentation con-
forme,Rend. Circ. Math. Palermo, 23, (1907), 185-220.

[15] Sternberg, S.:Lectures on Differential Geometry. Prentice-Hall mathematical series,
Inc., Englewood Cliffs, N.J. 1964, xv+390 pp.

SAMUEL POCCHIOLA — DÉPARTEMENT DE MATHÉMATIQUES, BÂTIMENT 425,
FACULTÉ DES SCIENCES D’ORSAY, UNIVERSITÉ PARIS-SUD, F-91405 ORSAY

CEDEX, FRANCE

E-mail address: samuel.pocchiola@math.u-psud.fr



LIE ALGEBRAS OF INFINITESIMAL AUTOMORPHISMS FOR
THE MODEL MANIFOLDS OF GENERAL CLASSES II, III2 AND

IV2

SAMUEL POCCHIOLA

ABSTRACT

We determine the Lie algebra of infinitesimal CR-automorphisms of the
models of general classesII, III2 and IV2 through Cartan’s equivalence
method.

1. INTRODUCTION

The classification of CR-manifolds up to dimension5 has highlighted
the existence of6 non-trivial classes of CR-manifolds, which have been re-
ferred to as general classesI, II, III1, III2, IV1 and IV2 [9]. Each of these
classes entails a distinguished manifold, the model, whoseLie algebra of
infinitesimal CR-automorphisms is of maximal dimension. It plays a spe-
cial role, as CR-manifolds belonging to the same class can be viewed as its
deformations, generally by the way of Cartan connection. Theaim of this
paper is to determine the Lie algebra of infinitesimal CR-automorphisms
of the models for general classesII, III2 and IV2. This is already known
[1, 5] for general classesII (Engel manifolds) andIV2 (2-nondegenerate,5-
dimensional CR-manifolds of constant Levi rank1), but is unknown, to our
knowledge, in the case of general classIII2. In our view, the main interest
of this paper is to provide a unified treatment for the3 classes through the
use of Cartan’s equivalence method, in the spirit of [10]. Cartan’s equiva-
lence method has indeed been employed recently to solve the equivalence
problem for general classesII, III2 and IV2 [11, 12, 13]. For each of these
classes, the solution to the equivalence problem for the model has been of
a great help for the treatment of the general case, as a similar structure of
normalizations of the group parameters occurs in both cases.

For general classII, the model is provided by Beloshapka’s cubic inC
3,

which is the CR-manifold defined by the equations:

B :
w1 = w1 + 2 i zz,

w2 = w2 + 2 i zz (z + z) .
120
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For general classIII2, the model is the5-dimensional submanifoldN ⊂ C
4

defined by:

N :

w1 = w1 + 2 i zz,

w2 = w2 + 2 i zz (z + z) ,

w3 = w3 + 2i zz(z2 +
3

2
zz + z2).

For general classIV2, the model is provided by the tube over the future light
cone,LC ⊂ C

3, defined by:

LC : (Re z1)
2 − (Re z2)

2 − (Re z3)
2 = 0, Re z1 > 0.

A Cartan connection has been constructed for CR-manifolds belonging to
general classII [1, 12] andIII2 [13]. The equivalence problem for manifolds
belonging to general classIV2 has been solved either by the determination of
an absolute parallelism [4, 11], or the construction of a Cartan connection
[7]. We use Cartan’s equivalence method for which we refer to [10] as a
standard reference.

2. CLASS II

This section is devoted to the determination of the Lie algebra of CR-
automorphisms of Beloshapka’s cubic inC3, which is the CR-manifold de-
fined by the equations:

B :
w1 = w1 + 2 i zz,

w2 = w2 + 2 i zz (z + z) .

It is the model manifold for generic4-dimensional CR-manifolds of CR
dimension1 and real codimension2, i.e. CR-manifolds belonging to class
II, in the sense that any such manifold might be viewed as a deformation of
Beloshapka’s cubic by the way of a Cartan connection [1, 12]. The main
result of this section is:

Theorem 1. Beloshapka’s cubic,

B :
w1 = w1 + 2 i zz,

w2 = w2 + 2 i zz (z + z) ,

has a5-dimensional Lie algebra of CR-automorphisms. A basis for the
Maurer-Cartan forms ofautCR(B) is provided by the5 differential1-forms
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σ, ρ, ζ, ζ, α, which satisfy the structure equations:

dσ = 3 α ∧ σ + ρ ∧ ζ + ρ ∧ ζ ,

dρ = 2 α ∧ ρ + i ζ ∧ ζ ,

dζ = α ∧ ζ ,

dζ = α ∧ ζ ,

dα = 0.

2.1. Initial G-structure. The vectors fieldL1 defined by:

L1 :=
∂

∂z
+ i z

∂

∂u1

+ i
(
2zz + z2

) ∂

∂u2

,

together with its conjugate:

L1 :=
∂

∂z
− i z

∂

∂u1

− i
(
2zz + z2

) ∂

∂u2

,

constitute a basis ofT 1,0
p B at each pointp of B. Moreover the vector fields

T andS defined by:

T := i [L1,L1],

and

S := [L1,T ],

complete a frame onB:

{S , T , L , L }.

The expressions ofT andS are:

T = 2
∂

∂u1

+ (4z + 4z)
∂

∂u2

,

S = 4
∂

∂u2

.

The dual coframe(σ0, ρ0, ζ0, ζ0) is thus given by:

σ0 =
i

4
z2 dz −

i

4
z2 dz −

(
1

2
z +

1

2
z

)

du1 +
1

4
du2,

ρ0 = −
i

2
z dz +

i

2
z dz +

1

2
du1,

ζ0 = dz,

ζ0 = dz.
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We deduce the structure equations enjoyed by(σ0, ρ0, ζ0, ζ0, ):

(1)

dσ0 = ρ0 ∧ ζ0 + ρ0 ∧ ζ0,

dρ0 = i ζ0 ∧ ζ0,

dζ0 = 0,

dζ0 = 0.

As the torsion coefficients of these structure equations areconstants, we
have the following result:

Lemma 1. Beloshapka’s cubic is locally isomorphic to a Lie group whose
Maurer-Cartan forms satisfy the structure equations(1).

The matrix Lie group which encodes suitably the equivalenceproblem
for Beloshapka’s cubic (see [12]) is the10-dimensional Lie groupG1 whose
elementsg are of the form:

g :=







a2a 0 0 0
c aa 0 0
d b a 0
e b 0 a







.

With the notations:

ω0 :=







σ0

ρ0
ζ0
ζ0







, ω :=







σ

ρ

ζ

ζ







,

we introduce theG1-structureP 1 onB constituted by the coframesω which
satisfy the relation:

ω := g · ω0.

The proof of theorem (1) relies on successive reductions ofP 1 through
Cartan’s equivalence method.

2.2. Normalization of a. The structure equations for the lifted coframeω

are related to those of the base coframeω0 by the relation:

(2) dω = dg · g−1 ∧ ω + g · dω0.

The termdg · g−1 ∧ ω depends only on the structure equations ofG1 and
is expressed through its Maurer-Cartan forms. The termg · dω0 contains
the so-called torsion coefficients of theG1-structure. We can compute it
easily in terms of the formsσ, ρ, ζ, ζ, by a simple multiplication byg in the
formulae(1) and a linear change of variables. The Maurer-Cartan forms
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for the groupG1 are given by the linearly independent entries of the matrix
dg · g−1, which are:

α1 :=
da

a
,

α2 := −
bda

a2a
+

db

aa
,

α3 := −
cda

a a3
−

cda

a2a2
+

dc

a2a
,

α4 := −
(daa− bc) da

a4a2
−

cdb

a3a2
+

dd

a2a
,

α5 := −

(
eaa− b c

)
da

a3a3
−

cdb

a3a2
+

de

a2a
,

together with their conjugates.
The first structure equation is given by:

dσ = 2 α1 ∧ σ+α1 ∧ σ+

(
e

a2
+

d

a2a

)

σ ∧ ρ−
c

a2a
σ ∧ ζ−

c

aa2
σ ∧ ζ+ρ ∧ ζ+

a

a
ρ ∧ ζ .

from which we immediately deduce thata

a
is an essential torsion coefficient

which might be normalised to1 by setting:

a = a.

2.3. Normalizations of b and c. We have thus reduced theG1 equivalence
problem onB to aG2 equivalence problem, whereG2 is the9 dimensional
real matrix Lie group whose elements are of the form

g :=







a3 0 0 0
c a2 0 0
d b a 0
e b 0 a







, a ∈ R.

The Maurer-Cartan forms ofG2 are given by:

β1 :=
da

a
,

β2 := −
bda

a3
+

db

a2
,

β3 := −2
cda

a4
+

dc

a3
,

β4 := −
(da2 − bc) da

a6
−

cdb

a5
+

dd

a3
,

β5 := −

(
ea2 − b c

)
da

a6
−

cdb

a5
+

de

a3
,
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together withβ2, β3, β4, β5. Using formula(2), we get the structure
equations for the lifted coframe(σ, ρ, ζ, ζ) from those of the base coframe
(σ0, ρ0, ζ0, ζ0) by a matrix multiplication and a linear change of coordinates,
as in the first step:

dσ = 3 β1 ∧ σ

+ Uσ
σρ σ ∧ ρ + Uσ

σζ σ ∧ ζ + Uσ

σζ
σ ∧ ζ + ρ ∧ ζ + ρ ∧ ζ,

dρ = 2β1 ∧ ρ+ β3 ∧ σ

+ Uρ
σρ σ ∧ ρ+ U

ρ

σζ σ ∧ ζ + U
ρ

σζ
σ ∧ ζ

+ U
ρ

ρζ ρ ∧ ζ + U
ρ

ρζ
ρ ∧ ζ + i ζ ∧ ζ,

dζ = β1 ∧ ζ + β2 ∧ ρ+ β4 ∧ σ

+ U ζ
σρ σ ∧ ρ+ U

ζ

σζ σ ∧ ζ + U
ζ

σζ
σ ∧ ζ + U

ζ

ρζ ρ ∧ ζ

+ U
ζ

ρζ
ρ ∧ ζ + U

ζ

ζζ
ζ ∧ ζ.

We now proceed with the absorption phase. We introduce the modified
Maurer-Cartan forms:

β̃i = βi − yσ σ − yiρ ρ− yiζ ζ − yi
ζ
ζ,

such that the structure equations rewrite:

dσ = 3 β̃1 ∧ σ

+
(
Uσ
σρ − 3 y1ρ

)
σ ∧ ρ +

(
Uσ
σζ − 3 y1ζ

)
σ ∧ ζ

+
(

Uσ

σζ
− 3 y1

ζ

)

σ ∧ ζ ρ ∧ ζ + ρ ∧ ζ,

dρ = 2β̃1 ∧ ρ+ β̃3 ∧ σ

+
(
Uρ
σρ + 2 y1σ − y3ρ

)
σ ∧ ρ +

(
U

ρ

σζ − y3ζ
)
σ ∧ ζ

+
(

U
ρ

σζ
− y3

ζ

)

σ ∧ ζ +
(
U

ρ

ρζ − 2 y1ζ
)
ρ ∧ ζ

+
(

U
ρ

ρζ
− 2 y1

ζ

)

ρ ∧ ζ + i ζ ∧ ζ ,
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dζ = β̃1 ∧ ζ + β̃2 ∧ ρ+ β̃4 ∧ σ

+
(
U ζ
σρ + y2σ − y4ρ

)
σ ∧ ρ +

(

U
ζ

σζ + y1σ − y4ζ

)

σ ∧ ζ

+
(

U
ζ

σζ
− y4

ζ

)

σ ∧ ζ +
(

U
ζ

ρζ + y1ρ − y2ζ

)

ρ ∧ ζ

+
(

U
ζ

ρζ
− y2

ζ

)

ρ ∧ ζ +
(

U
ζ

ζζ
− y1

ζ

)

ζ ∧ ζ .

We get the following absorbtion equations:

3 y1ρ = Uσ
σρ, 3 y1ζ = Uσ

σζ , 3 y1
ζ
= Uσ

σζ
,

−2 y1σ + y3ρ = Uρ
σρ, y3ζ = U

ρ

σζ , y3
ζ
= U

ρ

σζ
,

2 y1ζ = U
ρ

ρζ , 2 y1
ζ
= U

ρ

ρζ
, −y2σ + y4ρ = U ζ

σρ,

−y1σ + y4ζ = U
ζ

σζ , y4
ζ
= U

ζ

σζ
, −y1ρ + y2ζ = U

ζ

ρζ ,

y2
ζ
= U

ζ

ρζ
, y1

ζ
= U

ζ

ζζ
.

Eliminatingy1
ζ

among the previous equations leads to:

U
ζ

ζζ
=

1

2
U

ρ

ρζ
=

1

3
Uσ

σζ
,

that is:

ib

a2
=

1

2

(
c

a3
−

ib

a2

)

= −
1

3

c

a3
,

from which we easily deduce that

b = c = 0.

2.4. Normalizations of d and e. We have thus reduced the groupG2 to a
new groupG3, whose elements are of the form

g :=







a3 0 0 0
0 a2 0 0
d 0 a 0
e 0 0 a







.



127

The Maurer Cartan forms ofG3 are:

γ1 :=
da

a
,

γ2 := −
dda

a4
+

dd

a3
,

γ3 := −
eda

a4
+

de

a3
.

The third loop of Cartan’s method is straightforward. We get the follow-
ing structure equations:

dσ = 3 γ1 ∧ σ +
d+ e

a4
σ ∧ ρ + ρ ∧ ζ + ρ ∧ ζ ,

dρ = 2 γ1 ∧ ρ + i
e

a3
σ ∧ ζ − i

d

a3
σ ∧ ζ + i ζ ∧ ζ ,

dζ = γ1 ∧ ζ + γ2 ∧ σ +
d (d+ e)

a6
σ ∧ ρ +

d

a3
ρ ∧ ζ +

d

a3
ρ ∧ ζ ,

dζ = γ1 ∧ ζ + γ3 ∧ σ +
e (d+ e)

a6
σ ∧ ρ +

e

a3
ρ ∧ ζ +

e

a3
ρ ∧ ζ ,

from which we deduce that we can perform the normalizations:

e = d = 0.

With the1-dimensional groupG4 whose elementsg are of the form:

g :=







a3 0 0 0
0 a2 0 0
0 0 a 0
0 0 0 a







,

and whose Maurer-Cartan form is given by

α :=
da

a
,

we get the following structure equations:

dσ = 3 α ∧ σ + ρ ∧ ζ + ρ ∧ ζ ,

dρ = 2 α ∧ ρ + i ζ ∧ ζ ,

dζ = α ∧ ζ ,

dζ = α ∧ ζ .

No more normalizations are allowed at this stage. We thus just perform
a prolongation by adjoining the formα to the structure equations, whose
exterior derivative is given by:

dα = 0.
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This completes the proof of Theorem 1.

3. CLASS III2

This section is devoted to the determination of the Lie algebra of CR-
automorphisms of the model manifold of classIII2 which is defined by the
equations:

N :

w1 = w1 + 2 i zz,

w2 = w2 + 2 i zz (z + z) ,

w3 = w3 + 2i zz(z2 +
3

2
zz + z2).

It is the model manifold for CR-manifolds belonging to classIII2, in the
sense that any such manifold might be viewed as a deformationof N by the
way of a Cartan connection ( [13]). The main result of this section is the
following:

Theorem 2. The model of the classIII2:

N :

w1 = w1 + 2 i zz,

w2 = w2 + 2 i zz (z + z) ,

w3 = w3 + 2i zz(z2 +
3

2
zz + z2),

has a6-dimensional Lie algebra of CR-automorphisms. A basis for the
Maurer-Cartan forms ofautCR(N) is provided by the6 differential1-forms
τ , σ, ρ, ζ, ζ, α, which satisfy the structure equations:

dτ = 4 α ∧ τ + σ ∧ ζ + σ ∧ ζ ,

dσ = 3 α ∧ σ + ρ ∧ ζ + ρ ∧ ζ ,

dρ = 2 α ∧ ρ + i ζ ∧ ζ ,

dζ = α ∧ ζ ,

dζ = α ∧ ζ ,

dα = 0.

3.1. Initial G-structure. The vector fields :

L :=
∂

∂z
+ iz

∂

∂u1

+ i(2zz + z2)
∂

∂u2

+ i(3z2z + 3zz2 + z3)
∂

∂u3

,

with its conjugate:

L :=
∂

∂z
− iz

∂

∂u1

− i(2zz + z2)
∂

∂u2

− i(3zz2 + 3z2z + z3)
∂

∂u3

,
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constitute a basis ofT 1,0
p N and ofT 0,1

p N at each pointp of N. Moreover the
vector fieldsT , S andR defined by:

T := i [L ,L1],

S := [L1,T ],

and

R := [L1,S ],

complete a frame onN:

{R,S , T , L , L }.

The expressions ofT , S andR are:

T := 2
∂

∂u1

+ (4z + 4z)
∂

∂u2

+ (6z2 + 12zz + 6z2)
∂

∂u3

,

S := 4
∂

∂u2

+ (12z + 12z)
∂

∂u3

,

R := 12
∂

∂u3

.

The dual coframe{τ0, σ0, ρ0, ζ0, ζ0} is thus given by:

τ0 = −
i

12
z3 dz +

i

12
z3 dz +

(
1

4
z2 +

1

2
zz +

1

4
z2
)

du1 −

(
1

4
z +

1

4
z

)

du2 +
1

12
du3,

σ0 =
i

4
z2 dz −

i

4
z2 dz −

(
1

2
z +

1

2
z

)

du1 +
1

4
du2,

ρ0 = −
i

2
z dz +

i

2
z dz +

1

2
du1,

ζ0 = dz,

ζ0 = dz.

We deduce the structure equations enjoyed by the base coframe
{τ0, σ0, ρ0, ζ0, ζ0}:

(3)

dτ0 = σ0 ∧ ζ0 + σ0 ∧ ζ0,

dσ0 = ρ0 ∧ ζ0 + ρ0 ∧ ζ0,

dρ0 = i ζ0 ∧ ζ0,

dζ0 = 0,

dζ0 = 0.
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As the torsion coefficients of these structure equations areconstants, we
have the following result:

Lemma 2. The model of the classIII2 is locally isomorphic to a Lie group
whose Maurer-Cartan forms satisfy the structure equations(3).

The matrix Lie group which encodes suitably the equivalenceproblem
for the model of classIII2 (see [13]) is the18-dimensional Lie groupG1

whose elementsg are of the form:

g :=









a3a 0 0 0 0
f a2a 0 0 0
g c aa 0 0
h d b a 0
k e b 0 a









.

With the notations:

ω0 :=









τ0
σ0

ρ0
ζ0
ζ0









, ω :=









τ

σ

ρ

ζ

ζ









,

we introduce theG1-structureP 1 onN constituted by the coframesω which
satisfy the relation:

ω := g · ω0.

As in the case of Beloshapka’s cubic, the proof of theorem (2) relies on
successive reductions ofP 1 through Cartan’s equivalence method.
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3.2. Normalization of a. The Maurer-Cartan forms ofG1 are given by:

α1 :=
da

a
,

α2 := −
bda

a2a
+

db

aa
,

α3 := −
cda

a a3
−

cda

a2a2
+

dc

a2a
,

α4 := −
(daa− bc) da

a4a2
−

cdb

a3a2
+

dd

a2a
,

α5 := −

(
eaa− b c

)
da

a3a3
−

cdb

a3a2
+

de

a2a
,

α6 := −2
fda

a a4
−

fda

a3a2
+

df

a a3
,

α7 := −
(ga2a− cf) da

a2a6
−

(ga2a− cf) da

a3a5
−

fdc

a5a2
+

dg

a a3
,

α8 := −

(
ha3a2 − dfaa− bga2a+ bcf

)
da

a7a3
−

(ga2a− cf) db

a6a3
−

fdd

a5a2
+

dh

a a3
,

α9 := −

(
ka3a2 − efaa− b ga2a+ b cf

)
da

a6a4
−

(ga2a− cf) db

a6a3
−

fde

a5a2
+

dk

a a3
,

together with their conjugates.
The first structure equation is given by:

dτ = 3 α1 ∧ τ + α1 ∧ τ

+ T τ
τσ τ ∧ σ + T τ

τρ τ ∧ ρ + T τ
τζ τ ∧ ζ

+ T τ

τζ
τ ∧ ζ + T τ

σρ σ ∧ ρ + σ ∧ ζ −
a

a
σ ∧ ζ ,

from which we immediately deduce thata

a
is an essential torsion coefficient

which shall be normalized to1 by setting:

a = a.

We thus have reduced theG1 equivalence problem to aG2 equivalence
problem, whereG2 is the10 dimensional real matrix Lie group whose ele-
ments are of the form

g =









a4 0 0 0 0
f a3 0 0 0
g c a2 0 0
h d b a 0
k e b 0 a









,
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3.3. Normalizations of f, b and c. The Maurer-Cartan forms ofG2 are
given by:

β1 :=
da

a
,

β2 := −
bda

a3
+

db

a2
,

β3 := −2
cda

a4
+

dc

a3
,

β4 := −
(da2 − bc) da

a6
−

cdb

a5
+

dd

a3
,

β5 := −

(
ea2 − b c

)
da

a6
−

cdb

a5
+

de

a3
,

β6 := −3
fda

a5
+

df

a4
,

β7 := −2
(ga3 − cf) da

a8
−

fdc

a7
+

dg

a4
,

β8 := −
(ha5 − dfa2 − bga3 + bcf) da

a10
−

(ga3 − cf) db

a9
−

fdd

a7
+

dh

a4
,

β9 := −

(
ka5 − efa2 − b ga3 + b cf

)
da

a10
−

(ga3 − cf) db

a9
−

fde

a5a2
+

dk

a4
,

together withβi, i = 2 . . . 9.
Using formula (2), we get the structure equations for the lifted coframe

(τ, σ, ρ, ζ, ζ) from those of the base coframe(τ0, σ0, ρ0, ζ̂0, ζ̂0) by a matrix
multiplication and a linear change of coordinates, as in thefirst step:

dτ = 4 β1 ∧ τ

+ U τ
τσ τ ∧ σ + U τ

τρ τ ∧ ρ+ U τ
τζ τ ∧ ζ + U τ

τζ
τ ∧ ζ

+ U τ
σρ σ ∧ ρ+ σ ∧ ζ + σ ∧ ζ,

dσ = 3 β1 ∧ σ + β6 ∧ τ

+ Uσ
τσ τ ∧ σ + Uσ

τρ τ ∧ ρ + Uσ
τζ τ ∧ ζ

+ Uσ

τζ
τ ∧ ζ + Uσ

σρ σ ∧ ρ + Uσ
σζ σ ∧ ζ

+ Uσ

σζ
σ ∧ ζ + ρ ∧ ζ + ρ ∧ ζ,
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dρ = 2β1 ∧ ρ+ β3 ∧ σ + β7 ∧ τ

+ Uρ
τσ τ ∧ σ + Uρ

τρ τ ∧ ρ+ U
ρ

τζ τ ∧ ζ + U
ρ

τζ
ρ ∧ ζ + Uρ

σρ σ ∧ ρ

+ U
ρ

σζ σ ∧ ζ + U
ρ

σζ
σ ∧ ζ + U

ρ

ρζ ρ ∧ ζ + U
ρ

ρζ
ρ ∧ ζ + i ζ ∧ ζ,

dζ = β1 ∧ ζ + β2 ∧ ρ+ β4 ∧ σ + β8 ∧ τ

+ U ζ
τσ τ ∧ σ + U ζ

τρ τ ∧ ρ+ U
ζ

τζ τ ∧ ζ + U
ζ

τζ
τ ∧ ζ

+ U ζ
σρ σ ∧ ρ+ U

ζ

σζ σ ∧ ζ + U
ζ

σζ
σ ∧ ζ + U

ζ

ρζ ρ ∧ ζ

+ U
ζ

ρζ
ρ ∧ ζ + U

ζ

ζζ
ζ ∧ ζ.

We now proceed with the absorption phase. We introduce the modified
Maurer-Cartan forms:

β̃i = βi − yiτ τ − yσ σ − yiρ ρ− yiζ ζ − yi
ζ
ζ.

The structure equations rewrite:

dτ = 4 β̃1 ∧ τ

+
(
U τ
τσ − 4 y1σ

)
τ ∧ σ +

(
U τ
τρ − 4 y1ρ

)
τ ∧ ρ

+
(
U τ
τζ − 4 y1ζ

)
τ ∧ ζ +

(

U τ

τζ
− 4 y1

ζ

)

τ ∧ ζ

+ U τ
σρ σ ∧ ρ + σ ∧ ζ + σ ∧ ζ ,

dσ = 3 β̃1 ∧ σ + β̃6 ∧ τ

+
(
Uσ
τσ + 3 y1τ − y6σ

)
τ ∧ σ +

(
Uσ
τρ − y6ρ

)
τ ∧ ρ

+
(
Uσ
τζ − y6ζ

)
τ ∧ ζ +

(

Uσ

τζ
− y6

ζ

)

τ ∧ ζ

+
(
Uσ
σρ − 3 y1ρ

)
σ ∧ ρ +

(
Uσ
σζ − 3 y1ζ

)
σ ∧ ζ

+
(

Uσ

σζ
− 3 y1

ζ

)

σ ∧ ζ + ρ ∧ ζ + ρ ∧ ζ,
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dρ = 2β̃1 ∧ ρ+ β̃3 ∧ σ + β̃7 ∧ τ

+
(
Uρ
τσ + y3τ − y7σ

)
τ ∧ σ +

(
Uρ
τρ + 2 y1τ − y7ρ

)
τ ∧ ρ

+
(
U

ρ

τζ − y7ζ
)
τ ∧ ζ +

(

U
ρ

τζ
− y7

ζ

)

ρ ∧ ζ

+
(
Uρ
σρ + 2 y1σ − y3ρ

)
σ ∧ ρ +

(
U

ρ

σζ − y3ζ
)
σ ∧ ζ

+
(

U
ρ

σζ
− y3

ζ

)

σ ∧ ζ +
(
U

ρ

ρζ − 2 y1ζ
)
ρ ∧ ζ

+
(

U
ρ

ρζ
− 2 y1

ζ

)

ρ ∧ ζ + i ζ ∧ ζ ,

dζ = β̃1 ∧ ζ + β̃2 ∧ ρ+ β̃4 ∧ σ + β̃8 ∧ τ

+
(
U ζ
τσ + y4τ − y8σ

)
τ ∧ σ +

(
U ζ
τρ + y2τ − y8ρ

)
τ ∧ ρ

+
(

U
ζ

τζ + y1τ − y8ζ

)

τ ∧ ζ +
(

U
ζ

τζ
− y8

ζ

)

τ ∧ ζ

+
(
U ζ
σρ + y2σ − y4ρ

)
σ ∧ ρ +

(

U
ζ

σζ + y1σ − y4ζ

)

σ ∧ ζ

+
(

U
ζ

σζ
− y4

ζ

)

σ ∧ ζ +
(

U
ζ

ρζ + y1ρ − y2ζ

)

ρ ∧ ζ

+
(

U
ζ

ρζ
− y2

ζ

)

ρ ∧ ζ +
(

U
ζ

ζζ
− y1

ζ

)

ζ ∧ ζ .

We get the following absorbtion equations:

4 y1σ = U τ
τσ, 4 y1ρ = U τ

τρ, 4 y1ζ = U τ
τζ ,

4 y1
ζ
= U τ

τζ
, −3 y1τ + y6σ = Uσ

τσ, y6ρ = Uσ
τρ,

y6ζ = Uσ
τζ , y6

ζ
= Uσ

τζ
, 3 y1ρ = Uσ

σρ,

3 y1ζ = Uσ
σζ , 3 y1

ζ
= Uσ

σζ
, −y3τ + y7σ = Uρ

τσ,

−2 y1τ + y7ρ = Uρ
τρ, y7ζ = U

ρ

τζ , y7
ζ
= U

ρ

τζ
,

−2 y1σ + y3ρ = Uρ
σρ, y3ζ = U

ρ

σζ , y3
ζ
= U

ρ

σζ
,

2 y1ζ = U
ρ

ρζ , 2 y1
ζ
= U

ρ

ρζ
, −y4τ + y8σ = U ζ

τσ,

−y2τ + y8ρ = U ζ
τρ, −y1τ + y8ζ = U

ζ

τζ , y8
ζ
= U

ζ

τζ
,

−y2σ + y4ρ = U ζ
σρ, −y1σ + y4ζ = U

ζ

σζ , y4
ζ
= U

ζ

σζ
,

−y1ρ + y2ζ = U
ζ

ρζ , y2
ζ
= U

ζ

ρζ
, y1

ζ
= U

ζ

ζζ
.
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Eliminatingy1
ζ

among the previous equations leads to:

U
ζ

ζζ
=

1

2
U

ρ

ρζ
=

1

3
Uσ

σζ
=

1

4
U τ

τζ
,

that is:
ib

a2
=

1

2

(
c

a3
−

ib

a2

)

= −
1

3

(
c

a3
+

f

a4

)

= −
1

4

f

a4
,

from which we easily deduce that

b = c = f = 0.

We have thus reduced the groupG2 to a new groupG3, whose elements
are of the form

g :=









a4 0 0 0 0
0 a3 0 0 0
g 0 a2 0 0
h d 0 a 0
k e 0 0 a









.

3.4. Normalization of g, d and e. The Maurer Cartan forms ofG3 are:

γ1 :=
da

a
,

γ2 := −
dda

a4
+

dd

a3
,

γ3 := −
eda

a4
+

de

a3
,

γ4 := −2
gda

a5
+

dg

a4
,

γ5 := −
hda

a5
+

dh

a4
,

γ6 := −
kda

a5
+

dk

a4
.

We get the following structure equations:

dτ = 4 γ1 ∧ τ + V τ
τσ τ ∧ σ + σ ∧ ζ + σ ∧ ζ,

dσ = 3 γ1 ∧ σ+V σ
τρ τ ∧ ρ+V σ

τζ τ ∧ ζ+V σ

τζ
τ ∧ ζ+V σ

σρ σ ∧ ρ+ρ ∧ ζ+ρ ∧ ζ ,

dρ = 2 γ1 ∧ ρ+γ4 ∧ τ+V ρ
τσ τ ∧ σ+V

ρ

τζ τ ∧ ζ+V
ρ

τζ
ρ ∧ ζ+V

ρ

σζ σ ∧ ζ+V
ρ

σζ
σ ∧ ζ+i ζ ∧ ζ ,
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dζ = γ1 ∧ ζ + γ2 ∧ σ + γ5 ∧ τ

+ V ζ
τσ τ ∧ σ + V ζ

τρ τ ∧ ρ+ V
ζ

τζ τ ∧ ζ + V
ζ

τζ
τ ∧ ζ

+ V ζ
σρ σ ∧ ρ+ V

ζ

σζ σ ∧ ζ + V
ζ

σζ
σ ∧ ζ + V

ζ

ρζ ρ ∧ ζ

+ V
ζ

ρζ
ρ ∧ ζ,

and

dζ = γ1 ∧ ζ + γ3 ∧ σ + γ6 ∧ τ

+ V ζ
τσ τ ∧ σ + V ζ

τρ τ ∧ ρ+ V
ζ

τζ τ ∧ ζ + V
ζ

τζ
τ ∧ ζ

+ V ζ
σρ σ ∧ ρ+ V

ζ

σζ σ ∧ ζ + V
ζ

σζ
σ ∧ ζ + V

ζ

ρζ ρ ∧ ζ

+ V
ζ

ρζ
ρ ∧ ζ.

From these equations, we immediately see thatV σ
τζ , V

ζ

ρζ
andV ζ

ρζ are es-
sential torsion coefficients. As we have:

V σ
τζ = −

g

a4
, V

ζ

ρζ
=

d

a3
, V

ζ

ρζ =
e

a3
,

we obtain the new normalizations:

d = e = g = 0.

The reduced groupG4 is of the form:

g :=









a4 0 0 0 0
0 a3 0 0 0
0 0 a2 0 0
h 0 0 a 0
k 0 0 0 a









.

Its Maurer-Cartan forms are given by:

δ1 :=
da

a
,

δ2 := −
hda

a5
+

dh

a4
,

δ3 := −
kda

a5
+

dk

a4
.

The structure equations are easily computed as:
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dτ = 4 δ1 ∧ τ +
h+ k

a4
τ ∧ σ + σ ∧ ζ + σ ∧ ζ ,

dσ = 3 δ1 ∧ σ +
h+ k

a4
τ ∧ ρ + ρ ∧ ζ + ρ ∧ ζ ,

dρ = 2 δ1 ∧ ρ + i
k

a4
τ ∧ ζ − i

h

a4
τ ∧ ζ + i ζ ∧ ζ ,

dζ = δ1 ∧ ζ + δ2 ∧ τ +
h (h+ k)

a8
τ ∧ σ +

h

a4
σ ∧ ζ +

h

a4
σ ∧ ζ ,

dζ = δ1 ∧ ζ + δ3 ∧ τ +
k (h+ k)

a8
τ ∧ σ +

k

a4
σ ∧ ζ +

k

a4
σ ∧ ζ .

We deduce from these equations that we can perform the normalization:

h = k = 0.

With the1-dimensional groupG5 of the form:

g :=









a4 0 0 0 0
0 a3 0 0 0
0 0 a2 0 0
0 0 0 a 0
0 0 0 0 a









,

whose Maurer-Cartan form is given by

α :=
da

a
,

we get the following structure equations:

dτ = 4 α ∧ τ + σ ∧ ζ + σ ∧ ζ ,

dσ = 3 α ∧ σ + ρ ∧ ζ + ρ ∧ ζ ,

dρ = 2 α ∧ ρ + i ζ ∧ ζ ,

dζ = α ∧ ζ ,

dζ = α ∧ ζ .

No more normalizations are allowed at this stage. We thus just perform
a prolongation by adjoining the formα to the structure equations, whose
exterior derivative is given by:

dα = 0.

This completes the proof of Theorem 2 .
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4. CLASS IV2

ClassIV2 is constituted by the5-dimensional real hypersurfacesM5 ⊂
C

3 which are of CR-dimension2, whose Levi form is of constant rank1
and which are2-nondegenerate, i.e. their Freeman forms are non-zero. The
most symmetric manifold of this class is the tube over the future light cone,
which is defined by the equation:

LC : (Re z1)
2 − (Re z2)

2 − (Re z3)
2 = 0, Re z1 > 0.

This section is devoted to the determination of the Lie algebraautCR(LC) of
infinitesimal CR-automorphisms ofLC. This has been done before by Kaup
and Zaitsev [5]. We prove the following result:

Theorem 3. The tube over the future light cone:

LC : (Re z1)
2 − (Re z2)

2 − (Re z3)
2 = 0, Re z1 > 0.

has a10-dimensional Lie algebra of CR-automorphisms. A basis for the
Maurer-Cartan forms ofautCR(LC) is provided by the10 differential 1-
forms ρ, κ, ζ, κ, ζ, π1, π2, π1, π2, Λ, which satisfy the Maurer-Cartan
equations:

(4)

dρ = π1 ∧ ρ+ π1 ∧ ρ+ i κ ∧ κ,

dκ = π1 ∧ κ+ π2 ∧ ρ+ ζ ∧ κ,

dζ = i π2 ∧ κ+ π1 ∧ ζ − π1 ∧ ζ,

dκ = π1 ∧ κ+ π2 ∧ ρ− κ ∧ ζ,

dζ = −i π2 ∧ κ+ π1 ∧ ζ − π1 ∧ ζ,

dπ1 = Λ ∧ ρ+ i κ ∧ π2 + ζ ∧ ζ,

dπ2 = Λ ∧ κ+ ζ ∧ π2 + π2 ∧ π1,

dπ1 = Λ ∧ ρ− i κ ∧ π2 − ζ ∧ ζ,

dπ2 = Λ ∧ κ+ ζ ∧ π2 − π1 ∧ π2,

dΛ = −π1 ∧ Λ + i π2 ∧ π2 − π1 ∧ Λ.

4.1. Geometric set-up. In order to motivate our subsequent notations, it is
convenient to introduce some general results on CR-manifoldsbelonging to
classIV2, for which we refer to [11] for a proof.

Let M ⊂ C
3 be a smooth hypersurface locally represented as a graph

over the5-dimensional real hyperplaneCz1 × Cz2 × Rv:

u = F (z1, z2, z1, z2, v),
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whereF is a local smooth function depending on5 arguments. We assume
thatM is a CR-submanifold of CR dimension2 which is2-nondegenerate
and whose Levi form is of constant rank1. The two vector fieldsL1 and
L2 defined by:

Lj =
∂

∂zj
+ Aj ∂

∂v
, Aj := −i

Fzj

1 + i Fv

, j = 1, 2,

constitute a basis ofT 1,0
p M at each pointp of M and thus provide an iden-

tification of T 1,0
p M with C

2 at each point. Moreover, the real1-form σ

defined by:

σ := dv − A1 dz1 − A2 dz2 − A1 dz1 − A2 dz2,

satisfies
{σ = 0} = T 1,0M ⊕ T 0,1M,

and thus provides an identication of the projection

C⊗ TpM −→ C⊗ TpM /
(
T 1,0
p M ⊕ T 0,1

p M
)

with the mapσp: C ⊗ TpM −→ C. With these two identifications, the
Levi form LF can be viewed at each pointp as a skew hermitian form on
C

2 represented by the matrix:

LF =

(
σp

(
i [L1,L1]

)
σp

(
i [L2,L1]

)

σp

(
i [L1,L2]

)
σp

(
i [L2,L2]

)

)

.

The fact thatLF is supposed to be of constant rank1 ensures the existence
of a certain functionk such that the vector field

K := kL1 + L2

lies in the kernel ofLF . Here are the expressions ofK andk in terms of
the graphing functionF :

K = k ∂z1 + ∂z2 −
i

1 + i Fv

(k Fz1 + Fz2) ∂v,

k = −
Fz2,z1 + Fz2,z1 F 2

v − i Fz1 Fz2,v − Fz1 Fv Fv,z2 + i Fz2 Fz1 Fv,v − Fz2 Fv Fv,z1

Fz1,z1 + Fz1,z1 F 2
v − i Fz1 Fz1,v − Fz1 Fv Fz1,v + i Fz1 Fz1,v + Fz1 Fz1 Fv,v − Fz1 Fv Fv,z1

.

From the above construction, the four vector fieldsL1, K , L1, K con-
stitute a basis ofT 1,0

p M ⊕ T 0,1
p M at each pointp of M . It turns out that the

vector fieldT defined by:

T := i [L1,L1]

is linearly independant fromL1, K , L1, K .
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It is well known (see [3, 8]) that the tube over the future light cone is
locally biholomorphic to the graphed hypersurface:

u =
z1z1 +

1

2
z21z2 +

1

2
z21z2

1− z2z2
.

The five vector fieldsL1, K , L1, K andT , wich constitute a local frame
onLC, have thus the following expressions:

L1 :=
∂

∂z1
− i

z1 + z1z2

1− z2z2

∂

∂v
,

K := −
z1 + z1z2

1− z2z2

∂

∂z1
+

∂

∂z2
+

i

2

z1
2 + 2z1z1z2 + z21z2

2

(1− z2z2)
2

∂

∂v
,

and

T := −
2

1− z2z2

∂

∂v
.

Moreover the functionk is given by

k := −
z1 + z1z2

1− z2z2
.

Let (ρ0, κ0, ζ0, κ0, ζ0) be the dual coframe of(T ,L1,K ,L1,K ). We
have:

ρ0 =−
i

2
(z1+z1z2) dz1−

i

4

z1
2 + 2z1z1z2 + z21z2

2

1− z2z2
dz2+

i

2
(z1+z1z2) dz1

+
i

4

z21 + 2z1z2z1 + z1
2z22

1− z2z2
dz2 +

1

2
(−1 + z2z2) dv ,

κ0 = dz1 +
z1 + z1z2

1− z2z2
dz2 ,

ζ0 = dz2 ,

κ0 = dz1 +
z1 + z1z2

1− z2z2
dz2 ,

ζ0 = dz2 .

A direct computation gives the structure equations enjoyedby the
coframe(ρ0, κ0, ζ0, κ0, ζ0):
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(5)

dρ0 =
z2

1− z2z2
ρ0 ∧ ζ0 +

z2

1− z2z2
ρ0 ∧ ζ0 + i κ0 ∧ κ0 ,

dκ0 =
z2

1− z2z2
κ0 ∧ ζ0 −

1

1− z2z2
ζ0 ∧ κ0 ,

dζ0 = 0,

dκ0 =
1

1− z2z2
κ0 ∧ ζ0 +

z2

1− z2z2
κ0 ∧ ζ0 ,

dζ0 = 0.

The matrix Lie group which encodes the equivalence problem for LC is
the10 dimensional Lie groupG1 whose elements are of the form:

g :=









cc 0 0 0 0
b c 0 0 0
d e f 0 0
b 0 0 c 0
d 0 0 e f









,

wherec andf are non-zero complex numbers whereasb, d ande are arbi-
trary complex numbers (see [11, 9]). We introduce the5 new one-formsρ,
κ, ζ, κ, ζ by the relation:









ρ

κ

ζ

κ

ζ









:= g ·









ρ0
κ0

ζ0
κ0

ζ0









,

which we abbreviate as:

ω := g · ω0.

The coframesω define aG1 structureP 1 on LC. The rest of this section
is devoted to reduceP 1 to an absolute parallelism onLC through Cartan
equivalence method.
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4.2. Normalization of f. The Maurer Cartan forms ofG1 are the follow-
ing:

α1 :=
dc

c
,

α2 :=
db

cc
−

b dc

c2
c,

α3 :=
dd

cc
−

b de

c2c
+

(−dc+ eb) df

c2cf
,

α4 :=
de

c
−

e df

cf
,

α5 :=
df

f
.

The structure equations read as:

dρ = α1 ∧ ρ+ α1 ∧ ρ

+ T ρ
ρκ ρ ∧ κ+ T

ρ

ρζ ρ ∧ ζ + T
ρ
ρκ ρ ∧ κ+ T

ρ

ρζ
ρ ∧ ζ + i κ ∧ κ,

dκ = α1 ∧ κ+ α2 ∧ ρ

+ T κ
ρκ ρ ∧ κ+ T κ

ρζ ρ ∧ ζ + T κ
ρκ ρ ∧ κ

+ T κ

ρζ
ρ ∧ ζ + T κ

κζ κ ∧ ζ + T κ
κκ κ ∧ κ+ T κ

ζκ ζ ∧ κ,

dζ = α3 ∧ ρ+ α4 ∧ κ+ α5 ∧ ζ

+ T ζ
ρκ ρ ∧ κ+ T

ζ

ρζ ρ ∧ ζ + T
ζ
ρκ ρ ∧ κ

+ T
ζ

ρζ
ρ ∧ ζ + T

ζ

κζ κ ∧ ζ + T
ζ
κκ κ ∧ κ+ T

ζ

ζκ ζ ∧ κ,

where the expressions of the torsion coefficientsT •

••
are given in the appen-

dix.
We now proceed with the absorption step of Cartan’s method. Wein-

troduce the modified Maurer-Cartan formsα̃i, which are a related to the
1-formsαi by the relations:

α̃i := αi − xi
ρ ρ − xi

κ κ− xi
ζ ζ − xi

κ κ − xi

ζ
ζ,

wherex1, x2, x3, x4 andx5 are arbitrary complex-valued functions. The
previously written structure equations take the new form:

dρ = α̃1 ∧ ρ+ α̃1 ∧ ρ

+
(
T ρ
ρκ − x1

κ − x1

κ

)
ρ ∧ κ +

(

T
ρ

ρζ − x1

κ − x1

ζ

)

ρ ∧ ζ

+
(

T
ρ
ρκ − x1

κ − x1
κ

)

ρ ∧ κ +
(

T
ρ

ρζ
− x1

ζ − x1

ζ

)

ρ ∧ ζ

+ i κ ∧ κ,
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dκ = α̃1 ∧ κ+ α̃2 ∧ ρ

+
(
T κ
ρκ − x2

κ + x1

ρ

)
ρ ∧ κ +

(
T κ
ρζ − x2

κ

)
ρ ∧ ζ

+
(
T κ
ρκ − x2

κ

)
ρ ∧ κ+

(

T κ

ρζ
− x2

ζ

)

ρ ∧ ζ

+
(
T κ
κζ + x1

ζ

)
κ ∧ ζ +

(
T κ
κκ − x1

κ

)
κ ∧ κ

+ T κ
ζκ ζ ∧ κ +

(

T 1

κζ
− x1

κζ

)

κ ∧ ζ,

dζ = α̃3 ∧ ρ+ α̃4 ∧ κ+ α̃5 ∧ ζ

+
(
T ζ
ρκ − x3

κ + x4

ρ

)
ρ ∧ κ+

(

T
ζ

ρζ − x3

ζ + x5

ρ

)

ρ ∧ ζ

+
(
T ζ
ρκ − x3

κ

)
ρ ∧ κ +

(

T
ζ

ρζ
− x3

ζ

)

ρ ∧ ζ

+
(

T
ζ
κκ − x4

κ

)

κ ∧ κ+
(

T
ζ

ζκ − x5

κ

)

ζ ∧ κ

+
(
x5

κ − x4

ζ

)
κ ∧ ζ − x4

κ κ ∧ κ

+
(

x5

κ − x4

ζ

)

κ ∧ ζ − x5

ζ
ζ ∧ ζ.

We then choosex1, x2, x3, x4 andx5 in a way that eliminates as many
torsion coefficients as possible. We easily see that the onlycoefficient which
can not be absorbed is the one in front ofζ ∧ κ in dκ, because it does not
depend on thexi’s. We choose the normalization

T κ
ζκ = 1,

which yields to :

f = −
c

c

1

1− z2z2
.

We notice that the absorbed structure equations take the form:

dρ = α̃1 ∧ ρ+ α̃1 ∧ ρ+ i κ ∧ κ,

dκ = α̃1 ∧ κ+ α̃2 ∧ ρ+ ζ ∧ κ,

dζ = α̃3 ∧ ρ+ α̃4 ∧ κ+ α̃5 ∧ ζ.

The normalization off gives the new relation :








ρ

κ

ζ

κ

ζ









=









cc 0 0 0 0
b c 0 0 0
d e c

c
1

−1+z2z2
0 0

b 0 0 c 0
0 0 d e c

c

1

−1+z2z2









·









ρ0
κ0

ζ0
κ0

ζ0









.
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We thus introduce the new one-form

ζ̂0 = −
1

1− z2z2
· ζ0,

such that the previous equation rewrites :









ρ

κ

ζ

κ

ζ









=









cc 0 0 0 0
b c 0 0 0
d e c

c
0 0

b 0 0 c 0
0 0 d e c

c









·









ρ0
κ0

ζ̂0
κ0

ζ̂0









.

We have reduced theG1 equivalence problem to aG2 equivalence prob-
lem, whereG2 is the8 dimensional real matrix Lie group whose elements
are of the form

g =









cc 0 0 0 0
b c 0 0 0
d e c

c
0 0

b 0 0 c 0
0 0 d e c

c









.

We determine the new structure equations enjoyed by the basecoframe

(ρ0, κ0, ζ̂0, κ0, ζ̂0). We get :

dρ0 = −z2 ρ0 ∧ ζ̂0 − z2 ρ0 ∧ ζ̂0 + i κ0 ∧ κ0,

dκ0 = −z2 κ0 ∧ ζ̂0 + ζ̂0 ∧ κ0,

dζ̂0 = z2 ζ̂0 ∧ ζ̂0 .

4.3. Normalization of b. The Maurer forms of theG2 are given by the
independant entries of the matrixdg · g−1. We have:

dg · g−1 =









β1 + β1 0 0 0 0
β2 β1 0 0 0

β3 β4 β1 − β1 0 0

β2 0 0 β1 0

β3 0 0 β4 −β1 + β1









,
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where the formsβ1, β2, β3 andβ4 are defined by

β1 :=
dc

c
,

β2 :=
db

cc
−

bdc

c2c
,

β3 :=
(−dc+ eb) dc

c3c
−

(−dc+ eb) dc

c2c2
+

dd

cc
−

bde

c2c
,

β4 := −
edc

c2
+

edc

cc
+

de

c
.

Using formula (2), we get the structure equations for the lifted coframe

(ρ, κ, ζ, κ, ζ) from those of the base coframe(ρ0, κ0, ζ̂0, κ0, ζ̂0):

dρ = β1 ∧ ρ+ β1 ∧ ρ

+ Uρ
ρκ ρ ∧ κ+ U

ρ

ρζ ρ ∧ ζ + U
ρ
ρκ ρ ∧ κ

+ U
ρ

ρζ
ρ ∧ ζ + i κ ∧ κ,

dκ = β1 ∧ κ+ β2 ∧ ρ

+ Uκ
ρκ ρ ∧ κ+ Uκ

ρζ ρ ∧ ζ + Uκ
ρκ ρ ∧ κ+ Uκ

ρζ
ρ ∧ ζ

+ Uκ
κζ κ ∧ ζ + Uκ

κκ κ ∧ κ+ ζ ∧ κ,

dζ = β3 ∧ ρ+ β4 ∧ κ+ β1 ∧ ζ − β1 ∧ ζ

+ U ζ
ρκ ρ ∧ κ+ U

ζ

ρζ ρ ∧ ζ + U
ζ
ρκ ρ ∧ κ

+ U
ζ

ρζ
ρ ∧ ζ + U

ζ

κζ κ ∧ ζ + U
ζ
κκ κ ∧ κ

+ U
ζ

κζ
κ ∧ ζ + U

ζ

ζκ ζ ∧ κ+ U
ζ

ζζ
ζ ∧ ζ.

We introduce the modified Maurer-Cartan formsβ̃i which differ from the
βi by a linear combination of the1-formsρ, κ, ζ, κ, ζ, i.e. that is :

β̃i = βi − yiρ ρ − yiκ κ− yiζ ζ − yiκ κ − yi
ζ
ζ.

The structure equations rewrite:

dρ = β̃1 ∧ ρ+ β̃1 ∧ ρ

+
(
Uρ
ρκ − y1κ − y1κ

)
ρ ∧ κ+

(

U
ρ

ρζ − y1ζ − y1
ζ

)

ρ ∧ ζ

+
(
U

ρ
ρκ − y1κ − y1κ

)
ρ ∧ κ+

(

U
ρ

ρζ − y1
ζ
− y1ζ

)

ρ ∧ ζ + i κ ∧ κ,
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dκ = β̃1 ∧ κ+ β̃2 ∧ ρ

+
(
Uκ
ρκ + y1ρ − y2κ

)
ρ ∧ κ+

(
Uκ
ρζ − y2ζ

)
ρ ∧ ζ +

(
Uκ
ρκ − y2κ

)
ρ ∧ κ

+
(

Uκ

ρζ
− y2

ζ

)

ρ ∧ ζ +
(
Uκ
κζ − y1ζ

)
κ ∧ ζ

+
(
Uκ
κκ − y1κ

)
κ ∧ κ− y1

ζ
κ ∧ ζ + ζ ∧ κ,

dζ = β̃3 ∧ ρ+ β̃4 ∧ κ+ β̃1 ∧ ζ − β̃1 ∧ ζ

+
(
U ζ
ρκ − y3κ + y4ρ

)
ρ ∧ κ+

(

U
ζ

ρζ − y3ζ + y1ρ − y1ρ

)

ρ ∧ ζ

+
(

U
ζ
ρκ−y3κ

)

ρ ∧ κ+
(

U
ζ

κζ −y4ζ +y1κ−y1κ

)

κ∧ζ+
(

U
ζ
κκ−y4κ

)

κ∧κ

+
(

U
ζ

κζ
− y4

ζ

)

κ∧ ζ+
(

U
ζ

ζκ− y1κ+ y1κ

)

ζ ∧κ+
(

U
ζ

ζζ
− y1

ζ
+ y1ζ

)

ζ ∧ ζ.

We get the following absorbtion equations:

y1κ + y1κ = Uρ
ρκ, y1ζ + y1

ζ
= U

ρ

ρζ , y1κ + y1κ = U
ρ
ρκ,

y1
ζ
+ y1ζ = U

ρ

ρζ , −y1ρ + y2κ = Uκ
ρκ, y2ζ = Uκ

ρζ ,

y2κ = Uκ
ρκ, y2

ζ
= Uκ

ρζ
, y1ζ = Uκ

κζ ,

y1κ = Uκ
κκ, y1

ζ
= 0, y3κ − y4ρ = U ζ

ρκ,

y3ζ − y1ρ + y1ρ = U
ζ

ρζ , y3κ = U
ζ
ρκ, y4ζ − y1κ + y1κ = U

ζ

κζ ,

y4κ = U
ζ
κκ, y4

ζ
= U

ζ

κζ
, y1κ − y1κ = U

ζ

ζκ,

y1
ζ
− y1ζ = U

ζ

ζζ
.

Eliminating they•• among theses equations leads to the following relations
between the torsion coefficients :

U
ρ
ρκ = U

ρ
ρκ,

U
ρ

ρζ
= U

ρ

ρζ ,

U
ρ

ρζ = Uκ
κζ ,

U
ζ

ζζ
= −U

ρ

ρζ
,

2Uκ
κκ = U

ζ

ζκ + U
ρ
ρκ.

We verify easily that the first four equations do not depend onthe group
coefficients and are already satisfied. However, the last onedoes depend on
the group coefficients. It gives us the normalization ofb as it rewrites :

b = −i ce.
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The absorbed structure equations rewrite:

dρ = β̃1 ∧ ρ+ β̃1 ∧ ρ+ i κ ∧ κ,

dκ = β̃1 ∧ κ+ β̃2 ∧ ρ+ ζ ∧ κ,

dζ = β̃3 ∧ ρ+ β̃4 ∧ κ+ β̃1 ∧ ζ − β̃1 ∧ ζ +
(

U
ζ

ζκ + U
ρ
ρκ − 2Uκ

κκ

)

ζ ∧ κ.

4.4. Normalization of d. We have thus reduced the groupG2 to a new
groupG3, whose elements are of the form

g =









cc 0 0 0 0
−i ec c 0 0 0
d e c

c
0 0

i ec 0 0 c 0
d 0 0 e c

c









.

It is a six-dimensional real Lie group. We compute its MaurerCartan forms
with the usual formula

dg · g−1 =









γ1 + γ1 0 0 0 0
γ2 γ1 0 0 0
γ3 i γ2 γ1 − γ1 0 0
γ2 0 0 γ1 0
−γ3 0 0 −i γ2 −γ1 + γ1









,

where

γ1 :=
dc

c
,

γ2 := i e
dc

c2
− i

e dc

cc
− i

de

c
,

and

γ3 :=

(
dc+ i e2c

c2c

)(
dc

c
−

dc

c

)

+
dd

cc
+ i

ede

c2
.

As the normalization ofb does not depend on the base variables, the third
loop of Cartan’s method is straightforward. We get the following structure
equations:

dρ = γ1 ∧ ρ+ γ1 ∧ ρ

+ V ρ
ρκ ρ ∧ κ+ V

ρ

ρζ ρ ∧ ζ + V
ρ
ρκ ρ ∧ κ

+ V
ρ

ρζ
ρ ∧ ζ + i κ ∧ κ,
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dκ = γ1 ∧ κ+ γ2 ∧ ρ

+ V κ
ρκ ρ ∧ κ+ V κ

ρζ ρ ∧ ζ + V κ
ρκ ρ ∧ κ

+ V κ

ρζ
ρ ∧ ζ + V κ

κζ κ ∧ ζ + V κ
κκ κ ∧ κ+ ζ ∧ κ,

dζ = γ3 ∧ ρ+ i γ2 ∧ κ+ γ1 ∧ ζ − γ1 ∧ ζ

+ V ζ
ρκ ρ ∧ κ+ V

ζ

ρζ ρ ∧ ζ + V
ζ
ρκ ρ ∧ κ+ V

ζ

ρζ
ρ ∧ ζ

+ V
ζ

κζ κ ∧ ζ + V
ζ
κκ κ ∧ κ+ V

ζ

κζ
κ ∧ ζ + V

ζ

ζκ ζ ∧ κ

+ V
ζ

ζζ
ζ ∧ ζ.

We now start the absorption step. We introduce:

γ̃i := γi − ziρ ρ− ziκ κ− ziζ ζ − ziκ κ− zi
ζ
ζ.

The structure equations are modified accordingly:

dρ = γ̃1 ∧ ρ+ γ̃1 ∧ ρ

+
(

V ρ
ρκ − z1κ − z1κ

)

ρ ∧ κ +
(

V
ρ

ρζ − z1ζ − z1
ζ

)

ρ ∧ ζ

+
(

Vρκ − z1κ − z1κ

)

ρ ∧ κ +
(

V
ρ

ρζ
− z1ζ − z1

ζ

)

ρ ∧ ζ ,

dκ = γ̃1 ∧ κ+ γ̃2 ∧ ρ

+
(
V κ
ρκ − z2κ + zκρ

)
ρ ∧ κ +

(
V κ
ρζ − z2ζ

)
ρ ∧ ζ

+
(
V κ
ρκ − z2κ

)
ρ ∧ κ +

(

Vρζ − z2
ζ

)

ρ ∧ ζ +
(
V κ
κζ − z1ζ

)
κ ∧ ζ

+
(
V κ
κκ − z1κ

)
κ ∧ κ + ζ ∧ κ− z1

ζ
κ ∧ ζ ,

and

dζ = γ̃3 ∧ ρ+ i γ̃2 ∧ κ+ γ̃1 ∧ ζ − γ̃1 ∧ ζ

+
(
V ζ
ρκ − z3κ + i z2ρ

)
ρ ∧ κ +

(

V
ζ

ρζ + z1ρ − z3ζ − ζ1ρ

)

ρ ∧ ζ

+
(

V
ζ
ρκ − z3κ

)

ρ ∧ κ +
(

V
ζ

ρζ
− z3

ζ

)

ρ ∧ ζ +
(

V
ζ
κκ − i z2κ

)

κ ∧ κ

+
(

V
ζ

κζ
− i z2

ζ

)

κ ∧ ζ +
(

V
ζ

ζκ − z1κ + z1κ

)

ζ ∧ ζ .

We thus want to solve the system of linear equations :
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z1κ + z1κ = V ρ
ρκ, z1κ + z1κ = V

ρ
ρκ, z1ζ + z1

ζ
= V

ρ

ρζ ,

z1ζ + z1
ζ
= V

ρ

ρζ
, z2κ − z1ρ = V κ

ρζ , z2κ = V κ
ρκ,

z2ζ = V κ
ρζ , z2

ζ
= V κ

ρζ
, z1ζ = V κ

κζ ,

z1
ζ
= 0, z1κ = V κ

κκ, z3κ − i z2ρ = V ζ
ρκ,

−z1ρ + z1ρ + z3ζ = V
ζ

ρζ , z1κ − z1κ − i z2ζ = −V
ζ

κζ , i z2κ = V
ζ
κκ,

z3κ = V
ζ
ρκ, z3

ζ
= V

ζ

ρζ
, i z2

ζ
= V

ζ

κζ
,

z1κ − z1κ = V
ζ

ζκ, z1
ζ
− z1ζ = V

ζ

ζζ
.

This is easily done as:






z1κ = V
ρ
ρκ,

z1κ = V κ
κκ,

z1ζ = V
ρ

ρζ ,

z1
ζ
= 0,

z2κ = V κ
ρκ,

z2
ζ
= V κ

ρζ
,

z2ζ = V κ
ρζ ,

z3κ = V
ζ
ρκ,

z3
ζ
= V

ζ

ρζ
,

z3ζ = V
ζ

ρζ + z1ρ − z1ρ,

z3κ = V ζ
ρκ + i z2ρ,

z2κ = V κ
ρζ + z1ρ,
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wherez1ρ and z2ρ may be choosen freely. Eliminating thez•• we get the
following additional conditions on theV •

•• :

(6)






V
ρ
ρκ = V

ρ
ρκ,

V
ρ

ρζ
= V

ρ

ρζ ,

V
ρ

ρζ = V κ
κζ ,

i V κ

ρζ
= V

ζ

κζ
,

V
ρ

ρζ = −V
ζ

ζζ
,

2V κ
κκ = V

ρ
ρκ + V

ζ

ζκ,

and

(7)






i V κ
ρκ = V

ζ
κκ,

V
ζ

κζ
+ V

ζ

κζ = i V κ
ρζ .

We easily verify that the equations (6) are indeed satisfied.However
the remaining two equations are not and they provide two essential torsion
coefficients, namelyi V κ

ρκ − V
ζ
κκ andV ζ

κζ
+ V

ζ

κζ − i V κ
ρζ , which will give us

at least one new normalization of the group coefficients. Indeed we have

i V κ
ρκ − V

ζ
κκ = −2i

d

cc
+

e2

c2
.

Setting this expression to0, we get the normalization of the parameterd:

d = −i
1

2

e2c

c
.

4.5. Prologation of theG4 structure. We have reduced the previousG3-
structure to aG4-structure, whereG4 is the four dimensional matrix Lie
group whose elements are of the form :









cc 0 0 0 0
−i ec c 0 0 0

− i
2

e2c

c
e c

c
0 0

i ec 0 0 c 0
i
2

e
2
c

c
0 0 e c

c









.

The basis for the Maurer-Cartan forms ofG4 is provided by the four
forms

δ1 :=
dc

c
, δ2 := i e

dc

c2
− i

e dc

cc
− i

de

c
, δ1 , δ2.
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Now we just substitute the parameterd by its normalization in the struc-
ture equations at the third step. We have to take into accountthe fact that
dd is modified accordingly. Indeed we have:

dd = −ie
c

c
−

i

2

e2c

c

(
dc

c
−

dc

c

)

.

The formsγ1 andγ2 are not modified as they do not involve terms indd,
but this is not the case forγ3 which is transformed into:

γ3 =
dd

cc
+ i

e

c2
−

d dc

c2c2
− i e2

dc

c3
+

d dc

cc2
+ i

e2 dc

cc2

= 0.

The expressions ofdρ and dκ are thus unchanged from the expressions
given by the structure equations at the third step, except the fact that we
shall replaced by− i

2

e2c

c
+i c

c
H in the expression of each torsion coefficient

V •
••, which we renameW •

••, and the fact that the formsγ1 andγ1 shall be
replaced by the formsδ1 andδ2, that is:

dρ = δ1 ∧ ρ+ δ1 ∧ ρ

+W ρ
ρκ ρ ∧ κ+W

ρ

ρζ ρ ∧ ζ +W
ρ
ρκ ρ ∧ κ+W

ρ

ρζ
ρ ∧ ζ + i κ ∧ κ,

and
dκ = δ1 ∧ κ+ δ2 ∧ ρ

+W κ
ρκ ρ ∧ κ+W κ

ρζ ρ ∧ ζ +W κ
ρκ ρ ∧ κ

+W κ

ρζ
ρ ∧ ζ +W κ

κζ κ ∧ ζ +W κ
κκ κ ∧ κ+ ζ ∧ κ.

The expression ofdζ is obtained in the same way, settingγ3 to zero, and
renamingW •

•• the coefficientsV •
•• in which one performs the substitution

d = −i1
2

e2c

c
:

dζ = i δ2 ∧ κ+ δ1 ∧ ζ − δ1 ∧ ζ

+W ζ
ρκ ρ ∧ κ+W

ζ

ρζ ρ ∧ ζ +W
ζ
ρκ ρ ∧ κ+W

ζ

ρζ
ρ ∧ ζ +W

ζ

κζ κ ∧ ζ

+W
ζ
κκ κ ∧ κ+W

ζ

κζ
κ ∧ ζ +W

ζ

ζκ ζ ∧ κ+W
ζ

ζζ
ζ ∧ ζ.

Let us now proceed with the absorption phase. We make the two substi-
tutions:

δ1 := δ̃1 + w1

ρ ρ+ w1

κ κ+ w1

ζ ζ + w1

κ κ+ w1

ζ
ζ,

δ2 := δ̃2 + w2

ρ ρ+ w2

κ κ+ w2

ζ ζ + w2

κ κ+ w2

ζ
ζ,
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in the previous equations. We get:

dρ = δ̃1 ∧ ρ+ δ̃1 ∧ ρ

+
(

W ρ
ρκ − w1

κ − w1
κ

)

ρ ∧ κ +
(

W
ρ

ρζ − w1

ζ − w1

ζ

)

ρ ∧ ζ

+
(

Wρκ − w1

κ − w1
κ

)

ρ ∧ κ +
(

W
ρ

ρζ
− w1

ζ − w1

ζ

)

ρ ∧ ζ ,

dκ = δ̃1 ∧ κ+ δ̃2 ∧ ρ

+
(
W κ

ρκ − w2

κ + w1

ρ

)
ρ ∧ κ +

(
W κ

ρζ − w2

ζ

)
ρ ∧ ζ

+
(
W κ

ρκ − w2

κ

)
ρ ∧ κ +

(

Wρζ − w2

ζ

)

ρ ∧ ζ

+
(
W κ

κζ − w1

ζ

)
κ ∧ ζ +

(
W κ

κκ − w1

κ

)
κ ∧ κ + ζ ∧ κ− w1

ζ
κ ∧ ζ ,

and

dζ = i δ̃2 ∧ κ+ δ̃1 ∧ ζ − δ̃1 ∧ ζ

+
(
W ζ

ρκ + i w2

ρ

)
ρ ∧ κ +

(

W
ζ

ρζ + w1

ρ − w1
ρ

)

ρ ∧ ζ

+W
ζ
ρκ ρ ∧ κ +W

ζ

ρζ
ρ ∧ ζ +

(

W
ζ
κκ − i w2

κ

)

κ ∧ κ

+
(

W
ζ

κζ
− i w2

ζ

)

κ ∧ ζ +
(

W
ζ

ζκ − w1

κ + w1
κ

)

ζ ∧ ζ .

From the last equation, we immediately see thatW
ζ
ρκ andW ζ

ρζ
are two new

essential torsion coefficients. We find the remaining ones bysolving the set
of equations:

w1

κ + w1
κ = W ρ

ρκ, w1

κ + w1
κ = W

ρ
ρκ, w1

ζ + w1

ζ
= W

ρ

ρζ ,

w1
ζ + w1

ζ
= W

ρ

ρζ
, w2

κ − w1

ρ = W κ
ρκ, w2

κ = W κ
ρκ,

w2

ζ = W κ
ρζ , w2

ζ
= W κ

ρζ
, w1

ζ = W κ
κζ ,

w1

ζ
= 0, w1

κ = W κ
κκ, −i w2

ρ = W ζ
ρκ,

−w1

ρ + w1
ρ = W

ζ

ρζ , w1

κ − w1
κ − i w2

ζ = −W
ζ

κζ , i w2

κ = W
ζ
κκ,

w1

κ − w1
κ = W

ζ

ζκ, i w2

ζ
= W

ζ

κζ
, w1

ζ
− w1

ζ = W
ζ

ζζ
,
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which lead easily as before to:

(8)






w1

κ = W
ρ
ρκ,

w1

κ = W κ
κκ,

w1

ζ = W
ρ

ρζ ,

w1

ζ
= 0,

w2

κ = W κ
ρκ,

w2

ζ
= W κ

ρζ
,

w2

ζ = W κ
ρζ ,

w2

κ = W κ
ρκ + w1

ρ,

w2

ρ = W ζ
ρκ,

−w1

ρ + w1
ρ = W

ζ

ρ,ζ .

Eliminating thew•
• from (8), we get one additionnal condition on theW •

••

which has not yet been checked, namely thatW
ζ

ρ,ζ shall be purely imaginary.

The computation ofW ζ

ρ,ζ , W
ζ
ρκ andW ζ

ρζ
gives:

W
ζ

ρ,ζ = i
ee

cc
−

i

2

e2c

c3
z2 −

i

2

e2c

c3
z2,

W
ζ
ρκ = 0,

and
W

ζ

ρζ
= 0,

which indicates that no further normalizations are allowedat this stage and
that we must perform a prolongation of the problem. Let us introduce the
modified Maurer Cartan forms of the groupG4, namely :

{
δ̂1 := δ1 − w1

ρ ρ− w1

κ κ− w1

ζ ζ − w1

κ κ− w1

ζ
ζ,

δ̂2 := δ2 − w2

ρ ρ− w2

κ κ− w2

ζ ζ − w2

κ κ− w2

ζ
ζ,

wherewi
ρ, w

i
κ, wi

ζ , w
i
κ, wi

ζ
, i = 1, 2, are the solutions of the system of

equations (8) corresponding tow1
ρ + w1

ρ = 0, that is :

(9)






δ̂1 := δ1 +
1

2
V

ζ

ρζ ρ− V
ρ
ρκ κ− V

ρ

ρζ ζ − V κ
κκ κ,

δ̂2 := δ2 − V ζ
ρκ ρ−

(

V κ
ρκ −

1

2
V

ζ

ρζ

)

κ− V κ
ρζ ζ − V κ

ρκ κ− V κ

ρζ
ζ.

We also introduce the modified Maurer Cartan forms which correspond
to solutions of the system (8) whenRe(w1

ρ) is not necessarily set to zero,
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namely :

(10)

{
π1 := δ̂1 −ℜ(w1

ρ) ρ,

π2 := δ̂2 −ℜ(w1

ρ)κ.

Let P 9 be the nine dimensionalG4-structure constituted by the set of
all coframes of the form(ρ, κ, ζ, κ, ζ) on M5. The initial coframe
(ρ0, κ0, ζ0, κ0, ζ0) gives a natural trivialisationP 9 p

→ M5 × G4 which
allows us to consider any differential form onM5 or G4 as a differen-
tial form on P 9. If ω is a differential form onM5 for example, we just
considerp∗(pr∗1(ω)), wherepr1 is the projection on the first component
M5 × G4

pr1
→ M5. We still denote this form byω in the sequel. Fol-

lowing [10], we introduce the two coframes(ρ, κ, ζ, κ, ζ, δ1, δ2, δ1, δ2) and
(ρ, κ, ζ, κ, ζ, π1, π2, π1, π2) onP 9. Settingt := −ℜ(w1

ρ), they relate to each
other by the relation:

















ρ

κ

ζ

κ

ζ

π1

π2

π1

π2

















= gt ·

















ρ

κ

ζ

κ

ζ

δ1

δ2

δ1

δ2

















,

wheregt is defined by

gt :=
















1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
t 0 0 0 0 1 0 0 0
0 t 0 0 0 0 1 0 0
t 0 0 0 0 0 0 1 0
0 0 0 t 0 0 0 0 1
















.

The set{gt, t ∈ R} defines a one- dimensional Lie group, whose Maurer
Cartan form is given bydt, which we renameΛ in the sequel. We now start
the reduction step in the equivalence problem onP 9. From the definition
of π1 andπ2 as the solutions of the absorption equations(8), the five first
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structure equations read as

(11)

dρ = π1 ∧ ρ+ π1 ∧ ρ+ i κ ∧ κ,

dκ = π1 ∧ κ+ π2 ∧ ρ+ ζ ∧ κ,

dζ = i π2 ∧ κ+ π1 ∧ ζ − π1 ∧ ζ,

dκ = π1 ∧ κ+ π2 ∧ ρ− κ ∧ ζ,

dζ = −i π2 ∧ κ+ π1 ∧ ζ − π1 ∧ ζ.

We could obtain the expressions ofdπ1 anddπ2 by taking the exterior de-
rivative of the previous five equations. But for now, as we haveexplicit
expressions ofπ1 andπ2 given by formulae(9) and(10), we can perform
an actual computation:

dπ1 = dt ∧ ρ

+X1

ρκ ρ ∧ κ+X1

ρζ ρ ∧ ζ +X1

ρκ ρ ∧ κ+X1

ρζ
ρ ∧ ζ

+X1

ρπ1 ρ ∧ π1 +X1

ρπ2 ρ ∧ π2 +X1

ρπ1
ρ ∧ π1

+X1

ρπ2
ρ ∧ π2 + i κ ∧ π2 + ζ ∧ ζ,

and

dπ2 = dt ∧ κ

+X2

ρκ ρ ∧ κ+X2

κζ κ ∧ ζ +X2

κκ κ ∧ κ+X2

κζ
κ ∧ ζ

+X2

κπ1 κ ∧ π1 +X2

κπ2 κ ∧ π2 +X2

κπ1
κ ∧ π1

+X2

κπ2
κ ∧ π2 + ζ ∧ π2 + π2 ∧ π1.

From these equations, we see that the absorption is straightforward and
that there remain no nonconstant essential torsion term. Indeed if we define
the absorbed formΛ by:

Λ = dt−X2

ρκ ρ−X1

ρκ κ−
∑

ν=ζ,π1,···,π2

X1

ρν ν,

the previous two equations become:

dπ1 = Λ ∧ ρ+ i κ ∧ π2 + ζ ∧ ζ,

and
dπ2 = Λ ∧ κ+ ζ ∧ π2 + π2 ∧ π1.

A straightforward computation gives the expression ofdΛ:

dΛ = −π1 ∧ Λ + i π2 ∧ π2 − π1 ∧ Λ.
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Let us summarize the results that we have obtained so far: Theten1-forms
ρ, κ, ζ, κ, ζ, π1, π2, π1, π2, Λ satisfies the structure equations given by(4).
This completes the proof ofh Theorem 3.

APPENDIX A. TORSION COEFFICIENTS FOR THEG-STRUCTURES ONB

A.1. CoefficientsU•
••.

Uσ
σρ =

e

a3
+

d

a3
,

Uσ
σζ = −

c

a3
,

Uσ

σζ
= −

c

a3
,

Uρ
σρ =

ce

a6
+

cd

a6
−

ibe

a5
+

idb

a5
,

U
ρ
σζ =

ie

a3
−

ib c

a5
−

c2

a6
,

U
ρ

σζ
=

ibc

a5
−

c2

a6
−

id

a3
,

U
ρ
ρζ =

c

a3
+

ib

a2
,

U
ρ

ρζ
=

c

a3
−

ib

a2
,

U ζ
σρ =

d2

a6
+

ib db

a7
−

ieb2

a7
+

de

a6
,

U
ζ
σζ =

ibe

a5
−

ib cb

a7
−

cd

a6
,

U
ζ

σζ
= −

cd

a6
−

idb

a5
+

ib2c

a7
,

U
ζ
ρζ =

d

a3
+

ib b

a4
,

U
ζ

ρζ
=

d

a3
−

ib2

a4
,

U
ζ

ζζ
=

ib

a2
.
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APPENDIX B. TORSION COEFFICIENTS FOR THEG-STRUCTURES ONN

B.1. CoefficientsU•
••.

U τ
τσ =

h

a4
−

bg

a6
−

bg

a6
+

k

a6
,

U τ
τρ =

bf

a6
+

b f

a6
,

U τ
τζ = −

f

a4
,

U τ

τζ
= −

f

a4
,

U τ
σρ = −

b

a2
−

b

a2
,

Uσ
τσ =

ge

a7
−

hc

a7
−

kc

a7
+

gd

a7
+

fk

a8
+

fh

a8
−

fb g

a10
−

fbg

a10
,

Uσ
τρ =

b f2

a10
+

bf2

a10
−

fe

a7
−

fd

a7
+

k

a4
+

h

a4
,

Uσ
τζ = −

g

a4
+

cf

a7
−

f2

a8
,

Uσ

τζ
= −

g

a4
+

cf

a7
−

f2

a8
,

Uσ
σρ =

e

a3
+

d

a3
−

bf

a6
−

b f

a6
,

Uσ
σζ = −

c

a3
+

f

a4
,

Uσ

σζ
= −

c

a3
+

f

a4
,

Uρ
τσ =

−iebg

a9
−
ib ch

a9
+
idb g

a9
+
ibck

a9
+
egc

a10
+
dgc

a10
−
idk

a7
+
ieh

a7
−
c2h

a10
−
c2k

a10
−
g2b

a10
+
gk

a8
+
gh

a8
−
g2b

a10
,

Uρ
τρ = −

cdf

a10
+

fbg

a10
+

fb g

a10
−

cef

a10
+

hc

a7
+

kc

a7
−

ibk

a6
+

ibef

a9
−

idb f

a9
+

ib h

a6
,

U
ρ
τζ =

ib cf

a9
−

ief

a7
−

ib g

a6
+

c2f

a10
−

gc

a7
+

ik

a4
−

gf

a8
,

U
ρ

τζ
=

−ibcf

a9
+

idf

a7
+

ibg

a6
+

c2f

a10
−

gc

a7
−

gf

a8
−

ih

a4
,
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Uρ
σρ =

ce

a6
+

cd

a6
−

gb

a6
−

gb

a6
−

ibe

a5
+

idb

a5
,

U
ρ
σζ =

ie

a3
−

ib c

a5
−

c2

a6
+

g

a4
,

U
ρ

σζ
=

ibc

a5
−

c2

a6
−

id

a3
+

g

a4
,

U
ρ
ρζ =

c

a3
+

ib

a2
,

U
ρ

ρζ
=

c

a3
−

ib

a2
,

U ζ
τσ =

−ieb2g

a11
−

idkb

a9
+

iehb

a9
+

ib2ck

a11
+

hk

a8
+

d2g

a10
−

ib chb

a11

+
idb gb

a11
−

cdk

a10
−

cdh

a10
+

ged

a10
−

hb g

a10
−

hbg

a10
+

h2

a8
,

U ζ
τρ =

kd

a7
−

def

a10
+

hb f

a10
+

hbf

a10
−

ikb2

a8
−

ib dfb

a11
+

ib hb

a8
+

iefb2

a11
+

dh

a7
−

d2f

a10
,

U
ζ
τζ = −

gd

a7
−

fh

a8
−

ibef

a9
−

ib gb

a8
+

ib cfb

a11
+

cdf

a10
+

ibk

a6
,

U
ζ

τζ
= −

gd

a7
−

fh

a8
+

idfb

a9
+

cdf

a10
−

ihb

a6
+

ib2g

a8
−

ib2cf

a11
,

U ζ
σρ =

d2

a6
−

hb

a6
+

ib db

a7
−

ieb2

a7
+

de

a6
−

hb

a6
,

U
ζ
σζ =

ibe

a5
−

ib cb

a7
−

cd

a6
+

h

a4
,

U
ζ

σζ
= −

cd

a6
−

idb

a5
+

h

a4
+

ib2c

a7
,

U
ζ
ρζ =

d

a3
+

ib b

a4
,

U
ζ

ρζ
=

d

a3
−

ib2

a4
,

U
ζ

ζζ
=

ib

a2
.
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APPENDIX C. TORSION COEFFICIENTS FOR THEG-STRUCTURES ONLC

C.1. CoefficientsT •
••.

T ρ
ρκ = i

b

cc
−

e

cf

z2

1− z2z2
,

T
ρ
ρζ =

1

f

z2

1− z2z2
,

T
ρ
ρκ = −i

b

cc
+

e

cf
−

z2

1− z2z2
,

T
ρ

ρζ
=

1

f

z2

1− z2z2
,

T κ
ρκ =

eb

cc2f

1

1− z2z2
+

d

ccf

z2

1− z2z2
+ i

bb

c2c2
−

eb

c2cf

z2

1− z2z2

T κ
ρζ = −

b

c2f

1

1− z2z2
,

T κ
ρκ =

d

c2f

1

1− z2z2
−

eb

cc2f

1

1− z2z2
− i

b2

c2c2
+

be

cc2f
−

z2

1− z2z2
,

T κ

ρζ
=

b

ccf

z2

1− z2z2
,

T κ
κζ =

1

f

z2

1− z2z2
,

T κ
κκ =

e

cf

1

1− z2z2
+ i

b

cc
,

T κ
ζκ = −

c

cf

1

1− z2z2
,

T ζ
ρκ =

e2b

c2c2f

1

1− z2z2
+ i

db

c2c2
,

T
ζ
ρζ = −

eb

cc2f

1

1− z2z2
−

eb

c2cf

z2

1− z2z2
+

d

ccf

z2

1− z2z2
,

T
ζ
ρκ =

ed

cc2f

1

1− z2z2
−

e2b

c2c2f

1

1− z2z2
− i

bd

c2c2
−

de

cc2f

z2

1− z2z2
,

T
ζ

ρζ
=

d

ccf

z2

1− z2z2
,

T
ζ
κζ = +

e

ccf

z2

1− z2z2
,
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T
ζ
κκ =

e2

ccf

1

1− z2z2
+ i

d

cc
,

T
ζ
ζκ = −

e

cf

1

1− z2z2
.

C.2. CoefficientsU•
••.

Uρ
ρκ = i

b

cc
+

ec

c2
z2,

U
ρ
ρζ = −

c

c
z2,

U
ρ
ρκ = −i

b

cc
+

ec

c2
z2,

U
ρ

ρζ
= −

c

c
z2,

Uκ
ρκ = −

eb

c2c
−

d

c2
z2 + i

bb

c2c2
+

be

c3
z2,

Uκ
ρζ =

b

cc
,

Uκ
ρκ = −

d

cc
+

eb

c2c
− i

b2

c2c2
+

be

c3
z2,

Uκ

ρζ
= −

b

c2
z2,

Uκ
κζ = −

c

c
z2,

Uκ
κκ = −

e

c
+ i

b

cc
,

U ζ
ρκ = −

ed

cc2
z2 +

bee

c3c
z2 −

e2b

cc3
+ i

db

c2c2
,

U
ζ
ρζ =

d

c2
z2 −

eb

c3
z2 +

eb

c2c
+

be

c3
z2 −

d

c2
z2,

U
ζ
ρκ = 2

ed

c3
z2 −

eeb

c3c
z2 −

ed

c2c
+

e2b

cc3
− i

db

c2c2
,

U
ζ

ρζ
= −2

d

c2
z2 +

eb

cc2
z2,

U
ζ
κζ = −

ec

c2
z2,
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U
ζ
κκ =

ee

c2
z2 −

e2

c2
+ i

d

cc
,

U
ζ

κζ
= −

e

c
z2,

U
ζ
ζκ = −

ec

c2
z2 +

e

c
,

U
ζ

ζζ
=

c

c
z2.

C.3. CoefficientsV •
••.

V ρ
ρκ = −

e

c
+

ec

c2
z2,

V
ρ
ρζ = −

c

c
z2,

V
ρ
ρκ = −

e

c
+

ec

c2
z2,

V
ρ

ρζ
= −

c

c
z2,

V κ
ρκ = −

d

c2
z2 − i

e2c

c3
z2

V κ
ρζ = i

e

c
,

V κ
ρκ = −

d

cc
− i

ee

c2
z2,

V κ

ρζ
= i

e

c
z2,

V κ
κζ = −

c

c
z2,

V κ
κκ = 0,

V ζ
ρκ = −

de

cc2
z2 −

de

cc2
+ i

ee2

c3
z2 − i

e2e

c2c
,

V
ζ
ρζ = −

d

c2
z2 + i

e e

c c
− i

ce2

c3
z2 − i

ce2

c3
z2 −

d

c2
z2,

V
ζ
ρκ = 2

de

c3
z2 + i

ee2

c2c
z2 − 2

ed

cc2
− i

e3

c3
,

V
ζ

ρζ
= −2

d

c2
z2 − i

e2

c c
z2,
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V
ζ
κζ = −

e c

c2
z2,

V
ζ
κκ =

ee

c2
z2 −

e2

c2
+ i

d

c c
,

V
ζ

κζ
= −

e

c
z2,

V
ζ
ζκ = −

ec

c2
z2 +

e

c
,

V
ζ

ζζ
=

c

c
z2.

C.4. CoefficientsX•
••.

X1
ρκ = −

1

2
t
ce

c
z2 −

3

8
i
e2e

c3
z2 +

1

2
t
e

c
+

1

8
i
ee2

cc2
z2z2 +

1

8
i
e3c2

c5
z2

2
+

1

4
i
e2e

cc2
,

X1
ρζ = −

1

4
i
e2

c2
+

1

2
i
ee

c2
z2 −

1

4
i
c2e2

c4
z2

2,

X1
ρκ = X1

ρκ,

X1

ρζ
= X1

ρζ ,

X1

ρπ1 = −t,

X1

ρπ2 =
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